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Chapter 1: Introduction



What is the ecological niche?

Every species in nature has a range of environments within which it can survive and maintain a
population. Outside this range the conditions are unsuitable, for example they may be too hot or too
cold, too wet or too dry, too many predators or not enough prey, or limiting in some other way. The
set of suitable habitat is termed the ecological niche of the species (Hutchinson 1957, Hirzel et al.

2002, Soberon and Nakamura 2009, Elith et al. 2010).

Species compete with each other for particular resources, for example food and water. Within their
ecological niche they are better adapted to compete for a particular resource, and other species are
excluded from the resource. For example, cacti are adapted to dry arid environments, and will
outcompete other plants in these regions. The niches of two species may be similar, for example two
species may have similar tolerance to temperature (most Mediterranean plants can survive in similar
climates) but there is normally some differentiating factor, such as soil pH or disease resistance, that
differentiates the two niches, resulting in a unique niche for every species. This is the principle of
competitive exclusion. If the niches overlap there is the possibility that species will compete for
resources. If competition occurs, one or both species will suffer, and if these niches overlap
completely (if they compete for exactly the same resources) one species will be driven to extinction.
For this reason we expect that every species has a unique ecological niche, a set of habitat suitable

for that species, that describes the environment where we are likely to find the species.

The concept of the ecological niche has changed through time. In 1917 Joseph Grinnell observed
that the distribution of the California Thrasher (Toxostoma redivivum) was accurately described by
vegetation, topography and climate range of California (Grinnell 1917). Grinnell conceived of the
niche as an entity in space, and in 1929 Charles Elton expanded this to focus on the importance of
interactions between species. Elton viewed the niche as a property of the interaction between
species, describing the niche as a property of the biotic community rather than the particular
species. The next major change came from George Hutchinson, who expounded upon the concepts
of the fundamental and realised ecological niche. For Hutchinson, the fundamental niche was the
range of conditions within which a species could survive on the basis of its physiology, while only a
subset of this is realised (the realised niche) as the species will not encounter all these conditions in
nature (Hutchinson 1957). The concept of the ecological niche continues to evolve, and the practical

applications of this ecological theory continue to expand.



Why is knowledge of the ecological niche useful?

We often wish to infer the distribution of this suitable habitat (the ecological niche) for a species of
interest. Understanding the distribution of this habitat has a broad range of applications, from the
conservation of endangered species (Peterson et al. 2003), to the control of a harmful species (Tran
et al. 2008, Bhatt et al. 2013, Gething et al. 2010, Simard et al. 2009), which in the case of pathogens
or their vectors can enable the control of disease. Understanding the distribution of suitable habitat
of a pathogen enables control, avoidance or other management opportunities for a disease (Hay et
al. 2013). The goal of this thesis is to describe the distribution of suitable habitat for a particular
pathogen, Mycobacterium ulcerans, and the insects suspected to be its vectors, to facilitate control

of the Buruli ulcer disease.

Tools to represent the ecological niche

When we describe the niche, we can consider it as a hypervolume (Hutchinson 1957). For example,
in Figure 1 we have represented the niche of a hypothetical species with three variables, pH , UV
light intensity and oxygen concentration. We can include further variables if needed; temperature,
predation pressure, parasitism, population density, depending on the particular variables we suspect
are most important for describing the distribution of that species and avaliable in the area of study.
We describe this as an n-dimensional hypervolume (Hutchinson 1957). Here, n is the number of
parameters being described, and each parameter (pH, oxygen, UV light) is an axis on the volume. If
we describe one dimension, we have a simple line graph, two dimensions are a square, three are a
cube, four are a tesseract and so on. The principle of competitive exclusion still applies; the extent to
which the two species overlap in the hypervolume describe the potential for competition in the
hypervolume. A number of tools have been developed to represent this hypervolume, which can be
particularly useful both for the purpose of communication and as a tool to help clarify research

goals.

The concept of the niche as a hypervolume is a useful tool that was developed to facilate thinking
about the niche. While it is useful, more than three parameters is difficult to represent, so we often
simplify the hypervolume to a Venn diagram (Soberon and Nakamura 2009), as shown in Figure 1.
The use of a Venn diagram to describe the niche is becoming common, particularly in the format of
the Biotic-Abiotic-Migratory diagram (BAM diagram), by Soberon and Nakamura 2009. The biotic-
abiotic-movement diagram was originally proposed to represent the distribution of suitable habitat
using three parameters, the combination of suitable biotic conditions (predators, prey, parasites),
suitable abiotic conditions (temperature, precipitation), and the environment accessible to a species,
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described as movement. This is one particular formation, the flexibility of the BAM format means we
can easily use the same principle to describe the distribution of just abiotic variables, or of multiple
biotic variables. The movement section of the BAM diagram also highlights the importance of

accessibility, discussed below.
Not just the condition, but also the spatial configuration of habitat influences suitability

When the niche hypervolume is projected into real space it describes the distribution of suitable and
unsuitable habitats for a species. This is the basis of the fundamental (hypervolume, driven by the
species) and realised ecological niche (spatial, driven by the environment), as discussed by
Hutchinson. However, the resulting spatial configuration of this suitable habitat is important for the
persistence of the species. Habitat may be suitable, but if the physical area of the habitat is too small
or does not persist for a sufficient time, the habitat will not support a large population of the
species, as in Figure 2. Habitat that is patchy or fragmented leads to higher local risk of extinction,
and meta-community dynamics become important in maintaining the species (Figure 2 region 3,
Gravel et al. 2006). If the species can get reintroduced often enough it can persist in an area, in the

face of local extinction (Lockwood et al. 2005).
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Figure 1. The ecological niche as a hypervolume. Here, we describe how a given species responds to three
variables (this is a hypothetical species, to illustrate the example). Three variables are used, intensity of
ultraviolet light (in green), oxygen concentration (in blue) and pH (in red). There is a certain range of pH that
is suitable for the species, and so for oxygen and UV light. We can represent this as a three dimensional cube
or, if there are more than three dimensions, a hypervolume. Each of the variables important in the species
distribution is an axis in the hypervolume. In this example, this results in a sphere of suitable habitat within the
hypervolume. Complex hypervolumes can be represented as a Venn diagram. In the Venn diagram, the
terminology N is read as ‘intersection’, meaning the area of overlap between two regions. The term ¢ refers to
‘complement’, the area outside the region, so P is the area of habitat unsuitable due to unsuitable pH values.
The area O N P n L is the combination of suitable environmental parameters. The term G refers to the entire
region studied, the extent volume of the hypervolume. As discussed in Chapter 2, appropriately setting this
extent is important in model performance. An ecological niche model of aquatic insects from the Families
Belostomadiae and Naucoridae (the suspected vectors of our subject species, M. ulcerans) is constructed in
Chapter 4, based on the principles developed.
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Figure 2. The importance spatial distribution of suitable habitat for a species. The ecological niche, here
represented as a Venn diagram (as in Figure 1) is projected from ecological space into real space. The area of
where suitable conditions co-occur (O N P N L) is the orange area, which is where we expect the species to
occur (Region 1). However, certain areas are physically too small to maintain a viable population (light orange)
and are uninhabited, despite being suitable for the species. Because the environmental variables can change
from region to region, the spatial assemblage of suitable habitat will also vary, even if the ecological niche is
the same. This is represented in the difference between Region 1 and Region 2, where the spatial distribution
of oxygen, UV light and pH change, such that all habitat is too small. This also can also be temporal in nature,
rather than between areas; for example, pH may be suitable for a short time in a particular season, but this
time may be insufficient to permit colonisation by the species. This can be particularly important for slow
growing species. Meta-community dynamics become important at this point, as shown in Region 3. Here, the
suitable areas are spatially separate and individually are not able to maintain a population, but because of
connections to other areas (red lines) the species is able to maintain itself. This can be important for many
highly mobile species. Practically, this means local control of a population of a species may be achieved by
non-local interventions. An example of this is found in the conservation procedures proposed for endangered
Ethiopian wolves, were vaccination strategies are aimed at a different species, wild dogs, to control the
movement of the rabies virus. In that scenario, the wolves and dogs can be thought of different ‘patches’ of
habitat for the virus (Haydon et al. 2002).



Examples of techniques for modelling the ecological niche

When we decide to describe the distribution of suitable habitat, there are a variety of different
methods available for modelling the ecological niche of species. The performances of these methods
have been compared in a variety of papers (Segurado and Araujo 2004, Austin 2007, Soberon and
Nakamura 2009). The purpose section is not to extensively compare each modelling method, but to
give a brief overview of different methods available in terms of their assumptions and data
requirements. In principle we should try to understand how the structure of our data and the goal of
our study meet the assumptions of different techniques, and decide which method to use on this

basis.

The first division in techniques is between correlative and mechanistic niche models. Correlative
niche models attempt to correlate the species population size to the observed environmental values
(Figure 3), while mechanistic models are based on knowledge of the physiology of the species
(Figure 4). An example of mechanistic niche modelling is found in Kearny et al. (2004), who use an
understanding of the physiological tolerance of a lizard to temperature, and other environmental
factors, to identify the distribution of the species in Australia in space and time. Neither correlative
nor mechanistic methods are without limitations, however in this thesis | have used correlative niche
techniques as we generally do not have the prerequisite physiological data for our target species,

Mpycobacterium ulcerans.

There are three types of species distribution data used in correlative ecological niche modelling.
Presence only data, presence-absence data, and abundance data. These data are different in the
questions they can answer and the uses to which they can be applied. Presence only data are easier
to collect, but are influenced by sample site bias — choice of sample sites has a large effect on the
model (Elidth et al. 2010, Chapter 2 of this thesis). On the other hand, absence data is often difficult
to interpret; is the species absent, or did we fail to detect it? Some sites are easier to reach and so
more intensively or reliably sampled, certain species are easier to detect. For example, when
detecting environmental bacteria we often use the polymerase chain reaction (PCR) to detect their
DNA. This raises issues of reliability; in certain conditions DNA is easier to detect, causing
detectability to vary in space and time, as in Figure 5. This is the case for our subject species, M.
ulcerans, which is detected environmentally using quantitative PCR. For these reasons presence-
absence data generally require more effort to gather. Conclusively stating that a species is absent
from a region is difficult. The amount of data, of any type, needed to construct a model varies, and is

discussed in detail in Chapter 2.
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Figure 3. Schematic explanation of correlative niche modelling. Having identified the distribution of the species
in space (the red dots), we select certain environmental parameters (gradient data) and identify those
parameters that are strongly correlated to the presence of the species. This allows us to describe the
distribution of the species beyond the sample sites, but (as is described in Chapter 2) is highly sensitive to the
study area, sampling regime, and sample sites selected.
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Figure 4. Schematic explanation of mechanistic niche modelling. By studying the physiology of a species, and
its responses to different environmental parameters such as oxygen, pH and UV light we can identify how each
parameter is limiting in different ways. This gives us an a priori understanding of the niche and what
constitutes suitable habitat. We then identify the repartition of these parameters in the environment to
describe the expected distribution of the species. Collection of this physiological data often requires intensive
laboratory studies, and is impractical for certain species. For example, bacterial species that are difficult to
culture make such studies time consuming and difficult.
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Figure 5. The effect of detectability as a limitation in niche modelling. Here, as discussed in Figure 3, correlative
niche modelling uses species distribution data to identify the environment where the species is common. We
survey the species and attempt to detect its presence or absence in certain regions, however, the gradient in
the black panel (upper left) represents changes in detectability of the species from one region to another. If
our ability to detect the species decreases, we falsely identify absence, and receive a confused picture of
habitat suitability. Detectability can change for a number of reasons. Certain species are much easier to detect
than others, being large and obvious, such as large mammals. Others, such as bacteria (our study species, M.
ulcerans), are harder to detect. Detectability also changes from one environment to another for the same
species. This highlights the importance of consistent detection methodology between different studies. If
sampling effort is not consistent the sampling regime can bias our results, giving different impressions of the
ecological drives of the species.
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Once we have the environmental variables and the species distribution data, a variety of methods
are available to describe the correlation between the two. One of the oldest types of model (Guisan
et al. 2002), linear models fit a response variable Y (the species distribution data) to an explanatory
variable X (environmental data) such that Y=c+mX+e, where c is the intercept, m is the slope and e is
error. These models assume constant variance, normal error distribution and error independence.
Linear regression is a simple method, and makes the basis of many other methods. For example,
Glass et al. (1995) used logistic regression to model the risk of Lyme disease in Baltimore, finding

that particular soils, forests and urban areas were at greater or lesser risk for human infection.

Generalized linear models (GLM) are much more flexible extensions of linear models (Guisan et al.
2002). They do not require data to be normally distributed, and can use data with binomial, Poisson
or Gamma distributions. With these distributions we can model continuous (eg temperature),
categorical (eg land cover) and proportional data. This greater flexibility allows us to describe more
complicated relationships between the species distribution and the environment. Generalized
additive models (GAM) work in a similar way to GLMs, but they can include nonparametric
predictors using an automated smoothing function (Zuur et al. 2009). GAM is more flexible than
GLM, but has a greater risk of over-fitting. GLM’s and GAM’s have been used commonly in different
applications for ecological niche modelling, for example, Meentemeyer et al. (2008) used a GLM to
describe the distribution of suitable habitat for the arboreal pathogen Phytophthora ramorum in

California (Meentemeyer et al. 2008).

Another potential method to use in ecological niche modelling is maximum entropy modelling. This
method has been increasing in popularity, due to its ability (unlike all the above methods) to use
only presence data as opposed to presence-absence or count data. Maximum entropy fits the
response variable (species presence data) to the predictor (environment data) assuming the species
has the most ecologically efficient distribution. This assumption is not always realistic, for example
breeding populations are often in high population densities for a short period of time. Practically,
meeting this assumption means that the Kullback—Leibler divergence (a measurement of the
difference between two probability distributions) between the curves is minimised (Phillips et al.
2008). To avoid overfitting, a particular parameter, T, must be specified. T is based on the prevalence
of the species in the study area, and is normally unknown. The method has two notable limitations, T
is assumed (from a study of 226 species, Elidth et al. 2006) and may change, and the area of the
study dramatically affects the resulting performance of the model. In other ways maximum entropy
is very robust, producing accurate predictions for small datasets (Elith et al. 2006). Maximum

11



entropy, and all of the above methods, are sensitive to the scale the study is conducted at, discussed

below.

The above list of modelling methods is not exhaustive, many other methods for niche modelling
exist (for example, Ecological niche factor analysis, Hirzel et al. (2002), or Genetic algorithm for rule-
set prediction, Townsend Peterson, Ball and Cohoon (2002). The purpose of the above section is to
introduce some of the basic concepts, to set the rest of the thesis in context. Having selected a
method to model the niche, we then need to evaluate the resulting model(s). There are multiple
different ways to assess the fit of a model. No one method of model evaluation is best, and each
informs us on different aspects of performance. Potential methods for testing models are explored
in detail in chapters 2, 3 and 4 of this thesis. Finally, it should be remembered that a well-fitting
model may be completely biologically irrelevant: goodness of fit does not mean biological realism,

and we can never get away from the need for expert opinion.

Limitations of ecological niche modelling

The basic principle of correlative niche modelling, as discussed above, is to identify suitable habitat
by inferring that large populations are present in suitable habitat. If we observe a gradient in
population along with an environmental gradient, we assume the habitat with the large population
is more suitable. This has certain limitations. We can underestimate or overestimate the size of the
population for a number of reasons. The first of these issues is detectability, as discussed above and
in Figure 5. The second issue is accessibility of the site by the species. Habitat that we would
normally expect to be suitable is often uninhabited by a species due to difficulty in access. This is a
large issue in correlative niche modelling, as in practice it is often extremely difficult to differentiate
habitat that is unsuitable or simply uninhabited. This has important implications for out
interpretation of the resulting models; are we trying to identify habitat suitable for the species to
maintain a population (which is perhaps a target of intervention for pathogens, or conservation for
endangered species), or a region accessible but not necessarily suitable for a species? Evidence of

absence is also difficult to interpret, as discussed above.

Moving up and down scales; the niche model changes from one scale to another

As mentioned above, the scale of the study is important. Scale influences the environmental dirvers
important in the ecological niche, and the performance of any given model is likely to vary from one
scale to another (Tilman et al. 1997). At small scales (Figure 6) the suitability will be driven by the
physiology of the species. For example, at the local scale Mycobacterium ulcerans is influenced by

12



the oxygen concentration, the intensity of UV light and the pH of the environment (Palomino et al.
1998, Stinear et al. 2007, Merritt et al. 2010, Garchitorena et al. 2014). While these parameters, and
others, will directly affect the growth and survival rate of the bacterium, the distribution of these
parameters will in turn be influenced by the local environment. Environmental gradients change
rapidly and at short distances (See for example, Caillon et al. 2014 and Figure 7). Conditions will
change rapidly within and outwith cells (Coutanceau et al. 2005), and within outwith biotic hosts.
However, in turn, at a landscape scale, the distribution of biotic hosts changes, water pH will be
influenced by land cover (swamps will have different average pH to forests), and the parameters that
are most useful at describing the distribution of the bacterium change (Figure 6). As the focus of the
inquiry changes (from understanding the physiology of the bacterium to understanding why it is
more common in one region of a country than another) the scale of our study, and the resulting

ecological niche model, changes.

Herein, | focus on the emerging neglected pathogen Mycobacterium ulcerans, and its suspected
insect vectors. Using correlative niche modelling, | describe the distribution of environmental
variables at the landscape scale associated with the distribution of the pathogen in Cameroon, then
tested in French Guiana. Knowledge of the environmental drivers of the spatial distribution of M.
ulcerans will aid in control of Buruli ulcer disease in endemic countries. A detailed description of the

pathogen and the disease, and the expected impact of the thesis, are described below.
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Global scale

Distribution of Buruli ulcer, worldwide, 2010

Landscape scale

™~ Community scale

Physiological scale

Figure 6. The importance of spatial scale of the study in influencing the niche model. Here, for example, we
consider how a bacterium can be driven by different environmental parameters at different scales. Here the
blue rectangles represent the presence of the bacterium. At the finest scale, the species is driven by pH
ysiology, for example gradients in pH. At the local or community scale the species, though the species is still
influenced by pH, the distribution of the species is more easily described by those factors that describe the
distribution of pH, for example soil types, plan community, or water quality. The same principle is applied at
the larger landscape scale, where the distribution of soil conditions, water quality and plants are described by
the shape of the landscape and climate factors such as rainfall. Community scale image © Kevin Carolan,
Landscape image reproduced from Google Earth, Global scale image reproduced from (WHO 2010).

Figure 7. An infrared image of a leaf surface, taken in the field. The purpose of this example is to highlight the
rapid change in condition, here temperature, over a very short distance. Averaging of climate can lead to loss
of this important micro-variation, misleading our impression of suitable habitat. Reproduced from Caillon et al.

(2014).
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Worldwide incidence, prevalence and pathology of Buruli ulcer

Buruli ulcer is an emergent neglected tropical disease, afflicting primarily poor agricultural
communities in West and Central Africa. Cases have been persistently reported in Australia, Japan
and French Guiana (an ultra-peripheral French territory in South America), and occasional cases have
been reported in several other countries. As shown in Figure 8, the worldwide distribution falls
mainly in West Africa, and globally between 5,000 and 10,000 people are infected per year (Johnson
et al. 2005).

Distribution of Buruli ulcer, worldwide, 2008 Distribution of Buruli ulcer, worldwide, 2010
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Figure 8. Global trends in Buruli ulcer reported cases worldwide in 2008, 2010, 2012 and 2014. The majority of
cases occur in West and Central Africa, however cases have been consistently reported from French Guiana,
Australia and Japan, with cases occasionally reported in many equatorial countries. Reproduced from the
World Health Organisation.
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Changes in the prevalence of Buruli ulcer in time are complex, and still not well understood.
Incidence is known to respond to climate, particularly EI Nino events, in French Guiana (Morris et al.
2014). In a long term temporal study in Akonolinga, Cameroon, the disease was found to expand
according to local landscape characteristics; the distribution of agricultural land, wet land, and the
local river, the Nyong, appear to drive the expansion of the disease agent in this region (Landier et
al. 2014). Landscape and climate are not the only factors driving the prevalence of the Buruli ulcer,
as complex social interactions with the changing landscape also play an important role (Giles-Vernick

et al. 2014).

Preliminary infection by M. ulcerans results, after an unknown amount of time after the infection, in
a small painless nodule. The normal evolution of the infection is to form a plague and oedema.
Ulceration can eventually occur (Figure 9), and cause extensive permanent damage to the skin,
muscle and bone. Once this has occurred the damage is normally permanent, leading to severe

crippling deformities.

Treatment of M. ulcerans infection is normally through a combination of rifampin and streptomycin,
which has proven effective (Etuaful et al. 2005). Though treatment is often provided free of charge,
associated costs (travel, residence at the hospital, social stigma) are often prohibitive, particularly in

poorer rural communities in Cameroon and Africa.
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Figure 9. Infection by M. ulcerans. The disease has a complex progression, from nodule to ulcer. The
incubation time is unknown, but estimated to be several months. Only the ulcerative stage is shown. Within
the ulcer M. ulcerans normally resides in the undermined skin, which is red and inflamed, rather than the
centre of the ulcer. Co-occurrence of other pathogens within the ulcer is remarkably rare. Reproduced from

Johnson et al. (2005).
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International response to Buruli ulcer emergence

In response to the Buruli ulcer the French National Research agency (Agence nationale de la
recherché, ANR) funded the project “Expansion and transmission of Mycobacterium ulcerans in
changing environments: multidisciplinary studies” (EXTRA-MU) in 2012 (code ANR 11 CEPL 007 04
EXTRA-MU). This project brought together experts from a variety of disciplines, aiming to undertake
an integrated research project studying the ecology and distribution of M. ulcerans and risk factors
associated with human infection. This thesis has been financed primarily by the EXTRA-MU project,
the Centre National de la Recherche Scientifique (CNRS), and Institut Pasteur. The thesis has been
supported at the labs Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Controle
(MIVEGEC) and Jeunes équipes associées a I'lRD AtoMyc (JEAI AtoMyc) at the Institut de Recherche
pour le Développement (IRD), and Territoires, Environnement, Télédétection et Information Spatiale
(TETIS) at the Centre de coopération internationale en recherche agronomique pour le
développement (CIRAD). The thesis is supported academically by the Ecole Doctorale Systemes
Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement (SIBAGHE) at the
Université Montpellier 2. As part of ongoing collaboration with the Centre Pasteur du Cameroun, the

EXTRA-MU project focused on Buruli ulcer in Cameroon.

Within this thesis much of the work is focused in Cameroon, however collaboration was also
established, and the thesis partly supported by, the research group biodiversité et dynamiques des
intéractions dans des systemes multi-h6tes-parasites. (BIOHOPSYS) at the Laboratoire d'Excellence:
Centre d’étude de la biodiversité amazonienne (LabEx-CEBA). The LabEx CEBA focuses on the study
and conservation of Amazonian biodiversity in French Guiana, a Buruli ulcer endemic region, and
one of the goals of BIOHOPSYS is to evaluate the importance of biodiversity to human health. These
three research projects, EXTRA-MU, JEAI AtoMyc and BIOHOPSYS, involve the work of several dozens
of researchers and PhD students who have provided extensive support and advice throughout this

research.
Evolution of M. ulcerans

The pathogen that is the focus of this large research effort, M. ulcerans, has proven to be a
particularly difficult microbe to study. This difficulty arises due to its unique ecology and

evolutionary history.

M. ulcerans appears to have evolved from Mycobacterium marinum (Stinear et al. 2000). M.

marinum is a fast growing aquatic pathogen, commonly infecting fish and humans who come in close
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contact with aquatic environments. Human infection appears to result from cuts and abrasions of
the skin, resulting in intracellular infection of host cells. M. marinum infection results in nodules
(Figure 10, Lewis et al. 2003) that are normally easily treatable with standard antimicrobial drugs.
This pathogen also appears to be able to survive in the environment outside the host, producing

pigments to protect itself from UV light.

Figure 10. Result of human infection by M. marinum. Reproduced from Lewis et al. (2003). ©2003 by the
Infectious Diseases Society of America.

M. marnium appears to have undergone a population bottleneck, acquired a plasmid (pMUMO0O01)
and experienced extensive gene inactivation due to the acquisition of several copies of insertion
sequences, which may have been acquired from Streptomyces, an occasionally pathogenic genus of
soil bacteria (Stinear et al. 2007). This reduction in genome size and increased sensitivity to
environmental factors is characteristic of bacteria that are adapting to a new environment,

suggesting that M. ulcerans has recently adapted to occupy a new ecological niche, different to M.
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marinum (Parkhill et al. 2003) The result is a bacterium, M. ulcerans, with an extremely slow growth
rate (72 hour doubling time), high sensitivity to UV light and sensitivity to contamination in culture.
One of the most notable features of M. ulcerans is the production of a virulence factor,
mycolactone. Mycolactone is a large lipid molecule, structurally similar to the macrocyclic triene
rapamycin from the soil pathogen Streptomyces, which is also involved in immunosuppression
(Coutanceau et al. 2007). Mycolactone induces apoptosis in eukaryotic cells (George et al. 2000),
which leads to local immunosuppression through destruction of phagocytes. The painless nature of
the Buruli ulcer nodules is a result of functional suppression of the nerve cells by mycolactone

(Coutanceau et al. 2007).
Environmental distribution of M. ulcerans

The ecological niche and environmental distribution of M. ulcerans remains unknown, but previous
work has associated the bacteria with certain types of environment. Buruli ulcer is known to be
associated with disturbed aquatic environments in Africa (Merritt et al. 2010), though not Australia,
where its associations are less clear but appear to be urban (Johnson et al. 2007). M. ulcerans is
expected to show a similar association aquatic environments, and the majority of previous field work
has focused on aquatic sampling, however this has recently been questioned (below). Wagner et al.
(2008) associated Buruli ulcer (M. ulcerans present in humans) to non-urban landscapes, with a high
wetness index, and Williamson et al. (2008) found that the bacterium has a distribution wider than
the disease (i.e., M. ulcerans can be present in the environment without infecting humans). Previous
work has found that landscape, particularly aquatic sites that are lentic or lotic, influence M.
ulcerans distribution. M. ulcerans is more commonly detected in swamps (lentic systems) than rivers
(lotic systems) in a study in Ghana (Figure 11, Benbow et al. 2013, Mclntosh et al. 2014, Garcia-Pefia

et al. in preparation [Chapter 6]).
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Figure 11. Examples of landscapes typically associated with M. ulcerans presence (A). This slow flowing,
stagnant water is in a lowland swamp in Bankim, Cameroon. (B) represents a landscape typically expected to
have low levels of M. ulcerans presence. Here, mountainous terrain creates small rivers and streams rather
than swamps, also in Bankim. © Kevin Carolan 2012.

Due to the difficulty in culturing M. ulcerans, environmental detection often uses qPCR to detect the
presence of the bacterium. As discussed above, this raises issues of detection bias. M. ulcerans DNA
has been detected in a surprising variety of environmental samples, including aquatic insects,
biofilms, crustaceans, detritus, fish, frogs, mammals, marsupials, soil, snails, water and worms
(Portaels et al. 1999, Stinear et al. 2000, Portaels et al. 2001, Eddyani et al. 2004, Marsollier et al.
2004, Trott et al. 2004, Kotlowski et al. 2004, Johnson et al. 2007, Fyfe et al. 2007, Williamson et
al. 2008, Portaels et al. 2008, Fyfe et al. 2010, Marion et al. 2010, Roche et al. 2013, Carson et al.
2014, Morris et al. 2014, Garchitorena et al. 2014). This combination of a widely distributed
bacterium which appears to be present in a wide variety of species is surprising, given the apparently

reduced ecological niche implied by the genome.

A discussion on the ecology of M. ulcerans deserves to note the unusual case of Australia. The
ecological distribution of M. ulcerans in Australia is notably different from other regions. In Australia
the bacterium is detected in possums. These large arboreal marsupials are common pests in urban
habitats, and infection in possums is closely associated with human cases of the disease (Carson et
al. 2014). Outbreaks of the Buruli ulcer appear to be smaller, with temporary transient outbreaks
over a short distance (approximately 1 or 2 kilometres), compared to Africa, where the disease tends
to be chronic to a particular area, infecting people across tens of kilometres (Johnson et al. 2005).
The source of infection for possums is unclear, however they have been proposed as key hosts and
potential sentinels of the disease. The reasons for this distinctly different ecology are unclear. Two
hypotheses have been proposed. M. ulcerans appears to have been introduced to Gippsland

(Eastern Australia) and moved westward towards Melbourne; potentially the bacterium has further
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adapted and evolved, or it is now occupying a previously unoccupied section of its ecological niche
(it had not encountered possums in Africa, but may be able to infect them). This different ecological
context would then lead to different distributions of suitable habitat for the bacterium, as in Figure

12. The cause is unclear, and will be the subject of future work.

Scenario 1, evolution of the bacterium  Scenario 2, range expansion of the bacterium
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Figure 12. Potential scenarios explaining the different distribution of the disease in Australia. Here, the range
of suitable combinations of Biotic and Abiotic variables are represented by BNA. In Scenario 1, the bacterium
has adapted to a new biotic reservoir on being introduced to Australia from Africa, changing the size of BNA,
and resulting in a different ecological distribution. The second scenario represents the niche with three
determinants, where M represents movement limitations. Here, the bacteria does not undergo evolution or
adaption, but the expansion of M increases the size of BNANM, resulting in a different species distribution.
The exact cause of the difference remains to be identified, and will have implications for the applicability of
studies from one region to another.

