
HAL Id: tel-01818579
https://theses.hal.science/tel-01818579

Submitted on 19 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Survivable Network Design Problems with High
Node-Connectivity Constraints : Polyhedra and

Algorithms
Meriem Mahjoub

To cite this version:
Meriem Mahjoub. The Survivable Network Design Problems with High Node-Connectivity Con-
straints : Polyhedra and Algorithms. Other [cs.OH]. Université Paris sciences et lettres; Université de
Tunis El Manar, 2017. English. �NNT : 2017PSLED046�. �tel-01818579�

https://theses.hal.science/tel-01818579
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres

PSL Research University

Préparée en cotutelle à l’Université Paris-Dauphine
et l’Université de Tunis El Manar

The Survivable Network Design Problem with High Node-
Connectivity Constraints: Polyhedra and Algorithms

École doctorale de Dauphine – ED 543

Spécialité INFORMATIQUE

Soutenue par

Meriem MAHJOUB
le 13.12.2017

Dirigée par A. Ridha MAHJOUB
et Faouzi BEN CHARRADA

COMPOSITION DU JURY :

M. Ali Ridha MAHJOUB

Université Paris-Dauphine

Directeur de thèse

M. Faouzi BEN CHARRADA

Université de Tunis El Manar

Directeur de thèse

M. Ibrahima DIARRASSOUBA

Université du Havre

Co-encadrant

M. Imed KACEM

Université de Lorraine

Rapporteur

M. Pierre FOUILHOUX

Université Pierre et Marie Curie

Examinateur

M. Vangelis PASCHOS

Université Paris-Dauphine

Président du jury

Remerciements

Je tiens à remercier Mr. A. Ridha Mahjoub, Professeur à l’Université Paris Dauphine,
de m’avoir permis d’effectuer cette thèse sous sa direction. Je voudrais lui exprimer ma
profonde gratitude pour la confiance qu’il m’a accordée en me permettant d’effectuer
mon stage de P.F.E. puis une thèse sous sa direction. Je le remercie pour sa disponi-
bilité, ses conseils, et son soutien. J’ai découvert grâce à lui l’univers de la recherche
et de l’enseignement. J’ai apprécié les longues heures passées à travailler ensemble, à
travers lesquelles j’ai beaucoup appris. Je le remercie de m’avoir laissée profiter de sa
grande expérience et de sa rigueur scientifique. Je lui en serai toujours reconnaissante.

Je remercie Mr. Faouzi Ben Charrada, Professeur à l’Université de Tunis El Manar,
d’avoir accepté de m’encadrer dans cette thèse. Je lui témoigne ma sincère reconnais-
sance pour sa constante disponibilité et sa présence dans les moments difficiles.

Je tiens à exprimer ma profonde reconnaissance et ma gratitude à Mr Ibrahima
Diarrassouba, Maître de Conférences à l’Université du Havre, de m’avoir encadrée
dans cette thèse. J’ai découvert en lui une personne impressionnante, tant au niveau
humain que professionnel. Je le remercie pour toutes ces journées de travail à Paris et
au Havre. Il a su me transmettre ses connaissances et sa passion pour la recherche.
Pour tout cela, je lui témoigne ma plus sincère reconnaissance.

J’ai été honorée que Mr Imed Kacem, Professeur à l’Université de Lorraine, ait
accepté de rapporter ma thèse. Je lui exprime mes plus sincères remerciements pour
l’intérêt qu’il a bien voulu porter à ce travail, pour les commentaires pertinents qu’il a
apportés, et pour son agréable contact.
Je remercie également Mr Mohamed Didi Biha, Professeur à l’Université de Caen, de
m’avoir fait l’honneur d’accepter la charge de rapporteur, pour sa lecture précise de ce
manuscrit ainsi que pour l’intérêt qu’il a porté à mes travaux.
Je remercie Mr Pierre Fouilhoux, Maître de Conférences à l’Université Pierre et Marie
Curie, pour l’intérêt qu’il a bien voulu porter à ma thèse et pour avoir accepté de
participer à mon jury.

ii Remerciements

Je suis également très reconnaissante envers Mr Vangelis Paschos, Professeur à l’Uni-
versité Paris Dauphine, d’avoir bien voulu examiner mes travaux et de m’avoir fait le
plaisir de présider le jury. Je le remercie aussi pour les deux années d’enseignements
que j’ai eues avec lui et pour son contact charmant et naturel.

Mes remerciements vont ensuite à mes collègues du LAMSADE. D’abord à mes
voisins de bureau, sans qui cette thèse n’aurait pas été la même au C605. A Ian, pour
son esprit, sa fascinante intelligence, et pour m’avoir prouvé que l’humour français
pouvait être délectable. A Thomas, pour son originalité, ses débats critiques et son
grand cœur. A Yassine, mon voisin et compatriote, pour son agréable compagnie et
son énorme générosité. A Ioannis, αγαπητo µoυ ελληνικo, dont la présence suffit
pour donner le sourire. A Youcef, mon frère de thèse, pour son soutien et son amitié.
A Khalil, pour sa compagnie pendant ces étés passés au Havre. A Céline, ma demi-
compatriote, pour son esprit joyeux et sa spontanéité. A Boris, pour sa discrétion et
sa simplicité. Je remercie également Olivier, mon ingénieur préféré, pour ses débats
existentiels, pour sa bienveillance, et pour avoir été un si bon ami durant cette thèse.
Je remercie ma petite Diana, pour son humour, son doux accent libanais, et pour cette
nouvelle brise qu’elle a apportée. Merci à Fabien pour sa bonne humeur et sa nature
bienveillante, à Anaëlle pour sa charmante présence et ses discussions joyeuses, et à
Marcel pour les échanges agréables durant l’année où je l’ai connu. Je remercie aussi
Pedro, Manel, Hiba, Satya, Amin, Justin, Zahra, Saeed, Mehdi, Maude et Hossein, en
leur souhaitant beaucoup de courage dans leurs thèses respectives. Un grand merci à
Dr. Amel Benhamiche, avec qui les échanges ont toujours été intéressants et plaisants,
merci à Dr. Raouia Taktak, d’avoir été mon amie et co-auteur, et merci à Dr. Lyes
Belhoul, parti trop tôt, pour sa personnalité attachante. Je remercie aussi mon amie
Dr. Hager et mon pote Achraf, de m’avoir adoptée et de m’avoir soutenue durant toute
cette thèse.
Mes remerciements vont aussi à toute ma famille et mes amis. Je dédie spécialement
cette thèse à mes tantes Lilia, Basma et Lamia, mes oncles Lotfi, Jalel et Ramzi, et
à ma grand-mère Halima, leur présence et leur soutien ont été une véritable source
d’énergie aux moments les plus difficiles. Un petit merci à mon petit Seif et à ma
petite Yasmine, pour la gaieté qu’ils m’ont apportée par leur simple existance.

Je dédie particulièrement cette thèse à mon père Mohamed, mon premier sponsor,
sans qui cette thèse n’aurait jamais vu le jour, merci de m’avoir fait confiance et de
m’avoir soutenue. Je dédie enfin cette thèse à ma mère Nadia, mon éternelle suppor-
trice, qui est sûrement fière de voir la fin de toutes ces années d’études, merci d’avoir
été là, de m’avoir toujours soutenue et aimée.

Abstract

This thesis presents a polyhedral study of survivable network design problems with high
connectivity requirement. These problems have applications in telecommunications. In
particular, the k-node-connected subgraph and the k-node-connected hop-constrained
network design problems when k ≥ 3 are investigated.

We first consider the k-node-connected subgraph problem. Given a weighted undi-
rected graph G = (V, E) and a positive integer k, the k-node-connected subgraph
problem is to find a minimum weight subgraph of G which contains k-node-disjoint
paths between every pair of nodes of V . We investigate the polytope associated with
that problem when k ≥ 3. We introduce new classes of valid inequalities and discuss
their facial aspect. We also devise separation routines, investigate structural proper-
ties of the linear relaxation and discuss some reduction operations that can be used
in a preprocessing phase. Using these results, we devise a Branch-and-Cut algorithm
and present some computational results. Then we present a new extended formulation
for the the k-node-connected subgraph problem, which holds a polynomial number of
constraints and an exponential number of variables. We use this formulation to de-
velop a Branch-and-Cut-and-Price algorithm for the problem. We also provide some
computational results and a comparative study between the two formulations we have
introduced for the problem.

In a second part of the thesis, we investigate the hop-constrained version of the
problem. Given a graph G = (V, E) with weights on the edges, a set of origin and
destination pairs of nodes D ⊆ V × V , and two positive integers L ≥ 2 and k ≥ 2, the
k node-disjoint hop-constrained network design problem is to find a minimum weight
subgraph of G such that between every origin and destination there exist at least k

node-disjoint paths of length at most L. We investigate the structure of the associated
polytope when k ≥ 2 and L ∈ {2, 3}. We propose an integer linear programming
formulation for the problem for L = 2, 3 and investigate the associated polytope. We
introduce valid inequalities for the problem, and give necessary and sufficient conditions
for these inequalities to be facet defining. We also devise separation algorithms, and

iv Abstract

using these results, we propose a Branch-and-Cut algorithm for solving the problem
along with some computational results for k ≥ 3 and L = 3, and for k = 2 and L = 4.

Key words : k-node-connected graph, k-node-disjoint hop-constrained paths,
survivable network, polytope, facet, separation, Branch-and-Cut, Branch-and-Cut-and-
Price.

Résumé long

La conception des réseaux fiables est un large domaine de recherche qui est question
importante dans les télécommunications. L’objectif est de concevoir des réseaux ef-
ficaces, fiables et à coût réduit, avec des caractéristiques et des exigences spécifiques
sur la topologie. La fiabilité est généralement exprimée en termes de connectivité dans
le réseau. Le niveau de connectivité dépend des exigences de chaque opérateur de
télécommunication. Il peut être nécessaire de concevoir plusieurs chemins pour relier
chaque paire de sommets pour assurer la transmission en cas de déconnexion ou de
panne, tout cela au moindre coût possible.

Par conséquent, il devient nécessaire de proposer des solutions pour satisfaire la
demande des utilisateurs et d’assurer une utilisation efficace des ressources du réseau.

La majorité des travaux proposés dans la littérature ont considéré uniquement les
graphes k-arête-connexe. Pour plusieurs types de graphes, cette conception peut ne
pas être très fiable. En effet, plusieurs nœuds ou routeurs dans le cas des réseaux
de télécommunication peuvent tomber en panne et cela peut causer une mauvaise
circulation et une perte des données. L’étude des graphes k-sommet-connexes de-
vient donc un critère fondamental dans la mise en place d’une conception efficace des
réseaux, pour éviter les pannes engendrant une interruption du service, et pour assurer
l’acheminement permanent des données.

Un réseau peut être représenté par un graphe G = (V, E) où V est l’ensemble de
sommets et E, l’ensemble des arêtes. Plusieurs topologies ont été proposées pour
la conception de réseaux. Cependant, la plus fréquente et la plus utile en pratique
est la topologie uniforme. C’est à dire que tous les sommets du réseau ont la même
importance, et il est requis que entre chaque paire de sommets il existe au moins k

chemins arête-(sommet-)disjoint, où k est un entier donné tel que k ≥ 2. Ainsi le réseau
peut demeurer fonctionnel quand au plus k − 1 arêtes (sommets) tombent en panne.
Le problème consiste à déterminer, compte tenu des poids sur les liens possibles du
graphe, un sous-graphe de poids minimum satisfaisant l’arête ou la sommet connexité.

vi Résumé long

Cette thèse porte sur le problème de sommet connexité.

Étant donné un graphe, le problème du sous-graphe k-sommet-connexe est de trouver
un sous-graphe de poids minimum, tel que entre chaque paire de sommets du graphe
il existe k chemins sommet-disjoints entre ces deux sommets.

Cependant, cette contrainte de connectivité peut ne pas être suffisante pour garantir
une grande fiabilité et une bonne qualité de routage. En fait, pour certains réseaux
spéciaux tels que les VPN (réseaux privés virtuels), nous pouvons avoir besoin d’un
degré de connectivité plus élevé. En outre, le chemin de routage alternatif du réseau
peut être long et coûteux, ce qui peut entraîner une dégradation significative de la
vitesse de transfert. Afin de limiter la longueur de réacheminement et de garantir
une bonne qualité de service, il est généralement nécessaire d’assurer que la longueur
(nombre d’arêtes) des chemins entre une paire origine-destination soit délimitée par un
nombre donné L selon les paramètres technologiques.

Le problème est alors de déterminer, compte tenu des poids sur les liens possibles
du réseau et des paires d’origine-destination, un sous-graphe de poids minimum con-
tenant au moins k chemins sommet-disjoints entre chaque paire d’origine-destination
de longueur au plus L.

Les méthodes d’optimisation combinatoire, en particulier l’approche dite polyèdrale
ont montré leur efficacité pour traiter des problèmes difficiles et ayant une combinatoire
importante. Initiée par Edmonds dans le cadre du problème du couplage [34], cette
technique consiste à réduire la résolution d’un problème d’optimisation combinatoire
à celle d’un où plusieurs programmes linéaires. Il s’agit notamment de donner, une
description complète (ou partielle) du polytope des solutions du problème considéré
avec un système d’inégalités linéaires. L’approche polyèdrale a montré son efficacité
sur plusieurs problèmes d’optimisation combinatoire tels que le Problème du Voyageur
de Commerce, le Problème de Conception de Réseau, ainsi que le Problème de la Coupe
Maximum.

Dans cette thèse, nous étudions, dans un contexte polyédral, les deux problèmes
de conception de réseaux fiables, le problème du sous-graphe k-sommet-connexe et
le problème de conception de réseaux fiables k-sommet-connexes avec contraintes de
borne. En particulier, nous examinons ces problèmes dans le cas ou un niveau élevé de
connectivité est requis, c’est-à-dire lorsque k ≥ 3. Ces deux problèmes sont NP-Difficile
lorsque k ≥ 2.

Le premier chapitre est consacré à l’introduction de quelques notions préliminaires
concernant l’optimisation combinatoire, les méthodes exactes en général et l’approche

Résumé long vii

polyèdrale en particulier. Nous donnons notamment un aperçu des méthodes des plans
sécants et de génération de colonnes, ainsi que des algorithmes de coupes et branche-
ments, et de génération de colonnes et branchements. Nous donnons alors quelques
définitions basiques sur la théorie des graphes et introduisons la terminologie et les
notations utilisées dans ce manuscrit. Enfin, nous présentons un état de l’art sur les
problèmes de conception de réseaux. Dans le chapitre suivant nous présentons le con-
texte pratique ainsi que les enjeux technologiques de ce travail.

Dans le deuxième chapitre, nous considérons le problème du sous-graphe k-sommet-
connexe, avec k ≥ 3. Nous nous intéressons au polyèdre associé à ce problème et à
l’étude de sa dimension. Nous présentons certaines classes d’inégalités valides et nous
décrivons certaines conditions pour que ces inégalités définissent des facettes pour le
polytope associé. Nous étudions également les propriétés structurelles des points ex-
trêmes de la relaxation linéaire du problème et présentons des opérations de réduction,
qu’on utilise comme préprocessing avant la phase de séparation. Ces opérations per-
mettent d’effectuer la séparation des inégalités valides dans un graphe réduit.

Le troisième chapitre porte sur l’algorithme de coupes et branchements que nous
proposons pour la formulation du problème. Cet algorithme est basé sur les résultats
théoriques introduits dans le chapitre précédent. Nous donnons d’abord un aperçu du
fonctionnement de cet algorithme, puis nous détaillons les procédures de séparation
utilisées. L’objectif de ce chapitre est de présenter la mise en oeuvre de l’approche
proposée dans le chapitre précédent et de donner un aperçu de l’efficacité des contraintes
utilisées en pratique. Nous présentons des résultats de calcul pour k = 3, 4, 5 (voir
les Tableaux 1 et 2 pour k = 3). L’algorithme est testé sur des instances réelles
issues de la SNDlib[1] et de la TSPlib[2]. Les expériences montrent en particulier
l’efficacité des procédures de séparation qu’on utilise dans l’algorithme de Branch-and-
Cut et l’amélioration significative fournie par les inégalités introduites pour renforcer
la relaxation linéaire du problème. Les résultats de calcul qu’on obtient montrent aussi
que les inégalités de F -sommet-partition, les inégalités de SP-sommet-partition et les
inégalités de partition sont efficaces pour résoudre le problème. En outre, les opérations
de réduction que nous utilisons se révèlent efficaces dans la phase de séparation de
l’algorithme Branch-and-Cut. Les expériences montrent également que le problème
devient plus facile lorsque k augmente, et est plus difficile lorsque k est impair que
lorsque k est pair.

L’étude présentée dans ce chapitre montre l’efficacité de certaines inégalités valides,
à savoir les F -sommet-partition, les SP-sommet-partition et les inégalités de partition,
dans la résolution du problème. Il serait intéressant d’approfondir l’étude du polytope
du problème et d’identifier les cas où ces inégalités définissent complètement le polytope

viii Résumé long

du problème.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

atlanta_15 15 606 1 17 1 3265 0.01 3 0:00:01

geant_22 72 1990 19 28 6 375 1.07 60 0:00:26

france_25 80 7500 15 36 7 3254 0.08 37 0:00:32

norway_27 68 4448 10 55 5 5730 0.76 15 0:00:43

sun_27 42 2582 8 28 0 4771 0.04 7 0:00:31

india_35 62 2231 5 26 6 452 0.33 8 0:00:53

cost266_37 135 10726 30 775 7 275 0.9 13 0:18:01

giul_39 62 2760 7 32 1 5878 0.03 5 0:02:19

pioro_40 11 2866 0 2 0 5637 0.00 1 0:00:09

germany_50 42 13094 5 14 2 112 0.01 4 0:02:37

ta2_65 124 7597 10 106 4 5334 0.07 9 0:43:55

Table 1: Résultats pour les instances de la SNDLIB avec k = 3.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

bays_29 74 3709 11 39 8 14815 1.01 19 0:01:10

dantzig_42 137 9156 12 32 16 1232 0.03 42 0:14:14

att_48 138 13995 14 47 10 17527 0.02 48 0:42:11

eil_51 55 4680 7 30 1 745 0.02 4 0:06:41

berlin_52 133 9518 26 95 10 12644 0.22 30 0:27:05

eil_76 80 15321 8 84 4 947 0.11 8 0:48:05

gr_96 174 330 19 6 0 915 0.6 2 2:03:11

rat_99 112 294 9 19 0 2105 0.3 32 2:02:26

kroA_100 169 305 24 13 1 36492 0.21 2 2:04:35

rd_100 186 303 21 3 0 13391 0.13 21 2:01:03

kroB_100 145 300 12 52 1 37341 1.6 12 2:03:58

lin_105 214 317 15 6 6 24870 2.4 35 2:01:44

gr_120 90 332 10 0 0 11562 0.6 2 2:26:57

bier_127 136 364 16 2 0 199863 3.2 23 2:42:41

pr_124 179 403 12 0 0 99696 0.29 3 2:28:01

ch_130 122 371 10 0 0 10571 7.1 12 2:48:25

kroA_150 130 415 1 2 0 44952 2.6 23 2:49:56

*u_159 112 429 3 7 0 71772 8.9 59 5:00:00

Table 2: Résultats pour les instances de la TSPLIB avec k = 3.

Dans le quatrième chapitre, nous présentons une formulation étendue pour le prob-
lème du sous-graphe k-sommet-connexe pour k = 2. Nous étudions un algorithme de
génération de colonne et des heuristiques efficaces pour résoudre le problème. Et en
utilisant ces résultats, nous mettons au point un algorithme Branch-and-Cut-and-Price
pour résoudre le problème.

Les résultats de calcul montrent que l’algorithme de génération de colonnes est effi-

Résumé long ix

cace pour résoudre le problème et pour produire une bonne borne supérieure pour le
problème (voir Tableaux 3 et 4). En outre, on démontre que l’algorithme de Branch-
and-Cut est plus efficace pour résoudre le problème à l’optimalité. Nous observons
également que lorsque l’on s’approche d’une valeur de LP optimale, l’algorithme de
génération de colonnes a du mal à trouver la valeur optimale bien qu’elle soit proche.
Ce phénomène est connu comme l’effet de "tailing off". Comme décrit dans [25], une
explication principale pour l’effet de "tailing off" est que les variables convergent lente-
ment vers leur valeur optimale respective et, d’une itération à l’autre, prennent des
valeurs non liées et aléatoires.

Table 3: Résultats pour les instances de la SNDLIB.

Instance |V | Gen_Cuts Gen_Cols COpt Gap NSub CPU

diyuan 11 2 0 989 0.00 1 0:00:02

pdh_12 11 19 0 18 0.00 1 0:00:03

abilene 12 19 24 121 0.04 15 0:00:18

atlanta 12 17 28 115 0.00 1 0:00:03

polska 12 26 4 27 0.05 11 0:00:01

nobel-us 14 32 0 117 0.00 5 0:00:02

newyork 16 24 56 2335 0.00 1 0:00:04

geant 22 58 80 226 0.02 15 0:00:20

ta1 24 45 27 1859 0.02 27 0:00:31

france 25 52 43 1985 0.01 7 0:00:48

janos-us 26 64 626 178 0.06 25 0:00:21

sun 27 50 22 2849 0.00 1 0:00:08

norway 27 91 1068 3847 0.08 139 0:01:19

janos-us-ca 37 85 14 201 0.06 27 0:00:24

cost266 37 118 7876 173 0.07 103 0:12:59

giul39 39 149 6576 3949 0.05 147 0:09:46

pioro 40 81 2168 3625 0.03 11 0:01:44

germany 50 67 4948 56 0.1 33 0:52:34

ta2 65 148 2439 3455 0.04 3 1:06:10

Comme que travail futur, nous pouvons considérer des solutions pour diminuer cet
effet, ce qui pourra améliorer l’efficacité de la résolution en introduisant un algorithme
qui stabilise et accélère le processus de solution tout en restant dans le cadre de pro-
grammation linéaire. L’algorithme de stabilisation peut être utilisé pour améliorer le
temps de résolution des solutions pour les cas difficiles et pour résoudre des problèmes
plus importants.

On peut également essayer d’étendre l’approche développée dans ce chapitre pour

x Résumé long

Table 4: Résultats pour les instances de la TSPLIB.

