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Introduction

The development of the integrated circuit (IC) manufacturing since its first prototype
on 12 September 1958 built by Jack Kilby, led Gordon Moore to formulate, in 1965, a
prediction on the future of semiconductor industry:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over the longer term, the rate
of increase is a bit more uncertain, although there is no reason to believe
it will not remain nearly constant for at least 10 years.

In 1975, Moore revised its prediction during the IEEE International Electron De-
vices Meeting. He stated that from 1980, “the rate of increase complexity can be
expected to change slope [...]. The new slope might approximate a doubling every
two years, rather than every year|...].”

This conjecture has been later popularized as the second Moore’s Law, and by
extension the 1965 conjecture popularized as the first Moore’s Law. This conjecture
proved accurate for several decades. However, Moore and number of industry forecast-
ers expect Moore’s Law will end on 2025.

Nowadays, the increase of the microprocessors power computation is partly ensured
by an increase of the number of cores. This increase is such that some even predict it to
follow Moore’s Law [Kum+05]. Nevertheless, the increase of the number of cores leads
to an increase of distance between them and thus an increase of the communication
times. This limits the efficiency of such solution. A lead to overcome such issues is to
produce three-dimensional microprocessors.

Instead of enclosing several adjacent cores, a three-dimensional microprocessor aims
at superimposing the latter. The distance between each die is then greatly reduced to
roughly the thickness of the die. The manufacturing process remains quite identical
as the one for classical microprocessors. In a first time, the dies are engraved on a
circular slice of silicon called wafer. Depending on the complexity of the engraved die
and on the size of the wafer, one can engraved up to several thousands of dies on a
single slice. Once this step is performed, dies are tested to spot faulty ones and then
cut out. Viable dies are then encapsulated into chips to get microprocessors as we
usually know them.

An additional step is required to manufacture three-dimensional microprocessors:
the integration. Dies need indeed to be superimposed. This can be achieved by various
processes:

die-to-die the dies are superimposed among them once they have been cut out.

11
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(a) Bad assignment (b) Good assignment
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Figure 1: Illustration of the influence of the assignment on the final die yield.

die-to-wafer a part of engraved wafers are used as support on which cut out dies are
superimposed.

wafer-to-wafer the wafers are superimposed before being cut out.

In a nutshell, die-to-die and die-to-wafer processes offer a good yield but greatly
increase manufacturing cost. On the other hand, the wafer-to-wafer present several
advantages (the integration can be performed at reasonable cost with more accuracy
and efficiency, the thickness of the wafers can be reduced, ...) but can lead to very
poor yield. Indeed, a stack of dies is considered to be viable if and only if all the
dies composing the stack are viable ones. Figure 1 gives clues on the possible yield
degradation when superimposing wafers.

This thesis focus on the way to handle such a combinatorics in these problems. The
manuscript is split into three main parts. The first part is devoted to the introduction of
the theoretical frameworks that have been used to approach the problem. In a first time
we present a slight overview on graphs and hypergraphs ans then we briefly introduce
the ABC of computational complexity and fixed parameter complexity theory.

In the second part, we consider the theoretical aspects of the problem. To do
so, the first chapter of this part is devoted to the modelization of the latter and to
the introduction of several of its variants, differing mainly on the way to evaluate the
quality of an assignment. A chapter is then devoted to what we will call intermediate
problems, i.e. problems presenting mainly theoretical interest as they provide useful
tools to handle complexity of the main problems. Last, we consecrate one chapter for
each of the both main problems we consider. In each chapter, we try to render as
precisely as possible the complexity of the considered variant.

The third part present results obtained from several campaigns of experimentation.
The objective of this part is to lay the basis of the practical resolution of the problem
by exploring different solving methods such as Integer Linear Programming (ILP)
formulations, Constraints Programming (CP) formulations or ad hoc heuristics.

This work led to the following publications:
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Graphs and Hypergraphs

Contents
1.1 Graphs . . . . . . . . . . e e e e e e e e e e e e 17
1.2 Hypergraphs . . . . . . . . . ittt 19

This short chapter is devoted to the introduction of an important data structure,
the graphs. The hypergraphs, a generalization of graphs, are also introduced as they
represent a key notion in our work. Let us remark that this chapter only presents
trivia on Graph Theory. Therefore, we invite well-versed reader in Graph Theory to
start the reading of this manuscript at Chapter 2.

1.1 Graphs

Definition 1.1 (Graph). A graph G is a pair (U, E) where U is a non empty set of
vertices and E is a set of edges, an edge being a pair of vertices of U.

Intuitively, a graph is a convenient way of representing binary relationships among
a set of entities. As such graphs are widely used in lots of areas. For instance, they
can be used to represent networks:

social network: one can think of a person as a vertex. Two vertices are connected
by an edge if the person they represent are in contact.

physical network: a vertex represents a machine in the network and an edge a phys-
ical link between two machines.

17



18 CHAPTER 1. GRAPHS AND HYPERGRAPHS

railway network: during the Cold War, US Army used graphs to represent the Soviet
railway network in order to visualize weaknesses in the Soviet railway traffic flow.

Naturally, graphs are not restricted to the modelization of networks, they offer a
powerful theoretical framework to modelize problems of all sorts.

One can define some interesting and useful notions on a graph. This section is thus
devoted to the introduction of some of terms and notions that will be used throughout
this manuscript. Obviously, it does not aim at being an exhaustive overview of the
graph basics. We refer the reader to the works given by Reinhardt Diestel [Diel2] and
by Adrian Bondy and Uppaluri Murty [BM11].

In the following, we present the graph notions that will be used throughout this
manuscript.

Definition 1.2 (Complete graph). A graph G = (U, E) is said complete if and only if
Vu,v € Uyu# v, {u,v} € E.

Definition 1.3 (Induced subgraph [Diel2|). Given a graph G = (U, E) and a subset
of vertices S C U, the subgraph G[S] induced by S is the graph whose vertex set is S

and whose edge set consists of all the edges in E that have both endpoints in S.
More formally G[S] = (S, {{u,v} € E : u,v € S}).

We can use these definition to define a clique in a graph.

Definition 1.4 (Clique). Given a graph G = (U, E), a clique of G is a subset of
vertices C C U such that G[C] is complete.

Another interesting and important notion in a graph is the notion of independent
set.

Definition 1.5 (Independent Set). Given a graph G = (U, E), an independent set of
G is a subset of vertices IS C U such that G[IS] = (IS, E') satisfies E' = ).
In other words, there does not exist u,v € IS such that {u,v} € E.

Such a subset of vertices is also called a stable set. A strongly related notion is the
vertex cover.

Definition 1.6 (Vertex Cover). Given a graph G = (U, E), a vertezx cover of G is a
subset of vertices VC C U such that for all {u,v} € E, we VC orve VC.
In other words, VC contains at least one endpoint of each edge.

Property 1.1. Given a graph G = (U, E) and VC a vertex cover of G, the set 1S =
U\VC is an independent set.

Definition 1.7 (Graph coloring). A k-vertex coloring (a k-coloring for short) of a
graph G = (U, E) is map ¢ : U — [k].
A k-coloring c is said to be proper if and only if V{u,v} € E,c(u) # c(v).
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1.2 Hypergraphs

Definition 1.8 (Hypergraph). A hypergraph H is a couple (U, E) where U is a non
empty set of vertices and E a set of hyperedges, an hyperedge being a non empty subset
of U.

We also define several notions on these hypergraphs.

Definition 1.9 (k-uniform). Given an integer k, a hypergraph H = (U, E) is said to
be k-uniform if and only if E C (g), (g) denoting the subsets of U of size k.

In other words, a hypergraph is said k-uniform if every hyperedge contains exactly
k vertices.

Definition 1.10 (k-partite). Given an integer k, a hypergraph H = (U, E) is said
to be k-partite if its vertexr set can be partitioned into k disjoint subsets Uy, ..., U
such that for all i € [k] and for all couple of vertices u,v € U;, no hyperedge e € E
containing both u and v exists.

In other words, two vertices of a same subset cannot be elements of a same hyper-
edge.

We can also naturally extend some graph notions to the hypergraphs.

Definition 1.11 (Induced subhypergraph). Given a hypergraph H = (U, E) and a
subset of vertices S C U, the subhypergraph H[S| induced by S is the hypergraph whose
vertex set is S and whose hyperedge set consists of all the hyperedges in E that have
all endpoints in S.

More formally H[S] = (S,{e € E:enS =e}).

Definition 1.12 (Independent Set). Given a hypergraph H = (U, E), an independent
set of H is a subset of vertices IS C U such that H[IS]| = (IS, E") satisfies E' = ().
In other words, there does not exist e C IS such that e € E.

Definition 1.13 (Vertex Cover). Given a hypergraph H = (U, E), a vertex cover of
H is a subset of vertices VC C U such thatVe € E, eNVC # ().
In other words, VC contains at least one element of each hyperedge.

As for graphs, the following property holds for hypergraphs.

Property 1.2. Given a hypergraph H = (U, E) and VC a vertex cover of H, the set
IS =U\VC is an independent set.

Definition 1.14 (Hypergraph proper coloring). A k-coloring of the vertices of a hy-
pergraph H = (U, E) is map ¢ : U — [k].
A k-coloring is said to be proper if and only if Ve € E,3u,v € e such that c(u) #

c(v).

Definition 1.15 (Hypergraph rainbow coloring). A k-coloring is said to be a rainbow
coloring if and only if Ve € E,Yu,v € e, c(u) # ¢(v).
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In this chapter, we introduce the rudiments in complexity theory required for a con-
venient reading of this manuscript. The definition and results introduced here are
considered to be standard and therefore are succinctly presented. However, we aim at
providing a bunch of references in which these results are more deeply studied. Fur-
thermore, this section allows us to introduce notations that will be used throughout
this manuscript.

In a first time we present the notion of decision problem, which is an important
notion in complexity theory. We then show how algorithms can be used to highlight
relationships between problems, by defining reductions. The latter lay the foundations
for a classification of decision problems in terms of complexity. We introduce then two
complexity classes P and NP.
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In a second time, we take optimization problems into consideration. The complexity
class NPO is then defined. The issue of optimization problem solving is then discussed
to introduce a new family of algorithms, called approxzimation algorithms. We show
how these algorithms are used to design new complexity classes such as APX, PTAS
or FPTAS. And finally we present how polynomial reductions can be tuned to design
approximation preserving reductions, highlighting at the same time, some relationships
between optimization problems, in terms of approximability.

2.1 Problems, Reductions and Complexity Classes

2.1.1 Decision Problems

The decision problems represent the most natural problems one can be exposed to. It
simply consists in a yes-or-no question. Given a problem IT and an input I € {0,1}",
the objective is to determine whether I is a positive instance (the answer to the question
is yes) or a negative instance (the answer to the question is no). As such, a decision
problem can be simply taken for its set of positive instance. This notion is formally
defined in Definition 2.1.

Definition 2.1 (Decision Problem [Pap94]). A decision problem II is a subset Djj C
{0,1}* of positive instances. Thus the set of negative instances is defined as Dy =

{0, 1}*\Dff.

If we consider the following problem:

Decision Problem 1 HAMILTONIAN CYCLE

Input A graph G = (U, E).

Question Does G admit an HAMILTONIAN CYCLE, 7.e. a cycle that includes
every vertex of U exactly once?

HAMILTONIAN CYCLE is a classical example of decision problem and examples of
positive and negative instances are depicted in Figure 2.1

Given an algorithm A, we can define several metrics in order to determine its
complexity. Two main kinds of metrics are widely used, the time complezity that aims
at giving an idea on how much time will be needed by A to reach its end conditions,
and the space complezity giving some clues on the amount of memory required by A.
These metrics are often expressed in function of the size of the instance.

Notation 2.1. Given II a problem and a Il-instance I € {0,1}", |I| denotes the size
of the instance. It represents the length of the word on the alphabet {0,1} that encodes
the instance.
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Figure 2.1: On the left a graph admitting an Hamiltonian Cycle (positive instance),
on the right a graph without Hamiltonian Cycle (negative instance).

Throughout this manuscript, we focus on the time complexity and more precisely
on the worst case time complezity. Intuitively, this complexity gives an order of magni-
tude of the maximum number of atomic operations that an algorithm performs before
reaching its end conditions.

Definition 2.2. Given a decision problem I1 and an algorithm A, we say that A
decides or solves 11 in time f(n) if given any instance I € {0,1}*, A determines
whether I € D}y or not in at most f(n) operations, with n = |I|.

This order of magnitude is commonly expressed in function of the size of the algo-
rithm input and using the Big-O-Notation.

2.1.2 The NP complexity class

Definition 2.3 (P). The class P is the set of all decision problems that can be solved
with a deterministic algorithm running in polynomial time.

In the light of the above, P contains the easy problems. However, P is a restrictive
class since, for a great number of natural problems no efficient algorithm is known. For
instance, HAMILTONIAN CYCLE previously defined is not known to be in P. Neverthe-
less, given G = (U, E), an instance of HAMILTONIAN CYCLE and a set of edges T' C FE,
determining whether T defines an Hamiltonian cycle can be done in polynomial time.
This motivates the introduction of the class NP.

Definition 2.4 (NP [Wil02]). The class NP is defined as the set of decision problems
IT that admit a polynomial verifier A, i.e. an algorithm with the following properties:

1. A runs in polynomial time,

2. given a positive instance I € {0,1}* of 11, there exists y € {0,1}" such that
ly| = O(poly(|I])) and A with input (I,y) returns true,

3. gwen a negative instance I € {0,1}* of 11, for every y € {0,1}" such that |y| =
O(poly(|1])), A with input (I,y) returns false.

Considering a positive instance I of 11, y is a polynomial certificate.
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In other words, given a positive instance I of decision problem IT € NP, a polyno-
mial certificate is a solution of this problem ensuring that I is a positive instance. On
the Figure 2.1, a polynomial certificate can be depicted by the order of the vertices in
the cycle i.e. 1,3,5,2,4. Note that this certificate is not necessarily unique, indeed,
1,2,4, 5,3 also ensures the existence of a solution and is hence a polynomial certificate.

Remark 2.1. Every problem belonging to P also belongs to NP and thus P C NP.

Note that the strictness of the inclusion is still an open problem, but the correctness
of the conjecture stating that P # NP (and thus that P C NP)) is widely accepted.

Considering the previous hypothesis as true, natural questions arise: How can we
identify problems belonging to NP but for which a polynomial-time algorithm is not
known? Can we characterize them? Is there relationships between problems in P,
problems in NP7

A first part of the answer has been provided by Karp when he specified what will
be called the Karp reduction [Kar72].

Definition 2.5 (Karp reduction [Kar72|). Given two decision problems I1; and Ila, a
Karp reduction is a function f:{0,1}" — {0,1}" such that:

e f is computable in polynomial time,

o for every I € {0,1}", I € Dﬁl if and only if f(I) € Dﬁ:.
We note then 11; <k Ils.

This reduction is used in the following theorem.

Theorem 2.1 (Karp reducibility [Kar72]). Given two decision problems I1y and Iy, if
Iy € P and I1; <k Iy, thus I1; € P. We say that Karp reduction preserves membership
mn P.

The intuition behind this theorem is quite simple: given two problems II; and Ils,
the existence of both an efficient algorithm solving IIy and another efficient algorithm
that “transforms II; into Ils”, implies the existence of an efficient algorithm for II;.
Indeed, given I a Ilj-instance, the algorithm that executes the function f on I and
solves the Ilo-instance f(I), solves I in polynomial time.

Corollary 2.1. Gien two decision problems Il and Ily such that 1Is € P and
II; <k Ils, thus II; € P.

In scientific literature, a generalization of the Karp reduction is often used. It is
called the Turing reduction.

Definition 2.6 (Turing reduction [Pas04|). Given problems II; and Ilp, II; Turing-
reduces to Iy, noted 11y <t 1ly if and only if there exists an algorithm A; solving 11y
by calling, a polynomial number of times, an algorithm As for Ils, such that if As runs
wn polynomial time, thus Ay runs in polynomial time.
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The Turing reduction can be understood as follows. Given two decision problems
II; and 115, a Turing reduction is an algorithm that can solve efficiently any II;-instance
if there exists an efficient subroutine that solves any Ils-instances. A Karp-reduction
is clearly a Turing-reduction solving a single Ils-instance.

Notation 2.2 (Polynomial reduction). Given two problems 11y and Ila, a polynomial
reduction (Karp or Turing reduction) from 11 to Ily is denoted by 11 <Ils.

Consider two problems IIq,IIs such that II; <Ily, thus the problem Il is said
harder than II; since every instance of II; can be solved by solving an instance of Ils.
Note that this reduction is transitive:

Remark 2.2. Given three problems Il1y,1ls and I3, if 11y <Ils and 1l <Il3 thus
II; <II5.

Polynomial reductions are useful tools. They allow us to highlight complexity
relationships between problems. A natural question at this point is to determine
whether there exists a problem which is harder than every other problem? And, to a
lesser extent, to determine whether there exists a problem in NP which is harder than
every other problem of NP7 These questions motivate the introduction of the notion
of hardness and completeness.

Definition 2.7 (NP-hardness [Lee90]). A problem Iy is said NP-hard if and only if
for every problem 11, € NP, 1l <II;.

Thus an NP-hard problem is a problem that is harder than every problem of
NP. Thus, based on the hypothesis that P # NP, these problems do not admit a
polynomial-time algorithm. Indeed such an algorithm, composed with the polynomial
reduction algorithm, would provide a polynomial-time algorithm for every problem in
NP. This contradicts the hypothesis P #= NP.

Note that an NP-hard problem does not necessarily belongs to NP. We will see
in next section that NP-hard can describe problem that are not in NP, such as some
optimization problems. Actually, an NP-hard problem that belongs to NP is said
NP-complete:

Definition 2.8 (NP-completeness). A decision problem I1; is NP-complete if and
only if:

1. TI; is NP-hard,

2. 11 € NP.

Based on these definitions, the NP-completeness of a problem II can be proved
by checking if II € NP and then by providing a polynomial reduction from another
NP-complete problem. The only thing left, is to find an initial NP-complete problem.
We easily remark that the previous mechanism of proof relies on the existence of a
problem already proved NP-complete, and thus is of no use to initiate it.
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Decision Problem 2 SAT

Input A set U of binary variables x1,xs,...,x,, to whom are associated
two litterals z1, %71, ..., Tn, Tp, a set C of clauses C1, Co, ..., C)y,, each
clause being a disjunction of literals, and a binary formula ® = C} A
A Cm_

Question Does an affectation of values 0 or 1 to the variables exist such that
d=17

In fact, the problem being proved NP-complete is called SAT and is defined as
follows.

The following theorem has been shown independently by Cook [Coo71] in the
United State in 1971 and by Levin [Lev73] in USSR in 1973.

Theorem 2.2 (Cook-Levin Theorem [Coo71; Lev73|). SAT is NP-complete.

Cook proved the NP-completeness of SAT by using the definition of NP based
on non-deterministic Turing machines. Indeed, a problem is said in NP if it can be
solved in polynomial time by a non deterministic Turing machine'. Cook proved that
any problem that can be solved in polynomial time with such a Turing machine can
be reduced to an instance of SAT.

This closes the introduction of tools mainly used to classify decision problems.
However, there exist other kinds of problems, and this manuscript mainly focus on the
theoretical aspects of a problem of a particular kind: the optimization problems.

2.1.3 Optimization problems

Optimization problem differ from decision ones. In these problems we consider the
best solution. In other words, we are given a cost (or profit) function that allows us
to evaluate the quality of a solution. The objective is then to find the solution of the
problem that minimizes (resp. maximizes) the cost (resp. the profit) function. Note
that this solution is not necessarily unique.

Definition 2.9 (Optimization Problem [Cre97]). An optimization problem II is a
four-tuple (Z, sol, m,type) where:

e 7 is the set of instances of 11

e given an instance I € T, sol(I) denotes the set of solutions of I,

!For more informations about non deterministic Turing machines and their relation with NP, we
refer the reader to two excellent books written respectively by Papadimitriou [Pap94] and Garey and
Johnson [GJT79].
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e given an instance I € T and x € sol(I) a feasible solution of I, m(I,x) denotes
the value of the solution x of I, m is called the objective function.

e type € {min, max} determined whether II is respectively a minimization problem
(in this case, the value of a solution is called the cost, and the objective is to
minimize the cost of a solution) or a maximization problem (in this case, the
value of a solution is called the profit of a solution, and aim at mazimizing it).

Definition 2.10. Given an NPO problem I1 = (Z, sol, m, type), and an instance I €
Z, a solution S satisfying m(1,S) = type {m(I,z): x € sol(I)} is called an optimal
solution. We denote such a solution as opt(I).

Definition 2.11. Given an optimization problem Il and an algorithm A we say that
A solves 11 in time f(n) if, for any -instance I, A returns an optimal solution of I
in at most f(n) operations, where n = |I|.

Remark that given an optimization problem II, we always can define a decision
problem, asking whether, given an integer k, a solution of profit greater than k or of
cost lesser than k does exist?

Definition 2.12 (Associated decision problem). Given an optimization problem II =
(Z,sol,m,type), we define Il the associated decision problem as follows:

e a Il -instance can be defined as a couple (I,k) composed with a Il-instance I € T
and a strictly positive integer k,

e an instance (I, k) is positive if and only if there exists a solution x € sol(I) such
that m(I,x) > k if type = max or m(I,x) < k otherwise.

We can remark that some optimization problems have NP-complete associated
decision problem while some others have their associated decision problem belonging
to P. Does this imply that some optimization problems are harder than others?

This natural question motivates the introduction of the NPO and PO complexity
classes.

Definition 2.13 (NPO [Pas04]). NPO is defined as the set of optimization problems
I1 = (Z, sol, m, type) verifying the following properties:

1. Given an instance I, we can define in polynomial time in the size of |I| whether
I €7 or not. We say that I 1s recognizable is polynomial time.

2. The exists a polynomial p such that for every instance I € T and for every feasible
solution x € sol(l), x € {O,l}p(lll). In other words, given an instance I € T,
every feasible solution of I can be encoded by a word of size polynomial in |I|.

3. Given an instance I € T and a solution x, we can define in polynomial time
whether x belongs to sol(I) or not.
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4. For every instance I € T, a feasible solution x € sol(I) can be found in polyno-
mial time in |I|.

5. For every instance I € T and for every solution x € sol(I),m(I,x) is computable
in polynomial time in |I|.

Proposition 2.1. The decision problem Il associated to an NP O optimization prob-
lem 11 belongs to NP.

Indeed, the existence of a polynomial verifier for Il; is ensured by Properties 3
and 5, given in Definition 2.13 of II.

As for the class P on decision problems, we can define the class PO on the opti-
mization problems based on definition 2.11.

Definition 2.14 (PO). The class PO is the set of all optimization problems that can
be solved in polynomial time.

Proposition 2.2. The decision problem 11, associated to a PO optimization problem
IT belongs to P.

Indeed, if there exists an algorithm providing the best solution for II it is easy to
determine whether there exists a solution better than an integer k. This proposition
can be rephrased as follows:

Proposition 2.3. Given an optimization problem II and its associated problem Il
such that Il is NP-complete, thus 11 ¢ PO unless P = NP.

We close this section on the following interesting remark on the classification of
optimization problems:

Remark 2.3. An optimization problem with associated NP -complete decision problem
18 NP-hard.

2.2 Approximation Algorithms

As for decision problems being NP-complete, the most interesting and natural opti-
mization problems do not belong to PO. Hence it is very unlikely to find a polynomial-
time algorithm that solves optimally at least one of them. How can we then handle
such problems? A part of the answer can be determined by analyzing the following
sentence: “It is very unlikely to find a polynomial-time algorithm that solves optimally
an NP-hard optimization problem”. Indeed, this sentence highlight the fact that, if
P £ NP, we can not ensure efficiency and exactness of an algorithm, but we can try to
make concessions on the efficiency or on the exactness of it. Based on this observation,
tools have be developed either to obtain, in polynomial-time, a solution which is non
optimal, or to find an optimal solution allowing non polynomial-time algorithms.

In the first case, the objective is to design polynomial-time algorithm providing
solutions without guarantee on the optimality of such solutions. However, in this
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manuscript we will focus on a remarkable kind of such algorithms, called the approzi-
mation algorithms. The approximation algorithms run in polynomial-time but give us
a guarantee on the gap between the value of a computed solution and the value of an
optimal one.

We can then define the performance ratio of a solution.

Definition 2.15 (Performance ratio [Cre97]). Given an NPO problem II = (Z, sol,
m, type), an instance I € T and a solution of this instance x € sol(I), the performance
ratio of x is defined as:

R(I,x):max{m(fa opt(I))  m(I,x) }

m(lw) (I, opt(I))
By definition, the performance ratio of any solution x verifies R(I,z) > 1.

It can be seen as an intuitive measure of the gap between a solution of an instance
and one of its optima: better is the solution, closer from one is the ratio. By definition,
a performance ratio is greater than one, and a solution with performance ratio equal
to one is an optimal solution of the considered instance.

Let us remark that this measure of solution quality is not the only one. Indeed,
in opposition to this multiplicative performance ratio we can define an additive one.
Given an instance I of an NPO problem II and a solution x € sol([), the additive
performance R*(I,z) is defined by:

RT(I,7) = max {m(I,opt(I)) — m(I,x),m(I,x) — m(I,opt(I));}

We can, also cite the differential ratio, based on the observation that the value of a
solution can be seen as a convex combination of the value of an optimal solution, and
the value of a worst solution. Hence, given an instance I of an NPO problem II and
a solution x € sol([), if we note worst(I) a worst solution, the ratio is defined by:

~Im(I,worst(I)) — m(I,x)|
o) = |m(I, worst(I)) —m(I,opt ()]

This ratio takes values in [0, 1], but as for performance ratio, an optimal solution
has a ratio equal to 1. For more informations on differential ratio and the associated
complexity classes we refer the reader to the PhD Thesis of Bruno Escoffier [Esc05]2.

From now we only focus on the performance ratio as specified in Definition 2.15.
The notion of approzimation algorithms is deeply related to the notion of performance
ratio. Informally, an approximation algorithm is an algorithm that returns, for every
instance of a problem, a solution whose performance ratio is bounded by a function.
Thus, it offers the guarantee that the returned solution cannot be arbitrarily bad.

Definition 2.16 (Approximation algorithm [Cre97|). Given II = (Z, sol,m,type)
an NPO problem, an algorithm A for I1 and a function p : T — [1,4o00[, A is a
p—approzimation algorithm if and only if it verifies the following properties:

2This manuscript is written in French.
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1. VI € T the solution returned by A for instance I, denoted A(I), belongs to sol(I),
2.Vl €Z,R(I,A(])) < p(I).
p 18 called the ratio of the algorithm.

In other words, given II = (Z, sol,m, min) (resp. II = (Z,sol, m, max)) an NPO
problem, a p-approximation algorithm for II is a polynomial-time algorithm that com-
putes, for every Il-instance I, a feasible solution A(I) € sol(I) with cost m(I,.A([))
satisfying m(I,opt(I)) < m(I, A(I)) < pxm(I,opt(l)) (resp. with profit m(I, A(I))

satisfying W <m(I, A(I)) < m(,opt(]))).

Definition 2.17 (Approximability). If an NPO problem I1 admits a p-approzimation
algorithm running in time f(n), it is said p-approzimable in time f(n).

Based on the previous definition, we can make a remark on approximability of a
problem.

Remark 2.4. The approzimability of an NPO problem 11 is defined by its polynomial-
time approzimation algorithm with the best ratio.

We can then use this remark to define several complexity classes. One of the most
natural is the class of NPO problems that admits an approximation algorithm with
constant ratio. It is called APX.

Definition 2.18 (APX [Aus+99]). An NPO problem II belongs to APX if and only
if there exists a fized constant r > 1 such that 11 is r—approzimable.

The following class, called PTAS, contains every problem that admits an approx-
imation algorithm whose ratio can be as close to 1 as desired. This algorithm achieves
this ratio by making concessions on execution time since its running time strongly
depends on the desired precision.

Definition 2.19 (PTAS |[Aus+99]). An NPO problem 11 belongs to PTAS if and
only if, for every fized € > 0, it is (1 + €)-approzimable.

In fact, we make a slight abuse by talking about “an approximation algorithm
whose ratio can be as close to 1 as desired”. Indeed each NPO problem II belonging
to PTAS admits an approximation algorithm for every fixed ¢, in other words II admits
an infinity of approximation algorithms, and the ratio of these algorithms depends on
¢. This kind of family of algorithms is called an approzimation scheme.

Note that there exist several approximation schemes defined by their complexity
dependency in . Indeed the time complexity is given in function of the input size but
also in function of €. However, since ¢ is fixed for every algorithm of the scheme, even
approximation scheme running in O(nl/s) are considered to be polynomial. Indeed,
with € fixed, 1/e is considered as a constant. An approximation scheme with exponential
dependency on 1/e, is called Polynomial-Time Approzimation Scheme (also known as
PTAS).

Hence the Definition 2.19 of the complexity class PTAS can be rephrased using
the notion of approximation scheme.
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PTAS

EPTAS

FPTAS

Figure 2.2: Representation of a part of the approximation classes hierarchy if P £ NP.

Definition 2.20 (PTAS). An NPO problem II belongs to PTAS if and only if it
admits a PTAS.

Since exponential dependency in ¢ are authorized, a PTAS can quickly be inefficient
in practice. This motivates the introduction of more restrictive approximation schemes.

Definition 2.21 (EPTAS [CT97|). An NPO problem belongs to EPTAS if and only
if it admits an Efficient Polynomial-Time Approximation Scheme, i.e. an approzrima-
tion scheme running, for every fized €, in time O(n) with ¢ a constant independent of
E.

In this class can be found approximation running in time O(f(1)poly(n)) with f
a function that can be exponential in %

Once again, the exponential dependency in % can lead to inefficient algorithm for
small €. We introduce then an even more restrictive approximation scheme.

Definition 2.22 (FPTAS [Aus+99|). An NPO problem belongs to FPTAS if and
only if it admits a Fully Polynomial-Time Approzimation Scheme, i.e. an approrima-
tion scheme running in time polynomaial 1n both the size of the input and %

Remark 2.5. [t is clear that PO C FPTAS C EPTAS C PTAS C APX C NPO.
The strictness of the inclusion remains an open problem. Indeed PO = FPTAS =
EPTAS = PTAS = APX = NPO if and only if P = NP.

A graphical representation of this remark is given on Figure 2.2. We point atten-
tion of the reader on the fact that the introduced hierarchy is not complete. Some
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complexity classes such as poly — APX or Log — APX, finding their place in the
hierarchy between APX and NPO, have not been presented. For a more complete
description of this hierarchy we recommend the manuscript of Bruno Escoffier [Esc05]
and an excellent book written by Giorgio Ausiello et al. [Aus+99].

As for decision problems and related complexity classes, given an optimization
problem II, the objective will be to find clues on its complexity by finding the com-
plexity classes it belongs to. This can be done by inherent properties, e.g. the existence
of a PTAS to prove the membership in PTAS, or by highlighting relations among con-
sidered problems. This motivates the introduction of another kind of reductions: the
approximation preserving reductions.

2.3 Approximation Preserving Reductions

This section aims at presenting a few numbers of approzimation preserving reductions.

Let us first remark that, given two NPO problems 1I; and Ils, the already seen
reductions (Karp and Turing reductions) are not appropriate. Indeed, a reduction
that given two problems II; and Ily, maps any yes-instance of 1I; to a yes-instance
of Ily is not sufficiently expressive to handle the power of expression of optimization
problems. Furthermore, to highlight a mapping between the two problems, we need
not only a polynomial-time algorithm transforming any II;-instance into a Ils-instance,
but also another polynomial-time algorithm that associates in return the solutions of
the IIs-instance to the solutions of the initial II;-instance.

This motivates the following definition of a polynomial-time reduction.

Definition 2.23 (Polynomial-time reduction [Cre97]). Given two NPO optimization
problems 11y = (Z1, soly, my,typer) and Iy = (Zy, sole, ma, types), a polynomial-time
reduction from 11y to Iy is a couple of polynomial-time computable functions (f,g):

: Il — IQ X 80 So
ey g { B seRUE) sy

f 1is such that to any instance of I € Iy of 11y, it associates an instance f(I) of Ils.
And given an instance I € Iy, to any solution of constructed instance x € solay(f(I)),
g associate a solution of initial instance g(I,x) € soly(I).

The scheme induced by this definition can be depicted by Figure 2.3.

Notation 2.3. In a general way, giwen two optimization problems 11y and Ily, the
existence of a polynomial reduction (f,g) from 11y to Iy is noted 11y <Ils.

In a first time we extend the notion of membership preservation, introduced with
the Karp reduction.

Definition 2.24 (Membership preservation). Given two NPO problems 11,115, a
polynomial-time reduction (f,q) such that 11y <Ily and a complezity class C, (f,qg)
preserves membership in C if and only if Illo € C=11; € C.
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H1 HZ
I'el, fI) €I
g(I,x) € soli(I) x € soly(f(1))

Figure 2.3: General reduction scheme.

This notion allows us to extend the notion of completeness to any complexity class.

Definition 2.25 (Completeness [Pas04; Lee90|). Given two classes of NPO, C and
C’, and a polynomial-time reduction R that preserves the membership in C’, a problem
I1; is said C—complete in regard of (C’, R) if and only if I1; € C and for every problem
H2 Of C, H2 §R Hl.

Note that this definition generalizes the definition of NP —completeness previously
defined. In fact, we defined the NP—completeness in regard to (P,<t). In the
following, in order to avoid heavy notation, we will use the terminology C—complete
instead of C—complete in regard to (C’, R) when C’ is included in C. For instance,
given a polynomial-time reduction R that preserves membership in PTAS, a problem
II; € APX such that VII, € APX, II; <pg II; will be said APX-complete instead of
APX-complete in regard to (PTAS, R).

We first introduce the easiest, but also the most strict, approximation preserving
reduction. Given two NPO problems II; and Ils, this polynomial-time reduction
maps, to any solution of a Ilj-instance, a solution of the corresponding Ils-instance
of same cost. It follows that this reduction can exist only between NPO problems
sharing the same type.

Definition 2.26 (S-reduction [Cre97|). Given two NPO problems 11y, Iy and a re-
duction (f,g) from 1y to g, if:

1. for any I € Iy, ma(f(I), opty(f(1))) = ma(I, opty(I)),
2. for any I € I, and any solution x € sola(f(1)), mi(L,g9(L,x)) = ma(f(I),x).
then (f,g) is an S-reduction.

Notation 2.4. Given two NPO problems 11, and Ily, 11} S-reduces to 1ls is denoted
IT; <s1ls.

Several S-reductions are given in this manuscript. They can be found in Sec-
tions 6.1.1, 6.1.2, 6.1.4 and 6.1.5.

Property 2.1. An S-reduction preserves the membership in FPTAS and APX.

In fact, an S-reduction preserves the membership in FPTAS, EPTAS, PTAS
and APX?. This motivates the following remark:

3This list is not exhaustive, but we restrict it to the classes we are interested in.
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Property 2.2. A polynomial-time reduction (whose execution time only depends on
the size of the instance) preserving membership in FPTAS also preserves membership
i EPTAS and PTAS but does not necessarily preserves membership in APX.

Indeed, the distinction between FPTAS, EPTAS and PTAS is made on the
running time of the algorithm and not on the approximation ratio. Thus a reduction
that does not deteriorate the approximation ratio and running time required to define
an FPTAS, will not neither deteriorate approximation ratio and running time required
to define an EPTAS or a PTAS. Thus, in the following we only specify the preservation
of the membership in PTAS and/or APX.

As we will see hereafter, the L-reduction, when considered on maximization prob-
lems is an illustration of a polynomial-time reduction that preserves membership in
FPTAS, EPTAS and PTAS but not in APX.

Another pertinent polynomial-time reduction is the strict-reduction. This reduc-
tion ensures that any solution of a Ils-instance is turned into a solution of the corre-
sponding Ilj-instance with a better performance ratio. This reduction is a little bit
less restrictive than the S-reduction since it allows the cost of the solution to be differ-
ent between the two problems. As such, it allows the reduction from a minimization
problem to a maximization one and vice versa.

Definition 2.27 (Strict-reduction [Cre97]). Given two NPO problems Iy, Il and a
reduction (f,g) from Iy to g, if for any instance of I1; I € Iy and for any solution
in the constructed instance of Iy x € sola(f(1)):

Rl(Iag(va)) < RZ(f(I)vx)

Even though this reduction is more permissive in terms of solution cost, the strict-
reduction preserves membership in the same complexity classes as the S-reduction.

Property 2.3. A strict-reduction preserves the membership in PTAS and APX.

Notation 2.5. Given two NPO problems 111 and 1y, Iy strict-reduces to 1y is de-
noted Iy <ggrict Ha.

Several strict-reductions can be found in this manuscript in Sections 6.1.3, 6.2,
7.1.1 and 7.1.2.

The last approximation preserving reduction we will use in this manuscript is the
linear-reduction. This reduction is a little bit more peculiar than the previous ones.
Indeed, while the S and the strict-reductions bound respectively the cost and the
performance ratio of the solution of the created instance, leading to intuitive results
in terms of approximation classes membership preservation, this reduction bounds the
optimal value of the created instance and the cost difference between any solution and
the optimal one.
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Definition 2.28 (L or linear-reduction [PY91]). Given two NPO problems I1;, IIa
and a reduction (f,g) from 11y to Iy, if there exist o, 3 € R™* such that, for any
IT;-instance of I € Iy and for any solution of the Ily-instance © € soly(f(I)), the
following holds:

ma(f(1), opty(f(1))) < ama(I, opt (1)) (2.1)

im1(1, opt (1)) —ma(L, g(1,2))| < Blma(f(I), opty(f(1))) —ma(f(D)2)|  (2.2)

Notation 2.6. Given two NPO problems 11y and Ils, 11y L-reduces to 11y is denoted
I <p IIp.

Another particularity of this reduction is that the conclusions that can be done
from the existence of such a polynomial-time reduction differ in function of the type
of the initial problem, as explained in Property 2.4.

Property 2.4. A linear-reduction from an NPO problem 11y to another NPO problem
Ils preserves membership in:

1. FPTAS if I1; s a mazimization problem,
2. FPTAS and APX if 11 is a minimization problem.

Property 2.4 is not as straightforward as previous ones. Let us explain the previous
property. We can identify four cases, but we provide details for only two of them:

Proof. Minimization — Minimization
In this case Equation (2.2) can be written as follows:

my(L, g(I,x)) —ma(I, 0%, (1)) < B (ma(f(1),x) —ma(f(I),0pt2(f(1))))
Using Equation (2.1)
mi(L, g(1,x)) —mi(l,0pt, (1) _ af (ma(f(1),z) — ma(f(1),0pts(f(1))))
m1(I,opt, (1)) - ma(f(I),0pty(f(1)))
Ri(I,g(I,x)) =1 < af (Re(f(I),2) — 1)
Ri(I,g(I,x)) < af (Re(f(I),x) —1) +1

4o

It is clear that if II, admits a PTAS, Iy admits also a PTAS. Indeed, for any
solution z returned by the algorithm Ry(f(I),x) < 1 + ¢ with a small ¢, thus
Ri(I,g9(I,z)) <14 afe =1+ ¢ with a small &’. Tt is also easy to see that if
[T, admits an approximation algorithm with a constant ratio, I1; admits an ap-
proximation algorithm with constant ratio. Hence, in this case, the membership

in PTAS and APX is preserved.

A similar proof can be done for a linear-reduction mapping a minimization prob-
lem to a maximization one.
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Maximization — Maximization
In this case Equation (2.2) can be written as follows:

my(1,0pt, (1)) —ma(l, g(I,2)) < B (ma(f(I),0pts(f(1))) —ma(f(I),z))

1 1
- 1_R1(I,g(1,x)) Saﬁ (1_R2(f(]),l')>
1 1
- Rl(Ivg(Ia'r)) Zl_aﬁ (1_R2(f(1)7$)>

Suppose now that IIs admits a PTAS. By definition for a small fixed ¢ and for
any solution x returned by the approximation scheme:

Ro(f(I),x) <1+4¢

1 1+e(l—ap
> et (- ) 2 T
Since aff > 1,1 — af < 0. If we note ¢ = |1 — af|, we can write:
N 1—ce
Ri(I,g9(I,z)) — 1+e¢
N RiLg(La) <~ ¢
1—ce
= Ri(I,g(I,x)) <1+¢ with &' = (it?;

Hence II; admits a PTAS.

Let us now see what happens if IIy admits an approximation algorithm with
constant ratio. In this case:

1—ap <1 — 1) <0
RQ(f(I)vx) N
By definition:

1

Ri(Lg(I,z) 21>1—af <1 Rz(f(I),x))

Thus R1(I,g(I,x)) is not constrained by the reduction and can take any value.
Similar calculus can be done for a linear-reduction mapping a maximization
problem to a minimization one, showing that in case of an initial maximization
problem, a linear-reduction gives no clue on the preservation of membership
in APX. In fact, Crescenzi et al. [Cre+99| highlight strong evidence that in
general the linear-reduction cannot be used to prove APX membership of a

maximization NPO problem.
O
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Hd 0
I > > A\ < A A‘i i, BN » v < :
m(f(D),ope(f(I) <a(l) 9 ' m(fI),opt(f(1)) = r(Ia(l)

Figure 2.4: Hlustration of the principle of a Gap-reduction

2.4 Gap-reduction

The next polynomial-time reduction we will define is not an approximation preserving
reduction but is mainly used to prove negative results. This reduction, called Gap
Reduction maps a promise problem to an optimization one.

