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Abstract

Despite its impressive success, the standard model of particle physics does not account for every
experimental observations. In addition, it has some theoretical puzzles in its formulation that seem
to require more fundamental explanations. Then, instead of an ultra-violet complete theory, the
standard model should rather be viewed as an effective description of a more fundamental theory and
new physics should be introduced.

In this manuscript, we follow two different approaches of new physics. In the first one, we extend
the standard model by only few new states assuming that the heavier states are decoupled from the
electro-weak scale. This approach is mostly phenomenological as by hypothesis the extensions that
we consider are a low energy manifestation of a more complete theory. We particularly focus on
new fermions as they are a common prediction of a lot of well-motivated beyond the standard model
theories. The main purpose is to study the effect of these new fermions in light of the recent Higgs
couplings measurements.

The second approach has a more theoretical origin and is based on an ultra-violet complete theory.
We focus on composite Higgs models that aim to solve one theoretical puzzle of the standard model
that is the hierarchy problem of the electro-weak scale. While up to now, most of the works follow
an effective approach to the composite dynamics, one goes further and consider UV realisations of
composite Higgs models. These UV models being realised by a new strongly interacting sector made
of new fundamental fermions, we study the non-perturbative dynamics within the Nambu and Jona-
Lasinio framework. We derive for instance the spectrum of the lightest resonances which could be
observed in a near future at the LHC or at some other colliders.
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Résumé

Malgrès son impressionnant succès, le modèle standard de la physique des particules ne rend pas
compte de toutes les observations exprimentales. De plus, des introgations théoriques intrinsques à
sa formulation demeurent et requièrent des explications plus fondamentales. Par conséquent, au lieu
d’être une théorie ultra-violette, le modèle standard devrait plutôt être vue comme une description
effective, valide à basse énergie, d’une théorie plus fondamentale et de la nouvelle physique devrait
être introduite.

Dans ce manuscrit, on considère deux approches pour introduire la nouvelle physique. Dans la
première, on étend le modèle standard avec seulement quelques nouveaux états en assumant que
les états plus lourds sont dcouplés de l’échelle électro-faible. Cette approche est principalement
phénoménologique car par hypothèse, les extensions que l’on considère sont une manifestation à basse
énergie d’une théorie plus complète. On se concentre en particulier sur de nouveaux fermions car
ils sont une prédiction commune à un ensemble de théories au delà du modèle standard fortement
motivés. L’objet principal de cette approche est d’étudier l’effet de ces nouveaux fermions à la lumière
des mesures récentes des couplages du Higgs.

La seconde approche est plus théorique et est basée sur une théorie ultra-viollette. On se concentre
sur les modèles de Higgs composite qui ont pour but de résoudre le problème de hiérarchie de l’échelle
électro-faible. Alors que la plupart des travaux sur le Higgs composite suivent une approche effective
de la dynamique fortement couplées, on fait un pas supplémentaire en étudiant des réalisations ultra-
violette des modèles de Higgs composite. Ces modèles étant réalisés dans le cadre d’un nouveau
secteur fortement couplé constitué de nouveaux fermions fondamentaux, on étudie la dynamique non-
perturbative dans le cadre du modèle de Nambu et Jona-Lasinio. On dérive par exemple dans ce
contexte le spectre des résonances les plus légères que l’on pourra peut-être observer dans un proche
futur au LHC ou à d’autre collisionneurs.
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Organisation of the manuscript

A lot of experimental and theoretical evidences call for beyond the Standard Model (SM) physics.
The latter by itself is certainly not an ultra-violet (UV) complete model that can be extrapolated at
any energy scale. Consequently it should rather be view as an effective theory valid up to a scale
ΛSM .

Two of the main options to address new physics above ΛSM are: (i) to extend the SM with only
few new states and (ii) to consider a well-motivated UV completion of the SM like for instance su-
persymmetry or composite Higgs models. In the first approach, the new states are assumed to be the
lightest ones while other possible states are integrated out and are decoupled from the electroweak
(EW) scale. This is a minimal and mostly phenomenological approach which can be viewed as a low
energy manifestation of a more fundamental theory. The second approach is more theoretical and the
purpose is to cure some shortcomings of the SM. For instance, composite Higgs models aim to solve
the hierarchy problem.

The manuscript is organised as follow. In part I, we introduce the SM and consider some of its
interesting features. The SM Lagrangian is introduced in chapter 1 while in chapters 2 and 3 we
present QCD and the Nambu and Jona-Lasinio (NJL) model of QCD. The aim of this first part is
to present the necessary background for the remaining of the manuscript. More precisely, in the
first chapter we outline how new fermions, that will be considered in the next, can affect the SM
predictions. In the second and third chapters, we present useful results related to QCD and to the
NJL of QCD that will be latter relevant for the study of strongly coupled models.

In part II and III, we introduce new physics beyond the SM (BSM). The second part is devoted
to the phenomenological approach of new physics mentioned above. In chapter 4 we consider the case
where the SM is extended only with new fermions at the EW scale and we study their impact on the
electroweak precision tests (EWPT) and on the Higgs couplings. Then, in chapter 5 we consider a
Higgs sector extended by a second Higgs doublet and coupled to new fermions. We study again the
EWPT as well as the Higgs couplings and we try at the same time to explain two LHC anomalies.
These two chapters have in common the presence of new fermions which are a standard prediction of
a lot of well-motivated BSM theories.

In part III, we rather follow the second and more theoretical approach to new physics. We focus
on composite Higgs models (CHMs) as a solution of the hierarchy problem. We first review, from an
effective point of view, the main ideas and properties of these models in chapter 6. Then, in chapter
7 we highlight the necessity to construct UV completions of composite Higgs models. We classify the
minimal completions and isolate the most relevant and promising one. In chapter 8 and 9, we study
in great details respectively the EW and the coloured sectors of this minimal UV completion while
in chapter 10 we present some outlooks about the UV completions of CHMs. Finally, we present the
conclusions of the manuscript in chapter 11.

Three papers are included in the manuscript [11–13], respectively in chapters 4, 5, 8 and 9. These
papers contain the original work of the thesis. The material surrounding them, has for purpose to
remind well known results present in the literature or details which are not included in the papers.
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Part I

Aspects of the Standard Model
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Chapter 1

Structure of the Standard Model

1.1 Qualitative introduction to the Standard Model

The beginning of the 20th century has seen the emergence of the two main pillars of modern physics,
the quantum mechanics and the special relativity. These two theories have lead us in a territory
where physics does not behave intuitively for us and follows different rules which are not familiar to
our limited human perception.

As a classical example, when you walk towards a wall, if the wall is sufficiently solid, you know
that there is no chance you cross it. This is a simple result of the laws of classical mechanics that we
experience every days. However, in quantum mechanics there is a probability to cross the wall. This
is the so-called tunnel effect which is responsible of the hydrogen fusion in the core of the Sun. If such
a quantum mechanism was not present, two hydrogen nuclei should have more energy to overcome the
Columbian repulsion and to fusion. In that case, the core temperature of the Sun should be higher
and the burning of hydrogen would be faster. As a consequence, the life expectancy of the Sun would
be reduced, the time necessary for the development of the life on Earth would be too short and we
would not be there to study physics.

This simple example shows the importance of quantum mechanics and in general the relevance of
a microscopic quantum and relativistic description of nature. Even if we don’t see the consequences
of the microscopic laws of nature in everyday life they are essential and condition our entire existence.

Our present knowledge of the microscopic laws of nature is now below the size of the nucleus.
More precisely, we currently probe at the Large Hadrons Collider (LHC) the TeV scale that is a scale
thousand times smaller than the size of the proton. The physics at this scale is commonly called
particle physics. Within the framework of quantum fields theories which unify quantum mechanics
and special relativity, in the last century a coherent model of particle physics has emerged until the
complete construction of the standard model of particle physics. The latter is now the commonly
accepted fundamental theory for the microscopic description of nature.

Let us briefly remind the historical construction of the SM. The development of particle physics
is intimately related to the collider facilities to accelerate particles at high energy. More energetic
collisions are able to probe lower scales and then the structure of matter has emerged more and more
precisely with the increase of the accelerators energy. In the 1950-1960’s, a lot of particles with various
masses, life-time and decays was observed. At that time, these new states did not seem to constitute
ordinary matter. The plethora of particles was in fact hiding a more fundamental structure which
has been revealed after a detailed classification according to their properties. This classification had
lead to the identification of quantum numbers associated to the different states and to an underlying
symmetry constraining their interactions. The quantum numbers have been later identified with
the quarks flavours and the observed particles with the hadrons. This was one of the first example
outlining the importance of symmetries in particle physics. The hadrons are in fact made of quarks
charged under a non-abelian gauge symmetry SU(3)c which predicts massless gauge bosons, the so-
called gluons. This is the theory of quantum chromodynamics (QCD) which has been developed in the
1970’s. Independently, the quantum electrodynamics (QED) has been developed in the 1940-1950’s.
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This theory is based on an abelian gauge symmetry U(1)em and predicts a massless gauge boson, the
photon.

Beside the electromagnetic and strong interactions, also weak interactions was observed in β
decays of nuclei and in muon decays. These decays was first explained by Fermi in the 1930’s with
four-fermions interactions. However such an operator has dimension 6 and the Fermi theory is an
effective theory. The Fermi operator has strength GF ∼ O(1/Λ2) where Λ is the scale where the new
interaction should appear. This scale as we now know is the scale of the W and Z bosons and the
four-fermion interactions postulated by Fermi come from the exchange of such boson. The latter have
been discovered at SPS in 1984. A complete description of the weak interaction has then emerged
in the 1960-1970’s [14–17] where the electromagnetic and weak interactions was unified in a common
framework called electroweak (EW) interactions and based on the gauge symmetry SU(2)L × U(1)Y
in which the U(1)em symmetry is embedded. Contrary to the gluons and photon, the W and Z bosons
are massive meaning that the EW symmetry is spontaneously broken at low energy. This breaking
induces a mass for the W and Z bosons and in the SM, it is realised by the vacuum expectation value
(vev) of a field, the Higgs field.

The SM, as described previously was finally completed and confirmed experimentally at LEP,
Tevatron and the LHC. Precision measurements of the weak interactions have been done at LEP in
the 1990’s at an energy of

√
s = 91 GeV and up to 209 GeV. These measurements have confirmed

the structure of the weak interactions and of the spontaneous breaking of the EW symmetry. In
1995, Tevatron discovered the last SM fermion that is the top quark by accelerating protons against
anti-protons at an energy of

√
s = 1.96 TeV. Finally, the last missing piece of the SM, the so-called

Higgs boson has been discovered [18, 19] recently in 2012 at the LHC in proton-proton collisions at√
s = 7− 8 TeV.

As we have seen, our current picture of nature is encoded in a coherent and very successful model
that is the SM. The latter explains a lot of experimental results and is now tested at an unprece-
dent level of accuracy. As a spectacular example, the anomalous magnetic moment of the electron
[(g−2)e/2] in QED is the most accurately verified prediction in the history of physics. The theoretical
prediction is in agreement with the experimental measurement with a precision larger than one part
in 1010. However, despite its impressive success, the SM has intrinsically some shortcomings and
missing pieces. It is a valid description at least up to the EW scale. Above this scale, we expect the
presence of new physics which cure some SM problems. Then the SM should rather be viewed as
an effective theory instead of a fundamental theory. It can not be extrapolated to any scale and the
hope for BSM searches is that new physics belongs to the multi TeV range that is in an energy range
accessible at present or next colliders.

In this preliminary chapter, we begin in section 1.2 by presenting the SM lagrangian. We will not
follow the historical construction of this Lagrangian which has already been briefly detailed before but
rather start from the gauge symmetry group of the SM and its field content. In this way, we present
the main features of each sectors of the SM and highlight the places where new physics effects can
manifest. In particular, we focus on the effect of possible new fermions as the latter will be discussed
in part II of the manuscript. We also outline in sections 1.3 and 1.4, some important behaviours of
the SM as the custodial symmetry of the Higgs sector and the gauge anomaly cancellation. These
properties are crucial to construct any theory beyond the SM as either they are theoretically necessary
for a self consistent theory or they are in well agreement with experimental measurements.

Finally, we present in section 1.5 the main limitations and shortcomings of the SM that call for
new physics beyond the SM. In particular, in section 1.6 we focus on the hierarchy problem of the EW
scale that is one of the main motivation for BSM physics like for instance the scenario of composite
Higgs that will be presented in part III of the manuscript.
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1.2 Structure of the standard model Lagrangian

In this section, we briefly present the SM Lagrangian. The aim is not to give a complete and detailed
survey of the SM but rather to collect relevant formulas and conventions that will be useful in the next.
We also outline the places where new physics can affect the SM predictions. The standard model of
particle physics, the so called Glashow-Salam-Weinberg (GSW) [14–17] model, is a four-dimensional
quantum field theory based on the Poincaré symmetry and the local (gauge) SU(3)c×SU(2)L×U(1)Y
symmetry. The field content of the SM with the gauge quantum numbers of the different fields is
given in table 1.1. The SM lagrangian can be written in a compact way as follows

LSM = −1

4

∑

V

V µνaV a
µν + i

∑

f

fL,Riγ
µDµfL,Ri + |DµH|2

+
(
Y u
ij qLiHdRj + Y d

ijqLiH̃uRj + Y e
ijlLiHeRj + h.c.

)
− V (H) , (1.2.1)

where the flavour structure is encoded by the indices i, j = 1, 2, 3. Note that after imposing the SM
gauge symmetry, the above Lagrangian is the more general one with the field content of table 1.1.

The SM is a chiral gauge theory as the left and right-handed fermions do not transform in the
same way under the gauge symmetry (see table 1.1). As a consequence, one can not write mass terms
for the fermions since such terms require the two chiralities ie mf (fLfR + h.c) and are manifestly
not gauge invariant. In the same way, the gauge invariance forbids masses for the gauge bosons ie
terms like mV V

µVµ. However, experimentally we know that the fermions are massive as well as the
W and Z bosons. Then one concludes that the EW symmetry should be broken. To introduce the
EW symmetry breaking (EWSB) in the SM, let us consider the Higgs sector and in particular the
Higgs potential

−V (H) = µ2H†H − λ(H†H)2 , (1.2.2)

where the Higgs doublet has four degrees of freedom which can be parametrised as

H =
(
h1 + ih2 h3 + ih4

)T
/
√
2. The minimum of the Higgs potential is given by

∂V (H)

∂H
= −µ2H† + 2λ(H†H)H† = 0 . (1.2.3)

Field SU(3)c × SU(2)L × U(1)Y

quarks qL = (uL dL) (3, 2, 16)

(× 3 generations) uR (3, 1, 23)

dR (3, 1,−1
3)

leptons lL = (νL eL) (1, 2,−1
2)

(× 3 generations) eR (1, 1,−1)

gluons Gaµ (8, 1, 0)

W W a
µ = (W+

µ W 0
µ W−

µ ) (1, 3, 0)

B B0
µ (1, 1, 0)

Higgs H = (H+ H0) (1, 2, 12)

Table 1.1: The field content of the SM and the associated quantum numbers of the different fields
under the gauge group SU(3)c × SU(2)L × U(1)Y . The electric charges of the SU(2)L-components
are obtained from the relation Q = τ3L + Y .
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If µ2 is negative, the two terms can not compensate each other and the minimum is located at the
origin that is for vanishing field values ie h1 = h2 = h3 = h4 = 0. This is not the relevant case
as the EW symmetry remains unbroken leading to massless gauge bosons and fermions. We then
rather consider the broken phase where µ2 is positive. In that case, the two terms compensate and
the minima of the potential are located on the surface H†H = (h21 + h22 + h23 + h24)/2 = µ2/(2λ). The
minimisation condition of the potential is v2 = µ2/λ and the four degrees of freedom of the Higgs
doublet can be arranged as follow

H =

(
ϕ+

(h+ v + iϕZ)/
√
2

)
, H† =

(
ϕ− (h+ v − iϕZ)/

√
2
)
. (1.2.4)

Without loss of generality, using the SU(2)L symmetry the vev v has been taken real and in the lower
component of the doublet [h3 = (v + h)/

√
2]. Note that our normalisation with a square root of two

corresponds to v ≃ 246 GeV. For our purpose, it will be simpler to study the SM in the unitary gauge
where the Goldstone bosons ϕi are set to zero. In that case, from Eq. (1.2.2) we easily derive the
tree-level mass and self-interactions of the Higgs boson

m2
h = 2λv2 , cSMhhh = −6λv = −3m2

h

v
, cSMhhhh = −6λ = −3m2

h

v2
. (1.2.5)

Note that in order to trigger EWSB, we assumed that µ2 is small, of the order of the EW scale
(µ2 ∼ m2

h) and positive. However, there is no dynamical arguments behind this particular choice
and the correct form of the Higgs potential is just imposed by hand in the SM, without dynamical
explanations. This feature may seem unsatisfactory and several BSM theories attempt to give a
dynamical explanation of the mechanism of EWSB (see sections 1.6 and 6.4 in the general case and
in the composite Higgs context respectively).

Now we have seen that the vev v of the Higgs boson breaks the EW symmetry, let us consider the
consequences for the gauge bosons by considering the kinetic term of the Higgs doublet

LHSM = |DµH|2 = (DµH)†(DµH) . (1.2.6)

Developing the covariant derivatives, we obtain in the unitary gauge

LHSM =
∣∣(∂µ − igW i

µτ
i − ig′Y Bµ

)
H
∣∣2

=

∣∣∣∣∣

(
∂µ − ig2W

3
µ − ig

′

2 Bµ −ig2(W 1
µ − iW 2

µ)

−ig2(W 1
µ + iW 2

µ) ∂µ + ig2W
3
µ − ig

′

2 Bµ

)(
0
v+h√

2

)∣∣∣∣∣

2

(1.2.7)

=
1

2
(∂µh)(∂µh) +

g2

8

[
(W 1

µ)
2 + (W 2

µ)
2 +

(
g′

g
Bµ −W 3

µ

)2
]
(v + h)2 ,

The Higgs h is well canonically normalised and one immediately recognize the mass terms associate
with the three massive gauge bosons. The mixing between Bµ and W 3

µ leads to one massive com-
bination as it can checked from the following mixing matrix which has determinant equal to zero

LHSM =
v2

8

(
Bµ W 3

µ

)( g′2 −g′g
−g′g g2

)(
Bµ
W 3
µ

)
+ · · · (1.2.8)

The mass eigenstates are obtained by a rotation

Zµ = cwW
3
µ − swBµ , Bµ = cwAµ − swZµ ,

Aµ = swW
3
µ + cwBµ , W 3

µ = cwZµ + swAµ , (1.2.9)

where Aµ is the massless state while Zµ the massive one and the Weinberg angle controlling the
mixing is defined by

cos θw ≡ cw =
g√

g2 + g′2
, sin θw ≡ sw =

g′√
g2 + g′2

. (1.2.10)
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For the two remaining massive bosons, the mass eigenstates are defined by

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) , (1.2.11)

such that W±
µ have a definite EM charge. The W and Z masses are obtained from Eq. (1.2.7), and

given by

MW =
gv

2
, MZ =

√
g2 + g′2

v

2
=
MW

cw
> MZ . (1.2.12)

The Golstone bosons ϕ± and ϕZ have been eaten respectively by the W± and Z bosons which aquire
in this way a non-zero mass (a longitudinal component). This is the famous Brout-Englert-Higgs
mechanism [20–25]. For the Higgs couplings to W and Z bosons we have

cSMhV V = 2
M2
V

v
, cSMhhV V = 2

M2
V

v2
, V =W,Z . (1.2.13)

Let us make some comments at this point. In general, with an extended Higgs sector like in a two
Hggs doublet model (2HDM) discussed in chapter 5, the Higgs couplings to W and Z bosons may
deviate from the above SM prediction. However, the deviations can not be too large as the Higgs
couplings are now measured with accuracy (see appendix C). Then, in a 2HDM we should remain
close to an alignment limit where the Higgs couplings are SM-like. In the same way, in composite
Higgs model the scale of the chiral Lagrangian f is constrained to be larger than around 1 TeV in
order for the Higgs couplings to SM gauge bosons to be SM-like (see section 6.2).

One can directly write the covariant derivative in the physical basis as follows

DµH =

[
∂µ −

ig√
2
(τ+W+

µ + τ−W−
µ )− ig

cw
(τ3 −Qs2w)Zµ − ieQAµ

]
H , (1.2.14)

where τ± = τ1 ± iτ2 and we identify the EM charge operator Q and the EM gauge coupling e

Q = τ3 + Y , e = gsw = g′cw . (1.2.15)

Looking at the gauge transformation of the Higgs vev

〈H〉 → eiα
iτ ieiαY Y 〈H〉 = 〈H〉+ i

2

(
α3 + αY α1 − iα2

α1 + iα2 −α3 + αY

)(
0
v√
2

)
+ · · · , (1.2.16)

one sees that only one combination of generators is invariant. This combination corresponds to
α3 = αY and α1 = α2 = 0 that is to the EM charge generator Q = τ3 + Y of Eq. (1.2.15). The latter
is associated with the U(1)em group such that the EM is not broken by the Higgs vev which is in
agreement with the presence of the massless photon Aµ.

We now turn to the kinetic terms of the SM gauge bosons.

LgaugeSM = −1

4

∑

V

V µνaV a
µν = −1

4
GµνaGaµν −

1

4
WµνiW i

µν −
1

4
BµνBµν . (1.2.17)

The field strength tensors explicitly read

Bµν = ∂µBν − ∂νBµ , W i
µν = ∂µW

i
ν − ∂νW

i
µ + gǫijkWµjWµk , (1.2.18)

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gsf

abcGµbGµc . (1.2.19)

Using Eqs. (1.2.9) and (1.2.11) one easily gets the kinetic terms, trilinear and quartic interactions
between the physical gauge bosons (see for e.g [26]). Note that when we will introduce new physics,
as we will not extend the SM gauge group, this sector will remain completely SM-like.
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For the Yukawa sector of the SM which is responsible of the SM fermions masses and couplings
to the Higgs boson h, the relevant lagrangian is

LY ukawaSM = −Y d
ijqLiHdRj − Y u

ij qLiH̃uRj − Y e
ijlLiHeRj + h.c. (1.2.20)

where the doublet H̃ = iσ2H∗ = ((h+ v− iφZ)/
√
2 − φ−) transforms like H under SU(2)L, that is,

it is a doublet and not a 2∗ like H†. The Yukawa matrices Y u,d,e
ij are not diagonal in all generality.

After EWSB, we obtain in the unitary gauge

LY ukawaSM = −(h+ v)√
2

[
Y d
ijdLidRj + Y d

ijuLiuRj + Y e
ijeLieRj + h.c.

]
. (1.2.21)

The physical masses are obtained by going to the mass basis, that is, by diagonalising the Yukawa
matrices and rotating the fields. For example, the up quark Yukawa matrix is diagonalised as follows
Yu = UuMuK

†
u where the Uu, Ku matrices are unitary and Mu = diag(λu, λc, λt). The down quark

and charged lepton Yukawa matrices are diagonalised in the same way. Now by changing the basis
of the left and right-handed fermions, uL → UuuL, uR → KuuR and similarly for the down quarks
and charged leptons, it removes the U and K matrices from the Yukawa terms leaving only the
diagonalised Yukawa matricesMu,d,e. However, the combination U †

uUd is physical because it reappears
in the charged currents (see below). The masses and Higgs couplings to fermions are then

mf =
λfv√
2
, chff = −mf

v
. (1.2.22)

Let us make two comments on the Yukawa sector of the SM. First, there is no right-handed neutrinos
νR and then no Yukawa coupling Y ν such that the neutrinos remain massless after EWSB. This is
in contradiction with the experimental observation that the different flavours of neutrinos oscillate
during their propagation. We will return to this issue in section 1.5 where we will present some
possibilities to generate a tiny mass for the neutrinos. Second, there is no tree-level flavour changing
neutral currents (FCNC) in the SM Yukawa sector as the Higgs couplings are diagonalised at the same
time with the masses. This is an important feature of the SM because in general in BSM theories
with an extended Higgs sector, the Higgs may couple to two different flavours. In that case, we have a
clear signal of new physics as it is discussed in chapter 5 in the context of a 2HDM with lepton flavour
violating (LFV) hτµ couplings. Note that flavour changing neutral currents may also be induced by
the presence of new fermions mixing with the SM ones, as discussed in chapter 4.

The last piece of the SM is the kinetic term of the SM fermions

LkinSM = i
∑

f

fL,Riγ
µDµfL,Ri . (1.2.23)

The sum stands for all of the SM fermions multiplets and the index i = 1, 2, 3 stands for the three
generation of SM fermions. This term contains the covariant derivative of the fermions which is
defined similarly to the Higgs doublet as follows

Dµf =
(
∂µ − igsT

aGaµ − igτ iW a
µ − ig′Y Bµ

)
f (1.2.24)

[
∂µ − igsT

aGaµ −
ig√
2
(τ+W+

µ + τ−W−
µ )− ieQAµ − i

g

cw
(τ3 −Qs2w)Zµ

]
f .

For the leptons (lL and eR) which are uncoloured fermions, the covariant derivative does not contain
the term with gluons. In the same way, for the right-handed fermions (uR, dR and eR) which are
SU(2)L singlets, the W bosons are not present in the covariant derivative. As it can be seen from
Eq. (1.2.23), the gauge boson interactions do not mix families in the original flavour basis. However,
this feature is altered when going to the mass basis. More precisely, rotating the fermions fields, the
neutral currents associated to Aµ and Zµ (or equivalently Bµ and W 3

µ) are unaffected since they do
not mix up and down fermions. In that case we have

LNCSM =
∑

f

g

cw
fγµ(gfV − gfAγ5)f + eQffγ

µf , (1.2.25)
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where the flavour contractions are diagonal and the vector and axial-vector couplings of the Z boson
are defined by

gfV =
1

2
I3f −Qfs

2
w , gfA =

1

2
I3f . (1.2.26)

The factor I3f is the third component of the weak isospin. As a consequence of the above discussion,
there is no tree-level FCNC associated to the Z boson in the SM. This feature is tested experimentally
with a high precision and then when one adds new fermions mixing with the SM ones, one should be
careful to not induce too large tree-level FCNC between the SM fermions. In addition, one should
also be careful to not generate large deviations in the Z boson couplings. As the couplings of the
third generation are less constrained, if new fermions mix with the SM ones, they can mainly mix
with them. In that case, as discussed in chapter 4, the SM couplings of the third generation can be
affected in a significant way by the presence of new fermions and tree-level FCNC between the new
fermions an the third generation are present. The charged currents associated with W±

µ are sensitive
to the flavour rotation as they mix up and down fermions

LCCSM =
g√
2

[
W+
µ uLVCKMγ

µdL +W+
µ eLγ

µνL + h.c.
]
. (1.2.27)

Indeed, going to the mass basis, the charged currents are not flavour diagonal and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [27, 28] is defined by VCKM ≡ U †

uUd. The CKM matrix is a
complex unitary matrix and thus has nine degrees of freedom. However some phases can be set to
zero by rotating independently the SM quarks fields leading to only four physical degrees of freedom:
three angles and one phase δ. Additionally, as for the Z couplings, new fermions mixing with the SM
ones can affect the W couplings. As the third generation sector is less constrained, it is simpler to
mix new fermions with this generation. Anyway, when we add new fermions even if they mix only
with the third generation, the unitarity of the CKM matrix which is tested experimentally is spoiled
and constrain new physics.

Note that in the SM, there is no equivalent of the CKM matrix in the leptonic sector as there are
no Yukawa couplings associated to the neutrinos. Then νL can be rotated freely to absorb the matrix
Ue of the charged fermions. If we add Yukawa couplings in the neutral lepton sector (see section 1.5),
the charged currents involving the leptons contain a flavour matrix, the so-called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [29–31].

1.3 Custodial symmetry

Let us now discuss an important feature of the SM, that is, the custodial symmetry SU(2)cus. The
Higgs sector of the SM possesses an accidental global symmetry larger than the SU(2)L×U(1)Y local
symmetry. In term of the four degrees of freedom hi (i = 1, · · · , 4), the potential of Eq. (1.2.2) can
be rewritten as

−V (H) = −λ(H†H − v2

2
)2 = −λ

2
(h21 + h22 + h23 + h24 − v2)2 , (1.3.1)

where we used the minimisation condition µ2 = λv2 and the fact that the potential is defined up to a
constant term. The SM Higgs potential of Eq. (1.3.1) is invariant under an SO(4) global symmetry
under which the quadruplet (h1, h2, h3, h4) transforms in the fundamental representation. The SO(4)
symmetry has six generators which is two times the number of generators in SU(2)L. When H gets a
vev after EWSB [〈h3〉 = v and 〈h1〉 = 〈h2〉 = 〈h4〉 = 0], the SO(4) symmetry is spontaneously broken
down to SO(3). Thus there is three unbroken global symmetry directions in the SM Higgs potential
instead of one (local) associated to U(1)em. The SO(4) symmetry is isomorphic to SU(2)L×SU(2)R
and the unbroken SO(3) symmetry is equivalent to SU(2)L+R ≡ SU(2)cus such that, after EWSB,
the SM Higgs potential possesses a global custodial invariance under the SU(2)cus symmetry.
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Let us examine more deeply the SO(4) global invariance of the SM Higgs sector by defining the
following bi-doublet

Φ =
1√
2

(
H̃ H

)
=

1√
2

(
φ0∗ φ+

−φ− φ0

)
. (1.3.2)

The SM Higgs potential can be rewritten as follow

−V (Φ) = µ2Tr[Φ†Φ]− λ(Tr[Φ†Φ])2 . (1.3.3)

Of course, the above potential is still locally invariant under SU(2)L × U(1)Y as it can be checked
from the following transformations

SU(2)L × U(1)Y : Φ → LΦ exp(iαY τ
3
R) , L = exp(iαiLτ

i
L) , (1.3.4)

where the hypercharge operator has been replaced by the third generator of SU(2)R. In addition,
one can check that the potential is also invariant under the global SU(2)L× SU(2)R transformations
defined as follow

SU(2)L × SU(2)R : Φ → LΦR† , L,R = exp(iαiL,R τ iL,R) . (1.3.5)

Then, Φ is a quadruplet of SO(4) or equivalently a bi-doublet of SU(2)L × SU(2)R. After EWSB,
the Higgs field acquires a vev and as a consequence 〈Φ〉 takes the following form

〈Φ〉 = 1

2

(
v 0
0 v

)
. (1.3.6)

This vev transforms as follows under the global symmetries L〈Φ〉 6= 〈Φ〉 and 〈Φ〉R† 6= 〈Φ〉 such that
SU(2)L×SU(2)R is spontaneously broken. However, the diagonal transformation (V = L = R) leads
to V 〈Φ〉V † = 〈Φ〉 such that SU(2)L+R ≡ SU(2)cus remains unbroken while SU(2)L−R is broken.
Looking at Eqs. (1.3.4) and (1.3.5), one easily identifies the embedding of the SM gauge group inside
SU(2)L × SU(2)R, that is, the hypercharge generator corresponds to Y = τ3R while the embedding of
SU(2)L is obvious. After EWSB, the EM charge operator is then Q = Y + τ3L = τ3R+ τ3L in agreement
with the unbroken custodial symmetry SU(2)R+L.

Let us now look at the other sectors of the SM. The kinetic part of the Higgs sector can be written
as

LHSM = Tr[(DµΦ)
†DµΦ] , DµΦ = (∂µ − igW i

µτ
i
L − ig′Bµτ

3
R)Φ . (1.3.7)

The latter term, has a custodial invariance in the limit where g′ = 0 (sw = 0). Indeed, in that case

DµΦ = (∂µ − igWµ)Φ → (∂µ − igULWµU
†
L)ULΦU

†
R = UL(DµΦ)U

†
R , (1.3.8)

where we have used the notation Wµ = W i
µτ

i
L → ULWµU

†
L. Then, the kinetic term in Eq. (1.3.7) is

only approximatively invariant under SU(2)L × SU(2)R as g′ 6= 0 is small. As a consequence, in the
SM the custodial symmetry is explicitly broken by the gauging of the hypercharge. This breaking is
a tree-level effect and it determines the ratio between the W and Z bosons masses or equivalently the
relative strength of the weak and EM gauge couplings

M2
W

M2
Z

=
g2

g2 + g′2
= c2w . (1.3.9)

When g′ = 0 (cw = 1) the W and Z masses are equal as there is no mixing between W 3
µ and Bµ.

Taking into account the tree-level breaking of the custodial symmetry due to the hypercharge, we
define the ρ parameter as

ρ ≡ M2
W

M2
Zc

2
w

. (1.3.10)
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In the SM, the tree-level prediction is ρ0 = 1. This is really particular to the SM because in general
1 with an extended Higgs sector one has ρ0 6= 1.

We now turn to the SM loop contributions to the ρ parameter. It can be useful to define the
parameter T = (ρ− 1)/α where

T =
1

α

[
ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

]
=

1

αc2w

[
Π33(0)−ΠWW (0)

M2
Z

]
. (1.3.11)

The Π′s are the vacuum polarisation amplitudes of the SM gauge boson. The above definitions are
in agreement with the tree-level SM prediction for which ΠtreeWW (0) = M2

W and ΠtreeZZ (0) = M2
Z such

that T0 = 0 and ρ0 = 1. Note that the pure one-loop gauge contribution (see figure 1.1) vanishes as
the kinetic term of the SM gauge bosons respect SU(2)L × SU(2)R. However, the one-loop Higgs-
gauge diagrams and the pure Higgs diagrams (see figure 1.2) contribute to the T parameter in the
limit where g′ 6= 0. They are then one-loop manifestations of the breaking by the hypercharge of the
custodial symmetry.

W/Z W/Z

W

A,Z/W

W/Z W/Z

W,Z,A/W

Figure 1.1: One-loop diagrams involving the SM gauge bosons and contributing separately to ΠWW,ZZ

but not to the T parameter.

W/Z W/Z

W/Z

h

W/Z W/Z

h

Figure 1.2: One-loop diagrams involving the SM gauge bosons and the Higgs (left) and only the Higgs
(right). These diagrams give a logarithmic contribution ∼ lnm2

h to the T parameter.

We now look at the fermionic sector of the SM. One can group the up and down quarks uR and
dR into a right-handed doublet such that

qL =

(
uL
dL

)
→ L qL , qR =

(
uR
dR

)
→ R qR . (1.3.12)

We can do the same thing for the leptons but in that case one needs to add a right-handed neutrinos
νR (see section 1.5). Let us restrict to the quark sector for the example. Assuming that we have the
same Yukawa coupling for the up and down quarks, one can form an invariant under SU(2)L×SU(2)R
as follows

Lyuk = −λqLΦqR + h.c. = −λqL
(
H̃ H

)(uR
dR

)
. (1.3.13)

Then the difference (λu − λd) breaks the custodial symmetry. As the top-bottom quarks have the
larger difference in mass, their contribution to the T parameter will be the dominant one and we

1Among the particular cases that predict ρ0 = 1 (without a tuning of the scalar vevs), there are theories with an
arbitrary number of doublets with Y = ±1/2 and/or with an arbitrary number of singlet with Y = 0.
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can neglect the other light quarks and leptons. It was the main indication of the top mass before
its discovery at Tevatron. Note that for the Higgs (see e.g. Ref. [32]), the contributions to the T
parameter are only logarithmically sensitive to the Higgs mass (∼ lnm2

h). Then the constraints were
smaller compare to the top for which the T parameter is quadratically (∼ m2

t ) sensitive (see subsection
1.6). Finally, the kinetic term of the SM fermions is invariant under SU(2)L×SU(2)R such that there
is no contribution to T from this sector.

Let us finish this section by some comments on new physics. Generally, the parameter ∆T =
T −TSM is used to constraint new physics, that is, the T parameter where the SM contributions have
been removed. ∆T is precisely measured (see appendix C) such that it brings important constraints on
new physics. Looking at new physics, it is important to understand if the model has a custodial limit
in order to control the corrections to ∆T . This limit can be identified following a similar procedure as
we presented for the SM. As a classical example, extensions with VL fermions interacting only with the
SM gauge bosons have a custodial symmetry as the left and right-handed contributions ∆T cancelled
each other. However, when we depart from this pure VL limit and add some Yukawa couplings λi 6= 0,
possibly dangerous contributions to ∆T appear. One can control them by taking sufficiently small
Yukawa couplings (or in some cases with a particular pattern of the Yukawa couplings) and then a
nice feature of VL fermions is that one can always stay close to a custodial limit. Finally, in addition
to the T parameter, there is other parameters that constraint new physics. The most relevant one is
the S parameter as it is discussed in appendixC.

1.4 Gauge anomaly cancellation

As we have seen, the SM is based on a gauge symmetry SU(3)c × SU(2)L × U(1)Y which is sponta-
neously broken by the Higgs vev v down to SU(3)c×U(1)em. The SM Lagrangian is the more general
renormalisable one after imposing the gauge invariance. Indeed, all of the possible gauge invariant
operators of dimension d 6 4 constructed with the field content of table 1.1 are present 2. However,
the interactions in the SM Lagrangian are tree-level interactions such that the gauge invariance is
insured at least at the classical level. There is no insurance that the gauge symmetry remains exact
at the quantum level or in other words that the radiative corrections do not spoil the gauge invariance.
This is a crucial question because in a theoretically consistent theory, the gauge symmetry should be
exact at all orders.

It can be shown that the anomalous contributions breaking the gauge symmetry may only come
from loops of fermions. More precisely, one can restrict to triangle loops of fermions with gauge
currents at the external legs. Indeed, if these diagrams are non-anomalous, all of the other diagrams
will also be non-anomalous. In QED and QCD, there is no such anomalous contributions as these
theories are vector-like (VL), that is, the left and right-handed fermions couple in the same way to
the gauge fields. In that case, as we will see the gauge invariance once imposed in the Lagrangian is
insured at the quantum level. On the contrary, the SM is not a VL theory but rather a chiral theory
where the left and right-handed fermions do not couple in the same way to the SU(2)L×U(1)Y gauge
bosons and consequently, anomalous diagrams are possibly present.

Let us first consider a simplest case where the gauge symmetry contains only one gauge group.
The gauge currents are Jaµ =

∑
ψ ψi(T

a
R)ijγµψj and fermions ψ can be left-handed or right-handed.

The generators T aR are in an arbitrary representation R of the gauge symmetry. The anomalous
contribution , that is, the contribution to the divergence (∂µJaµ) can be calculated from the two
diagrams of figure 1.3 where the second diagram comes from the exchange of two external currents.
The trace over the generators can always be written as a sum of symmetric and antisymmetric tensors
as follow

Tr[T aRT
b
RT

c
R] =

1

2
Tr[[T aR, T

b
R]T

c
R] +

1

2
Tr[{T aR, T bR}T cR] =

i

2
fabcC(R) +

1

4
dabcR . (1.4.1)

The contribution proportional to fabc gives the difference between the two loops and is UV divergent

2Up to the QCD θ term (see sections 1.5 and 2.1).
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iM = Tr[T a
T

b
T

c]× +Tr[T a
T

c
T

b]×

Figure 1.3: Flavour structure of the two anomalous triangle diagrams.

(see Ref. [26]). However, this part can be removed through renormalisation without violating gauge
invariance and then does not contribute to the gauge anomalies. The remaining part proportional to
dabcR contributes to the anomaly. The totally symmetric tensor dabcR = 2Tr[{T aR, T bR}T cR] = A(R)dabc

and then we have for the divergence

∂ρJaρ =


∑

left

dabcRℓ −
∑

right

dabcRr


 g2

64π2
1

2
ǫµναβF bµνF

c
αβ

=


∑

left

A(Rℓ)−
∑

right

A(Rr)


 g2

128π2
dabcǫµναβF bµνF

c
αβ , (1.4.2)

where g is the gauge coupling, the sums run over left and right-handed fermions and A(Rl,r) are the
corresponding anomaly coefficients. An important point is that the left and right-handed fermions
contribute with a different sign 3. The currents Jaµ are gauge currents such that the divergence ∂µJaµ
should be equal to zero. There are two possibilities (i) the anomaly coefficients A(Rl,r) are zero
or (ii) there is a cancellation between the left and right-handed contributions. The first possibility
occurs when the fermions are in real or pseudo-real representations [it is the case for SO(N) 4 and
Sp(2N) gauge symmetries but not always for SU(N)]. One concludes that there are no SU(2)3L
gauge anomalies in the SM because SU(2) ∼= Sp(2) . The second possibility is less trivial and require
a cancellation between the different fermionic contributions. Let us consider QED and QCD first. As
mentioned above, the anomaly cancellation is trivial in these VL theories. Indeed, the left-handed
fL and right-handed fR fermions have the same quantum numbers leading to the same anomaly
coefficient ie A(fL) = A(fR) and the cancellation of the anomalies is

QED, QCD :
∑

left

A(Rℓ)−
∑

right

A(Rr) =
∑

f

[A(fL)−A(fR)] ≡ 0 . (1.4.3)

Then in the SM there is no gauge anomalies associated to SU(3)3c . On the contrary, in chiral gauge
theories, we have in general A(fL) 6= A(fR) and the cancellation is not so simple.

We have seen how the cancellation of the gauge anomalies occurs when the gauge symmetry
contains only one symmetry group. Let us now consider the full SM gauge symmetry. The first
thing is to identify the possible anomalous diagrams. We have three currents JQCDµ , Jweakµ and JYµ
associated with the three gauge symmetries of the SM respectively SU(3)c, SU(2)L and U(1)Y . As
already mentioned, there are no cubic SU(2)3L and SU(3)3c anomalies. One can also exclude diagrams
involving one generator of SU(2)L or SU(3)c because the anomaly coefficients in that cases vanish as

3A simple way to see that, is to consider only left-handed fermions by taking the charge conjugate of the right-
handed fermions. Let us for example consider two fermions with opposite chiralities but transforming in the same gauge
representation R ie fL ∼ fR ∼ R and fcR ∼ R. As A(R) = −A(R), the charge conjugate fermion fcR which is equivalent
to the right-handed fermions fR contributes with a minus sign compared to the left-handed one fL.

4Up to complex Spinorial representations of SO(N).
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they are proportional to Tr[τ i] or Tr[T a]. Consequently the diagrams

SU(2)L − U(1)2Y , SU(3)c − U(1)2Y , SU(3)c − SU(2)L − U(1)Y ,

SU(3)c − SU(2)2L , SU(3)c − SU(2)2L , SU(3)2c − SU(2)L , (1.4.4)

do not contain any gauge anomalies. In addition, we should also consider diagrams involving the
graviton. There is obviously no gauge anomalies in SU(2)L − grav2 and SU(3)c − grav2. The
remaining four possible anomalous diagrams are the U(1)3Y , U(1)Y − SU(2)2L, U(1)Y − SU(3)2c and
U(1)Y − grav2 (see figure 1.4).

U(1)Y U(1)YU(1)YU(1)Y

U(1)Y

U(1)Y SU(3)c

SU(3)c

SU(2)L

SU(2)L

grav

grav

Figure 1.4: The four triangle diagrams that receive non-trivial anomalous contributions in the SM.
From the left to the right: the cubic hypercharge anomaly, the weak isospin anomaly, the coloured
anomaly and the gravitational anomaly.

Note that all of these diagrams involve the hypercharge current. The contributions from the SM
fermions to each of these diagrams are the following. For the cubic hypercharge anomaly, all of the
SM fermions contribute and we have

U(1)3Y : 2Tr[Y {Y, Y }] = 4Tr[Y 3] = 4

(∑

left

Y 3
ℓ −

∑

right

Y 3
r

)
(1.4.5)

= 4
[
Nc(NwY

3
q − Y 3

u − Y 3
d ) +NwY

3
l − Y 3

e

]
= 0 ,

where the last equality has been obtained by replacing the hypercharges listed in table 1.1 and by the
replacements Nc = 3 and Nw = 2. Indeed, the weak doublets contribute with a multiplicity factor
Nw while the coloured triplet with a factor Nc.

For the weak isospin anomaly we have

SU(2)2L − U(1)Y : 2Tr[τ i{τ j , Y }] = 4Tr[Y ]Tr[τ iτ j ] (1.4.6)

= 2δij
( ∑

left
non-singlets

Yℓ −
∑

non-singlets
coloured

Yr

)

= 2δij [NcYq + Yl] = 0 .

This time only the SM weak doublets which are charged under SU(2)L contribute to the anomaly.
For the coloured anomaly we have

SU(3)2c − U(1)Y : 2Tr[T a{T b, Y }] = 4Tr[Y ]Tr[T aT b] (1.4.7)

= 2δab
( ∑

left
coloured

Yℓ −
∑

right
coloured

Yr

)

= 2δab [NwYq − Yu − Yd] = 0 ,

and obviously, only the quarks charged under SU(3)c contribute. Finally, for the gravitational anomaly
all the SM fermions contribute and we have

grav2 − U(1)Y : Tr[Y ] =

(∑

left

Yℓ −
∑

right

Yr

)
(1.4.8)

= [NwNcYq +NwYl −NcYu −NcYd − Ye] = 0 .
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The amazing thing is that all of the gauge anomalies are cancelled in the SM, and the cancellation
occurs in a rather non-trivial way between the quarks and leptons. The anomaly cancellation is
valid for every generations of fermions independently (as we implicitly assumed) and consequently
the number of generations is not fixed from this point of view.

Finally, let us finish this section by some comments on BSM theories. When new fermions are
added to the SM, the four anomalies cancellation conditions should remain exact. The latter require-
ment constrains the possible theoretically self-consistent fermionic extensions of the SM as discussed
in chapter 4. There are few cases where the anomaly cancellation is trivial. For instance, vector-
like fermions automatically respect the anomaly cancellation conditions as the left and right-handed
fermions have the same quantum numbers under the SM gauge group ie fL ∼ fR ∼ (Rc, Rw, Y ).
Another classical case comes from a SM gauge singlet NR ∼ (1, 1, 0) (see section 1.5) which obviously
does not contribute to the anomalous diagrams. This situation generalises to fermions in real or
pseudo-real representations of SU(3)c and SU(2)L with zero hypercharge that is fermions transform-
ing as (Rc, Rw, 0) with Rc,w = Rc,w or Rc,w = R∗

c,w. A well know example of this kind is a weak triplet
ΣR ∼ (1, 3, 0).

1.5 Motivations to go beyond the SM

In this section, we outline some of the main limitations of the SM as despite its success, it has some
shortcomings and missing pieces. In particular, we highlight the problems that can be addressed in
the phenomenological extensions of the SM that will be presented in part II.

First, an important experimental observation is the evidence for dark matter (DM), a weakly
interacting form of matter, in our universe (for a review see for e.g. [33]). Its existence seems to be
an unavoidable necessity to explain anomalies observed at several scales in the universe. However,
the SM does not contain any dark matter candidate and BSM physics should be invoked to provide
such a candidate. We do not focus on the DM problem in the next but rather only mention the
fermionic DM candidates appearing in the classification of chapter 4. These DM candidates can be
an additional motivation for the studied phenomenological models.

Another experimental evidence of new physics, is the domination of matter over anti-matter in
our universe. To reproduce this asymmetry one needs a mechanism of baryogenesis which requires
among other things a source of CP violation. The only such source in the SM is the phase δ of the
CKM matrix but the latter is generally not enough to explain baryogenesis. Again, we do not focus
on this problem but introducing CP violating new physics is an interesting feature which can provide
additional motivations for new physics. For instance, in chapter 4, some of the studied fermionic
extensions of the SM posses CP violation phases. In addition, in a 2HDM (see chapter 5) there is in
general a CP violating phase associated with one of the two doublets.

Let us now turn to more theoretical puzzles of the SM. The EM and weak interactions are unified
in the SM into a common framework based on the SU(2)L × U(1)Y gauge group which is broken
by the Higgs vev down to the EM gauge group U(1)em. This unification may seem incomplete as
it is based on two distinct symmetry groups. Then it is natural to try to unify the EW and strong
interactions into a single gauge group leading to a so-called Grand Unified Theory (GUT). Indeed,
using the renormalization group equations (RGEs) of the SM, the three SM gauge couplings can be
extrapolated to high energies where they seem to converge. However, the unification is not perfect in
the SM. This can be interpreted as the indication that new physics is needed to modify the running
of the gauge couplings and make them unify.

Next, in the QCD Lagrangian, a term of the form θQCDǫµνρσG
µνaGρσa is allowed by gauge in-

variance. This term breaks the CP symmetry and the parameter θQCD is the QCD vacuum angle.
Its value is expected to be of order 1. However, upper bounds on the electric dipole moment of the
neutron translate into an upper bound on θQCD of about 10−10. This is called the strong CP problem.
A solution to this problem is provided by the Peccei-Quinn mechanism [34, 35] which involves a new
BSM field, the axion.

Another theoretical puzzle comes from the ”large” numbers of parameters (19 parameters without
giving mass to the neutrinos) in the SM. In this respect, the latter can then be seen as an incomplete
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theory of the EW, strong and Yukawa interactions. Theoretically, it could be attractive to reduce
this number with a UV complete and more predictive model. Most of the parameters belong to the
fermionic sector (9 Yukawa couplings and 4 CKM parameters) of the SM and there is a large hierarchy
between them. The latter can be explained by a flavour symmetry but there is no convincing theory
of flavour yet. This is the so-called flavour puzzle of the SM. For example, the Yukawa couplings of
the SM fermions run from λe ∼ O(10−9) for the electron to λt ∼ O(1) for the top quark. A similar
hierarchy is present in the CKM matrix where the entries vary from O(1) to O(10−3). Then, the
hierarchy in the parameters of the SM turns out to be ”accidental” and this feature points in favour
of the SM being an effective model of a more fundamental theory.

Finally, there is also the evidence of neutrinos oscillations which implies a non-zero mass for at
least two of the three SM neutrinos. This is certainly the most robust evidence of BSM physics
because in the SM there is no right-handed νR and consequently the neutrinos are massless at the
renormalisable level. Note that in the SM the cancellation of the gauge anomalies does not require
the presence of νR (see subsection 1.4) and then in its first formulation the SM does not contain
such a field. On the contrary, as already mentioned, the custodial symmetry point in favour of a

right-handed neutrinos such that one can form an SU(2)R doublet
(
νR eR

)T
. The simple solution

to the neutrinos masses is to extend the SM with three right-handed neutrinos coupled to the Higgs
field through a Yukawa term of the following form

Lν = −Y ν
ij lLiH̃νRj + h.c. (1.5.1)

In this way, the neutrinos become massive and there is a non-trivial PMNS matrix in the charged-
currents of the lepton sector. However, the Yukawa couplings in the mass-basis that is the couplings
in Mν = diag(λν1 , λν2 , λν3) are extremely small, very far from the other Yukawa couplings which
already spread over several orders of magnitude. Then it could be interesting to have a mechanism
that insures a non-zero but tiny masses for the neutrinos. To that end, let us first consider the
lowest-dimensional SM gauge invariant operator generating a mass for the neutrinos

Ld=5 = − cij
Λν

(lLi H̃)(H lLi) . (1.5.2)

This operator has dimension equal to five and quite remarkably, it is the only gauge invariant operator
with this dimension. If we want to reproduce the tiny neutrino masses let say mν ∼ 0.1 eV for
simplicity, for a coupling cij ∼ O(1), one needs a very large scale of the order of Λν ∼ 1015 GeV. In
this hypothesis, the new physicsΛν is really far from the energy range currently accessible at colliders.
There are several possibilities to generate the above operator from the exchange of a state with a
mass of the order of Λν . Let us consider the simplest one that is as before a right-handed neutrino.
In all generality, in addition to the Yukawa term of Eq. (1.5.1), there is also the possibility to have a
Majorana mass term which is not forbidden by the EW symmetry as νR ∼ (1, 1, 0) is an EW singlet
(sometimes referred as sterile neutrino). The relevant lagrangian is

Lν = −Y ν
ij lLiH̃νRj − iMijν

c
RiνRj + h.c. (1.5.3)

If neutrinos have any quantum number, such Majorana mass term is forbidden and only a Dirac mass
is allowed. For example, the most natural quantum number for right-handed neutrinos is the lepton
number. After EWSB, the Lagrangian in Eq. (1.5.3) leads to the following mass matrix

Mν =

(
0 m
m M

)
, m1,2 =

√
m2 +

M2

4
± M

2
. (1.5.4)

Note that for simplicity, we have considered only one generation but it is straightforward to generalise
to the three SM families. In the limit whereM ≫ m, on has for the two mass eigenstates mheavy ≃M
and mlight ≃ m2/M ≪ mheavy where the heavy neutrinos mostly comes from the singlet νR while the
light neutrinos from the doublet νL. Indeed, the mixing angle is of the order of m/M ≪ 1. As an
example, if one takes the Dirac mass at the EW scale m ≃ 100 GeV and the Majorana mass very high
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M ≃ 1014 GeV one obtains mlight ≃ 0.1 eV. The above mechanism may explain the lightness of the
neutrinos, it is called (type I) see-saw mechanism: as M goes up, m goes down to keep mlight fixed.

One can extend the above mechanism by considering weak triplets ΣR ∼ (1, 3, 0) instead of weak
singlet, this is the so-called type III see-saw mechanism. With one new fermionic state, the type
I and III see-saw are the only possibilities to generate the effective operator in Eq. (1.5.2) 5. One
can also realise the see-saw mechanism with several Majorana multiplets. Finally, there also exist
more complicated scheme like the inverse see-saw mechanism where several singlet νR realise an
approximate lepton number symmetry U(1)L that insure the smallness of the neutrino mass by a
cancellation between several contributions. In that case, the lightness of the neutrinos is realised for
a naturally small coupling in Eq. (1.5.2) instead of for a high scale Λν and consequently, the heavy
neutrinos can be lighter. Some of these possibilities are presented in chapter 4 in the context of the
Higgs couplings.

1.6 Hierarchy problem

We now focus to another SM problem which has not been addressed before. This is one of the most
important theoretical shortcoming of the SM, the so-called hierarchy problem of the EW scale. The
latter is the main motivation for composite Higgs models that will be presented in part III of the
manuscript. This problem has triggered a lot of theoretical efforts as contrary to other experimental
or theoretical evidences that call for BSM physics at an undetermined scale (see section 1.5), the
solution of the hierarchy problem should be close to the EW scale.

Figure 1.5: Diagrams quadratically divergent. From the left to the right, one-loop diagram involving
fermions, scalars and spin one fields.

The hierarchy problem is intrinsically related to the only operator in the SM Lagrangian with a
non-dimensionless coupling ie µ2H†H. This coupling controls the Higgs mass as the SM tree-level
prediction is m2

h = 2µ2/λ. However, the latter tree-level prediction receives loop corrections. For
instance, the one-loop self energy coming from a Dirac fermion is given by

Πfhh(0) = −2λ2f

∫
d4k

(2π)4

[
1

k2 −m2
f

+
2m2

f

(k2 −m2
f )

2

]
, (1.6.1)

which is divergent. More precisely, if we regularise the divergent integral with a cut-off Λ, we see that
the first term is quadratically divergent. Indeed, counting the dominant contribution to the integral,
Πfhh(0) behaves like

∫
d4k k2/k4 ∼

∫
dk k ∼ Λ2. In the same way, the other diagrams of figure 1.5

are all quadratically divergent. On the contrary, the diagrams of figure 1.6 that also induce radiative
corrections to the Higgs mass are only logarithmically divergent as

∫
d4k 1/k4 ∼

∫
dk 1/k ∼ ln Λ.

Note that we work in the broken phase (〈H〉 6= 0) where the SM fermions are massive but the same
reasoning should hold in the unbroken phase because the radiative corrections to the Higgs mass come
in fact from the radiative corrections to µ2.

If we consider only the SM which is a perfectly defined renormalisable theory, the quadratic
divergences are absorbed by the renormalisation procedure. The physical Higgs mass is given by

m2
h

∣∣
phys

= m2
h + δm2

h , (1.6.2)

5Note that there is also the possibility to add a scalar multiplet ∆ ∼ (1, 3, 1) to generate the d = 5 operator. This is
the so-called type II seesaw mechanism.
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Figure 1.6: Diagrams logarithmically divergent.

where m2
h is the tree-level mass squared while δm2

h are the radiative corrections. These radiative
corrections come from loops of SM particles such that δm2

h is of the order of the heavy SM particles
like e.g. the top quark mass. Then, after renormalisation, the quadratic divergences translate into a
sensitivity in the mass of the heavy SM particles. The physical Higgs mass is given by the sum of the
tree-level and loops contributions but the latter are of the same order, that is, of the order of the EW
scale and then m2

h|phys is naturally of the order of the EW scale.
Up to now, we have considered only the SM, assuming implicitly that there is no new physics.

However, from section 1.5, we believe that the SM is an effective theory and that new physics should
appear at a higher scale ΛNP . Let us explore the consequence of the presence of new physics on the
radiative corrections to the Higgs mass. If the SM is an effective theory and at a higher scale, new
physics with new heavy states are present, the latter will contribute to the radiative corrections to
the Higgs mass 6. More precisely, in that case the physical Higgs mass is given by

m2
h

∣∣
phys

= m2
h + δm2

h

∣∣
SM

+ δm2
h

∣∣
NP

, (1.6.3)

where the radiative corrections have been divided into those coming from the SM particles and those
from the new heavy states. As mentioned above, after renormalisation δm2

h

∣∣
SM

is of the order of the

EW scale. However, δm2
h

∣∣
NP

is of the order of the mass scale of the new heavy states and there should
be a cancellation between δm2

h|SM and δm2
h|NP such that the physical Higgs mass stays at the EW

scale. In general this cancellation is highly unnatural. To fix the ideas, let us for instance consider
that new physics appears at Λν ∼ 1015 GeV. Then the cancellation should be between Λ2

EW ∼ (102

GeV)2 and Λ2
ν ∼ (1015 GeV)2 which corresponds to a very precise cancellation of one part in 1026.

That is the hierarchy problem: in presence of new physics with new heavy states, the Higgs is
naturally of the order of ΛNP , more precisely of the order of the masses of the new heavy states. The
presence of a new scale tends to destabilise ΛEW and to push it toward the new physics scale A large
fine-tuning is then necessary to precisely adjust the Higgs mass with its physical value. In addition,
this fine-tunning should be done at every orders in perturbation theory. This is technically possible
but it appears highly unnatural. In the sequel, we present some solutions that allow to have naturally
a Higgs mass at the EW scale or in other words, solutions that allow to stabilise the gap between the
EW scale and the new physics scale.

Before turning to solutions of the hierarchy problem, it is instructive to consider the radiative
corrections to other particles than scalars. For instance, the one-loop self-energy of the photon in
QED receives contributions from fermions which are similar to the ones of the first diagram of figure
1.5. Consequently, these radiative corrections are a priori quadratically divergent. However, there is
no hierarchy problem in QED because, provided that the theory is regularised in a gauge invariant
way, the divergence is in fact only logarithmic and absorbed after renormalisation in the running
of the gauge coupling. Then, there is a symmetry principle, the gauge symmetry that enforces the
photon to remain massless. The same feature happens in the SM but it is a bit more complicated as
the gauge symmetry is non-abelian and spontaneously broken.

In a similar way, radiative corrections for instance to the electron mass in QED are a priori linearly
divergent. This is less dramatic than quadratic divergences but such linear divergence would still lead

6Note that, one of the first scale that we can think of is the Planck scale where the general relativity should be replace
by a quantum theory. However, in that case we have no way to evaluate the contribution to the Higgs mass from loops
of gravitons.
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to unacceptable fine-tuning in order to arrive at the physical electron mass. However, the detailed cal-
culation gives δme ∼ me ln Λ. Then even if Λ is very high, no large fine-tunning is necessary. This is a
consequence of the chiral symmetry. Indeed, if the tree-level fermions masses are zero, there is an exact
global symmetry (see section 2.2) such that any radiative corrections should be proportional to the
tree-level mass itself and vanishes in the chiral limit. The linear divergence then becomes a logarith-
mic divergence and the chiral symmetry protects the fermions masses from large radiative corrections.

As we have seen, the masses of fermions and gauge bosons are protected from large radiative
correction by symmetries, respectively the gauge and the chiral symmetry. It is natural to ask if the
Higgs mass could be protected in a similar way. In fact, interesting solutions to the hierarchy problem
are based on a new symmetry that protects the Higgs mass. These solutions invoke new physics
at a scale close to the EW one in order to avoid large fine-tuning cancellations between the scale
of new physics, where the solution to the hierarchy problem arrives and the EW scale. This is the
strongest argument in favour of BSM physics at the TeV scale, that is, new physics possibly accessible
at colliders such as the LHC or its successors. There are two main dynamical options to solve the
Hierarchy problem (i) supersymmetry or (ii) a shift symmetry as in composite Higgs models. Let us
explain a bit these two possibilities.

In the first one, if the supersymmetry is exact, the radiative corrections to the Higgs mass are
zero. This is due to the particular relations imposed by the supersymmetry between the couplings of
the SM particles and their superpartners which lead to a cancellation between the SM contributions
and the superpartners contributions. However, we know that supersymmetry should be broken as
superpartners have not been observed yet. Then, the cancellation is not perfect and the Higgs mass
is of the order of the mass splitting between the SM and the superpartners particles. If this mass
difference is sufficiently small, there is no large fine-tunning and the Higgs is naturally at the EW
scale. On the contrary, if the superpartners masses are decoupled from the EW scale, the fine-tunning
becomes more and more important with the increase of the mass splitting. Then, supersymetry
can addressed the hierarchy problem provided that it scale is close to the EW one. Note that, the
largest couplings to the Higgs are associated to the top quark and then also to its partners such
that, we expect relatively light supersymetric (scalar) top partners to further suppress their radiative
contributions.

The second option to solve the hierarchy problem is a shift symmetry. In that case, the Higgs
appears as a pseudo Nambu Goldstone boson (pNGB) associated to the spontaneous breaking of a
global symmetry. If this shift symmetry would be exact, the Higgs would be a Nambu Goldstone
boson (NGB), that is, a massless particle. As it is not the case, there are explicit breaking sources
that induce radiatively a mass for the Higgs. As a consequence, the Higgs mass is loop-induced and
of the order of the explicit breaking coupling times the scale f of the pNGBs. If one decouples the
new physics from the EW scale by increasing f , one then reintroduces a fine-tunning in the Higgs
mass. Consequently, a shift symmetry can address the hierarchy problem but again, the new physics
scale f should be close to the EW one, that is close to v. The parameter ξ ≡ v2/f2 parametrises
most of the deviations compare to the SM predictions. It should be small in order to have a SM-
like Higgs as experimentally observed but not too small in order to limit the tunning in the Higgs
mass. One realisation of the above mechanism happens in composite Higgs models where the relevant
source of explicit breaking comes from the top quark such that, to further reduce the tunning, in
general relatively light (fermionic) top partners are expected [36]. The composite Higgs solution to
the hierarchy problem is discussed in more details in chapter 6. As an interesting remark, the above
mechanism already happens in QCD (pions are pNGBs) and it is quite reasonable to think that it
can hold also at the EW scale.

Let us make some comments on the two above solutions to the hierarchy problem. One can take the
point of view that the motivation for supersymmetry is not mainly the hierarchy problem but rather
the fact that the maximal external symmetry leading to a non-trivial theory in a four-dimensional
space-time is provided by the supersymmetric algebra. Then, supersymmetry could be realised at
a higher scale and could have nothing to do with the hierarchy problem. The latter being just one
among several interesting features of supersymmetric theories. On the contrary, composite Higgs
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models are designed to solve the hierarchy problem and without this feature, it remains no strong
motivations for these models.

Finally, let us comment on alternative possibilities for the hierarchy problem. First, there is the
possibility that no new physics are present up to the Planck scale in which a yet unknown mechanism
protects the Higgs mass from large radiative corrections from the Planck scale physics itself. This
scenario postpone the solution of the hierarchy problem to the Planck scale but the hypothetic solution
can still be dynamical.

Another scenario could be that the Higgs mass is simply unnatural and we should accept an
enormous fine-tuning.

As a last possibility, the Higgs mass is maybe not a fundamental parameter but instead dictated
by environment principle, this is the so-called anthropic principle. In that case, the physical Higgs
mass takes the particular observed value otherwise the physics would be such that our universe would
not suitable for life. This kind of anthropic scenario can take place in the context of a multiverse
where all of the possible values of mh exist but depending on the latter, only few universes are suitable
for life.

The two last possibilities, the unaturalness and the anthropic principle, are less satisfactory solu-
tions to the hierarchy problem. Indeed, they are not dynamical solutions and further, they can not
be tested soon and maybe we will never be able to probe them. Anyway, we can not discard such
possibilities but as long as there is no way to test them, it is better interesting to focus on dynami-
cal solutions. Note that all of the three above alternatives (Planck scale solution, unaturalness and
anthropic solution) would greatly reduce the expectations for new physics at the TeV scale. Maybe,
we are currently probing a scale where there is no new physics and we should wait more to find BSM
physics. In any case, these very speculative ideas demonstrate the relevance of the hierarchy problem
and the need to further investigate it.
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A Some group theory formulas

In this appendix, we fix the notations and normalisations of the generators of a Lie algebra. These
conventions will be particularly useful in the remaining of the manuscript. We consider generators
T aR in a representation R. In practise, we will not consider exceptional groups and restrict to SU(N),
SO(N) and Sp(2N).

For the fundamental representation R = F we have T aF ≡ T a while for the adjoint R = G we
have (T aG)

bc = if bac where f bac are the structure constant of the group. Important relations for the
generators are the commutation relations that determine the structure of the Lie algebra and the
trace of two generators that determines the normalisation of the latter. They are given by

[T aR, T
b
R] = ifabcT cR , T r[T aRT

b
R] = C(R)δab . (A.1)

Our normalisation for the generators of the fundamental representation is C(F ) = 1/2. This choice
fixes the Dynkin indices C(R) of all of the other representations. From Eqs. (A.1), we determine the
structure constants

fabc =
−i
C(R)

Tr
[
[T aR, T

b
R]T

c
R

]
, (A.2)

where it is easy to check with the cyclic property of the trace that fabc is completely antisymmetric.
Another important constant is the Casimir C2(R) which is defined by

T aR · T aR = C2(R)11 , d(R)C2(R) = d(G)C(R) . (A.3)

For each representations R, it is linked to the Dynkin index by the dimension of the representation
d(R) and the one of the adjoint d(G). For instance, for SU(N) we have C2(G) = N = C(G) and
then C2(F ) = (N2 − 1)/(2N). The last important quantity that we will encounter is the anomaly
coefficient. It is defined by

2Tr
[
T aR{T bR, T cR}

]
= A(R)dabc ≡ dabcR . (A.4)

Again, it is easy to check with the cyclic properties of the trace that the tensor dabc is completely
symmetric. For real and pseudo-real representations, the anomaly coefficient are all equal to zero.
Then there is no anomaly coefficients in SO(N) 7 and Sp(2N) while for SU(N) we have A(R) =
−A(R) 8. The above normalisation of the fundamental representation leads to A(F ) = 1. Finally, let
us define the following anti-commutation relations

{T aR, T bR} = α11Rδ
ab + βdabcR T cR . (A.6)

Using Eqs.(A.4) and (A.1) we find that α = 2C(R)/d(R) and β = 1/[2C(R)] such that

{T aR, T bR} = 2C(R)
11R
d(R)

δab +
1

2C(R)
dabcR T cR . (A.7)

Then the product of two generators can be decomposed as

T aRT
b
R =

1

2
{T aR, T bR}+

1

2
[T aR, T

b
R] =

C(R)

d(R)
11Rδ

ab +
1

2
habcR T cR , (A.8)

where habcR = dabcR /[2C(R)] + ifabc which translates for the fundamental representation into habc =
dabc + ifabc.

7Up to possible complex Spinorial representations.
8Indeed, the generators of R are −T a∗R . Replacing this generators in Eq. (A.4) we get

A(R)dabc ≡ 2Tr
[

T aR{T
b
R, T

c
R}

]

= −2Tr
[

T a∗R {T b∗R , T c∗R }
]

= −A(R)dabc , (A.5)

where the last equality has been obtained using the hermicianity of the generators and the cyclic property of the trace.
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Chapter 2

A strongly coupled theory: QCD

In the precedent chapter, we have presented the SM Lagrangian and some of its limitations that call
for BSM physics. We have introduced in particular the hierarchy problem and mentioned one of its
possible solution happening in composite Higgs models. These composite models will be considered
in part III of the manuscript. They are strongly coupled at low energy and then in order to become
more familiar with this kind of theories, let us now consider in details the QCD part of the SM and
in particular its strongly coupled regime. Indeed, QCD is the only known strongly coupled theory
in nature such that it is an interesting starting point before turning to composite Higgs models. In
this spirit, we outline the interesting features of QCD that will be relevant in the composite Higgs
context. We start by considering the gauge symmetry of QCD in section 2.1. Next, in section 2.2 we
present the global symmetries of QCD and finally, in sections 2.3, 2.4 and 2.5 we consider interesting
features related to the non-perturbative dynamics like the ’t Hooft anomaly matching, the QCD sum
rules and the gauging of the electromagnetism.

2.1 QCD as a gauge theory of strong interactions

Let us first remind the main properties of QCD as an SU(3)c gauge theory. The matter fields charged
under QCD are the so-called quarks q which are triplets of SU(3)c and appear in six different flavours
q = {u, d, s, c, b, t} with masses mq. The free quark Lagrangian is then

Lfree quarks =
∑

q

q(iγµ∂µ −mq)q , (2.1.1)

where the sum runs over all flavours of quarks q and an implicit contraction over colour indices is
understood ie qq = qiδijqj . The QCD Lagrangian can be derived from the free quark Lagrangian
by applying the gauge principle with respect to the colour gauge group SU(3)c. The quarks fields
transform in the fundamental representation of SU(3)c as follow

q(x) → q′(x) = eiΘa(x)T
a
c q(x) ≡ U(x)q(x) . (2.1.2)

The eight matrices T ac ≡ λac/2 are the generators of SU(3)c (the subscript c refer to colour) and λac
are the Gell-Man matrices

λ1c =



0 1 0
1 0 0
0 0 0


 , λ2c =



0 −i 0
i 0 0
0 0 0


 , λ3c =



1 0 0
0 −1 0
0 0 0


 , (2.1.3)

λ4c =



0 0 1
0 0 0
1 0 0


 , λ5c =



0 0 −i
0 0 0
i 0 0


 , λ6c =



0 0 0
0 0 1
0 1 0


 , (2.1.4)

λ7c =



0 0 0
0 0 −i
0 i 0


 , λ8c =

1√
3



1 0 0
0 1 0
0 0 −2


 . (2.1.5)
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The convention for the normalisation of the generators is Tr[T ac T
b
c ] = δab/2 (see appendix A). The

anti-quark fields transform as q(x) → q(x)U †(x) and consequently, from Eq. (2.1.2) we see that the
mass term of the free quarks Lagrangian is gauge invariant but not the kinetic term because of the
partial derivative. In order to maintain the invariance under local transformations, one needs to
introduce the gluons fields. They transform as

Gµ ≡ GµaT
a
c → G′µ = UGµU † − i

gs
∂µUU † . (2.1.6)

The partial derivative ∂µq is then replaced by the covariant derivative Dµq ≡ (∂µ− igsGµ)q which by
construction transforms as the quark field. Note that the gauge interactions are flavour independent
(diagonal in the flavour space) which means that the gluons couple in the same way to each flavour
of quark.

The kinetic term of the gluons involves the field strength tensor Gµν

Gµν ≡ GaµνT
a
c = ∂µGν − ∂νGµ + igs[Gµ, Gν ] , (2.1.7)

where Gaµν is defined in Eq. (1.2.19). As follows from Eq. (2.1.6), Gµν → UGµνU † and the QCD
Lagrangian locally invariant under SU(3)c is

LQCD =
∑

q

q(iγµDµ −mq)q −
1

2
Tr[GµνG

µν ] =
∑

q

q(iγµDµ −mq)q −
1

4
GaµνG

µν
a , (2.1.8)

where the trace is in the colour space. Let us note that the gauge invariance allows in addition a term
of the form

Lθ =
g2s

64π2
θ εµνρσG

µν
a Gρσa =

g2s
32π2

θ εµνρσTr[G
µνGρσ] . (2.1.9)

This is the so-called θ term of QCD which implies an explicit breaking of the discrete symmetries
P and CP. However, θ is experimentally constrained to be extremely small (see section 1.5) and
consequently, QCD is separately invariant under the discrete symmetries C, P and T.

Finally, let us note that from the above gauge theory and the value of the current 1 masses [see
Eq. (2.2.1)], one can compute the running of the strong coupling constant αs(µ) = g2s(µ)/(4π). The
result is that QCD is asymptotically free (gs → 0) in the UV and becomes strongly coupled in the IR.
In the remaining of this chapter, we will focus on the strongly coupled phase, that is, the low energy
regime of QCD.

2.2 The chiral symmetry

In addition to its local invariance, the QCD Lagrangian of Eq. (2.1.8) also exhibits a global invariance
under the chiral symmetry group SU(N)L×SU(N)R×U(1)L×U(1)R where N stands for the number
of flavours. As we will see, this chiral symmetry is approximatively respected only by the light quarks
that is for the two and three flavours cases where N = 2 and N = 3. The aim of this section is to
introduce the chiral symmetry as well as its explicit breaking by the current masses. We will also
present briefly the axial U(1)A anomaly and finally the spontaneous breaking of the chiral symmetry.

2.2.1 Global symmetries of QCD

Let us start by introducing the global symmetries of QCD. As already mentioned above, all flavours
of quarks behaves equally with respect to the SU(3)c gauge theory and the only distinction between
them comes from their masses. Looking at the current masses, we can separate the different flavours
in two categories: the light quarks (u, d, s) for which the masses are well below 1 GeV (roughly the

1The term current masses refers to the masses involved in the divergence of the currents (see Eq. (2.2.27) for instance)
while the constituent masses are the dynamical masses generated after the spontaneous breaking of the chiral symmetry.
For example, the current mass of the up quark is of the order of few MeV and the corresponding constituent mass is of
the order of 300 MeV ∼ ΛQCD.
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QCD scale of condensation ΛQCD) and the heavy quarks (c, b, t) for which the masses are around 1
GeV or even well above. Then we have the following picture




mu ≃ 2− 3 MeV
md ≃ 4− 6 MeV

ms ≃ 80− 130 MeV


 ≪ 1 GeV <



mc ≃ 1.3 GeV
mb ≃ 4 GeV
mt ≃ 170 GeV


 . (2.2.1)

Let us first consider the QCD Lagrangian without mass terms

L0
QCD =

∑

q

(qLiγ
µDµqL + qRiγ

µDµqR)−
1

4
Gµνa Gaµν . (2.2.2)

We will come back to the issue of the masses in the subsection 2.2.2. Note that to highlight the global
symmetries of QCD, we have written the Lagrangian L0

QCD in term of left and right-handed fields
(qR,L = PR,L q and qR,L = q PL,R). In all generality, we have the following decompositions

q Γq =

{
qRΓqR + qLΓqL for Γ = {γµ, γµγ5}
qRΓqL + qLΓqR for Γ = {11, γ5, σµν}

, (2.2.3)

where the Γ matrix stands for the 16 independent Dirac contractions. From the Lagrangian of
Eq. (2.2.2) it is easy to check the invariance under the global symmetry SU(N)L×SU(N)R×U(1)L×
U(1)R. Indeed, the SU(N)L and SU(N)R transformations are defined as

SU(N)L,R : ΨL,R → UL,R ΨL,R = exp


i

N2−1∑

a=1

αaL,RT
a


ΨL,R , (2.2.4)

where the matrices T a are the generators of SU(N) and Ψ is a flavour multiplet with N components
ie Ψ = (u, d, s, · · · )T . For the two flavour case (N = 2), Ψ = (u, d)T and T a = σa/2 where σa are
the usual Pauli matrices while for the three flavours case (N = 3), Ψ = (u, d, s)T and T a = λa/2
where λa are the Gell-Mann matrices listed in section 2.1. In the same way, for the U(1)L and U(1)R
transformations we have

U(1)L : ΨL → eiαLΨL , ΨR → ΨR , U(1)R : ΨR → eiαRΨR , ΨL → ΨL , (2.2.5)

where the exponentials implicitly contain an identity in the flavour space ie 11N and not the generator
of U(N) normalised as T 0 = 11N/

√
2N . This normalisation leads to entire U(1)-charges for the

quarks fields (see table 2.1). In terms of the flavour multiplet Ψ, the Lagrangian of Eq. (2.2.2) can be
rewritten as follow

L0
QCD = ΨiγµDµΨ− 1

4
Gµνa Gaµν = (ΨLiγ

µDµΨL +ΨRiγ
µDµΨR)−

1

4
Gµνa Gaµν . (2.2.6)

Note that, to look at the global invariance of the Lagrangian in Eq. (2.2.2), it can be useful to
define transformations directly on the fields Ψ and not on its left and right-handed parts. Indeed, as
we will see these symmetries are the relevant ones in the low energy regime where the chiral symmetry
is spontaneously broken. From Eq. (2.2.4), one defines the vector and axial transformations as follow

SU(N)V : Ψ ≡
(
ΨL

ΨR

)
→

(
eiα

a
LT

a
ΨL

eiα
a
LT

a
ΨR

)
= UV Ψ = exp


i

N2−1∑

a=1

αaV T
a


Ψ , (2.2.7)

SU(N)A : Ψ →
(
eiα

a
LT

a
ΨL

e−iα
a
LT

a
ΨR

)
= UA Ψ = exp


i

N2−1∑

a=1

αaAT
aγ5


Ψ . (2.2.8)

The vector SU(N)V transformations corresponds to αaL = αaR ≡ αaV while the axial SU(N)A transfor-
mation corresponds to αaL = −αaR ≡ αaA. Then the transformations SU(N)L×SU(N)R are equivalent
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to SU(N)V ×SU(N)A. Similarly, the U(1)L×U(1)R transformations are equivalent to U(1)V ×U(1)A
which are defined as follow

U(1)V : Ψ → eiαV Ψ , U(1)A : Ψ → eiαAγ5Ψ . (2.2.9)

At low energy, the SU(N)V ×U(1)V symmetry remains 2 unbroken while SU(N)A ≡ [SU(N)L×
SU(N)R]/SU(N)V is spontaneously broken. Note that U(1)A is explicitly broken by the gauge
anomaly (see subsection 2.2.4) and should not be considered as a symmetry of QCD. Transformations
of the quark fields under U(1)A induce a shift of θ in Eq. (2.1.9). From Eqs. (2.2.5) and (2.2.9) we
obtain the U(1)-charges of the left and right-handed quark fields. They are listed in table 2.1.

U(1)L U(1)R U(1)V

qL 1 0 1

qR 0 1 1

qL -1 0 -1

qR 0 -1 -1

Table 2.1: The U(1)-charges of the left and right-handed quarks.

2.2.2 Explicit breaking by the quark current masses

We now consider the issue of the quark current masses by adding an additional mass term of the
form mΨΨ = m(ΨRΨL + ΨLΨR) in Eq. (2.2.6). For simplicity we first consider that all flavours of
quarks have a same current mass m. This mass term is not a chiral invariant as it mixes the left and
right-handed chiralities. More precisely, one can check that ΨΨ respects the vector symmetries but
breaks the axial ones. Indeed, the infinitesimal transformation of the mass term under SU(N)A is

SU(N)A : ΨΨ → ΨΨ+ 2iαaA Ψγ5T
aΨ = ΨΨ+ 2

√
2NαaAP

a , (2.2.10)

where P a is the non-singlet pseudo-scalar densities defined in Eq. (2.2.28). Then, the chiral symmetry
is approximatively realised when a small explicit breaking mass is present as it is the case for the
quarks q = u, d and s for which mq ≪ ΛQCD. This feature justify to restrict to the N = 2 and N = 3
cases where the chiral symmetry is a good approximation.

We now consider the more realistic case where the current quark masses are different. The relevant
Lagrangian encoding the explicit breaking is

LM = −ΨMΨ = −(ΨRMΨL +ΨLMΨR) , M =



mu 0 0
0 md 0
0 0 ms


 , (2.2.11)

where M is the current quark mass matrix in the three flavours case. The restriction to the two
flavour case is obtained by taking ms = 0. The Lagrangian in Eq. (2.2.11) transforms as follow under
the SU(N)A

SU(N)A : ΨMΨ → ΨMΨ+ iαaA Ψγ5{MT a, T aM}Ψ . (2.2.12)

The transformation under SU(1)V is obtained by replacing the anti-commutator by a commutator.
Then, LM explicitly breaks the axial symmetries as before but it also breaks SU(N)V if M is not
proportional to the identity matrix, that is, for different current masses. On the contrary, the U(1)V
symmetry remains unbroken in any case insuring the conservation of the number of quarks. Note that
the explicit breaking of SU(2)V is smaller compared to the one of SU(3)V as mu ≃ md ≪ ms.

2Up to explicit breaking terms.
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Let us make some comments on CHMs. In these cases, explicit breaking mass terms can a priori
be present. However, as no resonance has been observed yet, it is not relevant to enter in the details
by considering different current masses and we will always consider a diagonal mass matrix M = m11
(see chapter 9) such that the vector symmetries are not explicitly broken.

2.2.3 Noether theorem, currents and densities

In this subsection, we remind the Noether theorem and then derive the currents and densities of
QCD. The Noether theorem connects the continuous global symmetries of a dynamical system to the
conserved quantities ie the constants of motion. Let us start with a Lagrangian L depending on n
independent fields Φi and their first partial derivatives ∂µΦi

L = L(Φi, ∂µΦi) , i = 1 · · ·n . (2.2.13)

From the above Lagrangian, we obtain n equations of motion through the Euler-Lagrange equation

∂L
∂Φi

− ∂µ
∂L

∂∂µΦi
= 0 . (2.2.14)

We assume that the Lagrangian of Eq. (2.2.13) is invariant under a continuous global symmetry.
In order to identify the Noether currents associated with this symmetry, we promote it to a local
symmetry. In that case, the fields Φi transform as follow

Φi(x) → Φ′
i(x) = Φi(x) + δΦi(x) = Φi(x) + iεa(x)Fai[Φ(x)] , (2.2.15)

where Φ(x) denotes collectively all the fields Φi(x) and the higher order ε terms have been neglected.
The variation of the Lagrangian under the local transformation is

δL = L(Φ′, ∂µΦ
′)− L(Φ, ∂µΦ) =

∂L
∂Φi

δΦi +
∂L

∂∂µΦi
∂µδΦi

= εa

(
i
∂L
∂Φi

Fai + i
∂L

∂∂µΦi
∂µFai

)
+ ∂µεa

(
i

∂

∂∂µΦi
Fai

)

≡ −εa ∂µJµa − ∂µεa J
µ
a , (2.2.16)

From the above equation, we define the current corresponding to the transformation of Eq. (2.2.15)
as well as its divergence

Jµa = i
∂L

∂∂µΦi
Fai , ∂µJ

µ
a = i

∂L
∂Φi

Fai + i
∂L

∂∂µΦi
∂µFai . (2.2.17)

One can check using the Euler-Lagrange equation that taking the divergence of Jµa , one obtain the
above result. From the last line of Eq. (2.2.16) we obtain more useful definitions of the current and
its divergence

Jµa = − ∂δL
∂∂µεa

, ∂µJ
µ
a = −∂δL

∂εa
, (2.2.18)

which can then be computed in general from δL. To derive the above relations, we assumed the
transformation to be local. However, the Lagrangian of Eq. (2.2.13) is only globally invariant by
hypothesis. Then ∂µεa = 0 and from Eq. (2.2.16) we have δL = −εa∂µJµa = 0 which means that the
current Jµa is conserved. For a conserved current, the charge is time independent (Qa(t) = Qa) and
defined in general as

Qa(t) =

∫
d3xJ0

a (t, ~x) . (2.2.19)

We now derive the currents of QCD and their divergences from Eq. (2.2.18). Let us first consider
the case with zero current quarks masses. The variation of the Lagrangian L0

QCD of Eq. (2.2.2) under
the transformations SU(N)L × SU(N)R × U(1)L × U(1)R is

δL0
QCD = −qR

(
8∑

a=1

∂µα
a
RT

a + ∂µαR

)
γµqR + (L↔ R) . (2.2.20)
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From the above relation and Eq. (2.2.18) we then derive the following currents

Lµa = −
∂δL0

QCD

∂∂µαaL
= (qLγ

µT aqL) , Rµa = −
∂δL0

QCD

∂∂µαaR
= (qRγ

µT aqR) , (2.2.21)

Lµ = −
∂δL0

QCD

∂∂µαL
= (qLγ

µqL) , Rµ = −
∂δL0

QCD

∂∂µαR
= (qRγ

µqR) , (2.2.22)

while the corresponding divergences are zero because we do not consider explicit breaking by the
quark masses ie δL0

QCD = 0. For the non-singlet vector and axial-vector currents one has from the
above equations

V µa = Rµa + Lµa = (qγµT aq) , Aµa = Rµa − Lµa = (qγµγ5T
aq) , (2.2.23)

and similarly for the singlet currents replacing the generators T a by the identity matrix. Note that
the divergence of Aµ is in fact different from zero, even in the chiral limit, due to the axial anomaly.
This feature will be addressed in subsection 2.2.4. Note also that we can check the above relations
directly from Eq. (2.2.18) and

δL0
QCD = −qγµ

(
8∑

a=1

∂µα
a
V T

a + ∂µαV

)
q − qγµγ5

(
8∑

a=1

∂µα
a
AT

a + ∂µαA

)
q . (2.2.24)

We now consider the mass term of Eq.(2.2.11). The variation of LM under the left and right-
handed transformation is given by

δLM = i

[
qR

(
8∑

a=1

αaRT
a + αR

)
MqL − qRM

(
8∑

a=1

αaLT
a + αL

)
qL + (R↔ L)

]

= i

[ 8∑

a=1

αaR (qRT
aMqL − qLMT aqR) + αR (qRMqL − qLMqR) + (R↔ L)

]
, (2.2.25)

As δLM depends only on αaR, α
a
L, · · · and not on their derivatives, the currents are the same than

before. However the divergences receive a non-zero contribution from δLM . For instance, for the
non-singlet currents we have

∂µL
µa = −∂δLM

∂αaL
= −i (qLT aMqR − qRMT aqL) ,

∂µR
µa = −∂δLM

∂αaR
= −i (qRT aMqL − qLMT aqR) , (2.2.26)

and similarly for the singlet currents replacing the generators T a by the identity matrix. The corre-
sponding divergences for the vector and axial currents are

∂µV
µa = −iqR[T a,M]qL − iqL[T

a,M]qR = iq[M, T a]q ,

∂µA
µa = iqL{T a,M}qR − iqR{T a,M}qL = iqγ5{T a,M}q ,

∂µA
µ = 2iqγ5Mq +

g2sN

32π2
ǫµνρσG

µν
a Gρσa , (2.2.27)

where the U(1)A anomaly, discussed in subsection 2.2.4, has also been taken into account in the last
line and the U(1)V -current is conserved such that ∂µV

µ = 0. Then we explicitly check the results
of subsection 2.2.2: the axial symmetries are explicitly broken by the quark masses as ∂µA

µa and
∂µA

µ 3 become non-zero when M 6= 0 and the SU(N)V symmetry is explicitly broken when M is
not proportional to the identity matrix that is when the current quark masses are different. More
precisely, the broken currents V µa are the ones corresponding to [M, T a] 6= 0. Then in the two flavours

3Up to the anomaly.
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case where mu ≃ md is a good approximation, one can consider that all of the vector currents are
conserved. On the other hand, in the three flavours case where mu ≃ md < ms, only the currents with
diagonal generators (a = 3, 8) and the currents with generators of the two flavours sector (a = 1, 2)
are unbroken.

To summarise the various approximate global symmetries of the strong interactions, we have for
the realistic three flavours case

• In the limit of massless quarks commonly called chiral limit, the sixteen currents Laµ and Raµ or
alternatively V a

µ and Aaµ are conserved. This is also true for Vµ while the singlet axial-vector
current Aµ has an anomaly.

• The individual flavour currents uγµu, dγµd and sγµs (V µ being the sum of these currents) are
always conserved for any values of the quark masses. This feature reflects the fact that the
strong interactions are flavour independent and that the quark mass matrix M is diagonal.

• The axial currents Aaµ and Aµ have a non-zero divergence due to the current quark masses
mq 6= 0 (in addition to the anomaly for the singlet).

• In the case of equal masses mu = md = ms, the eight vector currents V a
µ are conserved as

[T a, 11] = 0 while the eight axial-vector currents Aaµ are not conserved as {T a, 11} = 2T a.

• In the case where mu = md 6= ms, the SU(3)V flavour symmetry reduces to the SU(2)V isospin
symmetry. The latter symmetry is explicitly broken bymu 6= md but this effect is small compare
to the breaking of SU(3)V .

For latter use, we define the scalar and pseudo-scalar 4 singlet and non-singlet densities

S0 = (qT 0q) , P 0 = (qiγ5T
0q) , Sa = (qT aq) , P a = (qiγ5T

aq) . (2.2.28)

We now derive the equal-time commutation relations involving the charges and the currents (
densities). Let us first consider the following commutation relation [ab, cd] = a{b, c}d − ac{b, d} +
{a, c}db− c{a, d}b, from which we obtain

∫
d3~x [Ψ(t, ~x)Γ1F1Ψ(t, ~x), Ψ(t, ~y)Γ2F2Ψ(t, ~y)]

= Ψ(t, ~y)
[
Γ1γ

0Γ2F1F2 − Γ2γ
0Γ1F2F1

]
Ψ(t, ~y) , (2.2.29)

where Γ stands for any Dirac matrices of Eq. (2.2.3) and F is a flavour contraction. We have also
used the equal-time anti-commutation relations of the quark fields

{Ψαi(t, ~x),Ψ
†
βj(t, ~y)} = δ3(~x− ~y)δαβδij , {Ψαi(t, ~x),Ψβj(t, ~y)} = 0 . (2.2.30)

From Eq. (2.2.30), we derive for instance the commutation relation between the axial charge and the
vector current

[QaA(t), V
µb(t, ~y)] =

∫
d3~x [A0a(t, ~x), V µb(t, ~y)]

=

∫
d3~x [q(t, ~x)γ0γ5T

aq(t, ~x), q(t, ~y)γµT bq(t, ~y)]

= q(t, ~y)γµγ5[T
a, T b]q(t, ~y) = ifabcAµc(t, ~y) , (2.2.31)

where we have used the commutation relation between the generators [T a, T b] = ifabcT c. Note that
the commutation relation [QaA(t), A

µb(t, ~y)] can be obtained from the above equation by replacing the

4Note that the factor i in the pseudo-scalar density P a insures its hermitianity that is (P a)† = P a and similarly for
the singlet density P 0.
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axial current Aµc by the vector current V µc in the left-hand side. In the same way, the commutation
relation between the axial charge and the scalar density is given by

[QaA(t), S
b(t, ~y)] =

∫
d3~x [A0a(t, ~x), Sb(t, ~y)] = i q(t, ~y)iγ5{T a, T b}q(t, ~y)

= i

[√
2

N
P 0(t, ~y)δab + dabcP c(t, ~y)

]
. (2.2.32)

The commutator [Qa(t), P b(t, ~y)] can be obtained from the above relation by replacing the pseudo-
scalar densities P 0 and P a by the scalar densities S0 and Sa. Similarly, one can obtain all of the
commutations relations between the charges and the currents or densities. We just have listed here
the ones involving the axial non-singlet charge QaA as they will be relevant in the next. For a more
complete list see e.g. Ref. [37].

The above commutation relations are useful for instance to derive the sum rules that we will be
presented in subsection 2.4 in the QCD case and in subsection 8.1.4 in the composite Higgs context.
In addition, from the example of QCD, one can check the expressions of the currents and densities in
another theory than QCD e.g. in the case of UV completions of CHMs.

2.2.4 U(1) axial anomaly

As already mentioned above, the U(1)A symmetry is not a symmetry of QCD. Indeed, this symmetry
is anomalous and its divergence is non-zero even in the chiral limit. One has

∂µAµ = 2 qiγ5Mq +
g2s

32π2
Tr[11N ]Tr[{T ac , T bc }]ǫµνρσGaµνGbρσ . (2.2.33)

The trace Tr[{T ac , T bc }] comes from the quark couplings to gluons while the trace Tr[11N ] from the
flavour. This flavour trace is in fact weighted by the axial charge of the left and right-handed quarks.
Explicitly the relevant factor in the divergence is [QA(qL) − QA(qR)] = 2 6= 0 (see figure 2.1) where
the two chiralities contribute with a relative sign as mentioned in section 1.4. Then it is easy to see

−qL

qL

qL

SU(3)c

SU(3)c

U(1)V,A

QV,A(qL) = +1

qR

qR

qR

SU(3)c

SU(3)c

U(1)V,A

QV,A(qR) = ±1

Figure 2.1: Contribution of the left-handed and right-handed quarks to the axial U(1) anomaly.

that U(1)V is non-anomalous as the flavour trace involves [QV (qL)−QV (qR)] = 0. In the same way,
for SU(N)V,A the trace in the flavour space is Tr[T a] = 0 and these symmetries are not anomalous.
Writing explicitly the traces, the divergence of Eq. (2.2.33) becomes

∂µAµ = 2 qiγ5Mq +
g2s

32π2
NǫµνρσGaµνG

b
ρσ . (2.2.34)

Note that ∂µAµ is proportional to the number of Dirac fermions N present in the theory and in the
large Nc limit, the anomaly cancel as gs ∼ 1/

√
Nc

5.
This U(1) anomaly is an important feature of QCD. For instance, it is responsible of the much

larger mass of the η′ compare to the other Goldstone bosons. In the same way, anomalous symmetries
are an important feature in the UV completions of CHMs.

5The cancellation of the axial anomaly in the large Nc limit comes from the independence of the Dynkin index with
respect to Nc. This feature is valid for the fundamental representation as C(F ) = 1/2 but it can be modified with higher
dimensional representations for which the Dynkin index depends on Nc (see section 9.1).
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2.2.5 Spontaneous breaking of the chiral symmetry

As we have seen in the precedent subsections, the QCD Lagrangian possesses a global invariance
under the chiral group SU(N)L × SU(N)R × U(1)V or equivalently under SU(N)V × SU(N)A ×
U(1)V . However, at low energy the QCD spectrum does not reflect all of these symmetries. Indeed,
the resonances organised in multiplets of SU(N)V rather than in multiplets of SU(N)L × SU(N)R.
For instance, in the three flavour case, the lightest pseudo-scalar mesons organised into an octet

(π±, π0,K0,K
0
,K±, η) and a singlet η′ of SU(3)V . In the two flavours case, the octet reduces to

the triplet of pions (π±, π0). Then, at low energy the chiral symmetry is spontaneously broken.
This breaking occurs below the scale of condensation ΛQCD ≃ 1 GeV where the colour confines and
SU(3)c-singlet resonances form. The spontaneous breaking is due to non-zero order parameters, that
is, to parameters with a non-zero vacuum expectation value. In QCD, one of the most relevant order
parameter is the two fermions condensate 〈qq〉. The latter transforms with respect to the chiral
symmetry like the explicit breaking term presented in subsection 2.2.2. However, it is not an explicit
breaking term such that the condensate 〈qq〉 spontaneously breaks the axial SU(N)A symmetry.

According to the Golstone theorem, the QCD spectrum contains (N2 − 1) pNGBs. For N = 3,
they correspond to the pseudo-scalar octet mentioned above and for N = 2 to the triplet of pions.
Note that these pseudo-scalar are not exact NGBs as a consequence of the current masses which
explicitly break the chiral symmetry. Of course, in this respect the pions are the lightest pNGBs as
the associated current masses are mu,d while for the other pNGBs are also associated to ms. An
important feature of the spontaneous breaking is that the pNGBs belonging to the the coset space
SU(N)A ≡ SU(N)L×SU(N)R/SU(N)V couple to the broken currents, that is, to the axial currents
Aaµ

〈0|Jµa|Gb(p)〉 = ipµFGδ
ab , (2.2.35)

where FG is the decay constant of the pNGBs Ga and it is also an order parameter. When SU(N)V is
explicitly broken, the above picture is slightly modified as there are several Goldstone decay constants.
For instance, in the N = 2 case we have in a good approximation only one decay constant that is Fπ
while in the three flavours case we have Fπ and FK .

Finally, let us now make some further comments on the above pattern of symmetry breaking. First,
QCD belongs to the particular class of vector-like theories. Indeed, the latter are asymptotically free
and confining gauge theories with a set of N Dirac fermions transforming under a representation of
the gauge group, in such a way that it is possible to make all fermions massive in a gauge invariant
way. Moreover, the Vafa-Witten theorem [38] states that: ”in any vector-like theory with massless
fermions and vanishing vacuum angles, the subgroup Hm of the flavour group GF that corresponds to
the remaining global symmetry when all fermions flavours are given identical gauge invariant masses,
cannot be spontaneously broken.” According to this theorem, one can infer that if GF is spontaneously
broken toward some subgroup HF , then Hm ⊆ HF . In vector-like theories, Hm corresponds to the
maximal subgroup of GF and consequently there is only three possible pattern of symmetry breaking:
GF = SU(N) × SU(N)′ and HF = Hm = SU(N)V ; GF = SU(2N) and HF = SO(2N) (real case)
or HF = Sp(2N) (pseudo-real case). QCD corresponds to the first case 6 and as a result, the chiral
SU(N)L×SU(N)R symmetry should be spontaneously broken down to SU(N)V and not to another
subgroup.

2.3 ’t Hooft anomaly matching

The Vafa-Witten theorem restricts the chiral symmetry of QCD to be spontaneously broken to its
diagonal subgroup SU(N)V × U(1)V . However, this is not a proof that the breaking occurs as the
theory could in principle remains in an unbroken phase. Of course we know that it is not the case
as all of the hadrons organised into multiplets of SU(N)V and not of SU(N)L × SU(N)R. Anyway,
it is interesting to find a way to demonstrate that the breaking occurs. First because we will better

6In the chiral limit where the fundamental quarks have no current mass.
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understand QCD itself and second because if we have such arguments, we can apply them to other
strongly coupled theories like CHMs.

As pointed out by ’t Hooft [39], the global anomalies present in the UV theory should match with
the ones in the IR theory. In other words, the global anomalies generated before condensation by the
fundamental quarks have to be the same than the ones generated by the composite resonances. Then
we have conditions, the so called ’t Hooft anomaly matching conditions that link the UV theory and
the IR theory or equivalently the dynamical degrees of freedom at high energy (quarks) to the ones at
low energy (hadrons). These conditions, as we will see, may be helpful to prove that the spontaneous
breaking occurs.

The ’t Hooft anomaly matching conditions use the fact that the three-point functions of the
Noether currents (global currents) receive anomalous contributions from the massless fundamental
quarks [40–42] in the UV. These anomalous contributions imply that the corresponding three-point
functions have very specific physical singularities at zero momentum transfer [39,43,44]. According to
the Coleman-Grossman theorem, this kind of singularities can only be produced by (i) massless spin
1/2 fermions (ii) massless scalars (NGBs) (see figure 2.2). Below the confinement scale, if the global
symmetry is not spontaneously broken, the first option is excluded and the theory should produce
massless spin 1/2 bound states (baryons). These fermionic bound states will occurs in multiplet of
the unbroken global symmetry, and their multiplicities have to be such as to exactly reproduce the
coefficients of the anomalies in the three-point functions. If it is not possible to saturate the anomalies
with only massless spin 1/2 bound states then massless spin zero bound states coupled to the Noether
currents are required. These massless scalars correspond of course to NGBs meaning that the global
symmetry is spontaneously broken. Note that if the anomaly matching conditions can be satisfied by
massless baryons, the spontaneous breaking is not a necessity but it can not be excluded either. Note
also that a crucial point assumed above is that the theory confines otherwise the matching is trivial.
We discuss below the ’t Hooft anomaly matching in the QCD case and refer to subsections 8.1.2 and
9.1.1 for a discussion in the context of the minimal UV completion of composite Higgs model.

or=

JA
µ

JB
ν

JC
ρ

Figure 2.2: Graphical illustration of the Coleman-Grossman theorem: the anomalous contributions
to the three point function 〈JAµ JBν JCρ 〉 and induced by the massless fundamental quarks in the UV
can be produced in the IR either by massless scalar or massless spin 1/2 baryons.

In QCD, the left and right-handed quarks transform as follow under the chiral symmetry SU(N)L×
SU(N)R × U(1)V : qL ∼ (N, 1, 1) and qR ∼ (1, N, 1) while a generic spin 1/2 baryon transforms as
(l, r, y). The five anomalous diagrams are SU(N)3L,R, SU(N)2L,R × U(1)V and U(1)3V . The other
triangle diagrams involving the remaining combinations of currents do not enter in the anomaly
matching as the traces over flavour are trivially zero in these cases ie Tr[T aR] = 0. Let us consider
first the SU(N)3L cubic anomaly. The anomaly matching condition is

SU(N)3L :
∑

l,r,y

N(l, r, y)d(r)A(l) =
∑

l,r,y>0

N(l, r, y)d(r)A(l) +
∑

l,r,y<0

N(l, r, y)d(r)A(l)

=
∑

l,r,y>0

ℓ(l, r, y)d(r)A(l) = cte , (2.3.1)

where d(r) is the dimension of the representation r (the number of spin 1/2 fermions in the represen-
tation l with U(1)V -charge y) and A(l) is the anomaly coefficient associated with the representation
l. The latter is given by 2Tr[T aRl{T

b
Rl
, T cRl}] = A(Rl)d

abc (see section A) where T aRl stands for the
generators of SU(N)L in the representation Rl. In the last equality of Eq. (2.3.1) we have defined
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ℓ(l, r, y) ≡ N(l, r, y) − N(l, r,−y) which stands for the number of spins 1/2 (fermions minus anti-
fermions). We have also used d(r) = d(r) and A(l) = −A(l). In the same way, for the other anomalies
we have

SU(N)3R :
∑

l,r,y>0

l(l, r, y)d(l)A(r) = cte , (2.3.2)

SU(N)2L × U(1)V :
∑

l,r,y>0

l(l, r, y)C(l)d(r)y = cte , (2.3.3)

SU(N)2R × U(1)V :
∑

l,r,y>0

l(l, r, y)C(r)d(l)y = cte , (2.3.4)

U(1)3V :
∑

l,r,y>0

l(l, r, y)d(l)d(r)y3 = cte , (2.3.5)

In the case of Nc = 3, the baryons contain three quarks 7 (or antiquarks). We do not consider

(r, l) d(r, l) C(r, l) A(r, l)

• 1 0 0

N 1/2 1

N(N+1)
2

N+2
2 N + 4

N(N−1)
2

N−2
2 N − 4

N(N+1)(N+2)
6

(N+2)(N+3)
4

(N+3)(N+6)
2

N(N−1)(N−2)
6

(N−2)(N−3)
4

(N−3)(N−6)
2

N(N2−1)
3

(N2−3)
2 N2 − 9

Table 2.2: The dimensions d(r, l), Dynkin index C(r, l) and anomaly coefficients A(r, l) of the lowest
representations of SU(N)r,l involved in the ’t Hooft anomaly matching conditions for QCD. The
coefficients C(r, l) and A(r, l) are defined in chapter 5.3.3. For the conjugate representations (r, l) we
have d(r, l) = d(r, l), C(r, l) = C(r, l) and A(r, l) = −A(r, l).

exotic states with more than three quarks for simplicity. It can be justified by the maximal attractive
channel (MAC) hypothesis [45] as exotic states like pentaquarks are less likely to form. Then there is
only few possibilities for the baryons representations which are listed below

ℓ(l, r, y) =

{
ℓ1+( , •, 3), ℓ1−( , •, 3), ℓ3( , •, 3), ℓ2+( , , 3), + ℓ2−( , , 3), (2.3.6)

+ℓ4+( , , 3), + ℓ4−( , , 3), ℓ5+(•, , 3), + ℓ5−(•, , 3), + ℓ6(•, , 3)

}
.

We now insert the baryons of Eq. (2.3.6) in the five above matching conditions. The contribution
of the fundamental quarks is trivial. For instance, for the cubic SU(N)3L anomaly, only the left-handed
quarks contribute. As they are in the fundamental representation of SU(N)L, the anomaly coefficient
is simply equal to A(l = ) = 1 and their multiplicity is Nc. For the spin 1/2 bound states, only the
baryons charged under SU(N)L contribute, such that their multiplicity is ℓi where i = 1±, 2±, 3, 4±

7Note that a theory with Nc 6= 3 can be studied as well with the ’t Hooft anomaly matching conditions. However, the
baryons with the lowest number of quarks are made of Nc 6= 3 quarks in that case such that the details of the matching
are completely different.
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and their corresponding anomaly coefficients are listed in table 2.2 . Then we have

SU(N)3L : Nc = ℓ1±
(N ± 3)(N ± 6)

2
− ℓ2±

N(N ± 1)

2
+ ℓ3(N

2 − 9)

+ℓ4±N(N ± 4) , (2.3.7)

where the minus signs stand for the right-handed baryons. In the same way, for the cubic SU(N)3R
anomaly we have

SU(N)3R : −Nc = −ℓ2±N(N ± 4) + ℓ4±
N(N ± 1)

2
− ℓ5±

(N ± 3)(N ± 6)

2
−ℓ6(N2 − 9) , (2.3.8)

where this time only the baryons charges under SU(N)R contribute, that is, the baryons with multi-
plicity ℓ2±, ℓ4±, ℓ5± and ℓ6. For the SU(N)2L × U(1)V anomaly, the anomaly coefficient decomposes
into the product of the U(1)V charge times the Dynkin index of SU(N)L

SU(N)2L × U(1)V :
Nc

2
= 3

[
ℓ1±

(N ± 2)(N ± 3)

4
− ℓ2±

N(N ± 1)

4
+ ℓ3

(N2 − 3)

2

+ℓ4±
N(N ± 2)

2

]
. (2.3.9)

Similarly for the SU(N)2R × U(1)V anomaly we have

SU(N)2R × U(1)V : −Nc

2
= 3

[
−ℓ2±

N(N ± 2)

2
+ ℓ4±

N(N ± 1)

4
− ℓ5±

(N ± 2)(N ± 3)

4

−ℓ6
(N2 − 3)

2

]
. (2.3.10)

Finally, for the cubic U(1)3V anomaly, the anomaly coefficients are the cube of the U(1)V charges and
the multiplicities of the baryons correspond to li times the dimensions of the representations

U(1)3V : 0 = 33
[
ℓ1±

N(N ± 1)(N ± 2)

6
− ℓ2±

N2(N ± 1)

2
+ ℓ3

N(N2 − 1)

3

+ℓ4±
N2(N ± 1)

2
− ℓ5±

N(N ± 1)(N ± 2)

6
− ℓ6

N(N2 ± 1)

3

]
. (2.3.11)

The zero on the right-hand side of the precedent equation comes from the cancellation between
the left and right-handed quarks contributions: 13 × Nc − 13 × Nc = 0. In fact, this cancellation is
expected as only the n-point functions with an odd numbers of axial-vector currents receive anomalous
contributions like for instance V V A or AAA while V V V has no anomalous contributions (see section
1.4). The last condition in Eq. (2.3.11) leads to l1± = l5±, l2± = l4± and l3 = l6 and only two
independent conditions remain





3 = l1±
(N ± 3)(N ± 6)

2
+ l2±

N(N ± 7)

2
+ l3(N

2 − 9) ,

1 = l1±
(N ± 2)(N ± 3)

2
+ l2±

N(N ± 3)

2
+ l3(N

2 − 3) ,

(2.3.12)

In general, for an arbitrary number of flavours N , there are solutions to the precedent system of
equations. However, the cases where N is a multiple of 3 are particular. Indeed, in that cases there
is no solution and the global symmetry has to be spontaneously broken.

