N

N

Migrating Object Oriented Applications into
Component-Based ones
Zakarea Al-Shara

» To cite this version:

Zakarea Al-Shara. Migrating Object Oriented Applications into Component-Based ones. Software En-
gineering [cs.SE]. Université Montpellier, 2016. English. NNT: 2016 MONTT254 . tel-01816975v2

HAL Id: tel-01816975
https://theses.hal.science/tel-01816975v2

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01816975v2
https://hal.archives-ouvertes.fr

2 Collége E E
m dDLog,qjt?r?l I:Ic:u|r-|obte§' le grade de
Docteur

Délivré par TUNIVERSITY OF MONTPELLIER

Préparée au sein de 1’école doctorale 12S
Et de I'unité de recherche LIRMM

Spécialité: SOFTWARE ENGINEERING

Présentée par Zakarea AL SHARA

MIGRATING OBJECT-ORIENTED
SOFTWARE INTO
COMPONENT-BASED ONES

Soutenue le 17/11/2016 devant le jury composé de

Mr Flavio OQUENDO Prof. Université de Bretagne-Sud Rapporteur

Mr Hafedh MIiL1 Prof. Université du Québec & Montréal Rapporteur

Mr Thomas LEDOUX MCF Ecole des Mines de Nantes Examinateur

Mme Dalila TAMZALIT MCF Université de Nantes Examinateur

Mme Anne LAURENT Prof. Université de Montpellier Examinateur

Mr Christophe DoNy Prof. Université de Montpellier Co-Directeur de thése
Mr Abdelhak-Djamel SErRia1 MCF Université de Montpellier Co-Directeur

Mr Chouki TIBERMACINE MCF Université de Montpellier Invité

Mme Hinde Lilia BOUZIANE MCF Université de Montpellier Invité

Rewsy

Comeat Hasnd

REWE}EH :rc:‘;r]

IIWFraCta Mnn'eff}wtrr
Ob ect O!‘.’Bﬂ!’{?dwr .-

f
< C**Ré’ﬁ??ﬁ“é’"ﬁngmeermg
Service' Object Oriented
Software Maintenance” y
AST S Gnﬂv}rcfzraiﬂ;chrrertur SG AST @G s
B nherilance = s / e el
{WSO ware 3 vg.{utmnm wMetaMbdel..

YavaRee ”’Cgiﬁ‘é“é“i*iﬁg"E B>

Cat 'r:ﬁ‘ L‘r'f at
Des’g” EMF i ”Eei.iﬁ" Ruls Pattery

JERIM” el egacy Software”
SOFA £ [JavaBeans

Fractal Service
'"’“f“‘e . Reengineering [y s'tantra non Jav aBeans'
"U" A gdmndab.‘hty (_"O,.',, MetaModel® L . C omponem

ware Modeéernizationss

¢ ””F“’” “”‘” 2 Exce hnn Hand.‘.'m
!nrerfafe“ X ,P g SEI‘WCB ‘Oriented Architecturecos

SOFA O W&!‘B [graﬁﬁﬁ“m@{ims

‘ ‘nhnm.ﬁeuse O‘SG]SOHWIL Evolution, QEYFA & Lmieniandibinty S
”S?F,Céhimﬂponent Based.& jBSGﬁware Transfo: ‘mdtion OSGi

Suftwire Mlitlimaincn

“Model Driven™" “Fractel InheFitance

J‘éul’nO.S@1 Java
C OM

rihﬂ.i

_J' |ﬂ .zr

iii

Acknowledgments

After an intensive period of three years, today is the day: writing this note of thanks
is the finishing touch on my thesis. It has been a period of intense learning for me,
not only in the scientific arena, but also on a personal level. Writing this thesis has
had a big impact on me. I would like to reflect on the people who have supported
and helped me so much throughout this period.

Firstly, I would like to express my sincere gratitude to my advisor Dr. Abdelhak-
Djamel Seriai for the continuous support of my Ph.D study and related research,
for his patience, motivation, and immense knowledge. His guidance helped me in
all the time of research and writing of this thesis. I could not have imagined having
a better advisor and mentor for my Ph.D study. Also it is with immense gratitude
that I acknowledge the support and help of my advisers Dr. Chouki Tibermacine,
Prof. Christophe Dony and Dr. Hinde Lilia Bouziane. They definitely provided me
with advice and tools that I needed to choose the right direction and successfully
complete my thesis. Without they precious support it would not be possible to
conduct this research. Last but not least, I would like to thank Prof. Marianne
Huchard for her supports.

Besides my advisers, I would like to thank the reviewers of my manuscript:
Prof. Flavio Oquendo and Prof. Hafedh Mili for their insightful comments and
encouragement, but also for the questions which incented me to widen my research
from various perspectives. My sincere thanks also goes to the rest of my thesis
committee: Dr. Thomas Ledoux, Prof. Dalila Tamzalit and Prof. Anne Laurent to
be examiners of my thesis.

I thank my colleagues for the stimulating discussions, for the sleepless nights
we were working together before deadlines, and for all the fun we have had in the
last three years. Besides my colleagues, I would like to thank my friends for their
support , and for all the fun we have had in the last three years. We have spent
beautiful moments in tours, parties, playing, cooking and love. I am very grateful
to all the people I have met along the way and have contributed to the development
of my life.

Finally, I would like to dedicate this thesis to my parents. I have been extremely
fortunate in my life to have parents who have shown me unconditional love and
support. Personally, my parents have played an important role in the development
of my identity and shaping the individual that T am today. I would also like to thank
my brothers and sister for supporting me spiritually throughout writing this thesis
and my life in general.

Migrating Object-Oriented applications
into Component-Based Ones

Abstract: Large object-oriented applications have complex and numerous depen-
dencies, and usually do not have explicit software architectures. Therefore they are
hard to maintain, and parts of them are difficult to reuse. Component-based devel-
opment paradigm emerged for improving these aspects and for supporting effective
maintainability and reuse. It provides better understandability through a high-level
architecture view of the application. Thus, migrating object-oriented applications to
component-based ones will contribute to improve these characteristics, and support
software evolution and future maintenance.

In this dissertation, we propose an approach that automatically transforms
object-oriented applications to component-based ones. More particularly, the
input of the approach is the result provided by software architecture recovery:
a component-based architecture description. Then, our approach transforms the
object-oriented source code in order to produce deployable components. We focus
on transforming object-oriented dependencies into interface-based ones. Moreover,
we move from the concept of object to the concept of component instance. Fur-
thermore, we provide a declarative transformation approach using domain-specific
languages. We demonstrate our approach on many well-known component models.

Keywords: Component-based, Object-oriented, Software Migration, Reengi-
neering, Reverse engineering, Transformation, Model-driven, Software evolution,
Software maintenance, Software reuse, Design pattern.

Contents

1 Introduction

1.1 Context
1.1.1 Legacy Information Systems and Software Evolution
1.1.2 Modernization of Legacy Systems

1.2 Problem and Motivation L.
1.2.1 Component-Based Software Engineering

1.3 Contribution
1.3.1 Recovering Component-based Architecture.
1.3.2 Transforming Object-oriented Dependencies into Interface-

based Ones Using Design Patterns
1.3.3 Reveal component Instance
1.3.4 Model-Driven Software Migration: from Object-Oriented

Models to Component-Based Models

1.4 Structure of the Thesis

Software Migration

2.1 Reverse Engineering

2.2 Transformation
2.3 A Taxonomy for State of the Art

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6

Goal of Software Migration
Input Source of Migration
Reverse Engineeringo
Transformation L oo
Direction of Transformation
Output/Target of Migration

2.4 Migrating Object-oriented Programs into Component-based ones

24.1
2.4.2
2.4.3

244

Component-based Architectures
Reconstruction Component-based Architectures
ROMANTIC: an Approach for Recovering Component-based
Architectures L

Running Example 0000000

2.5 Discussion

2.5.1
2.5.2
2.5.3
2.54
2.5.5

Input Source of Migration
Reverse Engineering oo
Transformation
Output/Target of Migration
Goal of Migration L.

2.6 Conclusion

~ =1 Ot = W = =

ENEEN |

viii Contents
3 Healing Component Encapsulation 43
3.1 Introduction 43
3.2 Problem Statement 44
3.2.1 Explicit component encapsulation violation 44
3.2.2 Implicit component encapsulation violation 44
3.3 Instance Handling Transformation 46
3.3.1 Creating Object Interfaces: Uncoupling Boundary Classes . . 46
3.3.2 Using Component Interfaces through the Factory Pattern . . 47
3.4 Inheritance Transformation 48
3.4.1 Replacing Inheritance by Delegation 49
3.4.2 Handling Subtyping 51
3.4.3 Dealing with Abstract Superclasses 51
3.5 Exception handling transformation 53
3.5.1 Transformation thrown exception 93
3.5.2 Transforming exception handling 54
3.6 Experimental Evaluation 00000 57
3.6.1 Experiment Design and Planning o7
3.6.2 Results 61
3.7 Conclusion 69
4 Reveal Component Instance 71
4.1 Introduction L 71
4.2 Problem Statement o o 72
4.3 Transforming OO Codeto CBOne 73
4.3.1 Generating Component Descriptor and Reference of its Im-
plementation L o oL 73
4.3.2 Component Instantiation 74
4.3.3 Reveal Component-based Architecture 7
4.4 Mapping the Proposed Solution onto Component Models 79
4.4.1 Mapping from Java to OSGi. 79
4.4.2 Mapping from Java to SOFA 2.0 81
4.5 Discussion e 82
4.6 Conclusion 83

5 Model-Driven Object-Based to Component-based Software Migra-

tion
5.1
5.2

9.3

5.4

85
Introductiono 86
Transforming Object-oriented Applications into Component-based
ones Using MDT: An Overview 87
Transforming OOGM into CBGM: Defining the Source and the Tar-
get Metamodels and Rules of Transformation 90
5.3.1 Metamodeling: Defining OOGMM and CBGMM 90
5.3.2 Transforming OOGM to CBGM Rules 98
Transforming CBGM into CBSMs 103

Contents

ix

54.1 Defining CBSMMso
5.4.2 lIdentifying the Variability of Transformation Rules
5.5 Implementation and Tools 0L
5.6 Conclusion. L

6 Conclusion and Future Work
6.0.1 Summary of Contributions
6.0.2 Future Directions
6.0.3 Publications

Bibliography

103
107
112
116

117
118
119
121

123

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13

4.1
4.2

5.1
5.2
5.3
5.4
5.9
5.6
5.7

2.8
5.9

List of Figures

Software maintenance and evolution

Process of software migration
Reverse engineering and transformation into software migration . . .
Taxonomy diagram for software migration
Object-to-component mapping model
Component quality measurement model
Information screen class diagram.,
Architecture recovery for the information screen.

Flow of execution of exception-handling.
Transforming class instantiation based on the factory pattern.
Implementation of the delegation pattern at level of component. . . .
Replacing inheritance by delegation.
Handling abstract superclass based on proxy classes.
Transformation thrown exception by adapter.
Ideal exception handling model for component [Bennett 1982].
Our derived exception handling model for component.
Transforming handling exception.
Relation between number of transformations with number of compo-
nents. ... oL
The percentage of abstractness for each transformation type.

The mean of manual transformation time for each group.
The error percentage of manual transformation for each group.

Different release of the same component instance
Information-screen architecture recovery and Darwin ADL for Dis-
playedInformation and ContentProvider

The phases of transformation process.
Models handled in the transformation process.
Model transformation.o Lo
The core of FAMIX metamodel.
The core of the object-oriented architecture recovery metamodel.
The core of the CBGMM.
Access attribute, object reference, method invocation in object-
oriented architecture recovery metamodel.
Access attribute, object reference, method invocation in CBGMM.
Inheritance relationship in object-oriented architecture recovery
metamodel.

10
13
14
34
35
37
38

46
48
49
50
52
93
54
55
o7

63
64
68
68

75

80

88
89
90
91
93
94

95
95

xii

List of Figures

5.10
5.11
0.12
0.13
5.14
0.15
0.16
5.17
0.18
5.19
2.20
5.21
5.22
0.23
0.24
0.25

Inheritance relationship in CBGMM. 96
Exception handling in object-oriented architecture recovery metamodel. 97
Exception handling in CBGMM. 98
The order of the transformation problem into CBGM. 102
OSGi component metamodel. 103
SOFA component metamodel. 104
CCM metamodel. 105
Fractal component metamodel. L. 106
COM metamodel.o 106
OpenCOM metamodel. 107
JavaBeans component metamodel.00 L0000 108
EJB component metamodel.o L 108
Component-Based Generic Metamodel (CBGMM). 109
Declarative Service life cycle. o000 110
Feature model for specific transformation. 112

Migration process.o 113

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

2.1

List of Tables

Goal of migration oo 17
Source of migration 19
Reverse engineeringo oo 23
Transformation 28
Target of migration 30
Data collection. 29
Information about people involved in the experiment. 61
Architecture recovery results. 61
Statistics of transformation types.o L 62
Improvement of abstractness after transformation. 63
Estimated time for manual transformation. 65
Object-based Component Model Specifications [Crnkovic 2011a] . . . 73
Composition type in object-based component models 83

Mapping between object-oriented language and IDL 116

CHAPTER 1

Introduction

Contents
1.1 Context v i i i ittt e e 1
1.1.1 Legacy Information Systems and Software Evolution 1
1.1.2 Modernization of Legacy Systems 3
1.2 Problem and Motivation 4
1.2.1 Component-Based Software Engineering 5
1.3 Contribution 0000 d e 7
1.3.1 Recovering Component-based Architecture 7
1.3.2 Transforming Object-oriented Dependencies into Interface-
based Ones Using Design Patterns 7
1.3.3 Reveal component Instance
1.3.4 Model-Driven Software Migration: from Object-Oriented
Models to Component-Based Models
1.4 Structure of the Thesis 8

1.1 Context

1.1.1 Legacy Information Systems and Software Evolution

Many software systems live significantly longer than their developers had expected.
These systems must be adapted constantly to changing situations and able to face
numerous larger and smaller modifications during their lifetime. These software sys-
tems are designated as legacy systems and represent a particularly complex scenario
of software maintenance and evolution. Consequently, this scenario is characterized
by being time consuming, having high costs, design drift, using old programming
and development languages, little or no documentation as well as few test cases.
Nowadays not only old and monolithic systems, but also object-oriented applica-
tions (written in Java or C++) comply with legacy systems [Scalise 2010]. The
author in [Sneed 1984] claims that systems older than five years already are legacy
software systems.

Sommerville [Sommerville 2010] listed various issues and criteria that are dis-
tinctive features of a legacy system. He underlines that legacy software systems:

e do not have or only have outdated documentation.

2 Chapter 1. Introduction

e do not have or have few test cases to check its systems.

e no longer have available developers or users, hence orientation is time consum-
ing and difficult.

e are expired, the third parties responsible for maintenance of hardware and
software components are no longer available.

e have a very long time for compilation.
e do not have or have drifted knowledge of the internal architecture.
e are only understood to a limited extent.

e have many different versions making it difficult to distinguish their variants
and hard to maintain.

e need a lot of time for small maintenance tasks.

e can not easily respond to change requests, since fixing errors has become a
regular and permanent task.

e have a lot of duplicated code caused by ad-hoc reuse.

e have bad quality of the source code, errors, and many Code Smells.

From a business perspective, there are four different strategies for dealing with
these legacy systems: completely replace the system, freeze the current state without
further changes, hold on to maintenance despite cost or modernize these software
systems by reengineering, migration, or maintenance with acceptable cost. However,
the first three strategies are not suitable solutions when the cost and time are the
main interest. Neither do they contribute to improving the state nor do they address
the (main) causes of the problem. However, Reengineering and migration of data
and their internal processing in particular are necessary requirements for both: the
modernization of software and the new development |[Bisbal 1999].

Reengineering and migration of software systems are also understood as mine
and recovery of long-lost implicit information, as well as a bridge between this under-
standing and new knowledge. Since the beginning of software development, software
archeology [Hunt 2002] is known and necessary. Incidental activities, depending on
the complexity, are split into maintenance (minor works) and migration of software
(extensive changes to a system caused by software evolution). First of all, the need
for archaeological excavations within a software is because of the separation between
historically developed of initial development and their maintenance. Secondly, it is
due to the lack of synchronization between design artifacts and the program code.
During an excavation, the Fossils found in the ground are often the only clue to
the history of eras. Similarly, in legacy software systems, the source code is the
only evaluable artifact of information. Their documents are usually drifted, out-
dated, useless or never existed. Therefore, the source code must be analyzed first
to recover its meaning and function.

1.1. Context 3

1.1.2 Modernization of Legacy Systems

Over the years, several different options have come into being for legacy modern-
ization, each of them met with varying success and adoption. The most well known
options are: software reengineering, software migration and new development.

Software reengineering is defined as an engineering process aiming to generate
evolvable systems by Seacord et al. [Seacord 2003a]. In general, it includes all ac-
tivities after the software is delivered to the customer to improve the understanding
of the software and various quality parameters, for example the complexity, main-
tainability, extensibility and reusability. It is used to port a software system to a
new platform, to extract knowledge and design, to break a monolith and to reduce
the dependence from its developers. Therefore, it helps to extend the life time of
the software system.

Reengineering is applied to both software maintenance and software evolu-
tion [Miiller 2013]. However, scope, effort and use of various technologies differ
considerably in these two areas. Evolution is based on the understanding of the
whole software system. Therefore, it is expensive, while maintenance is usually
limited to investigating localized problems. The generic term reengineering summa-
rizes a variety of software techniques that are used to understand, to improve and
to validate existing software [Wagner 2014].

Software migration is a variant of software reengineering in which the transfor-
mation is driven by a major technology change (e.g. migrating software written by
procedural languages to object-oriented ones). Software migration is defined as ana-
lyzing, splitting and transforming software to a new platform or technology to meet
new requirements and to improve future maintainability [Bisbal 1999|. The existing
functionality must be preserved in order to prevent the loss of business knowledge.

The migration of software is designed exclusively for the field of software evo-
lution. The terms maintenance and evolution must be clearly distinguished from
each other. Weiderman et al. [Weiderman 1997| define maintenance as fine-grained
activity that extends over a shorter period of time and involves local changes only.
In addition, the structure of the system is only undergoing minor adjustments. In
contrast, software evolution represents major changes, including the architecture
and technology of the system. This will be urgent when the system falls short of the
users satisfaction and expectations. This leads to new user requirements business
areas.

Frequently, the software migration is associated with legacy software systems
that have a complex and complicated restoration associated with it. As we said
before, from an economic point of view, the demand to maintain the system and
its inherent business logic is very high for legacy systems. However, these systems
usually can not be shut down or redeveloped because of their central importance.
The migration for software evolution meets the new demands and reduces the inner
complexity. Thus it improves the quality parameters of the software. consequently,
it can in turn lead to lower subsequent maintenance costs. The boundary between
maintenance and evolution is naturally fluent. Figure 1.1 visualizes the relation-

4 Chapter 1. Introduction

ships just described. The maintenance, evolution, reengineering and migration of a
system are illustrated. The curve (solid green line) describes the degree of require-
ments to be met by the system over time. The expected or required functionality
is represented by a continuously increasing dash-dot line. If the gap between these
two lines is too large, a system needs to be migrated.

A
| Old technology _Ngﬁ'hﬁ\ﬂ?hﬂﬂ
Maintenance
= &
: g0
o o
5
o e
= sl
& st j
Evolution
Delivery system
- Reengineering -~ Migration
Time

Figure 1.1: Software maintenance and evolution

The new development option is denoted in literature as Big Bang or Cold Turkey
approach [Brodie |. A second and completely new software is developed in parallel to
the existing one. The new development approach is correlated with huge costs (time,
money and effort). Moreover, it is a risky approach where parts of the company
may not be operational during the development of the new system. Consequently,
the effect of new system could emerge: the over-development and over-specification
of the new system [Brooks Jr 1995].

1.2 Problem and Motivation

Laws in the Software Life Cycle: The need for software evolution is due to
the increasing complexity during the life cycle of software. Lehman and Be-
lady [Lehman 1985| have formulated several laws of software evolution principle in
the mid-eighties. The first law is called the law of continuous change: it states that

1.2. Problem and Motivation 5

software will be used only if it is constantly adapted to the changing requirements.
“A large program that is used undergoes continuing change or becomes progressively
less useful. The change process continues until it is judged more cost - effective to
replace the system with a recreated version.” [Lehman 1985] The second principle
refers to the inner complexity of software. Usually, the complexity of software in-
creases by any change in the software. “As a large program is continuously changed,
its complexity, which reflects deteriorating structure, increases unless work is done
to maintain or reduce it.” [Lehman 1985] Until this day, these laws are still valid and
useful, they define that any software in use is subject to evolution. Consequently, it
continuously follows an increasing inner complexity.

Several empirical surveys determined the amount of software maintenance in
the entire software life cycle [Miiller 2013, Erlikh 2000]. These surveys infer that
the percentage of software maintenance was between 50% and 80%. They point
out that the lower bound of maintenance continues to rise, hence in [Seacord 2003a]
estimates an effort of 90%. These studies determine the effort based on various cri-
teria such as percentage of total budget, number of staff hours as well as estimated
future expenses. They all highlight that the percentage of maintenance is extremely
high and has steadily increased. Based on the principles of Lehman and Belady,
it can be assumed that the ratio of maintenance is increased during the lifetime of
software. Consequently, an existing software product needs to be expanded or im-
proved. Therefore, the developer has to deal with legacy systems and to incorporate
them. This emphasizes the need to focus on the evolution/maintenance phase.

1.2.1 Component-Based Software Engineering

Component Based Software Development has been recognized as a competitive prin-
ciple methodology for developing modular software systems |Bertolino 2005a]. It is
an approach to software development that relies on software reuse. It enforces the
dependencies between components to be explicit through provided and required
interfaces. Moreover, it provides coarse grained high-level architecture views for
component-based applications. These views facilitate the communication between
software architects and programmers during development, maintenance and evolu-
tion phases [Bertolino 2005b)].

Besides, object-oriented software have fine-grained entities with complex and
numerous implicit dependencies |Washizaki 2005|. Usually, they do not have
explicit architectures or even have “drifted” ones. These adversely affect the
software comprehension and make these software systems hard to maintain and
reuse [Constantinou 2015]. Thus, migrating object-oriented software to component-
based software should contribute to gain the benefits of component-based software
engineering |Lau 2007].

The ultimate goal of our dissertation is supporting the evolution of legacy soft-
ware. More specifically, migrating object-oriented applications into component-
based ones'. In order to do this, we address the following research problems:

'"The Service Component Architecture (SCA) is a set of specifications for building distributed

6 Chapter 1. Introduction

1. Identifying component-based source code elements: This problem can
be divided into three sub problems:

(a) Identifying component-based architecture description: CB archi-
tecture recovery aims to identify components and connectors from legacy
software. The problem consists of identifying reusable components and
its interfaces from legacy OO systems. A component is represented by
a cluster of classes where its provided and required interfaces are rep-
resented by a set of provided and required methods respectively. The
main challenge of this step is to find the best clusters compared to the
component definitions which reflect the right software architecture.
RQ1: How to identify components and its interfaces?

(b) Identifying component assembly description: CB architecture re-
covery aims to identify components and connectors but not to create
them. It does not transform these clusters of classes into a concrete
component model. Moreover, the dependencies between clusters remain
object-oriented ones. However, the dependencies between components
should be through their provided and required interfaces. Therefore, we
need to transform remain object-oriented dependencies to component-
based ones (interface-based).

RQ2: How to transform object-oriented dependencies to interface-based
ones?

(c) Identifying component instantiation: the recovered clusters should
not be considered as simple packaging and deployment units. They
should be treated as real components: true structural and behavior units
that are instantiable from component descriptors and connected together
to materialize the architecture of the software. Therefore, we need to re-
veal component descriptors, component instances and component-based
architecture to materialize the recovered architecture.

RQ3: How to identify component instance and its descriptor?

2. Identifying the migration process: The migration process from object-
oriented application to component-based ones is a complex and difficult task.
We need to provide a good support for the migration process by making it ca-
pable of being generic, extensible, coverable, reusable, integrated, declarative
and automatic.

RQ4: How to describe the migration process?

applications based on service-oriented architecture (SOA) and Component-Based Software Engi-
neering (CBSE) principles [Beisiegel 2005, Beisiegel 2007]. SCA defines a component model for
structuring service-oriented applications, where software components play as firstclass entities.
Therefore, migrating into component-based contributes for migrating into SOA.

1.3. Contribution 7

1.3 Contribution

1.3.1 Recovering Component-based Architecture

CB architecture recovery was largely dealt with in the literature [Ducasse 2009a,
Birkmeier 2009, Kebir 2012, Chardigny 2008a, Allier 2010]. Most of these works aim
to identify components as clusters of classes. They use clustering algorithms, among
other techniques, aiming at maximizing intra-component cohesion and minimizing
inter-component coupling to identify the architectural elements (components and
connectors). Moreover, in our previous works [Kebir 2012, Chardigny 2008a|, we
have proposed an approach which aims to recover component-based architectures
from OO source code. Therefore, we assume that the component-based architecture
recovery problem is already solved. As a result, RQ1 was already answered.

1.3.2 Transforming Object-oriented Dependencies into Interface-
based Ones Using Design Patterns

To answer RQ 2, we propose an approach to automatically transform object-oriented
applications to component-based ones. More particularly, the input of the approach
is the result provided by software architecture recovery: a component-based ar-
chitecture description. Then, our approach transforms the object-oriented source
code in order to produce deployable components. We focus on transforming object-
oriented dependencies between clusters (components) into component-based ones.
More specifically, the approach transforms the source code related to instantiation,
inheritance and exception handling dependencies between classes that are in differ-
ent components into interface-based ones by using object-oriented design patterns.

1.3.3 Reveal component Instance

To answer RQ 3, we propose an approach for revealing component descriptors, com-
ponent instances and component-based architecture to materialize the recovered
architecture of an object-oriented software in component-based languages. The ap-
proach identifies component instances by inferring a component instance from a set
of objects instantiated from its classes. After that, code generation and transforma-
tion are operated to materialize the recovered architecture.

1.3.4 Model-Driven Software Migration: from Object-Oriented
Models to Component-Based Models

To answer RQ4 , we move onto describing our migration approach from code-centric
approach to model-centric ones (models as first class entities). The metamodels for
both object-oriented models and component-based models are identified. Then, we
use a domain specific language transformation to describe the transformation rules
between these models.

8 Chapter 1. Introduction

1.4 Structure of the Thesis
The rest of this thesis is organized into five chapters presented as follows:

e Chapter 2 discusses the state-of-the-art related to the problem of legacy
software modernization in the context of object-oriented, component-based
and service oriented architecture.

e Chapter 3 presents our contribution related to transforming object-oriented
dependencies into interface-based ones using design patterns.

e Chapter 4 presents our contribution aiming at revealing component descrip-
tors, component instances and component-based architecture.

e Chapter 5 presents our approach that aims at using model-driven transfor-
mation to transform object-oriented applications into component-based ones.

e Chapter 6 reports conclusion remarks and future directions.

CHAPTER 2

Software Migration

Contents

2.1 Reverse Engineering, 11
2.2 Transformation 0o i e 12
2.3 A Taxonomy for State of the Art 13
2.3.1 Goal of Software Migration 13
2.3.2 Input Source of Migration, 16
2.3.3 Reverse Engineeringo 19
2.3.4 Transformationo L. 24
2.3.5 Direction of Transformation 27
2.3.6 Output/Target of Migration 29

2.4 Migrating Object-oriented Programs into Component-
basedones. e e e e e e 29
2.4.1 Component-based Architectures 29
2.4.2 Reconstruction Component-based Architectures 32

2.4.3 ROMANTIC: an Approach for Recovering Component-based
Architectures 33
244 Running Example 00000 36
2.5 Discussion v it e e e e e e e e 37
2.5.1 Input Source of Migration, 37
2.5.2 Reverse Engineeringo 39
2.5.3 Transformation o 39
2.5.4 Output/Target of Migration 40
2.5.5 Goal of Migration 40
2.6 Conclusion 40

In this chapter, we discuss the-state-of-the-art related to software migration and
its main two steps; reverse engineering and transformation. We start by positioning
our work compared to the related domains in Section 2.1 and Section 2.2. Then, a
tazonomy of proposed transformation approaches are presented in Section 2.53. An
example of a reverse engineering approach is presented in Section 2.4. After-that,
the tazonomy results are discussed in Section 2.5. Finally, the conclusion of the
chapter is presented in Section 2.6.

10 Chapter 2. Software Migration

Legacy software systems are often built on obsolete and inefficient platforms that
are difficult to maintain and enhance. Software migration is defined as reverse engi-
neering and transforming software to a new platform or technology while reserving
their existing functionalities to prevent the loss of business knowledge. The goal is
(i) to reuse these software systems or part of them, (ii) to meet new requirements
coming from software evolution and (iii) to improve future maintainability.

Bisbal et al [Bisbal 1999 define software migration as follows:

“Legacy Information System Migration (...) allows legacy systems to be moved
to new environments that allow information systems to be easily maintained and
adapted to new business requirements, while retaining functionality and data of the
original legacy systems without having to completely redevelop them.”

‘ Transformation

B_ase Desired
architecture architecture

/\

Architecture
representation

Architecture
representation

Design
patterns
and styles

Function-level Program I | Function-level
representation plans representation
Code structure \ Code / Code structure
representation styles representation
Legacy L | J 4 Target

source code Legacy platform New platform source code

uojjesauab apod

Reverse engineering

<

Figure 2.1: Process of software migration

Figure 2.1 extends the graphic of Horseshoe Model proposed in [Kazman 1998|
and explains the developed methodology of software migration. On the left, the
reverse engineering from the code-centric to high abstract model is depicted. On
the other side, in the upper part and right part, transformations from legacy artifacts
to new ones are depicted. Furthermore, it is illustrated that the target source code
is generated from the high abstract models. Therefore, we consider the migration
process is composed of two main steps, reverse engineering and transformation.

2.1. Reverse Engineering 11

We consider code generation as a part of transformation step. By looking at the
horseshoe from the bottom to the top, it can be noted how the migration proceeds
at different levels of abstraction: code representation, function representation, and
architecture representation.

2.1 Reverse Engineering

In the context of software engineering, the term reverse engineering was defined by
[Chikofsky 1990] as “the process of analyzing a subject system to (i) identify the sys-
tem’s components and their inter-relationships and (i) create representations of the
system in another form or at a higher level of abstraction”. Also it was defined by
[IEE 1998] as “The process of extracting software system information (including doc-
umentation) from source code”. Based on these definitions, reverse engineering has
been viewed as a process of two steps: information extraction and abstract represen-
tation [CanforaHarman 2007]. Information extraction analyzes the subject software
artifacts for mining raw data, whereas abstract representation creates user-oriented
documents and views based on these raw data. For instance, information extraction
step consists of extracting call graphs, metrics or facts from source code. Abstract
representation aims at recreating design abstractions from the source code, existing
documentation, human experts, knowledge and any other source of information. Its
outputs can be design artifacts, software architectures, feature models, or business
objects.

The source code of many software systems is the only reliable representation
particularly for large long-lived software systems that have undergone many mod-
ifications during their lifetime [Chikofsky 1990]. Therefore, these software systems
have substantially overgrown the initial supposed software systems and have drifted
documentation. Hence, reverse engineering is recommended as a technique for re-
documenting these software systems to obtain comprehensibility and maintainabil-
ity [Chikofsky 1990, Vliet 2008|. However, the source code is not necessarily the
only targeted artifacts for reverse engineering, any existing artifacts are candidates,
for example, documentation, requirement, test case, manual pages, design diagrams
or comments in a version control systems, etc. |[CanforaHarman 2007|. Since the
correlation between documentation and source code is not harmonized, the source
code often considers the only reliable source of information [Chikofsky 1990]. This
is certainly the main motivation for many reverse engineering techniques that deal
with source code. The result of reverse engineering is the basis for the transforma-
tion and forward engineering steps [Kazman 1998]. Thus, reverse engineering is the
foundation of the software migration and reengineering; a software system can only
be changed when it is understood |Chikofsky 1990].

Reverse engineering approaches can have two major objectives: redocumenta-
tion and design recovery [CanforaHarman 2007]. Redocumentation aims at creating
or revising alternate views of a given artifact at the same level of abstraction (e.g.,
pretty formatting source code or visualizing control flow graph). Design recovery

12 Chapter 2. Software Migration

aims at recreating the design of abstract artifacts from the source code, existing
documentation, human experts, knowledge and any other source of useful informa-
tion [Biggerstaff 1989].

During the nineties, the prevalent of object-oriented languages and their ad-
vantages led to the need to reengineer existing procedural software towards object-
oriented. Therefore, many reverse engineering approaches were developed to identify
objects from legacy procedural software (e.g. [Cimitile 1999]). They focused on re-
covering high-level architectures or diagrams from procedural source code.