Instance |V | Gen_Cuts Gen_Cols COpt Gap NSub CPU

burma14 14 38 124 3841 0.06 29 0:00:08

ulysses22 22 56 868 8180 0.07 47 0:00:31

fri26 26 67 65 965 0.01 23 0:01:33

bays 29 84 1498 9884 0.05 55 0:03:41

dantzig42 42 82 1 699 0.00 1 0:00:20

eil51 51 114 6847 482 0.06 19 4:59:01

berlin52 52 141 127 8181 0.04 7 0:05:48

st70 70 191 2970 750 0.05 3 4:51:05

pr76 76 240 2595 130921 0.1 5 4:53:32

kroC100 100 376 2135 23295 0.05 46 2:45:27

lin105 105 420 8771 16766 0.07 36 4:41:23

ch130 130 331 3722 7129 0.07 48 4:55:44

gr137 137 363 5579 79460 0.06 25 5:00:00

étudier le problème pour k ≥ 3 avec une formulation étendue utilisant des variables de
chemin et concevoir des algorithmes efficaces pour le problème dans ce cas.

Dans le cinquième chapitre, nous étudions le problème de conception de réseaux
fiables k-sommet-connexes avec contraintes de borne. Le problème consiste à trouver
un sous-graphe de poids minimum, tel que entre chaque paire d’origine-destination
donnée, il existe k chemins sommet-disjoints de longueur au plus L, où L est un entier
donné. Nous étudions le problème d’un point de vue polyédral. Nous proposons une
formulation linéaire en nombres entiers pour L = 2, 3. Nous étudions le polytope
associé au problème et introduisons de nouvelles inégalités valides pour L ∈ {2, 3, 4},
ainsi que des conditions nécessaires et des conditions suffisantes sous lesquelles ces
inégalités définissent des facettes.

Finalement, dans le sixième et dernier chapitre nous élaborons un algorithme Branch-
and-Cut pour résoudre le problème présenté dans le chapitre précédent en utilisant les
inégalités que nous avons présentées précédemment. En particulier, nous discutons le
problème de séparation des inégalités de st-cut, 3-st-path-cut, st-node-cut, et de 3-st-
node-cut. Enfin, nous présentons les résultats expérimentaux pour le problème lorsque
L = 3 et k = 3, 4, 5 d’une part, et lorsque L = 4 et k = 2 d’autre part (voir Tableaux
5 et 6).

Résumé long xi

Table 5: Résultats pour k = 3, L = 3 et des demandes routées.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

r 21 15 11775 74 10 0 0 5526 9.23 2265 00:04:46

r 21 17 22356 228 0 0 0 5939 9.4 4518 00:18:24

r 21 20 71354 116 0 0 0 6466 9.54 17673 03:10:39

r 30 15 15599 264 14 0 0 10109 6.87 1521 00:12:06

r 30 20 58659 1516 12 0 0 11376 8.41 15280 05:00:00

r 30 25 80999 615 18 0 0 12661 12.33 14281 05:00:00

r 48 20 51038 1632 26 0 0 18337 18.1 6133 05:00:00

r 48 30 66277 898 10 0 0 25437 28.68 5305 05:00:00

r 48 40 69242 257 2 0 0 31693 30.17 5628 05:00:00

r 52 20 49717 1674 22 0 0 11170 9.15 5707 05:00:00

r 52 30 62698 1692 18 0 0 14626 17.11 3845 05:00:00

r 52 40 68794 1024 16 0 0 17920 21.86 4953 05:00:00

r 52 50 77808 142 0 0 0 20873 24.49 4397 05:00:00

Table 6: Résultats pour k = 3, L = 3 et des demandes arbitraires.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

a 21 10 56593 2 0 483 0 6680 8.66 9191 05:00:00

a 21 11 29325 2 0 375 1 6770 6.8 2614 00:57:32

a 30 10 44057 25 18 38 0 10354 6.64 13274 05:00:00

a 30 15 53545 86 0 462 0 13936 11.69 6399 05:00:00

a 48 15 34047 0 0 20 0 - - 1119 05:00:00

a 48 20 28329 0 2 10 0 - - 229 05:00:00

a 48 24 23975 0 0 11 0 - - 103 05:00:00

a 52 20 30157 108 6 41 0 - - 1735 05:00:00

a 52 26 24217 0 0 96 0 - - 307 05:00:00

Les instances que nous avons testés dans ce chapitre montrent que l’algorithme de
Branch-and-Cut est assez efficace pour résoudre le problème lorsque L = 3 et k = 3, 4, 5,
et ceci, pour les deux ensembles d’instances, arbitraires et routées. Il est également à
souligner que les instances de grande taille sont encore difficiles à résoudre dans les 5
heures de temps maximal, mais les gaps obtenus sont dans la plupart des cas sont assez
intéressants. De plus, les expériences montrent l’importance des inégalités de double-
cut et de Steiner-SP-partition, alors que les inégalités de partition semblent être moins
efficaces.

Il convient également de noter que, contrairement au problème de conception de
réseaux fiables sans contraintes de borne, nos expériences ne permettent pas de conclure
sur l’impact d’une augmentation de la connectivité k sur la résolution du problème. En
fait, les expériences antérieures faites pour le problème de conception de réseaux fiables
ont conclu que le problème sans considérer les contraintes de borne semble devenir plus

xii Résumé long

facile lorsque k augmente. Dans notre cas, l’impact de la connectivité sur la résolution
est moins clair. Il semble même, lors de la comparaison des résultats pour L = 3 et
L = 4, que le problème devient plus difficile à résoudre lorsque L augmente.

L’étude du calcul souligne qu’un très grand nombre d’inégalités de st-cut et de 3-st-
path-cut ont été générées lors de la résolution du problème. Cela peut être un problème
puisqu’il oblige l’algorithme Branch-and-Cut de gérer un énorme pool de contraintes
et peut impliquer une consommation de temps de CPU excessive pour la gestion de ces
contraintes. Cela peut empêcher l’algorithme d’avoir une bonne exploration de l’arbre
Branch-and-Cut.

Les expériences que nous avons effectuées pour le problème de conception de réseaux
fiables k-sommet-connexes avec contraintes de borne pour k = 3, 4, 5 et L = 3 ont un
temps CPU relativement élevé. Ces observations suggèrent qu’un algorithme efficace
pour le problème nécessite une formulation plus étroite pour le problème. On peut
mener une étude plus approfondie sur le polytope du problème afin de fournir plus
d’inégalités définissant des facettes et de produire un algorithme efficace de coupe et
branchement.

On peut également utiliser les graphes orientés appropriés et en exploitant les ré-
sultats connus sur les problèmes de chemins disjoints dans les graphes orientés. Cela
peut aider à fournir de nouvelles facettes pour le problème. Il serait également in-
téressant, d’un point de vue algorithmique, d’améliorer les procédures de séparation
prévues pour les différentes inégalités que nous avons introduites dans ce travail. Nous
devons développer des heuristiques de séparation plus efficaces pour l’algorithme de
Branch-and-Cut. Il sera également intéressant de se concentrer sur des méthodes de
prétraitement plus sophistiquées afin de faciliter la résolution du problème. Il sera
également intéressant d’effectuer les expérimentations pour L = 4 et tout k. Le même
type d’étude peut être utilisé pour le problème lorsque L ≥ 5. Si possible, cela peut
fournir une formulation en nombres entiers pour le problème ainsi qu’un algorithme de
Branch-and-Cut pour tout k ≥ 2 et L = 5.

Il existe de nombreuses directions dans lesquelles la recherche dans cette thèse peut
être poursuivie pour les deux problèmes considérés. À des fins théoriques, il devrait être
intéressant d’étudier le polyope du problème dans certains cas spéciaux, comme par
exemple lorsque le graphe est série-parallèle. En outre, on pourrait étudier le problème
du point de vue de la répartition des demandes, car cela peut influencer la description

Résumé long xiii

polyédrale des solutions du problème et probablement l’efficacité des algorithmes de
résolution.

Une autre question intéressante serait de voir si l’on peut utiliser des modèles dirigés
pour le problème. Cela peut fournir des formulations linéaire en nombres entiers plus
forte. C’est l’une de nos lignes de recherche à l’avenir.

Contents

Introduction 1

1 Preliminaries Notions and State-of-the-Art 3

1.1 Preliminaries Notions . 4

1.1.1 Combinatorial optimization . 4

1.1.2 Computational complexity . 6

1.1.3 Polyhedral approach and Branch-and-Cut 7

1.1.4 Elements of polyhedral theory 7

1.1.5 Cutting plane method . 9

1.1.6 Branch-and-Cut algorithm . 11

1.2 Column generation and Branch-and-Price 13

1.2.1 Column generation procedure 14

1.2.2 Branch-and-Price algorithm . 14

1.2.3 Graph theory . 15

1.3 State-of-the-art on network design problems 18

1.3.1 The general survivable network design problem 18

1.3.2 The k-edge(node)-connected subgraph problem 20

1.3.3 The k-edge(node)-connected hop-constrained network design prob-
lem . 21

2 The k-node-connected subgraph problem 27

2.1 Formulation . 28

2.2 Dimension and Valid inequalities . 30

2.2.1 Dimension . 30

2.2.2 Node-partition inequalities . 31

2.2.3 SP-node-partition inequalities 31

2.2.4 F-node-partition inequalities . 32

xvi CONTENTS

2.3 Facial aspect . 33

2.4 Structural properties . 44

2.5 Reduction operations . 47

2.6 Conclusion . 50

3 Branch-and-Cut Algorithm for the kNCSP 51

3.1 Branch-and-Cut algorithm . 51

3.1.1 General framework . 52

3.1.2 Separation algorithms . 53

3.1.3 Primal heuristic . 55

3.2 Computational Results . 58

3.3 Conclusion . 65

4 Branch-and-Cut-and-Price Algorithm for the 2NCSP 67

4.1 Extended formulation . 67

4.2 Branch-and-Cut-and-Price algorithm 69

4.2.1 Column generation algorithm 69

4.2.2 Pricing heuristics . 72

4.3 Computational results . 73

4.4 Conclusion . 77

5 The k node-disjoint hop-constrained survivable network problem 79

5.1 Integer Programming Formulation . 80

5.2 Polytope and valid inequalities . 85

5.2.1 Generalized L-st-path-cut inequalities 86

5.2.2 Double cut inequalities . 86

5.2.3 Triple path-cut inequalities . 88

5.2.4 Steiner-partition inequalities . 89

5.2.5 Steiner SP-partition inequalities 91

5.2.6 The rooted partition inequalities 92

5.2.7 st-jump inequalities . 93

5.3 Facets of the kNDHP polytope . 94

5.4 Conclusion . 104

6 Branch-and-Cut Algorithm for the kNDHP 105

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 . . . 105

CONTENTS xvii

6.1.1 The general framework . 106

6.1.2 Separation procedures . 107

6.1.3 Computational Results . 113

6.2 Branch-and-Cut Algorithm for the kNDHP with L = 4 and k = 2 . . . 119

6.2.1 The general framework . 119

6.2.2 Separation procedures . 119

6.2.3 Computational results . 120

6.3 Conclusion . 122

Conclusion 125

Bibliography 132

Introduction

The design of survivable networks is an important issue in telecommunications. The
aim is to conceive cheap, efficient and reliable networks with specific characteristics
and requirements on the topology. Survivability is generally expressed in terms of
connectivity in the network. The level of connectivity depends on the need of each
telecommunication operator. We may have to conceive several paths to link each pair
of nodes to ensure the transmission in case of disconnection or breakdown, all this at
the cheapest possible cost. Therefore, it becomes necessary to propose solutions to
satisfy user demand, and ensure an efficient use of network resources.

A network can be represented by a graph G = (V, E) where V is the set of nodes
and E, the set of edges. Different topologies have been proposed to design survivable
networks. However, as we can see in [54, 55], the most frequent and useful case in
practice is the uniform topology. This means that the nodes of the network have all
the same importance and it is required that between every pair of nodes there are at
least k edge- (node-) disjoint paths, where k is a fixed integer such that k ≥ 2. Thus the
network will be still functional when at most k−1 edges (nodes) fail. The underlaying
problem is to determine, given weights on the possible links of the network, a minimum
weight network satisfying the edge or the node connectivity. This thesis deals with the
node connectivity of the problem.

However this connectivity requirement may not unfortunately be sufficient to guar-
antee a high survivability and a routing quality. In fact, for some special networks
such as VPN (Virtual Private Networks), we may need a higher degree of connectivity.
Moreover, the alternative routing path in the network may be too long and costly and
this may cause a significant degradation in the transfer speed. In order to limit the
rerouting length and guarantee a high QoS, it is commonly required that the length
(number of edges) of the paths between an origin-destination pair is bounded by a given
number L depending on technological parameters. The problem is then to determine,
given weights on the possible links of the network, and pairs of origin-destinations, a
minimum weight network containing at least k edge (node) disjoint paths between each

2 Introduction

pair of origin-destination of length no more than L. This thesis deals with the node
connectivity case of the problem.

As the 2-connected topolgy (k = 2) provides an adequate level of survivability since
most failure usually can be repaired relatively quickly, we will study the problem for
k = 2, with a different, but related method to solve MIPs, namely the branch-and-
price method and its extension, the branch-cut-and-price method. It relies on exploit-
ing problem structures in a MIP via a decomposition. The problem is split into a
coordinating problem and one or more typically well structured subproblems that can
often be solved efficiently. For many difficult but well structured combinatorial opti-
mization problems, this approach leads to a better performance than a branch-and-cut
algorithm.

The survivable network design problem has been widely studied when the paths
required between the nodes are edge-disjoint or when the connectivity requirement is
low (k = 2). However the high node-connectivity requirement case (k ≥ 3) has received
a little attention. In this thesis, we study the survivable network design problem with
high node-connectivity requirement. In particular, we focus on two variants of the
problem: when k-node-disjoint paths are required between every pair of nodes (the k-
node-connected subgraph problem) and when k-node-disjoint paths of length at most
L are required between certain pairs of nodes (the k-node-disjoint hop-constrained
network design problem). The study is led using the polyhedral approach and provides
exact and efficient algorithms to solve these problems.

This thesis is organized as follows. In Chapter 1, we present the basic notions of
combinatorial optimization and notations that will be used throughout this thesis. We
laso present a state-of-the-art on survivable network design problems. Chapters 2 and
3 concern the first considered network design problem, that is the k-Node-Connected
Subgraph Problem (kNCSP). We investigate the kNCSP polytope and present several
classes of valid inequalities. Then we discuss the conditions under which these inequal-
ities define facets of the polytope. We also consider the polytope associated with the
linear relaxation of the problem and present some structural proporties as well as some
reduction operations. Using these results we devise a Branch-and-Cut algorithm, and
we give some experimental results. In Chapter 5 and 6 we discuss the hop-contrained
version of the first problem, namely the k Node-Disjoint Hop-Constrained survivable
network Problem(kNDHP). We introduce a new integer programming formulation for
this problem and study the associated polytope. We devise a Branch-and-Cut al-
gorithm for the problem and present extensive computational results. In Chapter 4
we devise a Branch-and-Cut-and-Price algorithm for the 2-node-connected subgraph
problem and present extensive computational results.

Chapter 1

Preliminaries Notions and

State-of-the-Art

Contents

1.1 Preliminaries Notions . 4

1.1.1 Combinatorial optimization 4

1.1.2 Computational complexity . 6

1.1.3 Polyhedral approach and Branch-and-Cut 7

1.1.4 Elements of polyhedral theory 7

1.1.5 Cutting plane method . 9

1.1.6 Branch-and-Cut algorithm . 11

1.2 Column generation and Branch-and-Price 13

1.2.1 Column generation procedure 14

1.2.2 Branch-and-Price algorithm 14

1.2.3 Graph theory . 15

1.3 State-of-the-art on network design problems 18

1.3.1 The general survivable network design problem 18

1.3.2 The k-edge(node)-connected subgraph problem 20

1.3.3 The k-edge(node)-connected hop-constrained network design

problem . 21

This chapter is dedicated to the presentation of some preliminary notions concerning

combinatorial optimization, exact approaches and polyhedra. In particular, we give an

4 Preliminaries Notions and State-of-the-Art

overview of cutting planes methods as well as Branch-and-Cut algorithms. We then give

some basic definitions in graph theory and introduce some notations and terminology

that will be used throughout the dissertation. Finally, we give a state-of-the-art on

network design problems.

1.1 Preliminaries Notions

1.1.1 Combinatorial optimization

Combinatorial optimization is the field of discrete optimization problems. In many
applications, the most important decisions (control variables) are discrete in nature.
Binary variables model on/off decisions to buy, invest, hire, send a vehicle, or enforce
a precedence. Integer variables model indivisible quantities. Extra variables can rep-
resent continuous adjustments or amounts. This results in models known as mixed
integer programs (MIP), where the relationships between variables and input param-
eters are expressed as linear constraints and the goal is defined as a linear objective
function. MIPs are among the most widely used modeling tools. They allow a fair de-
scription of reality; they are versatile; they can handle many non-linearities (and even
non-convexities) in the cost function and in the constraints; they are also well-suited for
global optimization. However useful they may be, these models are notoriously difficult
to solve: good quality estimations of the optimal value (bounds) are required to prune
enumeration-based global-optimization algorithms whose complexity is exponential. In
the standard approach to solving an MIP is so-called branch-and-bound algorithm : (i)
one solves the linear programming (LP) relaxation using the simplex method; (ii) if the
LP solution is not integer, one adds a disjunctive constraint on a factional component
(rounding it up or down) that defines two sub-problems; (iii) one applies this procedure
recursively, thus defining a binary enumeration tree that can be pruned by comparing
the local LP bound to the best known integer solution. State-of-the-art MIP solvers,
such as the commercial solvers CPLEX of Ilog or Dash-Optimization’s Xpress-mp, are
remarkably effective. But many real-life applications remain beyond their scope, and
the scientific community is actively seeking to extend the capabilities of MIP solvers.
Developments made in the context of specific applications often become generic tools
over time and see their way into commercial software.

The most effective solution schemes are a complex blend of techniques: cutting planes
to better approximate the convex hull of feasible (integer) solutions and hence provide
better LP bounds, Lagrangian decomposition methods to produce alternative powerful

1.1 Preliminaries Notions 5

relaxations, constraint programming to actively reduce the solution domain through
logical implications, heuristics and meta-heuristics (greedy, local improvement, or ran-
domized partial search procedures) to produce good candidate solutions, and special-
ized branch-and-bound or dynamic programming enumeration schemes to find a global
optimum. The real challenge is to integrate the most efficient methods into one global
system. Another key to further progress is the development of stronger problem for-
mulations whose relaxations provide approximations that enable enhanced truncation
of enumerative solution schemes. Tighter formulations are also much more likely to
yield good quality approximate solutions through rounding techniques. With properly
chosen formulations, exact optimization tools can be competitive with other methods
(such as meta-heuristics) in constructing good approximate solutions within limited
computational time, and of course has the important advantage of being able to pro-
vide a performance guarantee through the relaxation bounds.

Combinatorial Optimization is a branch of operations research related to computer
science and applied mathematics. Its purpose is the study of optimization problems
where the set of feasible solutions is discrete or can be represented as a discrete one.
Typically, the problems concerned with combinatorial optimization are those formu-
lated as follows. Let E = {e1, . . . , en} be a finite set called basic set where each element
ei is associated with a weight c(ei). Let F be a family of subsets of E. If F ∈ F, then
c(F) =

∑
ei∈F c(ei) denotes the weight of F . The problem consists in identifying an

element F ∗ of F whose weight is minimum or maximum. In other words,

min(or max){c(F) : F ∈ F}.

Such a problem is called combinatorial optimization problem. The set F represents
the set of feasible solutions of the problem.

The term combinatorial refers to the discrete structure of F. In general, this structure
is represented by a graph. The term optimization signifies that we are looking for the
best element in the set of feasible solutions. This set generally contains an exponential
number of solutions, therefore, one can not expect to solve a combinatorial optimization
problem by exhaustively enumerate all its solutions. Such a problem is then considered
as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimiza-
tion problems. Some of these approaches are based on graph theory, while others use
linear and non-linear programming, integer programming and polyhedral approach.
Besides, several practical problems arising in real life, can be formulated as combina-
torial optimization problems. Their applications are in fields as diverse as telecommu-
nications, transport, industrial production planing or staffing and scheduling in airline

6 Preliminaries Notions and State-of-the-Art

companies. Over the years, the discipline got thus enriched by the structural results
related to these problems. And, conversely, the progress made in computed science
have made combinatorial optimization approaches even more efficient on real-world
problems.

In fact, combinatorial optimization is closely related to algorithm theory and compu-
tational complexity theory as well. The next section introduces computational issues
of combinatorial optimization.

1.1.2 Computational complexity

Computational complexity theory is a branch of theoretical computer science and math-
ematics, whose study started with works of Cook [30], Edmonds [33] and Karp [53]. Its
objective is to give a classify a given problem depending on its difficulty. A plentiful
literature can be find on this topic, see for example [38] for a detailed presentation of
NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find
an answer. A problem is defined by giving a general description of its parameters,
and by listing the properties that must be satisfied by a solution. An instance of
the problem is obtained by giving a specific value to all its input parameters. An
algorithm is a sequence of elementary operations that allows to solve the problem for
a given instance. The number of input parameters necessary to describe an instance
of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations nec-
essary to solve an instance of size n is bounded by a polynomial function in n. We
define the class P as the class gathering all the problems for which there exists some
polynomial algorithm for each problem instance. A problem that belongs to the class
P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision problem
and I the set of instances such that their answer is yes. P belongs to the class class

NP (Nondeterministic Polynomial) if there exists a polynomial algorithm allowing to
check if the answer is yes for all the instances of I. It is clear that a problem belonging
to the class P is also in the class NP . Although the difference between P and NP has
not been shown, it is a highly probable conjecture.

In the class NP , we distinguish some problems that may be harder to solve than
others. This particular set of problems is called NP-complete. To determine whether

1.1 Preliminaries Notions 7

a problem is NP-complete, we need the notion of polynomial reducibility. A decision
problem P1 can be polynomially reduced (or transformed) into an other decision prob-
lem P2, if there exists a polynomial function f such that for every instance I of P1,
the answer is "yes" if and only if the answer of f(I) for P2 is "yes". A problem P in
NP is also NP-complete if every other problem in NP can be reduced into P in poly-
nomial time. The Satisfiability Problem (SAT) is the first problem that was shown to
be NP-complete (see [30]).

With every combinatorial optimization problem is associated a decision problem.
Furthermore, each optimization problem whose decision problem is NP-complete is
said to be NP-hard. Note that most of combinatorial optimization problems are NP-
hard. One of the most efficient approaches developed to solve those problems is the
so-called polyhedral approach.