In the two flavours case, however there is a family of solutions as ℓ1− is not present (empty
representation), ℓ2− transforms as ℓ3 as well as ℓ4− transforms as ℓ6. Then Eq. (2.3.12) becomes





3 = l1+
(N + 3)(N + 6)

2
+ l2±

N(N ± 7)

2
+ l3(N

2 − 9) ,

1 = l1+
(N + 2)(N + 3)

2
+ l2±

N(N ± 3)

2
+ l3(N

2 − 3) ,

(2.3.13)
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and a family of solutions is

ℓ1+ = c1 , ℓ2+ = 2 + 5c2 , ℓ2− = 6 + 7c1 + 17c2 , ℓ3 = −3− 3c1 − 8c2 , (2.3.14)

where c1,2 are integer numbers.
We have prove that in the realistic and physical case with three flavours of quarks, the chiral

symmetry of QCD should be spontaneously broken. However, there is no such proof in the two
flavours case and in general for the N-flavours cases. Note that there are some additional arguments,
the so-called Appelquist-Carazzone decoupling conditions [46], that allow to demonstrate that the
spontaneous breaking occurs in the N = 2 case. However, these conditions are less rigorous than the
’t Hooft anomaly matching conditions and in practise we will not consider them.

2.4 QCD sum rules

In this section, we derive the QCD sum rules: the well-known Weinberg sum rules [47] but also the
scalar sum rules of QCD. These sum rules allow to relate different strong quantities and are then
useful to constrain the QCD spectrum. Let us first define in all generality some relevant two points
functions. The scalar non-singlet correlatoris defined by

i

∫
d4xeip·x〈0|T{Sa(x)Sb(0)}|0〉 = ΠS(p

2)δab , (2.4.1)

where we have extracted the flavour tensor structure δab. For the non-singlet pseudo-scalar correlator
ΠP (p

2), we have a similar relation replacing the scalar densities Sa by the pseudo-scalar ones P a while
the singlet correlators ΠS0 and ΠP 0 are obtained by replacing the non-singlet densities by the singlet
ones which are S0 and P 0. In the next, we just present the non-singlet correlators as the extension
to the singlet correlators is straightforward. The vector two-points functions are defined by

i

∫
d4xeip·x〈0|T{V a

µ (x)V
b
ν (0)}|0〉 = [ΠV (p

2)(pµpν − ηµνp
2) + ΠLV (p

2)pµpν ]δ
ab , (2.4.2)

while the axial correlators ΠA(p
2) and ΠLA(p

2) are obtained in a similar way replacing the vector
currents V a

µ by the axial-vector currents Aaµ. The Lorentz tensor structure in Eq. (2.4.2) can be
understand as follows. We have only a simple set of tensors at our disposal, that is, {pµ, ηµν , ǫµνρσ}.
Then, the only two independent and non-zero tensors with two uncontracted indices that can be
constructed are: pµpν and ηµν (ǫµνρσpρpσ = 0). The two orthogonal combinations of these tensors
are Tµν = (ηµν − pµpν/p2) and Lµν = pµpν/p2. They are projectors meaning that TµρT νρ = Tµν ,
LµρLνρ = Lµν and TµρLνρ = 0. This decomposition in transverse and longitudinal parts is relevant
because when the vector (axial) current is conserved we have ∂µV

µa = 0 (∂µA
µa = 0) and then

pµΠ
µν
V (A)(p

2) = 0. Consequently, in that case there is no longitudinal part [ΠLV (A)(p
2) = 0] in the two

points functions as Tµνpµ = 0 but Lµνpµ 6= 0. Note that, in Eqs. (2.4.2) we rather extracted −p2Tµν
and p2Lµν . As we will see in the next, this is useful to have a simpler pole structure for the two point
functions.

The two last correlators 8 that we consider are the axial-pseudoscalar and vector-scalar two points
functions. For the axial-pseudoscalar correlator we have

i

∫
d4xeip·x〈0|T{Aaµ(x)P b(0)}|0〉 = ΠAP (p

2)δabipµ . (2.4.3)

The equivalent relation for ΠV S(p
2) is straightforward. When the vector current V a

µ is conserved,
ΠV S(q

2) = 0 while ΠAP is different from zero. Note that, as QCD respect parity, the correlators

8Note that in principle we can do the same thing for the correlators involving the tensor densities. For example, the
tensor structure of the vector-tensor [ΠµνρV T (p2)] and axial-tensor [ΠµνρAT (p2)] correlators can only contain the following
tensors: pµpνpρ, gµνpρ, gµρpν , gνρpν and ǫµνρσpσ where the indices µν are attached to the tensor density. The antisym-
metry of the latter restricts the precedent set to two possibilities: (gµρpν−gνρpµ) and ǫµνρσpσ. The first one is associated
with VT and the second with AT. In the same way, one finds that TS and TA are zero as there is no antisymmetric
tensor with only two uncontracted indices.
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PS,AV, V P and AS are zero.

We now turn to the derivation of the sum rules. After the spontaneous breaking of the chiral
symmetry, the following matrix elements 〈0|[QaA, θ]|0〉 are interesting as they can be order parameters
that is, quantities which becomes non zero when the symmetry is spontaneously broken 9. Indeed, the
axial charges are spontaneously broken and respect QaA|0〉 6= 0. Let us first consider the possibility
θ = T{V b

µ (x), A
c
ν(0)}. We obtain

〈0|[QaA, T{V b
µ (x)A

c
ν(0)}]|0〉 = 〈0|T{[QaA, V b

µ (x)]A
c
ν(0) + V b

µ (x)[Q
a
A, A

c
ν(0)]}]|0〉

= ifacd〈0|T{V b
µ (x)V

d
ν (0)}]|0〉 − ifadb〈0|T{Adµ(x)Acν(0)}]|0〉 , (2.4.4)

where we have used the commutation relations of subsection 2.2.3. Taking the Fourrier transformation
[see Eq. (2.4.2)] we obtain

i

∫
d4xeiq.x〈0|[QaA, T{V b

µ (x)A
c
ν(0)}]|0〉 = (qµqν − q2gµν)f

acb[ΠV (q
2)−ΠA(q

2)] 6= 0 , (2.4.5)

where we have assumed to be in the chiral limit such that the longitudinal parts are absent. Then
the parameter ΠV−A(q2) ≡ [ΠV (q

2) − ΠA(q
2)] is an order parameter of the spontaneous breaking of

the global symmetry. In the same way, we can construct the order parameters involving the scalar
and pseudo-scalar densities. For instance

i

∫
d4xeiq.x〈0|[QaA, T{Sb(x)P c(0)}]|0〉 = dabc[ΠS(q

2)−ΠP (q
2)] 6= 0 , (2.4.6)

such that ΠS−P (q2) ≡ [ΠS(q
2) − ΠP (q

2)] is an order parameter 10. Similarly, ΠS0−P and ΠS−P 0 are
order parameters.

There is other combinations of two point functions which are order parameters like for instance
ΠAP

i

∫
d4xeiq.x〈0|[QaA, T{Abµ(x)S0(0)}]|0〉 = i

√
2/NδabqµΠAP (q

2) , (2.4.7)

However, as a consequence of the Ward identity there is no associated sum rule as the latter correlator
is entirely saturated by the Goldstone boson pole

ΠAP (q
2) =

1

q2
〈S0〉√
N

. (2.4.8)

Finally, let us note that when the chiral symmetry is explicitly broken, the notion of order parameters
disappear but one can still derive sum rules 11. For simplicity, we restrict to the chiral case in the next.

As ΠV−A,ΠS−P ,ΠS0−P and ΠS−P 0
12 are order parameters of the spontaneous symmetry breaking,

they behave smoothly at short distances (Q2 ≡ −q2 > 0). We have

lim
Q2→+∞

(Q2)2ΠV−A(−Q2) = 0 , lim
Q2→+∞

Q2ΠS−P (−Q2) = 0 , (2.4.9)

while ΠS0−P and ΠS−P 0 behave like ΠS−P . These short distance properties can be infer from the
operator product expansion (OPE) which gives the behaviour at short distance, for instance of a
matrix element of the following form 〈0|AB|0〉 .

Let us consider for example the vector and axial correlators ΠV (−Q2) and ΠA(−Q2). The OPE
is the following

9Matrix elements involving the axial U(1)A charge like 〈0|[QA, θ]|0〉 can not be used to derive order parameters as
U(1)A is an anomalous symmetry.

10In fact, that is the case only if dabc 6= 0. Then, in the two flavours case where SU(2) ∼= Sp(2), there is no anomaly
coefficient and ΠS−P (q

2) is not an order parameter.
11For instance, when the chiral symmetry is explicitly broken by the current quark masses, one can derive sum rules

from ΠV +ΠLV −ΠA −ΠLA instead of from ΠV−A in the chiral limit.
12ΠS0−P0 is also an order parameter and just a combination of the three other correlators.
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• ΠPTV (−Q2) = ΠPTA (−Q2) , O(Q0) ,

• m211/Q2 , O(Q−2) ,

• m〈ΨΨ〉/Q4 , 〈GµνGµν〉/Q4 , O(Q−4) ,

• 〈(ΨΓΨ)(ΨΓ′Ψ)〉/Q6 , m〈ΨσµνT aΨGaµν〉/Q6 , fabc〈Gµaν Gνbρ Gρcµ 〉/Q6 , O(Q−6) .

The contribution from perturbation theory is the same for the axial and vector correlators as the
global symmetry is not broken perturbatively (the fundamental theory does not feel the spontaneous
symmetry breaking). The same feature holds for the gluonic condensate which is a chiral singlet and
then contributes in the same way to the axial and vector correlators. Consequently, in the chiral limit
(m = 0), ΠV−A(−Q2) ∼ O(Q−6) which leads to the short distance properties of Eq. (2.4.9). Similarly
for the scalar and pseudo-scalar correlators we have for instance for the non-singlets ΠPTS = ΠPTP
which is now of order O(Q2) due to the pole structure in Eq. (2.4.13) [ΠV,A have dimension zero while
ΠS,P dimension two.]. Then, as the OPE starts at O(Q2), the first non-zero contribution to ΠS−P in
the chiral limit is at the order Q−4 and ΠS−P (−Q2) ∼ O(Q−4). From the short distance properties
of Eq. (2.4.9), we deduce the following convergent spectral sum rules

∫ ∞

0
dt ImΠV−A(t) = 0 ,

∫ ∞

0
dt t ImΠV−A(t) = 0 , (2.4.10)

∫ ∞

0
dt ImΠS−P(t) = 0 ,

∫ ∞

0
dt t ImΠS0−P(t) = 0 ,

∫ ∞

0
dt t ImΠS−P0(t) = 0 , (2.4.11)

where t = Q2 and the sum rule associated to ΠS−P is not present in the two flavours case as discussed
before. The sum rules of Eq. (2.4.10) are called Weinberg sum rules (WSR) while those in Eq. (2.4.11)
are the scalar sum rules of QCD. Assuming that the correlators are saturated by an infinite set of
narrow resonances (large Nc limit), the correlators take the form

ΠV (q
2) = −

∑

V

f2VM
2
V

q2 −M2
V

, ΠA(q
2) = −F

2
G

q2
−

∑

A

f2AM
2
A

q2 −M2
A

, (2.4.12)

ΠS(q
2) = −

∑

S

G2
S

q2 −M2
S

, ΠP (q
2) = −G

2
G

q2
−

∑

P

G2
P

q2 −M2
P

, (2.4.13)

where V and A are non-singlet vector and axial vector resonances while S and P are non-singlet
scalar and pseudo-scalar resonances. For the singlet correlators, similar relations hold replacing the
non-singlet resonances by singlets ones. In addition to the infinite sums of narrow resonances, there
is also the contribution of the massless Golstone bosons Ga in ΠP and ΠA. In the non-chiral limit,
they becomes massive and the Goldstone pole moves from q2 = 0 to q2 = M2

G 6= 0. In addition, this
pole migrates from the transverse part to the longitudinal part of the axial correlator. The above
pole structures will be important when we will compute the decay constants (FG, fV , fA, · · · ) and the
scalar constants (GS , GP , · · · ) in the context of NJL model. To be complete and for latter use, we
also give the form of the axial-pseudoscalar correlator which is entirely saturated by the Goldstone
boson pole in the chiral limit

ΠAP (q
2) = −FGGG

q2
−

∑

P

FPGP
q2 −M2

P

. (2.4.14)

The spectral densities associated with the above correlators, for instance for the vector and axial-
vector channels are given by

ρV (t) = ImΠV(t) =
∑

V

f2VM
2
Vδ(t−M2

V) , ρA(t) = ImΠA(t) = F2
Gδ(t) +

∑

A

f2AM
2
Aδ(t−M2

A) ,

(2.4.15)
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where the delta functions come from the simple pole structure in the narrow width approximation.
Similar relations hold for the scalar and pseudo-scalar densities. Using the Cauchy theorem one has
for ΠV−A

ΠV−A(−Q2) =
1

π

∞∫

S0

ds
ρV (s)− ρA(s)

s+Q2
(2.4.16)

∼ 1

Q2

1

π

∞∫

S0

dt [ρV (s)− ρA(s)]−
1

Q4

1

π

∞∫

S0

ds s [ρV (s)− ρA(s)] +O(Q−6)

As ΠV−A ∼ O(Q−6), the first two integrals should vanish. Then using the spectral densities in
Eq. (2.4.15), one obtains for the two Weinberg sum rules

1rstWSR : f2VM
2
V − f2AM

2
A − F 2

G = 0 , 2nd WSR : f2VM
4
V − f2AM

4
A = 0 . (2.4.17)

We have assumed that the correlators are saturated by the first resonances such that only the first
therm of the infinite sums of narrow resonances is present. One can follows the same procedure for
the scalar sum rules, one obtains

S − P : G2
S −G2

P = 0 , S0 − P : G2
σ −G2

P = 0 , S − P 0 : G2
S −G2

G = 0 . (2.4.18)

Let us make some comments about the above sum rules. The latter are interesting as they give
informations about the QCD spectrum in the spin one sector as well as in the spin zero sector.
Then, it is relevant to look at the realisation of the sum rules in the context of the NJL model. In
this way, from the exact relation in Eqs. (2.4.10) and (2.4.11), one can estimate the validity of the
NJL approximation. In addition, the narrow width approximation and the saturation by the lightest
resonances leading to Eqs. (2.4.17) and (2.4.18), also gives important informations related to the
lightest resonances. These features are discussed in details in section 8.2.7 in the the context of the
minimal UV completion of a CHM.

2.5 QCD coupling to the electromagnetism

Up to now, we have only considered QCD in isolation. However, the quarks are electrically charged
and U(1)em is embedded inside the chiral symmetry. Then gauging the electromagnetism induces a
new source of explicit breaking. There is two main effects of turning on the electromagnetic coupling.
First, the charged pNGB will acquire a new contributions to their masses from loops of photons and
second, some pNGB will get anomalous couplings to two photons

Let us first present the embedding of U(1)em inside the chiral symmetry. As the electromagnetism
is an unbroken gauge symmetry, it should be contained in U(N)V . For the two and three flavours
cases we respectively have

Q = τ3 +
1

3
τ0 =

(
2/3 0
0 −1/3

)
, Q = T 3 +

1√
3
T 8 =



2/3 0 0
0 −1/3 0
0 0 −1/3


 , (2.5.1)

where in the three flavours case, the generators T 3,8 = λ3,8/2 are given in section 2.1. Note that the
EM charge operator Q is always a combination of diagonal generators.

2.5.1 Radiative corrections to the pion mass

We now consider the first main consequence of gauging the electromagnetism that is the radiative
contributions to the masses of the pNGBs 13 . Let us consider the most general possibility. We gauge

13Note that in principle, other states than pNGBs are charged under EM and receive radiative corrections. However
these corrections can not be calculated in a simple way as it is possible for the pNGBs. In addition, one can argue that
pNGBs are the lightest states in the spectrum and the radiative corrections are more important in that case compare
to the other resonances.
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the following generator TW = TW + T Ŵ which is a combination of unbroken generators TW and

broken generators T Ŵ . The radiative contribution to the masses of the pNGBs GÂ from the above
gauging (see subsection 8.1.5) is

∆M2
GÂ

= − 3

4πF 2
G

g2W
4π

∫ ∞

0
dQ2Q2ΠV−A(Q

2)

[∑

B̂

(f ÂWB̂)2 −
∑

B

(f ÂŴB)2
]
, (2.5.2)

where according to the Witten inequality, the term −Q2ΠV−A(Q2) is positive. Then the sign of
∆M2

GÂ
is completely determined by the factor on the right-hand side of Eq. (2.5.2), that is by the

embedding of U(1)em inside the chiral symmetry. As the EM is not spontaneously broken we have

TW = TW and f ÂŴB = 0 such that the radiative EM contribution is positive ie ∆M2
G ≥ 0 and it

does not destabilise the QCD potential.
For simplicity, we now restrict to the two flavour case where the pNGBs are (π0, π±). The extension

to the three flavour case is straightforward. Obviously, only π± receive a radiative contribution as
they are charged under U(1)em. The non-zero group theory factor in Eq. (2.5.2) is given by

∑

B̂

(f ÂWB̂)2 ≡
∑

B̂

(
2i T r[TW [T Â, T B̂]

)2
=

∑

a

(
2i T r[Q[τ±, τa]

)2
= 1 , (2.5.3)

where τ± = (τ1± iτ2)/
√
2 corresponds to the generators associated with π∓ [π+ ∼ Ψτ−Ψ = (du)/

√
2

and π− ∼ Ψτ+Ψ = (ud)/
√
2] and Q is the EM charge operator of Eq. (2.5.1). Then we obtain

∆M2
π± = − 3α

4πF 2
π

∫ ∞

0
dQ2Q2ΠV−A(Q

2) . (2.5.4)

We can do the same thing in the three flavours case and compute the radiative contribution to the
masses of the pNGBs K±. In that case, the relevant generators are λ±4 /2 (see subsection 3.2.4) 14

and the decay constant Fπ should be replaced by FK . As π0 receives no EM radiative contribution
to its mass, Eq. (2.5.4) gives in fact the difference between the charged and neutral pions masses ie
∆M2

π± =M2
π± −M2

π0 .
We now evaluate quantitatively ∆M2

π± . Assuming that the correlator ΠV−A is saturated by the
first resonances (see section 2.4) we have

−Q2ΠV−A(Q
2) = F 2

π +Q2 f2AM
2
A

Q2 +M2
A

−Q2 f2VM
2
V

Q2 +M2
V

, (2.5.5)

where the vectors V and axial vectors A are the spin-one mesons associated with the generators τ±.
Let us for the moment evaluate the integral up to Q2 = Λ2

−
∫ Λ2

0
dQ2Q2ΠV−A(Q

2) = (F 2
π + f2AM

2
A − f2VM

2
V )Λ

2 + f2VM
4
V ln

Λ2 +M2
V

M2
V

−f2AM4
A ln

Λ2 +M2
A

M2
A

. (2.5.6)

Using the first and second Weinberg sum rules in Eq. (2.4.17) we obtain

−
∫ ∞

0
dQ2Q2ΠV−A(Q

2) ≃ f2VM
4
V ln

M2
A(Λ

2 +M2
V )

M2
V (Λ

2 +M2
A)

−→
Λ2→∞

f2VM
4
V ln

M2
A

M2
V

, (2.5.7)

Now using the Weinberg mass relation MA ≃
√
2MV which leads in conjunction with the WSRs to

fA ≃ fV /2 and fVMV ≃
√
2Fπ we have

−
∫ ∞

0
dQ2Q2ΠV−A(Q

2) ≃ 2F 2
πM

2
V ln 2 . (2.5.8)

14Note that the group theory factor attached to π± is of course the same in the two and three flavours cases despite
the fact that in the first case the generators are the Pauli matrices and in the second case the Gell-Mann matrices.
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Inserting this result in Eq. (2.5.4) we obtain for the pion mass difference [48]

∆M2
π± ≃ 3 ln 2

2π
αM2

V ≃ 5.0 MeV , (2.5.9)

which is in good agreement with the experimental value of 4.6 MeV.
Finally, let us comment on the possible applications for BSM theories. As we will see, in the context

of CHMs, we have pNGBs charged under the SM gauge group and the latter is embedded inside the
unbroken global symmetry such that as in QCD, the potential is not destabilises by the gauging. The
radiative corrections are more or less important depending on the pNGB under consideration. Indeed,
the pNGBs of the EW sector get radiative corrections from the gauging of SU(2)L×U(1)Y while the
coloured pNGBs from SU(3)c × U(1)Y . In general the radiative corrections to the coloured pNGBs
are more important than the ones in the EW sector. In addition, the potential of the EW sector
needs to be destabilised, in order to break the EW symmetry, by the introduction of linear couplings
between the top quark and the new strong sector (see section 6.4) such that the computation of the
radiative corrections alone is not relevant. When it is possible to evaluate these radiative corrections,
it is more correct to compute the integral in Eq. (2.5.6) instead of to saturate the correlator ΠV−A
with the lightest resonances. This is done in section 9.2 for the minimal UV completion of a CHM.

2.5.2 π0 decay in two photons

We now turn to the second issue of gauging the electromagnetism that is the presence of anomalous
couplings between the pNGBs and two photons. As we have seen in section 2.3, some three-point
functions involving the Noether currents receive anomalous contributions. More precisely, only the
diagrams with an odd number of axial currents are anomalous. Restricting to triangle diagrams, the
anomalous diagrams are VVA and AAA. Let us consider VVA, the axial current couples to one pNGB
according to Eq. (2.2.35) and the two vector currents can be chosen to correspond to U(1)em such
that we obtain an anomalous coupling between a pNGB and two photons. In all generality, such
anomalous coupling is given by the following Wess-Zumino-Witten effective [49–51] Lagrangian

LWZW = − g2W
64π2

dc
FG

ǫµνρσWµνWρσ
∑

Â

dWWÂGÂ + · · · (2.5.10)

The index Â corresponds to the axial currents while the indicesW to a combination of vector currents.
Note that, in general the gauge bosons Wµν associated with the vector currents can be associated
with broken and unbroken generators ie they are not always vector bosons.

For the coupling to two photons, the anomaly coefficient is dQQa = 4Tr[Q2T a] where Q2 is diagonal
and then T a has to be diagonal as well that is τ0 and τ3 in the case of two flavours (τ3 corresponds to
the π0 while τ0 corresponds to another neutral state). In the three flavours case, T a corresponds to
T 0, T 3 or T 8 (T 3 corresponds to the π0 while T 0 and T 8 correspond to the η0 and η8). Let us begin
for simplicity by the two flavours case and then generalise to the three flavour case. The anomaly
coefficient associated to the π0 is given by dQQ3 = 2(Q2

u −Q2
d) = 2/3 15 and then

LWZW = − α

8πFπ
ǫµνρσF

µνF ρσπ0 + · · · (2.5.11)

where we have used Nc = 3 and Wµν = Fµν . Using the results of Ref. [11] (see equation B.10) and
the value Fπ = 92 MeV for the pion decay constant, we obtain for the decay width π0 → γγ

Γ(π0 → γγ) =
α2

64π3
M3
π0

F 2
π

=
α2

64π3
M3
π0

F 2
π

N2
c (Q

2
u −Q2

d)
2 ≃ 7.8 eV , (2.5.12)

which is in good agreement with the experimental value. Note that the second equality, obtained
from the calculation of the triangular loop (with up and down quarks running inside) is in agreement
with the result obtained from the WZW term as Qu = 2/3 and Qd = −1/3.

15This result remains of course valid in the three flavours case.
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Let us make a final comment on the two flavours case. As we have seen, only the axial-vector
currents with diagonal generators have anomalous couplings with the EM. As a consequence, the
divergences of these currents have a contribution from the anomaly. Following Eq. (2.2.33), the
divergence ∂µA

µ3 in Eq. (2.2.27) becomes

∂µA
µ3 = 2i qγ5T

3Mq +
e2

64π2
Nc d

QQ3ǫµνρσF
µνF ρσ

= 2i qγ5T
3Mq +

e2

32π2
ǫµνρσF

µνF ρσ , (2.5.13)

and then the WZW Lagrangian is in fact a consequence of the above divergence and of the couplings
between the axial-vector currents and the pNGBs.

Let us now generalise briefly to the three flavours case. In that case, in addition to the π0, there
are two other pNGBs, the η0 and η8. However, these states mix because of the difference between the
strange mass and the up and down masses (see e.g. section 3.2.4). The two resulting mass eigenstates
are the η and η′ 16. Then, the picture is a bit more complicated. The derivation of the WZW terms
associated to η0 and η8 follows essentially the same steps than before but to compute the decay widths
we must consider the physical linear combinations η and η′ and then another parameter that is the
mixing angle θηη′ is involved.

The anomalous couplings of the neutral pNGBs to two photons are then an interesting way to test
QCD and to measure some of its parameters (for instance Fπ). In the same way, in composite Higgs
models there is anomalous couplings between the pNGBs and the SM gauge bosons. These couplings
are important as they offer production and decay modes for the pNGBs and then a possible way to
observe experimentally these composite resonances.

16Taking into account the breaking of the isospin SU(2)V symmetry, the π0 should also mixes with the η0 and η8.
However, this mixing can be neglected in first approximation as the explicit breaking of SU(2)V is small.
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Chapter 3

Nambu and Jona-Lasinio model of
QCD

In its weakly coupled regime, at high energy (large momentum transfer), QCD is a well-defined and
computable theory. This is due to the property of asymptotic freedom that QCD exhibits at short
distances. In other words, the coupling between quarks and gluons becomes small in this regime
and the perturbation theory can be trusted. However, this nice property does not remain true at
low energy (small momentum transfer) as at large distances, QCD becomes strongly coupled and the
usual perturbative expansion breaks down. Then despite the UV theory at our disposal, one can not
easily extract informations of its low energy regime. One possibility is based on a numerical approach
where QCD is promoted to a lattice gauge theory. However, this is a very dedicated and as it is
not the aim of this manuscript, we will not further discuss this possibility. Thus we are lead to the
conclusion that we need a simplified description of QCD in its strongly coupled regime, we need a
simpler Lagrangian which still encodes the more important features of QCD. In this way, we will be
able to study the features which have been isolated as relevant.

The simplified model that we will present in this chapter is the NJL model [52, 53]. The latter
allows to make non-perturbative computations as it based on an expansion in the number of colours.
The small parameter that insures the convergence of the expansion is 1/Nc [54, 55]. Historically,
The NJL was first developed as a pre-QCD theory for nucleons and only later reinterpreted as a
theory with quarks as degrees of freedom. The NJL model is a useful description of QCD at low
energy as it captures the observed QCD symmetries. In particular, it encodes one of the most
important symmetry, that is, the chiral symmetry introduced in section 2.2. The latter is primordial
to understand the lightest hadrons of the QCD spectrum. One important thing is that in addition
to the chiral symmetry, the NJL model also reproduces the dynamical breaking of this symmetry by
the formation of a non-zero quarks condensate 〈qq〉. The special role of the NGBs is also explicitly
present in the model.

In the NJL, one argues that the interaction between quarks and antiquarks, which comes from
complicated processes exchanging gluons with a strong coupling constant, is attractive. This interac-
tion leads to a condensation of a quark-antiquark pair in the vacuum which breaks the chiral symmetry
and leads to the emergence of the Goldstone modes. In this picture, only the quarks are degrees of
freedom, the gluons are froze out and the NJL Lagrangian only contains four-fermions 1 interactions.
This is similar to the Fermi theory of weak interactions where the W and Z bosons are integrated out
at low energy due to their large masses. In the NJL, the gluons are supposed to acquire a dynamical
masses leading to effective interactions between quarks.

Despite the above nice features of the NJL model, it has some shortcomings. The interaction
between quarks is assumed to be point-like as the gluons are froze out. Then the NJL is not a renor-
malisable theory but rather an effective theory for which a regularisation scheme should be specified.
The regularisation scheme allows to deal with improper integrals that arrive as a consequence of the
non-renormalisability. It specifies the length scale of the theory and can be expressed as a cut-off Λ
which cut in momenta the divergent integrals. This cut-off can be regarded as a crude implemen-

1Up to the ’t Hooft term which is e.g. a six-point interaction in the case of three flavours as we will see in the next.
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tation of the asymptotic freedom of QCD: the interactions between quarks are suppressed at large
momentum transfer which simulates the behaviour of the running coupling constant of QCD. Another
important shortcoming of the NJL comes from the fact that it do not include the confinement of the
quarks which is also one of the main features of QCD. However, in many cases of interest where we
are below the threshold for producing free quarks, the issue of the confinement is not important and
the chiral symmetry is the more relevant aspect.

This chapter aims to remind the basic features of the NJL model of QCD (see e.g. Refs. [56,57]).
The objective is to introduce the non-perturbative techniques of calculations used in the NJL as they
will serve latter when we will study the case of an UV completion of a composite Higgs model. In
section 3.1, we construct in all generality the four-fermion interactions of the NJL Lagrangian as well
as the ’t Hooft term encoding the explicit breaking of the U(1)A axial anomaly. Next, in section 3.2
we specialise to the case of QCD with two and three flavours. The two flavours case is discussed in
some details. For instance, the gap equation giving rise to the dynamical mass acquire by the quarks
is derived as well as the masses of the mesonic resonances (spin 0 and spin 1). We also discuss the
computation of the Goldstone decay constant and of other strong parameters. Finally, we generalise
to the more realistic and complicated case with three flavours pointing the main differences compare
to the two flavours case.

3.1 Construction of the NJL Lagrangian

We start by the construction of the NJL Lagrangian which is by definition supposed to be a sim-
plified description of the gauge Lagrangian of Eq. (2.1.8). As mention above, the NJL Lagrangian
contain only the quark fields as dynamical degrees of freedom. Then the interactions are at the
non-renormalisable level as there is no interacting terms between quarks with a dimension ≤ 4.

The NJL Lagrangian is constructed from the operators of lowest dimension. Thus the operators of
interest are mainly four-fermions interactions (dimension 6 operators). The latter have to be invariant
under the chiral symmetry (see section 2.2.1) but also respect the underlying gauge symmetry SU(3)c
and the discrete symmetries of QCD, that is, C, P and T. The four-fermions interactions respecting
the chiral symmetry are derived in subsection 3.1.1. They generally also respect accidentally the axial
U(1)A symmetry. Then in addition to the four fermions interactions, one needs an operator that
explicitly breaks U(1)A . We refer to this operator as the ’t Hooft term and it is derived in subsection
3.1.2.

3.1.1 Four-fermions interactions

In this subsection, we derive the four-fermions interactions of the NJL Lagrangian. We postpone the
derivation of the ’t Hooft term parametrising tthe U(1)A anomaly to subsection 3.1.2. The vector
and axial-vector transformations of the flavour multiplet Ψ are listed in Eqs. (2.2.7), (2.2.8) and
(2.2.9). Let us consider the bilinears (ΨΓFΨ) where Γ is one of the sixteen Dirac contraction and
F = {T 0, T a} is a flavour contraction. There is ten independent fermionic bilinears of the form

ΨΓT aΨ =

{
ΨRΓT

aΨR +ΨLΓT
aΨL for Γ = {γµ, γµγ5}

ΨRΓT
aΨL +ΨLΓT

aΨR for Γ = {11, iγ5, σµν}
(3.1.1)

and similarly for the singlet channels replacing T a by T 0. These bilinears have the same quantum
numbers than the physical mesonic resonances and we will refer to them as the scalar (Γ = 11),
pseudo-scalar (Γ = iγ5), vector(Γ = γµ), axial-vector (Γ = γµγ5) and tensor (Γ = σµν) non-singlet
(T a) or singlet (T 0) channels.

Let us first consider the scalar and pseudo-scalar channels. The four possible operators invariant
under the Lorentz symmetry as well as the discrete symmetries of QCD transform as follow under the
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axial SU(N)A symmetry

(
ΨT 0Ψ

)2 →
(
ΨT 0Ψ

)2
+ 2αa

√
2

N
S0P a (3.1.2)

(
Ψiγ5T

0Ψ
)2 →

(
Ψiγ5T

0Ψ
)2 − 2αa

√
2

N
SaP 0 (3.1.3)

(
ΨT aΨ

)2 →
(
ΨT aΨ

)2
+ 2αa

√
2

N
SaP 0 + 2αad

abcSbP c (3.1.4)

(
Ψiγ5T

aΨ
)2 →

(
Ψiγ5T

aΨ
)2 − 2αa

√
2

N
S0P a − 2αad

abcSbP c (3.1.5)

Then in general, the only combination invariant under SU(N)A is

(
ΨTAΨ

)2
+

(
Ψiγ5T

AΨ
)2

, N ≥ 3 , (3.1.6)

where for simplicity, we have defined the matrices TA which are the generators of U(N). One can
check that the operator in Eq. (3.1.6) is also invariant under SU(N)V , U(1)A as well as under U(1)V .
In fact, the invariance under U(1)V is trivial for all of the bilinears in Eq. (3.1.1). Note that, the case
N = 2 is particular as the symmetric constants dabc are equal to zero for SU(2). Therefore, in that
case there are two invariant operators

(
ΨT aΨ

)2
+

(
Ψiγ5T

0Ψ
)2

,
(
ΨT 0Ψ

)2
+

(
Ψiγ5T

aΨ
)2

, N = 2 , (3.1.7)

which are also invariant under SU(2)V but explicitly breaks U(1)A. We will come back latter to
this specificity of the N = 2 case as it is directly related to the ’t Hooft term. Repeating the same
procedure for the the spin one channels, one finds the three following chiral invariant (including under
U(1)A) operators

(
ΨγµT 0Ψ

)2
,

(
Ψγµγ5T

0Ψ
)2

,
(
ΨγµT aΨ

)2
+

(
Ψγµγ5T

aΨ
)2

, ∀N (3.1.8)

Finally, for the tensor bilinears [58], the transformations are the same compare to the spin zero
bilinears. We obtain one invariant operator in the general case

(
ΨTAσµνΨ

)2
+

(
Ψiγ5σ

µνTAΨ
)2

, N ≥ 3 , (3.1.9)

and two invariant operators in the particular case with two flavours

(
ΨσµνT aΨ

)2
+

(
Ψiγ5σ

µνT 0Ψ
)2

,
(
ΨσµνT 0Ψ

)2
+

(
Ψiγ5σ

µνT aΨ
)2

, N = 2 , (3.1.10)

where γ5σµν = iǫµναβσ
αβ/2 is the dual tensor of σµν . Again, for N ≥ 3, the tensor operators are

accidentally invariant under U(1)A while for the special case of N = 2 the axial U(1)A symmetry is
already explicitly broken by the four-fermions tensor interactions.

From the above discussion, the NJL Lagrangian compatible with the chiral symmetry takes the
following form

LNJL = GS [
(
ΨTAΨ

)2
+

(
Ψiγ5T

AΨ
)2
] +GT [

(
ΨTAσµνΨ

)2
+

(
Ψiγ5σ

µνTAΨ
)2
]

+GV [
(
ΨγµT aΨ

)2
+

(
Ψγµγ5T

aΨ
)2
] +G′

V

(
ΨγµT 0Ψ

)2

+G′′
V

(
Ψγµγ5T

0Ψ
)2

. (3.1.11)

The above Lagrangian is invariant under the chiral symmetry but also under U(1)A such that, even
for the particular N = 2 case, we postpone the parametrisation of the U(1)A explicit breaking in the
’t Hooft terms to the following subsection. Let us comment further on the NJL Lagrangian. There
are five independent couplings Gi which have dimension −2 and can be parametrised as Gi ∼

(gi
Λ

)2
.

The scale Λ is a reference scale that we chose to be the cut-off of the NJL model (see section 3.2). It
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is a free parameter of the NJL model. To fix the ideas, one can crudely interpret Λ as the dynamical
mass acquire by the gluons and gi as their coupling to the quarks. As the number of colours Nc

and the number of flavours N are fixed, there are six free parameters (if we do not consider the
U(1)A anomaly) in the NJL model: the cut-off Λ and the five couplings Gi. However, as we will see
in subsection 3.2.3, under the hypothesis that the four-fermions interactions are generated from an
SU(3)c current-current operator, it is possible to relate all of the four-fermions couplings Gi. In this
way, the model contains only two free parameters: one four-fermion coupling and the cut-off Λ. In
addition, we will not consider the tensor channels for simplicity. The latter have been investigated in
Ref. [58]. This simplification can be justify in the current-current hypothesis which gives GT = 0.

Note that, to derive the NJL Lagrangian in Eq. (3.1.11), we implicitly restricted to colour singlet
bilinears because due to the confinement, coloured bilinears do not correspond to physical mesons.
However, operators with coloured bilinears are involved in the calculation of the baryonic masses as
they correspond to diquarks channels. We will briefly discuss this possibility in chapter 10.

We now present another way to derive the NJL Lagrangian. In the above procedure, the fermions
was in reducible representations of SU(N)V × SU(N)A. As a consequence, it was not trivial to
impose the chiral symmetry. Instead of vector and axial symmetries, it can be easier to consider left
and right-handed symmetries for which ΨL and ΨR transform in irreducible representations. Under
SU(N)L × SU(N)R we have

Ψa
L ∼ (NL, 0) , Ψa

R ∼ (0, NR) . (3.1.12)

and the relevant bilinears transform as

ΨLΓΨR ∼ (NL, NR) , ΨRΓΨL ∼ (NL, NR) , Γ = {11, σµν} , (3.1.13)

ΨLγ
µΨL ∼ (NL ×NL, 0) , ΨRγ

µΨR ∼ (0, NR ×NR) . (3.1.14)

Then, considering for instance the spin zero bilinears of Eq. (3.1.13) we have

(ΨLaΨ
b
R)(ΨRcΨ

d
L) ∼ (NL, NR)× (NL, NR) = (1R, 1L) + · · · (3.1.15)

while (ΨaL,RΨ
b
R,L)(ΨcL,RΨ

d
R,L) does not contain a singlet contraction 2. The singlet contraction is

obviously

[(ΨLaΨ
b
R)(ΨRcΨ

d
L) + h.c.]δadδ

c
b = 2[(ΨRT

0ΨL)(ΨLT
0ΨR) + (ΨRT

aΨL)(ΨLT
aΨR) + h.c.]

= (S0 + iP 0)(S0 − iP 0) + (Sa + iP a)(Sa − iP a)

= SASA + PAPA , (3.1.16)

where we have used the general flavour decomposition

(ΨaΓΨ
b) = 2(T 0)ba(ΨT

0ΓΨ) + 2(T a)ba(ΨT
aΓΨ) . (3.1.17)

The operator in Eq. (3.1.16) is the same than the one in Eq. (3.1.6). Of course, one can do the same
thing to derive the vector and tensor operators but also to derive the ’t Hooft term as we now see.

3.1.2 Parametrisation of the U(1) axial anomaly

Following the procedure of the precedent subsection, we now construct the ’t Hooft term respecting
the chiral symmetry SU(N)V ×SU(N)A×U(1)V but explicitly breaking U(1)A. From table 2.1, it is
easy to see that an operator with a larger or smaller number of left-handed fields (ΨL or ΨR) compare
to the right-handed ones (ΨR or ΨL) explicitly breaks the axial U(1)A. Then the minimal operators
of this kind contains only scalar or tensor bilinears of the form

(ΨL,RΓΨR,L) = (ΨΓPR,LΨ) , Γ = {11, σµν} . (3.1.18)

2Up to the particular case of N = 2 where 2 = 2∗ (see subsection 3.1.2)

46



Consequently, the ’t Hooft terms contribute only to the spin-zero and tensor channels but not to the
spin one channels. To construct the minimal chiral invariants with the bilinears of Eq. (3.1.18) only,
we can take N replicas of them as the product of N fundamental representations gives a singlet in
SU(N). For instance, the ’t Hooft term involving only the scalar bilinears is

LU(1) = Hǫa1···aN ǫb1···bN [(ΨLa1Ψ
b1
R ) · · · (ΨLaNΨ

bN
R ) + h.c.] (3.1.19)

= Hǫa1···aN ǫb1···bN [(Ψa1PRΨ
b1) · · · (ΨaNPRΨ

bN ) + (PR → PL)] ,

where the flavour singlet contraction is obtained with two invariant tensors of SU(N) which are ǫa1···aN
and ǫa1···aN and (PR → PL) insures that Parity is respected. In the same way, one can construct ’t
Hooft terms involving the tensor bilinears. They are obtained by replacing an even number of scalar
bilinears by tensor bilinears in Eq. (3.1.19) that is

(ΨaPR,LΨ
b)(ΨcPR,LΨ

d) → (Ψaσ
µνPR,LΨ

b)(ΨcσµνPR,LΨ
d) (3.1.20)

Note that, the above ’t Hooft terms should be reduced to four-fermions interactions in order to make
NJL calculations (see subsection 3.2.4). This is done by closing a sufficient number of loops ie by re-
placing the bilinears by their corresponding condensates. As the condensate 〈ΨσµνΨ〉 = 0 (otherwise
the Lorentz symmetry is broken), only the ’t Hooft terms with a maximum of two tensor bilinears
contribute in the NJL approximation. Then, for N free we have only two different U(1)A breaking
terms relevant in the NJL approximation. However, we do not consider further the possibility to have
tensor modes in the ’t Hooft terms as we already not considered them in the four-fermions interactions.

We now rewrite the ’t Hooft term of Eq. (3.1.19) in the physical basis where the bilinears have the
same quantum numbers than the physical resonances. To that end, we use the following decomposition
of the epsilon product

ǫa1···aN ǫb1···bN =

∣∣∣∣∣∣∣

δa1b1 · · · δa1bN
...

. . .
...

δaNb1 · · · δaNbN

∣∣∣∣∣∣∣
, (3.1.21)

and the flavour decomposition of the bilinear in Eq. (3.1.17). Let us restrict to the relevant cases where
N = 2 and N = 3. The extension to larger N can be useful for BSM strongly coupled theory and is
straightforward. The ’t Hooft term of Eq. (3.1.19) contains 2N fermions, that is, it is a four-fermions
interaction for N = 2 and a six-points interaction for N = 3. Let us begin by the two flavour case
where the ’t Hooft term is

LU(1)(N = 2) = Hǫabǫcd[(ΨaPRΨ
c)(ΨbPRΨ

d) + (PR → PL)] (3.1.22)

= H[(ΨaPRΨ
a)(ΨbPRΨ

b)− (ΨaPRΨ
b)(ΨbPRΨ

a) + (PR → PL)] ,

and we have used in the second line the flavour contraction of Eq. (3.1.21) that reduced in that case
to ǫabǫcd = δac δ

b
d − δadδ

b
c. Using the flavour decomposition of Eq. (3.1.17), the latter operator reduces

to

LU(1)(N = 2) =
H

2

[
(ΨT 0Ψ)2 + (Ψiγ5T

aΨ)2 − (Ψiγ5T
0Ψ)2 + (ΨT aΨ)2

]
. (3.1.23)

Then, combining the above equation with Eq. (3.1.11), we get the two independent four-fermions
interactions of Eq. (3.1.7) that respect SU(N)V × SU(N)A × U(1)V but break U(1)A. We now turn
to the three flavours case where the ’t Hooft terms is

LU(1)(N = 3) = Hǫabcǫdef [(ΨaPRΨ
d)(ΨbPRΨ

e)(ΨcPRΨ
f ) + (PR → PL)] (3.1.24)

The flavour contraction reduces to

ǫabcǫdef = δadδ
b
eδ
c
f + δae δ

b
fδ
c
d + δafδ

b
dδ
c
e − δadδ

b
fδ
c
e − δafδ

b
eδ
c
d − δae δ

b
dδ
c
f , (3.1.25)

and the ’t Hooft term in the physical basis reads

LU(1)(N = 3) =
H

6
DABC

[
1

3
(ΨTAΨ)(ΨTBΨ)(ΨTCΨ)− (ΨTAiγ5Ψ)(ΨTBiγ5Ψ)(ΨTCΨ)

]
, (3.1.26)
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where the totally symmetric coefficient is given by

DABC =





dabc for a, b, c = {1, · · · , 8}
− 1√

6
for A = 0, B = C = {1, · · · , 8}

2√
3

for A = B = C = 0 ,
(3.1.27)

and dabc = Tr[T a{T b, T c}] is the completely symmetric tensor of SU(3).

3.2 NJL model with two and three flavours

In the precedent section, we have constructed the NJL four-fermions interactions invariant under the
chiral symmetry as well as the ’t Hooft term parametrising the breaking of the U(1)A symmetry. We
are now able to make calculations in the NJL model starting from Eqs. (3.1.11) and Eq. (3.1.19). We
first consider in some details the simpler case with two flavours (N = 2). In that case, we present
in subsection 3.2.1 the dynamical breaking of the chiral symmetry which leads to the emergence
of a non-zero constituent mass M for the fermions. Then, in subsections 3.2.2 we compute in the
NJL framework, the masses of the spin zero and spin one resonances as well as the Goldstone decay
constants FG. In the sequel, in subsection 3.2.3, we start from an SU(3)c current-current operator
and generate using Fiez transformations the NJL four-fermions interactions. In this way, we obtain
a phenomenological link between all the four-fermions coupling constant. Finally, in subsection 3.2.4
we consider the more involved case with three flavours (N = 3) where we briefly outline the main
differences compare to the two flavours case.

3.2.1 Dynamical breaking of the chiral symmetry

Let us first consider the spin-zero sector, that is, the Lagrangian

L0
NJL = m

(
ΨΨ

)
+Kσ

[(
Ψτ0Ψ

)2
+

(
Ψiγ5τ

aΨ
)2]

+KS

[(
Ψτ0iγ5Ψ

)2 −
(
ΨτaΨ

)2]
, (3.2.1)

where we have defined the more convenient couplingsKσ = Kπ = (GS+H/2), KS = Kη = (GS−H/2)
and in addition to the four-fermions interactions, we have introduced an explicit breaking mass term
m which corresponds to the current masses of the up and down quarks. For simplicity, we neglect the
isospin violation such that m = mu = md (see section 2.2.2).

= +

Ψ

2Kσ

Ψ ΨΨ ΨΨ Ψ mM

Figure 3.1: Graphical illustration of the gap equation (Bethe-Salpeter equation) in the NJL approx-
imation with no explicit breaking of the SU(N)V symmetry. Thick and thin lines represent dressed
and bare quark propagators, respectively. On the right-hand side of the equation, the contribution
of the explicit breaking mass term m and the one of the four fermion interaction associated to the
singlet scalar channel σ.

The Dyson equation which allows to compute the dynamical mass acquired by the fundamental
quarks due to the strong interactions is depicted in figure 3.1. This equation is self-consistent as the
dynamical mass M is present on both sides of the equality. We have

−iM = −im+ (−1)2iĜSTr[τ
0τ0]Nc

∫
d4k

(2π)4
iT r[ 6 k +M ]

k2 −M2
, (3.2.2)
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where M is the constituent mass of the quarks (M = Mu = Md) and the factor Nc comes from the
trace over colour. Note that only the scalar singlet operator (σ-channel) contributes to the above gap
equation as for the others, the flavour and/or Dirac traces are zero. Replacing explicitly the Dirac
and flavour traces, the gap equation reduces to

1− m

M
− 4KσNcÃ0(M

2) = 0 , (3.2.3)

where we have defined the one-loop function

Ã0(M
2) = i

Λ∫

0

d4k

(2π)4
1

k2 −M2
=

Λ2

16π2

[
1− M2

Λ2
ln

Λ2 +M2

M2

]
. (3.2.4)

The latter integral has been regularised 3 with a cut-off Λ. This cut-off is part of the NJL model and
is a free parameter. From Eq. (3.2.3), one can see that in the chiral limit (m = 0), there is a critical
value

Gcrit =
4π2

NcΛ2
, (3.2.5)

above which a non-zero dynamical mass develops.

3.2.2 Masses of the resonances and pion decay constant

The masses of the physical resonances are obtained at first order in 1/Nc, from the Schwinger-Dyson
equation depicted in figure 3.2. The latter resums in a geometrical series the dominant large-Nc

diagrams contributing to the two point function with the appropriate quantum numbers. In the
scalar and pseudo-scalar cases, the resumed two point function is

Πφ(p
2) =

Π̃φ(p
2)

1− 2KφΠ̃φ(p2)
, (3.2.6)

where Kφ is the four-fermion coupling attached to the resonance φ and Π̃φ is the corresponding
one-loop two point function. The latter are explicitly computed in appendix B. The masses of the
resonances are given by the poles of the resumed correlator, that is by

1− 2KφΠ̃φ(p
2 =M2

φ) = 0 , p2 =M2
φ , (3.2.7)

For instance, for the pseudo-scalar non-singlet channel we have

1− 2Kπ2Nc

[
Ã0(M

2)− M2
π

2
B̃0(M

2
π ,M

2)

]
=
m

M
+ 2NcKπB̃0(M

2
π ,M

2)M2
π = 0 , (3.2.8)

where we have used the gap equation in the second equality. One obtains for the pions mass

M2
π = −m

M

1

2NcKπB̃0(M2
π ,M

2)
. (3.2.9)

Then one explicitly checks that in the chiral limit (m = 0), the pions are massless ie NGBs. An
important point is that the pion mass Mπ is contained also in the left side of Eq. (3.2.9) such that
one has to solve the above equation to obtain the physical mass. Similarly, for the singlet scalar σ,
one obtains

M2
σ = 4M2 − m

M

1

2NcKσB̃0(M2
σ ,M

2)
. (3.2.10)

In the chiral limit, the σ mass is proportional to the gap equation and we have the well-known relation
Mσ = 2M .

3Other regularisation are possible, see e.g [56].
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= + · · ·φ φ + + φφ φφφφ 2Kφ 2Kφ2Kφ

Figure 3.2: Graphical illustration of Schwinger-Dyson equation that resums the leading 1/Nc graphs
and corresponds to a mesonic two-point correlator Πφ.

For the scalar non-singlet Sa and the the pseudo-scalar singlet η masses, we respectively have

M2
S = 4M2 − 1

2NcKSB̃0(M2
S ,M

2)

[m
M

+ 4NcHÃ0(M
2)
]
, (3.2.11)

M2
η = − 1

2NcKηB̃0(M2
η ,M

2)

[m
M

+ 4NcHÃ0(M
2)
]
. (3.2.12)

In the chiral limit and when the ’t Hooft term coupling is set to zero, the η is massless. Then, one
sees that H parametrises the explicit breaking of the axial U(1)A symmetry by giving a non-zero mass
to the pseudo-scalar singlet even in the chiral limit. Neglecting the dependence in the masses of the
resonances of the B̃0 functions, one obtains the following interesting relations

M2
σ =M2

π + 4M2 , M2
S =M2

η + 4M2. (3.2.13)

We now turn to the spin one resonances. The relevant four-fermion interactions are

L1
NJL = −GV

[(
ΨγµτaΨ

)2
+

(
Ψγµγ5τ

aΨ
)2]−G′

V

(
Ψγµτ0Ψ

)2 −G′′
V

(
Ψγµγ5τ

0Ψ
)2

, (3.2.14)

where the minus sign convention is necessary to obtain positive masses squared for a positive coupling.
The resumed two-point functions associated with the non-singlet channels are given by

−p2ΠV,A(p2) =
Π̃V/A(p

2)

1− 2KV/AΠ̃V/A(p2)
, p2Π

L
A(p

2) =
Π̃LA(p

2)

1− 2KAΠ̃LA(p
2)
, (3.2.15)

where KV = KA = GV Similar relations hold for the singlet channels replacing the couplings KV/A

respectively by Kv = G′
V and Ka = G′′

V . The masses are obtained from the poles of the transverse
correlators. For the vector non-singlets one obtains

M2
V =

−3

4NcKV B̃0(M2
V ,M

2)
+ 2M2 B̃0

0(M
2)

B̃0(M2
V ,M

2)
− 2M2 , (3.2.16)

The mass of the vector singlet vµ is obtained in a similar way by replacing in the above equation
KV = GV by Kv = G′

V and B̃0(M
2
V ,M

2) by B̃0(M
2
v ,M

2). Similarly for the axial-vector channel

M2
A =

−3

4NcKAB̃0(M2
A,M

2)
+ 2M2 B̃0

0(M
2)

B̃0(M2
A,M

2)
+ 4M2 , (3.2.17)

The mass of the axial-vector singlet aµ is obtained in a similar way by replacing in the above equation
KA = GV by Ka = G′′

V and B̃0(M
2
A,M

2) by B̃0(M
2
a ,M

2). If one neglects the dependences of the B̃0

functions, one has
M2
A =M2

V + 6M2 . (3.2.18)

Finally, let us consider the pion decay constant Fπ. In the chiral limit, the pion pole is in the
transverse correlator [see Eq. (2.4.12)] such that

F 2
π = lim

p2→0
[−p2ΠA(p2)] =

Π̃A(0)

1− 2KAΠ̃A(0)
=

F̃ 2
π

1− 2KAF̃ 2
π

= gA(0)F̃
2
π , (3.2.19)
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where F̃π is the one-loop pion decay constant defined by

F̃ 2
π ≡ Π̃A(0) = −4NcM

2B̃0
0(M

2) = Π̃LA(0) , (3.2.20)

and the factor gA(p
2) is defined by

gA(p
2) =

[
1− 2KAΠ̃

L
A(p

2)
]−1

. (3.2.21)

Similarly, from Eqs. (2.4.12) and (2.4.13) one can extract fV,A and Gσ,S,η,η. When there is an explicit
breaking mass m, the Goldstone boson pole is in the longitudinal correlator such that

F 2
π = lim

p2→M2
π

[p2Π
L
A(p

2)] =
Π̃LA(M

2
π)

1− 2KAΠ̃LA(M
2
π)

= gA(M
2
π)Π̃

L
A(M

2
π) . (3.2.22)

Let us make few comments about the above derivations. First, we did not consider the mixing
between the axial longitudinal and pseudo-scalar channels. Indeed, in that case Eq. (3.2.6) generalises
to a matrix form

Ππ(p
2) = [11− 2KπΠ̃π(p

2)]−1Π̃π(p
2) , (3.2.23)

where

Kπ =

(
Kπ 0
0 KA

)
, Π̃π(p

2) =

(
Π̃P (p

2)
√
p2Π̃AP (p

2)√
p2Π̃AP (p

2) Π̃LA(p
2)

)
. (3.2.24)

The mass is given by a generalisation of Eq. (3.2.7)

det[11− 2KπΠ̃π(p
2)] , p2 =M2

π . (3.2.25)

From the above equations, one obtains for the pion mass

M2
π = −g−1

A (M2
π)
m

M

1

2NcKπB̃0(M2
π ,M

2)
, (3.2.26)

such that, there is an additional factor g−1
A (M2

π) coming from the axial-pseudoscalar mixing. In the
same ay, one obtains for the η mass

M2
η = −g−1

a (M2
η )

1

2NcKηB̃0(M2
η ,M

2)

[m
M

+ 4NcHÃ0(M
2)
]
, (3.2.27)

where the factor ga(p
2) is defined similarly to the one in Eq. (3.2.21) replacing the non-singlet coupling

KA by the singlet one Ka, that is, ga(p
2) = [1− 2KaΠ̃

L
A(p

2)].
Note that we have considered only the resumed correlators Πφ in order to extract the masses of

the resonances but also the associated decay constants. One can also consider the T-matrix T φ (see
appendix H) which gives the coupling gφΨΨ between the resonance and the fundamental quarks. All
of this points are discussed in more details in chapter 8 as the objective here is just to give a first
glimpse of the NJL techniques in the context of QCD.

3.2.3 Current-current hypothesis

In the precedent subsection, we have derived the masses of the physical mesonic resonances using the
techniques of the NJL model. These masses depends on the four-fermions coupling constants Gi. If
we put aside the tensor modes, there are four different couplings: GS , GV , G

′
V and G′′

V . In addition,
there is also the cut-off of the NJL model Λ and the coupling H of the ’t Hooft term. Then it can
be useful for phenomenological reasons to reduce the number of free parameters. One way to do that
is to assume that the strong dynamics generates mainly a coloured current-current operator of the
following form

LcNJL = Gc
(
ΨγµT ac Ψ

) (
ΨγµT

a
c Ψ

)

= Gc ΨαiaΨβjbΨγkcΨδld (γµ)αβ(γµ)γδ (11)ab(11)cd (T ac )ij(T
a
c )kl . (3.2.28)
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Using Fierz transformations, one can rewrite the above operator in term of coloured singlet and in
particular in term of the NJL four-fermion operators in Eq. (3.1.11). To that end, let us consider
the Fierz transformations attached to the Dirac [59], flavours and colours contractions in the quark-
antiquark channel [(q1q2)(q3q4) → (q1q4)(q3q2)]. These transformations are




(
T 0

)
ij

(
T 0

)
kl∑

a
(T a)ij (T

a)kl


 =

(
1
N

1
N

N2−1
N − 1

N

)


(
T 0

)
il

(
T 0

)
kj∑

a
(T a)il (T

a)kj


 , (3.2.29)




(11)ij (11)kl
(iγ5)ij (iγ5)kl
(γµ)ij (γµ)kl

(γµγ5)ij (γµγ5)kl
(σµν)ij (σµν)kl




=




1
4 −1

4
1
4 −1

4
1
8

−1
4

1
4

1
4 −1

4 −1
8

1 1 −1
2 −1

2 0
−1 −1 −1

2 −1
2 0

3 −3 0 0 −1
2







(11)il (11)kj
(iγ5)il (iγ5)kj
(γµ)il (γµ)kj

(γµγ5)il (γµγ5)kj
(σµν)il (σµν)kj




. (3.2.30)

For general properties of Fierz transformations we refer to appendix I. The relevant transformations
for our present purpose are

(γµ)αβ(γµ)γδ = (11)αδ(11)γβ + (iγ5)αδ(iγ5)γβ −
1

2
(γµ)αδ(γµ)γβ

−1

2
(γµγ5)αδ(γµγ5)γβ , (3.2.31)

(11)ab(11)cd = 2(T 0)ad(T
0)cb + 2(T a)ad(T

a)cb , (3.2.32)

(T ac )ij(T
a
c )kl =

N2
c − 1

2N2
c

(11)il(11)kj −
1

Nc
(T ac )il(T

a
c )kj , (3.2.33)

for the Lorentz, flavour and colour indices respectively. On immediately see that, starting from a
current-current operator, the latter does not contain tensor modes which justify a posteriori that we
have not considered them previously. The current-current operator of Eq. (3.2.28) rewrites

LcNJL =
N2
c − 1

2N2
c

2Gc

{
(ΨT 0Ψ)2 + (ΨT aΨ)2 + (ΨT 0iγ5Ψ)2 + (ΨT aiγ5Ψ)2 − 1

2
(ΨT 0γµΨ)2

−1

2
(ΨT aγµΨ)2 − 1

2
(ΨT 0γµγ5Ψ)2 − 1

2
(ΨT aγµγ5Ψ)2

}
, (3.2.34)

where we have omitted the coloured octet contractions which do not contribute to the mesonic modes
4. Comparing the above equation with Eq. (3.1.11), we find that

GS = Gc
N2
c − 1

N2
c

=
8

9
Gc , GS = −2GV , GV = G′

V = G′′
V , GT = 0 . (3.2.35)

Then, in the hypothesis that the strong dynamics generates mainly the current-current operator od
Eq. (3.2.28), there is only one independent four-fermion coupling that we can choose to be GS . Note
that these phenomenological relations between the four-fermion couplings lead to quite reasonable
results compare the more general case where the couplings are not related [60]. An important point is
that, when we will study the UV completions of CHMs, we will also use for phenomenological reasons
the current-current hypothesis (see chapters 8 and 9)

4In addition, these channels are not supposed to be attractive from the point of view of the maximal attractive
channel (see subsection 10.2.1).
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For completeness, we also give the Fierz transformations in the quark-quark channel [(q1q2)(q3q4) →
(q1q3)(q4q2)]




(11)ij (11)kl
(iγ5)ij (iγ5)kl
(γµ)ij (γµ)kl

(γµγ5)ij (γµγ5)kl
(σµν)ij (σµν)kl




=




−1
4 −1

4
1
4 −1

4 −1
8

−1
4

1
4

1
4 −1

4
1
8

1 1 −1
2 −1

2 0
1 1 1

2
1
2 0

−3 3 0 0 −1
2







(iγ5C)ik (Ciγ5)lj
(C)ik (C)lj

(γµγ5C)ik (Cγµγ5)lj
(γµC)ik (Cγµ)lj
(σµνC)ik (Cσµν)lj




(3.2.36)




(
T 0

)
ij

(
T 0

)
kl∑

a
(T a)ij (T

a)kl


 =

(
1
N − 1

N
N−1
N −N+1

N

)


∑
a
(T as )ik (T

a
s )jl

∑
a
(T aA)ik (T

a
A)jl


 (3.2.37)

respectively for the Dirac and flavour or colour contractions. In some cases, these relations are useful
to rewrite the current-current operator in coloured channels. For instance, the computation of the
baryonic masses in the NJL necessitates as a first step to compute the diquark masses. The latter are
obtained as usual from the Bethe-Salpether equation where the coupling is one of those attached to
four-fermion interactions with coloured bilinears. Then, the Fierz transformations in the quark-quark
channel allow to reduce the number of free parameters in the baryonic sector and even to relate these
couplings to the mesonic sector. This is discussed briefly in subsection 10.2.1 in the QCD context and
also in the CHM context.

3.2.4 Generalisation to the three three flavours case

Let us now turn to the more realistic case with three flavours of quarks. Our goal is not to present
this case in details but rather to outline the main differences compare to the two flavours case (see
e.g. Refs. [60,61]). First, with three flavours, the Fierz transformations are the same than in the two
flavours case [see Eq. (3.2.32)] such that at the level of the four-fermions interactions, there are no
differences.

The only changes arrive in the explicit breaking terms. More precisely, at the Lagrangian level
the two differences are: (i) the current mass term which is not proportional to the identity matrix
[see Eq. (2.2.11)] and (ii) the ’t Hooft term which is a six-point interaction [see Eq.(ref’t Hooft term
three flavours)].

The first point leads to an explicit breaking of the vector SU(3)V symmetry down to SU(2)V .
Then we expect Mu = Md 6= Ms and all of the flavour traces are modified. Indeed, the one-loop
functions appearing in the gap equation involve the following flavour traces

Tr[MT 0] =
1√
6
(Mu +Md +Ms) =

1√
6
(2Mu +Ms) , T r[MT 3] =

1

2
(Mu −Md) = 0 , (3.2.38)

Tr[MT 8] =
1

2
√
3
(Mu +Md − 2Ms) =

1√
3
(Mu −Ms) , (3.2.39)

where the second equalities are valid when SU(2)V is an exact symmetry, that is, for Mu =Md. The
traces involving all of the other (non-diagonal) generators are zero. Note that, in this subsection, the
mass matrix M contains the dynamical masses Mu,d,s and not only the current masses mu,d,s. As a
consequence, the σ-channel associated to T 0 contributes to the gap equation but also the S8-channel
associated to T 8. This is a result of the mixing between this two channels and we will come back
latter to this point.

In a similar way, the flavour traces of the one-loop two point functions Π̃i are modified. To properly
define these two-point functions, we need to define a more convenient basis for the SU(N) generators

T±
1 =

1√
2
(T 1 ± iT 2) , T±

4 =
1√
2
(T 4 ± iT 5) , T±

6 =
1√
2
(T 6 ± iT 7) , (3.2.40)
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while the diagonal generators remain the same. In this new basis, the resonances associated to the
above generators have definite EM charges such that we identify the mass eigenstates 5. A change
of basis was not necessary in the two flavours case because there is no breaking of the vectorSU(2)V
symmetry such that all of the resonances in a multiplet of SU(2)V have the same masses and we can
work independently in any basis. I the above basis, the relevant and non-zero traces involved in the
one-loop two point functions are

Tr[T 0MT 0M] =
1

6
(M2

u +M2
d +M2

s ) =
1

6
(2M2

u +M2
s ) , (3.2.41)

Tr[T 3MT 3M] =
1

4
(M2

u +M2
d ) =

1

2
M2
u , (3.2.42)

Tr[T 8MT 8M] =
1

12
(M2

u +M2
d − 2M2

s ) =
1

6
(M2

u −M2
s ) , (3.2.43)

Tr[T+
1 MT−

1 M] =
1

2
MuMd =

1

2
M2
u , (3.2.44)

Tr[T+
4 MT−

4 M] =
1

2
MuMs , (3.2.45)

Tr[T+
6 MT−

6 M] =
1

2
MdMs =

1

2
MuMs , (3.2.46)

where again, the second equalities are valid when SU(2)V is not broken. In addition, there is also the
trace involving the T 0 and T 8 generators

Tr[T 0MT 8M] =
1

2
√
18

(M2
u +M2

d − 2M2
s ) =

1√
18

(M2
u −M2

s ) , (3.2.47)

while Tr[T 0MT 3M] = (M2
u −M2

d )/(2
√

6) and Tr[T 3MT 8M] = (M2
u −M2

d )/(4
√
3) vanish due to

the SU(2)V symmetry ie Mu = Md. Then, there is a mixing between the resonances attached to
the generators T 0 and T 8 6. In the limit where Mu = Ms = M , all of the above traces are either
equal to zero or to M2/2 in agreement with the two flavours case. Note that in the channels T±

4

and T±
6 , a further complication comes from the fact that there are two fundamental fermions with

different masses running at the same time in the loop. This is not the case for T±
1 and T 3 which are

associated to the SU(2)V subgroup. Note that the kinetic parts of the one-loop two point functions
(see appendix B) do not involve M and are then not modified compare to the two flavours case.

Let us now turn to the second point which is related to the ’t Hooft term. The latter induces new
effective contributions to the four-fermions interactions. Indeed, some of the six-point interactions of
Eq. (3.1.26) contribute to the Schwinger-Dyson equation as well as to the Bethe-Salpeter equation.
More precisely, the first operator Dabc(ΨT

aΨ)(ΨT bΨ)(ΨT cΨ) brings new contributions to the gap
equation as one can close two loops (instead of one in the case of four-fermion interactions). From the
above discussion, only a part of this operator contributes, that is, the part with two non-zero traces
of the form Tr[MT a]. Taking into account all of the symmetry factors coming from the closure of
the loops, one obtains [60]

{
Mu = mu − 〈uu〉(GS +H〈ss〉) =Md ,
Ms = ms − 〈uu〉GS −H〈uu〉2 , (3.2.48)

where we have also taken into account the breaking of SU(3)V ie ms 6= mu = md. As a result, there
is a system of two coupled gap equations, one for the up and down quarks and one for the strange
quark. This is illustrated in figure 3.3. Note that, in the limit where the coupling of the ’t Hoft term
is set to zero (H = 0), the two gap equations are decoupled.

5Up to the mixing in the T 0 − T 8 sector (see below).
6If SU(2)V is explicitly broken as a consequence of mu 6= md, there is a mixing between the sectors T 0, T 3 and T 8

as it can be seen from Eq. (3.2.38)
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u

=

2GS
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u u
+
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2H

=

2GS
s ss s muMs

+
s s

s

2H

+

s

s s

Figure 3.3: Graphical illustration of the two gap equations (Mu = Md and Mu) in the NJL ap-
proximation with three flavours. Thick and thin lines represent dressed and bare quark propagators,
respectively. On the right-hand side of the equation, the contribution of the explicit breaking mass
term mq, the one of the four fermion interaction (GS) and the one coming from the six-point ’t Hooft
interaction (2H).

Similarly, there are new contributions to the masses of the resonances which come from the ’t Hooft
term. These contributions arrive from new effective four-fermion interactions which are obtained by
closing one loop in the two operators of Eq. (3.1.26). One has [60]

KS
ab = GS −Hcab , T a = (T b)† ,

KP
ab = GS +Hcab , T a = (Tb)

† ,

KV
ab =

{
−(GV +G′

V +G′′
V ) , T a = T b = T 0 ,

−GV , T a = (T b)† (a, b 6= 0) ,

KA
ab =

{
−(GV +G′

V −G′′
V ) , T a = T b = T 0 ,

−GV , T a = (T b)† (a, b 6= 0) ,
(3.2.49)

respectively for the scalar (KS
ab), pseudo-scalar (KP

ab), vector (KV
ab) and axial-vector (KA

ab) channels.
The coefficient cab is given by

cab =





〈ss〉 , a = 1±, b = 1∓; a = b = 3 ,
〈uu〉 , a = 4±, b = 4∓; a = 6±, b = 6∓ ,
4
3〈uu〉 − 1

3〈ss〉 , a = b = 8 ,
−4

3〈uu〉 − 2
3〈ss〉 , a = b = 0 ,√

2
3 〈uu〉 −

√
2
3 〈ss〉 , a = 0, b = 8 ,

0 , all others .

(3.2.50)

The ’t Hooft term contributes only to the scalar and pseudo-scalar couplings (see subsection 3.1.2) with
factors of the form H[α〈uu〉+β〈ss〉] where α, β are some combinatoric factors. This is a consequence
of closing one loop in the operators of Eq. (3.1.26).

One can compute the masses of the resonances from Eq. (3.2.6), the effective four-fermions cou-
plings above and the generalised (with the new flavour traces listed above) expressions of the one-loop
two point functions Π̃i. Note that, in some cases there are two mass eigenstates in the loop such
that Π̃i(p

2) = Π̃i(p
2,M2

u ,M
2
s ) and the B̃0 function should also be generalised in a similar way. As

mentioned above, we do not present the details of the computations and refer to Ref. [60].
Finally, the last complication comes from the mixing in the T 0 − T 8 sector. Indeed, in that case,

the four-fermions couplings and the one-loop two point functions take the following matrix form

K
S/P
08 =

(
K
S/P
00 K

S/P
08

K
S/P
80 K

S/P
88

)
, Π̃08 =

(
Π̃00
S/P (p

2,M2
u,s) Π̃08

S/P (p
2,M2

u,s)

Π̃80
S/P (p

2,M2
u,s) Π̃88

S/P (p
2,M2

u,s)

)
, (3.2.51)
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in the scalar and pseudo-scalar sectors 7. For simplicity, we have neglected in the above equation, the
axial pseudo-scalar mixing (see comments in subsection 3.2.2). The physical masses Mi, are obtained

from det[11 − 2K
S/P
08 Π̃08(p

2 = M2
i )] = 0 which is a generalisation of Eq. (3.2.7) in the matrix case.

For instance, the mixing in the η0 − η8 sector is parametrised by the angle θηη′

(
η
η′

)
=

(
cos θηη′ − sin θηη′

sin θηη′ cos θηη′

)(
η8
η0

)
. (3.2.52)

One can compute this angle in the NJL (see e.g. Ref. [60]). This is relevant in the context of the η, η′

decays in two photons (see subsection 2.5.2).

Finally, let us comment on new physics. In CHMs, the ’t Hooft term connects the EW (from
which the Higgs emerges) and the coloured (containing top partners) sector in such a way that there
is a mixing between some resonances of the two sectors which have the same quantum numbers.
However, this mixing is less involved than the one in QCD because it has nothing to do with the
flavour symmetry in CHMs. More precisely, in CHMs the mixing arrives as a result of an effective
four-fermion interaction between the two sectors. In other words, the coupling matrix in Eq. (3.2.51)
has off-diagonal elements while matrix containing the one-loop two point functions is diagonal (see
section 9.2.5). The QCD case is then a relevant starting point to understand the mixing bewteen the
scalar and pseudo-scalar resonances of the CHMs.

7In the vector and axial-vector channels, the coupling matrix is diagonal as there are no contributions from the ’t
Hooft term. However, there is a mixing between the resonances associated to T 0 and T 8 as the matrix of one-loop two
point functions contains off-diagonal elements as a result of the flavour trace.
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B One-loop two point functions with Dirac fermions in the large-Nc

approximation

In this appendix, we compute explicitly the one-loop two point functions involved in the derivations
of subsection 3.2.2, that is, we compute the correlators relevant for the NJL model of QCD when no
explicit breaking of SU(N)V is present. In the NJL approximation, the one-loop two point functions
are estimated from the exchange of fermions with a dynamical mass M . The following computations
stand for the QCD case with N flavours of Dirac fermions in the fundamental representation of colour.
The generalisation to other gauge representations is straightforward while the equivalent computations
with Weyl fermions instead of Dirac ones is not so obvious and reported in appendix H. According to
section 2.4, the general 8 expression of the one-loop two-point functions Π̃i(p

2,M2) is given by

iΠ̃abαβ(p
2,M2) = (−1)Nc Tr[T

aT b]

∫
d4k

(2π)4
Tr[i( 6 p 6 k +M)iΓαi( 6 k +M)iΓβ ]

[(p+ k)2 −M2][k2 −M2]

≡ iΠ̃αβ(p
2,M2)δab , (B.1)

where we have assumed that only one fermion with mass M runs in the loop (see comments be-
low). The matrix Γ stands for the Dirac contractions [see Eq. (2.2.3)] while the factor Nc and
Tr[T aT b] = δab/2 correspond respectively to the colour and flavour traces. In the next we consider
only the one-loop functions involving the Dirac contractions Γ = {11, iγ5, γµ, γµγ5}. Indeed, we do not
consider the tensor modes for simplicity but also because the latter are not induced by the current-
current operator of subsection 3.2.3). Note that the flavour and Dirac tensor structures of the one-loop
two point functions are already discussed in section 2.4. In the next, we do not consider the flavour
tensor structure such that our expressions are valid both for the singlet and non-singlet channels.

Let us begin by the spin zero channels. The scalar two point function Π̃S(p
2,M2) corresponds to

Γα = Γβ = 11 such that

Π̃S(p
2,M2) = 2iNc

∫
d4k

(2π)4
(p+ k) · k +M2

[(p+ k)2 −M2][k2 −M2]

= 2iNc

∫
d4k

(2π)4
1

2

[(p+ k)2 −M2] + [k2 −M2]− (p2 − 4M2)

[(p+ k)2 −M2][k2 −M2]

= 2Nc

[
Ã0(M

2)− 1

2
(p2 − 4M2)B̃0(p

2,M2)

]
, (B.2)

where Ã0(M
2) is defined in Eq. (3.2.4) while B̃0(p

2,M2) corresponds to

B̃0(p
2,M2) ≡ i

Λ∫

0

d4k

(2π)4
1

[(p+ k)2 −M2][k2 −M2]
. (B.3)

We refer to appendix G for the expression of the B̃0 function after the integration over momenta. As
it can be seen from Eq. (B.2), the Dirac trace divides in two non-zero parts: one involving the massive
parts of the propagators (∼ M2Tr[ΓαΓβ ]) and the other one involving the two kinetic parts (∼ Tr[( 6
p+ 6 k)Γα 6 kΓβ ]). The same behaviour is valid for Π̃P,V,S while for Π̃AP , the non-zero traces involve
the product of the kinetic and massive parts of the propagators (∼M Tr[( 6 p+ 6 k)ΓαΓβ + Γα 6 kΓβ ]).

Similarly, for the pseudoscalar two point function Π̃P (p
2,M2) for which Γα = Γβ = iγ5, we have

Π̃P (p
2,M2) = 2iNc

∫
d4k

(2π)4
(p+ k) · k −M2

[(p+ k)2 −M2][k2 −M2]
= 2Nc

[
Ã0(M

2)− p2

2
B̃0(p

2,M2)

]
. (B.4)

8The axial-pseudoscalar correlator is defined slightly differently [see Eq. (2.4.3)].
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Let us now turn to the spin one channels, that is to Π̃V and Π̃A. The vector and axial traces give
respectively

∫
d4k

(2π)4
Tr[γµ( 6 p+ 6 k +M)γν( 6 k +M)]

[(p+ k)2 −M2][k2 −M2]
=

∫
d4k

(2π)4
Tr[γµ( 6 p+ 6 k)γν 6 k +M2γµγν ]

[(p+ k)2 −M2][k2 −M2]

=
4

3
Tµν

[
−2Ã0(M

2) + (p2 + 2M2)B̃0(p
2,M2)

]
, (B.5)

∫
d4k

(2π)4
Tr[γµγ5( 6 p+ 6 k +M)γνγ5( 6 k +M)]

[(p+ k)2 −M2][k2 −M2]
=

∫
d4k

(2π)4
Tr[γµ( 6 p+ 6 k)γν 6 k −M2γµγν ]

[(p+ k)2 −M2][k2 −M2]

=
4

3
Tµν

[
−2Ã0(M

2) + (p2 − 42M2)B̃0(p
2,M2)

]
− 8M2LµνB̃0(p

2,M2) , (B.6)

where the transverse and longitudinal tensor are defined in section 2.4. Note that, to derive the above
relations, we have used the following tensorial reduction

B̃µ(p2,M2) ≡ i

∫
d4k

(2π)4
kµ

[(p+ k)2 −M2][k2 −M2]
= pµB̃1(p

2,M2) = −pµ B̃0(p
2,M2)

2
, (B.7)

where in the last equality, we have used pµB̃
µ = −p2B̃0/2 = p2B̃1. Similarly,

B̃µν(p2,M2) ≡ i

∫
d4k

(2π)4
kµkν

[(p+ k)2 −M2][k2 −M2]
(B.8)

= gµνB̃00(p
2,M2) + pµpνB11(p

2,M2)

=
1

3

[
1

2
Ã0(M

2)− 1

4
(p2 − 4M2)B̃0(p

2,M2)

]
gµν +

1

3

[
Ã0(M

2) + (p2 −M2)B̃0(p
2,M2)

] pµpν
p2

,

where the last equality has been obtained from gµνB̃µν = 4B̃0 + p2B̃11 = Ã0 +M2B̃0 and pµB̃µν =
[Ã0 + p2B̃0/2]pν/2 = [B̃00 + p2B̃11]pν . From the above relations, one obtains for the vector and
axial-vector one-loop correlators

Π̃µνV (p2,M2) = Π̃V (p
2,M2)Tµν =

2

3
NcT

µν
[
−2M2B̃0

0(M
2) + (p2 + 2M2)B̃0(p

2,M2)
]
, (B.9)

Π̃µνA (p2,M2) = Π̃A(p
2,M2)Tµν + Π̃LA(p

2,M2)Lµν (B.10)

=
2

3
Tµν

[
−2M2B̃0

0(M
2) + (p2 − 4M2)B̃0(p

2,M2)
]
− 4M2LµνB̃0(p

2,M2) .

One should notice two important points in the above equations. First, in order to preserve the current
conservation, we have replace Ã0(M

2) by M2B̃0
0(M

2) ≡ M2B̃0(0,M
2) such that Π̃µνV,A(0,M

2) = 0 9.
Second, the one-loop axial correlator contains a non-zero longitudinal part even when the axial sym-
metry is not explicitly broken. This is a very specific feature of the NJL model where the dynamical
mass M acts like an explicit breaking term. This does not remain true for the resumed correlator

Π
L
A(p

2) which is equal to zero in the chiral limit (see subsection 3.2.2), in agreement with the current
conservation. These two points are discussed in more details in subsection 8.2.4.

Finally, the last one-loop function that we consider is the axial-pseudoscalar correlator Π̃AP . In
that case, according to the definition in Eq. (2.4.3) we have

Π̃µAP (p
2,M2) ≡ Π̃AP (p

2,M2)pµ =
Nc

2

∫
d4k

(2π)4
Tr[( 6 p 6 k +M)γµγ5( 6 k +M)iγ5]

[(p+ k)2 −M2][k2 −M2]

= −iNc

2

∫
d4k

(2π)4
Tr[( 6 p 6 k +M)γµ( 6 k −M)]

[(p+ k)2 −M2][k2 −M2]

= −2NcMB̃0(p
2,M2)

√
p2pµ . (B.11)

9Remember that both the vector and the axial currents are conserved in the chiral limit even if the axial symmetry
is spontaneously broken.
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All of the above results, valid for one massive fermion, can be generalised to the case of two fermions
with a different masses running in the loop. That is relevant e.g. in the case of the NJL model of
QCD with tree-flavours. Indeed, as discussed in subsection 3.2.4, some channels involve the up quark
(or the down quark) and the strange quark at the same time (Mu =Md 6=Ms). Moreover, this is also
relevant for the diquarks channels in CHMs as the latter involve one EW and one coloured fermion
which have a different mass ie Mψ 6= MX (see subsection 10.2.1). However, in this generalised case,
the expressions of the one-loop two point functions are more involved to derive and not really telling.
Let us just mention that Π̃LV (p

2,M2
1 ,M

2
2 ) and Π̃V S(p

2,M2
1 ,M

2
2 ) become non-zero when M1 6=M2.

Finally, if one compares the above two-points functions with the ones of appendix H, there is an
additional factor two in the present Dirac case. This is due to the fact that in QCD we have N Dirac
fermions, that is, N left-handed and N right-handed Weyl fermions instead of only N left-handed
fermions in the CHM of chapters 8 and 9. As the normalisation of the flavour generators is the same in
the two cases while the Lorentz traces are different, the Dirac and Weyl one-loop two point functions
differ by a factor of two.
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Part II

Phenomenological extensions of the
SM
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In the precedent part of the manuscript, we have reviewed some interesting aspects of the SM. We
have seen in particular that the presence of BSM physics is needed to account for some experimental
facts and theoretical puzzles that the SM does not explain. Let us now turn to the introduction of
new physics. There are two main options to address new physics: (i) to extend the SM with only few
new states and (ii) to consider a well-motivated UV complete model. In this part of the manuscript,
we follow the first phenomenological approach to new physics, that is, we extend the SM only with
few new states at the EW scale. These states can be seen as the low energy manifestation of a more
complete UV model where the other states are heavy and can be decoupled from the low energy
theory. However, we are agnostic of the UV theory and this approach is largely model independent.
The second approach which is more theoretically motivated and by definition model dependent will
be presented in part III where the focus will be on CHMs.

The main feature of the extensions that we consider in chapters 4 and 5 is the presence of new
fermions coupled to the Higgs boson. There are several interesting points to consider new fermions
instead of scalar or spin one particles. Indeed, some solutions to the hierarchy problem predict the
presence of new fermions (see section 1.6 and also 6.3) close to the EW scale. That is the case e.g. in
composite Higgs models where the breaking of the EW symmetry is mainly driven by the presence of
relatively light top partners. In addition, most of the scenarios addressing the issue of the neutrinos
masses require the presence of new fermionic states. Furthermore, the SM field content (see table 1.1)
is already mainly fermionic such that, new fermions represent a natural extension of the SM. They
can give for instance an explanation of the observed flavour structure of the SM. Finally, even if we
do not address these questions, some fermions can be interesting DM candidates and some fermionic
extensions can bring new sources of CP violation as required for baryogenesis.

New fermions were already studied in the past from the point of view of the EWPT like the Z
boson couplings and the S and T parameters. As some Higgs couplings are now measured and will be
measured with more and more accuracy in the near future, it is relevant to study the impact of these
new fermions on the Higgs couplings in conjunction with the EWPT constraints. Then, the aim is
to have a clear picture of what BSM models with new fermions are still allowed with the additional
constraints coming from the Higgs couplings measurements. For instance, the classical example of a
fourth generation in its simplest form is now ruled out by the Higgs couplings measurements. Let us
mention that other studies undertook the study of fermionic extensions affecting the Higgs couplings
but the latter have considered only few cases and are not as exhaustive as the one in chapter 4.

There may be alternative phenomenological motivations than the Higgs couplings to study fermionic
extensions of the SM. We list below some possibilities. First, one can try to explain some experimental
anomalies with new fermions. For instance, Refs. [62, 63] try to explain the (g − 2)µ anomaly. They
classify the fermionic but also scalar and vector extensions that give a contribution to the anomalous
magnetic moment of the muon. In the same spirit, Ref. [64] consider the possibility that the discrep-
ancy between the SM prediction and the experimental measurement in the right-handed couplings
ZbRbR (see appendix C.3) is due to the presence of new physics. They study the impact of new
fermions but also new scalars and spin one particles. Another motivation is to look for generic dark
matter candidates as it is done e.g. in Refs. [6, 65, 66]. In general, the above analysis do not restrict
to new fermions but also consider new scalars and spin one particles. Then, it can be interesting for
a future work to do an exhaustive classification of the scalar and spin one extensions that affect the
Higgs couplings. However, one should note that scalar and spin one extensions at the EW scale are
less trivial than fermionic extensions. Indeed, it is not easy to separate the spin zero and spin one
states from an UV theory. The masses of new scalars particles are not protected from large radiative
corrections (see section 1.6) and the introduction of such particles worsen the naturalness of the EW
scale. For instance, new scalars can be bounds states of a new strongly interacting sector that con-
densates. In this way the radiative corrections are naturally cut at the condensation scale. Similarly,
for a theoretically self-consistent theory with spin one particles, one should precise the origin of the
new states, that is, if they are gauge bosons of a new spontaneously broken gauge symmetry or if the
are bound states of a new strongly interacting sector. This UV origin constrains the couplings of the
spin one states. In addition, contrary to new fermions, the structure of the SM can be widely affected
by spin zero and spin one particles because the Higgs sector can be extended as well as the SM gauge
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symmetry.
Let us comment a bit more on scalar extensions. In a lot of well-motivated BSM theory like e.g.

supersymmetry, there is an extended Higgs sector. The most simple possibilities with respect to the
T parameter are new scalar singlets or doublet with respective hypercharges Y = 0,±1/2 (see section
1.3). Then, an interesting possibility is an extension with a second Higgs doublet and in addition to
consider the effect of new fermions. These kind of models can be seen as a natural continuation of
the extensions mentioned above. In particular, we already now that a Higgs doublet exists such that
a second one is a natural possibility that will be considered in chapter 5.

This second part of the manuscript is organised as follow. We first discuss the fermionic extensions
that couple to the SM Higgs doublet in chapter 4. In that case, the new fields content is purely
fermionic and we mainly study the effects of new fermions on the EWPT as well as on the Higgs
couplings. We make use of the results of chapter 1, e.g. the classification of the SM fermionic
extensions is mostly based on the requirement that the SM gauge anomalies are cancelled, we highlight
the fermionic extensions with a custodial symmetry protecting the T parameter and we relate some
extensions to well-motivated BSM theories like SUSY or composite Higgs models. We also outline the
deviations that appear in the Higgs and Z boson couplings to the SM fermions. Then in chapter 5,
we present a more complicated case where the Higgs sector is extended with a second Higgs doublet
and new fermions are also introduced. This chapter can be seen as a enlargement of the precedent
framework. We do not classify all of the possible extensions as the fermionic extensions coupled to
the SM Higgs doublet are the same than the ones with two Higgs doublets. Consequently, we rather
focus on VL fermions which represent a well-motivated possibility of new fermions. The discussion
is mostly driven by the possibility to reproduce two LHC anomalies: the LFV decay h → τµ and
the diphoton excess at 750 GeV. The second anomaly has now disappeared but as we will see, our
framework is general enough to be interesting in a generalised context.
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Chapter 4

Fermionic extensions of the standard
model

In this chapter, we present a detailed analysis of the fermionic extensions of the SM that coupled to
the Higgs boson. Indeed, when the Large Hadron Collider began its data taking, possible extensions
of the Standard Model at the TeV scale were already severely constrained: electroweak precision
measurements accurately confirmed the structure of the gauge sector [67–69], a number of flavour vio-
lating observables showed no significant deviation from the SM predictions [70,71], all direct searches
of non-standard particles at LEP and Tevatron gave null results [68,72,73]. After the first run of the
LHC, the lower bounds on the masses of new particles increased substantially [74, 75]. The crucial
discovery of the Higgs boson [18,76] and the measurement of some of its properties [77–79] supported
the minimal realisation of electroweak symmetry breaking , as predicted by the SM. Thus, the room
for SM extensions further compressed.

In this phase, it is essential to reassess the possibilities still open for non-standard physics close
to the TeV scale. As already mentioned above, in this chapter we focus on new spin-1/2 degrees
of freedom. In particular, we will assume that the scalar and gauge sector is the SM one, with one
standard Higgs doublet. In general, additional dynamics in the EWSB sector may well be present,
including corrections to the Higgs boson couplings to the electroweak gauge bosons, as well as addi-
tional scalar or vector states: here we do not consider these possibilities, assuming that such dynamics
takes place at sufficiently higher scale, or it is sufficiently weakly coupled to the SM. In other words,
we will study effective field theories containing the SM degrees of freedom plus additional fermions
only, being agnostic on the ultraviolet completion at higher energy.

When wondering what fundamental fermions exist in Nature, one may notice that the fermion
field content of the SM appears whimsical in some respects. Each fermion family is a set of five chiral
multiplets, lL, eR, qL, uR and dR, whose gauge quantum numbers are not explained within the SM,
with the remarkable property to be anomaly-free (see section 1.4). The number of families, three, is
unexplained too. All SM fermions are massless before EWSB and, when the Higgs develops a vacuum
expectation value, they acquire a mass proportional to their Yukawa coupling to the Higgs doublet.
The structure of the Yukawa coupling matrices is not determined by the SM symmetries either (see
section 1.5). Of course, some of these issues may find a convincing interpretation in very high energy
extensions of the SM, such as grand unification or flavour theories, but in this chapter we will take a
phenomenological point of view and centre on the TeV scale only.

Additional chiral fermions that are massless before EWSB are definitely worth to look for, as their
mass is bound to the TeV scale; the classical example of a chiral fourth family, with the same field
content as the SM ones, was ruled out long ago [80], but we will show that more exotic possibilities
exist. On the other hand, chiral fermions that transform in a real representation or form vector-like
pairs, with respect to the SM gauge group, can acquire a mass before EWSB. While in general such
mass can be much larger than the EW scale, in a number of well-motivated extensions of the SM
there are new, fermionic degrees of freedom close to the TeV scale. Here are some familiar examples:

• Non-zero neutrino masses may be generated through the mixing with heavier fermions, typically
sterile neutrinos. The latter may have a mass close to the EW scale. However very different
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scenarios are possible, spanning from the eV scale to the grand unification scale.

• The dark matter energy density may be carried by new, weakly interacting fermions. If thermally
produced, their mass should be close to the EW scale.

• If the quantum stability of the EW scale is guaranteed by supersymmetry broken at the TeV
scale, the SM gauge bosons shall be accompanied by gauginos, and the scalar bosons by higgsinos.

• If the weak scale is stabilised by dimensional transmutation, via a new strongly-coupled sector
that condenses at the TeV scale, a number of composite spin-1/2 resonances may be present in
the low energy spectrum. For example, in the scenario of partial compositeness [81,82], the SM
chiral fermions, or at least the heaviest ones, are accompanied by vector-like composite partners
with the same gauge quantum numbers.

Given the diversity of phenomenological and theoretical motivations, and the wide-ranging dis-
covery reach of the LHC, in section 4.1 we undergo a classification of the fermionic extensions of
the SM, as general as possible. Theoretical consistency requires the absence of gauge anomalies. In
addition, all new fermions should acquire a large mass to comply with null direct searches. As we
want to explore the new constraints that materialised after the Higgs discovery, we limit ourselves to
those fermions that interact with the Higgs doublet via Yukawa couplings. We provide the full list
of SM extensions with these properties, formed by up to four new chiral multiplets, and comment
on larger sets of new fermions. We note in passing that there may be alternative phenomenological
motivations to study fermions that do not interact with the Higgs, for example to avoid the flavour
problem altogether, or to look for generic dark matter candidates; some complementary classifications
along this line can be found e.g. in Refs. [6, 65, 66].

The rest of the chapter is dedicated to the phenomenology of the fermionic SM extensions, in
particular to identify the regions of parameters that survive to three broad classes of constraints: (i)
EW precision tests; (ii) collider direct searches; (iii) Higgs boson couplings. Our purpose is to provide
a comprehensive, comparative description of all possible sets of fermions, that are presently allowed
and may have an observable effect at the second run of the LHC. Such analysis has several limitations
that one should keep in mind:

• We compute only the leading order corrections to the Higgs and gauge boson couplings due to
the extra fermions, and we roughly extract the collider bounds on their masses and couplings
from the available experimental papers. A precision analysis would require a dedicated study
for each given set of new fermions (and it is already available for several specific cases).

• We assume that the new fermions do not mix with the first and second SM families, in order to
avoid the strong constraints coming from flavour observables (tree-level flavour changing neutral
currents are absent). Indeed, the mixing with the third family is sufficient to characterise the
corrections to the EW and Higgs observables, that are our main subject of interest. In addition,
the Higgs couplings to the light families are presently unconstrained. Note that the mixing
with the third family can still induce flavour violating processes at one loop, especially in B-
meson decays or oscillations, when the top or bottom quarks mix with new fermions. However,
the corrections are suppressed with respect to the SM by the masses of the new fermions and
their mixing with the SM ones. The constraints are typically mild, but in some cases may be
complementary to those discussed in this chapter, see e.g. Refs. [83–85].

• The new fermions are not supposed to form an ultraviolet complete theory, consistent up to
a scale much larger than the TeV. Therefore, we do not impose constraints coming from the
coupling evolution at high energies, such as vacuum stability, absence of Landau poles, or gauge
unification. We have no pretension to determine the full theory.

• We do not restrict the possible SM extensions using cosmological considerations, that rely in
most cases on specific assumptions on the early Universe evolution. For example, we do not
impose bounds on the relic abundance of the new fermions, based on the assumption of an initial
thermal abundance.
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As a matter of fact, these points can be addressed only in a model-dependent manner. In specific, well-
motivated scenarios, it would be worth to perform more precise computations and include additional
constraints from the other sectors of the theory.

In section 4.2 we discuss purely chiral sets of fermions, that is, fermions that are massless before
EWSB. Fermions with an EW-invariant mass, that is, either a Majorana or a vector-like mass term,
are discussed in section 4.3, if they are colourless, and in section 4.4, if they are coloured. With a
little abuse of terminology, we will call ‘leptons’ all the colourless fermions, even when they do not
mix with the SM leptons, and ‘quarks’ all the coloured ones, even when they do not transform in the
fundamental representation of the colour group SU(3)c. Finally, in section 4.5 we recapitulate the
most interesting results of our analysis.

For each sets of new fermions, we were confronted with the need to compute EW precision observ-
ables and Higgs couplings. Thus, we took the opportunity to collect all the relevant formulas in the
appendices, that generalise well-known results to the case of a generic fermionic extension of the SM.
In appendix C, we present the fermion-gauge boson couplings, the corrections to the S and T param-
eters, as well as to the Zff̄ vertex. In appendix D, we discuss the fermion-Higgs boson couplings,
both the tree-level and the loop-induced ones, and we briefly summarise the present experimental
constraints on the Higgs couplings.

4.1 Minimal fermionic extensions of the SM

Let us consider the extension of the SM by additional fermions, classified according to their transfor-
mation under the SM gauge group SU(3)c×SU(2)w×U(1)Y , whose irreducible representations can be
denoted by (Rc, Rw, Y ). The SM extension is defined by the most general renormalizable Lagrangian
involving the SM fields and a given set of extra chiral fermion multiplets.

We wish each set of new fermions (i) to be phenomenologically viable, (ii) to be theoretically self-
consistent, and (iii) to modify the Higgs couplings. This leads to the following series of requirements:

(i) No massless fermions after EWSB, except for the three SM neutrinos and gauge singlets. Indeed,
massless fermions are phenomenologically forbidden, unless they have no colour (Rc = 1), no
electric charge (Q = T3 + Y = 0), and no coupling to the Z-boson (T3 − tan2 θwY = 0). The
latter two conditions imply Y = T3 = 0. These conditions would allow for a massless neutral
component in the chiral multiplet (1, Rw, 0) with Rw odd, however the gauge symmetries permit
a Majorana mass term for such a multiplet.

(ii) No SM gauge anomalies. The fermionic extensions of the SM under consideration are intended as
effective theories valid up to the multi-TeV scale, therefore they should cancel all SM anomalies
self-consistently. (Extra fermions much heavier than the EW scale play no role in the anomaly
cancellation, since they form vector-like pairs with respect to the SM gauge group.) Since the
SM field content is anomaly-free by itself, the anomaly-cancellation conditions must be imposed
on the set of new fermions only.

As we require the absence of massless coloured states, the new fermions form a (reducible)
real representation of SU(3)c, therefore the SU(3)c-cubic anomaly is automatically vanishing.
Denoting the new fermion representations by (Rci, Rwi, Yi), for i = 1, . . . , n, the remaining
anomaly-cancellation conditions read

SU(3)c − SU(3)c − U(1)Y :
∑n

i=1NwiC(Rci)Yi = 0 ,
SU(2)w − SU(2)w − U(1)Y :

∑n
i=1NciC(Rwi)Yi = 0 ,

U(1)Y − U(1)Y − U(1)Y :
∑n

i=1NciNwiY
3
i = 0 ,

grav − grav − U(1)Y :
∑n

i=1NciNwiYi = 0 ,

(4.1.1)

where Nw ≡ dim(Rw), Nc ≡ dim(Rc) – this notation is redundant for SU(2) but not for SU(3) –
and the index C(R) of a given representation is defined by Tr(T aRT

b
R) = C(R)δab, with the index

of the fundamental conventionally normalised to C(N) = 1/2 for SU(N). In the case of SU(2)
one has C(Rw) = Nw(N

2
w−1)/12. In the case of SU(3) each representation Rc is characterised by
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two integer Dynkin labels (a1, a2) with ai ≥ 0, and one has Nc = (1+a1)(1+a2)(1+a1/2+a2/2)
and C(Rc) = Nc(a

2
1 + 3a1 + a1a2 + 3a2 + a22)/24.

Additionally, the SU(2)w gauge group has a global anomaly, that cancels only when the sum∑n
i=1NciC(Rwi) is an integer number [86]. Note that C(Rw) is half-integer for Nw = 2 + 4n,

n = 0, 1, 2, . . . , and integer in all other cases. As for the previous anomalies, this condition must
be satisfied by the fermions below the multi-TeV scale. (Heavier fermions, decoupled from the
EW scale, necessarily give an integer contribution to the sum: only an even number of multiplets
with Nw even can acquire a vector-like mass.)

(iii) Non-zero corrections to the Higgs boson couplings. This corresponds to consider only new
fermions with a Yukawa coupling to the SM Higgs doublet. More precisely, any subset of
new fermions that satisfies the requirements (i) and (ii) by itself – any subset with no massless
states nor anomalies – should have a non-zero Yukawa coupling to the Higgs. Otherwise, such
subset would interact with the SM only through gauge interactions; strictly speaking, it can still
affect the Higgs boson couplings at the two-loop level, but here we neglect such small effects.

We stress that the three requirements above are independent, in the sense that none is automatically
implied by the others. In particular: vector-like fermions are automatically massive and anomaly-free,
but they may not couple to the Higgs doublet; chiral fermions that have non-zero masses, such as an
extra family of quarks, can be anomalous; an anomaly-free set of fermions, such as zero-hypercharge
fermions, may contain some massless components.

In the following we classify the sets of n chiral fermions that satisfy the requirements (i), (ii) and
(iii), for n = 1, 2, 3, 4, and we briefly comment on larger sets. For convenience, we will mark with the
symbol � each viable set that is identified.

4.1.1 One multiplet

If we add to the SM only one new chiral fermion ψ ∼ (Rc, Rw, Y ), the only possibility to avoid massless
states with non-zero SM gauge charges is the presence of a Majorana mass term mψψψ, that requires
Rc = Rc, Y = 0 and Nw odd. Such multiplet is anomaly-free. The additional requirement to couple
to the Higgs doublet, H ∼ (1, 2, 1/2), restricts the possibilities to Rc = 1 and Rw = 1 or 3, that is,

� N ∼ (1, 1, 0) or Σ ∼ (1, 3, 0) . (4.1.2)

In both cases a Yukawa coupling is allowed among the new fermion, H and the SM lepton doublet
l ∼ (1, 2,−1/2).

Since N (Σ) forms by itself a self-consistent extension of the SM that modifies the Higgs couplings,
n replicas of N (and/or Σ) also define a set of new fermions satisfying all our criteria. We will analyse
their phenomenology in section 4.3.1. Of course, there may also be consistent sets of n new fermions
that are partly formed by replicas of N or Σ, and partly by different multiplets, as we will see in the
following sections.

4.1.2 Two multiplets

Let us classify the possible pairs of chiral fermions ψ1 and ψ2 that can be added consistently to the
SM and that modify the Higgs couplings. The fermion ψ1 can satisfy all requirements without ψ2

only if it transforms as (1, 1, 0) or (1, 3, 0), as shown in section 4.1.1. In this case the three obvious
possibilities are

� N1 +N2 , Σ1 +Σ2 , N +Σ . (4.1.3)

For all other representations, a coupling between ψ1 and ψ2 is necessary: either there is a vector-like
mass term m12ψ1ψ2, or a Yukawa coupling ψ1ψ2H(H̃). The latter possibility leads to an inconsistent
mass spectrum: one has Nw1 = Nw2 + 1 (or vice versa) and the unbalanced component of ψ1 has
T3 6= 0, therefore it cannot be massless. Then, either ψ1 admits a Majorana mass term or it couples
to a SM fermion too. One can check that, in both cases, either another unwanted massless state
is left, or a SM neutrino acquires a large mass too. An alternative way to exclude the case of the
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ψL1 ψL2 coupling to

E ∼ (1, 1,−1) Ec ∼ (1, 1,+1) l, ec

L ∼ (1, 2,−1
2) Lc ∼ (1, 2,+1

2) l, ec

Λ ∼ (1, 2,−3
2) Λc ∼ (1, 2,+3

2) ec

∆ ∼ (1, 3,−1) ∆c ∼ (1, 3,+1) l

T ∼ (3, 1,+2
3) T c ∼ (3, 1,−2

3) q, uc

B ∼ (3, 1,−1
3) Bc ∼ (3, 1,+1

3) q, dc

XT ∼ (3, 2,+7
6) Xc

T ∼ (3, 2,−7
6) uc

Q ∼ (3, 2,+1
6) Qc ∼ (3, 2,−1

6) q, dc, uc

YB ∼ (3, 2,−5
6) Y c

B ∼ (3, 2,+5
6) dc

XQ ∼ (3, 3,+2
3) Xc

Q ∼ (3, 3,−2
3) q

YQ ∼ (3, 3,−1
3) Y c

Q ∼ (3, 3,+1
3) q

Table 4.1: Vector-like pairs of left-handed chiral fermions, that provide a consistent extension of the
SM and modify the Higgs boson couplings.

Yukawa coupling ψ1ψ2H(H̃) is to solve the anomaly system (4.1.1) for n = 2: one obtains Nc1 = Nc2,
C(Rc1) = C(Rc2), Rw1 = Rw2 and Y1 = −Y2. Thus, we conclude that the two chiral fermions should
form a vector-like pair,

� ψ1 ∼ (Rc, Rw, Y ) , ψ2 ∼ (Rc, Rw,−Y ) . (4.1.4)

In order to modify the Higgs couplings, at least one among ψ1 and ψ2 should have a Yukawa coupling
with a SM fermion and the Higgs doublet. We take conventionally all chiral fermions to be left-
handed. A SM family is formed by l ∼ (1, 2,−1/2), ec ∼ (1, 1, 1), q ∼ (3, 2, 1/6), uc ∼ (3̄, 1,−2/3),
and dc ∼ (3̄, 1, 1/3). In order to have a Yukawa coupling with these representations, the new fermions
should transform under SU(3)c either as singlets or triplets. The former mix with SM leptons and
can be called vector-like leptons (VLLs), the latter mix with SM quarks, hence the name vector-like
quarks (VLQs). Under SU(2)w they can transform as singlets, doublets or triplets. All possible
vector-like fermions with a Yukawa coupling to the SM fermions are listed in Table 4.1.

To analyse the phenomenology of vector-like fermion multiplets, it is useful to name the compo-
nents with different electric charge Q. The possible components of the VLLs have charges Q(N) = 0,
Q(E) = −1 and Q(F ) = −2. Then, the self-conjugate leptons N and Σ and the four VLLs can be
written as

N, Σ =



Ec

N
E


 ; E, L =

(
N
E

)
, Λ =

(
E
F

)
, ∆ =



N
E
F


 . (4.1.5)

After EWSB, N , E and Ec can mix with the SM leptons ν, e and ec, respectively, while F does not
mix with the SM. We will discuss the phenomenology of these VLLs in section 4.3.2.

The possible components of the VLQs have charges Q(X) = 5/3, Q(T ) = 2/3, Q(B) = −1/3 and
Q(Y ) = −4/3. They are embedded in seven possible VLQ multiplets,

T, B, XT =

(
X
T

)
, Q =

(
T
B

)
, YB =

(
B
Y

)
, XQ =



X
T
B


 , YQ =



T
B
Y


 . (4.1.6)

After EWSB, T , T c, B and Bc can mix with the SM quarks t, tc, b and bc, respectively. On the
contrary, the components X, Y and their conjugate do not mix with the SM. We will discuss the
phenomenology of these VLQs in section 4.4.1.
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4.1.3 Three multiplets

Let us classify the possible sets of three chiral fermions ψ1,2,3 that can be added to the SM consistently
with the requirements of section 4.1. Of course, there is the trivial possibility to combine smaller sets
that are already consistent on their own:

� Three copies of N ∼ (1, 1, 0) and/or of Σ ∼ (1, 3, 0).

� A vector-like fermion from Table 4.1 plus one copy of N or Σ. As the latter couples to the SM
lepton doublet l, there may be a non-trivial interplay with the VLLs E, L and ∆, that also
couple to l. We will discuss this case in section 4.3.4.

To explore all the other possibilities, note that there are two patterns for the colour representations
of ψ1,2,3, that guarantee the absence of massless coloured states:

• Rc1 = Rc1 plus a vector-like pair Rc2 = Rc3 6= Rc1. The only choice allowing for couplings to
the Higgs is Rc1 = 1 and Rc2 = 3. In this case the two subsets ψ1 and ψ2,3 do not interact with
each other, therefore each should be a consistent extension of the SM by itself, reducing to the
trivial possibilities already listed above.

• Rc1 = Rc2 = Rc3. These can be either real or complex representations. One may have considered
three real representations of SU(3)c not all equal to each other; in this case, however, it is not
possible to allow Yukawa couplings to the Higgs and to give a mass to all coloured components,
at the same time.

In the only non-trivial case, Rc1 = Rc2 = Rc3 or permutations, the anomaly conditions in Eq. (4.1.1)
reduce to 




N3
w1Y1 +N3

w2Y2 +N3
w3Y3 = 0 ,

Nw1Y1 +Nw2Y2 +Nw3Y3 = 0 ,
Nw1Y

3
1 +Nw2Y

3
2 +Nw3Y

3
3 = 0 .

(4.1.7)

The possible solutions of this system (with Nwi positive integers) are

(a) Yi = 0 and Nwi arbitrary, for i = 1, 2, 3.

(b) Y1 = 0 with Nw1 arbitrary, Y2 = −Y3 6= 0 with Nw2 = Nw3, or permutations.

(c) For any pair of integer numbers n,m ≥ 0,





Nw1 = 1 + n , Nw2 = 2 + n+m , Nw3 = 3 + 2n+m ,

Y1 6= 0 arbitrary, Y2 = −Y1
Nw1(N

2
w3 −N2

w1)

Nw2(N2
w3 −N2

w2)
, Y3 = Y1

Nw1

Nw3

N2
w2 −N2

w1

N2
w3 −N2

w2

,
(4.1.8)

or permutations.

Let us consider these solutions in turn, to analyse whether they can satisfy the other requirements of
section 4.1.

(a) In order to couple to the Higgs boson, one needs Rci = 1 and Rwi = 1 or 3 for i = 1, 2, 3, that
is three copies of N or Σ: a trivial possibility already considered.

(b) Suppose first that ψ2 and ψ3 form a vector-like pair, that is, Rc1 = Rc2 = Rc3. But, to avoid
unpaired complex representations of SU(3)c, one needs Rc1 to be real. Barring the trivial cases
where ψ1 and ψ2,3 form self-consistent extensions of the SM separately, the necessary condition
to modify the Higgs couplings is to allow for a Yukawa coupling between ψ1 and ψ2,3. This leads
to

� ψ1 ∼ (Rc, Rw, 0) , ψ2 ∼ (Rc, Rw ± 1,
1

2
) , ψ3 ∼ (Rc, Rw ± 1,−1

2
) , Rc = Rc . (4.1.9)
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The choice of Rw is arbitrary up to the SU(2)w global anomaly: for Nw = 2 + 4n, one needs
Nc to be even. The colourless case Rc = 1 will be discussed in section 4.3.4. The coloured case
Rc = 8, 27, . . . will be discussed in section 4.4.3.

