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Chapter I: 

Non aqueous Li-O2 batteries 
 

 

Everything is Energy and that’s all there is to it. Match the frequency of the reality you want and you 

cannot help but get that reality. It can be no other way. This is not philosophy. This is physics. 

Albert Einstein. 
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Everything is Energy. This statement cannot be denied, and yet, the irony of our modern 

society is that we need more and more Energy for our every-day living. From cooking to 

lightning or transportation, human beings are strongly dependent to Energy. Yet, although 

there is plenty of energy on earth, we lack of available energy, and this problem is one of the 

major issues that mankind faces nowadays. In addition, this absolute need of Energy triggers 

increasing consumption of fossil fuels, charcoal and nuclear Energy, because these are the 

cheapest and most easily available energy sources. This strategy of course yields increasing 

pollution of air, water and soils, and will durably affect the Earth’s climate. Because 

sustainable development is the only solution to fulfill both human needs and the preservation 

of our planet, green energy production must durably and massively come into the play. In this 

scope, electricity (the so-called white coal), and in particular renewable electricity, seems an 

appropriate vector; among others, “green” electric engines can be used as a replacement of 

fossil fuels-powered engines as a practical means to reduce our dependence on fossil fuels, 

and rapidly grow for both personal and public transportation. At present, nearly all the electric 

vehicles on the market are powered with batteries (exceptions are scarce, like the fuel cell-

powered Toyota Mirai or battery/fuel cell hybrid Kangoos of Renault/Symbio FCell), and, 

unfortunately, the current Li-ion (and Li-metal) batteries do not have enough energy density 

and present too much safety issues for such applications. This has driven researchers from all 

around the world to put a great effort on beyond Li-ion batteries in order to find a technology 

that will allow users to drive longer distances without being forced to stop for time-consuming 

battery recharge. For such use, no candidates are as good as non-aqueous Li-oxygen batteries, 

which can develop up to 5200 Wh.kg-1 [8]. 
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I. Green pathways toward energy Storing 

In our modern Society, the Energy demand is in constant evolution, as the growth rate of the 

population. 

In 2015, the world population was estimated at 7.35 billion; it is forecast in a report from the United 

Nations to be close to 8.50 billion in 2030 [9], and is expected to approach 11 billion of persons in 2100, 

which raises questions on our energy supplies, as the fossil fuels are supposed to be fully consumed 

by 2230 [10] (from a report based on the fossil fuels consumption of year 2002, that may not be up-

to-date). 

In addition, a more concerning point is the (ever-growing) pollution generated by the use of those 

fossil fuels: in 2014, despite political/industrial efforts and awareness of society, CO2 emissions were 

superior to 30 000 Mt [11]. It must be noted, that the overall production mostly accounts from OECD 

countries (nearly 10 000 Mt per year), and was almost constant from 1971 to 2014, while China and 

others Asian country (except for those included in OECD) sharply raised their emissions. 

Giving such observations, it is clear that, only green energies will fulfill the issues of both the pollution 

and the energy demand, but viable solutions must be proposed, in order to sustain the living trend of 

our society. 

 

a. Actual Energy Sources 

i. Use in percent 

Energy is a central issue in our modern society. Concerns about energy supplies are growing, while in 

the meantime, fossil fuels reserves dry-up at an increasing rate. As depicted on Figure I.1, the global 

energy consumption has more than doubled, from 1971 to 2014. Nowadays, energy sources varies 

from fossil fuels (Oil, Coal and Natural gas, largest part), Biofuels and wastes (second largest part), 

Nuclear (third largest part), and greener energies such as hydraulic, solar, wind (which account in less 

than 4% worldwide [11]). 
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Figure I. 1: Energy produced from various sources worldwide, presented as published by the International Energy Agency [4], 
reproduced with their permission. 

It can be clearly seen that Fossil fuels account for more than 80% of the overall energy production. As 

discussed above, in 2002, fossil fuels were supposed to be fully consumed by 2230 [10], but at this 

time, nearly 8,000  Mtoe of energy was produced from fossil fuels , when nearly 11,110 Mtoe was 

produced in 2014. Giving data extracted from [10] and [11], 1,596,000 Mtoe of fossil fuels were 

available on Earth, in 2002. 

A simple calculation was made in order to better evaluate the date on which Earth is supposed to run 

out of fossil fuels ( fitting the Mtoe consumption of the past ten years, cumulated from 2002[11] give 

an equation, in which the available fossil fuels reserves, at the moment of 2002[10] can be introduced). 

Thanks to these calculations, the “extinction date” of the fossil fuels is supposed to be 2158 (72 years 

less than the prevision of [10]). If one needs to extend this period, two strategies exist: 

- First, to lower the world’s energy consumption; this appears not easily feasible, because emerging 

countries such as China consume increasing levels of energy (as depicted on Figure 1) to expand and 

grow, being admitted that in addition, their population grows. 

- Second, to rise the contribution of green energies (solar, wind, hydraulic, etc.), but also of nuclear 

energy (which is mandatory, because unlike most green energies, and like fossil fuels, nuclear power 

plants are not dependent on the environment (wind, sun), thus enabling to supply power peaks; 

hydraulic energies are only available for countries with seacoasts, or with large rivers, which narrow 

their use worldwide). 

 

 

ii. Incidents and political/ safety issues 

 

 As discussed before, usage of fossil fuels not only triggers pollution by their main combustion 

products (carbon dioxide, nitrous oxides, etc.), but also, major safety, pollution and health issues, 

because of accidents linked to their exploitation, transportation, storage and transformation. As 
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presented in its corresponding safety data sheet [12], oil is carcinogen, toxic for reproduction, and 

heavily toxic for both aquatic and land life. Because of such harmful properties, oil spills always 

motivate great concerns, and local populations often are defiant to pipelines, constructed near their 

habitat and cultural places, as illustrated by the recent crisis at Cannonball, North Dakota, USA. In 

addition, the pollution generated by oil on aquatic life is not only due to spills but also to slow and 

chronical poisoning of the seas and ocean, from what is called “routine pollution”[13], when oil tankers 

proceeds to the cleaning of the oil tanks, but also from the rejection of oil from the ships engine rooms, 

and from offshore production sites. 

In addition, the acute pollution, generated by large spills (such as the Exxon Valdez in 1989), is 

responsible for sudden death of the ecosystem in spilled area (300 000 birds died because of the spill). 

Another major catastrophe can be also cited, as it is the largest one in our decade: the explosion of the 

Deepwater Horizon Oil rig. Because of both conception and human errors, the oil rig exploded in April, 

20th 2010, leading to a spill equivalent de 4.9 million of barrels (780 million of liters). Not only this 

explosion impacted the ecosystem (eight American national parks were threatened from spill), but also 

it severely impacted the fishing industry (with a net loss of 2.5 billions of dollars) and the tourism (loss 

of 3 billion). 

 

 

But, safety issues not only concern fossil fuels; nuclear power plant are also responsible for 

catastrophic events, such as Chernobyl, where the official casualties number accounted for the event, 

was determined in a very broad range from ca. 4000 (as published by a report of the UN of 2005) to 

100,000 - 400,000 (according to Greenpeace estimates). More recently, the Fukushima catastrophe 

also triggered safety and health issues, along with the emerging of new anti-nuclear policies around 

the world (as depicted in France, where the anti-nuclear movements gain importance and supporters).  

However, the nuclear toll is nowhere close to the fatalities caused by other energy production means. 

As published in [14], the deadliest energy source (including catastrophes around the world), was the 

hydroelectric, when in 1975, 30 dams in central china failed in short succession, killing around 230,000 

peoples. In addition, as illustrated by Figure I.2, the second deadliest energy source is not nuclear 

power, but coal (fossil fuels), because of the death generated by pollution (in the US alone, 13,200 

peoples die per year from fine particles emitted by coal power plants). This observation shows how 

the nuclear impact is over estimated by our society, and how the media truly relates the information 

concerning the real threat, from each energy sources (because for now, the safest energy power 

available is, indeed the nuclear, even though mankind still ignores how to handle nuclear wastes in the 

long-term). 
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Figure I. 2: Power risks, presented as published by the New Scientist[7], reproduced with their permission 

 

Because of the resentment of the population toward nuclear electricity, government policies tend to 

phase out for nuclear power (as illustrated by Germany, with a zero nuclear objective for 2022), and 

replacements solutions are both needed for fossil fuels power plants and nuclear energy. This naturally 

triggers a huge research effort, all around the world. 

 

b. Replacement solutions for the electrical power grid 

 

The urge for green energies for the supply of our power grid is facing new challenges: (i) lowering the 

cost of these energies, to be as close as possible to the cost of fossil fuels power/nuclear power plants, 

(ii) and finding ways to store this energy, in order to avoid any dependency of the power grid on the 

weather (for solar and wind energies for example). A screening of the available technologies is 

necessary to assess the feasibility and the usability of each available technology. 

 

i. Green energies 

 

Hydropower: This Energy is clean and renewable, and works on a very simple basis, from converting 

mechanical energy of the flowing water to electricity, by placing turbines on the water path [15]. It is 

also reversible, (when considering hydroelectricity from dams) thanks to the possibility of pumping 

back the water into the dam, when the electricity production is above the consumption, thus allowing 

the water to be passed again through the turbines when the energy demand on the grid rises. Another 

kind of hydroelectricity production that is not very common, is the wave power plant (as the one 

situated on the estuary of the Rance, in France, which can produce up to 240 MW of electricity, which 
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is equivalent to the electric consumption of Rennes, France). However, this kind of hydraulic power 

plants are still in their infancy, because the waves movements is not yet fully understood, thus this 

technology is not optimized. 

The main disadvantages of such power plants are: the initial cost of the facility (much higher for coal 

power plants, for the same power yield), dependence on precipitations, changes in stream regimens 

(huge impact on wildlife), flooding, etc.. 

Still these technologies are among the cleanest ways, with the weakest impact on the environment, 

but suffer from a huge drawback: these power plants can only be installed on coasts (for wave power 

grids), or in mountainous areas, with rivers (for conventional dam power hydraulic power plants), 

which restrain their establishment in most countries, where coasts, rivers and mountains are rare (or 

nonexistent). 

 

Solar power: Harvesting the power of the sun has become one of the greatest objective of the century. 

However, before the recent advances, with the finding of Organic Photovoltaic (OPV), this way of 

producing energy was not interesting, because, the production of solar panels was far more expensive 

than burning fossil fuels [15]. Also, the cost of OPV power plants is supposed to be matching those of 

conventional energy power plants by 2020, thanks to the research effort by the scientific community 

(the cost of thermal solar power plants is also supposed to match this trend [16]). As for now, two main 

problems remain for photovoltaic power plants: first their initial cost, which triggers a huge cost for its 

energy production: 0.2 $/KWh in 2007 (When fossil fuels power plants cost around 0.7 $/KWh) [16], 

second : the dependability of the electricity production on the weather (clouds or dust stop most of 

the suns radiations), but also on the time (no sun radiation during night time). 

 

Wind Power: the generation of Electricity from the power of wind is pretty simple and is similar to the 

principle of hydraulic electricity production: the wind flow is converted into mechanical energy through 

a turbine, which produces electricity. However, unlike hydraulic systems and like the solar power, the 

electricity produced by wind power plants is weather-dependent (on whether there is wind or not), 

but also raises a lot problems, concerning the visual pollution triggered from such installations, their 

location (near forests, protected areas), and interference with nature (especially with birds; they 

interfere with their migration), and with signals such as radio and TV. 
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Geothermal Power: The principle of geothermal energy is based on the temperature gradient induced 

from the surface to a point under the surface [15] (usually 2000 meters underground), where the 

temperature is greater than at the surface. This gradient can be used directly (household heating), or 

in association with turbines: cold water is pumped under the surface, gets warmer (eventually 

evaporate), and returns at the surface with more energy, which can be converted, thanks to turbines, 

into electricity. For example, in Chevilly-Larue (France), a geothermal plant allows the heating and the 

supply of hot water of 21,000 households. The drawbacks of this way of producing energy is linked 

with the rarity of the available sites (geothermal energy can be found along plate boundaries), but also 

to issues concerning corrosion of the tubes deep under the surface, and can sometimes pull hazardous 

compounds trapped deep under the surface (hydrogen sulfide, mercury, ammonia, arsenic). 

 

Biomass: 

Biomass energy refers to the use of natural sources such as wood, food crops, but also residues from 

other industries such as agriculture and forestry residues, oil rich algae, municipal and industrial 

wastes. 

According to Javid Mohtasham [15], biomass feed for power generation are paper mill residues, 

lumber mill scrap and municipal waste. But the biomass can also generate fuels, as corn grain (for 

ethanol production), and soybeans (for biodiesel). However, like the fossil fuels, most biomass 

generates carbon dioxide when consumed, and some also generate others greenhouse gases. Also, a 

major drawback that have risen lately is the competition between food crops and energy crops, which 

triggered a loss in food production. In conclusion, it is preferable to use biomass for both power and 

biofuel production, instead of fossil fuels, but the biomass cannot be used as the unique green energy 

sources, as it will eventually lead to major issues (such as population starving); it must therefore be 

considered in association with the others green energies sources, and used wisely, in order to complete 

a sustainable transition from fossil fuels.  

 

 

ii. Solution for large scale energy storing 

 

As discussed above, the versatility of the electricity production via green energies (PV, wind, etc.) 

suffers a huge drawback: storage systems must be used in order to store electricity. When the weather 

allows it (strong winds for wind energy, high sunshine for PV), these technologies must be used for 

production and store the produced energy and during peak consumption (or when the conditions for 

electricity productions are not fulfilled: nighttime for PV, lack of wind for solar). In this perspective, 

some solutions are already available in order to chemically store electricity and some examples will be 

presented below. 
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- Low Temperature electrolysis: As presented by Badwal et al. [17], water bounds can be split and 

both hydrogen and oxygen can be produced at temperatures below 100°C. The oxygen production 

is not relevant as oxygen is present in wide proportion in ambient atmosphere, but the advantage 

of producing hydrogen from water is the formation of ultra-pure hydrogen (a purity that is often 

required for current fuel cell systems) at the end of the electrolysis. Others advantages can also be 

cited: on site production, and low operating temperature (even at room temperatures). Strong 

drawbacks exist however, such as poor efficiency (50-55%, [17]: 4.26 Wh of energy are required to 

produce 2.94 Wh of hydrogen), and high costs of the electrolyzer (as for now, their catalysts 

comprise expensive platinum group metal (PGM) materials. 

 

- High Temperature electrolysis: this time, the operating temperature ranges from 700°C to 800°C. 

the advantages of such technique is to gain in yield compared to low-temperature water 

electrolysis (4.03 Wh of energy are required to produce 2.94 Wh of hydrogen). Even though this 

gain can appear small, on a large scale, this could be the discriminating factor between LT and HT 

electrolysis. However, as pointed out by Badwal et al, this technology suffers from strong 

drawbacks: high temperature management, high investment and operating costs, poor lifetime 

and durability issues. It must be noted that for both LT and HT techniques, a huge issue is yet to 

be solved: the finding of a proper hydrogen storage technology. Hydrogen in both its gas and liquid 

form have a very low viscosity and an extremely high diffusivity [18], rendering leakages very hard 

to prevent, even on “leak-tight” systems, tested on nitrogen, and on leak-free systems (as 

hydrogen diffuses faster than any gases through materials); this increases both its transportation 

and storage costs, but also raises safety issues when a leak is present (extremely dangerous, as 

hydrogen is explosive). 

 

- Redox flow batteries: as for fuel cells and electrolyzers, such systems are of great interest, thanks 

to a virtual unlimited capacity (the capacity is only limited by the tank volume) [19]. RFB systems 

are reversible: when too much electricity is present on the electrical grid, the battery can be 

charged; when peaks of consumption occur, the battery can be discharged. Their advantages are 

numerous: no self-discharge (the two electrolytes are stored in different tanks, and when 

electricity production is needed, pumps are switched on, both on the anodic and cathodic sides, 

which allows the discharge of the system), an easy monitoring of the State of Charge (SoC) of the 

Battery, via the cell potential, deep discharged does not affect the cell morphology nor its 

performances, and RFB are capable of rapid response, which allows them to follow the peak energy 

demand. Some drawbacks however exist: low power and energy density (not suitable for mobile 

applications), and precipitations problems that occur below 15°C and above 35°C, which triggers a 
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strict monitoring of the temperature. Various technologies exist such as Fe-Cr, VRB system 

(Vanadium/Vanadium battery: V(V)/V(VI) reaction at the positive; V(III)/V(II) at the negative). This 

technologies is currently used in various countries and a system of 5 MW (36 GJ) was installed in 

China, connected to the Woniushi wind power farm on May 23rd, 2013). 

 
- Hybrid Flow Battery: These systems have very similar characteristics to the RFB devices. The only 

difference is that on one side (usually the negative side), the soluble materials are replaced by a 

solid, electrochemically active, electrode. Thus, the overall capacity of the battery only relies on 

the size of the installation. HFB systems have some advantages compared to RFB systems, such as 

a decreased size for the negative compartment (solid matter allow greater energy density by 

volume than saturated aqueous electrolytes), but suffers on the other hand of parasitic reactions 

(commons HFB systems usually comprises Zn at the negative side [17], and it is commonly known 

that Zn, in aqueous solutions, is not stable and slowly reacts with water, and oxygen traces).  

- Li-Sulfur: As presented by Badwal et al. [17], Li-S systems have come of great interest, thanks to 

their high theoretical energy density: 1672 mAh g-1. In a fully-packaged prototype, Li-S system can 

operate up to 700 Wh kg-1 which is of high interest concerning energy storage. However, some 

issues remain such as solubility problems for the end discharge product (Li2S), and redox shuttle of 

polysulfides from the positive to the negative side which triggers capacity losses (polysulfide: 

intermediate discharge products). However, those issues can (in principle) be solved thanks to 

additives, which put Li-S batteries as the next evolution for lithium-based batteries, with higher 

specific energy than Li-ion. However, due to the relatively restrained lithium resources worldwide, 

this technology is not suitable for large scale energy storing, but rather for smaller applications 

which require high energy densities. 

 

- Metal-air systems provide the highest theoretical energy density (for non-aqueous Li-air : 5200 Wh 

kg-1 [8], for non-aqueous Na air : 1105 Wh kg-1 [17]); they however face strong challenges and are 

still in their infancy. For both technologies, the discharge product is an insulant (hard to re-oxidize) 

and a strong oxidant, which reacts readily with the positive electrode components [17] (carbon 

support, binder, solvent, salt, etc.). Also, the solvents that are commonly used in non-aqueous Li 

batteries are highly flammable, which raises a lot of safety issues, and the cyclability of the negative 

electrode is uncertain (metallic lithium forms dendrites during recharge, which can lead to cell 

failures by shortcuts). It must be noted that despite the large gap between the specific energy of 

Li-air and Na-air systems, Na-air are more attractive because sodium can be found in large amount 

anywhere around the globe, while lithium resources are smaller and located in specific locations 

(58% of the world resources are in Bolivia, and 27% in China), which might trigger geopolitical 
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issues. Thus, an extensive amount of research is necessary in order to solve these problems, in 

order to build a practical system. 

 

 

c. Toward high energy systems for gasoline replacement in Mobile 

application 

 
i. Fuel cells 

Among Fuel cells, the most interesting technology for electric vehicle are Proton Exchange Fuel Cells. 

Such systems work with hydrogen at the negative electrode (oxidation of hydrogen) and oxygen at the 

positive electrode (reduction of oxygen harvested in air). The electrolyte of those systems are polymer 

resins (usually Nafion® or perfluorinated membranes), and their characteristics are very attractive [20] 

(low temperature operation, high current densities, tolerant to shocks and vibrations, no emission of 

NOx or CO, and only bi-product: water). However, as for now, this technology suffers from a major 

drawback: a practical systems uses platinum-based catalysts on both the negative and positive 

electrodes and the MEA (Membrane-Electrode Assembly) represents on itself 80% of the cost of the 

stack. Moreno et al. [20], stated that, in 2013, the US department of Energy estimated the cost of 

PEMFC at $55/KWh, and that in order to be competitive, the end price of PEMFC has to go below 

$30/KWh. In order to do so, both the cost of the electrodes, the GDL (Gas Diffusion Layers) and the 

membrane have to be reduced. On the one hand, in the opinion of the authors, the determinant factor 

for the GDL and membrane costs is the volume, thus by enlarging their production, costs will be greatly 

reduced. On the other hand, the cost of the electrode is purely dependent on the cost of the catalyst 

(platinum). Several approaches are already investigated (non-PGM catalysts, core-shell platinum 

catalysts, alloying platinum with cheaper metals (palladium, Cobalt, etc.), but this not an easy task. 

Also, those systems operate on very pure hydrogen (hydrogen from petroleum reformates contains 

CO, which is one of the strongest poison for the negative electrodes), which also puts a hold on the 

use of such technologies. Hydrogen storage is also particularly demanding for transportation: one 

solution is the use of hydrides tanks [21], and especially magnesium hydrides tanks [21, 22]. Yet, this 

way of storing hydrogen suffers of the reversibility of the system (it is easier to adsorb hydrogen 

(exothermal) than to desorb it (endothermal), but a tank prototype has been designed lately which has 

proven a very good efficiency (around 90% [23]) which, makes magnesium hydrides tanks a relevant 

technology for PEMFC-powered vehicles, even though their mass has to be reduced (their mass-

percentage of H2 stored increased) to meet the needs. High-pressure H2 storage (700 bar) in composite 

tanks is another option, but its usage imply severe safety measures in a practical vehicle, as hydrogen 

is highly explosive. Direct liquid fuel cells could also be an option, but these systems, although they  do 
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not address most issues about fuel storage and transportation compared to H2 [23, 24], are impeded 

by the kinetics of oxidation of their fuel. 

 

ii. Lithium-Sulfur 

 

As detailed in b ii., the Li-S battery technologies offer good performances in a fully-packaged system 

(700 Wh kg-1 vs. 250 Wh kg-1 for Li-ion), which can lead to an increased battery life for Electric Vehicles, 

thus increasing the available mileage for those vehicles. As detailed by Fotouhi et al. [24], for a Tesla 

Roadster battery pack, which operates with a LCO (lithium cobalt oxides) positive electrode, the range 

under normal driving conditions is around 245 miles. Replacing this technology by Li-S batteries stack 

of the same size, the range could be increased up to 3 times, thus greatly improving the range of 

electric vehicles. Considering the discharge reactions, the reduction of sulfur (S8) is very complex and 

involves at least six [24] intermediates (known as polysulfide). By simplifying the scheme, the reaction 

at the positive (when fully discharged, no intermediates remaining) is equation (I.1): 

 

1

4
S8 + 2e− + 2Li+ → Li2S       (I.1) 

 

At the negative, the reaction that take place is the oxidation of metallic lithium, equation (I.2): 

 

Li → Li+ + e−         (I.2) 

Sulfur itself has a theoretical discharge capacity of 1675 mAh g-1, while lithium can develop a capacity 

of 3861 mAh g-1[24]. 

However, equation (I.1) is theoretical, and the main problem of Li-S systems is the redox shuttle formed 

by sulfur polysulfides species that cross over between the sulfur electrode and the metallic lithium, as 

depicted in Figure I.3. This phenomenon triggers efficiency losses by short-circuiting the external circuit 

and discharging directly the polysulfides onto the lithium. However, as explained by Badwal et al [17], 

existing solutions are already available to limit this phenomenon such as mesoporous silica, which 

adsorbs both polysulfides and sulfur and prevents major crossing to the lithium side. In addition, the 

dendrite formation on the lithium side in those systems have also been harnessed, with the use of 

fluorosulfonyl anions that helps forming a stable SEI. 
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Figure I. 3 : Scheme of the discharge of a Li-S, battery as published in Fotouhi et al paper, reproduced from [17], with 
permission from the Renewable and Sustainable Energy Reviews 

 
iii. Metal –air systems 

 

The main advantage of metal air systems lies in the high theoretical capacity of oxygen. In order to 

better understand the potential of the ORR in electrochemical energy storing, the best is to assess two 

parameters: the capacity, and the specific energy. The capacity (equation I.3) can be calculated by 

simple modifications of the Faraday’s law and with a dimensional analysis 

𝐶apacity =
𝑧×𝐹

𝑀×3.6
 [mAh g−1]       (I.3) 

With z the number of electrons exchanged; M the molar mass of the electroactive specie considered; 

m the mass of the electroactive specie considered; I the current and t the time 

 

Applied to the oxygen reduction reaction (ORR) in alkaline condition, equation (I.4)): 

 

O2 + 2H2O + 4e− → 4OH− ; 𝑀O2
= 32 g mol−1    (I.4) 

Or the reduction of LCO, amongst the more energetic oxidant for Li-ion batteries, equation (I.5): 

 

Li+ + e− + CoO2 → LiCoO2 ; 𝑀LiCoO2
= 97.87 g mol−1   (I.5) 
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The capacity can be estimated, if considering a 4 electrons total reduction (like in water medium), the 

theoretical capacity in the first case is around 3350 mAh g-1, which largely outnumbers the capacity of 

Li-ion systems (for comparison, the capacity of Lithium Cobalt Oxide reaches 273 mAh g-1).  

 

Similar calculations can be made for the oxidation of metals (considered in aprotic electrolyte, except 

for zinc, which operates in alkaline medium), equation (I.6-I.9): 

Li → Li+ + e−         (I.6) 

Mg → Mg2+ + 2e−        (I.7) 

Al → Al3+ + 3e−        (I.8) 

2OH− + Zn → ZnO + 2e− + H2O      (I.9) 

 

The capacity of these reducers reaches: Lithium: 3861 mAh g-1; Magnesium: 2206 mAh g-1; Aluminum: 

2980 mAh g-1; Zinc: 820 mAh g-1. As a comparison, lithiated graphite can reach a capacity of 367 mAh.g-

1, which proves the interest for electrochemical systems that comprises metals as the negative. When 

considering the discharge voltages of those systems, Cheng et al reported the values obtained [25] (Li-

O2 : 3.35 V; Mg-O2=3.09 V; Al-O2=2.71 V; Zn-O2=1.65 V). 

By a simple calculation, the Specific energy (equation (I.10)) of those systems can be estimated : 

 

Specific Energy =
𝑚electrode×𝑧×96500×Δ𝑈dis×1000

𝑚system×𝑀×3600
 [Wh. kg−1]   (I.10) 

 

 

With msystem the mass of the complete electrochemical chain ΔUdis the discharge potential of the 

electrochemical chain. 

 

Considering the calculation, some hypothesis will be made: first (the strongest one), it is considered 

that the mass of the positive and the negative electrode will be the same (this choice is usually not the 

one considered by battery suppliers, for economical, technological and safety reasons). The mass of 

the separator will be neglected (as usually, separators are ultra-thin polymers), and the mass of the 

“packaging” of the battery will be arbitrarily taken to 3 times the mass of the electrodes (for safety 

devices, leads, connections, etc.). Also, the electrodes charge will be considered equilibrated. 

Thus, if considering the ORR, and the different hypothesis made: 

Specific Energy =
𝑚electrode×𝑧×96500×Δ𝑈dis×1000

5×𝑚electrode×𝑀×3600
              (I.11) 

With z = 4 and M = 32 for the oxygen and taking into account the ΔUdis for each metal-air system: 
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Table I. 1 :Specific Energy for four metal air systems 

Technology ΔUdis (V) 
Specific Energy  

(Wh kg-1) 

Li-O2 3.35 2245 

Mg-O2 3.09 2071 

Al-O2 2.71 1816 

Zn-O2 1.65 1106 
 

These very large specific energies highlight the potential of a fully developed metal-air system in 

contrast with the Li-ion and the lithium sulfur, where the specific energies reached are far below (250 

Wh kg-1 for Li-ion, 700 Wh kg-1 for a fully-packaged Li-S system). 

However, in contrast with the Li-S (on which most of the main issues have been solved), metal air 

systems (and especially non-aqueous metal air systems), have major issues, which are still yet to be 

solved. Among others, one must find active catalysts to enhance both the ORR and the OER [25], 

manage the reactive and insulating character of the discharge product, find solutions to enhance the 

recharge, etc. Those aspects will be discussed in the next section, focusing on the non-aqueous Li-O2 

system. 

 

II. The Li-O2 systems 

As demonstrated in the previous part, the potential of Li-O2 systems is huge for a large panel of 

applications. As the aim of this thesis is to understand and to solve major issues on the positive 

electrode (at least to try), some conventions of labeling will be applied: the positive electrode can be 

denoted “cathode” in the following discussion, as the positive electrode is the cathode for a cell in 

discharge. 

 

a. Discovery of Li-oxygen batteries 

The idea of using the Li/Li+ redox with the reduction of oxygen in a practical battery was first presented 

by Semkow and Sammells in 1987 [1]. At this time, they proposed to use molten salts as the electrolyte. 

This cell, described in Figure I.4  was operated from 600 to 850°C. 
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Figure I. 4 : Design of the Li-O2 cell, operated by Molten Salts, as published in Semkov and Sammells paper, reproduced from  
[1], with permission from the Electrochemical Society 

From this publication, very good performances were obtained (4,260 Wh kg-1) at large current 

densities (Figure I.5). 

 

Figure I. 5 : Galvanostatic cycling of the cell at 20 mA cm-2, as published in Semkov and Sammells paper, reproduced from  
[19], with permission from the Electrochemical Society 

Yet, the drawbacks of such technology are obvious: it is impeded by the complex handling of molten 

salts at high temperature (above 250°C for most molten salts), especially in interface with metallic 

lithium; because of this, their packing and handling rose safety issues.  
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As such, molten-salts Li-O2 batteries could not be used as a power source for an Electric Vehicle (EV), 

but are of great (at least theoretical) interest for large-scale high-energy storage technology on the 

power grid [26, 27]. 

No more than 9 years later, Abraham and Jiang reported a Lithium-O2 battery [8], which comprised a 

polymer electrolyte (Li/PAN), and could be operated at room temperature with a good remaining 

capacity after three cycles of charge/discharge. The design of the cell they used in the paper is reported 

on Figure I.6. 

 

Figure I. 6 : Design of the Li-O2 cell, presented as published by Abraham and Jiang, reproduced from [1], with permission 
from the Electrochemical Society 

Such cell proved good performances at reasonable discharge current densities, as depicted on Figure 

I.7, where the carbon composite electrode consisted of chevron acetylene black, and where the oxygen 

source of the cathode was dry oxygen. 
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Figure I. 7 : Discharge curve of the LI/PAN Li-O2 cell at 0.1 mA cm-2, presented as published by Abraham and Jiang, 
reproduced from [1], with permission from the Electrochemical Society 

This early study highlighted that not all the carbons were equivalent for use as positive electrodes on 

such cells: when they changed the cathode material from chevron acetylene black (SBET = 40 m² g-1), to 

a graphite powder (SBET = 5 m² g-1), the available capacity decreased from 1 460 mAh g-1 to 250 mAh g-

1 (Figure I.8). 

 

Figure I. 8: Discharge curve of the LI/PAN Li-O2 cell at 0.1 mA cm-2, with a graphite cathode, presented as published by 
Abraham and Jiang, reproduced from [1], with permission from the Electrochemical Society 

Although the authors were hoping that the main discharge product would be Li2O (which leads to a 

specific energy of 5,200 Wh kg-1, but this requires the 4-electron oxygen reduction reaction (ORR) to 

be complete), they discovered, thanks to Raman spectroscopy and a simple procedure with KMnO4 

solution (the discharged cathodes were put in 2.5 mM KMnO4 solution and if present in contact with 

Li2O2, the purple color disappeared; when Li2O was put in contact, the solution did not changed in color 

(but it changes with Li2O2 samples)), that the main discharge product is Li2O2, which lowers the 

available energy delivered by a practical cell, versus the theoretical calculations, by a factor two. The 

Raman spectra of the discharge product is depicted on Figure I.9, the peak at 795 cm-1 being 
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characteristic of the O-O bonds of peroxide species. Despite this partial deception, this first study 

demonstrated the great interest of secondary (rechargeable) Li-O2 systems (depicted in the Ragone 

diagram of Figure I.10): among advanced batteries, only the Li-O2 systems can approach the 

performances of Internal Combustion Engines (ICE) in terms of energy density (and power density – as 

claimed in [28] – but this claim is yet to be demonstrated in practice). However, these promises are 

still only theoretical, and practical Li-O2 systems face a lot of issues especially on the cathode side (it 

will be discussed in chap I part d), that still need to be overcome. 

 

 

 

Figure I. 9 : Raman Spectra of a discharge Li-O2 battery cathode. Presented as published by Abraham and Jiang, reproduced 
from [1], with permission from the Electrochemical Society 
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Figure I. 10: Ragone diagram of some secondary batteries, fuel cells and ICE, presented as published by Padbury et and 
Zhang, reproduced from [22], with permission from the Journal of Power Sources 

It is clear that, in order to fully optimize the Li-O2 technology, a full understanding of the mechanisms 

that occur on the electrodes must be conducted; thanks to the work of Zimmerman [29] and other 

groups [30–34], this understanding has immensely progressed, at least for the cathode [29]. 

 

b. ORR and OER mechanisms in aprotic medium 

On the very infancy of the Li-O2 system, Abraham et al, sensed well that the predominant discharge 

product was lithium peroxide [8]. However, the investigation of the individual steps of the ORR and 

OER mechanisms was only conducted in the late 2010s, and emerged with the hard/soft acid/base 

(HSAB) theory, promoted by Abraham’s group. 

 

i. ORR in Li+ and TEA+ containing electrolytes 

The first study of the ORR in aprotic medium lasts from 1966, with a study by Johnson et al [35], where 

the impact of various cations in TEAP DMSO solution were quantified. Its main result showed that, in 

absence of alkali metal cation (only TEAP present), two electrochemical waves were observable (with 

half waves potentials respectively at -1.15 V vs. SCE and -2.5 V vs. SCE). 

 

Along with other papers [36, 37], Johnson et al found that two consecutives one electrons processes 

were occurring in aprotic media, in presence of TEAP, where the first one (with the half wave potential 

measured at -1,15 V vs. SCE) was proven to be the reduction of oxygen into superoxide (I.12).  
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In their paper, Johnson et al attributed the second wave to the formation of peroxides (I.13), because 

the addition of proton in the media had the same effect than the addition of sodium or potassium 

cations: the second wave shifted at higher voltages, and the product formed in presence of the proton 

was characterized to be hydrogen peroxide. Thus, the second reduction was attributed to be the 

formation of peroxide. 

 

TEA+ + O2 + e− → TEA − O2       (I.12) 

M − O2 + M+ + e− → M2O2        (I.13) 

 

However, in presence of lithium, the second wave disappeared, which was attributed by the authors 

to an impossibility to electrochemically form lithium peroxide. However, the main product during ORR, 

in Li+ containing electrolyte was later characterized by Abraham et al and further confirmed by Laoire 

et al [30], in dimethyl sulfoxide media, and this product was determined to be lithium peroxide. Thus, 

as reported in the paper by Laoire et al, lithium peroxide must be produced by a chemical reaction 

directly from lithium superoxide (a disproportionation reaction), which was proven to be metastable 

(I.14): 

 

2 LiO2 → Li2O2 + O2         (I.14) 

It is thus clear that, in presence of lithium cations, the ORR proceeds via two simultaneous reactions 

(one electrochemical and one chemical) that occur as follows (I.15 and I.16): 

 

Li+ + O2 + e− → LiO2         (I.15) 

2 LiO2 → Li2O2 + O2         (I.16) 

 

As a consequence, the occurrence of the disproportionation reaction (I.16) hides a two electron-

process; it corresponds to surface re-arrangements, as depicted on Figure I.11, and modeled by 

equations (I.17 and I.18). 

 

Figure I. 11 : ORR scheme in aprotic medium, in presence of Li+ 
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If Un represents the number of actives sites occupied by LiO2 and n, the number of recombination of 

LiO2 into Li2O2, the overall electrons exchanged at the nth step of recombination (en) is equal to: 

 

en = 2 × (𝑈n)           (I.17) 

With : 𝑈n =
𝑈n−1

2
+

1

2
 and 𝑈0 =

1

2
        (I.18) 

(at the first recombination, 50% of the overall actives sites are unoccupied, while 50% are blocked). 

