1. Dorénavant, on dénomme les spores produites par reproductions sexuée et asexuée comme des spores "sexuées" et "asexuées", ce qui constitue un petit abus de langage. 2009

Quand un mycélium pénètre l'épiderme de la feuille, au travers les stomates, il forme une lésion et croît en consommant les cellules de la plante voisines du point d'infection. Après une phase de latence, les lésions produisent des spores asexuées (conidies).

Ces spores sont dispersées par éclaboussures et infectent les feuilles voisines dans un rayon de quelques mètres seulement. Si deux mycéliums de types sexuels compatibles se rencontrent sur la même feuille, la reproduction sexuée a lieu et permet la production de spores sexuées (ascospores). Les spores sexuées sont dispersées par le vent sur une distance comprise entre quelques centaines de mètres et quelques kilomètres [RSB + 14]. Dans la plupart des bananeraies, les bananiers produisent régulièrement de nouvelles feuilles saines de sorte que la densité de tissu végétal (sain et infecté) peut être considérée relativement constante pour le parasite. M. fijiensis produit moins de spores asexuées et plus de spores sexuées que M. musicola, ce qui pourrait expliquer la supériorité écologique de M. fijiensis [Sto80], [START_REF] Fouré | Les cercosporioses du bananier et leurs traitements. comportement des variétés. 1: Incubation et évolution de la maladie[END_REF]. Cependant, de par un manque de modèle adéquat, notre compréhension des contributions des deux types de spores dans les dynamiques épidémiologiques de ces deux espèces reste limitée. Soit i(t,x) la densité de feuilles infectées au temps t > 0 et à la position x ∈ (-∞, + ∞)

(i.e. on considère un cas monodimensionnel en espace pour simplifier). Soit n la densité totale de feuilles, une constante. Pour simplifier, nous faisons l'hypothèse raisonnable (au moins dans un cadre agricole) que chaque feuille perdue est immédiatement remplacée par une feuille saine. Notons que le terme "feuille" est une abréviation de "la partie de la feuille qu'une lésion occupe" (ou site d'infection), de sorte que des infections multiples ne peuvent se produire dans le modèle. Aussi, i(t,x) représente une densité de lésions.

Soit α le nombre de spores asexuées (conidies) produites par feuille infectée par unité de temps, et 0 < p < 1 leur infectivité, c'est à dire la probabilité qu'une spore asexuée en contact avec une feuille saine parvienne à l'infecter. De même, soit σ le nombre de spores sexuées (ascospores) produites par feuille infectée par unité de temps, et 0 < q < 1 leur infectivité. Soit M le taux de mortalité des feuilles infectées. On suppose que seules les spores sexuées diffusent et que les spores asexuées ne diffusent pas. Soit u(t,x) la densité de spores sexuées, de coefficient de diffusion κ, et de taux de dépôt sur les feuilles µ. 

i t = pαi(n -i)/n -M i.
La production de spores sexuées est conditionnée par la présence locale d'un partenaire sexuel. Soient i + et i -les densités de lésions de types sexuels + et -respectivement

(i = i + + i -).
De même, soient u + et u -les densités de spores sexuées de types sexuels + et -respectivement (u = u + + u -). En utilisant l'indice x pour dénoter les dérivées spatiales, le modèle est :

1.2 Modélisation i + t = (qµu + + pαi + )(n -i --i + )/n -M i + , i - t = (qµu -+ pαi -)(n -i --i + )/n -M i -, u + t = σi + i -/n -µu + + κu + xx , u - t = σi -i + /n -µu -+ κu - xx ,
où les fractions entre parenthèses représentent les probabilités de rencontres de partenaires sexuels compatibles.

Nous faisons ensuite l'hypothèse raisonnable d'un sexe-ratio équilibré, soit i

+ = i -= i/2 et u + = u -= u/2.
Il vient alors : 

i t = (qµu + pαi)(n -i)/n -M i, (1.1) 
u t = σi i 2n -µu + κu xx .

Paramétrisation

t * = t T , x * = x L , i * = i n , u * = 2µ σn × u avec a = 2 qσT , ε = 1 µT , d = κ µL 2 , b = 2pα qσ , m * = 2M qσ .
En omettant les astérisques pour alléger les notations, le modèle (1.1) devient : 

   ai t = (u + bi)(1 -i) -mi, εu t = i 2 -u + d 2 u xx . (1.2) Soit ε a = qσ 2µ 
∂ ∂t Ω u(t,x) dV = - Γ J(t,x) • n dS + Ω f (u(t,x)) dV,
où n est le vecteur normal unitaire orienté vers l'extérieur à Γ. Le théorème de la divergence affirme que

Γ J(t,x) • n dS = Ω ∇ • J(t,x).n dV, ce qui nous permet d'obtenir Ω ∂u ∂t -f (u) + ∇ • J dV = 0.
Puisque cette relation est vraie pour tout volume Ω arbitrairement choisi, il s'ensuit que 

∂u ∂t -f (u) + ∇ • J = 0. ( 1 
∂u ∂t = D∆u dispersion + f (u) croissance , t > 0, x ∈ Ω ⊆ R n , (1.7) où u = (u 1 ,...,u m ), ∆u(t,x) = ∂ 2 ∂x 1 u(t,x) + • • • + ∂ 2 ∂xn u(t,x) pour x = (x 1 , • • • ,x n ) ∈ R n est
u t = Du xx , u(0,x) = δ 0 (x).
(1.8)

La solution fondamentale (en dimension un), qui peut être obtenue par transformation de Fourier, est donnée par

u(t,x) = 1 2 √ πDt e -x 2 4Dt .
(1.9)

Avec une donnée initiale quelconque, le problème de réaction-diffusion 

w t = Dw xx , w(0,x) = h(x) ( 
u = n K , t * = rt, x * = r D x.
Les nouveaux paramètres engagés deviennent ainsi sans dimension. En ométtant les astérisques pour simplifier les notations, on obtient les modèles adimensionnés suivants

∂u ∂t = ∂ 2 u ∂x 2 + u(1 -u), (1.16) 
et ∂u ∂t = ∂ 2 u ∂x 2 + u(1 -u)(1 -a).
(1.17)

Pour résumer, nous étudierons donc les trois cas de figures suivants, en fonction de la forme que prend le taux de croissance f :

-f est de type KPP (modèle sans effet Allee) si

f (0) = f (1) = 0, f > 0 sur (0,1) et f (u) ≤ f ′ (0)u sur [0,1].
Le prototype est alors l'équation (1.16).

-f est de type monostable (modèle avec effet Allee faible) si f (0) = f (1) = 0 et f > 0 sur (0,1).

-f est de type bistable ou multistable (modèle avec effet Allee fort) s'il existe 0 < 

x 1 ≤ • • • ≤ x n < 1 tels que f (0) = f (x i ) = f (1) = 0 pour tout i ∈ {1, • • • ,n}, f < 0 sur (0,x 1 ) et f > 0 sur (x n ,1
U ′ = V V ′ = -cV -f (U ).
( 

même si l'hypothèse f (u) ≤ f ′ ( 

Résultats classiques pour l'équation bistable

Considérons que le terme source f est de type bistable (1.15). En modèle adimensionné, l'équation de réaction-diffusion étudiée est donc (1.17 

U ′′ + cU ′ + f (U ) = 0 et en intégrant par rapport à z, il vient c +∞ -∞ (U ′ ) 2 (z) dz >0 = - 1 0 f (s) ds.
Ceci prouve en effet que c ≥ 0 (resp. ≤ 0) dès lors que

1 0 f (s) ds ≤ 0 (resp. ≥ 0). Avec conditions aux limites U (-∞) = 1 et U (+∞) = 0, alors c est du même signe que 1 0 f (s) ds.
Une fois l'existence et l'unicité d'une unique onde progressive établies, ils se sont intéressés au comportement asymptotique des solutions quand t → +∞, et ont établi les trois résultats majeurs suivants.

Le premier résultat affirme que si une solution a initialement la même allure qu'un front d'onde, alors elle va se propager uniformément comme un tel front d'onde en temps long. Le "a initialement la même allure" signifie simplement que la solution est plus petite qu'une certaine valeur α 0 loin vers la gauche, et plus grande qu'une certaine valeur α 1 loin vers la droite. Mathématiquement, le résultat s'énonce :

Théorème. Soit f ∈ C 1 [0,1] satisfaisant f (0) = f (1), f ′ (0) < 0, f ′ (1) < 0, f (u) < 0 pour 0 < u < α 0 , f (u) > 0 pour α 1 < u < 1, où 0 < α 0 ≦ α 1 < 1.
Supposons qu'il existe une solution de type onde progressive (U,c) au système de réactiondiffusion bistable associé. Soit ϕ la donnée initiale à ce problème satisfaisant 0 ≦ ϕ ≦ 1,

et supposons lim sup x→-∞ ϕ(x) < α 0 , lim inf x→+∞ ϕ(x) > α 1 .
Alors, pour des constantes z 0 , K et ω avec K et ω strictement positives, la solution u(t,x) du système de réaction-diffusion satisfait

|u(t,x) -U (x -ct -z 0 )| < Ke -ωt .
Autrement dit, cette solution approche une onde progressive uniformément en x et exponentiellement en t quand t → +∞.

Il y a aussi des situations où la solution se propage comme une paire d'ondes progressives se déplaçant dans des directions opposées. Ceci est énoncé dans le résultat suivant.

Théorème. Soit f satisfaisant les hypothèses du théorème précédent, en supposant de plus que

1 0 f (u) du > 0. Supposons la donnée initiale ϕ vérifiant 0 ≦ ϕ ≦ 1, et lim sup |x|→∞ ϕ(x) < α 0 , ϕ(x) > α 1 + η pour |x| < L, où η et L sont des réels strictement positifs. Alors, si L (dépendant de η et f ) est suffisamment grand, on a pour des constantes x 0 , x 1 , K et ω avec K et ω strictement positives, les deux inégalités |u(t,x) -U (x -ct -x 0 )| < Ke -ωt , x < 0, |u(t,x) -U (x -ct -x 1 )| < Ke -ωt , x > 0.
Enfin, ils considèrent le cas où la solution se propage comme une combinaison de fronts d'onde d'intervalles différents mais adjacents. Pour simplifier, le résultat suivant est énoncé pour seulement deux fronts d'onde.

Introduction Théorème. Soit f (u i ) = 0 et f ′ (u i ) < 0, i = 1,2,3, où u 1 < u 2 < u 3 . Supposons qu'il existe deux fronts d'onde U 1 (x -c 1 t) et U 2 (x -c 2 t) d'intervalles respectifs (u 1 ,u 2 ) et (u 2 ,u 3 ). Supposons c 1 < c 2 .
Soit α 1 le plus petit zéro de f plus grand que u 1 , et α 2 le plus grand zéro de f plus petit que α 3 . Supposons que

u 1 ≦ ϕ(x) ≦ u 3 , et lim sup x→-∞ ϕ(x) < α 1 , lim inf x→+∞ ϕ(x) > α 2 .
Alors, il existe des constantes

x 1 , x 2 , K et ω, avec K et ω strictement positives, telles que |u(t,x) -U 1 (x -c 1 t -x 1 ) -U 2 (x -c 2 t -x 2 ) + u 2 | < Ke -ωt .
En particulier, notons que cette dernière inégalité entraîne que

lim t→∞ u(βt,t) =          u 1 pour β < c 1 , u 2 pour c 1 < β < c 2 , u 3 pour c 2 < β.
Autrement dit, cette solution approche une combinaison d'ondes progressives uniformément en x et exponentiellement en t quand t → +∞.

1.4 Organisation du manuscrit

Organisation du manuscrit

Dans un second chapitre, nous commençons par une étude mathématique de notre 

Introduction

We are interested in modeling the spread of a fungal plant pathogen subject to mate limitation [HCD + 16]. Specifically, we consider (after ecological considerations) the following system of equations:

   ai t = (u + bi)(1 -i) -mi εu t = i 2 -u + d 2 u xx (2.1)
In Section 2.2, the methods of [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF] are used to explore the dynamical behavior of (2.1) in the parameter space. We first study the spatially independent version of (2.1), hereafter the dynamical system. Finding the equilibrium points of the dynamical system and characterizing their stability allow us to delimit three regions in the parameter space: extinction of the pathogen population, invasion by the pathogen (monostable case), and extinction or invasion depending on initial conditions (bistable case). In the monostable case, locating the equilibria of the dynamical system allows us to construct an invariant region in the reaction diffusion system, specifically a contracting rectangle in the phase plane. From [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF], an orbit that enters a contracting rectangle must enter a smaller rectangle in finite time. Providing this smaller rectangle is also contracting, the procedure can be repeated and may converge to an equilibrium point.

The existence and uniqueness of solutions to (2.1) will be thoroughly addressed in Section 2.3.

Qualitative study

In this section, we work on the space BC of continuous and bounded functions 1 , following the results of [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF] and [START_REF] Ma Lewis | Models to examine containment and spread of genetically engineered microbes[END_REF]. The dynamical system associated with the

reaction diffusion system (2.1) is:    i t = [(u + bi)(1 -i) -mi]/a =: f (i,u), u t = (i 2 -u)/ε =: g(i,u).
(2.2)

1. we prove similar results with an analysis on a different functionnal space in section 2.3

We also note F = f g the vector field of system (2.2).

Study of the null clines and equilibria of the dynamical system

In this subsection, we concentrate our attention on the mere dynamical system (2.2).

The goal is to identify the stable and unstable equilibria in (2.2), so as to eventually characterize the natural equilibria in the original model (2.1).

The null clines are defined as the curves corresponding to f (i,u) = 0 and g(i,u) = 0.

The equilibria of system (2.2) correspond to intersections of the null clines, that is any

pair (i,u) such that    (u + bi)(1 -i) -mi = 0 i 2 -u = 0.
This system reduces to i[(i

+ b)(1 -i) -mi] = 0, that is i[i 2 + (b -1)i + (m -b)] = 0.
Thus, the (real valued) equilibria are

(0,0), i -,u -= (i -) 2 , i + ,u + = (i + ) 2 . with i ± = 1 -b ± (1 -b) 2 -4(m -b) 2 = 1 -b ± (b + 1) 2 -4m 2 , whenever m ≤ (b+1) 2 4 . If m > (b+1) 2
4 , then only one (real valued) equilibrium subsists, namely (0,0). In this case, we automatically have m < (b+1) 2 4 . Besides, we then have 1

-b < (1 -b) 2 -4(m -b).
Hence, it follows i -< 0 < i + . Even if i -is an equilibrium mathematically, it is not biologically meaningful, since we only consider positive population densities. Therefore, we filter out this equilibrium in this case. The two relevant equilibria here are (0,0) and (i + ,(i + ) 2 ). In this subsubcase, we have either i + = i -= 0 for b = m = 1, or i + = 0 and i -= 1 -b < 0 for b > 1. In any case, the only relevant equilibrium is (0,0), which eventually means that populations collapse. We are in the same case as for m ≤ b < 1, namely with two relevant equilibria (0,0) and (i + ,(i + ) 2 ). Thus, the null clines have the same shape.

• Case b < m: Subcase b < 1: Subsubcase m < (b+1) 2 4 < 1: Since 1 -b > 0 and 1 -b > (1 -b) 2 -4(m -b) > 0, we have 0 < i -< i + .
Here, the three equilibria are biologically meaningful. Only the trivial equilibrium (0,0) is relevant, either in the case m < (b+1) 2 4 or m ≥ (b+1) 2 4 .

Stability of the dynamical system equilibria

We follow the previous classification to explore the stability of equilibria. The remarkable regions mentionned below, namely the bistable, monostable and extinction regions, are representend on 2.4 below In this case, we noticed that we have two equilibria (0,0) and (i + ,u + ). A simple analysis proves that (0,0) is unstable while (i + ,u + ) is stable2 . Indeed, the Jacobian matrix JF (i,u) of the system is

JF (i,u) = -2bi+b-m-u a 1 -i 2i ε -1 ε Thus, we have JF (0,0) = b-m a 1 0 -1 ε , JF (i + ,u + ) = -2bi + +b-m-u + a 1 -i + 2i + ε -1 ε .
Hence, the equilibrium (0,0) is unstable (saddle point) because JF (0,0) has one positive (and one negative) eigenvalue whenever b > m and has zero as an eigenvalue whenever b = m.

Besides, the equilibrium (i + ,u + ) is stable since JF (i + ,u + ) has two positive eigenvalues since

Tr JF (i + ,u + ) = (b + 1) b -1 -(1 -b) 2 -4(m -b) 2a < 0 and ∆ JF (i + ,u + ) = 1 -b 2 + (2b 2 + 2b -4m)a + (b + 1 -2ab) (1 -b) 2 -4(m -b) 2a > 0.
This case is refered to as the monostable case.