During the nineties and the early part of the new millennium, a new age of
software development has emerged. Component-based software engineering, also
known as component-based development, has emerged as a reuse-based approach
to defining, implementing and composing loosely coupled independent components
into systems. Bearing this in mind, many reverse engineering approaches have been
proposed to recover component-based architecture and their elements from object-
oriented software systems. These approaches aim at recovering software architec-
tures by identifying their components and the relationships (connectors) between
these components.

Architecture recovery is important to improve software understandability, to
promote software reuse, and to support software evolution. The most common
techniques for architecture recovery depend on metrics-based [Mitchell 2006], formal
concept analysis [Siff 1999], clustering metrics and heuristic-based techniques for
component recovery [Kebir 2012]. One of the main problems to deal with when
recovering an architecture is to capture differences between the source code and the
mental model behind high-level artifacts.

2.2 Transformation

Strictly speaking, reverse engineering does not include transformation, which is the
transformation from one representation form to another one (e.g., source-to-source or
model-to-source transformations) nor software transformation, which encompasses
the alteration of legacy software systems to reconstitute them in new forms.

Kleppe et al. |[Kleppe 2003| define model transformation as follows: A transfor-
mation definition is a set of transformation rules that together describe how a model
i the source language can be transformed into a model in the target language. A
transformation rule is a description of how one or more constructs in the source lan-
guage can be transformed into one or more constructs in the target language. The
transformed model is required to be semantically equivalent to the subject model
(transformed model is a refinement of subject model). In few cases, the result of
transformation may be semantically different from the subject model but in pre-
dictable ways. A model can be source code or any other form of representation
and can also be applicable to multiple source models and /or multiple target models.
Code transformation is converting the source code into a machine readable form of
target platform.

2.3. A Taxonomy for State of the Art 13

A practical requirement for source code transformation is reverse engineering of
source code (e.g. source code parsing, building internal program representations of
code structures like abstract syntax tree, the meaning of program symbols, etc.).
After that, the transformation rules and patterns are applied onto subject source
code and guided by the results of reverse engineering to obtain transformed source
code representations. Finally, regeneration of valid source code from these represen-
tations as a target source code. Figure 2.2 illustrates the relation between reverse
engineering and transformation into software migration.

Migration

Migration

Transformation iﬁ Transforma
> X

tion
[(e —-

Reverse engineering

Figure 2.2: Reverse engineering and transformation into software migration

2.3 A Taxonomy for State of the Art

In this section, we propose a taxonomy for software migration that allows us to
group approaches (methods, tools, techniques or formalisms) for software migration
based on their common qualities. The taxonomy provides a multi-dimensional clas-
sification that allows us to group and compare software migration approaches based
on the criteria of interest. The taxonomy consist of five dimensions: The goal of
software migration, the input of migration, reverse engineering, transformation, and
the output of migration. Figure 2.3 illustrate these diminutions and their qualities.

2.3.1 Goal of Software Migration
e Reusability: ISO/IEC 25010:2011 defines reusability as “degree to which

an asset can be used in more than one system, or in building other assets”.
It is a property of a software artifact that indicates its extent of reuse. Soft-
ware reuse refers to the uses of existing software artifacts for building new
software systems to improve software quality and productivity [Frakes 2005]
[Shiva 2007] [Leach 1997|. It can be over different levels of abstraction (i.e.,
requirement, design and implementation), and can concern different software

14

Chapter 2. Software Migration

Code

I

—| Type documentation

r Source !

-| visibility —| Black bosr

Top-Down
Bottom-Up

Automation

Hybrid

Siemi-Automatic

H ReverseEnginesring

Resuit

Manual
Static
Dynamic
Component-based
Service-based

Others

i

Text
Code Structure
Wrapping

Model Driven

Mapping

=
o
=
[
50
=

nme |
~| System Domain Spedfic

~| Technigque lexicllybased

i

syntacticaly-b
semantically-b:

MDTL

il

Type

[t}

- Relationship

o]

Endozenous

i

Exogenous

Text-toText
Text-to-Model

Model-to-Text

Model-to-Model

Uni

Code

. Context Senvice

r Reusability

f

ndersatandability

=| Gaoal

Maintenance

Efficiency

Figure 2.3: Taxonomy diagram for software migration

2.3. A Taxonomy for State of the Art 15

artifacts (e.g., feature, documentation, software architecture, software compo-
nent, source code, libraries, design, etc.) [Frakes 1996] [Leach 1997|.

Systematic reuse is a strategy for increasing productivity and improving qual-
ity in the software industry [Tomer 2004]| [Frakes 1996]. The reusing of
existing artifacts that are already tested, evaluated and proven in advance
enhances the quality of software [Jacobson 1997|. And reusing preexisting
software artifacts instead of developing them from scratch improves the soft-
ware productivity. Consequently, it reduces development cost and the time to
market [Frakes 2005, Mohagheghi 2007].

Since the first time systematic software concept was presented
by [M. D. Mcllroy 1968] , many software reuse approaches have been proposed
to reach a potential degree of software reuse [Frakes 2005, Shiva 2007|. For ex-
amples, Component-Based Software Engineering (CBSE) [Heineman 2001a],
Software Product Line Engineering (SPLE) [Clements 2002|, service-oriented
software engineering [Stojanovi¢ 2005] and aspect-oriented software engineer-
ing [Jacobson 2004], etc.

e Understandability: According to ISO/IEC 9126-1, understandability is a
sub-characteristic of usability, and it is defined as the capability of the software
product to enable the user to understand whether the software is suitable, and
how it can be used for particular tasks and conditions of use [Fenton 2014].
The understandability sub-characteristic allows to draw conclusions about how
subject users can recognize the logical concepts of software and its applicabil-
ity [Stevanetic 2015]. It correlates with metrics which measure attributes of
software that are responsible for the users’ efforts for recognizing the logical
concepts and applicability. Users should be able to select a software product
which is suitable for their intended use. In other words, we can see under-
standability as the extent to which the user can comprehend the software.

Usually, maintenance developers should not have less knowledge than the de-
velopers of the original system. He needs to make the system his own for a
successful maintenance process. Large software systems generally consist of
a landscape of different software products that are developed or bought and
grown over many years and by different owners. The concept of system un-
derstanding is brought to examine the connection and the interaction between
different products. The result is an overview (knowledge) of the functions and
the role of the subsystems: system understanding |Thomas 2001].

e Maintainability: ISO/IEC 25010:2011 defines maintainability as degree
of effectiveness and efficiency with which a product or system can be modi-
fied by the intended maintainers. In addition, the ISO 9126 standard defines
maintainability as the capability of the software product to be modified, in-
cluding corrections, improvements or adaptation of the software to changes
in environment, and in requirements and functional specifications. More-
over, it proposed that the maintainability consists of the following charac-

16

Chapter 2. Software Migration

2.3.2

teristics: analyzability, changeability, stability, and testability. These charac-
teristics can rely on quality indicators such as coupling, cohesion, and com-
plexity |Li 1993, Smith 2011, Zou 2002].

Evolution: It is the process of developing a software and repeatedly updating
or modifying it for various reasons during the software life cycle [Lehman 1980].
The software evolution is consider the longest phase in the software life cy-
cle [Lehman 1980, Mens 2008|. It begins with the delivery of the application
to the customer and until the system is dead or replaced. Lehman et al. for-
mulated a series of software evolution laws [Lehman 1980, Lehman 1997|. The
laws describe a balance between factors driving new developments and that
slow down progress. Modern development technologies (e.g software product
line, component-based development) can help to minimize the problems that
inevitably arise in the context of software evolution.

Efficiency: ISO/IEC 25010:2011 defines efficiency as resources expended
wn relation to the accuracy and completeness with which users achieve goals.
Inefficient causes are often found in bad architectural and violations of coding
practice [Jones 2008, Charnes 1978|. These causes can be detected by measur-
ing the static quality attributes of an application that predict potential opera-
tional performance bottlenecks (i.e. requiring high execution speed) and future
scalability problems (i.e. huge volumes of data) [Fenton 2014, Jones 2008|.

Input Source of Migration

2.3.2.1 Source Type

e Source Code: source code is taken to mean a collection of computer ex-

ecutable instructions that are describing a software system [Harman 2010].
It includes machine code, very high level languages and executable graphical
representations of systems. The instructions are written usually by developers
in a computer programming language, such as Java, C++, and C.

Object-oriented source code mainly consists of a set of classes that belong to
a set of organized packages [Rumbaugh 1991a]. Methods and attributes con-
stitute the main building units of a class. The dependencies between classes
are recognized via method invocations, access attributes, inheritance, excep-
tion handling, etc. Source code is the most software artifact that is commonly
used by the existing migration approaches, due to its availability and reliabil-
ity [Chikofsky 1990]. In the case of migrating object-oriented applications to
component-based ones, the approaches start by analyzing and recognizing the
dependencies between classes in order to identify high cohesive and low coupled
clusters. After that, the transformation process takes place to transform these
clusters to components [Wagner 2014]. For example, [Akers 2004], [Poch 2009
and [Allier 2011| proposed approaches that migrate object-oriented applica-
tions into component-based ones by having source code as input artifacts.

2.3. A Taxonomy for State of the Art

17

Table 2.1: Goal of migration

Approach

Reusability Understandability

Maintenance

Evolution

Efficiency

[Akers 2004]

v

v

|Boshernitsan 2006]

v

[Ding 2011]

v

[Wang 2006|

v

[Xue 2011]

[Clavreul 2010]

[Nguyen 2014]

[Santos 2015]

[Bruneliere 2010]

[Fuhr 2011]

[Ahmad 2014]

<ol e
<<=

< <

[Winter 2007]

[Matos 2011]

[Selim 2013]

[Hunold 2009]

[Poch 2009

[Karim 2014]

[Hunold 2008|

[De Lucia 2008]

< R R &K

[Ying 2013]

[Binkley 2006]

[Seriai 2014]

[Canfora 2008]

[Tilevich 2009]

[Kegel 2008a|

<

[Allier 2011]

[Kapur 2010]

<<

[Eysholdt 2010]

[Axelsen 2012

<

[Einarsson 2012]

[Kjolstad 2011]

<[

|Gligoric 2014|

<

18 Chapter 2. Software Migration

e Documentation: Software documentation is text, model or illustration
that accompanies computer software to explain how it operates or how to
use it [Pohl 2010|. For example, It could be requirements documentation like
use cases or design documentation like software architecture and class dia-
grams. Documentation is recommended to improve development and help
maintenance. In the context of reengineering, redocumenting legacy soft-
ware is useful to continue to maintain them or migrate them to new plat-
forms [Forward 2002]. Moreover, Documentations are used as truth based for
the reverse engineering approach.

e Metamodel: In general, it is a model that is used to describe another model
by using a modeling language.

According to OMG standards, “A metamodel is a special kind of model that
specifies the abstract syntax of a modeling language. It can be understood as the
representation of the class of all models expressed in that language. Metamodels
in the context of MDA are expressed using MOF.”

According to Mellor et al [Mellor 2004|, “A metamodel is a model of a modeling
language. The metamodel defines the structure, semantics and constraints for
a family of models.”

According to Clark et al [Clark 2008, Clark 2015], “A metamodel is a model
of a language that captures its essential properties and features. These include
the language concepts it supports, its textual and/or graphical syntax and its
semantics (what the models and programs written in the language mean and
how they behave).”

Both source and target metamodels are provided for migration. Models con-
firm to source metamodel (instances of source metamodel) are also provided.
Then the migration approach is responsible for generating target models that
must confirm to the target metamodel. The advantages of using metamodels
that are that they are technology independent. Moreover, it can be language-
independent like FAMIX [Ducasse 2011a].

2.3.2.2 Source Visibility

We can classify the source of migration into three types based on their visibility.
Whitebox, blackbox and graybox refer to the visibility of an implementation but
not its interface [Szyperski 2002].

e Whitebox: In a whitebox software artifact, the source of the artifact is
fully available for clients. Thus it can be studied and analyzed to enhance the
understanding of what the abstraction does. Whitebox software reuse refers to
using a software through its interfaces by relying on the understanding gained
from studying and analyzing the actual implementation. For example, class
libraries and frameworks are delivered in source form, and developers study
the classes implementation to reuse or inherit them.

2.3. A Taxonomy for State of the Art

19

Table 2.2: Source of migration

Type Visibility

Ay Code Document Model White box Black box Gray box
Akers 2004] Ct++ vV
Boshernitsan 2006] | Java Vv

Ding 2011] Use cases N

Wang 2006] Ct++ vV

Xue 2011] x Vv

Clavreul 2010] x v
Nguyen 2014] Java N

Santos 2015] 00 Vv

Bruneliere 2010] Java, J2EE Use cases XML v

Fuhr 2011] Java N

Ahmad 2014] 00 Vv

Winter 2007] Java Vv

Matos 2011] 00 v

Selim 2013] General Motors Models 4
Hunold 2009] 00 Vv

Poch 2009] Java N

Karim 2014] JavaScript Vv

Hunold 2008| Java Vv

De Lucia 2008] ACUCOBOL-GT N

Ying 2013] ATAX XML Vi

Binkley 2006] Java Vv

Seriai 2014] Java Vv

Canfora 2008| 00 Use cases + FSA N
Tilevich 2009] Java Vv

Kegel 2008a] Java Vv

Allier 2011] Java v

Kapur 2010] Java Vv

Eysholdt 2010] XML,/UML V

Axelsen 2012] Core Package Templates v

Einarsson 2012] UML Model Vv

Kjolstad 2011] Java mutable class Vv

Gligoric 2014] Build Script v

e Blackbox:

In an ideal blackbox software artifact, clients do not know any

details about the source of the artifact beyond the interface and its specifica-
tion. Blackbox reuse refers to the concept of reusing implementations without
relying on anything but their interfaces and specifications. For example, ap-
plication programming interfaces (APIs) do not reveal anything about the
underlying implementation. They can only be reused through their interfaces.

Graybox: In a graybox artifact, the source of the artifact is partially avail-
able for clients (reveal a controlled part of their implementation). The inter-
face may still enforce encapsulation and limit what clients can do, although
implementation inheritance allows for substantial interference. For example,
in applications that have graphical user interfaces (GUIs), implementation of

their GUIs could be available but not others.

2.3.3 Reverse Engineering

2.3.3.1 Type of Reverse Engineering

Basically, there are two different methods for the investigation of software: Top-

down and Bottom-up [Szyperski 2002, Waters 1994|. In addition, combinations of
the two methods are possible (Hybrid).

20

Chapter 2. Software Migration

e Top-down: The study of the high level software artifacts (e.g. software

architecture, use cases, etc.) starts with a look from the top. After that,
The initial results are refined from top to bottom with the help of various
hypotheses to identify low level software artifacts. Examples of using this kind
of method are proposed by [Ding 2011] and [Canfora 2008]. In [Ding 2011], the
authors used use cases to recover a service-oriented architecture from execution
traces. In [Canfora 2008|, the approach starts analyzing use cases and finite
state automation to identify services form object-oriented source code. Use
cases are used to extract the rules of interactions between users and legacy
software systems. Then, a wrapper is implemented as an interpreter of a finite
state automaton that encapsulates these interaction rules.

Bottom-up: This method starts with the low level software artifacts (source
code). It extracts useful information, structures and other interesting ar-
tifacts which are necessary to form an abstract representation at the next
higher level (e.g. software architecture). For example, the approach proposed
in [Akers 2004] analyzes source code that is written in C++ to extract com-
ponents. In [Wang 2006], the authors targeted C++ applications to extract
components using the cluster technology. Component interfaces and clusters
of the components are demonstrated on J2EE distribute environment.

Hybrid: It is the combination of the two previous methods; top-down and
bottom-up. This method uses the top-down approach for system understand-
ing; high level software artifacts of a software system is sufficient to recognize
their relationships. The bottom-up method is essential for a detailed analysis
of low level software artifacts. The approach proposed in |Bruneliere 2010]
applied bottom-up method on Java applications source code and top-down
method on their use cases. It extracts metrics, models and graphs from these
applications. In [Eysholdt 2010], the authors used XML that represents a
source code as low level artifacts and UML as high level artifacts.

2.3.3.2 Automation

e Automatic: The fully automated approaches do not need any human

experts. Usually, fully automatic approaches compromise their precision or
recall and the obtained information is only partially usable by the main-
tainer |CanforaHarman 2007|. Actually, there are no one hundred percent
automated approaches, but we consider approaches that do not have a high
impact of human experts on their results as automatic ones.

Semi-automatic: It requires inputs from human experts to complement
or correct the information that is automatically extracted. Semi-automatic
approaches have used human experts feedback to improve the extracted arti-
facts and views, not the production process itself. Future activities in reverse
engineering should push towards learning from human experts feedback to

2.3. A Taxonomy for State of the Art 21

automatically produce results by using machine learning, meta-heuristics and
artificial intelligence |CanforaHarman 2007]. In other words, human experts
feedback should be fully integrated into the software migration and reverse
engineering to gain the benefits of both automatic and semi-automatic ap-
proaches.

e Manual: Manual approaches fully depend on human experts. These ones
only provide guidelines and rules for human experts that allow them to identify
elements and transform them to the target.

2.3.3.3 Type of Analysis

e Static analysis: It examines program source code over all possible behaviors
that might arise at run time without actually executing the program, no mat-
ter on what inputs or in what environment the program is run [Ernst 2003].
Software metrics and reverse engineering are extensively using this type of
analysis. For example, many works have been proposed to identify compo-
nents from object-oriented source code using static analysis to obtain cluster
of classes that have high cohesion and low coupling. Static analysis operates
by building a model of the situation of the program, then determining how the
program reacts to this situation [Ernst 2003]. A program has many possible
executions, then the analysis must keep track of multiple different possible sit-
uations. However, it is usually not reasonable to reflect every possible run-time
situation of the program; for example, there may be arbitrarily many differ-
ent states or user inputs at runtime. Moreover, some information can not be
obtained statically like dynamic binding but at run time [Rumbaugh 1991b].
Therefore, static analyses usually use an abstracted model of program situa-
tions that loses some details and information. As a result, the static analysis
output may be less precise than the ideal ones.

e Dynamic analysis: It is observing the executions of a program by executing
programs on a real or virtual processor (e.g testing and profiling)[Ernst 2003].
Dynamic analysis operate on a program with high code coverage has been
more precise because the analysis can examine the actual and exact run-time
behavior of the program[Chen 2002|. The program must be executed with
sufficient test inputs to produce interesting behavior and maximize its code
coverage. The results obtained by dynamic analysis are not comprehensive,
they may not generalize to future executions. That is because there is no
guarantee that the test suite over which the program was run (e.g use cases)
is covering of all possible program executions (code coverage)[Ernst 2003].

e Hybrid static-dynamic analysis: Static and dynamic analysis can be
applied to a single problem to complement and support one another. They
can enhance one another by providing information that would otherwise be un-
available. For example, to identify all possible dependencies in object-oriented

22

Chapter 2. Software Migration

source code, The static analysis can identify static dependencies like method
invocations, inheritance and exception handling. Then dynamic operate in its
turn to identify dynamic dependencies like ones related to dynamic binding
and dependency injection.

2.3.3.4 Result of Reverse Engineering

The core of reverse engineering consists of extracting information from legacy soft-

ware to represent it in abstract ways which are more easily understandable by hu-

mans. These abstract ways mean design recovery from the source code, existing

documentation, experts knowledge and any other source of information. Based on

the types of reverse engineering results, we study three types of the design recovery

related works; Component-based, service-based, and others.

e Component-based: The key aspect of this is analyzing legacy software

systems to identify components of them and inter-relationships between these
components. Representations of these systems are created at a higher level
of abstraction (Component-based architecture). Component-based architec-
ture recovery aims at identifying components and the relationships (connec-
tors) between them from legacy software based on specific techniques such
as metrics-based, Formal Concept Analysis, clustering metrics and heuristic-
based. Usually, a component identified as a cluster of classes that have high
cohesion and low coupling with other clusters.

Service-based: This type of results are used for migrating legacy systems
towards service-oriented architecture. A service Oriented Architecture (SOA)
can be viewed as a set of components that are separating their interfaces from
their internal implementation, and their interface descriptions can be pub-
lished and discovered [Haas 2004]. A key aspect of this is identifying software
services from legacy software systems. A service is a unit of functionalities that
is used (provided) to achieve desired end results for a service consumer with
the policies that should control its usage. Service-oriented architecture is an
architectural software concept that defines the use of services in a standardized
way.

Others: In addition to extract high level abstraction in contexts of com-
ponent and service, other abstractions and information can be obtained as
mediators to complete the migration process. These can be models (feature
model, metamodel, model), trees and graphs (dependency graph, AST, call
graph), patterns, templates, quality metrics, etc. A combination of all previ-
ously mentioned is possible. For example, many approaches, like the one pro-
posed in |Kebir 2012]|, aim to recover component-based architectures based on
a fitness function. The fitness function is based on quality measurements (e.g.
coupling and cohesion). Therefore, quality measurements behind component-
based architectures are extracted by these approaches.

Table 2.3: Reverse engineering

Type Automation Analysis Results
Approuch Top-Down | Bottom-Up | Hybrid | Automatic | Simi-Automatic | Manual | Static | Dynamic | Component-based | Service-based Others
Akers 2004] v N Vv v
Boshernitsan 2006] Vv 4 4 Patterns
Ding 2011] Vv v 4 V4
Wang 2006] v N v v Java
Xue 2011] 4 Vv Vv Feature Model
Clavreul 2010] 4 V4 4 Meta Model
Nguyen 2014] Vv Vv v Model
Santos 2015] V4 4 Patterns
Bruneliere 2010] V4 v 4 Mitrics, Models, Graphs
Fuhr 2011] Vv Vv Vv Vv Vv Graphs
Ahmad 2014] Vv 4 Vv 4
Winter 2007] 4 Vv 4 Patterns
Matos 2011] Vv N Vv Graphs
Selim 2013] Vv Vv Vv Model
Hunold 2009] 4 Vv 4 Patterns
Poch 2009] Vv Vv Vv
Karim 2014] Vv Vv Vv Vv
Hunold 2008] 4 Vv V4 Patterns
De Lucia 2008| 4 Vv 4 4
Ying 2013| Vv Vv Vv AST
Binkley 2006] Vv 4 Vv Concerns
Seriai 2014] Vv Vv Vv Call Graph
Canfora 2008] N N N v
Tilevich 2009] 4 Vv Partition Program
Kegel 2008a] Vv Vv 4 Type Constraints
Allier 2011] v v Y
Kapur 2010] Vv vV Vv Differantial Code
Eysholdt 2010] v Vv Vv Ecore Model
Axelsen 2012] vV v Vv Template
Einarsson 2012] Vv Vv 4 Model
Kjolstad 2011] Vv Vv Vv Graph
Gligoric 2014] vV N N Dependency Graph

€°¢C

11V 9YJ JO 93e)S I0J AWIOUOXE], YV

€¢

24 Chapter 2. Software Migration

2.3.4 Transformation
2.3.4.1 Transformation Method

e Text: Source code are the main and only artifacts that are used during trans-
formation. It is not represented in other formats (e.g. XMI format, graphs,
trees, models, etc.). The transformation is written in a classical programming
languages (e.g. Java, C++).

e Code structure: An intermediate structural representation of the source
code used to deal with it during transformation. Toolkits are used to enable
the parsing of source code to produce structural documents. For example, we
can represent each class as an abstract syntax tree [Pfenning 1988|. Then the
transformation deals with these abstract syntax trees to complete its task.

e Wrapping: This method uses a thin layer of code which wraps legacy source
code, the interactions with surrounding environments will be through this
layer [Sneed 2000]. It helps two incompatible interfaces to work together, for
example, the adapter pattern is a simple wrapper that allows the interface of
an existing class to be used as another interface without modifying its source
code[Freeman 2004]. The advantage of wrapping methods is that software
components can be reused with lowest error prone because they have been
known and tested for years. It is suitable for migrating black-box source
code (black-box modernization), it requires merely knowledge of the external
interfaces [Seacord 2003b]. Unfortunately, this method has only a short term
solution character, the original problems are not necessarily solved. Moreover,
typical problems occur like data persistence, thread and synchronization, as
well as exception and error handling.

e Model driven: Defines the process of converting source models
into target models by using standard model representation (e.g. meta-
model) [Jouault 2008|. It relies on models as first class entities, the source
and target models must be presented in a standard model. They are far more
abstract than the first three methods and do not require detailed knowledge
about structured elements, interfaces, or their representation at the model
level.

2.3.4.2 Transformation Technique

e Mapping: A mapping transformation between source and target models
consists of a set of declarative relations that should hold between their do-
mains [Jouault 2008]. A domain is an element of a specific type and has a
pattern, a set of properties and conditions. Such a relation is defined by two
(or more) domains and a couple of pre and post conditions. Mapping Tech-
nique is bi-directional transformation: the transformation can be in the reverse
direction. That means the source model can be the target one and the target
model can be the source one.

2.3. A Taxonomy for State of the Art 25

e Rule-based: The transformation between source and target models is de-
fined as a sequence of imperative rules|Porres 2003]. It is usually used to build
target models of a complex structure. In addition, when there is no direct cor-
respondence between individual elements of the source and target models, then
it is difficult to describe the transformation declaratively|[Visser 2005]. Unlike
the mapping technique, rule-based is uni-directional, it does not support the
transformation in the reverse direction.

e lexically-based: It is a simple technique based on search-and-replace fea-
tures like traditional rename refactoring tools presented in IDEs [Kapur 2010].
This type is simple to the point that it can not discrimination references from
declarations.

e syntactically-based: Syntactically-based transformation approaches based
on syntactic representation of the program [Kapur 2010]. For example, we
can parse classes and store all foundations of their syntactical information in
abstract syntax trees (ASTSs) [Pfenning 1988|. After that, a transformation is
applied based on these ASTs like, the transformation could be used to locate
references and refactor them.

e semantically-based: This technique demands the presence of formal spec-
ifications of the source code [Kapur 2010]. The formal specifications tend to
be absent in industrial settings and require a mathematical expertise and the
analytical skills to understand and apply them effectively [Nummenmaa 2011].

2.3.4.3 Transformation Language

e Model driven transformation languages: These languages are intended
specifically for model transformation which is central to model-driven develop-
ment. They provide rule-based and pattern-based transformation languages
for manipulating models. Many model driven transformation languages are
proposed like the language that is standardized by Object Management Group
(OMG): Query View Transformation (QVT). QVT is part of the Meta-Object
Facility (MOF) and describes a model-to-model transformation. It is sim-
ilar to a programming language, functions and variables can be defined to
access models elements and their attributes. The metamodels of the source
and target model are always necessary. Other transformation languages of
this kind are ATLAS Transformation Language (ATL) developed by the IN-
RIA [Jouault 2008] and Kafka was proposed in [Weis 2003|.

e Object-oriented languages: Transformations are written using classical
programming languages like Java programming language. It is possible to ma-
nipulate the models using these languages by means of extracting information
from the source models and mapping them to the target model. Models, rules
and patterns are imperatively described by source code.

26 Chapter 2. Software Migration

2.3.4.4 Transformation Specificity

It indicates whether a transformation approach is specialized or designed for a spe-
cific application or domain. The transformation approach could be domain-specific
application like the approach proposed by [Karim 2014], where the transformation
is specific to Firefox extensions. In addition, it could be Domain-specific frameworks
like the approach proposed by [Selim 2013], where the transformation is specific to
Vehicle Control Software (VCS) development.

2.3.4.5 Type of Transformation

Based on the nature of languages and technologies used to express the source and
target models of a transformation, two types of transformation can be distinguished;
endogenous and exogenous [Mens 2006a].

e Endogenous : Endogenous transformations are transformations between
models expressed in the same programming language and technology; the
source and target models are written by the same language. refactor-
ing, normalization and optimization are examples of endogenous transforma-
tion [Visser 2001].

e Exogenous : Exogenous transformations are transformations between mod-
els expressed using different programming languages and/or technologies; the
source and target models are written by the different languages and/or de-
signed for different technologies. software migration and code translation are
examples of exogenous transformation [Visser 2001].

2.3.4.6 Relationship between Transformation’s Source & Target

The source and the target artifacts of transformation could be model or text (source
code, structured documents like XML, etc.) [Favre 2005]. Therefore, four possibili-
ties of the source and target artifact could be faced by transformation; text-to-text,
text-to-model, model-to-text and model-to-model.

e Text-to-text (T-to-T): This kind of transformation transforms from text
to text, the text are usually source code. This transformation is also referred
to as source-to-source or code-to-code.

e Text-to-model (T-to-M): This kind of transformation is primarily used in
reverse engineering of software. Information that is inspected in the source
code will be represented at model level. This transformation is also referred
to as code-to-model.

e Model-to-text (M-to-T): This kind of transformation generates a model
from a textual description, the generated code does not necessarily have to be
executable. This transformation is also referred to as model-to-code or code
generation.

2.3. A Taxonomy for State of the Art 27

e Model-to-model (M-to-M): This kind of transformation translates a
model from one modeling language to another. It is considered a key aspect
of model-driven development.

2.3.5 Direction of Transformation
2.3.5.1 Unidirectionality

Transformation languages or tools that have the property of unidirectionality usually
require complex and imperative transformation rules, since each transformation can
not be used in two different directions: the inverse transformation to transform the
target model(s) into source model(s).

2.3.5.2 Bidirectionality

Transformation languages or tools that have the property of bidirectionality require
fewer and declarative transformation rules, since each transformation can be used in
two different directions: to transform the source model(s) into target model(s), and
the inverse transformation to transform the target model(s) into source model(s).

Table 2.4: Transformation

A h Method Technique Transformation language Type Domain Source-to-Target
BERS Text Code Structure | Wrapping | Model Driven | Rule | Pattern 00 MDTL | Endogenous | Exogenous System specific T-to-T | T-to-M | M-to-T | M-to-M

Akers 2004] AST v N v N

Boshernitsan 2006] AST N Java N v

Ding 2011 N N ATL N N

Wang 2000] AST v N v

Xue 2011] v v v v v

Clavrenl 2010] AST N N N N v

Nguyen 2014| AST N N Vv N

Santos 2015] v v N v v N

Bruneliere 2010] N N v v N N N v N

Fuhr 2011] N N N N N N N

Ahmad 2014] GML N v N N

Winter 2007] Tree v TL v Java libraries v

Matos 2011] N AST N Java (Eclipse plugin) N

Selim 2013] IV 7 ATL v V(S v

Hunold 2009] AST v language transformation processor v 4

Poch 2009] AST Vi J EMF V V

Karim 2014] AST N JavaScript N Firefox extensions N

Hunold 2008] AST TXL-based N

De Lucia 2008] v Java (Eclipse plugin) v

Ying 2013| AST N Extended Backus-Naur Form) N Web application N

Binkley 2006] Vv N Java Vv N

Seriai 2014] v v N v v

Canfora 2008| N vV N N N

Tilevich 2009] N N Java N N

Kegel 2008a] N N Java v N

Allier 2011] N N Java N N

Kapur 2010] N N Eclipse APT Tooling N

Eysholdt 2010] 7 EMF 7 v

Axelsen 2012] v v v v

Einarsson 2012] v QVTo v

Kjolstad 2011] N N Eclipse refactoring engine Vv N

Gligoric 2014] v Metamorphosis Tool v vV

8¢

7 1ydeyn

UOIRISIJ\] @IeM)JOS

2.4. Migrating Object-oriented Programs into Component-based one®9

2.3.6 Output/Target of Migration
2.3.6.1 Target type

Target transformation artifacts can range from abstract analysis representations of
the system to very concrete models of source code. Common tools are obviously
needed such as code generators and parsers.

e Code : The output of the transformation is textual software artifacts that
can be compiled and executed over target platforms (i.e., source code, byte-
code, or machine code).

e Model : The output of the transformation is model software artifacts that
can not be compiled or executed.

2.3.6.2 Target Context

e Component-based : The aim of the transformation approaches is for sup-
porting software evolution. Most of these approaches migrate object-oriented
applications into component-based ones. The level of transformation is varied,
where some approaches merely aim to identify component implementation or
recover its architecture, and others aim to produce an executable component
but on a specific component model.

e Service-based : The aim of the transformation approaches is for supporting
software evolution. Most of these approaches migrate object-oriented appli-
cations or component-based ones into services or service oriented architecture
(standard service and web service).

e Object-oriented : The aim of these approaches is for supporting software
maintenance and enhance its software quality for object-oriented applications
by reengineering or transformation. These approaches aim to translate from
a programing language to another one, refactoring source code, or to extract
high level representation of the source code.

