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Abstract

Artists appreciate vector graphics for their compactness and editability.
However many artists express their creativity by sketching, painting or tak-
ing photographs. Digitizing these images produces raster graphics. The goal
of this thesis is to convert raster graphics into vector graphics that are easy
to edit.

We cast image vectorization as an energy minimization problem. Our
energy is a combination of two terms. The first term measures the fidelity
of the vector graphics to the input raster graphics. This term is a standard
term for image reconstruction problems. The main novelty is the second
term which measures the simplicity of the vector graphics. The simplicity
term is global and involves discrete unknowns which makes its minimization
challenging. We propose two stochastic optimizations for this formulation:
one for the line drawing vectorization problem and another one for the color
image vectorization problem. These optimizations start by extracting geo-
metric primitives (skeleton for sketches and segmentation for color images)
and then assembling these primitives together to form the vector graphics.
In the last chapter we propose a generic optimization method for the prob-
lem of geometric shape extraction. This new algorithm does not require any
preprocessing step. We show its efficiency in a variety of vision problems
including line network extraction, object contouring and image compression.

Keywords: Sketch vectorization, multilayer image vectorization, Bézier
curves, Delaunay Point Process, Monte Carlo Sampling
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Résumé

Les artistes apprécient les images vectorielles car elles sont compactes et
facilement manipulables. Cependant, beaucoup d’artistes expriment leur
créativité en dessinant, en peignant ou encore en prenant des photographies.
Digitaliser ces contenus produit des images rasterisées. L’objectif de cette
thèse est de convertir des images rasterisées en images vectorielles qui sont
facilement manipulables.

Nous avons formulé le problème de vectorisation comme un problème de
minimisation d’énergie. Nous avons défini une énergie composée de deux
termes. Le premier terme mesure la fidélité de l’image vectorielle générée
avec l’image rasterisée d’origine. Ce terme est un terme classique en recon-
struction d’image. La nouveauté principale est le second terme qui mesure
la simplicité de l’image vectorielle générée. Le terme de simplicité est global
et contient des variables discrètes, ce qui rend sa minimisation difficile.
Nous avons proposé deux algorithmes de vectorisation: un pour la vectori-
sation de croquis et un autre pour la vectorisation multicouches d’images
couleurs. Ces deux algorithmes commencent par extraire des primitives
géométriques (un squelette pour les croquis et une segmentation pour les
images couleurs) qu’ils assemblent ensuite pour former l’image vectorielle.
Dans la dernière partie de la thèse, nous proposons un nouvel algorithme
qui est capable de vectoriser des croquis sans étapes préliminaires: on ex-
trait et assemble les primitives simultanément. Nous montrons le potentiel
de ce nouvel algorithme pour une variété de problèmes de vision par ordi-
nateur comme l’extraction de réseaux linéiques, l’extraction d’objets et la
compression d’images.

Mots cléfs: Vectorisation de croquis, vectorisation multicouche d’images,
courbes de Bézier, Processus Ponctuels de Delaunay, échantillonnage de
Monte Carlo
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Chapter 1

Introduction

1.1 Context
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Figure 1.1: Raster graphics versus Vector graphics: two ways of representing
images numerically. The first row illustrates several types of raster graphics
(ie bitmaps): sketches, photographs, paintings. These bitmaps are com-
posed of an array of pixels and were captured either by cameras or scanners.
The second row shows three types of vector graphics: line drawings, wall-
papers, cliparts. They are composed of parametric shapes. Vector graph-
ics look cleaner and simpler than raster graphics. (images from clipart.me,
vecteezy.com, openclipart.org)

In computer graphics, there are two ways to represent images: raster
graphics, also called bitmaps, and vector graphics (Figure 1.1).

Bitmaps represent images as arrays of pixels. Bitmaps are easy to cap-
ture with cameras and easy to display on screens. Sensors of digital cameras
capture images as a grid of color measurement converted into pixels and
screens are manufactured as arrays of pixels. The main drawback of bitmap
is editing: to modify a bitmap, individual pixels have to be modified. The
second drawback is resolution: a bitmap has a fixed amount of pixels. If we

https://fr.clipart.me/arts-design/line-drawing-swirl-flower-pattern-vector-graphic-22519
https://www.vecteezy.com/vector-art/85839-beautiful-landscape-scene-illustration
https://openclipart.org/detail/248173/duck-coloured
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reduce the amount of pixels, there is no way to recover the initial bitmap
perfectly.

A vector graphics is a mathematical representation of the content of an
image using parametric curves or parametric shapes. Vector graphics are
more difficult to create than bitmaps but they are easier to edit due to
their compact representation. Vector graphics do not suffer from resolution
limitation. We present here these advantages.

zoom on vector graphic zoom on bitmap

Figure 1.2: Zoom comparison between vector graphics and bitmaps. Vector
graphics allows user to zoom-in indefinitely while keeping sharp contours of
objects. With vector graphics, we can see clearly the text of the cropped
area whereas with bitmap the text is blurred due to resolution limitation
(image from wikipedia).

Resolution independent: A vector graphics is a continuous mathemati-
cal representation of the content of an image whereas a bitmap is a discretized
version of the same image. Consequently, zooming on a bitmap produces a
blurred image due to limited frequency content, while zooming on a vector
graphics always produces sharp details (Figure 1.2).

Compactness: Vector graphics only store the coordinates of the control
points defining the parametric curves and the color functions defining the
colors of shapes. Parametric curves are defined by a convex combination of
their control points. This combination is typically defined using polynomial
basis. The Bernstein polynomial is the basis of Bézier curves, a paramet-
ric curve which was studied by the mathematician Paul de Casteljau in

https://en.wikipedia.org/wiki/File:VectorBitmapExample.svg
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(a) linear curve (b) quadratic curve (c) cubic curve (d) composite curve

Figure 1.3: Standard curves in vector graphics. A line (a) is defined by its
two extremities. We obtain a quadratic Bézier curve (b) by adding a point.
The red edge is tangent to the curve. Its length defines the curvature of the
Bézier curve. The cubic Bézier curve (c) is defined by four control points.
The composite Bézier curve in (d) is composed of three cubic Bézier curves.
It forms a closed path that bounds a shape.

(a) constant color (b) linear gradient color (c) quadratic color

Figure 1.4: Color functions specified inside a shape. The color function in
figure (a) is a constant color. The shape in figure (b) is filled with a linear
color gradient. The two squares contain the colors defining the gradient.
The arrow specifies the direction of the gradient of the color function. The
quadratic color in figure (c) was obtained using two semi-transparent linear
color functions.

1959 [DC63] and was promoted by Pierre Bézier in 1962 in the context of
automotive design. In computer graphic, we generally use lines defined by
two control points, quadratic Bézier curves defined by three control points,
and cubic Bézier curves defined by four control points. A composite Bézier
curve, also called path, is composed by a set of cubic Bézier curves sharing
their extremities.

A shape is defined by a closed path. A color function can be defined inside
shapes. The standard color functions are constant color, linear gradient and
radial gradient. More complex color functions can be created by superposing
several semi-transparent color functions. Figure 1.3 illustrates the standard
vector graphics curves and Figure 1.4 illustrates several types of color func-
tion inside shapes. We discuss in chapter 2 more advanced color functions
defined by gradient meshes [SLWS07] and diffusion curves [OBW+08].

Editability: To modify a vector graphics, the user has to manipulate con-
trol points and color functions rather than individual pixels. In Figure 1.5,
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(a) initial curve (b) moving a control point (c) final curve

Figure 1.5: Curve editing. Modifying the curve requires only to move one
control point instead of moving all the pixels of the curve.

the appearance of the curve is modified by moving only one control point.
The position of the pixels of the curve are automatically recomputed.

(a) initial color gradient (b) editing the first stop (c) editing the second stop

Figure 1.6: Color editing. The color inside a shape is defined by a two
stops gradient color. Modifying the color of the two stops will automatically
modify the color of every pixels inside the shape.

(a) initial gradient direction (b) editing the direction (c) final gradient direction

Figure 1.7: Color gradient direction editing. To modify the direction of the
color gradient, users only have to click on a stop of the gradient and move
it.

Figures 1.6 and 1.7 illustrate editing of the color function. The colors
of the two stop gradient are modified in the first figure and the direction
of the gradient is modified in the second figure. All pixel colors are recom-
puted instantaneously. To make such editing on a bitmap, the user has
to change the color of every pixel individually or resort to interactive image
segmentation and color histogram manipulation to achieve the desired effect.

Vector artists often create compact line drawings by tracing few, long



1.1. Context 5

curves rather than multiple short segments. Figure 1.8 shows a junction
between several curves. Artist often create T-junctions as one curve touching
a long curve rather than 3 curves meeting at a point. Similarly, artists design
X-junctions as two curves intersecting each other rather than four curves
meeting at a point.

Figure 1.8: Compactness of vector drawings. To create the colored curve
there are several possibilities: either creating one long curve (left figure) of
four little curves (right image) stopping on each junction. Artists often prefer
the simplest interpretation, which consists of one long curve, because this
interpretation is easier to create and to edit: there are less control points
and the C2 continuity of the green curve is difficult to create with many little
curves.

Linear semi-transparent color functions are also used by artists to gen-
erate simple shadow and lighting effects as illustrated in figure 1.10. Semi-
transparent color functions are stacked into layers: each layer contains a
shape with a color function inside. Semi-transparent layers enable users to
change easily the appearance of an object by modifying only the base color of
the object (the color without any lighting effect). The layer compositing will
automatically produce the right color for all the effects. Figure 1.9 shows a
red soda can where the texture, shadows and highlights are all represented as
semi-transparent layers filled by constant colors or color gradients. Changing
the color of the bottom layer is sufficient to obtain a convincing blue can.
Reproducing the same effect using bitmap requires to modify the color of
every pixels and to redesign complex shadow and lighting effects of the can.
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(a) red can (b) multi layered vector graphic representation (c) edited can

Figure 1.9: Multilayer vector graphics. The figure (a) shows a red soda
can where the texture, shadows and highlights are all represented as semi-
transparent layers filled by constant colors or color gradients (figure (b)).
Changing the color of the bottom layer is sufficient to obtain a convincing
blue can (figure (c)) because the artist has chosen to use semi-transparent
layers to design shadows and highlights over a base opaque layer (Clipart by
Altagracia Art on Shutterstock).

Figure 1.10: Four color variations of the same object. To create the blue,
red or orange car from the green car, the user has to modify only one color.
All variations of the base color are produced by semi-transparent grey layers.
The image was taken from BSGStudio.

https://www.shutterstock.com/
http://all-free-download.com/free-vector/download/compact-car_311577.html
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1.2 Challenges

Drawing parametric curves and adjusting their control points requires more
precision and user interaction than freehand sketching. Because of this, many
artists still prefer drawing in a bitmap form, either with pen and paper or
with digital painting tools like Adobe Photoshop and Autodesk SketchBook.
However, commercial vectorization tools often convert thick pen strokes into
parametric regions rather than clean Bézier curves (Figure 1.11).

(a) input image (b) vectorization from Inkscape

Figure 1.11: Inkscape vectorization. The left image was vectorized into
the right image using the vectorization tool and the morphological filters of
Inkscape. The output is a parametric region.

Creating cliparts is even more complex than creating line drawings. The
first step is to describe the contour of each shape. This step consists in po-
sitioning the control points of the curves describing contours. The second
step is to define the color function of each shape. Figure 1.12 shows the
main steps of a tutorial which explains how to draw a pair of sunglasses with
Inkscape. A novice designer needs one hour to create a pair of sunglasses
using this tutorial composed of 45 steps. Another way to create a clipart
is to take a picture and convert it using Illustrator. But the transparency
effects are not reconstructed neither complex color variations, as shown in
figure 1.13.
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setup drawing a lens styling the lens

adding some detailsadd highlights to the lens

copy draw the bridge highlight the bridge

draw the end piecesdraw the temple pieces

draw a background to complete the illustration

generated image following the tutorial

Figure 1.12: Tutorial explaining how to create vector graphics (de-
sign.tutsplus). Creating simple sunglasses requires a lot of user interac-
tions. A novice designer took one hour to reproduce the target image using
Inkscape.

The goal of our thesis is to provide tools to help novice users to generate
vector graphics. More precisely, we want to convert rough freehand bitmap
sketches to clean vector line drawings and color images into multi-layered
vector cliparts.

The main challenge is to understand how pixels interact together to form
geometric structures. In standard vector graphics, classical geometric struc-
tures are curves and shapes. The main challenge in extracting such struc-

https://design.tutsplus.com/tutorials/use-Inkscape-to-create-a-pair-of-sunglasses-with-ease--vector-13934
https://design.tutsplus.com/tutorials/use-Inkscape-to-create-a-pair-of-sunglasses-with-ease--vector-13934
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(a) input image (b) vectorization from adobe Illustrator

Figure 1.13: Illustrator CS6 vectorization. The left image was vectorized
into the right image using the vectorization tool of Illustrator. The colors
are constant within each region, giving a posterized look to the image. These
pictures were taken from helpx.adobe.com/illustrator.

tures is that they often correspond to noisy pen strokes or regions in the
input image. Figure 1.14 illustrates how curves are composed of several pen
strokes, making the number of curves and their exact position ambiguous.
To recover the right position of the curves, we need to associate each pixel to

(a) a rough line drawing (b) zoom on stokes (c) curves reconstruction

Figure 1.14: Ambiguity on curves position. Thickness of curves due to several
strokes generates ambiguities: we have to figure out how many curves there
are and find their exact position in this set of pixels.

a curve which is a labelling problem that has kn possible configurations if we
consider that a pixel can only be associated to one curve. k is the unknown
number of curves of the solution and n is the number of pixels of the input
image. We can consider that nn is an upper-bound of such problem. But
if we want to associate the middle pixels of figure 1.14b to two overlapping
curves, each pixel has to be assignable to several curves. The complexity
explodes to 2kn with an upper-bound of 2n

2 .

On color images, the main ambiguity comes from shadows and lighting

https://helpx.adobe.com/fr/illustrator/using/image-trace.html
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effects. Such effects are modelled by semi-transparent layers. For each pair
of pixels of different colors, we have to decide if they belong to two separate
opaque layers, if they share an opaque layer but one of the two pixels is also
in a semi-transparent layer, or if they belong to the same opaque layer, the
color difference between the two pixels being caused by noise.

For example, the inset shows an egg with an high-
light on the egg yolks which is on the top of the egg
white. A challenge is to detect that the highlight is
a semi-transparent white layer on the top of the yel-
low layer representing the egg yolks and not an opaque
layer. This can be formulated as a labelling problem,
each label corresponding to an opaque layer or a semi-
transparent layer. If we do not consider the semi-transparent layers, there
is kn possible configurations with k the unknown number of opaque lay-
ers on the image and n the number of pixels of the image. When we add
semi-transparent layers, a pixel as to be assignable to several layers. The
complexity becomes (k2s)n with s the unknown number of semi-transparent
layers. This complexity can be approximate by 2ln with l the unknown
number of layers (opaque and semi-transparent). In theory, the number of
semi-transparent layers can by infinite, but in practice we assume that it is
lower than the number of pixels. While the two problems of curve and layer
assignment have a similar apparent complexity, the solution space is much
smaller in the case of curve vectorization because most pixels of a drawing
are white and as such are trivially assigned to no curve.

We will present in the next chapter different existing approaches which
try to solve these problems.
In chapter 3 we will present our contributions, and in chapter 4 and 5 we will
respectively present our method to vectorize line drawings and color images.
In chapter 6 we will present a new stochastic algorithm called Delaunay Point
Process which palliates the limitations of our vectorization algorithms and
generalizes to other applications.



Chapter 2

Related work

2.1 Extracting parametric curves

The main challenge in sketch vectorization is to understand how pixels inter-
act together to form curve networks. In figure 2.1a, all highlighted junctions
look similar even if their interpretation differs. Figure 2.1b and c illustrate
how existing methods struggle to extract the correct curve network, espe-
cially on junctions. In 2.1b, there are too many curves on junctions, and in
2.1c, junctions are reconstructed with too many intersection points.

(a) Input rough sketch (b) Noris et al. [NHS+13] (c) Sketch filtered by [BCF+07]
followed by [NHS+13]

Figure 2.1: Challenges on rough sketch vectorization. Rough sketches of-
ten contain overlapping strokes (a), which existing vectorization algorithms
[NHS+13] represent as multiple curves (b). Pre-filtering the drawing with
the method of Bartolo et al. [BCF+07] improves the vectorization, but pro-
duces spurious curve segments at junctions (c). Since existing algorithms
analyze junctions locally, they cannot recover the proper topology of these
seemingly similar line configurations.
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2.1.1 Line drawing vectorization

A number of methods have been proposed to vectorize various types of draw-
ings. Many algorithms target technical diagrams composed of straight lines
and circular arcs [HT06], while freeform splines are more common in car-
toon images [BF12, NHS+13, BLW15]. All these approaches follow a similar
three-step procedure. First, a 1-pixel width skeleton of the drawing is ex-
tracted and junction points between multiple lines are identified. Second,
a topological graph is extracted from the skeleton. Nodes of this graph are
endpoints or junctions and each edge is associated to one primitive. The goal
of this graph is to capture how pixels interact together to form the curve net-
work. Finally, vectorial primitives (lines, arcs, curves) are fitted on each edge
of the topological graph and primitives that meet at a junction are merged
based on heuristics on tangent alignment or curvature agreement. Figure 2.2
shows the three steps of [NHS+13] and Figure 2.3 the ones of [BLW15].

(a) Three steps algorithm (b) Clean line drawing vectorization from [NHS+13]

Figure 2.2: The three steps method of [NHS+13]. The first step is to extract
a skeleton using a gradient-based clustering algorithm. The second step is
to extract the topological graph from this skeleton to capture how pixels
interact together to from the curve network. The nodes of this graph cor-
respond to curve junctions and end-points and edges correspond to curves.
From the information of this topological graph, the centerline position and
the junctions between curves are recovered and vectorized in a third step.

However, because these three steps are applied in sequence, errors in one
step are propagated to the subsequent steps as illustrated in figure 2.4. In
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(a) Skeleton (b) Topological graph (c) Curve network

Figure 2.3: The three steps method of [BLW15]. The input is a 2D point
cloud. The first step extracts a skeleton using alpha shape (a). The second
step extracts a graph from this skeleton (b). In this graph, X-junctions are
represented by four nodes fully connected. The multiple edges on junctions
are due to the multiple interpretations. The curves are fitted in a third step
(c).