Routes by which M. ulcerans infects humans

The route of transmission is unknown. The bacterium is known to be environmentally acquired, and
without human to human transmission, and several modes of environmental transmission have
been proposed. Aquatic insects have been proposed as likely vectors of the Buruli ulcer (Marsollier
et al. 2002), however the likelihood of this route is debated (Benbow et al. 2008). Aquatic insects of
the Families Naucoridae and Belostomadiae (Figure 13), known to very occasionally accidently bite

humans, are able to transmit the bacteria from snails to mice in the lab, resulting in Buruli ulcer like
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symptoms in the mice (Marsollier et al. 2002), and are common in aquatic environments associated
with the disease. They are considered as unlikely vectors, due to the accidental nature of their biting
humans, and the lack of any observed spatial or temporal correlation between their abundance and
the prevalence of Buruli ulcer. The potential role of these insects is explored further in the fourth

chapter or this thesis.

An alternative hypothesis is that of infection through direct contamination, as is the case for most
M. marinum infections. This supposes that damage to the skin, through cuts and abrasions, opens an
opportunity for the bacterium to infect the wound via physically being deposited there during
aquatic exposure. However, recent lab studies of direct inoculation of M. ulcerans onto wounded
flesh in Guinea pigs failed to result in infection (Williamson et al. 2014). This would suggest that

direct contamination is unlikely.

In Australia aerosolization of the bacterium has been proposed as a potential method in infection, or
dispersal (Hayman 1991, Ross et al. 1997). This was originally proposed following observations of a
uniquely costal distribution of the disease in Australia, however the sensitivity of the bacterium to
UV light suggested this route was unlikely. Recently the potential importance of this route has been
revived, following the discovery of the importance of free living amoebae as hosts of M. ulcerans,
suggesting that the amoebae may provide the protection needed to survive in the aerosolized

environment (Amissah et al. 2014).

A

Figure 13. Examples of aquatic insects (Order Hemiptera) collected from endemic regions of Cameroon, of the
Family Belostomatidae, genus’ Appasus (A) and Lethocerus (B), the Families Notonectinae (C) and Mesoveliidae
(D), the Family Nepidae, genus Ranatrinae (E), the Family Gerridae (F), the Family Hydrometridae (G), and the
Family Corixidae genus Micronectinae (H). Scale bars in mm. Reproduced from Marion et al. 2010.
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Overview of the thesis

In summary, M. ulcerans is an emerging neglected tropical pathogen afflicting between 5,000 to
10,000 people per year. The etiology of the disease, including the pathogens environmental
reservoir and mode of transmission, are unknown. The goal of this thesis is to describe the ecological
niche at the landscape scale to assist in the production of hazard maps, to explore the aquatic insect
model of transmission in order to identify the likelihood of this route of transmission. These goals

are aimed to assist in the control of the Buruli ulcer.

In order to use the variety of data sources effectively, the Chapter 2 address questions related to
model performance and sample size. Chapter 3 then applies these to the ecological niche of M.
ulcerans, while Chapter 4 applies them to the proposed vectors, and the final chapter, Chapter 5,

synthesises the results and concludes the thesis.
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Chapter 2: How many samples do we need to describe the spatial
distribution of an emerging pathogen?
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Foreword.

The following chapter is currently under review as a paper to the Journal of Epidemiology and
Infection, titled “How many samples do we need to describe the spatial distribution of an emerging

pathogen?”, by Kevin Carolan, Danny Lo Seen and Jean-Francois Guégan.

This article originated from a need to appropriately use information from multiple databases. Within
the EXTRA-MU and BIOHOPSYS projects | collaborated with three researchers conducting work in
separate environmental contexts. The goal of this project was to evaluate how the performance of

each model would be influenced by the different sample sizes used by each of the researchers.

Within the EXTRA-MU project Andres Garchitorrena conducted 12 months of sampling in Cameroon
(Figure 14), visiting two Buruli ulcer endemic sites, Akonolinga and Bankim, and Estelle Marion
conducted sampling in Pobée, Benin. As part of the LabEx-CEBA BIOHOPSYS programme, and
supported by Bournemouth University, Arron Morris undertook a year of field work in French
Guiana. These four sites, Akonolinga, Bankim, Benin, and French Guiana received similar (though not
identical) sampling protocols and had dramatically different sample sizes. Though the following
article is written in terms of the sample size needed for pathogens, the principles are generally

applicable to most species.

Grateful thanks are extended to the staff of IRD; Andres Garchitorena, Benjamin Roche, and Annelise

Tran of CIRAD, for critical review of the manuscript and insightful discussions on the subject.
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Figure 14. Three endemic regions studied herein. Field work by Aaron Morris was conducted in French Guiana
(Green), work by Estelle Marion was in Benin (Blue) and Andres Garchitorrena worked in Cameroon (Red).
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Abstract

Answering questions of where the pathogens are is often the first step in the control of diseases.
Ecological niche models are widely used to describe the spatial distribution of macro-organisms,
such as birds or mammals, and in the last decade their use has increased considerably for the study
of disease and emerging environmental pathogens. Here we explore the sample size needed for
good performance, and discuss challenges unique to modelling the distribution of environmental
zoonoses and environmentally-acquired microbes. We create several virtual species and model their
ecological niches and spatial distribution with the software Maxent. We find that the sample size
needed for a niche model cannot be determined without consideration of the ecological context in
which a given pathogenic species is distributed. These results highlight the need to appropriately
limit the extent of the study, with political boundaries and health districts, commonly used in
ecological epidemiology, rarely being appropriate. Selection of the extent of the study should be
based on an ecological assumption or hypothesis about the pathogen as a species in ecology, which

can provide a guideline for future studies.

Introduction

To aid control of diseases it is often important to understand the spatial distribution of pathogenic
zoonotic species, where incorrect expectations can have a high cost to society. How can we shape
our predictions of the spatial distribution of these environmental pathogens to be as close to reality
as possible? A potential solution lies in the field of ecological niche modelling (ENM), which
describes the range of environmental conditions within which a species can maintain a population
(Hutchinson 1957, Soberén and Nakamura 2009). ENM is often used to inform conservation efforts
(Peterson and Robins 2003), to describe species potential range (Meentemeyer et al. 2004), and is
increasingly being used to describe species of public health concern, having been applied to
pathogens or their vectors (Ayala et al. 2009, Mullins et al. 2011, Daszak et al. 2013, Hay et al.
2013). Given the utility of ENM, and its potential benefit to public health, how do we go about
constructing these models? How do we know over what area to conduct the study, how many
samples are needed to construct an appropriate niche model, and how do we evaluate the
performance of the models?

In this paper we discuss the complex relationships between sample size, species ecology,
and region of study, and demonstrate how these factors influence the performance of the model, all
of which contribute to an understanding of the spatial distribution of pathogens.

To begin with, a common source of confusion is that the concept of sample size differs between

epidemiological and ecological literature. As a hypothetical example; suppose we collect 500
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individual members of an insect species suspected to be vectors of a pathogenic agent, and we
collect these samples in 5 ecologically unique regions. Epidemiologically we have 500 samples to test
for the presence of the pathogen. Ecologically, this is a sample size of 5, and the 500 individuals
change from being samples, to being abundance data. This simple change in mindset between
epidemiology and ecology has important implications for ENM of pathogens, as discussed herein.

In order to conduct ENM we first select the environmental variables that we suspect
describe the ecological niche (Hutchinson 1957). The niche is often represented in a simplified
manner with a type of Venn diagram termed the Biotic-Abiotic-Migratory (BAM) diagram (Soberdn
and Nakamura 2009), as shown in Figure 15. We use the structure of the BAM diagram to represent
our hypothesis about the importance each of the different environmental variables, which
influences our ability to accurately model the niche; not all structures are equally easy to describe
(Saupe et al 2012). Examples of such hypotheses are found in Figures 15 and 17.

The region in Figure 15 noted BNA is the set of suitable habitat for the species; the purpose
of ENM is to describe this. BAnANMC represents the area of suitable habitat (BnA) that is currently
inaccessible (M) and may be vulnerable to future invasion by the species. If the species is a vector
or pathogen, BNANMC represents a region of future concern for public health authorities. The
structure of BAM diagram can represent many different scenarios; in Figure 16A biotic variables
dominate BNA, so that BNA = B and the species’ suitable habitat is limited entirely by biotic
variables. An example of such a species is the pathogen Phytophthora ramorum, the causative agent
of Sudden Oak Death, which is limited to a greater degree by the distribution of its host species
rather than the distribution of abiotic variables such as temperature (Meentemeyer et al 2004).

In a second example, Figure 16B, the species is limited by its migration ability. Examples of
this situation can include the malaria plasmodium, Plasmodium vivax. This pathogen was eradiated
from southern France in 1943 following the drying of marshes, which destroyed vector habitat, and
extensive use of quinine, which is toxic for P. Vivax. However, the environment is now suitable for
the vector, and it currently poses a threat of re-invasion along with the plasmodium, potentially
leading to a new outbreak of malaria in France (Tran et al 2008). Within the BAM, this is the region
BNA“NM; where high quinine use made the region abiotically unsuitable, but following depletion of

the chemical the habitat suitability increased, and returned to BNnANM.
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Figure 15. The Biotic-Abiotic-Movement (BAM) diagram, a 2D representation of the ecological niche, useful for
understanding the ecology and distribution of emerging pathogens. The region G indicates all combinations of
environmental variable values within the area of interest for a particular pathogen. A subset of this contains
the biotic variables that are suitable for the pathogen, B, indicated in the blue circle. This can include, for
example, distribution of suitable hosts, or the vulnerability of hosts to infection. The subset of G noted by M
(migration) is the region of environmental variables the species can actually access over the time period of
interest, such as a connected population of susceptible humans, or a region accessible by a malaria vector that
is not isolated by climate. The region noted by A contains suitable abiotic values, which are important for
certain environmental pathogens such as anthrax or tetanus, which only survive in certain soil types. The
region BNA (read as “intersection of B and A”) is the suitable biotic and abiotic conditions within which a
pathogen or vector can maintain a population of individuals. This region is divided into BNANM, which is
accessible and suitable, and is where we expect to find the species (though meta-population dynamics and
species detectability issues will influence our ability to detect it). The region of BNANM that coincides with a
human population is where disease occurs, one might imagine a third circle, H, that represents this region. The
notation M is read as “the compliment of M”, the region of habitat suitable for the pathogen not overlapped
by M, and is currently inaccessible to the species. This region, BNANMC is often of great concern for public
health authorities, as it represents areas of potential future epidemics.
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Figure 16. Different structures of the BAM diagram. The structure of the BAM diagram changes for different
species, or for the same species in a different region of interest. For example, the distribution of malaria
vectors will be determined by abiotic environmental conditions in one region (such as rainfall) and by biotic
conditions (such as competition) in other regions. In 2A biotic factors are a greater limiting factor on the size of
BNANM than abiotic factors, such that BNA = B. This is the type of system traditionally studied in
epidemiology, where a pathogen is confined to the body of a host (intra-host ecology). In 2B this species (be it
pathogen or vector) also has two regions accessible to, but unsuitable for, the species, marked B°NANM and
BNA“NM (where B and A are the complement of biotic and complement of abiotic respectively, the areas of
unsuitable environmental conditions) where transitory populations can be found. These transitory populations
have important implications for disease control. For example, a given bacterium may switch between
commensal or pathogenic life styles under situations of environmental stress (such as Bacillus anthracis, the
causative agent of anthrax). A second example is that of insects, acting as disease vectors, straying into these
habitats. The choice of best method to control the populations of such vectors will change depending on the
structure of the BAM diagram.

In Figure 16, we see that the region of suitable habitat, BNA, is larger in 16B than 16A,
assuming G in both diagrams is equivalent. This results in a larger amount of information to be
described by the ENM, which effects model performance, as discussed below. The specialist species,
with the smaller ecological hypervolume, will require fewer samples to describe than a more
generalist species with a larger hypervolume (Hernandez et al 2006). However, this effect is slightly
more subtle than it first appears; as Figure 17 illustrates. As our region of interest changes from G; (a
small scale local study of the vector or pathogen) to G, (a large or global scale) the volume of BNA
also increases. This causes the species to appear to be a specialist for one region or variable, and
generalist for another, and this increase in the size of BNA should also increase the amount of

information we need to explain.
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Figurel7. Subsetted BAM diagram representing the effect of changing the region of interest. Region G; is a
subset of G,. For a study bound by the limits of G; abiotic factors are not a limit on species distribution, and a
model constructed in this region will not account for their effect in BmAnMnGlc. Though it is simpler to
interpret increasing G as an increase in the spatial area of the study, G also increases if we increase the
number of environmental variables studied.

The purpose of these examples is to demonstrate that the relative importance of different
environmental variables in determining the distribution of an environmental pathogen will change as
we change species or the geographic region (or ecological volume) we are studying. Change in these
ecological processes drives changes in the distribution of pathogens, causing the emergence of many
modern zoonotic and environmentally acquired diseases. This change influences our ability to
construct an accurate ENM; as the size of the region BNA of the BAM diagram changes the amount
of information needed to describe that volume will also change, and we can facilitate understanding
of this change with the BAM diagram (VanDerWal et al. 2009, Barve et al. 2011, Elith et al. 2011).

Herein, we explore the effect sample size (u), niche volume (V) and region of interest (G)
have on our ability to model the ecological niche of such a zoonotic or environmentally-acquired
species. We evaluate model performance with the area under the curve of the receiver operating
characteristic (AUC), a metric originally inherited from the medical literature (Matthews et a/ 1990).
We theorised that by placing models in an ecological context, using the BAM diagram, we could
explain how the required sample size changes in different environmental conditions.

We focus on a study of modelling methods that are limited to presence-only data. This is a
common limitation in ecological epidemiology, as absence data is often difficult to gather, or
underestimated in importance. While absence data can be extremely informative ecologically, it is

often considered as methodological fault in epidemiology. To construct these presence-only models
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we use maximum entropy modelling (Phillips, Dudik and Schapire 2004, Dudik, Phillips and Schapire
2007), in the software Maxent (Phillips, Anderson and Schapire 2006) as this is one of the most
commonly used presence-only modelling methods in the literature (Anderson et al 2006). We
discuss the utility of AUC as an index of Maxent model performance; exploring the effect u, Vand G

have on model AUC, and how the ability of model AUC as an indicator of true performance changes.

Materials and Methods

To explore the effect sample size (u), niche volume (V) and region of interest (G) have on model
performance and model AUC we divide this study into three questions. We also discuss the utility of
AUC as an index of model performance and how the relationship between AUC and true

performance changes. The three questions asked are as follows:

1) How does model performance change as sample size changes?

Ecologically unique sample sites range in number from 5 to 50 at intervals of 5; this range was
selected to correspond to most previous environmental studies. Sample size is increased, and result

on the model AUC is explored.

2) How does model performance change as the size of the species ecological niche (niche

breadth) changes?

The volume of the species ecological niche (BNA) is the volume of environmental variables within
which it can be found. This is increased as described below; 5 different virtual species are used with

increasing niche breadth.

3) How does model performance change as the region of interest changes?

The size of the set of environmental variable combinations under study (G) is increased and the
resulting effect on AUC and model performance is recorded. This is achieved simply by limiting our
study area to different spatial extents, noted G, to Gs, shown in Figure 18. It should be recalled that
this increase could also be achieved be increasing the number of environmental variables studied.
An immediate criticism of using these 5 bounding regions is that they have no biological justification.

We invite with this criticism, and the importance is discussed in the conclusion.

37



Figure 18. Extent of the G; to Gs sub-regions within the United Kingdom. For simplicity we have represented
changing region of interest as a spatial change, however it should be remembered that G is an ecological
entity, not necessarily a spatial one. We can also increase G by increasing the number of parameters in the
model. Normally, as the spatial extent of G increases we encounter new ecological parameter values not
previously studied: this is the increase in G we consider here.

Environmental variables and virtual species data

Environmental variables used were annual precipitation (millimetres), elevation (meters above sea
level), and annual mean temperature (degrees centigrade*10), taken from the Worldclim database
(Hijmans et al. 2005) for the region of the United Kingdom (Figure 19, top row). Five virtual species
are then generated in this region, in a similar manner to Elith and Graham 2009. Ecologically, we can
consider these as any particular species, epidemiologically they could be thought of as
environmental pathogens or vectors. The ecological niche for each of these 5 species responds to
these three environmental variables, where the probability of detecting the species at each cell in
the region of interest is (E*T*P)/3. E is the suitability of the elevation, T is the suitability of the
temperature and P is the suitability of the precipitation as shown in Figure 19, middle row. This is
the true realised ecological niche, normally unknown for real species. The niche is projected into
space (Figure 19, bottom row) and a distribution of individual members of the species is generated
using the rbinom function in R (R Core Team 2013) where the probability of a true presence is
determined by the suitability of the cell, so the species is more common in suitable habitat. A sample
of this presence data is then selected at random, which assumes all ecologies have received
equivalent sampling effort.
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Model construction

We then use maximum entropy modelling to describe the niche from these samples. Maximum
entropy has been discussed in depth previously (Phillips, Dudik and Schapire 2004). In brief, the
difference between the distribution of the environmental variables and the species distribution is
minimised using the Kullback—Leibler divergence (Phillips, Dudik and Schapire 2004). This effectively
assumes the species has the most energetically efficient distribution, which we note is an
assumption that is not always ecologically valid. For example, this assumption can be violated for
vectors in situations where sexual selection determines distribution (there will be large temporary
clusters of the species for breeding), and care should be taken to consider a vector or pathogen in
ecology before it is modelled. These maximum entropy models are constructed using the software
Maxent 3.3.3k (Phillips, Dudik and Schapire, 2007, Maxent Software, ver. 3.3.3k), which can fit
relationships with linear, hinge, threshold, and quadratic functions. We modelled the 5 different
virtual species (V) with 10 different sample sizes (u) and 5 different areas of interest (G), with each

Maxent model replicated 100 times, resulting in 25,000 models.
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Figure 19. Ecological niches of five virtual species. Annual precipitation, elevation, and annual mean
temperature, top row, are used to define the species niches. Each species responds to these variables
differently, as shown in the species response curves in the middle row. The different responses result in a
different ecological niche, projected into space in the bottom row. A true species distribution is then
generated, where the probability of an individual being present in a given cell is proportional to the suitability
of that cell, and a sample is then collected from this true distribution.
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Evaluating model performance

We aim to explore how changing the sample size, species niche, and region of interest effect the
model performance, and to do this we used the AUC as an indicator of performance. The AUC, or
area under the curve of the receiver operating characteristic, is a commonly used method of model
evaluation, normally derived from presence and absence data, and has been discussed and criticized
previously (Lobo et al 2008).

AUC is derived from a confusion matrix. Model predictions are classified as correct or
incorrect according to the original presence and absence data. An AUC of 1 indicates no false
positive or false negative classification errors, a value of 0.5 indicates the model is no better than a
random classification, and lower than 0.5 indicates more incorrect classifications than correct.
However, often absence data is unavailable due to difficulty in collection or other methodological
limitations. This can often happen in infectious disease surveillance where health authorities focus
on the presence of a given vector of interest, such as Aedes albopictus in southern France, and its
absence is considered irrelevant in data collection. In this case we use presence-only modelling
methods such as Maxent. However, this raises the problem of model evaluation, as we cannot
construct a confusion matrix without absences. To solve this, Maxent normally uses randomly
generated pseudo-absence in lieu of real absence data. The use of these pseudo-absences
represents the hypothesis that a species distribution should be non-random; however, this
hypothesis is not always ecologically valid, as discussed in the conclusion. Maxent normally
generates two AUC scores; training AUC, generated with the data used in model training, and test
AUC which, herein, is generated with a separate 20% subset of the training data. We also generate a
third metric, the true AUC, using the virtual presence data and the real absence data, as opposed to
pseudo-absence data which maxent normally uses. This allows us to describe the real performance
of the model. The true AUC allows us to explore the ability of test and train AUC to indicate model
performance, if test and train AUC are perfect indexes of model performance, they should be

correlated to true AUC.

41



Results

We found that model AUC increases as sample size increases, increases as niche size decreases
(Figure 20), and increases as we increase the region of interest (Figure 21). However, model AUC and
true AUC are not always correlated, and the relationship between them varies non-randomly.
Model AUC is more accurate (closer to true AUC) for large sample sizes and small niches (Figure 20),
which is to be expected, as large sample sizes contain more information, and smaller niches require

less information to explain, resulting in a true increase in performance.

Effect of Sample size and Niche size on Train AUC Effect of Sample size and Niche size on Test AUC Effect of Sample size and Niche size on True AUC
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Figure 20. Effect of species niche size (V) and sample size (u) on model AUC and true AUC. Region of interest is
kept constant at G;. Colour indicates virtual species niche size, as in Figure 5. Train AUC is the average training
AUC of 100 replicates of Maxent models, test AUC is the average AUC generated from 20% subsample
validation in these Maxent models and true AUC is the AUC for the same replicate using known presence and
absence data, rather than pseudo-absence. Model AUC is always higher for species with smaller niches, but is
always over-predicted - true AUC is always lower than model AUC. The difference between model AUC and
true AUC is greater for species with larger niches.
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Effect of Region of Interest on Test AUC Effect of Region of Interest on accuracy of Test AUC
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Figure 21. Effect of region of interest (G) and sample size (u) on model AUC and true AUC. For clarity only
virtual species 1 is shown. The left hand figure demonstrates effect of region of interest (as defined in Figure 4)
on test AUC. Train AUC shows the same relationship. Larger regions of interest tend to have higher AUC scores.
The right hand figure demonstrates the accuracy of these scores, as the difference between test AUC and true
AUC. The horizontal black line is zero difference, if the Test AUC is accurate then there should be no difference
between true AUC and test AUC. Points above this line indicate over estimated performance, below indicate
underestimated performance. Though test AUC is often higher for larger regions of interest, increasing the
region of interest tends to result in less accurate AUC scores. The increase is artificial.

The region of interest also has a large effect. For a constant niche and sample size the model AUC
will increase as G increases (Figure 21, left hand), however there is no corresponding increase in true
AUC (Figure 21, right hand). Models constructed on larger regions of interest have a higher AUC, but
are less accurate and this increased AUC does not represent a true improvement in performance.
This is a result of the use of pseudo-absences in presence-only AUCs and their effect on the
confusion matrix. Though presence-only niche models often report good performance for large

regions of interest, this is likely an over-estimated AUC.

In sum, our results show that the sample size needed for an adequate model depends on the species
and ecological context of the study, and AUC should be used as an index of model performance with
caution. Models constructed on different regions of interest cannot be easily compared with the
AUC, for example a niche model of the distribution of an insect vector in one region can be
inappropriate for comparison with another model, and valid comparison requires equivalent sample

size and region of interest.
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Discussion

How many samples do we need to understand the spatial distribution of a pathogen? First ask;
where are we looking? When we need to describe the spatial distribution of an emerging disease,
and identify areas at risk to future invasion, we need to think of them as species in an ecological
context. We show that the sample size (i.e. number of ecologically unique sample sites) needed for
ENM changes depending on the size of the pathogen niche (BNA, Figure 15), which in turn changes
depending on the set of ecological variables in the area under study (G; and G,, Figure 17). There is
no fixed sample size needed for niche modelling, no single magic number, rather the amount of
ecologically unique samples required changes depending on the ecological region studied. Presence-
only models of pathogens, vectors and emerging diseases are often forced to use pseudo-absence
data for model evaluation, and this results in an artificially inflated model AUC, particularly for large
G (Figures 6 and 7). This inflation in improvement is influenced by the size of the species’ ecological
niche; as niche size increases the maximum achievable model AUC decreases (Wiley et al 2003). This
change in model AUC is not trivial; as such models can be highly misleading and have important
consequences for disease surveillance and management of human health.

Our study has been limited to the use of Maxent, and the degree to which performance is
over-estimated is known to vary for different modelling techniques (Elith and Graham, 2009) so
caution should be employed in applying our results to other presence-only methods, such as ENFA
(Hirzel et al 2002). We also cannot comment on sampling bias, as we have assumed that all
ecological regions received equivalent sampling efforts (Barry and Elith 2006, Varela et al 2009). We
examined the relationship between niche size and model performance; however, as we increased
the volume of the ecological niche of our virtual species we also increased their spatial distribution
(Figure 19). Future work may consider separately examining the effect increasing niche volume
without changing the spatial distribution, as the spatial area occupied by the species can influence
model performance. The maximum AUC achievable by the model is exactly 1-(a/2), where a is the
proportion of the spatial area of study covered by the species (Wiley et al 2003). As the region of
interest increases the niche size can increase, but as G continues to increase BNA will stop
increasing, and begin to cover a smaller proportion of the area of study (a). Effectively, as we
increase the region of interest, we will artificially increase the model AUC at the same time.

These results are important in the planning for future field work on emerging diseases; the
sample size required for ENM will change depending on the goal of the study and the region of
interest selected. If initial exploratory analysis can be conducted across this region of interest, such
as a particular health district, the volume of ecological variable combinations (the size of G) to be

explored can be quantified and the number of sample sites selected can be based on this, allowing
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interpolation to every ecological combination in the region of interest. Researchers often use
historical data to form a baseline against which to identify an epidemic, using data from previous
studies, archaeological explorations, or museum collections, where collection of additional data is
often impossible. In this case, a potential tool to select G is limit the study to the region appropriate
for the available sample size, avoiding extrapolation beyond the ecological range of the sites studied.
We recommend against using political boundaries, as they rarely have an ecological justification, but
a potential tool in this approach could be multivariate environmental similarity surfaces (MESS

maps, Elith, Kearney and Phillips 2010).

Currently, in an era of large scale ecological disturbance and climate change, the distributions of
many environmentally acquired and zoonotic disease agents are rapidly changing. Future cross-
disciplinary research on their current and potential spatial distributions requires an ecological
approach; we need to appropriately delineate the region of study based on ecological assumptions
about the species, and consider the pathogen from a less anthropocentric view; but rather as a

species in ecology.
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Chapter 3: Topography and land cover of watersheds predicts the
distribution of the environmental pathogen Mycobacterium ulcerans
in aquatic insects.
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Foreword.

The following chapter has been editorially accepted as a paper to the journal of PLOS Neglected
Tropical Diseases, titled “Topography and land cover of watersheds predicts the distribution of the
environmental pathogen Mycobacterium ulcerans in aquatic insects”, by Kevin Carolan, Andres
Garchitorena, Gabriel Garcia-Pena, Aaron Morris, Jordi Landier, Arnaud Fontanet, Philippe Le Gall,
Gaétan Texier, Laurent Marsollier, Rodolphe E. Gozlan, Sara Eyangoh, Danny Lo Seen, and Jean-

Francois Guégan.

This chapter uses the data collected in Cameroon by Andres Garchitorena, with land cover maps |
constructed, to make a model of the niche of M. ulcerans and test it in French Guiana with data form
Aaron Morris. As discussed within, the model in Cameroon does not predict the bacteria in French
Guiana well. Speculating on potential reasons for this, we suspect that either the bacterium may
have evolved to occupy a new niche in French Guiana, or it may be that the ecological context of

South America it too different to be comparable to Africa, however this is strictly speculative.

The generation of the landcover maps used herein involved a large investment of the time taken to
complete this thesis. The process of landcover map generation is often seen as a simple procedure,
however there are several nuances that make this time consuming. A large amount of time was
spent learning to use several different softwares; ArcMap, eCognition, ENVI. Several satellite images
were then used, SPOT, Rapideye and Landsat, to generate preliminary maps, which were ground
truthed in a three week field mission to Cameroon in November 2012 (grateful thanks are extended
to Sara Eyangoh and Gaétan Texier of the Centre Pasteur du Cameroun for support on this field
mission). Following this mission, the maps were redrafted to improve accuracy. The experience in
the field was extremely useful in generating several hypotheses about the role of watersheds, as real
experience of the shape of the terrain helped to develop thought about how the aquatic community

that influences the bacteria would be distributed.