2.4 Migrating Object-oriented Programs into
Component-based ones

2.4.1 Component-based Architectures

Software architecture is the representation of a software system at high level
structures to link between business requirements and technical implementations
[Ducasse 2009b]. It plays a key role as a bridge between software requirements
and implementation [Magbool 2007]. At least six aspects of software development

30 Chapter 2. Software Migration

Table 2.5: Target of migration

Type Context
Approuch Code - Model Component | Service | OO
[Akers 2004] CCM v
|Boshernitsan 2006 | Java Vv
[Ding 2011] WV N
[Wang 2006] J2EE WV
[Xue 2011] X Vv
[Clavreul 2010] X Vv
[Nguyen 2014| C# Vv
[Santos 2015] 00 Vv
[Bruneliere 2010] Java, J2EE Graph Vv
[Fuhr 2011] Wep service (IBM’s SOMA) vV
[Ahmad 2014] SOA development of cloud-enabled Vv
[Winter 2007| Java Vv
[Matos 2011] Annotated OO
[Selim 2013 AUTOSAR
[Hunold 2009] 00 vV
[Poch 2009 SOFA v
[Karim 2014] Jetpack framework. Vv
[Hunold 2008] Java Vv
[De Lucia 2008] Web service Vv
[Ying 2013] AJAX JSON
[Binkley 2006] AspectJ vV
[Seriai 2014] Spring Framework Vv
[Canfora 2008| Wep Service vV
[Tilevich 2009] Java RMI I
[Kegel 2008a] Java Vv
[Allier 2011] 0SGi v
[Kapur 2010] Java Vv
[Eysholdt 2010] Java Xtext/GMF N,
[Axelsen 2012] Java Vv
|[Einarsson 2012] UML Diagram
[Kjolstad 2011] Java Immutable class Vv
[Gligoric 2014] CloudMake

2.4. Migrating Object-oriented Programs into Component-based ones1

that software architecture plays an important role in it [Garlan 2000] : understand-
ing, reuse, construction, evolution, analysis, and management. Many definitions
have been presented in the literature to define software architecture.

Perry and Wolf [Perry 1992] defined software architecture as a set of ar-
chitectural elements that have a particular form. They distinguish three different
elements: processing elements, data elements, and connecting elements. The pro-
cessing elements are components that supply data elements that contain the infor-
mation. The connecting elements are the glue that holds the processing elements
together.

Bass et al [Bass 2012| proposed the following general definition: “The soft-
ware architecture of a system is the set of structures needed to reason about the
system, which comprise software elements, relations among them, and properties of
both.” The definition describes the system structure in terms of describing soft-
ware elements (e.g. classes, components, subsystems) and their relationships (e.g.
dependencies, connectors).

Moriconi [Moriconi 1994] proposed that a software architecture is repre-
sented using the six concepts: component, interface, connector, configuration, map-
ping, and architecture style. Component is an autonomous object like module,
process, procedure, or variable. Interface is a logical point of interaction between
components and their environment. Connector is defines the roles of component
interactions and interface points. Configuration is a collection of constraints that
wire component, connectors and interfaces into a specific architecture. Mapping is
a correlation between the entities (vocabularies and formulas) of an abstract and a
concrete architecture. Architecture style is a set of constraints that must be satisfied
by an architecture that is written in the style , and a semantic interpretation of the
connectors.

Consequently, based on the above definitions of software architecture, compo-
nents, interfaces, and connectors are treated as first-class objects in software archi-
tecture.

Many definitions have been presented in the literature to define a software com-
ponent. Each definition describes the software component from a different level of
abstraction [Birkmeier 2009]. These definitions range from high level of abstrac-
tion to a technical one: domain-oriented component definitions like [Baster 2001],
architecture-focused software component definitions like [Szyperski 2002| and Tech-
nical component definitions like [Liier 2002].

Baster et al. [Baster 2001]: “We define components as abstract, self-contained
packages of functionality performing a specific business function within a technology
framework. These business components are reusable with well-defined interfaces.”

Szyperski [Szyperski 2002]: “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to composition by third
parties.”

Luer et al. [Liier 2002]: “A component is a software element that (a) en-
capsulates a reusable implementation of functionality, (b) can be composed without

32 Chapter 2. Software Migration

modification, and (c) adheres to a component model.”

We can realize that the domain-oriented component definitions focus on busi-
ness components and domain specific functionality. while the architecture-focused
software component definitions focus on component compositions and interfaces. Fi-
nally, the Technical component definitions focus on deployment and implementation
aspects of the component.

2.4.2 Reconstruction Component-based Architectures

Successful applications evolve over time, they have many changes and modifications
during their life cycle to meet new requirements [Ducasse 2009a]. So their architec-
ture inevitably drifts, in other words the code does not conform to its architecture.
A different kind of scenario when these applications did not already have software
architectures particularly in legacy applications. Whatever, software architecture
is not explicitly represented in the code, then the software architecture should be
reconstructed to be synchronized with its implementation (code).

Software architecture reconstruction is a reverse engineering approach that
aims at reconstructing feasible architectural views of a software applica-
tion |[Ducasse 2009a|. Software architecture reconstruction has been used in the
literature through several other terms like reverse architecting, architecture extrac-
tion, mining software architecture, architecture recovery, or architecture discovery.
Architecture recovery and architecture discovery terms are more specific than the
others [Medvidovic 2003|: recovery refers to a bottom-up process, while discovery
refers to a top-down process.

The most obvious goals of Software architecture reconstruction is to identify
architectural views or elements. Software architecture reconstruction has encoun-
tered many challenges: It should support multiple architectural viewpoints because
stakeholders have various concerns such as reusability, reliability, portability, or per-
formance. Complex software systems sometimes are difficult to analyze and reverse
engineer. For example, language concepts such as polymorphism, late-binding, del-
egation, or inheritance make these software system harder to analyze the source
code [Dunsmore 2000, Wilde 1991]. So architecture reconstruction approaches need
to be interactive, iterative, and parameterizable [Grundy 2000]. Moreover, large
and long-living software systems have methods, languages, and technologies that
are often heterogeneous which should be handled. Thus The major challenges are
abstracting, identifying, and presenting higher level views from lower level (e.g.
source code) and heterogeneous information.

Software architecture play important roles in software develop-
ment |[Garlan 2000]. These roles define the motivations for architecture re-
construction which are [Ducasse 2009a]:

e Redocumentation and Understanding: by reestablishing software ab-
stractions views and help reverse engineers understand them.

e Reuse and Migration: by identifying components from existing systems

2.4. Migrating Object-oriented Programs into Component-based ones83

that can be reused or transformed into other system or technologies.

e Conformance: to check conformance between the software architecture and
implementation code. Therefore, bridging the gap between high-level archi-
tectural models and the system’s source code [Medvidovic 2006, Yan 2004].

e synchronization: software architecture and implementation evolve at dif-
ferent speeds, they should be synchronized to avoid architectural drift.

e Analysis: by measuring architectural quality analyzes by providing required
architectural views that can assist stakeholders in their decision-making pro-
cesses.

e Evolution and Maintenance: software architecture restructuring consid-
ered as a first step toward software evolution and maintenance. It reduces the
system scope which should evolve [Medvidovic 2006].

As a result, the Software architecture restructuring is a first step toward mi-
grating object-oriented software to component-based and even service-based ones.
However, it was largely studied in the literature, several approaches and techniques
have been proposed to support it [Birkmeier 2009, Ducasse 2009a, O’Brien 2002,
Mendonga 1996]. In these works a software component is recovered as a cluster
(set) of classes that collaborate with each other to provide the component function-
alities |[Crnkovic 2011b]. Next (subsection 2.4.3), we present our previous works:

ROMANTIC |[Chardigny 2008a, Kebir 2012], we have proposed an approach which
alms to recover component-based architectures form object-oriented source code.

2.4.3 ROMANTIC: an Approach for Recovering Component-
based Architectures

In [Chardigny 2008¢| and [Kebir 2012]|, the authors presented an approach called
ROMANTIC (Re-engineering of Object-oriented systeMs by Architecture extrac-
tioN and migraTTon to Component based ones). ROMANTIC aims to automati-
cally recover a component-based architecture from the source code of a single object-
oriented software. It is mainly based on two models:

1. Object-to-component mapping model that allows to link object-oriented con-
cepts, e.g. package and class, to component-based ones, e.g. component and
interface.

2. Quality measurement model that is used to evaluate the quality of recovered
architectures and their architectural-elements.
2.4.3.1 Object-to-Component Mapping Model

ROMANTIC defines a software component as a set of classes that may belong to
different object-oriented packages. The component classes are organized based on

34 Chapter 2. Software Migration

two parts: internal and external structures. The internal structure is implemented
by a set of classes that have direct links only to classes that belong to the component
itself. The external structure is implemented by a set of classes that have direct links
to other component classes. Classes that form the external structure of a component
define provided and required interfaces. Figure 2.4 shows the object-to-component
mapping model.

Object Elements

Figure 2.4: Object-to-component mapping model

2.4.3.2 Quality Measurement Model

According to [Szyperski 2002] [Liier 2002] and [Heineman 2001b], a component is
defined as “a software element that (a) can be composed without modification, (b)
can be distributed in an autonomous way, (c) encapsulates the implementation of
one or many functionalities, and (d) adheres to a component model ”[Kebir 2012].
Based on this definition, ROMANTIC identifies three quality characteristics of a
component: composability, autonomy and specificity |Chardigny 2008c|. Compos-
ability is the ability of a component to be composed without any modification.
Autonomy means that it can be reused in an autonomous way. Specificity charac-
teristic is related to the fact that a component must implement a limited number of
closed functionalities.

Similar to the software quality model ISO 9126 [Iso 2001|, ROMANTIC proposes
to refine the characteristics of the component into sub-characteristics. Next, the
sub-characteristics are refined into the properties of the component (e.g. number
of required interfaces). Then, these properties are mapped to the properties of
the group of classes from which the component is identified (e.g. group of classes
coupling). TLastly, these properties are refined into object-oriented metrics (e.g.
coupling metric). Figure 2.5 shows how the component characteristics are refined
following the proposed measurement model.

2.4. Migrating Object-oriented Programs

into Component-based one85

Characteristics

Quality
Characteristics

Figure 2.5: Component quality measurement model

Sub
Characteristics

Autonomy

—

Co

mposability

|
Component ! i Group of Classes i Object-Oriented
Properties P Properties : Metrics
[|
|
Number of | i Group of i
Required = (o] :
Interfaces } ! Coupling |
; : : Coupling
[
Y L 1
|
Component | | I group of !
. T
Coupling i i Coupling i
1 B
L'l TNomberof O\ |
Number of i ! Ncug::;:f ! Number of
Provided — : : i Public
Interfaces P Having Public ! Methods
L Methods /1
| |
(1 |
A |
|
Component ! I (Sroup of i
H |
Cahesion | | Cohesion |
|
Component i Group of
Interface ! Cl Cohesicn
Cohesion | Cohesion
1
—]
Average o } Average of
Service I cl
Cohesionby | | :
2 I Cohesion
inter face |

Based on this measurement model, a quality function has been proposed to

measure the quality of an object-oriented component based on its characteristics.

This function is given bellow:

Where:

Zi Ai

(A1 S(E) + X2+ A(E) + X3 - C(E))

(2.1)

e E is an object-oriented component composed of a group of classes.

e S(E), A(E) and C(E) refer to the specificity, autonomy, and composability of

E respectively.

e)\, are weight values, situated in [0-1]. These are used by the architect to
weight each characteristic as needed.

ROMANTIC proposes a specific fitness function to measure each of these char-

acteristics. For example, the specificity characteristic of a component is calculated

as follows:

S(B) =2

1|

> LCC(i) + LCC(I) + LCC(E) + Couple(E) + noPub(I)) (2.2)
el

36 Chapter 2. Software Migration

This means that the specificity of a component E depends on the following
object-oriented metrics: the cohesion of classes composing the internal structure
of E (LCC(E)), the cohesion of all classes composing the external structure of E
(LCC(I)), the average cohesion of all classes composing the external structure of E
(ﬁ > ier LCC(i)), the coupling of internal classes of E (Coupl(E) which is measured
based on the number of dependencies between the classes of F), and the number of
public methods belonging to the external structure of E (noPub(l)). LCC (Loose
Class Cohesion) is an object-oriented metric that measures the cohesion of a set
of classes [Bieman 1995]. For more details about the quality measurement model
please refer to |Chardigny 2008¢c| and |Kebir 2012].

This component quality function is applied in a hierarchical clustering al-
gorithm [Kebir 2012, Chardigny 2008c|] as well as in search-based algorithms
[Chardigny 2008b| to partition the object-oriented classes into disjoint groups,
where each group represents a component. In addition, it has been extended by
[Adjoyan 2014] to be able to identify service-oriented architectures.

2.4.4 Running Example

To better illustrate the problem and solutions related to the object-oriented to
component-based migration, we introduce an example of a simple Java application.
This application simulates the behavior of an information screen (e.g. a software
system which displays on a bus’s screen information about stations, time, etc.).

In Figure 2.6, ContentProvider class implements methods which send text mes-
sages (instances of Message), and time information obtained trough Clock instances
based on the data returned by TimeZone instances. The DisplayManager is respon-
sible for viewing the provided information through a Screen.

Figure 2.7 shows the result of architecture recovery step applied on our example.
The recovery step identifies four clusters (components), where each cluster may
contain one or several classes. We consider a component-based architecture as a
set of components connected via interfaces, where interfaces are identified from
boundary classes. For example, the component DisplayedInformation connected to
the ContentProvider component through two interfaces. The first interface declares
getCurrent Time method which is placed in class Clock and getContent method from
class Clock. The second one declares getContent method from class Message.

A cluster is composed of two types of classes: internal classes and boundary
classes. Internal classes are classes that do not have dependencies (e.g. a method
invocation or an inheritance relationship) with other classes placed into other clus-
ters (e.g. GpsLocation and Screen). And the boundary classes are classes that have
dependencies with classes placed into other clusters (e.g. TimeZone and Clock).
We consider a component-based architecture as a set of components connected via
interfaces, where interfaces are identified from boundary classes.

2.5. Discussion 37

ContentProvider

DisplayManager 1+ contertProvide - instance : ContentProvicder

= +getinstance () : ContertProvider
+pop () Content

+ push { contert : Contert)

- ecreates DisplayManager (| | GisPlayManager 1

+ manageContent () 1 + contertProvider
1 | + displayManager
1.* | +content
1+ screen Cﬂ!_teﬂ

N

Screen # cortent : String

+ getContent () : String

+ gcreates Screen ()

+ digplay { content : String | . "'“l‘
Clock Message
1| + acreates Clock () + zereates Message ()
* clock 4 cereates Clock (time : TimeZane) + getContent {) : String
+ getCurrertTime (time : TimeZone):long |
+ getContent {) : String

11+ timeZone

TimeZone +timeZone 1 GpslLocation
+ time : - longitude : Integer
1 - gpsLocation - ;
+ gereatex TimeZone () -_Isut[t_l.;ide Hlreger
+ zcreates TimeZone (cod ; Integer) +getGps ()
+ getTime () ——

Figure 2.6: Information screen class diagram.

2.5 Discussion

In this section, we discuss findings that are obtained from our taxonomy. These
findings are organized based on the taxonomy diminutions.

2.5.1 Input Source of Migration

Almost all classified approaches depends on the source code as the input artifact
to their migration process. 31 approaches out of 32 rely on the source code, 5
approaches of them used other artifacts in addition to source code (3 approaches
used documents and 2 approaches used models). Regarding the visibility of the
input sources, 90% of the approaches depend on whitebox model where just 10%
used blackbox. Graybox model does not have a chance on the classified approaches,
to the best of our knowledge, there is no object-oriented migration approach using
this model as an input.

This finding (regarding the input type and visibility) confirms the fact that the
source code is the most available artifact in legacy software systems. Moreover,
source code is the real implementation of legacy software systems, while their doc-
umentations and architectures are usually out of date (drifted). They are drifted
because of modifications and maintenance during the systems life.

38

Chapter 2. Software Migration

]

DisplayScreen

ContentProvider

DisplayManager

ContentProvider

- ecreates DisplayManager |
+ manageContent [)

Screen

+ acreates Screen ()
+ clisplay { content : String |

-ingtance : ContentProvider

+ getinstance {) : CortentProvider
+ pop () Content
+ push (content : Content)

|
Content
content : String

+ getContent () : String

Displayedinformation

Clock

+ gcreates Clock ()

+ zcreates Clock (time : TimeZone)

+ getCurrentTime (time : TimeZone) long
+ getContent () String

+ gcregtes Message ()
+ getContent () : String

LocalTime

TimeZone

GpsLocation

+ time

+ zcreates TimeZone ()
+ zcreatex TimeZone (cod © Integer)
+ getTime [)

- longitude ; Integer
- latitude ; Integer

+getGps ()

Figure 2.7: Architecture recovery for the information screen.

2.5. Discussion 39

2.5.2 Reverse Engineering

Most classified approaches used the bottom-up method for investigating source code
(81%), while 6.5% of the approaches used the top-down method for the investigation
of software. The big difference between the previous two ratios relate to the avail-
ability and reliability of the source code rather than their abstract representations
(e.g. software architecture). Combinations of the bottom-up and top-down methods
are possible and recommended. 12.5% used the both methods, top-down for system
understanding (i.e. a general overview of the architecture of the system is sufficient
to recognize relationships) and bottom-up for detailed information.

In addition to saving time and efforts, The correct and stable automatic approach
avoids further maintenance and development of the code and at the same time
conserves the knowledge and quality contained within a well-tested proven code.
75% of the approaches are automatic, 22% are semi-automatic, and just 3% are
manual.

Properties of subject software which are to be investigated may be static or dy-
namic in nature [Pressman 1986]. 84% of the approaches relied on the static analysis
and 16% of them relied on the dynamic one. We have only one approach that relied
on both analysis types. The superiority of static analysis over dynamic is in terms of
availability, cost-efficiency, lower-risk, and it can by fully automation [Ernst 2003].
Hence the most static analysis tools depend only on the source code of subject
software rather than dynamic ones, which need full knowledge of execution traces
that are usually do not available in legacy software as well as the need for human
executors or experts.

19% of the approaches recover high level abstraction in context of component-
based like component-based architecture recovery or component identification ap-
proaches. In the context of service, 25% of the approaches targeted service-oriented
architecture. The rest of the approaches (66%) present the analyzed software arti-
facts into other abstractions like call graphs or control flow graphs.

2.5.3 Transformation

One third (34%) of the approaches did not use any other presentation for source
code. Most of these approaches used simple transformation (refactoring) that do not
need other source code representations like find-and-replace transformation. While
47% of approaches used structural representation of the source code like abstract
syntax tree. 12% of the approaches used wrapping methodology for transformation.
in the context of model-driven software development, 22% of approaches used meta-
models and their instances model to operate the transformation.

Most approaches (84%) used classical object-oriented languages to implement
their transformation. Many tools and APIs are developed for code transformation
(e.g. Spoon for Java, Eclipse JDT, ASF+SDF, CIL ,and Coccinelle) and generator
(e.g. Acceleo, T4 by Microsoft, Telosys Tools). The rest of approaches used well-
known transformation languages such as QVT or ATL. 3% of these percentages used

40 Chapter 2. Software Migration

both languages.

The ratio between endogenous and exogenous transformation is very close.
Hence, 47% of approaches are endogenous and 53% are exogenous. Endogenous
transformation are developed usually for Optimization, Refactoring, Simplification
and normalization [Mens 2006a|. In exogenous transformation, the goal is usually
translating languages and /or migrating to new technology or platform [Mens 2006a].

Talking about the genericity of transformations, 16% of the approaches are do-
main specific. They can not be operated outside their purpose transformation.
While 84% of the approaches are generic ones.

Based on the nature of the input and output transformation artifacts, 78% of the
approaches transform source code to another one, and 13% transform it to model.
3% of them transform the source code into both forms, code and model. 22% of
approaches take models as input, 9% transform the model to code and 13% to other
models.

2.5.4 Output/Target of Migration

The output artifacts of the approaches are 91% concrete code and 19% models.
10% of them have mixed both code and models. 54% more than one half (54%) of
the approach produced Java code. 22% produced code for component-based and the
same for service-based (7% web service). The other outputs are 49% object-oriented
code and 7% script code.

2.5.5 Goal of Migration

The most interesting goal of migration based on the classified approaches is evolution
(41%). Followed by maintainability with 34%. Third place went to both reusability
and efficiency with 28% for each. Finally, understandability with 22%.

2.6 Conclusion

In this chapter, we present the state-of-the-art related to migrate legacy software
written in object oriented languages. We concentrate our effort to illustrate the
recovery of software architecture and software component identification. This in-
cludes positioning our dissertation compared to the domain concepts and the related
works. Related works are classified based on five dimensions. These are the inputs,
reverse engineering approaches; transformation approaches, the output of migration
and its goals. The chapter is concluded with the following remarks:

e First, a lot of of approaches have been proposed to recover component-based
software architecture from object-oriented software systems.

e Second, few approaches have been proposed for transforming into component-
based models.

2.6.

Conclusion 41

Third, these few approaches did not implement their transformation by using
a well-known design like design patterns.

Fourth, these few approaches did not treat all transformation from object-
oriented to component-based like transforming object-oriented dependencies
to interface-based ones.

Fifth, none of these approaches have produced pure component (component
that can be executable over an existing component model and confirm to
standard component model).

Sixth, none of them proposed a generic solution for migrating object-oriented
software into many component models.

CHAPTER 3

Healing Component Encapsulation

Contents
3.1 Introductionm 43
3.2 Problem Statement 0000, 44
3.2.1 Explicit component encapsulation violation 44
3.2.2 Implicit component encapsulation violation 44
3.3 Instance Handling Transformation 46
3.3.1 Creating Object Interfaces: Uncoupling Boundary Classes . . 46
3.3.2 Using Component Interfaces through the Factory Pattern . . 47
3.4 Inheritance Transformation 48
3.4.1 Replacing Inheritance by Delegation 49
3.4.2 Handling Subtyping L L. 51
3.4.3 Dealing with Abstract Superclasses 51
3.5 Exception handling transformation 53
3.5.1 Transformation thrown exception 53
3.5.2 Transforming exception handling 54
3.6 Experimental Evaluation 57
3.6.1 Experiment Design and Planning a7
3.6.2 Results 61
3.7 Conclusion 69

3.1 Introduction

Most existing large legacy applications are object-oriented (OO) [Washizaki 2005].
These applications have complex and numerous dependencies. However, as we ex-
plain before (see Sec. 2.4.2), architecture recovery approaches identified components
as clusters of classes. The dependencies between these clusters are still object-
oriented one. Therefore we need to transform these dependencies to interface-based
ones.

This chapter proposes a method that automatically transforms an OO appli-
cation code to a CB one. We assume that an existing CB architecture recovery
method provides us architecture descriptions as an input to our method. Based on
the taxonomy of component models proposed in [Lau 2005|, we chose, as the target

44 Chapter 3. Healing Component Encapsulation

of our transformation, an object-based component model (i.e. components imple-
mented based on OO source code). These component models are implemented as
an extension of mainstream OO programming languages (e.g. OSGI is an extension
of Java [Platform 2015, Lau 2005]). This choice allows us to reuse the OO source
code to be migrated. In this work, we experimented the proposed solution on the
transformation of Java applications into the OSGi framework.

The remainder of this chapter is organized as follows. Section 3.2 presents the
migration process and its related issues. Section 3.3 explains the proposed solution
to transform class instantiation dependencies. Section 3.4 describes our solution to
transform OO inheritance relationships. Section 3.6 presents implementation and
experimental results. We present the conclusion in Section 3.7.

3.2 Problem Statement

In this chapter we use clusters of classes obtained based on recovery approaches as
an input of the source code transformation step. To transform clusters of classes to
components we need to solve two main problems: Explicit component encapsulation
violation and Implicit component encapsulation violation.

3.2.1 Explicit component encapsulation violation

The component must hide its internal structure and behavior [Szyperski 2002]. It
should provide its services without exposing the classes that implement it. Two
source code expressions fall under this category. First, “class instantiation”, where a
class (in one component) creates an instance of another class (residing in a different
component). For example, Clock class creates an object of TimeZone class, while
these classes belong to two different clusters. Second, “method invocation”, where
a method defined in a given class of a cluster invokes a method defined in a class
placed in another cluster.

3.2.2 Implicit component encapsulation violation

It is related to implicit dependency between components caused by OO mecha-
nisms. Two OO mechanisms that belong to this problem: inheritance mechanism
and exception handling mechanism.

3.2.2.1 Inheritance

In the inheritance mechanism, a class and its subclasses cannot necessarily be placed
in the same cluster. This is the case in Figure 2.7 for Clock and Message subclasses
of Content Class. In this case, the inheritance relationship between these classes
crosses component boundaries, facing an implicit dependency between the under-
lying components. Since component models do not all support inheritance (e.g.
ComponentJ, COM, etc.) [Spacek 2012]|, source code related to inheritance needs to
be transformed.

3.2. Problem Statement 45

3.2.2.2 Exception handling

An exception corresponds to an abnormal state in the execution of a program.
An exception is raised when such a state is detected. An exception handler is
a lexical region of code that is executed in response to an exception occurrence.
Different programming languages have different rules for matching an exception oc-
currence to a specific handler. An exception is handled when the execution of the
handler is complete [Miller 1997]. The control flow of a program after a handler
is executed is determined by an exception-handling model |Yemini 1985]. Three
exception-handling models are commonly referred to in the literature [Buhr 2000,
Miller 1997, Yemini 1985]. In the termination model, the lexical scope raising an
exception is destroyed, and, if a handler is found and executed, control resumes at
the first syntactic unit following this handler. In the resumption model, once an ex-
ception is handled, control continues where the exception was raised. Finally, in the
retry model, when an exception is handled, the syntactic block raising the exception
is terminated and then retried. There are a number of variants of exception-handling
mechanisms: many variants can be distinguished by the exception model supported,
and by the rules used to bind a handler to an exception occurrence. In this chapter,
we focus on class-based [Abadi 1996, Abadi 2012| object-oriented languages that
implement the termination model of exception handling, and in which handler se-
lection is based on object types [Dony 1990]. Two common programming languages
that fit this description are Java and C++ [Stroustrup 1991]. We show the trans-
formation of this exception-handling model from object-oriented applications into
component-based ones.

Figure 3.1 shows that an error occurs within a method m2, the method creates an
object (exception) of type E1 and hands it off to the runtime system. After a method
throws an exception, the runtime system attempts to find a handler to handle it.
The set of possible handlers to handle the exception is the ordered list of methods
that had been called. Therefore, the exception propagated to method m1. Method
ml has a handler of exception E1 so the handler is executed. Finally the system
returns to the normal control flow. However, what if Client class and Server class
are placed into different clusters? Two types of problems that must be transformed
from OO concepts to component-based ones: (i) The thrown exception; the type
of thrown exception maybe paced into another cluster. (ii) The propagation of the
exception will be done implicitly by runtime system. Since components interact
with each other’s by their interfaces, source code related to exception needs to be
transformed.

In this chapter we focus on solutions related to source-code transformations of
explicit component encapsulation violation (instantiation and method invocation).
In addition, we propose solutions for transforming OO inheritance and OO exception
handling, which are cases of implicit component explicit violation, to other forms
that conform to component principles.

46 Chapter 3. Healing Component Encapsulation

flow.png flow.png flow.png

region region i
] 1
: B : /
I 1
| : /
1 1
turn to t
E l{:m:-:l L?Du ?.0 E nterfacy protected
' flow ! exception region
i i B i

PROGRAM CLIENT SERVER Sigﬂ,ﬂ|af
method maind) calls method m1{) method m2() ,’/
; — —
¥ a mi) | calls | '
W L s et ;
1] P — § 5 1
| L =
1 1 | :
i i i
i i g i
i i signaling ' |
protected protected SIRIME ™ il B |
I
1
I
I
I
I
I
I
1

')
Handler(ET) Handler(E1) bandlar 1 Handler{e2)
executed \'\
Handler(ER) Handler{ES) Handler{e3) i E:\:al
handlers
pe
Handler(e9) Handler{e6) Handler{ed) b &

Figure 3.1: Flow of execution of exception-handling.

3.3 Instance Handling Transformation

Considering the result of the recovery step, a class belonging to a component (clus-
ter) can be instantiated in a method of class belonging to another component by
using directly these class constructors. This causes a violation of the principle of
component encapsulation. Our approach proposes two steps to transform direct in-
stantiation dependencies: (i) Uncoupling classes belonging to different components
(clusters) by creating object interfaces. (ii) Defining specific component interfaces
playing the role of object factories.

3.3.1 Creating Object Interfaces: Uncoupling Boundary Classes

We transform direct references (method calls) between classes of different compo-
nents to interface-based calls. Thus when a class A uses class B where A and B
are parts of two different components, we create a couple of the same provided and
required interfaces (IB). The provided one will be defined in the component of the
class B and the required one in the component of the class A. These interfaces define
the same methods of all public methods of class B. In addition they define other
methods to access public attributes of this class (i.e. setter and getter methods).
Each direct use of class B in the class A will be refactored as a use of the required
interface (IB) added to the component of A.

3.3. Instance Handling Transformation 47

To illustrate this, consider our illustrative example, where Clock creates an in-
stance of TwmeZone. This is depicted in Listing 3.1. We create [TimeZone interface
for class TimeZone. ITimeZone specifies the signatures of all public methods in
TimeZone. Moreover, it declares setter and getter methods for its public attribute
(time). Listing 3.2 shows the result of our transformation in both Clock and Time-
Zone classes.

Listing 3.1: Instantiation dependency in Java code.

public class Clock extends Contentq{
public Clock() {
TimeZone timeZone = new TimeZone();
String time = timeZone.getTime();}

}

public class TimeZone {
public String time;

public TimeZone() {...}
public String getTime(D{...}
¥

Listing 3.2: Creating object interfaces.

public class Clock extends Contentq{
public Clock() {
ITimeZone timeZone = new TimeZone();
String time = timeZone.getTime();

}
}
public class TimeZone implements ITimeZone{ ... }
public interface ITimeZone {
public String setTime();

public String getTime();
}

3.3.2 Using Component Interfaces through the Factory Pattern

The second step of this transformation is based on the Factory design pattern. Thus
the expression in the source code related to the instantiation of a class B by a class
A where these classes are parts of two different components is transformed to a use
of a component interface playing the role of an object factory. This interface is
defined as provided by the component of class B. It contains methods that return
objects instantiated from classes of the component of class B. Each method of this
interface corresponds to an existing class constructor. The methods of this interface
are implemented in a factory class which is added to the classes of the component
of the class B.

In Figure 3.2, we create a provided factory interface whose methods are imple-
mented in the factory class. It has a method create TimeZone() that returns a new

48 Chapter 3. Healing Component Encapsulation

1
Displayedinformation l
ContentProvider
Clock = Factory «zinterfaces
MmeZone
+ ecreates Clock () + createTimeZaone () @ ITimeZone
+getContent {) String + createTimeZone | cod : Integer) : [TimeZone | | = getTime () String
l + setTime (t: 5tring)
TimeZone [~ TTToTooToTooooo -
+time GpsLocation
+ gcreates TimeZone () . .
) i - longitude : Integer
+ xcrelatex. TimeZene (cod : Integer) - latitude ; Integer
+ getTime ()
+ getGps ()

Figure 3.2: Transforming class instantiation based on the factory pattern.

ITimeZone() instance. The Clock class invokes this method instead of creating the
instance. It does not expose the class that implements the interface, but exposes
only the interface. Thereby, client code does not know the internal structure of Dis-
playedInformation. Listing 3.3 shows how Clock class gets a new instance of type
ITimeZone using the Factory class.

Listing 3.3: Transforming class instantiation based on the factory pattern in OSGi
code.

public class Clock extends Contentq

public Clock() {
ITimeZone timeZone = Factory.createTimeZone();

}

public class Factory{

public static ITimeZone createTimeZone() {
ITimeZone timeZone = new TimeZone();
return timeZone;

}

public static ITimeZone createTimeZone(int cod) {...}
... // other provided factory methods
¥

3.4 Inheritance Transformation

Inheritance links between classes belonging to different components need to be trans-
formed. Our solution to transform these inheritance dependencies is based on the
delegation pattern [Vlissides 1995]. In the case of object-oriented code, delegation

3.4. Inheritance Transformation 49

pattern related to two objects A and B corresponds to an explicit transfer (forward)
for all method invocations received by A (called delegator) to B (called delegatee)
through methods of B. All internal method invocations in methods of B related to
this transfer must be transfered to delegator. This avoids the problem of the loss of
the initial receiver [Kegel 2008b, Weck 1996].

3.4.1 Replacing Inheritance by Delegation

Our solution to transform the inheritance link consists in implementing the delega-
tion pattern, but at component level (see Figure 3.3). Thus, inheritance link between
two classes A and B (A subclass of B) which belong to two different components is
transformed as follows. On the one hand, all methods invoked on the class A are
transferred (delegated) to the component of B (considered as the delegatee) through
a required interface. The required interface is implemented by the component of A
(considered as the delegator) which is connected to a provided interface defined by
the delegatee component. The provided interface defines all methods of the super-
class B. On the other hand, all internal method invocations in the superclass B
must be transferred to the delegator component through a required interface. This
interface is implemented by the delegatee component and connected to a provided
interface defined by the delegator component. This interface defines all methods of
the subclass A.