(a) Input sketch (b) Skeleton

(c) Topological graph (d) Curve networkerror propagation

Figure 2.4: Error propagation in sequential approaches. The input bitmap
(a) contains junctions between thick lines. The skeleton (b) contains multiple
intersection points on the ambiguous junctions. These intersection points
are transformed into nodes on the topological graph (c). Each edge of this
graph is reconstructed as a parametric curve, yelding spurious short curves
at junctions.

particular, the topology of the skeleton extracted in the first step remains
fixed in the graph extraction and vectorization step, despite the fact that
it is often erroneous at junctions, as illustrated in Figure 2.1b. In addition,
existing methods refine each junction independently based on local informa-
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tion whereas a global analysis of the network could help disambiguates its
topology. For example, [NHS+13] tests all possible connectivities on junc-
tions.

In chapter 4 we present a global optimization method that performs
topological changes during curve fitting to find simple curve networks at
junctions.

2.1.2 Line drawing simplification

The input line drawing can be simplified using standard Gabor Filter [BCF+07]
or more complicated filtering based on CNNs [SSISI16]. But, filtering the
input sketch does not help much to recover the right topology at junctions,
as shown in Figure 2.1c.

With the advent of digital drawing tools, several methods have been pro-
posed to simplify drawings composed of vectorial pen strokes [BTS05, OK11,
LWH15]. While such methods also face the challenge of merging strokes to
form long curves, the additional knowledge provided by the shape and ori-
entation of the input strokes greatly facilitates proper handling of junctions.
Nevertheless, we will show in chapter 4 that our vectorization algorithm can
produce results of comparable quality when applied on rasterized drawings,
despite the fact that input bitmaps offer less information than digital strokes.

2.1.3 Line-network extraction

The problem of line drawing vectorization is also related to line-network
extraction which has received significant attention in computer vision to
identify roads in aerial images, blood vessels or neurons in medical im-
ages, or galaxy filament in astronomic images [PJPZ10, TBA+13, CFL13].
These methods build on strong shape priors to favor particular forms of line-
networks, but these priors are often too specific for freehand drawings. For
example a property of blood vessel is that the topological graph is a tree.
So in blood vessel extraction, X-junctions should be penalized whereas in
road network extraction of a city, X-junctions should be favored. In addi-
tion, these methods focus on localizing the lines and modeling the network
topology rather than converting the lines to parametric curves. In chapter 6
we consider the use of an approach for such applications.
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2.2 Extracting parametric color regions

(a) input image (b) constant color (c) higher order gradient

Figure 2.5: Simple gradient decomposition. [LL06] decomposes the input
image into a single layer composed of several opaque shapes. Shapes can be
filled by constant colors (b) or linear and quadratic gradient colors (c). This
method do not capture semi-transparent effects.

Vectorization of color images is very challenging because each pixel has
to be associated to parametric primitives and parameters of primitives have
to be estimated. Most vectorization algorithms follow a general approach
composed of two steps. The first step extracts shapes (segmentation, super-
pixel, edge detection, ...). The second step fits vectorial model on these
shapes and their colors. The output image can be defined either explicitly
by the vector primitive (eg. mesh based vectorization) or implicitly (eg.
diffusion curves). For explicit formulations, the image can be represented by
one or several layers. A layer can be composed of regions filled by a constant
color, a quadratic color, a mesh. The more the color model will contain
parameters, the less the vector graphics will be editable.

2.2.1 Image vectorization

Region-based vectorization Most vectorization algorithms represent color
images with a single layer. Commercial tools such as Adobe Illustrator’s
Image Trace [Ado13] only support constant color fills and as such require
users to balance over-segmentation with quantization artefacts. Lecot and
Lévy [LL06] were among the first to attempt vectorizing images with para-
metric gradients (linear and quadratic). Figure 2.5 shows results they can
achieve.

[YCZ+16] focus their work on optimizing shapes of vector graphics. A
segmentation into regions is first computed and the boundary of regions is
vectorized into cubic Bézier curves.They express the problem of regulariz-
ing the vectorial shape of a region with an energy composed by a data term
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measuring the distance between the input image and the reconstructed image
and four prior terms to penalize self-intersections, false corners with small
angle variations, short handles and twisted sections. Their energy is con-
tinuous and differentiable, they find a local minima using standard gradient
methods. While we also express vectorization as an optimization, we focus
on color simplification rather than shape simplification.

The main problem of fully automatic vectorization approaches is that
if the segmentation loose details, they cannot be recovered in subsequent
steps. [JHWS17] proposes an interactive method to vectorize color images
with user guidances. Users can interactively select parts of the vectorization
to be refined. We also obtained our best results using user-guided segmen-
tation.

Follow-up work introduced more complex gradient representations, such
as gradient meshes, subdivision surfaces and diffusion curves.

(a) input image (b) reconstructed image (c) gradient mesh

Figure 2.6: Gradient mesh. Each vertex of the mesh is associated to one
color and each edge to a set of cubic Bézier splines. Images are taken
from [SLWS07].

Mesh-based vectorization In region based vectorization, the input im-
age is segmented into a set of regions. Each region contains a color function
which can be constant, linear or quadratic. This generates images with dis-
continuity between each region. Mesh-based vectorization was introduced
to generate C0 images. The image is represented by a mesh that interpo-
late colors stored at the vertices. Edges of the mesh are represented with
Bézier curves. The classical meshes used are triangulations [LHM09] and
quad-meshes [SLWS07, XLY09], called Gradient-Mesh. Vectorizing images
with gradient meshes implies recovering the number of vertices of a mesh,
the position of the vertices, the tangent of the curves on vertices and the
color on vertices. [SLWS07] start from a manually designed gradient mesh.
This mesh is optimized by minimizing an energy composed of a smoothness
constraint and the distance between the gradient mesh and the input image.
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The energy is optimized using Levenberg-Marquardt algorithm [Lev44].

The main problem of gradient mesh is that, because of its C0 property and
grid topology, capturing fine details require very dense meshes, as shown on
Figure 2.6 on the eye of the bird. To palliate this problem, [LHM09, LHFY12]
introduce the concept of subdivision surfaces. The main idea is to add dis-
continuity curves on the mesh. A discontinuity curve is a set of connected
edges of the mesh. The vertices of these edges contain two colors: one for
each sides of the curves. Their method is composed of two steps: first,
curvilinear features of the input image are extracted with method based on
the Canny edge detector, second a gradient mesh is fitted in-between these
curves.

Mesh-based vectorization produces very accurate vector graphics but
these vector graphics do not reach the properties of compactness and ed-
itability. If we want to modify the shape of the eye of the bird of figure 2.6,
we have to move many control points, either the node of the mesh or the
ones defining the curvature of the Bézier splines. Changing the color of the
bird requires also a lot of user interactions: the color of each node of the
mesh has to be redefined and optimized manually to create some lighting
and shadow effects.

(a) target image (b) output image (c) diffusion curve

Figure 2.7: Diffusion curve. Curves on image (c) are Bézier splines. On each
side of each curve, colors are defined in arbitrary position. These colors are
interpolated along curves. The output image (b) is obtained by interpolating
curve colors inside shapes and applying blur effects on curves. Images are
taken from [OBW+08].

Diffusion curves. To simplify the editing process, [OBW+08] proposed to
only manipulate the discontinuity curves and to obtain the output image dif-
fusing colors of the discontinuity curves. Figure 2.7 illustrates the principle
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of diffusion curves: the vector graphic is composed by a set of Bézier splines
with color functions to each sides of the Bézier splines. The output image
is obtained diffusing colors of splines using PDE and optionally blurring the
splines. Generating the input image from the diffusion curves is the forward
problem.

The inverse problem (ie recovering diffusion curves from a raster image) is
a difficult problem composed of two sub-problems. The first sub-problem is
to recover the number of curves and their geometry. The second problem is,
from a given set of curves, to recover the color functions of each sides of the
curves. These sub-problems have been solved as two separate steps: extract
edges to recover curves and then fit color models. [OBW+08, Jes16, XSTN14]
focus mainly on recovering the colouring of the curves from a given set of
Bézier curves manually segmented [Jes16], from curves obtained by Canny
edge detector [OBW+08] of curves obtained in Laplacian domain [XSTN14].
More recent work focuses on recovering the curve geometry [ZDZ17]. They
globally penalize the complexity of the set of curves by minimizing the total
length of the curves.

Diffusion curves generate very accurate vector graphics similar to patch-
based vectorization but more compact. However, the editability remains
difficult: each modification requires to solve PDE. Moreover, commercial
tools and standard format (SVG) do not support diffusion curves and their
is no model for multilayered diffusion curves yet.

(a) input image (b) layer decomposition

Figure 2.8: Semi-transparent layer decomposition.[RLMB+14]
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Multilayered vectorization The main drawback of foregoing cited meth-
ods is that they generate only one opaque layer. This results in the genera-
tion of vector graphics difficult to edit, mainly on shadow and lighting effects.
[EWHS08, EPD09] produce high quality vector graphics with a multi layer
decomposition from a 3D model. They reach the property of editability but
they need the 3D model of the scene to generate the layered vector graphics.
Little work focuses on producing multilayered vector graphics from images.
Each pixel of the input image has to be associated to several layers and for a
given layer, its color function has to be recovered. This is an inverse problem:
from one raster 3-channels image, multiple images (ie a 4-channel color per
layer) have to be reconstructed.

[ZCZ+09] vectorizes cartoon animation in two layers: the background
layer and the foreground layer. This decomposition allows users to move
objects on generated images. However their layers do not capture semi-
transparent effects. Richardt et al. [RLMB+14] tackled this challenge by
proposing an interactive method to convert bitmaps into opaque and semi-
transparent linear vector layers (Figure 2.8). Their method iterates between
two main steps: manual segmentation of a layer and then fitting of a color
function on the region. However, their method requires extensive user inter-
vention to iteratively select the semi-transparent regions in a front-to-back
order.

(a) input image (b) reflectance (c) shading

Figure 2.9: Intrinsic image decomposition. The input image is decomposed
by [BBS14] into two layers: one containing the reflectance and another one
containing the shading.
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2.2.2 Image decomposition

Figure 2.10: Image matting problem. The goal is to recover the transparency
of an object (e). Two pictures (c) and (d) of this object are taken with two
different known backgrounds (Figure (a) and (b)) [SB96].

Layered vectorization is also related to other ill-posed image decompo-
sitions such as image matting [SB96] illustrated in figure 2.10, reflection
separation [LZW04] and intrinsic images [BBS14] illustrated in figure 2.9.
However, a major difference between these methods and our work is that
they aim at separating only two rather than multiple layers, being foreground
and background or reflectance and shading. The second major difference is
that the image is only decomposed in several layers. No fitting of paramet-
ric color functions is done. Nevertheless, several such algorithms make the
decomposition well-posed by penalizing complexity via a prior on sparse im-
age gradients [LZW04] and few refectances [BBS14], similar to our goal of
producing simple vector graphics.

Figure 2.11: Layer decomposition. The method of [AASP17] decomposes an
image (a) into several semi-transprent layers (b). Each layer is associated to
a normal distribution embedded in the RGB color space. This decomposition
allows color editing (c) and compositing (d).
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(a) input image
+ convex-hull

(b) layer decomposition (c) color editing

Figure 2.12: Layer decomposition. The method of [TLG16] decomposes an
image in several semi-transparent layer. They first compute the convex-
hull of the color space and then compute for each pixel of the input image a
convex combination of the vertices of the convex-hull. The algorithm outputs
constant color layers with per-pixel transparency.

A more recent work [TLG16] illustrated in figure 2.12 decomposes an
image into more than two layers. They compute the convexhull of the input
image in the RGB-color space. Then, they express each pixel of the image
as a convex combination of the vertices of the convexhull. Each vertex of
the convexhull is associated to a layer. The RGB color value of the layer is
constant and equal to the color of the vertex and the transparency of the
layer is the weight of the vertex on the convex combination. Their approach
allows users to make simple color editing, such as changing the overall color
of an object, but cannot handle complex color function editing. The number
of layers and their order has to be provide by the user.

[AASP17] provides a more flexible layer decomposition. In their method,
each layer is associated to a 3D normal distribution embedded in the RGB
color space. Their method, illustrated in figure 2.11, provides a highly pho-
torealistic decomposition. However, the layers are raster images. While
existing single-layer vectorization algorithms could be used to vectorize each
layer, the spatially-varying transparency would result in complex, hard-to-
edit vector graphics. In chapter 5, we propose a method that seek to produce
simple layers for easy editing.

2.2.3 Image simplification

Similarly to line drawing simplification and beautification, researchers in
non-photorealistic rendering have proposed a variety of image filters to ab-
stract and stylize photographs. Popular methods include the use of scale-
space filtering [DS02] and edge-aware filtering [WOG06] to remove low-
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contrast details. However, such image abstraction filters are usually applied
independently of image vectorization. Our goal is to use vectorization as
a mean of simplification by expressing the image with a small number of
parametric color gradients. A similar idea of restricting the image formation
model to achieve abstraction has been explored by Gerstner et al. [GDA+12],
who produce pixel art by converting a photograph into a low-resolution im-
age with a reduced color palette.



Chapter 3

Our Contributions

Limitations of previous work. Previous methods focused on local accu-
racy rather than global simplicity. While they produce high quality vector-
izations, they are neither compact nor easy to edit. For color images, vec-
torization algorithms mainly focus on extracting only one opaque layer and
representing the color as meshes or diffusion curves. Shadows and lighting
effects of such vectorization can not be edited separately from the remaining
of the image. Other algorithms decompose images in several raster layers.
Transparent effects can be extracted but they remain difficult to edit due
to their raster representation. For line drawings, previous work produces
accurate vectorization of clean line drawings. Nevertheless, these vector line
drawings are not easy to edit because junctions are too complex and curves
are not well connected on junctions. This is due to the local optimization of
each junction and the propagation of the error of the topological graph into
the curve network.

To sum-up, the main drawback on previous work is that they do not reach
the property of compactness and editability of hand-made vector graphics.

3.1 Simplicity

The main idea behind our work is to globally minimize the complexity of
the output to favor the simplest interpretation of the input image in terms
of number of curves, number of layers and transparency of layers. Favoring
simplicity will generate vector graphics which are easy to edit.

Penalizing the complexity. While penalizing complexity is novel in the
context of image vectorization, it has proven beneficial in other applica-
tions such as image segmentation [DOIB12], mesh decomposition [ZYH+15]
and reflection separation [LZW04] among others. The rational behind these
methods is that, when faced with an ill-posed inverse problem, humans often
favor the simplest interpretation. This principle is known as the “law of präg-
nanz” in the gestalt psychology [Wer23], a branch of the cognitive psychology.

We already tested this principle of penalizing complexity in [FLB15]. The
goal of this work was to transform a 2D vector line drawing into a 3D model.



24 Chapter 3. Our Contributions

In this approach, the 3D scene in which we wanted to add the new object is
known. We optimized the 3D shape of the 2D line drawing minimizing the
number of new surface orientations, ie the number of normals of the shape
which are not aligned with the scene.

Fidelity versus Simplicity We now define an energy to measure the
quality of a given vector graphics. On one hand a high quality vector graphics
has to be similar to the input image, and on the other hand it has to be
simple. We design the energy as a convex combination of two terms that
express these two properties:

U(X) = (1− λ)Ufidelity(X) + λUsimplicity(X) (3.1)

with X a vector graphics. For the case of the line drawing, the simplicity
term can correspond to the number of curves, the number of control points,
the number of junctions or how many curves meet at junctions. For color
images, this term can be the number of opaque layers, the number of semi-
transparent layers, the degree of the color function of layers, the number of
curves of the contour of shapes. The parameter λ controls the amount of
simplicity of the vector graphics X. A high λ produces compact, easy to
edit vector graphics, while a low λ produces vector graphics very similar to
the input.

3.2 Key role of junctions

A junction is an intersection point between several curves or shapes’ borders.

Ambiguities on junctions In the context of line drawings, junctions de-
fine the connectivity of the curve network. A X-junction gives many possible
decompositions. If we assume that a X-junction is composed by two curves,
there is three possible interpretations as illustrated in figure 3.1. Locally we
cannot make the distinction between these interpretations. Another problem
is that a part of a drawing can locally look like a X-junction without being
one. Figure 3.2 shows several parts of a sketch looking like X-junctions but
only one is a X-junction.

In the context of color images, a X-junction generates a lot of possible
vector graphics. The junction can be composed by 1, 2, 3 or 4 opaque lay-
ers, and for each possibility several semi-transparent layers, especially if the
number of opaque layers is low.
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(a) input image (b) several interpretations composed by two curves

Figure 3.1: Ambiguity on X-junction . Three ways of interpreting an input
image composed of five curves as a X-junction composed by two curves: the
two curves can be tangeant or can intersect each-other.

(a) a rough line drawing (b) zoom on areas which look like X-junctions

Figure 3.2: Ambiguity of X-junction interpretation. X-junctions on rough
sketches are ambiguous: we have to make the distinction between one inter-
section point between four curves, two nearby intersection points, and pure
noise.

Information on junctions When a color image does not contain junc-
tions, the correct interpretation is relative to the way artists desire to edit it.
Figure 3.3 shows an image containing a square above a background. If the
color of the square is not orthogonal to the color of the background, there
is an infinite number of possible decompositions. A critical information to
make a choice between these configurations is missing.

Perceptual studies emphasize the role of image junctions in the perception
of occlusion and transparency [Met74, SC11]. In particular, T-junctions pro-
vide strong cues of local ordering between opaque layers [JGCC12, LMY+13]
while luminance and chrominance patterns at X-junctions have been used
for extracting transparent layers from images [DCKL97, SH03]. Figure 3.4
illustrates a X-junction on an image. The simplest decomposition in term of
the number of layer is the decomposition which assumes that the image is
composed by a semi-transparent red layer above the green opaque layer and
the white background. The color functions are unique for the correct decom-
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(a) input image (b) first interpretation (c) second interpretation

Figure 3.3: No junction ⇔ no transparency cue. The middle region of the
input image (a) does not contain X-junctions. The image (b) and (c) are
the two most probable decompositions in term of editability. The middle
square is interpreted as an opaque brown region in image (b) and as a semi-
transparent red square in image (c). The interpretation (b) minimizes the
transparency of the middle square and the interpretation (c) maximizes its
transparency. There is a continuous set of possible interpretations between
these two extreme interpretations interpolating the transparency. There is
no cue to decide which interpretation is the best because it depends on how
an artist wants to edit the image.

position in term of layers contrary to the color functions of the figure 3.3.

(a) input image (b) first interpretation (c) second interpretation

Figure 3.4: Simplicity of the transparency interpretation of X-junction. The
input image on figure (a) can be interpreted in two valid ways in term of
fidelity: a composition of three opaque layers (image (a)) or two layers whose
one semi-transparent (image (c)). The second interpretation is better in term
of simplicity: it contains less layers.