1.1.3 Polyhedral approach and Branch-and-Cut

1.1.4 Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [34] for a matching problem.
It consists in describing the convex hull of problem solutions by a system of linear
inequalities. The problem reduces then to the resolution of a linear program. In
most of the cases, it is not straightforward to obtain a complete characterization of
the convex hull of the solutions for a combinatorial optimization problem. However,
having a system of linear inequalities that partially describes the solutions polyhedron
may often lead to solve the problem in polynomial time. This approach has been
successfully applied to several combinatorial optimization problems. In this section,
we present the basic notions of polyhedral theory. The reader is referred to works of
Schrijver [63] and [56].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ Rn. e say that x is a linear combination of x1, x2,
. . ., xm ∈ Rn if there exist m scalar λ1, λ2, . . ., λm such that x =

∑m
i∈1 λixi. If

∑m
i=1 λi

= 1, then x is said to be a affine combination of x1, x2, . . ., xm. Moreover, if λi ≥ 0,
for all i ∈ {1, . . . , m}, we say that x is a convex combination of x1, x2, . . ., xm.

Given a set S = {x1, . . . , xm} ∈ Rn×m, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . ., xm (see Figure 1.1), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xm}.

8 Preliminaries Notions and State-of-the-Art

The points x1, . . ., xm ∈ Rn are linearly independents if the unique solution of the

elements of S

conv(S)

Figure 1.1: A convex hull

system
∑m

i=1 λixi = 0 is λi = 0, for all i ∈ {1, . . . , m}. They are affinely independent if
the unique solution of the system

m∑

i=1

λixi = 0,
m∑

i=1

λi = 1,

is λi = 0, i = 1, . . ., m.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ Rm. A polytope is a
bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent
solutions. We denote it by dim(P) = p. We also have that dim(P) = n - rank(A=),
where A= is the submatrix of A of inequalities that are satisfied with equality by all
tje solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P)
= n.

An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The
inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for
the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a
face induced by ax ≤ α. If F 6= ∅ and F 6= P , we say that F is a proper face of P . If
F is a proper face and dim(F) = dim(P)− 1 , then F is called a facet of P . We also
say that ax ≤ α induces a facet of P or is a facet defining inequality.

1.1 Preliminaries Notions 9

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β and a scalar ρ 6= 0 such that
F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β, a scalar ρ 6= 0 and λ ∈ Rq×n

(where q is the number of lines of matrix A=) such that F ⊆ {x ∈ P |bx = β} and
b = ρa + λA=.

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the
system A′x ≤ b′} obtained by removing this inequality from Ax ≤ b defines the same
polyhedron P . This is the case when ax ≤ α can be written as a linear combination
of inequalities of the system A′x ≤ b′. A complete minimal linear description of a
polyhedron consists of the system given by its facet defining inequalities and its implicit
equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written
as the convex combination of two different solutions of P . It is equivalent to say that x

induces a face of dimension 0. The polyhedron P can also be described by its extreme
points. In fact, every solution of P can be written as a convex combination of some
extreme points of P .

Figure 1.2 illustrates the main definitions given is this section.

1.1.5 Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight
function associated with the variables of P and S the set of feasible solutions. Suppose
that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then
the 0-1 vector xF ∈ RE such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called
the incidence vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is the polyhedron

of the solutions of P or polyhedron associated with P. P is thus equivalent to the linear
program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a
set of a facet defining inequalities. And when all the inequalities of this set are known,
then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization
problems is to reduce the resolution of P to that of a linear program. This reduction
induces a deep investigation of the polyhedron associated with P. It is generally not

10 Preliminaries Notions and State-of-the-Art

P

non−valid

valid

extreme points

valid
proper face
facet

valid
proper face
but not facet

Figure 1.2: Valid inequality, facet and extreme points

easy to characterize the polyhedron of a combinatorial optimization problem by a
system of linear inequalities. In particular, when the problem is NP-hard there is a
very little hope to find such a characterization. Moreover, the number of inequalities
describing this polyhedron is, most of the time, exponential. Therefore, even if we
know the complete description of that polyhedron, its resolution remains in practice a
hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome
this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs
to P , and if this is not the case, to identify an inequality aT x ≤ b, valid for P and
violated by x∗. In the later case, we say that the hyperplane aT x = b separates P and
x∗ (see Figure).

Grötschel, Lovász and Schrijver [43] have established the close relationship between
separation and optimization. In fact, they prove that optimizing a problem over a
polyhedron P can be performed in polynomial time if and only if the separation problem

1.1 Preliminaries Notions 11

P

x∗

ax ≥ α

Figure 1.3: A hyperplan separating x∗ and P

associated with P can be solved in polynomial time. This equivalence has permitted
an important development of the polyhedral methods in general and the cutting plane
method in particular. More precisely, the cutting plane method consists in solving
successive linear programs, with possibly a large number of inequalities, by using the
following steps. Let LP = max{cx, Ax ≤ b} be a linear program and LP ′ a linear
program obtained by considering a small number of inequalities among Ax ≤ b. Let
x∗ be the optimal solution of the latter system. We solve the separation problem
associated with Ax ≤ b and x∗. This phase is called the separation phase. If every
inequality of Ax ≤ b is satisfied by x∗, then x∗ is also optimal for LP . If not, let ax ≤ α

be an inequality violated by x∗. Then we add ax ≤ α to LP ′ and repeat this process
until an optimal solution is found. Algorithm 1 summarizes the different cutting plane
steps.

Note that at the end, a cutting-plane algorithm may not succeed in providing an
optimal solution for the underlying combinatorial optimization problem. In this case
a Branch-and-Bound algorithm can be used to achieve the resolution of the problem,
yielding to the so-called Branch-and-Cut algorithm.

1.1.6 Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equiv-
alent to max{cx|Ax ≤ b, x ∈ {0, 1}n}, where Ax ≤ b has a large number of inequali-

12 Preliminaries Notions and State-of-the-Art

Algorithm 1: A cutting plane algorithm
Data: A linear program LP and its system of inequalities Ax ≤ b

Result: Optimal solution x∗ of LP

Consider a linear program LP ′ with a small number of inequalities of LP ;
Solve LP ′ and let x∗ be an optimal solution;
Solve the separation problem associated with Ax ≤ b and x∗;
if an inequality ax ≤ α of LP is violated by x∗ then

Add ax ≤ α to LP ′;
Repeat step 2 ;

end

else

x∗ is optimal for LP ;
return x∗;

end

ties. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose
root node corresponds to a linear program LP0 = max{cx|A0x ≤ b0, x ∈ Rn}, where
A0x ≤ b0 is a subsystem of Ax ≤ b having a small number of inequalities. Then
we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ Rn} using a cut-
ting plane algorithm whose starting from LP0. Let x∗

0 denote its optimal solution and
A′

0x ≤ b′
0 the set of inequalities added to LP0 at the end of the cutting plane phase.

If x∗
0 is integral, then it is optimal. If x∗

0 is fractional, then we perform a branching

phase. This step consists in choosing a variable, say x1, with a fractional value and
adding two nodes P1 and P2 in the Branch-and-Cut tree. The node P1 corresponds to
the linear program LP1 = max{cx|A0x ≤ b0, A′

0x ≤ b′
0, x1 = 0, x ∈ Rn} and LP2 =

max{cx|A0x ≤ b0, A′
0x ≤ b′

0, x1 = 1, x ∈ Rn}. We then solve the linear program LP 1

= max{cx|Ax ≤ b, x1 = 0, x ∈ Rn} (resp., LP 2 = max{cx|Ax ≤ b, x1 = 1, x ∈ Rn}) by
a cutting plane method, starting from LP1 (resp. LP2). If the optimal solution of LP 1

(resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the
optimal solution of P, and the node P1 (resp. P2) becomes a leaf of the Branch-and-Cut
tree. If the solution is fractional, then we select a variable with a fractional value and
add two children to the node P1 (resp. P2), and so on.

Note that sequentially adding constraints of type xi = 0 and xi = 1, where xi is a
fractional variable, may lead to an infeasible linear program at a given node of the
Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the
best known lower bound of the problem. In both cases, that node is pruned from the
Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the

1.2 Column generation and Branch-and-Price 13

optimal solution of P is the best feasible solution given by the Branch-and-Bound tree.

This algorithm can be improved by computing a good lower bound of the optimal
solution of the problem before it starts. This lower bound can be used by the algorithm
to prune the node which will not allow an improvement of this lower bound. This
would permit to reduce the number of nodes generated in the Branch-and-Cut tree,
and hence, reduce the time used by the algorithm. Furthermore, this lower bound
may be improved by comparing at each node of the Branch-and-Cut tree a feasible
solution when the solution obtained at the root node is fractional. Such a procedure is
referred to as a primal heuristic. It aims to produce a feasible solution for P from the
solution obtained at a given node of the Branch-and-Cut tree, when this later solution
is fractional (and hence infeasible for P). Moreover, the weight of this solution must be
as best as possible. When the solution computed is better than the best known lower
bound, it may significantly reduce the number of generated nodes, as well as the CPU
time. Moreover, this guarantees to have an approximation of the optimal solution of
P before visiting all the nodes of Branch-and-Cut tree, for example when a CPU time
limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems
of combinatorial optimization that are considered difficult to solve, such as the Travel-
ling Salesman Problem [6]. Note a good knowledge of the polyhedron associated with
the problem, together with efficient separation algorithms (exacts as well as heuristics),
might help to improve the effectiveness of this approach. Besides, the cutting plane
method is efficient when the number of variables is polynomial. However, when the
number of variables is large (for example exponential), further methods, as column
generation are more likely to be used. In what follows, we briefly introduce the outline
of this method.

1.2 Column generation and Branch-and-Price

Compact formulations of combinatorial optimization problems often provide a weak
linear relaxation. Those problems require then further formulations, whose linear re-
laxation is closer to the convex hull of feasible solutions. Those reformulations may
have a huge number of variables, so that one can not consider them explicitly in the
model. we describe a method that suits well to such reformulation, that is the so-called
column generation method.

14 Preliminaries Notions and State-of-the-Art

1.2.1 Column generation procedure

The column generation method is used to solve linear programs with a huge number
of variables only by considering a few number among these variables. This method
was pioneered by Dantzig and Wolfe in 1960 [24] in order to solve problems that could
not be handled efficiently because of their size (CPU time and memory consumption).
Column generation is generally used either for problems whose structure is suitable for a
Dantzig-Wolfe decomposition, or for problems with a large number of variables. Gilmore
and Gomory [16, 17] used this method to solve a cutting stock problem belonging to
the later class.

The overall idea of column generation is to solve a sequence of linear programs with
a restricted number of variables (also referred to as columns). The algorithm starts by
solving a linear program having a small number of variables, and such that a feasible
solution for the original problem may be identified using this basis. At each iteration
of the algorithm, we solve the so-called pricing problem whose objective is to identify
the variables which must enter the current basis. These variables are characterized by
a negative reduced cost. The reduced cost associated with a variable is computed using
the dual variables associated with the constraints of the problem. We then solve the
linear program obtained by adding the generated variables, and repeat the procedure
until no variable with reduced cost can be identified by the pricing problem. In this
case, the solution obtained from the last restricted program is optimal for the original
model. The main step of column generation procedure is summarized in Algorithm 2.

The column generation method can be seen as the dual of the cutting plane method
since it adds columns (variables) instead of rows (inequalities) in the linear program.
Furthermore, the pricing problem may be NP-hard. One can then use heuristic pro-
cedures to solve it. For more details on column generation algorithms, the reader is
referred to [64, 52, 25].

1.2.2 Branch-and-Price algorithm

The solution obtained by a column generation procedure may not be integer. There-
fore, to solve an integer programming problem, the column generation method has to
be integrated within a Branch-and-Bound framework. This is known a Branch-and-

Price algorithm. Branch-and-Price is similar to Branch-and-Cut approach, except that
procedure focuses on column generation rather than row generation. In fact, gener-
ating variables (pricing) and adding inequalities (cutting plane) are complementary
operations to strengthen the linear relaxation of a integer programming formulation.

1.2 Column generation and Branch-and-Price 15

Algorithm 2: A column generation algorithm

Data : A linear program MP (Master Problem) with a huge number of variables
Output : optimal solution x∗ of MP

1: Consider a linear program RMP (Restricted Master Problem) including only a
small subset of variables of the MP;
2: Solve RMP and let x∗ be an optimal solution;
3: Solve the pricing problem associated with the dual variables obtained by the
resolution of the RMP;
4: If there exists a variable x with a negative reduced cost then;
5: add x to RMP.
6: go to 2.
7: else

8: x∗ is optimal for MP.
9: return x∗.

The Branch-and-Price procedure works as follows. Each node of the Branch-and-
Bound tree is solved by column generation, so that variables may be added to improve
the linear relaxation of the current LP. The branching phase occurs when no columns
price out to enter the basis and the solution of the linear program is not integer.

Branch-and-Price approaches have been widely used in the literature to solve large
scale integer programming problems. The applications are in various fields, and even
real life problems such as Cutting stock problem [65], Generalized Assignment Problem
(GAP) [62], Airline Crew Scheduling [36], Multi-commodity Flow Problems [8], etc.

Note that, at each node of the Branch-and-Price tree, column generation may be
combined with cutting plane approach, to tighten the LP relaxation of the problem. In
this case, the algorithm is called Branch-and-Cut-and-Price algorithm. Such a method
can be difficult to handle, since adding valid inequalities to the initial model may
change the structure and complexity of the pricing problem. However, some successful
applications of this algorithm can be found in the literature (see [61], [8] for instance).

1.2.3 Graph theory

In this section we will introduce some basic definitions and notations of graph theory
that will be used throughout the chapters of this dissertation. For more details, we
refer the reader to [63].

16 Preliminaries Notions and State-of-the-Art

The graphs we consider are undirected, finite and loopless.

An undirected graph is denoted by G = (V, E) where V is the node set and E is the
edge set. If e ∈ E is an edge with endnodes u and v, we also write uv to denote e.
Given a set of nodes Z ⊂ V , we denote by G \ Z the subgraph obtained from G by
deleting the nodes in Z and all their incident edges. For W ⊆ V , we let W = V \W .
Given W and W ′, two disjoint subsets of V , [W, W ′] denotes the set of edges of G

having one endnode in W and the other one in W ′. If W ′ = W , then [W, W ′] is called
a cut of G and denoted by δG(W). We will write δ(W) if the meaning is clear from the
context. For W ⊂ V , we denote by E(W) the set of edges of G having both endnodes
in W and by G[W] the subgraph induced by W . If π = (V1, ..., Vp), p ≥ 2, is a partition
of V , then we denote by δG(π) the set of edges having their endnodes in different sets.
We may also write δG(V1, ..., Vp) for δG(π). Note that for W ⊂ V , δG(W) = δG(W, W).

Let G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E be a subgraph of G. If w(.) is a weight
function which associates with each edge e ∈ E the weight w(e), then the total weight
of G′ is w(E ′) =

∑
e∈E′

w(e).

Given an undirected graph G = (V, E), for all F ⊆ E, V (F) will denote the set of
nodes incident to the edges of F . For W ⊆ V , we denote by E(W) the set of edges of
G having both endnodes in W and G[W] the graph induced by W , that is the graph
(W, E(W)). Given an edge e = uv ∈ E, contracting e consists in deleting e, identifying
the nodes u and v and in preserving all the adjacencies. Contracting a node subset
W consists in indentifying all the nodes of W and preserving the adjacencies. Given a
partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ the subgraph induced by π, that
is, the graph obtained from G by contracting the sets Vi, for i = 1, ..., p. Note that the
edge set of Gπ is the set δ(V1, ..., Vp).

A path P of an undirected graph G is an alternate sequence of nodes and edges
(u1, e1, u2, e2, ..., uq−1, eq−1, uq) where ei ∈ [ui, ui+1] for i = 1, ..., q − 1. We will denote
a path P either by its node sequence (u1, ..., up) or its edge sequence (e1, ..., eq−1). The
nodes u1 and uq are called the endnodes of P , while its other nodes are said to be
internal. A path is simple if it does not contain the same node twice. In the sequel,
we will always consider that the paths are simple. A path whose endnodes are s and
t will be called an st-path. A cycle in G is a path whose endnodes coincide, that is
u1 = uq. Also, a cycle is simple if it does not contain twice the same node, excepted
u1. We call a chord an edge between two non-adjacent nodes of a path. A matching

of G is a set of pairwise nonadjacent edges. Given a fixed integer L ≥ 1 and a pair of
nodes {s, t} ∈ V × V , an L-st-path in G is a path between s and t whose length is at
most L, where the length is the number of edges of that path. The number of edges

1.2 Column generation and Branch-and-Price 17

of a path is also called hops and we also speak of L-hop-constrained paths for paths
whose length is at most L.

An undirected graph is connected if for every pair of nodes (u, v) there is at least one
path between u and v. A connected graph which have no cycle is called a spanning tree.
A connected component of a graph G is a connected subgraph of G which is maximal,
that is adding a node or an edge to that subgraph gives a non-connected graph.

Given an undirected graph G = (V, E), two st-paths are edge-disjoint if they have
no edge in common. They are node-disjoint if they have no internal node in common.
A graph is said to be k-edge-connected if it contains at least k edge-disjoint st-paths
for all pair of nodes {s, t} ∈ V × V . It is k-node-connected if it contains at least
k node-disjoint st-paths for all pair of nodes {s, t} ∈ V × V . The largest integer k

such that the graph is k-node-connected is the node-connectivity of the graph. We say
that a graph is Steiner k-edge-connected (k-node-connected) if it is k-edge-connected
(k-node-connected) relatively to a certain pair of privileged nodes. We ommit the
qualificative Steiner when the required connectivity is for every pair of nodes of the
graph. The privileged nodes are called terminal nodes while non-privileged ones are
called Steiner nodes.

Given an undirected graph G = (V, E), a demand set D ⊆ V ×V is a subset of pairs
of nodes, called demands. For a demand {s, t} ∈ D, s is the source of the demand
and t is the destination of that demand. If several demands {s, t1}, ..., {s, td} have the
same node s as source node, then these demands are rooted in s. A node involved in at
least one demand is said to be terminal. A node which does not belong to any demand
is called a Steiner node.

A complete graph is a graph in which there is an edge between each node and the
others. A complete graph with n nodes is denoted by Kn. A bipartite graph G = (V, E)
is an undirected graph such that V = V1 ∪ V2 with V1 ∩ V2 = ∅ and for every pair of
nodes u, v ∈ V1 (resp. u, v ∈ V2), [u, v] = ∅. A complete bipartite graph is a bipartite
graph where there is an edge between each node of V1 and the nodes of V2. A bipartite
complete graph is denoted Km,n where m = |V1| and n = |V2|. An undirected graph is
outerplanar when it can be drawn in the plane as a cycle with non crossing chords. A
graph is series-parallel if it can be obtained from a single edge by iterative application
of the two operations:

i) addition of a parallel edge;

ii) subdivision od an edge.

18 Preliminaries Notions and State-of-the-Art

Observe that a graph is series-parallel (outerplanar) if and only if it is not contractible
to K4 (K4 and K3,2). Therefore, an outerplanar graph is also series-parallel.

1.3 State-of-the-art on network design problems

Survivable network design problems have been widely studied. The aim of the first
studies was to produce heuristics and approximation algorithms for these problems. In
the last decades, studies starts focusing on exact algorithms with, in particular, the
use of the polyhedral approach.

In this section we present the previous works in the litterature related to survivable
network design problems. We first present the general survivable network design prob-
lem, the related works and main results on this problem. Then we discuss two variants
of the problem, the k-node-connected subgraph problem and the k-node-disjoint hop-
constrained network design problem. The first one will be studied in Chapters 2, 3 and
4 and the second one in the Chapters 5 and 6.

1.3.1 The general survivable network design problem

A network can be represented by a graph, directed or undirected, where each node of
the network corresponds to a node of the graph and a link between two nodes of the
network is represented by an edge or an arc of the graph.

Consider an undirected graph G = (V, E) representing a telecommunication network
and w(.) a weight function which associates the weight w(e) with an edge e ∈ E. Each
node v ∈ V is associated with an integer, denoted by r(v) and called connectivity type

of v, which can be seen as the minimum number of edges connecting v to the rest of
the network. The vector (r(v) | v ∈ V) is the connectivity type vector associated with
the nodes of G. We say that a subgraph H = (U, F), U ⊆ V and F ⊆ E, satisfies
the edge-connectivity (resp. node-connectivity) requirement if for every pair of nodes
(s, t) ∈ V × V , there exist at least

r(s, t) = min{r(s), r(t)}

edge-disjoint (resp. node-disjoint) paths between s and t. This condition ensures
that the traffic will still be routed between s and t when at most r(s, t)−1 links, in the

1.3 State-of-the-art on network design problems 19

case of edge-connectivity, and at most r(s, t)−1 nodes, in the case of node-connectivity,
fail.

Let rmax = max{r(v) | u ∈ V }. When rmax ≤ 2 we speak of low connectivity

requirement and of high connectivity requirement when rmax ≥ 3.

Grötschel, Monma and Stoer [45] introduced the general survivable network design

problem which consists in finding a minimum weight subgraph of G which satisfies
the connectivity requirement. This problem is NP-hard as it contains the Steiner tree
problem as a special case (r(u) ∈ {0, 1} for all u ∈ V) which is known to be NP-hard
[37].

Menger [60] showed the relation between the number of edge-disjoint paths and the
cardinality of cuts in the graph G. This relation is given in the theorem below.

Theorem 1 [60] Let G = (V, E) be an undirected graph and s, t two nodes of G. Then

there exist at least k edge-disjoint paths between s and t if and only if every st-cut of

G contains at least k edges.

We will denote the edge version (resp. nodes version) of the survivable network design
problem by ESNDP (resp. NSNDP). By Theorem 1, the ESNDP can be described as
a linear integer program. To this end we introduce some notations.

r(W) = max{r(u) | u ∈W} for all W ⊆ V,

con(W) = max{r(u, v) | u ∈W, v ∈W}

= min{r(W), r(W)} for all W ⊂ V, ∅ 6= W 6= V.

The ESNDP is equivalent to the following linear integer program

Minimize
∑

e∈E

c(e)x(e)

x(δ(W)) ≥ con(W), for all W (V, W 6= ∅, (1.1)

x(e) ≥ 0, e ∈ E, (1.2)

x(e) ≤ 1, e ∈ E, (1.3)

x(e) ∈ {0, 1}. (1.4)

20 Preliminaries Notions and State-of-the-Art

Grötschel and Monma [44] study the polyhedral aspects of that model. They discuss
the dimension of the associated polytope and the facial aspect of the basic inequalities.
In [45], Grötschel et al. study further polyhedral aspects of that model. They devise
cutting plane algorithms and give computational results. In [39], Goemans and Bert-
simas give an approximation algorithm based for the ESNDP based on a new analysis
of a well-known algorithm for the Steiner tree problem.