However, various papers also proposed that an electrochemical reduction of the lithium superoxide is 

possible, forming lithium peroxide (I.19): 

LiO2 + Li+ +
1

2
O2 + e− → Li2O2        (I.19) 

 

No studies have been able to confirm which path (consecutive electrochemical and chemical steps 

(I.15 and I.16), or two consecutives electrochemical steps (I.15 and I.19)), as for both paths, the overall 

number of electrons exchanged per O2 molecule shall be worth two [38] (the oxygen that is re-emitted 

in reaction (I.16) is believed to be re-adsorbed readily, as it is re-emitted on the electrode). One could 

think that this re-emitted oxygen could be measured by differential electrochemical mass 

spectrometry (DEMS), but as two O2 molecules are consumed by (I.15) for each molecule of lithium 

peroxide produced, in order to fulfill (I.16), one molecule of O2 is consumed overall, when combining 

(I.15) and (I.16), so DEMS can only measure a consumption during ORR. Laoire et al claimed that the 

mechanisms in a Li+ containing electrolyte is as follows [30], (Figure I.12): 
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Figure I. 12 :  Oxygen purged 0.1 M LiPF6 MeCN on GC at various scan rates, presented as published by Laoire et al , 
reproduced from [24] with permission from ACS 

step 1 ∶ (Ep1). Li+ + O2 + e− → LiO2        (same as I.15) 

step 2 ∶  2 LiO2 → Li2O2 + O2        (same as I.16) 

step 3: (Ep2):  LiO2 + Li+ +
1

2
 O2 + e− → Li2O2     (same as I.19) 

step 4 ∶  (Ep3) ∶  Li2O2 →  O2 + 2 Li+ + 2e−        (I.20) 

 

However, there is no such evidence that reaction (I.15) is really happening at Ep1, and in the author’s 

opinion, both Ep1 and Ep2 are likely due to the consecutive reactions (I.15) and (I.16), or (I.15) and 

(I.19). As Ep2 peak occurs at lower voltages, because larger toroids are formed, Ep1 cannot be linked 

to superoxide formation only, as it is a metastable species, which has a very short lifetime (and Ep1 is 

observed, even at lower scan rates). So, reaction (I.19), might happen at the same time than reactions 

(I.15) and (I.16), as their standard potentials are very close [30]. This statement is confirmed with a 

further publication of Laoire [39], where, in DMSO he changed the reverse potential (Figure I.13): 
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Figure I. 13 : 0.1 M LiPF6 DMSO at room temperature, on GC at 100 mV s-1 with various reverse potentials, presented as 
published, reproduced from [33], with permission from ACS 

In this publication, Laoire al claimed that the following reactions occurred: 

(Epc1). Li+ + O2 + e− → LiO2         (same as I.15) 

Chemical ∶  2 LiO2 → Li2O2 + O2       (same as I.16) 

(Epc2):  LiO2 + Li+ +
1

2
 O2 + e− → Li2O2      (same as I.19) 

(Epc3) ∶  Li2O2 + 2 Li+ + 2e− →  2Li2O       (I.21) 

(Epa1).  LiO2  → Li+ + O2 + e−       (I.22) 

(Epa2):  Li2O2 → 2 Li+ + O2 + 2 e−       (same as I.20) 

(Epa3) ∶  2 Li2O →  O2 + 4 Li+ + 4 e−        (I.23) 

 

However, among all the literature, even at very low potentials, physical characterizations of Li2O was 

never produced after discharge of a Li-O2 battery [38, 40–43], thus confirming that in a practical aprotic 

Li-O2 system, the limit of 4 electrons per oxygen will most likely never be reached, and instead the final 

discharge product will be lithium peroxide. Consequently, Peaks Epc3 and Epa3 must originate from 

another phenomenon. A possible explanation could be the formation of larger particles (which is 

consistent, with a deeper rate of discharge), and those particles will be more difficult to re-oxidize, 

producing the broad peak Epa3. 

 

Also, Laoire et al claimed that reaction (I.19) is occurring at Epc2, but even when the reverse scan 

occurs at 2.6 V vs. Li+/Li (which is just below the onset potential of the ORR), the peak Epa2 is seen in 

a small extent, thus meaning that lithium peroxide is produced before, either by the combination of 
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reactions (I.15) and (I.16), or by combination of reactions (I.15) and (I.19). Again, no evidence can 

discredit either one path or the other one because in the end, the same product (Li2O2) is formed, with 

the same amount of electrons exchanged. 

 

ii. Hard Soft Acid Base (HSAB) theory 

 

In the same publication [39], Laoire et al introduced a possible explanation of the variation of the ORR 

onset potential with different solvents, linked with the HSAB theory, first emitted by Pearson et al [44]. 

As explained in their paper, TEA+/TBA+ cations are considered to be Soft Lewis Acids, Li+ cations are 

strong Lewis Acids, superoxide (O2
.-) is considered to be a moderate Lewis Base and peroxide (O2

2.-) is 

considered to be a strong Lewis Base. The authors also proposed that, considering the HSAB, peroxide 

will prefer strong acids (such as Li+, Na+, K+) and superoxide will be stabilized by a soft acid (cations 

such as TEA+ or TBA+ for instance). In addition, in their papers, Laoire et al stated that the solvent has 

a similar effect on the stabilization of species such as superoxide and peroxide, and their respective 

basicity and/or acidity can be characterized by donor (DN) and acceptors numbers (AN). The DN scale 

for conventional Li-O2 solvents is given in their paper as well as the AN scale (with their respective 

values in the brackets): 

 

MeCN (14.1) < TEGDME (16.6) < DME(20.0) < DMSO (29.8)  (DN) 

DME (10.2) < TEGDME (10.5) < MeCN (18.9) < DMSO (19.3)  (AN) 

 

Consequently, the two effect, explained by the HSAB theory are as follows: 

 

- AN number: the higher the AN number, the better the “solvation” of the anion associated with cation 

(i.e.: ClO4
-; PF6

-, etc.), the higher amount of cations “available” to stabilize the superoxide and peroxide 

species; 

 

- DN number: the higher the DN number, the stronger the Li+/solvent interactions, lowering the Li+ 

acidity thus stabilizing the Li+/superoxide bound, which leads to an increased lifetime of lithium 

superoxide. Still, even in DMSO, LiO2 is proven to be a metastable specie, and quickly undergoes 

chemical decomposition to form lithium peroxide, as presented in their paper, and in various other 

studies [33, 39, 45]. 

 

Also, they state that in DMSO, TBA+ cations are poorly solvated, and as superoxide is that first specie 

produced during ORR, and is a moderately soft base, a strong interaction occurs between TBA+ and O2
.-
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, thus “preventing any further reduction to the peroxide form”. However, it has been proven, long time 

before the interest in metal air batteries, that the second reduction to peroxide is observed, but at 

much lower potentials (half wave potential for the second reduction around -2.5 V vs. SCE) [35–37].  

 

As a consequence, they explain the chemical disproportionation of lithium superoxide to lithium 

peroxide by the incompatibility between the lithium cation (hard acid) and the superoxide (moderate 

base), the former rather transforming into lithium peroxide (association of the hard acid and the hard 

base), which is consistent with the experimental results, where the main discharge product is lithium 

peroxide, and lithium superoxide is sometime observed as a metastable specie [30, 33, 39, 42]. As 

explained in the work of Zimmerman [29], the AN scale correlates well with the half-wave potential of 

the first oxidoreduction of oxygen (in TBAClO4), whereas the DN scale is completely uncorrelated with 

these half peak potential, as shown in Table I.2 and Figure I.14 (in the same electrolyte).  

 

Table I. 2 : Half peak potential of the first reduction process of oxygen in TEAClO4 non-aqueous solvents electrolyte. Data 
extracted from [40, 41] 

Solvent Donor Number E1/2 vs SCE (V) 

Acetonitrile 14.1 -0.85 

DMF 26.6 -0.87 

DMA 27.8 -0.9 

DMSO 29.8 -0.77 

Pyridine 33.1 -0.93 
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Figure I. 14 : Plot of the half wave potential of ORR (TBAClO4) versus the Donor Number of the solvent. Data used in Table1 

However, the HSAB theory states that the higher the acceptor number, the better the stabilization of 

the superoxide. Also, as explained in the work of Zimmermann[29], the Donor number can plan a role 

in the stabilization of the cation-superoxide pair, as high donor number solvents will lower the acidity 

of the cation (thus the reactivity of the cation-superoxide specie). For a given redox couple, if the 

reducer form is stabilized, the potential of the redox couple is supposed to shift to lower potential. The 

data shows that it is indeed the correct trend, but at least one solvent is the exact contrary (DMSO). 

Thus, problems are raised for the understanding of the stabilization of ORR products. One possible 

explanation can be that those two numbers are not determined in the same way. 

 

On the one hand, the AN number is determined by the relative 31P-NMR shift of triethylphosphine 

oxide shift, which is a strong Lewis base, in each solvent. On the other hand, the DN is based on the 

measurement of the coordination heat of those solvents (diluted in 1, 2-dichloroethane) with SbCl5 

(which is a hard Lewis Acid). While the AN scale is pretty much accepted by the community of scientists, 

some discrepancies exist for the DN scale as: 

 

- The heat measured is an enthalpy, not a Gibbs energy (the entropy term of the Gibbs energy induce 

a non-linearity between those two); 

- The measurements are made in diluted solution in 1,2-dichloroethane, so they might not reflect the 

actual Lewis Basicity of the solvent only but rather the mixture; 

- SbCl5 is a large hard Lewis acid, in contrary to alkali metal cations, so some differences in coordination 

behaviors between those two might exist. 



28 

 

 

In conclusion, if one truly wants to measure the basicity of a given solvent, a different number than 

the DN number must be used. In this perspective, a possible number that could explain well the basicity 

of the solvent toward alkali metal cation are MCB (Metal-Cation Basicity), which are a gas-phase 

measurement of the free energy of the pairing between the cation and a solvent. This scale is more 

relevant for the explanation of the HSAB theory than Donor Number, as here, the true pairing between 

a solvent molecule and the alkali metal cation is measured [46], and it is not an enthalpy, but a free 

energy. By computing MCB values [46] and half peak potential values of the ORR in those solvents [47], 

a drawing can be done (Figure I.15). 

 

Figure I. 15 : Plot of half peak potential vs. MCB value, with pyridine. Data extracted from [42, 43] 

 

Figure I.15 shows that still, no good correlation exists between the half peak potential of the ORR and 

the MCB values. However, by looking closer to those values, only one solvent seems responsible for 

the bad correlation: pyridine. By removing the pyridine contribution from the plot, a better correlation 

can be observed, for the three metal cations (Figure I.16). 
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Figure I. 16: Plot of half peak potential vs. MCB value, without pyridine. Data extracted from [42, 43] 

A possible additional effect of pyridine (for example nucleophilic attack of superoxide on the 

heterocycle), is highlighted, which might affect the basic behavior of pyridine, in presence of 

superoxide/peroxide species. However, it must be noted that in some extent, every solvent is affected 

by nucleophilic attack of superoxide/peroxide [48], as those species are highly reactive and trigger 

strong challenges for the design of a practical system. 

 

 

c. Effect of water 

It is clear that, in a practical Li-O2 system, water must be removed as much as possible, as it violently 

reacts with metallic lithium. But in addition, water also has a significant effect on the operation of the 

positive electrode (cathode). Usually, anhydrous solvents that are sold by chemical suppliers have 

water contents that range from 50 to 100 ppm. For example, in DMSO, a water content of 100 ppm is 

equivalent to 1.4 mM, which is in the same order of magnitude of the oxygen content at saturation in 

the same solvent. So, even in an “anhydrous” solvent, the water can significantly impact the cell 

behavior. The way in which the water affects the non-aqueous ORR can be compared to the impact of 

acids on ORR in non-aqueous medium [49]. In presence of an acid (HA), Andrieux et al proposed the 

following ORR pathway (I.24-26): 
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O2 + e− ↔ O2
.−         (I.24) 

O2
.− + HA ↔  HO2

.− + A−        (I.25) 

O2
.− + HO2 ↔ HO2

− + O2       (I.26) 

 

In aprotic solvents, water is considered as a weak acid (pka = 31.24 in DMSO [50]); so according to the 

HSAB theory, it should not interact a lot with superoxide and peroxide species. However, it is well 

known that water has a very strong affinity for anions, thus interactions between water and superoxide 

may occur, interactions that are not acid/base related, and a complex of the form O2
.-—H2O is observed 

(on glassy carbon in acetonitrile [51]) leading to the following ORR pathway (I.27-29): 

 

O2 + e− ↔ O2
.−         (I.27) 

O2
.− +  H2O ↔ O2

− − H2O        (I.28) 

O2
− − H2O + e− ↔  HO2

− + OH−      (I.29) 

 

The subsequent formation of a stabilized, soluble superoxide complex, is allowing the growth of 

greater particles of Li2O2 (toroids), rather than a fully-covering homogeneous layer, which increases 

the capacity of the system [52, 53] (at least in discharge), but also the yield of the Li2O2. However, the 

presence of water is not affecting only the solubility of the superoxide, it must also be noted that in 

water, lithium peroxide is not the stabilized formed, but LiOH is. Even with water amounts as high as 

1%, the major discharge product detected on a carbon cloth is still Li2O2 [52], but in presence of another 

substrate such as Ru/MnO2/SP[54], a mix of LiOH/Li2O2 is detected on discharged cathodes, with water 

contents as high as 120 ppm. 

 

In conclusion, traces of water allow an increased lifetime of superoxide species, thus allowing the 

formation of large Li2O2 (or LiOH) crystallites (the greater the water amount, the greater the particles, 

the greater the discharge capacity [52, 53]). However, it must be noted that water traces also trigger 

overpotential values during the charge of the battery [53], which is a serious issue for a practical 

system. In addition, although the stabilized discharge product is LiOH in hydrated electrolyte, it has 

been proven that still, the main discharge product is Li2O2 on conventional “carbon” cathodes [52, 53, 

55], thus implying that somehow the formation of lithium hydroxide proceeds with a slow kinetics.  

 

This statement is supported by the fact that in presence of MnO2 lithium hydroxide is detected by XRD 

[54], and from a patent, where the reaction of Li2O2 with water vapor (which forms lithium hydroxide) 

was faster with the MnO2 catalyst than without [56]. The fact that this catalyst has proven some very 

good performances in Li-O2 design [57, 58] might be linked to this phenomenon. 
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d. Issues of Li-O2 cathodes and improvement paths 

 

The selected literature presented above demonstrates that, despite the efforts from the research 

community to build a practical Li-O2 system, two main issues remain: 

The first is the need to find a suitable electrolyte for a Li-O2 practical system. Actually none are 100% 

stable toward the Li-O2 discharge products [33] (lithium superoxide and peroxide). In the same line, 

the carbon cathode proved to be unstable toward lithium peroxide [32, 33], as it forms readily a 

monolayer of lithium carbonate, this issue being all-the-more prejudicial at the large potential values 

encountered during recharge. 

 

The second is that, in a pure anhydrous electrolyte, and at high discharge rate, the deposit is a compact 

thin layer [52, 59], that will trigger sudden death of the cell, if the deposit thickness becomes greater 

than the electron tunneling distance. This issue is a big deal for both the automotive and stationary 

applications, as it triggers a very bad cyclability of the system, good cyclability being a prerequisite to 

the use of any battery in these applications. 

 

i. Li-O2 cathode components stability toward ORR products 

 

An electrochemical system, in order to be practically used, needs a stable electrolyte on both side 

(anode and cathode). For the Li-O2 system, it is well known that in presence of carbonate solvents, 

lithium metal is producing a stable and thin Solid Electrolyte Interface (SEI), thus triggering a low 

irreversible loss on the lithium negative electrode [60, 61].  

 

This stability on the lithium side is probably responsible for the early use of carbonate solvents in Li-O2 

systems [8]. However, in the past decade, carbonate solvents have been characterized to be highly 

instable toward products of non-aqueous ORR [38, 62–65], which leads to the formation of insoluble 

lithium alkyl carbonate salts. A possible reaction mechanism of superoxide on a cyclic alkyl carbonate 

(figure extracted from [65]) is depicted on Figure I.17. 
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Figure I. 17 : Nucleophilic attack of superoxide on an alkyl carbonate molecule : a possible pathway (scheme extracted from 
[61], reproduced with permission from Elsevier 

In any case, the main discharge product in carbonate-based electrolyte was always either lithium 

carbonate (Li2CO3) or lithium alkyl-carbonate species (LiRCO3) [33, 57, 62–65].  

In addition to the reactivity of carbonate-based electrolytes, several studies have also characterized 

ether-based solvents as electrolytes (DME [32, 66] and TEGDME [57]), in which the main discharge 

product was, this time, lithium peroxide [32, 38, 57]. 

 

It was found that part of the ORR product are still decomposing ether-based solvents to from alkyl 

carbonate lithium salts, and it was supposed that these alkyl carbonates species were formed at the 

Li2O2/electrolyte interface [32] and formed a “crust” of LiRCO3 on the Li2O2 particles. Another study, in 

which isotopic substitution was carried out on DEMS measurements showed that lithium acetate and 

lithium formate were produced as side reactions products [66].  

 

Moreover, two studies pointed out that the lithium salts are also sensitive to ORR discharge products, 

which eventually decomposes. Younesi et al [57], have conducted a series of experiments where 

solvents (carbonates and TEGDME) along with salts (LiPF6, LiClO4 and LiBF4) and binder (PVDF) were 

put in contact with lithium peroxide for two different time (10 min and 48 h) and then analyzed by XPS. 

The surface analyses allowed the authors to clearly identify decomposition products such as LiCl and 

LixCly (for LiClO4 TEGDME electrolyte), LiF and LixBOyFz (for LiBF4 EC/DEC electrolytes) and LiF, LixPFy and 

LixPOyFz (for LiPF6 EC/DEC electrolytes). It must be noted that for the PC electrolytes, alkyl carbonates 

were detected, which agrees with others papers [63–65]. 
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Another study also reported the instability of LiBOB salt (Lithium Bis(oxalate)borate), which undergoes 

ring opening (probably similarly to that of propylene carbonate, depicted on Figure I.17), and leads to 

the formation of lithium oxalate during the discharge of the Li-O2 system [67]. 

 

Furthermore, the binder stability can also be an issue, considering the reactivity of both the lithium 

superoxide and lithium peroxide. Among the binder used in the literature, polyvinylidene fluoride 

(PVDF) is the most popular [40, 68], thanks to its properties (easy to process in an ink).  

 

However, it has been proven lately by Black et al [69], that PVDF faces an attack from superoxide 

species, which leads to its deprotonation (reaction pathway: I.30-33), and eventually to the in situ 

formation of water by disproportionation of hydrogen peroxide, which reacts to form lithium 

hydroxide (consistent with the literature, on the moisture effect in aprotic media [54, 70, 71]). 

 

LiO2(s) +  −(CH2 − CF2) −(s)→ HO2 + −(CH = CF) −(s)+ LiF(s)   (I.30) 

2 HO2 →  H2O2 + O2 (g)       (I.31) 

H2O2 → H2O(l) +
1

2
 O2 (g)        (I.32) 

Li2O2 (g) +  2 H2O(l) → 2 LiOH(s) + H2O2      (I.33) 

 

Such reactions prove that it is mandatory to prohibit the use of PVDF as binder for Li-O2 cathodes, 

because of the chain reaction and the vicious cycle that occurs (each LiOH molecule that is formed 

forms in return hydrogen peroxide, which disproportionates to water and reacts with lithium peroxide 

to form lithium hydroxide ).  

 

One might say that the LiOH formation is not a bad idea, because a full 4 electrons reduction is thus 

achieved [54, 72], but the water shall not originate from the binder decomposition. Indeed, it will 

fatally lead to grain detachment, capacity losses, and because although this can possibly be positive 

during discharge, it is definitely not the case during charge and overall in terms of cyclability. Also, such 

system will be forced to work with a Lisicon separator (or equivalent), to avoid any transfer of water 

to the lithium side of the cell. 

 

As a following, the excellent study of Nasybulin et al [73], has evaluated the stability of a wide panel 

of polymers (PVDF,PS,PEO,PAN,PVC,PVP,PMMA,CMC, PTFE, PP and PE) toward superoxide (KO2) and 

peroxide (Li2O2), by ball-milling those polymers with the reactive (superoxide or peroxide). After the 

ball-milling, XRD and XPS was performed.  
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From this study, only PTFE, PP and PE were stable (from XRD analysis) toward superoxide and peroxide, 

while the other polymers were decomposed, by nucleophilic elimination and formed mainly 

carbonates as decomposition products (PVP, PMMA, CMC, PS PEO). However, XPS analyses revealed 

that decomposition products were nevertheless found for PTFE and PP, while nothing was detected by 

XRD, meaning that they are slightly unstable toward ORR products, which compromises their use for a 

practical system, along with the others polymers.  

 

From this study, it is now an evidence that the only usable binder for a practical Li-O2 system is PE, and 

it is well known that PE is a polymer that is very hard to dissolve: it requires the use of “super solvents” 

[74, 75] such as toluene, xylene, acetone, under heat and stirring, especially for Ultra High molecular 

Weight PE (required grade to be used as a good binder). 

 

Moreover, as published by McCloskey et al [32], carbon electrodes are facing a thermal reaction with 

lithium peroxide, which forms a monolayer of lithium carbonate, at each cycle. In their publication, the 

carbon electrode consisted of 13C, and 40% of the CO2 evolved during the charging was 13CO2. Such 

phenomena imply that the greater the surface area, the greater the amount of lithium carbonate 

produced, thus the faster the carbon cathode is consumed. 

 

ii. Rate capability 

As presented above (part a) the very first design of the Li-O2 system proved that, in a practical Li-O2 

system (if considering a cathode fully stable toward ORR products), the end capacity is only limited by 

the surface area of the material on which the oxygen reduction will be conducted [8]. 

 

In this perspective, solutions such as graphene based cathode [42, 76–79], and metal organic 

frameworks [80–85] have been proposed as high-surface-area materials for the cathode side, and have 

proven some very good results concerning the rate capability.  However, as discussed in the previous 

part of this chapter (II.d.i), all those solutions involve carbon-based cathodes, in which some were 

binder free [76–78, 84] and other comprised either PVDF or Nafion (the use of the latter in an aprotic 

Li-O2 system raises some questions) as a binder on their carbon-based cathodes [79–83, 85], which are 

unstable toward ORR products.  

 

It was concluded that this apparent good cyclability on carbon based cathodes was due to the very 

decomposition of the carbon material [32, 40] (CO2 evolved during the charging at high potential), thus 

those electrodes are not good candidates for a long life secondary system (rechargeable and durable 

Li-O2 battery). 
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Very few studies have highlighted carbon-free cathodes, such as nanoporous gold cathodes [86], and 

also TiC, SiC and TiN bound on stainless steel mesh cathodes [87]. For the nanoporous gold cathodes, 

the electrolyte was LiClO4 in DMSO and some astonishing performances were obtained (100 cycles 

with nearly perfect 2.0 electrons per Oxygen for the 100th discharge and charge), and no evidence of 

LiCO2H or Li2CO3 presence was detected by FTIR.  

 

Unfortunately, gold cannot be considered a practical Li-O2 battery cathode, for evident materials cost 

and availability reasons. For the other study [87], the electrolyte consisted of either LiClO4/DMSO or 

LiPF6/TEGDME with PTFE as a binder. Still, for this study, very good performances were reported (less 

than 1% of Li2CO3 formed in the LiClO4/DMSO electrolyte), and also 2 electrons per oxygen molecules 

were exchanged for the discharge and the recharge.  

 

However, those experiments were duplicated by McCloskey et al [40], and they were unable to 

reproduce the results claimed by the original publications. Instead, the ratio OER/ORR in coulometry 

achieved was 0.44 for the NPG and 0.45 for the TiC cathodes (carbon cathodes exhibits a ratio of 0.51), 

which clearly contrasts with the original claims. Also, by changing alone the cathode material does not 

prevent electrolyte/salt decomposition. It is thus mandatory to use a suitable solvent and suitable salt 

on robust cathodes. 
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Conclusion 
 
This literature survey shows that Li-O2 system are very promising owing to their theoretical capacities. 

However, crucial issues are raised concerning the stability of the cell components, especially on the 

cathode side. In this perspective, only polyethylene must be used as the binder in a Li-O2 cathode, to 

ensure long life stability and flexibility of the cathode [73]. Also, a better screening of the salts available 

is necessary, as the ones working in Li-ion systems are unstable in Li-O2 cathodes [57, 67]. In addition, 

the carbon support, carbon being one privileged material for the cathode of a Li-O2 battery (owing to 

its very low price, good conductivity, availability, etc.), is unstable toward ORR products. Thus, two 

strategies exists: carbon free electrodes [86, 87], but those solutions have proven to not be 

reproducible [40] (and also the use of metal such as gold is to be limited as much as possible, as it will 

rise sharply the cost of the system), or carbon-protected electrode. This solution has not been screened 

yet and the idea is to make a thin deposition of a stable (semi)conductor on high surface area carbon 

cathode, which will ensure a high end capacity, and no contact between the ORR product and the 

carbon support. A second strong issue of the cathode side (if not one of the strongest), is to enhance 

the charge/discharge cyclability of the cathode; this may not be achieved by changing the cathode 

material, but by adding a redox additive that will allow the transport of electrons in the solution (thus 

allowing the recharge of fallen Li2O2 particle and huge aggregates). This idea has not been extensively 

screened, and very few papers have presented a redox shuttle that can practically be used to enhance 

the charging of the cathode (to be efficient, the standard potential of the redox shuttle must be 

superior to the onset of the OER, in presence of Li+). To the author’s knowledge, in the literature, only 

the TEMPO [88] and iodine [72, 89] solutions have their redox potentials correctly placed to work as a 

redox shuttle, and have proven to enhance the OER and therefore improved the cyclability. Yet, the 

idea will be to have an additive with the ability to help both the discharge (homogeneous catalysis or 

ORR) and the recharge (redox shuttle). 

So to conclude, the present study will address two of the main issues suffered by non-aqueous Li-O2 

batteries: (i) the poor stability of the carbon cathode will be enhanced by thin metal-oxide deposits (as 

a protective but electron-conducting layer); (ii) the poor recharge ability of the cathode will be 

improved by using a redox mediator in the electrolyte. Both strategies will be described and practically 

assessed in the following chapters. 
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Chapter II. 

Experimental section 
 

Every obstacle is destroyed through rigor – Leonardo Da Vinci 

 

In this section, the principles of the techniques used in the manuscript will be detailed. 
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I. Electrochemistry 

 

a. Washing of the glassware 

The cell consisted of homemade glass cell (for the three-electrode, Differential Electrochemical Mass 

Spectrometry and Full cell setup). Prior any experiment, the glassware was thoroughly cleaned; to 

this goal, each cell was soaked at least for 12 hours in a H2SO4:H2O2 mixture (concentrated Caro’s 

acid), carefully washed several times with ultrapure water (18.2 MΩ.cm), and placed to dry for at 

least 1 hour in a stove at 120°C. Concerning the glass frit, the procedure is extended, with a 

sonication process (the glass piece is placed with ultrapure water on both side of the frit, and 

sonicated for at least 15 minutes), followed by an additional washing (2/3 times) in ultra-pure water. 

The last step of the washing process is to apply pressure in the tube of the glass frit, with ultra-pure 

water in it (either with Oxygen/Argon, at 1 bar), to ensure that no Caro’s acid remain in the frit. At 

this point, the piece is shaken to remove water and placed in the stove with the other glassware to 

dry. 

b. Chemicals 

All reagents used for electrochemistry were of electrochemical grade and stored upon delivery in an 

argon atmosphere Glovebox (MBraun Labmaster, water and oxygen level below 0.1 ppm). Lithium 

perchlorate (battery grade, dry, 99.99% trace metals basis), silver nitrate (anhydrous, 99.999%), 

Pyridine (anhydrous, 99.8%, < 30 ppm water), 1-Methyl-2-pyrrolidinone (anhydrous, 99.5%, < 50 ppm 

water) were purchased from Sigma Aldrich. Dimethyl sulfoxide (anhydrous, 99.8%, packaged under 

argon in re-sealable ChemSeal bottles, < 100 ppm water), was purchased either from Alfa Aesar, or 

from Sigma Aldrich (anhydrous grade < 0.005% water). Metallic lithium was purchased from Sigma 

Aldrich (99.9% trace metal basis, W 0.38mm x 23 mm). N,N′-

Bis(salicylidene)ethylenediaminocobalt(II) (99%) was purchased from Sigma Aldrich. 5,10,15,20-

Tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) < 96.0% (HPLC) was purchased from Sigma 

Aldrich. Molecular sieves 3A (beads 2 mm) were purchased from Sigma Aldrich and use to further dry 

the solvents.  

The Dimethyl Sulfoxide dried for at least two days on molecular sieves 3A, and subsequently filtered, 

in order to have water levels (measured by Karl Fisher titrations) as low as possible (below 80 ppm 

after the mounting of the cell). 
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c. Three-electrodes setup 

The cell is homemade, out of Pyrex glass, with airtight ends (ensured either by a silicone septum or 

seal rings/ SVL caps). The working electrode consist of a glassy-carbon disk (Ø 5 mm), polished with 

diamond paste before each experiment (1 µm) and sonicated in ethanol for 15 minutes to remove 

the traces of the diamond paste. The counter electrode consists of high surface area platinum, which 

is heated with a butane blowtorch to remove any trace of organic element on the platinum surface 

prior to the experiment (by pyrocatalysis). Concerning the reference electrode, the Ag/Ag+ couple 

was chosen over lithium, owing to its better stability. Silver nitrate was used at either 2 or 20 mM 

concentration, depending on the experiment (specified in the text), with a supporting salt (with the 

same concentration and nature than in the bulk electrolyte). Concerning the solvents used, a blend 

of 1:3 of Pyridine: DMSO was used, as pyridine has a special ability to solvate silver ions [1]. The 

reference compartment is separated from the bulk by a P5 glass frit to prevent (or limit as much as 

possible) transfer  between the bulk and the reference electrolytes during the experiment. 

The cell is prepared and mounted in Ar-glovebox (MBraun Labmaster Sp), with water and oxygen 

levels below 0.1 ppm. For the experiment, as no oxygen can be flushed in the glovebox (for reactivity 

issues), the cell is placed outside of the glovebox, in a home-made box, in which Argon (5.0) is 

flushed continuously. This box is made out of polycarbonate and is airtight, and can be connected to 

the potentiostat, thanks to proper connectors. This box is also equipped with gas connections, that 

allow to purge the cell either with argon (5.0) or oxygen (5.0). The purging is ensured by needles, 

through the cell septum. In order to prevent any transfer to the ambient atmosphere (thus water 

contamination), the outlet of the box and of the cell are connected to homemade bubblers, filled 

with hydrophobic oil. 

d. Differential Electrochemical Mass Spectrometry 

In this technique, a specific three-electrode setup is used. It is designed so that any gas, consumed or 

produced at the working electrode can be detected operando. It is thus of very high interest for the 

study of the Oxygen Reduction Reaction and Oxygen Evolution Reaction (ORR and OER). 

i. Working Electrode preparation 

Ink preparation was performed by mixing 20 mg of active material, with 1 milliliter of NMP/binder 

solution (the amount of binder was fixed as 80:20 of active material: binder ratio fulfilled for a dry 

electrode). The binder used in this study was Kynar HSV 900 (Arkema). The ink was dispersed by 

sonication for at least 1 h prior usage. A calibrated drop of 20 µL of this ink was then deposited on a 6 

mm diameter Panex 30 carbon cloth electrode (Zoltek). This electrode was then left to dry in a 60°C 
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stove for 6 hours and placed under dynamic vacuum overnight to ensure that neither NMP nor water 

was left on the carbon cloth before the experiment. 

ii. Cell setup 

As for the three-electrode setup, the DEMS cell is airtight, thanks to septum and seal rings/SVL caps. 

The working electrode consists of a glassy-carbon rod collector, pushing onto the carbon cloth (on 

which deposition of ink was made, or used pristine). The counter electrode consisted of a glassy 

carbon slab, and the same reference couple than the conventional three-electrode setup was used. 

In order to ensure that only gases could go into the DEMS (no solvent, which would destroy the 

turbomolecular pumps that ensure the ballistic trajectory of the gases to the MS quadrupole), two 

PTFE membranes (0.02 µm pore size, ca. 30 µm thick) are placed on the stainless steel frit. For a 

better understanding, a drawing of the DEMS cell is presented in Figure II.1. 

 

Figure II. 1: Scheme of the DEMS spectro-electrochemical cell  

e. Full cell experiment 

The full cell working electrode preparation is following the exact same procedure than for the 

preparation of the DEMS working electrode preparation (d.i). The full cell setup is a two-electrode 

airtight setup. The positive electrode consists of a glassy carbon disk, pressed onto the carbon cloth 

(used pristine or with an active material deposit). The separator used is Celgard K2045 (Polyethylene, 

20 µm thick with an average pore size of 50 nm and porosity of 47%). The negative electrode was 
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metallic lithium, laminated onto a copper mesh, connected to a copper wire (new copper 

components are used for each new cell). The electrolyte consists of 1 M LiClO4 DMSO. If an additive is 

added to the electrolyte, it will be specified in the text (see chapter six). For the full cell testing, the 

flushing of oxygen is conducted directly onto the working electrode, thanks to gas channels, parallel 

to the glassy-carbon rod. As for the three-electrode setup, the cell is placed in the Ar-Flushed box, 

and the outlets are connected to the hydrophobic oil filled bubblers. 

f. Electrochemical testing 

The electrochemical tests were conducted, thanks to a Bio-logic Potentiostat (Biologic SAS, models 

SP-300 or VMP-2), using EC-lab® software. For the DEMS and three electrodes cells characterizations, 

conventional electrochemical techniques such as cyclic voltammetry, chronoamperometry, and 

linear scan voltammetry were used. For the full cell, the technique used was a GCPL (galvanostatic 

cycling with potential limitations), which consisted of a discharge at a constant current, followed by 

the charging procedure. The charging procedure was selected as a classical CC-CV technique (a 

charging at a constant current, followed by a constant voltage step, at the cutoff potential). All the 

measurements were iR-corrected in dynamic mode (using the ZIR procedure in EC-Lab, with 85% iR 

compensation). 

 

II. Characterization techniques 

 

Different characterization techniques were used in the present thesis. Most of them were ex situ, but 

one was operando. 

a. Differential Electrochemical Mass Spectrometry 

1 

The Differential Electrochemical Mass spectrometry (DEMS) experiments were carried out, using the 

Pfeiffer Vacuum PrismaPlus mass spectrometer (MS), connected to the biologic SP-300 potentiostat 

and the acquisition of the data was performed thanks to Quadera®. According to Baltruschat [2], 

DEMS allow to detect any gases produced or consumed on the working electrode surface, while 

conducting the experiment, placing this technique as a powerful operando technique. Thanks to this 

setup, various electrocatalysts could be tested for one application (for example, the Hydrogen 

Oxidation Reaction), and differences in desorption mechanisms could be spotted, by simply 

comparing the electrochemical signal, to the MS signal.  
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Various cell designs can be used for the study of thin layers or sputtering [2], but in every case, the 

main part of the installation remains. As a matter of fact, it is mandatory to isolate the electrolyte 

compartment from the mass spectrometer (which operates in high vacuum conditions). As such, two 

PTFE membranes with pores in the range of 20 nm are used [2], which have proven to effectively 

prevent liquid electrolyte crossing to the mass spectrometer (some vapor can cross them, though). 

Those two membranes are supported onto a stainless steel frit, mechanically separating the liquid 

and gas (vacuum) compartments. The vacuum system consists of a rotary pump, associated to two 

turbomolecular pumps (required for a MS vacuum), enabling a cascade of vacuum from the 

electrochemical cell to the MS quadrupole [2]. 

The MS principle allow to detect species at the spectrometer. The spectrometer detect compounds 

in respect to their mass to charge ratio [3, 4] (m/z), the mass here being the molar one. When a 

compound arrives at the spectrometer, in undergoes an electron ionization (equation II.1) 

M+ e� → M⦁� + 2e�        (II.1) 

During this process, the M molecule undergoes fragmentations (thus breakage in the bounds). Two 

paths can occur, the first being the breakage of M into a radical and an ion with an even number of 

electrons. The second is the breakage of M into a molecule (no charge) and a new radical cation. As a 

consequence, each primary product undergoes fragmentation and so on (with different m/z that are 

characteristic of the incoming molecule M). All these ions are separately detected in the mass 

spectrometer, and the relative abundance versus the m/z is the signature of one compound.  

For each compound (for instance oxygen), the m/z corresponding to its molar mass (32 g/mol for 

oxygen) is always detected (thus for the O2
⦁+ specie), which render its detection very easy by the 

mass spectrometer. However it is mandatory to ensure that those fragments correspond only to the 

species at stake. In our case, the detection of either carbon dioxide or oxygen in Dimethyl Sulfoxide is 

aimed. It is thus mandatory to choose two m/z that can represent only the specie we want to detect. 

The mass spectrum of Di-oxygen, Carbon Dioxide and Dimethyl Sulfoxide are subsequently depicted 

in Figures II.2-4. 
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Figure II. 2 : Mass spectrum of Di-oxygen. 

 

Figure II. 3 : mass spectrum of Carbon Dioxide 
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Figure II. 4: mass spectrum of dimethyl sulfoxide 

From Figures II.2 and II.3 it appears clearly that the m/z of 32 and 44 corresponds respectively (and 

only) to oxygen and carbon dioxide. Thus it will be the two “signature” m/z for these compounds. 

Concerning the Dimethyl Sulfoxide, various m/z can be detected, with a most intense m/z at 63. 

Dimethyl sulfoxide oxidation at high potential leads to the formation of dimethyl sulfone [5], which is 

a non-volatile, and insoluble specie (thus not detectable by DEMS as it will not cross the PTFE 

membranes). However, the authors of Ref [5] also speculate to the possible degradation of dimethyl 

sulfoxide into sulfur dioxide and methane, which are gaseous. 

The mass spectrum of those compounds are depicted in Figures II.5 and II.6. 

 

Figure II. 5 : mass spectrum of sulfur dioxide 
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Figure II. 6 : mass spectrum methane 

The more intense contributions for the sulfur dioxide are detected at a m/z of 48 and 64, whereas, 

the more intense signal can be registered at an m/z of 16 for methane. In this scope m/z values of 15, 

16, 48 and 64 will also be selected in the program for their detection. In order to determine if the 

decomposition products are indeed detected by DEMS, linear scan voltammetries in Ar-purged 

electrolyte (0.2 M LiClO4 in DMSO), with Panex 30 carbon cloth as the working electrode were 

conducted. The results in reduction (from OCV to -1.5 V vs. Ref) is presented on Figure II.7, and 

results in oxidation (from OCV to 1 V vs. Ref) is presented on Figure II.8. 

