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Abstract
The main advantage of non-parametric models is that the accuracy of the model (degrees
of freedom) adapts to the number of samples. The main drawback is the so-called "curse
of kernelization": to learn the model we must first compute a similarity matrix among all
samples, which requires quadratic space and time and is unfeasible for large datasets.
Nonetheless the underlying effective dimension (effective d.o.f.) of the dataset is often much
smaller than its size, and we can replace the dataset with a subset (dictionary) of highly
informative samples. Unfortunately, fast data-oblivious selection methods (e.g., uniform
sampling) almost always discard useful information, while data-adaptive methods that
provably construct an accurate dictionary, such as ridge leverage score (RLS) sampling,
have a quadratic time/space cost.
In this thesis we introduce a new single-pass streaming RLS sampling approach that
sequentially construct the dictionary, where each step compares a new sample only with
the current intermediate dictionary and not all past samples. We prove that the size of
all intermediate dictionaries scales only with the effective dimension of the dataset, and
therefore guarantee a per-step time and space complexity independent from the number of
samples. This reduces the overall time required to construct provably accurate dictionaries
from quadratic to near-linear, or even logarithmic when parallelized.
Finally, for many non-parametric learning problems (e.g., K-PCA, graph SSL, online kernel
learning) we we show that we can can use the generated dictionaries to compute approximate
solutions in near-linear that are both provably accurate and empirically competitive.

Résumé
L’avantage principal des méthodes d’apprentissage non-paramétriques réside dans le fait
que la nombre de degrés de libertés du modèle appris s’adapte automatiquement au nombre
d’échantillons. Ces méthodes sont cependant limitées par le "fléau de la kernelisation":
apprendre le modèle requière dans un premier temps de construire une matrice de similitude
entre tous les échantillons. La complexité est alors quadratique en temps et espace, ce qui
s’avère rapidement trop coûteux pour les jeux de données de grande dimension.
Cependant, la dimension "effective" d’un jeu de donnée est bien souvent beaucoup plus
petite que le nombre d’échantillons lui-même. Il est alors possible de substituer le jeu
de donnée réel par un jeu de données de taille réduite (appelé "dictionnaire") composé
exclusivement d’échantillons informatifs. Malheureusement, les méthodes avec garanties
théoriques utilisant des dictionnaires comme "Ridge Leverage Score" (RLS) ont aussi une
complexité quadratique.
Dans cette thèse nous présentons une nouvelle méthode d’échantillonage RLS qui met à
jour le dictionnaire séquentiellement en ne comparant chaque nouvel échantillon qu’avec
le dictionnaire actuel, et non avec l’ensemble des échantillons passés. Nous montrons que
la taille de tous les dictionnaires ainsi construits est de l’ordre de la dimension effective
du jeu de données final, guarantissant ainsi une complexité en temps et espace à chaque
étape indépendante du nombre total d’échantillons. Cette méthode présente l’avantage de
pouvoir être parallélisée.
Enfin, nous montrons que de nombreux problèmes d’apprentissage non-paramétriques
peuvent être résolus de manière approchée grâce à notre méthode.
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1. Introduction

This thesis focuses on developing efficient algorithms for constrained environments. Here by
efficient we mean that the algorithm should be able to scale to large problem instances, and
the constraints on the environment can be computational, such as limited memory to store
the problem and time to find a solution, or statistical, such as limited amount of labeled
data to learn on.
Consider an algorithm that can find good solutions for small instances but is too expensive
to run on large instances. The final goal of this thesis is to develop new algorithms that,
using only a fraction of the resources, can compute an approximate solution that is provably
close to the one of the original algorithm.

1.1 Why Efficient Machine Learning?

The recent widespread adoption of machine learning in many fields is leading to the
emergence of new challenges. In some applications, we are now collecting data at a faster
rate than ever. It is not uncommon for a dataset to contain million of samples, and
even more massive dataset are constructed starting from social networks and web crawls
composed of billions or even trillions of edges.
Faced with the challenge of scalability, the most commonly used solution is to simply
increase the engineering effort. For a long time, it was enough to add more memory as
datasets increased. Similarly, if the runtime of the algorithms grew too large, one could
wait for Moore’s law to bring it back down to feasibility.

The core motivation of this thesis is that, when the size of a problem surpasses a certain
threshold, simple hardware or software improvements cannot counterbalance an intrinsically
inefficient algorithm. To cope with the growing size of data in our times, the only way
forward is the development of more efficient algorithms.

Since the computational problem often lies in the size of the dataset, it seems reasonable
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to solve the problem by throwing away a part of our samples and reduce the size of the
dataset. Unfortunately, throwing away information can negatively affect the performance
of our learning algorithms.
In this thesis we present two new algorithms that can find a small dictionary of highly
informative samples in a single pass over the data. We also prove that the samples contained
in these dictionaries can be used in place of the whole dataset to compute approximate
solutions to many learning problems, and provably find a solution that is close to the one
computed using all the data available.
In particular, we show that this is the case when our goal is to learn a regression function
in a linear space, complete the labeling of a graph, or compete against an adversary in an
online optimization game.

1.2 Sequential dictionary learning in a streaming setting

Dictionary learning. Given a large collection of objects, that we will call atoms, in a
dictionary learning problem our goal is to approximate the whole collection using only a
small subset of atoms. Simple practical examples of this problem is learning to represent
colors, where we only need to combine red, blue and green to cover the whole space, or
learning a language, where we can approximately express a word as a combination of other
words (e.g., a star is a far sun).
We consider the case where the atoms that we have to choose are vectors belonging to a
linear space, which can be infinite-dimensional, i.e., a Reproducing Kernel Hilbert Space
(RKHS) H. Given a RKHS and a dataset of samples arbitrarily drawn from this space, we
are interested in approximating the spectral information contained in this dataset, using
only a small subset of the whole dataset.
This can be done by looking at the covariance matrix of these samples, that contains
information on the geometry of the data (eigenvectors), as well as which directions are
more important and which less (eigenvalues).
To be accurate, our method will have to adapt to the difficulty of the data. If all samples
are very unique and lie in all different directions, we want to keep them all, if they are
very redundant and they are all grouped in a few directions, we want to keep only a few
representatives.
Unfortunately, deciding the uniqueness of a sample naively is too expensive, since we
need to compare each sample against every other sample in the dataset, resulting in a
quadratic space and time complexity. Nonetheless, if we already had a small dictionary of
representative samples we could efficiently compute the uniqueness of each sample in the
dataset simply by comparing it to the dictionary.
This is a classical chicken-and-egg problem: we need accurate estimation of the sample’s
importance to construct a good dictionary, but we need a good dictionary to compute
accurate estimations.
To break the cycle, we propose to take a sequential sampling approach. We begin by
processing a small subset of the dataset, making it possible to extract an accurate dictionary
out of it efficiently. When we process the next portion of the dataset, we only compare the
new data to previously selected dictionary, and update our dictionary if necessary. If the
previous dictionary is accurate, we will again choose the right samples and construct an
accurate dictionary, repeating this process until the whole dataset is examined.
This will allow us to break the quadratic barrier of previous dictionary learning algorithm,
since we do not compare each object to each other, and translate this improvements to
downstream problems that also could not be solved in linear time. Moreover it will allow
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us to apply our algorithms to more stringent computational settings, in particular online
and streaming settings.

Streaming algorithms An important metric to measure algorithmic efficiency is how many
passes over the dataset the algorithm performs during its execution. The main difference
is between algorithms that can operate in a single pass over the input vs. algorithm that
require multiple passes. The former can be applied not only in cases where all the data
is ready beforehand, but also to more difficult setting where the data arrives sequentially
over a stream, and the algorithm can only access past data if it explicitly stored it. Being
able to operate in a streaming setting has a number of practical efficiency consequences, in
order to avoid bottlenecks when dealing with with data storage and centralization.
Moreover, streaming algorithms are naturally applicable to sequential and online learning
problems, because they provide the option of continuing to update the current solution
when more data arrives rather than restarting from scratch.

1.3 Our contributions

Dictionary learning for covariance matrices We propose two new sequential sampling
algorithms, KORS and SQUEAK, that efficiently construct a core dictionary capable of
approximating the covariance matrix of the dataset up to a small constant additive and
multiplicative error. This small constant error is achieved with high probability without
any assumption on the geometry of the data.
To guarantee this, our methods automatically adapt the size of the dictionary until it
captures all relevant directions in the data, where a direction is relevant if its associated
eigenvalue is larger than our chosen error threshold. The total number of these relevant
directions, called the effective dimension of the dataset, can be potentially much smaller
than the ambient dimension of the linear space. If the atoms are very spread out these two
dimensions coincide, but if the majority of the atoms follow some structure and lie on a
small subspace, the size of our dictionary becomes independent on the number of samples
and their dimensionality.
For the problem of spectral approximation in a RKHS, we introduce the first dictionary
learning streaming algorithm that operates in a single-pass over the dataset, with a time
complexity linear in the number of samples, and a space complexity independent from the
number of samples that scales only with the effective dimension of the dataset. Previous
results had either a quadratic time complexity, or a space complexity that scaled with the
coherence of the dataset, a quantity always larger than the effective dimension.
In addition, we present a modification to our algorithm that can be run in a distributed
computation environment. This allows us to introduce the first dictionary learning algorithm
that, with enough machines to parallelize the dictionary construction, can achieve a runtime
logarithmic in the number of samples.

Learning with Kernels Reconstructing the covariance matrix of the samples allow us
to provide reconstruction guarantees for low-rank kernel matrix approximation. Similarly,
many existing error analysis for fundamental problems such as kernel ridge regression
(KRR) or kernel principal component analysis (PCA) can be extended to work with our
dictionary learning methods. Therefore, the approximate solutions computed computed
using the dictionary are provably close to the exact ones, and overall both dictionary and
approximate solution can be computed in space constant and time linear in the number
of samples. This greatly outperforms computing the exact solution, that requires at least
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quadratic time and space, and is also an improvement over all other existing dictionary
learning algorithms with comparable accuracy guarantees.

Learning on Graph We show that our general dictionary learning approach can be
successfully applied to the task of graph spectral sparsification, recovering a well known
algorithm by Kelner and Levin, (2013). In doing so, we rectify a flaw in the original analysis
of the accuracy and computational complexity of the algorithm.
In addition, similarly to how dictionaries are used for kernel learning, we argue that graph
sparsifiers can be used to accelerate graph learning algorithms without compromising
learning performance. As an example, we show that a semi-supervised learning (SSL)
solution computed on the sparsified graph will have almost the same performance as a
solution computed on the whole graph, but can be computed in a time that is linear in the
number of edges of the graph, and in a space linear in the number of nodes. This is also
experimentally validated on graphs with tens of thousands of nodes.

Online learning We present Sketched-KONS and PROS-N-KONS, two approximate
second-order algorithms for online kernel learning (OKL). They both achieve the optimal
logarithmic regret of exact second-order methods, while reducing their quadratic complexity.
Sketched-KONS is the first algorithm to show that it is possible to approximate the
second-order updates of an exact second-order OKL method, without losing the logarithmic
regret rate. Computationally, Sketched-KONS offers a favorable regret-performance
trade-off. For a given factor β ≤ 1, we can increase the regret by a linear 1/β factor while
obtaining a quadratic β2 improvement in runtime compared to exact methods.
PROS-N-KONS improves on Sketched-KONS, and is the first second-order OKL method
that guarantees both logarithmic regret and a sub-quadratic runtime, taking only a near-
constant per-step time and space cost that scales only with the effective dimension of the
problem.

1.4 Thesis structure

Chapter 2. We formally introduce the problem of dictionary learning for covariance ma-
trices, and provide two definitions that quantify when a dictionary accurately reconstructs
the spectrum of a covariance matrix, either in an Euclidean space (Section 2.1) or in a
general RKHS (Section 2.2).
We also survey existing batch sampling algorithms, and show how using the ridge leverage
score (RLS) of a sample to quantify its uniqueness provably constructs small and accurate
dictionaries. Unfortunately computing ridge leverage scores is too computationally expen-
sive.
While there exists efficient methods to approximate them when we restrict our problems
to Euclidean spaces, prior to the results presented in this manuscript no method could
approximate leverage scores in a general RKHS taking less than quadratic time.

Chapter 3. We continue our survey of sampling methods in a general RKHS, presenting
two batch algorithms, the first an new result of this thesis and the second a recent result
from Musco and Musco, (2017), that can approximate RLS efficiently but require multiple
passes over the data (Section 3.1).
Unfortunately multiple passes are extremely expensive or impossible (i.e., streaming setting)
on large dataset. We address this problem with two new sequential RLS sampling algorithms,
that represent the main contribution of the thesis. Both of these algorithms process the
dataset incrementally, alternating between using an intermediate dictionary to estimate



1.5 Notation 13

the RLSs of new samples, and using the estimate to choose which informative new sample
should be inserted in the dictionary and which samples became redundant and must be
removed.
We first introduce (Section 3.2) the simpler of the two, KORS, that takes an insertion-only
sampling approach, where a sample already included in the dictionary is never removed.
Afterwards (Section 3.3), we show with SQUEAK how adding the possibility of removing
already sampled atoms from the dictionary allows us to parallelize the sampling process
and distribute it across multiple machines.
Rigorously proving that KORS and SQUEAK succeed with high probability (Section 3.4)
requires a careful stochastic dominance argument that is of independent interest for adaptive
importance sampling algorithms.

This conclude the first part of the thesis dedicated to introducing improved dictionary
learning methods. We continue in the second part showing how they can be applied to
solve important batch and online machine learning problems.

Chapter 4 We show how our fast approximation scheme can be applied to many batch
learning problems that are based on kernels. In particular, using KORS and SQUEAK, we
derive linear time algorithms that can compute low-rank approximations of kernel matrices
(Section 4.1), and approximate solutions for kernel ridge regression and kernel principal
component analysis problems (Section 4.2).
Similarly, we show how a specialized variant of SQUEAK can be used to compute spectral
graph sparsifiers (Section 4.3), and how spectral graph sparsifiers can be applied to machine
learning problems to derive efficient algorithms (Section 4.4). In particular, we focus on
the problem of graph semi-supervised learning, proving that computing an approximate
solution on a sparse approximation of the graph constructed using SQUEAK performs
almost as well as the exact solution computed on the whole graph.

Chapter 5 We introduce the problem of online kernel learning (Section 5.1) and survey
existing first-order and second-order gradient methods proposed to solve them. All of these
methods suffer from the curse of kernelization, and require at least O(t) per-step time to
guarantee low regret, resulting in a quadratic O(T 2) runtime.
For the first time, we break this quadratic barrier, while provably maintaining logarithmic
regret, using two novel approximate second-order OKL algorithms. Sketched-KONS
(Section 5.2) takes the approach of approximating gradient updates, while PROS-N-KONS
(Section 5.3) takes the approach of approximating the RKHS where the gradient descent
takes place.

1.5 Notation

We now outline the general notation used in this thesis. We will also add more specific
notation when the corresponding concept is introduced. Any deviation from this notation
is explicitly stated in the text.
We use curly bracket notation {ai}ni=1 to indicate sets of arbitrary elements, possibly with
duplicates, and the union operator to represent adding (combining) two sets {ai}ni=1∪{bi}ni=1,
or a set and a single element {ai}ni=1 ∪ b. Finally, we use round bracket notation (·, ·, ·) to
indicate tuples, and the set of integers between 1 and n is denoted by [n] := {1, . . . , n}.
We use upper-case bold letters A for matrices and maps, lower-case bold letters a for
vectors and points in an RKHS, lower-case letters a for scalars. We denote by [A]i,j and
[a]i the (i, j) element of a matrix and i-th element of a vector respectively, with [A]i,∗ the
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i-th columns of a matrix, and with [A]∗,j its j-th row.
We denote by In ∈ Rn×n the identity matrix of dimension n and by Diag({ai}ni=1) ∈ Rn×n
the diagonal matrix with the elements of the set {ai}ni=1 on the diagonal. We use en,i ∈ Rn
to denote the indicator vector of dimension n for element i. When the dimension of I and
ei is clear from the context, we omit the n.
We use A � B to indicate the Löwner ordering (Horn and Johnson, 2012), i.e., that A−B
is a positive semi-definite (PSD) operator. We use I{A} for the {0, 1} indicator function of
event A, and #{{Ai}} =

∑n
i=1 I{Ai} for the count of how many events are realized in a

set of events.

Norms and decompositions. Throughout the thesis norms of vector and matrices are
`-2 and induced `-2 norm (operator norm), unless when explicitly indicated. For a vector a,
‖a‖ =

√
aTa, and for a matrix ‖A‖ = sup{‖Aa‖ : ‖a‖ = 1}.

Given a matrix A, we indicate with A = VΣUT its singular value decomposition (SVD),
where the matrix Σ = Diag({σi}Rank(A)

i=1 ) contains the singular value of A, with σn ≥
σn−1 ≥ · · · ≥ σ1 > 0. Moreover, we indicate with σmax = σn the largest singular value, and
with σmin the smallest.
Similarly, given a symmetric matrix A, we indicate with A = UΛUT its eigenvalue
decomposition (eigendecomposition), where the matrix Λ = Diag({λi}Rank(A)

i=1 ) contains
the singular value of A, with λn ≥ λn−1 ≥ · · · ≥ λ1. Moreover, we indicate with λmax = λn
the largest eigenvalue. and with λmin the smallest (possibly negative).
Note that the induced `-2 norm of a matrix is equivalent to its largest singular value σmax,
which is equal to the eigenvalue with largest magnitude in self-adjoin operators (symmetric
matrices).

Computational complexity. We use O(·) to indicate the usual big-O notation, and Ω
for the big-Omega notation. We use Õ(·) for a big-O notation that ignores polylog(·) terms.



2. Dictionary Learning for Covariance Matrices

In this chapter we formally introduce the problem of dictionary learning, first for finite
dimensional spaces Rd and then for general Reproducing Kernel Hilbert Spaces (RKHS) H.
In particular, we introduce a metric to quantify the accuracy of a dictionary, and survey
existing batch sampling methods that can construct small and accurate dictionaries.
Unfortunately, these batch sampling methods are too computationally expensive and require
an oracle to execute. How to implement such an oracle in practice will be the focus of
Chapter 3.

2.1 Nyström in an Euclidean space: leverage score sampling

Consider a collection D = {xi}ni=1 of n vectors xi selected arbitrarily1 from Rd, possibly
with duplicates, and let X ∈ Rd×n be the matrix with xi as its i-th column. Throughout
this section we will focus on the case n � d where we have many more samples than
dimensions. Associated with X we have the covariance matrix

XXT =
n∑
i=1

xix
T
i .

In machine learning the covariance matrix is a recurrent element, which can be used
among other things to extract principal components, fit (non-)parametric linear models
and perform density estimation (Hastie et al., 2009). The space and time complexity of all
of these methods scale proportionally to both the dimension of the covariance matrix d, as
well as the number n of rank-1 matrices xix

T
i contained in it. When n is very large, it is

computationally very hard to process XXT, so we need to reduce this dependency. Given
our dataset D, in this section we are interested in finding a dictionary I that satisfies two
goals:

1i.e., not necessarily according to a sampling distribution.
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Figure 2.1: Dictionary Learning for Covariance Matrices

1. we can use I to represent D,
2. the dictionary’s size |I| is small and does not scale with n,

A dictionary is a generic collection of weighted atoms I := {(weight, atom)} = {(si,ai)},
where the atoms ai are arbitrary elements of Rd, and si are non-negative weights2. The size
of the dictionary |I| is the number of distinct atoms with a non-zero weight. We say that
a dictionary I can be used to exactly represent dataset D when it is possible to exactly
reconstruct the covariance matrix XXT =

∑
siaia

T
i as a weighted sum of the elements in

the dictionary (see Fig. 2.1). If the dictionary correctly reconstructs XXT but its size does
not scale with n (i.e., it is small), we can use it in place of XXT to answer our machine
learning questions (e.g., fit a linear model).

Clearly the dictionary necessary to represent XXT is not unique, and many alternatives are
possible, that differ in the choice of atoms and weights. We will now consider some options:

Without learning. The simplest choice for a dictionary that needs to represent D is D
itself, that is we do not change neither atoms or weights and set I = {(1,xi)}ni=1. This
perfectly reconstructs D since

∑n
i=1 1xix

T
i = XXT, but does not save any space.

Learn atoms.3 As soon as n > d, I = D is not the most succinct (in number of atoms)
representation possible. Consider the thin Singular Value Decomposition of X = VΣUT

and let r be the rank of X

1. V ∈ Rd×r contains the orthonormal left singular vectors vi ∈ Rd as columns, such
that VTV = Ir and VVT is the projection on Im(X).

2. Σ : Rr×r is the diagonal matrix where [Σ]i,i = σi is the i-th singular value, and
σr ≥ σr−1 ≥ · · · ≥ σ1 > 0.

3. U : Rn×r contains the orthonormal right singular vectors ui ∈ Rn as columns, such
that Im(U) = Im(XT).

Then we can rewrite

XXT = VΣUTUΣTVTVΣΣTVT =

r∑
i=1

σ2i viv
T
i

and use I = {1, σivi} as a dictionary for D, replacing the atoms xi with σivi. Clearly the
number of atoms in the SVD-based dictionary is smaller than the one in the original dataset,
but unfortunately when n is very large computing the SVD is prohibitively expensive.

Learn weights but not atoms. This is the family of dictionaries I = {(si,xi)}ni=1.
When si = 1 for all i (i.e., I = D) we saw that this is not the most succinct representation

2Since the matrix XXT is PSD, non-negative weights are sufficient for reconstruction.
3This approach is equivalent to learning both atoms and weights, since we can always rescale the learned

atoms to include any necessary weight.
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possible, and there must be some redundancies that we can eliminate.
A simple example of redundancy can be seen when xi and xi′ are equal. In this case, we
can simply remove xi′ from the dictionary setting si′ = 0 and compensate by setting si = 2.
This leaves

∑n
i=1 sixix

T
i =

∑n
i=1 xix

T
i = XXT unchanged. In other words we can leave the

atoms xi unchanged, but adapt the weights si to the data in order to reduce the number of
non-zero weights and the size of the dictionary.

While general dictionary learning consider the overall problem of jointly learning the weights
and atoms, in the remainder of this thesis we will focus only on this last approach of selecting
and reweighting a subset of D itself, sometime called sparse coding or sparse approximation.
Given the selected subset, we can define the selection matrix S associated with a dictionary
as S = Diag({√si}ni=1) ∈ Rn×n. Then XS is a Rd×n matrix where the atoms contained in
I are properly reweighted so that

XSSTXT =
n∑
i=1

sixix
T
i .

Unfortunately (even when n > d) it is not always possible to find a subset of input samples
xi that is strictly smaller than D and exactly reconstructs D. If we want to reduce the size
of the dictionary we must incur in some approximation error. We will consider two metrics
to quantify our approximation error. We present the first here, and postpone the second to
Section 2.2.1.

2.1.1 Subspace approximation

As we mentioned before, the covariance matrix XXT plays a central role in many linear
problems, such as linear regression or PCA, that try to find the vector or vectors in a
linear space that best fit the data collected. More formally, the solution to all of these
problems must lie in Im(X) = Im(XXT), and is computed using the spectral information
contained in XXT, in the form of eigenvectors and eigenvalues. Therefore if the span and
the spectrum of XSSTX is close to that of XXT, we can use only the data contained in the
dictionary to compute an accurate approximate solution. Chapters 4 and 5 will quantify
more rigorously how an accurate dictionary translates into a good approximate solution,
while we will now give our definition of accurate dictionaries.

We begin by introducing the orthogonal projection matrix on Im(X) as a proxy for the
spectrum of X,

Definition 2.1 The orthogonal projection Π on Im(X) is defined as

Π = (XXT)+/2XXT(XXT)+/2 =

n∑
i=1

πiπ
T
i , 2.1

with πi = (XXT)+/2xi. The approximate orthogonal projection Π̃ for a dictionary I
and its selection matrix S is defined as

Π̃ = (XXT)+/2XSSTXT(XXT)+/2 =

n∑
i=1

siπiπ
T
i . 2.2

Note that Π = Id when X is full rank, and that we can also express Π =
∑r

i=1 viv
T
i ,

i.e., the SVD dictionary can represent Π using only r atoms, while the {πi}ni=1 dictionary
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requires n atoms. Finally, note that the approximate orthogonal projection Π̃ is not the
orthogonal projection on Im(XS)

Π̃ 6= ΠI := (XSSTXT)+/2XSSTXT(XSSTXT)+/2.

We chose this definition for Π̃ because we are not only interested in reconstructing the
subspace spanned by XXT, but we also want to reconstruct its defining spectral prop-
erties. To show that Π̃ is the right tool for the job, we use Definition 2.2 and Proposi-
tion 2.1.

Definition 2.2 A dictionary I = {(si,xi)}ni=1 and its associated selection matrix S ∈ Rn×n
are ε-accurate w.r.t. a matrix X if

‖Π− Π̃‖ = ‖(XXT)+/2X(In − SST)XT(XXT)+/2‖ ≤ ε 2.3

Proposition 2.1 — (Kelner and Levin, 2013).

‖(XXT)+/2(XXT −XSSTXT)(XXT)+/2‖ ≤ ε
m

(1− ε)XXT � XSSTXT � (1 + ε)XXT 2.4

Due to the definition of Löwner PSD ordering, if the dictionary I is ε-accurate Propo-
sition 2.1 guarantees that, for any a ∈ Rd, aTXSSTXTa is at most a (1 ± ε) constant
multiplicative error away from aTXXTa. Since aTXXTa = 0 only if a ∈ Ker(XXT), this
implies that Ker(XXT) = Ker(XSSTX), Im(XXT) = Im(XSSTX), and the dictionary
perfectly reconstructs the projection Π

Π = (XXT)+/2XXT(XXT)+/2 = (XSSTXT)+/2XSSTXT(XSSTXT)+/2 = ΠI .

We can also show that the spectrum of XXT is preserved. In particular, ε-accuracy and
Proposition 2.1 implies that all eigenvalues of XXT are approximated by XSSTXT up to the
same constant factor. Therefore, ε-accuracy not only preserves the subspace that contains
X, but also approximates well the importance of each direction in that subspace.
As we will see this translates in stronger guarantees for complex problems such as PCA
and regression. In addition, since XSSTXT has to approximate at least r eigenvalues and
eigenvectors, it is easy to see that an ε-accurate dictionary must contain at least r atoms
(e.g., to approximate a diagonal matrix such as Ir, we need at least r atoms).

Now that we defined an accuracy measure, there are many possible ways to try to find a
dictionary and selection matrix S that satisfy it.
Gradient descent. We can rewrite Eq. 2.3 as a function of the weights si as

min
{si}ni=1

∥∥∥∥∥
n∑
i=1

(1− si)πiπT
i

∥∥∥∥∥
A simple approach would be to use gradient descent mixed with an `-0 or `-1 penalty on
the weights si to minimize this objective. Unfortunately computing the vectors πi requires
O(nd2) time and is not efficient. Moreover computing a gradient w.r.t. n weights si, and
repeating this operation at each step again makes the algorithm’s complexity scale poorly
with n.
Greedy choice with barrier function. Instead of performing expensive full gradient
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Algorithm 1 Nyström method
Input: Budget q, set of probabilities {pi}ni=1 such that for all i 0 < pi ≤ 1
Output: I
1: Initialize I = ∅
2: for i = {1, . . . , n} do
3: Draw the Binomial r.v. qi ∼ B(pi, q)

4: If qt 6= 0, add
(

1
pi
qi
q ,xi

)
to I

5: end for

updates, several papers (Batson et al., 2012; Silva et al., 2016) propose to use simpler
greedy methods, providing increasingly stronger guarantees for these approaches. Given a
partial dictionary, their strategy is to sequentially compute which would be the vector πi
that would further the most the approximation goal while keeping the existing dictionary
fixed.
Batson et al., (2012) show that using appropriately constructed barrier functions to quantify
the usefulness of each πi vector, it is possible to prove that this sequential approach generates
an ε-accurate and in many cases optimally small dictionary. Unfortunately each step of
this strategy requires solving a linear system in X and it is not computationally efficient,
unless X satisfies stringent structural assumptions, e.g., when XXT is the Laplacian of a
graph (Lee and Sun, 2015).
Random sampling. A traditional (Williams and Seeger, 2001) and common heuristic to
construct a dictionary is to build an unbiased estimator of Π choosing the weights with
uniform sampling. In particular, we sample a small subset of q atoms uniformly at random
(i.e., with probability p = 1/n), and set their weight to si = 1/(pq) = n/q. This strategy is
simple, requires no knowledge of πi, and almost no computation.
Unfortunately, it often fails to construct an ε-accurate dictionary (Bach, 2013). Nonetheless
if we replace the data oblivious uniform distribution with a more accurate data adaptive
distribution, we can improve our accuracy. In the next section we will focus on this family
of sampling methods, and discuss how to find a good data adaptive distribution.

2.1.2 Nyström sampling

In Section 2.1 we restricted our attention to dictionaries that select and reweight a subset
of the input matrix. The Nyström method is a general name for all methods that choose
this subset according to a random process. The blueprint for batch Nyström sampling is
reported in Algorithm 1.
The algorithm iterates over each atom xi and draws a Binomial random variable qi ∼ B(pi, q)
containing q independent copies of a Bernoulli Ber(pi). While we refer to qi as the number
of copies of atom xi, Algorithm 1 does not explicitly add duplicate copies of xi to the
dictionary I, but a single copy with weight 1

pi
qi
q .

Notice that traditionally Nyström sampling draws q(
∑n

i=1 pi) samples without (Williams
and Seeger, 2001) or with (Alaoui and Mahoney, 2015) replacement from the multinomial
distributionM({pi/

∑n
i=1 pi}). Algorithm 1 draws q samples from each of the n Binomials

B(pi, q), which can be seen as a “Bernoulli with replacement”. On a statistical level this
sampling scheme differs from Multinomial sampling in two aspects.
The first difference is that the size of the dictionary |I| = q =

∑n
i=1 qi is not fixed in advance

to q(
∑n

i=1 pi) but random and equal to the number of non-zero weights contained in the
dictionary |I| =

∑n
i=1 I{ 1

pi
qi
q 6= 0} =

∑n
i=1 I{qi 6= 0}. Nonetheless, we can bound w.h.p.
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the final size of the dictionary to show that it is at most 3q(
∑n

i=1 pi).

Proposition 2.2 Given probabilities {pi} and budget q, let I be the dictionary generated
by Algorithm 1. Then

P
(
|I| ≥ 3q

(∑n

i=1
pi

))
≤ exp

{
−q
(∑n

i=1
pi

)}
.

Proof sketch of Proposition 2.2. While the true size of the dictionary is the number of
non-zero weights, it is easier to analyze the upper bound |I| ≤∑n

i=1 qi, as if we assumed
that all the copies included in the dictionaries belonged to different atoms, or we explicitly
stored each copy of an atom separately. Then we can use a Hoeffding-like bound, proved in
Proposition 2.13, to bound the sum of independent, non-identically distributed Binomials∑n

i=1 qi. �

The second difference is that, although in expectation both the number of drawn samples for
each atom (E[qi] = qpi) and in total (E[q] = q

∑n
i=1 pi) match between the two approaches,

our sequential Binomial sampling is not equivalent (same distribution) as a series of
q(
∑n

i=1 pi) Multinomial draws with replacement4.
On an algorithmic level, unlike traditional Nyström, we do not need to explicitly compute
the normalization constant

∑n
i=1 pi to perform the sampling procedure. This will become

useful in Section 2.2.2, where the pi will be computed starting from data.
Other algorithm that use this Binomial sampling approach are present in the literature
(Kelner and Levin, 2013), as well as variants that draw qi proportionally to an overestimated
Bernoulli Ber(piq) rather than a Binomial B(pi, q) (Cohen et al., 2015a; Cohen et al., 2015b;
Cohen et al., 2016; Musco and Musco, 2017). It is easy to see that

P(Ber(piq) = 0) = 1− piq ≤ (1− pi)q = P(B(pi, q) = 0),

and drawing from the Binomial will produce smaller dictionaries.
From the definition of sampling probabilities pi and weights 1

pi
qi
q we can see that the

dictionary I is an unbiased estimator of D since

E[XSSTXT] =
n∑
i=1

1

pi

E[qi]

q
xix

T
i =

n∑
i=1 �

�
�7

1
piq

piq
xix

T
i = XXT.

This holds for any valid set of probabilities pi and any q but it is easy to see that some
choices are better than others. For example selecting extremely small pi for all i and q = 1
will almost certainly result in an empty (and very inaccurate) dictionary. From an accuracy
perspective, we want to know when XSSTXT, and in turn Π̃, are close to their mean XXT

and Π, or in other words when XSSTXT concentrates. From a computational improvement
perspective, we want to know when the generated dictionary I is small. Two factors impact
these two quantities.

The probabilities

The probabilities pi used to sample the Binomials tells us which atoms to choose and how
many. More in general, the probability pi should tell us how unique or redundant each
sample is, and the sum of these probabilities

∑
pi encodes how many atoms overall are

4In particular, drawing q elements from a Multinomial correspond to the sequence of Binomial draws
q1 ∼ B(p1, q), q2|q1 ∼ B(p2/(1− p1), q − q1), . . . , qn−1 ∼ B(pn−1/(1−

∑n−2
i=1 pi), q −

∑n−2
i=1 qi)
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necessary to represent the dataset. The concentration of XSSTXT around its mean will be
guided by how closely the distribution pi captures the true underlying redundancies.
Remember from the previous section that we can find a small dictionary that accurately
reconstruct the dataset because there are redundancies between samples. Consider the
example dataset D = {x,x,x′,x′,x′} with two identical copies of x, three identical copies
of x′, and xTx′ = 0 orthogonal. The dictionary that perfectly reconstruct this dataset is
{(2,x), (3,x′)} with minimal size 2. How would we set our probabilities in Algorithm 1
to generate this dictionary? To obtain 2 and 3 as our weights, we set p1 = p2 = 1/2 and
p3 = p4 = p5 = 1/3, with

∑
pi = 2 total number of needed atoms.

This example also highlights why we need randomization: selecting greedily the two most
unique atoms associated with the highest probabilities (x1 and x2) will not generate a good
dictionary.

The number of copies

The budget q tells us the extra budget we have to pay to compensate the intrinsic randomness
induced by the random sampling, and any mistake in choosing the probability pi (mismatch
between chosen pi and true redundancies).
Take again the example D = {x,x,x′,x′,x′} with p1 = p2 = 1/2 and p3 = p4 = p5 = 1/3.
If we set q = 1, simply due to the way q1 and q2 are randomly selected, we have a 1/4
possibility to generate a bad dictionary that does not contain x. Increasing q reduces the
probability of this event happening.
Similarly, if we underestimate the importance of a sample (e.g., set p1 = p2 = 1/4),
increasing q will bring the final dictionary close to the mean no matter what kind of error
we make. While increasing q helps with accuracy, we saw that our dictionary size increases
as q, so raising it excessively might result in a very large dictionary that will not improve
our computational complexity.

2.1.3 Uniform sampling

To see an example of how the probabilities and budget q impact accuracy and dictionary
size, we begin by considering uniform probabilities pi = 1/n. We will refer to Algorithm 1
using uniform probabilities as Uniform.
Historically the first Nyström methods introduced in machine learning (Williams and Seeger,
2001) used uniform sampling, and it remains a popular choice for its conceptual simplicity
and the fact that computing this distribution takes no computation at all. More recently,
Bach, (2013) provided sufficient conditions under which uniform sampling generates an
ε-accurate dictionary, using the dataset’s coherence to quantify the number of samples
necessary.

Definition 2.3 — (Drineas et al., 2012). Given a matrix X, the coherence µ of X is

µ = max
i=1,...,n

‖πiπT
i ‖ = max

i=1,...,n
‖πi‖2 2.5

Proposition 2.3 — (Bach, 2013, App. B1, Lem. 2). Consider an arbitrary matrix X ∈
Rd×n with xi as its i-th column and rank r. Let Π and Π̃ be defined according to
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Definition 2.1. Let I be the dictionary generated by Algorithm 1. If

pi = 1/n, q ≥ nµ4 log(2d/δ)

ε2
,

with
∑n

i=1 pi = 1, then for any 0 < ε < 1 and w.p.1− δ
Accuracy: I is ε-accurate.
Space: the size of the dictionary is bounded by |I| ≤ 3q.

Proposition 2.3 tells us that to construct an ε-accurate dictionary, we should sample roughly
O(nµ) atoms, which can correspond to almost the whole dataset when µ is close to 1.
Unfortunately, estimating the coherence µ is a hard problem in itself (Drineas et al., 2012),
therefore running uniform sampling with guarantees is not easy. As a solution, it is common
in the Nyström literature to make an assumption of low coherence.
Since the coherence µ is directly related to how much samples in the dataset are orthogonal
with each other, Proposition 2.3 also gives us intuition on how uniform sampling can fail.
For example, consider the case where a single sample xi is completely orthogonal to the
others (µ = 1), and we try to use uniform probabilities in Algorithm 1 but set q to a
constant (w.l.o.g. q = 1) to have a dictionary size that does not scale with n. Then the
probability of not including the orthogonal sample is going to be roughly (1− 1/n) ∼ 1.
And if we do not include the sample, it is easy to see that ‖Π− Π̃‖ ∼ 1 simply by testing
these two matrices along the sample direction, where xT

iΠxi = xT
ixi and xT

i Π̃xi = 0 since
xi is orthogonal to all other samples. Note that this problem will not happen with high
probability only when a single sample is orthogonal. As an example, imagine that we have
n1/2 vectors identical and orthogonal to the rest, we are still going to miss them with
probability roughly (1− 1/n1/2).
This also is in line with our intuition of q as an extra budget to compensate inaccuracies
in choosing pi. When the coherence is small, and no sample is orthogonal to the others,
all samples look the same and have the same importance of roughly 1/n, making uniform
sampling very accurate. But if the coherence is high, uniform probabilities are very likely
to not correspond at all to the true underlying importance of each samples (they are chosen
before even looking at the samples), and to concentrate we need a large number of copies q
that potentially scales with n.

To see how to remove this dependency on the coherence, let us first give a sketch of
Proposition 2.3’s proof. The proof is based on the following general concentration for
matrices,

Proposition 2.4 — (Tropp, 2012, Theorem 1.6). Consider a sequence [Xj ] of independent
random symmetric matrices with dimension t. Assume that E[Xj ] = 0, ‖Xj‖ ≤ R, and
let Y =

∑
j Xj . Furthermore, assume that there exists σ > 0 that bounds the matrix

variance statistic of the sum ‖E[Y2]‖2 ≤ σ2. Then

P(‖Y‖ ≥ ε) ≤ t exp

{
− ε2/2

σ2 +Rε/3

}
.

Proof sketch of Proposition 2.3. We provide a sketch of the proof here and include the full
result in Section 2.3. Intuitively, the core of the proof consist in finding appropriate values
for R and σ2 to apply Proposition 2.4.
In our case we use uniform sampling with probabilities pi = 1/n and the matrix we are
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interested in is Y = Π =
∑n

i=1 πiπ
T
i . We can show that

R :=
1

q
max
i

‖πi‖2
pi

=
nmaxi ‖πi‖2

q
=
nµ

q
,

σ2 :=
1

q
max
i

‖πi‖2
pi
‖Π‖ =

n

q
max
i
‖πi‖2 ‖Π‖ ≤

nµ

q
‖Π‖ ≤ nµ

q
,

satisfy the necessary conditions, and then apply the proposition. �

2.1.4 Oracle leverage score sampling

From the proof sketch of Proposition 2.3 we saw that the norms of the individual atoms
‖πi‖2 = ‖(XXT)+/2xix

T
i (XXT)+/2‖ plays a large role in bounding the range and variance

of the random process induced by Algorithm 1. These quantities are well known in Statistics
under the name of leverage scores.

Definition 2.4 — (Drineas et al., 2012). Given a matrix X, the leverage score (LS) of
column xi ∈ X is

τi = ‖πiπT
i ‖ = ‖(XXT)+/2xix

T
i (XXT)+/2‖ = xT

i (XXT)+xi. 2.6

Furthermore, the sum of the leverage scores

n∑
i=1

τi = Tr(Π) = Tr
(
XXT(XXT)+

)
= Rank(XXT) = r,

is equal to the rank of XXT.

The leverage score τi intuitively captures how orthogonal xi is w.r.t. the rest of the samples
X, and serves to rigorously measure what we so far called redundancy w.r.t. to preserving
the spectrum of XXT. LSs have the following properties:

• LSs are always smaller than 1. The maximum LS for sample xi is achieved when xi is
orthogonal to all other samples: then xT

i (XXT)+xi = xT
i (xix

T
i )

+xi = 1.
• LSs are always larger than 0. The minimum LS is achieved when xi is identical to all

other samples (all samples are equal): then xT
i (XXT)+xi = xT

i (nxix
T
i )

+xi = 1/n.
• The sum of the leverage scores captures the overall orthogonal directions contained in

the data, making it equal to the rank of X.
• The coherence of the matrix X is equal to the maximum LS (maxi τi). Therefore, the
low coherence assumption commonly used when applying uniform sampling is saying
that no leverage score should be higher than the other, or alternatively that the leverage
scores should be uniform.
• Computing the LSs is computationally expensive, requiring nd2 operations to construct

the XXT matrix. For simplicity we assume that an efficient oracle can compute them
for us. In practice there are many efficient algorithms (Cohen et al., 2015a; Drineas
et al., 2012) to approximate them in O(nd log(d)) or O(nnz(X) log(d) +d3 log(d)) time.

Finally, note that the LS of sample xi is equal to the squared norm ‖πi‖2 of the corresponding
atom in Π. Intuitively, this means that samples with larger LS contribute more to the
spectrum of Π. Since our goal is to reconstruct Π, it seems therefore reasonable to use LS
as data adaptive probabilities pi in Algorithm 1 instead of the data oblivious probabilities
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used in uniform sampling. The following proposition help us quantify how this help us in
approximating Π.

Proposition 2.5 — (Alaoui and Mahoney, 2015, App. A, Lem. 1). Consider an arbitrary
matrix A ∈ Rd×n with ai as its i-th column and assume maxi=1,...,n ‖ai‖2 ≤ 1. Let I be
the dictionary randomly generated by Algorithm 1 using probabilities pi ≥ ‖ai‖2. For
any t > 0 we have

P(‖AAT −ASSTAT‖ ≥ ε ≤ 2d exp

(
− qε2/2

(‖AAT‖+ ε/3)

)
2.7

Proof. The proof remains substantially the same as (Alaoui and Mahoney, 2015, Thm.2)
up to two differences. (1) We consider the spectral norm ‖ · ‖ rather than the largest
eigenvalue since in general AAT −ASSTAT is not guaranteed to be PSD, and (2) we use
our “Bernoulli with replacement” rather than Multinomial with replacement. As a sketch,
the proof uses the same approach as Proposition 2.3, applying Proposition 2.4 to Π, but
this time using pi ≥ ‖ai‖2 instead of pi = 1/n. This lets us develop a tighter bound

R :=
1

q
max
i

‖ai‖2
pi

=
1

q
max
i

pi
pi

=
1

q
, σ2 :=

‖AAT‖
q

max
i

‖ai‖2
pi
≤ ‖AAT‖

q
,

Intuitively, what this proposition tells us is that to preserve in spectral norm the sum of
rank-1 matrices AAT =

∑n
i=1 aia

T
i , we want to sample more often matrices with larger norm.

Under the hood of the proof, this is because in the random sum ASSTAT =
∑n

i=1 siaia
T
i

rank-1 matrices with larger norm cause larger variance, and sampling them more often help
us to reduce the variance and concentrate around the expectation. �

Noting that the LS are the norm of the columns of Π, we can instantly apply Proposition 2.5
to obtain

Corollary 2.6 — Proposition 2.5, Proposition 2.13. Consider an arbitrary matrix X ∈ Rd×n
with xi as its i-th column and rank r. Let Π and Π̃ be defined according to Definition 2.1,
and the LS τi according to Definition 2.4. Let I be the dictionary generated by
Algorithm 1 run with parameters

pi = τi, q ≥ 4 log(4r/δ)

ε2
,

and
∑n

i=1 pi = r. Then for any 0 < ε < 1 and w.p.1− δ
Accuracy: I is ε-accurate.
Space: the size of the dictionary is bounded by |I| ≤ 3qr

Proof of Corollary 2.6. The proof follows directly from Proposition 2.5. To replace the
dependency on d with the dependency on r, it is sufficient to decompose Π before applying
the concentration using the SVD decomposition

‖Π− Π̃‖ = ‖(XXT)+/2X(In − SST)XT(XXT)+/2‖
= ‖(ΣΣT)+/2ΣUT(In − SST)UΣT(ΣΣT)+/2‖,

where ΣΣT ∈ Rr×r. This leaves unchanged the norms ‖ai‖2 and all other quantities. �
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Algorithm 2 Nyström method in H
Input: Budget q, set of probabilities {pi}ni=1 such that for all i 0 < pi ≤ 1
Output: I
1: Initialize I = ∅
2: for i = {1, . . . , n} do
3: Draw the binomial r.v. qi ∼ B(pi, q)

4: If qt 6= 0, add
(

1
pi
qi
q ,φi = ϕ(xi)

)
to I

5: end for

Note that this result was first derived by Drineas et al., (2008). With this corollary we
have answered the question on which and how many atoms we need to sample to guarantee
an accurate reconstruction of . We have finally satisfied the two goals of this section. For
example, setting q = O(log(r)) gives us w.h.p. an ε-accurate dictionary that can reconstruct
Π and XXT, with a total size smaller than O(r log(r)) that only scales with the actual rank
of the problem, and independent from n. With this dictionary, we can solve downstream
tasks in a time independent from n, making it feasible to scale to problems on very large
datasets.
Compared to uniform sampling, we do not need to assume a low coherence or select a large
q to guarantee accuracy, because we will be actively looking for those orthogonal samples
that made uniform sampling fail. In other words, our pi now capture much more closely our
true underlying importance, and we can use a small logarithmic q because we only need to
compensate the intrinsic randomness of the sampling process and not wrong probabilities.
Moreover, the size of the dictionary automatically scales as qr, adapting to the rank and
difficulty of the problem.

Nonetheless the result is still not fully satisfactory. In particular, we have no way to
automatically estimate r, so we typically resort to setting q = O(log(d)). In addition, two
obvious shortcomings emerge from looking at the LS sampling approach

Fast-decaying eigenvalues. Sometimes the rank of the matrix r is large and close to d,
but only due to small numerical fluctuations. Or alternatively the smaller eigenvalues of
XXT are negligible compared to the larger and we would like to ignore them.

Large n, larger d. In many cases of interest d itself is also very large, and potentially larger
than n. This is commonly the case when we project our point in some high dimensional
space using tile-coding, wavelets, one-hot encodings or other combinatorial features. While
these higher dimensional spaces have room for richer dictionaries, using LS to measure
importance becomes vacuous, since it becomes possible for X to have n orthogonal vectors
with τi = 1 and Algorithm 1 would simply keep all elements.

In both of these cases, not only it is impossible to exactly reconstruct XXT using a
dictionary smaller than n ≤ d, even ε approximation becomes impossible without storing all
n input samples in the dictionary. In the next section, we will see how to further relax the
approximation condition to tackle this setting, and how to generalize the LS to Regularized
Leverage Scores.

2.2 Nyström in a RKHS: ridge leverage score sampling

To move from Rd to a Reproducing Kernel Hilbert Space H we must introduce some
additional notation. First we do not restrict our samples xi to come from Rd anymore,
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but make no assumption on the input space X . Then, given our dataset D of n arbitrarily
chosen points5 xi ∈ X we use a feature map φ(·) : X → H to map the samples into the
RKHS as φi = ϕ(xi). In the remainder of the thesis, the points φi as will play the roles of
points in a RKHS, samples from a dataset, columns of a map, or atoms in a dictionary,
and we will refer to them accordingly depending on the context.
To simplify the notation, we indicate with φT

iφj the inner product 〈φi,φj〉H in H. Also
for simplicity and without loss of generality we assume that for all ϕ(xi) the feature map
ϕ induces a unit norm φT

iφi = ‖φi‖2 = 1. This is commonly satisfied in practice, for
example by using Gaussian or cosine similarities for our H, or by normalizing the inputs xi
in the Rd case. Alternatively, all our results can be extended to non-unit norm, with extra
multiplicative terms of the form (maxi ‖φi‖2)/(mini ‖φi‖2) appearing in space and time
complexities. When evaluating computational costs, we also assume that computing the
inner product φT

iφj takes a time independent from n (i.e., constant).
We also replace the matrix X with the map Φ : Rn → H composed by stacking together all
points φi. To simplify again the notation, we indicate with ΦT : H → Rn its adjoint map.
It is easy to see that the self-adjoint operator ΦΦT : H → H that replaces the covariance
matrix XXT remains PSD and it can again be expressed as ΦΦT =

∑n
i=1φiφ

T
i . The thin

SVD of Φ = VΣUT must also be appropriately redefined. Let r be the rank of Φ, we have
that

1. The projection matrix becomes a projection operator on Im(Φ)

Π = (ΦΦT)+/2ΦΦT(ΦΦT)+/2 = VVT

based on the map V : Rr → H, where vi are the orthonormal eigenfunctions that
span Im(Φ), such that VTV = Ir. Note that Π also acts as the identity for all vectors
in Φ (Φ = ΠΦ)

2. Σ : Rr×r remains the diagonal matrix where [Σ]i,i = σi is the i-th singular value, and
σr ≥ σr−1 ≥ · · · ≥ σ1 > 0

3. U : Rn×r remain the orthonormal vectors that span Im(ΦT)

Compared to the simpler leverage score sampling case in Rd, we have two new difficulties.
First, we cannot store or manipulate directly the vectors φi, but only access them through
inner products. Therefore it is not clear how to compute the LS φT(ΦΦT)+φ.
Second, when we choose our RKHS we prefer those with large dimension, because we want
a rich space that can contain good solutions for our downstream task problems. As a
consequence, it is very easy to end up constructing an H where Rank(Φ) = n. For example,
using the Gaussian similarity the only way for the rank of the matrix to be smaller than
the number of points is for some of the points to be exactly identical to each other.
When the rank of the matrix is n, even if we could compute φT(ΦΦT)+φ we would end up
with all LS equal to 1, and the sampling would be meaningless.
Nonetheless, in many cases the eigenvalues of ΦΦ decay very fast, or in other words only a
few of the many (infinite) directions in H capture most of the information contained in Φ.