• Subcase b ≥ 1:

• Subsubcase m = b:
Only (0,0) is an equilibrium. This equilibrium is stable (attracting node) and leads to the extinction of the population.

• Subsubcase m < b:

This subsubcase is similar to the case 1 > b > m, namely the monostable case.

• Case b < m :

• Subcase b < 1: • Subsubcase m < (b+1) 2 4 < 1:
In this case, we have the three equilibria (0,0), (i -,u -) and (i + ,u + ), where (0,0) and (i + ,u + ) are stable and (i -,u -) is unstable. This case is referred to as the bistable case.

• Subsubcase m ≥ (b+1) 2 4 :

This case is similar to the same subsubcase for b < 1 and leads to the extinction of the population.

• Subcase b ≥ 1:

Regardless of the comparison between m and (b+1) 2 4 , the two equilibria (i + ,u + ) and (i -,u -) are negative (or equal to (0,0)) and thus not biologically meaningful. Since (0,0) is the only nonnegative equilibrium and is stable, an extinction of the population occurs.

As a conclusion, and since the case where populations go extinct is biologically trivial, the only two remaining nontrivial cases require in any circumstance the constraint m < (b+1) 2 4 , while with this restriction in mind, the monostable case corresponds to the situation where b > m whenever b ≥ 1 or 1 > b ≥ m, and the bistable case is reached when b < m (the constraint b < 1 being automatically satisfied in this latter case). All other situations converge to the trivial equilibrium (0,0) in equation (2.2).

(2.1), i.e. of the dynamical system (2.2) where diffusion in the i-variable has been added.

Here and below we shall keep the same distinction, and keep on refering to the cases b > m or 1 > b ≥ m (and, of course, m < (b+1) 2 4 , which is necessarily satisfied) as the monostable case, and to the case b < m (and m < (b+1) 2 4 , the condition b < 1 being then automatically satisfied) as the bistable case.

From now on, we always refer to one of the above cases as a region of the following graph in Figure 2.4. Thus, the yellow region corresponds to the bistable case, the green region corresponds to the monostable case and the blue region corresponds to the extinction case.

Invariant region for the reaction-diffusion system in the monostable case

In this subsection, we aim at proving that there exists a bounded invariant region for the dynamical system (2.2). Using a result by [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF], this allows us to deduce that the original reaction diffusion system (2.1) possesses the same invariant region, a result that is crucial in our subsequent analysis. Note that we only treat here the monostable case (green region in Figure 2.4), namely when the birth rate is greater than the mortality so that a single nontrivial equilibrium arises. Hence, we assume that b ≥ m whenever b < 1, and b > m whenever b ≥ 1.

There are only two equilibria, which are (0,0) and (i + ,u + ). The bistable case will not be addressed in this section. We refer to section 2.4.4 for an analysis of the bistable case, based on results by [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] concerning reaction diffusion systems with bistable equilibria.

Proposition 1 The first quadrant {i ≥ 0, u ≥ 0} is an invariant region for the pure dynamical system (2.2).

Proof : We define F = f g the vector field associated with system (2.2).

On the edge i = 0 where the outward unit normal vector is n := -1 0 , we have

   f (0,u) = u a , g(0,u) = -u ε . Thus, F.n = -f (0,u) = -u a < 0 if u > 0.
On the edge u = 0 where the outward unit normal vector is n := 0

-1 , we have

   f (i,0) = b a i(1 -i) -mi, g(i,0) = -u ε . Thus, F.n = -g(i,0) = -i 2 ε < 0 if i > 0.
When i = u = 0, F = 0 0 and there is no flow.

Therefore, the positive quadrant is positively invariant, which means that if u(0) ≥ 0 and i(0) ≥ 0, then u(t) ≥ 0 and i(t) ≥ 0 for all t ≥ 0. Now, we aim at finding a bounded positively invariant region Σ for the reaction diffusion system (2.1), that is a domain Σ such that if u(0) ∈ Σ and i(0) ∈ Σ, then u(t) ∈ Σ and i(t) ∈ Σ for all t > 0. In fact, we will construct an invariant rectangle as such a bounded positively invariant region.

For convenience, let us rewrite system (2.1) as:

v t = Dv xx + F (t,v), (2.3) 
where

D = 0 0 0 d 2 /ε (2.4)
and

F (t,v) =    (u + bi)(1 -i) -mi a i 2 -u ε    , (2.5) 
with initial condition

v(0,x) = i u (0,x) = i 0 u 0 (x).
(2.6)

From now on and until the end of this subsection, we assume that the reaction-diffusion problem (2.3)-(2.6) admits a local (in time) solution that is continuous (say) in the space variable x. We refer to the subsequent sections for the proof of this local existence result.

Definition 1 A closed subset Σ ⊂ R 2 is called a (positively) invariant region for the local solution of (2.3), (2.6), if any solution v(t,x) satisfying v 0 (x) ∈ Σ for all x, satisfies v(t,x) ∈ Σ for all x ∈ R and for all time t for which v(t,x) is defined.

We base our analysis on Corollary 14.8 from [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF] to construct such an invariant region Σ.

Lemma 1 Consider system (2.3) with initial condition (2.6). Any region of the form

Σ = 4 k=1 {v : Φ k (v) < 0} (2.7)
is invariant for (2.3), provided the vector field F points strictly into Σ on ∂Σ, i.e. for all v ∈ ∂Σ,

∇Φ k (v) • F (v) < 0
where Φ k = 0 defines a hyperplane in R 2 , ∇Φ k is the outward oriented normal vector on ∂Σ and the region

[a k ,b k ] is a subset of Φ k = 0.
Remark 2 We will refer to such an invariant region (2.7) as an invariant rectangle.

Construction of the invariant region.

Recall that only two equilibria are biologically meaningful, namely (0,0) and (i + ,u + ).

We restrict our attention to the monostable case (green region in Figure 2.4), namely

{1 > b ≥ m} ∪ {b > m, b > 1}.
We are interested in defining a rectangle in R 2 + that does not include the equilibrium (0,0). We define Φ k = Φ k (v) = Φ k (i,u) so that for each k = 1,...,4, Φ k = 0 defines a hyperplane in R 2 , the intersection of the Φ k 's forms the boundary of Σ and ∇Φ k 's give the outward oriented normal vectors to ∂Σ, as follows:

Φ 1 = i -k 1 Φ 2 = u -k 2 Φ 3 = -i + δ 1 Φ 4 = -u + δ 2
where k 1 , k 2 , δ 1 , δ 2 are constants that we choose such that 1 ≥ k 1 > i + , 1 ≥ k 2 > u + , 0 < δ 1 < i + and 0 < δ 2 < u + . Besides, we also impose the following constraints on the parameters, namely (k 2 + bk 1 )(1 -k 1 ) -mk 1 < 0 and (k 1 ) 2 < k 2 , as well as (δ 1 ) 2 > δ 2 and (δ 2 + bδ 1 )(1 -δ 1 ) -mδ 1 > 0. Those choices are possible by taking (k 1 ,k 2 ) = (i,u) in the (non empty) region {f < 0} ∩ {g < 0} of the plane, and (δ 1 ,δ 2 ) = (i,u) in the (non empty) region {f > 0} ∩ {g > 0} of the plane, delimited by the null clines of (2.1).

Those regions are represented in yellow and blue in Figure 2.5. For Φ 1 = 0 ⇐⇒ i = k 1 and with the condition u < k 2 due to Φ 2 < 0, since ∇Φ 1 = (1,0), we have:

∇Φ 1 • F (k 1 ,u) = f (k 1 ,u) = 1 a (u + bk 1 )(1 -k 1 ) -mk 1 ≤ 1 a (k 2 + bk 1 )(1 -k 1 ) -mk 1 < 0.
For Φ 2 = 0 ⇐⇒ u = k 2 , and with the condition i < k 1 due to Φ 1 < 0, since ∇Φ 2 = (0,1), we have:

∇Φ 2 • F (i,k 2 ) = g(i,k 2 ) = 1 ε i 2 -k 2 ≤ 1 ε (k 1 ) 2 -k 2 < 0.
For Φ 3 = 0 ⇐⇒ i = δ 1 and with the condition u > δ 2 due to Φ 4 < 0, since ∇Φ 3 = (-1,0), we have:

∇Φ 3 • F (δ 1 ,u) = -f (δ 1 ,u) = - 1 a (u + bδ 1 )(1 -δ 1 ) -mδ 1 ≤ 1 a (δ 2 + bδ 1 )(1 -δ 1 ) -mδ 1 < 0.
For Φ 4 = 0 ⇐⇒ u = δ 2 , and with i > δ 1 due to Φ 3 < 0, since ∇Φ 4 = (0, -1), we have:

∇Φ 4 • F (i,δ 2 ) = -g(i,u) = - 1 ε i 2 -δ 2 ≤ - 1 ε (δ 2 ) 2 -δ 2 < 0.
Therefore, defining the rectangle

Σ := 4 k=1 Φ -1 k ] -∞,0[ , Lemma 1 asserts that Σ is a positively invariant region. In particular, choosing (δ 1 ,δ 2 ) = (0,0) and (k 1 ,k 2 ) = (1,1), the biologically relevant rectangle [0,1] × [0,1] is invariant.
Remark 3 In fact, the previous analysis shows that the family of rectangles

[δ 1 ,k 1 ] × [δ 2 ,k 2 ]
is not only invariant but also contracting. Using this contraction property, and following [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF], we may prove that any solution starting in a rectangle

[δ 1 ,k 1 ]×[δ 2 ,k 2 ]
enters some smaller rectangle in finite time. Iterating the procedure, it is intuitively expected that any solution (i,u) goes to (i + ,u + ) as time goes to infinity.

Mathematical study of the model

In 

Local existence and uniqueness of solutions

We aim at proving that system (2.1) admits local (in time) solutions i(t,.),u(t,.) defined for any t ∈ [0,T ] where T is the maximum time of existence. We define the function 1 as

1(x) =          1 if x ∈] -∞, -1] ϕ if x ∈] -1,1[ 0 if x ∈ [1, + ∞[ (2.8)
where ϕ is a smooth function joining the constant states 0 and 1. Our main result of this section is the following.

Theorem 1 There exists a unique solution (i,u) of system (2.1) where i and u belong

to C 1 ([0,T ],α + H -1 (R)) ∩ C 0 ([0,T ],α + H 1 (R)) 3 with α = i + 1 for i and α = (i + ) 2 1
for u.

Proof : Fix T > 0. We work on the functional space C 1 [0,T ],i

+ 1 + H -1 (R) ∩ C 0 [0,T ],i + 1 + H 1 (R) . Consider two functions i,u ∈ C 1 [0,T ],i + 1 + H -1 (R) ∩ C 0 [0,T ],i + 1 + H 1 (R) .
For all t ∈ [0,T ], the functions i(t,) and u(t,.) belong to i + 1 + H 1 (R) .

Define the change of variables i = i + 1+j and u = i + 1+v 4 , with j,v ∈ C 0 ([0,T ],H 1 (R)).

3. This shorthand notation means that (i,u) ∈ C 0 (i

+ 1 + H 1 ) 2 and that (∂ t i,∂ t u) ∈ C 0 (H -1 ) 2 .
Besides, 1 + H 1 denotes functions of the form 1 + v with v ∈ H 1 . 4. The reader should keep in mind that the letter v now is related to u through the relation u = (i + 1) 2 + v. This is in contrast with the previous paragraphs, where v stands for the pair (i,u).

The initial system

   a∂ t i = (u + bi)(1 -i) -mi ε∂ t u = i 2 -u + d 2 ∂ xx u can be written as    a∂ t j = α 0 + β 1 j + β 2 (bj + v) -j(bj + v) ε∂ t v = -(1 -d 2 ∂ xx )v + γ 0 + γ 1 j + j 2
(2.9) with

α 0 = (i + 1) 2 + bi + 1 1 -i + 1 -mi + 1 β 1 = -m + (b + i + 1)i + 1 β 2 = 1 -i + 1 γ 0 = d 2 ∂ xx (i + 1) 2 γ 1 = 2i + 1.
It is easily observed that

α 0 , α 1 , α 2 , γ 0 , γ 1 ∈ W 1,∞ .
The key point to our analysis now lies in the fact, by definition of i + as an equilibrium point of the vector field F , we also have

α 0 ∈ H 1 , γ 0 ∈ H 1 .
We may therefore write

∂ t j v = 0 -1 ε (1 -d 2 ∂ xx )v + f (j,v)/a g(j,v)/ε , with 5 f , g defined as f (j,v) = α 0 + β 1 j + β 2 (bj + v) -j(bj + v); g(j,v) = γ 0 + γ 1 j + j 2 .
5. Again, the reader should keep in mind that the letters f and g now stand for functions depending on (j,v), in contrast with the previous paragraphs where they stand for functions depending on (i,u).

The point now lies in observing, as we do in the next few lines, that f , g map H 1 × H 1 to itself, in a locally Lipschitz fashion.

Lemma 2 If u, v ∈ H 1 (R), then uv ∈ H 1 (R). Proof : Since u, v ∈ H 1 (R), then u, v ∈ L ∞ (R) by Sobolev embedding. Thus, we have ||uv|| L 2 ≤ ||u|| L ∞ ||v|| L 2 < +∞, and uv ∈ L 2 (R).
Besides, we have ∇(uv) = (∇u)v + u(∇v) and

|∇(uv)| 2 ≤ |u| 2 |∇v| 2 + 2|u||v||∇u||∇v| + |v| 2 |∇u| 2 ≤ |u| 2 |∇v| 2 + |u||v|(|∇u| 2 + |∇v| 2 ) + |v| 2 |∇u| 2 . Since u, v ∈ L ∞ (R) and ∇u, ∇v ∈ L 2 (R), we deduce that ||∇(uv)|| L 2 < +∞ and that ∇(uv) ∈ L 2 (R).
As a conclusion, we have uv ∈ H 1 (R).

Remark 4 We can even prove the inequality ||uv||

H 1 (R) ≤ 2||u|| H 1 (R) ||v|| H 1 (R) .
This, together with the fact that α 0 and γ 0 belong to H 1 , proves that f and g are well defined with values in H 1 .

For notational convenience, we write without ambiguity respectively j and v instead of j(t,.) and v(t,.).

For any initial datum j 0 v 0 , we define Φ :

H 1 × H 1 → H 1 × H 1 through Φ j v = j 0 e -t ε (1-d 2 ∂xx) v 0 + t 0 f (j,v) e -t-s ε (1-d 2 ∂xx) g(j,v) (s,.) ds.
where j 0 and v 0 are given initial data, fixed throughout this paragraph. More precisely, the map Φ satisfies:

Φ : C 0 ([0,T ],H 1 (R)) 2 -→ C 0 ([0,T ],H 1 (R)) 2 t → j(t,.) v(t,.) -→ Φ j v where Φ j v = t → j 0 e -t ε (1-d 2 ∂xx) v 0 + t 0 f (j,v) e -t-s ε (1-d 2 ∂xx) g(j,v) (s,.) ds .
We seek a fixed point of this map Φ.

Remark 5 We define Φ on C 0 ([0,T ],H 1 (R)) 2 rather than on

C 1 ([0,T ],H -1 (R))∩C 0 ([0,T ],H 1 (R))
2 . Indeed, the C 1 nature comes from the fact that if our solution belongs to C 0 ([0,T ],H 1 (R)) 2 and is also C 1 in time, then the solution

belongs to C 1 ([0,T ],H -1 (R)) ∩ C 0 ([0,T ],H 1 (R))
2 . This justifies that we do our fixed point procedure only on C 0 ([0,T ],H 1 (R))

2 . This functional space is equipped with the norm j v

(C 0 ([0,T ],H 1 (R))) 2 = sup t∈[0,T ]   j v (t,.
)

H 1 (R)×H 1 (R)   .
Remark 6 We also consider the following norm on H 1 × H 1 :

||(j 1 ,v 1 ) -(j 2 ,v 2 )|| 2 H 1 ×H 1 = ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 .
In what follows, we sometimes denote

A := -1 ε (1 -d 2 ∂ xx ). i) We first prove that Φ maps C 0 ([0,T ],H 1 (R)) 2 to C 0 ([0,T ],H 1 (R)) 2 .
Lemma 3 e tA maps H 1 to H 1 with an operator norm less than 1.

Proof : We recall that :

u ∈ H 1 ⇐⇒ u ∈ L 2 1+|ξ| 2 ⇐⇒ (1 + |ξ| 2 ) 1 2 u ∈ L 2 .
Besides, e -t|ξ| 2 ∈ L 2 and even L ∞ .