Figure 3.5 illustrates several crops of border between two or more shapes
on a real photograph. We can see that making distinction between pixels
at a border of two objects and pixel at the beginning of a light effect on an
object is very challenging. But on the junction on the crop (d), we can see
that there is probably a semi-transparent shape on the top of the red shape
and the black shape which correspond to a light effect. The presence of the
junction allows us to infer the right decomposition.
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(a) two opaque shapes (b) light effect on
an opaque shape

(c) light effect on
an opaque shape

(d) a X-junction
between 4 shapes

Figure 3.5: Border between shapes. The first crop (a) corresponds to a
separation between two different objects: the red one and the black one.
The crop (b), as the crop (c), corresponds to one object with a light effect.
Local information around border pixel is not enough to make the distinction
between opaque shapes or semi-transparent shapes. In the last crop, even if
it is very ambiguous, we can see that the light effect on the red region (b)
and on the black region (c) is the same light effect thanks to the X-junction.

To sum up, junctions are the most ambiguous points on images but para-
doxically the one which contain the most relevant information for layer de-
composition.

Considering the entire image, and particularly junctions between regions
or between curves and their interactions, gives some important cues which
help recovering geometrical structure.

3.3 Optimization

The energy 3.1 is a complex non convex energy. The fidelity term is a local
term and the simplicity term a global one. The unknowns are both discrete
and continuous. Discrete unknowns are the number of geometric primitives
and the association between pixels and geometric primitives. Continuous
unknowns are the position of control points and the value of the color func-
tions. Solving such a complex energy is a NP-hard problem because of the
combinatorial. So we cannot use standard deterministic method to find a
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good minima of this energy.

Instead of working on pixel level, we reduce the combinatorial by working
on primitive level. We start by constructing an over-segmentation (piece of
curves, regions) to have a solution which minimizes the fidelity term. Then
we group primitives together into longer curves or extended regions to reduce
the complexity of the solution. Grouping reduces the number of primitives
while keeping a good fidelity. To group primitives together we adapt Monte
Carlo methods proposing new models for the vectorization problem and new
operators to explore the configuration space induced by these new models.
We based our design of models and operators on X-junctions. In context
of line drawing, the topology of the skeleton is generally not correct on X-
junctions: it contains too many intersection points which are transformed
in too many little curves. We allow these extra primitives to be part of
several longer curves to correct the topology of junctions. For color images,
we saw that X-junction is the signature of transparency. We base our ex-
ploration on this property: we propose a Monte Carlo tree search algorithm
that efficiently explores the solution space by leveraging layering cues at im-
age junctions. Local decompositions obtained from X-junction initialize a
layer growing approach. Layers grows descending the tree to reach possible
configurations on the leaves of the tree.

Line drawing vectorization In chapter 4 we will introduce our method
on line drawing vectorization. We jointly optimize the topology and the ge-
ometry of the curve network using a Monte Carlo Markov Chain algorithm.
Our method is well adapted for vectorizing rough line drawings. Such draw-
ings make junctions very challenging because the thickness of strokes results
in topological error on the skeleton and erroneous topological graph. We
will demonstrate the robustness of our algorithm on a variety of drawings,
sketchy cartoons and rough design sketches.

ClipArt vectorization We present in chapter 5 our method to create mul-
tilayered vector cliparts from photographs. We demonstrate the effectiveness
of our method by reverse-engineering existing cliparts and by creating orig-
inal cliparts from studio photographs.



3.4. Extraction of geometric structures by joint detection and
assembling of primitives 29

3.4 Extraction of geometric structures by joint de-
tection and assembling of primitives

The main limitation of our approaches on line drawing vectorization and cli-
part vectorization is that they follow two independent steps. We first extract
primitives from the input image (ie curves and regions) in order to construct
an over-segmentation and then we run our optimizations on these primitives.
Similar two steps approaches are often used on geometric shape extraction
problems like line network extraction (road[PJPZ10], blood vessel[RP07],
...), object segmentation (windows on facade[HPFPL09], building from aerial
images[WZS04], [BFL06]) and 3D reconstruction[SCD+06]. However, errors
in the first step can hardly be recovered in the second step. On the last
part of this thesis, we introduce Delaunay Point Processes, a framework for
the extraction of geometric structures from images. Our approach simulta-
neously locates and groups geometric primitives (line segments, triangles)
to form extended structures (line networks, polygons) for a variety of image
analysis tasks. Similarly to traditional point processes, our approach uses
Markov Chain Monte Carlo to minimize an energy that balances fidelity to
the input image data with geometric priors on the output structures. How-
ever, while existing point processes struggle to model structures composed
of inter-connected components, we propose to embed the point process into
a Delaunay triangulation, which provides high-quality connectivity by con-
struction. We further leverage key properties of the Delaunay triangulation
to devise a fast Markov Chain Monte Carlo sampler. We demonstrate the
flexibility of our approach on a variety of applications, including line net-
work extraction, object contouring, mesh-based image compression and line
drawing vectorization.
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Line drawing vectorization

In this chapter, we present an approach to convert rough freehand bitmap
sketches to clean vector drawings. Our algorithm takes as input bitmap line
drawings, either scanned from pen-on-paper drawings or created with digital
drawing tools like Adobe Photoshop or Autodesk SketchBook (Figure 4.1a).
The output is a set of Bézier curves of order 1, 2 and 3. The main challenge
of automatic vectorization is to extract the topology of the curve network, i.e.
identify how the black pixels of the drawing should be grouped together to
form different curves. Once this topology is extracted, the geometry of each
curve is obtained by least-squares fitting, such that each curve best captures
the black pixels it represents. Existing methods typically perform topol-
ogy extraction and curve fitting as two sequential steps. Our key novelty is
to perform these steps jointly to balance the compactness of the topology
with the accuracy of the fitting. Figure 4.1 illustrates the main steps of our
method. We start with an over-segmentation of the drawing where each seg-
ment between two consecutive junctions, sharp turns or endpoints is a curve.
This initialization satisfies well our objective of accuracy, but often contains
more curves than needed. Our optimization then consists in grouping these
initial curves to reduce complexity without sacrificing accuracy. We intro-
duce a new representation based on the concept of hypergraph [Bre13] to
encode this grouping. In this representation, each group of edges forms a
hyperedge, as illustrated in Figure 4.1d. A key advantage of this formulation
is that two hyperedges can share one or more edges of the initial topological
graph. This feature is critical to resolve extraneous branching at junctions,
as it allows our optimization to simplify the overall curve network by assign-
ing small spurious edges to multiple intersecting curves (see Figure 4.2 and
close-ups in Figure 4.1).

While our algorithm produces high-quality vectorizations automatically,
it achieves its full potential when guided by the user. In our interactive im-
plementation, users can disambiguate junctions by imposing that two suc-
cessive curves form a single curve, or that they form two separate curves.
These local annotations are then propagated to the entire solution thanks
to our global formulation. Users can also prevent local edits from having a
global impact by fixing the parts of the solution that they want to preserve.
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(a) Input sketch (b) Skeleton (c) Topological graph (d) Hypergraph (e) Curve network

Figure 4.1: Overview of the method. Our algorithm takes as input bitmap
drawings (a). We first extract the 1-pixel width skeleton of the drawing
to locate the curves and their junctions (b). We encode this information
as a graph where edges correspond to curve segments and nodes to junc-
tions, endpoints and sharp turns (c). The core of our algorithm consists in
merging groups of successive edges to form hyperedges of a hypergraph (d).
Note that several hyperedges can share the same edge of the original graph.
Each hyperedge corresponds to a Bézier curve in the output (e). Edges that
are shared by several hyperedges are implicitly collapsed by curve fitting,
resulting in precise junctions despite extraneous branching of the skeleton.

(a) Topological graph (b) Hypergraph (c) Reconstructed curves

Figure 4.2: Given the topological graph of the drawing (a), our algorithm
groups successive edges to form hyperedges. We fit a Bézier curve on each
hyperedge (c). Edges that are shared by several hyperedges, such as the
central edge in this example collapse to a single point after fitting.

4.1 Problem formulation

4.1.1 Initialization by over-segmentation

Extracting the skeleton. Following standard practice, we initialize our
curve network from the 1-pixel width skeleton of the drawing. Many solutions
exist to compute such a skeleton. For clean line drawings, popular methods
include morphological thinning [HT06] and iterative stroke pixel clustering
[NHS+13]. However, these line-based methods tend to produce many extra-
neous branches on sketchy drawings. Inspired by [LWH15], we adopt a more
robust region-based approach where we define the skeleton as the frontiers
between adjacent regions of the drawing, as illustrated in Figure 4.3. We
first detect the regions of the drawing by running the trapped-ball segmen-
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(a) Input sketch (b) Regions (c) Region-based
skeleton

(d) Skeleton with
open curves

(e) Initial topological graph
and curve network

(f) Refined topological graph
and curve network

Figure 4.3: Extraction of the skeleton and topological graph. We adopt a
region-based approach to be robust to sketchy lines (b,c), which we comple-
ment with a morphological approach for open curves (d). The initial graph
only encodes junctions and endpoints (e). We refine it to include sharp turns
(f).

tation algorithm [ZCZ+09], which is robust to small leakage between regions.
We then iteratively dilate the regions until they meet and assign the pixels
adjacent to two or more regions to the skeleton. The number of dilation
iterations gives us an estimate of the local thickness of the lines. However,
this region-based algorithm does not capture open curves. As a second step,
we identify pixels of open curves as the ones that are at a distance greater
than the local thickness of the closest skeleton point. We then compute the
skeleton of these additional pixels using morphological thinning. Figure 4.3d
shows the skeleton we obtain for a typical drawing.

Initializing the curve network. The drawing skeleton forms a network
of 1-pixel width lines. The next step towards a vectorial representation is to
identify which pixels should be grouped together to form curves. Following
the terminology of Noris et al. [NHS+13], we call this grouping the topology
of the drawing and we represent it as a graph g = (V,E) where nodes
V correspond to the junctions and endpoints of the skeleton, and edges E
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correspond to the skeleton branches. Each edge e ∈ E is associated with a
single Bézier curve segment Be. We compute the geometry of each curve by
chaining the corresponding pixels and minimizing the fitting error

ε(e) =
∑
p∈Se

(1− wp
2

)‖Be(tp)− p‖22 (4.1)

where Se is the chain of pixels associated with edge e, tp ∈ [0, 1] is the
normalized position of pixel p along the pixel chain, and wp is the thickness
of the line at p normalized with respect to the maximal thickness over the
entire drawing. We weight the fitting error by the line thickness to account
for the fact that the skeleton is less precise along thick lines. We compute
the initial curves by fitting Bézier curves of degree three, as illustrated in
Figure 4.3e, although our optimization later considers curves of lower degree
for higher compactness.

We further improve the accuracy of this initialization by recursively split-
ting the graph edges until the average fitting error of all Bézier curves is below
2 pixels. This operation ensures that we capture sharp turns along the skele-
ton branches, as shown in Figure 4.3f. We define the splitting point on an
edge such that the fitting error of the two resulting curves is the lowest, as
found by a binary search.

4.1.2 Simplification by hypergraph exploration

Given our initial, over-segmented vectorization, we now need to merge suc-
cessive curve segments to reduce overall complexity and remove extraneous
branching at junctions. Since each curve segment corresponds to an edge
in the topological graph, merging multiple curve segments is equivalent to
grouping edges of the topological graph. To model this operation, we rely
on the concept of hypergraph, illustrated in Figure 4.2. In its most gen-
eral definition, a hypergraph is a generalization of a graph in which an edge
(also called a hyperedge) can connect any number of vertices. In this work,
we adopt a more restrictive definition where each vertex is covered by at
least one hyperedge, and each hyperedge connects at least two vertices. In
addition, we impose that each hyperedge corresponds to a sequence of adja-
cent edges in the initial topological graph. These conditions are guaranteed
by the perturbation operators of our stochastic optimization, described in
Section 4.2.

Let x = (V,Hx) be a hypergraph of the topological graph g, where V is
the set of nodes and Hx the set of hyperedges. We associate each hyperedge
h ∈ Hx with a chain of pixels Shx by concatenating the pixels of the skeleton
associated with the edges grouped into h. Each pixel chain Shx yields a fitted
Bézier curve Bh

x in the curve network. The degree of the Bézier curve is a
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free parameter that allows the optimization to consider straight, quadratic
and cubic curves, all being supported by the SVG format.

4.1.3 Energy formulation

Our goal is to explore the space H of hypergraphs generated from the initial
graph g to find x ∈ H that offers the best trade-off between the simplicity
of the curve network and its fidelity to the input drawing. We measure the
quality of this trade-off with an energy U composed of two terms:

U(x) = (1− λ)Ufidelity(x) + λUsimplicity(x) (4.2)

where λ is a model parameter that balances the two terms.

Fidelity term. We measure the accuracy of a curve network as the sum
of the fitting error of all its hyperedges

Ufidelity(x) =
∑
h∈Hx

ε(h) (4.3)

where ε(h) is given by Equation 4.1.

Simplicity term. The main novelty of our approach resides in explicitly
optimizing for simple curve networks. We measure the simplicity of a network
by the number of hyperedges, where lower is simpler. We also favor curve
networks whose Bezier curves have low degrees since they are more compact
and can be edited with fewer control points. The complexity term is defined
as a sum of these two types of information weighted by the model parameter
µ

Usimplicity(x) =
∑
h∈Hx

1 + µDeg(Bh
x) (4.4)

where Deg(Bh
x) is the degree of the Bézier curve Bh

x. As illustrated in Figure
4.4, a high µ value increases the presence of straight lines.

4.2 Exploration mechanism

Searching for the hypergraph that minimizes energy U is a non trivial opti-
mization problem as U is non convex and contains global terms. Exhaustive
exploration of the hypergraph space is only tractable for very simplistic in-
put drawings as evaluating each configuration requires solving a least squares
fitting problem (Equation 4.3). We adopt a more scalable strategy based on
the Metropolis-Hastings algorithm [Has70]. In a nutshell, this algorithm
makes a random exploration of the solution space by iteratively perturbing
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(a) Input sketch (b) Low value of µ (c) High value of µ

Figure 4.4: The parameter µ controls the penalization of high degree curves.
A high µ favors straight lines.

the current configuration x ∈ H into x′ ∈ H. The perturbed hypergraph
x′ becomes the current configuration with a certain probability depending
on the energy variation between the two configurations, and a relaxation
parameter T . In addition to scalability, such a Monte Carlo sampler easily
supports user-provided constraints, as explained further in Section 4.2.4. We
now detail perturbation operators and a relaxation schedule adapted to our
problem. Algorithm 1 details the main steps of our optimization.

Algorithm 1 Exploration mechanism
Compute initial topological graph g (Sec. 4.1.1)
Initialize relaxation parameter T = Tinit
Initialize x = g

repeat
Generate x′ from x with a random perturbation operator
Fit Bézier curves Bh

x′ on the perturbed hyperedges
Draw a random value p ∈ [0, 1]

if p < exp
(
U(x)−U(x′)

T

)
then update x← x′

else update x← x

Update T ← C × T
until T < Tend
Finalize output representation (Sec. 4.2.3)

4.2.1 Perturbation operators

Our optimization seeks to simplify the curve network by merging Bézier
curve segments and reducing their degree. We explore these objectives with
three types of operators (Figure 4.5):

• Hyperedge merge and split. This operator splits a hyperedge into two
adjacent hyperedges, and reversibly merges two adjacent hyperedges
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(a) Merge/Split (b) Degree Switch (c) Overlap/Dissociation

Figure 4.5: Our optimization explores the solution space with three reversible
perturbation operators: merging or splitting hyperedges (a), changing the
degree of the curve associated with a hyperedge (b) and creating or removing
overlap between hyperedges (c).

into one. These two operations are implemented by splitting or merging
the sets of edges included in each hyperedge. As a result, a hyperedge
containing only one edge of the initial graph cannot be split.

• Bézier degree switch. This operator modifies the Bézier degree of a
hyperedge to take any value from degree one (straight line) to degree
three (cubic Bézier).

• Hyperedge overlap and dissociation. This operator integrates an edge
of a hyperedge into a second hyperedge, and reversibly dissociates an
edge associated to two hyperedges from one of them. This operator is
particularly effective at simplifying topology at junctions.

Starting from the initial hypergraph x0 = g, these three operators are suf-
ficient to guarantee that (i) any hypergraph in H is reachable with a finite
number of perturbations from any hypergraph of H, (ii) the reverse pertu-
bations exist, and (iii) perturbations only affect a hypergraph locally.

4.2.2 Relaxation schedule

The relaxation parameter T controls both the speed and the quality of the
exploration.

Although the Metropolis-Hastings algorithm is guaranteed to converge to
the global minimum of our energy when using a logarithmic decrease [SSF02],
we prefer to use a geometric decrease of rate C to achieve reasonable running
times.
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While this approximation removes the guarantee of
reaching the global minimum, it finds solutions close
to this optimum in practice. To quantify this approxi-
mation, we performed 1000 runs of our algorithm on the
simple sketch shown as inset, for which we computed the
global minimum. The correct solution was found in 78%

of the cases. The remaining 22% corresponded to local
minima close to the global solution, with small visual
differences on the resulting curves. In our experiments,
we fix the initial temperature Tinit = 1 and the decrease
rate C = 0.999

1
Card(V ) . Figure 4.6 shows the evolution of the configurations

during the optimization.

Energy

109

84

59

34

Iteration0 50000 100000

Figure 4.6: Evolution of energy U (Equation 4.2) during the Metropolis-
Hastings optimization on a typical sketch. At the beginning of the opti-
mization, perturbations are easily accepted (high energy). The process then
becomes progressively selective until converging towards a configuration of
interest. Although the two right configurations have both a low energy and
are visually identical, their Bezier curves do not have exactly similar degrees.

4.2.3 finalization

We now describe two additional features to refine the curve network by
imposing curve connectivity and continuity.
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Figure 4.7: Fitting each curve independently does not preserve the connec-
tivity of the drawing (left). Adding connectivity constraints ensures that the
final result has the same connectivity as the initial skeleton (right).

Curve connectivity. Our iterative optimization fits a Bézier curve on
each hyperedge independently. While this computation is fast, it does not
ensure that curves connect at junctions, as shown in Figure 4.7 (left). To
address this problem, we include two connectivity constraints to the fitting:

• If two hyperedges are connected at their extremities, the corresponding
control points of the two Bézier cuves must be the same.

• If the extremity of hyperedge h1 connects with a non extremity of
hyperedge h2, the corresponding control point P of h1 must be on the
curve Bh2

x (i.e. ∃t ∈ [0, 1] s.t. P = Bh2
x (t)).