T E] e [e £
R T © ey parent | -7
object object
this
0

Figure 3.3: Implementation of the delegation pattern at level of component.

At class level, the transfer of method invocations between delegator and delegatee
components and vice versa is realized by creating an instance of superclass B in the
subclass A and by invoking the concerned method in this instance. This instance is
created each time the class A is instantiated. Attributes of the instance of the class
B are initialized using values given in the constructor of class A. The transfer of a
method invocation from the delegatee to the delegator is realized in the same way
by invoking this method on the instance of A. The reference of the instance of A
is communicated to the instance of B as an additional parameter in each method
invocation transferred from delegator to delegatee.

Figure 3.4 describes the transformation of inheritance between Message subclass
and Content superclass. A new interface IContent is created for superclass Content
into delegatee component (ContentProvider). Then, a variable is added to assign
the initial receiver of type IMessage (this). Finally, the factory design pattern is

50 Chapter 3. Healing Component Encapsulation

Displayedinformation ContentProvider
M Ii | Factory ContentProvider
- _super: [Cortent : - | - instance : CortentProvider
+ gcreates Message () + createContent () : IContent + getinstance () : CortertProvicer
+ getContent () String +pop () Contert
' + push (content : Content)
i) |
=interfaces
#interfaces KKontent —\| Content
Message -] # cortent : String
= satContent [¢! String) s isicament
+ getContent {) ! String + getContent {) ! String + getContent () : String

Figure 3.4: Replacing inheritance by delegation.

applied to provide IContent object interface. On the other side, we create a new
interface IMessage for subclass Message. Then a new instance of the superclass
object interface IContent is composed to delegate incoming method invocations.

Listing 3.4 describes the result of transforming inheritance to delegation. As
we mentioned before, the transformation consists of three steps: (i) create new
interfaces IMessage and IContent; (i) Message is composed of an instance of type
IContent as super interface; (iii) IContent is composed of an object interface of type
Message as this interface.

Listing 3.4: Replacing inheritance by delegation.

public class Message implements IMessage{
IContent _super = new Content(this);

public void getContent(){
_super.getContent () ;
}

public class Content implements IContent{
private IContent _this;

public Content(IContent initReceiver) {
_this = initReceiver;

¥

public void getContent(){...}

Our solution transforms inheritance dependency but produces another depen-
dency which is instantiation, where a subclass creates an instance of its superclass.
So we apply here the solution proposed in the previous section (cf. Section 3.3).

3.4. Inheritance Transformation 51

3.4.2 Handling Subtyping

This section proposes a solution for the problem of breaking the supertype chain. In
particular, a variable of superclass type can be assigned a reference to an instance
of subclass type (polymorphic assignment), but the necessary assignment compat-
ibility (subtyping) is removed by replacing inheritance with delegation. Another
case occurs when a casting to superclass or a type test (instanceof in Java) exists in
the program. For example, a variable (content) in class ContentProvider is typed
with Content. It can be assigned an instance of Message or Clock. However, after
transformation, this variable can not be assigned Message nor Clock instances.

Our solution suggests to use interface inheritance, which is the most common way
to form subtypes between components [Szyperski 2002]. We introduce subtyping by
adding inheritance between component interfaces providing methods of the subclass
and its the component interface providing methods of the superclass. In the example
of Figure 3.4, IMessage interface must inherit /Content interface. In the same way,
IClock interface inherits from [Content interface. Therefore, a type of IContent can
be assigned an instance of both types IMessage and IClock. Moreover, fields defined
in IContent are now available in both IMessage and IClock by setter and getter
methods (e.g. setContent(c : String) in class Message).

3.4.3 Dealing with Abstract Superclasses

As we explained before, a delegator is composed of an instance of a delegatee to
delegate method invocations. However, what if the superclass is abstract? An
abstract class cannot be instantiated, so no delegatee can be created.

Our solution is based on the proxy pattern [Vlissides 1995]. We use a third class
as a proxy that breaks the inheritance between the subclass and its superclass when
the latter is abstract. Thus the subclass inherits from this proxy, the proxy class
inherits the abstract superclass. The proxy class defines the same methods with the
same signatures of the abstract superclass. These methods are considered as proxy
methods. Each of these methods delegates the received message to the abstract
class when this class provides a concrete implementation of this method. In the
case of an abstract method on the superclass, the corresponding method on proxy
reforwards the message to subclass.

Actually, in our example (see Figure 2.6) Content is an abstract class and has
an abstract method getContent(). Factory interface can not return an instance of
this class. So we need to apply proxy pattern before applying delegation pattern.
In Figure 3.5, we create a Prozy class that inherits from Content abstract class and
implements IContent interface. Then Factory class provides an object interface of
type IContent to Message which is placed in DisplayedInformation. This enabled
us to decouple the inheritance dependency between the abstract superclass Content
and its subclass Message that is placed in a different component.

Listing 3.5 shows the result of transforming inheritance that have abstract su-
perclass to proxy pattern. ProzyContent class was created to break the inheritance

52 Chapter 3. Healing Component Encapsulation

Displayed information ContentProvider
M Ii | n, Factory ContentProvider
- _super: [Cortent - instance : ContertProvider
+ gcreates Message |) + createContent () | IContent + getinstance () ContentProvider
+ getContent () String .& +pop () Contert
" + push (content : Contert)
,.;7 ProxyContent |
sinterfaces - Hhif: Iankent | —[;:I Content
Message . + setContent [c: String) -, # contert : String
+ getContent [): String ! - this: IContent
+ getContent {) ! String 1 + getContent () Shing
sinterfaces 4 '
IContent < ---
setContent { ¢ ! String)
+ getCantent {) ! String

Figure 3.5: Handling abstract superclass based on proxy classes.

between Message and Content. The new class implemented all abstract methods
inherited from it’s superclass (Content). The calling of these methods are backward
delegated to it’s caller using our initial receiver variable this. The non-abstract
methods are called usually under the inheritance relationship between ProzyCon-
tent and Content and the composition between Message and ProzyContent. Conse-
quently, the inheritance relationship that has un abstract superclass is transformed
by using proxy pattern.

Listing 3.5: Handling abstract superclass based on proxy classes.

public class ProxyContent extends Content implements IContent{
IContent _this = new Content(this);

public ProxyContent(IContent initReceiver) {
_this = initReceiver;

}

public void getContent(){
_super.getContent();
¥

public class Message implements IMessage{
private IContent _super;

public Message() {...}
public void getContent(){...}
}

3.5. Exception handling transformation 53

3.5 Exception handling transformation

Considering the result of the recovery step, methods that are responsible to handle
an exception raised are usually contained in different classes. These classes can be
placed into different clusters. The propagation of the exception causes a violation
of the principle of component encapsulation. Our approach proposes a solution
to handle an exception using component interfaces by moving the responsibility
of exception-handling from runtime system to components themselves through its
interfaces. Our approach modifies the existent component interfaces to be able to
provide normal and exceptional responds at the same time. When a client request
a service from a server, the server respond either normal respond of that request, or
the exception responds if an error raised during the execution of that request. The
client should accept both response types (normal and exceptional) of its request.
As we described before, exception handling have two types of dependencies;
throwing an exception and handling an exception. Our transformation goal is to
decouple them. The following two subsections describe our solution for each type.

3.5.1 Transformation thrown exception

We need to replace direct instantiation of exception object to provide it through
component interface. We create an adapter class which mediates between the two
classes. The adapter is placed into the same component that is responsible to throw
the exception. And it forwards the incoming method invocation to the original
one (exception class) using object composition. Therefore, we replace the original
dependency to a new one between adapter class and exception class. The new
dependency can be transformed to be through the component interface. Indeed,
adapter class have composed an object of exception class to handing a task over to
him. So the solution of instantiation can be applied.

geliTime() throws Adabter{

Factory Adapter
lraise exception
throw new Adapter();
+getTimeZoneException() : IGontentProvider + Adapter()
e + getMessage : String {
Fod S N I ittt Mttt '1' """""""""""""""
= : N
<} - H <<interfaces> 1 o P
: ITimeZoneException TimeZone —
% 7 #lime - Date ~ | # longitude : lon
+ TimeZoneException() +gethessage() : String #gps :GPS I a\tiade ‘long o
+ getMessage : Siring
o + TimeZone() o +GPSI()
i) + TimeZone(gps : GPS)
i T +getTime() : String

Figure 3.6: Transformation thrown exception by adapter.

Figure 3.5.1 shows transformation result of our example. On one hand, we ap-
plied Factory design pattern in LocalTime to provide an object interface of type
TimeZoneException. On the other hand, we created Adapter in LocalTime that

54 Chapter 3. Healing Component Encapsulation

implement the same interface (ITimeZoneEzception) of exception class (TimeZone-
Exception). Then TimeZone throwing the exception object of type Adapter which
is placed in the same component. Therefore decoupling the dependency between
the two components.

3.5.2 Transforming exception handling

Right now, we decoupled the dependency between exception class and class who
through exception was placed in other component. After that, an exception (excep-
tion object) is thrown to be handled by the runtime system. Indeed, runtime system
passes the exception as a parameter to the special handler block. The handler block
either catches the exception, or propagate the exception to calling methods itera-
tively until a method catch it. Therefore, the exception passed to classes implicitly
under the auspices of the run time system.

Client/Caller Higher-Level Components

| Intezface
excephons

Seryice Norfmal Failyire
regquests respdnses exCeptons
~ ~Return to
' '_.' norial operation

Server/Callee Abnormal Activity

Normal Activity
] {fault tolerance by
Client/Caller besp iy i
4
i st
Service Morr Internal Interface Fatltire
requests Tespimses exceplions exceptions exceplions
]
Server/Callee Lower-Level Components

Figure 3.7: Ideal exception handling model for component [Bennett 1982].

Our solution is derived from idealized fault-tolerant component proposed by
[Bennett 1982] (see Figure 3.5.2). We proposed that the response of a service which
is provided by a component has three forms. the first form is normal response.
Where the component provides his service normally without exception. The second
form is exception response. Where an exception occurred in the provided service but
the component can handle it. Therefore, the component does not depend on other
components to handle his exception (internal exception [Bennett 1982]). The last
form is propagate exception. Where the component can not handle the exception.
So it propagates its exception to the caller of the service (see Figure 3.5.2).

Based on our exception model, we move the responsibility of exception handling
to components. Where a component decides to reply its exception based on its

3.5. Exception handling transformation 55

Mormal <<COmMponent== E

Component

(: Frobagate

\/

Exception

Figure 3.8: Our derived exception handling model for component.

Possibilities by dealing with the exception or propagating it. Therefore, we need
to transform two code cases, handler block and propagate exception. Transforming
involves separating the normal behavior of method from the exceptions. So each
handler block is moved into a new method named the same as the original one
plus the name of the exception. And, for a method that propagates exception, we
create a new method as done previously but have an implementation propagates
exception object to caller component. Where the caller is dynamic at runtime, so
we used Reflection to identify it. To do so, our transformation approach consists
of two steps: 1. Transform component interfaces to be able to handle normal and
exceptional responses. 2. Transform exception-handling mechanism from runtime
system into components.

3.5.2.1 Transform component interfaces

We transform each method that contributes to handle an exception to be able to
return both normal value and exception value. The method put either a normal
value (put exception value as NULL) or an exception value (put normal value as
NULL). We wrap both the normal and exceptional return into a new wrapper. The
wrapper is a class that has two parameters, the first one to store normal return
values and the second one to store exceptional ones.

Listing3.6 describes the new wrapper class named Return. The wrapper accepts
two types, the first one defined by the method to return its normal return value. The
second one a subclass of Exception Class to return exceptional return value. Setter
and getter method are implemented for both return types to store and retrieve it
respectively.

Listing3.7 explains the transformation of method m2 in class Server. The trans-
formation replaces the return type with a type of new wrapper (Return). When
the exception E1 raised inside method m2, the new exception of type E1 is created
and set as exceptional return values. In this case, the normal return value remains
NULL. If there is no exception raised, the method set its normal return value while
the exceptional one remains NULL.

Listing 3.6: Return wrapper class.

public class Return<V, E extends Exception> {

E upNormal;
V normal;

56 Chapter 3. Healing Component Encapsulation

public void setNormal(V normal) {
this.normal = normal;

¥

public void setUpNormal(E upNormal) {
this.upNormal = upNormal;

}

public V getNormal() {
return normal;

}

public E getUpNormal() {
return upNormal;

}

Listing 3.7: The transformation of method m2 in class Server.

public class Server {

public Return<Type, E1> m2(){
Return<Type, CustomExceptionDelegator> ret = new Return<>();
/...
ret.setUpNormal(new E1());
/]

return ret;

3.5.2.2 Transform exception-handling mechanism

In this step we handle exception explicitly by components. Where each component
checks the response of its request if it has normal response value or exceptional one.
If the response has the normal value, then the execution remains in normal control
flow. However, if the response has exception value, then the handler block must be
executed. Listing 3 shows how client check the respond value from its server. After
method m1 call method m2, m1 check the return value of m2 if it has exceptional
value or not using getUpNormal() method. If it does not have exceptional value
then the execution continues as normal. Otherwise, if it has exceptional value, then
method m1 call handler block that implemented in anonymous method in interface
catch.

Figure 3.9 describes our transforming of the exception handling example illus-
trated in Figure 3.5.1. Where after the exception raised in DisplayedInformation
through method getTime, an exception object is created and passed to caller (Clock
in DisplayedInformation) rather than throwing it. The method getContentTime-
ZoneFEzception in ContentProvider receives exception object as a parameter. Where
clock can not handle the exception, then it propagates the exception object to caller
(ContentProvider in ContentProvider). Also it receives exception object as a pa-
rameter on its method getContentTimeZoneEzception. This method have handled

3.6. Experimental Evaluation 57
Figure 3.9: Transforming handling exception.
" getContenti) throws TimeZoneException{ | Clock = ContentProvider
i timeZone getTime(): !
; # content : String
| getConteniTimeZoneException(obj){
! Refliction caller{obj) : + Clack() + ContentProvider)
L) oy getContentld : String +getContent() : String
e _+getCohtem‘HmeZoneExcemlon(EmepnoneJ:Strmg + getContentTimeZoneException(Exception e) : String
ry AT

] 1 : getContent(){
H iy block
—‘ i 4finaly block
o)

getContentTimeZone Exception(obji

H N calch block
ey getTimel] trows Adabter({ dtinaly block
Adapter e S - OOt .
Jiraise exception
obj = new Adapter();
Refliction caller{obj)
+ Adapter()
+gethMessage : String
,,,,,,,,,, et
———
TimeZone ; GPS
i time : Date z # longitude :long
#gps:GPS ¥ # altitude :long
+ TimeZone() 5 +GPS()
+TimeZone(gps : GPS)
+getTime() : String

the exception and return results. Finally, the execution returns to normal mode

where the exception was raised.

3.6

This

3.6.1

Experimental Evaluation

section reports on some experiments we conducted to evaluate our approach.

Experiment Design and Planning

Research Questions

[RQ1:] Does the transformed code is semantically equivalent to the original
one?

Our approach transforms OO dependencies to interface-based once using
well known OO design patterns. These design patterns are already the-
oretically proven for reserving the semantics of code. for example, the
semantically equivalent for replacing inheritance with delegation has been
proved |Kegel 2008a, T Genssler 1999, Kegel 2008b|. The aim of this research
question is to proof that our transformation approach reserved the semantic of
transformed code practically. Does the transformation result avoid component
encapsulation violation?

Our approach transforms the OO code to avoid component encapsulation vio-
lation by making the dependencies between components explicit. The transfor-
mation aims at creating and using component interfaces to achieve component
encapsulation. Thus, the aim of this research question is to measure the con-

58 Chapter 3. Healing Component Encapsulation

tribution of our approach to transform OO dependencies to CB ones. To which
extent does the automatic transformation reduce the developer’s effort?

The aim of this research question is to measure the saved efforts of developers
when using our automatic transformation approach instead of using manual
one.

Evaluation Methods To answer RQ1, we have executed the predefined test cases
on the source code before and after applied our transformation approach. After that
we have compared the results (state testing and behavior testing) between original
code and transformed one.

To answer RQ2, we need to evaluate how much the OO dependencies are
transformed to interface-based ones. This can be measured by the ratio of the
number of interface-based dependencies to the total number of dependencies be-
tween components after transformation. The Abstractness metric proposed by Mar-
tin [Martin 2011] for evaluating OO software fulfils this goal. This metric represents
the ratio of abstract types (interfaces and abstract classes) in a package to the to-
tal number of types in that package. The range for this metric is 0.0 indicating
a completely concrete package to 1.0 indicating a completely abstract package. In
the context of CB software, this metric has been adapted by [Hamza 2013] to mea-
sure the quality of a component’s interfaces, where the classes that represent the
component’s provided interfaces are grouped in a package to compute Abstractness.
Therefore, we used this metric in the same way as [Hamza 2013] to answer RQ2.
Based on this metric, a well designed component is supposed to provide only in-
terfaces. Therefore, a component with high Abstractness means a high component
encapsulation (i.e., it avoids the component encapsulation violation).

To answer RQ3, we compared the estimated efforts expressed by time spent by
developers through manual transformation to the time made by our automatic trans-
formation. We compute the time for each type of transformation, instance handling
and both inheritance with and without an abstract superclass transformation.

Data Collection We have conducted our transformation approach on 9 Java
projects in order to validate our approach. The projects have been selected from
Qualitas Corpus [Tempero 2010]. In order to guide project selection in such a way
that the coverage of a sample is maximized, we have followed the following selection
criteria:

RIRXA8i Project size: We have selected projects with different sizes.

ii Domain: We have selected projects from different domains to avoid the influ-
ence on experimental results of characteristics associated to a specific domain.

iii Development team: We have selected projects that have been developed by
different teams to avoid the characteristics related to programming team habits
to influence experimental results.

3.6. Experimental Evaluation 59

Table 3.1 provides some descriptive measures about these projects. It provides
each project name and its version. We can observe the differences of these projects
through its sizes and domains. We can infer the differences of development teams
by the differences of owned company, where each project was developed by different
companies.

Table 3.1: Data collection.

Application | Version Domain # of classes | Code size (KLOC)
Tomcat 7.0.71 middleware 1359 196
Ant 1.9.4 parsers/generators/make 1233 135
Checkstyle 6.5.0 IDE 897 63
Freecol 0.11.3 games 669 113
JFreeChart 1.0.19 tool 629 98
HyperSQL 2.3.2 database 539 168
Colt 1.2.0 SDK 288 35
Log4j 1.2.17 testing 220 21
Galleon 0.0.0-b7 3D /graphics/media 137 26

Protocol For architecture recovery, we used our method called ROMAN-
TIC |Chardigny 2008a, Kebir 2012] which allows us to identify a component-based
architecture from an existing Java application'. We applied ROMANTIC on our
selected Java projects (Table 3.1). ROMANTIC clusters each project as a set of
disjoint clusters (components).

For code transformation, we developed a tool (an Eclipse plugin) that automat-
ically transforms the result of architecture recovery (clusters of java code) to OSGi
components (bundles). Our tool parses the source code using the Abstract Syntac-
tic Tree (AST) generated by Eclipse’s JDT. After that, it makes transformations
on this AST for the instantiation, method invocation and inheritance dependencies
between components.

We conducted three experiments to answer our three research questions respec-
tively. In the first experiment we compared the results obtained from executing test
suites between the transformed source code and the original one. The transformed
code are tested before packaging it into a specific component models. So, we exe-
cute test suite on OO source code that have been transformed. Therefore, we did
not need to integrate the predefined test cases to a new platforms. We used JUnit
testing frameworks that are most popular and available for Java.

In the second experiment we compare the Abstractness between the recovered
components before transformation (i.e., OSGi components with direct OO depen-
dencies) and the same components after transformation (i.e., OSGi components

Tt is worth recalling that the experiment can be conducted using another recovery method.
Only the output (in which we “trust”), which takes the form of a set of class clusters, is important
for the remaining steps.

60 Chapter 3. Healing Component Encapsulation

with dependencies though provided and required interfaces)?. We voluntarily lim-
ited the number of types to those which are provided and required by components
that depend on each other. In the third experiment, we compare developers’ efforts
(time) between manual transformation and automatic transformation. It is obvi-
ous that the automatic transformation provides better results (small values for the
transformation time), but what we would like to show here is the estimated average
time to perform transformations manually on a whole Java project. The time to
do it automatically is measured to estimate the multiplying factor between the two
transformation processes.

In this evaluation we firstly compare the state and behavior between transformed
code and the original one. We executed all test suite that are predefined for each
applications.

In the second experiment we computed Abstractness for components (clusters)
that resulted from architecture recovery step. To compute Abstractness for a com-
ponent C, we start by searching for classes of C that are used by classes of other
components (provided types). Then we compute the ratio of the number of in-
terfaces and abstract classes that belong to provided types to the total number of
provided types (see Equation 3.1). After that, we used our transformation tool to
transform Java clusters into OSGi components (bundles) with provided and required
interfaces. Then we recompute Abstractness as described in equation 3.1 for OSGi
components. Finally, we compare the Abstractness values to answer our research
question RQ2.

Abstractness(C) = Na/Np (3.1)

where Na is the number of interfaces and abstract classes that belong to
provided types of component C,
and Np is the number of provided types of component C.

In the third experiment, we performed the transformation manually. To this
end, we selected from our data collection three projects that have different sizes.
We chose Logjj as a small project, JFreeChart as a medium project and Tomcat
as a large project. We selected just three representative projects from the nine
composing our data collection (cf. Table 3.2). We do this selection to adapt the
manual experimentation to the available resources (people and time). We invited
15 developers to transform Java source code. To make sure that we obtain a
relatively fair valuation, we split this group of people into three groups, five people
for each. Table 3.2 provides descriptive information about these people. Before
starting the experimentation, we checked that each person has understood the steps
presented in our approach to applied for transforming OO to CB code. In each

2(0SGi model allows creating components with either direct OO dependencies between classes
composing these components or through interface-based connections [Platform 2015]

3.6. Experimental Evaluation 61

group, we provided each person with the source code. In addition, we gave them
the information about three components with different sizes (small, medium and
large) in each project (9 components in total). Then we asked them to randomly
select three classes from each project and from different components. The selected
classes must be transformed by satisfying our conditions: selected instantiation,
inheritance and/or exception dependencies to be transformed must be related to
classes belonging to other component(s). We measured the time for three types
of transformation: instantiation, inheritance and inheritance with an abstract
superclass, and exception handling.

Table 3.2: Information about people involved in the experiment.

Persons 7# persons | Group | Experience in Java
Ph.D Students 5 1 3-6 years
Developers) 2 4-6 years
M.S. Students 5 3 2-4 years

3.6.2 Results
3.6.2.1 Architecture Recovery Results

Table 3.3 provides some descriptive statistics about architecture recovery results
(on the whole data collection, and not on the three projects selected for manual
transformation). It displays the number of components recovered from each project
(16-129). Moreover, it shows the nature of the components; average number of
classes per component (8.5-20.7) and how strongly components are related te each
other using Afferent Couplings (10.33-24.85). Afferent Couplings (also known as
Outgoing Dependencies) is a metric that measures the number of types outside a
component that depend on types inside the component. According to the obtained
results, we observed that the number of components is almost directly proportional
to the project size except in case of Tomcat and Freecol projects.

Table 3.3: Architecture recovery results.

DyopelBasistem | =2 Grreymamee Avg. number of classes | AVG. Efferent coupling
per component per component
Tomcat 125 10.8 13.87
Ant 129 9.5 10.33
Checkstyle 63 14.5 13.98
Freecol 36 18.5 22.47
JFreeChart 40 15.7 15.63
HyperSQL 26 20.7 24.85
Colt 23 12.5 10.70
Log4j 23 9.5 10.74
Galleon 16 8.5 15.56

62 Chapter 3. Healing Component Encapsulation

3.6.2.2 Code Transformation Results

Table 3.4 provides descriptive statistics about transformation types for our data
collection. It describes the number of transformations that must be performed ac-
cording to our approach for each project. The results show that instantiation is the
most common transformation type with an average of 61.1% from all transforma-
tion types in all projects. Then transforming exception handling with an average of
15.9%. Then transforming inheritance that have abstract superclass with an average
of 12.8% (except for HyperSQL, Clot and Galleon, where transforming inheritance
is slightly bigger than transforming abstract superclass). Finally, transforming in-
heritance with an average of 10.2%.

Table 3.4: Statistics of transformation types.

. L. 7## instantiation | # inheritance 7## abstract superclass | # exception

Application . A B .
transformations | transformations | transformations transformations

Tomcat 350 49 79 74
Ant 364 50 54 62
Checkstyle 249 37 41 49
Freecol 164 28 34 41
JFreeChart 116 22 38 40
HyperSQL 99 20 19 40
Colt 70 17 13 35
Logd] 62 16 28 32
Galleon 56 18 14 26

According to the obtained results in Table 3.4, we observed that the number of
transformations is (in most cases) directly proportional to the number of compo-
nents. As can be seen in Figure 3.10, the relationships between the transformation
types and the number of components for our data collection. However, a small
exception of that relationship occurred in the case of Tomcat and Freecol projects.

Semantics Results We selected three projects (Tomcat, JFreeChart and Log4j)
to validate that our transformation approach produces source code semantically
equivalent to original one. All test cases are executed on each selected project before
and after transformation. The results of these executions were the same for each
transformed code and the original one that are belonging into the same project.
These results prove that the state and behavior of each selected projects are the
same before and after transformation. Consequently, our approach preserved the
semantic of the source code (answer to RQ1)..

Abstractness Results Table 3.5 shows the difference of Abstractness values be-
tween the components before and after transformation. Moreover, it gives the mul-
tiplying factor between the two Abstractness measures. The improvement factor
ranges from 3.57 for Tomcat, which basically has a good design in terms of abstract-
ness, to 8.33 for HyperSQL. The improvement of the level of abstractness depends
thus on the analysed software system. On average in the considered data collection,
our approach improved Abstractness by 5.57 times (answer to RQ2).

3.6. Experimental Evaluation

63

600

400

23 30 37 a4 51 58

=a=# transform instantiation

65 72 r

—a—# transform Abstract superclass

9 86 93

100 107

=a=4# transform inheritance

—a—1 all transformation

Figure 3.10: Relation between number of transformations with number of compo-

nents.
Table 3.5: Improvement of abstractness after transformation.
Abstractness Abstractness Abstractness Abstractness
Abstractness aftert
.. after after . after Improvement

Application before . . ransforming .

. transforming transforming transforming factor

transformation | . B o g abstract q
instantiation inheritance exception
supercalss

Tomcat 0.28 0.46 0.06 0.10 0.10 3.57
Ant 0.18 0.56 0.08 0.08 0.10 5.56
Checkstyle 0.12 0.58 0.09 0.10 0.11 8.3
Freecol 0.17 0.51 0.09 0.11 0.13 5.89
JFreeChart 0.22 0.42 0.08 0.14 0.14 4.54
HyperSQL 0.12 0.49 0.10 0.09 0.20 8.33
Colt 0.26 0.38 0.09 0.07 0.19 3.84
Logdj 0.19 0.36 0.09 0.16 0.19 5.26
Galleon 0.21 0.39 0.12 0.10 0.18 4.76
AVG 0.19 0.46 0.09 0.11 0.15 5.57

We can observe that the Abstractness for all applications is significantly im-
proved. This improvement lies at the core of our transformation approach, where
we transform OO direct dependencies into component interface dependencies. An-
other observation depicted in Figure 3.11 is that the values of Abstractness reaches
the optimal value (1.0).

Manual vs. Automatic Transformation Results The results of the second

experiment are presented in Table 3.6. It shows the results of manual transfor-
mation for the three selected projects. The first two columns present the selected
projects (Tomecat, JFreeChart and Log/j) and the transformation types. The num-
ber of needed transformations that must be achieved according to our approach are
presented in the third column. Then the fourth and the fifth columns show the num-
ber of the transformations that were performed manually. The values of the fourth

column shows all these transformation while the values of the fifth column present

64 Chapter 3. Healing Component Encapsulation

100%
o
8
7
60%
50%
402
30%
20%
1
0%

8§ 8

Q
&

Abstractness

&

-

Q
S

Tomcat Ant Checkstyle Freecol IFreeChart HyperSQL Colt Log4j Galleon
M before transformation B after transform instantiation
® after transform inheritance M after transform abstract superclass

B after transform exception

Figure 3.11: The percentage of abstractness for each transformation type.

only the number of unique transformations (i.e. transformations on dependencies
done only by one developer). For instance, the number of manually transformed
instantiation in Tomcat is 35. But the number of different manual transformation is
20. That mean 15 classes out of 35 were repeatedly transformed by different people.
For example, class WebappLoader that belong to Tomcat was transformed three
times. We note that the ratio of the number of realized manual different transfor-
mations to the number of all transformations automatically achieved is about 22%.
This ratio constitutes a good base to compare results of manual and automatic
transformations.

The sixth column shows the number of wrong manual transformations. A wrong
transformation corresponds to a case where this transformation is not properly done.
For example, it is the case when a person transformed OO inheritance between two
classes which belong to the same component. As we have noted before, the people
manually transforming source code understood very well our approach before we
did the experiments. Therefore, the wrong transformations are not the result of
misunderstanding our approach. The ratio of the number of wrong transformations
to the total number of manual transformations is about 18%. This means that
approximately one fifth of manual transformations were wrong.

Table 3.6: Estimated tirr%(ée fc;.r manual transformation.
o
L. Transformation | 7 % | 7 °F | gifferent | 7 °f | AVG. | Min/Max | STD AVG.
Application tvpe needed | manual manual | VFOP8 | oo @ | e @) | e @ estimated
Ve trans. | trans. trans. time (h)
trans.
Instansiation 350 35 20 2 367 230/1008 126 35.68
Tomeat Inheritance 49 3 3 6 1106 928/1380 241 15.05
Abstract superclass 79 16 9 2 1310 1019/1803 195 28.75
Exception 74 13 8 2 1255 989/1747 173 25.80
Instansiation 116 37 16 0 395 192/901 169 12.73
Inheritance 22 16 15 2 1053 862/1301 148 6.44
JEreeChart 1 G Siperclass | 38 11 3) 1198 1012//1405 135 12.65
Exception 40 7) 3 1077 1002/1359 104 12.00
Instansiation 62 34 17 0 377 248 /869 158 6.49
Log4j Inheritance 16 9 6 11 1054 892/1401 188 4.68
Abstract superclass 28 6 6 5 989 982/1106 64 7.69
Exception 32 7 4 1 1033 932/1203 120 9.18

uorjen[ear [ejuowirrddxy °9'g

Q9

66 Chapter 3. Healing Component Encapsulation

The transformation time is presented in the rest of the table (last four columns).
The first three ones represent statistics about the manual transformation time in
seconds for each selected project presented following the type of transformation. We
can observe that the mean time for each type of transformation realized in different
selected projects (AVG. time column) is approximatively the same. For example,
the mean time taken to transform inheritance is ranged from 1053 to 1106, where the
difference is just 53 seconds which is a small value compared with the transformation
time (i.e. 1053 or 1106). The Min/Maz time shows the minimum and the maximum
time for the corresponding types of manual transformations which indicates to the
variation of the transformations time. Moreover, a standard deviation is provided
in the column STD time to better illustrate the amount of variation or dispersion
of the manual transformation time. The little standard deviation values compared
to the mean reflect a small amount of variation of the transformations time values.

The mean of the estimated time in hours to manually realize a type of trans-
formation for each selected project is presented in the last column (AVG. estimated
time). We compute these values by multiplying the number of the needed transfor-
mations for each project by the mean values of manual transformation time. The
conclusion related to this column is that manual transformation is not an easy task.
For example, to completely transform Tomcat, JFreeChart and Logjj manually, we
need 92.21, 43.82 and 28.22 hours respectively. For example, in the case of Tomcat,
this corresponds to more than three weeks of work according to French (employment)
laws.. In addition, we did not calculate the cost caused by incorrect transformations
that have an error percentage about 18%.

On the contrary, our tool transforms Tomcat for example in a few minutes (about
6 minutes) without any incorrect transformation. The ratio between the manual and
automatic transformation times for Tomecat is 795. Thus, we can answer RQ3 that
our automatic approach effectively reduces the developer’s efforts especially on large
projects.

3.6.2.3 Threat to Validity

Internal threats: one internal threat needs to be considered when interpreting
our experimentation results. This is related to the used architecture recov-
ery approach in our experiment. For example, we observed that the number
of the needed transformation depends on the number of the recovered com-
ponents. The number of components depends on the used architecture re-
covery approach. Consequently, the improvement ratio of Abstractness and
the saved transformation efforts obtained by our approach can be affected
depending on the architecture recovery approach that are used (ROMAN-
TIC approach [Kebir 2012]). For example, Tomcat have 350 instantiation
dependencies that must be transformed (see Table 3.6). As the architecture
recovery approach is responsible for identifying components (i.e., find clus-
ters of classes), the number of dependencies between these components differs
depending on the used recovery approach. Thus, the 350 instantiation depen-

3.6. Experimental Evaluation 67

dencies that must be transformed in Tomcat may be less or more depending
on the architecture recovery approach used.