Next, suppose that ψ2 and ψ3 do not form a vector-like pair, that is, a complex representation
Rc1 = Rc2 = Rc3. In order to have the same number of colour-conjugate representations one
needs Nw1 = 2Nw2. A Yukawa coupling is also needed among ψ1 and ψ2,3 to provide masses, so
the only possibility is

� ψ1 ∼ (Rc, 2, 0) , ψ2 ∼ (Rc, 1,
1

2
) , ψ3 ∼ (Rc, 1,−

1

2
) , Rc 6= Rc . (4.1.10)

The SU(2)w global anomaly further requires thatNc must be even. Note that this is the minimal,
consistent set of chiral fermions that has no vector-like mass terms, rather it acquires a mass
from the Yukawa couplings only. The phenomenology of purely chiral fermions is discussed in
section 4.2.

(c) For (n,m) 6= (0, 0), one has Nw3 ≥ 4. Then, ψ3 does not couple to the SM nor to ψ1, and even
the possible Yukawa coupling to ψ2 cannot provide a mass to all the Nw3 components of ψ3.
Therefore, let us take (n,m) = (0, 0), that implies

ψ1 ∼ (Rc, 1, Y ) , ψ2 ∼ (Rc, 2,−
4

5
Y ) , ψ3 ∼ (Rc, 3,

1

5
Y ) . (4.1.11)

By requiring an equal number of components with opposite electric charge, one finds Y = ±1/2
or Y = ±1/6. In both cases one can check that some components of the new fermions remain
massless, therefore no consistent SM extension of this type exists.

4.1.4 Four multiplets

In the previous sections we derived the list of all the consistent sets of n new chiral fermions, with
n ≤ 3, discussing in detail how to implement the requirements of section 4.1. Here we provide the
complete list for n = 4, without displaying the lengthy and involved analysis needed to prove this
result.

First of all, there are a number of possibilities to combine smaller subsets of new fermions that
are already consistent by themselves. It is worth to list them for bookkeeping and to point out those
combinations with special phenomenological relevance:

� Four copies of N and/or Σ.

� Two copies of N and/or Σ plus a vector-like fermion from Table 4.1. In particular, the set
(N,Σ, L, Lc) corresponds to the neutralinos and charginos of the minimal supersymmetric SM:
bino, wino and the two higgsinos. This case is discussed in section 4.3.4.

� Two vector-like fermions Ψ1 and Ψ2 from Table 4.1. A non-trivial interplay occurs when Ψ1

and Ψ2 couple both to a given SM fermion, as indicated in the last column of Table 4.1, and/or
when there is a Yukawa coupling between Ψ1 and Ψ2: this happens for E or ∆ with L or Λ; T
or XQ with XT or Q; B or YQ with Q or YB. In models of partial compositeness, a SM fermion
acquires its mass by mixing with two vector-like composite fermions, with the same quantum
numbers as the SM left- and right-handed components: Q and T for the top quark, Q and B
for the bottom quark, L and E for the tau lepton. This case is discussed in section 4.3.3 for
leptons and 4.4.2 for quarks.

� One copy of N or Σ and a set of three fermions from Eq. (4.1.9) or Eq. (4.1.10). A non-trivial
interplay occurs in the case (1, 3, 0) + (1, 5, 0) + (1, 4, 1/2) + (1, 4,−1/2), discussed in section
4.3.4.
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Let us come to the consistent sets of four fermions that are not the union of two smaller self-
consistent sets. We found that non-trivial solutions are possible only when the four colour represen-
tations Rci are all equal or conjugate to each other. After all requirements of section 4.1 are taken
into account, only two possible patterns emerge:

• For arbitrary Rc and Rw, a viable set of four multiplets is provided by

� (Rc, Rw − 1, 0) + (Rc, Rw + 1, 0) + (Rc, Rw, 1/2) + (Rc, Rw,−1/2) , (4.1.12)

with one exception: if Nw is odd, then either C(Rw − 1) or C(Rw + 1) is half-integer, therefore
one needs Nc even to cancel the global SU(2)w anomaly.

The case Rc = 1 can be described as two Majorana leptons plus a vector-like lepton (see section
4.3.4). The case Rc = Rc 6= 1 is the analogue for coloured fermions (section 4.4.3). Finally, the
case Rc 6= Rc is purely chiral, with no masses before EWSB (section 4.2).

• For arbitrary Rc, Rw and Y , a viable set of four multiplets is

� (Rc, Rw, Y ) + (Rc, Rw,−Y ) + (Rc, Rw + 1, Y − 1/2) + (Rc, Rw + 1,−Y + 1/2) . (4.1.13)

For the first time we encounter a pattern where the hypercharges of the new fermions are not
determined uniquely.

The case Rc = 1 corresponds to two VLLs (section 4.3.3), except when Y = 0 with Nw odd, or
Y = 1/2 with Nw even: then, one has two Majorana leptons plus one VLL (section 4.3.4). The
case Rc 6= 1 corresponds to two VLQs (section 4.4.2), except when Rc = Rc and Y = 0 with
Nw odd, or Y = 1/2 with Nw even: then, one has two Majorana quarks plus one VLQ (section
4.4.3).

We found that all other sets of four multiplets relevant for Higgs couplings are not viable: either some
component remains massless, or a gauge anomaly is present.

4.1.5 Larger sets of new fermions

We do not attempt a general classification for n ≥ 5 new chiral fermions. On the one hand, the
general principles and the different phenomenological possibilities are already well illustrated by more
minimal sets of fermions. On the other hand, a detailed analysis is worth only in the context of a
specific, well-motivated theory beyond the SM. Here we shall mention some prominent examples that
have been extensively studied, to situate them in the context of our classification.

• We have shown that there are two sets of purely chiral fermions, displayed in Eq. (4.1.10) and
in Eq. (4.1.12), formed by three and four multiplets, respectively. The more traditional chiral
extension of the SM is a fourth family, formed by the five multiplets q′L, t

′
R, b

′
R, l

′
L and τ ′R. It

was already excluded at the time of LEP, because the Z invisible width forbids a fourth massless
neutrino, but it could be rescued adding a sixth multiplet, a sterile neutrino ν ′R. It is by now
excluded by the measurement of the Higgs boson couplings [87], as we will review at the end of
section 4.2.

• The minimal supersymmetric extensions of the SM predicts fermionic partners for the gauge
bosons and for the two Higgs doublets. This amounts to five chiral multiplets: a bino ∼ (1, 1, 0),
a wino ∼ (1, 3, 0), two higgsinos ∼ (1, 2,±1/2) and a gluino ∼ (8, 1, 0). The latter does not
enter in our classification, since it does not couple to the Higgs doublet. Concerning the other
four multiplets, supersymmetry restricts the possible couplings among them and to the SM,
therefore it corresponds to a special case in the parameter space of the SM extension by the set
(N,Σ, L, Lc). We will briefly discuss the related phenomenology in section 4.3.4. Of course, our
purely fermionic extension of the SM corresponds to the limit where the scalar supersymmetric
partners are significantly heavier than neutralinos and charginos.

70



• Another scenario addressing the hierarchy problem is compositeness. An effective way to couple
the SM fermions to a composite Higgs doublet amounts to a partial fermion compositeness: each
SM chiral fermion mixes with a composite vector-like fermion with the same quantum numbers.
Thus, to induce a Yukawa coupling among two SM fermions and the composite Higgs one needs
two vector-like fermions. Therefore, a SM extension by four chiral multiplets is suitable to
study this mechanism for one SM Yukawa coupling at a time. Indeed, partial compositeness
corresponds to a special subspace of parameters, because the symmetries of composite models
restrict the couplings of the new fermions and of the SM ones. We will briefly discuss the
phenomenology of τ -compositeness in section 4.3.4 and the case of b and t-compositeness in
section 4.4.2. Of course, realistic models of partial compositeness require more than two vector-
like fermions, e.g. to induce the Yukawa couplings of all the heavy, third family fermions.
The interplay between the Higgs and composite vector-like fermions is studied in detail e.g. in
Refs. [88–92].

4.2 Phenomenology of new chiral fermions

In this section we study purely chiral sets of new fermions, that is to say, one cannot write any fermion
mass term before EWSB, thus their masses are generated by the Higgs vev only. These sets do not
contain vector-like pairs of chiral multiplets, that would admit a Dirac mass, nor multiplets in the
representations (Rc, Rw, 0) with Rc = Rc and Rw odd, that would admit a Majorana mass. A purely
chiral set, consistent with the requirements of section 4.1, constitutes a new fermion ‘family’, very
much analogue to the three SM families.

We identified two classes of purely chiral sets, formed by three and four multiplets respectively,
displayed in Eq. (4.1.10) and Eq. (4.1.12). We will discuss the phenomenology of these two classes in
some detail. In the last part of the section, we will investigate whether larger chiral sets of fermions
may be compatible with present Higgs data.

• Three chiral multiplets. The only consistent ‘family’ formed by three chiral multiplets is

ψ1L ∼ (Rc, 2, 0) , ψ2R ∼
(
Rc, 1,

1

2

)
, ψ3R ∼

(
Rc, 1,−

1

2

)
, Rc 6= Rc , Nc even , (4.2.1)

the smallest viable representation being Rc = 6. The Yukawa interactions are

−LY = λ12ψ1LH̃ψ2R + λ13ψ1LHψ3R + h.c. . (4.2.2)

Here and in the rest of the chapter we do not display the obvious kinetic terms, that must be added
for each new fermion. After EWSB one is left with two mass eigenstates F12 and F13 in the same
colour representation Rc, with charge Q = ±1/2 and mass m12 = λ12v/

√
2 and m13 = λ13v/

√
2,

respectively.
The lightest new fermion is stable and forms hadrons with exotic charges, that are constrained

to be heavier than several hundreds of GeVs. Indeed, the searches for R-hadrons [5, 93] assume the
existence of a stable stop or sbottom (scalar with Rc = 3), or of a stable gluino (fermion with Rc = 8).
In the latter case one finds mRc=8 & 1320 GeV [94], and we expect a similar (stronger) bound for
Rc = 6 (larger colour representations), as these fermions are pair-produced through their coupling to
gluons. To roughly estimate the limit on a stable sextet, we rescale the gluino bound by computing
the ratio between the sextet and octet production cross section at tree level. Taking into account
the different colour contractions and the interference of the s, t and u-channel, we obtain a lower
bound mRc=6 & 1400 GeV. Further discussions and references on the constraints on R-hadrons can
be found e.g. in Refs. [6, 95]. This limit from direct searches already leads to some tension with the
perturbativity upper bound, m12,13 ≪ (4π)v/

√
2 ≃ 2.2 TeV.

The contribution of F12,13 to the oblique parameters reads

S ≃ Nc

6π
, T ≃ Nc

16πs2wc
2
wm

2
Z

(
m2

12 +m2
13 − 2

m2
12m

2
13

m2
12 −m2

13

ln
m2

12

m2
13

)
. (4.2.3)
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Note that for (m12 − m13) → 0 one finds T ∝ (m12 − m13)
2, because in the degenerate limit the

custodial symmetry is restored: for λ12 = λ23 Eq. (4.2.2) has a global SU(2)R symmetry with ψ2R

and ψ3R transforming as a doublet. The value of S can lie within the 3σ ellipse, but only if Nc = 6
and T ≃ 0.3 at the same time (see figure C.2). This can be achieved for (m12 +m13)/2 ≃ 1500 GeV
and (m12 −m13) ≃ 50 GeV. Thus, this ‘family’ of new fermions is marginally compatible with direct
searches and EW precision tests.

After the Higgs discovery, however, one can definitely exclude such a set of new fermions. As they
are heavier than the Higgs boson and do not mix with the SM fermions, the Higgs decay width at
tree-level are unchanged. However, a huge deviation occurs in the loop-induced Higgs coupling to
gluons,

Rgg ≡
σ(gg → h)

σSM (gg → h)
≃ [1 + 4C(Rc)]

2 . (4.2.4)

where we have taken the limit m2
t ,m

2
12,m

2
13 ≫ m2

h/4 in the loop form factor (see appendix D.2).
Even the smallest possible colour representation has C(6) = 5/2, leading to a huge Rgg = 121, totally
incompatible with LHC data.

• Four chiral multiplets. Let us move to the only consistent ‘family’ formed by four chiral multi-
plets,

ψ1L ∼ (Rc, Rw− 1, 0), ψ2L ∼ (Rc, Rw+1, 0), ψ3R ∼
(
Rc, Rw,

1

2

)
, ψ4R ∼

(
Rc, Rw,−

1

2

)
, (4.2.5)

with Rc 6= Rc to prevent vector-like or Majorana mass terms, and with Nc even if Nw is odd, to
prevent a global SU(2)w anomaly. The allowed Yukawa interactions are

−LY = λ13ψ1LH̃ψ3R + λ14ψ1LHψ4R + λ23ψ2LH̃ψ3R + λ24ψ2LHψ4R + h.c. . (4.2.6)

where the explicit SU(2)w contractions are defined in Eq. (D.4). After EWSB the components of ψ1,2L

combine with those of ψ3,4R to forms 2Nw mass eigenstates: one with charge Q = Nw/2; two mixed
states with Q = Nw/2−1, . . . ,−Nw/2+1; one with Q = −Nw/2. As they have (half-)integer charges,
they do not mix with the SM quarks and the lightest state is stable and hadronises, with collider
bounds above 1 TeV, analogue to those discussed above. The discussion of oblique parameters is also
similar to the previous case: one can be marginally consistent with data, by choosing the parameters
to realise an approximate custodial protection.

The way to definitely exclude this set of chiral fermions is, once again, their contribution to the
Higgs boson coupling to gluons. Note that each of the 2Nw mass eigenstates belongs to the same
colour representation Rc and must be (much) heavier than the top quark, therefore one finds

Rgg ≃ [1 + 2(2Nw)C(Rc)]
2 . (4.2.7)

Even in the minimal case with Nw = 2 and C(3) = 1/2, one finds a very large Rgg ≃ 25, incompatible
with the LHC Higgs data.

• Larger sets of chiral multiplets. Let us ask the question whether we can exclude any set of purely
chiral fermions, even when it is formed by more than four multiplets. Indeed, the Higgs coupling to
gluons implies that any new chiral fermion should be colourless, because even the minimal set of chiral
coloured fermions, formed by a weak doublet and two weak singlets with Rc = 3, leads to a large
Rmingg ≃ 9. This is not compatible with the range currently allowed by global fits, 0.5 . Rgg . 1.8 at
99 % C.L. [96] (see appendix D.3 for details). In particular, in this way one can exclude [87] a fourth
SM family, formed by the six multiplets q′L, t

′
R, b

′
R, l

′
L, τ

′
R and ν ′R. Recall that the sterile neutrino

is required to avoid an additional massless neutrino, that is forbidden by the Z invisible width; then
this set of fermions is not purely chiral, but one may invoke a lepton number symmetry to forbid the
sterile neutrino Majorana mass. Let us remark that coloured chiral fermions may be allowed in the
case of extended Higgs sectors, not considered in the present chapter. For example, adding an Higgs
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triplet, it is possible to rescue the fourth family [97]. Another example is provided by coloured chiral
fermions receiving their mass from a second Higgs doublet [98].

Coming to colourless chiral fermions, some of the mass eigenstates are necessarily charged and
thus contribute to the Higgs width to photons as

Rγγ =

∣∣Aγγ
SM +Aγγnew

∣∣2
∣∣Aγγ

SM

∣∣2 , Aγγnew ≃ 4

3

∑

k

Q2
k , (4.2.8)

where Rγγ is defined in Eq. (D.41), the SM amplitude is Aγγ
SM ≃ −6.5 and the sum runs over the new

fermion mass eigenstates. Note that, to derive Eq. (4.2.8) from Eqs. (D.21) and (D.22), we took (i)
2mi ≫ mh, that is accurate enough, even though the lower bounds on heavy charged lepton masses
are weaker than those on coloured particles; (ii) Higgs-fermion couplings yi = mi/v and ỹi = 0, that
is the case for purely chiral fermions, because their mass matrices are proportional to the Higgs vev
v, see Eq. (D.6). Note also that the result is independent from potential mixing between the new
fermions and the SM leptons. The presently allowed range is 0.5 . Rγγ . 1.9 at 99 % C.L. [96]. For
n chiral multiplets (Rwi, Yi), one finds

Aγγ
new ≃ 2

3

n∑

i=1

Nwi∑

k=1

Q2
k =

2

3

n∑

i=1

Nwi(N
2
wi + 12Y 2

i − 1)

12
. (4.2.9)

We added an overall factor 1/2 to take into account that each massive fermion is formed by two
chiral components. Equivalently, one may take the sum only over fermions of a given chirality. For
example, a minimal set is formed by a weak doublet 2L of hypercharge Y paired with two weak singlets
(1 + 1)R, giving a contribution Aγγ

new = 2(1 + 4Y 2)/3 ≥ 2/3. The next-to-minimal set (2 + 2)L paired
with (1+ 1+1+1)R implies Aγγnew > 4/3, that is still allowed by the present constraint on Rγγ , while
for example (3 + 2)L gives already Aγγnew > 10/3, that is almost excluded. Since the SM amplitude
has opposite sign w.r.t. the one of new fermions, one can also envisage the contrived possibility of a
large Aγγnew ∼ −2Aγγ

SM ≃ 13.
This shows that there are purely chiral sets of n fermions that satisfy the γγ constraint. However,

we have also shown before that no set exists for n ≤ 4, that satisfies the consistency requirements
of section 4.1. It is non-trivial to check whether purely chiral sets with n > 4 could be consistent.
Consider for example the case of two weak doublets plus four weak singlets. In order for all components
to receive a mass from the Yukawa couplings to the Higgs doublet, the hypercharges must be chosen
as

(2, Y1) , (2, Y2) ,

(
1,−Y1 +

1

2

)
,

(
1,−Y1 −

1

2

)
,

(
1,−Y2 +

1

2

)
,

(
1,−Y2 −

1

2

)
, (4.2.10)

in the convention where all multiplets have the same chirality. The absence of anomalies requires
Eq. (4.1.1) to hold, and this leads to Y1 = −Y2 ≡ Y . As a consequence, three vector-like mass terms
are allowed and such set of fermions does not qualify as purely chiral.

At this point one should recall that, in this chapter, we took the point of view that all mass
terms and interactions allowed by the gauge symmetries are present. In alternative, one can easily
introduce some global symmetry to forbid possible vector-like mass terms, thus imposing by hand
that a given set of fermions is chiral. For example in Eq. (4.2.10) take a U(1) symmetry with charge
+1 for doublets and −1 for singlets. If one takes this point of view, the set of fermions in Eq. (4.2.10)
qualifies as the minimal still viable set of purely chiral fermions. Indeed, besides being consistent with
all the requirements of section 4.1, it can be compatible with direct searches, EW precision tests, and
constraints from the Higgs couplings.

Concerning direct collider searches, as the new leptons have charges Q = Y ± 1/2, they do not
mix with the SM leptons (except for |Y | = 1/2 or 3/2) and the lightest state is stable. There are
severe bounds on the number density of such charged relics [6], but they depend on cosmological
assumptions: e.g. for a reheating temperature below their mass, they were never produced in the
early Universe. Limits on heavy stable leptons are of the order of a few hundreds of GeVs, and are
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|Q| 1/3 2/3 1 2 3 4 5 6 7 8

bound in GeVs 200 480 574 685 752 793 796 781 757 715

Table 4.2: The 95 % C.L. lower bounds on the mass of heavy stable leptons, from the CMS col-
laboration [5]. The production is assumed to occur through the Drell-Yan process only. Limits are
obtained for SU(2)w singlets, but they remain similar in general [6]. The ATLAS collaboration ob-
tains comparable but less stringent limits in the range 2 ≤ |Q| ≤ 6 [7]. For larger values of Q see
Ref. [8].

displayed in Table 4.2 for some representative values of Q. For a review on heavy stable particles see
Ref. [95].

The contributions to the S and T parameters of a fermion ‘family’ formed by one doublet and
two singlets are given in Eqs. (C.24) and (C.25). In the present case we have two such ‘families’ with
Nc = 1 and opposite hypercharges ±Y , and one can easily lie within the 3σ ellipse of Fig. 10. For
example in the custodial limit where the two mass eigenstates of each ‘family’ are degenerate, one
finds T ≃ 0 and S ≃ 0.1. Concerning the Higgs couplings, one finds Aγγ

new = 4(1 + 4Y 2)/3, that lies
in the allowed range of Rγγ for |Y | . 0.3 and 1.4 . |Y | . 1.6.

Finally, it is interesting to compare Eq. (4.2.9) with the analogue amplitude for the Higgs boson
coupling to γZ. For n chiral multiplets (Rwi, Yi), one finds

AγZ
new ≃ 2

3

n∑

i=1

Nwi∑

k=1

Qk
T3k − s2wQk

c2w
=

2

3

n∑

i=1

Nwi(N
2
wi − 12Y 2

i tan2 θw − 1)

12
, (4.2.11)

where we used Eq. (D.31) particularised to the case of chiral fermions, in the same way we did
above for the γγ case. Note that, when summing over the mass eigenstates of equal charge Q, the
mixing matrices disappear from the Z couplings in Eq. (C.6), therefore one reduces to a sum over the
interaction eigenstates. For example, the set in Eq. (4.2.10) gives AγZ

new ≃ 2
[
1−

(
1 + 8Y 2

)
tan2 θw

]
/3.

4.3 Phenomenology of non-chiral leptons

In this section we discuss new colourless fermions, which admit either a Majorana or a vector-like
mass term before EWSB.

4.3.1 Majorana leptons

Let us consider leptons that admit a Majorana mass term. The latter requires a vanishing hyper-
charge, Y = 0. The two possibilities relevant for the Higgs couplings are sterile neutrinos N ∼ (1, 1, 0),
and weak triplets Σ ∼ (1, 3, 0).

• Sterile neutrinos. In the case of one sterile neutrino, the SM Lagrangian is extended to L =
LSM + LN , where

LN = −lLαλNαH̃NR − 1

2
N c
RMNNR + h.c. . (4.3.1)

Only one linear combination νL of the three active neutrinos νLα couples to NR, and since we are not
concerned with flavour issues we will drop the index α in the following. After EWSB, νL and N c

R mix
and combine into two Majorana fermions νl and νh with definite masses, mνl ≤ mνh ; active neutrino
mass searches imply mνl . 1 eV. If one takes the limit mνl ≪ mh, the type I seesaw mechanism
is realised: mνl ≃ λ2Nv

2/(2MN ) and mνh ≃ MN . The Higgs boson couplings to νlνl and νhνh are
proportional to mνl/v, and the coupling to νlνh is proportional to

√
mνlmνh/v, leading to a negligibly

small decay width, Γ(h → νlνh) < m2
h/(8πv

2)mνl . 10−8 MeV. Also, one can check that the decay
widths of the Z-boson receive negligible corrections, always proportional to mνl/v. For mνh above
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the EW scale, one can compute the νh contribution to the S and T parameters, that turns out to be
suppressed by the tiny ratio mνl/mνh .

In the case of two or more sterile neutrinos Ni, in most of the parameter space the arguments
above apply to each Ni separately: either the Majorana mass Mi is as small as the eV scale, or the
active-sterile mixing θi ≡ λNi(v/

√
2)/MNi is suppressed, |θ2iMNi | ∼ mνl . 1 eV. In either case the

corrections to the Higgs and Z/W -boson couplings are tiny. The only exception occurs when much
larger θi are tuned among each other, in order for the Ni contributions to the light neutrino mass to
cancel. Consider for simplicity two sterile neutrinos N1,2. At leading order in the mixing angles θi
one has

mνl ≃ |θ21MN1 + θ22MN2 | . 1 eV . (4.3.2)

The two summands have a physical relative phase, therefore they can be orders of magnitude larger
than mνl , if there is a strong cancellation between the two: the active-sterile mixing can be large, no
matter how large the sterile masses mνh1,2 are. Even though this scenario requires a severe tuning
of parameters to lead to observable effects, it may be justified by some symmetry. For example, in
the so-called inverse seesaw model [99–101] (see also Ref. [102]), the lepton number symmetry U(1)L
is broken by a small mass parameter, and the cancellation occurs naturally in the limit where this
parameter goes to zero. Therefore, it is worth to analyse the phenomenological consequences of a
large active-sterile mixing: both Higgs couplings and EW gauge boson couplings can be significantly
modified.

Consider first the neutrino mass eigenstates νl, νh1, νh2 in the regime mνl ≪ mνh1,2 ≪ mh,mZ .
One finds that the decay widths of the Higgs boson can be significantly modified, in particular Γ(h→
νlνhi) ≃ mhm

2
νhi

|θi|2/(8πv2) and Γ(h → νhiνhi) ≃ mhm
2
νhi

|θi|4/(4πv2). These rates can be easily as
large as the total SM Higgs width, ΓSMh ≃ 4 MeV, therefore the LHC experiments already constrain
θi and mνhi . Note that both invisible and visible decay channels are affected, since νh1,2 decay not
only into light neutrinos, but also into SM particles e.g. via virtual W -bosons. Detailed analyses of
the parameter space and of various constraints can be found e.g. in Refs. [103–107]. Note that the
Z-boson invisible width ΓinvZ , that is measured at the few per mil level, is not significantly affected
for mνh1,2 . 1 MeV, with νh1,2 decaying mostly invisibly into three νl: even in the presence of large
mixing, only the active components of νl,h1,h2 couple to the Z-boson, and one recovers the SM value
of ΓinvZ once the sum over all neutrino pairs is taken. On the contrary, for larger mνh1,2 the heavy
neutrinos mediate visible Z-decays, therefore ΓinvZ is depleted and a significant upper bound applies
on |θi|.

Consider next the complementary regime mh,mZ . mνh1,2 . In this case the Higgs and Z decay
width are not modified, but a significant active neutrino fraction in νh1,2 can still have observable
consequences. Direct searches of EW scale sterile neutrinos through their mixing with active neutrinos
have been performed e.g. by ATLAS [108,109] and CMS [110,111]. Here we would like to point out
that the EW precision parameters S and T can also receive important corrections, that constrain the
masses and mixing of the sterile neutrinos. To understand this quite surprising fact, that is generally
overlooked, it is convenient to write the 3× 3 neutrino mass matrix in the basis (νL, N

c
R1, N

c
R2) as

Mν = U∗diag(mνl ,mνh1 ,mνh2)U
† , (4.3.3)

with U unitary and subject to the constraint 0 = (Mν)11 ≃ U∗2
12mνh1 + U∗2

13mνh2 , where we neglected
the tiny mνl . Then, the active neutrino fractions U1i contained in the mass eigenstates can be
parametrized in full generality as follows: U13 = θ taken to be real, U12 = iθ/

√
rh with rh ≡ mνh1/mνh2

and |U11|2 = 1−θ2(1+rh)/rh. The 3σ lower bound on ΓinvZ implies θ2(1+rh)/rh . 0.015. We computed
T and S using the formulas in appendix C, as a function of θ, rh and rZ ≡ mZ/mνh2 , neglecting the
mass of the SM leptons and including a symmetry factor 1/2 for loops of Majorana fermions. Here
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we report the result in some physically interesting limits:

(a) mνh2 = mνh1 ≫ mZ : T ≃ θ4

4πs2wc
2
w

m2
νh2

m2
Z

, S ≃ 2θ2

9π

(
4 + 3 log

m2
νh2

m2
Z

)
;

(b) mνh2 ≫ mνh1 = mZ : T ≃ θ4

8πs2wc
2
w

m2
νh2

m2
Z

(
3− log

m2
νh2

m2
Z

)
, S ≃ θ2

4π

mνh2

mZ
.

(4.3.4)

In case (a), taking the maximal allowed value θ2max ≃ 0.007, the correction to T grows quadratically
with the sterile neutrino mass: requiring to remain in the 3σ ellipse in the S − T plane (see Fig. 10),
one finds the upper bound mνh2 . 8.5 TeV. This sensitivity to very large scales is due to the signifi-
cant fraction of the active neutrino in the heavy states; note that this non-decoupling effect requires
a strong tuning among the two sterile neutrino parameters. In case (b), the active fraction in the
heaviest sterile neutrino is rather θ2max ≃ 0.015(mZ/mνh2), therefore T grows only logarithmically
with mνh2 , while S remains constant: one remains in the ellipse for mνh2 as large as the Planck scale.

• Weak triplets with zero hypercharge. In the case of a weak triplet ΣR ∼ (1, 3, 0), the SM
Lagrangian is extended by

LΣR = −
√

2

3
lLαλΣαΣRH̃ − 1

2
Tr

(
ΣcRMΣΣR

)
+ h.c. , (4.3.5)

where we adopted the matrix notation

ΣR ≡
√
2ΣaRτ

a =
1√
2

(
Σ3
R Σ1

R − iΣ2
R

Σ1
R + iΣ2

R −Σ3
R

)
≡

(
1√
2
Σ0
R −Σ+

R

Σ−
R − 1√

2
Σ0
R

)
(4.3.6)

and we normalised the triplet Yukawa coupling according to appendix D.1. After EWSB, the neutral
component Σ0

R and a linear combination of active neutrinos combine into two Majorana fermions ν
and Σ0, in complete analogy to the case of νl and νh discussed above. As usual, we will consider only
the mixing with the third lepton family, taking λΣe,Σµ = 0 and λΣτ ≡ λΣ. Indeed, flavour changing
neutral current processes such as µ→ eγ or µ→ 3e are strongly constrained [112, 113]. In the limit
λΣv ≪MΣ one realises the so-called type III seesaw mechanism: mν ≃ λ2Σv

2/(6MΣ) and mΣ0 ≃MΣ.
The charged components (Σ+

R)
c and Σ−

R mix with the SM charged leptons τL and τR respectively, to
form the mass eigenstates τ and Σ−. Then, three real parameters – the Yukawa coupling λΣ, the
mass MΣ and the SM tau Yukawa coupling λτ – determine the mass of four physical states, mν and
MΣ0 in the neutral sector, mτ and MΣ− in the charged sector. The mixing angles for neutrinos and
left-handed charged leptons are suppressed by

√
mν/MΣ0 ; the mixing of right-handed charged leptons

receives an additional suppression by mτ/MΣ− .
The couplings of Σ0 to the Z and Higgs bosons are exactly the same as the couplings of νh discussed

above. In particular, for vanishing mν all Z and Higgs couplings reduce to their SM values, therefore
the corrections are negligibly small. At tree level, MΣ− −MΣ0 also vanishes with mν , however it
is well-known that at one loop weak interactions induce a mass split, MΣ− −MΣ0 ≃ 170 MeV (see
e.g. Ref. [65]). Neglecting the tiny mixing angles, the only heavy lepton couplings are ZΣ+Σ− and
W+Σ−Σ0; other mixing-suppressed couplings are relevant for Σ-decays [114]. The contribution of
Σ to the EW precision parameters S and T is vanishingly small, as EWSB is felt only through the
mixing angles and through the loop-induced mass splitting among the Σ-components, and both are
very small.

Coming to direct searches, LEP looked for new charged leptons pair produced and decaying toWν,
setting a lower bound MΣ− & 100 GeV [115]. At the LHC heavy leptons are mostly pair-produced
via Z∗/γ∗ → Σ+Σ− and W±∗ → Σ±Σ0. The fraction of Σ that decays into each lepton flavour,
bα = θα/(θe + θµ + θτ ), characterises the final state. CMS [116] considered either be = bµ = bτ = 1/3,
be = 1 or bµ = 1, obtaining constraints in the range MΣ ≥ 180 − 210 GeV. The most stringent
constraint comes from ATLAS [117], with MΣ ≥ 325 GeV for be = 1 and MΣ ≥ 400 GeV for bµ = 1.
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We expect a weaker bound in the case bτ = 1, that we assumed above. Other decay channels relevant
for Σ searches at the LHC are discussed in Ref. [114], including displaced vertexes, as Σ becomes
long-living in the limit of very small mixing.

In the case of two or more lepton triplets Σi, the phenomenology is similar, except when the
mixing between the SM leptons and the new leptons is not suppressed. As in the case of sterile
neutrinos, this is possible only by severely tuning the Yukawa couplings of the various Σi to keep mν

small. In the case of two triplets, the neutrino mass matrix is diagonalised as in Eq. (4.3.3), while the

charge lepton mass matrix can be written as Me = ULdiag(mτ ,MΣ1 ,MΣ2)U
†
R. Neglecting mν and

mτ , the left-hand mixing matrix UL coincides with the neutrino mixing matrix up to a
√
2 factor:

(UL)13 ≃
√
2θ, (UL)12 ≃ i

√
2θ/

√
rh and |(UL)11|2 ≃ 1 − 2θ2(1 + rh)/rh, with rh = MΣ1/MΣ2 , while

the mixing angles in UR are further suppressed by mτ/MΣi . When θ is large, the corrections to S
and T may become significant as already discussed for sterile neutrinos. In addition, the new charged
leptons, that are necessarily above the EW scale, could contribute significantly to h→ γγ, γZ. Before
computing these corrections, one should notice that a strong upper bound on the mixing comes from
the Z coupling to τ+τ−. The LEP measurement of Γ(Z → τ+τ−) [69] implies 2θ2(1+ rh)/rh . 0.004
at 3σ.

Let us describe in some detail the main corrections to Rγγ and RγZ , defined by Eq. (D.41). Similar
analytic approximations could be used for the models analysed in the next sections as well. For the
diphoton channel, using the results of Appendix D.2 one finds

Rγγ ≃

∣∣∣Aγγ
SM + (|(UL)11|2 − 1)A1/2(ττ ) + |(UL)12|2A1/2(τΣ1) + |(UL)13|2A1/2(τΣ2)

∣∣∣
2

∣∣Aγγ
SM

∣∣2

≃

∣∣∣∣A
γγ
SM + 2θ2

1 + rh
rh

A1/2(τΣk)

∣∣∣∣
2

∣∣Aγγ
SM

∣∣2 ≃ 1− 4θ2
1 + rh
rh

A1/2(τΣk)∣∣Aγγ
SM

∣∣ & 0.998 ,

(4.3.7)

where we took the maximal allowed values for the mixing angle and the form factor, A1/2(τΣk) ≃ 1.5
for MΣk ≃ 100 GeV. Note that Rγγ ≃ µγγ , because the Higgs production rate and the total Higgs
width are not significantly modified with respect to the SM. Thus the diphoton signal strength can
be slightly reduced (the fermionic part of the amplitude slightly increases and interferes destructively
with the W -loops), but only at a few permil level. For the γZ channel the new physics contribution
can be written as AγZ

new = AγZ
Σ,diag+AγZ

Σ,off−diag. Using the results of Appendix D.2, the loops involving
a single mass eigenstate give

AγZ
Σ,diag ≃

[(
|(UL)11|2 − 1

) 1− 4s2w
4c2w

A1/2(ττ , λτ )

+ |(UL)12|2A1/2(τΣ1 , λΣ1) + |(UL)13|2A1/2(τΣ2 , λΣ2)

]
,

(4.3.8)

where we took the Z couplings to the interaction eigenstates, thus neglecting corrections of higher
order in the small mixing. The loops involving two mass eigenstates give

AγZ
Σ,off−diag ≃ −∑

k=2,3

|(UL)11|2|(UL)1k|2
4c2w

×

×
[
MΣk +mτ√
mτMΣk

A1/2(ττ , λτ , τΣk , λΣk)− i
MΣk −mτ√
mτMΣk

B1/2(ττ , λτ , τΣk , λΣk)

]
.

(4.3.9)

Retaining only terms of order θ2 and neglecting mτ/MΣk , the rate relative to the SM can be written
as

RγZ ≃ 1− 4θ2
1 + rh
rh

A1/2(τΣk , λΣk)−
1

4c2w

√
MΣk

mτ
A1/2(ττ , λτ , τΣk , λΣk)

∣∣∣AγZ
SM

∣∣∣
. (4.3.10)
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We neglected the B1/2 term, as it interferes only with the very small imaginary part of the SM am-
plitude. The diagonal and off-diagonal form factors have comparable size, A1/2(τΣk , λΣk) ≃ 1.3 and√
MΣk/mτA1/2(ττ , λτ , τΣk , λΣk) ≃ 1, where we took the large MΣk limit. Replacing the maximal

allowed value for the mixing, we find RγZ & 0.998, with a suppression at the few permil level, of the
same order as for Rγγ .

Finally, let us note that, with two or more sterile neutrinos Ni (or triplets Σi) the CP symmetry
can be broken. In general, the Higgs couplings to the fermion mass eigenstates are not real, and the
off-diagonal couplings of the Z-boson can be complex as well. This does not modify any of the above
results, because the CP violating effects vanish in the limit mνl/mνhk → 0 (and mτ/mΣk → 0 in the
triplet case), therefore they are subleading.

4.3.2 One vector-like lepton

Let us consider the addition to the SM of one vector-like lepton (VLL). The four different possibilities
are a weak singlet E, a weak doublet L or Λ, a weak triplet ∆, whose charges are displayed in Table
4.1. As usual, we restrict ourself to mixing with the third SM family, i.e. with τ and ντ . The SM
Lagrangian is extended by

−Lψ = λψlLHψR +MψψLψR + h.c. , ψ = E,∆ , (4.3.11)

−Lψ = λψψLH(H̃)τR +MψψLψR + h.c. , ψ = L(Λ) , (4.3.12)

where the SU(2)w contractions are understood (see appendix D.1 for details). In the case of E (L) one
could write an additional mass term mEELτR (mLlLLR), but such term can be removed by choosing
conveniently the basis for the two fields ER and τR (lL and LL), that have identical charges. Thus,
in each case there are only two real parameters: the vector-like mass Mψ and the Yukawa coupling
λψ; the mixing among the new leptons and the SM ones vanishes for vanishing λψ. There is no CP
violation.

The components of each multiplet ψ are listed in Eq. (4.1.5). The doubly-charged component F
does not mix as there is no SM counterpart with Q = 2, therefore m2

F =M2
ψ. The Q = 1 component

E mixes with the SM τ to form the two physical mass eigenstates τ ′ and τ . The mass matrix is given
by

Me =

(
λτ

v√
2

κψλψ
v√
2

0 Mψ

)
, ψ = E,∆ , Me =

(
λτ

v√
2

0

κψλψ
v√
2

Mψ

)
, ψ = L,Λ . (4.3.13)

The SU(2)w Clebsch-Gordan coefficient κψ is equal to one, except in the triplet case, κ∆ =
√
1/3.

The rotation to the mass basis can be parametrized as

Me = VL

(
mτ 0
0 mτ ′

)
V T
R , VL,R =

(
cL,R sL,R
−sL,R cL,R

)
. (4.3.14)

The triangular mass matrix structure of Eq. (4.3.13) implies some strict relations among the mixing
angles and the mass eigenvalues. For the case of L and Λ, one finds

tan θL =
mτ

mτ ′
tan θR ≪ tan θR , sL =

mτ

Mψ
sR , cL =

mτ ′

Mψ
cR . (4.3.15)

For the case of E and ∆, the same relations hold with L ↔ R. Note that direct searches of charged
leptons at LEP [115] require mτ ′ & 100 GeV , therefore one angle is at least two orders of magnitude
smaller than the other. In the following we will refer only to the dominant mixing angle θψ for each
ψ, dropping the subscript L,R on (co)sines. Note that m2

τ ′ ≃M2
ψ/c

2
ψ ≥M2

ψ. The neutral component
N does not mix with the SM neutrino ντ in the case of L. In the case of ∆ there is mixing in the
neutral sector, described by

Mν =

(√
1
3λ∆v

M∆

)
= UL

(
0
mν′

)
, UL =

(
c̃ s̃
−s̃ c̃

)
, (4.3.16)
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with s̃2 ≃ 2s2∆/(1 + s2∆) ≥ s2∆. One neutrino remains massless, while the second acquires a mass
m2
ν′ ≃ (1 + s2∆)m

2
τ ′ ≥ m2

τ ′ . In summary, the tree-level spectrum of heavy leptons satisfies

ME ≤ mτ ′ (ψ = E) , mF =M∆ ≤ mτ ′ ≤ mν′ (ψ = ∆) ,
mν′ =ML ≤ mτ ′ (ψ = L) , mF =MΛ ≤ mτ ′ (ψ = Λ) .

(4.3.17)

with the mass splitting controlled by the mixing, ∆m2(ψ) ∼ s2ψM
2
ψ.

Let us briefly discuss the collider bounds on Mψ. In first approximation one can neglect the
mass splitting. It is possible to recast some LHC multi-lepton searches to put bounds on VLLs. The
limits on Mψ strongly depend on the SM generation that couples to the heavy leptons. For couplings
only to the third one and for the doublet L, Ref. [118] reports ML & 280 GeV, while the LEP limit
remains more constraining in the case of the singlet E, ME & 100 GeV. For the exotic doublet Λ with
a doubly-charged component, Ref. [119] reports MΛ & 320 GeV. To the best of our knowledge, no
similar analysis is available for the triplet ∆. We expect a bound comparable or slightly stronger than
to the one for Λ. These bounds only apply for promptly decaying particles. We will only consider this
possibility, because heavy leptons become long-lived (cτ & 1m) for a tiny mixing sψ ≃ 10−8 − 10−9,
and the mixing suppresses all the deviations from the SM that we are interested in. More details on
the collider phenomenology of Λ and ∆ can be found in Refs. [120] and [121,122], respectively.

It is mandatory to require that the Yukawa coupling λψ lies in the perturbative regime, |λψ| ≪ 4π.
This consistency requirement translates into an upper bound on the product of the heavy lepton mass
and the mixing angle,

|λψ| ≃
∣∣∣∣∣

√
2

κψ

mτ ′

v
sψ

∣∣∣∣∣ ≪ 4π . (4.3.18)

The perturbativity constraint on the SM Yukawa coupling λτ is satisfied a fortiori. The non-zero cou-
plings of the physical Higgs boson to the charged mass eigenstates, using the convention of Eq. (D.5),
are given by

yττ = c2ψ
mτ

v
, yτ ′τ ′ = s2ψ

mτ ′

v
, yττ ′ = cψsψ

mτ +mτ ′

2v
, ỹττ ′ = ±cψsψ

mτ ′ −mτ

2vi
. (4.3.19)

where the plus (minus) sign holds in the case of E and ∆ (L and Λ). In the case of ∆, there are also
non-zero couplings to neutral leptons,

yν′ν′ = s̃2
mν′

v
, yνν′ = c̃s̃

mν′

2v
, ỹνν′ = c̃s̃

mν′

2vi
. (4.3.20)

Important constraints come from the Z-decays into SM leptons. The couplings of the fermion
mass eigenstates to the Z are defined in Eq. (C.6). The couplings to the SM leptons τL, ντL and τR
are modified if they mix with new leptons with a different weak isospin T3. Neglecting (mτ/mZ)-
corrections, at tree level one finds

R(Z → τ+τ−) ≃ (gVττ )
2 + (gAττ )

2

(gV,SMττ )2 + (gA,SMττ )2
, (4.3.21)

where gV,Aττ receive a correction of order s2ψ with respect to the SM. The experimentally allowed range

given in Eq. (C.28) implies an upper bound on the mixing angle, for any VLL: we find sE,∆ . 6.0·10−2

and sL,Λ . 6.7 ·10−2. In addition, in the case of ∆ there is a correction to the Z-coupling to neutrinos,
and thus to the Z-invisible width,

R(Z → inv) ≃ 2

3
+

1

3

(gVνν)
2 + (gAνν)

2

(gV,SMνν )2 + (gA,SMνν )2
. (4.3.22)

The couplings gV,Aνν receive a correction of order s̃2, that leads to a comparable limit s∆ . 8.2 · 10−2.
Extracting the couplings ofW±

µ ,W 3
µ and Bµ from Eq. (C.4), one can calculate the S and T parameters

with the general formulas in appendix C.2. We find, at leading order in the mixing angle,

T ≃ 1

16πc2ws
2
w

s4ψ

(
aTψ
m2
τ ′

m2
Z

)
, S ≃ 1

6π
s2ψ

(
aSψ + bSψ log

m2
τ ′

m2
Z

)
, (4.3.23)
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where aTψ , a
S
ψ and bSψ are numerical coefficients of order one. Taking into account the upper bound

sψ . 0.06 from Z → τ+τ−, as well as the perturbativity bound from Eq. (4.3.18), (mτ ′/mZ)sψ . 10,
we checked that S and T always lie in the allowed ellipse of Fig. 10.

Coming to the Higgs boson signals, we first recall that all the dominant Higgs production channels
at the LHC are not affected by the new leptons, as they leave the Higgs couplings to gluons and quarks
unchanged. The total Higgs width also receives negligible corrections, as new leptons affect only the
partial widths Γ(h → α), for α = τ+τ−, γγ, γZ. Therefore the Higgs signal is given by the ratio
of partial widths in the model w.r.t. the SM, µα ≃ Rα. The tree-level Higgs decays are directly
controlled by the couplings in Eq. (4.3.19) and Eq. (4.3.20), in particular

Rττ = (1− s2ψ)
2 & 0.99 , (4.3.24)

where we used the bound from Z → τ+τ−. There is also the marginal possibility that the new leptons
are lighter than the Higgs boson, thus opening the channels h → ττ ′ and h → νν ′. However, direct
searches seem to allow the singlet E only to be sufficiently light. Using equation (D.7) and neglecting
mτ/mτ ′ , we find

Γ(h→ τ+τ ′−) ≃ c2Es
2
Em

2
τ ′

16πv2
mh

(
1− m2

τ ′

m2
h

)2

. 0.2 MeV . (4.3.25)

Note that both the couplings yττ ′ and ỹττ ′ contribute equally to the decay width, see Eq. (4.3.19).
We maximised the product s2Em

2
τ ′ by taking sE = 6 · 10−2 and mτ ′ = 100 GeV. As the SM total

Higgs width is Γh ≃ 4.1 MeV, an enhancement of order 5% may be possible. Note that experimental
searches at the LHC concentrated on h→ ττ [123,124], τµ [125,126] and µµ [127,128]. These channels
are suppressed due to the small masses of the SM leptons, in contrast with the Higgs decays into a
SM lepton plus a heavy lepton. It would be interesting to perform a dedicated search for this channel.

For the photon-photon channel we find

Rγγ =

∣∣∣Aγγ
SM + s2ψ

[
A1/2(ττ ′)−A1/2(ττ )

]∣∣∣
2

∣∣Aγγ
SM

∣∣2 ≃ 1− 2s2ψ
A1/2(ττ ′)∣∣Aγγ

SM

∣∣ , (4.3.26)

where the form factors are defined in appendix D.2. The addition of a VLL amounts to an additional
τ ′-loop and a modified τ -loop, that interfere destructively with the W -loops. Maximising the mixing
and choosing mτ ′ = 100 GeV (the form factor decreases for larger masses), we find δRγγ ≃ −1.9 ·10−3,

a permil reduction of the signal strength. For the γZ channel the relevant Z couplings, gV,Aττ,ττ ′,τ ′τ ′ ,

receive corrections of order s2ψ relatively to their unmixed values, as follows from Eq. (C.6). At leading
order in the small mixing and neglecting mτ , we find

RγZ ≃ 1 + 2s2ψ

(
T 3
E,ψ + s2w

)
A1/2(ττ ′ , λτ ′)±

1

4

√
mτ ′

mτ
A1/2 (ττ , λτ , ττ ′ , λτ ′)

c2w

∣∣∣AγZ
SM

∣∣∣
, (4.3.27)

where T 3
E,ψ is the isospin of the Q = −1 component of the multiplet ψ, and the plus (minus) sign

in front of the off-diagonal term corresponds to the case ψ = L (ψ = E,Λ,∆). As a consequence,
the diagonal and off-diagonal terms always interfere destructively. The relative magnitude of the
form factors is given below Eq. (4.3.10). The size of the correction change depending on the VLL
under consideration, but it is always very small. The maximal deviation is obtained for Λ, with
δRγZ ≃ 1.3 · 10−3.

4.3.3 Two vector-like leptons (including τ compositeness)

Let us consider a SM extension by two VLLs. They may couple to each other by a Yukawa interaction
or not.

• Two VLLs not coupled to each other. In this case, each VLL must be a consistent ex-
tension of the SM by itself, therefore it should have the quantum numbers of E, L, Λ or ∆,
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that are displayed in Table 4.1. The six possible pairs of VLLs decoupled from each other are
(ψ,ψ′) = (E,E′), (L,L′), (Λ,Λ′), (∆,∆′), (E,∆) and(L,Λ). In the first four cases the additional mass
term ψψ′ can be rotated away without loss of generality. The phenomenological effects are a trivial
sum of those discussed in section 4.3.2 for a single VLL, with one noticeable exception.

When L and Λ have the same Yukawa coupling to the SM and the same mass, the Lagrangian

−LL,Λ =
λψ√
2

(
LL ΛL

)(H
H̃

)
τR +Mψ

(
LL ΛL

)(LR
ΛR

)
+ h.c. (4.3.28)

preserves a global SU(2)L × SU(2)R symmetry. In this custodial limit the corrections to the T
parameter vanish, and those to the coupling ZτRτR vanish as well [129]. This is the smallest set
of tau custodians [130, 131]. A linear combination of the charge-one components of L and Λ, τ ′′ ≡
(E(L)−E(Λ))/

√
2, does not mix. The orthogonal combination, E ≡ (E(L)+E(Λ))/

√
2, mixes with the

SM exactly as shown in Eqs. (4.3.13)-(4.3.15), to form the mass eigenstates τ ′ and τ . The spectrum
reads mτ ′′ = mN = mF =Mψ ≤ mτ ′ ≃Mψ/cR. As discussed in section 4.3.2, direct searches already
require all these states to be heavier than the Higgs boson. Thanks to the custodial symmetry, the Z
couplings to leptons do not constrain the right-handed mixing sR between τ and τ ′: one has δgRττ = 0
and δgLττ = s2L/2 = (mτ/Mψ)

2s2R/2, that is negligibly small. The Zνν̄ coupling is SM-like as well.
The T parameter is almost SM-like as no additional sources of custodial breaking are introduced, and
the correction to the S parameter is within the experimental range.

The most stringent constraint on sR comes from Rττ ≃ (1−s2R)2. Using the 3σ lower bound Rττ &

0.2 (see Table 4), one finds sR . 0.7. Indeed, the mixing can be large and reduce significantly the hττ
coupling. As a consequence, the total Higgs width may be slightly reduced and, correspondingly, the
signal strength for the other Higgs decay channels, defined in Eq. (D.40), may augment by a factor
ΓSMh /Γh . 1.04. The deviation in the γγ channel has the same form as in Eq. (4.3.26): imposing the
constraint from h→ ττ , one finds a lower bound µγγ & 0.86, that is close to the present experimental
sensitivity. Coming to the γZ channel, the loop involving both τ and τ ′ vanishes when one neglects
the tiny left-handed mixing sL, because the custodial symmetry imposes gRττ ′ = 0. Then, Eq. (4.3.27)
reduces to

RγZ ≃ 1 + 2s2R tan2 θw
A1/2(ττ ′ , λτ ′)

|AγZ
SM |

, (4.3.29)

with a maximal correction δµγZ ≃ 0.12. In the near future the increasing experimental precision on
µττ can further constrain or eventually determine the mixing parameter sR in this custodial limit.

• Two VLLs coupled to each other, not mixing with the SM fermions. Next, we have to
discuss the case of two VLLs coupled through a Yukawa interaction. The most general assignment
for their four chiral components is

ψ1L, ψ1R ∼ (1, Rw, Y ) , ψ2L, ψ2R ∼ (1, Rw + 1, Y +
1

2
) , (4.3.30)

with the Lagrangian

−Lψ1ψ2 = λ12ψ1LH̃ψ2R + λ21ψ2LHψ1R +M1ψ1Lψ1R +M2ψ2Lψ2R + h.c. . (4.3.31)

The four phases of λ12, λ21, M1 and M2 cannot be all rotated away: one phase is physical and allows
for CP violation. In the special case Y = 0 (Y +1/2 = 0) and Rw odd (even), one should add Majorana
mass terms for ψ1L,R (ψ2L,R): we postpone to section 4.3.4 the discussion of sets formed by one VLL
plus Majorana leptons. For a few other values of Rw and Y , displayed in Eq. (4.3.41), interaction terms
between ψ1,2 and the SM leptons are allowed and should be added to the Lagrangian. We discuss first
the no-mixing case and postpone to the end of this section the discussion of the mixing with the SM.
In the absence of mixing, the lightest new lepton ψlight is stable, at least at the renormalizable level.
If Y is an integer multiple of 1/2, ψlight may decay into a SM lepton through some higher dimensional
operator. For all other values of Y , this state is absolutely stable and it has non-zero electric charge.
Collider searches put a lower bound on the mass of stable heavy leptons as a function of their charge
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Figure 4.1: Signal strengths µγγ (red) and µγZ (blue) in the case of two VLLs ψ1 ∼ (1, 1, Q) and
ψ2 ∼ (1, 2, Q + 1/2), as a function of Q. We chose the following mass matrix parameters, defined
by Eq. (4.3.33): m1 = m2 = 800 GeV, ϕ = 0, and three values for the relevant mixing angle,
θL − θR = π/8 (dotted), π/10 (dashed), π/12 (solid). The grey parts of the curves are excluded by
S and T , see Eq. (4.3.36). The shaded horizontal band is the presently allowed range for µγγ at 1σ
(dark) and 3σ (light).

Q, see the discussion in section 4.2 and the limits in Table 4.2. The effect of the set of fermions in
Eq. (4.3.30) on h→ γγ was studied e.g. in Ref. [132].

Let us begin by analysing the case Rw = 1. There is one state with Q = Y +1 and mass M2, and
two states with Q = Y that mix, with mass matrix

MY =

(
M1 m12

m21 M2

)
, m12 =

λ12v√
2
, m21 =

λ21v√
2
. (4.3.32)

As MY is the most general 2 × 2 matrix, it is useful to parametrize it in terms of the five physical
parameters,

MY = UL

(
m1 0
0 m2

)
U †
R, UL =

(
cL sL
−sL cL

)(
eiϕ 0
0 1

)
, UR =

(
cR sR
−sR cR

)
, (4.3.33)

where m1,2 are the real and positive masses of the eigenstates f1,2, the mixing angles θL and θR vary
between 0 and π/2, and the CP violating phase ϕ varies between 0 and 2π. The only restriction comes
from the perturbativity of the Yukawa couplings,

|λ12| =
√
2|m2sLcR −m1e

iϕcLsR|
v

≪ 4π , |λ21| =
√
2|m2cLsR −m1e

iϕsLcR|
v

≪ 4π . (4.3.34)

These relations imply e.g. an upper bound on the masses for fixed values of the mixing angles. Vice
versa, as the masses become larger and larger, the mixing angles vanish and the new fermions decouple
from the EW scale.

The Higgs boson couplings to f1,2 are directly obtained from Eq. (D.5). Taking for illustration
the limit where f1 and f2 are mass-degenerate, one has |M1| = |M2| ≡ M , |m12| = |m21| ≡ µ and
m1 = m2 =

√
M2 + µ2 ≡ mψ. In this case the contribution to the amplitude for h→ γγ is

Aγγ
f1,f2

= 2Q2F (θL, θR, ϕ)A1/2 (τψ) , F (θL, θR, ϕ) = s2Lc
2
R + c2Ls

2
R − 2cLsLcRsR cosϕ . (4.3.35)

The CP-odd contribution vanishes because ỹ11 = −ỹ22 in the degenerate limit. The perturbativity
conditions in Eq. (4.3.34) reduce to F (θL, θR, π) ≪ 8π2v2/m2

ψ. The interference with the SM is

destructive as Aγγ
f1,f2

≥ 0. There are two allowed regions of parameters:
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(i) A SM-like region for small Q: the smallness of the charge ensures a small, negative departure
from the SM.

(ii) A cancellation region at large Q: for Q2 ≃ 4.8/F (θL, θR, ϕ), the rate is accidentally close to the
SM as Aγγ

f1,f2
≃ −2Aγγ

SM .

This behaviour is illustrated in Fig. 4.1 for the CP conserving case ϕ = 0, where F (θL, θR, 0) =
sin2(θL − θR). Indeed the amplitude grows from ϕ = 0 to ϕ = π, as F (θL, θR, π) = sin2(θL + θR).
Further constraints on the parameters come from the EW precision tests. In the limit mψ ≫ mZ we
find

S ≃ 1

6π

[
F (θL, θR, ϕ) + 4

(
Q+

1

2

)
ln
m2
ψ

M2

]
,

T ≃ 1

8πs2wc
2
wm

2
Z

[
m2
ψ − 3M2 +

2M4

m2
ψ −M2

ln
m2
ψ

M2

]
, (4.3.36)

where M is the mass of the unmixed state with Q = Y + 1. Therefore, for fixed values of the mixing
parameters, S and T constrain the charge Q, as illustrated in Fig. 4.1.

It is interesting to analyse the value of µγZ in the allowed space of parameters. Using Eqs. (C.6)
and (D.31), the CP-even amplitude for h→ γZ is given by

AγZ
f1,f2 =

Q

c2w
F (θL, θR, ϕ)

(
gV11 + gV22

)
A1/2 (τψ, λψ) , gV11 + gV22 = −1

2
− 2Qs2w . (4.3.37)

Note that the loops involving both f1 and f2 vanish as they are proportional to the Higgs coupling
y12, or to the form factor B1/2 defined in Eq. (D.39), and they both vanish for m1 = m2. As the SM
amplitude is negative, the new contribution interferes constructively as long as Q(1+4s2wQ) > 0. The
CP-odd amplitude ÃγZ

f1,f2
is also non zero, because gV11 6= gV22, and it can be sizeable for large values

of sinϕ. Let us distinguish the two regions of parameters allowed by µγγ :

(i) In the SM-like region at small Q, varying (θL − θR) we find −0.01 . δµγZ . +0.08.

(ii) In the fine-tuned region at large Q we find 2.5 . µγZ . 3.2 for ϕ = 0. This range slightly
depends on the sign of Q, see Fig. 4.1. It is actually possible to obtain an even larger µγZ , while
keeping µγγ close to one. For example, taking for simplicity sR = 0, the CP-odd amplitude
reads

ÃγZ
f1,f2

= −4Q2cLsL tan
2 θw sinϕ Ã1/2 (τψ, λψ) . (4.3.38)

For sinϕ of order one, this contribution becomes important and one can reach µγZ ≃ 7.

When one allows for the two mass eigenstates f1,2 to be non-degenerate, m1 < m2, the amplitudes
for the diphoton channel become

Aγγ
f1,f2

≃ 2Q2

[
s2Lc

2
R + c2Ls

2
R −

(
m1

m2
+
m2

m1

)
cLsLcRsR cosϕ

]
A1/2 (τ1) ,

Ãγγ
f1,f2

≃ 2Q2

(
m2

m1
− m1

m2

)
cLsLcRsR sinϕ Ã1/2 (τ1) .

(4.3.39)

where we made the approximation A1/2 (τ1) ≃ A1/2 (τ2), that is accurate for 4m2
1,2 ≫ m2

h. For
sufficiently large mass splitting the interference of Aγγ

f1,f2
with the SM can be constructive. In the γZ

channel the analytic form of the amplitude becomes more involved, in particular the loops involving
both f1 and f2 are non-zero, and the interference with the SM strongly depends on the ratio m1/m2.
One can tune the parameters to cancel the corrections to µγγ in Eq. (4.3.39), e.g. taking ϕ = 0
and m1/m2 = (tL/tR)

±1. For the same set of parameters large contributions to the γZ channel are
possible. For example one can reach µγZ ≃ 2 for θL ≃ π/6, θR ≃ π/10, m1/m2 ≃ 1.8, m2 ≃ 800 GeV
and Q ≃ 9. This region is compatible with S, T and all other constraints.
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A similar analysis can be performed when Rw = 2 or larger in Eq. (4.3.30). In this case there are
Nw pairs of mixing states, with Q = −(Nw − 1)/2+ Y, . . . , (Nw − 1)/2+ Y . For each such sector, the
mass matrix is

MQ =

(
M1 κQm12

κQm21 M2

)
, (4.3.40)

where κQα is the Clebsch-Gordan coefficient coming from the SU(2)w contraction, determined by
Eq. (D.4), therefore each sector is controlled by the same physical parameters. In other words, the
two mass eigenvalues, the two mixing angles and the CP-violating phase of a given sector determine
univocally the other sectors too. The corrections to µγγ and µγZ are obtained summing over the
contributions of Nw sectors, each being qualitatively analog to the case Rw = 1 analysed above.
Note that, however, one cannot take Q → 0 to recover the SM limit, because there are at least two
sectors with different values of Q. Of course, the SM is still recovered for small values of the mix-
ing angles. The two fine-tuned regions with µγγ ≃ 1 and large µγZ are still possible. On the one
hand, the different sectors can add up to realise Aγγ

new ≃ −2Aγγ
SM . On the other hand, for Rw = 2

we found a choice of mixing parameters such that Aγγ
f1,f2

vanishes in both the sectors with Q = Y ±1/2.

• Two VLLs coupled to each other, mixing with the SM fermions. Finally, let us discuss
the possible interactions between ψ1,2 in Eq. (4.3.30) and the SM leptons. A non-zero mixing occurs
if and only if ψ1 and/or ψ2 are identified with the states E, L, Λ or ∆ listed in Table 4.1. There are
six such cases,

Rw = 1 : E + L (Y = −1), E + Λ (Y = 1),
Rw = 2 : L+∆ (Y = 1/2), Λ +∆ (Y = −3/2), Λ +∆G (Y = 3/2),
Rw = 3 : ∆ + Ω (Y = −1), ∆+ΩG (Y = 1).

(4.3.41)

There are three cases with an additional weak multiplet: a triplet ∆G = (E,F,G) ∼ (1, 3,−2), and
two quartets Ω = (Ec, N,E, F ) ∼ (1, 4,−1/2) and ΩG = (N,E, F,G) ∼ (1, 4,−3/2), with Q(G) = −3.
They do not couple directly to the SM leptons. In these three cases the Q = 2 sector couples to the
Higgs and therefore may contribute significantly to hγγ and hγZ. We have shown in section 4.3.2
that the mixing angles between the SM leptons and E, L, Λ or ∆ must be very small, due to the
strong constraints coming from the Zττ couplings. With two VLLs the mass matrices become larger,
but we expect the phenomenology to be qualitatively the same, up to possible fine-tuned cancellations
in some observable. A crucial effect of the mixing is to make the new leptons decay into SM leptons.
The components with Q = 2, 3 decay more slowly, since their decay chains require a virtual exchange
of other components of the multiplet. We already reviewed in section 4.3.2 the direct bounds on heavy
leptons with charge Q = 1, 2, decaying promptly into SM leptons. We are not aware of any dedicated
search for a Q = 3 heavy lepton.

A detailed analysis of the parameter space is worth only in the context of a specific, well-motivated
model, and it goes beyond the scope of this chapter. The case E + L is analyzed in Ref. [133]. The
phenomenology of a fourth vector-like family of leptons, L+E +N , is studied in detail in Ref. [134].
Here we comment only on the interesting possibility to generate the τ mass entirely from the mixing
with the VLLs, in the limit where the SM Yukawa coupling lτLHτR vanishes. There are various ways
to induce such coupling through mixing, that are illustrated in Fig. 4.2:

(a) In the case of E only, one can proceed through a Yukawa coupling connecting lτL to ER, followed
by two singlet vector-like mass terms.

(b) Analogously, with L only, one employs two doublet vector-like mass terms and a Yukawa con-
necting LL to τR.

(c) In the case of E + L, one can employ a vector-like mass term both for the singlets and the
doublets, with a Yukawa coupling involving only the new fermions. This case is particularly
interesting, since it corresponds to the scenario of partial compositeness [81] in the τ sector: the
SM leptons are elementary fields that mix linearly with composite VLLs, which couple in turn
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Figure 4.2: Different ways to generate the τ mass through mixing between the SM leptons and VLLs.
The dashed lines stand for Higgs vev insertions, the small dots represent a mass mixing between a
SM lepton and a VLL, and the big dots correspond to the mass of a VLL. The case (c) corresponds
to the scenario of τ partial compositeness.

to a composite Higgs doublet. The SM leptons feel EWSB only through the mixing with heavy
composite leptons. The Q = 1 mass matrix and its smallest eigenvalue take the form

Me =




0 mL 0

0 ML
λLEv√

2

mE
λELv√

2
ME


 , mτ ≃ mL

ML

mE

ME

λLEv√
2

. (4.3.42)

The mixing with the heavy leptons also controls the deviations in the Z couplings,

δgRττ ≃ 1

2

(
mE

ME

)2

, δgLττ ≃ 1

2

(
mL

ML

)2

. (4.3.43)

As these corrections are bounded by R(Z → ττ), as shown in Eq. (C.27), we find that the
physical value of mτ can be generated for λEL & 2.5, pointing indeed to a strong-coupling
regime. The phenomenology of τ partial compositeness is studied e.g. in Ref. [135].

(d) Finally, in the case (ψ1, ψ2) = (Λ, E), (L,∆) or (Λ,∆), the τ mass can be induced by three
Yukawa couplings, connecting lτL to ψ2, τR to ψ1, and ψ1 to ψ2, respectively. Focusing on
(Λ,∆) for definiteness, one finds

mτ ≃ λ∆v√
3M∆

λΛv√
2MΛ

λ∆Λv√
6

≃ 2
√
δgRττδg

L
ττ

λ∆Λv√
6

. (4.3.44)

For λ∆Λ & 4.5 the physical value of mτ can be generated.

4.3.4 Vector-like plus Majorana leptons (including higgsinos plus gauginos)

In this section we consider the interplay between Majorana leptons and VLLs, related by one or more
Yukawa couplings. If there were no such couplings, the phenomenology would reduce to a trivial
addition of the effects of Majorana leptons, see section 4.3.1, and of VLLs, see sections 4.3.2 and
4.3.3. For reference, the smallest sets of this kind are formed by three (four) chiral multiplets: (two
copies of) NR or ΣR, plus a vector-like pair (EL, ER), (ΛL,ΛR) or (∆L,∆R).

• One VLL plus one Majorana lepton. The most general set formed by one Majorana lepton
interacting with one VLL pair is

χR ∼ (1, Rw, 0) , ψL, ψR ∼ (1, Rw ± 1,−1/2) , (4.3.45)

with Nw 6= 2 + 4n to avoid the global SU(2)w anomaly. The corresponding Lagrangian is

−Lχψ = 1
2MχχcRχR +MψψLψR + λ̃ψLH̃χR + λχcRHψR + h.c. . (4.3.46)

The Majorana mass Mχ is absent in the case of even SU(2)w representations, Nw = 4n: in this case
there is a conserved ‘new lepton’ number, and all multiplet components combine into Dirac fermions.
There is a unique physical complex phase, that can be associated to Mχ, choosing Mψ, λ̃ and λ real.
Each component of the new leptons has a (demi-)integer charge Q, therefore it can decay to SM
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leptons, either through renormalizable interactions or higher dimensional operators. For Rw = 1 or
3, couplings to the SM leptons can be added to the Lagrangian, as we will discuss later.

In the case ψ ∼ (Rw + 1), after EWSB one identifies: one pair of states with charges Q =
±(Nw+1)/2, that combine in a VLL of massMψ; three pairs of states with Q = ±(Nw−1)/2, ±(Nw−
3)/2, . . . , down to Q = ±1 (±1/2) for Nw odd (even); when Nw is odd, three additional states with
Q = 0. The 3× 3 mass matrix in each sector takes the form

MQ =




Mχ κQλ̃v κ−Qλv
κ−Qλ̃v 0 Mψ

κQλv Mψ 0


 , (4.3.47)

where we chose Q ≥ 0 and a basis with the components of charge Q (−Q) on the left(right)-hand side
of MQ. The SU(2)w Clebsch-Gordan coefficients κ±Q are defined by Eq. (D.4), and they also include
for convenience the factor 1/

√
2 from the Higgs doublet vev,

κ±Q =
1√
2

√
Nw + 1± 2Q

Nw(Nw + 1)
. (4.3.48)

In the case ψ ∼ (Rw − 1), there are three pairs of states with Q = ±(Nw − 3)/2,±(Nw − 5)/2, . . . ,
and three states with Q = 0 when Nw is odd. The 3× 3 mass matrix in each of these sectors has the
form of Eq. (4.3.47), but with Clebsch-Gordan coefficients given by

κ±Q =
1√
2

√
Nw − 1∓ 2Q

Nw(Nw − 1)
. (4.3.49)

There are also two pairs of states with Q = ±(Nw − 1)/2 and mass matrix

MQ =

(
Mχ κ−Qλv

κ−Qλ̃v Mψ

)
. (4.3.50)

This is the same structure of Eq. (4.3.32), that was extensively studied in section 4.3.3.
Note that each 3×3 or 2×2 sector depends on the same five parameters: two masses, two Yukawa

couplings, and one physical phase. They determine all the mass eigenvalues and the mixing matrices.
We do not attempt a scan of the parameter space here. The corrections to S, T , µγγ and µγZ from a
sector with the mass matrix of Eq. (4.3.50) were analysed in section 4.3.3. We expect corrections of
the same order from the other sectors. Coming to collider searches, for Nw 6= 1, 3 there is no mixing
with the SM and the lightest mass eigenstate is stable, at least at the renormalizable level. When it
is charged, one can apply the limits on stable leptons reported in Table 4.2. For Nw odd, the lightest
state may be neutral, with the typical collider phenomenology of a dark matter candidate.

The phenomenology is radically different when Nw is even. In this case the Majorana mass is
absent, Mχ = 0, and the χ components are massless before EWSB, therefore one mass eigenvalue
for each sector is of the order λλ̃v2/Mψ. This implies that all masses are bound to the EW scale,
whence the situation resembles the one of purely chiral sets of new fermions. In particular, one finds a
correction to h→ γγ that depends only on Q: taking Mχ = 0 in the mass matrix (4.3.47) or (4.3.50),
and using the LET approximation of Eq. (D.24), we find a CP-even amplitude Aγγ

χψ,Q ≃ 8Q2/3 for a
3× 3 sector, and the same for a 2× 2 sector. For comparison, when Nw is odd the Majorana mass is
allowed and one finds

Aγγ,3×3
χψ,Q ≃ −8

3

λv

Mχ

λ̃v

Mψ
Q2

(
κ2−Q + κ2Q

)
, Aγγ,2×2

χψ,Q ≃ −8

3

λv

Mχ

λ̃v

Mψ
Q2κ2−Q , (4.3.51)

where we made the approximation λv, λ̃v ≪ Mχ,Mψ. The correction grows as the χ − ψ mixing
parameters of the type λv/M increase, on the other hand S and T generally put a significant upper
bound on these parameters. Obviously, in each model the total Aγγ

new is the sum over all the sectors
with different Q.

Let us say a few more words on the cases where χ and/or ψ mix with the SM leptons.
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• N + L : for Rw = 1, the Majorana fermion is a sterile neutrino N , the vector-like fermion
is a lepton doublet L, and the Lagrangian in Eq. (4.3.46) is extended to include λN lLH̃NR +
λLLLHτR+h.c.. The full parameter space includes two real masses, four reals Yukawa couplings
and two physical phases, that can be associated e.g. to λ and λ̃. The 2 × 2 mass matrix in
the Q = ±1 sector is given by Eq. (4.3.13): the mixing with the SM is small due to the strong
constraint from the Zττ couplings, implying small deviations in µγγ and µγZ . The 4× 4 mass
matrix in the Q = 0 sector is obtained by adding to Eq. (4.3.47) a first row and a first column of
the form (0, λNv/

√
2, 0, 0). There are some simple limiting cases. If λ, λ̃→ 0, the matrix reduces

to two diagonal blocks, as N and L decouple from each other, and the phenomenology reduces
to the one of the previous sections. If ML,N/v are much larger than the Yukawa couplings,
all the mixing angles are small and the smallness of the light neutrino mass follows from the
usual seesaw mechanism, mν ≃ λ2Nv

2/(2MN ). Still, mν can be small even in the presence of
large Yukawa couplings. In particular, for λv, λ̃v ∼MN,L, large mixing angles are possible, and,
correspondingly, such intricate neutral sector may induce significant corrections to the S and T
parameters.

• For Rw = 3, the Majorana fermion is the triplet Σ and the vector-like fermion is the doublet L
or the quartet Ω.

Σ+L : the Lagrangian in Eq. (4.3.46) is extended to include λΣlLH̃ΣR+ λLLLHτR+ h.c.. Up
to different Clebsch-Gordan coefficients, the 4 × 4 neutral sector is the same as in the N + L
case. The mass matrix in the charged sector is

M1 =




√
1
2λτv

√
1
3λΣv 0

0 MΣ

√
1
3λv√

1
2λLv

√
1
3 λ̃v ML


 . (4.3.52)

The Zττ couplings constrain both mixing parameters λΣv/MΣ and λLv/ML to be small, as
explained in sections 4.3.1 and 4.3.2, respectively. When the mixing with the SM is neglected,
one is left with a special case of Eq. (4.3.50), which corresponds to the chargino mass matrix in
supersymmetry. Note that, in the limit where λτ vanishes, there is still a contribution to the
τ mass, mτ ≃ (λΣλLλv

3)/(3
√
2MΣML), as illustrated in Fig. 4.2(d). Despite the constraint on

the mixing from the Zττ couplings, one can accommodate the correct size of mτ for λ & 3, see
the discussion below Eqs. (4.3.42) and (4.3.44).

Σ + Ω : the Lagrangian in Eq. (4.3.46) is extended to include λΣlLH̃ΣR + h.c., as the quartet
does not mix with the SM. The 4× 4 neutral sector has the same structure as in the N +L and
Σ+L cases. The Q = 1 sector also has a 4× 4 mass matrix, that is obtained from Eq. (4.3.47)
by adding a first row (λτv/

√
2, λΣ/

√
3, 0, 0), and a first column (λτv/

√
2, 0, 0, 0). In addition,

there is a Q = 2 state with mass MΩ. There are no significant phenomenological novelties,
as the effects of the SM mixing with Σ and of the Σ mixing with Ω mixing do not interfere
significantly.

• One VLL plus two Majorana leptons. Let us come to sets of two Majorana leptons both
interacting with one vector-like pair. One obvious possibility is to take two copies of the same
Majorana lepton, that is, to replace χR in Eq. (4.3.45) with χiR, i = 1, 2, with the obvious doubling
of each coupling involving χ in the Lagrangian. Note that Nw can be arbitrary and, for even Nw, the
Majorana mass terms are forbidden but a Dirac mass termMχχc1Rχ2R is allowed. In all other respects,
the mass matrix structures and the inherent phenomenology are a straightforward generalisation of
those discussed above.

The second and last possibility to couple two Majorana leptons to one VLL is provided by the set

χ1R ∼ (1, Rw, 0) , ψL, ψR ∼ (1, Rw + 1,−1/2) , χ2R ∼ (1, Rw + 2, 0) , (4.3.53)

with Nw necessarily odd, and Lagrangian

−Lχψ =MψψLψR +
∑2

i=1

[
1
2Mχiχ

c
iRχiR + λ̃iψLH̃χRi + λiχcRiHψR

]
+ h.c. . (4.3.54)
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There are two pairs of states with Q = ±(Nw + 1)/2, with a mass matrix given by Eq. (4.3.50) with
Mχ, λ, λ̃ → Mχ2 , λ2, λ̃2. In addition, there are four pairs of states with Q = ±(Nw − 1)/2,±(Nw −
3)/2, . . . ,±1, and four states with Q = 0. The 4× 4 mass matrix in each such sector takes the form

MQ =




Mχ1 0 κ1,Qλ̃1v κ1,−Qλ1v
0 Mχ2 κ2,Qλ̃2v κ2,−Qλ2v

κ1,−Qλ̃1v κ2,−Qλ̃2v 0 Mψ

κ1,Qλ1v κ2,Qλ2v Mψ 0


 , (4.3.55)

with κ1,±Q given by Eq. (4.3.48), and κ2,±Q given by Eq. (4.3.49) with Nw → Nw + 2. As in
Eq. (4.3.51), one can estimate the contribution of this mass matrix to the hγγ coupling, by taking
the LET approximation,

Aγγ,4×4
χ1χ2ψ,Q

≃ −8

3

∑

i=1,2

λiv

Mχi

λ̃iv

Mψ
Q2

(
κ2i,−Q + κ2i,Q

)
. (4.3.56)

Let us discuss the minimal cases Rw = 1 and Rw = 3, that admit a mixing with the SM leptons.

• N + L + Σ : for Rw = 1, the new fermions have the gauge quantum numbers of the bino, the
higgsinos and the wino in supersymmetry. Thus, the mass matrices (4.3.50) and (4.3.55) are a
generalisation of the chargino (Q = ±1) and neutralino (Q = 0) mass matrices, respectively (for
a review see Ref. [136]). Supersymmetry restricts the Yukawa couplings to λ̃1,2/λ1,2 = − tanβ,
λ1/λ2 = λ̃1/λ̃2 = − tan θw/

√
3, and λ1 = − cosβg′. The effect of charginos and neutralinos on

the Higgs boson couplings is analysed e.g. in Refs. [137–140]. In particular, the chargino loop
contributing to hγγ and hγZ is controlled by the weak coupling g, and it is typically subleading
compared to the SM top quark loop. Without the supersymmetry constraints, the most general
chargino mass matrix has the structure of Eq. (4.3.32), therefore one can apply the results of
section 4.3.3 for the Higgs decay amplitudes into γγ and γZ.

In the absence of (R-parity conserving) supersymmetry, not only the four Yukawa couplings λ1,2
and λ̃1,2 are unconstrained, but in addition a mixing with the SM leptons is allowed: one should
add to the Lagrangian in Eq. (4.3.54) the terms λN lLH̃NR+λΣlLH̃ΣR+λLLLHτR+h.c.. The
Q = ±1 mass matrix becomes the one in Eq. (4.3.52), and the Q = 0 mass matrix becomes
5 × 5, and it is obtained from Eq. (4.3.55) by adding a first row and column of the form
(0, λNv/

√
2, λΣv/

√
6, 0, 0). Therefore, one can observe the phenomenological effects of N , Σ

and L individually, as analysed in sections 4.3.1 and 4.3.2, as well as their interplay, already
described above for (N +L) and (Σ+L). As usual, the mixing with the SM leptons is typically
constrained to be small by the smallness of mν and by the Zττ couplings, thus the modifications
to the hνν and hττ couplings are suppressed. However, even a very small mixing with the SM
offers decay modes to the heavy fermions, such that none is stable. A dedicated analysis of the
full parameter space would be interesting, to characterise quantitatively the correlations among
the different observables, and especially the deviations from the supersymmetric limit.

• Σ + Ω + Ξ: for Rw = 3, the new fermions are a Majorana triplet, a vector-like quartet, and a
Majorana quintuplet Ξ. There is a 2 × 2 sector with Q = ±2 given by Eq. (4.3.50). As the
triplet mixes with the SM through λΣlLH̃ΣR+h.c., there is a 5× 5 sector with Q = ±1, that is
obtained by adding to the matrix in Eq. (4.3.55) a first row (λτv/

√
2, λΣv/

√
3, 0, 0, 0) and a first

column (λτv/
√
2, 0, 0, 0, 0). This large number of charged states with potentially large mixing

can give a significant correction to µγγ and µγZ . For concreteness, neglecting the mixing with
the SM and using the LET approximation, we find

Aγγ
ΣψΞ ≃ −8

3

(
1

3

λ1v

MΣ

λ̃1v

MΩ
+
λ2v

MΞ

λ̃2v

MΩ

)
, (4.3.57)

to be compared with the SM top contribution, Aγγ
t ≃ 16/9. One should take into account the

constraints (in particular S and T ) on the mixing parameters ∼ λv/M . The neutral sector has
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also a 5 × 5 mass matrix, obtained by adding a first column and row (0, λΣv/
√
6, 0, 0, 0) to to

the matrix in Eq. (4.3.55). As usual, the vanishing neutrino mass requires λΣv/MΣ to be very
small.

4.4 Phenomenology of non-chiral quarks

In this section we discuss new coloured fermions that either form vector-like pairs, or admit a Majorana
mass term. We will dub them ‘quarks’ even when they are not in the fundamental representation of
SU(3)c.

4.4.1 One vector-like quark

There are seven possible VLQs that mix with the SM quarks, as listed in Table 4.1. They have been
extensively studied under various respects in the literature (see e.g. Refs. [84, 141–146]). Here we
describe in a compact, systematic way the leading order constraints coming from EW precisions tests,
direct searches at colliders, and Higgs couplings. As usual we restrict ourselves to mixing with the
third family. In the top (bottom) sector, a mixing appears whenever the VLQ contains a component
T (B) with the same charge as t (b). The components of each multiplet are displayed in Eq. (4.1.6).
In the case of weak singlets or triplets, the SM Lagrangian is extended by

−Lψ = λψqLH̃(H)ψR +MψψLψR + h.c. , for ψ = T,XQ(B, YQ) , (4.4.1)

and, in the case of weak doublets, by

−Lψ = λtψψLH̃(H)tR + λbψψLH(H̃)bR +MψψLψR + h.c. , for ψ = Q(XT , YB) , (4.4.2)

with the further restriction λbXT = λtYB = 0. The structure of the top (bottom) sector mass matrix
is very close to the charged lepton one in the case of one VLL, therefore we will frequently refer to
section 4.3.2. In the top sector one has

Mt =

(
λt

v√
2

κtψλψ
v√
2

0 Mψ

)
, ψ = T,XQ, YQ , Mt =

(
λt

v√
2

0

κtψλ
t
ψ
v√
2

Mψ

)
, ψ = Q,XT , (4.4.3)

with Clebsch-Gordan coefficients κtT,Q,XT = 1, κtXQ =
√
1/3 and κtYQ =

√
2/3. The rotation to the

mass basis is parametrized as Mt = ULdiag(mt,mt′)U
†
R, in analogy with Eq. (4.3.14). In the bottom

sector one has

Mb =

(
λb

v√
2

κbψλψ
v√
2

0 Mψ

)
, ψ = B,XQ, YQ , Mb =

(
λb

v√
2

0

κbψλ
b
ψ
v√
2

Mψ

)
, ψ = Q, YB , (4.4.4)

with κbB,Q,YB = 1, κbXQ =
√
2/3 and κbYQ =

√
1/3, and one can write Mb = ŨLdiag(mb,mb′)Ũ

†
R.

In all cases except Q, the vector-like mass Mψ and the three independent Yukawa couplings can
be taken to be real. In the case of Q, there are four Yukawa couplings and one complex phase φ
is physical. In full generality, one can choose λt,b and λt,bQ real, and add a matrix Pφ = diag(eiφ, 1)
on the left of Mb. Then, Eq. (C.4) and Eq. (D.5) show that φ appears in the W couplings to the
fermion mass eigenstates, while the Z and h couplings are independent from φ. It is very difficult
to observe such CP-violating effect in the charged current, since it vanishes for λb → 0, that is, it is
always suppressed by the small ratio mb/v. Coming to the mixing angles, the left- and right-hand
ones are related as in the case of VLLs, see Eq. (4.3.15): in the case of weak doublet VLQs one finds

tan θL =
mt

mt′
tan θR < tan θR , tan θ̃L =

mb

mb′
tan θ̃R ≪ tan θ̃R , (4.4.5)

while for singlet or triplet VLQs, the same relations hold with L ↔ R. In the following we will drop
the subscripts L,R and denote θψ (θ̃ψ) the largest mixing angle in the top (bottom) sector, for any

89



given VLQ ψ. For the multiplets with both the T and B components, the mass eigenvalues and the
mixing angles in the top and bottom sectors are strictly related,

{
m2
t′ −m2

b′ = s2ψ(m
2
t′ −m2

t )− s̃2ψ(m
2
b′ −m2

b)

sψcψ(m
2
t′ −m2

t )rψ = s̃ψ c̃ψ(m
2
b′ −m2

b)
, (4.4.6)

where rXQ =
√
2, rYQ = 1/

√
2, and rQ ≡ λbQ/λ

t
Q. Therefore, one can determine the bottom sector

parameters, mb′ and θ̃ψ, as a function of the top sector one, mt′ and θψ, or vice versa. In the case
ψ = Q, there is the additional freedom of the choice of rQ. Note that the custodial symmetry is
preserved in the Q sector if rQ = 1, see Eq. (4.4.2). The mass splitting among the heavy quarks is
controlled (at tree level) by the mixing with the SM. The mass ordering is determined as

T : MT ≤ mt′ , B : MB ≤ mb′ ,
XT : mX =MXT ≤ mt′ , YB : mY =MYB ≤ mb′ ,
XQ : mX =MXQ ≤ mt′ ≤ mb′ , YQ : mY =MYQ ≤ mb′ ≤ mt′ ,

(4.4.7)

where we took implicitly into account the experimental upper bounds on the mixing and on mt/mt′ ,
when needed to establish the ordering. In the case of Q, for rQ = 1 one finds MQ ≤ mb′ ≤ mt′ , but
the ordering between b′ and t′ can change for different values of rQ.

Masses and mixing angles are constrained by the perturbativity of the Yukawa couplings,

∣∣λtψ
∣∣ ≃

∣∣∣∣∣

√
2

κtψ
sψ
mt′

v

∣∣∣∣∣ ≪ 4π ,
∣∣∣λbψ

∣∣∣ ≃
∣∣∣∣∣

√
2

κbψ
s̃ψ
mb′

v

∣∣∣∣∣ ≪ 4π . (4.4.8)

Note that we do not impose a stronger upper bound such as 4π/
√
Nc, for reasons discussed in Appendix

D.1. The perturbativity of the SM couplings λt and λb is guaranteed a fortiori. For definiteness, in
Figures 4.3 - 4.6 we delimit with a black dotted line the region of parameters where at least one
Yukawa coupling becomes larger than 2π. In the case of Q both inequalities must be satisfied at the
same time, therefore a large departure from rQ = 1 leads to a stronger constraint, as illustrated by
the comparison of the left and right panels of Fig. 4.6.

Important constraints come from the Z couplings to quarks, that are affected by the mixing as
shown in Eq. (C.6). The tree-level deviations with respect to the SM are given by

δgL
Zbb

= s̃2L

(
1

2
+ T 3

B

)
, δgR

Zbb
= s̃2RT

3
B , δgLZtt = s2L

(
−1

2
+ T 3

T

)
, δgRZtt = s2RT

3
T , (4.4.9)

where T 3
B (T 3

T ) is the weak isospin of the B (T ) component of the VLQ under investigation. The Zbb
couplings are measured less precisely than their leptonic analog, the Zτ+τ− couplings, but nonethe-
less they are strongly constrained, especially for bL. The top couplings to the Z boson are poorly
constrained directly, however they also contribute at one loop to Zbb. These constraints are sum-
marised in appendix C.3 and they exclude the blue-shaded region in Figures 4.3 - 4.6. Deviations in
ZbLbL are present at tree level in the case of B, YB, YQ and XQ. However, in the case of the doublet
YB, the deviation is suppressed by (mb/m

′
b)

2 and the most important correction is the one to ZbRbR.
In the case of T and XT , there is no bottom partner and the deviation to ZbLbL is induced at one
loop mostly through δgL

Ztt
, leading to a relatively weak constraint. Finally, in the case of Q, δgR

bb
is

generated at tree level and δgL
bb

at one loop, the strongest constraint coming from the right-handed
coupling.

The VLQ couplings to the EW gauge bosons are also constrained by the EW precision parameters
S and T , whose expressions are provided in appendix C.2. Note that, in contrast with the tau and
bottom sectors, in the top sector contributions proportional to powers of mt/mZ are not suppressed.
In Figs. 4.3 - 4.6 we display in (light) yellow the region corresponding to the (68%) 99% C.L. ellipse
of Fig. 10. Since S and T are proportional to the mixing between the SM quarks and the VLQ, one
typically observes an upper bound sψ, s̃ψ . 0.05− 0.20, depending on the VLQ under consideration.
Note that this bound relaxes as the heavy quark mass decreases, because S and T eventually vanish
in the limit mt′ → mt or mb′ → mb. Note also that a cancellation is possible among relatively large
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Figure 4.3: Constraints on the weak singlet VLQs B (left panel) and T (right panel), as a function of
the mass of b′ (t′) and of the mixing angle between bL and b′L (tL and t′L). The region above the dotted
black line is excluded by perturbativity. The blue-shaded region is excluded by the Zbb couplings.
The (light) yellow-shaded region is excluded by the S and T parameters at (68%) 99% C.L.. The
green-shaded region is just the intersection of the previous two. The grey-shaded region is excluded
by the collider searches summarised in Table 4.3. The region above the solid black line is excluded by
a rough global fit of the Higgs couplings at 99% C.L.. The dashed blue (dotted red) lines correspond
to a few relevant values of the signal strength µγZ (µγγ).

Figure 4.4: Constraints on the weak doublet VLQs YB (Y = −5/6, left panel) and XT (Y = +7/6,
right panel) as a function of the mass of b′ (t′) and of the mixing angle between bR and b′R (tR and
t′R). The notation is the same as in Fig. 4.3.
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Figure 4.5: Constraints on the weak triplet VLQs YQ (Y = −1/3, left panel) and XQ (Y = +2/3,
right panel) as a function of the mass of t′ and of the mixing angle between tL and t′L. The notation
is the same as in Fig. 4.3.

contributions to S and T , such that large mixing angles may be allowed in a fine-tuned region of
parameters. This is especially relevant in the case of XT , because such region is not excluded by other
constraints. Indeed, we find

T (XT ) ≃
3s2XT

16πc2ws
2
w

m2
t′

m2
Z

[
4

3
s2XT +

m2
t

m2
t′

(
4 ln

m2
t

m2
t′
+ 6

)]
, S(XT ) ≃

s2XT
2π

(
4

3
ln
m2
t

m2
t′
+ 5

)
, (4.4.10)

where we dropped terms subleading in sXT and mt/mt′ . As the logarithm is large and negative, a
cancellation is possible in the T parameter even for large mixing: this explains the allowed strip in
Fig. 4.4, that reaches sXT ≃ 0.5. A comment is in order for the case of Q: one would expect a milder

constraint from T when the two Yukawa couplings λt,bQ respect the custodial symmetry, i.e. when
rQ = 1. However, even in this case there is an important deviation from the SM, because the residual
custodial-breaking parameter, (λt − λb), differs from the SM one,

√
2(mt − mb)/v, as soon as the

mixing is non-zero.
Let us now turn to the direct searches of VLQs at colliders. As they are coloured, it is easier

to produce them at the LHC, relatively to VLLs. Below ∼ 1 TeV they are dominantly produced
in pairs through strong interactions, while for higher masses single production by EW interactions
can become dominant [142, 147]. The pair production mechanism, that dominates in the mass range
probed at the 8 TeV LHC, is independent from the VLQ (all are colour triplets) and from the mixing
parameters. The ATLAS and CMS searches focus on the following decay channels for the heavy quark
mass eigenstates:

X → tW+ , t′ → tZ, th, bW+ , b′ → bZ, bh, tW− , Y → bW− . (4.4.11)

Note that t′ and b′ can decay via neutral current at leading order, owing to their vector-like nature.
Decays into another heavy quark coming from the same multiplet, such as t′ → XW−, are kinemat-
ically suppressed; decays through loops may also be possible, but they are typically negligible [143].
Here we will disregard these sub-leading channels, and assume that the decay channels in Eq. (4.4.11)
have unit branching ratio. In addition, the decays are assumed to be prompt, that is the case whenever
the mixing angles are large enough to have an observable effect on the Higgs couplings.

The relative branching ratios of t′ and b′ in the three decay channels depend mostly on the weak
isospin of the VLQ and on the mixing angles. Indeed, since the heavy quarks are already constrained
to be heavier than a few hundred GeVs, in good approximation one can neglect the final state masses
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Figure 4.6: Constraints on the weak doublet VLQ Q as a function of the mass of t′ and of the mixing
angle between tR and t′R. The left panel corresponds to λtQ = λbQ (rQ = 1), and the right one to

4λtQ = λbQ (rQ = 4). The notation is the same as in Fig. 4.3.

and find
Γ(t′ → ht) ≃ mt′

16π

(
|ytt′ |2 + |ỹtt′ |2

)
,

Γ(t′ → Zt) ≃ m3
t′

32πm2
Z

(
|(cZL)tt′ |2 + |(cZR)tt′ |2

)
,

Γ(t′ →Wb) ≃ m3
t′

32πm2
W

(
|(cWL )bt′ |2 + |(cWR )bt′ |2

)
,

(4.4.12)

and the same for t′ ↔ b′ and t↔ b. Here the Higgs couplings are defined by Eq. (D.5), and the Z and
W couplings by Eq. (C.4). By a straightforward computation, one finds Br (t′ → ht) ≃ Br (t′ → Zt)
and

T : Br (t′ → Zt) ≃ 1

2

1− s2T
2− s2T

, Br (t′ →Wb) ≃ 1

2− s2T
;

XT : Br (t′ → Zt) ≃ 1

2
, Br (t′ →Wb) ≃ 0 ;

Q : Br (t′ → Zt) ≃ 1

2

1 + s2Q(r
2
Q − 1)

r2Q + 1 + s2Q(r
2
Q − 1)

, Br (t′ →Wb) ≃
r2Q

r2Q + 1 + s2Q(r
2
Q − 1)

;

XQ : Br (t′ → Zt) ≃ 1

2

1 + s2XQ
2 + s2XQ

, Br (t′ →Wb) ≃ 1

2 + s2XQ
;

YQ : Br (t′ → Zt) ≃ 1

2
, Br (t′ →Wb) ≃ 0 .

(4.4.13)

As before, we neglected the SM masses and, therefore, the subdominant mixing angles in Eq. (4.4.5).
Note however that some branching ratios are proportional to the SM masses at leading order, for
example in the case of XT one finds Br (t′ →Wb) ≃ m2

t /(c
4
XT
m2
t′). In the cases where both t′ and

b′ are present, we used the relation tan θ̃ψ ≃ rψ tan θψ, that follows from Eq. (4.4.6) if one neglects
mb and mt. The b′ branching ratios are obtained from Eq. (4.4.13) by the replacements T → B,
XT → YB, XQ ↔ YQ, t

′ → b′, t↔ b, rQ → 1/rQ and sψ → s̃ψ for each ψ.
The experimental lower bounds on the mass of t′ and b′ are presented as a function of two indepen-

dent branching ratios [148,149]. We choose, in the plane of branching ratios, their approximate values
for the VLQ under consideration. To this purpose, we take the limit sψ → 0 in Eq. (4.4.13) (s̃ψ → 0
in the case of b′), because the collider bound is relevant at small mixing angles, see Figs. 4.3 - 4.6).
The only exception is XT , where large mixing is possible, but in this case the strongest collider bound
is the one on the component X. The lower bounds on each heavy quark mass are collected in Table
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heavy quark branching ratios multiplets mass bound

X (Q = 5/3) BrWt = 1 XT , XQ mX ≥ 840 GeV [150]

t′ (Q = 2/3) BrWb =
1
2 , BrZt = Brht =

1
4 T , XQ, Q(rQ = 1) mt′ ≥ 800 GeV [148]

BrWb = 0, BrZt = Brht =
1
2 XT , YQ, Q(rQ ≪ 1) mt′ ≥ 855 GeV [148]

BrWb = 1, BrZt = Brht = 0 Q(rQ ≫ 1), Q+ YB mt′ ≥ 920 GeV [155]

BrWb = BrZt = 0, Brht = 1 XT +Q mt′ ≥ 950 GeV [148]

BrWb = Brht = 0, BrZt = 1 XT +Q mt′ ≥ 800 GeV [148]

BrWb +BrZt +Brht = 1 T , XT , Q, YQ, XQ mt′ ≥ 720 GeV [155]

b′ (Q = −1/3) BrWt =
1
2 , BrZb = Brhb =

1
4 B, YQ, Q(rQ = 1) mb′ ≥ 735 GeV [148]

BrWt = 0, BrZb = Brhb =
1
2 YB, XQ Q(r2Q ≫ 1) mb′ ≥ 755 GeV [151]

BrWt = 1, BrZb = Brhb = 0 Q(r2Q ≪ 1), XT +Q mb′ ≥ 810 GeV [150]

BrWt = BrZb = 0, Brhb = 1 Q+ YB mb′ ≥ 846 GeV [153]

BrWt = Brhb = 0, BrZb = 1 Q+ YB mb′ ≥ 775 GeV [148]

BrWt +BrZb +Brhb = 1 B, YB, Q, YQ, XQ mb′ ≥ 582 GeV [154]

Y (Q = −4/3) BrWb = 1 YB, YQ mY ≥ 770 GeV [148]

Table 4.3: Lower bounds at 95 % C.L. on the heavy quark masses mX ,mt′ ,mb′ and mY . The exper-
imental searches assume pair production via strong interactions and prompt decays in the indicated
channels. In the second column we specify the assumption on the heavy quark-decay branching ra-
tios. Here BrZt stands for Br (t

′ → Zt), and so forth. In the third column we list the VLQ multiplets
that correspond to those branching ratios, in the small mixing approximation. Here “XT + Q” and
“Q+ YB” refer to pairs of VLQs with a custodial symmetry, that are discussed in section 4.4.2.

4.3, and vary between ∼ 600 and 900 GeV [148,150–154]. The region excluded at 95 % C.L. is shaded
in grey in Figs. 4.3 - 4.6. A detailed analysis of the lower bound on m′

t is presented in Ref. [85] for
the case of the VLQ T , taking also into account indirect constraints from B-physics observables.

Let us now discuss the corrections induced by the VLQ on the Higgs boson couplings. The
couplings of t, t′, b and b′ to the Higgs have the same form as those of τ and τ ′ in Eq. (4.3.19), with
the obvious replacement of masses and mixing angles. The heavy quarks X and Y do not couple to
the Higgs. The Higgs signal strengths at the LHC µα, defined in Eq. (D.40), are the product of three
factors: Higgs production rate, partial decay rate and lifetime. While new leptons affect significantly
the partial decay rate only, new quarks can modify substantially each factor. In particular, the Higgs
production via gluon fusion is sensitive to a VLQ, and the mixing in the bottom sector can change
significantly the total Higgs width Γh. Let us remind that, as discussed below Eq. (4.4.4), the Higgs
couplings are CP-conserving for any VLQ.

When the VLQ contains a B component, the Higgs width into bb is modified, with respect to the
SM, by a factor Rbb = (1− s̃2ψ)

2 that, in the light of previously discussed constraints, can be as small

as ∼ 0.9. Since in the SM h → bb is the dominant decay channel, this correction enhances µα for all
other decay channels, through the factor ΓSMh /Γh. The Higgs production via gluon fusion is modified
by a factor

Rgg =

∣∣∣Agg
SM + 3

4s
2
ψ

[
A1/2(τt′)−A1/2(τt)

]
+ 3

4 s̃
2
ψ

[
A1/2(τb′)−A1/2(τb)

]∣∣∣
2

∣∣Agg
SM

∣∣2 , (4.4.14)

where the form factors are defined in appendix D.2. The effect of the top sector is qualitatively
different from the bottom one: given the collider lower bound on mt′,b′ , their form factors are very
close to the asymptotic value, A1/2(0) = 4/3. While the t loop is also close to this value, the b has a
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small mass and a suppressed form factor: A1/2(τt′)−A1/2(τt) ≃ −0.04 and A1/2(τb′)−A1/2(τb) ≃ +1.41
Therefore, when a b′ is present (for ψ = B, YB, Q,XQ, YQ), its effect dominates and the interference
with the SM is constructive. An exception is possible for ψ = Q, where s̃Q/sQ ≪ 1 for rQ ≪ 1,
see Eq. (4.4.6). In the latter case, and when only a t′ is present (for ψ = T,XT ), there is a slight
destructive interference with the SM. The tt̄h production mode is also modified respect to the SM in
the presence of t− t′ mixing, with a cross-section reduced by a factor c4ψ .

In the diphoton channel

Rγγ =

∣∣∣Aγγ
SM + 4

3s
2
ψ

[
A1/2(τt′)−A1/2(τt)

]
+ 1

3 s̃
2
ψ

[
A1/2(τb′)−A1/2(τb)

]∣∣∣
2

∣∣Aγγ
SM

∣∣2 . (4.4.15)

Here the SM amplitude is negative, therefore the interference pattern is reversed with respect to Rgg.
A few different values of the signal strength µγγ are shown in Figs. 4.3 - 4.6 by dotted red lines. Once
the other constraints are taken into account, one finds at most δµγγ ∼ 0.3. Finally, for the Higgs
decay into a photon and a Z, the new physics amplitude writes

AγZ
SM+ψ −AγZ

SM ≃
∑

α=t,b

3Qα
c2w

{
δgVααA1/2(τα, λα) + s2ψ,α

[
gVα′α′A1/2(τα′ , λα′)− gVααA1/2(τα, λα)

]

+ cψ,αsψ,α
mα +mα′

√
mαmα′

gVαα′A1/2(τα′ , λα′ , τα, λα)
}
, (4.4.16)

where sψ,t ≡ sψ, sψ,b ≡ s̃ψ, and we neglected the terms proportional to the form factor B1/2, that
are subdominant. Note also that there is no CP-violating amplitude, as both the h and Z couplings
respect CP, see discussion below Eq. (4.4.4). The vector Z couplings are obtained from Eq. (C.6): one
finds δgVαα ≡ (gVαα− gV,SMαα ) ∼ s2ψ,α and gVαα′ ∼ sψ,α, so that the new physics amplitude of Eq. (4.4.16)
is of the order of the mixing squared. The interference with the SM may be constructive or destructive
depending on the sign of the Z couplings. A few different values of the signal strength µγZ are shown
in Figs. 4.3 - 4.6 by dashed blue lines. When a b′ is present, both µγZ and µγγ receive a similar
correction, dominated by the increase of Rgg and ΓSMh /Γh. A significant correction is possible for
YB, with both δµγZ and δµγγ as large as ∼ 0.3. On the other hand, in the case of T or XT the
corrections to the two channels are significantly different, because the small factor A1/2(τt′)−A1/2(τt)
in Eq. (4.4.15) suppresses the correction to hγγ. In particular, for XT one can have δµγZ ∼ 0.1 with
δµγγ ∼ 0.01.

In our analysis we computed the relevant signal strengths µα for α = bb, γγ, γZ, WW and ZZ,
taking of course into account the corrections to Rgg and Γh. We compared these predictions with the
allowed experimental ranges given in Table 4. By simply computing a χ2 for these five channels, we
determined the region of parameters disfavoured at 99% C.L., that is delimited by the solid black line
in Figs. 4.3 - 4.6.

4.4.2 Two vector-like quarks (including b and t compositeness)

• Two VLQs not coupled to each other. Let us consider first a pair of VLQs (ψ, ψ′) that do not
couple to each other via a Yukawa coupling. In this case ψ and ψ′ must be identified with one of the
seven VLQs in table 4.1, and the phenomenological effects are, in most respects, a trivial addition of
those of each VLQ separately, already discussed in section 4.4.1.

A noticeable exception occurs when the Yukawa couplings and the vector-like masses of ψ and
ψ′ respect an additional SU(2)R global symmetry, that provides custodial protection for the EW
gauge boson couplings: when the parameters approach this custodial limit, the constraints from EW
precision tests drastically relax with respect to the case of a unique VLQ. There are four pairs that
may form a doublet under SU(2)R: the weak singlets (T,B), the weak doublets (XT , Q) or (Q, YB),
and the weak triplets (XQ, YQ). For illustration, we will concentrate on the case of doublets.

The two VLQs transform as bi-doublets under a custodial SU(2)L × SU(2)R symmetry, as long
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as their Yukawa couplings to the SM fermions and their vector-like masses are equal,

−L(XT ,Q) =
λψ√
2
(XT Q)L

(
H

H̃

)
tR +Mψ(XT Q)L

(
XT

Q

)

R

+ h.c. ,

−L(Q,YB) =
λψ√
2
(Q YB)L

(
H

H̃

)
bR +Mψ(Q YB)L

(
Q
YB

)

R

+ h.c. .

(4.4.17)

These are the smallest sets of top and bottom quark custodians, respectively [36,129,156]. Note that,
in this custodial limit, the additional coupling QLHbR (QLH̃tR) must vanish in the top (bottom) case.
Therefore, a mixing occurs only in the top (bottom) sector, and there are no deviations in the bottom
(top) couplings, despite the presence of a b′ (t′) in the spectrum. The analysis is analogous to the
case of τ custodians, discussed in section 4.3.3. For example, in the top case the linear combination
t′′ ≡ (T (XT ) − T (Q))/

√
2 does not couple to the Higgs and therefore it does not mix, while the

orthogonal combination mixes with the SM top quark as in Eq. (4.4.3), to form the mass eigenstates
t′ and t. The mass spectrum is

mt′′ = mb′ = mX =Mψ ≤ mt′ ≃
Mψ

cR
(XT , Q) ,

mb′′ = mt′ = mY =Mψ ≤ mb′ ≃
Mψ

c̃R
(Q, YB) .

(4.4.18)

Due to the custodial symmetry, the values of the heavy quark branching ratios into SM particles differ
from the case of a single VLQ, discussed in section 4.4.1. We assume that the decays to another heavy
quark are kinematically suppressed, because of the small mass splitting in Eq. (4.4.18), and once again
we neglect the SM masses in the final state, as well as the t − t′ (b − b′) left-handed mixing angle,
that is suppressed by mt/mt′ (mb/mb′). Consider for example the top case. The decays t′/t′′ → Wb
are suppressed as in Eq. (4.4.13) (here rQ = 0). In addition t′ → Zt vanishes because the Q = 2/3
components of XT and Q have opposite weak isospin, and t′′ → ht vanishes because t′′ does not couple
to the Higgs. Similar arguments hold in the bottom case. In summary one finds

BR(t′′ → Zt) ≃ Br(b′ →W−t) ≃ Br(X →W+t) ≃ Br(t′ → ht) ≃ 1 (XT , Q) ,
BR(b′′ → Zb) ≃ Br(t′ →W+b) ≃ Br(Y →W−b) ≃ Br(b′ → hb) ≃ 1 (Q, YB) .

(4.4.19)

It is amusing that, in these two models, there is one heavy quark decaying exclusively in each of the
possible decay channels listed in Eq. (4.4.11). The experimental lower bounds on these heavy quark
masses can be read off Table 4.3.

The custodial symmetry protects the Zbb̄ couplings: in the top case δgRtt̄ = 0 and the small
δgL
tt

= (mt/Mψ)
2s2R/2 contributes to Zbb̄ only at one loop; in the bottom case δgR

bb̄
= 0 and

δgL
bb

= (mb/Mψ)
2s̃2R/2 is very suppressed by the bottom mass. Thus, in this custodial limit large

mixing angles are not excluded, as shown in Fig. 4.7. Indeed, one can see that the constraint from
the other EW precision parameters is significantly relaxed too, as T receives a small correction only,
from the difference (λt − λb), that is not SM-like because of the mixing, while S acquires a positive
correction that remains in the ellipse unless the mixing is very large. Note that in the bottom sector
the T parameter is almost independent from mb′ , since the smallness of mb ensures λb ≃ λSMb . On
the other hand, when the mixing occurs in the top sector, the coupling λt and consequently the T
parameter strongly depend on mt′ . The dominant constraints at small and large heavy quark masses
come from the direct collider searches and from perturbativity, respectively. In the top case (right
panel of Fig. 4.7), the mixing is not constrained by the fit of the Higgs coupling, as the bottom sector
is SM-like. As a consequence, for 1.5 TeV . mt′ . 2 TeV the mixing can be as large as sR ≃ 0.8. The
γγ Higgs decay channel can be suppressed at most by δµγγ ≃ −0.03, while the corrections to the γZ
channel may be larger, up to δµγZ ≃ +0.13. In the bottom case (left panel of Fig. 4.7), the mixing
in the bottom sector enhances all the other Higgs channels, as Rbb = (1 − s̃2R)

2 < 1. This leads to
an upper bound s̃R . 0.35. Significant corrections as large as δµγγ ≃ δµγZ ≃ 0.6 are possible. Note
that the Higgs signal strengths in Fig. 4.7 are similar to those with YB or XT only, shown in Fig. 4.4.
The difference is that the region allowed by EW precision tests largely inflated here, thanks to the
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Figure 4.7: Constraints on the pairs of VLQs (Q, YB) (left panel) and (XT , Q) (right panel), in the
custodial limit (equal vector-like masses and Yukawa couplings), as a function of the mass of b′ (t′)
and of the mixing angle between bR and b′R (tR and t′R). The notation is the same as in Fig. 4.3.

custodial symmetry.