This research involved extensive collaboration with Andrés Garchitorena, who was supported by a
PhD studentship from the Ecole des hautes études en santé publique (EHESP), and Aaron Morris who
was supported by a PhD studentship from Bournemouth University. Gabriel Garcia-Pefia was
supported by a postdoctoral fellowship from the French Fondation pour la Recherche sur la
Biodiversité (CESAB research centre, research programme BIODIS). | would also like to thank
Annelise Tran of CIRAD and Benjamin Roche of IRD for invaluable discussions and insights on the
manuscript, the ISIS Spot programme for support in acquiring SPOT images, and Hervé Chevillotte
(IRD Cameroon), for environmental data from the IFORA project (ANR-Biodiv grant IFORA).
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Author Summary

Many pathogens persist in the environment, and understanding their distribution can assist in
control, allowing us to identify areas of risk to local human populations. Herein, we describe the
distribution of a particular environmental pathogen, Mycobacterium ulcerans, describing the
landscape conditions correlated with its presence in local biota, and mapping the distribution of
these habitats in a region of Cameroon, Africa. We identify the importance of the watershed as a
factor determining the distribution of the bacterium, where conditions removed from the sample
site can influence the abundance of the bacterium in downstream sites. We also discuss sensitivity
of these models to extrapolation, working well in the African region and failing in another region, in

South America.
Background

Knowledge of the spatial distribution of an environmentally persistent pathogen is often key in
creation of environmental hazard maps for disease control. Yet, despite the importance of this
spatial information, only 4% of such pathogens have been mapped (Hay et al. 2013). The reason for
this gap in our knowledge is practical. It is often difficult to produce large maps of the distribution of
these microbial pathogens as they are difficult to detect in nature. A solution to this is to describe
the distribution of the pathogens suitable habitat. For example, an environmentally persistent
pathogenic bacterium may have a certain pH range within which it can survive, a specific range of
microaerobic oxygen concentrations (Palomino et al. 1998), and survive preferentially on certain
algae (Marsollier et al. 2004A). In cases where we have a suitable range of pH, a suitable range of
oxygen, and suitable algae, we expect to find the bacterium. Herein, this suitable range of
microhabitat is termed the ecological niche of the species. Every species in nature, including vectors
such as mosquitoes, and pathogens such as Plasmodium protozoans, has a unique ecological niche

(Hutchinson 1957, Soberon 2005).

Knowledge of the distribution of suitable habitats would allow us to predict the expected
distribution of the pathogen. This approach has been successfully applied to the vectors of diseases
such as malaria, plague and dengue (Tran et al. 2008, Ayala et al. 2009, Ari et al. 2012), but it is
rarely applied to environmentally persistent pathogenic microbes. The range of suitable habitat is,
practically, much easier to describe for insect vectors than for microbes. For example, the suitable
habitat of mosquitos is driven by factors such as rainfall, which is much easier to describe on a large

scale. To describe pH in the environment we must visit each site and use a probe at each location.
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This quickly becomes expensive and time consuming when we consider multiple variables, or if we

wish to describe the distribution of a pathogen over large extents.

We hypothesised that these microhabitat variables could be indirectly inferred from large scale
macroecological patterns. The distribution of swamp and forested environment, the shape and
structure of the landscape, should predict the distribution of these microhabitats. For example,
while the suitable habitat of a bacterium may be driven by the suitable combination of pH, oxygen,
and algae, and other factors, the distribution of these conditions is in turn driven by the landscape.
For example, the pH and oxygen content of water in swamps is lower, on average, than of water in
savannahs. We can use the landscape, which is more easily described, as a proxy to describe the
spatial distribution of this suitable microhabitat. Though this approach is limited in lacking a
physiological understanding of direct influences on the pathogen, it has the great benefit of inferring

the potential distribution of the pathogen, opening new opportunities to disease control.

We undertook ecological niche modelling of Mycobacterium ulcerans, an environmentally acquired
pathogenic bacterium, and causative agent of Buruli ulcer. The ecological niche refers to this range
of conditions within which a species can survive and maintain a population. We infer that, if a
species has a large population, it presumably is able to maintain that population, and is in a suitable
environment. By understanding the environmental parameters that describe population size, we can
predict the distribution of the pathogen. Maps of the distribution of pathogens are often a key step

in control of disease, producing environmental hazard maps.

The pathogen of our study, Mycobacterium ulcerans, infects up to 10,000 people per year in more
than 30 countries around the world (Johnson et al. 2005, WHO 2008). Infection leads to the Buruli
ulcer, an emerging neglected tropical disease (WHO 2008) which results in a necrotizing infection of
the skin and can lead to crippling deformity (Johnson et al. 2005). The transmission route of M.
ulcerans remains unknown, and though several competing hypotheses exist (Marsollier et al. 2002,
Benbow et al. 2008) our work herein does not address transmission, but focuses on the distribution

of the pathogen.

Identification of the landscape variants that indicate suitable habitat for this particular pathogen has
proven remarkably difficult, despite decades of research (see Merritt et al. 2010 for a review).
Previous research on M. ulcerans has found several apparently contradictory facts about the
bacterium, making it difficult to establish a generalised picture of its ecology. In 2007 the genome of
M. ulcerans was sequenced, and analysis revealed extensive evidence for reductive evolution, with
massive gene loss. M. ulcerans evolved from M. marinum, and appears to have undergone a
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bottleneck event in the process, losing many of the genes M. marinum uses to sustain itself in free
living environments, apparently now favouring protected environments with low sunlight (Stinear et
al. 2007). This is suggestive of a highly specialised ecological niche, implying that the bacterium
cannot survive in a large range of environmental conditions. Detection of the bacterium in the
environment is normally via PCR; M. ulcerans is very slow growing and extremely difficult to culture
from the wild (Portaels et al. 2008), and most attempts at culture result in M. ulcerans being

overgrown by other bacteria which are ubiquitous in the environment.

However, the implication that the microbe is a specialist has been (apparently) contradicted by
recent detection of the bacterium in the environment. M. ulcerans DNA has been detected in a
bewildering variety of environmental samples, including aquatic insects, biofilms, crustaceans,
detritus, fish, frogs, possums and various small mammals, soil, snails, water and worms (Portaels et
al. 1999, Stinear et al. 2000, Portaels et al. 2001, Eddyani et al. 2004, Marsollier et al. 2004A, Trott
et al. 2004, Kotlowski et al. 2004, Johnson et al. 2007, Fyfe et al. 2007, Williamson et al. 2008,
Portaels et al. 2008, Fyfe et al. 2010, Roche et al. 2013, Carson et al. 2014, Morris et al. 2014 A,
Garchitorena et al. 2014). This large range of suitable conditions is odd, in light of the bacterium’s

apparent status as a specialist with a small niche.

The many different species that M. ulcerans infects in the local community may become infected
due to differences in their feeding habits, position in the trophic web, or relative abundance
(Marsollier et al. 2004B, Mosi et al. 2008, Merritt et al. 2010). Herein, we use samples of the five
dominant Orders of the aquatic insect community, which have been tested for M. ulcerans positivity
rates, and correlate changes in M. ulcerans positivity in these 5 Orders to changes in the
environmental conditions of land cover and topography. These 5 Orders may not be the primary
habitat of M. ulcerans in the wild, as the full biotic extent of M. ulcerans distribution is still unknown,
but they are commonly found to be persistently infected and appear to be important hosts (Marion
et al. 2010). Previous work has found that M. ulcerans abundance does respond to water body type,
being more commonly detected in swamps (still lentic systems) than rivers (flowing lotic systems) in
Ghana (Benbow et al. 2013, Mclntosh et al. 2014). The pathogen is associated with lowland, flat,
swampy areas in contact with stagnant water (Wagner et al. 2008 A), is known to have complex
seasonal dynamics (Marion et al. 2010), and appears to be present at low levels throughout the
entire local biotic community along the year (Garchitorena et al. 2014). The distribution of the
disease may also inform us on the distribution of the pathogen; the distribution of Buruli ulcer is
known to be more spatially restricted than the distribution of M. ulcerans (Williamson et al. 2012),
and is known to respond to low elevation, forested land cover, and previous rainfall (van Ravensway
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et al. 2012, Morris et al. 2014 B), which would suggest that perhaps these factors are also important
in the distribution of M. ulcerans. Taken together, these facts suggested that changes in the biotic
distribution of the pathogen could be mapped using landscape variables. Often, sampling of river
systems results in the unexpected presence of M. ulcerans; if factors at the larger watershed scale
add substantial information on the distribution of M. ulcerans a description of the upstream region
of the river may help to explain this unexpected presence. We describe the condition of the
landscape using land cover, such as forest and savannah, and topography, such as elevation and
slope. These landscape scale factors are expected to indirectly influence M. ulcerans abundance via
their influence on the microhabitat the bacterium inhabits, for example affecting the pH, dissolved
oxygen content, and composition of the aquatic insect community, which are known to influence M.

ulcerans distribution (Benbow et al.2008, Garchitorena et al. 2014).

To address our questions we describe landscape variables correlated to the presence of the
bacterium in aquatic macroinvertebrates in Cameroon, Central Africa. We then test our model
against data collected in French Guiana to explore the generalizability of our findings. This will
contribute to an understanding of the spatial distribution of this environmental pathogen, and

further our ability to control Buruli ulcer disease.
Methodology

A model was constructed on the dataset from Akonolinga, Cameroon, and predicted into French
Guiana, South America. This enabled us to describe the niche of M. ulcerans, and examine how well

these models transferred to other areas.

Study sites, sampling methodology and response variable

The Cameroon dataset is a subset of that published in Garchitorena et al. (2014), which comprises 16
sites in Akonolinga, sampled every month for 12 months (Figure 22). Identical methods were carried
out by the same investigators for all sites throughout the study. In brief, at each site, 4 locations
were chosen in areas of slow water flow and among the dominant aquatic vegetation and at each
location, 5 sweeps with a dip net within a surface of 1m® were done to sample the aquatic
community. Aquatic organisms were classified down to the Family level whenever possible and
stored separately in 70% ethanol. Individuals belonging to the same taxonomic group were pooled
together for detection of M. ulcerans DNA by quantitative PCR. Among these, the 5 most abundant
Orders (Diptera, Hemiptera, Coleoptera, Odonata and Ephemeroptera) were consistently analysed

for all sites and months. Pooled individuals were all ground together and homogenized and DNA

53



from tissue homogenates was purified using QlAquick 96 PCR Purification Kit (QIAGEN). Finally,
amplification and detection of MU DNA were performed through quantitative PCR by targeting the
ketoreductase B domain (KR) of the mycolactone polyketide synthase and 1S2404 sequence from MU
genome. This resulted in 5 analyzed samples (each Order) per month, per site, which we use to infer
M.ulcerans presence or absence. Summary statistics are described in Table 1. Sampling effort varied
from month to month, as is discussed in Garchitorena et al. (2014), however we have used a subset

of that data in order to gain the most consistent representation of the biotic community possible.
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Figure 22. Location of sample sites in Cameroon, as in Garchitorena et al. 2014. Within Cameroon, Akonolinga
is almost entirely rainforest. This region is dominated by the Nyong river and has fewer highland areas. Red
dots are sample sites in Akonolinga.

A data set following the same methodology was independently collected in French Guiana, South
America (Morris et al. 2014). DNA extraction was carried out with the same two primer pairs and
methodology as above. In French Guiana eighteen sites were sampled twice during the wet season,
which lasts from December to July. The entire biotic community was sampled, and for consistency

the same 5 taxonomic Orders as in Akonolinga (Table 2) were compared.
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Table 1. M. ulcerans distribution at sample sites in Akonolinga, Cameroon. 16 sites were sampled for 12
months, sampling from different types of water bodies. The dominant members of the aquatic biota were
Diptera, Hemiptera, Coleoptera, Odonata and Ephemeroptera. These made up the majority of the community
in both seasons, the percentage of the biotic sampled community composed of these five groups is reported as
Relative abundance of the 5 Orders in Table 1. These communities were normally positive of M. ulcerans, the
percentage of positive samples (number of positive samples/total samples for the 5 Orders from that site in
that season) describes the PCR positive samples of the 5 Orders. This table is a summary of a subset of the
data presented in Garchitorena et al. (2014).

Wet season Dry season

Relative Relative

abundance | PCR positive abundance |PCR positive
Site Type of water | of 5 Orders |samples of the |of 5 Orders |samples of the
Code | Latitude Longitude |body (%) 5 Orders (%) 5 Orders
Al |N3°46.806 |E12°16.133|Swamp 93.69 6.98% (3/43) 97.39 20% (4/20)
A2 | N3°47.083 |E12°15.383 | Swamp 94.69 12.36% (11/89) 94.53 8.11% (3/37)
A3 | N3°46.316 | E12°14.440 | Stream 90.82 2.56% (1/39) 90.41 0% (0/20)
A4 | N3°58.464 |E12°14.796 | River 55.12 5.13% (2/39) 32.17 5.26% (1/19)
A5 | N4°02.255 | E12°15.620 | Stream 83.64 10% (4/40) 75.30 5.26% (1/19)
A6 | N3°43.483 |E12°16.466 | Swamp 90.31 17.24% (15/87) 85.85 2.94% (1/34)
A7 | N3°38.889 |E12°15.986 | River 79.52 10.26% (4/39) 79.13 0% (0/13)
A8 | N3°38.980 |E12°14.696 | River 64.86 9.09% (4/44) 73.89 7.69% (1/13)
A9 | N3°29.912 |E12°06.425 | Swamp 82.40 4.4% (4/91) 91.67 2.7% (1/37)
A10 |N3°29.912 | E12°06.425 | Swamp 93.62 7.5%(3/40) 89.90 0% (0/20)
All |N3°23.271 |E12°07.870 | River 50.12 4.65% (4/86) 59.56 8.82% (3/34)
Al12 |N3°28.788 | E12°07.255 | River 52.87 2.44% (1/41) 66.19 15% (3/20)
Al13 |N3°32.322 |E11°57.643 | Swamp 81.92 2.22% (2/90) 79.39 8.11% (3/37)
Al4 |N3°38.032 | E11°59.695 | River 64.77 15.38% (6/39) 63.37 20% (4/20)
A1l5 |N3°32.288 |E11°55.239 | Flooded area 94.33 11.11% (4/36) 97.54 0% (0/15)
Al6 |N3°32.276 |E11°55.181 | Stream 89.85 2.86% (1/35) 93.40 0% (0/15)
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Table 2. M. ulcerans distribution at sample sites in French Guiana, South America. 18 sites were sampled in the
wet season. The dominant members of the aquatic biota were Diptera, Hemiptera, Coleoptera, Odonata and
Ephemeroptera, as in Akonolinga. These made up the majority of the community, the percentage of the biotic
sampled community composed of these five groups is reported as Relative abundance of the 5 Orders. These
communities were normally positive of M. ulcerans, the percentage of positive samples (number of positive
samples/total samples for the 5 Orders from that site in that season) describes the PCR positive samples of the
5 Orders. This table is a summary of a subset of the data presented in Morris et al. (2014 A).

Wet season
Site Relative abundance | PCR positive samples of the 5
Code Latitude Longitude of 5 Orders (%) Orders,% (positive/samples)
FG10 N4 44.170 W-52 19.618 58.62 44.12% (15/34)
FG11 N4 50.284 W-52 21.195 52.54 32.26% (10/31)
FG19 N5 17.773 W-53 03.085 62.50 10.00% (1/10)
FG2 N5 37.888 W-53 42.433 70.83 11.76% (6/51)
FG23 N5 21.724 W-53 2.0200 29.27 16.67% (2/12)
FG28 N5 36.328 W-53 49.660 56.60 20.00% (6/30)
FG34 N4 50.068 W-52 18.126 85.00 32.35% (11/34)
FG38 N5 23.646 W-52 59.521 73.74 13.70% (10/73)
FG41 N5 25.725 W-53 05.326 41.07 8.70% (2/23)
FG43 N5 22.632 W-52 57.232 75.47 2.50% (1/40)
FG44 N4 20.052 W-52 09.148 25.42 0.00% (0/15)
FG45 N4 18.025 W-52 07.397 61.95 2.86% (2/70)
FG46 N5 02.121 W-52 30.989 74.24 2.04% (1/49)
FG47 N4 55.744 W-52 24.229 65.00 0.00% (0/26)
FG48 N4 51.616 W-52 16.518 16.67 0.00% (0/1)
FG49 N5 39.996 W-53 46.794 36.54 0.00% (0/19)
FG53 N5 36.136 W-53 50.182 67.86 0.00% (0/57)
FG7 N4 51.648 W-52 15.405 29.41 0.00% (0/10)

Seasonal effects on M. ulcerans distribution

M. ulcerans has previously been found to respond to variables that are influenced by rainfall
(Wagner et al. 2008 A, Morris et al. 2014 B). To explore differences in the seasonal distribution of
the bacterium, the wet season months and the dry season months were analysed separately. In
Cameroon wet season months are April, May, June, August, September and October. The dry season
is January, February, March, July, November and December. For each site, the proportion of positive
samples at a site in a season was determined by summing the number of positive samples in that
season, then dividing by the total number of samples sampled in that season (which is 5 multiplied
by the number of sampled months). This resulted in two response variables, Y, and Y4, Wwhich we
use to describe the proportion of M. ulcerans positive samples in the 5 dominant insect Orders in the
wet and dry seasons respectively. This resulted in a general, standardised view of the
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mycobacterium distribution in both the dry and wet seasons. The habitat suitability is determined by

the proportion of samples of the biotic community that are M. ulcerans positive.
Land cover and topography

Land cover in Akonolinga was described using several multispectral satellite images; SPOT 2.5 meter
resolution images (references: 50833380811220923092V0 and 50833371012210937422V0), and a
Landsat image (reference L72186056_05620021107). The study area was categorised into the
following classes; Agriculture, Forest, Flood plain, Road, Savannah, Swamp and Urban (Table 3).
Classification was conducted in the Object Orientated Image Analysis software eCognition
(eCognition Trimble Navigation Ltd). The resulting maps were validated and corrected where needed
following onsite visits in November 2012. Topography was described using the Shuttle Radar
Topography Mission (SRTM) digital elevation model (Jarvis et al. 2008), which has a spatial resolution
of 90 meters. All topographical variables were derived using the Spatial Analyst extension of the
software ArcMap 10.1 (ESRI 2011). For each site we described the mean, standard deviation,
minimum, maximum and variety of elevation, in meters above sea level, using SRTM (Table 3). From
the SRTM we calculated the mean, standard deviation, minimum, maximum and variety of the
topological slope, in degrees. Flow accumulation is the accumulated number of upstream cells
flowing into a point, and ecologically represents the topographical potential for water to
accumulate. We derived the mean, standard deviation, maximum and variety of the flow
accumulation. We also calculated mean, standard deviation, maximum depth, variety, and
proportion of buffer surface area covered by basins. Basins are depressions in the landscape where
water is expected to accumulate and, potentially, stagnate, and were detected using the Fill function
in Spatial Analyst extension in Arc Map. Stream order indicates the distance from the source of the
river, and is a simple index of the type of stream (1* order being small streams, larger orders being
big rivers). Proportion of 1* to 8" order streams, defined by Strahler method (Strahler 1957), was
recorded in each buffer. Finally, wetness index is the topographic potential for water to accumulate.
It was derived from the flow accumulation and the slope, according to the Equation 1, where WI is
the wetness index (Beven and Kirkby, 1979), FA is flow accumulation and S is the topographic slope
in degrees. We derived the mean, standard deviation, maximum, and variety of wetness index
values, and the proportion of buffer surface area covered by wetness index values which are positive
(relatively wet areas) and negative (relatively dry areas).

WI = En( e )

tanis)

Equation 1.
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Importance of local effects compared to regional effects in M. ulcerans distribution.

The topography and land cover of the sample sites were described within two different buffers
(Figure 23). These buffers corresponded to local and regional conditions. The first buffer was a 5km
radius circle around the sample site, which was chosen to represent the local conditions. 5km is,
approximately, the flight range of the 5 insect orders sampled (Bowden 1964, Robertson 1976, Lytle
1999, Mukai and Ishii 2007). The insects should be able to move throughout this region, be exposed
to M. ulcerans, before being captured at the sample site. We describe the land cover and
topography within this 5km buffer and correlate the condition of this region to the proportion of M.

ulcerans positive pools in each season.

The second buffer was defined using the watershed of the sample site (Figure 23). The watershed is
the upstream catchment area. In principle, all water within this region, and any detritus floating in
the water, will eventually flow through the sample site. Watersheds can vary greatly in size, easily
being several kilometres long, and detritus from very distant locations can flow quite large distances.
M. ulcerans is known to attach to such detritus (Williamson et al. 2008). This watershed buffer is

created using the Watershed tool in ArcMap10.1, Spatial Analyst extension (ESRI).
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Figure 23. An example of the two buffer types used in this examination, sites A4 and A5 in Akonolinga. This is
in the north of Akonolinga, near the village of Emvong. The lower panel is a 5km buffer around the sites, within
this region we describe the topography and land cover, and its association with M. ulcerans abundance. We
compare this to the watershed buffer (upper panel). The watershed is the drainage area for each site, in
principle all water that falls within this region will eventually pass through the sample site.
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Principal component analysis

The 42 variables estimated to describe the landscape were reduced to permit modelling. Principal
component analysis (PCA) was performed on the landscape variables centred at the mean
(In(x)—=In(Xmean)) to summarize the data in the watershed and the 5km buffer. PCAs were performed
with the PCA function in the FactoMineR library in R (R Core Team 2014). This generated two PCAs; a
PCA of the 42 environmental variables in the watershed buffer, PCA,.,, and a PCA of the 42
environmental variables in the 5km buffer, PCAs,.. In each PCA we examined the orthogonal axes

that explained 95% of the variance in the 42 topography and land cover variables.

Firstly, 9 principal components explained 95% of the variance in the watershed of the sample site
(PCA,s). The magnitude and direction of each correlation is given in the supplementary materials
(Tables 3 and 4). We describe PCA,1 as “large watersheds that drain flood plains”, given its strongly
positive correlations to watershed surface area and floodplains; PCA,2 as “large watersheds that
drain highland agriculture”; PCA,3 as “large watersheds that drain lowland agriculture”; PCA,4 as
“small watersheds that drain swamp and forest at flat intermediate elevations”; PCA,,5 as “small
watersheds that drain highland urban and savannah”; PCA,.6 as “small watersheds that drain
highland urban and forest”; PCA,s7 as “large watersheds that drain lowland forest, savannah and
swamp”; PCA,8 as “small watersheds that drain urban and agricultural environments in hilly
lowlands”; and PCA,,9 as “small watersheds that drain wet swamps in areas that reach from low to

high elevations” (Table 3).

Secondly, for the local 5km circular buffer, 6 principal components (PCAs,) explained 95% of the
variance in the data as described in SM2. Translating these to ecologically meaningful terms, we
describe PCA;,1 as representing “sites surrounded by flat lowland areas with urban, agriculture and
the flood plains of large rivers”; PCAs.2 as representing “sites surrounded by sloped highland areas
with urban, agriculture and small rivers”; PCAs.,3 as representing “sites surrounded by sloped
highland areas with savannah and large swampy rivers”; PCAs,4 as representing “sites surrounded
by flat lowland areas with savannah and small rivers”; PCAs.,5 as representing “sites surrounded by
flat highlands with urban, agriculture and large rivers”, and PCAs.,6 as representing “sites
surrounded by lowland hills, with small rivers and many small basins, in unforested environment”,

(Table 4).
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Table 3. Results of Principle Component Analysis for topographical and landcover variables in a watershed
buffer. 95% of the variance in the data was described with 9 components, the eigenvalue of each component is
given at the bottom of the table. Each component correlates differently to different variables, red highlights
negative correlations, blue highlights positive correlations. PCA,.1 describes large watersheds that drain flood
plains and swamps, with few urban and agricultural areas. These are high elevation areas with variable slopes.
PCAws2 describes large watersheds that drain agriculture at flat highland areas. PCA,,3 describes large rivers
that drain urban and agriculture areas at flat lowlands with, with little forest. PCA,4 describes small rivers,
with small watersheds that drain forest and swamp areas, without urban areas. These are at intermediate
elevations, with flat areas. PCA,,s5 describes small rivers that drain urban and savannah areas, predominantly
in higher elevation flat lands. PCA,s6 corresponds to small low order streams that drain urban and forest (not
agriculture) in high elevation slopes. PCA,.7 is larger watersheds that drain forest, savannah flood plain and
swamp, in areas with flat, wet, lowlands. PCA,8 represents small watersheds that drain urban & agriculture,
flood plain and savannah. These areas are wet lowlands with lots of small hills. PCA,9 represents small
watersheds that drain wet swamps in areas that reach from low to high elevations.

Covariate Units PCAws1 PCAws2 PCAws3 PCAwsd PCAw:5 PCAw:6 PCAws7 PCAws8 PCAwsS
Surface area m2 0.94 0.18 0.19 -0.08 -0.02 -0.04 0.15 -0.03 -0.02]
Land cover

Urban % -0.22 -0.12 0.80 -0.10 0.13 0.28 -0.25 0.07 0.05
Agriculture % -0.46 0.20 0.68 -0.11 -0.26 -0.02 -0.31 0.06 0.07)
Forest % -0.37 -0.15 -0.73 0.13 -0.32 0.08 0.01 -0.22 0.04
Roads % 0.57 -0.06 0.54 -0.28 -0.04 -0.17 -0.28 -0.20 0.26]
Savannah % -0.04 -0.18 -0.09 0.05 0.84 -0.18 0.23 0.25 0.10]
Flood plain % 0.84 0.10 0.18 -0.12 -0.18 -0.33 0.21 0.14 0.04
Swamp % 0.18 -0.22 0.02 0.55 -0.21 0.21 0.28 -0.20 0.52
Flow accumulation

Mean m2 0.97 0.14 0.14 -0.04 -0.02 -0.01 0.11 -0.05 0.03
Sd - 0.95 0.17 0.18 -0.08 -0.02 -0.04 0.12 -0.05 0.02]
Max m2 0.94 0.18 0.19 -0.08 -0.02 -0.04 0.15 -0.03 -0.02]
Variety - 0.96 0.16 0.16 -0.05 -0.03 -0.02 0.15 -0.01 -0.04
Basins

Mean basin depth m 0.01 -0.93 0.13 -0.22 0.09 0.06 0.06 -0.20 -0.10|
Sd basin depth - 0.21 0.80 -0.28 0.23 -0.23 -0.07 -0.17 0.28 0.03
Deepest basin m -0.90 -0.13 0.20 -0.23 0.20 -0.07 0.02 -0.09 0.10}
Variety of basin depth- 0.93 0.05 -0.19 0.19 -0.19 0.07 -0.01 0.08 -0.11
Basin coverage % -0.02 0.91 -0.07 0.31 -0.01 -0.10 0.01 0.16 0.10}
Slope

Mean degrees 0.03 0.25 -0.58 -0.49 -0.39 0.12 -0.33 0.21 -0.03
Sd - 0.65 -0.22 -0.36 -0.29 0.41 -0.27 -0.13 0.11 0.01
Min degrees -0.48 0.56 0.16 -0.46 -0.11 0.32 0.29 -0.03 0.11
Max degrees 0.94 0.05 -0.05 -0.13 0.23 0.01 -0.15 -0.11 0.08]
Variety - 0.97 0.07 0.01 -0.05 0.01 0.01 -0.09 -0.15 0.11
Stream Order

1st order % 0.52 0.18 0.62 0.36 -0.05 0.16 -0.23 -0.06 -0.29|
2nd order % -0.23 0.45 0.38 0.38 0.51 0.14 -0.04 0.02 0.07)
3rd order % 0.14 -0.52 -0.10 -0.41 0.05 0.64 0.14 0.07 -0.13
4th order % -0.02 -0.37 -0.08 -0.04 -0.29 -0.85 0.03 -0.04 0.03
Sth order % 0.53 -0.20 -0.39 0.30 0.32 0.16 -0.20 0.32 0.232]
6th order % 0.39 -0.14 -0.19 0.53 -0.25 0.33 0.02 -0.13 0.05
7th order % 0.93 0.18 0.20 -0.06 -0.04 -0.04 0.21 0.03 -0.08|
8th order % 0.89 0.17 0.20 -0.02 -0.05 -0.03 0.27 0.10 -0.17|
Elevation

Mean m 0.49 0.31 -0.60 0.22 0.24 0.02 -0.11 -0.25 -0.31]
sd - 0.91 -0.18 -0.24 -0.06 0.00 0.14 -0.11 0.09 -0.06]
Min m -0.61 0.45 -0.11 0.16 0.38 -0.15 0.00 -0.36 -0.22]
Max m 0.92 0.08 -0.12 -0.11 0.14 -0.02 -0.24 -0.13 0.13
Variety - 0.96 0.04 -0.03 -0.10 0.07 0.01 -0.11 -0.14 0.12]
Wetness index

Mean - 0.38 -0.86 0.10 0.16 -0.10 -0.04 -0.03 0.21 0.03
sd - 0.63 -0.67 -0.35 0.11 -0.01 0.03 0.01 0.07 -0.01
Min - -0.85 -0.11 0.14 0.17 -0.16 -0.03 0.29 0.21 -0.13
Max - 0.93 -0.21 -0.14 0.17 0.00 0.11 -0.02 -0.01 -0.06|
Variety - 0.95 0.17 0.17 -0.06 -0.02 -0.03 0.15 -0.01 -0.04
Proportion Positive  |% 0.22 0.54 -0.28 -0.49 0.11 0.31 0.15 0.03 0.11
Proportion Negative |% 0.45 -0.36 0.70 0.28 -0.04 0.08 -0.10 0.13 -0.16|
Eigenvalue - 19.15 5.89 4.81 2.64 2.29 2.00 1.25 0.97 0.87|
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Table 4. Results of Principle Component Analysis for topographical and landcover variables in a 5km buffer
around the sample site. 95% of the variance in the data was described with 6 components. Each component
correlates differently to different variables, red highlights negative highlights, blue indicates positive
correlations. Surface area is constant, at n5°=79km’. PCAs. w1 represents sites surrounded by flat lowland areas
and urban, agriculture and the flood plains of large rivers. PCAs2 represents sites surrounded by sloped
highland areas and urban and agriculture, and small rivers. PCAs.,3 represents sites surrounded by sloped
highland areas with savannah, and large swampy rivers. PCAs,4 represents sites surrounded by flat lowland
areas with savannah and small rivers. PCAs,5 represents sites surrounded by flat highlands with urban and
agriculture, and large rivers. PCA;6 represents sites surrounded by lowland hills, with small rivers and many
small basins, in unforested environment.

