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Specialized in: Informatics

by

Dora Karvouniari

Retinal waves: theory, numerics,

experiments

Directed by:

Bruno Cessac, Research Director, Université Côte d’Azur, Inria
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rétiniennes  

 

Résumé (1700 caractères maximum espaces compris) 

 

Les ondes rétiniennes sont des bursts spontanées d'activité se propageant dans la rétine en 

développement, jouant un rôle fondamental dans le façonnage du système visuel et des circuits 

rétiniens. Ils disparaissent complètement à la maturation. Comprendre comment les ondes 

rétiniennes sont initiées et se propagent dans la rétine pourrait nous permettre de concevoir des 

protocoles pour déclencher de telles ondes rétiniennes dans la rétine adulte, s'attendant à 

réintroduire une certaine plasticité dans le tissu rétinien et les projections dans le cerveau. Dans 

ma thèse, je me suis concentré sur un stade spécifique de développement des ondes, appelé stade 

II, induit par des cellules spécifiques (SAC) et médiée par le neurotransmetteur acétylcholine. Les 

SAC immatures présentent un comportement d'éclatement spontané dû aux mécanismes 

cellulaires intrinsèques, qui disparaissent complètement lors de la maturation. En outre, les SAC 

immatures sont connectés par des connexions excitatrices, conduisant à des poussées d'activité en 

propagation. L'esprit général de ce travail de thèse est de proposer un modèle pour les ondes 

rétiniennes (i) suffisamment proche de la biophysique pour expliquer et proposer des expériences 

et (ii) suffisamment bien posé mathématiquement pour analyser sa dynamique sur des paramètres 

biophysiques variables. Dans ce contexte, nous avons voulu élucider les mécanismes qui font 

éclater les SAC immatures et comment les ondes rétiniennes commencent, se propagent et 

s'arrêtent. Nous avons proposé un modèle mathématique, fondé sur la biophysique, et à travers la 

théorie des bifurcations, nous expliquons les mécanismes cellulaires sous-jacents possibles des 

ondes rétiniennes, en soulignant les paramètres biophysiques pertinents contrôlant la propagation 

et la disparition des ondes. En plus de cela, nous avons analysé comment l'évolution de la 

conductance cholinergique due à la maturation des récepteurs nicotiniques modifie 

considérablement les caractéristiques de l'onde rétinienne. En particulier, il existe un intervalle 

très étroit de conductance de l'acétylcholine où la taille des ondes rétiniennes obéit à une 

distribution de loi de puissance, suggérant un mécanisme spécifique (homéostatique) stabilisant 

temporairement le réseau SAC dans cette gamme spécifique. En résumé, les résultats de cette 

thèse sont principalement théoriques, mais ils conduisent également à des prédictions 

expérimentales directement liées à la biologie. 
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Abstract (maximum 1700 prints including spaces) 

 

Retinal waves are spontaneous bursts of activity propagating in the developing retina, playing a 

fundamental role in shaping the visual system and retinal circuitry. They disappear completely 

upon maturation. Understanding how retinal waves are initiated and propagate in the retina could 

enable us to design protocols to trigger such retinal waves in the adult retina, expecting to 

reintroduce some plasticity in the retinal tissue and the projections in the brain. In my thesis, I 

have focused on a specific stage of development of waves, called stage II, induced by specific 

cells (SACs) and mediated by the neurotransmitter acetylcholine. Immature SACs exhibit a 

spontaneous bursting behavior due to intrinsic cellular mechanisms, which disappears completely 

upon maturation. Also, immature SACs are connected by excitatory connections, leading to 

propagating bursts of activity.  The general spirit of this thesis work, is to propose a model for 

retinal waves (i) sufficiently close to biophysics to explain and propose experiments and (ii) 

suffciently well posed mathematically to analyse its dynamics upon varying biophysical 

parameters. In this context, we wanted to ellucidate the mechanisms causing immature SACs to 

burst and how retinal waves start, propagate and stop. We proposed a mathematical model, 

grounded on biophysics, and through bifurcations theory we explain the possible underlying 

cellular mechanisms of retinal waves, highlighting the relevant biophysical parameters controlling 

waves propagation and disparition. On top of that, we analyzed how the evolution of cholinergic 

conductance due to the maturation of nicotinic receptors dramatically changes the retinal wave 

characteristics. Especially, there is a very narrow interval of acetylcholine conductance where 

retinal waves size obey a power law distribution, suggesting a specific (homeostatic) mechanism 

stabilizing temporarily the SACs network in this specific range. To sum up, this thesis results are 

mainly theoretical, but they also lead to experimental predictions directly linked to biology. 
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Ithaka

”As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians and Cyclops,
wild Poseidon you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.
Hope the voyage is a long one.
May there be many a summer morning when,
with what pleasure, what joy,
you come into harbors seen for the first time;
may you stop at Phoenician trading stations
to buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfume of every kind
as many sensual perfumes as you can;
and may you visit many Egyptian cities
to gather stores of knowledge from their scholars.
Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.
Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.
And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.” - C.P. Cavafy
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Chapter 1

Introduction

In the natural world, all complex phenomena follow the laws of physics and for centuries
physicists translate these physical rules in mathematical formalisms. For each physical
system, one can try to decompose it to its parts and understand how these parts are
connected to each other. Then, one can extract information, on which are the under-
lying mechanisms, explaining what we observe. Imagine now, trying to understand
something as complex as a network of electrically active biological cells in our eyes,
which are connected to each other by highly complex mechanisms, working together
to manifest a collective activity, which helps in fact the shaping of the visual system
during development. All biological processes involved in this system, are simply too
complex to be translated to a mathematical model that could be analysed. But what
if we could find a simpler system, that has similar physical principles to our network
of cells, and use it as an analogy in order to write down our equations. And so did
Hodgkin and Huxley thought, that the electrical behaviour of a nerve, if we take into
account only currents flowing in and out of a cell membrane, would be really similar to
a classical electric circuit; and so they wrote their famous equations based on this idea
[59]. Since then, mathematical modeling in biology and neuroscience has been vastly
developed and used to understand the principles that govern neural networks. In this
thesis, we are going to use the same approach, in order to describe mathematically
how specific cells in the retina of the eye, exhibit propagating electrical activity in
the process of shaping the visual system during development. In the following, as an
introduction, we discuss the necessary elements for the reader, in order to smoothly
follow the ideas of this work.

1.1 Introduction to the visual system

1.1.1 Visual system and structure

The visual system is part of the central nervous system and its main function is to
process visual information. Although its functionality seems effortless, it carries out
complex tasks including the reception of light and the formation of visual representa-
tions, the identification and categorization of visual objects, computing distances to
and between objects and guiding body movements in relation to the environment. The
visual system includes basically the eyes, the optic nerve up to the Lateral Geniculate
Nucleus (LGN) and the visual cortex. The neural signals, initially processed by the
retina, travel via the axons of the ganglion cells through the optic nerves, dividing and

9
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partially crossing over into the optic chiasm and then traveling via the optic tracts
to the lateral geniculate nucleus (LGN). From the LGN, the signals continue to the
primary visual cortex, where further visual processing takes place.

Figure 1.1: The visual system’s structure. A textbook representation of the visual system
composed of the retina, the LGN and the visual cortex.

1.1.2 The retina and its structure

The retina is a light-sensitive tissue at the back of the eye that covers about 65 percent
of its interior surface. In the middle of the retina is a small dimple called the fovea.
It is the center of the eye’s sharpest vision and the location of most color perception.
Moreover, retina is 0.5mm thick and it is composed of three layers of cell bodies and
two layers of synapses.
Photosensitive cells, called photoreceptors (rods and cones), convert the incident light
into electric pulses (spikes). A radial section of a portion of the retina reveals that
the photoreceptors lie outermost in the retina against the pigment epithelium (see Fig
1.2). Light must, therefore, travel through the thickness of the retina before striking
and activating the rods and cones. Subsequently the absorption of photons by the
visual pigment of the photoreceptors is translated first into a biochemical message and
then an electrical message that can stimulate all the adjacent neurons of the retina.
The input from multiple photoreceptors is integrated and regulated by horizontal cells
which are laterally interconnecting neurons with their cell bodies in the inner nuclear
layer of the retina. Next, bipolar cells, existing between photoreceptors and ganglion
cells, act directly or indirectly, to transmit signals from the photoreceptors to the
ganglion cells. Amacrine cells are interneurons in the retina that are responsible for 70
per cent of input to retinal ganglion cells also. Ganglion cells (RGC), are the output
neurons of the retina, and lie innermost in the retina, closest to the lens and front of
the eye. Ganglion cells axons form the optic nerve, that carries the optic signal to the
visual cortex.

1.1.3 Starburst Amacrine Cells

Starburst amacrine cells (SACs) are a subtype of retinal amacrine cells primarily iden-
tified by the characteristic star-like shape of their dendritic arbor [28]. SACs have two
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Figure 1.2: Retinal structure A textbook representation of the layered structure of the retina
showing the different cell types: photoreceptors, bipolars, amacrines, horizontal, ganglion cells
[19].

main functional roles are: i) their participation in the direction selectivity feature [6]
and ii) generate spontaneous propagating activity in the developing retina [63].
SACs involvement in the direction selectivity feature in the retina computation, is
explained by their morphological characteristics, such as the specific dentritic radial
shape and a desymmetrised distribution of excitatory and inhibitory connections along
the dendritic arbors [4, 60]. Also SACs, within the adult mammalian retina provide
the critical inhibition that underlies the receptive field properties of direction-selective
ganglion cells (DSGCs) [25].

Figure 1.3: Starburst amacrine cells. We clearly see their special shape of their dendritic
arboring [63]
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SACs, in the developing retina, exhibit autonomous rhythmic spontaneous activity,
which generates propagating waves across the retina, called retinal waves, responsible
to shape the visual pathways. SACs are the only cells in the retina that have been
shown to release two neurotransmitters, acetylcholine and GABA [62]. In fact, SACs
form a transient excitatory network, coupled by mutual cholinergic connections, gen-
erating retinal waves. A detailed biophysical modeling of the spontaneous activity of
SACs leading to propagating waves in the developing retina, is analyzed in detail in
this thesis.

1.2 From neurons to neural networks

The overwhelming capacity of the retina to convert complex visual scenes into spike
trains that send information to the visual cortex are largely due to its layered structure
and to dynamical interactions between neurons in the retina. As a consequence and
although it is very important to study the physiology and structure of individual
neurons, in order to fully comprehend the functionality of the retina we need to study
the system as a network, which processes the information via collective activity. Let
us first though describe the components of a neural network in general.

Synapses. Synapses are functional connections between neurons, or between neu-
rons and other types of cells. A typical neuron may have several thousand synapses,
although there are some types that make far fewer. Most synapses connect axons to
dendrites, but there are also other types of connections, including axon-to-cell-body,
axon-to-axon, and dendrite-to-dendrite. Synapses are generally too small to be rec-
ognizable using a light microscope except at points where the membranes of two cells
appear to touch, but their cellular elements can be visualized clearly using an elec-
tron microscope. Chemical synapses are specialized junctions through which cells of
the nervous system signal to one another and to non-neuronal cells such as muscles
or glands 1.5. Chemical synapses allow the neurons of the central nervous system to
form interconnected neural circuits. They are thus crucial to the biological compu-
tations that underlie perception and thought. They also provide the means through
which the nervous system connects to and controls the other systems of the body.
Chemical synapses pass information directionally from a presynaptic cell to a postsy-
naptic cell and are therefore asymmetric in structure and function. The presynaptic
terminal, or synaptic button, is a specialized area within the axon of the presynaptic
cell that contains neurotransmitters enclosed in small membrane-bound spheres called
synaptic vesicles. Synaptic vesicles are docked at the presynaptic plasma membrane at
regions called active zones. Electrical synapses are mechanical and electrically conduc-
tive links between two adjacent neurons that are formed at a narrow gap between the
pre- and postsynaptic neurons known as gap junctions. At gap junctions, such cells
approach within about 3.5nm of each other, a much shorter distance than the 20 to
40nm distance that separates cells at a chemical synapse. In many animals, electrical
synapse-based systems co-exist with chemical synapses.

Compared to chemical synapses, electrical synapses conduct nerve impulses faster,
but, unlike chemical synapses, they lack gain since the signal in the postsynaptic
neuron, is the same or smaller than that of the originating neuron. Electrical synapses
are often found in parts of the neural systems that require the fastest possible response,
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Figure 1.4: Chemical Synapse An artisitc representation of a chemical synapse (source
Wikipedia).

such as defensive reflexes. An important characteristic of electrical synapses is that,
most of the time, they are bidirectional. However, some gap junctions do restrict
communication to only one direction [28].

Connectivity. The connections between neurons are made with chemical synapses
and electrical gap junctions. One principle by which neurons work is neural sum-
mation, i.e. potentials at the post synaptic membrane sum up in the cell body. If
the depolarization of the neuron at the axon goes above threshold an action potential
will occur that travels down the axon to the terminal endings to transmit a signal
to other neurons. Excitatory and inhibitory synaptic transmission is realized mostly
by inhibitory postsynaptic potentials and excitatory postsynaptic potentials. On the
electrophysiological level, there are various phenomena which alter the response char-
acteristics of individual synapses, (such as synaptic plasticity) and individual neurons,
(intrinsic plasticity). Connections display temporal and spatial characteristics. Tem-
poral characteristics refer to the continuously modified activity-dependent efficacy of
synaptic transmission. It has been observed in several studies that the synaptic efficacy
of this transmission can undergo short-term increase, called facilitation or decrease, ac-
cording to the activity of the presynaptic neuron. The induction of long-term changes
in synaptic efficacy, by long-term potentiation (LTP) or depression (LTD), depends
strongly on the relative timing of the onset of the excitatory postsynaptic potential
and the postsynaptic action potential.

1.3 Retinal waves

Long before the retina is responsive to light, in early development wave activity is
observed. The so called retinal waves, observed in many vertebrate species - chicks
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[31], ferrets [36], mice [53], turtles [55], macaques [69] etc. are spontaneous bursts of
activity propagating in the developing retina and playing a fundamental role in shaping
the visual system and retinal circuitry. They emerge due to the conjunction of intrinsic
single-cell properties (excitability and long refractoriness) and network interactions
[63]. In the developing retina, waves evolve during three consecutive stages, mainly
characterized by different types of synaptic transmission. Stage I waves are mediated
by gap junctions, travelling both horizontally across the RGC layer and vertically
across the thickness of the retina, several days before synapse formation [56]. They are
believed to play a role in the formation of the retinal circuitry but they are not yet fully
understood [56]. Stage II waves are elicited by SACs through acetylcholine connections
and propagate laterally accross the retina. Also, their propagation speed of is much
slower than Stage I waves, they occur less frequently and their wave initiation points
and trajectories are highly random [36, 56]. Functionally, they are found to refine the
retinotopic mapping, which is the mapping of the visual input from the retina to the
brain. In the next phase, stage III retinal waves switch their control from cholinergic to
glutamatergic input [15], from the bipolar cells. These late waves are more localized,
propagate vertically and disappear when vision is functional.

Figure 1.5: Stage II retinal waves. An experimental recording of stage II retinal waves in
mice, measuring the local voltage, showing propagating activity [53].

1.3.1 General mechanism of stage II retinal waves

In the work of Zheng et al. [63], which is a benchmark on establishing the cellular
mechanisms undelrying stage II retinal waves, they conclude that in order to gener-
ate these waves, there are 3 necessary conditions (see Fig 1.6). The details of these
conditions are developed throughout this thesis.

• (i) Fast repetitive bursts of spikes;

• (ii) Prolonged refractoriness through slow AfterHyperpolarisations (sAHP)

• (iii) Synchronization via cholinergic connections of SACs

The fast repetitive firing is needed as a source of depolarization for wave initia-
tion given that there is no external input (e.g. from visual stimulation in the early
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Figure 1.6: Illustrating the 3 necessary conditions to generate stage II retinal waves.
Top and Middle. Patch clamp recording of an isolated SAC exhbiting bursting activity. In red,
we mark the two components of bursting. Bottom. Calcium imaging to show that acetylcholine
synchronizes the netowrk of SACs. All figures are from the work of [63].
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retina). Thus, there must be some intrinsic mechanism by which neurons become ac-
tive. As it is shown in [63], SACs exhibit fast oscillations due to their intrinsic cellular
mechanisms, mainly controlled by voltage gated Ca+2 channels. Second, the long re-
fractoriness of SACs, is needed to limit the spatial extent of waves and dictate the
minimum interval between them. Finally, mutual cholinergic excitation, is essential
for the synchronisation of SACs. When the multiple bursts occur in a neighbourhood
of a neuron, SACs are synchronized, and they trigger a wave.

1.4 Modeling stage II retinal waves

The prevalence of retinal waves, observed in many different species and at different
developmental stages, suggests that they are generated by generic collective and non
linear mechanisms that still need to be unravelled. Developing mathematical models
constitute a way to extract these underlying mechanisms. This strategy has been
applied over the last twenty years, essentially for stage II, which are the most well
studied waves.

1.4.1 State of the art

We briefly mention here previous models [34, 38, 54, 12], close to the spirit of the
present thesis. For an extended review, see [50, 51].
Hennig et al. [54] model is, up to now the most elaborated model of stage II retinal
waves with respect to biophysics. Especially, it capture the basis of the sAHP dy-
namics and reproduces prominent statistical characteristics of waves experimentally
observed in mice. As our own model is inspired by [54], we will widely comment it
in the thesis. In this introduction we shortly expose our main criticism: (i) the equa-
tions are not strictly bound to experimental findings and several parameter values are
not biophysically justified. This holds for the other existing models [34, 38, 12]; (ii)
this model requires an exogeneous shot noise current in order to induce the bursting
activity triggering wave propagation: without this noise neurons stay at rest and it
is not possible to reproduce the spontaneous depolarization and bursting observed in
[63]. The same type of ”artificial” source of spontaneous depolarization is used by
[34, 38, 12] as well. Moreover, the noise level needs to be fine tuned so as to reproduce
experimental curves for waves size distribution; (iii) they do not provide a mathemat-
ical analysis of their model. As we discuss in this thesis, such analysis is useful to
unravel generic mechanisms for waves generation, propagation and shaping. Later, a
dynamical system of a reaction diffusion type for stage II waves has been proposed by
Lansdell et al. [12]. Their model is based on Hennig et al.’s with several important
modifications: (i) The sAHP current is modeled in a less biophysical way; (ii) synaptic
interactions are modeled by acetylcholine diffusion in a continuous medium in contrast
to [54] where they use synaptic interactions. As in Hennig et al. model, SACs are
at rest in spontaneous activity and waves trigerring requires a exogeneous noise. The
authors perform a limited mathematical analysis.
The models [34, 38, 54] have compared their numerical results with experimental data
and showed that they are able to reproduce some characteristics of retinal waves such
as the waves sizes, duration, speeds and frequency. However, these models, are mostly
able to reproduce already existing experimental results and not really predict new
ones. Their approaches mainly lie on capturing phenomenologically the features of
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waves and do not model in detail the underlying biophysical mechanisms responsible
for retinal waves generation.

1.4.2 What is this thesis about?

Having discussed the criticism of the state of the art, we have to say that the best
model is the one that answers one’s questions and no single model can answer all of
them. In other words, all models have their limitations as they are constructed so as
to answer specific questions. So, in contrast to these existing models, our approach is
based on the detailed biophysical modeling of the cellular mechanisms of the sponta-
neous activity in immature SACs, addressing questions directly accessible and linked
to pharmacological manipulations on retinal waves.
On theoretical grounds, it is natural to seek generic mechanisms (typically non linear
instabilities) generating such waves and to extract from this analysis a few canonical
parameters (e.g. conductances, characteristic times, reversal potentials etc.) con-
trolling the generation of retinal waves as well as their characteristics. However, a
conventional nonlinear analysis based on spatially extended dynamical systems would
not be entirely appropriate to deal with the specific structure of the retina: discrete
medium, specific connectivity via amacrine cells and electrical synapses, spiking gan-
glion cells, conductances adaptation. Neurons are non linear systems producing a wide
repertoire of dynamical activity, intrinsic, in response to a stimulus or due to change
in physiological properties (e.g. conductances). They are connected in a complex
way, because the graph of connectivity itself is complex, and evolve in time (synaptic
plasticity), but also because the connectivity mechanism are themselves non linear,
involving delays and memory. It’s also a multiscale problem, for the molecular scale
to brain scale, from microseconds to years. As a consequence, the mathematical study
of neuronal network is progressing slowly. Although there exist efficient methods to
study theoretically extended neuronal networks in the cortex (mean-field, neural field,
Fokker-Planck equation), the equivalent studies do not exist, to our best knowledge, in
the retina. This work is an attempt to propose such an analysis, taking into account
the specific characteristics of the retina (here amacrine cells and cholinergic coupling).
An adaptation of the standard non linear analysis to these constraints is therefore
done, integrating chemical synapses and a thorough mathematical analysis of their dy-
namics. Our constructed set of equations constitutes therefore a solid basis to analyze
non linear generation of waves in a neuronal network.
Using our model, we are able to answer several questions both on the single neuron as
well as the network level. The detailed modeling of individual SACs dynamics as au-
tonomous, rhythmic bursters and the mathematical analysis of our dynamical system
using bifurcations theory, helps us identify the key parameters which control burst-
ing in immature SACs. We propose a mathematical model, grounded on biophysics,
which enables us to reproduce the bursting activity of SACs and to propose a plausible,
generic and robust, mechanism that generates it. Based on a bifurcations analysis we
exhibit a few biophysical parameters, especially regulating calcium and potassium ac-
tivity, controlling bursting. We propose a testable experimental prediction on the role
of voltage-dependent potassium channels on the excitability properties of SACs and on
the evolution of this excitability along development. We also propose an explanation
on how SACs across different species can exhibit a large variability in their bursting
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periods, as observed experimentally, yet based on a simple, unique, mechanism.
Extending the single neuron dynamics, we model in detail the mutual cholinergic
synaptic connections between SACs, ending up exploring the mechanisms of SACs
synchronization. We make a thorough analytic and numerical analysis to characterize
how waves start, propagate and stop, providing analytic conditions that define the
waves dynamics. We also provide an extension of our modeling towards a mesoscopic
approach to study the propagation of waves in another spatial scale, that of acetyl-
choline. Finally, we confront our model to experiments, performed by our collaborators,
in order to validate our theoretical findings on the role of potassium channels and the
cholinergic coupling on waves. Also, we use these experimental data to validate our
predicted link to critical systems via power law manifestations for the waves charac-
teristics.
Taken together, with this research we answer to the following questions with respect to
our understanding of how retina works during development. Which is the biophysical
mechanism that generates sustained periodically bursting in immature SACs and which
are the parameters that control it? How can we link the biophysical parameters of our
model directly with experimental measures, creating a framework where experiments
can be reproduced by our model and our predictions could be tested experimentally?
What is the mechanism underlying the loss of SACs excitability upon maturation?
Is the mechanism of waves generation universal accross species given their variability
in their characteristics? How do SACs synchronize in order to produce propagating
waves? How do waves propagate and what is the type of their propagation? How do
waves stop? How do the characteristics of waves depend on the biophysical parameters
of their model and what can we predict for the network’s state? Is the network of SACs
in a critical state and if so, what are the consequences of criticality on waves?
This work has possible future outcomes with respect to retina therapy as well. Un-
derstanding how retinal waves are initiated and propagate in the retina could enable
us to define protocols to trigger such retinal waves in the in vivo adult retina. In-
ducing such waves is expected to reintroduce some plasticity in the retinal tissue and
the projections in the brain. This induced plasticity could have important therapeutic
applications to treat patients or stimulate regeneration of retinal ganglion cell axons
following optic nerve crush.

The structure of the thesis is organized as follows: in Chapter 2, we study the dy-
namics of a single SAC and we propose a mathematical model, grounded on biophysics,
which enables us to reproduce the bursting activity of SACs and to propose a plausi-
ble, generic and robust, mechanism that generates it. Based on a bifurcations analysis
we exhibit a few biophysical parameters, especially regulating calcium and potassium
activity, controlling bursting. In Chapter 3, we model the cholinergic connections and
address mainly the questions ”How do waves start?” and ”How bursting cells synchro-
nize?” in a 1-dimensional study. In Chapter 4, we perform the 2-dimensional study of
retinal waves, characterizing the waves propagations as well as their statistical char-
acteristics. In Chapter 5, we provide a derivation of a transport equation to study the
spatiotemporal dynamics on a mesoscopic scale. In Chapter 6, we confront some of
our theoretical findings to experiments. Finally, in Chapter 7, we conclude the thesis
and give our perspectives for future extensions of this work.
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1.4.3 Methods and tools used in this thesis

Bifurcations theory. Many systems evolving in time are described by differential
equations. Although it is tempting to try and find an analytic solution for these
equations, this is, in most case not possible. Dynamical system theory is a branch of
mathematics/physics, attempting to describe the behaviour of these solutions, with-
out having an explicit representation of them. This is a powerful method, initiated
by Poincare with a lot of applications in mathematics, physics, biology, chemistry,
engineering, economics, and medicine. The mathematical study of changes in the
qualitative behaviour of a set of non-linear equations, upon the continuous smooth
variation of the parameters values, is called bifurcations theory. A bifurcation occurs
when a dramatic sudden change in the behaviour of the dynamical system is caused by
the small smooth change made to a parameter values [73]. In other words, there exist
certain points, acting as ’thresholds’, at which the dynamics change abruptly, called
bifurcation points. Bifurcations theory, provide us with tools to study the behaviour
of complex dynamical systems depending on key parameters, using geometrical argu-
ments, overcoming the difficulty to have direct solutions. It is a powerful tool, that
helps us understand in depth how complex systems behave, allowing us to make predic-
tions and extract mechanisms for the modeled systems. The name ”bifurcation” was
first introduced by Henri Poincare in 1885 in the first paper in mathematics showing
such a behavior [74].

Numerical simulations. In this work we use numerical methods done mostly in
Python (we also use the Brian2 simulator [22] and MATLAB (we use the bifurcations
software MATCONT [58]), but also methods programmed in C in order to simulate
our model, perform bifurcations analysis and also characterize waves.
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Chapter 2

Modeling the bursting activity of
individual immature SACs

Stage II retinal waves, are triggered by a transient network of neurons called Starburst
Amacrine Cells (SACs) showing a bursting activity which disappears upon further
maturation. The underlying mechanisms of the spontaneous bursting and the tran-
sient excitability of immature SACs are not completely clear yet. While several models
have tried to reproduce retinal waves, none of them is able to mimic the rhythmic au-
tonomous bursting of individual SACs and understand how these cells change their
intrinsic properties during development. Here, we propose a mathematical model,
grounded on biophysics, which enables us to reproduce the bursting activity of SACs
and to propose a plausible, generic and robust, mechanism that generates it. Based
on a bifurcations analysis we exhibit a few biophysical parameters, especially regu-
lating calcium and potassium activity, controlling bursting. We propose a testable
experimental prediction on the role of voltage-dependent potassium channels on the
excitability properties of SACs and on the evolution of this excitability along develop-
ment. We also propose an explanation on how SACs across different species can exhibit
a large variability in their bursting periods, as observed experimentally, yet based on
a simple, unique, mechanism. As we discuss, these observations in the cellular level,
have a deep impact on the retinal waves description.
This material is the subject of a paper ’A biophysical model explains the spontaneous
bursting activity in the developing retina’, D. Karvouniari, L. Gil, O. Marre, S. Picaud,
B. Cessac, currently under review in Nature Scientific Reports, [1].

2.1 The Morris-Lecal model

The Morris-Lecar model [13], is a conductance based model, and a simplified version
of the Hodgkin-Huxley equations [59], since it does not describe the fast dynamics of
sodium. The Morris-Lecar equations are particularly useful for modelling fast-spiking
neurons, such as the pyramidal neurons of the neocortex. Morris-Lecar-type models
may prove useful for studying scaling phenomena, such as showing how neural oscil-
lators and oscillatory networks change as the cells grow during development. Finally,
the Morris-Lecar model neuron has been applied to modeling networks of coupled neu-
ral oscillators. Here the simple but realistic parameterization allows one to describe
collective oscillations which depend on the inter-neuron coupling. A model employing
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Morris-Lecar oscillators of different frequencies has been used to explain quite complex
bursting phenomena of coupled neurons. All the above characteristics of the Morris-
Lecar equations, make them the suitable candidate to model to describe the dynamics
of autonomous bursters, such as immature SACs. Evidently, the basic Morris-Lecar
model, as it is two dimensional, is not sufficient to model SACs dynamics, whose
activity is generated by more complex currents. However, it is possible to extend
Morris-Lecar equations by adding the additional currents involved in SACs bursting,
as we will show in the following,

2.2 A biophysical model for bursting immature SACs

In the case of immature SACs, the two key biophysical mechanisms associated with
the emergence of spontaneous bursting during early development are [63]:

• (i) fast repetitive bursts of spikes mainly controlled by voltage-gated Ca+2 chan-
nels;

• (ii) prolonged AHPs modulating fast oscillations, controlled by Ca+2-gated K+

channels.