Let us first introduce promise problems that are a generalization of decision prob-
lems.

Definition 2.29 (Promise Problem [SV97]|). A promise problem II is a couple of
disjoint subsets D C {0,1}* and Dy C {0,1}" of respectively positive and negative
instances.

Remark 2.6. Note that the decision problem can be defined as the set of all promise
problems 11 such that Djf U Dy = {0,1}".

The notion of decision problem solving can naturally be extended to promise prob-
lems as follows:

Definition 2.30. Given a promise problem I and an algorithm A, we say that A
decides or solves IL in time f(n) if given any -instance I € Df; U Dy, A determines
whether I € D}y or I € Dy in at most f(n) operations where n = |I|.

Definition 2.31 (Gap reduction [VazO0l]|). Let II; be a promise problem and II, an
NPO minimization problem. A reduction (f,q) from Iy to I, is said to be a r-
Gap-reduction if there exist two functions a and r such that, for every instance of
11y, I € Dy, the following holds:

1. T is a yes-instance = m(f(I), opt,(f(I))) < a(l)

2. I is a no-instance = m(f(I), opt,(f(1))) > r(I).a(I)

A graphical representation of this reduction is given on Figure 2.4. We can see that
yes-instances are mapped to II, instances with the optimal value being less that a(7).

On the other hand, no-instances of I1; are mapped to instances of 11, with optimal value
larger than r(I)a(I). It follows that, for any € > 0, a (r — £)-approximation algorithm
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for I, would solve II; in polynomial time. Indeed, given I a yes-instance for Ilg, the

cost of the optimal solution in f(I) verify: m(opt(I)) < a(I) and thus the solution S

computed by approximation algorithm verify: m(S) < (r(I) — ¢)a(I) < r(I)a(I). On

the other hand, given I an no-instance of Iy, f(I) > r(I)a(I) by construction. Hence,

such an algorithm implies the existence of a polynomial-time algorithm that solves II,.
From this, we deduce the following lemma.

Lemma 2.1. If there exists a r-Gap-reduction from an NP-hard promise problem 11,
to an NPO problem 11,, thus, for any e > 0, I1, does not admit a (r—e)-approzimation
algorithm unless P = NP.

2.5 Other complexity hypotheses

2.5.1 The Unique Game Conjecture

Previously, in Subsection 2.1.2, we introduced a widely accepted conjecture stating
that P and NP are distinct complexity classes. Naturally, other hypotheses are used
in computer science. This section aims at introducing one of them that will be used
in this manuscript.

This conjecture has been introduced in 2002, by Subhash Khot in [Kho02] and
formulated in terms of some particular two-provers one-round games called Unique
games. However, this formulation requires the introduction of a certain number of
notions that will not be useful in this manuscript. This motivates the formulation of
this conjecture under an equivalent but purely combinatorial way.

Let us first introduce UNIQUE LABEL COVER problem. This problem can be
described as follows. We are given k colors and a complete bipartite graph G =
(V,W, E). Each edge has a weight pe, such that the sum of the weights of all edges
is equal to one. Kach edge e comes with a label, where a label is a permutation
e : [k] — [K].

The objective is to find a coloring ¢ : V.U W — [k] of the vertices of the graph
that maximizes the weight of satisfied edges, an edge e = {u1,u2} being said satisfied
if and only if ¢(ua) = me(c(uy)).

This problem is formalized in Problem 1.

Examples of instances are given in Figures 2.5 and 2.6. On Figure 2.6, the bold
edge is unsatisfied, the pair o—@ being not part of its label.
The Unique Game Conjecture can be stated as follows.

Conjecture 2.1. UNIQUE LABEL COVER is NP-hard.

Remark 2.7. Instances of UNIQUE LABEL COVER admitting an assignment A such
that ¢(A) =1 can be detected in polynomial time.

A possible algorithm consists in selecting a node of the graph and for each of the
available color propagating the coloration with respect to the edge labels. Since the
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Optimization Problem 1 UNIQUE LABEL COVER

Input A complete bipartite graph G = (V, W, E), an integer k, for each e €
E a weight p such that ) __ppe = 1 and a collection of permutations
me : [k] — [k], called labels.

Output An assignment A of the labels to the vertices of V, W.

Objective  Maximize c¢(.A), the total weight of satisfied edges.

Figure 2.5: On the left, an instance of UNIQUE LABEL COVER with equal weights

Pe = 1/e,Ve € E and, on the right, an assignment A of the labels to the vertices such
that ¢(A) = 1.

instance is such that every edge of the graph can be satisfied, there exists a coloring
of the selected vertex such that the propagation does not lead to a conflict.

This hypothesis is used in Sections 6.1.4 and 8.1.1.

2.5.2 NP ¢ QP

We briefly introduce the class of decision problems called QP.

Definition 2.32 (QP). The class QP contains every decision problem that admits a
quasi-polynomial time algorithm, i.e. algorithms running in time 2°U°8™° for some
fized ¢ and where n is the size of the input instance.

Note that the relationship between P and QP is obvious. Indeed, the existence
of a polynomial-time algorithm for a problem naturally implies the existence of a
quasi-polynomial-time algorithm for the latter. It follows that P C QP. However its
relationship with NP is not as clear. Note that QP make no mention of a polynomial
certificate in its definition, this implies that there may exist problem being elements
of QP while not being part of NP. On the other side, the inclusion of NP in QP is
unlikely as this would imply that every problem of NP admit a quasi-polynomial-time
algorithm.
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Figure 2.6: On the left, an instance of UNIQUE LABEL COVER with equal weights
Pe = e,Ve € E and, on the right, an assignment A of the labels to the vertices such

that ¢(A) = 8/9.

This leads us to introduce the following conjecture.
Conjecture 2.2. NP ¢ QP

Note that this statement is stronger than P # NP. Indeed, the correctness of this
conjecture implies the correctness of the P £ NP conjecture, since P C QP. On the
other hand, proving that P is not equal to NP gives no clue on the correctness of this
statement.

This hypothesis is used in Section 6.1.5.

2.5.3 Exponential Time Hypothesis

The previously introduced complexity conjecture states that there exist problems of
NP that cannot be solved in quasi-polynomial time. Impagliazzo et al. [IP01] in-
troduced an even stronger conjecture called the Exponential Time Hypothesis (ETH).
This conjecture can be written as follows.

Conjecture 2.3 ([IP01]). Vk > 3, k-SAT does not have a subexponential algorithm,
i.e. an algorithm running in time 2°") where n is the size of the input instance.

The correctness of this conjecture would highlight a problem of NP that does
not have subexponential algorithm and thus does not have a quasi-polynomial time
algorithm, proving at the same time the correctness of Conjecture 2.2. However ETH
can be proved to be false without implying anything for Conjecture 2.2. Indeed an
algorithm running in time 2" with ¢ < 1 is a subexponential algorithm but is not a
quasi-polynomial time algorithm.

We can then order the complexity hypothesis used in this manuscript based on
their strength:

P #NP <NP ¢ QP <ETH
This hypothesis is used in Sections 6.1.5 and 8.2.3.
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This section is a light introduction to Fixed Parameter Complexity Theory and some
of its common tools that will be used in this manuscript. For a complete overview of
this discipline, we refer the user to the reference works of Downey and Fellows [DF99]
and Flum and Grohe [FGO6].

3.1 Intuition and definitions

Before getting into the heart of the matter, let us come back on the sentence we in-
troduced in Section 2.2: “It is very unlikely to find a polynomial algorithm that solves
optimally an NP-hard optimization problem”. We saw that a first solution to handle
these NP-hard optimization problems is to design approximation algorithms. The
latter allow us to find solutions to these problems at the cost of optimality of these
solutions. Another possibility is to make concession on the speed of resolution. Of
course, it does not simply consist in designing brute force algorithms but to use struc-
tural properties of the problems to design algorithms whose exponential complexity
mainly depends on a parameter of the problem that turns out to be small.

A well-known example of this idea is the VERTEX COVER problem, formalized in
Problem 2. This problem is known to be one of the six NP-hard problems introduced
by Garey and Johnson [GJ79|. As such, it seems hopeless to find a polynomial-time
algorithm solving it optimally. However, given a graph G = (U, E), if we note k the

41
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desired size of the vertex cover of G, Chen et al. [WLC10] provided an algorithm
solving VERTEX COVER in time O(1.2738#n°W), with n = |U.

Remark that the naive enumeration algorithm solves the problem in O(n*). How-
ever, even though both of the previous algorithms run in polynomial time when k is
fixed, the algorithm of Chen et al. [IWLC10] is of more interest. Indeed, its dependence
in k is separated from its dependence in n.

Optimization Problem 2 VERTEX COVER

Input A graph G = (U, E).
Output A subset of vertices VC C U s.t. V{u,v} € E, ue VC orv e VC.

Objective  Minimize |VC|.

Another idea behind fixed parameterized complexity theory is to identify which
parameters, in this case k, make the problem hard to solve. Indeed, the existence of
an algorithm admitting a time complexity such as the time complexity of the Chen et
al. algorithm shows that a slight increase of the value of k drastically increases the
computation time of the algorithm and thus of the problem resolution.

Remark that, given an NP O optimization problem, one can imagine a wide range
of parameters more or less suitable to analyze it.

We can then define a parameterized problem.

Definition 3.1 (Parameterized problem |[DF13|). A parameterized problem is a lan-
guage Q C {0,1}* x N. The integer is called the parameter.

Notation 3.1. Given a parameterized problem @) and a Q-instance (I, k), |(I,k)]|
denotes the size of the instance.

VERTEX COVER parameterized by the size of the solution can be written as follows:

Parameterized Problem 1 VERTEX COVER parameterized by standard parameter

Input A graph G = (U, E).
Parameter A positive integer k

Question Does G admits a vertex cover VC of size |VC| < k?

Note that, in the latter, the value of the desired solution is called the standard
parameter.
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Definition 3.2. Given a parameterized problem @ and an algorithm A, we say that A
decides Q in time f(n) if and only if for any instance (I, k) € {0,1}" xN, A determines
in time f(n) whether (I, k) € Q or not.

In parameterized complexity theory, the emphasis is on the complexity dependence
with regard of a given parameter. This justifies the use of O* to express the complexity
of an algorithm. Intuitively, this notation is similar to the O notation except that the
terms polynomial in the size of the input are also hidden.

Now that parameterized problems are introduced, let us present a first interesting
complexity class called XP and defined as follows.

Definition 3.3 (XP class [FG06]). A parameterized problem @ C {0,1}* x N belongs
to XP if and only if there exists an XP-algorithm that decides @, i.e. an algorithm
deciding Q in time O(f(k)|(I,k)|9*)), where f and g are two functions computable in
polynomial time.

Intuitively, such an algorithm runs in polynomial time for every fixed k. Indeed,
once k is fixed, f(k) and g(k) turn out to be constants, leading to an algorithm running
in time O(poly(|(I,k)|)). An interesting consequence of such an algorithm is that, for
every fixed k, the increase of the computation time depending on the instance size
is similar to the increase observed for polynomial-time algorithm. Naturally, these
algorithms prove to be efficient in practice only for (very) small values of k.

This motivates the introduction of another kind of algorithms: the FPT-algorithms.

Definition 3.4 (Fixed Parameter Tractable [FGO06]). A parameterized problem @ C
{0,1}" x N i4s fixed parameter tractable (FPT) if there exists an algorithm that decides
Q in time O(f(k)poly(|{I,k)|)) where f is a function computable in polynomial time.

Such an algorithm is called an FPT algorithm and is said to run in time FPT with
respect to k.

Contrary to XP-algorithms that allow the exponent of |(I, k)| to be dependent of k,
FPT-algorithms constrain the exponential dependence in k within the function f. This
implies an efficient resolution of problems admitting this kind of algorithm for greater
values of k. Obviously one can imagine examples of function f leading to inefficient
algorithm even for small value of k. However, given a parameterized problem @, the
existence of an FPT-algorithm for @ is of great interest. Indeed:

e if f has small dependence according to k, then the FPT-algorithm can be an
efficient algorithm, even though k is quite large,

e no matter the behaviour of f in function of k, an FPT-algorithm gives strong
clues on the parameters that are responsible on the difficulty of the considered
problem.

Let us make few remarks on the notations that will be used throughout this paper.

Remark 3.1. A decision problem 11, is said fixed parameter tractable when param-
eterized by a function s : {0,1}" — N (noted FPT/x) if its parameterized version
(I1g, k) is FPT.
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Remark 3.2. By abusing the notation and to avoid multiplicity of formalisms, we will
say that a decision problem 11 is FPT/k instead of FPT/k with k = k(I) for any
II-instance I.

Remark 3.3. By misuse of language, an optimization problem II = (Z, sol, m, type)
15 said FPT when parameterized by k if and only if its decision version is FPT when
parameterized by k.

FPT algorithms help us to define a new complexity class, logically called FPT.

Definition 3.5 (FPT class). A parameterized problem Q C {0,1}" x N belongs to
FPT if and only if it admits an FPT algorithm.

For instance, VERTEX COVER when parameterized by the standard parameter is in
FPT. Indeed, we will see in next section that any instance (G = (U, E), k) of VERTEX
COVER can be reduced in polynomial time to an instance of size upper bounded by k2.
Thus the algorithm consisting in applying this preprocessing and enumerating every
subset of the newly created instance runs in time O(2k2p0ly(]G|)), which clearly is an
FPT-algorithm. VERTEX COVER parameterized by the standard parameter belongs
to FPT.

From the above definitions, we formulate the following remark.

Remark 3.4. FPT C XP.

In fact, FPT # XP unless P = NP. In the light of section 2.1, natural questions
arise:

1. Are there mechanisms, similar to polynomial-time reductions, that preserve
membership in FPT?

2. Are there problems that are known to be fixed parameter intractable? More
broadly, can we define a hierarchy of complexity classes such as the polynomial
hierarchy formerly superficially introduced?

The following definition answers positively to the first one.

Definition 3.6 (Parameterized reduction [FGO06]). Given two parameterized problems
Q1,Q2 C {0,1}* xN, a parameterized reduction is a pair of functions (f : {0,1}* xN —
{0,1}* x N, ¢ : N — N), such that:

1. f maps any Qq-instance (I, k) to a Q2-instance f({I,k)) = (I' k") and is com-
putable in FPT time with respect to k,

2. for every Qi-instance (I1,k), (I,k) is a yes instance if and only if f({I,k)) is a
yes-instance.

3. g is computable and is such that for any Qq-instance (I, k), k < g(k').
An FPT reduction from Q1 to Q2 is noted Q1 <ppT Q2.
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The principle behind this reduction is the same as the one behind Turing or
Karp reductions. Indeed, given two parameterized problems @)1 and (2, such that
Q1 <rpt @2, the existence of an FPT algorithm for ()2 implies an FPT algorithm for
Q1. Since we want to keep an overall algorithm running in time F PT/k, the function
f can be computed in time F'PT/k. Furthermore the second constraint, ensuring that
k is bounded by a function of %, avoid explosion of k through the transformation.
This leads to the following property.

Property 3.1 ([FGO06]). The parameterized reduction preserves the membership in
FPT.

Let us focus on the second stated question. As for NP next to P, there indeed
exist problems for which the existence of an FPT algorithm is very unlikely. Let us
introduce the notions that will be necessary for the definition of such a problem, and
at the same time the prerequisite to introduce the W-hierarchy.

In Section 2.1, we introduced the satisfiability problem, SAT. This problem gen-
eralizes a certain number of more particular satisfiability problems. These problems
are often defined thanks to a determined form applied to clauses. The most famous of
this form is probably the Conjunctive Normal Form (CNF), defined as follows:

Definition 3.7 (Conjunctive Normal Form). A Boolean formula is in conjunctive
normal form if it contains only conjunctions of disjunctions.

In other words, a logical formula is in CNF if and only if it contains only logical
and A, logical or V and unary negation — (the negation can only be used on a single
literal). For instance, when considering three Boolean variables x,y, z, the formula
(xVy)A(zV-yVz)isin CNF while the formula (z Vy) A =(x Vy V 2) is not.

We can now introduce the following problem.

Parameterized Problem 2 WEIGHTED 2-CNF-SATISFIABILITY (W-2-CNF-SAT)

Input A boolean formula ® in Conjunctive Normal Form each clause con-
taining at most 2 litterals.

Parameter A positive integer k.

Question Does an affectation of 0 and 1 to the variables of ® exists such that
® = 1 and such that the number of variables set to 1 is at most equal
to k7

Remark that, when there is no bound on the number of variables that can be
set to 1, the problem can be solved in polynomial time. However, this version turns
out to be NP-complete. Indeed, there exists a reduction from VERTEX COVER to
W-2-CNF-SAT.
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Proof. Consider an instance of vertex cover defined by a graph G = (U, E). To each
vertex v € U, we associate the Boolean variable z, that will be set to 1 if and only if
v € VC. To each edge (uv) € E, we associate the clause z,, V z,. The formula ® is
defined as:

b = /\ Ty V Ty
(wv)eE

Clearly @ is written in CNF, and each clause contains exactly two literals. The
constructed instance is then an instance of W-2-CNF-SAT. Furthermore, ® is satisfied
if and only if for each clause at least one of the variables in the clause is set to one
(since ® does not contain negation), this implies that for each edge at least one of
its end vertices has been selected. By definition, such a set of vertices is a vertex
cover. Note also that if @ is satisfied with at most &k variables set to one, V' C has size
|VC| < k. Lastly, W-2-CNF-SAT is in NP, thus, it is NP-complete. O]

This NP-complete problem will be used to defined a class of likely intractable
problems.

Definition 3.8 (W]1]| [DF13]). A parameterized problem belongs to W [1] if and only
if it FPT-reduces to W-2-CNF-SAT.

Note that the classical definition of this class is based on the structure of the logical
circuit used to solve the problems of the class. However such a definition requires the
introduction of notions that will be of no interest in this manuscript.

From Definition 3.8, we deduce the following property.

Property 3.2. Every parameterized problem belonging to FPT belongs to W [1].

The proof can be stated as follows. The FPT-reduction can be executed in time
FPT in the considered parameter. Thus, given a parameterized problem belonging in
FPT, the algorithm consisting in solving the problem and returning a trivially yes or
no instance of W-2-CNF-SAT in function of the result of the FPT algorithm, is an
FPT-reduction.

As for SAT being the first problem proved NP-complete, W-2-CNF-SAT is the
first problem to be proved W{l]-complete.

Theorem 3.1 (Analog of Cook Theorem |[DF99|). W-2-CNF-SAT is complete for
W/1].

By combining the notion of completeness previously defined and the FPT-reduction
that preserves membership in FPT, a parameterized problem can be proved W|[1]-
complete by using same mechanisms as those used to prove NP-completeness in pre-
vious chapter. Indeed, to prove W[l]-completeness of a parameterized problem, two
things are necessary: the membership of this problem in W|1] and an FPT reduction
from a W|[1]-complete problem.
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Corollary 3.1. A parameterized problem Q C {0,1}" x N is W/1[-complete if and
only if there exists a FPT-reduction from W-2-CNF-SAT to Q.

The reasoning used to define WJ1] can also be used to define a more general
complexity class called W|2| defined with use of a generalization of W-2-CNF-SAT.
In fact, it is possible to define the whole W-hierarchy with use of some particular
cases of the parameterized version of SAT. Nevertheless, a complete description of the
whole W-hierarchy is of no interest within the framework of this thesis. For such a
characterization of this hierarchy we refer the reader to the reference work of Flum
and Grohe [FG06|.

Let us characterize W|2].

Parameterized Problem 3 WEIGHTED CNF-SATISFIABILITY (W-CNF-SAT)

Input A boolean formula ® in Conjunctive Normal Form.
Parameter A positive integer k.

Question Does an affectation of 0 and 1 to the variables of ® exists such that
® = 1 and such that the number of variables set to 1 is at most equal
to k7

Definition 3.9 (W/[2]| [DF13|). A parameterized problem belongs to W [2] if and only
if it FPT-reduces to W-CNF-SAT.

W-2-CNF-SAT being a particular case of W-CNF-SAT, every parameterized prob-
lem that FPT-reduces to W-2-CNF-SAT, also FPT-reduces to W-CNF-Sar. It fol-
lows that:

FPT C W[1] C W[2]

This inclusion are supposed to be strict unless P = NP. As for other complexity
classes, a parameterized problem @ = (II, k) is said W|[2|-hard if and only if every
problem of W|2| FPT-reduces to @), and W|2|-complete if and only if it is W|2|-hard
and it belongs to W|2].

Finally, we superficially introduce the top-level complexity class of the W-hierarchy,
allowing us to give an large overview of this hierarchy without describing intermediate
classes. This class relies on the parameterized version of SAT.
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Parameterized Problem 4 WEIGHTED SATISFIABILITY (W-SAT)

Input A boolean formula .
Parameter A positive integer k.

Question Does an affectation of 0 and 1 to the variables of ® exists such that
® = 1 and such that the number of variables set to 1 is at most equal
to k7

W-SAT defines the class W[SAT] and as a generalization of W-CNF-SAT and thus
W-2-CNF-SAT we can write:

FPT C W[1] C W[2] C --- C W[SAT]

As previously, the inclusion is supposed to be strict. Furthermore, given an instance
of W-SAT defined by a formula ® and an integer k, it is possible to determine whether
® can be satisfied with at most k variables set to 1 in time O(n*) where n is the
number of variables. This can be done by enumerating every k-tuples of variables and
verifying whether @ is satisfied. This implies that W-SAT is polynomial when £k is
fixed, and thus:

FPT Cc W[1]Cc W]2| C --- C W[SAT] Cc XP

3.2 Kernelization

Now that basics of fixed parameterized theory have been introduced, we present few
techniques developed and formalized that became folklore of the FPT community.
The first presented technique is quite intuitive but nevertheless powerful. It is called
kernelization and can be formalized as follows.

Definition 3.10 (Kernelization [FG06|). Given a parameterized problem Q C {0,1}* x
N, a function K : {0,1}*xN — {0,1}"xN is a kernelization if there exists a computable
function h : N — N such that for any instance (I,k) of Q, (I,k) is a yes-instance if
and only if K({I,k)) is a yes-instance and such that |K({I,k))| < h(k).

The image K({I,k)) of an instance (I, k) is called the kernel and h is called the
size of the kernel.

A kernelization can be seen as a preprocessing algorithm applying on input instance
a certain number of rules. In general these rules reduce the input instance by identifying
structures that can be proved to be part of the solution, or by deleting others than
can be proved to not belong to the solution.

In previous section, we mention a transformation that can be applied on any in-
stance of VERTEX COVER parameterized by the standard parameter k£ bounding the
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size of the new instance by O(k?). Such a reduction is, in fact, a kernelization. Let us
explicit it.

Consider an instance (G = (U, E), ) of VERTEX COVER parameterized by standard
parameter. We define the following rules:

1. If K > 0 and there exists a vertex v € U of degree greater than k, thus v is part
of the solution. Indeed, since every edge has to be covered by the vertex cover
VO, if v ¢ VC, thus VC contains every neighbours of v and has size greater
than k. Hence, we add v to VC' and decrease k by one.

2. If v is an isolated vertex, v can be removed since it has no adjacent edges.

3. If there exists an edge {u,v} € E such that one of the end points, let us say u
w.l.o.g., has degree equal to one thus we can add v to VC. Indeed, if u is part
of the solution, then we can select v instead without increasing the size of VC.
Since w is only adjacent to {u,v}, thus VC is still a vertex cover. We can then
add v to VC' remove every adjacent edges and decrease k£ by one.

Once this rules can not be applied anymore, we claim that if (G = (U, E), k) is
a yes-instance thus the constructed instance (G’ = (U’, E'), k') has at most k"> edges
and 2k vertices. If computed instance contains more than k? edges, (G', k') (and thus
(G, k)) is a no instance. Indeed, each vertex in U’ has at most &’ neighbours and can
then cover at most k&’ edges, it follows that no more than k2 edges can be covered by
a set of k' vertices. Since k&’ < k, this algorithm is a kernelization.

Note that every fixed parameter tractable parameterized problem admits a kernel-
ization depicted on Algorithm 1.

Algorithm 1: Kernelization from FPT-algorithm

Data: An instance (I, k) of a parameterized problem @, an FPT-algorithm A
for @ running in time O(f(k).|I|%)
Result: A kernel of (I, k)

if |I] < f(k) then
return (I, k);
Solve (I, k) with algorithm A4;
if (I, k) is a yes-instance then
return T a trivial yes instance of size |T'| < f(k);
else
return F a trivial no instance of size |F| < f(k);

Lemma 3.1 ([FGO06|). The Algorithm 1 is a kernelization for every parameterized
problem belonging to FPT.

Proof. Consider a parameterized problem @ C {0,1}* xN admitting an FPT-algorithm
A. Let us first remark that by construction, given an instance (I, k), the instance
computed by Algorithm 1 is a kernel:
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1. the instance is a yes instance if and only if (I, k) is a yes instance,
2. its size is upper bound by f(k).

Furthermore, Algorithm 1 runs in polynomial time. Indeed, if [(I, k)| > f(k), A
runs in time O(f(k).|(I,k)|¢) = O(|(I, k)|*T!), with ¢ being a positive constant.
Thus Algorithm 1 is a kernelization. O

We use Lemma 3.1 to prove Theorem 3.2.

Theorem 3.2 ([FG06]). A parameterized problem Q C {0,1}* x N is FPT if and only
if it admits a kernelization.

Proof. The existence of a kernelization for an FPT parameterized problem is ensured
by Lemma 3.1.

Let us the consider a parameterized problem @ and a kernelization K. By kernel-
ization definition, for every instance (I, k) of Q, |K({I,k))| < h(k) and K((I,k)) is a
yes instance if and only if (I, k) is a yes instance. Thus an exponential exact algorithm
on K((I,k)) runs in time O(f(K({I,k)))) < O(f(h(k))) and thus any exact algorithm
is an FPT-algorithm for Q. O

Remark that we can distinguish two kinds of kernels: polynomial and non poly-
nomial ones. Given a parameterized problem @ C {0,1}" x N, a polynomial kernel
for @ is a kernel with size in O(poly(k)). Theorem 3.2 proves that, @ is fixed param-
eter tractable if and only if it admits a kernel. No indication is given on the size of
such a kernel. It seems natural to ask whether every FPT problem admits a polyno-
mial kernel. The framework introduced hereafter aims at answering negatively at this
question.

Definition 3.11 (Polynomial equivalence relation according to [BJK14|). An equiv-
alence relation R on {0,1}" is called a polynomial equivalence relation if the two fol-
lowing conditions hold:

e There exists an algorithm that given two strings I, Iy € {0,1}", decides whether
I and Iy belong to the same equivalence class in (|I1] + |I2|)°M) time.

e For any finite set S C {0,1}", the equivalence relation R partitions the elements
of S into at most (mazxy,cs|I1])°WM classes.

Definition 3.12 (OR-cross-composition according to [BJK14]). Let I3 C {0,1}" be a
decision problem and let Q C {0,1}" x N be a parameterized problem. We say that 11
OR-cross-composes into Q) if there exists a polynomial equivalence relation R and an
algorithm which, given t strings belonging to the same equivalence class of R, computes
an instance (I*,k*) € {0,1}* x N in time polynomial in Y '_, |I;| such that:

o (I*,k*) is a yes instance < I; € Dﬁrl for some i € {1,--- |t}

e k* is bounded by a polynomial in max'_,|I;| + logt
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Theorem 3.3 (|BJK14]). If some decision problem 11y C {0,1}" is NP-hard and 11y
OR-cross-composes into a parameterized problem Q C {0,1}" x N, then there is no
polynomial kernel for Q unless NP C coNP /poly.

A similar cross-composition, called the AND-cross-composition can be defined in
the same way as the OR-cross-composition except that an instance (I*,k*) is a yes
instance < [; € Df{l for every i € {1,--- ,t}. The Theorem 3.3 has been later extended
to AND-cross-composition by Drucker et al. in [Drul5].

An example of usage of this framework can be found in Section 8.2.5.

We refer the reader to a book of Cygan et al. [Cyg+15| offering an intuitive but
nevertheless complete overview of the main lines and details of the kernel lower bounds
theory. Let us however formulate some remarks on the intuition behind such a result.

Note that the existence of a cross composition from a decision problem II; to a
parameterized problem @) allows us to store a possibly huge amount of informations
(contained in the equivalent instances of IIj) into a single instance of Q). Note that
this instance can be huge, but the AND-cross-composition ensures that the value the
parameter is bounded by a function that does not depend much on the number of
II1-instances. The intuition of Theorem 3.3, is that if II; is a hard problem, is seems
highly implausible that so much informations can be stored in a small amount of space.

But what does “highly implausible” stand for? The hypothesis NP ¢ coNP /poly
can be seen as a strengthened version of NP # coNP, where coNP is the set of
decidable problems such that negative instances admit a polynomial certificate. In
other words, for a decision problem in coNP, every negative instance can be verified
in polynomial time. It follows that, assuming NP Z coNP/poly, remains to assume
that it does not exist a general algorithm that solves every problem in NP and every
problem in coNP, even if this algorithm has access to a polynomial-size advice.

Conclusion

We end this introductory part on this notion of cross-composition. In the following
we enter the heart of the matter: the study of wafer-to-wafer integration problems.
This study will be performed along two main lines. On a first side, we focus on what
we call the theoretical aspects of the problem. We aim at classifying the problems and
some of their variants. In other words, we try to determine, in function of parameters,
the complexity of the problems and their main variants. This part is called theoretical
since it aims at giving clues on the underlying complexity of the problems. However, as
we will see in the following chapters, we highlight some positive results (membership
of some variants in P, subexponential of FPT-algorithms, ...) that can hardly be
used in practice.

On the other side, we focus on what we call the practical aspects of the problem.
This part aims at tackling real world instances. We present several resolution tech-
niques based on approximation algorithms, Integer Linear Programming formulations
or Constraints Programming formulations. We also try to highlight the advantages
and the drawbacks of each method and try to compare them when possible. However,
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the main work of this part, is the generation of a benchmark and computational results
of the techniques when applied to the benchmark.
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The previous part briefly introduced the complexity framework we will use hereafter. It
also informally introduced the context of this thesis and thus the considered problems.
However, before trying to take advantage of the presented tools, we need to modelize
the problems. This is the main goal of this first chapter. It also aims at introducing
notations, definitions and assumptions that will be used throughout this manuscript.

4.1 Modelling

In this section, we present the framework used to modelize and study the wafer-to-
wafer integration problems presented in the introduction. We consider several variants
of these problems presenting either a practical or theoretical interest. All these variants
share the same input. Let us define the way we modelize it.

As presented in the introduction, we consider m sets each containing n wafers. On
each wafer, p dies are engraved. Due to engraving techniques, some of the dies are
faulty. The position of the faulty dies on the wafers is known. An example of input is
given on Figure 4.1.

All the wafers of the instance contain exactly the same number of dies. We can
define an order on the latter. A wafer can thus be represented by a p-dimensional
binary vector such that the [** coordinate is set to zero if and only if the {** die in
the predefined order is a faulty one. The [** coordinate is set to one otherwise. The
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Figure 4.1: Example of input of a wafer-to-wafer integration problems, with m =

4,n ="7and p = 12.

The faulty dies are represented by black squares while viable

ones are represented by white squares.
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Figure 4.2: Example of order on the dies being used in to modelize wafers in the
practical study of wafer-to-wafer integration problems.

| | | |
'[110111101110]"  }[100101101001]! }[101010011100]} |[011011111011]!

Vl VZ V3 V4
f{101010101011f} f{110010001110[} f{111111101011[§ f{111010001111[§
§|101101101101|3 §|100110011100|3 §|000111001o11]3 §|011001101001]3

| | | |
3[11100100011013 3[11101100100113 3[11111011010113 3[11010001000013
§|111010011001|3 §|010100110011|3 §|101011101111]§ §|111111110001]§

| !
3|010001011001|3 3|000101111011|3 3\110111011010]3 3\110001001111]3
| | | |
3[01000101100111 3[11001100101011 3[10111110011111 1[011111011010]%
| | :

!

Figure 4.3: Wafer-to-wafer integration problem input of Figure 4.1 represented with
binary vectors.

Figure 4.2 presents a possible order on the dies. Figure 4.3 depicts the representation
with binary vectors of input represented in Figure 4.1.

It follows that an input of wafer-to-wafer integration problems can be modelized
by m multisets V!, ..., V™. Each multiset V* contains n vectors v!,...,v% being p-
dimensional. Every vector U;- is such that its component v;- [I] = 0 if and only if the I*
die on its corresponding wafer is a faulty one.

Note that we use multisets modelize the sets of wafers since two different wafers of
a same set can share the same representative vector as depicted on Figures 4.1 and 4.3
(fifth and sixth vector of V'1).

The objective of these problems is to create n stacks containing exactly one wafer
of each set. A solution S is therefore a set of n stacks S = {s1,s2,...,8,} such that
every wafer of the input appears in exactly one created stack. Remember that, given
a stack, a die at position [ is considered as non faulty if and only if all the dies at
position [ are non faulty in every wafer composing the stack.
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N S i . i . Vi S

’ \ ’ \ ’ \ ’ \

'[101010101011] 1 [ 110010001110 +—+ 111111101011 +—+ 111010001111 |+—— 100000001000
| 1 | | | |

‘[101101101101]; 1 [100110011100 [5—{000111001011 [5—{ 011001101001 F——] 000000001000 |
| | ! | ! | | !

| | ! | ! | | !

' [111001000110 F—+ 111011001001 F—H 111110110101 ]! ! [110100010000 [*——{ 110000000000 |
! | ! 1 ! |

' [111010011001] 1+ [010100110011 —{ 101011101111 ], [ 111111110001 F— 111000000000 ]
| 1 1 | >< 1 ! |

| | | | | | |

'[010001011001 :‘ 1[000101111011 ]! 1 [110111011010 ] ™ [110001001111 -—— 000001000001 |
: | 1 1 1 /:‘\)\ :

1[010001011001 ]+ +[110011001010]+ +[101111100111 ]+ +[011111011010 ——] 000000000000 |
| | | | | | |

|

| | | | |
'[ 110111101110 F—H 100101101001 F—H 101010011100 F—H 011011111011 F— 000000001000 |

! |
1 !
s

Figure 4.4: Example of solution S for the instance of wafer-to-wafer integration prob-
lem depicted on Figure 4.3.

Hence, we consider a stack s as an m-tuple of vectors (v, ..., v$,) such that vi € V.
A stack s can then be represented by a p-dimensional binary vector vs computed by
performing the bitwise AND between every vector composing the stack. An example

of such an output is depicted on Figure 4.4. It follows that:

These problem input and output will be common to every wafer-to-wafer integra-
tion problem that we will consider in this thesis. Therefore we define the following
generic problem called BINARY MULTIDIMENSIONAL VECTOR ASSIGNMENT.

Problem 1 BINARY MULTIDIMENSIONAL VECTOR ASSIGNMENT (BMVA)

Input m multisets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks.

We now introduce different ways to evaluate a solution S. Fach objective function
defines a distinct problem. Let us first introduce both problems presented in introduc-
tion. In the first of them, the objective is to maximize the overall number of non faulty
dies. In other words, the objective is to maximize the number of ones in the vectors rep-
resenting the stacks. The profit of a solution S is given by ciaxs21(S) = > cqc(vs)
where ¢ (vs) = Y7, v,[l], leading to the following definition of max ) 1-BMVA:

The Chapter 7 is entirely dedicated to its theoretical study.
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Optimization Problem 3 max)_ 1-BMVA (max)_1)

Input BMVA input.
Output BMVA output.

Objective  Maximize cpay51 () = X 5 ¢ (vs), the overall number of ones.

The second problem considered aims at minimizing the overall number of zeros. We
refer at it as min ), 0-BMVA. The associated cost function of a solution S is described
by: Cmins20(S) = Y 4egP — ¢(vs). This problem is the dual version of max}_ 1 and
can be formally defined as follows:

Optimization Problem 4 min )  0-BMVA (min ) 0)

Input BMVA input.
Output BMVA output.

Objective ~ Minimize cyinso0 () = Y ,cg(P — ¢ (vs)) = np — Cmaxs 1 (S), the
overall number of zeros.

The complexity study of this problem is handled in Chapter 8.

Both of these problems present obvious practical interest as being possible mod-
elizations of IC manufacturing issues and are the main considered problem in this
manuscript. Other problems present a more theoretical interest since they do not have
straightforward applications but the study of their complexity gives several clues on
the complexity of max ) 1 and min ) 0 as we will see in Chapters 7 and 8.

The first one, denoted as max_+-BM VA, aims at maximizing the number of stacks
represented by a vector with at least one coordinate set to one.

Optimization Problem 5 max_o-BMVA (max)

Input BMVA input.
Output BMVA output.

Objective  Maximize cmax, (5) = [{s € S : ¢(vs) > 0}], the number of non zero
stacks.
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The second is denoted max max 1-BM VA . In this problem, given an input of wafer-
to-wafer integration problems and a solution .S, the objective is to maximize the profit
of the best stack in S:

Optimization Problem 6 maxmax1-BMVA (maxmax1)

Input BMVA input.
Output BMVA output.

Objective  Maximize ¢paxmax1 (S) = maxses ¢ (vs), the profit of the maximum
stack.

We will also consider its dual version, min min 0-BM VA in which the objective is
to minimize the cost of the stack containing the minimum number of zeros.

Optimization Problem 7 min min 0-BMVA (minmin0)

Input BMVA input.
Output BMVA output.

Objective  Minimize Cpinmino (S) = mingesp — ¢ (vs), the cost of the minimum
stack.

All of these three problems are tackled in Chapter 6.

In the following, we shall study the influence of the number of zeros on the com-
plexity of the problems. We will then take into consideration special cases of the
previously presented problems where the number of coordinates set to zero in any
vector will be bounded by a constant c. These problems will be noted (.) <., thus
min ) 0 restricted to instances where each input vector has at most one component
set to zero will be denoted as (min ) 0) ;-

For ease of reading, whenever the context is unambiguous, the notation ¢ (.S) will
be used instead of cpaxs~1 (5), Cminso (9), Cmaxzo (5); Cmaxmax1 (S) O Cminmino (S)-
Furthermore, instances of max ) 1, min ) 0, max max 1, min min 0 and maxq will be
denoted by I[m,n,p].
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4.2 QObservations

This section aims at listing the observations and assumptions made on input instances
of the considered problems. These observations and assumptions are considered to be
true throughout the whole manuscript unless explicitly specified.

Hypothesis 4.1. We suppose that for all set V*, there always ewist j € [n], | € [p)
such that U} [[] =0.

In other words, we consider instances that do not contain a set consisting only in
perfect vectors, i.e. vectors with no coordinate set to zero. Given a BMVA-instance, if
it contains at least one of those perfect sets, the latter can be removed without altering
the cost of the optimal solution. Indeed, perfect vectors can be seen as neutral element
for the bitwise AND operation.

The same hypothesis can be done for the zero sets.

Hypothesis 4.2. We suppose that for all set V*, there always ewist j € [n], | € [p)
such that v} ] =1.

In other words, we consider instances with no set containing only zero wvectors,
i.e. vectors with all its coordinates set to zero. Such a set in an BMVA-instance
would nullify every stack representative vector, since a zero vector can be seen as an
absorbing element for the bitwise AND operation. It follows that any assignment is
an optimal solution and thus that such BMVA-instances can be solved in polynomial
time.

Based on the same remark, we can define a similar hypothesis at the coordinate
level.

Hypothesis 4.3. We suppose that for all set V' and for every coordinate | € [p], there
always exists j € [n] such that vi[l] = 1.

Let us consider an instance that violates Hypothesis 4.3 and thus such that given a
set V' and a coordinate [ € [p], v}[l] = 0, ¥j € [n]. In such a configuration, any solution
S satisfies v [l] = 0 for every stack s € S. The coordinate [ can thus be removed
from every vector of the instance. Note that this can lead to an alteration of the
solution cost depending on the objective function, and thus legitimates questions about
approximability results for these problems!. However, these problems are minimization
problems. Hence any approximation algorithm for BMVA-instances satisfying 4.3
would provide an approximation algorithm with at least the same ratio for BMVA-
instances containing one or more zero coordinates. It is sufficient to delete the zero-
coordinates, applying the algorithm on the created instance, and adding back the
deleted coordinates. When adding back the zero-coordinates, the cost of the returned
solution and of the optimal one are increased by the same amount and the performance
ratio of the returned solution is improved.

A last hypothesis can be done at the coordinate level.