2.2.1 Regularized subspace approximation

We can encode this intuition using a regularized projection, and a new (ε, γ)-accuracy
definition.

5i.e., we do not assume the points are sampled from a distribution, but since they are part of a dataset
we still refer to them as samples.
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Definition 2.5 The γ-regularized projection Γ on Im(Φ) is defined as

Γ = (ΦΦT + γΠ)−1/2ΦΦT(ΦΦT + γΠ)−1/2 =
n∑
i=1

ψiψ
T
i , 2.8

with ψi = (ΦΦT + γΠ)−1/2φi. The approximate γ-regularized projection Γ̃ for a
dictionary I and its selection matrix S is defined as

Γ̃ = (ΦΦT + γΠ)−1/2ΦSSTΦT(ΦΦT + γΠ)−1/2 =
n∑
i=1

siψiψ
T
i . 2.9

Definition 2.6 A dictionary I = {(si,φi)}ni=1 and its associated selection matrix S ∈
Rn×n are (ε, γ)-accurate w.r.t. a dataset Φ if

‖Γ − Γ̃‖ = ‖(ΦΦT + γΠ)−1/2Φ(In − SST)ΦT(ΦΦT + γΠ)−1/2‖ ≤ ε 2.10

Associated with Definition 2.6 we have another reconstruction result

Lemma 2.7

‖(ΦΦT + γΠ)−1/2(ΦΦT −ΦSSTΦT)(ΦΦT + γΠ)−1/2‖ ≤ ε
m

(1− ε)ΦΦT − εγΠ � ΦSSTΦT � (1 + ε)ΦΦT + εγΠ 2.11

Looking at the equation, we see that an (ε, γ)-accurate dictionary gives us the same (1± ε)
multiplicative error guarantees of an ε-accurate dictionary, but also adds a εγ additive
error. This means for example that only eigenvalues larger than εγ will be accurately
reconstructed by the dictionary, and that the equivalence Ker(ΦΦT) = Ker(ΦSSTΦ) does
not hold. Nonetheless, in many interesting problems (e.g., PCA, regularized regression)
we were not interested in approximating the directions associated with smaller eigenvalues
anyway, and as we will see in Chapter 4 and Chapter 5 this extra small error does influence
too much the quality of the solutions computed on the dictionary. In exchange for this new
mixed multiplicative-additive error, we can use Γ to define a generalization of the LS to
this new d� n setting

Definition 2.7 — (Alaoui and Mahoney, 2015). Given a map Φ : Rn → H, the γ-ridge
leverage score (RLS) of column i ∈ [n] is

τi(γ) = φT
i (ΦΦ

T + γΠ)−1φi =

n∑
j=1

σ2j
σ2j + γ

[U]i,j . 2.12

Furthermore, the effective dimension deff(γ) of the operator is defined as

deff(γ) =

n∑
i=1

τi(γ) = Tr
(
ΦΦT(ΦΦT + γΠ)−1

)
=

n∑
i=1

σ2i
σ2i + γ

. 2.13

Ridge leverage scores

The RLSs τi(γ) generalize the way LSs captures the overall orthogonality of a sample
in the dataset, and LSs can be seen as a special case τi(0). In particular, the directions
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associated with smaller eigenvalues are non-linearly penalized by the regularization γ, and
being orthogonal along those direction will not make the sample important. Since the value
of γ will be often clear from the context, we will refer to both LSs and RLSs as τi and only
include the full notation τi(γ) when important.
We can now look at two opposite cases to get an idea of how RLSs behave. When all
samples are identical, the RLS of φi is at its minimum

0 ≤ φT
i (ΦΦ

T + γΠ)−1φi = φT
i (nφφ

T + γΠ)−1φi =
φT
iφi

nφT
iφi + γ

=
1

n+ γ
,

even lower than the corresponding lowest LS. When φi is orthogonal to all other samples
its RLS is at its maximum

φT
i (ΦΦ

T + γΠ)−1φi = φT
i (φiφ

T
i + γΠ)−1φi =

φT
iφi

φT
iφi + γ

=
1

1 + γ
≤ 1.

But when we have many near-orthogonal samples the difference between LSs and RLSs
emerge. While all the LSs would be very close to 1 (uniform sampling), looking at Eq. 2.12
we see that as γ grows, the RLSs are non-uniformly shrunk. In particular samples φi
correlated with the larger eigenvalues of ΦΦ remain close to 1, while the ones correlated with
smaller eigenvalues are shrunk (nonuniform sampling). For example a sample orthogonal to
the others and fully aligned with the smallest non-zero eigenvalue λmin would be shrunk by
roughly a λmin/γ factor.
In the linear case where ϕ(·) : X → Rd (φi = xi), the RLS can be explicitly computed as
xT
i (XXT + γId)

−1xi (Cohen et al., 2015b; Cohen et al., 2016). In the general H setting, to
compute RLS in practice we can use the following equality

Lemma 2.8 — (Calandriello et al., 2017a). The RLSs can be reformulated as

φT
i (ΦΦ

T + γΠ)−1φi =
1

γ

(
φT
iφi − φT

iΦ(ΦTΦ+ γIn)−1ΦTφi
)

2.14

While evaluating Eq. 2.14 is now possible, since ΦTΦ ∈ Rn×n and ΦTφi ∈ Rn are real
matrices and vectors, it is still to computationally expensive. Operations involving ΦTΦ

comprise the dominant part of this cost: it takes O(n2) space and operations to construct
and store it, O(n3) operations to invert (ΦTΦ+ γIn)−1, and O(n2) operations to compute
each φT

iΦ(ΦTΦ + γIn)−1ΦTφi using the precomputed inverse. For now, we will assume
that an efficient oracle can compute τi(γ) for us, and we postpone the implementation of
such an oracle to Chapter 3.

Ridge leverage scores are also known under a number of different names in Statistics, often
appearing together with the Gaussian distribution. Consider the problem of Gaussian
process regression (Rasmussen and Williams, 2005), where our function is drawn from a
f ∼ GP (0, ϕ(x)Tϕ(x′)) with mean function 0 and covariance function induced by ϕ(·). The
target variables are generated as yi = f(xi) + εi, with εi drawn i.i.d. from N (0, 1). Then,
after drawing n samples the posterior variance of a new point x∗ w.r.t. the sample is

σn(x∗) = φT
∗φ∗ − φ∗Φ(ΦTΦ+ In)−1ΦTφ∗.

This is almost equivalent to computing the RLS of φ∗ w.r.t. Φ using the reformulation
from Lemma 2.8. The only difference is that φ∗ is not included in the inverse, or in other
words that we compute the RLS w.r.t. Φ rather than w.r.t. [Φ,φ∗] as we did so far.
Taking this interpretation, Srinivas et al., (2010) shows that for Gaussian processes, points
that maximize RLSs (large variance) also approximately maximize the information gain
I({yi}|f) (Cover and Thomas, 2012).
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Effective dimension

We saw that, compared to LSs, the RLSs shrink depending on the overall spectrum of
Φ. This is also reflected in the sum of the RLSs: although the LSs sum to the ambient
dimensionality (and rank) of Φ in H, which might be large, the RLSs sum to its effective
dimensionality, which is potentially much smaller.
Intuitively deff(γ) scales with the number of relevant directions ΦΦT, where a direction is
relevant if it is associated with an eigenvalue larger than the regularization γ. We can also
see deff(γ) as the rank of ΦΦT after thresholding all eigenvalues smaller than γ, and it is
easy to see that deff(γ) < r for any γ > 0, and deff(0) = r. The effective dimension is also
monotone in γ, which means we can always make it smaller by increasing the regularization.
While in general deff(γ) can greatly vary depending on the specific ΦΦT, if we know
something on the structure of the operator (e.g., because of the way φi are generated, or
some property of ϕ) we can still find bounds on it. Note that the partial derivative of deff(γ)
w.r.t. the values λi is

∂

∂λi

n∑
j=1

λj
λj + γ

=
∂

∂λi

n∑
j=1

1− γ

λj + γ
=

γ

(λi + γ)2
,

with the same partial derivative for all λi and the maximum increase in λi = 0. Therefore,
when the trace Tr(ΦΦT) =

∑n
i=1 λi is bounded (e.g., Tr(ΦΦT) = n as in our case) the

maximum deff(γ) is achieved when all λi are equal, which corresponds to the case where
all samples are orthogonal to each other. Conversely, the minimum is achieved when all
samples are equal and only a single λi is non-zero, resulting in deff(γ) =

nφT
i φi

nφT
i φi+γ

∼ 1.
In general, knowing that the operator has a bounded trace Tr(ΦΦT) = n gives us a bound
deff(γ) ≤ n/γ which scales as O(n) when γ is a constant, but a smaller O(

√
n) when

γ =
√
n. Stronger bounds are possible when we can control each individual eigenvalue.

For example if the eigenvalues decay polynomially λi = i−1 then deff(γ) =
∑n

i=1
i−1

i−1+γ
=∑n

i=1
1

1+γi ≤ log(n+ min{1, γ−1})/γ, while clearly the rank is much larger and equal to n.

Together with the RLSs, the effective dimension appears in many statistical problems. If we
assume that the points are drawn according to a distribution µ(x) rather than arbitrarily,
then the effective dimension is the empirical equivalent of the capacity of the RKHS H
under µ (Caponnetto and De Vito, 2005).
One of the contributions of this thesis, reported in Section 3.2, will be showing that the
log-determinant log(Det(ΦTΦ/γ + In)) of the covariance matrix can be upper bounded
using its effective dimension. This log-determinant appears, among other topics, as the
sampling function in determinantal point processes (Kulesza and Taskar, 2012), as an upper
bound for the total information gain I({yi}|f) in Gaussian process regression (Srinivas
et al., 2010), and as an upper bound for the regret of online learning algorithms (Hazan
et al., 2006).

2.2.2 Oracle ridge leverage score sampling

Using RLSs as probabilities in Algorithm 2, we can construct an (ε, γ)-accurate dictionary
w.h.p.. We refer to this algorithm as Oracle-RLS.

Corollary 2.9 — Lemma 2.10, Proposition 2.5, Proposition 2.13. Consider an arbitrary map
Φ : Rn → H with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined
according to Definition 2.5, and the RLS τi according to Definition 2.7. Let I be the
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dictionary generated by Algorithm 2 run with parameters

pi = τi(γ), q ≥ 4 log(4r/δ)

ε2
,

and
∑n

i=1 pi = deff(γ), i.e., Oracle-RLS. Then for any 0 < ε < 1 and w.p.1− δ
Accuracy: I is (ε, γ)-accurate.
Space: the size of the dictionary is bounded by |I| ≤ 3qdeff(γ)

Differently from Corollary 2.6 in the previous section, Corollary 2.9 cannot always guarantee
a constant (in n) error and at the same time guarantee a constant (again in n) dictionary
size. If we set ϕ(·) to be the identity map and X = Rd, we can compare better the two
settings.
When n� d, we know that deff(γ) ≤ r ≤ d no matter the γ, and therefore we can always
find an ε-accurate dictionary that does not grow with n. But in the d� n setting (or in a
general H) the regularization γ drives the trade-off between dictionary size and accuracy.
Going back to the bounded trace Tr(ΦΦT) = n, in the worst case (all orthogonal samples
and diagonal ΦTΦ) we can only trade-off a n/γ dictionary size for a γ approximation error.
Nonetheless, we still achieved the goal that we set at the beginning of the section: when the
spectrum of ΦΦT is not uniform, RLSs sampling will automatically adapt to the difficulty
of the problem and construct Õ(deff(γ)) sized dictionaries that are not only much smaller
than d or n, but also of the numerically high rank r.

Finally, note that for simplicity we chose our bounds to scale with q ≥ O(log(r)), in
order to continue using the simple inequalities of Proposition 2.4. Using more refined
concentrations based on the stable rank rather than the rank it is possible to obtain tighter
bounds that scale with q ≥ O(log(deff(γ))). Unfortunately, estimating both n and deff(γ)
is computationally expensive, and in practice q is often set proportionally to log(n), since
scaling logarithmically w.r.t. to n is quite mild and still acceptable.

Proof of Corollary 2.9. For the proof we cannot directly apply Proposition 2.5, since Γ is
an operator and not a matrix and Proposition 2.4 cannot be applied. Nonetheless, we can
define a proxy for the regularized projection Γ that is a matrix.

Definition 2.8 The γ-regularized (approximate) projection P ∈ Rn×n on Im(ΦT) is
defined as

P = ΦT(ΦΦT + γΠ)−1Φ = CCT, P̃ = CSSTCT. 2.15

with

C = U(ΣΣT + γIr)
−1/2ΣUT, ci = U(ΣΣT + γIr)

−1/2ΣUTei. 2.16

Among other important things, we can use this definition as an alternative formulation for
RLSs

τi = ‖ψi‖2 = ψT
iψi = φT

i (ΦΦ
T + γΠ)−1φi = eT

iΦ
T(ΦΦT + γΠ)−1Φei

= ‖ci‖2 = cT
i ci = eT

iC
TCei = eT

iUΣT(ΣΣT + γIr)
−1/2UTU(ΣΣT + γIr)

−1/2ΣUTei,

and to reformulate the definition of (ε, γ)-accurate dictionaries
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Lemma 2.10 — (Calandriello et al., 2017a). Let Γ, Γ̃ be defined according to Defini-
tion 2.5, and P, P̃ according to Definition 2.8. Then

‖Γ − Γ̃‖ = ‖(ΦΦT + γΠ)−1/2Φ(In − SST)ΦT(ΦΦT + γΠ)−1/2‖
= ‖U(ΣΣT + γIr)

−1/2ΣUT(In − SST)UΣT(ΣΣT + γIr)
−1/2UT‖ = ‖P− P̃‖.

Adding also Proposition 2.2 we conclude the proof. �

In the next chapter we address the computational cost of computing RLSs, in order to
remove the necessity of an oracle and derive sampling algorithms that can be implemented
in practice.

2.3 Extended proofs

We report some linear algebra identities that will be useful through the thesis.

Proposition 2.11 — (Horn and Johnson, 2012). For any matrix A ∈ Rn×m and any γ > 0

A(ATA + γIm)−1AT = AAT(AAT + γIn)−1.

For any symmetric matrix A ∈ Rn×n and diagonal matrix B ∈ Rn×n such that B has
n− s zero entries, and s non-zero entries, define C ∈ Rn×s as the matrix obtained by
removing all zero columns in B. Then

AB(BAB + γIm)−1BA = AC(CTAC + γIs)
−1CTA.

For any appropriately shaped matrix A,B,C, with A and B invertible, the Woodbury
matrix identity states

(A + CBCT)−1 = A−1 −A−1C
(
CTA−1C + B−1

)−1
CTA−1.

Proposition 2.12 — (Horn and Johnson, 2012). For any map A : Rn → H, projection
operator Π such that A = ΠA, and any γ > 0

A(ATA + γIn)−1AT = AAT(AAT + γΠ)−1.

For any map A : Rn → H and diagonal matrix B ∈ Rn×n such that B has n− s zero
entries, and s non-zero entries, define C ∈ Rn×s as the matrix obtained by removing all
zero columns in B. Then

AB(BATAB + γIn)−1BAT = AC(CTAC + γIs)
−1CTA.

For the proof of Proposition 2.2 we need a preliminary result

Proposition 2.13 — (Calandriello et al., 2017a). Let {zs}ts=1 be independent Bernoulli
random variables, each with success probability ps, and denote their sum as d =
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s=1 ps ≥ 1. Then,

P

(
t∑

s=1

zs ≥ gd
)
≤ e−d exp {−g (log (g)− 1)− 1}

Proof of Proposition 2.13. We can bound the sum
∑t

s=1 zs with a Hoeffding-like bound
using Markov inequality,

P

(
t∑

s=1

zs ≥ gd
)

= inf
θ>0

P
(
e
∑t
s=1 θzs ≥ eθgd

)

≤ inf
θ>0

E
[
e
∑t
s=1 θzs

]
eθgd

= inf
θ>0

E
[∏t

s=1 e
θzs
]

eθgd
= inf

θ>0

∏t
s=1 E

[
eθzs

]
eθgd

= inf
θ>0

∏t
s=1(pse

θ + (1− ps))
eθgd

= inf
θ>0

∏t
s=1(1 + ps(e

θ − 1))

eθgd

≤ inf
θ>0

∏t
s=1 e

ps(eθ−1)

eθgd
≤ inf

θ>0

e(e
θ−1)

∑t
s=1 ps

eθgd
= inf

θ>0
e(d(e

θ−1)−θgd)

where we use the fact that 1 + x ≤ ex, zs ∼ Ber(ps) and
∑t

s=1 ps = d. The choice of θ
minimizing the previous expression is obtained as

d

dθ
e(d(e

θ−1)−θgd) = e(d(e
θ−1)−θgd)

(
deθ − gd

)
= 0,

and thus θ = log(g). Plugging this in the previous bound,

inf
θ

exp
{
d(eθ − 1)− θgd)

}
= exp {gd− d− gd log (g)}

= e−d exp {−g (log (g)− 1)− 1} .

�

Proof of Proposition 2.13. Let zi,j be the j-th Bernoulli r.v. independently sampled when
computing qi, such that qi =

∑q
j=1 zi,j . To bound the size |I| ≤∑n

i=1 qi =
∑n

i=1

∑q
j=1 zi,j ,

we simply apply Proposition 2.13 with g = 3 and d = q
∑n

i=1 pi. �

Proof of Corollary 2.3. We will use Proposition 2.4 from Tropp, (2015). Denote again with
zi,j the Bernoulli random variables contained in each Binomial random variable qi with
qi =

∑q
j=1 zi,j . Then we can rewrite

ASSTAT =
1

q

n∑
i=1

q∑
j=1

1

pi
zi,jaia

T
i =

1

q

q∑
j=1

n∑
i=1

1

pi
zi,jaia

T
i

and it’s easy to see that zi,j = 1 with probability pi and 0 otherwise. Let Y = AAT −
ASSTAT, then

Y =
1

q

q∑
j=1

n∑
i=1

(
1− zi,j

pi

)
aia

T
i
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We choose Xi,j to be
1

q

(
1− zi,j

pi

)
aia

T
i for every i ∈ [n], j ∈ [q]. Now we verify the

assumptions of the above theorem. The matrices Xi,j are all independent due to the
independence of all zi,j . We can see

E[Xi,j ] =
1

q

(
1− E[zi,j ]

pi

)
aia

T
i =

1

q

(
1−
�
��
pi
pi

)
aia

T
i = 0

And

‖Xi,j‖ ≤
1

q

∥∥∥∥(1− zi,j
pi

)
aia

T
i

∥∥∥∥ ≤ 1

q

1

pi
‖aiaT

i ‖ =
1

q

‖ai‖2
pi
≤ 1

q
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i

‖ai‖2
pi

=
nmaxi ‖ai‖2

q
:= R

Now we need to control the spectral norm of the second moment of Y. Again with

E[Y2] =
∑
(i,j)

∑
(i′,j′)

E[Xi,jXi′,j′ ] =
n∑
i=1

q∑
j=1

E[X2
i,j ] +

∑
(i,j)

∑
(i′,j′) 6=(i,j)
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=

n∑
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q∑
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E[X2
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∑
(i′,j′) 6=(i,j)

E[Xi,j ]E[Xi′,j′ ] =

n∑
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q∑
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E[X2
i,j ]

where the expectation decomposes due to the independence of Xi,j and Xi,j′ . Now for all i
and j

E[X2
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E
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=
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+
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Where we used the fact that E[zi,j ] = pi and that z2i,j = zi,j . We can now derive an upper
bound

‖E[Y2]‖2 =

∥∥∥∥∥∥
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E[X2
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aia
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aia
T
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∥∥∥∥∥ ≤ nmaxi ‖ai‖2
q

‖AAT‖ := σ2

We can now apply the theorem

P (‖Y‖ ≥ ε) ≤ d exp

− ε2/2
nmaxi ‖ai‖2

q ‖AAT‖+ nmaxi ‖ai‖2ε
3q


Whenever ε ≤ 1 and ‖AAT‖2 ≥ 1 (as it is in our case) this can be simplified to

P (‖Y‖ ≥ ε) ≤ d exp

{
− ε2q

4nmaxi ‖ai‖2‖AAT‖2
}

�
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Proof of Corollary 2.5. The first part of the proof is identical to the proof of Proposition 2.3.
The main change is in the bounding of R and σ2.

We begin with R, and using the definition of the probabilities pi ≥ ‖ai‖2 we have
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pi

)
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1
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pi
≤ 1

q
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‖ai‖2
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q
:= R

To bound σ2 We can now derive an upper bound

‖E[Y2]‖2 =

∥∥∥∥∥∥
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aia
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‖AAT‖ := σ2

We can now apply the theorem

P (‖Y‖ ≥ ε) ≤ d exp

{
− ε2/2

1
q ‖AAT‖+ ε

3q

}

Whenever ε ≤ 1 and ‖AAT‖2 ≥ 1 (as it is in our case) this can be simplified to

P (‖Y‖ ≥ ε) ≤ d exp

{
− ε2q

4‖AAT‖2
}

�

Proof of Lemma 2.7. We begin by noting that since Im(ΦΦT + γΠ) = Im(Π)

Π = (ΦΦT + γΠ)1/2(ΦΦT + γΠ)−1/2,

and that

Γ = (ΦΦT + γΠ)−1/2(ΦΦT −ΦSSTΦT)(ΦΦT + γΠ)−1/2

= (ΦΦT + γΠ)−1/2Φ(In − SST)ΦT(ΦΦT + γΠ)−1/2

is Hermitian all its eigenvalues are real. Consider an arbitrary φa ∈ H. We have

φT
a(ΦΦ

T −ΦSSTΦT)φa = φT
aΦ(In − SST)ΦTφa = φT

aΠΦ(In − SST)ΦTΠφa

= φT
a(ΦΦ

T + γΠ)1/2(ΦΦT + γΠ)−1/2Φ(In − SST)ΦT(ΦΦT + γΠ)−1/2(ΦΦT + γΠ)1/2φa

= φT
a(ΦΦ

T + γΠ)1/2Γ(ΦΦT + γΠ)1/2φa ≤ λmax(Γ)φT
a(ΦΦ

T + γΠ)1/2(ΦΦT + γΠ)1/2φa

≤ ‖Γ‖φT
a(ΦΦ

T + γΠ)φa ≤ εφT
a(ΦΦ

T + γΠ)φa,

and

φT
aΦΦ

Tφa − φT
aΦSSTΦTφa ≤ εφT

aΦΦ
Tφa + εγφT

aΠφa.

Similarly

φT
a(ΦSSTΦT −ΦΦT)φa = φT

a(ΦΦ
T + γΠ)1/2(−Γ)(ΦΦT + γΠ)1/2φa

≤ λmax(−Γ)φT
a(ΦΦ

T + γΠ)1/2(ΦΦT + γΠ)1/2φa

≤ ‖ − Γ‖φT
a(ΦΦ

T + γΠ)φa = ‖Γ‖φT
a(ΦΦ

T + γΠ)φa ≤ εφT
a(ΦΦ

T + γΠ)φa.
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and

φT
aΦSSTΦTφa − φT

aΦΦ
Tφa ≤ εφT

aΦΦ
Tφa + εγφT

aΠφa.

Putting them together and using the definition of Positive Semi-Definiteness (Horn and
Johnson, 2012) concludes the proof. �

Proof of Lemma 2.8. Using Proposition 2.11

φT
i (ΦΦ

T + γΠ)−1φi = φT
i
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γ

γ
Π

)
(ΦΦT + γΠ)−1φi
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1

γ
φT
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γ
φT
i (ΦΦ
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1

γ
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φT
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T + γΠ)(ΦΦT + γΠ)−1φi − φT
iΦΦ

T(ΦΦT + γΠ)−1φi
)

=
1

γ

(
φT
iΠφi − φT

iΦΦ
T(ΦΦT + γΠ)−1φi

)
=

1

γ

(
φT
iφi − φT

iΦΦ
T(ΦΦT + γΠ)−1φi

)
=

1

γ

(
φT
iφi − φT

iΦ(ΦTΦ+ γIn)−1ΦTφi
)

�

Proof of Lemma 2.10. Using the SVD decomposition and the invariance of the operator
norm to orthonormal transformations

‖Γ − Γ̃‖ = ‖(ΦΦT + γΠ)−1/2Φ(In − SST)ΦT(ΦΦT + γΠ)−1/2‖
= ‖Φ(ΦTΦ+ γIn)−1/2(In − SST)(ΦTΦ+ γIn)−1/2ΦT‖
= ‖VΣT(ΣΣT + γIr)

−1/2UT(In − SST)U(ΣΣT + γIr)
−1/2ΣVT‖

= ‖U(ΣΣT + γIr)
−1/2ΣUT(In − SST)UΣT(ΣΣT + γIr)

−1/2UT‖ = ‖P− P̃‖.

�





3. Sequential RLS Sampling

In the previous section we showed that batch LS and RLS sampling can be used to construct
small and accurate dictionaries. Unfortunately this requires an oracle that returns the
RLSs.
One possibility way to implement RLS sampling without the oracle is to use Definition 2.4
and the equivalence from Lemma 2.8 to compute all τi exactly. Unfortunately, this algorithm,
that we will call Exact-RLS, requires decomposing or inverting an n × n matrix ΦTΦ,
which takes O(n3) time and O(n2) space.

In this chapter we survey existing sequential sampling processes that try to reduce this
computational cost, and introduce two new algorithms for sequential RLS sampling without
(KORS) and with (SQUEAK) the capability to remove samples already included in the
dictionary. We show that these approach outperform all previous methods, ultimately
reducing the overall computational cost of RLS sampling from O(n3) time, O(n2) space
and repeated passes over the dataset to a near-linear Õ(ndeff(γ)3) time, near-constant
Õ(deff(γ)2) space and a single pass over the data.

This allows us to run our algorithms not only in the traditional random memory access
computational model, but also in the more constrained sequential memory access model.
The main difference between data storage solutions in the real world is whether they
support random access, i.e., the capacity of reading any entry in the dataset in constant
time regardless of their position in the dataset; or only support sequential access, i.e., they
can only read the entries of the dataset in order, or pay a much larger time penalty for
skipping to another position.
Notable examples of the former is the aptly named Random Access Memory (RAM) in
modern computers, while an example of the latter are magnetic hard-drives, where due to
the spin times of the magnetic disk random access reading throughput is 2 to 3 orders of
magnitude slower than sequential access throughput.
Sequential access memories are usually cheaper and larger than random access memories
not only due to technological and material constraints, but also fundamental constraint,
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Algorithm 3 Oracle Approximate RLSs sampling
Input: Regularization γ, accuracy ε, accuracy ρ, budget q
Output: I
1: Initialize I = ∅
2: for i = {1, . . . , n} do
3: Compute ρ-accurate approximate RLSs τ̃i
4: Set approximate probability p̃i = τ̃i
5: Draw the binomial r.v. qi ∼ B(p̃i, q)

6: If qt 6= 0, add
(

1
p̃i
qi
q ,φi

)
to I

7: end for

since as the size of the storage grows indexing logic and circuitry becomes more complex
and slow.
Restricting ourselves to perfectly sequential access (a single pass over the dataset) places
us in a streaming setting. In other words, we assume that we can see each sample only
once, and we must either choose to explicitly store it in the dictionary to access it later,
or discard it and permanently lose access to it. As single-pass algorithms with a constant
memory requirement, KORS and SQUEAK can operate in a streaming setting.

Restrictions similar to the streaming setting also apply to the distributed computing setting,
where the data is split across multiple databases or datacenters, and communication costs
across centers are much higher. To avoid these costs, algorithms must run in a distributed
manner, with all computations restricted to data local to each site. To counterbalance this
drawback, they can now exploit the additional computational power of multiple machines,
and any parallelism that the distributed algorithm allows.
We will show that SQUEAK can operate in a distributed setting, running efficiently in
parallel across multiple machine. This will further reduce its runtime to Õ(deff(γ)3).

Note that although the sampling schemes reviewed in this section were proposed in chrono-
logical order Alaoui and Mahoney, (2015), Calandriello et al., (2017a), Calandriello et al.,
(2017c) and Musco and Musco, (2017)1, we slightly change the order in the presentation to
capture all the methods in a general framework.

3.1 Multi-Pass RLS sampling

We begin by presenting three multi-pass algorithms that will help us introduce concepts
necessary to build our single-pass, time-efficient RLS sampling algorithm.

3.1.1 Two-Step RLS sampling

The first algorithm that we present was introduced by Alaoui and Mahoney, (2015), together
with the definition of RLSs and the first results on oracle RLSs sampling. To begin with,
Alaoui and Mahoney, (2015) note that the proof of Proposition 2.5 still follow through
if instead of sampling according to exact RLSs τi, we sample according to ρ-accurate
RLSs.

1A preliminary version of the paper, (Musco and Musco, 2016), was available while (Musco and Musco,
2017) was under submission. (Calandriello et al., 2017a) and (Calandriello et al., 2017c) were developed
and submitted independently from this preliminary version.
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Algorithm 4 Two-Step RLS sampling (Two-Step-RLS)
Input: Map Φ, regularization γ, accuracy ε, budget q1, q2
1: Initialize I = ∅
2: for i = {1, . . . , n} do
3: draw qi ∼ B(1/n, q1) and if qi 6= 0, add

(
n qiq1

,φi

)
to I

4: end for
5: compute Γ = ΦS(S

T
ΦTΦS + γIn)−1S

T
ΦT

6: Initialize I = ∅
7: for i = {1, . . . , n} do
8: compute τ̃i = φT

i Γ
1/2

(Γ
1/2
ΦΦTΓ

1/2
+ γΠ)−1Γ

1/2
φi

9: compute p̃i = τ̃i

10: draw qi ∼ B(p̃i, q2) and if qi 6= 0, add
(

1
p̃i
qi
q2
,φi

)
to I

11: end for

Definition 3.1 An approximate RLS τ̃i is called ρ-accurate for ρ ≥ 1 if it satisfies

1

ρ
τi ≤ τ̃i ≤ τi.

In other words, to be ρ-accurate, an approximation τ̃i of a RLS τi must be smaller than
τi, so as to keep being a probability, while at the same time be larger than τi/ρ to avoid
under-representing the importance of φi. We have the following guarantees for oracle
ρ-approximate RLS sampling, reported in Algorithm 3.

Corollary 3.1 — Lemma 2.10, Proposition 2.5, Proposition 2.13. Consider an arbitrary map
Φ : Rn → H with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined
according to Definition 2.5, and the RLS τi according to Definition 2.7. Let I be the
dictionary generated by Algorithm 3 run with parameters

p̃i = τ̃i, q ≥ 4ρ log(4r/δ)

ε2
,

where the approximate RLSs τ̃i are ρ-accurate w.r.t. τi, then for any 0 < ε < 1 and
w.p.1− δ
Accuracy: I is (ε, γ)-accurate.
Space: the size of the dictionary is bounded by |I| ≤ 3q

∑n
i=1 τ̃i ≤ 3qdeff(γ).

This is coherent with our interpretation of the extra budget q: if we make a constant
error on the importance τ̃i of φi, i.e., running Algorithm 3 with ρ-accurate RLSs estimate,
we only need a constant increase in q and in final dictionary size to obtain the desired
(ε, γ)-accurate dictionary.

Knowing that ρ-accurate RLSs suffice to sample, Alaoui and Mahoney, (2015) propose a
simple two-step algorithm Two-Step-RLS, reported in Algorithm 4:

1 Do a first sampling pass with probabilities that are simple to compute (e.g., uniform)
to get a mildly accurate dictionary I, and use I to build ρ-accurate approximations τ̃i.

2 Do a second sampling pass using τ̃i, and build an (ε, γ)-accurate dictionary I.
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Proposition 3.2 — (Alaoui and Mahoney, 2015). Consider an arbitrary map Φ : Rn → H
with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined according to
Definition 2.5, and the RLS τi according to Definition 2.7. Let I, {τ̃i} be the dictionary
and approximate RLSs generated by Two-Step-RLS (Algorithm 4) using Eq. 3.1. If

q1 ≥
n

γ

4 log(4r/δ)

ε2
, q2 ≥

(
λmax − γ
λmin − γ

)
4 log(4r/δ)

ε2
,

then for any 0 < ε < 1 and w.p.1− δ
Accuracy: I and I are (ε, γ)-accurate
Space: the size of the dictionaries are bounded by |I| ≤ 3q1 and |I| ≤ 3q2deff(γ)

Time: the runtime of the algorithm is O(nq21)

Passes: the algorithm requires 3 passes over Φ

Proof. Note that since τi(γ) ≤ 1
1+γ ≤ 1/γ, setting q1 ≥ n

γ
4 log(4r/δ)

ε2
guarantees that

q1 ≥ nmaxi τi(γ)4 log(4r/δ)
ε2

as requested by Proposition 2.3. We can then use Proposition 2.3
to guarantee that the dictionary built during Step 1 is an (ε, γ)-accurate dictionary with
|I| ≤ 3q1 atoms.
In their original work, rather than uniform sampling Alaoui and Mahoney, (2015) use the
slightly more refined probabilities pi = φT

iφi/Tr(ΦΦT), which provides a slightly tighter
dictionary size bound of 4Tr(ΦΦ)

γ log(n/δ)/ε2. Nonetheless, in many cases the samples are
already in unitary norm φT

iφi = 1, (e.g., all self normalized kernels such as the Gaussian
kernel) which for simplicity we assumed in this thesis, and the adaptive distribution reverts
to uniform sampling.
Given I, Alaoui and Mahoney, (2015) propose the following estimator for τ̃i, that we report
using our notation,

τ̃i(γ
′) = φT

i Γ
1/2

(Γ
1/2
ΦΦTΓ

1/2
+ γ′Π)−1Γ

1/2
φi 3.1

with Γ = ΦS(S
T
ΦTΦS + γIn)−1S

T
ΦT being the exact regularized projection matrix on

the approximate Im(ΦS) (not to be confused with the approximate regularized projection
matrix Γ̃). Note also that γ′ inside the inverse does not need to be equal to the γ used in Γ.
Regardless of γ′, the ρ multiplicative approximation constant for τ̃i given by Alaoui and
Mahoney, (2015, Theorem 4) is ρ =

(
λmax−γ
λmin−γ

)
resulting in

(
λmin − γ
λmax − γ

)
τi(γ

′) ≤ τ̃i ≤ τi(γ′).

Plugging this into an approximate RLSs sampling in Step 2, invoking Corollary 3.1, and
setting q2 appropriately, we obtain a final (ε, γ)-accurate dictionary I containing only
|I| ≤ q2deff(γ′) atoms. �

Unfortunately the definition of q2 include a (λmin− γ)−1 factor due to the rough ρ-accuracy
of the RLSs τ̃i computed using Eq. 3.1. This forces us to set γ < λmin, and λmin is typically
smaller than 1, resulting in q1 ≥ n/γ > n/λmin > n and an extremely large first-step
dictionary that keeps all the input atoms, resulting in no computational improvement over
exact RLSs calculation.
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To make comparisons with following algorithms easier, we present a slightly modified
version of Alaoui and Mahoney’s algorithm that replaces Eq. 3.1 with an improved estimator
introduced by Calandriello et al., (2017a). Given a dictionary I, let II be the Rn×n diagonal
matrix with [II ]i,i = 1 if qi 6= 0 and 0 otherwise.

Lemma 3.3 — (Calandriello et al., 2017a, Lemma 2). Given an (ε, γ)-accurate dictionary
I, compute the approximate RLSs τ̃i as

τ̃i = (1− ε)φT
i (ΦSSTΦT + γΠ)−1φi

= 1−ε
γ (φT

iφi − φT
iΦS(STΦTΦS + γII)

−1STΦTφi). 3.2

Then for all i in D, the estimator in Eq. 3.2 is ρ-accurate, with ρ = (1 + ε)/(1 − ε).
Moreover, τ̃i can be computed in O(|I|3) time and O(|I|2) space using only φi and atoms
present in I itself.

This estimator follows naturally from the reformulation of the RLS presented in Lemma 2.8.
Ideally we would like to keep all ΦΦT columns in the inverse (ΦΦT + γΠ)−1 for maximum
accuracy, but applying Lemma 2.8 would give us an Rn×n matrix to invert, which requires
O(n3) time and space. Instead, similarly to what Cohen et al., (2016) did for the special
Euclidean case φi = xi, we only keep a reweighted subset (ΦSSTΦT + γΠ) so that after
applying Lemma 2.8 and eliminating the zeroed-out columns (Proposition 2.12) we are left
with only a |I| × |I| matrix that can be inverted efficiently in O(|I|3) time and O(|I|2)
space.

Proof sketch of Lemma 3.3. The full proof is reported in Section 3.5. To bound the accuracy,
we know from the dictionary that

ΦSSTΦT + γΠ � (1 + ε)ΦΦT + εγΠ + γΠ = (1 + ε)(ΦΦT + γΠ),

and therefore (ΦSSTΦT + γΠ)−1 � 1
1+ε(ΦΦT + γΠ)−1. Using a similar approach to obtain

a lower bound, and adjusting constants, we can prove the ρ = (1+ε)
(1−ε) -accuracy. Note that

Lemma 2.8 is crucial to the proof. We are first showing that (1− ε)φT
i (ΦSSTΦT + γΠ)−1φi

is ρ-accurate w.r.t. φT
i (ΦΦ

T + γΠ)−1φi, and only afterwards we apply the equivalence of
Eq. 2.14 to obtain a reformulation of the estimator that can be computed using only inner
products. Proving directly the ρ-accuracy of the computable version is significantly more
difficult. �

Plugging Lemma 3.3 in the first step of Alaoui and Mahoney’s two-step algorithm we
have

Corollary 3.4 — Proposition 2.3, Corollary 3.1, Lemma 3.3. Consider an arbitrary map Φ :
Rn → H with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined
according to Definition 2.5, and the RLS τi according to Definition 2.7. Let I, {τ̃i}
be the dictionary and approximate RLSs generated by Two-Step-RLS (Algorithm 4)
using Eq. 3.2 in place of Eq. 3.1. If

q1 ≥
n

γ

4 log(4r/δ)

ε2
τi, q2 ≥

(
1 + ε

1− ε

)
4 log(4r/δ)

ε2
,

then for any 0 < ε < 1 and w.p.1− δ
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Accuracy: I and I are (ε, γ)-accurate
Space: the size of the dictionaries are bounded by |I| ≤ 3q1 and |I| ≤ 3q2deff(γ)

Time: the runtime of the algorithm is O(nq21)

Passes: the algorithm requires 3 passes over Φ

Compared to Proposition 3.2, we have greatly improved the
(
λmax−γ
λmin−γ

)
constant in q2 to(

1+ε
1−ε

)
, which in turn leave us free to choose γ more freely without impacting the n/γ factor

in q1.
The total runtime of the algorithm is dominated by the RLSs estimation, that takes
O(|I|3) = Õ(q31) to precompute the inverse or a decomposition, and Õ(nq21) time to
compute all individual τ̃i. Since q1 must scale with n/γ, this results in a O(n3/γ2) time
and O(n2/γ2) space complexity, down from the O(n3) time and O(n2) space of exact RLSs
sampling. As Alaoui and Mahoney, (2015) note, when γ is large, this is a significantly
smaller than the exact approach. As we will see, a typical value for γ is n1/2, resulting in a
O(n2) time and O(n) space complexity.

To recap, Alaoui and Mahoney’s Two-Step-RLS gave us two key ideas to quickly construct
a dictionary: (1) sample according to approximate RLSs instead of exact RLSs, and (2)
instead of directly sampling proportionally to the final RLSs (second step) build an
intermediate approximation that is easier to compute (first step).
While Lemma 3.3 is already close to the best we can do for RLSs estimation given an
(ε, γ)-accurate dictionary, the idea of sequentially approximating better and better RLSs
can be pushed further. In the next sections we present two algorithms that perform multiple
approximation steps rather than one.

3.1.2 Many-Step RLS sampling

In the analysis of Two-Step-RLS Alaoui and Mahoney, (2015) use guarantees for uniform
sampling (Proposition 2.3) to decide how many samples are necessary in the first sampling
step. In this section we take the alternative approach of showing that the estimator
τ̃i = 1/(n+ γ) can be used as an accurate ρ-accurate approximation, with constant ρ, but
only for specific values of γ.
It is easy to show that this is not true for all γ: if a sample is orthogonal to all others and
γ = 1 we have τi = 1/2 and τ̃i = 1/(n + 1), which is an arbitrarily poor approximation.
Nonetheless, using the generic upper and lower bounds 1

n+γ ≤ τi(γ) ≤ 1
1+γ we know that τ̃i

must satisfy

1

ρ
τi(γ) ≤ 1

ρ

1

1 + γ
≤ τ̃i =

1

n+ γ
≤ τi(γ),

which means that in general 1
n+γ achieve ρ = n+γ

1+γ accuracy. This accuracy depends on n
and γ, therefore uniform τ̃i might be ρ-accurate w.r.t. τi(γ) with constant ρ for certain
values of γ, and not for others. For example, setting γ = n tells us that uniform sampling
is 2-accurate, w.r.t. τi(n).
In other words, when γ is small, uniform sampling is only accurate when the RLSs τi(γ)
are uniform due to the low coherence in the data; but using a high enough γ we can shrink
all probabilities so much that uniform sampling becomes accurate regardless of the data.
Indeed, an additive error of εnΠ on the reconstruction for an operator with norm ‖ΦΦT‖ ≤ n
means that we do not need to reconstruct much at all to meet (ε, n)-accuracy. In particular,
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Algorithm 5 Many-Step RLS sampling (Many-Step-RLS)
Input: Map Φ, regularization γ, accuracy ε, budget q
Output: I
1: Initialize p̃0,i = τ̃0,i = 1/(n+ γ) for all i, , γ0 = n
2: for t = {1, . . . , dlog2(n/γ) + 1e} do
3: Initialize γt = γt−1/2, It = ∅
4: for i = {1, . . . , n} do
5: draw qt,i ∼ B(p̃t−1,i, q) and if qt,i 6= 0, add

(
1

p̃t−1,i

qt,i
q ,φi

)
to It

6: end for
7: construct St from It
8: for i = {1, . . . , n} do
9: set τ̃t,i = (1− ε)φT

i (ΦStS
T
tΦ

T + (1 + ε)γtΠ)−1φi
10: set p̃t,i = τ̃t,i
11: end for
12: end for

applying Corollary 3.1 tells us that we can construct an (ε, n)-accurate dictionary having
only 24deff(n) log(n/δ)/ε2 ≤ 24 log(n/δ)/ε2 atoms since deff(γ) ≤ n/γ = 1 when γ = n.2.
Despite the low accuracy of a (ε, n)-accurate dictionary, the following lemma, based on
Lemma 3.3 shows how we can use this inaccurate dictionary to compute slightly better
estimates.

Lemma 3.5 Given an (ε, 2γ)-accurate dictionary I, compute the approximate RLSs τ̃i as

τ̃i = (1− ε)φT
i (ΦSSTΦT + (1 + ε)γΠ)−1φi

= 1−ε
(1+ε)γ (φT

iφi − φT
iΦS(STΦTΦS + (1 + ε)γII)

−1STΦTφi). 3.3

Then for all i in D, the estimator in Eq. 3.3 is ρ-accurate w.r.t. τi(γ), with accuracy
ρ = (1 + 3ε)/(1− ε). Moreover, τ̃i can be computed in O(|I|3) time and O(|I|2) space
using only φi and atoms present in I itself.

Therefore, using Lemma 3.5 and the (ε, n)-accurate dictionary, we can compute an (ε, n/2)
dictionary with only 12(1+3ε

1−ε )deff(n/2) log(n/δ)/ε2 atoms, that can be used to compute
an (ε, n/4) dictionary with only 12(1+3ε

1−ε )deff(n/4) log(n/δ)/ε2 atoms, and so on until after
dlog2(n/γ) + 1e steps we have a 12(1+3ε

1−ε )deff(γ) log(n/δ)/ε2 dictionary. The resulting
algorithm, Many-Step-RLS is reported in Algorithm 5.

Using a union bound on the steps we obtain the following result.

Theorem 3.6 — Lemma 3.5, Corollary 3.1, Proposition 2.13. Consider an arbitrary map Φ :
Rn → H with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined
according to Definition 2.5, and the RLS τi according to Definition 2.7. Let It be the
dictionaries generated by Many-Step-RLS (Algorithm 5). If

q ≥
(

1 + 3ε

1− ε

)
4

ε2
log

(
4rdlog2(n/γ) + 1e

δ

)
,

2Uniform sampling (i.e., Proposition 2.3) would give us the same result, since nµ = nmaxi τi(n) ≤
n 1

1+n
≤ 1.
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then for any 0 < ε < 1 and w.p.1− δ
Accuracy: Each It is (ε, n/2t−1)-accurate w.r.t. Φ, and Idlog2(n/γ)+1e is (ε, γ)-accurate
w.r.t. Φ
Space: the size of each of the dictionaries is bounded by |It| ≤ 3qdeff(γ)

Time: the runtime of the algorithm is O(nq2)

Passes: the algorithm requires 2dlog2(n/γ) + 1e passes over Φ or 4n random accesses

Using Many-Step-RLS we can compute an (ε, γ)-accurate dictionary with a size that is
bounded by 12deff(γ) log(ndlog2(n/γ) + 1e/δ)/ε2. Up to a log(dlog2(n/γ) + 1e) factor, this
is the same result as Oracle-RLS, but with a computational complexity of O(nq2) ≤
Õ(ndeff(γ)2).
Since we are interested in cases where deff(γ) is small, this is essentially a linear runtime in
n, which is an enormous improvement over the O(n3) cost of the exact oracle and finally
breaks the quadratic barrier that blocked previous methods. We refer to algorithms that
achieve this time complexity as near-linear time algorithms.
On the other hand, when deff(γ) is large, potentially as large as n, Many-Step-RLS
recovers the O(n3) runtime of computing exact RLSs using the definition and sampling.
Nonetheless, in the cases where deff(γ) is large even an oracle algorithm would generate a
large dictionary, that would not be very useful to accelerate downstream applications. In
this case we can either accept that the problem is intrinsically hard, i.e., there is no free
lunch, or start considering increasing γ to trade-off computational cost and accuracy.
We postpone a full discussion of Theorem 3.6 to Section 3.3.3, where we will make an
in-depth comparison across all near-linear time oracles. We now present an alternative
approach that eliminates the extra log(log(n/γ)) factor in the size of the dictionary.