Concerning (i), the fast repetitive firing during the active phase of bursting gen-
erally results from the competition between a depolarizing and a hyperpolarizing cur-
rent. Experiments in [63] on specifying the ionic channels involved in the spontaneous
bursting of immature SACs, suggest voltage-gated Ca+2 channels for the depolarizing
component. Note that [63] have shown that voltage-gated Na+ channels do not par-
ticipate in the bursting mechanism of immature SACs (bursting activity of SACs was
not altered upon tetrodoxin -TTX- application), thus, dynamics of Na+ channels will
not be considered in our modeling. The ionic channels related to the hyperpolariz-
ing component of SACs bursting have not yet been identified experimentally. In this
work, we propose fast voltage-gated K+ channels play this role. This point is further
developed in the following.

Concerning (ii), the long refractoriness in-between consecutive bursts is controlled
by a slow After Hyper-Polarization (sAHP) K+ current, IsAHP . It was observed by
[63] that IsAHP is mediated by Ca+2-gated K+ channels, and that it resembles the
sAHP observed by Abel et al. [11], generated by specific channels called SK. Follow-
ing these tracks we propose a modeling of ”SK”-like channel (as named in [63]) based
on [54] for the structure of the equations and [44] for the calcium dynamics. The
mechanism of the opening of Ca+2-gated ionic channels is analyzed in detail in the
supporting information section. In order to simplify the cascade of chemical reactions
taking place while opening the sAHP channels, we approximate the channel dynamics
by reducing the process into two discrete steps: a) Four ions of Ca+2 bind to a second
messenger protein called calmodulin, forming a saturated calmodulin complex, CaM;
b) CaM binds to each of the four intracellular subunits of the channel to open it (see
Fig 2.1). This process is mapped to our model through three variables: 1) the vari-
able C which models the intracellular calcium concentration and mainly controls the
gating variables of the sAHP channels, 2) the variable S which models the fraction of
the saturated calmodulin and 3) the variable R which models the fraction of bounded
terminals. This gating mechanism is sketched in Fig 2.1.
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From these observations, we model SACs activity with a conductance based model
of the Morris-Lecar type [13] with additional currents featuring (i), (ii). The model
involves 5 variables whose evolution is controlled by a set of non-linear differential
equations (see Eq (2.2)-(2.8) ): V (t), the local membrane potential, N(t), the gating
variable for fast voltage-gated K+ channels, R(t) and S(t), the gating variables for
slow Ca2+-gated K+ channels and C(t), the intracellular Ca2+ concentration. All
parameters values and the auxiliary functions involved are found in Methods.

The membrane voltage V (t) obeys:

Cm
dV

dt
= IL(V ) + IC(V ) + IK(V,N) + IsAHP (V,R) + σ⇠t, (2.1)

where Cm is the membrane capacitance, IL = −gL(V −VL) is the leak current, with gL
leak conductance and VL leak reversal potential. ⇠t is a white noise whose amplitude
is controlled by σ. The terms IC and IK , respectively corresponding to Ca+2 and K+

currents, are generating the fast Ca+2 oscillations. These currents are described by a
Morris-Lecar model [13] where the voltage-gated Ca+2 current is:

IC(V ) = −gCM1(V )(V − VC). (2.2)

gCM1(V ) is the voltage dependent conductance of the Ca+2 channel (see Eq (2.21)
in Methods).
The fast voltage-gated K+ channel is modeled as:

IK(V,N) = −gKN(V − VK). (2.3)

where the evolution of the fast voltage-gated K+ channel gating variable N(t) is mod-
eled as:

⌧N
dN

dt
= Λ(V )(N1(V )−N), (2.4)

Λ(V ) and N1(V ) are given by Eq (2.22), (2.23) in Methods. Note that equations (2.1)
- (2.4) with IsAHP = 0 and σ = 0, correspond to the Morris-Lecar model with a fast
variable N.

The sAHP current takes the form:

IsAHP (V,R) = −gsAHPR
4(V − VK), (2.5)

where gsAHP is the maximum sAHP conductance. Indeed, 4 bound terminals are
needed to open a Ca+2-gated K+ channel, thus the corresponding conductance is
gsAHPR

4, involving a fourth order nonlinearity.
Now, we model the gating mechanism of the Ca+2 gated K+ channels as follows.

The gating variable R(t):

⌧R
dR

dt
= ↵R S(1−R)−R, (2.6)

the fraction of saturated calmodulin concentration S(t);

⌧S
dS

dt
= ↵SC

4(1− S)− S, (2.7)
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Figure 2.1: Schematic representation of the modeling of the gating mechanism of
Ca+2-gated K+ channels. The correspondence between the channel’s activation steps and
the modeling state variables R,S,C is also indicated.

and the intracellular calcium concentration C(t);

⌧C
dC

dt
= − ↵C

HX
C + C0 − δCgCM1(V )(V − VC). (2.8)

The derivation of the equations (2.6), (2.7), (2.8) is fully justified in Methods.

2.3 Deriving sAHP dynamics

To our best knowledge, the ionic channels type involved in sAHP for immature stage
II SAC is not precisely known. However, Zheng et al. argue in [63] that these channels
could share characteristics with SK channels, thoroughly studied for pyramidal neurons
by Abel et al in [11]. On this basis we modeled SK channels dynamics. SK channels
have four subunits associating to form a tetramer. The SK channel gating mechanism is
controlled by intracellular calcium levels. The precise mechanism is: (i) calcium binds
to the protein calmodulin forming the complex CaM where 4 ions Ca 2+ are fixed to
calmodulin; (ii) CaM binds to a SK channel terminal to open it; (iii) 4 terminals must
be open to let the SK channel open. We now model these different steps.

Saturated calmodulin production. The set of kinetic equations leading to CaM
formation is widely described in M. Graupner’s work [43, 44]. This is a cascade of
equations that we summarize in one kinetic equation, from free calmodulin, M , to the
saturated one, CaM .
Let us call kass (M

−4s−1) and kdiss (s
−1) respectively association and dissociation con-

stants of calmodulin. SetK4
d = kdiss

kass
. If we callM0 = [M ]+[CaM ] the total calmodulin

concentration, and S = [CaM ]
M0

the fraction of saturated calmodulin, we have [M ]
M0

= 1−S
and we obtain a kinetic equation:

dS

dt
= kassC

4(1− S)− kdissS.
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where C is the intracellular calcium concentration. Setting ⌧S = 1
kdiss

and ↵S = kass
kdis

=
1
K4

d

we arrive at:

⌧S
dS

dt
= ↵SC

4(1− S)− S. (2.9)

Note equation (2.7) has a similar form to the one proposed by Hennig et al. in

[54]. However, in their model our term C4 is replaced by C4

K4
d
+C4 which is hardly inter-

pretable in terms of kinetics.

Binding of calmodulin to SK terminals. This corresponds to a reaction:

F + CaM

PFB

!
 
PBF

B,

where F is the density of free terminals, B the density of bounded terminals, PFB

(PBF ) the transition rate from free to bound (bound to free).
Calling R the fraction of bounded terminals, ⌧R = 1

PBF
, ↵R = PFB

PBF
we end up with

a kinetic equation:

⌧R
dR

dt
= ↵R S(1−R)−R = ↵R S − (1 + ↵R S)R. (2.10)

Equation (2.6), is similar to Eq (3) in [54] (⌧R
dR
dt = (↵C + S)(1 − R) − R), with a

remarkable difference: in our model there is no direct dependence on calcium con-
centration whereas the term ↵C in [54] corresponds to a direct binding of Ca2 to a
terminal. Note that, taking the quite large value of the parameter ↵ ( 2400) considered
by these authors, their equation is essentially equivalent to ⌧R

dR
dt = ↵C(1−R)−R =

↵C − (1 +↵C)R with a steady state R = αC
1+αC very close to 1 whenever ↵C is quite

larger than 1. In this case, S plays essentially no role.
Finally, since R is the probability that a terminal is open and since 4 terminals must
be open to let the SK channel open, the sAHP conductance is gsAHPR

4.

Calcium concentration Both variables R and S are driven by intracellular Ca2

concentration dynamics, given by:

⌧C
dC

dt
= − ↵C

HX
C + C0 − δCgCM1(V )(V − VC) (2.11)

Equation (2.11) is a linear approximation of a more complex equation ((2.14) below).
This equation is similar to Hennig et al (Eq (5)) with two notable differences: (1)
We have added a rest concentration C0 avoiding unphysical situations where C can
become negative; (2) the value of parameters are different.

Calcium concentration dynamics. The calcium current crossing a membrane sec-
tion results from the opening of gates in ionic channels. Following [43] the equation
for Ca concentration is (adapted with our notations):

dC

dt
=

G

nCaF



IC
S
− JX(C)− Jp(C) + L

]

1

1 + dCabound

dC

. (2.12)
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Here G = S
V = 6µm−1 = 6⇥ 105 dm−1 is the surface to volume ratio that accounts for

the localisation of the channels at the surface of the membrane, nCa = 2 is the calcium
valence and F = 96500Cmol−1 is the Faraday number. dCabound

dC corresponds to a
quasi-steady-state approximation for the calcium buffering where the bound calcium
concentration (on calmodulin) Cabound is adapted instantaneously to the free calcium
concentration C at each time. Since we have no way to estimate dCabound

dC we shall
consider it is a constant and set 1

1+
dCabound

dC

⌘ Kbound. To alleviate notations we set:

r =
GKbound

nCa F
. (2.13)

The first term in Eq (2.12), r ICS corresponds to an increase of internal Ca2+ con-
centration upon calcium influx (current IC(V )) generated by spikes or, in experiments,
by voltage clamp. As VCa = 50mV this current is positive unless V > VCa.

The second term is −rJX(C), where

JX(C) = ⇢XIX
C

HX + C
,

is the efflux current density through sodium-calcium exchanger (NCX). It corresponds
to an outward through NCX exchangers, contributing to restoring the initial Ca con-
centration. Here, ⇢X is the surface density of the NCX membrane proteins. We take
⇢X = 100µm−2 = 1012 dm−2 (from [44]). IX = 4.8⇥10−19Cms−1 = 4.8⇥10−16C s−1

is the maximum ionic flux through a single NCX channel. This corresponds to 3 +
charges (1.5Ca2+) per ms; HX = 1.8µM = 1.8 ⇥ 10−6M is the half activation con-
centration [43].

Also, in (2.12), Jp(C) is the current density of Ca pumps. We shall neglect this
term from now on. Finally, L is the leakage surface current density representing the
residual conductivity of the plasma membrane. We have not been able to find its value
in the literature.
To summarize Eq (2.12) becomes:

dC

dt
= r



IC
S
− ⇢XIX

C

HX + C
+ L

]

. (2.14)

We also assume that NCX current term is approximated by a linear term. This is
valid if one assumes that calcium concentration C ⌧ HX which is the case in our
simulations.

In order to match (2.14) with the form (2.11) ((2.8) in the text), we set:

↵Ca

⌧Ca
= r⇢XIX ; (2.15)

δCa

⌧Ca
=

r

S
; (2.16)

C0

⌧Ca
= rL. (2.17)

(2.18)
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2.3.1 Full set of equations for the single SAC dynamics

To summarize, the full set of equations in our model with the 5 state variables
V,N,C, S,R is the following:

8
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>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Cm
dV
dt = −gL(V − VL)− gCM1(V )(V − VC)− gKN(V − VK)− gsAHPR

4(V − VK)

⌧N
dN
dt = Λ(V )(N1(V )−N)

⌧C
dC
dt = − αC

HX
C + C0 − δCgC(V )(V − VC)

⌧S
dS
dt = ↵S(1− S)C4 − S

⌧R
dR
dt = ↵RS(1−R)−R

(2.19)

2.4 Rescaled equations and Multi-time scale analysis

The dynamical system (2.19) has 3 characteristic times scales: fast variables V,N (of
order ms); medium C (of order s) ; slow R,S (of order 10 s), fixed by the characteristic
times given in the Table 2.1. In order to make explicit these time-scales separation we
set g̃X = gX

|gL| for conductances (X = C,K, sAHP ); ⌧ = Cm

gL
; t̃ = t

τ ; ⌧̃X = τX
τ , where

X = N,C,R, S. This gives:
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:

⌧L
dV
dt = −g̃L(V − VL)− g̃CM1(V )(V − VC)− g̃KN(V − VK)− g̃sAHPR

4(V − VK)

⌧N
dN
dt = Λ(V )(N1(V )−N)

⌧C
dC
dt = −HX

αC
C + C0 − δCgCM1(V )(V − VC)

⌧S
dS
dt = ↵S(1− S)C4 − S

⌧R
dR
dt = ↵RS(1−R)−R

On the fast time scale, one uses the approximation 1
τX

= 0, X = C, S,R, and
the variables C, S,R are constant. So, fast dynamics reduces to a Morris-Lecar model
(here with a fast variable N) in the presence of an additional current Iext = IsAHP

(constant):

8

<

:

Cm
dV
dt = −gL(V − VL)− gCM1(V )(V − VC)− gKN(V − VK) + Iext;

⌧N
dN
dt = Λ(V )(N1(V )−N).

(2.20)

2.5 Parameters value and auxiliary functions

Units. In all the thesis, physical quantities are expressed in the units displayed in
table 2.1. Having integrated over all the surface of the membrane we omit the surface
units.
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Calibrating parameters from experiments All parameters values are calibrated
with respect to biophysics, found in the literature or fitted from experimental curves
in [11], [62] and [63]. Morris-Lecar tuning parameters V1, V2, V3, V4 were calibrated
(see Fig 2.11), so as to reproduce the experiment of [63] (Fig 4a), where the authors
investigate the ionic mechanisms of the fast oscillations. Note that the bursting regime
is robust to (small) variations of these parameters (results not shown). We tuned the
sAHP parameters taking into account the analogy with SK channels studied in [11]
(fit not shown). Also, we note that the intensity of sAHP observed by Abel et al.
in pyramidal neurons (of order 150 pA) is quite bigger than in stage II SAC. In our
model, this means a lower sAHP conductance gsAHP (gsAHP = 2 nS).

Physical quantity Dimension

Time ms

Potential mV

Capacitance pF

Current pA

Conductance nS

Concentrations nM

Table 2.1: Dimensions of physical quantities used in the thesis.

Auxiliary functions. The dimensionless auxiliary functions involved in the dynam-
ical equations appearing in the model definition are:

M1(V ) =
1

2
[1 + tanh(

V − V1
V2

)], (2.21)

Λ(V ) = cosh(
V − V3
2V4

), (2.22)

N1(V ) =
1

2
[1 + tanh(

V − V3
V4

)], (2.23)

Parameters. The parameters used in the model are displayed in Table 3.1.

2.6 Comparison with existing models

In this section we shortly revisit models of SACs activity in the stage II and compare
them to our model, ([34, 38, 54, 30, 12], for a review see [50, 51]). We would first like to
remark that all models we know are devoted to describe wave activity and do not focus
on thoroughly describing individual SACs dynamics. Especially, none of the models
we know describe the biophysical mechanisms of SACs bursting activity and the role
played by biophysical parameters. Instead the focus was more on having a relatively
simple description of the cell activity with a minimal set of tunable parameters (a
notable example is Butts et al model[34] which has two free parameters governing the
waves properties).

The closest model to ours has been proposed by M. Hennig and collaborators [54]
(referred as Hennig model) (see also the extension by Ford and Feller and the recent
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Parameter Physical value

Cm 22 pF

gL 2nS

gC [3 : 20]nS

gK [1, 20]nS

gsAHP 2nS

VL [−72,−70]mV
VC 50mV

VK −90mV
V1 −20mV
V2 20mV

V3 −25mV
V4 7mV

⌧N 5ms

⌧R 8300ms

⌧S 8300ms

⌧C 2000ms

δC 10.503
nM pA−1

↵S
1

2004
nM−4

↵C 4865 nM

↵R 4.25

HX 1800 nM

C0 88 nM

Table 2.2: Range of values for the parameters used in the thesis.

paper of Xu et al. [9]). Actually, our model has been widely inspired by this work with
several notable differences. As exposed in the Methods section our biophysical analysis
of sAHP dynamics leads to equations and parameters values departing from Hennig
model. Additionally, Hennig model does not consider a fast potassium dynamics and
there is no fast oscillation. The mechanism that mimics SACs bursting is a switch from
low membrane potential level to high one. This switch is determined by an exogeneous
shot noise i.e. a voltage dependent rate modulated Poisson process with a slow decay.
This activity is maintained long enough so that sAHP can be activated, enabling the
cell to return to rest. In our model shot noise is not necessary to trigger activity.
Instead, a cell can spontaneously switch to the bursting state, where it stays until the
sAHP produced by its activity leads it back to the rest state. By spontaneous we
mean literally happening or done in a sudden way, without any planning or without
being forced/without premeditation. In our model this sudden switch is a bifurcation
induced by the mere cells dynamics. The presence of a fast (Brownian) noise facilitates
this transition, but, there is no need for a shot noise. The cell stays in the bursting
state by its mere dynamics, even when it is isolated.

A similar modeling holds in Lansdell et al. model [12]. It is ruled as well by an
excitable Morris Lecar model with a slow potassium variable linked to sAHP. There
is no fast potassium. Here too cells do not burst. As in Henning the cell activity is
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triggered by a random excitatory current and maintained by network dynamics.

Although Hennig or Lansdell model are based on differential equations with many
parameters, none of these authors made a bifurcation analysis of their model. We did
it and we found that there is no bifurcation in a neighbourhood of the parameters
value they choose. In this sense, our model is in strong contrast with previous studies.
This is precisely because cells are close to a bifurcation point that they are able to
exhibit the wide repertoire of dynamics we have presented in close agreement with
experimental findings.

2.7 Bifurcations analysis

Slow-fast analysis. Bursting is an alternation between a rest state and repetitive
firing, often modulated by slow voltage- or Ca+2-dependent processes [49]. As we
show in our model, the joint fast dynamics of Ca+2 and K+ channels generates fast
oscillations while the slow AHP, mediated by Ca+2 gated K+ channels, modulates
slow oscillations, [63]. The conjunction of these two mechanisms generate bursting as
we now explain.

For this, we use a slow-fast time scale analysis. The variable V,N evolve with a fast
time scale of the order of a few milliseconds under the influence of the slow current
IsAHP whose conductance is driven by slow variables C, S,R (time scale - several
seconds). Due to this time scales separation, it is relevant to make a bifurcation analysis
of the fast Morris-Lecar V,N dynamics, in the presence of a constant external current
Iext used as a bifurcation parameter and mimicking the sAHP current (see Methods).
Doing so we neglect the fast variation of IsAHP induced by the fast variations of V in
the term V −VK (see eq. 2.5). A justification of this approximation is seen in Fig 2.3)

Dynamical changes with respect to parameters variations. Our reasoning
relies therefore on a thorough analysis of the bifurcations structure in the fast Morris-
Lecar dynamics. There exist remarkable bifurcations numerical studies of the standard
Morris-Lecar model (see for example [7]), but to our best knowledge there are not such
analyses with our range of parameters and fast potassium dynamics. In [7], the ratio
between the time scale ⌧L = C

gL
of V and ⌧N and the time scale of N (⌧N ) is about

⇠ 1
2000 , while in our fast potassium dynamical case, it is about 2. This has a strong

impact on dynamics. Therefore, the bifurcations results presented here (Fig. 2.5,
2.6, 2.7) are novel. The dynamics of our model involves many parameters and it is
important to study how it behaves when varying certain of them. This allows to
identify drastic changes when crossing critical values (bifurcations), as well as to check
the robustness of the behavior described in this chapter with respect to parameters
variations. In order to do so, we selected the relevant parameters according to the
following reasoning.

We distinguished two classes of parameters. The first one consists of parame-
ters constraining the Morris-Lecar dynamics, namely V1, V2, V3, V4. We verified the
robustness of the scenario described in this chapter when varying these parameters.
Especially, V3 is the half activation potential of the fast potassium channels, playing a
central role in SACs excitability as shown later in the text (see Fig 2.12).

The second class is the set of parameters constrained by biophysics (such as Cm, gL,
etc). Most of them have been fixed based on the biophysical literature and are not
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considered to vary. Here, we choose to study the variation of 4 parameters: Iext because
it features sAHP; gK and gC because, as we show later in this chapter, their variations
allows us to reproduce experimental facts that have not been reproduced before by any
model and to propose a conjecture on the role of the potassium conductance during
development. Finally, we also vary VL, the leak potential. Although a variation δVL of
VL is identical to adding a constant external current gLδVL, this variable allows us to
easily switch between two different regimes of bursting scenarios discussed below. Both
scenarios could be possible as retinal waves are concerned, as argued in the conclusion.
In addition, VL provides an easy control on the bursting period as shown below. We
insist that varying this parameter was used here as a modeling facility.

Dynamically driven bursting. We now illustrate how bursting takes place. We
consider an example with gK = 10 nS, gC = 12 nS and VL = −70 mV and discuss
later the robustness of this scenario to parameters variations. Using the time scale
separation we perform a bifurcations analysis of the fast V,N dynamics, in the presence
of a constant external current Iext used as a bifurcation parameter, mimicking the effect
of the sAHP current. The bifurcations diagram is represented in Fig 2.2 (drawn using
MATCONT [58]), where we have explored a wide range of variation of Iext, (−100 to
+300 pA). We also show the numerical solution of the full system, projected onto the
bifurcation diagram of the fast subsystem, zooming to our regime of interest (see Fig
2.3).

When Iext < IHc ⇠ −5.83 pA, there is a stable rest state (lower red branch in Fig
2.3), where Vrest 2 [−70,−60] mV, coexisting with two unstable fixed points (middle
and upper branch). For Iext = IHc there is an homoclinic bifurcation giving rise to a
stable limit cycle. In the range Iext 2 [IHc , ISN1 ], where ISN1 ⇠ −3.7 pA, the stable
rest state (lower branch) coexists then with a stable limit cycle, corresponding to fast
oscillations, and an unstable fixed point (middle branch). When Iext = ISN1 the stable
rest state coalesces with the middle unstable branch and both disappear with a saddle-
node bifurcation (SN1). For Iext > ISN1 the dynamics has only attractor, the limit
cycle, corresponding to fast oscillations. This cycle eventually disappears by a Hopf
bifurcation at Iext = 250 pA. However, this value of external current is quite beyond
the range of plausible values during the bursting activity of SACs.

From this bifurcation analysis we see that the cell is firing rapidly (limit cycle) in
the absence of an external current. Being in a high voltage state, Ca2+ loads, leading
to a rise of sAHP current. This corresponds, in the bifurcation diagram, to a mo-
tion toward negative current values. This motion goes on until the cell reaches the
homoclinic bifurcation where rapid firing stop. IsAHP is high now, leading to the hy-
perpolarization phase. Then, because voltage is low, [Ca2+] decreases and IsAHP drops
down. Eventually, SAC crosses the SN1 bifurcation point and starts firing again. This
is illustrated in Fig. 2.3. Here, red and black lines correspond to stable and unstable
fixed points and green line represent the amplitude of the limit cycle. The blue trace
is the trajectory of a burst in the plane (Iext = IsAHP , V ). In this scenario, cells burst
therefore periodically, with a frequency controlled by the characteristic times ⌧R, ⌧S
of variables R and S respectively. From a dynamical systems perspective, there are
two important bifurcations associated with bursting: a) bifurcation of the rest state
that leads repetitive firing and b) bifurcation of a spiking attractor that leads to a
rest state [49]. There are two possible types of bifurcations linked to such type of
behavior (i) Homoclinic saddle-node bifurcation and (ii) Hopf bifurcation. We have
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Limit cycles and Homoclinic Orbit
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Figure 2.2: Bifurcation diagram of the fast dynamics (Eq (2.20) in supporting informa-
tion section S2) when the constant current Iext is varied in a wide range. Red: Stable
fixed points. Dashed-dot line: Neutral saddle points. Dashed line: Unstable fixed points. SN
stands for Saddle-Node bifurcation. For further references on this terminology see [45]. Inset.
3D diagram of the variables V,N and the parameter Iext. Blue Evolution of the limit cycles.
Red. Homoclinic orbit. Bursting stops by an homoclinisation of the limit cycle.

therefore shown that (i) holds in our case. The first bifurcation associated with the
breaking of the rest state is the saddle-node bifurcation. The ”spiking attractor”, here
the limit cycle, is created by an homoclinisation. According to the classification of
bursting made by Izhikevich in [49], this corresponds to a ”square-wave” point-cycle
planar burster.

Noise induced bursting. This scenario drastically changes upon the effect of a
sufficiently large negative current. As discussed above we model this effect by a change
of the leak reversal potential VL. A small variation δVL of VL amounts to adding a
constant current gLδVL to the dynamics (2.1) of V . So, somewhat the variation of VL
is redundant with the variation of Iext. Nevertheless, the resulting bifurcation analysis
(not shown) reveals an interesting point. There is a critical value VLSN1

= −71.85 mV
such that, for VL < VLSN1

, there is saddle-node bifurcation giving rise to a stable rest
state Vrest for Iext = 0 coexisting with a saddle and a stable periodic orbit (see also
Fig 2.5). This is in perfect agreement with the bifurcation diagram Fig 2.2. The SN1

bifurcation in Fig 2.2 arises for ISN1 = −3.7 pA. This corresponds to δVL =
ISN1
gL

=
−1.85 mV thus to VLSN1

= −70−1.85 mV. Hence, for VL < VLSN1
, there are two fixed

points: Vrest, which is stable, and Vu which is unstable. They collide for VL = VLSN1

and for VL > VLSN1
periodic bursting takes place.

This observation has a strong consequence on bursting. Indeed, when VL < VLSN1
,

the cell is in a rest state in the absence of external current and it cannot switch to rapid
firing. This is the situation for the deterministic dynamics. However, in the presence
of noise, sufficiently close to the bifurcation point (depending on the noise amplitude)
the random fluctuations around the rest state leads eventually the cell into the rapid
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Figure 2.3: Bifurcation diagram of the full dynamics. The plot shows a represen-
tation of bursting in the plane Iext − V in relation with the bifurcation diagram of
figure 2.2. Red lines correspond to stable fixed points, dashed lines to unstable fixed points,
green lines are the extremal values of voltage fast oscillations. We observe the trajectory of
a burst in the plane (IsAHP ⌘ Iext, V ) (blue). The blue arrow indicates the direction of the
flow. In the fast oscillations regime V is varying periodically, with a fast period, inducing
a fast variation of the term V − VK in the sAHP current, explaining the diagonal motion.
Despite these fast oscillations one sees that the bifurcation is driven by the slow motion on the
branches obtained from the bifurcation analysis assuming a constant current. The conductance
gsAHPR

4 is varying slowly, with the time scale of R, explaining the slow leftwise shift of the
trajectory until the homoclinic bifurcation point is reached.
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firing regime where the mechanism generating sAHP holds similarly to Fig 2.3 (data
not shown).

We are therefore able to capture both the noise driven and the dynamically driven
bursting regimes in a single, unifying model. In the presence of noise the dynamically
driven bursting regime still exists but the period has now random fluctuations. In fact,
the noise smooths the transition between those 2 regimes (see the heat maps in Fig.
2.8).

To summarize, our analysis shows that SACS are, in this range of parameters,
periodic bursters where the period can fluctuate due to noise. We have not been able
to find, in the experimental literature, indications about which regime corresponds to
real SACs. Maybe both are possible, depending on the different species. Nevertheless,
for both proposed scenarii the biophysical mechanism for the triggering of bursting is
the same and it is sketched in Fig 2.4.
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V 
Voltage 

2. Calcium Buffering
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Figure 2.4: Biophysical mechanism for the sustained spontaneous oscillations of
immature SACs. 1. Fast spiking occurs due to the competition between voltage gated Ca+2

(excitatory current) and K+ channels (inhibitory current). 2. Calcium load increases during
the rapid firing phase while the voltage is in a high voltage state. This leads to a slow increase
of sAHP. When sAHP is large enough there is a sharp decay of the voltage (bifurcation) and
the hyperpolarisation phase of the cell starts. As voltage is low, the calcium load starts to
slowly decrease. 3. During the slow offloading calcium stage we observe a refractory phase.
The decrease of calcium concentration induces a slow decay of the sAHP. When calcium is
small enough rapid firing starts again via a new bifurcation.

To our best knowledge this is the first model able to provide a mechanism to account
for the repetitive firing of SACs, which is the condition under which calcium controls
the after-hyperpolarization phase.
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Robustness with respect to parameters variations. We now study the robust-
ness of this analysis to variations of our main parameters. As, later in the chapter,
we discuss the effects of varying the potassium conductance, we first show the ef-
fect of varying Iext and gK , and then, the effect of varying gC and gK . We have
used different software (MATCONT [58], PyCont [29]) and we were not able to get
all bifurcations with them (especially homoclinic bifurcations). So we obtained the
bifurcations diagram by a direct inspection of the phases portraits with respect to
parameters variations. The points shown in the bifurcation maps are sampling points
whereas continuous lines correspond to fit. We note that Hopf and Saddle Node bi-
furcations were obtained identically using the bifurcations analysis software quoted
above.

In Fig 2.5 we have drawn the bifurcation map in the plane Iext, gK for VL = −72
mV. Note that the corresponding bifurcation diagram for VL = −70 mV is deduced
from this one by shifting all curves 4 pA left-wise (not shown).