"Tncriminated problems are min min 0 and min 3~ 0.
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Hypothesis 4.4. We suppose that for every coordinate | € [p], there always exist
i €[m] and j € [n] such that v;- [l] =0.

Roughly speaking, for any coordinate [ € [p], there exists at least one vector in
the whole instance that has the {*" coordinate set to zero. Otherwise, any solution S
would satisfy v [l] = 1 for every stack s € S. Such coordinates can then be removed
from the instance. We use same argument, but for maximization problems, to show
that such an operation is safe from the approximability point of view.
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As pointed out by their names, these problems have strong relationships with as-
signment problems. In fact, these are particular cases of the AXIAL MULTI-INDEX
ASSIGNMENT (AXTIAL MIA for short) also known as MULTI-DIMENSIONAL ASSIGN-
MENT (or shortly MDA). In this problem we are given m sets Ay, Aa,..., Ay of n
elements each. For each m-tuple t € Ay x ... A,,, a cost ¢; is known. The problem is
now to find exactly n m-tuples such that each element of Uie[m] A; is in exactly one
m-~tuple. This problem can be formally defined as follows:

Optimization Problem 8 MULTI-DIMENSIONAL ASSIGNMENT (MDA)

Input m sets Ayq,..., Ay, such that |A;| =--- =|A,,| =n and a cost (or a
profit) function ¢: Ay X --- x A, — N.

Output n disjoint m-tuples.

Objective  Minimize the total cost (or maximize the total profit) of the m-tuples.
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5.1 MULTI-DIMENSIONAL ASSIGNMENT

Problem 8 has been first introduced by Pierskalla [Pie68] in 1968 as an extension of
the well-known linear assignment problems. This paper mainly focus on the THREE-
DIMENSIONAL ASSIGNMENT (denoted as 3DA) being the particular case of MDA
with m = 3. The author provides an integer linear programming formulation depicted
hereafter. Note that it can be easily generalized for greater values of m.

Integer Linear Program I Generic formulation for 3DA

Minimize » Y ) cijwi (1.1)

i€[n] j€[n] l€[n]

Subject To Z Z Ty =1 Vi=1,...,n (1.2)
i€[n] j€n]
S mp=1 Vi=1,...,n (1.3)
i€[n] l€[n]
SN =1 Vi=1,...,n (1.4)
Jj€[n] I€n]
Tijil S {0, 1} Vi,j,l (15)

Unlike the classical two dimensional assignment problems, MDA turns out to be
one of the 21 NP-hard problems introduced by Karp [Kar72| even for m = 3. In fact,
Crama et al. proved in [CS92| that 3DA cannot be approximated within a constant
ratio unless P = NP.

On the other hand, when restricted to some particular objective functions, the
problem admits approximation algorithms with constant ratio. In |[CS92|, Crama et
al. investigated 3DA with triangle inequalities. This problem is based on the graph
theoretic version of 3DA, formalized hereafter.

Optimization Problem 9 MULTI-DIMENSIONAL ASSIGNMENT (graph version)

Input A tripartite complete graph G = (I,J,L) such that [I| = |J| =
|L| = n and a cost (or profit) function ¢ that maps to any triangle
(tel,je JlelL)acost c(i,jl).

Output n disjoint triangles.

Objective  Minimize the total cost (or maximize the total profit) of the triangles.
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Instead of defining arbitrary costs for each triangle, the authors consider a distance
d(i,j) (resp. d(4,1), d(i,1)) for every edge {i,j} (resp. {j,l}, {i,l}) and they assume
that any triangle (4, 7,1) is such that the triangle inequality is satisfied. Based on this
model, they define two cost functions. The first cost function ¢; is defined as the sum
of the distance, in other words:

The second cost function ¢y is defined as:

Roughly speaking ¢ is the sum of the two shortest distances in the considered triangle.
Even though this model is NP-hard, authors of [CS92]| provides a 3/2-approximation
algorithm (resp. 4/3-approximation algorithm) for the first (resp. the second) model.

This article paved the way toward similar costs models: decomposable costs based
models. We say that a cost model is based on decomposable costs if, given a cost
function ¢ and values d,, associated to each edge {u,v}, ¢ is such that the cost of
a triangle depend on the d’s associated to the edges of the triangles. The notion of
decomposable costs can be extended to cost model based on integers associated to
vertices instead of edges.

One can for instance cite the work of Burkard et al. [BRW96] where integers are
associated to vertices and where ¢; ;; = d; X dj X d;. The authors prove that, with the
d values being non-negative real numbers, the problem is NP-hard for minimization
but is in P when considering the maximization version.

When considering values of m > 3, we can cite the work of Bandelt et al. [BCS94].
In this article, authors focus on MDA with decomposable costs. Given a m-partite
complete graph, the notion of decomposable costs is extended in the intuitive way: the
cost function c is based on decomposable costs if the cost of a clique depends on the
edge related coefficients. They consider several cost functions:

e the sum of the lengths of the edges,

e the minimum length of a spanning star,
e the traveling salesman tour,

e the minimum length of a spanning tree.

For each of these cost functions, they provide heuristics and show that according to
some parameters', these heuristics are approximation algorithms.

We can remark that the problems we consider have model costs based on decom-
posable costs. Indeed, given a vector v in the complete m-partite graph representing
an instance of max ) 1 (resp. min ) 0), v can be seen as the binary representation of

ncluding what the call the distance to triangle inequality which, given a clique, gives a measure
of how far is this clique from satisfying triangle inequality.
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an integer (resp. as the one’s complement of the binary representation of an integer)
that we call d,. The profit (resp. the cost) of an m-tuple is defined as the Hamming
weight of the vector resulting in the bitwise AND of the binary representations of
vectors in the m-tuple.

Other works have been performed on 3DA and more generally on MDA but their
scope tends to be far from what we will consider in this manuscript. For instance,
works have been done on the polyhedral aspects or about the asymptotic behaviour
of the problem. We refer the keen reader to surveys of Burkard et al. [BC99] and of
Spieksma [Spi00| and to the excellent book of Burkard et al. [BDMO09].

5.2 Maximizing the die yield

One of the problems we consider, max >, 1-BM VA has been first introduced by Reda
et al. in [RSS09] as the FUNCTIONAL YIELD MAXIMIZATION problem. Authors of this
paper point out that the problem is NP-hard. They indeed mention that the classical
NP-hard problem 3-DM reduces to the FUNCTIONAL YIELD MAXIMIZATION problem.
They also provide two heuristics based respectively on greedy and iterative matchings
strategies.

Given an instance of the FUNCTIONAL YIELD MAXIMIZATION problem with m
sets of n wafers. The greedy heuristic consists in computing every n' possible stacks
and constructing a feasible solution by selecting first the stacks with the best yield.
Note that this heuristic runs in polynomial time only when m is fixed.

The iterative matching based heuristic proceeds as follows: it maintains a set of
partial stacks, that we will call the hub set. At each iteration, the optimal matching
between the hub set and every unprocessed set is computed. The heuristic selects
the unprocessed set that provides the maximum profit matching, marks this set as
processed and update the wafers of the hub set according to the optimal matching.

Authors of [RSS09] also consider the classical ILP formulation depicted in ILP (I).
They provide computational results based on the comparison of their proposed resolu-
tion techniques with a random assignment strategy. These computational results will
be discussed in the Chapter 9.1 in which we present a state of the art of the practical
aspects of the problem.

To our knowledge, only exact resolution of the problem has been studied. It has
been broached in two articles of Dokka et al. [Dok+12; DCS14|, both dealing with
its dual version min ) 0-BMVA. In these articles, the authors provide two alternative
ILP formulations depicted in Formulations (II) and (III).

The idea of the Formulation (II) is to consider the set V! as a hub set on which
vectors of the other set will be plugged. The formulation is based on z,,, variables with
weVlandv e UZZQ A variable z,, is set to one, if vector v is assigned to vector
u. Other variables are introduced to compute the profit of an assignment. These are
the y,,; variables with uw € V! and [ € [p]. A y,; variable is set to one if and only if
the I** coordinate of the vector representing the stack containing u is set to one. The
objective is then to maximize the sum over the y,; variables.
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Integer Linear Program II Alternative ILP formulation for max > 1

Maximize Z Zyu’l (I.1)

ueVllelp]
Subject To Z Zup =1 Vv € U & (I1.2)
ueV'l 1=2
Z Zup =1 Vu e V1 (I1.3)
velUit, V?
Yuy < min(ull], v[l]). Zue Vielpl, ueV,velJVI  (114)
=2
m .
Zuw € {0,1} vueV! ve V' (IL.5)

=2

The Formulation (III) has been introduced to prove that min ) 0 (and thus max ) 1)
can be solved in polynomial time when p is fixed. In this formulation, they consider
the type of an m-tuple, defined as follows: given an m-tuple s and its representative
vector v, the type t of s is the integer binary representation b; equal to vs. Thus given
an instance with vectors of size p we can count 27 different types each type t having a
cost ¢(by).

The ILP formulation aims at determining the number x; of m-tuples of type t.
They also introduce z;-t variables equal to 1 if and only if the vector vj. is assigned to
an m-tuple of type t. The binary representation b; of an integer ¢ being said greater
than a vector v if every coordinate set to zero in v is a zero coordinate in b, the
Equations II1.2 ensure that every vector is assigned to a compatible m-tuple while the
Equations I11.3 ensure that every vector is assigned to exactly one m-tuple. This leads
to a correct formulation.

Furthermore, remark that only z; variables are integer variables (the integrality of
z;»t variables being a consequence of the integrality of z; variables) and that there are
exactly 2P of them. Each of the x; variables can take at most n + 1 distinct values.
The authors prove that to find an optimal solution, it is enough to check the feasibility
of ILP constraints for the O(n?") possible values for the z; variables, leading to an
X P-algorithm for max > 1 when parameterized by p.

This ends the presentation or existing works for max ) 1. In this manuscript, we
focus on the approximability of the problem with regard to its three natural parameters
m, n and p. Several approximation preserving reductions are provided in Section 7.1
leading to inapproximability results for max > 1. A cartography of these reductions
is depicted on the Figure 5.1.

We further the study of the exact resolution of the problem with regard to pa-
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Integer Linear Program IITI XP ILP formulation for max > 1

2r—1
Maximize Z c(by)xy (ITL.1)
t=0
Subject To Y 2, =, VEeo,...,271 i e [m] (111.2)
t!th’U;-
Y =1 Vj € [n], i € [m] (111.3)
j:thU;-
x¢ integer Vt=0,...,2°P -1 (I11.4)
25, <0 Vt=0,...,2° —1, j€[n], i € [m)] (TT1.5)
k-DIMENSIONAL MATCHING Max CLIQUE (max maXl)#og
\ SR /
maxzo max max 1
max Y 1
****** - S-reduction
————— - particular case
—_— strict-reduction

Figure 5.1: Cartography of polynomial reductions for max > 1

rameter p. Based on a similar approach, we improve, in Section 7.2.2 the result of
Dokka et al. [DCS14] by proving the problem membership in FPT when parameter-
ized by p. However we give, in Section 7.2.3, strong evidences on the non existence of a
polynomial-size kernel for the latter. Then, in Section 7.3, we focus on sparse instances,
i.e. instances with vectors having a bounded number of coordinates set to zero. We
give in Section 7.3.1 an EPTAS for (max 1)<, With 7 being a constant, based on
FPT resolution of max 1 and a polynomial-time algorithm for (max}-1) ,,-; when

m is fixed in Section 7.3.2.
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5.3 Minimizing the faults

The dual version of max ) 1, min )  0-BMVA, has been first introduced by Dokka et
al. [Dok+12| as a natural way to tackle the max ) 1 problem. The related work is
limited to the two previously cited articles [Dok+12] and [DCS14]. In both of them,
authors focus on approximability and exact resolution of the problem.

As mentioned earlier, authors of [Dok+12| first provide two ILP formulations, the
first one being the application of the classical MULTI-DIMENSIONAL ASSIGNMENT
problem formulation depicted by the Formulation (I) when m = 3 and the second be-
ing described by Formulation (II). However the main contribution of the paper is the
design of an approximation algorithm for min )0 when m = 3. The authors propose
a heuristic based on matchings that processes as follows. Given an instance of min )0
with m = 3, the optimal assignment between vectors of V! and vectors of V2 is com-
puted. The resulting matching being called M, the algorithm solves optimally another
assignment problem between resulting vectors of M and vectors of V3. They prove
that this heuristic, called the sequential heuristic, is a 3/2-approximation algorithm
that can be improved to a ratio 4/3 if the sets are sorted by decreasing costs, i.e. by
decreasing overall number of zeros in the vectors of the set. The heuristic performing
the sort of the sets and the sequential heuristic on sorted set is called heaviest first
heuristic.

These heuristics are generalized to arbitrary m 2 in [DCS14]. They prove that,
if we consider other costs functions ¢, then subadditivity and monotonicity of the
cost function c is a necessary condition for the heaviest set and sequential heuristics
to be approximation algorithm. On the other hand, if ¢ turns out to be monotone
and subadditive then every heuristic is an m-approximation algorithm. Finally, if
¢ appears to be submodular, hence the sequential heuristic is a m/2-approximation
algorithm while the heaviest first heuristic is a (3 (m+1) —  In(m — 1))-approximation
algorithm.

Concerning the negative results, they provide a reduction from a particular case of
3-DIMENSIONAL MATCHING called 3-BOUNDED MAXIMUM DIMENSIONATL MATCH-
ING where each element appears in at most three triples. They show that the existence
of a PTAS for (min}_0) 40, where m = 3, would imply the existence of a PT'AS for
MAX-3DM-3 contradicting a result of Kann [Kan91|.

In this manuscript we further the investigation of the approximability of the prob-
lem by providing (n — €)-inapproximability result for (minz:O)#0<1 under UGC in
Section 8.1.1. We also complete the result of Dokka et al. [DCS14| by proving, in
Section 8.1.2, that (min }_0),0<; is APX-hard even for n = 2 unless P = NP. A
cartography of used reductions is given in Figure 5.2

We initiate the parameterized analysis of min ) 0 as well. First, Section 8.2.1 the
standard parameter is considered. We prove that the problem is in FPT by providing
a O(k?m) kernel. We also consider two above guarantee parameters. Roughly speaking,

’In fact they generalize these heuristics to a more general problem called MULTIDIMENSIONAT.
VECTOR ASSIGNMENT problem in which the vectors are not required to be binary vectors.
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Ek VERTEX COVER

A\
MINIMUM HITTING SET (minmin0),o<q
. o
ALmost Ek VC OoCT k-COLORING min min 0
min ) 0
***** - S-reduction
————— - particular case
AN linear-reduction
—_— gap-reduction

» parameterized reduction

Figure 5.2: Cartography of polynomial reductions for min > 0

these are equal to the gap between a known lower bound and the value of the standard
parameter. The first bound we consider is the overall number of coordinates set to
zero in the vectors of the heaviest set, denoted 5. It leads to the introduction of
the parameter (3 = k — 3. We show that min )0 is in FPT when parameterized
by (g and n in Section 8.2.2. On the other hand we show, in Section 8.2.3, that
when parameterized only by (g, the problem is W[2]-hard, and that the existence of
a subexponential algorithm with dependency only in (g and n contradicts ETH.

The second considered bound is p, leading to the introduction of (, = k —p. In
Section 8.2.4, we show that min ) 0 where n = 2 is FPT when parameterized by (.
Finally, in Section 8.2.5, we show that for any fixed n > 3, min ) 0 with fixed n is not
even in XP.
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As mentioned earlier, the study of the wafer-to-wafer integration problems is performed
in two steps. In a first time, the focus is made on some intermediate problems providing
a convenient framework to encode several graphs problem. This chapter is devoted
to present the results concerning the latter: max.p, maxmax1 and its dual version
minmin 0. All of these problems present theoretical interest. Indeed, there exist several
reductions giving strong negative results for them. However, their main purpose in this
thesis is to provide negative results for max > 1 in Chapter 7 and min ) | 0 in Chapter 8.

In a first time we prove negative results on these problems and in a second time
we show that using a reduction to INDEPENDENT SET, maxmax 1 and minmin 0 can
be solved quite efficiently when n = 2 and when p is small.

71
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max max 1
m n p k
ml_E— Y \
#0 <1 . #0<1 n=2 #0 <1 #0<1
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unless P = NP
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Figure 6.1: Overview of the results for maxmax 1

6.1 Negative Results

This section can be divided into three main work leads. In a first time, we focus on the
maxo problem. The reduction presented in the first section is an implicit reduction
from k-DIMENSIONAL MATCHING first mentioned in [RSS09]. We make this reduction
explicit and prove, in Section 6.1.1, that it happens to be an S-reduction proving

%)inapproximability for max.£(.

In a second time we focus on the complexity of maxmax1. A first S-reduction
from MAx CLIQUE is depicted in Section 6.1.2 which proves p!=¢, m!=¢ and f(n)-
inapproximability for any polynomial-time computable function f under the classical
complexity hypothesis P # NP. This reduction also proves the W[l]-hardness of
max max 1 when parameterized by the standard parameter k. Then, in Section 6.1.3,
we extend these negative results to (max max 1)#0<1 by providing a strict reduction
from maxmax 1 defined on instances with fixed n to (maxmax 1) 4o<1- A graphical
overview of these results is given on Figure 6.1

In a third and last time, we focus on min min 0. We highlight in Section 6.1.4 an .S-
reduction from EFk VERTEX COVER to min min 0 proving (n— 1 —¢)-inapproximability
unless P = NP but also (n—e¢)-inapproximability under UGC. At last, in Section 6.1.5
we provide another S-reduction from MINIMUM HITTING SET proving the W|2]| -
hardness of min min 0 when parameterized by k, but also proving that the latter does
not admit algorithm with subexponential dependency in k unless ETH fails. A graph-
ical overview of these results is given on Figure 6.2.
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Figure 6.2: Overview of the results for min min 0

6.1.1 O < )—inapproximability for max

log(m)

As stated in introduction, we aim at making explicit a reduction first mentioned
in [Dok+12]. However, we also highlight that this reduction in an S-reduction. It
provides therefore negative results for max_,g.

Lemma 6.1 (Implicit in [Dok+12]). k-DIMENSIONAL MATCHING S-reduces to max.zg.

Proof. Let us highlight function f and g as depicted in Definition 2.26. We consider an
instance I of k-DIMENSIONAL MATCHING described by k pairwise disjoint sets X;, ¢ €
[k] such that | X;| = n, and a set T of x distinct k-tuples t; € X1 x -+ x Xy, [ € [z].
We denote by aé., Jj € [n] the elements of set X.

From this instance, we construct an instance f(I) of max.y. To each set X;, we
associate a set V¥ containing n vectors. To each element aé € X, of X; we associate
an z-dimensional vector v; such that v§ [[] = 1if and only if a;'- € 1.

Let us remark that given a solution S of f(I), a stack s € S has cost ¢(s) = 1 if
and only if it represents a tuple in 7. Indeed, v,[l] = 1 if and only if v{[l] = 1, Vv] € s.
Thus s contains only vectors representing a vertex belonging to ¢; by construction.

Remark also that there does not exist stack with cost at least 2 as it would imply
that two coordinates represents a same set.

Based on these remarks, we define the function ¢ as the function that, given a
solution S of f(I), selects the tuples ¢ € T represented by non zero stacks in S.
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Vl V2 V3 S

1100 F— 1000 — 0100 — 0000 |

(0010} {0t} {1010 (o010
C‘@@ 5}/ o)

Figure 6.3: Example of reduction from an instance [ of k-DIMENSIONAT, MATCH-

ING with £ = 3, X1 = {a%,a%,a%}, Xo = {a%,a%,a%}, X3 = {a‘i’,ag,ag}, T =
{(ai,a?,d3), (ai,a3,a}), (a3, a3, a}), (a3, a3, a})} and a solution of profit 2 to an in-
stance of max.g, m =k =3, n = |Xi| =4, p = |T| = 4 and a solution S of profit

2.

Note that these tuples are disjoint, since stacks are disjoint. It follows that for any
solution S of f(I) of cost ¢ (S) can be turned into a solution g(I,S) of k-DIMENSIONAL
MATCHING of size ¢(5).

An example of the reduction is depicted on Figure 6.3. O

As it is NP-hard to approximate k-DIMENSIONAL MATCHING within a factor
O(log(k ) |[HSS03|, and as the previous reduction satisfies k = m, we get the following
corollary

Theorem 6.1. [t is NP-hard to approzimate max_o within a factor O( 7).

og(m)

6.1.2 f(n), p~° and m' *-inapproximability for max max 1

We consider the MAX CLIQUE problem. In this problem, given a graph G = (U, E),
the objective is to find the maximum clique' of G.

Optimization Problem 10 MaXx CLIQUE

Input A graph G = (U, E).
Output A clique C CU.

Objective  Maximize |C]|.

Lemma 6.2. MAX CLIQUE S-reduces to maxmax 1 with n = 2.

!We refer the reader to the Chapter 1 for an overview of the graph notions used in this manuscript.
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Proof. Let us construct (f,g) as in Definition 2.26. Let us consider an instance G =
(U, E) of MAX CLIQUE. The corresponding instance of maxmax 1 is constructed as
follows. We consider m = |U]| sets, each having two vectors. All the vectors have
p = |U| coordinates. For each vertex i of U, we create the set V' = (v}, v}). For any
i, we define v as follows. The I!" coordinate vi[l] is set to one if and only if {i,1} € E
or [ = i. Otherwise v}[l] is set to zero. On the other side, vi[l] is set to zero if and
only if [ = i. Every other coordinate is set to one. In other words, v} corresponds to
the i*" row of the adjacency matrix of G, including self loop.

The idea is that selecting v corresponds to selecting vertex i in graph, and selecting
vl will turn the i'® coordinate to zero, which corresponds to a penalty for not choosing
vertex 1.

We first need to state an intermediate lemma. For any stack s = {v§,...,v5,},
let Xs = {ijvf = vi} be the associated set of vertices in G. Recall that vy is the p
dimensional vector representing s.

Lemma 6.3. Vi € [p], v[i] =1 < ((i € X;) and (Vo € X\ i, {z,i} € E)).

A Let us first prove Lemma 6.3. Suppose that the i*" coordinate of v, is equal to
one. This implies that v} € s, and thus i € X,. Now, suppose by contradiction that
Jr € X, \ i such that {z,i} ¢ E. = € X, implies that v € s. Moreover, v [i] =1
implies that v{[i] = 1, and thus {z,i} € E, which leads to a contradiction.

Suppose now that i € X, and Vo € X\ 4, {x,i} € E. Let us prove that Vi,
v$[i] = 1. Notice first that for i/ = i we have v{[i] = v{[i] = 1. Moreover, Vi’ # i such
that i’ ¢ X, we have v3[i] = v [i] = 1.

Finally, Vi’ # i such that i/ € X, we have v3[i] = v{[i] = 1 as {#/,i} € E. A

It is now straightforward to prove that Vo € N, “J solution S for maxmax1 of
value ¢ (S) = z if and only if a clique X of size x exists in G ”. Indeed, suppose first
that we have a solution S such that ¢ (S) = x. Let s = {v],...,v3,} be the stack in
S of value z, and let G5 = {l|v,[l] = 1} be the set of coordinates set to one in s. We
immediately get that the vertices corresponding to G define a clique in G, as Vi and
J € G the previous property implies that i € X, j € X, and thus {i,j} € E.

Suppose now that there is a clique X* in GG, and let s be a stack such that X, = X*.
The previous property implies that Vi € X, v [i] = 1.

Thus, the profit of opt, . max1(f(L)) is equal to the size of the maximum clique
in G. As the previous reduction is polynomial, and as any solution S of f(I) can be
translated back in polynomial time into a corresponding clique of size ¢ (S) in G, we
get the desired result.

An example of this reduction is depicted on Figure 6.4

The Max CLIQUE problem is known to be hard to approximate.

Theorem 6.2 (Zuckerman |Zuc07]). MAX CLIQUE defined on a graph G = (U, E) s
hard to approzimate within a ratio |[U|'~¢ unless P = NP.
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Figure 6.4: Illustration of the reduction from an instance of MAX CLIQUE defined
by graph G = ({1,2,3,4,5},{(1,2),(1,3),(2,3),(2,4), (3,4), (3,5), (4,5)}) admitting
a solution of profit 3 to an instance of maxmax1 with m = p = |V| =5, n = 2
admitting a solution S of cost ¢ (S) = 3.

It follows that maxmax1, is also hard to approximate, since in the reduction
m=p=|U]|.

Theorem 6.3. Even for n =2, for any € > 0, there is no p(m,p)-approzimation such
that p(x,z) = x'7¢ for maxmax 1.

Notice that in particular, p'=¢ and m!~¢ are not possible, but for example (pm)%
is not excluded. Furthermore, this reduction maps any instance of MAX CLIQUE to an
instance of max max 1 where n = 2. It follows that any f(n)-approximation algorithm
for max max 1 would provide an algorithm with ratio better that |U|!~¢ for sufficiently
large instances of MAX CLIQUE. We can hence also deduce inapproximability of the
problem with regard to n.

Theorem 6.4. There is no f(n)-approzimation algorithm for max max 1, unless P =

NP.

Note that the cost of optimal solutions is preserved via the S-reduction, it follows
that this reduction can be seen as an FPT-reduction from MAX CLIQUE when param-
eterized by the standard parameter to max max 1 when parameterized by the standard
parameter.

Theorem 6.5 (Downey and Fellows [DF95|). MAX CLIQUE parameterized by the
standard parameter is W [1] -hard.

Theorem 6.6. maxmax 1 parameterized by the standard parameter is W [1] -hard.

6.1.3 Inapproximability extension to (maxmax1),,

We can extend the previous results to (maxmax 1)#0<1. Indeed, we design in this
section a strict-reduction from maxmax 1 when n is fixed to (maxmax1),,.,. Since
the previous reduction proves inapproximability for maxmax1 with n = 2, these
results can then be extended to (maxmax1),0<;.

Lemma 6.4. maxmax 1 on instances with fized n strict-reduces to (max max 1)#0<1.
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Proof. Let us construct (f,g) as defined in Definition 2.27. We consider an instance
I of maxmax1 with fixed n. Note that any vector v of the instance can be seen as
a set of positive integers representing the coordinates set to zero in v. For instance
the vector 01101 can be seen as the set {1,4}. Based on this representation we can
then define the Cartesian product of two vectors as the Cartesian product of their
representative sets. Furthermore, given a set V? = {vi, e ,Ufl}, we can define the
n-ary Cartesian product of the vectors of V* as Ilyi = v} x --- x v},. We now define f
as follows. For every set V? of I, we first compute the Cartesian product of the vectors
of Vi. To each n-tuple 7; = (t1,...,t,) of IIy: we construct a set V7 in f(I). To
each integer ¢; of 7; we associate a vector va-i having coordinate t; set to zero. In other
words v}'[l] = 0if [ = ¢;, v]'[I] = 1 otherwise. Intuitively, the transformation splits
every vector into vectors containing only one zero. The Cartesian product aims at
penalizing every stacks in f(I) that would mizes vectors coming from different vectors
of I. The Figure 6.5 gives an example of this transformation.
Before defining the function g, we formulate the following lemma:

Lemma 6.5. Given a solution S of f(I), if we call symax the stack such that ¢ (vs,,,,) =
c(S), thus for every set V' of I there exists a vector v;- such that ¥l € [p], v§ l]=0=
v, [l] =0.

Smax

A Let us reason by contradiction. Suppose that there exists a set V? of I such
that Vv;-, 3l; such that vj- [l;] = 0 and v, [l;] = 1. By definition of the Cartesian
product of the vectors of the set V', Il contains the tuple (I1,..., 1), the tuple of
each position of each vector not covered by vg, . . Hence, by construction, there exists
a set VUi Tt follows that Spmax contains one of the vectors of V{1-ln)i and thus
that its representative vector has one of the forbidden component set to zero. This
leads to a contradiction. A

We define the function g as follows. Given a solution S of f(I) and smax the stack
such that ¢ (vs,,,, ) = ¢ (S), for every set V? of I we add to a stack a vector vj- of V!
that satisfies the Lemma 6.5. The remaining stacks of g(I,S) are greedily created.

It is straightforward to see that given a solution S of f(I) of cost ¢(S5), g(1,S)
contains a stack s of cost ¢ (s) < ¢(vs,,,) and thus ¢(g(I,S)) < ¢(S). Indeed, each of
the selected vectors have their zeros at the same coordinates as v, .

On the other hand, if I admits a solution .S of cost ¢ (.5), thus selecting the vectors
in f(I) corresponding to the vectors contained in the best stack in S leads to a stack
s, and thus a solution for f(I), that has the same cost as S.

The reduction is thus a strict reduction. 0

Theorem 6.7. For every ¢ > 0, (maxmax 1)#0<1 1s hard to approzimate within a
factor f(n), pt=¢ or (m/p—1)'¢ unless P = NP.

Proof. Given an instance I of maxmax 1 with fixed n, the designed reduction leaves
parameters n and p unchanged in f(I), inapproximability with regard to these param-
eters is thus straightforward. However, the number of sets in f(/) is at most equal to
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e V2 V3 %! V2 Vs

[ooo11]  [orii1]  [11110] {1,2,3} {1} {5}
I [11101]  [r1i01]  [o1011] & {4} {4} {1,3}
[11001]  [r1o01]  [11010] {3,4} {3,4} {3,5}

%//N

V(1,4,3)1 V(1,4,4)1 V(2,4,3)1 V(2’4’4)1 V(S,4,3)1 V(ii,4,4)1 V(1,4,3)2 V(1’4’4)2 V(5,1,3);; V(5,l,5)3 V(S,&,B)g V(5,3,5)3
[o1111] [or111] [10111] [1o111] [11011] [11011] [or111] [or111] [11110] [11110] [11110] [11110]

f(ry  [11ro1] [11101] [11101] [11101] [11101] [11101] [11101] [11101] [o1111] [01111] [11011] [11011]

[11011] [11101] [11011] [11101] [11011] [11101] [11011] [11101] [11011] [11110] [11011] [11110]

Figure 6.5: Example of reduction from an instance I of maxmax1 with m =3, p=5

and fixed n = 3 to an instance f(I) of (maxmax1)y,.; with m' = 12, n’ = 3 and
, <

p =5

mp"™ due to the Cartesian product. If we restrict the initial problem to the instance
constructed by the reduction from MAX CLIQUE, depicted in Section 6.1.2, the number
of sets in f(I) is even bounded by mp. Indeed, in each set there exists one vector that
has exactly one coordinate set to zero by construction. Thus the Cartesian product
generates at most p — 1 sets in f(I) for each set in [.

Since max max 1 cannot be approximated within a ration m!~¢, (max max 1)#0<1
cannot be approximated within a ratio (m/p—1)!7¢. O

6.1.4 (n— 1— ¢)-inapproximability for (minmin O)#ogl

The reduction provided in the previous section gives strong inapproximability results
with regard to the natural parameters m, n and p for (maxmax 1)#0<1. It seems
natural to ask about the approximability of its dual version: min min 0.

In a first time we provide a generic polynomial-time computable function, that
encodes, given an integer k, a k-uniform hypergraph with an input of a BMVA problem
where every vector has at most one component set to zero. In a second time, we show
how this function can be used to design an S-reduction from Ek VERTEX COVER to
(minmin0) 4 -

Construct BM VA instance from k-uniform hypergraph

In this section, we present a polynomial-time computable function f that, given an
integer k, encodes a k-uniform hypergraph with an input of wafer-to-wafer integration
problems where every vector has exactly one component set to zero. The reduction of
Subsection 6.1.5, transforming a hypergraph, not necessarily uniform, to an instance
of BMVA with vectors containing more than only one coordinate set to zero is based
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Va
<¢>—\\ - r]0111111\\ (0111111 |
<::> 3]1011111\§ (1101111
[a1naio] - [1110111]
O DY) ©)s v v
7 (]1011111\} (]1111011\?
@ @ (1110111 (1111101 |
= !

[1111011] @ [1111110]

C

Figure 6.6: Illustration of the construction of a (BMVA)#O<1 instance from a 3-uniform

hypergraph H = (U = {1,2,3,4,5,6,7}, E = {{1,2,7},{1,3,4},{2,4,5} ,{5,6,7}}).

on the same principle.

Let us consider a k-uniform hypergraph H = (U, E'). The polynomial-time com-
putable function f that creates an instance of (BMVA) -, from H can be described
as follows.

1. We set m = |E|, n=Fk and p = |U].

2. For each hyperedge e = {uy,us,...,ur} € E, we create the set V¢ containing k
vectors {v§,j € [k]}, where for all j € [k], v§[u;] = 0 and v§[l] =1 for | # u;.
We say that a vector v represents w € U if and only if v[u] = 0 and v[l # u] =1
(and thus vector v§ represents u;).

An example of this construction is given in Figure 6.6.

S-reduction from Ek VERTEX COVER to (minmin0) 4,

We consider Ek VERTEX COVER, the generalization to hypergraphs of the well-known
VERTEX COVER problem. Remember that, given a hypergraph, a subset of vertices
VC is considered to be a vertex cover if and only if VC contains at least one vertex
of each hyperedge.

Lemma 6.6. Ek VERTEX COVER S-reduces to (minmin0)_q;-

Proof. We use function f previously introduced. Thus given an instance I of Ek
VERTEX COVER defined by a k-uniform hypergraph H = (U, E), we are able to
construct an instance f(I) of (minmin0),-; with m = [E|, n =k and p = |U].

Let us show that H admits a vertex cover VC C U of size |V C| if and only if f(I)
admits a solution S of cost ¢ (S) < |[VC|.
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Optimization Problem 11 EFk VERTEX COVER

Input A k-uniform hypergraph H = (U, FE) and an integer k > 2.

Output A vertex cover VO C U.

Objective  Minimize |V C|.

= Given a vertex cover VC' C U, we show how to construct a stack s in f(I) of

cost ¢(s) < |V C| proving at the same time the existence of a solution S of f(I)
of cost ¢(S) <c(s) < |VC|.

By definition of a vertex cover, for every hyperedge e € E, eNVC # ). We
construct s as follows. For each hyperedge e € F, we add to s a vector of V¢
representing a vertex of VC. If more than one vertex of e belongs to V', we
chose the vector arbitrarily among them.

We claim that the number of zeros in this stack is at most the size of VC. Indeed,
for every set, only vectors representing vertices of V' C' have been selected. Thus
vs has at most |V C| component set to zeros.

Given a solution S for f(I), we highlight the polynomial-time computable func-
tion g computing a solution g¢(I,S) for I. We then prove that the computed
solution is a vertex cover of size ¢ (.5).

We consider spax € S astack of S of profit ¢ (smax) = ¢(S). For every coordinate
equal to zero in v, , we add the corresponding vertex in g(I,S).

We claim that g(1,S) is a vertex cover. By construction, for every set V¢, Smax
indeed contains a vector representing a vertex u € e, i.e. a vector v € V¢ such
that v[u] = 0. This implies that v,__[u] = 0 and that a vertex has been selected
for each hyperedge.

Furthermore, g(I,S) is such that |g(I,S)| = ¢(smax) = ¢(S). This reduction
(f,g) is thus an S-reduction.

O

Theorem 6.8 (Dinur et al. [Din+05]). Ek VERTEX COVER is hard to approzimate
within a ratio (k — 1 —¢) for arbitrary constant k > 3 and € > 0 unless P = NP.

Theorem 6.9. Vn > 3,Ve > 0, (min min 0)#0<1 18 hard to approximate within ratios
(n—1—¢) unless P = NP.

This inapproximability threshold can be strengthened by assuming UGC.

Theorem 6.10 (Bansal et al. [BK10]). Assuming UGC, for every k > 2, Ve > 0, Ek
VERTEX COVER s hard to approzimate within a ratio k — €.
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Corollary 6.1. Assuming UGC, for every n > 2, Ve > 0, minmin0 is hard to ap-
prorimate within a ratio n — ¢.

6.1.5 (1 —¢)log(m)-inapproximability for min min 0

The strong inapproximability result of (min min 0>#0§1 legitimates the question of ap-
proximability with regard to m and p. This section aims at providing inapproximability
result for min min 0 with regard to m with help of an S-reduction from MINIMUM HI1T-
TING SET (MIN-HS) to minmin0. This reduction also provides fixed parameterized
intractability of min min 0 when parameterized by k. We first present the definition of
MIN-HS.

Optimization Problem 12 MiNniMUM HITTING SET

Input m subsets Ry, Ro, ..., R, of [n].
Output A set HS C [n] such that HS N R; # 0, Vi € [m].

Objective  Minimize |HS].

Lemma 6.7. MIN-HS S-reduces to min min 0.

Proof. Let us first remark that MIN-HS can be formulated in term of hypergraph by
associating to each element of [n] a vertex and to each set R; an hyperedge. Based
on this observation, the reduction is essentially the same as the one presented in
Section 6.1.4. The main difference is due to the fact that MIN-HS is defined on
general hypergraphs instead of k-regular ones.

We described function f as follows. Given a MIN-HS instance I, for each set R;,
we create a set V?. Each set contains n binary vectors of dimension n.

Given a set R;, the set V' is constructed as follows. For each element j € R;, we
create a vector that represents j, i.e. a vector ’U;- such that U;- [7] = 0 and VI # j, U; [l =
1. The n — |R;| others vectors of V* are zero vectors.

An example of such a polynomial-time computable function f is depicted on Fig-
ure 6.7.

Given an integer k, we will actually show that min min 0 instance f(I) has a solution
S of cost ¢ (S) = k if and only if Ry, ..., R,, has a hitting set of size k. By the foregoing,
we only need to focus on the only vector of each set which is assigned to s;,, the
stack with the minimum number of coordinates set to zero.

= Let HS C [n] be a Hitting Set of size k. By the definition of a hitting set, for all

i € [m], there exists j; € HS N R;. Thus, for all 7 € [m], we select the vector v},

from the set V? to be assigned to s,,;,. By construction, this vector has only one
zero at the jfh coordinate, which implies that the conjunction of all such vectors
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Vi v? V3 V4
(0111111 o111111] [0000000] [0000000 ]

[1011111] [0000000]| [1011111] [0000000]

(0000000 [1101111]|[0000000] [0000000]

[0000000] [1110111] |[1110111] [0000000 ]
[0000000] [1111011] [1111011 1111011 0111011
[0000000]| [0000000] [0000000] [1111101]

[1111110] [0000000] [0000000] [1111110]

Figure 6.7: Example of reduction from an instance of MINIMUM HITTING SET con-
sisting of four subsets of [n = 7] : Ry = {1,2,7},R2 = {1,3,4,5} , R3 = {2,4,5} , Ry =
{5,6,7}, and an integer k = 2, to an instance of minmin 0 with m’ =5,n' =n,p = n.

ALy v}z will have a 1 everywhere except at the coordinates corresponding to HS.

We thus have the desired number of zeros in our solution.

< Conversely, for each i € [m], let j; € [n] be the vector from V* which is assigned
to Smin. Since the resulting conjunction of all these vectors has only k zeros, vj,
cannot be a O-vector, and we thus have j; € R;. Using the same arguments as
previously, {Uji}ie[m] corresponds to a hitting set of Ry, ..., R, of size k.

O

We make the following observation that will be useful in Section 8.2.3.

Observation 6.1. The overall number of zeros in each set is bounded by p(n —2) + 2.
Indeed, each set encodes an hyperedge that has at least two endpoints.

Inapproximability results are known for MIN-HS in function of the number of sets
m.

Theorem 6.11 (Trevisan [Tre01]). MiNIMUM HITTING SET does not admit any (1 —
e)log(m) approzimation algorithm with € > 0, unless NP C QP.

Since the reduction preserves the value of the parameter m, it follows that:

Theorem 6.12. min min 0 does not admit any (1—¢)log(m) approzimation algorithm
with € > 0, unless NP C QP.

The previous reduction being an S-reduction, it can also be seen as an FPT-
reduction from MIN-HS parameterized by the standard parameter to minmin0 pa-
rameter by the standard parameter.

Corollary 6.2. There exists an FPT-reduction from MIN-HS parameterized by the
standard parameter (MIN-HS, k) to min min 0 parameterized by the standard parameter
(minmin 0, k).
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Well, negative results are known about MIN-HS when parameterized by the stan-
dard parameter.

Theorem 6.13 (Downey and Fellows |[DF13]). (MIN-HS, k) is W /2/-hard.
Theorem 6.14. (minmin0, k) is W/2/-hard.

We can use this reduction to show further negative results. Let us consider a
constrained version of the MINIMUM HITTING SET problem obtained by [LMSI11],
where the element set is [d] x [d] and can thus be seen as a table with d rows and d
columns:

Decision Problem 3 d x d-HITTING SET

Input An integer d and Ry, Ra, ..., Ry C [d] x [d]

Question Is there a set R containing exactly one element from each row such
that RN R; # 0 for any i € [t]?

[LMS11] show the following theorem:

Theorem 6.15 ([LMS11]). dxd-HITTING SET cannot be solved in, time 2°(3108(d)0(1)
unless ETH fails.

We can then deduce from Lemma 6.7 the following theorem.