Since |e -t|ξ| 2 u| 2 ≤ | u| 2 , then |(1 + |ξ| 2 ) 1 2 e -t|ξ| 2 u| 2 ≤ (1 + |ξ| 2 ) 1 2 | u| 2 .
Hence, e -t|ξ| 2 u ∈ H 1 and e t∂xx u := F -1 (e -t|ξ| 2 u) ∈ H 1 .

Define

e tA u := e -t ε (I+d 2 ξ 2 ) u.

Thus, we have

|| e tA u|| H 1 = ||e -t ε (I+d 2 ξ 2 ) u|| H 1 ≤ || u|| H 1 .
Moreover, for all u ∈ H 1 , we have

|| u|| H 1 = ||(1 + ξ 2 ) 1 2 u|| L 2 = ||(1 + ξ 2 ) 1 2 u(-ξ)|| L 2 = ||(1 + ξ 2 ) 1 2 u(ξ)|| L 2 = ||u|| H 1 .
As a conclusion, we deduce the following inequality

||e tA u|| H 1 = || e tA u|| H 1 ≤ || u|| H 1 = ||u|| H 1 .
This allows to say that Φ maps

C 0 ([0,T ],H 1 (R)) 2 into itself. ii) Let us show that Φ is a local contraction on C 0 ([0,T ],H 1 (R)) 2 for T small enough. We work on C 0 ([0,T ],H 1 (R)) 2 which is a Banach space. Let B = B(0,R) ⊂ H 1 (R)
be a closed ball where R is chosen so that (j 0 ,v 0 ) ∈ B(0,R/2).

Consider j 1 v 1 , j 2 v 2 with j 1 , j 2 , v 1 , v 2 ∈ B, i.e ||j i || H 1 (R) , ||v i || H 1 (R) ≤ R, ∀i = 1,2 .
We first show that f, g are locally Lipschitz functions. First of all, we have

f (j 1 ,v 1 ) -f (j 2 ,v 2 ) = β 1 (j 1 -j 2 ) + bβ 2 (j 1 -j 2 ) + β 2 (v 1 -v 2 ) -b(j 1 + j 2 )(j 1 -j 2 ) -j 1 v 1 + j 2 v 2 = β 1 (j 1 -j 2 ) + bβ 2 (j 1 -j 2 ) + β 2 (v 1 -v 2 ) -b(j 1 + j 2 )(j 1 -j 2 ) + (j 2 -j 1 )v 1 + j 2 (v 2 -v 1 ) = β 1 + bβ 2 -v 1 -b(j 1 + j 2 ) (j 1 -j 2 ) + β 2 -j 2 (v 1 -v 2 ).
Thus, we have

||f (j 1 ,v 1 ) -f (j 2 ,v 2 )|| L 2 ≤ c 1 ||j 1 -j 2 || L 2 + c 2 ||v 1 -v 2 || L 2 ≤ c 1 ||j 1 -j 2 || H 1 + c 2 ||v 1 -v 2 || H 1 with c 1 = c 1 (R,b,m) := β 1 + bβ 2 -v 1 -b(j 1 + j 2 ) L ∞ < +∞ and c 2 = c 2 (R,b,m) := β 2 -j 2 L ∞ < +∞, since v L ∞ ≤ C 0 v H 1 ≤ C 0 R and j 1 +j 2 L ∞ ≤ 2C 0 R, where C 0 is a Sobolev constant.
Hence, we obtain the following inequality

||f (j 1 ,v 1 ) -f (j 2 ,v 2 )|| 2 L 2 ≤ C 1 ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 . (2.10) with C 1 = C 1 (R,b,m) := 2 max(c 2 1 ,c 2 2 ) < +∞.
Besides, we have

∇[f (j 1 ,v 1 ) -f (j 2 ,v 2 )] = β 1 + bβ 2 -v 1 -b(j 1 + j 2 ) ∇(j 1 -j 2 ) + β 2 -j 2 ∇(v 1 -v 2 ) + ∇β 1 + b∇β 2 -∇v 1 + b∇(j 1 + j 2 ) (j 1 -j 2 ) -∇β 2 + ∇j 2 (v 1 -v 2 ).
Hence, it follows

||∇ f (j 1 ,v 1 ) -f (j 2 ,v 2 ) || L 2 ≤ c 1 ||∇(j 1 -j 2 )|| L 2 + c 2 ||∇(v 1 -v 2 )|| L 2 + c 3 j 1 -j 2 L ∞ + c 4 v 1 -v 2 L ∞ ≤ (c 1 + c 3 )||j 1 -j 2 || H 1 + (c 2 + c 4 )||v 1 -v 2 || H 1 with c 3 = c 3 (R,b,m) := ||∇β 1 + b∇β 2 -∇v 1 + b∇(j 1 + j 2 )|| L 2 and c 4 = c 4 (R,b,m) := ||∇β 2 + ∇j 2 || L 2
Thus, we obtain the inequality

∇[f (j 1 ,v 1 ) -f (j 2 ,v 2 )]|| 2 L 2 ≤ C 2 ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 , (2.11) 
with

C 2 = C 2 (R,b,m) := 2 max(c 1 + c 3 ,c 2 + c 4 ) 2
To conclude, (2.10) and (2.11) provide

||f (j 1 ,v 1 ) -f (j 2 ,v 2 )|| 2 H 1 ≤ C 3 ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 .
with

C 3 = C 3 (R,b,m) := C 1 + C 2 , Namely ||f (j 1 ,v 1 ) -f (j 2 ,v 2 )|| H 1 ≤ C 3 ||(j 1 ,v 1 ) -(j 2 ,v 2 )|| H 1 ×H 1 .
(2.12)

On the other hand, we have

g(j 1 ,v 1 ) -g(j 2 ,v 2 ) = 1 ε γ 1 (j 1 -j 2 ) + j 2 1 -j 2 2 = 1 ε γ 1 + j 1 + j 2 (j 1 -j 2 ).
Thus, by similar methods as above, we establish the inequality

||g(j 1 ,v 1 ) -g(j 2 ,v 2 )|| 2 L 2 ≤ d 1 ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 with d 1 := d 1 (R,b,m,d,ε) = 1 ε 2 ( γ 1 L ∞ + 2R) 2 < +∞
and the inequality on the gradient

||∇[g(j 1 ,v 1 ) -g(j 2 ,v 2 )]|| 2 H 1 ≤ d 2 ||j 1 -j 2 || 2 H 1 + ||v 1 -v 2 || 2 H 1 with d 2 := d 2 (R,b,m,ε) = 2 ε 2 γ 1 + j 1 + j 2 L ∞ + ∇γ 1 + ∇j 1 + ∇j 2 L 2 2 < +∞.
As a conclusion, we obtain

||g(j 1 ,v 1 ) -g(j 2 ,v 2 )|| H 1 ≤ D 3 ||(j 1 ,v 1 ) -(j 2 ,v 2 )|| H 1 ×H 1 .
with

D 3 = D 3 (R,b,m,ε) := d 1 + d 2 .
Therefore, f and g are locally Lipschitz functions from

H 1 × H 1 to H 1 .
Eventually, we have

Φ(j 1 ,v 1 ) -Φ(j 2 ,v 2 ) = t 0 f (j 1 ,v 1 ) -f (j 2 ,v 2 ) e -t-s ε (1-d 2 ∂xx) (g(j 1 ,v 1 ) -g(j 2 ,v 2 ))
(s) ds.

Thus :

Φ j 1 v 1 -Φ j 2 v 2 H 1 ×H 1 (s) ≤ t 0 f (j 1 ,v 1 ) -f (j 2 ,v 2 ) e -t-s ε (1-d 2 ∂xx) g(j 1 ,v 1 ) -g(j 2 ,v 2 ) H 1 ×H 1 (s) ds = t 0 f (j 1 ,v 1 ) -f (j 2 ,v 2 ) 2 H 1 + e -2 t-s ε g(j 1 ,v 1 ) -g(j 2 ,v 2 ) 2 H 1 (s) ds ≤ t 0 f (j 1 ,v 1 ) -f (j 2 ,v 2 ) H 1 + e -t-s ε g(j 1 ,v 1 ) -g(j 2 ,v 2 ) H 1 (s) ds ≤ t 0 C 3 j 1 v 1 - j 2 v 2 H 1 ×H 1 (s) ds + t 0 D 3 j 1 v 1 - j 2 v 2 H 1 ×H 1 (s) ds ≤ C 3 T j 1 v 1 - j 2 v 2 C 0 (H 1 )×C 0 (H 1 ) + D 3 T j 1 v 1 - j 2 v 2 C 0 (H 1 )×C 0 (H 1 ) ≤ (C 3 + D 3 ) T j 1 v 1 - j 2 v 2 C 0 (H 1 )×C 0 (H 1 )
.

Thus, we deduce

Φ j 1 v 1 -Φ j 2 v 2 C 0 (H 1 )×C 0 (H 1 ) (s) ≤ C(R) T j 1 v 1 - j 2 v 2 C 0 (H 1 )×C 0 (H 1 ) .
with

C(R) = C(R,b,m,ε) := C 3 + D 3 . As a consequence, for T < 1 C(R) , Φ is a contraction on C 0 [0,T ],B(0,R) 2 .
Naturally, similar estimates show that Φ maps C 0 [0,T ],B(0,R)

2 into itself provi- ded T < R 2C(R)
. Therefore, we deduce that Φ admits a unique fixed point

j v such that Φ j v = j v , i.e.
for any initial datum j 0 v 0 , there exists a unique solution j v to system (2.9). As a consequence, there exists a unique local in time solution

(i,u) ∈ C 0 ([0,T ],H 1 (R))
2 to the original system (2.1).

In section 2.2.3, we proved that there exists a bounded invariant region for any pair of solution (i,u) choosing k 1 > i + and k 2 > u + arbitrarily large. Thus, since i + < 1 and u + < 1, we can choose k 1 = k 2 = 1 which provides us the following property.

Proposition 2 Any (i,u) solution of (2.1) satisfies i L ∞ ≤ 1 and u L ∞ ≤ 1.

Remark 7 Since i and u lie in [0,1], we deduce that

j = i -i + 1 and v = u -(i + 1) 2 also satisfy j L ∞ ≤ 1 and v L ∞ ≤ 1.

Global existence of solutions

In this section, we prove that the unique solution constructed in the last section is actually global in time. In other words, this solution is defined for any time t ≥ 0. We remind the reader that the results presented in this paragraph hold true for any value of the parameters m, b (and d).

Theorem 2 The solution of system (2.1) is global in time, that is we can choose T = +∞, for any ε > 0.

Proof : We prove this result by contradiction. Let us assume that T < +∞, where T is the maximum time of existence.

As previously, we work on the system  

 a∂ t j = α 0 + β 1 j + β 2 (bj + v) -j(bj + v) ε∂ t v = -(1 -d 2 ∂ xx )v + γ 0 + γ 1 j + j 2
We define

U 0 = (1 -d 2 ∂ xx ) -1 (i 2 ) = (1 -d 2 ∂ xx ) -1 ((i + 1) 2 + 2i + 1j + j 2 ).
Moreover, define

v = V 0 + w,
with w ∈ H 1 (R) and

V 0 = (1 -d 2 ∂ xx ) -1 (d 2 ∂ xx [(i + 1) 2 ] + 2i + 1j + j 2 ) = (1 -d 2 ∂ xx ) -1 (γ 0 + γ 1 j + j 2 ).
Thus :

V 0 = U 0 -(i + 1) 2 . Lemma 4 The operator (1 -d 2 ∂ xx ) -1 maps H 1 into H 1 . Proof : Let φ ∈ H 1 (R), and recall that H(x) = 1 2d e -|x| d . Then : (1 -d 2 ∂ xx ) -1 φ L 2 = H ⋆ φ L 2 ≤ H L 1 φ L 2 ≤ φ L 2 < +∞.
Besides,

∇(1 -d 2 ∂ xx ) -1 φ L 2 = (1 -d 2 ∂ xx ) -1 ∇φ L 2 = H ⋆ ∇φ L 2 ≤ H L 1 ∇φ L 2 ≤ ∇φ L 2 < +∞.
Lemma 5 There exists a constant C > 0 independent of t and ε such that w L ∞ ≤ C.

Proof : We have w = v -V 0 = v -(1 -d 2 ∂ xx ) -1 (γ 0 + γ 1 j + j 2 ).
Thus, the triangle inequality gives

||w|| L ∞ ≤ ||v|| L ∞ + (1 -d 2 ∂ xx ) -1 γ 0 + γ 1 j + j 2 L ∞ .
Furthermore, we have

(1 -d 2 ∂ xx ) -1 γ 0 + γ 1 j + j 2 (x) = R H(x -y) γ 0 + γ 1 j + j 2 (y) dy with H(x) = 1 2d e -|x| d .
Thus, since ||j|| L ∞ ≤ 1 according to Remark 7, we have

(1 -d 2 ∂ xx ) -1 γ 0 + γ 1 j + j 2 (x) ≤ R H(x -y) γ 0 + γ 1 j + j 2 (y)dy ≤ ||γ 0 + γ 1 j + j 2 || L ∞ R H(x -y)dy ≤ 1 + ||γ 0 || L ∞ + ||γ 1 || L ∞ .
Moreover, ||v|| L ∞ is bounded by a constant independent of t and ε.

Therefore, ||w|| L ∞ ≤ C with C independent of t and ε.

This also proves that V 0 is well defined on H 1 and ||V 0 || L 2 ≤ C < +∞ with a constant C that does not depend on T . Let us now establish some bounds that are useful in the sequel.

Bounds on ||(j,w)|| L 2 :

∂ t j = 1 a α 0 + β 1 j + β 2 (bj + V 0 + w) -j(bj + V 0 + w) = 1 a α 0 + β 1 j + (β 2 -j)V 0 + (β 2 -j)(bj + w) .
Thus, we have

j(t) = 1 a j 0 + t 0 α 0 + β 2 V 0 + [β 1 -V 0 + bβ 2 -w]j + β 2 w -bj 2 (s) ds.
Hence, we deduce

||j(t)|| L 2 ≤ κ 1 + κ 2 T + κ 3 t 0 (||j(s)|| L 2 + ||w(s)|| L 2 ) ds
with

κ 1 := 1 a ||j 0 || L 2 κ 2 := 1 a ||α 0 + β 2 V 0 || L 2 κ 3 := 1 a max β 1 -V 0 + bβ 2 L ∞ + w L ∞ + b j L ∞ , β 2 L ∞ .
Furthermore, we have

ε∂ t w = ε∂ t v -ε∂ t V 0 = -(1 -d 2 ∂ xx )v + γ 0 + γ 1 j + j 2 -ε∂ t (1 -d 2 ∂ xx ) -1 γ 0 + γ 1 j + j 2 = -(1 -d 2 ∂ xx )(v -V 0 ) -ε(1 -d 2 ∂ xx ) -1 (γ 1 ∂ t j + 2j∂ t j) = -(1 -d 2 ∂ xx )w -2ε(1 -d 2 ∂ xx ) -1 (i + 1 + j)∂ t j .
Therefore, Duhamel's formula yields :

w(t) = e -t ε (1-d 2 ∂xx) w 0 -2 t 0 e -t-s ε (1-d 2 ∂xx) (1 -d 2 ∂ xx ) -1 (i + 1 + j)∂ t j (s) ds.
Thus, we have the following inequality

||w(t)|| L 2 ≤ ||w 0 || L 2 + 2 t 0 ||i + 1 + j|| L ∞ ||∂ t j|| L 2 (s) ds ≤ κ 4 + κ 5 T + κ 6 t 0 (||j(s)|| L 2 + ||w(s)|| L 2 ) ds.
with

κ 4 := ||w 0 || L 2 κ 5 := 2 i + 1 + j L ∞ κ 2 κ 6 := 2 i + 1 + j L ∞ κ 3 .
Here, we used the estimates established above on

∂ t j L 2 .
Hence, we obtain

||j(t)|| L 2 + ||w(t)|| L 2 ≤ K 1 1 + t 0 (||j(s)|| L 2 + ||w(s)|| L 2 ) ds .
with

K 1 = K 1 (T ) := max κ 1 + κ 4 + (κ 2 + κ 5 )T,κ 3 + κ 6
By Gronwall's Lemma, we deduce

||(j,w)|| L 2 ≤ K 1 e K 1 T < +∞.
Remark 8 We proved in passing that ∂ t j L 2 ≤ C(T ). A similar proof provides a similar inequality for ∇(∂ t j) L 2 as we see below.