The first constraint potentially links all curves together. Satisfying it
thus requires solving for the position of all control points at once, which is
computationally much more expensive than independently fitting the curves
impacted by a perturbation. In addition, the second term makes the opti-
mization non-linear.

Bh2
x

Bh1
x P

P̃

We linearize the problem by first minimizing the fitting
error subject to the first constraint only. Then, for each
hyperedge h1 verifying the second constraint, we per-
form a binary search of t ∈ [0, 1] such that the control
point P = Bh2

x (t) of h1 minimizes the fitting error ε(h1)
(see inset for notations).

Since accounting for the connectivity constraints
makes the fitting too costly to be performed at each iteration of the
Metropolis-Hastings optimization, we only apply the constraints once the
optimal hypergraph has been found. In practice, these constraints have a
limited impact on the overall curve network and thus do not degrade ac-
curacy significantly. Using similar conditions as the convergence stability



40 Chapter 4. Line drawing vectorization

(a) Result obtained
automatically

(b) Result obtained
with user interaction

(c) Result obtained
automatically

(d) Result obtained
with user interaction

Figure 4.8: User interaction. The user ensures that multiple curves intersect
by imposing that they share the same segment of the initial vectorization.

experiment realized in Section 4.2, the global minimum was found in 80% of
cases when applying these constraints at each iteration and in 78% of cases
when applying them after the optimization, while the computation was 30

times slower in the former case.

Tangent continuity. Since our optimization considers Bézier curves of at
most degree three, it decomposes curves with more than one inflection point
into multiple segments. As an optional feature, we enforce tangent continuity
of successive segments by aligning their tangents if they are almost co-linear.
Similarly to the connectivity constraints, imposing curve continuity yields a
non-linear optimization which we only perform once the optimal hypergraph
has been found.

4.2.4 user interaction

One of the benefits of the Metropolis-Hastings algorithm is that it can easily
incorporate user-provided constraints. Since the algorithm is iterative, users
can stop the optimization process at any time to specify constraints, and
let the optimization continue to see their effect. We support three types of
constraints:

• Merge. The user can select two curves from the initialization and
impose that they end up in the same curve after optimization. If the
two curves are not consecutive, we select all other curves along the
shortest path between the selected ones.
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Figure 4.9: A selection of line drawings from different domains and our
vectorization. Input drawings in the third column courtesy of [OK11].

• Split. The user can select two curves from the initialization and im-
pose that they end up in different curves after optimization.

• Freeze. When the user is satisfied about part of a solution, she can
freeze it by selecting the curves that should no longer be perturbed.

The optimization then only considers the perturbations that do not violate
the constraints. Figure 4.8 illustrates the effect of user-provided constraints.

We also found that exposing the relaxation parameter T offers users
useful control on the explorative behavior of the optimization. When T is
high, the algorithm accepts drastic perturbations to escape local minima,
while when T is low, the algorithm only retains small perturbations that
improve the solution locally. With this control, users can force the algorithm
to consider other alternatives when they are not satisfied with a solution, or
in contrast can accelerate convergence by reducing T when they feel that
the solution is close to optimal. Please see the accompanying video for a
demonstration of this control.

4.3 Experiments

All results shown in this chapter were obtained with the automatic algo-
rithm, except the two examples in Figure 4.8. We used a fixed λ = 0.6 for
all results except the mechanical piece in Figure 4.9, where we used λ = 0.3

to capture the curve discontinuities on its side. We provide all our input
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bitmaps and output curves as supplemental material. We have applied our
algorithm on a variety of drawings from different domains, as illustrated in
Figure 4.9 with a selection of cartoon, engineering, architectural and fashion
design sketches. Note that since the drawing of the stool in Figure 4.8c,d and
the shoe in Figure 4.9 are dominated by closed region, we did not activate
the detection of open curves, which is why all dangling segments have been
removed. We now compare our method to prior work on line drawing sim-
plification and vectorization and evaluate robustness, impact of parameters
and performance.

4.3.1 Comparisons with existing work

Figure 4.13 provides a visual comparison with a state-of-the-art vectorization
algorithm [NHS+13] and with the Image Trace feature of Adobe Illustrator
CC. We first performed the comparison on a sketchy drawing, and then also
evaluated the impact of pre-filtering the sketch with the method of Bartolo et
al. [BCF+07] to group the sketchy strokes into thick lines. Both algorithms
produce multiple curves along sketchy lines and short spurious curves at
junctions on the filtered sketches. In contrast, our method produces almost
identical results on the two versions of each sketch, and recovers junctions
with precision.

Figure 4.14 also compares our method with a recent line drawing sim-
plification algorithm [LWH15]. We insist on the fact that [LWH15] takes as
input digital drawings composed of vectorial strokes. Still, we obtain similar
results even though we take bitmap drawings as input. Our results are even
more accurate at junctions thanks to the connectivity constraints described
in Section 4.2.3.

4.3.2 Impact of parameters

Our algorithm offers a trade-off between accuracy and simplicity, controlled
by the parameter λ in Equation 4.2. Figure 4.11 illustrates the effect of this
parameter. A low λ yields a very low fitting error but a high number of
curves. In contrast, increasing λ greatly reduces the number of curves but
the resulting network deviates more from the input. We again measured
error with respect to a ground truth vector drawing that we rasterized to
serve as input to our algorithm. Note that at low λ, the top-right part of the
shape is best approximated by small linear segments, while a high λ produces
a smoother, albeit less accurate output. We fixed the other parameters µ to
0.2 for all results in this chapter except Figure 4.4, and the ball radius of
trapped-ball segmentation algorithm to 3 pixels.
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Figure 4.10: Robustness to sketchiness. Our algorithm generates very similar
curve networks for various levels of sketchiness, even though some details are
lost in very sketchy drawings.

4.3.3 Robustness

Sketchy and thick lines are very challenging for existing vectorization algo-
rithms because they result in noisy skeletons with many extraneous branches,
especially at junctions. Figure 4.10 shows that our algorithm produces con-
sistent curve networks for increasing levels of sketchiness. Figure 4.12 pro-
vides a quantitative evaluation of the impact of line thickness. We performed
this evaluation by rasterizing a vector drawing with increasing line thickness
and measuring the distance between the recovered curve network and the
ground truth, expressed in pixels. The average error remains below 0.6 pix-
els for a thickness of 24 pixels.

4.3.4 Performances

Depending on the complexity of the input bitmap, our algorithm takes a few
seconds to a few minutes to produce output curves automatically. However,
since our optimization is iterative, the user does not have to wait until com-
pletion to edit the result. Instead, she can stop the algorithm at any time
to add constraints and appreciate their effect. The user can also speed-up
the optimization by increasing the relaxation parameter T when the current
configuration is satisfactory. As shown in Table 4.1, the results obtained
with user interaction did not take more time than the ones obtained auto-
matically.
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# curves
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λ0.1 0.5 0.9

Figure 4.11: Parameter λ controls the balance between fidelity and simplicity.
Increasing λ augments error to Ground Truth while reducing the number of
Bézier curves, and by extension, the number of control points (shown as grey
dots).

Table 4.1: Timing with and without user interactions.

# hyperedge # interaction time
Figure 4.8a (automatic) 25 − 45s

Figure 4.8b (interactive) 25 4 34s

Figure 4.8c (automatic) 27 − 25s

Figure 4.8d (interactive) 26 6 32s

Figure 4.9 right (automatic) 673 − 95s

4.3.5 Limitations

Our algorithm is not designed to deal with missing data, such as broken
strokes. Filling such holes would require extrapolating the curves, which adds
significant complexity to the optimization. Note however that the trapped-
ball segmentation algorithm [ZCZ+09] for skeleton extraction is robust to
small holes. Another limitation of our current optimization is that we only
consider Bézier curves, while other primitives such as circular arcs would be
better adapted to regular structures in technical drawings. Our algorithm
also does not consider high-order geometric regularities such as parallelism,
orthogonality or symmetry. Detecting and enforcing such regularities at each
iteration of the optimization would be costly if implemented naively.

Our current implementation seeks a uniform trade-off between fidelity
and simplicity over the entire drawing. Nevertheless, our Metropolis-Hastings
optimization could easily adapt this trade-off locally by taking as additional
input a spatially-varying λ parameter, which could be painted by the user or
estimated from local image statistics. Finally, while our region-based skele-
ton extraction effectively merges overlapping strokes in sketchy drawings, it
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Error w.r.t. GT
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Thickness1 12 24

Figure 4.12: Our algorithm produces almost identical output curves for in-
creasingly thick lines. Even at thickness 24, the junctions remain accurate
and the average error is bellow 0.6 pixels.

can also remove intended lines since there is an inherent ambiguity between
noisy strokes and fine details. When dealing with clean drawings, a smaller
trapped-ball should be used.

4.4 Conclusion

Skillful vector artists create drawings composed of few curves because they
result in clean, compact and easily editable artworks. This observation moti-
vated us to propose the first vectorization algorithm that explicitly attempts
to minimize the number of curves and their degree. This new, global objec-
tive is also extremely effective in disambiguating line junctions, where prior
methods tend to produce spurious short curves. While the resulting opti-
mization involves non-convex and non-local terms, we describe an efficient
exploration algorithm to support interactive user control.

Our algorithm takes as input bitmap drawings, which allows it to deal
with both scanned drawings as well as rasterized digital drawings. Never-
theless, we hope that our energy formulation will inspire novel algorithms
dedicated to the simplification of digital drawings composed of vector strokes.

Our idea of minimizing the complexity of the output representation also
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has great potential for the vectorization of color images, in particular to
extract layers that compactly represent transparency and occlusion effects
[RLMB+14]. However, this new domain raises specific challenges, since the
optimization should evaluate many interpretations of the shape and color of
image regions. In next chapter, we present an effective solution to this color
vectorization problem.



4.4. Conclusion 47

(a) Input sketch (b) Adobe Illustrator CC (c) [NHS+13] (d) Our result

Figure 4.13: Comparison to existing vectorization algorithms. In the 2nd
and 4th row, the sketches were pre-processed with the Gabor filter bank from
[BCF+07] to group neighboring strokes into thick lines. Existing methods
produce multiple curves on sketchy lines and extraneous curves at junctions
of thick lines. In contrast, our method recovers precise junctions by favoring
the simplest interpretation.
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(a) Input sketch, rasterized
from c©[LWH15]

(b) c©[LWH15] (c) Adobe Illustrator CC (d) [BCF+07]
+ Adobe Illustrator CC

Input sketch, rasterized (e) [NHS+13] (f) [BCF+07]+ [NHS+13] (g) Our result

Figure 4.14: Comparison to existing line drawing simplification and line
drawing vectorization algorithms. In column (d) and (f), the sketches were
pre-processed with the Gabor filter bank from [BCF+07] to group neighbor-
ing strokes into thick lines. Note that [LWH15] takes vector strokes as
input, while all other methods deal with bitmaps. Our approach produces
results on par with [LWH15] even though we process bitmaps rather than
vector strokes. Compared to existing vectorization algorithms, our method
produces more accurate curves and junctions despite the high ambiguity of
the sketchy input.



Chapter 5

ClipArt vectorization

In the previous chapter, we proposed a new approach to vectorize rough line
drawings by minimizing the complexity of the output. In this chapter, we
extend this approach to vectorize color images.
More precisely, our approach seeks to decompose the input image into a
small number of semi-transparent layers, each layer filled with a constant
color or a two-color linear gradient.

(a) Input image and
segmentation

(b) Multi-layer abstraction and vectorization (c) Editing

Figure 5.1: Given a segmented bitmap image as input (a), our method gen-
erates an abstract, layered vector clipart, where each layer is filled with an
opaque or semi-transparent linear color gradient (b). By expressing the im-
age as a stack of linear color gradients, our vector graphics reproduce the
visual style of traditional cliparts and are easy to edit (c). In this exam-
ple, we turned the lady bug blue (top) and replaced its dots by little stars
(bottom). The black dots in the segmentation indicate opaque regions se-
lected by the user to initialize or constrain our algorithm. Ladybug by Alex
Staroseltsev on Shutterstock.com

Our algorithm uses the local decompositions obtained from X-junctions
to initialize a region-growing approach, which progressively assigns new pix-
els to their best-fitting existing layers and only creates a new layer when no
good assignment is found. If no X-junction exists, we ask the user to indicate
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an opaque region in the image to initialize the region-growing process. How-
ever, growing the layers in a greedy manner would quickly lead us to poor
local minima of our energy formulation. Our algorithm explores multiple as-
signments concurrently by building a tree of candidate configurations. Each
node of the tree corresponds to an intermediate decomposition where only a
subset of the image pixels have been explored, while the leafs of the tree cor-
respond to all the possible decompositions of the entire image. We present a
Monte Carlo Tree Search algorithm [BPW+12] guided by image junctions to
quickly identify the low-energy branches of this tree. We further accelerate
the search by pre-segmenting the image into smooth color regions, turning
our approach into a region labelling rather than pixel labelling problem.

While our algorithm can produce plausible vector cliparts automatically,
we allow users to refine the result by indicating opaque regions. We demon-
strate our method by reverse-engineering bitmap cliparts and by creating a
range of new cliparts from photographs.

5.1 Problem Formulation

Our goal is to estimate a multilayer vectorial representation of an input
image I, where each layer is composed of

• A supporting domain D covering a subset of pixels from the input
image,

• A color gradient function C(p) that associates an RGB color to each
pixel p ∈ D,

• An opacity gradient function A(p) that associates an opacity to each
pixel p ∈ D. We set A(p) = 0 when p /∈ Dn.

We synthesize the output image In from a n-layer representation by recur-
sively α-blending the ordered layers

In(p) = An(p)Cn(p) + (1−An(p))In−1(p) (5.1)

where Cn and An are the color gradient function and opacity gradient func-
tion of layer n. Figure 5.2 illustrates this representation.

Linear gradients. While the above formulation is general, in this work we
restrict the color and opacity gradients to linear forms with the same orien-
tation, which corresponds to the 2-stop linear gradient of the SVG standard.
The color and opacity gradients functions are expressed as C(p) = c0+c1O

tp

and A(p) = a0 + a1O
tp where c0 and c1 (resp. a0 and a1) are color vectors
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(a) Input (b) Layers (c) Output

Figure 5.2: Multilayer representation. Our goal is to represent the input
image (a) as a stack of opaque and semi-transparent layers (b) such that
α-blending the layers using Eq. 5.1 reproduces well the input (c). Cherry
by M. Unal Ozmen on Shutterstock.com

(resp. opacity scalars) and O is the orientation vector. While linear gra-
dients are less expressive than more complex primitives, such as gradient
meshes [SLWS07] and diffusion curves [OBW+08], they are easier to ma-
nipulate thanks to their small number of parameters and are supported by
most vector graphics software. In addition, many vector artists employ lin-
ear gradients as a means to simplify and stylize the image. Restricting our
algorithm to linear gradients allows us to reproduce this characteristic style
of vector cliparts.

Pre-segmentation. Recovering the color, opacity and supporting domain
of each layer at each pixel is a formidable task. We reduce the complexity
of this task by pre-segmenting the image into smooth regions and by impos-
ing that all pixels of a region share the same layers. While our algorithm
produces convincing results from automatic segmentation, we achieved our
best results using user-assisted segmentation as detailed in Section 5.3. In
addition, we apply a 3-pixel wide erosion on each region to exclude border
pixels since those often contain a mixture of colors from neighboring regions.
We process these pixels in a separate step once the multi-layer representation
is computed, as detailed in Section 5.2.6.
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Input image

Segmentation

New opaque layer
U = 0.14

Blue layer extended
U = 1.42

Blue layer extended
New transparent layer
U = 0.18, A = 1

New opaque layer
U = 0.18

Blue layer extended
U = 2.19

Blue layer extended
New transparent layer
U = 1.48, A = 1

New opaque layer
U = 1.48

New opaque layer
U = 0.22

Blue layer extended
New transparent layer
U = 0.22, A = 1

Beige layer extended
New transparent layer
mU = 0.21, A = 0.3

Beige layer extended
U = 0.34

Blue layer extended
U = 0.93

Figure 5.3: Overview of our exploration mechanism on a simple example.
Given an input image and its region segmentation, we cast the exploration
of the solution space as a tree search. Each node of the tree corresponds
to an intermediate solution where only a subset of the regions has been
decomposed. Each branch of the tree expands an intermediate solution by
adding a region to the decomposition. The new region can be assigned to
one or several existing layers, as well as to a new layer. Leafs of the tree
correspond to complete decompositions. We use Monte Carlo Tree Search to
quickly reach low-energy leaves. In this example, the best solution is reached
at leaf 1.3.3, where the moon is represented as an opaque beige layer with a
semi-transparent brown layer on top. Note that in some configurations, such
as node 1.2, a region can be assigned to a new semi-transparent layer which
receives an opacity value of 1 after optimization. We convert such layers to
opaque when this situation occurs. Moon by stux on pixabay.com

5.1.1 Energy formulation

We denote by x = (D1, C1, A1, ..., Dn, Cn, An), an output vectorial represen-
tation composed of n layers. We define three criteria to measure the quality
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of a configuration x:

• Faithfulness to input data - the reconstructed image In has to be similar
to the input image I,

• Simplicity of the decomposition - the number of layers should be min-
imized to yield a compact and editable representation,

• Simplicity of opacity functions - semi-transparent layers should be fa-
vored over opaque ones to reduce occlusion.

Based on these criteria, we formulate an energy U of the form

U(x) = (1− λ)Ufidelity(x) + λUsimplicity(x) (5.2)

where Ufidelity measures the faithfulness to input data and Usimplicity accounts
for the overall simplicity of the reconstruction. The parameter λ ∈ [0, 1]

weights the two terms.
We define Ufidelity as the RGB error under L2 norm between the input

image I and the reconstructed image In:

Ufidelity(x) =
1

|I|
∑
p∈I
‖I(p)− In(p)‖22. (5.3)

We express Usimplicity as

Usimplicity(x) =
1

N

n∑
l=1

wl (5.4)

where N is the maximal number of layers and wl penalizes opacity functions
according to their simplicity. We set wl = 1 for semi-transparent layers and
wl = β > 1 for opaque layers. Figure 5.2 illustrates the intuition behind this
strategy: the highlight on the cherry could be either interpreted as an opaque
pink region surrounded by a red region, or as a semi-transparent white region
over a red region. Setting β > 1 favors the latter interpretation, which
facilitates subsequent editing such as changing the color of the cherry. We
used β = 1.2 in all our examples. In addition, we convert a semi-transparent
layer to opaque if its estimated opacity is above 0.999.