• Two VLQs coupled to each other, not mixing with the SM fermions. Let us move to the
case of two VLQs coupled to each other via Yukawa interactions. Their chiral components transform
as

ψ1L, ψ1R ∼ (Rc, Rw, Y ) , ψ2L, ψ2R ∼ (Rc, Rw + 1, Y +
1

2
) , (4.4.20)

with Rc 6= 1. The corresponding Lagrangian is the same as in the case Rc = 1 (two VLLs), and it is
given in Eq. (4.3.31). We bar the special case Rc = Rc, Y = 0 and Rw odd (Y + 1/2 = 0 and Rw
even), that allows for a Majorana mass terms for ψ1 (ψ2) and will be discussed in section 4.4.3. We
also bar mixing with the SM quarks, that will be discussed at the end of the section. The effect of
two VLQs on µγγ was discussed in detail in Ref. [157].

The number of mass eigenstates with a given electric charge Q and the structure of their mass
matrices are the same as in the case of two VLLs, see Eqs. (4.3.32) and (4.3.40). Therefore, there
are five physical parameters: two masses m1,2, two mixing angles θL,R and one phase ϕ, defined by
Eq. (4.3.33). The analysis of the parameter space proceeds exactly as in section 4.3.3 and will not
be repeated here, however the phenomenology is strongly modified as the colour representation Rc is
non-trivial. The main differences are the following:

• The VLQs are pair-produced via strong interactions and, in the absence of mixing with the SM,
the lightest state is stable and hadronises. The direct collider bounds on these particle masses
are above one TeV, as we already described in some more detail in section 4.2.

• The contributions of the VLQs to the S and T parameters, as well as to the Higgs decay
amplitudes into γγ and γZ, have the same form as in Eqs. (4.3.35) to (4.3.39), with an additional
factor Nc. As in the case of VLLs, for Rw = 1 and large values of Q we find two regions of
the mixing parameters where µγγ remains SM-like, while µγZ can strongly depart from one. (i)
For two degenerate masses m1 = m2, the interference with the SM amplitude is destructive for
γγ and constructive for γZ, as illustrated in Fig. 4.1. Therefore, there are values of the mixing
parameters where accidentally µγγ goes back to the allowed range, while at the same time one
can even saturate the present upper bound µγZ . 10. Note that the gluon-gluon channel remains
nearly SM-like, because its amplitude is not enhanced by the large factor Q2. (ii) For m1 6= m2,
the amplitude Aγγ

f1,f2
in Eq. (4.3.37) can be tuned to zero, while at the same time one can have

large contributions to µγZ together with sufficiently small corrections to S and T . E.g. taking
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Figure 4.8: In the left (right) panel, we show the constraints on the pair of VLQs B and Q (T and Q),
in the limit of vanishing mixing with the SM quarks, degenerate mass eigenvalues mb′ = mb′′ ≡ m1/3

(mt′ = mt′′ ≡ m2/3) and no CP violation, ϕ = 0. In this case the relevant mixing angle is θL − θR,
see Eq. (4.3.35). The notation for the various constraints is the same as in Fig. 4.3.

Nc = 3, Q ≃ 8, mixing parameters ϕ = 0, θL ≃ π/8, θR ≃ π/10, m1/m2 ≃ 1.3 and m2 ≃ 1 TeV,
one obtains µγZ ≃ 2. For the cases Rw > 1, we refer to the discussion below Eq. (4.3.40).

• The VLQs also contribute to the Higgs production by gluon fusion, with an amplitude that
can be easily obtained from the γγ one. For the pair of mass eigenstates f1, f2 of charge Q,
one has Agg

f1,f2
= [3C(Rc)/2]/(NcQ

2)Aγγ
f1,f2

, see appendix D.2. The interference with the SM is
constructive in the gluon case, thus enhancing the Higgs production. Note that the gluon-gluon
channel also receives a non-zero contribution from the Q = 0 sector.

For illustration, we display in Fig. 4.8 the parameter space for the case Rc = 3, Rw = 1 and
Y = −1/3 (Y = −2/3), that corresponds to the pair of VLQs B and Q (T and Q), in the limit
of no-mixing with the SM quarks. In Fig. 4.9 we illustrate how the constraints change for a larger
colour representation, as we replaced Rc = 3 by Rc = 8. For definiteness, we assumed that there is no
CP violation, ϕ = 0, and that the two mixing mass eigenstates f1,2 of charge Q = Y are degenerate
in mass, m1 = m2. In the case of colour octets, larger deviations in the Higgs signal strengths are
possible, but the various constraints are correspondingly stronger. One can reach µγZ ≃ 1.4 for the
octets and µγZ ≃ 1.2 for the triplets. In the case Y = −1/3, µγγ and µγZ are very close to each other,

because AγZ
f1,f2

/Aγγ
f1,f2

= (gV11 + gV22)/(Y c
2
w) is numerically close to one, see Eqs. (4.3.35) and (4.3.37),

and AγZ
SM/A

γγ
SM is close to one as well. The strongest constraint on the mixing among the heavy

states comes from the S and T parameters. In the octet case the fit of the main Higgs decay channels
(see the end of section 4.4.1 for details) is also a relevant constraint. The mass scale m1 = m2 is
constrained by the searches of stable coloured particles, discussed in section 4.2.

• Two VLQs coupled to each other, mixing with the SM fermions. Let us briefly discuss the
possible interactions between the two VLQs ψ1,2 in Eq. (4.4.20) and the SM quarks. This requires of
course Rc = 3. A non-zero mixing with the bottom and/or top quark can occur if and only if at least
one VLQ belongs to the set of seven VLQs in Table 4.1. The complete list is

singlet + doublet :

{
T +XT (2t′) , T +Q (2t′ + b′) ,
B +Q (t′ + 2b′) , B + YB (2b′) ,

(4.4.21)

doublet + triplet :





XT + ZXT (2t′) , XT +XQ (2t′ + b′) ,
Q+XQ (2t′ + 2b′) , Q+ YQ (2t′ + 2b′) ,
YB + YQ (t′ + 2b′) , YB +WYB (2b′) ,

(4.4.22)
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Figure 4.9: The same as in Fig. 4.8, but replacing colour triplets with colour octets.

triplet + quartet :

{
XQ +ΩXT (2t′ + 2b′) , XQ +ΩQ (2t′ + 2b′) ,
YQ +ΩQ (2t′ + 2b′) , YQ +ΩYB (2t′ + 2b′) ,

(4.4.23)

where we indicated in brackets the number of new states mixing with the top and with the bottom
quark. We also introduced a few new multiplets, with no Yukawa couplings to the SM fermions:
ZXT ∼ (3, 3, 5/3), WYB ∼ (3, 3,−4/3), ΩXT ∼ (3, 4, 7/6), ΩQ ∼ (3, 4, 1/6), and ΩYB ∼ (3, 4,−5/6).
They can be written in components as

ZXT =



Z
X
T


 , WYB =



B
Y
W


 , ΩXT =




Z
X
T
B


 , ΩQ =




X
T
B
Y


 , ΩYB =




T
B
Y
W


 , (4.4.24)

where the two new exotic states Z and W have charges Q(Z) = 8/3 and Q(W ) = −7/3. Recasting
LHC searches, Ref. [158] puts a lower bound of 940 GeV on the mass of the Q = 8/3 state.

When there is only one t′ (b′) state, the mixing in the top (bottom) sector has the same pattern
as in section 4.4.1. On the other hand, when there are two t′ states, the top sector mass matrix takes
the form

Mt =



λt

v√
2

λ1
v√
2

m2

m1 M1 λ12
v√
2

λ2
v√
2

λ21
v√
2

M2


 , (4.4.25)

where we dropped possible Clebsch-Gordan coefficients. Here ψ1 (ψ2) is a weak singlet or triplet
(doublet or quartet), m1 (m2) vanishes unless ψ1 = T (ψ2 = Q), and λ1,2 vanishes if ψ1,2 is one of the
multiplets in Eq. (4.4.24). The bottom sector mass matrix in presence of two b′ states has an analog
structure. The mixing with the SM is controlled by ratios of the type λv/M orm/M . They are mostly
constrained by the Zbb̄ couplings and by S and T . One typically expects |λv/M |,|m/M | . 0.1− 0.2,
in analogy with Figs. 4.3 - 4.6. Possible cancellations among the various contributions could relax
these constraints. A detailed analysis of the whole parameter space of these models is beyond the
scope of this chapter. Some recent study can be found in Ref. [159], that discusses the phenomenology
of the 2t′ and 2t′ + b′ cases.

Let us focus on the possibility to generate the top mass (and analogously the bottom one) through
the mixing with the VLQs, in the limit where the SM Yukawa coupling λt (λb) vanishes. This is
possible whenever the determinant of Mt in Eq. (4.4.25) is non-zero for λt = 0, that is, if and
only if the two VLQs both couple directly to the SM. The resulting top mass is of order mt ∼
λv(λv/M)2, λv(m/M) or λv(m/M)2. The latter possibility is motivated by partial compositeness.
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In this scenario, the SM fermions do not couple directly to the composite Higgs, therefore λt = λ1 =
λ2 = 0 in Eq. (4.4.25). Rather, they couple linearly to a composite vector-like fermion with the same
quantum numbers. This corresponds to the VLQs T and Q for the case of the top quark, leading
to mt ≃ (mT /MT )(mQ/MQ)λQT v/

√
2, and analogously B and Q for the case of the bottom. The

phenomenology of top and bottom partners in composite models, and the associated constraints, are
analysed e.g. in Refs. [156,160,161] (see also Ref. [147] for warped extra dimensional models).

4.4.3 Vector-like plus Majorana quarks

We define a Majorana quark to be a Y = 0 fermion multiplet in a non-trivial, real colour representa-
tion, Rc = Rc 6= 1. Such object may couple to the Higgs only in the presence of a VLQ in the same
colour representation. As a consequence, these new fermions do not mix with the SM ones and the
lightest mass eigenstate is stable. For the smallest possible representation, Rc = 8, the searches for a
stable gluino lead to a lower bound ≃ 1.3 TeV [94]. For bigger representations, Nc ≥ 27, one expects
an even more stringent limit, given the larger production cross-section and a similar hadronisation
behaviour.

• One VLQ plus one Majorana quark. The most general set formed by a Majorana quark
coupled to a VLQ can be written as

χR ∼ (Rc, Rw, 0) , ψL, ψR ∼ (Rc, Rw ± 1,−1/2) , Rc = Rc 6= 1 . (4.4.26)

If Rc is odd, one needs Nw 6= 2 + 4n to avoid the global SU(2)w anomaly. The Lagrangian and the
structure of the mass matrices are identical to the analogue leptonic case Rc = 1, see Eqs. (4.3.46) to
(4.3.52). Here we discuss only the phenomenological differences due to the effect of colour. The new
states contribute with an additional factor Nc to the one-loop diagrams for the S and T parameters,
as well as for the Higgs signal strengths µγγ and µγZ . In addition, they also contribute to the Higgs
production via gluon fusion, with an amplitude related to the photon-photon one. For each sector
of charge Q that couples to the Higgs, one has Aγγ

χψ,Q = (NcQ
2)/[3C(Rc)/2]Agg

χψ,Q. The gluon-gluon
channel receives a non-zero contribution even from the Q = 0 sector, that is present when Nw is odd.

Since the new quarks are necessarily heavy, their loop contributions can be estimated with good
accuracy using the LET approximation, as described in Appendix D.2 and in section 4.3.4. In par-
ticular, Aγγ

χψ,Q is obtained from the amplitude in Eq. (4.3.51), times a factor Nc. For the gluon-gluon
channel, summing over the different sectors one finds

Agg
χψ ≃ KNwC(Rc)

λv

Mχ

λ̃v

Mψ
, (4.4.27)

where K1 = −4, K2 = −2, K3 = −8/3, K4 = −2, and so on. As the top quark amplitude is approxi-

mately equal to one, Aχψ
gg gives roughly the ratio between the contribution of new fermions and the SM

one. Note that either constructive or destructive interference with the SM amplitude is possible. The
mixing parameters, of the generic form λv/M , must satisfy the constraints from Rgg and Rγγ , whose
allowed ranges are given in Appendix D.3. In the minimal case with Rc = 8 and Rw = 1, only Rgg
receives a correction, leading to the upper bound |λv/M | . 0.17. One expects similar or even stronger
bounds from S and T , in analogy with the cases of Figs. 4.8 and 4.9. Up to possible cancellations,
a larger Rc leads to stronger constraints on the model, and to larger deviations in the Higgs couplings.

• One VLQ plus two Majorana quarks. Coming to sets formed by two Majorana quarks plus one
VLQ, the first obvious possibility is to add a second copy of χR to the previous case. The additional
Majorana multiplet automatically cancels the global SU(2) anomaly, therefore Nw is arbitrary. The
phenomenology is the generalisation of the one discussed above.

The second and last possibility is provided by the set

χ1R ∼ (Rc, Rw, 0), ψL, ψR ∼ (Rc, Rw + 1,−1/2), χ2R ∼ (Rc, Rw + 2, 0), Rc = Rc 6= 1 , (4.4.28)
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with Nw necessarily odd if Rc is odd. The Lagrangian is the same as in Eq. (4.3.54), and the structure
of the mass matrices is also the same as in section 4.3.4. Let us just present the amplitude for Higgs
production into gluon-gluon fusion, that is obtained by generalising Eq. (4.4.27),

Agg
χ1χ2ψ

(Rw) ≃ C(Rc)

(
KNw

λ1v

Mχ1

λ̃1v

Mψ
+KNw+2

λ2v

Mχ2

λ̃2v

Mψ

)
. (4.4.29)

In the minimal case where Rc = 8 and Rw = 1, the allowed range for Rgg leads to a bound on the
mixing parameters |λv/M | . 0.13, where we assumed there is no hierarchy nor cancellations among
the various mixing parameters. The Rγγ constraint is less restrictive.

4.5 Conclusions

We undertook a systematic analysis of new fermions interacting with the Higgs boson. Their properties
(gauge charges, masses, Yukawa couplings) are significantly more constrained after the measurement
of the Higgs mass and couplings at the first run of the LHC. It is intriguing to identify the few
extensions of the SM that outlived this test. We especially aimed at those scenarios that may depart
from the decoupling limit, in which the new fermions become very heavy and/or their mixing with
the SM becomes very small.

In section 4.1 we presented the complete classification of sets of n chiral fermions interacting
with the Higgs, for n ≤ 4. While the minimal possibilities are well-known, already for n = 3 and 4
we singled out several exotic sets of fermions with a peculiar phenomenology. They emerge from a
non-trivial interplay of several self-consistency conditions: cancellation of gauge anomalies, absence of
charged massless components, non-zero Yukawa coupling to the SM Higgs doublet. In our classification
we recovered as a special case the fermion content of well-motivated theories beyond the SM, such
as the seesaw, supersymmetry, or partial compositeness. These cases are situated in a more general
context, by considering the most general Lagrangian for the new fermions, not restricted by additional
theoretical considerations. Would the evidence of a new particle emerge from data, one should indeed
explore the full parameter space, before endorsing a specific model. We also argue that larger sets
of new fermions, with n ≥ 5, do not allow for qualitatively different phenomena, as all the possible
building blocks of a fermion mass matrix already appeared in our classification.

In order to examine the phenomenology of the new fermions, in the appendices C and D we derived
the general expression of the fermion couplings to the EW gauge bosons and to the Higgs boson, for
fermions in arbitrary SM representations (Rc, Rw, Y ). We also provided the formalism to define the
gauge and Higgs boson couplings to the fermion mass eigenstates, after EWSB. Besides these tree-
level results, we presented the general one-loop amplitudes for the gauge boson vacuum polarisation,
ΠV V ′ , that allows to define the EW oblique parameters S and T , and for the Higgs coupling to gauge
bosons, hV V ′, that allows to compute the rate for h→ gg, γγ, γZ.

Let us summarise the main results of our phenomenological survey of sections 4.2 to 4.4:

• Several exotic families of chiral fermions, that receive a mass from EWSB only, are still marginally
compatible with EW precision tests and direct collider bounds. However, the coloured ones are
neatly excluded, as they would greatly enhance the hgg coupling. On the other hand, a colour-
less family formed by two weak doublets and four singlets is still compatible with the measured
hγγ coupling.

• The mixing of two or more sterile neutrinos with the SM leptons can have observable effects,
despite the smallness of the neutrino masses. If the sterile neutrinos are lighter than the EW
scale, they may modify significantly the Higgs invisible width; if heavier, they can appreciably
contribute to the S and T parameters.

• In general, a heavy charged lepton τ ′ cannot mix significantly with the τ because of the Zττ -
coupling constraint. Nonetheless, in a few special regions of parameters interesting phenomena
are possible: (i) If mτ ′ < mh, the decay rate for h → τ ′τ can be significant despite the small
mixing. (ii) When both τL and τR mix with heavy leptons, it is possible to generate mτ entirely
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through the small mixing permitted by the Z couplings, as long as the two heavy leptons are
connected by a Yukawa coupling λ & 3. (iii) If the new lepton sector is arranged to have an
approximate custodial symmetry, the Z couplings are protected. In this case a large τ − τ ′

mixing is allowed, and it may strongly suppress h→ ττ .

• There are two extended classes of new fermions that can couple to the Higgs doublet without
involving the SM fermions: either a pair of vector-like fermions, whose components can have an
arbitrary charge Q, or a pair formed by a vector-like and a Majorana fermion, whose components
have (demi-)integer Q. These fermion pairs were not studied in full generality in the previous
literature, and they can produce large observable effects, even when the mixing with the SM
fermions is zero. By varying their mass matrix parameters, one can typically scan over the
full allowed range for the signal strength µγγ , while remaining in agreement with direct collider
searches and EW precision tests. In most cases µγZ receives a correction comparable to µγγ ,
but when the latter is accidentally close to one, it is possible to have δµγZ ≫ δµγγ . We will
discuss this point in detail below.

• The mixing θ of a heavy quark t′ or b′ with its SM partner is constrained by the EW precision
tests. Nonetheless, the b − b′ mixing may significantly suppress the hbb̄ coupling, leading to
corrections as large as δµγγ ≃ δµγZ ≃ 0.6. We also notice two remarkable circumstances that
allow for a large mixing: (i) The corrections to Zbb̄ from t− t′ mixing are loop-suppressed and
may be also suppressed by (mt/mt′)

2. The T parameter receives opposite sign corrections that
cancel each other for a specific value of sin θ×mt′ . Both conditions can be realised in the case of
the VLQ doublet (X,T ), allowing for a large sin θ . 0.5. (ii) The Lagrangian of the new quarks
can preserve a custodial symmetry, that suppresses the corrections to T as well as to the Zbb̄
couplings. In this custodial subspace of parameters, the upper bound on the mixing relaxes,
the exact value depending on the model: for the VLQ doublet Q coupled to tR and bR we find
sin θ . 0.15, while for the two doublets Q+ YB coupled to bR (XT +Q coupled to tR) one can
reach sin θ . 0.45 (sin θ . 0.8).

In the course of our analysis, we paid special attention to the relative contribution of the new
fermions to h → γγ and h → γZ, as the former rate is already constrained to be close to the SM
prediction, while the latter could still depart strongly from its SM value. It is commonly believed that
new physics cannot provide a large correction to the γZ channel without affecting γγ as well. Indeed,
let us consider the effective Lagrangian before EWSB, that corresponds to the limit where the new
fermions are heavier than the EW scale. There are several dimension-six operators involving the Higgs
doublet H and the field-strengths Bµν , W

a
µν , listed e.g. in Ref. [162]. The operators contributing to

hγZ can be generated, at one loop, only by two fermion multiplets coupled to H. At least one of these
fermions has non-zero hypercharge, thus it necessarily induces the operator H†HBµνBµν as well, that
contributes to hγγ. One can rephrase the same argument in terms of the effective Lagrangian for the
hV V ′ couplings after EWSB, that is displayed in Eq. (D.8). The coefficients of the dimension-five
operators, generated at one loop by the fermion mass eigenstate fi, are given in Eq. (D.22) for hγγ
and in Eq. (D.34) for hγZ. The fermion fi cannot contribute to the γZ channel only, simply because
one needs a charge Qi 6= 0 and a non-zero coupling yi (or ỹi) to the Higgs, therefore the γγ channel
receives a contribution too. This argument, however, has some loopholes: first, the sum over all
fermion mass eigenstates can lead to a cancellation in the signal strength µγγ and not in µγZ , as
the summands in the two channels differ by a factor ∼ gVi /Qi; second, hγZ receives an additional
contribution from loops involving two fermion mass eigenstates, with off-diagonal couplings to both
h and Z, see Eqs. (D.31) and (D.32).

As a matter of fact, in our survey of fermionic extensions of the SM, we encountered a few scenarios
where δµγZ ≫ δµγγ :

(i) One can exploit the order one differences between the Z and γ couplings and loop functions. For
example, in the case of t−t′ mixing, δµγγ is proportional to A1/2(τt′)−A1/2(τt), that is very small
as both form factors are close to the asymptotic value A1/2(0). On the contrary, the correction

to µγZ is controlled by gVt′t′A1/2(τt′ , λt′) − gVttA1/2(τt, λτ ), that is in general of order one. Also,

102



off-diagonal loops provide an additional contribution of the same order. Unfortunately, the
absolute size of the correction is too small to be observed, as the mixing between the SM and
new fermions is subject to the EW precision constraints. We find at best δµγγ ≪ δµγZ ≃ 0.2,
hardly visible even with 3000 fb−1 at 14 TeV, see Table 5.

(ii) A much larger δµγZ is possible when new fermions couple to each other through the Higgs. Each
sector of heavy states with given charges Nc and Q gives a contribution to the hγγ amplitude
proportional to

∑
i yiv/mi. We found that the structure of the fermion mass matrix allows

this sum to vanish, see the discussion below Eq. (4.3.39). At the same time, the γZ amplitude
is proportional to

∑
i g
V
i yiv/mi. One can obtain e.g. µγZ ≃ 2, by means of a pair of states

with NcQs
2
ψ ≃ 3, where sψ is the relevant mixing parameter. Alternatively, the same effect

is produced by several states with smaller charges. The required set of parameters can be in
agreement with S and T as well. This opens a discovery opportunity for the second run of the
LHC.

(iii) There is a second possibility to achieve a large µγZ . The signal strength µγγ may be accidentally
close to the SM, because the amplitude generated by two new fermion multiplets coupled to the
Higgs has sign opposite to the SM one, and for Aγγ

f ≃ −2Aγγ
SM one recovers µγγ ≃ 1. One needs

either small weak multiplets with large charges, NcQ
2s2ψ ≃ 5, or larger multiplets with smaller

charges. In this region of parameters the S and T constraint can be satisfied and, moreover,
one generically expects µγZ much larger than one, because for large values of Q the amplitude

AγZ
f interferes constructively with the SM. We find that one can almost saturate the present

experimental bound µγZ . 10, therefore coming LHC data will be able to quickly probe this
scenario.

In the cases listed above, a mild tuning of the parameters is sufficient to comply with the presently
allowed range for µγγ , shown in Table 4. In the future, the room for a large µγZ will progressively
shrink.

The second run of the LHC, that recently started data taking at 13 TeV, will close in on most
of the scenarios we have been considering. The allowed regions of parameters at low masses will be
covered by direct searches for new fermionic resonances. The islands that survive at large mixing
between the SM and new fermions will be probed by the increasing precision in the Higgs coupling
measurements, even though there are models where one needs to wait for a high accuracy. In the
absence of a signal, we shall be virtually cornered to the region of very heavy masses and/or very
small mixing. Even when the new fermions are too heavy to be directly produced and mix negligibly
with the SM, their Yukawa couplings to the Higgs can be effectively constrained by the radiative
Higgs couplings.
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C Electroweak precision tests in presence of new fermions

In this appendix we provide general formulas for the EW gauge boson couplings to fermions, as well as
for their vacuum polarisation amplitudes. This allows to define and compute the oblique parameters
S and T [163–166]. We discuss the experimental constraints on these parameters, as well as on the Z
couplings to light SM fermions, such as Zbb.

C.1 Electroweak gauge boson couplings

The couplings of the EW gauge bosons to a chiral fermion multiplet in a given representation (Rw, Y )
of the EW gauge group are determined by the covariant derivative

Dµ = ∂µ − igT aW a
µ − ig′Y Bµ = ∂µ − i

g√
2
(T+W+

µ + T−W−
µ )− igT 3W 3

µ − ig′Y Bµ , (C.1)

where T a are the SU(2)w generators for Rw, T
± = T 1 ± iT 2 and W±

µ = (W 1
µ ∓ iW 2

µ)/
√
2. In full

generality, the resulting non-vanishing couplings are

cW
±
(fm′ , fm) =

g√
2
(T±)m′m = g√

2

√
j(j + 1)− T 3

m(T
3
m ± 1)δm′,m±1 ,

cW
3
(fm′ , fm) = gT 3

mδm′m , cB(fm′ , fm) = g′Y δm′m ,
(C.2)

where j = (Nw − 1)/2 is the weak isospin, and the Nw components of Rw are labelled by m,m′ =
−j,−j + 1, . . . , j − 1, j, and have electric charge Qm = T 3

m + Y . It is straightforward to derive from
Eq. (C.2) the couplings of Zµ = cwW

3
µ − swBµ and Aµ = swW

3
µ + cwBµ,

cZ(fm′ , fm) =
g

cw
(T 3
m − s2wQm)δm′m , cA(fm′ , fm) = eQmδm′m . (C.3)

After EWSB, for each value of the chargeQ, the fermion mass term can be written as fLα(MQ)αβfRβ ,
where α, β = 1, . . . , nQ run over the nQ fermions of charge Q (in a given colour representation). In
general the mass matrix is not diagonal and the mixing can be described by fLα = (ULQ)αifLi and

fRα = (URQ )αifRi, where fi are the mass eigenstates. Therefore, the couplings of the gauge bosons to
the mass eigenstates are

(cVL,R)ij = (cVL,R)αβ(U
L,R
Q )∗αi(U

L,R
Q′ )βj , V =W±,W 3, B , (C.4)

where the (cVL,R)αβ are given in Eq. (C.2), and Q = Q′ ± 1 for V =W±, Q = Q′ for V =W 3, B.
The mixing cancels out in the photon couplings, because U(1)em is unbroken, and one finds

immediately (cAL,R)ij = eQδij . The Z-boson couplings to the mass eigenstates, instead, do depend on
the mixing. Using the parametrisation

Lf̄fZ =
g

cw
Zµ

∑

i,j

fiγ
µ
(
gLijPL + gRijPR

)
fj ≡

g

cw
Zµ

∑

i,j

fiγ
µ
(
gVij − gAijγ5

)
fj , (C.5)

one finds

gL,Rij = T 3
αδαβ(U

L,R
Q )∗αi(U

L,R
Q )βj − s2wQδij , gV,A ≡ gL ± gR

2
. (C.6)

The matrices gL,R (gV,A) are hermitian, with possibly non-vanishing off-diagonal entries. Note that
the mixing of fermions with equal EW charges does not affect the couplings to the neutral gauge
bosons: if T 3

α (or, equivalently, Yα) is the same for all α, then one can use (UL,RQ )∗αi(U
L,R
Q )αj = δij ,

and the couplings to Z (as well as to W 3 and B) reduce to their unmixed values. Thus, the neutral-
current couplings of SM fermions receive a correction, only when they mix with new fermions with
a different value of T 3 (of Y ). For example, the mixing of two left-handed fermions fLa and fLb of
charge Q amounts to

ULQ =

(
c s
−s c

)
, gL =

(
T 3
a − s2wQ 0

0 T 3
b − s2wQ

)
+ (T 3

a − T 3
b )

(
−s2 sc
sc s2

)
.

In this chapter we assume that new fermions mix with the third SM family only. Indeed, flavour-
changing neutral currents among the different SM families are strongly constrained experimentally.
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C.2 Constraints from S and T

The vacuum polarisation amplitudes for the EW gauge bosons, defined by the effective momentum
space Lagrangian

LΠ = −W+
µ ΠµνWW (p)W−

ν − 1

2
BµΠ

µν
00 (p)Bν −W 3

µΠ
µν
30 (p)Bν −

1

2
W 3
µΠ

µν
33 (p)W

3
ν , (C.7)

can be decomposed into transverse and longitudinal parts,

ΠµνV V ′(p) = ΠTV V ′(p)(p2gµν − pµpν) + ΠLV V ′(p)pµpν = ΠV V ′(p2)gµν + (pµpν− terms) . (C.8)

As in the experiments the mass of the external fermions is much smaller than the EW scale,m2
f ≪ m2

Z ,

one can drop the pµpν-terms and expand in p2,

ΠV V ′(p2) = ΠV V ′(0) + p2Π′
V V ′(0) +O(p4) . (C.9)

The lowest terms in this expansion are sufficient to describe accurately the effect of heavy new physics:
when new particles at scale mF contribute to the vacuum polarisation amplitudes, the higher order
corrections are suppressed by powers of m2

Z/m
2
F . Taking into account that three coefficients can be

traded for the experimental values of α, sw and mZ , and two others are determined by the Ward
identities for the photon, one finds that two parameters are sufficient to characterise the effect of new
physics at leading order inm2

Z/m
2
F [165,166]. The combination that describes the custodial symmetry

breaking at leading order is given by

T ≡ 1

αc2wm
2
Z

[
(Π33(0)−ΠSM33 (0))− (ΠWW (0)−ΠSMWW (0))

]
. (C.10)

The combination that breaks the weak isospin at leading order, but respects the custodial symmetry,
is given by

S ≡ 4swcw
αm2

Z

[
(Π30(m

2
Z)− (Π30(0))− (ΠSM30 (m2

Z)−ΠSM30 (0))
]
≃ 4swcw

α
[Π′

30(0)−Π′SM
30 (0)] . (C.11)

The approximation in terms of amplitude derivatives evaluated at p2 = 0 is appropriate only for new
physics much heavier than mZ that does not mix with light SM particles; in the general case one
should keep the definition of S in terms of amplitude differences, to avoid unphysical singularities
that may appear in the derivative. The subtracted SM contribution is evaluated at a reference point
for the SM parameters. Following Ref. [1], if one takes mt,ref = 173 GeV and mh,ref = 125 GeV, the
present experimental allowed ranges are given by

S = 0.05± 0.11 , T = 0.09± 0.13 , (C.12)

with a correlation coefficient ≃ 0.9. In Fig. 10 we display the allowed region in the S − T plane, that
we adopt in the rest of the chapter to constrain the parameter space of each model.

In order to estimate the contributions to S and T , in any theory where the new physics is weakly
coupled, one should just compute the one-loop diagram contributing to the EW gauge boson vacuum
polarisation amplitudes, shown in Fig. 11. The most general couplings of the EW gauge bosons to
the fermion mass eigenstates are defined in Eq. (C.4). The functions ΠV V ′(p2) defined in Eq. (C.8)
will receive different contributions from the left- and right-handed couplings,

ΠV V ′ = cVL c
V ′

L ΠLL + cVRc
V ′

R ΠRR + cVL c
V ′

R ΠLR + cVRc
V ′

L ΠRL . (C.13)

Performing the computation with dimensional regularisation, one finds the following general result:

ΠLL,RR(p
2) =

Nc

(4π)2

[
(m2

1 −m2
2)

3

6p4
ln
m2

1

m2
2

− (m2
1 −m2

2)
2

3p2
− (m2

1 +m2
2)

(
1

ǭ
+ ln

4π2µ2

m1m2
+

1

6

)

+
2

3
p2

(
1

ǭ
+ ln

4π2µ2

m1m2
+

7

6

)
+

(
(m2

1 −m2
2)

2

3p2
+
m2

1 +m2
2

3
− 2

3
p2

)
R(p2)

]
, (C.14)
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Figure 10: The 68 % (red), 95 % (orange) and 99 % (yellow) C.L. ellipses in the S − T plane, from
the fit of Ref. [1], with the other EW parameter U left free. The black dot indicates the best fit, while
the star at S = T = 0 is the SM point, with mt,ref = 173 GeV and mh,ref = 125 GeV.

f1

f2

V µ V ′ν

icVL,RγµPL,R icV
′

L,RγνPL,R

p
−→

Figure 11: Contribution of two fermion mass eigenstates f1 and f2 to the vacuum polarisation
amplitude for the gauge bosons V µ and V ′ν . The relevant couplings are defined by Lf̄fV =

Vµfiγ
µ[(cVL )ijPL + (cVR)ijPR]fj .

ΠLR,RL(p
2) =

2Ncm1m2

(4π)2

[
−m

2
1 −m2

2

2p2
ln
m2

1

m2
2

+
1

ǭ
+ ln

4π2µ2

m1m2
+

3

2
−R(p2)

]
, (C.15)

where Nc is the dimension of the SU(3)c representation of the fermions f1,2, m1,2 are the masses of
f1,2, ǭ and µ are defined by d4k ≡ µ4−ndnk and 1/ǭ ≡ 2/(4−n)−γ− lnπ with γ ≃ 0.5772, and finally

R(p2) ≡
√
λ

p2
log

m2
1 +m2

2 −
√
λ− (p2 + iǫ)

2m1m2
, λ ≡ (m2

1 −m2
2)

2 − 2p2(m2
1 +m2

2) + p4 . (C.16)

Note that R(p2) is invariant for
√
λ → −

√
λ and it has a non-vanishing imaginary part for p2 >

(m1 +m2)
2. When evaluating S in Eq. (C.11), one must include only the real part of R(m2

Z), while
the imaginary part contributes to the decay width of the EW gauge bosons, that may be also modified
with respect to its SM value. Note also that, when f1,2 are Majorana fermions, one must include in
the amplitude an additional symmetry factor 1/2.

Let us provide for convenience the form of ΠV V ′(p2) in some relevant limits. For m1 = m2 = 0
one has

ΠLL,RR(p
2) =

2Nc

3(4π)2
p2

(
1

ǭ
+ log

4π2µ2

−(p2 + iǫ)
+

7

6

)
, ΠLR,RL(p

2) = 0 . (C.17)

This limit is relevant for loops involving the light SM fermions (all but the top quark), whose mass
can be neglected. In order to compute T and S (in the derivative approximation), it is sufficient to
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compute the first and second term in the p2-expansion of ΠV V ′(p2), respectively:

ΠLL,RR(0) = − Nc

(4π)2

[
(m2

1 +m2
2)

(
1

ǭ
+ ln

4π2µ2

m1m2

)
+
m4

1 +m4
2

m2
1 −m2

2

ln
m2

m1

]
,

ΠLR,RL(0) =
2Ncm1m2

(4π)2

[
1

ǭ
+ ln

4π2µ2

m1m2
+

1

2
+
m2

1 +m2
2

m2
1 −m2

2

ln
m2

m1

]
, (C.18)

Π′
LL,RR(0) =

2Nc

3(4π)2

[
1

ǭ
+ ln

4π2µ2

m1m2
− 1

6
− 2m2

1m
2
2

(m2
1 −m2

2)
2
+
m6

1 +m6
2 − 3m4

1m
2
2 − 3m2

1m
4
2

(m2
1 −m2

2)
3

ln
m2

m1

]
,

Π′
LR,RL(0) =

Nc

(4π)2
m1m2

(m2
1 −m2

2)
3

(
m4

1 −m4
2 + 4m2

1m
2
2 ln

m2

m1

)
. (C.19)

For m1 = 0 and m2 = m (relevant e.g. for the bottom-top quark loop) one obtains

ΠLL,RR(0) = −Ncm
2

(4π)2

(
1

ǭ
+ ln

4π2µ2

m2

)
, Π′

LL,RR(0) =
2Nc

3(4π)2

(
1

ǭ
+ ln

4π2µ2

m2
− 1

6

)
, (C.20)

and ΠLR,RL(0) = Π′
LR,RL(0) = 0. For m1 = m2 = m 6= 0 (loops involving a unique fermion mass

eigenstate) one reduces to

ΠLL,RR(0) = −ΠLR,RL(0) = −2Ncm
2

(4π)2

(
1

ǭ
+ ln

4π2µ2

m2
− 1

2

)
, (C.21)

Π′
LL,RR(0) =

2Nc

3(4π)2

(
1

ǭ
+ ln

4π2µ2

m2
− 1

)
, Π′

LR,RL(0) =
Nc

3(4π)2
. (C.22)

As an illustrative example, consider the case of a fermion “family” with no mixing with the SM
fermions, formed by one weak doublet QL = (TL, BL) ∼ (Rc, 2, Y ) and two singlets TR ∼ (Rc, 1, Y +
1/2) and BR ∼ (Rc, 1, Y − 1/2), with dim(Rc) = Nc. After EWSB they combine into two mass
eigenstates T and B with masses mT and mB; their non-zero couplings to EW gauge bosons are
obtained from Eq. (C.2),

cW
±

L (T,B) =
g√
2
, cW

3

L (T ) =
g

2
, cW

3

L (B) = −g
2
,

cBL (T ) = cBL (B) = g′Y , cBR(T ) = g′
(
Y +

1

2

)
, cBR(B) = g′

(
Y − 1

2

)
.

(C.23)

To compute the correction to S, one should evaluate Eqs. (C.14-C.15) for p2 = m2
Z and m1 =

m2 = mT,B, while for p2 = 0 one can use directly Eq. (C.21) with m = mT,B. Adding the various
contributions to Π30 as shown in Eq. (C.13), and replacing into Eq. (C.11), the result is

ST,B =
Nc

6π

[(
1− 2Y ln

m2
T

m2
B

)
+
m2
Z

m2
T

(
1

2
+

4Y

3

)
+
m2
Z

m2
B

(
1

2
− 4Y

3

)
+O

(
m4
Z

m4
T,B

)]
. (C.24)

If one adopted the approximate expression for S in terms of derivatives, given by the right-hand side
of Eq. (C.11), then using Eq. (C.22) one finds only the first term in the squared bracket of Eq. (C.24),
which is accurate for mT,B ≫ mZ . To compute the correction to T , one should use Eq. (C.21) for the
T and B loops that contribute to Π33, and Eq. (C.18) for the T/B loop that contributes to ΠWW .
Replacing into Eq. (C.10) one obtains

TT,B =
Nc

16πc2ws
2
wm

2
Z

(
m2
T +m2

B − 2
m2
Tm

2
B

m2
T −m2

B

ln
m2
T

m2
B

)
. (C.25)

Particularising these results to the case of the SM top and bottom quarks (Nc = 3, Y = 1/6), and
neglecting the uncertainty on mb as well as (m2

b/m
2
t )-corrections, we can immediately extract the

well-known dependence of S and T on the value of the top quark mass,

Stop = − 1

6π
ln

m2
t

m2
t,ref

, Ttop =
3

16πc2ws
2
w

m2
t −m2

t,ref

m2
Z

. (C.26)
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C.3 Constraints from Zff

The Z-boson couplings to the SM fermions are precisely measured. We discuss only those with the
third family, since in this chapter we assume that the mixing of the new fermions with the light
families is negligible. The deviations with respect to the SM can be expressed in terms of the Z
partial decay width into any given final state ff ,

R(Z → ff) ≡ Γ(Z → ff)

ΓSM (Z → ff)
≡ 1 + δR(Z → ff) , f = ντ , τ, b . (C.27)

For each fermion f there are two independent couplings gL,R
ff

as shown in Eq. (C.6), that can be

separately constrained if the angular distribution of the fermions is measured.
Beginning from leptons, the Z invisible width and its width into taus are determined at the per

mil level [69], Γ(Z → inv) = 499.0 ± 1.5 MeV and Γ(Z → τ+τ−) = 84.08 ± 0.22 MeV. Given this
precision and the relatively good agreement between the central values and the SM predictions, we
constrain the mixing with the new leptons by imposing a rough 3σ upper bound,

|δR(Z → inv)| ≤ 9 · 10−3 ,
∣∣δR(Z → τ+τ−)

∣∣ ≤ 8 · 10−3 . (C.28)

Coming to the Z coupling to bottom quarks, a more detailed discussion is worth, to fairly gauge
the resulting constraint on the new fermions. The Zbb̄ Lagrangian can be written as

LZbb̄ =
g

cw
Zµb γ

µ
[(
gLbb̄,SM + δgLbb̄

)
PL +

(
gRbb̄,SM + δgRbb̄

)
PR

]
b , (C.29)

where the SM couplings at tree-level are given by gL
bb̄,SM

= −1/2+s2w/3 and g
R
bb̄,SM

= s2w/3. Deviations

at tree-level occur when the bottom quark mixes with a new fermion with a different value of T 3 (and
Y ). The present experimentally allowed range is given by [2]

δgLbb̄ = 0.0016± 0.0015 , δgRbb̄ = 0.019± 0.007 , (C.30)

with a correlation coefficient ≃ 0.8. In Fig. 12 we display the allowed region in the δgR
bb̄

− δgL
bb̄

plane. Note that the left- and right-handed couplings are determined with per mil and per cent
precision, respectively, and the best fit region is incompatible with the SM at about 99% C.L.. In
some analyses, a slightly better agreement is obtained, at about 95%, due to different details in
the global electroweak fit, see e.g. Ref. [167]. The discrepancy with the SM comes mostly from
the measurement of the forward-backward asymmetry AbFB, that may be just an upward statistical
fluctuation, an unidentified systematic error, or alternatively an indication for a significant new-physics
contribution. In this chapter, in order to constrain the new fermions that modify the Zbb̄-couplings,
we will conservatively enlarge the 99% C.L. region, by allowing it to shift towards the SM point,
till the latter touches the 68% ellipse, as illustrated in Fig. 12. Such a shift roughly corresponds to
introduce a systematic error in the measurement of AbFB.

The mixing with new fermions can be such that no tree-level deviations occur in the Zbb-couplings,
but they do occur in the Wtb coupling and/or in the Ztt couplings. These deviations may affect
significantly gL,R

bb̄
, because the contribution of one-loop diagrams involving the top quark and the

W -boson is larger than the experimental uncertainty. Also new fermions may correct significantly
Zbb at the one-loop level, if they are not much heavier than the top. The detailed structure of the
one-loop corrections to Zbb can be found e.g. in Ref. [64], that we employ for our analysis of models
with modified top couplings. For example, the correction to the left-handed coupling, from the top
loops only, can be written as

δgLbb̄ = δgLtt̄fL(mW /mt) + δgRtt̄fR(mW /mt) + δgL
tb
fW (mW /mt) , (C.31)

where δgL,R
tt̄

are defined in analogy to Eq. (C.29) with t↔ b, theWtLbL coupling is given by (g/
√
2)(1+

δgL
tb
), and the functions fL,R,W can be extracted from Ref. [64].
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Figure 12: The 68 % (blue), 95 % (magenta) and 99 % (cyan) C.L. ellipses in the δgR
bb̄
− δgL

bb̄
plane,

extracted from Ref. [2]. The black dot indicates the best fit, while the star at the origin represents
the SM. In our analysis, we allow for a larger parameter space, delimited by the dotted line, that is
obtained by shifting the 99% ellipse towards the origin, till the SM point enters the 68% region.

D Higgs boson couplings in presence of new fermions

In this appendix we present a general parametrisation for the Yukawa couplings among the SM Higgs
doublet and two arbitrary fermion multiplets. We then analyse the resulting modifications in the
Higgs couplings to the SM particles, at leading order: corrections at tree-level to the Higgs-fermions
couplings, and one-loop corrections to the Higgs-gauge bosons couplings. Finally, we briefly review
the present experimental constraints on these couplings.

D.1 Tree-level Higgs couplings

The SM Yukawa couplings are given by

−LSMY = yuqLuRH̃ + ydqLdRH + yelLeRH + h.c. , (D.1)

where qL = (uL dL)
T , H = (H+H0)T and H̃ ≡ iσ2H

∗ are SU(2)w doublets, while uR, dR and eR are
singlets, and flavour indexes are understood.

In full generality, the Higgs doublet may have a non-zero Yukawa interaction with any pair of
chiral fermions that transform under SU(3)c × SU(2)w × U(1)Y as ψL ∼ (Rc, Rw, Y ) and ψu,dR ∼
(Rc, Rw − 1, Y ± 1

2):

−LY =
∑

ψL


∑

ψuR

yψLψuR

(
ψLψ

u
RH̃

)
+

∑

ψdR

yψLψdR

(
ψLψ

d
RH

)

+ h.c. . (D.2)

Here the parentheses stand for the appropriate contraction of the SU(2)w indexes. Let us denote
the components of ψL by the index m = j, j − 1, . . . ,−j + 1,−j, where j = (Nw − 1)/2. Then, the
multiplet ψL with components (ψL)m ≡ (ψL)m transforms in the conjugate representation R∗

w. It is

possible to define a multiplet ψL
′
that properly transforms in the representation Rw, by using the

SU(2)w conjugation matrix R, (ψL
′
)m = Rmn(ψL)n ≡ (−1)j−m(ψL)−m. The 2j components of ψuR

pair with the upper (lower) 2j components of ψL
′
to form the upper (lower) component of a weak

doublet D. The corresponding Clebsch-Gordan coefficients are given by

〈
j, j − 1

2
;m,−m± 1

2

∣∣∣∣
1

2
,±1

2

〉
= ±(−1)j−m

√
j ±m

j(2j + 1)
. (D.3)
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Contracting D with H̃ into a weak singlet, Da(iσ2)abH̃b, one finds

(
ψLψ

u
RH̃

)
≡

j∑

m=−j+1

√
j +m

j(2j + 1)

[
(ψL)m(ψ

u
R)m− 1

2
H̃ 1

2
+ (ψL)−m(ψ

u
R)−m+ 1

2
H̃− 1

2

]
. (D.4)

The same expression holds for ψuR ↔ ψdR and H̃ ↔ H as well. Of course, all the results above also
apply when one makes everywhere the replacement L↔ R.

The relative size of the Clebsch-Gordan coefficients has important phenomenological consequences,
e.g. the different components of the fermion multiplets acquire a different mass after EWSB. The
overall normalisation of the SU(2)w contraction is also important, to establish the perturbative range
for a Yukawa coupling y: for instance, the contribution of y to the Higgs wavefunction renormalisation
at one-loop goes as y2/(16π2) times the sum of the Clebsch-Gordan coefficients squared, taken over all
possible isospin components in the loop. Adopting the above conventions, such a sum is normalised
to one, and we can easily define the region where perturbation theory can be trusted, by requiring
y/(4π) ≪ 1. However, we keep the conventional normalisation for the doublet-doublet contraction
into a singlet, with no overall factor 1/

√
2, that strictly-speaking should be included: the issue of

SU(2)w normalisation is more relevant for large weak multiplets.
We note that the perturbative upper bound on a Yukawa coupling y depends on the process under

consideration. Schematically, the next-to-leading order amplitude is given by the leading order one
times a factor yngmFc/(16π

2), where g stands for other couplings such as gauge couplings, and Fc is
the colour factor, with typical values Fc = 1, Nc, C(Rc). In the example of the Higgs wavefunction
normalisation adopted above, one has n = 2, m = 0 and Fc = Nc, therefore we could have taken
into account the SU(3)c contraction by adding a factor 1/

√
Nc on the right-hand side of Eq. (D.4),

or alternatively requiring y
√
Nc/(4π) ≪ 1. However, the one-loop amplitudes relevant in our analysis

(EW precision tests, Higgs couplings to fermions and gauge bosons, etc.) behave differently from each
other, and the perturbativity criterion varies correspondingly. In some cases the colour enhancement
is absent, or compensated by small gauge couplings, or by a small mixing between new and SM
fermions. Therefore, we find more conservative to stick to the bound y ≪ 4π.

At EWSB, H0 can be replaced by (v+h)/
√
2, to obtain the couplings of the physical Higgs boson

h to the fermions in the interaction basis. All fermions with equal charge and in the same colour
representation may mix, and their mass matrix M = ULdiag(m1, . . . ,mn)U

†
R may include both v-

independent vector-like mass terms, and the EWSB contributions ∼ yv. Thus, one can derive the
h-couplings to the fermion mass eigenstates as follows:

−L ⊃ fLα[M(v)]αβfRβ + fLα
∂

∂v
[M(v)]αβ fRβ h+ h.c.

=
∑

i

mifLifRi + fLj

[
U †
L

∂M(v)

∂v
UR

]

jk

fRk h+ h.c.

=
∑

i

mififi + fj (yjk + iγ5ỹjk) fk h . (D.5)

where y and ỹ are hermitian matrices defined by

y =
λ+ λ†

2
, ỹ =

λ− λ†

2i
, λ ≡ U †

L

∂M(v)

∂v
UR . (D.6)

In the CP-conserving case λ is real, therefore y = yT is real and ỹ = −ỹT is imaginary. In the
case of purely chiral masses (e.g. in the SM), one has M(v) ∝ v, therefore ∂M(v)/∂v = M/v,
y = λ = diag(m1, . . . ,mn)/v and ỹ = 0. On the other hand, in presence of both chiral and vector-like
masses, the Higgs boson can have both scalar and pseudo-scalar, CP-even and CP-odd, diagonal and
off-diagonal couplings to the fermions mass eigenstates, and its couplings are not proportional to the
fermion masses. A simplification occurs in those SM extensions such that (∂M/∂v)αβ = Mαβcβ , that

is, each row of the mass matrix has the same dependence on v. In this case U †
L and UL cancel out

in λ and one finds λjk = mj
∑

β cβ(U
∗
R)βj(UR)βk. Similarly, when (∂M/∂v)αβ = cαMαβ , one finds

λjk = mk
∑

α cα(U
∗
L)αj(UL)αk.
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The mixing with new fermions modifies the Higgs boson decay width into SM fermions at the
tree-level. In addition, there may be new Higgs decay channels, with one or more new fermions in
the final state, as long as they are lighter than h. In full generality, the Higgs decay width into two
fermions at leading order is given by

Γtree(h→ fjfk) =
Nc∆jk

8π
mh

[
|yjk|2(β+jk)3β−jk + |ỹjk|2β+jk(β−jk)3

]
θ(mh −mj −mk) , (D.7)

where β±jk ≡ [1 − (mj ± mk)
2/m2

h]
1/2, ∆jk = 2 if the final state particles are identical Majorana

fermions (j = k and fj = f cj ), and ∆jk = 1 otherwise.
Besides the Yukawa couplings to fermions, the Higgs boson has tree-level couplings to WW , ZZ

and to itself. In the presence of new fermions, all the tree-level couplings may receive corrections at the
one-loop level. Even though these corrections may become relevant in view of precision measurements
of the Higgs couplings, they represent in general a sub-leading effect and we will not discuss them
further. In the following subsection we will focus instead on a more sensitive probe of new physics:
those Higgs couplings that are absent at tree-level in the SM.

D.2 Loop-induced Higgs couplings

At one-loop new couplings are induced between the Higgs boson and the SM particles, that are absent
at tree-level. In particular, U(1)em and SU(3)c gauge invariance prevents renormalizable couplings
to photons and gluons, therefore the tree-level amplitudes for h→ gg, h→ γγ and h→ Zγ are zero,
and in addition the one-loop amplitudes for these processes are free from divergences. The effective
Higgs boson couplings generated at one-loop can be described in full generality by two dimension-five
operators,

LhV V ′ =

(
chV V ′VµνV

′µν +
1

2
c̃hV V ′VµνV

′
ρσǫ

µνρσ

)
h , (D.8)

where V V ′ = gg, γγ, γZ and Vµν = Gaµν , Fµν , Zµν are the field strength tensors for the gluon, the
photon and the Z, respectively. The CP-even (odd) coefficients chV V ′ (c̃hV V ′) have mass dimension
minus one, and may receive contributions from loops of both SM and new particles. One should
be careful to avoid double-counting: if one considers LhV V ′ as part of the effective Lagrangian valid
below the EWSB scale v, chV V ′ and c̃hV V ′ should include only the contributions of particles heavier
than v.

In momentum space, the hV V ′ couplings are given by

LhV V ′(p, p′) = 2
[
chV V ′(p′µpν − p · p′gµν) + c̃hV V ′ǫµνρσpρp

′
σ

]
h(p+ p′)Vµ(p)V

′
ν(p

′) . (D.9)

The decay width of the Higgs boson into two vector bosons is then given by

Γ(h→ V V ′) =
Nc∆V V ′

8π
m3
h β

+
V V ′β

−
V V ′

[
c2hV V ′

(
β+2
V V ′β

−2
V V ′ +

6m2
Vm

2
V ′

m4
h

)
+ c̃2hV V ′β+2

V V ′β
−2
V V ′

]
, (D.10)

where Nc = 8 (1) for gluons (for γ and Z), ∆V V ′ = 2 for V = V ′ and ∆V V ′ = 1 for V 6= V ′, and finally
β±V V ′ ≡ [1− (mV ±mV ′)2/m2

h]
1/2. In the following, we will match the explicit loop computation with

the effective coefficients chV V ′ and c̃hV V ′ .

Higgs coupling to two gluons

The Higgs-gluon-gluon coupling chgg (c̃hgg) receives a one-loop contribution from each coloured fermion
with a non-zero CP-conserving (CP-violating) Yukawa coupling to the Higgs boson. The gluon cou-
pling to fermions is determined by SU(3)c gauge invariance,

Lgf̄f = gs
∑

i

fibγ
µAaµ(T

a
i )bcfic , (D.11)

where T ai are the SU(3)c generators in the representation Rci of the fermion fi. As the SU(3)c
symmetry is unbroken, there are no ‘off-diagonal’ gluon couplings to two different mass eigenstates.
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V a
µ (p)
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h(p+ p′)
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fj

fk

i(yji + iỹjiγ5)

iγµGa
ik

iγνGb
kj

Figure 13: Fermionic triangle loop contributing to the coupling of the Higgs boson to two gauge
bosons. A crossed diagram with the two gauge boson insertions interchanged has to be added too,
and one must sum over all possible sets (fi, fj , fk) of fermion mass eigenstates. For the gluons one
has Gaik = gsδikT

a
i , for the photon Gγik = eδikQi, and for the Z boson GZik = g(gVik − γ5g

A
ik)/cw.

Recall that the Higgs is mostly produced via gluon fusion, with a partonic cross-section that can be
expressed as a function of the partial decay width,

σ(gg → h; ŝ) =
π2

8mh
δ(ŝ−m2

h)Γ(h→ gg) . (D.12)

In the SM, the contribution of the quarks triangle loop to h→ gg reads

ΓSM (h→ gg) =
α2
sm

3
h

72π3v2

∣∣∣∣∣
3

4

∑

q

A1/2(τq)

∣∣∣∣∣

2

, (D.13)

where τq ≡ m2
h/(4m

2
q) and the form factor is given by

A1/2(τ) =
2[τ + (τ − 1)f(τ)]

τ2
, f(τ) =





arcsin2
√
τ for τ 6 1 ,

−1

4

(
log

1 +
√
1− τ−1

1−
√
1− τ−1

− iπ

)2

for τ > 1 .
(D.14)

As illustrated in Fig. 14, the top quark gives the dominant contribution, because τt ≪ 1 and τb,c,... ≫ 1.
In a generic extension of the SM, the fermions will couple to the Higgs as in Eq. (D.5), but only the
diagonal, real couplings yi ≡ yii and ỹi ≡ ỹii are relevant for h→ gg. One obtains

Γ(h→ gg) =
α2
sm

3
h

72π3v2

(
| Agg

f |2 + | Ãgg
f |2

)
, (D.15)

where the CP-even and CP-odd amplitudes are

Agg
f =

3

2

∑

i

C(Rci)
yiv

mi
A1/2(τi) , Ãgg

f =
3

2

∑

i

C(Rci)
ỹiv

mi
Ã1/2(τi) , Ã1/2(τ) = 2

f(τ)

τ
, (D.16)

with the Dynkin index C(Rci) defined below Eq. (4.1.1).
By matching with Eq. (D.10), one finds that the contribution of a fermion loop to the effective

hgg-couplings is

cihgg =
αs
8πv

C(Rci)
yiv

mi
A1/2(τi) , c̃ihgg =

αs
8πv

C(Rci)
ỹiv

mi
Ã1/2(τi) , (D.17)

where chgg ≡ |
∑

i c
i
hgg| and c̃hgg ≡ |

∑
i c̃
i
hgg|. In the heavy fermion limit, 2mi ≫ mh, one can use

A1/2(0) = 4/3 and Ã1/2(0) = 2. We note that, in the literature, a factor 1/2 is sometimes missing in
the expression for c̃thgg.

112



Re A� 1� 2

Re A1� 2

Im A� 1� 2

Im A1� 2

Τ t Τ b Τ
Τ

0.01 0.1 1 10 100 1000

0

1

2

3

4

5

Τ

Figure 14: Real (blue lines) and imaginary (red lines) parts of the form factors A1/2(τ) (solid lines)

and Ã1/2(τ) (dashed lines). The horizontal lines correspond to the asymptotic values 2, 4/3 and 0.
The vertical lines correspond to the reference values τt ≃ 0.13, τ = 1, τb ≃ 230 and ττ ≃ 1300.

One can use the Low Energy Theorem (LET) [168,169] (see also [170–172]) to evaluate the effective
hV V ′ couplings induced by states much heavier than the EW scale. For a given sector of mixing
states in the representation (Rc, Q) of SU(3)c × U(1)em, the low energy result is a function of their
mass matrix M only. For the CP -conserving and CP -violating [173] gluon-gluon case one finds,
respectively,

cLEThgg =
αs
12π

C(Rc)
∂

∂v
ln

[
det

(
MM†

)]
, c̃LEThgg =

αs
4π
C(Rc)

∂

∂v
arg [det (M)] . (D.18)

This is very useful in the case of a large, complicated mass matrix M, because this expression is
much easier to evaluate, with respect to an explicit computation of the mass eigenvalues mi and
of the mass eigenstate couplings yi and ỹi. Note, however, that this approximation requires all the
mass eigenstates in a given sector to be heavy, 2mi ≫ mh. It is easy to check the consistency of
Eq. (D.17) and Eq. (D.18) for one heavy chiral fermion (e.g. the SM top quark), as Mi = mi = yiv
and A1/2(τi) ≃ 4/3.

Higgs coupling to two photons

The fermions charged under U(1)em contribute to the Higgs-photon-photon couplings chγγ and c̃hγγ
at one loop. In the SM, there is also the contribution from W -boson loops, that we include using
the SM tree-level couplings of the W to the Higgs and to the photon. The SM decay width is given
by [168,169,174]

ΓSM (h→ γγ) =
α2m3

h

256π3v2

∣∣∣∣∣∣
A1(τW ) +

∑

fi∈SM
NciQ

2
iA1/2(τi)

∣∣∣∣∣∣

2

, (D.19)

where τW ≡ m2
h/(4m

2
W ), τi ≡ m2

h/(4m
2
i ), and the form factor for the W -loops reads

A1(τ) = −2τ2 + 3τ + 3(2τ − 1)f(τ)

τ2
. (D.20)

The W contribution is dominant, A1(τW ) ≃ −8.36, and it interferes destructively with the top-quark
loop, NctQ

2
tA1/2(τt) ≃ 1.83.
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In presence of extra fermions, there are new contributions to h → γγ that depend, as in the case
of h→ gg, on the Yukawa couplings yi and ỹi,

Γ(h→ γγ) =
α2m3

h

256π3v2

[
| A1(τW ) +Aγγ

f |2 + | Ãγγ
f |2

]
, (D.21)

where

Aγγ
f =

∑

i

yiv

mi
NciQ

2
iA1/2(τi) , Ãγγ

f =
∑

i

ỹiv

mi
NciQ

2
i Ã1/2(τi) . (D.22)

In terms of the coefficients of the effective Lagrangian Eq. (D.8), the contribution of each fermion is
given by

cihγγ =
α

8πv

yiv

mi
NciQ

2
iA1/2(τi) , c̃ihγγ =

α

8πv

ỹiv

mi
NciQ

2
i Ã1/2(τi) . (D.23)

The LET approximation, for a set of heavy fermions in the representation (Rc, Q) with a mass matrix
M, is given by

cLEThγγ =
α

12π
Q2Nc

∂

∂v
ln

[
det

(
MM†

)]
, c̃LEThγγ =

α

4π
Q2Nc

∂

∂v
arg [det (M)] , (D.24)

in analogy with Eq. (D.18).

Higgs coupling to a Z boson and a photon

The last loop-induced coupling to be considered is hZγ. It is generated by W -boson loops, that we
take to be SM-like, as well as by fermionic triangle loops. The Z-boson couplings to fermion mass
eigenstates are defined in Eq. (C.6).

The Higgs decay width into a photon and a Z in the SM is given by [175,176]

ΓSM (h→ γZ) =
αg2c2wm

3
h

512π4v2

(
1− m2

Z

m2
h

)3
∣∣∣∣∣∣
A1(τW , λW ) +

∑

fi∈SM

NciQig
V
i

c2w
A1/2(τi, λi)

∣∣∣∣∣∣

2

, (D.25)

where λW ≡ m2
Z/(4m

2
W ) = (mZ/mh)

2τW ≃ 0.52τW , and analogously λi ≡ m2
Z/(4m

2
i ) ≃ 0.52τi. Note

that only the Zfifi vector coupling contributes, gVi = T3(fLi)/2 −Qis
2
w. The form factors are given

by
A1(τ, λ) = 2 [3 + 2τ − 2λ(1 + 2τ)] I1(τ, λ)− 16(1− λ)I2(τ, λ) , (D.26)

A1/2(τ, λ) = 4 [I2(τ, λ)− I1(τ, λ)] , (D.27)

where

I1(τ, λ) = − 1

2(τ − λ)
+
f(τ)− f(λ)

2(τ − λ)2
+
λ[g(τ)− g(λ)]

(τ − λ)2
, I2(τ, λ) =

f(τ)− f(λ)

2(τ − λ)
, (D.28)

g(τ) =





√
τ−1 − 1 arcsin

√
τ for τ 6 1 ,√

1− τ−1

2

(
log

1 +
√
1− τ−1

1−
√
1− τ−1

− iπ

)
for τ > 1 .

(D.29)

The normalisation is chosen to match with the γγ form factors: A1(τ, 0) = A1(τ) and A1/2(τ, 0) =
A1/2(τ). The behaviour of A1/2(τ, λ) is displayed in Fig. 15, for the relevant case λ = (mZ/mh)

2τ . The

W -boson and t-quark summands in Eq. (D.25) take the valueA1(τW , λW ) ≃ −6.64 andNctQtg
V
t A1/2(τt, λt)/c

2
w ≃

0.37, with the lighter SM fermions adding a very small contribution.
In a generic fermionic extension of the SM, we find a decay width

Γ(h→ γZ) =
αg2c2wm

3
h

512π4v2

(
1− m2

Z

m2
h

)3 [
| A1(τW , λW ) +AZγ

f |2 + | ÃZγ
f |2

]
, (D.30)
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Figure 15: Real (blue lines) and imaginary (red lines) parts of the form factors A1/2(τ, λ) (solid lines)

and Ã1/2(τ, λ) (dashed lines), for λ = (mZ/mh)
2τ ≃ 0.52τ . The horizontal lines correspond to the

asymptotic values 2, 4/3 and 0. The vertical lines correspond to τt ≃ 0.13, τ = 1, τ ≃ 1.9 (λ = 1),
τb ≃ 230 and ττ ≃ 1300.

with the CP -even and odd fermionic amplitudes given by

AZγ
f =

∑

j,k

NckQkv

c2w
√
mjmk

[
Re(gVkjyjk)a1/2(mj ,mk,mk) + iIm(gAkj ỹjk)b1/2(mj ,mk,mk)

]
, (D.31)

ÃZγ
f =

∑

j,k

NckQkv

c2w
√
mjmk

[
Re(gVkj ỹjk)ã1/2(mj ,mk,mk) + iIm(gAkjyjk)b̃1/2(mj ,mk,mk)

]
. (D.32)

The explicit expression of the four independent form factors will be given below. As far as we know,
this expression for Γ(h → γZ), corresponding to a generic set of fermions, was not available in the
literature. Here the sum runs over all pairs of fermion mass eigenstates: the triangular fermion loop
is formed by one fj propagator from the h vertex to the Z vertex, and two fk propagators from Z to
γ, and from γ to h. As both h and Z can have off-diagonal couplings, j and k can be different. Note
that only those combination of couplings that are even under the charge conjugation C contribute,
because the transition h→ Zγ is even: under C, one has Q→ −Q, gVij → −gV ∗

ij and xij → xji = x∗ij ,

for x = gA, y, ỹ. The P and CP-even (odd) amplitude corresponds to an even (odd) number of
axial-vector and pseudo-scalar couplings gA and ỹ.

Let us discuss first the loops involving one fermion mass eigenstate only (j = k). The diagonal
couplings gV,Ai , yi and ỹi are all real, therefore the form factors b1/2 and b̃1/2 are irrelevant, while the
others reduce to

a1/2(m,m,m) = A1/2(τ, λ) , ã1/2(m,m,m) = Ã1/2(τ, λ) ≡ 4I2(τ, λ) . (D.33)

These two form factors are displayed in Fig. 15 as a function of τ . As usual the normalisation matches
with the γγ form factors, in particular Ã1/2(τ, 0) = Ã1/2(τ). Comparing with Eq. (D.10), one finds
that the contributions of such fermion ‘diagonal’ loop to the effective hγZ couplings are

cihγZ =
α

4πswcwv

yiv

mi
NciQig

V
i A1/2(τi, λi) , c̃ihγZ =

α

4πswcwv

ỹiv

mi
NcfQig

V
i Ã1/2(τi, λi) . (D.34)

Let us now discuss the loops involving two fermion mass eigenstates (j 6= k). The form factors are
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Figure 16: Form factors for the triangle loops involving two fermions of mass m and m′ = rm,
for r = 3 and r = 10, in the left and right-hand panels, respectively. We show the real (in blue)
and imaginary (in red) parts of A1/2(τ, λ, τ/r

2, λ/r2) (solid lines, upper panels), Ã1/2(τ, λ, τ/r
2, λ/r2)

(dashed, upper), B1/2(τ, λ, τ/r
2, λ/r2) (solid, lower) and B̃1/2(τ, λ, τ/r

2, λ/r2) (dashed, lower), as
a function of τ ≡ 4m2

h/m
2, for a fixed value of λ ≡ (mZ/mh)

2τ ≃ 0.52 τ . The horizontal lines
correspond to the asymptotic values for the case r = 1 (see Fig. 15). The vertical lines correspond to
the third family masses, τt ≃ 0.13, τb ≃ 230 and ττ ≃ 1300, and to the threshold values, m+m′ = mh

[τ = (1 + r)2/4], and m+m′ = mZ [τ = (mh/mZ)
2(1 + r)2/4].
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given by

a1/2(mj ,mk,mk)√
mjmk

= − 4

m2
Z −m2

h

{[
A0(mj)−A0(mk)

m2
h

+ 1

]
(mj +mk)

+
B0(m

2
h;mj ,mk)

m2
Z −m2

h

[
(mj +mk)

(
2m2

j − 2m2
k −m2

h +
m2
Z

m2
h

(m2
k −m2

j )

)
+ 2mk(m

2
h −m2

Z)

]

+
B0(m

2
Z ;mj ,mk)

m2
Z −m2

h

[
(mj +mk)(m

2
k −m2

j ) +mk(2m
2
Z −m2

h) +mjm
2
h

]

+C0(m
2
Z , 0,m

2
h;mj ,mk,mk)

[
2m2

k(mj +mk) +mk(m
2
Z −m2

h)
]}

, (D.35)

ã1/2(mj ,mk,mk)√
mjmk

= −4

[
B0(m

2
h;mj ,mk)−B0(m

2
Z ;mj ,mk)

m2
Z −m2

h

(mj −mk)

+C0(m
2
Z , 0,m

2
h;mj ,mk,mk)mk

]
, (D.36)

b1/2(mj ,mk,mk)√
mjmk

=
a1/2(−mj ,mk,mk)√

mjmk
,

b̃1/2(mj ,mk,mk)√
mjmk

=
ã1/2(−mj ,mk,mk)√

mjmk
, (D.37)

where A0, B0 and C0 are the standard Passarino-Veltman scalar functions [177,178], in the convention
of Ref. [179]. In the literature, these ‘off-diagonal’ loops are often neglected but, in models with
significant h and Z off-diagonal couplings, they may provide a contribution to the decay width of the
same order as the ‘diagonal’ loops. For example, the form factors in Eqs. (D.35)-(D.37) have been
already employed in supersymmetric models to compute the charginos loops [180–182].

It is useful to combine all the loops involving two given fermions fj and fk. As Re(gVkjyjk) =

Re(gVjkykj) and Im(gAkj ỹjk) = −Im(gAjkỹkj), the combinations that appear in the total amplitude are

A1/2(τj , λj , τk, λk) ≡
1

2

[
a1/2(mj ,mk,mk) + a1/2(mk,mj ,mj)

]
, (D.38)

B1/2(τj , λj , τk, λk) ≡
1

2

[
b1/2(mj ,mk,mk)− b1/2(mk,mj ,mj)

]
, (D.39)

and analog definitions for the CP-odd counterparts Ã1/2 and B̃1/2. In Fig. 16 we illustrate the
behaviour of these four form factors as a function of τ = m2

h/(4m
2), where m is the mass of the

lightest fermion, for a fixed value of the ratio r = m′/m, where m′ is the mass of the heaviest fermion.
In the limit r = 1 one recovers the diagonal form factors, shown in Fig. 15. Since m′ is the mass
of a new charged fermion, it should be sufficiently large to comply with experimental lower bounds;
requiring for example m′ > mh, one finds that only the region τ < r2/4 is relevant for phenomenology.
Note that the behaviour of the form factors as τ → 0 is sensitive to the mass ratio: as r increases
from 1 to infinity, the asymptotic regime settles at larger values of τ , and the asymptotic value of the
form factors A1/2 and Ã1/2 tends to zero as 1/

√
r. The form factors B1/2 and B̃1/2 are zero for r = 1,

then become of order one as r grows, then tend to zero in the large-r limit.

D.3 Experimental constraints on the Higgs couplings

Here we collect the constraints on the Higgs couplings that we use in our analysis. For a given
Higgs-decay final state α, the LHC measures the signal strength µα defined as

µα ≡ σ(pp→ h)

σSM (pp→ h)

Br(h→ α)

BrSM (h→ α)
=

σ(pp→ h)

σSM (pp→ h)

Γ(h→ α)

ΓSM (h→ α)

ΓSMh
Γh

, (D.40)

where Γh is the total Higgs width. In Table 4 we report the present determination of µα for α =
γγ, ZZ∗,WW ∗, bb, ττ, γZ, µµ as well as on the invisible width, by the ATLAS and CMS collaborations.
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ATLAS CMS ATLAS+CMS
√
s 7+8 TeV 7+8 TeV 7+8 TeV

L 4.7 + 20.3 fb−1 5.1 + 19.7 fb−1

mh 125.36± 0.41 GeV [79] 125.02+0.29
−0.31 GeV [77] 125.09± 0.24 GeV [78]

µγγ 1.17+0.28
−0.26 [79] 1.12± 0.24 [77] 1.13+0.24

−0.21 [96]

µZZ∗→4l 1.46+0.40
−0.34 [79] 1.00± 0.29 [77] 1.29+0.29

−0.25 [96]

µWW ∗ 1.18+0.24
−0.21 [79] 0.83± 0.21 [77] 1.08+0.22

−0.19 [96]

µττ 1.44+0.42
−0.37 [79] 0.91± 0.28 [77] 1.07+0.35

−0.28 [96]

µbb̄ 0.63+0.39
−0.37 [79] 0.84± 0.44 [77] 0.65+0.37

−0.28 [96]

µglobal 1.18+0.15
−0.14 [79] 1.00± 0.14 [77] 1.09+0.11

−0.10 [96]

µγZ < 11.0 [184] < 9.5 [185]

Γinvisible/Γh < 0.29 [186] < 0.58 [187]

Table 4: Higgs signal strengths measured by the ATLAS and CMS collaborations at
√
s = 7 and

8 TeV and their combination. The error bars and upper limits correspond respectively to ±1σ and
95% C.L.. In this chapter we adopt the value of the Higgs mass and of the signal strengths from the
combined fit of the ATLAS and CMS data, reported in the last column.

The expected precision for a luminosity of 300 − 3000 fb−1 at 14 TeV [9, 183] is reported for these
same channels in Table 5.

From a global fit of the Higgs data, one can also extract information on the Higgs coupling to
gluons. Taking a rough extrapolation from the fit in Fig. 16 of Ref. [96], we find 0.5 . Rgg . 1.8 at
99% C.L., where Rgg is defined in Eq. (4.2.4). In the same way we extract the analogue quantity for
the diphoton channel, 0.5 . Rγγ . 1.9 at 99% C.L., that we employ throughout this chapter.

The new fermions may or may not affect each of the three factors on the right-hand side of
Eq. (D.40). Let us discuss first the Higgs production cross section. The dominant gluon fusion
channel can be modified at leading order only by coloured fermions. The weak-vector-boson fusion
and associated production can be modified, at tree level, only by fermions mixing with the initial
state quarks: as we limit our analysis to mixing with the third family, we neglect these modifications.
Finally, the tt̄ associated production can be corrected by those fermions mixing with the top quark.
Concerning the total Higgs decay width Γh, the dominant branching ratio into bb̄ is affected by
fermions mixing with the bottom quark, and the second dominant decay channel into WW ∗ is not
modified by new fermions at leading order. Finally, Γh may be modified significantly by new invisible
decays, that are possible in the presence of sterile neutrinos. When both σ(pp→ h) and Γh are close
to their SM value, the signal strength in Eq. (D.40) reduces to µα ≃ Rα, where

Rα ≡ Γ(h→ α)

ΓSM (h→ α)
=

|Aα
SM +Aα

new|2 + |Ãα
new|2∣∣Aα

SM

∣∣2 . (D.41)

Here Aα
new and Ãα

new are the parity-even and odd new physics amplitudes, respectively. The approx-
imation µα ≃ Rα holds for all colourless new fermions, with the possible exception of light sterile
neutrinos.

Several groups performed global fits of the Higgs couplings to the SM particles, allowing for
deviations in both the fermionic and bosonic decay channels, see e.g. Refs. [188–195]. The fit of
Ref. [196] analyzed deviations in the Higgs couplings in the presence of new fermions only.
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ATLAS [183] CMS [9]

∆µα/µα 300 fb−1 3000 fb−1 300 fb−1 3000 fb−1

γγ 0.13 0.09 [0.06,0.12] [0.04,0.08]

ZZ 0.11 0.09 [0.07,0.11] [0.04,0.07]

WW 0.13 0.11 [0.06,0.11] [0.04,0.07]

ττ 0.21 0.19 [0.08,0.14] [0.05,0.08]

bb̄ 0.26 0.14 [0.11,0.14] [0.05,0.07]

γZ 0.46 0.30 [0.62,0.62] [0.20,0.24]

µµ 0.39 0.16 [0.40,0.42] [0.20,0.24]

Γinvisible/Γh < 0.22 < 0.14 < [0.17, 0.28] < [0.06, 0.17]

Table 5: Expected relative uncertainty at 1σ on the signal strengths µα for ATLAS and CMS. The
expected precisions correspond to

√
s = 14 TeV and L = 300 and 3000 fb−1. We also display the

expected limit at 95% C.L. on Γinvisible/Γh for the same luminosities. For CMS the two numbers
correspond to two different estimations of the future uncertainties [9].
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Chapter 5

Two Higgs doublet extended by new
fermions

In this chapter, we turn to another kind of low energy extensions of the SM that is, a Higgs sector
extended with a second Higgs doublet. In addition, we also introduce new fermions with couplings to
the two scalar doublets. This chapter can be viewed as an enlargement of the precedent framework
where the effects of new fermions are now studied in a more general context.

We do not classify all of the possible extensions as we did in chapter 4. Indeed, the consistent
fermionic extensions that we have isolated in the case of one doublet remain the same with a second
doublet. Note that it is particular to this extended Higgs sector as for instance, with a new scalar
singlet that gets a vev after EWSB, the classification of the possible cases should be different. For
simplicity, we focus only on VL fermions coupling to the two Higgs doublets. As before, we study
the constraints coming from the couplings measurements of the 125 GeV Higgs boson and the ones
coming from the EWPT.

The first idea of this chapter was to reproduce the diphoton excess at 750 GeV and at the same
time the excess in the LFV decay h → τµ. The former excess has now disappeared with the recent
LHC data. However, the results of this chapter are still interesting and can easily be generalised.
Indeed, in order to control the light Higgs coupling to two photons such that the latter remains SM-
like, we use the mechanisms presented in chapter 4. In general, these mechanisms lead to a large hγZ
coupling. This is already an interesting signal of new physics. Furthermore, if the same mechanisms
are realised in a 2HDM framework, one can reasonably expect that the couplings of the heavy Higgses
to two photons receive in general large contributions. This is in fact possible and in this way we were
able to address the diphoton excess by reproducing the large cross sections σ(pp→ H,A→ γγ) where
H and A are respectively the CP-even and CP-odd heavy Higgses. As the 750 GeV diphoton excess
is now gone, our framework and our mechanisms to control h→ γγ can be generalised to resonances
with a larger mass than 750 GeV. Indeed, if there is an extended Higgs sector containing a doublet,
the decays of the scalar and pseudo-scalar resonances in two photons remain an interesting channel.
As the cross sections σ(pp→ H,A→ γγ) was really important for the 750 GeV excess, our framework
can easily serves as a benchmark. As it was possible to reproduce such very large cross section, one
can easily transpose our model to smaller cross section at a larger invariant mass.

In addition, the second excess associated to the decay h→ τµ is still there and our model can be
modify to only explain this excess. Indeed, it is enough to remove the VL fermions from the model
or equivalently, to decoupled them from the low energy theory by sending the VL masses to higher
scales. With all of the above arguments, let us now assume for the exercise that the diphoton excess
at 750 GeV is not a statistical fluctuation.

The ATLAS and CMS collaborations have presented few months ago the indications for a diphoton
excess at at an invariant mass of 750 GeV [3,4]. As mentioned above, this excess has now disappeared
but we will consider for the exercise that the excess is still there. Aside the diphoton excess, some
hints of anomalies persist in the LHC run-I data. Notably there is a 2.4σ excess at CMS in the
h→ τ±µ∓ decay of the 125 GeV Standard Model-like Higgs boson h [126], corresponding to a best-fit
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branching ratio BR(h → τ±µ∓) = 0.84+0.39
−0.37%. This is compatible with the ATLAS analysis which

finds BR(h→ τ±µ∓) = 0.77± 0.62% [125].
One of the simplest renormalisable models allowing for a h → τ±µ∓ branching ratio of the order

of a percent is the two-Higgs-doublet model (2HDM) [197–200] with lepton flavour violating Yukawa
couplings. This model has been studied before [201–207], and, with renewed interest, after the CMS
excess was announced [208–214]. The aim of the present chapter is to study whether a simple 2HDM
could explain both the diphoton excess and the LFV Higgs decay. The LHC excess has been studied
in the 2HDM in [215–223], and several authors have combined it with other observables, such as the
dark matter abundance [224–233], or B-physics anomalies [234–236]. In the 2HDM, candidates for the
750 GeV resonance are the heavier scalar Higgs h2 and the pseudoscalar A. They can reproduce the
observed cross-section times branching ratio into photons if they couple to heavy vector-like charged
fermions, as has been discussed by several authors, e.g. [215–217, 237–239]. The data [3, 4] suggest a
broad resonance, which could be due to the exchange of nearly degenerate h2 and A [238,240].

We consider a CP-conserving 2HDM of type I in the decoupling limit [241], where the second
doublet has a mass ∼ 750 GeV. We work in the “Higgs basis”, where H1 = [0, (v + h1)/

√
2] denotes

the doublet which gets a vacuum expectation value v ≃ 246 GeV, and which has Standard Model
Yukawa couplings. The second doublet H2 = [H+, (h2 + iA)/

√
2] does not couple to Standard Model

fermions, except for a LFV Yukawa to τ±µ∓. The physical Higgs bosons are the CP-even h and H,
the pseudoscalar A and the charged Higgses H±. In the decoupling limit, the light h is almost aligned
on the vev, making it the Standard-Model-like Higgs of 125 GeV.

In section 5.1 we show how to enhance theH andA couplings to gluons and photons, by introducing
new vector-like charged fermions, while respecting the bounds from electroweak precision tests and
h signal strengths. We neglect the charged Higgs H+ because it contributes little to H,A → γγ.
A small mixing with h2 allows the LFV decay h → τ±µ∓, as discussed in section 5.2. In section
5.3, we demonstrate that one can accommodate the 750 GeV excess from the decays of H and A, in
agreement with the LFV excess. Finally, we give some final comments in section 5.4.

5.1 Two Higgs doublets coupling to extra matter

In this section we neglect the misalignment between the CP-even mass basis, and the “Higgs” basis,
and focus on the Higgs couplings to new fermions. That is, we consider the limit where the Standard
Model Higgs boson h is identified with h1, and the second Higgs doublet H2 does not couple to the
Standard Model, except for its gauge interactions. Therefore, H = h2 and A cannot decay to Standard
Model particles at tree-level. We include the misalignment in the following section, in order to obtain
h→ τ±µ∓.

In order for H and/or A to play the role of the 750 GeV resonance, we need to introduce a large
effective coupling to γγ, as well as to gg, in the hypothesis that the resonance is produced via gluon
fusion. If the production is dominated by quarks, that have a smaller parton density function, one
needs an even larger coupling to γγ. We will discuss quantitatively these two possibilities in section
5.3 .

To provide an explicit realization for such effective couplings, we introduce two vector-like fermions,
that transform under SU(3)c × SU(2)w × U(1)Y as D ∼ (Rc, 2, Q + 1/2) and S ∼ (Rc, 1, Q), with
interactions

−L =MDDLDR +MSSLSR + λDi DLHiSR + λSi SLH
†
iDR + h.c. . (5.1.1)

The state of electric charge Q+ 1 has mass MD and no Yukawa couplings. The two states of charge
Q couple to the Higgs doublets, and their mass matrix is non-diagonal because of the vev of H1.
We will denote the mass eigenvalues by M1 ≤ M2. Note that, in order to induce the couplings Hγγ
and Aγγ (and analogously for gluons), one needs either λS1λ

D
2 6= 0 or λD1 λ

S
2 6= 0. This is illustrated

diagrammatically in Fig. 5.1, and it amounts to generate the effective operator H†
2H1FµνF

µν via a
fermion loop.

The couplings λD,S1 are constrained as they contribute to the h-decays into γγ and gg, as well as by
the precision electroweak parameters S and T . Indeed, vector-like charged fermions were employed in
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v

Figure 5.1: The contributions of two vector-like fermions, a doublet D and a singlet S, to the effective
couplings between the Higgs doublets and two photons or gluons. As we work in the basis where the
vev resides in H1, one finds that the h1 couplings (left-hand side) are proportional to λD1 λ

S
1 , while the

h2 and A couplings (right-hand side) are proportional to either λS1λ
D
2 or λD1 λ

S
2 .

the past to explain the transient excess in the h→ γγ channel, see e.g. [189,242]. A detailed analysis
of the allowed parameter space is provided in Ref. [11]. Here we describe two illustrative cases:

(1) Degenerate fermion masses, M1 =M2. This is the case forMD =MS and λS1 = −λD1 . Choosing
M1,2 = 1 TeV, Rc = 3 and |Q| ≤ 2, one finds an upper bound (λS1 v)/(

√
2M1) . 0.25. This

bound is determined essentially by the T parameter, that is proportional to Nc ≡ dim(Rc) and
independent from Q. When |Q| > 2 a stronger bound comes from the Higgs signal strengths.
For Rc = 8 and |Q| ≤ 3, one needs (λS1 v)/(

√
2M1) . 0.12. In this case the bound comes from

the hgg coupling.

(2) One vanishing Yukawa coupling, e.g. λD1 = 0. This pattern strongly suppresses the correc-
tion to the couplings hγγ and hgg, because, in the limit of heavy fermions, they are propor-
tional to λD1 λ

S
1 . However, an upper bound on λS1 still exists, coming from the T parameter,

(λS1 v)/(
√
2M1) . 0.35 (0.25) for Rc = 3 (8) and M1 = 1 TeV. Note that T does not depend

on the hypercharge, therefore it turns out that one can take it very large, say Q ∼ 10, without
violating the constraints.

Let us now turn to the heavy Higgs doublet H2. Its couplings to the fermion mass eigenstates are
easily derived [11] in terms of the parameters in the Lagrangian of Eq. (5.1.1). Then, one can compute
the decay width into two photons for the scalar H and the pseudoscalar A. The result is particularly
compact in the limit MH ≪ 2M1,2, since in this case the loop form factor A1/2[M

2
H/(4M

2
i )] is the

same for both fermions in very good approximation, A1/2(0) = 4/3. Similarly, for A we use the loop

form factor Ã1/2(0) = 2. Then, one obtains

Γ(H → γγ)

MH
=

α2

256π3

∣∣∣∣
2vMH

3M1M2
NcQ

2(λD2 λ
S
1 + λS2λ

D
1 )

∣∣∣∣
2

, (5.1.2)

Γ(A→ γγ)

MA
=

α2

256π3

∣∣∣∣
vMA

M1M2
NcQ

2(λD2 λ
S
1 − λS2λ

D
1 )

∣∣∣∣
2

, (5.1.3)

In the same approximation, the widths into two gluons read

Γ(H → gg)

MH
=

α2
s

32π3

∣∣∣∣
2vMH

3M1M2
C(Rc)(λ

D
2 λ

S
1 + λS2λ

D
1 )

∣∣∣∣
2

, (5.1.4)

Γ(A→ gg)

MA
=

α2
s

32π3

∣∣∣∣
vMA

M1M2
C(Rc)(λ

D
2 λ

S
1 − λS2λ

D
1 )

∣∣∣∣
2

, (5.1.5)

where C(Rc) is the index of the color representation. Note that the ratio of H-rates over A-rates is
given by a factor (2|λD2 λS1 + λS2λ

D
1 |)2/(3|λD2 λS1 − λS2λ

D
1 |)2.
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For definiteness, consider the case (2) described above, λD1 = 0, and take MH ≃ MA ≃ 750 GeV.
Then, one obtains

ΓAγγ
MA

≃ 9

4

ΓHγγ
MH

≃ 1.4 · 10−6

(
1 TeV

M2

)2 (Nc

3

)2 (Q
2

)4 (λD2
3

)2

, (5.1.6)

ΓAgg
MA

≃ 9

4

ΓHgg
MH

≃ 4.4 · 10−6

(
1 TeV

M2

)2 (C(Rc)
1/2

)2 (λD2
3

)2

, (5.1.7)

where we chose (λS1 v)/(
√
2M1) ≃ 0.35, that is the largest value allowed by the T parameter for

Rc = 3. In the case of a colour octet, Nc = 8 and C(Rc) = 3, there is a slightly stronger upper bound,
(λS1 v)/(

√
2M1) ≃ 0.25: therefore, one gains a factor ∼ 3 in γγ and a factor ∼ 20 in gg.

Note that one can reproduce the same rates with smaller Yukawa couplings: taking N pairs of
vector-like fermions, all with equal charges and coupling λD2 , the rates scale as (NλD2 )

2. From a
theoretical point of view, it may be more justified to introduce several vector-like fermions, but with
charges related to the Standard Model ones, such as one or more vector-like families, composed of t, b
and τ partners. Adding over their contributions one could obtain a qualitative similar effect.

One should also remark that the heavy fermion loops also induce decays ofH and A to Zγ, ZZ and
WW , with width of the same order as (or slightly smaller than) for γγ. However, the upper bounds
from the 8 TeV LHC are weaker than the one on γγ, as discussed e.g. in Ref. [243]. Therefore, they
are presently unconstraining. At run 2, the better perspective appears to be the observation of the
Zγ channel.

5.2 The τ±µ∓ decay of the 125 GeV Higgs boson

Flavour-changing Higgs couplings are generic in the 2HDM, but their effects are not seen in low
energy precision experiments searching for lepton or quark flavour change. So a discrete symmetry,
which forbids flavour-changing Yukawa couplings, is usually imposed on the 2HDM. To allow for LFV
h decays, without generating undesirable flavour-changing processes, we suppose that our 2HDM
almost has a discrete symmetry: all the Standard Model fermions have the usual Yukawa couplings
to H1 (“type I” model), and the only two couplings of H2 to Standard Model fermions are the µτ
LFV ones,

L = −ρτµLτH2µR − ρµτLµH2τR + h.c. (5.2.1)

(see Refs. [202, 244] for a more formal analysis). Recall that the diagonalisation of the fermion
mass matrices diagonalises the Yukawa couplings of H1, which carries the vev. Therefore, the LFV
couplings are attributed, by definition, to the doublet H2 with zero vev. Note that Eq. (5.2.1) amounts
to assume that µ and τ numbers are not conserved, while electron number remains a good symmetry
at the renormalizable level. Such symmetry has to be slightly broken to allow for viable neutrino
masses. In general, this breaking will propagate radiatively to the H2 Yukawa couplings, however
the size of this effect can be sufficiently small, as it strongly depends on the specific neutrino mass
model. In section 5.3 we will also consider a scenario where H2 is produced from an additional Yukawa
coupling to b quarks, that can be added without phenomenological problems.

The CP-even mass eigenstates h and H are misaligned with respect to the vev by an angle that
is commonly parametrized as β − α:

h = sin(β − α)h1 + cos(β − α)h2 ,
H = cos(β − α)h1 − sin(β − α)h2 .

(5.2.2)

In the decoupling limit [241,244], sin(β − α) ≃ 1 and

cos(β − α) = −Λ6v
2

M2
H

, (5.2.3)
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where the Higgs potential contains a term Λ6H
†
2H1H

†
1H1 + h.c., in the basis where H1 has no vev.

The coupling of h to τ±µ∓ is therefore proportional to cos(β − α)ρ, and one obtains

BR(h→ τ±µ∓) ≃ mh

16πΓh
cos2(β − α)

(
|ρτµ|2 + |ρµτ |2

)
. (5.2.4)

The CMS best-fit is BR(h→ τ±µ∓) = 0.0084 [126], which gives

cos(β − α)(|ρτµ|2 + |ρµτ |2)1/2 ≃ 0.0037 , (5.2.5)

where the width was taken at its Standard Model value, Γh ≃ 4.1 MeV.
In the 2HDM, the CMS excess in h→ τ±µ∓ is consistent with the current upper bound BR(τ →

µγ) ≤ 2.6× 10−7BR(τ → µνν̄) [245, 246]. However, the extra fermions which enhance H,A→ γγ as
in Eqs. (5.1.2)-(5.1.3), will also enhance the rate for τ → µγ [201]: if a neutral Higgs is exchanged
between its γγ and τ̄µ vertices, and one of the photons connects to the lepton line, a diagram for
τ → µγ is obtained. Such diagrams with a top loop were calculated in the 2HDM in [247]. From their
results, the combined contribution of H and A can be estimated, for M1 ≃M2 and λD1 = 0, as

mτ

v2
AL ≃ eα

128π3
v√
2M2

1

NcQ
2λD2 λ

S
1 ρ

∗
τµ , (5.2.6)

where the experimental bound is 384π2(A2
L + A2

R) ≤ 2.6 × 10−7. With the definition of Yukawa
couplings given in Eq. (5.1.1), it turns out that choosing a large λD2 (λS2 ) leads to a destructive
(constructive) interference among theH and A amplitudes. This was taken into account in Eq. (5.2.6),
where the difference in loop integral functions was chosen ≃ 1/2, as given in [247] for M2

1 /M
2
H ≃ 2. A

similar estimate can be made for AR. We neglect the h contribution to τ → µγ, because its coupling
to γγ is not enhanced, see scenario (2) in section 5.1. So the Babar-Belle bound on τ → µγ could be
satisfied for

Nc

3

(
Q

2

)2 λD2
3
λS1 ρτµ . 0.07 , (5.2.7)

which sets a lower bound on cos(β − α) when combined with Eq. (5.2.5):

cos2(β − α) >∼ 0.003

(
Nc

3

)2 (Q
2

)4 (λD2
3

)2 (
λS1

)2
. (5.2.8)

If the masses and couplings were purposefully tuned, it might be possible to suppress the τ → µγ
amplitude even further, so we will consider Eq. (5.2.8) to be a preference but not an exclusion.

5.3 Reproducing the 750 GeV excess

Let us discuss the decay widths of H and A as a function of the Higgs mixing cos(β − α) and of the
LFV couplings ρµτ,τµ.

The mixing does not affect the couplings of the pseudoscalar A, for which the discussion of section
5.1 applies. On the other hand, the misalignment parametrised in Eq. (5.2.2) implies that the Yukawa
couplings to h and H become

λD,Sh = sin(β − α)λD,S1 + cos(β − α)λD,S2 , λD,SH = cos(β − α)λD,S1 − sin(β − α)λD,S2 . (5.3.1)

The H decay widths into photons and gluons are obtained by replacing λD,S2 with λD,SH in Eqs. (5.1.2)
and (5.1.4). Similarly, for the corrections to h → γγ and h → gg due to the heavy fermions, one has
to replace λD,S1 with λD,Sh . In addition, all the h couplings to the Standard Model particles n’s are
modified, ghnn̄ = sin(β−α)gSMhnn̄. Since several Higgs signal strengths have been tested at LHC-8 TeV
with 10% precision, the Higgs mixing is bounded from above

cos2(β − α) . 0.1 . (5.3.2)
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This is consistent with Eq. (5.2.8). As discussed in section 5.1, the corrections to h→ γγ and h→ gg
may lead to a slightly stronger upper bound on cos(β − α), if the couplings λD,S2 are very large.
However, such bound drops for λS1 · λD1 → 0, see case (2) in section 5.1. Finally, the contributions
to S and T from scalar loops are small in the 2HDM close to the decoupling limit [202, 248], as we
explicitly checked for our choice of the parameters.

The mixing has an important effect on the total width of H, since the latter can decay to Standard
Model particles n’s, with coupling gHnn̄ = cos(β − α)gSMhnn̄. The dominant contributions read, at the
tree level,

Γ(H → tt̄,W+W−, ZZ)
MH

≃ cos2(β − α)

8π v2

[
3m2

t +
M2
H

2
+
M2
H

4

]

≃ 0.33 cos2(β − α) , (5.3.3)

where, for the latter numerical estimate, we used the accurate values of the widths for MH ≃ 750
GeV, as given in Ref. [249]. Here we neglected the channel H → hh, because the corresponding
trilinear scalar coupling may be suppressed, by conveniently choosing the scalar potential parameters.
Recall that the cross-section for pp → H → γγ is proportional to Γ(H → gg)/ΓtotH , where the
numerator corresponds to the assumed dominant H production mode, and the denominator is the
total width ofH. Therefore, the contribution ofH to the excess degrades as soon as Γ(H → gg)/MH .

0.33 cos2(β − α).
The LFV couplings ρµτ,τµ also open an additional decay channel for both H and A, with a width

Γ(H → τ±µ∓)
MH

≃ Γ(A→ τ±µ∓)
MA

≃ 1

16π

(
|ρτµ|2 + |ρµτ |2

)
≃ 3 · 10−7

cos2(β − α)
, (5.3.4)

where the last equality comes from Eq. (5.2.5).
One should also mention that the presently preferred width of the excess, Γ ∼ 45 GeV, could

be mimicked by two narrow resonances close in mass. Indeed, the mass split between H and A is
given, in the decoupling limit, by M2

H −M2
A ≃ Λ5v

2, where the term 1
2Λ5(H

†
1H2)

2 + h.c. appears in
the Higgs potential. This is naturally of the correct order of magnitude for Λ5 ≃ 1. Note, however,
that the H-mediated cross-section tends to be suppressed relatively to the A-mediated one by two
factors: the additional Higgs width in Eq. (5.3.3), and the factor 4/9 from the loop form factors, see
Eqs. (5.1.6)-(5.1.7).

Let us put all the constraints together to identify the possible windows of parameters that allow
to reproduce the 750 GeV excess in agreement with the preferred h→ τ±µ∓ rate. The resonant LHC
total cross-section, in the crude zero-width approximation, reads

σ(pp→ H(A) → γγ) =
∑

i

Pi
Γ(H(A) → i)Γ(H(A) → γγ)

s ΓtotMH(A)
, (5.3.5)

where s = (13 TeV)2, MH(A) ≃ 750 GeV, and the Pi coefficients are the integrals for convoluting over
parton densities, that define the parton luminosities for each species i:

Pgg ≡
π2

8

∫ 1

M2

s

d x

x
g(x)g(

M2

x s
),

Pq̄q ≡
4π2

9

∫ 1

M2

s

d x

x

[
q(x) q̄(

M2

x s
) + q̄(x) q(

M2

x s
)

]
. (5.3.6)

Consistency with the absence of resonances at 8 TeV favours i to be either gluons or bs, for which the
luminosity is Pb̄b ≃ 14 and Pgg ≃ 2000 (we used for Eq. (5.3.6) the latest pdfs from Ref. [250]).

We focus first on gluon-gluon fusion as the dominant production mechanism. This channel enjoys
the largest parton density functions, so it is sufficient to have Γ(H,A → γγ)/MH,A ≃ 10−6 [237], as

long as ΓH,Atot ≃ Γ(H,A → gg). However, the latter is loop-suppressed as shown in Eq. (5.1.7). The
total cross-section for some choices of the parameters is shown in Fig. 5.2 as a function of cos(β−α).
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Note that for completeness and cross-check, we have also compared with the more elaborated invariant
mass distribution dσ/dM(gg → H(A) → γγ) where M ≡

√
ŝ is the γγ invariant mass, that we have

calculated taking into account the exact width dependence, and integrating this expression over an
appropriate large range for M around the resonance. The numerical differences with the narrow-
width approximation expression in Eq. (5.3.5) is at most 2-3 % for all the relevant parameter choices
discussed below, as could be intuitively expected since the total width of either A or H remains
in all cases sufficiently moderate with respect to the resonance mass, such that the narrow width
approximation is justified a posteriori. We can envisage two scenarios:

(A) For both H and A to contribute significantly to the excess, both the tree-level widths in
Eq. (5.3.3) and Eq. (5.3.4) should be small compared with Γ(H,A→ gg). So the optimal value
for the Higgs mixing is cos2(β−α) ≃ 10−3, that minimizes the sum of the tree-level widths. Then,
to reach a cross-section of a few fbs one needs Γ(H,A→ gg)Γ(H,A→ γγ)/M2

H,A & 5 ·10−10. To
reach this value for both H and A requires some stretch in the parameters, e.g. in Eqs. (5.1.2)-
(5.1.5) one should take Rc = 8, Q = 3, λS2 = −1, λD2 = 5, M1 = M2 and λS1 = −λD1 with the
corresponding constraint (λS1 v)/(

√
2M1) . 0.12. In addition, the amplitude for τ → µγ in this

scenario exceeds the indicative bound of Eq. (5.2.7) by about an order of magnitude.

(B) If one neglects the putative large width of the excess, the H contribution to the signal is no
longer necessary. In the case of the pseudoscalar A, only the tree-level width in Eq. (5.3.4)
competes with gluon fusion, therefore the signal can be maximized by taking the Higgs mixing
as large as allowed by Standard Model constraints, cos2(β − α) ≃ 0.1 (see Eq. (5.3.2)). Then,
one can reach a cross-section of a few fb’s as long as Γ(A → gg)Γ(A → γγ)/M2

A & 3 · 10−12,
as realized with the reference values in Eqs. (5.1.6)-(5.1.7). The bound (5.2.8) from τ → µγ is
satisfied for these parameters.

Let us compare with the alternative possibility that the production of H and A is not dominated
by gluon fusion, rather by bb̄ → H,A. The parton density functions give a suppression of order
100 with respect to gluons, so that the excess requires Γ(H,A → γγ)/MH,A & 2 · 10−4 [237]. The
advantage is that a Yukawa coupling (ρb/

√
2)b(h2 + iγ5A)b can easily overcome the other tree-level

widths in Eq. (5.3.3) and Eq. (5.3.4),

Γ(H → bb̄)

sin2(β − α)MH
≃ Γ(A→ bb̄)

MA
≃ 3ρ2b

16π
≃ 0.06ρ2b . (5.3.7)

Indeed, one can reproduce the preferred value Γ ≃ 45 GeV for ρb ≃ 1. Moreover, there is no constraint
from dijet searches at 8 TeV, as the b-quark parton density function is very small. Therefore, one
identifies the following scenario:

(C) When ΓH,Atot ≃ Γ(H,A→ bb̄), both H and A contribute to the excess, as long as Γ(H,A→ γγ) ≃
2 · 10−4. Confronting with Eq. (5.1.6), one needs a pair of vector-like fermions with Rc = 3 and
Q = 7, or Rc = 8 and Q = 5. Note that is difficult to avoid such large exotic charges by
augmenting the number of multiplets in the loop, as the signal scales with Q4. As discussed in
section 5.1, such large Q can be compatible with Higgs decays and the S and T parameters,
however the bound of Eq. (5.2.8) from τ → µγ is exceeded by a factor of few.

The total cross-sections, combining both the gluon fusion and bb̄ production channels, are shown in
Fig. 5.3 as a function of cos(β − α), for Q = 5 and other parameters as in Fig. 5.2. Here the cross-
sections are calculated with the exact width dependence and integrating dσ/dM(gg, bb̄ → H(A) →
γγ). In fact due to the dominant contribution of the bb̄ decay to the total width Γtot in this case,
the bb̄ production channel largely dominates (for instance the gluon fusion process contributes to the
total cross-section by about ∼ 10% only for Rc = 8, and much less for Rc = 3). Note that in this case
the discrepancy with the cross-sections in the narrow width approximation of Eq. (5.3.5) amounts to
7-8 %, for the parameter choices discussed above, that is roughly of order ΓH,Atot /MH,A.
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Figure 5.2: The total cross-section σ(pp→ H(A) → γγ) in fb, assuming the gluon fusion production
channel, as a function of cos(β − α), for a pair of vector-like fermions in the color representation
Rc = 3 or Rc = 8, as indicated. We fixed their charge, Q = 2, and their Yukawa couplings to H
and A, λD2 = 3 and λS2 = 0. The horizontal band is the preferred cross-section at 1σ for the ATLAS
excess [3, 4].

5.4 Final comments

Assuming that the diphoton excess at an invariant mass of 750 GeV was a physical signal and not a
statistical fluctuation, we entertained for the exercise the possibilities that both the latter γγ excess
and the h → τ±µ∓ excess are due to new physics. A minimal way to introduce (renormalisable)
flavour violation and extra bosons to the Standard Model is to add a second Higgs doublet. Its τ ↔ µ
coupling may be connected to large 2−3 mixing in the neutrino sector, in scenarios where the Yukawa
couplings of charged leptons and neutrinos are related.

The neutral scalars H and A can play the role of the 750 GeV resonance, even though the strength
of the excess in the early 13 TeV data is significantly larger than the one expected in the 2HDM alone.
We take this as a hint that additional states close to the TeV are present in the underlying theory,
with large Yukawa couplings to the second Higgs doublet. We have shown that a pair of vector-like
fermions is sufficient to reproduce the right cross-section, and respect all other constraints. However,
such fermions must have gauge charges larger than the Standard Model fermions: indicatively, for a
Yukawa ≃ 3 and Rc ≤ 8, one needs |Q| ≥ 2 in scenarios (A) and (B), and |Q| ≥ 5 in scenario (C),
see section 5.3 . Alternatively, several pairs of fermions have to be introduced. These are important
indications to constrain those well-motivated extensions of the Standard Model that predict vector-like
fermions, such as top partners.

Were the heavy Higgses to have no couplings to Standard Model fermions, then gg → H,A→ γγ
is a natural discovery channel. However, to explain h→ τ±µ∓, the heavy Higgses must interact with
τ±µ∓, and mixing is required between h and H. Both requirements gives Standard Model decay
channels to H and A, which reduces BR(H,A→ gg, γγ); nonetheless we find three scenarios that fit
both excesses. In addition, the mixing must respect both a lower bound to reproduce the LFV excess,
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Figure 5.3: The same as in Fig. 5.2, but adding a bb̄ production channel with ρb = 1, see Eq. (5.3.7),
and increasing the vector-like fermion charge, Q = 5. Here we displayed the cross-section for H only,
as well as the cross-section for H plus A.

and an upper bound to protect the 125 GeV Higgs couplings: 10−3 . cos(β − α) . 0.3.
The decay τ → µγ is a particular challenge for this model, because the heavy Higgses couple to

τ±µ∓ and have an enhanced coupling to γγ. In combination, these interactions give a “Barr-Zee”
contribution to τ → µγ which is dangerously large. By choosing the Yukawas to obtain destructive
interference between A and H, we find that at least two of the scenarios are compatible with the
current experimental limit on τ → µγ.

Of course, the γγ excess at 750 GeV has now disappeared but we assumed for the exercise that it
was not the case. Indeed, the framework that we have presented is general enough to be applied in a
more general context. For instance, it can be generalised to a diphoton resonance with a larger mass
than 750 GeV and with a smaller cross section. The latter point would relax a lot of constraints such
that our model appears as a benchmark and it proves that it is possible to induce a large γγ cross
section. If another diphoton excess appear in the future, our model could be an interesting possibility.
Also, one should not forget that it explains the h→ τµ decay even if there is no diphoton excess.

Finally, let us make some comments on possible outlooks for this work. Our model could also be
extended by considering VL families that respect the T parameter. Indeed in the above construction,
we have considered one VL singlet and one VL doublet mixing through their Yukawa couplings to
the first Higgs doublet H1. This minimal field content was inspired from chapter 4 as it contains only
four multiplets. An interesting possibility, would be to consider a less minimal field content but with
a greater theoretical motivation. For instance, one can consider one VL doublet D ∼ (Rc, 2Q+ 1/2)
and two VL singlets S1 ∼ (Rc, 1, Q+ 1) and S2 ∼ (Rc, 1, Q) that is six multiplets. In this way, there
is a custodial limit where the Yukawa couplings to H1 do not vanish. Then, with this field content,
the constraints coming from the EWPT are relaxed and it is easier to reproduce an excess. Note that
the above VL family could also be relevant in the context of a SM-like Higgs sector.

In general, it is interesting to try to explain different experimental anomalies at the same time.
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Clearly, this is a different phenomenological approach to new physics than the one of chapter 4 where
we rather consider the consequences of extending the SM with new states.
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Part III

Composite Higgs models and their
ultra-violet completions
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In the precedent part of the manuscript, we have focussed on minimal extensions of the SM. The
latter are valid at low energy that is at the EW scale, and by minimal we intend extensions where only
few light states are added to the SM. By hypothesis, these states are the low energy manifestation of
a more complete UV theory where the other heavy states are decoupled from the EW scale. Then,
in order to remain as model independent as possible, we did not specify the UV completion of these
minimal extensions. However, such a UV completion is not just theoretically relevant at high energy.
Indeed, the symmetries of the UV completion manifest at low energy and constrain the effective theory
such that the parameter space of the latter may be reduced when interpreted in a UV framework.

In this third part, we rather follow a different approach to new physics and study more complete
UV theories. This second approach is less model independent but more justified from a theoretical
point of view. Our focus will be on composite Higgs models that bring a solution to the hierarchy
problem as discussed in section 1.6. These models allow to stabilise the EW scale by invoking the
presence of a new strong sector that condensates at low energy and generate a composite pNGB Higgs.
In this picture, the mass of the Higgs boson is protected from large radiative corrections by the shift
symmetry associated with the Goldstone nature of the Higgs.