Bounds on ||(∇j,∇w)|| L 2 :

a∂ t (∇j) = ∇α 0 + j∇β 1 + v∇β 2 + β 2 v + (bβ 2 -v -2bj)∇j + (β 2 -j)∇v = ∇α 0 + j∇β 1 + (V 0 + w)∇β 2 + β 2 (V 0 + w) + (bβ 2 -V 0 -w -2bj)∇j + (β 2 -j)∇V 0 + ∇w.
Besides, we have

∇j(t) = ∇j 0 + t 0 ∂ t ∇j(s) ds.
By the same method as for ||j|| L 2 , we can similarly prove that

∂ t (∇j) L 2 ≤ λ 2 + λ 3 ∇j L 2 + ∇w L 2
and thus

||∇j(t)|| L 2 ≤ λ 1 + λ 2 T + λ 3 t 0 ||∇j(s)|| L 2 + ||∇w(s)|| L 2 ds.
where the constants λ 1 ,λ 2 ,λ 3 are defined as

λ 1 := 1 a ∇j 0 L 2 λ 2 := 1 a ∇α 0 + V 0 ∇β 2 + β 2 V 0 + β 2 ∇V 0 L 2 + ∇β 1 -∇V 0 L ∞ j L 2 + β 2 + ∇β 2 L ∞ w L 2 λ 3 := 1 a max( bβ 2 -v L ∞ + 2b j L ∞ + w L ∞ ,1) .
Besides,

ε∂ t (∇w) = -1 -d 2 ∂ xx (∇w) -2ε 1 -d 2 ∂ xx -1 ∇{(i + 1 + j)∂ t j} .
On the other hand,

∇{(i + 1 + j)∂ t j} = ∇(i + 1) + ∇j ∂ t j + i + 1 + j ∇(∂ t j).
Since ∇(i + 1) and ∇j belongs to L 2 and ∂ t j belongs to L ∞ (by Lemma 5 in particular), then ∇(i + 1) + ∇j ∂ t j ∈ L 2 .

Moreover, i + 1 + j ∈ L ∞ and ∇(∂ t j) ∈ L 2 since it contains the term ∂ t j which belongs to L 2 according to Remark 8. For the other terms, since we have v 0 ∈ H 1 (R) according to Lemma 4 (and even in L ∞ according to Lemma 5), we have (i

+ 1+j)∇(∂ t j) ∈ L 2 .
From the above bounds, we also have the following inequality

||∇{(i + 1 + j)∂ t j}|| L 2 ≤ µ 2 + µ 3 ||∇j|| L 2 + ||∇w|| L 2 .
with

µ 2 := ∇(i + 1) + ∇j L 2 ∂ t j L ∞ + λ 2 i + 1 + j L ∞ µ 3 := max ∂ t j L ∞ ,λ 3 i + 1 + j L ∞ .
In addition, we have

∇w(t) = e -t ε (1-d 2 ∂xx) ∇w 0 -2 t 0 e -t-s ε (1-d 2 ∂xx) (1 -d 2 ∂ xx ) -1 ∇{(i + 1 + j)∂ t j} (s) ds.
Hence, we obtain

||∇w(t)|| L 2 ≤ λ 4 + λ 5 T + λ 6 t 0 (||∇j(s)|| L 2 + ||∇w(s)|| L 2 ) ds.
where

λ 4 := ∇w 0 L 2 λ 5 := 2µ 2 λ 6 := 2µ 3 .
Eventually, we recover

||∇j(t)|| L 2 + ||∇w(t)|| L 2 ≤ K 2 1 + t 0 (||∇j(s)|| L 2 + ||∇w(s)|| L 2 ) ds .
with

K 2 = K 2 (T ) := max λ 1 + λ 4 + (λ 2 + λ 5 )T,λ 3 + λ 6 .
By Gronwall's Lemma, we deduce

||(∇j,∇w)|| L 2 ≤ K 2 e K 2 T < +∞.

Conclusion :

Taking K = K(T ) := max(K 1 ,K 2 ), we proved that ||(j,w)|| H 1 ≤ Ke KT <
+∞, which is a contradiction with the assumption T < +∞, due to the uniform boundedness principle.

Therefore, T = +∞. This proves the global existence of the pair (j,w), namely the global existence of a pair (j,v) on (C 0 ([0, + ∞],H 1 (R))) 2 . By bijectivity, we eventually obtain the global existence of a pair (i,u) on

C 0 [0, + ∞],i + 1 + H 1 (R) 2 .
2.4 Approximated systems 2.4.1 Convergence rate when ε → 0

In this subsection, we aim at proving that any solution (i,u) of system (2.1) with ε = 0 converges to a solution (I 0 ,U 0 ) of system (2.1) with ε = 0. Note that the equation on u does not involve the birth and mortality rates: the subsequent analysis holds true for any value of the parameter m, b (and d). To prove this convergence, we work on the modified system (2.9) in (j,w), and prove the subsequent result.

Theorem 3 The solution (j,w) of system (2.9) with ε = 0 converges to the solution (J 0 ,W 0 ) of system (2.9) with ε = 0 with a convergence rate O e -t ε + ε . In other words, for all T > 0, there exists a positive constant C T (depending on T ) such that for any t ∈ [0,T ], we have

(j,w) -(J 0 ,W 0 ) H 1 ≤ C T e -t ε + ε .

Remark 9

The previous theorem provides that any solution (i,u) of (2.1) converges to

(I 0 ,U 0 ) solution of the reduced system    a(I 0 ) t = (U 0 + bI 0 )(1 -I 0 ) -mI 0 U 0 = 1 -d 2 ∂ xx -1 ((I 0 ) 2 ).
Proof : By the previous section, we have

∂ t w = - (1 -d 2 ∂ xx ) ε w -2(1 -d 2 ∂ xx ) -1 (i + 1 + j)∂ t j .
By Duhamel's formula, it follows that :

w(t) = e -t ε (1-d 2 ∂xx) w 0 -2 t 0 e -t-s ε (1-d 2 ∂xx) (1 -d 2 ∂ xx ) -1 (i + 1 + j)∂ t j (s) ds.
According to Lemma 4, we know that (1 -d 2 ∂ xx ) -1 maps H 1 into H 1 with a norm less than 1. The same result can be proved if we replace H 1 by L ∞ using the same scheme of proof as Lemma 4. Furthermore, since (i + 1 + j) is bounded in L ∞ and ∂ t j is bounded in L 2 , then (i + 1 + j)∂ t j has a norm less than a constant c T depending on T . Thus, we have

||w(t)|| H 1 ≤ e -t ε ||w 0 || H 1 + t 0 c T e -t-s ε ds ≤ C T e -t ε + ε -→ ε→0 0.
with

C T = max ||w 0 || H 1 ,c T .
Let (j,w) be a solution of system (2.9) for ε = 0 and (J 0 ,W 0 ) be a solution of system (2.9) for ε = 0. We can actually consider W 0 = 0 according to the inequality above.

For all t ∈ [0, + ∞), we have

∂ t (j -J 0 ) = f (j,w) -f (J 0 ,0)
with f a locally Lipschitz function with a Lipschitz constant k.

Thus :

||∂ t (j -J 0 )|| H 1 ≤ k ||j -J 0 || H 1 + ||w|| H 1 ≤ k||j -J 0 || H 1 + kC T e -t ε + ε .
Considering the same initial datum for j and J 0 , namely j(0,x) = J 0 (0,x), we have :

||j -J 0 || H 1 (t) ≤ t 0 k||j -J 0 || H 1 (s) ds + kC T t 0 e -s ε + ε ds = k t 0 ||j -J 0 || H 1 (s) ds + kC T εt + ε -εe -t ε ≤ k t 0 ||j -J 0 || H 1 (s) ds + kC T ε (t + 1) -→ ε→0 0 .
Hence, Gronwall's Lemma implies

||j -J 0 || H 1 (t) ≤ kC T ε (t + 1) + t 0 C T k 2 ε (s + 1) e t s k dσ ds = kC T ε t + 1 + ke kt t 0 (s + 1) e -ks ds ≤ kC T ε t + 1 + ke kt (t + 1) t 0 e -ks ds = kC T ε(t + 1) 1 + ke kt 1 -e -kt k = kC T (t + 1)e kt ε -→ ε→0 0.
Therefore, a solution (j,w) of system (2.9) with ε = 0 converges when ε → 0 to a solution of the approximated system for ε = 0 with a convergence rate O e -t ε + ε .

As a conclusion, by virtue of the correspondance (i,u) with (j,w), the result is proved.

Application of the Centre Manifold Theorem

In this subsection, we aim at deriving a reduced quasy steady state dynamics, namely an approximated system whose correctors can be computed at any order. To do so, we need to check that our system satisfies the assumptions of the Centre Manifold Theorem in a partial differential equation framework. Even if the book of [START_REF] Carr | Applications of centre manifold theory[END_REF] is one of the pioneering works about applications to the Centre Manifold Theorem, we follow the PDE extension of [START_REF] Castella | A reduced model for spatially structured predator-prey systems with fast spatial migrations and slow demographic evolutions[END_REF] and see how this can be applied to our case.

Recall that our initial system is :

   a∂ t i = (u + bi)(1 -i) -mi ε∂ t u = i 2 -u + d 2 ∂ xx u.

Define the change of variables

i = i + 1 + j, u = (i + 1) 2 + v, v = V 0 + w,
with j, v, w ∈ H 1 (R) and

V 0 = (1 -d 2 ∂ xx ) -1 (d 2 ∂ xx [(i + 1) 2 ] + 2i + 1j + j 2 ) = (1 -d 2 ∂ xx ) -1 (γ 0 + γ 1 j + j 2 ).
Hence, we have

   ∂ t j = 1 a α 0 + β 1 j + β 2 (bj + V 0 + w) -j(bj + V 0 + w) ∂ t w = -(1-d 2 ∂xx) ε w -2 (1 -d 2 ∂ xx ) -1 (i + 1 + j)∂ t j
which can be written

(S ε )    ∂ t j = f 0 (j,w,ε) ∂ t w = K ε w + g 1 (j,w,ε) with          K = -(1 -d 2 ∂ xx ) f 0 (j,w) = 1 a α 0 + β 1 j + β 2 (bj + V 0 + w) -j(bj + V 0 + w) g 1 (j,w) = -2K -1 (i + 1 + j)f 0 (j,w)
Let us show that system (S ε ) satisfies the assumptions of the following Centre Manifold Theorem in an infinite dimensional case, stated in [START_REF] Castella | A reduced model for spatially structured predator-prey systems with fast spatial migrations and slow demographic evolutions[END_REF].

Theorem 4 (Centre Manifold Theorem) Let E and F be two Banach spaces and take an integer r ≥ 1. Let f 0 (x,y,ε) ∈ C r (E × F × [0,1]; E) and g 1 (x,y,ε) ∈ C r (E × F × [0,1]; F ). Take a bounded linear operator K ∈ L(F ), which is invertible. We assume the following:

(I) the functions f 0 , g 1 as well as their derivatives up to order r are bounded;

(II) there are a number µ > 0 and a constant C > 0 such that for any y ∈ F , we have

∀t ≥ 0, ∀ε ∈]0,1], exp t ε K y F ≤ C y F exp -µ t ε .
Under the above assumptions, for any x 0 ∈ E, y 0 ∈ F , ε ∈]0,1], we define X ε (t,x 0 ,y 0 ) ≡ X ε (t) and Y ε (t,x 0 ,y 0 ) ≡ Y ε (t) as the solution for t ≥ 0 of the differential system

(S ε )            d dt X ε (t) = f 0 (X ε (t),Y ε (t),ε), X ε (0) = x 0 , d dt Y ε (t) = K ε Y ε (t) + g 1 (X ε (t),Y ε (t),ε), Y ε (0) = y 0 ,
Then, there is an ε 0 > 0 such that for any ε < ε 0 , the differential system (S ε ) possesses a centre manifold in the following sense:

i) there exists a function h(x,ε) ∈ C r (E × [0,ε 0 ]; F ) such that for any ε ∈]0,ε 0 ], the set C ε := x,h(x,ε) ; x ∈ E is invariant under the flow generated by (S ε ) for t ≥ 0.

Besides, we have

h(x,ε) L ∞ (E;F ) = O(ε) as ε → 0.
ii) the function h(x,ε) satisfies the partial differential equation

D x h(x,ε)f 0 (x,h(x,ε),ε) = K ε h(x,ε) + g 1 (x,h(x,ε),ε),
where D x h stands for (Dh)/(Dx). On top of that, any bounded function

h such that h L ∞ ≤ 1, D x h L ∞ ≤ 1,
and such that we have

D x h(x,ε)f 0 (x, h(x,ε),ε) = K ε h(x,ε) + g 1 (x, h(x,ε),ε) + O(ε ℓ )
in L ∞ , for some integer ℓ ≥ 0, also necessarily satisfies

h -h L ∞ = O(ε ℓ+1 ).
iii) the invariant manifold C ε may be approximated in the following sense. There are functions h j (0 ≤ j < r), which may be computed recursively, such that for any integer ℓ < r, we have

h(x,ε) -h [ℓ] (x,ε) L ∞ (E;F ) = O(ε ℓ+1 ), where h [ℓ] (x,ε) = ℓ j=1 ε ℓ h j (x). Note that i, u ∈ C 1 [0,T ],i + 1 + H -1 (R) ∩ C 0 [0,T ],i + 1 + H 1 (R) , and hence j, v, w ∈ C 1 ([0,T ],H -1 (R)) ∩ C 0 ([0,T ],H 1 (R)).
Let us take E = F = H 1 (R) and r = 1 so that :

f 0 (j,w,ε), g 1 (j,w,ε) ∈ C 1 H 1 (R) × H 1 (R) × [0,1] ; H 1 (R) .
Note that, since (j,w) belong to a fixed ball of H 1 × H 1 whenever T is fixed, the locally Lipschitz functions f 0 and g 1 may be considered as globally Lipschitz functions in the subsequent analysis, with a Lipschitz constant that depends on the (fixed) parameter T .

(I) We previously proved that f 0 , g 1 are locally Lipschitz functions. Since i and u are bounded functions, so are j and w and so are f 0 and g 1 which are polynomial functions in j and w. Furthermore, the derivatives of f 0 and g 1 involve the bounded functions j, w, ∂ t j, ∂ t w. Hence, the derivates of f 0 and g 1 are also bounded. (I) is satisfied.

(II) We use the proof of Lemma 3 where we stated that e tA sends H 1 (R) into itself with a norm less than 1.

For any w ∈ H 1 (R), we define

F exp t ε (d 2 ∂ xx -1) w := exp - t ε (d 2 ξ 2 + 1) ŵ.
Thus, we have by Lemma 3

exp t ε (d 2 ∂ xx -1) w H 1 ≤ exp(- t ε ) w H 1 .
Hence, (II) is satisfied for µ = C = 1 > 0.

Eventually, by the Centre Manifold Theorem, we have

∃ε 0 > 0, ∀ε < ε 0 , ∃h(j,ε) ∈ C 1 H 1 (R) × [0,ε 0 ] ; H 1 (R) , w = h(j,ε).
We can thus approximate system (S ε ) by the system :

(S ∞ ε )    ∂ t j ∞ = f 0 (j ∞ ,h(j ∞ ,ε),ε) w ε,∞ = h(j ∞ ,ε) with h(j ∞ ,ε) = εh 1 (j ∞ ) + ε 2 h 2 (j ∞ ) + O(ε 3 ).
System (S ∞ ε ), supplemented with the appropriate initial datum, approximates the real system (S ε ) with a convergence rate O(e -t/ε ) (see [START_REF] Castella | A reduced model for spatially structured predator-prey systems with fast spatial migrations and slow demographic evolutions[END_REF], theorem 2). Furthermore, we can compute recursively functions h 1 ,h 2 ,... to obtain the expansion of h in powers of ε which describes the centre manifold, with

h 1 (j) = -K -1 g 1 (j,0) h 2 (j) = K -1 ∂ j h 1 (j)f 0 (j,0) -∂ w g 1 (j,0)h 1 (j) .

Convergence rate when a → 0 in the bistable case

In this section, we suppose that a is the fast time. We now denote our system as (S a ) to underline the dependence in the parameter a. Here, ε > 0 can have any fixed value and does not play any role in this analysis. We also suppose that we are in the bistable case (yellow region in Figure 2.4), namely that even if the mortality is greater than the birth rate, then the sexual reproduction characterized by the nonlinearity on i compensates the lack of births and allows the population to survive. Hence, we assume the comparisons

b < m < (b + 1) 2 4 < 1
on parameters m and b. We now consider

(S a )    a∂ t i = (u + bi)(1 -i) -mi ε∂ t u = i 2 -u + d 2 ∂ xx u.
Define 6 i = Ĩ0 + v where Ĩ0 = Ĩ0 (u) is the positive solution of (u + bi)(1 -i) -mi = 0, namely the solution of our original system with a = 0. We also note Ĩ1 = Ĩ1 (u) the negative solution of (u + bi)(1 -i) -mi = 0.

6. In this paragraph, we consider that i and u belong to

C 1 [0,T ],i + 1 + H 1 (R) ∩ C 0 [0,T ],i + 1 + H 3 (R) in order to bound ∂ xx u.
In other words, we assume that the initial data i 0 and u 0 belong to H 3 .