Covariate Units PCASkm1 PCAskm2 PCAskm3 PCAskmd PCAskm5 PCAskmb
Land cover

Urban % 0.72 0.40 -0.28 -0.42 0.10 0.08
Agriculture % 0.54 0.20 -0.10 -0.08 0.30 0.06
Forest % -0.81 -0.53 -0.06 0.01 -0.15 -0.11]
Roads % -0.03 -0.27 -0.35 0.02 -0.55 0.65
Savannah % -0.27 0.70 0.39 0.29 -0.14 0.20
Flood plain % 0.96 0.20 -0.04 -0.07 0.02 -0.03
Swamp % 0.02 -0.64 0.57 0.03 0.29 0.21
Flow accumulation

Mean m2 0.69 -0.26 0.57 -0.22 0.02 -0.14]
Sd - 0.70 -0.28 0.60 -0.20 0.03 -0.12]
Max m2 0.71 -0.29 0.60 -0.11 0.04 -0.10]
Variety - 0.73 0.02 0.25 0.58 0.06 0.15
Basins

Mean basin depth m -0.95 -0.24 0.06 0.14 0.00 -0.11]
Sd basin depth - 0.54 0.10 0.11 -0.20 -0.12 0.15
Deepest basin m 0.61 0.50 -0.31 0.06 -0.17 -0.27
Variety of basin depth |- -0.53 -0.54 0.37 -0.21 0.09 0.32
Basin coverage % 0.96 0.23 -0.05 0.02 0.03 0.07
Slope

Mean degrees -0.89 0.06 0.19 -0.36 -0.06 0.11
sd - -0.41 0.74 0.46 -0.13 -0.03 0.18
Max degrees -0.51 0.59 0.52 -0.06 -0.07 0.00]
Variety - -0.66 0.48 0.42 -0.35 0.01 0.17
Stream Order

1st order % 0.93 0.32 -0.09 -0.04 0.03 0.01
2nd order % 0.66 0.20 0.28 -0.12 0.32 0.07
3rd order % 0.57 0.45 -0.51 -0.21 -0.24 0.03
Ath order % 0.40 -0.14 -0.20 0.19 0.54 0.51
5th order % -0.73 -0.19 -0.16 0.27 0.26 0.24
6th order % 0.01 -0.48 0.60 0.54 -0.25 -0.08|
7th order % 0.16 0.78 0.17 0.50 -0.19 0.05
Elevation

Mean m -0.83 0.36 0.02 0.00 0.30 -0.17|
sd - -0.21 0.79 0.44 -0.15 -0.09 0.07|
Min m -0.56 0.57 -0.18 0.24 0.43 -0.19|
Max m -0.66 0.67 0.24 -0.03 0.08 0.00
Variety - -0.63 0.66 0.33 -0.14 0.02 0.07
Wetness index

Mean - 0.98 0.09 0.09 0.12 -0.05 0.06
sd - 0.52 -0.18 Q.77 0.24 -0.08 -0.05|
Min - 0.59 -0.71 -0.31 -0.13 0.03 -0.03
Max - 0.77 -0.07 0.61 0.03 -0.04 -0.04
Variety - 0.74 0.51 0.28 0.01 -0.03 0.04
Proportion Positive % -0.98 -0.07 0.07 -0.10 -0.02 -0.01
Proportion Negative |% 0.95 0.28 -0.05 0.00 0.04 0.05
Eigenvalue - 18.79 8.02 5.49 2.17 1.51 1.29
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Model fitting and evaluation

We allow model selection to choose which of these principal components are most informative in
the species distribution, Y and Yqy. The dry season general linear models (GLMs) and wet season
GLMs were fitted separately with glmulti in the gImulti library in R. GImulti finds the best set of GLMs
among all possible combinations of explanatory variables; so for example all possible Y, ~ PCAsm
models were fitted, and each was evaluated with the Akaike information criterion corrected for
small sample sizes (AlCc). Low AlCc scores indicate good performance and reduced overfitting
(Warren and Seifert, 2011). The best set of these binomial GLMs (within 2 AICc scores of the best
model) are selected, and the model within this range with the lowest sum of absolute residuals (best

performance) is selected as the final model (Figure 24).

The response variable changed seasonally, resulting in two response variables, Yq4, and Y. Along
with the PCAsyy, and PCA,s inputs this resulted in four models; Yq,, ~ PCAsi and Yqr, ~ PCAys in the dry
season, and Yye™ PCAs, and Y™ PCA,s in the wet season. This reduces our variables by retaining
those that are important. Then, to compare the importance of PCAs, (local) and PCA, (regional
watershed) in the distribution of the response variable, M. ulcerans abundance, the components
retained in these models were included in the final models, Y4, ~ PCAsim + PCA,s in the dry season,
and Y,e™~ PCA;, + PCA,s in the wet season. In this way, by allowing glmulti to retain or drop these
variables we can compare the importance of the watershed and local 5km area variables in the

distribution of M. ulcerans.

Potential effects of multicolinearity were explored but were deemed minimal, as all pairwise
Pearson correlation coefficient R values in the principal components were below 0.75 (Tables 5 and

6).
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Figure 24. GLMulti output, for binomial and Gaussian models. Sum of absolute model residuals are plotted
against AlCc. Within the region of 2 AlCc scores of the best model (vertical lines) we select the model with the
lowest residuals (highlighted in red).

Table 5. Pearson product R correlation coefficients in the wet season model. Stepwise selection selected 3
components, none of which were correlated.

PCAws4 PCAws9 PCA5km?2
PCAws4 1 0 0.13
PCAws9 0 1 -0.16
PCA5km?2 0.13 -0.16 1
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Table 6. Pearson product R correlation coefficients in the dry season model. Stepwise selection selected 6

components, none of which were correlated.

PCAws1 PCAws5 PCAws6 PCAws8 PCA5km2 | PCA5km4
PCAws1 1 0 0 0 -0.15 -0.03
PCAws5 0 1 0 0 0.71 0.25
PCAws6 0 0 1 0 0.11 0.08
PCAws8 0 0 0 1 0.11 -0.48
PCA5km?2 -0.15 0.71 0.11 0.11 1
PCA5km4 -0.03 0.25 0.08 -0.48 0 1

In the initial screen of variables, Yg4, ~ PCAsy, and Yq, ~ PCA,, retained PCA,4, “small watersheds
that drain swamp and forest at flat intermediate elevations”, PCA,9, “small watersheds that drain
wet swamps in areas that reach from low to high elevations” and PCAs,2, “sites surrounded by
sloped highland areas with urban, agriculture and small rivers”. These were included in the model of

interest, Ygr, ™ PCAsim + PCAs.

For the wet season Yye™ PCAs., and Y™~ PCA, retained PCA,:1, “large watersheds that drain flood
plains”, PCA,s 5, “small watersheds that drain highland urban and savannah”, PCA,s 6, “small
watersheds that drain highland urban and forest”, PCA,s 8, “small watersheds that drain urban and
agricultural environments in hilly lowlands”, PCAs2, “sites surrounded by sloped highland areas
with urban, agriculture and small rivers” and PCAs,4, “sites surrounded by flat lowland areas with

savannah and small rivers”, which were included in Yye™ PCAsim + PCA,..

Predicting the spatial distribution of suitable habitat for M. ulcerans in the model training region,

Akonolinga

We interpolate the Akonolinga model within the region of Akonolinga to predict the distribution of
suitable habitat, the reservoir, of M. ulcerans. To achieve this, points where streams (defined using
STRM) flow under or across roads (defined using satellite images) were selected. These were termed
‘pour points’ in this article. Selection of the point where streams cross roads was based on the
hypothesis that these environments, where contact between humans and the aquatic environment
will be high, may be important in infection. This does not mean that infection does not occur in
other locations, nor do we speculate on the importance of relative routes of transmission. This will
not characterise all the environmental reservoir of the bacterium, but will describe an important

part of it. The topography and land cover of the watershed and 5km buffer of these pour points was
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characterised, transformed into PCAs., and PCA,, format, and the GLM was predicted. As a
summary to describe this distribution, we use Morans Index of spatial autocorrelation, which
describes the extent to which the distribution is random, and is here used to describe the
distribution of suitable sites. This is implemented using the tool Spatial Autocorrelation Global

Moran's | in ArcMap10.1.
Predicting the spatial distribution of suitable habitat for M. ulcerans in a new region, French Guiana

We extrapolate the Akonolinga wet season model to French Guiana, to understand how the suitable
habitat in one region is similar to that in another. For comparability, the wet season model,
constructed in Cameroon, was used to predict the positive sites among the 18 sampled sites in
French Guiana. Values of PCAs, and PCA, in French Guiana were generated using the ind.sup
option in the PCA function. The Akonolinga wet season model was then predicted into French
Guiana using the land cover data provided by the French Ministére de I’Ecologie, du Développement

Durable et de I'Energie (CORINE Land Cover, 2006), and topography derived from SRTM.

As discussed above, the choice of error structure is important in the performance of a GLM. We aim
to describe the distribution of the bacterium, so preference is given to the model with the lowest
residual values in the model, which in this case is Gaussian rather than Binomial error structure.
Residuals were much lower in a Gaussian model, as shown in Supplementary Figures 2 and 3 (see
the observed response versus predicted response for Gaussian and Binomial models and QQ plots
for the Gaussian and Binomial models, respectively). This difference is an order of magnitude. This
was a practical decision — using Gaussian models in this case was based entirely on the desire to
clearly predict where this pathogenic bacterium is more likely to occur, in such a case errors of

residuals have a greater cost.

The wet and dry season watershed Gaussian models were predicted on the pour point data using
the predict.glm function in R. The model predictions of habitat suitability at these pour points were

then interpolated using Inverse Distance Weighting in the IDW tool of ArcMap 10 (ESRI).
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Results
Relative importance of local and regional effects on the distribution of M. ulcerans in wet season
The final fitted wet season Binomial logit GLM, after stepwise AlCc selection, was

Ywet ~ 1 + PCA9 + PCAg,2

The final GLM suggested that both local and regional effects are substantially correlated to M.
ulcerans distribution. Regional effects were represented by PCA,9, “small watersheds that drain
wet swamps in areas that reach from low to high elevations”, and was negatively correlated to M.
ulcerans abundance (correlation coefficient -0.37, p=0.007). This means we expect less M. ulcerans
in small watersheds that drain swamps near highlands. The second part of the above equation
corresponds to local effects; PCAs,2 represents “sites surrounded by sloped highland areas with
urban, agriculture and small rivers”. This was also negatively correlated to M. ulcerans abundance
(correlation coefficient -0.16, p=0.00214), so we expect less M. ulcerans when the area around the

sample site is highland areas with urban and agricultural areas.

The spatial distribution of M. ulcerans suitable habitat in the wet season predicted at the pour points
was non-random, based on Moran’s | spatial autocorrelation (Moran's Index: 0.21, z-score: 9.1,

p<0.00001), positive sites tend to cluster together (Figure 27).
Relative importance of local and regional effects on the distribution of M. ulcerans in dry season
The final fitted dry season binomial logit GLM, after stepwise AlCc selection, is

Yary ~ 1+ PCAys1 + PCAsm2 + PCAsim4

The final models on the dry season found that both regional and local effects were substantially
correlated to presence of M. ulcerans. Regional effects were represented by PCA,l, “large
watersheds that drain flood plains”, which was marginally negatively correlated to M. ulcerans
abundance (correlation coefficient -0.26, p=0.05210). PCA;2, “sites surrounded by areas with
urban, agriculture and small rivers” was positively correlated to M. ulcerans abundance (correlation
coefficient 0.09, p=0.18709) though the p value suggests this is not significant, and finally PCAs.4,
“sites surrounded by areas with savannah and small rivers”, was positively correlated to M. ulcerans

abundance, (correlation coefficient 0.38, p=0.007).
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The spatial distribution of M. ulcerans suitable habitat in the dry season predicted at the pour points
is non-random, based on Moran’s | spatial autocorrelation (Moran's Index: 0.33, z-score: 14.32,

p<0.00001) positive sites tend to cluster together (Figure 27).
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Figure 27. Spatial distribution of habitat suitable for M. ulcerans in Akonolinga, Cameroon. Units of habitat
suitability are the proportion of qPCR pools predicted to be positive, based on the field work of Garchitorena
et al. (2014). Negative values are a result of the normal distribution of the residuals (Supplementary Figures 4
and 5). The Gaussian wet and dry season models, based on the original 16 sites, are predicted into each of the
pour points (where a stream crosses a road) in the region (top row), resulting in the predicted habitat
suitability at each point. The pour points are interpolated (bottom row) using IDW fixed distance 0.05 decimal

degrees interpolation (ArcMap10.1) resulting in the first map of spatial distribution of M. ulcerans encounter
risk.

Model performance when interpolated in Akonolinga

Spatial autocorrelation of model residuals can be an issue in GLMs, but this was explored, and it was
not the case here. Model residuals were not significantly spatially autocorrelated in the wet season
(Moran's Index: -0.285386, z-score: -1.045844, p=0.295633) nor in the dry season (Moran's Index:
0.071225, z-score: 0.655435, p=0.512187).
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The AICc of the final dry season Binomial model was 49.6, the absolute sum of the residuals was
11.03. The AICc of the final wet season Binomial model was 67.8, the absolute sum of the residuals

was 11.95.

We note that Gaussian models had significantly better performance. The AlCc of the final dry season
Gaussian model was -39.8, the absolute sum of the residuals was 0.53. The AlCc of the final wet
season Gaussian model was -65.5, the absolute sum of the residuals was 0.24. Model performance is

presented in Figure 25, model residuals were normally distributed (Figure 26).
Model performance when extrapolated in French Guiana

The Akonolinga wet season model was predicted into 18 sample sites in French Guiana (Figure 28,
2" row). The model predicted sites to be positive or negative, and the results of qPCR corroborated
these predictions (Figure 28). Performance of the Binomial model was notably poor, all sites were
predicted negative. In contrast, performance of the Gaussian model was better, but accuracy was
still poor at 0.39 (Table 7). Sensitivity and negative predictive values are high, indicating that the
predictions of presence of the bacterium are likely to be true, specificity and positive predictive
values are low; indicating predictions of absence of the bacterium are likely to be incorrect. This is a
result of a bias towards Type Il errors (false negatives) in the Gaussian model. Overall, the model
predicts M. ulcerans in Akonolinga, but is sensitive to extrapolation. Extrapolation tends to result in

false negative predictions of presence.

Table 7. Contingency table describing model performance of niche models constructed in Cameroon and
predicted into French Guiana. The rows ‘Prediction” are model predictions, ‘Test” are the results from gqPCR of
the sites in French Guiana. Values in blue are true positives and true negatives; values in red are false positives
and false negatives.

Test
positive  negative
Prediction | positive 3 2 Sensitivity 0.60
negative 9 4 Specificity 0.31
PPV NPV
0.25 0.66 Accuracy 0.39
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Figure 28. Model validation in French Guiana. Sample sites were as in Morris et al. (2014). A wet season
Gaussian niche model based on data collected in Cameroon was predicted into French Guiana (3rd row, left
hand side). The model under-predicted, M. ulcerans was present in more sites than expected (bottom row,
model residuals). A similar Binomial model predicted all sites to be negative.
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Discussion

Here, we have demonstrated that in addition to local variables around the sample site, the
distribution of M. ulcerans correlates to regional variables, i.e. the topography and land cover of the
watershed of the sample site. This spatial distribution of suitable habitat was described, allowing the
production of environmental hazard maps for the distribution of the pathogen. M. ulcerans presence
in the wet season correlates with lowland areas surrounded by few agricultural or urban areas,
particularly if the sample site has a large watershed. We expect more M. ulcerans in the dry season
in sites surrounded by urban and agricultural areas, with many small streams, particularly if the

sample site has a small watershed.

Many of the findings are in accord with what little we already understand about this bacterium. M.
ulcerans has been previously associated with flat wetland areas (Johnson et al. 2005, Wagner et al.
2008). A similar association with Buruli ulcer was reported by Wagner et al. (2008 B), who found that
high standard deviation of the wetness index was a risk factor for Buruli ulcer. These three variables
are normally strongly correlated to each other and ecologically similar entities. In this study these
are negatively correlated to PCA,,9, here termed “small watersheds that drain wet swamps in areas
that reach from low to high elevations” which negatively correlated to M. ulcerans abundance: these

studies appear to be describing the same ecological entity, but with different variables.

Our study was limited in certain regards, as we focused it on the prevalence of M. ulcerans in the
biotic community, and on how topography and land cover in the region could influence that
prevalence. We do not consider abiotic conditions testing positive for M. ulcerans. Potentially the
abiotic distribution may respond differently to these variables, future work will aim to explore this.
However, given that M. ulcerans is commonly detected in the biotic environment and appears to be
at lower prevalence in the abiotic environment, we believe our results are still applicable to an
understanding of M. ulcerans distribution. We had a relatively low positivity rate (Table 1). A
potential limitation is that low positivity can bias a model towards false negatives, while this is

possible we are unable to test this further with our current data.

The Akonolinga wet season model was extrapolated into French Guiana, where sampling was in the
wet season. Despite good performance in Akonolinga, the model performed poorly in French
Guiana, under-predicting the bacterium’s distribution (Figure 6). There are a number of points to be
drawn from this. First, there were differences in sampling effort between the two sites, as the
Akonolinga sampling regime consisted of 12 time points in the year, while the French Guiana regime
consisted of 2 time points. This would be consistent with the idea that the bacterium is transiently
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present in different regions, and under-prediction would be expected in this case. Secondly, a
potential complication results from differences in the ability of the SRTM dataset to delineate
watersheds due to dense rainforest canopies in French Guiana (Roux et al. 2010). The shape of a
watershed is sensitive to the quality of the elevation data used, errors in the digital elevation model,
or man-made drainage structures, can have effects not captured by this model. Finally, we cannot
rule out that the differences are a result of differences in M. ulcerans. We used gPCR to detect M.
ulcerans, however the species is known to have multiple ecovars (Vandelannoote et al. 2013, Tobias
et al. 2013) and subspecies, distributed differently throughout the globe. If it is the case that we are
predicting the ecological niche of one Akonolinga M. ulcerans species into French Guiana, and
testing it against a separate French Guiana species, one would expect the model to under-predict if

the French Guiana subspecies occupies a larger ecological niche.

Regardless of error structure, selection of both types of models (Gaussian and Binomial) retained
watersheds as important variables. These findings will impact future research on Buruli ulcer and M.
ulcerans; future sampling regimes would benefit by consideration of the local hydrology before
beginning sampling, and selecting sample sites along these lines. We also postulate the importance
of watersheds as a barrier to dispersal for the bacterium. In a recent key study Vandelannoote et al.
(2013) found a strong relationship between M. ulcerans population structure and the greater West
African hydrological watersheds, with populations being bound to watersheds. These are the
drainage areas of large rivers such as the Nyong, Mbam and Ouémé rivers, a much larger scale than
our study. However, given our results herein, it seems the bacteria may drift downstream. This is

inferred by the difference in the effect of watershed size from dry to wet seasons.

This is consistent with the idea of a “flushing’ effect of rainfall in the wet season, carrying bacteria
downstream Morris et al. (2014B), which will influence their genetic population structure. This has
notable consequences for the epidemiology of Buruli ulcer. If the watersheds are barriers to
movement for the bacteria it implies that M. ulcerans may be common in the environment, but in
certain areas hydrological conditions facilitate concentration of the bacterium, as is the case with

anthrax (Dragon and Rennie 1995).
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Conclusion

The distribution of environmental pathogens needs to be understood to facilitate control.
Commonly, local effects in the microhabitats are considered to describe the ecological niche of a
pathogen. However our study demonstrates that regional effects are important factors to be
considered. Future research on the M. ulcerans would benefit by considering the watershed of
potential sample sites, particularly as such data is often quite simple to acquire. The shape, size, and
land cover of the watershed correlates with changes in the distribution of M. ulcerans, and useful
information is lost if watersheds are ignored. The distribution of swamp in a watershed was found to
be an important factor in the suitability of the site for M. ulcerans; though a sample point in the field
may be at a location normally considered unsuitable for the bacteria (e.g. a small swift lentic
stream), the area upstream may contain an abundance of lotic swamps and be quite suitable for the
bacterium, which may be ‘washed out’ downstream towards the sample site. This is an example of
the useful information we gain by placing pathogens in an environmental context, rather than

regarding them solely in an epidemiological sense.
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Chapter 4: Ecological niche modelling of Hemipteran insects in
Cameroon; the paradox of a vector-borne transmission for
Mycobacterium ulcerans, the causative agent of Buruli ulcer
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Foreword.

The following chapter is currently under review as a paper to the International Journal of Health
Geographics, titled “Ecological niche modelling of Hemipteran insects in Cameroon; the paradox of a
vector-borne transmission for Mycobacterium ulcerans, the causative agent of Buruli ulcer.”, by
Kevin Carolan, Solange Meyin A Ebong, Andres Garchitorena, Jordi Landier, Daniel Sanhueza, Gaétan

Texier, Laurent Marsollier, Philipe Le Gall, Jean-Frangois Guégan and Danny Lo Seen.

This has involved extensive collaboration with Solange Meyin A Ebong, who is supported by the
Centre Pasteur du Cameroun and the MIVEGEC lab of IRD, Jordi Landier, who is supported by a PhD
studentship from Institut Pasteur, Unité d'Epidemiologie de Maladies Emergentes, and Daniel
Sanhueza, who is supported by a PhD studentship from Becas Agencia de Cooperacién Internacional

de Chile (AGCI) and the BIOHOPSYS programme from the LabEx-CEBA.

This work has explored the possibility that these Hemipteran insects (Figure 13) are likely to act as
vectors of Buruli ulcer. We expect that, under most circumstances, the abundance of a vector should
be correlated to the prevalence of the disease. This assumption is discussed in the paper, and an
initial criticism of this work will be that correlation does not imply causation. Of course this is true,
and we do not herein seek to conclusively end the discussion on the role of these insects as vectors,

but rather to contribute to the debate.

Herein, the extent of the study is limited using a technique called multivariate environmental
similarity surfaces (MESS). The idea of using this to limit the extent of the study was developed
following the work in chapter 2. The concept is explained in Figure 29, below; a MESS map describes
the similarity of a given set of sample sites to the rest of the study area, for a given set of
environmental variables. The study is then limited to the region ecologically interpolated by the

sample sites.

81



Scenario 1, extrapolation Scenario 2, interpolation

Figure 29. BAM diagram explaining the method used to limit the area of study. I is the area interpolated by the
sample sites, E is the area extrapolated beyond the sample sites, and S is the area considered in the modelling
method. If the area of the study is limited such that we extrapolate, that is that S=E, we make predictions that
are unjustified based on our information. Instead, we limit the study such that S=I, using MESS maps to
identify the point where we exceed I. This limits the predictive power of our model to a certain region, with
more reliable predictions within that region.
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Abstract
Background

The mode of transmission of the emerging neglected disease Buruli ulcer is unknown. Several
potential transmission pathways have been proposed, such as amoebae, or transmission through
food webs. Several lines of evidence have suggested that biting aquatic insects, Naucoridae and

Belostomatidae, may act as vectors, however this proposal remains controversial.
Materials and Methods

Herein, based on sampling in Cameroon, we construct an ecological niche model of these insects to
describe their spatial distribution. We predict their distribution across West Africa, describe
important environmental drivers of their abundance, and examine the correlation between their

abundance and Buruli ulcer prevalence in the context of the Bradford-Hill guidelines.
Results

We find a significant positive correlation between the abundance of the insects and the prevalence
of Buruli ulcer. This correlation changes in space and time, it is significant in one Camerounese study
region in (Akonolinga) and not the other (Bankim). We discuss notable environmental differences

between these regions.
Conclusion

We interpret the presence of, and change in, this correlation as evidence (though not proof) that
these insects may be locally important vectors. This is consistent with the idea of Buruli ulcer as a
disease transmitted by multiple modes of infection, the importance of any one pathway changing

from region to region, depending on the local environmental conditions.

Key-words: Ecological niche modelling, Naucoridae, Belostomatidae, spatial distribution, habitat
suitability, Buruli ulcer, Mycobacterium ulcerans, vector-borne transmission, environmentally-

acquired disease.
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Background

The Buruli ulcer is an emerging neglected tropical disease affecting more than 5000 people per year
in West and Central Africa, French Guiana, Latin America and Australia (Van der Werf 1999, WHO).
The disease burden is highest in Africa, where it predominantly affects children under the age of 15,
and due to damage to the skin, muscle and bone, can result in severe scarring and crippling
deformities if left untreated. The disease is caused by the environmental pathogen Mycobacterium

ulcerans.

The mode of transmission of M. ulcerans, the method by which it infects humans, is unknown. Many
routes of transmission have been proposed, such as transmission by aerosol (Veitch et al. 1997),
vector transmission by amoebae (Amissah et al. 2014) or through aquatic networks (Roche et al.
2013). During a study of the association between M. ulcerans and aquatic plants in Ghana and Benin
aquatic insects were accidentally collected during the sampling procedure, and unexpectedly found
to test positive for M. ulcerans (Van der Werf et al. 1999). The authors proposed that, given that
these insects occasionally bite humans, they may be implicated in transmission of M. ulcerans.
Aquatic insects have been further implicated after a series of laboratory experiments demonstrated
the competency of Naucoridae to act as vectors. Naucoridae are able to acquire M. ulcerans from
their diet, and then transmit the pathogen to mice resulting in Buruli-like symptoms (Marsollier et al.
2002, Marsollier et al. 2005, Marsollier et al. 2007A, Marsollier et al. 2007B). Buruli ulcer is
commonly associated with lowland, stagnant water (Wagner et al. 2008) and human behaviours
associated with water bodies appear to be risk factors for Buruli ulcer infection, which would lend

support to the idea of infection occurring in an aquatic context.

However, the role of these insects has been disputed for several reasons. In a two year study of
Buruli ulcer endemic and non-endemic sites in Ghana, Benbow et al. (2008) found no evidence for a
role in transmission. The population of these insects, and the prevalence of M. ulcerans infection in
them, was not significantly different between Buruli ulcer endemic and Buruli ulcer non-endemic
sites. The authors argued that, if these insects are vectors, we would expect them to have a higher
abundance in Buruli ulcer endemic sites, that rates of M. ulcerans infection of the insects should be
higher in Buruli ulcer endemic sites, and that the rate of infection of these insects should be higher

than other species of invertebrates.

These expectations are based on the Bradford-Hill guidelines for associating insect vectors with

human vector-borne disease (Hill 1965, Merritt et al. 2010). These guidelines provide a general
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framework to explore the association between vectors and disease, based on the consistency,

specificity, plausibility and coherence of the proposed mode of transmission.

Consistency refers to the expectation that the rate of infection of the proposed vectors, which
should be consistently strongly positively associated, in time and space, with prevalence of human
cases. This also implies human cases should not occur in absence of the proposed vector. The
proposed vector should have a demonstrated capacity to physically transmit the pathogen, which
has been demonstrated for M. ulcerans in the lab (Marsollier et al. 2002). The interaction between
the proposed vector and human infection must be specific and alternative explanations of human
infection should be ruled out (though see Roche et al. 2013 for alternative explanations). That is,
human infection must be demonstrated to not have been the result of other potential modes of
transmission. We note that this criterion must be applied with care in cases of multi-vectorial

transmission.