We first remind the basic ideas behind a composite Higgs in chapter 6. In particular, we discuss how
a composite Higgs can solve the naturalness problem of the EW scale. To that end, we introduce an
effective description of CHMs which is based only on the global symmetries of the model. This effective
description has some limitations and in chapter 7, we introduce four dimensional UV completions of
CHMs. The latter are based on a hypercolour gauge symmetry that becomes strongly coupled at low
energy and condensates to form a composite Higgs. We classify the different minimal possibilities
and outline the most relevant one. In the sequel, in chapters 8 and 9 we present in great details
respectively the EW and the coloured sector of the most minimal UV completion of composite Higgs
models. We compute among other things, the masses of the lightest mesonic resonances present in
the spectrum using the non-perturbative techniques of the NJL model. Finally, we present some
prospects for the UV completions of composite Higgs models in chapter 10. We discuss in particular
the possible estimation of the baryonic masses in the NJL framework.
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Chapter 6

Effective models of composite Higgs

This chapter is an introduction to composite Higgs models. All of the discussion focuses on effective
realisations of composite Higgs models which are based on considerations about the global symmetries
of the models and not on a possible underlying gauge symmetry. This is analogous to the chiral
Lagrangian of QCD which is a simplified and effective description of QCD at low energy and is based
only on the chiral symmetry but not on the gauge SU(3)c symmetry. As the effective approach to
CHMs is not the aim of this manuscript, we present only the most relevant features in this chapter
(see e.g. Refs. [251,252] for details).

We first present in section 6.1 the mains ideas behind this kind of models and show how the
naturalness problem of the EW scale can be solved within this framework. Then, in section 6.2 we
discuss more deeply the possibility of a composite Higgs and in particular its pNGB nature. We
present the minimal composite Higgs model (MCHM) based on the pattern of symmetry breaking
SO(5)/SO(4) and derive the deviations that appear in the Higgs couplings to the SM gauge bosons.
In section 6.3, we present the mechanism of partial compositeness which allows to generate a mass
for the SM fermion and derive the deviations appearing in the Higgs couplings to SM fermions. Next,
in section 6.4, we present the breaking of the EW symmetry in the composite Higgs context, that is,
we compute the Higgs potential generated from the linear couplings between the top quark and its
partners. Finally, we give some concluding remarks in section 6.5.

6.1 Naturalness of the electroweak scale in composite Higgs models

The Higgs is a scalar boson and all of the other known particles of this kind are QCD bound states.
Thus, it is quite legitimate to ask if the same could be true for the Higgs. Clearly, QCD can not
be responsible of the formation of the Higgs as the mass of the QCD resonances are close to the
confinement scale, that is, close to ΛQCD ∼ 1 GeV ≪ mh ≃ 125 GeV. Then, if we want to realise this
possibility, one should invoke the presence of a new strong dynamics that condensates and forms a
Higgs boson as a bound state. The above argument gives a strong motivation in favour of composite
Higgs models. However, this is not the main one which rather comes from the hierarchy (naturalness)
problem of the EW scale and has been discussed on general grounds in section 1.6.

Indeed, suppose that the Higgs is a composite object, a bound state resulting from the condensation
of a new strong dynamics. Then rather than being a point-like particle as in the SM, it has a finite
geometric size lH . The resulting confinement scale m∗ = 1/lH is of the TeV order. In that case, the
Higgs receives only low energy radiative contributions to its mass, that is, the Higgs is not sensitive
to contributions above the compositeness scale m∗ as in this energy range, the dynamical degrees of
freedom are not the composite resonances but rather the elementary fields charged under the strong
dynamics. For the above mechanism to work, it is essential that the Higgs size or equivalently the
scale of confinement is itself natural that is, there should be no naturalness problem to put m∗ at the
TeV scale.

In addition, the composite Higgs can be naturally lighter than the other strong resonances if
it emerges as a pNGB. This is similar to the pions in QCD which have a mass mπ ∼ 100 MeV
≪ mρ ≃ 0.8 GeV. The pNGB Higgs is associated with a global symmetry G spontaneously broken by
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the condensation of the strong sector down to a subgroup H. This breaking occurs at a scale f which
is the equivalent of the pion decay constant Fπ. The pattern of global symmetry breaking G → H
leads to n = dim(G) − dim(H) NGBs. Suppose now that we gauge a subgroup H0 ⊂ G such that
H1 = H ∩H0 is the unbroken gauge group. Then among the n NGBs, n0 = dim(H0)− dim(H1) are
eaten to give a mass to the gauge bosons associated to H0. The remaining n− n0 are pNGBs.

In the above picture, both SM gauge bosons and fermions are elementary in opposition with the
composite nature of the Higgs and the other strong resonances. In particular, the SM gauge fields
are associated to H0. For simplicity we consider only the EW part of the SM gauge group that is
H0 = GSM = SU(2)L × U(1)Y . In order to have a composite pNGB Higgs, one requires two basic
conditions: (i) the SM gauge group can be embedded in the unbroken subgroup H (GSM ⊂ H) and
(ii) the coset G/H contains at least one SU(2)L doublet that can be identified with the Higgs doublet.

If the above two conditions are realised, GSM is unbroken at least at tree-level and the Higgs dou-
blet is one of the pNGBs living in the coset G/H. Its potential vanishes at tree-level as a consequence
of the Goldstone symmetry. As G is in fact explicitly broken by the couplings between the SM gauge
fields and the strong sector, loops of SM gauge bosons will generate a Higgs potential. In addition,
coupling the SM fermions to the strong sector generate another contribution to the Higs potential.
This loop-induced potential can in principle break the EW symmetry (see section 6.4) and generates
a non-zero Higgs mass.

In this way, the EW scale v is determined dynamically from the details of the Higgs potential
and can be smaller than the scale of spontaneous breaking f . This is different from technicolour
theories [253, 254] where there is no gap between v and f , as in that cases GSM is partly embedded
in H such that the spontaneous breaking of the global symmetry at the scale f also breaks the EW
symmetry 1. In composite Higgs models, there is a gap between between the scale of the composite
NGBs f and the EWSB scale v. More precisely, there is a misalignment angle θ which parametrises
the difference between the alignment of the strong condensate breaking G toward H and the alignment
of the Higgs vev breaking the EW symmetry. This misalignment is constrained to be small ie 〈θ〉 ≪ 1
which leads to the condition

ξ ≡ v2

f2
= sin2〈θ〉 ≪ 1 , (6.1.1)

where the ratio ξ = (v/f)2 is determined by the orientation of GSM inside G with respect to H. This
is the mechanism of misalignment and the degree of misalignment as we will see sets the size of the
corrections to all precision observables.

In the above composite Higgs framework, as a consequence of the Goldstone symmetry, the Higgs
is lighter than the other strong resonances. By naive dimensional analysis, the mass scale of the strong
resonances is m∗ ∼ g∗f where 1 . g∗ . 4π is a generic coupling that belongs to the strong sector.
The Higgs gets instead a much lighter mass mh ∼ gSMf where gSM . 1 is a generic SM coupling
that explicitly breaks the global symmetry G. In the limit where f → ∞ (ξ → 0) with fixed v, the
Higgs stays light at the EW scale while the other strong resonances becomes infinitely heavy. In this
decoupling limit, the corrections to all precision observables and the deviations in the Higgs couplings
due to the pNGB nature of the Higgs also disappear. Then, the pNGB Higgs may behave like an
elementary one and all of the strong resonances can be decoupled from the EW scale. However, in
this decoupling limit, the higgs mass should be fine-tuned and the hierarchy problem is not anymore
solved. Then, one should accommodate between a small f where there is a small fine-tuning and a
large f where all of the Higgs couplings and precision measurements are SM-like.

6.2 The minimal composite Higgs model

In this section, we present some aspects that follow from the NGB nature of the Higgs. We study in
particular one effective realisation of the composite Higgs paradigm based on the coset SO(5)/SO(4).
This is the minimal composite Higgs model (MCHM) [255] from the effective point of view. The aim
is to become more familiar with the predictions of CHMs as we will later consider in details a UV
completion of the next-to minimal CHM [256] in chapters 8, 9 and 10.

1In technicolour theories, the Higgs is not a pNGB but potentially one of the lightest scalar resonances.
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Let us now consider the minimal possible composite Higgs model for which the strongly interacting
sector has a global symmetry G = SO(5)×U(1)x spontaneously broken down to H = SO(4)×U(1)x.
As discussed in section 6.1, in CHMs the SM gauge group is embedded in the unbroken global
symmetry H. The embedding is simple as SO(4) is isomorphic to SU(2)L × SU(2)R (see section
1.3 and 6.5) which leads to the relation Y = T 3

R + x. Note that the custodial symmetry is also
embedded in a trivial way into H. The coset G/H = SO(5)/SO(4) implies four NGBs transforming
in the fundamental of SO(4) or equivalently as a complex doublet H of SU(2)L. Under a SU(2)R
transformation, the Higgs doublet H mixes with its conjugate H̃ and Φ =

(
H̃ H

)
/
√
2 transforms

as a bidoublet of SU(2)L × SU(2)R.
We now derive the effective action that encodes the interactions between the NGBs and the SM

elementary fields. More precisely, we derive the interactions between the composite Higgs boson and
the SM gauge fields. We postpone to section 6.3 the case of the SM fermion couplings to the composite
Higgs. The four NGB leaving in the coset SO(5)/SO(4) can be parametrised as

Σ(x) = Σ0e
Π(x)/f , Π(x) = −iT ÂhÂ(x)/

√
2 , Σ0 = (0, 0, 0, 0, 1) , (6.2.1)

where T Â are the broken generators associated to the coset space and Σ0 is the vacuum. An explicit
basis for the SO(5) generators can be found in Ref. [251]. Using this explicit form of the generators,
the field Σ can be written as

Σ =
sin(h/f)

h
(h1, h2, h3, h4, h cot(h/f)) , h ≡

√
(hÂ)2 , (6.2.2)

Let us assume for the moment that the full global symmetry G is gauged. At the quadratic level, in
momentum space, the most general SO(5)× U(1)x-invariant Lagrangian is

L =
1

2
Tµν

[
ΠX0 (q2)XµXν +Π0(q

2)Tr[AµAν ] + Π1(q
2)ΣAµAνΣ

T
]
, (6.2.3)

where Xµ and Aµ = AAµT
A + AÂµT

Â are the U(1)x and SO(5) gauge bosons [TA are the unbroken
generators associated to SO(4)]. As SO(5) is by definition only spontaneously broken and not explic-
itly, the Lorentz structure of the above equation is transverse (Tµν = ηµν − qµqν/q2), reflecting the
conservation of the SO(5) current. Our goal is to derive the Higgs couplings to the SM gauge boson.
We are not interested in the derivative Higgs interactions and consequently, the field Σ has been
treated as a classical background field with vanishing momentum. Note that the strong dynamics has
been integrated out in Eq. (6.2.3) and parametrised by the form factors ΠX0 and Π0,1. Note also that
we restrict to the quadratic order in the SM gauge fields as we want to make a comparison with the
SM prediction that is with the couplings cSMhV V and cSMhhV V of Eq. (1.2.5).

Expanding at first order around the vacuum (Σ = Σ0 + · · · ), we obtain

L =
1

2
Tµν

[
ΠX0 (q2)XµXν +ΠA(q

2)AAµA
A
ν +ΠÂ(q

2)AÂµA
Â
ν

]
, (6.2.4)

where the form factors factors associated to the unbroken and broken generators are respectively
given by ΠA = Π0 and ΠÂ = Π0 + Π1/2. Assuming that we are in the large N limit (large number
of hypercolours), the two point functions can be written as an infinite sum of narrow resonances (see
section 2.4) as follows

〈JAµ JBν 〉 = TµνδABΠA(q
2) = (q2ηµν − qµqν)δ

AB
∑

n

f2ρnM
2
ρn

q2 −M2
ρn

, (6.2.5)

〈J Âµ J B̂ν 〉 = TµνδÂB̂ΠÂ(q
2) = (q2ηµν − qµqν)δ

ÂB̂

[
∑

n

f2AnM
2
An

q2 −M2
An

+
1

q2
f2

2

]
, (6.2.6)

Note that in the case of ΠÂ ,that is, the axial correlator, in addition to the axial resonances there is
also a contribution from the NGBs which have the right quantum numbers to couple with the current

J Âµ . We deduce that, at zero momentum, Π0(0) vanishes and similarly for ΠX0 (0) while Π1(0) = f2.
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We now turn back to the original Lagrangian in Eq. (6.2.3) and switch-off the unphysical gauge
fields, keeping only the SM ones. From Eq. (6.2.2), we obtain

L =
1

2
Tµν

[(
ΠX0 (q2) + Π0(q

2) +
sin2(h/f)

4
Π1(q

2)

)
BµBν

+

(
Π0(q

2) +
sin2(h/f)

4
Π1(q

2)

)
AALµ AALν

+2 sin2(h/f)Π1(q
2)Ĥ†TALY ĤAALµ Bν

]
, (6.2.7)

where Bµ and AALµ are respectively the hypercharge and SU(2)L gauge fields associated to the gen-

erators Y and TAL . We have also defined

Ĥ =
1

h

(
h1 − ih2

h3 − ih4

)
. (6.2.8)

We expand the form factors at small momenta compare to the mass scale of the resonances of the
strong sector (q2 ≪ M2

ρ ). One can always perform an SO(4) rotation to align the Higgs vev along

the h3 direction: (h1, h2, h3, h4) = (0, 0, 1, 0) and HT = (0, 1) such that

L = Tµν
[
1

2

(
f2 sin2(〈h〉/f

4

)
(BµBν +W 3

µW
3
ν − 2W 3

µBν) +

(
f2 sin2(〈h〉/f

4

)
W+
µ W

−
ν

+
q2

2

[
Π′

0(0)W
AL
µ WAL

ν + (Π′
0(0) + ΠX′

0 (0))BµBν
]
+ · · ·

]
, (6.2.9)

where the expansion of the form factors is the following Πi(q
2) = Πi(0) + q2Π′

i(0) + · · · and we make
the identifications

1

g2
= −Π′

0(0) ,
1

g′2
= −(Π′

0(0) + ΠX′
0 (0)) , ξ =

v2

f2
= sin2

〈h〉
f

. (6.2.10)

Expanding around the vev, that is , hÂ =
(
0 0 〈H〉+ h 0

)T
, we obtain

f2 sin2
h

f
= f2

[
sin2

〈h〉
f

+ 2 sin
〈h〉
f

cos
〈h〉
f

(
h

f

)
+ (1− 2 sin2

〈h〉
f

)

(
h

f

)2

+ · · ·
]

= v2 + 2v
√

1− ξh+ (1− 2ξ)h2 + · · · (6.2.11)

Replacing the above result and the ones in Eq. (6.2.10) in the Lagrangian of Eq. (6.2.7), we finally
obtain for the SM gauge boson couplings to the Higgs

chV V = cSMhV V
√
1− ξ , chhV V = cSMhhV V (1− 2ξ) , (6.2.12)

In the limit ξ → 0 or equivalently when the scale of the NGBs f → ∞ (v fixed), one recovers the SM
Higgs couplings. Physically, the resonances of the strong sector become infinitely heavy and decouple.
In the opposite limit where ξ = 1 (v = f), there is no gap between the EW scale and the scale of
the NGBs (no vacuum misalignment). In that case, the strong dynamics behaves quite similarly to a
minimal technicolour model. Let us note that we can obtain the same results staring from the kinetic
term of the Σ field in the chiral Lagrangian that is from (DµΣ)

†(DµΣ) . This is done in appendix E
for the the next-to-minimal CHM based on the coset SO(6)/SO(5).

Finally, let us make some comments on the EWPT. Due to the embedding of the SM gauge group
in the global symmetry of the strong sector, the latter couples with the SM gauge bosons and then
contributes to the EWPT. Following Ref. [251], one obtains for the contribution of the strong sector
to the S parameter

S = 2πξΠ′
1(0) = 4πξ

∑

n

(
f2ρn − f2An

)
, (6.2.13)
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where only the third term of Eq. (6.2.3) contributes to S as contrary to the other ones, it may involve
two different SM gauge bosons (W 3

µ and Bµ). Note that the derivative Π′
1(0) is a consequence of

the heavy (compare to the EW scale) composite resonances [see Eq. (C.11)]. The second equality
is valid in the large N limit where the form factor can be saturated by an infinite sum of narrow
resonances. The above contribution to S is then interpreted as the tree-level exchange of spin one
resonances coupling to the SM gauge bosons. In addition, there is also the contributions coming
from the modifications of the SM couplings which modify the diagrams involving SM particles. Note
that all the contributions to S vanish in the decoupling limit where ξ → 0. In the same way, one
can estimate the contributions to the T parameter. In that case, there is no contributions coming
from the tree-level exchange of spin one resonances because the SO(4) coset contains the custodial
symmetry as a subgroup. This feature is crucial for any viable CHM otherwise the contributions to
the T parameter would be too large to respect the experimental constraints. For instance, a more
minimal coset of the form SU(3)/SU(2) × U(1) is not a good candidate for CHMs as the unbroken
symmetry does not contain the custodial symmetry. Then in general, non-zero contributions to T
comes from loops of heavy fermions and vectors as well as from the deviations in the SM couplings.
In any case, the contributions to the T parameter are loop suppressed in CHMs, contrary to the S
parameter where there are tree-level contributions.

The above deviations in the Higgs couplings as well as the contributions to the S and T parameters
put strong constraints on the parameters of the CHM. In particular, the degree of misalignment ξ
should be roughly smaller than 0.1, that is, the scale of the chiral Lagrangian f should be larger than
around 1 TeV [257]. This lower bound on f is important as it fixes the scale of the strong sector that
is, the scale of the composite resonances (see chapter 8).

6.3 Partial compositeness

We now turn to the SM fermions. The latter have to couple with the Higgs in order to get a mass after
EWSB. Then one needs to generate Yukawa couplings from the strong sector as the latter contains
the Higgs boson. There are two main ways to do that.

In the first one, the breaking of the EW symmetry is transmitted to the fermionic sector of the
SM through the following operator:

∆L =
∑

Ψ

λΨΨSMΨSMO , O = ΨHCΨHC . (6.3.1)

At some high scale ΛUV , the exchange of massive states generates the above four-fermion operators
between two SM fermions and two hypercolour fermions. Below the scale of condensation Λ ≃ 4πf , the
composite operator O interpolates the Higgs field: λΨO ≃ gρ(Λ/ΛUV )

[O]−1H. Then, the operator in
Eq. (6.3.1) becomes a Yukawa coupling between the Higgs H and the SM fermions. This is illustrated
in figure 6.1 and the corresponding mass is of the order 2

mΨ ≃ vgρ

(
Λ

ΛUV

)[O]−1

≃ v
4π√
N

(
Λ

ΛUV

)[O]−1

. (6.3.2)

This mechanism is the same than in technicolour theories. The resulting mass depends on the di-
mension of the operator O that can significantly differ from its classical value of three. One can
show that for consistency [251], the dimension of O can not be smaller than two implying at least a
suppression factor (Λ/ΛUV ) in the masses of the SM fermions. Note that if the operator of Eq. (6.3.1)
is generated, operators with four SM fermions should also be generated. They are suppressed by a
factor 1/Λ2

UV (from the exchange of a massive state with mass of the order of ΛUV ) and are expected
to violate flavour and CP, then strongly constraining ΛUV . In technicolour theories, the suppression
factor (Λ/ΛUV ) ≃ (4πf/ΛUV ) with f = v, implies too small masses while in CHMs one can still
obtain large enough mass as Λ ≃ 4πf ≫ v. However, the price to pay is a fine-tuning of the vacuum

2The canonical dimension of the operator in Eq. (6.3.1) is 6 such that the anomalous dimension γ = [O]− 1 is equal
to 2 if O takes its canonical value of 3.
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misalignment which should be very small, that is, ξ = v2/f2 ≪ 1. The problem of FCNC is solved in
the same way. Then, with the above mechanism realised in CHMs, one can generate the masses of the
SM fermions and avoid large FCNC but the model is quite similar to the SM as a large fine-tuning is
necessary. In addition, there is no simple explanation of the mass hierarchy of the SM fermions.

H

Ψ
SM
L

Ψ
SM
R

Ψ
SM
L Ψ

SM
R

H

Figure 6.1: Mechanisms that generate a mass for the SM fermions from couplings to the strong dy-

namics. The diagram on the left corresponds to a four-fermion operator of the form Ψ
SM
L ΨSM

R O where
O = ΨHCΨHC . The diagram on the right corresponds to the mechanism of partial compositeness and

is generated from linear couplings between the SM fermions and the strong sector of the form Ψ
SM
L,RO

where O = ΨHCΨHCΨHC .

The second way to generate the masses of the SM fermions suppose that, at the scale ΛUV , linear
couplings between one SM fermion and a composite operator are generated. The breaking of the EW
symmetry is then transmitted to the SM fermions via

∆L = λΨΨSMO + h.c. , O = {ΨHCΨHCΨHC , · · · } . (6.3.3)

In that case, the operator O is a fermionic operator and not a scalar one as before. The simple
way to realise such operator is with three technifermions, that is, to couple SM fermions linearly with
composite trilinear baryons. The latter should have the same quantum numbers than the SM fermions
multiplet under consideration. Thus, there is at least one composite operator for each SM fermionic
multiplets. At low energy, the Higgs field is interpolated by two of these fermionic operators that is
by OLOR where OL and OR are respectively associated with a left-handed and a right-handed SM
fermion. The naive estimate of the SM fermion mass is

mΨ = vgρλL(Λ)λR(Λ) , (6.3.4)

where λL,R stand for the couplings of Eq. (6.3.3) and are associated respectively to OL,R. The values
of λL,R at low energy, that is, at the scale Λ, are determined by the dimension of the corresponding
operator of the strong sector. More precisely the anomalous dimensions γL,R coming from the running
of λL,R from ΛUV down to Λ imply

λL,R(Λ) = λL,R(ΛUV )

(
Λ

ΛUV

)γL,R
, (6.3.5)

where the anomalous dimensions are defined according to γL,R = [OL,R]− 5/2. 3 The estimate of the
SM fermions masses crucially depends on the values of the anomalous dimensions. For instance, if
γL,R > 0, one has

mΨ ≃ vgρ

(
Λ

ΛUV

)γL+γR
≃ v

4π√
N

(
Λ

ΛUV

)γL+γR
. (6.3.6)

This expression looks really similar to the one of Eq. (6.3.2). However, γL + γR can be close or even
equal to zero in that case while it was not the case before because [O] − 1 > 1. Then, if the sum of
the anomalous dimensions is close to zero, the scale ΛUV can be very large without suppressing the

3If the operator of Eq. (6.3.3) is realised with trilinear baryons, its canonical dimension is 6 such that the anomalous
dimension γL,R = [OL,R]− 5/2 is equal to 2 if OL,R take their canonical value of 9/2.
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SM masses. Also, a large value of ΛUV suppresses any flavour and CP violating operators with four-
fermion generated at that scale. Within this picture and provided that small anomalous dimensions
γL,R exist (the dimension of the operator in Eq. (6.3.3) should strongly differ from its canonical value),
the problems appearing in the first mechanism are solved without any fine-tuning on f .

In addition, when (Λ/ΛUV ) ≪ 1, differences of O(1) in the anomalous dimension can generate
hierarchies in the masses of the SM fermions which may give a natural explanation of the flavour
puzzle.

6.3.1 The basic idea of partial compositeness

As we have seen, the linear couplings between the SM fermions and the strong sector represent an
appealing way to communicate the breaking of the EW symmetry to the fermionic sector of the SM
and to generate the SM fermion masses. An interesting feature of these linear couplings is that they
becomes mass mixing terms at low energy. Indeed, below the condensation scale Λ, the composite
operator O can excite heavy fermionic resonances. Then the linear coupling of Eq. (6.3.3) become
mass mixing terms between the elementary fermions ΨSM and a composite fermions ΨHC

n associated
to the excitations of the operator O. We assume that the composite fermions are heavy, that is, they
receive a mass from the strong dynamics (not from the Higgs vev) and are then VL with respect to
the SM gauge group. The mixing terms takes the following form

−Lfmix =
∑

n

λnΨ(ΨSMΨn
r + h.c.) , (6.3.7)

where λnΨ = 〈0|O|Ψn
r 〉 and the sum runs over all of the fermionic composite resonances Ψn

r . Similarly,
the currents associated to the global symmetry G have the right quantum numbers to excite a tower
of spin one resonances ρn. The latter mix with the elementary gauge fields Vµ through

Lgaugemix =
∑

n

MρnfρnAµρ
µ
n , (6.3.8)

where 〈0|Jµ|ρn(ǫr)〉 = ǫrµMρnfρn . This is in complete analogy with the ρ−photon mixing in QCD. As
a consequence of the above relations, the physical fermions and vector boson will be an admixture of
elementary and composite states. This is the so-called partial compositeness mechanism [81].

As a first example of this mechanism, let us consider a simplified case where only the first resonance
of each tower mixes with its corresponding elementary state. For simplicity, we consider only the top
quark sector. Indeed, the latter is the heaviest SM state and as we will see it mixes more with the
composite resonances. The effective Lagrangian describing the mixing between the elementary top

multiplets qL and tR with the corresponding composite resonances QL,R =
(
TL,R BL,R

)T
and TL,R

is

−L =MQQQ+MTTT +

[
∆tRTLtR +∆qLqLQR + λQTQLH̃TR + λTQTLH̃

†QR + h.c.

]
, (6.3.9)

where we have omitted for simplicity the kinetic terms. The above Lagrangian can be rewritten as
follows

−L = TL (λtRtR +MTTR) +
(
λqLqL +MQQL

)
QR + λQTQLH̃TR + λTQTLH̃

†QR + h.c. (6.3.10)

Before EWSB, the heavy and light mass eigenstates are defined by

{
t′R = 1

MR
(∆tRtR +MTTR) ,

t′′L = 1
ML

(∆qLtL +MQTL) ,

{
tSMR = 1

MR
(λtRtR −MTTR) ,

tSML = 1
ML

(λqLtL −MQTL) ,
(6.3.11)

whereMR =
√
λ2tR +M2

T andML =
√
λ2qL +M2

Q are respectively the masses of the heavy partners t′R
and t′′L. The remaining VL multiplet does not mix such that t′L = TL and t′′R = TR. The SM fermions
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tSML,R are massless before EWSB but one can see that they acquire a composite part. More precisely,
one can define the following mixing angles

cos θR =
MT

MR
, sin θR =

λtR
MR

, cos θL =
MQ

ML
, sin θL =

λqL
ML

. (6.3.12)

The linear couplings λtR,qL can be naturally much smaller than the mass scale MQ,T ∼ m∗ of the
composite fermions as they do not belong to the strong sector. Then, the SM fermions are mainly
elementary and the latter part is given by cos θL,R. However, they also contain a small composite
part given by sin θL,R. These composite parts are crucial as they couple to the Higgs doublet. Then,
after EWSB, the SM top quark tSM gets a non-zero mass from the Higgs vev. From the complete
mass matrix after EWSB

(
tR T R TR

)



0 0 λtR
0 MQ λTQv/

√
2

λqL λQT v/
√
2 MT






tL
TL
TL


+ h.c. (6.3.13)

one sees that a non-zero mass for the top quark is generated only if the two linear couplings λtR and
λqL are non-zero and the Yukawa coupling λQT (which has a SM-like structure) is also non-zero. This
picture is displayed in figure 6.2. Note that the heavy masses ML,R receive only small corrections
from the EWSB as v ≪ m∗. The effective Yukawa coupling of the top quark is

λt = λQT sin θL sin θR . (6.3.14)

tL tR

H

=

H

tL TL TR tR

λqL λtR
λQT

Figure 6.2: Explicit realisation of the partial compositeness mechanism in the top sector. The first
resonance of each tower mixes with its corresponding elementary state, that is, tL and tR mix respec-
tively with TL and TR. These mixing are controlled by the linear couplings λqL and λtR while the
relevant coupling of the strong resonances to the composite Higgs is λQT .

Note that the same mechanism can be present for all of the other SM fermions but in that case,
the linear couplings should be smaller as the other SM fermions are lighter than the top quark. From
Eq. (6.3.14), one sees that the degree of compositeness sin θL,R, controls the mass of the SM fermions.
The top quark has the largest degree of compositeness and is then the SM fermion that couples the
most with the strong sector due to its large mass. Consequently, it plays a particular role in CHMs
as we will see in section 6.4.

6.3.2 Higgs couplings to fermions

Let us now explore in deeper details the partial compositeness mechanism. We assume that the
elementary fermionic content of the SM couples linearly to composite operators of the strong sector.
The operators of the strong sectors belong to complete representations of the global symmetry G
while in general, the elementary fermions not. As a consequence, the linear couplings break the global
symmetry G and then the loops of elementary fermions induce a potential for the Higgs boson. The
dominant contributions come from the top and bottom quarks since they have the larger masses,
their couplings to the strong sector is also larger (see subsection 6.3.1). For simplicity we then restrict
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to the elementary top and bottom quarks. The linear couplings between the SM fermions and the
composite sector are given by

Lfermionsint =
∑

ψ

λψψOψ + h.c. = λqqLOq + λuuROu + λddROd + h.c. (6.3.15)

Similarly to the gauge bosons couplings, one can derive the effective Lagrangian for the elementary
quarks in the Higgs background. To do that, one needs to specify the representation in which the
composite operators Oψ belong. Again, we consider the minimal SO(5)/SO(4) model but the results
can easily be transposed to other non-minimal models. For instance, we can assume that the strong
operators transform in the spinorial representation of SO(5). We then construct complete spinorial
representation of SO(5) in which the SM quarks are embedded. One has

Ψq =

(
qL
QL

)
, Ψu =




quR(
uR
d′R

)

 , Ψd =




qdR(
u′R
dR

)

 (6.3.16)

where QL, q
u,d
R , u′R and d′R are non-dynamical spurions. More precisely, one can rewrite the Lagrangian

of Eq. (6.3.15) in a SO(5)-invariant form using the above multiplets. In this way, the linear couplings
λπ are promoted to spurions and their vev lead to the Lagrangian of Eq. (6.3.15). The spinorial
representation of SO(5) decomposes under SU(2)L × SU(2)R as follows: 4SO(5) = (2, 1) + (1, 2) such
that each fields Ψq,u,d contains one SU(2)L doublet and one SU(2)R triplet. The effective Lagrangian
invariant under SO(5)× U(1)x for the elementary quarks is then

L =
∑

ψ=q,u,d

Ψψ 6 p
[
Πψ0 (p) + Πψ1 (p)ΓiΣi

]
Ψψ +

∑

ψ=u,d

Ψq

[
Mψ

0 (p) +Mψ
1 (p)ΓiΣi

]
Ψψ , (6.3.17)

where as before, the field Σ has been treated as a constant background and we restricted to the
quadratic order in momentum space. Note that the spurions are not physical fields, they just allow
to write the above effective Lagrangian into an invariant form. The form factors Πψ0,1 and Mψ

0,1

(ψ = q, u, d) are the equivalent of ΠX0 and Π0,1 in the effective Lagrangian involving the SM gauge
bosons. They encode the effect of the strong dynamics and their poles give the masses of the fermionic
resonances of the composite sector. The explicit expression of the gamma matrices (see Ref. [251]),
that is, of the SO(5) generators in the spinorial representation leads to

ΓiΣi =

(
11 cos(h/f) σ̂ sin(h/f)
σ̂† sin(h/f) −11 cos(h/f)

)
, σ̂ ≡ σâhâ/h , σâ = {~σ,−i11} . (6.3.18)

Keeping only the top quark multiplets qL = (tL, bL) and tR as physical dynamical fields we obtain
the effective Lagrangian associated to these fields

L = qL 6 p [Πq0(p) + Πq1(p) cos(h/f)] qL + tR 6 p [Πu0(p)−Πu1(p) cos(h/f)] tR

+sin(h/f)Mu
1 (p)qLĤ

ctR + h.c. (6.3.19)

where Ĥc = iσ2Ĥ. Note that we have neglected the effect of the other elementary fermions as their
contributions are negligible compare to the one of the top quark. This is due to their small couplings
to the strong sector.

One can extract the top quark mass from the above effective Lagrangian. More precisely, from
the Yukawa term between tL and R we get in the low energy limit (p ≃ 0)

mt ≃
v

f

Mu
1 (0)√

[Πq0(0) + Πq1(0)][Π
u
0(0)−Πu1(0)]

. (6.3.20)

With this identification, the second term of the expansion of sin(h/f) around the Higgs vev gives the
Higgs coupling to the top quark

MCHM4 : chff = cSM
hff

√
1− ξ , (6.3.21)
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Note that the above deviation compare to the SM prediction is valid for every SM fermions embedded
in the spinorial representation of SO(5). This embedding is commonly denoted by MCHM4.

There exist other possibilities for the embedding of the SM fermions inside multiplets of SO(5).
For instance, SM fermions can be embedded in the fundamental representation [36] (MCHM5) which
leads to

MCHM5 : chff = cSM
hff

(1− 2ξ)√
1− ξ

. (6.3.22)

Let us mention that, other possibilities for the embedding of the elementary fermions are the 10
(MCHM10) and 14 (MCHM14) representations of SO(5) which have also been investigated in the
literature. Then, elementary fermions can be embedded in the same representation of SO(5) like the
4, 5, 10 or 14 or even, depending of the elementary fermion, in different representations.

Let us comment on possible UV completions. In any of the above cases, one needs to form
the composite baryons with an odd number of fermions. Restricting to trilinear ones, it is not
guarantee that the composite baryons can transform in the 4, 5, 10 or 14 of SO(5). Only some of
these representations may be accessible in a particular UV completion. However, from the effective
point of view, we do not know the available representations. This model-dependence motivates the
construction of UV completions of CHMs.

6.4 The composite Higgs potential

Up to now, we have assumed that the Higgs potential at its minimum can correctly break the EW
symmetry. Under this hypothesis, we have derived the deviations that appear in the Higgs couplings
to the SM fermions and gauge bosons compared to the SM predictions. In this section, we discuss
the EWSB in CHMs, and show that it is mainly due to the linear couplings of the SM top quark.

Before turnig on the interactions between the elementary sector and the strongly coupled sector,
the global symmetry G is only spontaneously broken, such that the potential of the NGBs is flat.
This is a consequence of the Goldstone shift symmetry. When we couple the two sectors however, the
global symmetry is explicitly broken and a potential is generated. This potential shall break the EW
symmetry and generate a mass for the Higgs.

In general, there are two distinct sources that contribute to the Higgs potential, namely the gauge
contribution and the top contribution

V (h) = V (h)top + V (h)gauge . (6.4.1)

Indeed, only a part of the global symmetry G corresponds to the SM group that is, the SM gauge
bosons couple only to few currents of SO(5). Then gauging this part explicitly breaks the global
symmetry. In the same way, the composite fermions belong to complete representations of SO(5) but
not the SM ones. Then linear couplings between composite and elementary fermions break the global
symmetry G.

The gauge contribution can be obtained by resuming the series of 1-loop diagrams of figure 6.3.
This leads to the following potential [251]

V (h)gauge =
9

2

∫
d4Q

(2π)4
ln

[
1 +

Π1(Q
2)

4Π0(Q2)
sin2(h/f)

]
. (6.4.2)

The gauge contribution alone is always positive such that it is not possible to destabilise the Higgs
potential in this way and not possible to trigger EWSB (see discussions in subsections 2.5.1 and 8.1.5).
Then one needs another source of explicit breaking in order to break the EW symmetry.

This other source of explicit breaking comes from the top quark. Indeed, the 1-loop top and
bottom quarks contribution is [251]

V (h) = −2Nc

∫
d4p

(2π)4

[
2 ln

(
1 +

Πq1
Πq0

cos
h

f

)
+ ln

(
1− Πu1

Πu0
cos

h

f

)

+ ln

(
1− [Mu

1 sin(h/f)]2

p2[Πq0 +Πq1 cos(h/f)][Π
u
0 − πu1 cos(h/f)]

)]
, (6.4.3)
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Figure 6.3: 1-loop contribution of the SM gauge fields to the Higgs potential. The grey blobs encode
the strong dynamics and correspond to the form factor Π1

+ + + · · ·

+ + · · ·

tL

tR

tL tR

tR
tL

Figure 6.4: 1-loop contribution of the SM top and bottom quarks to the Higgs potential. Upper row:
diagrams where the same elementary field either qL = (tL bL) or tR, circulates in the loop. These
diagrams are associated with the form factors Πq0,1 and Πu0,1 [see Eq. (6.3.19)]. Lower row: diagrams
where the form factors are Mu

1 and both tL and tR circulate in the loop.

The above potential comes from the resummation of the one-loop diagrams of figure 6.4. Assuming
that all of the form factors converge fast enough at large Euclidian momenta, the potential can be
approximate by expanding the logarithms at first order. One has

V (h) ≃ α cos
h

f
− β sin2

h

f
, (6.4.4)

where

α = 2Nc

∫
d4q

(2pi)4

(
Πu1
Πu0

− 2
Πq1
Πq0

)
,

β =

∫
d4q

(2pi)4

[
2Nc

(Mu
1 )

2

−q2(Πq0 +Πq1)(Π
u
0 −Πu1)

− 9

8

Π1

Π0

]
. (6.4.5)
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Then, even if the gauge contribution is positive, EWSB can be triggered by the top contribution if
α 6 2β. In that case, the minimum of the potential is at

ξ = sin2
〈h〉
f

= 1−
(
α

2β

)2

. (6.4.6)

Then, small values of ξ require a tuning between α and β. This is a general feature of CHMs, the
misalignment of the vacuum comes from the interplay of different terms in the potential. Thus, one
expects from the potential of Eq. (6.4.4) an order one value for the misalignment (ξ ∼ 1) or no
breaking at all (ξ = 0) while a small value for the misalignment is less likely and should arise only
through a fine-tuned cancellation among the different terms in the potential. Then, the value of ξ gives
a rough estimate of the tuning of the theory. As the Higgs coupling measurements and the EWPT
restrict ξ . 0.1, the tuning should be at least of the order of 10%. Note that in other composite Higgs
models, based on other cosets, the form of the Higgs potential may change compared to Eq. (6.4.4)
but, qualitatively, the features presented here remain valid.

Taking the second derivative of the potential, we extract the Higgs mass

m2
h = 2β

ξ

f2
≃ 2Nc

y2t
8π2

m2
∗ξ , (6.4.7)

where the second equality comes from the evaluation of β neglecting the gauge contributions and
identifying the top mass [see Eq. (6.3.20)]. From the above expression, one sees that the Higgs mass
is one-loop induced by the linear couplings of the top quarks [factor y2t /(8π

2)] that explicitly break
the global SO(5) symmetry. A further suppression compare to the scale of the composite resonances
m∗ comes from the factor ξ. Note that one also recovers that in the decoupling limit, the Higgs mass
remains at the EW scale as m2

h ∼ m2
∗v

2/f2 ∼ v2 in the limit where the strong sector is decoupled.

Finally, with a UV completion of CHMs, with only the linear couplings as free parameters 4, one
should be able to compute explicitly all of the form factors of the theory instead of making rough
estimates of them. In this way, one could compute for instance the parameters α and β to see if the
breaking of the EW symmetry is possible or not. This is briefly discussed in chapter 10.

6.5 Concluding remarks

In this chapter, we have presented an effective approach to CHMs. The latter is based only on the
global symmetry of the strong sector and more precisely on the pattern of spontaneous symmetry
breaking G/H. We have considered as an example the minimal composite Higgs model which is
based on the coset SO(5)/SO(4).

Let us summarise the main features of CHMs that we have learnt from this minimal model

• The composite Higgs emerges as a pNGB after the condensation of a new strong sector. This
condensation breaks at low energy the global symmetry G of the strong sector down its subgroup
H. Then, the cosetG/H should contain at least a Higgs doublet with the same quantum numbers
than in the SM.

• The SM gauge symmetry should be embedded into the global symmetry G as the Higgs is
charged under GSM . More precisely, in CHMs GSM is not broken by the condensation of the
strong dynamics such that it is embedded inside the unbroken global symmetry H (GSM ⊂ H).

• In order to avoid tree-level contribution to the T parameter, also the custodial symmetry Gcus =
SU(2)L × SU(2)R should be embedded into H. This leads to the minimal coset SO(5)/SO(5)
and to the next-to-minimal one SO(6)/SO(5).

4The top and the Higgs mass may fix some free parameters of the UV completion.
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• The Goldstone nature of the Higgs boson induces deviations with respect to the SM predictions.
The latter appear in the Higgs couplings to the SM gauge bosons and fermions. These deviations
are parametrised by the degree of misalignment ξ = v2/f2, that is, the angle between the
orientation of the subgroup H and the one of GSM inside the global symmetry G. There exist a
decoupling limit where ξ → 0 or equivalently f → ∞ with fixed v. In this limit, only the Higgs
remains at the EW scale while all of the other resonances of the strong sector are decoupled.
Also, in this regime all of the deviations vanish and the Higgs boson behaves like the SM one.
The contributions from the strong dynamics to the S and T parameters also vanish in the
decoupling limit. However, one recover the hierarchy problem as the misalignment ξ require a
large tuning to be small.

• In order to respect the EWPT and the Higgs couplings measurements, ξ = v2/f2 . 0.1, which
transposes to f & 1 TeV. Then, the scale f should be small in order to respect the experimental
constraints but not too small otherwise the tuning is important and the hierarchy problem is
not solved.

• Due to the Goldstone symmetry, the tree-level Higgs potential is flat. Gauging the SM explicitly
breaks the global symmetry G which induces a potential at one-loop for the Higgs. However, as
GSM ⊂ H, this breaking does not destabilise the Higgs potential.

• The Higgs potential is destabilised by linear couplings between the elementary fermions and the
composite resonances because these couplings also break explicitly G. The dominant contribu-
tions comes from the heavy SM fermions and, consequently, the top quark drives the EWSB.

• The two explicit breaking sources, the gauging of the SM group and the linear couplings, induce
a mixing between the elementary particles and the composite resonances such that the SM
fermions and gauge bosons contain a composite part. The top quark which is the heaviest SM
particle interacts the most with the strong sector and has then the most important degree of
compositeness. The top partners that mix with the top are expected to be the lightest baryonic
resonances [36].

As we have seen, the effective approach to composite Higgs models is relevant as it allows to derive
informations about the low energy regime of CHMs. However, only the lightest resonances can be
taken into account in the effective Lagrangian. The latter is also parametrised in term of form factors,
which encode the unknown strong dynamics. These form factors can not be computed, only the zero
momentum part is fixed. They are then a priori independent and can not be related to the fundamental
parameters of the theory (for instance the number of hypercolours). The limited informations about
the UV dynamics that is about the underlying gauge symmetry is then problematic. As another
example, one assumes the representation of G in which the composite resonances belong. This choice
leads to particular deviations in the Higgs couplings to the SM fermions. However, one is not sure
that such representation can be realised in practise in an UV complete model. For instance, the gauge
contraction could forbid some global representations.

Then, the necessity to go beyond the effective approach and to construct UV completions appears.
It is also theoretically appealing to realise the composite Higgs paradigm explicitly. In a UV com-
pletion, we should be able to compute explicitly, in term of more fundamental parameters, the form
factors that appear in the chiral Lagrangian. One can also compute the masses of the composite res-
onances as well as some strong quantities like f in term of the fundamental parameters of the theory.
In addition, the quantum numbers of all resonances are known such that there are no ambiguities for
the representations of the composite baryons. We will present the classification of the minimal UV
completions in the next chapter and study in details the most minimal one of in chapters 8, 9 and 10.
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Chapter 7

Introduction and classification of the
minimal ultra-violet completions of
composite Higgs models

In the precedent chapter we have introduced an effective approach to composite Higgs models. The
latter encodes only the low energy physics of CHMs and is based on the global symmetries of the
theory. Indeed, only the pNGBs bosons (including the Higgs bosons) and possibly few other light
resonances present in the spectrum appear in the chiral Lagrangian of CHMs. Thus, this is mostly a
phenomenological approach which is justified by the non-perturbative behaviour of the theory in the
IR. However, the informations about the underlying strong dynamics are limited in that case. For
instance, the parameters of the chiral Lagrangian like the form factors are a priori independent and
can not be predicted in term of fundamental parameters of the theory. Also, the strong sector can
have a more complex structure than in the effective approach. For instance, aside the EW sector from
which the Higgs emerges, a coloured sector containing the top partners is generally required. This
sector can also contain light coloured resonances which are not included in the effective approach.
Furthermore, in the effective approach, one embeds the elementary fermions in representations of the
global symmetry but it is a strong assumption as due to the underlying hypercolour gauge symmetry,
some representations could be forbidden. Finally, it is theoretically appealing to find an explicit
realisation of the effective approach otherwise if one demonstrates that it is not possible, the effective
model is no longer interesting. Then the necessity to go beyond the chiral approach and to construct
UV completions appears 1. The latter have a purely fermionic content in order to not transpose at
a higher scale the hierarchy problem. The new fermions are charged under an hypercolour gauge
symmetry GHC and when this gauge symmetry becomes strongly coupled in the IR, a fermionic
condensate forms and breaks the global symmetry leading to the emergence of a pNGB Higgs.

In this chapter, we present a classification of the minimal UV completions of CHMs. The material
is mainly based on the work done in Ref. [10]. The classification is at the group theoretical level and
then the conditions imposed to construct the UV completions are necessary for their viability but not
sufficient by themselves. The interest is to isolate the most ”minimal” UV completion that will be
studied in the next chapters and to highlight its main features.

We first present in section 7.1 the necessary requirements to obtain a viable UV completion. We
show how to realise the desire patter of spontaneous symmetry breaking with a purely femionic content
in the theory in section 7.2 while we present the result of the classification in section 7.3. Finally in
sections 7.4 and 7.5 we outline the quantum numbers of the composite resonances expected for each
cosets and we make a critical discussion of the problems not addressed during the classification. We
conclude by isolate the most minimal UV completion that will be studied in chapters 8, 9 and 10.

1Note that the UV completions of CHMs are not UV complete in the sense that they require additional physics at
a higher energy scale ΛUV ≫ Λ ≃ 4πf . For instance, the linear couplings between the elementary top quark and its
partners is generated at ΛUV from a four-fermion interaction (see section 6.3)
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7.1 Basic requirements

Let us first begin by the basic requirements that an UV completion should respect. As a first step,
we restrict to four-dimensional models 2 with a purely fermionic matter content. The latter point
insures that we do not introduce a new hierarchy problem at a higher scale. These new fermions are
charged under the hypercolour gauge symmetry GHC and a condensate of fermions forms when the
theory becomes strongly coupled at low energy. In this way, the global symmetry GF is spontaneously
broken down to its subgroup HF and the coset GF /HF contains a pNGB Higgs doublet.

Then, we look for a theory with ni fermions in a representation Ri of GHC where the index i stands
for the different hypercolour irreducible representations. For i = 1, · · · , p, the resulting anomaly-free
global symmetry is GF = SU(n1) × · · ·SU(np) × U(1)p−1. An important point is the presence of
U(1) symmetries whose only one among the p possibilities is anomalous. These symmetries are in
general (but not always) spontaneously broken after condensation possibly leading to additionally
light pNGBs. As a well know example, in QCD, the axial U(1)A symmetry is anomalous while the
U(1)V is not spontaneously broken.

The SM fermions are of course neutral under GHC but the hypercolour fermions should have
appropriate quantum numbers under the SM gauge group in order to give rise to a composite Higgs
and to top partners as bound states. In general the flavour group GF is a semi-simple (p > 1) Lie
group: one part corresponds to the EW sector from which the Higgs emerges as a pNGB and another
part corresponds to the coloured sector containing the top partners such that GF = GEWF × GcF . A
priori, several condensates may or not form in each sector changing the pattern of symmetry breaking
GF /HF . The important point is that GEWF must be broken in order for GEWF /HEW

F to contain the
pNGB Higgs. However, for the coloured sector there is no such restriction and GcF = Hc

F is a viable
possibility. In the next, we assume for simplicity that the coloured sector is spontaneously broken.

We also restrict to theories which are asymptotically free because in general a strongly coupled
theory in the IR is asymptotically free. The one-loop beta function is given by

β0 =
22

3
C(Ad)− 4

3

∑

i

C(Ri)ni , (7.1.1)

where C(Ad, Ri) are the Dynkin indices of the adjoint representation Ad and of the fermionic rep-
resentations Ri of GHC while ni are the number of fermions in the representation Ri. To pre-
serve asymptotic freedom, one needs β > 0. One can easily check that QCD with C(Ad) = 8,
C(R = F ) = C(R = F ) = 1/2 and nF = nF = 6 is asymptotically free in the UV.

To summarise, we look at four-dimensional theories containing only fermions which are charged
under a new gauge symmetry called hypercolour and these theories are asymptotically free in the UV.
The list of the basic requirements [10] needed for the UV completions of a composite Higgs model is
the following

• The hypercolour gauge symmetry GHC should be free from anomalies (see section 1.4). Note
that this is always the case for SO(N) or Sp(2N) but not for SU(N).

• The theory should be free from Witten (global) anomalies [86]. This is the case for GHC =
SU(N) with N > 2 and SO(N) but not for Sp(2N) [remember that SU(2) ∼= Sp(2)].

• The following symmetry breaking pattern GF → HF should be possible and HF ⊃ Gcus ⊃ GSM
where Gcus = SU(3)c × SU(2)L × SU(2)R ×U(1)x. In this way, the SM gauge symmetry is not
spontaneously broken by the condensation and the extra SU(2)R symmetry avoid large correc-
tions to the T parameter. In addition, the U(1)x symmetry allows to get realistic hypercharges
for the fermions of the coloured sector (and consequently for the top partners) as Y = T 3

R + x.

• The SM group GSM contained in HF should be free from global anomalies as it will be gauged
when the hypercolour fermions are coupled to the SM.

2UV completions in higher dimensional models have been considered in the literature (see Ref. [251] for an introduction
and other references).
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• The coset GF /HF should contain at least a Higgs doublet transforming as (1, 2, 2)0 of Gcus.
In general other pNGBs are expected and their masses should of course be larger than the
experimental limits.

• After condensation the theory should produce top partners as the latter have to couple linearly
with the top quark in order to generate a potential for the Higgs. Then the spectrum of
resonances should contain spin 1/2 bound states which are singlets of GHC and have the opposite
quantum numbers of SM top quark multiplets qL and tcR that is (3, 2)−1/6 and (3, 1)2/3 under
SU(3)c × SU(2)L × U(1)Y . For simplicity we restrict to trilinear bound states but in principle
states with a higher number of fundamental fermions are a possibility. Note that partners for
each standard model fermions is not a necessary requirement.

The above constraints are imposed to classify the possible UV competions of CHMs in section 7.3.

7.2 Construction of the patterns of global symmetry breaking

Before turning to the classification, let us briefly comment on the way that we can realise the desire
patterns of spontaneous symmetry breaking GF /HF with only a fermionic content in the theory. By
hypothesis, all of the global symmetries are spontaneously broken 3. In other words, the condensates
in the EW and in the coloured sectors are non zero and one should then be able to form gauge
invariant operators with an even number of fermions. The condensates are gauge invariant as we
assume that GHC remains unbroken. For simplicity, we assume that among the non-zero condensates
some of them are fermionic bilinears. This assumption is crucial in the NJL framework (see chapter
3) and is quite reasonable because it is the case in QCD which is the only known strongly coupled
theory in nature. However in principle, the two-fermions condensates can be zero and other order
parameters can be responsible of the spontaneous symmetry breaking. Following the hypothesis of
two-fermion condensates, one should be able to construct gauge invariant bilinears for the hypercolour
fermions. This is equivalent to say that the fundamental fermions acquire a dynamical mass after the
condensation. The fermionic content of the theory should be such that all fermions can be rendered
massive in a gauge invariant way.

There are three possibilities which depend on the nature of the gauge representation. If the
fermions are in a complex representation of GHC , one needs an equal number of fermions ψ and ψ′

respectively in the complex representation R and in its conjugate representation R. In that case, the
invariant mass term is

Lm = −M(ψψ′ + h.c.) , (7.2.1)

where the flavour and hypercolour contractions are underlying for the moment. In the above equation,
all fermions have a common massM but in principle,M can be a matrix in the flavour space. However
in that case the global vector symmetries (associated to HF ) are explicitly broken. We do not consider
this possibility here because it is too subtle without an observed spectrum. We refer to subsection
2.2.2 where this feature is realised in the QCD context. The two other possibilities correspond to a
fermion ψ in a real or a pseudo-real representation R of GHC . In those cases, one can form a gauge
invariant mass term of the following form

Lm = −1

2
M(ψψ + h.c.) , (7.2.2)

where the factor 1/2 is present to take into account the two identical fermions 4. The important point
is that in the complex case, one needs two fermions ψ and ψ′ while in the real or pseudo-real cases
one needs only one fermion ψ. As we will see in the next, this leads to two different kind of global
symmetries.

3Except possibly some U(1) symmetries which are not important for our present purpose.
4Note that a very particular case is when two fermions are in two different real or pseudo-real representations of GHC

with the same dimension. In that case, it may be possible to form a gauge invariant mass term as the one in Eq. (7.2.1).
For instance it is the case for GHC = SO(N) with ψ ∼ Spin and ψ′ ∼ Spin′ (see subsection 7.3.2).
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For the moment, we have not considered the flavour symmetry but in all of the above cases
(complex, real or pseudo-real), one can take several fermions transforming in the same gauge repre-
sentation such that ψa (ψ′a) are in fact flavour multiplets. Then taking N replicas of these fermions
(a = 1, · · · , N), one obtains a global symmetry GF = SU(N) in the real and pseudo-real cases while
in the complex case one obtains GF = SU(N) × SU(N)′. There are also additional U(1) symme-
tries which are unimportant for our present discussion. From Eqs. (7.2.1) and (7.2.2), we obtain the
following two-fermions condensates: 〈ψψ′〉 in the complex case and 〈ψψ〉 in the real and pseudo-real
cases.

As 〈ψψ′〉 or 〈ψψ〉 are different from zero by hypothesis, the pattern of spontaneous symmetry
breaking is entirely dictated by the symmetry properties of these condensate [258]. In the complex
case, it is easy to show that the mass term of Eq. (7.2.1) breaks GF = SU(N)× SU(N)′ down to its
diagonal subgroup HF = SU(N)D. Indeed, the fermions ψ and ψ′ transform in a an opposite way
under SU(N)D: ψ transforms in the fundamental representation of SU(N)D while ψ′ in its conjugate
representation such that ψψ′ is invariant under HF . The real and pseudo-real cases are simplest. In
the real case, R = R and the gauge contraction in Eq. (7.2.2) or equivalently in the condensate is
symmetric such that the flavour contraction has to be symmetric (the Lorentz contraction is sym-
metric). Then the condensate 〈ψψ〉 transforms in the symmetric representation of SU(N) and the
antisymmetric part of this global symmetry remains unbroken. The latter corresponds to SO(N) and
the resulting pattern of symmetry breaking is GF /HF = SU(N)/SO(N). In the pseudo-real case,
R∗ = R and the gauge contraction is antisymmetric. Consequently, the flavour contraction is also
antisymmetric and the symmetric part of SU(N) remains unbroken. This leads to the pattern of
symmetry breaking GF /HF = SU(N)/Sp(N). Note that in the latter case, one imperatively needs
an even number of hypercolour fermions as Sp(N) exists only for N even.

More complex schemes of global symmetry breaking GF /HF , like those relevant for the UV com-
pletions of composite Higgs models, are built from several sets of fermions and each set obey to one
of the above scenario (real, pseudo-real or complex case). In general we have for the global symmetry
GF = SU(n1) × · · ·SU(np) × U(1)p−1. As already mentioned, in the context of composite Higgs
models one needs two sectors: an EW sector where the pNGB Higgs belongs and a coloured sector
where the top partners emerges as baryonic bound states. The presence of two sectors restrict the
possibilities to p = 2 and p = 3. The p = 3 case corresponds in general to a coloured sector built
from two fermions in a complex representation of GHC while in the EW sector there are only real
or pseudo-real fermions. Note that the minimal effective CHM, discussed in chapter 6, is based on
the coset SO(5)/SO(4). As the SO(5) global symmetry is not an exchange symmetry of the SU(N)
type, it is not trivial to realise an SO(5) global symmetry from the above arguments. This point is
discussed in Ref. [259]. This problem is not present for the next-to minimal effective CHM which is
based on SO(6)/SO(5) ∼= SU(4)/Sp(4) and is one of the possibilities that we will encounter in section
7.3 and present in details in chapters 8, 9 and 10.

We now consider a more restrictive but interesting class of theories which are vector-like gauge
theories. So far, we have assumed that the spontaneous symmetry breaking occurs through the
formation of two-fermions condensates which breaks GF down to the desired subgroup HF . This
is an important hypothesis as in principle, a non-zero condensate breaking for instance GHC could
form. In vector-like theories, no assumptions on the form of the condensate are required. Indeed
if the theory condensates and the global symmetry is broken, the pattern of symmetry breaking
is completely determined. According to the Vafa-Witten theorem (see section 2.2.5), in vector-like
theories, GF = SU(Nf ) × SU(Nf )

′ and HF = SU(Nf )V ; GF = SU(2Nf ) and HF = SO(2Nf ) (real
case) or HF = Sp(2Nf ) (pseudo-real case). These patterns of symmetry breaking are the same than
the ones we have presented for any theory, not necessarily vector-like. However, in VL theories there is
no assumptions about the form of the condensate, one just needs to know if the spontaneous breaking
occurs or not. Then vector-like theories are more appealing from a theoretical point of view.

Finally, let us mention that in some cases one can explicitly demonstrate that the symmetry
breaking happens using the so-called ’t Hooft anomaly matching (see subsection 2.3 for the case of
QCD). This is discussed in subsection 9.1.1 in the context of the minimal UV complete CHM. For
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VL theories one can demonstrate that the spontaneous symmetry breaking occurs with the ’t Hooft
anomaly matching and we know the unbroken subgroup HF . In non-VL theories we can use the same
procedure and proof that the breaking occurs. However in that case we do not know what is the
unbroken global symmetry.

7.3 Results of the classification

We now present the results of the classification with the requirements of section 7.1. We restrict
to the cases where p = 2 and 3 [10] where the global non-anomalous symmetry is GF = SU(n1) ×
· · ·SU(np)×U(1)p−1. Composite models with p > 3 are less minimal and bring no additional features.

Fixing the hypercolour gauge group GHC and the set of irreducible representations Ri satisfying
the constraints, there is generically several allowed values for the integers ni. However, we restrict to
the smallest possibility in each cases in order to remain as minimal as possible. Larger values of ni
leads to non-minimal models with a larger number of fermions and bigger cosets.

Note that in the p = 1 case where GF = SU(n), there is two cases that respect the requirements
of section 7.1. However, these models are not very promising because of the difficulties with proton
stability [10]. Indeed, among the large number of pNGBs, some of them mediate proton decay as
the multiplets of SU(n) contained in general mesonic resonances charged both under SU(2)L and
SU(3)c. Then we will not consider these theories as minimal UV completions and turn directly to
the p = 2 and p = 3 cases. In the sequel, we follow the procedure of Ref. [10] to derive the allowed
UV completions.

7.3.1 Case of two fermions (p=2)

Let us consider the case of two fermions in different irreducible representations of GHC . In that case,
for the EW sector we have m fermions ψ in the representation R1 of GHC and for the coloured sector
we have n fermions X in the representation R2. The corresponding non-anomalous global symmetry is
GF = SU(m)×SU(n)×U(1). First, we want that the unbroken subgroup of SU(m) that is SO(m) or
Sp(m) contains GEWcus = SU(2)L×SU(2)R which is the part of the custodial group in the EW sector.
In addition, we want that the coset SU(m)/SO(m) or SU(m)/Sp(m) contains the Higgs doublet in
the appropriate representation of Gcus. This two requirements lead to m ≥ 4 if R1 is pseudo-real
and m ≥ 5 if R1 is real. Then, for the EW sectors the two minimal cosets are SU(4)/Sp(4) and
SU(5)/SO(5). The first possibility corresponds in fact to the next-to minimal effective composite
Higgs model as SU(4)/Sp(4) ∼= SO(6)/SO(5) [256].

The other SU(n) group is associated with the coloured sector and should contain the other part
of the custodial symmetry that is Gccus = SU(3)c × U(1)x in an anomaly free way (as SU(3)c will
be gauged). This requires n ≥ 6 and leads to the following two minimal cosets: SU(6)/SO(6) and
SU(6)/Sp(6). Note that, the coloured sector sector gives rise to additional pNGB which may even-
tually be light. However, they have to respect the present allowed bounds [260]. It can be the case
by introducing a mass explicitly breaking SU(6) but invariant under SU(3)c × U(1)x. Moreover,
in some cases QCD gauges contributions are enough to lifted the pNGBs masses up to the present
allowed bounds. These two possibilities are discussed in section 9.2.4 in the context of the minimal
UV completion.

Now we have the minimal patterns of symmetry breaking for the p = 2 case, one can determine
the allowed gauge groups and representations satisfying the requirement of section 7.1. We can
immediately eliminate the possibility GHC = SU(N). Indeed, in that case the one-loop beta function
of Eq. (7.1.1) is

β0 =
22

3
N − 4

3
mC(R1)− 8C(R2) , m = 4, 5 , (7.3.1)

where we have used C(Ad) = N for SU(N), m = 4, 5 depending if R1 is real or pseudo-real and
we have replaced n = 6 for R2. As R1 is real or pseudo-real, it does not contribute to the gauge
anomalies and thus R2 must also be real or pseudo-real since its anomaly contribution can not be
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compensate against anything. In all cases where the representations are not complex, the asymptotic
freedom is lost and the possibility GHC = SU(N) is excluded. In the same way, exceptional groups
are eliminated [10]. The Dynkin indices, relevant to check the loss of asymptotic freedom, of the
lowest dimensional representations of SU(N), SO(N) and Sp(2N) are reported in table 7.1.

GHC R dim(R) C(R) ≡ ℓ(R)/2 C/R/PR

Sp(2N)

≡ F (2N) 1/2 PR

≡ A2 (2N + 1)(N − 1) (N − 1) R

≡ S2 = Ad N(2N + 1) (N + 1) R

SO(N)

≡ F N 1/2 R

Spin, Spin′ 2⌊(N+1)/2⌋/2 R/PR/C

≡ A2 = Ad
N(N−1)

2
N−2
2 R

≡ S2
(N−1)(N+2)

2
N+2
2 R

SU(N)

≡ F N 1/2 C

Ad N2 − 1 N R

≡ A2
N(N−1)

2
N−2
2 C

≡ S2
N(N+1)

2
N+2
2 C

Table 7.1: The dimensions d(R), Dynkin index C(R) and nature (real, pseudo-real or complex) of
the lowest dimensional representations R of the Sp(2N), SO(N) and SU(N) groups in which the
fermions ψ and X(X̃) transform. The coefficient C(R) is defined in subsection A and for the case
of SU(N) it respects C(R) = C(R). The Casimir coefficient C2(R) can easily be extracted from the
relation d(R)C2(R) = d(Ad)C(R). Note that the spinorial representations of SO(N) can be real,
pseudo-real or complex depending on N (see table 7.2). Note also that depending on the value of
N , some representations are not allowed. For e.g. this is the case in SU(2) ∼= Sp(2) for which A2 is
not present. Finally, the symbol ⌊x⌋ denotes the integer part of x and the Dynkin index of the Spin
representation of SO(N) is equal to 1/2 for N < 7 and to C(Spin) = 2⌊(N+1)/2⌋/25 otherwise.

We now consider the possibility GHC = Sp(2N) with N ≥ 2 as SU(2) ∼= Sp(2). In that case, we
have C(F) < C(A2) < C(S2 = Ad) < · · · as it can be seen from table 7.1. The only exception is for
Sp(6) where C(A3) = 5/2 is between C(A2) = 2 and C(Ad) = 4. Note that the two representations
A2 and Ad are real for Sp(2N) while F and A3 are pseudo-real. We have restricted to lowest
dimensional representations as they may respect the constraint of asymptotic freedom and in addition,
they lead to minimal models. We will start by considering the representation with the largest Dynkin
indices as the asymptotic freedom requirement is more difficult to respect in these cases. From
Eq. (7.1.1) and the results above, the beta function is given by

β0 =
22

3
(N + 1)− 4

3
mC(R1)− 8C(R2) , m = 4, 5 . (7.3.2)

The only case where A3 is allowed is for Sp(6) with four R1 = A3 and six R2 = F. However, in that
case R1 and R2 are both pseudo-real and no baryons (odd number of fermions) are allowed. Now we
consider the adjoint representation Ad. If R2 = Ad, asymptotic freedom is lost. Then the only case
where asymptotic freedom is preserved is for five R1 = Ad and six R2 = F with 2N ≥ 12 5. Note that

5Four fermions in the representation R1 = Ad lead to a coset SU(4)/SO(4) which is not relevant for a composite
Higgs model.
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it is possible to form top partners with the right quantum numbers in that case which appears as a
viable UV complete CHM. It is listed in table 7.3 with the other models respecting the constraints of
section 7.1. Moreover, due to the pseudo-reality of R2, the baryons are constructed from an even (odd)
number of fermions X (ψ). Then the U(1)x charge is fixed to −1/3 for the coloured fermions in order
to have top partners with the correct hypercharges (see section 7.4.3). Similarly, the representation
R1 = Ad can be replaced by R1 = A2 which have a smallest Dynkin index and is still real. One can
see from Eq. (7.3.2) that there is no constraint from asymptotic freedom in this case [just N ≥ 2 to
forbid the case Sp(2) ∼= SU(2)]. The last possible case with Sp(2N) is four R1 = F and six R2 = A2.
The asymptotic freedom leads to 2N ≤ 36 and as R1 is pseudo-real, the baryons are made of an even
(odd) number of fermions ψ (X) leading to a U(1)x charge for the coloured fermions equal to 2/3.

The last possibility for the p = 2 case corresponds to GHC = SO(N) with N ≥ 7 as the groups
SO(N < 7) are isomorphic to other SU or Sp groups. For SO(N), the adjoint representation
corresponds to the two-index antisymmetric representation ie Ad = A2 which is real. Then the
one-loop beta function is

β0 =
11

3
(N − 2)− 4

3
mC(R1)− 8C(R2) , m = 4, 5 . (7.3.3)

Following the same procedure than for Sp(2N) we find a viable case with five R1 = S2 and six
R2 = F where asymptotic freedom requires N ≥ 55. In the same way, five R1 = Ad and six R2 = F

with N ≥ 15 is possible. Note that, in the first case, the number of hypercolours is too large to be
interesting for phenomenology.

Compare to Sp(2N), there are also spinorial irreducible representations in SO(N). The represen-
tations R1 and R2 can not be both spinorial otherwise, one could not construct baryons (one can not
contract the three spinor indices) and one of the two must be a vector representation. Then we obtain
two cases where R1 = F and R2 = Spin or R1 = Spin and R2 = F 6. In both cases, asymptotic
freedom leads to the constraint N ≤ 14 (remember that N > 7). Furthermore, N = 10 and N = 14
are excluded as in this case the Spin representation is complex. The top partners requirements, leads
to further restrictions and exclude the cases N = 8, 12 [10]. The U(1)x charge of the fermions X
depends on the fermion which transforms in the Spin representation. Indeed, to contract the spino-
rial indices one needs two fermions in the Spin representation for each trilinear baryons. Then when
R1 = F and R2 = Spin top partners are of the type ψXX and the U(1)x charges of the fermions X
is −1/3. On the contrary, for R1 = Spin and R2 = F the top partners are of the type ψψX and then
the U(1)x charge is rather 2/3. Note that when the Spin representation is real, the top partners can
a priori be of both type (ψψX or ψXX) and one can choose the charge to be equal to −1/3 or 2/3.
The reality of the Spin representation of any SO(N) group can be extracted from table 7.2.

SO(N) R/PR/C SO(N) R/PR/C

SO(2 + 8k) C SO(7 + 8k) R

SO(3 + 8k) PR SO(8 + 8k) R

SO(4 + 8k) PR SO(9 + 8k) R

SO(5 + 8k) PR SO(10 + 8k) C

SO(6 + 8k) C

Table 7.2: Nature of the Spin representation of SO(N) for arbitrary N (k = 0, 1, · · · ). The abbrevi-
ations R, PR and C respectively refer to real, pseudo-real and complex representations.

6We do not specify the chirality of the Spin representation as one can choose one or the other.
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7.3.2 Case of three fermions (p=3)

Let us now consider the case of three irreducible representations of GHC . For the EW sector, we still
stick to the minimal cases of subsection 7.3.1 where the coset is SU(4)/Sp(4) or SU(5)/SO(5). The
difference compare to the p = 2 case appears then in the coloured sector where the SU(3)c symmetry
is not embedded inside a subgroup of SU(6) but rather in the diagonal part of the semi-simple group
SU(3)× SU(3)′. Then the global symmetry is GF = SU(m)× SU(3)× SU(3)′ ×U(1)×U(1)′ where
the SU(3) and SU(3)′ global symmetries are generated respectively by the coloured fermions X and
X̃ of table 7.8 and m = 4 or 5.

To allow a symmetric embedding of SU(3)c and then avoid SU(3)c anomalies, a further restriction
is that d(R2) = d(R3) and C(R2) = C(R3) with R2 6= R3. This restriction ruled out all symplectic and
exceptional groups. Note that if R2 = R3, we come back to the case with an SU(6) global symmetry
in the coloured sector. In order to reproduce top partners with right quantum numbers, the U(1)x
charge is fixed and is equal to −1/3 for fermion X and to +1/3 for the fermions X̃. This is because
top partners are always made of two coloured fermions (see subsection 7.4.3).

We first consider the case of GHC = SU(N). Due to the symmetric embedding, the one-loop beta

GHC R1 R2 R3 Restrictions

(fermions ψ) (fermions X) (fermions X̃)

SU(4)× SU(6)/Sp(4)× SO(6)

Sp(2N) 4× F 6×A2 2 ≤ N ≤ 18

SO(N) 4× Spin 6× F N = 11, 13

SU(5)× SU(3)× SU(3)/SO(5)× SU(3)

SU(N) 5×A2 3× F 3× F N = 4

SO(N) 5× F 3× Spin 3× Spin′ N = 8, 10, 12, 14

SU(5)× SU(6)/SO(5)× Sp(6)

Sp(2N) 5×A2 6× F N ≥ 2

Sp(2N) 5×Ad 6× F N ≥ 6

SO(N) 5× F 6× Spin N = 11, 13

SU(5)× SU(6)/SO(5)× SO(6)

SO(N) 5× S2 6× F N ≥ 55

SO(N) 5×Ad 6× F N ≥ 15

SO(N) 5× Spin 6× F N = 7, 9

SO(N) 5× F 6× Spin N = 7, 9

Table 7.3: The minimal UV completions of composite Higgs model [10] based on the hypercolour
gauge groups GHC = SU(N), SO(N) or Sp(2N). The UV completions are classify according to
the pattern of global symmetries breaking which determines the number of pNGBs in the EW and
coloured sector. The restriction on the number of hypercolours mainly comes from the requirement
of asymptotic freedom but also from the presence of baryons and in particular of top partners in the
spectrum.
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function is the same than in Eq. (7.3.1). Then, imposing asymptotic freedom leads to the case where
R1 = Ad, R2 = F and R3 = F which corresponds to the EW coset SU(5)/SO(5) as the adjoint
representation is real. There is also three particular cases with a fixed number of hypercolours: i)
GHC = SU(4) with R1 = A2, R2 = F and R3 = F [EW coset SU(5)/SO(5)], ii) GHC = SU(6) with
R1 = A3, R2 = F andR3 = F [EW coset SU(4)/Sp(4)] and iii)GHC = SU(6) withR1 = A3, R2 = A2

and R3 = A2 [EW coset SU(4)/Sp(4)]. However, among these four cases, only the first of the three
particular ones is viable after imposing the requirements coming from the top partners. Indeed, for
the general SU(N) case with R1 = Ad, R2 = F and R3 = F, there is top partners (no SU(3)c triplets)
as the gauge invariant trilinears containing EW and coloured fermions are (ψXX̃) = ψijXkX̃

lδki δ
j
l ,

(ψ†XX†) and (ψ†X̃X̃†). For SU(6) with R1 = A3, R2 = F and R3 = F, all of the trilinear baryons
contains an odd number of hypercolour indices and then, can not be contracted with the invariant
tensors δji , ǫijklmn and ǫijklmn. Finally, for SU(6) with R1 = A3, R2 = A2 and R3 = A2, the only
allowed trilinear baryons are (XXX) and (X̃X̃X̃) which are SU(2)L singlets and can not serve as
top partners.

Let us finally consider the case of SO(N). As we need two different representations R2 and R3

realising a symmetric embedding of SU(3)c inside GSM one can take R2 = Spin and R3 = Spin′.
The Spin′ representation has opposite chirality than the Spin and is consequently different. Note
that, the number of hypercolour N should be even [10] and with R1 = F, asymptotic freedom allows
N = 8, 10, 12, 14. Top partners can be constructed for all of these cases.

7.4 Quantum numbers of the composite resonances

The above classification (see table 7.3) has been done according to the number of irreducible repre-
sentations of the hypercolour gauge group GHC . However, from a more phenomenological point of
view, it is more relevant to consider the pattern of global symmetry breaking GF /HF as a distinction
between the different models. Indeed, a particular coset fixes the quantum numbers of the resonances
under the SM gauge group as well as their production from the SM gauge interactions. This infor-
mation being crucial for the direct searches at collider [260], we list here the quantum numbers under
the SM gauge group SU(3)c × SU(2)L ×U(1)Y of the different resonances associated to the different
cosets. In other words, we embed the SM gauge group inside the unbroken global symmetries and
we decompose the representations of HF into its subgroup GSM . The decomposition of the repre-
sentations can be found e.g. in Ref. [261] and a good review on Weyl fermions in Ref. [262]. This
decomposition may seem tedious but we think that it can be useful to differentiate the different UV
completions.

We first begin in subsection 7.4.1 by the mesons of the EW sector where the coset is SU(4)/Sp(4)
or SU(5)/SO(5). Then we present the mesons of the coloured sector in subsection 7.4.2 with corre-
sponding cosets SU(6)/SO(6), SU(6)/Sp(6) or SU(3) × SU(3)′/SU(3)D

7 . Finally, we present the
quantum numbers of the (trilinar) baryonic resonances in subsection 7.4.3.

7.4.1 Electroweak sectors

Let us start with the EW sector associated with the fundamental fermions ψ. As we have seen, there
is two minimal cosets: GEWF /HEW

F = SU(4)/Sp(4) and SU(5)/SO(5), which contain a Higgs doublet
and also respect the custodial symmetry. The fundamental fermion ψai is a left-handed fermion in
the representation R1 of the hypercolour gauge symmetry [index i = 1, · · · , dim(R1)] and in the
fundamental representation of the favour symmetry, that is, SU(4) or SU(5) (index a = 1, · · · , 4 or
5). The SU(2)L × SU(2)R part of Gcus is embedded inside the unbroken global symmetry as well as
the SU(2)L × U(1)Y part of GSM . Then, the fundamental fermions as well as the resonances of the
EW sector decompose into these two subgroups.

7Note that it is not possible to form a gauge bilinear invariant with one EW fermion and one coloured fermion as it
can be seen from table 7.3.
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• SU(4)/Sp(4) coset

In the case where GEWF = SU(4), the flavour symmetry SU(4) is spontaneously broken to HEW
F =

Sp(4) as the fundamental fermions ψ transform in a pseudo-real representation of the hypercolour
gauge group GHC . The latter decompose as [261]

ψ ∼ 4SU(4) = 4Sp(4) = (2, 1) + (1, 2) = 20 + 1±1/2 , (7.4.1)

respectively under, SU(4), Sp(4), SU(2)L × SU(2)R ⊂ Gcus and SU(2)L ×U(1)Y ⊂ GSM . Note that
ψ is obviously not charged under Gccus = SU(3)c×U(1)x. Then as Y = T 3

R+x, the hypercharge of the
EW fermions only originates from SU(2)R while the hypercharge of the coloured fermions originates
from U(1)x.

Let us consider the product of two (anti-)fundamental representations of SU(4)

4× 4 = 6a + 10s , 4× 4 = 1 + 15Ad , (7.4.2)

where the subscripts a, s and Ad refer respectively to a symmetric, antisymetric contractions and to the
adjoint representation. We are interested by the symmetry properties of the fermionic bilinears as the
latter have the same quantum numbers than the physical resonances. The hypercolour contraction of
the scalar bilinear (ψψ) being antisymmetric due to the pseudo-reality of the gauge representation, the
flavour contraction has to be antisymmetric as well. Note that, the Lorentz contraction is symmetric
as ψai ψ

b
j = ψbjψ

a
i . As a consequence (ψψ) transforms in the 6a of SU(4) and not in the 10s. This

sextet of SU(4) decomposes into a singlet and a quintuplet under Sp(4). For the vector bilinear
(ψσµψ†), there is no such properties of symmetry or antisymmetry as ψ is different from ψ†. Then
(ψσµψ†) ∼ (1 + 15)SU(4) where the adjoint representation decomposes under Sp(4) as a 5 and a 10.
Finally, for the tensor bilinear (ψσµνψ), the hypercolour contraction is antisymmetric like for the
scalar bilinear but the Lorentz contraction is antisymmetric leading to (ψσµνψ) ∼ 10s of SU(4). To
summarise, we have

(ψψ) ∼ 6SU(4) = (1 + 5)Sp(4) , (ψσµνψ) ∼ 10SU(4) = 10Sp(4) , (7.4.3)

(ψσµψ†) ∼ (1 + 15)SU(4) = (1 + 5 + 10)Sp(4) . (7.4.4)

The scalar bilinear leads to spin zero resonances which are scalar or pseudo-scalar with respect to the
coset space. In the same way, the vector and tensor bilinears lead to spin one resonances which are
vector or axial-vector. More precisely, the scalar and pseudo-scalar resonances are associated to the
broken symmetry and leave in the coset SU(4)/Sp(4). Then they transform as a (1 + 5) of Sp(4).
For the spin one resonances, the vectors are associated to the unbroken symmetry Sp(4) and then
transform as a 10 while the axial-vectors are associated to the broken symmetry and transform as a
(1+5). The decompositions of the representations in Eqs. (7.4.3) and (7.4.4) under the custodial and
SM subgroups of Sp(4) proceed as follow

5Sp(4) = (2, 2) + (1, 1) = 2±1/2 + 10 , (7.4.5)

10Sp(4) = (3, 1) + (2, 2) + (1, 3) = 30 + 2±1/2 + 1±1 + 10 . (7.4.6)

Of course, the Sp(4) singlets decompose into singlets with zero hypercharge. To determine the hy-
percharge of the resonances, we use Y = T 3

R+ x = T 3
R where the last equality is only valid in the EW

sector. All of these results are summarised in table 7.4.

• SU(5)/SO(5) coset

We now follow exactly the same procedure for the second EW coset GEWF /HEW
F = SU(5)/SO(5)where

SU(5) is spontaneously broken to SO(5) as the fundamental fermion ψ transforms in a real represen-
tation of the hypercolour gauge group GHC . The latter decompose as follow

ψ ∼ 5SU(5) = 5SO(5) = (2, 2) + (1, 1) = 2±1/2 + 10 , (7.4.7)
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SU(4) Sp(4) SU(2)L × SU(2)R SU(2)L × U(1)Y

ψa 4 4 (2, 1) + (1, 2) 20 + 1±1/2

(ψaψb) 6 1 + 5 (2, 2) + 2(1, 1) 2±1/2 + 10 + 10

(ψaσµψ†
b) 1 + 15 1 + 5 (2, 2) + 2(1, 1) 2±1/2 + 10 + 10

+10 (3, 1) + (2, 2) + (1, 3) 30 + 2±1/2 + 1±1 + 10

(ψaσµνψb) 10 10 (3, 1) + (2, 2) + (1, 3) 30 + 2±1/2 + 1±1 + 10

Table 7.4: Quantum numbers of the EW resonances when the coset is GEWH /HEW
F = SU(4)/Sp(4).

The representations are decomposed according to the subgroups HEW
F = Sp(4), GEWcus = SU(2)L ×

SU(2)R and SU(2)L × U(1)Y .

respectively under, SU(5), SO(5), SU(2)L × SU(2)R ⊂ Gcus and SU(2)L × U(1)Y ⊂ GSM . The
product of two (anti-)fundamental representations of SU(5) is the following

5× 5 = 10a + 15s , 5× 5 = 1 + 24Ad . (7.4.8)

The hypercolour contraction of the scalar bilinear (ψψ) being symmetric as the gauge representation is
real, the flavour contraction have to be symmetric as well. As a consequence (ψψ) transform in the 15s
of SU(5). For the vector bilinear (ψσµψ†) there is no symmetry properties and (ψσµψ†) ∼ (1+24)SU(5)

of SU(5). Finally, the tensor bilinear (ψσµνψ) is symmetric in the hypercolour space and then the
flavour contraction has to be antisymmetric leading to (ψσµνψ) ∼ 10a of SU(5). To summarise, we
have

(ψψ) ∼ 15SU(5) = (1 + 14)SO(5) , (ψσµνψ) ∼ 10SU(5) = 10SO(5) , (7.4.9)

(ψσµψ†) ∼ (1 + 24)SU(5) = (1 + 10 + 14)SO(5) . (7.4.10)

The decompositions of the resonances in Eqs. (7.4.9) and (7.4.10) under the custodial and SM sub-
groups of SO(5) is the following

14SO(5) = (3, 3) + (2, 2) + (1, 1) = 3±1 + 30 + 2±1/2 + 10 , (7.4.11)

10SO(5) = (3, 1) + (2, 2) + (1, 3) = 30 + 2±1/2 + 1±1 + 10 . (7.4.12)

An interesting point is that the 10 of Sp(4) is the same than the 10 of SO(5). Consequently, we
expect the same vectors multiplets in the two cases. If uncoloured vectors resonances with quantum
numbers other than those of Eq. (7.4.12) are discovered at collider, it will greatly compromise all the
models listed in table 7.3. The results on the quantum numbers of the mesonic resonances of the
SU(5)/SO(5) sector are summarised in table 7.5.

7.4.2 Coloured sectors

We now turn to the coloured sector. The latter contains the fundamental fermions X in the case of
GcF = SU(6) and the fermions X and X̃ in the case of GcF = SU(3) × SU(3)′. The three minimal
cosets are: GcF /H

c
F = SU(6)/SO(6), SU(6)/Sp(6) and SU(3)× SU(3)′/SU(3)D. In the SU(6) case,

the fundamental fermion Xf
i is a left-handed fermion in the representation R2 of the hypercolour

gauge symmetry [index i = 1, · · · , dim(R2)] and in the fundamental representation of the favour
symmetry that is SU(6) (index f = 1, · · · , 6). In the case of SU(3) × SU(3)′, we have two left-

handed fermions Xf
i and X̃f ′

i′ respectively in the representations R2 and R3 of the hypercolour gauge
symmetry and in the fundamental representations of SU(3) and SU(3)′. Note that the gauge indices
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SU(5) SO(5) SU(2)L × SU(2)R SU(2)L × U(1)Y

ψa 5 5 (2, 2) + (1, 1) 2±1/2 + 10

(ψaψb) 15 1 + 14 (3, 3) + (2, 2) + 2(1, 1) 3±1 + 30 + 2±1/2 + 10 + 10

(ψaσµψ†
b) 1 + 24 1 + 14 (3, 3) + (2, 2) + 2(1, 1) 3±1 + 30 + 2±1/2 + 10 + 10

+10 (3, 1) + (2, 2) + (1, 3) 30 + 2±1/2 + 1±1 + 10

(ψaσµνψb) 10 10 (3, 1) + (2, 2) + (1, 3) 30 + 2±1/2 + 1±1 + 10

Table 7.5: Quantum numbers of the EW resonances when the coset is GEWH /HEW
F = SU(5)/SO(5).

The representations are decomposed according to the subgroups HEW
F = SO(5), GEWcus = SU(2)L ×

SU(2)R and SU(2)L × U(1)Y .

i and i′ are different as they belong respectively to two different representations R2 and R3. However,
the dimension of the two representations are the same and i, i′ = 1, · · · , dim(R2) (see table 7.3). In
the same way, the flavour indices f, f ′ = 1, · · · , 8 as they both belong to an SU(3) group. As we
have seen, the SU(3)c × U(1)x part of Gcus is embedded inside the unbroken global symmetry 8 as
well as the SU(3)c × U(1)Y part of GSM . Then, the fundamental fermions as well as the resonances
of the coloured sector decompose into these two subgroups. The coloured fermions are not charged
under GEWcus = SU(2)L × SU(2)R which is contained in the EW sector. Then the hypercharge of the
coloured fermions only originates from U(1)x and is given by Y = x.

Now we have seen how the decomposition works for cosets of the type SU(N)/SO(N) and
SU(N)/Sp(N), we briefly present in subsections 7.4.2 and 7.4.2 the result of the decomposition
for the first two cosets with global symmetry SU(6). Then we present in more details the last coset
in subsection 7.4.2.

• SU(6)/SO(6) coset

We begin the coloured sector by the coset GcF /H
c
F = SU(6)/SO(6). The fundamental fermion X

decomposes as follow

X ∼ 6SU(6) = 6SO(6) = 3x + 3−x =

(
χx
χ̃−x

)
, (7.4.13)

respectively under, SU(6), SO(6) and SU(3)c × U(1)Y ⊂ GSM . Note that we do not specify the
transformation under U(1)x as for the coloured fermions we have x = Y . Note also that the hyper-
charge is not fixed as the top partners can contain one or two coloured fermion (see subsection 7.4.3).
The product of two (anti-)fundamental representations of SU(6) is given by

6× 6 = 15a + 21s , 6× 6 = 1 + 35Ad . (7.4.14)

The hypercolour contraction of the scalar bilinear (XX) being symmetric as the gauge representation
is real, the flavour contraction have to be symmetric as well. As a consequence (XX) transform in
the 21s of SU(6). The vector bilinear (XσµX†) transforms as (1+35)SU(6) of SU(6) while the tensor
bilinear (XσµνX) is symmetric in the hypercolour space and then the flavour contraction has to be
antisymmetric leading to (XσµνX) ∼ 15a of SU(6). To summarise, we have

(XX) ∼ 21SU(6) = (1 + 20′)SO(6) , (XσµνX) ∼ 15SU(6) = 15SO(6) , (7.4.15)

(XσµX†) ∼ (1 + 35)SU(6) = (1 + 20′ + 15)SO(6) . (7.4.16)

8More precisely in the SU(6) cases, U(1)x is embedded inside the SO(6) or Sp(6) while in the SU(3)×SU(3)′×U(1)D
case it corresponds to the diagonal U(1)D symmetry (the equivalent of U(1)V in QCD).
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Note that in SU(6) there is three inequivalent representations of dimension 20: the representations
20, 20′ and 20′′. then we should be careful for the decomposition into the SM group that the 21 of
SU(6) decomposes into a singlet and a 20′. The decomposition of the resonances in Eqs. (7.4.15) and
(7.4.16) under the SM subgroups of SO(6) is the following

15SO(6) = 80 + 3−2x + 32x + 10 , 20′SO(6) = 80 + 62x + 6−2x . (7.4.17)

Note that the U(1)Y charges are easily determined from Eq. (7.4.13) as the fermion X decomposes
into a triplet χ and an anti-triplet χ̃ with respective hypercharge x and −x. Then the coloured octets
and singlets can only come from the products χχ̃, χχ†, · · · which have zero hypercharge. In the same
way, sextets and anti-triplets come from the products χχ, χ̃χ̃ and have then an hypercharge equal to
2x. The results on the quantum numbers of the mesonic resonances of the SU(6)/SO(6) sector are
summarised in table 7.6.

SU(6) SO(6) SU(3)c × U(1)Y

Xf 6 6 3x + 3−x

(XfXg) 21 1 + 20′ 80 + 62x + 6−2x + 10

(XfσµX†
g) 1 + 35 1 + 20′ 80 + 62x + 6−2x + 10

+15 80 + 3−2x + 32x + 10

(XfσµνXg) 15 15 80 + 3−2x + 32x + 10

Table 7.6: Quantum numbers of the coloured resonances when the coset is GcH/H
c
F = SU(6)/SO(6).

The representations are decomposed according to the subgroups Hc
F = SO(6)and SU(3)c × U(1)Y .

Note that the hypercharge is not fixed and can be equal to x = 2/3 and x = −1/3.

• SU(6)/Sp(6) coset

We now consider the coset GcF /H
c
F = SU(6)/SO(6). In that case, the fundamental fermion X

decomposes as follow

X ∼ 6SU(6) = 6Sp(6) = 3−1/3 + 31/3 =

(
χ−1/3

χ̃1/3

)
, (7.4.18)

respectively under, SU(6), Sp(6) and SU(3)c × U(1)Y ⊂ GSM . The decomposition under the SM
group is the same than for the SO(6) case however, the hypercharge is now equal to −1/3 as the top
partners contains two coloured fermions (see subsection 7.4.3).

The hypercolour contraction of the scalar bilinear (XX) being antisymmetric as the gauge repre-
sentation is pseudo-real, the flavour contraction have to be antisymmetric as well. As a consequence
(XX) transform in the 15a of SU(6). The vector bilinear (XσµX†) still transforms as (1 + 35)SU(6)

of SU(6) while the tensor bilinear (XσµνX) is antisymmetric in the hypercolour space and then the
flavour contraction has to be symmetric leading to (XσµνX) ∼ 21s of SU(6). To summarise, we have

(XX) ∼ 15SU(6) = (1 + 14)Sp(6) , (XσµνX) ∼ 21SU(6) = 21Sp(6) , (7.4.19)

(XσµX†) ∼ (1 + 35)SU(6) = (1 + 14 + 21)Sp(6) . (7.4.20)

The decompositions of the resonances in Eqs. (7.4.19) and (7.4.20) under the SM subgroups of Sp(6)
is the following

14Sp(6) = 80 + 32/3 + 3−2/3 , 21Sp(6) = 80 + 6−2/3 + 62/3 + 10 . (7.4.21)

The results on the quantum numbers of the mesonic resonances of the SU(6)/Sp(6) sector are sum-
marised in table 7.7.
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SU(6) Sp(6) SU(3)c × U(1)Y

Xf 6 6 3x + 3−x

(XfXg) 15 1 + 14 80 + 32/3 + 3−2/3 + 10

(XfσµX†
g) 1 + 35 1 + 14 80 + 32/3 + 3−2/3 + 10

+15 80 + 6−2/3 + 62/3 + 10

(XfσµνXg) 21 21 80 + 6−2/3 + 62/3 + 10

Table 7.7: Quantum numbers of the coloured resonances when the coset is GcH/H
c
F = SU(6)/Sp(6).

The representations are decomposed according to the subgroups Hc
F = Sp(6)and SU(3)c × U(1)Y .

• SU(3)× SU(3)′/SU(3)V coset

Finally, let us consider the last coset of the coloured sector that is GcF /H
c
F = SU(3)×SU(3)′/SU(3)D.

In that case, the fundamental fermion X and X̃ decomposes as follow

X ∼ (3, 1) = 3−1/3 , X̃ ∼ (1, 3) = 31/3 , (7.4.22)

respectively under, SU(3) × SU(3)′, SU(3)D × U(1)x ⊂ Gcus. Note that SU(3)D ≡ SU(3)c and in
the coloured sector we have x = Y such that SU(3)D×U(1)x is equivalent to SU(3)c×U(1)Y . As we
have seen in subsection 7.3.2, the gauge representation of the coloured fermions can be complex, real
or pseudo-real depending on the UV completion. Then there is two distinct cases. Let us begin by
the complex case where the scalar bilinear is (XX̃) and transforms in the (3, 3) of SU(3) × SU(3)′.
The tensor bilinear is (XσµνX̃) transforms as the scalar bilinear while there is two vector bilinears
which are (XσµX†) and (X̃σµX̃†) and transform respectively as (1, 1) + (8, 1) and (1, 1) + (1, 8). To
summarise, we have

(XX̃) ∼ (3, 3) = (1 + 8)0 , (XσµνX̃) ∼ (3, 3) = (1 + 8)0 , (7.4.23)

(XσµX†) ∼ (1, 1) + (8, 1) = (1 + 8)0 , (X̃σµX̃†) ∼ (1, 1) + (1, 8) = (1 + 8)0 , (7.4.24)

under SU(3)×SU(3)′ and SU(3)c×U(1)Y respectively. This is the usual decomposition which occurs
in the QCD case. We can see it more easily by introducing the Dirac fermion

X =

(
X

X̃†

)
, X =

(
X̃ X†) (7.4.25)

Then the scalar and vector bilinears are

(XX ) = (X̃X +X†X̃†) , (XγµX ) = (X†σµX + X̃σµX̃†) , (7.4.26)

and similarly for the pseudo-scalar, axial and tensor bilinears.
Let us now consider the cases where the gauge representations of the coloured fermions are not

complex but rather real or pseudo-real. In that cases, we have new possibilities to form a bilinear
gauge invariant compare to the complex case. For the scalars bilinears, we also have (XX) and (X̃X̃)
and the same for the tensor bilinears while for the vector we now have (XσµX̃†). In addition of course
to the bilinears in Eqs. (7.4.23) and (7.4.24). The new allowed bilinears transform as follow

(XX) ∼ (3a, 1) + (6s, 1) = 3a + 6s , (X̃X̃) = (1, 3a) + (1, 6s) = 3a + 6s , (7.4.27)

(XσµνX) ∼ (3a, 1) + (6s, 1) = 3a + 6s , (X̃σµνX̃) = (1, 3a) + (1, 6s) = 3a + 6s , (7.4.28)
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(XσµX̃†) ∼ (3, 3) = 3a + 6s . (7.4.29)

In Dirac notation, these bilinears come the conjugate Dirac multiplet

X c =

(
X̃
X†

)
, X c =

(
X X̃†) (7.4.30)

which leads to

(X cX ) = (XX + X̃†X̃†) , (X cγµX ) = (X̃†σµX +XσµX̃†) , (7.4.31)

and similarly for the pseudo-scalar, axial and tensor modes. These bilinears do not correspond to
mesonic resonances in QCD or in QCD-like theories (with two complex gauge representations) as
they are not gauge invariant in that cases. However, it does not remain true for fermions in real
or pseudo-real gauge representations. As in the precedent subsections, in the real and pseudo-real
cases the flavour representations are restricted by the symmetry properties of the gauge and Lorentz
contractions. In the real case, the gauge contraction is symmetric and only the symmetric (antisym-
metric) contraction is present for the scalar (tensor) bilinears. For instance (XX) transform as a 3−2/3

of SU(3)c × U(1)Y while (XσµνX) transforms as a 6−2/3. For the vector bilinears there is no such
restriction and they transform as in Eq (7.4.29). As mentioned above, one can identify the vector and
axial-vector contained in (XσµX̃†). Indeed, the vectors transform in the same representation than
the ones contains in the tensor bilinear while the axial-vectors transform in the same representation
than the scalar bilinear. In the pseudo-real case, this is the opposite, only the antisymmetric (sym-
metric) contraction is present for the scalar (tensor) bilinears and again there is no such restriction
for the vector bilinears. The above results on the quantum numbers of the mesonic resonances of the
SU(3)× SU(3)′/SU(3)D sector are summarised in table 7.8.

SU(3)× SU(3)′ SU(3)c × U(1)Y

Xf (3, 1) 3−1/3

X̃f (1, 3) 31/3

(Xf X̃g), (X
fσµνX̃g) (3, 3) (1 + 8)0

(XfσµX†
g) (1, 1) + (8, 1) (1 + 8)0

(X̃fσ
µX̃†g) (1, 1) + (1, 8) (1 + 8)0

R PR R PR

(XfXg) (6, 1) (3, 1) 6−2/3 3−2/3

(X̃f X̃g) (1, 6) (1, 3) 62/3 32/3

(XfσµX̃†g) (3, 3) (3 + 6)−2/3

(XfσµνXg) (3, 1) (6, 1) 3−2/3 6−2/3

(X̃fσ
µνX̃g) (1, 3) (1, 6) 32/3 62/3

Table 7.8: Quantum numbers of the coloured resonances when the coset is GcH/H
c
F = SU(3) ×

SU(3)′/SU(3)D. The representations are decomposed according to the subgroup SU(3)c × U(1)Y .
Note that as explained in the text, in the real (R) and pseudo-real cases (PR) there is additional
allowed resonances.
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7.4.3 Baryonic sectors

In the two precedent subsections, we have presented the quantum numbers of the EW and coloured
resonances. We now consider the baryonic sector of the UV completions. For simplicity, we restrict
to trilinears bound states. Note that similarly, for the mesons we implicitly restricted to bilinear
bound states. The different possible baryons depend on the particular model of table 7.3 under
consideration. Indeed, if the global symmetries change, the representation of the baryons change as
well. Then we will consider each kind of coset separately and study the allowed baryons and their
quantum numbers as we did for the mesons in the next subsections. In particular, we will focus on
the top partners as they are an indispensable ingredient to realise the partial compositeness paradigm
present in composite Higgs models (see chapter 6). The top partners have the opposite quantum
numbers of the top multiplets qL and tcR that is QL ∼ (3, 2,−1/6) and T cR ∼ (3, 1, 2/3). In addition,
as the top partners couple by definition linearly to the top, they should have the same chirality that
we choose to be left-handed (with the above quantum numbers) by convention.

• SU(4)× SU(6)/Sp(4)× SO(6) coset

Let us begin by the coset GF /HF = SU(4)×SU(6)/Sp(4)×SO(6). In that case, the EW fermions ψ
are in a pseudo-real representation of GHC while the coloured fermions X are in a real representation.
Then in all generality, the baryons should contain an even number of ψ leading for the trilinear baryons
to the five following possibilities

Ψabf = (ψaψbXf ) , Ψa
bf = (ψaψ†

bX
†
f ) , Ψf

ab = (ψ†
aψ

†
bX

f ) , (7.4.32)

Ψfgh = (XfXgXh) , Ψf
gh = (XfX†

gX
†
h) , (7.4.33)

plus their conjugates. Note that the brackets stand for hypercolour contraction (multiple and inde-
pendent contractions are possible). We also assume spin-1/2 baryons but in principle other Lorentz
representations are allowed. For example, Ψabf ∼ (1/2, 0) + (3/2, 0) and Ψa

bf ∼ (1/2, 0) + (1/2, 1)
under the Lorentz group. Top partners are left or right-handed spin 1/2 fermions and consequently
we will restrict to the representations (1/2, 0) and (0, 1/2) in the next. Note that in Eqs. (7.4.32) and
(7.4.33), the baryons contain either three left-handed fermions either one left-handed and two right-
handed fermions. This is just a convention (as the conjugate fermions have the opposite chirality) but
in this way, all of the baryons that we will consider are left-handed that is they transform as (1/2, 0)
exactly like QL and T cR.

We now focus only on the top partners that is on the baryons in Eq. (7.4.32). One can easily
check that some of these baryons are top partners. For example, let us consider the baryon Ψabf ∼
(6, 6)+ (10, 6) under SU(4)×SU(6). Using the results of subsections 7.4.1 and 7.4.2 we find that the
SU(4)× SU(6) representations decompose as follow under SU(3)c × SU(2)L × U(1)Y

(6, 6) = (3, 2)7/6 + (3, 2)−1/6 + 2(3, 1)2/3 + h.c. (7.4.34)

(10, 6) = (3, 2)7/6 + (3, 2)−1/6 + (3, 1)2/3 + (3, 1)5/3

+(3, 1)−1/3 + (3, 3)2/3 + h.c. (7.4.35)

Then in addition to other baryons we have the desired top partners QL ∼ (3, 2,−1/6) and T cR ∼
(3, 1, 2/3). All of the other decompositions are reported in table 7.9.

Note that the x charge of the fermions X is equal to 2/3 in order to have top partners QL and T cR
but the doublet QL can also serve as a bottom partner. In addition, as it can be seen in table 7.9,
we have bottom partners Bc

R ∼ (3, 1,−1/3) in some cases. However the bottom partner Bc
R is not

always present as it is the case for T cR. If we rather choose x = −1/3, the situation is reversed that is
each baryons decompose in bottom partners Bc

R but not always in top partners T cR.
Note also that the UV completions are VL compare to the SM group such that the decomposition

of (r4, r6) under the SM group is the same than the ones of (r4, r6), (r4, r6) and (r4, r6), where r4
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Baryon SU(4)× SU(6) SU(3)c × SU(2)L × U(1)Y

Ψabf

(6, 6) (3, 2)7/6 + (3, 2)−1/6 + 2(3, 1)2/3 + h.c.

(10, 6) (3, 3)2/3 + (3, 2)7/6 + (3, 2)−1/6

+(3, 1)5/3 + (3, 1)2/3 + (3, 1)−1/3 + h.c.

Ψa
bf

(1, 6) (3, 1)2/3 + h.c.

(15, 6) (3, 3)2/3 + 2(3, 2)7/6 + 2(3, 2)−1/6

+(3, 1)5/3 + 2(3, 1)2/3 + (3, 1)−1/3 + h.c.

Table 7.9: Quantum numbers of the baryonic resonances containing the top partners in the case where
the coset is GF /HF = SU(4)×SU(6)/Sp(4)×SO(6). As explained in the text, Ψab

f ∼ (6, 6)+ (10, 6)

under SU(4)×SU(6), decomposes in the same way than Ψabf under the SM group. The top partners
QL ∼ (3, 2)−1/6 and T cR ∼ (3, 1)2/3 are written in blue.

and r6 are representations of SU(4) and SU(6) respectively. Then Ψabf ∼ (6, 6) + (10, 6) and Ψab
f ∼

(6, 6) + (10, 6) decompose in the same way under GSM .
Finally, depending on the gauge contraction, some flavour representations can be absent. For

instance, in the case of Ψabf , the flavour contraction between the two fermions ψ leads to a 6 antisym-
metric and a 10 symmetric of SU(4). Depending on the symmetry property of the gauge contraction
(and also on the Lorentz contraction), one of the two representations can be absent. For all of the
baryons in Eq. (7.4.32), the gauge indices can be contracted in the proper way to form a gauge invari-
ant in the two cases of table 7.3. For example let us consider again Ψabf . In the case GHC = Sp(2N),
the fermion ψ transforms in the fundamental representation of Sp(2N) while the fermion X in the

representation A2. Then Ψabf is made of ψaαi ψbβj X
fγ
kl where i, j, · · · are hypercolour indices, a, b, · · ·

flavour indices and α, β, · · · Lorentz indices. To obtain a baryon, we should contract the gauge and
Lorentz indices. We obtain two inequivalent contractions depending on the uncontracted Lorentz
index

ψaαi ψbβj X
fγ
kl ΩikΩlj(ǫαβ + ǫαγ) , (7.4.36)

where Ωij = −Ωji is the invariant tensor of Sp(2N) and the contraction ΩilΩkj is equivalent as
Xij = −Xji. Also, ΩijΩlk is not possible as the representation A2 is traceless ie XijΩji = 0 (see
chapter 8). Then the exchange of the flavour indices a and b with the Lorentz contraction ǫαβ is
antisymmetric and the non-zero flavour contraction is the 6SU(4). For the contraction ǫαγ , there is no
properties of symmetry and the two flavour representations are present. Doing the same thing in the
case of GHC = SO(N) one finds that the baryons in Eqs. (7.4.32) and (7.4.33) can be contracted in
a gauge invariant way.

Note that for baryons like Ψa
bf , there is no restriction of symmetry as the three fermions are

different. In the next, we will not determine the allowed flavour representations. As we have seen, in
general all of them are allowed if one consider all of the gauge and Lorentz contractions. However, we
will check that it is possible to form a gauge invariant.

• SU(5)× SU(6)/SO(5)× Sp(6) coset

We now follow exactly the same procedure for the coset GF /HF = SU(5)×SU(6)/SO(5)×Sp(6). As
the EW fermions ψ are in a real representation of GHC and the coloured fermions X in a pseudo-real
representation, the baryons are made of an even number of X fermions. Then the trilinears baryons
are the following

Ψafg = (ψaXfXg) , Ψa
fg = (ψaX†

fX
†
g) , Ψf

ag = (ψ†
aX

fX†
g) , (7.4.37)
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Ψabc = (ψaψbψc) , Ψa
bc = (ψaψ†

bψ
†
c) , (7.4.38)

plus their conjugate. Compare to the precedent coset, the top partners in Eq. (7.4.37) contain two
fermions X instead of one and their U(1)x charge is equal to −1/3. The decompositions of the
trilinears baryons containing the top partners are reported in table 7.10. Let us just note that due
to the VL embedding of the SM group inside GF , Ψa

fg ∼ (5, 15) + (5, 21) under SU(5) × SU(6),

decomposes in the same way than Ψafg under the SM group.

Baryon SU(5)× SU(6) SU(3)c × SU(2)L × U(1)Y

Ψafg

(5, 15) [(8, 2)1/2 + (1, 2)1/2 + (3, 2)7/6 + (3, 2)−1/6

+(3, 1)2/3 + h.c.] + (8, 1)0 + (1, 1)0

(5, 21) [(8, 2)1/2 + (1, 2)1/2 + (6, 2)7/6 + (6, 2)1/6

+(6, 1)2/3 + h.c.] + (8, 1)0 + (1, 1)0

Ψf
ag

(5, 1) (1, 2)±1/2 + (1, 1)0

(5, 35) [2(8, 2)1/2 + (1, 2)1/2 + (3, 2)7/6 + (3, 2)−1/6

+(3, 1)2/3 + (6, 2)7/6 + (6, 2)1/6 + (6, 1)2/3 + h.c.]

+2(8, 1)0 + (1, 1)0

Table 7.10: Quantum numbers of the baryonic resonances containing the top partners in the case where
the coset is GF /HF = SU(5)×SU(6)/SO(5)×Sp(6). As explained in the text, Ψa

fg ∼ (5, 15)+(5, 21)

under SU(5)×SU(6), decomposes in the same way than Ψafg under the SM group. The top partners
QL ∼ (3, 2)−1/6 and T cR ∼ (3, 1)2/3 are written in blue.

Finally, all of the baryons in Eqs. (7.4.37) and (7.4.38) can be contracted in gauge singlets for
GHC = Sp(2N) with R1 = A2,Ad and R2 = F. Similarly for GHC = SO(N) with R1 = F and
R2 = Spin, the baryons in Eq. (7.4.37) can form gauge singlets but not the ones in Eq. (7.4.38).

• SU(5)× SU(6)/SO(5)× SO(6) coset

The next coset that we investigate is GF /HF = SU(5) × SU(6)/SO(5) × SO(6). Now, the EW
fermions ψ and the coloured fermions X are both in a real representation of GHC . Then, there is no
restriction on the number of fermions ψ or X in the baryons (the total number of fermions has only to
be odd to form a baryon). As a consequence, the trilinears baryons are those of Eqs. (7.4.32), (7.4.33),
(7.4.37) and (7.4.38). Of course, the decomposition of these baryons under the SM is not the same
than before as the coset is different. As the number of X fermions is not fixed in the baryons, one
can choose for the U(1)x charge x = 2/3 or x = −1/3. The decomposition of the baryons containing
the top partners is reported in table 7.11 for x = 2/3 and in table 7.12 for x = −1/3. In the case of
x = 2/3, one see that the top partners are only present for the baryons of Eqs. (7.4.32) and (7.4.33).
On the contrary, for x = −1/3 all of the baryons in table 7.12 contain top partners. Then from this
point of view, the case x = −1/3 seems to be more promising.

As before, due to the VL embedding of the SM group inside the global symmetriesΨf
ab decomposes

as Ψabf under the SM group as well as Ψa
fg decomposes as Ψafg.

We now comment on the possibility to form SO(N) gauge invariants depending on the details of
the gauge contractions. First in the cases where R1 = S2 or R1 = Ad and R2 = F, the baryons in
Eqs. (7.4.32) and (7.4.33) are all excluded as in these cases there is five gauge indices which can not
be all contracted with the invariant tensor δij . However, the baryons in Eqs. (7.4.37) and (7.4.38) can
be contracted in a gauge invariant way. In the same way, for R1 = F and R2 = Spin, the baryons in
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Baryon SU(5)× SU(6) SU(3)c × SU(2)L × U(1)Y

Ψabf

(10, 6) (3, 3)2/3 + (3, 2)7/6 + (3, 2)−1/6 + (3, 1)5/3

+(3, 1)−1/3 + (3, 1)2/3 + h.c.

(15, 6) (3, 3)5/3 + (3, 3)−1/3 + (3, 3)2/3 + (3, 2)7/6

+(3, 2)−1/6 + 2(3, 1)2/3 + h.c.

Ψa
bf

(1, 6) (3, 1)2/3 + h.c.