External threats: External validity refers to generalizability of the results. In this
study, we have two threats to external validity to generalize our results. The
first one is related to our data collection and the second one is related to the
types of people who applied our approach manually.

Data Collection We performed our experiments on nine different-sizes,
several-domains, well-known and open-source Java projects. Moreover, the
projects are selected from different development teams. Because of the variety
of our data collection, we can say that our results can be generalized to involve
most Java projects.

Types of Persons We experimented our approach manually on three
groups, five people in each group. The groups are PhD students, Java develop-
ers and master students (MS). By reference to Table 3.2, all these groups have
an experience in Java development ranging from 2 to 6 years. Additionally,
the experiments were applied on the three groups under the same conditions.
In this threat we need to check that the time consumed by manual transfor-
mation was not affected by the types of people and their familiarity with Java
development. In addition, we need to check that the errors caused by manual
transformation was not affected by the types of people also. Figure 3.12 shows
the time consumed by each group for each transformation type. We can see
that the transformation times are close to each other for the three groups. For
transforming instantiation, the manual transformation time ranged between
315 to 397 seconds. For transforming inheritance, the manual transformation
time ranged between 1073 to 1106. For transforming inheritance that has
abstract superclass, the manual transformation time ranged between 1231 to
1258. Finally, For transforming exception, the manual transformation time
ranged between 1245 to 1266 seconds. Consequently, the differences of time
consumed by the three groups is negligible. Thus we can emphasize that the
time consumed for manual transformation is independent of person type.

Figure 3.13 shows the error percentage caused by manual transformation for
each group. We can observe that the results are almost the same. The per-
centages of error transformation were 15%, 16% and 17% for PhD students,
developers and MS respectively. Thus, we can emphasize that the error caused
by manual transformation is independent of person type.

68 Chapter 3. Healing Component Encapsulation

AVG. of Manual Transformation Time (s)

1400

1200
1000
800
600
400
200
o

Instantiation Inheritance Abstract superclass Exception

EPhD EMS M Developer

Figure 3.12: The mean of manual transformation time for each group.

Error Percentage (%)

0.50
0.40
0.30
0.20

0.10

0.00
PhD MS Developer

Figure 3.13: The error percentage of manual transformation for each group.

3.7. Conclusion 69

3.7 Conclusion

In this chapter, we proposed an approach to automatically transform object-oriented
applications to component-based ones. We targeted the transformation of applica-
tions which are built using object-oriented languages into applications built with an
object-based component model. We focus on the transformation of source code in
order to produce decoupled components that are compliant with the architecture
recovered in a previous step. We proposed a solution for dealing with instantiation,
method invocation, inheritance dependencies and exception handling. The transfor-
mation solution based on well known design patterns like Factory, delegation, Proxy
and adapter design patterns. Therefore, the transformed code is easy to understand
for future maintenance. The experimentation results shows that our approach pre-
served the semantic of the source code. Moreover, it improves Abstractness and
as a consequence reduce the violation of component encapsulation. Finally, it ef-
fectively reduces the developer’s transformation efforts especially on large projects.
The transformation was demonstrated by transforming Java applications into OSGi
ones.

CHAPTER 4

Reveal Component Instance

Contents

4.1 Introduction i i i it e e 71
4.2 Problem Statement 0., 72
4.3 Transforming OO CodetoCB One 73

4.3.1 Generating Component Descriptor and Reference of its Imple-
mentationo 73
4.3.2 Component Instantiation 74
4.3.3 Reveal Component-based Architecture 77
4.4 Mapping the Proposed Solution onto Component Models . 79
4.4.1 Mapping from Java to OSGi 79
4.4.2 Mapping from Java to SOFA 2.0 81
4.5 DISCUSSION . . . v v v v v v vt e e e e e e e e e e e e e e e e 82
4.6 Conclusion i i i ittt e e e e e e 83

4.1 Introduction

In the previous chapter, we proposed an approach to solve the problem of compo-
nent encapsulation by transforming object-oriented dependencies to interface-based
ones. In this chapter, we propose an approach for the identification and creation
of component instances based on OO source code. This requires moving from the
concept of object to a component instance. The identification and creation of com-
ponent instantiation aims to solve the gap between software architecture and its
running application.

The proposed approach aims at transforming OO code to CB code guided by
the recovered architecture of the corresponding OO software. This approach makes
it possible to reveal component descriptors, component instances and component-
based architecture to materialize the recovered architecture. For that, the recovered
clusters should not be considered as simple packaging and deployment units. They
should be treated as real components: true structural and behavior units that are
instantiable from component descriptors and connected together to materialize the
architecture of the software. To validate this approach, we applied it to transform
Java code to two well known component-based languages; OSGi [Platform 2015] and

SOFA [Bures 2006].

72 Chapter 4. Reveal Component Instance

The remainder of this chapter is organized as follows. Section 4.2 discusses the
problem statement. Section 4.3 presents the transformation of OO code to CB one.
Section 4.4 presents how the proposed solution is mapped onto OSGi and SOFA.
Section 4.5 presents the discussion about our solution. Finally, Section 4.6 contains
some concluding remarks and gives directions to future work.

4.2 Problem Statement

Clusters of classes identified from architecture recovery represent the primary imple-
mentation code of components. This code should be transformed to match targeted
CB languages. These languages can be classified into two main categories. The first
category distinguish the language used for describing components and architectures
(architecture description language) from the language used to implement compo-
nents (programing language) like SOFA [Bures 2006]. The second category use the
same language for describing architecture descriptions and component implementa-
tions like COMPO [Spacek 2014]. In our work we focus on transforming OO code
to one written using CB language of the first category. This transformation makes
it possible to reuse classes of recovered clusters as the implementation of the target
components. Table 4.1 summarizes the main structural elements of languages of
this category. These consist of:

1. Structural elements that define component descriptions:

(a) Component interfaces: the component descriptor needs to define provided
and required interfaces. All interactions between components must be
done through these interfaces.

(b) Implementation reference: the component descriptor needs to define ref-
erences of its component implementation source code.

(¢) Component instantiation: the component descriptor needs to define how
its component can be instantiated.

2. Architecture description: it describes the structure of component-based sys-
tems in terms of component instances and component assembly. It ignores
components implementation details and interactions.

Our approach aims at generating structural elements composing component de-
scriptors and architecture description starting from source code of recovered clusters.
In our previous work [Alshara 2015]|, we have proposed an approach that transforms
dependencies between clusters to be interface-based ones. This approach presented
component interfaces structural elements. In this chapter we complete the transfor-
mation by addressing the remaining structural elements of component descriptors;
implementation references and component instantiation. This leads to revival of the
CB architecture.

4.3. Transforming OO Code to CB One 73

Table 4.1: Object-based Component Model Specifications [Crnkovic 2011a]

Component Models Language of implementation Interfacs type Component Descriptor Component instance
EJB |E.E. Group 2006] Java, Operation-based Yes Single Object
Fractal citefractal Java, C#, Net Operation-based Yes Single Object
JavaBeans [Microsystems 1997 Java Operation-hased Yes Single Object
COM [Box 1997] 0O languages Operation-based Yes Single Object
OpenCOM |Clarke 2001] 0O languages Operation-based Yes Single Object
OSGi [Platform 2015] Java Operation-based No Many Objects
SOFA 2.0 [Bures 2006] Jav. Operation-hased Yes Single Object
CCM [OMG 2011] Tanguage independent with OO implementation Operation-based & Port-based Yes Single Object
COMPO |[Spacek 2014] COMPO Operation-based & Port-based Yes Single Object
Palladio [Becker 2007] Java Operation-based Yes Single Object
PECOS [Winter 2002] 0O langnages Port-based Yes Single Object

4.3 Transforming OO Code to CB One

4.3.1 Generating Component Descriptor and Reference of its Im-
plementation

Our approach uses the concept of class used in OO to express component descrip-
tors. Hence, a class will represent the component descriptor. For example, the
descriptor of DisplayedInformation component translated by creating a new class
DisplayedInformation. Where the component descriptor describes their interfaces,
the same concept of interface in OO languages is used to describe component
interfaces. Then each provided interface has an OO interface that explicit its
services (method signatures). The component descriptor must have the reference
of its implementation of all provided interface services. For example, Listing 4.1
shows how the provided interfaces for component DisplayedInformation are created.
But, what if two interfaces have the same method signature? The descriptor can
not implement two services in the same descriptor (this is the case in Java, but in
C++ and C# we can implement the same services that have the same signature
by referencing the interface name before the implemented methods). For example,
component DisplayedInformation provides two interfaces and the two interfaces
have a method with the same signature(getContent()). Consequently, we should
provide each interface with a component port.

Listing 4.1: Provided interfaces for DisplayedInformation component

public interface ITime {
public String getContent();
public long getCurrentTime(ITimeZone timeZone);
¥
public interface IMessage {
public String getContent();
}

The explicit services provided by a component interface are associated with a
port. In our approach, we use the inner-class concept used in OO to represent
component ports. Thus, each port is described by an inner-class associated with
its interface. For example, in Listing 4.2, the PortTime inner-class is created to
implement ITime interface provided by component DisplayedInformation, as same
as PortMessage inner-class. Moreover, the references of each inner-class (port) are

74 Chapter 4. Reveal Component Instance

provided by its component (e.g. portTime and portMessage class-variables) for
binding components.

Listing 4.2: Descriptor and ports for DisplayedInformation component

public class DisplayedInformation{

public static ITime portTime;
public static IMessage portMessage;

private class PortTime implements ITimeq
@0verride
public String getContent() {
//T0D0: add behaviore implementation
3

Q@0verride
public long getCurrentTime(ITimeZone timeZone) {
//T0D0: add behaviore implementation
}
¥

private class PortMessage implements IMessage{
@Qverride
public String getContent() {
//TOD0: add behaviore implementation
¥

4.3.2 Component Instantiation
4.3.2.1 Mapping object instances to component instances

In OO, an instance consists of state and behavior, the state is stored in variables and
exposes its behavior through methods. Object hides its internal state where meth-
ods operate in an object internal state to provide services through object-to-object
communication (encapsulation). However, the recovered component is viewed as a
set of one or more cooperating classes. Thus, we infer component instances from a
set of class instances belonging to the same component, where the component state
is the aggregated state of these instances, and the component behavior is published
through the component interfaces. For example, in Fig. 4.1, we have three object
call graphs for a component consisting of five classes (A, B, C, D, E). We can ob-
serve that:

(1) The component instance has three different releases (Fig. 4.1 (a), (b) and (c)).
(2) The component instance could have many class instances of the same type. For
example, Fig. 4.1-(¢) have two class instances from type E (el and e2).

(3) The client needs to have references to the class instances that provide ser-
vices/methods for them. For example, the classes that implement the provided
component services are A and B. Then, the client needs to reference instances of
type A and B to get their required services. After that, instances of type A and B

4.3. Transforming OO Code to CB One 75

are responsible for communicating with other instances to complete their services.
And therefore, the classes that have the component provided services are considered
as the only entrance to component instance.

client client client
2 Y]
a: A b:B
a:A b:B .
\ 1/
N i W
A& 2 L of-d =
ez:E
e d:b i C ek d:D
e:E A
el E
(a) () c}

Figure 4.1: Different release of the same component instance

Based on our interpretation of the component instance, the set of class instances
that constitute a component instance should behave as a single unit. Then, we need
to update component descriptor to manage the links between class instances that
form a component instance. We propose to delegate provided interface methods
in the component descriptors to real ones. For example, Listing4.3 describes the
update of the descriptor of DisplayedInformation component. The descriptor has
references of the class types that are responsible for providing component services
Clock and Message. After that, the delegations of provided services is done through
component ports by using the real class instances that have these services. It is
worth noting that we used the lazy instantiation of these class instances (delaying
the instantiation of class instance until the first time it is needed) for performance
reasons.

Listing 4.3: Component descriptor with its behaviors

public class DisplayedInformation{

protected static ITime portTime;
protected static IMessage portMessage;

//Boundary Classes
Clock clock = null;
Message message = null;

public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}

76 Chapter 4. Reveal Component Instance

private class PortTime implements ITimeq{

@0verride
public String getContent() {
if(clock == null){ //lazy instantiation
clock = new Clock();}
return clock.getContent();

}

Q@0Override
public long getCurrentTime(ITimeZone timeZone) {
if(clock == null){ //lazy instantiation
clock = new Clock();}
return clock.getCurrentTime(timeZone);
¥
}

private class PortMessage implements IMessage{

Q@Override
public String getContent() { //lazy instantiation
if(message == null){
message = new Message();}
return message.getContent();
}
¥

4.3.2.2 Creating Component Instances

The services of a component can not be used directly, the component descriptor
must first be instantiated. Like in OO programs, we need a constructor to create
a component instance and initialize its state. The constructor of the component
should be placed into the component descriptor. In addition, the descriptor imple-
ments the component services through component interfaces using associated ports.
Thus, we create a default constructor (constructor without parameters) that initial-
izes component ports. Listing 4.4 describes the default constructor of component
DisplayedInformation and how it creates its ports (PortTime and PortMessage).

Initializing component state depends on the constructors placed into classes
that have provided methods to other components (e.g. Clock and Message into
DisplayedInformation component). For example, class Clock has two constructors,
the first one without parameters (default constructor) and the second one with
a single parameter of type [TimeZone. So there are two possible ways to create
an instance of type Clock. Therefore, the component descriptor should provide
all possible ways to initialize its instances. Consequently, initialize methods are
created with different parameters to apply component configurations. For example,
DisplayedInformation component has two classes that can be accessed from outside
components (Clock and Message), and each of them has default constructor while
Clock class has one more with ITimeZone parameter. Therefore, initialize methods
are created and has ITimeZone parameter (see Listing 4.4).

4.3. Transforming OO Code to CB One 77

Listing 4.4: Component constructors and initializers

public class DisplayedInformation{

public DisplayedInformation() {
//initializing component ports
portTime = new PortTime();
portMessage = new PortMessage();

}

public initialize(ITimeZone timeZone) {
clock.setTimeZone (timeZone) ;
}
¥

Now, we can simply create an instance of the component using its constructor
using OO instantiation and then initialize the instance using appropriate initializer.
For example, an instance of DisplayedInformation component is created by its con-
structor using new keyword. Listing 4.5 differentiates the refactoring resulted from
our approach (ComponentClient) and the original source code (ClassClient).

Listing 4.5: Component instantiation

public class ClassClientq{

Clock clock = new Clock(timeZone);
clock.getCurrentTime() ;
¥

public class ComponentClient{
DisplayedInformation info = new DisplayedInformation();
info.initialize(timeZone);
info.portTime.getCurrentTime() ;

}

4.3.3 Reveal Component-based Architecture

An architecture description describes the structure of component-based systems in
terms of component instances and binding. Therefore, to reveal a CB architecture,
we need to identify its component instances and the binding between these instances.
We can identify the component instances by analyzing the instantiation statements
of its implementation. We can identify the binding between these instances based
on the invocation of its services.

4.3.3.1 Identify component instances

We first statically analyze the source code to check whether to create a new com-
ponent instance or to use an existing one. The analysis is based on statement scope
(i.e. in the same code block) and obliterates state (i.e. the second instantiation
statement obliterates the state of the instance resulted from the first one). The
previous component instance can be replaced by a set of its class instances if these

78 Chapter 4. Reveal Component Instance

set at the same scope and no one obliterates the state of another one. For exam-
ple, in Listing 4.6, the IF-BLOCK into class ClassClient instantiates an object of
type Clock and another of type Message. However, the proposed approach replaces
the two instances with a component instance of type DisplayedInformation (infol)
because they are in the same scope and each one does not obliterate the state of
another. An example of the scope condition is obviously shown by defining infol
and info2, where each of them belongs to different scopes. Defining info2 and info3
provides an example of obliteration state condition, where message2 will obliterate
the state of messagel if it translated to one component instance. Listing 4.7 shows
the component instances that have been identified from Listing 4.6.

Listing 4.6: Refactoring instantiation from OO code into CB one

public class ClassClient{

if(condition)

{
Clock clock = new Clock(timeZone);
Message message = new Message();

Yelse{
Message messagel = new Message();

Message message2 = new Message();
}
}

public class ComponentClient{

if(condition)
{

DisplayedInformation infol = new DisplayedInformation();

Yelse{
DisplayedInformation info2 = new DisplayedInformation();

DisplayedInformation info3 = new DisplayedInformation();

}

Listing 4.7: Identified CB instances for architecture discriptor

//Darwin ADL

inst

infol : new DisplayedInformation();
info2 : new DisplayedInformation();
info3 : new DisplayedInformation();

4.4. Mapping the Proposed Solution onto Component Models 79

4.3.3.2 Identify component binding

Binding between component instances is used to establish interactions between these
instances. An instance of component binds to another one to provided or required
services through their interfaces. Therefore, we can identify the bindings between
components based on service invocations between them where components must
firstly bind to provided or required services. For example, in Listing 4.8, Con-
tentProvider invokes a service getCurrentTime from DisplayedInformation, so the
binding between these two component must be established before. Therefore, we can
statically analyze these invocations between components to identify bindings (see
Listing 4.9). Fig 4.2 shows the architecture recovery (c.f. Sec. 2.4.4) and a snapshot
of architecture description for our running example. The architecture description
describes component instances and its binding between DisplayedInformation and
ContentProvider component instances.

Listing 4.8: Refactoring instantiation from OO code into CB one

public class ContentProvider{

public void push(DisplayedInformation infol){
String time = infol.portTime.getCurrentTime();

}

Listing 4.9: Refactoring instantiation from OO code into CB one

//Darwin ADL

inst

content : new ContentProvider();
information : new DisplayedInformation();

bind
content.I1l -- information.ITime

}

4.4 Mapping the Proposed Solution onto Component
Models

In this section we describe how our proposed solution is easily mapped onto existing
component models. We have chosen two well known component models, OSGi and
SOFA, to explain the ease of mapping.

4.4.1 Mapping from Java to OSGi

0OSGi is a set of specifications that define a component model for a set of Java
classes [Platform 2015]. It enables component encapsulation by hiding their imple-
mentations from other components by using services. The services are defined by

80 Chapter 4. Reveal Component Instance

DisplayScreen ‘
ContentProvider . .
- interface ITime{
DisplayManager, D e long : getCurrentTime(TimeZone : time)
_ ecreates Displ ager (| = - instance : ContentProvider Strlng § getContent()
+ manageCcnt;nt'() + getinstance () : ContentProvider }
+pop () : Content
* push (content : Contert) interface IMessage{
e — ;
; String : getContent()
Content }
Screen # content : String
+ «creates Screen () +getContent () : String Component DisplayedInformation{
+ display (content : String) Require ITime, IMessage
}
|
Displayedinformation Component content{
Provide ITime, IMessage
Clock }
Message
+ «creates Clock () S Component information_screan{
+ zcreates Clock (time : TimeZone) + ecreate» Message () s s 3 s
+ getCurrentTime (time : TimeZone) : long + getContent () : String lPSt //1nstant1at? comp?nent 1n§tances
+ getContent () ; String DisplayedInformation : information
ContentProvider : content
I ;
LocalTime . // other component instances
bind
TimeZone GpsLocation :.Lnf ormat:‘wn .I1 -~ content.ITime
Hime - longitude : Integer information.I2 -- content.IMessage
+ ecreates TimeZone () - latitude : Integer ... // other bindings
+ «zcreates TimeZone (cod : Integer) +getGps () }
+ getTime ()

Figure 4.2: Information-screen architecture recovery and Darwin ADL for Dis-
playedInformation and ContentProvider

standard Java classes and interfaces that are registered into a service registry. A
component (bundle) can register and use services through the service registry.

Listing 4.10: DisplayedInformation component describtor and its interface

public class DisplayedInformation implements IDisplayedInformation{
/* Contents... */

¥

public interface IDisplayedInformation {
public InterTime portTime = DisplayedInformation.portTime;
public IMessage portMessage = DisplayedInformation.portMessage;

¥

To map our transformed code onto the OSGi framework, we firstly create an
interface (Java interface) to represent the contract of provided component instance.
For example, Listing 4.10 shows how we created an interface for DisplayedInforma-
tion component. Hence we suggest that a component binds through its port asso-
ciated with a provided interface, then both ports InterTime and IMessage must be
accessed by other components. After that, a metadata for both provided component
DisplayedInformation and required component ContentProvider must be specified.
The metadata specified through XML files uses the declarative services model. For

4.4. Mapping the Proposed Solution onto Component Models 81

example, Listing 4.11 describes how DisplayedInformation component provides its
instances as object interfaces with type [DisplayedInformation. And Listing 4.12
describes how ContentProvider component uses the provided instances. When both
components are activated at runtime, the binding is established between them. List-
ing 4.13 describes how ContentProvider gets an instance of DisplayedInformation
and calls its method getContent() through port portMessage.

Listing 4.11: DisplayedInformation.xml file to provide the instances of Displayedin-
formation

<?xml version="1.0" encoding="UTF-8"7>

<scr:component xmlns:scr="http://wuww.osgi.org/xmlns/scr/v1.1.0" name="DisplayedInformation">
<implementation class="DisplayedInformation"/>
<service>
<provide interface="IDisplayedInformation"/>
</service>
</scr:component>

Listing 4.12: ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0" encoding="UTF-8"7>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1l.1.0" name="ContentProvider">
<implementation class="ContentProvider"/>
<reference bind="setDisplayedInformation" cardinality="1..n"
interface="IDisplayedInformation” name="DisplayedInformation" policy="static"
unbind="setDisplayedInformation"/>
</scr:component>

Listing 4.13: Binding between DisplayedInformation and ContentProvider

public class ContentProvider implements Inter_ContentProvider{

public synchronized void setDisplayedInformation(IDisplayedInformation information) {
information.portMessage.getContent();

}

4.4.2 Mapping from Java to SOFA 2.0

SOFA is a platform for software components that uses a component model with hi-
erarchically nested components (composite components). It describes a component
by its frame (component descriptor) and component architecture. The frame is a
black-box view of the component that defines its provided and required interfaces.
It provides a metadata (XML files) to describe provided and required services (see
Listing 4.14 and Listing 4.15). Components are interconnected via bindings among
interfaces using connectors (see Listing 4.16).

82 Chapter 4. Reveal Component Instance

Listing 4.14: DisplayedInformation.xml to provide the instances of DisplayedInfor-
mation

<?xml version="1.0"7>

<frame name="DisplayedInformation">
<provides name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>
</frame>

Listing 4.15: ContentProvider.xml to bind the instances of DisplayedInformation

<?xml version="1.0"7>

<frame name="ContentProvider">
<requires name="DisplayedInformation" itf-type="sofatype://IDisplayedInformation"/>
</frame>

Listing 4.16: binding between DisplayedInformation and ContentProvider

public class ContentProvider implements SOFALifecycle, Runnable, SOFAClient {

IDisplayedInformation info = null;
// Called during initialization of the component.

public void setRequired(String name, Object iface) {
if (name.equals("DisplayedInformation")) {
if (iface instanceof IDisplayedInformation) {
//get DisplayedInformation instance
info = (IDisplayedInformation) iface;
info.portMessage.getContent();
11}

4.5 Discussion

We can deploy a recovered cluster of classes directly onto existing component models
without using our approach. Indeed, we can transform each class into a component
and then assemble these components that belong to the same cluster using com-
ponent composition property as a composite component. However, to compare our
approach with the composite component approach, we need first to study the compo-
nent composition types and component models that support these types. Table 4.2
shows the selected object-based component models and composition supported com-
position types. There are two types of component compositions; the first one is
horizontal composition, and the second type is vertical composition. The horizontal
composition means that components can be binded through their interfaces to con-
struct component applications. The second type, vertical composition, describes the
mechanism of constructing a new component from two or more other components.
The new component is then called composite because they are themselves made

4.6. Conclusion 83

Table 4.2: Composition type in object-based component models

Component Models EJB Fractal JavaBeans CcOM OpenCOM 0SGi SOFA 2.0 CCM COMPO Palladio PECOS
Vertical Composition No Yes No Yes Yes No Yes No Yes No Yes
Aggregation X X X X

Delegation X X X X X X

of more elementary components called internal components. Internal components
could be accessible or visible to clients (delegation) or not (aggregation).

We can observe from Table 4.2 that there are five component models that did
not support vertical composition at all (EJB, JavaBeans, OSGi, CCM and Palla-
dio). Four of them provide vertical aggregation composition and six models support
vertical delegation composition. However, vertical delegation composition is not ap-
propriate because clients can access or view the internal components (violates com-
ponent encapsulation). Consequently, the vertical aggregation composition could be
replaced by our approach, but there are just two component models that support
it.

4.6 Conclusion

In this chapter, we proposed an approach to transform recovered components from
object-oriented applications to be easily mapped to component-based models. We
refactored clusters of classes (recovered component) to behave as a single unit of
behavior to enable component instantiation. Qur approach guarantees component-
based principles by resolving component encapsulation and component composi-
tion using component instances. The encapsulation of components is guaranteed
by transforming the OO dependencies between recovered components which was
proposed in our previous work [Alshara 2015|. Moreover, both principles applied by
refactoring a recovered component source code to be instantiable, where the provided
services are consumed by the component instance through its interfaces (component
binding). We have shown that the source code resulting from our approach can be
easily projected onto object-based component models. We illustrated the mapping
onto two well known component models, OSGi and SOFA. The illustration results
show that our approach facilitates the transformation process from OO applications
into CB ones. Moreover, it effectively reduces the gap between recovered component
architectures and its implementation source code.

CHAPTER 5

Model-Driven Object-Based to
Component-based Software
Migration

Contents

5.1 Introductionmttt 86

5.2 Transforming Object-oriented Applications into
Component-based ones Using MDT: An Overview 87

5.3 Transforming OOGM into CBGM: Defining the Source and
the Target Metamodels and Rules of Transformation 90
5.3.1 Metamodeling: Defining OOGMM and CBGMM 90
5.3.2 Transforming OOGM to CBGM Rules 98
5.4 Transforming CBGM into CBSMs 103
5.4.1 Defining CBSMMs o oL 103
5.4.2 Identifying the Variability of Transformation Rules 107
5.5 Implementation and Tools v v v v v v v 112

5.6 Conclusion & i i i i i i i e e e e e e e 116

Chapter 5. Model-Driven Object-Based to Component-based Software
86 Migration

5.1 Introduction

Model-driven engineering (MDE) has been adopted as an approach for modernizing
software systems [Fleurey 2007]. It has been recognized as an efficient, flexible and
reliable approach for software migration (i.e. reverse-engineering, transformation
and code generation) [Schmidt 2006]. Legacy systems are represented by models
to ensure a common understanding of their contents [Schmidt 2006]. These models
are then used as the starting point of all the reverse engineering and transformation
activities. These activities are respectively called Model Driven Reverse Engineering
(MDRE) [Rugaber 2004] and Model Driven Transformation (MDT) [Mens 2006b].
Therefore, MDRE and MDT directly benefit from the genericity, extensibility, cov-
erage, reusability, integration and automation capabilities of MDE technologies to
propose efficient and profitable solutions for software migration.

In MDT, the appropriate use of models is the automated transformation to
other models [Favre 2004]. Mellor et al. [Mellor 2003] define model-driven devel-
opment as a MDT: “Model-driven development is simply the notion that we can
construct a model of a system that we can then transform into the real thing.” A
prerequisite for model transformation is that the abstract syntax (e.g UML) and
the semantics (e.g. metamodel) of the source and the target model are well known
and understood [Schmidt 2006]. Many authors [Van Deursen 2007, Mellor 2003,
Favre 2004, Ludewig 2003, Kiithne 2006, Gray 2006| rightly argue that source code
is also a model. Therefore, transformation from source code to another one can be
considered as an MDT activity.

MDT can be implemented based either on classical programming languages like
Java, or on model-based transformation languages like the domain of Extensible
Stylesheet Language Transformations (QVT, XSLT!). These languages provide op-
erations on models such as searching for items or patterns, as well as the creation,
deletion and modification of model entities [Weis 2003]. Sendall and Kozacyn-
ski [Sendall 2003] state that abstractions are the core aspects of a transformation
language. They should be intuitive and cover a large proportion of all occurring
cases. Therefore, model-based transformation languages are more appropriate for
MDT than classical programming languages. Model-based transformation languages
are distinguishable as textual or graphical. For example, the OMG defined the tex-
tual language Query View Transformation (QVT) to describe transformations be-
tween models. Sendall and Kozacynski [Sendall 2003|, Weis et al. [Weis 2003] and
Moody [Moody 2009] have proposed graphical notations as Model-based transfor-
mation languages.

In this chapter, we propose an approach to transform object-oriented applica-
tions into component-based ones based on MDE. It is about model-to-model trans-
formation using MDT. We present two contributions: First, we propose transforma-
tions from OO generic model to CB generic one and second, we propose transfor-
mations from CB generic model to CB specific models.

"https:/ /www.w3.org/standards/xml/transformation

5.2. Transforming Object-oriented Applications into Component-based
ones Using MDT: An Overview 87

In the first contribution: Firstly, predefined generic metamodels are respectively
proposed for both OO source codes (e.g. Java, C+-+, etc.) and CB source codes
(e.g.0SGi, CCM, etc.). Then transformation rules between these generic metamod-
els are proposed. These rules aims to transform OO dependencies to interface-based
ones that have been presented in previous chapters like method invocation, type
dependency, instantiation, inheritance, exception handler, component instance and
component descriptor. However, in contrast to contributions that have been pro-
posed in previous chapters, we used MDT rather than classical programing languages
to transform these dependencies.

In the second contribution: firstly, we identified and represented variabilities
between metamodels of many existing component platforms (e.g. OSGi metamodel,
CCM metamodel, etc.). Then we defined a feature model representing common-
alities and variabilities between transformation from generic CB metamodel to all
variants of specific CB metamodel.

5.2 Transforming Object-oriented Applications into
Component-based ones Using MDT: An Overview

For the transforming of OO models to CB ones, the transformation could be seen
as two phases as shown in Figure 5.1. The first phase operates to transform object-
oriented generic model (OOGM) into component-based generic model (CBGM).
CBGM defined the common elements constitute the most component-based models.
It intermediates and connects the two phases of the transformation. The second
phase operates to transform CBGM into component-based specific models (CBSMs).
It aims to complete the transformation by considering specificities of each target
component model. It is based on variable transformation rules.

Figure 5.2 describes the models handled by the transformation process. Firstly,
object-oriented generic metamodel (OOGMM) and component-based generic meta-
model (CBGMM) are defined. The term generic here in both OOGMM and
CBGMM means that the metamodels cover respectively the majorities of OO and
CB models. For example, OOGMM is a metamodel that represents many object-
oriented models (e.g. Java, C++, Smalltalk, etc.), as same as, CBGMM is a meta-
model that represents common principles for many component models (e.g. OSGi,
SOFA, Fractal, etc.). Secondly, the transformation rules from OOGM (confirm to
OOGMM) to CBGM (confirm to CBGMM) are identified. Thirdly, a transformation
feature model (TFM) is identified based on the variability between component-based
specific metamodels (CBSMMs). Finally, the transformation rules from CBGM to
component-based specific models (CBSMs) are identified using TFM to produce
component-based source code.

Chapter 5. Model-Driven Object-Based to Component-based Software
88 Migration

recover

A
based on
00GM > Quality Metrics
2 =
a =y
i conform Principle of
Component
E
[=]
w
=
m
Sy
E
w conform Component
- CBSMs > Model
& Constraints
.
@
=
€
=

Component-based

Code

Figure 5.1: The phases of transformation process.

5.2. Transforming Object-oriented Applications into Component-based

ones Using MDT: An Overview 89
= T'a“':zl':;’t"’" CBGMM TEM CBSMMs
s A !

4

>

conform to

hased on
based on

o
(o]
(7]
=
o
g conforms to =
0
@
=
w

transform to transform to

Sy

Transformation process
code generation

reverse engineering

Object-Oriented

Component-Based

...

transform to

Figure 5.2: Models handled in the transformation process.

Chapter 5. Model-Driven Object-Based to Component-based Software
90 Migration

5.3 Transforming OOGM into CBGM: Defining the
Source and the Target Metamodels and Rules of

Transformation

This phase consists of two steps: metamodeling and MDT rules. In the first step
OOGMM and CBGMM are defined, text-to-model transformations are also defined
to abstract information contained in the object-oriented source code as OOGM. The
OOGM includes elements related to the architecture recovered based on the reverse
engineering process (an example of approach to recover software architecture is given
in Sec 2.4). In the second step, the transformation rules are defined to transform
OOGM into CBGM. The following subsections give details for these two steps.