5.2 Exploration mechanism

Searching for the configuration that minimizes energy U is a complex opti-
mization problem which combines discrete variables (the number of layers
and their supporting domains) and continuous variables (the parameters of
the linear gradient functions). While the number of layers can be infinite, we
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can reasonably assume that there is at most as many layers as input regions.
Yet, since a region can appear in at most all N layers, finding the global
minimum would require estimating the continuous variables for 2N

2 layer
assignments, which is impractical despite this upper bound.

We address this combinatorial challenge by devising a scalable explo-
ration strategy of the solution space, which we illustrate on a simple ex-
ample in Figure 5.3. Our exploration starts from initial decompositions of
a few regions, which we obtain by exploiting transparency assumptions on
X-junctions, or by asking the user to indicate one or more opaque regions.
We then expand these decompositions to the regions adjacent to the ones
already decomposed. Each new region can either be assigned to one or more
existing layers, or to a new layer, for which the color gradient is estimated.
We thus obtain a set of possible assignments of the new regions, each forming
a decomposition that can be further expanded to adjacent regions. We can
represent the ensemble of decompositions generated by this approach as a
tree, where each node corresponds to an intermediate decomposition, which
branches to multiple decompositions after an expansion step1. The leafs of
this tree correspond to all the 2N

2 possible decompositions, and our goal is
to find a low-energy leaf without exploring the entire tree.

We propose a stochastic algorithm for fast exploration of the solution
space, which can be seen as a form of Monte Carlo Tree Search (MCTS)
[BPW+12]. The main idea of this method is to build the solution tree in-
crementally and asymmetrically using a balance between exploration of the
space and exploitation of the already explored configurations. Figure 5.4
illustrates the four successive operations performed at each iteration of an
MCTS method: (i) selection of a node according to a tree policy, (ii) expan-
sion of the tree by adding child nodes, (iii) evaluation of the quality of the
added child nodes (also called reward), and (iv) update of the tree policy by
back-propagation to the root. Algorithm 2 summarizes this process.

Our main technical contribution resides in defining efficient expansion
and reward operations that exploit characteristics of our problem. We de-
note by x/t an intermediate decomposition restricted to the regions visited
between the root and node t. We measure the energy U(x/t) by restricting
I to the visited regions (Eq. 5.3), and by setting the maximal number of
layers N to the number of visited regions (Eq. 5.4).

1In theory, the tree of solutions is actually a directed acyclic graph because multiple
paths can yield the same configuration. However, in practice such cases are very rare
because our acceleration heuristics trim many branches of that graph.
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Node selection Expansion and reward Back-propagation

Figure 5.4: Exploration mechanism by Monte Carlo Tree Search (after
[BPW+12]). A node is first selected using a tree policy (section 5.2.1). New
nodes are then added (section 5.2.2) and their corresponding energy are com-
puted (section 5.2.3). The energy of the new nodes is back-propagated to
their parent node to discourage exploring bad configurations (section 5.2.4).

Algorithm 2 Exploration mechanism
Initialize child nodes of the root (sec 5.2.5)
repeat
Node selection: select a leaf node using tree policy (sec 5.2.1)
Expansion: generate child nodes (sec 5.2.2)
Reward: compute energy of child nodes (sec 5.2.3)
Back-propagation: update tree policy (sec 5.2.4)

until stopping criterion (sec 5.2.5)

5.2.1 Node selection

The tree policy seeks to favor the exploration of high-quality configurations.
To do so, each child node ti of a node t is associated to a parent-to-child
probability that is proportional to its energy and the energy of its siblings

Pt→ti =
exp(−U(x/ti))1{ti∈t?}∑
tj∈t?

exp(−U(x/tj ))
(5.5)

where t? is the set of child nodes of t and 1 is the indicator function. The
algorithm selects a terminal node for expansion according to the product of
parent-to-child probabilities between the root and the node, i.e. the overall
probability of reaching this configuration.

We further accelerate the search by restricting t? to the k children nodes
with the lowest energies. The parameter k offers a balance between spreed
and accuracy of the algorithm. We set k to 2 in all our experiments.
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5.2.2 Tree expansion

Once a candidate terminal node is selected, the tree expansion step generates
its child nodes by adding one or more regions to the ones already visited.
We first present a naive generator that simply adds one region with all its
possible layer assignments. We then detail a more efficient generator that
exploits a transparency assumption on X-junctions to add multiple regions
at once. We detect X-junctions as cliques of order 4 in the adjacency graph
of the regions.

Single-region expansion. This generator inserts an unvisited region to
the decomposition associated with the selected node. This region is chosen
randomly among the regions adjacent to the ones already present in the
decomposition. We assume that the new region can be part of any layer
of its adjacent regions in the decomposition, as well as part of a new layer.
Note that we do not consider layers of non-adjacent regions, which drastically
reduces the number of child nodes while ensuring that each layer contains
a single connected component by construction. Given the M layers from
the adjacent regions, a naive enumeration gives 2M+1 child nodes. However,
since opaque layers occlude all layers below them, we can discard all but one
of the configurations that have the same visible layers, which further reduces
the number of child nodes.

X-junction expansion. This generator only applies on the nodes for
which the decomposition contains part of an X-junction, and expands the
decomposition to all four regions forming the X-junction. We build on the as-
sumption that an X-junction results from the boundary of a semi-transparent
layer crossing the boundary of two other layers [SC11]. This assumption
yields a limited set of possible interpretations, which depends on how many
of the four regions are already present in the decomposition of the selected
nodes:

• None of the regions of the junction have been decomposed. This con-
figuration occurs when we initialize the algorithm, i.e. when the X-
junction is used to expand the root of the tree. In the absence of other
information, we make the additional assumption that the junction is
formed by one semi-transparent layer over two opaque layers, which
yields 4 possible configurations illustrated in Figure 5.5.

• One or more regions of the junction are already in the decomposition.
We can deduce that the boundary between an unknown region and a
known one is either caused by the end of a known layer or the beginning
of a new one. Denoting M the number of layers in an adjacent known
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region, we obtain M + 1 configurations if the unknown region is in the
4-neighborhood of the known one (i.e. the two regions are separated
by one boundary), and M + 2 configurations if the unknown region
is in the 8-neighborhood of the known one (i.e. the two regions are
separated by two boundaries).

Figure 5.5: We assume that X-junctions are formed by a semi-transparent
layer crossing two other layers. When none of the layers are known, we
assume that the two bottom layers are opaque, yielding 4 possible configu-
rations.

We call the X-junction generator in priority since it allows faster expan-
sion of the tree than the single-region generator.

5.2.3 Reward

Given the layer assignment of a child node, we can estimate its energy along
with the color and opacity gradient function of each layer by minimizing
Equation 5.3. However, this optimization is highly non-linear, which re-
quires the use of an iterative algorithm like Newton-Raphson with a good
initialization of the solution. We propose three strategies to avoid computing
such a costly optimization for most visited nodes of the tree.

Layer re-use. Our first strategy to speed up the evaluation of Equation 5.3
is to re-use the color and opacity gradients of a parent node when present in a
child node. In other words, we extend the known gradient functions over the
new regions without re-fitting them. While this approach is approximate, it
yields a significant gain in performance with a marginal loss in visual quality,
as evaluated in Section 5.3.

Exploitation of X-junctions. As detailed above, expanding the decom-
position at an X-junction only yields configurations with at most one new
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semi-transparent layer. In addition, our assumption on the nature of X-
junctions tells us that this semi-transparent layer covers the boundary be-
tween two regions with known layers. Our strategy is to deduce from this
setup a configuration where the semi-transparent layer is observed over two
known colors, which makes its estimation well-posed [SB96, RLMB+14].

Denoting l the unknown layer, each of the two regions on which it appears
gives us equations of the form Il(p) = Al(p)Cl(p) + (1−Al(p))Il−1(p) where
Il is the input image from which we have substracted all semi-transparent
layers above l and Il−1 is the image formed by all layers below l, which are
known for the two regions considered. The challenge is now to express these
equations over the same pixels, so that we can remove the term Al(p)Cl(p)

by substitution and leave Al(p) as the only unknown.
Figure 5.6 illustrates our algorithm on a toy example, where the new layer

covers two regions I1l and I
2
l , which share layers with their known neighboring

regions I1l−1 and I2l−1 respectively. We first extend each region over all three
other regions so that all regions share the same spatial domain. Regions that
are already in the decomposition are easy to extend since all their layers are
known and have a parametric form. However, regions covered by the new
layer are still in a bitmap form. Our solution consists in approximating each
such region with a polynomial function using a least square fit on all pixels.
Since each layer is represented by a linear gradient, a new region can at best
be represented by a polynomial of degree M + 1, where M is the number
of layers shared with the adjacent regions. We then extend the resulting
parametric functions over the other regions to know their values over all
pixels. We now have the necessary ingredients to form two equations at each
pixel

Ĩ1l (p) = Al(p)Cl(p) +
(
1−Al(p)

)
Ĩ1l−1(p) (5.6)

Ĩ2l (p) = Al(p)Cl(p) +
(
1−Al(p)

)
Ĩ2l−1(p), (5.7)

where Ĩij denotes the extended version of region Iij . Subtracting the two
equations gives us an expression where Al(p) is the only unknown

Ĩ1l (p)− Ĩ2l (p) =
(
1−Al(p)

)(
Ĩ1l−1(p)− Ĩ2l−1(p)

)
. (5.8)

Once Al(p) is known the minimization of Equation 5.3 becomes quadratic in
Cl(p) and has a unique solution.

Note that since each region of the image is visited multiple times during
the tree search, we only compute its polynomial representation at a given
degree the first time it is needed, and keep it in memory for later use.

Sub-sampling. Our last strategy to reduce computational burden is to
use a sparse uniform random sampling of the input image pixels when fit-
ting the color and opacity gradients of the layers. However, using very few
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Figure 5.6: Derivation of the opacity of a new layer at an X-junction. Let us
assume that the new layer is shared by the two regions I1l and I2l . Further-
more, region I1l shares all of its other layers with region I1l−1, while region
I2l shares all of its other layers with region I2l−1. We exploit this redundancy
to deduce the opacity of layer l. We first extend each region over the other
regions to know their values at each pixel (top). Regions I1l−1 and I2l−1 are
trivially extended since their layers are known and have a linear form. We
extend regions I1l and I2l by fitting a polynomial on their pixel colors. We
can then compute a per-pixel opacity A by simple arithmetic (bottom).

samples raises the risk of making the method very sensitive to image noise.
Fortunately, we can leverage the polynomial approximation of the image in-
troduced above as a means to remove high frequency content that cannot
be captured by the layers. While each polynomial needs to be computed
from all pixels of its region, this is a one time computation which is quickly
amortized over all the nodes where the layers of a given region need to be
estimated.

To sum-up, we first generate for each node a number of configurations,
which form its child nodes. When a child node does not contain any new
layer, computing its energy U by Eq. 5.2 is trivial since the parameters
of all layers are known. When new layers are involved, the parameters of
their color and opacity gradient functions must be estimated first. If the
new layer is opaque and below known semi-transparent layers, or if the new
layer is part of an X-junction, we can estimate the gradient functions as a
quadratic minimization problem that has a unique solution. Otherwise, we
run the Newton-Raphson algorithm. Both the quadratic minimization and
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the Newton-Raphson algorithm are computed with a sparse sampling of the
input image.

To further reduce the complexity of the tree, we remove the child nodes
whose energies are one order of magnitude higher than the best child node.

5.2.4 Back-Propagation

Once the energy of new child nodes is computed, we update the tree policy to
favor the visit of low energy configurations. We back-propagate information
on child node energy towards the root by giving to each node t the lowest
energy of its child nodes

U(x/t)← min
ti∈t?

U(x/ti). (5.9)

5.2.5 Initialization and stopping criterion

We initialize the exploration by generating one root node for each X-junction,
using as initial decompositions of these junctions the configurations that
minimize Ufidelity. In the cases where no X-junction exists, we ask the user
to seed the search by selecting an opaque region in the image. We display a
black dot over the selected region of the segmentation for each result where
such indication was provided. We stop the exploration once we have reached
4N leaves of the tree, with N the number of regions in the image, and
keep the decomposition with the lowest energy as our final solution. We
adjusted this stopping threshold experimentally by running our algorithm
multiple times on the same image using a high threshold, keeping track of
the number of leaves visited before reaching the best configuration.

5.2.6 Finalization

As a reminder, we excluded pixels on the boundary of each region of the
segmentation, since those pixel are often corrupted by blur or anti-aliasing.
The last step of our algorithm assigns each such pixel to one of its neigh-
boring regions based on goodness of fit. In addition, when an opaque layer
is surrounded by another opaque layer, we position the surrounding layer
below the surrounded one and extend it to cover the hole, which is occluded
by the surrounded layer. As an example, the red layer of the lady bug in
Figure 5.1 extends below the black dots.

Finally, we vectorize the supporting domain of each layer using Potrace
[Sel17].
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Figure 5.7: Layered cliparts produced with our method from three studio
photographs and a bitmap diagram. We used manual segmentation to prop-
erly delineate small and blurry regions (letters on the stop button, highlights
on the tomato) and to ignore spurious details (arrows on the chart). Stop
button and battery by Photo Melon, chart by Allies Interactive, tomato by
bajinda on Shutterstock.com
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5.2.7 User interaction

We offer users several means of controlling our method. First, we expose the
global λ parameter, which balances fidelity to the input with simplicity of
the output. We found that clean bitmap cliparts can be decomposed using
a low λ value of 0.1, while photographs often require a higher value of 0.5

to abstract away small details, non-linear color variations, and image noise.
We also allow users to increase β to favor the extraction of semi-transparent
layers, although we used the default value for all results in this chapter.

Second, we allow users to impose that a region of the image be expressed
as a single opaque layer. We implement this constraint during the tree search
by only generating child nodes with opaque layers over the selected region.
We display a black dot over the selected regions of the segmentation for each
result where such additional constraint was provided.

Finally, users can also control the appearance of the decomposition via
the input segmentation, for instance to approximate fine details or complex
color variations with a unique region.

5.3 Experiments

Figure 5.1 and Figure 5.7 show results of our method on a variety of il-
lustrations and studio photographs. Our approach is especially effective at
expressing highlights and shadows with semi-transparent layers, which fa-
cilitates subsequent manipulation like color and shape editing, as shown in
Figure 5.1(c).

We now compare our method to existing work in the field and evaluate
the impact of parameters and performance.

5.3.1 Comparisons with existing work

Figure 5.8 compares our method with the work by Tan et al. [TLG16] and
Richardt et al. [RLMB+14]. The method by Tan and colleagues targets the
different application of bitmap color editing. As a result, while their method
succeeds in separating the image into layers based on the dominant colors of
the image, each layer is a bitmap with a constant color and spatially-varying
transparency rather than a vector path filled with a parametric gradient.
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[TLG16] [RLMB+14] Our method

Figure 5.8: Comparison with existing decomposition methods. The layers
generated by [TLG16] are bitmaps filled with a constant color and spa-
tially varying transparency, which is suitable for color editing but not for
other applications of vector graphics. Our results are similar to the ones by
[RLMB+14], although our method requires less user intervention and solves
for the layer parameters more efficiently. All our results were produced with
a manual segmentation, except the cone (3rd row). Cup by George Dolgikh,
shoe by Picsfive, wine bottle by Dmitri Gristsenko on Shutterstock.com, air
purifier by Spencer Nugent on sketch-a-day.com
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Our goal and approach is more similar to the work by Richardt et al., and
our method produces similar results to theirs. The main difference between
the two methods resides in the user workflow. The interactive workflow of
Richardt et al. requires users to extract each layer of the decomposition one
by one, in a front to back order. Since their layer extraction takes between a
few seconds to a minute per layer, their results took between several minutes
to an hour to create, as detailed in Section 5 of their paper. In contrast,
users of our system simply have to provide a segmentation of the image,
which takes a few minutes with an interactive tool, and optional indications
of opaque regions before letting our algorithm produce the entire decompo-
sition within seconds. Another difference resides in the family of gradients
supported by the two methods. Our method extracts 2-stop gradients, while
Richard et al. also support 3-stop gradients, but requires users to indicate
the number of stops for each region. This is why their method extracts each
color band of the cone as a single 3-stop gradient while we extract them
as two 2-stop gradients (Figure 5.8, 3rd row). In addition, Richard et al.
represent opaque layers with gradient meshes, while we only use linear gra-
dients. Their gradient mesh better captures contrast on the opaque layer of
the cylindrical mug (Figure 5.8, 4th row).

5.3.2 Impact of parameters

The main parameter of our algorithm is λ, which controls the amount of
abstraction of our vectorization. Figure 5.9 details its impact on the vec-
torization of a bitmap clipart. A low value of λ reproduces the input as
closely as possible with linear gradients. Increasing λ favors the use of semi-
transparent layers at the price of more approximate rendition of the original
colors. A high value of λ abstracts away details in an effort to reduce the
number of layers.

5.3.3 Impact of pre-segmentation

Figure 5.10 compares the output of our method with different input seg-
mentations generated with a Mean Shift algorithm [CM02] and a manual
segmentation. Our method produces visually similar vectorizations with
two different automatic segmentations. In particular, multiple regions are
merged to form a few layers thanks to our simplicity term. However, we
obtain more stylized cliparts using manual segmentations.

5.3.4 Performance

Table 5.1 provides timings for several of our results, measured with a 3rd gen-
eration core i7 processor and 16Gb DDR3 memory. Our algorithm took less
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Table 5.1: Our method generates layered vectorizations within seconds. The
cake image is one of the slowest to process because it has many regions and
no X-junctions.

Image Exploration Finalization Total # regions # clicks
Lady bug 28s 6s 35s 26 3

Cherry 5s 2s 7s 8 1

Stop 16s 12s 28s 23 2

Tomato 9s 6s 16s 19 1

Diagram 12s 1s 13s 11 3

Battery 44s 15s 60s 24 2

Cake 71s 148s 220s 30 1

Egg 7s 2s 9s 6 1

Red shoes 5s 11s 17s 11 1

Purair 16s 4s 21s 20 1

Cone 44s 3s 48s 27 0

Cup 17s 16s 33s 11 1

Wine 13s 13s 26s 11 0

House 337s 159s 496s 105 3

Table 5.2: Ablation study. We evaluated the performance of our algorithm
on the smartphone image (Figure 5.10) after removing some of its key com-
ponents. Removing the exploitation of X-junctions increases computation
time by one order of magnitude, while re-fitting all layers for each child node
further increases computation by two orders of magnitude without signifi-
cant change in the energy. Similarly, augmenting the maximum number of
child nodes k slows down the algorithm without much impact on the energy.
We provide the resulting vector cliparts as supplemental material, they are
all visually similar.