Theorem 6.16. (minmin0,k) cannot be solved in O* (200 108(M)) popr O* (2ke(oa(n)))
unless ETH fails.

Proof. Notice that we can modify the question of this problem by dropping the con-
straint that S contains at least one element from each row. Indeed, let us add to
the instance a set of d sets {R],..., R}, where R} contains all elements of row ¢ for
i € [d]. Now, finding a (classical) hitting set of size d on this modified instance is
equivalent to finding a solution of size d for the original instance of d x d-HITTING
SET. Moreover, it is easy to check that a 2°(4108(d)p0() algorithm for this relaxed
problem would also contradict £T'H. To summarize, we know that unless ET H fails,
there is no 20(4108(d)pOM) 3lgorithm for the classical MINIMUM HITTING SET prob-
lem, even when the ground set has size d2. This allows us to perform the reduction
of Lemma 6.7 on these special instances, leading to an instance f(I)[m/,n/,p'] with
associated standard parameter k such that k = d and n’ = d2. Suppose now that
there exists an algorithm for min Y~ 0 running in 2°()198(") (k4 m 4 n + p)OM), Using
the reduction above, we would be able to solve the instance of d x d-HITTING SET
in 20(@) 1°g(d2)n0(1), and thus in 20(@108(d) O " which would violate ETH. A similar
idea also rules out any algorithm running in 2+°(°8(") yunder ETH. O
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6.2 Positive Results

Before getting further, we need to introduce some useful notions. First, we extend the
classical [n] notation standing for the set {1,2,...,n}, to the following notation.

Notation 6.1. Given two integers k and n such that k < n, [n]; stands for the set
{k,k+1,...,n}.

As such [n] and [n]; are equivalent.
We then introduce the configuration of a vector as follows:

Definition 6.1. For any t € [2P — 1]y, we define configuration t as By: the p-
dimensional binary vector that represents t in binary. We say that a p-dimensional
vector v is in configuration t if and only if v = By.

In light of these definitions, we remark that maxmax1 can be trivially solved in
O*(2P). This can be done by testing, for all configuration ¢, if there exists a feasible
stack s with representative vector in configuration ts such that ts dominates t and by
keeping the best created stack. Informally, we say that a configuration ¢; dominates
another configuration 9 if the set of coordinates set to zero in By, is included in the
set of coordinates set to zeros in By, .

A natural question arising is to know whether improving the running time of the
algorithm to O*(rP) with r < 2 is possible. We show now that, when considering the
special case where n = 2, a simple reduction from maxmax1 to INDEPENDENT SET
provides an algorithm with improved running time.

Theorem 6.17. For n = 2, maxmax 1 can be solved in ¢(r,p) using any algorithm
for INDEPENDENT SET running in ¢(r,n).

Proof. To prove the previous theorem, we show that there exists an S-reduction (f, g)
from maxmax 1, when n = 2, to INDEPENDENT SET.

Let us consider a maxmax 1 instance I with n = 2, we show how to construct an
instance f(I) of INDEPENDENT SET defined by a graph G = (U, E).

Remember that according, to Hypothesis 4.3, two vectors of a same set vi , vé cannot
have both the same coordinate [ set to zero.

We construct the graph G as follows:

e we set U = p,
e for each couple (I1,12) € [p]?, we create an edge (I1,l2) € E if and only if there
exists a set V? such that vi[l1] = 0 and vi[la] = 0.

We claim now that finding a solution S for I of profit ¢ (S) = k is equivalent to
finding an independent set 1S in G = (U, E) of profit |I.S| = k.

< We consider an independent set IS in G = (U, E), we show how to construct
a solution g(I,IS) = s1,s2 for maxmax 1. For each | € IS, we assign to the
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Vl V2 V3 V4
110011 [11001 - 11101 - 11001 | 01001 |
101101 ] [10111 {11010 {10110 |- 10010 ]

Figure 6.8: Illustration of the reduction from a maxmax1 instance I with m =
4, n = 2, p = 5 admitting a solution S of profit ¢(S) = 2 to an instance
G = ({1,2,3,4,5},{(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(4,5)}) of INDEPENDENT
SET admitting a solution I.S = {1,4} of profit two.

stack s1, every vector of any set V' that verifies v;- [[] = 0, if s1 isn’t complete,
we assign greedily vectors of remaining sets to s;.

Note that two vectors of a same set cannot be assigned to s;. Let us indeed
suppose that there exists a set V? such that v} and v} are assigned to s;. By
construction, there exists [y € vi and o # [ € v% such that ly,ly € IS. By
construction, such a pair of coordinates implies an edge in G, thus IS is not an
independent set.

By construction, the second stack sy € g(I,1S) is such that VI € IS, v3[l] = 1.
Thus ¢ (g(I,1S) = {s1,s2}) > |I5].

= We consider a solution S for I of profit ¢(S). There exists a stack, let us say
s1, such that v, contains c¢(S) components equal to one. We construct an
independent set 1.5 as follows, Vl/v,, [[] =1, k € IS.

If we call Z = {l/v, [l] = 1}, we remark that V(l1,ls) € Z?, there doesn’t exist
a set V' such that vi[l1] = 0 and vi[l] = 0. Such a set would imply that either
v, [l1] = 0 and v, [l2] = 1 or that vy, [l1] = 1 and v [lo] = 0.

Hence, by construction, ¥(I1,1l2) € Z2, (I1,l2) € E and Z is a independent set of
size [IS| = ¢(9).
An illustration of this reduction is given on Figure 6.8. O

Since INDEPENDENT SET can be, for instance, solve in time O*(1.27387) [CKX10],
we can write the following Corollary.

Corollary 6.3. For n =2, maxmax 1 can be solved in O*(1.2738P).

6.3 Conclusion and open questions

This positive result brings to a close our study of these intermediate problems. We can
see that even though the power of expression of these problems is in a way reduced due
to the simplicity of the cost function 2, these problems encode a large variety of graph

2Keep in mind that only one m-tuple is taken into consideration in max max 1 and min min 0, and
only non zero m-tuple are counted in max.q.



86 CHAPTER 6. INTERMEDIATE PROBLEMS

and hypergraph problems. This expressiveness implies a strong inherent hardness for
the latter but provides on the other hand a convenient and intuitive framework to
tackle many graph problems. As such, furthering the study of positive results even in
constrained instances can be an interesting area of research.

Furthermore as we will see in the both next chapters, the complexity of the masters
problems we consider (max > 1 and min ) 0) is intrinsically linked to the complexity
of these intermediates problems. It follows that on one hand, negative results for
the intermediate problems can probably be extended to the masters problems and on
another hand, positive results for the intermediate problems give intuition on the way
to tackle the masters one. In this respect, the main open question to our opinion is
about the existence of an f(m)-approximation algorithm for maxmax 1. It seems to
be a really hard but interesting question. Indeed, we can easily see that no greedy
strategy can lead to an approximation algorithm. Such strategies can in a way be seen
as online strategies. Once this remark formulated, one can see that, no matter the
choices that have been made on the m — 1 first sets, it is always possible to design an
adversary forcing this partial solution to be arbitrarily bad.

As we will see in next chapter, this question naturally holds for max ) 1.
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This chapter is devoted to the study of the max )  1-BMVA (max > 1) problem, pre-
sented in Introduction. It is, with min ) 0-BM VA, one of the two considered problems
that has direct application to IC manufacturing. Its practical resolution, based on In-
teger Linear Programming or Constraints Programming formulations is discussed in
the next part of this manuscript. This chapter presents theoretical results on the
complexity of the problems.

In a first time we present negative results, mainly based on reduction from inter-
mediate problems previously presented. We first prove, in section 7.1.1, O(™/logm)-
inapproximability for m > 3 based on a reduction from max_q. The following section,

87
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Section 7.1.2, aims at extending the inapproximability results of max max 1 to max 1
with help of an S-reduction. In a second time we focus on the dependence of the com-
plexity in p. We establish, in section 7.2.1, that max ) 1 admits a p/r-approximation
algorithm based on a routine that solves optimally smallest instances of max ) 1 with
r-dimensional vectors. We then demonstrate, in the Section 7.2.2, that (max > 1,p)
is FPT implying that previous algorithm runs in polynomial time when r is fixed.
However the Section 7.2.3 provides AND-cross-composition proving that the problem
does not admit a polynomial kernel with size depending only in p.

Finally we focus on the impact of the number of coordinates set to zeros per vector
on the complexity of the problem. Contrary to its general version (max)_.1,m), we
show that ((max}_1)y0<;,m) is in XP.

An overview of the known results on max ) 1 is given in Figure 7.1.

Excluding the AND-cross-composition, these results are published in [Bou-+16]
and [BDG16].

7.1 Negative Results

7.1.1 O(%)-inapproximability

In this section, we provide a strict-reduction from the max.y intermediate problem,
proving inapproximability results for max ) 1.

Lemma 7.1. maxq strict-reduces to max ) 1.

Proof. We consider a max( instance I[m,n,p] . We introduce f that maps I to a
max Y 1 instance f(I)[m’ =m + 1,n’ = np,p’ = p]. For every set V* we create a set
V'i. These sets are constructed as follows. For every vector v§ € V', we create a copy
vé-i € V. We complete V'* with n’ — n zero vectors;

The set V'™ *! contains n occurrences of the following set of vectors:

{1000...000,0100...000,0010...000,...,0000...010,0000...001}
—_—

p=p’

As an example, the following instance I of max_

v} =1010 v? = 0001 v = 1111
vy = 1001 v3 = 0100 v3 = 1000
N——— N————— N—————

Vi V2 V3
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Figure 7.1: Overview of the results for max 1
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is turned into the following one I of max ) 1:

vl = 1010 vl = 0001 v’13 = 1111 vl = 1000
v2 = 1001 v2 = 0100 v2 = 1000 v2 = 0100
v3 = 0000 vg = 0000 ug — 0000 v3 = 0010
v4 — 0000 1)4 = 0000 v4 = 0000 v4 = 0001

= 0000 = 0000 — 0000 = 1000
vﬁ = 0000 uﬁ = 0000 v6 = 0000 vﬁ = 0100

— 0000 = 0000 = 0000 = 0010
vg — 0000 vg = 0000 vg = 0000 vg = 0001

Informally, the last set in f(I) acts like a mask transforming any non zero stack
into a stack of profit equal to one.
Let us now prove that this transformation is an strict-reduction.

= Suppose that I admits a solution S of profit Cmax_zo (S). We construct a solution
S’ of f(I) as follows. For each non zero stack s € S, we construct a stack s
containing the created of each vectors in s and associate a vector of V™! that
does not nullify s’. Such a vector always exists since S contains at most n non
zero stacks and V'™*! contains n vectors with coordinate [ set to one VI € [p)].
The other stack are greedily constructed.

It follows that cpax 51 (S") > Cmax, (5)-

< Consider a solution S of f(I), we construct a solution g(I,S) of I as follows.

For every non zero stack s of S we add to ¢g(I,S) a stack s’ containing the copy
of the vectors in s selected in sets V't to V™. Note that these vectors exist since
s cannot contains one of the created zero vectors. s being a non zero stack, s is
also a non zero stack.

The other stacks of g(I,S) are greedily constructed. It follows that for any
solution S of f(I) cmax, (9(1,5)) = craxso1 (5).

Therefore, the reduction (f,g) is a strict-reduction. O
Using Theorem 6.1, we get the following result:
Theorem 7.1. max )1 is hard to approzimate within a factor O(%) unless P =
NP.
7.1.2  f(n), p*=¢, m'~c-inapproximability

We can also highlight a strict-reduction from max > 1. This reduction provides nega-
tive results with regard to parameters n and p. But it also provides inapproximability
in function of m. Although the m!~*-inapproximability result is weaker than the
previous ™/log(m)-inapproximability, this one holds even for m = 2.
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Lemma 7.2. maxmax1 strict-reduces to max )y 1.

Proof. Let us construct (f, ¢g) as in Definition 2.27. Consider an instance I of max max 1.
We construct an instance f(I) of max y_ 1 as follows: we set p’ =p, n’ =n, m’ = m+1.
The m sets of I remain unchanged in f(I): Vi € [m];, V' = V% and the last set V'™ +!
contains (n — 1) zero vectors and a unique one vector.

Informally, the set V™! of f(I) behaves like a selecting mask: since all stacks
except one are turned into zero stacks when assigning the vectors of last set, the unique
one vector of set V™! must be assigned to the best stack, and maximizing the sum
of the stacks is equivalent to maximizing the best stack.

More precisely, given a solution S of f(I), if we define g(I,S) as the solution of I
containing a stack s created with copies of vectors of sets V1, V’2, ... V'™ composing
the non zero stack s’ in S, it is straightforward to see that the following statement
is true: Vz, 3 solution g(I,S) of maxmax1 of value cmaxmax1 (9(1,5)) = =z < 3
solution S of max ) 1 of value cpac51(S) = . Thus, we get ¢ (0Pt max1()) =

c (optmale(f(I))>. As f, g are polynomial-time computable functions, we get the

desired result.
O

Using Theorems 6.3 and 6.4, we get the following results.

Theorem 7.2. max )1 is hard to approzimate within a factor f(n) for any com-
putable function f, unless P = NP.

Theorem 7.3. Even for n =2, for any ¢ > 0, max »_ 1 is hard to approximate within
factors O(m!=¢) and O(p'~¢), unless P = NP.

7.2 Considering the vectors dimension

The strict-reductions from max,o and maxmax 1 prove strong inapproximability re-
sults for max ) 1 with regard to the three natural parameters m, n and p. These
results motivate a further study of the dependence of the max ) 1 complexity in
function of its parameters. However, the reduction from MAX CLIQUE with n = 2
shows that maxmax1 (and thus max ) 1) is not even in XP when parameterized
by n. Furthermore the reduction of Dokka et al. [DCS14| from a particular case of
3-DIMENSIONAL MATCHING shows that min ) | 0 (and thus max ) 1) is neither in XP
when parameterized by m. This legitimates the study of max ) 1 with regard to p.

In this section, we first focus on approximability of max ) 1 in function of p. A
trivial polynomial-time algorithm with approximation ratio of p is given raising the
question of the existence of a p/r-approximationalgorithm. We provide then a p/r-
approximation algorithm relying on a routine solving efficiently instances of max ) 1
when p is small.

Naturally the parameterized complexity of max ) 1 when parameterized by p is
taken into consideration. We show that (max > 1,p) is FPT and use this result to
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justify that the previous p/r-approximability algorithm runs in polynomial time when
r is fixed. The membership of max ) 1/p in FPT naturally leads us to ask about
the size of its kernel. We prove that the existence of a polynomial size kernel is very
unlikely.

7.2.1 r/r-approximation

When considering Theorem 7.3, it seems natural to look for ratio »/r, where r is a
constant. Let us first see how to achieve a ratio p with Algorithm 2.

Algorithm 2: p-approximation for max ) 1

z = 0;

while 3! such that it is possible to create a stack s with v [l] =1 do
Add s to the solution;
r=x+1;

if x <n then
Add n — x arbitrary (null) stacks to the solution;

Property 7.1. Algorithm 2 is a p-approzimation algorithm for max_ 1.

Proof. Given an instance 7, let S = S_oUSy be the solution computed by the algorithm,
where S is the set of non zero stacks, and Sy is the set of the remaining null stacks.
Since Sy and Sy are disjoint, we have Sy = S\ Sxo. Let ny = [Sxg|, and Vi, let
V' = VN Sy. Let ng = [Sp| = |V (all the V' have the same size). Notice that
n=mni+no.

As the algorithm cannot create any non null stack at the end of the loop, we know
that for any position [ € [p], there is a set 4; such for any vector v € V'% o[l] = 0. In
other words, we can say that there is a column of ny zeros in set V’%. Notice there
may be several columns of zeros in a given set. Thus, we deduce that there are at least
p columns (of ny zeros) in the vectors of V/%. Moreover, as none of these zeros can be
matched in a solution, we know that these nol zeros appear in any solution.

Thus, given opt (i) an optimal solution, we have ¢ (opt(i)) < np — nop = nip. As
¢(S) > ny, we get the desired result. O

Given a fixed integer r (and targeting a ratio /r), a natural way to extend Algo-
rithm 2 is to first try to create stacks of profit exactly r, i.e. find (Iy,...,1,) such that
it is possible to create s such that v [l1] = -+ = v [l,] = 1, then stacks of profit exactly
(r — 1), and so on until only null stacks can be created. However, even for r = 2 this
algorithm is not sufficient to get a ratio p/2. Intuitively, when no stack of profit 2 can
be created in the instance, this algorithm runs in the exact same way as Algorithm 2.
The latter being tight, as shown by the example depicted in Figure 7.2, this algorithm
cannot achieve a better ratio.

In this example it is not possible to create any stack of value strictly greater than
one since set V1 kills positions {1,2} (we say that a set kills positions {l1,l5} if and
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Vl V2 VS V4
011 011 j101]  [111]

110 //";/.,..’011}\\ <
101 011

Figure 7.2: Counter-example showing that Algorithm 2 for r = 2 remains a p-
approximation. The depicted stacks correspond to an optimal solution of profit 3
whereas the algorithm outputs a solution of profit 1.

only if there is no vector in the set such that v[l;] = v[ls] = 1), set V2 kills positions
{1,3}, and set V3 kills positions {2, 3}

Thus, as previously mentioned, in this case (and more generally when no stack
of value greater than 1 can be created), the solution computed by the algorithm for
r = 2 is the same as one computed by Algorithm 2. In the worst case, the algorithm
creates only one stack of value 1 (by choosing the first vector of each set). However, as
depicted in Figure 7.2, the optimal value is 3, and thus the ratio p/2 is not verified. In
other words, knowing that no stack of profit 2 can be created does not provide better
results for Algorithm 2. This motivates the different approach we follow hereafter.

Property 7.2. Suppose that there exists an exact algorithm for maxy 1 running in
fn,m,p). Then, for any r € [p| we have a p/r-approzimation running in O(p X

f(n,m,r)).

Proof. The idea is to use a classical shifting technique by guessing the subset of the
r most valuable consecutive positions in the optimal solution, and running the exact
algorithm on these r positions.

Given an instance I[m,n,p| of max>_ 1, we consider an optimal solution opt(I).
The cost of opt(I) can be written as follows: ¢ (opt(I)) = >.7_; a;, where a; = [{s €
opt(]) : vyl] = 1}| is the number of stacks in opt(/) that save position I. VI € [p],
let X;={l,...,1+(({+r—1) mod p)}, and oy = } ;cx, ar. Notice that we have
S oi=r>"1_a=rc(opt(l)), as each value q; appears exactly r times in Y »_, 0.
This implies max;e(,) 07 > 7c (0pt(])).

For any [, let I; be the restricted instance where all the vectors are truncated to
only keep positions in X; (there are still nm vectors in I, but each vector is now a
r dimensional vector). By running the exact algorithm on all the I; and keeping the
best solution, we get a p/r-approximation running in O(pf(n, m,r)). O

The previous lemma motivates the exact resolution of max ) 1 in polynomial-time
for fixed p.

The next section is devoted to the design of an FPT-algorithm for max ) 1 (and
thus min ) 0) when parameterized by p. Note that these parameterized problems
have already been proven in XP by Dokka et al. [DCS14]. They indeed prove that
min > 0 can be solved in O(m(n?")). As this result also apply to max_ 1, we get a
p/r-approximation running in O(pm(n?")), for any r € [p].
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We now show that this running time can be improved by showing that min)_0
and max »_ 1 are FPT when parameterized by p.

7.2.2 Faster algorithm for fixed p for max)_ 1

First ideas to get an FPT algorithm

In a first time, we present the already known algorithm presented in [DCS14] for
fixed p. This result is obtained using an integer linear programming formulation of the
following form. In this paper, they consider min )0, as such the objective function
is min Z?igl x1¢y where x; € [n]o is an integer variable representing the number of
stacks in configuration® ¢, and & € [p|o is the number of 0 in configuration t.

This is a good starting point to get an FPT algorithm. Indeed, if we note nyq,
(resp. mey) the number of variables (resp. number of constraints) of an ILP, for
any A € QmvarXMetr ph € QMetr the famous algorithm of Kannan [Kan83| allows us
to decide the feasibility of an ILP, under the form 37z € Z" |Az < b, in time
O(n%ﬁﬁ”mctr In mey). Thus, to get an FPT algorithm parameterized by p, it is suffi-
cient to write min 0 (and max ) 1) as an ILP using f(p) variables.

However, it remains now to add constraints that represent the min ) 0 problem.
In [DCS14], these constraints are added using z}t variables (for i € [m],j € [n],t €
[2P —1]p)), where z;'»t = 1if and only if v;'- is assigned to a stack of type ¢, a stack s being
of type t if and only if its representative vector vy is in configuration ¢. Nevertheless
these new O(mn2P) variables prevent us to use [Kan83]. Thus, we now come back to
the max ) 1 problem, and our objective is to express the constraints using only the
{z+} variables.

Presentation of the new ILP for max )1

For any t € [2P — 1]y, we define an integer variable x; € [n]y representing the number
of stacks in configuration ¢. Let also ¢; € [plo = ¢(B;) be the number of coordinates
set to one in a vector in configuration ¢, By being roughly the binary representation of
the integer ¢, ¢f Definition 6.1.

Definition 7.1. A profile is a tuple P = {xq,...,xor_1} such that Z?ial Ty =n.

Definition 7.2. The profile Pr(S) = {xo,...,zow_1} of a solution S = {s1,...,s,}
is defined by xy = |[{i : vs,is in configuration t}|, for t € [2P — 1]o.

Definition 7.3. Given a profile P, an associated solution S is a solution such that
Pr(S) = P. We say that a profile P is feasible if and only if there exists an associated
solution S that is feasible.

Notice that the definition of associated solutions also applies to a non feasible
profile. In this case, any associated solution will also be non feasible.
Obviously, the max " 1 problem can be formulated using the following ILP.

1Recall that, intuitively, a vector v is in configuration ¢ if v is the binary representation of t, cf
Definition 6.1 for formal definition.
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Integer Linear Program IV FPT-formulation sketch

201

Maximize » (IV.1)
t=0
2° 1

subject to Z Te=n (Iv.2)
t=0
€ N VO <t<2P (IV.3)
P = {x} is feasible (IV.4)

i) . :
mE .« [10

1
T « [10
10] » . [01

Figure 7.3: Example showing that satisfying demands of profile P with set V! requires
to find a perfect matching. The edges represent the domination between configurations.

=ll=]=]=
S

Our objective is now to express the feasibility of a profile by using only these 2P
variables. Roughly speaking, the idea to ensure the feasibility is the following. Let
us suppose (with p = 2 and n = 4 for example) that there exists a feasible solution
of fixed profile xg = 0,21 = 1,29 = 2,23 = 1. Suppose also that the first set is
as depicted in Figure 7.3. To create a feasible solution with this profile, we have to
“satisfy” (for each set V) the demands z; for all configurations ¢. For example in set 1,
the demand z2 can be satisfied by using one vector in configuration 2 and one vector of
configuration 3, and the demand 3 can be satisfied using the remaining vector of 3 (the
demand zg is clearly satisfied). Notice that a demand of a given configuration (e.g.
configuration 2 here) can be satisfied using a vector that “dominates” this configuration
(e.g. configuration 3 here). The notion of domination is introduced in Definition 7.4.
Thus, a feasible profile implies that for any set ¢ there exists a perfect matching between
the vectors of V% and the profile {z;}.

Let us now define more formally the previous ideas.

Definition 7.4 (Domination). A p-dimensional vector vi dominates a p-dimensional
vector vy (denoted by vy > vo) if and only if VI € [p], vy[l] =1 = v,[l] = 1.

A configuration t; € [2P — 1] dominates a configuration ty € [2P — 1]y (denoted
by t1 > to) if and only if By, > By, (recall that By is the p-dimensional binary
representation of t).

A solution S" dominates a solution S (denoted by S’ > S) if and only if 3 a
bijection ¢ : [n] — [n] such that for any i € [n], vy > v, (in other word, there is a
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one to one domination between stacks of S and stacks of S).
A profile P' dominates a profile P (denoted by P’ > P) if and only if there ewists
solutions S” and S such that Pr(S") = P’, Pr(S)=P and 8" > S.

Definition 7.5. For any i € [m] and any t € [2P — 1]y, let b} be the number of vectors
of set V' in configuration t.

Definition 7.6 (Graph G’}J). Let P be a profile not necessarily feasible. Let us
denote as G% = ((Ap,AY), Es.), the bipartite graph composed with set of vertices
Al = {)\i’l,O <t <22 —1,1 <1 <0}, being the set containing one vertex per vector
in V' and labeled according to their configuration, and set of vertices Ap = {6},0 <
t <20 —1,1 <1 < mz}, containing one vertex per demand in profile P also labeled
according to their configuration. '

Let us fix a bijection f: A, UA — [2P — 1]y, that associates to each vertex /\i’l and
to each vertex 8! the vector in configuration t. Notice that |A'| = |Ap| = n. Finally,
we set Bs, = {{a,b}la € Ap,b e A%, f(a) < f(b)}.

Intuitively, on one hand the vertices of A* represent the vectors of V', on the other
hand the vertices of Ap represent the demands of profile P and an edge exists between
a vertex of A' and a vertex of Ap if and only if the corresponding vector satisfies
the corresponding demand. Thus the graph G’}D aims at anonymizing the vectors of
Vi, Indeed vectors of a same set sharing the same configuration will be represented
m G’]; by two vertices sharing the same neighborhood. Thus these vertices can be used
indistinctly in the perfect matching we are trying to highlight.

We are now ready to show the following proposition.

Proposition 7.1. For any profile P = {xq, ..., 21},

(3P' feasible, with P' > P) < Vi € [m], 3a matching of size n in G'p

Before starting the proof, notice that the simpler proposition “for any P, P feasible
& Vi € [m], there is a matching of size n in G%” does not hold. Indeed, = is correct,
but < is not: consider P with xy = n (recall that configuration 0 is the null vector),
and an instance with nm "1 vectors" (containing only 1). In this case, there is a
matching of size n in all the G%, but P is not feasible. This explains the formulation
of Proposition 7.1. An example of the correct formulation is depicted Figure 7.4.

Proof. Let P be a profile.

(=) Let P’ be a feasible profile that dominates P. TLet S = {si,...,s,} and
S" = {s},...,s,} two solutions such that S’ is feasible, Pr(S) = P, Pr(S’) = P’
(notice that S and P are not necessarily feasible), and S’ > S. W.l.o.g., let us assume
that Vj, 39 > s; (i.e. the bijection ¢ of Definition 7.4 is the identity), and let us
assume that for any j, s; = (v]1 NS
U;- > s> sj, Vj € [n]. This implies a matching of size n in all the graphs Gh.

). Since v} € s}, then for any i, we know that
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Figure 7.4: Hlustration of Proposition 7.1 with m = n = 3 and p = 4. Above: The
three G; graphs (edges are depicted by solid and dotted lines), and three matchings
(in solid lines) corresponding to S’. Below: Solution S’ s.t. Pr(S’) > P.

(«=) Let us suppose that Vi € [m], there is a matching M" of size n in G%.

W.lo.g. let us rename {1,...,0,} the vertices of Ap, and {\¢,..., A} the ver-
tices of A’ such that for any i, M* = {{\},81},...,{\%,d,}}. This implies f(A\}) >
f(61), ..oy FAY) > f(0,). Let us define S = {s1,...,s,}, where Vj € [n], s; =
(f()\}),...,f()\yl)). Notice. that for any j, s; > f(65), as all the f()\é) > f(d;), and
combining two vectors f(A}') > f(0;) and f(A}?) > f(d;) creates another vector that
dominates f(d;). Thus, S is feasible, and Pr(S) > P, and we set P’ = Pr(S). O

Now, we can use the famous Hall’s Theorem to express the existence of a matching
in every set.

Theorem 7.4 (Hall’s Theorem). Let G = ((V',V?2),E) be a bipartite graph with
V| = |V? = n. There is a matching of size n in G if and only if Vo C V1!,
lo| < |T(0)|, where T'(0) = {ve € V2 : Jvy € o such that {vi,v2} € E}.

Remark 7.1. Notice that we cannot use Hall’s Theorem directly on graphs Gfp, as we
would have to add the 2" constraints of the form ¥S C V. However, we will reduce

the number of constraints to a function f(p) by exploiting the particular structure of
G'.

Proposition 7.2 (Matching in G%). Vi € [m], VP = {z¢,...,2_1}: .

(Yo C Ap, [o] < D)) & (Fourg C [22 = 10, Yreor,, Tt < rcdomios,) bi) where
dom(ocpg) = {t' : 3t € 0cpg such that t' > t} is the set of configurations that dominate

Ucfg'
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Proof. (=) Let ocpg = {t1,...,ta}. Let 0 = {5%1,,1 <i<al <1<} be the
vertices of Ap corresponding to the demands in o.¢4. Observe that Zteacfg xp = |ol.
Notice also that I'(o) = {Ai’l,t € dom(c),1 <1 < bi} by construction. Thus, |o| <
|T'(¢)| implies Zteacfg xy < Ztedom(acfg) bi.

(<) Let 0 C Ap. YVt € [2P — 1o, let Xy = {6,,1 <1 <z}, let oy = o[ Xy Let
Ocfg = {t1,...,ta} = {t : o0 # 0}. Let X = UtEchg{Xt}' Notice that |o| < |X| =
Zteacfg Tt

Let us first prove that I'(o) = I'(X). I'(0) € I'(X) is obvious. Now, if there is a
)\i}ll € I'(X), it means that there is a t € o.y4 such that )\i}l/ € I'(Xy), and thus there
exists [ such that {4, )\i}l/} € E (which implies that ¢’ > t). As oy # 0, there exists I’
such that 6! € oy, and {6}, Ai}l/} € Fast >t

Finally, the hypothesis with our set o.f, leads to

o] < 1XI = Sieon,, 7 < Sicdom(ongy) Y = IFEO] = Do)

O
Propositions 7.1 and 7.2 imply that for any profile P = {xq, ...,z _1}:
Jp/ feasible, with P’ > P Vi,Vopg C[2° — 1o, oz < Y b
leocrg tedom(ocsg)
Thus, we use now the following ILP to describe the max ) 1 problem:
Integer Linear Program V FPT-formulation with Hall constraints
2r—1
Maximize Z e (V.1)
t=0
2r—1
subject to Z Tp=n (V.2)
t=0
xt €N VO <t<?2P (V.3)
dw< D h Vi € [m],Yoep, C [2P — 1] (V.4)
t€ocyg tedom(ocfy)

This linear program has 2P variables and (m22” + 2P) constraints. Thus, we can
solve it using [Kan83] in time f(p)poly(m), we get that max > 1 and min)» 0 are
FPT parameterized by p. Using Property 7.2 this ILP leads to a Z-approximation
algorithm for max ) 1 running in time f(r)poly(n +m + p).
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7.2.3 No polynomial size kernel with parameter p

We further the study of max ) 1 when parameterized by p. In this section we show
that even though the problem is in FPT when parameterized by p, it does not admit
a polynomial-size kernel even if m = 3. Such a result is achieved by using an AND-
cross-composition defined in Section 3.2.

Theorem 7.5. Even for m = 3, max Y 1 when parameterized by p does not admit a
polynomial kernel unless NP C coNP /poly.

Proof. The proof is an AND-cross-composition inspired by the NP-hardness reduction
for max Y 1 provided by [Dok-+12| and depicted in Section 6.1.1. More precisely, we
cross-compose from a sequence of instances of 3-DIMENSIONAL PERFECT MATCHING.
According to Definition 3.12 and Theorem 3.3, this will imply the desired result. 3-
DIMENSIONAL PERFECT MATCHING is formally defined as follows:

Decision Problem 4 3-DIMENSIONAL PERFECT MATCHING (3-DPM)

Input Three sets X, Y and Z of size n, a set of hyperedges S C X xY x Z
Question Does there exist a subset S’ C S such that:

e for all e,¢’ € §" with e = (z,y,2) and € = (2/,y/, 2'), we have
x# 2, y#y and z # 2’ (that is, S’ is a matching)

e |S'| =n (that is, S’ is perfect)

Let (X1,Y1,21,51), -+, (X1, Y, Z, St) be a sequence of t equivalent instances of 3-
DPM, with respect to the following polynomial equivalence relation: (X,Y, Z,S) and
(X",Y', 7', 8") are equivalent if | X| = |X’| (and thus |Y| = Y| = |Z] = |Z'| = | X]),
and |S| = |S’|. In the following we denote by n the cardinality of the sets X; (and
equivalently the sets Y; and Z;), and by m the cardinality of the sets S;. More-
over, for all ¢ € {1,---,t} we define X; = {z;1,- - ,zin},Yi = {vi1, - ,¥inh Zi =
{#zi1,"- ,2zin}, and S; = {s;1,--- ,sim}. We also assume that ¢t = 29 for some ¢ € N
(if it is not the case, we add a sufficiently number of dummy yes-instances).

In the following we construct three sets (X*,Y™*, Z*) of nt vectors each: X* =
{o7;ieft], jenlt, Y ={y};:i€t], j€nl} and Z* ={z]; :i € [t], j € [n]},
where each vector is composed of p* = m + 2mq components. Let us first describe the
first m components of each vector. For all i € [t], j € [n] and k € [m] we set:

1,7

“ 1 if the hyperedge s; , contains x; ;
€T =
0 otherwise
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[ { 1 if the hyperedge s; ; contains y; ;
Yij

0 otherwise

. 1 if the hyperedge s; ;, contains z; ;
[k] = .
0 otherwise

Intuitively, if we restrict the transformation to the first m coordinates, the reduction
is exactly the same as the one provided in [Dok+12| and depicted in Section 6.1.1.

However this only transformation does not ensure that the constructed instance of
max Y 1 is positive if and only if every instance of 3-DPM is positive. Indeed, as such
vectors of max ) 1 instance encoding different 3-DPM instances can be matched to
get a better solution. Thus, for all ¢ € [t], and for all j € [j], we append two vectors b;
and b; to all vectors T, Y ]} and 2 .. The vector b; is composed of mgq coordinates,
and is defined as the binary repreqentatlon of the integer 7, where each bit is duplicated
m times. Finally, b; is obtained by taking the complement of b; (i.e. replacing all zeros
by ones, and conversely) as depicted in Figure 7.5. These suffixes artificially increase of
mlog(t) = mq units the number of ones in representative vectors of stacks containing
only vectors encoding a same 3-DPM instance, preventing the combination into stacks
of vectors encoding different 3-DPM instances. Indeed, we will see that the cost of
the stacks, defined by the number of zeros in its representative vector, greatly increase
when mixing the vectors.

It is now clear that each vector x;",j (resp. y;"’j, z:J) is composed of p* = m + 2mgq
coordinates. Thus, the parameter of the input instance is a polynomial in n,m and
log t whereas the total size of the instance is a polynomial in the size of the sequence of
inputs, as required in cross-compositions. It now remains to prove that (X* Y* Z*)
contains an assignment of cost k* = nt(mgqg+m—1) if and only if for all s € {1,--- , ¢},
S; contains a perfect matching S.

< Suppose that for all i € [t] we have a perfect matching S/ C S;. W.l.o.g. suppose

that S = {si1, -+, Sin}. Then, for each j € [n], we have sij = (Tijys Yijos Zirjs)

for some ji,j2,73 € [n]. We assign z;; with yr, and z7 ;.. It is easy to see
that the cost of this triple is m — 1 + mgq. Indeed, they all have a one at the j*
coordinate, corresponding to the j** hyperedge of S; (and this is the only shared
one, since we can suppose that all hyperedges are pairwise distinct), and they
all contain the same vectors b; and b;. Summing up for all instances, we get the
desired solution value.

= Conversely, first remark that in any assignment, the cost of every triple (z} T3
*

yiwé,zl3 ]3) is at least m — 1 + mgq, and let us prove that this bound is tight
when (1) all elements are chosen within the same instance, i.e. iy = ia = i3 = 1,
and (2) this triple corresponds to an element of S, i.e. (xwl,yz,m,zwg) € Si.
Indeed, suppose first that i1 # i5. Then, since the binary representation of iy

and io differs on at least one bit, it is clear that the resulting vector is of cost
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at least m(q + 1) > mqg +m — 1. Now if i1 = iy = i3 = i, then the result is
straightforward, since at most one hyperedge of S; can contain z7, ; , y7, ; and
%, s~ Finally, using the same arguments as previously, we can easily deduce a
perfect matching S/ C S; for each i € [t], and the result follows.

O

This result closes our study of the problem parameterized by p. It also ends the
study of the problem with regard to the three natural parameters m, n and p. In our
opinion, the only important question left opened by this study is about the possibility
to efficiently approximate max . 1 within a ratio f(m) with f being a polynomial-time
computable function. Indeed, such an algorithm exists for min ) 5 0 [Dok+12; DCS14|,
however the latter is unknown even for max max 1.

It seems then natural to look for other structural parameters that could lead to
efficient algorithms. This is the aim of the next section.

7.3 Resolution of sparse instances

In view of the previous study, the complexity of max) 1 with regard to its three
natural parameters tends to be clarified. The membership of (max) 1,p) in FPT
gives us the intuition about the influence of the parameter p on the problem complexity.
This intuition is strengthen by the NP-hardness of the problem even when n = 2 or
m = 3. It seems thus interesting to focus on structural parameters linked to the
number of dies. We thus focus on the maximum number of coordinates set to zeros in
a vector.

7.3.1 EPTAS for (max}_ 1),

We take into consideration instances of max ) 1 having a limited number of coordi-
nates set to zero in each vector. The instances are called sparse. On these sparse
instances, we get the following results:

Corollary 7.1. For any fized m, (max ) 1) ,0<, admits an EPTAS.

Proof. Let us consider I[m,n,p| an instance of (max_1),,,, and a constant [ > 1.
We make out two possibilities:

e p <lrm. In this case, the problem can be optimally solved in time f(I)poly(n +
m) by using ILP (V).

e p > [rm. In this case, the profit of each possible stack s is lower bounded by
c(s) > p—rm > 0. Indeed, the number of coordinates set to zero is upper
bounded by 7. It follows that the profit of each vector v verifies ¢ (v) > p — r.
Since every stack s is an m-tuple of vectors, we get that ¢ (s) > p—mr. Therefore
any greedy algorithm A returns a solution S verifying ¢ (S) > m (p — mr).
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Figure 7.5: Example of construction of the AND-cross composition from four equivalent
instances of 3-DPM: I} = (X1, Y1, Z1, {(z1,1, 91,1, 21.3), (®1,1,Y1,2, 21,2), (T1,2, 1,3, 21,3),
(T13,913,213)}), Lo = (Xo,Ya, Zo, {(22,1,¥2,1,22,1), (T2,2, 42,2, 22.2), (T2,3, 42,3, 22,3),
(23,922, 221)}), I3 = (X3,Y3, 23, {(23,1,¥3,1,23,1), (3,2, 93,1, 23,1), (£33, ¥3,2, 23,2),
(33,Y3,3,233)}), 1o = (Xua,Ya, Zy,{(xa,1,y12,242), (Xa2,Ya,1,24,1), (Ta,2,Ys,2,24,2),
(4,3,Y4,3,24,3)}) into an instance of BMVA with m =3, n = 12 and p = 20.
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On the other hand, the profit of every optimal solution S* is upper bounded by
np. (max 1)y, being a maximization problem the performance ratio p of a
solution S is defined as :

_c(97) P g rm 1
r= c(S) “p—rm p—rm (I—1)yrm -1

In this configuration, every polynomial time algorithm is a 1+ l_%—approximation
algorithm.

O]

7.3.2 A polynomial-time algorithm for (max}_1),,., when m is fixed

Previous section shows that the number of coordinates set to zero has a real impact
on the approximability of the problem. However, as we will see in Section 8.1.2,
(min »0)40<; (and thus (max 1),,.) remains NP-hard (even for n = 2). It is
thus natural to ask if (max}_ 1),y is polynomial-time solvable for fixed m but for
general n. This section is devoted to answer positively to this question. Notice that
we cannot extend this result to a more general notion of sparsity as (min}_0) <o is
APX-complete for m = 3 [DCS14]. However, the question if (max} 1), is fixed
parameter tractable when parameterized by m is left open.

We first need some definitions, and refer the reader to Figure 7.6 where an example
is depicted.

Definition 7.7.

e For anyl € [p],i € [m], we define BWY) = {v} : vi[l] = 0} to be the set of vectors
of set i that have their (unique) zero at position l. For the sake of homogeneous
notation, we define BPt11) = {U; : U; is a 1 vector}. Notice that the BGD form
a partition of all the vectors of the input, and thus an input of (max 1)#0§1 18
completely characterized by the B,

e For anyl € [p+ 1], the block B' = Uiepm] B,

Informally, the idea to solve (max )’ 1)#0<1 in polynomial time for fixed m is to
parse the input block after block using a dynamic programming algorithm. When
arriving at block B! we only need to remember for each ¢ C [m] the number x, of
“partial stacks” that have only one vector for each V? i € c¢. Indeed, we do not need
to remember what is “inside” these partial stacks as all the remaining vectors from
BY,I' > [ cannot “match” (i.e. have their zero in the same position) the vectors in
these partial stacks.

