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Abstract 

Topology Optimisation (TO) is a fast growing topic that has been sparking the interest of 

many researchers for the past two decades in the electromagnetic community. Its 

attractiveness lies in the originality of finding innovative structures without any layout a 

priori. This thesis work is oriented towards the TO of electromagnetic devices by elaborating 

on various aspects of the subject. First of all, a tool for TO is developed and tested, based on 

the ‘home-made’ tools available at the L2EP. As TO requires a FE and an optimisation tool 

working together, a coupling is done using both. Furthermore, a TO methodology is 

developed and tested, based on the Density Method. An academic cubic test case is used to 

carry out all the tests, and validate the tools and methodology. An approach is also developed 

to consider the nonlinear behaviour of the ferromagnetic materials with our TO tools. 

Afterwards, the methodology is applied to a 3D electromagnet, which represents a more real 

test case. This test case also serves to compare the results with linear and nonlinear behaviour 

of the materials used. Various topologies are presented, for different problem formulations. 

Subsequently, the methodology is applied to a more complex electromagnetic device: a 

Salient Pole Synchronous Generator. This example allows us to see how the problem 

definition can largely affect TO results. Some topologies are presented and their viability is 

discussed.  
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We are currently living in a very demanding era, pushing the human intelligence towards 

the invention of more effective technologies and the improvement of existing ones in the 

pursuit of optimality, if not excellence. We, research scientists, are the most active players in 

this quest for superiority. With the help of other technologies such as computers, which have 

now become ineluctable tools, we are capable of engaging into more tedious calculations and 

simulations, drawing us closer to our goals. This has brought a big boost in engineering in 

general, including the electrical field which is our main concern. 

The electrical engineering laboratory (Laboratoire d’Électrotechnique et d’Électronique de 

Puissance, L2EP), within which this thesis was carried out, has many ongoing works on the 

optimisation of electromagnetic devices, such as electrical machines, amongst others. This 

thesis was therefore oriented towards this same mind-set. Optimisation of machines, for 

example, is a vast subject which can extend from the optimisation of one simple parameter to 

the whole machine. Classically, engineers start off from already existing structures and 

optimise some dimensions to yield a better design. But in doing so, the optimisers always find 

themselves constrained by the initial shape of the structure, and thus reduces the degree of 

freedom. Moreover, in a constant search of new structures, we are very often biased by 

existing ones which can obstruct our sense of innovation. For this reason, we will use a 

different approach to this type of problem: the Topology Optimisation (TO).  

TO is an original way of finding new designs of structures without having any layout a 

priori on the latter. This infers that the optimisation problem is defined in such a way that the 

existing structures are not considered in the problem, but the TO process is rather free to find 

the optimal structure it judges the best, according to the information specified. Scientific 

researchers in the mechanical/structural field are the pioneers in TO, and have taken many 

decades before coming up with such a methodology. The results were so interesting that they 

attracted researchers from various other fields, including electromagnetism. 

TO remains till date amongst the most complex forms of optimisation as it requires equal 

expertise in optimisation algorithms, as well as numerical modelling of structures. In our case, 

the numerical modelling method used is Finite Element (FE) Analysis. Moreover, depending 

on the nature of the models, which are electromagnetic in our case, extensive knowledge is 

also desired in the same field to be able to interpret the results obtained, and hence redirect the 

works on the right path. 

The main aim of this thesis is to develop and acquire the necessary skills and proficiency to 

be able to optimise the topology of any electromagnetic device, whether simple or complex. 
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To achieve this, a number of stepwise objectives must be enacted to successfully reach our 

goal.  

The first objective is to develop and test a functional tool for TO of electromagnetic 

devices. The development of the TO tool will be based on the 'home-made' tools available at 

the L2EP, namely code_Carmel for solving FE numerical models, and Sophemis for solving 

optimisation problems. A coupling of both will have to be done to create a functional TO tool. 

To test the latter, it is important to have a simple, yet effective test case to assess its 

characteristics. For this purpose, an academic 3D test case will have to be developed and 

parameterised. Its electromagnetic nature should be straightforward and easily understood, 

and the FE model should also be solved rapidly.  

The second objective is to develop a methodology for TO, based on the existing ones such 

as Density Methods, ON/OFF Methods and so on. The proposed methodology should allow 

us to overcome the problems usually met with the other methods, for a more effective TO. For 

a paramount testing of the latter, the academic test case will again be used.  

Furthermore, the consideration of the nonlinear behaviour of the ferromagnetic materials is 

often overlooked in TO due to its tedious setting and high computation time, despite being a 

very important aspect of electromagnetic modelling. If the electromagnetic device is operating 

at or near saturation point, and the latter is not considered in the TO process, this might yield 

incorrect optimal structures. Therefore, the third objective is to adapt the TO tool so that it 

takes into account the nonlinear behaviour of the materials, and hence allow us to analyse its 

effects. It will also have to be compared with cases of linear material behaviour to put forward 

its importance. A 3D electromagnet will be used for this purpose as it represents a more real 

test case, and hence a more judicious appraisal. The FE model of the electromagnet will also 

have to be developed and parameterised. 

Last but not least, the fourth objective of this thesis work is to apply the developed tools and 

methodology to a more complex, electrical engineering device: a Salient Pole Synchronous 

Generator (SPSG). It is desired to see the different topologies obtained w.r.t various 

optimisation problems. The assessment of the process’s behaviour can help us gather enough 

information to strive towards better solutions in the future. 

We will see throughout this manuscript how all these objectives contribute to approach the 

main aim of this thesis work. The TO process is a complex one, as mentioned before, and 

should be tackled step by step for productive results. A plan of the work accomplished in the 

manuscript to guide the reader on the course of the latter is presented here. The manuscript is 

mainly divided into four chapters: 
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1. Chapter I: A state of the art of the various existing TO methods is done. The method 

used to complement the proposed methodology of this thesis work is justified. The 

'home-made' numerical tools for FE analysis and optimisation are elaborated, as 

they will further be used to compose the TO tool developed.  

2. Chapter II: The development of the TO tool is detailed, as well as the coupling 

between code_Carmel and Sophemis. A methodology for TO based on the existing 

methods is proposed. The academic test case is used to test and validate the latter. 

The consideration of the nonlinear behaviour of the ferromagnetic materials in the 

TO calculations is developed and explained in this chapter, and tested on the 

academic test case. Additional investigations are made on various aspects of TO 

with this model, serving to identify strengths and limitations of the methodology.  

3. Chapter III: The TO tool and methodology are used to optimised the topology of the 

iron core of the 3D electromagnet. Various cases of optimisation problems will be 

presented. Calculations for linear and nonlinear behaviour of materials are both 

done, and the results are compared and analysed. 

4. Chapter IV: The TO of the rotor top of the SPSG is done w.r.t different optimisation 

problems, and the viability of the various topologies are analysed.  

We will conclude the manuscript with some opinions and assertions we have built up on TO 

during this thesis work, and with some interesting perspectives for future works on the topic. 
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I.1  Introduction 

TO has sparked a sudden interest amongst researchers in the past two decades, owing to its 

originality and ability to produce innovative designs. Before heading to any kind of 

computation, it is interesting to step into the history of TO to understand its evolution, and the 

methods associated with it.  

The first segment of this chapter is dedicated to the history of Topology Optimisation (TO) 

over time, and how the different methods evolved till present day. Some TO methods were 

developed from existing ones, while others were established from popular optimisation 

methods initially designed for different purposes in other fields. Firstly, the main TO methods 

shall be introduced without focusing on the field for which it was conceived, whether 

mechanical, electrical and so on. Afterwards, the main applications w.r.t electrical 

engineering will be evoked with some examples and findings. 

In the second segment, the numerical tools used to carry out the TO process are 

encompassed. This englobes the classical Finite Element (FE) methods and algorithms mainly 

used for the purpose of modelling and optimisation. Both tools used are developed at the 

L2EP within the OMN (Outils et Méthodes Numériques) team. TO normally requires the use 

of both tools coupled together, but this section will focus on them individually as the coupling 

is a significant part developed during this PhD work, and hence to be presented in the next 

chapter. 

Finally, the conclusion will hint at the methods retained for the rest of this thesis work, and 

briefly uncover the content of the following chapter.  

I.2  Origin of the Topology Optimisation Idea 

The desire to generate optimal structures dates a long way back when numerical tools did 

not even exist. Works were already being carried out in the mechanical field to find the limits 

of reducing the amount of material present in frame structures without degrading the former’s 

tensile stress and strain.  

In 1904, Michell [1] proposed a mathematical study to sustain given forces in structures 

attaining the limits of economy of material. The idea was definitely in a TO mind-set, but was 

left unexploited for many decades before Rozvany [2] published his work on the optimisation 

of perfectly plastic and elastic grillages of maximum stress and stiffness with minimum 

weight solutions . But as for the previous case, the study was essentially a mathematical 

formulation without practical applications. Later in 1972, Rozvany and Prager [3] studied the 
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minimum weight design of grillage of perfectly plastic beams that are on the verge of plastic 

collapse under given loads. They proposed a discretisation of the beams constituting the 

grillage, but the study was mostly based on changing the number of discretisation, and hence 

beams. The idea of discretising the optimisation domain was hence introduced.  

In 1988, Bendsøe and Kikuchi [4] innovated with the Homogenisation Method (HM) 

applied to a generalised mechanical TO problem, revolutionising the subject and inspiring the 

sheer interest of other authors. Afterwards, Bendsøe introduced the Direct approach [5] based 

on the HM, but easier in application, and therefore more engineer-oriented. The idea was 

further elaborated in [6] where the authors adapted the Direct Method into SIMP (Solid 

Isotropic Material with Penalisation) Method for intermediate densities, which will be 

detailed in the future sections. But it wasn’t until 1996 that TO was introduced in the 

electromagnetism community by Dyck and Lowther [7], presenting the OMD (Optimised 

Material Distribution) Method.  

According to Scopus [8], various fields such as mechanics, electromagnetism, computer 

science, physics and astronomy, energy, chemistry, neuroscience and econometrics use TO, 

amounting to some 3600 publications since 1986. The number of papers on TO in 

electromagnetism holds a fair share as shown in Figure 1.1, for year 1992 till present. This 

includes conference and journal papers, and we can see a steep rise from around 2007. As for 

the leading countries in TO in electromagnetism, Scopus surveys the greater number of works 

from Japan, USA, China and South Korea. 

 

Figure 1.1 Publications in Electromagnetism from 1992 Till Present [8] 

The state of the art in the next sections will focus on the TO methods in electromagnetism, 

but also a few in mechanical since the methods for the former were actually derived from the 

latter. Despite not having the same way of formulating the problem, they are closely related. 

The next section will concisely enumerate the main differences between TO in mechanical 
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and electromagnetism to justify why the methods cannot be directly translated from one to the 

other. 

I.3  Differences between Mechanical and Electromagnetic Structures 

Regarding TO, the main dissimilarity is that in mechanical structures, it is often desired to 

have lighter designs while respecting the given mechanical constraints like tensile stress and 

strain, whereas in electromagnetic structures, it is rather required to have magnetically 

optimal structures w.r.t the magnetic force, magnetic flux density, EMF and so on. 

Another essential difference is that in electromagnetism, the nonlinearity of the 

ferromagnetic materials constituting the majority of the devices must be taken into account. 

Since we are dealing with the permeability of materials, we must take into account the 

saturation effect. This implies a limitation of the material to allow flow of more magnetic flux 

at some point due to their saturation. After this point, there is also a change in the material’s 

behaviour. These effects do not have to be considered in mechanical structures, but can be a 

turning point in electromagnetism. 

We can also evoke the importance of the movement of electromagnetic devices such as in 

motors and generators to produce the expected output, while in mechanical devices such as 

beams, bridges, frames or housings, they are usually required to be stationary and withstand 

the prescribed load.  

The above factors alone represent a substantial hindrance to TO as they largely increase the 

computation time for the resolution of the models. Computation time usually varies from 

model to model, and can take several hours to several days. It could be a good practice to 

keep a step-wise procedure of finding the optimal topology of electromagnetic structures by 

gradually increasing the difficulty. For instance, a TO using linear materials is usually the 

stepping stone due to its relative rapidity. Once the correct problem formulation is found, and 

the solution obtained corresponds to a suitable one, a TO using nonlinear materials can 

afterwards be envisaged. Subsequently, if the electromagnetic device involves movements 

(such as in electric machines), the latter can also be added to the TO calculations for a closer 

consideration of real conditions.  

Before getting into these details, it is fair to first introduce the various existing TO methods 

to later narrow down our choice for this work. 
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I.4  Topology Optimisation Methods 

Since the introduction of TO, various authors have proposed diverse methods of tackling 

the problem. This section reviews the most popular methods in literature. The 

Homogenisation Method (HM) is covered first, introducing its different variants. Thereafter, 

the Density Method is presented and its clear relation with the HM is evoked. Subsequently, 

the ON/OFF Method is discussed, and its link with the Density Method is also explained. Last 

but not least, the Level-set Method is outlined to see its completely different background 

when compared to the first 3 methods. For each method, the algorithms used for optimisation, 

and the applications in electromagnetism are shortly illustrated to provide a wider overview of 

what has been done in literature. 

I.4.1 Homogenisation Method (HM) 

HM was one of the first and most pioneering TO methods introduced in literature by 

Bendsøe and Kikuchi [4]. It was basically developed for mechanical/structural designs with 

the aim of reducing material constituting the structures for lighter and stronger ones. It deals 

essentially with anisotropic/ composite materials, with an interpolation between void and full 

material. It was founded on theoretical work that proved the existence of solutions could be 

resolved by modifying the design space to include relaxed designs, for instance in the form of 

composites [9]. These design spaces made of composites can be modelled by materials with 

microstructures, and it exists in different types such as rotated, layered or rectangular 

microstructures amongst others. Hence, this involves the consideration of other parameters 

such as orientation and dimensions of each microstructure. In a TO problem, each 

microstructure would normally represent a variable to be optimised, and therefore we have 

more than one parameter for each variable depending on the microstructure type. The optimal 

design of structures is closely connected with the study of microstructures and finding the 

effective homogenised material properties for composite microstructures [4]. The following 

section reviews some of the existing microstructures.  

I.4.1.1 One-Material Microstructures 

In one-material microstructures, the material model contains one material with one or more 

voids. If a portion (or percentage) of a region is made of voids, material is not placed there. 

Otherwise, if there is no porosity in an area, material is placed in that area [10]. An example is 

given in Figure 1.2 to show the basic concept of HM in TO using a square microcell with 

centrally placed rectangular hole as the material model. The top of the figure shows the 
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domain before optimisation, and the bottom, after optimisation. The black area represents 

material, the white represents void, and the grey area represents intermediate materials. This 

means that the material found these types of regions is neither fully solid nor void, but is 

instead consists of a certain percentage of solid and void. This makes it an intermediate 

material which is not manufacturing-friendly, and hence usually undesired in the final 

solution. We will go deeper into this matter throughout this thesis work.  

 

 

Figure 1.2 Basic Concept of HM in TO using Square Microcell [11] 

Various one-material microstructures exist, and some are presented below. They can also 

directly be implemented into a FE code to be used as main elements of the domain. For 

instance, instead of using tetrahedral elements, which is the most common practice, it could 

also be interesting to use the one-material microstructures, and the different parameters of 

each microstructure would represent the variables of the optimisation problem. 

Rank Layered Microstructure 

The basic idea of this category is to find extremal microstructures with maximum rigidity 

(or equivalent minimum compliance). A layered microstructure of rank-p can be used, with p 

ranging from 1 and above, but usually ranks 1 and 2 are used for simplicity. Usually, in a 

rank-p, there are alternating layers of void and solid material, with layers of the ranks being 

orthogonal to each other. For example, in rank-1 material, there are only alternating layers of 

solid material and void in one direction. In rank-2 material, in addition to the initial 

alternating layers, there are orthogonal alternating layers of solid material. Figure 1.3 

illustrates a rank-1 and rank-2 layered microstructure. 
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Figure 1.3 Example of Rank-1 and Rank-2 Microstructures [12] 

In TO, rank-2 layers are most commonly used. In this case, the elements of the matrix of 

elasticity coefficients are functions of 3 parameters: γ, ϑ and θ (as in Figure 1.3), where ϑ and 

γ lie between 0 and 1, limits included. The parameter γ represents the width of the layers in 

rank-1 material, while ϑ represents the width of the orthogonal layer in a rank-2 material. The 

parameter θ gives the orientation of the layers. The volume Ωs occupied by the solid is given 

in (I-1): 

 𝛺𝑠 = ∫(𝜗 + 𝛾 − 𝜗𝛾)𝑑𝛺
𝛺

 (I-1) 

and the density of the composite can be written as in (I-2): 

 𝜌 = 𝜌(𝜗, 𝛾) = (𝜗 + 𝛾 − 𝜗𝛾)𝜌𝑠 (I-2) 

where ρs is the density of the solid [12]. It must be noted that it is possible to vary the cell 

relative density from 0 to 1 by changing the value of ϑ and γ. 

The advantage of rank layered material is that the effective material properties can be 

derived analytically. The main weakness is that the material cells do not provide resistance to 

shear stress in between layers.  

Rectangular Microstructure 

In this category, the microstructure is a square cell with a centrally placed rectangular hole 

in 2D, whereas in 3D, it is represented by a cubic cell with a rectangular parallelepiped hole, 

as in Figure 1.4.  



Chapter I – State of the Art 

11 

 

 

Figure 1.4 Rectangular Microstructure in 2D and 3D 

Rectangular microstructure is one of the most commonly used for TO with HM. The area 

Ωc is occupied by the solid material in the base cell as given in (I-3), and the volume Ωs is 

occupied by the solid material in the design domain as given in (I-4).  

 𝛺𝑐 = 1 − 𝑥𝑎. 𝑥𝑏 (I-3) 

 𝛺𝑠 = ∫(1 − 𝑥𝑎. 𝑥𝑏)𝑑𝛺
𝛺

 (I-4) 

where xa and xb lie between 0 and 1, limits included. The angle of orientation is also θ. For 

different orientations, the properties of elastic constitutive matrix are changed.  

The main strength of rectangular microstructures making it popular in TO with HM is due 

to the smaller number of variables required if a square void is chosen. The main drawbacks 

are that, on one side the homogenisation equation has to be solved by numerical techniques, 

and on the other side the optimisation results often contain intermediate regions. 

Triangular Microstructure 

Not very popular in TO, the triangular microstructure is a very complicated one, making it 

more tedious in numerical implementation and hence increasing computational cost. An 

example of the plate model setup for triangular microstructure is given in Figure 1.5. The 

main strength is that the true strain energy can be calculated numerically, which is not always 

the case with the other microstructures.  
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Figure 1.5 Plate Optimisation Model and its Microstructure [13] 

Hexagon Microstructure 

Initially presented in [12], this type of microstructure is also called honeycomb based cell 

and is given in Figure 1.6(a), along with the dimensions. They have the same advantage and 

disadvantage as the triangular microstructure. Figure 1.6(b) depicts a FE mesh for a quarter of 

the honeycomb cell. 

 

 

Figure 1.6 (a) Hexagonal Microstructure, (b) FE mesh of a Quarter of the Hexagonal Microstructure [10] 

I.4.1.2 Bi-material Microstructure 

Bi-material microcells involve two solid materials, whether voids are included or not. The 

geometry parameters of the hard materials, soft materials and voids are set as the design 

variables of the optimisation problem. As for the one-material microstructure, if a region 

consists of voids only, material is not placed there. Likewise, if a region has no porosity (no 

voids), a solid material is placed there. Rank layered microstructures are most commonly used 

for bi-material microstructures [10]. Figure 1.7 shows examples of bi-material microcell with 

rank layered microstructures. The black and blue areas represent different solid materials, 

while the white area represents void. In the case of Figure 1.7(a), optimisation is done only 

between two solids. The variables shown in the figure are allowed to vary between 0 and 1, 

limits included. The effective material properties can be derived analytically, and the method 

can be applied to both 2D and 3D models.  

(a) (b) 
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Figure 1.7 Rank Layered Bi-material Microstructures [10] 

The volumes occupied by solid material Ω1 (black) and solid material Ω2 (blue) are given in 

(I-5) and (I-6) respectively [12]. 

 𝛺𝑠 = ∫(𝜗 + (1 − 𝜗). 𝛾1. 𝛾2)𝑑𝛺
𝛺

 (I-5) 

 𝛺𝑠 = ∫((1 − 𝜗). (1 − 𝛾1). 𝛾2)𝑑𝛺
𝛺

 (I-6) 

Despite the numerous ways of formulating the optimisation domain using HM, it remains 

more popular in the mechanical field than in electromagnetism. The main reason would be the 

relative complexity of defining an optimisation problem with HM because of the various 

variables needed for one microstructure. Other methods, more adapted to electromagnetism 

were developed from HM, and will be seen in the later sections. 

I.4.1.3 Optimisation Algorithms used with HM 

Due to the high dimension of the optimisation problem using HM as described above with 

multiple variables per cell, it narrows the choice for algorithm classes. Most works with HM 

apply sensitivity-based approaches using analytical derivatives calculated directly from the 

definition of the homogenisation problem [14]. Amongst the popular algorithms are the 

Sequential Linear Programming (SLP), Method of Moving Asymptotes (MMA) or a variety 

of iterative update rules based on explicit optimality conditions.  

I.4.1.4 Applications of HM to Electromagnetic Problems 

The HM, being primarily derived for mechanical/structural designs has mostly been applied 

to the topology optimisation of cantilever beams, bridges and trusses. Its application to 

electromagnetic problems is quite rare and remains much dreaded due to the large number of 

variables. One of the few works that has been presented on TO using HM is [15], where the 

authors determine the optimal material distribution in a design domain .by changing the inner 

(b) (a) (c) 
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hole size and rotational angle of the unit cell. The objective is to maximise the magnetic mean 

compliance of an H-shaped magnet, which is the same as maximising the magnetic vector 

potential, and therefore improving the electromagnet performances, according to the authors. 

Different volume constraints are applied to the design domain to see the behaviour, and the 

materials used are assumed to be linear. Examples of the topologies obtained are given in 

Figure 1.8. 

 

 

Figure 1.8 H-shaped Electromagnet (a) Initial Domain; Volume Constraint of (b) 60%, (c) 70% [15] 

I.4.2 Density-based Methods 

Derived from the HM, the Density-based Method was elaborated to overcome some 

difficulties with the former. Firstly, the generation of areas with porosity were not quite 

desirable, due to their problematic tendency for manufacturing. An example of porosity would 

be during the use of rectangular microstructures in HM (Figure 1.2), where the cell would not 

completely be made of solid material or void. In the advent of many such microcells 

occurring adjacently, this would form a porous structure, which would be challenging to 

homogenise for any manufacturing purpose. Another issue could be the need for various 

design variables for one microcell. Since the process of topology optimisation is already 

known to be a long one, this would only add up to the lengthy calculation time. For instance, 

if the rectangular microstructure is again considered, there are 3 design variables in 2D 

namely xa, xb and θ, while there are additional ones in 3D. Regarding practicability, the HM is 

also known to be tedious in implementation, whether for mechanical or electromagnetic 

problems. To limit the aforementioned difficulties, the Density Method was introduced. It 

must be pointed out that Direct Approach, Engineer’s Method or SIMP Method are the 

different names given to Density Method. 

In [5], the Direct Approach was initiated and tested on a mechanical support structure. An 

artificial density function ρi was introduced, with 0 ≤  𝜌𝑖  ≤  1, and used to calculate the 

Young’s Modulus E of cell i as in (I-7). The Young’s Modulus of the solid material is given 

by E', the penalisation coefficient by n, and i is an element of optimisation domain Ω. Figure 

1.9 depicts a typical 2D domain used in Density Method.  

(a) (b) (c) 



Chapter I – State of the Art 

15 

 

 𝐸𝑖 = |𝜌𝑖|
𝑛. 𝐸𝑖′ (I-7) 

 

 

Figure 1.9 Example of 2D domain Ω with Density Method 

The artificial density values of ρi lying between 0 and 1 essentially represent a proportion of 

solid material or void. Of course, it is desired to have either solid material (ρ=1), or void 

(ρ=0) as final material in the cell, instead of having intermediates unless they are defined in 

the library of materials of the optimisation problem. The main interest here is that the material 

properties between the solid and void are interpolated with a smooth continuous function 

which depends on the material density ρ. The penalisation coefficient n is used to change the 

interpolation behaviour with n ≥ 1, and actually apply a ‘penalty’ on the design variable ρ to 

transform it to either solid material or void. This part will be detailed in the following 

sections. The term SIMP (Solid Isotropic Material with Penalisation) was adopted in [16] by 

Rozvany et al. to refer to this same method and is today the most commonly used in literature. 

But the equation relating the various above mentioned parameters can differ in nature. 

Throughout time, many of these equations or so-called Interpolation Schemes have been 

introduced in literature, and the main ones are presented in the next section. All the equations 

will be given in terms of relative permeability. 

I.4.2.1 Interpolation Schemes 

In [7], the Direct Method is revisited for application in the electromagnetic field. The 

authors propose a new philosophy of considering the method as a distribution of material in 

space, and called it OMD (Optimised Material Distribution). This point of view is still used 

today, as it is a more practical way of establishing the problem. In a domain to be optimised, 

ρi = 1 ρi = 0 

0 < ρi < 1 

Domain Ω 
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the material properties are defined at every point in space. Hence, for efficient distribution, 

the domain has to be discretised into cells. For magnetic devices, parameters such as 

permeability, permittivity and conductivity are used to represent the materials, where each 

cell can take these characteristics. For an optimisation, it is possible to consider many 

properties at the same time, or one at a time. The most common case is to consider only 

permeability as the material properties, as it is usually desired to optimise the topology of 

ferromagnetic materials. The relationship between the material density and the permeability 

was very much inspired from (I-7) and is given in (I-8), dubbed as Geometric Mapping in 

[7]. The main difference is that in the latter, the density is used as a power so that the 

minimum relative permeability (air) is always 1. 

 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟𝜇𝑟𝑖𝑟𝑜𝑛
𝜌𝑖  (I-8) 

The relative permeability and material density in cell i are given by µri and ρi respectively, 

and the relative permeability of free space and the solid material are given by µrair and µriron 

correspondingly. Following this work, other authors proposed different interpolation schemes 

between µri and ρi. For example in [17] and [18], the Polynomial Mapping is introduced, as 

given in (I-9), and is clearly inspired from (I-7) and (I-8): 

 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 + (𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟)𝜌𝑖
𝑛 (I-9) 

where 0 ≤  𝜌𝑖 ≤ 1 and 𝑛 ≥ 1. For 𝑛 = 1, the function is a linear one, and normally referred 

to as Permeability Mapping in literature. The higher the value of n, the greater will be the 

variation of the gradient of the curve. This actually helps in the ‘penalisation’ of the 

intermediate density values to 0 and 1. The authors in [17] test the mapping using permittivity 

of a dielectric material instead of permeability, to be consistent with the nature of their 

problem. In [18], the authors test the interpolation scheme by optimising an electromagnet. 

In [19] and [20], the authors initially propose an interpolation scheme with the inverse of 

the Young’s Modulus E, as given in (I-10), for i
th

 cell. In [9], the authors revisit the function 

and illustrate it as a Rational Function, or RAMP (Rational Approximation of Material 

Properties), as it might have been named in other circumstances. The RAMP Function is 

given in (I-11). 

 
1

𝐸𝑖
=

1

𝐸𝑚𝑖𝑛
+ 𝜌𝑖 (

1

𝐸0
−

1

𝐸𝑚𝑖𝑛
) (I-10) 
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 𝐸𝑖 = 𝐸𝑚𝑖𝑛 +
𝜌𝑖

1 + 𝑞(1 − 𝜌𝑖)
(𝐸0 − 𝐸𝑚𝑖𝑛) (I-11) 

Of course, the function can also be adapted to electromagnetics by using permeability 

instead of Young’s Modulus, as in (I-12). Usually 𝑞 ≥ 0, but the authors suggest that if Emin is 

much smaller than E0, then it is wise to use a very large of q so that the final design is free of 

intermediate densities. It must be noted that, if 𝑞 = 0, the interpolation scheme is linear. 

 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 +
𝜌𝑖

1 + 𝑞(1 − 𝜌𝑖)
(𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟) (I-12) 

In [21], the authors proposed the use of reluctivity instead of permeability, hence the 

Reluctivity Mapping as in (I-13). The topology optimisation of an electromagnet is treated in 

the same paper using this mapping. The resulting permeability when the cell i take the 

properties of iron or air should be the same when using reluctivity in the equation, except that 

the shape of the curve for intermediate materials (between 0 and 1) will be different. This is 

depicted in the next section.  