The vertical line SN (Saddle-Node) stands at Iext = 0.3 pA so that, in the absence
of external current, the cell is in region B where a stable rest state coexists with a
stable limit cycle. As argued above, the transition to fast oscillations is made by noise
(noise induced bursting). In contrast, for VL = −70 mV, the SN lines stands at −3.7
pA. Therefore, in the absence of external current, the cell is now in regionD where only
fast oscillations take place. In both cases, an increase of sAHP drives the cell in the
region A where fast oscillations stop. Note that the sAHP current gsAHPR

4(V − VK)
is of order −10 pA for gsAHP = 2 nS, enough to drive the cell in the region A.

As bursting is a competition between calcium and potassium dynamics we have
also checked the structure of bifurcations when varying the calcium conductance gC
and the potassium conductance gK around the values we have fixed in our model.
The resulting bifurcations diagrams are drawn in Fig 2.6 and 2.7. Here we show the
bifurcations diagrams for two values of VL because they are quite different: VL = −72
mV (noise induced bursting) and VL = −70 mV (dynamically driven bursting). In the
noise induced bursting regime there is a region (D in the figure 2.6), delimited by two
homoclinic bifurcations lines, where the cell is bistable without fast oscillations. This
region does no exist for VL = −70 mV.

2.7.1 Variations of the bursting frequency depend on potassium and
calcium conductances.

To complete our analysis, we show in Fig 2.8 the variation of the inter-burst interval
(⌧IBI) as a function of calcium and potassium conductance. We observe two impor-
tant facts useful for the interpretation of experimental results discussed below. First,
although bursting takes place only in region D of the bifurcations maps 2.7 and 2.6
for the deterministic case, noise (σ = 4pA ms1/2) allows bursting in region C as well,
close to the frontier with region D. Second, the interburst increases when approaching
the border of region D. With VL = −70 mV it can increase up to 2 minutes, whereas,
for VL = −72 mV it can increase to quite bigger values (several minutes). This corre-
sponds to the yellow region in Fig 2.6. The irregular shape of this region, alternation
between yellow and black regions is due to our numerical procedure. We generate
20 trajectories of duration 2000 s and count the number of bursts in each trajectory.
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Figure 2.5: Bifurcations diagram as a function of Iext, gK for VL = −72 mV. In
the bottom right, the bifurcations map is plotted. Points are sampling points obtained by a
direct inspection of the phase portrait whereas continuous lines correspond to fit. ”Hc” means
”homoclinic bifurcation” and ”SN” stands for ”saddle-node”. The capital letters A, B, C,
D, E inside correspond to the typical phase portraits surrounding the bifurcation map. In
these phase portraits, continuous lines correspond to nullclines. ’Si’ stands for ’Sink’, ’Sd’ for
’Saddle’, ’SF’ for ’Stable Focus’ and ’UF’ for ’Unstable Focus’. Sink and Focus correspond
to stable rest state: a small perturbation about this state decay exponentially fast. On the
opposite, saddle and unstable focus are unstable. For Saddle we show the stable and unstable
directions (black lines) as well as the stable (red) and unstable (cyan) manifoldsWs,Wu. ’SPo’
means ’Stable Periodic Orbit’. It corresponds to fast oscillations, plotted in dark blue. The
value of Iext(pA), gK(nS) are indicated top left. In region A, there is a low voltage stable
state. In region B, a stable state with low voltage coexists with a limit cycle (fast oscillations)
separated by an unstable state. When the cell is in the low voltage state, a large enough
perturbation (e.g. noise or other cells action) leads it to fast oscillations. In region C, two
stable states, one with low voltage and one with high voltage, coexist separated by an unstable
point. In region D, the cell only exhibits a fast oscillations regime, reached whatever the
initial condition. Finally, in region E, there is a stable state with high voltage. When varying
parameters, continuous change occurs in the interior of a region (e.g. the period of oscillations
continuously varies), whereas crossing the bifurcation lines leads to abrupt changes.



2.7. BIFURCATIONS ANALYSIS 37

A	

B	 C	

E	

F	

D	

E	

G	

Figure 2.6: Bifurcations diagram as a function of gC , gK for VL = −72 mV. Same
representation as Fig 2.5. In region A, there is a unique stable rest states with low voltage. In
region B two stable rest state with low voltage coexist separated by an unstable point; hence
dynamics is bistable. In region C, a stable rest state with low voltage coexists with a limit
cycle (fast oscillations) separated by an unstable state. When the cell is in the low voltage rest
state, a large enough perturbation leads it to fast oscillations. In region D the cell only exhibits
a fast oscillations regime, reached whatever the initial condition. In region E two stable rest
states, one with low voltage and one with high voltage, coexist separated by an unstable point.
Region F has only one high voltage stable rest state. Finally, in region G, there is a low voltage
rest stable state.
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Figure 2.7: Bifurcations diagram as a function of gC , gK for VL = −70 mV. Same
representation as Fig 2.5 and same comments.
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In addition, we consider that a period of high calcium activity has to last at least 1
second to be considered as a burst. In our simulation, when going far from the frontier
between region C and D, we observe that this sampling is not sufficient; we have rare
bursts giving poor statistics, and, in some cases (black regions in-between yellow ones),
we observe no burst in the sample.

Figure 2.8: Heat map of the interburst period as a function of gC and gK . We sample
gC , gK on a grid with resolution 0.25 nS. For each point, we generate 20 trajectories of duration
2000 s and count the number of bursts in each trajectory. A period of high calcium activity
has to last at least 1 second to be considered as a burst. The heat map show the average value
of ⌧IBI in color log scale. Top: VL = −72 mV (noise induced bursting with σ = 4); Bottom:
VL = −70 mV (dynamically driven bursting).

2.8 Characterizing the effect of noise on the bursting ac-
tivity

At this point, it is important to characterize the effect of noise on the bursting dynamics
of SACs. In [63], recordings show that the bursting periods of SACs are not regular
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and have a certain probability distribution. We mimic this effect as a Brownian noise,
added to the dynamics of the voltage V (see Eq (2.1)). This can be interpreted
as fluctuations in ionic currents due to the random opening of ionic channels. We
observe that the bursting period distribution depends on the level of noise σ. For small
σ, dynamics has fluctuations around the deterministic trajectory with little effects
during the bursting phase. In contrast, low additive noise during the slow (after-
hyperpolarization) dynamics, is enough to accelerate (or delay) the start of a burst.
For higher values of σ the bursting period of cells decreases dramatically. As shown in
Fig 2.9 the presence of noise has also a drastic impact on the shape of the interbursts
intervals distribution. Note that we define an interburst interval numerically by a
simple thresholding method, which is controlled by a suitable Ca+2 concentration
threshold (here 150 nM).
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Μean + std = 14.96 + 0.11 s

Median = 15 s

Μean + std = 14.23 + 1.09 s

Median = 14.35 s

Μean + std = 9.38 + 4.61 s

Median = 11.5 s

Μean + std = 2.12 + 3.03 s

Median = 0.5 s

Figure 2.9: Histogram of bursting periods for different noise levels. We show the
distribution of interburst interval distribution ⌧IBI with different levels of noise. Top left:
σ = 1 pA ms1/2. Top right: σ = 4 pA ms1/2. Bottom left: σ = 8 pA ms1/2. Bottom right:
σ = 20 pA ms1/2. Green curves correspond to fit either by a Gaussian (top), or a linear
combination of a Gaussian and a decaying exponential (bottom).

Experimentally, maybe due to the lack of sufficiently large samples in [63], the exact
shape of the distribution of the interburst intervals is not sharply defined. Therefore,
the comparison with our theoretical results is difficult. However, the experimental
distribution obtained by these authors is definitely not exponential. As we observe
an exponential distribution for large enough σ values, Fig 2.9, this remark provides
us with an upper bound on the level of noise which should be no greater than 8 pA
ms1/2.
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2.9 Explaining the wide range of interburst intervals (IBI)
across species by a unique mechanism

Spontaneous bursting activity in immature SACs has been consistently observed across
various species i.e. mice, rabbits, chicks, turtles, macaques etc., although, the measured
mean interburst interval (⌧IBI) strongly varies [55, 53, 36, 31]. This experimental ob-
servation raises the question whether there exists a single underlying mechanism which
could explain such variability across species, instead of possibly several corresponding
mechanisms for each different species. This variability could be due to distinct involved
mechanisms, but bifurcations theory provides another explanation. Indeed bursting
involves a saddle-node bifurcation and interburst is known to be sensitive to parameter
variations near this bifurcation [35]. This is actually what is shown in the heat maps,
Fig 2.8. The IBI increases when approaching the Saddle Node line.

Obviously, there are several parameters that we could vary. Here, to illustrate
our point and the sensitivity of the ⌧IBI in the model, we vary the leak potential VL.
This parameter can easily been varied in experiments (by e.g. changing the chloride
concentration) but our main point is not here. It is simply to show that we can explain
the wide variability of ⌧IBI across species with a single model and a single parameter.

As we show in Fig 2.10 the variation of VL around the normal physiological con-
ditions of the rest membrane potential (⇠ −70mV ) induces strong variations in ⌧IBI .
The variations are compatible with the variations observed across species although
we do not claim here that the variations across species are due to a variation of VL.
It would nevertheless be interesting to see how ⌧IBI changes upon a variation of the
chloride concentration. We observe that ⌧IBI increases monotonously as VL decreases,
following a hyperbola whose form has been derived analytically (see Methods and Fig
2.10, blue trace). As shown in the paper [35], hyperbola is one the 2 possibilities, cor-
responding to the case where the noise amplitude is small compare to the excitability.
We also observe a sharp transition from a bursting to a non-bursting regime, where
⌧IBI = 0, which corresponds to the loss of SACs excitability.

Based on the shape of our theoretical curve, we show that ⌧IBI exhibits a strong
asymptotic behavior around a very narrow regime of the rest potential (VL = −70 mV
, δVL ⇠ 2 mV). This means that depending on slight variations of physiological con-
ditions (δVL ⇠ 2 mV) a SAC could exhibit very variable bursting periods, explaining
how different species exhibit variability in ⌧IBI of immature SACs. The analytic form
of the function ⌧IBI(VL) is the following (see Methods for detailed derivation):

⌧IBI =

(

0, VL  VLc ;
Kp

VL−VLc

, VL > VLc ;
(2.24)

(where K = 0.93 s mV
1
2 and VLc = −72.5 mV , for σ = 4 pA ms1/2, gK = 10, gC = 12

nS). The value K,VLc are obtained from fit. Note that for VL  VLc ⌧IBI is not defined
because neurons do not burst anymore. We set it to zero by convention (black color).

To compare with experimental results, we show in the same figure ⌧IBI for different
species as found in the literature. We have not been able to find ⌧IBI for turtles and
chicks. We found the mean interwave intervals ⌧IWI instead. In order to extrapolate
to ⌧IBI in these cases, we used a common constant scaling factor of 3, based on the
ratio between ⌧IBI and ⌧IWI for rabbits and mice found in [63] and [37] respectively.
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Besides this narrow regime a decrease of VL results in a sharp disappearance of
bursting activity, which means that bursting activity stops after a limit value of VL.
As exposed above, decreasing VL is equivalent to add a constant negative current in
the model. In real SACs, this inhibitory current could correspond to a change in the
intrinsic inhibitory ionic currents of individual SAC or to external inhibitory inputs
from other layers of the retina upon maturation. These two factors should drive the
disappearance of bursting activity and subsequently the loss of SACs excitability. On
the other hand, an increase of VL leads to a gradual decrease of ⌧IBI towards zero,
meaning that in this regime of parameters, SACs tend to burst repeatedly, without a
refractory period. This scenario is not observed under normal physiological conditions,
but could be tested experimentally by varying VL pharmacologically.

Finally, in the experimental paper [71], it is found that the bursting period in-
creases upon maturation (experiment in P1-P2 rabbit SAC). In light of the present
model-driven analysis, this could be linked to a change of intrinsic properties of SACs
during development although it is not clear to us how synaptic inhibition acts on the
disappearance of bursting activity of immature SAC across species.

Taken together, the hyperbolic behavior observed near a saddle-node bifurcation
provides a generic mechanism explaining the wide variation across species of ⌧IBI

upon a tiny variation of a physiological parameter suggesting that bursting activity
in immature SACs share a common mechanism across species. Obviously, we have
no guarantee that this variation is, in real SACs, induced by a variation of the leak
potential VL. But what matters here is that this wide variation of period is expected
near a saddle-node bifurcation when imposing an external current, no matter which
biophysical mechanism effectively drives this current and which parameter controls it.

2.9.1 How do the average interburst depend on the parameter VL.

In this section we analyze how the interburst interval ⌧IBI depends on the leak potential
VL. In particular, we justify Eq (2.24). We vary the leak potential VL around the value
VL = −70 mV, value for which the bifurcation diagram in Fig 2.2, 2.3 has been drawn.
We note δVL this variation which corresponds to adding, in Eq (2.20), a constant
current IL = gLδVL, positive or negative, playing the role of the external current in
the abscissa of the bifurcation diagram.

As explained in the text there are two distinct regimes where the interburst in-
terval ⌧IBI is constrained by different factors. In the noise induced bursting regime
(VL < VLSN1

) bursting is induced by noise. When the SAC is in the rest state, the
random fluctuations around this state can lead it into the oscillatory regime where the
mechanism generating sAHP holds similarly to Fig 2.4, with an important difference:
at the end of the cycle, when IsAHP reaches its minimum, the SAC stays at rest. The
stochastic dynamics around the rest state is described, with a good approximation, by
a Ornstein-Uhlenbeck process (upon neglecting the non linearities coming from gC and
gK , which are small in this range of membrane potential). Therefore, fluctuations of V
are Gaussian with a mean Vrest and a variance proportional to σ, the noise intensity.
Thus, the probability to cross the bifurcation threshold and enter into the bursting
regime can be easily computed. This is a sigmoid with a slope proportional to 1

σ .
As a consequence, bursting can take place when VL < VLSN1

, because of noise, but
the probability to burst decreases rapidly when VL decreases, after a threshold value
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Figure 2.10: The behavior of the bursting period near a saddle-node bifurcation
explains variability across species. Red: Computing the dependence of ⌧IBI upon the
variation of VL with our model. Blue: A 2 parameters fit of the simulated data with the curve

K

2
p

VL−VLc

for VL > −72mV . Note that this fit does not hold true away from the asymptote.

(see Methods). Red: Values of experimentally measured interburst intervals for different species
mapped to our results (see text).
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VLc ⌘ VLc(σ) depending on σ. Formally, the bifurcation value VLSN1
is shifted to VLc ,

explaining this term in Eq (2.24). For VL < VLc the probability to induce bursting by
noise is so small that we consider it vanishes. Here ⌧IBI is not defined anymore but
we set it to zero in Eq (2.24) by convention.

In the dynamically driven bursting regime (VL > VLSN1
), ⌧IBI is constrained by

two times: (i) the time t1 to get in a neighborhood of the bifurcation point VSN1 in
Fig 2.3 where bursting starts (essentially determined by the sAHP) and (ii) the time
t2 to leave this neighborhood. When VL is quite larger than VLSN1

, ⌧IBI is largely
dominated by t1. Here, ⌧IBI decreases slowly as VL increases. Indeed, the higher
VL the higher the positive current IL and the more neurons are prone to bursting.
When VL becomes too large, IsAHP is not enough to stop the oscillatory phase and
⌧IBI = 0. Close to VLSN1

, we can use the normal form of the saddle-node bifurcation

for the variable V : dV
dt = −(VLSN1

− VL) + (V − Vs)
2 where Vs is the rest state

at the bifurcation point. In this approximation, the rest state, existing only when

VL < VLSN1
, is approximated by Vrest ⇠ Vs −

q

VLSN1
− VL. The linear stability of

this point is described by the linearized equation dx
dt = −2x

q

VLSN1
− VL where x is a

small perturbation around Vrest. This equation has a characteristic time 1

2
q

VLSN1
−VL

which diverges as VL ! VLSN1
from below. When VL >⇠ VLSN1

the normal form
still holds but there is no fixed point anymore. Nevertheless, around the point where
bursting starts the flow has a very small amplitude. As a consequence, the time to
leave a neighborhood of this point is also of order 1

2
q

VL−VLSN1

. In this case ⌧IBI is

largely dominated by the time t2 to leave the neighborhood of the transition point
where bursting starts. In the absence of noise, we have thus ⌧IBI = K

q

VL−VLSN1

for

VL > VLSN1
. With noise the threshold value VLSN1

is shifted to VLc as explained above.
This fully justifies Eq (2.24).

2.10 The role of the fast potassium conductance in burst-
ing activity

We now address in further detail the potential role of the fast voltage-gated potas-
sium channels used in our model to produce bursting (see also the work of E. Marder
and collaborators, in a different context [8]). Zheng et al. [63] propose that the ionic
channels mainly involved in the bursting activity of SACs during early development
are voltage-gated Ca+2 channels. In this work the hyperpolarizing current involved is
not characterized and these authors don’t mention potassium channels before the end
where they perform experiments with TEA (see below for more details). We proposed
above fast voltage-gatedK+ channels as a source of fast inhibition necessary for the ac-
tive phase of bursting of SACs. We now justify this claim based on several experiments
made by Zheng et al., interpreted in the context of our bifurcations analysis.

We first show (Fig 2.11) how our model accurately reproduces a key experiment
of [63]. Here, the authors artificially control the triggering of fast oscillations by
applying a short current pulse (150 pA for 60 ms) to individual immature SACs. Also,
upon the pharmacological application of Cd+2, which blocks all Ca+2 related channels
(voltage-gated Ca+2 and sAHP), they show that no oscillatory activity is triggered
upon stimulation, but only a raise in the plateau of the level of the voltage. The
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corresponding figure of their experiment in the paper [63] has been reproduced in Fig
2.11A (with the kind authorization of the authors). As shown in Fig 2.11 B, we are
able to reproduce reliably this result using the fast K+ channels described in Eq (2.3).
Particularly, we are able to simulate the emergence of fast oscillations during a short
current pulse, with an AHP phase after the end of the pulse (see green curve in Fig
2.11 B).

This is interpreted as follows from the bifurcations diagram Fig 2.5. In the absence
of an external current the cell is in region B so it is in a rest state (recall that the
vertical line of SN stands at Iext = 0.3 pA). A pulse of current of 150 pA drives the
cell in region D where it fast spikes. Removing the current pulse drives back the cell
in region B but now the cell is on the limit cycle where it displays fast oscillations.
Then sAHP takes place eventually leading the cell back to the rest state. This scenario
holds for VL = −72 mV. In order to have the same for VL = −70 mV one needs to
clamp the voltage so as to maintain the cell in the rest state. There is no mention of
clamping in Zheng at al. paper which is a pitty as it would have allowed us to decide
in which regime (dynamically driven bursting or noise induced bursting) SACs were
in their experiment. We emulate as well the disappearance of the oscillations observed
by these authors, upon blocking all Ca+2 related channels (voltage-gated Ca+2 and
sAHP), setting, in our model, the corresponding conductances to zero (see orange
curve in Fig 2.11 B). We found that no oscillations are exhibited without the presence
of the fast K+ current (gK = 0), only a rise from the rest state in the voltage plateau
during the current pulse, illustrating that the depolarizing current (voltage-gated Ca+2

channels) is not sufficient to produce spontaneous bursting activity.

These observations support therefore our proposition that the hyperpolarizing com-
ponent of the fast oscillations observed in immature SACs are driven by fast voltage-
gated K+ channels.

2.11 Exploring the role of the potassium conductance in
the loss of SACs excitability upon maturation

SACs in the retina of vertebrates lose their ability to spontaneously burst once they
reach a certain stage of development - different for each species. This transient ex-
citability is a key process in the developing retina and the shaping of the visual system.
It is not yet clear which physiological properties of SACs change upon maturation
causing the abrupt change from autonomous bursting to rest state. So far, to our best
knowledge, no experiment has studied in detail the biophysical properties of immature
SACs at the level of each ionic channels involved during this window of development.
However, there are some indirect experimental implications which help us extrapo-
late a possible scenario on how SACs change their properties upon maturation. In
[4] Ozaita et al show that mature SACs not only stop bursting but also cannot be
depolarized beyond −20mV . A specific type of inhibitory voltage gated K+ channels,
Kv3, is responsible for this property, providing an electric shunt to SACs somas. In
the contrary, in the developing retina, SACs are autonomous bursters, depolarised be-
yond mature SACs (⇠ −5mV ) [63]. Therefore, upon maturation, the characteristics
of voltage gated K+ channels evolve, leading to a drastic change in SACs activity. In
our model, these observations can be reproduced by the variation of two parameters;
i) the conductance gK and ii) the half-activation potential V3 of the voltage gated K+
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Figure 2.11: Modeling the cellular mechanisms generating bursting activity in im-
mature SACs. A. Experimental investigation of the cellular mechanisms involved in bursting
activity by [63]. Gray: Fast sub-threshold oscillations and subsequent AHP generated by a
short pulse of current of amplitude 150 pA and duration 60 ms. Black: Blocking of all Ca+2

related channels by Cd+2. No oscillations are exhibited. B. Simulating the experimental
conditions of [63] Green: Reproducing fast sub-threshold oscillations and subsequent AHP
emulating the experiment of [63]. Application of a current step pulse of 150 pA for 60ms. Or-
ange: Oscillations disappear when Ca+2 related conductances are set to zero. Red: Blocking
the oscillations upon setting the voltage-gated K+ conductance to zero.

channels. The variation of the conductance gK accounts for a change in the expression
of the channels upon maturation whereas the variation of V3 mimics the change in the
level of depolarization in SACs.
On this basis, we reproduce with the model an experiment by Zheng et al. 2006 [63].
The results of their experiment are shown in Fig 2.13, left column (with the kind au-
thorization of the authors), whereas the model results are presented in Fig 2.13, right
column. Our results are based on a bifurcations analysis of the model in the plane
V3− gK , which reveals a wide region of parameters where bursting takes place. In Fig
2.12 we show, on the left, the bifurcation diagram in the plane V3, gK and on the right,
a heat map, similar to Fig 2.8. This map makes easier the interpretation of Zheng et
al experiment which mainly addresses the following questions.

• How does SACs autonomous bursting stop? Zheng et al. consider first isolated
SACs (all synaptic connections are inactivated with a pharmacological cocktail).
While SACs are bursting spontaneously (i.e. without the influence of the other
cells) at P4 (first row, left in Fig 2.13 ), this spontaneous activity disappears at
P6 (second row, left). We can easily reproduce this observation (Fig 2.13 , first
and second row, right) by moving from region C in the bifurcation diagram to
another region. A simple transition to region A is obtained by decreasing the
half-activation potential V3 of the fast K+ channels, leading to the saturation of
SACs depolarization below −20mV observed in mature SACs. A concomitant
variation of gK is also possible leading to stop bursting as well. To illustrate this
scenario, we set gK = 14 and V3 = −35mV as an indicative example (see Fig
2.13).
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Figure 2.12: Bifurcation diagram and heat map of ⌧IBI in the plane V3 − gK . Left.
The bifurcation diagram uses the same representation as Fig. 2.5, 2.6, 2.7. In region A, there
is a stable fixed point with low voltage. In B, 2 stable fixed points with low voltage coexist
with a saddle-point. In C a stable fixed point with low voltage coincides with a stable periodic
orbit giving rise to fast oscillations. In region D there are 4 fixed points (2 stable, 2 unstable)
and a limit cycle. In region E there is a stable fixed point with low voltage and a stable
fixed point whose position depends on gK and V3. In region F there are five fixed points, 2
stables. Region G contains 2 stable fixed point (a sink and a focus) separated by an unstable
fixed point. Bursting takes place in regions C and D. Right. Heat map of the ⌧IBI . Same
representation as Fig 2.8. We sampled the plane gK , V3 with a step of 0.5 nS on the gK axis
and 1 mV on the V3 axis, explaining the irregular shape of the border. We show the ⌧IBI is
logarithmic scale.

• How can bursting be restored in further mature SACs? Zheng et al. show that
bursting activity can be re-initiated pharmacologically in P8 (stage III) and P22
retinas with chemical agents upon i) blocking all synaptic connections (gap junc-
tions, cholinergic, gabaergic and glutamatergic synapses), especially inhibition
and ii) decreasing the conductance of the fast inhibitory K+ channels. This
suggests that upon maturation, bursting is in fact suppressed by alterations in
the intrinsic properties of individual SACs. Particularly, in the same prepara-
tion (P8 isolated SACs), the authors apply a voltage-gated K+ channel blocker
tetraethylammonium (TEA), which results in restoring bursting activity in iso-
lated mature SACs (Fig 2.13, third row, left). A potential type of potassium
channels involved is the TEA (tetraethylammonium)-sensitive K+ of the Kv3
family. Therefore, this experiment emphasizes once again the potential role of
fast potassium channels and especially the Kv3 family. We mimic the blocking of
these channels in our model by decreasing the conductance gK . When gK is small
enough, we reproduce the bursting restoration (Fig 2.13 , third row, right). This
example corresponds, in the heat map, to a motion from (gK , V3) = (14,−40) (re-
gion B) to (gK , V3) = (4.5,−30) (region C). Note that the chosen value V3 = −35
mV allows us to fix the maximal depolarization to −20 mV, the value observed
by Ozaita et al. [4] for further mature SACs. Remark that the lower branch of
the heat map 2.12 (region between G and B in the bifurcation map) corresponds
to interburst intervals of the order of 8−16 min, so according to SACs recording
not to a biophysically plausible bursting regime.

• How can bursting be restored in adult SACs? Upon further maturation, Zheng et
al. show that the restoration of bursting in P22 SACs (late stage III-before eye-
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opening) depends on the interplay between the change of the intrinsic properties
of K+ channels strong inhibition (TEA application) and blocking the strong
inhibitory (gabaergic) input induced by other amacrine cells at this phase (Fig
2.13, fourth and fifth row, left). Neither of these conditions suffice alone for the
bursting restoration. To model the gabaergic inhibitory input to SAC at P22
coupled SACs we add a constant external current Iext = −10 pA whereas the
effect of TEA is modeled by decreasing the gK conductance. This conductance
is not set to 0 because TEA blocks only one subtype of kv3 channels while there
exist several of them (see below) in the developing retina. The whole operation
has the effect of suppressing bursting (red trace top) and corresponds moving
from region B to region A in Fig. 2.5. Bursting re-initiation is obtained by
setting back the current Iext to zero.

Along these lines, we have been able to reproduce the effects of the pharmacological
manipulation performed by Zheng et al. at the three separate ages; P4, P8 and P22
in Fig 2.13.

A B
Experiment (Zheng et al. 2006) Model

Figure 2.13: A. Pharmacological manipulations made by [63] in order to re-
store bursting activity in rabbit SACs at different ages. B. Varying the potas-
sium conductance gK and the half-activation potential V3 changes the excitabil-
ity of SACs in our model. Blue: Modeling the bursting activity of isolated P4 SAC,
gK = 10nS, V3 = −25mV . Green top: Modeling P8 isolated SACs where we see no bursting
activity, gK = 14nS, V3 = −35mV . Green bottom: Decreasing gK = 4.5nS, V3 = −35mV we
restore oscillations. Red top: Modeling P22 coupled SAC where there is no bursting activity
upon treatment with TEA. A constant external current Iext = −10pA is applied to coarsely
mimic the gabaergic inhibitory input to SAC at this stage of development. To account for
the TEA application we take a lower value of K+ conductance gK = 4.5nS (V3 = −35 ).
Red bottom: Restoration of bursting at P22 by removing all inhibitory synaptic connections,
Iext = 0pA. Removing inhibition from mature amacrine circuitry, along with blocking a sub-
family ofK+ channels with TEA, is enough to re-initiate bursting activity. The values proposed
here for V3, gK are only indicative. Also, note that we reproduce with our model the results
of [63] with both of the proposed bursting scenarios, but here we only show the dynamically
driven one.
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2.12 A conjecture on the role of the KV3 channels in the
loss of SACs excitability upon maturation

Taken together, we predict that bursting occurs in immature SACs, during a certain
age window while fast potassium channels are under-expressed. Upon development,
we make the hypothesis that potassium channels increase their expression and spon-
taneous bursting stops when the inhibitory K+ dominate the dynamics over the ex-
citatory Ca+2 channels. Also, we suggest that upon maturation, the half activation
potential V3 decreases in order to provide a saturation in mature SACs activity as
shown in [4]. This theoretical prediction could be experimentally tested, by following
the expression of the fast K+ channels in SACs during development and showing a po-
tential increase of their activity along maturation. Moreover, we propose that the fast
voltage gated K+ channels involved is the Kv3 family. More specifically, two subtypes
of fast voltage gated K+ channels have been identified [52, 4], both belonging to the
kv3 family: i) IK , delayed rectifier currents, sensitive to TEA (tetraethylammonium)
emitted by subunits Kv3.1 and Kv3.2 and ii) IA A-type currents, sensitive to 4-amino-
pyridine (4AP), emitted by subunits Kv3.3 and Kv3.4 [52] which are not sensitive
to TEA. The apparition and evolution of such channels in SACs during development
has not been studied yet. However, in the experiment of [63], the application of TEA
in immature SACs (rabbit ⇠ P8) was crucial to the reinitiation of bursting activity.
This finding implies that, during development TEA sensitive K+ channels are already
expressed in SACs. On this basis, we propose that the specific type of K+ channels
responsible for the spontaneous bursting activity during development and eventually
its loss upon maturation, is the IK rectifier currents of the Kv3.1 and Kv3.2 subtype.