Additionally, the proposed vector must plausibly be able to be a vector of the pathogen. This
criterion is often controversial as it is highly dependent upon the experience of the researcher, and
their opinion about what is, and is not, plausible as opposed to merely possible (Schiinemann et al.
2011). Most authors in Buruli ulcer research would agree with some basic facts; the waterbugs are
infected in the environment (Marion et al. 2010), they bite humans occasionally, and are able to
transmit the bacteria to mice in the lab (Marsollier et al. 2002). However, waterbugs are not known
to be vectors of other pathogens, and related Mycobacteria (Mycobacterium tuberculosis, M. leprae,
M. marnium) are not known to be vector-borne diseases (Benbow et al. 2008, Merritt et al. 2010).
The plausibility of this proposed route of transmission is still debated. The final criterion, coherence,
is based on what we already know about the pathogen, the vector and the host. Does the proposed
method of transmission fit well with our current understanding of its biology? As our understanding

of the biology of M. ulcerans improves, this criterion will be answered.

Given this framework, how likely is it that Naucoridae and/or Belostomatidae are vectors of the
Buruli ulcer disease? Herein, we explore the correlation in time and space between the proposed
vectors, Naucoridae and Belostomatidae, and the Buruli ulcer prevalence. We discuss the other
Bradford-Hill criteria, but do not focus on them specifically, as it was not directly within the scope of
this work. Based on sampling in Cameroon, we characterise the set of suitable habitats within which
species of the Families Belostomatidae and Naucoridae can maintain a population (their ecological

niche) and describe the spatial distribution of these suitable habitats across West Africa. We then
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explore any correlations between habitat suitability and Buruli ulcer prevalence at multiple spatial

scales.
Materials and Methods
Distribution of Belostomatidae and Naucoridae aquatic insect families

Data were collected as described in S. Meyin a Ebong et al. (2012), hereafter referred to as the SME
dataset. In brief, 36 sample sites in Cameroon were visited monthly from September 2012 to
February 2013 (Figure 30), a period including both wet and dry seasons. Dip net sampling was
conducted at all sites. Due to limitations of current taxonomic keys, the aquatic insects of interest
were only identifiable to the phylogenetic division of Family. A second dataset was used in model
validation, using data collected separately by A. Garchitorena (Figure 30). This dataset was collected
as described in Garchitorena et al. (2014), and is hereafter referred to as the AG dataset. Niche
models of Belostomatidae and Naucoridae are constructed using the SME dataset, and then tested

on their ability to reproduce the independent AG dataset.

Land cover [ national border
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Forest () Model training sites (SME dataset)
N
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Urban T T T T T T T T 1
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Figure 30. Study sites Cameroon against local land cover. Data from the SME dataset is in red, and AG data set
isin blue. The sample sites span the extent of Cameroon, sampling from every major land cover category.
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Environmental parameters used in ecological niche modelling

Five ecological parameters were used to describe the distribution of suitable habitats: rainfall, flow
accumulation, wetness index, land cover at the sample site, and land cover within the flight range of
adult insects. These variables were selected on the basis of their likelihood to influence the
distribution and condition of water, and are summarised in Table 8. Rainfall was highly seasonal, so
we divide models by the season of collection. Models constructed using species distribution data
from the dry season used the precipitation in the driest season; models constructed using species
distribution data from the wet season used the precipitation in the wettest season. These two
variables were taken from the Worldclim database, as BIO13 Precipitation of Wettest Month and
BlO14 Precipitation of Driest Month (Hijmans et al. 2005). Flow accumulation was derived using
elevation data (Jarvis et al. 2008). Flow accumulation is the surface area contributing water to a
particular point, and indicates the potential amount of water available, which is then determined by
rainfall. Using the SRTM elevation, flow accumulation was derived using the Fill, Flow Direction and
Flow Accumulation tools in ArcMap 10.1 (ESRI). Wetness index has previously been shown to be
associated with the Buruli ulcer (Wagner et al. 2008). In ecological terms it indicates the topological

potential for water to accumulate, and was derived according to Equation 2,

FA+ 500
Wi = lug( tan(s) )

Equation 2

where FA was the flow accumulation, 500 was the cell size in meters, and S was the surface slope in
degrees. Large flow accumulation values and flat slopes resulted in high wetness index values, and
indicate areas where water is likely to stagnate. In areas where the slope is zero wetness index had
no value. Land cover was derived from the Global Land Cover Map 2009. GLC-At Point (hereafter
GLC-AP) is the land cover at the sample site. In a 5km radius around the site the most common
(modal) land cover category was described. For example, a sample site may be in savannah, but
surrounded by forest. 5km was selected as the approximate flight radius of the insects (Bowden

1964, Robertson 1976, Lytle 1999, Mukai and Ishii 2007). This is termed GLC-5K.
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Table 8. Environmental variables used in ecological niche modelling. All data were resampled to a spatial
resolution of 0.004 decimal degrees (~300m’) for use in Maxent. Resampling used resample() in the library
‘raster’ of the software R (R core development team 2013).

Variable Units Original resolution Source
Wetness index m? 15 arc-sec (approx 450m?) SRTM
Flow accumulation m? 15 arc-sec (approx 450m?) SRTM
Precipitation in wettest season millimeter | 30 arc-sec (approx 1 km?) Bioclim 13
Precipitation in driest season millimeter | 30 arc-sec (approx 1 km?) Bioclim 14
GLC-AP Unitless 300m’ GLC 2009
GLC-5K Unitless 300m* GLC 2009

Data preparation, niche modelling, and prediction of spatial distribution of suitable habitat.

Insect distribution data from the 36 sample sites (Figure 30) were explored to identify normality,
homogeneity of variance and correlation in the five environmental parameters used. Two sites were
excluded from analysis as apparent outliers in flow accumulation, otherwise the data were normally
distributed and homogenous. Correlation was observed between flow accumulation and wetness
index and between precipitation in the driest and in the wettest seasons, however this was not
significant (p>0.05) using a Spearman’s correlation test. All data were resampled to a spatial
resolution of 0.004 decimal degrees (~300m?) for modelling using resample() in the library ‘raster’ of

the software R (R core development team 2013).

Across the scale of West Africa we assume that absence data is not reliable, as it is more likely to
indicate failure of detection rather than evidence of absence. For this reason, we chose to conduct
presence-only modelling, and the specific method selected was Maximum Entropy (Phillips et al.
2006). We used the software Maxent (Maxent 3.3.3k, Phillips et al. 2004) to construct these models.
Maxent has been used several times in the past to model the ecological niche of disease vectors
(Gonzalez et al. 2010). Maximum entropy modelling minimises the divergence between the
distribution of the environmental parameters and the species distribution, assuming the species is
distributed in the most ecologically efficient manner possible. Maxent describes the environmental
parameters across the study region, and is sensitive to the size of the study region. Herein, we
generated background points in every raster cell within the extent of our study (that is, every

environment was described). The models were replicated 100 times and averaged.

In order to select an appropriate extent to the area considered for modelling we chose to confine
the spatial extent of our study to the region ecologically interpolated by the sample sites (Figure 31).

The sample sites of the SME dataset describe a particular range of environmental conditions for the
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five environmental parameters (Table 8). We excluded conditions that were not studied by the SME
regime (much larger or lower values of rainfall, land cover categories not sampled, flow
accumulation not observed at the study sites) to avoid extrapolating beyond the range of ecological
parameter values studied. To select this interpolative region we constructed a Multivariate
Environmental Similarity Surface (MESS map, Elith et al. 2010), excluding areas with negative MESS
values from our study region. A MESS map was constructed for each model; models with more
samples can be interpolated into larger ecological regions. MESS maps were constructed with the

function mess() available in the library dismo in R.

Belostomatidae dry season MESS values : National border
- High : 100

- Low: 0 “’%E

s

N

LI B S R —
0 175 350 700 Km

Figure 31. Delineation of the study area. We exclude areas of ecological extrapolation. Across West Africa the
blue-green coloured region is ecologically interpolative within our sites, according to a multivariate
environmental similarity surface (MESS). Regions where we extrapolate beyond the ecology of our study sites
are identified using MESS values less than 0. Colour values are MESS values, indicating similarity to sample
sites; a value of 100 is identical to the median of the sample sites. The spatial projection of this interpolative
region is shown against a map of country borders of West Africa, for Belostomatidae adults in the dry season.
This projection changes for each family, developmental stage and season, and though it is spatially
discontinuous it is ecologically homogenous.
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Evaluating model performance

We evaluated the performance of these models according to their ability to correctly predict the
distribution of the insects (with a separate dataset, the AG dataset) as efficiently as possible
(avoiding overfitting). We used two methods to evaluate the models. First, the Akaike information
criterion, corrected for small sample size (AlICc), was used. AlCc was generated as in Warren and
Seifert (2011), and penalises complex models to avoid over-fitting the data, low AICc scores indicate
the model is not over-fitting. Second, we tested the models ability to predict the AG dataset. The
Area Under Curve (AUC) is often used to evaluate Maxent models, and has been criticized previously
(Lobo et al. 2008). We used a modified version of the AUC for model evaluation, termed here AG
AUC. The model predictions were compared to the known values as collected by AG. AG AUC values
range from 0 to 1, values close to 1 indicate good performance, 0.5 is no better than random. Use of
the AG dataset allowed us to use true absence data for model validation, avoiding the problem of

pseudo-absence data in Maxent.

The purpose of these two different metrics is to consider different aspects of performance, neither
were without limitations. Use of the AG dataset allowed a degree of validation across
methodologies, indicating the extent to which our results were dependent on a particular sampling
regime. AlCc is traditionally used to indicate over-fitting in models, however it is sensitive to the size

of the ecological niche of the species.

Identifying the relationship between habitat suitability and Buruli ulcer prevalence.

Buruli ulcer prevalence data was collected for two endemic regions in Cameroon, Akonolinga
(Landier et al. 2014) and Bankim (Marion et al. 2011), as shown in Figure 32. Around the centre of
each village a buffer was created, and average habitat suitability in this buffer was correlated to the
village Buruli ulcer prevalence using Spearman’s rank correlation coefficient. Seven buffers were
used to explore the effect of buffer size and shape. Around the centre of the village circular buffers
of 1, 2, 3, 4, 5 and 10 km were selected, and average habitat suitability recorded. We also used a
buffer defined by the borders of the village (Figure 32). This buffer changes in size for each village,
and represents the approximate extent of the village area. 5km is approximately the flight radius of
the insects, and the distance easily walkable by local people on an average day in Akonolinga (Giles-
Vernick et al. 2014). To deal with this multiple testing, Bonferonni’s correction of the p-values was

used.
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Figure 32. Spatial distribution of Buruli ulcer prevalence in Akonolianga and Bankim, two endemic regions
within Cameroon.
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Results

Distribution of suitable habitat, and its relationship to Buruli ulcer

In Akonolinga there was a significantly positive correlation between Buruli ulcer prevalence and
average habitat suitability, for both Naucoridae and Belostomatidae, in the wet season (Table 9,
Figure 33). This relationship was significant at multiple buffer distances. In contrast, in Bankim there
was no significant correlation between Buruli ulcer prevalence and Belostomatidae or Naucoridae

average habitat suitability, in either wet or dry seasons or at any buffer distance (Table 10).
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Figure 33. Correlation between the prevalence of Buruli ulcer and habitat suitability of Belostomatidae (Left)
and Naucoridae (Right) in the wet season in Akonolinga. Colour indicates use of a linear model (Black) or
locally weighted scatterplot smoothing (Red), different ways of viewing the correlation. Buruli ulcer was absent
from certain villages (grey dots) where habitat suitability for the insects is high. Because this can skew any
correlation between habitat suitability and prevalence, we explored the effect of including (thin lines) or
excluding (thick lines) these villages. We note that in either case Spearman’s rank correlation coefficient was
significant. For Belostomatidae with Buruli ulcer absent villages p=0.08, without BU absent villages p=0.03. For
Naucoridae with BU absent villages p=0.04, without BU absent villages p=0.02.
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Table 9. Spearman’s rank correlation coefficients for correlation between Buruli ulcer prevalence and habitat
suitability in Akonolinga, for both seasons and species. The column labelled Buffer is the distance, in km,
around the village centre that the habitat suitability is considered, the buffer labelled village uses village
boarders as a buffer (Figure 32). Bonferonni’s p value is the significance of the correlation between the insect
and the disease, for clarity only significant values (<0.05) are presented, non-significant values are marked “-”.
Significant positive correlations were observed between both Belostomatidae and Naucoridae in the wet
season and Buruli ulcer prevalence, but not the dry season.

Species Season Buffer Bonferroni p value

Belostomatidae dry 10 -

N W s U

1 -

village -
wet 10 0.000
0.014
0.023

N W b~ U

1 -
village -

Naucoridae dry 10 -

N W b U
1

village -
wet 10 0.001
0.013
0.014

N W b~ U

1 -
village -
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Table 10. Spearman rank correlation coefficients for correlation between Buruli ulcer prevalence and habitat
suitability in Bankim, for both seasons and species. The column labelled Buffer is the distance, in km, around
the village centre that the habitat suitability is considered, the buffer labelled village uses village boarders as a
buffer (Figure 32). Bonferonni’s p value is the significance of the correlation between the insect and the
disease, for clarity only significant values (<0.05) are presented, non-significant values are marked “-”. No
significant correlations were observed in Bankim.

Species Season Buffer Bonferroni p value

Belostomatidae  dry 10 -

N W b~ U

1 -
village -
wet 10 -

N W bk U
1

1 -
village -

Naucoridae dry 10 -

N W bk U
1

1 -
village -
wet 10 -

N W b~ U
1

village -
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Ecologically important variables in the distribution of the aquatic insect families

Variable importance was evaluated using Jackknife variable removal. Jacknife removes a variable and
evaluates the effect of variable removal on the model. In the dry season Belostomatidae and
Naucoridae responded in broadly similar fashions; the variable whose removal had the largest effect
was GLC 5km (Figure 34). The land cover categories most suitable for both Belostomatidae and
Naucoridae are water bodies, artificial areas, rain fed croplands and forest/grassland mosaics (Figure
35). If one of these categories is the dominant category in 5km radius, in the dry season, the
likelihood of encountering the insect is higher. Unsuitable categories were forest and

vegetation/cropland mosaic.

In the wet season precipitation is more important than land cover. Precipitation suitability peaks at
approximately 300 millimeters per month, and diminishes above or below this (Figure 35). For the

dry season there is a simple increase in habitat suitability with increasing precipitation.

Flow accumulation had a negative association with habitat suitability, and wetness index had a

positive association, regardless of season, for both Belostomatidae and Naucoridae.

0.9

0.8

Variable

® Flow accumulation
H Wetness index
I Precipation

W GLC 5k

Jack-knife AUC

HGLC AP

Belostomatidae dry Belostomatidae wet Naucoridae dry Naucoridae wet
Aquatic insect Family by season

Figure 34. Importance of each variable according to Jack-knife AUC for wet and dry seasons. A high value
indicates the variable is important; however this is sensitive to correlation within the variables. For both
insects the most important variable in the dry season was the land cover in the flight radius (GLC 5km), in the
wet season precipitation was the most important variable.
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Model performance

AlCc for Naucoridae adults (dry season) was 14.6, and 14.2 in the wet season. For Belostomatidae
adults (dry season) the AICc was 12.5, and 12.2 in the wet season. Scores of overfitting are relative;
these scores indicate the Belostomatidae model was less prone to overfitting than the Naucoridae

model.

The AG data set was also used in model validation. In the dry season Naucoridae adults had an AG
AUC of 0.83, and 0.80 in the wet season. Belostomatidae adults had an AG AUC of 0.80 in the dry
season, and 0.86 in the wet season. These scores indicate that the models are able to describe the
distribution of the insects with good accuracy; the model based on SME dataset is able to accurately

replicate the independently collected AG dataset.
Discussion

We explored the correlation between the distribution of Belostomatidae and Naucoridae and the
prevalence of Buruli ulcer. We have found a positive gradient between habitat suitability of
Naucoridae and Belostomatidae and Buruli ulcer prevalence. Correlation does not imply causation;
this result is not proof that the insects are vectors, however the existence of this correlation at

certain times and locations argues for the possibility of a locally important transmission route.

There are significant temporal changes in this correlation between habitat suitability of the insects
and Buruli ulcer prevalence; in Akonolinga the Buruli ulcer prevalence is correlated to Naucoridae
and Belostomatidae distribution in the wet season, but not in the dry season. Buruli ulcer is known
to have complex temporal changes in prevalence (Morris et al. 2014, Landier et al. 2014, van
Ravensway et al. 2012), as is M. ulcerans (Marion et al. 2010, MclIntosh et al. 2014). It is therefore
unsurprising that, if these insects are implicated in transmission in some way (either as key hosts or
vectors), the correlation between Buruli ulcer prevalence and their abundance would change in
time. We also observe spatial changes in the correlation; water bug habitat suitability is not
correlated to Buruli ulcer prevalence in Bankim, 457km North of Akonolinga. Speculatively, perhaps
other routes of transmission may be more important in this region, for example contact with

infected plant biofilms, as shown for Ghana (Merritt et al. 2005).

How do we interpret this result in terms of the Bradford-Hill guidelines? Herein we have focused on
the correlation between these insects and the prevalence of the disease in both space and time, and
while there is a significant positive correlation for the predicted abundance of the aquatic insects
and the prevalence of the Buruli ulcer, this correlation is not consistent from region to region.
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Previous research has proposed that M. ulcerans is transmitted from its environmental reservoir to
humans by multiple modes of transmission (Roche et al. 2013). In such a situation of multiple
vectors the relative importance of any given mode of transmission may be expected to vary in time
or space, and our results are consistent with, though not proof of, this hypothesis. The lack of a clear
signal between water bugs and Buruli ulcer in Bankim would suggest that other hosts or vectors

may, perhaps, be key reservoirs or vectors in that region.

The ecological niches of both Naucorid and Belostomatid water bugs in West Africa are
predominantly determined by the distribution of suitable landcover in a 5km radius, preferring
water bodies, artificial areas and rain fed croplands. The specific land cover at the point of the site
(GLC-AP) was less informative. The observation that the most suitable regional land cover class is
water bodies is not surprising, but the high suitability of urban areas is curious. Ecologically this
could have a variety of causes; there may be changes in the chemical composition of water in these
habitats, a reduction in predation pressure, or a greater abundance of food. The specific reasons will

require further research.

Our study has been limited in certain points; the low taxonomic resolution of the insects is a current
limitation in this study. Secondly, an important limitation is that the distribution of M. ulcerans in
these insects in these areas is unknown. The distribution of Naucoridae and Belostomatidae infected
by M. ulcerans may differ from the distribution of Naucoridae and Belostomatidae generally.
However, the insects are known to host the bacillus on their carapace, in their body (Benbow et al.
2008, Marion et al. 2010, Garchitorena et al. 2014) and in their salivary glands (Marion et al. 2010) in
the wild, and the distribution of the insect necessarily sets a limit to the distribution of infected
insects. A related limitation is the unknown incubation time of M. ulcerans; the time from infection
to presentation at the hospital, remains unknown. Finally, we have only addressed a single criterion
of the Bradford-Hill guidelines; correlation. We have not aimed for a full discussion of the other
criteria, and our findings should not be interpreted as proof of the role of these insects as vectors or
hosts. Rather, we have discussed the existence of, and change in, a correlation between these
insects and Buruli ulcer. Future work aims to explore spatial variation in the correlation between
Buruli ulcer and the entire plant and animal communities, identifying any similarities between

regions where the correlation exists.

Despite these limitations, these results are consistent with previous research, which has shown that
in Akonolinga the Nyong river is a risk factor for Buruli ulcer (Landier et al. 2014). Our results agree

with this conclusion; the main focus of suitable habitats for the insects in Akonolinga is the Nyong
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river, where the existence of large plants near the river banks provides appropriate habitat for
Naucoridae and Belostomatidae to forage, develop and reproduce. Previous research has also
implicated aquatic insects as important vectors in Akonolinga (Marion et al. 2010), including

detection of M. ulcerans in the saliva of the insects.

In conclusion, we find a positive correlation between the abundance of Naucoridae and
Belostomatidae suitable habitat and Buruli ulcer prevalence. This correlation is not constant, and
changes in time and space. We interpret this as evidence consistent with that idea that Naucoridae
and Belostomatidae act as locally important hosts or routes of transmission in certain conditions,

which would be expected in the situation of multi-vectorial transmission.
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Introduction

This thesis set out to describe the distribution of M. ulcerans, and the insects suspected to act as
vectors of this pathogen, in Cameroon, Africa. M. ulcerans is an emerging infectious disease,
afflicting more than 5,000 people per year, and knowledge of the distribution of the pathogen is
needed in order to assist in control of the Buruli ulcer disease. At the beginning of this thesis |
undertook a literature review of Buruli ulcer and M. ulcerans, with the aim of gaining more
knowledge of this emerging pathogen. This was presented in Chapter 1, where the basic biology of
M. ulcerans was introduced. | also undertook a review of different methods available for ecological
niche modelling, which developed into Chapter 2, a discussion on the effect of study area and
sample size in ecological niche modelling. The skills developed were applied practically to a
description of the distribution of M. ulcerans in Akonolinga, Cameroon, (Chapter 3), and tested
against a second database from French Guiana, South America. Finally, | described the distribution of
the suspected vectors across West Africa (Chapter 4). The following is a synthesis of the previous
three chapters, with a view towards future work and the key research questions these findings have

identified.

Ecological niche models; sample size, surface area and performance.

Aim

Following a review of methods available to construct ecological niche models, | undertook an
evaluation of the effect of differences in sample size between different databases and the impact
this had on model performance. As a part of the EXTRA-MU and LabEx CEBA collaboration networks |
have engaged with researchers working in a variety of regions and with differing sample sizes, and
the goal herein was to gain a better understanding of maximum entropy modelling, the Maxent

software, and the importance of different scale and different sample size for model performance.

Methods

To explore these questions, | created a virtual species distributed according to elevation,
precipitation and temperature. Samples were generated from this species to describe how the
model responds to changes in the extent of the study and the sample sizes used. Following a review
of the literature, | also explored the effect these changes have on a commonly used model

evaluation metric, the Area Under the Curve (AUC).
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Results

The key findings were:

1) The AUC of a Maxent model increases with increasing study extent,
2) The AUC of a Maxent model increases with decreasing species niche volume,

3) The true performance of the model does not correlate to changes in the AUC.

As discussed in Chapter 2, the performance of the Maxent model, according to AUC, increases as the
sample size increases (as expected), as the hypervolume, G, of the study increases, and as the size of

the ecological niche of the species, V, decreases.

However, this increase is not a real increase, and is a result of the generation of pseudo-absence
points in the evaluation metric. As ratio of V to G, of volume of the entire set of environments under
consideration to the volume of that set occupied by the virtual species, approaches 0, the AUC

approaches 1. The pseudo-absence points are more likely to be in an absent region.

Implications of these results within the research community of epidemiologists and disease ecologists

The results of the research are presented in the paper “How many samples do we need to describe
the spatial distribution of an emerging pathogen?”, which at the time this thesis was submitted is
being prepared for publication. These findings were presented in a manner accessible to
epidemiologists, as, though these ideas are not unknown in ecology (Warren and Seifert 2011), they
are less widely appreciated in disease epidemiology. The need to conduct sampling based on
ecological principles has been a key point of communication within the research network. As is
shown in the Chapter, inappropriate sampling can dramatically bias our findings. This work was

applied to M. ulcerans and Buruli ulcer in the following two papers.

Future work

In this chapter | had not explored the importance of sample bias. Often sampling methodologies
focus more effort on one geographic region, translating into a better understanding of the ecological
niche under the environmental parameters that prevail in that region. Often this bias is an
unavoidable result of sampling, for example sample sites are often near roads as they must be
accessible. Future work on this subject aims to explore techniques apart from the AUC, and the
impact of sampling bias on sample size needed for niche modelling. Given the difficulty in finding
available data for emerging infectious diseases, a current research priority is the efficient use of the

data available.
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The ecological niche of Mycobacterium ulcerans

Aim

The original aim of the thesis, as outlined within the EXTRA-MU project, was to describe the
distribution of M. ulcerans in Akonolinga, Cameroon. After undertaking a literature review of M.
ulcerans, the importance of land cover (Wagner et al. 2008) and season (van Ravensway et al. 2012,
Morris et al. 2014B) became apparent. These variables were included in the models, along with
topography, which influences the flow and accumulation of water. The models were then
interpolated across Akonolinga to generate the first hazard maps of the distribution of the pathogen

for this Buruli ulcer endemic region.

Methods

Following the review of available methods, | undertook general linear modelling to describe the
distribution M. ulcerans in Akonolinga. Sampling was biotic, taking the 5 dominant insect Orders of
the local community (normally making up 80-90% of the biotic sample), and described the

distribution of infected insects in relation to the land cover and topography of the sample site.

Land cover and topography were described within two buffers around the sample sites, a local
buffer of 5km (approximately the flight radius of adults of the 5 Orders), and watershed buffers (the

drainage area of the sample site).

Results

The key findings were:

1) Retention of both the watershed and 5km buffers as important factors driving M. ulcerans
distribution,

2) A seasonal distribution,

3) Importance of lowland swamp and low amounts of urban habitat,

4) Sensitivity to spatial extent,

5) The distribution of M. ulcerans is predicted to be generalist.

The finding that both the watershed buffer, and the 5km buffer, are important and retained in
model is interpreted as signifying an important non-aquatic component to the distribution of M.

ulcerans. This is not biologically unrealistic, as in Australia the pathogen is commonly found in non-
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aquatic environments, such as urban areas (Carson et al. 2014), but a great deal of sampling in Africa

is aquatic. This argues for the need for broader, non-aquatic sampling of the bacterium.

The seasonal distribution of the bacterium may be expected given the notably seasonal distribution
of the disease (van Ravensway et al. 2012, Morris et al 2014B). In the wet season, in Akonolinga, M.
ulcerans is less common in small watersheds that drain wet swamps, while in the dry season the
bacterium is less common in large watersheds that drain flood plains. It has been speculated that the
seasonal change in the disease may be due to changes in either human behaviour or vector
abundance (Johnson et al. 2005), however these findings support the importance of changing
distribution of the bacterium as a potential cause of the change in prevalence of Buruli ulcer,
however the unknown incubation time of the bacterium remains as a limitation to this

interpretation.

In collaboration with researchers at the LabEx CEBA, | have also demonstrated the sensitivity of the
Akonolinga model to extrapolation beyond the spatial extent of the study area, as it is unable to
predict the distribution of the pathogen in French Guiana. This is consistent with current ideas of the
importance of various ecovars of M. ulcerans; the species has recently undergone a population
bottleneck and if it is still adapting to a new set of environments we would expect that local
adaption may cause notable changes in the population distribution. This will have consequences for
future detection of the bacterium, give that previous work has used only the 152404 probe for PCR,
which is now being recognised as non-specific (Tobias et al. 2013); however based on these findings |
would expect different ecovars to reveal different ecological distributions. This may aid in
understanding the method of transmission, as (speculatively) not all ecovars may be equally

pathogenic towards humans.

Limitations

This research has suffered certain limitations. M. ulcerans detection was with 152404 and KR probes,
this is considered a strong indication of the presence of M. ulcerans, but does not differentiate
between ecovars of the species, between pathogenic and non-pathogenic variants of the bacterium,
or between viable in inviable bacteria. The hazard distribution maps can therefore be considered as

maps of the potential distribution of the bacterium, without finer phylogenetic resolution.

While | described the distribution of M. ulcerans at the landscape scale, the bacterium could also be
described at larger or smaller spatial scales, and the scale will influence the outcome of the model

(as discussed in Chapter 2). The choice of the landscape scale was a practical decision, as at this scale
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we are able to generate maps of the distribution of the bacterium that can be used by local health
officials. My results cannot describe the distribution of M. ulcerans at larger or smaller scales, and
the finding that the model does not predict from Akonolinga to French Guiana highlights the

sensitivity of the models to not only scale, but also spatial extent.

The produced hazard maps are not risk maps. The maps of the predicted distribution of suitable
habitat for M. ulcerans in Akonolinga describe an environmental hazard; in order for the hazard to
be realised (for Buruli ulcer to occur) a suitable vector, host, reservoir and susceptible human
population need to all co-occur at the same time. These hazard maps represent the first step
towards generating maps of risk to the human population, as our understanding of the mode(s) of

transmission improves.

Finally, a particular feature of our sample regime in Akonolinga is the use exclusively of biotic
samples. Only the aquatic invertebrate community was considered, and the 5 most common Insect
Orders were used to describe the distribution of M. ulcerans. Previous research has found the
bacterium in the abiotic environment in French Guiana (Morris et al. 2014), and the bacterium is
detected in water filtrand and soils in Ghana (Williamson et al. 2012), the results are therefore
applicable only to this biotic component of the distribution. However, the biotic component does

appear to be important, as the insects are persistently and commonly infected (Mosi et al. 2008).