Definition 7.8.
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Figure 7.6: Left: An instance I of (max} 1), partitioned into blocks. Right: A
shape Sh = {HJ{@} = 2,.%{1} = 1,.%'{2} = 1,:6'{3} = 1,1’{172} = 1,.%'{173} = 1,.%'{273} = 1,
T{123y = 1} encoding a set S of partial stacks of I containing two empty stacks. The
support of s7 is sup(sy) = {1,3} and has cost c¢(s7) = 1.

e A partial stack s = {vj,...,v] } of I is such that {i; € [m],x € [k]} are

Vg
pairwise disjoints, and for any x € [k], vi € Vie. The support of a partial

stack s 1s sup(s) = {ig,x € [k]}. Notice that a stack s (i.e. nmon partial) has
sup(s) = [m].

o The cost is extended in the natural way: the cost of a partial stack c(s) =
c (Ame[k} v} ) 18 the number of zeros of the bitwise AND of the vectors of s.

We define the notion of shape as follows:

Definition 7.9. A shape Sh = {z.,c C [m]} is a set of 2™ positive integers such that
ch[m] Te =M.

In the following, a shape will be used to encode a set S of n partial stacks by
keeping a record of their support. In other words, z., ¢ C [m] will denote the number

of partial stacks in S of support c¢. This leads us to introduce the notion of reachable
shape as follows:

Definition 7.10. Given two shapes Sh = {z.: ¢ C [m]} and Sh' = {al, : ¢ C [m]}
and a set S = {s1,...,8,} of n partial stacks, Sh' is said reachable from Sh through
S if and only if there exist n couples (s1,c1), (S2,¢2), ..., (Sn,Cn) such that:

e For each couple (s,c), sup(s)Nec=10.

e For each ¢ C [m|,|{(sj,¢j):¢c;j =c,j=1,...,n}| = z.. Intuitively, the configu-
ration ¢ appears in exactly x. couples.
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Sh Sh/
c1,S
zepy =1 a = {0} ( (10 12 y U sup(s1) = {1,2,4} 4 ={12} T2y =1
2,52
Ty =1 ca = {2,4} ) 89 sup(s2) = {0} cy = 12,4} T4y =1
sy =1 cg={34} D sy sup(ss) = {1,2) & ={1,2,4}
(c4, 84) . D Ty104) =2
By =D cy = {1} ) 541 sup(sy) = {2} oy =1{1,2,4}
1y — <« ... 9
= e ={1} ———————  s5:sup(ss) = {2,4} 5 =1{1,2,3,4} Tpoza =1

Figure 7.7: Example of a shape Sh' = Ty =1, 204y =1, Tpioa) =2, T234) =
1} being reachable from Sh = {xyy = 1, 1 = 2, xo4y = 1, 2434y = 1} through
S = {s1 : sup(s1) = {1,2,4}, s : sup(s2) = {0}, s3 : sup(s3z) = {1,2}, s4 :
sup(sq) = {2}, s5:sup(ss) ={2,4}}.

o For each ¢ C [m],[{(sj,¢j) : sup(sj)Uc; =, j=1,...,n}| =z, Intuitively,
there exist exactly !, couples that, when associated, create a partial of shape .

Given two shapes Sh and Sh', Sh' is said reachable from Sh, if there exists a set
S of n partial stacks such that Sh' is reachable from Sh through S.

Intuitively, a shape Sh’ is reachable from Sh through S if every partial stack of
the set encoded by Sh can be assigned to a unique partial stack from S to obtain a
set of new partial stacks encoded by Sh'.

Remark that, given a set of partial stacks S only their shape is used to determine
whether a shape is reachable or not. An example of a reachable shape is given on
Figure 7.7.

We introduce now the following problem II. We then show that this problem can
be used to solve (max )’ 1)#031 problem, and we present a dynamic programming
algorithm that solves II in polynomial time when m is fixed.

Optimization Problem 13 II

Input (I,Sh) with [ € [p+ 1], Sh a shape.

Output A set of n partial stacks S = {s1, s2, ..., sp} such that S is a partition
of B= s, B and for every ¢ C [m], |{s € S|sup(s) = [m]\c}| = z..

Objective  Minimize ¢(S) =>."_; ¢(s;)-

Remark that an instance I of (max ) 1), can be solved optimally by solving
optimally the instance I’ = (1,Sh = {zy = n,z. = 0,Vc # (}) of II. The optimal
solution of I’ is indeed a set of n partial disjoint stacks of support [m] of minimum
cost.
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We are now ready to define the following dynamic programming algorithm that
solves any instance (I, Sh) of II by parsing the instance block after block and branching
for each of these blocks on every reachable shape.

Function MinSumZeroDP(l, Sh)

if l==p+1 then
return 0;
return min(c (S’) +MinSumZeroDP(l + 1, Sk’)), with Sh’ reachable from Sh
through S’, where S’ partition of B';

Note that this dynamic programming assumes the existence of a procedure that
enumerates efficiently all the shapes Sh’ that are reachable from Sh. The existence of
such a procedure will be shown thereafter.

Lemma 7.3. For any instance of I (I, Sh), MinSumZeroDP(l, Sh) = Opt(l, Sh).

Proof. Lemma 7.3 is true as in a given block [, the algorithm tries every reachable
shape, and the zeros of vectors in blocks B = J; B cannot be matched with those
of vectors in block B' = J;+,; BY. This is the reason why the support of the already
created partial stacks (stored in shape Sh) is sufficient to keep a record of what have
been done (the positions of the zeros in the partial stacks corresponding to P is not
relevant). O

Let us focus now on the procedure in charge of the enumeration of the reachable
shape. A first and intuitive way to perform this operation is by guessing, for all
¢, C [m], Y the number of partial stacks in configuration ¢ that will be turned into
configuration ¢ with vectors of current block B'. For each such guess it is possible to
greedily verify that each y. » can be satisfied with the vectors of the current block. As
each of the y. can take values from 0 to n and ¢ and ¢’ can be both enumerated in
O*(n2™), the previous algorithm runs in O*(n2"™).

This complexity can be improved as follows. The idea is to enumerate every possible
shape Sh’ and to verify using another dynamic programming algorithm if such a Sh’ is
reachable from Sh. We define Aux gy (Sh, X), that verifies if Sh’ is reachable from Sh
by using all vectors of X. If X = (), then the algorithm returns whether Sh is equal to
Sh' or not. Otherwise, we consider the first vector v of X (we fix any arbitrary order)
for which a branching is done on every possible assignment of v. More formally, the
algorithm returns ng[m],xc>0,cmsup(v):® Auzgp (She = {z]}, X\{v}), where z; = z;—1
ifl=c oj=a;+1if | = cUsup(v), and z] = x; otherwise.

Using Auz in MinSumZeroDP, we get the following theorem.

Theorem 7.6. (max_1),,-; can be solved in O* (2",

We compute the overall complexity as follows: for each of the pn?" possible values
of the parameters of MinSumZeroDP, the algorithm tries the n?" shapes Sh’, and run
for each one Auzgy in O*(n?"nm) (the first parameter of Aux can take n?" values,
and the second nm as we just encode how many vectors left in X).
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7.4 Conclusion and open questions

The problem has been mainly studied in regard to four important parameters: m, n, p
and #0. From the approximability point of view, the study of max > 1 is almost closed.
Indeed, concerning n, we prove f(n)-inapproximability. Concerning p, we prove p'~-
inapproximability being somehow the best inapproximability we can hope for since
we provide p-approximation algorithm and p/r-approximation algorithm that runs in
polynomial time when r is fixed. Concerning m, we prove m!'~*-inapproximability.
However, the existence of an m (and even an f(m)) approximation algorithm is left
open.

If we consider the exact resolution of the problem, we show that the hardness of
the problem was closely linked to the parameter p since we design an F PT-algorithm
for max ) 1 when parameterized by p. To a lesser extent, we show that #0 has also
a certain influence on the complexity of max )1 since when fixed, the problem can
be efficiently approximated and with #0 fixed to 1, max ) 1 belongs to XP when
parameterized by m. Leading to another open question: does this problem belongs to
FPT?

In practice, the positive results we highlight for max ) 1 seems to be hardly
tractable. Real life instances are composed of wafers on which up to 7000 dies are
engraved. This leads to a parameters p being at most equal to 7000. Hence, we need
to explore other trails to tackle these real instances.

In the next chapter, we explore one of this trail by studying the dual version of

max »_ 1: min ) 0.
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This chapter is devoted to the study of min )0, the dual version of max ) 1. The
development of the problem analysis is quite similar to what has been previously done
for max > 1. In a first time we focus on the approximability of the problem.

We first highlight a Gap-reduction constructing from any instance of ALMOST Fk
VERTEX COVER an instance of (min}_0),q.; proving that, (min}_0),,- is NP-
hard to approximate within a ratio (n — ) unless UGC fails. We then provide a
Linear reduction from a particular case of ODD CYCLE TRANSVERSAL proving that
the problem is APX-hard even if n = 2 and #0 < 1 unless P = NP.

Eventually we focus on the complexity of the problem. Contrary to max ) 1 there
is no reduction, like the one from MAX CLIQUE, proving that min ) 0 when param-

109
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eterized by the standard parameter is W[1|-hard. We indeed show that it admits a
kernel of size O(k?m), and thus that it is in FPT. Based on this result, it is possible
to obtain interesting results by subtracting to the objective function a known lower
bound of it. For instance, if one can prove that any solution of a given minimization
problem is of cost at least [, then one can ask for a solution of cost 8 + ¢ and pa-
rameterize by c. This idea, called above guarantee parameterization was introduced
by [MR99| and first applied to MAX SAT and MAX CuUT problems. It then became a
fruitful line of research with similar results obtained for many other problems (among
others, see [Gut+13; MRS09; Cyg+13; GY12]).

The parameterized complexity of min ) 0 is hence divided in two parts in function
of the type of considered parameters:

1. the standard parameter k,

2. two above guarantee parameters.

As showed in Section 7.2.2, min ) 0 is F'PT parameterized by p. As we will notice
in Lemma 8.4 that we can obtain p < k after a polynomial pre-processing step, this
implies that min )0 is also F'/PT with its standard parameter. Our idea here is to
use this previous inequality in order to obtain smaller parameters. Thus, we define
our first above guarantee parameter ¢, = k — p.

Finally, in order to define our last parameter, we first need to describe the corre-
sponding lower bound [, that will represent the maximum, over all sets of vectors, of
the total n}lmber of Zeros for each set. More formally, we define 8 = max;ec[,, c(V)
where ¢(V*) = 37, ¢(v}). Since we perform a bit-wise AND over each m-tuple, it
is easily seen that any solution will be of cost at least 8. Thus, we define our last
parameter (g = k — [3.

We prove that min 3" 0 can be solved in O*(4%#1°8(")) while it is W[2]-hard when
parameterized by (s only, and cannot be solved in O*(2°(¢#)108(")) nor in O*(26s°0°e(n)))
assuming ETH. We then focus on the parameterization by (,: we show that when
n = 2, the problem can be solved in single exponential time with this parameter, but
is not in XP for any fixed n > 3 (unless P = NP). The reduction we use also shows
that for fixed n € N, the problem cannot be solved in 2°(%) (and thus in 2°(¢s)) unless
ETH fails.

An overview of these results is given on Figure 8.1.

These results are published in [Bou+15; BDG16].

8.1 Approximability of min) 0

8.1.1 (n — ¢)-inapproximability

In this section we consider the ALMOST Ek VERTEX COVER problem. Recall that we
call a vertex cover in a k-regular hypergraph H = (U, E) a set U’ C U such that for
any hyperedge e € E, U' Ne # ().
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Decision Problem 5 ALMosT Ek VERTEX COVER

Input We are given an integer k > 2, two arbitrary positive constants € and
d and a k-uniform hypergraph G = (U, E).

Question Distinguish between the following cases:

YES Case there exist k disjoint subsets U',U?,...,U* C U, satis-
fying |U?| > %\U| and such that every hyperedge contains at
most one vertex from each U’.

NO Case every vertex cover has size at least (1 — 9)|U].

It is shown in [BK10] that, assuming UGC, this problem is NP-complete.

: —nd
Theorem 8.1. For any fized n > 2, for any constants €,6 > 0, there exists a 7772~

Gap reduction from ALMOST Ek VERTEX COVER fo (min};0),o<;. Consequently,
under UGC, for any fized n, (minz:())#0<1 is hard to approximate within a factor
(n—¢') for any &’ > 0.

Proof. We consider an instance I of ALMOST Ek VERTEX COVER defined by two
positive constants ¢ and €, an integer k and a k-regular hypergraph H = (U, E).

We use the function f defined in Section 6.1.4 to construct an instance f(I) of
(min ) 0)40<;- Recall that this reduction associates to each hyperedge e of H a set
V€. Each set contains k vectors, one encoding each endpoint of e. A vector v encodes
a vertex w if and only if v[l] = 0 if | = w and v[l] = 1 otherwise. Let us now prove
that if I is a positive instance, f(I) admits a solution S of cost ¢ (S) < (1 + ne)|U],
and otherwise any solution S of f(I) has cost ¢ (S) > n(1 —9)|U].

NO Case Let S be a solution of f(I). Let us first remark that for any stack s € S,
the set {l : v,[l] = 0} defines a vertex cover in H. Indeed, s contains exactly one
vector per set, and thus by construction s selects one vertex per hyperedge in H.
Remark also that the cost of s is equal to the size of the corresponding vertex
cover.

Now, suppose that I is a negative instance. Hence each vertex cover has a size
at least equal to (1 — 0)|U|. Since any solution S of f(I) consists of exactly n
stacks, S verifies ¢ (S) > n(1 —§)|U]|.

YES Case If ] is a positive instance, there exists k disjoint sets U, U?,...,U* C U
such that, Vi € [k], |U?| > 1£|U| and such that every hyperedge contains at
most one vertex from each U°.

We introduce the subset X = U\ |J¥_, U?. By definition {U',U?,...,U* X}isa
partition of U and X < ¢|U|. Furthermore, U'UX is a vertex cover Vi = 1,..., k.
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Indeed, each hyperedge e € E that contains no vertex of U?, contains at least
one vertex of X since e contains k vertices.

We now construct a solution S of f(I). Our objective is to construct stacks {s;}
such that for any i, the zeros of s; are included in U" U X (i.e. {l:v,[l] =0} C
U'U X). For each e = {uy,...,ux} € E, we show how to assign exactly one
vector of V¢ to each stack sp,...,s,. For all i € [k], if v§ represents a vertex u
with u € U?, then we assign v$ to s;. W.lo.g., let S; = {s1,...,sp} (for k' <k)
be the set of stacks that received a vertex during this process. Notice that as
every hyperedge contains at most one vertex from each U?, we only assigned one
vector to each stack of S.. After this, every unassigned vector v € V¢ represents
a vertex of X (otherwise, such a vector v would belong to a set U, i € k', a
contradiction). We assign arbitrarily these vectors to the remaining stacks that
are not in S.. As by construction Vi € [k], vsi contains only vectors representing
vertices from U U X, we get c¢(s;) < |U?| + | X].

Thus, we obtain a feasible solution S of cost ¢(S) = Zlec(si) < k| X| +
Z§:1 |U?|. As by definition we have |X| + Ele \UY| = |U|, it follows that
¢(S) <|U|+ (k—1)e|U| and since k = n, ¢(S) < |U|(1 + ne).

According to the Definition 2.31 of the Gap-reduction, if we define a(n) = (1 +
ne)|U| and r(n) = n1=9) "the previous reduction is a r(n)-Gap reduction. Further-

(14ne)
more, lims._,o7(n) = n, thus it is NP-hard to approximate (minZO)#0<1 within a
ratio (n — &’) for any &’ > 0. O O

Notice that, as a function of n, this inapproximability result is optimal. Indeed,
we observe that any feasible solution S is an n-approximation as, for any instance I of
min ) 0. Recall indeed that, according to Hypothesis 4.4, we assume VI € [p],3i, Jj
such that vé- [[] = 0. Tt follows that ¢ (opt(I)) > p and for any solution S, ¢(S) < pn.

8.1.2 Inapproximability without UGC

Let us now study the negative results we can get when only assuming P # NP. Our
objective is to prove that (min})0),o<, is APX-hard, even for n = 2. To do so,
we present a reduction from ODD CYCLE TRANSVERSAL, which is defined as follows.
Given an input graph G = (U, E), the objective is to find an odd cycle transversal of
minimum size, i.e. a subset 7" C U of minimum size such that G[U \ T] is bipartite.
The problem can be formally defined as follows.

For any integer v > 2, we denote G, the class of graphs G = (U, E) such that

any optimal odd cycle transversal T has size |T'| > lvﬂ Given G a class of graphs, we
denote OCTg the ODD CYCLE TRANSVERSAL problem restricted to G.

Lemma 8.1. For any constant v > 2, OCTg, L-reduces to (min ) 0) 4o withn = 2.
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Optimization Problem 14 Opbp CYCLE TRANSVERSAL

Input A graph G = (U, E).
Output An odd cycle transversal T'.

Objective  Minimize |T|.

Proof. Let us consider an integer v, an instance I of OCTg , defined by a graph
G = (U,E) such that G € G,. W.l.o.g., we can consider that G contains no isolated
vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use the
function f defined in Section 6.1.4 to construct an instance f(I) of (min}_0)_,; such
that n = 2. Since, G contains no isolated vertex, f(I) contains no position [ such that
Vi € [m], Vj € [n], v;[l] =1.

Let us now prove that I admits an odd cycle transversal of size ¢ if and only if f(I)
admits a solution of cost p + t.

< We consider an instance f(I) of (min }_0),q<; with n = 2 admitting a solution
S = {sa,sp} with cost ¢(S) = p+t. Let us specify a function g which produces from
S a solution T' = g(I,S) of OCTg,, i.e. a set of vertices of U such that G[U\T] is
bipartite.

We define T'= {u € U : v, [u] = v,,[u] =0}, the set of coordinates equal to zero
in both s4 and sp. We also define A = {u eV :v,, [u] =0and v, [u] =1} (resp.
B={ueV:uv,[ul =0and v, [u] =1}), the set of coordinates set to zero only in
sa (resp. sp). Notice that {T', A, B} is a partition of U.

Remark that A and B are independent sets. Indeed, suppose that I{u,v} € E
such that u,v € A. As {u,v} € E there exists a set V(%) containing a vector that
represents u and another vector that represents v, these vectors are assigned to different
stacks. This leads to a contradiction. It follows that G[U\T] is bipartite and T is an
odd cycle transversal.

Since ¢(S) = |A| + |B|+2|T| =p+ |T| =p+t, we get |T| =t.

= We consider an instance I of OCTg  and a solution T" of size t. We now construct
a solution S = {sa,sp} of f(I) from T.

By definition, G[U\T] is a bipartite graph, thus the vertices in U\T may be split
into two disjoint independent sets A and B. For each edge e € F, the following cases
can occur:

e if Ju € e such that u € A, then the vector corresponding to u is assigned to
s, and the vector corresponding to e\ {u} is assigned to sp (and the same rule

holds by exchanging A and B)

e otherwise, v and v € T', and we assign arbitrarily v to s4 and the other to sp.
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We claim that the stacks s4 and sp describe a feasible solution S of cost at most
p+t.

Since, for each set, only one vector is assigned to s4 and the other to sp, the two
stacks s4 and sp are disjoint and contain exactly m vectors. S is therefore a feasible
solution.

Remark that vg, (resp. vs,) contains only vectors v such that v[l]] =0=1€ AUT
(resp. | € BUT), and thus c(va) < |A| + |T| (resp. c¢(vp) < |B| + |T|). Hence
c(S)<|A|+|B|+2|T|=p+t.

Let us now prove that this reduction is an L-reduction.

1. By definition, any instance I of OCTg, verifies |opt(I)| > |U|/~. Thus,
c(opt(f(1))) < U]+ lopt(I)] < (v + 1)|opt(])]

2. We consider an arbitrary instance I of OCTg., f(I) the corresponding instance of
(min } - 0) o<y, S a solution of f(I) and T' = g(I,5) the corresponding solution
of I. -

We proved |T'|—|opt ()| = ¢ (S)—[U|—c(opt(f(1)))—=|Ul) = ¢(5)—c(opt(f(1))).
Therefore, we get an L-reduction for « =+ 1 and g = 1. O

Lemma 8.2. There exists a constant v and G C G, such that OCTg is APX-hard.

Proof. We present an S-reduction from VC-3, the VERTEX COVER problem on graph
with maximum degree 3, to OCTg,,, for an appropriate Gyc. VC-3 is known to be
APX-complete |AK97|.

Let us define the functions f and ¢ depicted in the Definition 2.26. Given an
instance G = (U, E) of VC-3, we construct an instance f(G) = (U’, E’) as follows:

1. For each {u,v} € E, create a vertex z,,. These z-vertices form the set Z.
2. U =UUZ.

3. B/ = EU{(u,2zuy), (v, zuw) : {u,v} € E}. In other words, for each {u,v} € E,
we create the triangle {u,v, 2y, }.

Let us prove that G = (U, E') admits a solution VC of size |[VC| = ¢ if and only if
f(G) admits a solution T of size |T'| = t.

= Consider a vertex cover VC of size |VC| = t, for each u € VC, we add the vertex
u’ to T. By definition, V'C covers all the edges of G and then all its (odd) cycles.
Furthermore, it also covers all the created triangles in f(G) since each of these
cycles contains exactly one edge in common with f(G)[U’\Z]. Thus T is an odd
cycle transversal and |T'| = [V C|.
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< Let us construct a function g that, given any solution 7' of f(G), computes a
solution VC = ¢g(G,T) of G. Notice first that we can suppose that 7" contains
no z-vertex. Otherwise every triangle {u,v,z,,} covered by a z,, € T, can
instead be covered by either u or v without increasing the size of T'. Thus, we
set VO =T.

By definition of an odd cycle transversal, T' covers all the odd cycles of f(G) and
especially the created triangles. Thus, the triangle {u,v, 2, ,} corresponding to
any edge {u,v} € E is covered by VC. As VCNZ =), VC is a vertex cover of
G.

The reduction (f, g) is an S-reduction. Let us call Gy ¢ the class of graph generated
in this reduction. The previous reduction shows that OCTg, . is APX-hard. It
remains to check that Gy C G, for a constant +.

Remark that VC-3 is only defined on 3-regular graphs, it implies that for any
instance G = (U, E) of VC-3, Opt(G) > % As |[U'| = |U| + |E| < %, it follows
that:

Ul 2]
>

lopt (f(G))] = |opt(G)| > 32T

Hence, Gyvc C G, with 7 = % O

The following result is now immediate.

Theorem 8.2. (min ) 0) o<, is APX-hard, even for n = 2.

8.1.3 Approximation algorithm for min )0

Let us now show an example of an algorithm achieving a n — f(n,m) ratio. Notice
that the (n — €)-inapproximability result holds for fixed n and #0 = 1, while the
following algorithm is polynomial-time computable when n is part of the input and
#0 is arbitrary.

n—1

np(n,m)
min Y 0, where p(n,m) > 1 is the approzimation ratio for independent set in graphs

that are the union of m complete n-partite graphs.

Proposition 8.1. There is a polynomial-time n — approzimation algorithm for

Proof. Let I be an instance of min) 0. Let us now consider an optimal solution
opt(I) = {s],...,s,} of I. For any i € [n], let Z] = {l € [p] : vs:[l] = 0 and v [l] =
1,Vt # i} be the set of coordinates equal to zero only in stack sf. Let A =" | |Z¥|.
Notice that we have c(opt([)) > A+ 2(p — A), as for any coordinate [ outside | J,; Z;,
there are at least two stacks with the [** coordinate set to zero. W.l.0.g., let us suppose
that Z7 is the largest set among {Z/}, implying |Z;| > %.

Given a subset Z C [p], we will construct a solution S = {si,...,s,} such that for
any | € Z, vs,[l] = 0, and for any i # 1, vs,[l]] = 1. Informally, the zero at coordinates
Z will appear only in s1, which behaves as a "trash" stack. The cost of such a solution
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is ¢(S) < e(s1) + D0 ye(s) <p+ (n—1)(p—|Z]). Our objective is now to compute
such a set Z, and to lower bound |Z| according to |Z7].

Let us define how we compute Z. Let P = {l € [p] : Vi € [m],|{] : v;-[l] =0} <1}
be the subset of coordinates that are never nullified in two different vectors of the same
set. We will construct a simple undirected graph G = (P, E), and thus it remains to
define E. For vector v}, let Zl = Z(v;-) N P, where Z(v) C [p] denotes the set of
null coordinates of vector . For any i € [m], we add to G the edges of the complete
n-partite graph G* = ({Zi x -+ x ZL}) (i.e. for any ji, j2, v1 € Zjl, vy € Z]’:Q, we
add edge {v1,v2} to G). This concludes the description of G, which can be seen as the
union of m complete n-partite graphs.

Let us now see the link between independent set in G and our problem. Let us
first see why Z7 is a independent set in . Recall that by definition of Z7, for any
LeZi, v [[] =0, but Vgs [[] =1, j > 2. Thus, it is immediate that Z} C P. Moreover,
assume by contradiction that there exists an edge in GG between to vertices l1 and [y
of Zik This implies that there exists ¢ € [m], j1 and ja # ji such that v} [l1] = 0
and v [lg] = 0. As by definition of Z{ we must have v_. [ll] =1 and v, [lg] =1 for

j > 2, this implies that s} must contains both v’ , and vl e A contradlctlon. Thus, we
get opt(G) > |Zf|, where opt(G) is the size of a maximum independent set in G.

Now, let us check that for any independent set Z C P in (G, we can construct
a solution S = {s1,...,8,} such that for any | € Z, v, [l] = 0, and for any i # 1,
vs,[l] = 1. To construct such a solution, we have to prove that we can add in s; all the
vectors v such that 31 € Z such that v[l] = 0. However, this last statement is clearly
true as for any i € [m], there is at most one vector v; with Z(v ) C Z.

Thus, any p(n,m) approximation algorithm glveq us a set Z with:

z A

plmm) = np(n,m)

12| =

Therefore, we get a ratio of:

p+ (=1~ ) —1
plnm) §n—n7 for A=p
2p— A np(n, m)

O
Remark 8.1. We can get, for ezample, p(n,m) = mn™"! using the following algo-
rithm. Given an instance I, for any i € [m], let G* = (A},..., Al) be the i-th complete
n-partite graph. W.l.o.g., suppose that A}l is the largest set among {A;} Notice that

|AL| > %(I). The algorithm starts by setting S; = A} (Sy may not be an independent
set). Then, for any i from 2 to m, the algorithm set S; = S;i—1 \ (Ujzj,Aj), where

Sz 1|

Jo = arg max;{|S;—1 ﬂAZ\} Thus, for any i we have |S;| > Sisal " and S; s an inde-

pendent set when considering only edges from U_, Gl. Fmally, we get an independent
set of G of size |Sp| > % > optl)

— mnm—
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Figure 8.2: Example of min ) 0 instance such that no optimal solution creates a 1-
stack.

8.2 Parameterized complexity of min )0

8.2.1 O(k?m) kernel for (min_ 0, k)

Let us start with two simple lemmas allowing us to bound the size of the input. Notice
first that, creating a perfect stack! when possible, is not always safe. Indeed, in instance
Vi = {(111),(101),(011)},V? = {(111),(101), (110)},V3 = {(111), (011}, (110)}, de-
picted in Figure 8.2, no optimal solution creates a 1-stack. However, as we will see in
Lemma 8.3, creating perfect stacks becomes safe if n > k.

Lemma 8.3. There exists a polynomial algorithm which, given any instance Im,n, p, k]
of (min_ 0, k), either detects that I is a negative instance, or outputs an equivalent
instance I'lm,n’, p, k] such that n’ < k.

Proof. Let I[m,n,p, k] be an instance of min)_ 0, and suppose that n > k. Let us
write a polynomial pre-processing rule that either detects that I is a no instance, or
compute an equivalent instance I"”[m,n”, p, k] with n” =n — 1.

Notice first that there exists at least a perfect vector in every set V%, If not, I is a
no instance as any solution would be of cost at least n > k. It is now safe to create a
perfect stack, obtaining a remaining instance I’ with n” = n — 1. Indeed, if I is a yes
instance, then there must exist at least one perfect stack in the solution (otherwise the
cost would be at least n > k), and thus the remaining instance is also a yes instance.
As the converse is trivially true, the rule is safe. Applying it at most n—k times finally
leads to the desired upper bound. O

Lemma 8.4. There exists a polynomial algorithm which, given any instance I[m,n,p, k]|
of (min)_0,k), either detects that I is a negative instance, or outputs an equivalent
instance I'lm,n,p', k] such that p’ < k.

Proof. Let I|m,n,p, k] be an instance of the problem, and suppose that there exists
I € [p] such that for all (i,5) € [m] x [n] we have v}[l] = 1. In other words, the rth
component of all vectors of all sets is a 1. In this case, it is clear that all vectors of any
set of n stacks obtained from I will also contain a 1 at the r*" component. Hence, we

!'Remind that a perfect stack is a stack consisting of only perfect vectors, i.e. vectors with all their
coordinates set to one.
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can modify I[m,n,p, k| into I'[m, n,p’, k] with p’ < p by dropping all such components
for all vectors. It is clear that this rule is safe since the cost of any solution remains
unchanged, and it can be applied in polynomial time. After applying this rule, for all
r € [p'] there exists (i,7) € [m] x [n] such that v}[r] = 0. This immediately implies
that the cost of any solution is at least p/, and thus if p’ > k the algorithm detected a
no instance. O

Given the two previous lemmas, we can suppose from now on that for any instance
of min > 0 we have n < k and p < k. This immediately implies a polynomial kernel
parameterized by k£ and m.

Theorem 8.3. min . 0 admits a kernel with O(k*m) bits.

8.2.2 Positive results according to (g

In this section, we present an FPT algorithm when parameterized by (g and n (recall
that both (3 and n are smaller parameters than the standard one k, since k = 5+(g and
n < k in any reduced instance). Notice first that it is easy to get a O*(2¢8(lg(n)+log(p)))
algorithm. Indeed, by considering a set i € [m] where ¢(V?) = 3, and guessing the
positions of the (g new zeros (among np possible positions) that will appear in an
optimal solution, we can actually guess in O*((np)%) the vectors {vs;} of an optimal

solution, and it remains to check in polynomial time that every V7 can be “matched”
to {vs;}. Now we show how to get rid of the log(p) term in the exponent.

Theorem 8.4. min Y. 0 can be solved in O* (4% 1°8().

Proof. Let I[m,n,p,(g] be an instance of our problem and, w.l.0.g., suppose that Viis
a set whose number of zeros reaches the upper bound 3, i.e. ¢(V!) = 3. The algorithm
consists in constructing a solution by finding an optimal assignment between V! and
V2, ..., V™, successively.

We first claim that we can decide in polynomial time whether there is an assignment
between V1 and V2 which does not create any additional zero.

To that end, we create a bipartite graph G with bipartization (A, B), with A =

Y

{a1,...,an}, B = {b1,...,b,}, and link a;, and bj, for all (ji,j2) € [n] x [n] if and

only if assigning vector vjl-l > UJZQ. In other words, an edge (U]ll,vji) exists if and only

if ’Ujl-l A 0]2-2 = vjl-l.

If a perfect matching can be found in G, then we can safely delete the set V2 and
continue. In order to avoid heavy notations, we consider this first step as a polynomial
pre-processing, and we re-label V? into V=1 for all i € [m]s (and m is implicitly
decreased by one).

In the following, we suppose that the previous pre-processing step cannot apply
(i.e. there is no perfect matching in G). Intuitively, in this case any assignment
(including an optimal one) between V! and V2 must lead to at least one additional
zero in V. In this case, we perform a branching to guess one couple of vectors from
V1 x V2 which will induce such an additional zero. More formally, we branch on every
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couple (j1,72) € [n] x [n], and create a new instance as a copy of I in which v}l is
replaced by ’Ujl-l /\’UJQ-Z. This operation increases ¢(V'!) by at least one, and thus 3 by at
least one as well. If we denote by I’ this new instance, we can check that a solution of
cost at most k for I’ will immediately imply a solution of cost at most k for I, as I’
is constructed from I[m,n,p|] by adding some zeros. The converse is also true as one
assignment we enumerate corresponds to one from an optimal solution.

As the value of 8 in this branching increases by at least one while we still look
for a solution of cost k, this implies that this branching will be applied at most (g
times. Summing up, we have one polynomial pre-processing and one branching of size
n? which will be applied at most (g times. The total running time of this algorithm is
thus bounded by O*(4¢s108(n)),

O

8.2.3 Negative results according to (s

Despite its simplicity, we now show that, when considering each parameter (n and
(p) separately, this algorithm is the best we can hope for (whereas the existence of
an O*(2%) algorithm is still open). Indeed, we first show in Theorem 8.2 that the
linear dependence in (g and log(n) in the exponent is necessary (unless ETH fails),
and also that we cannot hope for an FPT algorithm parameterized by (g only unless
FPT = W|2] (Theorem 8.1). Finally, as we will see in the next section (Theorem 8.6),
this result is matched by a 2°(8) lower bound when n € N is fixed. We now present an
FPT-reduction from (minmin0, k) problem which produces an instance of min»_0
in which parameters n is preserved and (g = k.

Lemma 8.5. There exists a polynomial reduction from (minmin0, k) restricted to the
instances where f < p(n — 1) to min ) 0/(g that given an instance I[m,n,p| and an
integer k, constructs an instance of miny - 0/Cg f(I),m' = m+1,n' = n,p’ = p[m,n,p|
such that (g = k.

Proof. The reduction is the same reduction as the one presented in Section 7.1.2: we
add to the instance I of minmin 0 a single set V%! containing n — 1 zero vectors and
exactly one perfect vector.

However, since the objective function focus on the overall number of zeros, this
reduction is not an S-reduction: ¢ (opt(f(I))) = c(opt(f)) +p(n —1). We claim that

this reduction is an F'PT-reduction. By construction, 8 = ¢ (Vm/) = p(n —1), it
follows that c(opt(f(1))) = c(opt(l)) + p(n — 1) =k + 3, and thus (g = k. O

Based on Observation 6.1 and Theorem 6.14, we know that (min min 0, k) restricted
to the instances where § < p(n — 1) is W[2] -hard. We deduce the following corollary.

Corollary 8.1. (min)_0,(g) is W[2] -hard.

Corollary 8.2. min Y0 cannot be solved in O*(20(¢8)108(1)) por O* (2¢s0008(n))) 4
less ETH fails.
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8.2.4 Positive results according to ¢,

We now consider the problem parameterized by (, = k — p (recall that p < k). Notice
that one motivation of this parameterization is the previous reduction of Lemma 8.5
from MINIMUM HITTING SET. Indeed, when applied for n = 2, it reduces an instance
of VERTEX COVER to an instance of min )0 with k& = p + (, where (, is equal to
the size of the vertex cover. Our intuition is confirmed by the following result: we
show that when parameterized by (,, the problem is indeed in FPT when n = 2
(Theorem 8.5). We complement this by showing that for any n > 3, it becomes NP-
hard when (, = 0 (Theorem 8.6), and is thus even not in XP. The reduction we use
even proves that for any fixed n > 3, the problem cannot be solved in 20(k) (and thus
in 2°%8)) unless ETH fails, while the algorithm of Theorem 8.4 runs in O*(29(¢s)).
In the following, n-min ) 0 denotes the problem min ) 0 where the size of all sets is
fixed to some constant n € N.

In this subsection, we prove that 2-min ) | 0 is FPT parameterized by ¢,. To do so,
we reduce to the ODD CYCLE TRANSVERSAL problem. As a reminder, OCT consists,
given a graph G = (U, F) and an integer ¢ € N, in deciding whether there exists a
partition (7', S1,S2) of U with |T'| < ¢ such that G[U\T] is bipartite.

We first introduce a generalized version of OCT, called Bip-OCT. In this problem,
we are given a set of vertices U, an integer ¢, and a set of m pairs (41, By), ..., (Am, Bm)
with A;, B; C U for all i € [m] and 4; N B; = 0. Informally, each pair (A;, B;)
can be seen as a complete bipartite subgraph. The output of Bip-OC'T is described
by a partition (7,S51,S52) of U such that for any i € [m], either (4; \ T C S; and
B;\T C Sy) or (A;\T C Sy and B; \ T C Sj). The objective is to determine
whether there exists such a partition with |7 < c¢. As we can see, if all A; and B; are
singletons (and thus form edges), then Bip-OCT corresponds to OCT. Notice that
in the following, the considered parameter of OCT and Bip-OCT will always be the
standard parameter, i.e. ¢. We first show that there is a linear parameter-preserving
reduction from 2-min ) 0 parameterized by (, to Bip-OCT, and then that there is
also a linear parameter-preserving transformation from Bip-OCT to OCT.

Lemma 8.6. There is a linear parameter-preserving reduction from 2-min . 0 param-
eterized by ¢, to BIP-OCT.

Proof. Let I[m,2,p, p+(p) be an instance of 2-min ) 0 (i.e. in which every set contains
only two vectors), and let us construct an instance I’ of Bip-OCT, such that I has
a solution of cost p + ¢, if and only if I’ has a solution of size (,. Notice first that,
according to Hypothesis 4.3, we can suppose that for any i € [m] and any [ € [p], we
cannot have both vi[l] = 0 and vi[l] = 0 as otherwise any stack s from any solution
would have v4[l] = 0, and thus we could safely remove such a component [ from the
instance (and decrease k and p by one).

Let the vertex set of I’ be [p]. Then, for all i € [m], let us define A; = {I : v[l] = 0},
and B; = {l : vi[l]] = 0} as depicted in Figure 8.3. By the foregoing, and as required
in an instance of BIP-OCT, we have A; N B; = (). Let us prove that I has a solution
of cost p+ ¢, if and only if I’ has a solution (7', S, S2) with |T'| < (.
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= Let S = {s1, s2} be a solution of I of cost p+(p. Let T = {1 : v, [I] = vs,[l] = 0},
S1 =A{l:vs[l] =0and vs,[l] =1}, and So = {l : v, []] = 1 and vg,[l] = 0}. Notice
that (7',51,52) forms a partition of [p] (as we cannot have a coordinate ! such that
Vg, [I] = vs,[l] = 1, as this would imply that all the nm vectors have v[l] = 1, and such
coordinates have been removed from the instance in Lemma 8.4), and |T'| = (. It
remains to prove that (7,51, S2) is a feasible solution of I’. Let i € [m]. Without loss
of generality, let us suppose that vi has been added to s; and v% has been added to
s9. Let [ € A;\ T. Since | € A;, we have vi[l] = 0, and thus v, [[] = 0. Since [ ¢ T,
we have vg,[l] = 1. Thus, [ € Si, which proves A; \ T C S;. Similarly, we can prove
that BZ \ T - SQ.

< Let (T, S1,S2) be a solution of I’ with |T'| < {,. Let s; be such that v, [l] =0
if and only if l € T or [ € S, and let sy be such that vg,[l] = 0 if and only if [ € T or
[ € Sy. It remains to prove that the solution S = {s1, so} is feasible, which immediately
implies that its cost is p 4+ (,. Let i € [m]. Without loss of generality, let us suppose
that A4;\ T C Sy and B; \ T C Sy. We now claim that v} can be assigned to s; and
vl can be assigned to sy without creating any new zero. To do so, let us show that for
all [ € [p], we have vi[l] = 0 = v, [p] = 0 (resp. vi[l] =0 == wvs,[p] = 0). Indeed,
let [ € [p] such that vi[l] = 0. Then by construction, it means that [ € A;. Thus,
by definition of the solution (7, S1,S2), it means that either [ € T or [ € Sy, which
implies vg, [I] = 0 as desired. Similar arguments show that v[l] = 0 = vg,[p] = 0 for
all I € [p]. 0

Lemma 8.7. There is a linear parameterized reduction from Bip-OCT to OCT.

Proof. Let I = (U,{Ai, Bi}icm),¢) be an instance of Bip-OCT. Let us construct a
graph G’ = (U’, E’) which contains an odd cycle transversal of size ¢ if and only if T
has a solution of size ¢ for BiP-OCT. Observe first that we cannot simply set U’ = U
and E" = U;cpn)aea; pep; 10,0} Indeed, if for example 4y = {2,...,n}, By = {1},
Ay ={2,...,%} and By = {§ + 1,...,n}, defining G’ as above would lead to an odd
cycle transversal of size one, as removing only vertex {1} makes the graph bipartite
with bipartization (A, Bz). However, this solution is not feasible for Bip-OCT as
A1\ T = Ay, and A) € Ay and A; € Bs. Intuitively, we have to prevent solutions of
G’ from splitting sets A;\T (and B;\T) between the two parts of the bipartization. To
do so, we will construct G’ as described above, and then we "enlarge" each bipartite
graph by adding ¢ + 1 new vertices on each side. More formally, we start by setting
U’ = U as said before, and for all i € [m], we create two sets of ¢ + 1 new vertices A,
B]. We then set E' = Uie[m},aeAiuAg,beBiuB;{a7 b}.