 
𝜇𝑟𝑖 =

1

1
𝜇𝑟𝑎𝑖𝑟

+ (
1

𝜇𝑟𝑖𝑟𝑜𝑛
−

1
𝜇𝑟𝑎𝑖𝑟

) 𝜌𝑖

 (I-13) 

In [22], the authors propose mathematical sequences as interpolation schemes where the 

Uniform Sequence, Geometric Sequence and Arithmetic-geometric Sequence are evoked. 

An example of the Uniform Sequence adapted to the permeability is given (I-14). 

 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 + (
𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟

𝑚
)∑𝜌𝑖

𝑘

𝑚

𝑘=1

, ∀𝜌 ∈ [0,1] (I-14) 

The value of m can be varied according to the order of the summation terms desired. 

Table 1.1 recaps the different interpolation schemes and Figure 1.10 illustrates the curves 

obtained with each, for 𝜇𝑟𝑎𝑖𝑟 = 1, and 𝜇𝑟𝑖𝑟𝑜𝑛 = 2000. The next chapter will compare their 

efficiency with an academic test case.  
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Table 1.1 Recap of the Interpolation Schemes 

Interpolation 

Scheme 

Equation Penalty 

Coefficient 

Polynomial 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 + (𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟)𝜌𝑖
𝑛 n 

Geometric 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟𝜇𝑟𝑖𝑟𝑜𝑛
𝜌𝑖  - 

Reluctivity 
𝜇𝑟𝑖 =

1

1
𝜇𝑟𝑎𝑖𝑟

+ (
1

𝜇𝑟𝑖𝑟𝑜𝑛
−

1
𝜇𝑟𝑎𝑖𝑟

) 𝜌𝑖

 
- 

RAMP 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 +
𝜌𝑖

1 + 𝑞(1 − 𝜌𝑖)
(𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟) 

q 

Uniform Sequence 
𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 + (

𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟
𝑚

)∑𝜌𝑖
𝑘

𝑚

𝑘=1

    

𝑤ℎ𝑒𝑟𝑒  ∀𝜌𝑖 ∈ [0,1] 

m 

 

 

 

Figure 1.10 Comparison of Different Interpolation Schemes 

, ρi 

, 
μ

i 
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These mapping equations represent a way of linking the artificial density ρi (variable) to the 

property of the cell i by showing their evolution over the range of ρi. These mappings are 

useful during optimisation as the density ρ is taken as variable instead of the permeability. 

Given the smaller range of 0 ≤ 𝜌𝑖 ≤ 1, it renders the optimisation process more efficient. 

Also, since the evolution of the materials during the optimisation process is represented by 

continuous values, the transition is smoother from one material to another.  

I.4.2.2 Density Method for Bi-material 

As for the HM, the Density Method can also consider the use of bi-material models, i.e. a 

hard and a soft material, and void. In mechanical structures, (I-15) can be used. 

 𝐸(𝜌𝑒) = (𝜌1
𝑒)𝑛. ((𝜌2

𝑒)𝑛𝐸(1) + (1 − 𝜌2
𝑒)𝑛𝐸(2)) (I-15) 

The elasticity matrix of element e is E, and those of material 1 and 2 are E
(1)

 and E
(2)

 

respectively. The density ρ1 indicates the presence of material or void, while the density ρ2 

indicates the presence of material 1 or 2. The penalisation coefficient n is common for both 

materials [10], [23]. The combinations of ρ values to indicate the different materials are given 

in Table 1.2. 

Table 1.2 Combinations for Final Material 

ρ1 ρ2 Final Material 

0 0/1 Void 

1 
0 Material 1 

1 Material 2 

 

In [23], the author proposes the use of Density Method for bi-material modelling, and 

suggests invoking each property independently, and writing them as constraints. This 

principle can also be replicated in electromagnetism to optimise the topology of a structure 

with hard and soft magnetic material, as given in (I-16). More details will not be provided 

here as it goes beyond the scope of this work. 

 𝜇𝑟(𝜌𝑒) = (𝜌1
𝑒)𝑛. ((𝜌2

𝑒)𝑛(𝜇𝑟(2) − 𝜇𝑟𝑎𝑖𝑟) + (1 − 𝜌2
𝑒)𝑛(𝜇𝑟(1) − 𝜇𝑟𝑎𝑖𝑟))  + 𝜇𝑟𝑎𝑖𝑟 (I-16) 
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I.4.2.3 Optimisation Algorithms with Density Method 

With the Density method, the variables are made continuous, varying between 0 and 1. This 

allows the use of gradient-based optimisation algorithms, which are quite rapid as compared 

to discrete variable algorithms. Sequential Linear Programming (SLP), Sequential Quadratic 

Programming (SQP), or steepest descent are commonly used, as in [24] and [25]. Usually in 

the Density Method, since there is one variable per cell, the domain can be more finely 

discretised as compared to HM, with the same calculation time. The common practice is to 

use each finite element as a variable, hence having as much degree of freedom as the number 

of finite elements. Some authors [26], [27], [28] also use the analysis tools derived for the 

finite element formulation to obtain information about the design sensitivity, technique which 

is most commonly known as the Adjoint Variable Method (AVM). The sensitivity of the 

objective function to changes in the material properties at each element is calculated, at the 

expense of a single extra evaluation of the objective function.  

I.4.2.4 Application of Density Method to Electromagnetic Problems 

Various applications have been inventoried from literature, with many proposing rather 

straightforward examples such as C-core electromagnets while others suggesting applications 

to more complex electro-technical structures such as electrical machines.  

In [18], Wang & Kang propose to investigate the effect of nonlinearity of materials using a 

C-core electromagnet as example, for different volume constraints. Using the Polynomial 

Mapping as well, the authors propose their own code development for FE modelling and 

nonlinearity consideration. In [29], the same authors propose to optimise the topology of the 

C-core magnet with coil and magnet as materials as well. In [30], Choi and Yoo propose to 

use the SIMP Method with AVM and Sequential Linear Programming (SLP) to also optimise 

the topology of a C-core actuator. In [31], Okamoto et al. propose to revisit the nonlinearity of 

materials used with Stabilised SLP for a magnetic shield and a magnetic actuator 

(electromagnet). The energy stored in the systems are maximised, and the effect of taking 

nonlinearity into consideration is also investigated. 

In [32], Byun et al. optimise the topology of an electrostatic actuator that can be 

manufactured by microelectromechanical system (MEMS) technology. The Polynomial 

Mapping is used, with the permittivity used as material characteristic in the optimisation 

process. It is desired to maximise the torque during operation of the actuator. An example of 

the initial design domain is given in  



Chapter I – State of the Art 

21 

 

Figure 1.11(a). For torque maximisation, the difference of the system energy between rotor 

position A and position B is maximised. The variables coincide with the elements of the FE 

mesh.  

Figure 1.11(b) shows one of the resulting topologies, depending strongly on the initial 

conditions as commented by the authors.  

   

 

Figure 1.11 Electrostatic Actuator Design (a) Inital Design, (b) Final Design 

In [33], the rotor topology of a single phase induction motor for a rotary compressor is 

optimised. The magnetic energy in the domain to be optimised is maximised, and the volume 

is also constrained. In [34], the use of Soft Material Composites (SMCs) for the topology 

optimisation of the outer rotor of a Brushless DC motor (BLDC) was investigated. SMCs are 

commonly described as ferromagnetic powder particles surrounded by an electrical insulating 

film offering advantages such as unique 3D isotropic ferromagnetic behaviour and very low 

eddy current, as compared to conventional laminated steel sheets [35]. The cogging torque 

was minimised for the BLDC by using a difference in co-energies between two specific 

positions. In [36], Labbé et al. propose to maximise the torque-to-weight ratio of a Permanent 

Magnet Synchronous Motor. Choi et al. [37] also attempted to minimise the cogging torque of 

an Internal Permanent Magnet Motor by using the Reluctivity Mapping. One of the latest 

applications found in literature is the topology optimisation of a Hall Effect Thruster using the 

Rational Mapping and Augmented Lagrangien Method to solve the problem [22]. 

Some other electromagnetic applications using Density Method can also be found such as 

design of a patch antenna [38] and piezoelectric multi-actuated microtools [39]. 

I.4.3 ON/OFF Method 

The ON/OFF Method uses the same mode of discretisation of the domain as in Figure 1.9, 

except that the variable cells can only take binary/discrete values of 0 or 1, unlike with 

Density Method which allows continuous values. Consequently, every point within the design 

(a) (b) 
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space is filled with either material or void, without any intermediates. Among the first works 

using this method were [40] where the authors used discrete variables for the design of the 

structure, albeit the name ‘ON/OFF’ was not yet given.  

This method has the advantage of not producing intermediate materials at the end of the 

optimisation process, and hence avoiding the ambiguity in choosing to place material or void 

in a grey region. On the other hand, such a method can yield topologies with checkerboard 

patterns, i.e. regions with a void surrounded by a solid material (or vice versa). These 

phenomena will be encompassed in the next sections with some examples. This problem can 

nevertheless be overcome with the use of filters or smoothing operators during or after 

optimisation. For example, in [41], the authors suggest the use of a topology smoother to 

enhance the final design, and eliminate the above described phenomena for 3D TO. On the 

other hand in [42], the blurring technique is introduced as shown in Figure 1.12, by creating 

giant structural clusters. The weights are allocated to the cells and their neighbourhood in the 

original structure. Then, the giant clusters are obtained by selecting elements according to the 

volume fraction constraint. 

 

Figure 1.12 Blurring Technique (a) Original Structure, (b) Blurred Structure, (c) Topology Selected according to 

the Volume Fraction of 0.5 [42] 

I.4.3.1 Optimisation Algorithms with ON/OFF Method 

Based on the previous works, evolutionary algorithms remain the most popular optimisation 

algorithms used with the ON/OFF Method. Genetic Algorithms (GA) are often used, whether 

directly or coupled with some local search procedures [43]. Other stochastic approaches such 

as Immune-based optimisation algorithms [44] [45] [46], Particle Swarm Optimisation [47], 

Branch & Bound [48] and Simulated Annealing [40] were used in TO of electromagnetic 

devices. The main advantage of these approaches is that the global optimum is more likely to 

be found, as compared to the use of gradient-based algorithms. Nonetheless, a higher number 

of generations/evaluations are generally needed, and this can increase the calculation time to a 

higher extent.  
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It is worth noting that a few works using sensitivity-based techniques with ON/OFF Method 

have been recorded. For instance in [49], the presence/absence of material in a particular cell 

is determined by the sign of the sensitivity of the performance function. In [41], Okamoto et 

al. use the Adjoint Variable Method (AVM) sensitivities to work out magnetic designs using 

ON/OFF.  

I.4.3.2 Application of ON/OFF Method to Electromagnetic Problems 

In [43], the authors propose to use a hybrid GA with the ON/OFF method to optimise the 

shape of a rotor pole so as to reduce the cogging torque. In [41], the authors use sensitivity 

analysis to optimise the Single-Pole-Type head having a magnetic shield so as to reduce the 

leakage flux in the adjacent component. In [50], Takahashi et al. also examine the optimal 

design of an electromagnetic shield using a Forward Difference method [51] to calculate the 

sensitivity, and an annealing at the end of the optimisation process to improve the objective 

function. In [42], the topology of a C-core asymmetric and symmetric magnetic actuator was 

optimised using GA and ON/OFF sensitivity Method. In [52], the authors derived a multistep 

GA and tested it on a magnetic shield system. In [53], the same authors applied the method to 

optimise the topology of a rotor core in an Interior Permanent Magnet (IPM) motor. The 

effective shape of the flux barrier is derived as it plays a major role in controlling torque 

characteristics. In the same paper, the effect on the current phase angle of the motor is also 

considered.  

I.4.4 Level Set Method 

Initially derived to track the motion of a front whose speed would depend on the local 

curvature, such as crystal growth and flame propagation, the Level Set Approach gained in 

popularity after the work by Osher and Sethian in 1987 [54]. Since then, many authors 

proposed to apply Level Set Method (LSM) to TO as in [55], [56], [57] and [58]. It is 

primarily a mathematical way of posing the problem, with equations representing the 

boundaries. The said boundaries are usually obtained from the contour when a surface 

intersects a plane, as in Figure 1.13. 
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Figure 1.13 Contour Representation when a Surface Intersects a Plane [59] 

The idea is to allow the surface to evolve so that the contours are changed, hence creating, 

merging or splitting the front. The front (or contour) is obtained where the surface has no 

height, i.e. at 𝜙 = 0, defined as the zero level set. Figure 1.14 (a) shows an example of the 

square zero level set of a surface, while Figure 1.14 (b)-(d) shows the evolution of the surface 

over time, hence splitting the front. 

 

 

 

 

Figure 1.14 (a) Contour at Zero Level Set, (b)-(d) Evolution of a Contour by Splitting [60] 

To differentiate the boundaries from their outside and inside regions, the rules in (I-17) are 

used. The working domain Q is given in Figure 1.15, in which the admissible shape Ω is 

included, with 𝛺 ⊂ 𝑄 and level set function ϕ defined on Q, and describing the boundary of 

Ω. at any point (x,y) [55]. 

(a) (b) 

(c) (d) 
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 𝜙(𝑥, 𝑦) {

< 0,   𝑖𝑓 (𝑥, 𝑦) ∈ 𝛺

= 0,   𝑖𝑓 (𝑥, 𝑦) ∈ 𝜕𝛺 ∩ 𝑄

> 0,   𝑖𝑓 (𝑥, 𝑦) ∈ (𝑄\𝛺)
 (I-17) 

 

Figure 1.15 Representation of Domain Ω and Boundary 

To characterise the curve when the surface moves in the normal direction with speed v, the 

level set function ϕ has to satisfy the “level set equation” given in (I-18), where |.| is the 

Euclidean norm and t is time. This Hamilton-Jacobi equation can be solved numerically, for 

example by using finite differences on a Cartesian grid [61], [62]. To update the level set 

function, and hence the structure, (I-19) is used. It must be noted that the terms v(x,y) and 

g(x,y) are scalar fields over the design domain Ω, and w is a positive parameter which 

determines the influence of the term involving g. 

 
𝜕𝜙

𝜕𝑡
= 𝑣|𝛻𝜙| (I-18) 

 
𝜕𝜙

𝜕𝑡
= 𝑣|𝛻𝜙| − 𝑤𝑔 (I-19) 

The attractive aspect of splitting, merging and hole degeneration (but not hole generation) 

makes LSM popular with many authors for TO. It also provides a smooth geometrical 

description of the domain, and can also be extended to 3D structures.  

But LSM remains a very mathematical method and hence complex in setting up. The 

calculation of the shape gradients often involve the implementation of Partial Differential 

Equation (PDE) systems, being known for their difficult implementation [14]. Another issue 

is the inability to generate new holes in the domain, and hence often leading to premature 
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convergence to sub-optimal topologies. To address this issue, the often used strategy is a 

highly perforated domain to allow the holes to later merge or disappear, or by including 

formulation terms in the level-set equations to allow for generation of new holes.  

I.4.4.1 Optimisation Algorithms with Level Set Approach 

The common practice is to use derivative-based optimisation methods with level-set 

formulations. In many cases, Lagrangian optimisation algorithms are coupled with Adjoint 

Variable Method to look for the topological/shape derivatives during the optimisation process 

[63] [64] [65]. The topological derivative is basically a function defined at every point x on 

the design domain Ω, representing the information on the variation of the objective function if 

an infinitesimal hole is created at 𝑥 ∈ 𝛺 [66]. Based on this information, holes can iteratively 

be created and grown at any point in the domain.  

Conversely, a few works using derivative-free optimisation methods with Level-set have 

been recorded in literature. In [67], the authors introduced a spectral version of the level-set 

technique by using a combination of an initial random search with a posterior local search 

using a derivative-free trust region. In [68], the same methodology is used, but with an 

evolutionary algorithm instead. Unfortunately, these works did not fuel any further interest in 

the electromagnetic TO community.  

I.4.4.2 Application of Level Set Approach to Electromagnetic Problems 

Substantial works with level-set in the electromagnetic community started appearing 

essentially during the last decade. In [64], Shim et al. used the level-set with a topological 

derivative and a radial basis function to optimise the topology of a C-core actuator. The radial 

basis function is essentially a radial symmetric function centred at a specific position xi in the 

domain and used with a multi-quadratic spline for interpolation. Afterwards, the Hamilton-

Jacobi PDE is used to yield the level-set model.  

In [56], the design of a dipole antenna is optimised by maximising the mean current density 

in the former. The Level-set with shape derivative is used, and is coupled with Method of 

Moment (MoM) model [69], which is a rather popular numerical method in electromagnetic 

wave propagation, using Maxwell’s equations. 

In [70], the rotor shape of an IPM motor is optimised. The results using LSM with a local 

search method are compared to results using ON/OFF Method with micro-genetic algorithm 

(µGA). The objective was to maximise the torque while minimising the torque ripple. An 
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example of the optimised shape and flux distribution of the motor is given in Figure 1.16(a) 

using the ON/OFF Method, and Figure 1.16(b) using the Level-set Method. 

 

 

Figure 1.16 Optimised Shape and Flux Distribution (a) ON/OFF (b) Level-set Method [70] 

Another interesting work using the Level-set method was conducted by Okamoto et al. [57] 

to solve 3D nonlinear magnetic field system with spatial symmetric condition. The topology 

of a magnetic shielding model is optimised, and results using linear and soft nonlinear 

materials are compared.  

I.5  General Complications with TO 

Topology optimisation of a structure, whether mechanical or electromagnetic, is never a 

straightforward task. It is rather a very complex one as it involves common modelling (FE or 

others) and optimisation difficulties at the same time. Moreover, it also has to deal with 

complications related to the TO method itself. This section will encompass the most common 

obstacles encountered during TO, and the type of method in which it is prominent.  

I.5.1 Intermediate Material 

Intermediate materials occur generally in Homogenisation and Density Methods due to the 

initial formulation of the problem. For the HM as shown in Figure 1.2, the occurrence of high 

porosity causes difficulties in deciding the boundaries for solid material or void. The use of 

different microstructures might help in avoiding these problems. Nevertheless, more efficient 

microstructures might be more complicated in terms of problem setup, and also increase 

calculation time.  

As for the Density Method, due to the continuous nature of the density variables (0 ≤ 𝜌 ≤

1), the densities very often end up in intermediate values instead of 0 (void) and 1 (solid 

material). These intermediate values, since not defined in the library of materials, do not have 

a physical meaning. Some propositions have been made in literature to overcome this 

problem, such as in (I-9) and (I-12), where the purpose of the coefficients n and q is to 

(a) (b) 
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‘penalise’ the intermediate values (hence the name penalisation coefficients), and turn them 

into integers of 0 and 1. But this method has not proved itself utmost efficient throughout the 

past works. For this reason, [9] proposed the Continuation Method. Here, the penalisation 

coefficient is gradually raised, starting from the lowest value. In the first optimisation with a 

value of 𝑛 = 1, the density of the cells in the domain are allowed to take intermediate values. 

As n is increased in the following optimisations, the densities are naturally penalised to end 

up in a 0-1 design. This method works for any mapping dealing with a penalisation 

coefficient.  

I.5.2 Local Minima 

One of the biggest difficulties of topology design remains the non-convexity of the 

optimisation problems. Non-convexity typically means that one can find several local minima 

to a single problem, and can therefore obtain different solutions/topologies depending on the 

initial conditions and parameters set. This non-uniqueness of solutions due to multiple optima 

is generally obtained with the HM, Density Method and Level-set Method as they make use 

of gradient-based and sensitivity based algorithms. Furthermore, according to literature, most 

global optimisation methods seem rather weak in handling problems of the size of a typical 

topology optimisation one [9]. The most efficient way of dealing with the local optima is to 

perform multiple optimisations from various initial points and parameters, and the best 

solution can be derived from there. Another approach might be the use of the above 

mentioned Continuation Method here as well to converge to a more reliable solution. 

I.5.3 Checkerboard Designs 

Areas with checkerboard-like patterns are often generated in TO. These patterns occur 

mainly with the use of ON/OFF, Density and Homogenisation Methods. They can occur 

mainly due to the insufficient fineness of the domain discretisation, or mesh, depending on 

how the variables are treated. This phenomenon is mostly present in structural designs and 

less prominent in electromagnetic ones. The main reason for this is the way flux is distributed 

throughout a ferromagnetic structure, compelling the design to be compact enough for a more 

efficient flow of flux. Another type of checkerboard pattern that could occur in 

electromagnetism might be the advent of having a region with a solid material surrounded 

with air only, or vice-versa. This can happen mainly when considering linear ferromagnetic 

materials instead of nonlinear ones in electromagnetic structures; or due to an unfortunate 

mishap in the convergence of the algorithm when using the ON/OFF Method. Figure 1.17 
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gives an example of a checkerboard pattern in the topology design of a cantilever beam in 

Figure 1.17(a), and in an electromagnetic design in Figure 1.17(b). 

    

 

Figure 1.17 Checkerboard Patterns with (a) Structural Design, (b) Electromagnetic Design 

For electromagnetic problems, filters for checkerboard control can be used as optimisation 

constraints or in post-process of an optimisation to eliminate the undesired patches. A 

common example is the Neighbouring Method that consists of allocating a sensitivity to a 

specific element, and its direct 8 neighbours, as described in [9] and [71] . For example, a 

weight is applied to each element and its direct neighbours; if a void is surrounded by a 

certain percentage of solid material, the void is sensibly turned into a solid material. The same 

logic applies vice-versa.  

I.5.4 Mesh Dependencies 

The problem of mesh dependency has been pointed out in various works, but it remains 

mainly a difficulty in structural topology design, despite its minor presence in magnetic 

designs. For instance, a coarse mesh might produce one topology, while a finer mesh might 

yield a pretty different one. An example for a structural design of a beam is shown in  

Figure 1.18. This problem is less recurrent in electromagnetic designs due to the need for 

compactness of the structure for efficient flow flux. Nevertheless, the difference in topologies 

when using coarse and fine mesh is very noticeable if the mesh sizes are quite far apart. Of 

course, like in any other model, a coarse mesh cannot present very precise solutions.  

 

Figure 1.18 Example of Mesh Dependency of the TO Design [9] 

(a) (b) 
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I.6  Summary of TO Methods 

The first part of this chapter has covered the main TO methods in literature, namely 

Homogenisation, Density, ON/OFF and Level-set Methods. Their modes of operation have 

been covered, alongside a few examples of application.  

We have seen that for HM, different types of microstructures could be used to model the 

optimisation domain, and the microcells could have various design variables such as length, 

width, depth, rotation angle, and so on, where the latter are used in the optimisation problem. 

We have also seen that, depending how the microcells were filled, similar regions could be 

homogenised (hence the name Homogenisation Method) to produce the final structure. This 

method is among the first ones to have been devised for TO, but is rarely used in 

electromagnetism.  

We have also elaborated on how the Density Method is used, i.e. how the discretisation of 

the domain is done, and how the various Interpolation Schemes could be used to model the 

variables and the properties of the domain to be optimised such as permeability. The variables 

are represented by artificial densities which are continuous in nature, varying between 0 and 

1. The main advantage is the practical nature of the interpolation schemes, as they can easily 

be programmed for use. The main disadvantage would be the generation of local optima, 

which could bias final results.  

The ON/OFF Method was introduced, and we have seen that the type of domain 

discretisation is the same when compared to the Density Method, except that the variables are 

discrete in nature, i.e. they can only take the values of 0 or 1. The main advantage is, as for 

Density Method, the relatively easy setup of the problem, and also the generation of global 

optima. On the other hand, the ON/OFF Method can produce checkerboard designs due to the 

discrete nature of variables, but also have a relatively high calculation for large amount of 

variables as compared to local methods.  

We have also had a look at the Level-set Method, which is a completely different technique 

of tackling the TO problem. It is more mathematically challenging as compared to the other 3 

methods. It does not require any discretisation of the domain, but rather a mathematical 

function to represent the domain. The boundaries of the function are allowed to evolve, until 

the final outline of the desired structure is obtained. The main advantage is that, since the 

boundaries are continuous functions, they can be more precise in topology as compared to the 

other methods using discretisations. However, the main disadvantage is the relative 
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mathematical difficulty of the problem setup, and also the generation of local optima as it uses 

gradient-based methods most of the time.  

Choice of TO Method 

By taking into account the main advantages and disadvantages of each method, their ease of 

application, and their compatibility with the numerical tools already used at the L2EP, we 

retained the Density Method for further exploitation in the thesis work. The most attractive 

feature that led us to choose this method was the lucidity of the method for comprehension 

and application; for example the definition of the variables is simply the discretisation of the 

domain. As we project to use FE modelling, it would not be a problem to take into account the 

discretisation, and the model can be very well adapted. Moreover, the continuous nature of the 

variables would allow a smoother transition to a feasible structure. As for the optimisation 

part, various algorithms can be tested easily, without the need for a change in formulation of 

the problem. 

On the other hand, despite having evoked the use of Adjoint Variable Method in TO and its 

various advantages, it will not be dealt with in this thesis due to its lengthy development in the 

3D FE code used and our constrained time for the thesis completion. 

The next part of this chapter will focus on the modelling and optimisation tools used during 

the thesis, and developed at the L2EP. The classical tools are presented in this chapter, but the 

tool dedicated to TO, based on the coupling of the classical ones, will be elaborated in the 

next chapter as it represents a substantial work of this thesis. 

I.7  Numerical Tools 

Apart from the appropriate material distribution method, an adequate choice of the 

numerical tools is of utmost importance for the successful TO of any structure. The two main 

tools are: a performing optimisation algorithm, and a reliable modelling tool. Regarding the 

optimisation algorithm, it can be of any type, i.e. local search, global search or hybridised. As 

for the modelling tool, it can be with FE, Reluctance Network (RN), Moment’s method and so 

on. For electromagnetic structures, FE method is the one usually preferred for precise 

modelling and accurate results. 

Generally in literature, programs and codes are tailored exclusively for TO, i.e. the authors 

develop their own FE and optimisation programmes for a particular structure/model. The 

foremost advantages to this aspect is that the process is lighter in terms of calculation time 

and rather flexible, in the sense that modifications are easily brought to enhance the process. 
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On the other side, the chief drawback is that one has to go through the tedious process of 

redeveloping a whole code and, in numerous cases, it might not be a general one to all 

models. This has been the driving motivation for us to utilise a fully-fledged and independent 

FE and optimisation tool to benefit from all the functionalities of both.  

Concerning the FE tool, our choice was directed towards code_Carmel [72], a calculation 

code initially developed at the L2EP by the modelling team, but as from January 2006 

onwards, co-developed with EDF (Électricité De France) R&D. A common laboratory, 

LAMEL (Laboratoire Avancé de Modélisation du Matériel Électrique) therefore regroups 

both teams for the continuous development of code_Carmel. Regarding the optimisation tool, 

Sophemis (Superviseur d’optimisation de machines électriques dans leur environnement) was 

selected, being an optimisation platform also developed at the L2EP [73]. It can accommodate 

any programmed algorithm in Matlab
®

 language. 

For both to work complementarily towards optimising the topology of an electromagnetic 

structure, they have to be coupled so that the optimisation evaluations and FE calculations are 

performed alternately. This will be dealt with in the next chapter. The following sections will 

concisely cover the operating principle of each tool individually. 

I.7.1 Code_Carmel – A FE Calculation Code 

code_Carmel is a Finite Element calculation code essentially based on the resolution of the 

Maxwell equations to solve electromagnetic problems in magnetostatic and magnetodynamic 

cases. For greater accuracy, the constitutive laws of materials that link the different fields are 

obviously considered. Indeed, since magnetic materials usually have a nonlinear magnetic 

behaviour, the latter must also be considered during calculations. Additionally, while solving 

electrical machine models, the consideration of specific moving parts is useful to model the 

corresponding phenomena. These aspects are taken into account by code_Carmel, amongst 

others. 

I.7.1.1 Maxwell’s Equations  

The theory of Electromagnetics (EM) was established based on the different findings of 

various scientists such as Ampere, Gauss, Faraday, Lenz, Coulomb, Lorentz and Laplace, 

amongst others. Later, Maxwell synthesised their consistent work into four equations, to 

establish a link between electric and magnetic quantities [74]. The four equations are given in 

(I-20) to (I-23). 
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Gauss’s Law for electric fields 

 𝜵.𝑫 = 𝜌𝑣 (I-20) 

Gauss’s Law for magnetic fields 

 𝜵.𝑩 = 𝟎 (I-21) 

Faraday’s Law 

 𝜵 × 𝑬 = −
𝝏𝑩

𝝏𝒕
 (I-22) 

Ampere’s Law 

 𝜵 × 𝑯 = 𝑱 +
𝝏𝑫

𝝏𝒕
 (I-23) 

With:  

D: Electric Flux Density (C/m²) 

B: Magnetic Flux Density (T) 

E: Electric Field (V/m) 

H: Magnetic Field (A/m) 

J: Current Density (A/m²) 

ρv: Volume Charge Density (C/m
3
) 

It must be noted that all Maxwell’s equations are expressed in vectors forms. Figure 1.19 

shows how the Maxwell’s Equations can be divided into subgroups. For this work, our focus 

will be mainly on the magnetics subgroup. 