X-junctions yes yes no no
k 2 4 2 2

Layer re-use yes yes yes no
Energy U 1.00 1.04 0.870 0.869
Time (s) 14 28 307 29890

Number of visited nodes 318 332 54358 52357
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λ = 0.001

Ufidelity = 0.0003

30 layers (27 opaque)

λ = 0.1

Ufidelity = 0.004

29 layers (8 opaque)

λ = 0.5

Ufidelity = 0.58

13 layers (5 opaque)

Figure 5.9: Impact of parameter λ. A low value of λ favors accurate repro-
duction of the input, but produces a decomposition dominated by opaque
layers (left). Increasing λ turns many of the opaque layers semi-transparent
(middle). A high value reduces the number of layers, at the price of missing
details (right). Cake by vectorsme on openclipart.org

than a minute to produce each decomposition, which allows an interactive
workflow where users can refine the result by adding a new opacity constraint
or modifying the segmentation if necessary. The last column of Table 5.1
details the number of opaque regions selected by the user to initialize the
optimization.

Table 5.2 compares several versions of our algorithm where we removed
important features. In particular, exploiting X-junctions greatly speeds up
the exploration of the solution space, while increasing the maximum number
of child nodes does not yield a significant increase in quality. We also imple-
mented re-fitting of all layers for each child node, which increases timing by
two orders of magnitude without much impact on the energy.

5.3.5 Limitations

Our choice of restricting the image representation to linear gradients is key
to achieve joint abstraction and vectorization. However, our current im-
plementation does not support variants of linear gradients, such as radial
gradients, although such primitives could be included in the configurations
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89 regions, λ = 0.8
4 layers (3 opaque)

5 regions, λ = 0.2
4 layers (3 opaque)

6 regions, λ = 0.2
6 layers (3 opaque)

55 regions, λ = 0.9
14 layers (6 opaque)

26 regions, λ = 0.8
9 layers (5 opaque)

17 regions, λ = 0.2
14 layers (3 opaque)

458 regions, λ = 0.9
200 layers (77 opaque)

119 regions, λ = 0.8
90 layers (41 opaque)

105 regions, λ = 0.8
78 layers (35 opaque)

(a) Input (b) Mean Shift segmentation
(small regions)

(c) Mean Shift segmentation
(big regions)

(d) Manual segmentation

Figure 5.10: While our method produces consistent results with different
automatic segmentations (b,c), we achieved our best results by refining the
segmentation by hand (d). In particular, while our method can fuse small
regions to reduce the number of layers, spurious high-contrast details re-
main, such as thin highlights along the boundary of the smartphone. In
contrast, a manual segmentation allows users to remove unwanted details
while preserving others, such as an extra highlight on the egg, the button of
the smartphone, and the window tiles on the house. Note that the shadows
on the house and ground are extracted as semi-transparent layers. Egg by
Valentina Razumova, house by Stefano Ember, smart phone by Gor Grigo-
ryan on Shutterstock.com

evaluated by the tree search. More advanced primitives like gradient meshes
would be more difficult to integrate since they cannot be trivially expanded
to adjacent regions, which is a key assumption made by our algorithm.

Our method targets piecewise-smooth images and as such reaches its
limits in the presence of texture. A low-contrast texture is averaged-out if
segmented as a single region, while high-contrast textures can be segmented
in multiple small regions, which result in a cluttered clipart with many layers.
The house in Figure 5.10 illustrates how our approach performs on a complex
natural image with textures.
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With X-junctions Without X-junctions

Figure 5.11: Limitations. Top: We accelerate our algorithm by assuming
that each X-junction is produced by a semi-transparent layer crossing two
other layers. This assumption is not valid on the Rubik’s cube, where there
are multiple X-junctions between tiles of different colors. Exploiting our
assumption on this example forces the method to include transparent layers
that do not reproduce well the input. Bottom: Decomposing an image into
opaque and transparent layers is especially ambiguous when the layers share
the same color. In this example, the algorithm cannot make the distinction
between a dark shadow over a white panel and a white highlight over a dark
panel. As a result, some black panels are interpreted as white and vice-versa.
Soccer ball by Le Do on Shutterstock.com

We speed up our algorithm by assuming that X-junctions are caused
by transparency. This assumption breaks on texture patterns such as a
checker-board, where many X-junctions are not due to transparency. Fig-
ure 5.11(top) illustrates the behavior of our algorithm in such cases, with and
without the exploitation of X-junctions. While our method produces a faith-
ful vectorization when X-junctions are not exploited, exploiting them forces
the algorithm to use transparency, which reduces reconstruction accuracy.

Inverting Equation 5.1 is an ill-posed problem, especially when the fore-
ground and background layers contain the same colors. This ambiguity is
illustrated in Figure 5.11 where the soccer ball is only composed of shades of
gray. As a result, while the decomposition found by our optimization cap-
tures well the appearance of the input image, it does not properly separate
the white and black panels of the ball because it cannot make the distinction
between a dark shadow over a white panel and white highlight over a dark
panel.
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5.4 Conclusion

While image vectorization has received significant attention in the computer
graphics community, very little work has been done on reproducing the style
and layer structure of traditional vector cliparts. Motivated by the ubiquity
of linear gradients in vector art, we have presented an algorithm based on
Monte Carlo Tree Search to jointly decompose an image into layers and
approximate these layers with linear gradients.

Our method takes a segmented image as input and does not attempt to
modify the shape of the segmented regions, apart from fusing small segments
to crate bigger ones. However, the regions produced by automatic segmen-
tation algorithms often have more intricate shapes than the ones created
by vector artists. An interesting direction for future research would be to
jointly simplify shape and color during the vectorization process, potentially
by including a shape simplicity term in our energy formulation.

In the next chapter, we introduce a generic framework to extract geomet-
ric structures in images without dependency to any preprocess. This method
could be used to simultaneously sample the region partition and decompose
it into a stack of semi-transparent layers.





Chapter 6

Towards a unified algorithm for
extraction of geometric

structures

In chapters 4 and 5 we proposed two approaches to vectorize images. The
first algorithm vectorizes rough sketches into a clean curve network and
the second one vectorizes color images into several semi-transparent lay-
ers. The main limitation of these two algorithms is the dependency to an
over-segmentation, ie a noisy topological graph for sketch vectorization and
an image partition into regions for multilayer image vectorization. We ob-
served the same limitation for many computer vision problems including the
extraction of networks of blood vessels from retinal images, the extraction of
building footprints from urban satellite images, or the extraction of 3D sur-
faces from multiple photographs of a scene. All these algorithms first extract
local primitives and then group them to construct the global structure.

For example, object contouring methods typically detect line segments
along image discontinuities before assembling them to form polygons [ZFW+12,
SCF14], and multiview stereo reconstruction algorithms extract 3D points
by feature matching before interpolating them with a surface mesh [LPK07,
MPFB17]. While this two-step approach reduces computational burden, the
quality of the resulting structures depends heavily on the local decisions
taken during primitive detection.

As an alternative to primitive detection, generative models seek to syn-
thesize structures and measure their agreement with image data. In par-
ticular, point processes have shown their ability to generate configurations
of geometric elements that align with image content [Lie94]. However, the
synthesis of large-scale structures often requires strong interactions between
geometric primitives, which are hard to model with existing formulations.
For example, a point process that would generate independent line segments
is very unlikely to produce coherent line networks where segments only join
at their endpoints. The key idea of our work is to constrain point processes
to only produce well-connected geometric structures.

This chapter focuses on the extraction of 2D structures and leaves the ex-
traction of 3D entities to future work. Our main observation is that any 2D
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geometric structures

Figure 6.1: Example applications of Delaunay Point Processes to extract
planar graphs representing blood vessels in retina images (left), and com-
plex polygons representing object silhouettes (right). The point distribution
creates a dynamic Delaunay triangulation while edge and facet labels specify
the geometric structure (see red edges on close-ups).

structure composed of non-overlapping lines or polygons can be embedded
in a triangulation of the image domain. Given this representation, generat-
ing linear or triangular primitives amounts to inserting new vertices in the
triangulation, which is a standard operation for existing geometry libraries
[The17]. Extracting global structures then amounts to grouping subsets of
edges or facets of the triangulation. By construction, our representation
offers strong geometric guaranties, such as the fact that line segments and
polygons always meet vertex-to-vertex or edge-to-edge. We further build on
properties of the Delaunay triangulation to propose an efficient sampler for
fast stochastic optimization of the geometric structures we wish to extract.
We demonstrate the versatility of this approach to extract 2D structures for
a variety of Vision tasks.

In summary, our main contributions are (i) a general framework to ex-
tract geometric structures for a variety of Vision problems, (ii) an efficient
stochastic optimization to find high-quality structures, and (iii) models for
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line network extraction, object contouring, and image compression; demon-
strating the potential of our approach on real-world tasks.

6.1 Background on Point Processes

We first provide the necessary background on point processes and their appli-
cations before describing our novel approach, which we call Delaunay Point
Processes. We refer the reader to the book by Descombes [Des11] for a de-
tailed presentation of the theory of point processes for image analysis.

Definition. Point processes are probabilistic models introduced in Vi-
sion by Baddeley and Moller to extend traditional Markov Random Fields
(MRFs) with an object-based formalism [BL93]. A point process describes
random configurations of points in a continuous bounded domain K, where
the number of points of a configuration and their positions in the domain are
random variables. We denote Ω = ∪

n∈N
Ωn the configuration space of a point

process, where the sub-spaces Ωn correspond to configurations of exactly n
points distributed in K. We denote p ∈ Ω a realization of this point process,
and p ∈ p a point of the resulting configuration.

Figure 6.2: Point processes distribute points randomly in a bounded do-
main. While the left example illustrates a uniform distribution, the middle
and right examples show point processes guided by a non-uniform density
h (top left insets). In particular, the right example uses the image gradient
magnitude as a density to distribute points along image contours.

The simplest point process is the homogeneous Poisson point process,
for which the number of points follows a discrete Poisson distribution and
the position of the points follows a uniform distribution. As illustrated on
Figure 6.2, more complex configurations can be obtained by guiding the
point process with a density h(.) defined in Ω. Intuitively, h(p) measures the
probability of the realization p to occur. By carefully designing the density
h(.), practitioners can model processes where the number and position of
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the points are consistent with input data and where neighboring points obey
specific spatial interactions. In the remaining of this chapter we often express
the density as a Gibbs energy U(.) which we seek to minimize

h(p) ∝ exp−U(p). (6.1)

Markovian property. Similarly to Markov Random Fields, the Marko-
vian property of a point process provides a spatial dependency between
neighboring points in a configuration. Formally, a point process of density
h is Markovian under the neighborhood relationship ∼ if and only if ∀p ∈ Ω

such that h(p) > 0, and ∀q ∈ K, h(p ∪ {q})/h(p) only depends on q and
its neighbors {p ∈ p : q ∼ p}. In other words, when adding a point to
a configuration, the resulting variation of density only depends on the new
point and its neighbors in the configuration. As discussed next, the Marko-
vian property is essential to many efficient optimization algorithms because
it guarantees that the variation of energy induced by a local perturbation
of a configuration can be computed using a small number of points around
that perturbation.

The symmetric relationship ∼ is usually defined via a maximal Euclidean
distance ε between two points of K such that

pi ∼ pj = {(pi, pj) ∈ p2 : i > j, ||pi − pj ||2 < ε} (6.2)

Figure 6.3-left shows a realization of such a point process for K ⊂ R2.

Figure 6.3: Markovian point processes. Traditional point processes exploit
the Markovian property to define pairs of interacting points, typically a
maximal Euclidean distance ε between two points (left). Such processes
are used for detecting objects in images by associating a simple geometric
shape, eg a rectangle [ODZ07], to each point (middle), and for extracting
line-networks by selecting a subset of pairs of interacting points [CFL13]
(right).

Inference. Reversible Jump Markov Chain Monte Carlo (RJMCMC)
[Gre95] is a popular family of algorithms to search for configurations that
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maximize the density h, or equivalently, that minimize the energy U . A
RJMCMC sampler simulates a discrete Markov chain (Xt)t∈N on the config-
uration space Ω, converging towards a target density specified by U .

Algorithm 3 provides the pseudo-code of a RJMCMC sampler for point
processes. The algorithm starts with a random configuration p0. At each
iteration, the current configuration p of the chain is perturbed to a configu-
ration p′ according to a proposition density Q(p → .), also called a kernel.
The perturbations are local, which implies that the energy variation between
configuration p and p′ depends only on a few points thanks to the Markovian
property of the point process. The configuration p′ is then accepted as the
new state of the chain with a probability that depends on the ratio of kernels
Q(p → p′) and Q(p′ → p), the energy variation between p and p′, and a
relaxation parameter Tt. We next detail the role of kernels and relaxation,
followed by a discussion of existing work on object and structure extraction
using point processes.

Algorithm 3 RJMCMC sampler for point processes
1- Initialize X0 = p0 and T0 at t = 0;
2- At iteration t, with Xt = p,

• Choose a kernel Qm according to probability qm

• Perturb p to p′ according to Qm(p→ .)

• Compute the Green rate

R =
Qm(p′ → p)

Qm(p→ p′)
exp

(
U(p)− U(p′)

Tt

)
(6.3)

• Choose Xt+1 = p′ with probability min(1, R), and Xt+1 = p otherwise

Kernels. For many applications, the kernel Q is formulated as a mixture
of kernels Qm associated with probabilities qm

Q(p→ .) =
∑
m

qmQm(p→ .), (6.4)

where each kernel Qm is typically dedicated to a specific type of perturba-
tion. The kernel mixture must satisfy two necessary conditions to guarantee
the convergence of the Markov chain. First, to make the Markov chain irre-
ductible, the kernel mixture must allow any configuration in Ω to be reached
from any other configuration with a finite number of perturbations. Second,
to make the Markov chain reversible, each kernel must be able to propose a
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perturbation and its reverse with a non-zero probability. This second condi-
tion is necessary to compute the kernel ratio in Equation 6.3, which provides
a detailed balance between a perturbation and its reverse [Pes73].

All point processes rely on a birth and death kernel that adds or removes
a point from p [Des11]. This kernel is parameterized by a birth probability
Pb, the death probability Pd being equal to 1−Pb. Denoting |p| the number
of points in the current configuration, and λ the parameter of the discrete
Poisson distribution that governs the number of points in p, the kernel ratio
for a birth event can be expressed as

Qm(p′ → p)

Qm(p→ p′)
=
Pd
Pb

λ

|p|+ 1
. (6.5)

Similarly, the kernel ratio for a death event is expressed as Pb
Pd

|p|
λ . Intu-

itively, λ represents the expected number of points in the output configu-
ration. Choosing a birth (respectively a death) when the number of points
in the current configuration is higher (resp. lower) than λ will reduce the
chance of accepting the proposed perturbation.

Relaxation. The relaxation parameter Tt, also called the temperature,
controls the acceptation rate of the RJMCMC sampler. A high tempera-
ture allows the algorithm to explore very different configurations, including
configurations that temporarily increase the energy. In contrast, a low tem-
perature encourages the algorithm to only accept perturbations that decrease
the energy. A common practice is to start with a high temperature for initial
exploration of the solution space, before decreasing the temperature to con-
verge to a local miminum. Although a logarithmic decrease of Tt is necessary
to ensure convergence to the global minimum from any initial configuration,
practitioners typically use a faster geometric decrease of the form

Tt = T0.α
t (6.6)

where T0 is the initial temperature and α controls the speed of decrease and
is typically set to a value inferior yet close to 1. Such a geometric decrease
gives an approximate solution close to the optimum [SSF02].

From points to objects. Many Vision tasks involve the extraction of
extended objects rather than infinitesimal points. Marked point processes
are a family of point processes that tackle such tasks by associating each
point with a parametric object. For example buildings can be represented
with rectangles [ODZ07], persons with cylinders [Ge09, UB11], or textures
with sets of parametric shapes [LGD10]. Figure 6.3-middle illustrates a
realization of a marked point process where each point is associated with
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a rectangle defined by its orientation, width and length [ODZ07]. The
domain of this marked point process is thus K × M with K ⊂ R2 and
M =]− π

2 ,
π
2 ]× [lmin, lmax]× [Lmin, Lmax]. Marked point processes are par-

ticularly effective for the extraction of groups of objects from images because
they can model rich spatial interactions and because they do not require the
number of objects to be known a-priori.

From points to structures. While marked point processes are well
adapted to the extraction of groups of disconnected objects, their applica-
tion to the extraction of connected structures is more challenging because
local perturbations may affect the structure globally, breaking the Markovian
property necessary for efficient RJMCMC sampling. Prior work attempted
to extract geometric structures by designing the point process energy such
that it encourages neighboring objects to connect. For example, Lacoste et
al. [LDZ05] and Sun et al. [SSZ07] extract line networks by encouraging line
segments to form a graph, while Drot et al. [DDLMZ02] segment images by
encouraging triangles to form a tessellation. However, this strategy does not
scale well because the probability of sampling objects that connect together
decreases quickly with the number of objects. To the best of our knowledge,
junction-point processes [CFL13] is the only solution designed to extract
structures that are well-connected by construction. As illustrated in Figure
6.3-right, junction-point processes exploit the ∼neighborhood relationship of
Equation 6.2 to define a graph over p, where edges link pairs of neighbor-
ing points. A subset of edges is then selected to form a planar graph, which
represents the output line network. However, a planar graph should not con-
tain crossing edges. Enforcing this topological constraint makes RJMCMC
sampling of junction-point processes very slow because a large majority of
perturbations yield crossings.

6.2 Delaunay Point Processes

As discussed in the previous section, existing attempts to extract structures
with point processes were strongly limited in their ability to enforce the
connectivity of the structure elements. We address this challenge by embed-
ding the point process into a Delaunay triangulation from which we extract
structures as groups of edges or triangles. Since the triangulation forms a
tesselation of the image plane, our structures are well-connected by construc-
tion. While a few studies also combined spatial point processes with Delau-
nay triangulations [BM89, BBD99], they only demonstrated the synthesis
of point configurations. In contrast, we augment Delaunay Point Processes
with point, edge and facet parameters to extract geometric structures from
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images.

6.2.1 Delaunay-Based Neighborhoods

The Delaunay triangulation of a point configuration p

subdivides the image domain K into triangles such that
no point in p is inside the circumcircle of any triangle.
Figure 6.4-left shows the Delaunay triangulation of the
same point configuration as in Figure 6.3.