(24, 6) (3, 3)5/3 + (3, 3)−1/3 + 2(3, 3)2/3 + 2(3, 2)7/6

+2(3, 2)−1/6 + (3, 1)5/3 + (3, 1)−1/3 + 2(3, 1)2/3 + h.c.

Ψafg

(5, 15) [(8, 2)1/2 + (3, 2)−5/6 + (3, 2)−11/6 + (3, 1)−4/3

+(1, 2)1/2 + h.c.] + (8, 1)0 + (1, 1)0

(5, 21) [(8, 2)1/2 + (6, 2)11/6 + (6, 2)5/6 + (6, 1)4/3

+(1, 2)1/2 + h.c.] + (8, 1)0 + (1, 1)0

Ψf
ag

(5, 1) (1, 2)±1/2 + (1, 1)0

(5, 35) [2(8, 2)1/2 + (6, 2)11/6 + (6, 2)5/6 + (6, 1)4/3

+(3, 2)−5/6 + (3, 2)−11/6 + (3, 1)−4/3 + (1, 2)1/2 + h.c.]

+2(8, 1)0 + (1, 1)0

Table 7.11: Quantum numbers of the baryonic resonances containing the top partners in the case
where the coset is GF /HF = SU(5) × SU(6)/SO(5) × SO(6) and the U(1)x charge of the fermions

X is x = 2/3. As before, Ψf
ab decomposes as Ψabf under the SM group as well as Ψa

fg decomposes as

Ψafg. The top partners QL ∼ (3, 2)−1/6 and T cR ∼ (3, 1)2/3 are written in blue. In the cases where

R1 = S2,Ad and R2 = F and the case where R1 = F and R2 = Spin, the baryons Ψabf and Ψa
bf are

excluded while in the case where R1 = Spin and R2 = F, the baryons Ψafg and Ψf
ag are excluded as

explained in the text.

Eqs. (7.4.32) and (7.4.33) are excluded as one can not contract the spinorial index of the fermion X.
Finally, for R1 = Spin and R2 = F, the baryons in Eqs. (7.4.37) are excluded as the spinorial index
of ψ is not contracted.

• SU(5)× SU(3)× SU(3)′/SO(5)× SU(3)D coset

Finally, the last coset is GF /HF = SU(5) × SU(3) × SU(3)′/SO(5) × SU(3)D. In that case, the
fermions ψ are in a real representation of hypercolour while the fermions X and X̃ can be in a real,
pseudo-real or complex representation depending on the value of N (see tables 7.3 and 7.2). The
trilinear baryons are the following

Ψaf
g = (ψaXf X̃g) , Ψag

f = (ψaX†
f X̃

†g) , Ψfg
a = (ψ†

aX
f X̃†g) , (7.4.39)

Ψafg = (ψ†
aX

†
f X̃g) , Ψa

fg = (ψaX̃f X̃g) , Ψafg = (ψaXfXg) , (7.4.40)

Ψ′afg = (ψaX̃†f X̃†g) , Ψ′a
fg = (ψaX†

fX
†
g) , (7.4.41)
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Baryon SU(5)× SU(6) SU(3)c × SU(2)L × U(1)Y

Ψabf

(10, 6) (3, 3)−1/3 + (3, 2)−1/6 + (3, 2)−5/6 + (3, 1)2/3

+(3, 1)−4/3 + (3, 1)−1/3 + h.c.

(15, 6) (3, 3)2/3 + (3, 3)−4/3 + (3, 3)−1/3 + (3, 2)−1/6

+(3, 2)−5/6 + 2(3, 1)−1/3 + h.c.

Ψaf
b

(1, 6) (3, 1)−1/3 + h.c.

(24, 6) (3, 3)2/3 + (3, 3)−4/3 + 2(3, 3)−1/3 + 2(3, 2)−1/6

+2(3, 2)−5/6 + (3, 1)2/3 + (3, 1)−4/3 + 2(3, 1)−1/3 + h.c.

Ψafg

(5, 15) [(8, 2)1/2 + (3, 2)7/6 + (3, 2)−1/6 + (3, 1)2/3

+(1, 2)1/2 + h.c.] + (8, 1)0 + (1, 1)0

(5, 21) [(8, 2)1/2 + (6, 2)−7/6 + (6, 2)−1/6 + (6, 1)−2/3

+(1, 2)1/2 + h.c.] + (8, 1)0 + (1, 1)0

Ψaf
g

(5, 1) (1, 2)±1/2 + (1, 1)0

(5, 35) [2(8, 2)1/2 + (6, 2)−7/6 + (6, 2)−1/6 + (6, 1)−2/3

+(3, 2)7/6 + (3, 2)−1/6 + (3, 1)2/3 + (1, 2)1/2 + h.c.]

+2(8, 1)0 + (1, 1)0

Table 7.12: Quantum numbers of the baryonic resonances containing the top partners in the case
where the coset is GF /HF = SU(5) × SU(6)/SO(5) × SO(6) and the U(1)x charge of the fermions

X is x = −1/3. As before, Ψf
ab decomposes as Ψabf under the SM group as well as Ψa

fg decomposes

as Ψafg. The top partners QL ∼ (3, 2)−1/6 and T cR ∼ (3, 1)2/3 are written in blue. In the cases where

R1 = S2,Ad and R2 = F and the case where R1 = F and R2 = Spin, the baryons Ψabf and Ψa
bf are

excluded while in the case where R1 = Spin and R2 = F, the baryons Ψafg and Ψf
ag are excluded as

explained in the text.

plus their conjugate and for simplicity, we used the index of SU(3)c instead of SU(3)× SU(3)′. For
example X̃f ′ = X̃f that is X̃ is a triplet of SU(3)′ and decomposes as an antitriplet of SU(3)c.
Note that we restricted to top partners with two coloured fermions and one ψ. There is only two
inequivalent decompositions as the above baryons contain only one ψ or ψ† and there is no distinction
between them as the SM group is embedded in a VL way inside SU(5). Moreover, the SU(3)c product
can only leads to 3× 3 or 3× 3.

The first possibility is Ψaf
g ∼ (5, 3, 3) = (5, 1) + (5, 8) for which the decomposition is equivalent

to the one for Ψag
f ∼ (5, 3, 3) = (5, 1) + (5, 8) under SU(5) × SU(3) × SU(3)′ and SU(5) × SU(3)c

respectively. In the same way, Ψfg
a ∼ (5, 3, 3) = (5, 3) + (5, 6) is equivalent to Ψafg = (5, 3, 1) +

(5, 6, 1) = (5, 3) + (5, 6) and similarly for Ψ′afg. The remaining baryons decompose in the conjugate

coloured representations of Ψfg
a . For example Ψafg ∼ (5, 3, 3) = (5, 3) + (5, 6) which is equivalent

to the decomposition of Ψa
fg and Ψ′a

fg. The results of the decomposition of the SU(5) × SU(3)c
representations into the SM group is displayed in table 7.13.

Note that the case where the gauge symmetry is SU(4) (see table 7.3) is particular. Indeed, in this
case the invariant tensors which allow to form gauge invariants are δij , ǫ

ijkl and ǫijkl. Then the two
first baryons of Eq. (7.4.39) can not be contracted in a gauge invariant way as there is three indices
of the fundamental and one of the anti-fundamental (for instance ψaijXfkX̃gl). This case is the only
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one with an SU gauge symmetry.

Baryon SU(5)× SU(3)× SU(3)′ SU(3)c × SU(2)L × U(1)Y

Ψaf
g (5, 3, 3) (8, 2)±1/2 + (1, 2)±1/2 + (8, 1)0 + (1, 1)0

Ψfg
a

(5, 3, 3) (3, 2)−7/6 + (3, 2)−1/6 + (3, 1)−2/3

+(6, 2)−7/6 + (6, 2)−1/6 + (6, 1)−2/3

Ψafg

(5, 3, 3) (3, 2)7/6 + (3, 2)1/6 + (3, 1)2/3

+(6, 2)7/6 + (6, 2)1/6 + (6, 1)2/3

Table 7.13: Quantum numbers of the baryonic resonances containing the top partners in the case
where the coset is GF /HF = SU(5)×SU(3)×SU(3)′/SO(5)×SU(3)D. As explained in the text, we

only display the inequivalent decompositions: Ψaf
g and Ψag

f transform in the same way under GSM

as well as Ψfg
a which transforms as Ψafg and Ψ′afg and finally Ψafg which transforms as Ψa

fg and
Ψ′a
fg. Note that the triplet of SU(3)′ decomposes in an antitriplet of SU(3)c while the triplet of SU(3)

remains a triplet of SU(3)c. The top partners QL ∼ (3, 2)−1/6 and T cR ∼ (3, 1)2/3 are written in blue.

7.5 Discussion

Finally, let us conclude this chapter by discussing few interesting points which have not been addressed
during the classification.

First, there is no proof that the desire spontaneous symmetry breaking occurs and we simply
assume that it is the case. We impose asymptotic freedom in the UV and expect that the correct
condensate forms in the IR. In some cases the ’t Hooft anomaly matching conditions can proof that
the symmetry breaking occurs but the demonstration is not always fruitful and depends on the details
of the model. For example one can demonstrate (see chapter 9) that in the model with Sp(2N) gauge
symmetry and global symmetry SU(4)×SU(6)/Sp(4)×SO(6), the SU(4) symmetry must be broken.
However, the SU(6) symmetry can be broken or remain unbroken.

Another important point related to the first one, is the implicit hypothesis that GHC and SU(3)c
are not broken at low energy by the condensation of the strong sector. Indeed, the bilinear that
condensates should be invariant under the latter symmetries. In some cases, this feature is not
obvious as it is discussed in Ref. [10].

Next, we require the presence of top partners but it is not possible to have partners for all the SM
fermions. In particular, a bottom partner Bc

R is available in some cases but not always. This point
is not too problematic as due to its large mass, the top can be treated separately than the other SM
fermions.

Finally, some models contains a very large number of hypercoulour which leads to Landau pole
too close to the EW scale. The most minimal cases from this point of view are the first, third and
fifth models of table 7.3.

Let us now discuss the minimality of the UV completions of table 7.4.12 completions. As a criterion
of minimality, one can choose first the number of pNGBs present in the electroweak sector and then
the ones in the coloured sector. This criterion can be justified by the fact that the pNGBs of the EW
sector are necessarily close to the EW scale due to the presence of the Higgs. At the contrary, the
coloured pNGBs can be heavier and be decoupled from the EW scale more easily. Then, to respect
the experimental bounds, it is easier to have the smallest possible EW coset. Consequently, theories
based on the coset SU(4)×SU(6)/Sp(4)×SO(6) are the less minimal ones with respectively five and
twenty pNGBs in the EW and coloured sectors. The other coset are listed in table 7.3 by order of
minimality.
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Moreover, some models are VL theories which is a nice feature as a lot of non-perturbative results
are available in this case. There is only two such possibilities corresponding to the two first entries of
table 7.3. Only one extension respects the above argument of minimality. This minimal model is based
on a Sp(2N) hypercolour gauge symmetry (2 ≤ N ≤ 18) with a coset SU(4)×SU(6)/Sp(4)×SO(6).
We will focus on this model in the sequel and study it in great details in chapters 8, 9 and 10.
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Chapter 8

The EW sector of the minimal UV
completion

Following the results of chapter 7, we study in this chapter the most ”minimal” UV completion of
a composite Higgs model. The latter is based on the EW coset SU(4)/Sp(4), the coloured coset
SU(6)/SO(6) and the underlying gauge symmetry Sp(2N). It is one of the minimal possible UV
complete CHM and it was first introduced in this context in Ref. [259]. We focus here on the phe-
nomenology of the EW sector and postpone the study of the coloured sector to chapter 9.

The SU(4) global symmetry is realised by four fermions ψ in the fundamental representation
of the Sp(2N) gauge symmetry. As the fundamental fermions ψ transform in a pseudo-real gauge
representation, at low energy a non-zero condensate 〈ψaψb〉 spontaneously breaks the global SU(4)
symmetry down to Sp(4). This breaking leads to the emergence of five NGBs. Four of them have
the quantum numbers of the complex Higgs doublet while the other one is a SM gauge singlet. In
CHMs, a potential for the NGBs is generated from linear couplings between the top quark and its
composite partners (see section 6.4). These couplings explicitly break the SU(4) global symmetry
such that the NGBs become pNGBs. In particular, the Higgs gets a mass and a non-zero vev which
spontaneously breaks the EW symmetry. The other source of explicit breaking contributing to the
Higgs potential comes from the gauging of the SM gauge group. More precisely, as the Higgs emerges
from the EW sector, the SU(2)L × U(1)Y part of the SM gauge group is embedded inside the global
SU(4) symmetry. These two sources of explicit breaking are crucial in CHMs as they connect the
strong sector to the SM. However, in this chapter we assume that the EWSB occurs and we do not
introduce explicitly the linear couplings of the top quark. This is a reasonable first approximation
as our analysis mainly focus on the strong dynamics and the EWSB effects are subleading in that
case. On the contrary, it is simple to gauge the SM group and we explore some of the resulting
consequences.

The underlying idea of this chapter and of the next one is to transpose the concepts and com-
putations developed for QCD to the composite Higgs case. Then, the analysis decomposes in two
main axes: (i) a theoretical point of view of the theory using the non-perturbative results of chapter
2 and (ii) a more phenomenological approach where the model is expressed in term of four-fermions
interactions and the computations are done within the NJL framework. The latter being introduced
in chapter 3.

Let us make some critical comments about our analysis. First, most of the non-perturbative
computations are done within the NJL approximation. However, the latter is only valid in a restricted
domain which depends on the values of the four-fermions couplings. For instance, the NJL model
does not account for the confinement of hypercolour such that large unphysical imaginary parts may
develop in the calculations. This feature appear close to the critical coupling of the NJL and it may
leads to a lower bound on the four-fermion couplings. Also, the NJL approximation is valid as long
as the dynamical mass Mψ is lower than the cut-off Λ which gives an upper limit on the four-fermion
couplings. We then identify the domain of validity of the NJL approximation but one should not
forget that the theory could lie in a regime where this approximation breaks down.
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Secondly, as already mentioned, we do not parametrise the EWSB such that the Higgs is massless
in first crude approximation. Of course, the physical Higgs boson has a non-zero mass and our anal-
ysis should be viewed as a preliminary step toward a more complete model. Indeed, our predictions
for the other (non Goldstone) resonances are reasonable as the corrections due to the EWSB are in
general small compare to the effects of the strong dynamics.

The chapter is organised as follow. We first begin in section 8.1 by a presentation of some general
(number of flavours Nf is free) properties of flavour (global) symmetries in vector-like gauge theories.
We present the Vaffa-Witten theorem in subsection 8.1.1 and outline its consequences for VL theories
that is, the restriction of the allowed symmetry breaking patterns. In particular, the SU(2Nf ) global
symmetry present in the EW sector (see chapter 7) can only be spontaneously broken to Sp(2Nf )
(fermions in a pseudo-real representation) or to SO(2Nf ) (fermions in a real representation). We then

introduce in all generality the broken (J Â
µ ) and unbroken (J A

µ ) global currents in these two cases as

well as the properties of the corresponding generators (T Â and TA) with respect to the vacuum of the
theory. Note that these general considerations are also valid for the coloured sector as it corresponds
to the real case with Nf = 3.

Next, in subsection 8.1.2 we present the ’t Hooft anomaly matching (see section 2.3 for the QCD
case) and outline in particular that a theory containing only fermions in pseudo-real representation can
not form baryons at all. Then, in the case of the EW sector in isolation, the SU(4) global symmetry
must be spontaneously broken as the matching can not be done with composite baryons. This feature
is of course altered when the coloured sector which contains other fundamental fermions is introduced
as it is discussed in chapter 9. We then introduce in subsection 8.1.4 the sum rules resulting of the
breaking patterns SU(2N)/Sp(2N) and SU(2N)/SO(2N) (see section 2.4 for the QCD case). Some
interesting relations between the correlators and other strongly coupled quantities are also derived.
Finally in subsection 8.1.5, the couplings to external gauge fields are considered that is, the coupling
of the strong sector to the SM gauge group. In this way, general formulas for the radiative corrections
to the masses of the pNGBs are derived as well as the anomalous couplings of the pNGBs to the
external SM gauge fields (see section 2.5 for the equivalent in QCD).

In section 8.2, we particularise the above results to the EW sector and study in details this sector
using the non-perturbative techniques of the NJL model. The analysis focus on the mesonic resonances
of the theory that is, on the spectrum of the lightest spin zero and spin one states. We first introduce
the four-fermion interactions of the scalar sector in subsection 8.2.1 where we outline the presence
of the ’t Hooft term that parametrises the explicit breaking of the U(1)ψ anomaly. Note that in
the case of SU(4)/Sp(4), this ’t Hooft term is accidentally a four-fermion interaction. We use the
Schwinger-Dyson equation to derive the dynamical mass Mψ acquired by the fundamental fermions
ψ after the condensation of the strong dynamics and then compute in subsection 8.2.2 the scalar and
pseudo-scalar masses from the Bethe Salpether equation. We outline in particular the presence of the

NGBs GÂ and of the pseudo-scalar η associated to the U(1)ψ anomaly. We also discuss the domain
of validity of the NJL approximation.

Next, we introduce the vector four-fermion interactions and compute the vector and axial-vector
masses respectively in subsections 8.2.3 and 8.2.4. Due to the vector interactions, an axial-pseudo-
scalar mixing is present. We take into account this mixing to compute the Goldstone decay constant
FG =

√
2f in subsection 8.2.5 where we also compute other strong quantities like the scalar and

pseudo-scalar constants Gi (i = σ, η, SÂ, SÂ). The phenomenological analysis of the spectrum of
mesonic resonances is presented in subsection 8.2.6. For this purpose, we assume that the four-
fermion interactions originate from an Sp(2N) current-current operator (see section 3.2.3 for the
QCD case). In this hypothesis, there are only three free-parameters in the theory: the coupling of the
current-current operator (κA), the coupling of the ’t Hooft term (κB) and the number of hypercolour
N . In addition, the mass spectrum is studied in unit of f & 1 TeV, which fixes the scale Λ of the NJL
model. The numerical analysis leads to spin zero and spin one resonance masses in the multi TeV
range for f = 1 TeV but the latter can easily be decoupled for larger values of f . Note in particular
that depending on the anomaly, the pseudo-scalar η can be light as its mass is directly proportional to
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κB. Also, the vectors V A
µ can be one of the lightest states, for instance lighter than the scalar singlet

σ (MV .Mσ = 2Mψ), if the four-fermions couplings κA and κB are sufficiently large.
Finally, using all of the above results, we study in subsection 8.2.7 the realisation of the Weinberg-

like and scalar sum rules present in the model. We compare two approaches: the realisation of the
sum rules directly from the correlators as computed within the NJL framework and the saturation of
the sum rules with the first light resonances.

In appendix E, from the SU(4)/Sp(4) chiral Lagrangian, we make the link between the UV theory
and its effects at low energy: we identify the Goldstone decay constant f that parametrises all of the
low energy deviations compare to the SM predictions (ξ = v2/f2 see chapter 6).

8.1 General properties of flavour symmetries in vector-like gauge
theories

The composite-Higgs model that we will study belongs to the class of vector-like gauge theories, namely
an asymptotically free and confining gauge theory, with a set of Nf Dirac fermions transforming
under a (possibly reducible) self-contragredient (i.e. unitarily equivalent to its complex conjugate)
representation of the gauge group, in such a way that it is possible to make all fermions massive in a
gauge invariant way1. Exact results concerning non-perturbative dynamical aspects in these theories
are scarce, and in this section we briefly review some of those that are actually available. They
concern issues related to the spontaneous breaking of the global flavour symmetries and the spectrum
of low-lying bound states.

8.1.1 Restrictions on the pattern of spontaneous symmetry breaking

An important result for the spontaneous breaking of the global flavour symmetry group G for fermions
with vector-like couplings to gauge fields has been obtained by Vafa andWitten [38]. The theorem they
have proven makes the following statement: in any vector-like gauge theory with massless fermions and
vanishing vacuum angles, the subgroup Hm of the flavour group G that corresponds to the remaining
global symmetry when all fermion flavours are given identical gauge invariant masses, cannot be
spontaneously broken. In other words, if G undergoes spontaneous breaking towards some subgroup
H, then Hm ⊆ H (in the absence of any vacuum angle). This theorem is particularly powerful when
Hm corresponds to a maximal subgroup of G, since it then allows only two alternatives: either G is not
spontaneously broken at all, or G is spontaneously broken towards Hm. This is actually what happens
in the three cases that we can encounter in vector-like theories [258,264]: G = SU(Nf )L × SU(Nf )R
and Hm = SU(Nf )V

2; G = SU(2Nf ) and Hm = SO(2Nf ); G = SU(2Nf ) and Hm = Sp(2Nf ).
Of particular interest for the discussion that follows are the Nœther currents J A

µ , corresponding

to the generators TA of the unbroken subgroup Hm, and J Â
µ , corresponding to the generators T Â

in the coset G/Hm. Since the latter is a symmetric space for the three cases that have just been

listed, we will usually refer to the currents J A
µ (J Â

µ ) as vector (axial) currents. When the fermions
transform under an irreducible but real (ǫ = +1 below) or pseudo-real (ǫ = −1) representation of the
gauge group, G = SU(2Nf ), and Hm = SO(2Nf ) or Hm = Sp(2Nf ), respectively. In these two cases,
it is convenient to write the fermion fields in terms of left-handed Weyl spinors ψα. The currents are
then defined as follow [ψi ≡ ψ†

j (Ωε)ji, where i and j denote gauge indices, while spinor and flavour
indices are omitted]:

J A
µ =

1

2
(Ωε)ij

[
εψiσµT

Aψj − ψiσµ
(
TA

)T
ψj

]
, J Â

µ =
1

2
(Ωε)ij

[
εψiσµT

Âψj − ψiσµ
(
T Â

)T
ψj

]
.

(8.1.1)

1It is also possible to give all fermions gauge invariant masses in the case of an odd number of Weyl fermions in
the same real representation of the gauge group. Such theories do not have a conserved fermion number, and are not
vector-like. Although it can provide interesting composite-Higgs models, as discussed, for instance, in Ref. [263], this
class of theories will not be addressed here.

2The issue of the U(1)V symmetry is somewhat subtle, but we will not need to discuss it here.
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The gauge contraction Ωε is an invariant tensor under the action of the gauge group, which is sym-

metric for ε = +1 and antisymmetric for ε = −1, with
(
Ω2
ε

)
ij
= εδij . The generators TA and T Â are

characterised by the properties

TAΣε +Σε
(
TA

)T
= 0 , T ÂΣε − Σε

(
T Â

)T
= 0 , (8.1.2)

and are normalised as

Tr(TATB) =
1

2
δAB , Tr(T ÂT B̂) =

1

2
δÂB̂ , Tr(TAT B̂) = 0 . (8.1.3)

The 2Nf ×2Nf matrix Σε is an invariant tensor of the subgroup Hm of the flavour group. It plays for
this subgroup a role analogous to the role played by Ωε for the gauge group. In particular, it can be
chosen real, it is symmetric for ε = +1 and antisymmetric for ε = −1, and satisfies Σ2

ε = ε11, where
11 denotes the 2Nf × 2Nf unit matrix in flavour space.

8.1.2 ’t Hooft’s anomaly matching condition

Whereas the theorem of Vafa and Witten restricts the pattern of spontaneous breaking of the global
flavour symmetry groupG, it does not by itself provide information on which alternative will eventually
be realized. Additional information is required to that effect. The anomaly matching condition
proposed by ’t Hooft [39] can prove helpful in this respect. This condition uses the fact that the Ward
identities satisfied by the three-point functions of the Nœther currents corresponding to the symmetry
group G receive anomalous contributions from the massless elementary fermions [40–42]

i(q1 + q2)
ρ

∫
d4x1

∫
d4x2 e

iq1·x1+iq2·x2〈vac|T{J A
µ (x1)J B

ν (x2)J Ĉ
ρ (0)}|vac〉 = −dHC

8π2
ǫµναβq

α
1 q

β
2 d

ABĈ ,

(8.1.4)

with dABĈ = 2tr({TA, TB}T Ĉ), where the trace is over the flavour group only, and dHC denotes
the dimension of the representation of the gauge group under which the fermions transform. These
anomalous contributions imply that the corresponding three-point functions have very specific physical
singularities at vanishing momentum transfer [39,43,44]. Moreover, this type of singularities can only
be produced by physical intermediate states of spin zero or of spin one-half. If the symmetries of G
are not spontaneously broken, the first option is excluded. If the theory confines, this then implies
that it has to produce massless spin one-half bound states (baryons). These fermionic bound states
will occur in multiplets of G, and their multiplicities must be chosen such as to exactly reproduce the
coefficient of the singularities in the current three-point functions. If it is not possible to saturate this
anomaly coefficients with the exchange of massless fermionic bound states only, then massless spin-
zero bound states coupled to the currents of G are required, and hence G is spontaneously broken. If
this anomaly matching condition can be satisfied with massless spin one-half bound states only, the
spontaneous breaking of G towards Hm is not a necessity, but it cannot be excluded either.

In particular, the global symmetry is necessarily spontaneously broken if, after confinement, the
theory cannot produce fermionic bound states at all. If we restrict ourselves to constituent fermions
in the fundamental representation of the gauge group, this happens when the gauge group is SU(2N),
SO(2N), or Sp(2N). In these cases, the flavour group G therefore necessarily suffers spontaneous
breaking towards Hm. On the contrary, fermionic baryons can be formed in the case of SU(N)
or SO(N) gauge groups with N odd. Novel fermionic bound states may be possible if one admits
elementary fermions transforming in other representations than the fundamental under the gauge
group. We will discuss one such scenario below in section IV.

8.1.3 Mass inequalities

Various inequalities [265–269] involving the masses of the gauge-singlet bound states in vector-like
gauge theories provide additional insight into the fate of flavour symmetries of vector-like confining
gauge theories, complementary to the constraints arising from the Vafa-Witten theorem and ’t Hooft’s
anomaly matching condition. The most rigorous versions of these inequalities hold under the same
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positivity constraint on the path-integral measure in euclidian space as required for the proof of the
Vafa-Witten theorem, namely the absence of any vacuum angle. A review on these inequalities is
provided by Ref. [270]. Of particular interest in the present context is the inequality of the type
[265,267–269]

M1/2 ≥ C(N,Nf )M0 , (8.1.5)

involving, on the one hand, the mass M1/2 of any baryon state and, on the other hand, the mass
M0 of the lightest quark-antiquark spin 0 states having the flavour quantum numbers of the G/Hm

currents. The precise value of the (positive) constant C(N,Nf ) and its dependence on the number
of hypercolours N and/or number of flavours Nf is not so important here, the main point being
that such an inequality again provides a strong indication that the flavour symmetry G is necessarily
spontaneously broken towards G/Hm.

8.1.4 Super-convergent spectral sum rules

Assuming that G is spontaneously broken towards Hm, correlation functions that are at the same
time order parameters become of particular interest, since they enjoy a smooth behaviour at short
distances. These improved high-energy properties allow in turn to write super-convergent sum rules
for the corresponding spectral densities. The paradigmatic example is provided by the Weinberg sum
rules [47], once interpreted [271] and justified in the framework of QCD and of the operator-product
expansion [272], including non-perturbative power corrections [273].

Here we will consider two-point functions of certain fermion-bilinear operators, when the fermions
transform under an irreducible but real or pseudo-real representation of the gauge group. Specifically,
these operators comprise the Nœther currents defined in Eq. (8.1.1), to which we add the scalar and
pseudoscalar densities defined as

SÂ =
1

2
(Ωε)ij

[
ψiT

ÂΣεψj + ψiΣεT
Âψj

]
, S0 =

1

2
(Ωε)ij

[
ψiT

0Σεψj + ψiΣεT
0ψj

]
,

(8.1.6)

PÂ =
1

2i
(Ωε)ij

[
ψiT

ÂΣεψj − ψiΣεT
Âψj

]
, P0 =

1

2i
(Ωε)ij

[
ψiT

0Σεψj − ψiΣεT
0ψj

]
.

The singlet densities are normalised consistently with the other densities by taking T 0 = 11/(2
√
Nf ).

The two-point correlation functions of interest are then defined as

ΠV (q
2)δAB(qµqν − ηµνq

2) = i

∫
d4x eiq·x〈vac|T{J A

µ (x)J B
ν (0)}|vac〉 ,

ΠA(q
2)δÂB̂(qµqν − ηµνq

2) = i

∫
d4x eiq·x〈vac|T{J Â

µ (x)J B̂
ν (0)}|vac〉 , (8.1.7)

ΠS(q
2)δÂB̂ = i

∫
d4x eiq·x〈vac|T{SÂ(x)SB̂(0)}|vac〉 ,

ΠP (q
2)δÂB̂ = i

∫
d4x eiq·x〈vac|T{PÂ(x)PB̂(0)}|vac〉 , (8.1.8)

where Â 6= 0, B̂ 6= 0, and

ΠS0(q2) = i

∫
d4x eiq·x〈vac|T{S0(x)S0(0)}|vac〉 ,

ΠP 0(q2) = i

∫
d4x eiq·x〈vac|T{P0(x)P0(0)}|vac〉 . (8.1.9)

The combinations
ΠV -A(q

2) ≡ ΠV (q
2)−ΠA(q

2) , (8.1.10)

ΠS-P (q
2) ≡ ΠS(q

2)−ΠP (q
2) , ΠS-P 0(q2) ≡ ΠS(q

2)−ΠP 0(q2) , ΠS0-P (q
2) ≡ ΠS0(q2)−ΠP (q

2) ,
(8.1.11)
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are order parameters3 for the spontaneous breaking of SU(2Nf ) towards Hm for all values of q2. As
a consequence, these two-point functions behave smoothly at short distances (Q2 ≡ −q2 > 0):

lim
Q2→+∞

(
Q2

)2×ΠV -A(−Q2) = 0 , lim
Q2→+∞

Q2×{ΠS-P (−Q2) ; ΠS0-P (−Q2) ; ΠS-P 0(−Q2)} = {0 ; 0 ; 0} .
(8.1.12)

From these short-distance properties, one then derives the following super-convergent spectral sum
rules ∫ ∞

0
dt ImΠV -A(t) = 0 ,

∫ ∞

0
dt t ImΠV -A(t) = 0 , (8.1.13)

∫ ∞

0
dt ImΠS-P (t) = 0 ,

∫ ∞

0
dt ImΠS0-P (t) = 0 ,

∫ ∞

0
dt ImΠS-P 0(t) = 0 . (8.1.14)

We will examine in the following to which extent these Weinberg-type sum rules, whose validity is
quite general in view of the short-distance properties of asymptotically free vector-like gauge theories,
are actually satisfied in the specific NJL four-fermion interaction approximation. For the sake of
completeness, let us mention that the two-point function

ΠAP (q
2)δÂB̂qµ =

∫
d4x eiq·x〈vac|T{J Â

µ (x)PB̂(0)}|vac〉 , (8.1.15)

also defines an order-parameter. However, there is no associated sum rule, since, as a consequence of
the Ward identities, this correlator is entirely saturated by the Goldstone-boson pole (〈S0〉 denotes
the vacuum expectation value of S0)

ΠAP (q
2) =

1

q2
〈S0〉√
Nf

. (8.1.16)

It may be useful to stress, at this stage, that the sum rules displayed above are only valid in the
absence of any explicit symmetry breaking effects. Introducing, for instance, masses for the fermions
would modify the short-distance properties of these correlators, and thus spoil the convergence of the
integrals of the corresponding spectral functions. Let us briefly illustrate the changes that occur by
giving the fermions a common mass m, so that the currents belonging to the subgroup Hm remain
conserved. For the remaining currents, one now has

∂µJ Â
µ = 2mPÂ . (8.1.17)

As far as the current-current correlators are concerned, while the two-point function of the vector
currents remains transverse, the correlator of two axial currents receives a longitudinal part,

i

∫
d4x eiq·x〈vac|T{J Â

µ (x)J B̂
ν (0)}|vac〉 = δÂB̂

[
ΠA(q

2)(qµqν − ηµνq
2) + ΠLA(q

2)qµqν
]
. (8.1.18)

If one considers only corrections that are at most linear in m, then one can still write a convergent
sum rule, ∫ ∞

0
dt

[
ImΠV (t)− ImΠA(t)− ImΠLA(t)

]
= O(m2) . (8.1.19)

Notice that the Ward identities relate this longitudinal piece to the two-point function of the pseu-
doscalar densities and to the scalar condensate,

(q2)2ΠLA(q
2) = 4m2ΠP (q

2) + 2m
〈S0〉√
Nf

. (8.1.20)

3Concerning ΠS-P (q
2), this statement and the ensuing sum rule hold only to the extent that the tensor dÂB̂Ĉ ≡

2tr({T Â, T B̂}T Ĉ) does not vanish identically, which is not the case, for instance, when G = SU(2)L × SU(2)R and
Hm = SU(2)V , but also, more interestingly for our purposes, when G = SU(4) and Hm = Sp(4).
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The presence of a fermion mass m also shifts the masses of the Goldstone bosons away from zero, by
an amount ∆mM

2
G whose expression, at first order in m, actually follows from this identity and reads

F 2
G∆mM

2
G = −2m

〈S0〉√
Nf

+O(m2 lnm) . (8.1.21)

This formula involves the Goldstone-boson decay constant FG in the limit where m vanishes, defined
as

〈 vac | J Â
µ (0) |GB̂(p)〉 = ipµFGδ

ÂB̂ , p2 = 0 . (8.1.22)

Defining the coupling of the Goldstone bosons to the pseudoscalar densities,

〈 vac | PÂ(0) |GB̂(p)〉 = GGδ
ÂB̂ , p2 = 0 , (8.1.23)

the identity obtained in Eq. (8.1.16) implies

FGGG = − 〈S0〉√
Nf

, (8.1.24)

in the massless limit.
In contrast to the symmetry currents and to quantities derived from them, like FG or ΠV/A(q

2) for
instance, the (pseudo)scalar densities and their matrix elements, whether ΠS/P (q

2) or GG, need to be
multiplicatively renormalised, and are therefore not invariant under the action of the renormalisation
group. This dependence on the short-distance renormalisation scale does not impinge on the validity
or usefulness of the sum rules in Eqs. (8.1.14) or (8.1.19), which hold at every scale. Likewise, this scale
dependence is exactly balanced out between the right- and left-hand sides of relations like (8.1.16) or
(8.1.24).

8.1.5 Coupling to external gauge fields

Eventually, some currents of the global symmetry group G become weakly coupled to the standard
model gauge fields. If, in the absence of these weakly coupled gauge fields, the global symmetry group
G is spontaneously broken towards Hm, turning on the gauge interactions will produce two effects.
First, the Goldstone bosons will acquire radiatively generated masses. Second, transitions of a single
Goldstone boson into a pair of gauge bosons are induced and, at lowest order in the couplings to
the external gauge fields, the amplitude describing the transition towards a pair zero-virtuality gauge
bosons is fixed by the anomalous Ward identities in Eq. (8.1.4). Let us briefly discuss these two
aspects in general terms.

Let |GÂ(p)〉 denote the massless Goldstone-boson states corresponding to the generators T Â span-
ning the (symmetric) coset space G/Hm. In the presence of a perturbation that explicitly breaks
the global symmetry, these Goldstone bosons become pseudo-Goldstone bosons, and their masses are
shifted away from zero. At lowest order in the external perturbation, these mass shifts are given by

∆M2
GÂ

= −〈GÂ(p)|∆L(0)|GÂ(p)〉 , p2 = 0 , (8.1.25)

with ∆L(x) the symmetry-breaking interaction term in the Lagrangian. We are interested in particular
in an interaction due to the presence of massless gauge fields that is considered weak (in particular
non confining) at the scale under consideration, so that its effect can be considered as a perturbation.
These external gauge fields couple to some linear combinations of the currents of the global symmetry
group G. For a single gauge field Wµ, this interaction reads

Lint = −igWWµJW
µ , JW

µ =
1

2
(Ωε)ij

[
εψiσµT

Wψj − ψiσµ
(
TW)T

ψj

]
, (8.1.26)

where TW is an element of the algebra of G. At first non trivial order in the corresponding coupling
gW , one has

∆L(x) = g2W
2

∫
d4q

(2π)4
ηµν

q2

∫
d4y eiq·yT{JW

µ (x+ y)JW
ν (x)} . (8.1.27)
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Decomposing TW as TW = TW + T Ŵ , where TW (T Ŵ ) is a linear combination of the generators

TA (T Â) of Hm (of G/Hm), and taking further the soft-Goldstone-boson limit in Eq. (8.1.25), then
results in the following expressions for the mass shifts [258,274]

∆M2
GÂ

= − 3

4π
× 1

F 2
G

× g2W
4π

×
∫ ∞

0
dQ2Q2ΠV -A(−Q2)×


∑

B̂

(
f ÂWB̂

)2
−

∑

B

(
f ÂŴB

)2


 . (8.1.28)

Again, FG refers to the Goldstone-boson decay constant in the limit where any explicit symmetry-
breaking effects vanish, see Eq. (8.1.22), and we have used the short-hand notation

Tr
(
TW [T Â, T B̂]

)
≡ 1

2i
f ÂWB̂ , Tr

(
T Ŵ [T Â, TB]

)
≡ 1

2i
f ÂŴB , (8.1.29)

with the generators normalised as in Eq. (8.1.3). Since, according to the Witten inequality [266],
−Q2ΠV -A(Q

2) is positive, the sign of ∆M2
GÂ

, and hence the misalignment of the vacuum, hinges on

the sign of the last factor on the right-hand side of Eq. (8.1.28). If it is positive, ∆M2
GÂ

is positive,

and the vacuum is stable under this perturbation by a weak gauge field. If it is negative, then ∆M2
GÂ

is negative, which signals the instability of the unperturbed vacuum under this perturbation. In
particular, if the gauge field couples only to the currents J A

µ corresponding to the unbroken generators

(i.e. T Ŵ = 0), then ∆M2
GÂ

≥ 0. This is the case, for instance, of the electromagnetic field in QCD,

which gives the charged pions a positive mass [48] (see also the discussion in Ref. [275]),

∆M2
π± = −3

4
× 1

F 2
π

α

π
×

∫ ∞

0
dQ2Q2ΠQCDV -A (−Q2) , (8.1.30)

while the neutral pion remains massless. If several gauge fields are present, the total mass shift is
given by a sum of contributions of the type (8.1.28), one for each gauge field, and the stability of
the vacuum may then also depend on the relative strengths of the various gauge couplings. For
instance, if a subgroup HW of Hm is gauged, and if the Goldstone bosons transform as an irreducible
representation RW under HW , the (positive) induced mass shift can be expressed [274] in terms of
the quadratic Casimir invariant of HW for the representation RW ,

∆M2
GÂ

= − 3

4π
× 1

F 2
G

× g2W
4π

×
∫ ∞

0
dQ2Q2ΠV -A(−Q2)× C

(HW )
2 (RW ) . (8.1.31)

The expression (8.1.28) can also be rewritten as a contribution to the effective potential induced by
a gauge-field loop. In terms of the Goldstone field

U(x) = eiG(x)/FGΣε , G(x) = 2
∑

Â

GÂ(x)T Â , (8.1.32)

the relevant terms of the effective low-energy Lagrangian read [276]

Leff =
F 2
G

4
〈∂µU †∂µU〉 − CW〈TWU

(
TW)T

U †〉+ · · · , (8.1.33)

with 〈· · · 〉 denoting the flavour trace, and

CW = − 3

8π
× g2W

4π
×

∫ ∞

0
dQ2Q2ΠV -A(−Q2) . (8.1.34)

As a side remark, let us notice that the procedure used here in order to determine the induced mass
shifts of the Goldstone bosons can also be applied in the case where ∆L in Eq. (8.1.25) stands for a
mass term for the fermions, e.g.

∆mL = −2
√
Nf mS0 . (8.1.35)

Going successively through the same steps, one then reproduces the expression given in Eq. (8.1.21).
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We now turn to the second issue, namely the matrix element for the transition of a Goldstone
bosons into a pair of external gauge bosons with zero virtualities. At lowest order in the gauge
couplings, and for q2 = (p− q)2 = 0, this matrix element reads

g2W × i

∫
d4x eiq·x〈vac|T{JW

µ (x)JW
ν (0)}|GÂ(p)〉 = −g

2
WdHC
8π2FG

ǫµνρσq
ρpσdWWÂ [1 +O(m)] , (8.1.36)

with dWWÂ ≡ 2Tr({TW , TW }T Â), and dHC denotes the dimension of the representation of the hy-
percolour gauge group to which the fermions making up the current JW

µ (x) belong. Here we are
assuming (this will be the case of interest in the context of the composite Higgs models discussed

below) that only generators of Hm are weakly coupled to the external gauge fields (i.e. T Ŵ = 0).
The expression on the right-hand side is then obtained by saturating the Ward identity in Eq. (8.1.4)
with the Goldstone poles. Again, if the fermions are given masses, there are corrections, indicated as
O(m). At the level of the low-energy theory, this coupling is reproduced by the Wess-Zumino-Witten
effective action [49–51]. Writing only the relevant term, one has

LWZW
eff = − g2WdHC

64π2FG
ǫµνρσWµν(x)Wρσ(x)

∑

Â

dWWÂGÂ(x) + · · · . (8.1.37)

8.2 The electroweak sector

In this section we analyse a composite model for the Higgs sector of the SM. We consider a flavour
symmetry group G = SU(4) ≃ SO(6), spontaneously broken towards a subgroup Sp(4) ≃ SO(5).
The five Goldstone bosons transform as (1L, 1R) + (2L, 2R) under the custodial symmetry SU(2)L ×
SU(2)R ⊂ Sp(4), corresponding to a real scalar singlet plus the complex Higgs doublet. Composite
Higgs models based on this coset has been studied in Refs. [256, 277, 278], as effective theories with
a non-specified strongly-coupled dynamics. A simple UV completion is provided by a gauge theory
with four Weyl fermions ψa in a pseudoreal representation of the gauge group, that form a condensate
〈ψaψb〉 6= 0. Such a theory was considered in Refs. [10, 279–281], as a minimal hypercolour model.
The first analysis of the low energy dynamics of this theory in terms of four-fermion interactions (à la
NJL) was provided in Ref. [259]. We extend this former study by deriving additional phenomenological
predictions. We will particularise the general results of section 8.1 to this specific case, and in addition
we will compute the masses of the spin-zero and spin-one bound states, as well as their decay constants,
by using NJL techniques.

8.2.1 Scalar interactions of fermion bilinears and the mass gap

Let us consider a Sp(2N) hypercolour gauge theory and introduce four Weyl spinors ψa, in the funda-
mental representation of Sp(2N), which is pseudoreal. The transformation properties of these elemen-
tary fermions are summarised in Table 8.1. The dynamics of the SU(4)/Sp(4) spontaneous symmetry
breaking can be studied in terms of four-fermion interactions, constructed out of hypercolour-invariant,
spin-zero fermion bilinears, in a gauge NJL-like manner [52,53,56,60,282]. The Lagrangian reads [259]

Lψscal =
κA
2N

(ψaψb)(ψa ψb)−
κB
8N

[
ǫabcd(ψ

aψb)(ψcψd) + h.c.
]
, (8.2.1)

where a, b, · · · = 1, 2, 3, 4 are SU(4) indices, ǫabcd is the Levi-Civita symbol and κA,B are real, dimen-
sionful couplings. The phase of κB can be absorbed by the phase of ψ, so that we may take κB real
and positive without loss of generality.4 Each fermion bilinear between brackets is contracted into a
Lorentz and Sp(2N) invariant. The hypercolour-invariant contraction is defined as

(ψaψb) ≡ ψai Ωijψ
b
j = −(ψbψa), (8.2.2)

4In comparison to Ref. [259], we choose an opposite sign for κB , and a different but equivalent vacuum alignment
defined by Eq. (8.2.6). Combining these two different conventions, the mass gap defined by Eq. (8.2.17) has the same
expression as in Ref. [259]. This is because the two vacua are related by a U(4) transformation with determinant minus
one, that changes the sign of ǫabcd.
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where Ω is the antisymmetric 2N × 2N matrix

Ω =

(
0 11N

−11N 0

)
. (8.2.3)

The antisymmetry of the hypercolour contraction implies antisymmetry in the flavour SU(4) indices.
Other four-fermion interactions, involving spin-one fermion bilinears, are irrelevant for the discussion
of spontaneous symmetry breaking. We will introduce them later, in section 8.2.3, when we discuss
spin-one resonances.

Lorentz Sp(2N) SU(4) Sp(4)

ψai (1/2, 0) i 4a 4

ψai ≡ ψ†
ajΩji (0, 1/2) i 4a 4∗

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

aµ ∼ (ψaσ
µψa) (1/2, 1/2) 1 1 1

(V µ, Aµ)ba ∼ (ψaσ
µψb) (1/2, 1/2) 1 15ab 10 + 5

Table 8.1: The transformation properties of the elementary fermions, and of the spin-0 and spin-1
fermion bilinears, in the electroweak sector of the model. Spinor indexes are understood, and brackets
stand for a hypercolour-invariant contraction of the Sp(2N) indexes.

Note that for κB = 0 there is an additional global U(1)ψ symmetry, which reflects a classical
invariance of the Sp(2N) gauge theory, the associated Nœther current being

J 0
ψµ = −1

2
Ωij

[
ψiσµψj + ψiσµψj

]
, (8.2.4)

as follows from Eq. (8.1.1) upon taking ε = −1 and a singlet generator normalised to 114. At the
quantum level, this current has a hypercolour gauge anomaly,

∂µJ 0
ψµ =

Nψ
f g

2
HC

32π2

N(2N+1)∑

I=1

ǫµνρσG
I,µν
HC G

I,ρσ
HC , (8.2.5)

and it is explicitly broken by instantons [283,284]. Here Nψ
f = 2 is the number of Dirac flavours. The

effect of the instantons can be represented by an effective vertex [60, 283–285] that breaks the U(1)ψ
invariance. The important observation here is that for 2Nψ

f = 4 Weyl fermions in the fundamental
representation of the Sp(2N) gauge group, this effective vertex is precisely given by the term propor-
tional to κB. It is both quartic in the fermion fields, which provides the amount of U(1)ψ breaking

required, for Nψ
f = 2, by the index theorem and the instanton solution with unit winding number, and

invariant under the SU(4) global symmetry [286]. It plays the same role as the analogous six-fermion
’t Hooft determinant effective Lagrangian [60,283–285] for QCD with three flavours, that parametrises
the instanton-induced anomaly interactions, explaining an η′ mass much greater than the masses of
the other Goldstone boson states. Similarly, in the present case, κB 6= 0 is therefore crucial to evade
the additional U(1)ψ Goldstone boson.

While this picture is essentially correct when considering the electroweak SU(4) sector in isolation,
we stress that it will be significantly modified when a coloured sector is introduced, in order to
provide composite partners for the top quark, as we will discuss in section 9.1. This sector also has
an anomalous extra U(1)X symmetry, but one linear combination of the two U(1) currents remains
anomaly free, which implies that the effective ’t Hooft determinant term is no longer given by the
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κB operator. This will have some important consequences on the spectrum of resonances, but at a
first stage we prefer to neglect the mixing with the coloured sector, as the results are much more
transparent and it will be easy to generalise them.

We assume that the SU(4) global symmetry is exact, that is, we work in the chiral limit where
ψa has no elementary mass term. The SU(4) Nœther currents are given by Eq. (8.1.1), with Ωǫ = Ω

defined in Eq. (8.2.3). The SU(4) generators decompose into five broken ones, T Â, living in the
SU(4)/Sp(4) coset, and ten unbroken ones, TA, whose explicit expressions are given in appendix F.
They satisfy the conditions spelled out in Eq. (8.1.2), where Σǫ stands for

Σ0 ≡




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 . (8.2.6)

By introducing in a standard manner [56, 259, 282] an auxiliary (antisymmetric) scalar field M ,
transforming as a gauge singlet and a flavour SU(4) sextet, the Lagrangian (8.2.1) can be rewritten
equivalently as

Lψscal = − 1

κA + κB

[(
κAM

∗
ab −

κB
2
ǫabcdM

cd
)
(ψaψb) + h.c.

]

− 2NκA
(κA + κB)2

MabM∗
ab +

1

2

NκB
(κA + κB)2

(ǫabcdM
abM cd + h.c.) , (8.2.7)

where the equation of motion for M gives

Mab = −κA + κB
2N

(
ψaψb

)
. (8.2.8)

The matrix field M , being complex and antisymmetric, can always be rotated by an SU(4) transfor-
mation into the form

M =




0 0 m1 0
0 0 0 m2

−m1 0 0 0
0 −m2 0 0


 . (8.2.9)

Once (ψaψb) condenses, M acquires a vacuum expectation value (vev) and the Yukawa couplings
induce dynamical fermion masses. One can derive from Eq. (8.2.7) the one-loop Coleman-Weinberg
effective potential [287], by integrating over fermions, and study the occurrence of spontaneous symme-
try breaking by looking for a non-trivial minimum with 〈m1,2〉 6= 0 [259]. One finds that spontaneous
symmetry breaking is only possible for 2〈m1〉 = 2〈m2〉 ≡ Mψ, in agreement with the Vafa-Witten
theorem. Below we provide an alternative derivation of the same result, which will also be useful for
studying the spectrum of scalar resonances.

It is convenient to introduce the combination

Mab =
1

κA + κB

(
κAM

∗
ab −

κB
2
ǫabcdM

cd
)
, (8.2.10)

that can be expanded around the vacuum as

M =
1

2
MψΣ0 +

(
σ + iη′

)
Σ0T

0
ψ +

(
SÂ + iGÂ

)
Σ0T

Â . (8.2.11)

The matrix M decomposes, according to 6SU(4) = (1 + 5)Sp(4), into a scalar singlet σ, a pseudoscalar

singlet η′, a scalar quintuplet SÂ, and a pseudoscalar quintuplet GÂ, which will be identified with the
physical meson resonances. Using the identity ǫabcd = −(Σ0)ab(Σ0)cd+(Σ0)ac(Σ0)bd−(Σ0)ad(Σ0)bc, and
since, as already noted, κB can be taken real and positive without loss of generality, the Lagrangian
(8.2.7) can be rewritten as

Lψscal = −(ψMψ + h.c.)−N
[
P−(σ

2 +G2
Â
) + P+(η

′2 + S2
Â
)
]
, (8.2.12)
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where

P± =
κA

κ2A − κ2B
± κB∣∣κ2A − κ2B

∣∣ =
1

κA ∓ κB
. (8.2.13)

The sign in the last equality corresponds to the case κ2A > κ2B, that will turn out to be the relevant
region of parameter space. Eqs. (8.2.11) and (8.2.12) define the Feynman rules for the fermion Yukawa

couplings to the mesons: the four-fermion interactions mediated by σ and GÂ are proportional to P−1
− ,

while the interactions mediated by η′ and SÂ are proportional to P−1
+ .

Indeed, the Lagrangian in Eq. (8.2.1) can be directly written in terms of the fermion bilinears cou-
pled to the mesons, upon using Fierz identities for SU(4) and Sp(4), derived in Appendix I. The re-

placements δcaδ
d
b−δdaδcb = 4(Σ0T

0
ψ)ab(T

0
ψΣ0)

cd+4(Σ0T
Â)ab(T

ÂΣ0)
cd and ǫabcd = −4(Σ0T

0
ψ)ab(Σ0T

0
ψ)cd+

4(Σ0T
Â)ab(Σ0T

Â)cd in Eq. (8.2.1), lead to

Lψscal = 2
κA
(2N)

[(
ψΣ0T

0
ψψ

) (
ψT 0

ψΣ0ψ
)
+

(
ψΣ0T

Âψ
)(

ψT ÂΣ0ψ
)]

+
κB
(2N)

[(
ψΣ0T

0
ψψ

) (
ψΣ0T

0
ψψ

)
−

(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ

)
+ h.c.

]
. (8.2.14)

Most of the resonance spectrum calculations could be performed directly from the four-fermion in-
teractions in Eq. (8.2.14). Nonetheless, the introduction of auxiliary fields is convenient, because
Eq. (8.2.11) identifies the relevant scalar degrees of freedom, which will become dynamical resonances
upon 1/N resummation of the interactions in their respective channels, as we will examine below.

= +

ψ ψ

2κA

(2N)
2κB

(2N)

ψ ψ ψ ψ ψ ψ

Figure 8.1: Graphical illustration of the mass gap equation, in the leading 1/N -approximation. Thick
and thin lines represent dressed and bare fermion propagators, respectively.

The first important step for the dynamical calculations of the resonance spectrum is to determine
the mass gap, namely whether a non-trivial dynamical fermion mass, signalling the spontaneous break-
ing of SU(4) to Sp(4), develops within the NJL approximation. Let us consider the self-consistent
mass gap equation [52, 56, 282], obtained from the one-loop tadpole graph, as illustrated in Fig. 8.1.
It is well-known that this is equivalent to computing the minimum of the one-loop effective potential.
Note that, just like for the standard NJL model, only the σ-exchange does contribute, namely only
the spin-zero, parity-even, Sp(4)-singlet fermion bilinear can take a vev. Therefore the mass-gap
equation involves solely the inverse coupling P−. The computation of the diagrams in Fig. 8.1 leads
to a self-consistent condition on the dynamical fermion mass Mψ,

−iMψ = 2

(
i
2P−1

−
8(2N)

)
(−2)Tr[Ω2]Tr[Σ2

0]

∫ Λ d4k

(2π)4
iMψ

k2 −M2
ψ + iε

, (8.2.15)

where the first factor 2 accounts for the normalisation Mψ ≡ 2〈m1,2〉, (−2) is the trace over Weyl
spinor indices in the loop, Tr[Ω2] = −2N is the trace over hypercolour, and Tr[Σ2

0] = −4 the one
over flavour. Note that the factors 2N cancel, thanks to the appropriate large-N normalisation of the
original couplings κA,B in Eq. (8.2.14). Thus, one obtains

1− 4P−1
− Ã0(M

2
ψ) = 0 , (8.2.16)
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where the basic one-loop scalar integral Ã0 is defined in appendix G. In order to regularise the
otherwise divergent integral, we introduce a (covariant 4-dimensional) cut-off Λ, which parametrises
the scale at which the effective four-fermion interaction ceases to be valid and all degrees of freedom
of the underlying gauge theory become relevant. Computing the integral, the gap equation takes the
explicit form

1−
M2
ψ

Λ2
ln

(
Λ2 +M2

ψ

M2
ψ

)
=

4π2

Λ2
P− ≡ 1

ξ
, (8.2.17)

in full agreement with the minimisation of the one-loop effective potential in Ref. [259].
Eq. (8.2.17) has a non-trivial solution, Mψ 6= 0, as long as ξ > 1, which implies κ2A > κ2B and

P−1
− = κA + κB > 4π2/Λ2. The existence of a minimal, critical coupling to realize spontaneous

symmetry breaking is a characteristic property of the NJL model. On the other hand, the consistency
requirement Mψ/Λ . 1 implies an upper bound on the coupling, ξ ≡ Λ2(κA + κB)/(4π

2) . (1 −
ln 2)−1 ≃ 3.25, see also Fig. 8.3 below. Note that, if the underlying Sp(2N) gauge theory confines, it
necessarily breaks SU(4) into Sp(4) as a consequence of the anomaly matching discussed in section
8.1.2, because the fermions ψ cannot form baryons. This means that the true strong dynamics has
to correspond to a super-critical value of κA + κB. Note that this conclusion holds for the ψ-sector
in isolation, but it may not be the case when a coloured X-sector will be added in section 9.1, and
baryons become possible, see the discussion in section 9.1.1. Note also that, in the NJL large-N
approximation, the mass gap Mψ and the fermion condensate,

1

2
〈(ψaψb) + (ψ

a
ψ
b
)〉 ≡ 〈ΨΨ〉Σab0 , 〈ΨΨ〉 = 1√

Nψ
f

〈Sψ0 〉, (8.2.18)

corresponding to the tadpole in Fig. 8.1, are trivially related:

〈ΨΨ〉 ≡ −2(2N)MψÃ0(M
2
ψ) = − N

κA + κB
Mψ. (8.2.19)

We have also indicated the direct relation between the quark condensate and the vacuum expectation
value 〈Sψ0 〉 of the singlet scalar density, at this level of NJL approximation, with Sψ0 defined in
Eq. (8.1.6).

= + · · ·φ φ + + φφ φφφφ Kφ KφKφ

Figure 8.2: Resummation of leading 1/N graphs for a mesonic two-point correlator, corresponding to
a composite meson exchange.

8.2.2 Masses of scalar resonances

The masses and the couplings of the composite mesonic resonances can be computed, at first order in
1/N , by performing the resummation of the dominant large-N graphs contributing to the two-point
functions with the appropriate quantum numbers, according to a well-known procedure [52, 56, 60,
282, 288]. The resummation takes the form of a geometric series, as illustrated in Fig. 8.2. For the
two-point functions defined in Eqs. (8.1.8) and (8.1.9), the outcome of this procedure translates into
the generic formula

Πφ(q
2) ≡ Π̃φ(q

2)

1− 2KφΠ̃φ(q2)
, (8.2.20)

where Kφ are combinations of the four-fermion couplings in Eq. (8.2.14). The expressions of Kφ and
of the one-loop correlators Π̃φ(q

2) have been collected in Table 8.2. In this section, we will discuss
the scalar and pseudoscalar channels, while the spin-one channels will be discussed in section 8.2.4.
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Before starting this discussion, we would like to make a few remarks on the resummed correlators,
some of which being also relevant for the spin-one channels.

• Expression (8.2.20) is not applicable in this simple form in the pseudoscalar channel, φ = GÂ, η′,
due to the fact that, at one loop, the axial two-point function also receives a longitudinal part,
which will then mix with the pseudoscalar two-point function when the resummation in Fig. 8.2
is performed. For the time being, we can ignore these aspects, which will be treated in detail
in Section 8.2.5, and, in the meantime, we proceed with the general discussion of masses and
couplings on the basis of Eq. (8.2.20).

• The corresponding resonance masses Mφ are determined by the poles of the resummed propa-
gators,

1− 2Kφ Π̃φ(q
2 =M2

φ) = 0 . (8.2.21)

In order to discuss some general features of this type of equation, let us point out that the
functions Π̃φ(q

2) can be defined in the cut complex q2-plane, where the cut lies on the real
positive axis and starts at q2 = 4M2

ψ. The cut results from a logarithmic branch point, so that

the functions Π̃φ(q
2) become multi-valued through analytic continuation across the cut. These

properties simply reflect those of the function B̃0(q
2,M2

ψ) itself. In general, Eq. (8.2.21) has

solutions for complex values of q2, lying on the second Riemann sheet, which are interpreted as
resonances, generated dynamically through the resummation procedure.

• Other solutions to Eq. (8.2.21) than poles on the second sheet are possible. For instance, there
can exist a critical value Kcrit

φ , such that if the coupling Kφ satisfies Kφ ≥ Kcrit
φ > 0, then

Eq. (8.2.21) possesses (in addition) a real solution 0 ≤ Mφ ≤ 2Mψ [289], corresponding to a
two-fermion bound state. As we will see below, this situation arises in the singlet pseudoscalar
channel (and also in the vector channel, but this time for Kφ ≤ Kcrit

φ < 0). As Kφ moves

towards Kcrit
φ from above, the bound-state mass moves from zero towards the value 2Mψ. When

Kφ < Kcrit
φ , this solution of Eq. (8.2.21) moves back towards the origin, but now on the real

axis of the second Riemann sheet, and thus becomes a “virtual-state” solution [289].

• Another aspect concerning the solutions of Eq. (8.2.21) is intimately connected to the fact that,
in order to make this equation meaningful, it has been necessary to introduce a regularisation
for the function B̃0(q

2,M2
ψ). As a consequence, there are solutions corresponding to real, but

negative, values of q2, q2 = −M2
gh-φ >∼ −3Λ2. These “ghost” singularities5 of the functions

Πφ(q
2) occur quite far from the physical region, and have only a small influence on, for instance,

the values of the resonance masses. When determining the latter, we thus systematically discard
them. But they have to be taken into account when considering more global properties of the
functions Πφ(q

2), like the spectral sum rules of Section 8.1.4. These will be discussed within the
framework of the NJL approximation below, in Section 8.2.7.

• From a practical point of view, resonance solutions to Eq. (8.2.21) will not be determined by
looking for poles on the second sheet, rather by solving a real equation as follows. We rewrite
the denominator of Eq. (8.2.20) as 1−2KφΠ̃φ(q

2) = cφ0 (q
2)+ cφ1 (q

2)q2, where the q2-dependence

of the coefficients cφ0,1(q
2) comes from the loop function B̃0(q

2,M2
ψ) only, see table 8.2. The

meson mass is then defined implicitly by

M2
φ = Re[gφ(M

2
φ)] , gφ(q

2) ≡ −c
φ
0 (q

2)

cφ1 (q
2)
. (8.2.22)

The value Mφ obtained this way remains a good approximation to the mass given by the real
part of the resonance pole, as long as the imaginary part of gφ(M

2
φ) remains small,

∣∣∣∣∣
Im[gφ(M

2
φ)]

Re[gφ(M
2
φ)]

∣∣∣∣∣ < 1 . (8.2.23)

5These pathologies are absent if the Pauli-Villars regularisation is adopted [290], but they reappear in another guise.
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Indeed, the solution of Eq. (8.2.22) may be larger than the threshold, M2
φ > 4M2

ψ, so that the

loop function B̃0(M
2
φ,M

2
ψ) develops an imaginary part. This may happen in the case of the

Sp(4)-singlet pseudoscalar state, see Eq. (8.2.26), and it always happens in the case of the non-
singlet scalar state, see Eq. (8.2.28). This imaginary part corresponds to the unphysical decay
of a meson into two constituent fermions, and reflects the well known fact that the NJL model
does not account for confinement. In what follows, it will be understood that resonance masses
are defined as the solutions of Eq. (8.2.22) and, in order to define a consistency condition for
the NJL approximation to be trustable, we will require that Eq. (8.2.23) holds. Note also that,
when extracting the expressions of the pole masses, it will be often convenient to take advantage
of the gap equation (8.2.16), in order to obtain a simpler form of the solutions.

φ Kφ Π̃φ(q
2)

GÂ 2(κA + κB)/(2N)
Π̃P (q

2) = (2N)
[
Ã0(M

2
ψ)−

q2

2 B̃0(q
2,M2

ψ)
]

η′ 2(κA − κB)/(2N)

SÂ 2(κA − κB)/(2N)
Π̃S(q

2) = (2N)
[
Ã0(M

2
ψ)− 1

2(q
2 − 4M2

ψ)B̃0(q
2,M2

ψ)
]

σ 2(κA + κB)/(2N)

V A
µ −2κD/(2N) Π̃V (q

2) = 1
3(2N)

[
− 2M2

ψB̃0(0,M
2
ψ) + (q2 + 2M2

ψ)B̃0(q
2,M2

ψ)
]

AÂµ −2κD/(2N) Π̃A(q
2) = 1

3(2N)
[
− 2M2

ψB̃0(0,M
2
ψ) + (q2 − 4M2

ψ)B̃0(q
2,M2

ψ)
]

aµ −2κC/(2N) Π̃LA(q
2) = −2(2N)M2

ψB̃0(q
2,M2

ψ)

AÂµ −GÂ

Π̃AP (q
2) = −(2N)MψB̃0(q

2,M2
ψ)

aµ − η′

Table 8.2: The couplingsKφ and the expressions of the one-loop spin-0 and spin-1 two-point functions.
We also give the expression of the mixed (one-loop) pseudoscalar-longitudinal axial correlator, that
enters in the analysis of both the quintuplet and singlet sectors. The explicit calculation of the
correlators Π̃φ(q

2) is detailed in appendix H.

After these general considerations, we now turn to the analysis of the scalar and pseudoscalar
channels of the model. The functions Π̃S/P (q

2) correspond to the one-loop estimates of the two-
point functions ΠS/P (q

2) defined in Eq. (8.1.8). Notice that one needs Kφ ∝ 1/N , in order for the
1/N -expansion to be well-defined. Indeed, according to section 8.2.1 (see also Table 8.2), we have
Kσ,G = 2(κA + κB)/(2N) and KS,η′ = 2(κA − κB)/(2N).

Let us consider first the pseudoscalar channels, ignoring, for the time being, the issue of mixing with
the longitudinal part of the axial correlator. After taking the traces and evaluating the momentum
integral, the pseudoscalar two-point correlator in the SU(4) sector takes the form

Π̃P (q
2) = (2N)

[
Ã0(M

2
ψ)−

q2

2
B̃0(q

2,M2
ψ)

]
, (8.2.24)

where the loop function B̃0(q
2,M2) is given in appendix G. In the case of the Goldstone states GÂ,

Eq. (8.2.21) becomes

1−4
(κA + κB)

2N
Π̃P (M

2
G) = 1−4(κA+κB)

[
Ã0(M

2
ψ)−

M2
G

2
B̃0(M

2
G,M

2
ψ)

]
= 2M2

G(κA+κB)B̃0(M
2
G,M

2
ψ) = 0 ,

(8.2.25)
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and the term proportional to Ã0 cancels out upon using the mass-gap equation, Eq. (8.2.16), a well-
known feature of the standard NJL model [52, 56]. As a consequence, one is left with an exactly
massless inverse propagator, MG = 0, as it should be for the Goldstone boson state.

A similar computation for the Sp(4)-singlet pseudoscalar η′, using the information provided by
Table 8.2, leads to

M2
η′ = gη′(M

2
η′) =

2Ã0(M
2
ψ)

B̃0(M2
η′ ,M

2
ψ)

(
1− P+

P−

)
= − κB

κ2A − κ2B

1

B̃0(M2
η′ ,M

2
ψ)

, (8.2.26)

where we have again used Eq. (8.2.16). In the above equation and in the following expressions of the
resonance masses, it is implicitly assumed that only the real part of gφ(M

2
φ) is taken into account,

according to Eq. (8.2.22). Note that the constraint κ2A > κ2B, needed for the existence of a non-
trivial solution of the gap equation, also ensures that M2

η′ is positive. As it will be discussed in
subsection 9.2.5, a similar but stronger constraint holds when the coloured sector is introduced. To
roughly estimate the expected range for Mη′ , one may notice that B̃0(q

2,M2
ψ) is real and has a rather

moderate q2 dependence for q2 ≪ 4M2
ψ, so that if M2

η′ lies in this range, one can use the approximate
expression

M2
η′ ≃ − κB

κ2A − κ2B

1

B̃0(0,M2
ψ)

≃ 4

ξ

κB/κA
1− κB/κA

Λ2

ln(Λ2/M2
ψ)− 1

, (8.2.27)

where the expression for B̃0(0,M
2
ψ) is given in Eq. (G.3). Thus Mη′ may become arbitrarily small for

κB/κA → 0, as the extra U(1)ψ symmetry is restored when κB = 0, and η′ turns into the associated
Goldstone boson. However, Mη′ rapidly increases with κB/κA to become of order Λ. Note that, in
the large-N limit, one expects M2

η′ ∼ 1/N , as for the η′ mass in QCD [291]. This indicates that
the four-fermion couplings, normalised as in Eq. (8.2.1), should scale as κB/κA ∼ 1/N . Large-N
arguments indicate that κA is N -independent, as the associated four-fermion operator is generated
from the hypercolour current-current interaction (for details see appendix I.1). Therefore, the correct
scaling is reproduced for κB = κB/(2N), with an N -independent κB, and the associated four-fermion
operator, induced by the hypercolour anomaly, scales as 1/N2. This will be consistent with the effect
of the anomaly in the complete model that includes the coloured sector, see section 9.1.3.

For the scalar channels, the two-point function is to be found in Table 8.2, and the corresponding
scalar resonance masses are

M2
σ = 4M2

ψ , M2
S = 4M2

ψ +M2
η′
B̃0(M

2
η′ ,M

2
ψ)

B̃0(M2
S ,M

2
ψ)

≃M2
σ +M2

η′ , (8.2.28)

where one recognises the same relation Mσ = 2Mψ, as in the standard NJL model for QCD with
two flavours. The relation M2

S ≃M2
η′ +M2

σ holds again if one can neglect the difference between the

function B̃0(p
2,M2

ψ) evaluated at p2 =M2
η′ and at p2 =M2

S .
We stress that all previous expressions for the spectrum of spin-zero resonances hold in the pure

chiral limit, where the SU(4)/Sp(4) Goldstone bosons GÂ, including the Higgs, are massless. Eventu-
ally, they will receive a non-zero effective potential, radiatively induced by the SM gauge and Yukawa
couplings, which break explicitly the SU(4) symmetry. In particular, the top quark Yukawa coupling
is generically expected to destabilise the vacuum, and to trigger EWSB, see Refs. [252, 292] for re-
views. This implies that the masses of some resonances, obtained in the NJL large-N approximation,
may receive corrections of order O(m2

top/Λ
2). These represent typically mild corrections for the non-

Goldstone resonances, whose masses ∼ Λ are significantly larger than the electroweak scale. Thus,
the qualitative features of the spectrum of meson resonances are not expected to depart from those
exhibited here, once the effect of the explicit symmetry-breaking couplings is added to the picture.
One should also remember that, in any case, the NJL large-N approximation already constitutes a
limitation to the precision that can be achieved. The radiative contribution to the pseudo-Goldstone
Higgs mass, induced from the external electroweak gauge fields, is given in Eq. (F.7) (see also the
general discussion in section 8.1.5). However, this contribution plays a secondary role in EWSB: since
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it is positive, it cannot destabilise the Sp(4)-invariant vacuum, and it should be overcome by the one
from the top Yukawa coupling [252,292].

In the traditional NJL literature [52, 56, 60, 282], the resonance masses are determined from the
resummed scattering amplitudes for ψψ → ψψ in the various channels. These amplitudes involve
the same couplings Kφ and functions Π̃φ(p

2) as in Eq. (8.2.20). Moreover, they also allow to define
couplings between the elementary fermions and the resonances. The interested reader will find a brief
discussion of these issues, not directly related to our main purposes, in App. H.

8.2.3 Vector interactions of fermion bilinears

Let us now consider vector bilinears, in order to study spin-one resonances. There are two independent
four-fermion vector-vector operators, that can be written as

Lψvect =
κ′C
2N

(
ψaσ

µψa
) (
ψbσµψ

b
)
+
κ′D
2N

(
ψaσ

µψb
) (
ψbσµψ

a
)
, (8.2.29)

where the coupling constants κ′C and κ′D are real. With the overall minus sign convention, it turns
out that consistent (non-tachyonic) spin-one resonance masses are obtained for κ′C,D > 0, in the
same way as for the NJL vector interaction in QCD. Applying the SU(4) Fierz identity given by
Eq. (I.22), the Lagrangian can be rewritten in the ‘physical’ channels, corresponding to definite Sp(4)
representations,

Lψvect =
κC
2N

(
ψ T 0

ψ σ
µψ

)2
+
κD
2N

(
ψTAσµψ

)2
+
κD
2N

(
ψ T Â σµψ

)2
, (8.2.30)

where κD = 2κ′D, κC = 8κ′C + 2κ′D, and contracted flavour indexes are understood, as well as

summations over generator labels A and Â. Introducing auxiliary vector fields, the vector sector
Lagrangian takes the form

Lψvect = −aµ(ψ T 0
ψ σ

µψ)− V A
µ (ψ TA σµψ)−AÂµ (ψ T

Â σµψ)− N

2κC
aµaµ −

N

2κD

(
V A
µ V

Aµ +AÂµA
Âµ

)
,

(8.2.31)

with vectors V A
µ ∼ 10Sp(4), and axial vectors (aµ, A

Â
µ ) ∼ (1+ 5)Sp(4). Their transformation properties

are summarised in Table 8.1. This Lagrangian defines the strength of the four-fermion interactions in

the three physical channels mediated by aµ, V
A
µ and AÂµ .

We remark that additional spin-one resonances can be associated to the fermion bilinear (ψaσµνψb) ∼
10Sp(4), or to its conjugate. However, one can check that the corresponding four-fermion interactions
vanish because of Lorentz and/or SU(4) invariance. Therefore, to describe these resonances one
should consider higher-dimensional operators. Although such an exercise is feasible with analogous
NJL techniques, it goes beyond the scope of this analysis.

In general, the couplings κC and κD are additional free parameters with respect to those in the
spin-zero sector, and in the following we will provide expressions for the vector masses and couplings
as functions of these couplings. However, κC and κD may be related to the scalar sector coupling
κA, if one assumes that the low-energy effective interactions, between two hypercolour-singlet fermion
bilinears, originate from a one-hypergluon exchange current-current interaction, as determined by
the underlying hypercolour gauge interaction. This may be justified in the large-N approximation
(or equivalently ‘ladder’ approximation for the current-current interaction) and it proves to be a
reasonably good approximation in the NJL-QCD case [60, 293]. Under such an assumption, one can
apply Fierz identities for Weyl, as well as for SU(4) and Sp(2N), indices, as detailed in appendix I,
in order to relate the coefficients of the various four-fermion operators. We obtain that the vector
couplings of Eq. (8.2.30) are simply related to the scalar coupling of Eq. (8.2.14) by

κA = κC = κD . (8.2.32)

An analogous relation holds in the NJL-QCD case [60], where the couplings of the scalar-scalar
and vector-vector interactions are identical. We will use Eq. (8.2.32) as a benchmark for numerical
illustration, however one should keep in mind that the true dynamics may appreciably depart from
this naive relation.
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8.2.4 Masses of vector resonances

The vector meson masses can be computed, at leading order in the 1/N expansion, similarly to the
scalar meson channels, from the resummed two-point functions, and the geometric series illustrated in
Fig. 8.2 now leads, in this approximation, to the following expressions for the vector or axial two-point
correlators ΠV,A(p

2) defined in Eq. (8.1.7),

ΠV/A(q
2) ≡ −

Π̃V/A(q
2)

q2[1− 2KV/AΠ̃V/A(q2)]
, (8.2.33)

We have introduced one-loop correlators Π̃V/A(q
2) with a normalisation that is more convenient for

our purposes, so that Π̃V/A(q
2) ≡ −q2ΠV/A(q2)|1−loop. Similarly, for the one-loop axial longitudinal

part we have Π̃LA(q
2) ≡ q2ΠLA(q

2)|1−loop, where ΠLA(q2) is defined in Eq. (8.1.18). More precisely, upon
taking the traces over spinor indices, flavour and hypercolour, the one-loop two-point vector and axial
correlators take the form,

Π̃µν,ABV (q) = Π̃V (q
2)TµνδAB, Π̃µν,ÂB̂A (q) =

[
Π̃A(q

2)Tµν + Π̃LA(q
2)Lµν

]
δÂB̂, (8.2.34)

where the transverse and longitudinal projectors are defined as

Tµν = ηµν − qµqν

q2
, Lµν =

qµqν

q2
, (8.2.35)

and where the expressions of the functions Π̃V/A(q
2) and Π̃LA(q

2) are given in Table 8.2. One should
be cautious to adopt a regularisation that preserves SU(4) current conservation for the one-loop
correlators, which is not the case with the standard NJL cutoff regularisation. There are various ways
to deal with this well-known problem [56], the simplest being to use dimensional regularisation for
the intermediate stages of the calculation. In this way the one-loop vector correlator is automatically
transverse. In the final expression for the correlators, the formally divergent loop function B̃0 can
be written as a function of the D = 4 cutoff Λ, see Eq. (G.4). The latter is then interpreted as the
physical cutoff of the NJL model.

As compared to the two-point axial correlator in the massless limit, defined by Eq. (8.1.7), and as
already mentioned in Section 8.2.2, the one-loop expression (8.2.34) also exhibits a longitudinal part.
This is a specific trait of the NJL model, where the dynamically generated mass Mψ acts here like
an explicit symmetry-breaking term. We will come back later on the manner this longitudinal piece
is taken care of. For the time being, one may notice that the transverse part of the two-point axial
correlator reproduces the expected physical features. Indeed, the resummed function ΠA(q

2) exhibits
the massless pole6 due to the contribution of the Goldstone bosons, but it also has a pole from the

axial-vector state AÂµ . This second pole mass is extracted from Eq. (8.2.21), by injecting the coupling

KA = −2κD/(2N) 7 and the transverse part of the correlator, Π̃A(q
2). One obtains

M2
A = − 3

4κDB̃0(M2
A,M

2
ψ)

+ 2M2
ψ

B̃0(0,M
2
ψ)

B̃0(M2
A,M

2
ψ)

+ 4M2
ψ . (8.2.36)

The pole mass equation for the axial vector singlet aµ is obtained with the replacements κD → κC
and MA →Ma.

The V A
µ pole mass can likewise be extracted from Eq. (8.2.21), with the replacements Kφ → KV =

−2κD/(2N) and Π̃φ(p
2) → Π̃V (p

2). This leads to

M2
V = − 3

4κDB̃0(M2
V ,M

2
ψ)

+ 2M2
ψ

B̃0(0,M
2
ψ)

B̃0(M2
V ,M

2
ψ)

− 2M2
ψ . (8.2.37)

6As expected, such a massless pole does not occur in ΠV (q
2), defined in Eq. (8.2.33), since, as can be inferred from

Table 8.2, Π̃V (q
2) vanishes for q2 = 0.

7Note the relative minus sign between the four-fermion couplings in the Lagrangian of Eq. (8.2.30), and the couplings
KV,A that enter in the denominator of the resummed correlators in Eq. (8.2.33). This follows from the proper definition
of the argument of the associated geometric series.
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In estimating the sizes of the spin-one resonance masses, note that B̃0(p
2,M2

ψ) is real for 0 ≤ p2 ≤
4M2

ψ, and negative in the physically relevant range of 0 < M2
ψ < Λ2, with |B̃0(p

2,M2
ψ)| ≥ |B̃0(0,M

2
ψ)|.

The term proportional to 1/κD on the right-hand side of Eqs. (8.2.37) and (8.2.36) is positive for κD >
0, and gives the dominant contribution to MV,A for, roughly, κDM

2
ψ . 4π2, that is (Mψ/Λ)

2 . 1/ξ

when one takes κD ≃ κA ≫ κB. By neglecting the difference between B̃0(M
2
V ,M

2
ψ) and B̃0(M

2
A,M

2
ψ),

we obtain the usual NJL relation between the axial and vector masses,

M2
A ≃M2

V + 6M2
ψ . (8.2.38)

When one adopts the exact self-consistent pole mass definitions,MA is somewhat below the prediction
of Eq. (8.2.38), by typically 5 − 10%. Also, the singlet mass Ma is equal to MA when κD = κC as
in Eq. (8.2.32). As already mentioned in the general considerations at the beginning of Section 8.2.2,
depending on the values of the couplings, one may have resonance masses satisfying M2

φ > 4M2
ψ, in

which case B̃0(M
2
φ,M

2
ψ) develops an imaginary part. Indeed, this is always the case for MA, as one

reads off Eq. (8.2.38). In such cases, the resonance mass is obtained upon solving Eq. (8.2.22), and we
consider that the NJL predictions remain sensible as long as the width Γφ of the resonance, defined
in Eq. (8.2.23), does not exceed its mass.

8.2.5 Goldstone decay constant and pseudoscalar-axial mixing

A key parameter of the composite sector is the Goldstone boson decay constant FG, the analogous of
Fπ in QCD. We recall that, when the Higgs is a composite pseudo-Goldstone boson, the electroweak
precision parameters, such as S, T , and the Higgs couplings receive corrections of order (v/f)2 with
respect to their SM value, where v ≃ 246 GeV and f ≡

√
2FG. Here f is the Goldstone decay

constant in the normalisation that is generally adopted in the composite Higgs literature.8 Thus, f
is the physical scale most directly constrained by precision measurements, f & (0.5 − 1) TeV, the
exact bound depending on the spontaneous symmetry breaking pattern, as well as on the flavour
representations of the spin-one and spin-one-half composite resonances coupled to the SM fields.
Therefore, it will be convenient to express all the resonance masses in units of f , and in the following
we will adopt the more conservative bound f & 1 TeV.

The decay constant FG, as defined by Eq. (8.1.22), can most directly be extracted from the two-
point axial transverse correlator, introduced in Eq. (8.1.7), through the residue of the Goldstone boson
pole. Identifying this correlator in the NJL approximation with the resummed correlator defined by
Eq. (8.2.33) and using the explicit expression in Table 8.2, one obtains

F 2
G = lim

q2→0

[
−q2ΠA(q2)

]
=

Π̃A(0)

1− 2KAΠ̃A(0)
=

F̃ 2
G

1− 2KAF̃ 2
G

= gA(0)F̃
2
G , (8.2.39)

where we have defined the axial coupling form factor

gA(q
2) ≡ [1− 2KAΠ̃

L
A(q

2)]−1 =

[
1 +

4κD
2N

Π̃LA(q
2)

]−1

(8.2.40)

and the one-loop decay constant

F̃ 2
G ≡ Π̃A(0) = −2 (2N)M2

ψB̃0(0,M
2
ψ) = Π̃LA(0). (8.2.41)

At this point, one should remark that F̃G would be the complete NJL result for the Goldstone decay
constant only if one would consider the scalar sector in isolation, i.e. by switching off the axial vector
coupling κD. However, since by definition the Goldstone boson couples to the axial current, a non-
zero κD implies a non-trivial mixing of the pseudoscalar and axial vector channels, that affects the

8 The relation f ≡
√
2FG follows from our definitions of FG, see Eq. (8.1.22), and of the Goldstone matrix U ,

see Eq. (8.1.32). After the gauging of the SM group, the covariant derivative acting on the Goldstone bosons reads
DµU = ∂µU − iVµU − iUVTµ , where the external source Vµ is defined by Eq. (F.6). This determines the non-linear
corrections to the electroweak precision parameters in terms of v/f .
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Figure 8.3: The mass gap Mψ and the Goldstone decay constant f =
√
2FG, in units of the cutoff Λ,

as a function of the dimensionless coupling ξ ≡ (κA+κB)Λ
2/(4π2). For ξ ≤ 1 there is no spontaneous

symmetry breaking, Mψ = 0, while for ξ & 3.25 one has Mψ & Λ and the NJL description is no
longer reliable. The decay constant f is proportional to

√
N , where Sp(2N) is the hypercolour gauge

group. In the complete model including a coloured sector (see section 9.1), one finds that N ≥ 2 is
required to allow for fermion-trilinear top partners, and N ≤ 18 is needed to preserve hypercolour
asymptotic freedom [259]. One further needs N ≤ 6 to avoid Landau poles in the SM gauge couplings
below 100 TeV (see section 8.2.6). The red dashed line indicates the non-resummed decay constant
f̃ =

√
2F̃G, while the upper (lower) red solid line corresponds to the resummed f , for κD = κA and

κB = 0 (κB = κA).

expression of the decay constant. In order to take into account this effect and to define consistently
FG, one needs to consider the resummed transverse axial-vector correlator ΠA(q

2) of Eq. (8.2.33), as
shown in (8.2.39) above. This equation gives the complete NJL approximation for FG, which should
be matched with its experimental value, once it becomes available, as is the case of Fπ in the NJL
approximation of QCD [56,60].

The behaviour of FG is illustrated in Fig. 8.3, as a function of the dimensionless coupling ξ.
Combining the definition of ξ in Eq. (8.2.17) with the explicit form of B̃0(0,M

2
ψ) given in Eq. (G.3),

one obtains

F̃ 2
G =

N

4π2
Λ2

(
ξ − 1

ξ
−

M2
ψ

Λ2 +M2
ψ

)
. (8.2.42)

Closely above the critical coupling, ξ = 1, the mass gap is much smaller than the cutoff,Mψ ≪ Λ, and
F̃G grows rapidly with ξ. As ξ−1 becomes of order one, the mass gap approaches the cutoff, Mψ . Λ,
while F̃G stops growing and remains below the cutoff by a factor of a few, f̃ ≡

√
2F̃G ≃

√
NΛ/10.

The resummed FG, see Eq. (8.2.39), is smaller, as KA is negative. In Fig. 8.3 we assumed Eq. (8.2.32)
to hold, so that KA = −4π2ξ/[NΛ2(1 + κB/κA)], which leads to f ≃ (0.6− 0.8)f̃ .

As already mentioned at several places in this section, a non-vanishing axial-vector coupling κD 6= 0
implies a nontrivial mixing between the pseudoscalar and the axial longitudinal channel. Therefore,
the definition of the resummed pseudoscalar correlator ΠP (q

2) in Eq. (8.2.20) should be appropriately
generalised in order to account for this mixing. In the process, we will also define a resummed

axial longitudinal correlator Π
L
A(q

2), we will recover consistency relations among the Goldstone decay
constants, and determine more precisely the properties of the non-Goldstone pseudoscalar η′. We
discuss first the quintuplet G− Aµ mixing, while the similar analysis of the singlet η′ − aµ mixing is
presented at the end of this section.

The mixing phenomenon is best described using a matrix formalism, so that we are led to consider
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KG =

(
KG 0
0 KA

)
, Π(q2) =

(
Π̃P (q

2)
√
q2 Π̃AP (q

2)√
q2 Π̃AP (q

2) Π̃LA(q
2)

)
. (8.2.43)

Explicit expressions for all the entries of these matrices can be found in Table 8.2. Notice the appear-
ance of Π̃AP (q

2), the one-loop expression of the mixed correlator ΠAP (q
2) introduced in Eq. (8.1.15),

and of the one-loop longitudinal axial correlator Π̃LA(q
2) defined in Eq. (8.2.34). Note that, consis-

tently with the normalisation of Π̃LA(q
2) in Eq. (8.2.34), the matrix Π(q2) has been defined so that all

its entries have the same dimensions, whence the factor of
√
q2 in front of Π̃AP (q

2). The resummed
large-N two-point matrix correlator ΠG in this basis is then given by

ΠG ≡ Π+Π (2KG)Π+ · · · = (11− 2ΠKG)
−1Π , (8.2.44)

which is the analog of Eqs. (8.2.20) and (8.2.33). From Eqs (8.2.43), (8.2.44) one then obtains

ΠG(q
2) ≡

(
ΠG(q

2)
√
q2ΠAG(q

2)√
q2ΠAG(q

2) q2Π
L
A(q

2)

)
(8.2.45)

=
1

DG(q2)

(
Π̃P (q

2)[1− 2KAΠ̃
L
A(q

2)] + 2KAq
2Π̃2

AP (q
2)

√
q2 Π̃AP (q

2)√
q2 Π̃AP (q

2) Π̃LA(q
2)[1− 2KGΠ̃P (q

2)] + 2KGq
2Π̃2

AP (q
2)

)
,

with

DG ≡ det(11− 2ΠKG) = (1− 2KGΠ̃P )(1− 2KAΠ̃
L
A)− 4KGKAq

2Π̃2
AP = 2(κA + κB)q

2 B̃0(q
2,M2

ψ).
(8.2.46)

The last expression in this equation is obtained after using the gap-equation (8.2.16) and the relation
Π̃2
AP (q

2) = −(1/2)(2N)B̃0(q
2,M2

ψ)Π̃
L
A(q

2). Using the relevant expressions in Table 8.2, gives explicitly

ΠG(q
2) =

1

2
(2N)

2Ã0(M
2
ψ)g

−1
A (q2)− q2B̃0(q

2,M2
ψ)

DG(q2)
, ΠAG(q

2) =
Π̃AP (q

2)

DG(q2)
, Π

L
A(q

2) = 0.

(8.2.47)

Note in particular that the resummed longitudinal axial correlator Π
L
A(q

2) vanishes identically, thus
consistently recovering the conservation of the axial current in the exact chiral limit, in spite of the
nonzero mass gap, that induces a non-vanishing longitudinal axial correlator at the one-loop level,
Π̃LA ∝M2

ψ . Also the resummed mixed correlator ΠAG(q
2) satisfies the relation (8.1.16), which shows

that it is entirely saturated by the Goldstone-boson pole.
Now one can extract the NJL prediction for the Goldstone constants FG and GG, defined by

Eqs. (8.1.22) and (8.1.23) respectively. The residue of ΠG(p
2) with respect to the Goldstone boson

pole gives the pseudoscalar decay constant,

G2
G = − lim

q2→0
q2ΠG(q

2) = − (2N)

8(κA + κB)2B̃0(0,M2
ψ)
g−1
A (0) . (8.2.48)

Next, the residue of ΠAG(q
2) determines FGGG,

FGGG = − lim
q2→0

q2ΠAG(q
2) =

(2N)

2

Mψ

(κA + κB)
= 2(2N)Mψ Ã0(M

2
ψ) , (8.2.49)

that satisfies Eq. (8.1.24), by taking the expression for 〈Sψ0 〉 derived from Eq. (8.2.19). Combining
Eqs. (8.2.48) and (8.2.49), and using the gap equation, one consistently recovers the very same ex-
pression of FG in Eq. (8.2.39), as obtained from the resummed axial transverse correlator. Note that,
if one had computed GG in the limit of vanishing axial-vector coupling, κD = 0, by taking the residue
of ΠP in Eq. (8.2.20), one would have missed the (inverse) axial form factor gA(0), see Eq. (8.2.48).
Such correction is important e.g. when analysing the possible saturation of the scalar spectral sum
rules, that will be discussed in section 8.2.7.
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Obviously, a similar pseudoscalar-axial mixing mechanism also affects the singlet sector of the
model, as soon as the axial singlet coupling κC is non-vanishing. The resummed correlator matrix
for the singlet sector, Πη′ , is defined in complete analogy with Eq. (8.2.44), by taking the same
one-loop correlator matrix Π, but replacing the couplings, KG → Kη′ and KA → Ka (i.e. κD →
κC), respectively for the pseudoscalar and axial-vector channels, according to Table 8.2. One main
consequence of the mixing is that the pseudoscalar singlet mass Mη′ is corrected with respect to
Eq. (8.2.26), that holds for the pseudoscalar sector “in isolation”. The η′ mass rather corresponds to
the pole of the determinant

Dη′ ≡ det(11−2ΠKη′) = (1−2Kη′Π̃P )g
−1
a −4Kη′Kaq

2Π̃2
AP = 8κBÃ0(M

2
ψ)g

−1
a +2(κA−κB)q2B̃0(q

2,M2
ψ) ,

(8.2.50)
where we defined an axial singlet form factor,

ga(q
2) =

[
1 +

4κC
2N

Π̃LA(q
2)

]−1

, (8.2.51)

in complete analogy with Eq. (8.2.40) for the non-singlet sector. Therefore Eq. (8.2.26) gets modified
(“renormalised”) by the (inverse) axial singlet form factor,

M2
η′ = − κB

κ2A − κ2B

1

B̃0(M2
η′ ,M

2
ψ)
g−1
a (M2

η′) , (8.2.52)

which is the final expression that we will use in numerical illustrations of the mass spectrum in the
next subsection.

8.2.6 The mass spectrum of the resonances

The resonance masses have to be proportional to the unique independent energy scale of the theory,
that is convenient to choose as f ≡

√
2FG, defined in Eq. (8.2.39), as explained above. To fix ideas, one

can take f just above the lower bound imposed by electroweak precision tests, that is conservatively
given by f = 1 TeV. Since the resonance masses are N -independent and f ∼

√
N , in principle the

resonances become lighter and lighter in the large-N limit. However, if the model is augmented
with coloured fermions to provide top partners, as we will do in section 9.1, the Sp(2N) asymptotic
freedom is lost (at one loop) for N ≥ 19 [259]. Moreover, these coloured fermions are also charged
under U(1)Y , resulting in Landau poles in the SM gauge couplings (α1 and α3) possibly too close
to the condensation scale of the strong sector. A naive one-loop estimation of the running of the
SM gauge couplings in presence of the hypercolour fermions leads to the appearance of Landau poles
around 100 (500) TeV for N = 6 (5) while for N = 4, the Landau poles appear above 4 · 103 TeV.
Then, a more reasonable interval for the number of hypercolours is 2 ≤ N ≤ 6 and for the numerical
illustration, we take the conservative value N = 4.

The resonance masses are a function of the couplings κA,B,C,D of the four-fermion operators. For
the numerical illustration, we will assume Eq. (8.2.32) to hold, κC = κD = κA, and we will trade the
two remaining, independent couplings for the dimensionless parameters ξ ≡ (κA + κB)Λ

2/(4π2) and
κB/κA.

Let us describe the main feature of the mass spectrum. Since we work in the chiral limit approx-
imation, the resonances are complete multiplets of the unbroken Sp(4) symmetry, and the Goldstone
bosons GÂ are massless. In the spin-zero sector, there are three independent massive states: the
singlet scalar σ and the five-plet scalar SÂ, see Eq. (8.2.28), as well as the singlet pseudoscalar η′,
see Eq. (8.2.26). The latter is the would-be Goldstone boson of the anomalous U(1)ψ, therefore Mη′

vanishes when this symmetry is restored, that is when κB/κA → 0. In the spin-one sector, there
are two independent masses: the singlet axial vector aµ and the five-plet axial vector Aµ

Â
are mass-

degenerate as we assume κC = κD, with mass given by Eq. (8.2.36), while the ten-plet vector V µ
A

has a different mass, see Eq. (8.2.37). Even though we neglect the mass splitting among the different
electroweak components, in view of collider searches it is important to keep in mind the electroweak
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charges of the resonances, that are fixed by the decomposition of the Sp(4) representation under the
SU(2)w × U(1)Y gauged subgroup:

1Sp(4) = 10 , 5Sp(4) = (21/2+h.c.)+10 , 10Sp(4) = 30+(21/2+h.c.)+(11+h.c.)+10 . (8.2.53)
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Figure 8.4: The masses of the electroweak resonances in units of the Goldstone decay constant f , for
N = 4 (the masses scale with 1/

√
N), as a function of the coupling ξ, for κB/κA = 0.1 (left-hand

panel) and κB/κA = 0.5 (right-hand panel). We displayed the full physical range for ξ, according to
Fig. 8.3. Each curve is shaded when the corresponding pole mass equation develops a large, unphysical
imaginary part, |Im[gφ(M

2
φ)]/Re[gφ(M

2
φ)]| > 1. The dotted line is the cutoff of the constituent fermion

loops.

In Fig. 8.4 we display the five independent resonance masses, Mσ,η′,S,V,A, as a function of ξ, for
two representative values of κB/κA. While Mσ = 2Mψ grows over the entire range for ξ, the other
four masses follow a different pattern: they appear to be several times larger than f when ξ is very
close to one (see the discussion in the next paragraph), then they steeply decrease to reach a minimum
∼ (2 − 3)f for an intermediate value of ξ, and finally they grow roughly linearly for ξ & 1.5. We
recall the two approximate mass relations, MS ≃ (M2

σ +M2
η′)

1/2 and MA ≃ (M2
V + 3M2

σ/2)
1/2, that

hold neglecting pole mass differences in the loop form factor. As a consequence, one has always
MA > MS > Mσ, with a similar asymptotic value at large ξ. On the contrary, MV decreases until
it becomes degenerate with Mσ, then it grows with a weaker slope. Finally, Mη′ may also become
smaller than Mσ at large values of ξ, but only for a sufficiently small value of κB/κA. For example,
taking f = 1 TeV, N = 4 and κB/κA = 0.1, the resonance masses for two representative values of ξ
are

ξ = 1.3 : MA ≃ 6.6 TeV, MV ≃ 4.9 TeV, MS ≃ 4.6 TeV, Mσ ≃ 4.1 TeV,

Mη′ ≃ 3.3 TeV ,

ξ = 2.0 : MA ≃ 9.5 TeV, MV ≃ 6.4 TeV, MS ≃ 8.3 TeV, Mσ ≃ 8.1 TeV,

Mη′ ≃ 4.9 TeV . (8.2.54)

In general, electroweak resonances lighter than ≃ 4f ≃ 4 TeV are possible in two cases: the scalar
σ becomes light when one approaches the critical coupling ξ = 1, where the mass gap vanishes;
the pseudoscalar η′ becomes light as κB/κA tends to zero, where the anomalous U(1)ψ symmetry is

restored. These two singlet states, together with the SM singlet Goldstone boson G3̂, may be observed
as the lightest scalar resonances at the LHC, beside the 125 GeV Higgs boson. In section 9.2.5 we will
discuss the mixing of σ and η′ with the analogous singlet states of the colour sector, that will induce
corrections to their masses.

A comment is in order on the region close to the critical coupling. In the limit ξ → 1, one finds
that Mσ/f ∼ [− log(ξ − 1)]−1/2 vanishes, while the other resonance masses diverge relatively to f ,
MV,A,S,η′/f ∼ (ξ− 1)−1/2. The lightness of σ may be interpreted as the signal that scale invariance is
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recovered below ξ = 1, while all other resonances decouple in this limit. However, we should remark
that, for some of these heavy resonances, the NJL computation of their mass cannot be trusted close
to the critical coupling, because the pole of the resummed propagator develops a large, unphysical
imaginary part. Recall, from the general discussion at the beginning of section 8.2.2, that the curves
in Fig. 8.4 are the solution of Eq. (8.2.22),9 where the imaginary part of gφ(M

2
φ) has been neglected.

The curves in Fig. 8.4 are shaded when |Im[gφ(M
2
φ)]/Re[gφ(M

2
φ)]| > 1, where we consider that the

corresponding result cannot be trusted anymore. This happens when ξ . (1.2 − 1.3), for the vector
and axial-vector resonances, with mass MV/A close to the cutoff of the NJL model.

Let us also comment on the complementary limit where ξ is so large that Mψ/Λ becomes of or-
der one, as illustrated in Fig. 8.3. In this case Fig. 8.4 shows that the resonances become heavier
than Λ (except for η′, if κB/κA is small enough). This is not necessarily problematic: while the
mass Mψ of constituent fermions in the loops need to be smaller than the loop cutoff Λ, external
mesons heavier than Λ do not harm the consistency of the NJL approximation. Indeed, in QCD the
NJL model predicts rather accurately resonance masses twice as large as the cutoff. Nonetheless,
we notice that, for Mi ∼ Λ, the value of the two-point function B̃0(M

2
i ,M

2
ψ) becomes sensitive to

the chosen regularisation, defined in appendix G, as the cutoff-dependent finite terms become size-
able. As a consequence, we observe that the mass values in this region may vary up to a few 10% in
different regularisation schemes. This is an intrinsic theoretical uncertainty of the NJL approximation.

The resonance masses in units of f ≡
√
2FG may be compared with recent lattice results for the

same model [294,295] which provide scalar and (axial) vector mass results in the same units.10 Actually
we can only compare with the latter available lattice simulations performed to date for this model only
for an underlying SU(2) gauge theory, thus equivalent to the Sp(2N), N = 1 case of our more general
study. Given that the vector and scalar masses scale as 1/

√
N (this scaling originates solely from

FG), the rescaled mass values illustrated for N = 4 in Fig. 8.4 get enhanced by a factor 2 for N = 1,
which can be directly compared with the lattice results [294], in the chiral limit: MV /f = 13.1± 2.2,
MA/f = 14.5±3.6. The latter results, although affected with relatively large uncertainties, indicate a
more moderate V −A mass splitting than is generally expected from the NJL model, see Eq. (8.2.38),
unless Mψ is rather small, which corresponds in the NJL framework to rather small values of ξ. More
precisely, typically the previous central lattice values can be (approximately) matched for ξ ≃ 1.1,
therefore not far above the critical NJL coupling value, where on the other hand the NJL calculation
becomes less reliable, as already explained above, since entering the ξ range where the V and A width
both become relatively large. But accounting for the lattice uncertainties, the above values are also
easily matched alternatively for rather large ξ values, where the NJL prediction is also more reliable:
for example for N = 1 and ξ = 1.6 [ξ = 1.9], MV /f |NJL ≃ 11[12.5], MA/f |NJL ≃ 15.3[18]. [NB
recall that the V,A masses are mildly dependent on kB, which enters only indirectly from the mass
gap. One should also keep in mind that the Fierz-induced relation (8.2.32) is assumed for the axial
and vector coupling κD in Fig. 8.4, and since the dominant contribution to the V,A masses scales
as 1/κD, a somewhat smaller (larger) κD would induce somewhat larger (smaller) V,A masses, for a
fixed ξ value]. At least one may tentatively conclude from this comparison that intermediate ξ values,
say 1.2 <∼ ξ <∼ 1.6 approximately, as well as very large ξ > 2, appear more disfavoured.

Concerning the lightest scalar masses, Ref. [295] provides the very recent lattice estimatesMσ/f =
19.2(10.8), Mη′/f = 12.8(4.7), andMS/f = 16.7(4.9), in the chiral limit (where the scalar non-singlet
S is called a0 in Ref. [295]). Compared with Fig. 8.4 (rescaled for N = 1) and combined with the
V,A-mass results, ξ values very close to 1 appear disfavoured by the σ mass, even when taking its
lowest lattice value above, because in this region the NJL prediction forMσ is much smaller thanMV ,
as it is clear from Mσ = 2Mψ (see also Fig. 8.4). The NJL (approximate) relation M2

S ≃ M2
σ +M2

η′

(see Eq. (8.2.28)), can be fulfilled within the large lattice uncertainties, although the rather high

9 The function Re B̃0(q
2,M2

ψ) develops a cusp at q2 = 4M2
ψ. Through the definition of the masses Mφ adopted here,

this cusp naturally shows up in Fig. 8.4 (and in Fig. 8.7 below) as soon as the value of a resonance mass goes through
2Mψ. In practice, this only occurs for MV and Mη′ , at the cross-over from a bound state to a genuine resonance.

10Our normalisation of f , see footnote 8, appears consistent with what is called FPS in the notations of Ref. [294]
thus we compare our NJL predictions in units of f directly with their numbers, assuming that the same normalisation
has been used in those lattice calculations.
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lattice central value ofMσ is in tension with this relation. So putting all together it may indicate that
relatively large values of ξ ≃ 1.6−2, well above the NJL critical coupling, are more favoured by lattice
results. Concerning the η′ singlet mass, at this stage it may be compared with the NJL η′ mass, which
we recall is most sensitive to κB/κA values. Modulo the large lattice uncertainties, the comparison
with lattice results appears thus to indicate not too small, rather intermediate κB/κA ≃ 0.2 − 0.4
values, such that Mη′ is not small, rather slightly below (or comparable to) MV .

In conclusion the comparison of NJL and lattice results appears roughly consistent, at least the
lattice results may be matched for some definite values of the NJL parameters ξ and κB/κA, with
no strong tensions. But it appears still an essentially qualitative comparison at the present stage,
given both the intrinsic NJL uncertainties amply discussed previously, as well as the still relatively
large lattice systematic uncertainties, specially for the scalar resonances: so unfortunately it cannot
be taken yet as giving tight constraints on the effective NJL model parameters. Note also that
other recent lattice simulations of composite Higgs model resonances are available in the literature
(see e.g. [296, 297]), but are based on different gauge symmetries and/or global symmetry breaking
pattern, thus not directly comparable with our results.

8.2.7 Comparison with spectral sum rules

Several authors [288, 290, 298] have addressed the issue of spectral sum rules, discussed in general
terms in Section 8.1.4, in the context of the NJL approximation applied to QCD. In this Section, we
will study them in the context of the NJL approximation to the underlying Sp(2N) gauge dynamics
of the present composite Higgs framework. The aim will be to check whether these sum rules provide
additional constraints on the parameters of the model, namely ξ and κB/κA.

It seems only natural to identify the spectral densities appearing in the sum rules displayed in Eqs.
(8.1.13) and (8.1.14) with the discontinuities of the resummed NJL two-point correlators 11 discussed
in the preceding subsections, i.e.

ImΠV/A(t) = lim
ǫ→0+

ΠV/A(t+ iǫ)−ΠV/A(t− iǫ)

2i
, (8.2.55)

or, in the singlet scalar and pseudoscalar channels,

ImΠS0/P 0(t) = lim
ǫ→0+

Πσ/η′(t+ iǫ)−Πσ/η′(t− iǫ)

2i
, (8.2.56)

and analogous relations between ImΠS/P (t) and ΠS/G(t). Before discussing the sum rules of Section
8.1.4 under these identifications, let us recall that the sum rules themselves follow from the short-
distance properties, which reflect the properties of the underlying Sp(2N) gauge dynamics, of the
two-point functions under consideration, and from general properties of quantum field theories, here
essentially invariance under the Poincaré group and the spectral property. The latter allow to extend
the definitions of the functions Πφ(t) to functions in the complex t-plane, with all singularities (poles
and branch points) confined to the positive real axis. The former then allow to write down unsub-
tracted dispersion relations for the appropriate combinations of two-point correlators, from which the
sum rules follow. The necessity to introduce a regularisation (here the cut-off Λ), in order to render
the one-loop correlators Π̃φ(t) finite, and to perform the resummation shown in Fig. 8.2, leads to
functions Πφ(t) that will in general not respect all the required properties. For instance, with the
choice of regularisation adopted in the present study, ghost poles at q2 = −M2

gh-φ, i.e. on the negative

real q2-axis, will appear, as discussed at the beginning of Section 8.2.2. This situation is well known in
the context of the NJL approximation applied to QCD, where it has been examined quite extensively
by the authors of Ref. [290], and we refer the reader to this article for additional details.

11At the level of one-loop two-point correlators, the spectral sum rule (8.1.19) is trivially satisfied, provided one
identifies m with Mψ, due to the identity Π̃V (q

2)− Π̃A(q
2) = −Π̃LA(q

2). The identities

Π̃S(q
2)− Π̃P (q

2) = Π̃S(q
2)− Π̃η′(q

2) = Π̃σ(q
2)− Π̃G(q

2) = 2(2N)M2
ψB̃0(q

2,M2
ψ)

allow only for the difference of the two last sum rules in Eq. (8.1.14), involving Π̃S-η′ − Π̃σ-G, to be satisfied at one-loop.
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Figure 8.5: The figure on the left shows the spectral functions ImΠV (t) (upper curves, in red) and
−ImΠA(t) (lower curves, in blue), as a function of t/(2Mψ)

2 and in units of f2, such that the plotted
quantities are dimensionless and N -independent. The solid and dashed lines correspond to ξ = 1.3
and ξ = 2, respectively. The value of the parameter κB/κA has been taken equal to 0.1 in all cases.
The narrow vector bound state below the continuum starting at t = (2Mψ)

2 (materialised on the
figures by the vertical line) is present in ImΠV (t) when ξ = 2, but disappears for smaller values of ξ.
The pion pole appears clearly in ImΠA(t), but the axial-vector resonance has a mass that is always
greater that 4M2

ψ, and therefore a narrow sub-threshold peak never occurs. The figure on the right

likewise shows the functions t ImΠV (t) and t ImΠA(t). The latter are in units of f4 and consequently
scale like 1/N .

The spectral densities resulting from the identifications in Eqs. (8.2.55) and (8.2.56) are shown
in Figs. 8.5 and 8.6 (in order to make the figure more readable, we have kept ǫ in the definitions
(8.2.55) and (8.2.56) very small, but finite). It is most instructive to analyse them in conjunction with
the spectrum of the mesonic resonances, as given in Fig. 8.4, and with the general discussion at the
beginning of Section 8.2.2. Figure 8.5 shows the vector and axial spectral functions for two different
values of the parameter ξ. In the axial case, one recognises the contribution from the pion pole at
t = 0, and no other narrow bound state. Only a rather broad resonance peak appears above the
t = 4M2

ψ threshold, where the continuum starts. This is in agreement with Fig. 8.4, which shows that
MA is always greater than Mσ = 2Mψ. In the vector channel, a narrow bound state appears below
the 2Mψ threshold for ξ = 2, but is absent (it has moved to the real axis on the second Riemann
sheet) for ξ = 1.3, and is replaced by a resonance peak. Again, this agrees with Fig. 8.4, where one
sees that MV becomes greater than 2Mψ when ξ takes values below ∼ 1.4.