Let us now prove that I contains a solution of size ¢ for Bip-OCT if and only if
G’ contains an odd cycle transversal of size c.

= Let (T, 51, S2) be an optimal solution of I. We define a partial solution 7”7, 57, S}
of G’ by setting 7" =T and S} = 5; for I € {1,2} (the solution is partial in the
sense that it remains to assign vertices of A, U B/, for all i € [m]). Let i € [m)].
If A,\T =0and B;\T = 0, then we add (arbitrarily) A, to S| and B to S5.
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Vl V2 V3 S

[110110111] [001111011] [111010111 F—{ 110100110 |

[011101111] [110101110] [ 111111000 F— 001001000 |

Figure 8.3: Example of reduction from an instance of 2-min) 0, with n =
2,m = 3,p = 9, admitting a solution of cost p + 2, to an instance of Bip-
ODpD CYCLE TRANSVERSAL, with |[U| = p, A = {3,6},B; = {1,5},4y =
{2,3,7},By = {3,5,9},A43 = {4,6},B3 = {7,8,9}, admitting the partition
({5,9},{3,4,6},{1,2,7,8}) as solution of cost 2.
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Otherwise, if A; \ T'# () and is added to S;, we add A} to S} and B] to S;, with
LU e{1,2},I'! #1, and if B; \ T # () and is added to S;, we add B; to S} and A
to Sy, with [,1' € {1,2},1' # L.

This new solution has the same size (|7 = |T'|) and we claim that it is an odd
cycle transversal of G'. Indeed, let us check that any edge {u,v} € E’ such that
{u,v}NT" = 0 is not entirely contained in a S]. If {u, v} is an edge of a complete
bipartite of I, i.e. if there exists ¢ such that u € A; and v € B;, then by definition
of the solution (7', S1,S2) it is straightforward that « and v are not both in S}
nor in S). Otherwise, if {u,v} is adjacent to one or two of the new vertices, let
be such that w € A]. If v € B/, then the solution is valid as A} and B are never
added to the same set S}, I € {1,2}. Otherwise, we necessarily have v € B;. Let
I € {1,2} be such that B; \ T (which is not empty) has been added to S]. In this
case A; (and thus u) has been added to S}, with I # I.

Let (77,5, 5%) be an optimal solution of G’. For any i € [m], let A; = (A; U
ANN\T' and B; = (B; U B/)\ T". A first observation is that A; # () and B; #
as |A;UA]| =|B;UB]| > cand |T"| < c. A second observation is that for any u
and v € A;, u and v are in the same set S for some [ € {1,2}. Indeed, suppose
by contradiction that u € S| and v € Sy. As B; # 0, there exists b € B; and
l € {1,2} such that b € S]. As all the edges of the complete bipartite subgraph
on (A; U AL, B; U B]) belong to E’, we have {u,b} € E’ and {v,b} € E’, and
thus S} contains both endpoints of an edge of E’, which is a contradiction. In
the same way, we can prove that for any ¢ € [m], and any u and v € B;, u and v

are in the same set S} for some [ € {1,2}.

Thus, according to the two previous observations, for any ¢ € [m] we can define
Az, € {1,2} and A, € {1,2} such that A; C SS‘& and B; C S;\B_i, with Aj #
AB,-

Let us now define 7' =7"NV, S = § NV, and Sy = S5 NV, and check that
this is a valid solution of I. Let ¢ € [m]. Observe first that A; \ 7' C A;, and
thus either A;\T =0, or A;\T C S’\A}" As the same fact also holds for B; \ T,
and as A ;. # A, the constraint (A; \ T C Sy and B; \ T C S3) or (4; \T C S
and B; \ T' C S;) is respected, and the solution is feasible, which concludes the
proof.

An example of this reduction is given on Figure 8.4. O

As OpD CYCLE TRANSVERSAL can be solved in O*(2.3146¢), proved by |Lok+14],

and since our parameters are exactly preserved in our two reductions, we obtain the
following result:

Theorem 8.5. 2-min>_ 0 can be solved in O*(d*) where d < 2.3146 is such that
OCT can be solved in O*(d°).
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(a) Example of Bip-OCT instance I with U = {1,2,3,4}, (A = {1},B; = {2,3,4}) and
(A2 = {1,3}, By = {2}) with solution T' = {3} of size ¢ = 1.

®
)

Representation of (A, By) Representation of (Ay, By

(b) Example of reduction from the previous Bip-OCT instance T admitting a solution of size
¢ =1, to an instance of OCT admitting a solution T" = {3} of size ¢ = 1.

Figure 8.4: Example of reduction from Bip-OCT to OCT.



126 CHAPTER 8. MINIMIZING THE OVERALL NUMBER OF ZEROS

8.2.5 Negative results according to ¢,

We now complement the previous result by proving that the problem is intractable
with respect to the parameter ¢, for larger values of n.

Theorem 8.6. For any fized n > 3, n-min ) 0 is not in XP when parameterized by
¢p (unless P = NP), and cannot be solved in 2°%) (unless ETH fails).

Proof. Let x > 3. We present a reduction from y-COLORING, which consists in, given
a graph G = (U, E), to ask for a mapping f : U — [x] such that for all {u,v} € FE we
have f(u) # f(v). Let E = {e1,...,em} and U = [ng]. Let us construct an instance
I of n-min > 0 with n = x, p = ng, m = mg and such that G admits a x-coloring
if and only if I has a solution of cost p (i.e. (, = 0). To each edge e; = {u,v} € E,
i € [mg], we associate a set V* with |[V| = y, where:

e v} represents the vertex u, that is v [u] = 0 and vi[l] = 1 for any [ € [ng], | # u,

e v} represents the vertex v, that is v4[v] = 0 and vi[l] = 1 for any [ € [ng], | # v,
e forall j €{3,...,x}, v§ is a 1-vector, i.e. it has a 1 at every component.

An example of this construction is depicted in Figure 8.5. Let us now prove that G
admits a y-coloring if and only if I has a solution of cost p = ng.

= Let S; C U, j € [x] be the x color classes (notice that the S; are pairwise
disjoint, some of them may be empty, and Uje[x] S; =U). To each S; we associate a
stack s; such that v, [I] = 0 if and only if » € S;. It remains to prove that the solution
S = {s1,...,sy} is feasible, as its cost is exactly p by construction. Let us consider a
set V¢ where v! (resp. vd) represents a vertex u (resp. v). As {u,v} is an edge of G,
we know that u and v have two different colors, i.e. that u € S; and v € Sy, for some
4,3" € [x] with j # j'. Thus, we can add v} to stack s;, v} to stack s;, and the y — 2
other fu§ (j > 3) in an arbitrary way. Since the only 0 in v{ (resp. v}) is at the u'®
(resp. v™") component, we have vi A vs; = vs; (resp. vl A Vs, = vsj,), which proves
that S is feasible.

<. Let S = {s1,...,s,} be the stacks of an optimal solution. For j € [x], let
Sj = {l € [p]lvs,[l] = 0}. Notice that J{_; S; = U, and as I is of cost p, all the S; are
pairwise disjoints and form a partition of U. Moreover, as for any i € [m], v{ and v}
have been assigned to different stacks, the corresponding vertices have been assigned
to different colors, and thus each S; induces an independent set, which completes the
reduction.

It is known, thanks to [TPZ01] that there is no 2°1VD) algorithm for deciding whether
a graph G = (U, F) admits a x-COLORING, for any y > 3 (under ETH). As we can
see, the value of the optimal solution for n-min»_ 0 in the previous reduction equals
the number of vertices in the instance of x-COLORING, which proves that n-min ) 0
cannot be solved in 2°%) for any n > 3.

O
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V1,2 V1’3 V1’4 V2,3 V3’4 V2’5 V4,5 S
[ot111[Ho1111 o111 [10111] [11011] [10111 H 11101 10101 ]

[10111] [11011] [11101 N 11011 ] [11101 11110 H 11110 H 01110]

(11| [ [aanan ] (i Ha | [ i -

Figure 8.5: Example of reduction from a positive instance of y-COLORING, with xy =
3, U=1[5,E ={{1,2},{1,3},{1,4},{2,3},{3,4},{2,5},{4,5}}, to an instance of
min ) 0 with m = |E| =6, n = x = 3,p = |U| = 5 admitting a solution of cost p.

Finally, remark that as for the parameterization by p, one could ask if min >0 is
in FPT when parameterized by the first lower bound 8. However, we can see in the
previous reduction that we obtain a graph with g = 2, and thus the problem is even

not in XP unless P = NP.

8.3 Conclusion and open questions

Contrary to maxy_ 1, min) 0 appears to be more tractable from the approxima-
tion point of view but also from the parameterized complexity point of view. Indeed
the problem admits several trivial approximation algorithms such as the n or the m
approximation algorithm? but also admit a kernel of size O(k?m) while max .1 is
W/1]-hard when parameterized by the standard parameter k.

However this tractability has a drawback in terms of negative results. Contrary to
max » 1, it remains several open questions on the approximability of min ) 0. The
problem is known to be APX-hard even when m = 3 and #0 < 2 [DCS14] of when
n = 2 and #0 < 1 while the best known ratio is given by the heaviest first heuristic
of [DCS14]| approximatinn min » | 0 within a factor:

1 1
p—i(m—kl)—zlog(m—l)

This leads to a huge gap between upper and lower bound. We provide a Gap-
reduction that fills somehow this gap, but the (n — ¢)-inapproximability is based on
the disputed Unique Game Conjecture. Thus the question on the existence of a better
inapprocimability bound assuming only P # NP is left open.

This closes our theoretical study of the wafer-to-wafer integration problems. Next
part is devoted to real instance tackling and we will show among other things that,
matching based heuristics are good candidates to tackle real life instances. Indeed,
despite its approximation ratio being equal to 4/3, the performance of the algorithm in
average are very interesting in practice.

2The cost function being additive and submodular, we can apply the result of Dokka et al. [DCS14]
stating that any greedy algorithm is an m-approximation algorithm.
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As for physics, statistics or chemistry, computer science is a prism introducing mathe-
matics in the perception of our surrounding world. As such it aims at developing links
between the power of abstraction of fundamental sciences and the extreme complexity
of real world applications. This naturally motivates a double approach of the problems
being at once theoretical and practical, especially when the latter has been introduced
as a tool to tackle real worlds issues.

This naturally motivates a practical analysis of the internal mechanisms of the
problems. This part aims at presenting the work we perform to those ends. In a first
time we introduce the state of the art in terms of practical tackling of the problem.
In a second time we discuss on the simulation of the problems. We present empirical
constraints and hypotheses that apply on real world instances and present instances
generator taking the latter into consideration.

We finish the preliminaries but discussing about the characteristics of the experi-
ment environment.
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9.1 Related work

Contrary to the theoretical aspects, the practical aspects have been quite intensely
studied. It follows that the literature on this topic is relatively dense. However, the
important applications of the problem in IC manufacturing led to the study of some
very specific variants. That is why we only focus on reference works on this topic.
The consideration of the yield in wafer-to-wafer integration has been first intro-
duced by Smith et al. in [Smi+07]. However the formalization of the problem and the
introduction of the framework we use to tackle it have been introduced by Reda et al.
in [RSS09|. In Chapter 5 we mainly focused on the proposed heuristics for max > 1.
But authors of the article provide several experiments designed to analyze the impact
of the natural parameters m,n,p and Yy on the solution quality, where Yy is defined
as the die yield. In other word, it can be seen as the ratio of the overall number of
viables dies in all the wafer compared to the total number of dies. More formally, the

authors define it as:
1 .
Yie= o2 2 2 uill
p . :
i€[m] j€[n] lep

. They show that the matching heuristics can lead to significant improvement especially
when m takes high values, when the individual wafer yield Yjy is low or when p takes
low values. In a last time, they try to evaluate the profit we can expect by increasing
the number of wafers per set when the die yield is low.

In line with the previous work of Reda et al. [RSS09|, Verbree et al. [Ver+10]
propose a mathematical equation that approximates the expected stack yield of the
matching heuristic. They confront their mathematical model with experiment results
on more than 10000 instances. Based on these very large number of instances, they
propose refinement of the experiment of Reda et al. They indeed investigate the
influence of the number of wafers per set for different values of Yy, p and m. They show
for example that the improvement of the final die yield we can get from considering
a set of 50 wafers instead of a set of 25 wafers is more important if the number of
layers in the stack (and thus the number of sets) is equal to 6 instead of 3. They
finally address an interesting problem arising when the failures map of the wafer is
not known. In this problem the objective is to determine in function of Yy, p and m
whether the profit that could be made thanks with the die yield increase thanks to
matching heuristic counterbalance or even overcome the expenses needed to compute
the failure map of the wafers.

These two papers are the reference works on the study of yield improvement based
on matching heuristic approach. However one can cite other interesting works either
on sightly different problems or different approach of the same problem.

In [Tao+10|, the authors focused on the yield improvement of wafer-to-wafer in-
tegration with running repositories. In the problems we consider, the sets of wafers
are implicitly considered as static repositories. In such a configuration, we are given
n wafers, each of these wafers has to be integrated into a stack. When considering
running repositories, the number of wafers per set is constant and equal to n. In other
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words, as soon as a wafer of a set is used to design a stack, a new wafer is inserted in
each set. The process stops after the creation of n stacks. Such a process can be seen
as an online version of the static repositories configuration. The authors investigate
the yield improvement that some adaptations of the matching algorithm can provide.
They indeed consider different decision criteria. At each iteration a feasible solution
maximizing the overall value of the criterion is computed. Among the n possible stacks
of the feasible solution, the one that contribute the most to the value of the criterion is
selected. The set are then replenished and a new feasible solution is computed. They
prove that for every considered criterion, one can expect a more or less important die
yield improvement when compared to greedy algorithm that selects at each iteration
the feasible stack of maximum profit according to the considered criterion.

One can also cite different methods for improving the expected die yield. In |[TH11]|,
the authors consider a technique inspired from reparation of faulty sectors in memory
chips manufacturing called the redundancy technique. In this technique, additional
memory sectors are added to the chip. As soon as a failure of a sector is detected,
a modification of the addressing of the chip is performed to point on the additional
viable memory. Based on this principle, Taouil et al. [TH11| investigate the yield
improvement we can expect by adding an extra wafer on the created stack that aims
at repairing locations that are almost viable, i.e. locations in which m — 1 dies are
viable. They show that this technique can lead to significant improvement of the die
yield especially on instances where matching heuristics are quite bad.

To finish, we mention work of Giroudeau et al. [Gir+12| that partially motivated
this PhD thesis, which is the only reference, to our knowledge, that aims at optimally
tackling the wafer-to-wafer integration. They propose a branch-and-price algorithm
for the latter. However, such an algorithm appears to be inefficient in practice because
of somehow inefficient domination rules.

9.2 Instance generation

9.2.1 Considered model

A natural question arising when considering experiments is the way to generate the
instances on which the experiments will be performed. In this section we present the
model we used to generate our instances. We also present the limits we identified
for such a modelization and finally briefly present a more complex but more accurate
model that have been used to generate instances in [RSS09; Ver+10; Tao-+10].

The model we used is a simplified model that aims at taking into consideration
the distribution of the failures on a wafer in the industrial processes. Indeed, one can
observe that the failures are not uniformly distributed on a wafer. The dies located
on the rim being more likely faulty than the one located in the center of the wafer.

Moreover, one can also see that the expected yield of two consecutive engraved
wafers is very similar. It follows that wafers of a same set share almost the same
expected yield.
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Based on these observations, Di Natale et al. [Nat-+13] define the probability for a
die to be faulty as:

P(vi[l] = 0) = 47.5 (1 — ;) +50(Y — Yw) (9.1)

In the previous equation, Y corresponds to the current wafer yield, i.e. it represents
the yield computed on the position 1 to {—1. We can see that the probability decreases
with the index of the considered die and decreases with the number of nonfunctional
dies in the considered set ensuring thus a behaviour similar to previously presented
constraints.

9.2.2 Model restrictions

As for any simplified model, the latter present some restrictions.

First the linear decreasing of the probability of failures seems to be inappropriate.
Works of Stapper et al. [MP89; Sta89a; Sta89b; Sta86; SAS83; TBI1; SR95| among
others, show that a negative binomial distribution law seems to be more appropriate.
They also show that the failures occurring near from the center of the wafer, due to
the presence of particles, are not uniformly distributed, but shows a slight tendency
to be localized in the same area for wafers of a same set.

Given a position [, the failure probability of the die located at position [ strongly
depends on the number of failures occurring in the position 1 to [—1. This dependence
leads to side effects on the overall distribution of failures on the wafer. Indeed, two
wafers having similar distribution of failures in their center likely have similar failures
distribution on their whole area. We will see in Section 10.3, that such a behaviour
may explain unexpected results.

9.2.3 Alternative model

The generation of random wafers has been extensively studied in the late 80’s. These
studies led to a quite accurate model based on the negative binomial distribution. In
this model the yield of an individual wafer is given by:

(e (229)

where A is the area of a die, Dy is the defect density and « is the clustering ratio.

9.3 Experiment characteristics

Let us now define the characteristics of the following experiments. Every experiment
is performed on a workstation equipped with Intel Xeon processors providing twenty
cores running at 2.8 GHz each. The latter is equipped with 68Gb of dynamic memory.
the use of such a powerful machine is justified by the applications of the considered
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problem. Indeed, it seems reasonable to consider such a computing power to tackle
these problems during industrial processes.

We use the CPLEX 12.6 interactive solver as a black box to solve ILP formulations,
with default configuration unless explicitly otherwise stated.

Furthermore we only consider CPU time. As a reminder the CPU time tries to
measure the amount of time needed by a single processor machine to solve the problem.
Roughly speaking, it can be seen as the sum of the computation durations overall all
the cores being part of the computation.
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This chapter is devoted to present and compare some ILP based resolution methods.
In a first time we introduce two formulations. The first one introduced by Reda et
al. [RSS09] uses the fact that the Wafer-to-Wafer integration problems are particular
cases of MDA. They propose an adaptation of the classical ILP formulation used to
describe the problem. However we provide in this manuscript, the improved formu-
lation of Dokka et al. [Dok+12] in which unnecessary constraints are removed. We
provide a study on the limitations of such a formulation. We will indeed see that this
formulation has memory complexity being exponential in the parameter m, we thus
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try to determine what are the values of parameters n and m for which the formulation
returns solution without exceeding memory capacity.

The second ILP has been introduced by Dokka et al. [Dok-+12|. This formulation
is an ad hoc formulation motivated by the memory issues of the previous formulation.
In a first time, we propose a slight improvement of the formulation by reducing the
number of constraints and then show that the LP relaxation of this formulation is
weaker than the LP relaxation of the previous one.

Computational results are then provided. The aim is to numerically compare the
formulations but also to study the behaviour of the second formulation in function of
the input parameters (m, n, p, Yy). Based on the conclusion of this work, we propose
ILP based heuristics in Chapter 10 and provide computational results to evaluate their
performances compared to exact resolution methods.

To finish, we present in conclusion a list of experimentations designed to answer
the question arising throughout the chapter.

10.1 Model description

In this section we present two ILP formulations modelizing min ) 3 0. But first let us
make few remarks on conventions we use in this part. While the notions of vectors,
coordinates and m-tuples are appropriate to handle theoretical aspects of the consid-
ered problem, we consider that the equivalent notions of wafers, dies (or positions) and
stacks give a better intuition of the mechanisms involved in the practical resolution.
That is why we will use this terminology in the sections devoted to computational
results presentation.

10.1.1 MDA inspired formulation

Model overview

As pointed out in Section 5.1, the considered problems are some particular cases of
the MDA problem. The ILP formulation used to modelize the latter can thus be used
to modelize the max ) 1 and min ) 0 problems. Reda et al. [RSS09] first introduce
this ILP formulation for max ) 1, while Dokka et al. [Dok+12]| introduce a slightly
improved version of the latter for min > 0. In both cases, a preprocessing operation is
used to compute the costs of the n'™ possible m-tuples.

Once the costs have been computed, the formulation can be described as follows.
Given an m-tuple a = (vl, V2. ,vm) € VIxV2x...xV™, we introduce the variable
. such that:

o, = 1 if and only if a represents a stack in the solution S
o = 0 otherwise

We get then the following formulation.
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Integer Linear Program VI MDA inspired formulation

Minimize Z (p—c(a))z, (VL1)
a€n]™
Subject To Z xe =1 Yo € U & (VI.2)
awea i=1
zq € {0,1} Va € [n]™ (VL.3)

The nm Equations (VI.2) ensure that, given a vector v* in any set V*, v® belongs
to exactly one m-tuple and thus ensure that all vectors belong to the solution and that
the selected m-tuples are disjoint.

With its n™ integrity constraints, this formulation thus has n™ variables and nm+
n" constraints. While the computation runtime of ILP solvers can be important, we
expect the memory to be the limiting factor. This motivates the next subsection.

m

Limits of the formulation

This subsection aims at determining the memory limits of the MDA inspired formu-
lation in function of the four input parameters:

1. the number of sets m,
2. the number of wafers per set n,
3. the number of dies per wafer p,

4. the average wafer yield Yyy.

To do so, ten instances have been generated for each combination of the following
parameters values:

1. m € {3,4,5,6},
2. n € {25,50, 75,100,125, 150, 175, 200, 225},
3. p € {10,100, 1000},

4. Yy € {50,70,90}.

We then try to solve optimally every instance using CPLEX, the objective being to
determine for each instance type, the number of instances exceeding memory capacity
of the machine running the ILP solver. Results are summarized in Figure 10.1.
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Figure 10.1: Representation of the instances that can be solved with Formulation VI
without reaching the memory break point.
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m| n P Yw | # solved
50 10
10 70 10
90 10
50 0
5 25| 100 | 70 1
90 5
50 4
1000 | 70 2
90 4

Table 10.1: Number of solved instances for m = 5 and n = 25 in function of p and
Yw.

The exponential dependence in m of the number of variables gives strong intuition
on the memory consumption of the formulation when m increases. Indeed, with n™
variables, the number of wafers per set that the solver can handle is supposed to
drastically decrease when m increases.

Such a behaviour is noticeable in Figure 10.1. With m = 3 sets, the solver handles
up to n = 225 wafers per set, while it only handles up to n = 50 wafers per set for
m = 4 sets. Furthermore, when the number of sets is equal to m = 5, the memory
break point is reached from time to time even for sets containing only n = 25 wafers.
Details of solved instances are given in Table 10.1.

In light of these results, one can see that for m = 5 and n = 25, the number of dies
has strong impact on the number of solved instances. However, the number of variables
has no dependence in p, neither does the number of constraints. This phenomenon
could be the results of the following factors:

e the size of the ILP has logarithmic dependence in the product pYy . Indeed,
the expected cost of each m-tuple is equal to pYy,. The cost of each possible
m-tuple appearing in the objective function of the formulation, the size of the
ILP is expected to logarithmically increase when pYyy increases.

e while the 5 25 100 instances fit the expected behaviour when considering previ-
ous remark, the behaviour of the 525 1000 instances suggests that the memory
overflow is not only the consequence of the increase of the factor pYy . The low
proportion of 5 25 1000 70 instances solved could be explained by a com-
bination of various mechanisms such as CPLEX internal branching strategies,

inherent complexity of particular instances' or even external factors? However,

'Tnstances with wafers showing very high or very low similarity on failures distribution are easier
to solve than instances composed with uniformly spread failures.

2The machine used to perform the experiments being shared, this behaviour could be explained
by an increase of memory load due to other processes running on the latter.



142 CHAPTER 10. ILP FORMULATIONS

more advanced studies on a more significant number of instances have to be
performed in order to clearly explain which mechanisms are involved in this
asymmetry between 5 25 10,5 25 100 and 525 1000 instances.

Let us insist on the fact that considering these previous factors as impact factors
on the memory consumption is only an hypothesis requiring to be confirmed with
properly designed experiments.

10.1.2 Hub set formulation

The introduction of new ILP formulations is motivated by the limitations of the pre-
viously defined formulation (VI).

This alternative formulation, provided by Dokka et al. in [Dok-+12]| relies on the
following observation: for every solution the m-tuples can be renumbered such that
Vi € [m],j € [n], v; € s; 3. Hence, instead of assigning vectors of Vi, i = 1,...,m
to m-tuples s;,j = 1,...,n, vectors of VJ,j = 2,...,m can be assigned to vectors
vjl-,jzl,...,n.

In this case, the set V! acts like a hub on which vectors of other sets will be plugged.

In a formal way, we define variable z(u,v), Yu € V1, v € Ui=2,...,m V% such that:

z(u,v) = 1 if and only if vectors u and v are contained in the same m-tuple
z(u,v) = 0 otherwise

In order to define the objective function, we define as well y(u,1), Yu € V1,1 € [p],
such that y(u,1) is equal to the value of the I component of the m-tuple containing
the vector u.

We can now present the ILP formulation (VII).

However this formulation can be slightly improved by taking into consideration the
constraints imposed by Inequalities VIL.3 to aggregate some of the Inequalities VII.4.
Indeed, the z(u,v) are not independent over the v of a same set V. This leads us to
introduce the Formulation (VIII).

On one hand, Equations (VIII.2) ensure that given a vector v € Ui:2,...,m Vi wis
assigned to exactly one vector of V!, On the other hand, Equations (VIIL.3) ensure
that each vector u € V! is assigned to exactly one vector in each V%, Vi = 2,...,m.
Thus the combination of these two sets of Equations ensure that for any v € V! and
any i € [m]y, exactly one pair (u,v?) is selected in the solution. It follows that, given
a set Vi, i € [m]s, the z(u,v) variables, for v € V', define a complete assignment in
Vixve

The Inequations (VIII.4) force y(u,l) to be equal to 0 if at least one of the vectors
selected in the m-tuple has a zero in position [. Otherwise, the maximization of the
objective function forces y(u,!) to be equal to 1.

In this formulation, we count n?(m — 1) + np variables (n?(m — 1) z variables
and np y variables) and n(m — 1)(p + 2) constraints. This formulation is significantly

#Remember that [j];, with ¢ < j stands for {i,4 +1,...,5}
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Integer Linear Program VII Hub set formulation

p
Minimize np — Z Zy(u,l) (VIL1)

ueVl =1
Subject To Z z(u,v) =1 Vv € U &
ueV'l i=2
(VIL2)
Zz(u,v)zl VueVhi=2....m
veV?
(VIL3)
y(u, 1) < min(u[l],v[l])z(u,v) YueVi=2,.... mveVil=1,...p
(VIL4)

smaller than the MDA based formulation previously introduced. It follows that this
formulation is able to handle instances with bigger m values without high memory
requirement. However, we see in the next section that this huge lessening of memory
usage leads to a lessening of the ILP strength.

10.2 ILP comparison

10.2.1 LP relaxations comparison

In this section we compare the LP relaxation of formulations (VI) and (VIII). We
consider an alternative writing of formulation (VI), depicted by formulation (IX). In

this writing, a variable z,, associated to an m-tuple a = (Ul,v2, .. .,vm), is turned

into z(vt,v?, ... ™).

We also consider an alternative writing of formulation (VIII), depicted in (X) in
which each set is considered independently. In other words, a variable z(u,v) for
a vector u € V! and a vector v € [JL, V' is turned into a variable z(u,i,j), i =
2,....m, 7=1,...,n.

We now show that the memory requirement reduction performed to design the
Formulation (VIII) leads to a decrease of the LP relaxation strength.

Theorem 10.1. The linear relaxation of Formulation (V1) is stronger than the linear
relazation of Formulation (VIII).

Proof. To prove such a Theorem we show that every solution satisfying the constraints
of Formulation (IX) also satisfies the constraints of Formulation (X).
We consider S = {:i(vl, o ,vm)} a general solution of the linear relaxation of

Formulation (IX). We consider as well § = {§(u,1), 2(u,4,j)} a general solution of
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Integer Linear Program VIII Improved hub set formulation

p
Minimize np — Z Zy(u,l) (VIIL.1)

ueVl =1
Subject To Z =1 Yu € U Ve
ueV'! i=2
(VIIL2)
Zz(u,v)zl VueVli= ,m
veV?
(VIIL3)
y(u,l) < Z min(ull],v[l])z(u,v) Yu € V! i= ,m,l=1,...p
veV?
(VIIL4)

linear relaxation of Formulation (X).
We define the linear relations (10.1) that will allow us to compute the Z values
from the T one.

~ i—1 i il m
2(u,i,v°) E : E E E Z(uy ..., 0" oot 0™

’U2€V2 pi— levz lvz+1evz+1 pymeym

(10.1)

Intuitively, the vector v is assigned to vector w if and only if there exists an m-tuple
selected by Formulation (IX) containing both of them.

In a first time, we show that given S, we can construct S that satisfies all constraints
of Formulation (X). The Z variables are computed using linear relations (10.1).

Once %(u,1,j) are defined, g(u,l) are easily computable using Inequations (X.4)
since u[l] and v'[l] are part of the input.

Let us now show that S satisfies all the constraints of (X). By definition of S, the
Inequations (X.4) are satisfied. We now consider Equations (IX.2) Vi = 2,...,m, v’ €
Ve

1)16\/1 Ui—levi—l

Z Z Fl, . 0h ™) -1

,Ui+levz‘+1 ymeym
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Integer Linear Program IX Alternative MDA inspired formulation

Maximize Z Z c((vl,...,vm))m(vl,v2,...,vm) (IX.1)
Subject To Z Z

vleVl vi—leyi-l

Z Z zl, 0 0™ =1 YWeVii=1,...,m

vitleyitl pmeym

z(vt, ..., 0™ € {0,1} Vol eV . omeym

We highlight with brackets the right part of Equation (10.1):

ey (X ¥

vleVl \v2eV?2 vi—leyi-l
Z Z (v, 0t ™) =1
vitleyitl pmeym
We can then replace this term by the left term of Equation(10.1):
& Z (2(1}1,2', vl)) =1
vlevt

A solution satisfying Equation (IX.2) in Formulation (IX) for every i € [m]y leads
to a solution that satisfies Equations (X.3) in Formulation (X).

Let us now consider in the same set of equations, the Equations (IX.2) for i = 1
and Vo! € V1. We can write, for every i/ = 2,...,m:

Z Z Z [v’(vl,...,vil,...,vm) =1
V2 €V1 vi/evi/ pmeym
As previously, we highlight with brackets the right part of Equation (10.1):

v ey \wZeV?2 v —leyi’—1

Z Z i(vl,...,vi/,...,vm) =1

i Fleyi+1 vmeym
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Integer Linear Program X Alternative hub set formulation

Maximize Z Zy(u, ) (X.1)

ueVl 1
Subject To Z 2(u,i,0%) =1 WweVii=2...,m
uevl
(X.2)
Zz(u,i,vi)zl VueVhi=2,....m
vigVt
(X.3)
y(u,l) < Z min(u(l], v’ [I]) 2(u,i,0") Yu e V'i=2,...,mil=1,...p
vieVi
(X.4)
z(u,i,0") € {0,1} VueVii=2,....mv eV’
(X.5)
y(u,l) € {0,1} VueVii=1,...,p
(X.6)
We replace:
& Z <2(v1,i,vil)) =1
vi'evi

Equations (X.2) and (X.3) are thus satisfied by S. Note that the existence of
a solution S that satisfies constraints of Formulation (X) is not sufficient to prove
Theorem 10.1. The objective function of (X) is indeed not linear in regard to 2
variables. Thus we have to prove that given a solution S for (IX) we can construct a

solution S such that:
c (S) <c (S) (10.2)

Remark that, if we call v(v',v?,...,v™) the representative vector of the m-tuple

(v, v?,...,v™), thus we can write:

Vi € [m],v" € V1€ [p]:

v w2, o™ = min (ﬂq, min ﬂu)

1€[m]2
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Since v[l] = minepy, (v'[1]) obviously implies that Vi = 2,...,m, v[l] < v'[l], we can
write:
=Vl € Vi [m]g,v" € Vile[p]:

vt v, . ™) < min (Ul[l],vi[l])

We can multiply the both sides by 2 (Ul, 7, vi) without changing the orientation of the
inequality since 2 (v',,0") € {0,1}:

=Yool e Vi [m]g,0" € Ve [p]:

vl ™2 (v, 0") <min (v'[I],v"[l]) .2 (v',4,0")

The inequality being satisfied for any individual v* € V?, the inequality on the overall
sum is also satisfied:

=Yool e Vi [m]g,l € p):
Z vl u™ 1.2 (v, 0" < Z min (v'[1],v'[1]) .2 (v, 3, 0%)
vieVi vieVi

We use the Equation(10.1) to replace the Z variable in the left part of the inequality:

=vol e Vi€ [m]a,l € [p]:

Z ool ™)) Z Z

vieV?E vlevl  pitleyisl
Z Z (v, 0™ < Z min (Ul[l],vi[l]) 2 (vl,i,vi)
vitleyitl  ymeym vieVi

Similarly to what has been done previously, the inequality being verified to every
individual 4, it is specifically verified for the minimum value over all the 2:

=vol e Viiep:

IR IED DY

v2eV2  witleVi-lyigVipitlgyitl

Z v, .. o™z ... 0™) < min Z min (v'[1],v'[1]) .2 (v, i, 0%)

Tie —
pmeym v [m}Q =3Vl

By using the Inequations (X.4)
=wvwleViiep:
Z . Z vl o™ [LEWL 0™ <y (vl,l)

v2eV? vmeym
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We can sum up over the dies indices:
=l evVh:

Z Z c((vl,...,vm)).:Y;(Ul,...,vm) SZ@)(Ul,l)
l€[p]

v2eV?2 vmeym

We end the proof by summing up over the vectors of set V1

= % o 3 (@ em) ™) < >0 g

vleVt vmeym vlevlieg(p]

Thus the profit of the computed solution Sis greater than the profit of S, this ends
the proof of Theorem 10.1. O

We will see in the next section that this result is experimentally validated as the
Formulation (IX) optimally solves min ) 0 in less time than the Formulation (X).

10.2.2 Computational Results

In this section, we present a comparison of the Formulations (VI) and (VIII) based
on computational results. In this purpose, ten instances have been generated for each
combination of the following parameters values:

e m € {3,6,9},
o n e {25,501,
e p € {10,100,1000},

e Yy € {50,70,90}.

The following settings apply to all the experiments on ILP based resolution meth-
ods:

e the instances have been generated using the model of Di Natale et al. [Nat+13]
described in Section 9.2.1.

e In order to define reference data, we implemented an oblivious algorithm ran-
domly integrating wafers of the different sets. This approach is similar to the
one presented by Reda et al. [RSS09]. These reference data offer two main ad-
vantages. First, the performance of this algorithm is dependent on the overall
similarity over all the wafers of a same instance. Thus the performances of this
algorithm may differ from the expected yield based on wafer yield. For example,
given an instance with three sets of wafers, if the yield of the individual wafers is
90%, then the expected yield of every created stack is given by 1 — 0.9% = 27%.
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Secondly, it allows us to determine whether our results can be (carefully) com-
pared to the computational results of the literature even though the method
used to generate wafers is different. Indeed, both of the generation methods are
focused on failures clustering over the wafers of a same instances. It follows that
similar performances between our random assignment algorithm and the one of
Reda et al. [RSS09] may indicate that the correspondence between the failures
maps of the wafer are similar. Obviously, such a correlation between random
algorithm only gives information of the analogies between the wafers of different
set but not on the inherent structure of the wafers failures maps. That is why the
comparison between our results and other results of the literature based on dif-
ferent generation methods will be done very carefully and have to be considered
as hypotheses need to be validated on instances generated in the same way.

e Two types of experiments are realized. The first one, that we will denote as the
long term experiment, aims at determining whether we can hope to optimally
solve the considered instances. In this experiment, the solver is interrupted
after 54000 seconds? of computation. Furthermore, every CPLEX parameters
is set to default values especially the Feasibility Pump Heuristic used to find
feasible solutions. In this configuration, CPLEX tries to determine the most
appropriate configuration to find the optimal solution. On the other hand, the
short term experiment aims at giving informations on the behaviour of solving
methods when the amount of time needed to get a solution is short. It thus aims
at determining the efficiency of such a method when integrated into industrial
processes. In this experiment, the solver is interrupted after 1800 seconds® of
computation. For the latter, the Feasibility Pump Heuristic is configured to find
good feasible solutions. In such a setting, the objective is no more to make easier
the optimality proof of solutions but to quickly converge to the optimal value.
This setting will be denoted in the following as the Aggressive setting.

e For ease of reading purposes, for each of the studied parameter, we only present
a sample of the results. The complete results are given in Appendix.

e In the following tables, the average gap given is computed only on instances that
led to an interruption of the solver. In other words, given a set of ten instances
sharing the same parameters values and such that four instances have been solved
optimally, the average gap is computed on the six instances for which resolution
has been interrupted before reaching the optimal value. In a similar way, the
average time is computed only on optimally solved instances.

“Recall that the time we consider is the CPU time.
>This represents one roughly one minute of real time computation on a dedicated machine with
32 cores.
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Table 10.2: Impact of the Feasibility Pump Heuristic on the Formulation (VI)

Default FPH (Long Term) | Agressive FPH (Short Term) | Speed Up Factor
32510 90 0.78 0.61 1.28
3251070 2.13 0.51 4.18
3251050 3.21 0.51 6.30
325 100 50 9.59 0.82 11.70
325100 70 2.36 0.47 5.02
3 25 100 90 3.12 0.6 5.20
3 25 1000 90 2.36 0.44 5.36
3 25 1000 70 20.17 0.83 24.30
3 25 1000 50 8.61 0.73 11.79
3 50 10 50 20.87 6.75 3.09
35010 70 16.22 6.54 2.48
3 50 10 90 11.79 7.23 1.63
3 50 100 50 66.38 10.68 6.22
3 50 100 70 50.54 8.68 5.82
3 50 100 90 40.01 7.79 5.13
3 50 1000 50 73.37 15.57 4.71
3 50 1000 70 90.94 11.97 7.60
3 50 1000 90 60.54 7.93 7.63

Impact of the Feasibility Pump Heuristic

We first investigate the impact of the Feasibility Pump Heuristic on the performances of
Formulations (VI) and (VIII). First and foremost we consider the Formulation (VI).
We obviously restrict ourselves to instances for which results are returned, i.e. in-
stances in which m = 3. Furthermore since these instances are all optimally solved in
both of the experiments, we restrict our consideration to the computation time.

We can see in Table 10.2 that no matter the set of instances we consider, using
Aggressive Feasibility Pump Heuristic significantly decreases the computation time.

Considering the Formulation (VIII) the comparison is a little bit more complicated
because of the amount and the heterogeneity of the data and the difference of computa-
tion time before interruption. While an overview of the results on Formulation (VIII)
is given by Table A.3 in Annex, the former remark motivates a decomposition of the
analysis. In a first time we consider the sets of instances that are entirely solved to the
optimality in both experiments. The computation times are given on Table 10.3. As
for Formulation (VI), the results show that the Aggressive Feasibility Pump Heuristic
significantly decreases the computation time except for the 9 25 10 90 instances.

In a second time, we consider sets of instances such that none of the instances have
been solved to optimality. Results are depicted in Table 10.4. Except for the sets of
instances 6_50_1000_50, 9 25 1000 70 and 9 25 1000_90 the gap between the
best known lower bound and the best integer solution is larger in experiment with
the Aggressive Feasibility Pump Heuristic. The average gap increase is equal to 5.27%
while the average increase of failures is equal to 1.43%. Furthermore, the results
show that for big values of p the results computed by the experiment with aggressive
settings in 1800 seconds are better than those of experiment with default settings in
54000 seconds.
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Table 10.3: Impact of the Feasibility Pump Heuristic on the Formulation (VIII) re-
stricted to sets of instances solved to optimality in both experiment.

Default FPH (Long Term) | Aggressive FPH (Short Term) | Speed up factor
3 2510 50 12.26 1.353 9.06
32510 70 24.26 1.475 16.45
3251090 2.26 0.259 8.73
3 50 10 50 69.13 19.299 3.58
350 10 70 106.50 22.292 4.78
3 50 10 90 20.22 9.233 2.19
6 25 10 90 40.55 18.313 2.21
92510 90 195.73 243.776 0.80

We also can remark that the set of instances 6 50 1000 70, 6 50 1000 90,
9 50 1000 90, 9 50 1000 70 and 9 50 1000 90 with the largest gap increase
(more than 20%) are also sets of instances for which the aggressive Feasibility Pump
Heuristic improves the objective function with less computation times.

It follows that comparing gap variations does not seem to be an appropriate way to
evaluate efficiency of the aggressive setting with respect to the default configuration.
This motivates an analysis based on the failure rate per stack. However the conclusion
we can make on such a restrictive analysis have to be seen as research trails. The latter
have thus to be confirmed by properly designed experiments. We propose possible
experiments in Section 10.5.

To finish we consider the rest of the sets of instances, 7.e. sets of instances for
which at least one of the instance has been optimally solved in at least one of the
experiment. Results are depicted in Table 10.5. The comparison between experiments
on these instances is the most sensitive since the previous approaches do not seem to
be appropriate. A time-based comparison is obviously not relevant due to the large
difference between the maximum computation duration. Furthermore, as presented in
previous paragraph, gap based comparisons are not relevant. We thus focus on the
failure rate per stack.