We have

Ĩ0 = b -u -m + (b -u -m) 2 + 4bu 2b , Ĩ1 = b -u -m -(b -u -m) 2 + 4bu 2b .
The bistable assumption allows to assert that the functions under the square root of Ĩ0 and Ĩ1 are positive.

We aim at proving that there exists a positive number α > 0 and a positive constant

C T such that i -Ĩ0 H 1 ≤ C T a + e -α t a .
First of all, we remark that

d Ĩ1 du = - 1 2b 1 + b + m + u (b -m -u) 2 + 4bu .
This derivative is negative. Thus, Ĩ1 is a decreasing function, and this function is less than 2(b -m). Hence, -Ĩ1 is greater than α := 2(m -b) > 0.

We have

a∂ t (i -Ĩ0 ) = -b(i -Ĩ0 )(i -Ĩ1 ) -a∂ t Ĩ0 .
Define y = i -Ĩ0 . By Duhamel's formula, we have

y(t) = y 0 exp - 1 a t 0 (i -Ĩ1 )(s) ds - t 0 exp - 1 a t-s 0 (i -Ĩ1 )(σ) dσ ∂ s Ĩ0 ds.
Furthermore, we have

∂ t Ĩ0 = ∂ t u d Ĩ0 du = i 2 -u + d 2 ∂ xx u d Ĩ0 du . Since d Ĩ0 du is bounded in L ∞ , then if ∂ t u(t,.) is bounded in L ∞ , so is ∂ t ( Ĩ0 )(t,.). On top of that, since H 1 (R) ⊂ L ∞ (R) by virtue of Sobolev's embedding, it is sufficient to prove that ∂ t u(t,.) ∈ H 1 (R). Recall that ∂ t u = i 2 -u + d 2 ∂ xx u. Since i and u belongs to C 1 R + ,i + 1 + H 3 (R) , then ∂ xx u(t,.) ∈ H 1 (R). Hence, ∂ t u(t,.) ∈ H 1 (R) ⊂ L ∞ (R). Eventually, ∂ t ( Ĩ0 )(s,.) is bounded in H 1 by a constant ν T depending on T .
Therefore, we recover

y H 1 ≤ y 0 H 1 exp -α t a + t 0 ν T exp -α t -s a ds ≤ C T a + e -α t a -→ a→0 0 with C T := max y 0 H 1 , ν T α .
On the other hand, for u solution of (S a ) with a = 0 and Ũ 0 solution 7 of (S 0 ), we have

∂ t (u -Ũ 0 ) = (i) 2 -( Ĩ0 ) 2 -(1 -d 2 ∂ xx )(u -Ũ 0 ).
Thus, considering that u and Ũ 0 have the same initial datum, namely u(0,.) = Ũ 0 (0,.), Duhamel's formula gives

(u -Ũ 0 )(t,.) = t 0 e -(t-s)(1-d 2 ∂xx) (i) 2 -( Ĩ0 ) 2 (s) ds.
Hence, we have

u -Ũ 0 H 1 (t) ≤ t 0 e -(t-s)(1-d 2 ∂xx) (i) 2 -( Ĩ0 ) 2 H 1 (s) ds ≤ t 0 i + Ĩ0 H 1 i -Ĩ0 H 1 (s) ds ≤ µC T t 0 a + e -α a s ds ≤ aµC T T + 1 α -→ a→0 0.
with µ := i + Ĩ0 C 0 (H 1 ) .

7. Obviously, this function Ũ 0 is not the same as the function U 0 define previously.

As a conclusion, we proved that (i,u) -→ a→0 ( Ĩ0 , Ũ 0 ). More precisely, we proved that

(i,u) -( Ĩ0 , Ũ 0 ) H 1 ≤ C T a + e -α t a .
Remark 10 The above analysis allows to assert that any solution (i,u) of (2.1) converges

as a → 0 to ( Ĩ0 , Ũ 0 ) solution of    ( Ũ 0 + b Ĩ0 )(1 -Ĩ0 ) -m Ĩ0 = 0 ε Ũ 0 t = ( Ĩ0 ) 2 -Ũ 0 + d 2 Ũ 0 xx .
2.4.4 Approximated system when a = 0

In this section, we still study the system

(S a )    ai t = (u + bi)(1 -i) -mi εu t = i 2 -u + d 2 u xx
in the limiting case when a = 0. As in the previous subsection, we still make the assumption that b < m < (b + 1) 2 4 < 1 so that we are in the bistable case (yellow region in Figure 2.4).

Existence of traveling waves in the bistable case

In the previous subsection, we proved that system (S a ) converges as a → 0 to the approximated system

(S 0 )    ( Ũ 0 + b Ĩ0 )(1 -Ĩ0 ) -m Ĩ0 = 0 ε Ũ 0 t = ( Ĩ0 ) 2 -Ũ 0 + d 2 Ũ 0 xx .
This approximation is called the quasi steady state approximation. Recall that Ĩ0 = Ĩ0 ( Ũ 0 ) is defined as the positive solution of ( Ũ 0 + bi)(1 -i) -mi = 0 seen as a second order polynomial in the variable i. The other solution of this polynomial equation is filtered out because it is negative and thus does not have any biological meaning.

Let us now rewrite system (S 0 ) as

     Ĩ0 = b -u -m + (b -u -m) 2 + 4bu 2b , εu t = ( Ĩ0 ) 2 -u + d 2 u xx .
where for the sake of simplicity, the unknown Ũ 0 has been renamed u.

Eventually, this yields the approximated reaction-diffusion equation

u t = d 2 u xx + F (u)
where the function F is defined as

F (u) = ( Ĩ0 ) 2 -u = b -u -m + (b -u -m) 2 + 4bu 2b 2 -u.
We aim at studying the properties F .

This function has three zeros, which are 0, U -and U + where U ± are defined as

U ± = 1 2 (b 2 + 1) -m ± 1 2 (b -1) 2 (b + 1) 2 -4m .
All these zeros are positive whenever b < m < (b+1) 2 4 . Furthermore, as a function from R + → R, the function F is differentiable and we have

F ′ (u) = b -u -m + (b -u -m) 2 + 4bu 2b 2 -1 + b + u + m (b -u -m) 2 + 4bu -1.
Hence, we have 

F ′ (0) = 1 2b 2 b -m + (b -m) 2 -1 + b + m (b -m) 2 -1 = -1 since m > b.

Introduction

We are interested in modeling the spread of a fungal plant pathogen subject to mate limitation ([HCD + 16], Hamelin et al, 2016). Specifically, we consider (after ecological considerations) the following system of equations:

(S)

   ai t = (u + bi)(1 -i) -mi εu t = i 2 -u + d 2 u xx
, where i = i(t,x) ∈ R and u = u(t,x) ∈ R depend on a time variable t ≥ 0 and on a dimensional space variable x ∈ R. Here and throughout this chapter, we make the assumption b > m.

A simple analysis of this differential system shows that whenever b > m, there exist two equilibria, namely (0,0) which is unstable, and v = ( ī,ū) with ī > 0, ū > 0 (see below)

which is globally attracting. Our system is thus monostable. Based on this observation, we aim at proving the existence of traveling wave solutions for this reaction-diffusion system. Recall that traveling wave solutions of this system are functions i, u which propagate in a single direction with negligible change in shape. In our case, traveling waves satisfy i(t,x) = I(x -ct) and u(t,x) = U (x -ct) for some given profiles (I,U ), where the quantity c is the associated wave speed, and the profiles (I,U ) connect v = ( ī,ū) to (0,0). The key observation of our analysis, which provides such traveling waves, is that this system is cooperative, namely the rate of change of i increases when u increases and conversely.

For reaction-diffusion models, there exists a wide range of results concerning traveling waves. In our case, our main result is the following:

Main result. There exists a minimal wave speed c * + > 0 such that for any initial datum, the following holds:

-whenever c ≥ c * + , there exists a traveling wave W = (I,U ) with associated wave speed c connecting v to (0,0).

-whenever c < c * + , there is no traveling wave connecting v to (0,0).

To prove the existence of traveling waves, a general method consists in seeking heteroclinic orbits connecting the two equilibria. More precisely, defining the traveling wave variable z = x -ct, traveling wave solutions of (S) are functions (I,U ) which satisfy a 3-dimensional differential system in z. Starting from this observation, the results about traveling waves are based on geometric properties of the linearized system and on a global nonlinear analysis of the diffusion system, such as the existence of invariant regions (see for example [START_REF] Steven R Dunbar | Travelling wave solutions of diffusive lotka-volterra equations[END_REF]).

In our case, one of the equations does not involve diffusion. Besides, the reactiondiffusion equation presents a nonlinear term i 2 whose differential vanishes at i = 0. For these reasons, the linearization methods quoted above do not work in our context and the linearized system around (0,0) does not provide any information about the equilibrium and the associated nearby trajectories. Therefore, we give up differential methods and focus on an "integrated version" of our system, see below. More specifically, we focus on methods based on monotonicity properties following the approach developped by Fang and Zhao [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF] and Weinberger, Li and Lewis [START_REF] Li | Spreading speeds as slowest wave speeds for cooperative systems[END_REF] in the special case of a reaction-diffusion system whose unknown belongs to R 2 (reference [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF] takes care of reaction-diffusion systems whose unknown may belong to an infinite dimensional space).

Let us now provide a the sketch of proof of our main result.

Let us define v = i u . System (S) can be written as:

v t = Dv xx + f (v),
where

D = 0 0 0 d 2 /ε , f (v) = a -1 (u + bi)(1 -i) -mi ε -1 i 2 -u .
The initial condition is

v 0 (x) = v(0,x) = i u (0,x) = i 0 u 0 (x).
We define the family of time-t maps (Q t ) t≥0 by the relation

Q t [v 0 ](x) := v(t,x).
In other words, Q t is the propagator associated with the nonliear system v t = Dv xx + f (v). It means that Q t takes the initial values v 0 (x) into the values v(t,x) at time t of the solution of (S). Note in passing that standard nonlinear analysis for the nonlinear heat system (S) provides existence and uniqueness of solutions of (S) whenever the initial datum is continuous and bounded, and the associated solution is continuous and bounded as well (see e.g. [START_REF] Horst R Thieme | Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations[END_REF]). Hence, Q t is well defined as an operator on continuous and bounded functions 1 .

With this notation, we define a nonnegative function W = (I,U ) to be a traveling wave of the reaction-diffusion system (S) with associated wave speed c, whenever there exists a countable subset Σ of R such that

Q t [W ](x) = W (x -ct), ∀x ∈ R\Σ, ∀t ≥ 0.
Therefore, introducing the translation operator in space as

T y [W ](x) = W (x -y), ∀y ∈ R,
a traveling wave satisfies

W (x) = T -ct Q t [W ](x), ∀x ∈ R\Σ, ∀t ≥ 0.
Hence, W is a traveling wave whenever W is a fixed point of the operator T -ct Q t . To obtain such a fixed point, it is thus natural to construct a recursion iterating the operator T -ct Q t so as to obtain W as the limit of (T -ct Q t ) n in some sense.

On the other hand, since f is cooperative, Q t is monotone (nondecreasing) 2 . Thus, it is natural to seek traveling waves on the functional space M of nonincreasing and bounded functions from R to R 2 . Now, monotone and bounded functions have good properties such as the existence of left and right limits at any discontinuity point, the 1. Since Q t maps C 0 b into itelf, by a simple extension it turns out that Q t maps the set of monotone and bounded functions into itself as well. We shall mainly work on this space later.

2. The ordering on R 2 which is refered to here is the componentwise ordering

The above simulations represent the traveling waves I and U at time t = 0 (with the black step function near the origin as the initial datum), t = 6 (in blue), t = 12 (in green) and so on. We notice a rightward propagation whenever we choose b greater than m.

Remark 11 For a family of continuous-time semiflows (Q t ) t≥0 , because of the dependence in time, we actually need an extended version of (A2), also called (A2) for convenience:

i) If t n → t, then Q tn [v](x) → Q t [v](x) pointwise in R 2 at any point of continuity x of Q t [v]. ii) If v n → v uniformly on every compact set of R, then Q t [v n ](x) → Q t [v](x) pointwise in R 2 at any point of continuity x of Q t [v].
We now present more specific properties of bounded and monotone functions from R to R 2 that we use throughout the paper. In the Lemma below, the first statement is only a tool in order to prove the other Lemmas, while the last two statements are necessary to prove the Theorems stating the existence of traveling waves. Proof : i) Let R > 0 and ǫ > 0. Since v is continuous, there exists η > 0 such that for

all x,y ∈ [-R -1,R + 1], |x -y| < η implies |v(x) -v(y)| < ǫ 4 .
Now, v n is monotone and has at most a countable set D of points of discontinuity.

We thus construct an increasing sequence (x k ) k=1,...,N of real numbers in R\D, with

N ∈ N * and such that -R -1 ≤ x 1 ≤ -R, x k < x k+1 < x k + η and R < x N < R + 1.
Choosing n ∈ N sufficiently large, we have max k=1,...,N

|v n (x k ) -v(x k )| < ǫ 4 .
For x ∈ [-R,R], there exists k ∈ {1,2,...,N } such that x k ≤ x ≤ x k+1 . With this construction of (x k ), we also have |x k+1 -x k | < η and |x k -x| < η.

Thus, using the decay of v, we have

|v n (x) -v(x)| ≤ |v n (x k+1 ) -v(x)| + |v n (x k ) -v(x)| ≤ |v n (x k+1 ) -v(x k+1 )| + |v(x k+1 ) -v(x)| + |v n (x k ) -v(x k )| + |v(x k ) -v(x)| ≤ ǫ 4 + ǫ 4 + ǫ 4 + ǫ 4 = ǫ.
ii) Since v is monotone from R to R 2 , v has at most a countable set D of points of discontinuity. Let x ∈ R\D and h > 0. Consider y -∈]x -h,x] and y

+ ∈ [x,x + h[. Since v k is nonincreasing, we have v k (y -) ≥ v k (x) ≥ v k (y + ).
Furthermore, v k converges to v almost everywhere on R 2 and admits left and right limits. Hence, we can consider that lim

k→+∞ v k (y -) = v(y -) and lim k→+∞ v k (y + ) = v(y + )
without loss of generality. Thus,

lim k→+∞ v k (y -) ≥ lim sup k→+∞ v k (x) ≥ lim inf k→+∞ v k (x) ≥ lim k→∞ v k (y + ), that is v(y -) ≥ lim sup k→+∞ v k (x) ≥ lim inf k→+∞ v k (x) ≥ v(y + ).
Moreover, since x / ∈ D, taking the limit h → 0, we have v(y -) = v(y + ) = v(x). Hence, lim sup

k→+∞ v k (x) = lim inf k→+∞ v k (x) = v(x) for any point of continuity x of v.
iii) The proof of this point is inspired from [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF]. Since v ∈ M, we can find two continuous functions v n and v n in M such that for any n ∈ N and any x ∈ R,

v(x + 2 -n ) ≤ v n (x) ≤ v(x) ≤ v n (x) ≤ v(x -2 -n ).
Furthermore, v k → v a.e. provides that for any integer n, min{v k ,v n } → v n a.e.

Hence, according to i) and using the continuity of v n , we have the convergence

min{v k ,v n } → v n , ∀x ∈ R.
The same argument as above implies

max{v k ,v n } → v n , ∀x ∈ R.
Since Q satisfies (A1)-(A3) where Q[v](x) is continuous almost everywhere, by virtue of the first inequality and the convergences established above, we deduce the following series of equalities and inequalities below

Q[v](x) = lim n→+∞ Q[v](x + 2 -n ) = lim n→+∞ Q[v(. + 2 -n )](x) ≤ lim n→+∞ Q[v n ](x) = lim n→+∞ lim k→+∞ Q[min{v k ,v n }](x) ≤ lim k→+∞ Q[v k ](x) ≤ lim n→+∞ lim k→+∞ Q[max{v k ,v n }](x) = lim n→+∞ Q[v n ](x) ≤ lim n→+∞ Q[v](x -2 -n ) = Q[v](x) a.e. x ∈ R. Therefore, Q[v k ](x) → Q[v](x)
a.e. and statement ii) of this Lemma gives the conclusion.

Existence and nonexistence of traveling waves

In this section, we prove the existence of traveling waves. Take ω ∈ R 2 with 0 ≪ ω ≪ v.

We pick up a continuous function φ : R → R 2 satisfying the following properties: i) φ is a nonincreasing function;

ii) φ(x) = 0 for all x ≥ 0;

iii) φ(-∞) = ω.