 

Figure 1.19 Subgroups of Maxwell’s Equations 

Maxwell’s Equations 

Low Frequency 

Electrostatics Magnetics 

Magnetostatics Magnetodynamics 

High Frequency 
(Waves) 
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In the magnetostatic case, slow varying fields can be understood to be fields not leading to 

current redistributions, and therefore the eddy current effects are not considered. This is 

commonly called the quasi-static phenomenon. In the magnetodynamic case, fast varying 

time dependent fields are treated as quasi-stationary. In both cases, the term 
𝜕𝐷

𝜕𝑡
 is neglected in 

the Ampere’s Law, and gives (I-24). This induces charge conservation, and therefore (I-25). 

 𝜵 × 𝑯 = 𝑱 (I-24) 

 𝜵. 𝑱 = 𝟎 (I-25) 

To use Maxwell’s equations to solve any electromagnetic problem, they must be completed 

with the constitutive laws, as briefed in the following section.  

I.7.1.2 Constitutive Laws of Materials 

The field vectors D and E, and also B and H are related by the properties of the materials at 

any point in the field region. These relations are referred to as the constitutive properties of 

the material, and are given in (I-26), (I-27) and (I-28). 

 𝑫 = 𝜀. 𝑬 (I-26) 

 𝑩 = 𝜇.𝑯 (I-27) 

 𝑱 = 𝜎. 𝑬 (I-28) 

With: 

ε: Electrical Permittivity of the Material (F/m) 

µ: Magnetic Permeability of the Material (H/m) 

σ: Electrical Conductivity of the Material (S/m) 

The values of permittivity and permeability can also be expressed in relative form, as given in 

(I-29) and (I-30). The permittivity and permeability of free space are given by 𝜀0 and 𝜇0; and 

the relative values for the material are given by 𝜀𝑟and 𝜇𝑟respectively. 

 𝜀 = 𝜀0. 𝜀𝑟 (I-29) 

 𝜇 = 𝜇0. 𝜇𝑟 (I-30) 



Chapter I – State of the Art 

35 

 

It must be noted that (I-27) is a linear relationship, and is usually applicable to non-

ferromagnetic materials only. For hard magnetic materials (permanent magnets), the 

relationship can be written as in (I-31), where 𝐵𝑟 is the remnant induction in T, and 𝜇𝑟is the 

relative permeability for such materials, usually close to unity [75]. 

 𝑩 = 𝑩𝒓 + 𝜇0𝜇𝑟𝑯 (I-31) 

For soft magnetic materials, such as iron alloys used in electromagnetic actuators (machine 

rotors and stators), the magnetic saturation must be considered. The new relationship is 

therefore as given in (I-32). Hysteresis is neglected in this case. 

 𝑩 = 𝜇(∥ 𝐻 ∥)𝑯 (I-32) 

It is worth noting that the constitutive laws chosen define largely the modelling quality of 

the electromagnetic phenomena.  

I.7.1.3 Boundary Conditions 

To solve the equations in the modelled domain, conditions on the fields are applied on its 

boundaries. Furthermore, the symmetries of the domain are also used to truncate it in order to 

limit the number of unknowns, and therefore the computation time. For a studied domain Ω, 

the boundary is given by 𝛤 = 𝜕𝛺.  

Hence, the boundary condition given by 𝑩. 𝒏 = 0 |𝛤𝑏 is applied at 𝛤𝑏, the boundary relative 

to the magnetic flux density, while the condition 𝑯 × 𝒏 = 0 |𝛤ℎ is imposed, with 𝛤ℎ as the 

surface relative to magnetic field. Of course, both 𝛤𝑏 and 𝛤ℎ are complementary in Γ, i.e. 

𝛤 = 𝛤𝑏 ∪ 𝛤ℎ and 𝛤𝑏 ∩ 𝛤ℎ = ∅.  

For conductors, the studied domain is Ωc, and the boundary is given by 𝛤𝑐 = 𝜕𝛺𝑐. Boundary 

conditions are also applied when using conducting materials, such as 𝑱. 𝒏 = 0 |𝛤𝑗, with 𝛤𝑗 

representing the envelope of the conducting domain. Furthermore, in many cases, the latter 

domain is also truncated. This leads to the condition 𝑬 × 𝒏 = 0 |𝛤𝑒, where the surface 𝛤𝑒 

represents either a symmetry, or an equipotential surface with an imposed voltage. The two 

surfaces 𝛤𝑗 and 𝛤𝑒 are also complementary for the conductor boundary 𝛤𝑐, as in the case of 

magnetic materials previously. The schema of the domain in an electromagnetic system is 

depicted in Figure 1.20. 
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Figure 1.20 Schema of Electromagnetic Domain 

I.7.1.4 Formulations 

Generally, to solve Maxwell’s Equations, scalar and vector potentials are introduced. This 

section will only deal with the formulations for electrostatic and magnetostatic fields. 

Magnetodynamic field will not be covered as it deals with induced currents, which is not 

covered in our TO study.  

Electrostatic Formulation 

Here, the studied space is limited to the domain 𝛺𝑐 for conductors. Only the electric field 

and current density are considered, and hence the term 
𝜕𝐵

𝜕𝑡
 representing the time variation of 

the magnetic flux density is neglected. The system in (I-33) is solved, along with the 

boundary conditions in (I-34). 

 {
𝜵 × 𝑬 = 𝟎
𝜵. 𝑱 = 𝟎
𝑱 = 𝜎𝑬

 (I-33) 

 {

𝑬 × 𝒏 = 𝟎 |𝜞𝒆
𝑱. 𝒏 = 𝟎 |𝜞𝒋  

𝜞𝒄 = 𝜞𝒋 ∪ 𝜞𝒆

 (I-34) 

To solve the system, the Electric Scalar Potential φ can be used, as given in (I-35). The 

latter is replaced in (I-33) so that (I-36) is to be solved. 

 𝑬 = −𝜵𝝋 (I-35) 

 𝜵. (−𝜎𝜵𝝋) = 𝟎 (I-36) 

Γ 

Γ
h
 

Γ
b
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Γ
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 Γ

e
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Another method is to use the Electric Vector Potential T as in (I-37), and therefore 

resulting in (I-38) to be solved.  

 𝜵 × 𝑻 = 𝑱 (I-37) 

 𝛁 × (
1

𝜎
(𝛁 × 𝑻)) = 0 (I-38) 

Magnetostatic Formulation 

In this case, the studied domain is limited to the non-conducting one, where there are no 

induced currents. Nevertheless, an imposed current Js can be applied to the system to 

constitute the source term. Considering soft and linear magnetic materials, the magnetic 

quantities, i.e. magnetic field and magnetic flux density are determined by solving the system 

in (I-39), with the boundary conditions in (I-40).  

 {
𝜵 × 𝑯 = 𝑱𝒔
𝜵.𝑩 = 𝟎
𝑩 = 𝜇𝑯

 (I-39) 

 {

𝑯 × 𝒏 = 𝟎 |𝜞𝒉
 𝑩. 𝒏 = 𝟎 |𝜞𝒃
 𝜞 = 𝜞𝒃 ∪ 𝜞𝒉

 (I-40) 

To solve this system, the Magnetic Vector Potential A can be introduced, as given in (I-41). 

By replacing in the system, (I-42) is obtained. 

 𝛁 × 𝑨 = 𝑩 (I-41) 

 𝛁 × (
1

𝜇
(𝛁 × 𝑨)) = 𝑱𝒔 (I-42) 

 

Another way to solve the system is to use the Magnetic Scalar Potential 𝜴. In this case, a 

source field 𝐻𝑠 is introduced such as ∇ × 𝐻𝑠 = 𝐽𝑠 and 𝐻𝑠 × 𝑛 = 0 |𝛤ℎ. The new Maxwell-

Ampère equation is then written as ∇ × (𝐻 − 𝐻𝑠) = 0, and 𝛺 is introduced as in (I-43). 

 𝑯 = 𝑯𝒔 − 𝜵𝜴 (I-43) 
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The formulation for the Magnetic Scalar Potential to be solved is thus given in (I-44). 

 𝜵. (𝜇𝜵𝜴) = 𝜵. (𝜇𝑯𝒔) (I-44) 

Usually, an equation with ‘curl-curl’ as in (I-38) and (I-42) is rather difficult to solve, and 

thus less preferred than the other formulations. It is also worth noting that in the following 

chapters, the formulation 𝛺 will be mostly used, with only a few comparisons with 

formulation A.  

To solve such a system of PDE to obtain a numerical solution, a spatial discretisation of the 

field equations is required. There are various discretisation approaches such as Finite 

Differences, Boundary Elements, Moment’s Method, Monte Carlo Method and Finite 

Elements Method. In our case, Finite Element Method, which is more common in 

electromagnetism, is used. 

I.7.1.5 Finite Elements Approach 

Finite Elements (FE) approach, used for the discretisation in space, relies on approximation 

spaces for the physical quantities that possess locally supported basis/interpolation functions 

[76]. The principle of discretisation in the FE approach is to divide the studied domain into 

smaller (usually equal) elements. The nature of these elements depends on the dimension q of 

the studied domain. For example, in 1D the elements are segments, in 2D they are polygons, 

and in 3D they are polyhedra. The physical quantities are calculated in each of these elements. 

The solution can be found at the nodes, edges or faces using an interpolation function.  

The general procedure for FE approach can be summarised in the following steps:  

a) The PDE, with the given boundary conditions, are multiplied by the appropriate test 

functions and integrated over the whole simulation domain 

b) A partial integration is done and a variational (weak) formulation is obtained  

c) At this point, the discretisation of the whole domain using FE is required 

d) An approximation method is applied to obtain the algebraic system of equations, i.e. 

the physical quantity of interest is approximated by functions, and the solution of the 

algebraic system of equations leads to the physical quantity in the discretisation points 

 

Let’s consider the problem where the function u must be found, and the solution of the 

system is defined by (I-45). 

 𝑨(𝒖) = 𝒇 (I-45) 
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Where A is a derivative operator and f is a function independent of u. This system is the 

general form of FE approach used for any physical phenomenon. In our case, it is therefore 

replaced by the Scalar or Vector Potential equations presented before, depending on the 

formulation required.  

This equation is transformed into the weak variational form. A functional space V must be 

defined, containing the exact solution u (continuous problem). The approximated solution 𝑢ℎ 

in the functional space 𝑉ℎ (discrete problem) must then be sought. The continuous problem is 

given by (I-46), where the solution 𝑢 ∈ 𝑉 must be found. 

 𝒂(𝒖, 𝒗) = 𝒍(𝒗), ∀𝒗 ∈ 𝑽 (I-46) 

Where 𝑎(. , . ) is in bilinear form, and 𝑙(. ) in linear. 

The discrete problem is similar, and given in (I-47), where 𝑢ℎ ∈ 𝑉ℎ must be found. 

 𝒂(𝒖𝒉, 𝒗𝒉) = 𝒍(𝒗𝒉), ∀𝒗𝒉 ∈ 𝑽𝒉 (I-47) 

The discrete problem takes complex geometries into account, where the latter are 

approximations of the structure of the system in the form of elements constituting the discrete 

domain [77].  

I.7.1.6 Nonlinearity 

Due to the use of soft magnetic materials in the modelling of electrical devices, as 

mentioned previously, the consideration of the nonlinear behaviour of the ferromagnetic 

materials is very important, as in (I-31). Generally, the hysteresis cycle is neglected. Each 

material behaves differently under a certain B or H, and therefore a B(H) curve is usually 

established for each of them to give the true magnetic permeability µ. To obtain the true 

values of the latter, the manufacturer usually carries out a series of tests on samples of the 

material, and provides the characterisation curve along with the material.  

But this B(H) curve also has to be implemented in code_Carmel so that the FE models (of 

machines) can be as close as possible to the actual ones. To do so, the Marrocco Equation 

[78] is used, as given in (I-48). The latter is suitable for mean-magnetization modelling of 

ferromagnetic materials, as in our case. Due to its continuous first derivative, the equation is 

also suitable for Newton-Raphson nonlinear iterative schemes, which are used in 

code_Carmel. 
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 𝑯 =
𝑩

𝜇0
[
𝑩2𝛼

𝑩2𝛼 + 𝜏
(𝑐 − 𝜀) + 𝜀] (I-48) 

where α, τ, ε and c are the coefficients to be adjusted in the equation.  

From each B(H) curve supplied by the manufacturer, a regression function is used to find 

the correct values of the coefficients of the Marrocco equation, and the latter is used to model 

the desired system. An example of such a curve is given in Figure 1.21, showing the linear 

section before saturation, and nonlinear section after saturation.  

 

Figure 1.21 B(H) Curve using Marrocco Equation 

Typically, most designs operate at, or near the saturation point. The permeability µ is a 

function of the local magnetic field, which is unknown at the start of the problem. Therefore, 

an iterative process is used to keep correcting the permeability until it is consistent with the 

field solution. As mentioned before, the iterative method used in code_Carmel is the Newton-

Raphson Method, where it is also possible for the user to choose the number of iterations 

allowed for convergence, for more or less precise solutions.  

I.7.1.7 Movements 

Electrical machines are usually rotating ones, and therefore if a rigorous and accurate model 

simulation is desired, the movements must also be taken into account. In code_Carmel, due to 

the rigidity of the machine materials, deformations are not considered. This hypothesis allows 

a fixed mesh to be used, i.e. no re-meshing of the model is needed at every step of the 

movement. To model the latter, in addition to the correct boundary conditions, the surface 
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where movement occurs must be defined. This is commonly called the ‘slipping surface’ in 

code_Carmel, and considers the boundary/surface between the fixed and mobile domain.  

This surface must be meshed in a regular way since the motion is simulated through a 

permutation of the unknowns of this surface. Therefore, this induces a link between the 

rotation speed and the simulation time step. Indeed, the rotation step is dependent on the mesh 

of this surface and can only be taken as an integer number of the angle between two 

successive nodes of the slipping surface. In general, the finer the mesh size, the higher will be 

the number of nodes on the slipping surface, and hence the smaller will be the time steps of 

the simulation. 

I.7.1.8 Energy  

The magnetic energy calculated in code_Carmel for a FE model returns a global value. The 

magnetic energy density w for a stationary magnetic field is calculated as in (I-49). 

 𝑤 = ∫ ℎ𝑑𝑏
𝑏

0

 (I-49) 

I.7.1.9 Force 

The magnetic force calculated by code_Carmel is done using the Virtual Work (VT) 

Method [79] [80], and was implemented based on the works of [81]. The VT method is based 

on the principle of transformation of the magnetic energy into mechanical energy. In a domain 

Ƿ, the total force in a direction s can be calculated from the variation of the magnetic energy w 

of the system after a displacement in the same direction, as given in (I-50). This movement is 

done with a constant flux, i.e. with B constant.  

 𝐹𝑠 = −𝜕𝑠𝑤│𝑏=𝑐𝑜𝑛𝑠𝑡,     𝑠 = 𝑥, 𝑦, 𝑧 (I-50) 

A similar expression can be established using the variation of the magnetic co-energy w' 

when the current is constant, and hence h constant as given in (I-51). 

 𝐹𝑠 = 𝜕𝑠𝑤′│ℎ=𝑐𝑜𝑛𝑠𝑡,     𝑠 = 𝑥, 𝑦, 𝑧 (I-51) 

Both calculations are done assuming no variation of b and h on the boundaries of the 

domain during the displacement, and only within the domain Ƿ. 



Chapter I – State of the Art 

42 

 

I.7.2 Sophemis – An Optimisation Platform 

Sophemis is essentially a Matlab
®
 operated platform that provides a live interface for the 

user to supervise the optimisation process. It allows the execution of any Matlab
®

 model, as 

long as the inputs and outputs are correctly defined. For an optimisation problem, the inputs 

include fixed parameters and variables, while the outputs comprise the objective functions and 

the constraints. It is possible to use Matlab-ready algorithms, but also user-programmed 

algorithms. Some of the algorithms already available in Sophemis are Particle Swarm 

Optimisation (PSO), mono/multi objective Genetic Algorithm (GA) and fmincon. Design of 

Experiments (DoE) such as Full Factorial Design (FFD) and Latin Hypercube Square 

(LHS) are also available. 

In the coming sections, the DoE and algorithms that will be used in the scope of this work 

will be described. This includes FFD, LHS, fmincon SQP and GA. 

DoE is categorised by a series of tests conducted by changing the input variables so as to 

identify the reasons for the changes in output response. It is therefore necessary to define the 

problem and choose the variables (or input factors). A design space (or region of interest), 

being the range of variability of each variable, must also be defined.  

I.7.2.1 Full Factorial Design 

Among the existing DoE, the FFD is probably the most common and intuitive strategy for 

experimental design [82]. Its aim is to cover all the possible combinations of input factors of a 

problem. The factors are assigned levels of variability L within which they can evolve. For 

example, if 𝐿 = 2, the input factors can be high or low, i.e. +1 or -1. For k input factors of the 

problem, the sample size will be 𝑁 = 𝐿𝑘, i.e. N experiments will be done to cover all the 

possible combinations of the problem. Therefore, the higher the number of factors and levels, 

the bigger will be the sample size, and hence more time will be required to cover all the 

combination possibilities. For this reason, the FFD is preferred for problems with low values 

of L and k. Table 1.3 gives an idea about how the sample size rapidly grows when input 

factors or levels are increased.  
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Table 1.3 Example of Full Factorial Design  

Number of Levels L Number of Factors k Sample Size N 

2 2 4 

2 5 32 

3 2 9 

3 5 243 

 

In TO, as the number of variables is usually high, this method cannot be used. On the other 

hand, it will be used in the next chapter for analysis of the behaviour of the test cases.  

Nevertheless, it must be noted that Fractional Factorial Designs are also used in the event 

of larger number of L and k, so that the sample is downsized to half or quarter of the original 

size. This will not be dealt with in this thesis as it is beyond the scope of our work.  

I.7.2.2 Latin Hypercube Square 

LHS essentially aims at reducing the sample size for the factor combinations of a problem 

whilst keeping a resourceful sample distribution [82]. The level of variability for each factor 

is usually allowed to be higher than for FFD, i.e. 3 and over, as not all the levels are 

experienced in LHS. Instead, a choice of combinations to be investigated is made, hence 

reducing the sample size. The terms primary factors and nuisance factors are also introduced 

in LHS, respectively representing the main factor of interest and the other factors present in 

the problem. For example, if 𝑘 = 3, where 2 of the 3 factors are nuisance factors, the sample 

size will be 𝑁 = 𝐿2. It must be pointed out that if: 

 k=3, the DoE is called Latin Square 

 k=4,  the DoE is called Graeco-Latin Square 

 𝑘 ≥ 5, the DoE is called Hyper-Graeco-Latin Square or Latin Hypercube Square 

An example of how the Latin Square is combined is given in Figure 1.22, and the respective 

experimental design in Table 1.4 for 𝑘 = 3, 𝐿 = 3, and 𝑁 = 9, with X1 and X2 the nuisance 

factors, and X3 the primary factor. 

 

Figure 1.22 Latin square Example 
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Table 1.4 Latin Square Experimental design 

Experiment No. Factor Level 

X1 (row) X2 (column) X3 

1 1 1 A 

2 1 2 B 

3 1 3 C 

4 2 1 C 

5 2 2 A 

6 2 3 B 

7 3 1 B 

8 3 2 C 

9 3 3 A 

 

In each row and each column, the levels of factors must not be repeated, and each factor 

must follow a different letter/number pattern in the Latin Square. The advantage of the Latin 

Square is its ability to keep separated several nuisance factors in a relatively cheap way in 

terms of sample size. On the other hand, since the factors are never changed one at a time 

from sample to sample, their effect can be partially confounded. When using 𝑘 ≥ 5, the 

Hyper-Graeco-Latin Square is more difficult to be defined theoretically. In this case, in 

Sophemis, the sample size is specified, and the number of levels of variability required for the 

factors is calculated accordingly by the platform (see Appendix A).  

I.7.2.3 fmincon SQP 

For the optimisation algorithm used throughout this work, fmincon SQP was chosen due to 

its remarkable ability to handle nonlinear functions and satisfy constraints. The general 

nonlinear optimisation problem is usually as given in (I-52), and will be referred to as NLP in 

the following explanations. The functions in NLP must be continuously differentiable twice.  

 {

min 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
ℎ(𝑥) = 0
𝑔(𝑥) ≤ 0

 (I-52) 

In fmincon SQP (Matlab
®
) used in our case, the gradient is calculated by finite difference 

and this information is used to advance towards the optimum. The problem can also include 
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as special cases, linear and quadratic programs in which the constraint functions h and g are 

affine, and f is linear or quadratic.  

The basic idea of SQP is to model NLP at a given approximate solution, say x
k
, by a 

quadratic programming subproblem, and then use the solution to this subproblem to construct 

a better approximation x
k+1

. This process is iterated to create a sequence of approximations 

that is expected to converge to a solution x*. If constraints are not considered, the SQP 

method reduces to the Newton’s Method for finding the roots (zeroes) of a function. The 

presence of constraints makes the implementation of SQP more complex.  

Two characteristics of the SQP Method must be pointed out. First, SQP Method is not a 

feasible-point method, i.e. neither the initial point nor any of the subsequent iterates need to 

be feasible (a feasible point satisfies all the constraints of NLP). This is a major advantage 

since finding a feasible point when there are nonlinear constraints may be nearly as hard as 

solving the NLP itself. SQP Methods can be easily modified so that linear constraints, 

including simple bounds, are always satisfied. Secondly, successful SQP Methods depend on 

the existence of rapid and accurate algorithms for solving quadratic programs. Fortunately, 

there are efficient algorithms to solve quadratic programs easily. In case of equality 

constraints, the problem reduces to a system of linear equations, while for inequality 

constraints, a sequence of systems may have to be solved. 

It must also be pointed out that SQP Methods like Newton’s Method and steepest descent 

are local algorithms. Therefore, to reach the global optimum, a merit function is used. It is a 

way of measuring the progress towards the true solution, which reduces while approaching 

the solution.  

The Lagrangien for this NLP is given in (I-53). 

 ℒ(𝑥, 𝜆, 𝜎) = 𝑓(𝑥) − 𝜆𝑇ℎ(𝑥) − 𝜎𝑇𝑔(𝑥) (I-53) 

where λ and σ are Lagrange multipliers. At an iterate x
k
, a sequential programming algorithm 

defines an appropriate search direction d
k
 as a solution to the quadratic programming 

subproblem, as in (I-54). 

 

{
 

 𝑚𝑖𝑛            𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)𝑇𝑑 +
1

2
𝑑𝑇𝛻𝑥𝑥

2 ℒ(𝑥𝑘, 𝜆𝑘, 𝜎𝑘)𝑑

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          
ℎ(𝑥𝑘) + 𝛻ℎ(𝑥𝑘)𝑇𝑑 = 0

𝑔(𝑥𝑘) + 𝛻𝑔(𝑥𝑘)𝑇𝑑 ≤ 0

 (I-54) 
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I.7.2.4 Genetic Algorithm (GA) 

GA is an adaptive heuristic (metaheuristic) search algorithm based on the evolutionary 

ideas of natural selection and genetics. It represents an intelligent exploitation of an initially 

random generation to solve optimisation problems. It is considered as a global search method, 

unlike gradient-based methods which are local search methods. Both have their pros and cons, 

depending on the final purpose.  

In the GA optimisation process, an initial random generation of individuals is generated 

called a population. Each individual in the population is attributed a unique chromosome. 

The chromosome is normally a string of binary digits {0,1} or characters, depending on how 

they are defined initially. An example of an individual’s chromosome in binary digits is: 

 

Each chromosome is made of genes, represented here by a binary digit. From this current 

population of individuals, a new population is generated. This new population is obtained 

based on different evolution processes: 

 Selection: the fittest individuals (parents) from the population T are selected, based 

on their fitness score. The fitness score is usually the value of the objective being 

optimised; hence the individuals with the most optimal objectives are selected 

 Crossover: the parents are mated with one another, creating better children of the 

next population T+1. A crossover point is chosen and portions of the chromosomes 

of the individuals are interchanged. An example of a type of crossover is: 

 

 Mutation: some individuals of population T+1 will have their bits flipped, but the 

probability of this is kept low. Its purpose is to maintain diversity within the 

population, and inhibit premature convergence, e.g.: 

 

The fitness of the population T+1 is evaluated, and the process is iterated until the best 

individual is found.  
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I.8  Summary 

After a deep insight into the various features of Topology Optimisation, i.e. the requirement 

of the material distribution methods, the tools for FE modelling and for optimisation, we can 

now proceed with tests of new methodologies and their application to electromagnetic devices 

to find new topologies. Table 1.5 summarises the tools chosen from the literature review for 

further use. 

Table 1.5 Recap of Tool Chosen 

Tool Choice Main Reason 

FE analysis code_Carmel Fully functional FE code developed at the L2EP, 

and hence modifications accessible 

Optimisation Sophemis Optimisation platform that can accommodate any 

algorithm, developed at the L2EP. Modifications 

accessible 

Material 

Distribution Method 

Density Method Intuitive method, with lucid setting up. 

Compatible with our FE and optimisation tools 

 

Regarding the optimisation algorithm, we will use fmincon SQP in most cases, but we will 

also use GA and the other presented DoEs for a few tests and comparisons.  

We have seen that TO is quite a complex topic, and for this reason, we proceed gradually 

by starting with an academic electromagnetic test, which will be illustrated in Chapter II. Our 

awareness regarding the lengthy calculation times pointed out in literature for TO has also 

reinforced this choice. But despite the academic nature of the test case, it is a very useful one 

to lay the foundation stone of our work.  

Once the methodology for TO is developed and tested, we will apply it to more tangible 

electromagnetic cases such as an electromagnet and a Salient Pole Synchronous Generator, 

presented in Chapter III and IV respectively. The various topologies obtained for different 

problem formulations will be discussed, as well as the major hindrances encountered during 

the TO process.  
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II.1 Introduction 

This chapter is dedicated to the development, testing and analysis of a methodology based 

on the Density Method for TO of electromagnetic structures. As stated earlier in this thesis, 

TO is a very complex process and requires attention of the user in various aspects of the topic, 

such as type of domain discretisation, mesh size, problem formulation, and so on. A change in 

one of the latter can change the optimal structure obtained. Additionally, the TO tool used 

throughout this work will also be covered in this chapter, as significant effort was invested in 

its development and testing. It involves the coupling of code_Carmel and Sophemis, the two 

tools developed at the L2EP which have been introduced in the previous chapter. Since we are 

dealing with TO in electromagnetism, the consideration of the nonlinearity of the materials is 

also important. But it is nonetheless often overlooked in other works as it tends to encumber 

the process. Therefore, this chapter will also explain how the nonlinearity is taken into 

account in our case, w.r.t the methods already used in code_Carmel.  

Development of a tool and methodology is one part, but one should also be able to test it 

with a quick response so as to understand the behaviours for TO, and to further apply it to 

more complex electromagnetic cases. For this reason, this chapter will utilise an academic and 

relatively quick electromagnetic test case to explore the different angles of this subject and 

have a deeper insight of how the system functions as a whole. This will also help us to 

identify the main difficulties of TO in electromagnetism, and anticipate for future cases. 

Throughout this chapter, the test case will be fully exemplified, as well as its strengths and 

weaknesses. Furthermore, we will use the same test case to compare our methodology with 

some others to indicate where we stand, and why we have opted for this choice.  

II.2 Coupling of code_Carmel and Sophemis 

This section focuses on the coupling between code_Carmel and Sophemis, explaining the 

overall process and how it functions. Since it is a ‘home-made’ tool, it has certain 

configurations in which it has to be used, and also certain restrictions. These points will be 

concisely presented here for the reader to have a wider overview of the system.  

II.2.1 Overall Process 

To benefit from the functionalities of both tools, the software are coupled so that 

optimisation and FE solving of the model are done alternatively in a loop. Figure 2.1 shows a 



Chapter II – Methodology and Tool Development 

50 

 

simplified flowchart of the general process devised for this purpose. The latter is explained 

before detailing the coupling itself.  