Policy Implications

The apparently generalist distribution of M. ulcerans in Akonolinga has implications for control of

the disease, depending on our interpretation occupancy of the suitable habitat.

Firstly, it is possible the habitat is suitable, but currently uninhabited (as discussed in Chapter 1). This
is commonly the case with invasive species, where a section of the habitat will soon be exploited.
Given the previously discussed correlation between the distribution of the bacterium and the
disease (Williamson et al. 2008), and the observation of a progression of disease prevalence, in
space and time, through Akonolinga (Landier et al. 2014), and the finding presented herein (that
suitable habitat is common), implies that M. ulcerans may be expanding through Akonolinga. If this
is so, it would be expected to continue expanding, likely resulting in an increase in Buruli ulcer

prevalence in the coming years.

However, there is an alternative interpretation. These results find that there is a highly generalist
distribution of suitable habitat. This suitable habitat may be entirely occupied by the bacterium, in
which case the historical expansion of the disease may be due to either historical changes in human
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behaviour (Giles-Vernick et al. 2014), in the land use of local communities, or changes in the
distribution of key vector(s) or host(s). In such a case M. ulcerans may be common in the

environment, but only able to cause human infection under certain circumstances.

In either interpretation, methods of controlling the Buruli ulcer which aim to remove the bacterium
from the environment are unlikely to be cost-effective, as a large amount of suitable habitat would
have to be made unsuitable for the bacterium. Control methods aimed at altering human behaviour
may be more successful in the alternative interpretation, that the bacterium occupies all of its
suitable habitat. The importance of distinguishing between these two proposed hypotheses is

discussed further below, in the section on future research avenues.

The results of the research are presented in the paper “Topography and land cover of watersheds
predicts the distribution of the environmental pathogen Mycobacterium ulcerans in aquatic
insects.”, which at the time this thesis was submitted had been editorially accepted for publication in

PLoS Neglected Tropical Diseases.
Future work

| described the distribution of M. ulcerans in the 5 dominant insect Orders in the region, given the
importance of biotic interactions for the species (Roche et al. 2013) future work aims to explore this
again with a finer level of detail, at the Family level. Current work has shown the sensitivity to
extrapolation, collaboration with field researchers in Benin is expected to yield an additional area of
study, for comparison with a third region. Understanding the sensitivity to spatial extrapolation and
how this changes from region to region should yield further information on the environmental

drivers of M. ulcerans distribution.

108



The relationship between Belostomatidae, Naucoridae and Buruli ulcer.

Aim

Review of the literature on M. ulcerans and Buruli ulcer reveals the ongoing debate on the mode of
transmission of M. ulcerans from the environment to humans (Marsollier et al. 2002, Benbow et al.
2008). | aimed to contribute to this discussion, through exploration of any correlation between the
predicted abundance of Belostomatidae or Naucoridae with Buruli ulcer prevalence. To contribute in
a constructive manner, | employed the Bradford-Hill guidelines for vector identification (Hill 1965).
These guidelines lay a set of criteria that an insect species suspected to be a vector of a disease
would be expected to fulfil. These criteria are specificity, correlation, plausibility and coherence. |
addressed the criterion of correlation, any vector should be correlated in abundance to the
prevalence of the disease, and explored the distribution of Belostomatidae, Naucoridae and the

Buruli ulcer for any correlations.

Methods

Following collection of samples (Meyin a Ebong et al. 2012) and discussion on the ecology of
Belostomatidae and Naucoridae, | selected maximum entropy modelling as the most suitable
presence-only niche modelling method. As discussed in Chapter 2, this method is sensitive to the
area of the study. | limited the extent of the study using multivariate environmental similarity
surfaces, these enable the model to avoid extrapolating into un-sampled environments, and due to
the extensive sampling regime (Meyin a Ebong et al. 2012) the models are able to interpolate into a

large spatial area.

Results

The key findings were:

1) Significant positive correlation between the insects and the disease,
2) Change in this correlation from season to season for certain regions,
3) Change in the correlation from region to region (within Buruli ulcer endemic regions),

4) Suitable habitat for the insects included urban habitats.

Vectors are normally correlated in abundance to the prevalence of the disease they transmit (Hill
1965, Merritt et al 2010), and here | have found that these two water bug families are indeed
positively correlated to the prevalence of Buruli ulcer. This is by no means proof, but is consistent
with their potential role as vectors.
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This correlation was found to be seasonal in nature, occurring in the Akonolinga wet season but not
in the dry. This would suggest that the wet season is a key time in the epidemiology of Buruli ulcer
transmission; however the incubation time is known to vary from region to region and among
genders and age groups (Marion et al. in preparation), and the unknown incubation time in

Akonolinga remains a limitation to this interpretation.

In a similar manner, the correlation changes from region to region. While there is a significant
correlation in Akonolinga, there is no significant correlation between these insects and the Buruli
ulcer prevalence in Bankim. | have taken care to explain the distinction between correlation and
causation in Chapter 4, the fact that we find a correlation does not prove a causative role. However,
in the context of the Bradford-Hill guidelines, | interpret the presence of, and change in, this

correlation as consistent with the hypothesis of multi-host transmission.

Belostomatidae and Naucoridae were found to be positively correlated to urban habitats, the two
families of insects appear to be more common near these urban areas. A potential limitation of this
interpretation is, as discussed in Chapter 4, the possibility sampling bias favouring urban habitats.
However, the dataset does not contain any obvious spatial correlation to urban habitats, so though
this cannot be conclusively rejected, it appears unlikely. A similar limitation, discussed in Chapter 1,
is detection bias. The sampling protocol may sample from all habitats equally, however the insects
may be more detectable in certain habitats than in others. | have no evidence of this potential
detection bias, and cannot comment on the likelihood of such an effect. If Belostomatidae and
Naucoridae are indeed more common in urban habitat, baring sample or detection effects, it would
lend evidence to their role as vectors. As discussed in Chapter 1, these insects rarely bite humans,
and normally accidently, so an increase in the contact rates between humans and the insects would

increase this probabilistically low biting rate.
Limitations

As discussed in the paper, we only describe the distribution of these two families, and do not discuss
the distribution of other aquatic insects. If Belostomatidae and Naucoridae are vectors, or key hosts,
they should be more strongly correlated to the distribution of the disease than other members of
the community who are not vectors (Hill 1965). | aimed to address one aspect of the guidelines, and

cannot comment on the other criteria.

The correlation is found to exist only in the wet season, suggesting that the wet season may be an

important time in transmission (as discussed above). However, the time between infection by M.
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ulcerans and patient presentation at a hospital remains unknown, and is suspected to be on the
order of four to five months. Both the models for the distribution of M. ulcerans (Chapter 3) and the
models for the distribution of the insects found seasonal changes in the distributions. These
temporal changes are complex, and beyond the scope of this thesis. Future work aims to unravel
more information on the incubation time of the infection, which should aid in understanding the

complex seasonal drivers of the disease (Morris et al. 2014B, van Ravensway et al. 2012)

The models of Belostomatidae and Naucoridae distributions where constructed at the phylogenetic
resolution of family. This has limitation was based on current taxonomic keys, and current work by
Solange Meyin a Ebong is expected to address this, allowing more detailed exploration of the
differences in the distribution of different species within the family (Meyin a Ebong et al.,

forthcoming).

A related limitation for the article is the unknown distribution of M. ulcerans infected individuals of
Belostomatidae and Naucoridae. The sampling regime at the time did not include the capacity to
test the insects for the presence of M. ulcerans, potentially the distribution of the infected insects is
different to the distribution of the insects in general. This will make an important component of

future work.

The results of this research are presented in the paper “Ecological niche modelling of Hemipteran
insects in Cameroon; the paradox of a vector-borne transmission for Mycobacterium ulcerans, the
causative agent of Buruli ulcer”, which at the time this thesis was submitted had passed the first
round of revision for the International Journal of Health Geographics. The findings presented provide
empirical support for previous work by Roche et al. (2013), who discussed the view of M. ulcerans as
a species within a trophic network, discussing the possibility of multiple vectors involved in
transmission. While the finding of a spatially changing correlation is not proof of this hypothesis, it is

consistent with it.
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Conclusion, practical applications, and questions for future research

Following the findings and limitations outlined above, | would argue for four key areas to be pursued

in future research on Buruli ulcer:

1) Watershed based sampling protocols,

2) Integrating aquatic sampling with sampling of the non-aquatic community,

3) Evaluation of occupancy of suitable habitat in endemic regions,

4) Evaluation of spatial variation in the correlation between Buruli ulcer prevalence and aquatic

insect abundance in West Africa.

Here | have found that watershed size and condition is an important factor in the distribution of the
bacterium, and previous research has found that genetically distinct populations of M. ulcerans
appear to be bound by watershed boundaries (Vandelannoote et al. 2014). These boundaries may
present a migration barrier to the bacterium, preventing it from accessing certain areas, leading to
genetic differences between populations. However, it appears unlikely that this barrier strictly
prevents all movement; an important component of the bacterium’s distribution appears to be
described by the local conditions around the sample site. This would suggest the importance of
trophic webs that can reach beyond aquatic environments (Roche et al. 2013). Such trophic
interactions could enable the bacterium to cross this watershed boundary, and an understanding of
the relative importance of these boundaries in different ecological contexts (different topography,
different ecological communities, different trophic webs) may be key in explaining the distribution of

the bacterium on a larger scale than those discussed herein.

The importance of these barriers to movement (sensu Figure 16, Chapter 2) could be evaluated with
integrated aquatic and non-aquatic sampling. This would use sampling regimes based on the
structure of the stream network and the position of the watershed boundaries. Figure 36 provides
an example of this idea, though this Figure is strictly for the purpose of explaining the principle. A
virtual sampling regime is presented, where two sampling methodologies are conducted
simultaneously. Blue dots are aquatic samples, which describe the distribution of M. ulcerans
aquatic sampling protocols along a stream network (as in Morris et al. 2014A). Given that my
findings highlight the importance of the condition of the upstream area in predicting M. ulcerans,
the following hypothesis can be proposed: if a sample is positive, the downstream area should be
more likely to be positive for M. ulcerans. To complement this aquatic sampling, non-aquatic
sampling protocols, for example of terrestrial plants and insects (green dots in Figure 36), run along
a transect crossing the stream and watershed boundary. Distance to a stream is a risk factor for M.
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ulcerans presence (Merritt et al. 2010); does the risk of presence change significantly when we cross
the watershed boundary? Recent work in French Guiana discovered that, following construction of
the Petit-Saut dam in Sinnamary, the number of cases downstream of the dam dropped dramatically
(Morris et al. 2014A). This implies that changes to the watershed do dramatically change the
distribution of Buruli ulcer, and the knowledge gained from integrated and ecologically justified
sampling regimes should enable us to understand how these watershed changes alter M. ulcerans

distribution, informing us on potential changes risks to human health.
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Figure 36. A potential sampling regime to explore the effect of watersheds as a boundary to M.
ulcerans, here for Akonolinga, near sites A7 and A8 (Table 1). Three watershed boundaries are
presented in orange, green and purple, and streams are in blue. Two sampling methodologies could
be used, samples along the aquatic network (blue dots) and non-aquatic samples across the network
(green dots) which transect the streams and watershed boundaries, collecting from the wider biotic
network of plants and insects.
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| have generated the first maps of the predicted distribution of suitable habitat for M. ulcerans at the
landscape scale in Akonolinga. These maps describe the distribution of suitable habitat in the region,
and predict that M. ulcerans is likely to be present throughout the region. Given the consequences
to human health, the evaluation of the occupancy of this suitable habitat is a key area for research.
The generated models perform well, and accurately describe the distribution of M. ulcerans at the
sample sites, and on this basis the bacterium would be predicted to have a distribution that is
generalist within Akonolinga. Such a prediction of generalist distribution of M. ulcerans opens two
hypotheses; 1) that the habitat is suitable and uninhabited, or 2) that the habitat is suitable and
inhabited. The fact that the bacterium appears to be common in the environment (Williamson et al.
2008, Garchitorena et al. 2014) lends support to the second hypothesis. However, identifying the
proportion of suitable and occupied or unoccupied habitat will enable predictions about the future

changes in the distribution of the bacterium.

The existence of the correlation between Belostomatidae and Naucoridae and Buruli ulcer
prevalence supports, though does not prove, the idea that these insects are important vectors, in
the context of the Bradford-Hill guidelines (Hill 1965). The correlation between their presence and
the prevalence of the disease in Akonolinga would be expected if they are vectors, however there
was no significant correlation found between their presence and the prevalence in Bankim. As
discussed in Chapter 4, there are several potential reasons for this. Bankim is more recently endemic
(based on Buruli ulcer case detection), and has undergone several unique changes in human
distribution which may skew any relationship, different vectors may be locally important.
Alternatively, the distribution of the disease prevalence and the insect abundance may overlap by
chance in Akonolinga. | attempted to control for this with Bonferonni correction of the t-tests,
however it is an important possibility that cannot be ruled out. A notable advantage of the extensive
sampling regime of Meyin a Ebong et al. (2012) is the ability to interpolate over a large area. An
important goal for future work is to explore the change in the correlation between Buruli ulcer and
these insects in different regions of West Africa. Prevalence data can be collected from different
administrative districts and used to test the hypothesis that there is some consistency in the sites
where the correlation exists, for example perhaps there are similar trophic networks in areas where
the correlation is significant. The identification of a consistent environmentally dependent
correlation between these insects and the prevalence of the Buruli ulcer would support the multi-

vectorial transmission hypothesis of this emerging neglected tropical disease.
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Conclusion

Starting from an evaluation of the ecology of M. ulcerans and a review of distribution modelling
methods, | have produced ecological niche models of the pathogen and the suspected vectors, and
gained extensive experience of the tools, techniques and challenges of niche modelling. The results
of this experience are the hazard maps for the Buruli ulcer endemic region of Akonolinga, a new
understanding of the non-aquatic ecology of the pathogen, and new arguments for the importance
of Belostomatidae and Naucoridae in Buruli ulcer epidemiology. Future work will collaborate on
research into the importance of genetic-ecological differences between difference ecovars of the
species, developing protocols for integrated aquatic sampling methodologies, and analysis of larger

scale spatial variation in the relationship between Belostomatidae and Naucoridae and Buruli ulcer.
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Foreword

As a result of the collaboration network within the Extra-MU, BIOHOPSYS and JEAI AtoMyc projects
part of this thesis has been devoted to the preparation of papers on which | am a co-author. Several
of these papers are cited at certain points in the thesis, and in align with the requirements of the

Ecole Doctorale SIBAGHE these are presented here, along with my contributions to each.
The papers are;

1) “Buruli ulcer in south western Nigeria Emerging infectious diseases.” (in preparation) E.

Marion, K. Carolan, A. Adeye, M. Kempf, A. Chauty, L. Marsollier.

2) “Niche-based extinction of species boosts presence of the environmentally-acquired
pathogen, Mycobacterium ulcerans” Ecology Letters (in preparation) Gabriel E. Garcia-Pefia,

Andrés Garchitorena, Kevin Carolan, Benjamin Roche, Jean-Frangois Guégan.

3) “Space-time dynamics and landscape-associated risk of Buruli ulcer in Akonolinga,
Cameroon.” PLoS neglected tropical diseases (2014) Jordi Landier, Jean Gaudart, Kevin
Carolan, Danny Lo Seen, Jean-Frangois Guegan, Sara Eyangoh, Arnaud Fontanet, Gaétan

Texier.

The first article, Marion et al., contains several maps of the distribution of endemic villages and
states in Nigeria and Benin. | geo-referenced these villages, prepared maps of the regions, and

assisted in review and comments of the manuscripts.

The second paper, Garcia-Pefia et al., explored how M. ulcerans is influenced the removal of species
from the biotic community, and in general terms the importance of local extinction of species
influences multi-host pathogens. In this research, | provided data on deforestation and connectivity

between sites, comments and discussion on the manuscript.

The final paper, Landier et al. 2014, was a detailed study of the change in the distribution of Buruli
ulcer in Akonolinga, through time. | assisted in the generation of data, the land cover maps
generated for use in the ecological niche models of M. ulcerans were also used here, to explore
associations between land cover and Buruli ulcer. In turn | used the prevalence data Jordi collected
in the ecological niche of the aquatic insects, to correlate the prevalence of the insects to the

distribution of the disease. | also provided reviews and comments of the final manuscript.
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Abstract

Nigeria is known to be endemic to Buruli ulcer, but epidemiological data are remarkably rare. Here,
we present a large cohort of Nigerian patients treated in a neighbouring country, Benin. Severe
lesions and delay of consultation are factors that should encourage establishment of a treatment

centre in South Western Nigeria.



Buruli ulcer, the third most common mycobacterial disease of humans after tuberculosis and leprosy,
is an important disfiguring and disabling cutaneous infection caused by Mycobacterium ulcerans.
Buruli ulcer was declared an emerging skin disease of public health concern by the World Health
Organization (WHO) in 1998. Although this mycobacteriosis is known to be linked to swampy areas
and environmental changes, the mode of transmission in not yet clearly understood, but the possible
role of water bugs has been invoked in the last ten years. Since 2004, the WHO has recommended a
daily treatment of rifampin with streptomycin or clarithromycin for 8 weeks as a first line treatment.
And surgery is often necessary on large lesions to remove necrotic tissues before carrying out a skin
graft. Treatments and wound care need to be done in competent and specialized health structures,
which are uncommon in the most Buruli ulcer endemic countries. The disease is widespread in West
and Central Africa, French Guiana and much of South America, and Australia, and most of the burden
of the disease falls on West and Central Africa, with the majority of cases being in Cote d’lvoire. In
the available epidemiological data, Nigeria presents a notable gap in cases, surrounding countries
such as Cameroon and Benin which have highly endemic regions, and this gap is likely due to

underreporting and the lack of adequate public health structures.

In Nigeria, Buruli ulcer was first described in 4 patients living in the Benue State in 1967 (Figure 1A).
Then 24 Buruli ulcer patients were described in an area around lbadan town, Oyo State, in 1976
(Figure 1A). 30 years later the Nigerian government, with the support of the WHO, conducted an
assessment of Buruli ulcer presence in the Southern and Southeastern states of the country, where
cases had been previously reported. 14 patients were considered likely to have a Buruli ulcer, and
came from 5 different states: Anambra, Cross river, Enugu, Ebonyi and Akwa Ibom (Figure 1A).
Finally, the presence of Buruli ulcer in Nigeria was mentioned in a manuscript, in which 9 M. ulcerans
strains were isolated from patients living in Oyo, Anambra, Cross river Enugu, Ebonyi or Ogun states,
between year 2006 and 2012 (Figure 1A). In total, 51 Buruli ulcer patients were described during 45

years and were found in Southern Nigeria, which is characterised by a tropical rainforest climate,



similar to Buruli ulcer endemic areas around the Gulf of Guinea. The Northern part of the Nigeria is
associated with a tropical dry climate which is not known to be suitable for Buruli ulcer presence.

In this context, we have collected data of Nigerian patients that have been treated in the Buruli ulcer
treatment centre of Pobé, Benin, which is located at 3 kilometres from the frontier with Ogun State,

Nigeria, between the years of 2004 and 2013.
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Figure 1. (A) Nigerian districts where Buruli ulcer patients were already described at least once, and
neighbouring countries areas where Buruli ulcer is endemic. The number of cases described since
1967 is indicated for each Nigerian district. (B) Location of Benin and Nigerian patients coming in
CDTUB-Pobé for treatment of Buruli ulcer.



In 2005 the first Nigerian came to Pobe treatment centre with a Buruli ulcer lesion, one year after the
building of the hospital. From 2005 to 2013, 127 Nigerian patients were diagnosed and treated for
Buruli ulcer in this hospital and the number of new cases is increasing each year (Figure 2A). There
were 52% (66) females and 48% (61) males with a median age of 24 and 10 years, respectively
(Figure 2B). Such sex ratio variation with age at diagnosis has been previously reported and could be
due to differential exposure to M. ulcerans, or different responses by the family and community to
infection in boys versus girls. The WHO categorises lesions by size in three categories: category 1,
maximum diameter <5 cm, category 2, 5-15cm, and category 3, >15 cm. Nigeria Patients commonly
present with large lesions, with 60% (73) of category 3, including 20% with osteomyelitis. There were
8% (10) category 1 and 36% (42) category 2. 78% (99) of lesions were at the ulcerative stage. These
data show that Nigerian patients present mainly late stages of Buruli ulcer. This is confirmed by the
delay before consultation, where 24% of the patients had waited more than one year between the
beginning of the lesion and the consultation in the Buruli ulcer treatment centre in Pobe (Figure 2C).
By comparison, among all the Buruli ulcer patients treated for Buruli ulcer between 2005 and 2011 in

Pobe treatment center, lesions of category 3 represented only 36% of the lesions.

B

o
]
-3
?

*kk 304

w

=3
1
-
e

20

number of patients
- N
o o
1 1
Age (year)
3 8
number of patients (%)

0- 0 Ll 0
0 L e e e e LI B

T T
@e" R female male LR INGRE I B R L LT g
delay before consultation (weeks)

Figure 2. (A) Number of new Buruli ulcer patients coming from Nigeria and treated in Buruli ulcer
treatment centre of Pobé, Benin between 2005 and 2013, (B) Age of patients by gender, (C)
Distribution of patient consultation delay.

We were able to georeference the origin of 68% (86) of Nigerian patients. They came mainly from the
Ogun state which shares its western frontier with Benin (Figure 1B). The furthest village, Mowe, is
about 100km from the Buruli ulcer treatment center, and it takes around 6 hours to reach Pobé by

motobike. The Nigerian villages reporting the most Buruli ulcer patients are those closest to Pobeé:

Oja-Odan, Ebute, llaro.



The Nigerian endemic area in Ogun state is divided in two drainage basins, the Yewa and the Ogun
rivers, while Ouémé /Plateau endemic department in Benin is traversed by the Ouémé river. These 3
draining systems discharge in separate lagoons that are interconnected by channels at the delta.
Southeast Benin and Southwest Nigeria do not belong to the same drainage system, but these two
Buruli ulcer endemic areas have a similar topography and climate, characterised by tropical
rainforest, changeable topography with many small hills and fertile plains. Similar environments are
encountered in other Buruli ulcer endemic areas of West Africa, for which the patients are found
around different drainage systems but always with broad fertile richly inundates plains.

This report is the first description of a large cohort of PCR-confirmed Buruli ulcer patients coming
from South Western Nigeria. As no health centre is dedicated to diagnose and treat Buruli ulcer in
this country, patients close to the south western frontier turn to the Beninese health system, where
specialised facilities treat Buruli ulcer free of charge or with a small participation. This report
supports the establishment of a Buruli ulcer surveillance system in Nigeria, encouraging the training
of health workers in Ogun state, and promotes the establishment of a Buruli ulcer treatment centre

in South Western Nigeria.
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ABSTRACT (150 words)

Extinction of biota may boost emergence of zoonotic diseases jeopardizing the health of humans
and ecosystems. The dilution effect hypothesis suggests that interactions between hosts and non-
host species reduce the proportion of hosts infected (prevalence). Hence, extinction of non-hosts
and persistence of hosts (niche-based extinction) may increase prevalence. Nevertheless, empirical
evidence is elusive because key hosts may go extinct stochastically, and reduce prevalence. Here, a
metacommunity approach reveals that niche-based extinction of species increases prevalence of an
environmentally-acquired pathogenic bacterium, Mycobacterium ulcerans, on its multiple hosts. As
a pseudo-experiment, we examined lentic communities assembled by niche-based processes and
lotic communities assembled by stochastic processes. Accounting for stochastic processes,
prevalence of the bacilli increased when species were locally extinct in both, lentic and lotic,
metacommunities. Thus empirical evidence supported the dilution effect hypothesis and highlighted
the importance of researching emerging infections with a metacommunity perspective that

considers niche-based and stochastic processes.



INTRODUCTION

Currently, a sixth mass extinction is occurring in the planet and species are declining locally at a
high rate (Dirzo et al. 2014). Amid such events, preserving ecosystem health and human welfare
requires understanding the consequences of local extinction of species on ecosystem function
(Rafaelli 2004; Balvanera et al. 2006). Consequences of concern are the effects that eroding
biodiversity produces on the emergence of zoonotic diseases in humans and wildlife (Harvell et al.
2002; Ostfeld et al. 2008). In this regard, the dilution effect hypothesis suggests that the percentage
of individuals infected by a pathogen —henceforth prevalence— is influenced by inter-specific
interactions that hinder infection of susceptible hosts and increase recovery of infected hosts
(Keesing et al. 2006; Ostfeld et al. 2008). Hence, species diversity may reduce prevalence, and
prevalence may boost if these inter-specific interactions are impaired by the local extinction of hosts
and non-host species (Ezenwa et al. 2006; Suzan et al. 2009). Nevertheless, the underlying
mechanisms of the dilution effect are controversial and elusive (Leibold ef al. 2004; Randolph &
Dobson 2012; Ostfeld 2013; Roche et al. 2013b). Further evidence suggests that the effects of
biodiversity loss on prevalence are sensitive to disassembly rules determining the order at which
host species go extinct in the community (Ostfeld & LoGiudice 2003; Lafferty 2012; Lacroix et al.
2013). For example, Ostfeld and LoGiudice (2003) found two contrasting relationships in a
theoretical study. On the one hand, random extinction of host species reduced prevalence of
nymphal ticks infected with Borrelia burgdorferi. On the other hand, extinction of species increased
prevalence substantially when applying the disassembly rule that competent hosts (mice) were the
last species to go extinct. These contrasting findings rest on the assumptions that local extinction of
species is niche-based and competent hosts are persistent within local communities (Randolph &
Dobson 2012; Johnson et al. 2013; Joseph et al. 2013). Therefore the generalization of these
hypotheses must be investigated in the light of empirical evidence and integrative methods of

community ecology (Leibold et al. 2004; Chase & Myers 2011).

Communities are assembled and disassembled by both, (1) stochastic processes such as
random extinction of species and probabilistic (passive) dispersal; and (2) niche-based processes
including symbiotic interactions and species tolerance to abiotic conditions (Tokeshi 1999; Leibold
et al. 2004; Helmus et al. 2007; Chase & Myers 2011; Moritz et al. 2013). In such instance,
predicting prevalence is daunting because host species may colonize and go locally extinct by the
contribution of both, niche-based and stochastic processes, which are contingent on
interconnectivity between local communities, ecosystem types, taxonomic groups, life history
strategies, and inter-specific interactions (Diamond 1975; Connor & Simberloff 1979; Ricklefs

1987; Hubbell 2001; Bennett & Owens 2002). However, these processes can be analysed at the



multiscale perspective of the metacommunity (Leibold et al. 2004), which is rarely used in
epidemiological studies (Mihaljevic 2012). In principle, local (o) diversity of species in a
community would be determined by regional (y) diversity in the metacommunity, and processes
affecting B-diversity, i.e. the dissimilarity between communities (Whittaker 1972; Loreau 2000;
Leibold ef al. 2004; Chase & Myers 2011). B-diversity can be decomposed into two distinct
informative components: species replacement (turnover) and loss of species in communities. Loss
of species in communities tends to generate nestedness of communities so that the poorest
community becomes a subset of the most diverse community (Ulrich & Almeida-Neto 2012;
Baselga 2013). Furthermore, loss of species may be both random (stochastic) and niche-based, the
latter being ordered by species tolerance to abiotic conditions and symbiotic interactions (Tokeshi
1999; Leibold et al. 2004; Helmus et al. 2007; Chase & Myers 2011; Moritz et al. 2013). Thus, if
prevalence is boosted due to niche-based extinction, prevalence should positively correlate to the

extent of nestedness once that stochastic effects are accounted for.