5.3.1 Metamodeling: Defining OOGMM and CBGMM

To transform object-oriented code to component-based code using model-driven,
we must represent the source and the target in a canonical model. For instance,
to transform instance A to instance B, we must abstract A as a model Ma that
conforms to MMa meta-model and B as a model Mb that conforms to MMb meta-
model. After that, we transform Ma to Mb based on their meta-models. Finally,
we generate B from Mb (see Figure 5.3 2).

transformation MMaToMMb
(in Ma : MMa, out Mb: MMb);

Ma| [Wb
O i
0 0 | | oD

Model extents

e
A B

Figure 5.3: Model transformation.

In our case, we need to identify metamodels for both object-oriented and
component-based source codes. As noted before, information related to the re-
covered architecture constitutes a part of the OOGMM. For this purpose, we pro-
posed to use FAMIX metamodels(proposed by the MOOSE project [Demeyer 2001]).

2The used notation is from QVT.

5.3. Transforming OOGM into CBGM: Defining the Source and the
Target Metamodels and Rules of Transformation 91

FAMIX is an extensible family of metamodels which constitute a language-
independent representation of object-oriented source code. Because the extensibil-
ity and independent ability of FAMIX, we argue that FAMIX is a good support for
MDT [Demeyer 1999, Tichelaar 2000]. This is illustrated by many research projects
where FAMIX has been used to support many model-driven analysis and reengi-
neering tasks (e.g. |Ducasse 2000, Ducasse 2011b]). In addition, parsing technology
exists to export the meta information of object-oriented languages like C++, Java,
Smalltalk and Ada to the FAMIX metamodels [Ducasse 2011b, Kobel 2005].

The core of the FAMIX model is depicted in Figure 5.4. It includes the main
object-oriented structural entities like Class, Method and Attribute. Also it defines
other entities representing associations between structural entities like inheritance,
method invocation and attribute access. The complete FAMIX model provides much
more information such as functions and formal parameters, and additional relevant
information for every model entity. The complete specification of the model can be

found in |Ducasse 2011b].
‘ % oject H Property

‘ B Argument | ‘ H Model ‘ | H Entity | ‘ H Assodation ‘

%

% Behaviauralentity | Structuralentity

B AccessArgument

J [K B Access

E ExpressionArgument

H invocation
g H Attribute
Method =

E Globalvariable

H Package — -

g H InheritanceDefinition
| Implicitvariable

B Function
E FormalParameter

B ¢lass —] El Reference
= H tocalvariable —

Figure 5.4: The core of FAMIX metamodel.

5.3.1.1 The Core of OOGMM

In our approach, we proposed an extension of FAMIX and we considered it as our
OOGMM. As noted before, this metamodel includes entities representing both ab-
stractions of object-oriented source code and the recovered architecture. Figure 5.5
shows the OOGMM as extension of FAMIX. The OOGMM includes an entity (class)
representing all clusters of classes (instance) resulting from the architecture recov-
ery. Each instance of this class provides information about provided and required

Chapter 5. Model-Driven Object-Based to Component-based Software
92 Migration

interfaces of the corresponding cluster.

In addition to the use of FAMIX to represent OOGMM, we also used another
extension of it to represent CBGMM. The reason behind the use of FAMIX to
represent component-based entities is related to the nature of component-based
languages considered as target of our transformation process. We consider that
these languages are extensions of object-oriented languages (e.g. OSGi as extension
of Java, CCM as extension of C++). Figure 5.6 shows the metamodel for the
CBGMM.

5.3.1.2 The Core of CBGMM

Three classes are added to FAMIX to be able to represent component-based entities:
Component, Interface and Descriptor. An instance of Component class provides
information about both the list of interfaces of the corresponding component and
its descriptor. An instance of Interface class provides information about the methods
composing the interfaces provided and required by a component. The Descriptor
class represents component descriptors. The instances of each of these three classes
are built as a result of the architecture recovery phase.

5.3.1.3 Modeling Dependencies between Object-oriented Entities

Dependencies between component-based entities resulted from OO dependencies
between the corresponding clusters are represented by five types of associations:
access attribute, object reference, method invocation, inheritance relationship, and
exception handling. Figure 5.7 shows the first three dependencies: Attributes can
be accessed, methods can be invoked, and references can be used no matter where
these Attributes, methods, and references belong to. Therefore, attributes, methods,
and references can be used, as in object-oriented applications, even they belong to
different clusters. As each cluster should be transformed into a component, in the
case where these dependencies are related to entities belonging to different clusters
such use must be not allowed. For example, it will be prohibited that a method
belonging to a cluster A invokes a method belonging to cluster B. To reflect this
prohibition, we used OCL constraints. Figure 5.8 depicts the dependencies described
above and the corresponding constraints in CBGMM.

The fourth type of dependency is related to OO inheritance. A class from a
cluster A can inherit from another class from a cluster B (see Figure 5.9). This
dependency must be prohibited when considering that a component is an imple-
mentation of a cluster. This dependency prohibition is represented as constraint in
CBGMM (see Figure 5.10).

The fifth dependency type is the OO exception handling. In OOGMM, the ex-
ception handling is modeled by three entities: DeclaredEzception, ThrownEzception,
and CaughtFException. DeclaredEzception class models the creation of an exception
object. ThrownFzception class models the method that throws an exception. Caugh-
tEzception class models a method handler that caches an exception. Figure 5.11
shows the modeling of the exception handling in OOGMM.

the Source and the

ing

Defin

Target Metamodels and Rules of Transformation

Transforming OOGM into CBGM

5.3.

93

AWEBN P RMNOS = [

awep) : j2biey o

ERIVENENEN] E

H2PU| HIPUL o
Jaeny

1 I31|END|oaU0 355300 E
awep : ssepuadns o
JWeN : SERPONS =

=

uopiuyagadueiayul F

awep | sajepipued £
auwie t 3seq =
BN ¢ SAH0AU] =
awep Agpayoadl o

Uo3EIOAL| E

a5|e4 = UE3|00GT : AN|BATSEAIYS! =

AUBN UIPASSANIE =
FUEN : 5ASEANVE o

55320 m_

izBaupbunyoanl

wapu| 5

133 Bunyoani

awen 5

13efgoBunyoani

Jaenn &

Xapu| i uosod
alep o
1neyago)shuo|ag

]

il

FWen ino

meyagolsbuojag =

ajgenepeIo] B

— awep af
eyzedolsBuolag

uoipund

—— JBIEND ¢ 3¢

dajalleled(ewlod m_

E— awep : af

eyIe40 sAUO[AY

ajqeniepedols [

ajuo)olshuolag

=

agje) = ue3joog]

NEI 3 RPEIN]
npjoIUo)5533e
auep

nenesidul (5

radossssepsey =

=

i sseyopshugjag =

anquyy 5

L pEROSgYS
ase) = ueajoogs
L 0PSO S

as|e) = ueajoogy
i adodssse|ysey

auep
i ssejyoLsBuolag

35[E] = UE3[00D]

| poyk H

uopepossy [

PR, * A—

awey
tssepypaepap &

adipatepap &

AppFieinenags 5 _
_—

aulep ¢ 558
|JuInjaypalepap
Jaunenin ad
Aluiniaypalepap
as|e) = Ueajoogg
1 1055333yaUNds|
J3enD
taunjeubs
Il RREIN
no|oJ3ues5a0e

Apgpoinonniyzg B,

auwey : poyRBuILyaEp o

uopdanxgiybnen E

auwep : poLRMBULLEp =

uojdasxgumaiy] _m_

alwen : poyiRBUILLEp =

uoijdazxgpalepag m

auwep sse|yuondanKe o 7

uoijdang Em_ _

awep : abexpedolsbuo|ag o
— as|es
= ueajo0g] : PRIsy

ssed {

| awep: aBeyaedolsBuoiag o=

afeyaeq E

awep : aepupanba) L
FWen : ABdeURUpapnold D

1enn

awepy

rawepanbun &

JAWEND § AweU o

fanua {

Bulysy | PajeIganines
Buysy i afenfuejannos
BULIST | [naiuDiPeixa
Buu3sy : awepwalsispasied
Bulysy: awepdaysygnd
Bunisy : aunpapodxa
Buuysy : ajegiapodsa
Bu3sy : ualsiapdapodxa
Bur3sy : aweplapodss

{351 5 G301 £ 2 £ 1 6 1 £ 3

Juawnbrguoiscaldig m

JuawnBrgssanoy @ A

as|ey = ueajoogs 1
INEYYEREN) o
xApuliu

l2pow 5

uawnbay _m_

Buuisy:anea o
JAEND | AR =

fpadoud E

dpadoad [ol

|
o

Bumsy .,

D suawwoy =
ETT = o)
LI0LDUYRINGS

20 5,

t-oriented architecture recovery metamodel.

jec

The core of the ob

Figure 5.5

Migration

Model-Driven Object-Based to Component-based Software

Chapter 5.

94

% awep :ino
wep : paiban Y neyagolsBuoiag =
wen : papaoad £F | — auepy : afl degdunsag E
2jqenepeI0] [epedolsbunjag =
ERLITERI] m -
uopung m_
— no 3 —————— awep ;26
—_— 351E] = UE8[008] =
awep:aunos o | ®apul: uomisod = 2quodoisBuajag 7 tpensgys & — mmw_ww“mnw“m“._uuhmm
awep :jabiey o NN T) d as|e) = ue3joogy . = =1
= e aieating aigeuezodu) 5 R BWeN : poyIRFBLIULED = : peIsaYs!
. e as|ey = ueaoo uondarxayybne 55E|
132welegeunoy ["_um_aum:m__uwmm = I3 o 2 H 1>
—_— as|ey = ueajoog] - auey
Xapu xapul o "mnmu%%.mh_wwmu 1s5e30)5BUDjag =
13END i = 2wep : pogaybuugEp o
L aayenp|oquedssane = awenan | 3O_u.acuuwwumuh — powRa [— .
FUBRL SRR eipedoysbuojag = i ssejyosBuojag = HoadRnL B | awen ;aBeypedo)sbuoiag o
Jwep : ssepPONs = -
ajqenepeqeln § Anqupy § d abexyred [
uoiuagaoueilagyu m _ _ \ auepy Uu.._uw_.zmc_r_cw—u .
alep | 55 —
v JDuinaypaiepap = uondadxgpaiepag _
aue sagepipues £ [Jalen fad
i Kluinjagpalepap iiaid
AWen aseq o e 35iey = UE3 0033 wen i Jojdinsap .u_mn.._.
J3141[BAD) | 5340AUI = 105530yaIngs) = kv SUWEN : LU
awep : Agpajoadl o s adf paiepap & FEINElrs) = auodwoy [
tainjeuBls Jwepy : ssgpuondang o
uoneloal| E ApuFjoingangs _m__u _ [Nt 143
e T a—— npjoiueassaae = uoijdaxg @_ _
as|e) = LUE3|00GT { AN|BATSSAYS o [Aioinonsyzg B, _
BWERN : UIPAssIIIE o W
Awepy ; sassane o -
ssany 5 _y Buysy : pajeiganinos o
Buwas3 awnburyuoissaldxg m_
& BenBuetaiinos =
awep 1353 ¢ [BARUOIPRIIKE =
awepnanbiun & Buinsy =
JAYIEND ¢ AWEU o P auwepwsispacied JuawnBayssay B
Buigsa : awepaysygnd = S S
fnua § Buuis] : swpapode o
Lopenassy m Builsy: aeqiapodi: o
- = Buiys3 ag|ey = ueajoogy 1
Tupisiapapods = tianaays) =
JaBayupbunyonn! Bunys3 awepapod: o Hapu| s uosod =
xapul B [2powy m_ awnfly m
130 susron’
auey Buisy g
| slUaWwey =
dosd [, eng
13300 Busy o’ fzdoud Lol Ldoyaugaunos =
enp 2 fpadoig E 1240 @_ _

The core of the CBGMM.

Figure 5.6

5.3. Transforming OOGM into CBGM: Defining the Source and the
Target Metamodels and Rules of Transformation

95

| H invocation

invokedBy : Mame

E Method

invokes : Qualifier
base : Name
— candidates : Name

oooao

o

[0.*] invocedBy

"] accessed|

E Access

belongsToClass | Mame
hasClassScope : EBoolean = false
isConstructor: EBoolean = false
isAbstract : EBoolean = false

EI Cluster

[1..*] class

[0.] method

E Class

&= providedinterface : Mame
&% requirdinterface : Name

— isAbstract: EBoolean =
false

= belongsToPackage : Mame

[0.*] attribute

O accesses ! Name
= accessedin : Mame
= isAccesslValue : EBoolean = false

[0..1] accessesTo

H attribute

= belongsToClass : Mame

[0.*] accessedin

T Structuralentity

— declaredType :
Qualifier

[0..1] reference

= accessControlQualifier: Qualifier
= hasClassScope : EBoolean = false

H Reference

= target: Name

— declaredClass
Mame

= source : Name

Figure 5.7: Access attribute, object reference, method invocation in object-oriented
architecture recovery metamodel.

ifi! invokeBy.belongToClass.isAbstract)fself. belongToClass.belongToCluster

invokeBy.belongToCiass,

belongToCluster)

| H invocation

o invokedBy : Name
= invokes : Qualifier
= base : Name

&3 candidates : Name

/
I3

H metheod

H component

= interface : Name
o descriptor @ Name

[0..*] invokedBy

[1.."] class

B Access

0..%] accessedin

o pelongsTeCiass : Name

= hasClassScope : EBoolean = false
o isConstructor ; EBoolean = faise
= isAbstract : EBoolean = false

e
H Class

o1 accesses @ Mame
= zecessedin : Name
= isAccessiVaiue : EBoolean = false

o isAbstract : EBoolean =

false
= belongsTePackage : Name

[

0.,*] accessedin

[0.*] attribute

[0:.1] accessesTo

1 B attr

p”beiongsToCiass : Name

P = i
-1 = accessControlQualifier : Qualifier

o hasClassScope ; EBoolean = false

ifil accessedTo.belongToClass.isCostant){self.belongToClass.
elongToCluster == accessedTo,belongToClass.belongToCluster}

= declaredType :
Qualifier

[0.1] reference

[meference

= farget: Name

deciaredClass @

Name

= source ; Name

if{l reference belongToClass.isCostantl{self.belongToClass. belongToCluster == reference.belongToClass.belongToCluster}

Figure 5.8: Access attribute, object reference, method invocation in CBGMM.

Chapter 5. Model-Driven Object-Based to Component-based Software

96

Migration

‘ B InberitanceDefinition

O subciass : Name

o superclass : Name
accessControlQualifier
Qualifier

= index ; Index

[0.1] superciass

[0..*] subclass

| B Custer

|_[1.7] dlass H class

&% providedinterface : Name
&% requirdinterface : Name

o IsAbstract : EBoclean =
faise
o belongsToPackage : Name

Figure 5.9: Inheritance relationship in object-oriented architecture recovery meta-

model.

self.belongToCompenent == superclass.belongToC

RS InkeritanceDefinition |

= index ; Index

= subclass : Name
= superciass : Name

accessControlQualifier :
Qualifier

B Custer

[0..1] superciass

[1.7] dass

seif.belengToComponent == subclass.belongToComponent

&3 providedinterface : Name
&% requirdinterface : Name

H ciass

o, isAbstract : EBoolean =
falzse

= belongsToPackage : Name

Figure 5.10: Inheritance relationship in CBGMM.

5.3. Transforming OOGM into CBGM: Defining the Source and the
Target Metamodels and Rules of Transformation 97

When considering that a component is an implementation of a cluster of classes,
exception handling needs to be constrained to reflect component encapsulation.
The first constraint is that a class belonging to a component can not instantiate an
exception class that belongs to another component. The second constraint is that if
a class C1 defining a method M1 considered as direct or indirect caller of a method
M2 throwing an exception, then a class C2 defining the M2 method must belong to
the same component of C1. The last constraint aims to prohibit a situation where
the class of an exception object belongs to a component different from that including
the class that defines the catcher method. Figure 5.12 shows the modeling of the
exception handling in CBGMM.

[El Cluster | | B ThrownException |
& providedinterface ; Name ‘

‘ o definingMethod : Name

o3 requirdinterface : Name

b
[1..*] dass

0..*] thrownexception

A —

E Method

[E Ciass -, belongsTeCiass :

Mame i

o, IsAbstract: EBoolean = [0..] method hasClassScope : ‘5_0--'] caughtexception E CondhitEncepition |
false - EBoolean = false | o definingMethod : Name
o belongsToPackage : Name i isConstructor :
EBoolean = false
isAbstract :

b
[0..*] declaredexception EBoolean = false

[H DeclaredException |

‘ o definingMethed : Name

Figure 5.11: Exception handling in object-oriented architecture recovery metamodel.

Chapter 5. Model-Driven Object-Based to Component-based Software

98 Migration
B component | B ThrownException |

1+ Interface : Name o definingMethod : Mame

= descriptor | Name

— herim + seif.belongToComp t==th eption.belongToComp t ‘
[1..*] dlass 0..*] thrownexception

y
i E Methad
| H Ciass belongsToClass :

— IsAbstract : EBoolean =
false
o belongsToPackage : Name

[0..*] method

Name
hasClassScope:
EBoolean = false

[0..*] declaredexception

— IsConstructor :
EBoolean = false
— IsAbstract:

{0..#] caughtexception B caughtException |

I\ = defininghethod : Name

EBoolean = false

“se!f.be!ungToC p 't == decl

eption.belongTod

| DeclaredException |

I = definingMethed ; Name

y

self.belongToComponent == caughiexception.belongToComponent

Figure 5.12: Exception handling in CBGMM.

5.3.2 Transforming OOGM to CBGM Rules

Algorithms 1, 3, 4 and 5 allow transformation from OOGM to CBGM. The syn-
tax used in these algorithms is based on information modeled by OOGMM and
CBGMM. For example, ClassA € ClusterB means the existence of composition re-
lationship between the ClusterB and the ClassA in the OOGM instance of OOGMM.
Another example is the syntax code SubClass.isInherit(SuperClass) where the cor-

responding inheritance information is available in OOGM.

Algorithm 1 Transforming instantiation and type dependency

: Pre-Conditions:

: Rules:

©W 0 g W

—_ = =
N = O

end for
: end procedure

—_
w

: procedure INSTANTIATION—TRANSFORMATION

classA € Clusterl & classB € Cluster2
classA.isInstantiate(classB) = true|classA.fasTypeOf(classB) = true

inter face B <— ExtractInter face(classB)
factory < createFactory(classB,inter faceB)
Cluster2.add(factory)
for each Class boundary ¢ Cluster2 do
boundary < replace(factory, classB)
boundary < replace(inter faceB, classB)

5.3. Transforming OOGM into CBGM: Defining the Source and the
Target Metamodels and Rules of Transformation

99

Algorithm 2 Extract interface

1: function EXTRACTINTERFACE(Class class)

2 for each Attribute attribute ¢ class & isVisible(attribute) do
3 class < createSetter(attribute)

4 class < createGetter(attribute)

5: end for

6 Interface inter face

7 for each Method mothod ¢ class & isVisible(class) do
8 inter face « getSignature(mothod)

9 end for

10: class.implements(inter face)

11: return inter face

12: end function

Algorithm 3 Transforming inheritance relationship

: procedure INHERITANCE-TRANSFORMATION

: Pre-Conditions:

subClass € Clusterl & superClass € Cluster2
subClass.isInherit(superClass) = true
superClass.isAbstract() — false

: Rules:

subClass.removelnherit(superClass)

inter faceSub < ExtractInter face(subClass)

inter faceSuper < ExtractInter face(superClass)
inter faceSub.inherit(inter faceSuper)
applyDelegationPattern(subClass, superClass)
subClass < addAttribute(inter faceSuper, super)
superClass < addAttribute(inter faceSuper, this)
: end procedure

W P NP g W

—_ = = = =
Ll v =

Chapter 5. Model-Driven Object-Based to Component-based Software
100 Migration

Algorithm 4 Transforming abstract superclass inheritance relationship
1: procedure ABSTRACT INHERITANCE—TRANSFORMATION
2: Pre-Conditions:
3: subClass € Clusterl & superClass € Cluster2

4 subClass.isInherit(superClass) = true

5 superClass.isAbstract() — true

6: Rules

7: subClass.removelnherit(superClass)

8 inter faceSub < ExtractInter face(subClass)
9 inter faceSuper < ExtractInter face(superClass)
10: inter faceSub.inherit(inter faceSuper)

11: proxy < create Proxy(subClass, superClass)
12: Cluster2.add(proxy)

13: prozxy.inherit(superClass)

14: prozxy.implements(superClass)

15: superClass < addAttribute(inter faceSuper, this)

16: for each Method abstarctMethod € superClass &
abstarctMethod.isAbstarct() = true do

17: abstarct M ethod.backward(__this,subClass)

18: end for

19: end procedure

Algorithm 5 Transforming exception handling
1: procedure EXCEPTION—TRANSFORMATION
2: Pre-Conditions:
exceptionInstantiation € Clusterl & (throwMethod ¢ Cluster2 |
handler Method ¢ Cluster2)
Rules:
exceptionInstantiation.get Method < set ReturnInstruction(exceptionObject)
for each Method throwMethod ¢ Clusterl do
throwM ethod < set ReturnInstruction(eceptionObject)
end for
handler M ethod.get Handler Block < replaceW ithl f Else(exceptionObject)
10: end procedure

&

5.3. Transforming OOGM into CBGM: Defining the Source and the
Target Metamodels and Rules of Transformation 101

Some of these transformations must be executed in order to reflect their depen-
dencies. For example, the transformation of inheritance needs another transforma-
tion which transformation problem which is an instantiation one. For example, the
transformation of inheritance caused a new transformation problem which trans-
formation problem is an instantiation one. Therefore, these transformations must
operate in an order that guarantees resolving all problems without forgetting some
caused by resolving another one. Figure 5.13 depicts the order of the transformation
problem and the new transformation problem resulted from each one.

Chapter 5. Model-Driven Object-Based to Component-based Software
102 Migration

Object-oriented
Code

'Ilérxacnes;?i :,mn Inheritance

Handling Dependency
TAabr;s{I:y Transform Instantiation
Inheritance Inheritance Dependency

Transform Type

Instantiation Dependency

Transform Type
Dependency

Generate
Descriptor

Generic
Component-based
Code

Figure 5.13: The order of the transformation problem into CBGM.

5.4. Transforming CBGM into CBSMs 103

5.4 Transforming CBGM into CBSMs

This phase consists of three steps. The first step consists of the definition of a set
of specific component-based metamodels respectively for a set of component-based
source code (e.g. OSGi source code). The second step aims to identify commonalities
and variabilities between CBSMs. The third step aims to define a feature model to
represent commonalities and variabilities between transformations from a CBGM
to each of the corresponding CBSMs based on commonalities and variabilities of
CBSMs.

5.4.1 Defining CBSMMs

OSGi This model provides an implementation of dynamic modules (i.e. capacity
to add and remove modules at runtime) for the Java platform. The OSGi specifica-
tion defines a framework for managing the life-cycle of a set of components called
Bundle. The framework also defines the concept of internal service whose registra-
tion is managed in a dynamic way by the central registry of the OSGi platform.
A service is any object registered in the OSGi Service Registry and then can be
looked up using its interface name(s). The only prerequisite is that a service must
implement some Java interfaces. It can define additional meta-information in the
form of a manifest file and declare dependencies to other bundles based on Java
packages notion.

Figure 5.14 shows the metamodel for Bundle implementation. A Bundle is
composed of a set of Java classes and Java interfaces. Moreover, it is composed of
services represented as XML files. Each file contains an information about provided
and required services using interfaces types.

H Bundie E Class

[1..*] dass
[1..*] service
E senice [interfaceType
= signature; EString
[1..1] type
T
B Provided B Required

Figure 5.14: OSGi component metamodel.

Chapter 5. Model-Driven Object-Based to Component-based Software
104 Migration

SOFA The SOFA 2 framework offers a hierarchical component model where a
composite component can be composed of primitive or composite ones. A primitive
component is defined by its descriptor called Frame. A Frame is an XML file that
describes the provided and required component’s services. As with OSGi, interface
types are used to identify the provided and required services. The provided and
required services are bound at run time.

Figure 5.14 depicts the metamodel of SOFA component. A component is com-
posed of a set of Java classes and Java interfaces in addition to frames. A Frame
has two types: Provided and Required. A class implements a Java interface that
could be a type of provided or required services represented into a Frame.

[1.7] class

B class
]
[1..*] frame
H Frame B InterfaceTyoe
[1..1] type = signature : EString

H Provided [Required

Figure 5.15: SOFA component metamodel.

CORBA Component Model (CCM) It provides a support for remote proce-
dure calls independently of the communication protocol, the programming language,
the operating system and the hardware platform. Interface Definition Language
(IDL) is used to describe procedures and functions that may be remotely invoked.
It provides the transformation from IDL to various programming languages like
C++ or Java.

Figure 5.16 shows that a CCMComponent is composed of a set of classes and
interfaces. The provided interface and required interfaces respectively called Nawvi-
gation and Receptacle.

Fractal Fractal has three kinds of components: primitive, composite, and base
component. A composite component is composed of a set of primitive or composite
components. A base component does not expose any interface. Fractal components

5.4. Transforming CBGM into CBSMs 105

H cMiomponent H ciass

[1..%] class

]
[1..7] interface

H interface

[1] impliments

H Navigation] Receptacie

Figure 5.16: CCM metamodel.

consist of two parts: a controller and a content. The controller is a set of provided
and required interfaces. The content is a class that implements component services.
Fractal ADL (architecture description language) is provided to describe architec-
tures of Fractal components. There are currently two reference implementations:
Julia® (Java) and Cecilia* (C/C++) and other experimental implementations such
as FractTalk |[Coupaye 2006 (Smalltalk) or FractNet [Escoffier 2005] (.Net).
Figure 5.17 shows the Fractal component metamodel. A Fractal component con-
sist of a set of classes and interfaces. the provided and required interfaces are called
Server and Client respectively. FractalADL used as a component or architecture
descriptor. It has the references of components and their interfaces to connect them.

Component Object Model (COM) COM components are not restricted to
specific programming language or platform (although Microsoft Windows is the
main support of this platform). The COM component model allows to specify
only provisions of components in the form of provided interfaces. COM provides
capabilities for introspection of provisions of components, but the required interfaces
must be specified only within the source code.

Figure 5.18 depicts the metamodel of COM. A COMComponent is composed
of a set of classes and functional interfaces. For binding between components, the
interface discovery mechanism is implemented through the notion of a special inter-
face called IUnknown that must be implemented by every COM component. The
purpose of IUnknown is twofold: (i) it allows the dynamic querying of a component

http://julialang.org
*http:/ /fractal.ow2.org/cecilia-site/2.0/

Chapter 5. Model-Driven Object-Based to Component-based Software

106 Migration
H FractalComponent H Class
= [1..%] dass

|

H iInterfacs

[1..%] type

H interfaceType

= signature : EString

H Client B server

Figure 5.17: Fractal component metamodel.

(Querylnterface() operation) to find out if the component supports a given inter-
face (in which case, a pointer to that interface is returned), and (ii) it implements
reference counting in terms of the number of clients using components’ interfaces.
Reference counting is used to garbage collect components when they no longer have

any clients.

H coMComponent H Class

...““*] class

‘ | Functionalinterface |

Figure 5.18: COM metamodel.

OpenCOM 1t is based on Microsoft COM model. The key concepts of Open-
COM are components, interfaces, receptacles. Each component implements a set
of provided and required interfaces called receptacles and interfaces respectively. A
receptacle describes a unit of service requirement. An interface expresses a unit of
service provision. At runtime, an interface and a receptacle of the same type are

5.4. Transforming CBGM into CBSMs 107

bound.
Figure 5.19 depict the metamodel of OpenCOM.

[1..%] dass
E OpentOMComponent (e E ciass H Foundation

1

B interface 8 Receptacie

]

H InterfaceType

-] typey

o signature : EString

Figure 5.19: OpenCOM metamodel.

JavaBeans A Javabean is “a reusable software component that can be manipulated
in a graphical development environment” [Hamilton 1997]. It is particularly well
suited for building graphical user interfaces. A graphical component is called a
widget such as buttons, menu bars, etc.. However, it should be noted that all
Javabeans are not necessarily graphical components, their usage can be much wider.
A JavaBean is an instance of a Java class that has attributes, methods in standard
concepts in Java. Figure 5.20 illustrates the metamodel of Javabean component. A
JavaBeanComponent composed of a set of Java classes. A Bean is a Java class that
acts as a component descriptor. It has all services that the component provides.

Enterprise Java Beans (EJB) This component model primarily used for a dis-
tributed client-server architecture, where clients connect to a server in order to access
services provided by the server. A Bean exports its services through a remote in-
terface. A remote interface is a standard Java interface. Communications between
beans are performed using RMI (Remote Method Invocation). Figure5.21 shows
the meta model of EJB component. The component called module is composed of
a set of Java classes and remote interfaces. The classes that implement the remote
interfaces act as component descriptor.

5.4.2 Identifying the Variability of Transformation Rules

To define all elements needed for our MDT process, we need in addition to the
definition of the OOGMM, the CBGMM (see Figure 5.22), the CBSMMs, and the

Chapter 5. Model-Driven Object-Based to Component-based Software

108

Migration

JavaBeanComponent

]
[1..7] class

g Class

Figure 5.20: JavaBeans component metamodel.

E Module

- [1..7] dass

E Been

B Ciass

E Remoteinterface

Figure 5.21: EJB component metamodel.

5.4. Transforming CBGM into CBSMs 109

transformation rules from OOGM to CBGM, to define transformation rules from a
CBGM to a CBSM.

As shown in the (Sec 5.4.1), these CBSMMs share common features but also
have many others features that are specifics (variables). Therefore, transformation
rules definition can be based on the identification of commonalities and variabili-
ties between CBSMMs. We identified four main variable features that can impact
the definition of transformation rules from an OOGM to an CBSM: component

descriptor, service description, interface description, and explicit required interface.

E GenericCompenent

[]
[1..*] class

[l RequiredMethod B Class E InterfaceType |

[0..*] requiredmethod

[1.%] type

s
[E ProvidedMethod Bl Descriptor

[1.."] providedmethod

Figure 5.22: Component-Based Generic Metamodel (CBGMM).

Component descriptor. Some of the CBMM define explicit descriptors and oth-
ers have implicit ones. An explicit descriptor could be given in object-oriented
languages or in a specific-domain language (e.g. Component Definition Language
(CDL) or Architecture Description Languages (ADL)). In the first case, it is an
object-oriented class whose properties allow to specify component interfaces and
binding methods. OSGi, SOFA, OpenCOM and JavaBeens are component models
which include this type of descriptor. An explicit descriptor can be transformed from
a generic component model to a specific one by refactoring the original one. The
refactoring concludes by adding missing implementation and interfaces in addition
to implement binding methods if necessary. In the second case, where a descrip-
tor needs to be described in a specific-domain language, its generic definition in a
CBGM is transformed into its specificc-domain language description. An example of
this kind of descriptor is Fractal component model.

In the case where descriptor is implicit (i.e. Components without a descriptor like
in CCM, COM and EJB), the description of a component (i.e. interface and binding

Chapter 5. Model-Driven Object-Based to Component-based Software
110 Migration

implementations) will be embedded and distributed into component implementation
(source code). Therefore, no specific transformation is needed.

Service description. Component models provide and consume services in two
ways: declaratively or imperatively. When using declarative service, a component
declares its provided and required references of services in an XML-like document
like OSGi and SOFA. At run time, the component platform processes the XML-like
document to create component instances that provide services and register them
in a registry. After that, components lookup on this registry to find their required
reference services for binding. This process is depicted in Figure 5.23.

| Service Consumer | | Service Registry | | Service Component Runtime | | ServiceProvider |
T T T

! Declare Service Components !

1

=y
¢ Register Service Factory

F--{ -

e
|

|
|
| |
l |
| |
| |
| |
Find Services : }
| |
o — —_ _ Serdce Refs[Q.n]_ __ _ | | |
| |
| B | | |
| | | |
| | | |
| | | |
|) A | |
I Get Service N | |
| | |
: Activate =|_ }
: Load Bundle {;:I
|
|
| |
: Create Service Object N
| < ____ Service Object _ __ _
| _____ ServiceObject ____ !
|
S Service Object_____ | | |
| ae : }
| |
| | ! }
I I : |
| |
| | Call Methods : N
I | 7l
| | !
[e -: ——————————————————
| |
| | ! |
l l ! |
| | ! |
| | ! |
: Unget Service : I
|
l
| : }
|
1
|

Figure 5.23: Declarative Service life cycle.

Imperative services are provided and required by components using the standard
method call in object oriented. A component calls its required services (methods)
using its service instance (object interface). CCM, Fractal, COM, OpenCOM, Jav-
aBeans and EJB are component models that define these type of services.

Interface description. Some component models use an independent specification
language to describe component interfaces like CCM and its Interface Description
Language (IDL). This allows to describe an interface in a language-independent

5.4. Transforming CBGM into CBSMs 111

way, enabling communication between software components defined by different
programing languages. Other component models like OSGi, SOFA, Fractal, COM,
OpenCOM, JavaBeans and EJB, use a standard object oriented interface (e.g. Java
interface) to describe component interfaces.