 

 

Figure 2.1 Flowchart for Overall TO Process 

The initial structure is modelled using Salome [83], a FE software which allows 2D, 

extruded 2D and 3D modelling (creation of a geometry and its mesh). The structure is 

subjected to a TO method, for instance the Density Method here, and is fed to the 

code_Carmel-Sophemis coupling for topology optimisation. At this step, the optimisation 

problem has normally already been defined, i.e. regarding the function to be maximised and 

constraints to be satisfied (see Appendix B). The optimisation process is started, and for every 

optimisation evaluation, the FE model is solved (see Appendix C). The latter feeds the 

optimisation algorithm with the output objective function which, in electromagnetics, is 

usually the energy, force, torque, magnetic field or magnetic flux density. The algorithm 

processes the information and evolves in the direction of convergence of the objective and 

iterates the loop until optimum is reached. Subsequently, for the optimum reached, the 
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corresponding structure is retained as the final optimal model. The latter is usually in the form 

of a vector of densities; hence a post process using Salome is done to extract the 

corresponding topology.  Some other properties such as magnetic field and flux density can 

also be visualised with the latter. As for other outputs such as torque, force, energy, they can 

be obtained from code_Carmel post process files (see Appendix D). 

II.2.2 Configurations of the Coupling 

In general, code_Carmel runs under any GNU/Linux compatible OS, and is installed on a 

server (Cleep) for academic use. It can also be installed on a PC, with the required 

authorisations. As for Sophemis, it operates under Windows and GNU/Linux, and is installed 

on a second server, but can also be installed on a PC. There are globally 3 configurations in 

which the coupled system can operate. 

1. Local Utilisation 

Here, both code_Carmel and Sophemis are installed on the same computer/server system, and 

the OS must be GNU/Linux compatible (see Appendix E). Figure 2.2 shows the layout for 

this configuration. Its biggest strength is that the user can easily test and debug the models 

before launching any optimisation. Parameterisation of the model can also be rapidly adjusted 

in this case. 

 

Figure 2.2 Local Utilisation Layout 

2. Distant Utilisation 

In this case, Sophemis runs on a computer/server system and code_Carmel runs on a 

different GNU/Linux compatible server. Figure 2.3 shows how the systems interact. In this 

case, calculations can be more rapid due to the use of a different server, usually a more 

efficient one. Testing and debugging phase can be a little lengthier as compared to the 

previous case. On the other hand, it is rather inefficient for TO with short calculation time, as 

much of it is lost in communication between the servers.  
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Figure 2.3 Distant Utilisation Layout 

3. Distant and Distributed Utilisation 

For this configuration, Sophemis runs on a computer/server system and code_Carmel runs 

on the Cleep server, which in turn distributes calculations on a cluster. Figure 2.4 shows the 

layout in this case. The biggest advantage here is that for lengthy calculations, time is saved 

during execution as evaluations can be parallelised. This makes it efficient for the exploitation 

of fine models. Also, there are no constraints w.r.t the user’s OS. The main drawbacks would 

be a cumbersome testing and debugging of the model, and not efficient for rapid models due 

to communication delays. 

 

Figure 2.4 Distant and Distributed Utilisation Layout  

II.3  Choice of TO Method – Density Method 

As evoked in Chapter II, the Density Method is retained for this thesis work, for a number 

of reasons: 

a) It is easier to implement, from an engineering point of view, as compared to the 

others (Homogenisation and Level-set Methods) 

b) Various Interpolation Schemes can be used and compared when using Density 

Method 

c) It is compatible with our present tools 

d) It is rather intuitive, especially regarding the ways of considering the variables 

On the other hand, as for all other methods, is might present some difficulties. These are 

mainly in: 

a) The ability of producing composite-free structures 
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b) The ability of producing a global optimum instead of a local one, relative to the 

optimisation algorithms normally used with this method (e.g. gradient based, SQP) 

c) A long calculation time, which is nevertheless a common problem to all the other 

methods 

The Polynomial Mapping, as introduced in Chapter I - Section I.4.2.1, is chosen as 

Interpolation Scheme, and is recapped in (II-1). 

 𝜇𝑟𝑖 = 𝜇𝑟𝑎𝑖𝑟 + (𝜇𝑟𝑖𝑟𝑜𝑛 − 𝜇𝑟𝑎𝑖𝑟)𝜌𝑖
𝑛  (II-1) 

where µrair, µriron and µri are respectively the relative permeability of air, iron and the final 

material in the structure for every discretisation i of the domain. The normalised density is 

given by ρi with 0 ≤ 𝜌𝑖 ≤ 1, and the penalisation coefficient to remove composites is n. 

It must be noted that the mapping as presented here is meant to optimise the topology of a 

structure made of iron and air. If two other materials with different permeability were to be 

optimised, such as two different types of iron, the µrair and µriron could be replaced by µrmin 

and µrmax respectively. Similarly, if other materials such as copper coils and magnets are used, 

the permeability is replaced by electrical conductivity or remanence respectively to represent 

the former’s characteristics. For this thesis work, we will stick to structures made of iron and 

air. The method by which the mapping is applied to the optimisation domain for a general 

case is also recapitulated here. Figure 2.5(a) shows the initial domain to be optimised, where 

each discretisation represents a variable of the problem, and Figure 2.5(b) presents the colour 

legend for the materials, with the corresponding ρ and µr. Since the final structure should be 

composed of iron and air, each variable is allowed to take the relative magnetic permeability 

of either iron (µriron) or air (µrair) so as to maximise an objective function f. The algorithm 

uses the interpolated value of ρ (from the Polynomial Mapping) during the optimisation, as 

given in Figure 2.6 for different values of penalisation coefficient n, and 𝜇𝑟𝑖𝑟𝑜𝑛 = 2000. The 

purpose of n is to prevent intermediate (composite) materials from occurring in the final 

optimised structure by increasing its value. Some authors such as in [84] suggest that setting 

𝑛 = 3 produces no intermediate values. But this strongly depends on the size and nature of 

the model. 
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Figure 2.5 (a) Example of Initial Domain, (b) Colour Legend for ρ and µr 

 

Figure 2.6 Polynomial Mapping for different Penalisation Coefficients n 

Figure 2.6 depicts the relationship between the relative permeability μr and the variable of 

the problem, i.e. density ρ. When penalisation coefficient 𝑛 = 1, the function between μr and 

ρ is linear. As n is increased, the function becomes a nonlinear one. A small value of ρ gives a 

small value of μr, and a high value of ρ gives a higher value of μr. We can see that for 𝑛 ≥ 1, 

the derivative of the function is nil at zero. This particularity of the mapping presents a 

problem in the evolution of gradient-based algorithms. Therefore, to counteract this problem, 

we use a minimum density slightly higher than 0, such as 0.05. 

Global TO Process with Density Method 

Figure 2.7 shows the TO process globally in the form of a block diagram while using 

Density Method. The Polynomial Mapping is taken as example here, but the diagram is valid 

for any interpolation scheme. After discretisation of the domain to be optimised, an initial 
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value of ρ is allocated to each discretisation. The interpolation scheme of the Density Method 

is used to convert the ρ into μr to be applied to the initial FE model. This step is essential as 

code_Carmel can evaluate the FE model only if the appropriate ferromagnetic materials are 

described. The value of the objective function is sent to the optimisation algorithm for 

evaluation. In the case of a first evaluation, or cases when the objective function has not yet 

converged to an optimal value according to the stopping criteria of the algorithm, the process 

is iterated. A new vector of ρ representing the values of the variables is allocated to the 

discretisations, and the process is repeated. If the objective values converge to an optimal 

value, the optimisation process is stopped, and the topology of the final structure is derived 

from the values of ρ. 

 

Figure 2.7 Block Diagram of TO Process with Polynomial Mapping 

The interpolation process is straightforward when linear materials are used, as shown here. 

However, when using nonlinear materials, some changes must be brought. The next section 

encompasses the different modifications. 

II.4  Nonlinear Behaviour of Materials for TO using code_Carmel-

Sophemis 

The nonlinear behaviour of ferromagnetic materials is considered in code_Carmel using the 

Newton-Raphson method with A-φ formulation, and Fixed-point method with T-Ω 

formulation. Both are iterative methods, where the system to be solved is linearized at each 

iteration. It is important to define an initial solution of the system for the iterative process, and 

in the case of code_Carmel, the initial solution is zero. The system to be solved is given in (II-

2). 

 𝑨(𝑿). 𝒀 = 𝒃(𝑿) (II-2) 
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In this thesis work, the use of T-Ω formulation is favoured since the FE models are in 3D. 

The latter formulation is more adapted to 3D models because it involves a div-div resolution 

of the problem (Chapter I Section I.7.1.4), which is easier than a curl-curl resolution. Since 

3D models have a higher number of unknowns than 2D, the calculation time can be higher. 

Therefore, the use of a div-div resolution can contribute to facilitate calculation time.  

Therefore, we will exemplify the resolution of the problem in this section using T-Ω 

formulation and Fixed point Method. Moreover, since our FE calculations are in 

magnetostatics, the formulation reduces to Ω only.  

At each step, the state of the equation is as given in (II-3), where 𝑋𝑁+1 must be found, with 

a certain tolerance defined by the user. The criterion ξ for the convergence of the solution is 

given in (II-4), where ϵ is the admitted tolerance. 

 𝑨(𝑿𝑵). 𝑿𝑵+𝟏 = 𝒃(𝑿𝑵) (II-3) 

 𝝃 = |
𝑿𝑵+𝟏 − 𝑿𝑵

𝑿𝑵
| ≤ 𝝐 (II-4) 

The value of H is derived directly from the system solution in (II-3). If a wound inductor is 

used as magnetic source, 𝐻 = 0 initially. On the other hand, if a Magnetic Potential 

Difference (MPD) is used as magnetic source, the initial H will depend on the value imposed 

by the MPD. It must be noted that the first iteration is linear. Then, the corresponding initial 

value of µ is calculated from µ(H) curve, as in Figure 2.8.  

 

Figure 2.8 µ(H) Curve 

Subsequently, the value of B can be calculated from the H(B) curve obtained from the 

Marrocco equation [78], given in Figure 2.9. Since the Marrocco equation in (I-48) is given as 

H in terms of B, finding the corresponding value of B is not straightforward. In code_Carmel, 

the Bisection Method [85] [86] is used as iterative scheme to compute B by numerical 

inversion of the H(B) equation. The whole process is iterated until the stopping criterion is 

met, and the solution found.  

 



Chapter II – Methodology and Tool Development 

57 

 

 

Figure 2.9 H(B) Curve 

As for the A-φ formulation, the overall process is comparable, but with some key variances. 

The main variance is the calculation of B first, which is derived from the system equation in 

(II-3). The initial value is taken as 𝐵 = 0, and therefore the permeability is derived from the 

µ(B) curve; initially 𝜇 =
1

𝜀
, where ε is one of the coefficients of the Marrocco equation as in 

(I-48). Therefore, with the value of B and µ found, the value of H can directly be obtained 

from the Marrocco equation, without the need for an iterative process using the Bisection 

Method. 

Integrating the Nonlinear Calculation in the TO process  

The above method infers that the value of µ cannot be fixed for the nonlinear calculation 

and must be found during the iterative process. However, this poses a problem in the sense 

that during TO, a fixed value of permeability should be fed to code_Carmel for evaluation of 

the FE model. Since this is not possible, the code is directly modified to use the value of 

density ρ as input (variable), instead of the µ, as in the linear case. The density represents a 

mixture of air and iron for a variable, and can therefore be fixed for a FE evaluation. This 

suggests that every time the permeability µ is calculated, a new µ' is deduced corresponding 

to the density ρ initially fixed for this FE evaluation. This new value of permeability µ' is 

obtained by combining the Marrocco equation with the Polynomial Mapping, and is as given 

in (II-5). The equation is given in terms of absolute values here for consistency with the above 

explanations. The whole process is then iterated as above to find the solution.  

 

 𝜇𝑖′ = 𝜇0 + (
𝐵(𝐻𝑖)

𝐻𝑖
− 𝜇0)𝜌𝑖

𝑛 (II-5) 

Similar to the linear case, a block diagram can also be drawn to illustrate the steps for the 

nonlinear case, as shown in Figure 2.10. The main differences are in red. 
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Figure 2.10 Block Diagram to Highlight Main Differences using Nonlinear Materials 

Following the discretisation of the initial FE model, each discretisation is allocated a 

density of ρ. These densities are used directly in code_Carmel for calculation of μ and other 

parameters as described in the previous section. The rest of the process is carried out as for 

the linear case.  

II.5  3D Electromagnetic Test Case 

After having had a deeper look into the tools developed for TO, they can now be used on 

any electromagnetic structure. Nevertheless, for a successful TO, it is essential to understand 

how the global process behaves. To accomplish this part, we will introduce in this section, an 

electromagnetic test case to analyse the behaviour of the TO process. Since the latter is a long 

and tedious process, especially when a large number of variables are involved, an academic 

and rapid test case is favoured. The chosen test case constitutes a 3D cube, with a Magnetic 

Potential Difference (MPD) applied to a portion of two opposite faces. The interests of such 

an example lie, on one hand, in the predictability and verification of the physical optimal 

structure and on the other hand, in the flexibility of the discretisation of the model. Figure 

2.11 shows an example of two test cases, with 8 and 64 variables, with the left hand side 

depicting the geometry, and the right hand side the FE model. In the latter, the blue squares 

represent the hexahedral finite elements of the mesh. For example, the test case with 8 

variables in Figure 2.11(a) has 64 hexahedra per variable.  
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Figure 2.11 Test Cases with respective number of variables (a) 8, (b) 64 

As stated above, a MPD is applied to the test case via a part of two opposite faces of the 

cube. Figure 2.12 shows the nodes on which are imposed the MPD for the 8 variables cube.  

    

 

Figure 2.12 Magnetic Potential Difference Applied to Nodes 

Generally, there are two ways of considering the optimisation variables for the FE model. 

The first method is to consider each spatial discretisation, as shown on the left hand side of 

Figure 2.11, as a variable of the test case; they will be referred to as “zones” henceforward. 

The second method is to consider each finite hexahedral element of the model as a variable. If 

the same mesh is used, the optimisation model will be finer and more precise as there will be 

more variables, but at the expense of having a lengthier calculation time. If this method is 

chosen, a coarser mesh will have to be used to compensate for the calculation time. This 

(a) 

(b) 

(a) (b) 
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aspect will be investigated later in this chapter. For the moment, the first method will be used 

for analysis. 

II.6  Behaviour Analysis of TO using Design of Experiments 

In this section, we will focus on the analysis of the behaviour of the model before engaging 

into any topology optimisation using the cubic test case. This step is vital to have a deeper 

insight on how the variables of the model behave, and also about the level of complexity of 

the TO problem itself. The cubic test case with 8 variables was chosen in this section, and will 

also be concisely presented. All calculations will be done using linear behaviour of the 

ferromagnetic materials. 

In a first phase, investigation will be done using Full Factorial Design (FFD) and Latin 

Hypercube Square (LHS), introduced earlier in Chapter I. Since FFD and LHS are both DoE, 

it will help us see a large portion, if not all of the possible combinations of the final structure 

of the test case. This justifies the small number of variables chosen here, as DoE would be 

impossible with a larger number of variables such as 64 or more due to the never-ending 

calculation time. 

Secondly, we will use the DoE to analyse the behaviour of the variables individually. This 

will allow us to see if the problem is multi-modal or mono-modal (i.e. has many local optima 

or a global optimum). This step will enable us to better formulate and parameterise the 

optimisation problem in the later sections.  

II.6.1 Cubic_Case_8 

The model used in this section will be called ‘Cubic_Case_8’, as it represents a cube with 8 

variables, where each variable is represented by a zone of 1 𝑐𝑚 × 1 𝑐𝑚 × 1 𝑐𝑚, as shown in 

Figure 2.13(a). Therefore, each zone contains 64 hexahedral mesh elements. A MPD of 10 

AT is applied to the faces, as shown in Figure 2.12 and Figure 2.13(b), with the higher 

magnetic potential on the bottom left face, and lower magnetic potential on the upper right 

face. 
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Figure 2.13 Cubic_Case_8 (a) showing 8 zones (variables), (b) showing MPD 

The energy of this structure is investigated. The ferromagnetic materials allowed to 

constitute the structure are iron and air. Obviously, if the whole structure is made of iron, the 

energy will be maximum. But if one wants to limit the amount of iron constituting the 

structure, and still have a relatively good energy, an optimal structure needs to be found. This 

is, by the way, the key purpose of TO which produces the optimal structure while respecting 

the objective functions and constraints.  

Hence, in this section, we will investigate the energy of the structure w.r.t the amount of 

material in it. The amount of material will henceforward be addressed as Material Quantity 

(MQ), which represents the amount of iron in the final structure. In other words, it represents 

the sum of all the discretisations having taken iron properties over the total number of 

discretisations; and is therefore a fraction. A representation of the MQ equation is given in (II-

6). The purpose of considering MQ in this example is because the energy will always be 

maximum when the whole cube is made of iron. Hence, we have to somehow constrain the 

problem to see a variation in the energy of the cube, where the MQ is the most obvious 

parameter.   

In case of optimisation, one would want to maximise the energy in the structure while 

constraining the MQ. The maximisation of energy will be formulated in the following texts as 

minimisation of the negative of energy, which is numerically equivalent. The latter is done 

mostly for optimisation reasons. The general problem formulation for the test case is given in 

(II-6). Optimisation will be dealt with in other sections of this chapter. 

 {

𝑚𝑖𝑛 (−𝐸𝑛𝑒𝑟𝑔𝑦(𝝆))

𝑠. 𝑡.    𝑀𝑄(𝝆) =
∑ 𝜌𝑖
𝑚
𝑖=1

𝑚
≤ 𝛽

 (II-6) 

The normalised density for each variable is given by ρi, with a total number of m variables, 

and β is the parameter to which to the MQ is constrained. Its value will be specified later in 

this manuscript depending on the optimisation problem to be solved. The relative permeability 

(a) (b) 
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of iron is taken as 𝜇𝑟𝑖𝑟𝑜𝑛 = 2000 here, and a linear behaviour of iron is considered. It is also 

worth mentioning that the energy is normalised w.r.t the maximum energy (when the structure 

is made of iron only), and the MQ is normalised w.r.t the total number of variables m.  

II.6.2 Design of Experiments 

As evoked earlier, FFD and LHS can only handle a limited number of variables, justifying 

the use of the Cubic_Case_8. The main aim of this section is to expose the difficulty of the 

TO problem in general by showing the numerous combinations possible for such a simple 

example. To do so, a FFD is first launched with 2 levels for each variable, i.e. they can either 

be 0 or 1. For the 8 variables, we will have 2
8
 possible combinations, and hence 256 possible 

design topologies. Figure 2.14 plots the MQ v/s the Energy for each of the 256 topology 

combinations for FFD, represented by red circles. In the present case, the negative of energy 

is rather shown to put forward the Pareto Front obtained. 

A similar DoE is now performed using LHS to see how the test case behaves if the zones 

are allowed to take continuous values. A set of 1000 sample points are taken, and the number 

of levels used for each variable is calculated directly by Sophemis. The resulting combinations 

are shown in Figure 2.14, represented by the blue crosses. 

It can be seen that the combinations with FFD coincide with those obtained with LHS. This 

demonstrates the coherence of both DoE. But with FFD, we can also see many points for 

different MQ at zero energy. This is because these topology combinations might not include 

the zones where the entry/exit of the MPD is present. This nullifies the energy through it as no 

magnetic path is created. On the other hand, for same MQ in various cases, the combinations 

with LHS have greater energy than with FFD. This is because with LHS, the combinations 

have continuous values, thereby pointing out one of the main difficulties of TO: structures are 

usually more optimal with intermediate values rather than discrete values, but these structures 

are physically infeasible. Moreover, if a Pareto Front is drawn as in the figure, it can be seen 

that most intermediate combinations lie on it.  
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Figure 2.14 MQ v/s Energy for FFD and LHS 

The next section will analyse the convexity behaviour of the variables to see why 

intermediate variables are prominent in TO. The same Cubic_Case_8 will be used, as well as 

FFD as design of experiment.  

II.6.3 Analysis of the Convexity of the Variables 

Following the DoE analysis to get an idea of how numerous the combinations are, the next 

step is to analyse how the variables behave during an optimisation process. This will help us 

comprehend the convexity of the variables, i.e. where the maxima and minima are located. To 

understand why a certain behaviour is preferred rather than another one, let us first have a 

look at the typical ones. Figure 2.15 shows a concave, convex and desired shape [87].  
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Figure 2.15 (a) Concave, (b) Convex, (c) Desired Shape 

Let’s assume the objective is to maximise the energy. For the concave shape, we can see 

that the maximum lies at an intermediate point between void and material. This means that the 

optimum value will always be with composite materials, and hence the final structure would 

be physically infeasible.  

On the other hand, if we take the convex shape, we can see that there are 2 maxima, 

depending on the initial point chosen to start the optimisation. In that case, multi-start 

optimisation must be used to solve the problem.  

In either case, there is a difficulty in solving the problem. The ideal desired shape is one 

with no turning point, i.e. where the gradient is always positive or negative as in Figure 

2.15(c). This produces only one maximum, hence easing the task of the optimisation 

algorithm in finding the optimum. 

With these points in mind, we can analyse the behaviour of the variables. The 

Cubic_Case_8 is used again here for this purpose, but with some slight changes in the 

definition of the problem. Two cases are analysed. Firstly, we will vary the density of only 

one zone of the test case between 0 and 1 while all the others are kept constant. The behaviour 

of the objective function is then analysed. Secondly, the densities of two zones are varied and 

the new behaviour is analysed. 

II.6.3.1 One zone is varied 

A topology combination is chosen here, corresponding to the structure depicted in Figure 

2.16. The black regions represent the iron zones, the white represent the air zones, and the 

grey zone is allowed to vary between 0 and 1. Hence the MQ of the topology will vary 

between 4/8 and 5/8.  

(a) (b) (c) 
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Figure 2.16 Initial Structure with one zone varying 

We can afford to use a multilevel FFD in this case, as there is only 1 variable. The number 

of levels between 0 and 1 is 101. Hence, for each level of variation, the energy of the structure 

is obtained. 

Thereafter, the same experiment is done while varying the density of the other zones, one at 

a time. Figure 2.17 illustrates the behaviour of the total energy in the structure w.r.t the 

density for each zone varied one at a time. The energy and density are both normalised.  

 

Figure 2.17 Energy v/s Density for each zone varied 

It can be seen that the evolutions of the variables have only positive derivatives, hence 

always having a global maximum, easing the search of the algorithm. The difference in the 

variation of energy changes greatly according to the zone modified. For example, if a 

particular zone is crucial in the magnetic path (say C000) and is given a small density value, it 

affects largely the total energy; and vice-versa. Unfortunately, this problem does not take any 

constraints into consideration, such as the MQ. Also, in TO all the zones are varied 
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simultaneously instead of one at a time. This renders the behaviour even more complex. The 

following example will take into account a constraint, and vary the density of two zones at the 

same time for a better analysis. 

II.6.3.2 Two zones are varied 

The initial structure is as shown in Figure 2.18. The grey zones are varied between 0 and 1, 

and the rest is kept constant. The variables are named ρ1 and ρ2 respectively as indicated in the 

figure and their sum is constrained to 1, as given in (II-7). A multilevel FFD is also used here, 

and is achievable because we have only 2 variables. It must also be pointed out that due to the 

constraint imposed, ρ1 will be dependent on ρ2 (or vice-versa).  

 

Figure 2.18 Initial Structure for Two Zones Varied 

 𝜌1 + 𝜌2 = 1 (II-7) 

The evolution of the Energy in the structure w.r.t the variation in density of ρ1 is given in 

Figure 2.19, for different values of penalisation n of the Polynomial Mapping. The evolution 

for ρ2 is not given here as it is complementary of ρ1. 
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Figure 2.19 Energy v/s Density for Two Zones Varied 

We notice that for each penalisation n, either the concave or the convex shape is obtained as 

behaviour. For instance, at 𝑛 = 1 we notice that the maximum point is around 𝜌 = 0.7 due to 

the concave shape. Hence, the final structure is bound to have intermediate values of density 

for an optimum energy. As for 𝑛 = 2 and 𝑛 = 3, the behaviour has a convex shape, and 

therefore the true maxima will depend on the initial values of ρ. This would necessitate a 

multi-start optimisation as mentioned earlier, therefore further increasing the calculation time. 

It might be tempting to use a continuous value of penalisation coefficient n between 1 and 2 

so that the behaviour follows the desired shape as in Figure 2.15(c). But the main problem 

remains that this behaviour analysis is for a simplified case of TO with constraints where only 

two zones are varied; when in fact the true behaviour (when all zones are varied) might just 

have many more local optima than that. The latter is not exemplified here as a multilevel FFD 

with 8 variables would be too lengthy.  

Some authors, as in [24] and [22], propose to use an equivalent of the Continuation Method 

[9], which can be described as the sequential continuous increase of the penalisation during 

the optimisation until the solution converges to an optimum, based on the predefined stopping 

criteria. The latter can be in terms of no further improvements in the objective function, 

eradication of all intermediate densities, respect of the constraints, and so on. A simplified 

block diagram of how the Continuation Method works is given in Figure 2.20. 
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Figure 2.20 Example of Continuation Method 

But this method remains cumbersome as the optimisations have to be continuously 

sequenced, where each optimisation already has a long calculation time. In literature, the use 

of these types of strategies is mainly to eliminate the intermediate variables, which is one of 

the greatest challenges of the Density Method, as mentioned in the previous chapter. 

Nevertheless, it must also be reminded that the optimal solution dwells in composite 

structures as depicted in Figure 2.14; but due to the infeasibility of the latter, the final solution 

must imperatively be free of intermediates. For this reason, the next section proposes another 

method of solving TO problems. 

II.7  Development of a Methodology for TO 

In this section, we will focus on the development of a methodology for TO. The test case 

used to perform the optimisations will be detailed, which is a cubic case of 64 variables. 

Thereafter, the methodology to be used is explained, and tested on the cubic case. The former 

will be compared to the other interpolation schemes of the Density Method to allow us to 

position our work w.r.t the existing ones. Comparison will also be done with the ON/OFF 

method as it uses the same method of modelling and discretisation of the domain. On the 

other hand, comparisons with Homogenisation Method and Level-set Method will not be done 

as the modelling of the structure is different.  

II.7.1 Cubic_Case_64 

The test case chosen for this section is a cube of 64 variables (zones), where each zone of 

1𝑐𝑚 × 1𝑐𝑚 × 1𝑐𝑚 is meshed with 64 hexahedral elements, as shown in Figure 2.21(a). The 

numerical case will henceforward be called Cubic_Case_64. The green outlined cube on the 

latter represents one zone, and a MPD of 10 AT is applied to the nodes as shown. The outline 

of the test case with the 64 variables is pictured in Figure 2.21(b).  

The objective is to maximise the energy within the test case made of iron and air, while 

constraining the MQ. The relative permeability of iron is 𝜇𝑟𝑖𝑟𝑜𝑛 = 2000, and all the FE 

calculations will consider a linear behaviour of the ferromagnetic materials for this study. The 
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energy is also normalised w.r.t the maximum energy of the structure, which occurs when all 

the variables are iron. Figure 2.22 depicts the magnetic flux density distribution in that case.  

 

 

Figure 2.21 Cubic_Case_64 (a) FE Model, (b) Model showing only zones  

 

Figure 2.22 Magnetic Flux Density Distribution for Maximum Energy (Linear Case) 

The mesh size chosen was based on a study of the energy for different mesh sizes so that a 

good precision is kept, with an appropriate number of finite elements. This investigation was 

not done for the Cubic_Case_8 as the case was quite simple, and the number of variables was 

quite low. As the variables increase in number, more care is required when defining the model 

and the problem. 

(a) (b) 
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II.7.2 Mesh Size Investigation 

In FE analysis, the mesh size used is considered an important factor for a precise solution. 

Usually for FE calculations, given a fairly accurate FE model, a fine mesh is desired for best 

calculation approximations. On the other hand, we cannot naturally go for the finest mesh as it 

would infer a very high calcualtion time, which is a hindrance to TO. Therefore, to have the 

best compromise between mesh size and precision, we investigated the energy precision 

against various mesh sizes for Cubic_Case_64. Calculations were done using both A and Ω 

formulations, and the maximum energy is analysed (structure completely made of iron). 

Figure 2.23 displays the resulting energy for different mesh sizes of the Cubic_Case_64, with 

hexahedral mesh elements shown on the x-axis. The mesh size chosen for the test case 

contains 4096 hexahedra, and from the figure it can be seen that it is adequate as it falls within 

0.2 % of the finest mesh investigated for both formulations. Table 2.1 also recapitulates the 

various information relevant to this investigation, with the different mesh sizes. The true 

energy in Joules is given in this study. 

One can conclude that care must be taken when choosing the right mesh size for the FE 

model being used, both in A and Ω formulations. Also, refining the mesh size to a great extent 

does not necessarily yield a much better solution, and it would only add up to the calculation 

time. 