Figure 6.4: Delaunay Point Processes. Contrary to traditional point pro-
cesses, pairs of interacting points are defined more naturally by a Delaunay
triangulation instead of an arbitrary distance parameter ε (left). Exploit-
ing such a geometric meta-structure allows us to partition the image domain
into complex polygons by jointly labeling the triangles (middle) or to extract
planar graphs by jointly labeling the edges (right). We add the four corner
points of Domain K to p for computing the Delaunay triangulation so that
K is entirely partition by triangles.

We denote the set of edges and facets of the Delaunay triangulation of
p as C2(p) and C3(p) respectively. This triangulation offers a convenient
neighborhood relationship ∼D for point processes: two points are neighbors
if they are connected by an edge in the Delaunay triangulation

pi ∼D pj = {(pi, pj) ∈ p2 : (pi, pj) ∈ C2(p)}. (6.7)

We define Delaunay Point Processes as Markovian point processes sup-
ported by the Delaunay neighborhood ∼D. Delaunay Point Processes inherit
from several interesting properties of the Delaunay triangulation:

• Parameter-free neighborhood. Traditional point processes require a pa-
rameter to specify the area of attraction of the neighborhood relation-
ship. Tuning this parameter is often problem-dependent and strongly
impacts result quality. Instead, Delaunay edges connect neighboring
points without requiring any parameter.
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• Geometric guarantees. Delaunay triangulations maximize the mini-
mum angle of all the angles of the triangles in the triangulation, and
thus tends to avoid skinny triangles. This property is especially benefi-
cial to reduce imprecision when measuring radiometric quantities over
the pixels covered by a triangle, as is the case in our applications to ob-
ject contouring (Section 6.3.3) and image compression (Section 6.3.4).

• Uniqueness. The Delaunay triangulation of a point set is unique, unless
four or more points are inscribed on the same circle, which is very
unlikely when the point coordinates are expressed in floating point
precision. This property implies that sampling a point set is equivalent
to sampling a triangulation.

• Efficient sampling. Perbubations during RJMCMC sampling, e.g. re-
moving or adding a point in p, only affects the Delaunay triangulation
locally. Moreover, such perturbations correspond to the basic oper-
ators offered by existing computational geometry libraries to modify
Delaunay triangulations [The17].

• Flexibility. The Delaunay triangulation is a flexible geometric rep-
resentation to address numerous Vision problems. As illustrated on
Figure 6.4, we can select edges of the triangulation to represent line-
networks, we can group triangles to represent closed contours, or we
can assign labels to the triangles to segment the image into parts.

birth

death

Figure 6.5: Birth and Death kernel. A birth inserts a new vertex in the
triangulation and recomputes the edge connectivity around it by applying
edge flips recursively until the circumcirle condition is valid everywhere. A
death removes a vertex and its adjacent edges and reconnect its adjacent
vertices so that the circumcirle condition is valid.
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6.2.2 Marks and Energy Formulation

Similarly to marked point processes, we tackle the extraction of extended
geometric structures by associating parameters – or marks – to the elements
of the Delaunay point process. However, while traditional marked point pro-
cesses only associate parameters to points, we also associate parameters to
the edges and facets formed by the points. This novel feature of Delaunay
point processes is key to extract well-connected line-networks and polygons,
which are better expressed via edges and triangles than via punctual primi-
tives.

We denote a geometric structure as x = (p,m) where p defines the
geometric configuration of the triangulation, while m represents the set of
additional parameters on the triangulation elements. For example, m can
identify active edges for line-network extraction, or assign different labels to
facets for polygonal object segmentation (Figure 6.4). Note that m can also
take real values such as colors, as demonstrated in our application to image
compression (Section 6.3.4).

Our study of various structure extraction tasks led us to formulate a
generic energy U for Delaunay point processes, which we express as the sum
of two terms balanced by a parameter α ∈ [0, 1]

U(x) = (1− α)Ufidelity(x) + αUprior(x). (6.8)

The first term, Ufidelity(x), measures the agreement of the configuration with
image data. For instance, it can measure the alignment of the Delaunay edges
with image contours for line network extraction, as detailed in Section 6.3.1.
The second term, Uprior(x), encodes shape priors on the structures we wish
to extract. In the example of line network extraction, Uprior can penalize
acute angles between successive edges to favor smooth polylines. These two
terms can be expressed with local energies on points, edges and facets of
the Delaunay triangulation. Note that U not only measures the quality of
an output structure x, but also accounts for the quality of the underlying
triangulation p.

6.2.3 Sampling procedure

We use the RJMCMC algorithm detailed in Algorithm 3 to search for a
good approximation of the optimal configuration. In all our applications,
the sampling operates on configurations of geometric structures x = (p,m),
which live in a wider space than the point configurations p. We now propose
three kernels to explore this configuration space: birth or death of a point,
relocation of a point, and alteration of a mark. Each of these operators only
affect a configuration x locally, which is critical for efficient evaluation of the
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Figure 6.6: Safety domain for point relocation. The blue region (left) cor-
responds to the region where the red vertex can move without entering the
circumcirle of another triangle, i.e. without flipping the blue edges. The
red region (middle) corresponds to the region where the red vertex can move
without leaving the circumcirle of any three successive adjacent vertices, i.e.
without flipping the red edges. The safety domain, drawn with a black bor-
der (right), is the intersection of the blue and red regions. In this example,
the blue region lies entirely inside the red region, although this is not true
in the general case.

energy variation at each iteration (Equation 6.3).

Birth and death kernel adds or removes a point from p, as detailed in
Section 6.1. In computational geometry terms, it inserts or removes a vertex
from the Delaunay triangulation as illustrated in Figure 6.5. In practice, we
give birth and death the same probability (Pb = Pd = 0.5). In case of a
death, we select one of the points from p randomly. In case of a birth, we
create a new point in the image domainK. While we could draw the position
of this point from a uniform distribution, this is often inefficient for Vision
applications where the structures of interest lie along image contours. We
achieve much faster sampling by following a distribution specified by image
gradients. Once a vertex is added (respectively removed), we update the
marks of its adjacent edges and facets by uniform sampling from the mark
domain.

Point relocationmodifies the position of a random point in p. We make
this operator efficient by constraining the point to remain in its safety do-
main, which corresponds to the domain in which a vertex can move without
producing edge flips in the Delaunay triangulation (Figure 6.6). We draw
the new position of a vertex p from a uniform distribution over the safety
domain. As the safety domain for the reverse move is identical, the kernel
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ratio in the Green rate (Equation 6.3) is equal to 1. Note that this kernel
does not modify the marks of the configuration.

Mark alteration changes the value of a mark in m. In practice, we
randomly select a point, an edge or a facet of the Delaunay triangulation
depending on which type of element the marks are associated with. We then
draw a new random value for the mark following a uniform distribution. The
kernel ratio is thus equal to 1.

Energy

Iterations
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Figure 6.7: Energy decrease with different combinations of kernels. A better
energy is reached with our combination of three kernels than with just a
birth and death kernel or with the three kernels with uniform birth.

In practice, we give equal probability to the three kernels at each iter-
ation of Algorithm 3, i.e. qm = 1

3 . They play different roles during the
sampling procedure. Birth and death is the core operator to simulate Delau-
nay triangulations with varying complexity, and to access any configuration
of the solution space. Point relocation and mark alteration allow local ad-
justments that would take many iterations to obtain using solely birth and
death. As illustrated in Figure 6.7, using only the birth and death kernel
gives a fast energy decrease at the beginning of the optimization as the De-
launay vertices quickly align with the main image gradients. However, the
energy reaches a high plateau later on, when the low temperature prevents
the sampling to propose successive births and deaths that would be necessary
to eventually displace a point to another position, or replace a mark by an-
other one. Including the point relocation and mark alteration kernels allows
the optimization to decrease the energy further. Figure 6.7 also shows that
the optimization reaches high quality configurations faster when we guide
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the birth kernel with the image gradients instead of distributing new points
uniformly.

6.3 Applications

We now demonstrate the versatility of Delaunay point processes on three
Vision tasks involving geometric structures: line-network extraction, object
contouring, and mesh-based image compression. We provide for each appli-
cation a brief discussion of related work.

6.3.1 Line-network extraction

Line networks form important structures in many application domains such
as medical imaging (vessel networks), remote sensing (road networks), doc-
ument analysis (line drawings). While many pixel-based algorithms have
been proposed to detect such structures [WMZS13], pixel chains often need
to be vectorized for further analysis of the resulting planar graph. Several
methods rely on a two-step procedure to extract planar graphs by first gen-
erating an overcomplete graph that is later simplified using optimization
[TBA+13, dGCSAD11, NHS+13, FLB16, MWFU15]. In contrast, our ap-
proach samples dynamic planar graphs over the image without resorting to
a fixed, overcomplete intermediate representation.

Given the Delaunay triangulation of a point configuration p, we model
a line-network by associating each edge with a binary activation variable
indicating if it belongs to the structure or not. Formally, we define the mark
space as m = (me)e∈C2(p) with me ∈ {0, 1} the activation mark of edge e.
We denote C̃2(p) the set of active edges in C2(p).

Energy. We design the data fidelity term to encour-
age active edges to align with strong image gradients. To
do so, we define for each active edge e ∈ C̃2 an energy
term that measures the strength of the image gradient
and its alignment with edge e. Summing over all active
edges gives

Ufidelity(x) =
∑

e∈C̃2(p)

1

|Se|
∑
i∈Se

exp(−µ|∇I(i) · ne|)− γ (6.9)

with Se the pixels covered by e, ∇I(i) the image gradient at pixel i, and ne
the unit vector orthogonal to edge e (see inset).The parameter µ controls the
sensibility to image noise, and γ is an offset to make the unary term negative
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Figure 6.8: Vectorization of line-drawings. Our Delaunay point process re-
covers the center-line of sketchy pen strokes in bitmap line drawings (ac-
tive edges shown in red). The insets shows that our model produces well-
connected structures even in the presence of multiple overlapping strokes and
complex regular patterns.

for strong well-aligned gradients, which encourages their capture by the end
structure. We set µ = 8 and γ = 0.5 in our experiments.

We design the shape prior to penalize isolated edges, short edges, and
sharp angles between adjacent edges. The two last criteria prevent the line
network to zigzag over image contours. We achieve this behavior with two
terms, wl(e) measuring the length of edges and wc(p) evaluating the connec-
tivity of active edges at vertices

Uprior(x) =
∑

e∈C2(p)

wl(e) + β
∑
p∈p

wc(p). (6.10)

Parameter β balances these two terms, we fixed it to 1 in our experiments.
We define the edge length penalty wl(e) to be close to 1 when the edge

is shorter than a threshold, and close to 0 otherwise. While we could use
a Heaviside function to model this penalty, such as discontinuous energy
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Figure 6.9: Comparison with a two-steps optimization for line drawing vec-
torization. When sampling points independently of the marks (middle),
edges of the Delaunay triangulation often miss important line junctions,
which cannot be recovered by a subsequent marking step. Our Delaunay
point process samples points and marks jointly, which favors the emergence
of a well-connected line network (right).

would hinder the stochastic optimization. We use instead a smooth sigmoid
function of the form Sa,b(|e|) = (1 + exp (a(2|e|b − 1)))−1 with |e| the edge
length and a, b two real values. In our context, b corresponds to the desired
minimal length of edges, which we typically fix to 5% of the image diagonal
in our experiments. We set the positive constant a to 5 to shape the sigmoid
like a smoothed Heaviside function.

The connectivity penalty wc(p) should penalize both isolated active edges
and pairs of active edges forming sharp angles. We achieve this behavior by
setting wc(p) = 0 if vertex p has no adjacent active edge, wc(p) = 1 if vertex
p has one (i.e. isolated) adjacent active edge, and wc(p) = Sa,b(δ(p)) if ver-
tex p has more than one adjacent active edge, where δp is the maximal value
of dot products between any pair of active edges around p. We set a = 5

and b = cos( π12) in our experiments.

Experiments. We applied our model to extract line networks from
different application domains, such as vessels in organic images (retina in
Figure 6.1, leaf in Figure 6.10), pen strokes in line drawings (Figure 6.8),
regular edge patterns in man-made textures (tiles in Figure 6.10). Our model
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performs well on this diverse set of images thanks to its generic fidelity
term, which only depends on image gradients (Equation 6.9). The insets in
Figure 6.8 show that our model extracts clean line intersections from rough
drawings. Recovering such topological information is a necessary step for
many line drawing vectorization algorithms [NHS+13, FLB16].

A major strength of our approach over existing two-steps strategies is
its ability to jointly recover the geometric configuration of the Delaunay
triangulation and identify its active edges. Figure 6.9 illustrates the benefits
of this joint procedure compared to a two-steps method that first estimates
the position of the vertices, and then estimates the activation of the edges.
We implemented the first step by sampling points according to an energy that
encourages them to be on strong image gradients and to form long edges,
i.e. Ufidelity(x) =

∑
p∈p(1 − |∇I(p)| − γ) and Uprior(x) =

∑
e∈C2(p)

wl(e).
Note that we cannot encourage alignment of the edges to image gradients at
this point, since we don’t know yet which edges will form the end structure.
The second step identifies these active edges by minimizing the complete
energy (Equation 6.9 and 6.10) using only the mark alteration kernel of
RJMCMC to keep the triangulation fixed. The comparison shows that the
two-steps approach often misses line junctions in the final network because
such junctions are not captured by the triangulation during the first step.

Le
af

T
ile
s

Input Ground Truth Marked point
process [VL14]

Junction-point
process [CFL13]

Ours

Figure 6.10: Visual comparisons with existing point processes. Marked point
process [VL14] produces configurations of mostly disconnected line-segments.
Junction-point process [CFL13] better preserves the connectivity of edges but
recover badly complex junctions of at least four branches (see junctions in
tiles). Our Delaunay point process exhibits better connectivity and accuracy
for both cyclic (bottom) and acyclic (top) line-networks.

Figure 6.10 and Table 6.1 provide qualitative and quantitative compar-
isons of our model to existing line-network extraction methods based on point
processes. Using a marked point process with line segments [VL14] results
in many isolated segments as the algorithm struggles to enforce connectivity.
Junction-point processes [CFL13] better model connectivity, but have diffi-
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Table 6.1: Quantitative comparisons with existing point processes. Our De-
launay point process outperforms marked point process [VL14] and junction-
point process [CFL13] in terms of precision and F-measure while being faster.

Precision F-measure Time

Le
af

Junction-point process [CFL13] 0.59 0.64 73s
Marked point process [VL14] 0.76 0.70 33s
ours 0.79 0.73 20s

T
ile

s Junction-point process [CFL13] 0.46 0.54 227s
Marked point process [VL14] 0.67 0.72 103s
ours 0.70 0.74 70s

culties extracting high degree junctions such as the crossings of the tiles. Our
method extracts well-connected networks and gives higher precision scores.

6.3.2 Line drawing vectorization

In this section, we extend our model of line network extraction to extract
curve networks. In chapter 4 we used a hypergraph to represent the curve
network. Each hyperedge was associated to a curve and to a set of edges
of a topological graph. We now describe how to implement a similar repre-
sentation with Delaunay Point Process and we show on figure 6.11 a curve
network and its associated labelled Delaunay triangulation.

Figure 6.11: Curve network extraction by Delaunay point process. Each
edge is associated to a set of curve indices. Then the curve network is fitted
minimizing the distance between each curves and its associated edges.

Marks definition. Marks are used to regroup Delaunay edges to form
an hypergraph representing the curve network. Formally we define the mark
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space as m = (me)e∈C2(p) with me ⊂ N a set of curve indices. Each edge can
be associated to several curves and a curve can be associated to several edges.
Parameters of curves are computed by minimizing the L2 distance between
curves and their associated edges. Such marks require custom kernels.

Kernel. While we keep the birth and death and the point relocation ker-
nels unchanged, we adapt the mark alteration kernel to support hyperedge
labelling. To alter a mark of a given edge, a curve index can be added or
removed from its set of curve. The index of an added curve can be one of the
indices of the set of curves of the adjacent edges or an index of a new curve.
We define a new kernel called curve merge and split. The curve merge oper-
ator fuses two curves. In practice, for each edge, if its set of curves contains
the index of the second curve, we replace it by the index of the first curve.
The curve split kernel is the reverse operator.

When a curve index is added or removed from the set of curves of an
edge, or when a point of an edge associated to a curve is modified, the curve
is refitted by minimizing the distance between the curve and its associated
edges. The fitted curves are cubic Bézier curves.

Energy We use the energy of the model presented in section 6.3.1 and we
add a simplified version of the energy of chapter 4 weighted by a parameter
which controls the impact on the energy of the curve network.

U(x) = Uline_network(x) + εUcurve_network(x) (6.11)

with ε << 1 and

Ucurve_network(x) = (1− λ)Ufidelity(x) + λUsimplicity(x) (6.12)

Ufidelity is the distance between curves and their associated edges and Usimplicity
is the number of curves. On figure 6.13 we show some results and we com-
pare with the algorithm introduced in chapter 4 on figure 6.12.
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Input sketch Ours on chapter 4 Delaunay Point Process

Figure 6.12: We compare our vectorization method by Delaunay Point pro-
cess with our vectorization method by hypergraph optimization of chapter 4
on a rough sketch with few details and a clean sketch with fine details. Over-
all, the results are visually similar. However, Delaunay Point Process some-
times misses small curves or produces spurious curves on sketchy strokes.
The region based segmentation used in chapter 4 is more robust in such
configuration. Note that we did not implement snapping for Delaunay Point
Process.



90
Chapter 6. Towards a unified algorithm for extraction of

geometric structures

Figure 6.13: Curve network extraction by Delaunay point process. We run
our algorithm on a variety of sketches and on a photograph.
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6.3.3 Object contouring

Object contouring by polygonal shapes provides a compact and structure-
aware representation of the object silhouette. Polygonal contours are par-
ticularly well suited to represent man-made objects like buildings, cars or
furniture that are dominated by straight segments. Existing object polygo-
nalization methods typically start by detecting line-segments, which are then
assembled into polygons. This second step can be done by searching for cy-
cles in a graph of line-segments [SCF14], or by connecting line-segments us-
ing gap filling [ZFW+12]. Another strategy for object contouring consists in
over-segmenting the image before extracting objects as groups of superpixels
[LSD10]. However, obtaining polygonal objects with this strategy either re-
quires a preprocessing step to convert superpixels into small polygons [DL15]
[AS17], or a post-processing step to vectorize chains of pixels into polygons
[WM03], which often introduces inaccuracy. Recent work considered the use
of recurrent neural networks to sequentially predict the vertices of a polyg-
onal object contour [CKUF17], but such a black-box algorithm offers little
control on the complexity of the outcome. Closer to our work are Polygonal
Markov Fields [KvLS07], which are stochastic models designed to sample
polygons in images. Based on local operators that add or remove vertices to
a polygon, these models struggles to explore topological variations and re-
main very slow to converge on natural images. Our model also shares ideas
with the work of Ren et al. [RFM05] who builds on a constrained Delaunay
triangulation to fill gaps in object contours. However, they formulate con-
tour completion as an edge labeling task on a fixed triangulation, while our
method lets the triangulation evolve dynamically to best capture the object
contour.