 

Figure II. 7: Differential Electrochemical Mass spectrometry experiment, from the Open circuit voltage to -1.5 V vs. Ref. 

primary Y-axis: Ion current of gases detected at the SEM; Secondary Y-axis: Electrochemical current. Scan rate of the LSV: 2 

mV s
-1

. 



52 

 

 

Figure II. 8: Differential Electrochemical Mass spectrometry experiment, from the Open circuit voltage to 1 V vs. Ref. primary 

Y-axis: Ion current of gases detected at the SEM; Secondary Y-axis: Electrochemical current. Scan rate of the LSV: 2 mV s
-1

. 

 

The results of Figures II.7 and II.8 support the theory of Krtil et al [5], as no m/z fragments of SO2 

(m/z= 48 and 64) and of CH4 (m/z=16) are detected when the solvents oxidation and reduction occur. 

Thus, the decomposition product of DMSO at high potential is probably dimethyl sulfone, and as it is 

solid, it will never cross the PTFE membrane (thus, it is not detectable by DEMS). Also, no oxygen 

(m/z=32) nor CO2 (m/z=44) are detected in Ar-purged media. The absence of detection of oxygen is 

normal as the electrolyte is Ar-purged (thus no ORR or OER can be observed), and the absence of CO2 

detection shows that the Panex 30 is resistant to corrosion at the “high potential” values experienced 

here (in the absence of O2 and ORR products). 

 

b. Raman Spectroscopy 

Raman spectroscopy lies on a similar principle than IR spectroscopy [6]. A monochromatic light 

(LASER) irradiates the sample, the latter producing reflected, adsorbed and scattered radiations 

(which are called Raman scatter). Plotting the scattered radiations (intensity) versus the Raman shift 

(which is the difference between the frequency of the analysis and the one of the incident radiation, 

in cm-1) allows a non-destructive analysis of the sample, and gives insight on the molecular 

composition of the sample (as very specific vibrational modes occurs for a given bound, for instance, 

O-O bounds scattering occurs at very specific wavelength (between 845 and 900 cm-1)). 
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In our case, Raman spectroscopy was used to analyze the contributions of the D and G bands of 

carbon materials (between 1200 an 1800 cm-1), as various contribution, corresponding to either 

amorphous carbon, graphitic lattice, perfect graphitic lattice, or amorphous graphitic phase can be 

detected (and fitted) at very specific wavelengths [7–11]. 

The experiments were conducted ex situ, as the aim was to compare the differences between the 

pristine materials, versus the discharged one. The apparatus consisted of a Renishaw In-Via, working 

with an Ar-LASER (specific wavelength: 514 nm). The LASER power was set at 5 mW, and a 

transmission filter of 10% was used for the sample protection. The detector used on this device was a 

Peltier-cooled charge coupled device camera (CCD). The objective used for the analysis was a x 50 

ULWD. 

The samples were than fitted, thanks to LabSpec 4.18 (Horiba company), to conduct a fine analysis of 

the peaks, and were re-drawn using Origin (Origin lab®). 

 

c. Field-Emission Gun-Scanning Electron Microscopy (FEG-SEM) 

Scanning Electron Microscopy (SEM), in contrast with optical microscopy, uses electrons (which 

possess wavenumbers below the one of visible light), to carry analysis [12, 13]. In this scope, 

electrons are emitted by an electron gun, in strong vacuum conditions, and are directed to the 

sample. When those electrons encounters the sample, secondary electrons of lower kinetic energies 

are emitted. Those electrons poorly penetrate in the sample and can be deflected to the secondary 

electrons detectors with low potential differences (about 200-400 V): therefore, they give an 

information on the topography (morphology) of the surface (as the intensity of the signal depends 

both on the nature and the morphology of the substrate where the electron gun focus).  

Another information can be obtained with backscattered electrons, as in contrast with the secondary 

electrons, they penetrate deeper in the sample, and are elastically backscattered, e.g. in the 

direction opposite to the incoming electrons. The rate of emission depends strongly on the atomic 

number: when the latter increases, so does the former. Thanks to this property, it is possible to 

obtain images with a chemical contrast and thus spot on the image zones where heavier elements 

are present versus zones where lighter elements are present (for instance a deposit of Niobium or 

Copper onto carbon).  

In our case, the FEG-SEM was a Zeiss Ultra 55, specifically designed to enhance the image resolution 

at low beam energies (below 5 kV), thus limiting greatly the brightness of the image (as the lower the 

beam energy, the lower the amount of backscattered electrons detected). The detector used for the 
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morphological analysis was the Inlens (a detector which is placed parallel to the electron gun, in the 

column), and were performed at 3 kV (at this energy, a very low amount of backscattered electrons 

will be detected), thus enhancing the quality of the morphological surface analysis (for this voltage, 

the brightness is mostly due to the morphological differences on the surface, for InLens detection of 

secondary electrons). 

 

d. X-Ray Energy Dispersive Spectrometer (X-EDS) 

The X-EDS experiments were conducted on the FEG-SEM Zeiss Ultra 55, using Bruker Esprit 

2.1®software, with a resolution of 123 eV. The X-EDS spectra were then redrawn using Origin. X-EDS 

analysis allows the detection and quantification of specific elements [12, 14] (heavier than carbon), 

thanks to characteristics X-rays emitted by the sample. When the electron beam encounters the 

sample, various electrons and electromagnetic waves are emitted from the sample (including X-rays). 

Those X-rays are emitted following the following scheme (simplified here): when the electron beam 

encounters an electron from the inner (for example K shell) shell of the element, a vacant position is 

created. An electron from the outer shell (here L) comes into the vacant position, and it emits an X-

ray, with an energy characteristic of the difference of energy between the outer shell and the inner 

shell, for one element. All elements (that can be detected by X-EDS) possess a K shell. Heavier 

elements (for Z > 5) possess K and L shell, and elements heavier than sodium (Z > 11) possess M 

shells. Thus, using a specific detector, it is possible to measure the energy of those characteristic X-

rays, and to determine the elemental composition of the sample. It must be noted, however, that the 

precise chemistry of the sample cannot be determined by SEM X-EDS. For instance, if a sample 

contains niobium oxide, both niobium and oxygen will be detected by X-EDS, but the nature of the 

oxide cannot be detected (for example if it is NbO2 or Nb2O5…etc.). Besides, the analysis can only be 

considered quantitative for smooth and homogeneous surfaces, and with dedicated references 

(which is not at all the case herein); as such, the present X-EDS analyzes will only be considered semi-

quantitative. 

 

e. UV-Visible Spectrophotometry 

The principle of UV-Visible spectroscopy relies on the absorption of ultraviolet or visible radiations, 

by the analyzed sample [15]. This absorption can be detected in a large domain of wavelength (from 

190 to 800 nm), which corresponds to the region of ultraviolet radiation (190 to 400 nm) and to the 

visible radiation (400 to 800 nm). The energy of the UV-Visible radiation is of about 6.5 to 1.5 eV, 
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which corresponds to energies of electronic transitions of molecules. Most molecules are in their 

fundamental vibrational states at ambient temperature [15], thus several rotations state can be 

occupied for one molecule, according to the law of Boltzmann. Those rotations states are absorbing 

at very specific wavelength and are characteristic of a molecule. The setup of a UV-Visible 

spectrometer is fairly simple. Firstly, the sample to be analyzed is placed in a cell (usually in quartz as 

no radiation is absorbed by the cell from 800 to 200 nm), and a radiation of a specific wavelength 

(and intensity I0) is directed to the sample. When the radiation goes through the sample, it can 

absorb radiation (if a vibration mode occurs at this wavelength), which decreases the intensity of the 

incoming radiation. When the radiation passed all the way through the cell, it is analyzed by an 

electronic detector. The absorbance of the sample can be determined at this wavelength as: A = log 

(I0/I), with I0, the intensity of the incident radiation, and I, the intensity detected by the detector. If 

the wavelength of the source is changed, the absorbance will change, and the UV-Visible spectra can 

be obtained, by plotting the Absorbance, versus the wavelength. It must be noted that the UV-Visible 

spectrum of any molecule is dependent on the solvent in which it is dissolved, as it interacts strongly 

with it. For this purpose, the UV-Visible spectrophotometry is rather used for a quantitative analysis 

(thanks to the Beer-Lamber law, where the Absorbance at a peak depends on the concentration of 

the sample Ci, the molar attenuation coefficient ε, and the length path of the cell: A = ε.l.Ci) than for a 

qualitative analysis, as it is highly difficult to attribute a peak, to a vibration mode of the sample to 

analyses. Nevertheless, the impact of a reactant on a sample can be observed by UV-visible 

spectrometry (if the same solvent is used), as changes in the spectra might occur, which will indicate 

either a bounding or change in the chemistry of the sample. The spectrometer used for the 

experiments was a Varian Cary 50®, with 1 cm wide quartz cells filled with the sample in an Ar-filled 

glovebox and isolated from the ambient atmosphere by PTFE caps. The software used for the data 

acquisition was Cary WinUv®. The data were then extracted and redrawn in Origin. 

 

f. X-ray Photoelectron Spectroscopy (XPS) 

 

The Spectrometer used for these analysis was a XR3E2 (vacuum generator), using a Mg Kα (1253.6 

eV) X-ray source. The power used was 300 W (15 kV, 20 mA), and the kinetic energy of the 

photoelectrons was measured thanks to a hemispherical electron analyzer. The experiments were 

conducted with strict conditions with very low pressure (below 10-9/10-10 mbar), and performed with 

0.1 eV increments, and 50 ms dwelling times. The charging effect was corrected thanks to the C1s 

peak. In the literature, the C 1s peak of C-H species (contamination carbon) is located at 285 eV [16]. 
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Thus all the XPS spectra are corrected thanks to the shift value between the experimental value of 

the C 1s, from 285 eV. This shift varies from one experiment, to one other. The software used for the 

fitting of the peaks was Thermo ScientificTM Avantage, and the spectra along with the fits were 

redrawn, using Origin®. 

Among the techniques that allow to analyses the composition of a sample, the XPS is one of the most 

reliable [17]. For this technique, mono-energetic photons (with an energy equals to hν, where h is 

the Planck constant and ν the frequency) are accelerated onto the sample to analyze. Photo-

electrons are produced from the sample and can be analyzed by the spectrometer. The emitted 

photoelectrons are characterized by their kinetic Energy (Ec) and their wave vector ħ.k (where ħ = 

h/2π and k = 2π/λ, λ being the wavenumber of the photoelectron). The direction of emission is not a 

key parameter, except for single crystals (which will not be the case in the present thesis). An XPS 

spectrum is usually the plot of the number of photoelectrons detected (N, in counts) versus the 

kinetic energy of the photo-electron detected (Ec). As a matter of fact, the binding energy (of the 

atom stroke by the photon) can be measured thanks (equation II.2): 

ℎν = �
� + �� +ϕ��         (II.2) 

With hν, the energy of the photon sent by the source, El
F, the binding energy of the bound stroke by 

the photon, Ec, the kinetic energy of the photoelectron emitted by the sample (measured) and φsp, 

the end work of the spectrometer (which is a constant known for each spectrometer).  

As such, the kinetic energy of the photoelectron emitted by the detector is directly proportional to 

the binding energy (as hν is known, it is the energy of the photon sent by the source, and φsp is a 

constant), which depend only on the nature of the bound (thus the species evolved in the bound, at 

their oxidation state). Thanks to this property, it is possible to observe peaks on XPS spectra of S, p, 

and d bands. Each elements possess a band more intense than the others, (for instance for niobium, 

the most intense band correspond to the 3d5/2 orbital and is located in the region of 202-211 eV) 

[16]. The presence of the element in the sample is confirmed by the presence of the other bands of 

the elements, in the spectrum, each being observed in a specific energy range (of 10 eV). As an 

illustration, again with niobium, the bands of the following transitions (with their kinetic energy in 

eV) are expected: 3s (467 eV), 3p1/2(376 eV), 3p3/2(361eV), and 3d3/2 (205eV), 3d5/2 (202 eV), 4s (56 

eV) and 4p1/2 (31 eV) [16]. 

It is the shift on the most intense band position that gives insight into the nature of the chemical 

bound involved: as an example for the 3d5/2, the positions expected for metallic niobium will be 202 

eV, niobium nitride : 204 eV, niobium monoxide : 204 eV, niobium pentoxide (Nb2O5) : 207.5 eV [16]. 

Of course, the information will be completed by the analysis of the shift of the atom, bound with the 
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metal (as such oxygen for oxides, or nitrogen for nitrides, etc.), in order to confirm the nature of the 

bound (for instance for O1s: metal oxides: in the range of 528-531 eV, hydroxides: in the range of 

531-532 eV, etc.). 

XPS experiments also allow the detection of Auger electrons, which contribute to the XPS spectrum 

as well as the other XPS peaks. These electrons allow their own spectroscopic method, that will not 

be discussed here (as it was not used). Parasites peaks [17] can also be detected on the XPS spectrum 

such as: 

- Satellites peaks due to the energy source: an X-ray source (or UV-Source) which non mono-

chromatic, emits small peaks, before the most intense peak of the sample. They will be denominated 

as “sat”. 

- Peaks due to the loss of energy: those peaks are observable after all the most intense peaks of each 

elements, comprised in the sample. They are usually small variations of the baseline on a range of 15-

20 eV. Those peaks will be denominated “Plasmon”, as they originate mostly from the excitement of 

Plasmon (quantified oscillation of plasma). 

- Satellites multi-electronic peaks: during the photo-ionization phenomenon, two electron processes 

have a certain probability to occur. This can be observed by the apparition of small satellites peaks, 

next to the most intense peak of each constituent of the sample, at lower kinetic energies.  

g. Ellipsometry 

 

The spectrometer used for these analysis an Accurion® nanofilm ep_3. The manipulations were 

conducted with a monochromatic light of 532 nm, in AOI mode (Angle Of Incidence), between 50 and 

80 degrees. The step used was of 5 degrees and the fittings were conducted with an n.k fixed model 

(n and k values fixed, with a value of 0 for k). 

Ellipsometry is a technique that allows the analysis of surface and thin films, based on the change on 

the light polarization, by reflection on a planar sample [18]. To simplify, a polarized light is directed to 

the sample; when it encounters the sample, it can be reflected (with the same angle to the substrate 

than the incident radiation, with however a change in the polarization of the light), or transmitted 

(change of the angle). The spectrometer analyses the intensity and the polarization of the reflected 

light and compares it to the light emitted. The physical parameters (thickness, optical density…) are 

calculated thanks to models and fitted to the experimental data. This method is widely used in the 

field of microelectronics for the measurement of thin layers [19], as it is a fast-non-destructive 

technique. However, the thickness measurements can only be conducted on homogeneous, highly 
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planar and conformal layers. If not, the values given by this method will be far from the actual value 

of the thickness of the deposit. 

h. X-ray Diffraction 

 

X-Ray Diffraction is a technique that allows the detection of crystalline material [20]. If a material is 

crystalline, it will diffract the X-Rays with clear peaks, which correspond to the "signature" of this 

material, in the crystalline form that it is analyzed (i.e. centered cubic, hexagonal...etc). The XRD 

pattern is obtained thanks to constructive interference, between the sample, and a monochromatic 

beam of X-Rays. Thus, a clear identification of a compound is feasible thanks to this non-destructive 

technique (if the sample is crystalline), and information such as the average crystallite size, strain and 

crystal defects can be obtained. 
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Chapter III. 

High Surface Area Carbon-based Materials for High 

Energy Li-O2 cathodes: Advantages and Drawbacks 

 

Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that 

we may fear less. – Marie Curie 
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As discussed in the previous chapter, the Li-O2 system is, ideally, among the bests technologies to 

solve the energy issues of our modern society, e.g. in the fields of transportation and large-scale 

energy storage. However, the advent of a practical Li-O2 secondary system remains a theoretical 

promise, as it was proven that those systems are impeded by a number of practical barriers, which 

still have to be overcome. In order to store as much energy as possible, the cathode has to be made 

of high surface area and electron-conducting materials. At present, the “best” such materials that 

present sufficiently low cost and high abundance are carbon based (nanotubes, blacks, graphene, 

etc.). The validation of these materials, and by extension of low costs electrocatalysts based on them 

(not belonging to Pt-group metals, PGM), for Li-O2 systems implies that they are active and stable in 

the adequate experimental conditions; the present chapter will provide such data for a portfolio of 

such materials. 

I. Materials 
 

 Four materials are studied in this chapter. Three are metal organic frameworks (MOF), and 

will be labeled MOF, Phen-MOF and Basolite. The MOF and Phen-MOF materials are produced by the 

Northeastern University Center for Renewable Energy Technology (Boston, MA), and their recipes of 

preparation are confidential. The Basolite material refers to the ZIF-8, produced by BASF. The three 

materials were not used bare; they underwent the same procedure of pyrolysis prior usage in 

electrochemistry. For better clarity the MOF, Phen-MOF and Basolite labels refers to those materials 

that underwent pyrolysis. The fourth material is the carbon cloth (Zoltek PX 30® [1], a high-

temperature carbonized cloth, ca. 406 µm thick, hereafter denoted by Panex 30), used either bare or 

as the conductive substrate on which the high surface area materials are deposited (for the full cells 

and DEMS studies). 

The materials prepared and pyrolyzed by the Northeastern University Center for Renewable Energy 

technology (NUCRET) of Northeastern University (Boston, Massachusetts, United-States) were used 

as received (no transformation of the active material prior to the ink and electrodes processing). 

a. Morphologies  
 

SEM images of the carbon cloth and of the three materials at a macroscopic state are presented on 

Figure III.1, and at the micro-scale (10 kX, 3 kV) on Figure III.2. Because the materials are of different 

morphologies, the low-resolution images of Figure III.1 were not necessarily acquired at the same 
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magnifications and the same acceleration voltage (see legend below each micrograph), this matter of 

fact not preventing the materials’ comparison. 

 

Figure III. 1: Scanning Electron Micrographs, taken at an accelerating voltage of 3 kV (Panex, MOF and Phen-MOF), or of 

15 kV (Basolite) with a 500 X (Panex 30, Basolite and MOF) or 200 X (Phen-MOF) magnification. A-Panex 30 carbon 

Fibers.B- Basolite ZIF-8. C- MOF. D-Phen-MOF 

Figure III.1-A displays the clean carbon fibers of the Panex 30 carbon cloth. For the Basolite (Figure 

III.1-B), some large particles can be observed (maximum size in one direction: 30 µm), but the 

essential of the material appear to be rather smaller particles (that most-likely constitute the larger 

aggregates). The MOF material (Figure III.1-C) is constituted of very large particles (greater than 125 

µm in the longest direction), with smaller particles (about 10 µm), around the large ones. The Phen-

MOF (Figure III.1-D), also bares very large particles (greater than 100 µm in the longest direction), 

and big particles (from about 50 µm). Overall, the particles appear round-like (for the Basolite), or 

with very sharp edges (for the MOF and Phen-MOF). 

When the magnification is increased, it can be observed on the one hand that the Panex 30 surface 

(Figure III.2-A) area is smooth, with no or very little porosities (at that scale). On the other hand, with 

the same magnification, the Basolite and MOF materials (Figure III.2-B & C) have a similar granular 
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morphology: the large grains observed Figure III.1-B & C are indeed agglomerates of smaller 

nanoparticles. The Phen-MOF material has a different structure: its surface does not seem to be 

composed of nanoparticles, but rather of big non-spherical particles, roughened with nano-holes 

(Figure III.D). To summarize, unlike the Panex 30 cloth, the MOF, Phen-MOF and Basolite materials 

seem to be of high-surface area. 

 

Figure III. 2: Scanning Electron Microscopy Pictures, taken at 3 kV, with a 10 kX magnification. A-Panex 30 carbon Fibers. 

B- Basolite ZIF-8. C- MOF. D-Phen-MOF 

b. Surface areas 

BET measurements of the three materials are presented in Table III.1. They confirm that Panex 30 is 

non-porous, unlike the three other materials. The three high-surface area materials have more or 

less the same average pore width; however, the Basolite and MOF are outclassing the Phen-MOF in 

terms of surface area. Thus, the best materials (in term of capacity) are expected to be Basolite and 

MOF, as more active surface area is expected (if following the  conclusions of Abraham [2]), even if 

the BET area does not always scales with the electrochemically-accessible surface area [3, 4]. 
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Table III. 1: BET measurements of the three high surface area materials. * The data for Panex 30 originates from the 

provider data sheet. 

Label Surface area (BET), m² g-1 Adsorption average pore width, Å 

Panex 30* ca. 0.01   

Basolite 1590 21.5 

MOF 1630 22.5 

Phen-MOF 959 19.9 

 

c. Raman Spectroscopy 

Raman spectroscopy of the pristine carbon cloth and of the three high surface area materials was 

also performed (using a LASER wavelength of λ = 514 nm), and four representative spectra are 

presented in Figure III.3. 

 

Figure III. 3: Raman spectra of the pristine materials, conducted with a LASER beam of 514 nm in the D and G bands 

region (from 1200 to 1800 cm-1). 

For each material, five Raman analyses were averaged, so an incertitude on the peaks position, 

height and width could be calculated. As presented in by Castanheira [5], several contributions of 

carbons chemistries can be  recorded on a Raman analyse, the vibration mode correspondence being 
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presented in Table III.2. Examples of fits for pristine materials, in Labspec 4.18, are presented in 

Annexes 1. 

Table III. 2: Vibration modes observed on high surface area carbon supports with Raman spectroscopy, as presented by 

Castanheira [5], and others [6–9] 

Band Raman Shift (cm-1) Vibration mode 

G ca. 1585 Ideal graphitic lattice [6, 10] 

D1 ca. 1350 Disordered graphitic lattice - graphene layer edge [6, 10] 

D2 ca. 1610 Disordered graphitic lattice - surface graphene layer [5, 6] 

D3 ca. 1495 Amorphous carbon [6, 10] 

D3’ ca. 1550 Amorphous graphitic phase [7–9] 

D4 ca. 1190 Polyenes, ionic impurities [6, 10] 

 

As seen on figure III.3, no peaks are observed around 1200 cm-1, thus no polyene or ionic impurities 

are comprised in the materials. The corresponding peaks for the materials, with the incertitude 

(deviance) on the average peak value for each contribution for the materials are summarized in Table 

III.3. 

Table III. 3: Vibration mode position for the four materials. The average and deviance are calculated on at least three 

points (the aberrant values are eliminated) 

 
Material 

Bands Panex 30 Basolite MOF Phen-MOF 

D1 position (cm-1) 1354.8 ± 1.4 1351.1 ± 1.0 1353.5 ±  1.7 1355.1 ±  1.4 

G position (cm-1) 1584.5 ± 3.6 1591.2 ± 0.4 1590.2 ± 4.9 1586.9 ± 1.0 

D2 position (cm-1) 1610.5 ± 5.6 1614.1 ± 0.8 1615.4 ± 3.2 1614.0 ± 0.6 

D3 position (cm-1) no peak no peak no peak no peak 

D3’ position (cm-1) no peak 1546.7 ± 0.3 1543.5± 4.1 1538.8± 2.2 

 

The peak of amorphous carbon (D3) is not observable in any of the present samples, but a broad 

Gaussian peak can be observed in the 1540-1550 cm-1 region. The latter corresponds to amorphous 

graphitic domains (D3’). In order to ensure the presence of this phase in the samples, the area of the 

peaks is also monitored and presented in Table III.4, along with the crystallite size (La) of the three 

high surface area materials (Basolite, MOF and PhenMOF), determined by the Knight and White 

Formula [11] (equation III.1). 

𝐿a(𝑛𝑚) = 4.4 𝑥 (
𝐼D1

𝐼G
⁄ )−1         (III.1) 
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Table III. 4: Area of the vibration modes contribution and crystallite size calculation (equation III.1) 

 
Material 

Bands Panex 30 Basolite MOF Phen-MOF 

D1 area (1.8 ± 0.5) 105 (9.1 ± 0.6) 105 (1.0 ± 0.3) 106 (7.6 ± 1.5) 105 

G area (9.0 ± 3.7) 104 (2.2 ± 0.3) 105 (2.5 ± 0.7) 105 (1.7 ± 0.4) 105 

D2 area (7.7 ± 3.7) 105 (2.1± 0.2) 105 (2.3 ± 0.9) 105 (2.0 ± 0.3) 105 

D3 area 0 (2.3 ± 0.2) 105 (2.4 ± 0.5) 105 (1.8 ± 0.6) 105 

Crystallite size (La, nm) 2.21 ± 0.58  1.08 ± 0.06  1.06 ± 0.07  0.96 ± 0.06  

 

From a qualitative view-point, computing the results of Table III.3 and III.4 enables to conclude on 

several points. Firstly, the Panex 30 carbon cloth is completely graphitized, with no amorphous 

graphitic phase (D3’) detected. Secondly, the high surface area materials all comprise amorphous 

graphitized phase (D3’) in a non-negligible proportion, as the area of the corresponding peak is of the 

same order of magnitude than the G and the D2 contributions. Thirdly, for the four materials, the 

graphitic part is not ideal, and half of the area of the G band is attributed to ideal graphitic lattice (G), 

the other half to disordered graphitic lattice (disordered surface graphene layer - D2); this agrees 

with the fact that the D1 band (that account only to disordered graphitic lattice edges) is nearly 

perfectly fitted in the four cases. 

From a quantitative view-point, the application of the Knight and White formula to the crystallite size 

calculation showed that the three high surface area materials have nearly the same crystallite size (La 

= 1.0/1.1 nm), whereas the Panex 30 carbon support exhibits a twice larger crystallite size (La = 2.2 

nm), meaning a higher degree of graphitization than the three high surface area materials. 

 

II.  Electrochemical properties 
 

a. Half Cells 
 

The three high-surface area materials were tested in a three-electrode setup, using the same loading 

of catalysts (0.8 mg.cm-2) on the Panex 30 substrate; of course, Panex 30, which was also used bare, 

was not considered at the same “catalyst” loading. The binder used to prepare inks of the MOF, 

Phen-MOF and Basolite was Arkema Kynar HSV900®, and the weight percentage of active 

material/binder was 80:20. The ink was prepared by dissolving both the active material and the 

binder in NMP and left under sonication for 2 hours. It was found that the ink had better 
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homogeneity when it was heated up to the boiling point of the mixture (with a cap on the top to 

prevent NMP evaporation), heavily shacked, and deposited right away after this step. The 

electrochemical characteristic of electrodes prepared in these manners, as tested in three-electrode 

setup in the DEMS cell, are presented in Figure III.4. 

 

Figure III. 4: Voltamperogram obtained for the three catalyst materials in an O2-purged 0.2 M LiClO4 electrolyte. The 

voltamperogram of the bare Panex 30 substrate is also given for comparison. Scan rate at 5 mV s-1, KF below 100 ppm 

before the start of the experiment. 

As explained above, the binder used for this experiment was PVDF. However, as presented in 

Chapter I, this polymer is unstable toward ORR discharge product and in prone to in situ water 

production during the experiment [12]. As detailed in this publication, the only stable polymer is 

polyethylene, which is very difficult to process in an ink, and often requires using super solvent, at 

the boiling point, to dissolve [13, 14]. This procedure was tried, with high molecular weight 

polyethylene, and from the author’s experience, it was found very difficult to process an ink: as soon 

the active material was added to the polyethylene/toluene solution, the active materials did instantly 

precipitate with the polyethylene, ruining any possibility to deposit a correct thin layer of catalyst at 

the Panex 30 substrate. Thus, for the experiment recorded in Figure III.4, even though the cell was 

mounted dry (water content usually around 80 ppm at the beginning of the experiment), by the end 
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of the experiment, the water content could reach values as high as 800 ppm after electrochemistry, 

due to the decomposition of the PVDF [12]. 

Considering the performances, it can be seen on Figure III.4, that the ORR proceeds roughly at the 

same potential for the four materials (around -0.5 V vs. Ref). However, as the surface areas differs a 

lot from one material to one other, the ORR peak and double layer current densities exhibit different 

values. It seems at first sight, that the onset of ORR is sifted more positive when the BET area (see 

Table III.1) increases; nevertheless, this is only a rough estimate: the MOF and Basolite have almost 

the same surface area, and at the same loading the Basolite material shows greater ORR/OER and 

double layer currents, confirming that the BET surface area does not necessarily scales with the 

electrochemical active surface area [3, 4]. Also, compared to Panex 30, MOF and Phen-MOF, the 

Basolite material seems to enhance the OER, as an oxidation peak can be observed as low as -0.5 V 

vs. Ref. In order to truly assess if this peak is OER related, operando DEMS must be conducted. 

 

b. Full cells 
 

Inks of these materials were then prepared in NMP with a 80:20 ratio of active materials (per weight) 

versus binder (Kynar HSV 900), in N-Methyl-2-pyrrolidone, to perform full cell tests and complete 

these materials’ characterizations. The experiments were conducted in DMSO electrolyte (DMSO: 

anhydrous grade, either from Sigma Aldrich or Alfa Aesar, stored in Ar Glovebox) and dried on 3 Å 

molecular sieves (Beads, Sigma Aldrich), with LiClO4 (1 M) as the supporting salt (battery grade, 

Sigma Aldrich). The loadings used in those full cells were the same for the three materials (Basolite, 

MOF and Phen-MOF) and was chosen at 0.795 mg of active material per cm² of Panex 30 carbon 

cloth (geometrical area). Once the ink deposition was made, the electrodes were left to dry at 60°C 

overnight and placed under dynamic vacuum for 24 hours prior to be processed in the full cell. A bare 

Panex 30 cloth was also tested as benchmark. As described in section II.a, polyvindylidene fluoride is 

not stable toward non-aqueous ORR products [12], but it had to be used anyway, in order to be able 

control efficiently the loading of active material and the ink formulation/processing. However, in 

order to prevent further water production by polymer-decomposition, Celgard K2045 was used as 

the separator, as it is only composed of polyethylene (this material being highly stable toward non-

aqueous ORR products). The negative electrode consisted of metallic lithium (Sigma Aldrich, ribbon, 

thickness × W 0.38 mm × 23 mm, 99.9% trace metals basis), laminated on a copper grid, connected 

to a copper wire. The cell was designed so that oxygen was flushed directly onto the cathode 

continuously, with airtight inlet and outlet (ensured by a silicon septum). Prior to launching the cell, 
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oxygen was flushed for at least 1 hour in the cell, and the cell was placed in an antechamber (glove-

box like) and flushed continuously with argon to prevent/limit water contamination from ambient 

atmosphere. The Ar-flushing of the antechamber was maintained during the electrochemical 

procedure, as described below. 

The charge and discharge currents were chosen to be of the same value (0.05 mA) in the four cases, 

corresponding to a relatively high charge/discharge rate (0.125 A g -1, or 0.1 mA cm-2 geometrical). 

The charging procedure was designed as a CC-CV charge (Constant Current followed by a Constant 

Voltage). In order to limit carbon oxidation (which occurred above 0.5 V vs. Ref (i.e. 4.17 V vs. Li/Li+) 

for the three materials (Basolite, MOF and Phen-MOF), as detected by DEMS), the cut-off voltage was 

chosen at 4.2 V. The CV step time was limited at 20 hours with a cut-off current below 5 µA. The 

Corresponding experiments are presented in Figure III.5. 

 

Figure III. 5: Full cell configuration; discharge at -50 µA, charge at 50 µA; cutoff voltage: 4.2 V, maintained for 20 hours, 

for Icharge > 5 µA. One shall note that these very time-consuming experiments were not reproduced in multiple replicates. 

The electrochemical performances were unattended: one would have expected that the discharge 

capacity would depend on the BET surface area, as described by Abraham et al. [2]. This was not 

experimentally observed, and the experimental discharge capacity followed a different pattern: 

Phen-MOF > MOF > Basolite >> Panex 30 (when for BET surface area: MOF > Basolite > Phen-MOF >> 
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Panex 30). The reason for this is probably linked to the presence of different reaction sites, which are 

responsible for the discharge onto the materials’ surface. The important data, extracted from Figure 

III.5 are presented in Table III.5. 

Table III. 5: Markers of the active materials efficiency in Li-O2 Full cell design 

Material Discharge Capacity (mAh) CC charge (mAh) CV charge (mAh) OER/ORR (%) 

Panex 30 0.827 0.018 0.076 11 

Basolite 1.391 0.556 0.432 71 

MOF 2.177 0.081 0.163 11 

Phen-MOF 2.714 0.022 0.199 8.2 

 

On the one hand, Table III.5 demonstrates that the OER processes are really sluggish for Panex 30, 

MOF and Phen-MOF, as depicted by their very low OER/ORR efficiencies (11%, 11% and 8.2%, 

respectively), indicating that most of the discharged products remained at the end of the charging 

process. This might indicate that for those materials, the charging shall be done at higher potential, 

probably because of larger lithium peroxide particles. The latter hypothesis is supported by the fact 

that most of the charged capacity, for those materials, is occurring during the CV step (therefore, at 

4.2 V). However, the cutoff potential cannot be raised up further as it was proven (and will be 

demonstrated hereafter) in the DEMS experiments, that CO2 evolves at potentials above 0.5 V vs. Ref 

(i.e. above 4.2 V vs. Li/Li+). On the other hand, the Basolite exhibits much better roundtrip efficiency, 

with an OER/ORR efficiency of 71%; more interesting, most of the OER occurring at low potential (CC 

step capacity of 40% of the overall capacity), even though a large part also proceeds at higher 

potential (about 31%). In order to better understand this huge difference of behavior between the 

four materials, post test SEM imaging was conducted on those full cell cathodes after discharge 

(Figures III.6, III.8, III.10 and III.12). Prior the SEM analyzes, the cathodes were rinsed several time 

with anhydrous acetonitrile, and dried under dynamic vacuum to efficiently remove the electrolyte 

(salt + DMSO) from their surfaces, a procedure which shall keep unchanged the presence of ORR 

products (as Li2O2 is non-soluble and stable in Acetonitrile [15, 16]). 
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Figure III. 6: SEM micrograph of the surface of a Panex 30 cathode surface at an accelerating voltage of 3.00 kV, 

magnification 20 kX. A- pristine. B-post test 

Figure III.6 shows that the initially smooth surface of Panex 30 (Figure III.6-A) is not observable 

anymore after discharge (Figure III.6-B). The discharge product morphology is very similar to what is 

observed in the literature for high depths of discharge (and high regimes of discharge) [17–19]. X-ray 

energy dispersive analyzes (XEDS) were also performed (Figure III.7): initially Panex 30 comprises only 

carbon (at least no other elements were observed, which may not rule out the presence of traces). 

However, the discharged Panex 30 cathode spectra (Figure III.7-B) show a predominant oxygen 

signal, which may be attributed to lithium peroxide (no CO2 evolution on Panex 30 was detected by 

DEMS, which suggests that major carbonate formation is unlikely for this material – see later); sulfur 

and chloride are also detected. Sulfur may originate from the decomposition products of dimethyl 

sulfoxide [20] and chloride from either traces of supporting salt (lithium perchlorate) or from its solid 

decomposition products [21]. Fluorine was not detected, which can be understood by the fact that 

no PVDF was included in Panex 30 cathodes. Carbon is detected in minority (versus oxygen) after the 

discharge, demonstrating that the layer of Li2O2 is "thick" (it hides the underlying carbon). 

 



73 
 

 

Figure III. 7: XEDS spectra of Pristine Panex 30 (black) and post test Panex 30 (red) cathodes 

An identical survey was performed for the used active layers of the high surface area materials. SEM 

micrographs for Basolite and related XEDS spectra are presented in Figures III.8 and III.9. 

 

Figure III. 8: SEM micrographs of the surface of a Basolite cathode surface at an accelerating voltage of 3.0 kV, 

magnification 20 kX .A- pristine. B-post test 
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Figure III. 9 : XEDS spectra of Pristine Basolite (black) and post test (red and green) Basolite cathodes 

 

Figure III.8 and III.9 reveal differences of behavior between the Basolite cathode and the Panex 30 

cathode. Firstly, the Basolite particles have the shape of nanocubes and those latter are still 

observable after discharge (Figure III.8-A); the surface of the Panex 30 fiber on which they were 

deposited are also observed before and after discharge. By comparison with the previous case 

(Panex 30 Alone), this indicates that lithium peroxide deposition does not occur preferentially on the 

Panex 30 carbon fiber: the presence of the high-surface area Basolite nanocubes enabled to favor the 

formation of the discharge product on the Basolite, not on the Panex 30. Nevertheless, remainings of 

the discharge product can also be observed in the spaces between the nanocubes, indicating that the 

lithium peroxide has the hability to be formed in the pores between the Basolite particles as well. In 

other words, the formation of discharge product seems to proceed on any cm² available. As adding 

high surface area Basolite to low surface area Panex 30 greatly increases the overall surface area 

available for the reaction, this enabled the discharge to last ca. twice longer than for Panex 30 (Table 

III.5). In addition, this extra surface area available did yield smaller size of the lithium peroxide 

particles upon discharge (compared to those observed on Panex 30), in agreement with the SEM 

micrographs of Figure III.8. This morphology of the Li2O2 particles naturally eases the transport of 
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electrons and enables their near-complete re-oxidation more efficiently (in contrast with Panex 30 

cathode alone), in line with the much better round-trip efficiency for Basolite than for Panex 30 

(Table III.5). The XEDS measurements go in line with the conclusions for Panex 30 alone: sulfur and 

chlorine are observed and  probably originate from the decomposition products of the lithium salt 

and solvent. However in this case, fluorine is also observed, because PVDF was included in the 

cathode formulation (the latter can be decomposed by lihium peroxide [21]). Finally, the trace 

elements comprised in the pristine electrode (i.e.: sodium, magnesium and selenium) are not 

observed anymore after discharge, which is not explained here. 