Set of instances 6 25 10 50 highlight the difficulties of such a comparison. The
6 25 10 50 instances highlight the artificial increase of the Gap value when the
number of optimally solved instances increases. The results show that despite the
large difference of maximum computation duration, the increase of the number of
failures is limited. Indeed, for the set of instances 6 25 10 50, an increase of failures
of 0.12% corresponds to an average increase equal to 0.3 failure per instance. For the
set of instances 625 10 70 the average increase of failures is equal to 1 extra failure
per wafer.

To conclude, despite a limited computation duration, the solution quality of the
short term experiment is only slightly reduced thanks to the Aggressive Feasibility
Pump Heuristic. This configuration appears to be particularly appropriate to handle
our problems. Indeed, according to CPLEX manual, such a settings can lead to dif-
ficulty in finding feasible solution. However, feasible solutions are easy to find due to
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Table 10.4: Impact of the Feasibility Pump Heuristic on the Formulation (VIII) re-
stricted to set of instances such that no instance have been solved to optimality in
both experiments.

Default FPH (Long Term) | Aggressive FPH (Short Term) Differences

Gap Fails Gap Fails Gap Fails

325 100 50 5.06% 79.09% 5.79% 79.69% 0.73% 0.60%
325100 70 7.05% 56.56% 8.16% 57.16% 1.11% 0.60%
3 25 100 90 2.78% 20.90% 3.93% 21.11% 1.15% 0.21%
3 25 1000 50 9.17% 83.67% 9.69% 84.14% 0.52% 0.47%
3251000 70 | 13.59% 61.39% 14.23% 61.84% 0.64% 0.45%
3251000 90 | 12.23% 23.78% 13.14% 24.04% 0.91% 0.26%
3 50 100 50 7.01% 78.33% 7.33% 78.49% 0.32% 0.16%
3 50 100 70 9.83% 55.79% 11.12% 56.35% 1.29% 0.56%
3 50 100 90 7.13% 20.56% 8.55% 20.76% 1.42% 0.20%
3 50 1000 50 | 10.83% 83.69% 12.02% 84.81% 1.19% 1.12%
350 1000 70 | 16.01% 61.28% 17.42% 62.32% 1.41% 1.04%
3 50 1000 90 17% 23.93% 19.32% 24.61% 2.32% 0.68%
6 25 100 50 16.13% 91.68% 17.03% 92.44% 0.90% 0.76%
6 25 100 70 27.17% 75.84% 30.83% 79.78% 3.66% 3.94%
6 25 100 90 28.87% 32.50% 33.22% 34.61% 4.35% 2.11%
6 25 1000 50 | 18.60% 96.96% 18.95% 97.31% 0.35% 0.35%
6 25 1000 70 | 32.15% 83.70% 32.65% 84.08% 0.50% 0.38%
6 25 1000 90 | 37.67% 38.00% 37.92% 38.08% 0.25% 0.08%
6 50 10 50 3.02% 65.17% 3.50% 65.6 % 0.48% 0.43%

6 50 10 70 6.10% 43.72% 7.43% 44.32% 1.33% 0.60%

6 50 100 50 19.18% 91.81% 22.00% 94.54% 2.82% 2.73%
6 50 100 70 31.22% 76.23% 37.86% 82.71% 6.64% 6.48%
6 50 100 90 38.61% 33.29% 45.05% 36.9 % 6.44% 3.61%
6 50 1000 50 | 21.05% 97.07% 21.00% 96.96% -0.06%  -0.11%
6 50 1000 70 | 35.14% 83.40% 64.05% 82.98% 28.91%  -0.42%
6 50 1000 90 45% 37.48% 72.58% 37.48% 27.58% 0.00%
9 25 10 50 1.69 % 69.88% 2.92% 70.64% 1.23% 0.76%

92510 70 5.15 % 49.6% 6.90% 50.56% 1.75% 0.96%

9 25 100 50 19.04% 95.56% 20.09% 96.81% 1.05% 1.25%
9 25 100 70 35.11% 86.66% 37.12% 89.12% 2.01% 2.46%
9 25 100 90 43.85% 43.06% 46.42% 44.87% 2.57% 1.81%
9 25 1000 50 | 19.37% 99.39% 19.65% 99.45% 0.28% 0.06%
9 251000 70 | 37.17% 93.23% 37.08% 92.62% -0.09%  -0.61%
9 25 1000 90 | 48.03% 48.26% 46.52% 46.83% -1.51%  -1.43%
9 50 10 50 5.62% 67.78% 17.00% 771 % 11.38% 9.32%

9 50 10 70 9.90% 46.28% 26.25% 56.62% 16.35%  10.34%

9 50 100 50 23.22% 97.1% 25.33% 98.95% 2.11% 1.85%
9 50 100 70 41.11% 88.61% 43.09% 91.17% 1.98% 2.56%
9 50 100 90 48.18% 40.48% 54.13% 45.32% 5.95% 4.84%
9 50 1000 50 | 22.13% 99.39% 50.20% 99.31% 28.07%  -0.08%
9 50 1000 70 | 40.13% 91.98% 67.38% 91.48% 27.25%  -0.50%
9 50 1000 90 | 53.77% 46.30% 77.35% 45.40% 23.58%  -0.90%
5.27% 1.43 %
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Table 10.5: Impact of the Feasibility Pump Heuristic on the Formulation (VIII) on
sets of instances containing at least one instance solved to the optimality by at least
one of the two formulations.

Default FPH (Long Term) Aggressive FPH (Short Term) Fails

Time 7# Gap Fails Time # Gap Fails Fails

6251050 | 14104.79 8 5.10% 68.2% 1078.943 3 1.76%  68.32% | 0.12%
6 2510 70 | 24912.32 4 2.65%  46.04% - 0 2.67%  46.44% 0.4%
6 50 10 90 | 16464.56 8 6.25% 15.4% 321.987 6 6.37% 154 % 0%
9 50 10 90 6499.96 5 3.23%  16.28% 198.587 4 3.25%  16.28% 0%

0.13%

the particular structure of the considered problems.

In the following, we only consider the results of the short term experiment. This
choice is motivated by the former study. Furthermore, this experimentation gives
informations on the performance of this formulation in real world applications.

Impact of the number of sets

We then investigate the impact of the number of sets on the performances of the differ-
ent ILP formulations. However the study of this parameter on the memory complexity
of the Formulation (VI) performed in Section 10.1.1 led us to investigate the perfor-
mance on the latter in function of m. This investigation gives strong clues on the fact
that this formulation is unadapted for the resolution of large scale instances.

We thus focus on the performances of the Formulation (VIII). The Table 10.6
depicts the evolution of the number of exactly solved instances and the amount of
time needed to solve instances optimally in function of m.

As expected, the results obviously show that the number of failures increases with
the number of wafers integrated in the stacks. The other expected result is that the
increase of failures from 3 to 6 sets is more important than the one between 6 and 9
layers in the stacks. This can be explained by the failure clustering in the wafer map.
Intuitively, since the failures are localized at roughly the same location, the probability
to turn a viable position into a faulty one decreases with the number of failures and
thus with the number of sets.

Contrary to Formulation (VI), the Formulation (VIII) is able to handle and to
return feasible solutions for large scale instances. However, the solution quality, espe-
cially for instances with Yy < 70 is very bad. Furthermore, when compared to random
assignment algorithm, the improvement is low. For example, we can see an improve-
ment of the quality of 0,06% on the 9 25 1000 50 instances. This corresponds to a
reduction of only 15 faulty dies on an instances that contains 25000 of them.
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Table 10.6: Impact of the number of sets on the Formulations (VI) and (VIII)

random Formulation (VI) Formulation (VIII)

Fails Time  # Fails Ratio Time # Gap Fails Ratio
32510 90 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609
6 25 10 90 35.16% - - - - 18.313 10 - 17.28%  0.491
9 25 10 90 44.8% - - - - 243.776 10 - 18.4 %  0.411
3251070 62.32% | 0.517 10 41.12%  0.660 1.475 10 - 41.12%  0.660
62510 70 84.24% - - - - - 0 2.67% 46.44%  0.551
92510 70 91.88% - - - - - 0 6.90% 50.56%  0.550
32510 50 85.68% | 0.516 10 63.67%  0.743 1.353 10 - 63.67%  0.743
6 25 10 50 97% - - - - 1078.943 1.76% 68.32%  0.704

9 25 10 50 99.52% - - - - -
3251000 90 | 24.91% 0.44 10 23.54%  0.945 -
6 25 1000 90 | 39.37% - - - - - 37.92% 38.08%  0.967
925 1000 90 | 48.72% - - - - - 46.52%  46.83%  0.961

3

0 2.92% 70.64%  0.710

0

0

0
3251000 70 | 63.07% | 0.837 10 60.91%  0.966 - 0 14.23%  61.84%  0.981

0

0

0

0

0

13.14%  24.04%  0.965

6 25 1000 70 | 84.66% - - - - - 32.65% 84.08%  0.993
9251000 70 | 93.18% - - - - - 37.08%  92.62%  0.994
3251000 50 | 85.52% | 0.737 10 83.32% 0.974 - 9.69% 84.14%  0.984
6 25 1000 50 | 97.43% - - - - - 18.95%  97.31%  0.999
9 25 1000 50 | 99.51% - - - - - 19.65%  99.45%  0.999

Table 10.7: Impact of the number of wafers per set on the performances of ILP for-
mulations.

random Formulation (VI) Formulation (VIII)

Fails Time # Fails Ratio Time # Gap Fails Ratio

32510 90 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609

3 50 10 90 24.36% 7.231 10  13.56%  0.557 9.233 10 - 13.56%  0.557

325 100 70 63.00% 0.472 10 56.04%  0.890 - 0 8.16% 57.16%  0.907
3 50 100 70 62.58% 8.685 10 54.63%  0.873 - 0 11.12%  56.35%  0.900
3 25 1000 50 85.52% 0.737 10 83.32% 0.974 - 0 9.69% 84.14%  0.984
350 1000 50 | 84.99% | 15.572 10 82.56% 0.971 - 0 12.02% 84.81%  0.998
6 25 10 50 97% - - - - 1078.943 3 1.76% 68.32%  0.704

6 50 10 50 96.76% - - - - - 0 3.50% 65.6 % 0.678

6 25 10 90 35.16% - - - - 18.313 10 - 17.28%  0.491

6 50 10 90 37.52% - - - - 321.987 6 6.37% 154 % 0.410

6 25 1000 70 | 84.66% - - - - - 0 32.65% 84.08%  0.993
6 50 1000 70 83.52% - - - - - 0 64.05%  82.98%  0.994
9 25 10 50 99.52% - - - - - 0 2.92% 70.64%  0.710

9 50 10 50 99.32% - - - - - 0 17.00% 771 % 0.776

9 25 10 90 44.8% - - - - 243.776 10 - 184 %  0.411

9 50 10 90 45.14% - - - - 198.587 4 3.25% 16.28%  0.361

9 25 1000 70 93.18% - - - - - 0 37.08%  92.62%  0.994
9 50 1000 70 91.99% - - - - - 0 67.38%  91.48%  0.994
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Influence of the number of wafers per set

In this section we focus on the influence of parameter n on the performances of the
ILP formulations. Some interesting results are depicted in Table 10.7 while the whole
results are depicted in Table A.4. Note that we will not discuss about the repercus-
sions on the objective value of the set aggregation. This technique, consisting in the
construction of instances with 50, 75, 100, ... wafers per lot by assembling instances
with 25 wafers per lot, will be subject to a dedicated study in Section 10.4.

The results first show that the computational complexity of these problems in-
creases with the number of wafers. This behaviour is particularly noticeable on in-
stances 625 10 90 and 9 25 10 90. Moreover, we expect an increase of the solu-
tion quality due to the increase of n, since, given a wafer of the instance, the probability
of finding a wafer with similar failures map is higher.

The results are generally consistent with the expected behaviour. However the high
computational complexity of some instances (especially instances with a high value for
p) leads to a decrease of the quality solution when solved with Formulation (VTIIT).

Influence of the average wafer yield

We now focus on the impact of the average wafer yield Yy on the Formulation (VIII).
A selection of results is given in Table 10.8.

In a first time, we consider the impact of the wafer yield on the solution quality.
A first obvious result is the increase of overall solution quality when Yy increases.
Furthermore, when compared to random assignments, a high individual wafer yield
implies a smaller value of the ratio of the number of failures in the ILP formulation over
the number of failures in the random assignment, no matter the considered formulation.

In a second time we consider the Formulation (VI). For the latter, the results show
that the more the wafer yield is low, the more the computation time is important.
This can be explained by the logarithmic dependence of the formulation in the value
of YW

The behaviour of the Formulation (VIII) is different from the former behaviour.
Indeed, the hardest instances, when considering the computation time, are instances
such that Yy = 70. Such a comportment could be explained by the model used in
the instance generator. This model designed to cluster the failures on the rim of the
wafers may lead to particular failures maps when Yy &~ 70. In these instances, one
can see that the failures map can be cut into three more or less distinct areas.

1. The outer rim, on which probability of failure is very high due to a combination
of quite low Yy and high distance to the center of wafers. This area is rela-
tively thin, since the high density of failures leads to a rapid decrease of failure
probability.

2. The inner rim, which is the most important part in term of area. In this area, the
probability of failure is close to 50%, leading to well spread failures on this area.
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Table 10.8: Impact of Yy on the performances of ILP formulations.

random Formulation (VI) Formulation (VIIT)

Fails Time # Fails Ratio Time # Gap Fails Ratio

325 10 50 85.68% 0.516 10 63.67%  0.743 1.353 10 - 63.67%  0.743

3251070 62.32% 0.517 10 41.12%  0.660 1.475 10 - 41.12%  0.660

32510 90 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609

325 100 50 85.69% 0.821 10 78.62%  0.917 - 0 5.79% 79.69%  0.930
3 25100 70 63.00% 0.472 10  56.04%  0.890 - 0 8.16% 57.16%  0.907
3 25 100 90 24.99% 0.6 10 20.81%  0.833 - 0 3.93% 21.11%  0.845
3 25 1000 50 85.52% 0.737 10 83.32% 0.974 - 0 9.69% 84.14%  0.984
3 25 1000 70 63.07% 0.837 10 60.91%  0.966 - 0 14.23%  61.84%  0.981
3 25 1000 90 24.91% 0.44 10 23.54%  0.945 - 0 13.14%  24.04%  0.965
3 50 10 50 84.2% 6.759 10 60.67%  0.721 19.299 10 - 60.67%  0.721

35010 70 62.66% 6.544 10 38.96%  0.622 22.292 10 - 38.96%  0.622

3 50 10 90 24.36% 7.231 10 13.56%  0.557 9.233 10 - 13.56%  0.557

3 50 100 50 84.97% 10.684 10 77.22%  0.909 - 0 7.33% 78.49%  0.924
3 50 100 70 62.58% 8.685 10 54.63%  0.873 - 0 11.12%  56.35%  0.900
3 50 100 90 24.85% 7.798 10 20.04% 0.806 - 0 8.55 20.76%  0.836
3 50 1000 50 84.99% 15.572 10 82.56% 0.971 - 0 12.02%  84.81%  0.998
350 1000 70 | 62.51% | 11.977 10 60.08%  0.961 - 0 17.42%  62.32%  0.997
3 50 1000 90 24.81% 7.931 10 23.26%  0.937 - 0 19.32%  24.61%  0.992
6 25 10 50 97% - - - - 1078.943 3 1.76% 68.32%  0.704

6 25 10 70 84.24% - - - - - 0 2.67% 46.44%  0.551

6 25 10 90 35.16% - - - - 18.313 10 - 17.28%  0.491

6 50 100 50 97.03% - - - - - 0 22.00%  94.54%  0.974
6 50 100 70 83.57% - - - - - 0 37.86%  82.71%  0.990
6 50 100 90 38.46% - - - - - 0 45.05%  36.9 % 0.959
9 25 10 50 99.52% - - - - - 0 2.92% 70.64%  0.710

92510 70 91.88% - - - - - 0 6.90% 50.56%  0.550

9 25 10 90 44.8% - - - - 243.776 10 - 184 %  0.411

9 50 1000 50 | 99.38% - - - - - 0 50.20%  99.31%  0.999
9 50 1000 70 91.99% - - - - - 0 67.38%  91.48%  0.994
9 50 1000 90 | 46.65% - - - - - 0 77.35%  45.40%  0.973
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This area is, to our opinion, the one that explain the computational complexity
of these instances due to its area size.

3. The wafer center, in which the failure density is very low.

Note that this partition into areas is accurate no matter the average wafer yield.
However, the values of Yy determine the size of each of these areas. The more the areas
1 and 3 are important, the more the instances are easy to solve with Formulation (VIII)
since the combinatorics in this surfaces is quite limited. When considering instances
with Yy = 70 likely have a important inner rim area, explaining at the same time, the
increase of computation time when compared to instances where Yy = 50 of Yy = 90.

More generally, based on these observations, we conjecture that the Formula-
tion (VIII) has strong dependency in the homogeneity of the failures distribution.
We propose in Section 10.5 some experiments to validate the former assumption.

Impact of the number of dies

To finish, we focus on the parameter p. Let us first consider the influence of such a
parameter on the solution quality. As expected, the number of dies per wafer is not an
impact factor on the quality of solution returned by random assignment. Indeed, the
die yield being fixed between the compared sets of instances, the number of failures is
proportional to the number of dies. Therefore, when considering the failure clustering,
the performance of random assignment should not be impacted by an increase of the
number dies per wafers. Note that this observation is not at variance as the observation
given by Reda et al. in [RSS09]. Indeed, in their experimentation on the impact of the
number of dies, the overall failure is not constant. In fact, they consider the impact
of the die area on solution quality, the size of a wafer and the defect density being
constant. It follows that the number of failures per wafer is a constant implying that
the failures rate per wafer increases as the number of dies decreases.

More surprisingly, the quality of the solutions computed by ILP formulations de-
grades as the number of dies increase. We explain this behaviour by the impact of
the number of dies on the failures distribution. Indeed, with a high number of dies,
the failures clustering is less pronounced as the sensitivity of failure probability to the
distance to the center is more fine-grained. It follows that even though the general
distribution of failures over the wafers are similar, the exact location of these failures
differs from a wafer to another. This hypothesis is strengthen by the asymptotic in-
crease of the failures rate in function of p. Indeed, the increase of the failures rate
between instances with p = 10 and p = 100 is more important than the one between
instances with p = 100 and p = 1000. This confirms that the general distribution of
failures are similar between instances. However, this asymptotic behaviour needs to
be validated with experiments on larger number of dies.

When considering the efficiency of the ILP formulations, the analysis of Section 10.1
gives us clues on the sensibility of the latter in function of p. The only dependence in
p of the Formulation (VI) is that the latter has logarithmic size in function of p. This
formulation is thus expected to show limited variations as the parameter increases.
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Table 10.9: Impact of p on the performances of ILP formulations.

random Formulation (VI) Formulation (VIII)

Fails Time # Fails Ratio Time # Gap Fails Ratio

32510 50 85.68% 0.516 10 63.67%  0.743 1.353 10 - 63.67%  0.743

3 25 100 50 85.69% 0.821 10 78.62% 0917 - 0 5.79% 79.69%  0.930
3 25 1000 50 85.52% 0.737 10 83.32% 0.974 - 0 9.69% 84.14%  0.984
3251070 62.32% 0.517 10 41.12%  0.660 1.475 10 - 41.12%  0.660

3 25 100 70 63.00% 0.472 10 56.04%  0.890 - 0 8.16% 57.16%  0.907
3251000 70 | 63.07% 0.837 10 60.91%  0.966 - 0 14.23% 61.84%  0.981
3251090 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609

3 25 100 90 24.99% 0.6 10 20.81% 0.833 - 0 3.93% 21.11%  0.845
3251000 90 | 24.91% 0.44 10 23.54%  0.945 - 0 13.14%  24.04%  0.965
3 50 10 50 84.2% 6.759 10 60.67% 0.721 19.299 10 - 60.67%  0.721

3 50 100 50 84.97% 10.684 10 77.22%  0.909 - 0 7.33% 78.49%  0.924
350 1000 50 | 84.99% | 15.572 10 82.56%  0.971 - 0 12.02% 84.81%  0.998

- 38.96%  0.622
11.12%  56.35%  0.900
17.42%  62.32%  0.997

- 13.56%  0.557

8.55 20.76%  0.836
19.32%  24.61%  0.992
1.76% 68.32%  0.704
17.03%  92.44%  0.950
18.95%  97.31%  0.999
2.67% 46.44%  0.551
30.83%  79.78%  0.942
32.65% 84.08%  0.993

- 17.28%  0.491
33.22% 34.61%  0.881
37.92% 38.08%  0.967
3.50% 65.6 %  0.678
22.00% 94.54%  0.974
21.00%  96.96%  0.999
7.43% 44.32%  0.534
37.86% 82.71%  0.990
64.05%  82.98%  0.994
6.37% 15.4 %  0.410
45.05% 369 %  0.959
72.58%  37.48%  0.985
2.92% 70.64%  0.710
20.09% 96.81%  0.973
19.65%  99.45%  0.999
6.90% 50.56%  0.550
37.12%  89.12%  0.955
37.08%  92.62%  0.994

- 184 %  0.411
46.42%  44.87%  0.912
46.52%  46.83%  0.961
17.00% 771 %  0.776
25.33%  98.95%  0.995
50.20%  99.31%  0.999
26.25%  56.62%  0.620
43.09% 91.17%  0.990
67.38%  91.48%  0.994
3.25% 16.28%  0.361
54.13%  45.32%  0.965
77.35%  45.40%  0.973

35010 70 62.66% 6.544 10 38.96%  0.622 22.292
3 50 100 70 62.58% 8.685 10 54.63% 0.873 -
3501000 70 | 62.51% | 11.977 10 60.08%  0.961 -

3 50 10 90 24.36% 7.231 10 13.56%  0.557 9.233
3 50 100 90 24.85% 7.798 10 20.04% 0.806 -
350 1000 90 | 24.81% 7.931 10 23.26%  0.937 -

6 25 10 50 97% - - - -

6 25 100 50 97.32% - - - - -

6 25 1000 50 | 97.43% - - - - -

62510 70 84.24% - - - - -

6 25 100 70 84.64% - - - - -

6 25 1000 70 | 84.66% - - - - -

6 25 10 90 35.16% - - - - 18.313

6 25 100 90 39.28% - - - - -
6 25 1000 90 | 39.37% - - - - -

6 50 10 50 96.76% - - - - -
6 50 100 50 97.03% - - - - -
6 50 1000 50 | 97.06% - - - - -
6 50 10 70 82.98% - - - - -
6 50 100 70 83.57% - - - - -
6 50 1000 70 | 83.52% - - - - -

6 50 10 90 37.52% - - - - 321.987
6 50 100 90 38.46% - - - - -

6 50 1000 90 | 38.05% - - - - -

925 10 50 99.52% - - - - -

9 25 100 50 99.49% - - - - -

9 25 1000 50 | 99.51% - - - - -

92510 70 91.88% - - - - -

9 25 100 70 93.34% - - - - -

9 25 1000 70 | 93.18% - - - - -

9 25 10 90 44.8% - - - - 243.776

9 25 100 90 49.18% - - - - -
9 25 1000 90 | 48.72% - - - - -
9 50 10 50 99.32% - - - - -
9 50 100 50 99.40% - - - - -
9 50 1000 50 | 99.38% - - - - -

9 50 10 70 91.36% - - - - -

9 50 100 70 92.08% - - - - -
950 1000 70 | 91.99% - - - - -

9 50 10 90 45.14% - - - - 198.587
9 50 100 90 46.98% - - - - -

9 50 1000 90 | 46.65% - - - - -
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On the other hand, the Formulation (VIII) has n?(m — 1) 4+ np variables and
n(m—1)(p+2) constraints. We thus expect p to be an impact factor on the efficiency
of this formulation.

Both of these expectations are validated by our experiment. Indeed, even for high
values of m and n, we can expect optimal values to be computed by Formulation (VIIT)
if the number of dies is low. This motivates the design of a new heuristic based on this
ILP formulation.

10.3 1ILP based heuristics

10.3.1 Principle

The previous section shows that we can expect the Formulation (VIII) to be efficient
when the number of dies of the instance is low. It seems thus natural to use this
property to design heuristics. One possible way to reach this goal is to use the following
scheme:

Algorithm 3: Reduced dies heuristic principle
Data: An integer ¢
Select ¢ positions;
Solve optimally the instance reduced to the ¢ selected positions;
Apply previouly computed assignment on the initial instance;

It seems natural that the number ¢ of dies in the newly created instance as well
as the way to select these ¢ positions are impact factors on the efficiency of such a
heuristic. In the following we propose two ways to select these dies and perform tests
for ¢ € {10,50} on the instances used in the previous ones.

Let us now describe the position selection procedures. The first one is led by the
following principle: “Given an instance of wafer-to-wafer integration problem, we may
want to ensure that the positions having the best yield are lead to viable position in
the created stacks.” The objective is then to identify the positions maximizing the
number of good dies in the reduced instance. Based on this principle, we define the
heuristic 4.

Algorithm 4: Viable dies preserving heuristic (VDP)
Data: An integer ¢
Select the ¢ positions that maximize the overall number of good dies;
Solve optimally the instance reduced to the ¢ selected positions;
Apply previously computed assignment on the initial instance;

The second one is led by the following principle: “Given an instance of wafer-to-
wafer integration problem, we may try to maximize the number of saved positions in the
created stacks, as other positions have higher probability to lead to viable positions.”



160 CHAPTER 10. ILP FORMULATIONS

The objective now is therefore to identify the positions maximizing the overall number
of bad dies in the reduced instance. We thus define the heuristic 5.

Algorithm 5: Bad dies stacking heuristic (BDS)
Data: An integer ¢
Select the ¢ positions that maximize the overall number of bad dies;
Solve optimally the instance reduced to the ¢ selected positions;
Apply previously computed assignment on the initial instance;

10.3.2 Computational Results

This section is devoted to the results presentation of the experiments performed on
previously introduced heuristics. We focus on the efficiency of such heuristics in func-
tion of the numbers of selected dies (¢ € {10,50}) and the way these dies are selected

(BDS or VDP).
Before introducing the results let us make few remarks.

e First of all, in the following we denote as BDS-¢ (resp. VDP-¢) the heuristic
BDS (resp. VDP) that select ¢ positions.

e We only consider instances satisfying p > ¢ and m € {6,9} as instances with
m = 3 can be solved to the optimality with the Formulation (VI).

e In the following tables, we respect the following conventions. The given com-
putation time is computed on instances that have been solved to optimality. It
follows that when no time is given, every reduced instance of the considered set
reached the computation duration limit of 1800 seconds measured in CPU time.
Similarly, the value of the Gap stands for the average gap value returned by
CPLEX for instances that are not solved to optimality. This value only gives
information on the quality of the solution returned by CPLEX when solving re-
duced instances. The latter thus does not give informations on the quality of the
solution returned by the heuristics. Such informations are given by the Ratio
value which is equal to the cost of the heuristic solution over the cost of the
solution returned by a random assignment.

Influence of the dies selection heuristic

The selection of the positions composing the reduced instance is obviously a factor
having strong impact on the performances of considered heuristics. This section aims
at determining how the latter influences both computation time and solution quality.
The results, given in Tables 10.10 and 10.11, show that how positions are selected
drives the heuristics very sensitive to the wafer yield and the number of dies in the
initial instances.
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Table 10.10: Influence of the wafer yield on the performances of BDS-10 and VDP-10
heuristics.

BDS-10 VDP-10 Form (VTIT)

Time Ratio Time Ratio | Time  Ratio

6 25 100 50 3.254 0.988 1800 0.968 1800 0.950
6 50 100 50 74.249 0.986 1800 0.962 1800 0.974

9 25 100 50 72.792 0.990 1800 0.966 1800 0.973
9 50 100 50 771.284  0.986 1800 0.971 1800 0.995
6 25 100 70 852.477  0.971 | 1631.654  0.961 1800 0.942
6 50 100 70 1800 0.964 1800 0.956 1800 0.990
9 25 100 70 1800 0.972 1800 0.953 1800 0.955
9 50 100 70 1800 0.978 1800 0.952 1800 0.990
6 25 100 90 1800 0.918 0.265 0.994 1800 0.881
6 50 100 90 1800 0.895 0.325 0.995 1800 0.959
9 25 100 90 1800 0.916 0.874 0.982 1800 0.912
9 50 100 90 1800 0.928 0.922 0.989 1800 0.965
6 25 1000 50 0.214 1.000 1800 0.996 1800 0.999
6 50 1000 50 13.664 1.000 1800 0.997 1800 0.999
9 25 1000 50 0.533 1.000 1800 0.997 1800 0.999
9 50 1000 50 43.672 0.999 1800 0.997 1800 0.999
6 25 1000 70 42.786 0.998 | 1156.615  0.995 1800 0.993
6 50 1000 70 1800 0.996 1800 0.996 1800 0.994
9 25 1000 70 | 406.526  0.999 1800 0.996 1800 0.994
9 50 1000 70 1800 0.998 1800 0.995 1800 0.994
6 25 1000 90 1800 0.985 0.034 0.967 1800 0.967
6 50 1000 90 1800 0.995 0.132 0.985 1800 0.985
9 25 1000 90 1800 0.990 0.131 0.973 1800 0.961
9 50 1000 90 1800 0.992 0.438 0.975 1800 0.973
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Table 10.11: Influence of the wafer yield on the performances of BDS-50 and VDP-50
heuristics.

BDS-50 VDP-50 Form (VTIT)
Time Ratio Time Ratio | Time  Ratio
6 25 100 50 1800 0.949 1800 0.95 1800 0.950
6 50 100 50 1800 0.977 1800 0.967 1800 0.974
9 25 100 50 1800 0.965 1800 0.969 1800 0.973
9 50 100 50 1800 0.993 1800 0.982 1800 0.995
6 25 100 70 1800 0.915 1800 0.935 1800 0.942
6 50 100 70 1800 0.955 1800 0.939 1800 0.990
9 25 100 70 1800 0.936 1800 0.944 1800 0.955
9 50 100 70 1800 0.978 1800 0.968 1800 0.990
6 25 100 90 1800 0.834 1800 0.937 1800 0.881
6 50 100 90 1800 0.895 1800 0.936 1800 0.959
9 25 100 90 1800 0.877 1800 0.897 1800 0.912
9 50 100 90 1800 0.921 1800 0.921 1800 0.965
6 25 1000 50 1800 0.997 1800 0.995 1800 0.999
6 50 1000 50 1800 0.999 1800 0.996 1800 0.999
9 25 1000 50 1800 0.999 1800 0.996 1800 0.999
9 50 1000 50 1800 1.0 1800 0.997 1800 0.999
6 25 1000 70 1800 0.993 1800 0.993 1800 0.993
6 50 1000 70 1800 0.998 1800 0.993 1800 0.994
9 25 1000 70 1800 0.995 1800 0.994 1800 0.994
9 50 1000 70 1800 0.999 1800 0.994 1800 0.994
6 25 1000 90 1800 0.978 0.26 0.983 1800 0.967
6 50 1000 90 1800 0.985 0.924 0.997 1800 0.985
9 25 1000 90 1800 0.978 | 162.699  0.991 1800 0.961
9 50 1000 90 1800 0.994 | 659.668 0.994 1800 0.973
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Indeed, we can see in Table 10.10, that VDP-10 has overall better solution quality
except for instances with 100 initial dies per wafer and an individual wafer yield being
equal to 90%. In such a configuration, the outer rim of the wafer is almost nonexistent
due to the combination of a high value of Yy and of a medium value of p. It follows
that most of the failures are quite well spread over the inner rim while the wafer center,
composed with almost only viable dies, covers a large area on the wafer.

This leads the BDS heuristic to select positions composed with a mix of viable dies
and failures while the VDP heuristic selects positions coming from the wafer center
area, and thus almost exclusively composed with viable dies. In the reduced instances
of VDP-10 every assignment is almost optimal. This explains why the computation is
very fast (less than 1 second measured in CPU time) and why the computed solution
are quite bad. The more balanced BDS-10 instances lead, in turn, to more computation
time (none of the reduced instance has been solved to optimality) but produce better
solutions.

Note that the previous phenomenon does not necessary apply on instances with
p = 1000 since the increase of the number of dies leads to instances admitting a
more consequent outer rim in which dies are selected by BDS-10, leading to positions
with a larger number of failures. This explains why performances of BDS-10 degrade
when p = 1000. However, the good performances of VDP on these instances are not
explained by this kind of arguments. Such a phenomenon motivates a more advanced
study of the structure of reduced instances.

Note also that a similar arguments explains:

e the bad solution quality of BDS-10, since reduced instances mainly consists in
position with a high rate of faulty dies. Since these positions are very likely to
be faulty positions in solutions of the initial instances, the BDS-10 algorithm
appears to be inadequate.

e the good solutions quality of BDS-50 in instances with Yy = 90,
e the overall better quality of VDP-10 and VDP-50 of the other instances.

It follows that the efficiency of proposed heuristic is strongly related to the individ-
ual wafer yield in the reduced instances. Investigation on the impact of the latter on
the performances appears to be appropriate. Furthermore, we conjecture that, using a
positions selection algorithm ensuring a heterogeneity between viable and faulty dies
in the reduced instance, can drastically improve the final yield.

Impact of the number of dies in reduced instances

This section aims at determining the influence of the number of dies in reduced in-
stances on the quality of the considered heuristics. Naturally, we expect that an
increased size of the reduced instances leads to better solution as the heuristic have
more informations on the initial instance. On a first hand adding informations into
the reduced instances leads to a diminution of the impact of the mechanisms presented
in previous section, improving thus efficiency of BDS heuristic. On the other hand we
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Table 10.12: Influence of the number of dies in reduced instances on the performances
of BDS-10 and BDS-50 heuristics.

BDS-10 BDS-50 Form (VIII)
Time Ratio | Time Ratio | Time Ratio
6 25 100 50 3.254 0.988 1800  0.949 1800  0.950
6 25 100 70 852.477 0.971 1800 0.915 1800 0.942
6 25 100 90 1800 0.918 1800  0.834 1800  0.881
6 25 1000 50 0.214 1.000 1800  0.997 1800  0.999
6 25 1000 70 42.786 0.998 1800 0.993 1800 0.993
6 25 1000 90 1800 0.985 1800  0.978 1800  0.967
6 50 100 50 74.249 0.986 1800  0.977 1800  0.974
6 50 100 70 1800 0.964 1800 0.955 1800 0.990
6 50 100 90 1800 0.895 1800 0.895 1800 0.959
6 50 1000 50 13.664 1.000 1800 0.999 1800 0.999
6 50 1000 70 1800 0.996 1800 0.998 1800 0.994
6 50 1000 90 1800 0.995 1800 0.985 1800 0.985
9 25 100 50 72.792 0.990 1800 0.965 1800 0.973
9 25 100 70 1800 0.972 1800 0.936 1800 0.955
9 25 100 90 1800 0.916 1800 0.877 1800 0.912
9 25 1000 50 0.533 1.000 1800 0.999 1800 0.999
9 25 1000 70 | 406.526  0.999 1800  0.995 1800  0.994
9 25 1000 90 1800 0.990 1800 0.978 1800 0.961
9 50 100 50 771.284 0.986 1800 0.993 1800 0.995
9 50 100 70 1800 0.978 1800  0.978 1800  0.990
9 50 100 90 1800 0.928 1800 0.921 1800 0.965
9 50 1000 50 43.672 0.999 1800 1.0 1800 0.999
9 50 1000 70 1800 0.998 1800  0.999 1800  0.994
9 50 1000 90 1800 0.992 1800 0.994 1800 0.973




10.3. ILP BASED HEURISTICS 165

Table 10.13: Influence of the number of dies in reduced instances on the performances
of VDP-10 and VDP-50 heuristics.

VDP-10 VDP-50 Form (VTIT)
Time Ratio Time Ratio | Time  Ratio
6 25 100 50 1800 0.968 1800 0.95 1800 0.950

6 25 100 70 1631.654  0.961 1800 0.935 1800 0.942
6 25 100 90 0.265 0.994 1800 0.937 1800 0.881
6 25 1000 50 1800 0.996 1800 0.995 1800 0.999
6 251000 70 | 1156.615  0.995 1800 0.993 1800 0.993
6 25 1000 90 0.034 0.967 0.26 0.983 1800 0.967
6 50 100 50 1800 0.962 1800 0.967 1800 0.974
6 50 100 70 1800 0.956 1800 0.939 1800 0.990
6 50 100 90 0.325 0.995 1800 0.936 1800 0.959
6 50 1000 50 1800 0.997 1800 0.996 1800 0.999
6 50 1000 70 1800 0.996 1800 0.993 1800 0.994
6 50 1000 90 0.132 0.985 0.924 0.997 1800 0.985

9 25 100 50 1800 0.966 1800 0.969 1800 0.973
9 25 100 70 1800 0.953 1800 0.944 1800 0.955
9 25 100 90 0.874 0.982 1800 0.897 1800 0.912

9 25 1000 50 1800 0.997 1800 0.996 1800 0.999
9 25 1000 70 1800 0.996 1800 0.994 1800 0.994
9 25 1000 90 0.131 0.973 | 162.699  0.991 1800 0.961
9 50 100 50 1800 0.971 1800 0.982 1800 0.995
9 50 100 70 1800 0.952 1800 0.968 1800 0.990
9 50 100 90 0.922 0.989 1800 0.921 1800 0.965
9 50 1000 50 1800 0.997 1800 0.997 1800 0.999
9 50 1000 70 1800 0.995 1800 0.994 1800 0.994
9 50 1000 90 0.438 0.975 | 659.668  0.994 1800 0.973

will see that this extra information may also causes loss of efficiency on certain sets of
instances.

The results in Table 10.12 show that the BDS heuristic has overall better results
with a larger number of dies in the reduced instances. These results strengthen the
explanations we gave in the previous section regarding the overall poor performances
of this heuristic. Indeed, a larger number of positions in the reduced instances leads
to a selection of positions composed with more viable dies than the positions selected
in BDS-10.

Results also show that, except few sets of instances, BDS-50 returns better solution
than the Formulation (VIII).

The results in Table 10.13 show that, while increasing the number of dies in the
reduced instance improve the quality of the solutions returned by BDS heuristic, such
an increase can lead to loss of efficiency for VDP. Such a phenomenon occurs on
instances with large number of dies (p = 1000) and a high individual wafer yield
(Yir = 90%). It is again explained by the combination of favourable parameters and
positions selection routine.

Remember that VDP heuristics selects among all the positions the ones that are
composed with the minimum number of faulty dies. It follows that, for such instances,
most of the selected positions are nearly perfect positions. Thus the few selected
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positions, composed with a more substantial number of faulty dies, have a strong
impact on the optimal solution of the reduced instances. Optimal assignments in
VDP-50 are indeed very different from those in VDP-10. Well, recall that in the wafer
generation model of Di Natale et al. [Nat+13], wafers that have similar failures maps
in the wafer center area have similar overall failures maps. Thus optimal assignment
in reduced instances of VDP-10 likely led to assignment of similar wafers in the initial
instances. Optimal assignments in VDP-50 reduced instances are driven by more faulty
positions and thus positions placed further from the wafer center. The probability that
these assignments lead to assignment of similar wafers is thus reduced.

On the other hand, the increase of dies in reduced instances leads to a noticeable
improvement of the solution quality on instances with p = 100 dies and having a wafer
yield equal to 90%.

For both of the heuristics, with an increased number of dies in reduced instances,
none of the instance has been solved to optimality. However let us remark that, solving
the latter to optimality does not necessarily implies an improvement of the solution
computed by the heuristics.

10.4 Sets aggregation technique

In this section we investigate another aspect of the problem. We try to determine the
potential profit we can earn by considering instances with a larger number of sets.
This question is motivated by optimizing industrial processes.

10.4.1 Modus Operandi

In order to measure the maximum impact of the sets aggregation technique, we want
to ensure an optimal resolution of considered instances. This motivates the use of
Formulation (VI) restricted to instances with m = 3. In the following we will focus
on the aggregation of four instances. In other words, we construct a instance with
n = 100 from four instances with n = 25.

For each combination of parameter p € 10,100,1000 and Yy € {50,70,90}, we
generate 80 instances with m = 3 and n = 25. We can then compute 20 instances with
n = 100. Each of these instances are optimally solved with Formulation (VI) and we
compare the evolution of the objective values and the computation time between the
four instances with n = 25 and the corresponding instance with n = 100.

The tests are performed on the same machine as all other performed tests, i.e. a
workstation equipped with Intel Xeon processors with twenty cores running at 2.86Ghz
with 68Gb of dynamic memory. The ILP solver used to perform the computation is
CPLEX 12.6.