3.1.3 Recursive RLS sampling

Another approach to multiple-step RLS sampling, called Recursive-RLS and reported
in Algorithm 6, was recently proposed by Musco and Musco, (2017). For clarity, we also
report an equivalent iterative version. Similarly to Many-Step-RLS, the algorithm’s goal
is to approximate sufficiently well τi in order to be able to perform approximate RLSs
sampling and use Corollary 3.1.
While Many-Step-RLS is a strictly bottom-up approach that starts with a large γ (small
deff(γ) and dictionary) and increasingly shrinks it (large deff(γ) and dictionary), Recursive-
RLS has both a top-down and bottom-up phase.
In the top-down phase it recursively randomly halves the number of columns in the map Φ:
at each level t for each column in Φt−1 a 1/2 coin flip is performed, and if it is successful
the column is included in Φt. As a consequence we have a top-down chain of maps where
Φt w.h.p. contains O(n/2t) atoms, and all atoms in Φt are included in Φt−1. The goal of
the recursive chain is to reduce the size of Φt sufficiently so that it can be used to compute
approximate RLSs with a small computational cost. This base-case is encountered after
log(n) recursion, where the algorithm constructs a dictionary Ilog2(n) = {(1,φi)} based on
Φlog2(n)

that contains only a constant number of atoms.
Starting from there, the algorithm performs a bottom-up pass. At each level t the dictionary
It+1 from the lower level t + 1 is used to estimate approximate RLSs τ̃t,i for Φt. The
RLSs estimator used by Musco and Musco, (2017) is identical to Eq. 3.2, although in
their independent discovery Musco and Musco, (2017) derived it starting from P, C and
ci (Definition 2.8) rather than Γ, Φ, and φi (our definition). This makes it hard to see
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Algorithm 6 Recursive-RLS sampling (Musco and Musco, 2017) (Recursive version)
Input: map Φ, regularization γ, failure probability δ
Output: Dictionary I
1: Sample Φ by randomly including each column of Φ w.p. 1/2
2: if Φ has less than 16 columns then
3: Set I = {(1,φi)} for all φi in Φ
4: else
5: Invoke Algorithm 6 on Φ adjusting δ ← δ/2
6: Set I to the result returned by the recursive invocation
7: end if
8: For all φi in Φ compute τ̃t,i using I and Eq. 3.2 with ε = 1/2.
9: Compute approximate probabilities p̃t,i = min{1, 16τ̃t,i log(

∑
τ̃t,i/δ)

10: Construct I of Φ by approx. RLSs sampling (Algorithm 2) with pi = p̃t,i and q = 1

Algorithm 6 Recursive-RLS sampling (Musco and Musco, 2017) (Iterative version)
Input: map Φ, regularization γ, budget q
Output: Dictionary I1
1: for t = {1, . . . , log2(n)} do .Top-down
2: Sample Φt by randomly including each column of Φt−1 w.p. 1/2
3: end for
4: Set Ilog2(n) = {(1,φi)} for all φi in Φlog2(n)

.Base case
5: for t = {log2(n)− 1, . . . , 1} do .Bottom-up
6: For all φi in Φt compute τ̃t,i using It+1 and Eq. 3.2 with ε = 1/2.
7: Compute approximate probabilities p̃t,i = min{1, 32τ̃t,i log(

∑
i τ̃t,i/(2

−tδ))
8: Construct I of Φ by approx. RLSs sampling (Algorithm 2) with pi = p̃t,i and q = 1
9: end for

that Eq. 3.2 is actually a generalization (and a member) of a well known family of RLSs
estimators from the linear (Rd) setting (Cohen et al., 2015b; Cohen et al., 2016), and harder
to see variations such as Lemma 3.5 or Lemma 3.14.
Once the approximate RLSs are computed, the dictionary It is constructed using approxi-
mate RLS sampling (Algorithm 2) with ε = 1/2, p̃i = p̃t,i = 32τ̃t,i log(

∑
i τ̃t,i/(2

−tδ)) and
q = 1. In other words, each atom in Φt is added to It with probability p̃t,i and weight 1/p̃t,i.
This is essentially the approach of drawing a Bernoulli Ber(32τ̃t,i log(

∑
i τ̃t,i/(2

−tδ))) rather
than a Binomial B(τ̃t,i, 32 log(

∑
i τ̃t,i/(2

−tδ))), which as we saw in Section 2.1.2 generates
slightly larger dictionaries. Note that in the run of the algorithm it is possible for an atom
φi to be present in dictionary It, not present in It−1, and again present in It−2, since the
drawings at each level are performed independently.

Proposition 3.7 — (Musco and Musco, 2017). Consider an arbitrary map Φ : Rn → H
with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined according
to Definition 2.5, and the RLS τi according to Definition 2.7. Let I = I1 be the final
dictionary generated by Recursive-RLS (Algorithm 6). With probability 1− 2δ

Accuracy: the dictionary I is (1/2, γ)-accurate
Space: the size of each of the dictionaries is bounded by |I| ≤ 384deff(γ) log(deff(γ)/δ)

Time: the runtime of the algorithm is Õ(ndeff(γ)2)

Passes: the algorithm requires 2 log(n) passes over Φ or 4n random accesses
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Proof sketch. We provide a sketch of the proof for comparison, and refer the reader to
Musco and Musco, (2017) for details. At its core, Recursive-RLS is a recursive scheme
where the top-down pass uses Φt to approximate Φt−1 through uniform sampling, and a
bottom-up pass where It is used to approximate Φt through approximate RLSs sampling.
The goal is to construct more and more accurate approximations τ̃t,i during the bottom-up
pass, in the same spirit of Two-Step-RLS and Many-Step-RLS.
Note that none of the Φt are reweighted, therefore E[Φt] = (1/2t)Φ and the top-down
sampling process that generates Φt is not unbiased. Therefore, we cannot use concentration
inequalities to show that Φt is an (ε, γ)-accurate approximation of Φt−1. Moreover, even if
we did reweight Φt, our results on uniform sampling (Proposition 2.3) suggest that n/2
uniform samples are not sufficient to construct an (ε, γ)-accurate dictionary w.h.p.
For the bottom-up pass, since (1) we use It+1 to approximate RLSs, (2) It+1 approximates
Φt+1, and (3) Φt+1 does not approximate well Φt, the approximate RLSs τ̃t,i are not
ρ-accurate w.r.t. Φt and the sampling guarantees of Corollary 3.1 do not apply.
Surprisingly and non-trivially, Musco and Musco, (2017) could transfer the proof proposed
in Cohen et al., (2015a) for a similar RLSs sampling algorithm in Rd to the RKHS setting.
With a very technical argument they show that although each τ̃t,i does not approximate
each τt,i the following invariant holds at each level

(1) τt,i ≤ τ̃t,i which guarantees that we will never undersample.
(2)

∑
i τ̃t,i ≤ deff(γ) log(deff(γ)/δ) which guarantees that across all atoms we will not

oversample too much.

This is sufficient to show that w.h.p. all dictionaries satisfy |It| ≤ O(
∑

i τ̃t,i) ≤ Õ(deff(γ))
and will not be too large, and that although all intermediate matrix Φt and dictionary It
are not close to Φ, the final dictionary I is (ε, γ)-accurate w.r.t. Φ. �

Like Many-Step-RLS, Recursive-RLS produces an accurate dictionary in an small
space and time complexity, with Proposition 3.7 improving by a log(log(n/γ)) factor over
Theorem 3.6 in space (and polylog(log(n/γ)) in time). We will again postpone a full
evaluation of this result to Section 3.3.3, where we compare all near-linear time oracles.

3.2 Sequential RLS sampling without removal

While both Many-Step-RLS and Musco and Musco’s Recursive-RLS achieve near-linear
runtime, they have two major drawbacks: (1) they require multiple passes over the data or
alternatively random access to the dataset, and (2) they have inherent bottlenecks that
make it difficult to parallelize them.
In this section we focus on solving the first of these drawbacks with a simple sequential
sampling approach that can operate in a single pass over the dataset, processing the dataset
as if it was coming from a continuous stream of data.
The parallelization problems will be addressed in the following section by showing how to
generalize sequential sampling to operate on multiple streams at the same time.

To describe this new streaming setting, we will slightly modify our notation. Given our
dataset D = {φt}nt=1 we can define the partial dataset Dt that contains the first t samples.
Associated with Dt we have all the corresponding quantities Φt, Ψt, Πt, Γt. Similarly, our
goal is now to generate dictionaries It that are (ε, γ)-accurate w.r.t. to their respective Φt.
We can also define RLSs τt,i and effective dimension dteff(γ) w.r.t. the partial dataset Φt.
For notational convenience, we still refer to τt,i as a RLSs when t < i (when we have not
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Algorithm 7 Streaming Oracle RLS sampling without removal (SOracle-RLS-NoRem)
Input: Regularization ρ, accuracy ε, budget q
1: Initialize I0 = ∅
2: for t = {1, . . . , n} do
3: receive φt
4: compute pt = τt,t using an oracle limited to Dt
5: draw qt ∼ B (pt, q)

6: if qt 6= 0, add
(

1
pt
qt
q ,φt

)
to It .Expand

7: end for

seen the sample yet), but in this case we will arbitrarily set τt,i = 1 for all t < i.
Remember also that in the streaming setting if a past sample φi is not explicitly stored in
the current dictionary It, we cannot access it, i.e., we delete from memory all samples that
are not explicitly stored at each step.

3.2.1 Oracle RLS sampling in the streaming setting

From the previous sections’ results on RLS sampling, we know that choosing whether to
include sample φt or not in It with probability pt based on the sample’s final RLS τn,t will
be enough to generate an (ε, γ)-accurate dictionary. This is essentially what Oracle-RLS
does, with a computationally unbounded oracle providing the exact RLSs τn,t.
Unfortunately, in the streaming setting at time t we did not yet see the n− t future samples
remaining in the stream, and not even the oracle can compute these quantities. We will now
present SOracle-RLS-Rem, a simple oracle-based algorithm, reported in Algorithm 7,
that generalizes Oracle-RLS to the streaming setting. We call this approach sequential
RLS sampling without removal because once an atom is added to the dictionary It, it is
never subsequently removed.
The basic idea behind SOracle-RLS-NoRem is to use the sample’s current RLS τt,t to
decide whether or or not to include it without waiting to see the rest of the stream. Even
when using exact RLS τt,t, this approach can be grouped in the family of approximate RLS
sampling methods: since we cannot (this time in an absolute sense) compute the probabilities
τn,t, and we try to approximate them with τt,t. Due to the oracle, all the samples in the
dictionary remain independent, and if we can satisfy the invariant pi = pt = τt,t ≥ τn,t
required by Proposition 2.5 we will generate an (ε, γ)-accurate dictionary. Moreover, if the
sum

∑t
i=1 τi,i is not much larger than dteff(γ), we can use Proposition 2.2 to show that we

generate a small dictionary.

We now focus on characterizing how RLSs and dteff(γ) evolve over time as new samples
arrive (e.g., the relationship between τt,i and τt+1,i).

Lemma 3.8 — (Calandriello et al., 2017a). For any map Φt−1 at time t − 1 and its
extension Φt at time t, we have that the RLS are monotonically decreasing and the
effective dimension is monotonically increasing,

1

τt−1,i + 1
τt−1,i ≤ τt,i ≤ τt−1,i, dteff(γ) ≥ dt−1eff (γ).

It is easier to show that RLSs shrink over time once we define them in terms of Φ and φi
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rather than C and ci
3 (Alaoui and Mahoney, 2015) which change size when we add the

new sample. It suffices to see that

τt,i = φi

(
t∑

s=1

φsφ
T
s + γΠt

)−1
φi ≤ φi

(
t−1∑
s=1

φsφ
T
s + γΠt

)−1
φi = τt−1,i,

since
∑t−1

i=1 φiφ
T
i �

∑t
i=1φiφ

T
i has one less term in the summation. Intuitively, adding a

new sample φt to Φt−1 can either decrease the importance of samples observed before (i.e.,
if they are correlated with the new point) or leave it unchanged (i.e., if they are orthogonal)
and thus for any i ≤ t, the RLSs will shrink. Each RLS will shrink by a different factor,
depending on the degree of orthogonality of each sample with the new point and the rest of
the dataset, but there is a maximum shrinkage factor 1

τt−1,i+1 ≤ 1
2 , that roughly corresponds

to the case where the new sample φi added to Φt is identical to a sample φi′ already
present in Φt.
As for the effective dimension, relating dteff(γ) =

∑t
i=1 τt,i with d

t−1
eff (γ) =

∑t−1
i=1 τt−1,i is

not as easy, since adding τt,i increases the total sum, but each of the other τt,i might
shrink compared to τt−1,i. We can nonetheless show that the effective dimension dteff(γ)
always grows over time, since it represents the total amount of directions larger than the
regularization γ present in Φt and adding a sample will either strengthen existing directions
or add a new one. Quantifying or even bounding this increase is much more difficult than
in the case of RLSs, and therefore estimating the changes in effective dimension without
estimating each RLSs is much more difficult than estimating changes in RLSs (Calandriello
et al., 2016).
Using the fact that τt,t ≥ τn,t, and that all sampling is performed independently accordingly
to the oracle, we can invoke Proposition 2.5 with pt = τt,t and q ≥ 4 log(2r/δ)/ε2 to
guarantee that In is (ε, γ)-accurate w.r.t. Φn. Unfortunately, to union bound the failure
(generating an inaccurate or too large dictionary) probability across n iteration, compared
to Oracle-RLS we must choose a larger q ≥ 4 log(2n/δ)/ε2 ≥ 4 log(2r/δ)/ε2. This is
necessary to guarantee that each of the dictionaries It is (ε, γ)-accurate w.r.t. Φt with
1− δ/n probability, and provide accuracy guarantees for the overall process.

Following a similar path as the one used for Corollary 2.9 in the batch setting, we now need
to use Proposition 2.2 to bound the size of the dictionaries It. Unfortunately, to apply it
we must look at the sum

∑t
i=1 pi =

∑t
i=1 τi,i of the probabilities used by SOracle-RLS-

NoRem, and it is not clear how this quantity relates to dteff(γ). Knowing that τt,i ≥ τt−1,i,
it is easy to give a lower bound

dteff(γ) =
t∑
i=1

τt,i = τt,t +
t−1∑
i=1

τt,i ≤ τt,t +
t−1∑
i=1

τt−1,i = τt,t + dt−1eff (γ) ≤
t∑
i=1

τi,i,

which shows that we may pay a price in space complexity when we replace τn,i with τi,i.
Finding an upper bound to quantify this price is much more difficult. The simplest case
is when all samples are orthogonal. Then τ1,1 = τ2,1 = τt,1 = 1

1+γ , and the two quantities∑t
i=1 τi,i =

∑t
i=1 τt,i = dteff(γ) coincide. But in the opposite case when all samples are

identical τ1,1 = 1
1+γ while τt,1 = 1

t+γ , and as a result, τ1,1 contributes to the sum n times
more than it should. Nonetheless, remaining in the all-identical sample case, if we sum

3see Definition 2.8
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across all samples,

t∑
i=1

τi,i =
t∑
i=1

1

i+ γ
≤ log(t+ γ) + 1, dteff(γ) =

t

t+ γ
,

then one quantity is constant while the other is only log(n) times larger. Fortunately, we
can show that log(t) is the largest gap that we can incur.

Definition 3.2 The online effective dimension of a map Φ : Rt → H is

dtonl(γ) :=

t∑
i=1

τi,i(γ).

We call dtonl(γ) the online effective dimension because it is influenced by the order in which
we see the samples.

Lemma 3.9 — (Calandriello et al., 2017c). For any map Φ : Rt → H and any γ > 0 we
have that its online effective dimension dtonl(γ) =

∑t
i=1 τt,t is bounded by

dtonl(γ) ≤ log(Det(ΦT
tΦt/γ + It)) ≤ dteff(γ)(1 + log(‖ΦT

tΦt‖/γ + 1)) ≤ 2dteff(γ) log(n/γ).

The first inequality relates dtonl(γ) to the log-determinant of the matrix ΦT
tΦt. As we

mentioned when we introduced the concept of effective dimension (see Section 2.2.1), this
quantity appears in a large number of works on linear models, where it is connected to
the maximal mutual information gain in Gaussian processes (Srinivas et al., 2010), or the
regret in online optimization (Hazan et al., 2006). Finally, the second inequality shows that
in general the complexity of measuring this capacity sequentially, i.e., the ratio between the
online and offline sum of the RLS, is only a log(n) factor (in the worst case). This allows
us to prove the following corollary

Corollary 3.10 — (Lemma 3.9, Corollary 2.9). Consider an arbitrary map Φ : Rn → H with
φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined according to
Definition 2.5, and the RLS τi according to Definition 2.7. Let It be the dictionaries
generated by SOracle-RLS-NoRem (Algorithm 7). If

pt = τt,t, q ≥ 4 log(4n/δ)

ε2
,

with
∑n

i=1 pi = donl(γ), then for any 0 < ε < 1 and w.p.1− δ
Accuracy: Each It is (ε, γ)-accurate w.r.t. Φt

Space: the size of each of the dictionaries is bounded by |It| ≤ 3qdtonl(γ) ≤ 6qdteff(γ) log(n)

With this result, we have essentially matched the Õ(dneff(γ)) space complexity of oracle batch
RLS sampling (i.e., sampling according to τn,i), up to a small increase in the logarithmic
factors (from log(r) to log(n)) due to the union bound across iterations, and an extra log(n)
factor due to the gap between online and offline effective dimension. At the same time,
SOracle-RLS-NoRem can be run in a streaming setting, since the algorithm does not
need to know in advance the final RLSs τn,i to execute.
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Algorithm 8 Kernel online row sampling (KORS)
Input: Regularization ρ, accuracy ε, budget q
1: Initialize I0 = ∅
2: for t = {1, . . . , n} do
3: receive φt
4: construct temporary dictionary It,∗ := It−1 ∪ (1,φt)
5: compute τ̃t,t = (1− ε)φT

i (ΦtSt,∗S
T
t,∗Φ

T
t + γΠt)

−1φi using the Eq. 3.2 estimator
6: compute p̃t = τ̃t,t
7: draw qt ∼ B (p̃t, q)

8: if qt 6= 0, add
(

1
p̃t
qt
q ,φt

)
to It .Expand

9: end for

3.2.2 Implementing the oracle and guarantees

We can now remove the necessity of an oracle, and introduce KORS, reported in Algorithm 8,
our first single-pass RLS sampling algorithm that achieves near-linear runtime and is not
based on an oracle. Note that since computing exact RLSs τt,t would be too expensive, we
will again resort to approximate RLSs τ̃t,t and approximate probabilities p̃t = τ̃t,t.
Starting from an empty dictionary I0, at each time step the algorithm loads sample φt
into memory and combines the new sample (1,φt) to the dictionary It−1 to constructs
the temporary dictionary It,∗. Using the associated selection matrix St,∗, this augmented
dictionary can be effectively used to compute τ̃t,t using the Eq. 3.2 RLS estimator,

τ̃t,i = (1− ε)φT
i (ΦtSt,∗S

T
t,∗Φ

T
t + γΠ)−1φi

= 1−ε
γ (φT

iφi − φT
iΦtSt,∗(S

T
t,∗Φ

T
tΦtSt,∗ + γIIt,∗)

−1ST
t,∗Φ

T
tφi). 3.4

Note that combining two dictionaries I and I ′, each (ε, γ)-accurate w.r.t. to disjoint datasets
D and D′ generates a dictionary that is (ε, γ)-accurate w.r.t. D ∪D′. Therefore, if It−1 is
(ε, γ)-accurate, combining it with (1,φt) makes I∗ an (ε, γ)-accurate dictionary, because
(1,φt) can be seen as a (0, 0)-accurate dictionary w.r.t. to φt.
Taking into account Lemma 3.3, we see that if I∗ is (ε, γ)-accurate, then τ̃t,t is ρ-accurate.
This cycle of using an accurate dictionary to estimate accurate approximate RLSs, and
accurate approximate RLSs to compute accurate dictionaries will be at the core of the
analysis of the algorithm in Theorem 3.11.
After computing the approximate RLS, KORS sets the approximate probability p̃t = τ̃t,t
and draws a Binomial qt ∼ B(p̃t, q). If qt 6= 0, we choose to Expand It−1 and φt is added
with weight 1

p̃t
qt
q to the next dictionary It. If qt = 0, the sample is not added and will be

discarded at the end of the iteration to free space.
Similarly to Two-Step-RLS or Many-Step-RLS, all rows and columns for which St,∗ is
zero (all points outside the temporary dictionary It,∗) do not influence the estimator, so
they can be excluded from the computation. Therefore, once a sample φt is dropped from
memory we do not need to re-load it anymore for the rest of the algorithm’s execution.
This means that we only need to load the dataset once and sequentially, making KORS a
single-pass algorithm. This is vital in the streaming setting where we cannot go back and
resample a discarded atom.
Moreover, since the difference between It−1 and It−1,∗ or It is a single atom φt, τ̃t,i can be
efficiently computed in O(|It,∗|2) space and O(|It,∗|2) time using an incremental version of
Eq. 3.4 that exploits rank-1 updates. Overall, the algorithm will take O(nmaxt |It|2) time
and O(maxt |It|2) space to run.
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We are now ready to state the main result of this section.

Theorem 3.11 — (Calandriello et al., 2017c). Given parameters 0 < ε ≤ 1, 0 < γ,
0 < δ < 1, let ρ = 1+ε

1−ε and run KORS (Algorithm 8) with budget q ≥ 4 log(2n/δ)/ε2.
Then w.p. 1− δ,
Accuracy: each It is (ε, γ)-accurate w.r.t. Φt and each τ̃t,t is ρ-accurate w.r.t. τt,t.
Space: the size of each dictionary is bounded by |It| ≤ 3qdtonl(γ) ≤ 6dteff(γ)q log(2n/γ).

Time: the algorithm runs in Õ(dteff(γ)2) per-iteration time, and Õ(ndneff(γ)2) overall
time.
Passes: the algorithm requires a single pass over Φ

Theorem 3.11 shows that we can construct an (ε, γ)-accurate dictionary containing only
O(dneff(γ) log2(n)) atoms. Although this is a O(log(n)) factor larger than SOracle-RLS-
NoRem and batch methods like Many-Step-RLS or Recursive-RLS, KORS does not
require an oracle or multiple passes over the data.
Moreover, unlike Recursive-RLS, it provides accuracy guarantees for all intermediate
dictionaries. Therefore, if we choose to terminate the algorithm early, we still have gained
an (ε, γ)-accurate dictionary of the data we have processed up to that point.
This is especially important because the size of the dictionary scales with dteff(γ), which is
not known in advance. Therefore, if during KORS’s execution we see that the dictionary is
growing too large and decide to terminate it, we can use the intermediate dictionary to
study the spectral properties of Φt and choose a better regularization γ for future runs.
Finally, note that KORS is a generalization of ORS (online row sampling) by Cohen et al.,
(2016) from Euclidean to Hilbert spaces. While we drew inspiration from their algorithm to
derive KORS (e.g., the estimator in Lemma 3.3), moving to an infinite-dimensional space
introduces new difficulties, such us finding a way to compute the estimator, how to replace
the dimensionality d with dtonl(γ) in the algorithm analysis, and how to bound it.

Proof sketch: The first step in the proof is to reformulate the event failure ‖Γt − Γ̃t‖ ≥ ε
using the equivalent finite-dimensional ‖Pt − P̃t‖ ≥ ε failure condition. Notice that the
matrices Pt − P̃t change size over time. To avoid this, we carefully decompose the failure
event across the whole process into separate failure events for each matrix ‖Pt − P̃t‖ ≥ ε,
and construct a dedicated random process Yt that models how KORS generates the
dictionary P̃t. These processes are sequential in nature and their steps are not i.i.d., since
τ̃t,t, and therefore P̃t, depends on τ̃t−1,t−1, qt−1 and P̃t−1. As a consequence we cannot
use concentrations for i.i.d. r.v. such as Proposition 2.4. Instead, following an approach
introduced in (Cohen et al., 2016), we use Freedman’s inequality and a deterministic bound
on the predictable quadratic variation (variance) Wt of the process to bound each failure
probability.
Note also that KORS can be seen as a special case of SQUEAK, an algorithm that will
be introduced in the next section. Therefore, we will only provide a proof for SQUEAK,
highlighting when necessary how things can be specialized to address KORS. For a whole
proof dedicated solely to KORS, we direct the reader to Calandriello et al., (2017c).

3.3 Sequential RLS Sampling with removal

KORS has two clear drawbacks. First, over-sampling according to τt,t rather than τn,t
increases the dictionary size by a log(n) factor. This is due to the fact that without a
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Algorithm 9 Streaming Oracle RLS sampling with removal (SOracle-RLS-Rem)
Input: Regularization ρ, accuracy ε, budget q
1: Initialize I0 = ∅
2: for t = {1, . . . , n} do
3: receive φt
4: add (1, q,φt) to It−1 .Expand
5: for s = {i ∈ [t] : qt−1,i 6= 0} do
6: compute pt,s = τt,s using an oracle limited to Dt
7: draw qt,s ∼ B (pt,s/pt−1,s, qt−1,s)
8: if qt,s 6= 0, update (pt,s, qt,s,φs) in It
9: if qt,s = 0, remove (pt−1,s, qt−1,s,φs) in It .Shrink
10: end for
11: end for

way to remove samples once we notice that they are not as relevant as we thought, we
cannot recover from these overestimation mistakes. Second, the algorithm cannot be easily
parallelized, due to the sequential nature of the RLSs estimation. In this section, we will
show how adding the possibility of removing samples from the dictionary to the sampling
process can cope with both drawbacks.

3.3.1 Oracle RLS sampling with removal

We begin with a simple oracle algorithm to illustrate the problem of RLS sampling with
removal.

From the analysis of Lemma 3.8 we know that τt,t ≥ τt+1,t. Therefore, sampling qt
proportionally to τt,t in SOracle-RLS-NoRem is an overestimate of the current τt′,t for
all step t′ > t. To correct this, a simple approach is to continue updating qt := qt,t over
time, i.e., also for samples already included in It−1, and generate qt+1,t, . . . qn,t proportional
to the correct τt+1,t, . . . , τn,t. We can formalize this using the following adaptive importance
sampling chain

qt,t ∼ B (pt,t, q) ,

qt+1,t|qt,t ∼ B (pt+1,t/pt,t, qt,t) ,

qt+2,t|qt+1,t ∼ B (pt+2,t/pt+1,t, qt+1,t) ,

. . . ,

qn,t|qn−1,t ∼ B (pn,t/pn−1,t, qn−1,t) ,

where the conditioning qt+1,t|qt,t is necessary to make B (pt+1,t/pt,t, qt,t) a well defined
Binomial.
Before continuing, we also extend the dictionary notation

{(
1
pt,s

qt,s
q ,φs

)}
to explicitly

keep track of the probabilities and the number of copies {(pt,s, qt,s,φs)}, where the weights
1
pt,s

qt,s
q can be recomputed from the dictionary when necessary.

We can now introduce our oracle sequential RLSs sampling algorithm with removal, reported
in Algorithm 9, where “with removal” highlights that now atoms previously added to the
dictionary might be removed by the adaptive importance sampling process.
At each step, the algorithm receives a new point φt, but unlike SOracle-RLS-NoRem
it always Expand the previous dictionary It−1 to include it with probability and number
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of copies (pt−1,t = 1, qt−1,t = q,φt). Remember that our convention is to set τt−1,t = 1 for
samples that we did not see yet. Therefore, we are still initializing our importance sampling
chain with a draw from a Binomial B(pt−1,t, q) = B(τt−1,t, q) = B(1, q) whose outcome is
always q.
Since SOracle-RLS-Rem, unlike SOracle-RLS-NoRem, always Expand the dictionary
at each step, the size of the dictionary and our memory usage always increases. In order
to compensate this and decrease the size of the next dictionary It, the algorithm iterates
over all atoms still in the dictionary It−1 (all atoms with a non-zero qt−1,i) to adjust their
number of copies qt,i using importance sampling.
The Shrink step draws a sample from the Binomial B(pt,i/pt−1,i, qt−1,i), where the fact
that pt,i = τt,i ≥ τt−1,i = pt−1,i ensures that the Binomial probability is well defined (i.e.,
pt,i/pt−1,i ≤ 1). This resampling step tracks the changes in the RLS and constructs a new
dictionary It, which is as if it was created from scratch using all the correct RLS τt,i at
time t (with high probability).
We can now clarify the relationship between the role of Expand in SOracle-RLS-Rem
and the previous SOracle-RLS-NoRem. Since φt was added with pt−1,t = 1 and qt−1,q,
the Shrink step inserts it in the new dictionary It by drawing from B(pt,t/pt−1,t, qt−1,t) =
B(τt,t/1, q), which makes the Expand-Shrink combination in SOracle-RLS-Rem equiv-
alent to the Expand of SOracle-RLS-NoRem.
In other words, the new element φt is kept in the dictionary (qt,t 6= 0) only if its RLS
pt,t = τt,t is high. At the same time, the number of copies of the older atoms already in
It−1 are stochastically reduced using Shrink to reflect the reductions of the RLSs. The
lower pt,i is w.r.t. pt−1,i, the lower the number of copies qt,i will be w.r.t. qt−1,i. As the
probability pt,i continues to decrease over time, qt,i may become zero, and the atom φi is
completely dropped from the dictionary (by setting its weight to zero).

We show that using this adaptive importance sampling qn,t follows a Binomial distribution
B(τn,t, q). To see this, rewrite qt,i =

∑q
j=1 zt,i,j as the sum of q individual coin flip chains

zt,t,j . The j-th coin flip chain evolves following the rule

zt,i,j ∼
{
Ber

(
pt,i
pt−1,i

)
if zt−1,i,j = 1,

0 otherwise,

or in other words we continue flipping coins (drawing from a Bernoulli) only if the previous
coin flip succeeded, and set the rest of the chain to 0 at the first failure. As a consequence
of this definition, we have

P(zt+1,t,j = 1) = P(zt+1,t,j = 1|zt,t,j = 1)P(zt,t,j = 1) + P(zt+1,t,j = 1|zt,t,j = 0)P(zt,t,j = 0)

=
pt+1,t

pt,t
pt,t +

XXXXXXXXXXXXz0

P(zt+1,t,j = 1|zt,t,j = 0) P(zt,t,j = 0),

and iterating

P(zn,t,j = 1) = P(zt,t,j = 1)P(zt+1,t,j = 1|zt,t,j = 1) . . .P(zn,t,j = 1|zn−1,t,j = 1)

= pt,t
pt+1,t

pt,t
. . .

pn,t
pn−1,t

=
�
��
pt,t
pt,t�

�
�pt+1,t

pt+1,t
. . .
�
�
��pn−1,t

pn−1,t
pn,t.

Since qn,t =
∑q

j=1 zn,t,j is the sum of q Bernoullis with probabilities pn,t = τn,t, it is by
definition a Binomial B(τn,t, q).

Note that, since qt,i depends on qt−1,i, to study the dictionaries It we would in general
need to use results for random processes. Fortunately, we know that each qt,i is also
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(a) Expand-Shrink cycle, chain view.
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I3 + {(1,φ4)}I3

I2 + {(1,φ3)}I2

I1 + {(1,φ2)}I1

{(1,φ1)} {(1,φ2)} {(1,φ3)} {(1,φ4)}

(b) Expand-Shrink cycle, tree view.

Figure 3.1: Different views of the Expand-Shrink cycle.

unconditionally distributed as B(pt,i, q). Combining this with the fact that the probabilities
pt,i = τt,i are provided by an oracle, and the fact that the RLSs pt,i = τt,i are decided by the
data and not the random process, we have that all of the qt,i are appropriately distributed
independent Binomials, and we can simply invoke Proposition 2.5 and a union bound over
n steps to guarantee the following.

Corollary 3.12 — Lemma 2.10, Proposition 2.5, Proposition 2.13. Consider an arbitrary map
Φ : Rn → H with φi as its i-th column and rank r. Given γ > 0, let Γ and Γ̃ be defined
according to Definition 2.5, and the RLS τi according to Definition 2.7. Let It be the
dictionaries generated by SOracle-RLS-Rem. If

pt,t = τt,t, q ≥ 4 log(4n/δ)

ε2
,

with
∑n

i=1 pt,i = dteff(γ), then for any 0 < ε < 1 and w.p.1− δ
Accuracy: Each It is (ε, γ)-accurate w.r.t. Φt

Space: the size of each of the dictionaries is bounded by |It| ≤ 3qdteff(γ)

The space and accuracy of oracle sequential RLS sampling with removal (Corollary 3.12) is
almost identical to the space and accuracy of oracle batch RLS sampling (Corollary 2.9),
with the only difference that we are forced to increase again our O(log(r)) dependency to
O(log(n)) to balance a union bound over n steps. This is not surprising since SOracle-
RLS-Rem is equivalent to running Oracle-RLS over the sequence of maps Φt, but paying
attention to do so in a single pass over the dataset, thanks to the sequential adaptive
importance sampling rather than repeatedly drawing fresh Binomials. Nonetheless, it shows
that it is possible (given the oracle) to construct dictionaries as small and accurate as in
the batch setting, but using only a single pass on the data.

Before showing how to implement the oracle, we first show how a simple modification of
SOracle-RLS-Rem leads to an algorithm amenable to parallel and distributed computing.
We begin by highlighting (Fig. 3.1(a)) that SOracle-RLS-Rem can be seen as a chain of
n steps that at each step t combines an (ε, γ)-accurate dictionary It−1 and a new sample
φt to construct a new dictionary It.
Although adding an extra Shrink pass improved the space complexity of the algorithm, this
is still the same sequential approach of KORS of continuously combining an old dictionary
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Algorithm 10 SeQUential Approximation for Kernel sampling (SQUEAK)
Input: Dataset D, parameters k, γ, ε, δ
Output: ID
1: Partition D into k disjoint sub-datasets Di
2: Initialize IDi = {(p̃0,j = 1, q0,j = q,φj) : j ∈ Di}
3: Build set S1 = {IDi}ki=1

4: for h = 1, . . . , k − 1 do
5: Pick two dictionaries ID, ID′ from Sh
6: Set D∗ = D ∪D′

7: I∗ = ID ∪ ID′ .Expand
8: for all (p̃i, qi,φi) ∈ I∗ do
9: Compute τ̃i = (1− ε)φT

i (ΦD∗S∗S
T
∗Φ

T
D∗ + (1 + ε)γΠD∗)

−1φi
10: Set p̃i,∗ = min{τ̃i, p̃i}
11: Set qi,∗ ∼ B(p̃i,∗/p̃i, qi)
12: If qi,∗ 6= 0, update (p̃i,∗, qi,∗,φi)← ����

�
(p̃i, qi,φi) in I∗

13: If qi,∗ = 0, remove (p̃i, qi,φi) from I∗ .Shrink
14: end for

15: Place ID∪D′ := I∗ back into Sh+1

16: end for
17: Return ID, the last dictionary in Sk

Dict-Merge

and new data, as the new data arrives. But in the discussion of Eq. 3.4, we previously
argued that what KORS is actually doing is combining two (ε, γ)-accurate dictionaries,
since φt can be seen as a perfect (0, 0)-accurate dictionary {(1,φt)} w.r.t. the singleton
dataset {φt}.
If we take this generalized approach to SOracle-RLS-Rem, we see that we can generalize
the chain structure of Fig. 3.1(a) into the tree structure of Fig. 3.1(b), where at each step
we merge the previous dictionary It−1 with another dictionary {(1,φi)}. It is therefore
reasonable to imagine an even more general algorithm that follows an arbitrary merge
tree structure, and recursively performs dictionary merges were the two dictionaries being
merged can contain either fresh data or the result of a previous merge.
In the next section, we introduce a new approximate sequential RLS sampling algorithm,
based on this dictionary merging strategy, that is amenable to parallelization, and a more
sophisticated analysis that shows that it achieves almost the same space and accuracy as
SOracle-RLS-Rem without the need of an oracle.

3.3.2 Implementing the oracle and guarantees

Replacing the sequential merges of dictionaries and a single sample in SOracle-RLS-
Rem with general dictionary-dictionary merges allows us to parallelize and distribute the
computation of the dictionary In over multiple machines, thus reducing even further its
time complexity.
Beside the computational advantage, a distributed architecture is needed as soon as the
input dimension d and the number of points n is so large that having the dataset on a
single machine is impossible. Furthermore, distributed processing can reduce contention on
bottleneck data sources such as databases or network connections.

SQUEAK (Algorithm 10) partitions D over multiple machines and the (small) dictionaries
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Figure 3.2: Merge tree for Alg. 10 with an arbitrary partitioning and merging scheme.

that are generated from different portions of the dataset are integrated in a hierarchical
way. Since we will now be dealing with subsets of the dataset D, we introduce the general
notation ΦD to indicate the map containing all samples in D. Similarly if we extract a
subset D′ out of D, ΦD′ contains only the samples in D′.
Together with ΦD′ we also introduce ΠD′ as the projection on the span of the samples
in the subset D′, the effective dimension dD′eff(γ) of ΦD′ , and the RLS τD′,i(γ) of sample
φi ∈ D′ w.r.t. only the other samples in D′.
The initial dataset is partitioned over k disjoint sub-datasets Di with i = 1, . . . , k and k
dictionaries IDi = {(p̃0,j = 1, q0,j = q,φj) : j ∈ Di} are initialized simply by placing all
samples in Di into I with weight 1 and multiplicity q. Alternatively, if the datasets Di are
too large to fit in memory, we can run KORS on each of them separately to generate the
initial dictionaries.
The dictionaries IDi are added to a dictionary collection S, and following any predefined
binary merge tree as in Fig. 3.2, these dictionaries are progressively merged together.
To describe the merge tree, we introduce additional notation: we index each node in the
merge tree by its height h and position l, where the root (top) of the tree is at height k− 1,
and the leaves (original datasets) are at height 1. We denote the dictionary associated to
node {h, l} by I{h,l} and the collection of all dictionaries available at height h of the merge
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tree correspond to Sh = {I{h,l}}. We also use Φ{h,l} to refer to the map constructed from
the datasets D{h,l}, which contains all points present in the leaves reachable from node
{h, l}. For instance in Fig. 3.2, node {3, 1} is associated with I{3,1}, which is (as we will
prove) an (ε, γ)-accurate dictionary w.r.t. to the map Φ{3,1} constructed from the dataset
D{3,1}. D{3,1} contains D1, D2, D3 (descendent nodes are highlighted in red) and it has
dimension (|D1|+|D2|+|D3|).
At each iteration of SQUEAK, one node in the tree is scheduled to be merged. Given the
two input dictionaries ID and ID′ contained in the two children of the node, we combine
them into a single dictionary I∗ (the equivalent of the Expand phase in KORS) and then
we Shrink the merged dictionaries to create an updated dictionary ID∪D′ , which is placed
back in the dictionary collection S. Overall we call this dictionary merging operation
Dict-Merge.
To perform the Shrink part of Dict-Merge, we need to estimate how the RLSs have
changed when combining D and D′. Unlike in KORS, Dict-Merge is run on the union
of two distinct dictionaries rather than one dictionary and a new single point, and must
track the changes following the merge of two datasets rather than a dataset and a new
single point. As a result, we need to derive the “distributed” counterparts of Lemma 3.8
and Lemma 3.3 to analyze the behavior of the RLSs and the quality of the estimator used
in the algorithm.

Lemma 3.13 — (Calandriello et al., 2017a). Given two disjoint datasets D,D′, for every
i ∈ D ∪ D′, τD,i ≥ τD∪D′,i and

2dD∪D
′

eff (γ) ≥ dDeff(γ) + dD
′

eff(γ) ≥ dD∪D′eff (γ).

While in KORS we were merging an (ε, γ)-accurate dictionary It and a new point, which is
equivalent to a perfect, (0, 0)-accurate dictionary, in SQUEAK both dictionaries used in a
merge are only (ε, γ)-accurate. We need to slightly adjust our RLS estimator to compensate
for this loss in accuracy.

Lemma 3.14 — (Calandriello et al., 2017a). Given two disjoint datasets D,D′, and two
(ε, γ)-accurate dictionaries ID, ID′ , let I∗ = ID ∪ ID′ and S∗ be the associated selection
matrix. Let ΦD∗ be the map constructed using D∗ = D ∪D′, and τD∪D′,i the RLS of φi
w.r.t. D∗. Compute the approximate RLSs τ̃i as

τ̃i = τ̃D∪D′,i

= (1− ε)φT
i (ΦD∗S∗S

T
∗Φ

T
D∗ + (1 + ε)γΠD∗)

−1φi

= 1−ε
(1+ε)γ (φT

iφi − φT
iΦD∗S∗(S∗

TΦT
D∗ΦD∗S∗ + (1 + ε)γII∗)

−1S∗
TΦT
D∗φi), 3.5

Then for all φi in D∗, the estimator in Eq. 3.5 is ρ-accurate w.r.t. τD∪D′,i(γ), with
ρ = (1 + 3ε)/(1− ε). Moreover, τ̃i can be computed in O(|I|3) time and space using
only φi and atoms present in I∗ itself.

We denoted again with II∗ the R|D∗|×|D∗| diagonal matrix with [II∗ ]i,i = 1 if qi 6= 0 in
I∗ and 0 otherwise. Notice that Eq. 3.5 is (except for the specific dictionaries involved)
identical to Eq. 3.3 that we used in the multi-step batch RLS sampling Algorithm 5 when
we had a single (ε, 2γ)-accurate dictionary and we wanted to estimate γ-RLSs.
We can now make a comparison: in our first proposed estimator Eq. 3.2 we had access to
a dictionary with γ error and a new sample with 0 error and achieved 1+ε

1−ε -accuracy, in
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Eq. 3.3 we had a single dictionary with double error 2γ and a new sample with 0 error and
achieved 1+3ε

1−ε -accuracy here we have two dictionaries with γ error and achieve the same
1+3ε
1−ε -accuracy. This shows the flexibility of Eq. 3.2. For example, it is easy to generalize
both Eq. 3.5 and Eq. 3.3 to be able to handle k-way merges of (ε, γ)-accurate dictionaries,
or the use of a single (ε, kγ)-accurate dictionary and achieve 1+(kn−1)ε

1−ε -accuracy.
To conclude the RLSs estimation step, we also take the minimum p̃i,∗ = min{τ̃i, p̃i}, or
in other words the minimum between the current RLS estimate and the one at the lower
level of the tree. This is necessary to guarantee that the following importance sampling
step B(p̃i,∗/p̃i, qi) remains well defined, and the estimator is not ruined since taking the
minimum of two ρ-accurate approximate RLSs w.r.t. to a growing dataset always preserves
ρ-accuracy.

Lemma 3.15 Given two approximate RLSs τ̃D∪D′,i and τ̃D,i, ρ-accurate RLS w.r.t. τD∪D′,i
and τD,i, the quantity min

{
τ̃D∪D′,i, τ̃D,i

}
is also an ρ-accurate RLS w.r.t. τD∪D′,i.

Since each merge takes as input two dictionaries and returns one, starting from k subdatasets
Di, after k merges we will be left with a single dictionary ID that approximates the whole
dataset. Note that Dict-Merge only takes the two dictionaries as input and does not
require any information on the dictionaries in the rest of the tree. Therefore, we do not
need to run the k merges sequentially, but separate branches can be run simultaneously on
different machines, and only the resulting (small) dictionary needs to be propagated to the
parent node for the future Dict-Merge.

We can now show that the final dictionary ID is small and (ε, γ)-accurate w.r.t. ΦD.

Theorem 3.16 Given parameters 0 < ε ≤ 1, 0 < γ, 0 < δ < 1, an arbitrary dataset D,
and a arbitrary merge tree structure of height k, let ρ = 1+3ε

1−ε and run Algorithm 10 with
budget q = 26ρ log(3n/δ)

ε2
. Then w.p. 1− δ,

Accuracy: each dictionary I{h,l} is (ε, γ)-accurate w.r.t. Φ{h,l}, and each estimate τ̃D,i
is ρ-accurate w.r.t. τD,i.

Space: the size of each dictionary is bounded by |I{h,l}| ≤ 3qd
D{h,l}
eff (γ), the overall space

requirements of the algorithm depend on the exact shape of the merge tree.
Time: the algorithm runs in Õ(dDeff(γ)3) per-merge time, the overall time requirements
of the algorithm depend on the exact shape of the merge tree.
Passes: the algorithm requires a single pass over Φ

Theorem 4.7 gives approximation and space guarantees for every node of the tree. In other
words, it guarantees that each intermediate dictionary processed by SQUEAK is both an
(ε, γ)-accurate approximation of the datasets used to generate it, and requires a small space
proportional to the effective dimension of the same dataset.
From an accuracy and space perspective, up to a small ρ constant factor SQUEAK pro-
vides exactly the same guarantees as the original batch oracle Nyström sampling from
Oracle-RLS, without knowing the final RLSs in advance and without multiple passes
over the data.
Analysing the runtime space and computational complexity of SQUEAK is however more
complex, since the order and arguments of the Dict-Merge operations are determined by
the merge tree. We distinguish between the time and work complexity of a tree by defining
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Figure 3.3: Merge trees for Algorithm 10.

the time complexity as the amount of time necessary to compute the final solution, and the
work complexity as the total amount of operations carried out by all machines in the tree
in order to compute the final solution.
We consider two special cases, reported in Fig. 3.3, a fully balanced tree (all inner nodes
have either two inner nodes as children or two leaves), and a fully unbalanced tree (all inner
nodes have exactly one inner node and one leaf as children). For both cases, we consider
trees where each leaf dataset contains a single point Di = {φi}, and the tree will contain n
merges.
In the fully unbalanced tree, we always merge the current dictionary with a new dataset (a sin-
gle new point) and no Dict-Merge operation can be carried out in parallel. Unsurprisingly,
the sequential algorithm induced by this merge tree is strictly equivalent to sequential RLSs
sampling with removal, i.e., SOracle-RLS-Rem without the need of an oracle. The runtime
is dominated by the n matrix inversions used to compute Eq. 3.5, each requiring O(|I{h,l}|3)
time, and by the RLSs estimation also requiring O(|I{h,l}|3) time. Therefore, computing
a solution in the fully unbalanced tree takes O(n

(
maxh,l |I{h,l}|

)3
) ≤ O(ndDeff(γ)3q3) time

with a total work that is also O(ndDeff(γ)3q3).
On the opposite end, in the fully balanced tree we need to invert multiple d

D{h,l}
eff (γ)

dimensional matrices in parallel at each layer of the tree for a total of log(n) layers.
Bounding all d

D{h,l}
eff (γ) with dDeff(γ), gives a complexity for computing the final solution of

O(log(n)q3dDeff(γ)3) time, with a huge improvement on the unbalanced tree. This is the
first result that not only breaks the quadratic time barrier of previous methods, but can
extract enough parallelism to break the linear barrier, running in near-constant time in n.
Surprisingly, the total work is only twice O(nq3dDeff(γ)3), since at each layer h we perform
n/2h inversions (on n/2h machines), and the sum across all layers is

∑log(n)
h=1 n/2h ≤ 2n.

Therefore, we can compute a solution in a much shorter time than in the sequential sampling
case, with a comparable amount of work, but at the expense of requiring much more memory
across multiple machines, since at layer h, the sum

∑|Sh|
l=1 d

D{h,l}
eff (γ) can be much larger

than dDeff(γ). Nonetheless, this is partly alleviated by the fact that each node {h, l} locally
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requires only d
D{h,l}
eff (γ)2 ≤ dDeff(γ)2 memory.

Finally, note that independently from this thesis, Kyng et al., (2017) propose an algorithm
that is almost equivalent to SQUEAK in its fully sequential variant. Their work focuses
on the specific case of sequential graph sparsification (i.e., when the atoms φi are edges in
a graph), and therefore many choices, such as how to estimate RLSs and how to parallelize
the algorithm, are tailored to this setting and differ from our work. We will present a
more accurate comparison in Section 4.3.2 where we apply SQUEAK to graph spectral
sparsification and consider the problem of learning on graph.

Proof sketch: Although SQUEAK is conceptually simple, providing guarantees on its
space/time complexity and accuracy is far from trivial.
The first step in the proof is again to carefully decompose the failure event across the
whole merge tree into separate failure events for each merge node {h, l}, and for each node
construct a random process Y that models how Algorithm 10 generates the dictionary
I{h,l}.
Notice that these processes are again sequential in nature and the various steps (layers in
the tree) are not i.i.d.. Furthermore, compared to KORS, the variance of Y is now much
larger due to the additional randomness of updating qt,i, and cannot be bounded uniformly.
Instead, we take a more refined approach, inspired by Pachocki, (2016), that 1) uses
Freedman’s inequality to treat W, the variance of process Y, as a random object itself, 2)
applies a stochastic dominance argument to W to reduce it to a sum of i.i.d. r.v.-s and
only then we can 3) apply i.i.d. concentrations to obtain the desired result.

One of the core component of the proof is a stochastic dominance argument for adaptive
importance sampling processes that might be of independent interest.
Using the notation from Section 3.3.1, consider an adaptive importance sampling chain
where the adaptive probabilities pt,i are not i.i.d (i.e., computed using the chain itself), but
we can guarantee that the final probability pn,i is lower bounded by a fixed (non-random)
quantity τn,i.
Then, no matter which sequence we use for the sampling or the length of the sampling
process, we can show that the maximum weight (minimum probability) reached in the chain
(which drives the variance of the importance sampling process) is stochastically dominated
by a truncated Pareto random variable.
This can help us analyse future importance sampling algorithm. Since the importance
sampling chain has correlated steps, it is hard to bound its maximum weight with anything
other than its range 1/τn,i. On the other hand it is easy to see that the dominating Pareto
r.v. has a much smaller mean 1 + log(1/τn,i), and a small, bounded variance.