 

Figure 2.23 True Energy v/s Mesh Size of Cubic_Case_64 
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Table 2.1 Recap of Mesh Size Investigation Information 

Mesh Size 
Number of 

Hexahedra 

Energy (A 

formulation)× 𝟏𝟎−𝟑 

Energy (Ω 

formulation)× 𝟏𝟎−𝟑 

 

64 3.27 3.96 

 

512 3.40 3.74 

 

1728 3.45 3.67 

 

4096 3.47 3.64 

 

8000 3.49 3.62 

 

13824 3.50 3.61 
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II.7.3 Introduction of the Feasibility Factor (FF) in the Methodology 

The Permeability Mapping via the Density Method is used in the development of a new TO 

strategy with the introduction a new function, called the Feasibility Factor (FF) as given in 

(II-8). The FF serves mainly as a means to eliminate all the intermediate variables, while 

finding an optimal solution. The behaviour of this function w.r.t the density ρi is shown in 

Figure 2.24. The value of FF is always normalised w.r.t the maximum value it would have if 

all the variables were composites. 

 𝐹𝐹(𝜌) =
∑ 𝜌𝑖(1 − 𝜌𝑖)
𝑚
𝑖=1

0.25 × 𝑚
 (II-8) 

 

Figure 2.24 Feasibility Factor (FF) w.r.t ρi 

If the function is equal to zero, from the Figure 2.24 we can see that the density ρi must be 

either 0 or 1. Otherwise, if ρi is an intermediate value, the FF can rise up to 1. We can deduce 

that FF must always be minimised. The way the function is used in the methodology is 

detailed in the next section.  

The reason for using Permeability Mapping instead of Polynomial Mapping with the 

varying n is because the latter normally has the same goal of penalising the intermediate 

densities, as for the FF. So, in order not to mix both methods, only one should be kept.  

II.7.4 Using FF in the Optimisation Problem Formulation 

With fmincon SQP (and most other algorithms), it is possible to use the Feasibility Factor as 

a constraint, or objective; choosing which one is used is very important for the final solution. 

This section reviews both choices, and concludes on which should be adopted for the final 

methodology.  
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II.7.4.1 FF as Constraint 

The use of FF as a constraint is very tempting, especially when using fmincon SQP, known 

to rigorously respect constraints. The problem is defined as in (II-9). All the outputs, i.e. 

Energy, MQ and FF are normalised, as in (II-6) and (II-8), and the initial points for the 

variables are 0.5. 

 {
𝑚𝑖𝑛(−𝐸𝑛𝑒𝑟𝑔𝑦)

𝑠. 𝑡. {
𝐹𝐹 = 0
𝑀𝑄 ≤ 𝛽

 (II-9) 

But the problem in this case is that the constraint can too rigidly be taken into account, and 

produces an invalid solution. The latter consists of randomly allocated density values of 0 and 

1 in the structure so that the algorithm respects the constraints first, and then optimises the 

energy according to that. An example of a biased final solution is obtained when the MQ is 

constrained to a value of 𝛽 = 0.3. In this case, all the variables are driven to zero, and the 

final structure is shown in Figure 2.25, with only air in the latter. Table 2.2 recaps the 

solution’s information and Figure 2.26 shows the evolution of the Energy as objective, the 

MQ and FF constraints w.r.t the number of evaluations. 

 

 

Figure 2.25 Example of biased solution with FF as constraint 

Table 2.2 Biased Solution’s Information 

β MQ Reached FF reached No. of 

Evaluations 

Calc. time 

(min) 

0.3 0 0 195 2.6 
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Figure 2.26 Evolution of (a) Energy, (b) MQ, (c) FF w.r.t the Number of Evaluations 
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From the graphs, we can see that a solution is converged to (Figure 2.26 (a)), as there is no 

further improvement in the final solution. The constraints (Figure 2.26 (b) & (c)) are also 

respected as we reach 𝑀𝑄 = 0 (with 𝑀𝑄 ≤ 0.3 formulated in the problem) and 𝐹𝐹 = 0, 

which is correct according to the problem definition in (II-9). But the optimum is a local one 

as the final energy is zero. Only 3 iterations are done (195 evaluations), and a good solution 

cannot be found with such a premature convergence. This method is hence discarded due to 

the rigidity of the constraints, and the FF is used in the objective function as a weighted 

function, as detailed in the next section. 

II.7.4.2 Proposed Formulation with FF 

The FF is used as a weighted function in the objective term, with a weightage coefficient of 

λ, which can be changed depending on the models used. The weightage coefficient for the 

main objective, which is the energy here, is given by γ. An example of the problem definition 

is given in (II-10).  

Defining the problem with the weightages allows a smoother convergence to the optimal 

solution as the impact of the FF function is more progressive. The weightage coefficients are 

chosen from a series of optimisations of the same model with different values of λ. It must be 

noted that the λ found is usually valid for one model, irrespective of the definition of the 

problem. Furthermore, the value of γ is usually taken as 1 for this study. An example of the 

behaviour of the objective w.r.t the value of λ and FF for Cubic_Case_64 is given in Figure 

2.27. The value of λ is varied, and the resulting values for FF and Normalised Energy are 

shown. 

 {
min{−𝛾. 𝐸𝑛𝑒𝑟𝑔𝑦(𝝆) + 𝜆. 𝐹𝐹(𝝆)}

s. t.𝑀𝑄 ≤ 𝛽
 (II-10) 
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Figure 2.27 Energy and FF against Weightage Coefficient λ 

The normalised energy of the whole structure is investigated when the value of λ is varied. 

At each value, the FF obtained is different, representing the amount of composites in the final 

structure. In the present case, we are looking for a value of λ which yields maximum energy 

with zero composites. This, according to Figure 2.27, occurs around 𝜆 = 0.5. Hence this 

value is retained for the test in the following sections. 

To prove the convergence to a good solution with this formulation, the problem is defined 

as in (II-10), with 𝛽 = 0.75. The initial points for the variables are 0.5. The results are given 

in Figure 2.28. The final structure is given in Figure 2.28(a). Figure 2.28(b), (c) and (d) depict 

the convergence of energy, FF and MQ respectively, while (e) gives the convergence for the 

sum of objectives. To be consistent with the positives axes and the real aspect, the positive 

normalised energy is shown. 
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Figure 2.28 (a) Final Topology, (b) Energy, (c) FF, (d) MQ, (e) Sum of Objectives 

In Figure 2.28(b), we see that the energy converges to an optimum solution in around 200 

evaluations, but the algorithm keeps iterating. This is because the FF (Figure 2.28(c)) has not 

converged yet to its minimum, and does so for the rest of the evaluations. This shows that a 

higher importance is given to the Energy objective, and then the FF is considered once a high 

energy value is reached. In this way, the algorithm does not get trapped in a local optimum, as 

for the previous case (section II.7.4.1). As for the MQ in (d), we can see that it rises at quite 

an early stage to reach the upper limit of the constraint, and oscillate around this value 

throughout. In Figure 2.28(e), we can see that the overall objective keeps converging to the 

solution throughout the evaluations until the optimum is reached. 

II.7.5 Comparison of Proposed Methodology with other Density Mappings 

To evaluate the strengths and weaknesses of the proposed methodology, it is important to 

compare it to other existing Interpolation Schemes commonly used in literature for the 

Density Method. The most common ones, namely the Polynomial, Reluctivity, Geometric and 

Rational (RAMP) Mappings as presented in Chapter I (Section I.4.2.1) will be used for the 

comparison. The main aspects of the optimisation will be considered, i.e. the final topology, 

the convergence of the objective, the respect of the constraints, the number of evaluations, the 

calculation time, and the amount of intermediate densities in the final structure. The 

Cubic_Case_64 is used, and the problem is formulated as in (II-11), with 𝜆 = 0.5 and 𝛾 = 1. 

The amount of iron allowed in the final structure is 75% of the optimisation domain, with 

𝛽 = 0.75. The initial points for the variables in each case are 0.5. 
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 {
min {(−𝐸𝑛𝑒𝑟𝑔𝑦(𝝆)) +

1

2
. 𝐹𝐹(𝝆)}

s. t.𝑀𝑄 ≤ 0.75
 (II-11) 

Figure 2.29 shows the evolution of the positive energy, MQ and FF w.r.t the number of 

evaluations. For the Polynomial Mapping, different values of n are also tested. 

From a first glance at Figure 2.29(a), we notice that the energy has converged normally for 

all mappings, except the Geometric one. The choice of the latter can therefore be eliminated at 

this stage. On the other hand, the quality of the resulting topologies is not the same for all the 

other mappings. Before discussing this point, we should also make sure that the constraint, 

which is the MQ here, is well respected.  

From Figure 2.29(b), we can see that all the mappings, despite the overlapping of one 

another, have not crossed the constraint limit. Therefore, this aspect will not be prominent in 

choosing the best mapping.  
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Figure 2.29 Comparison of Density Methods with Proposed Methodology for (a) Energy, (b) MQ, (c) FF, against 

the Number of Evaluations 

From Figure 2.29(c), we notice that only the Polynomial with 𝑛 = 3, Rational and Proposed 

Methodology reach a composite-free structure. As for the Reluctivity, Polynomial with 𝑛 = 2 

and Permeability mappings, despite a good convergence of the energy, the final structures 

obtained are physically infeasible as they still have a high amount of composites. This 

comforts the logic of Figure 2.14 which shows that structures made of composites are most of 

the time more performant than composite-free ones for the same MQ, which can be in reality 

translated as weight of the structure. But their manufacturability remains a main obstacle, 

therefore discarding their use. From the 3 mappings without composites, and having 

converged, the Rational and Polynomial (𝑛 = 3) respectively have around 5 and 6 times more 

evaluations than the proposed methodology. Therefore, the latter would also allow us to gain 

the same amount of calculation time, which is generally a big hindrance in TO. 

Table 2.3 summarises the results for each of the above mentioned methods, and the 

proposed method. The variation of the outputs for different mappings can more precisely be 

observed here. For example, the percentage discrepancy between the energy found by the 

Rational Mapping (which yields the highest value) and the proposed method is merely 2%, 

while the number of evaluations for the former is around 6 times. Moreover, there is no big 

difference for both topologies, and there are only 4 variables placed differently. As for the 

Permeability Mapping, Polynomial Mapping (𝑛 = 2), Reluctivity Mapping and Geometric 

Mapping, the intermediate materials generated are clearly visible in the topologies. 

Polynomial Mapping (𝑛 = 3) works out for this example here, but not for larger number of 

variables (> 100). Subsequently, one can conclude that the best compromise in terms of 
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optimum results and time would be the proposed method. It is hence retained for further tests 

and application to more real cases in the next chapter. Figure 2.30 also depicts the magnetic 

flux density distribution with the proposed methodology to verify the magnetic viability of the 

model.  

Following the comparison of the proposed methodology with other interpolation schemes, 

we can also compare the former with a discrete TO method such as the ON/OFF method. The 

next section presents some results with the latter. 

 

 

 

 

 

Figure 2.30 Magnetic Flux Density Distribution for Topology with Proposed Methodology (Linear Case) 
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Table 2.3 Comparison of Different Mappings with Proposed Method 

Method Energy FF 
No. of 

evaluations 

Calculation 

time (min) 
Topology 

Permeability 0.9010 0.2960 3004 39 

 

Polynomial 

(n=2) 
0.8663 0.1752 1692 22 

 

Polynomial 

(n=3) 
0.8755 0 2795 37 

 

Reluctivity 0.8159 0.1251 4030 64 

 

Geometric 0.7709 0.3167 1040 17 

 

Rational 0.8788 0 3315 43 

 

Proposed 

Meth. 
0.8593 0 520 7 
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II.7.6 Comparison with ON/OFF Method 

The ON/OFF method is a discrete TO method where the variables can only take the values 

of 0 or 1, as seen in Chapter I. Therefore, global evolutionary algorithms can be used instead 

of local gradient-based methods. In this thesis work, the ON/OFF Method is easily compared 

with the Density Method as the modelling and discretisation of the optimisation domain is the 

same, as evoked earlier. The main advantage over the Density Method is the yielding of 

composite-free structures, but the weakness is the checkerboards that could be present in the 

topologies, as seen in Chapter I. 

In this comparison, we choose the Genetic Algorithm (GA). The purpose is to explore other 

possibilities of TO with our numerical tools, and conclude as to why this possibility is 

discarded for future optimisation of other devices in the subsequent chapters. 

The problem is formulated as in (II-12) and the results are given in Table 2.4. The 

Population Size is 200, the number of Generations is 50, the Crossover Fraction is 0.8, and 

the Penalty Factor is 100. 

 {
min(−𝐸𝑛𝑒𝑟𝑔𝑦(𝝆))

s. t.𝑀𝑄 ≤ 0.75
 (II-12) 

 

Table 2.4 Results with GA 

Method Energy MQ FF 
No. of 

evaluations 

Calculation 

time (min) 
Topology 

GA 0.8788 0.75 0 4011 56 

 

 

It can be seen that the normalised energy is similar to what was obtained with the Rational 

Mapping, but with a different topology. This leads us to say that TO models have many local 

optima, thus making it a rather tedious type of optimisation. On the other hand, the number of 

evaluations is much higher than all the mappings of Table 2.3, and so is the calculation time. 

Thus, if GA were to be used for much larger number of variables, it would probably give 

optimal results, but at the expense of a much higher number of evaluations. Nevertheless, the 

FF function does not need to be used in the optimisation process as discrete GA, by nature, 

yields only 0s and 1s for the variables. 
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Despite all the attractive strengths regarding this method, the proposed methodology is still 

retained as it represents the best compromise amongst the different methods presented. 

II.7.7 Repeatability of Solutions 

Repeatability of the results with the methodology used is very important to evaluate the 

stability of the solution. One can have a converging algorithm, but the latter has to be 

effective when launched multiple times. A way to investigate this aspect would be to carry out 

the same optimisation with various initial points. Figure 2.31 graphically depicts the results 

obtained with various initial points while using the proposed method. The intial points in the 

previous cases were 0.5 for each variable. For this particular study, initial points from 0 to 1 

with an interval of 0.1 are utilised. All the variables are given same initial value. 

From Figure 2.31, it can be seen that the optimum is found for initial points from 0.5 to 1, 

but the solution is erronous for the other values. Also, for the values of 0.6 to 1, the number of 

evaluations are greater than for initial point at 0.5 despite reaching the same results. 

Therefore, it can be concluded that care must always be taken when defining the initial points 

for a particular optimisation, as solutions can be local or worse, invalid. 

 

Figure 2.31 Effect of Initial Points on Optimal Results 

II.7.8 Using Mesh Elements as Variables 

Until now in this thesis work, the variables used were zones of the FE model, as illustrated 

in Section II.4. But in this section, we will consider a different way of defining the variables 

in the FE model: here each finite hexahedral element is used as a variable, instead of a group 
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as hexahedra, as previously. The model is as given in Figure 2.32, with the geometry in (a) 

and FE model in (b). The number of variables and hexahedra are both 64, and hence a coarser 

mesh size than Cubic_Case_64. A MPD of 10 AT is applied to the nodes shown, which are 

less numerous than for Cubic_Case_64. The optimisation problem is defined as in (II-11), 

with the proposed method, and calculations are done in Ω formulation. 

    

 

Figure 2.32 Model using Mesh Element as Variable with (a) Geometry, (b) FE Model 

The resulting topology is the same as that presented in Table 2.3 for the proposed 

methodology, but the true maximum energy is obviously higher, if we refer to Figure 2.23. 

The calculation time is 3 minutes in contrast with the 7 minutes when using zones. This is 

because the number of unknowns in the FE problem is smaller, and therefore this speeds up 

the time of resolution of the FE model, which is 0.35 s instead of the 0.8 s earlier. We can also 

note that despite the use of a coarser mesh size, the final topology is still correct. This is 

because the objective function is normalised, and the mesh does not change throughout the 

TO. This would mainly apply for TO in electromagnetic cases where no movements of the 

devices are required. This technique will be used in the next chapter for one of the presented 

applications. 

II.8  Nonlinear Behaviour of the Ferromagnetic Materials 

As presented in the earlier sections of this chapter, the consideration of the nonlinear 

behaviour of the ferromagnetic materials used is important in electromagnetism to account for 

saturation. For the calculations until now, only the linear behaviour of the ferromagnetic 

materials has been considered.  

Hence, in this section, the nonlinear behaviour will be considered while using the proposed 

methodology in Section II.7.4.2. The problem is formulated as in (II-11). The energy is also 

normalised here w.r.t the maximum energy in a complete iron structure. The magnetic flux 

(a) (b) 



Chapter II – Methodology and Tool Development 

86 

 

density distribution is given in Figure 2.33, where the peak value of B is smaller than for the 

linear case, as expected. 

 

Figure 2.33 Magnetic Flux Density Distribution with Maximum Energy (Nonlinear Case) 

The results are shown in Table 2.5. It can be seen that the final topology is the same as for 

the linear case, despite a smaller number of evaluations. But the calculation time is around 3 

times higher than for the linear case, owing to the iterative process for considering the 

nonlinear behaviour of the materials. The magnetic flux density distribution is depicted in 

Figure 2.34. The normalised energy is higher than for the linear case, but comparison is not 

very judicious here as the maximum values are not the same.  

Table 2.5 Results with Nonlinear Behaviour of Materials 

Method Energy MQ FF 
No. of 

Evaluations 

Calculation 

Time (min) 
Topology 

Proposed 

Meth. 
0.8937 0.75 0 456 22 
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Figure 2.34 Magnetic Flux Density Distribution of Optimal Topology (Nonlinear Case) 

This example is pretty efficient when investigating the behaviour of various methods for 

TO, but less revealing when it comes to the analysis of the behaviour while considering 

nonlinearity. Another optimisation problem will be studied in the next section to demonstrate 

the importance of considering the nonlinear behaviour of the materials. 

II.9  Other Problem Formulations 

Owing to the academic nature of the test cases used in this chapter, the study of various 

objective functions is rather limited. In this section, we will investigate the optimisation of the 

energy per unit volume, as formulated in (II-13). This provides a higher degree of freedom as 

no constraints are imposed on the optimisation. The coefficients 𝛾 = 1 and 𝜆 = 0.5, as for the 

previous case. 

 min {−(
𝐸𝑛𝑒𝑟𝑔𝑦(𝝆)

𝑉𝑜𝑙𝑢𝑚𝑒(𝝆)
) +

1

2
𝐹𝐹(𝝆)} (II-13) 

For the same MPD as in the previous cases, i.e. 𝑀𝑃𝐷 = 10𝐴𝑇, and using Cubic_Case_64, 

the results are given in Table 2.6. The same topologies are obtained using linear and nonlinear 

behaviour of the materials. Therefore, the MPD is increased to 15 𝐴𝑇 for the saturation effect 

to be more visible. Figure 2.35 shows the magnetic flux density distribution for the linear and 

nonlinear cases when the structure is made of iron only so that the level of saturation in this 

case is emphasised.  
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Table 2.6 Comparison of Linear and Nonlinear Cases 

Case 
𝑬𝒏𝒆𝒓𝒈𝒚

𝑽𝒐𝒍𝒖𝒎𝒆
 FF 

No. of 

Evaluations 

Calculation 

Time (min) 
Topology 

Linear, 

MPD=10 

AT 

1.4756 0 2080 35 

 

Nonlinear, 

MPD=10 

AT 

1.5032 0 4615 182 

Linear, 

MPD=15 

AT 

1.4756 0 2080 35 

Nonlinear, 

MPD=15 

AT 

1.1599 0 520 39 

 

 

 

 (a) 
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Figure 2.35 Magnetic Flux Distribution with MPD=15 AT (a) Linear Case, (b) Nonlinear Case 

From Table 2.6, it can be seen that the topology for the linear case is the same, whereas in 

the nonlinear case, more iron is added during the optimisation process to compensate for the 

saturation in the ferromagnetic materials. From these findings, we can deduce that if a 

structure is not saturated, one does not need to consider nonlinearity for TO, as results will be 

the similar. But if saturation is high, then nonlinearity definitely affects TO and must be 

considered. The effect of saturation on the topologies found during optimisation will be 

further detailed in the coming chapters.  

(b) 
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II.10  Summary and Contributions 

This chapter has encompassed different aspects of TO, from the types of tools used to the 

various difficulties of TO, through the comparison of different methods. This step was 

essential in grasping the behaviour of the TO process as a whole, as it is a rather complex one 

due to the various factors involved.  

Some of the factors covered in this chapter were the analysis of the FE model used, i.e. its 

precision, fineness of the mesh, definition of the variables in the optimisation domain 

(whether to use zones or mesh elements), consideration of linear or nonlinear behaviour of 

materials, and so on. Other optimisation difficulties have also been investigated, such as the 

multi-modality of the problem, the optimisation algorithms to be used, and so forth.  

Having an upper hand on all of the above aspects has provided us with sufficient 

information to devise our methodology and understand its behaviour so that it can be applied 

to more complex electromagnetic devices. The proposed methodology, based on the Density 

Method, has been compared with other Interpolation Schemes found in literature, and we have 

seen that it is the best compromise for TO. It has mainly allowed us to converge to an 

optimum solution, with a reduced number of evaluations, and elimination of intermediate 

materials.  

Based on what has been explored here, i.e. the tools, the proposed methodology and the 

behaviour of the models, the following chapters will apply the same reasoning to optimise the 

topology of more real electromagnetic examples to validate our methodology. Chapter III will 

study a 3D electromagnet, and will explore the different possible optimised topologies. Since 

the latter example is closer to a real electromagnetic device, the potential of analysing the 

effect of saturation will also be interesting.  
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III.1 Introduction 

After exploring the different angles of the TO in electromagnetism in the previous chapter, 

we now have enough information and know-how to apply the proposed methodology to a 

more tangible electromagnetic example. In this chapter, we have chosen the topology of a 3D 

electromagnet to be optimised. The motivation behind this choice is because it illustrates the 

basic laws of electromagnetism in a rather lucid manner, and the assessment of the results is 

rather logical from an engineering point of view.  

The main aim of this chapter is to assess and validate the proposed TO methodology on a 

moderately challenging electromagnetic case, and analyse the behaviour of the former when 

optimising different features of the model, and when saturation of the materials is taken into 

account. Since we are using a fully functional FE code (code_Carmel), we benefit from all its 

features and therefore can more precisely analyse meaningful characteristics such as magnetic 

force, instead of energy. On the other hand, focus will not be on the use of very fine mesh for 

visually perfect structures, but we will nevertheless choose models with correct mesh viability 

to avoid unnecessarily long calculation times. 

In a first place, a concise literature review of the works using electromagnets as numerical 

applications will be decomposed, irrespective of the TO methods used, with the objective 

being to see the different results obtained. Subsequently, the FE model used in this thesis is 

detailed, with a short mesh analysis to verify its correctness. Afterwards, the results for 

different optimisation problem formulations are discussed, as well as for linear and nonlinear 

behaviours of the ferromagnetic materials used. The various strengths and limitations of the 

methodology and model will be elaborated, and how they can be perfected for future 

optimisations.  

III.2  State of the Art 

Works on TO using Homogenisation Method in electromagnetism have not been very 

expansive as they were mostly mechanical/structural oriented. One of the sparse works 

includes [15] where the authors optimise the shape of an H-shaped magnet to maximise the 

Mean Magnetic Compliance (MMC) while constraining the volume to a certain percentage. 

Figure 3.1(a) shows the H-shaped magnet to be optimised, and (b) shows the optimisation 

domain. The materials used in the TO are iron and air, and the optimisation is carried out on a 

2D cross-section. Figure 3.1(c) and (d) illustrate the optimisation results for the volume 

constrained to 60% and 70% respectively. The overall tendency of the shape is approached, 
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but a finer final structure could be interesting. The optimisations were done using linear 

ferromagnetic materials.  

   

 

  

 

Figure 3.1 (a) H-Shaped Electromagnet, (b) Design Domain, Optimised Shape with Volume Constraint(c) 60%, (d) 

70% [15] 

In [18], the topology of a C-core actuator is optimised so as to maximise the magnetic force. 

The density method is used, with the polynomial mapping, and all the calculations are 

performed using a 2D model. Comparison of the optimised topologies when the materials are 

considered to behave linearly and nonlinearly is also done. Figure 3.2 shows the initial core 

actuator and the results obtained for the linear and nonlinear cases.  

 

 

 

(a) (b) 

(c) (d) 

(a) 
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Figure 3.2 (a) C-core Actuator, (b) Initial Domain, Results in (c) Linear Case, (d) Nonlinear Case [18] 

Some other examples of TO of electromagnets with the Density Method include the works 

presented in [29], [30] and [31], where different algorithms or methodologies are tested. 

Furthermore, TO of a C-core electromagnet is performed using the Level-set Method (LSM) 

in [64], where the results are compared with the Density Method. Figure 3.3 shows the initial 

2D design domain and the results obtained with both SIMP and LSM. The magnetic energy 

stored in the system is maximised, and the nonlinearity of the materials is not considered.  

 

 

 

 

 

 

Figure 3.3(a) Initial Domain, (b) Density Method Results (coarse mesh on left & fine on right), (c) LSM 

(conventional on left and advanced on right) [64] 

(b) (c) (d) 

(a) 

(b) 

(c) 
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As for the ON/OFF Method, among the ones inventoried is the TO of the yoke of a 

magnetic actuator in [42] where the authors use GA as algorithm, and the nonlinearity of the 

materials is disregarded. Figure 3.4 shows the design domain and the results obtained with 

this method. The objective is to maximise the magnetic force by Maxwell Stress Tensor. 

           

Figure 3.4 TO of Magnetic Yoke (a) Design Domain, (b) Optimised Yoke shape, (c) Magnetic Flux Line Plot 

We have seen that various authors utilise different shapes of the electromagnet for TO such 

as H-shaped, C-shaped or magnetic yoke. Our choice will be oriented towards the C-core 

electromagnet, with the iron core to be optimised. The FE model will be in 3D, and the 

materials allowed are iron and air. Since literature suggests the use of magnetic energy and 

magnetic force as objective function, we will investigate both, and discuss the pertinence of 

each. We will also compare the results obtained when considering linear and nonlinear 

behaviour of the materials, which is not very often seen in TO of electromagnetic devices 

despite being a turning point. 

III.3  3D FE Electromagnet Model 

Before conducting any optimisation, we will first detail the FE model of the 3D 

electromagnet, with the respective dimensions, symmetries and boundary conditions. The 

accuracy of the mesh chosen is verified through a mesh size investigation before validating 

the model to be optimised. Subsequently, the core of the electromagnet is optimised with 

different objectives, and the results are discussed. The more pertinent one is retained, and the 

results for the case of linear and nonlinear materials are compared. The convergence of the 

results is also examined to make sure the latter are of appropriate relevance. 

III.3.1 Finite Element Model 

The electromagnet model is made up of current-carrying copper coils surrounding an iron 

core, which in turn attracts an iron bar; all enclosed by an air box to allow flux leakage and 

hence mimic real conditions as much as possible. Figure 3.5(a) shows the electromagnet 

system as a whole, with the respective dimensions.  

(a) (b) (c) 
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Figure 3.5 (a) Electromagnet Model with Dimensions, (b) Quarter Model, (c) Model with Boundary Conditions 

(b) 

(c) 

(a) 
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Due to the symmetry of the system along the XY and XZ planes, only one quarter of the 

electromagnet can be modelled, as given in Figure 3.5(b). This offers a gain in calculation 

time, and also allows a finer discretisation of the model, with more variables in the 

optimisation domain. The domain to be optimised is represented by the cuboid-shaped brown 

region in Figure 3.5(b), which makes up the iron core. To be close to a ‘physical’ model, it is 

also necessary to properly define the boundary conditions, as illustrated in Figure 3.5(c). The 

lower side of the FE model is allocated the boundary condition of 𝐻. 𝑡 = 0 to allow normal 

flow of flux through the surface, while all the other sides of the model are allocated the 

boundary condition of 𝐵. 𝑛 = 0 to favour tangential flow of the flux w.r.t the surface.  

Optimisation Variables 

In Chapter II, we have chosen the variables of the cubic test case to be zones of the FE 

model. But we have also seen in Section II.7.8 of the same chapter that it is possible to use the 

finite elements of the model to represent the variables. The results obtained with the latter 

were similar to those with zones of the model. Therefore, in the case of the electromagnet, we 

will use the finite elements of the mesh to represent the variables. Since the model is meshed 

using tetrahedra, the variables will take the form of tetrahedra, and will correspond to those 

lying in the brown area of Figure 3.5(b). Care must be taken to normalise the values of the 

objective functions so that the solutions are not biased. This flexibility of our TO tool could 

be interesting for refining optimisation models without intervention on the geometry itself. 