We tested the above prediction by using a metacommunity framework (Fig. 1) to examine
aquatic communities of tropical Africa and prevalence of the pathogenic bacterium Mycobacterium
ulcerans (MU). MU produces a cutaneous necrotizing infection (Buruli ulcer) in humans inhabiting
tropical rural areas in proximity to slow-flowing watercourses and stagnant water, and experiencing
rapid environmental changes due to deforestation, agriculture and aquaculture (Wansbrough-Jones
& Phillips 2006; Brou et al. 2008; Walsh et al. 2008; Merritt et al. 2010). Presence of MU is
dependent on the composition of aquatic invertebrates and functional groups in the community
(Benbow et al. 2013). However, it is unknown if these host species can amplify and transmit MU,
or if they simply act as host carriers -henceforth hosts (Roche et al. 2013a). Here we investigated
presence of MU on the five most represented and persistent orders of macro-invertebrates
(Coleoptera, Diptera, Ephemeroptera, Hemiptera and Odonata), some of which are considered
amplifiers of MU, e.g. Hemiptera (Portaels et al. 2001; Marsollier et al. 2003). To investigate
diversity in the aquatic communities, we used a comprehensive and unique database for a
Cameroon area near Akonolinga (Garchitorena et al. 2014). Within this region, two types of
communities were recognized: seven communities with stagnant or very slow flowing water ponds
(lentic metacommunity), and nine communities mainly with water currents of the Nyong and
Mfoumou rivers (lotic metacommunity). A previous study suggested that the transformation of
lentic systems into lotic systems, during 27 years, encompassed a shift in the processes assembling
communities, from niche-based processes towards stochastic ones (Brown & Milner 2012). These

observations were corroborated by metacommunity analyses on our data (Supplementary materials



SM1). Niche-based processes dominated the assembly of lentic communities whereas stochastic
processes dominated the assembly of lotic communities. Hence, we analysed the lotic and lentic
communities as two separated metacommunities, and examined the results as a pseudo-experiment
to assess the effects of stochastic processes on the relationship between nestedness and MU
prevalence. In general, we found two main results. First, opposite to the prediction of the dilution
effect, generalized linear models (GLMs) revealed that MU prevalence was positively correlated
with o—diversity and y—diversity in the lotic metacommunity, but not in the lentic one. This
suggested that stochastic processes may exert important effects on the relationship between
prevalence and diversity. Finally, as expected, we found that MU prevalence at regional level was
positively correlated with nestedness in both, the lentic metacommunity and in the Iotic
metacommunity, once that we accounted for stochastic processes represented by probabilistic

dispersal of species between communities.

Bas Bas

O Bys O

Figure 1. Metacommunity framework used to investigate regional prevalence of
Mycobacterium ulcerans. In this example, each of three regions (blue, red, and yellow)
encompasses two communities (7 and j) with their respective local diversities (0; and o).
Regional prevalence;; is influenced by regional diversity (Y;;), and stochastic and niche-
based processes driving dissimilarity between the two communities (/). B;; is decomposed
in two informative components: ordered loss of species (nestedness) and turnover of
species between communities. Both, niche-based and stochastic extinctions tends to
increase the extent of nestedness between communities. Thus, we examine nestedness and
regional MU prevalence;; while accounting for stochastic processes assembling
communities: probabilistic dispersal determined by the connectivity between communities
(arrows) and the total abundance of animals in the region, regardless the species.



METHODS

MU is a relatively slow growing bacterium (~ 50h for replication) that synthetizes a lipophilic
macrolide toxin (mycolactone), and evolved multiple DNA deletions and rearrangements associated
with niche reduction (Stinear et al. 2007). Some works support the existence of vector-borne
transmission and amplification by Belostomatidac and Naucoridae water bugs (Marsollier et al.
2003), and previous studies suggest that MU is embedded within ecological networks (Roche et al.
2013a). MU occurs on a wide diversity of substrata such as mud, organic detritus, biofilms on
aquatic plants and in a large diversity of aquatic micro- and macro-invertebrates, fish, amphibians,
reptiles and mammals (Portaels et al. 2001; Marsollier et al. 2004; Benbow et al. 2013; Willson et
al. 2013; Garchitorena et al. 2014; Morris et al. 2014).

Sampling and study sites

Periodic sampling of aquatic communities was performed in Akonolinga, Cameroon between June
2012 and May 2013. Monthly samples were collected in 16 aquatic communities within a region of
approximately 3,600 km® including a wide spectrum of streams, rivers, swamps and flooded areas.
Sampling was performed during five consecutive days, and in each aquatic community four
locations were chosen in areas of slow water flow and dominant aquatic vegetation. Classification

of aquatic invertebrates was performed at the family level (see Garchitorena et al. 2014 for details).

Detection of M. ulcerans with gPCR

For each community and month sampled, the presence of MU was tested on 17 different taxonomic
groups of animals (Garchitorena et al. 2014). However, not all of these groups were present across
the study, and this may add variation in the presence of MU due to the differences across taxa in the
affinity to harbour the bacterium (Portaels ef al. 2001; Marsollier et al. 2004). To assure consistency
in the sensitivity of detecting MU we focused on the orders of macro-invertebrates that were
consistently present during the sampling year (Coleoptera, Diptera, Ephemeroptera, Hemiptera and
Odonata, SM2). Quantitative PCR was used to detect two specific markers of MU in each sample:
oligonucleotide primer and TagMan probe sequences of 1S2404 and the ketoreductase B domain of
the mycolactone polyketide synthase (mls) gene from the plasmid pMUMOO01 (Garchitorena et al.
2014).



Probabilistic dispersal

Theory predicts that stochastic extinction of species in a community should decrease prevalence, as
opposed to niche-based extinction of species that are expected to increase pathogen transmission
(Ostfeld & LoGiudice 2003). Stochastic extinctions and colonisations of species in communities
may occur due to probabilistic dispersal of species between neighbour communities (Connor &
Simberloff 1979; Hubbell 2001; Chase & Myers 2011). In such instance, nearest communities are
expected to be more similar than distant ones. Thus, we considered the connectivity between
communities as surrogate of probabilistic dispersal, and accounted for its effects in our analyses in
three ways: First we assessed whether our data (local MU prevalence and o—diversity) were
structured by the connectivity between communities (SM3). Second, we included estimates of
connectivity as predictors in the GLMs on regional MU prevalence (see below). Finally, because
connectivity may interact synergistically with the other predictors of interest (i.e. nestedness and -
diversity) we tested for two-way interactions between connectivity and the other predictors included

in the GLMs on regional MU prevalence.

Connectivity between communities was represented by two estimates: Euclidean connectivity and
constrained connectivity (SM3). Euclidean connectivity assumed that host and non-host species can
disperse freely between communities across the landscape. Constrained connectivity assumed that

species disperse within the hydrological system in Akonolinga. Connectivity was measured as the

. . .. . . d

inverse of distances between communities (Euclidean and constrained): |1 —T from (0) no
max

connectivity to (1) full connectivity. We present separate GLMs for each estimate of connectivity
because including both estimates as predictors in the same GLM produced multicolinearity in the

models.

Local analyses on MU prevalence

We performed GLMs to test the correlation between MU prevalence (the proportion of positive
samples found during a year in each community) and o—diversity represented by the Shannon index
(H). The Shannon index was estimated as: H = 1 — Y;_; p;In (p;); where p; was the proportional
abundance of host species i and S was the total number of families in the community (Shannon
1948). Additionally, we considered two potential confounding effects that may influence MU
prevalence: deforestation and total abundance of animals in the community, regardless the

taxonomic group -henceforth abundance Deforestation is known to affect Buruli ulcer (Landier et



al. 2014) and may thus influence MU prevalence as well. To account for this confounding effect in
the analyses we considered deforestation as the area deforested within a circular perimeter of 1km
radius around each community, between the years 2000-2011 (details in SM4). Abundance was
used as surrogate of productivity and/or the accumulation of animals due to physical forces
unrelated to ecological/taxonomic diversity. GLMs assumed a binomial distribution of the response
variable, predictors were standardized (/n X — [n X mean), and normality of residuals was assessed by
graphical exploration and Shapiro-Wilk’ tests (SM5). Because multicolinearity may be due to
correlation between predictor variables, we ensured that the variance inflation factors (VIF) of each
parameter included in the models were < 5 (Heiberger & Holland 2004). Abundance and Shannon
index produced multicolinearity, hence we performed separate GLMs to analyse their correlations
with the MU prevalence. Finally, we ensured that the quality of our results was not sensitive to
either the taxonomic variation of the samples in which MU was detected (SM2.1-2.2), and spatial

autocorrelation (SM3).

Regional analyses on MU prevalence

We used stepwise model selection of GLMs based on the AIC, Akaike information criterion
(Burnham & Anderson 2002), to test correlations between regional MU prevalence and y—diversity,
nestedness, connectivity and confounding factors: turnover, deforestation and total abundance of
animals, henceforth abundance at regional level. Regional MU prevalence, y—diversity (H),
abundance and deforestation were estimated by pooling data of each pair of communities, for all
possible pairwise combinations of lentic communities and all possible pairwise combinations of
lotic communities. Because y—diversity, abundance and deforestation are magnitudes in different
scales, they were standardized as in the local analyses. Surrogates of nestedness and turnover
between paired communities were estimated from the decomposition of the Bray-Curtis
dissimilarity proposed by Baselga (2013): B paances Was associated with turnover, capturing
abundance of species being replaced by abundance of other species; and P gragiene Was associated with
nestedness of communities, capturing unidirectional changes in the abundance of species (Fig. 2,
SM6). We included turnover (B paanced) s @ confounding effect in the GLMs because MU
prevalence may be sensitive to the taxonomic composition of the communities (Benbow et al. 2013;
Roche et al. 2013a). While performing model selection we tested for correlations between MU
prevalence and the two-way interactions between connectivity (Euclidean or constrained) and all
the other predictors in the GLMs. Multicolinearity was avoided by assuring VIFs < 5, and normal
distribution of residuals was assessed (SMS5). The VIF criteria excluded models of lotic

communities including both predictors: y—diversity and the regional abundance of animals. Thus,



we tested each predictor in separate GLMs. Like in the analyses on local prevalence, we
corroborated that our results were not sensitive to the taxonomic variation of the sample, by adding
the taxonomic order of the host as random factor in the GLMs (SM2). Finally, we ensured that the
results were not biased due to the contribution of a particular community by removing one
community from the data and repeating the analysis (SM7-8). This procedure was repeated for each
of the communities. All analyses were performed in R software (R-Development-Core-Team 2011).
For all GLMs we present estimates (b) + standard errors, and a Z test with the probability of

accepting the null hypotheses that b = 0.
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Figure 2. Decomposition of Bray-Curtis dissimilarity (). In all instances B =0.33. A
represent turnover of species abundance (B vaanced = 0.33, and B gragient = 0); B represents
unidirectional changes in abundance (B vaanced = 0, and [ gragient = 0.33); and C represents
nestedness in which site 2 is a subset of site 1 (B vatanced = 0, and B gradient = 0.33). Modified
from Baselga (2013).



RESULTS

Local analyses on MU prevalence

At the local level, MU prevalence in the lentic communities was not significantly correlated with
a—diversity (b =-0.81 = 1.44, Z =-0.6, p = 0.575) and deforestation (b =-0.19 = 0.32, Z =-0.63, p
= 0.529). However, MU prevalence in the lotic communities was positively correlated with
a—diversity (b = 3.84 + 1.65, Z = 2.33, p = 0.020, Fig. 3) but not with deforestation (b =-0.08 +
0.28, Z = -0.30, p = 0.768). The relationship between total abundance of animals and MU
prevalence was analysed in separated GLMs, and we found a negative relationship in the lotic
communities (b =-0.84 + 0.37, Z = -2.29, p = 0.022), and no significant relationship in the lentic
communities (b =-0.22 + 0.30, Z=-0.72, p = 0.469).

0.15

0.10

0.05

local MU prevalence

0.00

0.2 -0.1 0.0 0.1

standardized Shannon index

Figure 3. Positive relationship between local prevalence of M. ulcerans (predicted from
GLMs) and the Shannon index of o—diversity in lotic communities: mean values (solid
line) and upper and lower 95% confidence intervals (grey shaded area) are represented.



Regional analyses on MU prevalence

Stepwise model selection suggested that regional MU prevalence was positively correlated with
y—diversity in the lotic metacommunity whereas in the lentic metacommunity the correlation was
not significant (Tables 1, 2). Regional MU prevalence was positively correlated with nestedness in
the lentic metacommunity (Table 1, Fig. 4). However, in the lotic metacommunity this correlation
was either significant or not significant (Table 2A-D). The significance of this correlation relies
upon the effects of connectivity between communities, and the surrogate of connectivity used as
predictor in the models. While MU prevalence was not significantly correlated with the interaction
between nestedness and constrained connectivity (Table 2A), it was positively correlated with the
interaction between nestedness and Euclidean connectivity (Table 2B, 2D). This correlation
supported our prediction suggesting that an increase in regional MU prevalence was associated with
an increase in nestedness. Additionally, we found remarkable confounding effects in our GLMs. In
both lentic and lotic metacommunities, an increase in regional abundance of animals was associated
with a decrease in regional MU prevalence. In the lentic metacommunity, increments in regional
deforestation and turnover were associated with an increase in MU prevalence (Table 1, Fig. 4); and

in the lotic metacommunity MU prevalence decreased when turnover increased (Table 2B).

Table 1. Generalized linear models fitted on regional prevalence of Mycobacterium
ulcerans (response variable) in 21 pairs of lentic communities. The final model (AIC =
130.5) was selected by stepwise (backward and forward) selection starting from the model
with all principal effects (AIC = 131.8). All possible interactions between connectivity
(constrained and Euclidean) and the other predictors were tested. Estimates (b), standard
errors, Z tests supporting that b # 0, and (VIF) variance inflation factor are presented.
Results did not change in quality when using AICc penalization for small sample sizes
during stepwise model selection. Significant parameters are presented in bold. Legend:
y—diversity is the Shannon index calculated for each pair of lentic communities, abundance
is the total abundance of animals in each sample, regardless the species, turnover (B vajanced)
is the replacement of species between pair of communities, and nestedness is the extent of
nestedness (B gradient) between each pair of communities.

starting model final model

predictors b = SE Z (p) VIF b + SE Z (p)
y—diversity -0.85+0.74 -1.15(0.252) 1.21

abundance -0.76 £0.28  -2.70 (0.007) 1.59 | -0.57+0.25 -2.29 (0.022)
deforest 0.29+0.14  2.06(0.040) 1.60 | 0.25+0.13 1.98 (0.047)
connectivity constrained 0.50+ 047 1.06 (0.291) 1.56

turnover 1.68 £0.68 2.48(0.013) 294 | 1.58+0.60 2.66 (0.008)
nestedness 1.19+0.73 1.62 (0.105) 2.51 1.42+0.69  2.04 (0.041)



Table 2. Generalized linear models fitted on regional prevalence of M. ulcerans (response
variable) in 36 pairs of lotic communities. Based on AIC, the final models were selected by
stepwise selection of variables from the starting models containing only the principal terms
(A and B models included y—diversity, and C and D models included abundance as
predictors in the starting model; see SM 9). All two-way interactions between connectivity
(constrained and Euclidean) and the other predictors were tested. All results presented here
did not change in quality when using AICc penalization for small sample sizes during
stepwise model selection. Abundance and y—diversity were not included in the same GLM
because they produced multicolinearity. Likewise, constrained connectivity and Euclidean
connectivity were analysed in separate GLMs. Significant parameters are presented in bold.
Estimates b, standard errors, and Z tests supporting that b # 0, are presented. Legend: see
Table 1.

Selected A B C D
model (AIC) (174.1) (173.5) (176.8) (177.1)
Predictors b+SE Z (p) b+SE Z (p) b+SE Z (p) b+SE Z (p)

y—diversity | 3.06+ 4.51(< |2.53+ 2.9
0.68  0.001) |0.85  (0.003)

abundance -0.46 + -3.69 (< | -045+ -3.01
0.13 0.001) 0.15 (0.003)
deforestation -0.20+ -1.53 -0.24+ -1.78

013  (0.125) [0.14  (0.076)
connectivity 147+ 2.01
constrained (C) 0.73 (0'044)

connectivity -0.64+ -1.45 -0.25+ -0.61
cuclidean (€) 0.44 (0.146) 0.41 (0.544)
turnover (t) 1.53+ 143 -1.14+ -2.36

1.07 (0.152) | 0.48 (0.018)
nestedness (n) -4.68 + -2.51 -3.04+ -2.02

1.87 (0.012) 1.51 (0.044)

c:t 331+ -1.97

1.68 (0.048)
e:mn 528+ 2.36 351+  1.76

2.24 (0.018) 1.99 (0.078)
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Figure 4. Relationships between regional prevalence of M. ulcerans and turnover and
nestedness (B gradient) in the lentic metacocommunity. The percentage of individuals infected
by MU, predicted by GLMs, is presented as a gradient from light gray (lowest probability)
to dark gray (highest probability). The observed values are presented by a cross and dashed
lines show isolines of prevalence values. In general, regional MU prevalence increases in
correlation with both turnover and nestedness.



DISCUSSION

Our results contradict the negative relationship between prevalence and diversity that the dilution
effect hypothesis predicts (Keesing er al. 2006). Analyses at a local and regional scales reveal
positive relationships between MU prevalence and o—diversity and y—diversity in lotic communities
of tropical Africa, which are consistent with the finding of a previous study in Ghana at a larger
scale (Benbow et al. 2013). Controversial results supporting or rejecting the dilution effect are not
new in the scientific literature (Randolph & Dobson 2012; Ostfeld 2013; Roche et al. 2013b). While
the dilution effect hypothesis suggests that inter-specific interactions reduce prevalence of multi-
host pathogens (Keesing e al. 2006), alternative hypotheses suggests that in some circumstances
these interactions may boost prevalence (Randolph & Dobson 2012; Roche et al. 2013b). On this
controversy, our study adds evidence that the contribution of stochastic processes of community
assembly, unrelated to inter-specific interactions, may also be key to understand the relationships
between diversity and prevalence. Stochastic processes of community assemblage are more
important in determining diversity in the lotic metacommunity than in the lentic metacommunity
(SM1, Brown & Milner 2012); and correspondingly the positive relationship between diversity and
MU prevalence is observed for the lotic metacommunity but not for the lentic one. Thus the
possibility that MU prevalence and species diversity increase together in lotic communities, without
encompassing key inter-specific interactions, should not be disregarded. The same stochastic
processes that drive diversity may influence MU bacteria, hence increase of multi-host bacteria
could be expected when diversity increases. Furthermore, two results of our regional analyses
provide evidence supporting that stochastic processes may affect MU prevalence (Tables 1, 2).
First, in both communities, lentic and lotic, regional MU prevalence decreases when the regional
abundance of animals increases. These negative relationships contradict our expectations, and their
underlying mechanisms deserve further research. Possible explanations may be the effects of water
currents removing invertebrates, notably larvae or adults living at the bottom or in the middle of the
water column, out of the communities and detaching MU from detritus; and/or that the slow growth
rate of MU entails a slow infection rate, such that increasing abundance of animals reduces the
probability of finding infected animals. Second, the surrogates of probabilistic dispersal
(connectivity between communities) have substantial effects on regional MU prevalence in the lotic
but not in the lentic metacommunities. In the lotic metacommunity, these surrogates interact with
our estimates of B-diversity (turnover and nestedness) explaining substantial variation in regional

MU prevalence (Table 2).



Our metacommunity approach (Figure 1) allows us to investigate evidence that niche-
based processes influence MU prevalence. First, we find support to our hypothesis because regional
MU prevalence positively correlates to nestedness between communities (Tables 1, 2). Remarkably,
in the lotic metacommunity this relationship is influenced by the interaction between nestedness and
probabilistic dispersal, the Euclidean connectivity between communities (Table 2B, 2D). According
to Ostfeld and LoGiudice (2003), niche-based extinction with persistence of host species in
communities produces a boost in prevalence of the pathogen causing Lyme disease. In our study we
cannot ensure that the hosts are persistent because is unknown which host species can amplify and
transmit MU and/or act simply as host carriers (Roche er al. 2013a). Nevertheless, MU was detected
in the order Hemiptera and four other orders that were persistent across communities in our study.
Previous studies suggests the amplification of MU favoured by Hemiptera water bugs:
Belostomatidae and Naucoridae (Marsollier ef al. 2003). Hence, it may be possible that indeed the
hosts of MU are persistent across our study. Finally, regional MU prevalence in lentic communities
is correlated with niche-based processes represented by species turnover (Tables 1-2A). Currently,
the niche of MU is still poorly understood, making it difficult to disentangle how replacement of
host species may affect regional prevalence. While replacing species may involve changes in
ecosystem function, is not clear why turnover may boost or reduce MU prevalence. One plausible
explanation is that some key species may act as amplifiers (e.g., Naucoridae and Belostomatidae
water bugs) and boost prevalence while others may act as dilutors (e.g., Gastropods) and reduce
prevalence (Marsollier ef al. 2003; Marsollier et al. 2004). Likewise, other studies reveal that MU
prevalence is associated with host species composition (Benbow et al. 2013), and the occurrence of
some functional groups, such as filters and scavengers (Roche et al. 2013a). Our results provide
evidence supporting these insightful studies, by suggesting that different taxa have different effects
on MU prevalence. Indeed, investigating the symbiotic relationships between host species in the
community and the bacteria will be a fundamental step towards mitigating Buruli ulcer. In this
regard, intervention against deforestation may be key to reduce MU prevalence, as we find a

positive relationship between these two variables in the lentic metacommunity (Table 1).



CONCLUSION

Taken together, our study provides firm evidence on the importance of differentiating niche-based
processes and stochastic processes of community assembly to understand how local extinction of
species may influence circulating multi-host pathogens. By using a metacommunity perspective we
find empirical evidence supporting the theoretical study of Ostfeld and LoGuidice (2003). Niche-
based extinction of species boosts prevalence of Mycobacterium ulcerans, however, the stochastic
processes influencing diversity must be accounted for because they also influence the relationships
between diversity and microbial prevalence. Furthermore, our study supports the insight that
microbial prevalence is influenced by community composition, rather than biodiversity per se
(Randolph & Dobson 2012; Benbow et al. 2013; Roche et al. 2013b). Hence, results suggest that
direct or indirect impacts exerted on host diversity and habitats might have strong influence on the
dynamics of environmentally-persistent microbial agents, and that understanding and forecasting
emerging infectious diseases requires fundamental research on niche-based and stochastic processes

that influence host communities and microbial forms within a whole metacommunity.
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Abstract

Background: Buruli ulcer (BU) is an extensively damaging skin infection caused by Mycobacterium ulcerans, whose
transmission mode is still unknown. The focal distribution of BU and the absence of interpersonal transmission suggest a
major role of environmental factors, which remain unidentified. This study provides the first description of the spatio-
temporal variations of BU in an endemic African region, in Akonolinga, Cameroon. We quantify landscape-associated risk of
BU, and reveal local patterns of endemicity.

Methodology/Principal Findings: From January 2002 to May 2012, 787 new BU cases were recorded in 154 villages of the
district of Akonolinga. Incidence per village ranged from 0 (n=59 villages) to 10.4 cases/1000 person.years (py); median
incidence was 0.4 cases/1,000py. Villages neighbouring the Nyong River flood plain near Akonolinga town were identified
as the highest risk zone using the SPODT algorithm. We found a decreasing risk with increasing distance to the Nyong and
identified 4 time phases with changes in spatial distribution. We classified the villages into 8 groups according to landscape
characteristics using principal component analysis and hierarchical clustering. We estimated the incidence ratio (IR)
associated with each landscape using a generalised linear model. BU risk was highest in landscapes with abundant
wetlands, especially cultivated ones (IR=15.7, 95% confidence interval [95%CI] = 15.7[4.2-59.2]), and lowest in reference
landscape where primary and secondary forest cover was abundant. In intermediate-risk landscapes, risk decreased with
agriculture pressure (from IR[95%CI] = 7.9[2.2-28.8] to 2.0[0.6-6.6]). We identified landscapes where endemicity was stable
and landscapes where incidence increased with time.

Conclusion/Significance: Our study on the largest series of BU cases recorded in a single endemic region illustrates the local
evolution of BU and identifies the Nyong River as the major driver of BU incidence. Local differences along the river are
explained by wetland abundance and human modification of the environment.
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Introduction

Buruli ulcer (BU) disease is an extensively damaging skin
infection caused by Mycobacterium ulcerans (MU), a pathogen
distantly related to Mycobacterium tuberculosis and M. leprae
[1,2]. BU presents as a necrotising infection of the skin, causing
debility and crippling deformity if left untreated. Initially described
in Uganda and Australia [3], BU has been reported in 33 countries
and mainly prevalent in tropical regions. In 2011, 4,009 cases were
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reported to the World Health Organization (WHO) by 14
countries [4]. The majority of BU cases (96%) originated from
countries around the gulf of Guinea and Cameroon reported 256
cases.

Means of preventing the infection are still lacking as the mode of
transmission of MU to humans remains unknown [3,5]. It is
unclear where the microbe resides in the environment: genomics
data suggest recent adaptation to a new environmental niche and
specialisation to a given host [6,7] while environmental detection
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Author Summary

Buruli ulcer (BU) remains a mysterious disease without
efficient prevention since the mode of transmission of its
agent, Mycobacterium ulcerans, is still unknown. The
disease is highly localised within countries and even at
the village scale within endemic regions, but environmen-
tal factors explaining this focal distribution have not been
described yet. In this article, we rely on a large series of
cases originating from Akonolinga region, Centre region,
Cameroon, and recorded at the BU treatment center of the
hospital of Akonolinga. The series of 787 patients over 10
years allows us to describe the distribution of BU incidence
in the region and its changes over time and space. We
identify the Nyong River as a major risk factor, and identify
environmental factors along the river that further increase
the risk of BU, such as the high proportion of swamps, the
degradation of forests and cultivation of lands by human
populations. These results will help to locate where the
transmission is most likely to happen, and provide useful
elements for targeting case search, prevention actions and
future research on M. ulcerans transmission.

studies across a wide diversity of samples (insect and vertebrate
fauna, water filtrates, vegetal debris) seem to indicate that the
microbe could occupy a wide diversity of environments [5,8-10].
How the microbe reaches human skin is also highly debated: a role
of insects as vectors has been hypothesised [9,11], but remains
controversial [5].

In this context of unknown transmission mechanisms and
unknown environmental location of the pathogen, the study of
spatial and temporal variations of BU incidence could identify
where and when MU transmission events are most likely to occur
and provide insights towards understanding the clusive epidemi-
ology of BU [12,13]. BU incidence has been described as highly
focal in countries such as Uganda, Benin, Cote d’Ivoire and
Ghana, where endemic regions are usually well defined. In
Cameroon, three foci are identified, the Nyong valley in Ayos and
Akonolinga (Centre region), Bankim (Adamaoua region) and
Mbongue (South-West region), but sporadic cases originate from
various places across the country, suggesting that the description of
BU endemic regions is incomplete [14]. Descriptive maps of BU
incidence or prevalence were established in Uganda as early as the
1970s [15,16]. Since that period, several maps of prevalence or
incidence rate have been established in endemic regions from
Cameroon [17-19], Democratic Republic of Congo [20], Benin
[21], Céte d'lvoire [22,23] and Ghana [24,25]. These maps
showed that the distribution of BU is highly focal at country scale,
and also within endemic regions [16,17,19].

Several studies have shed light on spatial patterns of BU
distribution and environments associated to BU at the national
scale [21,23,26] or at the regional scale [27,28]. The environ-
mental factors associated to BU prevalence or incidence were: low
elevation in Benin [21,27] and South Australia [28], high
percentage of forest cover and low percentage of urban cover in
Cote d’Ivoire [23], Benin [21] and South Australia [28]. In Benin,
the standard deviation of wetness index, an indicator of areas with
contrasted topographic features, was associated with a higher risk
of BU [21]. In Céte d’Ivoire, irrigated rice producing areas and
the proximity of remnant rainforest patches were associated with a
higher risk of BU [23]. These analyses contributed to identifying
the characteristics of the regions at risk within countries, and a
model from Benin could even be used to predict where these
regions would be in neighbouring Ghana [26]. However, they
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provided little insight on the local determinants of BU prevalence
within endemic regions, where endemic and non-endemic villages
can be very close. The spatial resolution was probably too low in
these studies to distinguish local variations in prevalence or to
provide sufficient contrasts in the descriptions of the environment
[26,28].

In this article, we present the first analysis of BU incidence
patterns at the village level in an African endemic region, the
Akonolinga health district, Centre region, Cameroon. This
analysis is based on one of the largest series of cases available to
date and on a fine scale characterisation of the environment. The
objectives of this study were: 1) to describe the local spatial
patterns and spatio-temporal variations of BU incidence; 2) to
characterise and quantify the environmental factors associated
with high BU incidence in Akonolinga district.

Materials and Methods

Setting

This study was performed in Akonolinga health district, located
100 km ecast from Yaoundé¢ in the Centre Province of Cameroon.
The predominant environment is tropical forest and the district is
crossed by the Nyong River which flows from east to west. BU was
first described in this area in 1977 [29]. BU prevalence in the
district was described in 2001 [17] and 2007 [18]. Risk factors for
BU have also been investigated in a case control study in 2006 and
several individual risk factors related to the environment were
identified, such as having activities in the Nyong River, or having
forest or a cacao plantation close to the habitation [30]. The
present study was conducted based on BU cases recorded for
Disease Surveillance activities from January 2002 (start of the
treatment intervention) to May 2012.

BU case data

This study relied on the analysis of the registry [29] of BU
patients included in the BU management intervention at
Akonolinga District Hospital, for which the Centre Pasteur du
Cameroun (CPC) performed biological confirmation of MU
infection diagnosis as the National Reference Laboratory. All
new patients treated for BU in Akonolinga after clinical diagnosis,
and with a documented place of residence in Akonolinga district,
were included in the analysis. Patients without a documented
village of residence or with an unidentified village of residence
were excluded. These data were collected routinely at Akonolinga
District Hospital and at Centre Pasteur du Cameroun as part of
the BU Disease Surveillance system of the National Control
Program.