3.3.3 Comparison of all RLS sampling algorithms

We can now recap how all the sampling algorithm we presented so far compare with each
other. The results are reported in Table 3.1.
For all algorithms, the comparison is done using the minimum q (or equivalent parameter)
that guarantees generating an (ε, γ)-accurate dictionary in the end. We report the runtime
Õ(Runtime) of the algorithm, ignoring constant and logarithmic terms in the runtime,
the size of the dictionary O(|In|), ignoring constants (we treat ε as a constant), and for
multi-pass algorithms the number of passes over the data they require to execute. For
algorithms that require an oracle to run, we report an extra runtime cost in the runtime
column.
Finally, note that for all algorithms, except for Exact-RLS, the memory required to execute
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Multi-Pass
Õ(Runtime) O(|In|) Passes

Oracle RLS Sampl. n + dneff(γ) log(n) Many

Exact RLS Sampl. n3 dneff(γ) log(n) Many
Two-Pass RLS Sampl.
(Alaoui and Mahoney, 2015)

n3/γ2 n/γ + dneff(γ) log(n) 3

Many-Pass RLS Sampl. ndneff(γ)2 dneff(γ) log(n log(nγ )) log(n/γ)

Recursive RLS Sampl.
(Musco and Musco, 2017)

ndneff(γ)2 dneff(γ) log(n) log(n)

Single-pass
Õ(Runtime) O(|In|)

Seq. Oracle RLS Sampl. (w/o removal) n + dneff(γ) log2(n)

Uniform Sampl.
(Bach, 2013)

nµ(γ) + nµ(γ)

Seq. RLS Sampl. (w/o removal)
(Calandriello et al., 2017c)

ndneff(γ)2 dneff(γ) log2(n)

Seq. Oracle RLS Sampl. (w/ removal) n + dneff(γ) log(n)

Seq. RLS Sampl. (w/ removal, fully sequential)
(Calandriello et al., 2017a)

ndneff(γ)3 dneff(γ) log(n)

Seq. RLS Sampl. (w/ removal, parallel on k machines)
(Calandriello et al., 2017a)

(n/k)dneff(γ)3 dneff(γ) log(n)

Table 3.1: Comparison of all sampling algorithms.

the algorithm scales as O(|It|2), necessary to store the matrix ST
tΦ

T
tΦtSt. In Exact-RLS

the gap is due to the fact that it takes O(n2) space to construct, and store the ΦT
nΦn

matrix necessary to compute RLS, but the final dictionary size is only O(dneff(γ) log(n)).

Multi-pass algorithms

Among batch algorithms, we begin with Oracle-RLS, where we sample proportionally
to the true RLS provided by an oracle. Note that even with the RLS known in ad-
vance, sampling without parallelism still require n steps4, and the final dictionary size is
O(dneff(γ) log(n)). This will be the minimum complexity and space that we will refer to as
“optimal”. Note also that in order for RLS sampling to improve performance in downstream
tasks, the dictionary size O(dneff(γ) log(n)) must be small, thus during the comparison we
will restrict ourselves to the dneff(γ)� n regime.
Exact-RLS, which uses Definition 2.4 to compute the RLS and then sample, achieve
optimal O(dneff(γ) log(n)) dictionary size, but takes O(n3) time and O(n2) memory to run,
and it does not scale to large datasets.
Two-Step-RLS, introduced by Alaoui and Mahoney, (2015), was the first batch ap-
proximate RLS sampling to provably improve on Exact-RLS. Space wise, the first-step

4Even replacing sequential Binomial sampling with Multinomial cannot reduce this complexity, since
drawing a single sample from a Multinomial over n objects still takes Ω(n) time.
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uniformly sampled dictionary has to contain n/γ samples to be (ε, γ)-accurate, much larger
than the optimal O(dneff(γ) log(n)) which is achieved only by the second-step dictionary
sampled using approximate RLS. Time wise, the first-step uniform sampling has a small
O(n) computational cost, but the O(n3/γ2) cost for the RLS estimation phase dominates
the time complexity of the algorithm. Although this is an improvement over O(n3) it it
still quite far away from O(n).
The first big jump in space and runtime arrives when we extend Two-Step-RLS to make
multiple RLS sampling steps, each increasingly more accurate, resulting in Many-Step-
RLS and Recursive-RLS by Musco and Musco, (2017). Space wise, Recursive-RLS
exactly matches the optimal dneff(γ) log(n) dictionary size, with Many-Step-RLS getting
close and only a log(log(n/γ)) factor away from it. Time wise, they both achieve near-linear
in n runtime Õ(ndneff(γ)2), which in our dneff(γ)� n setting essentially matches the optimal
O(n) runtime of Oracle-RLS. Among the two, Recursive-RLS requires slightly less
passes, log(n) vs log(n/γ), when γ < 1. Nonetheless, for many downstream tasks Many-
Step-RLS can improve on the number of passes using a computational regularization
approach (Rudi et al., 2015). In particular, we can start with q = O(log(n log(n))) and
γ = n, and keep reducing γ at each pass until cross-validation on the downstream task
indicates that we should stop. This way, we avoid performing passes unnecessary for the
downstream task’s performance.
Recap: in the batch setting, we went from the O(n3) time complexity of Exact-RLS,
to the near-linear Õ(ndneff(γ)2) time complexity of Many-Step-RLS and Recursive-
RLS, breaking the quadratic barrier required to compare each sample to all other. We
also reduce the O(n2) memory requirement of Exact-RLS, necessary to compute the
exact RLS, to a O(dneff(γ)2 log2(n)) memory requirement to execute Many-Step-RLS and
Recursive-RLS.

Single-pass algorithms w/o removal

To eliminate the need for passes altogether, we moved from RLS sampling to sequential
RLS sampling. In this category, we first consider algorithms that take an insertion-only
approach to dictionary construction.
Our optimal baseline is SOracle-RLS-NoRem, where we sample proportionally to the
current RLS provided by an oracle restricted by the streaming setting to seeing only the
partial dataset Dt. The total runtime of the algorithm is n, and it generates a dictionary
that contains O(dnonl(γ) log(n)) ≤ O(dneff(γ) log2(n) atoms.
The first algorithm that can operate both in the batch and streaming setting is uniform
sampling. Uniform takes only O(q) time5 to sample its dictionary. Unfortunately, Bach,
(2013) shows that to guarantee (ε, γ)-accuracy we must choose q = O(nµ(γ)) proportional to
the regularized coherence µ(γ) = maxni=1 τn,i(γ), resulting in a O(nµ(γ)) runtime. Moreover,
we need assumptions or an oracle to tell us in advance the value of the coherence µ(γ)
to implement the algorithm. Alternatively, we can use the bound µ(γ) ≤ 1/γ to run the
algorithm with q = n/γ, resulting in a O(n/γ) runtime and dictionary size, which matches
the n optimal runtime, but is far away from the optimal dnonl(γ) log(n) dictionary size.
Using instead our proposed algorithm KORS (Calandriello et al., 2017c) we can achieve
(up to constants) the optimal O(dnonl(γ) log(n)) dictionary size in a near-linear Õ(ndnonl(γ)2)
runtime. Therefore, we can achieve essentially the same guarantees as SOracle-RLS-
NoRem, without the need of an oracle. Moreover, we get not only guarantees on the final

5Drawing a sample from a Binomial B(p, q) can be implemented in O(pq) w.h.p.. Since in Uniform we
have probabilities that sum to one, the overall sampling time is O(q).
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dictionary In, but also on all intermediate dictionaries It.
Therefore, if the underlying dneff(γ) of the dataset is large and the size of the dictionary
grows so much that we have to interrupt the algorithm, we still know that the intermediate
dictionary It is (ε, γ)-accurate w.r.t. to the data seen so far, and we can use it to choose
a better γ. Similarly, in streaming application we can at any moment take a snapshot of
the dictionary to start using it in a downstream task, and continue processing the stream
without restarting.
Recap: in the streaming setting with insertion-only updates, we went from the log(n) passes
of Many-Step-RLS and Recursive-RLS to the single pass of KORS. The Õ(ndneff(γ)2)
time complexity of KORS remain near-linear, although with a worse log4(n) dependency
when compared to the log2(n) dependency of Many-Step-RLS and Recursive-RLS.
Similarly, the O(dneff(γ)2 log4(n)) memory requirement to execute KORS is only log2(n)
larger than Many-Step-RLS and Recursive-RLS.

Single-pass algorithms w/ removal

Adding the possibility of removing atoms from intermediate dictionaries brings the require-
ments of single-pass algorithms close to the ones of multi-pass algorithms. This is clear from
looking at SOracle-RLS-Rem, a sequential oracle algorithm, that matches the n time
complexity and O(dneff(γ) log(n)) dictionary size of Oracle-RLS, a batch oracle algorithm.
In this setting SQUEAK, in its fully sequential variant, runs in a near-linear Õ(ndneff(γ)3)
time and construct optimally sized O(dneff(γ) log(n)) dictionaries, essentially matching again
both the batch and sequential oracle but without knowing the RLS in advance. The time
complexity of the algorithm is Õ(ndneff(γ)3), a small increase compared to the Õ(ndneff(γ)2)
complexity of of KORS, Many-Step-RLS and Recursive-RLS.
Compared to KORS, this is because sequential SQUEAK cannot use efficient O(dneff(γ)2)
rank-1 updates when estimating RLSs, due to the fact that it changes many atoms in the
dictionary at the same time. Compared to Many-Step-RLS and Recursive-RLS, this is
because at each of the n steps KORS needs to perform a O(dneff(γ)3) inversion followed by
O(dneff(γ)) RLS estimations each costing O(dneff(γ)2), while the batch algorithms need to
perform a O(dneff(γ)3) inversion only once for each of the log(n) passes, while the n RLS
estimations cost a cheaper O(dneff(γ)2) time each.
Nonetheless, if we distribute the computation across k machines, the parallel variant of
SQUEAK can compute a solution in Õ((n/k)dneff(γ)3) time, breaking even the near-linear
time barrier. This is even better than the batch oracle RLS algorithm, and can only be
compared to a parallel oracle algorithm. Note also out of all the near-linear time sampling
algorithms, SQUEAK is the only one that can be naturally parallelized.
Finally, compared to the multi-pass algorithms, KORS and SQUEAK are the only near-
linear time algorithms that can continue to update their dictionary even beyond the first n
samples, without having to restart the computation from scratch.
Recap: the addition of dictionary removal improves the space and time complexity of
streaming algorithms. SQUEAK requires only O(dneff(γ)2 log2(n)) memory to run, matching
Many-Step-RLS and Recursive-RLS and improving on KORS. When run on a single
machine, it requires Õ(ndneff(γ)3) time to execute, slightly more than the other near-linear
algorithms. When run on k machines, we can improve runtime to Õ((n/k)dneff(γ)3), surpass-
ing all other near-linear time algorithms and reaching near-constant Õ(dneff(γ)3) runtime
when enough machines are used.
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3.3.4 Straightforward extensions and practical tricks

To simplify the exposition, so far we did not use the tightest possible bounds or the most
efficient update rules. In this section we highlight several simple extension to our analysis
that can either sharpen our bounds or improve computation.

Improve log(n) dependency in q. It is possible to improve the log(n) dependency in
SQUEAK with a milder max{log(dneff(γ)), log(h)}, where h is the height of the merge tree,
i.e., the maximum number of merges that a single sample has to go through until it reaches
the root.
Proving this requires (1) replacing the concentration inequality used in Proposition 3.18
that scales with n with a stronger version by Minsker, (2011) that scales only with dneff(γ),
and (2) defining more carefully the union bound over the failure events to scale with the
actual path each sample follows in the merge tree rather than the number of nodes in the tree.
When h = log(n) (fully balanced tree), this means that, if we set q = max{log(dneff(γ)), log(h)},
we can improve SQUEAK’s final dictionary size to O(dneff(γ) log(dneff(γ)) log log(n)) from
the original O(dneff(γ) log(n)), with associated runtime improvements. Similarly, we can
tune KORS’s q to improve final dictionary size to O(dneff(γ) log(dneff(γ)) log(n)) from
O(dneff(γ) log2(n)).
Unfortunately, estimating log(dneff(γ)) is not easy, and it is impossible to do in a streaming
setting since q must be set in advance. Thus in practice it is simpler to just set q proportional
to log(n).

Time-dependent regularization γ. All the analysis remains identical if we strictly
increase γ over time. This is helpful, especially when processing large datasets sequentially.
For example, in many kernel-related problem the γ that gives us the optimal learning rate
is
√
n (as we will see in the discussion of Proposition 4.5). In a dataset with a million

samples this gives us a γ in the thousands. If we split our dataset in small subset of a few
hundreds samples, we might end up with extremely small RLS that are numerically hard
to estimate. In this case starting with a smaller γ and increasing it as we continue up the
merge tree (e.g.,

√
|D{h,l}|improves numerical stability, without costing too much space.

Use overestimates of the RLS instead of underestimates. For the definition of
ρ-accurate RLS estimate τ̃t,i we chose to make them strict underestimates of the true RLS
τt,i. This was done in order to reinforce their interpretation as probabilities in coin flips.
Another possible solution is to define an estimate as ρ-accurate when it satisfies τt,i ≤
τ̃t,i ≤ ρτt,i, i.e., when it overestimates τt,i. To maintain the algorithm well defined, we
can compensate this change using thresholding and define the coin flip probabilities as
p̃t,i = min{τ̃t,i, 1}. Since we know that the true τt,i are always smaller than 1, this does not
affect ρ-accuracy and our analysis, except for a more complex notation.
On the positive side, we now get more accurate RLS estimates, because we are using prior
knowledge on τt,i to refine our estimator τ̃t,i. A similar argument can be made for other
refinements such as p̃t,i = max{τ̃t,i, 1/(t+ γ)} (we know the minimum τt,i) and for taking
the minimum p̃t,i = min{τ̃t,i, τ̃t−1,i} (we know τt,i ≤ τt−1,i).

3.3.5 Open questions: lifelong learning and deterministic dictionary learning

Two important questions that remain open at the end of this chapter is whether we can
continue updating our dictionary indefinitely, and whether randomness is truly necessary
for accuracy.
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The first question is especially relevant in the context of online learning and learning on
streams, where knowing log(n) in advance might not be possible. It is also central to the
problem of lifelong learning (Thrun, 1998), where the learning algorithm is faced with an
open-ended goal and must continue to update its model forever.
Unfortunately, both KORS and SQUEAK require to know log(n) in advance to tune
q. Note that our guarantees apply for any q larger than log(n) and therefore if we know
that our dataset might grow over time we can “overbudget” (which is made easy by the
logarithmic dependency). For a fixed q the guarantees also hold for any ε′ > ε, and
therefore if we continue processing samples after the first n our analysis degrades gracefully
in guaranteeing (ε′, γ)-accuracy.
The main technical obstacle to obtain an algorithm that can truly operate on unbounded
streams is the union bound over failure events (total number of dictionary merges). This
quantity naturally grows with the number of samples processed, so it is not easy to see if it
is possible to avoid this dependency.
Alternatively, we could try to modify our proof to take into account a time-dependant
budget qt, and use an adaptive schedule log(t) for it. Unfortunately, this would require
going back and re-evaluating already dropped samples when qt increases, violating our
single-pass constraint.

Another interesting question is whether it is possible to deterministically select the atoms
with the highest RLS (e.g., estimated using SQUEAK) and prove that this constructs an
(ε, γ)-accurate dictionary. While some early results are available (Papailiopoulos et al., 2014;
Patel et al., 2016), they are still very far from the accuracy, space and time performance of
randomized methods such as SQUEAK.

3.4 Proof of main results

We will provide a single proof of Theorem 4.7, since Algorithm 8 and Theorem 3.11 can be
seen as a special case of Algorithm 10 with a fully sequential merge tree, and where we do
not update the approximate RLSs after estimating them the first time. It is easy to see
that if τ̃t,t = τ̃t′,t for all t′ > t, then the importance sampling will always return qt,t = qt′,t,
and we perform sequential RLS sampling without removal.

3.4.1 Decomposing the merge tree

We begin by describing more in detail some notation introduced in the main paper and
necessary for this proof.

Merge trees We first restate and formalize more in detail the random process induced by
SQUEAK.

We partition D into k disjoint sub-datasets Di of size ni, such that D = ∪ki=1Di. For each
dataset Di, we construct an initial dictionary I{1,i} = {(p̃0,j = 1, q0,j = q,φj) : j ∈ Di} by
inserting all points from Di into IDi with weight p̃0,j = 1 and number of copies q0,j = q.
It is easy to see that I{1,i} is an (ε, γ)-accurate dictionary, and we can split the data in
small enough chunks to make sure that it can be easily stored and manipulated in memory.
Alternatively, if we want our initial dictionaries to be small and cannot choose the size of
Di, we can run KORS on Di to generate I{1,i}, and the following proof will remain valid.
Regardless of construction, the initial (ε, γ)-accurate dictionaries I{1,i} are included into
the dictionary pool S1.
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Figure 3.4: Stretching a merge tree.

At iteration h, the inner loop of SQUEAK arbitrarily chooses two dictionaries from Sh
and merges them into a new dictionary. Any arbitrary sequence of merges can be described
by a full binary tree, i.e., a binary tree where each node is either a leaf or has exactly two
children. Fig. 3.3 shows several different merge trees corresponding to different choices for
the order of the merges.
Note that starting from k leaves, a full binary tree will always have exactly k − 1 internal
nodes, and a maximum depth of k. Therefore, regardless of the structure of the merge
tree, we can always stretch it into a tree of depth k, with all the initial dictionaries I1,i as
leaves on its deepest layer. Fig. 3.4 reports an example of such a stretching transformation,
where all the extra nodes introduced in the trees do not correspond to merges, and simply
propagate the dictionary up the tree (e.g., I{2,3} = I{3,2}).
After this transformation, we index the tree nodes using their height (longest path from
the node to a leaf, also defined as depth of the tree minus depth of the node), where all
leaves have height 1 and the root has height k. We can also see that at each layer, there is
a single dictionary merge, and the size of Sh (number of dictionaries present at layer h) is
|Sh| = k − h+ 1.
Therefore, a node corresponding to a dictionary is uniquely identified with two indices
{h, l}, where h is the height of the layer and l ≤ |Sh| is the index of the node in the layer.
For example, in Fig. 3.4, the node containing I1,2,3 is indexed as {3, 1}, and the highest
node containing I4 is indexed as {3, 2}.

We also define the dataset D{h,l} as the union of all sub-datasets Dl′ that are reachable from
node {h, l} as leaves. For example, in Fig. 3.4, dictionary I1,2,3 in node {3, 1} is constructed
starting from all points in D{3,1} = D1 ∪D2 ∪D3, where we highlight in red the descendant
tree. We now define Ph (see Definition 2.8) as the block diagonal regularized projection
matrix where each diagonal block P{h,l} is constructed on D{h,l}. Again, from Fig. 3.3, P3

is a n×n matrix with two blocks on the diagonal, a first (n1+n2+n3)×(n1+n2+n3) block
P3,1 constructed on D{3,1} = D1 ∪D2 ∪D3, and a second n4×n4 block P3,2 constructed on
D{3,2} = D4. Similarly, we can adapt Eq. 2.15 to define a block diagonal P̃h, where block
P̃{h,l} is defined using P{h,l} and I{h,l}, which contains the weights and number of copies
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computed by SQUEAK at each node. Finally, we will also denote with d{h,l}eff (γ) = d
D{h,l}
eff (γ)

the effective dimension of D{h,l}.

The statement. Since Ph − P̃h is block diagonal, we have that a bound on its norm
implies an equal bound on the norm each matrix on the diagonal, i.e.,

‖Ph − P̃h‖ = max
l
‖P{h,l} − P̃{h,l}‖ ≤ ε⇒ ‖P{h,l} − P̃{h,l}‖ ≤ ε

for all blocks l on the diagonal, and since each block corresponds to a dictionary I{h,l}, this
means that if ‖Ph − P̃h‖ ≤ ε, all dictionaries at layer l are ε-accurate approximation of
their respective represented datasets. Our goal is to show

P
(
∃h ∈ [k] : ‖Ph − P̃h‖2 ≥ ε ∪ max

l=1,...,|Sh|
|I{h,l}| ≥ 3qd

{h,l}
eff (γ)

)
= P

(
∃h ∈ [k] :

(
max
l∈[|Sh|]

‖P{h,l} − P̃{h,l}‖2
)
≥ ε︸ ︷︷ ︸

Ah

∪
(

max
l∈[|Sh|]

|I{h,l}| ≥ 3qd
{h,l}
eff (γ)

)
︸ ︷︷ ︸

Bh

)
≤ δ,

3.6

where event Ah refers to the case when some dictionary I{h,l} at an intermediate layer h
fails to accurately approximate D{h,l} and event Bh considers the case when the memory
requirement is not met (i.e., too many points are kept in one of the dictionaries I{h,l} at a
certain layer h). We can conveniently decompose the previous joint (negative) event into
two separate conditions, one for accuracy and one for space, as

P
( k⋃
h=1

Ah ∪Bh
)

= P

({
k⋃
h=1

Ah

}
∪

{
k⋃
h=1

Bh

})
= P

({
k⋃
h=1

Ah

})
+ P

{ k⋃
h=1

Bh

}
∩

{
k⋃
h=1

Ah

}C


= P

({
k⋃
h=1

Ah

})
+ P

({
k⋃
h=1

Bh

}
∩

{
k⋂
h=1

AC
h

})
= P

({
k⋃
h=1

Ah

})
+ P

(
k⋃
h=1

{
Bh ∩

{
k⋂

h′=1

AC
h′

}})
.

3.7

We can now apply a union bound to separate each of the k merge processes. Notice that
the union bound is over the nodes, since we want to guarantee that each dictionary in each
node is accurate. While we know that stretching the tree (Fig. 3.4) can introduce many
artificial nodes, we also know that to merge k sub-datasets we need at most k merges, and
therefore we only need to bound over k negative events.
Let E = {(h, l)} be the set of nodes corresponding to actual merges (i.e., nodes before
stretching). Then we can reformulate

P
(
∃h ∈ [k] : ‖Ph − P̃h‖2 ≥ ε ∪ max

l=1,...,|Sh|
|I{h,l}| ≥ 3qd

{h,l}
eff (γ)

)
= P

(
∃h ∈ [k] :

(
max

l=1,...,|Sh|
‖P{h,l} − P̃{h,l}‖2

)
≥ ε
)

+ P
(
∃h ∈ [k] : max

l=1,...,|Sh|
|I{h,l}| ≥ 3qd

{h,l}
eff (γ) ∩

{
∀h′ ∈ [h] : ‖Ph′ − P̃h′‖2 ≤ ε

})
≤

∑
{h,l}∈E

P
(
‖P{h,l} − P̃{h,l}‖2 ≥ ε

)
+

∑
{h,l}∈E

P
(
|I{h,l}| ≥ 3qd

{h,l}
eff (γ) ∩

{
∀h′ ∈ [h] : ‖Ph′ − P̃h′‖2 ≤ ε

})
≤ δ. 3.8
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As we highlighted many time, the accuracy of the dictionary (first term in the previous
bound) is guaranteed by the fact that given an ε-accurate dictionary we obtain RLS
estimates which are at least a fraction of the true RLS, thus forcing the algorithm to
sample each column enough. On the other hand, the space complexity bound is achieved
by exploiting the fact that RLS estimates are always upper-bounded by the true RLS, thus
ensuring that SQUEAK does not oversample columns w.r.t. the sampling process following
the exact RLS.

In the reminder of the proof, we will show that both events happen with probability smaller
than δ/(2k). The main advantage of splitting the failure probability as we did in Eq. 3.8
is that we can now analyze the processes that generated each P{h,l} − P̃{h,l} (and each
dictionary I{h,l}) separately. Focusing on a single node {h, l} restricts our problem on a
well defined dataset D{h,l}, where we can analyze the evolution of I{h,l} sequentially.
Challenges. Due to its sequential nature, the “theoretical” structure of the process
generating P{h,l} − P̃{h,l} is considerably complicated, where each step in the sampling
process (layer in the merge tree) is highly correlated with the previous steps.6 This prevents
us from using concentration inequalities for i.i.d. processes that are at the basis of the
analysis of uniform sampling (Bach, 2013), Two-Step-RLS by Alaoui and Mahoney,
(2015), and Recursive-RLS by Musco and Musco, (2017).
As a result, we first show that the project error is a martingale process. The main technical
difficulty in analyzing how the projection error evolves over iterations is that the projection
matrices change dimension every time a new point is processed. In fact, all of the matrices
P{h′,l′} − P̃{h′,l′} descending from P{h,l} − P̃{h,l} have potentially a different size since
they are based on different datasets D{h′,l′}. This requires a careful definition of the
martingale process to still use matrix concentration inequalities for fixed-size matrices (see
Section 3.4.2).
Once we have defined the martingale structure, we will use a matrix Freedman inequality
to bound the deviation of the martingale from its mean as a function of its predictable
quadratic variation W. Here the proof of KORS and SQUEAK will differ. In particular,
it is possible to find a small deterministic uniform bound on the variance of each step of
KORS, and use it to bound the overall process’ variance.
Bounding the per-step variance of SQUEAK is much more difficult, since it continues to
update the number of copies qt,i after insertion, as well as their weight 1/p̃t,i that might
grow unbounded over time. As a consequence, uniform bounds on the predictable quadratic
variation W become too large. In addition, W itself is a complex object since it is composed
of many correlated variables.
In order to provide a tighter bound on the total variance of the martingale process of
the projection error, we need to first introduce an i.i.d. stochastically dominant process
(Section 3.4.4 (step 2)), which finally allows us to use an i.i.d. matrix concentration inequality
to bound the total variance (Section 3.4.4-(step 5)). This finally leads to the bound on the
accuracy. The bound on the space complexity (Section 3.4.5) follows similar (but simpler)
steps.

3.4.2 Bounding the projection error ‖P{h,l} − P̃{h,l}‖

The sequential process. Thanks to the union bound in Eq. 3.6, instead of having to
consider the whole merge tree followed by SQUEAK, we can focus on each individual node

6Note once again that although the sampling process is random, the merge tree is deterministic and
fixed in advance.
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{h, l} and study the sequential process that generated its dictionary I{h,l}. We will now map
more clearly the actions taken by SQUEAK to the process that generated P{h,l} − P̃{h,l}.
Since the merge tree is decided in advance, the dataset D{h,l} and which samples φi are
involved in the process is not random, and is fixed for the whole process. We begin by
focusing on P̃{h,l}, which is a random matrix defined starting from the fixed map Φ{h,l}
and the random dictionary I{h,l}, where the randomness influences both which points are
included in I{h,l}, and the weight with which they are added.

Consider now a point i ∈ D{h,l}. Since the starting datasets in the leaves are disjoint, there
is a single path in the tree, with length h, from the leaves to {h, l}. This means that for all
s < h, we can properly define a unique p̃s,i and qs,i associated with that point. More in
detail, if at layer s point i is present in D{s,l′}, it means that either

(1) SQUEAK used I{s,l′} to compute p̃s,i, and p̃s,i to compute qs,i,
(2) at layer h SQUEAK did not have any merge scheduled for point i, and we simply

propagate p̃s,i = p̃s−1,i and qs,i = qs−1,i,
(3) SQUEAK dropped the point at a lower layer, and we set p̃s,i to the last value that

was computed by SQUEAK before dropping it, i.e., we do not change the probabilities
of dropped points.

Consistently with the algorithm, we initialize p̃0,i = 1 and q0,i = q.

Denote ν{h,l} = |D{h,l}| so that we can use index i ∈ [ν{h,l}] to index all points in D{h,l}.
Using the matrices C = C{h,l} with vector ci as its i-th column (see Definition 2.8), we can
again rewrite the regularized projection matrix as that P{h,l} = CCT =

∑ν{h,l}
i=1 cic

T
i , and

we can see that the norm ‖cicT
i ‖ is equal to the RLS of the i-th sample φi w.r.t. to dataset

D{h,l}. Note that since the starting datasets are disjoint, and there is a single path from the
leaves to {h, l}, i is present only in node l on layer h. Therefore its RLS is uniquely defined
w.r.t. D{h,l} and can be shortened as τh,i = τD{h,l},i. Using ci, we can also introduce the

random matrix P̃
{h,l}
s as

P̃{h,l}s =

ν{h,l}∑
i=1

qs,i
qp̃s,i

cic
T
i =

ν{h,l}∑
i=1

q∑
j=1

zs,i,j
qp̃s,i

cic
T
i .

where zs,i,j are {0, 1} r.v. such that qs,i =
∑q

j=1 zs,i,j , and correspond to the coin flip chain
(see Section 3.3.1) associated with sample i’s j-th copy.
Note that when s = h, we have that P̃

{h,l}
h = P̃{h,l} and we recover the definition of the

approximate projection matrix from SQUEAK. But, for a general s 6= h P̃
{h,l}
s does not

have a direct interpretation in the context of SQUEAK. It combines the vectors ci, which
are defined using Φ{h,l} at layer h, with the weights p̃s,i computed by SQUEAK across
multiple nodes at layer s, which are potentially stored in different machines that cannot
communicate. Nonetheless, P̃

{h,l}
s is a useful tool to analyze SQUEAK.

Taking into account that we are now considering a specific node {h, l}, we can drop
the index from the dataset D{h,l} = D, RLS τD{h,l},i = τh,i, and size ν{h,l} = ν. Using
this shorter notation, we can reformulate our objective as bounding ‖P{h,l} − P̃{h,l}‖2 =

‖P{h,l} − P̃
{h,l}
h ‖2, and reformulate the process as a sequence of matrices {Ys}hs=1 defined

as

Ys = P{h,l} − P̃{h,l}s =
1

q

ν∑
i=1

q∑
j=1

(
1− zs,i,j

p̃s,i

)
cic

T
i ,
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where Yh = P{h,l} − P̃
{h,l}
h = P{h,l} − P̃{h,l}, and Y1 = P{h,l} − P̃

{h,l}
0 = 0 since p̃0,i = 1

and q0,i = q.

3.4.3 Bounding the martingale Yh

We transformed the problem of bounding ‖P{h,l} − P̃{h,l}‖ into the problem of bounding
Yh, which we modeled as a random matrix process, connected to SQUEAK by the fact that
both algorithm and random process Yh make use of the same weight p̃s,i and multiplicities
qs,i. There are two main issues in analyzing the process {Ys}hs=1:

(1) The overall algorithm may fail in generating an accurate dictionary at some intermediate
iteration and yet return an accurate dictionary at the end. Moreover, whenever one
of the intermediate ‖Ys‖ is larger than ε we lose our guarantees for p̃s,i for the whole
process, since an inaccurate p̃s,i that underestimates too much ps.i will influence all
successive p̃s′,i through the minimum.
To solve this, we consider an alternative (more pessimistic) process which is “frozen” as
soon as it constructs an inaccurate dictionary. Freezing the probabilities at the first
error gives us a process that fails more often, but that provides strong guarantees up
to the moment of failure.

(2) While ‖Yh‖ = ‖P{h,l} − P̃
{h,l}
h ‖ ≤ ε guarantees that I{h,l} is an ε-accurate dictionary

of Φ{h,l}, knowing ‖Ys‖ = ‖P{h,l} − P̃
{h,l}
s ‖ ≤ ε for s < h does not guarantee that all

descendant I{s,l′} are (ε, γ)-accurate w.r.t. their Φ{s,l′}.
Intuitively, this is because Ct is defined w.r.t. (ΦT

tΦt + γIt)
−1, while Cs is defined

w.r.t. (ΦT
sΦs + γIs)

−1, with (ΦtΦ
T
t + γΠt)

−1 � (ΦsΦ
T
s + γΠs)

−1. Since the inverse at
step t is “stronger” than at step s, it is possible for ‖CT

t (It−Sts(S
t
s)

T)CT
t ‖ to be smaller

than ε, while ‖CT
s(Is − Ss(Ss)

T)CT
s‖ is larger than ε.

Nonetheless, we will show that ‖Ys‖ ≤ ε is enough to guarantee that the intermediate
estimate p̃s,i computed in SQUEAK, and used as weights in P̃

{h,l}
s , are never too

small.

The frozen process. We will now replace the process Ys with an alternative process Ys

defined as

Ys = Ys−1I
{
‖Ys−1‖ ≤ ε

}
+ Ys−1I

{
‖Ys−1‖ ≥ ε

}
,

This process starts from Y0 = Y0 = 0, and is identical to Ys until a step s where for the
first time ‖Ys‖ ≤ ε and ‖Ys+1‖ ≥ ε. After this failure happen the process Ys is “frozen” at
s and Ys = Ys+1 for all s+ 1 ≤ s ≤ h. Consequently, if any of the intermediate elements
of the sequence violates the condition ‖Ys‖ ≤ ε, the last element will violate it too. For
the rest, Ys behaves exactly like Ys. Therefore,

P (‖Yh‖ ≥ ε) ≤ P
(
‖Yh‖ ≥ ε

)
,

and if we can bound P
(
‖Yh‖ ≥ ε

)
we will have a bound for the failure probability of

SQUEAK, even though after “freezing” the process Yh does not make the same choices as
the algorithm.

We will see now how to construct the process Ys starting from zs,i,j and p̃s,i,j . We recursively
define the indicator ({0, 1}) random variable zs,i,j as

zs,i,j = I
{
us,i,j ≤

ps,i,j
ps−1,i,j

}
zs−1,i,j ,
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where us,i,j ∼ U(0, 1) is a [0, 1] uniform random variable and ps,i,j is defined as

ps,i,j = p̃s,iI
{
‖Ys−1‖ ≤ ε ∩ zs−1,i,j = 1

}
+ ps−1,i,jI

{
‖Ys−1‖ ≥ ε ∪ zs−1,i,j = 0

}
.

This definition of the process satisfies the freezing condition, since if ‖Ys+1‖ ≥ ε (we
have a failure at step s), for all s′ ≥ s + 1 we have zs′,i,j = zs+1,i,j with probability 1
(ps+1,i,j/ps,i,j = ps,i,j/ps,i,j = 1), and the weights 1/(qps+1,i,j) = 1/(qps,i,j) never change.

Introducing a per-copy weight ps,i,j and enforcing that ps+1,i,j = ps,i,j when zs,i,j = 0 avoids
subtle inconsistencies in the formulation. In particular, not doing so would semantically
correspond to reweighting dropped copies. Although this does not directly affect Ys (since
the ratio zs,i,j/p̃s,i is zero for dropped copies), and therefore the relationship P (‖Yh‖ ≥ ε) ≤
P
(
‖Yh‖ ≥ ε

)
still holds, we will see later how maintaining consistency helps us bound the

second moment of our process.

We can now arrange the indices s, i, and j into a linear index r = s in the range [1, . . . , ν2q],
obtained as r = {s, i, j} = (s − 1)νq + (i − 1)q + j. We also define the difference
matrix as

X{s,i,j} =
1

q

(
zs−1,i,j
ps−1,i,j

− zs,i,j
ps,i,j

)
cic

T
i ,

which allows us to write the cumulative matrix as Y{s,i,j} =
∑{s,i,j}

r=1 X{s,i,j} where the
checkpoints {s, ν, q} correspond to Ys,

Y{s,ν,q} = Ys =
1

q

ν∑
i=1

q∑
j=1

(
1− zs,i,j

ps,i,j

)
cic

T
i .

Let Fs be the filtration containing all the realizations of the uniform random variables us,i,j
up to the step s, that is Fs = {us′,i′,j′ ,∀{s′, i′, j′} ≤ s}. Again, we notice that Fs defines
the state of the algorithm after completing iteration s because, unless a “freezing” happened,
SQUEAK and Ys flip coins with the same probability, and generate the same dictionaries.
Since τ̃s,i and ps,i,j are computed at the beginning of iteration s using the dictionary I{s,l′}
(for some l′ unique at layer s), they are fully determined by Fs−1. Furthermore, since Fs−1
also defines the values of all indicator variables zs′,i,j up to zs−1,i,j for any i and j, we
have that all the Bernoulli variables zs,i,j at iteration s are conditionally independent given
Fs−1. In other words, we have that for any i′, and j′ such that {s, 1, 1} ≤ {s, i′, j′} < s the
following random variables are equal in distribution,

zs,i,j
∣∣F{s,i′,j′} = zs,i,j

∣∣F{s−1,ν,q} ∼ Ber( ps,i,j
ps−1,i,j

)
, 3.9

and for any i′, and j′ such that {s, 1, 1} ≤ {s, i′, j′} ≤ {s, ν, q} and s 6= {s, i′, j′} we have
the independence

zs,i,j
∣∣F{s−1,ν,q} ⊥ zs,i′,j′∣∣F{s−1,ν,q}. 3.10

While knowing that ‖Ys‖ ≤ ε is not sufficient to provide guarantees for the approximate
probabilities p̃s,i, we can show that it is enough to prove that the frozen probabilities ps,i,j
are never too small.
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Lemma 3.17 — (Calandriello et al., 2017a). Let ρ = (1 + 3ε)/(1 − ε) and ps,i,j be the
sequence of probabilities generated by the freezing process. Then for any s, i, and j, we
have ps,i,j ≥ ph,i/ρ = τh,i/ρ.

Proof of Lemma 3.17. Let s be the step where the process freezes (s = h if it does not
freeze), or, in other words, ‖Ys‖ < ε and ‖Ys+1‖ ≥ ε. From the definition of ps,i,j , we have
that

ps,i,j ≥ ps,i = p̃s,i = max {min {τ̃s,i, p̃s−1,i} , p̃s−1,i/2}
≥ min {τ̃s,i, p̃s−1,i} = min {τ̃s,i, p̃s−2,i} = min {τ̃s,i, p̃s−3,i} . . . = min {τ̃s,i, p̃0,i} = τ̃s,i,

and therefore ps,i,j ≥ τ̃s,i. Now let {s, l′} be the node where τ̃s,i was computed. We will
again drop the {h, l} index from D{h,l}, and simply refer to it as D. Similarly, we will refer
with Di to D{s,l′} (as in, the dataset used to compute τ̃s,i), and with Di to the samples in
D not contained in Di (complement of Di).
Define A as the |D| × |Di| matrix that contains the columns of Ss related to points in Di,
and similarly define B as the |D| × |Di| matrix that contains the columns of Ss related to
points in Di, where Ss can be reconstructed by interleaving columns of A and B. From its
definition in Eq. 3.5, we know that τ̃s,i is computed by SQUEAK as

τ̃s,i = (1− ε)φT
i (ΦDAATΦT

D + (1 + ε)γΠDi)
−1
φi,

using only the points in A that are available at node {s, l′}. From Lemma 2.10 we know
that

‖Ys‖ =
∥∥∥P{h,l} − P̃

{h,l}
s

∥∥∥ 2

=
∥∥∥(ΦDΦ

T
D + γΠD)−1/2(ΦDΦ

T
D −ΦDSsS

T
sΦ

T
D)(ΦDΦ

T
D + γΠDi)

−1/2
∥∥∥ 2

=
∥∥∥(ΦDΦ

T
D + γΠD)−1/2(ΦDΦ

T
D −ΦDAATΦT

D −ΦDBBTΦT
D)(ΦDΦ

T
D + γΠD)−1/2

∥∥∥ 2 ≤ ε

and we know that this implies

ΦDAATΦT
D � ΦDΦT

D + ε(ΦDΦ
T
D + γΠD)−ΦDBBTΦT

D � ΦDΦT
D + ε(ΦDΦ

T
D + γΠD).

Plugging it in the initial definition,

τ̃s,i = (1− ε)φT
i (ΦDAATΦT

D + (1 + ε)γΠDi)
−1
φi

≥ (1− ε)φT
i (ΦDAATΦT

D + (1 + ε)γΠD)
−1
φi

≥ (1− ε)φT
i (ΦDΦ

T
D + ε(ΦDΦ

T
D + γΠD) + (1 + ε)γΠD)−1φi

≥ (1− ε) 1

1 + 3ε
φT
i (ΦDΦ

T
D + γΠD)−1φi ≥

1− ε
1 + 3ε

τh,i ≥ τh,i/ρ.

�

This result is weaker then Lemma 3.3 and Lemma 3.14, since we do not provide an upper
bound, and only show that p̃s,i ≥ ph,i/ρ and not p̃s,i ≥ ps,i/ρ, but it guarantees that the
probabilities used at any intermediate layer s are bigger than a fraction 1/ρ of the exact
final ph,i probabilities that we would use at layer h, which will suffice for our purpose.



3.4 Proof of main results 73

We now proceed by studying the process {Ys}hs=1 and showing that it is a bounded
martingale. In order to show that Ys is a martingale, it is sufficient to verify the following
(equivalent) conditions

E
[
Ys

∣∣ Fs−1] = Ys−1 ⇔ E
[
X{s,i,j}

∣∣ Fs−1] = 0.

We begin by inspecting the conditional random variable X{s,i,j}|Fs−1. Given the definition
of X{s,i,j}, the conditioning on Fs−1 determines the values of zs−1,i,j and the approximate
probabilities ps−1,i,j and ps,i,j . In fact, remember that these quantities are fully determined
by the realizations in Fs−1 which are contained in Fs−1. As a result, the only stochastic
quantity in X{s,i,j} is the variable zs,i,j . Specifically, if ‖Ys−1‖ ≥ ε, then we have ps,i,j =
ps−1,i,j and zs,i,j = zs−1,i,j (the process is stopped), and the martingale requirement
E
[
X{s,i,j}

∣∣ Fs−1] = 0 is trivially satisfied. On the other hand, if ‖Ys−1‖ ≤ ε we have

E
us,i,j

[
1

q

(
zs−1,i,j
ps−1,i,j

− zs,i,j
ps,i,j

)
cic

T
i

∣∣∣∣ Fs−1]
=

1

q

(
zs−1,i,j
ps−1,i,j

− zs−1,i,j
ps,i,j

E
[
I
{
us,i,j ≤

ps,i,j
ps−1,i,j

} ∣∣∣∣ Fs−1]) cic
T
i

=
1

q

(
zs−1,i,j
ps−1,i,j

− zs−1,i,j
ps,i,j

ps,i,j
ps−1,i,j

)
cic

T
i = 0,

where we use the recursive definition of zs,i,j and the fact that us,i,j is a uniform random
variable in [0, 1]. This proves that Ys is indeed a martingale. We now compute an
upper-bound R on the norm of the values of the difference process as

‖X{s,i,j}‖ =
1

q

∣∣∣∣(zs−1,i,jps−1,i,j
− zs,i,j
ps,i,j

)∣∣∣∣ ‖cicT
i ‖

≤ 1

q

1

ps,i,j
‖cicT

i ‖ =
1

q

1

ps,i,j
τh,i ≤

1

q

ρ

τh,i
τh,i =

ρ

q

def=R,

where we used Lemma 3.17 to bound ps,i,j ≤ τh,i/ρ. If instead, ‖Ys−1‖ ≥ ε, the process is
stopped and ‖Xs‖ = ‖0‖ = 0 ≤ R.
We are now ready to use a Freedman matrix inequality from (Tropp, 2011) to bound the
norm of Y.

Proposition 3.18 — (Tropp, 2011, Theorem 1.2). Consider a matrix martingale {Yk : k =
0, 1, 2, . . . } whose values are self-adjoint matrices with dimension d, and let {Xk : k =
1, 2, 3, . . . } be the difference sequence. Assume that the difference sequence is uniformly
bounded in the sense that

‖Xk‖2 ≤ R almost surely for k = 1, 2, 3, . . . .

Define the predictable quadratic variation process of the martingale as

Wk
def=

k∑
j=1

E
[
X2
j

∣∣∣ {Xs}j−1s=0

]
, for k = 1, 2, 3, . . . .
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Then, for all ε ≥ 0 and σ2 > 0,

P
(
∃k ≥ 0 : ‖Yk‖2 ≥ ε ∩ ‖Wk‖ ≤ σ2

)
≤ 2d · exp

{
− ε2/2

σ2 +Rε/3

}
·

In order to use the previous inequality, we develop the probability of error for any fixed h as

P (‖Yh‖ ≥ ε) ≤ P
(
‖Yh‖ ≥ ε

)
= P

(
‖Yh‖ ≥ ε ∩ ‖Wh‖ ≤ σ2

)
+ P

(
‖Yh‖ ≥ ε ∩ ‖Wh‖ ≥ σ2

)
≤ P

(
‖Yh‖ ≥ ε ∩ ‖Wh‖ ≤ σ2

)︸ ︷︷ ︸
(a)

+P
(
‖Wh‖ ≥ σ2

)︸ ︷︷ ︸
(b)

.

Using the bound on ‖X{s,i,j}‖2, we can directly apply Proposition 3.18 to bound (a) for
any fixed σ2. To bound the part (b), we need to bound w.h.p. the norm ‖Wh‖. The
proofs for KORS and SQUEAK will now diverge. For KORS we can show the following
deterministic result, proved later in Section 3.4.4.

Lemma 3.19 — Uniform bound on norm of the predictable quadratic variation process
of KORS.

‖Wh‖ ≤
ρ

q

Unfortunately, in the worst case ‖Wh‖ for SQUEAK might grow as n, and finding a small
deterministic bound is impossible. Instead we use the following high probability result,
proved later in Section 3.4.4.

Lemma 3.20 — Low probability of the large norm of the predictable quadratic variation
process of SQUEAK.

P
(
‖Wh‖ ≥

6ρ

q

)
≤ n · exp

{
−2

q

ρ

}

Therefore for SQUEAK, combining Proposition 3.18 with σ2 = 6ρ/q, Lemma 3.20, the
fact that 2ε/3 ≤ 1 and the value used by SQUEAK q ≥ 26ρ log(3n/δ)/ε2 we obtain

P
(
‖P{h,l} − P̃{h,l}‖2 ≥ ε

)
= P (‖Yh‖ ≥ ε) ≤ P

(
‖Yh‖ ≥ ε ∩ ‖Wh‖ ≤ σ2

)
+ P

(
‖Wh‖ ≥ σ2

)
≤ 2ν · exp

{
−ε

2q

ρ

(
1

12 + 2ε/3

)}
+ n · exp

{
−2

q

ρ

}
≤ 3n · exp

{
− ε2

13ρ
q

}
= 3n · exp

{
−2 log

(
3n

δ

)}
= 3n · exp

{
− log

((
3n

δ

)2
)}

= 3n
δ2

9n2
≤ δ

2n
·

This, combined with the fact that k ≤ n since at most we can split our dataset in n parts,
concludes this part of the proof.

For KORS, using σ2 = ρ/q, replacing Lemma 3.20 with Lemma 3.19 and the value used by
KORS q ≥ 4 log(2n/δ)/ε2 we obtain the same result.
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3.4.4 Bound on predictable quadratic variation Wh

Step 1 (applying the definition). We start by writing out Wr for the process Ys,

Wr =
1

q2

∑
{s,i,j}≤r

E

[(
zs−1,i,j
ps−1,i,j

− zs,i,j
ps,i,j

)2
∣∣∣∣∣ F{s,i,j}−1

]
cic

T
i cic

T
i .

We rewrite the expectation terms in the equation above as

E

[(
zs−1,i,j
ps−1,i,j

− zs,i,j
ps,i,j

)2
∣∣∣∣∣ F{s,i,j}−1

]

= E

[
z2s−1,i,j
p2s−1,i,j

− 2
zs−1,i,j
ps−1,i,j

zs,i,j
ps,i,j

+
z2s,i,j
p2s,i,j

∣∣∣∣∣ F{s,i,j}−1
]

(a)
= E

[
z2s−1,i,j
p2s−1,i,j

− 2
zs−1,i,j
ps−1,i,j

zs,i,j
ps,i,j

+
z2s,i,j
p2s,i,j

∣∣∣∣∣ Fs−1
]

=
z2s−1,i,j
p2s−1,i,j

− 2
zs−1,i,j
ps−1,i,j

1

ps,i,j
E [zs,i,j | Fs−1] +

1

p2s,i,j
E
[
z2s,i,j

∣∣ Fs−1]
(b)
=
zs−1,i,j
p2s−1,i,j

− 2
zs−1,i,j
ps−1,i,j

zs−1,i,j
ps−1,i,j

+
1

p2s,i,j
E [zs,i,j | Fs−1]

=
1

p2s,i,j
E [zs,i,j | Fs−1]−

zs−1,i,j
p2s−1,i,j

(c)
=

1

ps,i,j

zs−1,i,j
ps−1,i,j

− zs−1,i,j
p2s−1,i,j

=
zs−1,i,j
ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
,

where in (a) we use the fact that the approximate probabilities ps−1,i,j and ps,i,j and zs−1,i,j
are fixed at the end of the previous iteration, while in (b) and (c) we use the fact that zs,i,j
is a Bernoulli of parameter ps,i,j/ps−1,i,j (whenever zs−1,i,j is equal to 1). Therefore, we
can write Wr at the end of the process as

Wh = W{h,m,q} =
1

q2

q∑
j=1

ν∑
i=1

h∑
s=1

zs−1,i,j
ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
cic

T
i cic

T
i .

Before continuing with the other steps necessary to bound Wh for SQUEAK, we take a
moment to analyze a simpler problem, showing the deterministic bound on the variance of
KORS.