Also, the use of tetrahedral elements was chosen for an easy generation of the mesh. But any 

other type of mesh is possible such as hexahedral elements. 

Nonetheless, the size of the mesh has to be verified for consistency, despite the 

normalisation of the objectives of the optimisation problem. The next section will be 

dedicated to this matter, and investigations will be done using both A and Ω formulations, 

although only the last one will be used for optimisation. 

III.3.2 Mesh Size Investigation 

Verifying the coherence of the mesh size is an important step in FE modelling, more so 

when it comes to TO. To do so, various mesh sizes will be studied with the A and Ω 

formulations, for the energy and attractive force in the air gap. The aim is to determine the 

most compromising one between calculation time and fineness of mesh leading towards an 

unbiased solution. Investigating both energy and force is useful as one is a global value of the 

model (energy), and the other a local one (force). Hence, it will allow us to see if refining the 
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mesh only in the zone where force is calculated still produces acceptable results. The current 

density used here is 3.0 A/mm². 

Computation of Energy 

The mesh sizes investigated in this section have tetrahedral elements in the model varying 

between 2400 and 17500, for both A and Ω formulations (see Appendix F). Figure 3.6 

pictures the energy of the system against the number of finite elements. The true energy in 

Joules is given in the figure to avoid any confusion or bias.  

We note that both formulations converge towards a solution, but the solutions do not 

coincide despite a fine mesh size. This is normal due to the underestimation of energy with 

formulation A, and overestimation with Ω. Hence the real solution lies in between the two (but 

not necessarily mid-way). In A formulation, the discrepancy between the energy obtained with 

the coarsest and the finest mesh is 20%, while with Ω formulation, it is 13%. 

 

 

Figure 3.6 Energy for Different Mesh Sizes 

From the above information, we can choose a reasonable mesh size for the model. The goal 

is to keep the number of tetrahedra in the optimisation domain high enough for a good 
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precision, and low enough for an affordable calculation time. Therefore, we choose the mesh 

with a total of 4800 finite elements, as pointed in Figure 3.6. For the A formulation, the 

percentage deviation of energy between the chosen mesh and the finest mesh is around 12%, 

while for Ω, it is around 7%. As evoked earlier, the Ω formulation is preferred in our case 

since we are dealing with a 3D FE model, where the number of unknowns is greater than in 

2D. This is due to the divergence-divergence nature of the problem to be solved, which is 

easier than the curl-curl nature of the problem in the A formulation, as seen in Chapter I. 

Now that the energy has been explored, it is also important to investigate the behaviour of 

the force with the mesh size. This will help us forge the suggestion made in this section. 

Computation of force 

In this section, the same type of analysis as for energy is carried out, except that the force is 

a local value, and therefore has to be calculated at a particular position. The magnetic force is 

calculated on the nodes of a specific surface where desired, and the Virtual Work Method is 

used. Figure 3.7 shows the surface and nodes on which the force is calculated, lying between 

the optimisation domain and the iron bar (shown in the earlier figures).  

 

Figure 3.7 Nodes on which Force is Calculated 

To see how the number of nodes on the surface affects the force calculation, we will vary 

the former while keeping the mesh size of the same size range. Figure 3.8 shows the variation 

of the true force in N for different number of nodes on the surface, for both A and Ω 

formulations. We can see that for A formulation, the deviation of force from the lowest to the 

highest number of nodes is steeper than for Ω. We choose a number of nodes of 75 from the 

figure, which is a good trade-off between calculation time and precision. Moreover, as we will 

carry all our optimisation using Ω formulation, we can see from the graph that the difference 
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between the lowest and highest number of nodes is not very big (14.2%), as compared to the 

A formulation (54%). 

 

Figure 3.8 Attractive Force v/s Number of Nodes 

Consequently, the number of nodes and mesh size (in terms of finite tetrahedral elements) 

to be used in our FE model is 75 and 4800 respectively. This sets the number of tetrahedra in 

the optimisation domain to be 342. The finite elements in the latter are of the same size, and 

hence the calculation of the Material Quantity (MQ) is not biased. The maximum energy is 

2.75 ∙ 10−2 𝐽 for 3.0 A/mm², which occurs when the domain to be optimised is completely 

made of iron, with a relative magnetic permeability of 2000. To cross check the validity of 

this information, a calculation with Reluctance Network (RN) is done. 

Cross verification with Reluctance Network  

The same dimensions, current density and relative permeability as above are used to 

calculate the maximum energy with RN, and hence cross verify the value with the FE model. 

The RN is constructed as in Figure 3.9, and the mean energy is calculated as in (III-1). The 

mean reluctance for each element is found using ℜ =
𝑙

𝜇0𝜇𝑟𝑖𝑟𝑜𝑛×𝐴
, and the flux by 𝜑 =

𝑛𝑖

ℜ
. The 

calculated values of 𝕽 are given on the figure, with 𝕽core1 and 𝕽core2 representing the 
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reluctances for the iron core, 𝕽airgap for the reluctance of the air gap and 𝕽bar1 and 𝕽bar2 for 

the reluctance of the iron bar. The flux obtained is 𝜑 = 1.49 ∙ 10−4 𝑊𝑏. The magnetomotive 

force is calculated by 𝜀 = 𝑛𝑖, where the source has a cross section of 1 cm². 

 

Figure 3.9 Reluctance Network for Electromagnet 

 𝐸𝑛𝑒𝑟𝑔𝑦 =
1

2
ℜ𝜑2 (III-1) 

The maximum mean energy obtained with the RN is 2.22 ∙ 10−2𝐽, which is of the same 

range as the energy calculated from the FE model with the chosen mesh size (2.75 ∙ 10−2𝐽). 

We can thus validate the model before optimisation. 

III.4  TO of the Electromagnet 

As seen in the brief literature review of this chapter, the topology optimisation of the 

electromagnet can be done by considering different objective functions. In this section, energy 

and force will both be considered, and the amount of material allowed in the optimisation 

domain is also constrained, as for the cubic test case in the previous chapter. Furthermore, we 

will also investigate the use of linear and nonlinear behaviour of materials in TO. A current 

density of 3.0 A/mm² and a relative magnetic permeability of 2000 for iron will be used for 

calculations in this section.  

III.4.1 Maximising Energy 

The maximisation of the energy to optimise the topology of the electromagnet is one way of 

formulating the problem, as seen in literature. In our case, the optimisation problem is defined 

as in (III-2).  
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 {
𝑚𝑖𝑛{−𝛾. 𝐸𝑛𝑒𝑟𝑔𝑦(𝝆) + 𝜆. 𝐹𝐹(𝝆)}

𝑠. 𝑡.𝑀𝑄(𝝆) ≤ 𝛽
 (III-2) 

It must be noted that the energy, FF and MQ are all normalised, as for the cubic test case in 

Chapter II. For the energy, the normalisation is done w.r.t the maximum energy (optimisation 

block as iron only). Figure 3.10 shows the magnetic flux density when the energy is 

maximum, in case of linear materials. The energy is 2.75 ∙ 10−2 𝐽 for 3.0 A/mm², and 

𝜇𝑟𝑖𝑟𝑜𝑛 = 2000. The values of B are quite high (above 2 T) due to the linear behaviour. The 

coefficients used here are 𝛾 = 1 and 𝜆 = 0.5, following a similar study as in Chapter II 

(Section II.7.4.2). 

 

Figure 3.10 Case of Maximum Energy in the Electromagnet for Linear Material Behaviour 

Results 

The energy calculated by code_Carmel is a global value, and therefore obtained for the 

whole system. Figure 3.11 shows the resulting topology for 𝛽 = 0.8, and Table 3.1 gives the 

information respective to the computation. The optimal topologies presented in this chapter 

will be displayed as vertical cross sections of the electromagnet in Figure 3.5(a). 
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Figure 3.11 Optimal Topology while Maximising Energy with MQ = 0.8 

Table 3.1 Information about the TO Results with Energy 

β Normalised 

Energy 

MQ 

Reached 

FF No. of 

Evaluations 

Time 

Taken (h) 

0.8 0.9956 0.7929 0.002 35329 20.1 

 

It can be seen that the final shape obtained is quite similar to what is usually observed in 

literature for C-core actuators. Despite calculating the global value, we can see that it does not 

greatly affect the quality of the results as the energy in the air gap is usually high as compared 

to the other areas. Hence, the higher the energy in the air gap, the most optimal will be the 

topology.  

Nevertheless, it would be interesting to compare the results with the maximisation of force 

instead, which is a local value, and might be more pertinent to the optimisation problem.  

III.4.2 Maximising Attractive Force 

We will now investigate the maximisation of the attractive force to optimise the topology of 

the electromagnet. The effect of the linear and nonlinear behaviours of the ferromagnetic 

materials is also discussed. Results will be presented for various cases of Material Quantity, 

and the convergence of the solutions will also be encompassed. The problem is defined as in 

(III-3).  

All the objectives and constraints are normalised. For the force, which is done w.r.t the case 

where the domain is made of iron, the magnetic flux density distribution is the same as given 

in Figure 3.10, for a current density of 3.0 A/mm² in the coil, and the maximum attractive 

 {
𝑚𝑖𝑛{−𝛾. 𝐹𝑜𝑟𝑐𝑒(𝝆) + 𝜆. 𝐹𝐹(𝝆)}

𝑠. 𝑡.𝑀𝑄(𝝆) ≤ 𝛽
 (III-3) 
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force is 38.1 𝑁. The relative magnetic permeability used for iron is 𝜇𝑟𝑖𝑟𝑜𝑛 = 2000 here as 

well, and all the calculations are done in the Ω formulation only. The coefficients used here 

are 𝛾 = 1 and 𝜆 = 0.5, as for the case of maximisation of  energy. 

III.4.2.1 Linear Behaviour of Ferromagnetic Materials 

The different constraints imposed on the MQ are: β=0.8, 0.6, 0.4 and 0.2. The resulting 

topologies are given in Figure 3.12 and the information w.r.t the optimisation process is given 

in Table 3.2. It must be noted that the optimal topologies presented in this chapter will be 

shown as vertical cross sections of the electromagnet depicted in Figure 3.5(a). 

  

  

Figure 3.12 (a) β=0.8, (b) β=0.6, (c) β=0.4, (d) β=0.2 

(a) (b) 

(c) (d) 
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Table 3.2 Additional Information about the TO Results 

β Normalised 

Force 

MQ 

Reached 

FF No. of 

Evaluations 

Time 

Taken (h) 

0.8 0.996 0.795 1.74 ∙ 10−10 27440 16 

0.6 0.973 0.563 0.0064 30185 17 

0.4 0.933 0.353 0.0066 39445 22 

0.2 0.841 0.175 0.0166 28127 16 

 

From Figure 3.12(a) with 𝛽 = 0.8, it can be seen that the upper left corner of the iron core 

is removed as the magnetic flux density in this part is the lowest. This can be seen from 

Figure 3.10 where the magnetic flux density in the corner is dark blue, which can be 

assimilated are nearly 0 T. From the table, we can see that the force barely drops. From Figure 

3.12(b) with 𝛽 = 0.6, we note that more material from the corner is removed, as well as 

material from the lower part of the iron core. Furthermore, some material near the air gap is 

also removed. This occurs mainly as we are in linear case, where the saturation doesn’t occur 

and hence magnetic flux density in the surrounding variables can be increased largely without 

any constraints. This effect is even more pronounced in Figure 3.12(c) with 𝛽 = 0.4 and (d) 

with 𝛽 = 0.2. However, it must be noted that until 𝑀𝑄 =  0.4, the force is still above 0.9, 

while for 𝑀𝑄 =  0.2, the force drops by approximately 10%. In the latter case, as the MQ is 

quite small, the main idea is to see if a magnetic path is nevertheless created by the 

optimisation process for an attractive force to occur. In all cases, the materials near the ‘neck’ 

of the core are retained. This is because, according to Figure 3.10, B at this level is around 1.4 

T. Despite the presence of many ‘holes’ in the magnetic path due to lack of materials, the 

magnetic path is valid. This effect should be less visible in the nonlinear cases.  

Figure 3.13(a) shows the magnetic flux density distribution for the topology in the case of 

𝛽 = 0.2, and Figure 3.13(b) for the case of 𝛽 = 0.6 for a brief comparison. The boundaries 

shown in the figures represent the outline of the topologies obtained for each case. In Figure 

3.13(a), it can be seen that the magnetic path is correct despite the low amount of materials 

present in the topology. For this reason, B is quite high in the path, and since magnetic 

saturation is not taken into account here, B is allowed to take values over 1.8 T. On the other 

hand, in Figure 3.13(b), for 𝛽 = 0.6, we note that B is much lower as there are more materials 

present in the magnetic path, and hence a more uniform distribution B(T) with less saturation. 
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Figure 3.13 Magnetic Flux Density Distribution for (a) 𝜷 = 𝟎. 𝟐, (b) 𝜷 = 𝟎. 𝟔 

To verify the convergence to a correct solution, we examine the evolution of the parameters 

w.r.t the evaluations. The stopping criterion for the algorithm in our case is when no further 

evolution is found in the objective function. Figure 3.14 respectively shows the evolution of 

the normalised force, MQ, FF, overall objective function and the final value of the variables 

for the case of 𝑀𝑄 =  0.2. 

From Figure 3.14(a), it can be seen that the force converges to its final value at a quite early 

stage of the optimisation process (around 1.5 ∙ 104 evaluations), as well as the MQ which 

reaches a fixed value (Figure 3.14(b)). Nevertheless, the algorithm adds more iterations to the 

process as the FF has not yet reached the minimum value (Figure 3.14(c)). When all the 

(a) 

(b) 
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objectives and constraints are satisfied and no further evolution is seen, the optimisation 

process stops. From Figure 3.14(d), we can see the trend of the overall objective function. It 

keeps iterating until the algorithm converges. As for the final value reached by the variables, 

97.7% in this case have converged to 0 or 1 (Figure 3.14(e)), which is the worst case as 

compared to the other higher MQ cases. Moreover, the values of the non-converged variables 

are all below 0.2; hence they can be assimilated as 0 (or absence of material). It is also 

interesting to note that those non-converged variables occur adjacent to the air gap, as shown 

in Figure 3.15. This could justify the presence of multiple ‘holes’ near the gap. 
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Figure 3.14 Convergence Graphs for Linear Case with 𝜷 = 𝟎. 𝟐 
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Figure 3.15 Position of Non-converged Variables 

We can see from Table 3.1 and Table 3.2 that the number of evaluations and amount of 

time taken to optimise the force in the air gap is lower. Furthermore, the calculation with 

linear characteristics of materials is correct in terms of magnetic path, force and topology, but 

lacks the saturation aspect. For this reason, B is sometimes allowed to rise up to more than 2 

T when the MQ is very low. As the behaviour is linear, some individual elements can have a 

very high B. This suggests that the investigation of the nonlinear behaviour of the materials is 

essential to be closer to a real case.  

III.4.2.2 Nonlinear Case 

The same problem as in the previous section is now optimised while taking into 

consideration the nonlinearity of the materials used. The magnetic flux density distribution 

when the optimisation domain is made of iron only and 3.0 A/mm² is applied to the coils is 

given in Figure 3.16, and the saturation curve used is shown in Figure 3.17, taken from a 

manufacturer’s ferromagnetic material characterisation already available at the laboratory. A 

regression function was used to find the correct values of the coefficients in the Marrocco 

equation, which are in this case:  

𝜀 =  4.67 ∙ 10−4 

𝑐 =  0.0119 

𝛼 =  9.98 

𝜏 =  1.06 × 105  
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Figure 3.16 Magnetic Flux Density Distribution in Nonlinear Case with Variables as Iron 

 

Figure 3.17 Marrocco Saturation Curve 

The ferromagnetic material situated at the core of the coils is highly saturated as compared 

to the other regions due the concentration of flux there. The maximum attractive force in this 

case is 31.2 N and the global energy is 2.26 ∙ 10−2𝐽. This presents a decrease by 18.1 % for 

the force, and 17.8 % for the energy w.r.t the linear case.  

We will now analyse the results for different MQ cases while considering the nonlinear 

behaviour of the ferromagnetic materials for the electromagnet. In Chapter II, the outcome of 

the analysis of the nonlinearity and comparison with linearity of the materials was not very 

appealing as the cubic test case was a rather straightforward electromagnetic one. The effects 

of saturation and behaviour of the optimisation process in this case could not be clearly 

discussed. But the electromagnet, being a more ‘real’ electromagnetic case, could be more 

pertinent. 
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The topologies obtained while constraining the MQ at different values, namely 0.8, 0.6, 0.4 

and 0.2 are pictured in Figure 3.18, and the additional information w.r.t the optimisation 

process of the nonlinear case is given in Table 3.3. 

 

 

 

 

Figure 3.18 (a) β=0.8, (b) β=0.6, (c) β=0.4, (d) β=0.2 

 

 

(a) (b) 

(c) (d) 
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Table 3.3 Additional Information for Nonlinear Case 

β Normalised 

Force 

MQ 

Reached 

FF No. of 

Evaluations 

Time 

Taken (h) 

0.8 0.9963 0.7982 1.79 ∙ 10−7 19563 13 

0.6 0.9654 0.5994 1.32 ∙ 10−5 20254 13 

0.4 0.9480 0.3713 1.17 ∙ 10−5 23667 17 

0.2 0.8656 0.2 0.0192 27008 25 

 

From Figure 3.18, it can be seen that the materials are distributed in the optimisation 

domain with the same trend as for the linear case. On the other hand, the nonlinear case 

presents a higher ‘compactness’ of the topologies as compared to the linear case. This 

translates by the fact that less ‘holes’ are found in the optimal topologies, as well as a more 

uniform distribution of materials near the air gap.  

As for the normalised forces, the MQ reached and the FF, they are in the same range as for 

the linear case despite the difference in topology. On the other hand, the problem converges 

more rapidly into a solution as less evaluations are observed. Also, the time taken for one 

evaluation is more than the linear case due to the nonlinearity loop, as explained in the 

previous chapters. But due to the lower number of total evaluations, the overall time taken for 

the optimisation is lower. The stopping criteria defined for the optimisation algorithm are the 

same for both linear and nonlinear cases for a more judicious comparison.  

The convergence graphs are shown in Figure 3.19. It can be seen from Figure 3.19(a) that 

the overall objective converges correctly in 27008 evaluations. For the normalised force, a 

solution is reached in approximately 15000 evaluations, as in Figure 3.19(b), and the FF is 

minimised for the rest of the evaluations, allowing the variables to converge to 0 or 1 at the 

end of the optimisation (Figure 3.19(c)). As for the MQ, the optimisation process makes sure 

to satisfy it first before proceeding, as in Figure 3.19(d). It must nevertheless be pointed out 

that 98.5% of the variables have converged to 0 and 1, from Figure 3.19(e), which also 

represents the worst case of convergence if Table 3.3 is considered. Those intermediate 

variables also appear adjacent to the air gap, as for the linear case.  

The purpose of having the curves for the linear and nonlinear material behaviour on the 

same plot is to see how they evolve for the same problem formulation. We can see that the 

overall trend is the same, but with fewer evaluations for the nonlinear case. Also, the force 
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appears higher for the nonlinear case because the normalisation is not w.r.t the same values 

for both. 
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Figure 3.19 Nonlinear Case𝜷 = 𝟎. 𝟐 (a) Overall Objective, (b) Force, (c) FF, (d) MQ, (e) Density of Variables  
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III.5  Summary and Contributions 

The objective of this chapter was to apply the methodology devised for TO in Chapter II on 

a real electromagnetic device for further in-depth analysis. It was successfully applied on a 3D 

C-core electromagnet, often used in literature for their practical nature and simplicity of 

functioning. The FE model of the electromagnet was also detailed and the different limitations 

were explained. A concise but useful study on the choice of the mesh size was also performed 

to verify the coherence of the mesh used. The objective was to maximise the attractive force 

of the electromagnet by finding an optimum shape of the iron core. The TO was done for 

various cases where the MQ was constrained at different values, and the resulting structures 

were discussed. Moreover, a comparison when using the linear and nonlinear behaviour of the 

ferromagnetic materials was done, and the convergence of the solutions were elaborated. 

From our observations, we have seen that TO with linear and nonlinear materials do not 

produce the same results, despite the overall topology being similar at a certain level. The 

magnetic path created to allow the flow of flux was similar, but the way the materials were 

disposed differs. The nonlinearity produced more efficient results as the topologies appeared 

more feasible, and manufacturing friendly. Furthermore, despite a longer calculation time per 

evaluation, the convergence to a proper solution was seen to be reached in fewer evaluations. 

The main contribution of this chapter to already existing works in literature lies in the 

comparison of topologies obtained with linear and nonlinear ferromagnetic materials in TO 

for a 3D model. We could readily see how the second one is very important in 

electromagnetic modelling and can affect the efficiency of the results. The next chapter will 

further emphasise on this characteristic to present the topology optimisation of an electrical 

machine.  
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IV.1 Introduction 

After exploring the various angles of TO, and applied it to two 3D test cases, namely an 

academic cubic case (Chapter II) and an electromagnet (Chapter III), the proposed 

methodology is now used towards the topology optimisation of a more complex 

electromagnetic case. In this chapter, the rotor top of a Salient Pole Synchronous Generator 

(SPSG) will be optimised for a more optimal magnetic flux density distribution in the 

machine. Apart from the fact that electrical engineers are always in quest of new topologies of 

machines for higher efficiency, the choice of a SPSG was backed by the already existing 

industrial prototype at Jeumont Electric. This prototype has a rated power of 1MVA and is 

designed to generate electricity from wind turbines. The aim of this chapter is to look for new 

topologies of the rotor of the machine w.r.t the desired objective, and discuss their viability in 

practical. As evoked in earlier chapters, accounting for the nonlinear behaviour of the 

ferromagnetic materials is also very important in such electromagnetic examples, and will 

thus be encompassed. To achieve this, we will investigate the original machine for a 

paramount positioning of its characteristics, and subsequently decide on the domain to be 

optimised. With the help of the TO tool previously presented, we benefit from the full 

functionality of the FE tool to create a precise model of the machine, and the use of a robust 

optimisation algorithm.  

Primarily, this chapter will concisely present a few electrical machine-oriented TO 

applications found in literature alongside their methods and results. Afterwards, the model of 

the original SPSG will be detailed, while focusing on the parameters to be optimised. Finally, 

we will present some topologies of the machine obtained as optimisation results using both 

linear and nonlinear behaviour of the ferromagnetic materials, and analyse their feasibility and 

coherence from a numerical and electromagnetic point of view. 

IV.2  State of the Art 

In this section, a few examples of the topology optimisation of electrical machines found in 

literature are presented. Some examples have already been presented in Chapter I, and hence 

will not be repeated here. The scope of this section will be very large as various authors often 

choose machines that are already accessible at their respective laboratories (whether FE 

models or prototypes), and for many cases, on which they already have previous experience. 

Nevertheless, the objective of this state of the art is to get a more extensive sight of the works 

carried out in this particular topic.  
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In [88], the topology of a Permanent Magnet Synchronous Generator (PMSG) is optimised 

with the aim of reaching a higher output power characteristic with less permanent magnet 

volume than an existing PMSG (as reference). The rotor structure is designed from empty 

space, and the TO method used is based on a concept of cluster and cleaning with Genetic 

Algorithm. They allow iron, air and permanent magnet regions in the domain to be optimised. 

The design region and results are depicted in Figure 4.1.  

The authors found that the designed machine had a larger output power per stator current 

than the reference model, and for a stator current of less than 200A they both had same torque 

ripple. Despite a good optimisation convergence of the objectives, the main weakness in this 

type of optimisation is the use of a linear behaviour of the ferromagnetic materials. It is 

therefore hard to tell whether the resulting topology would be adapted to a practical model. 

 

 

Figure 4.1(a) Design Region of Machine, (b) Cell Division for TO, (c) Final Results 

In [89], the authors optimise the topology of an Interior Permanent Magnet (IPM) brushless 

electric motor by using a sensitivity analysis method of topological derivatives with the 

ON/OFF method, based on the works of Ohtake et al. [90]. The objective is to optimise the 

radial component of the magnetic flux density B in the air gap by approaching its behaviour to 

a sine curve. The rotor is considered to be in a fixed position without considering any induced 

current. The ferromagnetic materials used were assumed to behave linearly. Figure 4.2(a) 

shows the initial machine with magnets in orange, coils in light blue, ferromagnetic material 

in brown and air in dark blue, and (b) shows the area to be optimised in red, i.e. to be replaced 

by iron or air. Figure 4.2(c) shows the amount of iron removed during the optimisation 

process (in green) and (d) illustrates the final optimised shape. The optimised radial 

component as compared to the initial one is shown in Figure 4.2(e), with a visible 

improvement. 

(a) (b) (c) 
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Once again, in terms of TO, the method converged correctly to a good solution. But from an 

engineering point of view it lacked the investigation of the nonlinear behaviour of the 

materials to approach practical issues.  

   

 

   

 

 

Figure 4.2 (a) Initial IPM Motor, (b) TO Domain in Red, (c) Material Removed in the Optimisation process 

(Green), (d) Optimised Shape, (e) Optimised Radial Component 

In [53], the authors propose an effective shape of the flux barrier in an IPM motor, 

important in controlling the torque characteristics of the latter. The topology of the rotor core 

(a) (b) 

(c) (d) 

(e) 
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is optimised using a multistep genetic algorithm (MSGA) to determine the effective flux 

barrier. The effect on the current phase angle is also considered by using combinatorial 

optimisation. The initial domain of the machine considered is given in Figure 4.3(a), and the 

optimised shape with phase angle change using MSGA in (b).  

The work was rather methodology oriented, i.e. it served to compare the efficiency of 

MSGA with standard GA. Torque characteristics were found to be higher with MSGA. But 

the topology obtained in Figure 4.3 (b) presents some manufacturing difficulty due to the two 

lines of material in the middle, and will also be inefficient if saturation is considered. 

  

 

Figure 4.3 (a) Initial Domain of IPM, (b) Optimised Topology 

In [24], the authors propose to use a combination of the geometric mapping and a 

convexity-oriented mapping to optimise the topology of a switched reluctant motor. The 

shape of the stator is optimised by considering iron and coils so that the torque is maximised. 

The average torque is calculated from the magnetic energy between two different positions, as 

shown in Figure 4.4(a) and (b). The design space is also shown on the same figure. Some of 

the solutions obtained with specific penalisation speeds are given in Figure 4.4(c) and (d) for 

5 and 8 iterations respectively.  

In this work, the switched reluctant motor was used as a means to validate the methodology 

proposed by the authors, but the saturation was not considered.  

 

 
(a) 

(b) 

(b) 

(a) 
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Figure 4.4 (a)&(b) Initial Design Space and Positions, Optimised Topologies for (c) 5 Iterations (d) 8 Iterations 

After a concise but broad overview of the actual status of TO of electrical machines in 

literature, we can note that most of the works that have been carried out tend to put forward 

the TO methodology rather than the viability of the applications. Very often, the 

electromagnetic saturation of the machines is overlooked, resulting sometimes into structures 

that are difficult to explore in practical. 

The works accomplished in this chapter will be oriented towards the TO of the rotor top of 

a SPSG while considering the nonlinear behaviour of the materials. A comparison of 

topologies and convergence of solutions will be done with cases where linear behaviour of the 

materials is used. The same TO methodology as proposed in the Chapter II & III will be used. 

The FE model of the SPSG is an extruded 2D one, and its magnetic flux density distribution 

will be used as optimisation objective. The following sections will elaborate on how the latter 

will be used as objective function. 

IV.3  Salient Pole Synchronous Generator (SPSG) Model 

The SPSG used in this study was very much inspired from the existing prototype of a 

Doubly Excited Synchronous Generator at Jeumont Electric, designed for wind turbines [91] 

[92]. Nevertheless, in our work we will not consider the double excitation with permanent 

magnets, but only the excitation with rotor windings. Salient pole rotors are usually very 

popular due to its ease of manufacturing, especially in case of high number of pair of poles.  

The original SPSG is illustrated first, relative to its main ratings, FE model and 

electromagnetic characteristics. Thereafter, the design space will be detailed, as well as the 

properties we want to optimise. 

IV.3.1 FE Model of the Original SPSG 

The original SPSG is illustrated in Figure 4.5(a), with the different parts of the machine 

labelled. Considering an antiperiodic symmetry, one eighth of the machine is modelled. The 

(c) (d) 
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FE model is an extruded 2D one, as shown in Figure 4.5(b), and the number of finite elements 

in the mesh is 20838. A relatively fine mesh size is chosen on purpose for a correct FE 

modelling. The parameters of the machine are given in Table 4.1. 