Let c and k be some real numbers with k ∈]0,1]. We define the operator R c,k as follows

R c,k [a](s) := max{kφ(s),T -c Q[a](s)}.
We also define a recursive sequence of functions a n (c,k,s) by

a 0 (c,k,s) = kφ(s), a n+1 (c,k,s) = R c,k [a n (c,k,.)](s)].
For convenience, we denote

R c = R c,1 , a n (c; s) = a n (c,1; s).
In the Lemmas below, we give some properties about the convergence of the sequence (a n ) n≥0 constructed above and about its limit a.

Lemma 7

The following statements are satisfied :

i) R c : M v → M v is monotone: if u,v ∈ M v satisfy u ≥ v, then Q[u] ≥ Q[v].
ii) a n (c; s) is nondecreasing in n, and nonincreasing in both s and c.

iii) For each n, we have a n (c; -∞) ≥ Q n [ω] 3 , and a n (c; +∞) = 0.

iv) For each s ∈ R, a n (c; s) converges pointwise to a(c; s) in R 2 and the limit a(c; s) is nonincreasing in both s and c.

Proof : This proof is inspired from [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF].

i) This statement is just a consequence of the fact that Q : M v → M v is order preserving.

3. here,

Q n [ω] is identified as a constant function of R 2 v .
ii) We prove the result by induction. It is clear that

a 1 (c,s) = max{a 0 (s),T -c Q[a 0 (c,.)](s)} ≥ a 0 (c,s).
Assume that the property a n (c,s) ≥ a n-1 (c,s) holds. Then,

a n+1 (c,s) = max a 0 (s),T -c Q[a n (c,.)](s) ≥ T -c Q[a n (c,.)](s) = Q[a n (c,.)](s + c)
≥ Q[a n-1 (c,.)](s + c) by the induction assumption and (A3)

= T -c Q[a n-1 (c,.)](s).
Therefore, a n+1 (c,s) ≥ max a 0 (s),T -c Q[a n-1 (c,.)](s) = a n (c,s). This proves that a n (c,s) is nondecreasing in n. Similarly, using (A3) and the decay of φ provides the decay of u in both s and c.

iii) We prove this result by induction. We have a 0 (c, -∞) = φ(-∞) = ω and a 0 (c, + ∞) = 0. Since Q is translation invariant, using Lemma 6 iii), we have

lim s→±∞ Q[a n (c,.)](s) = lim s→±∞ Q[a n (c,. + s)](0) = Q[a(c, ± ∞)](0).
Thus, we have

a n+1 (c, -∞) = lim s→-∞ max{a 0 (c,s),T -c Q[a n (c,.)](s)} = max{φ(-∞),Q[a n (c, -∞)](0)} ≥ Q[a n (c, -∞)](0) ≥ Q n+1 [ω].
By the same argument, we also prove that a n+1 (c, + ∞) = 0. iv) Since (a n (c,s)) n≥0 is a sequence of monotone and bounded functions for each s ∈ R 2 , Helly's convergence theorem asserts that it admits a subsequence of functions converging pointwise on R 2 . As a limit of a sequence of nonincreasing functions, a(c,s) is nonincreasing in both s and c.

In the subsequent Lemma, we prove that the limit a(c,s) is a fixed point of R c . Hence, the limit can also be seen as some kind of upper traveling wave.

Lemma 8 i) a(c,.) ∈ M and R c [a(c,.)](s) = a(c,s) at any point of continuity of

R c [a(c,.)]. ii) a(c; ±∞) exist in R 2 and a(c, -∞) = v. iii) a(c, + ∞) ∈ R 2 is a fixed point of Q. iv) a(c, + ∞) = v ⇐⇒ a n (c,0) ≫ ω for some n ∈ N.
Proof : Again, this proof is inspired from [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF].

i) As the limit of the sequence (a n (c,s)) n≥0 , the function a(c,s) is also a monotone (nonincreasing) and bounded function from R to R 2 , hence it has at most a countable set of points of discontinuity. The function Q[a(c,.)](s) is also a monotone and bounded function from R to R 2 , and hence has at most a countable set Σ of points of discontinuity.

In Lemma 7 iv), we proved that a n (c,s) converges pointwise to a(c,s) in R 2 . By Lemma ii) a(c, ± ∞) exist in R 2 since a(c,s) is monotone and bounded. Eventually, thanks to Lemma 7 iii) and the monotonicity in n of a n (c,s), we have

6 iii), we have Q[a n (c,.)](s) → Q[a(c,.)](s) at any point of continuity of Q[a(c,.)]. Since φ is continuous, we have R c [a n (c,.)](s) → R c [a(c , 
v ≥ a(c, -∞) ≥ lim n→∞ a n (c, -∞) ≥ lim n→∞ Q n [ω] = v. Thus, a(c, -∞) = v.
iii) Since Q is a continuous operator in the sense of (A2), so is R c . Besides, φ(+∞) = 0, and passing to the limit when s goes to +∞ in i) gives the conclusion.

iv) (=⇒) The decay of a and a(c, + ∞) = v give lim n→∞ a n (c,s) = v for any s ∈ R.

Furthermore, since a n (c,.) is a nonincreasing function, we have the inequality

a n (c,s 2 ) ≤ a n (c,s 1 ) ≤ v for all s 1 ≤ s 2 . Hence, |a n (c,s 1 ) -v| ≤ |a n (c,s 2 ) -v|.
Therefore, a n (c,s) converges to v uniformly for all s in a bounded interval, that is a n (c,.) converges to v uniformly on every compact set.

In particular, a n+1 (c,0

) = T -c Q[a n (c,.)](0) converges to v in R 2 . Since v ≫ ω, we
deduce that a n (c,0) ≫ φ(-∞) = ω for n sufficiently large.

(⇐=) Note that for any s ≥ 0, we have

a n (c,s) = T -c Q[a n-1 (c,.)](s) ∈ R 2 v. Since φ is continuous and T -c Q is continuous from M v to M v (
and in particular on R 2 v), we deduce that a n (c,.) is continuous and we recover lim

s→0 a n (c,s) = a n (c,0) ∈ R 2 v.
Thus, by continuity, we can find a sufficiently small s 0 > 0 such that a n (c,s 0 ) ≫ ω.

Hence, we have T -s 0 [a n (c,.)] ≥ φ(.) = a 0 (c,.). Moreover, since Q is translation invariant, we can also write

T -s 0 [a n+1 (c,.)] ≥ T -s 0 [a n (c,.)] ≥ a 0 (c,.) T -s 0 [a n+1 (c,.)] ≥ T -s 0 -c Q[a n (c,.)] ≥ T -c Q[a 0 (c,.)] = a 1 (c,.).
By an induction argument, we actually prove that T -s 0 [a n+ℓ (c,.)] ≥ a ℓ (c,.) holds for all ℓ ≥ 1. Thus, we have a n+ℓ (c,s 0 + t) ≥ a ℓ (c,t), ∀t ∈ R.

Letting ℓ → +∞, it follows that a(c,s 0 + t) ≥ a(c,t), ∀t ∈ R. Furthermore, since a is a nonincreasing function, namely a(c,s + t) ≤ a(c,t) for any s > 0, this implies that a(c,.) is constant and hence a(c, + ∞) = v.

Remark 12 We stated the last three Lemmas in the convenient case k = 1 but we can also state and prove them for any k ∈]0,1]. Thus, a(c,k,s) is both a fixed point of R c,k and also an upper traveling wave. 

Q n [ω] = v, there exist p,q ∈ N * satisfying both Q[ ω p ] ≪ Q p [ω] and ω ≪ Q q+1 [ ω p ]. Lemma 7 implies that Q[ ω p ] ≪ Q p [ω] ≪ a p (c, -∞), ∀c ∈ R. Besides, we have T -c Q[a p (c,.)](s) ≤ a p+1 (c,s), ∀c ∈ R.
Thus, a direct induction gives

(T -c Q) q [a p (c,.)](s) ≤ a p+q (c,s), ∀c ∈ R.
Hence, we have

ω ≪ Q q+1 [ ω p ] ≤ Q q [a p (c, -∞)] = (T -c Q) q [a p (c, -∞)] = lim s→-∞ (T -c Q) q T -s [a p (c,.)](0), ∀c ∈ R.
Now, using the decay in c and taking the limit as c → -∞, we recover

ω ≪ lim c→-∞ (T -c Q) q [a p (c,.)](0) ≤ lim c→-∞ a p+q (c,0).
As a conclusion, when c is a sufficiently large negative number, we recover ω ≪ a p+q (c,0). Lemma 8 iv) gives the conclusion.

Remark 13 In the definition of c * + , the symbol + means that the wave propagates rightward. It is also possible to introduce a wave propagating leftward choosing the function φ representing the initial condition to be nondecreasing.

Remark 14 Consider c * + as defined above and C v the space of continuous functions from R to R 2 v equipped with the compact open topology (the uniform convergence on every compact sets). Let Q : C v → C v be continuous and satisfy (A1), (A3) and (A4) where M v is replaced by C v. According to arguments in [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF], the two following statements are satisfied:

i) If u 0 ∈ C v, 0 ≤ u 0 (x) ≪ v and u 0 (x) = 0, ∀x ≥ L for some L ∈ R, then lim n→+∞, x≥cn Q n [u 0 ](x) = 0 for any c > c * + .
This means that if a wave spreads at a speed c faster than the minimal wave speed c * + , then this wave will only "see" the steady state 0, that is the front of the wave.

ii

) If u 0 ∈ C v, u 0 (x) ≥ m, ∀x ≤ M for some m ≫ 0 and M ∈ R, then lim n→+∞, x≤cn Q n [u 0 ](x) = v for any c < c * + .
This means that if a wave spreads at a speed c less than the minimal wave speed c * + , then this wave will only "see" the steady state v, that is only the back of the wave.

Hence, a condition for a rightward spreading is determined by whether the speed of the wave is greater or less than c * + , the minimal wave speed of the discrete-time system

(Q n ) n≥0 on C v.
We are now ready to state the main theorem of this part, giving the existence or the nonexistence of traveling waves to the time-one family (Q n ) n≥0 representing the reactiondiffusion system seen as a discrete-time recursion.

Theorem 5 (Traveling waves for the time-one map) Assume that Q satisfies (A1)-(A4). Let c * + be defined as previously. The three following statements are satisfied: i) For any c ≥ c * + , there is a left-continuous traveling wave W (x -cn) connecting v to 0.

ii) For any c < c * + , there is no traveling wave connecting v to 0. iii) Since Q maps left-continuous functions to left-continuous functions, the traveling waves connecting v to 0 satisfy the relation

Q n [W ](x) = W (x -cn), ∀x ∈ R, ∀n ≥ 0. Proof : We follow the proof of [FZ14]. i) Since c ≥ c * + implies a(c, + ∞) < v = a(c, -∞), we deduce that a(c, + ∞) is an equilibrium of Q (Lemma 8
) which is different from v. On the other hand, Q has two different equilibria, which are v and 0. Therefore, setting δ = ( ī 2 , ū 2 ) ∈ R 2 , we have δ ≫ 0. We also have v -δ ≫ 0 and v is the only fixed point of Q in the rectangle of R 2 [v -δ,v]. Since a(c, 1 n ,s) for all n ≥ 1 is a decreasing and bounded function connecting v to 0 / ∈ [v -δ,v], we can find a real number s n such that

lim sրsn a(c, 1 n ,s) ∈ [v -δ,v], but lim sցsn a(c, 1 n ,s) ≤ v -δ.
Define the sequence of nonincreasing functions f n (s) := a(c, 1 n ,s + s n ) from R to R 2 . Helly's theorem asserts that there exists a subsequence (still denoted f n (s)) converging pointwise to a function W for s ∈ R. Then, combining Lemma 8 i) and Lemma 6 iii), we have (except for the countable set Σ of points of discontinuity of W ) the following equalities

W (s) : = lim n→+∞ f n (s) = lim n→+∞ a c, 1 n ,s + s n = lim n→+∞ R c, 1 n a(c, 1 n ,.) (s + s n ) = lim n→+∞ R c, 1 n f n (. -s n ) (s + s n ) = lim n→+∞ max 1 n φ(s + s n ),T -c Q[f n ](s) = lim n→+∞ max 1 n φ(s + s n ),Q[f n ](s + c) = Q[W ](s + c), ∀s ∈ R\Σ.
Furthermore, we deduce that W (±∞) are necessarily fixed points of Q. Finally,

f n (0 + ) ≫ v -δ implies that W (+∞) ≫ v -δ and f n (0 -) ≥ v -δ implies that W (-∞) ≥ v -δ. Thus, since v is the only fixed point in [v -δ,v] and 0 / ∈ [v -δ,v] is the other fixed point, we have W (-∞) = v and W (+∞) = 0
Moreover, we have proved above that the two functions T c [W ] and Q[W ] are equal for all x ∈ R\Σ. Thus, we have the immediate recursion relation

Q n [W ](x) = T n c [W ](x) = W (x -cn), ∀n ≥ 0, ∀x ∈ R\Σ.
ii) Suppose that c < c * + . By contradiction, let us assume that there exists a traveling wave W connecting v to 0. Then by definition of the initial datum φ, we can find

s 0 ∈ R such that φ(s) ≤ W (s + s 0 ), ∀s ∈ R. According to i), since W is an upper fixed point of T -c Q, it satisfies the inequality a 1 (c,s) = max φ(s),T -c Q[φ](s) ≤ W (s + s 0 ), ∀s ∈ R.
and by an immediate induction,

a n (c,s) = max φ(s),T -c Q[a n-1 (c,.)](s) ≤ W (s + s 0 ), ∀s ∈ R, ∀n ≥ 1. Hence, a(c, + ∞) = lim s→+∞ lim n→+∞ a n (c,s) ≤ lim s→+∞ lim n→+∞ W (s + s 0 ) = W (+∞) = 0.
This implies that c ≥ c * + , which is a contradiction with the assumption.

iii) The fact that Q maps left-continuous functions to left-continuous functions is proved in section 3.4. We refer to [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF] for the proof of the fact that this particular property implies that the relation

Q n [W ](x) = W (x -cn) is satisfied for all x ∈ R.
We are now ready to state our main result for continuous-time semiflows as mentionned in introduction.

Theorem 6 (Traveling waves for a time-t map) Take (Q t ) t≥0 a family of continuoustime semiflows satisfying (A1) -(A4). Let c * + be defined as previously. The three following statements are satisfied: i) For any c ≥ c * + , there is a left-continuous traveling wave W (x -ct) connecting v to 0.

ii) For any c < c * + , there is no traveling wave connecting v to 0.

iii) Since Q t maps left-continuous functions to left-continuous functions, then the traveling waves connecting v to 0 satisfy the relation

Q t [W ](x) = W (x -ct), ∀x ∈ R, ∀t ≥ 0.
We only give a sketch of proof for this result. We refer to [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF] for an exhaustive proof.

As previously, we define for any integer p ≥ 1 a sequence

b 0 (p,c,s) = φ(s), b n (p,c,s) := max φ(s),T -c Q 1 p [b n-1 (p,c,.)](s) .
where φ has the same properties as before.

The , for any integer p ≥ 1. The proof of this Lemma can be checked in [START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF] in a more abstract case.

Lemma 9 For any integer p ≥ 1, we have c * +,p = 1 p c * +,1 .

Based on this key observation, to prove the existence of traveling wave solutions for continuous-time semiflows, we focus on the maps (Q 2 -n ) n≥0 which are used as building blocks to approximate the family of semiflows (Q t ) t≥0 . More precisely, we use the minimal wave speeds and wave profiles associated with Q 2 -n . It is clear that all we proved for the semiflow Q = Q 1 on the time interval [0,1] can be adapted to the time interval [0, 1 2 ] and [ 1 2 ,1] by translation in time. Hence, Lemma 9 allows to determine the wave speed of any map Q 2 -n and as foreseen, the speed associated with Q 2 -n is 2 -n times the speed of the time one map Q 1 . Therefore, Theorem 5 can be adapted to the time 2 -n map Q 2 -n in the natural way, and the same can be done with all maps Q p2 -n whenever p is an integer. As a conclusion, since any nonnegative real number t ≥ 0 can be approximated by its binary decomposition thanks to a density argument, the result about traveling waves of the semiflows (Q t ) t≥0 follows. This is where the continuity in time stated in (A2)-i) is exploited.

Let us now see a sketch of proof of Lemma 9. Recall that In our case, we have

P (t)[v 0 ](x) =   i 0 (x) √ ε 2d √ πt R
e -ε (x-y) 2 4d 2 t u 0 (y) dy It can be proved (see for example [START_REF] Horst R Thieme | Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations[END_REF]) that this integral equation posseses a unique solution for any initial datum v 0 ∈ M v. We note v(t,.,φ) a solution of system (S), such that v(0,.,φ) = φ for any function φ ∈ M v. We also note Q t the semiflow of our system (S), namely Q t (φ) = v(t,.,φ) for any φ ∈ M v as before.