1.3.2 The k-edge(node)-connected subgraph problem

The kNCSP has applications in communication and transportation networks ([9, 45,
44, 46, 47]). The edge version of the problem has been widely studied in the literature
([9, 19, 12, 45, 44, 46, 47, 5]).

In [19] Chopra studied the polyhedron defined by the convex hull of k-edge-connected
spanning subgraphs of a given graph G where multiple copies of an edge are allowed. A
complete inequality description of the polytope when k is odd and G is an outer planar
graph is given. He described a family of facet-defining inequalities of the polytope that
have the same support graph and coefficients that depend on the connectivity.

In [5], Mahjoub study the problem of finding a two-edge connected spanning subgraph
of minimum weight. This problem is closely related to the widely studied traveling
salesman problem and has applications to the design of reliable communication and
transportation networks. He discusses the polytope associated with the solutions to this
problem, and shows that when the graph is series-parallel, the polytope is completely
described by the trivial constraints and the so-called cut constraints. He also gives
some classes of facet defining inequalities of this polytope when the graph is general,
and later in [12], Didi Biha and Mahjoub give a complete description of the k-edge
connected spanning subgraph polytope, for all k ≥ 0 on series-parallel graphs.

In [9], Bendali et al. consider the k-edge connected subgraph problem from a polyhe-
dral point of view. They introduce further classes of valid inequalities for the associated
polytope and describe sufficient conditions for these inequalities to be facet defining.
They also devise separation routines for these inequalities and discuss some reduction
operations that can be used in a preprocessing phase for the separation. Using these
results, they develop a Branch-and-Cut algorithm and present some computational
results.

The kNCSP has been particulary considered for k = 2 (see [28, 57]). A little attention
has been given for the high connectivity case where k ≥ 3. The kNCSP has been

1.3 State-of-the-art on network design problems 21

studied by Grötschel et al. ([45, 44, 46, 47]) within a more general survivability model.
Grötschel et al. study the model from a polyhedral point of vue and propose cutting
plane algorithms.

In [57], Mahjoub and Nocq discuss the linear relaxation of the 2NCSP(G). They
describe some structral properties and characterize which they called extreme points
of rank 1. They introduce an ordering on the fractional extreme points of the polytope
and give a characterization of the minimal extreme points with respect to that ordering.
This yields a polynomial method to separate a minimal extreme point of the polytope
from the 2-node connected subgraph polytope. It also provides a new class of facet
defining inequalities for this polytope.

1.3.3 The k-edge(node)-connected hop-constrained network de-

sign problem

The problem is to determine, given weights on the possible links of the network, and
pairs of origin-destinations, a minimum weight network containing at least k edge
(node) disjoint paths between each pair of origin-destination of length no more than
L. This thesis deals with the node connectivity case of the problem.

Consider an undirected graph G = (V, E) with weights c(e), e ∈ E, on the edges,
an integer L ≥ 2, and a set of demands D ⊂ V × V . Each demand is an ordered
pair (s, t) of nodes, with s 6= t. Node s is called the source (or origin) of the demand
and t its destination. The k-Node-Disjoint Hop-Constrained Network Design Problem

(kNDHP for short) is to find a minimum weight subgraph of G containing at least k

node-disjoint L-st-paths, that is, paths from s to t with at most L edges (also called
hops), between each pair of nodes (s, t) ∈ D. The edge version of the problem has
been widely studied in the literature. However, the kNDHP has been only considered
for k = 2.

Node version with bounds

The edge version of the problem has been widely studied in the literature. However,
the kNDHP has been only considered for k = 2. In [28], Diarrassouba et al. consider
the kNDHP for k = 2. Here it is supposed that the two paths are node disjoint and
each path does not exceed L edges for a fixed integer L ≥ 1. They investigate the
structure of the associated polytope and describe several classes of valid inequalities

22 Preliminaries Notions and State-of-the-Art

when L ≤ 3. Based on this, they devise a Branch-and-Cut algorithm. Huygens and
Mahjoub [50] study the problem when L = 4 and k = 2. They show that the so-called
cut and L-path-cut inequalities suffice for formulating the problem in this case. In
[18], Chimani et al. consider {0, 1, 2}-Survivable Network Design problems with node-
connectivity constraints. Given an edge-weighted graph and two customer sets R1 and
R2, they look for a minimum cost subgraph that connects all customers, and guaran-
tees two-node-connectivity for the R2 customers. They give a graph characterization
of 2-node-connected graphs via orientation properties. Using this, they propose integer
programming formulations based on directed graphs.

Edge version with bounds

The edge version of the problem has also been studied by several authors when L = 2, 3.
In particular, in [51] Huygens et al. give a complete and minimal linear description
of the corresponding polytope when L = 2, 3 and |D| = 1. In [49], Huygens et al.
consider the problem when |D| ≥ 2 and two edge disjoint paths are required for each
demand. They show that the problem is strongly NP-hard even when the demands
in D are rooted at some node s and the costs are unitary. However, if the graph is
complete, they prove that the problem in this case can be solved in polynomial time.
They give an integer programming formulation of the problem in the space of the
design variables when L = 2, 3, and they study the associated polytope. Moreover,
they describe several classes of valid inequalities along with necessary and/or sufficient
conditions to be facet defining, and propose a Branch-and-Cut algorithm.

In [10] Bendali et al. consider the more general k edge-disjoint hop-constrained
problem (kEDHP) when k edge disjoint paths are required. They discuss a Branch-
and-Cut algorithm for the problem when L = 2, 3. Huygens and Mahjoub [50] study
the kEDHP when L = 4 and k = 2. They introduce a new general class of valid
inequalities. Using this, they give an integer programming formulation of the problem
in the natural space of variables. In [21], Dahl considers the hop-constrained path
problem, that is the problem of finding between two distinguished nodes s and t a
minimum cost path with no more than L edges when L is fixed. He gives a complete
description of the dominant of the associated polytope when L ≤ 3 and a class of
facet defining inequalities for k ≥ 4. Dahl and Gouveia [23] consider the directed hop-
constrained shortest path problem. They describe valid inequalities and characterize
the associated polytope when L = 2, 3. A related problem is considered in Dahl et al.
[22], the hop-constrained walk problem. The authors discuss the associated polytope
in directed graphs when L = 4.

1.3 State-of-the-art on network design problems 23

In [42], Gouveia and Leitner consider the Network Design Problem with Vulnerability
Constraints. The solutions to the problem are subgraphs containing a path of length
at most Hst for each commodity {s, t} and a path of length at most H ′

st between s and
t after at most k−1 edge failures. They give characterizations of feasible solutions and
propose integer programming formulations. In [41] Gouveia et al. consider the prob-
lem with bounded lengths in the context of an MPLS (Multi-Protocol Label Switching)
network design model. They discuss two models involving one set of variables associ-
ated to each path between each pair of demand nodes (a standard network flow model
with additional cardinality constraints and a model with hop-indexed variables) and
a third model involving one single set of hop-indexed variables for each demand pair.
They show that the aggregated more compact hop-indexed model produces the same
linear programming bound as the multi-path hop-indexed model.

Extended formulations for the edge version with bounds

In [15] Botton et al. consider the hop-constrained survivable network design problem
with reliable edges, i.e., edges that are not subject to failure. They study two variants,
a static problem where the reliability of the edges is given, and an upgrading problem
where edges can be upgraded to the reliable status at a given cost. They adapt for
the two variants an extended formulation proposed in Botton et al. [14] for the case
without reliable edges. They use Benders decomposition to accelerate the solution
process. Their computational results indicate that these two variants appear to be more
difficult to solve than the original problem (without reliable edges). In [58] Mahjoub et
al. propose an extended formulation for the rooted case, when all the demands have a
common vertex, called hop-level multicommodity flow formulation, inspired from the
formulation given in [14]. The authors introduce the concept of solution level. To each
solution of the problem, a partition of the node set into L + 2 levels can be associated
according to the distance to the root in the solution. Then they reduce the problem
to a specific multicommodity flow problem in an auxiliary layered directed graph.

In Table 1.1 a summary of the previously studied hop constrained network design
problems is presented.

Edge and node versions without bounds

The k-node-connected subgraph problem without bounds on the paths has been con-
sidered in the literature. In [57], Mahjoub and Nocq discuss structural properties of

24 Preliminaries Notions and State-of-the-Art

Connectivity Type of paths Reference Results

k = 1 - G. Dahl and Valid inequalities for the di-

L. Gouveia [23] rected hop-constrained

shortest path problem.

Complete linear characte-

rizations of the hop-

constrained path polytope

when L = 2, 3.

k = 2 Edge/Node Huygens and IPF in the space of the

disjoint Mahjoub [50] design variables, for

the node case when L ≤ 4.

k = 2 Edge/Node Huygens et al. [49] IPF, valid inequalities

disjoint and Branch-and-Cut algorithm

for L = 2, 3.

k ≥ 1 Edge disjoint Bendali et al. [10] Caracterization of the asso-

ciated polytope for L = 3

and |D| = 1.

k ≥ 1 Edge disjoint Diarrassouba et al. [27] Valid inequalities and Branch-

and-Cut and Branch-and-Cut-

and-Price algorithms

for L = 2, 3.

k = 2 Node disjoint Diarrassouba et al. [28] Valid inequalities and Branch-

and-Cut algorithm for L = 3

Table 1.1: State of the art of the hop-constrained survivable network design problem.

the 2-node-connected polytope (see also [7]). Grötschel et al. ([45, 44, 46, 47]) study
the problem within a more general survivability model. In [44] Grötschel et al. intro-
duce the concept of connectivity types. With each node s ∈ V of G it is associated a
nonnegative integer rs, called the type of s. A subgraph of G is said to be survivable if
for each pair of distinct nodes s, t ∈ V , the subgraph contains at least rst = min{rs, rt}

edge (node) disjoint (s, t)-paths. Grötschel et al. study the problem from a polyhedral
point of view, and propose cutting plane algorithms [44, 46, 47]. In [48], Kerivin et al.
propose Branch & Cut algorithms for both versions of the {1, 2} survivable network
design problem. Here the type of each node is either 1 or 2. In [31], Mahjoub et
al. consider the k-node-connected subgraph problem. They give valid inequalities and
propose a Branch & Cut algorithm.

The uniform edge case without hop constraints has been widely investigated. The
reader can be referred to [9, 12, 13, 45, 44, 46, 47] for more details.

In Table 1.2, we show the studied survivable network models with node versus edge
connectivity.

As indicated in Table 1.2, the kNDHP has not been considered for k ≥ 3.

Connectivity Bound Edge case results Node case results

k = 2 L = ∞ ILP formulation, valid inequalities, ILP formulation, valid

separation, Branch & Cut, polytope inequalities, separation,

characterization [7, 54, 45, 46, 47, 5] Branch & Cut [54, 57, 45, 46, 47]

k ≥ 3 L = ∞ ILP formulation, valid inequalities, ILP formulation, separation

separation, Branch & Cut, polytope valid inequalities,

characterization [7, 54, 45, 47, 5] Branch & Cut [9, 22, 45, 47]

k = 2 L = 2, 3 ILP formulation, valid inequalities, ILP formulation, valid inequalities

separation, Branch & Cut [49, 51] polyhedral study,

Branch & Cut [10, 22, 45, 47]

k = 2 L = 4 ILP formulation, valid inequalities, ILP formulation, valid inequalities

separation, Branch & Cut [50, 49] Branch & Cut [50]

k ≥ 3 L = 2, 3 ILP formulation, valid inequalities, Considered in this thesis

separation, Branch & Cut, extended

formulation [10, 15, 14, 21, 22, 23, 27]

Table 1.2: Models of survivable networks with node versus edge connectivity.

Chapter 2

The k-node-connected subgraph

problem

Contents

2.1 Formulation . 28

2.2 Dimension and Valid inequalities 30

2.2.1 Dimension . 30

2.2.2 Node-partition inequalities 31

2.2.3 SP-node-partition inequalities 31

2.2.4 F-node-partition inequalities 32

2.3 Facial aspect . 33

2.4 Structural properties . 44

2.5 Reduction operations . 47

2.6 Conclusion . 50

In this chapter we consider the k-Node-Connected Subgraph Problem (kNCSP). We
investigate the kNCSP polytope and present several classes of valid inequalities. Then
we discuss the conditions under which these inequalities define facets of the polytope.
We also we consider the polytope associated with the linear relaxation of the problem
and present some structural proporties as well as some reduction operations. Using
these results we devise a Branch-and-Cut algorithm, and we give some experimental
results. This work has led to a work published in the proceedings of the International
Conference CIE45 [29] and an article published in Computers and Industrial Engineer-
ing [59].

28 The k-node-connected subgraph problem

2.1 Formulation

A graph G = (V, E) is called k-node (resp. k-edge) connected (k ≥ 0) if for every pair
of nodes i, j ∈ V , there are at least k node-disjoint (resp. edge-disjoint) paths between
i and j. Given a graph G = (V, E) and a weight function c on E that associates with
an edge e ∈ E a weight c(e) ∈ R, the k-node-connected subgraph problem (kNCSP for
short) is to find a k-node-connected spanning subgraph H = (V, F) of G such that
∑

e∈F
c(e) is minimum.

Let F be an edge subset of E, then the incidence vector of F , denoted by xF , is the
0− 1 vector defined by

xF (e) =

{
1 if e ∈ F

0 otherwise.

Let F ⊆ E be an edge subset of G. Then F induces a solution of the kNCSP for
G, that is, the subgraph of G induced by F is k-node-connected, if xF satisfies the
following inequalities

x(e) ≥ 0, e ∈ E, (2.1)

x(e) ≤ 1, e ∈ E, (2.2)

x(δG(W)) ≥ k, for all W (V with W 6= ∅, (2.3)

x(δG\Z(W)) ≥ k − |Z|, for all Z ⊆ V such that 1 ≤ |Z| ≤ k − 1, and (2.4)

all W (V \Z with W 6= ∅.

Conversely, any integer solution of the system above is the incidence vector of the
edge set of a k-node-connected subgraph of G. Hence, the kNCSP is equivalent to

min{cx | x satisfies (2.1)− (2.4) and x ∈ ZE
+}. (2.5)

Constraints (2.3) and (2.4) are called cut and node-cut inequalities, respectively. The
convex hull of all integer solutions of (2.1)-(2.4), denoted by kNCSP(G), will be called
kNCSP(G) the k-node-connected subgraph problem polytope.

We will also denote by P (G, k) the polytope described by constraints (2.1)− (2.4).

In what follows we give an alternative formulation for the problem. This consists in
restricting the node-cut inequalities (2.4) to the node sets Z ⊂ V such that |Z| = k−1.
We hence consider the following set of inequalities

2.1 Formulation 29

x(δG\Z(W)) ≥ 1, ∅ 6= Z ⊆ V, |Z| = k − 1, (2.6)

∅ 6= W ⊂ V \Z.

Theorem 2 The kNCSP is equivalent to

min{cx | x satisfies (2.1)− (2.3), (2.6) and x ∈ ZE
+}. (2.7)

Proof. It suffices to show that any integer solution x of (2.1)-(2.3),(2.6) also satisfies
(2.4). For this we will show that if x satisfies all inequalities x(δG\Z(W)) ≥ k − |Z|

with |Z| = t for some t ∈ {k − 1, ..., 2}, then x satisfies x(δG\Z′(W ′)) ≥ k − |Z ′|

for all Z ′ ⊂ V with |Z ′| = t − 1 and W ′ ⊂ V \ Z ′. Indeed, first note that either
|V \(W ′ ∪ Z ′)| ≥ 2 or |W ′| ≥ 2 or both. In fact, if |V \(W ′ ∪ Z ′)| = |W ′| = 1, then
|Z ′| = n − 2 (= t − 1). But this implies that t = n − 1, and, as t ≤ k − 1, it
follows that k ≥ n, which is impossible. In what follows we suppose, w.l.o.g., that
|V \(W ′ ∪ Z ′)| ≥ 2. We claim that there is at least one node, say u, in V \(W ′ ∪ Z ′)
such that x([u, W ′]) ≥ 1. In fact, let u0 ∈ V \ (W ′ ∪ Z ′). Let Z = Z ′ ∪ {u0}.
By our assumption, x(δG\Z(W ′)) ≥ k − |Z| = k − t. As t ≤ k − 1, it follows that
x(δG\Z(W ′)) ≥ 1. Therefore there is a node u in V \ (W ′ ∪ Z ′ ∪ {u}) such that
x([u, W ′]) ≥ 1.

Now let u ∈ V \(W ′ ∪ Z ′) such that x([u, W ′]) ≥ 1, and let Z∗ = Z ′ ∪ {u}. We have
|Z∗| = t. Again, by our assumption, we have that x(δG\Z∗(W ′)) = x(δG\Z′(W ′)) −
x([u, W ′]) ≥ k − |Z∗| = k − t. As x([u, W ′]) ≥ 1, it then follows that x(δG\Z′(W ′)) =
x(δG\Z∗(W)) + x([u, W ′]) ≥ k − t + 1 = k − |Z ′|. �

As before, we will denote by Q(G, k) the polytope associated with the linear re-
laxation of (2.7). Clearly, P (G, k) ⊆ Q(G, k). Moreover, the two polytopes may be
different, that is P (G, k) 6= Q(G, k), for some graph G and connectivity k. For exam-
ple, consider the graph and the solution of Figure 2.1 for k = 3. The solution satisfies
the cut inequalities and the node-cut inequalities with |Z| = k − 1 = 2, and violates a
node-cut inequality with |Z| = k − 2 = 1. Indeed, for Z = {v7} and W = {v1, v2, v3},
x(δG\Z(W)) < 2. Thus, formulation (2.5) may produce a better linear relaxation than
(2.7). We will hence consider formulation (2.5) for solving the kNCSP.

In the next sections, we investigate the polytope kNCSP(G) and describe some valid
inequalities.

30 The k-node-connected subgraph problem

edges with value 1/3

edges with value 1/2

edges with value 1

1 4

6

7 8

2 3 5

v1

v2 v3

v4

v5
v6

v7
v8

Figure 2.1: A solution of Q(G, k) \ P (G, k) for k = 3.

2.2 Dimension and Valid inequalities

In this section, we will discuss the polytope kNCSP(G). We will establish its dimension
and describe some classes of valid inequalities.

2.2.1 Dimension

Let G = (V, E) be a graph. An edge e is said to be essential if the solutions set of
kNCSP(G\e) is empty. Let E∗ be the set of essential edges of kNCSP. We have the
following result.

Theorem 3 dim(kNCSP(G))= |E| − |E∗|.

Proof. Let e ∈ E∗. Then, x(e) = 1 for every solution x of kNCSP(G). Then
dim(kNCSP(G)) ≤ |E|−|E∗|. Now, observe that the edge sets Se = E\{e}, e ∈ E\E∗,
and E form |E| − |E∗| + 1 solutions of the kNCSP. Moreover, the incidence vectors
of these solutions are affinely independent. Therefore, dim(kNCSP(G)) ≥ |E| − |E∗|.
Thus, the result follows. �

Corollary 1 kNCSP(G) is full-dimensional if and only if G is (k+1)-node-connected.

Now we describe some classes of valid inequalities for kNCSP(G). One can easily see
that any solution of the kNCSP on G is also solution of the kECSP on G. Thus, any
valid inequality for the kECSP polytope on G is also valid for kNCSP(G).

2.2 Dimension and Valid inequalities 31

In the following, we introduce a notation that will be used throughout the remainder
of the chapter. Given a partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ

the subgraph induced by π, that is, the graph obtained by contracting the sets Vi,
i = 1, ..., p. We will denote by δG(V1, ..., Vp) the set of edges of Gπ, that is, the edges
that have their endnodes in different elements of π.

2.2.2 Node-partition inequalities

In [45], Grötschel et al. introduce a class of valid inequalities for a more general version
of the kNCSP as follows. Consider a subset Z ⊂ V , such that |Z| ≤ k − 1, and let
V1, ..., Vp, p ≥ 2 be a partition of V \Z. Then the inequality

x(δG\Z(V1, ..., Vp)) ≥





⌈
p(k−|Z|)

2

⌉
if |Z| ≤ k − 2,

p− 1 if |Z| = k − 1,
(2.8)

is valid for the kNCSP(G). Inequalities of type (2.8) are called node-partition inequal-

ities.

2.2.3 SP-node-partition inequalities

Now we introduce a class of inequalities called SP-node-partition inequalities, which
generalize the so-called SP-partition inequalities introduced by Didi Biha and Mahjoub
[12] for the kECSP(G), where kECSP(G) is the convex hull of the solutions of the k-
edge-connected subgraph problem. These latter inequalities are defined as follows. Let
π = (V1, ..., Vp) be a partition of V such that the graph Gπ is series-parallel. Recall
that a graph is series-parallel if it is not contractible to K4, the complete graph on four
nodes. The SP-partition inequality associated with π is given by

x(δG(V1, ..., Vp)) ≥

⌈
k

2

⌉
p− 1. (2.9)

Didi Biha and Mahjoub [12] showed that these inequalities are valid for the kECSP(G),
for every k ≥ 1.

For the kNCSP, we introduce a similar type of inequalities. Let Z ⊂ V such that
|Z| ≤ k − 1 and k − |Z| is odd, and consider a partition π = (V1, ..., Vp) of V \Z such
that (G\Z)π is series-parallel. The SP-node-partition inequality associated with π is

32 The k-node-connected subgraph problem

x(δG\Z(π) ≥

⌈
k − |Z|

2

⌉
p− 1. (2.10)

Theorem 4 The SP-node-partition inequalities (2.10) are valid for kNCSP(G).

Proof.

Let x ∈ kNCSP(G) and consider x′ the restriction of x on G\Z. As x′ ∈ (k −
|Z|)ECSP(G\Z), and the SP-partition inequalities (2.9) are valid for (k−|Z|)ECSP(G\Z),
we have

x(δG\Z(V1, ..., Vp)) = x′(δG\Z(V1, ..., Vp)) ≥

⌈
k − |Z|

2

⌉
p− 1,

which proves the result. �

Chopra [19] (see also Didi Biha and Mahjoub [12]) described a lifting procedure for
inequalities (2.10). This can be easily extended to the SP-node-partition inequalities.
Let G = (V, E) be a graph and k ≥ 3 an odd integer. Consider the graph G′ = (V, E∪T)
obtained from G by adding an edge set T . Let Z ⊂ V and π = (V1, ..., Vp) be a partition
of V \Z such that (G\Z)π is series-parallel. Then the lifted SP-node-partition inequality

induced by π is

x(δG\Z(V1, ..., Vp)) +
∑

e∈T ∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k − |Z|

2

⌉
p− 1, (2.11)

where a(e) is the length, that is to say the number of edges, of the shortest path in
(G\Z)π between the endnodes of e, for all e ∈ T ∩ δG′(V1, ..., Vp).