Table 4.1 SPSG Parameters 

Parameter Value 

Rated Power 1 MVA 

Phases 3 

Rated Excitation Current 192 A 

Rated Output Voltage 3 kV 

Power Factor 0.8 

Rated Speed 750 rpm 

Frequency 50 Hz 

Overspeed 900 rpm 

Depth of Machine 750 mm 

No. of Poles 8 

Air Gap Size 5 mm 

 

The optimal topology of the rotor will be sought so that the magnetic flux density 

distribution in the machine is optimised. There are different ways of considering B in the 

objective function of the problem. In this chapter, we will investigate the distribution of the B 

throughout the machine, and also the shape of B in the air gap. Hence, no-load simulations of 

the machine will be performed. As a starting point, we will study the spatial flux distribution 

in the original machine, as well as the B in the air gap. 
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Figure 4.5 SPSG (a) Geometry, (b) Mesh 

Magnetic Flux Density in the Air Gap and Spatial Distribution  

A current density of 3.0 A/mm² will be used for the excitation windings to stay within the 

range of what is used in the prototype for no-load tests. The spatial distribution of B in the 

machine is pictured in Figure 4.6(a) with linear behaviour of the materials, and in Figure 

4.6(b) with nonlinear behaviour. All calculations are done in magnetostatics, using Ω 

formulation. The B(H) curve for the nonlinear ferromagnetic materials are obtained from the 

(b) 

(a) 
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manufacturer, and the coefficients for the Marrocco equation are obtained by a regression 

function. The coefficients are: 

𝜀 =  1.23 ∙ 10−3 

𝑐 =  0.261 

𝛼 =  6.81 

𝜏 =  68.7 

The magnetic pole of the SPSG can clearly be seen, despite some leakage flux in the stator 

teeth in the middle of the machine. It must be noted that for the linear case, the magnetic flux 

density is quite high throughout the machine, with approximately 3.5 T in the rotor, and 

slightly less in the stator. However, when the nonlinear behaviour is considered, B is around 

1.5 T in the rotor and the stator. This obviously reflects a practically more feasible working 

point than the linear case. The reason for which nonlinearity is often overlooked is because it 

is more tedious in setting up, especially for TO and also it increases the computation time. 

As for the magnetic flux density in the air gap, Figure 4.7(a) illustrates the shape for a linear 

material behaviour, and Figure 4.7(b) for nonlinear. The radial B is considered in this case 

because the flow of flux through the air gap should be parallel to the radius of the machine. It 

can be seen that the peaks of B in the air gap for the nonlinear case are lower (1.2 T) than the 

linear case (1.6 T). But both have the same overall shape. The slot effect can be noted due to 

the presence of slots in the stator to accommodate the stator windings. This produces a drop in 

B at each slot, and a peak at each tooth. Due to this manufacturing constraint, the shape of the 

B in the air gap can never reach a perfect cosine curve. However, if the latter’s shape must be 

optimised, it is judicious to consider the fundamental only, which should approach a cosine 

curve.  
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Figure 4.6 Spatial Distribution of B in the Machine with (a) Linear, (b) Nonlinear Material Behaviour 

(a) 

(b) 
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Figure 4.7 Magnetic Flux Density in Air Gap with (a) Linear, (b) Nonlinear Material Behaviour 

After exploring the magnetic flux density in the original machine, the following section will 

now define the design space to be used for the TO of the rotor top. 

IV.3.2 TO of the Machine  

Following the concept of TO, it suggests that the optimal structure should be found from an 

unbiased empty design space. An optimised shape of the rotor top is sought, and hence the 

design area is as shown in Figure 4.8(a), shaded in pink. To keep a higher degree of freedom 

in the design space, the latter is allowed to span from one rotor pole top to the other. The 
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mesh size chosen here is similar to that of the original model for coherence. A fine mesh size 

is also used in the air gap, as in Figure 4.8(b) showing a zoom, since we will investigate B in 

the latter.  

As for the discretisation of the optimisation domain, it is characterised by rectangular-

shaped zones, as in Figure 4.8(c), where each zone is finely meshed. These zones are, in 

reality, curved bands but they do not appear so because of the slight curvature. The higher the 

discretisation, the more precise will be the results, but the lengthier will be the computation 

time. For this study, we will use 60 zones, which will correspond to the variables of the 

optimisation problem. 

The advantage of using zones as variables (as in cubic test case of Chapter II) instead of 

finite elements (as in electromagnet of Chapter III) is to maintain an appropriate mesh size 

and accurate model, even when a low number of variables is used. This is useful for 

modelling of machines as a fine mesh is usually required, unlike other electromagnetic 

devices.  

 

 (a) 
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Figure 4.8 Domain to be Optimised (a) FE model, (b) Zoom, (c) Geometry 

As for the original SPSG model, we will investigate some properties of the FE model with 

TO domain before engaging in any optimisation.  

Magnetic Flux Density in the Air Gap and Spatial Distribution 

It is interesting to investigate the magnetic flux density in the machine when the design 

space is made up of iron only. As for the original model, no-load simulations are performed, 

and the same magnetomotive force (excitation) 𝑛. 𝑖 is used. All calculations are done in 

magnetostatics, using Ω formulation. Figure 4.9(a) depicts the spatial distribution of B in the 

(b) 

(c) 
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machine linear materials behaviour, and Figure 4.9(b) for nonlinear behaviour. It can be seen 

that the values are excessively high, especially in the linear case where values of 100 T are 

attained in the design space. For the nonlinear case, smaller values are obtained (3 T), but they 

are nevertheless aberrant for physical feasibility. 

 

 

Figure 4.9 Spatial Distribution of B in the Machine for (a) Linear, (b) Nonlinear Behaviour of Materials 

Figure 4.10 displays the shape of B in the air gap for both linear and nonlinear behaviours 

of the materials. We note that for both cases, we still obtain a sinusoidal shape of B, which 

very much resembles those of the original machine. But here, B is much lower, with pe aks 

of around 0.5 T at the teeth for both linear and nonlinear cases. This occurs due to leakage 

flux passing through the air gap towards the stator. Therefore, care must be taken in avoiding 

such magnetic short circuit during TO so that erroneous topologies are not obtained, 

especially with linear behaviour of materials.  

 

 

(a) 

(b) 
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Figure 4.10 Magnetic Flux Density in Air Gap for (a) Linear, (b) Nonlinear Behaviour of Materials 

After studying the characteristics to be optimised in the model, TO of the rotor top can now 

be undertaken, for both linear and nonlinear material behaviours. Two ways of formulating 

the objectives will be considered to generate new rotor shapes. Firstly, we will maximise the 

flux in the stator. And secondly, we will optimise the shape of B in the air gap. 
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IV.4  Optimisation of SPSG 

As a quick recap, the TO process will be concisely presented in this section, based on what 

has already been seen in Chapter II. Nonetheless, an additional step will be added to the 

process in this case, which is detailed as well. 

Subsequently, the TO of the rotor top will be detailed, using two different objectives. For 

each, the formulation of the problem will be explained, as well as the reason why this 

particular setting is considered. Afterwards, an analysis of the TO results obtained will be 

made, with both linear and nonlinear materials. All calculations are done in magnetostatics, 

using Ω formulation. 

In a first phase, the flux in the stator will be maximised. This amounts to acting on a global 

value of the model during optimisation. The topologies and spatial distributions of B will be 

presented and analysed.  

Secondly, the magnetic flux density in the air gap will be optimised. This corresponds to 

acting on local values of the model during optimisation. The shape of B and the 

corresponding topologies will be examined. 

This will allow us to have a wider overview of how the system behaves depending on the 

type of optimisation problem defined. Acting on local and global values can produce totally 

different results, and this aspect will also be discussed.  

IV.4.1 Recap of TO Process 

The overall process has already been seen in Chapter II, but for the SPSG model, an 

additional step is added. The block diagram summarising the process is given in Figure 4.11. 

The methodology proposed with the density mapping and the FF is used, and the FE model is 

subjected to the TO using the tools. After the optimisation process, a TO filter is used to 

smooth out the model obtained. This goes towards the explanation of filters in Chapter I to 

eliminate some undesired effects such as checkerboard, intermediates, and so on. The use of 

filters is optional in the process, and will be pointed out whenever it is used. Thereafter, the 

final model is obtained. 

 

Figure 4.11 Block Diagram for Overall TO Process 
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TO Filter 

The TO filter in our case will serve to eliminate the isolated materials that can sometimes 

occur in a topology after optimisation, and hence smooth out the topology. It is mainly based 

on the Neighbourhood Filter explained in [9], and the works of [71]. It acts on the densities of 

the structure obtained after optimisation, and uses the sum of each zone’s 'neighbours' to 

determine whether it is isolated or not. To understand how the neighbours of each zone are 

considered, we shall first consider their numbering, as in Figure 4.12. To consider the 

neighbours of a zone, we will use zone 5 as example. The 8 zones surrounding it are 

considered as its neighbours, with the directly adjacent ones being zones 2, 4, 6 and 8, and the 

diagonal ones being zones 1, 3, 7 and 9. When considering the zones lying on the edges, the 

number of neighbours might be 3 or 5, depending on the position of the former. 

 

Figure 4.12 Zones Numbering 

For each zone ρz, the density sum ρsum is calculated from its neighbours, as in (IV-1). 

 𝜌𝑠𝑢𝑚 =
1

(𝑟 + 𝑡)
(𝜅∑𝜌𝑎𝑑𝑗𝑖

𝑟

𝑖=1

+ 𝜎∑𝜌𝑑𝑖𝑎𝑔𝑗

𝑡

𝑗=1

) (IV-1) 

Where r and t represent the number of adjacent and diagonal neighbours respectively, and 

ρadj and ρdiag represent their respective densities. The coefficients κ and σ correspond to the 

weightage given to each type of neighbour. The adjacent zones are given a high weight, and 

the diagonal ones, a lower weight. The values retained in our case are 𝜅 = 1 and 𝜎 = 0.8. 

These coefficients are kept high so that only very isolated densities are changed. We will see 

later in this section how the choice of coefficients can affect the overall topology. To 

determine whether the density of a zone ρz is isolated, and therefore must be changed, we 

apply the conditions in (IV-2). 
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 𝜌𝑧 = {

0,  𝑖𝑓 𝜌𝑠𝑢𝑚 ≤ 𝑣
1,  𝑖𝑓 𝜌𝑠𝑢𝑚 ≥ 𝑤
𝜌𝑧 ,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (IV-2) 

The values of 𝑣 and 𝑤 should be close to zero and 1 respectively so that it doesn’t largely 

alter the topology obtained after filtering. 

To give an example of how the TO filter is applied, we will use the topology in Figure 

4.13(a), obtained after optimisation. The ρsum for each zone are given in Figure 4.13(b), and 

the values of 𝑣 = 0.05 and 𝑤 = 0.95 are applied to the conditions in (IV-2) to give the 

filtered topology of Figure 4.13(c). The latter eliminates only the isolated zone on the middle 

right hand side, but does not alter much the actual topology. A case of altered topology would 

be in Figure 4.13(d), if the limiting conditions of the filter were relieved further by setting 

𝑣 = 0.1 and 𝑤 = 0.9, for instance. This could be desirable in some cases, depending on the 

problem. Hence, care must be taken when defining the coefficients of the filter.  

                

Figure 4.13 (a) Topology Before Filter, (b) ρsum for each zone, (c) Filtered topology with 𝒗 = 𝟎. 𝟎𝟓 and 𝒘 = 𝟎.𝟗𝟓, 

(d) Filtered Topology with 𝒗 = 𝟎. 𝟏 and 𝒘 = 𝟎. 𝟗 

IV.4.2 Maximisation of B in the Stator 

The point in maximising B in the stator is to keep a good conservation of flux in the 

magnetic pole, i.e. from the rotor through the stator teeth, to the yoke, and back to the rotor. 

An optimal distribution of B in the machine is therefore sought through this optimisation. 

This can be assimilated as optimising a global characteristic of the structure. The problem is 

formulated as in (IV-3). The value of n represents the number of points at which B is 

calculated, used in the optimisation. Dividing the summation term by n allows one to stay 

within the same range as FF. The values for the coefficients used are 𝛾 = 1 and 𝜆 = 0.5. The 

latter were chosen following some optimisations with different values of the coefficients, and 

those ones seemed to work best for our model.  

(a) (b) (c) (d) 
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 min
𝝆
(−

𝛾

𝑛
∑𝐵𝑖(𝝆)

𝑛

𝑖=1

+ 𝜆. 𝐹𝐹(𝝆)) (IV-3) 

The magnitudes of B are considered at the yoke as shown in Figure 4.14. The resulting 

topologies obtained with linear and nonlinear material behaviour are given in Figure 4.15(a) 

and (b) respectively, as well as their corresponding spatial distribution of B in (c) and (d). No 

filter was used in this case. 

 

Figure 4.14 Maximisation of B in the Stator Yoke 

 
(a) 
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Figure 4.15 Topologies in (a) Linear, (b) Nonlinear, B Distribution in (c) Linear, (d) Nonlinear 

(b) 

(c) 

(d) 
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We can see that both topologies are coherent, w.r.t the type of materials considered. In both 

cases the magnetic flux flows through the stator yoke and back to the rotor to create a 

magnetic pole. On the other hand, with linear materials we can see that the values of B can 

rise up to above 4 T while for the nonlinear case, the values are around 2 T.  

This analysis puts forward, in a first round, the fact that topologies can be obtained with 

linear materials but are not necessarily a good choice for an electromagnetically feasible one. 

Furthermore, the maximisation of flux in the yoke does not yield a detailed topology of the 

rotor top, but rather a block approximation of what should be obtained. Therefore, a different 

optimisation problem should be formulated if one wants to have a better topology. Hence, we 

will investigate the optimisation of the magnetic flux density in the air gap. 

IV.4.3 Optimisation of Magnetic Flux Density in Air Gap 

The desired shape of the magnetic flux density in the air gap of a rotating machine is 

usually sinusoidal. But due to the slot effect as evoked earlier, only the first harmonic of the 

shape of B can be close to a sinusoid. In this study, we will impose a sinusoidal shape of B in 

the air gap as optimisation target. Figure 4.16 shows the sine curve imposed, where the 

modulus of the values is considered. 

 

Figure 4.16 Modulus of Sine Curve Imposed 

The optimisation problem is defined as in (IV-4). For the results to be as accurate as 

possible, the difference between the desired and obtained values is normalised w.r.t the 

desired values, and the square of the normalised difference is calculated. The latter’s sum is 

calculated for all the desired spatial points. 
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 min
𝝆
(
𝛾

𝑛
∑(

𝐵𝑖(𝝆) − 𝐵𝑜𝑏𝑗𝑖
𝐵𝑜𝑏𝑗𝑖

)

2

+ 𝜆. 𝐹𝐹(𝝆)

𝑛

𝑖=1

) (IV-4) 

The optimisation of the rotor top for the linear material behaviour is presented first for a 

few cases, and subsequently the results for the nonlinear behaviour are shown.  

IV.4.3.1 Linear behaviour of Materials 

In this section, we will perform the optimisation with 2 different numbers of spatial points 

in the air gap: 73 and 13. The reason for the 73 points is to take into consideration the slot 

effect during optimisation, while the 13 points is to filter the first harmonic, hence avoiding 

the slot effect. The aim of this section is to see how the model behaves in different cases when 

the problem is posed differently. Some results can be very appealing in terms of topology but 

less in terms of convergence, or vice versa. 

A. Case 1 – 73 Spatial Points 

We want to optimise B in the air gap at 73 spatial points, as shown in Figure 4.17(a). The 

convergence the main objective (sum of B) in given in Figure 4.17(b). The unfiltered results 

are given in Figure 4.18, and the filtered ones in Figure 4.19. The number of evaluations done 

to reach this solution is 2350, and the time taken is 3.36 h. The final value of 𝐹𝐹 = 0.04, 

which is close to zero, and therefore means that all the densities have converged to 0 or 1. 

Also, the convergence of the objective function is coherent. But the values do not lie between 

0 and 1 here despite normalisation of the B in the optimisation problem. This occurs if the 

values of B(ρ) obtained in the optimisation process is much greater than the objective value of 

Bobj, say by more than twice. By calculation, we can see that the squared normalised 

difference can go beyond 1. But this does not affect the optimisation process as long as it 

stays within the same range as the FF. 
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Figure 4.17 (a) Spatial Points, (b) Convergence of Objective 

 

 

 

 

Figure 4.18 Unfiltered Resuts (a) Topology, (b) B Distribution, (c) B in Air Gap 
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Figure 4.19 Filtered Results (a) Topology, (b) B Distribution, (c) B in Air Gap 

The unfiltered topology contains a block of iron in the middle which, according to the 

algorithm, contributes in bringing the values of B in the air gap near this block to zero. We 

note that many points of B obtained lie on the sine curve imposed. The results are numerically 

correct, but are questionable from an engineer’s point of view. Therefore, when the topology 

is filtered, we also take into account the manufacturing difficulty of the block in the middle. It 

is hence removed to get the new topology. We can see that the overall curve still follows the 

sine curve, but the results are blurred by the slot effect. This makes it quite hard to assess the 

values obtained for B. Hence, to undermine this obstacle we will use only 13 spatial points in 

the air gap, where one is taken opposite each tooth, so that the slots are avoided.  

B. Case 2 – 13 Spatial Points 

With the slot effect avoided in the optimisation, some topology results are presented with 

the same problem formulation as above. Here again, the efficiency of the results can differ 

largely. For example, an optimisation can converge very nicely to a good solution, but the 

topology obtained can be totally irrelevant, or vice versa. Case B will present one example for 

each.  

Example 1 – Average Convergence with Relevant Topology  

The 13 spatial points in the air gap are shown in Figure 4.20(a), and the convergence the 

main objective (sum of B) in given in Figure 4.20(b). Note that the spatial points on the figure 

are enlarged for visibility, but they are actually the same size as in Figure 4.17(a). The 
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unfiltered results are given in Figure 4.21, and the filtered ones in Figure 4.22. The number of 

evaluations is 964, with 𝐹𝐹 = 0.01, and the calculation time is 1.4 h.  

  

Figure 4.20 (a) Spatial Points, (b) Convergence of Objective 

 

 

 

 

Figure 4.21 Unfiltered Resuts (a) Topology, (b) B Distribution, (c) B in Air Gap 
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Figure 4.22 Filtered Resuts (a) Topology, (b) B Distribution, (c) B in Air Gap 

We note that for the unfiltered results, an iron block is again placed in the middle of the 

rotor tops to prevent leakage flux in the air gap in this region. The numerical results follow a 

sine curve trend. On the other hand for the filtered results, we eliminate the material in the 

middle, but there are no extreme changes in the values of B obtained. Nonetheless, it 

contributes to reducing the magnetic flux density in the machine as they drop from 4 T to 2.5 

T. These values are normal for a linear behaviour, but would be rather infeasible for a 

nonlinear behaviour of materials, as in reality. 

Example 2 – Good Convergence with Poor Topology 

In this example, we subject the problem to a constraint on B, as given in (IV-5). It suggests 

that the flux flowing in the stator should be at least 90% of that flowing in the rotor. The 

points in the stator yoke and rotor are shown in Figure 4.23(a). The idea is to prevent leakage 

flux in the design space. The results are given in Figure 4.23, where (b) gives the convergence 
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of the objective, (c) plots the values obtained on the sine curve, (d) depicts the topology 

obtained, and (e) the B distribution. The results are not filtered in this case. The number of 

evaluations is 1577, with 𝐹𝐹 = 0.1, and the computation time is 2.27 h.  

 {
min
𝝆
(
𝛾

𝑛
∑(

𝐵𝑖(𝝆) − 𝐵𝑜𝑏𝑗𝑖
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2
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𝑛
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𝑠. 𝑡.      𝑩𝒔𝒕𝒂𝒕𝒐𝒓 ≥ 0.9 × 𝑩𝒓𝒐𝒕𝒐𝒓

 (IV-5) 

 

 

 

 

  

Figure 4.23 For 13 Spatial Points (a) B in Stator and in Rotor Used in Constraint (b) Objective Convergence, (c) B 

in Air Gap with 13 points, (d) B in Air Gap with 73 points, (e) Optimal Topology 
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The values of B obtained correspond to the imposed sine curve, as in Figure 4.23(c). The 

numerical optimisation results are correct, but the topology obtained is quite unfeasible from 

an engineering viewpoint (Figure 4.23(d)), despite a coherent distribution of the magnetic flux 

density in (e). The reason behind this type of behaviour is due to the linearity of the materials. 

It is therefore interesting to see what a nonlinear material behaviour could change in the 

results.  

IV.4.3.2 Nonlinear Behaviour of Materials 

The same optimisation problem as in (IV-4) is used. The initial conditions are the same, and 

the number of spatial points on the air gap is 13. The results are given in Figure 4.24. The 

number of evaluations 765, for a total time of 5.21h, and with 𝐹𝐹 = 0.09. Figure 4.25(a) 

shows that the objective converges to a good solution, and (b) shows the magnetic flux 

density B in the air gap for the 13 spatial points optimised. We can see that the curve imposed 

is respected. Also, we can see that the unfiltered topology has a block of iron in the middle 

but the distribution of B is coherent. The values of B are around 2 T, which corresponds to a 

real case example. 

 

 

 

 

Figure 4.24 (a) Convergence of Objective, (b) B in the Air Gap, (c) Unfiltered Topology, (d) B Distribution 
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The results for the filtered topology are depicted in Figure 4.25. The topology corresponds 

to a feasible one, as well as the magnetic flux density distribution. Some high values of B are 

reached during the simulation, but the values in the air gap are still coherent with the imposed 

sine curve.  

If we consider the percentage of flux that is conserved from the rotor to the stator, for the 

unfiltered case it is 65%, while for the filtered case it is 72%. On the other hand, the sum of 

the objective term involving B at the end of the convergence is 0.20 for the unfiltered case 

(Figure 4.24(a)), but if the results are filtered, the value of the objective would be 0.51. This 

shows that the optimisation results are good, but the filtering is sometimes necessary to have a 

feasible final structure.  

 

 

 

 

Figure 4.25 (a) Filtered Topology, (b) B Distribution, (c) B in the Air Gap 
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that, to optimise a particular region of a machine, many aspects can be considered but the 

results will vary depending on the former. As for the SPSG, one shape of the rotor top was 

obtained when we maximised the flow of flux in the stator, but a different was obtained when 

the shape of B was optimised in the air gap. We have also seen cases where the numerical 

solutions had correctly converged to an optimal solution, but the topologies were completely 

infeasible from an engineer’s point of view. 

To add another level of complexity to the problem, the topologies also varied when 

nonlinear material behaviour was used. This demonstrates that optimality of a single 

parameter cannot be considered in the case of machines to optimise the structure. This means 

that the problem should be highly multi-objective for a truly optimal structure. And if a fine 

discretisation is also desired, this adds up in the computation time. All these factors render the 

TO problem even more complex, and should invoke greater attention during the formulation 

of the problem. We have nevertheless presented some of the interesting results obtained 

during this thesis work, which are correct for the objectives chosen. But a more varied number 

of objectives should be taken into account to confirm or alter the topologies obtained. 
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IV.5  Summary and Contributions 

In this chapter, we have put forward the application of the TO methodology to a Salient 

Pole Synchronous Generator to yield various rotor top topologies while optimising the 

magnetic flux density distribution in the machine. The original SPSG was primarily 

investigated for its various characteristics, and the design space chosen to perform TO was 

detailed. The calculations were performed for both linear and nonlinear behaviour of the 

ferromagnetic materials. Different formulations of the optimisation problem were 

investigated. 

We have seen that the TO is very dependent on how the problem is posed. It can yield very 

good convergences to solutions, but with infeasible topologies from an engineer’s point of 

view, but it can also yield the complete opposite. This was the first strength of this chapter as 

it served to demonstrate how topologies can differ from objective to objective. None is wrong, 

but for utmost optimality, all should be considered at once. Obviously, this is impossible in 

practical for an optimisation process, which present the greatest limitation of TO. 

Furthermore, we have shown how the nonlinear materials behaviour can produce drastic 

changes in the results when compared to the linear case for the same problem, especially for 

machines. This aspect has often been overlooked in numerous works on TO in 

electromagnetism, as it might be more mathematically challenging, requiring a longer 

computation time. But it remains a turning point in this type of problem as seen in the results 

presented. This was the second strength of this chapter as it has emphasised on this matter, 

with various examples. Interesting topologies of a rotor top have also emerged from our 

calculations, and it would be interesting to further investigate the behaviour of other 

characteristics of the machine with such a topology. 

Consequently, a more careful framing of the problem is essential to assume coherence of 

the results. Obviously, one cannot have absolute success during the first trials, but the latter 

should serve to direct the user towards a better solution while understanding the behaviour of 

the process. 
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Summary and Contributions 

The objectives set at the beginning of this thesis work have been met, albeit not without 

various obstacles. The foremost task, which was to develop a functional TO tool from the 

'home-made' FE and optimisation tools, has been completed and tested with a parameterised 

academic test case. In the same process, a TO methodology was developed, based on the 

existing TO methods in literature, and the latter’s weak points such as the occurrence of 

intermediate variables in the final structures and lengthy computation times were mitigated. 

This represents our first contribution to the complex subject that characterises TO.  

Furthermore, we have also introduced the nonlinear behaviour of the ferromagnetic 

materials in the TO process, which is not very common in TO literature. It was tested and 

compared with the case where a linear material behaviour is used for 2 cases: the 3D 

electromagnet, and the Salient Pole Synchronous Generator. Despite increasing the 

computation time of the model, the results obtained were better and represented a more 

feasible electromagnetic structure as real material characteristics were taken. This constitutes 

a second major contribution of our work to yield more realistic topologies. 

Finally, the rotor top of the SPSG was optimised w.r.t various problem formulations, and 

various topologies were presented. It enabled us to see how an ill-posed problem in TO could 

produce correct solutions in terms of optimisation calculations, but incoherent topologies in 

terms of feasibility of the structures. This work can serve to direct other topology optimisers 

in taking the necessary actions when posing a TO problem to inhibit unwanted structures from 

occurring.  

To show the other side of the coin, it is also interesting to evoke the many obstacles met 

throughout the course of this work. The main difficulty was in the setting up of the TO tool, 

as it inferred the coupling of two different software, programmed in different languages. Their 

compatibility was not obvious, and many runs were required before coming up with a 

functional tool. Moreover, since it was the works on the subject within the laboratory, we 

could not benefit from past experiences, and hence kick-starting the project and acquiring 

necessary skills was rather long. Additionally, we were confronted with the high computation 

times for TO simulations, and this was also a major burden to the subject. Despite all these 

hurdles, the main goal of the work was accomplished. But as in any other work, there is 

always scope for more, and therefore a few perspectives can be suggested. 
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Perspectives 

It would be interesting to further explore the works that have been carried out during this 

thesis. This includes the methodology, the tools, the electromagnet, and the SPSG. 

Methodology 

Regarding the TO methodology, new strategies for convergence to a global optimum could 

be tested. For example, we could favour a hybrid algorithm, starting from a Genetic 

Algorithm to find a global optimum, but limiting the number of generations so that a rough 

solution is approached. In a second phase, a local algorithm such as fmincon SQP could be 

applied to approach a better solution. Other strategies such as more developed filters in the 

TO process could be implemented when complex devices are optimised. 

Relative to the management of the variables, we could test further techniques. For instance, 

we could use a two-step approach: in a first phase, the variables are considered as zones (as 

for cubic case and SPSG), and in a second phase, we could consider only regions that need 

fine-tuning and therefore use the finite elements in those regions as variables. This two-step 

process would allow us to keep the same mesh size, but still refine the results with a smaller 

discretisation. 

Tool 

As for the TO tool, an effort could be invested rendering it more user friendly so that any 

non-expert user could test his own strategies. We are already currently working towards point 

at the L2EP with a new local platform (SophemisTopo) with a few FE test cases available, 

such as the cubic case, the electromagnet, the SPSG and a rectangular reluctance network. A 

user can submit a TO algorithm to the platform, and choose any of the models for testing. A 

classification is done with the various results, with the strategy producing the best topology in 

terms of convergence of objective, no intermediates, computation time, feasibility and 

robustness ranked first.  

Applications 

About some perspectives related to the numerical examples, suggestions would mostly be 

directed towards the TO of the SPSG, or other rotating machines. The movements of the rotor 

could be considered in TO to allow investigation of other characteristics of the machine, such 

as emf, torque, torque ripple, and so on. Also, at-load machine functioning could also be 

thought-provoking as it could find new structures that are more optimal for at-load runs, but 
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not as optimal for off-load runs. These aspects are rarely seen in literature, and thus could be a 

novel way of attacking the problem. 