10.4.2 Computational results

The results of the experiment are given in Table 10.14. They show a substantial
increase of the objective value with up to 578.9 additional viable dies for instances
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Table 10.14: Impact of the set aggregation technique on the time computation and
objective function

n = 100 instances n = 25 instances Difference

P Yw Time Obj. Value | Time Obj. Value A Time A Obj. A Fails
50 35029.62 82006.9 10.26 82585.8 -35019,36 578.9 0.58%

1000 70 21420.80 59410.3 10.39 59988.3 -21410.41 578.1 0.58%
90 14106.18 23081.1 14.25 23456.4 -14091.93 375.3 0.38%

50 25606.76 7599.2 15.54 7800.5 -25591.21 201.3 2.01%

100 70 11620.44 5345.1 11.44 5547.5 -11608.00 202.4 2.02%
90 8433.96 1935.3 7.20 2066.0 -8426.76 130.7 1.31%

50 2864.43 584.4 6.19 641.6 -2858.24 57.2 5.72%

10 70 1091.83 366.9 5.77 419 -1086.06 52.1 5.21%
90 295.29 128.6 5.85 148.8 -289.43 20.2 2.02%

with p = 1000 dies and Yy = 50. Even though this improvement only represents
0.58% of the overall number of dies, it corresponds to an increase of 3.21% of the
number of viable 3D-chips.

Furthermore and as expected, we remark a larger improvement for instances with
low and average wafer yield (Yyr € {50, 70}). Indeed, for the instances having a good
wafer average, the few failures are quite well spread over the later. It follows that given
a wafer, finding very similar in the concatenated instances is quite unlikely, contrary
to instances with bad wafer yield.

We can also see that, the more the number of dies increases, the more the percentage
of “saved” dies decreases. Actually, the phenomenon is due to a diminution of clustering
as the number of dies increases. Indeed, as explained in Section 10.2.2, the general
distribution on the wafer area is quite similar no matter the number of dies, however
an increase number of dies can be seen as an increase of details on the wafer, leading
to failures located at close but distinct locations.

To finish, the improvement of the objective value has a cost in terms of computation
time. For example, the time required to solve optimally the 3 100 1000 50 instances
is roughly 3400 times the time required to solve the four corresponding 325 1000 _50.
Such an increase of computation prevents the use of sets aggregation technique as it
is. However, it can still be used in the conception of prototypes for which individual
wafer yield is very low. Furthermore, the advantages of this technique motivates, to
our opinion, efforts to develop resolution techniques with limited dependence in n.

10.5 Conclusion

In this chapter, we presented two ILP formulations coming from the literature on
Wafer-to-Wafer integration problem. After having slightly improved one of those for-
mulations, we proved that none of them are suitable for large scale general instances.
However, the experiments we provided help us to better understand the complexity of
the problem, and determine the limits of each of the considered ILP formulations.
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Furthermore, the results we obtained confirm that the number of dies has a strong
impact on the difficulty of the problem. We conjecture that reducing the number of
dies in the considered instance can lead to interesting and efficient heuristics. This
work begs a lot of questions that can be answered thanks to appropriately designed
experiments.

In a first time, further experiments to confirm the impact of the Feasibility Pump
Heuristic on the performance of Formulation (VIII) should be performed. Two experi-
ments could be performed, the first one using default CPLEX parameters but limiting
the computation time to 1800 seconds and the second using the aggressive setting with
a computation time limit set to 54000 seconds.

We conjecture the impact of the failures clustering on the Formulation (VIII) per-
formances. Running the latter on instances with uniformly distributed failures could
validate this conjecture.

In order to be able to compare the performances of our ILP based heuristics to the
literature results, it could be interesting to perform the experiment we presented on
pseudo random generated wafer using the negative binomial distribution model.

Based on behaviour of presented heuristics, considering other dies selection strate-
gies to design reduced instances can be an interesting research trail. We show that
good performances of the heuristics are explained by selected positions presenting a
mix of faulty and viable dies. Thus selecting dies that respect some yield conditions
could lead to an improvement of the solutions quality of the ILP based heuristics.

A last research trail lies in the use of the Formulation (IV) to solve optimally re-
duced instances. This formulation has been used in Section 7.2.2 to prove the problem
membership in FPT. Therefore, we can hope the latter to be more efficient than
Formulation (VIII) to solve instances with p = 10.
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The previous chapter focused on the resolution of the problem using ILP formulations.
However a recurrent technique in the literature is the use of matchings to perform the
assignment [Tao+10; Ver+10; RSS09]. In each of these references, the authors consider
the sequential heuristic that we presented in Chapter 5. Recall that this algorithm,
whose pseudo code is given by Algorithm 6, has been proved to be a 3/2-approximation
algorithm for the min ) 0 problem for fixed m = 3. Furthermore a simple sort of the
set according to their weight improves the ratio guarantee to 4/3, for fixed m = 3.

Nevertheless, this theoretical improvement has never, to our knowledge, been taken
into consideration in the experimentation. We provide in the following a comparison
between performances of the sequential heuristic and its sorted version also introduced
in Chapter 5 as the heaviest first heuristic.

We also propose and test different set selection strategies. Some of these strategies
lead to approximation algorithm.

169
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11.1 Set selection strategies

In this section we quickly present the considered set selection strategies as well as
approximation algorithms based on these strategies. In a first time we recall the it-
erative matching strategy on which both sequential and heaviest first heuristics are
based. In a second time we present the lot partitioning strategy that, given an integer
k, constructs a k-ary tree in which each leaf is a set and each internal node represents
a wafer-to-wafer integration problems with & sets. In a last section we present the bal-
anced binary tree strategy. The latter is quite similar to the lot partitioning approach
but the constructed tree is binary and balanced.

11.1.1 Iterative Matchings

Let us first quickly recall the principle of this strategy. We consider an instance of
min 0! with m sets. In a first time the optimal assignment between vectors of
V1 and vectors of V2 is computed. At each iteration the algorithm solves optimally
the assignment between the resulting matching of the previous iteration and the next
unprocessed set.

The pseudo-code of this strategy is given by Algorithm 6. Dokka et al. prove
in [DCS14] that this algorithm is a m/2-approximation algorithm for min " 0. They

also prove that the Algorithm 7 is a mTH — %ln(m — 1)-approximation algorithm.

Algorithm 6: Sequential heuristic

M < resulting optimal assignment between V! and V?;
fori=3,...,m do

M < resulting optimal assignment between M and V?;
return M;

Algorithm 7: Heaviest first heuristic

Sort the sets according to decreasing costs;
Apply the Sequential algorithm on the sorted sets;

11.1.2 Lot Partitioning

In this section we present the lot partitioning algorithm. Given a min )0 instance,
with m sets, an integer k, and a routine that solves min ) | 0 instance with a number of
sets less or equal to k, the algorithm proceeds as follows. The input sets are partitioned
into |™/k] lots containing k sets complemented by a set that contains less than k sets,
if necessary. These lots define smaller min ) 0 instances having a reduced number of
sets. It then solved each reduced instance thanks to the provided routine. For each

!This strategy is also suitable for max 3" 1 instances by modifying the way the cost are computed.
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Figure 11.1: Tlustration of the running scheme of Algorithm 8 on an instance with
m = 6.

lot, a representative set is computed based on solution returned by the routine. The
algorithm iterates these steps until a solution to the initial instance is computed.

The Figure 11.1 depicts the resolution scheme of a min ) 0 instance with m = 6
and k& = 2. The initial sets of wafers are first partitioned into three reduced min ) 0 of
two sets each. A representative set V4 is computed based on resolution of the initial
instance restricted to (V',V?2). In the same way, the representative set V2 (resp. V¢)
is computed based on resolution of the initial instance restricted to (V3,V*) (resp.
V5 VO). These three representative sets define a new min) 0 instances that will
be solved using the same steps. These operations are applied until a solution S is
computed.

In the following we consider the Algorithm 8 being the particular lot partitioning
algorithm when k = 2.

Algorithm 8: Lot partitioning heuristic

while the number of remaining sets is greater than 1 do
if m s even then
Partition the sets into m/2 lots of size 2;
else
Partition the sets into |m/2] — 1 lots of size 2 completed with a lot of size
3;
Compute a representative of the lot of size 3 using sequential heuristic;
for each lot of size 2 do
Compute the optimal matching between the both sets;
Compute the representative sets based on optimal matching;
Replace lots of sets by their representative set;
return the last representative set;
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Figure 11.2: Illustration of the running scheme of Algorithm 9 on an instance with

m = 6.

Theorem 11.1. The Algorithm 8 is an ™/2 approzimation algorithm.

Proof. Let us consider two cases.

m is even. Remark that the first iteration of the algorithm generates m/2 representa-
tive sets V1, V92 . V%m/2 whose cost satisfies ¢ (V%) < ¢ (Opt). In the worst
case, no faults are mapped when superimposing wafers of these sets. It follows
that the cost ¢ (S) of the computed solution S is given by ¢(S) = Zm/2 Ve <
Ze(Opt).

m is odd. In this case the first iteration of the algorithm generate |m/2| — 1 repre-
sentative sets whose cost is less than the cost of the optimal solution completed
by a representative set whose cost is bounded by 3/2¢ (Opt). It follows that the
computed solution S verifies ¢ (S) < m/2¢ (Opt).

11.1.3 Balanced Binary Tree Strategy

Algorithm 9: Balanced binary tree heuristic

RecursiveSplit(1, m);

Given a min ), 0 instance I with m sets, this recursive algorithm solves I by solving
two smaller instances I; and I with respectively [m/2] and |m/2] sets and by computing
the optimal matching between the two partial solutions.

An example of execution scheme of Algorithm 9 is given in Figure 11.2.
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Function RecursiveSplit(s, e)

if s = e then

return V¥;

if e - s =1 then

return resulting optimal assignment between V¢ and V'¢;

Vieft « RecursiveSplit(s, [(e + s)/2]);
Vright < RecursiveSplit([(e + 5)/2] + 1, e);
return (Vleft X V”ght);

11.2 Computational results

The previous section led us to introduce several matching based heuristics. This section
is devoted to their comparison from a computational point of view. The experiments
are performed in the same environment as the experiments performed on ILP formu-
lations. Let us recall the main points.

The experiments are performed on a workstation equipped with Intel Xeon pro-
cessors providing twenty cores running at 2.8GHz and with 68Gb of dynamic
memory. Note that the number of cores is not relevant for this experiment as
none of the algorithms implementations take advantage of the parallelization.

We use the Hungarian method to compute the optimal matching. All the algo-
rithms are implemented in C and compiled with gcc 4.8.4 with the -O2 flag.

Ten instances have been generated using the Di Natale et al. [Nat+13] wafer
generation model, for each combination of the following parameters.

1. m € {3,6,9},

2. n € {25,50},

3. p € {10,100, 1000},

4. Yy € {50,70,90}.
Every instance has been solved using Algorithms 6, 7, 8 and 9 completed slightly

modified Algorithms 8 and 9 in which set have been first sorted by decreasing
costs.

For each instance, we kept the value of the best solution among the matching
based algorithm. These results are included in the result Table as Best.

Results are compared to ILP based heuristics 5 and 4 both with a remaining
number a dies equal to 50.

A complete overview of the results is given in Table 11.1.
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Table 11.1: Results

6 7 8 Sort + 8 9 Sort + 9 Best 4 5

325 10 50 0.760 | 0.760 | 0.760 0.760 0.760 0.760 0.759 - -

32510 70 0.675 | 0.673 | 0.675 0.673 0.675 0.673 0.671 - -

32510 90 0.613 | 0.620 | 0.613 0.620 0.613 0.620 0.613 -

3 25 100 50 0.926 | 0.926 | 0.926 0.926 0.926 0.926 0.925 | 0.941 | 0.953

325100 70 0.899 | 0.898 | 0.899 0.898 0.899 0.898 0.897 | 0.933 | 0.924

325100 90 0.845 | 0.844 | 0.845 0.844 0.845 0.844 0.844 | 0.956 | 0.865

3251000 50 | 0.977 | 0.977 | 0.977 0.977 0.977 0.977 0.976 | 0.994 | 0.998

3251000 70 | 0.969 | 0.969 | 0.969 0.969 0.969 0.969 0.969 | 0.996 | 0.994

3251000 90 | 0.949 | 0.949 | 0.949 0.949 0.949 0.949 0.949 | 0.985 | 0.977
3 50 10 50 0.737 | 0.736 | 0.737 0.736 0.737 0.736 0.734 - -

350 10 70 0.641 | 0.643 | 0.641 0.643 0.641 0.643 0.641 - -

350 10 90 0.566 | 0.565 | 0.566 0.565 0.566 0.565 0.564 - -

3 50 100 50 0.918 | 0.918 | 0.918 0.918 0.918 0.918 0.917 | 0.939 | 0.949

3 50 100 70 0.883 | 0.883 | 0.883 0.883 0.883 0.883 0.882 | 0.928 | 0.915

3 50 100 90 0.819 | 0.820 | 0.819 0.820 0.819 0.820 0.819 | 0.960 | 0.834

350 1000 50 | 0.974 | 0.974 | 0.974 0.974 0.974 0.974 0.974 | 0.994 | 0.997

350 1000 70 | 0.964 | 0.965 | 0.964 0.965 0.964 0.965 0.964 | 0.994 | 0.993

350 1000 90 | 0.942 | 0.942 | 0.942 0.942 0.942 0.942 0.941 | 0.992 | 0.978

6 25 10 50 0.739 | 0.739 | 0.739 0.739 0.756 0.758 0.736 - -

62510 70 0.587 | 0.586 | 0.587 0.586 0.604 0.603 0.581 - -

6 25 10 90 0.509 | 0.512 | 0.509 0.512 0.527 0.528 0.505 - -

6 25 100 50 0.936 | 0.935 | 0.936 0.935 0.946 0.945 0.934 | 0.950 | 0.965

6 25 100 70 0.879 | 0.880 | 0.879 0.880 0.893 0.890 0.877 | 0.935 | 0.936

6 25 100 90 0.804 | 0.805 | 0.804 0.805 0.820 0.817 0.801 | 0.937 | 0.877

6 25 1000 50 | 0.982 | 0.983 | 0.982 0.983 0.985 0.985 0.982 | 0.995 | 0.999

6 25 1000 70 | 0.963 | 0.962 | 0.963 0.962 0.967 0.967 0.962 | 0.993 | 0.995

6 25 1000 90 | 0.926 | 0.926 | 0.926 0.926 0.930 0.931 0.925 | 0.983 | 0.978

6 50 10 50 0.697 | 0.698 | 0.697 0.698 0.714 0.713 0.695 - -

6 50 10 70 0.549 | 0.551 | 0.549 0.551 0.565 0.568 0.548 - -

6 50 10 90 0.436 | 0.433 | 0.436 0.433 0.445 0.439 0.430

6 50 100 50 0.921 | 0.922 | 0.921 0.922 0.932 0.932 0.920 | 0.967 | 0.969

6 50 100 70 0.862 | 0.860 | 0.862 0.860 0.876 0.874 0.860 | 0.939 | 0.956

6 50 100 90 0.766 | 0.767 | 0.766 0.767 0.783 0.783 0.765 | 0.936 | 0.880

6 50 1000 50 | 0.979 | 0.979 | 0.979 0.979 0.982 0.982 0.978 | 0.996 | 0.999

6 50 1000 70 | 0.957 | 0.957 | 0.957 0.957 0.962 0.962 0.957 | 0.993 | 0.995

6 50 1000 90 | 0.927 | 0.926 | 0.927 0.926 0.933 0.933 0.926 | 0.997 | 0.992

9 25 10 50 0.740 | 0.746 | 0.740 0.746 0.779 0.777 0.738 - -

92510 70 0.583 | 0.587 | 0.583 0.587 0.627 0.627 0.582 - -

9 25 10 90 0.445 | 0.449 | 0.445 0.449 0.474 0.475 0.444 - -

9 25 100 50 0.950 | 0.950 | 0.950 0.950 0.964 0.964 0.949 | 0.969 | 0.977

9 25 100 70 0.881 | 0.882 | 0.881 0.882 0.906 0.905 0.880 | 0.944 | 0.955

9 25 100 90 0.782 | 0.780 | 0.782 0.780 0.815 0.812 0.779 | 0.897 | 0.895

9 25 1000 50 | 0.989 | 0.989 | 0.989 0.989 0.992 0.992 0.988 | 0.996 | 0.999

9 25 1000 70 | 0.967 | 0.967 | 0.967 0.967 0.974 0.974 0.967 | 0.994 | 0.998

9 25 1000 90 | 0.921 | 0.920 | 0.921 0.920 0.932 0.933 0.920 | 0.991 | 0.985
9 50 10 50 0.702 | 0.702 | 0.702 0.702 0.734 0.735 0.700 - -

9 50 10 70 0.525 | 0.525 | 0.525 0.525 0.560 0.560 0.522 - -

9 50 10 90 0.383 | 0.382 | 0.383 0.382 0.402 0.404 0.379 - -

9 50 100 50 0.934 | 0.935 | 0.934 0.935 0.953 0.953 0.934 | 0.982 | 0.993

9 50 100 70 0.864 | 0.865 | 0.864 0.865 0.891 0.890 0.864 | 0.968 | 0.978

9 50 100 90 0.747 | 0.749 | 0.747 0.749 0.785 0.784 0.746 | 0.921 | 0.921

9 50 1000 50 | 0.985 | 0.985 | 0.985 0.985 0.990 0.990 0.985 | 0.997 | 1.000

9 50 1000 70 | 0.960 | 0.960 | 0.960 0.960 0.969 0.969 0.960 | 0.994 | 0.999

9 50 1000 90 | 0.915 | 0.915 | 0.915 0.915 0.930 0.929 0.915 | 0.994 | 0.994
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To lighten the table results, the computation time of considered heuristics is not
provided. Except for the Best heuristic that runs in few milliseconds, no matter the
considered heuristic, the computation time is less than one millisecond.

The results show that, even though sorting the sets improves the guarantee on the
ratio, the Algorithm 7 does not provide better computational results compared to 6.
The performances of these two algorithms are comparable no matter the considered
instances. This can be explained by the fact that all the sets of a same instance have
the same yield. The sort operation has thus almost non influence of the algorithm.

We also observe the same tendencies as Reda et al. [RSS09] and Verbree et al. [Ver-+10],
namely high performances of these heuristics when m takes high value and/or p and
Y takes low values.

The two versions of Algorithm 8 provide comparable results, following the same
tendencies and providing comparable solutions quality. However the both versions of
Algorithm 9 may lead to significantly worst solutions when m increases. This can be
explained by the order the matching are performed by the algorithm. Indeed, in the
balanced binary tree strategy the failures map of the computed solution for the left
subtree can significantly differs from the one of the computed solution in the right
subtree. This leads to a loss of performances in terms of solutions quality.

An interesting results concerns the Best heuristic that applies successively all of
the six algorithms and selects the best solutions. The latter provides improvement for
instances with a high number of sets and a low or average number of dies per wafer.

11.3 Conclusion

These experiments on matching based strategies close this practical part. We pro-
posed in this part, several heuristics to tackle the problem. However none of them
significantly improves the existing techniques.

In this part, we laid the foundations for different way of handling the problem:
reducing the number of dies. In Section 4.2 we presented some reduction rules allowing
us to remove unnecessary dies. We expect this approach to significantly improve the
performance of the solving strategies on instances with either a very high Yy or a very
low one.

We also provided experimentation results highlighting interesting internal mecha-
nisms of the problem. Combined with the results we can expect from the proposed
experiments, we should be able to provide new interesting solving strategies.



176 CHAPTER 11. MATCHING BASED HEURISTICS




Perspective and conclusion

This chapter marks the end of this manuscript, but also the end of three exciting
and stimulating years of research. Even though lot of works is still ongoing, we tried
to present interesting insights into the problems. On a theoretical aspect, despite the
lack of mind blowing techniques or brilliant results, we provided a complete overview of
the problem complexity both from an approximability and fixed parameter complexity
point of view. Indeed, the few questions that we left open confirm emphasize the latter.

We also tried to be as exhaustive as can be even on the practical aspects of the
problem. On a positive side, we provided a new and interesting way to handle the
problem complexity. The die reduction principle also tends to validate the tendencies
expected from theoretical analysis. However, on a negative side our practical approach
provided no performance improvement compared to already existing methods. Fur-
thermore, we kept on going on already explored paths: ILP formulations and Matching
Based Heuristics. However, we now reconsider it try to tackle the problem by using
different techniques such as Constraints Programming, Branch and Bound algorithms
or parallel algorithms.

In light of this work, we can imagine a great number of research trails. From a
theoretical point of view, we can consider new problems strongly related to wafer-to-
wafer integration problems. One can for instance cite max a-stack or max a-column.
In both of these problems, we are given an integer & and a BMVA input. The objective
of the first one is to maximize the number m-tuple of profit greater than «. Intuitively
we try to maximize the number of wafer stacks of good quality. In the second wafer,
the objective is, as for max > 1, to maximize the overall number of good dies in the
created stacks, however, a die at position [ in the stack is considered to be viable if at
least a wafers composing the stack have viable die at position [.

We can remark in our work that most of the inapproximability results from max ) 1
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are derived from inapproximability results for max max 1. The expression power pro-
vided by max ) 1 has not been properly exploited in the presented results. We think
that this expressivity could be exploited to provide better negative results for the
latter. Similarly, except for very constrained instances, the presented work do not
take advantage of the more simple structure of maxmax 1. An interesting question to
answer concerns the existence of an O(m)-approximation algorithm for max max 1.

To conclude, this work raises lot of interesting questions that only ask to be an-
swered.
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Table A.1: Comparison of the performances of Formulation (VI) and Formula-
tion (VIII) (long term experiment)

random Formulation (VT) Formulation (VTIT)
Fails Time  # Fails Ratio Time # Gap Fails Ratio
32510 50 85.68% 3.21 10 63.67%  0.743 12.26 10 - 63.67%  0.743
3251070 62.32% 2.13 10 41.12% 0.66 24.26 10 - 41.12% 0.66

- 14.48%  0.609
5.06% 79.09%  0.923
7.05% 56.56%  0.898
2.78% 20.90%  0.836
9.17% 83.67%  0.978
13.59%  61.39%  0.973
12.23%  23.78%  0.955

- 60.67% 0.721

- 38.96%  0.622

- 13.56%  0.557
7.01% 78.33%  0.922
9.83% 55.79%  0.892
7.13% 20.56%  0.828
10.83%  83.69%  0.985
16.01% 61.28% 0.98

17% 23.93%  0.964

3251090 23.76% 0.78 10 14.48%  0.609 2.26 10
3 25 100 50 85.69% 9.59 10 78.62%  0.917 -
325100 70 63.00% 2.36 10 56.04% 0.89 -
3 25 100 90 24.99% 3.12 10 20.81%  0.833 -
3251000 50 | 85.52% 8.61 10 83.32% 0.974 -
3251000 70 | 63.07% | 20.17 10 60.91%  0.966 -
3251000 90 | 24.91% 2.36 10 23.54%  0.945 -
3 50 10 50 842 % 20.87 10 60.67%  0.721 69.13
35010 70 62.66% 16.22 10  38.96%  0.622 106.50
350 10 90 24.36% 11.79 10 13.56%  0.557 20.22
3 50 100 50 84.97% | 66.38 10 77.22%  0.909 -
3 50 100 70 62.58% | 50.54 10 54.63%  0.873 -
3 50 100 90 24.85% | 40.01 10 20.04%  0.806 -
350 1000 50 | 84.99% | 73.37 10 82.56% 0.971 -
350 1000 70 | 62.51% | 90.94 10 60.08%  0.961 -
350 1000 90 | 24.81% | 60.54 10 23.26%  0.937 -
- - - 14104.79

6 25 10 50 97.0% - 5.10% 68.2% 0.703
62510 70 84.24% - - - - 24912.32 2.65% 46.04%  0.547
62510 90 35.16% - - - - 40.55 - 17.28%  0.491

16.13%  91.68%  0.942
27.17%  75.84%  0.896
28.87%  32.50%  0.827
18.60%  96.96%  0.995
32.15% 83.70%  0.989
37.67% 38.00%  0.965
3.02% 65.17%  0.674
6.10% 43.72%  0.527
6.25% 15.4% 0.41
19.18%  91.81%  0.946
31.22%  76.23%  0.912
38.61% 33.29%  0.865
21.05%  97.07% 1.0
35.14%  83.40%  0.999
45% 37.48%  0.985
1.69 %  69.88%  0.702
5.15 % 49.6% 0.54
- 18.4% 0.411
19.04% 95.56%  0.961
35.11%  86.66%  0.928
43.85%  43.06%  0.876
19.37%  99.39%  0.999
37.17%  93.23%  1.001
48.03%  48.26%  0.991
5.62% 67.78%  0.682
9.90% 46.28%  0.507
3.23% 16.28%  0.361
23.22% 97.1% 0.977
41.11%  88.61%  0.962
48.18%  40.48%  0.862
22.13%  99.39% 1.0
40.13%  91.98% 1.0
53.77%  46.30%  0.993

6 25100 50 | 97.32% - - - - -
625100 70 | 84.64% - - - - -
6 25100 90 | 39.28% - - - - -
6 25 1000 50 | 97.43% - - - - -
6 25 1000 70 | 84.66% - - - - -
6 25 1000 90 | 39.37% - - - - -
6 50 10 50 96.76% - - - - -
65010 70 82.98% - - - - -
6 50 10 90 37.52% - - - - 16464.56
6 50 100 50 | 97.03% - - - - -
6 50 100 70 | 83.57% - - - - -
6 50 100 90 | 38.46% - - - - -
6 50 1000 50 | 97.06% - - - - -
6 50 1000 70 | 83.52% - - - - -
6 50 1000 90 | 38.05% - - - - -
9 25 10 50 99.52% - - - - -
925 10 70 91.88% - - - - -
925 10 90 44.8% - - - - 195.73
9 25100 50 | 99.49% - - - - -
92510070 | 93.34% - - - - -
925100 90 | 49.18% - - - - -
9 25 1000 50 | 99.51% - - - - -
9 251000 70 | 93.18% - - - - -
9 25 1000 90 | 48.72% - - - - -
9 50 10 50 99.32% - - - - -
9 50 10 70 91.36% - - - - -
9 50 10 90 45.14% - - - - 6499.96
950 100 50 | 99.40% - - - - -
950 100 70 | 92.08% - - - - -
950 100 90 | 46.98% - - - - -
9 50 1000 50 | 99.38% - - - - -
950 1000 70 | 91.99% - - - - -
9 50 1000 90 | 46.65% - - - - -
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Table A.2:

Comparison of the performances of Formulation (VI) and Formula-
tion (VIII) (short term experiment)

random Formulation (VT) Formulation (VTIT)

Fails Time # Fails Ratio Time # Gap Fails Ratio

32510 50 85.68% 0.516 10 63.67%  0.743 1.353 10 - 63.67%  0.743

3251070 62.32% 0.517 10 41.12%  0.660 1.475 10 - 41.12%  0.660

32510 90 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609

325 100 50 85.69% 0.821 10 78.62%  0.917 - 0 579%  79.69%  0.930
325100 70 63.00% 0.472 10 56.04%  0.890 - 0 8.16%  57.16%  0.907
325100 90 24.99% 0.6 10 20.81%  0.833 - 0 3.93%  21.11%  0.845
325 1000 50 | 85.52% 0.737 10  83.32%  0.974 - 0 9.69%  84.14%  0.984
3251000 70 | 63.07% 0.837 10 60.91%  0.966 - 0 14.23%  61.84%  0.981
3251000 90 | 24.91% 0.44 10 23.54%  0.945 - 0 13.14%  24.04%  0.965
3 50 10 50 84.2% 6.759 10  60.67% 0.721 19.299 10 - 60.67%  0.721

35010 70 62.66% 6.544 10 38.96%  0.622 22.292 10 - 38.96%  0.622

350 10 90 24.36% 7.231 10 13.56%  0.557 9.233 10 - 13.56%  0.557

350 100 50 84.97% | 10.684 10 77.22%  0.909 - 0 7.33%  78.49%  0.924
3 50 100 70 62.58% 8.685 10 54.63%  0.873 - 0 11.12%  56.35%  0.900
3 50 100 90 24.85% 7.798 10 20.04%  0.806 - 0 8.55 20.76%  0.836
350 1000 50 | 84.99% | 15.572 10 82.56%  0.971 - 0 12.02% 84.81%  0.998
3501000 70 | 62.51% | 11.977 10 60.08%  0.961 - 0 17.42%  62.32%  0.997
3 50 1000 90 | 24.81% 7.931 10 23.26%  0.937 - 0 19.32%  24.61%  0.992
6 25 10 50 97% - - - - 1078.943 3 1.76%  68.32%  0.704

62510 70 84.24% - - - - - 0 2.67%  46.44%  0.551

6 25 10 90 35.16% - - - - 18.313 10 - 17.28%  0.491

6 25 100 50 97.32% - - - - - 0 17.03%  92.44%  0.950
6 25 100 70 84.64% - - - - - 0  30.83% 79.78%  0.942
6 25 100 90 39.28% - - - - - 0 33.22% 34.61%  0.881
6 25 1000 50 | 97.43% - - - - - 0 18.95%  97.31%  0.999
6 25 1000 70 | 84.66% - - - - - 0 32.65% 84.08%  0.993
6 25 1000 90 | 39.37% - - - - - 0 37.92% 38.08%  0.967
6 50 10 50 96.76% - - - - - 0 3.50% 65.6 %  0.678

6 50 10 70 82.98% - - - - - 0 7.43%  44.32%  0.534

6 50 10 90 37.52% - - - - 321.987 6 6.37% 154 %  0.410

6 50 100 50 97.03% - - - - - 0 22.00% 94.54% 0.974
6 50 100 70 83.57% - - - - - 0 37.86% 82.71%  0.990
6 50 100 90 38.46% - - - - - 0 45.05% 36.9% 0.959
6 50 1000 50 | 97.06% - - - - - 0 21.00% 96.96%  0.999
6 50 1000 70 | 83.52% - - - - - 0  64.05% 82.98%  0.994
6 50 1000 90 | 38.05% - - - - - 0 72.58%  37.48%  0.985
9 25 10 50 99.52% - - - - - 0 2.92%  70.64%  0.710

92510 70 91.88% - - - - - 0 6.90%  50.56%  0.550

9 25 10 90 44.8% - - - - 243.776 10 - 184 %  0.411

9 25 100 50 99.49% - - - - - 0 20.09% 96.81% 0.973
9 25100 70 93.34% - - - - - 0 37.12% 89.12%  0.955
9 25 100 90 49.18% - - - - - 0 46.42% 44.87%  0.912
9 25 1000 50 | 99.51% - - - - - 0 19.65%  99.45%  0.999
9 25 1000 70 | 93.18% - - - - - 0 37.08% 92.62% 0.994
9 25 1000 90 | 48.72% - - - - - 0 46.52% 46.83%  0.961
9 50 10 50 99.32% - - - - - 0 17.00% 771 %  0.776

9 50 10 70 91.36% - - - - - 0  26.25% 56.62%  0.620

9 50 10 90 45.14% - - - - 198.587 4 3.25% 16.28%  0.361

9 50 100 50 99.40% - - - - - 0 25.33% 98.95%  0.995
9 50 100 70 92.08% - - - - - 0 43.09% 91.17%  0.990
9 50 100 90 46.98% - - - - - 0 54.13% 45.32%  0.965
9 50 1000 50 | 99.38% - - - - - 0 50.20% 99.31%  0.999
9 50 1000 70 | 91.99% - - - - - 0 67.38% 91.48%  0.994
9 50 1000 90 | 46.65% - - - - - 0 77.35%  45.40%  0.973
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Table A.3: Impact of the Feasibility Pump Heuristic on the Formulation (VIII)

Default FPH (Long Term) Aggressive FPH (Short Term)
Time # Gap Fails Time # Gap Fails
32510 50 12.26 10 - 63.67% 1.353 10 - 63.67%
3251070 24.26 10 - 41.12% 1.475 10 - 41.12%
32510 90 2.26 10 - 14.48% 0.259 10 - 14.48%
3 25 100 50 - 5.06% 79.09% - 5.79% 79.69%
325100 70 - 7.05% 56.56% - 8.16% 57.16%
3 25 100 90 - 2.78% 20.90% - 3.93% 21.11%
3 25 1000 50 - 9.17% 83.67% - 9.69% 84.14%
3 25 1000 70 - 13.59%  61.39% - 14.23%  61.84%
3 25 1000 90 - 12.23%  23.78% - 13.14%  24.04%
3 50 10 50 69.13 - 60.67% 19.299 - 60.67%
350 10 70 106.50 - 38.96% 22.292 - 38.96%
350 10 90 20.22 - 13.56% 9.233 - 13.56%
3 50 100 50 - 7.01% 78.33% - 7.33% 78.49%
350 100 70 - 9.83% 55.79% - 11.12%  56.35%
3 50 100 90 - 7.13% 20.56% - 8.55% 20.76%
3 50 1000 50 - 10.83%  83.69% - 12.02%  84.81%
3 50 1000 70 - 16.01% 61.28% - 17.42%  62.32%
3 50 1000 90 - 17% 23.93% - 19.32%  24.61%

6 25 10 50 14104.79
62510 70 24912.32

5.10% 68.2% 1078.943
2.65%  46.04% -

1.76%  68.32%
267%  46.44%
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6 25 10 90 40.55 - 17.28% 18.313 - 17.28%
6 25 100 50 - 16.13%  91.68% - 17.03%  92.44%
6 25 100 70 - 27.17%  75.84% - 30.83%  79.78%
6 25 100 90 - 28.87%  32.50% - 33.22%  34.61%
6 25 1000 50 - 18.60%  96.96% - 18.95%  97.31%
6 25 1000 70 - 32.15%  83.70% - 32.65%  84.08%
6 25 1000 90 - 37.67%  38.00% - 37.92%  38.08%

6 50 10 50 - 3.02% 65.17% - 3.50% 65.6 %

6 50 10 70 - 6.10% 43.72% - 7.43% 44.32%

6 50 10 90 16464.56 6.25% 15.4% 321.987 6.37% 15.4 %
6 50 100 50 - 19.18%  91.81% - 22.00%  94.54%
6 50 100 70 - 31.22%  76.23% - 37.86% 82.71%
6 50 100 90 - 38.61%  33.29% - 45.06%  36.9 %
6 50 1000 50 - 21.05% 97.07% - 21.00%  96.96%
6 50 1000 70 - 35.14%  83.40% - 64.05%  82.98%
6 50 1000 90 - 45% 37.48% - 72.58%  37.48%

9 25 10 50 - 1.69 %  69.88% - 2.92% 70.64%

9 2510 70 - 5.15 % 49.6% - 6.90% 50.56%

92510 90 195.73 10 - 18.4% 243.776 10 - 18.4 %
9 25 100 50 - 0 19.04%  95.56% - 0 20.09%  96.81%
9 25100 70 - 0 35.11%  86.66% - 0 37.12%  89.12%
9 25 100 90 - 0 43.85%  43.06% - 0 46.42%  44.8T%
9 25 1000 50 - 0 19.37%  99.39% - 0 19.65%  99.45%
9 25 1000 70 - 0 3717%  93.23% - 0 37.08%  92.62%
9 25 1000 90 - 0 48.03%  48.26% - 0 46.52%  46.83%

9 50 10 50 - 0 5.62% 67.78% - 0 17.00% 771 %

9 50 10 70 - 0 9.90% 46.28% - 0 26.25%  56.62%

9 50 10 90 6499.96 5 3.23% 16.28% 198.587 4 3.25% 16.28%
9 50 100 50 - 0 23.22% 97.1% - 0 25.33%  98.95%
9 50 100 70 - 0 41.11%  88.61% - 0 43.09% 91.17%
9 50 100 90 - 0 48.18%  40.48% - 0 54.13%  45.32%
9 50 1000 50 - 0 22.13%  99.39% - 0 50.20%  99.31%
9 50 1000 70 - 0 40.13%  91.98% - 0 67.38%  91.48%
9 50 1000 90 - 0 53.77%  46.30% - 0 77.35%  45.40%
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Table A.4: Impact of the number of wafers per set on the performances of ILP formu-
lations (complete results).

random Formulation (VT) Formulation (VTIT)

Fails Time # Fails Ratio Time # Gap Fails Ratio

32510 50 85.68% 0.516 10 63.67%  0.743 1.353 10 - 63.67%  0.743

350 10 50 84.2% 6.759 10 60.67%  0.721 19.299 10 - 60.67%  0.721

3251070 62.32% 0.517 10 41.12%  0.660 1.475 10 - 41.12%  0.660

35010 70 62.66% 6.544 10 38.96%  0.622 22.292 10 - 38.96%  0.622

32510 90 23.76% 0.616 10 14.48%  0.609 0.259 10 - 14.48%  0.609

350 10 90 24.36% 7.231 10 13.56%  0.557 9.233 10 - 13.56%  0.557

325100 50 85.69% 0.821 10 78.62%  0.917 - 0 5.79%  79.69%  0.930
3 50 100 50 84.97% | 10.684 10 77.22%  0.909 - 0 7.33%  78.49%  0.924
325100 70 63.00% 0.472 10 56.04%  0.890 - 0 8.16%  57.16%  0.907
350 100 70 62.58% 8.685 10 54.63%  0.873 - 0 11.12%  56.35%  0.900
325100 90 24.99% 0.6 10 20.81%  0.833 - 0 3.93%  21.11%  0.845
3 50 100 90 24.85% 7.798 10 20.04%  0.806 - 0 8.55 20.76%  0.836
325 1000 50 | 85.52% 0.737 10 83.32%  0.974 - 0 9.69%  84.14%  0.984
350 1000 50 | 84.99% | 15.572 10 82.56%  0.971 - 0 12.02%  84.81%  0.998
325100070 | 63.07% 0.837 10 60.91%  0.966 - 0 14.23%  61.84%  0.981
350 1000 70 | 62.51% | 11.977 10 60.08%  0.961 - 0 17.42%  62.32%  0.997
3251000 90 | 24.91% 0.44 10 23.54%  0.945 - 0 13.14%  24.04%  0.965
350 1000 90 | 24.81% 7.931 10 23.26%  0.937 - 0 19.32%  24.61%  0.992
6 25 10 50 97% - - - - 1078.943 3 1.76%  68.32%  0.704

6 50 10 50 96.76% - - - - - 0 3.50% 65.6 %  0.678

62510 70 84.24% - - - - - 0 2.67%  46.44%  0.551

6 50 10 70 82.98% - - - - - 0 7.43%  44.32%  0.534

6 25 10 90 35.16% - - - - 18.313 10 - 17.28%  0.491

6 50 10 90 37.52% - - - - 321.987 6 6.37% 154 %  0.410

6 25 100 50 97.32% - - - - - 0 17.03%  92.44%  0.950
6 50 100 50 97.03% - - - - - 0 22.00% 94.54% 0.974
6 25 100 70 84.64% - - - - - 0 30.83% 79.78%  0.942
6 50 100 70 83.57% - - - - - 0 37.86% 82.71%  0.990
6 25 100 90 39.28% - - - - - 0 33.22% 34.61% 0.881
6 50 100 90 38.46% - - - - - 0 45.05% 36.9%  0.959
6 25 1000 50 | 97.43% - - - - - 0 18.95%  97.31%  0.999
6 50 1000 50 | 97.06% - - - - - 0 21.00% 96.96%  0.999
6 25 1000 70 | 84.66% - - - - - 0 32.65% 84.08%  0.993
6 50 1000 70 | 83.52% - - - - - 0 64.05% 82.98% 0.994
6 25 1000 90 | 39.37% - - - - - 0 37.92% 38.08%  0.967
6 50 1000 90 | 38.05% - - - - - 0 72.58%  37.48%  0.985
9 25 10 50 99.52% - - - - - 0 2.92%  70.64% 0.710

9 50 10 50 99.32% - - - - - 0 17.00% 771 %  0.776

92510 70 91.88% - - - - - 0 6.90%  50.56%  0.550

9 50 10 70 91.36% - - - - - 0 26.25% 56.62%  0.620

9 2510 90 44.8% - - - - 243.776 10 - 184 %  0.411

9 50 10 90 45.14% - - - - 198.587 4 3.25% 16.28%  0.361

9 25 100 50 99.49% - - - - - 0 20.09% 96.81% 0.973
9 50 100 50 99.40% - - - - - 0 25.33% 98.95%  0.995
9 25 100 70 93.34% - - - - - 0 37.12% 89.12%  0.955
9 50 100 70 92.08% - - - - - 0 43.09% 91.17%  0.990
9 25 100 90 49.18% - - - - - 0 46.42% 44.87%  0.912
9 50 100 90 46.98% - - - - - 0 54.13% 45.32%  0.965
9 25 1000 50 | 99.51% - - - - - 0 19.65%  99.45%  0.999
9 50 1000 50 | 99.38% - - - - - 0 50.20% 99.31%  0.999
9 25 1000 70 | 93.18% - - - - - 0 37.08% 92.62%  0.994
9 50 1000 70 | 91.99% - - - - - 0 67.38% 91.48% 0.994
9 25 1000 90 | 48.72% - - - - - 0 46.52% 46.83%  0.961
9 50 1000 90 | 46.65% - - - - - 0 77.35%  45.40%  0.973
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