Chopra [19] shows that inequalities (2.11) are valid for kECSP(G). Therefore they
are also valid for kNCSP(G).

2.2.4 F-node-partition inequalities

Let G = (V, E) be a graph and Z a node subset of V . Let π = (V0, V1, ..., Vp) be a
partition of V \Z and F an edge subset of δG\Z(V0). Let Zi ⊂ Z be the set of nodes of

2.3 Facial aspect 33

Z adjacent to the nodes in Vi, i = 1, ..., p. Suppose that |Zi| ≤ k − 1, for i = 1, ..., p,
and Z =

⋃
i=1,...,p

Zi. The following inequality

x(δG\Z(π)\F) ≥




p∑
i=1

(k − |Zi|)− |F |

2




(2.12)

is called an F -node-partition inequality.

Theorem 5 F -node partition inequalities are valid for the kNCSP(G).

Proof. Consider the following valid inequalities

x(δG\Zi
(Vi)) ≥ k − |Zi|, for all i = 1, ..., p,

−x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ δG\Z(V0)\F.

By summing these inequalities, we obtain

2x(δG\Z(π)\F) ≥
p∑

i=1
(k − |Zi|)− |F |.

By dividing by 2 and rounding up the right hand, we get inequality (2.12). �

2.3 Facial aspect

In this section, we discuss the facial aspect of the kNCSP polytope. Namely, we investi-
gate the conditions under which the inequalities presented in the previous section define
facets of kNCSP(G). In the following we assume that G is (k + 1)-node-connected. By
Corollary 1, kNCSP(G) is then full-dimensional.

In [44], Grötschel et al. characterize when the trivial inequalities define facets.

Theorem 6 [44]

34 The k-node-connected subgraph problem

1) Inequality (2.1) defines a facet for kNCSP(G) if and only if e does not belong to

a cut δG\Z(W) for some Z ⊂ V containing exactly k + 1− |Z| edges.

2) Inequalities (2.2) define facets for kNCSP(G) for every e ∈ E.

The next theorem deals with conditions for the cut inequalities to define facets.
Before, we give the following remark that will be helpful for proving the results below.

Remark 2.1 Let W and W be a partition of G such that |W | ≥ k, |W | ≥ k + 1
and G[W] and G[W] are both k-node-connected. Let {e1, ..., ek} be edges of δG(W)
forming a matching of G. Let S = E(W) ∪ E(W) ∪ {e1, ..., ek}. Then S is a solution

of kNCSP(G).

Theorem 7 The cut inequality (2.3), induced by a node set W ⊂ V , defines a facet

for kNCSP(G) if the following hold.

i) G[W] and G[W] are (k + 1)-node-connected.

ii) A maximum cardinality matching M in δG(W) contains at least k + 1 edges.

Proof.

Let us denote by ax ≥ α the cut inequality induced by W , and let F = {x ∈
kNCSP (G) | ax = α}. Suppose there exists a defining facet inequality bx ≥ β such
that F ⊆ F = {x ∈ kNCSP (G) | bx = β}. We will prove that there is a scalar ρ such
that b = ρa. By ii) there exists a matching M = {e1, ..., ep}, p ≥ k + 1, in δG(W) of p

edges such that ei = uivi, i = 1, ..., p, with ui ∈ W and vi ∈ W . Let U1 = {u1, ..., up}

and V1 = {v1, ..., vp}. Let T1 = E(W) ∪E(W) ∪ {e1, ..., ek}. As by i) G[W] and G[W]
are (k + 1)-node-connected, by Remark 2.1, T1 is a solution of kNCSP(G). We will
show in what follows that the coefficients be are equal for all e ∈ δG(W). First we
show that bei

= bej
for i, j ∈ {1, ..., p}. Let T2 = (T1 \ {e1}) ∪ {ek+1}. Clearly T2 is

a solution of kNCSP. As xT1 , xT2 ∈ F , we have that bxT1 = bxT2 = β. This implies
that be1

= bek+1
= ρ for some ρ ∈ R. By symmetry, it follows that bei

= ρ for all
i = 1, ..., p. As M has a maximum cardinality, any edge e ∈ δ(W) \M is adjacent to
M . Consider an edge f = uiv ∈ [U1, W \ V1], i ∈ {1, ..., p}. Let T3 = (T1 \ {ei}) ∪ {f}.
As xT1 , xT3 ∈ F ⊂ F , we have that bxT1 = bxT3 = β. This yields bf = bei

= ρ. Thus
bf = ρ for all f ∈ [U1, W \V1]. By symmetry we also have bf = ρ for all f ∈ [V1, W \U1].

2.3 Facial aspect 35

Finally consider an edge h = uivj, i, j ∈ {1, ..., p}, with i 6= j. W.l.o.g., we suppose
i, j ≤ k. Consider the subset T4 = (T1\{ei, ej}) ∪ {h, ek+1}. We have that T4 is a
solution of kNCSP(G), and xT4 ∈ F ⊆ F . Which implies that bei

+ bej
= bh + bek+1

.
As bei

= bej
= bek+1

= ρ, it follows that bh = ρ. Thus we obtain that be = ρ for all
e ∈ δG(W).
We will now show that be = 0 for all e ∈ E\δG(W). As G[W] and G[W] are (k + 1)-
node-connected, we have that T5 = T1\{e} induces a k-node-connected graph for all
edge e ∈ E(W) ∪ E(W). Moreover xT5 ∈ F ⊆ F . Hence be = 0. Consequently, we
have that be = ρ for all e ∈ δG(W), and be = 0 for all e ∈ E\δG(W). Thus b = ρa. �

Corollary 2 If the graph G is complete, the cut inequality (2.3) induced by W ⊂ V is

facet-defining for kNCSP(G) if |W | ≥ k + 2 and |W | ≥ k + 2.

The following theorems give necessary conditions and sufficient conditions for the
node-cut inequalities to be facet-defining.

Theorem 8 The node-cut inequality (2.4), induced by a node-cut δG\Z(W) for some

node sets W and Z, defines a facet for kNCSP(G) only if |[W, Z]| ≥ |Z| + 1 and

|[V \ (W ∪ Z), Z]| ≥ |Z|+ 1.

Proof. Suppose for instance that |[W, Z]| < |Z|+1, the case where |[V \(W ∪Z), Z]| <
|Z|+ 1 is similar. Thus, if |[W, Z]| < |Z|+ 1, then for any solution x ∈ kNCSP(G) we
have that −x([W, Z]) ≥ −|Z|, and x(δG(W)) ≥ k. Hence we obtain that x(δG\Z(W)) =
x(δG(W))− x([W, Z]) ≥ k − |Z|. In consequence, x(δG\Z(W)) ≥ k − |Z| is redundant
with respect to the cut and trivial inequalities, and hence cannot define a facet. �

Theorem 9 The node-cut inequality (2.4) defines a facet for kNCSP(G) if the follow-

ing hold.

i) G[W] and G[W] are (k + 1)-node-connected.

ii) A maximum cardinality matching C in δG(W) contains at least k + 1 edges such

that |C ∩ [Z, W]| = |Z| and there exists a node in W which is not incident to the

matching C and it is adjacent to all the nodes of Z.

36 The k-node-connected subgraph problem

Proof. Let us denote by ax ≥ α the cut inequality induced by W , and let F = {x ∈
kNCSP (G) | ax = α}. Suppose there exists a defining facet inequality bx ≥ β such
that F ⊆ F = {x ∈ kNCSP (G) | bx = β}. We will prove that there is a scalar
ρ such that b = ρa. By ii) there exists a matching C = {e1, ..., ep}, p ≥ k + 1, in
δG(W), such that ei = uivi, i = 1, ..., p, ui ∈ W and vi ∈ W , and ek−t+j ∈ [W, Z],
j = 1, ..., t, with |Z| = t. Let U1 = {u1, ..., up} and V1 = {v1, ..., vp}. And let
T1 = E(W) ∪ E(W) ∪ {e1, ..., ek} ∪ [W, Z]. As by i) G[W] and G[W] are (k + 1)-
node-connected, by Remark 2.1, T1 is a solution of kNCSP(G). Hence xT1 ∈ F . Let
T2 = (T1 \ {e1}) ∪ {ek+1} (Recall that p ≥ k + 1). Clearly, T2 is a solution of kNCSP.
As xT1 , xT2 ∈ F , we have that bxT1 = bxT2 = β, implying that be1

= bek+1
= ρ for some

ρ ∈ R. By symmetry, we obtain that bei
= ρ for all ei ∈ C\[W, Z]. As C has a maximum

cardinality, any edge e ∈ δG\Z(W) \ C is adjacent to C. Consider an edge f = uiv ∈

[U1, V \ (W ∪Z ∪V1)]. W.l.o.g., we suppose i ∈ {1, ..., k− t}. Let T3 = (T1\{ei})∪{f}.
Set T3 is a solution of kNCSP(G). Moreover xT3 ∈ F ⊆ F . Hence bxT1 = bxT3 = β,
implying that bf = bei

= ρ. Thus bf = ρ for all f ∈ [U1, V \ (W ∪ Z ∪ V1)]. By
symmetry, we also have that bf = ρ, for all f ∈ [V1 \ Z, W \ U1]. Now let h = uivj,
i 6= j, i, j ∈ {1, ..., p} \ {k − t + 1, ..., k}. Consider T4 = (T1\{ei, ej}) ∪ {h, ek+1}. Set
T4 is a solution of kNCSP(G). Moreover xT4 ∈ F ⊆ F . Hence bei

+ bej
= bh + bek+1

.
As bei

= bej
= bek+1

= ρ, this implies that bh = ρ. Therefore we obtain that be = ρ for
all e ∈ δG\Z(W). Now consider an edge e ∈ E(W), and let T5 = T1\{e}. As G[W] is
(k + 1)-node-connected, G[W]\{e} is k-node-connected, and hence T5 is a solution of
kNCSP. Thus xT5 ∈ F ⊆ F , and bxT1 = bxT5 = bxT1 − be. Which implies that be = 0.
Therefore be = 0 for all e ∈ E(W). Similarly, we have that be = 0 for all e ∈ E(W).
Now let e ∈ [W, Z]. Let T6 = T1\{e}. By ii), T6 contains a matching of at least k edges
in δ(W). Hence T6 is a solution of kNCSP, which implies that be = 0. Consequently,
we obtain that be = ρ for all e ∈ δG\Z(W) and be = 0 for all e ∈ E \ δG\Z(W). Thus,
b = ρa. Which ends the proof of the theorem. �

Corollary 3 If the graph G is complete, then the node-cut inequalities (2.4) are facet-

defining for kNCSP(G) if |W | ≥ k + 2 and |W | ≥ k + 2.

Now, we discuss sufficient conditions for the F -node-partition and SP-node-partition
inequalities to define facets of kNCSP(G).

Theorem 10 Let G = (V, E) be a graph and an integer k ≥ 2. Let Z ⊂ V . Let

Zi ⊂ Z, with |Zi| ≤ k−2, for i = 1, ..., p, and π = (V0, V1, ..., Vp) be a partition of V \Z

where p is odd. Suppose that the following hold.

2.3 Facial aspect 37

Z
edges of δG\Z(π) \ F

V0

V1

V3

V4

V5

V2

edges of δ(Z)

edges of F

Figure 2.2: A F -node-partition configuration with k = 4

i) G[Z] is a complete graph.

ii) G[Vi] is (k + 1)-node-connected, for i = 0, 1, ..., p.

iii) For i = 1, ..., p, there exists a subset Si of k + 1 edges of δ(Vi) such that

1) |Si ∩ [Zi, Vi]| = |Zi| and covering all the nodes of Zi,

2) |Si ∩ [V0, Vi]| = k − |Zi| − 1 and covering k − |Zi| − 1 nodes of V0,

3) |Si ∩ [Vi, Vi−1]| = |Si ∩ [Vi, Vi+1]| = 1,

where the indices are taken modulo p.

Moreover, if |Vi| ≥ 2, Si must cover at least k + 1 nodes of Vi.

iv) [Z, V0] contains a set of k + 1 edges covering k + 1 nodes of V0 and min(|Z|, k + 1)
nodes of Z.

v) For i = 1, ..., p, [V0, Vi ∪ Vi+1] contains a set Ri ⊆ Si ∪ Si+1 of k − |Zi| + 1 edges

covering k − |Zi|+ 1 nodes of V0.

Let Fi = Si ∩ [V0, Vi], for i = 1, ..., p, and let F =
p⋃

i=1
Fi. Then the F -node-

partition inequality (2.12), induced by π and F , defines a facet of kNCSP(G).

(see figure 2.2 for an illustration for k = 4)

Proof.

38 The k-node-connected subgraph problem

Remark that under these conditions we can easily see that G is (k + 1)-node-
connected, thus kNCSP(G) is full dimensional. Let us denote the F -node-partition
inequality by ax ≥ α and let F = {x ∈ kNCSP (G) | ax = α}. Clearly, F is a proper
face of kNCSP(G). Now suppose that there exists a facet defining inequality bx ≥ β

of kNCSP(G) such that F ⊆ F ′ = {x ∈ kNCSP (G) | bx = β}. We will show that
b = ρa for some scalar ρ ∈ R.

For this, first remark that the right hand side of the inequality (2.12) here is
⌈

p

2

⌉
. Let

E0 be the set of edges in E\F having both endnodes in the same element of π. Let
Γ = E0 ∪ F ∪ E(Z) ∪ δ(Z).

Let el be an edge of Sl ∩ [Vl, Vl+1], l = 1, ..., p. For l ∈ {1, ..., p} consider the edge set

Tl = Γ ∪ {el+2r, r = 0, ...,
p− 1

2
},

where the indices are taken modulo p. Observe that xTl(δG\Z(π) \ F) = p+1
2

. More-
over, we have the following.

Claim 1 Tl induces a k-node-connected subgraph of G.

Proof. Let Gl be the subgraph of G induced by Tl. First, we give the following
remarks.

a) |δGl
(Vj)| = k for j ∈ {1, ..., p}\{l} and |δGl

(Vl)| = k + 1.

b) Fi 6= ∅ since |Zi| ≤ k − 2, for i ∈ {1, ..., p}, and the graph obtained from Gl by
removing subsets from {Z, V1, ..., Vp} is connected,

c) The graph G∗
l obtained from Gl by contracting the sets V0, V1, ..., Vp, Z, and

replacing the multiple edges by a single edge, and deleting the edges between Vi

and Vj, i 6= j, i, j = 1, ..., p, is connected.

Let Z ′ ⊂ V with |Z ′| = k − 1. We will show that the graph Gl\Z
′ is connected.

Case 1. Z ′ ⊂ Z or Z ′ ⊂ Vi, for some i ∈ {1, ..., p}. Suppose that Z ′ ⊂ Z. If
|Z| = |Z ′| = k − 1, then by the Remark b) above, Gl\Z

′ is connected. So suppose
|Z| ≥ k. As |Z ′| = k − 1 and G[Z] is complete, the subgraph induced by Z\Z ′ is
connected. Moreover, by Condition iv), there exists at least one edge connecting Z\Z ′

to V0. Since Gl\Z is connected, we obtain that Gl\Z
′ is also connected.

2.3 Facial aspect 39

Now suppose Z ′ ⊂ Vi for some i ∈ {1, ..., p}. As G[Vi] is (k + 1)-node-connected and
|Z ′| = k − 1, G[Vi \ Z ′] is connected. Therefore, using Condition iii), the proof can be
done along the same line.

Case 2. Z ′ ⊂ V0. As |Z ′| = k−1, by Condition iv), it follows that [Z, V0\Z
′]Gl
6= ∅. We

distinguish two cases. Suppose first that for every s ∈ {1, ..., p} such that [Vs, Vs+1]Gl
6=

∅, at least one of the sets Vs and Vs+1 is adjacent to Z in Gl. Then the graph obtained
from Gl by removing V0 is connected. Moreover, since G[V0] is (k + 1)-node-connected,
we have that G[V0\Z

′] is connected. Therefore Gl\Z
′ is connected.

If this is not the case, then there is s ∈ {1, ..., p} such that [Vs, Z]Gl
= ∅ = [Vs+1, Z]Gl

and [Vs, Vs+1]Gl
6= ∅. We then have Zs = Zs+1 = ∅. Moreover, by Condition v), it

follows that there is a set of k + 1 edges between V0 and Vs ∪ Vs+1 that cover k + 1
nodes of V0. As |Z ′| = k − 1, at least one edge remains linking V0\Z

′ to Vs ∪ Vs+1.
Thus for j = 1, ..., p, if [Vj, Vj+1]Gl

6= ∅, then at least one of the sets [V0\Z
′, Vj ∪Vj+1]Gl

and [Z, Vj ∪ Vj+1]Gl
is not empty. As G[V0] is (k + 1)-node-connected and |Z ′| = k− 1,

G[V0\Z
′] is connected, and hence Gl\Z

′ is connected.

Case 3. Z ′ ⊆
⋃

i∈I
Vi, where I ⊂ {1, ..., p}. Note that |I| ≤ k − 1. Let I ′ = {i ∈

I | |Vi| = 1}. First note that, by Remark b) above, the graph Gl\
⋃

i∈I
Vi is connected.

Also note that as |Z ′| = k − 1, and Z ′ is not contained in a single set, we have
|Z ′ ∩ Vi| ≤ k − 2 for i ∈ I\I ′. Since G[Vi] is (k + 1)-node-connected, it follows that
G[Vi\Z

′] is connected for i ∈ I\I ′. Also by construction, we have |[Vi, V0∪Z]Gl
| ≥ k−1

for i ∈ I\I ′. Moreover by Condition iii), [Vi, V0 ∪ Z]Gl
covers at least k − 1 different

nodes in Vi, for i ∈ I\I ′. So, if no more than k− 2 nodes are removed from Vi, at least
one edge remains connecting Vi\Z

′ to Z∪V0 for i ∈ I\I ′. Therefore Gl\Z
′ is connected.

Case 4. Z ′ ⊂ V0∪Z∪(
⋃

i∈I
Vi) where I ⊆ {1, ..., p}. Let I ′ = {i ∈ I | |Vi| = 1}. Suppose

first that Z ′ ∩ Z 6= ∅, Z ′ ∩ V0 6= ∅ and Z ′ ∩
⋃

i∈I
Vi = ∅. We have that |Z ′ ∩ Z| ≤ k − 2

and |Z ′ ∩ V0| ≤ k − 2. By Condition v), |[Vi ∪ Vi+1, V0]Gl
| ≥ k − |Zi| + 1 and covers

k−|Zi|+1 nodes of V0. Then there exists at least one edge linking V0\Z
′ and Vi∪Vi+1.

Thereby Gl[(V0\Z
′) ∪ (

p⋃
i=1

Vi)] is connected, which is equal to Gl\Z. Now suppose

Z\Z ′ 6= ∅. Since G[V0] is (k+1)-node-connected and G[Z] is a complete graph, it follows
that G[V0\Z

′] and G[Z\Z ′] are connected. By Condition iv), [Z\Z ′, V0\Z
′]Gl
6= ∅.

Moreover, by construction, at least one edge remains connecting Vi to Vi+1∪Vi−1. And
we can show along the same way as in Case 2, that Vi is connected to V0\Z

′. Thus

40 The k-node-connected subgraph problem

Gl\Z
′ is connected.

Now suppose that Z ′ ∩ Z 6= ∅, Z ′ ∩ Vi 6= ∅, for i ∈ I, I ⊆ {1, ..., p}, and Z ′ ∩ V0 = ∅.
If Z ⊂ Z ′, the proof is similar to the previous case. Suppose that Z\Z ′ 6= ∅. We have
that |Z ′ ∩ Z| ≤ k − |I| − 1. Let I ′ = {i ∈ I | Vi ∩ Z ′ 6= ∅ and |Vi| = 1}. Since G[Vi],
for i ∈ I\I ′, is (k + 1)-node-connected and G[Z] is complete, it follows that G[Z\Z ′],
and G[Vi\Z

′], for i ∈ I\I ′, are connected. By Condition iv) there exists at least one
edge connecting Z\Z ′ to V0. Also by Condition iii), [Vi, V0 ∪Z]Gl

contains k− 1 edges
covering different nodes in V0 ∪ Z and covers k − 1 nodes in Vi. So if no more than
k − 2 nodes are removed from Vi ∪ V0 ∪ Z, at least one edge remains connecting Vi\Z

′

to (Z\Z ′) ∪ V0. Thus Gl\Z
′ is connected.

Now, if Z ′ ∩ V0 6= ∅ and Z ′ ∩ Vi 6= ∅, for i ∈ I, and Z ′ ∩ Z = ∅, then we have that
|Z ′∩V0| ≤ k−|I|−1 and |Z ′∩Vi| ≤ k−|I|−1 for i ∈ I. Since G[Vi], for i ∈ {0}∪(I\I ′),
is (k + 1)-node-connected, it follows that G[Vi\Z

′] is connected, for i ∈ {0} ∪ (I\I ′).
By Condition iv) we have that [V0\Z

′, Z] 6= ∅. Moreover by Condition iii), [Vi, V0 ∪ Z]
contains k − 1 edges that covers k − 1 nodes in V0 ∪ Z and k − 1 nodes in Vi. So if no
more than k − 2 nodes are removed from Vi ∪ V0 at least an edge remains connecting
Vi\Z

′ to Z ∪ (V0\Z
′). Thus Gl\Z

′ is connected.

Suppose now that Z ′ ∩ Z 6= ∅, Z ′ ∩ V0 6= ∅ and Z ′ ∩ (
⋃

i∈I
Vi) 6= ∅. We have that

|Z ′∩Z| ≤ k−|I|−2 and |Z ′∩Vi| ≤ k−|I|−2 for i ∈ I. Since G[Vi], for i ∈ {0}∪I\I ′,
is (k + 1)-node-connected and G[Z] is complete, it follows that G[Z\Z ′] and G[Vi\Z

′]
are connected, for i ∈ {0} ∪ I\I ′. By Condition iv), there exists at least one edge
connecting Z\Z ′ to V0. Also by Condition iii), there are |[Vi, V0 ∪ Z]Gl

| ≥ k − 1 edges
covering different nodes in Vi, V0 and Z. So if no more than k − 4 nodes are removed
from Vi ∪ V0 ∪Z, then at least an edge remains connecting Vi\Z

′ to (Z\Z ′) ∪ (V0\Z
′).

Thus Gl\Z
′ is connected. Consequently Gl = (V, Tl) is k-node-connected.

Thus xTl ∈ F . �

Now we show that b(e) = ρa(e) for all e ∈ E\Γ, for some ρ ∈ R.