All these ideas can be realised with the presently developed TO tool, but again, a stepwise 

testing is always necessary to prevent ill-posed problems, and thus generation of incoherent 

structures. 
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Appendix A 

Calculation of LHS with Sophemis 

function out = lhsSangka(var,sample,maxiter,option) 

  

% Latin Hypercube Sampling 

% Maximin criteria 

% 

% output = lhs(var,sample,maxiter) 

% 

% var     = variable number 

% sample  = sample point number 

% maxiter = maximum iteration (default = 100) 

% option  = 'lhs' point at random space in cube 

%           'mod' point at cube edges 

%           'lattice' centered point 

% ------------------------------------- 

% by Sangkla Kreuawan 

% 20 may 2006 

% 

% Rev. 10/06/2007 --- do not compute distance if maxiter =1 

% Rev. 23/06/2007 --- add option 

% Rev. 31/05/2011 --- AlexB, the calculation of I and J is done 

only once 

% Rev. 31/05/2011 --- AlexB, best_x is only initialized at the 

first iteration 

  

if nargin < 3 || isempty(maxiter) 

    maxiter = 100; 

end 

  

if nargin < 4 

    option = 'lhs'; 

end 

  

% x = 

lhsdesign(sample,var,'iterations',maxiter,'criterion','maximin'); 

  

best = 0; 

x = zeros(sample,var); 

  

% AlexB, 31/05/2011 -- code extracted from "if maxiter ~=1" loop 

% Distant cal. code taken from latin hypercube matlab 

% Maximimize the minimum point-to-point difference 

% Get I and J indexing each pair of points 

[m,p] = size(x); 

pp = (m-1):-1:2; 

I = zeros(m*(m-1)/2,1); 

I(cumsum([1 pp])) = 1; 

I = cumsum(I); 

J = ones(m*(m-1)/2,1); 

J(cumsum(pp)+1) = 2-pp; 

J(1)=2; 

J = cumsum(J); 
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% AlexB 

  

for iter = 1:maxiter 

    % if isempty(input_latin) 

    switch option 

        case 'mod' % point at cube edges 

            for i = 1:var 

                x(:,i) = (randperm(sample)-1)/(sample-1); 

            end 

        case 'lattice' % point at cube center --- lattice sample 

            % Ref. Computer experiments - J.R. Koehler and A.B. 

Owen 

            for i = 1:var 

                x(:,i) = (0.5 + (randperm(sample)' - 1)) / sample; 

            end 

        otherwise % normal LHS --- point at random space in cube 

            for i = 1:var 

                x(:,i) = (rand(sample,1) + (randperm(sample)' - 1)) 

/ sample; 

                % latin_rand = (inputmax - inputmin).*latin_rand + 

inputmin; 

            end 

    end 

     

    % AlexB, 31/05/2011 

    % Initialize best_x only at the first iteration 

    if iter==1, best_x = x; end 

    % AlexB 

     

    if maxiter ~=1 

        % To save space, loop over dimensions 

        d = zeros(size(I)); 

        for j=1:p 

            d = d + (x(I,j)-x(J,j)).^2; 

        end 

        s = sqrt(min(d)); 

         

        if s > best 

            best = s; 

            best_x = x; 

        end 

    end 

end 

% best 

out = best_x; 

  

% subplot(2,2,1); plot(x(:,1), x(:,2), 'o'); 

% subplot(2,2,2); hist(x(:,2)); 

% subplot(2,2,3); hist(x(:,1)); 
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Appendix B 

Example of Sophemis Model on Matlab for TO 

classdef TopologicTemporalModel < TemporalCarmelModel 
    % Topologic model temporal 
    % @author : Bilquis Mohamodhosen && Florent Delhaye<florent.delhaye@ec-lille.Fr> 
     
  
     
    methods 
         
        function obj = TopologicTemporalModel() 
            obj@TemporalCarmelModel('topo', 'topo', 'T', 'topo.med', 'configuration.xml', ... 
                false, 1, 'localhost', '8080');  
            % false -ECL 
            % true - P2 
            % 1 - Time step 
            % localhost - calculations launched on pc 
            % scheduler - calculations launched on linux server @ ECL 
             
            % for parallel pooling - configure on Sophemis--> configurer 
            % plateforme --> Nombre de coeurs (4) 
                   
%% Outputs from Carmel 
         
%             obj.setH(); 
%             obj.setK(); 
%             obj.setRotK(); 
%             obj.setN(); 
%             obj.setB(); 
            obj.setEnergie(); 
%             obj.setForce(); 
             
%% Declaration of inputs & outputs 
  
% Inputs 
  
            % Constant inputs 
            obj.addInput(Input('mu_r', 'Permeability of material (iron)', '_', InputType.constant, [], 2000)); 
            obj.addInput(Input('mu_o', 'Permeability of free space', '_', InputType.constant, [], 1)); 
            obj.addInput(Input('n', 'penalisation coefficient', '_', InputType.constant, [], 1)); 
            obj.addInput(Input('dimension', 'dimension', '_', InputType.constant, [], 64)); 
             
            % Variables 
            obj.addInput(Input('d', 'density', '_', InputType.continuous, 'dimension', [0 1])); 
%             obj.addInput(Input('d', 'density', '_', InputType.discrete,'dimension', 1)); 
  
% Outputs 
  
            % carmel outputs 
            obj.addOutput(Output('energie', 'energie', '_')); % scalar 
             
             
            % Calculated Outputs 
            obj.addOutput(Output('MQ', 'MQ', '_')); % scalar 
 
  
% Constraints to force density to 0 and 1 
  
            obj.addOutput(Output('FF_sum', 'FF_sum', '_')); 
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        end 
         
        function result = compute(obj, input)    
  
%% Mappings 
  
 
%             % Polynomial Mapping (SIMP)  
            input.mu_i = input.mu_o*(1+(input.mu_r - 1)*input.d .^ input.n); 
                             
             
%% Outputs              
            carmelResult = compute@TemporalCarmelModel(obj, input);  
             
            % Using the outputs 
            result.energie = -carmelResult.energie/3.64131033081171963e-3 ;  % (result.X - X must be defined in 

outputs above) 
            result.MQ = sum(input.d) / input.dimension; 
 
 
%% Constraints forcing variables to 1 or 0 
  
 
%             % FF for lb=0 & ub=1 + Normalised 
            result.FF_sum = 16*sum(abs((input.d-1).*input.d))/(input.dimension*0.25);  
 
        end 
         
    end 
     
end 
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Appendix C 

Example of Sophemis windows 

Sophemis window 

 

 

Optimisation of a model  
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Live visualisation of evolution of iterations  
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Appendix D 

Example of files where force is extracted 

 

 

Example of file where B is extracted 
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Appendix E 

Example of server showing running of code_Carmel-Sophemis coupling 
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Appendix F 

Different mesh sizes for 3D FE electromagnet model 

Energy obtained using A and Ω formulations with 3.0 A/mm²  

No. of Tetrahedra Energy in A Energy Ω 

2433 1.75e-2 2.93e-2 

3011 1.67e-2 2.76e-2 

3482 1.78e-2 2.70e-2 

3733 1.85e-2 2.78e-2 

3928 1.97e-2 2.83e-2 

4514 1.96e-2 2.76e-2 

4805 1.92e-2 2.75e-2 

5559 2.00e-2 2.68e-2 

8463 2.03e-2 2.64e-2 

10588 2.05e-2 2.61e-2 

17461 2.19e-2 2.56e-2 
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Force obtained using A and Ω formulations with 3.0 A/mm²  

Force Face nodes Force in A Force Ω 

33 11.8 39.2 

43 10.9 38.1 

51 13.5 34.7 

53 15.4 37.0 

58 19.3 38.4 

65 19.2 37.4 

75 17.4 38.1 

79 20.0 36.7 

85 20.7 36.2 

96 21.4 35.1 

165 26.1 34.3 
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Optimisation Topologique de 
Dispositifs Electromagne tiques 

Introduction 

Nous vivons actuellement à l’ère de l’exigence technologique, poussant l’intelligence 

humaine vers de nouvelles inventions plus surprenantes et l’amélioration des anciennes, en 

quête d’optimalité ; les chercheurs scientifiques étant les acteurs principaux de cette mission. 

A l’aide d’autres outils, notamment des processeurs et d’ordinateurs qui sont maintenant 

devenus incontournables, nous pouvons à présent réaliser des calculs et simulations plus 

fastidieux, nous rapprochant de notre but essentiel. Ceci a permis de révolutionner l’ingénierie 

en général, y compris le génie électrique qui est notre principal préoccupation.  

Le laboratoire de génie électrique (Laboratoire d’Électrotechnique et d’Électronique de 

Puissance, L2EP), au sein duquel cette thèse a été réalisé, dispose de beaucoup de travaux en 

cours sur l’optimisation de dispositifs électromagnétiques, plus particulièrement des machines 

électriques. Cette thèse est donc orientée vers la même thématique. L’optimisation des 

machines électriques est un sujet vaste qui s’étend d’un paramètre d’une machine à la 

machine entière. Communément, les ingénieurs se basent sur les structures existantes et 

optimisent les dimensions afin d’en faire émerger de meilleures. De ce fait, les optimisateurs 

se retrouvent souvent contraints par la forme initiale de la structure, et réduisent ainsi le degré 

de liberté. De plus, ces mêmes formes initiales, bien qu’elles soient convenables, obstruent 

souvent notre sens de l’innovation en quête de formes plus optimales. De ce fait, nous 

utiliserons une approche différente à ce type de problème : l’Optimisation Topologique (OT).  

L’OT est une méthode originale pour retrouver des structures innovantes sans aucun a 

priori. Ceci sous-entend une définition du problème d’optimisation sans que la structure 

existante ne soit prise en compte dans le problème, et ainsi laissant libre choix au processus 

d’OT de retrouver la structure jugée optimale, relatif aux informations spécifiées. Les 

chercheurs scientifiques en mécanique structurelle sont les pionniers en OT, ayant pris des 

décennies avant de présenter un travail abouti. Ces résultats intéressants ont poussé les 

chercheurs d’autres filières à s’y intéresser, l’électromagnétisme en faisant partie.  

L’OT demeure à ce jour l’une des formes les plus complexes d’optimisation car il requiert 

une multiple expertise en algorithmes d’optimisation, modélisation numérique (en Eléments 

Finis dans notre cas) et aussi en électromagnétisme dans notre cas pour pouvoir interpréter les 
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résultats. Le but de cette thèse est d’acquérir et de développer le savoir-faire et l’expertise 

nécessaire pour pouvoir optimiser la topologie d’un quelconque dispositif électromagnétique, 

simple ou complexe. Pour atteindre ce but, nous procéderons en fixant une suite d’objectifs.  

Le premier objectif est de développer et tester un outil fonctionnel pour l’OT de dispositifs 

électromagnétiques basé sur les outils ‘faits-maison’ disponible au L2EP, notamment 

code_Carmel et Sophemis. Le second objectif est de développer une méthodologie pour l’OT, 

basée sur la Méthode de Densité. La méthodologie proposée devra nous permettre d’avoir une 

méthode de densité plus efficace et surmonter les problèmes fréquemment rencontrés avec ce 

dernier. Un cas test académique est utilisé pour tester et valider la méthodologie et les outils. 

Le troisième objectif est d’adapter notre outil OT pour prendre en compte le comportement 

non-linéaire des matériaux, et ainsi analyser ses différents effets. En dépit de son importance 

en électromagnétisme, ce dernier est souvent négligé en OT dans la littérature dû à sa 

complexité de mise en œuvre et long temps de calcul. Enfin, le quatrième objectif est de 

valider la méthodologie et les outils OT développés avec des dispositifs plus complexes, 

notamment un électroaimant 3D et une Génératrice Synchrone à Pôles Saillants (GSPS).  

Etat de l’Art 

Pour faire de l’OT en général, nous nécessitons d’une méthode de distribution de matière, 

d’un algorithme d’optimisation et d’un modèle numérique.  

Parmi les méthodes de distribution de matière existants dans la littérature, on peut compter 

la Méthode d’Homogénéisation, la Méthode de Densité, la Méthode ON/OFF, et la Méthode 

Level-set. Pour ce travail de thèse, nous utilisons la Méthode de Densité pour sa facilité 

d’application et sa compatibilité avec nos logiciels. Cette méthode consiste à discrétiser le 

domaine à optimiser, et en utiliser chaque discrétisation comme variable d’optimisation. 

Chaque discrétisation prendra une densité artificielle qui sera assimilé à une présence ou 

absence de matériaux à cette position spatiale. Le lien entre les caractéristiques à varier dans 

le modèle et la densité artificielle est régi par une équation d’interpolation, communément 

appelé ‘Mapping’. La caractéristique utilisée dans notre cas est la perméabilité magnétique 

des matériaux car nous optimisons des topologies fait de fer (et air).  

L’algorithme d’optimisation choisi est fmincon SQP (Sequential Quadratic Programming), 

qui est à base de gradient. Ce choix d’algorithme repose sur l’utilisation de la méthode de 

densité, car celle-ci traite les variables continues (entre 0 et 1). L’algorithme est utilisé via la 

plateforme d’optimisation Sophemis, développée au sein du L2EP. Cette plateforme permet 
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l’utilisation des algorithmes disponibles sous Matlab
®
, mais aussi d’autres algorithmes 

programmés. 

Pour la modélisation numérique, nous choisissons la méthode des Eléments Finis (EF), et 

résolvons les problèmes avec code_Carmel, un code de calcul co-développé au L2EP et à 

EDF R&D pour les dispositifs électromagnétiques 2D et 3D. code_Carmel se base sur les 

équations de Maxwell pour résoudre les problèmes électromagnétiques. En ce qui concerne le 

comportement non-linéaire des matériaux ferromagnétiques, il est pris en compte dans le code 

de calcul en utilisant la courbe de Marrocco. La méthode Newton-Raphson ou Point-Fixe est 

utilisée, en fonction de la formulation requise, c.à.d. A-φ ou T-Ω respectivement. Néanmoins, 

la méthode en tant que telle ne peut être utilisée directement en OT. En conséquence, les 

modifications apportées pour prendre en compte la non-linéarité de matériaux durant l’OT 

sont aussi abordées dans ce mémoire.  

Développement de Méthodologie et Outils OT 

Les outils code_Carmel et Sophemis sont couplés afin de réaliser une évaluation 

d’optimisation et une résolution du modèle EF successivement dans une boucle jusqu’à 

convergence à une solution optimale. Les matériaux étant distribués avec la Méthode de 

Densité, le modèle initial est soumis au couplage code_Carmel-Sophemis afin de trouver la 

topologie optimale. Une fois trouvée, et la convergence vers une solution optimale obtenue, le 

modèle final peut en être extrait. code_Carmel, étant un solveur EF fonctionnel à part entière, 

propose plusieurs calculs, entre autres la force magnétique, l’énergie, le couple, le champ 

magnétique et l’induction magnétique. Celles-ci peuvent être utilisées pour diverses 

dispositifs électromagnétiques, mais d’autres peuvent aussi être rajoutées suivant les modèles. 

Le principal avantage d’utiliser code_Carmel dans notre cas est la modélisation et le calcul 

EF relativement précis dont on bénéficie. D’autre part, avec la plateforme Sophemis nous 

pouvons facilement tester plusieurs algorithmes pour un même modèle sans beaucoup de 

modifications, et ainsi cette flexibilité nous permet d’analyser rapidement les résultats des 

algorithmes. Cette nouvelle approche permet de séparer l’outil solveur EF et l’outil 

d’optimisation pour préserver un aspect flexible, ce qui n’est pas habituellement le cas dans la 

littérature. La pratique commune est de plutôt rassembler les deux outils en un seul pour 

facilement passer de l’un à l’autre durant l’OT. Mais ceci a tendance à limiter l’utilisation à 

quelques méthodes seulement, contrairement au couplage code_Carmel-Sophemis proposé. 

Quant à la distribution de matière, nous utiliserons la Méthode de Densité comme indiqué 

précédemment. Cependant, cette méthode produit souvent des matériaux composites 
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indésirables dans la solution finale, plus particulièrement pour un grand nombre de variables, 

soit au-delà de 100, par exemple. Dans notre cas, nous recherchons des structures fait de fer 

(et air). Les matériaux composites sont des mélanges d’air et fer non définis dans notre 

problème d’optimisation, et qui ne peuvent donc pas être attribués dans la solution finale. 

Pour empêcher l’avènement de ces matériaux composites, nous introduisons une fonction 

mathématique qui les minimise, appelée Facteur de Faisabilité (FF). Cette fonction sera 

utilisée en objectif pondéré avec l’objectif principal du modèle, qui peut être l’énergie, la 

force magnétique, l’induction magnétique, et ainsi de suite. Un somme de ces deux objectifs 

sera optimisé dans le problème. Nous utilisons aussi un coefficient avec le FF pour lui 

attribuer un poids dans la fonction objectif. Ce poids permettra une transition plus progressive 

des variables vers des valeurs discrètes de 0 et 1 pour prendre les caractéristiques de fer et 

d’air, et ainsi générer une structure homogène et réalisable. La fonction FF ne sera pas utilisée 

comme contrainte dans le problème car la convergence vers une solution dans ce cas est assez 

brutale. Cela signifie que durant l’optimisation, la prise en compte de la contrainte est faite en 

premier, donnant lieu à des valeurs discrètes de 0 et 1 réparties dans la topologie pour 

satisfaire la contrainte. Une fois ses limites atteintes, l’algorithme poursuit avec l’optimisation 

de la fonction objectif, engendrant souvent des optimums locaux. 

L’autre point clé de la méthodologie concerne la prise en compte du comportement non-

linéaire des matériaux ferromagnétiques. Comme mentionné précédemment, celle-ci est prise 

en compte dans code_Carmel. Cela dit, il nécessite une modification pour être appliqué à 

l’OT. En règle générale pour la non-linéarité, code_Carmel utilise une méthode itérative pour 

aboutir à la bonne perméabilité, qui est de ce fait non fixée dans le problème à résoudre. Par 

ailleurs durant le processus d’optimisation, une perméabilité fixe est requise pour résoudre le 

problème EF à cet instant. Pour surmonter cette difficulté, nous introduisons la densité de la 

variable dans le code EF, qui est une valeur fixe, et nous combinons le ‘Mapping’ de densité à 

l’équation de Marrocco. Cette combinaison permet de renvoyer une densité fixe de 

l’optimisation au code EF, mais aussi de maintenir la méthode itérative pour retrouver la 

bonne perméabilité. On satisfait donc aux exigences de chaque outil utilisé pour un résultat 

cohérent suivant les deux, et ainsi nous permettant de mieux cerner les apports et les limites 

de la prise en compte de la non-linéarité dans un problème d’OT en électromagnétisme.  

Afin de tester et valider la méthodologie, un modèle EF simple, logique et rapide est 

employé. Un cube électromagnétique avec une différence de potentiel appliquée aux surfaces 

servira de cas test pour investiguer les différents aspects et limites de la méthodologie. Au 

premier abord, un cube à 8 variables est utilisé pour obtenir des résultats exhaustifs de 
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différentes topologies possibles. Ceci servira à analyser le comportement de chaque variable 

dans le problème, mais aussi de comprendre leur évolution afin que notre méthodologie 

puisse être renforcée pour un plus grand nombre de variables. Ensuite, un cube à 64 variables 

est utilisé pour appliquer notre méthodologie et la comparer à d’autres dans la littérature. Nos 

analyses démontrent que notre méthode converge bien vers des solutions optimales, et que 

vis-à-vis des autres méthodes existantes, elle présente le meilleur compromis entre qualité des 

résultats et temps de calcul. Une comparaison est aussi faite entre la prise en compte ou pas de 

la non-linéarité des matériaux ferromagnétiques en OT. Plusieurs autres aspects du problème 

sont investigués, par exemple l’effet du maillage, les conditions initiales, ou encore la 

méthode de prise en compte des variables.  

L’expérience acquise au fil de ces expérimentations nous permet dans une seconde étape de 

passer à une application électromagnétique plus réelle : un électroaimant 3D. La même 

méthodologie est donc utilisée. 

Application à un Electroaimant  

Le choix de l’électroaimant est fait car il demeure un problème relativement commun à 

l’électromagnétisme, nécessitant les lois de base de Maxwell. De plus, la tendance de sa 

forme optimale est connue dans la communauté, permettant une meilleure évaluation des 

résultats. Nous optimisons le dispositif en recherchant la topologie optimale du noyau de fer 

en appliquant un courant au bobinage de l’électroaimant. Ce dernier, engendrant une force 

magnétique servira à attirer une barre de fer dans le même modèle. Le tout est modélisé à 

l’intérieur d’une boite d’air pour prendre en compte les flux de fuites. Un quart du modèle 

complet d’électroaimant est modélisé en prenant en compte la symétrie verticale et 

horizontale. Ceci permet de réduire le nombre de variable et ainsi diminuer le temps de calcul. 

La force magnétique du noyau pour attirer la barre de fer est maximisée, en contraignant la 

quantité de matière présente dans la topologie finale. La méthode de prendre en compte les 

variables dans le domaine à optimiser est aussi revue car elle diffère du cas test précédent. 

Ce chapitre du manuscrit met plus l’emphase sur l’action de la non-linéarité des matériaux 

ferromagnétiques en OT. Les optimisations sont réalisées avec et sans comportement non-

linéaire, et pour différentes contraintes sur la quantité de matière dans le domaine à optimiser. 

Les solutions sont ensuite analysées et comparées. A travers ces derniers, nous avons vu 

qu’avec la non-linéarité, nous n’avions pas les mêmes résultats en termes de fonction objectif 

et topologies, même si ces derniers avaient les mêmes tendances à un certain niveau mais pas 

forcément dans l’intégralité. La principale différence est la distribution de la matière dans 
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l’ensemble du domaine, qui est plus cohérente et réalisable avec la non-linéarité des 

matériaux. De plus, les valeurs d’induction magnétique obtenues avec ce dernier sont plus 

réalistes (< 2 𝑇) que ceux avec une linéarité des matériaux (> 2𝑇), et démontrant ainsi une 

prise en compte de la saturation dans le dispositif. Ceci engendre une force magnétique 

inférieure dans le cas de la non-linéarité, mais qui est physiquement correcte. Nous 

expliquons aussi l’effet que peut avoir la contrainte de quantité de matière sur les résultats, 

entre autres l’augmentation de la saturation en diminuant ce premier, ou encore le temps de 

calcul. Par ailleurs, d’autres aspects de l’OT relatifs au modèle sont examinés, entre autres la 

taille et la cohérence du maillage, la convergence des solutions et le temps de calcul. Une 

remarque pertinente est aussi ressortie de ces analyses concernant ce dernier : prendre en 

compte la non-linéarité des matériaux augmente certes le temps d’un calcul EF (et donc d’une 

évaluation du modèle), mais ceci ne produit pas un temps de calcul total excessif par rapport 

au linéaire comme nous aurions pu anticiper. Il se peut que le temps de calcul total en non-

linéaire soit aussi moins long, dépendant du problème. Cela est naturellement dû à une 

meilleure position du problème électromagnétique, et ainsi une solution plus appropriée. 

Suite à ces analyses, nous avons voulu traiter un cas plus ‘électrotechnique’, ceci étant notre 

cœur de métier. Une Génératrice Synchrone à Pôles Saillants (GSPS) a ainsi été choisie pour 

apporter un aspect concret à la mise en œuvre de notre méthodologie. 

Application à une Génératrice Synchrone à Pôles Saillants (GSPS)  

La GSPS, disponible en prototype à Jeumont Electric, est prévue pour la génération 

d’énergie électrique à partir des éoliens. Avec une puissance nominale de 1 MVA, cette 

machine triphasé est composée de 8 pôles rotoriques et 96 encoches statoriques, mais on ne 

modélisera qu’un huitième de la machine en EF en prenant en compte les symétries, pour 

gagner en temps de calcul. Nous recherchons dans ce cas une distribution optimale de flux 

dans le stator de la machine, et ensuite une forme plus sinusoïdale de l’induction dans 

l’entrefer. Pour cela, nous choisissons la tête du rotor comme domaine d’optimisation. Les 

calculs sont fait avec et sans le comportement non-linéaire des matériaux ferromagnétiques, et 

les différentes topologies obtenues sont examinées. 

Pour une première optimisation, nous ciblons quelques points dans le stator afin d’y 

maximiser le flux. Les formes optimales de la tête du rotor obtenues avec le comportement 

linéaire et non-linéaire sont analysées. Nous voyons que sans la non-linéarité prise en compte, 

la forme de la tête du rotor obtenue comporte beaucoup plus de matière, mais elle est aussi 

plus saturée, avec des valeurs d’induction magnétique étant non-réalisables physiquement 
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dans une machine. Quand la non-linéarité est prise en compte, nous voyons une baisse 

considérable de ces valeurs d’induction magnétique, mais aussi une forme différente du rotor. 

En deuxième lieu, une forme sinusoïdale de l’induction magnétique dans l’entrefer est 

recherchée. L’induction magnétique à 73 points spatiaux dans l’entrefer est optimisée, de 

sorte à ce que la forme finale de ce premier soit un sinus. Mais ceci produit naturellement des 

harmoniques dû à l’effet de denture de la machine. En conséquence, nous choisirons 

seulement 13 points spatiaux dans l’entrefer à optimiser au lieu de 73 afin d’éviter l’effet de 

denture, ce qui donnera une meilleure cohérence dans nos analyses. Une fois de plus avec la 

non-linéarité, les topologies obtenues et leurs valeurs d’induction magnétique démontrent une 

meilleure cohésion avec la réalité physique ; ainsi ce premier ne peut être écarté durant l’OT. 

Conclusion and Perspectives  

La thèse survole en détail différents aspects de l’OT, notamment les outils développés à cet 

effet, la méthodologie utilisée, ainsi que l’application à plusieurs cas tests. D’abord, nous 

abordons les outils EF et optimisation, basés sur code_Carmel et Sophemis, tous deux 

développés au L2EP et couplés pour faire de l’OT. Cette nouvelle approche se démarque des 

outils classiques retrouvés dans la littérature, où le code EF et optimisation sont dans un 

même code. Notre approche permet donc d’être plus flexible pour changer de méthode 

d’optimisation ou résolution EF. 

Pour ce qui est de la méthodologie, nous avons deux volets : la méthode de distribution de 

matière dans la topologie, et ensuite la prise en compte de la non-linéarité des matériaux 

ferromagnétiques. Pour le premier, nous nous sommes basés sur la méthode de densité avec 

un Mapping de Perméabilité, et nous avons proposé une technique pour éliminer les 

matériaux intermédiaires avec cette méthode. En comparaison avec d’autre méthodes de la 

littérature, nous avons vu que la nôtre présente le meilleur compromis en qualité de résultats 

et temps de calcul, pouvant donc être utilisée pour les cas tests. Pour la non-linéarité, nous 

avons mis en place une méthode en utilisant l’équation de Marrocco combiné au Mapping de 

Perméabilité. Nous l’avons aussi testé et validé sur nos 3 cas tests, démontrant ainsi son 

importance en OT afin de générer des solutions cohérentes avec la réalité et physiquement 

faisables.  

Les trois cas tests employés présentent chacun une importance à cette thèse. D’abord, le cas 

test cubique, étant rapide et magnétiquement logique, a servi à comprendre le fonctionnement 

de l’OT dans son ensemble, ainsi que le comportement des variables. L’électroaimant a, quant 

à lui, été utile pour analyser l’effet de la prise en compte de la non-linéarité plus en 
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profondeur et ainsi voir les résultats en cas de saturation. Pour ce qui est de la Machine 

Synchrone à Pôles Saillants, il représente la concrétisation de la méthode sur une application 

électrotechnique réelle. Ceci nous a permis de voir les différentes topologies possibles en 

optimisant des paramètres de la machine.  

Le travail effectué durant cette thèse peut bien évidemment servir de base pour apporter 

encore plus de progrès sur un certain nombre de points en OT en électromagnétisme. En ce 

qui concerne l’algorithme d’optimisation utilisé, elle pourrait par exemple être remplacée par 

un algorithme hybride pour aboutir à des solutions plus globales. Le nombre de variables en 

OT étant élevé, les méthodes classiques d’optimisation rencontrent des difficultés à trouver la 

solution optimale, d’autant plus qu’il en existe plusieurs dans certains cas. Pour les outils, ils 

pourraient être retravaillés afin d’être plus facilement utilisable, même par un non-expert. A 

son état actuel, il nécessite un certain temps d’adaptation pour la prise en main. A propos des 

applications, d’autres paramètres comme la force électromotrice (f.e.m) ou encore le couple 

pour la GSPS pourraient être investigués pour rechercher de nouvelles topologies du rotor. 

Une optimisation topologique pourraient aussi être faite sur les dents du stator pour atténuer 

les harmoniques, et rendre plus sinusoïdale la f.e.m ou encore l’induction magnétique dans 

l’entrefer. 
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