The SEM micrographs and XEDS spectra for the MOF are presented in Figures III.10 and III.11. 

 

Figure III. 10: SEM micrographs of the surface of a MOF cathode surface obtained at an acceleration voltage of 3.0 kV, 

and a magnification of 10 kX. A- pristine. B-post test 
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Figure III. 11: XEDS spectra of Pristine MOF (black) and post test (red, green and blue) MOF cathodes 

 

The comparison between the pristine MOF cathode and the discharge one (Figure III.10) are 

consistent with the behavior in the full cell design: most of the capacity (89 %) could not be re-

charged, and this can be accounted for by the fact that the surface of the initial material is not 

observed anymore on the post test micrograph (Figure III.10); instead, crystals of Li2O2 are fully 

covering the electrode surface (Figure III.10-B). The discharged product morphology also differs a lot 

from what was observed on Panex 30, where its shape resembled nano-flakes. Here, the discharged 

product has more a micro-rod shape. Also, concerning the pristine material, Zn was observed by 

XEDS (Figure III.11-A), as it is included in the recipe of the active material. This contribution 

disappeared on the discharged XEDS spectra, probably because the thickness of the discharged 

product (Li2O2) is too important to enable the detection of the elements of the active material itself 

(under the Li2O2 layer). As for the Basolite, fluorine, sulfur and chlorine are detected on the 

discharged cathode, probably for the same reason (fluorine from PVDF, sulfur from DMSO 

decomposition products and chlorine from the supporting salt contribution). In this case, the much 

larger surface area initially (in theory) available than for the Panex 30 alone did only play a favorable 

role in the discharge (much larger coulometry of discharge is monitored, Table III.5); it is likely that 
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the “superior” performance in discharge compared to the previous case of Basolite was a drawback 

for the recharge, the thickness of Li2O2 particles formed being too high to enable an efficient 

recharge, as accounted for the very modest roundtrip efficiency monitored (Table III.5). 

Finally, SEM micrographs and related XEDS spectra for Phen-MOF are presented in Figures III.12 and 

III.13. 

 

Figure III. 12: SEM micrograph of the surface of a Phen-MOF cathode surface, obtained at an accelerating voltage of 3.0 

kV and a magnification of 10 kX. A- pristine. B-post test 

 

Figure III. 13: XEDS spectra of Pristine Phen-MOF (black) and post test (red and green) Phen-MOF cathodes 
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As for the MOF material, the SEM micrographs show completely different surface morphologies for 

the pristine material versus the discharged one, indicating a very large coverage of the initial material 

by Li2O2 crystals upon discharge. The behavior of the Phen-MOF therefore parallels that of the MOF. 

This is consistent to the bad charging process (more than 90% of the discharged product is still on the 

material surface, Table III.5). Concerning the discharged product morphology, it has more similarities 

with what is observed on the Panex 30 discharged cathode (Figure III.6-B) than with the MOF (Figure 

III.10-B), with nano-flakes observable on the surface. Concerning the XEDS analysis, the conclusions 

are the same than for the MOF: the comprised Zn and Silicon are not observable anymore on the 

discharged cathode, probably because of the thick deposit onto the electrode surface.  

Also, in line with the observations on Panex 30, the deposit appear very thick, as the carbon is 

detected in minority for the post-test cathode versus the pristine one. Decomposition tracers of the 

solvent and binder are also observable onto the discharged cathode, as for the other materials. 

c. DEMS 
 

DEMS characterizations were performed on these materials to further assess their ORR/OER 

efficiency (via the monitoring of the O2 signal), but also their durability in operation (via the 

monitoring of CO2 evolution, the latter signing either electrolyte or electrode materials 

decomposition). 

The DEMS characterization of the materials followed a strict procedure: firstly, a stabilization of the 

DEMS signal is required (at least for one hour and a half), and during this time, no electrochemistry is 

performed (open circuit potential), and Ar is flushed continuously in the cell to remove oxygen traces 

as much as possible and to prevent/limit possible water contamination. Then, five cycles were 

recorded in the Ar-purged electrolyte, from -1.5 to 0.4 V vs. Ref, at 5 mV s-1. For the following step, 

the electrolyte was purged with purified oxygen (5.0) for at least 45 minutes and five other cycles 

were recorded in the same experimental conditions than for the Ar-purged experiments. Following 

this experiment, two cycles were monitored at the same scan rate, still in O2-saturated electrolyte, 

but by extending the upper reverse potential from 0.4 V vs. Ref to 0.7 V vs. Ref. 

The O2 DEMS signal of the first cycles (normal voltage window), associated to the electrochemical 

current is presented in Figure III.14. 
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Figure III. 14: O2 ion current (primary Y-axis) and faradic current (secondary Y-axis) monitored during the 

voltamperogram at 5 mV s-1 , in O2-saturated 0.2 M LiClO4 DMSO electrolyte. A-Panex 30. B-Basolite. C-MOF. D-Phen-

MOF 

Figure III.14 shows that the O2 ion current starts to decreases at ca. -0.25 V/-0.35 vs. Ref during the 

ORR sweep for Basolite, MOF and Phen-MOF, while a lower value is monitored for Panex 30 (around 

-0.5 V vs. Ref). Surprisingly, the ORR electrochemical onset potential values do not seem to change: 

for the four materials, it is monitored at -0.5 V vs. Ref, indicating a discrepancy between the O2 

consumption (monitored in DEMS) and the ORR (electrochemical) current. 

This premature O2 consumption on the three high surface area materials might be linked to a small 

“electrocatalytic” effect, that could consist of adsorption of oxygen molecule on the high surface area 

Basolite, MOF and Phen-MOF particles ca. 0.15 - 0.25 V above the real (quantitative) ORR. The author 

does not speculate whether such an effect would have been observed as well on high surface area 

carbon black, for instance. Interestingly, the small electrochemical oxidation peak, monitored at -0.5 

V vs. Ref during the OER for the Basolite does not match any detection of excess (released) O2 next to 

the electrode, which probably indicates as well the formation of adsorbates on the catalysts surface 

upon OER, from the oxidation of Li2O2 particles (the same applies to MOF and Phen-MOF, in a lesser 

extent). On the contrary for Panex 30, the O2 ion current perfectly matches the electrochemical 

signal (faradic current), which is a sign that no catalysis occurs for this material (at least owing to its 
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small surface area, but possibly also at all). These results suggest that upon ORR/OER on high surface 

area materials, oxygen adsorbs/desorbs at/from the surface and/or absorbs in the small pores; as a 

result, its consumption/release (and detection in DEMS) is favored/delayed in the earlier steps of 

ORR/OER, therefore explaining the delay between the faradic and mass spectrometry current values. 

One could however claim that the faradic oxidation current could be linked to another parasitic 

process than the OER, e.g. the corrosion of carbon (and related CO2 emission, as measured by 

McCloskey et al. [22, 23]). In order to test this hypothesis, the CO2 DEMS signal was also recorded 

(Figure III.15). 

 

Figure III. 15: CO2 ion current (primary Y-axis) and faradic current (secondary Y-axis) monitored during the first 

voltamperogram at 5 mV s-1, in O2-saturated 0.2 M LiClO4 DMSO electrolyte. A-Panex 30. B-Basolite. C-MOF. D-Phen-MOF 

Figure III. 15 clearly demonstrates that no CO2 evolution occurs within the tested potential window in 

O2-purged electrolyte, whatever the four materials tested (Panex 30, Basolite, MOF and Phen-MOF). 

This firstly demonstrates that the CO2 evolution published by McCloskey et al. [23] might be 

electrolyte-dependent, as they used carbonates, or ether-based solvents (DME or TEGDME), instead 

of DMSO in the present case. The author points out that this does not prove the complete stability of 

DMSO, as a recent paper demonstrated that the DMSO-decomposition products are either solid or 

non-volatile [20] (thus not detectable by DEMS). Secondly, Figure III. 15 shows that carbon corrosion 
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is not at the origin of the oxidation current monitored in the OER region: the carbon support is stable 

in DMSO and LiClO4 electrolyte; note that in McCloskey et al. [23] paper, it was proved that CO2 was 

evolved both by the oxidation of lithium alkyl carbonates (originating from carbonates 

decomposition products) or lithium carbonates (originating from the carbon support).  

This relative stability of the carbon electrode|electrolyte interface is however only partial: the high 

surface area materials are undergoing a strong CO2 evolution during their first cycle, in Ar-purged 

electrolyte (Figure III.16). The latter is thus not related to any decomposition product of the carbon 

support from (electro)chemical action of lithium peroxide; instead, this probably highlights that a 

similar preferential oxidation of disordered graphitized area of carbon (evidenced in Raman for the 

three high surface area materials, see the initial section of this chapter) can occur, as monitored in 

PEMFC-like condition (as described by Luis Castanheira et al. [10]). Once these easily oxidizable 

groups are evolved into CO2, the CO2 detection stops (at least until more oxidizing conditions are 

experienced). 

 

Figure III. 16: CO2 ion current (primary Y-axis) and faradic current (secondary Y-axis) monitored during the first 

voltamperogram at 5 mV s-1, in Ar-saturated 0.2 M LiClO4 DMSO electrolyte. A-Panex 30. B-Basolite. C-MOF. D-Phen-MOF 

More specifically, Figure III.16. shows that a detectable oxidation of the graphitized carbon is only 

occurring for the high surface area materials (Basolite, MOF and Phen-MOF), with a clear and strong 
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CO2 evolution above -0.5 V vs. Ref. On the contrary, the Panex 30 carbon cloth itself seems to be 

rather resistant to this process and does not evolve any detectable carbon dioxide in these 

conditions. The same applies for the data of Figure III.15 and Figure III.16, which show that even 

when the Panex 30 is exposed to oxygen, no CO2 evolution occur, confirming that this low-surface 

area material is non-negligibly resistant to carbon corrosion in the present electrolyte and potential 

window. 

Compared to Figure III.15, when the upper reverse scan is increased to 0.7 V vs. Ref in O2-purged 

electrolyte (i.e. more oxidizing conditions than experienced before), the picture changes and CO2 

evolution can be observed by DEMS on the three high surface area supports (but still nothing on 

Panex 30), as presented on Figure III.17. 

 

Figure III. 17: CO2 ion current (primary Y-axis) and faradic current (secondary Y-axis) monitored during the first 

voltamperogram at 5 mV s-1, upper reverse potential at 0.7 V vs. Ref , in O2-saturated 0.2 M LiClO4 DMSO electrolyte. A-

Panex 30. B-Basolite. C-MOF. D-Phen-MOF 

Figure III.17 indicates a clear CO2 evolution monitored above 0.4 V vs. Ref when the reverse scan 

potential is increased to 0.7 V vs. Ref, especially for the Basolite, MOF and Phen-MOF materials. This 

is a  probable indication of the decomposition of those materials by lithium peroxide into lithium 

carbonate, thus triggering reaction (III.2), in accordance with McCloskey's scheme [23]: 
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Li2CO3 → 2 Li+ + 2 e− + CO2 +
1

2
O2      (III.2) 

Again, no CO2 is evolving on Panex 30 itself, as no carbon dioxide evolution can be observed for this 

material (Figure III.17-A), even with a higher reverse scan potential. This is another indication that 

this carbon cloth is rather resistant to both electrochemical corrosion and to lithium peroxide attack 

on its surface, which can be related to its high degree of graphitization (see Raman data above). 

d. Comparative Raman 
 

In an effort to explain the reason of the carbon dioxide evolution of the high surface area material, 

while the Panex 30 remained un-attacked, comparative Raman spectroscopy of the pristine and the 

discharged cathodes (the ones of the full cells in part II.b) was conducted. Comparative Raman for 

the Panex 30 cathode is depicted on Figure III.18. As for the pristine materials, the contribution could 

not be reproduced in Origin. As such, examples of fits for discharged materials in Labspec 4.18 are 

presented in Annexe 2. 

 

Figure III. 18: Raman spectroscopy, with a LASER beam of 514 nm, for a Panex 30 cathode -Pristine (black); -Discharged 

(red) 

Figure III.18 shows that the discharge product (lithium peroxide) did not affect the signature of the G 

and D bands for the Panex 30 cathode. Although one cannot rule out superficial degradation of the 

Panex 30 cathode, this results demonstrates that the Panex 30 cathode essentially remained intact, 

which is a very good sign for the application and confirms the DEMS results.  

The same comparison was conducted for Basolite (Figure III.19), MOF (Figure III.20) and PhenMOF 

(Figure III.21): 
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Figure III. 19: Raman spectroscopy, with a LASER beam of 514 nm, for a Basolite cathode -Pristine (black); -Discharged 

(red) 

 

Figure III. 20: Raman spectroscopy, with a LASER beam of 514 nm, for a MOF cathode -Pristine (black); -Discharged (red) 
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Figure III. 21: Raman spectroscopy, with a LASER beam of 514 nm, for a PhenMOF cathode -Pristine (black); -Discharged 

(red) 

It is clear from Figure III.19, III.20 and III.21 that the Raman spectra of the discharge cathodes is 

different from the one of the pristine one, indicating a major impact of the discharge product 

(lithium peroxide), on the cathode texture. In order to better understand in which way it was 

impacted, the Raman spectra were fitted, similarly than in part a.iii. The corresponding results are 

presented in Tables III.6 and III.7. For the D3 peak on the discharged Phen-MOF cathode, the shift 

was fixed in the fittings parameter as otherwise, it was systematically impacting the G and D2 peaks 

shifts and areas. 

 

Table III. 6: Fitted peak positions of the Raman contributions (D1, G, D2 and D3), for pristine & discharged Li-O2 positive 

electrodes 

Bands Conditions 
Positive Electrodes 

Panex 30 Basolite MOF PhenMOF 

D1 position (cm-1) 
Pristine 1354.8 ± 1.4 1351.1 ± 1.0 1353.5 ±  1.7 1355.1 ±  1.4 

Discharged 1354.5 ± 0.4 1353.7 ± 0.3 1354.1 ±  0.1 1354.7 ±  0.4 

G position (cm-1 
Pristine 1584.5 ± 3.6 1591.2 ± 0.4 1590.2 ± 4.9 1586.9 ± 1.0 

Discharged 1587.7 ± 2.9 1583.9 ± 0.5 1585.2 ± 3.9 1588.4 ± 3.8 

D2 position (cm-1) 
Pristine 1610.5 ± 5.6 1614.1 ± 0.8 1615.4 ± 3.2 1614.0 ± 0.6 

Discharged 1616.7 ± 3.1 1610.13 ± 3.1 1610.6 ± 7.1 1617.1 ± 7.3 

D3 position (cm-1) 
Pristine no peak 1546.7 ± 0.3 1543.5± 4.1 1538.8± 2.2 

Discharged no peak no peak no peak 1550 (fixed) 
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Table III. 7: Peak Areas for D1, G, D2 and D3 bands, for the pristine & discharged Li-O2 positive electrodes 

Bands Conditions 
Positive Electrodes 

Panex 30 Basolite MOF PhenMOF 

D1 area 

Pristine (1.8 ± 0.5) 105 (9.1 ± 0.6) 105 (1.0 ± 0.3) 106 (7.6 ± 1.5) 105 

Discharged (2.1 ± 0.3) 105 (2.0 ± 0.2) 105 (1.8 ± 1.3) 105 (2.0 ± 0.6) 105 

G area 

Pristine (9.0 ± 3.7) 104 (2.2 ± 0.3) 105 (2.5 ± 0.7) 105 (1.7 ± 0.4) 105 

Discharged (1.4 ± 0.4) 105 (9.2 ± 0.3) 104 (1.1 ± 1.1) 105 (1.2 ± 0.5) 1055 

D2 area 

Pristine (7.7 ± 3.7) 104 (2.1± 0.2) 105 (2.3 ± 0.9) 105 (2.0 ± 0.3) 105 

Discharged (4.8 ± 1.9) 104 (9.3± 0.4) 104 (4.6± 3.3) 104 (5.4 ± 2.1) 104 

D3 area 

Pristine 0 (2.3 ± 0.2) 105 (2.4 ± 0.5) 105 (1.8 ± 0.6) 105 

Discharged 0 0 0 (2.7 ± 2.1) 104 

 

The results from Table III.6 and Table III.7 clearly demonstrate that the amorphous graphitic phase 

disappeared after the discharge for Basolite and MOF cathodes. Concerning the Phen-MOF, the D3 

contribution did not disappear entirely, but its area largely decreased (by a factor of ten). It must be 

noted that for the electrodes on which the deposit was the thicker (i.e. MOF and Phen-MOF), a large 

incertitude is obtained for the areas, probably because the thickness of the discharge product varies 

a lot (with large lithium peroxide particles on their surfaces of sizes greater than one micron, as seen 

on the post mortem SEM micrographs, see above). Although the wavelength of the LASER used for 

this experiment was 514 nm, and according to the literature, such LASER penetrates in the material 

up to 1 µm [24], the probable thickness of discharge product was probably on the same order of 

magnitude, which can affect the intensity of the Raman spectra.  

It was proven during the DEMS experiments that only the high surface area materials were evolving 

carbon dioxide at high potential during the OER, in LiClO4 DMSO electrolyte. Panex 30 itself appeared 

highly stable, with no CO2 evolution at high potential (indicating no lithium carbonate formation 

[23]). In that case, Raman spectroscopy of the carbon cloth confirmed this trend: no differences is 

observed on the spectra between the pristine material and the discharged one. The stability of this 

material is surely linked to its high degree of graphitization, with no amorphous graphitic phase (D3), 

in agreement with the larger stability of graphitic carbons in PEMFC operation [5, 10, 25]. 

On the contrary, the high surface area materials all exhibit a strong contribution of the D3 peak on 

the pristine electrodes, contribution that completely disappeared from the Raman spectra on the 

discharged electrodes of the Basolite and MOF materials, and was considerably reduced for the 

Phen-MOF. Computing the behavior of the three high surface area materials and the Panex 30 by 

DEMS and Raman, it is highly suspected that the amorphous graphitic phase of the high surface area 

material is the one responsible for the CO2 evolution during the OER (thus reactive toward lithium 
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peroxide). It is postulated that parts of this contribution is still observable for the Phen-MOF, owing 

to the larger initial particles of this material (as observed by SEM), whereas the Basolite and MOF 

particles are smaller (thus most of their amorphous graphitic phase can react with lithium peroxide). 

So these results clearly demonstrate that a single discharge and related formation of Li2O2 in enough 

to severely (entirely or near-entirely) destroy the amorphous domains of high surface area carbon 

electrodes, therefore emphasizing the need for either their protection or the use of more graphitic 

carbons. It is likely that such destruction of the amorphous phase of carbon is linked to the formation 

of lithium carbonate [23] by reaction of the lithium peroxide with amorphous graphitic phase. 
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Conclusion 
 

High surface area carbon-based materials, the use of which is recommended by Abraham et al. [2], 

were studied as cathode materials for Li-O2 system. DEMS investigations demonstrated that those 

materials undergo a severe CO2 evolution at high potential, even in inert atmosphere, which was 

firstly assumed to be linked to the oxidation of disordered graphitized area [10]. In addition, 

comparative Raman spectroscopy of the pristine and discharged materials, enabled to link the 

destruction of the amorphous phase of carbon to the formation of lithium carbonate [23], formed by 

the reaction of the lithium peroxide with amorphous graphitic phase. Of course, this puts at risk the 

usability of those materials in a practical Li-O2 positive electrode, as the consumption of the positive 

electrode will lead to the cell failure, and this will be possible both during discharge (by reaction of 

Li2O2 with amorphous carbon) and in recharge (direct formation of CO2 in oxidizing potential values). 

Full cell experiments, along with post mortem SEM and XEDS analyses also proved that possessing 

the greater surface area is not the key parameter to achieve a good OER/ORR efficiency (at least in 

the present experimental conditions, and for the present, disordered, carbon-based materials); 

rather, the morphology of the active material seems to play a role. As a consequence, it was proven 

that the better material in terms of roundtrip efficiency was the Basolite, which yields agglomerated 

nanocubes of Li2O2 upon discharge, with spaces between them, and this material was the only one to 

achieve a satisfying OER process (70% of the discharged capacity recovered). The other materials 

were unable to process a correct OER (as for the others, the OER/ORR efficiency is below 11%), SEM 

micrographs showing that in those cases, the discharge yields much larger Li2O2 crystals. For the 

Basolite, the different Li2O2 crystal geometry seems to show that the ORR occurred between the 

Basolite nanocubes, versus on the material surface for the other materials. However, unfortunately, 

only Panex 30 shows some material stability in operation, Basolite being subjected to severe 

corrosion of its amorphous domains. 

In conclusion this study shows that a three-dimensional electronic percolation is essential for the 

OER to process efficiently, along with the absence (or at least really depreciated presence) of 

amorphous graphitic phase in the material to prevent the formation of lithium carbonate by reaction 

with Li2O2 in discharge and CO2 at high charging potential values. Therefore, although the achieved 

performances are encouraging for the Basolite in terms of roundtrip efficiency in the first 

discharge/charge cycle, still nearly 30% of discharged capacity is not recovered, which is not 

acceptable in a practical system. It is thus mandatory to find a way to efficiently recharge such 
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cathodes (with a OER/ORR coulometry ratio as close to one as possible!), and one way to do so is to 

transport electrons in solution through redox mediation. Doing so is the goal of the next chapter. 
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Chapter IV: 

Redox Shuttles: necessary additives for OER 

enhancement in Li-O2 batteries. 
 

The art and science of asking questions is the source of all knowledge 

- Thomas Berger 
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The previous chapter made clear that enhancing the cyclability by heterogeneous catalysis in Li-O2 

cathodes has not been achieved yet. Indeed, the occurrence of two consecutives steps during the 

discharge processes (of electrochemical, E, and chemical, C, nature) can yield a full covering of the 

“catalyst” surface/sites with particles that are much larger than what would have been obtained if 

the formation of Li2O2 had been purely electrochemical (in that latter case, the growth of these 

particles would have been restricted by (i) the number of active sites/the surface area of the 

electrode and (ii) the (bad) electronic conductivity of Li2O2); this eventually prevents their 

electrochemical recharge (the charging takes place at the triple interface 

Li2O2|electrolyte|electrocatalyst), and therefore triggers incomplete recharge of lithium peroxide 

particles and related bad rechargeability of the Li-O2 cathode, loss of cyclable lithium, capacity losses, 

etc. In consequence, electrocatalysts that had proven very efficient for the ORR/OER in alkaline 

medium (in this case, the electrode is never “passivated” by such solid products) were demonstrated 

inefficient (or at least not more efficient than glassy carbon) for the same reactions in non-aqueous 

environment [1]. Even though few papers published have clearly claimed a catalysis effect [2] (when 

most papers publish good performances in full cell by simple surface enhancement), using those 

materials in a practical Li-O2 system can be questioned [1], as it will be of little help to prevent 

capacity losses because of inefficient recharge. To alleviate these issues, the mechanism of the 

discharge/charge processes at the oxygen electrode must be better understood, and a way to 

enhance and solve the cyclability of this electrode must be found. In this perspective, one 

potentially-interesting way to make the charging of those large (and therefore not perfectly 

“electrically-connected”) Li2O2 particles, and avoid irreversible capacity losses of the battery, is to 

“transport electrons” in solution. This transport can be achieved by using redox shuttle species. 

 

I. Redox shuttle screening for Li-O2 cathodes 

 

a. Redox Shuttles: the ideal behavior 

 

The idea of using a redox shuttle to enhance the charging process on a Li-O2 cathodes has first been 

introduced (and patented) by Christensen et al, for the company Robert Bosch Gmbh in 2011 [3]. 

After this discovery, a few papers have been published in this topic, and various chemistries and 

chemicals were used for this application: iodide [4, 5], 2,2,6,6- tetramethylpiperidinyloxyl (TEMPO) 

[6], tetrathiafulvalene (TTF) [7], or tris[4-(diethylamino)phenyl]amine (TDPA) [8]. However, before 
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knowing which compound could be relevant as a redox shuttle for non-aqueous oxygen 

reduction/evolution reactions (ORR/OER), the processes at stake must be defined, as described 

below. 

 

i. Mechanism of the redox shuttle 

 

As detailed in Chapter one, the charging process involved in the direct conversion of lithium peroxide 

into oxygen is an electrochemical reaction (Equation IV.1): 

Li2O2 → 2 Li
+ + 2e− + O2      (IV.1) 

As an electrochemical reaction, this reaction must proceed at the triple interface between the 

current collector (carbon), the electronically-insulating reactant (Li2O2) and the electrolyte, as 

illustrated in Figure IV.1. 

 

Figure IV. 1: Proposed scheme for the (electrochemical) OER process in the absence of a redox shuttle 

In the charging process, as the Li2O2 oxidation only occurs at the triple interface (i.e. at the interface 

with the carbon electrode), only the “small” Li2O2 particles (small enough for electron tunneling in 

this large gap (5 eV) semi-conductor material) have a chance to be fully oxidized (back to O2). Bigger 

particles (particles with dimensions greater than the tunneling distance of the electrons in Li2O2 [9]), 

can only be partially recharged (at the interface with the carbon support); the portion of the Li2O2 

particle which is further from the carbon becomes electrically disconnected from the latter, leading 

to their fall in the electrolyte, both processes yielding irreversible capacity losses. In particular, the 

assumption that particles detachment indeed occurs in practical Li-O2 battery cathodes is made on 

three observations: 

- Firstly, McCloskey et al always measured OER/ORR coulometry ratio (by DEMS) around 0.5, for most 

solvents [10], signing an irreversible loss upon charge/discharge cycling. 
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- Secondly, most papers that “proved” high cyclability of Li-O2 batteries dealt with high recharge 

potential values (above 4.2 V vs. Li/Li+), where the oxidation of the solvent/carbon electrode occurs; 

in particular, most of the papers dealing with “good charging performances” are conducted in 

TEGDME electrolyte [11–13], and Gittleson et al showed that TEGDME starts its (slow) oxidation 

above 4.0 V vs. Li/Li+ [14], the oxidation products of the solvent/carbon being capable to favor the 

complete oxidation of Li2O2 (but in a process that can only be sustained transiently in 3-electrode 

cells and is not practical in a real Li-O2 battery). 

- Thirdly, the same capacity of discharge is obtained in these papers after each recharge process, 

which proves that even though not all the current was used for the charging of Li2O2 particles (see 

item 1 above), the surface is freed again, which must follow the detachment of the incompletely 

recharged “big” Li2O2 particles from the electrode surface. 

This short literature review shows that ca. half of the capacity is lost at each cycle for the Li-O2 

cathodes; this demonstrates the imperative need for a sustainable redox additive (i.e. not 

degradation products of the electrode/electrolyte), soluble in solution that can transport electrons in 

solution and chemically assist the recharge of large Li2O2 particles, these being either still attached to 

the electrode surface or disconnected/fallen in the electrolyte. The mechanism at stake in presence 

of a redox shuttle (labeled X) is detailed by Equations (IV.1 to IV.3): 

 

Li2O2 → 2 Li
+ + 2e− + O2       (IV.2) 

X → X+ + e−         (IV.3) 

2 X+ + Li2O2 → 2 Li
+ + O2 + 2 X      (IV.4) 

 

where equation (IV.2) is the electrochemical OER at the triple interface, and equation (IV.4) involves 

the spontaneous chemical reaction between Li2O2 and the oxidized form of the redox shuttle, formed 

by equation IV.3. The latter reaction can proceed for any Li2O2 particle, even disconnected and/or 

fallen in solution. 

This mechanism can be schematized as in Figure IV.2. 
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Figure IV. 2: Proposed scheme for the OER process in presence of a soluble redox shuttle to chemically assist the recharge of 
Li2O2 

 

The advantage of the addition of the redox shuttle is, on a theoretical point of view, to be capable to 

favor the complete recovery of the surface, through the re-oxidation of big (and/or detached) lithium 

peroxide particles.  

 

 

ii. Required electrochemical behavior 

 

In order to have an efficient redox shuttle for the OER processes, some characteristics are essential: 

- Firstly, the redox shuttle must be (at least partially) soluble and mobile  in the electrolyte (otherwise 

it will not reach detached particles and big aggregates). The larger its solubility and diffusion 

coefficient, the larger its efficiency to assist the recharge of Li2O2 (supposedly). 

- Secondly, the redox kinetics of the redox shuttle must be fast, so that it does not further slow down 

the OER processes (that are already sluggish). 

- Thirdly and most importantly, the redox potential of the mediator must be correctly placed, so it (i) 

enables the reactions targeted, (ii) remains within the stability window of the electrode/electrolyte 

and (iii) has enough driving force to oxidize the lithium peroxide particles. 

In order to have a better insight of the required voltage window, one can draw a simulated voltage 

scale with the redox couple in presence (Figure IV.3) 
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Two lines are positioned on the voltage scale to illustrate the 

irreversible kinetics of the ORR/OER processes in non-

aqueous solution. Plain-red circles represent the species in 

presence and dashed circles the ones that are produced upon 

redox mediator-assisted recharge. It can be easily observed 

that the reaction between X+ and Li2O2 is spontaneous in the 

case where the potential of the X+/X redox couple exceeds 

that of O2/Li2O2 (in practice is above the onset potential of 

the OER). However, it is also clear that this potential must 

stay within the voltage window of the electrolyte (and 

electrode). 

 

More practically, the electrochemical behavior of the ORR/OER processes on GC, as measured in a 

0.2 M LiTF DMSO electrolyte, can be confronted to the required electrochemical behavior of the 

redox shuttle (Figure IV.4). 

 

 

Figure IV. 4: Cyclic voltamperogram of a glassy-carbon electrode in O2-purged (5.1 grade) , 0.2 M LiClO4 DMSO electrolyte. 
Scan rate 5 mV s-1. Reference : Ag/AgNO3 (2 mM in 0.2 M LiClO4 DMSO). Added is a simulated cyclic voltamperogram of a 

useful redox mediator to assist the recharge of Li2O2. 

Figure IV. 3: Scheme of the potential scale of 
the ORR/OER processes, comprising a well-

chosen redox shuttle 
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The different domains of electrochemical activity (or inactivity) are depicted on Figure IV.4, and show 

how finding a proper redox shuttle is not an easy task: the voltage window applicable is only of 0.5 V 

vs. Ref (in DMSO electrolyte), as at too-high potential, the electrode/electrolyte is decomposed, 

leading to CO2 and then lithium carbonate in a process that would both destroy the 

electrode/electrolyte and further passivate it. Another aspect that can be observed on Figure IV.4 is 

that the driving force of the redox shuttle is highly impacted by its concentration (and therefore the 

peak currents associated to the redox shuttle), which is mostly limited by its solubility in the 

electrolyte used. Thus the redox shuttle screening must also account on this parameter. 

 

iii. System restrictions 

 

In conventional lithium battery systems, the separator used is an ultrathin porous polyethylene, 

polypropylene or multilayered (PE/PP) membrane. The most known brand which distributes these 

separators is the Celgard Company, which offers various grades in term of thicknesses, porosities, 

composition, surface treatments, etc. These separators are designed to be as thin as possible, in 

order to limit their impact on the total mass of the battery. The ideal electrolyte forms a thin, 

protective, Solid Electrolyte Interface (SEI) layer with the lithium negative electrode [15], while the 

oxygen is supposed to be reduced only at the carbon electrode (cathode in discharge, anode in 

charge).  

The best solvents for the SEI formation are carbonated solvents [16]; unfortunately, this class of 

compounds is prohibited in Li-O2 systems, as they easily form Lithium carbonates with lithium 

peroxide, upon the discharge at the positive electrode [17]. So, the current solvents that are used in 

practical Li-O2 batteries are not carbonated solvents, and are therefore less prone to form a thin SEI 

layer covering the lithium surface, which remains ill-protected by such an imperfect SEI. Thus, 

parasitic reactions can occur at the regions of the lithium electrode that are unprotected, such as the 

direct reduction of oxygen on lithium (formation of lithium peroxide and oxide from the O2 species 

crossing over the electrolyte from the positive electrode); this naturally lowers the amount of 

“cyclable lithium”, and in an open system can in the end provoke the total consumption of the 

metallic lithium and cause the death of the cell. 

Such parasitic reaction scheme is detailed on Figure IV.5, where Li2O is supposed to be formed 

directly on the lithium surface. To prevent or at least mitigate this severe issue, one must find means 

to protect the lithium negative electrode, by either a layer of Li+ conductive ceramics (e.g. LISICON 

[18–21] and/or by a better engineering of the solvent for non-aqueous Li-O2; finding a solvent that is 

stable to both the ORR products at the high (oxidizing) potential of the positive electrode and 

metallic lithium (which is at very reducing potential values) may however be a difficult task. 
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Figure IV. 5: Scheme of the parasitic reactivity of lithium with dissolved oxygen, in a Li-O2 battery with an oxygen-saturated 
electrolyte 

Using a redox shuttle (a strong oxidant in its oxidized state, in order to promote the recharge of 

Li2O2) puts more stress on the technology: the redox shuttle diffusion to the lithium side must be 

prevented, as it is susceptible to render complex both the overall charge/discharge mechanisms and 

compromise the safety of system. If the oxidized moiety of a redox shuttle crosses over from the 

positive to the negative electrodes during the charging process, this will impact not only the 

efficiency of the additive for the oxidation of lithium peroxide but also provoke a severe consumption 

of cyclable lithium, as depicted on Figure IV.6. 
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Figure IV. 6: Undesired mechanism of the reaction between the redox and the negative (lithium) electrode 

The desired reactions during the charging process are given by the sequence of equations (IV.5 to 

IV.7) at the positive electrode, and equation (IV.8) at the negative electrode. 

Li2O2 → 2 Li
+ + 2e− + O2 (Positive electrode)    (IV.5) 

X → X+ + e− (Positive electrode)     (IV.6) 

2 X+ + Li2O2 → 2 Li
+ + O2 + 2 X (Positive electrode)   (IV.7) 

Li+ + e− → Li (Negative electrode)     (IV.8) 

whereas the unwanted path occurs as the sequence of equations (IV.6), (IV.9) and (IV.10). 

X → X+ + e− (Positive electrode)     (IV.6) 

X+Positive electrode
Diffusion,migration
→               X+Negative electrode   (IV.9) 

X+ + Li → Li+ + X (Negative Electrode)     (IV.10) 

 

To be more specific, this unwanted path triggers two important problems: (i) the loss of the 

coulombic efficiency of the redox additive and (ii) an “infinite recharge phenomenon” at the end of 

the charging process. In the latter case, the positive electrode generates X+ species that can react 

with Li to form Li+, a reaction that can proceed as long as some Li remains at the negative electrode, 

which means that this apparent "infinite recharge" may entirely deplete the negative electrode if the 

diffusion/transport of the oxidized form of the redox shuttle to the lithium negative electrode cannot 

be prevented. 
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In conclusion, it is mandatory for the use of redox shuttle additives in solution, to efficiently block the 

contact between the metallic lithium and the electrolyte containing the redox additive. Several 

possibilities are mentioned in the literature [22–24], such as the use of NaSiCON type membranes (Li+ 

conducting ceramics); these are indeed able to efficiently (physically) separate the positive and the 

negative electrode compartments. However, their poor conductivity to Li+ cations (5 10-4 S cm-1), 

coupled to their brittleness (and therefore need for sufficiently large thickness) are clear hindrances 

to their practical usage: it results in large Ohmic resistance of the cell. Besides, these compounds 

show non-negligible reactivity toward metallic lithium, and secondary protection of the lithium 

electrode is necessary (e.g. LIPON and/or polymer electrolyte layers [25–27]). Another solution, 

which is, in the author’s opinion the best, would be to pre-form a fully-covering/protecting SEI layer 

on the lithium negative electrode, in order to avoid any direct contact with the electrolyte and in 

particular the oxidized form of the redox additive. This solution involves a lot of system engineering 

but will offer a better reliability for a practical system. However, this topic (of protection of the 

lithium negative electrode) is beyond the subject of this thesis, and no solution for this issue will be 

presented in this chapter, but some paths for further research will be presented in chapter VI. 

 

b. Unfruitful selection of potential redox mediators 

The screening of compounds that are electrochemically active in non-aqueous solution, at high 

potentials for potential use as redox shuttle for Li-O2 batteries is not an easy task. As stated above, 

various parameters impact the usability of an additive for this purpose. Herein are presented 

experiments that proved unsuccessful for such selection, but these are nevertheless described, as 

they paved the way to the discovery of interesting compounds.  

The reference solution used in these experiments were 20 mM Ag/AgNO3 in 0.2 M TBAClO4 

electrolyte. The solvent used for the reference was the same used in the experiment (either DMSO or 

ACN). The working electrode was plain 5 mm-diameter glassy-carbon and the counter electrode was 

high surface area platinum. 

 

i. Potassium Ferrocyanide 

Potassium Ferro cyanide was believed to be the perfect candidate as a first try, thanks to its redox 

potential, situated within the required voltage window [28].  
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Fe(CN)6
3− + e− → Fe(CN)6

4−    𝐸th = 0.35 V 𝑣𝑠 ENH      (IV.11)  

Considering the Reference Potential used in our experiments, it gives a redox transition expected at  

-0.34 V vs. Ref, which did put great hope for this compound. 