Proof of Lemma 3.19. Since KORS does not update its weights after the insertion, i.e.,
zs,i,j = zs′,i,j and ps,i,j = ps′,i,j for all s′ > s, we can greatly simplify the notation.
We only flip coins for atom i at step i, so we can simplify the notation zs,i,j to zs,j = zs,s,j .
Similarly, the probabilities do not change at all across iteration, so we can drop the per-
copy index, leaving only the time index that will serve as both time and atom index
ps,i,j = ps,i = ps,s = ps.
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We can therefore simplify the definition of the predictable quadratic variation

Wh =
1

q2

q∑
j=1

ν∑
i=1

h∑
s=1

zs−1,i,j
ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

h∑
s=1

zi,i,j

(
1

ps,i,jps−1,i,j
− 1

p2s−1,i,j

)
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

zi,j
pi,i,j

cic
T
i cic

T
i =

1

q2

q∑
j=1

ν∑
i=1

zi,j
pi
τh,icic

T
i ,

where we used the fact that the probabilities ph,i = ph−1,i = pi,i are not updated for s > i,
and therefore 1

ps,i,jps−1,i,j
= 1

p2s−1,i,j
, and that for s = i we have pi−1,i = 1 by definition. We

can now bound this quantity as

∥∥Wh

∥∥ =
1

q2

∥∥∥∥∥∥
q∑
j=1

ν∑
i=1

zi,j
pi
τh,icic

T
i

∥∥∥∥∥∥ ≤ 1

q2

∥∥∥∥∥∥
q∑
j=1

ν∑
i=1

1

pi
τh,icic

T
i

∥∥∥∥∥∥ ≤ 1

q2

∥∥∥∥∥∥
q∑
j=1

ν∑
i=1

ρ
τh,i
τh,i

cic
T
i

∥∥∥∥∥∥
≤ ρ

q

∥∥∥∥∥
ν∑
s=1

csc
T
s

∥∥∥∥∥ =
ρ

q
‖CtC

T
t ‖ =

ρ

q
‖Pt‖ ≤

ρ

q
:= σ2.

Where we used Lemma 3.17 to bound 1/pi ≤ ρ/τh,i. �

In a nutshell, this bound show us that if we can bound the chain
∑h

s=1
zs−1,i,j

ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
with 1/τh,i, then we can find a good bound on the variance.
Note that we could unroll and simplify

∑h
s=1

zs−1,i,j

ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
only because KORS

does not change the probabilities ps,i,j , and zs,i,j is constant after s = i. In SQUEAK
these probabilities continue to grow, and if the variable zh,i,j is still non-zero at the end of
the chain, after unrolling and simplifying we are left with

(
1

ph,i,jph−1,i,j
− 1

p21,i,j

)
=

(
1

ph,i,jph−1,i,j
− 1

)
≤ 1

p2h,i,j
,

which is usually much larger than the 1/pi,i,j that we obtained for KORS, since τh,i ≤ τi,i.
Therefore, in the worst case we have a variance that scales with 1/p2h,i,j ≤ ρ2/τ2h,i, making
it impossible to prove a deterministic bound of the order of 1/τh,i.
To tame the larger variance of SQUEAK we continue our derivation looking for a more
sophisticated bound that holds not uniformly but in high probability.
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Step 2 (a preliminary bound). We can now upper-bound Wh as

Wh �
1

q2

q∑
j=1

ν∑
i=1

h∑
s=1

zs−1,i,j
ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

)
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

(
zh,i,j
p2h,i,j

− zh,i,j
p2h,i,j

+
h∑
s=1

zs−1,i,j
ps−1,i,j

(
1

ps,i,j
− 1

ps−1,i,j

))
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

(
zh,i,j
p2h,i,j

+

(
h∑
s=1

−zs,i,j
p2s,i,j

+
zs−1,i,j

ps,i,jps−1,i,j

)
− z0,i,j
p20,i,j

)
cic

T
i cic

T
i

� 1

q2

q∑
j=1

ν∑
i=1

(
zh,i,j
p2h,i,j

+

(
h∑
s=1

zs−1,i,j
ps,i,jps−1,i,j

− zs,i,j
ps,i,jps−1,i,j

))
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

(
zh,i,j
p2h,i,j

+

h∑
s=1

zs−1,i,j(1− zs,i,j)
ps,i,jps−1,i,j

)
cic

T
i cic

T
i ,

where in the inequality we use the fact ps,i,j ≤ ps−1,i,j . From the definition of ps,i,j , we
know that when zs,i,j = 0, ps,i,j = ps−1,i,j . Therefore

zs−1,i,j(1−zs,i,j)
ps,i,jps−1,i,j

=
zs−1,i,j(1−zs,i,j)

p2s−1,i,j
, since

the term is non-zero only when zs,i,j = 0, i.e., dropped copies are not reweighted. Finally,
we see that only one of the zs−1,i,j(1− zs,i,j) terms can be active for s ∈ [h] and thus

Wh �
1

q2

q∑
j=1

ν∑
i=1

(
zh,i,j
p2h,i,j

+

h∑
s=1

zs−1,i,j(1− zs,i,j)
p2s−1,i,j

)
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

(
max

{
max

s=1,...,h

{
zs−1,i,j(1− zs,i,j)

p2s−1,i,j

}
;
zh,i,j
p2h,i,j

})
cic

T
i cic

T
i

=
1

q2

q∑
j=1

ν∑
i=1

cic
T
i cic

T
i

(
max

s=0,...,h

{
zs,i,j
p2s,i,j

})
· 3.11

Step 3 (introduction of a stochastically dominant process). We want to study

maxs=0,...,h

{
zs,i,j
p2s,i,j

}
. To simplify notation, we will consider maxs=0,...,h

{
zs,i,j
ps,i,j

}
, where we

removed the square, which will be re-added in the end. We know trivially that this quantity
is larger or equal than, 1 because z0,i,j/p0,i,j = 1, but upper-bounding this quantity is not
trivial as the evolution of the various ps,i,j depends in a complex way on the interaction
between the random variables zs,i,j . Nonetheless, whenever ps,i,j is significantly smaller
than ps−1,i,j , the probability of keeping a copy of point i at iteration s (i.e., zs,i,j = 1) is
also very small. As a result, we expect the ratio zs,i,j

ps,i,j
to be still small with high probability.

Unfortunately, due to the dependence between different copies of the point at different
iterations, it seems difficult to exploit this intuition directly to provide an overall high-
probability bound on Wh. For this reason, we simplify the analysis by replacing each of
the (potentially dependent) chains {zs,i,j/ps,i,j}hs=0 with a set of (independent) random
variables w0,i,j that will stochastically dominate them.
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{z0,i,j}

{p0,i,j}

{w0,i,j}

{u1,i,j}

{z1,i,j}

{p1,i,j}

{w1,i,j}

{u2,i,j}

{z2,i,j}

{p2,i,j}

{w2,i,j}

{u3,i,j}

{z3,i,j}

{p3,i,j}

{w3,i,j}
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{p4,i,j}

{w4,i,j}

{u5,i,j}

{z5,i,j}

{p5,i,j}

{w5,i,j}

Figure 3.5: The dependency graph of the considered variables. Red variables are random.
Black variables are deterministically computed using their input (a function of their input),
with bold lines indicating the deterministic (functional) relation. Blue variables are
constants. A grey filling indicates that a random variable is observed or a function of
observed variables.

We define the random variable ws,i,j using the following conditional distribution,7

P
(

1

ws,i,j
≤ a

∣∣∣∣ Fs) =


0 for a < 1/ps,i,j

1− 1
ps,i,ja

for 1/ps,i,j ≤ a < ρ/ph,i

1 for ρ/ph,i ≤ a
.

To show that this distribution is well defined, we use Lemma 3.17 to guarantee that
1/ps,i,j ≤ a < ρ/ph,i. Note that the distribution of 1

ws,i,j
conditioned on Fs is determined

by only ps,i,j , ph,i, and ρ, where ph,i and ρ are fixed. Remembering that ps,i,j is a function
of Fs−1 (computed using the previous iteration), we have that

P
(

1

ws,i,j
≤ a

∣∣∣∣ Fs) = P
(

1

ws,i,j
≤ a

∣∣∣∣ Fs−1) .
Notice that in the definition of ws,i,j , none of the other ws′,i′,j′ (for any different s′, i′, or
j′) appears and ps,i,j is a function of Fs−1. It follows that given Fs−1, ws,i,j is independent
from all other ws′,i′,j′ (for any different s′, i′, or j′). This is easier to see in the probabilistic
graphical model reported in Fig. 3.5, which illustrates the dependence between the various
variables.

Finally for the special case w0,i,j the definition above reduces to

P
(

1

w0,i,j
≤ a

)
=


0 for a < 1

1− 1
a for 1 ≤ a < ρ/ph,i

1 for ρ/ph,i ≤ a
, 3.12

7Notice that unlike zs,i,j , ws,i,j is no longer Fs-measurable but it is F ′s-measurable, where

F ′{s,i,j} =
{
us′,i′,j′ , ∀{s′, i′, j′} ≤ {s, i, j}

}
∪ {ws,i,j} = F{s,i,j} ∪ {ws,i,j} .
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since p0,i,j = 1 by definition. Due to its definition, 1/w0,i,j is a truncated Pareto r.v., with
scale 1 and shape 1, that gets truncated at ρ/ph,i.
We can also see from this definition that w0,i,j and w0,i′,j′ are all independent, and this will
allow us to use stronger concentration inequalities for independent random variables.

Step 4 Proving the dominance. We remind the reader that a random variable A
stochastically dominates random variable B, if for all values a the two equivalent conditions
are verified,

P(A ≥ a) ≥ P(B ≥ a)⇔ P(A ≤ a) ≤ P(B ≤ a).

As a consequence, if A dominates B, the following implication holds,

P(A ≥ a) ≥ P(B ≥ a) =⇒ E[A] ≥ E[B],

while the reverse (A dominates B, if E[A] ≥ E[B]) is not true in general. Following this
definition of stochastic dominance, our goal is to prove

P
(

max
s=0,...,h

zs,i,j
ps,i,j

≤ a
)
≥ P

(
1

w0,i,j
≤ a

)
.

We prove this inequality by proceeding backwards with a sequence of conditional probabilities.
We first study the distribution of the maximum conditional to the state of the algorithm
at the end of iteration h, i.e., Fh. From the definition of wh,i,j , we know that, w.p. 1,
1/ph,i ≤ 1/wh,i,j . Therefore,

P
(

max
s=0,...,h

zs,i,j
ps,i,j

≤ a
)
≥ P

(
max

{
max

s=0,...,h−1

zs,i,j
ps,i,j

;
zh,i,j
wh,i,j

}
≤ a

)
.

Now focus on an arbitrary intermediate step 1 ≤ k ≤ h, where we fix Fk−1. Since uk,i,j
and wk,i,j are independent given Fk−1, we have

P
(
zk,i,j
wk,i,j

≤ a
∣∣∣∣ Fk−1) = P

(
I
{
uk,i,j ≤

pk,i,j
pk−1,i,j

}
1

wk,i,j
≤ a

∣∣∣∣ Fk−1)

=


0 for a ≤ 0

1− pk,i,j
pk−1,i,j

for 0 ≤ a < 1/pk,i,j

1− pk,i,j
pk−1,i,j

+
pk,i,j
pk−1,i,j

(
1− 1

pk,i,ja

)
= 1− 1

pk−1,i,ja
for 1/pk,i,j ≤ a < ρ/ph,i

1 for ρ/ph,i ≤ a

≥


0 for a < 1/pk−1,i,j

1− 1
pk−1,i,ja

for 1/pk−1,i,j ≤ a < 1/pk,i,j

1− 1
pk−1,i,ja

for 1/pk,i,j ≤ a < ρ/ph,i

1 for ρ/ph,i ≤ a

3.13

= P
(

1

wk−1,i,j
≤ a

∣∣∣∣ Fk−2) = P
(

1

wk−1,i,j
≤ a

∣∣∣∣ Fk−1) ,
where the inequality is also represented in Fig. 3.6. We now proceed by peeling off layers
from the end of the chain one by one, taking advantage of the dominance we just proved.
Fig. 3.6 visualizes one step of the peeling when zk−1,i,j = 1 (note that the peeling is trivially
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p̄
k

1

P
(
max

{
z̄k−1

p̄k−1
;
z̄k
wk

}
≤a|F{k−1

})

P
(
z̄k−1

wk−1
≤a|F{k−1

})

z̄k−1 =1

Figure 3.6: C.d.f. of max
{
zk−1,i,j/pt,i,j ; zk,i,j/pk,i,j

}
and zk−1,i,j/wk−1,i,j conditioned on

F{k−1}. For conciseness, we omit the i, j indices.

true when zk−1,i,j = 0 since the whole chain terminated at step zk−1,i,j). We show how to
move from an iteration k ≤ h to k − 1.

P
(

max

{
max

s=0...k−1

zs,i,j
ps,i,j

;
zk,i,j
wk,i,j

}
≤ a

)
= E
Fk−1

[
P
(

max

{
max

s=0...k−1

zs,i,j
ps,i,j

;
zk,i,j
wk,i,j

}
≤ a

∣∣∣∣ Fk−1)]
(a)

≥ E
Fk−1

[
P
(

max

{
max

s=0...k−1

zs,i,j
ps,i,j

;
zk−1,i,j
wk−1,i,j

}
≤ a

∣∣∣∣ Fk−1)]
= E
Fk−1

[
P
(

max

{
max

s=0...k−2

zs,i,j
ps,i,j

;
zk−1,i,j
pk−1,i,j

;
zk−1,i,j
wk−1,i,j

}
≤ a

∣∣∣∣ Fk−1)]
= E
Fk−1

[
P
(

max

{
max

s=0...k−2

zs,i,j
ps,i,j

; zk−1,i,j max

{
1

pk−1,i,j
;

1

wk−1,i,j

}}
≤ a

∣∣∣∣ Fk−1)]
(b)
= E
Fk−1

[
P
(

max

{
max

s=0...k−2

zs,i,j
ps,i,j

;
zk−1,i,j
wk−1,i,j

}
≤ a

∣∣∣∣ Fk−1)]
= P

(
max

{
max

s=0...k−2

zs,i,j
ps,i,j

;
zk−1,i,j
wk−1,i,j

}
≤ a

)
,

where in (a), given Fk−1, everything is fixed except uk,i,j and wk,i,j and we can use the
stochastic dominance in Eq. 3.13, and in (b) we use the fact that the inner maximum is
always attained by 1/wk,i,j since by definition 1/wk−1,i,j is lower-bounded by 1/pk−1,i,j .
Applying the inequality recursively from k = h to k = 1 removes all zs,i,j from the maximum
and we are finally left with only w0,i,j as we wanted,

P
(

max
s=0,...,h

zs,i,j
ps,i,j

≤ a
)
≥ P

(
max

{
z0,i,j
p0,i,j

;
z0,i,j
w0,i,j

}
≤ a

)
≥ P

(
1

w0,i,j
≤ a

)
,

where in the last inequality we used that z0,i,j = 1 from the definition of the algorithm and
p0,i,j = 1 while w0,i,j ≤ 1 by Eq. 3.12.

Step 5 (stochastic dominance on Wh). Now that we proved the stochastic dominance
of 1/w0,i,j , we plug this result in the definition of Wh. For the sake of notation, we introduce
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the term pmax
h′,i,j to indicate the maximum over the first h′ step of copy i, j such that

max
s=0,...,h′

zs,i,j
ps,i,j

=
1

pmax
h′,i,j

·

We first notice that while Yh is not necessarily PSD, Wh is a sum of PSD matrices.
Introducing the function Λ({1/pmax

h,i,j}i,j) we can restate Eq. 3.11 as

‖Wh‖ = λmax(Wh) ≤ Λ({1/pmax
h,i,j}i,j)

def=λmax

 1

q2

q∑
j=1

ν∑
i=1

(
1

pmax
h,i,j

)2

cic
T
i cic

T
i

 .

In Step 4, we showed that 1/pmax
h,i,j is stochastically dominated by 1/w0,i,j for every i and j.

In order to bound Λ({1/pmax
h,i,j}i,j), we need to show that this dominance also applies to the

summation over all columns inside the matrix norm. We can reformulate Λ({1/pmax
h,i,j}i,j) as

λmax

 1

q2

q∑
j=1

ν∑
i=1

(
1

pmax
h,i,j

)2

cic
T
i cic

T
i

 = max
x:‖x‖=1

xT

 1

q2

q∑
j=1

ν∑
i=1

(
1

pmax
h,i,j

)2

cic
T
i cic

T
i

x

= max
x:‖x‖=1

1

q2

q∑
j=1

ν∑
i=1

(
1

pmax
h,i,j

)2

‖ci‖22xTcic
T
ix = max

x:‖x‖=1

1

q2

q∑
j=1

ν∑
i=1

(
1

pmax
h,i,j

)2

(‖ci‖2cT
ix)

2
.

From this reformulation, it is easy to see that, because 1/pmax
h,i,j is strictly positive, the

function Λ({1/pmax
h,i,j}i,j) is monotonically increasing w.r.t. the individual 1/pmax

h,i,j , or in
other words that increasing an 1/pmax

h,i,j without decreasing the others can only increase the
maximum. Introducing Λ({1/w0,i,j}i,j) as

Λ({1/w0,i,j}i,j) def= max
x:‖x‖=1

1

q2

q∑
j=1

ν∑
i=1

(
1

w0,i,j

)2

(‖ci‖2cT
ix)

2
,

we now need to prove the stochastic dominance of Λ({1/w0,i,j}i,j) over Λ({1/pmax
h,i,j}i,j).

Using the definition of 1/pmax
h,i,j , wh,i,j , and the monotonicity of Λ we have

P

Λ

{ 1

pmax
h,i,j

}
i,j

 ≤ a
 = P

(
Λ

({
max

{
max

s=0,...,h−1

zs,i,j
ps,i,j

;
zh,i,j
ph,i,j

}}
i,j

)
≤ a

)

≥ P

(
Λ

({
max

{
max

s=0,...,h−1

zs,i,j
ps,i,j

;
zh,i,j
wh,i,j

}}
i,j

)
≤ a

)
.

Now pick 1 ≤ k ≤ h, for a fixed Fk−1, 1
pmax
k−1,i,j

is a constant and max
{

1
pmax
k,i,j

;x
}

is a

monotonically increasing function in x, making Λ
(

max
{

1
pmax
k,i,j

;x
})

also an increasing
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function. Therefore, we have

P

Λ

{max

{
1

pmax
k−1,i,j

;
zk,e,j
wk,i,j

}}
i,j

 ≤ a


= E
Fk−1

P
Λ

{max

{
1

pmax
k−1,i,j

;
zk,e,j
wk,i,j

}}
i,j

 ≤ a
∣∣∣∣∣∣ Fk−1


(a)

≥ E
Fk−1

P
Λ

{max

{
1

pmax
k−1,i,j

;
zk−1,i,j
wk−1,i,j

}}
i,j

 ≤ a
∣∣∣∣∣∣ Fk−1


(b)
= E
Fk−1

P
Λ

{max

{
1

pmax
k−2,i,j

;
zk−1,i,j
wk−1,i,j

}}
i,j

 ≤ a
∣∣∣∣∣∣ Fk−1

 ,
where inequality (a) follows from the fact that stochastic dominance is preserved by
monotonically increasing functions (Levy, 2015), such as Λ, combined with the fact that for
a fixed Fk−1 the variables zk,i,j and wk,i,j are all independent and (b) from the definition
of 1/pmax

k−1,i,j and the fact that by definition 1/wk−1,i,j is lower-bounded by 1/pk−1,i,j . We
can iterate this inequality to obtain the desired result

P(‖Wh‖ ≥ σ2) ≤ P

Λ

{ 1

pmax
h,i,j

}
i,j

 ≥ σ2


≤ P

λmax

 1

q2

q∑
j=1

ν∑
i=1

(
1

w0,i,j

)2

cic
T
i cic

T
i

 ≥ σ2
 .

Step 6 (concentration inequality). Since all w0,i,j are (unconditionally) independent
from each other, we can apply the following theorem.

Proposition 3.21 — Tropp, (2015), Theorem 5.1.1. Consider a finite sequence {Xk : k =
1, 2, 3, . . . } whose values are independent, random, PSD Hermitian matrices with di-
mension d. Assume that each term in the sequence is uniformly bounded in the sense
that

λmax(Xk) ≤ L almost surely for k = 1, 2, 3, . . . .

Introduce the random matrix V
def=
∑

k Xk, and the maximum eigenvalue of its expecta-
tion

µmax
def=λmax(E [V]) = λmax

(∑
k

E [Xk]

)
.
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Then, for all h ≥ 0,

P (λmax(V) ≥ (1 + h)µmax) ≤ d ·
[

eh

(1 + h)1+h

]µmax
L

≤ d · exp
{
−µmax

L
((h+ 1) log(h+ 1)− h)

}
·

In our case, we have

X{i,j} =
1

q2
1

w2
0,i,j

cic
T
i cic

T
i �

1

q2
ρ2

p2h,i
cic

T
i cic

T
i �

1

q2
ρ2

p2h,i
‖cicT

i ‖2I �
ρ2

q2
I,

where the first inequality follows from the definition of w0,i,j in Eq. 3.12, the second from
the PSD ordering, and the third from the definition of ‖cicT

i ‖.

Therefore, we can use L def= ρ2/q2 for the purpose of Proposition 3.21. We need now to
compute E [Xk], that we can use in turn to compute µmax. We begin by computing the
expected value of 1/w0,i,j . Let us denote the c.d.f. of 1/w2

0,i,j as

F1/w2
0,i,j

(a) = P

(
1

w2
0,i,j

≤ a
)

= P
(

1

w0,i,j
≤ √a

)
=


0 for a < 1

1− 1√
a

for 1 ≤ a < ρ2/p2h,i

1 for ρ2/p2h,i ≤ a
.

Since P
(

1/w2
0,i,j ≥ 0

)
= 1, we have that

E

[
1

w2
0,i,j

]
=

∫ ∞
a=0

[
1− F1/w2

0,i,j
(a)
]

da

=

∫ 1

a=0

(
1− F1/w2

0,i,j
(a)
)

da+

∫ ρ2

p2
h,i

a=1

(
1− F1/w2

0,i,j
(a)
)

da+

∫ ∞
a= ρ2

p2
h,i

(
1− F1/w2

0,i,j
(a)
)

da

=

∫ 1

a=0
(1− 0) da+

∫ ρ2/p2h,i

a=1

(
1−

(
1− 1√

a

))
da+

∫ ∞
a=ρ2/p2h,i

(1− 1) da

=

∫ 1

a=0
da+

∫ ρ2/p2h,i

a=1

1√
a

da = 1 + [2
√
a]
ρ2/p2h,i
1 = 2ρ/ph,i − 1.

Therefore,

µmax = λmax(E [V]) = λmax

(∑
{i,j}

E
[
X{i,j}

] )
= λmax

 1

q2

q∑
j=1

ν∑
i=1

E

[
1

w2
0,i,j

]
cic

T
i cic

T
i


= λmax

(
1

q

ν∑
i=1

(
2ρ

ph,i
− 1

)
ph,icic

T
i

)
≤ λmax

(
2ρ

q

ν∑
i=1

cic
T
i

)
=

2ρ

q
λmax (P) ≤ 2ρ

q

def=L.

Therefore, selecting h = 2, σ2 = 6ρ/q and applying Proposition 3.21 we have

P
(
‖Wh‖ ≥ σ2

)
≤ P

λmax

 1

q2

q∑
j=1

ν∑
i=1

1

w2
0,i,j

cic
T
i cic

T
i

 ≥ (1 + 2)
2ρ

q


≤ ν · exp

{
−2ρ

q

q2

ρ2
(3 log(3)− 2)

}
≤ n · exp

{
−2q

ρ

}
·
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3.4.5 Space complexity bound

Denote with A the event A =
{
∀h′ ∈ {1, . . . , h} : ‖Ph′ − P̃h′‖2 ≤ ε

}
, and again ν = |D{h,l}|.

Letting q = |I{h,l}| =
∑ν

i=1 qh,i =
∑q

j=1

∑ν
i=1 zh,i,j be the random number of points in

I{h,l}, we reformulate

P
(
|I{h,l}| ≥ 3qd

{h,l}
eff (γ) ∩

{
∀h′ ∈ {1, . . . , h} :

(
‖Ph′ − P̃h′‖2 ≤ ε

)
≤ ε
})

= P
(
|I{h,l}| ≥ 3qd

{h,l}
eff (γ) ∩A

)
= P

 q∑
j=1

ν∑
i=1

zh,i,j ≥ 3qd
{h,l}
eff (γ) ∩A


= P

 q∑
j=1

ν∑
i=1

zh,i,j ≥ 3qd
{h,l}
eff (γ)

∣∣∣∣∣∣ A
P (A) .

While we do know that the zh,i,j are Bernoulli random variables (since they are either
0 or 1), it is not easy to compute the success probability of each zh,i,j , and in addition
there could be dependencies between zh,i,j and zh,i′,j′ . Similarly to Lem. 3.20, we are going
to find a stochastic variable to dominate zh,i,j . Denoting with u′s,i,j ∼ U(0, 1) a uniform
random variable, we will define w′s,i,j as

w′s,i,j |F{s,i′,j′} = w′s,i,j |Fs−2
def= I

{
u′s,i,j ≤

ph,i
p̃s−1,i

}
∼ Ber

(
ph,i
p̃s−1,i

)
for any i′ and j′ such that {s, 1, 1} ≤ {s, i′, j′} < {s, i, j}. Note that w′s,i,j , unlike zs,i,j ,
does not have a recursive definition, and its only dependence on any other variable comes
from p̃s−1,i. First, we peel off the last step

P

 q∑
j=1

ν∑
i=1

zh,i,j ≥ g

∣∣∣∣∣∣ A


= E
Ft−1|A

P
 q∑
j=1

ν∑
i=1

I
{
uh,i,j ≤

p̃h,i
p̃t−1,i

}
zh−1,i,j ≥ g

∣∣∣∣∣∣ Ft−1 ∩A


≤ E
Ft−1|A

P
 q∑
j=1

ν∑
i=1

I
{
u′h,i,j ≤

ph,i
p̃t−1,i

}
zh−1,i,j ≥ g

∣∣∣∣∣∣ Ft−1 ∩A


= P

 q∑
j=1

ν∑
i=1

w′h,i,jzh−1,i,j ≥ g

∣∣∣∣∣∣ A
 ,

where we used the fact that conditioned on A, I{h,l} is accurate w.r.t. D{h,l}, which
guarantees that p̃h,i ≤ ph,i. Plugging this in the previous bound,

P

 q∑
j=1

ν∑
i=1

zh,i,j ≥ g

∣∣∣∣∣∣ A
P (A) ≤ P

 q∑
j=1

ν∑
i=1

w′h,i,jzh−1,i,j ≥ g ∩A


≤ P

 q∑
j=1

ν∑
i=1

w′h,i,jzh−1,i,j ≥ g

 .
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We now proceed by peeling off layers from the end of the chain one by one. We show how
to move from an iteration s ≤ h to s− 1.

P

 q∑
j=1

ν∑
i=1

w′s,i,jzs−1,i,j ≥ g

 = E
Fs−2

P
 q∑
j=1

ν∑
i=1

I
{
u′s,i,j ≤

ph,i
p̃s−1,i

}
zs−1,i,j ≥ g

∣∣∣∣∣∣ Fs−2


= E
Fs−2

P
 q∑
j=1

ν∑
i=1

I
{
u′s,i,j ≤

ph,i
p̃s−1,i

}
I
{
us−1,i,j ≤

p̃s−1,i
p̃s−2,i

}
zs−2,i,j ≥ g

∣∣∣∣∣∣ Fs−2


= E
Fs−2

P
 q∑
j=1

ν∑
i=1

I
{
u′s−1,i,j ≤

ph,i
p̃s−2,i

}
zs−2,i,j ≥ g

∣∣∣∣∣∣ Fs−2


= P

 q∑
j=1

ν∑
i=1

w′s−1,i,jzs−2,i,j ≥ g


Applying this repeatedly from s = h to s = 2 we have,

P

 q∑
j=1

ν∑
i=1

w′h,i,jzh−1,i,j ≥ g

 = P

 q∑
j=1

ν∑
i=1

w′1,i,jz0,i,j ≥ g

 = P

 q∑
j=1

ν∑
i=1

w′1,i,j ≥ g

 .

Now, all the w′1,i,j are independent Bernoulli random variables, and we can bound their
sum with Proposition 2.13.

3.5 Extended proofs

Proof of Lemma 3.8 and Lemma 3.13. It is easy to show that τt,i ≤ τt−1,i for all t > i (τt,i
is not defined for t < i). Since ΦtΦ

T
t + Πt � Φt−1Φ

T
t−1 + Πt−1 and φi = Πtφi = Πt−1φi

we have

τt,i = φT
i (ΦtΦ

T
t + γΠt)

−1φi ≤ φT
i (Φt−1Φ

T
t−1 + γΠt−1)

−1φi = τt−1,i.

We will now prove the lower bound τt,i ≥ τt−1,i/(τt−1,1 + 1).

Note that since bothΠt−1 andΠt include φi, we have τt−1,i = φT
i (Φt−1Φ

T
t−1+γΠt−1)−1φi =

φT
i (Φt−1Φ

T
t−1 + γΠt)

−1φi. Considering the definition of τt,i in terms of φi and Φt, and
applying the Sherman-Morrison formula we obtain

τt,i = φT
i (ΦtΦ

T
t + γtΠ)−1φi = φT

i (Φt−1Φ
T
t−1 + φtφ

T
t + γtΠt)

−1φi

= φT
i (Φt−1Φ

T
t−1 + γΠt)

−1φi −
φT
i (Φt−1Φ

T
t−1 + γΠt)

−1φtφ
T
t (Φt−1Φ

T
t−1 + γΠt)

−1φi

1 + φT
t (Φt−1ΦT

t−1 + γΠt)−1φt

= τt−1,i −
φT
i (Φt−1Φ

T
t−1 + γΠt)

−1φtφ
T
t (Φt−1Φ

T
t−1 + γΠt)

−1φi

1 + φT
t (Φt−1ΦT

t−1 + γΠt)−1φt
·

Let

x = (Φt−1Φ
T
t−1 + γΠt)

−1/2φi and y = (Φt−1Φ
T
t−1 + γΠt)

−1/2φt.
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Then τt,i/τt−1,i is equal to

τt,i
τt−1,i

= 1− (φT
t (Φt−1Φ

T
t−1 + γΠt)

−1φi)
2

(1 + φT
t (Φt−1ΦT

t−1 + γΠt)−1φt)φT
i (Φt−1ΦT

t−1 + γΠt)−1φi

= 1− (yTx)2

(1 + yTy) xTx
·

Defining the cosine between y and x as cos(y,x) = yTx/(‖x‖‖y‖), we have that

1− (yTx)2

(1 + yTy) xTx
= 1− yTyxTxcos(y,x)2

(1 + yTy) xTx
= 1− ‖y‖2

1 + ‖y‖2 cos(y,x)2,

where ‖y‖2
1+‖y‖2 depends only on the norm of y and not its direction, and cos(y,x) depends

only on the direction of y and is maximized when y = x. Therefore,

τt+1,i

τt,i
= 1− (yTx)2

(1 + yTy) xTx
= 1− ‖y‖2

1 + ‖y‖2 cos(y,x)2

≥ 1− ‖x‖2
1 + ‖x‖2 =

1

1 + ‖x‖2 =
1

1 + τt,i
.

For the effective dimension, we can simply use the fact (Alaoui and Mahoney, 2015) that
the map

ΦΦT → Tr(ΦΦT(ΦΦT + γΠ)),

is monotone in ΦΦT to see that

dt−1eff (γ) = Tr(Φt−1Φ
T
t−1(Φt−1Φ

T
t−1 + γΠt−1)) ≤ Tr(ΦtΦ

T
t (ΦtΦ

T
t + γΠt)) = dteff(γ).

For the more general Lemma 3.13, the first point τD,i ≥ τD∪D′,i can be easily proven by
fixing the first D, and then invoke Lemma 3.8 as we add one sample at a time from D′.
Also as easily for dDeff(γ) + dD

′
eff(γ) we have

dDeff(γ) + dD
′

eff(γ) ≤ 2 max{dDeff(γ); dD
′

eff(γ)} ≤ 2 max{deff(γ)D∪D′ ; deff(γ)D∪D′} = 2deff(γ)D∪D′ .

Finally, we prove the other side of the inequality for dDeff(γ) + dDeff(γ). Let ΦD,ΦD′ be the
maps constructed using the samples in D and D′ respectively. Then,

dDeff(γ) + dD
′

eff(γ) =
∑
i∈D

τD,i +
∑
i∈D′

τD′,i

=
∑
i∈D

φT
i (ΦDΦ

T
D + γΠD)−1φi +

∑
i∈D′

φT
i (ΦD′Φ

T
D′ + γΠD′)

−1φi

≥
∑
i∈D

φT
i (ΦD∪D′Φ

T
D∪D′ + γΠD∪D′)

−1φi +
∑
i∈D′

φT
i (ΦD∪D′Φ

T
D∪D′ + γΠD∪D′)

−1φi

=
∑

i∈D∪D′
φT
i (ΦD∪D′Φ

T
D∪D′ + γΠD∪D′)

−1φi =
∑

i∈D∪D′
τD∪D′,i = dD∪D

′
eff (γ).

�
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Proof of Lemma 3.3 and Lemma 3.14. We give a proof for a generalized estimator that
instead of using a single dictionary I uses k ε-accurate dictionaries Ik. Given the dataset D
and its associated Φ and Π we split it in disjoint datasets {Di}ki=1 with associated maps Φi.
From each dataset, construct an (ε, γ)-accurate dictionary Ii, with its associated selection
matrix Si.

To estimate the RLS τi of point i w.r.t. the whole dataset D = ∪kj=1Dj , and corresponding
feature matrix Φ, we set the estimator to be

τ̃i = (1− ε)φT
i

 k∑
j=1

ΦjSjS
T
jΦ

T
j + (1 + (k − 1)ε)γΠ

−1φi.
Part 1: accuracy of the RLS estimator τ̃i. Since each of the dictionaries Ii used to
generate Si is (ε, γ)-accurate, we have from Definition 2.6 and Lemma 2.7 that

(1− ε)ΦiΦ
T
i − εγΠ � ΦiSiS

T
iΦ

T
i � (1 + ε)ΦiΦ

T
i + εγΠ.

Therefore, we have

τ̃i = (1− ε)φT
i

 k∑
j=1

ΦjSjS
T
jΦ

T
j + (1 + (k − 1)ε)γΠ

−1φi
≤ (1− ε)φT

i

 k∑
j=1

(
(1− ε)ΦjΦ

T
j − εγΠ

)
+ (1 + (k − 1)ε)γΠ

−1φi
≤ (1− ε)φT

i ((1− ε)ΦΦT − kεγΠ + (1 + (k − 1)ε)γΠ)
−1
φi

= (1− ε)φT
i ((1− ε)(ΦΦT + γΠ))

−1
φi =

(1− ε)
(1− ε)φ

T
i (ΦΦT + γΠ)

−1
φi = τi,

and

τ̃i = (1− ε)φT
i

 k∑
j=1

ΦjSjS
T
jΦ

T
j + (1 + (k − 1)ε)γΠ

−1φi
≥ (1− ε)φT

i

 k∑
j=1

(
(1 + ε)ΦjΦ

T
j + εγΠ

)
+ (1 + (k − 1)ε)γΠ

−1φi
= (1− ε)φT

i ((1 + ε)ΦΦT + kεγΠ + (1 + (k − 1)ε)γΠ)
−1
φi

= (1− ε)φT
i ((1 + ε)ΦΦT + (1 + (2k − 1)ε)γΠ))

−1
φi

≥ (1− ε)φT
i ((1 + (2k − 1)ε)ΦΦT + (1 + (2k − 1)ε)γΠ))

−1
φi

=
(1− ε)

(1 + (2k − 1)ε)
φT
i (ΦΦT − γΠ)

−1
φi =

(1− ε)
(1 + (2k − 1)ε)

τi.

Then, we can instantiate this result with k = 1 to prove the accuracy claim in Lem. 3.3,
and with k = 2 to prove the accuracy claim in Lem. 3.14.

Part 2: accuracy of min{τ̃t, τ̃t−1}. To simplify the notation, for this part of the proof
we indicate with τt ≤ τt−1 that for each i ∈ {1, . . . , t − 1} we have τt,i ≤ τt−1,i. From
Lem. 3.8, we know that τt−1 ≥ τt. Given α-accurate τ̃t and τ̃t−1 we have the upper bound

min {τ̃t, τ̃t−1} ≤ min {τt, τt−1} = τt,
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and the lower bound,

min {τ̃t, τ̃t−1} ≥
1

α
min {τt, τt−1} =

1

α
τt,

which combined gives us 1
ατt ≤ min {τ̃t, τ̃t−1} ≤ τt as required by the definition of α-

accuracy. �

Proof of Lemma 3.5. We will prove this result for a generic k ≥ 1 and (ε, kγ)-accurate
dictionary I, with (ε, 2γ)-accuracy as a special case when k = 2. Starting from the proof of
Lemma 3.3 and Lemma 3.14 we can adapt some passages. In particular we have only one
single (ε, kγ)-accurate dictionary I and a single dataset D, and we want to show that

τ̃i = (1− ε)φT
i (ΦSSTΦT + (1 + (k − 1)ε)γΠ)

−1
φi.

is α-accurate with α = 1+2(k−1)ε
1−ε .

Since I used to generate S is (ε, kγ)-accurate, The identically to the proof of Lemma 3.3
we have

τ̃i = (1− ε)φT
i (ΦSSTΦT + (1 + (k − 1)ε)γΠ)

−1
φi

≤ (1− ε)φT
i (((1− ε)ΦΦT − εγΠ) + (1 + (k − 1)ε)γΠ)

−1
φi

≤ (1− ε)φT
i ((1− ε)ΦΦT − kεγΠ + (1 + (k − 1)ε)γΠ)

−1
φi

= (1− ε)φT
i ((1− ε)(ΦΦT + γΠ))

−1
φi =

(1− ε)
(1− ε)φ

T
i (ΦΦT + γΠ)

−1
φi = τi,

and

τ̃i = (1− ε)φT
i (ΦSSTΦT + (1 + (k − 1)ε)γΠ)

−1
φi

≥ (1− ε)φT
i ((1 + ε)ΦΦT + kεγΠ + (1 + (k − 1)ε)γΠ)

−1
φi

= (1− ε)φT
i ((1 + ε)ΦΦT + (1 + (2k − 1)ε)γΠ))

−1
φi

≥ (1− ε)φT
i ((1 + (2k − 1)ε)ΦΦT + (1 + (2k − 1)ε)γΠ))

−1
φi

=
(1− ε)

(1 + (2k − 1)ε)
φT
i (ΦΦT − γΠ)

−1
φi =

(1− ε)
(1 + (2k − 1)ε)

τi.

Then, we can instantiate this result with k = 2 to prove the accuracy claim in Lem. 3.5. �

Proof of Lem. 3.9. From the definition of τt,t we have

T∑
t=1

τt,t =
T∑
t=1

φT
t (ΦtΦ

T
t + αΠT )−1φt

=
T∑
t=1

(φT
t /
√
α) (ΦtΦ

T
t /α+ ΠT )

−1
(φt/
√
α) ≤ log(Det(ΦTΦ

T
T /α+ ΠT )),

where the last passage is proved by Hazan et al., (2006). Using Sylvester’s determinant
identity,

Det(ΦTΦ
T
T /α+ ΠT ) = Det(ΦT

TΦT /α+ IT ) =
T∏
t=1

(λt/α+ 1),
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where λt are the eigenvalues of ΦT
TΦT . Then,

T∑
t=1

τt,t ≤ log

(∏T

t=1
(λt/α+ 1)

)
=
∑T

t=1
log(λt/α+ 1).

We can decompose this as

T∑
t=1

log(λt/α+ 1) =
T∑
t=1

log(λt/α+ 1)

(
λt/α+ 1

λt/α+ 1

)

=
T∑
t=1

log(λt/α+ 1)
λt/α

λt/α+ 1
+

T∑
t=1

log(λt/α+ 1)

λt/α+ 1

≤ log(‖ΦT
TΦT ‖/α+ 1)

T∑
t=1

λt
λt + α

+
T∑
t=1

log(λt/α+ 1)

λt/α+ 1

≤ log(‖ΦT
TΦT ‖/α+ 1)dTeff(α) +

T∑
t=1

(λt/α+ 1)− 1

λt/α+ 1

= log(‖ΦT
TΦT ‖/α+ 1)dTeff(α) + dTeff(α),

where the first inequality is due to ‖ΦT
TΦT ‖ ≥ λt for all t and the monotonicity of log(·),

and the second inequality is due to log(x) ≤ x− 1. �





4. Sequential RLS Sampling in the Batch Setting

In this section, we show how ε-accurate and (ε, γ)-accurate dictionaries can be used for
important downstream tasks, and how to instantiate our sequential RLS sampling algorithms
to each setting. In particular, we focus on low-rank kernel matrix approximation and spectral
graph sparsification.

4.1 Sequential RLS sampling for kernel matrix approximation

One of the major limits of kernel ridge regression (KRR), kernel PCA (Schölkopf et al.,
1999), and other kernel methods is that for n samples storing and manipulating the empirical
kernel matrix Kn requires O(n2) space, which becomes rapidly infeasible for even a relatively
small n. A popular approach (Alaoui and Mahoney, 2015; Rudi et al., 2015; Williams and
Seeger, 2001) is to construct low-rank approximations of the kernel matrix by randomly
selecting a subset (dictionary) of columns from Kn, i.e., dictionary learning where the atoms
are the columns of Kn. Since they are also based on Nyström sampling, these methods are
often referred to as Nyström approximations.
It is also easy to see that the dictionary of columns can be replaced with a dictionary of
atoms. For example, the standard Nyström approximation K̃n = KnS(STKnS)+STKn can
be rewritten as K̃n = ΦTΦS(STKST)+STΦTΦ using the relationship Kn = ΦT

nΦn, or in
other words it is equivalent to projecting the map Φn on the subspace ΠIn spanned by the
dictionary In. Therefore, we can use KORS or SQUEAK to find a good dictionary In to
approximate Kn.

More formally, we have again that our atoms φi are point in an H and our goal is to
approximate the empirical kernel matrix K = ΦTΦ. Note that this is a different goal
than approximating the covariance operator ΦΦT, although the equivalence of Lemma 2.10
showed us how the two objects are closely related.
We will not consider the simpler case where H = Rd is a euclidean space (i.e., we will stick
to the d � n setting), since in this case the atoms φi = xi can be explicitly stored and
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manipulated, and there exists a plethora of different efficient methods that can be applied.
For example, we saw already that in this special case KORS is equivalent to a method
proposed by Cohen et al., (2016). For any curiosity on to the topic of matrix approximation
in Euclidean spaces, we refer the reader to the excellent survey by Woodruff, (2014) on
randomized linear algebra.

We begin by introducing additional notation. In particular, using the kernel trick (Aizerman
et al., 1964) we can introduce the kernel function K so that the inner product between
two points in H can be expressed as K(x,x′) = 〈K(x, ·),K(x′, ·)〉H = 〈ϕ(x), ϕ(x′)〉H =
ϕ(x)Tϕ(x′). Given a dataset of samples D = {xt}nt=1, we define the (empirical) kernel
matrix Kt ∈ Rt×t as the application of the kernel function on all pairs of input values (i.e.,
[Kt]ij = ki,j = K(xi,xj) for any i, j ∈ [t]), with kt,i = Ktet,i as its i-th column.

4.1.1 Kernel matrix reconstruction

We begin by showing how to get an accurate approximation K̃ from an (ε, γ)-accurate
dictionary. For this task Alaoui and Mahoney, (2015) shows the following reconstruction
guarantees

Proposition 4.1 — (Alaoui and Mahoney, 2015). Given an (ε, γ)-accurate dictionary I
of map Φ : Rn → H, and its selection matrix S ∈ Rn×n the regularized Nyström
approximation K̃ of K

K̃ = KS(STKS + γII)
−1STK = ΦTΦS(STKST + γII)

+STΦTΦ,

satisfies

0 � K− K̃ � γ

1− εK(K + γIn)−1 � γ

1− εIn.

Since K̃ is the result of passing Φ trough a regularized projection on the atoms in the
dictionary I ΓI = ΦS(STKST + γII)

+STΦT, it is easy to see that K̃ � K no matter
the dictionary. Proposition 4.1 gives us a also an upper bound, showing that if the
dictionary is (ε, γ)-accurate the projection preserves the matrix K up to a small additive
error γ

1−εK(K + γIn)−1, which can be further upper bounded by γ
1−εIn.

Musco and Musco, (2017) show a slightly tighter bound for the unregularized projection
matrix construed using the dictionary.

Proposition 4.2 — (Musco and Musco, 2017). Given an (ε, γ)-accurate dictionary I of
map Φ : Rn → H, and its selection matrix S ∈ Rn×n the unregularized Nyström
approximation K̃ of K satisfies

K̃ = KS(STKS)+STK = ΦTΦS(STKST)+STΦTΦ, 0 � K− K̃ � εγ

1− εIn.

Note that this time the we do not have a bound in terms of K(K + γIn)−1, but directly
in terms of In. We could have obtained a similar result, but with a larger γ/(1 − ε)
bound, simply by observing that Alaoui and Mahoney, (2015)’s bound for the regularized
approximation implies

K � KS(STKS + γII)
−1STK +

γ

1− εIn � KS(STKS)+STK +
γ

1− εIn.
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Removing the regularization γ has several advantages. Computationally, we do not need
anymore to reweight the atoms using S when constructing the approximation, which in
practice saves us time and space when computing K̃ and improves numerical stability.
Moreover the operator ΠI = ΦS(STKST)+ST is the projection on Im(ΦS), and this gives
us an intuition that the subspaces spanned by the dataset and the dictionary are close.
Finally, since ΠI is a projection, it defines an accurate finite-rank subspace HI , which will
be useful in Chapter 5.
We can simplify both of the original proofs, and slightly improve the bound of Alaoui and Ma-
honey, (2015), by showing that they are special cases of the following result.

Lemma 4.3 Given a dictionary I that is (ε, γ)-accurate w.r.t. map Φ : Rn → H, and its
selection matrix S ∈ Rn×n, for any α ≥ εγ we have

Π � ΦS(STΦTΦS + αII)
−1STΦT +

α

1− ε

(
ΦΦT +

α− εγ
1− ε Π

)+

. 4.1

Therefore

K � KS(STKS + αII)
−1STK +

α

1− εK

(
K +

α− εγ
1− ε In

)+

� KS(STKS)+STK +
α

1− εK (K)+ .

Proof of Lemma 4.3. Using Π’s definition

Π = (ΦSSTΦT + αΠ)−1/2(ΦSSTΦT + αΠ)(ΦSSTΦT + αΠ)−1/2

= (ΦSSTΦT + αΠ)−1/2ΦSSTΦT(ΦSSTΦT + αΠ)−1/2

+ α(ΦSSTΦT + αΠ)−1/2Π(ΦSSTΦT + αΠ)−1/2

= (ΦSSTΦT + αΠ)−1/2ΦSSTΦT(ΦSSTΦT + αΠ)−1/2 + α(ΦSSTΦT + αΠ)−1.

Using the (ε, γ)-accuracy

(ΦSSTΦT + γΠ)−1 � ((1− ε)ΦΦT + (α− εγ)Π)−1

=
1

1− ε

(
ΦΦT +

α− εγ
1− ε In

)−1
.

We finish by reformulating

ΦS(STΦTΦS + αII)
−1STΦT = (ΦSSTΦT + αΠ)−1/2ΦSSTΦT(ΦSSTΦT + αΠ)−1/2.

�

Therefore, setting α = γ gives us Alaoui and Mahoney, (2015)’s bound, and setting α = εγ
gives us

0 � K−KS(STKS + εγII)
−1STK � εγ

1− εKK+ � εγ

1− εIn.

Noting

K � KS(STKS + εγII)
−1STK +

εγ

1− εIn � KS(STKS)+STK +
εγ

1− εIn

recovers Musco and Musco, (2017)’s bound.
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4.2 Efficient learning with kernels

In this section, we show how (ε, γ)-accuracy and the guarantees of Lemma 4.3 translate
into accuracy guarantees for typical kernel methods. As a consequence, the time and space
guarantees of KORS or SQUEAK can be used to find provably accurate approximate
solution faster than other existing methods.

In particular, we focus on regularized statistical problems: kernel ridge regression and
k-rank kernel PCA. As we will see, the additive error we introduce using our kernel matrix
approximation will not disturb the solution of our regularized statistical problem if the
error threshold is comparable to the regularization.

For more results on kernel K-means, kernel CCA, and alternative proofs on how an (ε, γ)-
accurate dictionary can be used to compute a provably accurate approximate solution we
refer the reader to Musco and Musco, (2017).

4.2.1 Kernel ridge regression

Consider now a regression dataset D = {(xt, yt)}nt=1, with input xt ∈ X and output yt ∈ R.
The goal of sequential kernel ridge regression is, for any time t ∈ [n], to find the vector
ω̂t ∈ Rt that minimizes the regularized quadratic loss

ω̂t = arg min
ω∈Rt

‖yt −Ktω‖2 + λ‖ω‖2, 4.2

where λ > 0 is a regularization parameter. This objective admits the closed form solution

ω̂t = (Kt + λIt)
−1yt. 4.3

In batch regression, ω̂n is computed only once when all the samples of D are available,
solving the linear system in Eq. 4.3 with Kn, but in practice we might be collecting our
dataset incrementally, and want to periodically construct an intermediate batch solution
using the samples seen so far.