To conclude, we propose that, during early development (< P6), kv3 channels
are under-expressed, allowing a competition between inhibition (K+) and excitation
(Ca+2), leading SACs to burst (see Fig 2.13, blue trace). Upon maturation, the ex-
pression of these channels could evolve increasingly, leading to stronger inhibition,
dominating fully the competition of inhibitory/excitatory channels, by suppressing os-
cillations completely. Therefore, we suggest that the evolution of the expression of fast
Kv3 channels could be part of the transient process that leads to a complete loss of
excitability of mature SAC. Our theoretical results indicate that the level of the ex-
pression of Kv3 channels could increase gradually upon maturation, which essentially
means that the conductance of these channels would increase as well as other physi-
ological properties of the channels such as kinetics parameters like the half-activation
potential (fixing the characteristic activation sigmoid of the channel). This type of
experiment could elucidate the exact role of Kv3 channels in the intrinsic properties
of the excitability of SACs.

2.13 Discussion

In this chapter we have proposed a model for spontaneous bursting of SACs, one of
the key ingredients for the initiation of stage II retinal waves. This leads us to propose
several conjectures and possible experiments, directly inspired from the model analysis.
We would like now to develop other aspects, not considered in the main text.
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The role of inhibition Spontaneous bursting activity in immature SAC has been
observed consistently across species i.e. mice, rabbits, chicks etc., but with different
characteristic bursting periods. In Fig. 2.10, we show the relationship of the average
bursting period ⌧IBI with respect to the value of the leak potential VL in our model,
which could be translated on how an effective inhibition affects the characteristics of
the bursting activity and even stops it completely. The source of such an inhibition
could be linked either with intrinsic cell transient properties or inhibitory inputs from
other layers of the retina (i.e. bipolar cells) upon maturation. As a result, we believe
it would be worth investigating experimentally, if our theoretical result in Fig. 2.10
could be reproduced.

Pharmacological control. Although this model has many parameters, bifurcations
analysis allows us to highlight several of them, gC , gK , V3 and VL, controlling important
aspects of dynamics, in direct links with experiments. Varying those parameters have
a deep impact on SACs dynamics as shown e.g. in Fig 2.13. This is possible via a
pharmacological control (e.g. TEA to vary K conductance, Cd to vary Ca conductance,
chlorid concentration to vary VL . . . ). It would be interesting to try and confirm
experimentally our bifurcations diagram with such experiments. In addition, this
study opens the possibility that mature SACs are still potential bursters. Then, by
a suitable pharmacological treatment, guided by the bifurcations analysis, they could
start to burst in mature retinas. Would this restore waves as well, knowing that the
structure of mature retinas is quite different from stage II ? A wave activity has been
recently produced in mature mice retinas [20]. gK and gC could allow the control and
arousal of retinal waves in adults. This deserves however further investigations.

The role of bursting in the spatial structure of SAC Mature SACs are found
to be responsible for the direction selectivity feature in the retina computation. Es-
pecially, SAC have specific morphological characteristics such as a specific dentritic
radial shape and a desymmetrised distribution of excitatory and inhibitory connec-
tions along the dendritic arbors, which explain as well their functionality linked to
direction selectivity[4]. An interesting question to ask would be what is the role of
bursting during development in the shaping of such special morphological characteris-
tics of mature SAC and how the inhomeogeneity in SACs structure is shaped.



Chapter 3

The cholinergic coupling: a
1-dimensional study

In [63], the second prerequisite for the emergence of retinal waves, in addition to intrin-
sic bursting activity and long hyperpolarisation, is cells synchrony. In the following,
we address mainly the questions ”How do waves start?” and ”How bursting cells syn-
chronize?” helping to push a step further towards answering these questions from a
theoretical point of view. Since bursting activity is an intrinsic property of each cell, it
is interesting to explore first how two such cells behave when connected by nonlinear
(here cholinergic) coupling. The utter goal of this approach is to study how SACs are
able to opportunistically synchronize leading to propagating patterns in a 1D network.
This work has been done in close collaboration with Lionel Gil, INPHYNI, UCA,
France. Also for the model design we collaborated with O. Marre and S. Picaud, Vi-
sion Institute. These results have been partially published in [3, 2]. Also, this material
is the subject of a paper Spontaneous emergence of spatio-temporal structure in the
early retina’ which is currently under preparation for submission.

3.1 Modeling cholinergic coupling

At this point we extend the individual SACs model Eq (2.19) by adding a synaptic
term to the equation of the voltage depending on the evolution of the concentration of
the neurotransmitter acetylcholine A. It is shown in early experiments [55] that during
stage II retinal waves, the dominant mechanism of synaptic transmission is cholinergic.

3.1.1 Cholinergic receptors

An acetylcholine (Ach) receptor (AChR) responds to the binding of acetylcholine and
is classified into two major types according to its sensitivity to different molecules; i)
muscarinic (mAChR) and ii) nicotinic (nAChR) acetylcholine receptors. During early
retinal waves (stage II), nicotinic receptors are responsible for the mutual excitation
between SACs and therefore waves propagation, whereas nAChRs have no effect on late
waves. On the contrary, muscarinic receptors, control late spontaneous waves (stage
III) and have no effect during early retinal waves [15]. Since, our model describes stage
II retinal waves, we focus on the modelling of the biophysics of nAChRs.

51
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Nicotinic acetylcholine receptors (nAChRs) respond to the neurotransmitter
acetylcholine and are named after nicotine which selectively binds to this type of cholin-
ergic receptors instead of the muscarinic ones. As with all ligand-gated ion channels,
opening of the nAChR channel pore requires the binding of a chemical messenger.
Opening of the channel allows positively charged ions to move across it; in particu-
lar, sodium enters and potassium exits the cell membrane. The net flow of positively
charged ions is inward. The nAChR is a non-selective cation channel, meaning that
several different positively charged ions can cross through. It is permeable to Na+ and
K+, with some subunit combinations that are also permeable to Ca+2. The reversal
potential for nAChR is about 0 mV [40]. At the synaptic terminal, two molecules of
acetylcholine are needed to bind to a nicotinic receptor in order to open the cationic
channel. As a consequence the fraction of open cationic channels is A2

K2
d
+A2 , where A

is the acetylcholine concentration and K2
d = γA the dissociation constant. The value

we choose for γA in (3.1) corresponds to [64], where Kd for nAChR is about 1.0 nM .

Figure 3.1: Schematic representation of a nicotinic cholinergic receptor (nAChR).

The evolution of the acetylcholine concentration is given by [12]:

At = −µA+ βTA(V ) (3.1)

where µ is the degradation rate in s−1, β is the production rate for Acetylcholine in
nM/s.

We model Acetylcholine’s production mechanism as follows:

TA(V ) =
1

1 + exp (−Kach (V − V0))
(3.2)

where KAch and V0 are the slope and inflection point of the sigmoid curve. The
cholinergic current, received by a SAC from each of its neighbours is modeled as:

IA = −gA
A2

A2 + γ2A
(V − VA) (3.3)

where gA is the maximal cholinergic conductance, VA the reversal potential of nicotinic
cholinergic receptors. Note that the second power of the acetylcholine concentration
comes from the fact that we need 2 molecules of the neurotransmitter to bind to the
nicotinic cholinergic receptor in order to open the channel.
As our modeling for Ach dynamics is based on Lansdell et al. [12], note the two
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Figure 3.2: Comparison between our and Lansdell et al. [12] Ach activation mod-
eling curve. We show that the normalized Ach conductance is a very steep function in the
model of [12] compared to ours. In our model, the cholinergic conductance is not a switch-type
but actually proportional to the Ach concentration A.

major differences between our Ach modeling: (i) We model direct synaptic interactions
between cells, whereas these authors consider a volume diffusion of Ach. (ii) The value
they choose forKd =

p
γA = 0.035 nM, is two orders of magnitude lower than our value.

Their value makes the conductance function in (3.1) almost a Heaviside function, where
the conductance is virtually constant except when Acetylcholine (Ach) concentration
is lower than ⇠ 0.1 nM. This is not biophysically very accurate and also induces quite
steep dynamics in the system (see Fig 3.2) and requires robust numerical schemes to
be treated correctly.
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3.1.2 Full set of equations

To summarize, the full set of equations in our model with the 6 state variables
V,N,C, S,R,A is the following:
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Cm
dVi

dt = −gL(Vi − VL)− gCM1(Vi)(Vi − VC)− gKNi(Vi − VK)− gsAHPR
4
i (Vi − VK)

−gA(Vi − VA)
X

j2Bi

A2
j

γA +A2
j

⌧N
dNi

dt = Λ(Vi)(N1(Vi)−Ni)

⌧C
dCi

dt = − αC

HX
Ci + C0 − δCgC(Vi)(Vi − VC)

⌧S
dSi

dt = ↵S(1− Si)C4
i − Si

⌧R
dRi

dt = ↵RSi(1−Ri)−Ri

dAi

dt = −µAi + βATA(Vi).
(3.4)

where Bi is the neighbourhood of the neuron i and i is the neuron index. Note that
we represent neurons position in a 2D lattice by a single index (e.g. using lexicographic
order) to avoid too heavy notations.

Parameters. The parameters used in the model are displayed in Table 3.1.

3.1.3 Tuning the parameters to fit experiments for acetylcholine dy-
namics

In order to tune biophysically the parameters associated to acetylcholine dynamics
in the equation (3.1), we fitted experiments (see Fig 3.3) measuring the cholinergic
post-synaptic currents evoked by acetylcholine puffs in [62]. Our hypothesis is that
the exponential decay observed in Ach concentration after puff is due to degradation,
so it allows us to measure the coefficient µ = 1.86 s−1 in (3.1).

3.1.4 Bursting periods of immature SACs as a function of their bio-
physical parameters

The variability of the biophysical parameters across cells in a population or across
different species is experimentally observed [30]. Using our modeling work, we would
like to explore the role of relevant biophysical parameters of SACs on bursting char-
acteristics, in order to first establish relationships between measurable features and
second to extract possible underlying mechanisms for bursting.

The role of sAHP on bursting characteristics First, we compute how the inter-
burst interval (IBI) depends on the parameters ⌧S , directly related to the characteristic
time of sAHP and gsAHP , the sAHP conductance. We generally observe in Fig 3.4 a
and b, that the IBIs increase monotonically while increasing the parameters ⌧S and
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Parameter Physical value

Cm 22 pF

gL 2nS

gC [3, 20]nS

gK [1, 20]nS

gsAHP 2nS

gA 0 − 1.2nS per
cell

VL [−72,−70]mV
VC 50mV

VK −90mV
VA 0mV

V1 −20mV
V2 20mV

V3 −25mV
V4 7mV

⌧N 5ms

⌧R 8300ms

⌧S 8300ms

⌧C 2000ms

µ 1.85 s−1

βA 5nM/s

γA 1 nM2

A 200V −1

V0 −0.04V
δC 10.503

nM pA−1

↵S
1

2004
nM−4

↵C 4865 nM

↵R 4.25

HX 1800 nM

C0 88 nM

Table 3.1: Range of values for the parameters used in the model.

gsAHP . The parameter ⌧S , controls the characteristic time of the variable S, which
controls the refractory period of the sAHP. By increasing ⌧S , we almost directly in-
crease the interburst intervals (IBI), and as we see the relationship between the two
measures is approximately linear. The conductance gsAHP has a more indirect effect
on the bursting period of SACs. The maximal conductance of the sAHP is in fact
the coefficient of the total sAHP conductance gsAHP R4. As we increase gsAHP , we
strengthen the effect of the variable R, which also controls the sAHP dynamics, along
with variable S (see Chapter 2). However, as gsAHP increases further, the variable R
saturates at its maximum value and can not increase further, setting an upper bound
on the effect on the period enlargement due to the increase of the sAHP conductance.
This effect is illustrated in Fig 3.4 b, where we see that the IBI saturates as a function
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Figure 3.3: Fiting the experimental curves of the cholinergic current temporal pro-
file. Left, Middle: Fit of the experiments in [62]. The red asterisks correspond to the ex-
perimental points (with I −! −I). In the left plot, Vh = −75mV and in the middle one
Vh = −45mV . Right : Fit for the dual patch clamp experiment shown in [62].

of gsAHP .

(a)

(b)

Figure 3.4: a) and b) The interburst interval IBI in seconds as a function of the parameters
⌧S and gsAHP respectively.
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The role of cholinergic coupling on bursting characteristics An important
experimental feature reported in [63] deals with the increase of the interburst interval
in the presence of acetylcholine. From this experiment, the authors measured the val-
ues of the bursting periods for two coupling strengths; i) in the uncoupled case where
gA = 0 where an antagonist cocktail is applied and ii) in the normal conditions case
recording for which the exact value of the cholinergic coupling is not known. More pre-
cisely, in the presence of an antagonist cocktail which blocks the cholinergic synapses,
bursts are observed with a mean interburst interval of ' 15 s (rabbit). In the absence
of cocktail, in normal conditions, the interburst interval almost doubles ' 28 s.
Using our model, we are able to measure the average bursting period for several values
of cholinergic coupling within a biophysical plausible interval of gA, aiming to find
how the bursting period depends on the coupling strength. In Fig 3.5, we report ⌧IBI

versus gA for both a 2 and 4 cells configuration. For a vanishing value of gA, the cells
are independent. Because we are close to a bifurcation (saddle-node) [2], increasing of
the noise fluctuations leads to a decrease of the mean interburst intervals. Here the
noise level is constant, but the stronger gA, the more a given SAC is sensitive to the
source of fluctuations from its neighbors and the less is the ⌧IBI . For higher values of
gA, the synchronization increase between SACs is concomitant with a strong increase
of the mean interburst interval, because variable R increases. For even larger gA, ⌧IBI

starts to decrease. This is explained below.
In order to match the experiment of [63], we observe in Fig 3.5, that there is a point
where the period is doubled compared to the uncoupled case. This point corresponds
to the maximum point in the bursting period curve. This observation possibly implies
that the natural level of cholinergic coupling during stage II retinal waves, imposes
a maximum interburst interval for immature SACs. This hypothesis has an impor-
tant consequence on the spatiotemporal dynamics of waves, whose aparition is vastly
controled by the period refractoriness of SACs, during which no wave can be gener-
ated. However, we need to state that for this conjecture, we rely on the choice of our
model parameters a lot, since we did not test its robustness with respect to parameters
variations. As a result this hypothesis is weakened. It would be interesting though to
explore also experimentally, if at this stage, immature SACs would chooses to be tuned
to their maximum refractoriness. Also, it would be interesting to compare this result
accross species in order to investigate whether maximum refractoriness during stage
II retinal waves emerges as a universal property of the transient network of bursting
SACs.

3.2 Bursting of an isolated cell and acetylcholine produc-
tion.

We consider the evolution of Ach concentration during a SAC’s burst in the noise
driven bursting regime when (i) the SAC is isolated; (ii) cell 1 is coupled to another
cell 2; When cell 1 bursts we write the conditions triggering a burst in cell 2. As cell 2 is
bursting, it prolongates the bursting time of cell 1 and we compute the corresponding
profile.

Rest state Let us first compute the rest state of all the state variables:
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g (nS)
A

0 0.2 0.4 0.6 0.8 1.0

60

80

100

120

Δt

40

Figure 3.5: Numerical simulation showing the mean interburst interval ⌧IBI versus cholinergic
conductance gA. The filled blue squares correspond to the 2 cells network, the unfilled blue
squares to the 4 cells one. The red stars stands for the full 128⇥128 network, with 28 synaptic
neighbors for each cell. The continuous black curve stands for the interburst interval of the
periodic homogenous solution, in absence of noise (Inoise = 0).
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Vi =
gLVL+gCVCM1(Vi)+gKVKNi+gsAHPVKR4

i+gAVA

P

j2Bi

A2
j

1+A2
j

gL+gCM1(Vi)+gKÑi+gsAHPR4
i+gA

P

j2Bi

A2
j

1+A2
j

Ni = N1(Vi);

Ci = HX

αC
[C0 − δCgC(Vi)(Vi − VC)] ;

Si =
C4

i

1+C4
i

;

Ri = αRSi

1+αRSi
;

Ai = βATA(Vi).

(3.5)

The rest state is the solution of a non linear equation:

V
¯
= F

¯
(V
¯
),

where V
¯

is the N -dimensional vector with entries Vi. In particular, when gA = 0
(no coupling) this equation factorizes into N independent equations. There is always
at least one solution (from Brouwer’s theorem [65]), but, in general, several solutions
(stable or unstable) can exist.
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Acetylcholine concentration dynamics. The general solution of equation 3.1 is:

A(t) = A(t0)e
−µ(t−t0) + β

Z t

t0

T (V (s))e−µ(t−s)ds, (3.6)

where t0 is the initial time. As V has fast fluctuations (quite faster than the time scale
1
µ), eq. (3.6) averages over these fluctuations with an exponential weight.

Acetylcholine concentration in the rest state. In the noise driven bursting
regime voltage is at rest, with a value V− independent of time. This gives

A(t) = A(t0)e
−µ(t−t0) +

βT (V−)
µ

h

1− e−µ(t−t0)
i

.

If t− t0 is large (larger than 1
µ) this is close to

A− =
βT (V−)

µ
, (3.7)

the asymptotic A concentration in the low state.

For our model’s parameters value β = 5 nMs−1, µ = 1.86 s−1,V0 = −40mV, A =
0.2mV −1, V− = −60.5 mV, this gives A− = 0.044 nM.

Ach concentration during a burst. In the bursting regime, V exhibits fast oscil-
lations. Taking t0 = 0 (new time origin starting with the burst) we have:

A(t) = A−e
−µt + β

Z t

0
T (V (s))e−µ(t−s)ds,

where T is a sigmoid. This integral is difficult to obtain and we approximate it with
the following ansatz. We replace T (V (s)) by a constant Ω and the inverse time scale
µ by an inverse effective time scale µ0. This gives:

A(t) = A−e
−µt +

βΩ

µ0

h

1− e−µ0t
i

. (3.8)

where Ω, µ0 are determined by fit. See figures 3.6 and 3.8 for a validation.
In the bursting regime V(s) oscillates fast around an average value. In the simplest

approximation (large fluctuations and/or steep function T) T(V(s)) is essentially a
binary function which is 0 when V(s) is low and 1 when V(s) is high. Thus, we have

to compute the integral
R

s,T (V (s))=1 e
−µ(t−s)ds =

Pn(t)
i=0

R τi
σi
e−µ(t−s)ds+R where n(t) is

the number of time intervals [σi, ⌧i] - within the time inerval [0, t] - where V(s)=1. R
is a residual term depending on t and small compared to the sum. Thus the integral

is eµt

µ

Pn(t)
i=0 [ e

µτi − eµσi ] = eµtf(t).

The integral is zero for t = 0 and it is upper bounded by
R t
0 e

−µ(t−s)ds = 1
µ

⇥

1− e−µt
⇤

.

So the simplest choice for f(t) is Ω 1
µ

⇥

1− e−µt
⇤

where Ω is a constant roughly corre-
sponding to the fraction of times where T (V (s)) = 1. Here, we add the possibility of
modulating the rate µ, but most fit are very good with µ = µ0. The Ach concentration
at the end of the burst of duration ⌧ is therefore

A(⌧) = A−e
−µτ +

βΩ

µ0

h

1− e−µ0τ
i

. (3.9)
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Ach concentration just after a burst. At time ⌧ the burst stops. V decays
rapidly, within a time scale of order ⌧a, toward an hyperpolarized state Vh (which
increases then slowly back to V−, see next paragraph). The Ach production T (V )
drops rapidly from Ω to T (Vh) ⇠ 0 and we may write T (V (s)) = − Ω

τa
(s − ⌧) + Ω,

s 2 [⌧, ⌧ + ⌧a]. Therefore, just, after the burst:

A(t) = A(⌧)e−µ(t−τ) +
βΩ

µ



− t− ⌧
⌧a

+

✓

1 +
1

µ⌧a

◆

⇣

1− e−µ(t−τ)
⌘

]

, t 2 [⌧, ⌧ + ⌧a].

(3.10)
We note A+ = A(⌧ + ⌧a).

Ach concentration during the hyperpolarization phase. In this phase V varies
very slowly (see lower branch of the bifurcation diagram 2.2), following R adiabatically:
where:

V =
gLVL + gCM1(V )VC + VK [ gKN1(V ) +GS ]

gL + gCM1(V ) + gKN1(V ) +GS
, (3.11)

where we have set GS = gsAHPR
4 for simplicity.

If we make the approximation that there is a very weak Ach production during
hyperpolarization (T (V (s) < T (V−) ⇠ 0), A(t) obeys

A(t) = A+e
−µ(t−τ−τa) +A(R)

h

1− e−µ(t−τ−τa)
i

. (3.12)

where A(R) slowly depends on R and converges to A− as t!1.

Numerical checks. We have checked these approximations numerically (Fig. 3.6).

Figure 3.6: . Left: Evolution of voltage, R, and A during a burst in NIB regime. Right: Ach
concentration profile during a burst (blue) and fit (red).
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3.3 Bursting of 2 coupled cells.

In order to better understand the mechanisms involved in cells coupling we now study
the case of two cells, before generalizing to a network with N cells. We consider two
bursting cells, C1, C2, coupled reciprocally to each other by cholinergic current of equal
amplitude. Each cell follows its own proper bursting dynamics, which is controled by
the state variables and parameters.

Cells interaction. We consider now 2 cells in the noise driven bursting regime. The
first cell C1 starts to burst by a short clamp of current (+50 mV during 0.1 ms), and,
if gA is large enough, induces bursting to the second cell, C2. Then, C2 generates an
Ach current which prolongates the burst of C1. Both cells are mutually coupled until
IsAHP is large enough to stop bursting in both cells, not necessarily at the same time.

In Fig 3.7 we see the Ach concentration of cells 1 and 2 as a function of time. The
main observations are: (i) the bursting of cell 2 prolongates the burst of cell 1; (ii) the
interaction between bursts increases the peak in Ach production-as a consequence Ω
in (3.8) depends on gA when cells are coupled; (iii) Increasing Ach coupling favours
the synchrony between cells.

Figure 3.7: . Evolution of coupled bursts for different values of gA (0, 0.05, 0.15, 0.3 nS). Row
1 corresponds to cell 1 and row 2 to cell 2. Evolution of A during a burst in the noise driven
bursting regime. Cell 1 bursts first due to a small pulse in V. Then cell 2 bursts due to the
Ach current generated by 1. The Ach current generated by 2 prolongates the burst of 1.

Fitting the Ach profile. In the coupled case the Ach profile A1 of cell 1 departs
from section 3.2 because, in addition, there is an Ach current coming from cell 2,
competing with sAHP, and prolongating the burst. As a consequence, in addition to
the regimes (3.8), (3.10), (3.12), there is an intermediate regime, between the burst
rising (3.8) and the rapid decay after the burst ((3.10)), where A1 slowly varies. This
results from the interaction of V1, R1 and the Ach current IA2 due to the other cell.
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As cell 1 is bursting V1 has fast oscillations and we have not been able to compute the
effect of these non linear fast oscillations on the other cell.

As an approximation we will assume that A is constant (plateau) in this regime.
Results of this approximation are plotted in fig. 3.8. The plateau is visible for gA > 0.2
nS.

Figure 3.8: . Ach profile (in blue) and fit (in red), for cell 1 and 2. Left: gA = 0.1 nS; Right
gA = 0.3 nS.

The delay between bursts of cell 1 and cell 2. Here we compute numerically
the time delay between the bursting time of cell 1 and the bursting time of cell 2.
We consider 2 ways of defining the burst: (i) I = IsAHP + IA crosses ISN ; (ii) C,
the calcium concentration crosses a critical value ✓. In fig. 3.9 we have represented
the time delay between the bursting time of cell 1 and the bursting time of cell 2
corresponding to these 2 ways as a function of gA. The curves are slightly different
although they have the same behaviour. The time tB, delay corresponding to the first
way (I crosses ISN ) is computed analytically in equation (3.17). This theoretical value
is plotted as well.



3.3. BURSTING OF 2 COUPLED CELLS. 63

Figure 3.9: . Time delay tB between the bursting time of cell 1 and the bursting time of cell 2.
(i) corresponds to a definition of the burst when I = IsAHP + IA crosses ISN ; (ii) corresponds
to C crossing a threshold. Red and black lines correspond to fit in case (i) and (ii). The pink,
vertical line, corresponds to the limit value gAm

given by (3.18).

Burst bifurcation. From the time scale separation and Morris-Lecar bifurcation
analysis burst starts when the external current I crosses the Saddle-node bifurca-
tion value ISN . In this analysis, the external current is assumed to be slow, com-
pared to the fast scale dynamics of V and N . However, the currents involved here,

IA = −GA(V − VA), where GA ⌘ gA
P

j

A2
j

γA+A2
j

, or IS = −GS(V − VK), where

GS = gsAHPR
4, have a slow component, the conductances, and a fast component,

coming from the voltage. When considering the bursting transition of a rest cell,
without noise, the fast component is constant, so the bifurcation is driven by the con-
ductance. But, during bursting, where voltage fluctuations are fast, the bifurcation
condition is more difficult to write because, one cannot apply the slow-dynamics con-
dition I < IHc on the fast IA + IS . A similar problem holds when there is noise, here,
even for the starting burst condition, where the cell is in the rest state, because the
noise induces fast fluctuations. In particular, one can check that crossing the value ISN
for the noisy current is not enough to trigger the burst. From Fig 3.10 the bifurcation
conditions seems more on V than on I. One can indeed see that the bifurcations holds
when V crosses the unstable middle branch.
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Figure 3.10: Bifurcation diagram of the full dynamics. The plot shows a represen-
tation of bursting in the plane Iext − V in relation with the bifurcation diagram of
figure 2.2. Here we show the effect of a noisy trajectory (in blue) on the bifurcation diagram.

Numerically, it is safer to define the burst on the medium scale variable Ca, but
the bifurcation condition is harder to write. Here, we focus on the bursting bifurcation
when the cell is in the rest state V−, without noise. The bursting condition reads:

− gA
X

j

A2
j

γA +A2
j

(V− − VA )− gsAHPR
4 (V− − VK) ) = ISN . (3.13)

Piecewise linear approximation for U . We note U(A) = A2

γA+A2 . We remark that

U(A) is a sigmoid that can be approximated by the piecewise linear function (Fig. 3.11
left):

U(A) ⇠

8

<

:

1
2
p
γA
, 0  A  2

p
γA;

1, A > 2
p
γA.

(3.14)

In this approximation U(A) is constant if all neighbours produce more Ach than
2
p
γA = 2Kd.

We have computed the mean hA i and standard deviation of σA of A, for two
couples of values V0, A that fixes the Acetylcholine production function T (A); namely
V0 = −35mV, A = 60V −1 and V0 = −40mV, A = 200V −1. The results are shown
in fig. 3.11. In general hA i, as well as the maximum of A during its time-evolution,
are well below 2

p
γA, except for V0 = −35mV, A = 60V −1 in the high stable fixed

point regime (Fig. 3.11 left top). In this case U(A) saturates to 1.
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Figure 3.11: Left. Piecewise linear approximation for U with γA = 1 nM
1

2 . Right. Color map
of the average Acetylcholine concentration as a function of GS , GA.

Average Ach current in the rising phase. From the piecewise linear approxi-
mation for U(A) the Ach conductance generated, in the rising phase, by a bursting
SAC is ⇠ gA βΩ

2µ
p
γA

⇥

1− e−µt
⇤

Consider now a wave front in d dimension. A cell at rest

receives an Ach current from bursting cells. We assume that there are n bursting cells
and that they are synchronous 1 (they started to burst at the same time). Then, the
Ach current viewed by this cell is, taking as time origin the time when the bursting
neighbours started to burst:

IA(t) ⇠ −gA
nβΩ

2µ0
p
γA

h

1− e−µ0t
i

(V− − VA) (3.15)

and the total current is:

I(t) = −gA
nβΩ

2µ0
p
γA

h

1− e−µ0t
i

(V− − VA)− gSR4(t)(V− − VK).

Time of the next burst. Consider now 2 cells. C1 is bursting and C2 initially at
rest. C1 produces a GA conductance which may induce C2 bursting. This occurs if
there is a time tB < ⌧ (⌧ is the time where the neighbours stop to burst) such that:

− gA
nβΩ

2µ0
p
γA

h

1− e−µ0tB
i

(V− − VA)− gSR4(tB)(V− − VK) = ISN . (3.16)

This gives:

tB = − 1

µ0
. log



1 +
1

gA

2µ0
p
γA

nβΩ

ISN + gSR
4(tB)(V− − VK)

V− − VA

]

. (3.17)

As we assumed that the neighbours cells started to burst at time 0, tB is the time
delay to have the next cell burst.

1More generally n has to be replaced by the average number of neighbourhing cells bursting within
a time slot, i.e. this is K ρ where K is the number of neighbours and ρ the density of bursting cells
per time slot. When considering Calcium bursts, as done here, the time slot has to be faster than the
Ca time scale and quite slower than the fast dynamics. Typically 100ms− 1s.
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Calcium burst. Numerically, it is safer and more natural to consider the condition
where C crosses a threshold ✓. However, the time where C crosses the threshold is
delayed compared to the time when the burst starts, because C is a slow variable. As
a consequence, one needs to add a time delay to (3.17) in order to obtain the calcium
burst-time. One also needs to modify the time constant µ0 and Ω in (3.17) (see Fig.
3.9).