For the non-singlet scalar spectral density, shown on the left panel of Fig. 8.6, there is no narrow
bound state lying below the threshold of the continuum, whatever the value of ξ. However, the larger
the value of ξ, the more the resonance peak moves closer to the threshold. The shape of ImΠS(t) is
also sensitive to κB/κA. In the pseudoscalar non-singlet channel, only the massless pion pole shows
up, and ImΠP (t) is not sensitive to the value of κB/κA. The singlet scalar spectral density, shown
on the right panel of Fig. 8.6, presents a narrow peak at the threshold, for any value of ξ and κB/κA.
In the pseudoscalar singlet channel, the features of the spectral function become also sensitive to this
second parameter, as can already be inferred upon comparing the two panels of Fig. 8.4. In particular,
a narrow sub-threshold bound state is only present for smaller values of κB/κA.

An illustration of the two Weinberg-type sum rules of Eq. (8.1.13), as well as the sum rules of Eq.
(8.1.14), is provided by Fig. 8.7. The integrals compared there, as functions of the coupling ξ and for
two values of κB/κA, run over the whole positive t-axis, which means that, for the sake of illustration,
the NJL description has been kept even beyond its expected range of validity. Of course, it is certainly
difficult to ascribe any physical meaning to the spectral densities for values of, say, t/Λ2 >∼ 2 [note
that, for ξ close to the critical coupling, one has 2Mψ ≪ Λ, therefore the NJL description holds up

The sum rule involving ΠS-P is not expected to hold, since this correlator does not constitute an order parameter for
SU(4)/Sp(4), see footnote 3.
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Figure 8.6: The left-hand panel shows the non-singlet spectral functions ImΠS(t)/10 (upper curves,
in red) and −ImΠG(t) (lower curves, in blue), as functions of t/(2Mψ)

2, for κB/κA = 0.1, and for
ξ = 1.3 (solid lines) and ξ = 2 (dashed lines). In the right-hand panel we fix ξ = 2 and show the
singlet spectral functions ImΠσ(t) (dashed red) and −ImΠη′(t) (dashed blue) for κB/κA = 0.1, as
well as ImΠσ(t) (solid red) and −ImΠη′(t)/20 (solid blue) for κB/κA = 0.5. The narrow η′ bound
state is present only for the smallest value of κB/κA. A narrow σ pole appears in all cases right at
the threshold t = 4M2

ψ. Note that the spectral functions are all expressed in units of f2, such that
they are dimensionless and have no N -dependence.

to a large value of t/(2Mψ)
2]. Beyond this value of t, the NJL description ceases to be appropriate,

and we have to assume that the underlying Sp(2N) gauge dynamics takes over. However, from the
experience with QCD [299], it is expected that the matching between the two regimes is not very
smooth. Keeping this proviso in mind, we show, on the left-hand panel of Fig. 8.7, the ratio of the
integrals

∫
dt ImΠV (t) and

∫
dt ImΠA(t), as well as the ratio of the integrals

∫
dt t ImΠV (t) and∫

dt t ImΠA(t). Similarly, the right-hand panel shows the ratios of the integrals
∫
dt ImΠη′(t) and∫

dt ImΠS(t), and of the integrals
∫
dt ImΠG(t) and

∫
dt ImΠσ(t). If the sum rules were satisfied

exactly for all values of ξ, all these curves would be a constant equal to one. This is obviously not
the case. The general trend is that the departure from the sum rules is more important for larger
values of ξ. This is in line with Fig. 8.4, from which we infer that the continuum, corresponding
to

√
t > 2Mψ, starts close to the cut-off Λ when ξ & 1.5, therefore the NJL description becomes

questionable soon after the threshold. On the right-hand panel of Fig. 8.7 we also show the ratio of
the integrals

∫
dt ImΠG and

∫
dt ImΠS . Since ΠS-P is not an order parameter of the SU(4) spon-

taneous breaking (see footnote 3), there is no corresponding sum rule, and indeed this ratio deviates
significantly from unity, already for lower values of ξ.

In view of the difficulties to interpret the meaning of the sum rules, expressed in terms of the
spectral densities provided by the NJL description through Eqs. (8.2.55) and (8.2.56), one may consider
an alternative approach, at least when Im Π̃φ(M

2
φ) vanishes or is sufficiently small so that it can be

neglected. This happens, for instance, for the Goldstone state, or for Π̃V (M
2
V ) when there is a

sub-threshold vector bound state. In that case each correlator exhibits a single real pole, or narrow
resonance [except for both the Goldstone pole and the axial-meson resonance in ΠA(q

2), the latter not
being very narrow, though], and one can saturate the sum rules with these narrow states. Introducing,
similarly to FG and to GG in Eqs. (8.1.22) and (8.1.23), respectively, decay constants defined as

〈0|J A
µ (0)|V B(p;λ)〉 ≡ fVMV ǫ

(λ)
µ (p)δAB , 〈0|J Â

µ (0)|AB̂(p;λ)〉 ≡ fAMA ǫ
(λ)
µ (p)δÂB̂ , (8.2.57)

where ǫ
(λ)
µ (p) is the polarisation vector associated to V or A, with

∑
λ ǫ

(λ)
µ (p)ǫ

(λ)∗
ν (p) = −(ηµν −

pµpν/M
2
V,A), as well as

〈0|SÂ|SB̂(p)〉 = GSδ
ÂB̂, 〈0|S0|σ(p)〉 = Gσ, 〈0|P0|η′(p)〉 = Gη′ , (8.2.58)
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Figure 8.7: Left panel: the ratio of the integrals, taken over the whole positive t-axis,∫
dt ImΠV (t)/

∫
dt ImΠA(t) (blue, upper curves) and

∫
dt t ImΠV (t)/

∫
dt t ImΠA(t) (red, lower

curves), as a function of the parameter ξ, and for κB/κA = 0.1 (solid lines) and κB/κA = 0.5
(dashed lines). Right panel: the ratio of the integrals, taken over the whole positive t-axis,∫
dt ImΠη′(t)/

∫
dt ImΠS(t) (green, upper curves),

∫
dt ImΠG(t)/

∫
dt ImΠσ(t) (blue, middle curves)

and
∫
dt ImΠG(t)/

∫
dt ImΠS(t) (red, lower curve), as a function of the parameter ξ, for κB/κA = 0.1

(solid lines) and κB/κA = 0.5 (dashed lines, not shown in the G/S case). Note that the above ratios
are independent from N .

the sum rules become, in this narrow-width, single-resonance approximation,

f2VM
2
V − f2AM

2
A − F 2

G = 0, f2VM
4
V − f2AM

4
A = 0, (8.2.59)

and
G2
σ −G2

G = 0, G2
S −G2

η′ = 0. (8.2.60)

Now, taking the various expressions of the meson masses, decay constants, as obtained from the
NJL large-N approximation above, one can check to which extent these Weinberg-type and scalar
sum rules are actually saturated by the first resonance from each of the available spectra. To proceed,
one may first rewrite the resummed two-point correlators of Eq. (8.2.33) in the pole-dominance form:
from Eqs. (8.2.33) and (8.2.57), the residues of the vector and axial-vector channels are defined by

f2V/AM
2
V/A = lim

q2→M2
V,A

(q2 −M2
V/A) ΠV/A(q

2) =
−1

(2KV/A)2


M2

V/A

dΠ̃V/A(q
2)

dq2

∣∣∣∣
q2=M2

V/A



−1

, (8.2.61)

where in the second equality, we have expanded the denominator of ΠV/A(q
2) around the complex

pole M2
V/A and used Eq. (8.2.21). Similarly to the definition of the resonance masses in Eq. (8.2.22),

one should however adopt a prescription to deal with the unphysical imaginary parts, NJL artefacts of
the lack of confinement properties. We adopt the following prescription: (i) the residues are evaluated
at the real pole masses M2

V,A = Re[gV,A(M
2
V,A)] defined by Eq. (8.2.22), and (ii) we similarly define

f2V,A by the real parts of their right-hand-side expressions in Eq. (8.2.61). Of course, in the range of
parameter space where the left-over imaginary contributions in Eqs. (8.2.61) become large, it puts
a definite limit of reliability of the NJL calculation, as will be specified below. According to this
prescription, we obtain explicitly for the vector decay constant,

f2V = − 3(2N)

16κ2DM
4
V

Re

[
1

B̃0(M2
V ,M

2
ψ) + (M2

V + 2M2
ψ)B̃

′
0(M

2
V ,M

2
ψ)

]
. (8.2.62)

The axial decay constant f2A is obtained in a similar way by making the following replacements
MV →MA and (M2

V + 2M2
ψ) → (M2

A − 4M2
ψ) in the previous equation.
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Similarly, for the spin zero channels, the residues are defined by

G2
φ ≡ − lim

q2→M2
φ

(q2 −M2
φ)Πφ(q

2) =
1

(2Kφ)2

[
dΠ̃φ(q

2)

dq2

∣∣∣∣
q2=M2

φ

]−1

. (8.2.63)

From Eqs. (8.2.20) and (8.2.58), the scalar decay constants are explicitly given by

G2
σ,S = − 1

2(2N)K2
σ,S

Re

[
1

B̃0(M2
σ,S ,M

2
ψ) + (M2

σ,S − 4M2
ψ)B̃

′
0(M

2
σ,S ,M

2
ψ)

]
, (8.2.64)

while for the pseudo-scalar decay constants we obtain

G2
G,η′ = − 1

2(2N)K2
G,η′

Re

[
g−1
A,a(M

2
G,η′)

B̃0(M2
G,η′ ,M

2
ψ) +M2

G,η′B̃
′
0(M

2
G,η′ ,M

2
ψ)

]
, (8.2.65)

where the axial vector-pseudoscalar mixing (see section 8.2.5) brings the factor g−1
A,a(M

2
G,η′) for G and

η′ respectively.
Generally, we cannot expect the sum rules in the narrow width approximation to be very well

satisfied, both because of the already discussed inherent approximations of the NJL framework, and
also since the narrow width approximation itself is not justified in a substantial part of the parameter
range, as we will examine more precisely below. To be more specific, we will use the standard definition
of the width,

MφΓφ =
Im Π̃φ(M

2
φ)

Re Π̃′
φ(M

2
φ)

, (8.2.66)

with Π̃′
φ(q

2) denoting the derivative of Π̃φ(q
2) with respect to q2. By evaluating explicitly Eq. (8.2.66)

for the relevant resonances one may control the validity range of the narrow width approximation.
Before a precise illustration of the deviations from the sum rules relations in Eqs. (8.2.59) and

(8.2.60) in the parameter space of the model, it is instructive to examine more closely the NJL
expressions of the involved quantities, Eqs. (8.2.62), (8.2.37) and (8.2.36). Namely, let us assume
momentarily that we could crudely neglect the q2 dependence of B̃0, i.e. taking B̃0(M

2
V ,M

2
ψ) ≃

B̃0(M
2
A,M

2
ψ) ≡ B̃0 (therefore taking also its derivative to vanish, B̃′

0(q
2) ≃ 0). Within this approx-

imation, the second sum rule in Eq. (8.2.59) is immediately satisfied, see Eq. (8.2.62), while for the
first sum rule, one can write after simple algebra:

f2VM
2
V − f2AM

2
A ≃ f2V (6M

2
ψ)

[
1 +O

(
M2
ψ

M2
V

)]
≃ −F 2

G

[
1 +O

(
M2
ψ

M2
V

)]
, (8.2.67)

where in the first equality we used the fact that the relation in Eq. (8.2.38) becomes exact in this
approximation, and in the last equality we used Eqs. (8.2.62) and (8.2.37) in the same approximation,
and identified F 2

G from its expression in Eq. (8.2.41). This simple exercise shows explicitly and rather
intuitively where the bulk of deviations from WSR comes from: one infers that the sum rules in
Eq. (8.2.59) will, in general, not be satisfied, since the quantities they involve are the pole masses,
M2
V = Re[M2

V (M
2
V )] and M2

A = Re[M2
A(M

2
A)], the Goldstone decay constant F 2

G = F 2
G(0), and the

vector decay constants f2V,A in Eq. (8.2.62), actually evaluated at the different V,A pole masses and

involving also the non-vanishing derivative B̃′
0(M

2
V/A). Accordingly since the relevant expressions like

Eq. (8.2.62) are to be evaluated at different values of q2, this implies not quite negligible differences
in B̃0(q

2), and in its derivative. Only to the extent that they display a rather mild q2-dependence will
the narrow-width version (8.2.59) of the sum rules approximatively hold 12. Moreover, the crudely
neglected terms O(M2

ψ/M
2
V ) in Eq. (8.2.67) are actually not so negligible, the less when ξ increases,

just asM2
A/M

2
V also increases with ξ. Thus, we generally expect stronger deviations from Eq. (8.2.59)

for larger ξ values.

12We note that those finding and observations are qualitatively similar to the WSR results for the NJL model applied
to low energy QCD in ref. [299], although those authors used somewhat different approximations than ours.
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Figure 8.8: Left panel: the two ratios (f2VM
2
V )/(F

2
G + f2AM

2
A) (WSR1, blue lines) and

(f2VM
4
V )/(f

2
AM

4
A) (WSR2, red lines) as functions of the coupling ξ, for κB/κA = 0.1 (solid lines)

and κB/κA = 0.5 (dashed lines). Right panel: the analog for scalar sum rules. Also indicated are the
values of the most relevant resonance widths, calculated from Eq. (8.2.66) for κB/κA = 0.1.

In order to illustrate more precisely the deviations from the Weinberg-like sum rules of Eq. (8.2.59),
taking now the “exact” expressions of fV/A,MV/A according to our NJL calculations and prescriptions
above, we consider the two ratios

WSR1 ≡
f2VM

2
V

F 2
G + f2AM

2
A

, WSR2 ≡
f2VM

4
V

f2AM
4
A

, (8.2.68)

which would both equal unity if the sum rules were satisfied in their narrow-width versions. Similarly,
for the scalar sum rules we consider the two ratios G2

G/G
2
σ and G2

η′/G
2
S . The behaviour of these ratios

with respect to ξ and κB/κA are illustrated in the left and right panels of Fig. 8.8 for the Weinberg
and scalar sum rules respectively. We also indicate some specific values of the relevant resonance
widths, calculated from Eq. (8.2.66) for the reference value κB/κA = 0.1. The corresponding shaded
regions thus indicate approximately the range where the narrow width approximation can be trusted
or not. (NB the V,A widths are very weakly sensitive to κB/κA values, so that the indicated ranges
are also approximately valid for κB/κA = 0.5. In contrast the η′ and S widths grow rapidly with
κB, such that the indicated boarder ΓS/MS = 1/5(1/10) are pushed for κB/κA = 0.5 to larger ξ,
ξ ≃ 1.7(2) respectively).

The two sum rules of Eq. (8.2.59) are actually reasonably satisfied in some specific ξ ranges,
respectively either for intermediate values 1.6 <∼ ξ <∼ 2, or for ξ very close to 1. Conversely the
deviations appear maximal in the range ξ ≃ 1.2 − 1.6 and again for very large ξ. Most of these
features can be understood more intuitively with the help of the above analysis. The intermediate
range where the deviations are the smallest corresponds to a range where at the same time, the
narrow width approximation is well justified, and the relevant pole mass differences are still moderate
such that the relevant q2 arguments of B̃0(q

2) are not widely different. Then for very large ξ values,
while the A width is becoming smaller, one enters the regime of increasingly large differences in the
relevant B̃0(M

2
A/V ), thus increasing the deviations, although the first WSR remains relatively good.

The second WSR sum rule shows more rapidly increasing and important deviations for larger ξ, as
intuitively expected since the fourth power of the masses enhances the increasing MA/MV ratio. The
WSR values are not very sensitive to the ratio κB/κA, but depend mostly on ξ: a larger κB value
essentially shifts the values of the sum rules in Fig. 8.8, as it implies larger values of κA+κB. Conversely
for decreasing ξ, the narrow width approximation becomes totally unreliable, say for ξ <∼ 1.6 in the
case of ΓA, where correspondingly the deviations are seen to be maximal. Moreover, when approaching
(from below) the threshold M2

V = 4M2
ψ, ΓV is vanishing, but Re[B̃′

0(M
2
V ,M

2
ψ)] tends toward infinity,

such that f2V → 0, see Eq. (8.2.62). This happens around ξ ≃ 1.4 (1.5) for κB/κA = 0.1 (0.5).
This peculiar feature can be understood as follow. When moving towards the threshold from below,
the residue of the vector resonance, f2VM

2
V , tends to zero, because its contribution to the spectral
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function is progressively transferred from the sub-threshold to the continuum part of the spectral
function. Since in the pole dominance approximation one only considers the lightest resonances, just
below the threshold the continuum contribution is not included within Eq. (8.2.62), therefore the
crossing of the threshold appears problematic in our NJL approximation. Of course, this pathological
behaviour is not present in Fig. 8.7, where we consider the complete two-point functions, that include
also the continuum contributions. Finally, very close to the critical coupling ξ ≃ 1, although both
ΓV,A are large, the mass gap in this region is relatively very small, Mψ ≪ Λ, such that MA −MV

is minimal, and FG ≃ Mψ is also relatively small. Thus taking the real contributions prescriptions
according to Eq. (8.2.62), one is again very close to the ideal approximation above discussed, leading
to Eq. (8.2.67).

From those results, if considering that the best possible matching of the Weinberg-type sum rules,
established on more general dynamical grounds, may be more important than the possible limitations
of the NJL model approximation (somewhat in the spirit of Ref. [299]), one could be tempted to infer
some preferred ξ range, where both deviations are minimal (although as clear from the figure it is not
possible to satisfy the two WSR exactly for the same ξ value). However, given the limitations of the
NJL dynamical approximation, partly responsible for the non-perfectly matched Weinberg-type sum
rules, we consider this only as an indicative trend rather than a genuine dynamical constraint on the
couplings.

Concerning next the scalar sum rules, note that the above relations in Eqs. (8.2.64) and (8.2.65)
do not lead to G2

G(q
2) − G2

σ(q
2) = 0 and G2

η′(q
2) − G2

S(q
2) = 0, which would be valid if evaluating

all expressions at the same q2 value. This is due to the pseudo-scalar axial mixing, i.e. a term
proportional to gA,a(q

2) does not vanish in the difference. In addition, for G2
G(q

2) − G2
S(q

2), there
is a term proportional to κB, that indicates that this difference is not a sum rule, consequently the
discrepancy increases with κB. Indeed, as can be seen on Fig. 8.8, some of the scalar sum rules
are approximately satisfied very close to ξ = 1, but are rapidly and badly invalidated for larger ξ,
even though the narrow width approximation is justified in this region. This is mainly due to very
large differences in the argument of the relevant B̃0(p

2), and also, as above discussed, due to the
non-vanishing κB. Note that, similarly to what is discussed above for the WSRs, the scalar sum
rule associated to the η′ may exhibit a pathological behaviour, when the lightest resonances do not
incorporate the dominant contributions. Indeed, η′ crosses the threshold for κB/κA = 0.1 and the
associated ratio G2

η′/G
2
S tends to zero in this regime, that lies around ξ = 1.1.

In summary, the mismatch between the NJL predictions and the spectral sum rules resides in
the gap between the contribution of the low-lying resonances and the full spectral functions. Given
these limitations in the comparison of our results with the spectral sum rules, and since our interest
is mostly the phenomenology of the lightest composite states, in the following we will keep studying
the full range for the parameters ξ and κB/κA.
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E SU(4)/Sp(4) chiral Lagrangian

The aim of this appendix is to make the link between the EW sector presented in section 8.2 and
the effective approach described in chapter 6. More precisely, we relate the Goldstone decay constant
FG to the scale of the chiral Lagrangian usually denoted by f . This relation is crucial as all of the
low energy deviations compare to the SM predictions are parametrised by ξ = v2/f2 and then f is
experimentally constrained by the EWPT and the Higgs coupling measurements to be & 1 TeV. Let
us start with the following chiral Lagrangian

L =
F 2
G

4
〈(DµU)†(DµU)〉+ · · · (E.1)

where we restrict to the lowest order in the chiral expansion. For the moment, the derivation remains
completely general and can be applied to the coset SU(4)/Sp(4) as well as to other non-minimal EW
cosets. The Goldstone matrix U(x) contains the pNGB fields G(x)

U(x) = eiG(x)/FGΣǫ , G(x) = 2
∑

Â

GÂ(x)T Â , (E.2)

and the vacuum Σǫ is conveniently chosen to respect

Σ†
ǫ = ΣTǫ = ǫΣǫ , Σ2

ǫ = ǫ11 . (E.3)

The covariant derivative DµU explicitly writes

DµU = ∂µU − i(vµ + aµ)U − iU(vµ + aµ)
T , (E.4)

where vµ and aµ are the external sources coupling respectively to the vector (unbroken) and axial

(broken) currents J A
µ and J Â

µ defined in subsection 8.1.1. The external sources are defined by

vµ =
∑

A

vAµ TA , aµ =
∑

Â

aÂµ T Â (E.5)

where the broken (T Â) and unbroken (TA) generators of SU(2Nf ) respect the relations in Eq. (8.1.2).
In the real case where ǫ = +1, the unbroken generators TA correspond to the generators of SO(2Nf )

while the broken generators T Â span the coset SU(2Nf )/SO(2Nf ). In the pseudo-real case where
ǫ = −1, the unbroken and broken generators are respectively associated to the subgroup Sp(2Nf ) and
to the coset SU(2Nf )/Sp(2Nf ). In our case of interest that is for SU(4)/Sp(4), we are of course in
the pseudo-real case with Nf = 2. The covariant derivative of Eq. (E.4) can be rewritten as follow

DµU = ∂µU − iǫ [vµ, UΣǫ]Σǫ − iǫ {aµ, UΣǫ}Σǫ , (E.6)

where we have used the following relations

vµU + UvTµ = ǫ [vµ, UΣǫ]Σǫ , aµU + UaTµ = ǫ {aµ, UΣǫ}Σǫ . (E.7)

Kinetic term and Goldstone decay constant

First, we need to check the normalisation of the Goldstone bosons kinetic term in Eq. (E.1). We
expand the Goldstone matrix around the vacuum Σǫ ie U ≃ Σǫ + iG(x)/FGΣǫ + · · · . The covariant
derivative of Eq. (E.6) becomes

DµU =
i

FG
(∂µG)Σǫ − 2iaµΣǫ +

1

FG
[vµ, G(x)]Σǫ +

1

FG
{aµ, G(x)}Σǫ + · · · (E.8)
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Taking only the derivative part of the above relation we obtain

F 2
G

4
〈(DµU)†(DµU)〉 =

1

4
〈(∂µG)(∂µG)〉+ · · ·

=
∑

Â,B̂

〈T ÂT B̂〉(∂µGÂ)(∂µGB̂) + · · ·

=
1

2

∑

Â

(∂µG
Â)(∂µGÂ) + · · · (E.9)

such that the pNGB GÂ are well canonically normalised.
Now we derive the definition of the decay constant FG. From Eq. (E.8), we consider the derivative

part and the leading term containing an axial source aµ that is −2iaµΣǫ. We have

F 2
G

4
〈(DµU)†(DµU)〉 = −FG〈(∂µG)aµ〉+ · · ·

= −2FG
∑

Â,B̂

〈T ÂT B̂〉(∂µGÂ)aµB̂ + · · ·

= −FG
∑

Â

(∂µG
Â)aµÂ + · · · (E.10)

such that in momentum space, the Goldstone decay constant FG is defined by the following matrix
element

〈0|J Â
µ (0)|GB̂(p)〉 = iFG pµδ

ÂB̂ , (E.11)

that is, the same definition compare to Eq. (8.1.22). As expected, the Goldstone bosons GÂ couple

only to the axial current J Â
µ and the coupling is derivative. There is no such coupling involving the

vector currents as there is no term involving only the vector sources vµ in the covariant derivative:
the term [vµ, UΣǫ] ≃ [vµ,Σ

2
ǫ ] + · · · cancel at first order in the expansion around the vacuum.

GB couplings to SM gauge bosons

Let us now consider the couplings of the pNGB to the SM gauge fields. We consider a composite
Higgs model such that the SM gauge group is embedded in the unbroken symmetry group H (not in
the coset space G/H). As a consequence, to introduce the SM gauge fields we only need to consider
the vector sources vµ and then the following term of the chiral Lagrangian

F 2
G

4
〈(DµU)†(DµU)〉 =

F 2
G

4
〈([vµ, UΣǫ]Σǫ)

† [vµ, UΣǫ]Σǫ〉+ · · · (E.12)

=
F 2
G

2
〈vµvµ − e−iG(x)/FG vµ e

iG(x)/FG vµ〉+ · · ·

The embedding of the SM gauge group inside H obviously depends on G/H itself such that we now
restrict to the SU(4)/Sp(4) case. The extension to other pattern of symmetry breaking G/H is
straightforward. Using the explicit form of the broken SU(4) generators derived in appendix F, one
obtains for the Goldstone matrix

G(x) =
1√
2




G3̂ G1̂ − iG2̂ 0 −iG4̂ +G5̂

G1̂ + iG2̂ −G3̂ iG4̂ −G5̂ 0

0 −iG4̂ −G5̂ G3̂ G1̂ + iG2̂

iG4̂ +G5̂ 0 G1̂ − iG2̂ −G3̂


 , (E.13)

from which we derive

G2(x) =
1

2
~G2(x) 114 , ~G2(x) ≡

∑

Â

GÂ(x)GÂ(x) . (E.14)
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From the above relations, we obtain

eiG(x)/FG =

[
1− 1

2!

(
| ~G(x)|√
2FG

)2

+
1

4!

(
| ~G(x)|√
2FG

)4

+ · · ·
]
114

+i
G(x)

FG

1

| ~G(x)|√
2FG

[( | ~G(x)|√
2FG

)
− 1

3!

(
| ~G(x)|√
2FG

)3

+
1

5!

(
| ~G(x)|√
2FG

)5

+ · · ·
]

= cos

(
| ~G(x)|√
2FG

)
114 + i

√
2
G(x)

| ~G(x)|
sin

(
| ~G(x)|√
2FG

)
, (E.15)

where | ~G| ≡
√
~G2. Inserting the above relation in Eq.(E.12) we get

F 2
G

4
〈(DµU)†(DµU)〉 =

F 2
G

2
sin2

(
| ~G(x)|√
2FG

)
〈vµvµ〉 (E.16)

− F 2
G

| ~G(x)|2
sin2

(
| ~G(x)|√
2FG

)
〈G(x)vµG(x)vµ〉+ · · ·

We now restrict G(x) to the pNGB G1̂ ≡ h(x) and G3̂ ≡ η(x). The other NGBs G2̂,4̂,5̂ being the
would be Goldstone boson eaten by the W and Z bosons after EWSB. Then the Goldstone matrix
reads

G(x) =
1√
2




η(x) h(x) 0 0
h(x) −η(x) 0 0
0 0 η(x) h(x)
0 0 h(x) −η(x)


 . (E.17)

For the external vector sources vµ, we restrict to the gauged part ie to the SM gauge fields

vµ = g(W 1
µT

1
L +W 2

µT
2
L +W 3

µT
3
L) + g′BµT

3
R

=
g

2




g′/gBµ 0 0 0
0 W 3

µ 0 iW 1
µ +W 2

µ

0 0 −g′/gBµ 0
0 −iW 1

µ +W 2
µ 0 −W 3

µ


 , (E.18)

Inserting Eqs. (E.17) and (E.18) in Eq. (E.16) we get

F 2
G

4
〈(DµU)†(DµU)〉 = g2

F 2
G

2

h2

h2 + η2
sin2

(√
h2 + η2√
2FG

)
[W+

µ W
µ− +

1

2c2w
ZµZ

µ] + · · · (E.19)

where we have used Eqs. (1.2.9) and (1.2.11) of chapter 1. Keeping now only the Higgs field ie taking
η(x) = 0 and introducing a vev for the Higgs: h(x) → h(x) + 〈h〉 we get

F 2
G

4
〈(DµU)†(DµU)〉 = g2

F 2
G

2

[
sin2

( 〈h〉√
2FG

)
+
√
2
h(x)

FG
sin

( 〈h〉√
2FG

)
(E.20)

+
h2(x)

2F 2
G

(1− 2 sin2
( 〈h〉√

2FG

)
) +O(h3)

]
[W+

µ W
µ− +

1

2c2w
ZµZ

µ] + · · ·

To obtain the above equation, we have expanded around the vacuum 〈h〉 using

sin

(
h(x) + 〈h〉√

2FG

)
= sin

( 〈h〉√
2FG

)
+
h(x)√
2FG

cos

( 〈h〉√
2FG

)
− 1

2

(
h(x)√
2FG

)2

sin

( 〈h〉√
2FG

)
+O(h3) (E.21)

From Eq. (E.20), we identify the masses of the SM gauge bosons: MW = gv/2 andMZ =MW /(
√
2cw)

and then the EW vev v ≃ 246 GeV. The latter takes the following form

v =
√
2FG sin

( 〈h〉√
2FG

)
, ξ ≡ sin2

( 〈h〉√
2FG

)
=

v2

2F 2
G

. (E.22)
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Then we finally have

F 2
G

4
〈(DµU)†(DµU)〉 =

(
M2
W + gMW

√
1− ξ h(x) +

g2

4
(1− 2ξ) h2(x)

)

[W+
µ W

µ− +
1

2c2w
ZµZ

µ] + · · · (E.23)

and the deviations to the SM Higgs couplings parametrised by ξ are

chV V
cSMhV V

=
√

1− ξ ,
chhV V
cSMhhV V

= (1− 2ξ) . (E.24)

The link between the usual scale of the chiral Lagrangian f and the Goldstone decay constant FG
defined by Eq. (E.11) is f =

√
2FG.
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Chapter 9

The coloured sector of the minimal UV
completion

In the precedent chapter, we have presented the EW sector of the minimal UV complete CHM. This
sector contains the composite Higgs boson that emerges as a pNGB of the spontaneous breaking
of the SU(4) global symmetry. Beside the EW sector, CHMs also contain a coloured sector (see
chapter 7) from which top partners are supposed to emerge as bound states. The top partners are a
crucial ingredient of CHMs as they are supposed to drive the breaking of the EW symmetry. Indeed,
they couple linearly with the top quark and these couplings explicitly breaks the global symmetries,
generating in this way a potential for the NGBs and finally a mass for the Higgs boson.

In our case, the minimal coloured sector consistent with the SU(4)/Sp(4) breaking pattern of the
EW sector is based on SU(6)/SO(6). The SU(6) symmetry is the minimal way to embed the SU(3)c
gauge symmetry in a VL way that is, without introducing gauge anomalies. This global symmetry
is realised by six fermions X transforming under the strong dynamics in a different representation
compare to the fermions ψ. The requirement to form baryons as well as the preservation of asymptotic
freedom in the UV lead to only one possibility for the gauge representation of the fermions X that
is the two index antisymmetric representation of Sp(2N). This representation is real such that a
non-zero condensate 〈XfXg〉 breaks the SU(6) symmetry down to SO(6). In addition, baryons
with an even number of ψ (of pseudo-real fermions) are allowed in general. Restricting to trilinear
baryons, the two possibilities are (ψaψbXf ) and (XfXgXh) where the first one contains top partners
charged both under QCD and under the EW symmetry. Note that the spontaneous breaking of the
SU(6) symmetry is not a necessity in the coloured sector contrary to the EW sector where the SU(4)
symmetry must be broken in order for the Higgs to emerge as a pNGB.

The chapter is organised as follow. We first introduce the coloured fundamental fermions Xf .
Similarly to the SU(4) sector, the coloured sector has an anomalous U(1)X symmetry. However, one
combination of the two anomalous U(1)ψ and U(1)X symmetries, respectively associated with the
EW and the coloured sector, is in non-anomalous. This feature is slightly different in QCD 1 where
there are two U(1) symmetry but only one sector such that the non-anoamlous U(1)V symmetry is
not spontaneously broken. In the present case, the non-anomalous U(1) symmetry is spontaneously
broken after condensation which leads to another, possibly light pNGB. Another interesting point is
that the anomalous combination remains explicitly broken even in the large N limit due to the large
dimension of gauge representation in which the fermions X belong. This is not the case in QCD where
the quarks belong to the fundamental representation such that the U(1)A anomaly disappears in the
largeNc limit (see subsection U(1) axial anoamly). In subsection 9.1.1, we study in details the patterns
of symmetry breaking. We use the ’t Hooft anomaly matching and show that the global symmetry
of the EW sector must be broken. However, for the coloured sector, the matching with composite

1More precisely, in QCD there are two sectors: one associated with the left-handed quarks qL transforming as triplets
of SU(3)c and one associated with the right-handed quarks qcR transforming as anti-triplet. The two sectors lead to only
one condensate [〈qq〉 = 〈qLqR+qRqL〉] after the spontaneous breaking of the chiral symmetry such that there is only one
anomalous U(1) symmetry, the axial U(1)A. However, the second non-anomalous symmetry U(1)V is not spontaneously
broken by the QCD condensate and then differs from the present case.
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baryonic states is possible such that the global symmetry could be broken or remains unbroken. This
is a very important result because we have proof 2 that the CHM under study generate a pNGB
Higgs. This is not a trivial result and it could be interesting to do the same exercise with all of
the other possible CHMs of table 7.3. We consider in subsection 9.1.2 the sum rules of the coloured
sector. Most of them have the same form than the EW sector in isolation that is ΠXV−A, Π

X
S−P , Π

X
S0−P

and ΠXS−P 0 are order parameters of the SU(6)/SO(6) spontaneous breaking. However, in addition to

the other order parameters, there is also ΠψX
S0 and ΠψX

P 0 from which we derived two additional sum
rules. The latter are associated with the non-anomalous U(1) symmetry as the corresponding charge
is spontaneously broken after condensation . Then we expect in general additional features when the
two sectors are not in isolation.

The link between the EW and the coloured sectors is encoded by the ’t Hooft term which
parametrises the breaking of the anomalous symmetry. This operator is presented in subsection
9.1.3, it is made of the two species of fermions, ψ and X. As usual with a ’t Hooft term, we isolate
the relevant part which contribute in the NJL approximation.

In section 9.2 we study the coloured sector with the NJL techniques. We first derive in subsection
9.2.1 the effective four-fermion interactions relevant for the NJL computations. We also derive the two
mass gap equations giving the dynamical masses Mψ and MX . The latter form a coupled system due
to the ’t Hooft term that link the two sectors. This feature can be compared with the three flavours
case in QCD (see subsection 3.2.4) where there are two coupled mass gap: one for 〈uu〉 = 〈dd〉 and
one for 〈ss〉. However, the origin of the coupling between the two mass gap is not the same. In QCD,
it is mainly due to the flavour structure of the current mass matrix while in our case, it is due to
the effective four-fermion interaction (ψψ)(XX) coming from the ’t Hooft term. Next, in subsections
9.2.2 and 9.2.3, we derive the masses of the scalar and vector coloured resonances. We restrict to the
non-singlet resonances as there is no mixing with the EW resonances. The phenomenological analysis
of the non-singlet masses is given in subsection 9.2.4. One finds that the coloured pNGB can be
sufficiently heavy that is above the collider bounds due to the radiation QCD corrections coming from
the gauging of the SM group. However, the price is to have a scale f a bit larger from its lower bound
of around 1 TeV. Another way to respect the experimental bounds is to introduce an explicit breaking
mass term mXX

fXf which is the equivalent of the current masses in QCD. In that case, fixing f at
1 TeV one easily respect the experimental bounds with a sufficiently large value of mX . However, the
explicit breaking mass contributes to all of the other channels and the coloured pNGBs tend to be of
the same order than the coloured vector masses. Note that, for the numerical analysis, we again use
simple phenomenological relations between the couplings of the four-fermion interactions that come
from the current-current hypothesis. The relations in each sectors are well-defined (between scalar
and vector couplings) but we note that it is not the case between the EW and the coloured sector.
For simplicity and for phenomenological reasons we assume that the strength of the four-fermions
interactions in the EW and in the coloured sectors are the same.

Finally, we present the singlet sector in subsection 9.2.5. We introduce the mixing formalism used
in the NJL to estimate the masses and other decay constants. Indeed, the four-fermion interaction
involving the two species of fundamental fermions induces a mixing between the EW and coloured
(pseudo)scalar singlets.

We also collect some additional material related to both the EW and the coloured sectors in the
appendices. In appendix F, we construct explicitly the SU(4) and SU(6) generators and identify the
embedding of the SM gauge group. We also give the radiative corrections of the coloured pNGs coming
from the gauging of the SM group. In appendix G and H, we respectively give the explicit form of the
one-loop functions Ã0 and B̃0 and we present the computation of the one-loop two points functions
Π̃i (i = S, P, V,A,AP ) used in the NJL computations. The latter have already been considered
in section 3.2 in the context of Dirac fermions and we generalise these result to the case of Weyl
fermions. Finally, in appendix I, we start from the Sp(2N) current-current operators and we make
the link between the coefficients of the four-fermions interactions. We also take the time to collect
general results on Fierz transformations such that the procedure can easily be applied to other UV

2Note that for the matching, we make the reasonable hypothesis to restrict to trilinear baryons. This can be justified
in the maximal attractive channel framework (see subsection 10.2.1).

203



completions.

9.1 Adding the coloured sector

An appealing way to couple the SM fermions to the composite Higgs is to introduce a linear coupling
between each SM fermion and a composite fermion resonance with the same quantum numbers. Such
an approach, known as fermion partial compositeness [81, 82], is especially attractive in the case of
the top quark: relatively light composite top partners allow to induce the required, large top Yukawa
coupling. In order for the composite sector to contain partners for the top (and possibly the other
SM quarks), one needs to introduce constituent fermions Xf that are charged under the colour group
SU(3)c. It is not possible to constitute a ‘baryon’ (a hypercolour invariant spin-1/2 bound state) if Xf

transforms under the fundamental, pseudo-real representation of Sp(2N). Following [259], we rather
assume that Xf transforms under the two-index, real representation of Sp(2N) that is antisymmetric,

Xf
ij = −Xf

ji, and traceless, Xf
ijΩji = 0. This irreducible representation has dimension (2N+1)(N−1).

In order to embed a SU(3)c triplet-antitriplet pair, one has to introduce six such fermions, f = 1, . . . , 6.
Then, the theory acquires a flavour symmetry SU(6) ⊃ SU(3)c, with X

f ∼ 6SU(6) = (3 + 3̄)SU(3)c .
The addition of such an X-sector modifies several results that we have derived for the ψ-sector in
isolation, because the underlying Sp(2N) dynamics connects the two sectors in a highly non-trivial
way, as we now describe.

Lorentz Sp(2N) SU(6) SO(6)

Xf
ij (1/2, 0)

ij
6f 6

Xfij ≡ ΩikX
†
fklΩlj (0, 1/2)

ij
6f 6

Mfg
c ∼ (XfXg) (0, 0) 1 21fg 20′ + 1

M cfg ∼ (XfXg) (0, 0) 1 21fg 20′ + 1

aµX ∼ (X
f
σµXf ) (1/2, 1/2) 1 1 1

(V µ
c , A

µ
c )
g
f ∼ (Xfσ

µXg) (1/2, 1/2) 1 35fg 15 + 20′

Table 9.1: The transformation properties of the elementary fermions, the spin-0 and spin-1 fermion
bilinears, in the colour sector of the model. Spinor indexes are understood, and brackets stand for a
hypercolour-invariant contraction of the Sp(2N) indexes.

Once both types of fermions ψa and Xf are in presence, the flavour symmetry group becomes
G = SU(4)×SU(6)×U(1), where U(1) is the non-anomalous linear combination of the two axial sym-
metries U(1)ψ and U(1)X , which separately are both anomalous with respect to Sp(2N). The current
corresponding to the U(1)ψ transformations and its divergence were already given in Eqs. (8.2.4) and
(8.2.5), respectively. In the case of the U(1)X transformations, the corresponding expressions read [a
sum over the flavour indices is understood, gauge and spinor indices are omitted]

J 0
Xµ =

1

2

[(
XσµX

)
−

(
XσµX

)]
, (9.1.1)

∂µJ 0
Xµ = 4

√
3mXP0

X + 2(N − 1)
NX
f g

2
HC

32π2

N(2N+1)∑

I=1

ǫµνρσG
I,µν
HC G

I,ρσ
HC , (9.1.2)

where the factor NX
f = 3 accounts for the number of flavours in the X-sector. In the above, X, as

defined in Table 9.1 below, transforms under the Sp(2N) gauge group in the same way as X, and the
gauge-invariant bilinear fermion contractions between X and X are defined as

(XfXg) ≡ Xf
ijΩjkX

g
klΩli = tr(XfΩXgΩ) . (9.1.3)
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Contractions like (XfXg) and (XfX
g) are defined in the same way. For later use we have also

introduced a flavour independent mass term for the X fermions,

LXm = −2
√
3mXS0

X , (9.1.4)

with

S0
X =

1

2

[
(XT 0

XΣ
c
0X) + (XΣc0T

0
XX)

]
, P0

X =
1

2i

[
(XT 0

XΣ
c
0X)− (XΣc0T

0
XX)

]
, (9.1.5)

in agreement with the general definitions given in Eq. (8.1.6) and the normalisation adopted there for
the singlet scalar and pseudoscalar densities, that is T 0

X = 11/(2
√
3). Note that the singlet contraction

of two fermions in the (anti-)fundamental of SU(6) is realized through the matrix

Σc0 =

(
0 113
113 0

)
, (9.1.6)

that determines the SU(6)/SO(6) vacuum direction. The two conditions in Eq. (8.1.2) are satisfied

with Σǫ = Σc0 and the SU(6) generators TF and T F̂ defined in appendix F.2.
Examining the respective U(1)ψ and U(1)X anomaly coefficients, it is easily seen that the combi-

nation of the two axial singlet currents given by

J 0
µ = ℓ( )J 0

Xµ −
3

2
ℓ( )J 0

ψµ =
3

2
ℓ( )

(
ψaσµψa

)
− ℓ( )

(
XfσµXf

)
, (9.1.7)

is free from the gauge anomaly,
∂µJ 0

µ = 4
√
3mXP0

X , (9.1.8)

where the Dynkin index ℓ(r) of the representation r of the gauge group Sp(2N) gives the normalisation
of the Sp(2N) generators T I(r) in this representation,

tr[T I(r)T J(r)] =
1

2
ℓ(r)δIJ , ℓ( ) = 1 , ℓ( ) = 2(N − 1) . (9.1.9)

Consequently, the axial singlet transformation of both the ψ and X fermions, with charges satisfying

qψ = −3(N − 1)qX , (9.1.10)

is a true symmetry of the theory, even at the quantum level, in the limit where mX vanishes.
The introduction of fermions in the two-index antisymmetric representation of the Sp(2N) gauge

group has another consequence. The first coefficient of the β-function of the gauge coupling gHC now
reads

b0 =
11

3
C2(adj)−

4

3

∑

i=ψ,X

N i
f ℓ(ri) =

2

3
(11− 4NX

f )

[
N + 1− 2

4NX
f −Nψ

f

4NX
f − 11

]
. (9.1.11)

Therefore, as soon as NX
f ≥ 3, b0 stays positive and asymptotic freedom is preserved (at one loop)

only if the number of colours N is bounded from above,

N < 2
4NX

f −Nψ
f

4NX
f − 11

− 1 [NX
f ≥ 3], (9.1.12)

which, in the case at hand (Nψ
f = 2 and NX

f = 3), means N ≤ 18. This upper bound prevents us from
considering the limit N → ∞ at the level of the fundamental hypercolour theory once the sector of X
fermions has been introduced. Notice, however, that independently from the existence of this upper
bound on N , the anomalous contribution on the left-hand side of Eq. (9.1.2) would not vanish in the
’t Hooft limit N → ∞, with Ng2HC staying constant. Despite the absence of a well-defined large-N
limit at the level of the fundamental theory, it remains useful to keep the naive counting in powers
of 1/N at the level of the NJL description of the dynamics, since it allows, for instance, to identify
contributions which will be numerically suppressed even for already moderate values of N . Therefore,
when, in the sequel, we mention or use the 1/N expansion, it will thus always be understood that it
refers to the NJL context.
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9.1.1 The pattern of flavour symmetry breaking

Concerning the pattern of spontaneous symmetry breaking, there are now two possible fermion bilin-
ears that may form a condensate. A non-zero 〈ψaψb〉 would break SU(4)×U(1) to Sp(4), with NGBs
transforming as (5 + 1)Sp(4). A non-zero 〈XfXg〉 would break SU(6) × U(1) to SO(6), with NGBs
in the representation (20′ + 1)SO(6) = (8 + 6 + 6̄ + 1)SU(3)c . Light coloured scalars are phenomeno-
logically problematic because of the strong bounds from collider searches. An important contribution
to their mass is induced by gluon loops, as discussed in section 8.1.5, in appendix F.2, and section
9.2.2. Another possibility to lift the coloured NGBs from the low energy spectrum is to introduce the
mass term (9.1.4), that breaks explicitly SU(6) × U(1) to SO(6). Alternatively, if SU(6) does not
undergo spontaneous breaking, coloured NGBs would be absent. However, we will show below that
the matching of anomalies would then require massless, coloured fermions, that again call for a large
radiative mass or mX 6= 0.

Since we have adopted the same fermion content as in [259], let us stress some differences with
respect to the discussion of flavour symmetries in that analysis. First, the non-anomalous axial U(1)
symmetry was not discussed: we will show that it has several phenomenological consequences. Second,
the colour triplet and antitriplet components of Xf were treated separately, and the global symmetry
was identified with SU(3) × SU(3) × U(1)V , broken by a mass term to SU(3)c × U(1)V . However,
these are just maximal subgroups of the complete global symmetry SU(6), and of the complete
unbroken subgroup SO(6), respectively. The pattern is different from QCD, because there quarks
and antiquarks transform under different representations of the gauge group, while here the six copies
of Xf transform in the same way under Sp(2N). Note that U(1)V was introduced in [259] in order
to provide top partners with the appropriate SM hypercharge, but remarkably such a symmetry is
automatically present, as one of the unbroken generators within SO(6).

Once both the elementary fermions ψa and Xf are introduced, one can form several baryons. As
a consequence, the anomaly matching condition provides non-trivial constraints on the spontaneous
symmetry breaking, as discussed in section 8.1.2. If one denotes by V the conserved currents associated
to the Hm generators, and by A the conserved currents associated to the generators of the coset
G/Hm (see section 8.1.1), one needs only consider the anomaly matching constraints that arise from
the 〈V V A〉 correlators. Then, to each fermion transforming in the representation r of G is associated
an anomaly coefficient A(r), which is defined by

2tr(T Â(r){TB(r), TC(r)}) = A(r)dÂBC , (9.1.13)

where TA(r) and T Â(r) are the generators of Hm and of G/Hm, respectively, in the representation r,

and dÂBC is an invariant tensor that depends on G. The generators of the fundamental representation
r0 are normalised as in Eq. (9.1.9), and its anomaly coefficient is fixed to A(r0) = 1. The anomaly
matching condition can be written as

∑

i

niA(ri) =
∑

i

n′iA(ri) , (9.1.14)

where the left-hand (right-hand) sum runs over the representations of the constituent (composite)
fermions, and ni (n

′
i) are their multiplicities. If this equality cannot be satisfied, then G necessarily

undergoes spontaneous symmetry breaking.
In the model under investigation, the possible trilinear baryons consist of

Ψabf = (ψaψbXf ) , Ψab
f = (ψaψbXf ) , Ψaf

b = (ψaψbX
f ) , Ψfgh = (XfXgXh) , Ψfg

h = (XfXgXh) ,
(9.1.15)

plus their conjugates, where the brackets stand for a spin-1/2, hypercolour-singlet contraction (multi-
ple, independent contractions of this kind may be possible). Each Ψ decomposes in several irreducible
representations (r4, r6) of SU(4) × SU(6), each corresponding to an independent baryon state: for
example Ψabf ∼ [(6, 6) + (10, 6)]. In addition, exotic baryons are also possible, formed by a larger,
odd number of constituent fermions.

Let us begin with the SU(4)3 anomaly. As ψ lies in the fundamental representation of SU(4),
its anomaly coefficient is A4(4) = 1. The SU(4) representations contained in ψaψb or ψaψb have
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coefficients A4(1) = A4(6) = A4(15) = 0 and A4(10) = 8. Therefore, the anomaly matching between
ψ and the trilinear baryons Ψ reads

2N ·A4(4) = 2N =
∑

(r4,r6)

n(r4,r6)A4(r4) · dim(r6) = n(10,6)6 · 8 , (9.1.16)

where the sum runs over the various massless baryon states, and n(r4,r6) is their multiplicity. One
can generalise the result to include exotic baryons: in full generality, hypercolour invariance requires
the total number of ψ and ψ fermions to be even, then, to obtain a fermion, one needs that the
total number of X and X is odd. One can check [261] that (i) the anomaly coefficient of any SU(4)
representation, contained in 4 × · · · × 4 an even number of times, is a multiple of 8, and (ii) the
dimension of any SU(6) representation, contained in 6× · · · × 6 an odd number of time, is a multiple
of 2. As a consequence, the right-hand side of Eq. (9.1.16) generalises to a multiple of 2 · 8, and the
matching is possible only for N = 8n, with n integer. An example with N = 8 is provided by one
exotic baryon (ψψXXX) ∼ (10, 20) plus three copies of (ψψX) ∼ (10, 6). In summary, for N 6= 8n
SU(4) necessarily spontaneously breaks to Sp(4) and the corresponding NGB decay constant FG
is non-zero. Strictly speaking, the other order parameters, such as the condensate 〈ψψ〉, may still
vanish, for instance if a discrete symmetry subgroup leaves the vacuum invariant but not the (ψψ)
operator [300]. This is, however, a rather unlikely situation to happen [301], and we will assume that
the spontaneous symmetry breaking of the SU(4) flavour group (towards its Sp(4) subgroup) is due
to the formation of a non-vanishing 〈ψψ〉 condensate. This corresponds actually to the dynamical
situation described by the NJL framework, where SU(4) order parameters like the condensate are
proportional to FG.

Next, let us consider the SU(6)3 anomaly. The crucial observation is that there are baryons,
contained either in (ψψX) or (XXX), that transform under the representation (1, 6). These states
have evidently the same anomaly coefficient A6(6) = 1 as the constituent fermion X, therefore the
matching is trivially possible for any value of N :

(2N + 1)(N − 1) ·A6(6) =
∑

(r4,r6)

n(r4,r6) dim(r4) ·A6(r6) = n(1,6)1 ·A6(6) + . . . , (9.1.17)

where the ellipsis stands for the contribution of larger representations, that are not relevant in the
present context. As a consequence, the spontaneous breaking of SU(6) is not a necessity, and in
particular one may have 〈XX〉 = 0.

Note that the massless baryons required by anomaly matching carry colour and are phenomeno-
logically excluded. Once these baryons are made heavy by explicit symmetry breaking, there are no
exact NGBs either, and again one cannot tell whether the dynamics breaks spontaneously SU(6) or
not. Indeed, in either case an explicit symmetry breaking mass term mXXX is required for spec-
ular reasons: in the unbroken phase, one needs it to give a sufficiently large mass to the coloured
baryons; in the broken phase, the mass term is necessary to make the coloured NGBs sufficiently
heavy. Ref. [302] argues that the mass of the top partners can be controlled by the parameter mX , if
one assumes to be in the unbroken phase.

Finally, one should consider the anomalies involving the non-anomalous U(1). The anomaly
for U(1)SU(6)2 is easily matched for any N , by the same set of baryons that matches the SU(6)3

anomaly. We also proved that the other anomalies involving U(1), that is U(1)SU(4)2 and U(1)3, can
be matched for any N as well, but using a different set of baryons in each case. It is highly non-trivial
to match all U(1) anomalies at the same time, and thus preserve this symmetry from spontaneous
breaking. As we have already argued though, it is quite unlikely that the spontaneous breaking of the
SU(4) flavour symmetry happens without, at the same time, also triggering the spontaneous breaking
of the U(1) symmetry.

In the following sections, we will apply the NJL techniques to the complete model including the
electroweak and the colour sector. In particular, we will study the mass gap equations that determine
〈ψψ〉 and 〈XX〉 in terms of the coefficients of the four-fermion operators. For N 6= 8n, only the phase
〈ψψ〉 6= 0 of the NJL model should be considered as a good approximation of the full dynamics, while
〈XX〉 is not constrained by the matching of anomalies. For N = 8n, both condensates may or may
not vanish.
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9.1.2 Sum rules and pseudoscalar decay constants in the flavour-singlet sector

As a last point to be discussed in this section, let us recall that in section 8.1.4 we introduced
the spectral sum rules for a simple group G that undergoes spontaneous breaking. That discussion
applies to the ψ-sector alone, with coset SU(4)/Sp(4), as well as to the X-sector in isolation, with
coset SU(6)/SO(6). In the complete model, one can also construct correlation functions involving
simultaneously the two sectors and that are order parameters for the whole symmetry group SU(4)×
SU(6) × U(1), i.e. involving also the non-anomalous axial singlet transformations. This leads to
additional sum rules that may constrain the resonance spectrum. At the level of two-point functions,
the relevant order parameters involving the two sectors are:

ΠψX
S0 (q2) = i

∫
d4x eiq·x〈vac|T{S0

ψ(x)S0
X(0)}|vac〉 ,

ΠψX
P 0 (q

2) = i

∫
d4x eiq·x〈vac|T{P0

ψ(x)P0
X(0)}|vac〉 . (9.1.18)

From them we derive two additional spectral sum rules, valid in the limit where mX vanishes:
∫ ∞

0
dt ImΠψXS0

(t) = 0 ,

∫ ∞

0
dt ImΠψXP0

(t) = 0 , (9.1.19)

which respectively constrain the spectrum of scalar and pseudo-scalar singlets resonances.
One could examine the realization of these sum rules in the NJL framework, similarly to what we

did for the electroweak sector in section 8.2.7, for instance investigating whether the first low-lying
resonances in each channel saturate them. Here we rather describe some of the expected features in
general terms, independently from the NJL approximation. In the singlet pseudoscalar channel, we
expect two states. The first one is the Goldstone boson η0 produced by the spontaneous breaking of
the non-anomalous axial U(1) symmetry. The second one is a massive pseudoscalar state η′, which
corresponds to the second Goldstone boson that would be present in the absence of the gauge anomaly
in the divergences of the U(1)ψ and U(1)X currents. These states both couple to the (partially)
conserved U(1) current, defined in Eq. (9.1.7) above,

〈vac|J 0
µ (0)|η0(p)〉 = iFη0pµ , 〈vac|J 0

µ (0)|η′(p)〉 = iFη′pµ . (9.1.20)

In the limit where mX vanishes, Fη0 remains nonzero and Fη′ ∼ O(mX), whereas for the masses
M2
η0 ∼ O(mX) while M

2
η′ does not vanish. Of course, there are also couplings to the individual, non

conserved, U(1)ψ and U(1)X currents, defined in Eqs. (8.2.4) and (9.1.1), respectively

〈vac|J 0
ψµ(0)|η0(p)〉 = iFψη0pµ , 〈vac|J 0

ψµ(0)|η′(p)〉 = iFψη′pµ ,

〈vac|J 0
Xµ(0)|η0(p)〉 = iFXη0 pµ , 〈vac|J 0

Xµ(0)|η′(p)〉 = iFXη′ pµ . (9.1.21)

According to the expressions given in Eqs. (8.2.4), (9.1.1), and (9.1.7), these four decay constants are

related to the ones in the preceding equation through Fη0,η′ = FXη0,η′ − 3(N − 1)Fψη0,η′ . Both η0 and η′

states also couple to the singlet pseudoscalar densities,

〈vac|P0
ψ(0)|η0(p)〉 = Gψη0 , 〈vac|P0

ψ(0)|η′(p)〉 = Gψη′ ,

〈vac|P0
X(0)|η0(p)〉 = GXη0 , 〈vac|P0

X(0)|η′(p)〉 = GXη′ , (9.1.22)

and through Eq. (9.1.8) the two following relations hold:

Fη0M
2
η0 = 4

√
3mXG

X
η0 , Fη′M

2
η′ = 4

√
3mXG

X
η′ . (9.1.23)

Although they do not lead to sum rules, it is both interesting and useful to consider two-point
correlators involving the axial singlet current and the singlet pseudoscalar densities, defined in analogy
to Eq. (8.1.15) for the non-singlet case,

Πψ
A0P 0(q

2)qµ =

∫
d4x eiq·x〈vac|T{J 0

µ (x)P0
ψ(0)}|vac〉 ,

ΠXA0P 0(q
2)qµ =

∫
d4x eiq·x〈vac|T{J 0

µ (x)P0
X(0)}|vac〉 . (9.1.24)
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Πψ
A0P 0(q

2) are order parameters for SU(4) × U(1) and for SU(6) × U(1), respectively, and in the
limit where the current J 0

µ (x) is conserved they are both saturated by the massless η0 pole, as in Eq.
(8.1.16). In the presence of the mass mX , this is no longer true, and the Ward identities give

q2Πψ
A0P 0(q

2) = 4
√
3mXΠ

ψX
P 0 (q

2)−6(N−1)〈S0
ψ〉 , q2ΠXA0P 0(q

2) = 4
√
3mXΠ

X
P 0(q

2)+2〈S0
X〉 . (9.1.25)

These lead, in particular, to the constraints

4
√
3mXΠ

ψX
P 0 (0) = 6(N − 1)〈S0

ψ〉 , 4
√
3mXΠ

X
P 0(0) = −2〈S0

X〉 , (9.1.26)

as well as

Fη0G
ψ
η0 = 6(N − 1)〈S0

ψ〉+O(mX) , Fη0G
X
η0 = −2〈S0

X〉+O(mX) , (9.1.27)

which provide useful cross-checks for the NJL calculation.

9.1.3 Effective couplings induced by the hypercolour gauge anomaly

As we have just discussed, apart from the SU(6) symmetry, there is also an additional, not required,
U(1)X (classical) symmetry. In order to study the description of the Sp(2N) hypercolour gauge
anomaly at the level of the NJL framework, let us first discuss the X-sector in isolation. The sector
of gauge configurations with unit winding number now induces 2(N − 1) fermionic zero modes per
flavour (in the present case, NX

f = 3) for the Dirac operator corresponding to the X and X fermions
(the uninteresting case N = 1 is, of course, discarded). Through the index theorem, these zero modes
induce a violation of the U(1)X charge by 12(N − 1) units, which, as already discussed in Section
8.2.1 for the colourless sector, has to be reproduced by the effective ’t Hooft vertex. In the case of
an Sp(4) gauge group (N = 2), it is straightforward to construct an operator OX that induces this
violation of the invariance under U(1)X , while at the same time preserving the invariance under the
SU(6) flavour group:

OX = − 1

6!
ǫf1···f6ǫg1···g6(X

f1Xg1) · · · (Xf6Xg6) = −det(XfXg) , (9.1.28)

where the determinant is taken in the six-dimensional flavour space. For N > 2 and only 6 Weyl
fermions at our disposal, one obvious extension of the above operator satisfying the required properties
would consist in taking ON−1

X . One should, however, be aware that, on the one hand, this simple
procedure might not comply with the properties of the ’t Hooft vertex as arising from the Grassmann
integration over the fermionic collective coordinates3, and, on the other hand, that the ’t Hooft vertex
could also involve derivatives of the fermion fields. An example where this second feature is known
to happen is provided by the case of an SU(2) ≃ Sp(2) gauge group with fermions in the adjoint
representation [306]. Delving more deeply into these issues would, however, take us too far astray.
Moreover, dealing with a term involving derivatives of the fermion fields is beyond the NJL framework
as it is usually understood. From the point of view of the latter, the term ON−1

X , possessing all the
required symmetry properties, is quite appropriate, and henceforth we will assume that at the level of
the NJL approach, it provides the required description of the explicit breaking of the U(1)X symmetry
by instantons.

The preceding discussion considered the SU(6) sector in isolation and, apart from some subtle
aspects due to the representation of the gauge group under which the X fermions transform, has essen-
tially paralleled the related discussion for the SU(4) sector in Section 8.2.1. We will now bring the two
sectors together and, as was already the case for the discussion of the anomaly matching conditions in
the preceding subsection, we will find that when acting together the two sectors unravel new features.
Indeed, the structure of anomaly-driven effective terms is actually different, as one should take into
account that a combination of U(1)X and U(1)ψ transformations, as given in Eq. (9.1.10), remains
non-anomalous. This drastically changes the form of appropriate effective interactions generalising
the ’t Hooft terms usually being given by a (flavour) determinant, since ψ and X are not in the same

3Useful introductions to instantons are provided by Refs. [303–305]
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representation. Combining this information with the discussion above and in Section 8.2.1, the lowest
dimensional operator that breaks both U(1)ψ and U(1)X axial singlet symmetries, while preserving
the U(1) symmetry generated by the combination (9.1.7), reads

LψX = AψX
Oψ

(2N)2

[ OX

[(2N + 1)(N − 1)]6

](N−1)

+ h.c. , (9.1.29)

with OX defined above and Oψ the antisymmetric four-fermion second term in Eq. (8.2.1):

Oψ = −1

4
ǫabcd(ψ

aψb)(ψcψd) . (9.1.30)

The constant AψX can be taken real and positive by adjusting the phase of ψ. Its normalisation in Eq.
(9.1.29) has been conveniently chosen in order to compensate the different powers of N contained in
the condensates, see Eqs. (8.2.19) and (9.2.4). This normalisation, with an N -independent coefficient
AψX , would reproduce the correct behaviour of the U(1)ψ,X anomaly in the large-N limit, would the
latter exist, see the discussion around Eqs. (9.1.11) and (9.1.12). Indeed, Eq. (9.1.2) shows that the
effect of the anomaly would not vanish in this limit, as (N − 1)g2HC ∼ (N − 1)/N ∼ 1. As we will see
in Section 9.2.5, a trace of this feature appears in the mass of the η′, which is proportional to AψX ,
M2
η′ ∼ AψX [1 +O(1/N)].
After formation of the two condensates 〈ψψ〉 and 〈XX〉, the interaction (9.1.29) will generate

effective four-fermion interaction for ψ, and X, as well as a mixed ψψXX term, upon replacing
appropriate number of fermion bilinears by their respective condensate (i.e. closing the loops). To
identify these four-fermion interactions, relevant for the computation of the meson spectrum, let us
first consider for simplicity the SU(6) → SO(6) sector. The fermion bilinear can be decomposed as

(XfXg) ≡ 2(T 0
XΣ

c
0)
gf

(
XΣc0T

0
XX

)
+ 2(T F̂Σc0)

gf
(
XΣc0T

F̂X
)
, (9.1.31)

in terms of the SO(6) singlet and the two-index symmetric traceless components. Then, taking into
account combinatorial factors, the operator of Eq. (9.1.28) can be decomposed as 4

OX =
1

27

[
(XΣc0T

0
XX)6 − 3(XΣc0T

0
XX)4 (XΣc0T

F̂X) (XΣc0T
F̂X) + · · ·

]
, (9.1.32)

where a sum over the SU(6) generators T F̂ belonging to the SU(6)/SO(6) coset is understood. For
the SU(4) → Sp(4) sector, the similar appropriate decomposition into Sp(4) invariant bilinears reads

Oψ =
(
ψΣ0T

0
ψψ

) (
ψΣ0T

0
ψψ

)
−

(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ

)
. (9.1.33)

Next we insert the results (9.1.32) and (9.1.33) into the full effective Lagrangian Eq. (9.1.29), and
obtain

LψX =
AψX

(27)N−1

[(
ψΣ0T

0
ψψ

(2N)

)2 (
XΣc0T

0
XX

(2N + 1)(N − 1)

)6(N−1)

−
(
ψΣ0T

Âψ

(2N)

)2 (
XΣc0T

0
XX

(2N + 1)(N − 1)

)6(N−1)

−3(N − 1)

(
ψΣ0T

0
ψψ

(2N)

)2 (
XΣc0T

0
XX

(2N + 1)(N − 1)

)6(N−1)−2
(

XΣc0T
F̂X

(2N + 1)(N − 1)

)2 ]
+ · · · , (9.1.34)

where the ellipsis denotes other interaction terms, of no relevance for our purposes. The overall
constant AψX in (9.1.34) remains arbitrary for the moment, but the ratios of the coefficients of the
three effective XXXX, ψψψψ, and ψψXX terms that will matter are fixed. All effective couplings
in the singlet and non-singlet sectors are thus related to the unique coupling AψX in Eq. (9.1.29),
times appropriate powers of the two condensates and combinatoric factors (see section 9.2.1 below).

4 The coefficient of
(

XΣc0T
0
XX

)6
in det(XfXg) is 26 det(Σc0T

0
X) = −1/27, and the coefficient of

(

XΣc0T
0
XX

)4
(

XΣc0T
F̂X

)(

XΣc0T
ĜX

)

is 26 det(Σc0T
0
X)(2

√
3)2 1

2

[

tr(T F̂ )tr(T Ĝ)− tr(T F̂T Ĝ)
]

= 1
9
δF̂ Ĝ.
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9.2 Spectrum of meson resonances in presence of the coloured sec-
tor

In this section we will compute the condensates and the masses of mesons, once the coloured sector
is added to the electroweak sector, including their mixing through Eq. (9.1.34). The two sectors
share the same Sp(2N) hypercolour gauge interaction, therefore one can, in principle, relate the sizes
of the effective four-fermion operators in the two sectors. One may assume, in particular, that the
effective interactions between hypercolour-singlet fermion bilinears originate from Sp(2N) current-
current operators (see appendix I). In this approximation one can link, to some extent, the couplings
of the coloured operators to the electroweak ones. In this way the mass gap and the spectrum in the
SU(6) sector are connected to the ones in the SU(4) sector.

9.2.1 The mass gap in a theory with two sectors

Let us begin by the coloured scalar operators, that are relevant for the mass gap and for the spin-
zero mesons. Besides the anomalous operator (9.1.34), there is one more independent four-fermion
operator that describes the dynamics in analogy with the electroweak sector Lagrangian in Eq. (8.2.1),

LXscal =
κA6

(2N + 1)(N − 1)
(XfXg)(XfXg)−

1

2
mX

[
(XΣc0X) + (XΣc0X)

]
, (9.2.1)

where the coupling constant κA6 is real and its normalisation by an inverse factor (2N + 1)(N − 1)
has been conveniently chosen to compensate the trace over hypercolour in the X-fermion one-loop
two-point functions (see appendix H). In contrast with the electroweak sector, we also include in
Eq. (9.2.1) an explicit symmetry-breaking mass mX , already introduced in Eq. (9.1.4), which can
be chosen real and positive by tuning the phase of X. Note that also AψX in Eq. (9.1.34) can be
chosen real and positive, by tuning the phase of ψ. Such a mass term may be phenomenologically
necessary to raise the masses of the coloured pNGBs, in order to comply with direct collider detection
limits [260]. More generally, a non-zero mX leads to several qualitative effects that are worth to be
explored. As the contraction over Sp(2N) indices in Eq. (9.1.3) is symmetric in hypercolour space,
the scalar bilinear (XfXg) must be symmetric in flavour space, that is, it transforms as the 21s
representation of SU(6), to be compared with (ψaψb), which transforms as the 6a of SU(4). Since
21SU(6) = (1 + 20)SO(6), one can rewrite the Lagrangian (9.2.1) in the physical basis, as

LXscal =
2κA6

(2N + 1)(N − 1)

[
(XΣc0T

0
XX)(XT 0

XΣ
c
0X) + (XΣc0T

F̂X)(XT F̂Σc0X)
]

−1

2
mX

[
(XΣc0X) + (XΣc0X)

]
, (9.2.2)

where T F̂ are the 20 broken generators spanning the SU(6)/SO(6) coset.
Combining the effect of the operators in Eqs. (8.2.14), (9.1.34) and (9.2.2), one can derive a system

of two coupled gap equations for the SU(4) and SU(6) sectors,

{
1− 4(κA + κB)Ã0(M

2
ψ) = 0 ,

1− 4(κA6 + κB6)Ã0(M
2
X)−

mX

MX
= 0,

(9.2.3)

which determine the dynamical masses Mψ and MX as functions of the four couplings κA,B,A6,B6

and of the mass mX . More precisely, when mX 6= 0 the scale MX is not entirely generated by the
dynamics, see Fig. 9.3. Just like in the electroweak sectorMψ can be traded for 〈ΨΨ〉, see Eq. (8.2.19),
the NJL dynamical mass MX is also related to the condensate 〈XX〉 in the coloured sector,

〈XX〉 ≡ 1√
NX
f

〈SX0 〉 = −2(2N + 1)(N − 1)MXÃ0(M
2
X), (9.2.4)

where the factor (2N+1)(N−1) comes from the trace over hypercolour. The two mass gap equations
are coupled because the first operator in Eq. (9.1.34) induces both the κB and κB6 terms in Eq. (9.2.3).
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These contributions are obtained by closing all but one fermion bilinears into a tadpole loop, as
illustrated in Fig. 9.1 for the case of the ψ-sector. This amounts to replacing each bilinear by the
associated condensate, and to add a combinatorial factor 2 in κB, as one ψ-bilinear out of 2 is not
closed, and 6(N−1) in κB6, as one X-bilinear out of 6(N−1) is not closed. Therefore, the anomalous
terms in the gap equations are related to the original anomaly coefficient AψX by

κB ≡ AψX
2 · 27N−1

[
4NX

f 〈XX〉2

(2N + 1)2(N − 1)2

]3(N−1)
2

2N
= [4MXÃ0(M

2
X)]

6(N−1) AψX
2N

, (9.2.5)

κB6 ≡ AψX
2 · 27N−1

[
4Nψ

f 〈ψψ〉2

(2N)2

][
4NX

f 〈XX〉2

(2N + 1)2(N − 1)2

]3(N−1)−1
6(N − 1)

(2N + 1)(N − 1)

=
4N

2N + 1

M2
ψ

M2
X

Ã2
0(M

2
ψ)

Ã2
0(M

2
X)

κB . (9.2.6)

The combinatorial factors will be essential, among other things, to recover the singlet Goldstone
boson, see section 9.2.5. The effective couplings κB,B6 are normalised such as to contribute to the
gap equations (9.2.3) as for a single sector in isolation. However, since they are functions of both
dynamical masses, κB,B6 = κB,B6(M

2
ψ,M

2
X), the two gap equations are actually coupled in a non

trivial way.

= +

κA
· · ·

ψ ψ ψ ψ ψ ψ

ψ ψ

X X

AψX

Figure 9.1: Graphical illustration of the mass-gap equation in the ψ sector. The convention for the
propagator lines are the same as in Fig. 8.1. The first term, proportional to κA, remains the same as
in the electroweak sector in isolation. The second term, proportional to AψX , is obtained by closing
one loop of ψ-fermions and 6(N − 1) loops of X-fermions in Eq. (9.1.34). The mass-gap equation in
the X-sector is obtained in an analogous way, with an additional term proportional to the explicit
fermion mass mX .

Let us analyse in some detail the system (9.2.3) of two coupled gap equations, because it is
qualitatively different from the canonical NJL gap equation of QCD, and, to the best of our knowledge,
it was not studied in the previous literature. It is convenient to take the effective coupling κB as the
free parameter characterising the effect of the hypercolour anomaly, that is, to express κB6 as a
function of κB according to Eq. (9.2.6). This choice makes it easier to compare with the electroweak
sector in isolation, and it also simplifies the algebraic form of the solutions of Eq. (9.2.3). As we
have seen in section 8.2.1, the SU(4) sector forms a condensate and a non-zero dynamical mass Mψ

is generated when ξ ≡ (κA + κB)Λ
2/(4π2) is above the critical value ξ = 1. Similarly, in the chiral

limit mX = 0, a non-zero dynamical mass MX is generated when ξc ≡ (κA6 + κB6)Λ
2/(4π2) > 1.

Beyond that, the general resolution of the set of equations (9.2.3) coupled through Eq. (9.2.6) is very
involved, especially for mX 6= 0, and they can only be solved numerically. Still, it is instructive to
consider a few special cases.
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Case mX = 0, κB = 0

When κB = 0, i.e. AψX = 0, the two gap equations decouple. It is convenient to introduce dimen-
sionless variables and functions in order to rewrite them in the form

{
1− ξAĀ(xψ) = 0 ,
1− ξA6Ā(xX) = 0 ,

(9.2.7)

where xψ,X ≡ M2
ψ,X/Λ

2, ξA,A6 ≡ (Λ2/4π2)κA,A6, and Ā(x) ≡ 1− x ln(1 + 1/x). The solutions of the
two equations in (9.2.7) are simply related as

xψ(ξA) = xX (ξA6) . (9.2.8)

The result is to restrict the range of the allowed values of ξ|κB=0 = ξA, as compared to the case of
one sector in isolation. Indeed, imposing that both conditions 0 ≤ xψ(ξA) ≤ 1 and 0 ≤ xX(ξA6) ≤ 1
be satisfied simultaneously requires

max

(
1,
κA
κA6

)
≤ ξ ≤ min

(
1,
κA
κA6

)
1

1− ln 2
(κB = 0) . (9.2.9)

Hence, for κA/κA6 > 1 the minimal value of ξ is larger than unity, whereas for κA/κA6 < 1, the
highest value allowed for ξ is reduced, see Fig. 9.3. These considerations do not depend explicitly on
the value of N , although the actual values of κA and of κA6, being determined by the hypercolour
dynamics, will depend on N .

Thus, although the two gap equations are decoupled, the presence of the second one impinges on
the possible values allowed for the coupling of the second one, and vice-versa. This simply illustrates
the fact that while the two gap equations may be decoupled, they nevertheless share the same effective-
theory cutoff Λ.

Case mX = 0, κB 6= 0

By treating κB as an extra free parameter, the first equation in the system (9.2.3) is formally identical
to the gap equation for the electroweak sector in isolation, Eq. (8.2.17), with solution xψ = xψ(ξ).
Then, rewriting κB6 as a function of κB according to Eq. (9.2.6), the second gap equation becomes a
self-consistent relation for xX , that depends on N , ξ, ξA6, and ξB ≡ (Λ2/4π2)κB:





1− ξĀ(xψ) = 0 ,

G(xX , ξA6) ≡ xXĀ(xX)
[
1− ξA6Ā(xX)

]
=

4N

2N + 1
ξB
xψ(ξ)

ξ2
.

(9.2.10)

Note that the second equality assumes a consistent solution of the first equation, xψ(ξ), which requires
1 < ξ < 1/(1 − ln 2). In practice we solve numerically the first equation for xψ(ξ), then we use it as
an input to solve numerically the second one for xX(ξ).

In Fig. 9.2 we plot G(x, ξA6) as a function of x, for a few representative values of ξA6, as well
as the right-hand side of the second equation in (9.2.10), for two values of N and ξB, assuming for
simplicity two equal mass gaps, xψ = xX = x. The intersection between the dashed and solid curves
determines the solution xX = xX(N, ξ, ξA6, ξB). The function G(x, ξA6) vanishes at x = 0 and, for
any fixed value 0 < x < 1, it decreases with ξA6. For ξA6 ≤ 1, G(x, ξA6) increases in the whole interval
0 ≤ x ≤ 1, while for ξA6 > 1 it decreases to negative values for small x, then increases as x moves
towards unity, becoming positive before x = 1, as long as ξA6 < 1/(1− ln 2). On the other hand, the
function xψ(ξ)/ξ

2 satisfies 0 ≤ xψ(ξ)/ξ
2 . 1/10 for 0 ≤ x ≤ 1. Since ξB ≥ 0, there is therefore no

solution to the second equation in (9.2.10) in the interval 0 ≤ xX ≤ 1 when ξA6 ≥ 1/(1 − ln 2). In
contrast, for values 1 < ξA6 < 1/(1− ln 2) there is always a non-trivial solution with xX < 1, as long
as the right-hand side of the second equation in (9.2.10) is sufficiently small. Finally, for 0 < ξA6 < 1
the occurrence of a solution happens only for a sufficiently large ξB, also depending on N . The latter
properties actually reflect the critical value ξA6 + ξB6 > 1, necessary in order to obtain a non-trivial
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Figure 9.2: Dotted curves: the function G(x, ξA6) for three representative values of ξA6 as indicated.
Thick curves: right-hand side of the second equation in (9.2.10) for two values of N and ξB as
indicated, and taking xψ = x.

mass-gap, here somewhat disguised by the change of variables. Note that for fixed values of N , ξ and
ξB, the value of xX increases with ξA6.

One can make one more step in the analytical study of the two coupled gap equations. Moving the
term proportional to ξB in the first equation of (9.2.10) to its right-hand side, one may now eliminate
ξB between the two equations, and obtain

G(xψ, ξA) =
(
1

2
+

1

4N

)
G(xX , ξA6) . (9.2.11)

A few simple remarks follow from this relation. First, if one of the masses, say MX , has been
determined as a function of ξA, ξA6 and ξB, then the relation of Mψ to MX involves only ξA, ξA6 and
N , and not ξB. Second, this relation becomes rapidly independent of N as N increases. Third, the
relatively simple Eq. (9.2.11) precisely gives the exact dependence of the ratio of the two mass gaps,
MX/Mψ, as functions of the basic input parameters (although it is an implicit relation, due to the
non-linearity in the masses MX ,Mψ), as illustrated for a few representative case in Fig. 9.3. More
precisely, Eq. (9.2.11) may be trivially expressed as

M2
ψ

M2
X

=

(
1

2
+

1

4N

)
Ā2(xX)[1− ξA6Ā(xX)]

Ā2(xψ)[1− ξAĀ(xψ)]
. (9.2.12)

This indeed shows that, as long as M2
ψ,M

2
X ≪ Λ2 [which implies Ā(xX) ≃ Ā(xψ) since Ā(x) ≡

1− x ln(1+ 1/x) ≃ 1+M2/Λ2 ln(Λ2/M2)], one obtains Mψ < MX , at least for ξA ≃ ξA6. Indeed, the
peculiar case of equal mass gaps, xψ = xX , that is the one illustrated in Fig. 9.2, can only be obtained
for significantly different values of ξA and ξA6 (for instance when N = 4, ξA6 = 1/2 and ξB = 1/2,
one has xψ = xX ≃ 0.13, that corresponds to ξA ≃ 0.9).

In the above considerations we have kept κA and κA6 (equivalently, ξA and ξA6) arbitrary. Let us
now examine more precisely a few typical situations concerning those parameters. When κA6 is larger
than κA, the SU(6) sector first forms a condensate for ξ < 1 (see Fig. 9.3), and then MX > Mψ. In
the opposite case where κA6 is smaller than κA, the SU(6) sector forms a condensate for a value ξ > 1,
and MX < Mψ. If ξA6 ≫ ξA, the mass gap grows rather fast, so that one eventually obtains a very
large MX ∼ Λ, and conversely a very large Mψ if ξA6 ≪ ξA. Thus to obtain predictive calculations
in both sectors from the NJL model, it requires that ξA ∼ ξA6 are roughly of the same magnitude.
In this way, there is a non-zero interval for the values of ξ where the NJL predictions can be trusted
(ξ, ξc > 1 andMψ,X < Λ) in both sectors. Note that apart from these NJL consistency considerations,
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in principle no value of the ratio ξA/ξA6 is theoretically excluded, but the case Mψ = 0 and MX 6= 0
evidently does not describe a composite Higgs model since then the spectrum of resonances does not
contain a pNGB Higgs doublet. For ξA = ξA6, i.e. κA = κA6, and still for mX = 0, the ratio MX/Mψ

thus depends only of the value of κB and N , as given precisely by the relation in Eq. (9.2.12). When
ξB is close to zero, one getsMψ ≃MX , since the two gap equations are almost decoupled. Next, when
ξB increases, there is a complicated balance between the N , Mψ and MX dependence in Eq. (9.2.6),
to determine κB6/κB, but the ratio MX/Mψ is consistently determined from the relatively simple
relation in Eq. (9.2.12). This implies κB6 > κB and MX slightly above Mψ, with a MX/Mψ ratio
that increases rather slowly with ξB, and is also a slowly increasing function of N . For instance for
N = 2, MX/Mψ ≃ 1.14− 1.21 for κB/κA = 0.01− 0.5.

Finally, let us briefly discuss the most general case mX 6= 0. The above considerations give of
course only approximate relations, which however remains relatively good as long as mX remains
moderate, mX ≪ MX . For mX 6= 0 there is no critical coupling ξc in the SU(6) sector, as the
minimal value of MX is obviously non-zero, being equal to mX . A non-zero mX evidently leads to
MX > Mψ for equivalent coupling values in the two sectors, see Fig. 9.3.

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

Ξ

L

MΨ

Figure 9.3: Comparison between the mass gap Mψ of the EW sector (black dotted line) and the
mass gap MX of the coloured sector for few representatives cases. When κA6 = κA, mX = 0 and
κB/κA = 0, the two dynamical masses are equal, Mψ = MX . To illustrate the behaviour of MX

with respect to the free parameters of the theory (ξ, κB/κA, κA6/κA, mX and N) we illustrate small
departures from this particular case. The solid (dashed) red line corresponds to κA6 = 2(1/2)κA with
κB/κA = 0, mX = 0 and N = 4. In these cases, the critical coupling of the coloured sector (ξc = 1) is
respectively smaller or larger than the one in the EW sector (ξ = 1). Next, the solid blue (green) line
corresponds to κA6 = κA, N = 4 with κB/κA = 0 (κB/κA = 0.1) and mX = Λ/10 (mX = 0). In the
case where there is an explicit breaking mass mX , there is no critical coupling in the coloured sector
as the lowest value of MX is simply mX . Finally note that MX is almost independent of the number
of hypercolour N .

A couple of remarks are in order. In section 9.2.5 we will see that the scalar singlet sector is
consistent only for a very small value of κB/κA, see Eqs. (9.2.31) and (9.2.40). This is due to the
requirement of vacuum stability, that is not apparent in the mass-gap equations (9.2.3). For example,
this upper bound implies that a value ξB = 1/2, as illustrated in Fig. 9.2, is actually not possible.
This in turns sets a lower bound on ξA6, in order to stay above the critical value, ξA6 + ξB6 > 1,
and to obtain a non-zero value of MX . Let us now comment on the dynamical relation between
κB and the original anomalous parameter AψX , given in Eq. (9.2.5), that involves MX and N . In
the whole allowed range 1 < ξ < (1 − ln 2)−1 ≃ 3.25, even when MX ≃ Λ for large ξ, the factor
in square brackets in Eq. (9.2.5) is small in Λ3 units, essentially because of the loop-suppression,
4MXÃ0(M

2
X) ≃ (4−8) ·10−3Λ3 (with moderate dependence on κB/κA and N). This implies a strong
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suppression of the effective coupling ξB due to the large power 6(N − 1) in Eq. (9.2.5), even for the
minimal value N = 2. Unfortunately, the original Lagrangian parameter AψX originates from non-
perturbative dynamics that is not under control at the present stage, therefore its size is essentially
arbitrary, see also the discussion in subsection 9.1.3 after Eq. (9.1.28). Therefore, we can just remark
that, whatever the actual size of AψX , the corresponding value of κB is strongly suppressed by the
dynamics. This may help to comply with the upper bound from vacuum stability on κB/κA, that
behaves as 1/N for sufficiently large N , as we shall discuss in section 9.2.5, because the effective
coupling κB in Eq. (9.2.5) contains a power-N suppression factor.

9.2.2 Masses of coloured scalar resonances

The scalar and pseudoscalar resonances associated to X-fermion bilinears transform under the flavour
symmetry as 21SU(6) = (1 + 20)SO(6). In analogy with the ψ-fermion sector, we can define a matrix

M c in flavour space,

M c =
1

2
MXΣ

c
0 + (σX + iηX) Σ

c
0T

0
X +

(
SF̂c + iGF̂c

)
Σc0T

F̂ , (9.2.13)

where the components σX (ηX) and SF̂c (GF̂c ) are respectively the SO(6)-singlet and twenty-plet
(pseudo)scalars. The relevant operators for the computation of the spin-zero meson masses are those
given in Eq. (9.2.2), plus the effective four-fermions operators ψ4, X4 and ψ2X2, that are induced by
the anomalous Lagrangian of Eq. (9.1.34), after spontaneous symmetry breaking,

LeffψX =
κB
2N

[(
ψΣ0T

0
ψψ

) (
ψΣ0T

0
ψψ

)
−

(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ

)
+ h.c.

]

+
κB6

(2N + 1)(N − 1)

[
(6N − 7)

(
XΣc0T

0
XX

) (
XΣc0T

0
XX

)
−

(
XΣc0T

F̂X
)(

XΣc0T
F̂X

)
+ h.c.

]

+
κψX
2N

[(
ψΣ0T

0
ψψ

)
(XΣc0T

0
XX) + h.c.

]
, (9.2.14)

where κB and κB6, defined in Eq. (9.2.5) and (9.2.6) respectively, are the same couplings that appear in
the gap equations. Note the factor (6N −7) that multiples κB6, because here two X-fermion bilinears
out of 6(N−1) are not closed into a loop, which implies a combinatorial factor 6(N−1)[6(N−1)−1]/2.
The additional coupling κψX is defined by

κψX ≡ AψX
27N−1

[
4Nψ

f 〈ψψ〉2

(2N)2

] 1
2
[

4NX
f 〈XX〉2

(2N + 1)2(N − 1)2

]3(N−1)− 1
2 2 · 6(N − 1)

(2N + 1)(N − 1)

=
8
√
6N

2N + 1

Mψ

MX

Ã0(M
2
ψ)

Ã0(M2
X)

κB , (9.2.15)

and it controls the mixing between the Sp(4) and SO(6) (pseudo)scalar singlets σψ (ηψ) and σX
(ηX), which will be treated separately in section 9.2.5. Note that all three effective couplings vanish
if 〈XX〉 = 0. When 〈XX〉 6= 0 both κB6 and κψX are fully determined as a function of Mψ, MX

and κB. From Eqs. (9.2.2) and (9.2.14) one can derive the four-fermion couplings for each physical
channel,

KσX(ηX) = 2
[κA6 ± (6N − 7)κB6]

(2N + 1)(N − 1)
, KSc(Gc) = 2

[κA6 ∓ κB6]

(2N + 1)(N − 1)
, (9.2.16)

For convenience, all the relevant four-fermion couplings for theX-sector spin-zero and spin-one mesons
are collected in Table 9.2, together with the associated one-loop two-point functions.

We now calculate the masses of the scalar and pseudo-scalar non-singlet resonances SF̂c and GF̂c .
As already mentioned above, for the scalar and pseudo-scalar singlet σX and ηX , there is a mixing
with the corresponding resonances σψ and ηψ of the electroweak sector, so that the whole singlet
sector will be treated separately in section 9.2.5.
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Concerning the non-singlet pNGBGc, we should also consider more generally a non-trivial pseudoscalar-
axial vector mixing for non-vanishing vectorial four-fermion couplings, as we anticipate will be intro-
duced below in Section 9.2.3, in analogy with the electroweak sector discussed in Section 8.2.5. With
the additional explicit breaking mass term mX of Eq. (9.2.1), the pseudoscalar-axial mixing formalism
of Section 8.2.5 can easily be generalised with explicitly mX -dependent resummed matrix correlator
ΠGc(mX), the analog of Eq. (8.2.44), (8.2.47) for the coloured sector. Note that all of the one-loop
two-point functions Π̃(p2,M2

X) ≡ Π̃Xi (p
2) of the SU(6) sector can be obtained from those in table

8.2 with the following replacements: Mψ → MX and (2N) → (2N + 1)(N − 1) (see appendix H for
details). Accordingly the pNGB obviously gets a nonzero mass, whose expression is obtained from
the zero of the determinant, analogous to (8.2.46) for the SU(4) sector, as

DGc =
mX

MX
g−1
Ac

+ 2(κA6 + κB6)B̃0(p
2,M2

X) p
2 ≡ 2(κA6 + κB6)B̃0(p

2,M2
X)(p

2 −M2
Gc). (9.2.17)

The calculation of the scalar SF̂c mass is simpler and follows the same derivation as for the scalar

φ Kφ Π̃Xφ (q2)

GF̂c
2(κA6 + κB6)

(2N + 1)(N − 1)
Π̃XP (q2) = (2N + 1)(N − 1)

[
Ã0(M

2

X)− q2

2
B̃0(q

2,M2

X)
]

ηX
2[κA6 − (6N − 7)κB6]

(2N + 1)(N − 1)

ηψ − ηX
−κψX
(2N)

SF̂c
2(κA6 − κB6)

(2N + 1)(N − 1)
Π̃XS (q2) = (2N + 1)(N − 1)

[
Ã0(M

2

X)− 1

2
(q2 − 4M2

X)B̃0(q
2,M2

X)
]

σX
2[κA6 + (6N − 7)κB6]

(2N + 1)(N − 1)

σψ − σX
κψX
(2N)

V µFc
−2κD6

(2N + 1)(N − 1)
Π̃XV (q2) = 1

3
(2N + 1)(N − 1)

[
− 2M2

XB̃0(0,M
2

X) + (q2 + 2M2

X)B̃0(q
2,M2

X)
]

AµF̂c
−2κD6

(2N + 1)(N − 1)
Π̃XA (q2) = 1

3
(2N + 1)(N − 1)

[
− 2M2

XB̃0(0,M
2

X) + (q2 − 4M2

X)B̃0(q
2,M2

X)
]

aµX
−2κC6

(2N + 1)(N − 1)
Π̃XLA (q2) = −2(2N + 1)(N − 1)M2

XB̃0(q
2,M2

X)

AµF̂c −GF̂c
Π̃XAP (q

2) = −(2N + 1)(N − 1)MXB̃0(q
2,M2

X)

aµX − ηX

Table 9.2: The four-fermion couplings Kφ in the X-sector, and the associated one-loop two-point

functions Π̃Xφ (q
2). The latter are related to the two-point functions of the ψ-sector as follows: Π̃ψφ (q

2) =

Π̃φ(q
2,M2

ψ, 2N) and Π̃Xφ (q
2) = Π̃φ[q

2,M2
X , (2N+1)(N−1)], where Π̃φ(q

2,M2
ψ, 2N) are defined in Table

8.2. We also give the expression of the mixed (one-loop) pseudoscalar-longitudinal axial correlator, as
well as those of the couplings mixing the singlet scalars of the two sectors, σψ and σX , and the singlet
pseudoscalars ηψ and ηX . The explicit calculation of the correlators Π̃Xφ (q

2) is detailed in appendix
H.
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mass of the SU(4) sector. Thus we obtain

M2
Gc = −(

mX

MX
)

g−1
Ac

(M2
Gc

)

2(κA6 + κB6)B̃0

(
M2
Gc
,M2

X

) , M2
Sc = 4M2

X −
8κB6Ã0(M

2
X) +

mX
MX

2(κA6 − κB6)B̃0

(
M2
Sc
,M2

X

) .

(9.2.18)
where as before the pole masses are defined as M2

Gc
= M2

Gc
(p2 = M2

Gc
). Accordingly, similarly to

M2
η in Eq. (8.2.52), when a non-vanishing coloured sector vector coupling κD6 is considered (see

Section 9.2.3), the pseudo-scalar Goldstone mass M2
Gc

is renormalised by the (inverse) axial form

factor g−1
Ac

(p2 ≡M2
Gc

) ≡ 1− 2KAcΠ̃
LX
A (M2

Gc
) where KAc is defined in Table 9.2.

Note that there is another source of explicit symmetry breaking which may a priori leads to
sizeable contributions to the masses. Indeed when we switch on the SM gauge interactions, new
contributions to the masses of the coloured states arise. In the following, we will only consider the
gauge corrections to the masses of the pNGB, since the latter are the lightest resonances of the coloured
sector, therefore those corrections are more relevant than e.g. for the other scalar states. The gauge
contributions to the pNGB masses are given in general terms in section 8.1.5 and in appendix F.2

for the particular case of the SU(6) sector. The pNGB GF̂c decompose as an octet Oc ∼ 80 and two
sextet (Sc+Sc) ∼ (64/3+6−4/3) under SU(3)c×U(1)D. Consequently, there are two sources of gauge
contributions which lead to a mass splitting between the octet and sextet components: one from the
gauging of QCD and one from the gauging of the hypercharge. However, from Eq. (F.14) one can see
that the QCD corrections are almost the same for the two components as ∆M2

Oc
/∆M2

Sc
|QCD = 9/10.

For simplicity we will neglect this small difference. In addition, the contribution coming from the
gauging of U(1)Y is sub-dominant compared to the one from QCD, and we will safely neglect it.
This is due to the small value of the ratio g′/gs at the energy scale of a few TeVs we are interested
in. Then the gauge contributions mainly originate from QCD and to evaluate the latter, we need to
compute the integral in Eq. (F.14) within the NJL framework. To do that, we simply cut the integral
at Q2 = Λ2, where Λ stands for the cutoff of the NJL model, and FGc is given by the expression

F 2
Gc = −2(2N + 1)(N − 1)M2

XB̃0(M
2
Gc ,M

2
X)gAc(M

2
Gc) , (9.2.19)

which can easily be inferred adapting Eqs. (8.2.41) and (8.2.39) to the SU(6) sector. Note that, for
simplicity, the mass MGc in the right-hand side is taken without gauge corrections. The resulting
radiative pNGB masses, obtained from Eq. (F.14), are illustrated in the left panel of Fig. 9.4, where
by definition M2

Gc
= ∆M2

Oc
, as mX = 0. These numerical results will be discussed in more details in

section 9.2.4. Let us just mention that this gauge-induced mass could be sufficient by itself to comply
with the lower collider bounds [260].

9.2.3 Masses of coloured vector resonances

In order to calculate the masses of the vector and axial-vector resonances present in the coloured
sector, we start from the following vector-vector four-fermion operators

LXvect =
κC6

(2N + 1)(N − 1)

(
X T 0

X σ
µX

)2
+

κD6

(2N + 1)(N − 1)

[(
X TF σµX

)2
+

(
X T F̂ σµX

)2
]
,

(9.2.20)
where as in the electroweak sector, due to the global SU(6) symmetry, the four-fermions coupling
κD6 of the vector channel is the same as the axial non-singlet channel. From the above operators we
obtain the vector and axial-vector four-fermions couplings KVc ,KAc and KaX (see table 9.2) and we

derive the masses of the vector V F
c and axial AF̂c , aX resonances

M2
Vc = − 3

4κD6B̃0(M2
Vc
,M2

X)
+ 2M2

X

B̃0(0,M
2
X)

B̃0(M2
Vc
,M2

X)
− 2M2

X , (9.2.21)

M2
Ac = − 3

4κD6B̃0(M2
Ac
,M2

X)
+ 2M2

X

B̃0(0,M
2
X)

B̃0(M2
Ac
,M2

X)
+ 4M2

X . (9.2.22)
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Just like in the electroweak sector, if one neglects the p2 dependence of the B̃0 function, one obtains
the usual NJL relation between the axial and vector masses, that is M2

Ac
≃M2

Vc
+6M2

X . The mass of
the axial singlet aµc is obtained by making the replacements Aµc → aµX and κD6 → κC6 in Eq. (9.2.22).
Note that we have not considered the following operator

LψXvect =
κVψX
(2N)

(
ψ T 0

ψ σ
µψ

) (
X T 0

X σµX
)
, (9.2.23)

which induces a mixing between the axial singlets of the two sectors, aµψ and aµX . This mixing term
respects all symmetries of the theory and should be present in general. However, we neglected it as
it is not generated by applying a Fierz transformation to the Sp(2N) current-current operators in
Eq. (I.8).

Note also that in principle, the spin one masses receive SM gauge contributions as V µ
c ∼ 15SO(6) =

(1+8+3+3)SU(3)c and A
µ
c ∼ 20SO(6) = (8+6+6)SU(3)c . However, following the discussion of section

9.2.2 for the scalar masses, we will not consider such contributions here.

9.2.4 The mass spectrum of the coloured resonances

In general the couplings of the four-fermion operators are free parameters. However κA6 and κC6,D6

may be related if we assume that the dynamics is induced by Sp(2N) current-current operators. In
this case, as in the ψ-sector, we find that the scalar and vector four-fermion couplings are equal, see
appendix I.4. However, we also find that the size of these couplings relatively to the ones in the
electroweak sector is not fixed by the current-current approximation. The reason is that, contrary to
the case of the ψ-sector, the X-sector current-current operator cannot be recast in terms of Sp(2N)
singlet-singlet operators only, see appendix I.4. Nonetheless in this section, for the sake of illustration,
we will take equal couplings in the two sectors

κA6 = κC6 = κD6 = κA . (9.2.24)

With this choice, as shown in Fig. 9.3, the range of validity of the NJL approximation is approxima-
tively the same in the two sectors.

The resonance masses of the coloured sector are illustrated in Fig. 9.4. To ease the comparison
with the electroweak sector, the masses are in units of f =

√
2FG & 1 TeV, and are plotted as

functions of the coupling ξ defined by Eq. (8.2.17). Note that in section 8.2.6, for the SU(4) sector
in isolation, the only constraint from vacuum stability was κB/κA < 1: here we anticipate a similar
but stronger bound, see Eqs. (9.2.31) and (9.2.40) below. Consequently the value of κB/κA is fixed to
0.01 for illustration, which is safely below this upper bound in the case N = 4. Then, if one assumes
that Eq. (9.2.24) holds, there is just one additional free parameter compared to the SU(4) sector in
isolation, namely the explicit symmetry-breaking mass term mX . We illustrate two representative
cases: one with no explicit breaking, mX = 0, and another one with explicit symmetry breaking, for
which we take as a representative value mX = 0.1f .

In the case with no explicit breaking (left panel of Fig. 9.4), the behaviour of the masses is
qualitatively similar to the SU(4) sector, except for the pNGBs Gc. This is due to the relations
between the couplings of the four-fermion interactions: κA = κA6 and κB ∼ κB6 ≪ κA. The pNGB
of the coloured sector receive a significant contribution to their masses from the gauging of the colour
group, as discussed in section 9.2.2. As it can be seen from Fig. 9.4, this contribution satisfies
∆MGc & 1.3f , which is enough to comply with the present collider bounds, as long as f & 1 TeV.
Thus, we conclude that it is actually possible to introduce top quark partners without the need of an
explicit mass term mX for the coloured fermions. On the other hand, if we want to raise the mass of
coloured pNGBs, keeping a low mass scale of the theory, f = 1 TeV, one needs to introduce a non-zero
mX , as illustrated in the right panel of Fig. 9.4 for mX = 0.1f . As all the coloured masses receive a
contribution from mX , for sufficiently large values of mX one could even decouple the coloured sector
from the electroweak sector.
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Figure 9.4: The masses of the coloured resonances in units of the Goldstone decay constant f ≡
√
2fG,

for N = 4 (the masses scale as 1/
√
N), as a function of the coupling ξ, for κB/κA = 0.01, κA6 = κA,

mX = 0 (left-hand panel) and mX = f/10 (right-hand panel). We displayed the full physical range
for ξ, according to Fig. 8.3. Each curve is shaded when the corresponding pole mass develops a large,
unphysical imaginary part, |Imgφ(M2

φ)/Regφ(M
2
φ)| > 1, as defined from Eq. (8.2.23). The dotted

line is the cutoff of the constituent fermion loops. The Goldstone mass MGc include the radiative
corrections as discussed in section 9.2.2.

Finally, we display here the masses of the colour resonances for the same parameters as in
Eq. (8.2.54), N = 4, ξ = 1.3 and ξ = 2, fixing κB/κA = 0.01 and for the two representative val-
ues of mX :

ξ = 1.3, mX = 0 : MAc ≃ 6.6 TeV, MVc ≃ 5.1 TeV, MSc ≃ 4.3 TeV,

MGc ≃ 1.3TeV ,

ξ = 1.3, mX = 0.1 TeV : MAc ≃ 7.0 TeV, MVc ≃ 5.2 TeV, MSc ≃ 4.9 TeV,

MGc ≃ 2.0 TeV . (9.2.25)

ξ = 2.0, mX = 0 : MAc ≃ 9.7 TeV, MVc ≃ 6.3 TeV, MSc ≃ 8.4 TeV,

MGc ≃ 1.4TeV ,

ξ = 2.0, mX = 0.1 TeV : MAc ≃ 9.9 TeV, MVc ≃ 6.4 TeV, MSc ≃ 8.5 TeV,

MGc ≃ 1.8 TeV . (9.2.26)

9.2.5 Flavour-singlet sector

The mixing in the (scalar and pseudoscalar) singlet sector, induced by the U(1)-breaking Lagrangian
Eq. (9.1.34), is most conveniently treated in matrix formalism. Furthermore, since our model includes
non-vanishing singlet axial vector couplings both in the SU(4) and SU(6) sectors, concerning the
pseudoscalars we should take into account the additional nontrivial pseudoscalar-axial singlet mixing,
similarly to the case of the SU(4) sector in isolation treated in Section 8.2.5. Accordingly, we should
consider 2 × 2 and 4 × 4 matrix equations, respectively, for the complete scalar and pseudoscalar
sectors.

Scalar-singlet mixing

Let us start with the scalar sector and consider the diagonal one-loop scalar-correlator matrix ΠσψσX

and the matrix of scalar-singlet couplings KσψσX ,

ΠσψσX =

(
Π̃ψS 0

0 Π̃XS

)
, KσψσX =

(
Kσψ KψX

KψX KσX ,

)
(9.2.27)

220



where Kσψ , KσX and KψX ≡ κψX/(2N) are collected in Tables 8.2 and 9.2. Note that when KψX = 0
(equivalently AψX = 0) there is no mixing between the singlets σψ and σX . For simplicity, we have

used the shorthand notations Π̃ψi ≡ Π̃i(p
2,M2

ψ) and Π̃Xi ≡ Π̃i(p
2,M2

X) for the one-loop correlators.

From the above matrices, one can now define the resummed matrix scalar correlator ΠσψσX

ΠσψσX = ΠσψσX +ΠσψσX (2KσψσX )ΠσψσX + · · · = (11− 2ΠσψσX KσψσX )
−1 ΠσψσX , (9.2.28)

and the resonance mass eigenvalues are obtained from the roots of the determinant
det(11− 2ΠσψσX KσψσX ) = 0 . Explicitly one obtains

det(11− 2ΠσψσXKσψσX ) = 1− 2KσψΠ̃
ψ
S − 2KσX Π̃

X
S + 4

(
KσψKσX −K2

ψX

)
Π̃ψSΠ̃

X
S

= cS0 (p
2) + cS1 (p

2)p2 + cS2 (p
2)(p2)2 , (9.2.29)

where the coefficients cSi (p
2) are functions of the couplings Ki, and of the loop functions Ã0(M

2
ψ),

Ã0(M
2
X), B̃0(p

2,M2
ψ), and B̃0(p

2,M2
X). (The last form of the determinant, as a quadratic form in p2,

is an abusive but convenient oversimplification, given that the additional dependence in p2 involved
in cSi (p

2) and originating from B̃0(p
2,M2

ψ,X) does not induce additional pole structure: thus the
pole mass eigenvalues are obtained from the roots of this quadratic equation, however evaluated at
self-consistent p2 values). In other words, the scalar-singlet masses are given by

M2
σ0,σ′ = Re[gσ0,σ′(M2

σ0,σ′)] , gσ0,σ′(p2) ≡
−cS1 (p2)±

√
[cS1 (p

2)]2 − 4cS2 (p
2)cS0 (p

2)

2cS2 (p
2)

. (9.2.30)

The explicit expressions of the two scalar singlet masses M2
σ0 ,M

2
σ′ are straightforwardly derived from

the above equations, but are not very simple or telling, even in the chiral limit mX = 0, so that we
refrain from giving them here. In the numerical illustrations below we use those exact expressions.

As we will examine quantitatively below, a nontrivial property of the lightest scalar mass Mσ0 is
that it is a decreasing function of κB/κA [at least as long as mX remains moderate, in its natural
range mX ≪ Λ], in such a way that it even vanishes at a critical κB/κA value, and becomes formally
tachyonic beyond. This critical κcB value should therefore be considered as an intrinsic upper bound,
since beyond this value the effective scalar potential is destabilised, in such a way that the minimisation
in the NJL framework is totally unreliable. As mentioned above, the exact expression of Mσ0 from
Eq. (9.2.30) is rather involved, but it is clear thatMσ0(κB) can only vanish if cS0 (κB) = 0 in Eq. (9.2.29)
(irrespectively of additional p2-dependence from the B̃0 function). Actually the most general exact
value κcB such that Mσ0(κ

c
B) = 0 is not a very simple expression in terms of the relevant parameters

N,MX ,Mψ, · · · , as it results from solving a quadratic equation in κB (after eliminating other relevant
parameters κA, κA6, κB6, · · · upon using the gap-equations (9.2.3) and relations (9.2.6)). But since
this upper bound on κB happens to be small for any N , a very reasonable approximation is obtained
by expanding Mσ0 to first order in κB, in the chiral limit mX = 0, which leads to

M2
σ0(mX = 0, κcB) = 0 ⇒ κcB ≃ − 1

16

2N + 1

N(3N − 4)

M4
XB6

M2
ψA

2
4

. (9.2.31)

The bound κB < κcB involves non-trivially the dynamical masses Mψ,X . Except in the extreme case
MX ≫Mψ, this bound implies in general κB/κA ≪ 1 already forN = 2, and it becomes more stringent
as ∼ 1/N for larger values of N . Typically, in the chiral limit mX = 0, one finds κcB/κA ≃ 0.12 for
N = 2, and κcB/κA ≃ 0.04 for N = 4. As we will see in section 9.2.5, there is another upper bound
on κB, originating from the pseudoscalar-singlet mixing, also related to vacuum stability, which has
a numerical value very close to the one in Eq. (9.2.31), although being analytically different. As we
will examine in concrete illustrations below, these bounds put stringent restrictions on the singlet
mass spectrum. As we will further explain below for the pseudoscalar case, this constraint should be
viewed as an appropriate generalisation of the constraint κB/κA < 1, that applies to the SU(4) sector
in isolation.
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Concerning the scalar decay constants, defined formally in Eqs. (8.2.58) with the obvious replace-

ment S → Sψ0 , S
X
0 , they can be derived by following a procedure quite similar to the one explained in

Sec III.D. They are defined by the residues of the diagonal elements of ΠσψσX at the respective σ0,
σ′ pole masses

(Gψσi)
2 ≡ − lim

p2→M2
σi

(p2 −M2
σi)ΠσψσX ,11(p

2) , (GXσi)
2 ≡ − lim

p2→M2
σi

(p2 −M2
σi)ΠσψσX ,22(p

2) .

(9.2.32)
These decay constants enter in the scalar sum rules in combination with the other (pseudo)scalar
decay constants. We refrain here to give their explicit expressions which are not simple. Let us just
note that the results obtained from Eq. (9.2.32) can be crosschecked with the off-diagonal elements

of ΠσψσX as GψσiG
X
σi = − limp2→M2

σi
(p2 −M2

σi)ΠσψσX ,12(p
2).