In the fixed-design kernel regression problem, the accuracy of the solution ω̂n is measured
by the prediction error on the input set D itself. More precisely, the prediction of the
estimator ω̂n in each point is obtained as [Knω̂n]i, while the outputs yi in the dataset are
assumed to be a noisy observation of an unknown target function f∗ : X → R, evaluated in
xi i.e., for any i ∈ [n],

yi = f∗(xi) + εi = ϕ(xi)
Tw∗ + εi,

where εi is a zero-mean i.i.d. noise with bounded variance σ2. Let f∗ ∈ Rn be the vector
with components f∗(xi), then the empirical risk of ω̂n on dataset D is measured as

RD(ω̂n) = Eε
[
||f∗ −Knω̂n||2

]
. 4.4

Given a dictionary In that is (ε, γ)-accurate w.r.t. Φn, we can use Lemma 4.3 to compute
an approximate K̃n to replace Kn in Eq. 4.3. Taking for example the regularized version of
K̃ with α = γ, and exploiting the Woodbury formula we compute the regression weights as

ω̃n =(K̃n + λIn)−1yn = (KnSn(ST
nKnSn + γIIn)−1ST

nKn + λIn)−1yn

=
1

λ

(
yn −KnSn(ST

nKnSn + λ(ST
nKnSn + γIIn))−1ST

nKnyn
)
. 4.5
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Computing (ST
nKnSn+λ(ST

nKnSn+γIIn))−1 takes O(n|In|2) time to construct the matrix
and O(|In|3) to invert it, while the other matrix-matrix multiplication take at most
O(n|In|2) time. Overall, these operations require to store at most an n × |In| matrix.
Therefore the final complexity of computing a KRR using the dictionary is reduced from
O(n3) to a linear O(n|In|2 + |In|3) time, and from O(n2) to again linear O(n|In|) space.
The following corollary provides guarantees for the empirical risk of the solution ω̃n in a
fixed design setting.

Corollary 4.4 — (Alaoui and Mahoney, 2015, Thm. 3). For an arbitrary dataset D, let
K be the kernel matrix constructed on D. Given an (ε, γ)-accurate dictionary I of D,
the solution ω̃ computed using the regularized Nyström approximation K̃ satisfies

RD(ω̃) ≤
(

1 +
γ

λ

ε

1− ε

)2

RD(ω̂),

where λ is the regularization of kernel ridge regression problem.

Therefore, if we choose λ = γ, i.e., if the additive error that we introduce is of the same order
as the regularization, the approximate solution that can be computed in Õ(ndneff(γ)2) time
(including computing the dictionary with KORS or SQUEAK), and will have an empirical
risk that is only a constant factor 1/(1− ε)2 larger. In other words, using RLS sampling
we can avoid expending computational power to compute a solution along directions that
are not relevant to the problem, since all directions with an influence smaller than λ will
be suppressed by the regularization.

If we also assume that the samples xi are being generated according to a distribution µ(xi)
we can move from bounding the empirical risk RD to bounding the expected risk Rµ. To
do so, we will adapt a result by Rudi et al., (2015). We now consider the case where we
are given a dataset D = {(xi, yi)}ni=1 with xi sampled according to µ and where the target
variables yi = φT

iw
∗ + εi are computed using an arbitrary function w∗ in H with bounded

norm.
Given D the usual estimator used in KRR, i.e., Eq. 4.3 is ŵ = Φnωn. Rudi et al., (2015)
propose instead to use the estimator w̃n = ΦIω̃I where ΦI are the atoms contained in an
(ε, γ)-accurate dictionary I, and the weights ω̃I ∈ R|I| are computed as

ω̃I = (ΦT
IΦnΦ

T
nΦI + λΦT

IΦI)
+ΦT
IΦnyn. 4.6

Note that since (ΦT
IΦnΦ

T
nΦI + λΦT

IΦI)
+ is again a |I| × |I| matrix, computing ω̃I takes

only O(n|In|2 + |In|3) time. If the (ε, γ)-accurate dictionary is constructed using SQUEAK
or KORS, this means that overall we can compute a solution using only Õ(ndneff(γ)3) time,
and in a single pass over the dataset, without ever constructing or storing the full matrix Kn.
Another advantage of the estimator ω̃I ∈ R|I| compared to ω̂ ∈ Rn is that at evaluation
time we will only require Õ(dneff(γ)) kernel evaluations, regardless of n.

We can now define the expected risk of the estimator ω̃I as

Rµ(ΦIω̃I) = Ex∼µ;ε
[
(ϕ(x)Tw∗ + ε− ϕ(x)TΦIω̃I)

2
]
.

We can also define an analogous of the empirical effective dimension dneff(γ) based on the
distribution µ rather than a dataset.
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Definition 4.1 — (Rudi et al., 2015). Given a feature map ϕ(·) : X → H and a distribution
µ defined over X the effective dimension of H w.r.t. µ is

dµeff(γ) = E
x∼µ

[
ϕ(x)T

(
E

x′∼µ
[ϕ(x′)ϕ(x′)T] + γΠ

)−1
ϕ(x)

]
.

To obtain their expected risk bound, Rudi et al., (2015) make several technical assumption.
We report the main one, in the statement of Proposition 4.5 and refer the reader to the full
paper for details.

Proposition 4.5 — (Rudi et al., 2015). Given a dataset D sampled according to distribution
µ, and a dictionary I (ε, γ)-accurate w.r.t. D, let ω̃I be computed according to Eq. 4.6
with λ = n−1/(1+q).

If the eigenvalues of the covariance operator Ex′∼µ[ϕ(x′)ϕ(x′)T] decay at least polynomi-
ally, i.e., λi(Ex′∼µ[ϕ(x′)ϕ(x′)T]) ≤ i−q, with polynomial degree q ≥ 1 then w.h.p. there
exist some constants R and R′ such that

dµeff(λ) ≤ Rλ−1/q = Rn1/(1+q), Rµ(ΦIω̃I)−Rµ(w∗) ≤ R′n−1/(1+q)

As Rudi et al., (2015) remarks, this holds for q = 1 whenever the covariance operator
is trace class, which includes our bounded norm φi case. Therefore, running KORS or
SQUEAK to construct the dictionary, we can efficiently compute a solution with expected
risk guarantees that achieve the optimal (Caponnetto and De Vito, 2005) non-parametric
rate n−1/(1+q), and falls back to the standard non-parametric rate n−1/2 in the worst case.
Moreover, Rudi et al., (2015) show that w.h.p. Õ(ndneff(λ)3) ≤ Õ(ndµeff(λ)) and therefore our
computational complexity will be smaller than Õ(ndneff(λ)3) ≤ Õ(ndµeff(λ)2) ≤ Õ(n3/(q+1)),
which is always a strict improvement over the O(n3) of exact KRR, and even over the
O(n2) time required to construct the matrix Kn.
Computationally, we also outperform simpler strategies like uniform sampling (Bach, 2013),
and if we take into account that SQUEAK can be run in less than linear time using a
parallel merge tree, we outperform other state of the art RLS sampling methods such as
Recursive-RLS (Musco and Musco, 2017), or even distributed averaging approaches such
as the one in (Zhang et al., 2015).

4.2.2 Kernel principal component analysis

Starting again from Lemma 4.3 we can provide guarantees for Kernel principal component
analysis (K-PCA). In K-PCA, given a dataset D = {xi}ni=1 we are interested in finding a
k-rank projection Πk : H → H that minimizes

Πk = arg min
Π:Rank(Π)=k

‖Φn −ΠΦn‖2F = arg min
Π:Rank(Π)=k

Tr(ΦT
nΦn −ΦT

nΠΦn),

where ‖ · ‖F is the Frobenius norm. Given an (ε, γ)-accurate dictionary I, using Lemma 4.3
with α = γ it easy to see that the regularized projection on the dictionary I satisfies

Πn −
γ

1− ε (ΦΦT + γΠn)
−1 � ΦS(STΦTΦS + γII)

−1STΦT � ΦS(STΦTΦS)+STΦT.
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and therefore using the columns in the dictionary as a projection

Tr(ΦT
nΦn −ΦT

nΦS(STΦTΦS)+STΦTΦn)

≤ Tr

(
ΦT
nΦn −ΦT

nΠnΦn +
γ

1− εΦ
T
n (ΦΦT + γΠn)

−1
Φn

)
=

γ

1− εd
n
eff(γ).

All that is left is to see how far away the optimal Πk is, in terms of Frobenius norm, from
dneff(γ), where we will fix k and optimize over γ.

Let again Φn = VΣUT be the SVD decomposition of Φn. We know that the K-PCA
objective is minimized by Vk, the map containing the first k columns vi of V (Schölkopf
et al., 1999), and therefore Πk = VkV

T
k. Similarly, let Σk be the diagonal matrix with only

the first k singular value on the diagonal. The cost of the optimal solution is

Tr(ΦT
nΦn −ΦT
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T
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Setting γ = 1
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Putting it all together we have the final result.

Theorem 4.6 Given a dictionary I that is (ε, γ)-accurate w.r.t. map Φ : Rn → H, and its
selection matrix S ∈ Rn×n the projection ΠI = ΦT

nΦS(STΦTΦS)+STΦT on the atoms
contained in the dictionary satisfies

‖Φn −ΠIΦn‖2F ≤
γ

(1− ε)d
n
eff(γ).

If γ = 1
k

∑n
i=k+1 σ

2
i = ‖Φn −ΠkΦn‖2F /k we have

‖Φn −ΠIΦn‖2F ≤
2

1− ε‖Φn −ΠkΦn‖2F .

While in general it is not easy to compute the right γ that satisfies the condition, it is
possible to invert the relationship, i.e., express k in function of γ and the spectrum of the
matrix, and use additional information on Φn (e.g., bounded trace) to know how many
accurate eigenfunctions we can extract.
Computationally, using SQUEAK with a sequential merge tree to compute the (ε, γ)-
accurate dictionary matches the near-linear time and O(dneff(γ)) space complexity of other
state of the art batch approximate K-PCA methods (Musco and Musco, 2017), or outper-
forms them using a parallel merge tree that requires less than linear runtime.
For streaming approximate K-PCA methods, existing methods that provide guarantees,
such as the one proposed in Ghashami et al., (2016b), all require at least linear runtime,
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and parallelizing SQUEAK gives us again an improvement. This despite the fact that
many of these method require the input space to be Euclidean, and SQUEAK makes no
such assumption.

4.3 Sequential RLS sampling for graph spectral sparsification

We will now look at the special case when the atoms that we want to select for our dictionary
are edges in a graph G.
Graphs are a useful tool in machine learning to study the relationship between heterogeneous
entities. In many settings, the graph structure arises naturally from the data (e.g., social or
collaboration networks, influence graphs), and we have only access to the nodes and edges
without knowing in detail the process that generated them. Even if we have access to a flat
vectorial representation for the entities (nodes), it is common to define a similarity function
(e.g., exponential kernel), and construct a similarity graph out of the vectorial data.
Regardless of the origin of the graph G (natural or constructed), many important inference
problems are defined starting from the Laplacian representation of the graph, for example,
graph semi-supervised learning (SSL) (Chapelle et al., 2010; Zhu et al., 2003), graph
regularized least squares (Belkin et al., 2006), laplacian embedding (Belkin and Niyogi,
2001) and spectral clustering (Von Luxburg, 2007).

The Laplacian of a graph can be expressed as the covariance matrix of the edge-vertex
incidence vectors. Therefore, we can apply KORS and SQUEAK to approximate it. Unlike
in the dictionary learning for H approximation problem, where KORS and SQUEAK
greatly improve on existing methods, there are many efficient algorithms to approximate
Laplacian matrices. In particular, the whole field of graph spectral sparsification is focused
on this problem.
Similarly to the case of RLS sampling in Euclidean spaces, these methods can exploit
particular properties of the graph setting, and are comparable or more efficient than the
methods we proposed. For example, if we specialize KORS to this setting we recover an
equivalent algorithm from Cohen et al., (2016), and both Kelner and Levin, (2013) and
Kyng et al., (2017) proposed algorithms similar to SQUEAK with a fully sequential merge
tree.
Nonetheless, looking in detail at the similarities between graph sparsification and learning
an ε-accurate dictionary, will prepare us for the next section, where we show how graph
sparsifiers can be applied to efficiently solve machine learning problems, and introduce new
results for semi-supervised learning on graphs.

4.3.1 Graph spectral sparsification in the semi-streaming setting

We denote with G = (X , E) an undirected weighted graph with n vertices X and m edges
E . Associated with each edge ei,j ∈ E there is a weight aei,j (shortened ae) measuring the
“distance” between vertex i and vertex j.1 Given two graphs G and G′ over the same set of
nodes X , we denote by G + G′ the graph obtained by summing the weights of the edges of
G′ and G.
Given the weighted adjacency matrix AG and the degree matrix DG , the Laplacian of G is
the PSD matrix defined as LG = DG −AG . Furthermore, we assume that G is connected

1The graph G can be either constructed from raw data (e.g., building a k-nn graph with an exponential
kernel) or it can be provided directly as input (e.g., in social networks).
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and thus has only one eigenvalue equal to 0 and Ker(LG) = 1. Let L+
G be the pseudoinverse

of LG , and L
−1/2
G = (L+

G )1/2. For any node i = 1, . . . , n, we denote with χi ∈ Rn the
indicator vector so that be = χi − χj is the “edge” vector. If we denote with BG the
m× n signed edge-vertex incidence matrix, then the Laplacian matrix can be written as
LG =

∑
e aebeb

T
e = BT

GEGBG , where EG is the m×m diagonal matrix with EG(e, e) = ae.

We indicate withΠ = LGL
+
G the matrix of the orthogonal projection on the n−1 dimensional

space orthogonal to the all one vector 1. Since the Laplacian of any connected graph
G has a null space equal to 1, then Π is invariant w.r.t. the specific graph G on n
vertices used to defined it. Alternatively, the projection matrix Π can be obtained as
Π = L+

GLG = L
−1/2
G LGL

−1/2
G . Finally, let πe =

√
aeL

−1/2
G be, then we have Π =

∑
e πeπ

T
e .

A graph H is a spectral sparsifier of G if the whole spectrum of the original graph is well
approximated by using only a small portion of its edges. More formally,

Definition 4.2 A 1± ε spectral sparsifier of G is a graph H ⊆ G such that for all x ∈ Rn

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx.

It is easy to see that this is equivalent to the definition of an ε-accurate dictionary IH w.r.t.
the signed edge-vertex incidence matrix BT

GE
1/2
G ∈ Rn×m. Then definition Definition 4.2 is

just equivalent to Lemma 2.7 applied to LH = BT
GE

1/2
G SSTE

1/2
G BG .

In the context of Laplacian sparsification, the leverage scores τe = ‖πe‖2 are usually replaced
by the effective resistances.

Definition 4.3 The effective resistance of an edge e in graph G is defined as re = bT
eL

+
Gbe.

The total weighted sum of effective resistances in a graph is the same for all graphs, and
is equal to

∑
e aere = Tr(EGBGL

+
GBT
G) = Tr(LGL

+
G ) = n− 1.

The effective resistance re = τe/ae is defined as the leverage scores of edge e dived by its
weight. It also has particular interpretations that are specific to the graph setting.
Intuitively, the effective resistance encodes the importance of an edge in preserving the
minimum distance between two nodes. If an edge is the only connection between two parts
of the graph, its re is large. On the other hand, if there are multiple parallel paths across
many edges to connect two nodes, the effective resistance of an edge between the two nodes
will be small, similarly to actual resistances in parallel in an electrical network.
An important consequence of this intuition is that it makes it easy to see that adding
edges to a graph can only reduce the effective resistance of other edges, because it can only
introduce new alternative (parallel) paths in the graph. This is yet another reformulation
of Lemma 3.8 on the evolution of LS and RLS.
Also as expected, the weighted sum of the effective resistance is the rank of the Laplacian,
and differently to our previous settings, it is always n− 1.

Similarly to what Drineas et al., (2008) did for LS sampling (i.e., Corollary 2.6), Spielman
and Srivastava, (2011) could prove that sampling the edges of G with replacement using a
distribution proportional to their effective resistance (i.e., oracle Nyström sampling with
LS) produces a spectral sparsifier H of size O(n log(n)/ε2) with high probability, regardless
of the number of edges in the original graph.
As in Chapter 2 and Chapter 3, the main issue of this approach is that we want to compute
a sparsifier to avoid storing and processing the whole Laplacian, but we need to store
and (pseudo-)invert the Laplacian to compute exact effective resistances to construct the
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sparsifier. But, as in the case of Nyström sampling in Euclidean spaces, there have been
many approximate methods proposed over the years to approximate effective resistances.
In particular, it is possible to estimate them using approaches unique to graphs, which fall
mostly in two broad categories

• combinatorial methods, that exploit the interpretation of effective resistances as dis-
tances over parallel paths in the graphs and try to approximate this quantity, for
example building ensembles of low-stretch trees (Kapralov and Panigrahy, 2012; Koutis
and Xu, 2016), or recursive update rules (Kelner et al., 2013).
• solver based methods, that exploit the fact that effective resistances can be expressed
as the solution of a linear system, i.e., computing minBT

GE
1/2x=be

‖x‖2 (Koutis et al.,
2012),

We will focus on solver based methods, which are based on fast, graph-specific algorithms
to solve Laplacian linear systems, such as the one proposed in Koutis et al., (2012). Note
that this fast solvers also allowed Cohen et al., (2016) to directly adapt efficient leverage
score estimation techniques for Euclidean spaces to the graph setting and obtain efficient
methods.
The details of these fast solvers are beyond the scope of this thesis, and we refer the reader
to Spielman, (2017) for further reference. For our purposes, we just assume we have access
to a fast method that can estimate the effective resistance of a graph. For the rest of the
thesis we will focus on the one described by Kelner and Levin, (2013) that internally uses
the Laplacian solver introduced by Koutis et al., (2012).
Kelner and Levin, (2013) show that given as input a graph with m edges, we can compute
an ρ-accurate estimate of the effective resistance of all in edges in the graph in O(m log(n))
time and O(m) space, or in other words in near-linear time and space in m.

As Spielman and Srivastava, (2011) note, computing all effective resistances in near-linear
time is already optimal, since we need anyway O(m) time to sample or even to just look
at all edges. Conversely, the O(m) space requirement is much larger than the optimal
O(n log(n)) sparsifier size, and is not feasible when m is large.

4.3.2 SQUEAK for graph Laplacian approximation

To reduce the space complexity of graph sparsification, Kelner and Levin, (2013) introduced
a simple single-pass approach to generate a spectral sparsifier of a graph in the semi-
streaming setting, where edges are received one at a time. They store only an intermediate,
approximate sparsifier and every time a new edge arrives, it is added to it. Whenever the
sparsifier gets too large, they apply a resparsification algorithm to reduce its size, without
compromising its spectral guarantees.

Although the algorithm is intuitive and simple to implement, the original proof presented
in their paper is incomplete, as originally pointed out in Cohen et al., (2016). In particular,
Kelner and Levin, (2013) relies on a concentration inequality for independent random
variables, while in the sparsification algorithm the probability of keeping edge e in the
sparsifier at step s does depend on whether other edges e′ have been included in the
sparsifier at previous iterations. This structure introduces subtle statistical dependencies
through different iterations of the algorithm, and a more careful analysis is necessary. In
this section, we will show that the analysis of SQUEAK can be directly applied to complete
the analysis of Kelner and Levin, (2013).

In addition to pointing out the problems with the original proof in Kelner and Levin, (2013),
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Algorithm 11 Kelner and Levin (Kelner and Levin, 2013) stream sparsification algorithm.
Input: Graph G, weights ae for all edges in G.
Output: Hτ , a 1± ε sparsifier of G
1: Set space budget q = 40ρ log(3m/δ)/ε2

2: Partition the graph (dataset) G into k = dm/qe edge-disjoint sub-graphs (sub-datasets)
{Gs}ks=0 such that G =

∑k
s=0 Gs

3: Initialize the sparsifier (dictionary) H0 = ∅
4: for all s ∈ [1, . . . , k] do
5: Receive Gs
6: Set H∗ = Hs−1 + Gs
7: Compute ρ-accurate estimates of all effective resistances r̃s,e in H∗ using a fast SDD

solver (Kelner and Levin, 2013, Theorem 3)
8: Compute new probabilities p̃s,e = aer̃s,e
9: for all edges e ∈ Hs−1 do
10: p̃s,e ← min{p̃s−1,e, p̃s,e}
11: end for
12: Initialize Hs = ∅
13: for all edges e ∈ Hs−1 do
14: Set qs,e ∼ B(p̃s,e/p̃s−1,e, qs−1,e)
15: If qs,e 6= 0 add edge e to Hs with weight ae

p̃s,e

qs,e
q

16: If qs,e = 0 discard edge from memory{. Shrink }
17: end for
18: for all edges e ∈ Gs do
19: Set qs,e ∼ B(p̃s,e, q)
20: If qs,e 6= 0 add edge e to Hs with weight ae

p̃s,e

qs,e
q {. Expand }

21: end for
22: Return Hk
23: end for

Cohen et al., (2016) introduces a new algorithm to construct a sparsifier in a semi-streaming
setting but, differently from the original algorithm in Kelner and Levin, (2013), interactions
between iterations are avoided because the algorithm proposed in Cohen et al., (2016) never
drops an edge once it is introduced in the sparsifier. In particular, Cohen et al., (2016) is
equivalent to specializing KORS to the problem of graph sparsification, and therefore only
able to generate a suboptimal O(n log2(n)) number of edges (Theorem 3.11).

If we specialize SQUEAK to the specific setting of effective resistance sampling and graph
sparsification, and use a fully sequential tree, we recover exactly the original algorithm of
Kelner and Levin, (2013), reported in Algorithm 11. Using the analysis of SQUEAK, we
can also prove that w.h.p. it generates an ε-accurate dictionary, or in other words a graph
sparsifier.

Theorem 4.7 Given parameters 0 < ε ≤ 1, 0 < δ < 1, an arbitrary graph G, and a fully
sequential merge tree of height dm/qe, let ρ = 1+3ε

1−ε and run Algorithm 11 with budget
q ≥ 26ρ log(3m/δ)/ε2. Then w.p. 1− δ,
Accuracy: each graph sparsifier Hs is ε-accurate w.r.t.

∑s
t=1 Gt, and each r̃s,e is ρ-

accurate w.r.t. rs,e.
Space: the size of each sparsifier is bounded by |Hs| ≤ 3qdseff(0) ≤ 3qn.
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Time: the algorithm runs in O(n log2(n)) per-merge time, and O(m log(n)) overall time.
Passes: the algorithm requires a single pass over G.

Unlike in the analysis of SQUEAK, here we have fixed the merge tree (fully sequential) and
we have a closed form solution for the effective dimension deff(0) = Rank(LG) = n− 1, and
therefore a O(n log(n)) bound on the size of the dictionary and the memory requirement of
the algorithm.
To compute the time complexity, we combine the runtime analysis of SQUEAK, the
number of merges dm/qe, the O(n log(n)) sparsifier (dictionary) size bound, and the
O(|Is| log(n)) ≤ O(n log2(n)) cost of estimating the effective resistances (LS) using a
near-linear time solver. The final result is a closed-form O(m log(n)) bound on the runtime
of the algorithm.
Compared to Kelner and Levin, (2013) this is a log(n) factor improvement in space and
runtime, not due to any change in the algorithm, but simply because of a tighter analysis.
We can also compare our result with the independent analysis of Kyng et al., (2017) of
sequential graph resparsification, which also resolves the problems in Kelner and Levin,
(2013)’s analysis. Kyng et al., (2017) can be seen as a special case of our sequential
RLS sampling with removal (i.e., SQUEAK), and both works take a similar analysis
approach based on the result of Pachocki, (2016). As the main tool for the proof, Kyng
et al., (2017) uses an adversarial game argument to bound the variance of the process
Wt (see Section 3.4.4). For SQUEAK’s proof instead we derived an argument based on
stochastic dominance that essentially tells us how the adversary of Kyng et al., (2017) can
be constructed.
Moreover, since they focus on the graph setting and effective resistances (LS), they do not
generalize their result to RLS, or have the need to derive an estimator that can work both
in Euclidean and RKH spaces (i.e., Lemma 3.14), relying instead on fast solvers.
Conversely, when Kyng et al., (2017) move from sequential to parallel graph sparsification,
they take an approach completely different from the one we used for SQUEAK. Although
the resulting algorithm is only applicable to graphs, since it is based on combinatorial
arguments, it can extract more parallelism than SQUEAK and construct a graph sparsifier
in a smaller time.

4.4 Efficient graph semi-supervised learning

We can now show how using graph sparsification, in particular fully sequential SQUEAK,
will allow us to greatly reduce the computational cost of solving semi supervised learning
problems.

In many classification and regression tasks, obtaining labels for large datasets is expensive.
When the number of labeled samples is too small, traditional supervised learning algorithms
fail in learning accurate predictors. Semi-supervised learning (SSL) (Chapelle et al., 2010;
Zhu, 2008) effectively deals with this problem by integrating the labeled samples with an
additional set of unlabeled samples, which are abundant and readily available in many
applications (e.g., set of images collected on web sites (Fergus et al., 2009)).
The intuition behind SSL is that unlabeled data may reveal the underlying structure of the
problem (e.g., a manifold) that could be exploited to compensate for the limited number of
labels and improve the prediction accuracy. Among different SSL settings, in this thesis we
focus on the case where data are embedded in a graph.
The graph is expected to effectively represent the geometry of data and graph-based
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SSL (Belkin et al., 2006; Subramanya and Talukdar, 2014; Zhu et al., 2003) methods
leverage the intuition that nodes that are similar according to the graph are more likely to
be labeled similarly.
A popular approach is the harmonic function solution (HFS) (Belkin et al., 2004; Fergus
et al., 2009; Zhu et al., 2003), whose objective is to find a solution where each node’s value
is the weighted average of its neighbors. Computing the HFS solution requires solving a
Laplacian regularized least-squares problem. While the resulting solution is both empirically
effective (Fergus et al., 2009) and enjoys strong performance guarantees (Belkin et al., 2006;
Cortes et al., 2008), solving exactly the least-squares problem on a graph with n nodes
amounts to O(n3) time and O(n2) space complexity.
Using a general iterative solver on a graph with m edges to obtain a comparable solution
requires only O(mn) time and O(m) space, but this is still practically unfeasible in many
applications of interest. In fact, many graphs have naturally a large number of edges, so
that even if the n nodes could fit in memory, storing m edges largely exceeds the memory
capacity. For instance, Facebook’s graph of relationships (Ching et al., 2015) counts about
n = 1.39e9 users connected by a trillion (m = 1e12) edges. While n is still in the order of a
normal memory capacity, the edges cannot be stored in a single computer.
A similar issue is faced when the graph is built starting from a dataset, for instance using a
k-nn graph. In this case m = kn edges are created, and sometimes a large k is necessary to
obtain good performance (Saluja et al., 2014), or artificially adding neighbours can improve
the stability of the method (Gleich and Mahoney, 2015).
In such problems, a direct application of HFS is not possible and thus some form of
approximation or graph sketching is required. A straightforward approach is to distribute
the graph over multiple machines in a cluster and resort to an iterative solver for the
solution of the least-squares problem (Ching et al., 2015). Distributed algorithms require
infrastructure and careful engineering in order to deal with communication issues (Cai
et al., 2014).
But even assuming that these problems are satisfactorily dealt with, all known iterative
solvers that have provably fast convergence do not have known distributed implementations,
as they assume random, constant time access to all the edges in the graph. Thus one would
have to resort to distributed implementations of simpler but much slower methods, in effect
trading-off space for a significant reduction in overall efficiency.

More principled methods try to address the memory bottleneck by directly manipulating the
structure of the graph to reduce its size. These include subsampling the nodes of the original
graph, quantization, approaches related to manifold learning, and various approximation
strategies.
The most straightforward way to reduce the complexity in graph-based method is to
subsample the nodes to create a smaller, backbone graph of representative vertices, or
landmarks (Talwalkar et al., 2008). Nyström sampling methods (Kumar et al., 2012)
randomly select s nodes from the original graph and compute q eigenvectors of the smaller
graph, which can be later used to solve the HFS regularized problem. It can be shown (Kumar
et al., 2012) that the reconstructed Laplacian is accurate in `2-norm and thus only its
largest eigenvalue is preserved. Unfortunately, the HFS solution does not depend only on
the largest eigenvalues, both because the largest eigenvectors are the ones most penalized
by HFS’s regularizer ((Belkin et al., 2006)) and because theoretical analysis shows that
preserving the smallest eigenvalue is important for generalization bounds ((Belkin et al.,
2004)).
As a result, subsampling methods can completely fail when the sampled nodes compromise
the spectral structure of the graph (Fergus et al., 2009). Although alternative techniques
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have been developed over years (see e.g., (Garcke and Griebel, 2005; Jebara et al., 2009;
Liu et al., 2010; Tsang and Kwok, 2006; Yu and Yu, 2005; Zhu and Lafferty, 2005)), this
drawback is common to all backbone graph methods.
Motivated by this observation, other approaches focus on computing a more accurate
approximation of the spectrum of the Laplacian. Fergus et al. (Fergus et al., 2009) build
on the observation that when the number of unlabeled samples n tends to infinity, the
eigenvectors of the Laplacian tend to the eigenfunctions of the sampling distribution P . Thus
instead of approximating eigenvectors in Rn, they first compute empirical eigenfunctions of
the estimated sampling distribution (defined on the d-dimensional feature space) obtained
by assuming that P is factorized and by using a histogram estimation over b bins over each
dimension separately. While the method scales to the order of million nodes, it still requires
d and b to be small to be efficient. Furthermore, no theoretical analysis is available, and
the method may return poor approximations whenever the sampling distribution is not
factorized.
Motivated by the empirical success of (Fergus et al., 2009), Ji et al. (Ji et al., 2012) proposed
a similar algorithm, Simple-HFS, for which they provide theoretical guarantees. However,
in order to prove bounds on the generalization error, they need to assume several strong
and hard to verify assumptions, such as a sufficiently large eigengap. On the contrary, the
guarantees for our method work for any graph.

Our contribution

In this section, we focus on reducing the space complexity of graph-based SSL while
matching the smallest possible computational complexity of Ω(m) up to logarithmic factors2

and providing strong guarantees about the quality of the solution. In particular, we
introduce a novel approach which employs efficient spectral graph sparsification techniques
to incrementally process the original graph. This method, coupled with dedicated solvers
for symmetric diagonally dominant (SDD) systems (Koutis et al., 2011), allows to find an
approximate HFS solution without storing the whole graph in memory and to control the
computational complexity as n grows.
In fact, we show that our proposed method, called Sparse-HFS, requires only fixed
O(n log(n)) space to run, and allows to compute solutions to large HFS problems in
memory. For example, in the experimental section we show that the sparsifier can achieve
an accuracy comparable to the full graph, using one order of magnitude less edges. With a
careful choice of the frequency of resparsification, the proposed method does not increase
significantly the running time. Given a minimum amortized cost of Ω(1) per edge, necessary
to examine each edge at least once, our algorithm only increases this cost to O(log(n)).
Furthermore, using the approximation properties of spectral sparsifiers and results from
algorithmic stability theory (Bousquet and Elisseeff, 2002; Cortes et al., 2008) we provide
theoretical guarantees for the generalization error for Sparse-HFS, showing that the
performance is asymptotically the same as the exact solution of HFS.
Finally, we report empirical results on both synthetic and real data showing that Sparse-
HFS is competitive with subsampling and the EigFun method in (Fergus et al., 2009).

2While the computational complexity of exact HFS is O(mn), many approximated methods can
significantly reduce it. Nonetheless, any method that requires reading all the edges once has at least Ω(m)
time complexity.
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4.4.1 Semi-supervised learning with graph sparsifiers

Notation. We consider the problem of regression in the semi-supervised setting, where
a large set of n points X = (x1, . . . ,xn) ⊂ Rd is drawn from a distribution P and labels
{yi}li=1 are provided only for a small (random) subset S ⊂ X of l points. Graph-based
SSL builds on the observation that P is often far from being uniform and it may display
a specific structure that could be exploited to “propagate” the labels to similar unlabeled
points. Building on this intuition, graph-based SSL algorithms consider the case when the
points in X are embedded into an undirected weighted graph G = (X , E) with |E| = m
edges. Associated with each edge ei,j ∈ E there is a weight aei,j measuring the “distance”
between xi and xj .

A graph-based SSL algorithm receives as input G and the labels of the nodes in S and it
returns a function f : X → R that predicts the label for all nodes in X . The objective is to
minimize the prediction error over the set T of u = n− l unlabeled nodes. In the following
we denote by y ∈ Rn the full vector of labels.

Stable-HFS. HFS directly exploits the structure embedded in G to learn functions that
are smooth over the graph, thus predicting similar labels for similar nodes. We assume
that G is connected and thus has only one eigenvalue at 0. Let L+

G be the pseudoinverse of
LG , and L

−1/2
G = (L+

G )1/2. The HFS method (Zhu et al., 2003) can be formulated as the
Laplacian-regularized least-squares problem

f̂ = arg min
f∈Rn

1
l (f − y)TIS(f − y) + ηfTLGf , 4.7

where IS ∈ Rn×n is the identity matrix with zeros corresponding to the nodes not in S
and η is a regularization parameter. The solution can be computed in closed form as
f̂ = (ηlLG + IS)+yS , where yS = ISy ∈ Rn.
The singularity of the Laplacian may lead to unstable behavior with drastically different
results for small perturbations to the dataset. For this reason, we focus on the Stable-HFS
algorithm proposed in (Belkin et al., 2004) where an additional regularization term is
introduced to restrict the space of admissible hypotheses to the space F = {f : 〈f ,1〉 = 0}
of functions orthogonal to null space of LG (i.e., centered functions). This restriction can
be easily enforced by introducing an additional regularization term µ

l f
>1 in Eq. 4.7.

As shown in (Belkin et al., 2004), in order to guarantee that the resulting f̂ actually belongs
to F , it is sufficient to set µ = ((ηlLG + IS)+yS)T1/((ηlLG + IS)+1)T1, and compute the
solution as f̂ = (ηlLG + IS)+(yS − µ1).
Furthermore, it can be shown that if we center the vector of labels ỹS = yS − yS , with
y = 1

l y
T
S1, then the solution of Stable-HFS can be rewritten as projected solution

f̂ = (ηlLG + IS)+(ỹS − µ1) =
(
ΠF (ηlLG + IS)

)+
ỹS , where ΠF = LGL

+
G is the projection

matrix on the n− 1 dimensional space F . Indeed, since the Laplacian of any graph G has
a null space equal to the one vector 1, then ΠF is invariant w.r.t. the specific graph G
used to defined it. While Stable-HFS is more stable and thus more suited for theoretical
analysis, its time and space requirements remain O(mn) and O(m), and cannot be applied
to graph with a large number of edges.

To accelerate Stable-HFS, we introduce a novel variant of HFS, called Sparse-HFS,
where the graph G is pre-processed using spectral graph sparsification techniques, and the
Stable-HFS solution is computed efficiently on a smaller subgraph H, drastically reducing
the time and memory requirements without compromising the resulting accuracy.
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Sparse-HFS. Replacing the graph G with the sparsifier produced by Algorithm 11 (i.e.,
fully sequential SQUEAK), we can compute an approximate Stable-HFS solution as
f̃ = (ηlLH + IS)+(yS − µ1), with µ = ((ηlLH + IS)+yS)T1/((ηlLH + IS)+1)T1. Since
both G and H are connected graphs, they induce the same projection matrix ΠF , and the
Sparse-HFS solution can be rewritten as f̃ =

(
ΠF (ηlLH + IS)

)+
ỹS .

Using the runtime guarantees of SQUEAK and of the near-linear solver by Koutis et al.,
(2011) it is easy to see how the pre-processing sparsification step takes only O(m log(n))
time. Computing the final Sparse-HFS solution using H and the near-linear time solver
only adds O(n log2(n)) time. Since m ≥ n because the graph is connected, we have that
the overall runtime of the algorithm is O(m log(n)).
Therefore Sparse-HFS gives us drastic improvements over Stable-HFS’s O(m) space
and O(mn) time, both in terms of time and space complexity. This allows us to scale
Stable-HFS to graphs orders of magnitude bigger.
These computational improvements have only a limited impact on the spectrum of G and all
its eigenvalues are approximated up to a (1± ε) factor. Moreover, all of the sparsification
guarantees hold w.h.p. for any graph, regardless of how it is generated, its original spectrum,
and more importantly regardless of the exact order in which the edges are assigned to
the blocks. Finally, we notice that the choice of the number of blocks as m/q is crucial
to guarantee a logarithmic amortized time, since each iteration takes O(nq log(n)) time.
This property allows to directly apply Sparse-HFS in online learning settings where edges
arrive in a stream and intermediate solutions have to be computed incrementally.

4.4.2 Bounding the stability

In the following, we show that, unlike other heuristics, the space complexity improvements
obtained with sparsification come with guarantees and do not degrade the actual learning
performance of HFS. The analysis of SSL algorithms is built around the algorithm sta-
bility theory (Bousquet and Elisseeff, 2002), which has been extensively used to analyse
transductive learning algorithms (Cortes et al., 2008; El-Yaniv and Pechyony, 2006). We
first remind the definition of algorithmic stability.

Definition 4.4 Let L be a transductive learning algorithm. We denote by f and f ′ the
functions obtained by running L on datasets X = (S, T ) and X = (S ′, T ′) respectively.
L is uniformly β-stable w.r.t. the squared loss if there exists β ≥ 0 such that for any
two partitions (S, T ) and (S ′, T ′) that differ by exactly one training (and test) point
and for all x ∈ X ,

|(f(x)− y(x))2 − (f ′(x)− y(x))2| ≤ β.

Define the empirical error as R̂(f) = 1
l

∑l
i=1(f(xi)− y(xi))

2 and the generalization error as
R(f) = 1

u

∑u
i=1(f(xi)− y(xi))

2.

Theorem 4.8 — (Calandriello et al., 2015). Let G be a fixed (connected) graph with n
nodes X and m edges E and eigenvalues 0 = λ1(G) < λ2(G) ≤ . . . ≤ λn(G). Let y ∈ Rn
be the labels of the nodes in G with |y(x)| ≤M and F be the set of centered functions
such that |f(x) − y(x)| ≤ c. Let S ⊂ X be a random subset of labeled nodes. If the
corresponding labels ỹS are centered and Sparse-HFS is run with parameter ε, then
w.p. at least 1 − δ (w.r.t. the random generation of the sparsifier H and the random
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subset of labeled points S) the resulting function f̃ satisfies,

R(f̃) ≤ R̂(f̂) + β +

(
2β +

c2(l + u)

lu

)√
π(l, u) ln 1

δ

2
+

(
εlηλ2(G)M

((1− ε)lηλ2(G)− 1)2

)2

, 4.8

where f̂ is the solution of exact Stable-HFS on G,

π(l, u) =
lu

l + u− 0.5

2 max{l, u}
2 max{l, u} − 1

,

and

β ≤ 1.5M
√
l

((1− ε)lηλ2(G)− 1)2
+

4M

(1− ε)lηλ2(G)− 1
.

Theorem 4.8 shows how approximating G with H impacts the generalization error as the
number of labeled samples l increases. If we set ε = 0, we recover the exact case bound by
Cortes et al., (2008), which depends only on R̂(f̂) and β.
When ε > 0, we see from Eq. 4.8 that the two terms already present in the exact case
are either unchanged (R̂(f̂)) or increase only by a constant factor (β). Because of the
approximation, a new error term (the last one in Eq. 4.8) is added to the bound, but we
can see that it is negligible compared to β. In fact, it converges to zero as O(ε2/l2(1− ε)4)
as l grows and it is dominated by β for any constant value of ε.
This means that increasing ε corresponds to a constant increase in the bound, regardless
of the size of the problem. Consequently, ε can be freely chosen to trade off accuracy
and space complexity (Theorem 4.7) depending on the problem constraints. Furthermore
running time does not depend on this trade-off, because a larger block size is balanced by
less frequent resparsifications.
Finally, because the eigenvalues present in the bound are the ones of the original graph, any
external knowledge on the spectral properties of the input graph can be easily included in
the analysis. Therefore it is straightforward to provide stronger guarantees for Sparse-HFS
when combined with assumptions on the graph generating model. We also remark the level
of generality of this result that holds for the integration between HFS and any ε-accurate
spectral sparsification method.

Proof of Theorem 4.8. Step 1 (generalization of stable algorithms). Let β be the
stability of Sparse-HFS, then using the result in (Cortes et al., 2008), we have that with
probability at least 1−δ (w.r.t. the randomness of the labeled set S) the solution f̃ returned
by the Sparse-HFS satisfies

R(f̃) ≤ R̂(f̃) + β +
(

2β +
c2(l + u)

lu

)√π(l, u) log(1/δ)

2
.

In order to obtain the final result we first derive an upper bound on the stability of
Sparse-HFS and then relate its empirical error to the one of Stable-HFS.

Step 2 (stability). The bound on the stability follows similar steps as in the analysis of
Stable-HFS in Belkin et al., (2004) integrated with the properties of streaming spectral
sparsifiers reported in Definition 4.2 and Proposition 2.1.
Let S and S ′ be two labeled sets only differing by one element and f̃ and f̃ ′ be the solutions
obtained by running Sparse-HFS on S and S ′ respectively. Without loss of generality,
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we assume that IS(l, l) = 1 and IS(l + 1, l + 1) = 0, and the opposite for IS′ . The original
proof in (Cortes et al., 2008) showed that the stability β can be bounded as β ≤ ‖f̃ − f̃ ′‖.
In the following we show that the difference between the solutions f̃ and f̃ ′, and thus the
stability of the algorithm, is strictly related to eigenvalues of the sparse graph H. Let
A = ΠF (lηLH + IS) and B = ΠF (lηLH + IS′), we remind that if the labels are centered,
the solutions of Sparse-HFS can be conveniently written as f̃ = A−1ỹS and f̃ ′ = B−1ỹS′ .
As a result, the difference between the solutions can be written as

‖f̃ − f̃ ′‖ = ‖A−1ỹS −B−1ỹS′‖ ≤ ‖A−1(ỹS − ỹS′)‖+ ‖A−1ỹS′ −B−1ỹS′‖. 4.9

Let us consider any vector f ∈ F , since the null space of a Laplacian LH is the one vector 1
and ΠF = LHL+

H, then ΠF f = f . Thus we have

‖ΠF (lηLH + IS)f‖
(1)

≥ ‖ΠF lηLHf‖−‖ΠFISf‖
(2)

≥ ‖ΠF lηLHf‖−‖f‖
(3)

≥ (lηλ2(H)−1)‖f‖
4.10

where (1) follows from the triangle inequality and (2) follows from the fact that ‖ΠFISf‖ ≤
‖f‖ since the largest eigenvalue of the project matrix ΠF is one and the norm of f
restricted on S is smaller than the norm of f . Finally (3) follows from the fact that
‖ΠFLHf‖ = ‖LHL+

HLHf‖ = ‖LHf‖ and since f is orthogonal to the null space of LH then
‖LHf‖ ≥ λ2(H)‖f‖, where λ2(H) is the smallest non-zero eigenvalue of LH. At this point
we can exploit the spectral guarantees of the sparsified graph LH and from the definition of
graph sparsifier, we have that λ2(H) ≥ (1− ε)λ2(G). As a result, we have an upper-bound
on the spectral radius of the inverse operator (ΠF (lηLH + IS))−1 and thus

‖A−1(yS − yS′)‖ ≤
4M

lη(1− ε)λ2(G)− 1
,

where the first step follows from Eq. 4.10 since both ỹS and ỹS′ are centered and thus
(yS − yS′) ∈ F , and the second step is obtained by bounding ‖ỹS − ỹS′‖ ≤ ‖yS − yS′‖+
‖yS − yS′‖ ≤ 4M . The second term in Eq. 4.9 can be bounded as

‖A−1ỹS′ −B−1ỹS′‖ = ‖B−1(B−A)A−1ỹS′‖

= ‖B−1ΠF (IS − IS′)A
−1ỹS′‖ ≤

1.5M
√
l

(lη(1− ε)λ2(G)− 1)2
,

where we used ‖ỹS′‖ ≤ ‖yS′‖+‖yS′‖ ≤ 2M
√
l, ‖ΠF (IS−IS′)‖ ≤

√
2 < 1.5 and we applied

Eq. 4.10 twice. Putting it all together we obtain the stated bound.

Step 3 (empirical error). The other element effected by the sparsification is the empirical
error R̂(f̃). We first recall that ΠF = L+

GLG = L
−1/2
G LGL

−1/2
G (and equivalently with

G replaced by H) and we introduce Π̃F = L
−1/2
G LHL

−1/2
G Let Ã = ΠF(lηLH + IS),

Â = ΠF (lηLG + IS), then rewrite the empirical error as

R̂(f̃) =
1

l
‖IS f̃ − IS f̂ + IS f̂ − ỹS‖2 ≤ 1

l ‖IS f̂ − ỹS‖2 + 1
l ‖IS f̃ − IS f̂‖2

≤ R̂(f̂) + 1
l ‖IS(Ã−1 − Â−1)ỹS‖2 ≤ R̂(f̂) + 1

l ‖Â−1(Â− Ã)Ã−1ỹS‖2

= R̂(f̂) + l2η2

l ‖Â−1(ΠF (LG − LH))Ã−1ỹS‖2

= R̂(f̂) + lη2‖Â−1(ΠF (LG − LH)ΠF )Ã−1ỹS‖2
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Where in the last passage we use LGΠF = LG and LHΠF = LH. To bound the second
term we derive

‖Â−1ΠF (LG − LH)ΠFÃ−1ỹS‖2
(1)
= ‖Â−1L1/2

G L
−1/2
G (LG − LH)L

−1/2
G L

1/2
G Ã−1ỹS‖2

(2)
= ‖Â−1L1/2

G ΠFL
−1/2
G (LG − LH)L

−1/2
G ΠFL

1/2
G Ã−1ỹS‖2

(3)
= ‖Â−1L1/2

G ΠF (ΠF − Π̃F )ΠFL
1/2
G Ã−1ỹS‖2

≤ ‖Â−1L1/2
G ΠF‖2‖ΠF − Π̃F‖2‖ΠFL

1/2
G Ã−1‖2‖ỹS‖2

(4)

≤ lM2ε2‖Â−1L1/2
G ΠF‖2‖Ã−1L1/2

G ΠF‖2

where in (1) and (2) we use the definition of ΠF , in (3) we use the definition of Π̃F , while in
(4) we use the fact that Definition 4.2 implies that (1− ε)ΠF � Π̃F � (1 + ε)ΠF and thus
the largest eigenvalue of ΠF − Π̃F is ε2. We need now to bound ‖Ã−1L1/2

G ΠF‖2. Similarly
to Eq. 4.10 finding a lower bound on ‖ÃL

−1/2
G ΠFx‖ for all x is equivalent to find a lower

bound for all f ∈ F to

‖ΠF (lηLH + IS)L
−1/2
G f‖≥‖ΠF lηLHL

−1/2
G f‖−‖ΠFISL

−1/2
G f‖

≥‖ΠF lηLHL
−1/2
G f‖−‖L−1/2G f‖≥

(
lη

λ2(H)√
λ2(G)

− 1√
λ2(G)

)
‖f‖

≥ 1√
λ2(G)

(lηλ2(H)− 1) ‖f‖≥ 1√
λ2(G)

(lη(1− ε)λ2(G)− 1) ‖f‖

Similarly, we can show that

‖ΠF (lηLG + IS)L
−1/2
G f‖≥‖ΠF lηLGL−1/2G f‖−‖ΠFISL

−1/2
G f‖

≥‖ΠF lηLGL−1/2G f‖−‖L−1/2G f‖≥
(
lη

λ2(G)√
λ2(G)

− 1√
λ2(G)

)
‖f‖

≥ 1√
λ2(G)

(lηλ2(G)− 1) ‖f‖≥ 1√
λ2(G)

(lη(1− ε)λ2(G)− 1) ‖f‖

Taking this and putting all together shows

R̂(f̃) ≤ R̂(f̂) +
l2η2λ2(G)2ε2M2

(lη(1− ε)λ2(G)− 1)4

Combining the three steps above concludes the proof. �

4.4.3 Experiments on spam detection
In this section we evaluate the empirical accuracy of Sparse-HFS compared to other
baselines for large-scale SSL on both synthetic and real datasets.