3.3.1 Remarks on how the waves propagate and stop

1. ISN > 0 in the noise driven bursting regime while V− − VA < 0. Therefore, if
ISN

V−−VA
< 0, one needs a minimal Ach conductance to have a solution to (3.17).

This minimal value is given by:

gAm = −2µ0
p
γA

nβΩ

ISN + gSR
4(tB)(V− − VK)

V− − VA
(3.18)

gA has to be larger than gAm for a cell at the rest state in the NIB to start and
burst. For our parameters value gAm = 0.041 nS.

2. In general the condition (3.16) involves the sAHP current as well. That’s why
there is tB in the right hand side of (3.17). Therefore, it might be that (3.16)
holds at time ⌧B and is then violated a few milliseconds after, if the excited cell is
in a phase where R is growing (after hyperpolarization phase). Violating (3.16)
does not mean that bursting stops though. For fast oscilations to stop we need
I(t) < IHc . This arises either because:

(a) sAHP is growing.

(b) IA is decreasing, because the neighbouring cells have stopped bursting.
Then, the condition for the burst to stop is:

− gA
nβΩ

2µ0
p
γA
A+e

−µt(V− − VA)− gSR4(t)(V− − VK) = IHc (3.19)

Note that sAHP decays slower that Ach so, when a cell has stop to burst it
cannot start to burst again just after.

3. Because of the competition between the 2 currents, a burst can therefore be quite
short. Also, if the cell is hyperpolarized and if it bursts because of the neighbours,
during bursting its V raises so R as well, making longer its hyperpolation phase.

Analytic characterization of the propagation in a 1-dimensional chain. We
consider a one dimensional wave starting from a bursting cell on the left and propa-
gating to the right. If gA > gAm the waves propagates ballistically. We compute the
speed by a linear interpolation of the time delay (Calcium burst) between the bursting
start of cell k − 1 and cell k (Fig. 3.12). Therefore, vB = 1

tB
where tB has a similar

form as (3.17) i.e. for a Calcium burst:

vB =
1

C − 1
µ0 . log

h

1 + 1
gA

2µ0
p
γA

nβΩ
ISN+gSR4(tB)(V−−VK)

V−−VA

i , (3.20)
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for a Calcium burst. However, in comparison to the time delay between 2 cells com-
puted above, we have here to adjust the parameters C,Ω by fit. This is due, for Ω to
the fact that the Ach peak is higher in the chain than for 2 cells only.

Figure 3.12: Left. Time delay between the burst of cell k − 1 and cell k. Right. Wave speed
as a function of gA and fit (pink curve) with 1

tB
where tB is plotted in Fig. 3.9; (black curve)

1

tB
where tB is given by eq. (3.17) and where parameters C,Ω have been ajusted by fit. .

3.4 Coupled Bursters in 1D (ring)

Before adressing the general two dimensional case of retinal waves, we conclude this
chapter by addressing the dynamics of our system for a ring network of cells (see
Figure 3.13). In the following, we will consider an one dimensional paradigm, simu-
lating a network of 128 neurons, connected to their 6 nearest neighbours (3 per side)
by acetylcholine coupling. The one dimensional numerical simulations are also less
computationally costly and are guaranteed to converge faster compared to the 2D net-
works. These results will serve as a guide to study waves dynamics in the 2D network
of SACs in the next chapter.

In the following parts, we are going to perform an analysis characterizing the
two possible bursting regimes, namely the different triggering scenarios for bursting
generation. In fact, the main difference between the two scenarios is the rest state of
cells. For noise driven bursting, it is a fixed point, triggering a burst due to crossing
the bifurcation point because of additive noise. For the dynamically driven bursting,
cells are in an oscillating rest state (limit cycle) and therefore the triggering a burst is
deterministic. In this case in our model, randomness comes from a background low-
amplitude additive noise which breaks the bursting regularity. The switch between the
two bursting scenarios is done by simply slightly change the value of VL from −70mV
for dynamically driven bursting to −72mV for noise induced bursing. To differentiate
inbetween the two possible scenarios we need to address the question whether noise
is fundamental for bursting triggering. However, experimentally it is not possible to
perform such experiments with and without noise, since noise is de facto present in
the cells. Attempting to validate physiologically one of the two scenarios, we will try
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Figure 3.13: Ring network with 6 nearest neighbours connectivity scheme. The
connections are cholinergic and birectional and neurons are identical

to characterize them with indirect measurements and try to map them to existing
corresponding experimental observations.

3.4.1 Characterizing the dynamically driven bursting scenario in 1D

We simulate 128 SACs laid on a ring in the dynamically driven bursting regime for
different values of cholinergic conductance gA, corresponding to subcritical (weak)
gA = 0.02nS per contact, critical (moderate) gA = 0.05nS and supercritical (strong)
coupling gA = 0.06nS. In Fig 3.14, we show the raster plots of the ring network, with
a color code showing the cells activity, blue for low and red for high activity. Note
that time evolves in the ordinate and space is represented in the abscissa. For weak
coupling we observe that the cholinergic coupling is not enough to induce synchrony
among cells, therefore there are no waves in this case, but only cells bursting at their
own period. For moderate coupling, partial synchrony is achieved and at there are wave
fronts of several distances. For the strong coupling, we observe that fuller synchrony is
achieved. Nevertheless, there exist some domains within the wave able to propagate,
revealing a characteristic length of the waves fronts. This effect is observed due to the
combination of the characteristic time of the hyperpolarization of cells, therefore their
incapability to be recruted, and the propagation time.

To quantify the characteristics of the observed wave fronts in these regimes of
cholinergic coupling, we measure the probability distributions of the waves duration
Fig 3.15 and size Fig 3.16 for several level of cholinergic coupling. We observe that for
all values of gA per contact the distributions tend to be exponentials. Also we don’t
observe zones of overlapping for waves, as it has however been observed experimentally
by [36]. This is somehow expected, since the dynamics of all cells is deterministic
therefore such zones are generated by the periodic determintistic bursting activity.
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Figure 3.14: Raster plots for the ring network of 128 cells. Evolution in time is shown in
the ordinate and space is respresented in abscissa. From left to right the cholinergic coupling
increases: weak gA = 0.02nS per contact, moderate gA = 0.05nS and strong coupling gA =
0.06nS. The parameters regime corresponds to the dynamically driven scenario.

3.4.2 Characterizing the noise driven bursting scenario in 1D

We now simulate 128 SACs laid on a ring in the noise driven bursting regime for
different values of cholinergic conductance gA, corresponding to weak gA = 0.005nS
per contact, moderate gA = 0.016nS and strong coupling gA = 0.02nS. In Fig 3.17,
we show the raster plots of the ring network. For weak coupling we observe that the
cholinergic coupling is not enough to induce synchrony among cells, therefore there are
no waves in this case, but only cells bursting at random due to noise. For the strong
coupling, we observe that full synchrony is achieved, with almost waves at the size of
the numerical box. In this case, a wave goes until the boundary unless it interacts
with another wave. The critical value gAm (see Eq 3.18) is raised because of R, so,
either gA is not strong enough and the 2 waves collide and stop; or it is larger and cells
synchronize. Indeed, in Eq 1.19 gAm depends on R which rises in the presence of waves.
The most interesting case is the moderate coupling, where maximal variability if waves
sizes is observed, revealing possible power-law signatures. This indicates that for the
moderate coupling in the noise driven regime the network could be in a critical state,
where variability is maximal. The observation of power-laws for waves characteristics
in stage II, has been proposed experimentally and theoretically in [54], although the
results are not thorougly tested.

To quantify the characteristics of the observed wave fronts in these regimes of
cholinergic coupling, we measure the probability distributions of the waves durations
(top) and sizes (bottom) Fig 3.18 for several levels of cholinergic coupling. We observe
that for all intermediate values of gA per contact the distributions tend to be power-
law like. For small and larger levels of coupling the distributions are exponential like.
This means that there is a regime which is critical for the neural network, where the
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(a) (b)

(c) (d)

Figure 3.15: The probability density functions of the waves durations for different values of
cholinergic coupling gA. The scale is log-log and the corresponding values of conductances are
0, 0.02, 0.05, 0.06nS per synaptic contact. The simulations are performed for 128 cells on a
ring. The regime of parameters corresponds to the dynamically driven one, where bursting
activity is triggered deterministically.
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(a) (b)

(c) (d)

Figure 3.16: The probability density functions of the waves sizes for different values of cholin-
ergic coupling gA. The scale is log-log and the corresponding values of conductances are
0, 0.02, 0.05, 0.06nS per synaptic contact. The simulations are performed for 128 cells on a
ring. The regime of parameters corresponds to the dynamically driven one, where bursting
activity is triggered deterministically.
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Figure 3.17: Raster plots for the ring network of 128 cells. Evolution in time is shown in
the ordinate and space is respresented in abscissa. From left to right the cholinergic coupling
increases: weak, moderate and strong. The parameters regime corresponds to the noise driven
scenario.

variability is maximal which is explained by the closeness to the critical point. Also
in this bursting scenario, we observe zones of overlapping for waves, as it has been
observed experimentally by [36].

To sum up this section, we compute the correlations of the calcium activity with
respect to distance for dynamically driven and noise driven regime as a function of
distance. For the dynamically driven bursting regime we observe anticorrelations,
indicating a characteristic length for the waves, measured in the units of neighbouring
cells (see Fig 3.19).
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(a) (b)

(c) (d)

Figure 3.18: The probability density functions of the waves durations and sizes for different
values of cholinergic coupling gA. The scale is log-log and the corresponding values of conduc-
tances are 0, 0.02, 0.05, 0.06nS per synaptic contact. The simulations are performed for 128
cells on a ring. The regime of parameters corresponds to the noise driven bursting regime.
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Figure 3.19: Correlations for dynamically driven (top) and noise driven (bottom)
regime as a function of distance. The connections are cholinergic and birectional and
neurons are identical. For the dynamically driven bursting regime we observe anticorrelations,
indicating a characteristic length for the waves, measured in the units of neighbouring cells.
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3.5 How do SACs synchronize upon cholinergic coupling?

As discussed in the previous chapter, individual cells bursting period is controlled by
the slow dynamics of our system, namely the variables R,S. Especially, the bursting
period of each individual SAC is controled by two parameters, ⌧R, ⌧S , which are the
characteristic times for sAHP currents. For reasons explained before concerning the
variability of the cells period, we want to consider a paradigm where both cells have
a different bursting period ⌧1, ⌧2. More precisely, we compute the dependence of the
ratio of the two bursting periods ⌧1, ⌧2 as a function of the parameter value ⌧S (see Fig
3.20). Using this relation, we will be able to assign to each cell the desired bursting
period, in order to test how SACs can synchronize in the following.

Figure 3.20: The dependence of the ratio of the two bursting periods ⌧1, ⌧2 as a function of the
parameter value ⌧S .

3.5.1 Mechanism for two bursting cells synchronization

Our following analysis is based on a general observation in physics that coupled oscil-
lators have a tendency to synchronize, upon a sufficiently large coupling, even if their
natural periods are not commensurable.

Synchronization and coupled oscillators. In a classical context, synchronization
means adjustment of the periodic of the oscillators due to their interactions. Synchro-
nization phenomena in large ensembles of coupled systems often manifest themselves
as collective coherent regimes appearing via non-equilibrium phase transitions. For
two oscillating cells, as in our case here, synchronization means that two nonidentical
cells start to oscillate with the same frequency, which commonly lies between the fre-
quency of the two oscillators [39]. Now, more particular, synchronization for bursters
means a temporal overlap of the active phases of the cells. This synchrony could be
partial or full. The synchronization of two bursters is largely dependent on the nature
of their coupling. In the parameters plane of the bursters coupling and frequencies ra-
tio, we can find regions where synchronization occurs. The overall picture for a broad
range of forcing frequencies is presented by a family of triangular-shaped synchroniza-
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tion regions touching the frequency axis at the rationals of the natural frequencies
ration. These structures are widely known in the dynamical systems literature as
Arnold tongues [48].

Synchronization in the dynamically driven bursting cells. We consider first
the case of two non-coupled cells, for which we define the quantity r = τ2

τ1
, called rota-

tion number. Cell i enters into a burst each ⌧i seconds. We consider that the two cells
are m : n synchronized if there exist two integers such that m⌧1−n⌧2 = 0. It is easy to
see that this corresponds to having r rational, with r = m

n . Then, if the two cells are
bursting together at time 0 they will burst again together at time m⌧1 = n⌧2. Gener-
ically, the rotation number is irrational and cells are not synchronized although any
irrational can be approximated, with any accuracy, by a rational (using Diophantian
approximation) [48]. This means that if cells are bursting together at time 0, with an
exact overlap, there will be a time (which can be quite long) where there bursts will,
at least partly, overlap.
Now, in the presence of cholinergic synapses (more generally excitatory coupling) cells
interact. If cell 1 is bursting whereas cell 2 is hyperpolarized, the excitatory current
coming from 1 will accelerate the time for cell 2 to burst (see Fig 3.21). If the two
cells are bursting together, the mutual interaction will prolongate their burst until
their sAHP becomes large enough to stop bursting. When one cell stops bursting, its
cholinergic current decay and the second cell, less and less simulated, will stop bursting
thanks to IsAHP growth. Thus, the cholinergic coupling mechanism has a tendency to
synchronize cells.
As opposite to the uncoupled case though, cells are not expected to burst periodically
anymore. It nevertheless makes sense to compute the time average bursting period of
neuron i, ⌧i and the rotation number r = τ2

τ1
. Here, a rational rotation number r = m

n
means that, on average, cell 1 and 2 are bursting in synchrony after a time m⌧1 = n⌧2.
Depending on the rotation number without coupling, and depending on the intensity
of coupling, the synchronization of coupled oscillators is in general not 1 : 1 though.
Having uncoupled oscillators with an irrational rotation number, oscillators tend, upon
increasing coupling, to synchronize to the rational rotation number closest to r with
the smallest numerator and denominator 2. We observe a similar effect here: coupled
cells synchronize clearly exhibiting Arnold tongues structure, shown in Fig 3.21. In
abscissa we have the rotation number of the 2 cells when gA = 0; in ordinate, we have
gA. Each color corresponds to a rational rotation number and define a structure called
a ”tongue”. Thus, the tongue m

n is a set of ⌧S values where the two cells have m : n
synchronization upon Ach coupling when gA is large enough. In other words, starting
from a (generic) irrational rotation number, for large enough Ach coupling, the two
cells synchronize in a rational rotation number.
This situation is represented by the red line in Fig. 3.21 corresponding to increasing gA
from 0 starting from an arbitrary rotation number. On the right, we have represented
examples of bursting patterns. As we see, increasing gA leads in general to the crossing
of several tongues leading to a change in the rotation number. As we observed, large
enough gA leads to 1 : 1 synchrony, as the 1 : 1 Arnold tongue invades the whole dia-
gram. Note that in coupled oscillators Arnold tongues overlap for a sufficiently large
coupling and this situation corresponds to chaos [33]. As far as we have explored there

2More precisely, one can define a distance between rational and irrational, relevant for synchrony.
This notion is related to Diophantian approximation and Farey sequences) [48]
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is no chaos for 2 cells in our model.

Figure 3.21: Top. V (t) of two SACs with different bursting periods. As we increase the
strength of the synaptic coupling cells tend to synchronize (bottom to top). Bottom. In
abscissa we have the rotation number of the 2 cells when gA = 0; in ordinate, we have gA.
Each color corresponds to a rational rotation number and define a structure called a ”tongue”.
Thus, the tongue m

n is a set of ⌧S values where the two cells have m : n synchronization upon
Ach coupling when gA is large enough
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Synchronization in the noise driven bursting cells. To sum up this part let us
briefly discuss the noise-driven bursting case. As we have seen the uncoupled cells are
a in rest state corresponding to a stable fixed point. Upon noise they can burst (when
crossing the SN1 bifurcation point) and they return to the rest state. As the rest
state is a sink where Jacobian has stable eigenvalues, it remains stable upon weak Ach
coupling due to structural stability (Hartmann-Grobman theorem [45]). For large gA
this state can become unstable: this is because, even in the rest state Ach production
is not strictly zero in the model, so, for a large enough gA each cell experiences an
increasing current which can destabilize it. When the rest state is stable, noise can
trigger a burst on cell 1 say. If gA is large enough it triggers a burst on cell 2; cells can
then burst together until they return to their rest state (which occurs eventually by the
mere assumption that rest state is stable). Now, the timing of bursts depends on noise
intensity. If it is low, bursts occur rarely, and a neuron does not keep memory (via
IA, IsAHP ) of its previous state. On the opposite, if the frequency of noise triggered
burst increases, cells have more tendency to synchronize. More generally the situation
can be understood as follows. Fix σ and play with VL or VK so as to move continuously
from the one bursting scenario (noise-driven) to the other (dynamically driven). Then,
bursting patterns of the two cells will evolve, feeling more and more the influence of
the dynamically bursting scenario and its Arnold tongue structure.

3.6 What is the probability that one cell induces bursting
to its neighbour?

In the noise driven bursting regime we compute the probability that an isolated cell
bursts due to noise in the presence of an Acetylcholine current IA = −GA(V − VA)
where GA is a free parameter. We also add an external current Iext, corresponding,
for example, to vary VL by some amount δVL around a reference value. As shown in
Chapter 2, δVL allows to tune the bursting period and to switch from noise induced
to dynamically driven bursting regimes. The results presented here are preliminary as
they have not been checked numerically.

3.6.1 Fluctuations about the rest state.

The cell is initially in the rest state of the Eq 3.4 given by:
8

>

>

>

<

>

>

>

:

N⇤ = N1(V ⇤)
C⇤ = HX

αC
[C0 − δCgCM1(V ⇤)(V ⇤ − VCa) ]

S⇤ = αSC
⇤4

1+αsC⇤4

R⇤ = αRS⇤

1+αRS⇤

(3.21)

where GS = gsAHPR
⇤4. We are characterizing noise fluctuations, around the rest

state, until noise induces the burst bifurcation. As noise has a fast time scale we
consider that C, S,R are constant, equal to the rest value. We focus therefore on the
fast dynamics of V,N given by:

8

>

>

<

>

>

:

Cm
dV
dt = −gL(V − VL)− gCM1(V )(V − VC)− gKN(V − VK)

−GS (V − VK)−GA(V − VA) + Iext + σ⇠

⌧N
dN
dt = Λ(V )(N1(V )−N)

(3.22)
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Expanding around the rest state V ⇤, N⇤ by setting V = V ⇤ + ✏v, N = N⇤ + ✏n,
we obtain, to the first order in ✏:

8

>

>

<

>

>

:

Cm
dv
dt = −gLv − gC [M1(V ⇤) +M 0

1(V ⇤)(V ⇤ − VC) ] v
−gK [N⇤v + n(V − VK) ]−GS v −GAv + σ⇠

⌧N
dn
dt = Λ(V )N 0

1(V ⇤))v + Λ0(V ⇤)N1(V ⇤)v.

(3.23)

As V ⇤ has a low voltage we make the approximation that N 0
1(V ⇤),Λ0(V ⇤) ⇠ 0 so

that n ⇠ 0 to the first order. Then:

Cm
dv

dt
= −G0(GS , GA)v + σ⇠, (3.24)

with:

G0(GS , GA) = gL + gC
⇥

M1(V ⇤) +M 0
1(V ⇤)(V ⇤ − VC)

⇤

+ gKN
⇤ +GS +GA. (3.25)

3.6.2 Ornstein-Uhlenbeck solution.

This equation holds true when fluctuations stay small (i.e. σ is not too big) so that
the linear approximation holds. It characterizes a Ornstein-Uhlenbeck process whose
solution is:

v(t) =
σ

Cm

Z t

0
e
− (t−s)

τ0 ⇠(s)ds,

where v(0) = 0 and where:

⌧0 ⌘ ⌧0(GS , GA) =
Cm

G0(GS , GA)
. (3.26)

v(t) is therefore Gaussian with mean zero and variance:

Σ2
v(t) =

⌧0
2

σ2

C2
m

h

1− e−
2t
τ0

i

=
1

2

σ2

Cm G0

h

1− e−
2t
τ0

i

(3.27)

3.6.3 Bursting bifurcation.

From the bifurcation diagram in the presence of noise (Fig 3.10) it is in principle
possible to compute the probability that a burst starts, using the Ornstein-Uhlenbeck
approximation. This is similar to the probability that an integrate and fire neuron in
a rest state spikes under the influence of noise. This probability has been computed in
[5]. The application of their result could give us the probability to start a burst, but
we have not been able to finish this work (mathematical computation and numerical
checks).

3.7 Conclusion and Discussion

In this section, we discussed in detail the modeling of the cholinerg itneractions be-
tween SACs and how the parameters of the model affect the bursting chatacteristics of
SACs. Moreover, we provided analytic results on the acetylcholine dynamics, leading
to predicting analytically the critical value of the cholinergic condauctance. We also
show a complete one dimensional study of waves, characterizing them around as well
as away from the critical regime. Before going to the next chapter, let us now discuss
some points regarding the variability of cells in a network.
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How identical cells can display variability in behaviour. One of the key re-
sult of this study is that SACs display bursting because they are close to a bifurcation
point. As a consequence, the characteristics of bursting (IBI, amplitude) vary strongly
upon tiny variations of physiological parameters such as gK , gC , VL, Iext . . . and noise
can induce huge fluctuations in their bursting period. In a network of SACs those
parameters may fluctuate. Especially, the presence of acetylcholine inducing a cholin-
ergic current impacts the bursting period as was experimentally observed by Zheng
et al in [63] and confirmed by our model [2]. Therefore, a network of identical cou-
pled SACs is expected to display a huge variability: SACs are not identical bursters.
This variability has been invoked and modeled in a paper by Ford and Feller [37] where
they show how it impacts the retinal waves dynamics and provide more realistic results
than an homogeneous model. In their paper, inhomogeneity is inspired by recordings
of several SACs exhibiting a vast variability in their bursiting periods and modelled
by a Gaussian distribution of IBIs and does not evolve in time.
In contrast we propose here that (i) inhomogeneity purely results from the biophys-
ical mechanisms leading SACs to burst; (ii) this heterogeneity evolves in space time
depending on the collective dynamics (e.g. acetylcholine concentration varies in space
and time and induces a variability in a given cell bursting period). In particular,
one could have two populations of cells: one population acting as dynamically driven
bursters with a well defined bursting period, and one population acting as noise in-
duced bursters with a large variation of the period. Those populations would act in a
different way on the collective dynamics of waves (see Chapter 4).
This propagation can be described, in our model, via a transport equation allowing to
compute the wave characteristics (speed, size, duration) as well as the effect of sAHP
on dynamics. Because of its slow time scale, quite slower than the characteristic time
of the wave propagation, sAHP somewhat imprints the medium where the wave has to
propagates leading to transient spatial structures observed in Ford et al. [30]. The full
analysis of these aspects will be done in a forthcoming paper (see [3, 2] for a conference
presentation). Already, some notions addressing this question are included in the next
chapter.



Chapter 4

Modeling and simulating stage II
Retinal waves in 2D

We now switch to the study of the whole system (3.4), in two dimensions. The goal of
this chapter is to use our network model described by 6N equations, in order to ad-
dress specific questions related to the underlying mechanisms of stage II retinal waves
generation, propagation and disappearence. In general, the results in the current chap-
ter are mainly theoretical, providing possible explanations for certain experimentally
observed phenomena.
This work has been done in close collaboration with Lionel Gil, INPHYNI, UCA,
France. Also, the numerical method for wave detection and characterization is a con-
tribution made by Evgenia Kartsaki, Biovision team, Inria. For the model design
we collaborated with O. Marre and S. Picaud, Vision Institute. This material is the
subject of a journal paper ’Spontaneous emergence of spatio-temporal structure in the
early retina’, which is currently under preparation.

4.1 Modeling a network of SACs

Let us define first, how we consider, the 2D modeling of a network of SACs.

4.1.1 Network structure

Stage II retinal waves propagate laterally across a network of Starburst Amacrine Cells.
At this point of development the retinal circuitry is still immature and stage II waves
are passively read out from the ganglion cells layer [56]. Neurons in the retinal structure
are conveniently placed on horizontal lattices with lateral connections between same
cell types and vertical connections inbetween different cell types layers. The layered
structure of the retina, along with the immature circuitry, facilitates the topological
modeling of the network of neurons.
In our modeling, we consider a single layer of cells with lateral connections. We do
not consider a second layer of cells representing ganglion cells, in contrast to previous
modeling work [36]. In [36], the authors needed a second layer of ganglion cells in
order to filter the amacrine cells activity, accounting mainly for the difference between
measured interwave intervals and the refractory period of SACs. In our model, a layer
of ganglion cells would not bring anything fundamental, as the whole dynamics of
burst, interburst, waves is controlled by SACs dynamics. We don’t need a second
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population of cells, as in [36], to tune the global activity. Furthermore, such a layer of
passive ganglion cells, would not bring something fundamentally new to our analysis,
except for the fact that waves on the ganglion cells layer would be a more realistic way
to visualize them, if we consider that experiments with multielectrode arrays record
from the ganglion cells layer. In fact, ganglion cells waves would be a subsampled
projection of the wavy activity of SACs that would only be activated above a certain
threshold of SACs activity, acting as a passive filter.
It is found that in the center of retina, the average distance between two distinct
nearest SACs soma is about < r >' 50 µm [21]. As the synaptic radius rsyn is about
300 µm, the coverage factor, defined as the ratio between the synaptic surface and

the hard core surface is about
πr2syn
π<r>2 . It means that each cell is in synaptic contact

with about 36 neighbours, in good agreement with the experimental estimation in [63].
SACs are assumed to be fixed onto a square lattice (see Fig 4.1). In our simulations,
we tested two types of connectivity:

1. The cells are in synaptic contact with 28 nearest network neighbours 1.

2. The cells are connected to 4 nearest neighbours on a square lattice. Here the
interest is to end up with a Laplacian, allowing to write a transport equation,
similar to partial differential equations for waves in non linear media (see Section
5).

Furthermore, we considered a realistic type of boundary conditions with respect
to the retina. In ”realistic” boundary conditions, cells on the border are in synaptic
contact with only those on the inner side of the lattice and any other connections in
the borders are not allowed. In order to avoid boundary conditions effects, we consider
a numerical box of a big size and we perform our numerical analysis in a smaller
one. This way we avoid periodic boundary conditions, that could lead to artifacts
with respect to wave dynamics. However, for theoretical reasons, some of our results
were tested with periodic boundary conditions as well. First because they are very
convenient to compute correlations, distributions of the durations and sizes of waves.
Second, because it is the only way to prove that the observed pattern formation is an
intrinsic non linear phenomena, not related to the retina borders. Finally, periodic
boundary conditions are also very convenient for analytical investigations.

4.2 How waves are generated in the developing retina?
A proposed mechanism for waves triggering

As we show in section 2.7, our model predicts two possible scenarios for the mechanism
of the initial triggering of bursting; noise induced and dynamically driven bursting. In
the following, we are going to analyse, the possible consequences of these two scenarios
on the network and the waves triggering.

4.2.1 Scenario 1: Noise induced triggering.

For this triggering scenario, neurons are normally at rest, bursting periodically due to
noise. Obviously, as in the previous case, when uncoupled, they burst independently.

1We chose 28 neighbours instead of 36 as computed above, for geometrical reasons (see Fig4.1)
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Figure 4.1: The two connectivity schemes used in our simulations. Top. Topology
of the SACs network used in the numerical simulations where we used a square lattice. Also,
either periodic or closed boundary conditions have been used. For the latter case, a bulk cell is
in synaptic contact with its 28 closest neighbours (red), a border cell with 17 neighbors (blue)
and a corner cell with 10 neighbors (green). Bottom. Schematic representation of how SACs
realistic connectivity is modeled. In this connectivity scheme, they are connected to their 4
nearest neighbours. The strength of the coupling per contact is fixed so as cells receive the
same current in both cases of connectivity a) and b).

However, when the cholinergic conductance is large enough a chain reaction is triggered
when one or several neurons (neighbours) start to burst in the same period. They
generate a cholinergic current which can induce bursting to their neighbours and so
on. This mechanism is similar to a ”forest-fire” type of modeling, studied by [54, 12] in
the context of retinal waves, but also broadly studied in physics [46, 47]. This type of
models are linked to critical systems, a point which has been discussed in more detail
in chapter 3.
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4.2.2 Scenario 2: Dynamically driven triggering.

In this case, we have N neurons which if uncoupled, burst independently. Note that
their bursting charecteristics are controlled by biophysical parameters of our model
(mainly ⌧S , ⌧R) and could be considered identical or variable for each cell within a
biophysically plausible interval. The role of such variability will be discussed in detail
in Chapter 7.
We extend the notion of m : n synchronisation introduced in section 3.5. We consider
a group of R neurons, R  N . Let mi, i = 1 . . . R, be integer (positive or negative)
and call ⌧i the bursting period of neuron i. We consider that these neurons are mi

synchronized if
PR

i=1mi⌧i = 0. This means that if these neurons were all bursting at

time t they will burst again after neuron k has bursted mk =

R
X

i=1;i 6=k

mi
⌧i
⌧k

, k = 1 . . . R.