To achieve polygonal object contouring within our framework, we as-
sociate each facet of the Delaunay triangulation with a binary activation
variable indicating if it belongs to the object or not. The output polygo-
nal contours correspond to the set of edges separating active polygons from
inactive ones, which ensures that the contours are closed by construction.
Formally, we define the mark space as m = (mf )f∈C3(p) with mf = {0, 1}
the activation mark of triangle f . We guide the object segmentation with
a pixelwise probability map H. The computation of this probability map
depends on the application scenario, as detailed in our experiments.
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Figure 6.14: Object contouring on a few example images. Our Delaunay
point process samples polygons that capture the silhouettes of foreground
objects. The user first draws a few scribbles that roughly characterize the
objects of interest (blue lines) and the image background (red lines). Output
polygons preserve details, such as the flower petals and the vase handles,
while having low complexity.
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Energy. We express our data fidelity energy as the sum of two terms,
one measuring the agreement between the binary mark of each facet and the
underlying probability map, the other one encouraging homogeneous colors
within each facet to preserve image contours

Ufidelity(x) =
1

|I|
∑

f∈C3(p)

∑
i∈f

(1−H(i|mf )) + β1 |I|f |σ2I|f (6.13)

where |I| is the number of pixels of image I, |I|f | is the number of pixels
inside facet f , σ2I|f ∈ [0, 1] is the normalized variance of pixel colors inside
facet f , and H(i|mf ) is the probability of assigning mark mf to pixel i. The
parameter β1 balances the two terms, we fixed it to 1 in our experiments.

Our shape prior for object contouring uses the same term as for line net-
work extraction to penalize short edges. In addition, we define a smoothness
term based on Potts model to favor compact polygons. Summing the two
terms gives

Uprior(x) =
∑

e∈C2(p)

wl(e) + β2ws(e) (6.14)

where the edge length penalty wl(e) is defined as in equation 6.10, and
ws(e) = |e| if the two facets adjacent to edge e have different marks, and
ws(e) = 0 otherwise. The parameter β2 balances the two terms, we fixed it
to 1
|I| in our experiments.

Experiments. We tested our contouring model on the Berkeley seg-
mentation dataset [MFTM01] as well as on images with regular man-made
structures, such as facades and urban aerial photographs. For each input im-
age, we compute the probability map H from a few user-provided scribbles,
which roughly characterize the radiometric distribution of the foreground
objects of interest and the image background. We express the probability
H(i|mf ) of a pixel i to belong to class mf as its normalized RGB distance
to the closest color in the set of scribbled pixels belonging to that class

H(i|mf ) =

min
j∈Smf

‖I(i)− Î(j)‖22

min
j∈S0

‖I(i)− Î(j)‖22 + min
j∈S1

‖I(i)− Î(j)‖22
(6.15)

where S0 (respectively S1) is the set of pixels scribbled as foreground (resp.
background), and Î is the input image convolved by a 11 × 11 mean filter
to remove noise. Note that more advanced methods could be used to pre-
dict foreground and background pixels, but this is beyond the scope of this
chapter.
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α = 0.5, |p| = 51 α = 0.005, |p| = 221 α = 0.0005, |p| = 771

Figure 6.15: Trade-off between fidelity and simplicity. Parameter α offers
control over the complexity of the output polygon. A low α value gives more
weight to the fidelity term of the energy, resulting in more complex polygons
that tightly fit to the object silhouettes.

Figure 6.14 shows the results of this model on a variety of images with
organic and man-made shapes. Our method extracts low-complexity poly-
gons that accurately capture the object silhouettes, despite the simplicity
of our color model H. Our method performs best on man-made objects
composed of piecewise-linear contours, such as the facade elements in the
street-level picture and the roofs in the aerial picture. Figure 6.15 illustrates
the trade-off between fidelity and simplicity for different values of parameter
α, keeping the Poisson parameter fixed. Although we cannot control the
exact number of edges in the output polygons, tuning α has a direct impact
on polygon complexity.

Our Delaunay point process is competitive with existing object con-
touring techniques. Figure 6.16 provides a comparison to several two-steps
strategies, for an increasing number of user scribbles. We first compare to
a pixel-based segmentation algorithm (GrabCut [RKB04]), which requires
many scribbles to capture fine details accurately. In contrast, our approach
achieves better segmentations with fewer scribbles by working at the scale of
Delaunay triangles. Converting the GrabCut pixel segmentation to a poly-
gon as a post-process [WM03] reduces accuracy further. We also compare to
running GraphCut segmentation [BK04] on a graph of polygonal superpixels
[DL15], using H(i|mf ) for the unary term and a Potts model for the pair-
wise term. However, we only obtained satisfactory results when using small
superpixels, which result in very complex output polygons. In contrast, our
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Figure 6.16: Comparisons with two-steps object contouring methods given
different sets of input scribbles. The GrabCut pixel-based segmentation
[RKB04] requires many input scribbles to correctly capture horse silhouettes
(see the bottom parts of the legs). Converting the output pixel chains to
polygons using Douglas-Peucker algorithm [WM03] accentuates their defects,
whereas pre-segmenting the input image into polygonal superpixels [DL15]
only give satisfactory results when small superpixels are used, i.e. for high
output complexity. In contrast, our Delaunay point process produces low
complexity polygons that accurately capture the horses, even when only two
scribbles are provided.
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method achieves both high accuracy and low polygon complexity, even when
very few scribbles are provided.

6.3.4 Image compression

Our third application consists in representing an image as a colored triangu-
lar mesh, as illustrated in Figure 6.17. While this geometric representation is
not as flexible as wavelet-based compression schemes [Mal08], we show that
it achieves competitive compression rates on images dominated by smooth
color variations (Figure 6.19). Our approach is inspired by prior work on
Delaunay-based image compression [DI06, DDI06, BPC09], image vectoriza-
tion [LHFY12], and image stylization [GW16]. However, existing methods
employ heuristic or greedy strategies to define the location of the Delaunay
vertices. In contrast, Delaunay point processes allow us to jointly optimize
the position and color of the vertices to best balance image reproduction
with image compression.

We represent a color image as a Delaunay triangulation, where each ver-
tex is associated to a color and each triangle interpolates the colors of its
vertices bilinearly. Formally, we define the mark space as m = (cp)p∈p
where cp is a RGB color. Since we assume that the Delaunay triangulation
is uniquely defined by its vertices, we can store the image compactly as a list
of colored points.

Figure 6.17: Image compression by Delaunay point process. A Delaunay tri-
angulation with only 2.8K colored points (right) is sufficient to approximate
a 262Kpixels image (left) with a structural similarity (SSIM) greater than
0.97. Each triangle is colored by bilinear interpolation of its three vertices.
Here we display the Delaunay edges in grey for visualization.

Energy. We design the point process energy to offer a trade-off between
fidelity to the input image and simplicity of the output mesh. The fidelity
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692000 pixels 154401 pixels 154401 pixels 6291456 pixels

Input images

1171 vertices 6891 vertices 2374 vertices 36572 vertices

Low compression rate (α = 5× 10−4)

470 vertices 2031 vertices 753 vertices 6060 vertices

Medium compression rate (α = 5× 10−3)

174 vertices 503 vertices 442 vertices 704 vertices

High compression rate (α = 5× 10−2)

Figure 6.18: Parameter α offers a trade-off between visual quality and com-
pression rate. A high α value preserves high frequency details and sharp
discontinuities, but gives a low compression rate. Highly compressed results
(bottom) expose the underlying triangulation, especially on fine details and
regular patterns such as the building facades.

term measures the per-pixel error between input and output,

Ufidelity(x) =
1

|S|
∑
i∈S
||I(i)− Ix(i)||22, (6.16)

where S is the set of pixels of input image I and Ix is the image reconstructed
from configuration x using bilinear color interpolation over each triangle.
Ufidelity can be seen as a sum of unary data terms on each facet. The shape
prior penalizes the number of points in the configuration,

Uprior(x) =
|p|
λ
, (6.17)

where |p| is the number of points in configuration x and λ is the Poisson
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parameter of the point process.

Experiments. We implemented the algorithm with the birth and death
and point relocation kernels described in Section 6.2.3. However, we found
that we can avoid using the mark alteration kernel by computing the optimal
color of a mark every time the corresponding point is created or relocated.
We compute this color by minimizing Equation 6.16 over the pixel domain
covered by the facets adjacent to the point.

Figure 6.18 illustrates the effect of parameter α, which weights Ufidelity
and Uprior according to Equation 6.8. A low α preserves well the input image
but generates complex configurations, with typically more points than the
Poisson parameter. Increasing α yields simpler configurations where fine
details are removed.

We compare the performance of our model to state-of-the-art image com-
pression algorithms in Figure 6.19. We perform this comparison on images
with varying levels of realism and noise (a clipart, a studio photograph, and a
real-world photograph). Since our model represents an image as a piecewise-
linear function, it performs best on cliparts that are often composed of linear
color gradients. Our approach is also competitive on studio photographs that
contain large, uniform highlights and soft shadows with little image noise.
However, our approach tends to smooth-out the high-frequency grain of real-
world photographs, achieving a low SSIM score on such images. Note also
that, similarly to other vector graphics representations, our colored meshes
can be rasterized at any resolution.

6.4 Discussion

We have introduced Delaunay Point Processes for the extraction of 2D ge-
ometric structures composed of line segments or polygons. By building on
point processes, our approach simultaneously detects geometric primitives
and group them into structures, which is more robust than performing these
two tasks in sequence. By building on the Delaunay triangulation, our ap-
proach produces well-connected structures and allows more efficient stochas-
tic optimization than point processes based on an Euclidean distance neigh-
borhood. Our three applications demonstrate the flexibility of this frame-
work. We now detail the performance of our method and give some design
guidelines for practitioners who would like to apply it to other structure ex-
traction tasks.

Performance. Because the RJMCMC sampler is memoryless, Delau-
nay point processes are very memory efficient with a constant memory allo-
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Figure 6.19: Comparisons with state-of-the-art image compression algo-
rithms. Our method competes well with image compression standards on
synthetic images (top) and, to a lesser extent, on studio photographs (mid-
dle). Our use of bilinear color interpolation inside triangles is well suited to
the smooth color variations of synthetic images. However, this interpolation
tends to remove the fine grain of real world photographs (bottom). As a
result, our approach achieves low SSIM scores on the portrait, even though
its tendency to smooth out noise may be appreciated in some applications.

cation during sampling. Running times range from a few seconds, e.g. for
the extraction of horse silhouettes on Figure 6.16, to a few minutes, e.g.
for the compression of the parrots on Figure 6.18. Timings depend on the
input image size and, to a lesser extent, on the complexity of the energy
formulation. In particular, the line-network extraction model requires more
iterations to converge than our two other models. The design of kernels
tailor-made for manipulating Delaunay triangulations allows us to reach at-
tractive timings compared to traditional point processes, especially with the
use of an efficient computational geometry library [The17]. Note that recent
work proposed faster optimization strategies for point processes, such as par-
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allel Monte Carlo samplers [VL14] and binary labeling of object proposals
[PRRC16], although these approaches make restrictive assumptions on the
energy. Sampling Delaunay point processes in parallel would require an ef-
ficient GPU implementation of Delaunay data-structures, which is currently
not available in standard geometry libraries.

Design guidelines. We have identified several guidelines to follow to
develop efficient models for Delaunay Point Processes.

• Small mark space. The mark space should only contain a few discrete
values to allow efficient exploration by random mark alterations. While
our model for image compression relied on the much larger space of
24bits colors, we resorted to a closed-form optimization to estimate
the mark value instead of random sampling.

• Simple energy. Simple energy formulations improve convergence stabil-
ity. In particular, we recommend using (i) no more than three energy
terms to avoid unstable parameter tuning, and (ii) as-continuous-as-
possible energy functions so that the Monte Carlo sampler better guides
the current configuration into interesting energy valleys.

• Application-specific kernels. Although the birth and death kernel is
theoretically sufficient to explore the entire configuration space, application-
specific kernels often greatly speed-up the optimization. In particular,
data-driven kernels can concentrate perturbations in the interesting ar-
eas of the input data, e.g. on the high image gradients when extracting
line-networks.

• Reasonably-sized images. Because the Monte Carlo sampler operates
sequentially, timings are strongly impacted by the input image reso-
lution. We obtained competitive performances by running Delaunay
point processes on images with a few million pixels. The paralleliza-
tion of Delaunay point processes constitutes an important research
challenge to scale to high-resolution images.

Perspectives. Besides the optimization challenges, an interesting direc-
tion for future research would be to develop efficient strategies for marking
Delaunay point processes with parametric functions. This would allow the
extraction of more complex geometric structures, such as non-linear color
gradients for image compression. We also would like to investigate the ex-
tension of Delaunay point processes to 3D, opening the door to many vision
problems that involve the extraction of surfaces and volumes.
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Conclusion and perspectives

7.1 Conclusion

In this thesis, we studied the problem of 2D vectorization of clipart and line
drawings. We focus on producing vector graphics compact that are easy to
edit representing the input images in a clean and abstract way.
We give a particular attention to junctions which are the most ambiguous
points in images and also the ones which contains the most relevant infor-
mations.
Our main contribution was to express the vectorization problem as the opti-
mization of an energy which explicitly minimize the complexity of the recon-
struction to favor the simplest interpretation. We design specific operators
to be able to explore the configuration space using Monte Carlo algorithms.
We also propose a generic stochastic algorithm to deal with the problem
of shapes extraction and show results on a variety of vision problems like
line network extraction, image contouring, image vectorization as a mean of
compression and sketch vectorization.

7.2 Perspectives

We can extend our methodology in the following directions.

3D modelling from single rough sketches One direction is to create
a full pipeline for 3D modelling from a single rough sketch. Such a pipeline
combine several key ingredients:

1. extract a clean skeleton from the rough sketches using method based
on deep learning [SSISI16]

2. vectorize the clean skeleton to obtain a vectorial line network using our
contribution on line drawing vectorization (chapter 4)

3. apply our algorithm [FLB15] which reconstructs in 3D a 2D vectorial
line drawing
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The main challenge is to find the 3D position of end-
points of 2D curves. In [FLB15], we assume that the
topology and the connectivity of the input vectorial line
drawing is correct, so that each 2D point corresponds to
a single 3D point. For the inset cube, the input has to
be composed of the 12 lines having the green node as
endpoints. The red nodes correspond to occlusions that
should be ignored. A major challenge is to automatically deals with such
occlusions. A possible solution, in the spirit of our treatment of X-junction
for sketches, is to associate each node with several 3D positions. In other
words, a junction between four curves has to be interpretable either as four
lines meeting at a point or one line occluding another one. These additional
degrees of freedom greatly expand the solution space.

In [FLB15], we limit the reconstruction to lines. Our approach has to
be extended to be able to manage quadratic and cubic Bézier curves as
input and Bézier surfaces as output. While other methods support Bézier
curves [XCS+14], they assume that occlusions are labelled by the user.

Parametric surfaces from point cloud Another direction is to extend
our work of 2D vectorization of line drawings to 3D to extract parametric
surfaces from point clouds. Standard methods like [HDD+94] decompose this
problem in three main steps: the first step is to extract a dense mesh from
a point cloud, the second step is to simplify the mesh and the last step is to
recover a piecewise smooth surface from the mesh. Following our approach
on line drawing vectorization composed by two steps (extracting first a set of
Bézier curves and then grouping them together to generate a clean and com-
pact curve network), we can extract from a point cloud Bézier surfaces and
then group them together in bigger surfaces to simplify the surface network
(ie the 3D parametric model). The main challenge is about junctions. In
3D, there are two categories of junctions: curves which are junctions between
two surfaces and points which are junctions between three or more surfaces.
But intersections of noisy surfaces may not coincide on one vertex. So we
may have to add a term to penalize each junction.

Delaunay point process with curved edges The main limitation of
Delaunay point process is that we only extract piecewise linear geometric
shapes. In section 6.3.2 of chapter 6, we propose a way to sample directly
a curve network. Each edge was associated to several curves and the curves
were fitted to minimize their distance to their associated edges. But we can
go further by replacing edges of the Delaunay triangulation by Bézier curves
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and triangles by Bézier surfaces. In such a case, we would have to not only
sample the vertices of the triangulation, but to also sample the nodes of the
control points of the curves. This algorithm could then be used for extracting
gradient mesh and diffusion curves. For diffusion curves, curved edges would
be labelled as diffusion curve or not. Vertices which are not connected to any
labelled curve would be used to support the finite element method [BBG12]
to compute the diffusion.

3D reconstruction using Delaunay point process For Delaunay point
process, we only showed application on 2D shape extraction problems. How-
ever our framework can work in any dimension. A challenging application in
higher dimensions is the 3D reconstruction problem. State of the art meth-
ods start by extracting SIFT points on images and then use a Delaunay
triangulation to constrain the reconstructed 3D mesh to fill holes on area
with no SIFT points. The main advantages of Delaunay point process for
this problem is that there is no need to extract SIFT point in preprocess and
then build all the algorithm on these SIFT points which are often erroneous
on low contrast areas. The energy could use photo-consistency as a fidelity
term and minimize the number of vertices for simplicity. Such algorithm
could also be used for remeshing.

Finally, instead of sampling a triangulation, we could also directly sample
a parametric surface on the scene. Care must be taken to define a model
with few, stable energy terms. To go further, we could label parametric
surfaces as objects belonging to classes, where two objects are in the same
class if their are invariant by rigid transformation. Such a formulation would
allow the automatic extraction of repetitive elements and their exploitation
to consolidate the reconstruction. Our simplicity term could offer a control
on the number of classes, and as such on the amount of repetition in the
scene.
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List of publications:

Line drawing interpretation in a multi-view context[FLB15]
Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015

Fidelity vs. Simplicity: a Global Approach to Line Drawing Vec-
torization.[FLB16]
Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau
ACM Transaction on Graphics (Proc. of SIGGRAPH), 2016

Photo2ClipArt: Image Abstraction and vectorization Using Lay-
ered Linear Gradients.[FLB17]
Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau
ACM Transaction on Graphics (Proc. of SIGGRAPH Asia), 2017

Extracting Geometric Structures in Images with Delaunay Point
Processes.
Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau
Submitted to IEEE Transaction on Pattern Analysis and Machine Intelli-
gence
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