Synthetic data. The objective of this first experiment is to show that the sparsification
method is effective in reducing the number of edges in the graph and that preserving the full
spectrum of G retains the accuracy of the exact HFS solution. We evaluate the algorithms
on the R2 data distributed as in Fig. 4.1(a), which is designed so that a large number of
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Guarant. Space Preprocessing Time Solving Time

Sparse-HFS N = O(n log(n)) O(m log2(n)) O(n log2(n))
Stable-HFS O(m) O(m) O(mn)
Simple-HFS O(m) O(mq) O(q4)

EigFun O(nd+ nq + b2) O(qb3 + db3) O(q3 + nq)
SubSampling O(sk) O(m) O(s2k + n)

Table 4.1: Guarantees and Computational complexities. Bold text indicates unfeasible time
or space complexity. Guarantees unavailable. Simple-HFS’s guarantees require assumptions
on the graph G.
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Figure 4.1: (a) The dataset of the synthetic experiment, (b) Accuracy of Stable-HFS and
Sparse-HFS, (c) ratio of the number of edges |H|/|G|.

neighbours is needed to achieve a good accuracy. The dataset is composed of n = 12100
points, where the two upper clusters belong to one class and the two lower to the other. We
build an unweighted, k-nn graph G for k = 100, . . . , 12000. After constructing the graph,
we randomly select two points from the uppermost and two from lowermost cluster as our
labeled set S. We then run Sparse-HFS with ε = 0.8 to compute H and f̃ , and run (exact)
Stable-HFS on G to compute f̂ , both with γ = 1. Fig. 4.1(b) reports the accuracy of
the two algorithms. Both algorithms fail to recover a good solution until k ≈ 4000. This
is due to the fact that until a certain threshold, each cluster remains separated and the
labels cannot propagate. Beyond this threshold, Stable-HFS is very accurate, while, as k
increases again, the graph becomes almost full, masking the actual structure of the data
and thus loosing performance again. We notice that the accuracy of Stable-HFS and
Sparse-HFS is never significantly different, and, quite importantly, they match around the
value of k = 4500 that provides the best performance. This is in line with the theoretical
analysis that shows that the contribution due to the sparsification error has the same order
of magnitude as the other elements in the bound. Furthermore, in Fig. 4.1(c) we report the
ratio of the number of edges in the sparsifier H and G. This quantity is always smaller than
one and it constantly decreases since the number of edges in H is constant, while the size G
increases linearly with the number of neighbors (i.e., |H|/|G| = O(1/k)). We notice that
for the optimal k the sparsifier contains less than 10% of the edges of the original graph
but it achieves almost the same accuracy.

Spam-filtering dataset. We now evaluate the performance of our algorithm on the TREC
2007 Public Spam Corpus3, that contains n = 75419 raw emails labeled as either SPAM
or HAM. The emails are provided as raw text and we applied standard NLP techniques

3http://plg.uwaterloo.ca/~gvcormac/treccorpus07/

http://plg.uwaterloo.ca/~gvcormac/treccorpus07/
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to extract features vectors from it. In particular, we computed TF-IDF scores for each of
the emails, with some additional cleaning in the form of a stop word list, simple stemming
and dropping the 1% most common and most rare words. We ended up with d = 68697
features, each representing a word present in some of the emails. From these features we
proceeded to build a graph G where given two emails xi,xj , the weight is computed as
aij = exp(−‖xi − xj‖/2σ2), with σ2 = 3. We consider the transductive setting, where the
graph is fixed and known, but only a small random subset of l = {20, 100, 1000} labels is
revealed to the algorithm. As a performance measure, we consider the prediction accuracy
over the whole dataset. We compare our method to several baselines. The most basic
supervised baseline is 1-NN, which connects each node to the closest labeled node. The
SubSampling algorithm selects uniformly s nodes out of n, computes the HFS solution
on the induced subgraph of G and assigns to each node outside of the subset the same label
as the closest node in the subset. SubSampling’s complexity depends on the size s of the
subgraph and the number k of neighbors retained when building the k-nn subgraph. The
eigenfunction (EigFun) algorithm (Fergus et al., 2009) tries to sidestep the computational
complexity of finding an HFS solution on G, by directly approximating the distribution
that created the graph. Starting directly from the samples, each of the d feature’s density
is separately approximated using histograms with b bins. From the histograms, q empirical
eigenfunctions (vectors in Rn) are extracted and used to compute the final solution. We did
not include Stable-HFS and Simple-HFS in the comparison because their O(m) space
complexity made them unfeasible for this dataset. In Fig. 4.2, we report the accuracy of
each method against the time and space complexity, where each separate point corresponds
to a different choice in metaparameters (e.g. k, q, s). For EigFun, we use the same b = 50
as in the original implementation, but we varied q from 10 to 2000. For SubSampling,
s = 15000 and k varies from 100 to 10000. We run Sparse-HFS on G setting ε = 0.9,
and changing the size m of the input graph by changing the number of neighbours k from
1000 to 7500. Since the actual running time and memory occupation are highly dependent
on the implementation (e.g., EigFun is implemented in Matlab, while Sparse-HFS is
Matlab/C), the complexities are computed using their theoretical form (e.g., O(m log(n))
for Sparse-HFS) with the values actually used in the experiment (e.g., m = nk for a k-nn
graph). All the complexities are reported in Table 4.1. The only exception is the number
of edges in the sparsifier |H| used in the space complexity of Sparse-HFS. Since this is
a random quantity that holds only w.h.p. and that is independent from implementation
details, we measured it empirically and used it for the complexities. For all methods we
notice that the performance increases as the space complexity gets larger, until a peak
is reached, while additional space induces the algorithms to overfit and reduces accuracy.
For EigFun this means that a large number of eigenfunctions is necessary to accurately
model the high dimensional distribution. And as theory predicts, SubSampling’s uniform
sampling is not efficient to approximate the graph spectra, and a large subset of the nodes
is required for good performance. Sparse-HFS’s accuracy also increases as the input
graph gets richer, but unlike the other methods the space complexity does not change
much. This is because the sparsifier is oblivious to the structure of the graph, and even if
Sparse-HFS reaches its optimum performance for k = 3000, the sparsifier contains roughly
the same number of edges present as k = 1000, and only 5% of the edges present in the
input graph. Although preliminary, this experiment shows that the theoretical properties
of Sparse-HFS translate into an effective practical algorithm which is competitive with
state-of-the-art methods for large-scale SSL.
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4.4.4 Recap and open questions: dynamic sparsifiers

We introduced Sparse-HFS, an algorithm that combines sparsification methods and
efficient solvers for SDD systems to find approximate HFS solutions using only O(n log2(n))
space instead of O(m). Furthermore, we show that the O(m log(n)) time complexity of the
methods is only a polylog term away from the smallest possible complexity Ω(m). Finally,
we provide a bound on the generalization error that shows that the sparsification does not
affect the asymptotic convergence rate of HFS. As such, the accuracy parameter ε can be
freely chosen to meet the desired trade-off between accuracy and space complexity.

An interesting feature of Sparse-HFS is that it could be easily employed in online learning
problems where edges arrive in a stream and intermediate solutions have to be computed
over time. Since Sparse-HFS has a O(log(n)) amortized time per edge, it could compute
intermediate solutions every q edges without compromising its overall time complexity.

The fully dynamic setting, where edges can be both inserted and removed, is an important
extension where our approach could be further investigated, especially because it has been
observed in several domains that graphs become denser as they evolve over time (Leskovec
et al., 2005). While sparsifiers have been developed for this setting (see e.g., (Kapralov et al.,
2014)), current solutions would require O(n2 polylog(n)) time to construct the sparsifier,
thus making it unfeasible to repeat this computation many times over the stream. Extending
sparsification techniques to the fully dynamic setting in a computationally efficient manner
is currently an open problem.
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Figure 4.2: Accuracy vs complexity on the TREC 2007 SPAM Corpus for different number of
labels. Legend: Sparse-HFS, EigFun, SubSampling, 1-NN





5. Sequential RLS Sampling in the Online Setting

Online learning (OL) represents a family of efficient and scalable learning algorithms for
building a predictive model incrementally from a sequence of T data points.
A popular online learning approach, introduced in (Zinkevich, 2003), is to learn a linear
predictor using gradient descent (GD) in the input space Rd. Since we can explicitly store
and update the d weights of the linear predictor, the total runtime of this algorithm is
O(Td), allowing it to scale to large problems. Unfortunately, it is sometimes the case that
no good predictor can be constructed starting from only the linear combination of the input
features.
For this reason, online kernel learning (OKL) (Kivinen et al., 2004a) first maps the points
into a high-dimensional reproducing kernel Hilbert space (RKHS) using a non-linear feature
map ϕ, and then runs GD on the projected points, which is often referred to as functional
GD (FGD) (Kivinen et al., 2004b). With the kernel approach, each gradient step does
not update a fixed set of weights, but instead introduces the feature-mapped point in the
predictor as a support vector (SV). The resulting kernel-based predictor is flexible and
data adaptive, but the number of parameters, and therefore the per-step space and time
cost, now scales with O(t), the number of SVs included after t steps of GD. This curse of
kernelization, results in an O(T 2) total runtime, and prevents standard OKL methods from
scaling to large problems.

When judging an online learning algorithm, we are not only interested in its computational
complexity, but also in its prediction accuracy. Given a function space containing functions
with very small prediction loss, the objective of an online learning algorithm is to approach
over time the performance of the best predictor in the space and thus minimize the regret,
that is the difference in cumulative loss between the OL algorithm and the best predictor
in hindsight.
Over time, many methods have been proposed to trade-off minimizing the regret of the
online learning algorithm, and the computational cost required to compute the predictions.

Gradient descent. For OL, Zinkevich, (2003) showed that simple gradient descent (GD),
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combined with a smart choice for the stepsize ηt of the gradient updates, achieves a O(
√
dT )

regret with a O(d) space and time cost per iteration. When the only assumption on the
losses is simple convexity, this upper bound matches a corresponding lower bound (Luo
et al., 2016), thus making first-order methods (e.g.,GD) essentially unimprovable in a
minimax sense.
However, if we know that the losses are strongly convex, setting a more aggressive step-size
achieves a smaller O(log(T )) regret (Hazan et al., 2006; Zhu and Xu, 2015). Unfortunately,
most common losses, such as the squared loss, are not strongly convex when evaluated for a
single point xt.
Nonetheless, they possess a certain directional curvature and Hazan et al., (2006) show
that online Newton step (ONS), an adaptive method that exploits second-order (second
derivative) information on the losses, can achieve a logarithmic regret O(d log T ) without
strong convexity along all directions.
The downside of this adaptive method is the larger O(d2) space and per-step time complexity,
since second-order updates require to construct, store, and invert Ht, a preconditioner
matrix related to the Hessian of the losses used to correct the first-order updates.

Kernel gradient descent. OKL is fundamentally harder than OL, due to 1) the fact that
an infinite parametrization makes regret bounds scaling with the dimension d meaningless
and 2) the size of the model, and therefore time and space complexities, scales with t itself,
making these methods even less performant than OL algorithms.
Kernel extensions of first-order OL algorithms have been proposed for OKL, such as
functional GD (e.g., NORMA, (Kivinen et al., 2004a)) which achieves a O(

√
T ) regret

with a O(t) space and time cost per iteration.
For second-order methods, the Second-Order Perceptron (Cesa-Bianchi et al., 2005) or
NAROW (Orabona and Crammer, 2010) for generic curved losses and Recursive Kernel
Least Squares (Zhdanov and Kalnishkan, 2010) or Kernel AAR (Gammerman et al., 2004)
for the specific case of `2 losses provide bounds that scale with the log-determinant of the
kernel-matrix.
As we showed in Lemma 3.9 this quantity can be upper bounded using the effective
dimension dTeff(γ) of the of the points xt, and scales as O(dTeff(γ) log(T )), playing a similar
role as the O(d log T ) bound from OL.

Approximate GD. To trade off between computational complexity
(
smaller than O(d2)

)
and improved regret (close to O(d log T )), several OL methods try approximate second-order
updates, replacing Ht with an approximate H̃t that can be efficiently stored and inverted.
AdaGrad (Duchi et al., 2011) and ADAM (Kingma and Ba, 2015) reweight the gradient
updates on a per-coordinate basis using a diagonal H̃t, but these methods ultimately only
improve the regret dependency on d and leave the

√
T component unchanged.

Sketched-ONS, by Luo et al., (2016), uses matrix sketching to approximate Ht with a
r-rank sketch H̃t, that can be efficiently stored and updated in O(dr2) time and space,
close to the O(d) complexity of diagonal approximations. More importantly, Sketched-ONS
achieves a much smaller regret compared to diagonal approximations: When the true Ht is
of low-rank r, it recovers a O(r log T ) regret bound logarithmic in T .
Unfortunately, when the true Ht is not low-rank, a new term appears in the bound, due to
the sketch approximation, that scales with the spectrum of Ht and in some cases can grow
much larger than O(log T ).

Approximate kernel GD. Many approximation methods have been proposed to make
first-order OKL methods scale to large datasets. They all try to reduce the O(t) per-step
complexity to a constant independent from t. Approximate methods usually take one of
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two approaches:

• budgeted methods perform approximate gradient updates in the true RKHS, where
instead of updating the SVs’ weights in our predictor using the true gradient direction
we use an update that keeps most weight at zero,
• functional approximation methods perform exact gradient updates in an approximate
RKHS, where the points are embedded in a finite-dimensional space and the curse of
kernelization does not apply, allowing us to follow the gradient without increasing the
number of SV.

Overall, the goal is to never exceed a budget of SVs in order to maintain a fixed per-step
cost.
Among budgeted methods, how to modify the gradient update to maintain zero weights
(i.e., weight degradation (Wang et al., 2012)) can be approached in many different ways,
such as removal (Cavallanti et al., 2007; Dekel et al., 2008) or more expensive projection
(Orabona et al., 2008) and merging strategies. Nonetheless, we will see that as long as
the size of the budget is fixed, the adversary can exploit this to increase the regret of the
algorithm, and oblivious inclusion strategies such as uniform sampling (He and Kwok, 2014)
fail.
As for functional approximation methods, the most common approach is to replace the
exact feature-map ϕ with a finite-rank approximate feature map ϕ̃ which allows to explicitly
represent the mapped points in an Euclidean space, and run OL on this embedding (Lu
et al., 2016; Yang et al., 2012).
When the embedding is oblivious to data, the method is known as random-feature expan-
sion(Le et al., 2013), while a common data-dependent embedding mapping is the Nyström
method (Williams and Seeger, 2001). Again, if the embedding is fixed or with a limit in
size, the adversary can exploit it. In addition, analyzing a change in embedding during the
gradient descent is an open problem, since the underlying RKHS changes with it.
Unfortunately, to guarantee O(

√
T ) regret using less than O(t) space and time per round

w.h.p., all of these methods require additional assumptions, such as points xt coming from a
distribution or strong convexity on the losses. Moreover, as approximate first-order methods,
they can at most hope to match the O(

√
T ) regret of exact GD, and among second-order

kernel methods, no approximation scheme has been proposed that can provably maintain
the same O(log T ) regret as exact second-order GD.
In addition, approximating Ht is harder for OKL. Since we cannot directly access the
matrix representation of Ht in the feature-space, diagonal approximation is impossible, and
low-rank sketching harder.

Contributions: In this chapter, we provide two second-order OKL algorithms: Sketched-
KONS takes the approach of approximate gradient updates, and PROS-N-KONS takes
the approach of approximating the feature map. Both are based on an exact second-order
method OKL algorithm called Kernelized-ONS (KONS), which is a generalization of Hazan
et al., (2006)’s online Newton step (ONS) from OL to OKL.

With Sketched-KONS (Calandriello et al., 2017c) our goal is to show that it is possible
to approximate the second-order updates of an exact second-order OKL method (i.e.,
approximate the preconditioner Ht) using only a small budget of SV, and without losing
the logarithmic regret rate. In particular, Sketched-KONS chooses which SV to include
in the approximate preconditioner H̃t based on their RLS, using KORS to estimate them.
The result is the first approximate second-order OKL algorithm that w.h.p. achieves
logarithmic regret, and offers a favorable regret-performance trade-off. For a given factor
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β ≤ 1, we can increase the regret by a linear 1/β factor to O(dteff(γ) log(T )/β), while
obtaining a quadratic β2 improvement in runtime compared to exact methods, and achieving
a O(t2β2) space and time cost per iteration.
Unfortunately, to construct a truly scalable OKL algorithm, we need to achieve a near-linear
Õ(TdTeff(γ)) runtime. In Section 5.2.1 we show a counterexample where any SV inclusion
rule will fail to preserve both logarithmic regret and O(dTeff(γ)) runtime, highlighting the
limits of our approximate gradient update rule.

To resolve the failure mode proposed by the counterexample, we introduce PROS-N-KONS
(Calandriello et al., 2017b), an improved second-order OKL method that for the first time
guarantees both logarithmic regret and avoids the curse of kernelization, taking only a
near-constant Õ(dTeff(γ)2) per-step time and space cost.
To achieve this, instead of replacing the update rule for the preconditioner Ht, we replace
the exact feature map ϕ with an approximate ϕ̃ and H̃ constructed using a Nyström
dictionary approximation, where the dictionary is computed using KORS. While previous
methods (Le et al., 2013; Lu et al., 2016) used fixed embeddings, we adaptively update our
dictionary and embedding H̃, so that it cannot be indefinitely exploited by the adversary.
For a dictionary of size j, this non-linearly embeds the points in Rj , where we can efficiently
perform exact second-order updates in constant O(j2) per-step time, and achieve the desired
O(log(T )) regret, with respect to the best competitor in H̃.
Using KORS’ (ε, γ)-accuracy guarantees to show that H and H̃ are close, we prove that we
never get stuck performing GD in an embedded space that is too distant from the true H,
but at the same time the size of the embedding j never grows larger than the effective
dimension of the problem. Combined with an adaptive restart strategy, this allows us to
bound our regret w.r.t. to the best solution in H.

5.1 Online kernel learning and the kernelized online Newton step

We focus on the online kernel learning setting, where an adversary chooses an arbitrary
sequence of points {xt}Tt=1 and convex differentiable losses {`t}Tt=1 . The learning protocol
is the following. At each round t ∈ [T ]

(1) the adversary reveals the new point xt,
(2) the learner chooses a function fwt and predicts fwt(xt) = ϕ(xt)

Twt,
(3) the adversary reveals the loss `t,
(4) the learner suffers `t(ϕ(xt)

Twt) and observes the associated gradient gt.

The adversary can choose any function f ∈ H that can be represented as a (potentially
infinite) set of weights w such that fw(x) = ϕ(x)Tw and the norm ‖w‖ is bounded.
After t timesteps, we indicate with Dt = {xi}ti=1, the dataset containing the points observed
so far. In the rest of the thesis we consider the problem of OKL where H is arbitrary
and potentially infinite dimensional (non-parametric setting). We refer to the special case
H = Rd and φt = xt as OL (parametric setting).

We are interested in bounding the cumulative regret between the learner and a fixed function
w defined as RT (w) =

∑T
t=1 `(φtwt)− `(φtw). Since H is potentially a very large space,

we also need to restrict the class of comparators w.
As Luo et al., (2016), we define the feasible set as St = {w : |φT

tw| ≤ C} and S = ∩Tt=1St.
This comparison class contains all functions fw whose output is contained (clipped) in the
interval [−C,C] on all points φ1, . . . ,φT . Unlike the often used constraint on ‖w‖ (Hazan
et al., 2006; Zhu and Xu, 2015), comparing against clipped functions (Gammerman et al.,
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Algorithm 12 Kernelized online Newton step (KONS)
Input: Feasible parameter C, stepsizes ηt, regulariz. α
1: Initialize w0 = 0,g0 = 0, b0 = 0, A0 = αΠT

2: for t = {1, . . . , T} do
3: receive xt
4: compute bs as in Lem. 5.2
5: compute ut = A−1t−1(

∑t−1
s=0 bsgs)

6: compute yt = ϕ(xt)
Tut

7: predict ŷt = ϕ(xt)
Twt = yt − h(yt)

8: observe gt, update At = At−1 + ηtgtg
T
t

9: end for

2004; Luo et al., 2016; Zhdanov and Kalnishkan, 2010) has a clear interpretation even
when passing from Rd to H. Moreover, S is invariant to linear transformations of H and
suitable for practical problems where it is often easier to choose a reasonable interval for
the predictions ŷt rather than a bound on the norm of a (possibly non-interpretable and
infinite) parametrization w.

We make the following assumptions on the losses
Assumption 1 — Scalar Lipschitz. The loss functions `t satisfy |`′t(z)| whenever |z| ≤ C.
Assumption 2 — Curvature. There exists σt ≥ σ > 0 such that for all u,w ∈ S and for all
t ∈ [T ],

`t(φ
T
tw) := lt(w) ≥ lt(u) +∇lt(u)T(w − u) +

σt
2

(∇lt(u)T(w − u))
2
.

This assumption is weaker than strong convexity as it only requires the losses to be strongly
convex in the direction of the gradient. It is satisfied by squared loss, squared hinge loss,
logistic loss, and in general all exp-concave losses (Hazan et al., 2006). Under this weaker
requirement, exact second-order learning methods (Calandriello et al., 2017c; Hazan et al.,
2006), can achieve logarithmic regret at the cost of a higher computational complexity w.r.t.
first-order methods.

5.1.1 Kernelized online newton step

We now present an simple second-order OKL method, that will serve as a basis for
Sketched-KONS and PROS-N-KONS. In particular, we generalize to the OKL setting
the online Newton step algorithm, originally introduced by Hazan et al., (2006) for OL.
ONS is a projected gradient descent that uses the following update rules

ut = wt−1 −A−1t−1gt−1, wt = Π
At−1

St (ut), 5.1

where Π
At−1

St (ut) = arg minw∈St ‖ut − w‖At−1 is an oblique projection on a set St with
matrix At−1. If St is the set of vectors with bounded prediction in [−C,C], then as shown
by Luo et al., (2016) the projection reduces to

wt = Π
At−1

St (ut) = ut −
h(φT

tut)

φT
tA
−1
t−1φt

A−1t−1φt,

where h(z) = sign(z) max{|z| − C, 0} computes how much z is above or below the interval
[−C,C]. When At = ΠT /ηt, ONS is equivalent to vanilla projected gradient descent, which
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in OL achieves O(
√
dT ) regret (Zinkevich, 2003). In the same setting, Hazan et al., (2006)

shows that choosing At =
∑t

s=1 ηsgsg
T
s + αΠT makes ONS an efficient reformulation of

follow the approximate leader (FTAL). While traditional follow-the-leader algorithms play
the set of weights wt = arg minw∈St

∑t−1
s=1 lt(w), FTAL replaces the loss lt with a convex

approximation using Asm. 2, and plays the minimizer of the surrogate function. As a result,
under Asm. 1-2 and when σt ≥ σ > 0, FTAL achieves a logarithmic O(d log T ) regret.
FTAL’s solution path can be computed in O(d2) time using ONS updates, and further
speedups were proposed by Luo et al., (2016) using matrix sketching.

Unfortunately, in OKL, vectors φt and weights wt cannot be explicitly represented, and
most of the quantities used in vanilla ONS (Eq. 5.1) cannot be directly computed. Instead,
we derive a closed form alternative (Alg. 12) that can be computed in practice. Using a
rescaled variant of our feature vectors φt, φt = ġt

√
ηtφt =

√
ηtgt and Φt = [φ1, . . . ,φt],

we can rewrite At = ΦtΦ
T

t +αΠT and ΦT

tΦt = Kt, where the empirical kernel matrix Kt is
computed using the rescaled kernel K(xi,xj) = ġi

√
ηiġj
√
ηjK(xi,xj) instead of the original

K, or equivalently Kt = DtKtDt with Dt = Diag({ġi√ηi}ti=1) the rescaling diagonal
matrix. We begin by noting that

ŷt = φT
twt = φT

t

(
ut −

h(φT
tut)

φT
tA
−1
t−1φt

A−1t−1φt

)
= φT

tut − h(φT
tut)

φT
tA
−1
t−1φt

φT
tA
−1
t−1φt

= yt − h(yt).

As a consequence, if we can find a way to compute yt, then we can obtain ŷt without
explicitly computing wt. Before that, we first derive a non-recursive formulation of
ut.

Lemma 5.1 — (Calandriello et al., 2017c). In Alg. 12 we introduce

bi = [bt]i = ġi
√
ηi

(
ŷi −

h(yi)

φ
T

iA
−1
i−1φi

)
− 1√

ηi

and compute ut as

ut = A−1t−1Φt−1bt−1.

Then, ut is equal to the same quantity in Eq. 5.1 and the sequence of predictions ŷt is
the same in both algorithms.

While the definition of bt and ut still requires performing operations in the (possibly
infinitely dimensional) feature space, in the following we show that bt and the prediction yt
can be conveniently computed using only inner products.

Lemma 5.2 — (Calandriello et al., 2017c). All the components bi = [bt]i of the vector
introduced in Lem. 5.1 can be computed as

ġi
√
ηi

(
ŷi −

αh(yi)

ki,i − k
T

[i−1],i(Ki−1 + αIi−1)−1k[i−1],i
− 1

ηi

)
.

Then, we can compute

yt =
1

α
kT

[t−1],tDt−1(bt−1 − (Kt−1 + αIi−1)
−1Kt−1bt−1).



5.1 Online kernel learning and the kernelized online Newton step 121

Since Alg. 12 is equivalent to ONS (Eq. 5.1), existing regret bounds for ONS directly applies
to its kernelized version.

Proposition 5.3 — (Luo et al., 2016). For any sequence of losses `t satisfying Asm. 1-2,
the regret RT of Alg. 12 is bounded by RT ≤ α‖w∗‖2 +RG +RD with

RG :=
T∑
t=1

gT
tA
−1
t gt =

T∑
t=1

φ
T

t (ΦtΦ
T

t + αΠT )−1φt/ηt

RD :=
T∑
t=1

(wt −w∗)T(At −At−1−σtgtgT
t )(wt −w∗)

=
T∑
t=1

(ηt − σt)ġ2t (φT
t (wt −w∗))2.

In the d-dimensional OL, choosing a decreasing step-size ηt =
√
d/(C2L2t) allows ONS

to achieve a O(CL
√
dT ) regret for the cases where σt = 0. When σt ≥ σ > 0 (e.g., when

the functions are exp-concave) we can set ηt = σt and improve the regret to O(d log(T )).
Unfortunately, these quantities hold little meaning for OKL, where d is not guaranteed to
be finite-dimensional, and a O(

√
d) regret can be very large or even infinite. Instead, we

expect the regret of KONS to depend on quantities that are more strictly related to the
kernel Kt and its complexity.

By focusing the first regret term in the decomposition of Prop. 5.3, we notice that

RG =
T∑
t=1

φ
T

t (ΦtΦ
T

t + αΠT )−1φt/ηt =
T∑
t=1

τ t,t/ηt,

where τ t,t it the RLS of sample t computed using the rescaled K rather than K (i.e., using
φt and w.r.t. Φt). This reveals a deep connection between the regret of KONS and the
cumulative sum of the RLS. In other words, the RLS capture how much the adversary can
increase the regret by picking orthogonal directions that have not been seen before.
While in OL, this can happen at most d times (hence the dependency on d in the final
regret, which is mitigated by a suitable choice of ηt), in OKL, RG can grow linearly with
time, since large H can have infinite near-orthogonal directions. Nonetheless, the actual
growth rate is now directly related to the complexity of the sequence of points chosen by
the adversary and the kernel function K. While the sum

∑
i τ i,i scales with the online

effective dimension of the points, we can use Lemma 3.9 to bound it as dteff(α) log(t). This
inequality shows again that in general the complexity of online learning is only a factor
log(T ) (in the worst case) away from the complexity of batch learning. Moreover, notice
that the log-determinant of the covariance matrix AT appears in many other online learning
problems (Cesa-Bianchi et al., 2005; Srinivas et al., 2010).

At this point, we can generalize the regret bounds of ONS for OL to KONS and OKL.

Theorem 5.4 — (Calandriello et al., 2017c). For any sequence of losses `t satisfying
Asm. 1-2, let σ = mint σt. If ηt ≥ σ ≥ 0 for all t and α ≤

√
T , the regret of Alg. 12 is
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Algorithm 13 Sketched-KONS
Input: Feasible parameter C, stepsizes ηt, regulariz. α
1: Initialize w0 = 0,g0 = 0, b0 = 0, Ã0 = αΠT

2: Initialize independent run of KORS
3: for t = {1, . . . , T} do
4: receive xt
5: compute ũt = Ã−1t−1(

∑t−1
s=0 b̃sgs)

6: compute y̆t = ϕ(xt)
Tũt

7: predict ỹt = ϕ(xt)
Tw̃t = y̆t − h(y̆t), observe gt

8: compute τ̃t,t using KORS (i.e., Algorithm 8 and Eq. 3.4)
9: compute p̃t = max{τ̃t,t, β}
10: draw qt ∼ B(p̃t, q)
11: update Ãt = Ãt−1 + ηt

qt
q gtg

T
t

12: end for

upper-bounded as

RT ≤ α‖w∗‖2 + dTonl(α)/ηT + 4C2L2
T∑
t=1

(ηt − σ).

In particular, if for all t we have σt ≥ σ > 0, setting ηt = σ we obtain

RT ≤ α‖w∗‖2 + 2dTeff
(
α/(σL2)

) log(2σL2T )

σ
,

otherwise, σ = 0 and setting ηt = 1/(LC
√
t) we obtain

RT ≤ α‖w∗‖2 + 4LC
√
TdTeff(α/L2) log(2L2T ).

Comparison to OL algorithms. We first notice that the effective dimension dTeff(α)
can be seen as a soft rank for KT and that it is smaller than the rank r for any α.1 For
exp-concave functions (i.e., σ > 0), we slightly improve over the bound of Luo et al.,
(2016) from O(d log T ) down to O(dTeff(α) log T ) ≤ O(r log T ), where r is the (unknown)
rank of the dataset. Furthermore, when σ=0, setting ηt=

√
1/(L2C2t) gives us a regret

O(dTeff(α)
√
T ), which is potentially much smaller than O(r

√
T ) and O(

√
Td). Furthermore,

if an oracle provided us in advance with dTeff(α), setting ηt =
√
dTeff(α)/(L2C2t) gives a

regret O(
√
dTeff(α)T ) ≤ O(

√
rT ).

Comparison to OKL algorithms. Simple functional gradient descent, e.g., NORMA
(Kivinen et al., 2004a), achieves a O(

√
T ) regret when properly tuned (Zhu and Xu, 2015),

regardless of the loss function. For the special case of squared loss, Zhdanov and Kalnishkan,
(2010) show that kernel recursive least squares achieves the same O(log(Det(KT /α+ IT )))
regret as achieved by KONS for general exp-concave losses.

5.2 Sketched KONS

1This can be easily seen as dTeff(α) =
∑
t λt/(λt + α), where λt are the eigenvalues of KT .
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Building on KORS, we now introduce a sketched variant of KONS that can efficiently trade
off between computational performance and regret. Sketched-KONS (Algorithm 13)
runs KORS (Algorithm 8) as a black-box estimating RLS τ̃t, that are then used to sketch
the original matrix At with a matrix Ãt =

∑t
s=1 ηt(qs/q)gtg

T
t +ΠT , where at each step we

add the current gradient gtg
T
t only if the one of the coin flips in qt succeeded (i.e., qt 6= 0).

Unlike KORS, the elements added to Ãt are not weighted, and the probabilities p̃t used
for the individual coins zt,j are chosen as the maximum between τ̃t,t, and a parameter
0 ≤ β ≤ 1. Let Rt be the unweighted counterpart of St, that is [Rt]i,j = 0 if [St]i,j = 0 and
[Rt]i,j = 1 if [St]i,j 6= 0. Then we can efficiently compute the coefficients b̃t and predictions
ỹt as follows.

Lemma 5.5 — (Calandriello et al., 2017c). Let Et = RT
tKtRt + αIt be an auxiliary

matrix, then all the components b̃i = [b̃t]i used in Alg. 13 can be computed as

ġi
√
ηi

(
ỹi −

αh(y̆i)

ki,i − k
T

[i−1],iRi−1E
−1
i−1Ri−1k[i−1],i

− 1

ηi

)
.

Then we can compute

y̆t =
1

α

(
kT

[t−1],tDt−1bt−1 − kT

[t−1],tDt−1Rt−1E
−1
t−1Rt−1Kt−1bt−1

)
.

Note that since the columns in Rt are selected without weights, (RT
tKtRt + αIt)

−1 can
be updated efficiently using block inverse updates, and only when Ãt changes. While the
specific reason for choosing the unweighted sketch Ãt instead of the weighted version AItt
used in KORS is discussed further in the discussion of Theorem 5.7, the following corollary
shows that Ãt is as accurate as AItt in approximating At up to the smallest sampling
probability p̃βt .

Corollary 5.6 — Theorem 3.11. Let p̃βmin = minTt=1 p̃
β
t . Then w.h.p., we have

(1− ε)p̃minAt � p̃minA
It
t � Ãt.

We can now state the main result of this section. Since for Sketched-KONS we are
interested not only in regret minimization, but also in space and time complexity, we do not
consider the case σ = 0, because when the function does not have any curvature, standard
GD already achieves the optimal regret of O(

√
T ) (Zhu and Xu, 2015) while requiring only

O(t) space and time per iteration.

Theorem 5.7 — (Calandriello et al., 2017c). For any sequence of losses `t satisfying
Asm. 1-2, let σ = mint σt and τmin = minTt=1 τ t,t. When ηt ≥ σ > 0 for all t, α ≤

√
T ,

q ≥ 3 log(T/δ)/ε2, if we set ηt = σ then w.p. 1− δ the regret of Alg. 13 satisfies

R̃T ≤ α‖w∗‖2 + 2
dTeff
(
α/(σL2)

)
log(2σL2T )

σmax{β, τmin}
, 5.2

and the algorithm runs in Õ(dteff(α)2+t2β2) time and Õ(dteff(α)2+t2β2) space complexity
for each iteration t.

Proof sketch: Given these guarantees, we need to bound RG and RD. Bounding RD
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is straightforward, since by construction Sketched-KONS adds at most ηtgtgT
t to Ãt

at each step. To bound RG instead, we must take into account that an unweighted
Ãt = ΦtRtR

T
tΦ

T

t + αΠT can be up to p̃min distant from the weighted ΦtStS
T
tΦ

T

t for which
we have guarantees. Hence the max{β, τmin} term appearing at the denominator. The full
proof is available in Section 5.4.

Regret guarantees. From Eq. 5.2 we can see that when τmin is not too small, setting
β = 0 we recover the guarantees of exact KONS. Since usually we do not know τmin, we
can choose to set β > 0, and as long as β ≥ 1/ polylog T , we preserve a (poly)-logarithmic
regret.

Computational speedup. The time required to compute k[t−1],t, kt,t, and kT

[t−1],tDt−1bt−1

gives a minimum O(t) per-step complexity. Note that Kt−1bt−1 can also be computed incre-
mentally in O(t) time. Denoting the size of the dictionary at time t as Bt = Õ(deff(α)t+ tβ),
computing [b̃t]i and kT

[t−1],tDt−1Rt−1E
−1
t−1Rt−1Kt−1bt−1 requires an additionalO(B2

t ) time.

When β ≤ dteff(α)/t, each iteration takes Õ(dteff(α)2) to compute τ̃t,t incrementally using
KORS, Õ(dteff(α)2) time to update Ã−1t and Õ(dteff(α)2) time to compute [bt]t. When
β > dteff(α)/t, each iteration still takes Õ(dteff(α)2) to compute τ̃t,t using KORS and O(t2β2)
time to update the inverse and compute [bt]t.
Therefore, in the case when τmin is not too small, our runtime is of the order Õ(dteff(α)2 + t),
which is almost as small as the O(t) runtime of GD but with the advantage of a second-order
method logarithmic regret. Moreover, when τmin is small and we set a large β, we can trade
off a 1/β increase in regret for a β2 decrease in space and time complexity when compared
to exact KONS (e.g., setting β = 1/10 would correspond to a tenfold increase in regret,
but a hundred-fold reduction in computational complexity).

Asymptotic behavior. Notice however, that space and time complexity, grow roughly
with a term Ω(tmints=1 p̃s) ∼ Ω(tmax{β, τmin}), so if this quantity does not decrease over
time, the computational cost of Sketched-KONS will remain large and close to exact
KONS.
This is to be expected, since Sketched-KONS must always keep an accurate sketch in
order to guarantee a logarithmic regret bound. Note that Luo et al., (2016) took an opposite
approach for OL, where they keep a fixed-size sketch but possibly pay in regret, if this fixed
size happens to be too small. Since a non-logarithmic regret is achievable simply running
vanilla GD, we rather opted for an adaptive sketch at the cost of space and time complexity.
In batch optimization, where `t does not change over time, another possibility is to stop
updating the solution once τmin becomes too small. When Hs is the Hessian of ` w.r.t. ws,
then the quantity gT

tH
−1
t gt, in the context of Newton’s method, is called Newton decrement

and it corresponds up to constant factors to τmin. Since a stopping condition based on
Newton’s decrement is directly related to the near-optimality of the current wt (Nesterov
and Nemirovskii, 1994), stopping when τmin is small also provides guarantees about the
quality of the solution.

Sampling distribution. Note that although β > 0 means that all columns have a small
uniform chance of being selected for inclusion in Ãt, this is not equivalent to uniformly
sampling columns. It is rather a combination of a RLS-based sampling to ensure that
columns important to reconstruct At are selected and a threshold on the probabilities to
avoid too much variance in the estimator.

Biased estimator and results in expectation. The random approximation Ãt is
biased, since E[ΦtRtR

T
tΦ

T

t ] = Φt Diag({τ t,t})ΦT

t 6= ΦtΦ
T

t . Another option would be to use
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a weighted and unbiased approximation Ã′t =
∑t

s=1 ηsqs/(qp̃s)gsg
T
s used in KORS and a

common choice in matrix approximation methods, see e.g., (Alaoui and Mahoney, 2015).
Due to its unbiasedness, this variant would automatically achieve the same logarithmic
regret as exact KONS in expectation, similar to the result obtained by Luo et al., (2016),
using Gaussian random projection in OL. While any unbiased estimator, e.g., uniform
sampling of gt, would achieve this result, RLS-based sampling already provides strong
reconstruction guarantees sufficient to bound RG. Unfortunately, and differently from the
batch case, the adaptive weights 1/p̃s may cause large variations in Ãt over consecutive
steps, thus leading to a large regret RD in high probability.

5.2.1 Limitations of budgeted OKL algorithms

From the discussion above, it appears that a weighted, unbiased dictionary may not achieve
high-probability logarithmic guarantee because of the high variance coming from sampling.
Therefore, if we want to recover the logarithmic regret guarantee, we may have to pay for
it with a large dictionary. This may actually be due to the analysis, the setting, or the
algorithm.

• The regret analysis of is tight for the OL setting without any curvature assumption,
since Luo et al., (2016) shows a lower bound for this case. As OL is a special case of
OKL, it does not seem easy to find a tighter bound, although possible data-adaptive
bounds remain an interesting open question.
• Regarding the difficulty of approximation in the online setting, notice that in the batch

setting (Chapter 4), the subsampling does not cause any issue and we can have strong
learning guarantees in high probability with a small dictionary. Differently from the
batch setting, in OKL we have to balance two opposing goals: we want our solution to
change quickly, in order to minimize RG, but we also want our solution to not change
too much, to minimize RD.
• Algorithmically, an important property of the dictionary learning approach used in

KORS is that it can only include atoms coming from the input, re-weight them, and
cannot remove an atom from the dictionary after insertion. If we set the weights to
have an unbiased estimate, we achieve an accurate RG but suffer a huge regret in RD.
On the other hand, we can store unweighted atoms to have small RD but large RG.

To see how this sampling without removal approach could fail, consider the following
simple scenario. The adversary always presents to the learner the same point x (with
associated φ), but for the loss it alternates between `2t(wt) = (C − φTwt)

2 on even steps
and `2t+1(wt) = (−C − φTwt)

2 on odd steps. Then, σt = σ = 1/(8C2), and we have a
gradient that always points in the same φ direction, but switches sign at each step. The
optimal solution in hindsight is asymptotically w = 0 and let this be also our starting
point w0. We also set ηt = σ, since this is what KONS would do, and α = 1 for simplicity.

For this scenario, we can compute RG and RD in closed form,

RG ≤
T∑

t=1

ġ2t∑t
s=1 ġ

2
sσ + α

≤
T∑

t=1

C2

C2σt+ α
≤ O(log T ), RD =

∑t

s=1
(ηt − σ)(wT

tgt)
2 = 0.

Note that although the matrix At is rank 1 at each time step, vanilla ONS does not take
advantage of this easy data, and would store it all with a O(t2) space in OKL.

Notice that in this all-identical samples example, the losses `t are effectively strongly convex,
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and even basic gradient descent with a stepsize ηt = 1/t would achieve logarithmic regret
(Zhu and Xu, 2015) with even smaller space. On the other hand, we show how sampling
without removal has difficulties in minimizing the regret bound from Proposition 5.3 in our
simple scenario.
In particular, consider an arbitrary (possibly randomized) algorithm that is allowed only to
reweight atoms in the dictionary and not to remove them. In our example, this translates
to choosing a schedule of weights ws and set Ãt =

∑t
s=1wsφsφs = Wtφφ with total

weight W = WT =
∑T

s=1ws and space complexity equal to the number of non-zero weights
B = |{ws 6= 0}|. We can show that there is no schedule for this specific class of algorithms
with good performance due to the following three conflicting goals.

(1) To maintain RG small,
∑t

s=1ws should be as large as possible, as early as possible.
(2) To maintain RD small, we should choose weights wt > 1 as few times as possible, since

we accumulate max{wt − 1, 0} regret every time.
(3) To maintain the space complexity small, we should choose only a few wt 6= 0.

To enforce goal (3), we must choose a schedule with no more than B non-zero entries. Given
the budget B, to satisfy goal (2) we should use all the B budget in order to exploit as much
as possible the max{wt − 1, 0} in RD, or in other words we should use exactly B non-zero
weights, and none of these should be smaller than 1. Finally, to minimize RG we should
raise the sum

∑t
s=1ws as quickly as possible, settling on a schedule where w1 = W − B

and ws = 1 for all the other B weights. It easy to see that if we want logarithmic RG, W
needs to grow as T , but doing so with a logarithmic B would make RD = T −B = Ω(T ).
Similarly, keeping W = B in order to reduce RD would increase RG. In particular notice,
that the issue does not go away even if we know the RLS perfectly, because the same
reasoning applies. This simple example suggests that dictionary-based sketching methods
without removal, which are very successful in batch scenarios, may actually fail in achieving
logarithmic regret in online optimization.

Algorithmically, this could be potentially fixed if we knew how to remove less important
columns from dictionary to gain some slack in RD, or how to create new atoms that can
be used to represent multiple inputs, such as Frequent Directions (FD, Ghashami et al.,
2016a) do in the Euclidean case.

Removing an atom present in the dictionary reduces our space complexity, but at the same
time increases RG, since the dampening effect of Ã−1t decreases. Moreover, let gt be the
last computed gradient, and let gs with s < t be the gradient we want to remove from
Ãt and our dictionary. Unless gt = gs (i.e., for any arbitrarily small perturbation) the
operator Ãt − Ãt−1 = gtg

T
t − gsg

T
s has both a positive and negative eigenvalue, and the

adversary can make the corresponding (wt − w∗)T((1 − σt)gtgT
t − gsg

T
s)(wt − w∗) term

in RD arbitrarily large. Therefore, removing a gradient from the dictionary will decrease
space, but it increases RG, and might cause an arbitrarily large increase in RD due to the
adversary. Similar arguments can be derived for schemes that keep reweighting atoms after
insertion.

Finally, as our counterexample in the simple scenario hints, creating new atoms (either
through projection or merging) allows for better adaptivity. For example, if we have a
single gradient g each time slightly perturbed, we can represent it using just the principal
components of these perturbed copies without storing each copy separately. This is
essentially the approach taken by Luo et al., (2016) in the OL setting using FD as a
sketching algorithm.
However, in OKL we cannot explicitly represent new atoms, and therefore the kernelization
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of FD does not appear to be straightforward. The most recent step in this direction is
proposed again by Ghashami et al., (2016b) for batch kernel PCA. It first embeds the points
into a finite-dimensional space using a fixed set of random feature expansions and afterwards
uses FD to reduce the computational complexity. Unfortunately, their method only works
for an Euclidean input space X , and does not have online or any-time guarantees.
Moreover, note that our example can be easily generalized to defeat any approximation
strategy that uses a fixed embedding technique (e.g., fixed amount of random features or a
fixed dictionary) or a fixed budget of SV. It suffice to replace the single φ vector with a set
of repeating orthogonal vectors that exceed the budget.

Nonetheless, this single sample problem is intrinsically simple: its effective dimension
dTeff(α) ' 1 is small, and its induced RKHS H = φ is a singleton. Therefore, following an
adaptive embedding approach, we can reduce it to a 1 dimensional parametric problem, and
solve it efficiently in this space using exact ONS updates. We can see this approach as
constructing an approximate feature map ϕ̃ that after one step will exactly coincide with
the exact feature map ϕ, but allows us to run exact KONS updates efficiently replacing K
with K̃.
In other words, since correctly approximating second-order updates in the exact RKHS H
is hard due to the adversary, we instead resort to make exact second order updates, that
the adversary cannot exploit, but in an approximate and smaller RKHS H̃.
Building on this intuition, we propose PROS-N-KONS, a new second-order FGD method
that continuously searches for the best embedding space HIt and, at the same time, exploits
the small embedding space HIt to efficiently perform exact second-order updates.

5.3 The PROS-N-KONS algorithm
A common approach to alleviate the computational cost of OKL is to replace the high-
dimensional feature map ϕ with a finite-dimensional approximate feature map ϕ̃.
Let I = {φi}ji=1 be a dictionary of j points chosen from those revealed by the adversary,
and let and ΦI be the associated feature matrix with ϕ(xi) as columns. We define the
embedding ϕ̃(x) = Σ−1UTΦT

Iϕ(x) ∈ Rj , where ΦI = VΣUT is the singular value decom-
position of the feature matrix. While in general ΦI is infinite dimensional and cannot be
directly decomposed, we exploit the fact that UΣVTVΣUT = ΦT

IΦI = KI = UΛUT and
that KI is a (finite-dimensional) PSD matrix. Therefore it is sufficient to compute the
eigenvectors U and eigenvalues Λ of KI and take the square root Λ1/2 = Σ.
Note that with this definition we are effectively replacing the kernel K and H with an approx-
imate KI and HI , such that KI(x,x′) = ϕ̃(x)Tϕ̃(x′) = ϕ(x)TΦIUΣ−1Σ−1UTΦT

Iϕ(x′) =
ϕ(x)TΠIϕ(x′) where ΠI = ΦI(Φ

T
IΦI)

−1ΦT
I is the projection matrix on the column span

of ΦI . Since ϕ̃ returns vectors in Rj , this transformation effectively reduces the compu-
tation complexity of kernel operations from t down to the size of the dictionary j. The
accuracy of ϕ̃ is directly related to the accuracy of the projection ΠI in approximating
the projection Πt = Φt(Φ

T
tΦt)

−1ΦT
t , so that for all s, s′ ∈ [t], ϕ̃(xs)

Tϕ̃(xs′) is close to
ϕ(xs)

TΠtϕ(xs′) = ϕ(xs)
Tϕ(xs′).

All that is left is to find an efficient algorithm to choose a good dictionary I to minimize
the error ΠI −Πt. Among dictionary-selection methods, we focus on KORS (Section 3.2).
While SQUEAK can generate smaller dictionaries, as we will see the frequent insertion
and removal of atoms from the dictionary can change the subspace ΠI too quickly over
time. While in the batch setting this was not a problem, in the online setting the adversary
can exploit this large variance and negatively affect our performance.
Therefore we prefer the slightly suboptimal but more stable KORS, where the total number
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Algorithm 14 PROS-N-KONS
Input: Feasible parameter C, step-sizes ηt, regularizer α
1: Initialize j = 0, w̃0 = 0, g̃0 = 0, Π̃0 = 0, Ã0 = αI0,
2: Start a KORS instance with an empty dictionary I0.
3: for t = {1, . . . , T} do
4: Receive xt, feed φt to KORS.
5: Receive qt from KORS (point added to dictionary or not)
6: if qt−1 6= 0 then { . Dictionary changed, reset.}
7: j = j + 1
8: Build Kj from Ij and decompose it in UjΣjΣ

T
jU

T
j

9: Set Ãt−1 = αIj ∈ Rj×j .
10: ω̃t = 0 ∈ Rj
11: else {. Execute a gradient-descent step.}
12: Compute map φt and approximate map φ̃t = Σ−1j UT

jΦ
T
jφt ∈ Rj .

13: Compute υ̃t = ω̃t−1 − Ã−1t−1g̃t−1.

14: Compute ω̃t = υ̃t − h(φ̃T
t υ̃t)

φ̃T
t Ã
−1
t−1φ̃t

Ã−1t−1φ̃t where h(z) = sign(z) max{|z| − C, 0}
15: end if
16: Predict ỹt = φ̃T

t ω̃t.
17: Observe g̃t = ∇ω̃t`t(φ̃T

t ω̃t) = `′t(ỹt)φ̃t.
18: Update Ãt = Ãt−1 + σt

2 g̃tg̃
T
t .

19: end for

of dictionary changes equals the final size of the dictionary, and we can prove that w.h.p.
this number of changes is small.