The electrolyte used for the testing of the redox mediation of this compound was chosen to be 

TBAClO4. It is well-known that in presence of the latter salt, only a one electron, fast reversible 

ORR/OER can be achieved [29]. According to the HSAB theory, the subsequently formed superoxide 

in TBAClO4 is soluble and less reactive which completely contrast with the main discharge product in 

lithium-containing electrolyte (lithium peroxide) [29, 30]. Thus, if the ORR/OER features are hindered 

in this experiment electrolyte, it will mean that poisonous reactions occur (as the ORR/OER is here 

highly reversible and happen at much lower potentials). Even though the ORR/OER features were not 

hindered in this experiment, the first drawback encountered was when the potassium ferrocyanide 

was dissolved in the electrolyte (20 mg in 20 mL): even after two days, a very small portion of it was 

dissolved. Still, it satisfies the requirement of the redox additive as it is partially soluble (the best is 

high solubility for better efficiency). The results obtained are presented in Figure IV. 7. 

 

Figure IV. 7: Oxidoreduction activity of  potassium ferrocyanide in 0.2 M TBAClO4 DMSO, 100 mV s-1 



104 
 

 

The electrochemical response of the ferrocyanide couple in Ar-purged electrolyte (black curve) 

shows that the mechanisms are much more complicated than expected. Three anodic redox peaks 

and three cathodic redox peaks are observed. One might associate the "reversible” couple Epa1/Epc2 

to the reaction (IV.2), and this would be the desired behavior. However, the presence another 

"reversible” couple Epa2/Epc3 is unexpected, as well as the occurrence of irreversible anodic (Epa3) 

and cathodic (Epc1) peaks that could be linked to irreversible degradation reactions of the 

ferrocyanide additive at high/low potential values in this reaction medium.  

In addition, when the electrolyte is purged under oxygen (red curve), the electrochemical features of 

the ferrocyanide couple, that were clearly seen under argon, disappear in profit to the ORR/OER 

processes only. As a result, nearly the same electrochemical response with and without ferrocyanide 

additive is monitored when the electrolyte is oxygen-purged or not (with: red curve; without: blue 

curve), demonstrating that the redox shuttle additive does not play its role. 

Therefore, the ferrocyanide compound does neither fulfill the fast kinetics simple mechanism 

property, nor the stability required for a redox shuttle additive, and in consequence is not operating 

as desired; thus, it will not be studied further. 

 

ii. Benzoquinone 

Compounds such as p-benzoquinones show excellent redox behavior, within the required voltage 

window for a redox shuttle in a Li-O2 battery. Tetra-bromobenzoquinones were proven very efficient 

toward the simultaneous detection of ascorbic acid, dopamine and uric acid [31]. For the present 

application, the tetrabromobenzoquinone revealed a very fast redox kinetic around 330 mV vs. ENH 

[31], which is slightly above the lower limit of the required voltage window (0.2 V vs. ENH or -0.5 V 

vs. our Ag/AgNO3 reference). Being admitted that having a redox shuttle that is as stable to ORR 

products as possible is highly desired, the first compound tested was p-tetrafluorobenzoquinone: C-F 

bounds are indeed very robust, thus making, at least theoretically, the compounds less prone to 

decomposition upon attack by Li2O2. The study medium was 0.2 M TBAClO4 in acetonitrile (TBAClO4 

salt was chosen for the same reason than for the study of K4Fe(CN)6, and the cyclic voltammetries 

were performed at 100 mV s-1. Results in Ar-purged electrolyte are depicted in Figure IV.8. Two 

consecutive redox activities can be observed for the p-tetrafluorobenzoquinone species (equations 

IV.12 and IV.13). 
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Bzq + e− ↔ Bzq●−               (Epc1 Epa1)⁄      (IV.12) 

Bzq●− + e− ↔ Bzq2●−          (𝐸pc2 𝐸pa2⁄ )     (IV.13) 

 

Figure IV. 8: Voltamperogram obtained for a glassy-carbon electrode in an Ar-purged electrolyte composed of 5.5 mM 
TetraFluoroBenzoquinone in 0.2 M TBAClO4 in acetonitrile, at 100 mV s-1. The plot puts into evidence the self-poisoning of 

the electrode. 

Figure IV.8 demonstrates that an unwanted mechanism occurs, as the second redox activity 

(Epc2/Epa2) becomes more and more irreversible upon cycling; it is totally inactive at cycle 7. It can 

also be seen at the 7th cycle, that even the first redox activity (Epc1/Epa1) is affected by this 

phenomenon. In other words, the electrode is gradually (and with fast kinetics) self-poisoned in 

presence of the Tetrafluoro-p-benzoquinone. This behavior puts a great threat on the usability of this 

compound as the redox shuttle. Yet, the experiments were continued and the electrolyte saturated 

by oxygen (Figure IV.9). 
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Figure IV. 9: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte composed of 5.5 mM 
TetraFluoroBenzoquinone in 0.2 M TBAClO4 in acetonitrile, at 100 mV s-1. 

 

The first redox activity (Epc1/Epa1) gains more and more current from cycle 1 to cycle 10 (Figure 

IV.9), which totally contrasts with the experiment in Ar-purged medium (Figure IV.8). Also, both Epa2 

and Epa3 are absent from these experiment. A possible mechanism to account for these phenomena 

(decreasing activity in Ar-purged electrolyte and increasing activity in O2-purged electrolyte) can be 

proposed. 

The fluorinated benzoquinone has fluorine atoms, instead of hydrogen ones on the cycle. It is well-

known that fluorine is strongly electronegative (it attracts electrons), thus increasing the reactivity of 

the radicals (Bzq,F●- and Bzq,F 2●-) formed during reactions (IV.12) and (IV.13). 

As a consequence, the inductive effect of the fluorine atoms is more powerful than the mesomeric 

effect (which normally occur thanks to the benzene ring), which might lead to direct radicals 

recombination on the surface of the electrode.  

Consequently, it is highly probable that a layer of the adsorbed "chains" of benzoquinones is clogging 

the electrode surface (which induces a decrease of the active surface), thus decreasing the redox 

apparent activity of the redox compound on the electrode. 
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When the ORR begins in an electrolyte purged under oxygen, superoxide species are produced; these 

are very reactive and might attack the O-O bound between the adsorbed benzoquinones, and as the 

superoxide is a smaller, highly reactive radical, the recombination path between the latter and the 

Bzq2●- species becomes predominant versus the recombination of Bzq2●- on itself. Thus, both Epa2 

and Epa3 disappear, and the active surface area is recovered, thereby enabling (again) the first 

oxidoreduction peaks of the benzoquinone. 

In order to test this hypothesis (that the recombination between the superoxide and the Bzq2●- 

occurred), another benzoquinone species was tested: the tetrachloro-p-benzoquinone, on which the 

inductive effect of chlorine is less powerful than for its fluorinated counterpart. The results are 

presented on Figure IV.10. 

 

Figure IV. 10: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte composed of 3 mM 
TetraChloroBenzoquinone in 0.2 M TBAClO4 DMSO, 100 mV s-1. Evidence of Strong Reactivity with ORR product 

The obtained results are unequivocal: the extinction of Epa2 and Epa3 in presence of the tetrachloro-

p-benzoquinone under oxygen purge is also occurring for the chlorinated benzoquinone, which 

confirms that an additional mechanism takes place between the ORR product and the radical formed 

at Epc2 (Bzq,Cl2●-). Also, the inductive effect is suppressed, when fluorine atoms are substituted by 

chlorine ones, as depicted on Figure IV.11. 
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Figure IV. 11 : Voltamperogram obtained for a glassy-carbon electrode in an Ar -purged electrolyte composed of 3 mM 
TetraChloroBenzoquinone in 0.2M TBAClO4 DMSO, purged at 100 mV s-1. No self-poisoning is observed. 

Considering the results depicted from Figures IV.8 to IV.11, it appears that the 

TetraChloroBenzoquinone (Bzq,Cl) is of better interest than the TetraFluoroBenzoquinone (Bzq,F), as 

a full reversibility is obtained in Ar-purged media (see Figure IV.11), which opposes the behavior of 

the Bzq, F (Figure IV.). However, the recombination between the bi radical (Bzq,Cl2●-) and the 

superoxide is still occurring in O2-purged electrolyte ( Figure IV.10), which compromises the usability 

of the family of benzoquinone compounds for use as redox shuttles. Pushing more the 

understanding, it is assumed that, in order to avoid the latter recombination, redox mediator must 

exhibit a redox activity, without the formation of a radical (the formation of either an anion or a 

cation will be preferred). 

 

iii. Chromium difluoride 

Chromium difluoride was of high interest also, at the Cr3+/Cr2+ redox activity is usually very fast (in 

aqueous medium). However, the redox potential of this transition is -0.41 V vs. ENH (corresponding 

to -1.1 V vs. Ref) [28] in aqueous solution, which is outside the required voltage window (lower limit: 
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0.2 V vs. ENH/0.49 V vs. Ref). At the time, these compounds were tried anyway, in the hope that the 

redox potential of this transition could appear at higher voltage values in non-aqueous media. 

As CrF2 was insoluble in the 0.2 M TBAClO4 DMSO electrolyte (the grains remained in the bottom of 

the flask for 1 week, without any change in color that would have had indicated some solubilization), 

it was decided to immobilize this compound in the solid form at the glassy-carbon electrode. To that 

goal, an ink (Vulcan XC72/Kynar HSV900/CrF2, with mass percentage: 48/27/25 in N-Methyl-2-

pyrrolidone 20 mg of carbon for 1 mL) was prepared and a calibrated drop (20 µL) was deposited on 

the electrode; it was then dried in an oven at 85°C for 2 hours and put under dynamic vacuum for at 

least 30 minutes. The experiments were conducted in the same electrolyte (0.2 M TBAClO4 DMSO) at 

100 mV s-1, and the results are presented in Figure IV.12. 

 

Figure IV. 12: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte with the chromium 
difluoride ink in 0.2 M TBAClO4 DMSO at 100 mV s-1 

For the Ar-purged experiment (black curve), only the double layer response of the high surface area 

carbon electrode was observed, showing that the CrF2 compound is not electrochemically active in 

this medium. Then, the electrolyte was purged under oxygen (45 minutes). The electrochemical 

response for the first cycle (red curve) only accounted for the superoxide formation (Eq. IV.14). 

TBA+ + O2 + e
− ↔ TBA− O2  (𝐸pc1 𝐸pa1)⁄      (IV.14) 
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During the cycling of the electrode, a second contribution appeared for the reduction and did 

stabilize (from the green curve – cycle 2—to the orange one - cycle 10). This contribution (Epc2) 

occurs at around -0.75 V vs. Ref. A small oxidation also appears (Epa2) and is probably related to the 

oxidation of the compound formed at Epc2.  

As the CrF2 is not soluble in the electrolyte (see above), the first cycle is only active with the large 

cation TBA+. However, according to the HSAB theory (see chapter 1), ORR products have a stronger 

affinity with smaller cation. Therefore, if a superoxide species encounters a chromium cation, it will 

bound with the latter, rather than with the TBA+. It is therefore postulated that the Epc2/Epa2 

contributions are accounted for by the association of the ORR products with chromium cations. 

Despite its interest and as the subject of the present thesis focus on Li-O2 cathodes, not on Cr-O2 

cathodes, this “activity” was disregarded and considered not interesting. It must also be noted that 

the ORR in presence of lithium occurs at much higher potentials than Epc2, which completely 

discards this compound to be used as a redox shuttle. 

 

c. Useful compounds to be used as redox shuttles in Li-O2 batteries 

As explained above, the benzoquinone was the only compound with the redox activity correctly 

placed in the required window. However, it was proven inefficient, owing to radical recombination. 

Thus, the screening of the redox shuttle continued, compounds where either the oxidized or reduced 

form was a radical being excluded. Two efficient compounds have been selected: the first is 

5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II). This compound is classed under 

the compound family named porphyrins. Thus it will be labeled Co(II)-Po for the rest of the present 

work. The second compound, which will prove highly efficient, is denominated N,N′-

Bis(salicylidene)ethylenediaminocobalt(II). It is also known as salcomine or Co-salen, and will be 

denominated by the latter term for the rest of the present work. The subsequent molecules structure 

is presented in Figure IV.13. 
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Figure IV. 13 : Chemical Structure of Co(II)-Po and Co-Salen 

Electrolytes were prepared with these tow compounds. For the former one, 34 mg of Co(II)-Po was 

dissolved in 20 mL of 0.2 M LiClO4 DMSO. However, even after one week, some black solid particles 

remained in the electrolyte, meaning that the latter was saturated in Co(II)-Po, but also that the true 

Co(II)-Po concentration could not be asserted with precision. If all the Co(II)-Po was dissolved, the 

corresponding concentration would have been of 2 mM. Thus, it can only be assumed that the true 

Co(II)-Po concentration is below this value. As for the Co(II)-Po, 18 mg of Co-salen were dissolved in 

the same electrolyte (this time no particles remained in the solution, leading to a concentration of 

dissolved Co-salen of 2.8 mM). The activity of both compound is depicted on Figure IV.14. 
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Figure IV. 14: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte of 0.2 M LiClO4 DMSO, in 
presence of either Co(II)-Po ( red dashed line) or Co-salen (blue short dashed line), or without additives (plain line) 5 mV s-1, 

Karl-Fisher titration of water traces below 100 ppm 

As seen on Figure IV.14, the Epa1/Epc1 activity of Co(II)-Po, and the Epa1'/Epc1' activity of Co-salen 

are ideally placed for an application as redox shuttle for the OER. As the cobalt is in (+II) state in the 

pristine compounds, this transition is relative to the Co(III)/Co(II) couple. Thus, the Co(III) form of the 

additive is expected to react with the remaining Li2O2 on the electrode surface, or in the solution 

(gamma rule, see Figure IV.14). In order to asses that this redox activity of both compound can be 

profitable for use as a redox shuttle, a regeneration experiment was conducted for “discharged” 

glassy-carbon electrodes. The scan rate used in these experiments was taken very low (5 mV s-1), in 

order to see features as close as possible to a practical system. Firstly, five scans on a full voltage 

window were conducted in order to efficiently discharge the glassy-carbon electrode (i.e. form Li2O2 

from ORR) and therefore passivate its surface. Then, ten cycles in the OER region were performed 

(no further ORR, so only the lithium peroxide, produced during the first step can be re-oxidized). 

After this, a scan on the full voltage window was performed and compared to the initial scan (of the 

first step), when the electrode surface was pristine. A similar benchmark experiment, conducted 

without additives, was made for comparison, as depicted in Figure IV.15. 
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Figure IV. 15: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte. Regeneration experiment 
conducted in 0.2 M LiClO4 without additives, 5 mV s-1, KF below 100 ppm 

Figure IV.15 indicates that the Initial scan and the scan after the regeneration step are very different: 

the ORR peak current density after the regeneration step dropped to -0.15 mA.cm-² (compared to -

0.35 mA.cm-² on a fresh electrode), indicating that without additives, the electrode surface cannot be 

regenerated. In other words, the recharge is not efficient in absence of redox shuttle (at least in this 

potential window). 

 

i. Oxygen fixation for Co(II)-Po and Co-salen 

An unexpected phenomenon was observed for both compounds as they fix oxygen on their cobalt 

core [32, 33]. In order to assess the difference in bounding strength between the cobalt and oxygen, 

UV-Visible spectroscopy was conducted. In the subsequent experiment, the exact concentration of 

Co(II)-Po and Co-Salen is not known precisely, as the scope of this experiment is to observe the shifts 

in the UV-Vis Spectra, when the solution is purged by oxygen, or by argon. The corresponding results 

are presented on Figure IV.16. 
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Figure IV. 16: UV-Visible spectra of A-Co(II)-Po and B-Co-salen in the presence/absence of O2 
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Two contributions are visible for the Co(II)-Po spectrum on Figure IV.16-A: the P1 contribution at 

437.2 nm and the P2 contribution at 420.15 nm. However, as published by Holze et al, only one 

contribution is expected for the Soret band of the Co(II)-Po [32] (in acetone, the corresponding peak 

was occurring at 411.5 nm). When the solution is purged under oxygen for 15 minutes, the P1 

contribution decreases and the P2 rises. Once the solution is purged back with argon for two hours, 

the P1 peak rises again and P2 decreases, but even though the solution is now Ar-saturated, the 

spectrometric trace does not come back to its initial state. It is thus assumed that the P2 contribution 

is linked to the complex formation between the Co(II)-Po and oxygen and that the P1 contribution 

corresponds to the pristine porphyrin. As the heights of P1 and P2 are dependent on the purging of 

the solution, it is highly probable that an equilibrium exists between the pristine porphyrin and the 

porphyrin paired with oxygen (equation IV.15): 

Co(II) − Po + O2
K1
⇔O2 − Co(III) − Po      (IV.15) 

For the Co-salen, a similar complex is formed (already described in the literature, in KOH and DMSO 

[33]), but this time, the process is completely reversible, as seen on Figure IV.16-B: the shape of the 

UV-Vis spectrum is completely different under argon and oxygen atmospheres. When the solution is 

purged back with argon, a small increase of the baseline is observed at 350 nm, but this may be 

ascribed to some water contamination. To check this hypothesis, the first solution (that had never 

been purged with oxygen), was deliberately contaminated by water, and the two traces perfectly 

matched, meaning that the small increase of the baseline at 350 nm was due to the water. This small 

bias does however not change the conclusions: a complex forms between Co-salen and oxygen, and 

this complex formation is fully reversible (as shown in equation IV.16): 

Co (II) − Salen + O2
K2
⇔O2 − Co (III) − Salen      (IV.16) 

From this experiment, it can be concluded that the bounding strength between the oxygen and the 

cobalt core is stronger in Co(II)-Po than in Co-Salen (as the spectrum does not come back to its initial 

state, even after two hours of Ar-purging), which is also supported by the fact that the Co(II)-Po had 

the ability to "trap" the oxygen traces in the solution, even though the latter was intensively purged 

under argon and dried on molecular sieves upon the experiment.  

 

ii. Co(II)-Po 

The same electrochemical procedure was applied for the Co(II)-Po, and the results are depicted on 

Figure IV.17.  



116 
 

 

Figure IV. 17: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte. Regeneration experiment 
conducted in 0.2 M LiClO4 containing < 2 mM Co(II)-Po, 5 mV s-1, KF below 100 ppm 

The results of the regeneration experiment in an electrolyte containing Co(II)-Po are drastically 

different than without additives. The trace after the regeneration step (dashed line) is almost similar 

(in terms of ORR peak) than for the fresh electrode (plain line), showing that the regeneration step 

worked efficiently. In addition, during the regeneration step, the Epa1/Epc1 peaks are gradually 

increasing from cycle 1 to cycle 10 (see the zoom inserted), which can only be explained by the fact 

that the active surface is progressively recovered. This signs the efficient “removal” of the solid 

passivating products (Li2O2) on the latter by Co(II)-Po, demonstrating that this compound can be used 

as a redox shuttle in Li-O2 batteries. 

-Mass transport and kinetic parameters determination: 

The number of electrons exchanged for the oxidation and for the reduction of the Co(II)-Po are 

estimated thanks to Figure IV.18. 
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Figure IV. 18: iR-corrected voltamperogram obtained for a glassy-carbon electrode in an Ar-purged electrolyte comprising 
less than 2 mM of Co(II)-Po in 0.2 M LiClO4 in DMSO. The scan rates varies from 5 to 100 mV s-1. 

Figure IV.18 shows that the oxidation of Co(II)-Po is quasi-reversible (the difference between the 

oxidation peaks and the reduction peaks is increasing with the scan rate [34]). On the contrary, the 

reduction of Co(II)-Po seems to be fully reversible (at least in this range of potential scan rates), as 

the peak positions are not scan rate-dependent. 

The differences between the oxidation and reduction peaks (ΔEp) for both the oxidation of the Co(II)-

Po and the reduction of the Co(II)-Po are gathered in Table IV.1. 

Table IV.  1 : ΔEp dependence on the scan rate for the Oxidation or the Reduction of Co(II)-Po 

Scan Rate (mV s-1) ΔEp Oxidation (mV) ΔEp Reduction (mV) 

5 83 69 

20 112 82 

50 137 87 

80 170 87 

1000 184 88 
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As shown in Table IV.1, the oxidation of the Co(II)-Po is quasi-reversible and the reduction seems to 

be more reversible (even though a slight increase can be seen between 5 and 50 mV s-1). Also, as in 

the two cases, the ΔEp values are greater than 60 mV, the number of electrons exchanged (n) for 

both the oxidation and the reduction steps must be one, in agreement with equation IV.17 (the 

system here is quasi-reversible, but at a slow scan rate, a quasi-reversible system behave like a fast 

reversible system, (i.e. 5 mV s-1)). 

- For a reversible reaction : Δ𝐸p =
59

𝑛
 (mV)[34]    (IV.17) 

In order to assess the diffusion behaviors of the Co(II)-Po and the Co-salen, rotating disk electrode 

experiments were performed in diffusion-convection regime. The electrolyte consisted of 100 mL of 

0.2 M LiClO4 DMSO, with either 24 mg of Co-salen or, 21 mg of Co(II)-Po. Concerning the 

electrochemical procedure, the experiments were iR-corrected dynamically. The experiments 

consisted of an Open Circuit Voltage stabilization of 5 minutes, followed by a Linear Scan 

Voltammetry from the OCV to -1.5 V vs. Ref. Then, a new stabilization OCV was recorded for five 

minutes and a LSV was applied from the stabilization potential to 0.4 V vs. Ref. Five points were 

recorded in terms of mass-transport: no rotation, 500, 1000, 1500 and 2000 revolutions per minute. 

The corresponding experiment for Co(II)-Po in Ar-purged medium are depicted on Figure IV.19. 

 

Figure IV. 19:  Linear Scan Voltammetries, in 0.2 M LiClO4 DMSO, 0.265 mM Co(II)-Po, at 5 mV s-1. Ar-purged medium. A-
From OCV to -1.5 V vs. Ref. B-From OCV to 0.4 V vs. Ref 

The Levich law (IV.18) is valid  for a rotation rate comprised between 100 rpm and 10 000 rpm [34]. 

Thus, for the point at 0 rpm, the current density is arbitrarily taken at 0 mA cm-². The Levich plots are 

presented in Figure IV.20. 

𝑗lim(A cm
−2) = 0.620 × 𝑛 × 𝐷2/3 × 𝜈−1/6 × 𝐶 × 𝑤1/2    (IV.18) 

With: n the number of electrons, D the diffusion coefficient (cm² s-1), ν the kinematic viscosity (cm² s-

1) , C the analyte concentration (mol cm-3) and w the rotation rate of the RDE (rad s-1). 
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Figure IV. 20: Levich plot for A- Reduction of Co(II)-Po to Co(I)-Po . B- Oxidation of Co(II)-Po to Co(III)-Po 

Taking in consideration that in both cases, the number of electron exchanged is equal to one, and 

assuming that the kinematic viscosity of the electrolyte is the one of DMSO (0.018 cm² s-1 [35]) the 

diffusion coefficient of the Co(II)-Po for its reduction and oxidation can be calculated from the Levich 

slopes (Table IV.2). 

 

Table IV.  2 : Diffusion Coefficient for the Co(II)-Po in DMSO electrolyte 

Reaction Co(II)-Po concentration (mol cm-3) Diffusion coefficient (cm² s-1) 

Reduction 2.65 10-7 1.64 10-6 

Oxidation 2.65 10-7 1.24 10-6 

 

The results from Table IV.2 show that the Co(II)-Po has a slower diffusion coefficient for its oxidation 

than for its reduction. Yet, this difference (24%) can be attributed either to a parasitic effect of the 

reduction of oxygen traces (that cannot be removed entirely from the solution), or to some 

distortions of the background. However, it is its oxidation that is of interest here, as it is the Co(III)-Po 

form that will react with lithium peroxide to enhance oxygen evolution. The subsequent slow 

diffusion coefficient can be explained by the size of the additive, which is rather a big molecule and 

thus moves slower than smaller molecules (e.g. compared to ferrocene, which exhibits a diffusion 

coefficient close to 4.9 10-6 cm² s-1 in DMSO [36]).   

The activity in oxygen-saturated electrolyte, under rotation, was also investigated and the related 

experiment is depicted on Figure IV.21. 
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Figure IV. 21: Linear Scan Voltammetries, in 0.2 M LiClO4 DMSO, 0.265 mM Co(II)-Po, at 5 mV s-1 Ar (black) and O2 (green) 
purged media. A-From OCV to -1.5 V vs. Ref. B-From OCV to 0.4 V vs. Ref 

The ORR experiments of Figure IV.21-A show that even though the rotation is increased (O2 transport 

enhanced at the electrode’s surface), the ORR peak current density decreases from -0.3 mA cm-2 (no 

rotation) to -0.15 mA cm-2 (2000 rpm). This indicates that the electrode surface is rapidly covered 

(and passivated) by a layer of Li2O2. When the OER is performed, the current density at the end 

potential is expected to increase as the rotation rate increases. The present tendency indicates the 

opposite, as from no rotation to 2000 rpm, less current is obtained in the OER region. This indicates 

that the surface is not efficiently recovered and that the redox shuttle effect is not occurring as 

expected. 

It is postulated that this inefficiency is only due to the relatively low content of Co(II)-Po in the 

electrolyte (required to dissolve all of it and to calculate its diffusion coefficient), as compared to the 

case of the three-electrode setup (20 mg was put in 20 mL of 0.2 M LiClO4 DMSO, here only 21 mg in 

100 mL of the same electrolyte). Knowing the diffusion coefficient, the rate constant for the 

oxidation of the Co(II)-Po can be estimated, using the Nicholson and Shain technique, and especially 

the fit technique proposed by Dragu et al [37], and calculating the ψ parameter (equations IV.19 to. 

IV.22). 

𝜓 = 𝑥0 (
𝐴1−𝐴2

ΔE𝑝𝑒𝑎𝑘−𝐴2
− 1)

1

𝑝
       (IV.19) 

𝑎 =
𝑛𝐹

𝑅𝑇
𝑣         (IV.20) 

𝑘0 =
𝜓√𝜋.𝑎.𝐷

𝛾𝛼
         (IV.21) 

𝛾 = (
𝐷𝑂

𝐷𝑅
)

1

2
         (IV.22) 
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With x0, A1, A2 and p tabulated values (x0 = 0.0688; A1 = 432.91 mV; A2 = 59.55 mV and p = 0.9938) 

In the present case, several hypothesis must be made: DO = DR (thus 𝛾 = 1) and α = 0.5. Using the 

values listed in table IV.1 for the oxidation, the rate constant for the oxidation of Co(II)-Po can be 

estimated (Table IV.3). 

 

Table IV.  3: k° calculations, using fit of [10] for the oxidation of Co(II)-Po at several scan rates 

Scan rate (mV s-1) Δ Epeak(mV) ψ a k° (cm s-1) 

5 83 1.044 0.195 1.05 10-3 

20 112 0.426 0.779 8.53 10-4 

50 137 0.265 1.947 8.40 10-4 

80 170 0.165 3.116 6.60 10-4 

100 184 0.138 3.895 6.19 10-4 

 

The average value for the rate constant was determined to be (8.03 ± 1,71)x10-4 cm² s-1. 

Compared to other cobalt complex values (for instance Co(bpy)3, which exhibits a rate constant of 

about 0.0416 cm s-1 [37]), this value is smaller, indicating a quasi-reversible couple, but which tend to 

behave as a fast-reversible couple at lower scan rates. 

 

iii. Co-salen 

As for the Co(II)-Po, the same electrochemical procedure was applied and the corresponding results 

are depicted on Figure IV.22. 
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Figure IV. 22: Voltamperogram obtained for a glassy-carbon electrode in an O2-purged electrolyte. Regeneration experiment 
conducted in 0.2 M LiClO4 containing 2.8 mM Co-Salen, 5 mV s-1, KF below 100 ppm 

  The results of Figure IV.22 are as spectacular than with Co(II)-Po: the “after regeneration” trace and 

the trace on a pristine electrode are almost superposed in the ORR region, again meaning that an 

efficient surface recovery was possible in presence of the Co-salen. From the zoom on the OER 

region, one sees that the cathodic/anodic current densities of the Epc1'/Epa1' transition are also 

increasing from the first cycle to the tenth cycle, but the passivation reached in the course/after the 

ORR in the previous cases, is much less of an issue with Co-salen in solution. This demonstrates that 

the redox shuttle effect is occurring in situ, even on the full cycles with Co-salen. This can be 

explained by the fact that more additives molecules are available in the vicinity of the electrode 

surface, owing to the larger solubility of this compound than for Co(II)-Po: the Epc1'/Epa1' current 

densities are almost doubling those of the Epc1/Epa1 (more Co-salen can be dissolved in the 

electrolyte than for Co(II)-Po).  

-Mass transport and kinetic parameters determination: 

As for the Co(II)-Po, the number of electrons exchanged (n) for the transition Co(II)-salen/Co(III)-salen 

is estimated by performing various scan rates in Ar-purged medium (Figure IV.23). 
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Figure IV. 23: iR-corrected voltamperogram obtained for a glassy-carbon electrode in an Ar-purged electrolyte comprising 
3.8 mM of Co-salen, in 0.2 M TBAClO4 in DMSO. The scan rates varies from 20 to 200 mV s-1. 

It is clear from Figure IV.23, that the redox activity of Co-salen is quasi-reversible, as when the scan 

rate increases, so does the difference between the oxidative and reductive peaks. It can also be seen 

that the second redox activity (which occurs at lower potential), is not visible. This can be explained 

by the fact that in this experiment, TBAClO4 is used instead of LiClO4, and that some interactions 

between the latter (probably with the lithium cation) and the Co-salen, allows the second redox 

activity to occur at higher potentials, while it is not possible in TBAClO4 electrolytes; this effect is 

probably linked with the formation of ion pairs [38]. In order to prove this point, the same Co-salen 

content was dissolved in 0.2 M LiTf and compared with 0.2 M TBAClO4 (Figure IV.24). This figure fully 

validates this explanation: the second redox activity of the Co-salen appears in a lithium-containing 

electrolyte. 
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Figure IV. 24: iR-corrected voltamperogram obtained for a glassy-carbon electrode in an Ar-purged electrolyte comprising 
3.8 mM of Co-salen, in either 0.2 M TBAClO4 (Black) or 0.2 M LiTF (Red) in DMSO, 100 mV s-1. 

The values for the variation of ΔEp with the scan rate (corresponding to Figure IV.23), are presented 

in Table IV.4. 

Table IV.  4 : ΔEp dependency on the scan rate for the oxidation of Co(II)-Salen 

Scan rate (mV s-1) ΔEp Oxidation (mV) 

20 79 

50 88 

80 99 

100 104 

200 142 

 

As for the Co(II)-Po, the ΔEp is greater than 60 mV, and grows with the scan rate. Thus, the oxidation 

kinetics of Co(II)-Salen is quasi-reversible and it is assumed that the number of electrons exchanged 

for the Co(II)/Co(III)-Salen transition is one (consistent with the literature [33, 38]). For the reduction 

of Co(II)-Salen to Co(I)-Salen, the number of electrons exchanged is also assumed to be one, as in the 

previous chapter, the ΔEp was measured around 80 mV at 5 mV s-1. 
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Rotating-disk electrodes experiment were performed in 0.2 M LiClO4, with 0.74 mM of Co-Salen, and 

the corresponding results are presented in Figure IV.25. 

 

Figure IV. 25: Linear Scan Voltammetries, 5 mV s-1 in 0.2 M LiClO4 DMSO, 0.74 mM of Co-Salen, Ar-purged medium. A-From 
OCV to -1.5 V vs. Ref. B-From OCV to 0.4 V vs. Ref 

The behavior shown on Figure IV.25 clearly shows a process obeying Levich equation (no passivation 

of the electrode occurs, and clear dependence of the limiting current density to the rotation rate of 

the electrode is monitored). As the rotating disk electrode revolution rate is comprised between 100 

and 10 000 rpm, the Levich law can be applied (Equation IV.18), and the corresponding Levich plots 

can be drawn by plotting the limiting current densities with the square root of the rotation rate 

(Figure IV.26). 

 

Figure IV. 26: Levich plot for A- Reduction of Co(II)-Salen to Co(I)-Salen . B- Oxidation of Co(II)-Salen to Co(III)-Salen 

The diffusion coefficient of the oxidation of Co(II)-salen to Co(III)-salen and the reduction of Co(II)-

salen to Co(I)-salen are calculated thanks to the same hypotheses than for Co(II)-Po (viscosity of the 

electrolyte equal to the one of pristine DMSO, number of electrons exchanged equals to one…); the 

slopes of the Levich Plots and their values are presented in Table IV.5. 
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Table IV.  5 : Diffusion Coefficients for the Co-Salen in DMSO electrolyte 

Reaction Co-salen concentration (mol cm-3) Diffusion coefficient (cm² s-1) 

Reduction 7.40 10-7 2.66 10-6 

Oxidation 7.40 10-7 2.35 10-6 

 

As for the Co(II)-Po, the diffusion coefficients determined correspond to a slow-moving molecule, 

compared to ferrocene (for instance). Also, as for the Co(II)-Po, the diffusion coefficient of the Co(II)-

salen is larger for its reduction than for its oxidation (13%), which can be explained in a similar 

manner than for Co(II)-Po, by background distortions, or reduction of O2 traces. The results in an O2-

saturated electrolyte are presented in Figure IV.27.  

 

 

Figure IV. 27: Linear Scan Voltammetries, 5 mV s-1 in 0.2 M LiClO4 DMSO, 0.74 mM Co-Salen, Ar (black) and O2 (green) 
purged media. A-From OCV to -1.5 V vs. Ref. B-From OCV to 0.4 V (or 0.7 V) vs. Ref 

For the reduction experiment, (Figure IV.27-A), the ORR peak current density (green line) increases 

from no rotation to the presence of a rotation, as expected. However, the trace for 500 rpm and the 

other rotation rates (1000, 1500 and 2000 rpm) are almost the same, indicating that the transport of 

O2 to the electrode in the electrolyte is not the limiting step (but rather the charge transfer kinetic of 

the ORR scheme limits the reaction). It must be noted, though, that in opposition with the 

experiments with Co(II)-Po, the ORR current density is not decreasing (or by a very little value), which 

proves that the redox shuttle effect is to some extent working here. The OER experiments (Figure 

IV.27-B) support this conclusion: the OER current of the oxidation of Li2O2 itself is not increasing with 

the rotation rate (which is normal as the transport of species to the electrode is not supposed to 

increase the oxidation of a solid product on the electrode), but when going at higher potential 

values, the current is rotation-rate dependent, (the greater the rotation rate, the greater the current 
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density); this proves that some of the surface has been freed, which can only be explained by a true 

efficiency of the Co-salen to enhance the recharge. 

Considering the differences between Co(II)-Po and Co-salen, and comparing the values between 

Table IV.2 and Table IV.5, it is clear that the Co-salen has a greater diffusion coefficient than Co(II)-

Po, which is probably linked to the fact that the Co-salen is a smaller molecule than Co(II)-Po, 

enabling it to move faster in solution. In addition, from a practical point-of-view, both the oxidation 

of Co(II)-Po and Co-salen are quasi-reversible, as their ΔEp grow from low to high potential scan 

rates. Thanks to the determination of the diffusion coefficient, and with the experiment with the 

different scan rates (Table IV.4), the standard rate constant can also be determined for the oxidation 

of the Co-Salen, using the same equations than for the Co(II)-Po (equations IV.19 to IV.22) and the 

same hypotheses (DO = DR and α = 0.5). The calculations data are gathered in Table IV.6. 

Table IV.  6: k° calculations, using fit of[10] for the oxidation of Co-Salen at several scan rates 

Scan rate (mV s-1) ΔEpeak(mV) ψ a k° (cm s-1) 

20 79 1.275 0.779 3.06 10-3 

50 88 0.847 1.947 3.21 10-3 

80 99 0.590 3.116 2.83 10-3 

100 104 0.515 3.895 2.76 10-3 

200 142 0.245 7.790 1.86 10-3 

 

Considering the rate constant values for the oxidation of Co-Salen, an average value of k° is of 

(2.74±0.53) 10-2 cm s-1. This value, compared to the one obtained for the Co(II)-Po, is more than three 

times higher, indicating a faster kinetic process.  

Combining all the results from the Rotating disk electrode experiments and Randles-Sevcik ones (no 

rotation but different scan rates), one concludes that the Co-salen exhibits (i) a higher diffusion 

coefficient (better transport to the electrode), but also (ii) a higher standard rate constant (faster 

kinetics process for the oxidation of Co-Salen than Co(II)-Po), along with (iii) a better solubility. These 

characteristics demonstrate that the Co-salen is the best redox shuttle candidate (much better that 

Co(II)-Po), which has already been demonstrated in the present chapter. Now, another effect is also 

stressing more this better behavior of the Co-salen compound, as discussed in the next part: the ORR 

homogeneous catalysis of Co-salen. 
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II.  OER enhancement mechanisms of Co(II)-Po and Co-

salen - How the Co salen is beneficial for both the 

OER and ORR 

The screening of potential redox shuttles identified in the first part of this chapter indicated that two 

compounds are of high interest for the enhancement of the OER. However, the understanding of the 

precise mechanisms of this enhancement is not complete yet, and as such more characterizations are 

needed. In this scope, Differential Electrochemical Mass Spectroscopy along with UV-Visible 

spectroscopy and analytical electrochemistry were used to unravel those mechanisms. 