Pseudoscalar-singlet mixing

Considering now the more involved pseudoscalar sector, we start from the complete 4 × 4 matrix
coupling and correlator to account both for singlet mixing and pseudoscalar-axial singlet vectors aµψ, a

µ
X

mixing,. The latter mixing is treated similarly to the pseudoscalar-axial mixing for the Goldstone
boson sector as considered in section 8.2.5. Accordingly we have

KηψηX =




Kηψ −KψX 0 0

−KψX KηX 0 0
0 0 Ka 0
0 0 0 Kac


 , ΠηψηX =




Π̃ψP 0
√
p2Π̃ψAP 0

0 Π̃XP 0
√
p2Π̃XAP√

p2Π̃ψAP 0 Π̃LψA 0

0
√
p2Π̃XAP 0 Π̃LXA


 ,

(9.2.33)
where all the relevant pseudoscalar and axial-vector correlators and couplings for the SU(4) and
SU(6) sectors are given respectively in Tables 8.2, and 9.2 (and we have used in Eq. (9.2.33) the same
short-hand notation as in section 9.2.5). From the above matrices, we obtain the resummed two-point
correlator defined as

ΠηψηX = (11− 2ΠηψηX KηψηX )
−1 ΠηψηX . (9.2.34)

According to the previous equation, the pseudoscalar mass eigenvalues are given by the zeros of the
determinant of 11 − 2KηψηXΠηψηX , which we give explicitly only in the chiral mX = 0 limit for
simplicity. Note that the latter determinant keeps the form of a quadratic equation, apart from
further p2-dependence from the B̃0 function appearing in the coefficients. After using the relevant
relations Eqs. (9.2.5), (9.2.6) and (9.2.15) and the mass gap Eqs. (9.2.3) to express all the effective
four-fermion couplings κi in terms of κB alone, we obtain

det[11− 2KηψηXΠηψηX(p
2)] = p2

[
cP1 (p

2) + p2cP2 (p
2)
]
, (9.2.35)

where in notations similar to the scalar case, we define the relevant coefficients of the quadratic
equation as

cP1 (p
2) = 4

κBA4

(2N + 1)A6M2
X

[
12N(N − 1)B4(p

2)M2
ψg

−1
ac (p

2) + (2N + 1)B6(p
2)M2

Xg
−1
a (p2)

]
, (9.2.36)

cP2 (p
2) = − B4(p

2)B6(p
2)

(2N + 1)A2
6M

2
X

[
24N(N − 1)κBA4M

2
ψ − (2N + 1)(κA − κB)A6M

2
X

]
, (9.2.37)

with the shorthand notations A4 ≡ Ã0(M
2
ψ), A6 ≡ Ã0(M

2
X) and similarly for the B4, B6 functions.

The appearance of the axial singlet form factors ga, gac is a result of the pseudoscalar-axial singlet
mixing

g−1
a (p2) = 1 +

4κC
2N

Π̃LψA (p2) , g−1
ac (p

2) = 1 +
4κC6

(2N + 1)(N − 1)
Π̃LXA (p2) . (9.2.38)

The pseudoscalar analog of the term cS0 (p
2) in the determinant of 11 − 2KηψηXΠηψηX vanishes in

the chiral limit mX = 0, as is explicit in Eq. (9.2.35), after non-trivial cancellations using the gap
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equations (9.2.3), and Eqs.(9.2.5) and (9.2.6), which thus exhibits the remaining singlet Goldstone
boson associated with the non-anomalous combination of U(1)ψ and U(1)X . Obviously, the other
pseudoscalar singlet has a non-vanishing mass even for mX = 0, with a relatively compact expression,

M2
η′ = Re[gη′(M

2
η′)] +O(mX) , gη′(p

2) ≡ −c
P
1 (p

2)

cP2 (p
2)
. (9.2.39)

Note that for sufficiently large N (but keeping in mind N ≤ 18), M2
η′ is of order O(N0), using

that κB ≃ 1/N , while the not-shown O(mX) term is of order 1/N . This is naively compatible with
the behaviour of the anomaly, which also goes like a constant for sufficiently large values of N , see
Eq. (9.1.2) (considering that g2HC ≃ 1/N).

An important, interesting feature of the whole model emerges from the examination of Eq. (9.2.39):
for any p2, the function gη′(p

2) has a pole at a particular value of κB, as follows from Eq. (9.2.37),

κB/κA
1− κB/κA

=
1

24

2N + 1

N(N − 1)

A6M
2
X

A4M2
ψ

. (9.2.40)

In other words, the η′ mass grows rapidly and decouples when approaching from below the critical
value of κB defined by Eq. (9.2.40). This is not unexpected, as it is simply a generalisation of a property
already observed in the SU(4) sector in isolation. In the latter case, recall that the mass-gap equation
(8.2.16) has solutions only for κ2B < κ2A, as discussed after Eq. (8.2.17): as also explained in Ref. [259],
and apparent in Eqs. (8.2.12) and (8.2.13), for κB > κA the effective potential is destabilised around
the origin, already at tree level and, although one could expect a spontaneous symmetry breaking of
some of the symmetries, one cannot perform a proper minimisation to determine the vacuum, within
the NJL framework. This feature is reflected also directly in the resonance mass spectrum, where the
η′ mass (for the SU(4) sector in isolation) of Eq. (8.2.26) clearly has a pole for κB = κA and becomes
tachyonic for large κB. Now the critical value in the full model, determined by Eq. (9.2.40), should
be considered accordingly as an absolute upper bound on κB/κA. It takes a more involved dynamical
form (depending also on the mass gaps Mψ,MX values) precisely because the mixing, as induced by
the effective operators in Eq. (9.1.34), couples non-trivially the two sectors, mass gaps and couplings,
and involves combinatorial factors with N dependence. Note that, upon using the relation (9.2.6),
the critical coupling in (9.2.40) translates into a simpler upper limit on κB6, approximately:

κB6

κA
<

1

6(N − 1)

A4

A6
, (9.2.41)

(upon neglecting higher order terms in κ2B6), in which the combinatoric factor 6(N − 1) can be
understood upon comparing with Eq. (9.2.14), such that Eq. (9.2.41) is a more transparent analog
of the limit κB < κA in the SU(4) sector in isolation (let aside the presence of the loop functions
A4/A6, that reflects the non-trivial dynamical connection between the two sectors). The bottom line
is that Eq. (9.2.40) gives a tight upper bound on κB/κA, due in particular to the small coefficient
1/24. To get an idea, consider the chiral limit mX = 0: as discussed in section 9.2.1, then MX

lies slightly above Mψ, with e.g. MX/Mψ ≃ 1.15 for N = 2 and small κB/κA. Thus, neglecting
for simplicity the relatively small differences in the Ã0 loop functions, Eq. (9.2.40) gives typically
κB/κA < 5/48(M2

X/M
2
ψ) ≃ 0.12 for N = 2, and the latter ratio decreases quite rapidly for larger N

due to the ∼ 1/N behaviour of Eq. (9.2.40), for instance κB/κA < 1/32(M2
X/M

2
ψ) ≃ 0.04 for N = 4.

More precisely, the physical upper bound on κB/κA is even more stringent. As the “running” mass
gη′(p

2) grows rapidly when approaching from below the limiting value of κB/κA defined by Eq. (9.2.40),
the corresponding pole-mass self-consistent equation for M2

η′ , given in Eq. (9.2.39), ceases to have a
solution for a slightly smaller value of κB/κA. Moreover a large width develops much below this
bound, which turns out to rapidly exceed the pole mass. Accordingly, the NJL description of the η′

mass loses its validity for even smaller values of κB/κA. For a not too small mX 6= 0, as discussed
above MX can be substantially larger than Mψ, therefore the bound in Eq. (9.2.40) is delayed to
larger κB/κA. Still, it remains quite constraining as long as mX remains moderate with respect to Λ.
In summary, the detailed structure of the mixing turns out to put a tight constraint on κB/κA, with
important consequences for the resonance mass spectrum, as we will illustrate below.
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For mX 6= 0, the exact expressions of the two pseudoscalar singlet masses Mη0 ,Mη′ (used in our
numerical analysis) become rather involved: Eq. (9.2.35) is modified to a “quadratic” polynomial
equation in p2 (i.e. upon formally neglecting the additional p2-dependence coming from the loop
functions, entering the polynomial coefficients). This is then more similar to the eigenvalue equation
of the scalar case above, see Eqs. (9.2.29), (9.2.30), now with coefficients cPi (p

2) which depends on
mX , where the coefficient of (p2)0 takes the form

cP0 = 8A4κB
mX

MX
g−1
a g−1

ac . (9.2.42)

Indeed, the pNGB η0 mass is given to very good approximation by the first order expansion in cP0 ,
namely

M2
η0 = −

cP0 (M
2
η0)

cP1 (M
2
η0)

, (9.2.43)

which essentially captures its correct behaviour as long as κB/κA is moderate and mX ≪ Λ. For large
values of N , M2

η0 is of order 1/N .
Once having determined the η0 and η

′ masses, one can proceed to extract all relevant pseudoscalar

decay constants from the pole mass residues of the matrix elements Π
ij
ηψηX

(q2) (i, j = 1, · · · , 4) where
the resummed two-point correlator ΠηψηX (q

2) is defined in Eq. (9.2.34). The procedure is similar to
the one explained in section 8.2.5 for the simpler non-singlet case. More precisely, from the definitions

of the decay constants F
ψ(X)
η0 , G

ψ(X)
η0 in Eqs. (9.1.21) and (9.1.22), one obtains in general for mX 6= 0

lim
q2→M2

η0

(q2 −M2
η0)Π

11(22)
ηψηX

(q2) ≡ −(Gψ(X)
η0 )2 , lim

q2→M2
η0

(q2 −M2
η0)Π

12,21
ηψηX

(q2) ≡ −Gψη0G
ψ
η0 , (9.2.44)

lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

13,31
ηψηX

(q2) ≡ −G
ψ
η0F

ψ
η0

2
√
2

, lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

14,41
ηψηX

(q2) ≡ −
Gψη0F

X
η0

2
√
3

,

lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

23,32
ηψηX

(q2) ≡ −
GXη0F

ψ
η0

2
√
2

, lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

24
ηψηX

(q2) ≡ −
GXη0F

X
η0

2
√
3

, (9.2.45)

as well as

lim
q2→M2

η0

(q2 −M2
η0)

q2
Π

33
ηψηX

(q2) ≡ −(Fψη0)
2

8
, lim

q2→M2
η0

(q2 −M2
η0)

q2
Π

44
ηψηX

(q2) ≡ −
(FXη0 )

2

12
,

lim
q2→M2

η0

(q2 −M2
η0)

q2
Π

34,43
ηψηX

(q2) ≡ −
Fψη0F

X
η0

4
√
6

,(9.2.46)

where the factors 2
√
2 and 2

√
3 take into account the normalisation of the U(1)ψ and U(1)X -currents

respectively. Similar expressions hold for the η′ with the obvious replacement η0 → η′. Notice that
the information on both diagonal and non-diagonal terms allow to extract unambiguously the signs

of G
ψ(X)
η0(η′)

and F
ψ(X)
η0(η′)

. In the chiral limit, the pole of the η0 migrates from the longitudinal to the

transverse axial correlator. Consequently, in that case one can not extract the decay constants F
ψ(X)
η0

from Eq. (9.2.46) but only from Eq. (9.2.45).
In the following for simplicity we present analytical results only for the chiral limit mX = 0. Let

us consider the resummed axial longitudinal correlators, given by q2Π
L
aψ(X)

(q2) = 8(12)Π
33(44)
ηψηX

(q2)

and q2Π
L
aψaX

(q2) = 4
√
6 Π

34,43
ηψηX

(q2), see Eq. (9.2.46). One can check that the linear combination

corresponding to the conserved U(1) current, vanishes for any q2

Π
L
0 (q

2) = 9(N − 1)2Π
L
aψ
(q2)− 6(N − 1)Π

L
aψaX

(q2) + Π
L
aX

(q2) = 0 , Π
L
aψaX

=

√
Π
L
aψ
Π
L
aX

.

(9.2.47)
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This is an important check, since the U(1)-current is conserved, despite the nonzero mass gap spoiling
the Ward identity at the naive one-loop level. Then, once fully resummed, there is no longitudinal
part in the corresponding axial two-points function, generalising, for the more involved singlet sec-
tor, the results obtained in section 8.2.5 for the simpler SU(4) sector in isolation with (Goldstone)
pseudoscalar-axial mixing. Coming now to the decay constants defined from Eqs. (9.2.44) and (9.2.45),
using the gap-equations (9.2.3) and the constraints among the effective couplings in Eqs. (9.2.5), (9.2.6)
and (9.2.15), after some algebra one obtains (in the chiral limit)

(Gψη0)
2 =

−12(2N)2(N − 1)A2
4M

2
ψg

−1
a (0)g−1

ac (0)

12N(N − 1)B4(0)M2
ψg

−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

,

(GXη0)
2 =

(2N + 1)2A2
6M

2
X

6(2N)2A2
4M

2
ψ

(Gψη0)
2 , (9.2.48)

(Fψη0)
2 =

−96(2N)2(N − 1)B2
4(0)M

4
ψga(0)g

−1
ac (0)

12N(N − 1)B4(0)M2
ψg

−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

= Π̃LψA (0)ga(0)

[
1− 4κB

A4B6(0)g
−1
a (0)

A6 cP1 (0)

]
, (9.2.49)

(FXη0 )
2 =

−24(N − 1)(2N + 1)2B2
6(0)M

4
Xga(0)

−1gac(0)

12N(N − 1)B4(0)M2
ψg

−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

(9.2.50)

= Π̃LXA (0)gac(0)

[
1− 24κB

(2N)(N − 1)B4(0)A4M
2
ψg

−1
ac (0)

(2N + 1)A6M2
X c

P
1 (0)

]
.

Notice from the second expressions of Eqs. (9.2.49) and (9.2.50) that the naive expressions of these
decay constants, namely when the two sectors are in isolation, are respectively recovered for MX → 0
(Mψ → 0) as intuitively expected. One can compute in a similar way the decay constants associated
to the η′. We do not explicitly give them because the η′ is not a pNGB and these expressions are
rather involved. The U(1)-conserved current J µ

0 of Eq. (9.1.7) implies

Fη0,η′ = FXη0,η′ − 3(N − 1)Fψη0,η′ . (9.2.51)

From Eqs. (9.2.49) and (9.2.50), we obtain the decay constant of the η0 in the chiral limit

F 2
η0 = −24(N−1)

[
12N(N − 1)B4M

2
ψga(0) + (2N + 1)B6M

2
Xgac(0)

]
+O(mX) , F 2

η′(mX) = O(mX) .
(9.2.52)

As expected on general grounds (see section 9.1.2), Fη0 is non-zero in the chiral limit while Fη′

vanishes. Furthermore, one can also check, after some algebra, that the generally expected relations
in Eq. (9.1.23) are indeed well satisfied (at least up to terms of higher orders inm2

X) by our expressions
above, which is a very non-trivial crosscheck of the NJL calculations. Likewise the general relations
given in Eq. (9.1.27) are also well satisfied, providing an additional non-trivial crosscheck.

Actually in the chiral limit the decay constants Fη0 for the true Goldstone can be more directly
calculated from the resummed transverse axial correlator Πaψ(q

2) and ΠaX (q
2) evaluated at q2 = 0,

in direct analogy with the non-singlet calculation of FG. From Eq. (8.2.39), one obtains

F 2
η0 ≡ lim

q2→0
[−q2Π0(q

2)] = − lim
q2→0

q2[9(N − 1)2Πaψ(q
2) + ΠaX (q

2)] , (9.2.53)

where the second equality comes from Eq. (9.1.7), taking into account that there is no mixing for the
transverse contributions, i.e. ΠaψaX (q

2) = 0. The transverse resummed correlators are simply given

by expressions similar to the one in Eq. (8.2.39): −q2Πaψ(q2) = 8Π̃ψA(q
2)gA(q

2) and −q2ΠAX (q2) =
12Π̃XA (q

2)gAc(q
2). Thus using the expression of the one-loop functions Π̃

ψ(X)
A (0) from Table 8.2 and

Table 9.2 directly gives

F 2
η0 = 9(N − 1)2

[
−16(2N)M2

ψB̃0(0,M
2
ψ)ga(0)

]
+

[
−24(2N + 1)(N − 1)M2

XB̃0(0,M
2
X)gac(0)

]
,

(9.2.54)
which is consistent with Eq. (9.2.52).
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The mass spectrum of the singlet resonances

We now study the mass spectrum of the scalar and pseudo-scalar singlet resonances. Before turning
to the more involved case including the mixing between the resonances from the EW and the coloured
sectors, let us consider the instructive no-mixing case, where AψX = 0 and consequently κB = κB6 =
κψX = 0. From Eq. (9.2.29) we obtain for the scalar singlets masses

AψX = 0 : M2
σ0 = 4M2

ψ =M2
σψ

, M2
σ′ = 4M2

X − mX

MX

1

2κA6B6(M2
σ′)

=M2
σX

, (9.2.55)

which of course reproduce the masses in isolation. As discussed above, in our benchmark case where
κA6 = κA we have Mψ 6 MX , so that in the no-mixing case we have M2

σ0 6 M2
σ′ where the equality

is valid for mX = 0. In the same way, from Eq. (9.2.35) we obtain for the pseudo-scalar masses

AψX = 0 : M2
η0 = 0 =M2

ηψ
, M2

η′ = −mX

MX

g−1
ac

2κA6B6
=M2

ηX
. (9.2.56)

Again, the latter expressions reproduce those in isolation and M2
η0 6 M2

η′ where the equality is valid
for mX = 0.

Once we switch on the mixing, important new features arise, as discussed above: in particular,
the non trivial tight bound on κB from Eq. (9.2.40), and the corresponding rapid growth of Mη′ when
approaching from below the critical value of κB. This is illustrated in Fig. 9.5 for N = 2 and N = 4.
Consequently, the η′ mass is very sensitive to κB: Mη′ may be of order f for κB/κA ≪ 0.01, but once
κB/κA grows to larger values, already well below the bound of Eq. (9.2.40), η′ decouples rapidly.

Another interesting feature is implicit in the η0 mass expression Eq.(9.2.43): namely, Mη0 rapidly
reaches an asymptotic limit for moderate κB values, for fixed N , and this (approximate) maximum
decreases as 1/N for large N , as also illustrated in Fig. 9.5. More precisely, in the approximation of
neglecting the differences in momenta of the loop functions, one obtains for large N values

M2
η0 ≃ −A6

B6

1

3N

mX

MX

M2
X

M2
ψ

+O(1/N2) . (9.2.57)

Of course η0 being a pNGB, M2
η0 vanishes linearly in mX . This shows in addition that Mη0 is

approximately κB-independent, once κB takes moderately large values, as shown in Fig. 9.5. Its mass
can be well below f , for sufficiently large N and/or small mX .

The two scalar singlet masses are defined implicitly by Eq. (9.2.30). The heaviest state σ′ always
lies in the multi-TeV range, as illustrated in Figs. 9.5 and 9.6. More interestingly, as already explained,
the lightest scalar mass Mσ0 is a decreasing function of κB/κA and vanishes at a critical value ap-
proximately given by Eq. (9.2.31). Such value is not identical to the one defined by Eq. (9.2.40), but
is numerically very close to the latter, more precisely it lies always (slightly) below, for any N ≥ 2.
This is illustrated in Fig. 9.5 for N = 2 and N = 4. Beyond the critical value of κB/κA, σ0 becomes
tachyonic and the effective scalar potential is destabilised, thereforeMσ0 can be very small just before
reaching the critical value of κB/κA.

Finally we also illustrate in Fig. 9.6 the ξ-dependence of the scalar and pseudoscalar singlet masses,
for representative values ofN , and κB/κA fixed safely below the upper bound from Eq. (9.2.40). Notice
that Mσ0 vanishes for a sufficiently low ξ value, where one saturates the condition of Eq. (9.2.31),
because the right-hand side of this equation decreases with ξ. As a consequence, the whole meson
mass spectrum should not be trusted for ξ smaller than this critical value, as the vacuum becomes
unstable.

To conclude this section, let us briefly discuss the η0 couplings to the SM gauge bosons. As
discussed at the end of section 8.1.5, in the chiral limit the anomalous coupling of a pseudo-Goldstone
boson to a pair of gauge bosons is fully determined by the Wess-Zumino-Witten effective action.
While the SU(4)/Sp(4) [SU(6)/SO(6)] pseudo-Goldstone bosons may couple only to the electroweak
(colour) gauge bosons, the η0 is specially interesting as it couples to both, because it couples to both
the ψ and X-fermion number currents J 0

ψµ and J 0
Xµ. The two currents have a U(1)Y anomaly, and
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Figure 9.5: Singlet scalar and pseudoscalar meson masses in units of f , for a fixed value of the coupling
ξ = 1.3, as a function of r ≡ κB/κA, for N = 2 (top) and N = 4 (bottom), and for mX = 0 (left) and
mX = f/10 (right). The Goldstone boson η0 is massless in the chiral limit.
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J 0
ψµ [J 0

Xµ] has a SU(2)L [SU(3)c] anomaly as well. Then, specialising Eq. (8.1.37) to our model, the
η0 couplings to the SM gauge bosons take the form

LWZW
eff,η0

= − 1

16π2
(2N) [−3(N − 1)]

η0
Fη0

(
g2WiµνW̃

µν
i + g′2BµνB̃µν

)

− 1

16π2
(2N + 1)(N − 1)

η0
Fη0

(
2g2sGaµνG̃

µν
a +

16

3
g′2BµνB̃µν

)

= η0

[
k0γγe

2AµνÃ
µν + k0ggg

2
sGaµνG̃

µν
a + . . .

]
,

(9.2.58)

where the first (second) line is the contribution of the ψ (X) fermion loops, and the dots stand for
couplings involving the Z or W field-strengths. Here F̃µν ≡ ǫµνρσF

ρσ/2 and the coefficients k0γγ,gg are
straightforwardly computed using Bµν ⊃ cwAµν , W3µν ⊃ swAµν , and e = gsw = g′cw, and similarly
for couplings involving the Z or W field-strengths. The decay widths into massless gauge bosons are

Γ(η0 → γγ) = 4πα2
emM

3
η0(k

0
γγ)

2 , Γ(η0 → gg) = 32πα2
sM

3
η0(k

0
gg)

2 . (9.2.59)

Note that these rates are determined only by group theory factors, up to the decay constant Fη0 . The
latter can be computed in the NJL approximation, and the result is given in Eq. (9.2.52). Thus, the
golden channel for the discovery of η0 at the LHC is production via gluon-gluon fusion and decay
in two gauge bosons: di-jet, di-photon, γZ, ZZ and WW final states. We recall that the mass of
η0 is induced by the explicit breaking of the anomaly-free U(1) symmetry: this is due either to an
explicit mass term for the constituent fermions, mX 6= 0, or to the proto-Yukawa couplings of the SM
fermions to the composite sector, that we do not specify in this analysis. Our NJL result for Mη0 is
given in Eqs. (9.2.43), (9.2.57). The corrections to Eq. (9.2.58), that strictly holds in the chiral limit,
are expected to be subleading, as long as η0 is significantly lighter than the non-Goldstone resonances.
Note that the ratio Γ(η0 → gg)/Γ(η0 → γγ) = 18(2N + 1)2/(N − 4)2 · α2

s/α
2
em is independent from

Fη0 and Mη0 , and it larger than 2 · 104 for any N . Thus a discovery appears more likely in the di-jet
channel. Indeed, the alleged di-photon resonance at 750 GeV could not be fitted by η0, because the
gluons-to-photons ratio is too large [307].
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F Generators of the flavour group and embedding of the SM group

In this appendix, we give explicit representations for the generators of the flavour groups SU(4) and
SU(6) and describe how the SM gauge fields are coupled to the elementary fermion fields. There are
general procedures to construct a basis of the Gell-Mann type for any SU(n) group, starting from
the well-known representations of the generators for the cases n = 2 and n = 3, see for instance [308].
The relations in Eq. (8.1.2) allow to distinguish the generators TA for the unbroken subgroups, Sp(4)

and SO(6), from the generators T Â in the corresponding coset spaces. For n = 2Nf flavours, choosing
the 2Nf × 2Nf matrix Σε in the form

Σε =

(
0 11
ε11 0

)
, (F.1)

the general solution of Eq. (8.1.2) can be expressed as [258]

TA =

(
AA BA
BA† −(AA)T

)
, T Â =

(
CÂ DÂ

DÂ† +(CÂ)T

)
, (F.2)

where the Nf ×Nf submatrices AA and CÂ are hermitian, with CÂ traceless, whereas (BA)T = −εBA
and (DÂ)T = +εDÂ.

F.1 The SU(4) sector

According to the preceding discussion, the 15 SU(4) generators can be chosen as follows. The 10
generators of the subgroup Sp(4) read

T 1,2,3,4 =
1

2
√
2

(
σ1,2,3,0 0

0 −σT
1,2,3,0

)
, T 5,6,7 =

1

2
√
2

(
0 σ1,3,0

σ1,3,0 0

)
, T 8,9,10 =

1

2
√
2

(
0 iσ1,3,0

−iσ1,3,0 0

)
,

(F.3)
where σi, i = 1, 2, 3 denote the Pauli matrices while σ0 stands for the 2 × 2 unit matrix. The
corresponding coset SU(4)/Sp(4) is then generated by the 5 matrices

T 1̂,2̂,3̂ =
1

2
√
2

(
σ1,2,3 0
0 σT1,2,3

)
, T 4̂ =

1

2
√
2

(
0 σ2
σ2 0

)
, T 5̂ =

1

2
√
2

(
0 iσ2

−iσ2 0

)
. (F.4)

The set of generators

T 1,2,3
L,R =

T 10 ∓ T 9

√
2

,
T 7 ∓ T 6

√
2

,
T 4 ∓ T 3

√
2

(F.5)

constitute a SU(2)L × SU(2)R subalgebra of Sp(4), and provide the generators for the electroweak

interaction and the custodial symmetry. The generator T 3̂ is associated with a NGB singlet under
SU(2)L × SU(2)R, whereas the remaining four generators of the SU(4)/Sp(4) coset correspond to
the Higgs bidoublet H, transforming as (2L, 2R). Under the diagonal SU(2)V subgroup, generated by

T aL + T aR, the generators T 2̂, T 4̂, T 5̂ transform as a triplet, and T 1̂ as a singlet.

The external electroweak gauge fields W 1,2,3
µ and Bµ will then couple to the ψ fermions through

the combination
−iVµ ≡ −ig

(
W 1
µT

1
L +W 2

µT
2
L +W 3

µT
3
L

)
− ig′BµT

3
R . (F.6)

According to Eq. (8.1.28), the masses of the NGBs that are radiatively induced by the gauging are
given by

∆M2
H = ∆M2

1̂,2̂,4̂,5̂
= − 3

4π
× 1

F 2
G

∫ ∞

0
dQ2Q2ΠψV -A(−Q2)× 1

16π
(3g2+g′2) , ∆M2

3̂
= 0 . (F.7)

Of course, this positive contribution to the Higgs doublet mass should be overcome by a negative one
from the top quark couplings, in order to trigger EWSB.
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One can estimate quantitatively ∆M2
H from the explicit form of the correlator ΠψV−A(−Q2) as

computed in the NJL approximation. If one assumes further that the lightest resonances saturate in
good approximation the correlator (see section 8.2.7), the integrand takes the simplified form

−Q2Π
ψ
V−A(−Q2) ≃ F 2

G + f2AM
2
A

Q2

Q2 +M2
A

− f2VM
2
V

Q2

Q2 +M2
V

, (F.8)

where the expressions of the resonance masses and decay constants are explicitly given sections 8.2.4,
8.2.5 and 8.2.7. Integrating Eq. (F.8) over Q2 up to the NJL cutoff Λ2, one obtains

−
∫ Λ2

0
dQ2Q2Π

ψ
V−A(−Q2) ≃

(
F 2
G + f2AM

2
A − f2VM

2
V

)
Λ2 + f2VM

4
V ln

Λ2 +M2
V

M2
V

− f2AM
4
A ln

Λ2 +M2
A

M2
A

.

(F.9)
Assuming that the Weinberg sum rules (8.2.59) hold, the first term proportional to Λ2 vanishes while
the remaining terms simplify and lead to

∆M2
H ≃ 3

64π2
1

F 2
G

(3g2 + g′2) f2VM
4
V ln

M2
A

M2
V

. (F.10)

This estimation of ∆M2
H is of course relevant only if the V − A correlator is well saturated by the

lightest resonances and the Weinberg sum rules hold.

F.2 The SU(6) sector

We decompose the 35 SU(6) generators according to the SO(6) subgroup and the coset SU(6)/SO(6).
We denote by λa, a = 1, 2, . . . 8, the SU(3) Gell-Mann matrices, and we also define λ0 =

√
2/3 diag(1, 1, 1).

A convenient basis for the 15 unbroken generators is given by

T 1,··· ,8,9 =
1

2
√
2

(
λ1,··· ,8,0 0

0 −λT
1,··· ,8,0

)
, T 10,11,12 =

1

2
√
2

(
0 λ2,5,7

λ2,5,7 0

)
, T 13,14,15 =

1

2
√
2

(
0 iλ2,5,7

−iλ2,5,7 0

)
.

(F.11)
The eight generators T 1,··· ,8 together with T 9 form a SU(3)C × U(1)D maximal subalgebra, that can
accommodate the strong interaction gauge group, as well as a part of the hypercharge gauge group
U(1)Y , with Y = T 3

R +D. The 20 broken generators read

T 1̂,··· ,8̂ =
1

2
√
2

(
λ1,··· ,8 0

0 λT1,··· ,8

)
,

T 9̂,··· ,1̂4 =
1

2
√
2

(
0 λ1,3,4,6,8,0

λ1,3,4,6,8,0 0

)
, T 1̂5,··· ,2̂0 =

1

2
√
2

(
0 iλ1,3,4,6,8,0

−iλ1,3,4,6,8,0 0

)
.

(F.12)

The generators T 1̂,··· ,8̂ are associated to the NGBs multiplet Oc ∼ 80 under SU(3)C × U(1)D, while

T 9̂,··· ,2̂0 correspond to the NGBs (Sc + Sc) ∼ (64/3 + 6−4/3).
The constituent fermions X transform as (32/3 + 3−2/3) under SU(3)C × U(1)D, where the nor-

malization of the D-charge is chosen to reproduce the correct hypercharge of top quark partners.
Therefore, the external colour gauge fields G1,··· ,8

µ and Bµ couple to the X fermions through the
combination

−igc
√
2GaµT

a − ig′
4√
3
BµT

9 . (F.13)

According to Eq. (8.1.28), the masses of the NGBs that are radiatively induced by the gauging are
given by

∆M2
Oc

= ∆M2
1̂,··· ,8̂ = − 3

4π
× 1

F 2
Gc

∫ ∞

0
dQ2Q2ΠXV -A(−Q2)× 3

4π
g2s ,

∆M2
Sc

= ∆M2
9̂,··· ,2̂0 = − 3

4π
× 1

F 2
Gc

∫ ∞

0
dQ2Q2ΠXV -A(−Q2)× 1

4π

(
10

3
g2s +

16

9
g′2

)
.

(F.14)

The quantitative estimate of the integral of the V −A two-point function is discussed in section 9.2.2.
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G Loop functions

The one-loop integrals relevant for our purposes are the one- and two-point functions,

Ã0(m
2) ≡ i

∫
d4k

(2π)4
1

k2 −m2 + iǫ
, B̃0(p

2,m2) ≡ i

∫
d4k

(2π)4
1

(k2 −m2)
[
(p+ k)2 −m2

] . (G.1)

[We adopted the notation Ã0 and B̃0 in order to avoid confusion with the standard one-loop functions
A0 and B0 [177], which are defined in Euclidean metric and dimensional regularisation, and differ also
by an overall factor i(16π2) in D = 4 dimensions.]

In the context of the NJL model, the one-point function is regularised by introducing a cut-off Λ
on the Euclidean four-momentum,

Ã0(m
2) =

Λ2

16π2

[
1− m2

Λ2
ln

Λ2 +m2

m2

]
. (G.2)

The zero-momentum two-point function is given by
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Figure 7: Left panel: Real (blue curve) and imaginary parts (red curve) of B̃0(p
2,m2) [see Eq. (G.4)]

as a function of r = p2/(4m2). According to figure 8.3, a reasonable value for the second parameter
of the B̃0(p

2,m2) function is fixed by the relation Λ = 2m. The imaginary part becomes non-zero
only above the threshold r = 1 or equivalently above p2 = 4m2. Right panel: Real (blue curve)
and imaginary parts (red curve) of the derivative of B̃0(p

2,m2) [see Eq. (G.6)] with respect to the
parameter r. Due to the cusp in the real part of B̃0(p

2,m2) at the threshold, the corresponding
derivative is discontinue. Below r = 1, the real part of the derivative tends to −∞ while above r = 1,
it tends to 1/(8π2) [df(r)/dr tends to 4].

B̃0(0,m
2) =

dÃ0(m
2)

dm2
=

1

16π2

[
Λ2

Λ2 +m2
− ln

Λ2 +m2

m2

]
=

1

16π2

[
1− ln

Λ2

m2
+O

(
m2

Λ2

)]
. (G.3)

For the finite, p2-dependent part of the two-point function, we adopt the simple regularisation

B̃0(p
2,m2) = B̃0(0,m

2) +
1

32π2
f

(
p2

4m2

)
, (G.4)

where

f(r) =





4

(
1− r

r

)1/2

arctan

(
r

1− r

)1/2

− 4 (for 0 < r < 1)

4

(
r − 1

r

)1/2 [
ln(

√
r +

√
r − 1)− i

π

2

]
− 4 (for 1 < r)

4

(
r − 1

r

)1/2 [
ln(

√
−r +

√
1− r)

]
− 4 (for r < 0) .

(G.5)
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We remark that the finite terms are regularisation-dependent, therefore our expression may differ from
analogous ones in the NJL literature at order p2/Λ2. The first derivative of the two-point function is
given by

dB̃0(p
2,m2)

dp2
=

1

4m2

dB̃0(p
2,m2)

dr
=

1

32π2
1

4m2

df(r)

dr
, (G.6)

where

df(r)

dr
=





2

r2

[
r −

(
r

1− r

)1/2

arctan

(
r

1− r

)1/2
]

(for 0 < r < 1)

2

r2

[
r +

(
r

r − 1

)1/2 (
ln[

√
r +

√
r − 1]− i

π

2

)]
(for 1 < r)

2

r2

[
r −

(
r

r − 1

)1/2 [
ln(

√
−r +

√
1− r)

]
]

(for r < 0) .

(G.7)

Note that, contrary to B̃0(p
2,m2), its derivative depends only on one parameter that can be conve-

niently chosen to be r = p2/(4m2). The B̃0(p
2,m2) function and its derivative are displayed in figure

7.

H Two-point correlators of fermion bilinears at one loop

In this appendix we present the detailed computation of the five one-loop two-point functions Π̃φ(q
2,M2

f ) =

Π̃fφ(q
2) where φ = {S, P, V,A,AP} and Mf is the dynamical mass of the hypercolour fermions

f = ψ,X. These two-point functions are crucial quantities in the NJL model as they are involved in
the estimation of the masses and decay constants of the EW and coloured composite resonances (see
sections 8.2 and 9.2). For the two-component Weyl spinors, we follow the conventions of Ref. [262] (ψ
and ψ† propagate in the loops). The Feynman rules appearing in the vertices can be extracted from
the currents and densities given respectively in Eqs. (8.1.1) and (8.1.6).

Let us first focus on the EW sector. In the scalar and pseudo-scalar non-singlet channels we get

iΠ̃ψS(P )(q
2)δÂB̂ = (−1)

∫ Λ d4k

(2π)4
Tr

[
iΣ0T

ÂΩΓS(P )
iσ · k

k2 −M2
ψ

iT B̂Σ0ΩΓ
†
S(P )

iσ · (k + q)

(k + q)2 −M2
ψ

]

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iΣ0T

ÂΩΓS(P )
iMψΣ0Ω

k2 −M2
ψ

iΣ0T
B̂ΩΓS(P )

iMψΣ0Ω

(k + q)2 −M2
ψ

]
,(H.1)

where the first (second) integral corresponds to the loop involving the kinetic (massive) part of the
propagators. The factors ΓS(P ) = 1 (i), which distinguish the scalar and pseudo-scalar channels, are
a consequence of Eq. (8.1.6). These factors are the equivalent of the γ5 matrix in Dirac notation and
they give a relative sign between the two channels in the second term of Eq. (H.1) exactly like in
QCD. Similarly for the vector and axial-vector two points functions one obtains

iΠ̃
µν,AB(ÂB̂)
V (A) (q2,M2

ψ) = (−1)

∫ Λ d4k

(2π)4
Tr

[
iTA(Â)σµ

iσ · k
k2 −M2

ψ

iTB(B̂)σν
iσ · (k + q)

(k + q)2 −M2
ψ

]
(H.2)

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iTA(Â)σµ

iMψΣ0Ω

k2 −M2
ψ

(−iTB(B̂))Tσν
iMψΣ0Ω

(k + q)2 −M2
ψ

]
,

where the functions Π̃
µν,AB(ÂB̂)
V (A) (q2) are defined in Eq. (8.2.34). The vector and axial-vector channels

only distinguish from the flavour trace [see Eqs. (8.1.2) and (8.1.3)] which again gives a relative sign
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between the two channels in the second integral. Finally, for the axial-pseudoscalar two point function
one has

iΠ̃µ,ÂB̂AP (q2,M2
ψ) ≡ iΠ̃ψAP (q

2)pµδÂB̂ = (−1)

∫ Λ d4k

(2π)4
Tr

[
iT Âσµ

iσ · k
k2 −M2

ψ

iT B̂Σ0ΩΓP
iMψΣ0Ω

(k + q)2 −M2
ψ

]

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iT Â · σµ iMψΣ0Ω

k2 −M2
ψ

iΣ0T
B̂ΩΓ†

P

iσ · (k + q)

(k + q)2 −M2
ψ

]
, (H.3)

where this time, the integrals contain both the kinetic and the massive parts of the propagators.
Evaluating the Lorentz, flavour and hypercolour traces, one can check that the above equations are
well consistent with the ones given in table 8.2. Note that the correlators in the singlet channels are

obtained by replacing the generators T Â by the normalised identity matrix T 0
ψ which only changes the

flavour tensor structure of the loops, leading to the same result for the two-point functions Π̃fφ(q
2).

Let us now turn to the correlators of the coloured SU(6) sector. The latter can be derive in
complete analogy with the ones in the EW sector. Aside the obvious replacements Mψ → MX ,
Σ0 → Σc0 and T 0

ψ → T 0
X , the major modification originates from the hypercolour traces. Indeed, the

fermions X are in the two-index antisymmetric and traceless representation of Sp(2N). Consequently,
the hypercolour traces give a factor (2N + 1)(N − 1) [instead of (2N) 5] which of course corresponds
to the dimension of the hypercolour X−representation. Note that this difference with respect to the

EW sector can easily be infer by considering the vector form X Î [Î = 1, · · · , (2N + 1)(N − 1)] define
in Eq. (I.6). Then, the one-loop two-point functions Π̃Xφ (q

2), summarised in table 9.2, are related to
the ones in the EW sector as follow

Π̃ψφ (q
2) = Π̃φ(q

2,M2
ψ, 2N) , Π̃Xφ (q

2) = Π̃φ[q
2,M2

X , (2N + 1)(N − 1)] . (H.4)

As explained in section 8.2.2, the resummation of the above one-loop two-point functions, at
leading order in 1/N , gives the NJL resummed correlators, Πφ, from which the masses and decay
constants of the composite resonances are extracted. Usually, in the NJL literature, one considers
the T-matrix element T φ(q

2), rather than Πφ(q
2). As illustrated in Fig. 8, the geometrical series that

defines T φ starts with the four-fermion interaction Kφ, instead of the one-loop two-point function

Π̃fφ(q
2), see Fig. 8.2. Consequently the T-matrix element is given by

T φ(q
2) =

Kφ

1− 2Kφ Π̃
f
φ(q

2)
. (H.5)

The poles of T φ(q
2) and Πφ(q

2) are of course the same and given by 1 = 2Kφ Π̃
f
φ(M

2
φ). The only

difference comparing Eqs. (8.2.20) and (H.5) comes from the numerators of the series which lead

different residues. The residues of Π
f
φ have been extensively studied in sections 8.2 and 9.2 while

the residues of the T-matrix are the couplings gφff of the physical resonance φ to the fundamental
fermions f . In analogy with Eq. (8.2.63), these couplings are given by

g2φff = − lim
q2→M2

φ

(q2 −M2
φ)T φ(q

2) =


2

dΠ̃fφ(q
2)

dq2

∣∣∣∣∣
q2=M2

φ



−1

. (H.6)

They behave like ≃ 1/
√
N , as expected from general large-N considerations.

5More precisely, due to the antisymmetry of the hypercolour singlet contractions, the corresponding traces of the EW
sector contribute to the one-loop functions with a factor ±(2N) where the sign corresponds to a particular (massive or
kinetic) loop in a given channel. The minus sign is always compensate by the flavour trace which contains in that case
Σ2

0 = −11. On the contrary, the hypercolour and flavour contractions in the coloured sectors are symmetric and always
positive.
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= + · · ·
gφψψ gφψψ Kφ+ Kφ + Kφ KφKφ

φ
Kφ

Figure 8: Resummation of leading 1/N graphs for a mesonic T-matrix element, T φ, corresponding to
a composite meson exchange.

I Relating four-fermion operators by Fierz identities

The couplings of the various four-fermions operators may be related under some assumption on
the underlying dynamics (see Refs. [60, 309] for the case of QCD). In this way one can predict the
relative strength of the various physical channels (spin-zero versus spin-one, electroweak sector versus
colour sector, etc.). We will start from Sp(2N) current-current operators, that encode the ultraviolet
dynamics in the ‘ladder’ approximation, that holds when N is (moderately) large, and we will use
Fierz transformations to generate the various Sp(2N) singlet-singlet operators. We will also take
the opportunity to summarise general results on Fierz transformations associated to the SU(N) and
Sp(2N) groups.

I.1 Hypercolour current-current operators

Let us derive the Sp(2N) current-current operators from the covariant derivatives of the fermions
ψ and X. They belong to the fundamental representation, ψ ∼ , and to the two-index, traceless
(XijΩji = 0) and antisymmetric (Xij = −Xji) representation, X ∼ . The covariant derivatives read

(Dµψ)i =
[
∂µδij − igHC(T

I)ijGµI
]
ψj , (I.1)

(DµX)ij = ∂µXij − igHC
[
(T I)ikXkj + (T I)jkXik

]
GµI =

[
∂µδikδjl − igHC(T

I
X)ijklGµI

]
Xkl , (I.2)

where GµI are the hypergluon fields, gHC is the hypercolour gauge coupling. The hypercolour generators
acting on ψj , (T

I)ij , and on Xkl, (T
I
X)ijkl ≡ (T I)ikδjl − δil(T

I)jk, are normalised as

Tr(T IT J) ≡ 1

2
ℓ ( ) δIJ =

1

2
δIJ , Tr(T IXT

J
X) ≡ (T IX)ijkl(T

J
X)klij ≡

1

2
ℓ
( )

δIJ = (N − 1)δIJ .

(I.3)
The non-derivative terms in Eqs. (I.1) and (I.2) determine the coupling of the technigluons to the
Sp(2N)-currents J µI

ψ and J µI
X , that transform in the adjoint representation ,

LUV = gHC

(
J µI
ψ + J µI

X

)
GµI , (I.4)

where
J µI
ψ = ψ

(
ΩT I

)
σµψ , J µI

X = 2 Tr
[
X

(
ΩT I

)
σµXΩ

]
. (I.5)

Here Ωij is the Sp(2N) invariant tensor, the trace is taken over Sp(2N) indexes, and the expression

of J µI
X has been simplified using Tr

[
XΩσµX

(
ΩT I

)]
= −Tr

[
X

(
ΩT I

)
σµXΩ

]
. It is understood that

each fermion flavour ψa (XF ) behaves equally with respect to the Sp(2N) dynamics, that is, the
Sp(2N) currents are flavour singlets. It will be useful to rearrange the fermion components Xij as a

vector X Î , with one index Î of the representation ,

Xij =
√
2(T ÎΩ)ijX

Î , X Î = −
√
2(ΩT Î)ijXji , (I.6)
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so that the second current in Eq. (I.5) can be written in terms of the generators in the representation
, that are given by SU(2N) structure constants,

J µI
X = X Î(T I )Î ĴσµX

Ĵ
, (T I )Î Ĵ ≡ if ÎIĴ = 2Tr

(
[T Î , T I ]T Ĵ

)
. (I.7)

We assume that the confining strong dynamics can be described, in first approximation, by the
exchange of one hypergluon which acquired a dynamical mass, that is the usual NJL assumption in
QCD [56]. Then, the strong dynamics is supposed to generate, at leading order, Sp(2N) current-
current operators only,

Leff =
κUV
2N

[
J µI
ψ J I

ψµ + J µI
X J I

Xµ + 2J µI
ψ J I

Xµ

]
, (I.8)

where κUV /(2N) ∼ g2HC/Λ
2 stands for the exchange of one ‘massive’ hypergluon. The large-N scal-

ing of the gauge coupling is gHC ∼ 1/
√
2N , while κUV and Λ are N -independent. The operators

in Eq. (I.8) are the product of fermion bilinears in the adjoint representation of Sp(2N). In or-
der to study physical resonances, that correspond to Sp(2N)-singlet fermion bilinears, we need to
rewrite these operators by using Fierz transformations in the Lorentz, flavour and hypercolour spaces.
Note that the last operator in Eq. (I.8) does not contribute to any meson resonance, because by a
Fierz transformation one obtains only ‘diquark-diquark’ operators, such as (ψX)(ψX), that are not
hypercolour singlets and therefore are not relevant for our analysis.

The Fierz transformations of Weyl indices are determined by the well-known identities

(σµ)αα̇ (σµ)ββ̇ = − (σµ)αβ̇ (σµ)βα̇ = 2 εαβεα̇β̇ . (I.9)

The SU(N) and Sp(2N) Fierz transformations, relevant for flavour and hypercolour indexes respec-
tively, are presented in sections I.3 and I.4 below.

I.2 General properties of Fierz transformations

In this section we derive general properties of the coefficients in Fierz transformations. For a given
irreducible representation R of the symmetry group under consideration, let us construct the tensor
products R ⊗ R =

∑
A
RA and R ⊗ R =

∑̃
ARA, where the index A runs over the irreducible

representations contained in the product. One can choose [310] a set of matrices {ΓA
a } ({Γ̃A

a }), with
a = 1, · · · , dimRA, which form a basis of the vector space R⊗R (R⊗R). In the following, we will add
a tilde wherever there is no conjugate in the tensor product. Such matrices have size dimR× dimR
and satisfy the orthogonality relations

Tr(ΓA
a Γ

B
b ) = α δABgAab , Tr(Γ̃A

a Γ̃
B†
b ) = α δABgAab , (I.10)

where α is a normalisation constant and gAab is a generic metric (in particular, gAabg
Abc = δca and

ΓaA ≡ gAabΓA
b ). Any dimR× dimR matrix M can be decomposed on the basis {ΓA

a } as

M =
∑

A

∑

a

caAΓA
a =

∼∑

A

∑

a

daAΓ̃A
a , caA =

1

α
Tr(ΓaAM) , daA =

1

α
Tr(Γ̃aA†M) .

(I.11)
Replacing the explicit form of caA and daA in M we obtain the completeness relations

∑

A

∑

a

(ΓaA)ij(Γ
A
a )kl =

∼∑

A

∑

a

(Γ̃aA)ij(Γ̃
A†
a )kl = α δilδkj . (I.12)

which are relevant to derive the Fierz coefficients.
Let us consider an interaction among four objects transforming as (R⊗R)A(R⊗R)A, where the

subscripts indicate that each pair is contracted in the componentRA. Then, the Fierz transformations
can be written as

∑

a

(ΓaA)ij(Γ
A
a )kl =

∑

B
CAB

∑

b

(ΓbB)il(Γ
B
b )kj =

∼∑

B
DAB

∑

b

(Γ̃bB)ik(Γ̃
B†
b )jl , (I.13)
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where CAB and DAB are the Fierz coefficients for the channels j ↔ l and j ↔ k, respectively. In terms
of ‘quarks’ ∼ R and ‘antiquarks’ ∼ R, one can dub them the ‘quark-antiquark’ and the ‘quark-quark’
channels, respectively. Analogously, for the interaction (R⊗R)A(R⊗R)A, the Fierz transformations
read ∑

a

(Γ̃aA)ij(Γ̃
A†
a )kl =

∑

B
C̃AB

∑

b

(ΓbB)il(Γ
BT
b )kj =

∑

B
D̃AB

∑

b

(ΓbB)ik(Γ
B
b )jl , (I.14)

One can derive several, general constraints on the Fierz-coefficient matrices C,D, C̃, D̃. Applying
twice a Fierz transformation on the same indexes the original contraction is recovered, therefore one
obtains

∑

B
CABCBC = δAC ,

∼∑

B
DABD̃BC = δAC ,

∑

B
C̃ABDBC = sAδAC ,

∑

B
D̃ABDBC = δAC ,

(I.15)
where sA = +1 (−1) when the representation RA belongs to the (anti-)symmetric part of the tensor
product R ⊗ R, and correspondingly the matrices Γ̃A

a are (anti-)symmetric. Therefore, one has
C = C−1, while both C̃ and D̃ can be fully determined in terms of the matrix D. The contraction
associated to the singlet representation, R• ⊂ R⊗R, can be chosen as Γ•

ij = δij
√
α/dimR. Therefore,

Eq. (I.12) determines the first row of C and D,

C•A =
1

dimR , ∀ RA ⊂ R⊗R , D•A =
sA

dimR , ∀ RA ⊂ R⊗R . (I.16)

Indeed, from Eq. (I.13) one can obtain explicit expressions of the Fierz coefficients,

CAB =
1

α2

∑

a

Tr[ΓaAΓB
b Γ

A
a Γ

bB] , DAB =
1

α2

∑

a

Tr[ΓaA(Γ̃B
b )
T (ΓA

a )
T Γ̃bB†] , (I.17)

which are valid for every b. The direct computation of such expressions, however, may be very
complicated in practice. By summing over b the two identities in Eq. (I.17), one obtains quantities
invariant under the exchanges A ↔ B and C ↔ C−1 (D ↔ D−1), therefore one concludes that

CAB dimRB = CBA dimRA , DAB dimRB = (D−1)BA dimRA . (I.18)

In particular, Eq. (I.16) implies CA• = C•A dimRA = dimRA/dimR.
In the special case of a (pseudo-)real representation R, taking ψ ∼ R and ψ† ∼ R, one has

ψi ≡ ψ†
j(Ωǫ)ji ∼ R, where Ωǫ is the invariant tensor establishing the equivalence of R and R, that

is symmetric (ǫ = +1) or antisymmetric (ǫ = −1) in the case of real or pseudoreal representations,
respectively. Therefore, the set of matrices {ΓA

a } and {Γ̃A
a } can be identified, according to Γ̃A

a = ΓA
a Ωǫ.

In addition, the equality ΩǫΓ̃
A†
a = ǫΓ̃A

a Ωǫ holds, that implies in particular (ψΓ̃A
a ψ)

† = ǫψΓ̃A
a ψ. Then,

it is convenient to rewrite the Fierz transformations in Eq. (I.13) [or, equivalently, Eq. (I.14)] in terms
of the interaction (R⊗R)A(R⊗R)A,

∑

a

(Γ̃aA)ij(Γ̃
A
a )kl =

∼∑

B
CAB

∑

b

(Γ̃bB)il(Γ̃
B
b )kj = ǫ

∼∑

B
DAB

∑

b

(Γ̃bB)ik(Γ̃
B
b )jl . (I.19)

It follows immediately that the two sets of Fierz coefficients are related as

ǫDAB = sACABsB , (I.20)

where sA,B = ±1 denotes, once again, the (anti-)symmetry of RA,B within R⊗R. In this (pseudo-
)real case the singlet contraction corresponds to Γ̃•

ij = (Ωǫ)ij
√
α/dimR, therefore s• = ǫ, and one

recovers Eq. (I.16).
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I.3 SU(N) Fierz transformations

Let us derive the Fierz transformations associated to the fundamental representation of SU(N) (see
e.g. [59]). In our model they are relevant for the flavour indexes, as the fermions ψa and Xf transform
in the fundamental of SU(4) and SU(6), respectively.

In the ‘quark-antiquark’ channel, (NaN
b)(N cN

d) → (NaN
d)(N cN

b), one can employ the com-
pleteness relation of Eq. (I.12) for N ⊗N ,

N2−1∑

I=1

(T I)ab(T
I)cd + (T 0)ab(T0)

c
d =

1

2
δadδ

c
b , (I.21)

where T I are the (N2 − 1) generators of SU(N), T 0 ≡ 11/
√
2N , and α = ℓ(N)/2 = ℓ(N)/2 = 1/2 as

we adopted the normalisation Tr(T IT J) = δIJ/2. The first row of the Fierz-coefficient matrix CAB is
simply obtained by reshuffling the indexes in Eq. (I.21),

(T 0)ab(T
0)cd =

1

N
(T 0)ad(T

0)cb +
1

N

∑

I

(T I)ad (T
I)cb , (I.22)

The second row can be determined by imposing C2 ≡ 11, as follows from Eq. (I.15). Thus, one
concludes that




(T 0)ab(T
0)cd∑

I

(T I)ab (T
I)cd


 = C




(T 0)ad(T
0)cb∑

I

(T I)ad (T
I)cb


 =

(
1
N

1
N

N2−1
N − 1

N

)


(T 0)ad(T
0)cb∑

I

(T I)ad (T
I)cb


 . (I.23)

In the ‘quark-quark’ channel, (NaN
b)(N cN

d) → (NaN c)(N
bNd), one needs also the completeness

relation for N ⊗N , that involves N(N +1)/2 symmetric matrices ΓIS , and N(N −1)/2 antisymmetric
matrices ΓIA,

N(N+1)/2∑

I=1

(ΓI†S )ab(ΓIS)cd +

N(N−1)/2∑

I=1

(ΓI†A )ab(ΓIA)cd =
1

2
δadδ

b
c . (I.24)

A convenient basis of (anti-)symmetric matrices is provided by Γ0 ≡ ΣǫT
0, ΓI ≡ ΣǫT

I , and ΓÎ ≡ ΣǫT
Î ,

where (Σǫ)ab is the invariant tensor of a maximal SU(N) subgroup, that is SO(N) in the case
ǫ = +1, and Sp(N) in the case ǫ = −1 (present only for N even). Here the index I runs over the
subgroup generators only, and the index Î spans the coset. When ǫ = +1(−1), Σǫ is a symmetric

(antisymmetric) matrix and, according to Eq. (8.1.2), Γ0 and ΓÎ are symmetric (antisymmetric), while
ΓI are antisymmetric (symmetric). Using this basis for the matrices ΓIS,A, one can construct explicitly
the Fierz-coefficient matrix DAB,




(T 0)ab(T
0)cd∑

I

(T I)ab (T
I)cd


 = D




∑
I

(ΓI†S )ac(ΓIS)bd

∑
I

(ΓI†A )ac(ΓIA)bd


 =

(
1
N − 1

N

N−1
N

N+1
N

)


∑
I

(ΓI†S )ac(ΓIS)bd

∑
I

(ΓI†A )ac(ΓIA)bd


 . (I.25)

For example, the first row of DAB can be obtained from Eq. (I.22) by contracting with (Σǫ)
dd′(Σǫ)c′c,

and inverting appropriate pairs of (anti-)symmetrised indexes: the result agrees with Eq. (I.16). The
second row is determined e.g. by Eq. (I.18), up to an overall sign, that can be fixed once again by
(anti-)symmetrising over appropriate indexes.

I.4 Sp(2N) Fierz transformations

Let us derive the Fierz transformations associated to the hypercolour representations of the fermions

ψi and Xij , that is, and respectively. The group Sp(2N) is a subgroup of SU(2N), corresponding
to the vacuum direction Σ− ≡ Ω, defined in Eq. (8.2.3). Taking advantage of Eq. (8.1.2), one
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can decompose the U(2N) completeness relation (I.21) in two parts, corresponding to the Sp(2N)
subalgebra and its coset,

N(2N+1)∑

I=1

(T I)ij (T
I)kl =

1

4
(δilδkj − ΩikΩjl) : Sp(2N) , (I.26)

(2N+1)(N−1)∑

Î=1

(T Î)ij (T
Î)kl + (T 0)ij (T

0)kl =
1

4
(δilδkj +ΩikΩjl) : U(2N)/Sp(2N) . (I.27)

The product of two fundamental representations of Sp(2N) reads

× = •a + s +
a
, (I.28)

where the bullet stands for the singlet and the subscripts indicate whether the contraction is symmetric
or antisymmetric under the exchange of the two factors. These representations have dimensions

d ( ) = 2N , d (•) = 1 , d ( ) = N(2N+1) , d
( )

= N(2N−1)−1 = (2N+1)(N−1) .
(I.29)

The two indexes in i j are contracted by an appropriate set of (anti-)symmetric matrices Γ̃aA, that
can be conveniently chosen as

Γ̃• ≡ ΩT 0 =
Ω√
4N

, Γ̃I ≡ ΩT I , Γ̃Î ≡ ΩT Î , (I.30)

in one-to-one correspondence with the generators of U(2N). Multiplying (I.26) and (I.27) by ΩmiΩnk
one obtains useful equalities to determine the Fierz transformations of ( i j)( k l). Thus, the
matrix of Fierz coefficients for the channel (il)(kj), CAB, can be fully determined in agreement with
the general results of section I.2:




(ΩT 0)ij(ΩT
0)kl∑

I

(ΩT I)ij(ΩT
I)kl

∑
Î

(ΩT Î)ij(ΩT
Î)kl




=




1
2N

1
2N

1
2N

2N+1
2 −1

2
1
2

(2N+1)(N−1)
2N

N−1
2N −N+1

2N







(ΩT 0)il(ΩT
0)kj∑

I

(ΩT I)il(ΩT
I)kj

∑
Î

(ΩT Î)il(ΩT
Î)kj




, (I.31)

According to Eq. (I.20), the Fierz coefficients in the channel (ik)(jl) are given by DAB = −CAB when
both A and B are (anti-)symmetric contractions, and DAB = CAB otherwise.

We can now determine the coefficients κA,C,D of the four-fermion operators in the ψ-sector, which
are defined by Eqs. (8.2.14) and (8.2.30), assuming that the dynamics is well approximated by the
ψ-sector current-current operator of Eq. (I.8), with coefficient κUV . Note that the ’t Hooft operator
with coefficient κB, defined by the second line of Eq. (8.2.14), is not generated by the current-current
interaction, as the latter preserves the anomalous U(1)ψ symmetry, therefore the size of κB is unrelated
to κUV . On the contrary, the size of κA (of κC,D) can be related to κUV by performing the pertinent
set of Fierz transformations over Lorentz, SU(4) flavour, and Sp(2N) hypercolour indexes. Naively,
with this procedure the current-current operator is recast into a sum over several operators: those
with two hypercolour-singlet fermion bilinears, that correspond to physical meson states, plus those
with two hypercolour-non-singlet fermion bilinears. The former operators receive a coefficient

κA = κC = κD =
2N + 1

4N
κUV . (I.32)

However, the latter operators could also contribute to these couplings, by further Fierz transforma-
tions, therefore, the above equalities cannot be firmly established on this basis. Fortunately, there
exists a unique way to express the current-current operator in terms of hypercolour-singlet fermion
bilinears only, by using the identity

∑

I

(
ΩT I

)
ij

(
ΩT I

)
kl
=

1

4
(ΩilΩkj − ΩikΩjl) , (I.33)
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that is obtained e.g. by considering the first row of Eq. (I.31) and symmetrising over the indexes (il),
or equivalently by multiplying the Sp(2N) completeness relation (I.26) by Ωi′iΩk′k. Employing this
relation we obtain

κA = κC = κD =
1

2
κUV . (I.34)

Therefore, in the current-current approximation, the scalar coupling κA and the vector couplings κC,D
are equal and N -independent when N becomes large, as κUV is. Notice that the naive relations in
Eq. (I.32) were correct al leading order in 1/N . The equality between vector and scalar couplings is
common with the standard NJL model for QCD [259].

Let us now analyse the product of two Sp(2N) two-index traceless antisymmetric representations

, that is relevant for the colour sector of our model. The tensor product,

× = • s + a +
s

+
s

+

s

+

a

, (I.35)

contains three four-index representations, of dimension

d
( )

=
N

3

(
4N3 − 7N + 3

)
, d

( )
=
N

6

(
4N3 − 12N2 −N + 3

)
, d

( )
=

1

2

(
4N4 − 4N3 − 9N2 +N + 2

)
.

(I.36)
These numbers can be derived taking into account the symmetry properties of each representation in
Eq. (I.35), and subtracting the dimensions of the smaller representations, obtained by taking traces,

as given in Eq. (I.29). The indexes in ij kl are contracted into the representation R by a set of
tensors (Γ̃aR)ijkl, with a = 1, . . . , dimR. Equivalently, one can use a single index running over the

(2N + 1)(N − 1) components of ,

Xli(Γ̃
a
R)ijklXjk = XÎ(Γ̃

a
R)Î ĴXĴ . (I.37)

where Xij and XÎ are related by Eq. (I.6). In this notation, the completeness relation reads

∑

R

∑

a

(Γ̃aR)Î Ĵ(Γ̃
a
R)K̂L̂ =

1

2
ℓ( )δÎL̂δK̂Ĵ = (N − 1)δÎL̂δK̂Ĵ , R = •, , , , , . (I.38)

In fact, the set of matrices {Γ̃aR} corresponds to the generators of the group U [(2N + 1)(N − 1)],
normalised as Tr[Γ̃aRΓ̃

b
R′ ] = 1

2ℓ( )δRR′δab. Let us provide the explicit form of these matrices for the
smallest representations. The singlet contraction is given by

(Γ̃•)ijkl =
1√

2N + 1
ΩijΩkl , (Γ̃•)Î Ĵ =

1√
2N + 1

δÎ Ĵ . (I.39)

The adjoint contraction, already employed in section I.1, is given by

(Γ̃K )ijkl = (ΩT I)ijΩkl − Ωij(ΩT
I)kl , (Γ̃K )Î Ĵ = −if Î ĴK = −2Tr([T Î , T Ĵ ]TK) . (I.40)

The two-index antisymmetric contraction has a similar structure, with the unbroken generators T I

replaced by the broken ones T Î ,

(Γ̃K̂)ijkl = (ΩT K̂)ijΩkl +Ωij(ΩT
K̂)kl , (Γ̃K̂)Î Ĵ = dÎ ĴK̂ = 2Tr({T Î , T Ĵ}T K̂) . (I.41)

One can easily check that the symmetry properties of the contractions in Eqs. (I.39), (I.40) and (I.41)
agree with those indicated in Eq. (I.35).
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The singlet Fierz coefficients in the channel (ÎL̂)(K̂Ĵ), C•R, are easily determined from the com-
pleteness relation (I.38), in agreement with Eq. (I.16). The coefficients CR• are determined in turn
by Eq. (I.18). Thus, we can write
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a )K̂L̂
∑
a
(Γ̃a )Î Ĵ(Γ̃
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∑
a
(Γ̃a )ÎL̂(Γ̃
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(I.42)
One needs further algebraic manipulations to determine the non-singlet Fierz coefficients, that are
not needed for our purposes. The Fierz coefficients DRR′ in the channel (ÎK̂)(Ĵ L̂) are determined

by Eq. (I.20), with ǫ = +1 as is a real representation. Since we aim to rewrite the X-sector
current-current operator of Eq. (I.8) in terms of hypercolur-singlet fermion bilinears, the relevant
Fierz coefficients are

C • = −D • =
N

N − 1
. (I.43)

In analogy with the above procedure in the ψ-sector, one can try to determine the coefficients
κA6,C6,D6 of the four-fermion operators in the X-sector, which are defined by Eqs. (9.2.1) and (9.2.20).
If one applies a pertinent Fierz transformation, over Lorentz, SU(6) and Sp(2N) indexes, to the X-
sector current-current operator in Eq. (I.8), one obtains

κA6 = κC6 = κD6 = κUV . (I.44)

This indicates that the scalar and vector operators of the coloured sector receive the same coefficient,
that is twice as large as for the corresponding operators of the electroweak sector, see Eq. (I.34).
However, at the same time κUV also contributes to other operators, that involve hypercolour-non-
singlet fermion bilinears, therefore the above relations are ambiguous, as they rely on a specific
recasting of the current-current operator, that is not unique. Another possible recasting is obtained
by anti-symmetrising Eq. (I.38), with respect to the pair of indexes (K̂L̂), to remove the symmetric
components of Eq. (I.35),

∑

a

(Γ̃a )Î Ĵ(Γ̃
a )K̂L̂ +

∑

a

(Γ̃a )Î Ĵ(Γ̃
a )K̂L̂ =

(2N + 1)(N − 1)

2

[
(Γ̃•)ÎL̂(Γ̃•)K̂Ĵ − (Γ̃•)ÎK̂(Γ̃•)ĴL̂

]
.

(I.45)
Contrary to the case of × , this procedure does not allow to express the current-current contraction

in terms of singlet-singlet contractions only. This is because the product × contains another
antisymmetric representation, besides the adjoint. If one neglects, somehow arbitrarily, the second
term on the left-hand side of Eq. (I.45), the relation between the current-current operator and the
singlet-singlet operators becomes

κA6 = κC6 = κD6 =
(2N + 1)(N − 1)2

2N
κUV . (I.46)

Note that these couplings can be much larger than those in Eq.(I.44), when N is large. The problem
is that the current-current operator contains terms leading in 1/N , that cannot be written as singlet-
singlet contractions only.
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We conclude that the strength of the coloured-sector couplings cannot be fixed in terms of κUV ,
and we treat it as a free parameter. In particular, κA6 is independent from the strength of the
electroweak-sector coupling κA: in our phenomenological analysis we take κA6 ∼ κA, such that the
domain of validity of the NJL calculations is similar in the two sectors, and the NJL predictions
can be compared. On the other hand, the equality between the scalar and vector couplings in each
sector is a solid prediction of the current-current approximation, that holds independently from their
absolute size. Finally, we remind that all predictions discussed in this appendix depend on the validity
of the effective Lagrangian of Eq. (I.8), that relies on the ‘ladder’ approximation for the hypercolour
dynamics, therefore departures from these predictions may be significant.

J Running of the SM gauge couplings

In this appendix, we present the running of the SM gauge couplings within the UV completion
presented in chapters 8 and 9. The one-loop running of a generic coupling g from the scale µ to the
scale µ′ is given by

g2(µ′) =
g2(µ)

1 + β0g2(µ) ln
µ′2

µ2

, β(g) =
dg

d lnµ
= −β0g2 + · · · (J.1)

where the general expression of the one-loop β-function is

β0 =
1

16π2


11

3
C(Ad)− 2

3

∑

fi

C(Rfi)nfi −
1

3

∑

si

C(Rsi)nsi


 . (J.2)

The first contribution in the above expression of β0 comes from the gauge bosons while the second
and third ones from generic Weyl fermions fi and scalar si with multiplicity nfi and nsi .

We assume for simplicity that the condensation scale is around 10 TeV such that, above this scale
the fundamental fermions ψ and X contribute to the SM β functions. This is a naive estimation of
the running because we neglect the contributions of the composite resonances below Λ. However, this
crude approximation gives a first guess of the constraints that originate from the SM gauge couplings.
The fundamental fermions transform as ψ ∼ 20 + 1±1/2 and X ∼ 32/3 + 3−2/3 respectively under
SU(2)L × U(1)Y and SU(3)c × U(1)Y . Then from the dimension of the hypercolour representation
[2N and (2N + 1)(N − 1) for ψ and X respectively] and from Eq. (J.2) we get

βY0 =
1

16π2

[
−20

3
− 2

3

(
8

3
(2N + 1)(N − 1) +N

)]
, (J.3)

βEW0 =
1

16π2

[
10

3
− 2N

3

]
, (J.4)

βQCD0 =
1

16π2

[
7− 2

3
(2N + 1)(N − 1)

]
, (J.5)

for U(1)Y , SU(2)L and SU(3)c respectively. The first contribution come from the SM particles 6

while the second one from the hypercolour fermions.
The running of the corresponding gauge couplings are displayed in figure 9 for different values of

the number of hypercolour N . Depending on N , Landau poles may develop, possibly too close to

6Note that we have to remove the contribution of the SM Higgs doublet which is of course not present in composite
Higgs model. In the SM we rather have
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Figure 9: Running of the SM gauge coupling at one-loop, in presence of the EW and coloured
hyperfermions ψ and X for a fixed number of hypercolours N = 2 to N = 7. From the upper to
the lower panels: running of the hypercharge coupling (1/α1), SU(2)L coupling (1/α2) and SU(3)c
coupling (1/α3). The condensation scale Λ is assume to be at 10 TeV and the contribution of the
composite resonances below Λ is neglected for simplicity.

the condensation scale of the strong sector. The naive one-loop estimation of the running of the SM
gauge couplings in presence of the hypercolour fermions, as described above, leads to the appearance
of Landau poles around 100 (500) TeV for N = 6 (5) while for N = 4, the Landau poles appear above
4 · 103 TeV. Then, a more reasonable interval for the number of hypercolours is 2 ≤ N ≤ 6 and for
the numerical illustration, we take the conservative value N = 4 in chapters 8 and 9.
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Chapter 10

Conclusion and outlooks about the UV
completions of CHMs

In the two precedent chapters, we have considered a particular UV realisation of the composite Higgs
paradigm. The latter belongs to the class of VL theories and is based on a new Sp(2N) gauge
interaction that is supposed to condensate at low energy. Two species of fundamental fermions (hy-
perfermions), ψ and X, charged under the new strong dynamics are introduced. They respectively
transform in the fundamental (ψi ∼ , i = 1, · · · , 2N) representation and in the two index anti-
symmetric (Xij = −Xji ∼ ) and traceless (XijΩji = 0) representation of Sp(2N). The number of
hypercolours is constrained by 2 ≤ N ≤ 18, where the lower bound comes from the existence of the
representation while the upper bound comes from the preservation of asymptotic freedom in the
UV. The latter bound is crucial as an asymptotically free gauge theory is expected to become strongly
coupled in the IR as it is required in CHMs.

Below the condensation scale, the hypercolour confines and only hypercolour invariant bound
states of Sp(2N) are dynamical degrees of freedom. Restricting to the composite mesonic resonances,
there are two sectors in the theory: the EW sector and the coloured sector. The first one contains
the resonances constructed from fermions ψ while the second one the resonances constructed from
fermions X. In order for the strong dynamics to realised the two main ingredients of CHMs, that
is, to generate a pNGB Higgs and top partners (baryons with opposite quantum number under the
SM gauge group than the top quark multiplets), the minimal flavour structure requires four fermions
ψa (a = 1, · · · , 4) and six fermions Xf (f = 1, · · · , 6). This leads to a SU(4) and a SU(6) global
symmetry respectively in the EW sector and in the coloured sector.

The SM gauge symmetry is embedded inside the global symmetries in such a way that, the EW
sector contains the Higgs doublet while the coloured sector contains top partners. More precisely,
SU(2)L × U(1)Y is embedded inside SU(4) and after condensation, the SU(4) global symmetry is
supposed to be spontaneously broken down to Sp(4), leading to a pNGB Higgs doublet that belongs
to the coset space SU(4)/Sp(4). In the hypothesis that SU(4) is spontaneously broken, the above
pattern of symmetry breaking is a direct consequence of the VL nature of the theory and of the
pseudo-reality of the fundamental representation of Sp(2N). Note that, the custodial symmetry is
also embedded inside the global symmetry of the EW sector which protects the theory from large
tree-level corrections to the T parameter. In a similar way, the gauge SU(3)c × U(1)Y symmetry is
embedded inside SU(6). As the coloured fermions X are in a real representation of Sp(2N), if the
global symmetry is spontaneously broken, the residual subgroup is SO(6). However, contrary to the
EW sector, there is no restriction of spontaneous symmetry breaking in that case and the SU(6)
symmetry could be broken or remain unbroken and still provides top partners with the right quantum
numbers. Note that in any cases, the SM gauge group is embedded in the unbroken subgroups Sp(4)
and SO(6) such that, the condensation of the strong dynamics does not break the EW symmetry as
required in CHMs. On the contrary, the SM group is only partly embedded inside SU(4) and SU(6)
such that, gauging the latter explicitly breaks the global symmetries and generates a potential for
the pNGBs. In CHMs, this explicit breaking source does not destabilise the Higgs potential. Then,
another source of explicit breaking should be introduced to drive the spontaneous breaking of the EW
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symmetry. The latter comes from the linear couplings between the top quarks and its partners.

Starting from the above picture, we have studied in details the two mesonic sectors of the above UV
completion. The analysis mostly divides in two parts: (i) general results about the strong dynamics
and (ii) non-perturbative computations using techniques of the NJL model. In this chapter, we first
summarise in section 10.1 the main results of the two precedent chapters. We present for instance,
the results of the ’t Hooft anomaly matching and the spectrum of the mesonic resonances in the EW
and in the coloured sectors. We also discuss what remains to be done in more details in these mesonic
sectors and the modifications that could be explored if some resonances are observed in the future.

In section 10.2, we list few interesting outlooks for the UV completions of CHMs in general.
For instance, the study of other UV completions within the NJL framework, the use of other non-
perturbative techniques to estimate the masses of the resonances and the introduction of the linear
couplings between the top and its partners in order to drive the EWSB.

Finally, we present in subsection 10.2.1 some outlooks for the baryonic resonances of the UV
completions. In particular, we focus on the UV completion discussed in chapters 8 and 9 and present
how the top partner masses can be estimated within the NJL framework.

10.1 Summary of the mesonic sector of the minimal UV completion
of CHM

The general idea of a composite, Nambu-Goldstone Higgs particle provides a very attractive effective
theory for the EWSB. We have considered in chapters 8 and 9 an asymptotically-free gauge theory con-
fining at the multi-TeV scale, that has the potential to provide a self-consistent, ultraviolet-complete
framework to study the composite Higgs phenomenology.

The minimal model features four flavours of constituent fermions ψa, which condense as the hyper-
colour interaction becomes strong. The first, remarkable result is that, unavoidably, the corresponding
SU(4) flavour symmetry breaks spontaneously to Sp(4), as required to generate a NGB Higgs. This
follows from general results on vector-like gauge theories, reviewed in sections 8.1.1-8.1.2. Further-
more, such dynamical symmetry breaking is successfully described by a four-fermion operator, à la
NJL: when the four-fermion coupling exceeds a critical value, a non-zero mass gap develops, as shown
in section 8.2.1. The meson resonances are described by two-point correlators of fermion bilinears.
The meson spin (zero or one) and its representation under the flavour group are determined by the
quantum numbers of the associated hypercolour-singlet fermion bilinear. Following the standard NJL
approach, we computed all the relevant two-point correlators, resummed at leading order in the num-
ber of hypercolours N : the meson mass is determined by the correlator pole, while the residue at the
pole fixes the meson decay constant. In section 8.2.5 we have shown that the NGB decay constant
f is almost ten times smaller than the cutoff of the constituent fermion loops, therefore our effective
theory is well under control up to meson masses of order ∼ 10f . Recall that electroweak precision
measurements require f & 1 TeV and fine-tuning in the composite Higgs potential is proportional to
the ratio v2/f2. In order to correlate the various meson masses, we made the hypothesis that the
hypercolour dynamics is dominated by current-current interactions, see appendix I.1, and we used
Fierz transformations to relate the different four-fermion operators. In particular, in section I.4 we
derived some Sp(2N) Fierz identities which, to the best of our knowledge, were not available in the
literature.

In section 8.2.6 we illustrated our results for the mass spectrum of electroweak mesons: for a
reasonably small number of hypercolours, say 2N . 10, the spin-one mesons are always heavier
than 5f , while the spin-zero mesons can be as light as f , and therefore accessible to the LHC, in
the following special cases. The singlet scalar mass Mσ vanishes when the four-fermion coupling
approaches its critical value, that is, when the condensate vanishes. The singlet pseudoscalar mass
Mη′ is induced by the axial anomaly: the anomalous contribution is expected to scale as M2

η′ ∼ 1/N ,
but we did not attempt to quantify its absolute size. Therefore, we cannot exclude a very light value
for Mη′ . Note that these results for σ and η′ hold for the electroweak sector in isolation: the effects
of the mixing with the singlets of the colour sector are summarised below. The non-singlet scalar S
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can also be light if both σ and η′ are, as M2
S ≃ M2

σ +M2
η′ . In addition, one should keep in mind

that the set of NGB is formed by the Higgs doublet plus a SM singlet η; their masses arise only from
SM loops, that we did not study here, and are expected to lie at or below the scale f . In section
8.2.7 we perform an important test of the accuracy of our methods, by comparing our results with
spectral sum rules, that have to be satisfied by the exact two-point correlators. We thus identified the
values of the four-fermion coupling that better reproduce the sum rules. Conversely, our results in
the effective NJL approximation depart significantly from the sum rules, when the continuum part of
the spectral function becomes sizable. We also compared our results with available lattice simulations
for N = 1, finding a fair agreement within the large error bars, with a preference for certain values of
the four-fermion couplings; however our methods are expected to be more accurate when N is large.

In order to provide composite partners for the top quark, one needs to introduce additional con-
stituent fermions Xf , in a different hypercolour representation, such that fermion trilinear baryons
can be formed, with the quantum numbers of the top quark. A gauge theory with fermions in two
different representations presents qualitatively new features, such as one non-anomalous U(1) flavour
symmetry, with an associated Nambu-Goldstone meson η0. In section 9.1.2 we showed that this
implies two additional sum rules, as well as a mixing between the singlet scalars and pseudoscalars
of the two sectors. In addition, the axial anomaly may only generate operators that respect the
non-anomalous U(1) symmetry. As a consequence, we demonstrated in section 9.1.3 that the effect
of the anomaly is described by a very large-dimension operator, involving 4 + 12(N − 1) fermions.
Our analysis of this operator correctly takes into account all the symmetries of the model, and thus
provides fully coherent results, and its large dimension may indicate that the effects of the anomaly
are suppressed in such a scenario. On the other hand, we cannot exclude that such suppression is an
artefact of our approximation of the true dynamics, in terms of fermionic operators only.

The dynamics of spontaneous flavour symmetry breaking also complicates in the presence of two
sectors. Our analysis of anomaly matching in section 9.1.1 shows that the condensate 〈ψψ〉 necessarily
forms, with the possible exception of the case when N is a multiple of 8, however the condensate 〈XX〉
may not form in the presence of light, coloured baryons. Indeed, in section 9.2.1 we showed that the
system of two coupled mass-gap equations is very sensitive to the relative size of four-fermion couplings
in the two sectors. As the NJL techniques can provide information on the spectrum of coloured mesons
only in the case of a non-vanishing mass gap, we focused on the region of parameters where a non-zero
〈XX〉 develops as well. Let us remark that the solution of the gap equations corresponds to a stable
minimum of the effective potential only for some range of the four-fermion couplings, and of course
meson masses are under control only within this range. In the present case, it turns out the potential
is stable (no tachyons) as long as the operators induced by the axial anomaly are suppressed with
respect to the others, by a factor of ten to one hundred, as described in section 9.2.5. Therefore, we
concentrated on the mass spectrum in this region of parameters.

We computed the masses of coloured mesons with the same techniques described for the elec-
troweak sector. The results are illustrated in section 9.2.4. Once again, spin-one are extremely heavy,
above ∼ 5f . The situation is much more interesting for the coloured NGBs Gc, a real QCD octet
and a complex sextet, that are massless in the chiral limit. We computed the contribution to their
masses from gluon loops, and we found MGc & 1.5f , as long as 2N . 10. This may be sufficiently
large to comply with present collider searches. Therefore, contrary to common lore, it is not strictly
necessary to introduce an explicit mass term mXXX. Nonetheless, we studied also the case mX 6= 0,
as some qualitative features of the mass gap and of the meson spectrum are very sensitive to this
parameter. In particular, the singlet pseudoscalar η0 is an exact NGB in the chiral limit, therefore its
mass is controlled by the size of mX (and by the size of the couplings to external SM fermions), as
discussed in section 9.2.5. A prominent opportunity for the discovery of composite NGBs at the LHC
is offered by their anomalous couplings to two SM gauge bosons, determined by the Wess-Zumino-
Witten term. We provided the general formula for these couplings, and we specially discussed its
phenomenological consequences for the η0 state. The mass of the other singlet pseudoscalar η′ is
extremely sensitive to the effective anomaly coefficient: one may have Mη′ . f for κB/κA ≪ 0.01,
but as soon as κB/κA ∼ 0.1 this state decouples, Mη′ & 10f . Finally, the heaviest singlet scalar σ′

always lies in the multi-TeV range, while the lightest singlet scalar σ0 may be as light as f . Indeed, we
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already remarked that the vacuum provided by the mass-gap equations is stable only within specific
ranges for the effective four-fermion couplings. Whenever the latter are close to the boundary of the
stability region, Mσ0 vanishes.

We presented the first thorough analysis of the spectrum of meson resonances, in a confining gauge
theory with fermions in two different representations of the gauge group. The main limitation of this
study is the absence of interactions with external fermion fields. The interest of such interactions is
twofold: to generate Yukawa couplings between the composite Higgs and the SM fermions, and to
induce radiatively a Higgs potential that realizes EWSB. As a matter of fact, the colour sector of the
model is engineered to contain fermion-trilinear bound states, which may mix linearly with the SM
fermions. The mass spectrum of these baryons and their couplings to the mesons can be computed
by generalising the techniques used in the above chapters. Indeed, in the QCD literature, several
analytical predictions for the masses and couplings of baryons are consistent with experiments and
with lattice simulations. Thus, one may predict the properties of composite top quark partners, that
reside in definite representations of the flavour group, and then compute the Higgs effective potential
induced by the top sector loops. Such theory has less free parameters than a generic composite Higgs
model with no specific ultraviolet completion, therefore the challenge will be to reproduce the Higgs
mass with a minimal amount of fine tuning of the parameters. The NJL techniques applied to the
baryon sector of the theory will be presented briefly in the following section.

Finally, let us comment on the work that remains to be done but also on some outlooks for the
particular UV completion under study. First, we have presented the anomalous couplings between
the pNGBs and the SM gauge bosons but we did not explore yet the corresponding phenomenological
consequences. Indeed, these anomalous couplings could be an interesting way to discover some of
the composite resonances and it could be relevant to compute in details the associated cross-sections.
Note also that we have derived the sum rules of the coloured sector as well as the ones attached
to ΠψX

S0 and ΠψX
P 0 . However, we have not yet studied their realisations in the NJL approximation

contrary to the sum rules of the EW sector and it could be interesting to do that.
In addition, if some of the composite resonances are discovered in a near future, it could be

interesting to look at the model in more details. For instance, the first thing that we could explore is to
consider another link between the couplings of the EW and coloured four-fermion interactions, that is,
κA 6= κA6. Indeed, the relation κA = κA6 is not fixed from the UV gauge theory or equivalently by the
current-current hypothesis as we rather assume this relation for simplicity and for phenomenological
reasons. Furthermore, one could go beyond and explore a departure from the relation between the
scalar and vector couplings, that is, κA 6= κC,D and similarly for the coloured couplings.

Another possibility to explore, is the breaking of the vector symmetries. Indeed, for instance in
the coloured sector, the explicit breaking mass mX could be a matrix in the SU(6) flavour space. In
this way, the components of the Sp(6) multiplets would not be degenerated anymore. In the same
spirit, one could also consider the mixing between the axial-vector singlets aµ and aµc Finally, we have
neglected the tensor channels in our analysis. However, for some dynamical reasons, the latter could
be light and it could be relevant to compute the masses of the corresponding spin one resonances with
the NJL techniques.

10.2 Some outlooks for the UV completions of CHMs

In this section, we present some interesting outlooks for the UV completions of CHMs in general. The
first thing that we can think of is to repeat the analysis of chapters 8 and 9 for other UV completions of
CHMs. In particular, it could be interesting to systematically apply the ’t Hooft anomaly matching to
all of the other UV completions listed in table 7.3. In this way, one could identify the most promising
UV completions from a dynamical point of view, that is, one can possibly proof that the spontaneous
symmetry breaking occurs in the EW sector and that a pNGB Higgs is present in the spectrum. One
can also compute the masses of the mesonic resonances in other UV completions within the NJL
framework. The computations will be relatively similar but the final results can differ in two points:
(i) the constraints on the number of hypercolours N will be different and (ii) the form of the ’t Hooft
term that links the EW and the coloured sectors will be modified. In addition, the global symmetries
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and the patterns of symmetry breaking will change such that, the number of light resonances can be
drastically modified as well as their quantum numbers under the SM gauge group (see section 7.4).
These two features are crucial from a collider point of view and could discard some UV completions
if composite resonances are discovered in the future.

Another interesting outlook could be to use other non-perturbative techniques of calculations than
the NJL ones. For instance one could use the techniques described in Ref. [311] for QCD and compare
them with the NJL predictions. We have already discussed a bit the comparison between the NJL
predictions and the lattice computations, it could then provide a third comparison.

Next, one could introduce explicitly the spontaneous breaking of the EW symmetry. Indeed,
we have just studied some of its consequences by gauging the SM group inside the unbroken global
symmetries. In this way, we have computed the radiative corrections to the pNGBs masses as well
as their anomalous couplings to the SM gauge fields. Then, a further step could be to introduce the
linear couplings between the top quark and its partners. As discussed in section 6.3, the minimal
way to generate such coupling is through a four-fermion interaction between the top quark multiplets
and three hyperfermions. In this way, one could compute the form factors involved in Higgs potential
as well as the Higgs mass itself. Then, we would have additional parameters, that is, the linears
couplings but also an additional constraint coming from the Higgs mass.

Finally, within the NJL framework, one can compute strong quantities like the form factors present
in the effective approach to CHMs (see chapter 6). Then, one could compute the tree-level contribution
from the composite spin-one resonances to the S parameters and more generally, the contributions to
S and T parameters from the strong dynamics.

10.2.1 Baryonic masses in CHMs

Let us now briefly present another important outlooks which has not been mentioned above, that
is, the estimation of the baryonic masses in the NJL approximation. As we have seen, the baryons
and in particular the top partners are a crucial ingredient of CHMs. Then, it is primordial to have
a prediction for their masses as in addition, top partners are expected to be the lightest baryons in
the spectrum. We consider QCD with two flavours as an example and then generalise to the case
of CHMs. As we have seen, the two flavours case is simpler (see subsection) as there is no explicit
reaking of the SU(2)V vector symmetry.

+ + · · ·++

Figure 10.1: Interpretation of a baryon as a bound state of a quark and a diquark which are bounded
by the exchange of a quark.

In QCD, the baryons are bound states of three (anti)quarks. Then, it is not possible to directly
apply the Bethe-Salpether equation to the baryons as this equation is intrinsically valid for a two-body
system. To apply the NJL formalism introduced previously, one should use a simplify description of
the baryons. As a first approximation, the baryons can be interpreted as bound states of a quark
and a diquark (bound state of two quarks) [309]. In this way, one can apply a generalisation of the
Bethe-Salpether equation, the so-called Fadeev equation, to the quark-diquark system. This system
is bounded by the exchange of a quark as it is depicted in figure 10.1. A further approximation
is to neglect the momentum dependence of the exchanged quark. This approximation is called the
static approximation and leads to effective ”four-fermion” interactions between two quarks and two
diquarks as it is illustrated in figure 10.2. In the static approximation, one can then compute an
effective four-point interaction and sum the infinite number of corresponding one-loop diagrams as
usual with the Bethe-Salpether equation.

The first step is to identify the diquarks channels and to compute their masses. Let us consider
the following products of representation in QCD

3× 3 = 1 + 8adj , 3× 3 = 3a + 6s . (10.2.1)
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The first product stands for the mesonic resonances while the second for the diquarks. Note that,
for the mesons, we have not considered the octets as they are coloured and the colour confines at
low energy. In the same way, for the diquarks which are by definition coloured as they form a colour
invariant when contracted with a quark, we have only the possibility 3. The above arguments on
the diquark representation may not be applied to CHMs as several representations could a priori be
allowed in a more general case than QCD. Then, let us present a way to discriminate between the
possible representations.

This way is called the maximal attractive channel (MAC) [45] and it allows to identify the represen-
tations of the bound states which are more likely to form. Let us consider the product Ri×Rj =

∑
k

Rk

of two irreducible representations Ri and Rj of a gauge symmetry. The potential between the two
states charged under the gauge symmetry is

V ∼ T aRiT
a
Rj =

1

2
[C2(Rk)− C2(Ri)− C2(Rj)] . (10.2.2)

If V < 0 (> 0), the potential is attractive (repulsive). Using table 7.1 and Eq. (A.3) we obtain

C2(1) = 0 , C2(3) = C2(3) =
4

3
, C2(6) =

10

3
, C2(8) = 3 . (10.2.3)

Then, for the mesonic channel we have V (3× 3 = 1) = −4/3 < 0 which is well attractive as expected.
On the other hand, for the octet channel, the potential is repulsive as V (3× 3 = 8) = 5/6 < 0. It is
consequently justified to not consider this channel for the QCD bound states 1. In the same way, for
the diquark channels we have V (3× 3 = 3) = −2/3 < 0 and V (3× 3 = 6) = 1/3 > 0. As mentioned
above, the (attractive) diquark channel is then unique and corresponds to the anti-triplet contraction.
Note that, the mesonic channel is more attractive than the diquark channel and in general, channels
with more quarks are expected to be less attractive. Similarly, for the CHM that we have studied,
the relevant product of representations are

× = • + + , × = + + , (10.2.4)

× = • + + + + + , (10.2.5)

From table 7.1, we extract the relevant Casimir coefficients

C2(•) = 0 , C2( ) =
2N + 1

4
, C2( ) = N + 1 , C2( ) = N . (10.2.6)

For the mesonic channels (ψψ) and (XX) we have

V ( × = •) = −(2N + 1)

4
, V ( × = •) = −N , (10.2.7)

and the mesons made of two X fermions are more bounded than the ones with two ψ. This is expected
as the fermions X are in a higher dimensional representation of Sp(2N) than the fermions ψ. In the
same way, the potentials becomes more attractive when the number of hypercolours increase. There
is of course no mesonic channel (ψX) as this product does not contain a singlet contraction. For
the baryonic states with three fundamental fermions we have two possibilities to form an Sp(2N)
invariant: (ψψX) and (XXX). The other possible 3 fermions states (ψψψ) and (ψXX) do not

1This conclusion is trivial for the mesons which are made of a quark and an antiquark but relevant for instance for
tetraquarks (bound states of two quarks and two antiquarks) as a priori, a colour singlet is possible by contracting two
colour octets.
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contain a gauge singlet as there is an odd number of gauge indices and the invariant tensor of Sp(2N)
is Ωij . Then, for the diquark channels we have three possibilities

V ( × = ) = −1

4
, V ( × = ) = −N

2
, (10.2.8)

V ( × = ) = −N
2
, (10.2.9)

where the two first diquarks are attached to the baryons (ψψX) while the third one is attached to
(XXX). Note that contrary to QCD, there are two possible gauge representations for the diquarks
of the baryons (ψψX). However, from the MAC, we expect that the diquark (ψX) is more attractive
than the diquark (ψψ) as N ≥ 2. Consequently, as a first approximation, one can simply consider
the diquark (ψX) such that the exchanged hyperfermion is X. This is interesting as contrary to the
fermions ψ, one has introduced an explicit breaking term mX for the fermions X and one can increase
the mass of the latter such that the static approximation becomes more justified. For the baryons
(XXX), there is only one possible diquark which leads to a singlet contraction and is attractive.

Now we have identified the diquark states, one can compute their masses as the latter are relevant
to compute the baryonic masses as we will see. Taking the example of QCD, one has the following
four-fermion interaction

Ldiquark = GdS(ΨΛαΨ
c)(Ψ

c
ΛαΨ) , (10.2.10)

where Ψc = CΨ
T
, Ψ

c
= ΨTC (C = iγ2γ0) and the colour, flavour and Dirac contractions are encoded

in Λα = iǫI/
√
2TAΓα. The colour anti-triplet contraction is antisymmetric and obtained from the

generators of the 3A expressed in term of the Levi-Civita tensor (ǫI)JK . The flavour contraction is
given by the generators T a of U(N) where a = 0, · · · , N2 − 1. Finally, the Dirac contractions are
given by Γα = {11, iγ5, iγµ/

√
2, iγµγ5/

√
2}. Note that, the above Lagrangian has been obtained from

the current-current hypothesis such that, the Fierz identities (see subsection 3.2.3) relate the mesonic
and the diquark sector as follow GS = GdS . Note also that the Γα contractions have been conveniently
normalised to take into account the relative strength between the scalar and vector diquark channels
which is the same than in the mesonic sector that is GdS = −2GdV . Also, the singlet and non-singlet
channels have the same four-fermion coupling. From the Lagrangian in Eq. (10.2.10), one can compute
the one-loop two-point functions associated to the diquark channels. The latter are given by

ΠdS/P (p
2) =

1

Nc
ΠP/S(p

2) , ΠdV/A(p
2) =

1

Nc
ΠA/V (p

2) , (10.2.11)

where the two-point functions ΠS/P and ΠV/A correspond to the mesonic channels and are given in
appendix B. The interactions in the diquarks channels are a factor 1/Nc weaker than the ones in the
mesonic channel. This behaviour comes from the colour traces which are Tr[11Nc ] = Nc in the mesonic
sector and Tr[iǫI/

√
2iǫJ/

√
2] = −(−1/2)2δIJ = δIJ in the diquarks channels. Then, the one-loop

functions are the same than in the mesonic sector but the charge conjugation matrix C present in
the Dirac traces exchange scalar with pseudo-scalar and vector with axial-vector. Inserting the four-
fermion interactions of Eq. (10.2.10) and the one-loop function of Eq. (10.2.11) in the Bethe-Salpeter
equation, it is easy to derive the diquark masses. For instance, in the two flavours case and in the
limit where the ’t Hooft term coupling H is set to zero, we have

Mdσ =Mπ , Mdπ =Mσ , MdV =MA , MdA =MV , (10.2.12)

and similarly for the singlet masses. Note that, by definition, the mesons are real while the diquarks
are complex fields. Then, the residue of the resumed two-point functions differ by a factor two between
the mesonic and diquark channels but this difference has no influence on the position of the poles.

Similarly for the composite Higgs model of chapters 8 and 9, one has for the diquark channels

Ldiquark =
κdA
(2N)

(ψaXf )iΩij(ψaXf )j +
κdD
(2N)

(ψaσµXf )iΩij(ψaσµX
f )j , (10.2.13)
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where the gauge contraction of the diquarks is underlying ie (ψX)i = ψjΩjkXki. To compute the
diquark masses, one can follow the same procedure than in QCD. However, in that case, the two
point functions contain two different mass eigenstates and one should generalise the expression of the
one-loop functions as discussed in subsection 3.2.4.

gdiΨΨ

di
Ψ

Ψ

Figure 10.2: Graphical illustration of the effective ”four-fermion” interaction between two diquarks
di and two quarks Ψ. On the left, the effective interaction between a diquark and two quarks with
a coupling gdiΨΨ. On the center, the tree-level exchange of a quark constructed from the precedent
interaction. On the right, the effective ”four-fermion” interaction between two diquarks and two
quarks obtained from integrated out the exchange quark of the precedent diagram. This effective
interaction is of the order of g2diΨΨ/M where M is teh dynamical mass of the quarks.

+ · · ·+=

Figure 10.3: Diagrammatic illustration of the Bethe-Salpether equation in the Baryonic case.

Finally, starting from the above derivations, we now present schematically how we can evaluate
the baryonic masses in the context of the NJL model. As mentioned above, let us assume that a
baryon can be weel approximated as a bound state of one fermion and one diquark. Using the static
approximation [309], one can integrated out the exchanged fermions such that, one obtains a system
of two state: the quark and the diquark. From the effective coupling between the diquark state and
the two fundamental quarks, one can construct an effective ”four-fermion” interaction involving two
diquarks and two quarks. This is illustrated in figure 10.2. Note that the coupling gdiΨΨ between the
diquark state and the two quarks is obtained from the resumed T-matrix as discussed in appendix H.
From this effective four-point interaction, one computes as usual with the Bethe-Salpether equation,
the masses of the resonances which are this time the baryons. The latter is diagrammatically displayed
in figure 10.3. Note that the diquark mass is different from the dynamical mass of the fermion such
that again, one needs to generalise the expressions of the one-loop two point functions to the case
of two different masses. In the CHM case, one follows the same procedure. As the relevant baryons
are (ψψX) and (XXX), the exchange fermion in the static approximation is the fermion X and the
four-point interaction is of the order of g2dψX/MX .
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Chapter 11

Conclusions

Despite its impressive success, the SM has some missing pieces and shortcomings intrinsic to its
formulation. Indeed, as we have seen in chapter 1, there are some evidences that call for new physics
at a higher scale and consequently, the SM should rather be viewed as an effective theory valid up to
a scale ΛSM . In this manuscript, we have followed two different approaches to introduce new physics
above ΛSM .

In the first one, we have considered minimal extensions of the SM where we extend the latter with
only few new states at the EW scale. These new states are assumed to be the lightest ones while
other possible states are integrated out and are decoupled from the EW scale. This is a minimal
and mostly phenomenological approach which can be viewed as a low energy manifestation of a more
fundamental theory. However, this approach is clearly model independent as there are no constraints
coming for instance from the symmetry of the underlying UV theory. As a particular extensions, we
have focused on fermions coupled to the Higgs sector. Indeed, the Higgs couplings are now measured
and will be measured with higher accuracy in the future such that, it is relevant to isolate what model
is still viable. In chapter 4, we have first considered the minimal fermionic extensions coupled to the
SM Higgs sector. We have classified all of the possibilities and studied the impact on the EWPT as
well as on the Higgs couplings. Then, in chapter 5, we have extended the Higgs sector with a second
Higgs doublet and we have focussed on a particular kind of new fermions coupled to the Higgs sector,
that is, on VL fermions. In this way, we have tried to explain two LHC anomalies: the diphoton
excess at 750 GeV and the LFV decay h→ τµ.

The second approach to new physics is more theoretical and based on a well-motivated UV com-
pletion of the SM like for instance supersymmetry or composite Higgs models. The purpose of this
approach is to cure some shortcomings of the SM. In this manuscript, we have focused on composite
Higgs models that aim to solve the hierarchy problem of the EW scale. More precisely, we have
presented the effective approach to composite Higgs models in chapter 6 and outlined its limitations.
Then, in chapter 7, we have presented a classification of the minimal UV completions of CHMs.
The latter are a particular UV realisation of the composite Higgs paradigm in term of fundamen-
tal fermions charged under a new gauge symmetry called hypercolour. We have isolated the most
promising UV completion based on Sp(2N) gauge symmetry with a pattern of symmetry breaking
SU(4) × SU(6)/Sp(4) × SO(6). This UV completions has been studied within the NJL framework,
presented in chapter 3 in the QCD context, in term of four-fermion interactions. We have also derived
few exact results concerning the strong dynamics like for instance the sum rules, the ’t Hooft anomaly
matching and the anomalous couplings which have been introduced in the QCD context in chapter 2.

Let us summarise the main results attached to the phenomenological approach of new physics
where only few new states are added to the SM. We first undertook a systematic analysis of new
fermions interacting with the SM Higgs sector. Their properties are significantly more constrained
after the measurement of the Higgs mass and couplings. Then, it is interesting to identify the few
extensions that are still allowed. We have first presented a complete classification of all the possible
sets of n chiral fermions interacting with the Higgs, for n ≤ 4. Larger sets of new fermions, with
n ≥ 5, do not allow for qualitatively different phenomena, as all the possible building blocks of a
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fermion mass matrix already appeared in the classification. These sets of new fermions emerge from
a non-trivial interplay between several self-consistency conditions: cancellation of gauge anomalies,
absence of charged massless components, non-zero Yukawa coupling to the SM Higgs doublet. In
the classification, we recovered the fermionic content of some well-motivated BSM theories, such
as the seesaw, supersymmetry, or partial compositeness. These cases have been studied in a more
general context, by considering the most general Lagrangian for the new fermions, not restricted by
additional theoretical considerations. Indeed, if a new particle could emerge from data, one should
explore the full parameter space, before restricting to a particular model. Then, we argue that the
phenomenological approach is necessary before turning to a specific model. In our analysis, we paid
a special attention to the relative contribution of the new fermions to h → γγ and h → γZ, as
the former rate is already constrained to be close to the SM prediction, while the latter could still
depart strongly from the SM prediction. It is commonly believed that new physics cannot provide
a large correction to the γZ channel without affecting γγ as well. However, as these two processes
are loop-induced, the rates involve the sum over all fermions mass eigenstates. These sums can lead
to a cancellation in the signal strength µγγ and not in µγZ . In addition, hγZ receives additional
contributions from loops involving two fermions mass eigenstates, with off-diagonal couplings to both
h and Z. We encountered a few scenarios where δµγZ ≫ δµγγ . For instance, some mechanisms allow
to reach few times the SM prediction and even, to saturate the present upper bound on µγZ .

As a second work on the phenomenological approach to new physics, we have tried to explain two
LHC anomalies at the same time. In particular, we have considered the diphoton excess at 750 GeV
and the LFV h→ τµ decay. Despite the former excess has now disappeared, we have assumed for the
exercise that it is still there. A minimal way to introduce flavour violating Higgs couplings and extra
bosons to the SM is to add a second Higgs doublet. In this way, the neutral scalars H and A can
play the role of the diphoton resonance. As the cross section of the diphoton excess was significantly
larger than the one expected in the 2HDM alone, we have taken this as a hint that additional states
close to the TeV scale are present. The latter should have large Yukawa couplings to the second Higgs
doublet in order to reproduce the diphoton excess. We have shown that a pair of VL fermions is
sufficient to reproduce the right cross-section and respect all other constraints. It is not a trivial task
and in order to comply with te hγγ coupling, we have used the mechanism of chapter 4. However,
the new VL fermions must have charges larger than the SM fermions and large Yukawa couplings.
Alternatively, several pairs of fermions have to be introduced. To explain the LFV decay h→ τµ, the
heavy Higgses must interact with τµ and a mixing is required between h and H such that both excess
require a particular value of the mixing. The framework that we have presented is general enough
to be applied in a broader context. For instance, it can be generalised to a diphoton resonance with
a larger mass than 750 Gev and with a smaller cross section. The latter point would relax a lot of
constraints such that our model appears as a benchmark as it proves that it is possible to induce a
large γγ cross section and still respect all of the constraints. If a new diphoton excess is observed
in the future, it could be an interesting possibility. Also, one should not forget that it explains the
h→ τµ decay independently of the diphoton excess.

Let us now turn to the results on the UV completions of CHMs. In general, CHMs are studied from
an effective point of view. However, in that case, a lot of informations about the underlying strong
dynamics are missing. Then, there is a necessity to go beyond this approach. In this manuscript,
we have considered UV completions of CHMs and in particular, one possible realisation in term of a
new gauge symmetry with fundamental fermions charged under the strong dynamics. The latter is
supposed to condensates at low energy and to break a global symmetry leading to the emergence of
a Higgs as a pNGB. The most promising UV completion that we have studied, is based on a Sp(2N)
gauge symmetry with a pattern of symmetry breaking SU(4)× SU(6)/Sp(4)× SO(6).

As a first interesting result, using the ’t Hooft anomaly matching, we have demonstrate that the
global symmetry of the EW sector, that is, SU(4) must be spontaneously broken down to Sp(4).
However, there is no such argument for the coloured sector where the SU(6) symmetry could be
broken down to SO(6) or remain unbroken.

Using the NJL techniques, we have computed the dynamical masses Mψ and MX , respectively
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attached to the fermions ψ and X and generated by the strong interactions. Assuming that the
current-current hypothesis holds, there are only three free parameters in our analysis: the number
of hypercolours N , the four-fermion coupling κA and the coupling of the ’t Hooft term parametrised
by κB/κA. In addition, there is also the scale f which fixes the scale of the UV completions and is
experimentally roughly constrained to be larger than 1 TeV. Then, we have derived the expressions
for the masses of the lightest mesonic resonances present in the spectrum. Few points are interesting
to note. In the EW sector, the masses belong to the multi-TeV range if f = 1 TeV and N = 18. In
particular, the mass of the η, when the EW sector is in isolation, is directly proportional to κB and

can be very light as when κB = 0, the pseudo-scalar η is a NGB. The scalar quintuplet SÂ is always
heavier than the scalar singlet σ. In the same way, the vector decuplet V A

µ is lighter than the axial

vector quintuplet AÂµ . However, the vector can be lighter than the σ mass depending on the strength
of the four-fermion interaction, that is, depending on the parameter ξ = Λ2(κA+κB)/(4π

2). In some
cases, the vector can even be lighter than the pseudo-scalar singlet η, that is, the lightest state in the

spectrum if one excludes the NGBs GÂ. Note that, if one decreases the number of hypercolours from
the maximal allowed value of N = 18 down to N = 2, as f scale like

√
N , all of the resonances would

be rescaled in the same way and would be heavier than what is described above.
Let us now consider the complete model with the coloured sector. The main consequence is that,

with the two sectors, there is one combination of the anomalous U(1)ψ and U(1)X symmetries which
is non-anomalous. Then, we have derived the ’t Hooft term that parametrises the explicit breaking of
the anomalous U(1) symmetry but preserves the non-anomalous combination. We have then derived
the corresponding effective four-fermion interactions and computed the expressions of the masses. As
a consequence, the two sectors are linked in a rather non-trivial way as the dynamical masses Mψ

and MX are determined by a system of two coupled equations. Note that, in the coloured sector, the
spectrum is quite similar to the one in the EW sector. However, there are two different points which
are relevant to outline. First, we have introduced an explicit breaking massmX such that, the pseudo-

scalar non-singlet GF̂c of the coloured sector are pNGBs when mX 6= 0. Second, some resonances of
the coloured sector are charged under QCD and receive non-negligible radiative corrections to their
masses. Then, the coloured pNGBs can respect the lower experimental bounds on their masses in two
cases: (i) only with the QCD radiative corrections if f is larger than 1 TeV and (ii) if the explicit
breaking mass term mX is sufficiently large. For instance, taking f = 1.7 TeV, the coloured pNGBs
are above 1 TeV and comply with the direct searches limits. If one consider in addition the explicit
breaking mX = 0.1 f one obtains for the pNGBs a mass of the order of 3 TeV for f = 1 TeV. Then,
one can avoid the presence of an explicit breaking term with an unknown origin but the price to paid
is to increase f and then to increase every masses in the EW and in the coloured sector. On the
contrary, if mX is introduced, one increases the masses of all of the coloured resonances but not the
ones of the EW sector.

Finally, in the complete model, the singlet sectors are more involved. Indeed, when the two sectors
are considered, there is a non-trivial mixing between the singlets of the EW sector and the ones of
the coloured sector. This mixing leads to a strong bound on the parameter κB/κA. As a general
prediction, the η0 can be very light, of the order of 100 GeV (1 TeV) if N = 18 (N = 2). Similarly,
close to the maximal allowed value of κB/κA, the σ0 can be light as well, even below 1 TeV in some
cases.

Then, in addition to the Higgs boson, we expect other light or even very light SM singlets: G3̂

which is part of the EW pNGBs and η0 which is the pNGB associated to the non-anomalous U(1)
symmetry. In addition, the coloured pNGBs can be as light as the experimental bounds, around 1
TeV and in some cases, the vectors of the EW sector could be the next lightest states. Interestingly,
the spectrum in the EW and in coloured sectors are really particular and can be tested at colliders if
some resonances are observed in a near future.

As discussed in chapter 10, there are several interesting outlooks about the UV completions of
CHMs and a lot of work remain to be done. In particular, the most pressing issue is to introduce
the linear couplings between the top quark and its partners in order to drive the EWSB as for the
moment, the Higgs is a pure NGB in our first approximation.
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The two approaches that we have followed to introduce new physics give interesting and com-
plementary results. In particular, they lead to different ways to look and to discover new physics.
In the first one, as expected, we mainly obtain constraints at low energy, that is, constraints on the
deviations in the SM couplings. In particular, we have outlined the possibility to increase significantly
the Higgs couplings to γZ. In the second approach, we rather obtain predictions on the masses of new
heavy states. In particular, we have outlined the resonances that can be light in the UV completions
of CHMs.

For the moment, there are no significant signs of new physic and all the measurements are SM-like
or compatible with the SM predictions. Then, new physics seems to behave differently than we could
expect at first glance. Maybe the first evidence of new physics is hiding in very particular processes
not explored yet or maybe it is simply at a higher energy scale. Consequently, it is crucial to explore
all the available possibilities in order to discard them or to isolate the most relevant ones. This can
be done by doing systematic analysis of simple and mostly phenomenological extensions of the SM
or by studying deeper well-motivated UV theories. Indeed, up to now, only few systematic analysis
like the one presented in chapter 4 have been done as most of the works have focused on one or few
very specific phenomenological extensions of the SM. Also, even if the idea of CHMs is not recent,
the study of their UV completions presented in chapters 8, 9 and 10 is rather soon. In any case, if
nature care about naturalness, new physics should be present close to the TeV scale. However, our
understanding of naturalness is maybe not complete and what appears to be unatural is maybe due
to our present limited knowledges. Thus, let’s hope that nature understand the naturalness principle
as our, such that new physics will be accessible at the LHC and will be discovered soon.
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