A clinical case was defined as a patient with a clinical diagnosis
of BU, made at the Akonolinga District Hospital, by trained
specialized health practitioners in charge of the BU treatment. A
confirmed case was defined as a clinical case with a positive result
for at least one of the two biological confirmation methods,
microscopy [31] or PCR [32] which are performed routinely by
the CPC as the National Reference Laboratory according to
WHO recommendation [31]. Laboratory confirmation could not
always be obtained, however clinical diagnosis was shown to be
very reliable in endemic regions [33].

Ethics statement

This study used anonymised case data, aggregated by village
and by month, which were collected by the Service de
Mycobactériologie of the Centre Pasteur du Cameroun as part
of the surveillance activity of the National Reference Laboratory
for BU in Cameroon, within the National BU Control Program.
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In this study, no intervention was performed (either diagnostic or
therapeutic) and we only relied on a retrospective collection of
anonymous cases authorized by the Cameroonian Ministry of

Health.

Population data

Population data for Akonolinga health district villages were
obtained from the national population census bureau (BUCREP).
These population data were a 2010 projection based on the
detailed results of the 2005 census. Population settlements in the
Centre region are typically hamlets relatively close to each other
which form a village (“chefferie”) under the administrative
authority of a traditional chief [34,35]. Since cases were reported
at the village level, we aggregated the population of hamlets at
village level.

For the towns of Akonolinga and Endom, the urban neighbour-
hoods were aggregated.

Administrative data

In accordance with Cameroonian laws (decree 77/2453), a
village was defined as the collection of all hamlets under the
jurisdiction of the same traditional chief and was represented on
the maps as the surface encompassing all hamlets. Hamlets had
been either geolocated using a GPS during previous fieldwork
[30,36] or identified on a 1/2,00 000 scale map (Institut National
de Cartographie, Yaoundé, sheets of Yaoundé, Nanga Eboko and
Akonolinga).

Topographical and environmental data were extracted using a
circular 5 km-radius buffer around the village centroid. This value
of 5 km was chosen based on a socio-anthropologic evaluation
done in the region (described in [37]) and it approximated the
distance that could easily be walked by inhabitants for their daily
activities: fishing, farming, going to school. Furthermore, each
hamlet was located within the 5-km-radius buffer of its village.

Topographical data

Topography has been shown to be a major driver in most
studies [21,23,27]. A digital elevation model was used to obtain
elevation data (Shuttle Radar Topography Mission, available from
the U.S. Geological Survey). A map of 90 m-topographic wetness
index (TWI), an indicator of zones where water tends to
accumulate due to abundant runoff from the surrounding arca
and a low slope, was obtained from Africa Soil Information
Service (http://www.africasoils.net). TWI was categorised around
the value 18, since following fieldwork, TWI>18 corresponded
best to the bottoms of valleys which were most likely to represent
wetlands. The percentage of each buffer area within this class was
used as an indicator of the abundance of wetlands. Data on the
distribution of rivers and roads were obtained from IFORA
project and Institut National de Cartographie du Cameroun.

Environmental data

First, we used aggregated measures to quantify vegetation cover
in each buffer. We used a vegetation index calculated from remote
sensing multispectral data measured by the MODIS satellite. The
Enhanced Vegetation Index (EVI) is available from U.S.
Geological Survey as a monthly image with 1 km® resolution
averaging measurements performed with a 16-day period (30-Day
L3 Global 1 km product - MODI3A3). EVI was used as a
measurement of overall forest cover: it is directly related to
photosynthetic activity and biomass and was developed specifically
for high biomass areas such as tropical forests [38]. Using images
from December 2001 to December 2011, we calculated the mean
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EVI during the dry season for cach village buffer to approximate
vegetation cover. During the dry season, contrast was expected to
be maximal between herbaceous or cultivated zones, where annual
plants require rain for their growth, and forest where perennial
vegetation relying on deep soil water, would still present a high
photosynthetic activity [39]. Deforestation was one of the major
human-driven changes that we expected in this area. We
calculated the mean EVI over months December to February at
the beginning and end of the study period (dry seasons 2001-2002
and 2011-12). The difference between the two values was
included as a crude proxy for quantitative vegetation change over
the study period.

Second, we characterised the environment in more detail (forest
type, cultivated areas...) using two distinct Land-use/Land-cover
(LULC) datasets.

The first dataset was a classification constructed using two
Landsat images from February and March 2001 which were
selected for low cloud content. Initial exploratory maps were
classified using multi-spectral decision trees in the software ENVI,
version 4.8 (Exelis Visual Information Solutions, Boulder,
Colorado). Following ground truthing of these initial maps in
November 2012, they were refined using object orientated image
analysis in the software eCognition (eCognition Developer version
8.9.1, Trimble Geospatial Imaging, Munich, Germany). This
resulted in regions classified as Urban, Road, Forest, Crop, Flood
plain or Swamp categories.

The second dataset was a map of forest types established in
2002 and obtained from the Forest Atlas of Cameroon [40]. The
study area presented 9 classes of vegetation: primary forest (dense
humid evergreen or with raffia trees), secondary forest (young or
adult, cultivated or not), forested wetlands/swamps, wetlands, and
savannah. Secondary forest represents forest growing after being
cleared (completely or partially). Two categories are distinguished
according to the time elapsed since clearing. Young secondary
forest corresponds to the first 5 to 20 years after clearing. It hosts
mainly plant species that grow rapidly and in the light. With time,
the number and variety of plant species increase, the canopy closes
and the forest becomes adult secondary forest, characterised by a
high biodiversity. In Akonolinga region, clearing resulted mainly
from familial agriculture. The forest category indicated the
intensity of human pressure on the environment.

The first dataset was used mainly for urban, agricultural, and
wetland land-cover characterisation, which were combined with
detailed forest data from the second dataset. New classes or new
attributions were derived, such as “cultivated wetlands” corre-
sponding to areas listed as cultivated in one dataset and swamp or
swamp forest in the other.

Statistical analyses

All analyses were performed using R software version 3.0.2 (R
Development Core Team, R Foundation for Statistical Comput-
ing, Vienna, Austria), including packages DCluster, SPODT,
FactoMineR, bep; and the software ArcGIS version 10.0 (ESRI
Inc. Redlands, CA), including the extension Spatial analyst.
Graphics were drawn using the ggplot2 R-package and maps were
drawn using ArcGIS.

Incidence rate calculation and mapping.
analyse the distribution of cases in Akonolinga district, a map of
the mean monthly incidence rate of BU per village was drawn for
cach phase and for the cumulative series. Mean incidence rate was
expressed in cases per 1,000 person.years (cases/1,000py) and
allowed comparisons between villages with different population
sizes and different exposure times. To be represented on the maps,
incidence rate were discretised using rounded values of the classes

In order to
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obtained by the Jenks method in ArcGIS, which enabled
maximization of contrasts.

Analysis of spatial clustering. To address the question of
whether cases occurred at random in the district or according to a
given spatial pattern, we performed several statistical analyses.
First, a general statistic of global aggregation, Moran’s Index (I),
was calculated to assess spatial autocorrelation [41]. Statistical
significance was calculated using bootstrap methods. Then, we
evaluated the relative risk of BU over the Akonolinga region using
the Spatial Oblique Decision Tree algorithm (R package SPODT).
This method was used to identify homogeneous risk areas on the
time-aggregated series and to quantify the risk associated with
each zone. This method is adapted from classification and
regression tree techniques and uses straight lines to split the study
area in groups of villages as homogenous as possible regarding
incidence rate [42]. It identifies clusters without any shape
assumption, and is less biased by edge effects. It also provides
risk estimates in all areas. Statistical significance was calculated
using Monte-Carlo inference. We estimated the relative risk for
cach zone delimited by SPODT, by calculating an odds-ratio and
its 95% significance interval.

Spatio-temporal analysis. Based on the spatial analysis, we
analysed the incidence distribution over time and space using a
“heat-map”, displaying mean monthly incidence for each quarter
and for each village after ordering them according to their distance
to the Nyong River. We identified several “phases” in the time-
series defined as periods of time presenting heterogeneous spatial
patterns of incidence. These phases were confirmed using
Bayesian change-point detection methods [43] to have a high
probability of representing a change in the time series. Maps of
incidence were drawn.

Classification of villages into landscape groups. We
performed a principal component analysis (PCA) on the environ-
mental data extracted for each village on a 5 km-radius buffers (see
Supplementary Figure S2 legend in Text S1 for details). This step
allowed grouping variables from the different categories, removing
colinearity and selecting the most relevant variables for describing
the environment in the Akonolinga region. Homogeneous groups
of villages with similar landscape environments were built by
classifying the villages according to the PCA results using
agglomerative hierarchical clustering with a Euclidean distance
metric (unsupervised classification).

Estimation of landscape-associated risk. In order to
estimate the risk associated to each landscape, a generalised linear
model (GLM) was built. A binomial negative regression model was
preferred, since it was more adapted to this series with count
numbers, as in previous BU studies [21]. Categorical variables
were included in the model: landscape profile as a single variable
with one modality per group, and distance to the Nyong River in 4
categories, =5 km, >5-10 km, >10-20 km, >20 km, according
to the activity range of populations. The model allowed estimation
of an incidence ratio (IR) associated to each class. Interaction
between landscape profile and distance to the Nyong River was
investigated by splitting the landscape classes in groups of distance
when all the villages of one landscape were not included in the
same distance class. When it was found significant for one
landscape, two subsets landscape were created for the final
analysis, distance to Nyong =10 km and >10 km based on the
distance where Nyong influence was significant.

Univariate and multivariate models were assessed for parsimony
using Akaike information criterion (AIC). Fitting was assessed by
the percentage of deviance explained.

To assess model performance at representing the spatial
variations of BU incidence we mapped the model residuals and
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explored their distribution using Moran’s I statistic. We expected
that no autocorrelation would remain if the model accurately
captured the spatial pattern of incidence resulting from the
different landscapes.

Temporal evolution of BU incidence in each
landscape. We drew the cumulative incidence graphs over
time for each group of villages from the same landscape to
examine the local temporal variations of BU. The cumulative
incidence over time was fitted with a linear model. When a linear
fit was appropriate and indicated constant incidence, average
incidence in the landscape was calculated for the period 2002
2012. Exponential fit was also tested by fitting a curvilinear model
to the logarithm of cumulative incidence.

Results

BU case data

From January 2002 to May 2012, 915 patients originating from
Akonolinga health district were diagnosed and treated free of
charge at the Akonolinga district hospital by the BU management
intervention. Out of these patients, 853 were new cases and among
those, 787 cases had a documented place of residence in one of the
154 villages of Akonolinga district included in the analysis. The
total population of the study villages was 60,188 inhabitants and
the study arca had a surface of 3,685 km®. The north part of the
district, 16 villages totalling 10 cases and 2,750 inhabitants, was
excluded because the area was only documented in the forest
LULC database.

Among the 787 clinical BU cases in the database, 513 (65%)
had received a laboratory-confirmed MU infection diagnosis (396
by PCR and/or microscopy, 117 by microscopy only). All 787
clinical BU cases were included in the analysis.

BU incidence rate and spatial distribution in Akonolinga
district

Global BU incidence rate in the study area was 1.25 cases/
1,000py over a time period of 10 years and 5 months. Incidence
per village ranged from 0, in 59 villages, to 10.4 cases/1,000py,
and median incidence was 0.4 cases/1,000py (Interquartile
Range = [0-1.1]). A map of cumulative incidence rate over the
time-aggregated series is presented in Figure 1A. Cumulative
incidence appeared to be highest in villages close to the Nyong
River, east of Akonolinga town. There was a significant global
aggregation of cases (Moran’s I=0.349, p<10~°). The SPODT
algorithm identified that the highest risk zone was centered on the
Nyong River upstream of Akonolinga (Figure 1B). A decreasing
risk gradient with increasing distance to the Nyong was identified,
and the highest risk zone had 67 times higher risk of BU than the
lowest risk zone.

Spatio-temporal variations of BU incidence in Akonolinga
district, 2002-2012

The role of the Nyong River as a high risk area, and the
decreasing risk gradient away from the river, led us to investigate
the temporal variations of BU incidence per village according to
their distance to the Nyong (Figure S1 in Supplementary Text S1).
By change-point analysis process, we identified four phases
corresponding to changes in the disease spatial distribution
(Figure 2). In the first phase, corresponding to year 2002, the
debuting BU treatment program only recruited cases from
Akonolinga town and the neighbouring villages (Phase 1,
Figure 2A). In the following phases, recruitment was on the entire
district. From being centred on Akonolinga town from 2002 to
2006 (Phase2, Figure 2B), the high incidence area appeared to
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Figure 1. Identification of the Nyong as a major risk factor for BU incidence in Akonolinga 2002-2012 (spatial analysis on time-
aggregated incidence rate of BU in Akonolinga). A: Incidence rate per village (cases/1,000py). B: Decreasing risk of BU with increasing distance
to the Nyong River. Homogenous risk areas of Akonolinga district were identified using the SPODT algorithm. Associated odds-ratio and 95% Cl are

provided.
doi:10.1371/journal.pntd.0003123.g001

move, first eastward upstream the Nyong in the area of Abem
(Phase 3, Figure 2C), then downstream along the Nyong, on the
southern part of the river and on the Mfoumou, a tributary of the
Nyong (Phase 4, Figure 2D).

Analysis of local environmental risk-factors for BU in

Akonolinga district

Environment classification in landscape groups. The
unsupervised classification of villages distinguished 7 landscape
groups, organised on two main gradients (Table 1 and details in
Supplementary Text S1, Figure S2). First, a clear separation was
observed between villages with abundant forest cover compared to
those where it was greatly reduced, as indicated by EVI values.
This separation allowed the definition of a first gradient of
increasing human alteration of landscape, based on abundant
urban and agricultural land-use, and low proportion of forest
cover. Landscape ““Urban Nyong™ and landscape “Rural Nyong”
were characterised by a low forest cover and abundant areas
dedicated to agriculture, as well as a high proportion of wetlands.
A second gradient separated the villages according to the forest
maturity (primary, secondary adult, secondary young) and the
proportion of which was mosaicked with cultures. Landscapes
“Forest 1”” and “Forest 2 had the most abundant forest cover and
were generally at a higher altitude with lower proportion of
wetlands. “Forest 17 included remnants of dense humid evergreen
primary forest, which marks the persistence of undisturbed
ecosystems. “Forest 2 included a high proportion of secondary
adult forest cover, a fraction of which was cultivated. Landscapes
“Cultivated forest” and “Young forest” included intermediate
features between these two groups, where young secondary forest,
cultivated or not, dominated, indicating a more intense agricul-
tural pressure. Both also presented abundant proportion of
wetlands. Finally, landscape ‘““‘Savannah” corresponded to 2
villages located in a specific area of savannah within the forest.
Changes in forest cover, approximated by EVI difference between
dry season 2001-02 and 2011-2012 were highest in landscapes
“Forest 2”” and “Young forest”.

PLOS Neglected Tropical Diseases | www.plosntds.org

Estimation of landscape-associated risk. The use of a
generalised linear model allowed estimation of BU incidence ratio
(IR) from January 2002 to May 2012. Univariate analysis is
presented in Table 2. In the landscape model, the highest risk
zones corresponded to landscapes “Urban Nyong” and “Rural
Nyong” compared to landscape “Forest 1”. “Young forest”
presented an intermediate risk and all other landscapes did not
significantly differ from “Forest 1. In the Nyong River distance
model, risk decreased with increasing distance to the river with a
dose-response relationship.

For multivariate analysis, we combined Nyong distance and
landscape and split landscape “Cultivated forest” according to the
location of villages within or beyond the influence range of the
Nyong, ie. “Cultivated forest, =10 km from Nyong” and
“Cultivated forest, >10 km from Nyong”. All other landscapes
were located within a single Nyong distance class or did not
present significant differences in IR between the two distance
classes. The resulting model (Table 3 and figure 3A) indicated that
“Urban Nyong” and “Rural Nyong” had the highest risk,
respectively IR=15.7 (95%CI=[4.2-59.2]) and IR=12)5
(95%CI = [3.7-42.8]) compared to landscape “Forest 1”. Land-
scapes “Young forest” and “Cultivated forest =10 km from
Nyong” had intermediate risk, respectively IR=7.9
(95%CI =[2.2-28.8]) and IR =4.9 (95%CI = [1.4-17.4]). Finally,
risk for landscapes “Forest 27, “Cultivated forest >10 km from
Nyong” and “Savannah” did not significantly differ from the
“Forest 1 landscape. This model explained 41% of the variance
between the villages. We performed a further analysis on the
model residuals, and found that their spatial distribution presented
no remaining spatial autocorrelation (Moran’s I =0.021, p = 0.65).
This indicated that our model was able to capture most of the
spatial pattern between the villages. Predicted incidence rate and
actual cumulative incidence rate maps are presented in Figure 3B
and 3C.

Temporal variations of BU incidence in each
landscape. We studied the series of monthly incident cases for
cach landscape in order to characterise the temporal variations of
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Figure 2. Maps of spatio-temporal variations of BU incidence in Akonolinga district. A-D: Incidence rate maps for the periods, phases 1 to

4, identified in the time-series (cases/1,000py).
doi:10.1371/journal.pntd.0003123.9002

BU incidence within the different landscapes (Supplementary Text
S1, Figure S3). Landscape “Forest 17 presented only 4 cases
during the study period (incidence of 0.2 cases/1,000py) and
“Savannah” only 3 cases (0.5 cases/1,000py). Landscapes “Urban
Nyong”, “Rural Nyong”, and “Forest 27 presented stable
incidence rates over the study period, averaging respectively 2.1,
2.4 and 0.4 cases/1,000py. Finally, incidence was increasing in
landscapes “Cultivated forest” and “Young forest”. “Cultivated
forest =10 km from Nyong” even presented an exponentially
increasing incidence rate (R*=0.97 for exponential fit compared
to R*=0.87 for linear fit).

Discussion

Our study relied on the analysis of 787 BU cases over 125
months of follow-up, which to our knowledge is amongst the
highest reported incidences in an endemic region with more
than 10 years of continuous follow-up [28,44]. We analysed BU
spatio-temporal patterns and were able to reveal local-scale
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environmental determinants of BU incidence. We demonstrated
that the Nyong River represented a major risk factor for BU, in
conformity with previous studies of individual risk factors [30] and
environmental MU detection [36,45]. We also identified different
levels of risk along the river, which were associated to different
environment profiles. We suggest that BU risk further increases
with abundance of wetlands and with human modifications of
landscape, such as cultivation and forest clearing. We also
identified stable endemic areas and zones where incidence appears
to be rising.

This work benefited from several methodological improvements
compared to previous studies. By using the SPODT algorithm for
identification of risk zones, we obtained a more accurate
description than other studies [21], showing a decreasing risk
gradient away from the Nyong River. By considering different
categories of forest cover and management, cultivated and
uncultivated wetlands, we accounted for local heterogeneities
which would have been missed in broader analyses. Contrary to
previous studies, which considered forest as a homogeneous
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Table 1. Selected environment characteristics of landscape groups defined in Akonolinga district.

Mean EVI in EVI decrease Area with Forested Cultivated Total Main
Landscape Major features* December* 2001-12* WI>18* Wetland* Wetland* N villages Population watershed
Savannah Savannah (81%) 0,367 0,049 6% 0 0 2 538 Nyong
Urban Nyong Young cultivated 0,381 0,047 37% 7% 8% 7 17813 Nyong
secondary forest
(29%), Urban (5%),
and cultivated land (9%)
Rural Nyong Young cultivated 0,392 0,062 20% 5% 3% 20 6656 Nyong
secondary forest (25%)
Cultivated Forest Young cultivated 0,417 0,039 6% 10% 3% 16 5015 Nyong
<10 km Nyong secondary forest (37%)
Cultivated Forest Young cultivated 0,416 0,026 7% 10% 2% 31 8529 Dja
>10 km Nyong secondary forest (39%)
Young Forest Young secondary 0,417 0,074 5% 9% + 12 3069 Nyong
forest (38%)
Forest 2 Adult secondary 0,415 0,076 5% 0 + 58 16729 Nyong
forest (50%)
Forest 1 Adult secondary forest 0,420 0,068 4% + + 8 1839 Dja

(48%) and Primary forest

(18%)

*median value for each landscape group; + present, <1%.
doi:10.1371/journal.pntd.0003123.t001
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Table 2. Univariate analysis.

Space-Time Variations and Landscape-Associated Risk of Buruli Ulcer

IRR" [95%Cl]? p-value

Landscape group Urban Nyong 15.8 4.05-61.32 <0.001
Rural Nyong 12,6 3.6-44.0 <0.001
Savannah 54 0.8-36.4 0.081
Cultivated Forest 2.8 0.8-9.5 0.106
Young forest 7.9 2.1-29.6 0.002
Forest 2 2.0 0.6-6.7 0.287
Forest 1 1 reference

Distance to the Nyong =5 km 7.5 43-135 <0.001
>5 and =10 km 23 1.2-4.3 0.01
>10 and =20 km 1.2 0.7-2.2 0.528
>20 km 1 reference

"IRR: Incidence Rate ratio.
2[95%Cl]: 95% confidence interval.
doi:10.1371/journal.pntd.0003123.t002

category [21,23,28] and found it a risk factor, we used a detailed
LULC classification, ground-truthed, and a small buffer radius
(5 km instead of 20 km). We demonstrated that the different forest
categories presented different risk levels according to their status
regarding human activities, and that BU risk followed a dose-
response relationship according to forest degradation [5,46].

Our study showed that BU incidence spatio-temporal patterns
are complex, but might be explained for a large part by landscape
characteristics and heterogeneities. We identified the Nyong River
as a major driver of BU incidence in the Akonolinga region, and
local scale environmental variations in the landscapes along the
river were associated to significantly different risk levels.

These variations, distinguishing between landscapes at high and
intermediate BU-risk were principally the proportion of wetlands,
and the type and extent of forest cover. The proportion of
wetlands was evaluated topographically (% surface with TWI>18)
or in LULC descriptions, where cultivated wetlands occupied a
larger surface in high-risk landscapes (“Rural Nyong” and “Urban
Nyong”) and forested wetlands in intermediate-risk landscapes
(“Young forest” and “Chultivated forest”). The type and extent of
forest cover reflected the level of human modifications. In the

Akonolinga health district, Cameroon, 2002-2012.

Incidence rate ratios estimated for the landscape groups and the distance to the Nyong River in 154 villages of Akonolinga district, Cameroon, 2002-2012.

highest-risk landscapes, forest cover was reduced and correspond-
ed mainly to cultivated young secondary forest. These landscapes,
located in the densely populated part of the district, are shaped by
intense agricultural pressure, as indicated also by the proportion of
cultivated lands, including wetlands. The intermediate-risk land-
scapes near the Nyong River, “Cultivated forest <10 km from the
Nyong River” and “Young forest”, were less modified by human
activities and retained important forest covers. The observed
increase in incidence during the study period could result from
recent environmental modifications: using only a crude measure-
ment, we showed that “Young forest™ is one of the landscapes with
the largest decrease in EVI, indicating a decrease in forest cover.
These areas of increasing incidence are located downstream from
the floodplain of the town of Akonolinga. Speculatively, MU could
have spread along the Nyong colonising new environments.

The landscapes at lowest risk, “Forest 17, “Forest 2 and
“Cultivated forest >10 km from Nyong River”, were mainly
composed of villages located far from the Nyong River and
corresponding to the most preserved environments. In “Forest 17
landscape, BU incidence was about 100 times lower than in
highest risk areas, while it was only about 50 times lower in “Forest

Table 3. Incidence rate ratios estimated for the landscape groups combined with Nyong River distance in 154 villages of

Landscape group IRR’ [95%CI]? p-value
Urban Nyong 15.7 4.2-59.4 <0.001
Rural Nyong 125 3.7-42.9 <0.001
Savannah 54 0.8-34.2 0.077
Cultivated forest; =10 km to Nyong 49 14-17.4 0.014
Cultivated forest; >10 km to Nyong 1.6 0.4-5.5 0.499
Young forest 7.9 2.2-289 0.002
Forest 2 2.0 0.6-6.6 0.277
Forest 1 1 reference
Deviance explained: 41%; Akaike Information Criterion: 578.4.
"IRR: Incidence Rate ratio.
2[95%Cl]: 95% confidence interval.
doi:10.1371/journal.pntd.0003123.t003
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Figure 3. Landscape-associated risk of BU in Akonolinga district, 2002-2012. A: Classification of Akonolinga area villages according to
landscape group and associated BU incidence ratio with 95% confidence interval. B: Predicted cumulative incidence for each village of the district
according to the landscape model (cases/1,000py). C: Observed cumulative incidence rate for each village of the district (cases/1,000py).

doi:10.1371/journal.pntd.0003123.9g003

2” landscape. Even if not significant, we observed the same trend
of BU risk increase with increasing forest degradation level.

We can propose that spatial variations of BU incidence in
Akonolinga Health District resulted from the superimposition of
two main factors: a high or low baseline risk related to the Nyong
River proximity, and additional risks related to wetland abun-
dance and environmental modifications by human activities. The
role of the wetlands was supported by analyses of MU presence in
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Akonolinga water bodies, which showed that wetlands acted as a
permanent reservoir of MU over the year, while other water
bodies presented season-specific peaks of MU colonisation [45].
The increase in BU risk associated with human modifications of
the environment could result from contact with newly accessible
but pre-existing high-risk environments, from an increase in the
number of contacts with risk sources due to populations increasing
their activity range, or from the transformation of natural
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environments into high-risk sources by human activities (such as
clearing wetlands for cultivation) [47]. The contribution of each
phenomenon could be evaluated using chronological descriptions
of the environment evolution, as well as of human practices.

The main limitation of this work was that it relied on “semi-
active” case detection. We analysed data from cases which were
diagnosed and treated at Akonolinga district hospital. They may
not represent all the cases that occurred in the Akonolinga health
district over the study period, since patients tend to seek traditional
treatments as a first option [48]. However, since BU is a slowly
progressing disease and difficult to cure even in hospitals, cases are
likely to seek medical care at some point, eventually after failure of
traditional treatment [48]. We analysed the spatial incidence
trends over large periods of time, which probably allowed us to
capture a large proportion of the incident cases over the study
period, even patients with long delay to diagnosis. In addition, we
cannot be sure that cases were infected in a given location, but
given the activity patterns and our study scale, we can be confident
that our work focuses on the main environments frequented by the
populations.

This series of cases originated from a single treatment centre
with a defined population-catchment area. The BU program in
Akonolinga district has established a dynamic network of
community correspondents in the villages, who contribute to
population information and awareness, as well as case detection.
Regular investigations are also performed in the area by medical
staff and social workers in order to examine suspect cases and
advocate for hospital treatment in a context where traditional
treatment is generally the first option, despite free treatments
[46]. This coverage ensured that a maximum number of incident
cases were detected, diagnosed and treated, and therefore
included in this analysis. Comparisons with previous data from
cross-sectional surveys in Akonolinga region support
assumption that cases treated at Akonolinga hospital are
representative of cases occurring in the Akonolinga district
[17,18] and support our description of localised increases in
incidence.

Our results are consistent with previous results regarding
individual risk factors. In a case-control study from 2006, wading
in the Nyong swamps and not wearing long protective clothing
while farming were identified as risk factors [30]. We showed that
BU is associated to agricultural areas necar the Nyong and
suggested that the clearing and cultivation of swamps could have
contributed to risk increase at the population level. This hypothesis
was supported by interviews performed during an anthropologic
study in Ekougou and Abem, two villages located necar the Nyong
flood plain in “Rural Nyong” landscape. The informants related
BU to the practice of clearing swamps for vegetable cultivation,
which started about 20-25 years ago in the flood plain near
Akonolinga [37]. It would be interesting to document if these
practices occur in landscapes with increasing incidence, and when

our
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they started. The informants also incriminated large bushfires in
the 1980s, which deeply modified the ecosystem of the Nyong
floodplain [37]. The increase in population could also explain a
new need for land in more remote areas of the district, triggering
deforestation and BU.

Conclusion

The present work provides a quantitative assessment of the link
between BU, slow flowing rivers, like the Nyong River, landscape
features and their modifications by human activities. We clarify
the role of forest, previously considered as a risk factor, by
distinguishing pristine from human-perturbed ecosystems. We also
underline major heterogeneities within Akonolinga endemic area,
which presents stable high and low endemic zones, and zones with
a rising incidence rate. Further studies regarding environment
sampling for MU detection in endemic areas, or identification of
risk-factors should take into account that environments at risk are
defined at a very local scale. Surveillance of BU and active case
search programs in endemic regions should also include the fact
that BU geography can be substantially modified on a short time
span, endangering new populations.
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