 

a. Enhancement pathway of the OER for Co(II)-Po and Co-Salen 
 

As previously shown, the recovery of the carbon electrode surface occurred during the cyclic 

voltammetry experiments for both Co(II)-Po and Co-salen redox mediators. In order to better assess 

the usability of those compounds in a practical system, complementary discharge experiments, using 

a DEMS setup, were performed. To be more specific, a chronoamperometry was conducted for 20 

minutes, at the potential of the ORR peak current density (-0.8 V vs. Ref), yielding a severely 

discharged (passivated) carbon electrode. Then, five cycles were performed (at 5 mV s-1), only in the 

OER region, and the O2 ion current was followed by the mass spectrometer, in order to compare the 

oxygen emission with those additives versus without. The DEMS signal of the ORR 

chronoamperometry is depicted in Figure IV.28. 
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Figure IV. 28: O2 ion current (primary Y-axis) and potential (secondary Y-axis) monitored during the ORR 
chronoamperometry experiment for A-Without additives. B-With Co(II)-Po. C-With Co-Salen, in 0.2 M LiClO4 DMSO 
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As observed on Figure IV.28, once the potential drops from the Open Circuit Voltage, to -0.8 V vs. 

Ref, the O2 ion current drops, which shows that O2 is consumed at the carbon electrode, following 

the occurrence of the ORR on the electrode surface. As a result, lithium peroxide is produced, 

probably by the well-known ORR pathway [29, 39–41] ( following equations IV.23-25), leading to the 

gradual passivation of the electrode: 

Li+ + O2 + e
− → LiO2         (IV.23) 

2 LiO2 → Li2O2 + O2         (IV.24) 

Li+ + LiO2 + e
− → Li2O2        (IV.25) 

Then, the five voltammetric cycles of regeneration (OER) are recorded (Figure IV.29). 
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Figure IV. 29: O2 ion current (primary Y-axis) and potential (secondary Y-axis) monitored during the OER regeneration 
experiment at 5 mV s-1. For A-Without additives. B-With Co(II)-Po. C-With Co-Salen, in 0.2 M LiClO4 DMSO. KF below 350 

ppm. 
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Without additive (Figure IV.29-A), a perfect match is observed, between the oxygen released during 

the OER and the electrochemical oxidation current. As the main discharge product in an anhydrous 

electrolyte must be Lithium peroxide, the subsequent OER global reaction is: 

Li2O2 → 2 Li
+ + 2e− + O2        (IV.26) 

However, in the cases of the Co(II)-Po and Co-salen containing electrolyte, the electrochemical 

current and O2 ion current do not match (Figure IV.29-B and C). This observation, as surprising and 

not expected as it may be, does not mean that those redox shuttles are not working, though: the 

electrochemical signals indeed clearly show an OER enhancement. So, one could speculate that in 

presence of either the one or the other redox compound, the oxygen signal is hindered: even though 

more electrochemical current is recorded, less oxygen is detected (and mostly noise is detected). This 

observation, on the other hand, is simply explained by the fixation of the oxygen molecules on the 

cobalt core (as presented in the previous part, Figure IV.16), which shows that the OER enhancement 

must occur in the same manner for the Co(II)-Po and the Co-Salen mediators (for more clarity, the 

complex will be noted Co(II)-complex in both cases in the following equations), and is probably 

occurring as follows: 

Li2O2 → 2 Li
+ + 2e− + O2         (IV.27) 

Co(II) − Complex → Co(III) − Complex + e−      (IV.28) 

2 Co(III) − Complex + Li2O2 → 2 Li
+ + 2Co(II) − Complex + O2    (IV.29) 

Co(II) − Complex + O2 → O2 − Co(III) − Complex     (IV.30=IV.15= IV.16) 

In this mechanism, oxygen molecules have a strong affinity with the redox complexes; as these 

complexes are present in solution at concentrations that are near-similar to the oxygen solubility in 

the electrolyte and as the electrolyte is in excess in the DEMS experiments, one understands that 

upon O2 evolution at the electrode surface in the “recharge”, the redox mediators “instantly” trap 

this evolved O2 to form the O2 − Co(III) − Complex, which explains why the detection of O2 is 

hindered during the DEMS experiment.  Computing those DEMS results, with the O2-Saturated RDE 

experiments realized above (Figures IV.21 and IV.27), it is clear that the amount of Redox shuttle, 

dissolved in solution, is a key parameter. In the rotating-disk electrode experiment for Co(II)-Po, the 

redox shuttle effect was not observable, with a concentration of Co(II)-Po of 0.265 mM. On the other 

hand, with an increased content of Co(II)-Po (as seen on Figure IV.17, and on the DEMS experiments, 

on Figure IV.29), probably in the range of 1-2 mM, the redox shuttle effect is effective. Comparing 

those values with the oxygen concentration at saturation in DMSO (2.1 mM [42]), it becomes clear 

that, in order to be efficient, a redox shuttle must be dissolved in the same range of concentration 
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than oxygen (when the content was about ten times lower for the Co(II)-Po, the redox shuttle effect 

was not achieved). Therefore, in a practical system (working with DMSO), it will be a requirement to 

dissolve at least a content of one or two millimole per liter of the redox shuttle, for the effect to 

proceed. 

 

b. ORR Homogeneous catalysis of Co-Salen 
 

As explained above, a reversible complex is formed between oxygen and the Co-salen. As published 

by Ortiz et al [33], a catalytic effect is observed between Co-salen and oxygen molecules, this 

catalytic effect still being observed in presence of lithium cations. This effect can be observed in 

three-electrode setup and is inducing a huge gain on the ORR potential (Figure IV.30): 

 

Figure IV. 30: Initial voltamperogram of the glassy-carbon electrode in 0.2 M LiClO4 DMSO O2-purge, v = 5 mV s-1. Solid line: 
no additives; red short Dashed line: Co(II)-Po-; dot-dashed line blue line: Co-salen,. KF titrations below 100 ppm 

As seen on figure IV.30, the addition of Co(II)-Po is not triggering any catalytic effect, even though a 

complex is also formed (as proven in the previous sections). However, the Co-salen induces a new 

reduction feature, occurring 230 mV above the ORR onset potential: Epc3. As published by Ortiz et al 
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[33], this effect is due to the reduction of the complex. Thus, in presence of oxygen and in a lithium-

containing electrolyte, lithium superoxide is produced according to equation (IV.31): 

O2 − Co (III) − Salen + Li
+ + e− → Co (II) − Salen + LiO2     (IV.31) 

As it is well-known that lithium peroxide is unstable, it is thus highly probable that it 

disproportionates into lithium peroxide, far above the potential of its production without the Co-

salen (equation IV.32). 

2 LiO2 → Li2O2 + O2          (IV.32) 

In order to verify that this catalytic effect is occurring, in situ DEMS was carried out. In this scope, 

very slow linear scan voltammetries were conducted (2 mV s-1), firstly from the Open Circuit Voltage 

to -1.5 V vs. Ref, and then from the new OCV (ten minutes stabilization) to 0.7 V vs. Ref. The 

corresponding experiment is presented on Figure IV.31. 
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Figure IV. 31: O2 ion current (primary Y-axis) and electrochemical current (secondary Y-axis) monitored during DEMS Linear 
Scan Voltammetries experiments 2 mV s-1, in 0.2 M LiClO4 DMSO. Electrolyte with Co-salen: 2.1 mM. A- ORR LSV recording 
from OCV to -1,5V vs. Ref. B-OER LSV from OCV (10 minutes after ORR LSV), to 0.7V vs. Ref. Karl Fisher at the beginning of 

the experiment: 80 ppm; at the end: 300 ppm. 
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Figure IV.31-A shows that the oxygen depletion at the electrode surface is perfectly matching the 

electrochemical current in both cases (without additives and with Co-salen). This implies that oxygen 

is also consumed above the ORR without additive, probably when the complex is reduced at Epc3 

(equation IV.30), as the +II state is retrieved for the cobalt core. This probably induces reaction 

(IV.33), that happens simultaneously than reactions (IV.31) and (IV.32): 

Co (II) − Salen + O2
K2
⇔O2 − Co (III) − Salen      (IV.33 = IV.16) 

Concerning the OER, the observations are the same than in the part II.a: the oxygen signal is 

hindered in presence of the Co-salen complex, even though more faradic (electrochemical) current is 

produced. However, the end potential here was fixed slightly above the value monitored in the 

previous data, and a slow rise of the oxygen current can be observed above 0.3 V vs. Ref. One might 

imagine that this slow rise can be linked to the oxidation of the complex, linked with oxygen 

(equation (IV.34)): 

O2 − Co (III) − Salen → Co (III) − Salen + e
− +O2      (IV.34) 

However, the DEMS itself is not sufficient to prove that this reaction is indeed occurring, in situ 

Infrared or UV-Visible spectroscopy might be of good help, which is was beyond reach in the time 

frame of this PhD and could be performed in the future. 

This homogeneous catalysis effect, combined with the redox shuttle effect might be the solution to a 

strong issue concerning the non-aqueous Li-air technology. As McCloskey put forth interrogations on 

the efficacy of heterogeneous catalysis for Li-O2 cathodes [1, 22], one can question the usability of 

the best ORR electrocatalysts to enhance the charge/discharge of Li-O2 batteries, as these materials 

will be covered by a layer of lithium peroxide and shall only be efficient in the first cycle of 

discharge/charge (the better their efficiency to assist ORR, the thicker the Li2O2 layer at their 

surface). However, if the ORR electrocatalyst is soluble in solution (which is the case for the Co-

salen), and if the same compound has the ability to recover the surface (proved here), then the 

issues related to electrocatalysis (even heterogeneous catalysis) appear much less detrimental. 

Nevertheless, a lot of efforts still have to be conducted to develop such electrocatalysts of non-

aqueous ORR, as these electrocatalysts cannot be carbon-based, carbon being easily decomposed by 

lithium peroxide [17] (along with solvents [17, 41, 43], salts [44, 45], etc.). 

Finally, as CO2 formation by degradation of the electrode/electrolyte by Li2O2 is a severe issue (see 

Chapter one), the CO2 ion current was also monitored in presence of the Co-salen additive in 

solution; the results are depicted on Figure IV.32. 
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Figure IV. 32: CO2 ion current (primary Y-axis) and electrochemical current (secondary Y-axis) monitored during DEMS Linear 
Scan Voltammetries experiments, 2 mV s-1 in 0.2 M LiClO4 DMSO. Electrolyte with Co-salen: 2.1 mM. A- ORR LSV recording 
from OCV to -1.5 V vs. Ref. B-OER LSV from OCV (10 minutes after ORR LSV), to 0.7 V vs. Ref. Karl Fisher at the beginning of 

the experiment: 80 ppm; at the end: 300 ppm. 

The results from Figure IV.32 are unequivocal: no CO2 is evolved in 0.2 M LiClO4 DMSO electrolyte 

during the ORR (Figure IV.32-A) and CO2 is evolved in the OER, above 0.5 V vs. Ref in presence of the 

Co-Salen (IV.32-B), when it is not without additive. This proves that the CO2 is evolved rather because 

of the additive decomposition at higher potential than because of the decomposition of the carbon 

support or base electrolyte [17]. This demonstrates that the upper electrode potential value must be 

kept below 0.5 V vs. Ref in presence of the Co-salen additive, otherwise this additive will suffer 

irreversible decomposition. This is not a severe drawback, as this compounds was proven effective to 

assist the recharge (OER from Li2O2) below 0.4 V vs. Ref (see previous section). 
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Conclusions: 
 

The necessity of using redox shuttle additives dissolved in the cathode electrolyte to favor the 

complete recharge of Li2O2 was demonstrated, as otherwise the charging processes would suffer 

from sluggish kinetics and remain incomplete, triggering a risk of capacity losses at each cycles. 

Several families of compounds were tested, and only two compound were proven efficient, the 

others being either inappropriate (no oxidoreductive activity in the required voltage window), or not 

applicable in a Li-O2 cathode (strong reactivity of the additive with ORR product). These two 

compounds are 5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) and N,N′-

Bis(salicylidene)ethylenediaminocobalt(II), and their activity were demonstrated in model 

experiments.  

It was proven thanks to DEMS and UV-Visible spectroscopy that both compounds have the ability to 

bind with oxygen, which render the OER enhancement detection by DEMS difficult. However, the 

positive redox shuttle effect (enhancement of the OER) was proven for both compounds in three-

electrode setup: regeneration experiments allowed to recover the cyclic voltammetry trace (low scan 

rate) of the glassy-carbon (and carbon cloth) electrode after discharge and charge than on a fresh 

electrode (this cannot be achieved in anhydrous electrolyte, without OER redox shuttles in solution). 

Determination of diffusion coefficients and standard rate constants was performed for both 

compounds and it was found that in both case, the Co-salen outperforms the Co(II)-Po, which 

exhibited slower diffusion coefficient, solubility and oxidation kinetics. All these aspects make of Co-

salen a very good redox additive to assist the recharge in non-aqueous Li-air batteries. Interestingly, 

the Co-salen has also proven beneficial for the ORR, as it allows an homogeneous catalysis (the 

reduction of the complex with oxygen proceeds at 230 mV higher values than the ORR onset 

potential without any additives), which places this additives amongst the best (if not the best) for the 

use as both redox-shuttle for the OER and in-solution ORR electrocatalyst. Nevertheless, this additive 

is prone to decomposition at high potential values (above 0.5 V vs. Ref); this is however not a serious 

issue for the application, at it is efficient to assist the recharge, even when the electrode potential 

window is restricted in terms of upper limit: limiting the OER end-potential at 0.4 V vs. Ref does not 

(or very little) impact the recharge process. 

Yet, in a practical system, the cathode will not be glassy-carbon or Zoltek Panex 30 (even though 

these support are resistant toward lithium peroxide, they exhibit a very low surface area), and it was 

proven in Chapter two that high surface area carbons are prone to decomposition by lithium 

peroxide. Thus the issue of the carbon protection is not solved by the addition of a soluble redox 
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shuttle in solution and must be investigated. A cathode protection by Atomic Layer Deposition will be 

proposed and presented in the following chapter. 
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As one solution was proposed in the last chapter to solve the charging issue of Li-O2 cathodes, one 

other main issue of Li-O2 batteries remains: the protection of the carbon cathode. If one wants to 

prevent its decomposition (high-surface-area carbon can be decomposed by contact with Li2O2 

and/or at the high potential values encountered in recharge, see chapter two), two strategies exists: 

either the material of the cathode is changed (two examples are presented in the literature with gold 

nanoparticles [1], and a screening of TiC, SiC and TiN cathodes [2]), or the carbon material has to be 

protected. The advantage of carbon over TiC, SiC and TiN is that it can exhibits much higher surface 

area, and the main advantage over gold nanoparticles is that it is way cheaper.  

In the present work, it was imagined to protect the carbon material by a thin layer of stable metal-

oxide in these conditions. Two materials were selected: Nb2O5 and V2O5. In the present chapter, 

Nb2O5 is particularly under focus; it exhibits a bandgap of about 3.7 eV [3], and an appropriate 

technique for its deposition as thin-layer is atomic-layer deposition, which has been proven efficient 

to make highly-conformal deposits on rough surfaces, with a high control of the thickness [4, 5]. In 

this scope, two ways of elaboration are tested: Plasma-Enhanced Atomic layer Deposition (PEALD), 

which allows to work at lower temperature, yields more directive deposition [6]) and thermal ALD, 

which is non-directive but proceeds at higher temperature and slower growth-rate. Those techniques 

will be first investigated on a model surface (silicon 400), and then transferred to a carbon substrate 

that proved interesting for the Li-O2 system, the Zoltek® Panex 30 carbon cloth. 

 

I. Atomic Layer Deposition: Principles 
 

The atomic Layer Deposition technique was born in the late 1970s [7, 8], in order to fulfill the needs 

of electroluminescent panels. For this industry, very thin layers of dielectric and luminescent 

products were needed on large surfaces. Suntola and his team had the idea of introducing 

sequentially elementary precursors, which allowed a perfect control of the thickness, unlike the 

other deposition techniques available at that time (such as cathodic pulverization/vaporization).  

The ALD is derived from a technique, invented in the late 1920's: the chemical vapor deposition 

(CVD). Both techniques use elementary precursors and rely on the chemisorption of the latter on the 

surface onto which the deposit is targeted. However, the CVD process is not introducing sequentially 

the precursors, which are flowed concomitantly in the reactor and are reacted at much higher 

temperature. As a consequence, the growth-rate of CVD deposits is much higher than for ALD 

deposits, but suffers from issues that are not occurring in ALD (inclusions of particles in the deposited 
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layer, heterogeneous thickness, non-conformal-deposits, etc.). A scheme for an atomic layer cycle is 

presented on Figure V.1. 

 

Figure V. 1: ALD cycle scheme for two precursors for a oxide formation recipe, reproduced from [8], with permission from 

Les techniques de l'ingénieur. 

The first step is the pulse of the reactant A in the reactor. During this step, some of the precursors 

can chemisorb on the surface and generate by-products following their (partial) decomposition. 

During the second step, the remaining reactant A (which has not reacted, yet) and the gaseous by-

products are flushed out from the reactor chamber by an heavy-pumping: this is a purge (step 2). 

Then, the oxidant (reactant B) is introduced (pulsed) in the reactor and reacts on the substrate 

surface (step 3), in the same fashion than reactant A, during the first step (chemisorption). Then, in 

the same manner than for the second step, a heavy-pumping flushes the gaseous by-products and 

remaining reactant B precursors (Step 4). All those steps characterize one ALD cycle. It can be easily 

understood that the thickness of the deposit will be thus strongly linked (and controlled) by the 

number of ALD cycles in a given process. 
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Unlike other gas-phase depositions techniques, deposits are conducted in mild conditions of 

temperature (25 < T < 600°C), which allows deposition on "fragile" and sensitive substrates such as 

polymers, biological materials, etc. 

Several parameters are crucial for the elaboration of a thin-layer by ALD: the temperature of the 

deposition, the reactivity of the precursors (reactants A and B have to react on each other 

irreversibly to produce self-limiting reactions onto the substrate), the pulse time (the best time might 

differ from reactant A to reactant B) and the purge time (which has to be as small as possible to limit 

the cycle time, but long-enough to purge unreacted/non-adsorbed reactant molecules). The 

parameter that defines best the efficiency of the deposition (at a given temperature) is the Growth 

per Cycle (GPC), expressed in Angström per cycle (Å cycle-1). In theory, the GPC is about the size of a 

monolayer on the surface, but usually, the surface has to be activated first (the activation depends 

on the temperature, the nature of the reactants and of the substrate). This dependence (also called 

“ALD window”) is illustrated by Figure V.2. 

 

Figure V. 2: Determination of the ALD window; Dependence of the GPC on the Temperature 

Five zones can be observed on Figure V.2. The first zone (1) corresponds to the condensation of one 

of the reactant on the substrate surface (which favors the deposition as the reactant is not gaseous 

anymore, and more can be retained on the surface). The second zone (2) corresponds to the case 

where the temperature for the deposition is not high enough to support the activation of the 

deposition; usually, this zone is called the kinetic regime and the deposition rate is proportional to 

the exponential of the activation energy [7] (𝑒−
𝐸𝑎

𝑅𝑇 ): thus the higher the temperature, the greater the 

GPC. The third Zone (3) is the ALD window: the temperature does not impact the deposition as the 

substrate is hot enough (no condensation nor activation) and the GPC can only be limited in this 

region by the pulse/purge time of each precursor, as the limiting step is the chemisorption of each 



148 
 

reactant within the ALD cycle. This zone is substrate-dependent and precursor-dependent: it might 

not be seen or it can be very narrow for a given reaction on a given substrate [5, 8]. The fourth zone 

(4) corresponds to the case where the precursor is decomposed on the substrate before reacting 

with the surface. The fifth zone (5) can be explained by several effects: precursor desorption, 

sublimation of the deposit, etc. 

Usually, one of the reactant is an elementary precursor of the material needed to be deposited, at 

the same oxidation state and the other reactant supplies the needed element to complete the layer 

(e.g. oxygen or nitride). For instance, if one wants to deposit Al2O3, the reactant A will be an 

elementary precursor, comprising aluminum in the +III state, and reactant B could be an oxygen 

supplier (H2O, N2O, O2, etc.). It must be noted that if one wants to make nitride depositions, as oxides 

will always be  favored versus nitrides, no oxygen atoms must be present in both reactant A and B. 

Several families of ligands are available for the metallic precursors, as depicted on Figure V.3. 

 

Figure V. 3: Ligands available for metallic cation precursors, reproduced from, with permission from [7], with permission 

from Les techniques de l'ingénieur 

The reactivity of the metallic precursor (in terms of kinetics of the deposition), does not depend on 

the ligand, as the reactants are introduced sequentially in the reactor. However, major 

characteristics of the metallic precursor depend on the ligand, such as the stability of the precursor 

at the temperature of the deposition and the sublimation/evaporation temperature (if the 

sublimation temperature of the precursor is above that required for the deposition, the precursor 

will condensate on the substrate and on the reactor walls, which must be avoided). Also, in general, 

halide precursors are avoided, as by-products can produce gaseous acids (such as HCl, HBr, HF, etc.), 

which can corrode the substrate and/or the reactor, and produce in situ etching of the film [9]. Also, 
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the impact of both the pulse-time and purge-time of a reactant can have a great impact on the 

thickness of a deposit, as shown on Figure V.4: 

 

Figure V. 4: Impact of the pulse-time and purge-time of the reactants on the Growth rate of an ALD deposit; reproduced 

from [7], with permission from Les Techniques de l'ingénieur. 

It is mandatory, if one wants to be independent to the pulse-time, to have long-enough pulse-time to 

fully adsorb the reactant on the substrate surface [8, 10]; if not, the deposit will take longer to 

proceed, as parts of the substrate surface will be covered by reactive adsorbates. Also, if the purge-

time is not sufficient, remaining of the other reactant will be in the reactor, and gas-phase reactions 

will occur (CVD-like), leading to larger GPC, but  with risk of non-homogeneities in the deposit. 

 

II. Deposits of Nb2O5 on Silicon: a model study 
 

Nb2O5 was chosen over other materials, for three reasons: firstly, a line with a niobium precursor was 

available on the ALD reactor, thus no changes in the reactor setup was required. Secondly, oxides 

were chosen over nitrides, as oxides will always be preferentially formed to nitrides, and most of the 

time, nitride films comprises oxides (because of oxygen traces in the precursors, or in the gases, etc.); 

therefore, oxides will likely be more stable in the operating conditions of a Li-O2 positive electrode. 

Thirdly, Nb2O5 oxide have the ability to intercalate lithium ions, and can be used as a positive 

electrode in Li-ion systems [11]. This behavior can be used in our advantage, for a symbiotic effect: 
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Li-ion-like insertion/de-insertion of Li+ for power delivery, and aprotic reduction/evolution of oxygen 

for high energy density). Finally, a large panel of study focuses on the deposition of Nb2O5 nanofilms 

in the literature [12–17], proving that deposition of this material is achievable by Atomic Layer 

Deposition.  

In this study, the niobium precursor was (tert-butylimido)bis(dimethylamino)Niobium (TBTDEN), his 

formula being presented in Figure V.5. 

 

Figure V. 5: Chemical structure of the niobium Precursor (TBTDEN) 

Two ways of depositions were investigated and compared in this study:  

- Thermal Atomic Layer Deposition, with N2O as the oxidant (Reactant B). 

- Plasma Enhanced Atomic Layer Deposition (PEALD), with a plasma of oxygen as the oxidant. 

The equipment used for the deposition (for both recipes) was a PicosunTM R-200 advanced. A large 

range of temperature can be applied with this machine (from 50 to 500 °C). Also, the strong 

advantage of this equipment is linked to a very homogeneous temperature in the reactor, which 

allows (in principle) a uniform deposit on the sample. 

 

a. Surface morphology of NbxOy deposits  
 

i. Surface morphologies 

The surface morphology of the deposits were analyzed by surface SEM and images of the best 

deposits (in terms of thicknesses at the better elaboration temperature) are presented on Figure V.6. 
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Figure V. 6  SEM pictures taken with a tension of 3 kV, at either a magnification of 20.00 kX (A,C,E) or 50.00 kX (B,D,F). 

Images of pristine Silicon (A & B), PEALD at 225°C and 2000 cycles (C &D), ALD thermal at 375°C, 5000 cycles 

Figure V.6 shows that the pristine silicon is very flat, even at high magnification (Figure V.6-B). The 

observation is the same for the PEALD deposit: the surface appears as smooth as for the pristine 

silicon at high magnification (Figure V.6-D), indicating a process that is highly conformal. However, a 

small roughening of the surface appeared for the deposition, conducted with the thermal ALD 

(compared to PEALD and pristine silicon at 50.00 kX, Figure V6.F). This is probably linked to the 
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higher temperature required for the thermal ALD to proceed, as it will be presented here-after for 

the ALD window determination. 

 

ii. Atomic Layer Deposition window 

In order to characterize an ALD process, it is common to find if an ALD window exists (or not). To do 

so, the pulse and purge times for the reactants are fixed with reasonable values, to be sure that each 

cycle does not depend on the pulse or on the purge time (see part I). Here, similar conditions than in 

the work of Blanquart et al [12] were chosen for the precursor and oxidant purge times: they used a 

pulse/purge ratio of 0.7 s/1.0 s for the TBTDEN and of 1.0 s /1.5 s for oxygen (which was their 

oxidant). To verify that the conditions of pulse and purge time were sufficient, those times where 

increased and the corresponding conditions are presented in Table V.1; it must be noted that our 

group used before the TBTDEN, which was tough to evaporate (evaporation/transport temperature 

of 100°C), thus the Boost® feature of Picosun was used. This feature consists of a strong pulse of N2 

(400 sccm for 0.7 s) during the precursor pulse-time, which increases greatly its transport into the 

reactor. Otherwise, the flow is fixed at 80 sccm in the lines (of the precursor and oxidant, during their 

pulse-time). 

Table V. 1: Deposits conditions for the ALD window determination 

Recipe 

TBTDEN  

pulse-time (s) 

TBTDEN  

purge-time (s) 

Oxidant  

pulse-time (s) 

Oxidant  

purge-time (s) 

PEALD 1.1 2 12 2 

Thermal ALD 1.1 2 4 4 

 

Deposits were realized on flat, microelectronic grade silicon (400), at either 5000 or 2000 cycles (the 

number of cycles has, in theory no impact for the ALD window determination), and the thicknesses of 

the deposits were evaluated by cleaving the samples and analyzing them with SEM on the cleaved 

spine. Two examples of the thicknesses measurements by SEM are presented on Figure V.7. Three 

measurements were carried out for each sample and a deviance was subsequently calculated. 
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Figure V. 7: SEM thicknesses determination. Tension 3 kV, magnification 100.00 kX. PEALD at 225°C, 2000 cycles, picture 

without cursors (A), with (C). Thermal ALD at 375 °C, 5000 cycles, Picture without cursors (B), With (D) 

The deposits are clearly observable by SEM ( Figure V.7); it is thus very easy to determine their 

corresponding thicknesses, at different temperatures. The latter can also be determined by 

Ellipsommetry. The corresponding results are presented on Table V.II (for elaboration by PEALD) and 

Table V.III (for elaboration by Thermal ALD). 
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Table V. 2: Experiments conducted on Si (400) by PEALD recipe, with either 2000 or 5000 ALD cycles 

Temperature (°C) 100 125 150 175 200 225 250 275 300 350 

Number of cycles performed 5000 5000 5000 2000 5000 2000 5000 2000 5000 2000 

Thickness measurements 

by SEM (nm) 192 173 168 62 157 61 148 60 58 52 

SEM measurement 

deviance (nm) 6 4 2 6 3 2 4 5 1 2 

Thickness measurements by 

Ellipsometry (nm) 185 173 170 54 160 52 151 49 49 43 

Deviance 

SEM/Ellipsommetry 

measurements (nm) 3 0 1 4 2 5 1 6 5 4 

 

Table V. 3: Experiments conducted on Si (400) by thermal ALD recipe, with 5000 ALD cycles 

Temperature (°C) 250 275 300 325 350 375 400 425 

Thickness measurements by SEM (nm) 0 0 0 29 47 78 54 42 

SEM measurement deviance (nm) 0 0 0 1 4 3 4 1 

Ellipsometry thickness (nm) 3 4 16 19 27 26 120 23 

Deviance SEM/ Ellipsometry 1 2 7 10 15 28 40 14 

 

The deposits are highly conformal and the deviance obtained, for the SEM measurements, was rather 

due to the appreciation of the delimitations of the deposit/substrate and deposit/void. The 

ellipsometry measurements for the PEALD recipe (Table V.2) are supporting the measurements 

conducted by SEM with a very low difference between the former and the latter (of about the same 

value for the reading of the deposit thickness on the SEM pictures). 

 However, the ellipsometry measurements for the thermal ALD recipe show a strong deviance with 

the measurements by SEM (up to 40 nm). The ellipsometry is very sensitive to the surface of the 

sample (roughness) and to the homogeneity of the deposit [18, 19]. As presented on Figure V.6, the 

sample roughness of the thermal ALD recipe appears greater than the one of pristine Si (400) or of 

the PEALD. Also, heterogeneities in the deposit can be held responsible for this deviance of thickness 

measured from ellipsometry. As the measurements of the thickness by SEM is more reliable, it is this 



155 
 

value that will be used to plot the growth per cycle (GPC, in Å cycle-1) versus the temperature, a value 

that enables to find the ALD window (if available) and the conditions of the deposition (Figure V.8). 

 

Figure V. 8: ALD window determination for the PEALD (black ) and the thermal ALD (red) 

As depicted on Figure V.8, the PEALD allows a greater GPC than the thermal ALD, which was 

expected (plasma enhances the reactivity, thus increasing the GPC at lower temperatures [4, 6, 10]). 

The trend for the PEALD seems to be: (1) condensation of the precursor at low temperature (as the 

GPC is greater at 100°C than at 125°C); then (2) a rather large and stable ALD window can be 

observed from 125°C to 300°C  (with GPC varying from 0.33 Å per cycle to 0.3 Å per cycle); (3) at 

350°C, a GPC of 0.26 Å per cycle is obtained, which might indicate either a sublimation of the 

product, or the precursor desorption. However, if it was really the case, then at the same 

temperature, the elaboration by thermal temperature was supposed to occur too (as it is the same 

end-product that is supposed to be deposited). As it is not the case, it is postulated that the point at 

350°C, for the PEALD process, is still comprised within the ALD window (but some effect might have 

perturbed the deposition). The ALD thermal process, on the other hand, does not seem to exhibits 

any ALD window, as the GPC grows, to its maximum (at 375°C) and then sharply decreases, indicating 

(this time), either the sublimation of the product or desorption of the precursor because of the high 

temperatures. 
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b. Composition of the deposits for the two recipes (Thermal ALD and PEALD) 
 

The chemistry of the deposits was determined by using two different techniques. Firstly, by X-EDS 

(determining if elements such as Niobium, Nitrogen and Oxygen could be detected), then by X-Ray 

Diffraction and finally by X-Ray Photoelectron Spectroscopy (see chapter material and method). For 

the last technique, two materials of each recipe were analyzed (as this technique is costly and time 

consuming). X-EDS of the deposits, conducted by PEALD and thermal ALD are presented on Figures 

V.9 and V.10. 

i. X-EDS analysis 

 

Figure V. 9: X-EDS of the samples for the PEALD recipe, conducted at 8.00 kV 
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Figure V. 10 : X-EDS of the samples for the thermal ALD recipe, conducted at 8.00 kV 

For the PEALD recipe (Figure V.9), the contributions of Niobium, Carbon, Oxygen and Silicon can be 

detected. Carbon probably originates from contamination [20], whereas it is postulated that niobium 

and oxygen are due to the deposit. Interestingly, for the thermal ALD deposition (Figure V.10), the 

same contributions are detected (Niobium, Carbon, Oxygen and Silicon) but another element is 

detected: Nitrogen. As this element is included in the oxidant (N2O), it is probable that the deposit 

chemistry changed. Also, it can be seen in both recipes, that the peak height of silicon is inversely 

proportional to the ones of niobium and oxygen (and nitrogen for the thermal ALD recipe). As the 

beam encounters the sample, both the deposit and the substrate are penetrated by the electrons. 

Thus, the greater the thickness of the deposit, the lower the contribution of the substrate and the 

greater the contribution of the deposit. As the contribution of nitrogen is proportional to the 

thickness of the deposit, it is postulated that it is comprised within the deposit (as if it was only 

comprised on the extreme surface, the contribution of nitrogen would not change). 
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ii. XRD analysis 

The X-Ray Diffraction pattern of three deposits of each recipe are presented in Figures V11.  

 

Figure V. 11: XRD pattern of Thermal ALD recipe and PEALD, measured by θ, 2θ, with a K alpha 1 copper X-Ray source. 

The XRD results of the two recipe give insight on the deposit crystallinity. For example, crystalline 

niobium pentoxide (supposed nature of the deposit) possess strong XRD patterns in the region of 

2θ=20-40° [21–23]. In our case, no strong XRD features are observed, indicating that the deposits are 

rather amorphous than crystalline. In order to give a better insight on the chemistry of the deposit, 

X-Ray Photoelectron Spectroscopy (XPS) was conducted on the PEALD sample elaborated at 200°C 

(5000 cycles), and on the thermal ALD sample elaborated at 400°C (5000 cycles). 

 

iii. XPS analysis 

 The XPS results are presented on Figure V.12 for the PEALD and on Figure V.13 for thermal ALD. 
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Figure V. 12: XPS surface analysis of PEALD sample at 200°C, 5000 cycles.  A-Survey, B- C1s, C- Nb3d5/2 and 3d3/2, D- O1s 

and E- N1s 

The survey for the PEALD sample (Figure V.12-A), shows that mainly the contributions of niobium and 

oxygen are detected (along with contamination carbon [20, 24]). The C1s spectra (Figure V.12-B), 

shows three contributions: at 285 eV is the contribution of C-H species [24]. the peak at 286.4 eV is 

accounted to C-O adsorbed species and at 289 eV, C=O adsorbed species. Figure V.12-C shows that 

only one contribution is sufficient to correctly fit the Nb5/2 and Nb3/2 spectra, indicating that only one 

form on niobium is present on the surface. The peak energy of the Nb5/2 is located at 207.5 eV, which 

corresponds to niobium pentoxide (Nb2O5) [24–30]. It must be noted that in any case and for any 

species, the difference between the peaks Nb5/2 and Nb3/2 is of 2.7 eV [24] (fixed parameter to 
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integrate in the fits). The O1s peak (Figure V.12-D) exhibits three contributions; the first, located at 

530.5 eV, corresponds to metal oxides (here probably Nb-O bound [24, 28, 31]). The lower 

contribution at 531.5 eV, is linked to metal hydroxides [24] (formation of niobium hydroxides on the 

surface). The N1s spectra show the presence of adsorbates on the surface of the sample (as the 

signal is very noisy). The contribution around 400 eV is attributed to adsorbed N-N bound [24], and 

for the contribution at 395 eV, several papers linked this transitions to metal nitrides (niobium 

nitrides) [24, 32, 33]. It is postulated that, as ALD proceeds thanks to the chemisorption of the 

precursors, this contribution is accounted for remaining of the niobium precursor (TBTDEN) 

chemisorbed on the surface of the sample (as it comprises Nb-N bounds). 
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Figure V. 13: XPS surface analysis of Thermal ALD sample at 400°C, 5000 cycles. A- Survey, B- C1s, C- Nb3d5/2 and 3d3/2, 

D- O1s  and E- N1s 

The Survey (Figure V.13-A) for thermal-ALD sample presents the same features than for the PEALD 

recipe, except for the presence of greater amounts of nitrogen on the surface: Niobium, Oxygen and 

Nitrogen are detected along with contamination carbon [20]. The C1s spectra (Figure V.13-B) show 

the presence of C-H, C-O,C=O and C=O-C contributions, accounting for diverse contamination on the 

surface [24]. The niobium spectra (figure V.13-C) is very different from what is observed with the 

PEALD recipe, with a minor niobium contribution detected. Thus, the major surface compound is 

probably niobium pentoxide, with an energy peak situated at 207.5 eV on Nb5/2 [24–30]. The minor 

contribution has an energy located at 206.5 eV for Nb5/2 peak; this could be niobium dioxide (NbO2) 
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[24] or niobium oxinitrides (the presence of a contribution between 206 and 207 eV is reported when 

niobium nitride is oxidized into niobium oxinitrides [31–34]). The observation of the others 

contributions (O1s and N1s), will give a better insight on the compound, which is responsible for the 

peak at 206.5 eV. The O1s peak (Figure V13-D) shows two contributions, in line which what is 

observed for the PEALD recipe; the first at 530.5 eV is accounted for metal oxides [24, 28, 31], and 

the second to surface hydroxides [24]. The N1s spectra (Figure V13-E), exhibit much larger intensity 

than for the sample elaborated by PEALD. This means that a larger concentration of nitrogen species 

is at stake. As for the PEALD, the contribution at 402 eV is due to N-N bound [24, 35] (thus adsorbed 

di-nitrogen from air). However, the second contribution (which is the larger one, at 396.4 eV), is 

accounted for nitrides [24, 32, 33]. This might indicate that the Nb3d5/2 contribution located at 206.5 

eV is due to oxinitrides, but it was explained in the literature that this contribution is observed 

around 399-400 eV [31–33] on the N1s spectra. A minor contribution was also detected around 394 

eV and could not be explained. As more nitrogen was detected for the thermal ALD, versus PEALD, it 

was decided to conduct XPS analysis with erosion of the surface by ion sputtering [24] (depth analysis 

of the deposit). This experiment shall give better insight into what compound is responsible for the 

Nb3d5/2 contribution, observed at 206.5 eV. The sample elaborated at 375°C was chosen, as it was 

the best of all deposit, conducted by thermal ALD. The surface analysis of this sample is presented on 

Figure V.14. 
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Figure V. 14: XPS surface analysis of thermal ALD sample at 375°C, 5000 cycles. A-Survey, B- C1s, C- Nb3d5/2 and 3d3/2, 

D- O1s and E- N1s 

The features of the sample, elaborated at 375°C are very similar to what was observed at 400°C. As a 

consequence, the Survey (Figure V.14-A) is nearly identical: Niobium, Oxygen, Nitrogen and 

contamination carbon are detected. Concerning the contamination carbon (Figure 14-B), only the C-H 

contribution is detected this time, at 285 eV [24]. The niobium features are the same than for the 

sample elaborated at 400°C (Figure V.14-C): the contribution of niobium pentoxide [24–30] (Nb 3d5/2 

peak situated at 207.5eV), which is the most important, and the one situated at 206.5 eV (which is 

not attributed yet). The O1s spectra (Figure V.14-D) is also very similar to what is observed for the 

sample elaborated at 400°C, with the M-O contribution located at 530.5 eV [24, 28, 31] and the M-
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OH contribution located at 531.5 eV [24, 36–38]. Concerning the N1s spectra, the same features are 

observed: the N-N bound at 402 eV, the contribution at 396 eV (metal nitrides [24, 32, 33]), and the 

unexplained contribution at 394 eV. The erosion analyses were taken after 30, 60, 90 and 120 

minutes of erosion; for better clarity, the same spectra will be presented on each figures. As the 

surface is etched, the carbon contribution is heavily extinguished, but it can still be used to correct 

the XPS shift. The Survey for the four erosion times are presented on Figure V.15. 