As xT1 , ..., xTp belong to F , it follows that bxT1 = ... = bxTp = β. Hence b(e1) = ... =
b(ep). As e1 and ep are arbitrary edges of [V1, V2] and [Vp, V1], respectively, we obtain

b(e) = ρ for all e ∈ [Vi, Vi+1], i = 1, ..., p, for some ρ ∈ R.

Let gl+1 be a fixed edge of [Vl+1, V0]\F , for l ∈ {0, ..., p− 1}. Consider the edge set

2.3 Facial aspect 41

T̃l = (Tl\{el}) ∪ {gl+1}.

Similary, we can show that T̃l induces a k-node-connected subgraph of G. As xTl and
xT̃l belong to F , it follows in a similar way that b(el) = b(gl+1). As b(el) = b(el+1) = ρ,
this yields b(gl+1) = ρ. By exchanging the roles of Vl+1 and Vl, l = 1, ..., p, we obtain
that b(e) = ρ for all e ∈ δG(V0)\F . In consequence, the b(e), for all e ∈ E\Γ have the
same value ρ.

Next, we will show that b(e) = 0 for all e ∈ Γ.

Note that there are k + 1 edges incident to Vl in the graph induced by Tl. By using
Condition iii) we can show in a similar way as in the claim above that for any edge
e ∈ Fl, l ∈ {0, ..., p}, T ∗

l = Tl\{e} also induces a k-node-connected subgraph of G. As
xTl and xT ∗

l belong to F , it follows that bxTl = bxT ∗

l = β, implying that b(e) = 0 for
all e ∈ Fl. As l is arbitrarily chosen, we obtain that b(e) = 0 for all f ∈ F . Moreover,
as the subgraphs induced by V0, ..., Vp are all (k + 1)-node-connected, the subgraph
induced by Tl\{e}, for all e ∈ E0, is k-node-connected. This yields as before b(e) = 0
for all e ∈ E0.

Now suppose that e ∈ E(Z). By Conditions i) and iv) we can clearly see that Tl\{e}

also induces a k-node-connected subgraph of G. Implying that b(e) = 0.

Let h be an edge of δ(Z). We can show in a similar way as in the claim above that
T l = Tl\{h} also induces a k-node-connected subgraph of G. As xT l belongs to F , it
follows that b(h) = 0. Consequently b(e) = 0 for all e ∈ Γ.

Thus we obtain that b = ρa, which ends the proof of the theorem. �

Corollary 4 If the graph G is complete, then the F -node-partition inequalities (5) are

facet-defining for kNCSP(G) if |Vi| ≥ k + 2, i = 0, 1, ..., p.

Corollary 5 Suppose that |Vi| = 1, for i = 1, ..., p, |[V0, Vi]| = k − |Zi| − 1, |[Vi, Zi]| =
|Zi|, V1, ..., Vp induce an odd cycle C, and G[V0] is (k+1)-node-connected and G[V0∪Z]
is complete. Then the inequality

x(C) ≥
⌈

p

2

⌉

is valid for kNCSP(G), and defines a facet.

42 The k-node-connected subgraph problem

Z

edges of δG\Z(π)

edges of δ(Z)v1

v2

v3

v4

Figure 2.3: An SP-node-partition configuration for k = 5 and |Z| = 2

Theorem 11 Let G = (V, E) be a graph and an integer k ≥ 2. Let Z ⊂ V , such that

|Z| ≤ k − 1 and k − |Z| is odd. Let π = (V1, ..., Vp) be a partition of V \Z such that

(G \ Z)π is series-parallel. The SP-node-partition inequality (2.10) associated with π

defines a facet of kNCSP(G) if the following conditions hold.

i) p ≥ k + 1.

ii) G[Vi] is (k + 1)-node-connected, for i = 1, ..., p.

iii) G[Z] is complete.

iv) For i = 1, ..., p, there exists a subset Si ⊂ δ(Vi), with |Si| = k + 1, Si is a matching

and such that

a) |Si ∩ [Z, Vi]| = |Z|,

b) |Si ∩ [Vi, Vi−1]| = |Si ∩ [Vi, Vi+1]| =

⌈
k − |Z|

2

⌉
,

where the indices are taken modulo p.

Proof.

Let us denote the SP-node-partition inequality by ax ≥ α and let F = {x ∈

kNCSP (G) | ax = α}. Clearly, F is a proper face of kNCSP(G). Now sup-
pose that there exists a facet defining inequality bx ≥ β of kNCSP(G) such that

2.3 Facial aspect 43

F ⊆ F ′ = {x ∈ kNCSP (G) | bx = β}. We will show that b = ρa for some scalar
ρ ∈ R.

Let E0 =
p⋃

i=1
E(Vi). And let Fi be the edge set Si ∩ [Vi, Vi+1] for i = 1, ..., p. Note

that |Fi| =
k−|Z|+1

2
. Consider T1 = (

p⋃
i=1

Fi) ∪E0 ∪ E(Z) ∪ δ(Z).

Claim 2 The graph H induced by T1 is (k + 1)-node-connected.

Proof. Since G[Vi] is (k + 1)-node-connected, and hence |Vi| ≥ k + 2, and |Z ′| = k, we
have that Vi\Z

′ 6= ∅ and G[Vi\Z
′] is connected for i = 1, ..., p. Suppose, on the contrary,

that H \ Z ′ is not connected. Then there is W ⊂ V \ Z ′ such that δH\Z′(W) = ∅. As
G[Vi\Z

′] = H [Vi\Z
′] is connected, it follows that either W∩(Vi\Z

′) = ∅ or Vi\Z
′ ⊆W .

Also as G[Z] is complete, we have that either W ∩ (Z \ Z ′) = ∅ or Z \ Z ′ ⊆ W .

We will distinguish two cases.

Case 1. Z ⊂ Z ′. Remark that any cut in H \ Z not intersecting E0 contains a
matching of k − |Z| + 1 edges. Hence H \ Z cannot be disconnected by removing
k − |Z| nodes. Which contradicts the fact that δH\Z′(W) = ∅.

Case 2. Z \ Z ′ 6= ∅. Thus [Z \ Z ′, Vi] 6= ∅, for i = 1, ..., p. This implies that
δH\Z′(W) 6= ∅. Thus w.l.o.g. we may suppose W ∩ (Z \ Z ′) = ∅. Here, we can show
along the same line as in Case 1 that H \ Z ′ cannot be disconnected. Which ends the
proof. �

As H is a subgraph of G, G is (k + 1)-node-connected, thus kNCSP(G) is full dimen-
sional.

Clearly, the graph induced by Tj = T1 \ fj for some fj ∈ Fj, j ∈ {1, ..., p}, is
k-node-connected. Moreover xTj belongs to F .

Similary, we can see that Tj+1 = (Fj \ {fj+1}) ∪ {fj}, with fj+1 ∈ Fj+1, also induces
a k-node-connected subgraph of G. As xTj and xTj+1 belong to F , we have that
b(xTj) = b(xTj+1) and hence b(fj) = b(fj+1). As fj and fj+1 are arbitrary edges of Fj

and Fj+1, respectively, it follows that b(e) = b(e′) for all e ∈ Fj and e′ ∈ Fj+1. Moreover,
as Fj and Fj+1 are arbitrary subsets of [Vj, Vj+1] and [Vj+1, Vj+2], respectively, we obtain
that b(e) = b(e′) for all e ∈ [Vj, Vj+1] and e′ ∈ [Vj+1, Vj+2], j = 1, ..., p. Consequently,

by symmetry, we get b(e) = b(e′) for all e, e′ ∈
p⋃

i=1
[Vi, Vi+1].

44 The k-node-connected subgraph problem

Now let h ∈ [Vi0
, Vj0

], i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1. Consider the edge sets
T2 = (Tj \ {fi0−1}) ∪ {h} and T3 = (T2 \ {h}) ∪ {fi0

}. Similary, we can show that
T2 and T3 induce k-node-connected subgraphs of G. As xT2 and xT3 belong to F , it
follows that b(xT2) = b(xT3) and hence b(h) = b(fi0

). This yields b(e) = b(e′) for all
e, e′ ∈ δG\Z(π). Now, we will show that b(e) = 0 for all e ∈ E0∪E(Z)∪δ(Z). Consider
the edge set T4 = Tj \ {e} for some e ∈ E0. As G[Vi] is (k + 1)-node-connected, for
i = 1, ..., p, T4 induces a k-node-connected subgraph of G. As xTj and xT4 belong to
F , we have that b(xTj) = b(xT4), and thus b(e) = 0 for all e ∈ E0. Now suppose that
e ∈ E(Z). By Condition i) and iii) we can clearly see that Tj \ {e} also induces a
k-node-connected subgraph of G. Implying that b(e) = 0. Let g be an edge of δ(Z).
We can show in a similar way that T5 = Tj \ {g} also induces a k-node-connected
subgraph of G. As xT5 belongs to F , it follows that b(e) = 0 for all g ∈ δ(Z). Thus
b(e) = 0 for all e ∈ E0 ∪ E(Z) ∪ δ(Z). Therefore we obtain that b = ρa and the proof
is complete. �

Corollary 6 If the graph G is complete, then the SP-node-partition inequalities (2.10)
are facet-defining for kNCSP(G) if p ≥ k + 1 and |Vi| ≥ k + 2, i = 1, ..., p.

2.4 Structural properties

In this section, we discuss some structural properties of the extreme points of the linear
relaxation P (G, k) of the kNCSP polytope. Recall that P (G, k) is the polytope given
by inequalities (2.1)-(2.4).

For this, we first give some notations and definitions. Let x ∈ P (G, k) be a solution.
We say that an inequality ax ≥ α is tight for x if ax = α. We will denote by E0(x),
E1(x) and Ef (x), the following edge sets

• E0(x) = {e ∈ E | x(e) = 0},

• E1(x) = {e ∈ E | x(e) = 1},

• Ef(x) = {e ∈ E | 0 < x(e) < 1}.

Also we let CP E(x) (resp. CP N(x)) be the set of cuts δ(W) (resp. node-cuts δG\Z(W))
that are tight for x. If x is an extreme point of P (G, k), then x is the unique solution
of the linear system

2.4 Structural properties 45

S(x)





x(e) = 0, for all e ∈ E0(x),
x(e) = 1, for all e ∈ E1(x),
x(δG(W)) = k, for all cuts δG(W) ∈ C ∗

P E(x),
x(δG\Z(W)) = k − |Z|, for all node-cuts δG\Z(W) ∈ C ∗

P N(x),

where C ∗
P E(x) (resp. C ∗

P N (x)) is a subset of CP E(x) (resp. CP N(x)).

Lemma 1 Let x ∈ P (G, k) and W ⊆ V such that the cut induced by W is tight for x.

1) If for some R ⊂ V , x(δ(R)) = k, then

x(δ(W ∩R)) = k and x(δ(W ∪R)) = k.

2) If for some Z ⊂ V such that |Z| ≤ k − 1, and T ⊂ V \ Z, x(δG\Z(T)) = k − |Z|,

then

x(δG\(Z∩W)(W ∩ T)) = k − |Z ∩W | and x(δG\(Z∩W)(W ∪ T)) = k − |Z ∩W |.

Proof.

1) The proof is similar to that of [20].

2) Suppose that Z ∩W 6= ∅ 6= Z ∩W . Also suppose that T ∩W 6= ∅ and T 6⊂ W ,
W 6⊂ T and T ∪W 6= V \ Z. If this is not the case, then we are done. Let
T1 = T ∩W , T2 = T ∩W , Z1 = Z ∩W , Z2 = Z ∩W , T3 = W \ (T ∪ Z1) and
T4 = W \ (T ∪ Z2). Thus Ti 6= ∅ for i = 1, ..., 4. As δ(W) ∈ CP E(x), we have
that

k = x(δ(W)) = x(δ(T1, T2)) + x(δ(T1, T4)) + x(δ(T3, T2))
+x(δ(T3, T4)) + x(δ(T1, Z2)) + x(δ(T3, Z2))
+x(δ(T2, Z1)) + x(δ(T4, Z1)) + x(δ(Z1, Z2)).

(2.13)

And as δG\Z(T) ∈ Cn(x), we have that

k − |Z| = x(δG\Z(T)) = x(δ(T1, T3)) + x(δ(T1, T4))
+x(δ(T2, T3)) + x(δ(T2, T4)).

(2.14)

46 The k-node-connected subgraph problem

By considering the node-cuts δG\Z1
(T1), δG\Z2

(T2), δG\Z1
(T3) and δG\Z2

(T4), we
have that

k − |Z1| ≤ x(δG\Z1
(T1)) = x(δ(T1, T2))

+x(δ(T1, T3)) + x(δ(T1, T4)) + x(δ(T1, Z2)),
(2.15)

k − |Z2| ≤ x(δG\Z2
(T2)) = x(δ(T2, T1)) + x(δ(T2, T3))

+x(δ(T2, T4)) + x(δ(T2, Z1)),
(2.16)

k − |Z1| ≤ x(δG\Z1
(T3)) = x(δ(T3, T1))

+x(δ(T3, T2)) + x(δ(T3, T4)) + x(δ(T3, Z2)),
(2.17)

k − |Z2| ≤ x(δG\Z2
(T4)) = x(δ(T4, T1)) + x(δ(T4, T2))

+x(δ(T4, T3)) + x(δ(T4, Z1)).
(2.18)

As x(e) ≥ 0 for all e ∈ E, by adding (2.13), (2.14) (2.17) and (2.18), and
combining the resulting equations with (2.15) and (2.16), we get x(δG\Z1

(T1)) =
k − |Z1| and x(δG\Z2

(T4)) = k − |Z2|, which ends the proof.

�

From Lemma 1, we can show the following result. Its proof is omitted since it follows
the same lines as a similar result in [20].

Lemma 2 Let x be an extreme point of P (G, k), and W ⊂ V such that x(δ(W)) = k.

Then the system S(x) can be chosen so that

1) a cut δ(R) ∈ C ∗
P E(x) is such that R ⊂ W or R ⊂W ;

2) a node-cut δG\Z(T) ∈ C ∗
P N (x) is such that (T ∪ Z) ⊂ W , (T ∪ Z) ⊂ W , T ⊂ W

and Z ⊂W , or T ⊂ W and Z ⊂W .

2.5 Reduction operations 47

2.5 Reduction operations

In this section we introduce some reduction operations defined with respect to a so-
lution x of P (G, k). These operations will be considered in a preprocessing phase for
separating violated inequalities in our Branch-and-Cut algorithm. Let θ1, θ2, θ3 and θ4

be the reduction operations defined as follows.

θ1: Delete an edge e ∈ E such that x(e) = 0.

θ2: Contract a node subset W ⊆ V such that G[W] is k-edge connected, x(e) = 1 for
all e ∈ E(W) and x(δ(W)) = k.

θ3: Contract a node subset W ⊆ V such that |W | ≥ k, |W | ≥ k, x(e) = 1 for all
e ∈ E(W), and |δG(W)| = k.

θ4: Replace a set of parallel edges by only one edge.

We have the following results.

Lemma 3 Let G′ = (V, E ′) be the graph obtained from G by the application of Opera-

tion θ1 and let x′ be the restriction of x to G′. Then x′ is an extreme point of P (G′, k)
if and only if x is an extreme point of P (G, k).

Proof. Easy. �

Lemma 4 Let G′ = (V ′, E ′) and x′ be the graph and the solution obtained from G and

x by the application of Operation θ2. Suppose that

1) x′ ∈ P (G′, k),

2) for all Z ⊂W , |Z| ≤ k − 1, δG\Z(T) /∈ CP N(x) for all T ⊆ W .

Then x′ is an extreme point of P (G′, k) if x is an extreme point of P (G, k).

48 The k-node-connected subgraph problem

Proof. Let W be a node set of G contracted by Operation θ2. As δ(W) ∈ CP E(x), by
Lemma 2, the system S(x) can be chosen in such a way that for every δ(R) ∈ C ∗

P E(x)
(resp. δG\ZT

(T) ∈ C ∗
P N(x)) either R ⊆ W or R ⊆ W (resp. (T ∪ ZT) ⊂ W , T ⊂ W

and ZT ⊂ W , or T ⊂ W and ZT ⊂ W). As x(e) = 1 for all e ∈ E(W) and G[W]
is k-edge connected, this implies that C ∗

P E(x) ⊆ CP E(x′). Moreover by 2) it follows
that if δG\ZT

(T) is tight for x and ZT ⊆ W , then W ∩ T 6= ∅ and W \ (ZT ∪ T) 6= ∅.
Let T1 = W ∩ T and T2 = W \ (ZT ∪ T). We have that k − |ZT | = x(δG\ZT

(T)) ≥
x(δ(T1, T2)) ≥ k, a contradiction. The last inequality comes from the fact that G[W]
is k-edge connected and x(e) = 1 for all e ∈ E(W). In consequence, all the node-cuts
δG\ZT

(T) of C ∗
P N(x) are such that ZT ⊂W . However these are at the same time tight

for x′. Thus C ∗
P N(x) ⊂ CP N(x′). Let S ′(x) be the system obtained from S(x) by

deleting the equations x(e) = 1 for all e ∈ E(W). Then x′ is the unique solution of
S ′(x). As all the equations of S ′(x) come from P (G′, k) and by 1) x′ ∈ P (G′, k), it
follows that x′ is an extreme point of P (G′, k). �

Lemma 5 Let G′ = (V ′, E ′) and x′ be the graph and the solution obtained from G

and x, respectively, by the application of Operation θ3. Then x′ is an extreme point of

P (G′, k).

Proof. Let W ⊆ V be a node set satisfying the conditions of Operation θ3. First
observe that as |δ(W)| = k, we have that x(e) = 1 for all e ∈ δ(W) and x(δ(W)) = k.
Thus, by Lemma 2, S(x) can be chosen so that for every node-cut δG\Z(T) ∈ C ∗

P N ,
we have (T ∪ Z) ⊂ W , (T ∪ Z) ⊂ W , T ⊂ W and Z ∈ W , or T ⊂ W and Z ∈ W .
We will show that any cut δ(R) ∈ C ∗

P E(x) is such that R ⊂ W , and any node-cut
δG\Z(T) ∈ C ∗

P N(x) is such that (T ∪ Z) ⊂W . Suppose the contrary and consider first
that for some δ(R) ∈ C ∗

P E(x), R (W . As x(e) = 1, for all e ∈ E(W) ∪ δ(W), one
can see that |δ(R)| = k, and hence x(δ(R)) = k can be obtained from x(e) = 1, for
all e ∈ δ(R), contradicting the fact that δ(R) ∈ C ∗

P E(x). Now suppose that for some
node-cut δG\Z(T) ∈ C ∗

P N(x) either (T ∪Z) ⊂ W or T ⊆W and Z ⊆W . We can show
similarily to the previous case that |δG\Z(T)| = k− |Z| and that x(δG\Z(T)) = k− |Z|

can be obtained from x(e) = 1, for all e ∈ δG\Z(T), which yields a contradiction.

We consider now a node-cut δG\Z(T) ∈ C ∗
P N(x) such that T ⊆ W and Z ⊆ W .

Notice that, as |W | ≥ k, we have that W \ Z 6= ∅. If T = W , then x(δG\Z(T)) =
x(δ(W \ Z, T)) = |δ(W \ Z, T)| = k − |Z|. Thus, x(δG\Z(T)) = k − |Z| can be
obtained from the equations x(e) = 1, for all e ∈ δG\Z(T), contradicting the fact that
δG\Z(T) ∈ C ∗

P N(x). Thus, W \ T 6= ∅. For convenience, we let T1 = W \ Z and
T2 = W \ T . First, note that

x(δG\Z(T)) = x(δ(T, T1)) + x(δ(T, T2)) = k − |Z|. (2.19)

2.5 Reduction operations 49

Equation 2.19 together with the cut inequality induced by T yields

x(δ(T, Z)) ≥ |Z|. (2.20)

Also, as by the assumption |δ(W)| = k, we have that

x(δ(T, T1)) + x(δ(T, Z)) + x(δ(T2, T1)) + x(δ(T2, Z)) = k. (2.21)

This equation, together with the node-cut inequality induced by δG\Z(T2) implies that

x(δ(T, Z)) + x(δ(T2, Z)) ≤ |Z|. (2.22)

Thus, by inequalities (2.20) and (2.22), we have that x(δ(T, Z)) = |Z| and x(δ(T2, Z)) =
0, and hence

x(δ(T)) = x(δ(T, T1)) + x(δ(T, Z)) + x(δ(T, T2)) = k. (2.23)

Moreover, as x(e) = 1, for all e ∈ δ(W), we have that x(δ(T, Z)) = |Z| = |δ(T, Z)|.
Therefore, x(δG\Z(T)) = k − |Z| can be obtained from (2.23) and the x(e) = 1, for all
e ∈ δ(T, Z), and hence, can be replaced in S(x) by equation (2.23).

Consequently, the system S(x) can be chosen so that R ⊆ W for every cut δ(R) ∈
C ∗

P E(x) and T ∪ Z ⊆ W for every node-cut δG\Z(T) ∈ C ∗
P N(x). This also implies that

C ∗
P E(x)∪C ∗

P N (x) ⊆ C ∗
P E(x′)∪C ∗

P N (x′). Thus, x′ is the unique solution of a subsystem of
S(x). As all the equations of that subsystem correspond to constraints of P (G \W, k),
this implies that x′ is an extreme point of P (G \W, k). �

Lemma 6 Let G′ = (V ′, E ′) be the graph obtained from G by the application of Oper-

ation θ4. Let E0 be the set of parallel edges of G and e0 the edge replacing E0 in G′.

Let x′ be the solution given by x′(e) = x(e) if e ∈ E \E0 and x′(e) = 1 if e = e0. Then

x′ is an extreme point of P (G′, k).

Proof. Observe that for every cut δ(W) (node-cut δG\Z(W)) either E0 ⊆ δ(W)
(E0 ⊂ δG\Z(W)) or E0 ∩ δ(W) = ∅ (E0 ∩ δG\Z(W) = ∅). Moreover, E0 cannot contain
more than two edges with fractional value. Indeed, if e1, e2 ∈ E0 and 0 < x(e1) < 1
and 0 < x(e2) < 1, let x∗ be the solution given by x∗(e) = x(e) if e ∈ E \ {e1, e2},
x∗(e) = x(e)+ǫ if e = e1 and x∗(e) = x(e)−ǫ if e = e2, where ǫ is a positive scalar suffi-
ciently small. We then have that x∗ is also a solution of S(x), which is a contradiction.