We have in our case Q t [v 0 ](x) = v(t,x,v 0 ) = P (t)[v 0 ](x) + t 0 P (t -s)[f (v(s,.,v 0 ))](x) ds, ∀t ≥ 0, ∀x ∈ R.

To apply the construction of the previous section, we need to prove that the semiflow Q t satisfies the conditions (A1) -(A4).

Proof of (A1) : Since the nonlinear heat equation is translation invariant, for each solution v(t,x) of system (S), the translated function v(t,x -y) is also solution of system (S). Then,

T y • Q t [v](x) = Q t • T y [v](
x) for all x, y ∈ R and u ∈ M v. Thus, Q t is translation invariant.

Proof of (A2) and (A3) -Preliminary : We pick up an α > 0 and define the change of variable w(t,x) = e αt v(t,x). Then, w satisfies the partial differential equation

w t = Dw xx + f α (t,w),
where f α (t,w) = e αt f (e -αt w) + αw.

The function f : R 2 v → R 2 representing the nonlinearity is locally Lipschitz, continuous and cooperative. We note k ∈ R 2 v (depending on v) its Lipschitz constant on the compact set R 2 v. Since f is cooperative, the first coordinate of f with respect to its second variable and the second coordinate of f with respect to its first coordinate are nondecreasing. Therefore, choosing α > 0 arbitrarily large, namely α > k, it appears that f α (t,.) is a nondecreasing function on R 2 v.

Furthermore, if v ∈ M v, then w = e αt v ∈ M e αt v, and for all w 1 , w 2 ∈ M e αt v, we have f α (t,w 1 ) -f α (t,w 2 ) R 2 ve αt ≤ α w 1 -w 2 + e αt f (e -αt w 1 ) -f (e -αt w 2 ) ≤ α w 1 -w 2 + e αt k e -αt w 1 -e -αt w 2 = (α + k) w 1 -w 2 R 2 ve αt .

Thus f α (t,.) : R 2 ve αt → R 2 ve αt is globally Lipschitz with a Lispchitz constant equal to α+k.

Therefore, writing Duhamel's formula for the new reaction diffusion system ∂ t w = Dw xx + f α (t,w) with initial datum w(0,x) = v(0,x) = v 0 (x), we have for all t ≥ 0 and

x ∈ R e αt Q t [v 0 ](x) = w(t,x,v 0 ) = P (t)[v 0 ](x) + t 0 P (t -s) f α s,w(s,.,v 0 ) (x) ds.

Proof of (A2) : Recall that we need to prove the version of (A2) stated in Remark 11 for a general time-t map.

i) Assume that a sequence t n → t. For any v 0 ∈ M v, we have πt e -ε (x-y) 2 4d 2 t u 0 (y) ∈ L 1 (R).

The dominated convergence theorem asserts that

P (t n )[v 0 ](x) -→ n→+∞   i 0 (x) √ ε 2d √ πt R
e -ε (x-y) 2 4d 2 t u 0 (y) dy We have proved that Q t maps the set of nonincreasing and left continuous with a righthanded limit functions to itself.

To conclude, since the semiflow (Q t ) satisfies assumptions (A1) -(A5), we can assert that our cooperative system in the case where b > m has traveling waves whenever Mots Clefs : systèmes de réaction-diffusion, ondes progressives, vitesse d'onde, reproduction sexuée, effet Allee, système coopératif, système monostable.

Abstract

We consider organisms that mix sexual and asexual reproduction, in a situation where sexual reproduction involves both spatial dispersion and mate finding limitation. We propose a model that involves two coupled equations, the first one being an ordinary differential equation of logistic type, the second one being a reaction diffusion equation. According to realistic values of the various coefficients, the second equation turns out to involve a fast time scale, while the first one involves a separated slow time scale. First we show existence and uniqueness of solutions to the original system. Second, in the limit where the fast time scale is considered infinitely fast, we show the convergence towards a reduced quasi steady state dynamics, whose correctors can be computed at any order. Third, using monotonicity properties of our cooperative system, we show the existence of traveling wave solutions in a particular region of the parameter space (monostable case).

Keywords: reaction-diffusion systems, traveling waves, wave speed, sexual reproduction, Allee effect, cooperative system, monostable system.
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 1 Fig. 1.1 -Propagation de la chalarose du frêne

Fig. 1

 1 Fig. 1.2 -cycle de vie de Mycosphaerella Fijiensis
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  Pour M. fijiensis, ε = 5.71 10 -5 , a = 9.13 10 -3 , b = 0.1 et d = 1.2 10 -2 avec L = 100 km et T = 365 jours. On a ε/a = 6.25 10 -3 ≪ 1, ce qui correspond au cas ε ≪ a. Cependant, cette relation pourrait être inversée chez des espèces où les spores diffusent bien plus longtemps dans l'environnement avant d'entrer en contact avec un hôte. Aussi, nous considérerons par la suite a et ε comme potentiellement petits l'un par rapport à l'autre (temps rapide et temps lent, [AdLPP + 08]). des concentrations d'une ou plusieurs substances spatiallement distribuées et soumises à deux processus : un procéssus de réactions chimiques locales, dans lequel les différentes substances se transforment, et un processus de diffusion qui provoque une répartition spatiale de ces substances. Bien que principalement appliqués à la chimie, ces systèmes de réaction-diffusion permettent aussi de décrire des modèles biologiques et écologiques, tels que la dynamique des populations, les invasions biologiques et l'écologie de la conservation. D'un point de vue écologique, un système de réaction-diffusion est perçu comme la description de la dynamique d'une population sous l'effet de deux forces : la dispersion et la croissance (naissances-décès) ([Roq13]). Grâce à deux approches différentes [Mur02], [LLH09], l'une basée sur une loi de conservation en physique mathématique, et l'autre sur une marche aléatoire en processus stochastiques, nous pouvons donner une formulation de ces modèles de réaction-diffusion. Voyons ici uniquement la première approche. Considérons qu'une population ayant pour densité u(t,x) vive et se déplace dans une région donnée. Pour décrire le mouvement de cette population au cours du temps, nous introduisons le flux de population J(t,x) ∈ R n , où n est la dimension de l'espace. A chaque temps t et à chaque position x, le flux J(t,x) est un vecteur qui pointe dans la direction du mouvement à cette position. Ce flux se mesure en m -2 s -1 , et sa norme |J(t,x)| est proportionnelle à la quantité de particules qui se déplace dans cette direction par unité de temps. On suppose que la densité et le flux de population sont des fonctions régulières du temps et de l'espace. Considérons un volume test (arbitraire) Ω de frontière Γ et supposons que les flux intérieurs et extérieurs à Ω sur Γ sont équilibrés. La loi de conservation affirme que le taux de variation de u dans Ω est égale au taux de variation dû aux naissances, morts et intéractions plus le flux dans Ω. Mathématiquement, cela s'écrit donc :

. 3 )

 3 Par ailleurs, l'approche classique de la diffusion, à savoir la seconde loi de Fick, affirme que le flux de population J est proportionnel à l'opposé gradient de la densité de population. Ainsi, nous avons J = -D∇u.(1.4) Notons que, pour que les unités coïncident dans (1.4), le coefficient de diffusion D doit s'exprimer en longueur 2 temps -1 . Bien que ce coefficient dépende potentiellement de l'espace x, nous le supposerons indépendant du milieu dans toute notre étude. En outre, le signe moins dans (1.4) indique que les transports par diffusion vont nécessairement des fortes densités vers les faibles densités. S'il y a également une advection à vitesse v, alors la loi de Fick est modifiée de la manière suivante J = -D∇u + vu. (1.5) En combinant la loi de conversation (1.3) avec (1.5), nous obtenons donc le modèle de réaction-advection-diffusion ∂u ∂t + ∇ • (vu) = ∆u + f (u). (1.6) Dans toute notre étude, nous ne nous intéresserons qu'à des modèles sans advection, c'est à dire avec v = 0. Ainsi, en combinant (1.3) et (1.4), nous obtenons le modèle de réaction-diffusion

  le Laplacien de u, D est une matrice symétrique, f est une fonction à valeurs dans R m , et avec conditions initiales et conditions au bord bien choisies. Nous nous intéresserons uniquement au cas où le coefficient de diffusion est constant et indépendant de l'espace. S'il n'y a ni advection (v = 0), ni croissance de population (f = 0), alors le modèle (1.7) est tout simplement l'équation de la chaleur. Dans ce cas simple, si une concentration est soumise à une diffusion spatiale en une dimension d'espace initialement concentrée à l'origine, elle satisfait le problème aux données itiniales suivant

  0)u n'est plus satisfaite. La vitesse minimale s'exprime alors également par la relation c * = 2 f ′ (0). De plus, Aronson et Weinberger [AW78] montrent qu'il existe une relation entre la vitesse minimale d'onde et le taux de propagation (spread rate défini ci-après). Ici, le taux de propagation se réfère au taux auquel une population localement introduite (i.e. de densité nulle en dehors d'un compact) se propage vers l'extérieur. Mathématiquement, c * représente le taux de propagation si, en considérant qu'une population est initialement située dans une région suffisamment grande, une source en mouvement de cette population se développant à une vitesse inférieure à c * rencontre l'état d'équilibre relatif à la capacité d'accueil u = 1, et une source en mouvement se développant à une vitesse supérieure à c * rencontre l'état d'équilibre non envahi u = 0. Ces affirmations se traduisent mathématiquement comme suit : pour tout 0 < ǫ ≪ c * , * -ǫ)t |u(t,x) -1| = 0. (1.23) Ce résultat traduit le fait que pour l'équation de Fisher KPP, le taux de propagation est exactement la vitesse minimale d'onde c = 2 √ rD.

  ). Fife et McLeod[START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] ont prouvé qu'il existe une unique (contrairement aux cas monostable et KPP) onde progressive (U,c) où l'unique vitesse de propagation dépend du signe de Introduction profil d'onde U satisfaisant une équation différentielle du second ordre en z, est associé un système différentiel du premier ordre dans le plan de phase. Cette correspondance permet d'établir l'existence et l'unicité d'une onde progressive. De plus, en multipliant par U ′ (z) > 0 l'équation différentielle

Remark 1

 1 The distinction whether m ≤ (b + 1) 2 4 or m > (b + 1) 2 4 means that there is a threshold value (b+1) 2 4 for the mortality rate m below (resp. above) for which births through sexual and asexual reproduction (i.e. through linear and nonlinear reproduction) can (resp. cannot) compensate mortality. Note that the relevant value (b+1) 2 4 comes out as the cumulated effect of a nonlinear dynamics. • Case b ≥ m: Subcase b < 1:
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 2 Fig. 2.1 -Null clines for the monostable case
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 2 Fig. 2.2 -Null clines for the extinction case
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 2 Fig. 2.3 -Null clines for the bistable case
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 4 Fig. 2.4 -Graph of the remarkable regions in the parameter space
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 25 Fig. 2.5 -Regions of the phase plane where the constraints on the k i 's (in yellow) and the δ i 's (in blue) are satisfied

  this section, since the parameter values of m, b (and d) do not change the structure of the system, they do not play any role in this mathematical study. Hence, the results about local in time existence and uniqueness of solutions, and global existence of solutions, are both proved for all values of parameters m, b (and d) at once.
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 6 Fig. 2.6 -Expected dynamical behavior of the system for a = 0
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 7 Fig. 2.7 -Population density for an initial datum of half-width r = 0.20

  Lemma 6 i) If a sequence v n ∈ M converges to a continuous function v almost everywhere, then v n converges to v in M uniformly on every compact set. ii) If a sequence v n ∈ M converges to a function v ∈ M almost everywhere, then v n (x) converges pointwise to v(x) at any point of continuity x of v. iii) If a sequence v n ∈ M converges to v ∈ M almost everywhere and Q[v](x) is continuous almost everywhere, then Q[v n ](x) converges pointwise to Q[v](x) at any point of continuity x of Q[v].

  .)](s) at any point of continuity of R c [a(c,.)] 4 . Consequently, we have a(c,s) = lim n→∞ a n+1 (c,s) = lim n→∞ R c [a n (c,.)](s) = R c [a(c,.)](s), ∀s ∈ R\Σ.

  Definition and LemmaAs in[START_REF] Li | Spreading speeds as slowest wave speeds for cooperative systems[END_REF], we define the wave speedc * + = sup{c : a(c, + ∞) = v}.associated with a. With this definition, the wave speed satisfiesc * + > -∞.Proof : We follow the proof of[START_REF] Fang | Traveling waves for monotone semiflows with weak compactness[END_REF]. Since 0 ≪ ω ≪ v and lim n→+∞

  sequence b n converges pointwise to a function b which has the same properties as function a (Lemma 8). Furthermore, we define the minimal wave speed c * +,p = sup{c, b(p,c, + ∞) = v}. associated with the semiflow Q 1 p . Roughly speaking, we have the following comparison result for the wave speeds c * + of Q 1 and c * +,p of Q 1 p

  c; +∞) = v} = sup{c : b(1,pc, + ∞) = v} and c * +,p = sup{c : b(p,c, + ∞) = v}. Thus, to prove the Lemma, it is sufficient to verify that b(1,pc, + ∞) = b(p,c, + ∞). To verify that b(1,pc, + ∞) ≤ b(p,c, + ∞), thanks to the definition of b n and by virtue of the translation invariance of Q t , it is possible to deduce (see [FZ14]) that b 1 (1,pc,s) ≤ b p (p,c,s), ∀s ∈ R. Hence, an induction allows to obtain b n (1,pc,s) ≤ b np (p,c,s), ∀n ≥ 1, which implies, taking the limit n → +∞, that b(1,pc,s) ≤ b(p,c,s), ∀s ∈ R. Therefore, the first inequality follows letting s → +∞. Conversely, since b(1,pc,.) is a fixed point almost everywhere of R pc , we deduce that the quantity defined as b(1,pc,s) = lim xրs x∈Σ b(1,pc,x), where Σ denotes the points of continuity of b(1,pc,s), is an upper fixed point of R pc . Thanks to this upper fixed point, we define a new threshold function ψ and a new sequence of functions, whose initial datum is a translation in space of ψ and satisfies ψ ≥ φ. This sequence of functions, which is less than a leftward translation of b(1,pc,.) allows to obtain, for a positive real number s 1 , the inequality b(1,pc,s -s 1 ) ≥ b(p,c,s). Hence, we deduce b(1,pc, + ∞) ≥ b(p,c, + ∞).