As periods ⌧i are random, with probability 1, there is no set of integers mi, i = 1 . . . R
satisfying this condition. However, this condition can be loosely fulfilled, in the sense,
that 8✏ > 0 there is a set of integers mi, i = 1 . . . R such that

PR
i=1mi⌧i < ✏ [48]. This

corresponds to approximate synchronization where neurons burst partially overlap.
Thus, given a set of R neighbouring neurons, there will always be a time (which can
be very long) after which these neurons will have overlapping bursts and therefore will
be synchronized by chance.
Let us discuss now what happens when we couple the neurons in the network. After
a certain time, neurons will tend to synchronize and generate a cholinergic current.
The stronger the coupling, the easier neurons will produce the necessary cholinergic
current to excite a sufficient number of neighbouring cells leading to synchrony and
therefore wave generation.

4.3 How do waves propagate?

After studying the possible mechanisms of wave triggering, it is natural to address
the question of waves propagation. It is not trivial to characterize the type of waves
propagation i.e. ballistic, diffusive, singularly-diffusive etc. and for doing so, one needs
to measure the relation of the instantaneous size of the wave with respect to time. The
general from of a propagating wave mean radius h⇢i as a function of time reads as:

h⇢i = ⇢0 + vtz (4.1)

where hi is the mean value, ⇢0 is the waves position of the starting wave at time
t = 0, C is the wave velocity and z is the exponent showing the type of the propa-
gation. For z = 1, we obtain a ballistic propagation, for z = 0.5 a normal diffusion,
whereas for all other values of z we have an anomalous diffusion. In other words, a
ballistic propagation means that the trajectory of the wave is linear as a function of
time, whereas in normal diffusion, a wave would propagate as the square root of time.
For the anomalous diffusion, the propagation is irregular and determined by the value
of the exponent z. In the following, we are going to characterize the wave propaga-
tion, concluding on its type based on the value of this exponent z. Let us start by
decomposing the problem in simple steps.



4.3. HOW DO WAVES PROPAGATE? 85

4.3.1 Propagation in a medium without friction

First, we consider a simple paradigm where only one cell is periodically bursting and
the rest of the cells in the network are in a rest state. In this case, as soon as a
wave is triggered all neurons are ready to be recruited to this wave, therefore, the
propagation can be considered free in a medium with no ’friction’, namely without the
effect of the sAHP current (see Fig 4.2). In this paradigm, parameters are tuned so
each subsequent wave is triggered after the end of the refractory period of all neurons
(⌧⇤S = 30s, V ⇤

L = −70mV , ⌧S = 60s, VL = −72mV ). This way, we make sure that a
new wave will not be stopped by refractory neurons. By this paradigm, we test the
type of propagation of retinal waves in a simple scenario and compare how the type of
propagation would change when the wave would propagate within a landscape profile
of sAHP current.
Now, in order to quantify the type of propagation of waves in this paradigm, we com-
pute the time dependent mean radius h⇢i accross several waves for several values of
cholinergic conductances gA. Here, since waves are radially symmetric, we perform all
of our measuremnts along the projection of one single direction of the wave, since all
of them are equivalent. More particularly, all waves start at a fixed point of the lattice
and the mean radius of the wave h⇢i is computed as the distance of the wave front from
the source at each time step. Note that all measurements are done for the variable C,
the intracellular calcium concentration, since it is computationally more convenient to
analyse the calcium dynamics, which follows a medium timescales dynamics, avoiding
treating numerically the very fast time of V (order ⇠ 5ms). We simulate a square
lattice of 4096 neurons for 1000s for a range of values of gA.

Figure 4.2: A simulated Calcium wave, triggered every time by the same cell and
propagating without interacting with sAHP profiles. The colourbar is scaled to 0 −
500nM and the total time duration of this snapshot series is 20s.

In Fig 4.3, our numerical simulations show that the type of propagation in the
network without friction changes upon the increase of gA. Already in Eq 3.18, we
predict an analytic form to estimate the critical value of gAm above which waves start
to emerge. This equation provides the dependence of this critical point gAm, on the
biophysical parameters of our model. For the 2D case gAm is 0.07nS. Near the critical
point gAm, waves propagate more slowly and as we increase the coupling stength waves
become faster. In order to quantify, how the waves speed and the type of propagation
depend on the cholinergic coupling, we fit the numerically computed h⇢i (t), by the Eq
4.1, to estimate the speed v and the exponent z for each value of gA.

In Fig 4.4, we see that indeed the speed increases upon the cholinergic coupling
gA increase. The form of this numerical curve is given by the analytic formula for the
waves speed in the Eq 3.20.
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Figure 4.3: Mean radius h⇢i accross several waves for several values of cholinergic
conductances gA. Waves increase their speed upon the increase of the cholinergic coupling
gA.
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Figure 4.4: The average speed of waves as a function of the cholinergic conductance
gA. For gA < gAm we see that there are no waves. For gA > gAm, we observe that the speed
increases. (See also Eq 3.20 and Fig 3.12 for comparison.)
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In Fig 4.5, we see that several zones of types of propagation are revealed in the pa-
rameters plane z − gA. It is interesting, that around the critical point gAm = 0.07nS,
waves exhibit a super ballistic propagation, which is characterized by z exponents
larger than 1. So, the propagation is faster than ballistic (super-ballistic). This means
that the waves accelerate i.e. that it takes less and less time for a cell to activate its
neighbours along the wave. For z = 1, the propagation is ballistic which means that
the mean radius of the wave expands linearly with time. In the following there is a
zone, corresponding to 0.2 < gA < 0.35nS, where waves propagate in an irregular way,
exhibiting super diffusive (anomalous) propagation. Finally, the last zone, is observed
for gA > 0.35nS, where we have normal diffusion with z exponents around 0.5. Here
the waved slow down although gA is larger but it is not clear why. This might be due
to the increase of ⌧IBI upon the increase of gA (as shown in Chapter 3). Please note
that these results are preliminary and deserve more investigations.
It would be interesting to extend this analysis, for the full case of propagating waves
within uncontroled conditions, and it is currently under preparation. Based on this ex-
tension, we would be able to characterize the propagation of retinal waves as irregular,
ballistic or diffusive, depending on the strength of the cholinergic synaptic coupling.
This theoretical prediction could have a deep impact on the understanding of how
waves propagate in reality. Each of these three types of propagation is linked with a
different physical mechanism and elucidating this aspect would be the key to under-
stand in more depth the underlying principles of the propagation of stage II retinal
waves.

4.3.2 Propagation in a medium with an sAHP landscape

In the general situation a wave propagates in a substrate where previous waves have
left a trace: after bursting SACs stay a long time in the hyperpolarized state. When a
retinal wave reaches these cells it can be stopped or slowed down. Therefore, the image
we have here is a wave propagation in a medium where the sAHP imposes propagation
constraints. The medium has a memory and becomes non homogeneous due to its mere
history. We want to analyze this effect starting from the simplest example where we
control the shape of the landscape. This is also a way to check once again Eq 3.18 for
the propagation speed, in a case where R varies with space. Now, we perform the same
measurements regarding the mean radius h⇢i of waves for the case where we impose
an sAHP landscape in the medium. Particularly, we define a radially symmetic sAHP
spatial profile accross the lattice (see Fig 4.6). The distance d of each point from the
center is:

d =
p

(x− x0)2 + (y − y0)2 (4.2)

where x, y are the coordinates of a cell in the lattice and x0, y0 are the coordinates
of the cell in the center.
All waves are generated by the cell in the center and the mean radius h⇢i is compute as
the distance of the wave front from the center. By this measurements in this paradigm,
we study the effect of the sAHP on how waves stop.

Based on the spatial profile of the sAHP of Fig 4.6, we define a landscape for the
variable R which mainly controls the dynamics of the sAHP conductance. We remind
that the sAHP conductance is given by: GsAHP = gsAHPR

4. For the R landscape,
we choose to take it proportional to the d1/4, in order to have a linear relation of the
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Figure 4.5: z exponent characterizing the type of the waves propagation. Around the
critical point gAm = 0.07nS, the propagation is super ballistic, since z > 1 in this regime. Then,
for intermediate coupling gA > gAm, the propagation is ballistic. The next zone corresponds
to a super diffusive propagation. For even larger values of gA, we observe that z = 0.5,
corresponding to normal diffusion.
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Figure 4.6: The landscape of sAHP. We consider a radial symmetry of the sAHP land-
scape where one neuron in the center is the only pacemaker of the network. The colour code
corresponds to the normalized distance from the center with values from 0 to 1.

spatial profile and the sAHP conductance. Taken together, the spatial profile of the
variable R is:

Rs = ↵d1/4 (4.3)

where d is the normalized radial distance given in Eq 4.2 and ↵ is the coefficient
of the sAHP profile taking values from 0 to 1. This parameter ↵ will be varied in
order to test the effect of sAHP on the waves propagation characteristics and shows
the level of friction due to sAHP. For all the following simulations, we fixed the value
of gA = 0.15nS, corresponding to a ballistic regime of propagation.
In Fig 4.7, we see a series of snapshots of the evolution of the wave propagation in a
linear landscape of sAHP current. The wave propagates until it reaches a characteristic
length, which is controled by the parameter ↵, the level of friction. Then for some
time, the wave does not alter its size and therefore does not propagate further. This
state changes eventually, the moment that the cells at the front of the wave, stop
bursting, because they receive less current than those cells inside the wave. This
cascade, continues so on and so forth, hence we have a sAHP wave propagating inwards,
until it disappears completely.

In Fig 4.8, we see the mean radius h⇢i as a function of time, accross several waves
for several values of sAHP friction ↵. As we mentioned already, we mainly distinguish
three phases of the waves propagation: I) propagation phase up to a characteristic
distance, II) no propagation with a wave front blocked at the characteristic distance
and III) inward sAHP wave.
In Fig 4.9, we see a zoom of Fig 4.8, focusing on the regime of the wave propagation.
We clearly observe that waves propagate more slowly as the parameter ↵ increases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Simulated Calcium Wave for ↵ = 0.3 The waves are triggered each time by
the same cell and propagating while interacting with the sAHP spatial profile given by Eq 4.3.
The colourbar is scaled to 0− 500nM and the total time duration of this snapshot series is 5s.
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Figure 4.8: Mean radius h⇢i accross several waves for several values of sAHP friction
↵. The radius is measured in number of cells and time in dsec (1dsec = 0.1sec).

Figure 4.9: Mean radius h⇢i accross several waves for several values of sAHP friction
↵. Waves become slower as we increase ↵.

In the following, we compute numerically the derivative of h⇢i, from Fig 4.8, as a
function of time. In Fig 4.10, we see the wave speed as a function of time for several
values of the parameter ↵. We observe that during phase I of propagation, waves
decelerate due to the effect of sAHP, and the strongest the sAHP, the fastest they
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decelerate. During phase II, waves have zero speed, as they do not propagate, having
reached their characteristic length. This phase is controled by the equilibrated dynam-
ics of the sAHP and the cholinergic coupling. When this equilibrium is lost, an inward
wave starts to propagate, accelerating at first, reaching a maximum speed (negative
because of the opposite direction) and decelerating until its complete disparition.

Figure 4.10: Mean speed < v > accross several waves for several values of sAHP
friction ↵.

We are currently working on the characterization of the type of propagation inside
a linear sAHP profile.

Analytic characterization of the wave propagation in a sAHP profile. For
a cell at position (x, y) with a R value R(x, y) this means that its voltage V (x, y) has
to obey Eq3.11, 3.21. A way to achieve this state is to iterate the dynamics for some
transient with dR

dt = 0.

In this situation we expect that tB(x, y) depends on x, y via the equation:

tB(x, y) = −
1

µ0
. log



1 +
1

gA

2µ0
p
γA

nβΩ

ISN + gSR
4(x, y)(V−(x, y)− VK)

V−(x, y)− VA

]

Especially, the wave stops (tB(x, y)!1) for those points x, y such that:

1

gA

2µ0
p
γA

nβΩ

ISN + gSR
4(x, y)(V−(x, y)− VK)

V−(x, y)− VA
= −1,

i.e.

R4(x, y) = − 1

gS (V−(x, y)− VK )

✓

ISN +
nβΩgA
2µ0
p
γA

(V−(x, y)− VA )

◆

.
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which requires, to have a solution, that ISN < − nβΩgA
2µ0

p
γA

V−(x,y)−VA

V−(x,y)−VK
.

Remark. A useful approximation is to assume V−(x, y) constant.

Example: R4(x, y) = ↵⇢, with ⇢ =
p

(x− xc)2 + (y − yc)2 where xc, yc are the
coordinates of the wave source cell. For our parameters values this gives:

⇢ = − 1

gS (V−(x, y)− VK )

✓

ISN +
nβΩgA
2µ0
p
γA

(V−(x, y)− VA )

◆

1

↵

⇠ − 1

10⇥ (−65 + 90 )

✓

0.3 +
2⇥ 5⇥ Ω⇥ gA

2µ0
(−65 )

◆

1

↵

⇢ ⇠ − 1

250

✓

0.3− 325
Ω

µ0
gA

◆

1

↵
(4.4)

In a square lattice of edge length L the maximal value that ⇢ can reach is obvi-
ously ⇢ = L. As discussed already, due to the sAHP profile, waves have a maximal
characteristic length ⇢max < L. We measure ⇢max < L for each value of ↵ to show
how sAHP affect the maximal size of waves. Then, we fit the values of ⇢ obtained
numerically with the analytic form in Eq 4.4. These results need further investigations
as we obtain the right form of the curve but there is a multiplicative factor that we
don’t understand yet.

Figure 4.11: Values of the maximum ⇢ obtained with gA = 0.15 nS in a sAHP current
growing linearly with the distance to the waves source cell (center) (blue points) and fit with
the analytic prediction (red line).

4.4 Distribution of waves near the critical point.

As we have seen before, there is a critical point for gA before which waves cannot
propagate. This is because the total current cannot exceed the bifurcation threshold.
However, close to that point, in the presence of noise, noise fluctuations can trigger
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the bifurcation and let the wave propagate. In addition, in the general case, wave
propagates in a susbtrate of sAHP resulting from previous waves and acting on their
propagation. Finally, when several propagate at the same time they can interact and
collide. Here we want to study these effects in some details.

One wave. We begin with the case where the wave starts at the center and propa-
gates in a flat R profile. Without noise, for gA < gAc , there is no propagation, whereas,
for gA > gAc the propagation is ballistic. If we add a bit of noise we expect the prop-
agation to be non ballistic near the critical point gAc : for gA < gAc noise can favour
the bursting of the next cell, whereas, for gA > gAc , noise may delay the bursting of
the next cell. Therefore, we expect, in general, a propagation of the form:

x(t) = v ( t− t0 )z + x0, (4.5)

In Fig 4.12 we show several examples of 1D waves generated this way, together with
a fit of v, z. The main observation is that, near the threshold; wave stops at random
points. Also, due to noise, waves can appear spontaneously. That’s why, in Fig. 4.12
we choose a low level of noise, to avoid multiple waves.

Figure 4.12: Example of propagation near the gA critical point, in the presence of
noise. In color is shown the calcium concentration. The white line corresponds to a fit of Eq
4.5 with linear regression on the log. Left: 100 cells, gA = 0.035 nS, σ = 4 pAms−

1

2 ; Right: ,
gA = 0.1 nS, σ = 3 pAms−

1

2 . The critical point is gA ⇠ 0.04 nS. .

Non direct interaction between waves. We then investigate the wave propaga-
tion near the critical point, and more generally, when gA varies, for non interacting
waves. To avoid waves interaction we take a low level of noise (to avoid spontaneous

waves generation), σ = 3 pAms−
1
2 . We select a cell at random and inject a short (0.1

ms) pulse of voltage raise (50 mV). We do this every second until a wave starts. Then
we let the wave propagate. At the end of the wave, we start again exciting randomly
cells, until a new wave starts again, and so on. In this way, we are close to the ”adi-
abatic” conditions of excitations used in SOC models. We record the activity after a
transient of 200 s.

In fig. 4.13 we show the wave propagation for different values of gA. The main
observations are:

1. Due to noise, the symmetry left-right is broken. A wave can stop abruptly at
some point.
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2. Even if there is no direct wave interaction there is an interaction via the sAHP
landscape. Especially, even if we choose randomly uniformely the initial cell,
wave is more likely to appear in regions where sAHP is lower. There is therefore
a memory effect which lasts longer than the sAHP period.

Figure 4.13: Example of propagation for non interacting waves, near the gA critical
point, in the presence of noise (σ = 3 pAms−

1

2 ) for 50 cells. Left: gA = 0.04 nS; Middle:
gA = 0.06 nS ; Right: gA = 0.1 nS. .

For each wave we compute:

1. Calcium correlation between the central units 0 and the other units i, i.e.

C0,i =
hC(0, t)C(i, t) i − hC(0, t) i hC(i, t) i

σC(0)σC(i)
, (4.6)

where h i denotes the time average, and σC(i) is the mean square deviation of
calcium concentration at cell i (see Fig. 4.14). We observe:

(i) A breaking of symmetry left-right which presumably due to our procedure.
Correlations here are computed on one trajectory and the sample (2000 s)
is apparently not long enough.

(ii) Correlation vanishes for low gA values and then becomes negative. The
point where it vanishes defines a correlation length ⇠C .
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Figure 4.14: Calcium correlations as a function of distance for several values of gA.

2. The Histogram of the total current during a burst (Fig. 4.15). We observe:

(i) The current has a long negative tail (corresponding to the sAHP influence)
and a peak near the maximum.

(ii) The maximal value (also shown in Fig. 4.15) crosses ISN for gA = 0.058
close to the predicted critical point. This suggests that the bifurcation is
driven by the maximum value of the current.

(iii) This maximum grows like gαA with ↵ ⇠ 1.56.
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Figure 4.15: Left. Histogram of the total current within a burst. The vertical line is the value
for ISN . Right. Value of the maximum current during a burst minus ISN . .

3. The histogram of z and v where, for each wave involving more than 5 cells, we
fit these quantities and compute their probability distribution. From this, we
compute the mean and variance of z, v (Fig. 4.16). We observe:

(i) The dynamical exponent is constant z ⇠ 1.1 (the value obtained at gA =
0.05 might be not reliable as it corresponds to only one sample). It is
slightly above ballistic transport.

(ii) The speed v increases in agreement with eq. 3.20 provided one fits Ω and
the constant C. Compared to the case with 2 bursting cells, we have a Ω
smaller (0.05 compared to 0.2 in the 2 cells case).
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Figure 4.16: Top. Dynamical exponent z as a function of gA. Bottom. Speed v as a function
of gA and fit with Eq (3.20). .

4.5 Modeling the dynamical changes occuring within stage
II retinal waves

4.5.1 How does the cholinergic conductance evolves during develop-
ment?

As discussed already throughout this thesis, during development and especially in the
case of retinal waves, transient processes occur, networks change their functionality
and synapses that are no longer used get replaced. However, these transient processes
change dynamically also within each stage of retinal waves, especially stage II. In this
stage, the cholinergic excitatory connections between SACs degrade and eventually
disappear around the onset of stage III waves [62]. This point in time, usually counted
in postnatal days, varies across species but its existence is generic. In the work of
[62], the authors measured the peak cholinergic responses of SACs, in rabbits, upon
the application of acetylcholine puffs (1mM). Note that these recordings were made
in the presence of 0.5-1mM of cadmium (Cd+2), which blocks all Ca+2 dependent
transmissions and therefore no external input would activate the nicotinic receptors.
Consequently, this experiment measures the efficiency of the nicotinic receptors by
measuring the induced cholinergic currents exclusively mediated by the acetylcholine
puffs. It is shown in Fig 4.17 (Figure 3B in [62]) that the cholinergic current responses
of SACs decline upon maturation. In particular, we observe that cholinergic nicotinic
receptors are formed before birth and are already at their maximum efficiency before
stage II phase starts (for rabbits this is around E29). We also see that cholinergic cur-
rents significantly decline around P6 in rabbits, coinciding with the loss of excitability
of SACs. This is a strong signature of the switch occuring to the transient network of
SACs functionality, in later stage waves.
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Figure 4.17: Age dependent decline of peak current responses of starburst cells to
ACh puffs (1 mM) in the presence of 0.5− 1mM Cd2+. The numbers of cells tested are
shown above the histogram. (Figure 3B from [62])

In order to follow these dynamical changes, we use our model to estimate the evo-
lution of cholinergic conductance based on the experiment of [62] as shown in 4.17. We

assume that the fraction A2

A2+γ2
A

, modeling the nicotinic receptors activation, is equal

to 1, since during the puff of acetylcholine, receptors are considered to be saturated.
Also, we make the assumption that the reversal potential VA = 0mv does not change
upon maturation. After these two assumptions, the expression to describe the current
response to cholinergic puffs reads as:

IApuff
= −gAVclamp (4.7)

Now if we assume that SACs are voltage- clamped during the puff at the rest state,
then ⇠ Vclamp = −70mV . In order, to compute the evolution of the cholinergic
conductance upon maturation, it suffices to extract the maximum peak values of the
current responses from Fig 4.17 and multiply them by the potential. Assuming that
the maximum cholinergic current response is Imax

Apuff
= 1400pA, then Imax

Apuff
/Vclamp =

gAmax , which gives gAmax = 0.017 per synapse.
From this experiment and Eq 4.7 we are therefore able to roughly extrapolate the
evolution of gA during stage II. We now study how this evolution impact the retinal
waves dynamics.

4.5.2 Different spatiotemporal patterns emerge within stage II reti-
nal waves

In [53], a thourough study of the characteristics of retinal waves is performed for all
three consecutive stages. In particular, in mice within stage II phase (P3-P10) exhibit
a vast variability in waves characteristics such as size, duration, frequency and speed.
This experimental observation suggests that within stage II, there exist underlying
transient processes which result in this variability. In the biological literature, some
of those processes are already known such as the degradation of nicotinic cholinergic
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receptors upon maturation within stage II waves or the change in the excitability
properties of SACs due to cellular mechanisms (see Chapter 1). However, it is not yet
confirmed how these changes exactly affect waves within the stage II phase and what
would be the implications on the way a transient network operates during a window
in development and what could be the mechanisms explaining the wide variability
of wave characteristics within stage II. This variability can of course result from the
variability in the cells characteristics themselves. This was proposed by [30], where they
introduce, in the Hennig et al. model [54], a distribution of sAHP time characteristics
resulting in a variation in cells interbursts. They argue that this improves the model
in reproducing experimental stage II retinal waves. However, this distribution appears
quite ad hoc. Here we would like to propose a more natural mechanism for variability
resulting directly from dynamics, in a network of perfectly identical cells.
In order to address this type of question, in our model we vary the strength of the
cholinergic coupling by modifying the conductance gA (see Fig 4.19). As we did in the
previous section, but here in 2D, in the realistic conditions where waves interact and
leave a trace of their propagation. For a large value of coupling strength spatiotemporal
patterns appear to be larger covering the whole lattice. In this case cells tend to
be more synchronized leading to the generation of larger waves. In contrast, when
the coupling is very weak, the cells do not receive enough excitatory input to get
synchronized and thereofore no propagating waves are generated. Note that there is a
threshold of gA after which small local bumps of activity are formed without exhibiting
propagation. We observe that there exists an intermediate regime for which waves
exhibit a large variability of size leading to a mix of types of generated waves which
corresponds qualitatively to the characterics of the experimentally observed waves.
In Fig 4.19, we show the different spatiotemporal patterns of the intracellular calcium
concentration (variable C) that can be produced by our equations varying the strength
of the coupling gA. Note that in this simulation we use N = 10000 cells on a lattice
and each cell has 28 neighbours.

Figure 4.18: Simulated Calcium waves Left. Weak. Center. Moderate. Right. Strong
Cholinergic coupling. The spatial resolution is 100x100.

Figure 4.19: Simulated retinal waves: Voltage patterns. Left. Weak. Center.
Moderate. Right. Strong Cholinergic coupling. The spatial resolution is 25x25.
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4.5.3 Spatial Correlations reveal a characteristic size for stage II
waves

In order to quantify the effect of different spatiotemporal patterns upon the variation
of the cholinergic coupling we compute the spatial pairwise correlations averaged in
time for several valued of the cholinergic conductance gA (see Fig 4.20) as follows:

C(d) =
(< C(r, t)C(r + d, t) > − < C(r, t) >< C(r + d, t) >)

σrσr+d
(4.8)

where C is the calcium concentration, r the radial coordinate (in polar coordinates),
d the distance between cells, t time. <> corresponds to time average. σr is the mean
standard deviation at point r.
We assume here rotation invariance, i.e. the cell located at r is far from the boundaries.
This also implies that r + d << L the lattice dimension.
As expected, for weak coupling spatial correlations extend to small distances which
indeed result in local bumps of activity. For stronger coupling, we observe correlations
that would reach the size of the lattice, explained by the large waves observed in
this case. Interestingly, for the intermediate regime of coupling, we observe a positive
correlation at short distances and a negative one at larger distances. That means that
when certain neurons fire, the ones at a specific distance d where anticorrelations are
observed are refractory. This observation gives a measure of the characteristic size of
waves for a given strength of cholinergic coupling. These negative correlations mean
that the waves stop where it encounters a refractory region (or collides with another
wave). Hence, on average, the distance where correlation becomes negative gives the
characteristic wave size. In our case, the characteristic size of stage II waves is shown
to be ⇠ 15 cells. In order to compute the actual distance in mm we need to take into
account the intercellular distance considered at 50µm so that would give 50 x 15 =
750µm. To have a rough estimation about the characteristic area of stage II retinal
waves, if we assume radial symmetry, out model predicts a range of ⇠ 0.56−1.68mm2.

4.6 Characterizing the SACs population activity and the
features of retinal waves

4.6.1 Possible phase transition on the population firing rate

In order to characterize the population activity, we are in need of an order parameter
2 of the network of SACs. In our case, we measure the average population firing rate
with respect to the strenght of cholinergic coupling. We use the calcium concentration,
since it is a good indicator of the presence of a wave (actually used experimentally).
For isolated spikes, the local calcium concentration slightly rises and falls with time.
On the contrary, during the passage of a retinal wave, it reaches much more higher
values, since the load of calcium increases when V stays longer on the upper branch,
which happens during a wave. We introduce the state function of the SACs (i, j) as

Bi,j(t) =

⇢

1, if Ci,j(t) > Cth;
0, otherwise.

(4.9)

2An order parameter distinguishes two different phases, in physics.
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Strong CouplingModerate Coupling

Weak Coupling

Figure 4.20: Correlations with respect to cells distance for various values of the
cholinergic conductance. Three distinct regions are observed in the correlations linked
with a different spatiotemporal pattern. Insets. Simulated calcium waves corresponding to
each regime of coupling.

where Cth is an arbitrary threshold values that we select high enough to undoubtedly
identify a wave Cth = 2C0. Then:

FRG(t) =
1

n

X

i,j

Bi,j(t) (4.10)

stands for the fraction of the total number of SACs which are involved in any retinal
wave at time t and will be named ”global firing rate”. n is the number of cells. For long
enough simulations, FRG(t) fluctuates around a constant, well defined average value
hFRGit. Fig.4.21 displays the evolution of average global firing rate hFRGit versus the
coupling strength gA. A transition zone is clearly evident, with a sharp increase of
hFRGit for gA ≥ gAc .

4.6.2 Distribution of waves size and duration, Power laws, Criticality

Waves statistical features

Having as a goal to quantify how the statistical features of waves change as upon the
variation of the cholinergic coupling, in Fig 4.22 and 4.23, we report on the distribu-
tion of waves durations and waves sizes for various values of gA. In this numerical
experiment, because of the finite size of the observation window, some assumptions
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Figure 4.21: Evolution of the average global firing rate (hFRGit) with the coupling
strength gA. The capital letters (A,B,C,D,E) point to some selected values of gA that we will
focus on later. They correspond respectively to gA = 0.168, 0.252, 0.308, 0.336, 0.476nS per
cell with 28 neighbours.

have to be done. For example, the features of waves that appear or disappear at
the observation window without having finished, are impossibe to compute. For this
reason, here, we use periodic boundary conditions, leading to perfectly identification
of our numerical waves. Waves durations are computed as the total time duration of
wave followed from the beginning until its end. Waves sizes are computed as the total
number of cells having participated in the wave during its duration. Splitting and
merging waves are dealt with as events belonging to the same wave. Also, note that
the following numerical simulations are done in the noise driven bursting regime.
In Fig 4.22 and 4.23, we observe that waves durations and sizes follow exponential
distributions for the weak coupling regime A. For the moderate coupling regime B
and C, we observe power-law like distributions, indicating that there might be a crit-
ical regime for the system. Also, the characteristic size area revealed by this analysis
is S⇤ = 200 cells, which interestingly corresponds to the characteristic size found in
Fig 4.20, where d⇤ = 15 cells leading to S⇤ = d⇤2 = 225 cells for a wave area. Note
that, there has been a preliminary indication, of power-law distributions and critical
regimes in the work of [54]. Finally, in the strong coupling regime E, we observe a
mixed exponential and power law distribution for both waves durations and sizes.