Explicit required interface. Required interfaces of components can be either
explicit or implicit. Explicit required interfaces define the required methods or ser-
vices like in OSGi, SOFA, Fractal, OpenCOM and CCM. Implicit required interfaces
are embedded in the component source code like in COM, JavaBeans and EJB.

5.4.2.1 Model-driven Transformation Feature Model.

A transformation feature model (TFM) is a compact representation of all needed
transformations from a CBGM to a CBSM, where a transformation is considered
as a feature. In addition to the common features, the TFM includes variable trans-
formations specific to only some CBSMs. These variable features (transformations)
reflect differences between elements of the CBSMs. The transformation chain from
a CBGM to a specific component model is identified by a unique and legal combi-
nation of transformation features.

Figure 5.24 shows our transformation feature model. It shows four main transfor-
mation features: Descriptor, Service Description, Interface Description and Required
Interface.

Descriptor. This feature is optional because not all of component models define a
component descriptor. In the case where a component model includes a component
descriptor, one of the following two transformations needs to be performed. If
the descriptor is written in a specific-domain language, this transformation allows
to derive (extract) this one from the object oriented source code. Otherwise, the
descriptor object oriented code will be derived by means of some refactoring of the
object oriented source code.

Service Description. This feature is mandatory. A service can be described
through two variants, either imperative or declarative description. In case of imper-
ative service, some refactoring operations are needed to be able to generate service
binding code. While in the case of declarative service, provided and required ser-
vices description is generated in XML-like documents. Therefore, both required and
provided services must be descried explicitly.

Interface Description. This feature is mandatory. The interfaces of components
described using object oriented interfaces (e.g. Java interface) do not need specific
transformation, where it is already done by considering the corresponding generic
component model. In contrast, interfaces that are described using a specific-domain

Chapter 5. Model-Driven Object-Based to Component-based Software
112 Migration

language (e.g. IDL) need a transformation to generate a description in the corre-
sponding specific-domain language. For example, generating an IDL description of
interfaces from available object-oriented oriented source code elements.

Required Interface. This feature is optional. Therefore, a transformation must
be operated for component models that define an explicit one. The corresponding
transformation extracts required interfaces that are embedded into the source code
and represent it as explicit interfaces based on the targeted component model.

= STFM
[Descriptor [Service Description [Interface Description i Required Interface
p p p q
[Refactor = Translate = Imparative E Declarativ H oo = IDL Translator B Extract
pa
= XML Translator <<Require>>

Figure 5.24: Feature model for specific transformation.

5.5 Implementation and Tools

We used many tools to implement our MDT process (see Figure 5.25). These tools
are either commercial or that we have developed for the specific purpose of our work.
The description of each tool is given below:

Software Architecture Recovery Many tools have been proposed to analyze
and recover the software architecture from legacy object-oriented software like
MoDisco [Bruneliere 2010]. However, we developed a specific tool named ROMAN-
TIC |Kebir 2012| as an Eclipse plugin for this purpose (See sec 2.4.3). We have
utilized this tool to recover architecture from legacy-object oriented code.

From source code to FAMIX model A FAMIX model can be exported in many
format like XML and MSE. MSE is the generic format for FAMIX, a format similar
to XML, built as part of the Fame project. Many tools have been proposed to export
source code information in XML or in MSE. These tools are: Verveinel [too 2012],

5.5.

Implementation and Tools

113

Object-oriented
Code

Software
Architecture
Recovery

FAMIX Translator

GCM
Transformation

Component ADL or CDL Gomponent
ianguge
o
Descriptor Janguge.
Descriptor
Refactoring
senvice declarative Declarative | need
—X service
Jesenen Translator
00
ervice
Refactoring
Interface oL Interface
Description Desaripton
anguage
N Translator
)
Interface
Refactoring
Has Required \ % Reauired
interface
Interface Interfece

‘Componentbased
Code

Figure 5.25: Migration process.

Chapter 5. Model-Driven Object-Based to Component-based Software
114 Migration

inFamix [too 2012] and JFamix [jfa 2004]. Verveine] is an open-source MSE ex-
porter built using Java and based on JDT. Verveinel allows extracting information
from Java source code. inFamix is a parser for Java and C/C++ that is based on the
scalable inFusion platform. The parser is available as a free command line tool and
it exports in MSE. jFamix is an Eclipse plugin which exports the meta information
of a Java Project to the FAMIX meta model as an XML format.

Transformations from an OOGM to a CBGM For the implementation of
transformations from OOGM to CBGM, we describe both OOGMs and CBGMs in
the Ecore format. Ecore is the core metamodel at the heart of the Eclipse Modeling
Framework (EMF). It allows us to take advantage of the entire EMF ecosystem and
tooling. EMF is an Eclipse-based modeling framework and code generation facility
for building tools.

We used QVT (Query/View/Transformation) component on EMF to transform
an OOGM to a CBGM by defining QV'T operations and mappings. QVT is a stan-
dard set of languages for model transformation defined by the Object Management
Group. The QVT standard integrates the OCL 2.0 standard and also extends it
with imperative features.

Listing 5.1 shows the importing of the two Ecore ® metamodel files (ooar.ecore
and gem.ecore) and the main mapping functions. These functions allow to navigate
among the entities of the source model that need to be mapped into a target one.

Listing 5.1: Main QV'T definitions and mapping functions in our migration

/*
* Two modeltypes are declared: object-oriented architecture recovery metamodel (ooar.ecore)
and generic component metamodel (gcm.ecore).
* The http URIs correspond to those used to register the Ecore models in the environment.
*/
modeltype 00AR uses ’http://www.eclipse.org/qvt/1.0.0/0perational/Famix/ooar’;
modeltype GCM uses ’http://www.eclipse.org/qvt/1.0.0/0perational/Famix/gecm’;

transformation 00_To_CB(in oo : O0AR, out GCM);
main() {
oo.rootObjects() [00AR: :0bject]->map 00Model2GCMModel() ;
}
mapping 00AR::Cluster::cluster2component() : GCM::Component {
}
mapping O00AR::InheritanceDefinition::abstractInheritance2proxy() : GCM::Component {
¥

mapping 00AR::InheritanceDefinition::inheritance2delegation() : GCM::Component {

¥

Shttp:/ /www.eclipse.org/modeling /emf/

5.5. Implementation and Tools 115

mapping 00AR::Exception::exception2ifElse() : GCM::Component {
. S

mapping O0AR::Invocation::instantiation2factory() : GCM::Class {
. -

mapping 00AR::Reference::reference2interface() : GCM::Class {

. e

}

Descriptor Refactoring The refactoring is limited to adding some methods that
must be implemented caused by implementing a specific interfaces of a generates
component model. We use the Eclipse refactoring tools to add these methods and
implement them.

Declarative service Generator We developed an Eclipse plugin that generate
an XML description of provided and required services starting from source code
information. Information included in this XML file are, for example, the interface
type and the name of the class implementing a provided interface.

Interface Description Generator IDLJ [idl |isa compiler that reads an Object
Management Group (OMG) Interface Definition Language (IDL) file and maps it,
to a Java interface. Java files are generated from the IDL file according to the
mapping specified in the OMG document. Table 5.1 depicts the mapping between
object-oriented language and IDL. In addition, CCM tools |[Teiniker 2004| can be
used to generate C-++ source code from IDL files.

Chapter 5. Model-Driven Object-Based to Component-based Software
116 Migration

Table 5.1: Mapping between object-oriented language and IDL

Java Type IDL Type

package module

boolean boolean

char char, wchar

byte octet

String string, wstring

short short, unsigned short
int long, unsigned long
long long long, unsigned long long
float float

double double

BigDecimal fixed

class enum, struct, union
array sequence, array
method operation

accessor method readonly attribute
accessor and modifer methods | readwrite attribute

5.6 Conclusion

In this chapter, we proposed a model-driven approach to automatically transform
object-oriented applications to component-based ones.

Firstly, we defined two generic metamodels for object-oriented and component-
based applications, respectively. We extended FAMIX metamodel to be able to
present these metamodels. Secondly, we defined transformation rules to be able
to transform object-oriented models to a generic component one. The transforma-
tion is implemented based on QVT. Thirdly, transformation rules from a generic
component model to a specific one were defined based on the analysis of the fea-
tures of eight component models: OSGi, SOFA, CCM, COM, OpenCOM, Fractal,
JavaBeans and EJB. Finally, we define a feature model representing commonalities
and variabilities of transformations from a generic component model to a specific
component model. The aim of this feature model is to automate the generation of
the chain of transformation following the features of each target component model.

CHAPTER 6

Conclusion and Future Work

Contents
6.0.1 Summary of Contributions 118
6.0.2 Future Directions L o 119
6.0.3 Publications. Lo 121

The ultimate goal of this dissertation is to support systematic software evolu-
tion. Towards this goal, we propose to migrate object-oriented legacy software into
component-based ones. To do so, we address the following research problems:

e Transforming source codes of object-oriented applications into
component-based source codes. Based on an available description of a
component-based architecture of an object-oriented source code, our goal was
to refactor (i.e. transformation without changing functionalities) this source
code into another written in a component-based language. This transforma-
tion is achieved by proposing adequate solutions to the following sub-problems:

— Transforming object-oriented dependencies into interface-based
ones. All object-oriented dependencies like instantiation, direct type de-
pendency and method invocation, inheritance and exception handling
between object-oriented elements embedded in the implementations of
the generated components need to be transformed to interface-based de-
pendencies.

— Identifying Component instance. At run-time an object-oriented
application is, principally, a set of object instances of classes. Recip-
rocally, at run time, a component-based application is, principally, a
set of components/component-instances of some component-types. To
transform object-oriented applications to component-based ones, we need
to define mapping between the corresponding objects and component-
instances, respectively.

e Model driven transformation. To benefit from all advantages of model-
driven engineering/transformation, operations to transform an object-oriented
source code into component-based ones need to be model-based. This means
that they need to be implemented as transformation rules.

118 Chapter 6. Conclusion and Future Work

6.0.1 Summary of Contributions

The main contributions of this dissertation are:

1. We proposed an approach that aims to automatically transform object-
oriented applications to component-based ones. We focused on the trans-
formation of source code in order to produce decoupled components that are
compliant with a recovered component-architecture description. We proposed
a solution for dealing with instantiation, type dependency and method invo-
cation, inheritance dependency, and exception handling. We proposed to base
source-code transformations on well-known design patterns like Factory, dele-
gation, Proxy and adapter design patterns. Therefore, the transformed code
is easy to understand for future maintenance operations. We demonstrated
the validity of the proposed transformations on a set of applications that we
automatically transformed from Java source codes into OSGi ones.

2. We proposed solutions to materialize component instances based on instances
of classes. We refactored clusters of classes (recovered component) to behave
as a single unit of behavior to enable component instantiation. Our approach
guarantees component-based principles by resolving component encapsulation
and component composition using component instances. Moreover, both prin-
ciples applied to refactor the source code of a recovered component to be in-
stantiable, where provided services are consumed by the component instances
through its interfaces (component binding). We have shown that the source
code resulting from our approach can be easily projected onto object-based
component models. We illustrated the mapping on two well-known component
models, OSGi and SOFA. The illustration results show that our approach fa-
cilitates the transformation process from OO applications into CB ones. More-
over, it effectively reduces the gap between recovered component architectures
and its implementation source code.

3. We proposed a model-driven approach to automatically transform object-
oriented applications to component-based ones.

Firstly, we defined two generic metamodels for object-oriented and component-
based applications, respectively. We extended Famix metamodel to be able
to present these metamodels. Secondly, we defined transformation rules to be
able to transform object-oriented models to a generic component one. Trans-
formation is implemented based on QV'T. Thirdly, transformation rules from
a generic component model to a specific one were defined based on the anal-
ysis of the features of eight component models: OSGi, SOFA, CCM, COM,
OpenCOM, Fractal, JavaBeans and EJB. Finally, we define a feature model
representing commonalities and variabilities of transformations from a generic
component model to a specific component model. The aim of this feature
model is to automate the generation of the chain of transformation following
the features of each target component model.

119

6.0.2 Future Directions

Based on the research work presented in this dissertation, many future directions
are identified. These include:

1. Migration from specific object-oriented models to specific
component-based ones. In this dissertation we have addressed problems
related to transformation of generic OO source codes to specific component-
based ones (e.g. OSGi, SOFA, MCC, etc.). By generic OO source code, we
mean source codes conform to the common specification of object-oriented (i.e.
Java-like). We have not addressed transformations of source code elements re-
lated to specificities (variabilities) of some OO programming languages. For
example, we have not addressed transformation related to the multiple in-
heritance dependencies related to certain programing languages like C++.
Therefore, we plan to extend our approach to address the transformation of
0O source code elements related to specificities of certain OO languages.

2. Refactoring OO source codes for better decoupling. In this disser-
tation we have addressed problems related to transformation of OO source
codes to component-based ones. The transformations can be considered as a
phase in a migration process from OQ applications to component-based ones.
The migration can be motivated by all the advantages of component con-
cept compared to object one, mainly the explicit description of dependencies
of components through provided and required interfaces. This property al-
lows components to benefit from advantages of decoupling. Decoupling favors
reusability, maintainability, understandability, etc. Another interesting prop-
erty of component-based applications compared to OO ones is the late binding
of components. A component-based application is defined via a concrete ar-
chitecture that describes the involved components and their bindings/connec-
tions. This property allows other advantages like the capacity of reconfiguring
the architecture. We claim that object-oriented applications can benefit of
(part of) these properties/advantages without migrating to components. The
idea is to consider a class as a type of component and thus consider its objects
as components. Thus, transformation related to dependencies proposed in this
dissertation can be adapted to be applied to decouple classes. Design patterns
like dependency injection can be applied to play a similar role as required
interfaces of components. Therefore, we plan to adapt solutions proposed in
this dissertation to explore this research direction.

3. Migration from Object-oriented application into service-oriented ar-
chitecture. We plan to adapt the proposed approach to tackle problems
related to migration of object-oriented applications into service-oriented ar-
chitecture (SOA). Two types of service-based architecture can be considered:
Service Component Architecture (SCA) and web-service based architecture.
Some specific issues related to this goal are to be addressed: recovering the

120

Chapter 6. Conclusion and Future Work

dynamic behavior of the application to be able to define an orchestrator with
an explicit behavior, handling the stateless property of web services proposed
in some service-based models, refactoring object-oriented source codes to be
adapted to the implementations of services as proposed in some service-based
languages (e.g. single class implementation), etc..

121

6.0.3 Publications

This PhD thesis started in December 2013. During this period, we have published
the following research papers:

e Mining Software Components from Object-Oriented APIs - Anas Shatnawi,
Abdelhak Seriai, Houari A. Sahraouli, Zakarea AlShara. In Software Reuse
for Dynamic Systems in the Cloud and Beyond - 14th International Confer-
ence on Software Reuse, ICSR 2015, Miami, FL, USA, January 4-6, 2015.
Proceedings. Lecture Notes in Computer Science 8919, Springer 2014, ISBN
978-3-319- 14129-9: 330-347.

e Reverse Engineering Reusable Software Components from Object-Oriented
APIs. Anas Shatnawi, Abdelhak Seriai, Houari A. Sahraouli, Zakarea Al-
Shara. Journal of Systems and Software (JSS).

e Migrating large object-oriented Applications into component-based ones: in-
stantiation and inheritance transformation. Zakarea AlShara, Abdelhak-
Djamel Seriai, Chouki Tibermacine, Hinde Lilia Bouziane, Christophe Dony
and Anas Shatnawi. (2015, October). In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE’15, (pp. 55-64). ACM.aa

e Materializing Architecture Recovered from OO Source Code in Component-
Based Languages. Zakarea AlShara, Abdelhak-Djamel Seriai, Chouki
Tibermacine, Hinde Lilia Bouziane, Christophe Dony and Anas Shatnawi.
Software architecture: 10th european conference, ecsa 2016, Istanbul, Turky,
September 5- 9, 2016. Springer International Publishing, 2016.

Bibliography

[Abadi 1996] Martin Abadi, Luca Cardelli and Ramesh Viswanathan. An interpre-
tation of objects and object types. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 396
409. ACM, 1996. (Cited on page 45.)

[Abadi 2012] Martin Abadi and Luca Cardelli. A theory of objects. Springer Science
& Business Media, 2012. (Cited on page 45.)

[Adjoyan 2014] Seza Adjoyan, Abdelhak-Djamel Seriai and Anas Shatnawi. Service
Identification Based on Quality Metrics - Object-Oriented Legacy System Mi-
gration Towards SOA. In The 26th International Conference on Software
Engineering and Knowledge Engineering, Hyatt Regency, Vancouver, BC,
Canada, July 1-3, 2013., pages 1-6, 2014. (Cited on page 36.)

[Ahmad 2014] Aakash Ahmad and Muhammad Ali Babar. A Framework for
Architecture-driven Migration of Legacy Systems to Cloud-enabled Software.
In Proceedings of the WICSA 2014 Companion Volume, WICSA 14 Com-
panion, pages 7:1-7:8, New York, NY, USA, 2014. ACM. (Cited on pages 17,
19, 23, 28 and 30.)

[Akers 2004] Robert L. Akers, Ira D. Baxter and Michael Mehlich. Program Trans-
formations for Re-engineering C++ Components [OOPSLA/GPCEJ. In
Companion to the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA '04,
pages 25-26, New York, NY, USA, 2004. ACM. (Cited on pages 16, 17, 19,
20, 23, 28 and 30.)

[Allier 2010] Simon Allier, HouariA. Sahraoui, Salah Sadou and StA@phane
Vaucher. Restructuring Object-Oriented Applications into Component-
Oriented Applications by Using Consistency with FEzecution Traces. In Lars
Grunske, Ralf Reussner and Frantisek Plasil, editeurs, Component-Based

Software Engineering, volume 6092 of Lecture Notes in Computer Science,
pages 216-231. Springer Berlin Heidelberg, 2010. (Cited on page 7.)

[Allier 2011] S. Allier, S. Sadou, H. Sahraoui and R. Fleurquin. From Object-
Oriented Applications to Component-Oriented Applications via Component-
Oriented Architecture. In Software Architecture (WICSA), 2011 9th Working
IEEE/IFIP Conference on, pages 214-223, June 2011. (Cited on pages 16,
17, 19, 23, 28 and 30.)

[Alshara 2015] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine,
Hinde Lilia Bouziane, Christophe Dony and Anas Shatnawi. Migrating large
object-oriented Applications into component-based ones: instantiation and

124 Bibliography

inheritance transformation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming: Concepts and Expe-
riences, pages 55—64. ACM, 2015. (Cited on pages 72 and 83.)

[Axelsen 2012] Eyvind W. Axelsen and Stein Krogdahl. Package Templates: A
Definition by Semantics-preserving Source-to-source Transformations to Ef-
ficient Java Code. SIGPLAN Not., vol. 48, no. 3, pages 50-59, September
2012. (Cited on pages 17, 19, 23, 28 and 30.)

[Bass 2012] Len Bass, Paul Clements and Rick Kazman. Software architecture in
practice. Addison-Wesley Professional, 3rd édition, 2012. (Cited on page 31.)

[Baster 2001] Greg Baster, Prabhudev Konana and Judy E Scott. Business com-
ponents: a case study of bankers trust Australia limited. Communications of
the ACM, vol. 44, no. 5, pages 92 98, 2001. (Cited on page 31.)

[Becker 2007| Steffen Becker, Heiko Koziolek and Ralf Reussner. Model-based per-
formance prediction with the palladio component model. In Proceedings of
the 6th international workshop on Software and performance, pages 54—65.
ACM, 2007. (Cited on page 73.)

[Beisiegel 2005] Michael Beisiegel, Henning Blohm, Dave Booz, J Dubray, Adrian
Colyer, Mike Edwards, Don Ferguson, Bill Flood, Mike Greenberg, Dan
Kearnset al. Service Component Architecture: Building Systems Using a
Service Oriented Architecture. Whitepaper |online|, vol. 1, page 31, 2005.
(Cited on page 6.)

[Beisiegel 2007| Michael Beisiegel, Henning Blohm, Dave Booz, Mike Ed-
wards, Oisin Hurley, S Ielceanu, A Miller, A Karmarkar, A Malhotra,
J Marinoet al. SCA service component architecture, assembly model spec-

ification. Open Service Oriented Architecture www. osoa. org/download/at-
tachments/35/SCA _Assembly Model V100. pdf, 2007. (Cited on page 6.)

[Bennett 1982] PA Bennett. Fault Tolerance: Principles and Practice. The Com-
puter Journal, vol. 25, no. 3, pages 400—d, 1982. (Cited on pages xi and 54.)

[Bertolino 2005a] Antonia Bertolino, Antonio Bucchiarone, Stefania Gnesi and
Henry Muccini. An architecture-centric approach for producing quality sys-
tems. In Quality of Software Architectures and Software Quality, pages 21—
37. Springer, 2005. (Cited on page 5.)

|[Bertolino 2005b| Antonia Bertolino, Antonio Bucchiarone, Stefania Gnesi and
Henry Muccini. An architecture-centric approach for producing quality sys-
tems. In Quality of Software Architectures and Software Quality, pages 21—
37. Springer, 2005. (Cited on page 5.)

Bibliography 125

[Bieman 1995] James M Bieman and Byung-Kyoo Kang. Cohesion and reuse in
an object-oriented system. In ACM SIGSOFT Software Engineering Notes,
volume 20, pages 259-262. ACM, 1995. (Cited on page 36.)

|Biggerstaff 1989 Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse.
Computer, vol. 22, no. 7, pages 36—49, July 1989. (Cited on page 12.)

[Binkley 2006] D. Binkley, M. Ceccato, M. Harman, F. Ricca and P. Tonella. Tool-
Supported Refactoring of Ezisting Object-Oriented Code into Aspects. IEEE

Transactions on Software Engineering, vol. 32, no. 9, pages 698 717, Sept
2006. (Cited on pages 17, 19, 23, 28 and 30.)

[Birkmeier 2009] Dominik Birkmeier and Sven Overhage. On Component Iden-
tification Approaches d Classification, State of the Art, and Comparison.
In GraceA. Lewis, Iman Poernomo and Christine Hofmeister, editeurs,
Component-Based Software Engineering, volume 5582 of Lecture Notes in
Computer Science, pages 1 18. Springer Berlin Heidelberg, 2009. (Cited on
pages 7, 31 and 33.)

[Bisbal 1999] Jesus Bisbal, Deirdre Lawless, Bing Wu and Jane Grimson. Legacy
information systems: Issues and directions. TEEE software, vol. 16, no. 5,
page 103, 1999. (Cited on pages 2, 3 and 10.)

[Boshernitsan 2006] Marat Boshernitsan and Susan L. Graham. Interactive Trans-
formation of Java Programs in Eclipse. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, ICSE 06, pages 791-794, New
York, NY, USA, 2006. ACM. (Cited on pages 17, 19, 23, 28 and 30.)

[Box 1997] D. Box. Essential COM. Object Technology Series, 1997. (Cited on
page 73.)

[Brodie | ML Brodie and M Stonebraker. Migrating legacy systems: gateways, in-
terfaces & the incremental approach. 1995. (Cited on page 4.)

[Brooks Jr 1995] Frederick P Brooks Jr. The mythical man-month: Essays on soft-
ware engineering, anniversary edition, 2/e. Pearson Education India, 1995.
(Cited on page 4.)

[Bruneliere 2010] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault and Frédéric Ma-
diot. MoDisco: A Generic and Extensible Framework for Model Driven
Reverse Engineering. In Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’10, pages 173-174, New
York, NY, USA, 2010. ACM. (Cited on pages 17, 19, 20, 23, 28, 30 and 112.)

[Buhr 2000| Peter A Buhr and WY Russell Mok. Advanced exception handling
mechanisms. Software Engineering, IEEE Transactions on, vol. 26, no. 9,
pages 820 836, 2000. (Cited on page 45.)

126 Bibliography

[Bures 2006] T. Bures. SOFA 2.0: Balancing Advanced Features in a Hierarchi-
cal Component Model. In Software Engineering Research, Management and
Applications., 2006. (Cited on pages 71, 72 and 73.)

[Canfora 2008] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo and Porfirio
Tramontana. A wrapping approach for migrating legacy system interactive
functionalities to Service Oriented Architectures. Journal of Systems and
Software, vol. 81, no. 4, pages 463 — 480, 2008. Selected papers from the
10th Conference on Software Maintenance and Reengineering (CSMR 2006).
(Cited on pages 17, 19, 20, 23, 28 and 30.)

[CanforaHarman 2007] Gerardo CanforaHarman and Massimiliano Di Penta. New
frontiers of reverse engineering. In 2007 Future of Software Engineering,
pages 326-341. IEEE Computer Society, 2007. (Cited on pages 11, 20 and 21.)

[Chardigny 2008a] S. Chardigny, A. Seriai, M. Oussalah and D. Tamzalit. Extrac-
tion of Component-Based Architecture from Object-Oriented Systems. In
Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP
Conference on, pages 285-288, Feb 2008. (Cited on pages 7, 33 and 59.)

[Chardigny 2008b| Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah and
Dalila Tamzalit. Search-based extraction of component-based architecture
from object-oriented systems. In Software Architecture, pages 322-325.
Springer, 2008. (Cited on page 36.)

[Chardigny 2008¢| Sylvain Chardigny, Abdelhak Seriai, Dalila Tamzalit and
Mourad Oussalah. Quality-driven extraction of a component-based archi-
tecture from an object-oriented system. In 12th European Conference on
Software Maintenance and Reengineering (CSMR), pages 269-273. TEEE,
2008. (Cited on pages 33, 34 and 36.)

[Charnes 1978] Abraham Charnes, William W Cooper and Edwardo Rhodes. Mea-
suring the efficiency of decision making units. European journal of opera-
tional research, vol. 2, no. 6, pages 429444, 1978. (Cited on page 16.)

[Chen 2002] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox and Eric
Brewer. Pinpoint: Problem determination in large, dynamic internet ser-
vices. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, pages 595-604. IEEE, 2002. (Cited on page 21.)

[Chikofsky 1990| Elliot J Chikofsky, James H Crosset al. Reverse engineering and
design recovery: A taronomy. Software, IEEE, vol. 7, no. 1, pages 13 17,
1990. (Cited on pages 11 and 16.)

[Cimitile 1999] Aniello Cimitile, Andrea De Lucia, Giuseppe Antonio Di Lucca and
Anna Rita Fasolino. Identifying objects in legacy systems using design met-
rics. Journal of Systems and Software, vol. 44, no. 3, pages 199-211, 1999.
(Cited on page 12.)

Bibliography 127

[Clark 2008] Tony Clark, Paul Sammut and James Willans. Applied metamodelling:
a foundation for language driven development. 2008. (Cited on page 18.)

[Clark 2015] Tony Clark, Paul Sammut and James Willans. Applied Metamod-
elling: A Foundation for Language Driven Development. arXiv preprint
arXiv:1505.00149, 2015. (Cited on page 18.)

[Clarke 2001] Michael Clarke, Gordon S Blair, Geoff Coulson and Nikos Parla-
vantzas. An efficient component model for the construction of adaptive mid-
dleware. In IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 160-178. Springer, 2001.
(Cited on page 73.)

[Clavreul 2010] Mickael Clavreul, Olivier Barais and Jean-Marc Jézéquel. Integrat-
ing Legacy Systems with MDE. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE 10,
pages 69-78, New York, NY, USA, 2010. ACM. (Cited on pages 17, 19, 23,
28 and 30.)

[Clements 2002] Paul Clements and Linda Northrop. Software product lines: prac-
tices and patterns. 2002. (Cited on page 15.)

[Constantinou 2015] Eleni Constantinou, Athanasios Naskos, George Kakarontzas
and loannis Stamelos. FEztracting reusable components: A semi-automated
approach for complex structures. Information Processing Letters, vol. 115,
no. 3, pages 414 — 417, 2015. (Cited on page 5.)

[Coupaye 2006] Thierry Coupaye and Jean-Bernard Stefani. Fractal component-
based software engineering. In European Conference on Object-Oriented
Programming, pages 117 129. Springer, 2006. (Cited on page 105.)

[Crnkovic 2011a] Ivica Crnkovic, Severine Sentilles, Aneta Vulgarakis and
Michel RV Chaudron. A classification framework for software component
models. TEEE Transactions on Software Engineering, vol. 37, no. 5, pages
593-615, 2011. (Cited on pages xiii and 73.)

[Crnkovic 2011b| Ivica Crnkovic, Severine Sentilles, Aneta Vulgarakis and
Michel RV Chaudron. A classification framework for software component
models. TEEE Transactions on Software Engineering, vol. 37, no. 5, pages
593-615, 2011. (Cited on page 33.)

|[De Lucia 2008] Andrea De Lucia, Rita Francese, Giuseppe Scanniello and Gen-
oveffa Tortora. Dewveloping legacy system migration methods and tools for
technology transfer. Software: practice & experience, vol. 38, no. 13, page
1333, 2008. (Cited on pages 17, 19, 23, 28 and 30.)

128 Bibliography

[Demeyer 1999] Serge Demeyer, Stéphane Ducasse and Sander Tichelaar. Why
FAMIX and not UML. In Proceedings of UMLA99, volume 1723, 1999. (Cited
on page 91.)

[Demeyer 2001| Serge Demeyer, Sander Tichelaar and Stéphane Ducasse. FAMIX
2.1dthe FAMOOS information exchange model, 2001. (Cited on page 90.)

[Ding 2011] Zuohua Ding, Mingyue Jiang and Jens Palsberg. From Textual Use
Cases to Service Component Models. In Proceedings of the 3rd International
Workshop on Principles of Engineering Service-Oriented Systems, PESOS
'11, pages 814, New York, NY, USA, 2011. ACM. (Cited on pages 17, 19,
20, 23, 28 and 30.)

[Dony 1990] Christophe Dony. FEzception handling and object-oriented program-
ming: towards a synthesis. ACM Sigplan Notices, vol. 25, no. 10, pages
322-330, 1990. (Cited on page 45.)

[Ducasse 2000] Stéphane Ducasse, Michele Lanza and Sander Tichelaar. Moose:
an extensible language-independent environment for reengineering object-
oriented systems. In Proceedings of the Second International Symposium
on Constructing Software Engineering Tools (CoSET 2000), volume 4, 2000.
(Cited on page 91.)

[Ducasse 2009a] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A
Process-Oriented Tazonomy. Software Engineering, IEEE Transactions on,
vol. 35, no. 4, pages 573-591, July 2009. (Cited on pages 7, 32 and 33.)

[Ducasse 2009b| Stéphane Ducasse and Damien Pollet. Software architecture recon-
struction: A process-oriented taronomy. Software Engineering, IEEE Trans-
actions on, vol. 35, no. 4, pages 573 591, 2009. (Cited on page 29.)

[Ducasse 2011a] Stéphane Ducasse, Nicolas Anquetil, Muhammad Usman Bhatti,
Andre Cavalcante Hora, Jannik Laval and Tudor Girba. MSE and FAMIX
3.0: an interexchange format and source code model family. 2011. (Cited on
page 18.)

[Ducasse 2011b] Stéphane Ducasse, Nicolas Anquetil, Muhammad Usman Bhatti,
Andre Cavalcante Hora, Jannik Laval and Tudor Girba. MSE and FAMIX
3.0: an interexchange format and source code model family. 2011. (Cited on
page 91.)

|[Dunsmore 2000| Alastair Dunsmore, Marc Roper and Murray Wood. Object-
oriented inspection in the face of delocalisation. In Proceedings of the 22nd
international conference on Software engineering, pages 467-476. ACM, 2000.
(Cited on page 32.)

Bibliography 129

[E.E. Group 2006] Oracle E.E. Group. JSR 220: Enterprise JavaBeansTM, Version
3.0 EJB Core Contracts and Requirements Version 3.0, Final Release, May
2006. (Cited on page 73.)

|[Einarsson 2012] Hafsteinn Pér Einarsson and Helmut Neukirchen. An Approach
and Tool for Synchronous Refactoring of UML Diagrams and Models Using
Model-to-model Transformations. In Proceedings of the Fifth Workshop on
Refactoring Tools, WRT ’12, pages 16-23, New York, NY, USA, 2012. ACM.
(Cited on pages 17, 19, 23, 28 and 30.)

[Erlikh 2000] Len Erlikh. Leveraging legacy system dollars for e-business. 1T pro-
fessional, vol. 2, no. 3, pages 17-23, 2000. (Cited on page 5.)

|[Ernst 2003] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24-27. Citeseer,
2003. (Cited on pages 21 and 39.)

|[Escoffier 2005] C Escoffier and D Donsez. FractNet: A Fractal implementation for
.NET. Session poster de la 2éme Journée Francophone sur le Développement
de Logiciels Par Aspects (JEDLPA 2005), 2005. (Cited on page 105.)