 

Figure V. 15: Full XPS spectra for different erosions times. A-30 minutes, B-60 minutes, C-90 minutes and D-120 minutes. 
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The first observation of the erosion experiments is that erosion did not go all the way through the 

deposit to the substrate (Silicon), as the most intense band of silicon (2p) is not visible on the Survey 

(Figure V.15) (occurrence around 100 eV for metallic silicon and around 104 eV for SiO2). Secondly, 

the deposit seems relatively homogeneous within the depth, as the full spectra do not change (or 

very little). The comparison for different erosion time of the C1s peak is presented on Figure V.16. 

 

Figure V. 16: C 1s contributions for different erosion times. A-30 minutes, B-60 minutes. C-90 minutes. D-120 minutes. 

 

The fit of the C1s spectra was not done in order to find a physical meaning of the spectra. As the 

sample is eroded, the carbon contamination content is greatly reduced. However, it was still 

detected as presented on the Figure V.16. Thanks to its detection, the other spectra were adjusted, 

as C-H bounds are detected at a very specific value of 285 eV [24]. The comparison for the 3d5/2 and 

3d3/2 peaks of niobium for the different erosion time is presented on Figure V.17. 
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Figure V. 177: Nb 3d5/2 and Nb3d 3/2 contributions for different erosion times. A-30 minutes, B-60 minutes. C-90 minutes. 
D-120 minutes. 

Concerning the positions of the Nb3d5/2 and Nb3d3/2 peaks, three contributions are detected in the 

depths of the deposit. In contradiction with what was observed on the surface, the most important 

contribution in the core of the deposit is the one located at 206.5 eV. As Niobium pentoxide is more 

stable than niobium dioxide, both at ambient temperature and at the temperature of the deposition 

(free energy of formation of the former at ambient temperature: -412 kcal/mol, the latter: -173 

kcal/mol; at 400°C : the former: -376 kcal/mol, the latter: -158 kcal/mol [39]), the contribution at 

206.6 eV is very unlikely due to niobium dioxide. In addition, the niobium precursor used for this 

deposition is in the +V state, and nothing can explain the formation of an oxide, at an inferior 

oxidation state than the precursor, in oxidizing atmosphere. It is thus postulated that the 

contribution observed at 206.6 eV is due to niobium oxinitrides (several examples in the literature 

illustrated its presence for the Nb3d5/2 peak, between the one of niobium nitride (204 eV) and 

niobium pentoxide (207.5 eV) [31–34]). This explanation is satisfying as the second reactant used for 

this recipe is N2O, which comprises both nitrogen and oxygen. The second most intense contribution 

for the Nb3d5/2 peak is located around 208.1 eV. It is postulated that this contribution is due to 

niobium pentoxide, as supported by several example in the literature claiming its occurrence at 

higher energies [3, 40]. A third contribution of the Nb3d5/2 peak was detected, around 210 eV. 

However, even after an extensive literature search, no explanations were found, as no niobium 
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compound were detected as such high energies, for 3d5/2. The comparison for different erosion time 

of the O1s peak is presented on Figure V.18. 

 

Figure V. 188: O1s contributions for different erosion times. A-30 minutes, B-60 minutes. C-90 minutes. D-120 minutes. 

O1s peaks show the convolution of three contributions: two intense ones at 532.5 eV and 533 eV and 

a small one at 535 eV. At such high energies, it appears clear that the main contribution cannot be an 

oxide (as metal oxides are detected from 529 to 532 eV [24]). The reason why this contribution 

totally disappeared upon erosion remains unclear. It is postulated that the etching of the surface 

with the argon beam somehow changed the location of the peak. Only one example was found in the 

literature, where the etching of the ion beam shifted the position of the O1s band of a TiN coating 

from 530 eV to 533 eV [41]. However, cautiousness must be taken in regard to this hypothesis, as not 

many paper support this explanation in the literature. Concerning the peak at 532.5 eV, a possible 

explanation could be the presence of O-O bound in the oxinitrides [42], but as for the former 

explanation of the peak at 533 eV, it must be looked wisely. Concerning the contribution at 535 eV, it 

is probably the presence of chemisorbed species [24, 34, 43] (due to the decomposition of the 

deposit by the ion beam). The comparison for different erosion time of the N1s peak is presented on 

Figure V.19. 
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Figure V. 199: N1s contributions for different erosion times. A-30 minutes, B-60 minutes. C-90 minutes. D-120 minutes. 

Concerning N1s, a very strong contribution can be observed around 399-400 eV. This contrast with 

what was observed on the surface (one strong peak at 396 eV and one at 402 eV). In the literature, a 

contribution can be observed for niobium oxinitrides species around 399 eV [32, 33], and other 

oxinitrides [24, 44, 45]. For the sample at 30 minutes of erosion (Figure V.19-A), two contributions 

arise at 399.2 eV and 399.8 eV. It is postulated that both contributions are due to oxinitrides, possibly 

of different chemistries. The peak at 402 eV is attributed to adsorbed N-N bounds[35]. For erosion 

times of 60, 90 and 120 minutes, a contribution at 401.5 eV can also be observed, which is often 

attributed to ammonium in the literature [24, 46]. The presence of such compound might originate 

either from decomposition products of the niobium precursor encapsulated in the deposit, or from 

ionization of nitrogen species on the surface of the sample, because of the erosion. However, it will 

not be further discussed here, as it is not a major contribution of the N1s spectra.  

Computing the whole XPS data allows to draw a "composition profile", as the composition did not 

change in the depth of the sample, as presented on Figure V.20. 
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Figure V. 20: Possible composition of the deposit, conducted by thermal ALD. The first compound written is the one 
present in majority 

 

On the one hand, these results prove that PEALD produces a deposit entirely composed of niobium 

pentoxide. On the other hand, thermal ALD seems to preferentially form a mix of niobium pentoxide 

and niobium oxinitride on its very surface (as niobium pentoxide is the most stable oxide/species 

formed [39]), but in the core of the material, it the dominant compound is the oxinitride, with 

niobium pentoxide in smaller proportions. It was also proven the presence of a metal nitride on the 

N1s spectra on the surface, contribution absent for the niobium spectra. This contribution probably 

arises from chemisorbed niobium precursor on the surface. However, the niobium nitride is not 

detected on the Nb spectra as the contribution of those chemisorbed species is probably hidden (the 

solid deposit is far more "concentrated" than those chemisorbed species). 

A summary of the composition of the sample, for both recipes is presented on Table V.4 

Table V. 4 : Summary of the composition analyses of the samples, elaborated on Silicon (400), for both recipes 

Recipe Adsorbates? Surface Composition 
Composition in the depth of 

the deposit 

Thermal-
ALD 

Chemisorbed Niobium 
precursor 

Mix of Nb2O5 
(predominant) and 

NbOxNy 

Mix of NbOxNy (predominant) 
and Nb2O5 

PEALD 
Chemisorbed Niobium 

precursor 
Nb2O5 alone   
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iv. Conformity of the deposit 

In the required application, the ALD recipe must have the ability to make a conformal deposition on 

high-roughness samples. In order to decide which recipe is preferable versus the other, a deposition 

for both recipes was made in Silicon (400) wells, with a form factor of 6 (1 µm large, 6 µm deep), and 

analyzed by SEM. Those sample were then cleaved and the thickness of the deposit, and its 

conformity at the bottom of the well was observed. For the PEALD, 1570 cycles were realized at 

200°C (GPC of about 0.3 Å per cycle, giving a deposit of about 50 nm for 1570 cycles). For the 

Thermal ALD, 3000 cycles were realized at 400°C (GPC of about 0.11 Å per cycle, giving a deposit of 

about 33 nm). In practice, both deposits showed a thickness of about 50 nm on the surface, when 

analyzed by SEM. The SEM image of the deposits at the top of the well are presented on Figure V.21. 

 

Figure V. 21: SEM images of the top of the wells, using the back-scattered electron detector, for a better appreciation of 
the deposit. Energy of the beam: 3kV, magnification 20.00 kX. A-PEALD recipe. B-Thermal ALD recipe. 

Thanks to the ESB detector, the deposit appears brighter, allowing its better observation. Both 

recipes have the ability to form a conformal deposit, even inside the well close to the surface. The 

bottom of the well was then analyzed and the SEM images are presented on Figure V.22. 
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Figure V. 22: SEM images of the bottom of the wells, using the back-scattered electron detector, for a better appreciation 
of the deposit. Energy of the beam: 3kV, magnification 20.00 kX. A-PEALD recipe. B-Thermal ALD recipe. 

As seen on Figure V.22, no deposit is observed for the PEALD recipe, at the bottom of the well, 

whereas some deposit is still observable  for the thermal ALD recipe, was expected (the use of a 

plasma yields a more directive deposit [6, 47]). As the objective of this chapter is to make a 

conformal deposition at the surface of rough and 3-dimension substrates, the latter results led us to 

favor the thermal ALD process over the PEALD one. As such, depositing a thin protective layer onto 

Panex 30 carbon cathodes was performed using thermal ALD. 

 

III. Cathode elaboration with Nb2O5 deposits 
 

The carbon material used for the deposition of Nb2O5 was Zoltek Panex 30 (described in chapter 

three and four). This material was chosen thanks to its low price, high electronic conductivity, 

macroporosity and high corrosion resistance, properties that make of it a proper substrate material 

for the positive electrode in a Li-O2 battery. However, the author acknowledges that this material is 

still a model compound for a practical cathode as it is of too low surface area compared to high 

surface area carbon powders. The reason why carbon powder was not chosen in this chapter is 

linked to the ALD reactor; powder materials would contaminate the whole equipment and 

compromise its use for other applications. Also, their surface have much higher roughness, which 

could hinder proper ALD. As explained in the previous section, the deposition was performed by 

thermal ALD, as it allows a more conformal deposition, even at the bottom of wells, and it is believed 

that this would enable the complete coverage of the Panex 30 carbon cloth. For each batch, eight 

samples of 8 mm diameter (hereafter denoted electrodes) were prepared and placed in the ALD 

reactor for the deposition. In order to prevent the movement of the carbon cloth in the reactor, a 
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sample holder in copper was machinated. For this study, the deposits were realized at 400°C, with 

different conditions, as presented in Table V.5. 

 

Table V. 5 : Depositions conditions for the cathodes, prepared with thermal ALD, at 400°C 

Sample 
name 

TBTDEN injection 
time (s) 

TBTDEN purge 
time (s) 

N2O injection 
time (s) 

N2O purge 
time (s) 

Number of 
cycles 

1500 1.1 2 4 4 1500 

2000 1.1 2 4 4 2000 

2500 1.1 2 4 4 2500 

1500-
Extended 1.6 2 8 4 1500 

 

a. Composition of the deposit, non-uniformities of the deposits 
 

Each deposit composition was analyzed by X-EDS and XPS, a reproducibility analysis being performed 

by X-EDS to spot any possible non-uniformity of the deposits from one electrode to the other. The X-

EDS results are presented in Figure V.23. 

 

Figure V. 23: X-EDS spectra of the deposits, realized on Panex 30 carbon cloth coated by Nb2O5, taken at 8.00 kV 
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Figure V.23 reveals severe non-uniformities between two samples of the same recipe, that should 

have been identical. The two thicker deposits (leading to the largest signal of Nb at ca. 2.2 keV) were 

obtained for the electrode 2, elaborated at 2000 cycles and for the electrode 1, elaborated at 1500 

cycles. The reason for these non-uniformities cannot be explained, as the temperature is supposedly 

uniform in the ALD-reactor. One can speculate that, as the samples were used bare and not prepared 

(for instance, washed with absolute ethanol, let for dry, etc.), the deposition rate could have been 

altered, locally. Still, deposition of Nb2O5 is possible on these carbon substrates, which is good news. 

However, the nitrogen signal disappeared from the X-EDS spectra, which indicates that the product 

obtained on carbon is different from the one obtained on silicon, with the same recipe (see previous 

section). XPS has been conducted on the electrode 2 of each sample, to complement the 

characterization. The full XPS survey for the four recipes is presented on Figure V.24. 

 

Figure V. 24: XPS full survey for electrodes A-1500, B-2000, C-2500 and D- 1500-Extended. 

 

Figure V.24 supports the results obtained by X-EDS. For the sample elaborated at 1500 cycles (Figure 

V.24-A), niobium is detected, but in little proportions, as Nb3s and Nb4s features are not detected 

(only the most intense contribution Nb3d5/2 and Nb3d3/2, with noisy peaks for the 3p1/2 and 3p3/2 
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contributions, are observed). The samples elaborated with 2000 and 2500 cycles (Figure V.24-B and 

C) exhibit almost the same trace, with all the contribution of niobium (including minor contributions 

Nb3s and Nb4s). The sample elaborated at 1500 cycles extended (1500-Extended, Figure 24-D), 

shows almost no trace of niobium: a small contribution of the Nb3d5/2 and Nb3d3/2 peaks can be 

observed, probably indicating either chemisorbed species, or a very thin layer of deposit. For a more 

complete analysis, the carbon peaks are presented on Figure V.25. 

 

Figure V. 25 : C1s peaks for electrodes A-1500, B-2000, C-2500 and D-1500-Extended 

 

As presented in the previous part, for the deposits made on silicon, the carbon peak is mainly used 

for setting the shift of energy at the correct position. It must be noted that normally, the graphite 

peak is located around 284.6 eV [24]. As presented in Chapter three, the Panex 30 cloth is made of 

graphitic fibers, with no amorphous zone (no amorphous carbon nor amorphous graphitized lattice), 

thus the most intense peak of the C1s was set at 284.6 eV. Consequently, the contributions of the 

graphitized carbon are set at 284.6 eV and other contributions such as C-O, C=O and C=O-C (of 

contamination carbon) can be observed at higher energies (respectively, at 286 eV, 287.5 eV and 289 

eV). The Nb3d5/2 and Nb3d3/2 peaks are presented on Figure V.26. 
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Figure V. 26: Nb3d5/2 and Nb3d3/2 peaks for electrodes A-1500, B-2000, C-2500 and D-1500-Extended 

 

Even though the same reactants were used for the deposition on carbon, the deposits obtained here 

do not present a contribution around 206.5 eV, which contrasts with the results obtained on silicon. 

For those experiments, only one contribution is necessary to fit correctly the experimental data, 

indicating that only one form of niobium product is present on the surface. Concerning the Nb3d5/2 

peak location, its position is at higher energies (207.8 ± 0.1 eV) for the thinner deposits (1500 and 

1500-Extended). This corresponds to very thin Nb2O5 deposits, as presented by Okazaki et al. [40]. 

The Nb3d5/2 peak of the thicker deposits is located around 207.4 eV (for 2500) and around 208 eV 

(for 2000), which perfectly corresponds to niobium pentoxide (in the literature, its contribution is 

located around 207.6 ± 0.1 eV[24–30]). The reason for the shift from 207.5 eV to 208 eV for the 

thicker sample (Figure V26-B) remains unclear. A better refinement of this results can be obtained 

thanks to the O1s spectra, presented on Figure V.27. 
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Figure V. 27 : O1s peaks for electrodes A-1500, B-2000, C-2500 and D-1500-Extended  

 

Three/four contributions can be observed on the O1s spectra. Firstly, a contribution around 530.3 ± 

0.2 eV, that is accounted to the metal oxides [24, 28, 31]. For the sample elaborated at 2000 cycles 

(the thicker), this contribution is detected at 529.1 eV, which is highly shifted, compared to the other 

samples. However, as presented in the Handbook of X-Ray Photoelectron Spectroscopy, the metal 

oxide contribution of O1s can be located in the region 528-531 eV [24], depending on the nature of 

the metal involved in the bound. It must be noted that below 530 eV, no other contributions than 

metal oxide can be held responsible on the O1s spectra [24, 36–38]. As no other metal were detected 

on the Survey (Figure V.24), it is the Nb-O bound that is held responsible for this bound. However, 

the reason for this shift remains unclear. Concerning the contribution observed at 531.5 ± 0.2 eV, it is 

attributed to metal hydroxides on the surface [24, 48–51]. The O1s contribution at higher energies 

(above 532 eV) is attributed either to water [24] or others chemisorbed species [34, 43, 52]. As such, 

for the thinner sample (1500-Extended, figure V.27-D), no M-O bound is detected, only a small 

contribution of M-OH is detected, indicating that a very thin layer of niobium pentoxide is present on 

the surface, and that this oxide is more likely an hydroxide. The reason for this is that probably a 

monolayer (or two) of niobium pentoxide was (were) formed during the ALD process on this sample, 

and upon contact with air, it (they) transformed into hydroxide. Concerning the second thinner 
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sample (1500, Figure V.27-A), the M-O bound is detected along with M-OH in greater proportion. 

This indicates that even though this deposit is very thin, it is thick enough not to be fully transformed 

from oxide into hydroxide. With no surprise, the largest contribution of the thicker deposit (2000, 

Figure V.27-B) is M-O, with still M-OH formed. The intermediate compound (2500, Figure V.27-C), has 

more or less the same amount of M-O and M-OH contribution on its surface.  

To summarize, the niobium and O1s spectra confirm the X-EDS data in terms of thickness order of 

the samples analyzed (electrode 2): 2000 > 2500 > 1500 > 1500-Extended. 

Computing the XPS results, it is highly probable that the deposits made onto the carbon cathodes are 

of the following composition: niobium pentoxide in the core of the deposit (when it is thick enough); 

then, niobium hydroxide (still in the +V oxidation state for niobium) on the very surface. As a 

consequence, it is confirmed that the deposition of niobium pentoxide is achievable onto graphitized 

carbon cloth, but as the deposit thickness (and therefore average composition) could not be strictly 

controlled from one electrode to another of the same batch, a stricter protocol should have been 

found to prepare the electrode surface prior ALD so to have comparable deposit thickness for all the 

electrodes of a same batch. Unfortunately, this protocol could not be developed for this present 

work, because of lack of time. However, the objective here was to elaborate cathodes with deposits 

and test the latter for the ORR/OER, so electrochemical tests (in three-electrode, DEMS and full cell) 

were nevertheless performed to determine if such deposits have an interest for practical Li-O2 

systems. 

A summary of the deposits composition is presented on Table V.6. 

 

Table V. 6  Deposit composition of the electrodes analyzed 

Sample Surface Composition 
Order  of thickness for 
deposit (1 > 2 > 3 > 4) 

1500 
Hydroxide of Niobium in +V state on surface (predominant) + 

Nb2O5 + chemisorbed O species 
3 

2000 
Nb2O5 (predominant) + hydroxide on surface + chemisorbed O 

species 
1 

2500 
Nb2O5 (predominant)+ hydroxide on surface + chemisorbed O 

species 
2 

1500-
Extended 

Niobium hydroxide in +V state + chemisorbed O species 4 
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b. Protected Li-O2 positive electrodes behavior 
 

i. Three-electrode cell 

In order to fully characterize the electrochemical behavior of the deposit itself, cyclic voltammetries 

were realized in argon-purged electrolyte (Figure V.28). The DEMS setup was used for these 

experiments, performed moments before the DEMS recording. The scan-rate chosen was 2 mV s-1, 

which is slow enough to observe the inherent electrochemical behavior of the deposit, without being 

disturbed by a strong double layer effect of the carbon cloth. The upper reverse scan was extended 

to 1 V vs. Ref, in order to see the oxidation of the carbon cathode.  

Three materials were compared: pristine Panex 30, one electrode elaborated at 1500 cycles, and one 

electrode elaborated at 2000 cycles. As explained in the previous section, the deposits are of the 

same nature for the four batches (1500, 2000, 2500 and 1500-Extended), but the thickness of the 

electrodes are not reproducible within the same batch.  

As such, it is of no use to test one electrode of each batch (as the thickness of the deposit on the 

electrodes is not dependent on the deposition parameters, and as the composition of the deposits 

are nearly the same for each batch), and two electrodes were tested. In order to avoid confusion and 

for better clarity, these electrodes will be presented as electrode 3.  
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Figure V. 28: Cyclic voltammetry, recorded in 0.2 M LiClO4 DMSO, Ar-purged, at 2 mV s-1. Black line: pristine Panex 30, 
Red line: 1500 cycles and Green line: 2000 cycles. 

 

As presented on Figure V.28, the electrode elaborated at 1500 cycles possess an electrochemical 

activity, which is absent for pristine Panex 30 and the sample elaborated at 2000 cycles. It is 

postulated that this electrochemical activity is linked to the activity of the deposit.  

Concerning the sample elaborated at 2000 cycles, it may have either no deposit, or very thin deposit, 

that prevents major redox activity on the surface. The behavior of the same electrodes were then 

recorded in O2-saturated electrolyte (by purging the electrolyte for at least 45 minutes, Figure V.29). 
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Figure V. 29: Cyclic voltammetry, recorded in 0.2 M LiClO4 DMSO, O2-saturated, at 2 mV s-1. Black line: pristine Panex 30, 
Red line: 1500 cycles and Green line: 2000 cycles. 

 As depicted on Figure V.29, the presence of the deposit does neither impact the ORR nor the OER 

processes on the electrodes, as very similar features are observed for the three samples. This 

demonstrates that the presence of the Nb2O5 semi-conducting deposit on the surface of a conducting 

electrode does not affect the kinetics the reduction/oxidation of oxygen (at least on cyclic 

voltammetries). In order to better analyze the behavior of the deposits on a practical system, full cell 

experiments must be conducted on Nb2O5-protected Panex 30 and compared to the pristine 

material. 

 

ii. Full cells 

Full cells tests were conducted, in the same conditions of discharge and charge between the 

materials (see chapter two, experimental section). The comparison is made on the first cycle of the 

cell (for short term testing, not for long-term experiments, Figure V.30). Electrode 2 could not be 

used as cathode for this experiment, as the carbon duct-tape damaged the samples (and possibly 

contaminated them). Unused electrodes of each batch were selected as a consequence and for a 

better traceability, they will be labeled electrode 4.  
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Figure V. 30: Full cell performances comparison between pristine Panex 30 and electrode 4 of each batch 

 

As depicted on figure V.30 the electrochemical performances achieved are very different between 

each electrode. It is postulated that no deposit at all were formed on Electrode 4 2000 cycles, as it 

exhibits almost the same performances than pristine Panex 30.  

As the performances of the other electrodes allow less discharge capacity than pristine Panex 30, it is 

postulated that the presence of the semiconducting deposit on the surface limits the capacity (as the 

transfer by tunneling effect is supposedly shut down quicker than without deposit), leading the 

sudden death of the cell [53].  As such, the thicknesses of the deposit order for the electrode 4 of 

each batch is supposed: 1500-Extended > 1500 > 2500 > 2000. This goes in line with the conclusions 

that the thickness are not uniform for each electrodes of the same batch. In addition, the presence of 

the deposit did not enhance the charging of the full cell, indicating that with such deposit in a 

practical full cell, the use of a redox shuttle is also (and may be all-the-more) mandatory. It is of high 

interest to compare the surface morphology of pristine electrodes (here electrode 2 of each batch), 

versus the discharged electrode (here electrodes 4 of each batch), by SEM. The images for the 

pristine electrodes are presented on Figure V.31. 
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Figure V. 31: SEM images of Electrodes 2 of each batch, recorded with 3 kV energy and a magnification of 500X, using ESB 
detector. A-1500, B-2000, C-2500 and D-1500-Extended. 

The ESB detector is of great use in our case, as heavier elements appear brighter on the images. In 

line with the X-EDS and XPS experiments, a thick (but damaged) deposit is observed for the electrode 

2-2000. It is postulated that the deposit was damaged because of the manipulation of the electrode 

by the lab pliers, as the fibers, which are located beneath the surface seemed less damaged. The 

deposit on A and C on the other hand, are harder to spot, probably owing to the fact that they 

appeared thinner. 

Post test SEM was also realized on electrodes 4 (electrodes used in the full cell tests), both with 

secondary electron (InLens detector), for the morphological analysis, and with back scattered 

electrons (ESB), in order to spot any chemical contrast. As a reminder, post mortem SEM pictures of 

Panex 30 (already presented in chapter three), are depicted on Figure V.32 to allow a better 

comparison between the pristine carbon cloth and the deposits. Post test SEM of electrodes 4 of 

each batch are also presented in Figures V.33-36. 
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Figure V. 32: SEM image of a post test Panex 30 Electrode, taken with an energy of 3.0 kV and a magnification of 5.00 kX, 
Secondary Electrons detector. 

 

 

Figure V. 33: SEM image of post test Electrode 4-1500, taken with an energy of 3.0 kV and a magnification of 5.00 kX. A- 
Secondary Electrons detector.B- Back Scattered Electrons detector. 

 

Figure V. 34: SEM image of post test Electrode 4-2000, taken with an energy of 3.0 kV and a magnification of 5.00 kX. A- 
Secondary Electrons detector.B- Back Scattered Electrons detector. 
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Figure V. 35: SEM image of post test Electrode 4-2500, taken with an energy of 3.0 kV and a magnification of 5.00 kX. A- 
Secondary Electrons detector.B- Back Scattered Electrons detector. 

 

Figure V. 36: SEM image of post test Electrode 4-1500-Extended, taken with an energy of 3.0 kV and a magnification of 
5.00kX. A- Secondary Electrons detector.B- Back Scattered Electrons detector 

 

Figure V.33 confirms that no (or very little) niobium deposit is on the electrode 4-1500. However, for 

the other electrodes, important conclusions can be drawn. Firstly, the SEM pictures confirm the 

presence of a deposit for electrodes 4-2000, 4-2500 and 4-1500-Extended, as bright zones are 

observed with the ESB detector, which sign the presence of an heavier element (niobium). However, 

these results contrasts with the hypothesis that the electrode 4-2000 did not possess a niobium 

deposit (as it is observed in the SEM images). Secondly, the SEM images confirm that the formation 

of lithium peroxide is possible onto the surface of the Nb2O5 deposit, which is desired for the use of 

the latter in a practical system. Moreover, no Nb2O5 deposit is detected on the Electrode 4-1500 

deposit, which exhibited a much lower discharge capacity than pristine Panex 30. 
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The X-EDS analysis of the post test electrodes was taken at the same time than the SEM images, and 

will give a better insight on the amount of deposit, for each batch (for Electrode 4!). This experiment 

is presented on Figure V.37. 

 

Figure V. 37: X-EDS spectra of the post mortem Electrodes 4. Black.-1500, Red-2000, Green-2500, Blue-1500-Extended, 
taken at 8.00 kV 

X-EDS experiment shows a drastically different thickness order (than what was assumed from the full 

cell electrochemical behavior): 2500 > 2000 > 1500-Extended > 1500. As X-EDS is an elemental 

analysis, the latter scale is the correct one. 

 Consequently, no explanations can be proposed concerning the discharge capacity order (from the 

lowest to the highest: 1500-Extended > 1500 > 2500 > 2000), as it does not match the thicknesses of 

the deposits.  

iii. DEMS experiments. 

 

DEMS experiments were conducted on Electrodes 3 (the same than the for the three-electrode tests 

presented above). Linear scan voltammetries were conducted from the OCV to -1.5 V vs. Ref, 

followed by an OCV of five minutes (for signal stabilization). Then another linear scan voltammetry 
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was conducted from the OCV to 1 V vs. Ref. The DEMS signal was recorded in parallel of the current. 

The first experiment conducted is under argon purge, the O2 DEMS signal being recorded (Figure 

V.38). 

 

Figure V. 38: Y-primary axis: O2 ion current (A). Y-Secondary axis: Electrochemical current (mA). Electrolyte 0.2 M LiClO4 
DMSO, Ar-purge. Scan rate 2 mV s-1, for pristine Panex 30 (A and B). Electrode 4 1500 cycles (C and D). Electrode 4 2000 

cycles (E and F). 

 

The O2 DEMS signal in Ar-purged electrolyte (Figure V.38) shows neither ORR nor OER for the three 

materials (Panex 30 pristine, Electrode 4-1500 and electrode 4-2000), as expected.  
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The redox activity of Electrode 4-1500, observed during the cyclic voltammetries (EpcI and EpcII; EpaI 

and EpaII), is still observed on the electrochemical signal.  

As the O2 DEMS current is flat for both experiment, it is clear that those redox features are related to 

the activity of the deposit, and not to oxygen traces in the electrolyte. 

 In the same fashion, the CO2 DEMS signal was recorded and is presented on Figure V.39. 

 

Figure V. 39: Y-primary axis: CO2 ion current (A). Y-Secondary axis: Electrochemical current (mA). Electrolyte 0.2 M LiClO4 
DMSO, Ar-purge. Scan rate 2 mV s-1, for pristine Panex 30 (A and B). Electrode 4 1500 cycles (C and D). Electrode 4 2000 

cycles (E and F). 
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Concerning the CO2 ion current, the signal obtained for the three materials is also flat, indicating no 

carbon corrosion in Ar-media. This results means that the presence of Nb2O5 does neither destabilize 

the carbon support, nor the electrolyte (at least in this potential domain).  

One notes that the total pressure for the Panex 30 experiment (Figure V.39 A and B) varies like the 

CO2 ion current (the same features are observed, but on Figure V.38 A and B), which means that this 

apparent variation of the CO2 ion current is not linked to any detection of CO2 but rather to variation 

of the baseline of the DEMS (variation of total pressure). 

 The DEMS experiment (O2 ion current) in O2-purged electrolyte is depicted on Figure V.40. 

 

Figure V. 40: Y-primary axis: O2 ion current (A). Y-Secondary axis: Electrochemical current (mA). Electrolyte 0.2 M LiClO4 
DMSO, O2-purge. Scan rate 2 mV s-1, for pristine Panex 30 (A and B). Electrode 4 1500 cycles (C and D). Electrode 4 2000 

cycles (E and F). 
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The OER features of the three materials (Panex 30, Electrode 4-1500 and Electrode 4-2000) show 

almost the same behavior, both electrochemically and in terms of ion current. Once the onset of the 

OER (electrochemical) is reached, the O2 current increases, which is the true sign of the oxidation of 

the lithium peroxide into oxygen [54, 55]. 

 However, the behavior for the ORR is not the same for the three materials: the O2 ion current 

decreases (O2 consumption at the electrode), at -0.615 V vs. Ref for both Panex 30 and Electrode 4-

2000, while it decreases around -0.5 V vs. Ref for the Electrode 4-1500.  

This improvement is of 115 mV, which is non-negligible in a practical system. Interestingly, the 

electrochemical current occurs at the same time, for the three materials (-0.5 V vs. Ref), meaning 

that ORR current can be recorded for pristine Panex 30 and Electrode 4-1500, while no oxygen is 

consumed at the electrode.  

These results contrasts with what was observed at a reverse scan potential at lower values for Panex 

30 (see chapter 3), where the ORR current was occurring exactly at the same potential than 

consumption of oxygen at the electrode.  

Here, the only thing that was conducted before those LSV experiments under oxygen, was the full CV 

at 2 mV s-1 (Figure V.29), but with a much higher reverse scan potential than in chapter three. An 

effect of the subsequent high potential might be responsible for the formation of oxygen adsorbates 

on the electrode surface, which prevent the formation of the latter at the onset potential.  

Yet, this "explanation" is more an hypothesis, and the author acknowledge that this behavior is an 

"off" one. The same experiment, but this time with the recording of carbon dioxide is presented on 

Figure V.41. 
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Figure V. 41: Y-primary axis: CO2 ion current (A). Y-Secondary axis: Electrochemical current (mA). Electrolyte 0.2 M LiClO4 
DMSO, O2-purge. Scan rate 2 mV s-1, for pristine Panex 30 (A and B). Electrode 4 1500 cycles (C and D). Electrode 4 2000 

cycles (E and F). 

Important observations arise from Figure V.41. Firstly, even at very high potential (around 1 V vs. 

Ref), Panex 30 remains un-attacked, with no carbon dioxide evolution detected, which supports the 

results of chapter three. Sadly, carbon dioxide is detected, for an O2-purged solution, for the samples 

Electrode 4-1500 and Electrode 4-2000, with an onset for the CO2 evolution around 0.7 V vs. Ref. It 

can be seen that the thinner the Nb2O5 deposit, the lower the quantity of CO2 evolution, which 

directly makes of the deposit the trigger of the CO2 evolution. As niobium pentoxide does not 

comprise carbon in its structure, it is thus highly probable that it is the carbon fibers that get oxidized 

and consumed, the reaction being somewhat catalyzed by the Nb2O5 deposit. In particular, one may 

postulate that the niobium pentoxide catalyzes the reaction between the discharge product (Li2O2) 

and the carbon support, thus forming lithium carbonate (Li2CO3), the latter being oxidized at higher 

potential, and responsible for the CO2 evolution [55]. 
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Conclusion 
 

Atomic Layer deposition of niobium pentoxide by two recipes (Plasma Enhanced Atomic Layer 

Deposition and Thermal Atomic Layer Deposition) were studied on silicon, with the aim to transfer 

this deposition for the protection of carbon cathodes. It was found that the product formed by 

Plasma Enhanced Atomic Layer Deposition was likely amorphous niobium pentoxide (Nb2O5), and 

that the product formed by Thermal Atomic Layer deposition was likely a mix between the latter 

product and niobium oxinitrides (NbOxNy). The deposition rate was much higher for plasma enhanced 

ALD than for thermal ALD. However, because the latter showed a much better conformal deposition 

on rough silicon substrates (silicon wells), it was used for the deposition on carbon cloth (Zoltek 

Panex 30), a 3D material. Firstly, the deposits made on the Panex 30 electrodes were not uniform in 

thickness, from one electrode to one other of the same batch, as measured from X-EDS. Secondly, in 

opposition with what was observed on silicon, the deposit onto the Panex 30 was only niobium 

pentoxide, showing a clear influence of the substrate on the nature (and thickness of the NbOx 

deposit). Finally, even though deposition was achievable and Nb2O5 covered Panex 30 could be 

tested in electrochemistry as positive electrodes for Li-O2 systems, it was found that this deposit has 

a bad effect on the carbon cathode: in presence of Nb2O5, the carbon cathode was highly unstable 

(although Panex 30 is very stable when used pristine). Lithium carbonate formation and carbon 

dioxide evolution (thus electrode  consumption) were observed with the NbOx deposit, which 

probably catalyzes the decomposition of the carbon support, by the lithium peroxide. This, sadly is 

not something acceptable for a practical system, thus those deposits are not recommended for 

carbon protection. One can think that changing the chemistry of the deposit could still be a winning 

strategy. 

So, the idea of using a deposit such as vanadium pentoxide [56, 57] might still be of interest, as those 

compound are known to intercalate lithium ions (in Li-ion positive electrodes), which will allow a 

better energy capacity than pristine carbon material, and their impact on the CO2 evolution is not yet 

known. This material will be characterized in the next chapter for its use as positive electrode. Also, 

solutions will be proposed in the next chapter, for the use of Co-salen, in a real Li-O2 full cell (with 

metallic lithium on the negative side). 
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Chapter VI: 

Perspectives for a stable Li-O2 positive electrode, with 

high recharge ability 

 

Somewhere, something incredible is waiting to be known 

- Carl Sagan 
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The previous chapters of this work unraveled important issues linked with the positive electrode of 

Li-O2 batteries, owing mainly to both the reactivity and electrically-insulating properties of the (ORR) 

discharge product, lithium peroxide. We nevertheless managed to address the latter aspect by 

selecting an appropriate redox shuttle, which enables to enhance both the Oxygen Reduction 

Reaction (ORR) and the Oxygen Evolution Reaction (OER). As such, the problem of the rechargeability 

of the thick deposit shall be mitigated, for a practical system. Concerning the former aspect however, 

the previous chapter showed that protecting carbon by Niobium Pentoxide (Nb2O5) was insufficient; 

even worse, CO2 evolved in the presence of the deposit (which implies reactivity between the carbon 

support, and the discharge product) whereas no carbon dioxide was evolved without deposit. As 

such, it is probable that Nb2O5
 catalyzes the formation of lithium carbonate, which urges the need to 

find another candidate for carbon protection. A deposition of Vanadium Pentoxide (V2O5) on carbon 

was thus realized, and tested, in association with the redox shuttle in full cell setup. 