We start from an empty dictionary I0 and a null predictor w0 = 0. At each round,
PROS-N-KONS (Algorithm 14) receives a new point xt and invokes KORS to decide
whether it should be included in the current dictionary or not.
Let tj with j ∈ [J ] be the random step when KORS introduces φtj in the dictionary. We
analyze PROS-N-KONS as an epoch-based algorithm using these milestones tj . Note that
the length hj = tj+1 − tj and total number of epochs J is random, and is decided in a
data-adaptive way by KORS based on the difficulty of the problem.
During epoch j, we have a fixed dictionary Ij that induces a feature matrix ΦIj containing
samples φi ∈ Ij , an embedding ϕ̃(x) : X → Rj = Σ−1j UT

jΦ
T
jϕ(x) based on the singular

values Σj and singular vectors Uj of Φj , with its associated approximate kernel function K̃
and induced RKHS Hj . At each round tj < t < tj+1, we perform an exact KONS update
using the approximate map ϕ̃. This can be computed explicitly since φ̃t is in Rj and can
be easily stored in memory. The update rules are

υ̃t = ω̃t−1 − Ã−1t−1g̃t−1, ω̃t = Π
At−1

St (υt) = υ̃t −
h(φ̃T

t υ̃t)

φ̃T
t Ã
−1
t−1φ̃t

Ã−1t−1φ̃t,

Ãt = Ãt−1 +
σt
2

g̃tg̃
T
t ,

where we compute the oblique projection Π
At−1

St using Luo et al., (2016)’s closed-form
solution.
When t = tj and a new epoch begins, we perform a reset step before taking the first gradient
step in the new embedded space. We update the feature-map ϕ̃, but we reset Ãtj and ω̃tj to
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zero. While this may seem a poor choice, as information learned over time is lost, it leaves
intact the dictionary. As long as (a) the dictionary, and therefore the embedded space
where we perform our GD, keeps improving and (b) we do not needlessly reset too often, we
can count on the fast second-order updates to quickly catch up to the best function in the
current Hj . The motivating reason to reset the descent procedure when we switch subspace
is to guarantee that our starting point in the descent cannot be influenced by the adversary,
and therefore allow us to provide regret guarantees for the overall process (Section 5.3.1).

Computational complexity. PROS-N-KONS’s computation complexity is dominated
by Ã−1t inversion required to compute the projection and the gradient update and by
the query to KORS, that internally also inverts a j × j matrix. Therefore, a naïve
implementation requires O(j3) per-step time, and has a space O(j2) space complexity
necessary to store Ãt. Notice that taking advantage of the fact that KORS only adds SV
to the dictionary and never removes them, and that similarly, the Ãt matrix is constructed
using rank-one updates, a careful implementation reduces the per-step cost to O(j2).
Overall the total runtime of PROS-N-KONS is then O(TJ2), which using the bound on
J provided by Theorem 3.11 and neglecting logarithmic terms reduces to Õ(TdTeff(γ)2).
Compared to other exact second-order FGD methods, such as KONS or RKLS, PROS-N-
KONS dramatically improves the time and space complexity from polynomial to linear.
Against other approximate second-order methods, PROS-N-KONS does not add a new
SV at each step. This way it removes T 2 from the Õ(T 2β2 + TdTeff(γ)3) time complexity
of Sketched-KONS (Calandriello et al., 2017c). Moreover, when mint τt,t is small,
Sketched-KONS needs to compensate by adding a constant probability of adding a SV
to the dictionary, resulting in a larger runtime complexity, while PROS-N-KONS has no
dependency on the value of the RLS.
Even compared to first-order methods, which incur a larger regret, PROS-N-KONS
performs favorably, improving on the O(T 2) runtime of exact first-order FGD. Compared
to other approximate methods, the variant using rank-one updates matches the O(J2)
per-step cost of the more accurate first-order methods such as the Budgeted Perceptron
(Cavallanti et al., 2007), Projectron (Orabona et al., 2008), and Nyström-GD (Lu et al.,
2016), while improving on their regret. PROS-N-KONS also closely matches faster but
less accurate O(J) methods such as the Forgetron (Dekel et al., 2008) and Budgeted-GD
(Zhao et al., 2012).

5.3.1 Regret guarantees

In this section, we study the regret performance of PROS-N-KONS.

Theorem 5.8 — (Calandriello et al., 2017b). For any sequence of losses `t satisfying
Assumption 2 with Lipschitz constant L, let σ = mint σt. If ηt ≥ σ for all t, α ≤

√
T ,

γ ≤ α, and predictions are bounded by C, then the regret of PROS-N-KONS over T
steps is bounded w.p. 1− δ as

RT (w) ≤ J
(
α‖w‖2 +

4

σ
dTeff

( α

σL2

)
log
(
2σL2T/α

) )
+
L2

α

(
Tγε

4(1− ε) + 1

)
+ 2JC, 5.3

where J ≤ 3qdTeff (γ) log(2T ) is the number of epochs. If γ = α/T the previous bound
reduces to

RT (w) = O
(
α‖w‖2dTeff (α/T ) log(T ) + dTeff (α/T ) dTeff (α) log2(T )

)
. 5.4
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Remark (bound). The bound in Eq. 5.3 is composed of three terms.
At each epoch of PROS-N-KONS, an instance of KONS is run on the embedded feature
space Hj obtained by using the dictionary Ij constructed up to the previous epoch. As a
result, we directly use the bound on the regret of KONS (Theorem 5.4) for each of the J
epochs, thus leading to the first term in the regret. Since a new epoch is started whenever
a new SV is added to the dictionary, the number of epochs J is at most the size of the
dictionary returned by KORS up to step T , which w.h.p. is Õ(dTeff(γ)), making the first
term scale as Õ(dTeff(γ)dTeff(α)) overall.
Nonetheless, the comparator used in the per-epoch regret of KONS is constrained to the
RKHS Hj induced by the embedding used in epoch j. The second term accounts for the
difference in performance between the best solutions in the RKHS in epoch j and in the
original RKHS H. This error is directly controlled by the (ε, γ)-accuracy of the dictionary
constructed by KORS, where the RLS regularization γ and the parameter ε contribute to
the factor γε/(1− ε).
Since the true RKHS is never fully reconstructed, i.e., ε is constant and does not go to
zero, the approximation impact on the regret is amplified by the length of the process, thus
leading to an overall linear term that needs to be regularized.
Finally, the last term summarizes the regret suffered every time a new epoch is started and
the default prediction ŷ = 0 is returned. Since the values yt and ŷt are constrained in S,
this results in a regret of 2JC.

Remark (regret comparison). Tuning the RLS regularization as γ = α/T leads to the
bound in Eq. 5.4. Unlike Sketched-KONS, the bound finally displays only an explicit
logarithmic dependency on T , but this comes at the cost of increasing the effective dimension,
which now depends on the regularization α/T .
While in general this could possibly compromise the overall regret, if the sequence of points
φ1, . . . ,φT induces a kernel matrix with a rapidly decaying spectrum, the resulting regret
is still competitive. For instance, if the eigenvalues of KT decrease as λt = at−q with
constants a > 0 and q > 1, then dTeff (α/T ) ≤ aqT 1/q/(q − 1). This shows that for any
q > 2 we obtain a regret2o(

√
T log2(T )) showing that KONS still improves over first-order

methods.
Furthermore, if the kernel is low rank or the eigenvalues decrease exponentially, the final
regret is poly-logarithmic, thus preserving the full advantage of the second-order approach.
Notice that this scenario is always verified when H = Rd, and is also verified when the
adversary draws samples from a stationary distribution and, e.g., we use the Gaussian
kernel (Sun et al., 2012; Wathen and Zhu, 2015; Yang et al., 2017).
This result is particularly remarkable when compared to Sketched-KONS, whose regret
scales as O

(
α‖w‖2 + dTeff (α) log(T )/β

)
, where β is the fraction of samples which is forced

into the dictionary (when β = 1 we recover the bound for KONS). Even when the effective
dimension is small (e.g., exponentially decaying eigenvalues), Sketched-KONS requires
setting β to T−p for a constant p > 0 to get a sub-quadratic space complexity, at the cost
of increasing the regret to O(T p log(T )). On the other hand, PROS-N-KONS achieves a
poly-logarithmic regret with linear space complexity up to poly-log factors (i.e., (TdTeff(γ)2),
thus greatly improving both the learning and computational performance w.r.t. Sketched-
KONS.
Finally, notice that while γ = α/T is the best choice agnostic to the kernel, better bounds
can be obtained optimizing Eq. 5.3 for γ depending on dTeff(γ). For instance, let γ = α/T s,
then the optimal value of s for q-polynomially decaying spectrum is s = q/(1 + q), leading

2Here we ignore the term dTeff(α) which is a constant w.r.t.T for any constant α.
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to a regret bound Õ(T q/(1+q)), which is always o(
√
T ) for any q > 1.

Remark (comparison in the Euclidean case). In the special case H = Rd, we can
make a comparison with existing approximate methods for OL. In particular, the closest
algorithm is Sketched-ONS by Luo et al., (2016). Unlike PROS-N-KONS, and similarly
to Sketched-KONS, they take the approach of directly approximating At in the exact
H = Rd using FD (Ghashami et al., 2015) to construct a k-rank approximation of At for a
fixed k.
The resulting algorithm achieve a regret that is bounded by k log(T ) + k

∑T
i=k+1 σ

2
i , where

the sum
∑T

i=k+1 σ
2
i is equal to the sum of all the smallest d−k eigenvalues of the covariance

matrix. This quantity can vary from 0, when the data lies in a subspace of rank r ≤ k, to
T d−k

d when the sample lie orthogonally and in equal number along all d directions available
in Rd. Computationally, the algorithm requires O(Tdk) time and O(dk) space.
Conversely, PROS-N-KONS automatically adapt its time and space complexity to the
effective dimension of the algorithm dTeff(α/T ) which is smaller than the rank for any α.
As a consequence, it requires only Õ(Tr2) time and Õ(r2) space, achieving a O(r2 log(T ))
regret independently from the spectrum of the covariance matrix.
Computationally, all of these complexities are smaller than the ones of Sketched-ONS in
the regime r < k, which is the only one where Sketched-ONS can guarantee logarithmic
(or even sublinear) regret, and where the regrets of the two algorithms are close.
Overall, while Sketched-ONS implicitly relies on the r < k assumption, but continues to
operate in a d dimensional space and suffers large regret if r > k, PROS-N-KONS will
adaptively convert the d dimensional problem into a simpler one with the appropriate rank,
fully reaping the computational and regret benefits.

The bound in Theorem 5.8 can be refined in the specific case of squared loss as follows.

Theorem 5.9 — (Calandriello et al., 2017b). For any sequence of squared losses `t =
(yt − ŷt)2, L=4C and σ=1/(8C2), if ηt ≥ σ for all t, α ≤

√
T and γ ≤ α, the regret of

PROS-N-KONS over T steps is bounded w.p. 1− δ as

RT (w)≤
J∑
j=1

(
4

σ
djeff

( α

σL2

)
log
(

2σ
L2

α
Tr(Kj)

)
+ε′L∗j

)
+J

(
L
(
C +

L

α

)
+ε′α‖w‖22

)
, 5.5

where ε′ = α
(
α− γε

1−ε
)−1 − 1 and L∗j = minw∈H

(∑tj+1−1
t=tj

(
φT
tw − yt

)2
+ α‖w‖22

)
is the

best regularized cumulative loss in H within epoch j.

Let L∗T be the best regularized cumulative loss over all T steps, then L∗j ≤ L∗T . Furthermore,
we have that djeff ≤ dTeff and thus regret in Eq. 5.5 can be (loosely) bounded as

RT (w) = O
(
J
(
dTeff(α) log(T ) + +ε′L∗j + ε′α‖w‖22

))
.

The major difference w.r.t. the general bound in Eq. 5.3 is that we directly relate the regret
of PROS-N-KONS to the performance of the best predictor in H in hindsight, which
replaces the linear term γT/α. As a result, we can set γ = α (for which ε′ = ε/(1− 2ε))
and avoid increasing the effective dimension of the problem.
Furthermore, since L∗T is the regularized loss of the optimal batch solution, we expect it to
be small whenever the H is well designed for the prediction task at hand. For instance,
if L∗T scales as O(log(T )) for a given regularization α (e.g., in the realizable case L∗T
is actually just α‖w‖), then the regret of PROS-N-KONS is directly comparable with
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KONS up to a multiplicative factor depending on the number of epochs J and with a much
smaller time and space complexity that adapt to the effective dimension of the problem
(see Theorem 3.11).

5.3.2 Experiments on online regression and classification

We empirically validate PROS-N-KONS on several regression and binary classification
problems, showing that it is competitive with state-of-the-art methods. We focused on
verifying 1) the advantage of second-order vs. first-order updates, 2) the effectiveness of
data-adaptive embedding w.r.t. the oblivious one, and 3) the effective dimension in real
datasets. Note that our guarantees hold for more challenging (possibly adversarial) settings
than what we test empirically.

Algorithms. Beside PROS-N-KONS, we introduce two heuristic variants. Con-KONS
follows the same update rules as PROS-N-KONS during the descent steps, but at reset
steps it does not reset the solution and instead computes w̃t−1 = Φj−1Uj−1Σ

−1
j−1ω̃t−1

starting from ω̃t−1 and sets ω̃t = Σ−1j UT
jΦ

T
j w̃t−1. A similar update rule is used to map

Ãt−1 into the new embedded space without resetting it. B-KONS is a budgeted version
of PROS-N-KONS that stops updating the dictionary at a maximum budget Jmax and
then it continues learning on the last space for the rest of the run. Finally, we also include
the best BATCH solution in the final space HJ returned by KORS as a best-in-hindsight
comparator. We also compare to two state-of-the-art embedding-based first-order methods
from (Lu et al., 2016). NOGD selects the first J points and uses them to construct an
embedding and then perform exact GD in the embedded space. FOGD uses random
feature expansion to construct an embedding, and then runs first-order GD in the embedded
space. While oblivious embedding methods are cheaper than data-adaptive Nyström, they
are usually less accurate. Finally, Dual-SGD also performs a random feature expansion
embedding, but in the dual space. We do not run Sketched-KONS because the T 2

runtime is prohibitive in large datasets.

Experimental setup. We replicate the experimental setting in (Lu et al., 2016) with 9
datasets for regression and 3 datasets for binary classification. We preprocess the points xt
by rescaling each feature in [0, 1]. For regression the target variable yt is rescaled in [0, 1],
while in binary classification the labels are {−1, 1}. For all datasets, we set β = 1, ε = 0.5
for all PROS-N-KONS variants and Jmax = 100 for B-KONS. We use the same Gaussian
kernel with bandwidth set to 8. For each algorithm and dataset, we report average and
standard deviation of the losses, the number of SVs stored in the predictor (as a proxy
for space complexity) and runtime in seconds. The scores for the competitor baselines are
reported as provided in the original papers (Le et al., 2016; Lu et al., 2016). We only report
scores for NOGD, FOGD and Dual-SGD, since they have been shown to outperform
other baselines such as Budgeted Perceptron (Cavallanti et al., 2007), Projectron (Orabona
et al., 2008), Forgetron (Dekel et al., 2008) and Budgeted-GD (Zhao et al., 2012). All
experiments are run on a single machine with 2 Xeon E5-2630 CPUs for a total of 10 cores,
and are averaged over 15 runs.

Effective dimension and runtime. We use size of the dictionary returned by KORS
as a proxy for the effective dimension of the datasets. As expected, larger datasets and
datasets with a larger input dimension have a larger effective dimension. Furthermore,
dTeff(γ) increasing (sublinearly) when γ is reduced from 1 to 0.01 in the ijcnn1 dataset.
More importantly, dTeff(γ) remains empirically small even for datasets with hundreds of
thousands samples, such as year, ijcnn1 and cod-rna. On the other hand, in the slice
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Algorithm
parkinson n = 5, 875, d = 20 cpusmall n = 8, 192, d = 12

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.04909 ± 0.00020 30 — 0.02577 ± 0.00050 30 —
NOGD 0.04896 ± 0.00068 30 — 0.02559 ± 0.00024 30 —
PROS-N-KONS 0.05798 ± 0.00136 18 5.16 0.02494 ± 0.00141 20 7.28
Con-KONS 0.05696 ± 0.00129 18 5.21 0.02269 ± 0.00164 20 7.40
B-KONS 0.05795 ± 0.00172 18 5.35 0.02496 ± 0.00177 20 7.37
BATCH 0.04535 ± 0.00002 — — 0.01090 ± 0.00082 —

Algorithm
cadata n = 20, 640, d = 8 casp n = 45, 730, d = 9

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.04097 ± 0.00015 30 — 0.08021 ± 0.00031 30 —
NOGD 0.03983 ± 0.00018 30 — 0.07844 ± 0.00008 30 —
PROS-N-KONS 0.03095 ± 0.00110 20 18.59 0.06773 ± 0.00105 21 40.73
Con-KONS 0.02850 ± 0.00174 19 18.45 0.06832 ± 0.00315 20 40.91
B-KONS 0.03095 ± 0.00118 19 18.65 0.06775 ± 0.00067 21 41.13
BATCH 0.02202 ± 0.00002 — — 0.06100 ± 0.00003 — —

Algorithm
slice n = 53, 500, d = 385 year n = 463, 715, d = 90

Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time
FOGD 0.00726 ± 0.00019 30 — 0.01427 ± 0.00004 30 —
NOGD 0.02636 ± 0.00460 30 — 0.01427 ± 0.00004 30 —
Dual-SGD — — — 0.01440 ± 0.00000 100 —
PROS-N-KONS did not complete — — 0.01450 ± 0.00014 149 884.82
Con-KONS did not complete — — 0.01444 ± 0.00017 147 889.42
B-KONS 0.00913 ± 0.00045 100 60 0.01302 ± 0.00006 100 505.36
BATCH 0.00212 ± 0.00001 — — 0.01147 ± 0.00001 — —

Table 5.1: Regression datasets

dataset, the effective dimension is too large for PROS-N-KONS to complete and only
results for B-KONS are provided. Overall, the proposed algorithm can process hundreds
of thousands of points in a matter of minutes, and show that it can practically scale to
large datasets.

Regression. All algorithms are trained and evaluated using the squared loss. Notice that
whenever the budget Jmax is not exceeded, B-KONS and PROS-N-KONS are the same
algorithm and obtain the same result. On regression datasets (Tab. 5.1) we set α = 1 and
γ = 1, which satisfies the requirements of Thm. 5.9. On smaller datasets such as parkinson
and cpusmall, where frequent restarts greatly interfere with the gradient descent, and even
a small non-adaptive embedding can capture the geometry of the data, PROS-N-KONS is
outperformed by simpler first-order methods. As soon as T reaches the order of tens of
thousands (cadata, casp) second-order updates and data adaptivity becomes relevant and
PROS-N-KONS outperform its competitors, both in the number of SVs and in the average
loss. In this intermediate regime, Con-KONS outperforms PROS-N-KONS and B-KONS
since it is not as much affected by restarts. Finally, when the number of samples raises to
hundreds of thousands, the intrinsic effective dimension of the dataset starts playing a larger
role. On slice, where the effective dimension is too large to run, B-KONS still outperforms
NOGD with a comparable budget of SVs, showing the advantage of second-order updates.
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α = 1, γ = 1

Algorithm
ijcnn1 n = 141, 691, d = 22 cod-rna n = 271, 617, d = 8

Accuracy #SV Time Accuracy #SV Time
FOGD 9.06 ± 0.05 400 — 10.30 ± 0.10 400 —
NOGD 9.55 ± 0.01 100 — 13.80 ± 2.10 100 —
Dual-SGD 8.35 ± 0.20 100 — 4.83 ± 0.21 100 —
PROS-N-KONS 9.70 ± 0.01 100 211.91 13.95 ± 1.19 38 270.81
Con-KONS 9.64 ± 0.01 101 215.71 18.99 ± 9.47 38 271.85
B-KONS 9.70 ± 0.01 98 206.53 13.99 ± 1.16 38 274.94
BATCH 8.33 ± 0.03 — — 3.781 ± 0.01 — —

α = 0.01, γ = 0.01

Algorithm
ijcnn1 n = 141, 691, d = 22 cod-rna n = 271, 617, d = 8

Accuracy #SV Time Accuracy #SV Time
FOGD 9.06 ± 0.05 400 — 10.30 ± 0.10 400 —
NOGD 9.55 ± 0.01 100 — 13.80 ± 2.10 100 —
Dual-SGD 8.35 ± 0.20 100 — 4.83 ± 0.21 100 —
PROS-N-KONS 10.73 ± 0.12 436 1003.82 4.91 ± 0.04 111 459.28
Con-KONS 6.23 ± 0.18 432 987.33 5.81 ± 1.96 111 458.90
B-KONS 4.85 ± 0.08 100 147.22 4.57 ± 0.05 100 333.57
BATCH 5.61 ± 0.01 — — 3.61 ± 0.01 — —

Table 5.2: Binary classification datasets

Binary classification All algorithms are trained using the hinge loss and they are evaluated
using the average online error rate. Results are reported in Table 5.2. While for regression
an arbitrary value of γ = α = 1 is sufficient to obtain good results, it fails for binary
classification. Decreasing the two parameters to 0.01 resulted in a 3-fold increase in the
number of SVs included and runtime, but almost a 2-fold decrease in error rate, placing
PROS-N-KONS and B-KONS on par or ahead of competitors without the need of any
further parameter tuning.

5.3.3 Recap and open questions: do we need restarts?

We introduced Sketched-KONS and PROS-N-KONS, two approximate second-order
OKL algorithms.
Sketched-KONS is the first approximate second-order algorithm that can provably achieve
logarithmic regret with high probability, matching exact methods. Unfortunately, it only
provides constant speed-ups compared to the exact method, and remains affected by the
curse of kernelization, requiring O(T 2) overall runtime.

PROS-N-KONS breaks this quadratic barrier, and is the first second-order OKL algorithm
that guarantees both logarithmic regret and avoids the curse of kernelization, taking only a
near-constant Õ(dTeff(γ)2) per-step time and space cost.

PROS-N-KONS can also be seen as an adaptive doubling strategy. In online learning,
doubling strategies are common (Cesa-Bianchi and Lugosi, 2006) when we need to deal with
parameters unknown in advance. Informally, the doubling trick corresponds to breaking up
our learning process in phases, each twice as long as the previous.
In PROS-N-KONS case, we do not know which is the right RKHS Hj that we should
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consider for our descent (using the exact H is too expensive and we do not consider it).
Therefore, we break down our learning process in phases dictated by KORS.
If the adversary keeps playing points that are already in our dictionary, this phase can
be indefinitely long, but our approximation is accurate and we pay logarithmic regret. If
instead the adversary plays multiple points along a new direction, KORS will quickly (i.e.,
in logarithmic time) notice and include it in the dictionary, starting a new phase. Overall,
the adversary cannot keep us playing in the wrong Hj for more than a logarithmic number
of rounds in each phase.
Ultimately, either the effective dimension of the problem is small, and we will quickly enter
a final phase in which Hj never changes, or the effective dimension is large and even exact
second-order methods would have a large regret.

Nonetheless, doubling tricks are often a last resort in online learning, as they are wasteful.
And since we know that Hj and Hj+1 are close (they differ in a single atom), it remains
an important open question if we can transfer the solution of a phase into the next one
without paying a large regret. Empirically, we see that Con-KONS and B-KONS often
outperform PROS-N-KONS, which suggest that this might be the case, at least in the
simpler, non-adversarial setting of our experiments.

5.4 Extended proofs

Proof of Lemma 5.1. We begin by applying the definition of ut+1 and collecting A−1t , which
can always be done since, for α > 0, At is invertible,

ut+1 = wt −A−1t gt = A−1t (Atwt − gt).

We focus now on the last term and use the definition of At,

Atwt − gt = At−1wt + ηtgtg
T
twt − gt

= At−1ut −At−1rt + (
√
ηtg

T
twt − 1/

√
ηt)φt.

Looking at At−1rt and using the assumption ġt 6= 0,

At−1rt =
h(φT

tut)

φT
tA
−1
t−1φt

At−1A
−1
t−1φt =

h(φT
tut)

φT
tA
−1
t−1φt

ġ2t ηt
ġ2t ηt

φt =
ġt
√
ηth(φT

tut)

φ
T

tA
−1
t−1φt

φt.

Putting together all three terms, and using the fact that gT
twt = ġtφtwt = ġtŷt and denoting

bt = [bt]t we have

ut+1 = A−1t (Atwt − gt)

= A−1t (At−1ut + btφt)

= A−1t (At−1(wt−1 −A−1t−1gt−1) + btφt)

= A−1t (At−1wt−1 − gt−1 + btφt)

= A−1t (At−2wt−2 − gt−2 + bt−1φt−1 + btφt)

= A−1t (A0w0 +
∑t

s=1
bsφs).

�
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Proof of Lemma 5.2. Throughout this proof, we make use of the linear algebra identity
from Proposition 2.12. We begin with the reformulation of [bt]t. In particular, the only
term that we need to reformulate is

φtA
−1
t−1φt = φt(Φt−1Φ

T

t−1 + αΠT )−1φt

=
1

α
φt(ΠT −Φt−1(Φ

T

t−1Φt−1 + αΠT )−1Φ
T

t−1)φt

=
1

α
(φ

T

tφt − φ
T

tΦt−1(Φ
T

t−1Φt−1 + αIt−1)
−1Φ

T

t−1φt)

=
1

α
(kt,t − k

T

[t−1],t(Kt−1 + αIt−1)
−1k[t−1],t).

For yt, we have

yt = φT
tut = φT

tA
−1
t−1Φt−1bt−1

= φT
t (Φt−1Φ

T

t−1 + αΠT )−1Φt−1bt−1

=
1

α
φT
t (ΠT −Φt−1(Φ

T

t−1Φt−1 + αΠT )−1Φ
T

t−1)Φt−1bt−1

=
1

α
φT
tΦt−1Dt−1(bt−1 − (Kt−1 + αIt−1)

−1Kt−1bt−1)

=
1

α
kT

[t−1],tDt−1(bt−1 − (Kt−1 + αIt−1)
−1Kt−1bt−1).

�

Proof of Theorem 5.4. We need to bound RT (w∗), and we use Proposition 5.3. For RD
nothing changes from the parametric case, and we use Assumption 1 and the definition of
the set S to bound

RD =
∑T

t=1
(ηt − σt)ġ2t (φT

t (wt −w))2

≤
∑T

t=1
(ηt − σ)L2(|φT

twt|+ |φT
tw|)2 ≤ 4L2C2

∑T

t=1
(ηt − σ).

For RG, we reformulate∑T

t=1
gT
tA
−1
t gt =

∑T

t=1

ηt
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gT
tA
−1
t gt =
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1

ηt
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tA
−1
t φt ≤

1

ηT
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φ

T
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t φt

=
1

ηT

∑T

t=1
τ t,t = donl(α)/ηT ≤

d
T
eff(α)

ηT
(1 + log(‖KT ‖/α+ 1)),

where dTeff(α) and KT are computed using the rescaled kernel K.
Let us remind ourselves the definition D = Diag

(
{ġt√ηt}Tt=1

)
. Since ηt 6= 0 and ġt 6= 0 for

all t, D is invertible and we have λmin(D−2) = minTt=1 1/(ġ2t ηt) ≥ 1/(L2η1). For simplicity,
we assume η1 = σ, leaving the case η1 = 1/1 = 1 as a special case. We derive

d
T
eff(α) = Tr(KT (KT + αIT )−1) = Tr(DKTD(DKTD + αDD−2D)−1)

= Tr(DKTDD−1(KT + αD−2)−1D−1) = Tr(KT IT (KT + αD−2)−1D−1D)

= Tr(KT (KT + αD−2)−1) ≤ Tr(KT (KT + αλmin(D−2)IT )−1)

≤ Tr

(
KT

(
KT +

α

σL2
IT

)−1)
= dTeff

(
α/(σL2)

)
.
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Similarly,

log(‖KT ‖/α+ 1) ≤ log(Tr(KT )/α+ 1) ≤ log(σL2 Tr(Kt)/α+ 1)

≤ log(σL2T/α+ 1) ≤ log(2σL2T/α),

since Tr(Kt) =
∑T

t=1 kt,t =
∑T

t=1φ
T
tφt ≤

∑T
t=1 1 = T . �

Proof of Lemma 5.5. Through this proof, we make use of the linear algebra identity from
Proposition 2.12. We begin with the reformulation of b̃i = [b̃t]i. In particular, the only
term that we need to reformulate is

φtÃ
−1
t−1φt = φt(Φt−1Rt−1R

T
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Proof of Theorem 5.7. Since the only thing that changed is the formulation of the At

matrix, the bound from Proposition 5.3 still applies. In particular, we have that the regret
R̃T of Algorithm 13 is bounded as

R̃(w) ≤α‖w‖2A0
+
∑T

t=1
gT
t Ã
−1
t gt +
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From Theorem 3.11, we have that KORS succeeds with high probability. In particular,
using the guarantees of the (ε, γ)-accuracy (1), we can bound for the case ηt = σ as
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where in the first inequality we used the fact that the weight matrix St contains weights
such that 1/

√
p̃min ≥ 1/

√
p̃t, in the second inequality we used the (ε, γ)-accuracy, and

finally, we used ηt = σ and the definition of τ t,t. Therefore,
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Proof of Theorem 5.8. PROS-N-KONS predicts ỹt in round t. We want to bound the
cumulative regret of the loss of ỹt with respect to an arbitrary fixed vector w ∈ H on the
(mapped) points φt. From the definition of ỹt in Algorithm 14, we have

T∑
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with w̃t = ΦjUjΣ
−1
j ω̃t. From Assumption 2 on the losses, we know that the losses `t(z)

satisfy
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and therefore
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Definition of the epochs

We define the epochs j ∈ [J ] that are separated by qt 6= 0, which indicate the dictionary
change. Formally qtj 6= 0, and qt′ = 0 for all tj < t′ < tj + hj where hj = tj+1 − tj is the
length of the epoch. We also use Ij for the dictionary in the j-th phase, ΦIj for the feature
matrix containing samples φi ∈ Ij , and ΠIj = ΦIj (Φ

T
IjΦIj )

+ΦT
Ij for the projection matrix

on the column span of ΦIj . Similarly, given Ij , we define the embedding ϕ̃j(·) such that

ϕ̃j(xt) = φ̃t = Σ−1j UT
jΦ

T
Ijφt ∈ Rj

and φ̃T
t φ̃t′ = φtΠIjφ

′
t. Given the embedding ϕ̃j , we introduce the restricted RKHS Hj

and the approximate kernel function K̃j(·, ·). Note that although the mapping ϕ̃j changes
across different epochs, it is unique for a fixed round t, therefore we simply write φ̃t instead
of the more explicit φ̃jt .
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Regret decomposition

We introduce two intermediate comparators: wt and ŵt. First, ŵj is the best fixed solution
within the epoch for the dictionary of the epoch and the related Hj . Second, ŵj is the best
fixed solution within the epoch over the whole space H. Notice, neither ŵj nor ŵj change
during the same epoch. Formally, for all t′ such that tj < t′ ≤ tj + hj we have wt′ = wj

and ŵt′ = ŵj , defined as

wj = arg min
w∈Hj
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`t(φ
T
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T
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Using the above intermediate comparators now split the regret into three parts, one per
epoch,
T∑

t=1

`t(φ
T

tw̃t)− `t(φT

tw)

=

T∑
t=1

`t(φ
T

tw̃t)− `t(φT

twt) + `t(φ
T

twt)− `t(φT
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=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)− `t(φT

twt) + `t(φ
T

twt)− `t(φT

tŵt) + `t(φ
T

tŵt)− `t(φT

tw)

=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)− `t(φT

twj) + `t(φ
T

twj)− `t(φT

tŵj) + `t(φ
T

tŵj)− `t(φT

tw)

=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)−`t(φT

twj)


︸ ︷︷ ︸

Aj

+

tj+1−1∑
t=tj

`t(φ
T

twj)−`t(φT

tŵj)


︸ ︷︷ ︸

Bj

+

tj+1−1∑
t=tj

`t(φ
T

tŵj)−`t(φT

tw)


︸ ︷︷ ︸

Cj

.

Fix an epoch j. We now bound Aj , Bj , and Cj separately.

Bounding Aj

Since wj ∈ Hj , projecting wj to Hj won’t change it, i.e., wj = ΠIjwj and

φT
twj = φT

tΠIjwj = φT
tΦIjUjΣ

−1
j Σ−1j UT

jΦ
T
Ijwj = φ̃T

tωj

with ωj = Σ−1j UT
jΦ

T
Ijwj . Remembering that w̃t = ΦIjUjΣ

−1
j ω̃t for all t in the epoch

`t (φT
t w̃t)− `t (φT

twj) = `t

(
φT
tΦIjUjΣ

−1
j ω̃t

)
− `t

(
φT
tΠIjwj

)
= `t

(
φ̃T
t ω̃t

)
− `t

(
φ̃T
tωj

)
.

Now, using Assumption 2, we get

`t(φ̃
T
t ω̃t)− `t(φ̃T

tωj) ≤ g̃T
t (ω̃t − ωj)−

σt
2

(g̃T
t (ω̃t − ωj))2 5.6

and due to the update rules and the contracting property of projections (Hazan et al.,
2006),

‖ω̃t − ωj‖2Ãt−1
≤ ‖ω̃t−1 − Ã−1t−1g̃t−1 − ωj‖2Ãt−1

= ‖ω̃t−1 − ωj‖2Ãt−1
− 2g̃T

t−1Ã
−1
t−1Ãt−1(ω̃t−1 − ωj) + ‖Ã−1t−1g̃t−1‖2Ãt−1

= ‖ω̃t−1 − ωj‖2Ãt−1
− 2g̃T

t−1(ω̃t−1 − ωj) + g̃T
t−1Ã

−1
t−1gt−1
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except for last round of epoch j, i.e., round tj+1 − 1, where due to the reset we cannot
use the update rule, and we need to treat separately. Therefore, for any round t =
tj , tj + 1, . . . , tj+1 − 2 of epoch j, we have that

2g̃T
t (ω̃t − ωj) ≤ ‖ω̃t − ωj‖2Ãt

− ‖ω̃t+1 − ωj‖2Ãt
+ g̃T

t Ã
−1
t gt. 5.7

Using the upper bound on the loss difference 5.6, we get
tj+1−1∑
t=tj

`t (φT
t w̃t)− `t (φT

twt)

= `tj+1−1

(
φT
tj+1−1w̃tj+1−1

)
− `tj+1−1

(
φT
tj+1−1wtj+1−1

)
+

tj+1−2∑
t=tj

`t (φT
t w̃t)− `t (φT

twt)

= Rj +

tj+1−2∑
t=tj

`t

(
φ̃T
t ω̃t

)
− `t

(
φ̃T
tωj

)
≤ Rj +

tj+1−2∑
t=tj

g̃T
t (ω̃t − ωj)−

σt
2

(g̃T
t (ω̃t − ωj))2 ,

with Rj
def= `tj+1−1

(
φT
tj+1−1w̃tj+1−1

)
− `tj+1−1

(
φT
tj+1−1wtj+1−1

)
that corresponds to the

regret of the last round of the epoch that we need to treat separately. Now for the all other
rounds,

tj+1−2∑
t=tj

g̃T
t (ω̃t − ωj)−

σt
2

(g̃T
t (ω̃t − ωj))2

≤
tj+1−2∑
t=tj

‖ω̃t − ωj‖2Ãt
− ‖ω̃t+1 − ωj‖2Ãt

+ g̃T
t Ã
−1
t gt − ‖ω̃t − ωj‖2σt

2
g̃tg̃T

t

= −‖ω̃tj+1−1 − ωj‖2Ãtj+1−1
+ ‖ω̃tj − ωj‖2Ãtj

+ g̃T
tjÃ

−1
tj

gtj − ‖ω̃tj − ωj‖2σtj
2

g̃tj g̃
T
tj

+

tj+1−2∑
t=tj+1

‖ω̃t − ωj‖2Ãt
− ‖ω̃t − ωj‖2Ãt−1

+ g̃T
t Ã
−1
t gt − ‖ω̃t − ωj‖2σt

2
g̃tg̃T

t

Now we treat the terms above equation separately. First, since Ãt = Ãt−1 + σt
2 g̃tg̃

T
t , we

have ‖ω̃t −ωj‖2Ãt−1
+ ‖ω̃t −ωj‖2σt

2
g̃tg̃T

t
= ‖ω̃t −ωj‖2Ãt

. Second, by Algorithm 14, we know

that at the beginning of each epoch, Ãtj = αI + g̃tj g̃
T
tj . This also helps us to bound the

term g̃T
tjÃ

−1
tj

gtj as

g̃T
tjÃ

−1
tj

gtj = g̃T
tj

(
αI +

σtj
2 g̃tj g̃

T
tj

)−1
gtj =

g̃T
tj g̃tj

α+
σtj
2 g̃T

tj
g̃tj
≤

g̃T
tj g̃tj

α
=

(
`′tj
(
ỹtj
))2

φ̃T
tj φ̃tj

α

≤
L2φ̃T

tj φ̃tj

α
=
L2φT

tjΠIjφtj

α
≤
L2φT

tjφtj

α
≤ L2

α
·

By Algorithm 14, we also know that at the beginning of each epoch ω̃tj = 0 which helps us
to bound the two terms outside of the summation as

‖ω̃tj − ωj‖2Ãtj

− ‖ω̃tj − ωj‖2σtj
2

g̃tj g̃
T
tj

= ‖ω̃tj − ωj‖2αI + ‖ω̃tj − ωj‖2σtj
2

g̃tj g̃
T
tj

− ‖ω̃tj − ωj‖2σtj
2

g̃tj g̃
T
tj

= α‖ω̃tj − ωj‖22 = α‖ωj‖22.
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Altogether, we combine the upper bounds of the terms to

tj+1−1∑
t=tj

`t(φ
T
t w̃t)− `t(φT

twt)

≤ α‖ωj‖2 +Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

+

tj+1−2∑
t=tj+1

g̃T
t Ã
−1
t gt.

Using the result of (Hazan et al., 2006) we can upper bound the sum of the quadratic forms
as

tj+1−2∑
t=tj

g̃T
t Ã
−1
t g̃t =

tj+1−2∑
t=tj

g̃T
t

 t∑
s=tj

σs
2 g̃sg̃

T
s + αI

−1g̃t
=

tj+1−2∑
t=tj

2

σt

(√
σt/2α · g̃T

t

) t∑
s=tj

σs
2 g̃sg̃

T
s/α+ I

−1(√σt/2α · g̃t)
≤ 2

σmin
log
(

Det
(
G̃jG̃

T
j/α+ I

))
.

where G̃j is the j × hj matrix with
√
σt/2 · g̃t columns. Let D̃j be the hj × hj diagonal

matrix with ġt
√
σt/2 on the diagonal and Φj (resp., Φ̃j) the matrix with φt (resp., φ̃t) as

columns for tj ≤ t < tj+1 We can rewrite G̃j = Φ̃jD̃j = Σ−1j UT
jΦ

T
IjΦjD̃j . We also have

G̃T
jG̃j = D̃jΦ

T
jΦIjU

T
jΣ
−1
j Σ−1j UT

jΦ
T
IjΦjD̃j = D̃jΦ

T
jΠIjΦjD̃j � D̃jΦ

T
IjΦIjD̃j ,

since ‖ΠIj‖ ≤ 1 because ΠIj is a projection matrix. Knowing that Det(A) ≤ Det(B)
whenever A � B, together with Sylvester’s determinant identity, we get that

Det(G̃jG̃
T
j/α+ I) ≤ Det(D̃jΦ

T
jΦjD̃j/α+ I) =

hj∏
t=1

(λt/α+ 1),

where λt are the eigenvalues of D̃jΦ
T
IjΦIjD̃j = D̃jKjD̃j = Kj and Kj is the kernel matrix

between the samples in epoch j. Using Lemma 3.9 we can further bound the expression
above as

log

 hj∏
t=1

λt/α+ 1

 ≤ 2djeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

≤ 2dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kt)/α
)
.

Putting it all together, and using ‖ωj‖22 = ‖Σ−1j UjΦ
T
Ijwj‖22 = wT

jΠIjwj = ‖wj‖22 we get

Aj ≤
4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ α‖wj‖22

+Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

.
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Bounding Bj

We begin by adding and subtracting α‖wj‖2 and α‖ŵj‖2

tj+1−1∑
t=tj

`t(φ
T
twj)− `t(φT

t ŵj) =

tj+1−1∑
t=tj

`t(φ
T
twj)

−
tj+1−1∑

t=tj

`t(φ
T
t ŵj)


= α‖ŵj‖2 − α‖wj‖2 +

tj+1−1∑
t=tj

`t(φ
T
twj) + α‖wj‖2

−
tj+1−1∑

t=tj

`t(φ
T
t ŵj) + α‖ŵj‖2


We will now apply the following result from Xu et al., (2017).

Proposition 5.10 — (Xu et al., 2017, Lemma 2). Suppose the loss functions `t are L-
Lipschitz continuous, and wj = ΠIjwj = ΦIjUjΣ

−1/2
j ωj . We have

1

hj

tj+1−1∑
t=tj

`t(φ
T
twj) +

α

2
‖wj‖2 ≤

1

hj

tj+1−1∑
t=tj

`t(φ
T
t ŵj) +

α

2
‖ŵj‖2 +

L2

2αhj
‖Φj −ΠIjΦj‖22.

First, it is important to quantify the last term in Proposition 5.10,

‖Φj −ΠIjΦj‖22 = λmax

((
Φj −ΠIjΦj

)T (
Φj −ΠIjΦj

))
= λmax

(
ΦT
jΦj − 2ΦT

jΠIjΦj +ΦT
jΠIjΠIjΦj

)
= λmax

(
ΦT
jΦj −ΦT

jΠIjΦj

)
= λmax

(
Kj − K̃j

)
≤ γε

1− ε
,

when in the last step we applied Lemma 4.3 that bounds the quality of the approximation.
In order to apply Proposition 5.10 we also need to rescale Bj ,

tj+1−1∑
t=tj

`t(φ
T
twj) + α‖wj‖2 = hj

 1

hj

tj+1−1∑
t=tj

`t (φT
twj) +

α

2

2

hj
‖wj‖2


≤ hj

 1

hj

tj+1−1∑
t=tj

`t (φT
t ŵj) +

α

2

2

hj
‖ŵj‖2 +

L2hj
4αhj

‖Φj −ΠIjΦj‖22


=

tj+1−1∑
t=tj

`t (φT
t ŵj) + α‖ŵj‖2 +

L2hj
4α
‖Kj − K̃j‖22

≤
tj+1−1∑
t=tj

`t (φT
t ŵj) + α‖ŵj‖2 +

L2ε

4(1− ε)
hjγ

α
·

Therefore, the difference of the regularized losses for the best solution within epoch j when
considering the whole space H versus subspace Hj is bounded astj+1−1∑

t=tj

`t(φ
T
twj) + α‖wj‖

−
tj+1−1∑

t=tj

`t(φ
T
t ŵj) + α‖ŵj‖

 ≤ L2ε

4(1− ε)
hjγ

α

and therefore their unregularized counterparts are bounded as

Bj ≤ α‖ŵj‖2 − α‖wj‖2 +
L2ε

4(1− ε)
hjγ

α
·
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Bounding Cj

Similarly as for Bj , we add and subtract the regularizers

tj+1−1∑
t=tj

`t(φ
T
t ŵj)− `t(φT

tw) =

tj+1−1∑
t=tj

`t(φ
T
t ŵj)

−
tj+1−1∑

t=tj

`t(φ
T
tw)


= α‖w‖2 − α‖ŵj‖2 +

tj+1−1∑
t=tj

`t(φ
T
t ŵj) + α‖ŵj‖2

−
tj+1−1∑

t=tj

`t(φ
T
tw) + α‖w‖2


By the definition of ŵj as a minimizer, we have that the difference between the summations
is negative or zero. Therefore, term Cj is trivially bounded as

Cj ≤ α‖w‖2 − α‖ŵj‖2.

Bounding the regret: We put all the bounds on decomposed regret together:

T∑
t=1

`t(φ
T
t w̃t)− `t(φT

tw) =

J∑
j=1

Aj +Bj + Cj

≤
J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ α‖wj‖22 +Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

+ α‖ŵj‖2 − α‖wj‖2 +
L2ε

4(1− ε)
hjγ

α
+ α‖w‖2 − α‖ŵj‖2

=

 J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr (Kj) /α
)+

 J∑
j=1

L2ε

4(1− ε)
hjγ

α

+
JL2

α
+ Jα‖w‖

+
J∑
j=1

Rj − ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

≤

 J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)+

L2

α

(
Tγε

4(1− ε) + 1

)
+ Jα‖w‖

+

J∑
j=1

Rj − ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

≤ Jα‖w‖+
4J

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)

+
L2

α

(
Tγε

4(1− ε) + 1

)
+

J∑
j=1

Rj

= 3βdTeff (γ) log (2T )

(
4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)

+ α‖w‖
)

+
L2

α

(
Tγε

4(1− ε) + 1

)
+

J∑
j=1

Rj

�

Proof of Theorem 5.9. In the special case of squared loss, we can obtain a different kind of
guarantee. We proceed in a similar way as in the proof of Theorem 5.8 and highlight the
differences. Starting from the Aj +Bj + Cj decomposition, we will bound Bj differently
using the following result.
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Proposition 5.11 — (Zhdanov and Kalnishkan, 2010, Theorem 1). Take a kernel K on a
domain X and a parameter α > 0. Let H be the RKHS for the kernel K. For any
sequence {(xt, yt)}Tt=1 let yT ∈ RT be the concatenation of the yt target variables. Then

L∗T (H) = min
f∈H

(
T∑
t=1

(
f(xt)− yt

)2
+ α‖f‖2H

)
= αyT

T (KT + αI)−1yT .

Bounding Bj

In our particular case, we apply Proposition 5.11 to the whole space H and all subspaces
Hj , one for each epoch j.

L∗j (H) =

tj+1−1∑
t=tj

(
φT
t ŵj − yt

)2
+ α‖ŵj‖22

= min
w∈H

tj+1−1∑
t=tj

(
φT
tw − yt

)2
+ α‖w‖22

 = αyT
j (Φ

T
jΦj + αI)−1yj ,

L∗j (Hj) =

tj+1−1∑
t=tj

(
φT
twj − yt

)2
+ α‖wj‖22

= min
w∈Hj

tj+1−1∑
t=tj

(
φT
tw − yt

)2
+ α‖w‖22

 = αyT
j (Φ

T
jΠIjΦj + αI)−1yj .

Therefore, taking account for the regularization in Proposition 5.11, for any epoch j,

tj+1−1∑
t=tj

(
φT
twj − yt

)2
= −α‖wj‖22 +

tj+1−1∑
t=tj

(
φT
twj − yt

)2
+ α‖wj‖22

= −α‖wj‖22 + αyT
j (Φ

T
jΠIjΦj + αI)−1yj .

Now using the kernel approximation guarantees of Lemma 4.3 we have

αyT
j (Φ

T
jΠIjΦj + αI)−1yj ≤ αyT

j

(
ΦT
jΦj −

γε

1− εI + αI

)−1
yj

=

(
α− ε

1− εγ
)−1

α

(
α− ε

1− εγ
)

yT
j

(
ΦT
jΦj +

(
α− ε

1− εγ
)

I

)−1
yj

=

((
α− ε

1− εγ
)−1

α

)
α′yT

j

(
ΦT
jΦj + α′I

)−1
yj

= (1 + ε′)α′yT
j

(
ΦT
jΦj + α′I

)−1
yj .
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where we denoted ε′ =
((

α− γε
1−ε

)−1
α

)
− 1 and α′ =

(
α− γε

1−ε

)
. Putting it together

tj+1−1∑
t=tj

(
φT
twj − yt

)2 ≤ −α‖wj‖22 + (1 + ε′)α′yT
j

(
ΦT
jΦj + α′I

)−1
yj

= −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

min
w∈H

(
φT
twj − yt

)2
+ α′‖wj‖22


≤ −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

min
w∈H

(
φT
twj − yt

)2
+ α‖wj‖22


= −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

(
φT
t ŵj − yt

)2
+ α‖ŵj‖22


= −α‖wj‖22 +

tj+1−1∑
t=tj

(
φT
t ŵj − yt

)2
+ ε′α‖ŵj‖22 + ε′

tj+1−1∑
t=tj

(
φT
t ŵj − yt

)2
+ α‖ŵj‖22

 .

Therefore, extracting the Bj part of the regret we get

Bj ≤ −α‖wj‖22 + ε′α‖ŵj‖22 + ε′

tj+1−1∑
t=tj

(
φT
t ŵj − yt

)2
+ α‖ŵj‖22

 .

Bounding Cj

Changing slightly the regularizers that we add and subtract in the bound on Cj we obtain

J∑
j=1

Bj + Cj =
J∑
j=1

−α‖wj‖22 + ε′α‖w‖22 + ε′L∗j .

Integrating this with the bound for Aj obtained in the proof of Theorem 5.8 we get

T∑
t=1

`t

(
φ̃T
t ω̃t

)
− `t (φT

tw) ≤

 J∑
j=1

4

σmin
djeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ ε′L∗j


+ JLC +

JL2

α
+ Jε′α‖w‖22.

�
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