4.7 Pattern formation in the dynamically driven bursting
regime

We now study the structure of the spatio-temporal dynamics corresponding to the
dynamically driven bursting scenario. In Fig 4.24, we display the instantaneous values
of the variables involved in Eq 3.4. A first obvious remark is that the spatial patterns
associated with the fast variables V and N are of smaller size than those of the other
variables. This is because the instantaneous picture detects mainly the highest values
associated with the spike activity, and is less sensitive to their time average. Note also
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Waves durations distribution

lin-log log-log
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Figure 4.22: Distribution of the waves durations, in linear-log plot (left column)
and in log-log plot (right column). The capital letters refer to the parameter regimes
pinpointed in Fig 4.21.
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Waves size distribution

lin-log log-log
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Figure 4.23: Distribution of the wave size, in linear-log plot (left column) and in
log-log plot (right column). The capital letters refer to the parameter regimes pinpointed
in Fig 4.21.
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that the instantaneous spike activity is not homogeneous, but consists of clusters whose
positions are clearly visible in the C and A plots. Finally R and S are associated with
a spatial patchwork, whose elements, although irregular, seem to possess a well defined
typical size. In Fig 4.25, the areas enclosed by the continuous white line (R and A) in
Fig 4.24 are enlarged by a factor of 2. We first remark that high A activity and high
value of C indeed correspond to propagating waves and not to other type of spatio-
temporal patterns, such as bumps, standing waves etc. This analysis also reveals that
propagating waves are clearly spatially bounded in specific areas, controled by the blue
R patches. This reveals, that there exist emerging spatio-temporal patterns, in which
retinal waves are allowed to propagate.
We illustrate this, in Fig 4.26, where we show a typical time evolution: inside the con-
tinuous white line which surrounds an area of low R (not shown), waves start in two
places (t = 2.75), propagate (t = 5.50) until they reach the border and disappear, leav-
ing only a single wave (t = 8.25). Then this wave propagates (t = 11.00, 13.75, 16.50)
until it reaches the border (t = 19.25) and disappear (t = 22). Then the whole se-
quence repeats itself almost identically starting from (t = 0.00). Therefore 3 spatial
scales can be identified: the smallest one is associated with the spike activity (' size
of a cell), the medium with the spatial extension of the wave (' size of a the excitable
front), and finally the largest one with the sAHP dynamics ((' typical size of the R
patchwork). The slowly varying R areas are natural candidate to play the role of the
controlling the emerging domains.
A similar observation has been made in the one dimensional study of the dynamically
driven regime, where in Fig 3.14, we see that 1D waves are bounded at a specific dis-
tance, especially for stronger coupling, which remains almost constant during a time
scale of ⇠ 100 periods. We believe, that what we observe here, is an extension of the
1D case in the dynamically driven regime. We also believe, that the mechanism behind
these patterns formation, is mainly the deterministic periodic dynamics of sAHP that
create a mosaic of ’forbidden’ areas for waves propagation leading to spatio-temporal
patterns formation.

4.8 Conclusion and Discussion

In this section, we discussed in detail the two dimensional study of the spatio tempo-
ral dynamics of stage II retinal waves. Using our model, we were able to adress the
questions on how waves propagate and stop, providing theoretical predictions on the
mechanisms controling the waves dynamics. We also show how wave dynamics depend
on the variation of biophysical parameters, revealing the possible existence of critical
regimes characterized by power-law distributions of the statistical features of retinal
waves (sizes, durations). Already, we have performed stage II waves experiments in
collaboration with Vision Institute, confirming as a preliminary result the power-law
like behaviour for wave characteristics in normal conditions (see Chapter 6). The
physical meaning of such a critical regime means that waves would exhibit maximal
variability in their sizes and durations (definition of power law distributions). It would
be interesting to explore what would be the functional reason behind the network’s
choice of such a regime, regarding waves.
We also predict the apparition of pattern, that spatially bound the propagating waves.
Such patterns, despite the fact that have never been experimentally observed during
stage II phase, are still interesting. For example, late waves (stage III) appear to be
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Figure 4.24: Numerical simulation of Eq 3.4 with gA = 0.336nS (case D in Fig 4.21).
From top left to bottom right, the plot displays the instantaneous value of V ,N ,R,S,C and
A versus i, j using the color code in the center of the figure. For each plot, the minimal and
maximal values used to define the color code are explicitly indicated.

0.27<R<0.70 0.65<A<4.14(nM)

Figure 4.25: Numerical simulation of Eq 3.4 with gA = 0.336nS (case D in fig.(4.21)).
The left (resp. right) plot displays R (resp. A) versus i, j using the color code in the center of
the figure. For each plot, the minimal and maximal values used to define the color code are
explicitly indicated. The two plots are an enlargement of the areas enclosed by the continuous
white line in Fig 4.24.
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Figure 4.26: Time evolution of the calcium concentration C with gA = 0.476nS (case
E in Fig 4.21). The color code is the same as in Fig 4.24. The time (in s) is displayed in the
bottom right corner. The continuous close white line has been added manually to assist in
the understanding (see text). The velocity of the front is above 120µms−1, while its width is
' 240µm.

spatially bounded and more localised than stage II waves [53]. Those localized activ-
ity patterns, could potentially have a link with how receptive fields are formed before
vision becomes functional. For studying the underlying mechanisms of such activity
patterns, it would be interesting to use our theoretical framework.
In the following chapter, we are going to present a mesoscopic approach towards the de-
scription of waves, derived from the microscopice dynamics of the detailed biophysical
equations.
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Chapter 5

Towards a mesoscopic approach
to analyse retinal waves

Our model features the elaborated dynamics of individual SAC and their choliner-
gic coupling. It is able to reproduce several experiments and to propose new ones.
However at this stage it does not yet provide phenomenological equations for waves
propagation and pattern formation. It is usual in physics to model waves by partial
differential equations so here we attempt to follow the same approach. The goal is to
better understand waves propagation, in particular, how they depend on parameters
such as the cholinergic conductance gA. Also, it is important to eliminate the fast dy-
namics to improve computational time during numerical investigations. In some sense,
existing models of retinal waves, especially [12], attempt to propose such a mesoscopic
description, but the proposed dynamics is not purely justified on biophysical grounds,
where as in our model it was built based on the microscopic dynamics of individual
SACs.
Using a fast-time averaging procedure we have been able to propose a partial dif-
ferential equation for the propagation of Ach conductance upon SACs bursting and
synchrony. This is a nonlinear equation, which is in a sense a generalisation of Kardar-
Parisi-Zhang (KPZ) equation for surface growth [16]. In this approach, we consider a
propagation of the conductance GA, the total Ach conductance. This departs, already
at this stage, from classical approaches, such as reaction-diffusion where one would
consider instead directly the diffusion of Ach concentration. This approach has been
followed by Lansdell et al. [12]. However, this requires a free diffusion of Ach, which is
not what happens here. Ach is produced when the cell is bursting. This gives rise to a
very original dynamics where activity propagates only when cells cross the threshold
leading them to burst, in direct link with the bifurcation analysis of Chapter 2, and
transport condition of Chapter 3. As we see in the next lines, it is easier to represent
waves equation as a transport of conductance. In this approach, propagations occurs
in a landscape shaped by the previous wave activity and most importantly, sAHP
dynamics. As a consequence, this is a non linear PDE depending on the history of
the system. Due to lack of time, we have not been able to study in full generality,
but we have obtained analytic results about the waves speed and characteristic space
and timescale. Especially, we found a condition whose dynamics is equivalent to a
SOC sand pile [17, 18], hence implying power law distributions for waves. However,
this case is very specific and has no reason to appear spontaneously in stage II retinal
waves, unless an additional mechanism, such as homeostasis, stabilizes SACs, at this
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very specific point. All this study is preliminary and requires further investigation.

5.1 Transport equation

5.1.1 Model and variables rescaling

We recall that the model equations are:
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C dVi

dt = −gL(Vi − VL)− gCM1(Vi)(Vi − VC)− gKNi(Vi − VK)−GsAHP (Ri)(Vi − VK)
−GA(Akk2Bi

)(Vi − VA)

⌧N
dNi

dt = Λ(Vi)(N1(Vi)−Ni)

⌧C
dCi

dt = − αC

HX
Ci + C0 − δCgCM1(Vi)(Vi − VC)

⌧S
dSi

dt = ↵S(1− Si)C4
i − Si

⌧R
dRi

dt = ↵RSi(1−Ri)−Ri

dAi

dt = −µAi + βATA(Vi),
(5.1)

where:
GsAHP (Ri) = gsAHPR

4
i , (5.2)

is the sAHP conductance,

GA(Akk2Bi
) = gA

X

k2Bi

U(Ak), (5.3)

is the Ach synaptic conductance, with:

U(A) =
A2

γA +A2
, (5.4)

and where Bi is the set of index of neurons connected to i.
We rescale conductances g̃X = gX

gL
dividing by gL to let the time scale ⌧L = C

gL

appear in the equation of V . Also, we introduce ⌧A = 1
µ .

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

⌧L
dVi

dt = −(Vi − VL)− g̃CM1(Vi)(Vi − VC)− g̃KNi(Vi − VK)− G̃sAHP (Ri)(Vi − VK)

−G̃A(Akk2Bi
)(Vi − VA);

⌧N
dNi

dt = Λ(Vi)(N1(Vi)−Ni);

⌧C
dCi

dt = − αC

HX
Ci + C0 − δCgCM1(Vi)(Vi − VC);

⌧S
dSi

dt = ↵S(1− Si)C4
i − Si;

⌧R
dRi

dt = ↵RSi(1−Ri)−Ri;

⌧A
dAi

dt = −Ai +
βA

µ TA(Vi);
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We rescale time at the time scale of Acetylcholine (which is close to Calcium time
scale) by introducing a new medium time scale tm = t

τA
. This gives:
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:

✏V
dVi

dtm
= −(Vi − VL)− g̃CM1(Vi)(Vi − VC)− g̃KNi(Vi − VK)− G̃sAHP (Ri)(Vi − VK)

−G̃A(Akk2Bi
)(Vi − VA)

✏N
dNi

dtm
= Λ(Vi)(N1(Vi)−Ni)

τC
τA

dCi

dtm
= − αC

HX
Ci + C0 − δCgCM1(Vi)(Vi − VC)

τS
τA

dSi

dtm
= ↵S(1− Si)C4

i − Si

τR
τA

dRi

dtm
= ↵RSi(1−Ri)−Ri

dAi

dtm
= −Ai +

βA

µ TA(Vi),

(5.5)
with ✏V = τL

τA
and ✏N = τN

τA
.

5.1.2 Reduced dynamics

Fast dynamics of V,N

In eq. (5.5), ✏V and ✏Ns are small. N,V are fast variables and one can approximate
their dynamics on the medium time scale by their steady state equations. This gives:

V ⇤
i =

VML(V
⇤
i )+G̃sAHP (Ri)VK+G̃A(Akk2Bi

)VA

g̃ML(V
⇤
i )+G̃sAHP (Ri)+G̃A(Akk2Bi

)
. (5.6)

where:
VML(V

⇤
i ) = VL + g̃CM1(V ⇤

i )VC + g̃KN1(V ⇤
i )VK ;

g̃ML(V
⇤
i ) = 1 + g̃CM1(V ⇤

i ) + g̃KN1(V ⇤
i ),

(5.7)

refer to Morris-Lecar (ML) terms.

Depending on parameters this equation has one, two or three solutions correspond-
ing to branches of equilibria. The number of branches varies when saddle-node bifur-
cations (see Chapter 2).

We are here mainly interested in two parameters: the sAHP conductance G̃sAHP (Ri),
where Ri is considered as a slow parameter and the Ach conductance G̃A. Note that,
V ⇤
i decreases when sAHP conductance increases, and it increases when Ach conduc-

tance increases, as expected.
Also remark that, in Eq (3.4) the effects of sAHP and Ach appears via a variation

of conductance, i.e. via a current of the form −gX(V − VX). As a consequence,
the conductance appears both in the numerator and in the denominator of the rest
potential. This is in contrast with an external current Iext considered in Chapter 2, as
a parameter, which appears only in the numerator. The two cases are similar, though,
if the conductance is small compared to the other terms in the denominator.
Recall that if we consider V ⇤

i as a function of an external current Iext then the saddle-
node bifurcation SN1 is given by Iext = ISN1 Especially, (for Iext > ISN1), there is one
branch corresponding to the unstable fixed point inside the area delimited by a stable
limit cycle.
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Slow variables

Let us now return to the time rescaled equations (5.5). The ratios τS
τA
, τRτA are large.

Therefore, we may write the equation of Si, Ri in (5.5) the form:

dSi
dtm

= ✏S
⇥

↵S(1− Si)C4
i − Si

⇤

⇠ 0;
dRi

dtm
= ✏R [↵RSi(1−Ri)−Ri ] ⇠ 0, (5.8)

with ✏S = τA
τS
, ✏R = τA

τR
small. Therefore, on the medium time scale, we can consider

S,R as parameters, fixed in time.

Medium scale variables

C have the same time scale as A but it does not play a direct role in the equation of
A. It only acts via R, acting on V , acting on A, but from the previous section, we
consider R as a constant.
This approximation is fair, as soon as we want to consider propagation on the time
scale of one wave, assuming that this time is quite smaller than the hyperpolarization
time. In this approximation, the wave propagates in a ”frozen” R landscape, in the
spirit of the numerical experiments with one wave source cell done in Chapters 3 and
4.
On larger time scales (corresponding to having several waves) one has to consider
a coupled dynamics between A and R where R evolves as well according to waves
dynamics.

For A the equation becomes:

dAi

dtm
= −Ai +

βA
µ
TA(V

⇤
i (Ri, Akk2Bi

)), (5.9)

where we made explicit the dependence of V ⇤
i in the variables Ri and Ak (Ach con-

centration emitted from presynaptic neurons).

5.1.3 Equation of transport for Ach

Approximations

Equation (5.9) relates the local concentration of Ach to the concentration of Ach emit-
ted by presynaptic neurons. In this sense it characterizes how Acetylcholine propagates
upon neurons activity. However, although this equation looks simple it hides several
difficulties.

Mainly, the variable V ⇤
i (Ri, Akk2Bi

) is not a continuous function of the sAHP vari-
able (Ri) and presynaptic Ach concentration (Ak). This is because V ⇤

i has jumps at
bifurcation points. In particular, when V ⇤

i jumps from the lower to the upper branch,
its Ach production abruptly increases. There is therefore a thresholding mechanism
leading to a singularity in the transport equation. From this point of view the trans-
port equation is quite original and quite different from standard waves equations even
in non linear systems. The only analogy we found is with models of self-organized
criticality (see section ...) and the work of [14].
The second problem is that T is a nonlinear (sigmoidal function).

We propose now several approximation to help us having a tractable transport
equation.
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Ach production on the lower branch. We consider that V ⇤
i is so low on the lower

branch that T (V ⇤
i ) = 0. On the lower branch V ⇤

i 2 [−80,−60] mV, for V0 = −20mV,
A = 0.2 mV this gives T (V ⇤

i ) 2 [6.10−6, 0.00033]. This justifies this approximation.

Ach production on the upper branch. We assume that V ⇤
i is almost constant

for the range of currents it receives. Then, we replace T (V ⇤
i ) by a constant πA. In our

case, in the upper branch, V ⇤
i ⇠ −30 mV, giving πA ⇠ 0.12.

Thresholding. In Chapter 3, we have defined a condition ensuring that a cell at
rest starts to burst from the influence of bursting neighbours. This defines a threshold
conditions depending on the local sAHP constrained by the variable R. We now rewrite

this threshold condition by introducing the quantity Γi(Akk2Bi
) =

X

k2Bi

U(Ak). The

total Ach conductance is GA = gAΓi and the threshold condition can we written as
g̃AΓi > Θ(Ri) where Θ(Ri) is a bursting threhold.
Θ(Ri) is derived the same way as Eq 3.18. However, in contrast with Eq 3.18, where
we assumed that all neighbourhing cells are synchronous, here they are not. Also, Eq
3.18, was derived assuming that a wave starts from a bursting cell and that all other
cells are in a rest regime. If we want to generalize this computation to the case where
the cells are not synchronous and the number of bursting cells can vary, we are led
to a very complex problem. Indeed, e.g. the number of bursting cells, n, depends on
dynamics, and dynamics on n.
A way to circumvent this problem is to use a naive mean-field approach. We replace
n by its average value, n ⇠ KF , where K is the number of neighbours of a cell, and
F the probability that a cell is bursting at a given time (computed in Section 3.6).
We also replace R(tB) by its average. This gives us a threshold to replace 3.18 by the
adequate equation. We call this a ”naive” mean-field approach because it neglects the
fluctuations of n and R around their mean.

The threshold conditions reads now as: g̃AΓi(Akk2Bi
) > Θ(Ri), where Θ(Ri) is the

bifurcation threshold. Therefore, using the Heaviside function, we may replace the
production term TA(V

⇤
i (Ri, Akk2Bi

)) in Eq (5.9) by πAH
⇥

g̃AΓi(Akk2Bi
)−Θ(Ri)

⇤

.
Note that, for our parameters value (spontaneous bursting) Θ(Ri) < 0. Therefore,
there is Ach production even in the absence of coupling, but the cells do not interact
together: the situation is as if there was Ach emission but no receptors.

Variable Γ. From now, we simplify the notation and remove the term in parentheses.
The transport equation reads now:

dAi

dtm
= −Ai +

βA πA

µ
H [ g̃AΓi −Θ(Ri) ] .

We have:
dΓi

dtm
=

X

k2Bi

dU(Ak)

dtm
=

X

k2Bi

U 0(Ak)
dAk

dtm

=
X

k2Bi

U 0(Ak)

✓

−Ak +
βA πA

µ
H [ g̃AΓk −Θ(Rk) ]

◆

.
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Piecewise linear approximation. To simplify further this equation we replace U ,
a sigmoidal function, by its linear approximation (see Section 3.3) U(x) = aU + bUx,
where aU = 0 and bU = 1

2
p
γA

= 1
2Kd

, provided x 2 [X−
U , X

+
U ]. We have then

X

k2Bi

U 0(Ak)Ak =
X

k2Bi

bUAk =
X

k2Bi

(U(Ak)− aU ) =
X

k2Bi

U(Ak). Therefore−
X

k2Bi

U 0(Ak)Ak

= −
X

k2Bi

U(Ak) = −Γi and:

dΓi

dtm
=
βA πA bU

µ

X

k2Bi

H [ g̃AΓk −Θ(Rk) ] . (5.10)

Recall that Γi is proportional to the Ach conductance. This equation tells that, when
neurons are at rest (low branch), Γi has a steady state Γi =⇠ 0 i.e. each neighbour
provides a conductance contribution 0. More generally, there is a source term propor-
tional to the number of pre-synaptic neurons whose Ach conductance is larger than
Θ(Rk).

Laplacian approximation. Here comes the interest of assuming cells distributed on
a regular lattice with nearest neighbours interactions. We note a the lattice spacing.
We locate the point i in the lattice by coordinates xi, yi but we assume that A is
in fact a continuous field A(x, y, t) that we sample at lattice points so that Ai(t) ⌘
A(xi, yi, t). Then, the Ach concentration in the four points of the neighbourhood Bi
of i is A(xi ± a, yi, t) and A(xi, yi ± a, t) Therefore:

X

k2Bi

H [ g̃AΓk −Θ(Rk) ] ⇠ 2dH [ g̃AΓi −Θ(Ri) ] + a2∆H [ g̃AΓi −Θ(Ri) ] , (5.11)

with Γi = Γ(xi, yi, t) and d the dimension of the system.

Singular diffusion. Here ∆ is the Laplacian, and ∆H is a distribution. We recall
that H 0 = δ, the Dirac distribution. For a function f(x, y, t) we have rH(f(x, y, t) =
δ(f(x, y, t))rf and∆H(f(x, y, t) = r ( δ(f(x, y, t))rf ) = δ0(f(x, y, t))krfk2+δ(f(x, y))∆f .
Here f(x, y, t) = g̃AΓ(x, y, t)−Θ(R), where R is a field characterizing the spatial varia-
tion of sAHP imprinted by the previous history of waves and it evolves slowly in time.
Therefore rf = g̃ArΓ and:

∆H [ g̃AΓ−Θ(R) ] = g̃2A
⇥

δ0(g̃AΓ−Θ(R))krΓk2+δ(g̃AΓ−Θ(R))∆Γ
⇤

. (5.12)

Let us interpret this equation. The Dirac distributions δ(g̃AΓ−Θ(R)), δ0(g̃AΓ−Θ(R))
weight the set of points x, y such that g̃AΓ(x, y, t) = Θ(R). This is the set of neu-
rons which are precisely at the bifurcation point (at time t). Typically this should
be the front of the wave, what we call the critical front. If we assume that this set
is a smooth curve S(t) with a length element dl, then, for a test function ψ(x, y),
hδ(g̃AΓ−Θ(R)),ψi =

R

S(t) ψ(x, y)dl(x, y), the integral of ψ on the critical front.
Therefore:

hψ,∆H [ g̃AΓ−Θ(R) ]i = g̃2A

"

Z

S(t)
r
(

ψkrΓk2
)

dl(x, y) +

Z

S(t)
ψ∆Γdl(x, y)

#

.
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In particular, taking  (x, y) = 1 in (5.12) we obtain, writing h1, fi ⌘ hf i for
simplicity:

h∆H [ g̃AΓ−Θ(R) ] i = g̃2A

"

Z

S(t)
r
(

krΓk2
)

dl(x, y) +

Z

S(t)
∆Γdl(x, y)

#

Current. The transport equation of Γ, considered now as a field, reads:

∂Γ

∂t
= −Γ+ 4aU +

βA πA bU
µ

(

4H [ g̃AΓ−Θ(R) ] + a2∆H [ g̃AΓ−Θ(R) ]
)

, (5.13)

where ni = 4 in this graph configuration.

Equation (5.13) characterize the transport of conductance through the network. In
particular there is a current:

JΓ =
a2

g̃A
rH [ g̃AΓ−Θ(R) ] = a2δ [ g̃AΓ−Θ(R) ]rΓ, (5.14)

such that eq. (5.13) reads as a continuity equation:

∂Γ

∂t
+ g̃ArJΓ = −Γ+ 4aU + 4

βA bUπA
µ

H [ g̃AΓ−Θ(R) ] (5.15)

where the right hand side contains a loss term−Γ and a source term 4aU+4 βA bU
µ H [ g̃AΓ−Θ(R) ].

The current has an interesting form. Indeed, it is non zero only on the ”critical”
manifold g̃AΓ − Θ(R). On this manifold, it acts as a diffusion current. Therefore, Γ
diffuses only on the critical manifold.

5.2 Discussion

Single neuron dynamics in the presence of a tunable sAHP and Ach cur-
rents We made the following experiment (Fig. 5.1). We simulate a single neuron
dynamics replacing the sAHP conductance gSR

4 by a fixed parameter GS , and the Ach
conductance gAΓ by a fixed parameter GA. In other words, we consider a Morris-Lecar
model in the presence of currents −GS(V −VK) and −GA(V −VA) where GS and GA

are tunable parameters. We display the neuron activity in the figure 5.1. On the left
we see a 3D plot of the average voltage value hV i, whereas, on the right, we show the

mean hV i (top) and the fluctuations σV =
q

hV 2 i − hV i2 about the mean (bottom).
When considering fluctuations, black regions correspond to zero fluctuations, hence to
a fixed point dynamics. On the opposite, colored region correspond to an dynamical
activity. In the colored region of Fig 5.1 right, bottom, there are oscillations whereas,
below this region there is a low voltage fixed point, and, above, a high voltage fixed
point. When increasing GS these points merge at the end of the colored region via a
saddle-node bifurcation.
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Figure 5.1: Left. 3D plot of the mean voltage hV i as a function of GS , GA. The lines on the
surface and at the bottom are level lines. Right. Color map of the mean voltage hV i (top)
and its standard deviation σV =

q

hV 2 i − hV i2 (bottom).

It is interesting that in Fig 5.1 (bottom right), the numerical heat map plays the
role of a two dimensional bifurcation diagram, characterizing the dynamics accross the
parameters plane GA−GS . This result provides us with information, on which regime
in the parameters space, propagation is possible. What we miss for now, is how a
propagating wave’s trajectory moves in this parameter space, helping us to extract a
mechanism for waves propagation. In Fig 5.2, we provide a simple sketch of a possible
motion induced by a propagating wave, revealing a mechanism. Namely, propaga-
tion starts when GA starts to increase. While GA starts decreasing, GS would start
increasing, moving to the right in the parameters space, towards the regime of zero
fluctuations. Inevitably the transition is crossed, and the dynamics are now described
by a fixed point. The time for GS to decrease is quite long and that controls the
refractoriness. Finally, we reach a point where GS is low enough and while GA starts
to grow, a propagating wave emerges again. Although this mechanism is hypothetical,
it would be interesting to trace the real movement in the parameter space GA − GS ,
during a wave propagation.
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Figure 5.2: Color map of H and the schematic motion induced by a propagating wave.



120CHAPTER 5. TOWARDS AMESOSCOPIC APPROACH TOANALYSE RETINALWAVES



Chapter 6

Confronting our model to
experimental recordings

A short disclaimer
In this chapter, we include all our results related to experiments. As a physicist, I
believe that every theory needs an experimental validation and during my thesis I
was very lucky to collaborate closely with experts in experimental neuroscience and
especially on retinal waves. Due to the lack of time, not all experiments we would have
liked were done, and those who were, have not been fully analysed and their results are
complementary to the main theoretical contributions of this thesis. However, I have
found it magnificent to have learned a great deal about experiments during these three
years and I would like to add a piece of what I learnt in the last chapter of my thesis.
We explored two main questions with our collaborators: a) The role of potassium
channels in waves characteristics with experiments performed by Evelyne Sernagor
at University of Newcastle and b) the effect of the cholinergic transmission on the
spatio-temporal patterns of stage II retinal waves experiments performed in the lab of
Olivier Marre and Serge Picaud at Vision Institute, where I was hosted for two weeks
to participate in experiments and analyse data. I would like to deeply thank them all
for the opportunity to test some of our theoretical hypothesis in small pieces of the
real world.

6.1 The role of potassium channels in waves characteris-
tics

In order to characterize the role of potassium channels and especially sAHP current
within stage II retinal waves, Evelyne Sernagor performed Multi Electrode Array (MEA
4096 electordes) recordings from stage II P6 mice. In this experiment, the goal was
to manipulate the retinas pharmacologically and test the effect of this manipulations
on waves characteristics and consequently compare to our theoretical results. In the
experiment, E. Sernagor varied pharmacologically the intracellular K+ concentration
from 3nM to 6nM and 9nM , changing the reversal potential of the voltage-gated K+

channels to the following values respectively: −67mV , −77mV , −90mV (see Fig 6.1).
These values for VK are computed using the Nernst voltage equation:

121
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VK =
RT

F
ln(

pK [K+]o
pK [K+]i

) (6.1)

where VK is the reversal potential of K+, R is the universal gas constant, T is
the temperature, F is the Faraday constant, pK is the membrane permeability of K+,
[K+]i,o is the intra and extra-cellular concentrations of K+. For the calculation, we
assume that the temperature is T = 32 C degrees and the [K+]i = 115mM .
As a result, the main effect of increasing potassium is the increase of firing frequency
within bursts/waves, namely the population firing rate within waves increases. Waves
also become larger and probably faster, at least for VK = −66mV . These observations
are intuitively explained by the fact that while increasing the reversal potential of
K+, potassium related currents, such as sAHP and the fast voltage-gated K+, become
less hyperpolarizing, leading to an increase in cells activity. It also explains why waves
become larger and less complicated, since when a wave starts, it’ll cover the bigger parts
of the retina, as neurons are less hyperpolarized, facilitating the wave propagation in
the medium. This observation once more confirms one of the important roles of the
sAHP current on controling the random boundaries of waves. In other words, the
lesser the effect of the sAHP the more regular the waves appear to be.
Interestingly, at least in a qualitative point of view, there is no clear effect of varying VK
on the waves frequency, meaning that either sAHP is less instrumental at determining
the wave frequency as we would expect or that interwave intervals are controled by
another biophysical parameter than the reversal potential VK .

Figure 6.1: Recording of the Average Population Firing Rate (spikes/sec) over time.
From left to right the average population firing for different values of VK −66,−77,−90mV .
Recording from 4096 electrodes on P6 mice (courtesy E. Sernagor). We observe that the firing
rate increases as VK increases and also waves become larger and more frequent. This result
confirms the role of potassium channels in inhibiting retinal waves.

We simulate the same experimental conditions with our model. In our simulations,
we vary directly the values of VK to −67,−77,−90mV . We are able to qualitatively
reproduce the experimental observations regarding the waves speed and frequency. In
Fig 6.2, we also compute the average population firing rate for both dynamically and
noise driven triggering scenario, by varying the value of VL to −70mV and −72mV
respectively.
It seems that our model is able to reproduce qualitatively the experimental results
provided by Evelyne Sernagor but we can not make a quantitative statement yet on
the similarities of the spatio-temporal patterns. Indeed in both numerical cases, upon
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the increase of VK firing rate increases within waves and there seems to be no dramatic
effect on the waves frequency. However, we observe that for the dynamically driven
bursting regime and for VK = −90mV , in Fig 6.2, the baseline population activity
when there in no wave is not zero, opposingly to the corresponding experiment where
inbetween waves we see periods of silence in the network.

Figure 6.2: Modeling with the Dynamically driven bursting scenario. Average
Population Firing Rate (spikes/sec) over time. From left to right the average popula-
tion firing decreases for the different values of VK −66,−77,−90mV . We observe that for the
normal value of VK = −90mV , the baseline population activity is not zero, opposingly to the
corresponding experiment where inbetween waves we see periods of silence in the network.