 

I. Replacement of Nb2O5 by V2O5 

 

Vanadium pentoxide was deposited in an lab-made Atomic Layer Deposition Reactor, with heating, 

supplied by hot-walls (equipment described in the literature [1–4]). This reactor was used instead of 

the previous one used for Nb2O5, because no Vanadium line was available on the PicosunTM R200-

Advanced. The deposit was conducted directly onto a Ø = 50 mm Panex 30 carbon cloth, using 

vanadium(V)- tri-i-propoxy oxide as the precursor (Strem Chemicals). The ALD cycle differed a bit 

from the recipe used for the deposition of Nb2O5 (see chapter five), as an exposure time of 10 

seconds was applied both after the pulse of the precursor and after the pulse of the oxidant (to leave 

sufficient time for both species to diffuse in and on the sample and to react properly). As such, the 

pulse of the vanadium precursor was set on four seconds, and the pulse of the oxidant (N2O) was set 

on five seconds. The purge time for both reactants was set on twenty seconds. Lastly, the 

temperature of the deposition was set at 175°C, and 1500 ALD cycles were conducted. After the 

deposition, the deposit appeared very thick as colors could be spotted onto the substrate. In order to 

possess an electrode of the same diameter than the ones used in the rest of the present work, 8 mm 

disk electrodes were cut out of the V2O5-coated Panex 30 carbon cloth. 
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a. Morphology/ thickness 
 

SEM image an electrode, taken at center of the sample and “cleaved” for the observation of the 

deposit thickness is presented on Figure VI.1. 

 

Figure VI. 1: SEM image of the deposit, taken at an energy of 3.00 kV, using a back-scattered electron detector and a 
magnification of 5.00 kX (A) and 20.00 KX (B). 

The SEM image of Figure VI.1 clearly shows the V2O5 deposit, as a white layer is observed onto the 

carbon (heavier elements appear brighter on the ESB images). Also, as expected, the deposit is very 

thick (with thickness in the range of 100 nm observed), and even though the latter seems to cover 

entirely the fibers, the thickness does not appear to be of the same value on different zones of the 

fibers (Figure VI.1-B). The same amount of cycles were performed than for Nb2O5, but apparently, the 

deposition processes of V2O5 are easier on carbon than for Nb2O5. In order to have an insight into the 

chemistry composition of the vanadium deposit, XPS was realized. 



200 
 

b. Composition 
 

Figure VI.2 presents the XPS characterizations of the sample. 

 

Figure VI. 2: XPS characterization of the V2O5 deposit. (A) global spectrum, and contributions of (B) C1s, (C) O1s and V2p, 
(D) O1s and (E) N1s. 
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Figure VI.2-A clearly shows that vanadium is detected, along with oxygen, carbon and nitrogen. As for 

the niobium-based samples, the C1s peak (un-convoluted) is centered at 285 eV (Figure VI.2-B). 

Surprisingly, this time, the graphite component of the Panex 30 carbon cloth is detected at the 

correct binding energy (284.6 eV) [5, 6].  

No C-H contribution (or maybe comprised in the C1s graphitized peak) are detected. However, the C-

O and C=O contributions of contamination-carbon are indeed detected at respectively 286.4 a 289 eV 

[5].  

The Vanadium 2p3/2 and 2p1/2 peaks (Figure VI.3) are composed of three contributions, indicating 

possibly three different phases in the deposit. As the 2p3/2 and 2p1/2 are distant from 2.7 eV [5], the 

determination of the nature of each contribution can be conducted on the 2p3/2 peak only. The First 

contribution (513.5 eV) could not be identified, as at this energy shift, it could be either metallic 

vanadium, VB2 or a vanadium metallocene [5], vanadium nitrides being normally observed at higher 

energies (514.1 eV).  

As the precursor of vanadium used was in (+V) state, and as no boron is comprised in the process, no 

reasonable explanation could explain the presence of a contribution for the presence of VB2, which is 

therefore ruled out. The same applies to vanadium nitrides, because the shift of binding energy 

between the experiment and the expected shift cannot be explained. The second contribution, 

however is observable at 515.4 eV and could be the contribution of V2O3 (energy shift located at 

515.5±0.3 eV) [7–10].  

The third contribution, located at 516.5 eV, is probably accounted for vanadium pentoxide (V2O5), 

with an energy shift measured at 516.5 eV [10–12].  

Considering the O1s peak (figure VI.2-D), two contributions are observed. The first contribution is 

linked to the metal-oxide bounding and is located at 529.7 eV, and is coherent with the binding 

between the oxygen and vanadium (literature: 529.7±0.1 eV) [5, 10, 12]. The second contribution, is 

measured at 531.5 eV and is perfectly matching the value of hydroxides [5, 13–16].  

Concerning the N1s peak, two contributions are detected (figure VI.2-E). The first at 400 eV could be 

similar to what was observed for the niobium pentoxide deposition on silicon (broad peak 

corresponding to oxynitrides located in the 399-400 eV region) [17–20]. The second contribution 

(402 eV) is linked to adsorbed nitrogen species on the sample surface [5]. Thus, the small 

contribution that was observed on the V p3/2 peak at 513.5 eV is probably linked with oxynitrides. 
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These data are compatible with a deposit composition consisting of a mix of different species, V2O3 

and V2O5 being the most dominant chemistries of the deposit (with as small proportion of what 

appear to be vanadium oxynitrides).  

The presence of V2O3 in the deposit is hardly explained, as the vanadium is introduced in the reactor 

in the (+V) state, and placed in contact with an oxidant (not a reducer).  

The authors cannot rule out that the Panex 30 carbon itself has acted as a reducer in the conditions 

of the deposit, but more work would be needed in order to assert so.  

In order to confirm the chemical composition of the deposit, other techniques of identifications must 

be used in parallel (for instance U-V Photoelectron Spectroscopy). The latter analysis is pointless in 

our case, as the aim is rather to have a deposit with the good electrochemical performances (and an 

idea of the nature of the deposit), than a precise identification of the compound deposited. These 

deposits were then tested in terms of electrochemical activity. 

 

c. Electrochemical behavior 
 

The electrochemical behavior of the deposit was evaluated by DEMS, associated with cyclic 

voltammetry, conducted at 5 mV s-1.  

The electrochemical response of the deposit was first compared in argon-purged medium, oxygen-

purged medium and in oxygen-purged medium in presence of 1.75 mM of Co salen (Figure VI.3). 
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Figure VI. 3: Electrochemical behavior of the V2O5 deposit, scan rate 5 mV s-1. in Ar-purged (black), O2-purged (red), and 
O2-purged + Co salen (green) electrolyte. 

As depicted on Figure VI.3, the electrochemical response is almost the same in Ar-purged and O2-

purged media. This might be linked with the important thickness of the V2O5 deposit, that generates 

a high double layer current that essentially masks the electrochemical features of the faradaic ORR 

and OER. However, the impact of the Co-salen can be observed, when added in the electrolyte (the 

Epa1'/Epc1' and Epa2'/Epc2' features are observed). In order to ensure that the contribution seen on 

the voltamperometric traces is (or not) linked only to the double layer effect, the DEMS signal of 

oxygen has also been monitored in the three cases (the oxygen DMES signal being expected flat if 

only double layer current is involved). In order to detect any decomposition of the deposit (in a 

similar fashion than Nb2O5), the carbon dioxide DEMS signal is also monitored (Figure VI.4). 
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Figure VI. 4: O2 DEMS signal for A, C and E; CO2 DEMS signal for B,D and F. Primary Y-Axis: Ion current. Secondary Y-Axis: 
electrochemical current. Ar-purged (A &B). O2-purged (C&D). O2-purged + 1.75 mM Co salen (E&F). Scan rate 5 mV s-1. 

 

The total pressure signal was added for this experiment, as the m/z signals of interest were very 

noisy. It is found that the signals of interest (here O2 or CO2) are not similar to the one of the total 

pressure; this mean that their variation are not due to variation of the baseline of the DEMS signal.  

This being ensured, the O2 signal shows an absence of O2 consumption under argon (Figure VI.4-A), 

which is as expected. Also, a consumption of O2 is detected around -0.5 V vs. Ref, in O2-purged 

electrolyte (Figure VI.4-C), which is consistent with what was observed on pristine carbon (see 

chapter two). This might indicate the ORR is still proceeding on the surface of V2O5, even though it is 
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not clearly seen on the electrochemical signal, because of the huge double layer contribution of the 

electrode.  

When Co-salen is included (Figure VI.4-E), the O2 signal is less clear but it appear that O2 is still 

consumed, at higher potential (which is consistent with the positive impact of the Co-salen on the 

ORR, as explained in chapter four).  

Sadly, carbon dioxide evolution is still detected, at potentials inferiors than for niobium pentoxide, 

for the three cases (Ar-purge, O2-purge and O2-purge in the presence of Co-salen). This puts even 

more discredit on the use of this compound as a protective layer, than for the niobium pentoxide. 

As such, it was decided to use pristine Panex 30 for the full cell tests (two-electrode setup, with 

metallic lithium on the negative side, with Co-salen additive in the electrolyte), as it is the most 

stable positive electrode material tested here (see  chapter three). 

 

II. Toward the use of Co-salen in a Li-O2 full cell 
 

The interest of Co-salen as an additive that can enhance both the ORR and OER was demonstrated in 

chapter four. However, its use as is in the actual setup of Li-O2 full cell (lithium on the negative side, 

separated by Celgard from the carbon cathode on the positive side) is not feasible.  

To be more specific, in such geometry, nothing prevents the redox shuttle to cross from the positive 

side to the negative side, which will necessarily lead to an increased consumption of lithium (thus 

discharge capacity loss), possible degradation of the mediator on the metallic lithium, and an infinite 

recharge loop (at least, as long there is still some metallic lithium available). 

 A very simplified scheme of the capacity losses, that will occur in such Li-O2 system is depicted on 

Figure IV.5. 

 

a. Scheme of a solution 
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Figure VI. 5: Scheme of self-discharge in a Li-O2 system, without the use of a solution to prevent the crossing of the 
mediator to the negative side and its reaction with metallic lithium. 

 

Figure VI.5 is very alarming: if the mediator was “just” reduced on the lithium side, a solution to 

recover the redox shuttle in the required form, will be “simply” to overcharge the system for the 

mediator to operate (it must be noted that in this case, the infinite loop for the recharge will not be 

prevented, as the oxidized form of the mediator could still cross the separator, being reduced on 

lithium, consuming the latter). 

 However, it is well-known that owing to its very low potential, metallic lithium often decomposes 

compounds on its surface (as explained by Peled for the formation of the Solid Electrolyte Interface 

[21, 22]). 

 If the redox shuttle was irreversibly decomposed (and not only reduced), the overcharging of the 

system would be very detrimental, as the mediator would not have the ability to play its role 

anymore.  

However, it came to our attention that this issue could be prevented, with the formation of a 

sufficient and protective SEI on the lithium, prior to being in contact with the redox shuttle, as 

explained on the simplified scheme on Figure VI.6. This concept was introduced by Matsumoto et al. 

[23], but was aimed to pre-form SEI on Li-ion graphite anodes. 
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Figure VI. 6: Scheme of self-discharge in a Li-O2 system, with the pre-forming of an SEI to prevent the decomposition of 
the Mediator to the negative side 

As depicted on Figure VI.6, in the present case, with a sufficient SEI, the mediator would not see 

metallic lithium and would thus not be irreversibly decomposed. This solution is very appealing, even 

though it does not enable to solve the issue of the infinite charging loop. 

 One could also dream of an ideal SEI, pre-forming, where the SEI will be both resistive to electrons 

and ion-conducting, enabling to transport Li+ cation with t+ = 1; this would allow to prevent the 

mediator reduction, even on the negative side (thus preventing self-discharge), as depicted on Figure 

VI.7. 

 

Figure VI. 7: Ideal case for a Li-O2 full cell, where the self-discharge is suppressed thanks to a fully optimized, pre-formed 
Solid Electrolyte Interface 
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The latter case, presented on Figure VI.7 is possible, as it was proven that the SEI structure is 

composed of the superposition of a dense layer of crystalline product, and an amorphous and porous 

layer [24–30]. The nature of the compound that composes those inner and outer layers depends on 

the chemicals that were put in contact with the lithium electrode.  

For instance, concerning the inner crystalline layer, it can be composed of crystalline Li2CO3 [24, 26–

28, 30] (when put in contact with alkyl carbonates solvents), LiF (for the decomposition of LiBF4 salt 

[24, 26–28, 30], LiCl (for the decomposition of LiClO4 salt) [24, 28], but also Li2O, etc.  

In addition, the amorphous and porous layer consisted mainly of alkyl carbonates, and others organic 

decomposition products [24–30]. The thickness of the inner layer was found in the nanometer range 

(2-20 nm) [21, 27, 30], while the outer layer is in the range of the hundred nanometers [26, 27].  

Later studies pointed out that the conduction through the inner layer was ensured thanks to the 

diffusion of excess interstitial Li+ [30] through the crystalline planes of Li2CO3 (to be more specific, 

through the [010] channels [29]). Those studies confirm that in the dense inner layer, the charge 

transport was ensured only by lithium cations, with thus t+ ≈ 1, i.e. the desired scenario. 

 

b. SEI-pre-forming experience 
 

It was thus decided to test such scenario, to verify that the pre-forming of an SEI could be the 

solution to prevent (or at least limit) the undesired redox shuttle effect of the crossover of the 

mediator between the positive and the negative electrode.  

Firstly, two disk of lithium foil of Ø18 mm were cut and placed in a 20 mm diameter flask. The lithium 

was firmly pushed to the bottom of the flask to ensure a good adhesion. Then, in the first flask, 1 mL 

of anhydrous dimethyl sulfoxide (Ar-purged) was added, and in the second one, a blend of ethylene 

carbonate and propylene carbonate (Ar-purged and anhydrous) was introduced (carbonates solvents 

and especially ethylene carbonates are known to form very good SEI, and the two-layer SEI 

formation, with lithium carbonate, as described in the literature was aimed [24–30]).  

The two flasks are presented, as mounted on Figure VI.8. 
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Figure VI. 8: Pictures of the samples right after their preparation. Left side: metallic lithium and DMSO. Right-Side: 
metallic lithium and EC:PC blend 

When prepared as mounted, (Figure VI.8), no differences can be spotted readily. The two flasks were 

left for the SEI to form for four days. Then, a new picture was taken (Figure VI.9). 

 

Figure VI. 9: Pictures of the samples after four day of SEI formation. Left side: metallic lithium and DMSO. Right-Side: 
metallic lithium and EC:PC blend 
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On the one hand, Figure VI.9, the DMSO solution, in which the lithium is placed, turned from 

colorless to yellow, after four days. This indicates, probably, that decomposition products of DMSO 

have been formed; as the solution is colored, those are likely soluble (which is something non-

desirable for the formation of an SEI).  

On the other hand, the EC:PC solution in which the second lithium foil was placed, remained 

colorless, and the lithium surface appeared darker (sign of the formation of products on the surface).  

The two solutions were then removed, and both flask were rinsed with 2 mL DMSO, five consecutive 

times, in order to remove any trace of the previous solvent used for the SEI formation (for the EC:PC 

case).  

Then, 300 µL (which corresponds to the amount of electrolyte that is used in the present full cell 

experiments) of 1 M LiCLO4, containing 0.51 mM of Co-salen (a low concentration was used in order 

to spot easily differences in color - Co-salen is orange in this electrolyte solution [31]) was added in 

each flask, and left for one day.  

As a following, another picture was taken of each samples ( Figure VI.10). 
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Figure VI. 10: Results of the contact between Lithium and Co-salen electrolyte, after the pre-formation step of the SEI. 
Top picture: pre-forming with DMSO. Bottom picture: pre-forming with EC:DEC 

 

For the pre-forming of the SEI in DMSO, the solution changed from orange to blue (which is the color 

of Cobalt in +II state in anhydrous electrolyte [32]), while no changes in color were spotted for the 

sample with the SEI pre-forming in EC:PC electrolyte.  

Those observation clearly show that the Co-salen has been decomposed in the case where the SEI 

was pre-formed in DMSO, while no decomposition (at least nothing visually observable) occurred for 

the lithium protected with a SEI pre-formed in EC:PC. This further indicates that, when the SEI is pre-

formed in DMSO, only the case depicted on Figure VI.5 can occur (most of the additive is 
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decomposed); on the contrary, when the SEI is pre-formed in EC:PC, it is either the case depicted on 

figure VI.6 or on Figure VI.7 that are happening (this experiment is not sufficient to determine which 

case is truly happening here). 

c. A protected Li-O2 full cell with Co-salen 
 

As this test was highly encouraging, a full cell was mounted, with an SEI pre-formed in EC:PC (four 

days) to protect the lithium negative electrode. Also, carbonate solvents are known to reacts readily 

with ORR products [33–37], thus the cell was carefully washed with 3 mL DMSO, five times to 

eliminate as much as possible the traces of carbonates from the cell.  

The electrolyte was 1 M LiClO4 + 1.15 mM of Co-salen (400 µL); the positive electrode was pristine 

Panex 30 carbon cloth. It must be noted that, even though the SEI pre-formation is encouraging and 

was conducted for the full cell experiment, the setup used was not ideal, as the copper wires could 

not be isolated from the electrolyte (the mediator can be reduced onto the copper). Whatever this 

bias, electrochemical tests in full cell conditions were performed (Figure VI.11). 

 

Figure VI. 11: Full cell performances, with a pre-formed SEI when Co-salen is (or not) comprised in the electrolyte. 
Primary Y-axis: Cell voltage. Secondary Y-Axis: Cell current. 
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Firstly, the very encouraging result is that indeed, the cell voltage was increased in OCV and in 

discharge, when Co-salen additive was used (this is due to the fact that Co-salen enhances the ORR, 

see chapter four).  

Also, for an equivalent charging procedure, the Co-salen enables to recharge more capacity and to 

retain a better charging current than when no Co-salen is added in the electrolyte. Sadly, even with 

these positive effects, the overall capacity could not be retrieved, and this is probably due to a too-

high current set for the charging process. In order to prove this point, a three-electrode setup 

experiment in which 1.7 mM Co-salen is used, with a low scan rate (thus closest to a stationary 

experiment) and with the same electrode (pristine Panex 30 with 8 mm diameter) is presented on 

Figure VI.12. 

 

Figure VI. 12: CV operated at 2 mV s-1 with drawing of the full cell settings. Black without Co-salen, Red, with Co-salen 

 

The conditions of Figure VI.12 are not exactly the same than the one of the full cell (as the Co-salen 

concentration used was of 1.15 mM, versus 1.7 mM for this three-electrode experiment.  

However, the discharge current can be easily supported in both case as the peak current measured 

for the case without Co-salen was of -0.1 mA and of -0.075 mA in presence of the Co- salen. This 
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experiment also explains why not so much differences are spotted on the discharge plateau, for the 

experiment without Co-salen, versus the experiment with Co-salen, as this current is supported at 

nearly the same potential (-0.95 V vs. Ref in both case, which corresponds to a potential near 2.7 V 

vs. Li/Li+).  

The second crossing point was selected for this calculation (not the first point at -0.7 V vs. Ref), as it 

corresponds to the case when the experiment is limited by diffusion (which is the case in full cell 

setup). In both cases, the "stationary" curve never crosses the CC current set at 0.05 mA, which 

explains well why almost no capacity is recharged during this step, for both cases (with and without 

Co-salen). As such, if one really wants to spot the differences, between the case with the Co-salen 

and the one without, other boundary conditions for the cell testing must be set.  

Consequently, this experiment needs to be repeated, with a discharge current of -0.025 mA and with 

a charging current of 0.01 mA. Yet, another effect might also explain the rather sluggish 

performances in this case: when the cell was un-mounted, it was sadly found dry. Pictures (Figure 

VI.13) were taken of the lithium and of the color of the remaining liquid in the cell.  
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Figure VI. 13: Images of the unmounted SEI pre-formed + Co-salen cell, in the glovebox 

Despite the poor quality of these images (the focus of the camera was difficult, as the picture was 

taken from the outside of the glovebox), they show the orange color of the Co-salen on the side of 

the cell (bottom image), but also directly onto the lithium (close to the copper wires).  

This goes in line with the experiment conducted in the flasks at it appears that the Co-salen remained 

pristine (as no blue solid is spotted in the cell), even though the electrolyte had evaporated, 

confirming that the issue was not linked to any reactivity of the Co-salen with lithium (which had 

been appropriately protected by its carbonate-based SEI). At the time where this manuscript was 

written, these failed experiments could not be reproduced in due time, unfortunately. 
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Conclusion 
 

Several paths of improvements of the cyclability of Li-O2 batteries were tested in this chapter. 

Unfortunately, it was proven that the new compound tested (V2O5) behaves in a similar fashion than 

Nb2O5: it triggers carbon dioxide evolution, i.e. instead of protecting the Panex 30 carbon cloth, it 

promotes (or at least facilitates) its oxidation/decomposition. Sadly, this puts an end to the use of 

those compounds in practical systems. Another solution (that was not investigated in this chapter), 

could be to engineer high surface area materials, self-supported (thus no PVDF), with no amorphous 

graphitic phase nor amorphous carbon phase in their composition (as it was proven in chapter two 

that those phases are likely the ones responsible for the destruction of the carbon electrodes, by 

reacting with lithium peroxide).  

A solution was also proposed to prevent the detrimental effects of the crossover of the redox shuttle 

in a full cell, which would lead both to the decomposition of the additive onto lithium (if no SEI is 

formed), or to its reduction onto lithium (which will consume lithium thus trigger capacity losses). As 

carbonate solvents are the best for a good SEI formation, but must be prohibited for a practical Li-O2 

system (as they react with lithium peroxide and triggers irreversible loss at each cycles), a SEI on 

lithium was pre-formed using carbonate solvents and such SEI-protected lithium was then tested in 

full cells using DMSO-based electrolytes. Similar benchmark tests were performed by attempting to 

form an SEI in DMSO. It was proven that either no SEI (or a non-protective one) was formed on 

lithium in contact with DMSO. On the contrary, the pre-forming of a carbonate electrolyte-based SEI 

on lithium during four days, followed by a careful washing of the cell and the addition of the redox 

shuttle in the electrolyte gave very encouraging results: no decomposition of the Co-salen was 

observed. A full cell was mounted in these same conditions, in presence of the Co-salen, and no 

evidence of the redox shuttle decomposition was confirmed. However, an improvement of the full 

cell setup and experimental conditions is required as for this experiment, both the discharge and 

charge current were of too important values, for a true characterization of the performance 

enhancement, allowed by the Co-salen. This final demonstration is yet to come. 
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Non-aqueous Li-O2 batteries are potential (very) high energy density batteries, owing to the 

remarkable properties of the Li negative electrodes and of the positive electrode, the energy-density 

of which is virtually infinite, if the oxygen is not stored in the system. Yet, this system suffers from 

major issues, linked to the usage of Li metal at the negative electrode, but also to the positive 

electrode; indeed, the product formed during the discharge (Li2O2) is extremely reactive towards the 

binder (PVDF), the solvent and salts, but also the material used at the positive electrode (carbon); in 

addition, Li2O2 is rather electronic-insulating, and overall, the recharge and cycling-ability of non-

aqueous Li-O2 batteries are really not granted. In this work, these issues have been tackled, and 

solutions looked for with regards to the electrolyte and positive electrode materials.  

In the former case, high-surface-area (partially- graphitized or not) carbon based-materials were 

tested and analyzed for the non-aqueous ORR and OER in conditions relevant to the Li-O2 battery. 

The decomposition of their amorphous-graphitic phase was highlighted by Raman spectroscopy and 

CO2 evolution (destruction of the material) was clearly observed by Differential Electrochemical Mass 

Spectrometry (DEMS). The carbon cloth used as primary current collector and support for the ink 

deposition of those materials (Zoltek Panex 30), a highly graphitized material (neither amorphous 

graphitic phase nor amorphous carbon was detected on its Raman spectra), suffered no 

decomposition in the same conditions, indicating that this material is resilient to usage in Li-O2 

batteries. Comparing the fate of all these carbon-based materials, it is concluded that the carbon 

phases which are the most reactive (and therefore degraded) toward Li2O2 are probably the 

amorphous ones (amorphous carbon and amorphous-graphitic phase). However, even though this 

material is of very high interest for a practical system, a second undesirable effect induced by lithium 

peroxide is still at stake. 

This effect is induced by the morphology of the latter, which is known to form large crystallites, with 

high resistivity (the band gap of Li2O2 is of 5 eV). Consequently, those crystallites are nearly 

impossible to re-oxidize during the charging process, triggering a strong irreversible loss, impacting 

the cell performance. It is well known that, in order to operate, a charging process needs a triple 

interface between the electrolyte, the electrode and the product (Li2O2), and this reason explains 

well why the charging step is very difficult for the positive electrode. Redox shuttle additives may 

delocalize the electron transfer from the electrode to the solution, therefore enabling to “prolong” 

the triple interface in the electrolyte phase: in theory, even detached Li2O2 particles from the 

electrode could be efficiently re-oxidized. In the present work, two new redox shuttles were tested in 

three-electrode setup and proved efficient to assist the recharge of Li-O2 positive electrodes: 

5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) and N,N′-

Bis(salicylidene)ethylene diaminocobalt(II). The former was not as interesting as the latter, as its 
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solubility in the solvent used (dimethyl sulfoxide), was limited. Also, the latter compound 

demonstrated a very interesting beneficial effect (characterized by three-electrodes experiments and 

DEMS) on the oxygen reduction (ORR): the ORR onset potential increased by 230 mV, thanks to the 

formation of a complex between the cobalt(II) core, and molecular oxygen, producing a superoxide-

like specie. The formation of the latter complex was already studied in the literature, but evidence of 

its formation (and reversibility) was studied thanks to UV-Visible spectrophotometry. This effect, 

which is a sign of homogeneous catalysis, is of very high interest, as it could improve greatly the 

discharge potential of a practical Li-O2 system (and thus its practical energy density). Now, whatever 

the successes of the redox shuttle compounds, they do not impede the possible degradation of the 

positive electrode material by (electro)chemical reaction with Li2O2. Addressing this issue was the 

third objective of this thesis. 

The protection of a model carbon material, the Zoltek Panex 30, was studied by Atomic-Layer 

Deposition of Nb-oxides, this material being chosen as a representative benchmark of the potential 

carbon materials to be used in the positive electrode of Li-O2 batteries. To that goal, ALD thin layers 

were realized, firstly on Silicon (400), in order to characterize the Atomic-Layer-Deposition (ALD) 

processes. Two methodologies were studied: Plasma-Enhanced Atomic Layer Deposition (PEALD) and 

(classical) thermal ALD. On the one hand, the former is known to lead to larger deposition rate and to 

decrease the temperature of the deposition, but can induce a more "directive" deposit (depending 

on the orientation of the substrate, the deposit thickness could be different). On the other hand, 

thermal ALD processes  proceed at greater temperature, with lower deposition rates, but are usually 

more conformal, with a better thickness homogeneity in three dimensions. The composition of the 

deposits formed by these two recipes were analyzed thanks to X-Ray  Energy Dispersive  

Spectroscopy (X-EDS) and X-Ray Photoelectron Spectroscopy (XPS). The composition of the thermal 

ALD layers was mainly niobium oxides (Nb2O5, predominant) and oxynitrides (NbOxNy) on the surface. 

The composition in the depth of the deposit was analyzed thanks to in situ erosion and XPS, and the 

same components were detected but this time, the oxynitrides appeared predominant. The surface-

composition of the PEALD sample showed only Nb2O5. For both recipes, the deposit morphology was 

analyzed by Scanning Electron Microscopy (SEM) and appeared very flat (except with a little surface 

roughening for the Thermal ALD recipe). The conformity of the deposit was then analyzed by 

conducting a deposition on a Si (400) wells (with a form factor of 6). The SEM back-scattered images 

of the cleaved samples showed that only the thermal ALD recipe allows to have a deposit at the 

bottom of the wells. Consequently, the thermal ALD recipe was chosen for the deposition onto the 

Zoltek panex 30 carbon electrodes. Four batch were realized (eight electrodes of Panex 30 in each 

batch), at different numbers of ALD cycles:  1500, 2000, 2500 and 1500-extended. The latter was 
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realized, with an increased pulse-time for each reactant (to allow a better diffusion). As for the silicon 

samples, the composition was analyzed by X-EDS and SEM, and the product detected was Nb2O5, 

which contrasted with the experiment on silicon. Also, strong differences could be spotted in the 

amount of deposit from one electrode to the other within the same batch. As a consequence, the 

impact of the number of cycles could not be highlighted in a clear manner. The electrochemical 

behavior of such NbOx-protected Panex 30 electrodes was studied by DEMS; surprisingly, the 

presence of the deposit triggered CO2 evolution (thus decomposition of the carbon of the electrode), 

while the pristine material was highly resilient. Therefore, it was concluded that this deposit was 

harmful to the electrode and behaved at the exact opposite of the expected behavior. Another 

deposit (V2O5) was (shortly) tested, but its behavior was exactly the same than for Nb2O5 (it triggered 

carbon decomposition).  

Finally, full cell experiments were performed using Zoltek Panex 30 at the positive electrode, metallic 

lithium at the negative and a Celgard® separator impregnated with a DMSO-based electrolyte 

comprising the redox shuttle. As this separator alone cannot prevent the cross-over of the efficient 

redox shuttle (N,N′-Bis(salicylidene)ethylene diaminocobalt(II)) from the positive side of the cell to 

the negative side, we tested the pre-forming of a Solid Electrolyte Interface (SEI) onto the lithium 

thanks to a mixture of Ethylene Carbonate (EC) and Propylene Carbonate (PC). For comparison, one 

lithium sample was prepared by pre-forming a SEI in DMSO. Evidence of the decomposition of the 

latter was spotted for the lithium, pre-formed in DMSO, while nothing occurred for the lithium pre-

formed in EC:PC. This latter solution demonstrated promising behavior in a not-fully-optimized full-

cell Li-O2 battery: increased performance were monitored versus a full cell without the redox shuttle.  

The performances can be improved in a fully optimized full cell setup, with a SEI formed in the ideal 

mixture of carbonates solvents. Still, many issues are needs to be addressed for a truly efficient Li-O2 

system. As such, three axes of research are proposed, in the perspective of an efficient Li-O2 positive 

electrode. The first will be to find a solvent and salt, both stable toward Li2O2, which is mandatory for 

a practical system. The second will be to find a way to synthesize a high surface area carbon material, 

in which no amorphous carbon nor amorphous graphitic phase are comprised, and to test it as a 

positive electrode. If the behavior of the latter is the same than Zoltek Panex 30 (no reactivity 

between the material and Li2O2), this material could be used in a practical system, directly as the 

positive electrode (as it will be stable). If not, others deposit chemistries (for instance nitrides) must 

be studied for the deposition of a protective layer on the positive electrode. Finally, an extensive 

research for the negative electrode must be conducted, especially for the pre-formation of a stable 

SEI, which showed promising results. 
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Annexes 1: Raman Fit of pristine carbon materials in LabSpec 

 

 

Figure Annexe. 1 : Fit of a Raman spectra of Panex 30 

 

Figure Annexe. 2 : Fit of a Raman spectra of Basolite 
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Figure Annexe. 3 : Fit of a Raman spectra of MOF 

 

Figure Annexe. 4 : Fit of a Raman spectra of PhenMOF 
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Annexes 2 : Raman Fit of discharged carbon materials in Labspec 

 

 

Figure Annexe. 5 :Fit of a Raman spectra of Panex 30 

 

Figure Annexe. 6 : Fit of a Raman spectra of Basolite 
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Figure Annexe. 7 : Fit of a Raman spectra of MOF 

 

Figure Annexe. 8 : Fit of a Raman spectra of PhenMOF 
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Abstract (English version) 
 

The present PhD work focuses on solving two major issues of the Li-O2 positive electrodes, 
both being linked with the nature of the discharge product formed during the Oxygen Reduction 
Reaction, in Lithium cation electrolyte: Lithium peroxide (Li2O2). The first issue is related to 
the Discharge mechanism (consecutives Electrochemical nucleation and chemical 
disproportionation of an intermediate, lithium superoxide), which lead to the formation of large 
particles of lithium peroxide on the electrode surface. Owing to their size and resistivity 
(bandgap of lithium peroxide : 5 eV), it is nearly impossible to re-charge efficiently the 
electrode. This issue can be solved, thanks to the dissolution of an additive in solution, that 
promote the transport of electrons, and allow the oxidation of large discharge particles (in 
theory, even the ones disconnected from the electrode). A very good compound was found to 
efficiently work as a redox shuttle (enhanced Oxygen Evolution reaction), with also a highly 
beneficial effect for the ORR, with a catalysis effect that allowed to increase the onset of the 
ORR of 230 mV. However, this solution require a engineering of the practical system as this 
additive could cross from the positive electrode to the negative side (lithium) and  trigger 
capacity loss and infinite charging loop. The second issue is linked to its reactivity. As a matter 
of fact, it is an hard base (according to HSAB theory), which reacts readily with a large panel of 
electrodes component (reactivity toward the PVDF binder, solvent, salts, but also with the 
carbon material, used as the positive electrode). As such, it is necessary to find a way to protect 
the latter, and a solution proposed in this work was to use Atomic Layer deposition of Niobium 
pentoxide (Nb2O5), in order to form a very thin deposit, which was supposed to prevent any 
contact between the discharge product, and the carbon support (consumption of Carbon, with 
formation of a large bandgap compound : Lithium carbonate). The deposition was conducted 
onto a graphitized carbon cloth (Zoltek Panex 30), which surprisingly proved to be highly 
resistant toward lithium peroxide. Sadly, the presence of the deposit did not protect the 
electrode but rather made it weaker, with tracers of the formation lithium carbonate. This 
compound was thus not considered anymore, and others deposits are yet needed to be tested in 
future studies. 
 

Résumé (Français) 
 

Les travaux de cette thèse focalisent sur la résolution de deux problèmes majeurs des électrodes 
positives de systèmes Li-O2, dus à la nature du produit de décharge formé pendant la réaction de 
réduction de l'oxygène, en milieux Li+ : Lithium peroxyde (Li2O2). Le premier problème est lié 
au processus de formation de ce dernier  (étapes successives de nucléation électrochimiques et 
de dismutation chimique d'un intermédiaire : le superoxide de lithium), qui conduit à la 
formation de très grosses particules de peroxyde lithium à la surface de l'électrode. Du fait de 
leurs taille et de leur résistivité ( le gap du peroxyde de lithium est de 5 eV), il est impossible de 
recharger de manière efficace et à 100% ce dernier. Cependant, ce problème peut être résolu, 
grâce à l'ajout d'un additif, qui permet le transport d'électron en solution, et qui peut (en 
théorie), recharger les particules de Li2O2, détachées de l'électrode. Un très bon candidat a été 
trouvé dans cette étude, qui a prouvé de très bonne performances pour l'amélioration du 
processus de recharge, et un effet bénéfique supplémentaire a été caractérisé sur le potentiel de 
décharge, grâce à un effet catalytique (augmentation du potentiel de réduction de 230 mV). 
Cependant, cette solution demande de repenser totalement le design actuel des systèmes Li-O2, 
car ce composé (soluble) peut facilement traverser le séparateur, vers l'électrode de lithium (et 
causer une autodécharge importante ainsi qu'une boucle de recharge infinie). Le second 
problème est lié à une autre caractéristique du peroxyde de lithium : sa réactivité. De fait, c'est 
un base forte au sens de Lewis (en accord avec la théorie HSAB), et réagit de manière 
importante avec les constituants de l'électrodes (réactivité avec le liant PVDF, mais aussi avec 
les solvant, le sel et le support carboné de l'électrode). Il est donc nécessaire de trouver un 
moyen de protéger ce dernier, et une solution proposé dans ce manuscrit a été de réaliser la 
déposition d'une couche nanométrique de Nb2O5, qui a pour but d'éviter tout contact direct entre 
le carbone, et le peroxyde de lithium (réaction entre ces deux derniers, qui conduit à la 
formation d'un composé avec un gap de 7 eV : le carbonate de lithium). Le dépôt fut étudié sur 
un carbone graphitisé (Zoltek panex 30) qui, de manière surprenante, a été très résistant versus 
le peroxyde de lithium. Malheureusement, la présence du dépôt à la surface du tissus n'a pas 
protégé l'électrode, mais a plutôt eu l'effet inverse, car des traceurs de la formation de carbonate 
de lithium ont pu être observé (alors qu'aucun traceur n'était détecté sur le tissu nu). Le Nb2O5 a 
donc été écarté, et d'autres composés doivent être testés dans de futures études, pour cette 
application. 

 
 