0 P

 0 By Duhamel's formula, the solution of our system (S) can be written:v(t,x) = P (t)[v(0,.)](x) + t (t -s)[f (v(s,.))](x) ds, ∀ t ≥ 0, ∀x ∈ R.

e 0 P

 0 αt Q tn [v 0 ](x) = P (t n )[v 0 ](x) + tn (t n -s) f α s,w(s,.,v 0 ) (x) dswhereP (t n )[v 0 ](x) = 0 (x).Define the sequence of functions g n (t) = u 0 (y). For any t > 0, this sequence converges pointwise to√ ε 2d √



  := P (t)[v 0 ](x) a.e. x ∈ R. Then, P (t n )[v 0 ] -→ n→+∞ P (t)[v 0 ] almost everywhere.By the continuity of the integral and the boundedness of f α , we deduce by a similar argument that the integral term converges almost everywhere as well.Therefore, we havee αtn Q tn [v 0 ] -→ n→+∞ e αt Q t [v 0 ] almost everywhere, that is Q tn [v 0 ] -→ n→+∞ Q t [v 0 ] almost everywhere. Eventually, due to the monotonicity of v 0 , Lemma 6 iii) implies Q tn [v 0 ] -→ n→+∞ Q t [v 0 ] at any point of continuity of Q t [v 0 ]. ii) Let (v n 0 ) ∈ M N v such that v n 0 -→ n→+∞ v 0 ∈ M v uniformly on every compact set of R.Consider w n = e αt v n and w = e αt v the respective solutions of the Cauchy problem   z t = Dz xx + f α (t,z) z(t = 0) = z 0 , which implies e αt Q t [w 0 d ](x) ≤ e αt Q t [w 0 ](x) ≤ e αt Q t [w 0 g ](x).Taking the limit h → 0 and using Lemma 6 iii), we havelim h→0 e αt Q t [w 0 d ](x) ≤ lim h→0 e αt Q t [w 0 ](x) ≤ lim h→0 e αt Q t [w 0 g ](x)Hence, we havee αt Q lim h→0 v 0 (x + h) ≤ e αt Q lim h→0 v 0 (x) ≤ e αt Q lim h→0 v 0 (x -h)and eventuallye αt Q v 0 (x + ) ≤ e αt Q v 0 (x) ≤ e αt Q v 0 (x -)As a conclusion, lim h→0 w d (t,x) := w(t,x + ) ≤ w(t,x) = w(t,x -) := lim h→0 w g (t,x). (3.1)

c

  ≥ c * + where c * + represents the minimal wave speed.Phénomènes de propagation de champignons parasites de plantes, par couplage de diffusion spatiale et de reproduction sexuée. Résumé On considère des organismes qui mixent reproduction sexuée et asexuée, dans une situation où la reproduction sexuée fait intervenir à la fois de la dispersion spatiale et de la limitation d'appariemment. Nous proposons un modèle qui implique deux équations couplées, la première étant une équation différentielle ordinaire de type logistique, la seconde étant une équation de réaction-diffusion. Grâce à des valeurs réalistes des différents coefficients, il s'avère que la deuxième équation fait intervenir une échelle de temps rapide, alors que la première fait intervenir une échelle de temps lente. Dans un premier temps, on montre l'existence et l'unicité de solutions au système original. Dans un second temps, dans la limite où l'échelle de temps rapide est considérée infiniment rapide, on montre la convergence vers une dynamique réduite d'état d'équilibre, dont les termes correctifs peuvent être calculés à tout ordre. Troisièmement, en utilisant des propriétés de monotonie de notre système coopératif, on montre l'existence d'ondes progressives dans une région particulière de l'espace des paramètres (cas monostable).
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on parle alors d'effet Allee, en hommage au biologiste Warder Clyde Allee qui introduisit cette notion en 1938. Dans ce cas, la fonction de croissance de population est

  

	de réaction-advection-diffusion (1.6). La solution de l'équation de la chaleur (sans advec-par exemple à un processus de natalité-mortalité, plusieurs cas d'équations de réaction-population est positive, c'est à dire quand la fonction de croissance f est positive. On
	tion) est représentée à la figure 1.3 à plusieurs temps, pour une donnée initiale de type diffusion peuvent se produire. Nous soulignons ici trois prototypes (parmi d'autres) dira alors que f est de type monostable. L'effet Allee fort est caractérisé par le fait que
	créneau. On remarque au passage l'effet régularisant de l'équation de la chaleur. Même pouvant décrire la dynamique d'une population. Considérons un modèle de réaction-la croissance est négative pour les faibles valeurs de n, c'est à dire quand la croissance
	en prenant une donnée initiale très peu régulière (ici, on a une fonction continue mais diffusion décrivant la croissance et la dispersion d'une population n(t,x) dans une échelle est négative aux faibles densités. La fonction de croissance f est alors négative proche
	dérivable uniquement presque partout), la solution est continûment différentiable. On spatiale à une dimension. Les mouvements aléatoires, couplés à la croissance de la de 0 et positive proche de 1, et on dira que f est de type bistable ou multistable.
	remarque également que la variance de la Gaussienne augmente en fonction du temps, population, donnent lieu à l'équation de réaction-diffusion
	et donc que la localisation des individus devient incertaine. ∂n ∂t = D Effectuons un changement de variables, tel que la densité de population soit divisée ∂ 2 n ∂x 2 + f (n). par sa capacité d'accueil et que le temps et l'espace deviennent des échelles de temps
	et de longueur caractéristiques, à savoir		
	Fig. 1.3 -Solution de l'équation de la chaleur à différents temps
	Avec une croissance de population logistique		
	f (n) = rn 1 -	n K		(1.14)
	où r est le taux de croissance intrinsèque de la population et K la capacité d'accueil du
	milieu (exprimée en nombres d'individus), nous obtenons la célèbre équation de Fisher-
	KPP (Fisher-Kolmogorov, Petrovsky,Piskunov, [KPP37]) qui est le cas le plus simple
	de nonlinéarité pour les équations de réaction-diffusion.	
	Cependant, certaines populations peuvent avoir un taux de croissance per capita moindre
	aux faibles densités, telles qu'en moyenne, elles ne peuvent pas s'autoremplacer quand
	leurs densités sont faibles. Lorsque ce taux de croissance per capita f (n) n n'atteint plus
	admet pour solution son maximum en n = 0, f (n) = rn 1 -w(t,x) = h ⋆ u(t,.) (x), n K n -C K	,	1.10) (1.11) (1.15)
	où C est la densité critique en dessous de laquelle le taux de croissance de la population
	où la convolution est donnée par devient négatif.		
	+∞		
	h ⋆ u(t,.) (x) = Cet effet peut être dû à la difficulté de rencontrer un partenaire à faible densité ou h(y)w(x -y,t) dy (1.12) -∞ = 1 2 √ πDt +∞ -∞ h(y)e -(x-y) 2 4Dt dy. 1.3.2 Cas particuliers à une mauvaise résistance aux phénomènes climatiques extrêmes [Roq13], et traduit la (1.13) nécessité d'avoir assez d'individus autour de soi pour favoriser la reproduction.
	Depuis des années, une grande attention a été portée aux modèles de réaction-diffusion
	Cette convolution de la solution fondamentale avec une donnée initiale quelconque est du type (1.7), qui décrivent par exemple la répartition d'une population dans l'espace Il convient cependant de distinguer deux formes d'effet Allee : l'effet Allee faible et
	aussi vraie pour des opérateurs linéaires généraux, comme par exemple pour l'équation au cours du temps. En fonction de la forme que prend le terme source f , correspondant l'effet Allee fort. L'effet Allee faible est caractérisé par le fait que la croissance de la

  ). Le prototype est alors l'équation (1.17).

			Introduction
	Ces différentes fonctions sont représentées à la figure 1.4 ci-dessous où z est parfois appelée la variable d'onde et U (z) le profil d'onde. On note généra-Une solution u(t,x) d'une équation de réaction-diffusion à une dimension, décrite par son
	lement (U,c) une telle onde progressive. Au cours du temps, une onde progressive se profil d'onde U (z) vérifiant (1.18) et les conditions limites U (-∞) = u -, U (+∞) = u + , Fig. 1.4 -Graphiques des différents cas de figure du taux de croissance f déplace à vitesse constante c dans la direction des x positifs. Une onde se déplaçant satisfait nécessairement l'équation différentielle
	dans la direction des x négatifs est de la forme u(x + ct). Une onde progressive a pour caractéristique de joindre deux états d'équilibre, notés U (+∞) = u + et U (-∞) = u -DU ′′ (z) + cU ′ (z) + f (U (z)) = 0. (1.20)
	et tels que u + = u -. Ces solutions, dont le profil U reste constant et se déplace à vitesse En posant V = U ′ , l'équation (1.20) peut être réduite au système d'équations différen-|c|, décrivent par exemple l'invasion d'une population de l'état u -vers l'état u + lorsque c > 0, et de l'état u + vers l'état u -lorsque c < 0. Afin que U (z) ait un sens physique réaliste, puisqu'elle représente par exemple des densités de population, le profil d'onde tielles du premier ordre  
	doit être positif et borné pour tout z. Notons enfin que l'on peut étendre la notion 
	d'onde progressive aux dimensions supérieures par la relation	
		u(t,x) = U (x • ξ -ct), ξ ∈ S n-1 ,	(1.19)
	où S n-1 désigne la sphère unité de R n et ξ la direction de propagation du front. Enfin,
	ces notions s'étendent également à des systèmes de réaction-diffusion, c'est à dire quand
	les inconnues u et U sont des fonctions à valeurs vectorielles.	
	De nos jours, de nombreux articles traitent l'existence et la non-existence de telles
	ondes [VVV94]. De nombreuses méthodes d'analyse ont été étudiées afin de répondre	à
	cette question. Parmi les plus connues, citons les quatre suivantes :	
	1. Les méthodes topologiques, avec en particulier la méthode de Leray-Schauder ba-1.3.3 Ondes progressives sée sur la théorie du degré topologique vérifiant le principe de rotation non nulle et
	l'invariance par homothopie. Lorsque l'on cherche les solutions d'une équation de réaction-diffusion, que ce soit dans 2. Les méthodes issues de la théorie des bifurcations. sa forme la plus générale possible (1.7) ou dans des cas particuliers comme (1.16) ou 3. Les méthodes de réduction d'un système d'équation du second ordre à un système (1.17), il est fréquent de chercher ces solutions sous la forme d'ondes progressives. On d'équations différentielles ordinaires du premier ordre et de nombreuses méthodes d'ana-appelle onde progressive une onde qui se déplace dans l'espace sans changement de lyse des trajectoires du système (dans le cas d'ondes monodimensionnelles). forme. De ce fait, si une solution u(t,x) d'une équation de réaction-diffusion représente une onde progressive, la forme de la solution est la même au cours du temps et la 4. Les méthodes basées sur des propriétés de monotonie.
	vitesse de propagation du front d'onde, que l'on note communément c, est constante. Si les méthodes 1 et 2 mentionnées précédemment ne seront pas développées dans la Mathématiquement, ces solutions s'expriment par la relation suite, prenons quelques instants pour parler de la méthode 3, sans doute la plus cou-
	ramment utilisée.	u(t,x) = U (x -ct) = U (z), z = x -ct,	(1.18)

  système de réaction-diffusion. De prime abord, nous effectuons une étude qualitative très informelle du système dynamique en étudiant les null clines associées à notre système et en exhibant une région invariante. Ces deux études nous permettent de poser les jalons et de faire les premières hypothèses nécessaires pour la suite. En effet, l'existence d'une région invariante nous donne une borne pour un couple de solutions de notre système. Cette borne nous sert à démontrer que toute solution locale à notre système APE + 49] Warder Clyde Allee, Orlando Park, Alfred Edwards Emerson, Thomas Park, Karl Patterson Schmidt, et al. Principles of animal ecology. Number Edn 1. WB Saundere Co. Ltd., 1949.
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We prove the stabilities in this subcase. We do not write the Jacobian matrices in the subsequent cases for the reader's convenience.

Fig. 2.8 -Population density for an initial datum of half-width r = 0.15

The discontinuity points of R c [a(c,.)] are those of Q[a(c,.)] according to the definition of R c .
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We can also verify (using an algebraic computing program like Maple) that F ′ (U -) > 0 and F ′ (U + ) < 0. Thus, whenever b < m < (b+1) 2

4

< 1, the function F satisfies the following properties:

Therefore, according to the theory of [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] mentionned in the introduction, we can assert the following result.

Theorem. (borrowed from [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]) There exists a unique traveling wave solution (U,c) for system (2.1) when a = 0. The sign of the wave speed c depends on the sign of the integral

Dependence on the wave speed

In the bistable case, the previous result is not sufficient to state whether we have invasion of a population from an initial location to another one. To decide whether we have invasion or extinction of a population, we need to have a look at the potential wave speed c, which has the same sign as and looking at its contour lines.

In other words, we expect a bistable invasion whenever 0 < m < m * 8 and a bistable extinction whenever m * < m < (b+1) 2 4 < 1.

In next chapter, we will see that in the monostable case, we can expect to have a traveling wave connecting (0,0) and (i + ,u + ). We can thus expect to have invasion of a population from an initial location to another one.

Nevertheless, whenever 1 > m > (b+1) 2 4 or 1 ≤ b ≤ m, the single equilibrium (0,0) is asymptotically stable. Thus, we have extinction of the population density anyhow.

We summarize this discussion on potential traveling waves in Figure 2.6.

8. we will see further that we can also have extinction of the population in a case where the initial population is too weak. This phenomenon is called sharp transition.

countability of discontinuity points, the Lebesgue integrability and a certain type of compactness through the following result that we shall use repeatedly in the sequel:

There exists a subsequence of (v n ) which converges pointwise.

Unfortunately, it turns out that the iteration of T -ct Q t may converge to the null traveling wave while we seek a traveling wave connecting the equilibria v to (0,0), that is a

To avoid the convergence of (T -ct Q t ) n to zero, we introduce a function φ, positive at -∞ and vanishing on R + , representing a minimal threshold, which eventually imposes the contraint that W (-∞) = v. Based on this choice of φ, we define the operator R c,k ,

In doing so, we sort of construct an equivalent problem to the previous one, guaranteeing that the iteration does not collapse to zero. Now, we iterate the operator R c,k and take the limit of (R c,k ) n as n → +∞.

Passing to the limit, we obtain a fixed point of the operator R c,k . In a second time, decreasing the minimal threshold function φ to zero by letting k → 0, we actually ob-

Technically, we first start proving the main result with the operator R n c,1 for t = 1 and k = 1. Then, splitting the interval [0,1], we extend the result for t = 1 2 , t = 1 4 , and so on for any t = 2 -n , and for any fixed value of k > 0. Eventually, we obtain the main result for any time t ≥ 0 by a density argument and by taking the limit k → 0.

The numerical results show that we expect a traveling wave connecting v to 0 in the region b > m of the (b,m) plane.

Assumptions and preliminary results

We consider here the functional spaces:

where the ordering on R 2 is defined by

We define for any y ∈ R the translation operator T y : M → M by

We introduce the following properties, which are satisfied by our operator

These properties are proved true in section 4.

(A1) Q is translation invariant:

(A4) Monostability: Q admits two fixed points 0 and v (≫ 0) with 0 ∈ R 2 and v ∈ R 2 .

Besides, for any ω ∈ R 2 such that 0 ≪ ω ≪ v, we have lim

Application to reaction-diffusion systems

Let us get back to our system (S) defined at the beginning of this paper. Recall that in our case

The associated system is cooperative in the sense that the first component f 1 of f is nondecreasing with respect to u and f 2 in nondecreasing with respect to i.

When b > m, the function f has two equilibria : (0,0) and v = ( ī,ū) where

In the sequel, we identify 0 with the zero vector of R 2 and we note v = ( ī,ū) the vector of R 2 whose values are defined above.

We have v ≫ 0 and v satisfies the condition called (A5). Namely, v attracts all the solutions of the dynamical system    y ′ = f (y)

Furthermore, f is continuous and locally Lipschitz.

Define P (t) = P 1 (t)

the semigroup of the linear heat system v t = Dv xx , i.e.

with w n (0,.) = w n 0 = v n 0 and w(0,.) = w 0 = v 0 .

A function z is said to be a sub (resp super) solution of this Cauchy problem whe-

Let us define r n = w n -w. Since f α is globally Lipschitz, we have

This means that r n is a subsolution of   

We also notice that r n is a supersolution of

Therefore, the maximum principle, which is independent of the diffusion, asserts that for all t ≥ 0, we have

By virtue of the dominated convergence theorem, the functions e (α±k)t P (t) v n 0 -v 0 (x) -→ n→+∞ 0 almost everywhere since v n 0 → v 0 uniformly on every compact set of R.

Hence, we have r n = w n -w -→ n→+∞ 0 almost everywhere, that is v n -v -→ n→+∞ 0 almost everywhere. By application of Lemma 6 iii), we deduce that v n -v -→ n→+∞ 0 at any point of continuity of v.

To conclude, since

Proof of (A3): Let φ 1 ,φ 2 ∈ M v such that φ 1 ≤ φ 2 . Take w 1 ,w 2 two solutions of

with w 1 (0,.) = φ 1 and w 2 (0,.) = φ 2 .

We have :

Obviously, P (t) φ 1 -φ 2 (x) is nonpositive.

Besides, w 1 (0,.,φ 1 ) = φ 1 ≤ w 2 (0,.,φ 2 ) = φ 2 with w 1 ,w 2 solutions of the above nonlinear heat system in z. The maximum principle gives w 1 (s,.,φ 1 ) ≤ w 2 (s,.,φ 2 ) for all s ≥ 0.

Furthermore, since f α is nondecreasing, the integral term is nonpositive as well. Hence,

As a conclusion, Q t : M v → M v is monotone (nondecreasing) for all t > 0.

Proof of (A4): Assume that (A5) holds. Let ω ∈ R 2 such that 0 ≪ ω ≪ v. Clearly,

is the solution of the nonlinear heat system at time nt starting from ω, namely v(nt,.,ω), and hence

On the other hand, Q n t [ω] = v(nt,.,ω) is independent of x (we start from the constant initial condition ω ∈ R 2 identified to a constant function of M v). Thus, v(nt,.,ω) is also solution of the pure reaction system y ′ = f (y). Since v attracts any solution of this reaction system, we have lim

Eventually, let us verify that Q t maps left-continuous functions to left-continuous functions. Let v 0 be a nonincreasing function which is left continuous with a right-handed limit. We have v 0 (x -) := lim h→0 + v 0 (x -h) = v 0 (x), v 0 (x + ) := lim h→0 + v 0 (x + h) exists and satisfies v 0 (x + ) ≤ v 0 (x).

Recall that e αt Q t [v 0 ](x) = P (t)[v 0 ](x) + .

Hence, for all solutions w, w d , w g such that w(0,x) = v 0 (x), w d (0,x) = v 0 (x + h), w d (0,x) = v 0 (x -h), the maximum principle asserts that w d (t,x) ≤ w(t,x) ≤ w g (t,x), ∀t ≥ 0, ∀x ∈ R,