Figure 6.3: Modeling with the Noise driven bursting scenario. Average Population
Firing Rate (spikes/sec) over time. From left to right the average population firing
decreases for different values of VK −66,−77,−90mV .

In order to explore the effect of the potassium channels on the spatiotemporal
dynamics of stage II retinal waves, we compare the raster plots of the experiments
with our simulations (here we show the case of the noise driven bursting regime).
We observe that as we increase the VK , we decrease the inhibition in the network,
consequently leading to larger and more frequent waves (see Fig 6.4). These qualitative
observations are well reproduced by our model (see Fig 6.5) where we also observe the
same effect upon the decrease of inhibition. We also show series of snapshots of our
simulated calcium waves for all three cases of VK , illustrating better our conclusions
(see Figs 6.6, 6.7, 6.8).
We have to note that in our model, we have two types of K+ channels, the fast
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voltage-gated K+ channels and the slow Ca+2-gated K+ channels. The effects that
we see here correspond to the role of the slow potassium channels, responsible for the
sAHP current in stage II retinal waves, since the time scale of the effect is in the
order of seconds and can not concern the fast ones whose dynamics evolve in several
miliseconds. As explained above, upon the decrease of hyperpolarizing currents and
therefore the effect of the sAHP currents, we observe that waves become more regular
at their boundaries. This confirms the role of the sAHP in the randomness of the waves
boundaries, since it acts like ”walls” where waves are not allowed to propagate. This
effect is also captured by our model (see Fig 6.5). However, in this case, our model
is tuned to quite smaller bursting period, corresponding to our original parameters
tuning, based on [63] with experiments on rabbits (interburst ⇠ 20sec), leading to
smaller interwave intervals than the experimental data. As E. Sernagor’s expreriments
were performed in mice (interburst ⇠ 60sec), the modeling parameter ⌧S controlling
the interburst and consequently the interwave interval should be ajusted accordingly.

Figure 6.4: Recording from stage II retinal waves (P6 mice) From left to right the
raster plot of the waves for different values of VK −90mV,−77mV,−66mV . We observe that
waves propagate more homogeneously as we increase VK , verifying that potassium channels
and especially sAHP plays a role in the irregular borders of waves.

Figure 6.5: Simulation of stage II retinal waves in the noise driven burst-
ing scenario. From left to right the raster plot of the waves for different values of VK
−90mV,−77mV,−66mV . Our simulated waves became larger, more frequent and more regu-
lar upon the decrease of the inhibition due to sAHP.
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Figure 6.6: Simulation of calcium stage II retinal waves for VK = −90mV From left
to right, snapshots of propagating waves with total duration of all frames 20sec.

Figure 6.7: Simulation of calcium stage II retinal waves for VK = −77mV From left
to right, snapshots of propagating waves with total duration of all frames 20sec.

Figure 6.8: Simulation of calcium stage II retinal waves for VK = −66mV From left
to right, snapshots of propagating waves with total duration of all frames 20sec.

After this qualitative analysis of the comparison between our model and exper-
iments, it would be worth characterizing our simulated waves with respect to their
sizes and durations and show in a more quantitative way the role of sAHP in stage II
waves statistical characteristics. Due to the lack of time, this analysis has not been
performed on the experimental data.
In Fig 6.9, by measuring the probability distribution functions of the waves sizes during
our simulation of 1000s, we confirm that indeed waves become larger upon the increase
of VK . Also, we should note that the shape of the distributions changes. However, our
numerical method for wave detection, for the moment, treats waves that merge as the
union of all of them, adding a bias towards larger waves which might be artificial. For
that reason, to conclude on the exact shape of the distribution that has to be taken
into account.
In Fig 6.10, by measuring the probability distribution functions of the waves dura-
tions during our simulation of 1000s, we show that waves slightly become longer upon
the increase of VK . Also, we should note that the shape of the distributions changes
but we can not conclude on the exact shape of the distribution with the current results.
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Figure 6.9: Characterizing the sizes of stage II retinal waves in the noise driven
bursting scenario. From left to right the the probability distributions of the waves sizes for
different values of VK −90mV,−77mV,−66mV . Our simulated waves became larger (1 order
of magnitude) upon the decrease of the inhibition due to sAHP.

Figure 6.10: Characterizing the durations of stage II retinal waves in the noise
driven bursting scenario. From left to right the probability distributions of the waves
udrations for different values of VK −90mV,−77mV,−66mV . Our simulated waves became
slightly longer upon the decrease of the inhibition due to sAHP.
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6.2 Exploring the effect of the cholinergic transmission on
the spatio-temporal patterns of stage II retinal waves

Objective of the experiment. Using our biophysical model of stage II retinal
waves, we predict that the variation of the conductance of nicotinic cholinergic recep-
tors gA has a dramatic effect on the spatio-temporal patterns exhibited across the net-
work of SACs (see Section 4.5.2). We show that weak connections lead to small bumps
of activity, strong connections lead to large patterns that cover the whole numerical
box and there is an intermediate regime where we observe the maximal variability in
the spatiotemporal patters. Also, we predict a change in the statistical characteristics
of the spatio-temporal patterns upon the variation of the synaptic strength, such as
the distribution of the waves size and duration.
In order to validate our theoretical prediction, we perform experiments on neonatal
mice (P3-P7) at the laboratory of Olivier Marre and Serge Picaud at Vision Institute.

Pharmacology. We used hexametonium in several concentrations to mimic the grad-
ual blocking of the cholinergic transmission and test the effect on the characteristics of
the spatiotemporal patterns. Hexamethonium is a nicotinic nACh receptor antagonist
that acts in autonomic ganglia by binding mostly in or on the nACh receptor, and not
the acetylcholine binding site itself.
It was not straightforward to find a pharmacological agent which would increase the
efficiency of the cholinergic transmission. We tried atropine in several concentrations,
which is found in the literature [61] to probably potentiate the nicotinic cholinergic
receptors of the specific subunit β2, found also in SACs. Its pharmacological effects
are due to binding to muscarinic acetylcholine receptors. However, it has been shown
in [61], that atropine could potentiate the nicotinic nACh receptors (especially subunit
β2).

Tissue preparation. Experiments were performed in neonatal (P3-P7) mice. Mouse
pups were sacrificed and eye balls enucleated prior to retinal isolation. The isolated
retina was placed, RGC layer facing down, onto the MEA. Retinas were kept in a
control Ames solution for about 1h before recordings, perfused with a pump. Hex-
ametonium and atropine were directly added to the perfusate. All experiments were
performed by R. Caplette.

Recordings of retinal waves with MEA of 256 electrodes Extracellular record-
ings were performed on the MEA chip providing 256 square micro-electrodes with
inter-electrode separation of 60µm. The platform records at a sampling rate of 20kHz
/electrode. Each data set generally consisted of 30− 45min continuous recordings.

Analysis of the MEA recordings Our MEA recordings report the spike times
for all electrodes. In order to consider a spike train to be a burst we set a threshold
for the minimal duration 2sec [54]. Waves were detected as temporally overlapping
groups of bursts using a sliding window of 1.5s length and a sliding step of 250ms. A
supplementary criterion for waves detection was that the mean average rate over all
electrodes has to be larger that 5 per cent. Here we use a different method fro waves
detection than in all previous chapters, based on the work of [70] and it provides us
with a sufficiently good detection and characterization of waves as a first approach.
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However, this method relies the wave detection largely on the average firing rate which
is a parameter characterizing the network, meaning that two seperate but co-existing
waves in the recording will be regarded as one while characterizing the waves size.
In the future, it would be interesting to analyse these data with our more elaborate
method for waves detection (see Chapter 4), where we are able to follow each wave
independently.

6.2.1 The effect of hexametonium in early stage II retinal waves

Hexametonium as a pharmacological agent is typically used as an antagonist of the
nicotinic cholinergic receptors and it is considered to be very specific. Thus, ap-
plying hexametonium in several concentrations, allows us to gradually decrease the
strength of the cholinergic coupling. In Fig 6.16, we show the average population
firing rate over time for control data (P3) and several hexametonium concentrations
1µM, 10µM, 100µM . The main effect of applying hexametonium in increasing con-
centrations, is the decrease of waves sizes leading eventually to their disparition for
100µM of hexametonium. This experimental observation validates our theoretical pre-
diction (see section 4.5.2), concerning the decrease of waves sizes upon the decrease of
cholinergic coupling.

Figure 6.11: How the average population firing rate changes upon hexametonium
induction in P3 mouse retina. The time shown here corresponds to 600sec. Blue. Control
P3 waves. Green. Hexametonium concentration 1µM . Orange. Hexametonium concentration
10µM . Red. Hexametonium concentration 100µM .

Also, upon the gradual pharmacological decrease of the cholinergic coupling, waves
appear slightly less frequent (see Fig 6.12), indicating that the cholinergic coupling
plays a role in the interwave intervals. Note also, that around half of the electrodes
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(⇠ 120), exhibit regular activity, participating in a wave with a period fluctuating
around 100 − 200 sec. In Fig 6.12, very high values of interwave intervals mean that
those electrodes rarely participated in waves during this recording. As a convention,
an IWI = 0, means that no wave was recorded from the specific electrode, either by
chance or due to faulty electrodes.

Figure 6.12: Interwave intervals (IWI) profile for all electrodes, sorted in decreasing
order for different concentrations of hexametonium. The interwave intervals increase
upon the induction of hexametonium in concentrations such as 1, 10µM , the waves become
less frequent. For 100µM , waves disappear completely.

In an attempt to quantify the effect of hexametonium on the waves sizes, we mea-
sure the probability distribution of the waves sizes for control data and two hexame-
tonium concentrations, 1 and 10µM . We define as the waves size, as the number of
electrodes partipating in a wave. For 1µM , the shape of the waves distribution and
the maximum waves sizes do not differ from the control data (compare Figs 6.13,6.14).
However, 10µM of hexametonium has a dramatic effect on the shape of the distri-
bution of waves sizes and their maximum value, since the waves size decreases 50 per
cent compared to the control data. As mentioned above, 100µM completely diminishes
wavy activity.

In order to fully characterize the effect of hexametonium, it would be essential to
measure several concentrations of hexametonium, aiming to construct a tuning curve
for the waves size as a function of several hexametonium concentrations. For this,
one would need to slightly increase each time the concentration of the solution and
repeat at least 20 times from 0 to 100uM for a good resolution of the curve. These
pharmacological manipulations must be done always in an increasing order, since in the
laboratory we checked that if we decrease the concentration of the solution (decreasing
order), the results are not coherent and hexametonium does not act like it should. In
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Figure 6.13: Probability distribution of waves sizes in control waves in a P3 mouse
retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.

Figure 6.14: Probability distribution of waves sizes with 1uM hexametonium in a
P3 mouse retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.
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Figure 6.15: Probability distribution of waves sizes with 10uM hexametonium in a
P3 mouse retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.

other words, we concluded that the two directions, increasing and decreasing, are not
equivalent. In order to fully characterize the effect of hexametonium on stage II retinal
waves, further experiments are required.

6.2.2 The effect of atropine in early stage II retinal waves

As explained above, atropine as a pharmacological agent is widely used as a muscarinic
cholinergic receptor blocker and in principle has no effect on the nicotinic receptors.
Nevertheless, we tested its effect due to the result of [61] on nAChR subunit β2 po-
tentiation. We found that waves size seems to remain unaltered upon the atropine
application. Nevertheless, slight alterations in activity characteristics were still ob-
served due to atropine. In Fig 6.16, we show the average population firing rate over
time for control and several atropine concentrations 1µM, 10µM, 100µM . We observe
that as the concentration of atropine increases, spontaneous activity (not participat-
ing in a wave) is eliminated almost completely, especially for concentrations larger
than 10µM (see Fig 6.16). Moreover, the increase of the atropine leads to slightly
less frequent waves (see Fig 6.17). We conclude that atropine most probably can not
potentiate the nAChR subunit β2 found is SACs.

In an attempt to quantify the effect of atropine on the waves sizes, we measure
the probability distributions of the waves sizes for control data and two atropine con-
centrations, 1 and 10µM . We use the same method as above. We again confirm that
waves size is not affected by atropine (compare Figs 6.18,6.19, 6.20). However, note
that waves sizes in Fig 6.18 seem quite smaller due to the high spontaneous activity
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Figure 6.16: How the average population firing rate changes upon atropine induc-
tion in P3 mouse retina. The time shown here corresponds to 600sec. Blue. Control P3
waves. Green. Atropine concentration 1µM . Orange. Atropine concentration 10µM . Red.
Atropine concentration 100µM .
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of this retina in the control condition, introducing a bias to our numerical method of
wave detection.

Figure 6.17: Interwave intervals (IWI) profile for all electrodes, sorted in decreasing
order for different concentrations of atropine. The interwave intervals increase upon the
induction of atropine in concentrations such as 1, 10, 100µM , the waves become less frequent.
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Figure 6.18: Probability distribution of waves sizes in control waves in a P3 mouse
retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.

Figure 6.19: Probability distribution of waves sizes with 1µM atropine in a P3 mouse
retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.
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Figure 6.20: Probability distribution of waves sizes with 10µM atropine in a P3
mouse retina. Top. PDF in lin-log scale. Bottom. PDF in lin-lin scale.

6.2.3 Power laws and criticality in experimental recordings of retinal
waves

We would like now to compare the distributions of waves size for both our simulations
and experimental data obtained at Vision Institute. In order to perform a statistical
analysis on the waves size and more particularly conclude on the shape of their prob-
ability distribution we need a quite large sample. The recordings described in section
6.2, were not long enough (⇠ 35min) in order to provide us with a large number of
waves for our analysis. For this reason, we used another dataset of control P5 waves
from mice for over an 1h in total, from Vision Institute (256 electrodes).
In Fig 6.21, we show that the distribution of waves size in P5 mice is power-law like.
This means that sizes could exhibit maximal variability, indicating that the system is
critical in control conditions. It is interesting to see that experiments confirm our the-
oretical prediction, where we show that there exists a regime in the parameters space
of our model, where power-law distribution is observed for the waves size (see Fig 4.23
(regime B) and section 4.6.2). Away from this regime, no power-law like distributions
are observed for the waves characteristics in our model. Note that the same regime B,
corresponds also to the sharp transition in the population firing rate in Fig 4.21. It
is very interesting that the critical regime corresponds to the normal stage II waves,
possibly meaning that the neural network of SACs chooses to be close to this state.
Therefore, it means that the network is governed by an underlying mechanism that
ensures that the system remains in the critical state, which is not yet identified neither
theoretically or experimentally.
In Fig 6.22, we illustrate the agreement of theory and experiments on the power-law
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like distribution of waves size.

Figure 6.21: Probability distribution of waves sizes in a P5 mouse retina is power-
law like. This indicates a link to criticality for the network of SACs.

6.3 Conclusion and Discussion

In this chapter, we confronted some of our model’s predictions to certain preliminary
experiments with the goal to validate our hypothesis. Through this analysis, we were
able to enhance our claim that our equations are biophysically valid and robust with
respect to parameter tuning. Our equations are able to reproduce the effect of the
sAHP and cholinergic coupling on waves spatiotemporal dynamics and predict their
effect on the statisical characteristics of waves. We also confirm experimentally our
theoretical prediction of power-law like distributions for wave characterstics and made
a link with critical systems. According to our modeling, we observe power laws at a
very specific regime of our parameters space, meaning that dynamics needs tuning to
reach that particular point (tune for example gA as shown in section 4.6.2). However,
if we accept criticality for stage II waves, the network of SACs manages to self-tune
to this very regime. Consequently, we assume that there exists an homeostasy-like
mechanism which controls the self tuning of the network to the critical state. For
the moment, the cellular mechanisms of an homeostatic control have not been yet
identified. However, a first indication comes from the work of [57], where they showed
in experiments that there is an homeostatic control of spontaneous retinal activity
maintaining specific network dynamic properties in an age-dependent manner. They
also show that the possible underlying mechanism is linked to GABAA signaling.
An extension of our model is possible, in order to account for the effect of GABAA
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Figure 6.22: Comparison of simulated and experimental data measuring the dis-
tribution of stage II retinal waves. Left. Power-law like PDF of simulated waves size in
the regime B (see section 4.6.2). The size of the network is 10000 neurons. Right. Power-law
like PDF of simulated waves size in the regime B (see 4.6.2). We record from 256 electrodes.
Note that the maximum waves sizes, if normalized with respect to the size of the network,
correspond to ⇠ 0.1 for the model and ⇠ 0.23 for the experiment.

signaling, by adding a term describing the GABAergic current. In order to elucidate
the possibility of such an homeostatic mechanism, further experimental and theoretical
work is essential. Note that notable theoretical work on homeostatic mechanisms of
other neural networks such as motor networks in Drosophila larvae [32], showing a
mechanism behind the self-regulation, linked with the relative characteristic times
between neighbouring populations. Also, another regulatory mechanism was studied
in the context of the stomatogastric ganglion (STG) neuron of cancer borealis in [41],
showing that several calcium dependent pathways are used to regulate the maximal
conductances of membrane currents in an activity dependent manner.



138CHAPTER 6. CONFRONTINGOURMODEL TO EXPERIMENTAL RECORDINGS



Chapter 7

Conclusions and Perspectives

During my thesis, we built a biophysical model of the spontaneous bursting activity
of immature starburst amacrine cells, first at the individual neuron and then at the
network level. This model, is able not only to reproduce experimental observations,
but it proposes a quantitative mechanism for SACs activity, leading to experimen-
tally testable predictions, such as the wide variability in the bursting periods observed
across species [1]. We performed the mathematical analysis of the model using dy-
namical systems and bifurcations theory, allowing us to identify a few key biophysical
parameters, which control the features of waves. We also provide analytic and numer-
ical results revealing mechanisms on how waves start, propagate and stop, making a
ling also with critical systems. On top of our theoretical work, we collaborated with
experimentalists, in order to test the model’s predictions on the effect of pharmaco-
logical manipulations on the characteristics of waves Chapter 6. Through this thesis,
we have been able to build a framework, which includes mathematical tools, numerical
simulators and experimental procedures to understand the mechanisms that generate
retinal waves during development.
Let us know reflect on some possible extensions of this work.

7.1 Reflecting on possible theoretical extensions

Synaptic coupling versus volume diffusion. It is still not clear what is the ex-
act mechanism of cholinergic transmission during stage II retinal waves. In [37] it is
proposed that a possible explanation for the widespread effects of Ach during waves,
is that Ach is released by volume transmission, the diffuse release of neurotransmitter
in the absence of pre- and postsynaptic specializations. In other words, in volume
neurotransmission ACh reaches the extrasynaptic space, as opposed to remaining con-
fined to the synaptic cleft in the case of the synaptic neurotransmission [24]. Indeed
cholinergic retinal waves are present prior to the formation of conventional synapses,
as identified in [26]. Clearly this means, that retinal waves are controled by immature
nicotinic cholinergic synapses that are less spatially specialized than those in the adult
retina. Now the question is how this effect could be biophysically modeled and what
would be the actual different consequences on waves characteristics in the cases of
volume diffusion and synaptic transmission.
In their paper, Lansdell et al. [12] considered only volume diffusion and added to equa-
tion (3.1) the term DAr2A, where r2 is the Laplacian and A is the Ach concentration.
On mathematical grounds, the main consequence is to end up with a very standard

139
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model in non linear physics: a reaction diffusion model. Here, standard methods (het-
eroclinic connections) allow for example to compute the propagation speed of a wave
(it was done numerically by Lansdell et al because their model is a bit more complex
than the standard setting for this type of computations). Note however that their
diffusion mechanism is a phenomenological and not a literal diffusion process based on
the net Brownian motion of molecules.
In contrast, in our model, cholinergic transmission is modeled as synaptic, with pa-
rameters such as Ach degradation time and production rate, directly fited from exper-
iments in [62], in order to match the characteristics of immature cholinergic synapses.
So we have a clear biophysical interpretation of the parameters. The model we end
up with is not a reaction diffusion model because of the presence of a threshold in
the Laplacian. It renders the analysis more complex, but it allows direct comparison
with experiments. To explore the nature of the transmission mechanism of Ach during
development, it would be needed to construct a model describing the exact biophys-
ical process for volume diffusion, characterize the waves it would produce and then
compare them with those generated by synaptic transmission in our work.

The role of variability in SACs on waves generation. Variability is de facto
present in biological systems and one can not claim that cells are identical. For exam-
ple, in [63], the authors show that only 60 per cent of SACs were found to be bursters,
whose bursting characteristics also exhibit a vast variability. However, one could ask,
whether the variability of cells is fundamental to the mechanisms generating retinal
waves. Throughout this thesis, we have shown that identical cells are able to produce
biologically realistic retinal waves, meaning that maybe variability per se is not neces-
sary to produce them. Nevertheless, it would be very interesting to explore what is the
role of the observed variability in SACs’ biophysical parameters such as their bursting
periods, their cholinergic conductances and their ability to burst.
An interesting numerical experiment, addressing the effect of variable bursting periods
of SACs on waves characteristics, is to start from an homogeneous network, except
for one neuron (and then several) with different bursting periods and/or conductances
than the rest of the network. This would test the role of bursting period heterogeneity
and the fact that some neurons could be ’leaders’ in wave triggering. Preliminary
results which are not shown in this manuscript, show that cells with stronger coupling
and shorter bursting period impose their own dynamics to the newtork by initiating
waves. However, experimentally waves initiation sites are found to be homogeneously
distributed accross the retina [36]. This means that all SACs should be virtually
eligible to become ’leaders’ and initiate waves, rather than have special cells which
are predefined in the network. A possible mechanism to explain that is noise. If
noise is responsible for driving SACs to start bursting (noise driven bursting scenario),
and this noise is Gaussian, then all SACs would be equally probable to start a wave.
Noise would make at random and opportunistically all SACs to become virtual lead-
ers, namely having the strongest coupling or shortest bursting period at a given point
in time compared to their neighbours. Another possibility is that time scales play a
role here. On the time scale of a few waves, there is a memory (larger than sAHP
time) which imprints the medium and make cells temporary leaders. On larger scales
(hours) the leaders may move and we may end with a uniform distribution on these
time scales. It would be very interesting to test this hypothesis numerically with our
model where we can control all conditions.
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In the literature, variability in SACs has been modeled in [37], by imposing a random-
ness at the value of a parameter i.e. neuron i has a characteristic time ⌧Si

following
a Gaussian distribution. This introduces another level of randomness in their model,
of a different nature than noise. Whereas the noise acting on voltage is renewed at
each time step (”annealed disorder”), the parameters ⌧Si

are fixed during the evolution
(more generally, they evolve on a time scale quite smaller that the largest characteris-
tic time in the model). Physicists are used to call this type of randomness ”quenched
disorder” (see e.g. the spin glasses literature [27]).

Extending our model towards a generic dynamical system for retinal waves
All stages of retinal waves are mediated by transient networks of cells with different
pharmacological signatures. However, macroscopically, in spite of the fact that dra-
matic changes undergo in the immature retina circuitry, waves characteristics remain
largely unaltered [15]. In fact, in [15], it is shown that two coordinated transitions
occur in the excitatory drive for retinal waves: one from a fast cholinergic to a fast
glutamatergic input and the other from a nicotinic to a muscarinic system. They
show that Ach changes its functional role via a switch between two completely differ-
ent classes of receptors for the same neurotransmitter and that the cholinergic system
plays a critical role not only for early but also late retinal waves. These observations
have led to the hypothesis that spontaneous rhythmic activity is mainly controled by
homeostatic mechanisms. In the same work, it is stated that it is possible that the
spontaneous activity relies on an overall excitatory input from certain neurotransmit-
ters and not on the detailed type or circuitry of the excitatory input, meaning that the
drastic transition from a cholinergic to a glutamatergic netwrok may not actually alter
significantly the overall input in the network leading to similar spontaneous patterns
of activity. For the moment, as mentioned in 6, the cellular mechanisms of an homeo-
static control in retinal waves have not been yet identified. However, a first indication
comes from the work of [57], showing GABAA signaling is involved.
In this thesis, we developped a detailed biophysical model especially tailored to describe
the dynamics of SACs during stage II retinal waves. However, taking into account the
above, it would be possible to extend it by taking into account the minimal necessary
ingredients to generate retinal waves for all 3 stages: i) fast excitatory drive (lateral
and vertical) and ii) a mechanism for inhibtion. Using our equations as a starting
point, we could construct a minimal model, which by the mere variation of parameters
could follow the evolution of retinal waves dynamics during development. Then it has
to be an equation like the transport equations (Chapter 5) where we have smoothed
many biological specificities (e.g. type of neurotransmitters) to end up with a canonical
equation.

7.2 Can we use retinal waves to restore plasticity in patho-
logical retinas?

The following project was submitted to L’Oreal/UNESCO competition for Scholar-
ships Women in Science 2017 Awards, category Rising stars and received an excellence
certificate, ranking in the top 10 per cent of the applications.

Around 285 millions of people around the world suffer from retinal degenerative
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diseases at varying degrees of vision loss including complete blindness. In the recent
years, a new hope towards the dream of reversing vision loss is growing with tech-
niques such as gene therapy, stem cells transplants and retinal prostheses, developed
and tested by research labs and biotechnology companies. In order to make those
therapeutic techniques valuable to patients in need, it is important to consider the
risks, cost and comfort of the methods. For this reason it is essential to work towards
solutions requiring minimal invasiveness and maximal safety of a patient. In this con-
text, it is interesting to study retinal waves, a natural mechanism of the shaping of
the visual system, as a possible mechanism to use for vision restoration in pathological
retinas.
In a healthy retina, during development, visual pathways are shaped naturally by
retinal waves, which are spontaneous bursts of activity propagating across the im-
mature retina and disappear when vision is functional [10]. In the pathological case,
these synapses could change completely, depending on the type of degenerative reti-
nal disease [42]. So far, both experimental and theoretical studies, have provided a
deeper understanding on the cellular mechanisms generating retinal waves during de-
velopment. Moreover, based on our biophysical model of retinal waves, [3] provides a
classification of the observed waves activity with respect to their features, using dy-
namical systems tools. On the other side, researchers in the lab of Serge Picaud at
Vision Institute, Paris, were able to restore wavy activity pharmacologically, in the
adult mouse retina [20]. This possibility of waves restoration in the mature retina
circuitry brings up the necessity to characterize the pharmacologically restored waves
(size, duration, frequency) and compare them with developmental ones in normal and
pathological cases. We propose the construction of a robust method to reinitiate retinal
waves in adult retinas (both healthy and degenerated), with the same characteristics
as the ones during development, establishing the necessary framework to test the effect
of the restored activity on neural plasticity in the future.
As an extension of this thesis, it would be interesting to study the pharmacologically
induced waves in the adult retina bridging the gap between paradigms from healthy
retinas and pathological ones.
This project would be the continuation of the results of my thesis work both on the
theoretical and experimental side. On the mathematical and numerical side, one could
extend our existing model [1, 2] to capture the pharmacological manipulation pre-
sented in [20] for mature starburst amacrine cells, as well as enhance our existing
numerical methods and develop new (Python and Brian2 simulator) to simulate and
validate the modeled cellular dynamics. On the experimental side, new Multi Elec-
trode Array (MEA) experiments on perinatal and adult mice would be necessary, to
test our model’s predictions on pharmacologically induced waves. The goal of this
project would be twofold: 1. Adapt the mathematical model so as to describe the
mature amacrine cells dynamics 2. Perform experiments guided by our model on
healthy and pathological adult mouse retinas to restore and characterize retinal waves
In more detail, on the mathematical aspect, one could extend our biophysical model
in [1, 2] by adding additional currents to mimic the inputs from other cell types in the
mature circuitry and also adjusting the parameters to capture the activity observed
in adult mouse retinas. Through simulations and mathematical analysis, it would
be possible to identify the key mechanisms that restore bursting activity in mature
starburst amacrine cells, taking into account the experimental work of [20] on wave
restoration. Based on this extension of our model, it will give a theoretical guidance
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for the experiments, to validate testable predictions on restored waves in adult retina,
as already done for developmental waves. The predicted pharmacological manipula-
tions for the wave restoration will be done on healthy and pathological adult mouse
retinas. Finally, the characterization of the pharmacologically restored waves in both
aforementioned cases would be necessary, using our existing numerical methods and
consequently, comapring both natural and pharmacologically induced waves.
Such a study could elucidate how plasticity could be restored for certain pathologies.
In the visual system at an adult age, it was demonstrated in [23] that plasticity could
be restored, following retinal ganglion cells axonal regrowth after optic nerve dam-
age, upon the right stimulus. It is natural to consider as a following step, that this
wave-like propagation of the elicited bursting activity could be the right stimulus to
restore plasticity in the pathological retina. Furthermore, so far, the existing methods
attempting to restore vision to blind patients have a common shortcoming; they do
not take into account that a degenerating retina may trigger synaptic remodeling [42],
resulting in unconventional synaptic connections, making it hard for the network to
function. Being able to establish a rigorous classification of developmental and phar-
macologically induced waves, in the future, would allow us to possibly control restored
retinal waves leading to new experimental protocols in pharmacological treatments.
Consequently, under strong interdisciplinary studies and collaborations between the-
oreticians, biologists, and clinical doctors, pharmacologically restored waves could be
used for therapeutic purposes for blind patients.
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