[Eysholdt 2010] Moritz Eysholdt and Johannes Rupprecht. Migrating a Large Mod-
eling Environment from XML/UML to Xtext/GMF. In Proceedings of the
ACM International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion, OOPSLA 10, pages
97 104, New York, NY, USA, 2010. ACM. (Cited on pages 17, 19, 20, 23,
28 and 30.)

[Favre 2004| Jean-Marie Favre. Towards a basic theory to model model driven en-
gineering. In 3rd Workshop in Software Model Engineering, WiSME, pages
262-271. Citeseer, 2004. (Cited on page 86.)

|[Favre 2005| Jean-Marie Favre. Foundations of model (driven)(reverse) engineer-
ing: Models—episode I: stories of the fidus papyrus and of the solarus. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, 2005. (Cited on page 26.)

[Fenton 2014] Norman Fenton and James Bieman. Software metrics: a rigorous and
practical approach. CRC Press, 2014. (Cited on pages 15 and 16.)

[Fleurey 2007| Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas and
Jean-Marc Jézéquel. Model-driven engineering for software migration in a
large industrial context. In International Conference on Model Driven Engi-
neering Languages and Systems, pages 482-497. Springer, 2007. (Cited on
page 86.)

[Forward 2002] Andrew Forward and Timothy C. Lethbridge. The Relevance of
Software Documentation, Tools and Technologies: A Survey. In Proceedings

130 Bibliography

of the 2002 ACM Symposium on Document Engineering, DocEng ’02, pages
26-33, New York, NY, USA, 2002. ACM. (Cited on page 18.)

|[Frakes 1996] William Frakes and Carol Terry. Software reuse: metrics and mod-
els. ACM Computing Surveys (CSUR), vol. 28, no. 2, pages 415-435, 1996.
(Cited on page 15.)

[Frakes 2005] William B. Frakes and Kyo Kang. Software Reuse Research: Status
and Future. TEEE Trans. Softw. Eng., vol. 31, no. 7, pages 529-536, July
2005. (Cited on pages 13 and 15.)

|Freeman 2004| Eric Freeman, Elisabeth Robson, Bert Bates and Kathy Sierra.
Head first design patterns. " O’Reilly Media, Inc.", 2004. (Cited on page 24.)

[Fuhr 2011] Andreas Fuhr, Tassilo Horn, Volker Riediger and Andreas Winter.
Model-driven software migration into service-oriented architectures. Com-

puter Science - Research and Development, vol. 28, no. 1, pages 65 84, 2011.
(Cited on pages 17, 19, 23, 28 and 30.)

[Garlan 2000] David Garlan. Software architecture: a roadmap. In Proceedings of
the Conference on the Future of Software Engineering, pages 91-101. ACM,
2000. (Cited on pages 31 and 32.)

[Gligoric 2014] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van
Velzen, Iman Narasamdya and Benjamin Livshits. Automated Migration of
Build Scripts Using Dynamic Analysis and Search-based Refactoring. SIG-
PLAN Not., vol. 49, no. 10, pages 599-616, October 2014. (Cited on pages 17,
19, 23, 28 and 30.)

[Gray 2006] Jeff Gray, Yuehua Lin and Jing Zhang. Automating change evolution
in model-driven engineering. Computer, vol. 39, no. 2, pages 51 58, 2006.
(Cited on page 86.)

[Grundy 2000] John Grundy and John Hosking. High-level static and dynamic visu-
alisation of software architectures. In Visual Languages, 2000. Proceedings.
2000 IEEE International Symposium on, pages 5-12. IEEE, 2000. (Cited on
page 32.)

[Haas 2004] Hugo Haas and Allen Brown. Web Services Glossary. W3C note, W3C,
February 2004. http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/.
(Cited on page 22.)

|[Hamilton 1997] Graham Hamilton. JavaBeans. API Specification, Sun Microsys-
tems, 1997. (Cited on page 107.)

[Hamza 2013] S. Hamza, S. Sadou and R. Fleurquin. Measuring Qualities for OSGi
Component-Based Applications. In Quality Software (QSIC), 2013 13th In-
ternational Conference on, pages 25 34, July 2013. (Cited on page 58.)

Bibliography 131

[Harman 2010] Mark Harman. Why Source Code Analysis and Manipulation Will
Always Be Important. In Proceedings of the 2010 10th IEEE Working Con-
ference on Source Code Analysis and Manipulation, SCAM ’10, pages 7-19,
Washington, DC, USA, 2010. IEEE Computer Society. (Cited on page 16.)

[Heineman 2001a] George T Heineman and William T Councill. Component-based
software engineering. Putting the pieces together, addison-westley, page 5,
2001. (Cited on page 15.)

|Heineman 2001b| George T Heineman and William T Councill. Component-based
software engineering. Putting the pieces together, addison-westley, page 5,
2001. (Cited on page 34.)

[Hunold 2008] S. Hunold, M. Korch, B. Krellner, T. Rauber, T. Reichel and
G. Rginger. Transformation of Legacy Software into Client/Server Appli-
cations through Pattern-Based Rearchitecturing. In 2008 32nd Annual IEEE
International Computer Software and Applications Conference, pages 303—
310, July 2008. (Cited on pages 17, 19, 23, 28 and 30.)

[Hunold 2009] Sascha Hunold, Bjorn Krellner, Thomas Rauber, Thomas Re-
ichel and Gudula Riinger. Enterprise information systems: 11th inter-
national conference, iceis 2009, milan, italy, may 6-10, 2009. proceedings,
chapitre Pattern-Based Refactoring of Legacy Software Systems, pages 78—
89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. (Cited on pages 17,
19, 23, 28 and 30.)

[Hunt 2002] Andy Hunt and Dave Thomas. Software archaeology. IEEE Software,
vol. 19, no. 2, pages 20-22, 2002. (Cited on page 2.)

[idl] OMG IDL to Java Language Mapping Specification, ptc, 00-01-08. (Cited
on page 115.)

[IEE 1998| IEEE Standard for Software Maintenance. IEEE Std 1219-1998, pages
i-, 1998. (Cited on page 11.)

[Iso 2001] ISO Iso. IEC 9126-1: Software Engineering-Product Quality-Part 1:
Quality Model. Geneva, Switzerland: International Organization for Stan-
dardization, 2001. (Cited on page 34.)

[Jacobson 1997] Ivar Jacobson, Martin Griss and Patrik Jonsson. Software
reuse: architecture, process and organization for business success. ACM
Press/Addison-Wesley Publishing Co., 1997. (Cited on page 15.)

[Jacobson 2004| Ivar Jacobson and Pan-Wei Ng. Aspect-oriented software devel-
opment with use cases (addison-wesley object technology series). Addison-
Wesley Professional, 2004. (Cited on page 15.)

[ifa 2004] JFamiz,, 2004. (Cited on page 114.)

132 Bibliography

[Jones 2008] Capers Jones. Applied software measurement: global analysis of pro-
ductivity and quality. McGraw-Hill Education Group, 2008. (Cited on
page 16.)

[Jouault 2008] Frédéric Jouault, Freddy Allilaire, Jean Bézivin and Ivan Kurtev.
ATL: A model transformation tool. Science of computer programming,
vol. 72, no. 1, pages 31-39, 2008. (Cited on pages 24 and 25.)

|[Kapur 2010] Puneet Kapur, Brad Cossette and Robert J Walker. Refactoring ref-
erences for library migration, volume 45. ACM, 2010. (Cited on pages 17,
19, 23, 25, 28 and 30.)

[Karim 2014] Rezwana Karim, Mohan Dhawan and Vinod Ganapathy. Ecoop 2014
— object-oriented programming: 28th european conference, uppsala, sweden,
july 28 — august 1, 2014. proceedings, chapitre Retargetting Legacy Browser
Extensions to Modern Extension Frameworks, pages 463-488. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014. (Cited on pages 17, 19, 23,
26, 28 and 30.)

|[Kazman 1998 R. Kazman, S. G. Woods and S. J. Carriere. Requirements for
integrating software architecture and reengineering models: CORUM II. In
Reverse Engineering, 1998. Proceedings. Fifth Working Conference on, pages
154-163, Oct 1998. (Cited on pages 10 and 11.)

[Kebir 2012] Selim Kebir, A-D Seriai, Sylvain Chardigny and Allaoua Chaoui.
Quality-centric approach for software component identification from object-
oriented code. In 2012 Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA) and European Conference on Software Architecture
(ECSA), pages 181-190. IEEE, 2012. (Cited on pages 7, 12, 22, 33, 34, 36,
59, 66 and 112.)

[Kegel 2008a] Hannes Kegel and Friedrich Steimann. Systematically Refactoring
Inheritance to Delegation in Java. In Proceedings of the 30th International
Conference on Software Engineering, ICSE 08, pages 431-440, New York,
NY, USA, 2008. ACM. (Cited on pages 17, 19, 23, 28, 30 and 57.)

|[Kegel 2008b| Hannes Kegel and Friedrich Steimann. Systematically Refactoring
Inheritance to Delegation in Java. In Proceedings of the 30th International
Conference on Software Engineering, ICSE 08, pages 431 440, New York,
NY, USA, 2008. ACM. (Cited on pages 49 and 57.)

|Kjolstad 2011] Fredrik Kjolstad, Danny Dig, Gabriel Acevedo and Marc Snir.
Transformation for Class Immutability. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE 11, pages 61-70, New
York, NY, USA, 2011. ACM. (Cited on pages 17, 19, 23, 28 and 30.)

Bibliography 133

[Kleppe 2003] Anneke G Kleppe, Jos B Warmer and Wim Bast. Mda explained:
the model driven architecture: practice and promise. Addison-Wesley Pro-
fessional, 2003. (Cited on page 12.)

|[Kobel 2005] Markus Kobel, Oscar Nierstrasz, Horst Bunke, Tudor Girba and
Michele Lanza. Parsing by ezample. Institut fur Informatik und angewandte
Mathematik, 2005. (Cited on page 91.)

[Kiihne 2006] Thomas Kiithne. Matters of (meta-) modeling. Software & Systems
Modeling, vol. 5, no. 4, pages 369 385, 2006. (Cited on page 86.)

[Lau 2005] Kung-Kiu Lau and Zheng Wang. A tazonomy of software component
models. In Software Engineering and Advanced Applications, 2005. 31st
EUROMICRO Conference on, pages 88-95, Aug 2005. (Cited on pages 43
and 44.)

au ung-Kiu Lau an eng Wang. Software Component Models. Software

Lau 2007| K Kiu L d Zh W S C Models. Sof
Engineering, IEEE Transactions on, vol. 33, no. 10, pages 709-724, Oct 2007.
(Cited on page 5.)

|Leach 1997] Ronald J Leach. Software reuse: methods, models, and costs.
McGraw-Hill New York, 1997. (Cited on pages 13 and 15.)

|[Lehman 1980] Meir M Lehman. Programs, life cycles, and laws of software evolu-
tion. Proceedings of the IEEE, vol. 68, no. 9, pages 1060-1076, 1980. (Cited
on page 16.)

|[Lehman 1985] Manny M Lehman and Laszlo A Belady. Program evolution: pro-
cesses of software change. Academic Press Professional, Inc., 1985. (Cited
on pages 4 and 5.)

[Lehman 1997] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry
and Wladyslaw M Turski. Metrics and laws of software evolution-the nineties

view. In Software Metrics Symposium, 1997. Proceedings., Fourth Interna-
tional, pages 20-32. IEEE, 1997. (Cited on page 16.)

[Li 1993] Wei Li and Sallie Henry. Object-oriented metrics that predict maintain-
ability. Journal of systems and software, vol. 23, no. 2, pages 111-122, 1993.
(Cited on page 16.)

[Ludewig 2003] Jochen Ludewig. Models in software engineering—an introduction.
Software and Systems Modeling, vol. 2, no. 1, pages 5-14, 2003. (Cited on
page 86.)

[Liier 2002| Chris Liier and André Van Der Hoek. Composition environments for
deployable software components. Citeseer, 2002. (Cited on pages 31 and 34.)

134 Bibliography

[M. D. Mcllroy 1968] P. Naur M. D. Mcllroy J. Buxton and B. Randell. Mass-
produced software components. In null, pages 884-98. 1st International Con-
ference on Software Engineering, Garmisch Pattenkirchen, Germany, 1968.
(Cited on page 15.)

[Magbool 2007] Onaiza Magbool and Haroon A Babri. Hierarchical clustering for
software architecture recovery. Software Engineering, IEEE Transactions on,
vol. 33, no. 11, pages 759-780, 2007. (Cited on page 29.)

[Martin 2011] Robert C. Martin. Agile software development: Principles, patterns,
and practices: International edition. Pearson, London, UK, 2011. (Cited on
page 58.)

[Matos 2011] Carlos Matos and Reiko Heckel. Rigorous software engineering for
service-oriented systems: Results of the sensoria project on software engi-
neering for service-oriented computing, chapitre Legacy Transformations for
Extracting Service Components, pages 604-621. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. (Cited on pages 17, 19, 23, 28 and 30.)

[Medvidovic 2003] Egyed Medvidovic. Gruenbacher. Stemming architectural ero-
sion by architectural discovery and recovery. In International Workshop from
Software Requirements to Architectures (STRAW), 2003. (Cited on page 32.)

[Medvidovic 2006] Nenad Medvidovic and Vladimir Jakobac. Using software evolu-
tion to focus architectural recovery. Automated Software Engineering, vol. 13,
no. 2, pages 225-256, 2006. (Cited on page 33.)

[Mellor 2003] Stephen J Mellor, Tony Clark and Takao Futagami. Model-driven
development: gquest editors’ introduction. IEEE software, vol. 20, no. 5, pages
14 18, 2003. (Cited on page 86.)

[Mellor 2004| Stephen J Mellor. Mda distilled: principles of model-driven architec-
ture. Addison-Wesley Professional, 2004. (Cited on page 18.)

[Mendonga 1996] Nabor C Mendonca and Jeff Kramer. Requirements for an effective
architecture recovery framework. In Joint proceedings of the second interna-
tional software architecture workshop (ISAW-2) and international workshop
on multiple perspectives in software development (Viewpoints’ 96) on SIG-
SOFT’96 workshops, pages 101-105. ACM, 1996. (Cited on page 33.)

[Mens 2006a] Tom Mens and Pieter Van Gorp. A Tazonomy of Model Transforma-
tion. Electronic Notes in Theoretical Computer Science, vol. 152, pages
125 — 142, 2006. Proceedings of the International Workshop on Graph
and Model Transformation (GraMoT 2005)Graph and Model Transforma-
tion 2005. (Cited on pages 26 and 40.)

Bibliography 135

[Mens 2006b] Tom Mens and Pieter Van Gorp. A tazonomy of model transfor-
mation. Electronic Notes in Theoretical Computer Science, vol. 152, pages
125-142, 2006. (Cited on page 86.)

[Mens 2008] Tom Mens. Introduction and roadmap: History and challenges of soft-
ware evolution. Springer, 2008. (Cited on page 16.)

[Microsystems 1997 Sun Microsystems. Javabeans Specification, 1997. (Cited on
page 73.)

[Miller 1997 Robert Miller and Anand Tripathi. Issues with exception handling
in object-oriented systems. In ECOOP’97a40bject-Oriented Programming,
pages 85 103. Springer, 1997. (Cited on page 45.)

[Mitchell 2006] Brian S Mitchell and Spiros Mancoridis. On the automatic modular-
ization of software systems using the bunch tool. Software Engineering, IEEE
Transactions on, vol. 32, no. 3, pages 193-208, 2006. (Cited on page 12.)

[Mohagheghi 2007] Parastoo Mohagheghi and Reidar Conradi. Quality, productiv-
ity and economic benefits of software reuse: a review of industrial studies.
Empirical Software Engineering, vol. 12, no. 5, pages 471-516, 2007. (Cited
on page 15.)

[Moody 2009] Daniel Moody. The dphysicsa of notations: toward a scientific basis
for constructing visual notations in software engineering. IEEE Transactions
on Software Engineering, vol. 35, no. 6, pages 756 779, 2009. (Cited on
page 86.)

[Moriconi 1994] Mark Moriconi and Xiaolei Qian. Correctness and Composition of
Software Architectures. In Proceedings of the 2Nd ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, SIGSOFT '94, pages 164174,
New York, NY, USA, 1994. ACM. (Cited on page 31.)

[Miiller 2013] Bernd Miiller. Reengineering: Eine einfithrung. Springer-Verlag,
2013. (Cited on pages 3 and 5.)

[Nguyen 2014] Anh Tuan Nguyen, Tung Thanh Nguyen and Tien N. Nguyen. Mi-
grating Code with Statistical Machine Translation. In Companion Proceed-
ings of the 36th International Conference on Software Engineering, ICSE
Companion 2014, pages 544-547, New York, NY, USA, 2014. ACM. (Cited
on pages 17, 19, 23, 28 and 30.)

[Nummenmaa 2011] Timo Nummenmaa, Aleksi Tiensuu, Eleni Berki, Tommi
Mikkonen, Jussi Kuittinen and Annakaisa Kultima. Supporting agile devel-
opment by facilitating natural user interaction with executable formal speci-
fications. ACM SIGSOFT Software Engineering Notes, vol. 36, no. 4, pages
1 10, 2011. (Cited on page 25.)

136 Bibliography

[O’Brien 2002] Liam O’Brien, Christoph Stoermer and Chris Verhoef. Software
architecture reconstruction: Practice needs and current approaches. Rapport
technique, DTIC Document, 2002. (Cited on page 33.)

[OMG 2011] OMG. OMG CORBA Component Model v4.0, 2011. (Cited on
page 73.)

[Perry 1992] Dewayne E Perry and Alexander L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes, vol. 17,
no. 4, pages 40 52, 1992. (Cited on page 31.)

[Pfenning 1988] Frank Pfenning and Conal Elliot. Higher-order abstract syntaz. In
ACM SIGPLAN Notices, volume 23, pages 199-208. ACM, 1988. (Cited on
pages 24 and 25.)

[Platform 2015] Osgi Service Platform. The OSGi Alliance, Release 6, 2015. (Cited
on pages 44, 60, 71, 73 and 79.)

[Poch 2009] Tomas Poch and Frantigek Plasil. Component-based software engineer-
ing: 12th international symposium, cbse 2009 east stroudsburg, pa, usa, june
24-26, 2009 proceedings, chapitre Extracting Behavior Specification of Com-
ponents in Legacy Applications, pages 87 103. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009. (Cited on pages 16, 17, 19, 23, 28 and 30.)

[Pohl 2010] Klaus Pohl. Requirements engineering: Fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated, 1st édition, 2010.
(Cited on page 18.)

[Porres 2003| Ivan Porres. Model refactorings as rule-based update transformations.
Springer, 2003. (Cited on page 25.)

[Pressman 1986] R S Pressman. Software engineering: A practitioner’s approach
(2nd ed.). McGraw-Hill, Inc., New York, NY, USA, 1986. (Cited on page 39.)

[Rugaber 2004] Spencer Rugaber and Kurt Stirewalt. Model-driven reverse engi-
neering. IEEE software, vol. 21, no. 4, pages 45 53, 2004. (Cited on page 86.)

[Rumbaugh 1991a] James Rumbaugh, Michael Blaha, William Premerlani, Freder-
ick Eddy, William E. Lorensenet al. Object-oriented modeling and design,
volume 199. Prentice-hall Englewood Cliffs, NJ, 1991. (Cited on page 16.)

[Rumbaugh 1991b] James Rumbaugh, Michael Blaha, William Premerlani, Freder-
ick Eddy, William E. Lorensenet al. Object-oriented modeling and design,
volume 199. Prentice-hall Englewood Cliffs, NJ, 1991. (Cited on page 21.)

[Santos 2015 G. Santos, N. Anquetil, A. Etien, S. Ducasse and M. T. Valente.
System specific, source code transformations. In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, pages 221-230,
Sept 2015. (Cited on pages 17, 19, 23, 28 and 30.)

Bibliography 137

[Scalise 2010] Eugenio GP Scalise, Jean-Marie Favre and Nancy Zambrano.
MODEL-DRIVEN REVERSE ENGINEERING AND PROGRAM COM-
PREHENSION: AN EXAMPLE/INGENIERIA REVERSA Y COMPREN-
SION DE PROGRAMAS DIRIGIDA POR MODELOS: UN EJEMPLO. In-
geniare: Revista Chilena de Ingenieria, vol. 18, no. 1, page 76, 2010. (Cited
on page 1.)

[Schmidt 2006] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, vol. 39, no. 2, page 25, 2006. (Cited on page 86.)

[Seacord 2003a] Robert C Seacord, Daniel Plakosh and Grace A Lewis. Modernizing
legacy systems: software technologies, engineering processes, and business
practices. Addison-Wesley Professional, 2003. (Cited on pages 3 and 5.)

[Seacord 2003b] Robert C Seacord, Daniel Plakosh and Grace A Lewis. Modernizing
legacy systems: software technologies, engineering processes, and business
practices. Addison-Wesley Professional, 2003. (Cited on page 24.)

[Selim 2013] Gehan M. K. Selim, Shige Wang, James R. Cordy and Juergen Din-
gel. Model transformations for migrating legacy deployment models in the
automotive industry. Software & Systems Modeling, vol. 14, no. 1, pages
365 381, 2013. (Cited on pages 17, 19, 23, 26, 28 and 30.)

[Sendall 2003] Shane Sendall and Wojtek Kozaczynski. Model transformation the
heart and soul of model-driven software development. Rapport technique,
2003. (Cited on page 86.)

[Seriai 2014] Abderrahmane Seriai, Salah Sadou and Houari A. Sahraoui. Software
architecture: 8th european conference, ecsa 2014, vienna, austria, august 25-
29, 2014. proceedings, chapitre Enactment of Components Extracted from
an Object-Oriented Application, pages 234-249. Springer International Pub-
lishing, Cham, 2014. (Cited on pages 17, 19, 23, 28 and 30.)

iva ajjan iva and Lubna Abou Shala. Software reuse: Research an
Shiva 2007| Sajjan G Shi d Lubna Abou Shala. Sof R h and
practice. In null, pages 603-609. IEEE, 2007. (Cited on pages 13 and 15.)

[Siff 1999] Michael Siff and Thomas Reps. Identifying modules via concept analysis.
Software Engineering, IEEE Transactions on, vol. 25, no. 6, pages 749768,
1999. (Cited on page 12.)

[Smith 2011] David J Smith. Reliability, maintainability and risk 8e: Practical
methods for engineers including reliability centred maintenance and safety-
related systems. Elsevier, 2011. (Cited on page 16.)

[Sneed 1984| Harry M Sneed. Software renewal: A case study. IEEE Software,
vol. 1, no. 3, page 56, 1984. (Cited on page 1.)

138 Bibliography

[Sneed 2000] Harry M Sneed. Encapsulation of legacy software: A technique for
reusing legacy software components. Annals of Software Engineering, vol. 9,

no. 1-2, pages 293-313, 2000. (Cited on page 24.)

[Sommerville 2010] Ian Sommerville. Software engineering. Addison-Wesley Pub-
lishing Company, USA, 9th édition, 2010. (Cited on page 1.)

[Spacek 2012] Petr Spacek, Christophe Dony, Chouki Tibermacine and Luc Fab-
resse. An Inheritance System for Structural & Behavioral Reuse in
Component-based Software Programming. In Proceedings of the 11th Inter-
national Conference on Generative Programming and Component Engineer-
ing, GPCE 12, pages 60-69, New York, NY, USA, 2012. ACM. (Cited on
page 44.)

[Spacek 2014 Petr Spacek, Christophe Dony and Chouki Tibermacine. A
Component-based Meta-level Architecture and Prototypical Implementation
of a Reflective Component-based Programming and Modeling Language.
In Proceedings of the 17th International ACM Sigsoft Symposium on
Component-based Software Engineering, CBSE 14, pages 13-22, New York,
NY, USA, 2014. ACM. (Cited on pages 72 and 73.)

[Stevanetic 2015] Srdjan Stevanetic, Muhammad Atif Javed and Uwe Zdun. The
Impact of Hierarchies on the Architecture-Level Software Understandability-
A Controlled Experiment. In Software Engineering Conference (ASWEC),
2015 24th Australasian, pages 98-107. IEEE, 2015. (Cited on page 15.)

[Stojanovi¢ 2005] Zoran Stojanovi¢ and Ajantha Dahanayake. Service-oriented soft-
ware system engineering: challenges and practices. IGI Global, 2005. (Cited
on page 15.)

[Stroustrup 1991] Bjarne Stroustrup. What s adaObject-Oriented Program-
mingdd?(1991 revised version). In Proc. 1st European Software Festival,
1991. (Cited on page 45.)

[Szyperski 2002] Clemens Szyperski. Component software: Beyond object-oriented
programming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd édition, 2002. (Cited on pages 18, 19, 31, 34, 44 and 51.)

[T Genssler 1999] B Schulz T Genssler. Transforming inheritance into composition
4 a reengineering pattern. 1999. (Cited on page 57.)

[Teiniker 2004] Egon Teiniker and Leif Johnson. CCM Tools. 2004. (Cited on
page 115.)

|Tempero 2010] E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe,
H. Melton and J. Noble. The Qualitas Corpus: A Curated Collection of Java
Code for Empirical Studies. In Software Engineering Conference (APSEC),
2010 17th Asia Pacific, pages 336 345, Nov 2010. (Cited on page 58.)

Bibliography 139

[Thomas 2001] Bill Thomas and Scott Tilley. Documentation for software engineers:
what is needed to aid system understanding? In Proceedings of the 19th
annual international conference on Computer documentation, pages 235-236.
ACM, 2001. (Cited on page 15.)

[Tichelaar 2000] Sander Tichelaar, Stéphane Ducasse and Serge Demeyer. Famiz
and xmi. In Reverse Engineering, 2000. Proceedings. Seventh Working Con-
ference on, pages 296-298. IEEE, 2000. (Cited on page 91.)

|Tilevich 2009] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Enhancing Java
Programs with Distribution Capabilities. ACM Trans. Softw. Eng. Methodol.,
vol. 19, no. 1, pages 1:1 1:40, August 2009. (Cited on pages 17, 19, 23, 28
and 30.)

[Tomer 2004] Amir Tomer, Leah Goldin, Tsvi Kuflik, Esther Kimchi and Stephen R
Schach. FEwvaluating software reuse alternatives: a model and its application
to an industrial case study. Software Engineering, IEEE Transactions on,
vol. 30, no. 9, pages 601-612, 2004. (Cited on page 15.)

[too 2012] Moose technology: Home,, 2012. (Cited on pages 112 and 114.)

[Van Deursen 2007| Arie Van Deursen, Eelco Visser and Jos Warmer. Model-driven
software evolution: A research agenda. Rapport technique, Delft Univer-
sity of Technology, Software Engineering Research Group, 2007. (Cited on
page 86.)

[Visser 2001| Eelco Visser. A survey of rewriting strategies in program transforma-
tion systems. Electronic Notes in Theoretical Computer Science, vol. 57,
pages 109 143, 2001. (Cited on page 26.)

[Visser 2005] Eelco Visser. A survey of strategies in rule-based program. transfor-
mation systems. Journal of Symbolic Computation, vol. 40, no. 1, pages
831-873, 2005. (Cited on page 25.)

[Vliet 2008] Hans van Vliet. Software engineering: Principles and practice. Wiley
Publishing, 3rd édition, 2008. (Cited on page 11.)

[Vlissides 1995] John Vlissides, Richard Helm, Ralph Johnson and Erich Gamma.
Design patterns: FElements of reusable object-oriented software. Reading:
Addison-Wesley, vol. 49, no. 120, page 11, 1995. (Cited on pages 48 and 51.)

[Wagner 2014] Christian Wagner. Model-driven software migration: A methodol-
ogy: Reengineering, recovery and modernization of legacy systems. Springer
Science & Business Media, 2014. (Cited on pages 3 and 16.)

[Wang 2006] Xinyu Wang, Jianling Sun, Xiaohu Yang, Chao Huang, Zhijun He and
Srinivasa R. Maddineni. Reengineering Standalone C++ Legacy Systems into
the J2EE Partition Distributed Environment. In Proceedings of the 28th

140 Bibliography

International Conference on Software Engineering, ICSE *06, pages 525-533,
New York, NY, USA, 2006. ACM. (Cited on pages 17, 19, 20, 23, 28 and 30.)

[Washizaki 2005] Hironori Washizaki and Yoshiaki Fukazawa. A technique for au-
tomatic component extraction from object-oriented programs by refactoring.
Science of Computer programming, vol. 56, no. 1, pages 99-116, 2005. (Cited
on pages 5 and 43.)

[Waters 1994] Richard C Waters and Elliot Chikofsky. Reverse engineering. Com-
munications of the ACM, vol. 37, no. 5, pages 22-26, 1994. (Cited on
page 19.)

[Weck 1996] Wolfgang Weck and Clemens Szyperski. Do we need inheritance. In
Proc. of the CIOO Workshop at ECOOP. Citeseer, 1996. (Cited on page 49.)

[Weiderman 1997| Nelson H Weiderman, John K Bergey, Dennis B Smith and
Scott R Tilley. Approaches to Legacy System Evolution. Rapport technique,
DTIC Document, 1997. (Cited on page 3.)

[Weis 2003| Torben Weis, Andreas Ulbrich and Kurt Geihs. Model metamorphosis.
IEEE software, vol. 20, no. 5, page 46, 2003. (Cited on pages 25 and 86.)

[Wilde 1991] Norman Wilde and Ross Huitt. Maintenance support for object ori-
ented programs. In Software Maintenance, 1991., Proceedings. Conference
on, pages 162-170. IEEE, 1991. (Cited on page 32.)

[Winter 2002] M. Winter. The PECOS software process. In Workshop on
Components-based Software Development Processes, ICSR, 2002. (Cited
on page 73.)

[Winter 2007] Victor L. Winter and Azamat Mametjanov. Generative Programming
Techniques for Java Library Migration. In Proceedings of the 6th Interna-
tional Conference on Generative Programming and Component Engineering,
GPCE 07, pages 185-196, New York, NY, USA, 2007. ACM. (Cited on
pages 17, 19, 23, 28 and 30.)

[Xue 2011] Yinxing Xue. Reengineering Legacy Software Products into Software
Product Line Based on Automatic Variability Analysis. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11, pages
1114-1117, New York, NY, USA, 2011. ACM. (Cited on pages 17, 19, 23, 28
and 30.)

[Yan 2004] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich and Rick
Kazman. Discotect: A system for discovering architectures from running sys-
tems. In Proceedings of the 26th International Conference on Software Engi-
neering, pages 470 479. IEEE Computer Society, 2004. (Cited on page 33.)

Bibliography 141

[Yemini 1985] Shaula Yemini and Daniel M Berry. A modular verifiable exception
handling mechanism. ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 7, no. 2, pages 214-243, 1985. (Cited on page 45.)

[Ying 2013] Ming Ying and James Miller. Refactoring legacy {AJAX} applications
to improve the efficiency of the data exchange component. Journal of Systems
and Software, vol. 86, no. 1, pages 72 — 88, 2013. (Cited on pages 17, 19, 23,
28 and 30.)

[Zou 2002| Ying Zou and Kostas Kontogiannis. Migration to object oriented plat-
forms: A state transformation approach. In Software Maintenance, 2002.
Proceedings. International Conference on, pages 530 539. IEEE, 2002. (Cited
on page 16.)

La Migration des Applications Orientées-Objet vers Celles 4 Base
de Composants

Abstract: Les applications orientées objet de tailles significatives ont des dépen-
dances complexes et nombreuses, et généralement ne disposent pas d’architectures
logicielles explicites. Par conséquent, elles sont difficiles & maintenir, et certaines
parties de ces applications sont difficiles a réutiliser. Le paradigme de développement
a base de composants est né pour améliorer ces aspects et pour soutenir la mainten-
abilité et la réutilisation efficaces. Il offre une meilleure compréhensibilité & travers
une vue d’architecture de haut niveau. Ainsi, la migration des applications orientées
objet a celles & base de composants contribuera a améliorer ces caractéristiques, et
de soutenir I’évolution des logiciels et la future maintenance.

Dans cette thése, nous proposons une approche pour transformer automatique-
ment les applications orientées objet a celles a base de composants. Plus particuliére-
ment, 'entrée de ’approche est le résultat fourni par la récupération de I’architecture
logicielle: une description de I'architecture & base de composants. Ainsi, notre ap-
proche transforme le code source orienté objet afin de produire des composants dé-
ployables. Nous nous concentrons sur la transformation des dépendances orientées
objet en celles basées sur les interfaces. De plus, nous passons du concept d’objet
au concept d’'instance d’'un composant. En outre, nous fournissons une approche de
transformation déclarative en utilisant des langages dédiés. Nous démontrons notre
approche sur de nombreux modéles de composants bien connus.

Keywords: Component-based, Object-oriented, Software Migration, Reengineer-
ing, Reverse engineering, Transformation, Model-driven, Software evolution, Soft-
ware maintenance, Software reuse, Design pattern.