50 The k-node-connected subgraph problem

We claim that E0 does not contain any edge with fractional value. Suppose, on the con-
trary that h is such an edge. Then x(E0) > 1. Therefore there exists a cut or a node-cut
of system S(x) containing h. Let v be an extremity of h. Let δ(S) be a cut of C ∗

e (x)
that contains h. Thus E0 ⊂ δ(S). Suppose w.l.o.g., that v ∈ S. Consider the node-cut
δG\v(S). We have that x(δG\v(S)) ≤ x(δ(S)\E0) < k−1, a contradiction. Now consider
a node-cut δG\Z(T) of C ∗

n (x) that contains h and hence E0. As x(E0) > 1, one must
have |Z| < k− 1. So suppose that |Z| < k− 1. Suppose w.l.o.g., that v ∈ V \ (T ∪Z).
Let Z ′ = Z∪{v}. We have x(δG\Z′(T)) ≤ x(δG\Z(T))−1−x(h) = k−(|Z|+1)−x(h) <

k−|Z ′|, a contradiction. Consequently, x(e) = 1 for all e ∈ E0. From the development
above we also deduce that neither a cut of C ∗

e (x) nor a node-cut of C ∗
n (x) intersects

E0. Hence C ∗
e (x) ∪ C ∗

n (x) ⊂ C (x′). Moreover, we have that x′ ∈ P (G′, k). Obviously,
x′ satisfies the trivial inequalities as well as the cut and node-cut inequalities that
do not contain h. Let δ(W) be a cut that contains h. Suppose v ∈ W . We have
that x′(δ(W)) = x′(h) + x′(δ(W) \ {h}) = 1 + x(δ(W) \ E0) = 1 + x(δG\v(W)) ≥ k.
Consider now a node-cut δG\Z(T) containing h. If |Z| = k − 1, as x′(h) = 1 and
h ∈ δG\Z(T), we have that x′(δG\Z(T)) ≥ 1. If |Z| < k − 1, then let Z ′ = Z ∪ {v}.
We have that x′(δG\Z(T)) ≥ 1+x′(δG\Z′(T)) ≥ 1+k−|Z ′| = 1+k−|Z|−1 = k−|Z|. �

As we will see later, the reduction operations θ1, ..., θ4 can be used as a preprocessing
for the separation procedures in our Branch-and-Cut algorithm.

2.6 Conclusion

We have studied in this chapter the k-node-connected subgraph problem with high
connectivity requirement, that is, when k ≥ 3. We have investigated the dimension
of the associated polytope, we have presented some classes of valid inequalities and
described some conditions for these inequalities to be facet defining for the associated
polytope. We have also investigated the structural properties of the extreme points of
the linear relaxation of the problem and presented some reduction operations, which
will be used as a preprocessing phase for the separation of the valid inequalities.

Chapter 3

Branch-and-Cut Algorithm for the

kNCSP

Contents

3.1 Branch-and-Cut algorithm 51

3.1.1 General framework . 52

3.1.2 Separation algorithms . 53

3.1.3 Primal heuristic . 55

3.2 Computational Results . 58

3.3 Conclusion . 65

3.1 Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm for the kNCSP. The algorithm
is based on the theoretical results presented in the previous sections. We will first
present the general framework of the algorithm, then we will address the main issues
of our algorithm, that are the separation procedures for the various inequalities we will
use, and a primal heuristic.

We will consider a graph G = (V, E) and a weight vector c ∈ RE associated with the
edges of G. We let k ≥ 1 be the connectivity requirement.

52 Branch-and-Cut Algorithm for the kNCSP

3.1.1 General framework

To start the optimization we consider the following linear program consisting in the
cut constraints induced by node sets {u}, for every u ∈ V together with the trivial
inequalities, that is

min
∑

e∈E

c(e)x(e)

x(δG(u)) ≥ k for all u ∈ V,

0 ≤ x(e) ≤ 1 for all e ∈ E.

If the optimal solution y ∈ RE of the above LP is feasible for the kNCSP, that is,
it is integer and it satisfies all the cut and node-cut inequalities, then it is optimal
for the problem. Usually, y is not feasible for the kNCSP. Thus, we need to generate
further valid inequalities for the problem which are violated by y. This is done by
addressing the separation problem associated with the cut and node-cut inequalities,
respectively, and the other families of inequalities we consider in our algorithm. Recall
that the separation problem associated with y and a family of inequalities F is to say
if y satisfies or not all the inequalities of F, and if not, exhibit at least one inequality
of F which is violated by y. An algorithm solving a separation problem is called a
separation algorithm. In our algorithm, we use the inequalities that we described in
the previous sections and perform their separation in the following order

1) cut inequalities,

2) node-cut inequalities,

3) SP-node-partition inequalities,

4) F -node-partition inequalities,

5) node-partition inequalities.

We move to a class of inequalities when the separation algorithm for the previous class
of inequalities has not found any violated inequality. We may add several inequalities
at the same time in the Branch-and-Cut algorithm. Moreover, all the inequalities are
global, that is they are valid for all the nodes of the Branch-and-Cut tree.

3.1 Branch-and-Cut algorithm 53

Remark that the separations are done on the graph obtained after repeated applica-
tions of the reduction operations θ1, ..., θ4 to the graph G and solution y. If G′ is the
reduced graph and y′ is the restriction of y to G′, then by Lemmas 3-6, y′ is an extreme
point of P (G′, k) if y is an extreme point of P (G, k). Moreover, we have the following
results which are easily seen to be true.

Lemma 7 Let a′x ≥ α be an F -node-partition inequality (respectively node-partition

inequality) valid for kNCSP(G′), induced by a partition π′ = (V ′
0 , V ′

1 , ..., V ′
p), p ≥ 2

and an edge set F (respectively π′ = (V ′
1 , ..., V ′

p), p ≥ 3) of V ′ \ Z, with Z ⊂ V . Let

π = (V0, V1, ..., Vp), p ≥ 2 (respectively π = (V1, ..., Vp), p ≥ 3) be the partition of V

obtained by expanding the elements of π′. Let ax ≥ α be the inequality such that

a(e) =





a′(e) for all e ∈ E ′,

1 for all e ∈ (E \ E ′) ∩ δG(π),
0 otherwise.

Then ax ≥ α is valid for kNCSP(G). Moreover, if a′x ≥ α is violated by y′, then

ax ≥ α is violated by y.

Lemma 8 Let a′x ≥ α be an SP-node-partition inequality valid for kNCSP(G′), in-

duced by a partition π′ = (V ′
1 , ..., V ′

p), p ≥ 3 of V ′\Z, with Z ⊂ V such that |Z| ≤ k−1.

Let π = (V1, ..., Vp), p ≥ 3 be the partition of V \ Z obtained by expanding the subsets

V ′
i of π′. Let ax ≥ α be the lifted SP-node-partition inequality obtained from a′x ≥ α

by application of the lifting procedure described in Section 2.2 for the edges of E \ E ′.

Then ax ≥ α is violated by y, if a′x ≥ α is violated by y′.

Lemmas 7 and 8 show that the separation of F -node-partition, SP-node-partition
and node-partition inequalities can be done in the reduced graph associated with any
fractional solution of P (G, k).

3.1.2 Separation algorithms

Now we describe the separation algorithms we have devised for the cut, node-cut,
SP-node-partition, F -node-partition and node-partition inequalities.

54 Branch-and-Cut Algorithm for the kNCSP

We start by the separation of the cut inequalities (2.3). It is well known that the
separation of the cut inequalities (2.3) reduces to computing a minimum weight cut
in G with respect to weight vector y. Indeed, there is a violated cut inequality (2.3)
if and only if the minimum weight of a cut, w.r.t. weight vector y, is < k. One
can compute a minimum weight cut in polynomial time by using any minimum cut
algorithm, and especially by using the Gomory-Hu algorithm [40] which computes
the so-called Gomory-Hu cut tree. This algorithm consists in |V | − 1 maximum flow
computations.

Now we discuss the separation of the node-cut inequalities (2.4). In what follows, we
show that these inequalities can be separated in polynomial time. In fact, Grötschel et
al. [47] present a separation algorithm for inequalities (2.4) based on a transformation
of the graph G into a directed graph G̃ = (Ṽ , Ã). This transformation is presented as
follows. For each node u ∈ V , we add in Ṽ two copies u− and u+ of u. The arc set is
built in the following way. First, for each edge uv ∈ E, we add two arcs (v+, u−) and
(u+, v−). Finally, for every node u ∈ V , we add an arc of the form (u−, u+). We also
let ỹ ∈ RÃ be a weight vector given by

ỹ(a) =

{
y(uv) for a = (u+, v−) and a = (v+, u−),
1 if a = (u−, u+) for all nodes u ∈ V.

One can see that a cut δ(W) in G corresponds to a dicut which does not contain an
arc of the form (u−, u+). Conversely, a dicut δ+

G̃
(W̃) of G̃ which does not contain any

arc of the form (u−, u+) corresponds to a cut of G. Also, a node-cut δG\Z(W) of G

corresponds to a dicut of G̃ which contains |Z| arcs of the form (u−, u+). Conversely,
a dicut of G̃ which contains at least one arc of the form (u−, u+) corresponds to a
node-cut of G. The corresponding node set Z is given by the nodes u ∈ V such that
(u−, u+) ∈ δ+

G̃
(W̃), and the edges of δG\Z(W) are given by the arcs of δ+

G̃
(W̃) of the

form (u+, v−) with u+ ∈ W̃ , v− ∈ Ṽ \ W̃ .
Thus, cuts and node-cuts of G corresponds to dicuts of G̃ which does not contain arcs
of the form (u−, u+), and vice-versa. Moreover, we have that

• if δ(W) in G and δ+

G̃
(W̃) in G̃ are corresponding cuts, then y(δ(W)) = ỹ(δ+

G̃
(W̃));

• if δG\Z(W) in G and δ+

G̃
(W̃) in G̃ are corresponding cuts, then y(δG\Z(W))+|Z| =

ỹ(δ+

G̃
(W̃)).

Thus, there is a cut or node-cut inequality violated by y if and only if there exists
a dicut δ+

G̃
(W̃) in G̃ whose weight with respect to ỹ is < k. Notice that, if we assume

3.1 Branch-and-Cut algorithm 55

the cut inequalities to be all satisfied by y, finding violated node-cut inequalities then
reduces to compute a minimum weight cut in G̃ w.r.t. weight vector ỹ.

Consequently, our separation algorithm for node-cut inequalities is as follows. First,
we assume that the cut inequalities are all satisfied by y. We build the graph G̃ and
compute a minimum weight cut, say δ+

G̃
(W̃ ∗), w.r.t. ỹ. If ỹ(δ+

G̃
(W̃ ∗)) ≥ k, then every

node-cut inequality is satisfied by y, and the algorithm stops. If ỹ(δ+

G̃
(W̃ ∗)) < k, then

there is a violated node-cut inequality induced by a node-cut δG\Z(W) with Z ⊆ V ,
|Z| ≤ k − 1, and W ⊆ V \ Z. The node sets Z and W are given by

Z = { u ∈ V such that (u−, u+) ∈ δ+

G̃
(W̃ ∗)},

W = {u ∈ V such that u−, u+ ∈ W̃ or u+ ∈ W̃ and u− ∈ Ṽ \ W̃}.

Finally, computing a minimum weight cut in G̃ can be done in polynomial time by
computing, for every pair of nodes (s, t) ∈ V ×V , with s 6= t, a maximum flow in G̃ from
source node s+ to destination t−. This, hence, reduces our algorithm to |V |(|V | − 1)/2
maximum flow computations in W̃ , which is polynomial.

Finally, we consider the separation problems for node-partition, SP-node-partition
and F -node-partition inequalities. First notice that the separation problem of node-
partition inequalities is NP-Hard even when Z = ∅. For our purpose, we consider
these inequalities in the case where Z = ∅. Thus, the corresponding node-partition,
SP-node-partition and F -node-partition inequalities also correspond to partition, SP-
partition and F -partition inequalities, which are valid for the kECSP on G. Therefore,
to separate these inequalities, we use the separation heuristics developed in Bendali et
al. [9] for these latter inequalities. These algorithms are applied on the graph G′ and
solution y′ obtained by the application of the reduction operations to G and y. As
mentioned before, by Lemmas 7 and 8, any violated node-partition, SP-node-partition
and F -node-partition inequality found in G′ by the separation procedure is valid for
kNCSP(G) and is also violated by y.

3.1.3 Primal heuristic

Next, we discuss a primal heuristic for the problem. The aim of this heuristic is
to produce, for a given instance, good upper bounds of the optimal solution of the
problem. Such upper bounds are used by the Branch-and-Cut algorithm to prune
unrelevant branches of the Branch-and-Cut tree. This also ensures that Branch-and-
Cut algorithm produces a feasible solution, even if it reaches the maximum CPU time.

56 Branch-and-Cut Algorithm for the kNCSP

The primal heuristic we have developed for our purpose consider a fractional solution
y obtained at the end of the cutting plane phase, at the root node of the Branch-and-
Cut tree. The aim of the heuristic is to transform y into a feasible solution for the
problem. To do this, we first build the graph G = (V, E) obtained by removing from
G every edge e ∈ E with y(e) = 0. Then, we iteratively remove from G all the edges
uv such that u and v are both incident in G to at least k + 1 edges. We denote by
G

′ = (V, E
′) the resulting graph, and by z the incidence vector of G

′. Next, we check if
G

′
is k-node-connected. We do this by calling the separation algorithms for the cut and

node-cut inequalities described in the previous section on z and G
′. If there is a cut

(resp. node-cut) inequality induced by a cut δ
G

′(W) (resp. node-cut δ
G

′

\Z
(W)), which

is violated by z, then we add in G
′

an edge e ∈ δG(W) \ E
′

(resp. e ∈ δG\Z(W) \ E
′
)

whose weight c(e) is minimum. If there is no cut and node-cut inequality violated by
z, then G

′ is feasible for the kNCSP. We repeat this procedure until the graph G
′ is

k-node-connected.

Finally, the algorithm computes and returns the weight of the graph G
′

obtained
at the end of the previous step. The whole procedure is summarized by Algorithm 3
below.

3.1 Branch-and-Cut algorithm 57

Algorithm 3: Primal Heuristic Algorithm for the kNCSP
Data: An undirected graph G = (N, E), an integer k, a fractional solution y

Result: An Upper Bound UB for the kNCSP

begin

Build the graph G = (V, E) by removing from G every edge e such that y(e) = 0;

/*Remove the edges uv such that |δ
G

(u)| ≥ k + 1 and |δ
G

(v)| ≥ k + 1*/

foreach edge uv ∈ E do

if |δ
G

(u)| ≥ k + 1 and |δ
G

(v)| ≥ k + 1 then

E ← E \ {uv};

end

end

/*Check if the resulting graph is k-node-connected*/

FeasibleSolutionFound← False;

repeat

Let z be the incidence vector of E;

Call the separation procedure for cut inequalities;

if there is a cut inequality violated by z then

Let δ
G

(W) be the cut inducing the violated cut inequality;

Choose an edge e ∈ δG(W) \ E with minimum weight;

E ← E ∪ {e};

end

else
Call the separation procedure for node-cut inequalities with solution z and graph

G;

if there is a node-cut inequality violated by z then

Let δ
G\Z

(W) be the node-cut inducing the violated node-cut inequality;

Choose an edge e ∈ δG\Z(W) \ E with minimum weight;

E ← E ∪ {e};

end

else

FeasibleSolutionFound← T rue;

end

end

until FeasibleSolutionFound = True;

UB ← 0;

foreach edge e ∈ E do

UB ← UB + c(e);

end

return UB;

end

58 Branch-and-Cut Algorithm for the kNCSP

3.2 Computational Results

Now we present the computational results we have obtained with our Branch-and-Cut
algorithm for the kNCSP. The algorithm has been implemented in C++ using CPLEX
12.5 [3] and Concert Technology library. All the experiments have been done on a
computer equiped with a 2.10 GHz x4 Intel Core(TM) i7-4600U processor and running
under linux with 16 GB of RAM. We have set the maximum CPU time to five hours.
We have tested our algorithm on several instances composed of graphs taken from
SNDLIB [1] and TSPLIB [2]. These are complete graphs where each node is given
coordinates in the plane. The weight of each edge uv is the rounded euclidian distance
between the vertices u and v. The graphs we have considered have up to 65 nodes for
SNDLIB graphs and up to 150 nodes for TSPLIB graphs.
The tests have been performed for k = 3, 4, 5, and in all the experiments, we have used
the reduction operations described in the previous sections, unless specified.

For each instance, we have run the algorithm three times. The first run (Run 1) is per-
formed with all the inequalities presented before and the reduction operations included
in the algorithm. The second run (Run 2) is performed without the reduction opera-
tions. The third run (Run 3) is performed with the reduction operations and with only
the cut and node-cut inequalities. The results are given in Tables 3.2-3.8. Each instance
is given by its name followed by the number of nodes of the graph. The other entries of

3.2 Computational Results 59

the tables are:

#EC the number of generated cut inequalities
#NC the number of generated node-cut inequalities
#SPC the number of generated SP-node-partition inequalities
#NFPC the number of generated F -node-partition inequalities
#NPC the number of generated node-partition inequalities
COpt the value of the optimal solution
Gap1 the relative error between the best upper bound

and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 1

Gap2 the relative error between the best upper bound
and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 2

Gap3 the relative error between the best upper bound
and the lower bound obtained at the root node of the
Branch-and-Cut tree during Run 3

NSub1 the number of nodes in the Branch-and-Cut tree obtained at Run 1
NSub2 the number of nodes in the Branch-and-Cut tree obtained at Run 2
NSub3 the number of nodes in the Branch-and-Cut tree obtained at Run 3
CPU1 the total CPU time in hh:mn:sec achieved at Run 1
CPU2 the total CPU time in hh:mn:sec achived at Run 2
CPU3 the total CPU time in hh:mn:sec achived at Run 3

The gaps are all given in percentage. The instances indicated with "*" are those for
which the maximum CPU time has been reached by the Branch-and-Cut algorithm.

We start our experiments by running the algorithm with k = 3, for both SNDLIB
and TSPLIB graphs, and using all the inequalities and the reduction operations, that
is Run 1. The results are given in Tables 3.1 and 3.2.

We first observe that all the SNDLIB instances of Table 3.1 have been solved to
optimality within the CPU time limit. For TSPLIB graphs, all the instances have
been solved to optimality, except one, u_159. The CPU time for the instances solved
to optimality is less than 45min for SNDLIB instances and less than 2h50min for
TSPLIB instances. We also observe that the gap between the optimal solution and
the lower bound achieved at the root node of the Branch-and-Cut tree is less than 1%
for all the SNDLIB instances except one, geant_22, for which the gap is 1.07%. For
TSPLIB graphs, the gap is less than 1%, except for 6 instances for which the gap is
less than 7.1%. We can also notice that the number of nodes in the Branch-and-Cut

60 Branch-and-Cut Algorithm for the kNCSP

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

atlanta_15 15 606 1 17 1 3265 0.01 3 0:00:01

geant_22 72 1990 19 28 6 375 1.07 60 0:00:26

france_25 80 7500 15 36 7 3254 0.08 37 0:00:32

norway_27 68 4448 10 55 5 5730 0.76 15 0:00:43

sun_27 42 2582 8 28 0 4771 0.04 7 0:00:31

india_35 62 2231 5 26 6 452 0.33 8 0:00:53

cost266_37 135 10726 30 775 7 275 0.9 13 0:18:01

giul_39 62 2760 7 32 1 5878 0.03 5 0:02:19

pioro_40 11 2866 0 2 0 5637 0.00 1 0:00:09

germany_50 42 13094 5 14 2 112 0.01 4 0:02:37

ta2_65 124 7597 10 106 4 5334 0.07 9 0:43:55

Table 3.1: Results for SNDLIB instances with k = 3.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

bays_29 74 3709 11 39 8 14815 1.01 19 0:01:10

dantzig_42 137 9156 12 32 16 1232 0.03 42 0:14:14

att_48 138 13995 14 47 10 17527 0.02 48 0:42:11

eil_51 55 4680 7 30 1 745 0.02 4 0:06:41

berlin_52 133 9518 26 95 10 12644 0.22 30 0:27:05

eil_76 80 15321 8 84 4 947 0.11 8 0:48:05

gr_96 174 330 19 6 0 915 0.6 2 2:03:11

rat_99 112 294 9 19 0 2105 0.3 32 2:02:26

kroA_100 169 305 24 13 1 36492 0.21 2 2:04:35

rd_100 186 303 21 3 0 13391 0.13 21 2:01:03

kroB_100 145 300 12 52 1 37341 1.6 12 2:03:58

lin_105 214 317 15 6 6 24870 2.4 35 2:01:44

gr_120 90 332 10 0 0 11562 0.6 2 2:26:57

bier_127 136 364 16 2 0 199863 3.2 23 2:42:41

pr_124 179 403 12 0 0 99696 0.29 3 2:28:01

ch_130 122 371 10 0 0 10571 7.1 12 2:48:25

kroA_150 130 415 1 2 0 44952 2.6 23 2:49:56

*u_159 112 429 3 7 0 71772 8.9 59 5:00:00

Table 3.2: Results for TSPLIB instances with k = 3.

tree is quite small, less than 60 nodes, for all the instances. Our separation procedures
have also detected several inequalities of each type (cut, node-cut, F -node-partition,
SP-node-partition and node-partition inequalities), especially the cut and node-cut
inequalities. Moreover, a large number of F -node-partition and SP-node-partition
inequalities are generated while few node-partition inequalities have been generated.
From these observations, we conclude that our Branch-and-Cut algorithm is efficient
for solving the kNCSP with k = 3.

We have also run the algorithm, during Run 1, with k = 4 and k = 5. The results

3.2 Computational Results 61

for k = 4 are given by Table 3.3, for SNDLIB instances, and by Table 3.4 for TSPLIB
instances. Note that when k is even, the SP-node-partition and partition inequalities
we have considered in our algorithm are redundant with respect to the cut inequalities.
Thus, they are not used in the Branch-and-Cut algorithm for k = 4 and do not appear
in Tables 3.3 and 3.4.

Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

atlanta_15 0 246 2 4615 0.00 1 0:00:01

geant_22 0 912 0 521 0.00 1 0:00:01

france_25 0 594 0 4692 0.00 1 0:00:01

norway_27 0 793 4 8257 0.00 1 0:00:03

sun_27 0 696 0 6867 0.00 1 0:00:01

india_35 4 1324 2 640 0.00 1 0:00:08

cost266_37 0 1326 0 392 0.00 1 0:00:03

giul_39 0 1602 2 8314 0.00 1 0:00:07

pioro_40 0 1711 3 8137 0.00 1 0:00:15

germany_50 0 2610 0 156 0.00 1 0:00:12

ta2_65 0 4417 4 7631 0.00 1 0:02:01

Table 3.3: Results for SNDLIB instances with k = 4.

Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

bays_29 4 897 0 20945 0.00 1 0:00:01

dantzig_42 10 1858 9 1776 0.00 1 0:00:11

att_48 20 2458 5 17380 0.00 1 0:01:15

eil_51 0 2544 0 1051 0.00 1 0:00:12

berlin_52 6 2860 2 18351 0.00 1 0:00:54

eil_76 0 5981 2 1350 0.00 1 0:03:24

gr_96 62 438 76 1314 1.6 6 2:00:03

rat_99 29 10135 14 3045 0.00 1 0:49:33

kroA_100 22 15223 6 53111 0.00 1 0:32:25

rd_100 81 451 32 20341 1.9 4 2:02:38

kroB_100 95 5012 31 55182 2.5 8 0:45:09

lin_105 33 11339 4 36430 0.00 1 0:36:58

gr_120 6 14765 6 18714 0.00 1 0:48:40

pr_124 69 7553 16 144715 3.5 2 2:12:59

bier_127 30 16447 0 283154 0.00 1 0:34:22

ch_130 26 532 10 15123 2.3 23 2:06:45

kroA_150 19 595 4 68281 5.3 22 2:24:45

u_159 13 630 6 104664 7.2 15 4:38:14

Table 3.4: Results for TSPLIB instances with k = 4.

We can first observe that for k = 4 all the SNDLIB instances are solved to optimality,
in less than 2min, and this, at the root node of the Branch-and-Cut tree. For TSPLIB
instances, the problem is solved in less than 2h30 for all the instances with few nodes

62 Branch-and-Cut Algorithm for the kNCSP

(less than 23) in the Branch-and-Cut tree. For these latter instances, 11 of them over
17 instances are solved at the root node of the Branch-and-Cut tree. As for k = 3,
several cut and node-cut inequalities have been generated, and few F -node-partition
inequalities are generated. The comparison with k = 3 shows that the problem seems
easier when k = 4, since the optimal solutions are obtained faster when k = 4 for
all the instances. For example, ta_65 is solved in 43min55sec with 9 nodes in the
Branch-and-Cut tree when k = 3, while it is solved in 2min at the root node of the
Branch-and-Cut tree when k = 4. Moreover, instance u_159 is solved to optimality
in 4h38min14sec when k = 4, whereas it is not solved to optimality within 5h when
k = 3.

We have also run our algorithm for k = 5. The results are given in Tables 3.5 and
3.6.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

atlanta_15 14 326 0 12 0 6239 0.00 1 0:00:01

geant_22 2 1193 0 0 2 717 0.35 12 0:00:04

france_25 25 832 0 40 1 6478 0.00 1 0:00:20

norway_27 27 944 0 47 0 11217 0.00 1 0:00:51

india_35 30 2023 0 21 0 864 0.17 1 0:00:51

sun_27 27 1296 0 46 0 9383 0.34 4 0:00:32

cost266_37 37 1677 0 149 1 527 0.19 4 0:04:38

giul_39 39 1838 0 75 0 11264 0.00 1 0:03:41

pioro_40 0 1728 0 4 0 10952 0.00 1 0:00:12

germany_50 9 2651 0 4 0 206 0.00 1 0:00:31

ta2_65 67 4723 0 103 0 10276 0.00 1 0:45:20

Table 3.5: Results for SNDLIB instances with k = 5

Here also, we can see that several instances are solved to optimality at the root node
of the Branch-and-Cut tree for both SNDLIB and TSPLIB instances. The comparison
with k = 3 also shows that the problem seems easier when k = 5. Indeed, for SNDLIB
graphs, 8 instances over 11 have been solved at the root node of the Branch-and-Cut
tree when k = 5 whereas only one instance has been solved at the root node for k = 3.
The observation is the same for TSPLIB instances. Here, 5 instances have been solved
at the root node when k = 5 whereas no instance has been solved at the root node when
k = 3. Also the CPU time is, in general, better when k = 5. For example, instance
gr_120 is solved in 2h26min57sec when k = 3 and in 1h09min03sec when k = 5. All
these observations suggest that the kNCSP becomes easier when k increases.

A comparison between the case k = 4 and k = 5 shows that the problem seems
easier when k = 4. Indeed, the CPU time is in general better when k = 4 and fewer
nodes are generated in the Branch-and-Cut tree when k = 4. We can say from this

3.2 Computational Results 63

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

bays_29 30 1066 0 64 0 28504 0.00 1 0:01:09

dantzig_42 25 1989 1 4 2 1931 0.00 1 0:00:36

att_48 59 2597 0 25 4 17945 0.21 19 0:05:10

eil_51 51 3012 0 187 0 1435 0.21 6 0:27:27

berlin_52 28 5401 0 17 4 24913 0.05 1 0:04:41

eil_76 0 6030 0 3 0 1792 0.00 1 0:04:27

gr_96 48 14203 3 32 4 1792 0.16 6 1:38:50

rat_99 62 561 0 37 0 4113 1.2 4 2:01:15

kroA_100 61 10496 0 82 4 72119 0.14 9 2:03:22

rd_100 73 10485 0 60 8 27273 0.07 9 2:02:07

kroB_100 44 581 0 55 6 75143 0.31 8 2:01:37

lin_105 35 588 0 16 0 50669 0.6 12 2:00:50

gr_120 0 14814 0 9 2 23135 0.00 1 1:09:03

pr_124 45 629 0 15 2 199713 3.4 2 2:03:39

bier_127 65 763 0 14 0 391092 4.1 2 2:01:48

ch_130 8 595 0 12 0 21618 3.8 2 2:09:41

kroA_150 13 681 0 8 0 88237 2.6 25 2:22:03

*u_159 5 630 0 2 0 75915 9.3 91 5:00:00

Table 3.6: Results for TSPLIB instances with k = 5

that the problem is harder when k is odd than when k is even. The remarks made here
are similar to those made by Bendali et al. [9] for the kECSP. They also concluded
from their experiments that the kECSP is harder when k is odd, and that the kECSP
becomes easier when k increases with the same parity.

The next series of experiments concerns the efficiency of the reduction operations
θ1, ..., θ4. For this, we have run the Branch-and-Cut algorithm with k = 3 and without
the reduction operations (Run 2).The results are given by Table 3.7.

Instance Gap1 Gap2 NSub1 NSub2 CPU1 CPU2

atlanta_15 0.01 0.02 3 15 00:00:01 00:00:32

geant_22 1.07 1.94 60 77 00:00:26 00:01:21

france_25 0.08 0.09 37 57 00:00:32 00:01:48

norway_27 0.76 1.78 15 34 00:00:43 00:02:05

india_35 0.33 2.05 8 24 00:00:53 00:02:08

giul_39 0.03 1.4 5 11 00:02:19 00:15:34

ta2_65 0.07 1.7 9 35 00:43:55 02:42:37

dantzig_42 0.03 0.79 42 74 00:14:14 01:37:37

att_48 0.02 2.4 48 68 00:42:11 02:39:38

eil_76 0.11 3.4 8 53 00:48:05 05:00:00

gr_96 0.6 7.8 2 41 02:03:11 03:24:57

Table 3.7: Comparison of results for k = 3 with and without the reduction operations.

64 Branch-and-Cut Algorithm for the kNCSP

We can observe from Table 3.7 that, for the considered instances, the performances
of the Branch-and-Cut algorithm are decreased when the reduction operations are not
used. One can see that both the CPU time and the number of nodes in the Branch-and-
Cut tree are increased when the reduction operations are not used in the algorithm.
Also, the gap increases for all the instances, which indicates that a fewer number of
inequalities or less efficient inequalities are generated during the separation phases.
Moreover, one instance, eil_76 which is solved to optimality at Run 1 is not solved
to optimality within 5h without the reduction operations. This clearly proves the
efficiency of the reduction operations on the resolution process.

Our last series of experiments aims to check the efficiency of the F -node-partition,
SP-node-partition and node-partition inequalities in solving the kNCSP. For this, we
have run the Branch-and-Cut algorithm in Run 3 with only the cut and node-cut
inequalities. The results are presented in Table 3.8.

Instance Gap1 Gap3 NSub1 NSub3 CPU1 CPU3

atlanta_15 0.01 0.03 3 9 00:00:01 00:00:45

geant_22 1.07 2.1 60 84 00:00:26 00:02:09

france_25 0.08 0.17 37 43 00:00:32 00:02:33

norway_27 0.76 1.97 15 60 00:00:43 00:02:51

india_35 0.33 1.71 8 17 00:00:53 00:04:14

giul_39 0.03 1.8 5 14 00:02:19 00:17:57

ta2_65 0.07 1.2 9 21 00:43:55 01:18:37

dantzig_42 0.03 1.64 42 57 00:14:14 00:45:52

att_48 0.02 1.9 48 71 00:42:11 01:34:59

eil_76 0.11 6.5 8 64 00:48:05 02:54:35

gr_96 0.6 13.2 2 34 02:03:11 05:00:00

Table 3.8: Comparison of results for k = 3 with and without the F -node-partition,
SP-node-partition and node-partition inequalities.

Here also, the comparison between Run 1 and Run 3 shows that the performances
are decreased when F -node-partition, SP-node-partition and node-partition inequali-
ties are not used in the algorithm. The CPU time, the number of nodes in the Branch-
and-Cut tree and the gap are increased for all the instances of Table 3.8. Also, instance
gr_96 is not solved to optimality within 5h when F -node-partition, SP-node-partition
and node-partition inequalities are not used, while it is in Run 1. This also shows the
efficiency of the above inequalities in solving the kNCSP.

We conclude this computational study by comparing the optimal solutions obtained
here for the kNCSP with those of the kECSP obtained by Bendali et al. [9]. The aim
is to know how often optimal solutions of the kECSP and kNCSP are equal. The next

3.3 Conclusion 65

table, Table 3.9, presents, for some TSPLIB instances, the optimal solutions of the
kECSP, those of the kNCSP for k = 3 and the gap between the two solutions, given
by

Gap =
COpt_3NCSP− COpt_3ECSP

COpt_3ECSP
.

Instance COpt_3ECSP COpt_3NCSP Gap

dantzig_42 1210 1232 1.82

att_48 17499 17527 0.16

berlin_52 12601 12644 0.34

eil_76 876 947 8.11

rat_99 2029 2105 3.75

kroA_100 36337 36492 0.43

kroB_100 37179 37341 0.44

rd_100 13284 13391 0.81

gr_120 11442 11562 1.05

bier_127 198184 199863 0.85

ch_130 10400 10571 1.64

kroA_150 44718 44952 0.52

Table 3.9: Comparison between of the best solutions of kECSP and the kNCSP for
k = 3.

From Table 3.9, we can see that the optimal solutions of the two problems are different
for all the considered instances. However, we can see that the gap between the two
solutions is relatively small for most of them. This let us conclude that the best
solutions obtained by Bendali et al. [9] for the 3ECSP are good upper bounds of the
optimal solutions of the 3NCSP. Clearly, this remark cannot be generalized since we
may find graphs for which the gap between the optimal solutions of the kNCSP and the
kECSP is more important, but solving the kECSP could produce a good approximation
of the kNCSP.

3.3 Conclusion

We have studied the k-node-connected subgraph problem with high connectivity re-
quirement, that is, when k ≥ 3. We have presented some classes of valid inequalities
and described some conditions for these inequalities to be facet defining for the associ-
ated polytope. We have also investigated the structural properties of the extreme points
of the linear relaxation of the problem and presented some reduction operations. Us-
ing these results, we have devised a Branch-and-Cut algorithm for the problem. The

66 Branch-and-Cut Algorithm for the kNCSP

computational results we have obtained have shown that the F -node-partition, SP-
node-partition and partition inequalities are effective for solving the problem. Also,
the reduction operations we have used are shown to be efficient in the separation phase
of the Branch-and-Cut algorithm. The experiments also show that, as for the kECSP,
the kNCSP becomes easier when k increases, and is harder when k is odd than when
k is even.

The study presented in this chapter shows the efficiency of some valid inequalities,
namely F -node-partition, SP-node-partition and partition inequalities, in solving the
kNCSP. It would be interesting to investigate the polytope of the problem in a deeper
way and identify cases in which these inequalities completely define the polytope of
the problem.

Chapter 4

Branch-and-Cut-and-Price

Algorithm for the 2NCSP

Contents

4.1 Extended formulation . 67

4.2 Branch-and-Cut-and-Price algorithm 69

4.2.1 Column generation algorithm 69

4.2.2 Pricing heuristics . 72

4.3 Computational results . 73

4.4 Conclusion . 77

In this chapter we present a Branch-and-Cut-and-Price algorithm we have devised
to solve the 2NCSP. In Section 4.1 we will present an extended formulation for the
problem. In sections 4.2.1 and 4.2 we will describe the framework of the column
generation algorithm. In Section 4.3, we will present some computational results and
Section 4.4 will be devoted to some concluding remarks.

4.1 Extended formulation

We give a cycle-based integer programming formulation for the 2-node-connected sub-
graph problem. We consider an undirected graph G = (V, E), and let w(e) be the
weight of the edge e, for all e ∈ E. We suppose that w(e) > 0, for all e ∈ E.

68 Branch-and-Cut-and-Price Algorithm for the 2NCSP

First, we observe that in a solution of the problem, each two nodes of the graph
belong to a cycle. Thus any solution of the problem is composed of a collection of
cycles.

Let θuv be the set of simple cycles of G going through nodes u and v, for all u, v ∈ V ,
and let θ =

⋃
u,v∈V,u 6=v

θu,v. Also for a cycle C and two nodes u, v ∈ V , let

aC(u, v) =

{
1 if the cycle C goes through the nodes u and v,
0 otherwise.

for all u, v ∈ V , and

bC(e) =

{
1 if the cycle C uses edge e

0 otherwise.

for all e ∈ E.

Now let y(C) be a 0 − 1 variable whose value is 1 if the cycle C ∈ θ is taken in
the solution and 0 otherwise, and x ∈ {0, 1}E such that x(e) = 1 if edge e is taken in
the solution and 0 otherwise. Consider the following inequalities which are satisfied by
every solution of the 2NCSP.

∑

C∈θ

aC(u, v)y(C) ≥ 1 for all u, v ∈ V, (4.1)

∑

C∈θ

bC(e)y(C) ≤Mx(e) for all e ∈ E, (4.2)

y(C), x(e) ∈ {0, 1} for all e ∈ E and c ∈ θ. (4.3)

Here M is an upper bound on the number of cycles going through an edge in a
solution and can be chosen to be M = (|V | − 2)!.

Inequalities (4.1) ensure that between each two nodes u and v in V there exists a
cycle going through u and v, and inequalities (4.2) ensure that if an edge is not taken
in the solution, all the cycles containing the edge are not considered.

Moreover, the following is easily seen.

Theorem 12 The 2NCSP is equivalent to the following integer program

min{wx | x satisfies (4.1)− (4.3) and x ∈ ZE
+}. (4.4)

4.2 Branch-and-Cut-and-Price algorithm 69

Formulation (4.4) uses an exponential number of variables but a polynomial number
of contraints. We will use a column generation algorithm to solve its linear relaxation.

4.2 Branch-and-Cut-and-Price algorithm

4.2.1 Column generation algorithm

A column generation algorithm for the linear relaxation of (4.4) starts by solving a
linear program obtained from (4.4) by considering a subset of variables (columns)
which induce a feasible basis for the initial problem. For our purpose, we consider
first sets of hamiltonian cycles CH ⊂ θ. Note that the subgraph induced by the cycles
of CH contains 2 node-disjoint paths between every pair of nodes of V . Thus, the
edge set corresponding to the cycles induces a solution of the 2NCSP, and, together
with the sets CH , induces a feasible solution for the linear relaxation of Formulation
(4.4). Hence, we consider as initial set of variables those induced by the edge set
corresponding to the cycles CH and the sets CH . The first linear program solved in the
column generation algorithm is, therefore, the one obtained from the linear relaxation
of Formulation (4.4) and these variables. This linear program is

Min
∑

e∈E

w(e)x(e)

∑

C∈CH

aC(u, v)y(C) ≥ 1 for all u, v ∈ V, (4.5)

∑

C∈CH

bC(e)y(C) ≤Mx(e) for all e ∈ E, (4.6)

y(C) ≥ 0 for every C ∈ CH , (4.7)

x(e) ≤ 1 for all e ∈ E. (4.8)

At each iteration, if the current solution is not optimal, the algorithm tries to generate
new columns, that is to add to CH , cycles C ∈ θ \CH such that the variable y(C) has
a negative reduced cost. This is done by solving the so-called pricing problem which
consists here in finding, a cycle C∗ such that Cr(C∗) = min{cr(C) | C ∈ θ} and
cr(C∗) < 0, where cr(C) is the reduced cost of the variable y(C).

The reduced cost cr(C) is computed using the dual optimal solution. Let αuv,
u, v ∈ V , be the dual variables associated with inequalities (4.5), βe the dual vari-
able associated with each inequality (4.6), for all e ∈ E, and γe the dual variables
associated with inequalities (4.8).

70 Branch-and-Cut-and-Price Algorithm for the 2NCSP

The dual problem is

Max
∑

u,v∈V

αuv

∑

u,v∈V

aC(u, v)αuv −
∑

e∈E

bC(e)βe ≤ 0 for all C ∈ θ, (4.9)

Mβe − γe ≤ w(e) for all e ∈ E, (4.10)

αuv ≥ 0, βe ≥ 0 for all u, v ∈ V and e ∈ E. (4.11)

Then, given a cycle C ∈ θ, the reduced cost of the variable y(C) is given by

cr(C) =
∑

u,v∈V

aC(u, v)αuv −
∑

e∈E

bC(e)βe. (4.12)

If cr(C) < 0 then ∑

u,v∈V (C)

αuv −
∑

e∈E(C)

βe > 0. (4.13)

where V (C) and E(C) denotes respectively the set of nodes and set of edges of the
cycle C.

Thus, the pricing problem reduces to find a longest cycle in the graph G, with respect
to lengths αuv, on the pairs (u, v) ∈ V × V and −βe on the edges e ∈ E. If a longest
cycle of G, say C∗, is such that

∑
u,v∈V (C)

αuv <
∑

e∈E(C)
βe, then cr(C∗) < 0. If not, then

cr(C) ≥ 0 for every cycle C ∈ θ.

The longest cycle between each two nodes u and v in V is computed using the
compact formulation of Dixon and Goodman [32]. The formulation is an integer linear
program in bounded variables. The ILP model will find the longest cycle through a
given node, say node 1, and application to each of the |V | nodes in the graph will get
the longest among all the cycles. The variables are

Xij =

{
1 if edge (i, j) is used in the longest cycle,
0 otherwise.

Fi =

{
1 if node i is used in the longest cycle,
0 otherwise.

The integer programming model is then

max z =
∑

i,j∈V

αijFiFj −
∑

(i,j)∈E

β(i,j)Xij

4.2 Branch-and-Cut-and-Price algorithm 71

subject to the constraints

|V |+1∑

i=1

Xik = Fk k = 2, 3, ..., |V | (4.14)

|V |+1∑

j=1

Xkj = Fk k = 2, 3, ..., |V | (4.15)

|V |∑

j=2

X1j =
|V |∑

i=1

Xi|V |+1 (4.16)

Yi − Yj + (|V |+ 1)Xij ≤ |V | i, j = 1, 2, ..., |V |+ 1 (4.17)

0 ≤ Yi ≤ |V |+ 1 Yi integer (4.18)

The node |V |+ 1 is introduced by splitting node 1 into nodes 1 and N + 1, each with
the same adjacencies. The constraints (4.14)-(4.18) specify a simple path from node 1
to node |V |+ 1. Constraints (4.17) and (4.18) introduce dummy integer variables, one
Yi for each node i ∈ V , which do not permit the development of disjoint side cycles.
This assures us that all feasible solutions will contain exactly one path from 1 to |V |+1.

Now if cr(C) ≥ 0 for all C ∈ θ, then the optimal solution of the current linear
program is optimal for the linear relaxation of Formulation (4.4).

The optimal solution of the linear relaxation of Formulation (4.4) is feasible for
Formulation (4.4) if it is integral. If this is not the case, then we add further valid
inequalities for 2NCSP(G) that are violated by this solution. The inequalities that are
considered are the cut inequalities (2.3), and the F -partition inequalities (2.12).

To obtain initial interesting feasible solutions we have implemented several heuristics
that generate hamiltonian cycles. The first heuristic is quite simple. We initialize the
cycle by randomly choosing a node. Then we add a minimum weight edge, not selected
before, among its incidence edge list. We continue adding the edges in the same way
until we complete the cycle.

The second is a Greedy heuristic. It gradually constructs a cycle by repeatedly
selecting an edge having the smallest weight, and adding it to the cycle as long as it
doesn’t create a cycle with less than |V | edges, or increases the degree of any node to
more than 2. We must not add the same edge twice of course. The steps are:
1. Sort all edges.
2. Select an edge with the smallest weight and add it to the cycle if it doesn’t violate

72 Branch-and-Cut-and-Price Algorithm for the 2NCSP

any of the above constraints.
3. If we do not have |V | edges in the cycle, repeat step 2.

4.2.2 Pricing heuristics

The problem of finding the longest simple cycle or path in an edge-weighted network is
NP-complete. And the exact pricing in our problem requires |V | calls to the compact
formulation in [32]. Therefore we also needed pricing heuristics we used before calling
the exact pricing.

In the first pricing heuristic we first add a maximum weight edge. We then construct
the cycle by adding the edge that maximizes the cycle weight, among the remaining
edges. Once we obtain a cycle, we remove all the isolated branches.

The second heuristic is based on a Tabu Search. The fundamental concept in any
neighborhood search is the notion of a neighborhood. The neighborhood N of a solution
s (noted N(s)) is a set of solutions where each s∗ ∈ N(p) is reachable by a simple move

from s. The definition of the move is arbitrary, in our heuristic a move scheme is
either a swap of two adjacent nodes in the path, deleting a node from the path, or
adding a node to the path. The move is chosen randomly with equal probabilities. In
a naive neighborhood search, the algorithm starts with a solution s and then evaluates
all solutions in N(s). Then it chooses the best sb ∈ N(s), sets s = sb, and iterates.
The problem with a naive neighborhood search is that it can ascend to local maxima
and returns a suboptimal solution. The main idea is that certain moves within the
neighborhood are classified as tabu under certain circumstances. If a move is tabu,
the solution generated by that move cannot usually be considered the best in the
neighborhood. The exception to the rule is that if a tabu move would result in a
solution which is better than any of the solutions that have been seen to that point.
If such a solution exists, the algorithm will then choose that solution even though it is
tabu. Finally, we define stopping conditions for the main loop. We set the maximum
number of iterations at max_It=1000. The algorithm will terminate if this number of
iterations is reached. The algorithm also stops if there is no improvement in max_It/5
iterations. The whole pricing procedure is summarized in Algorithm 4 below.

4.3 Computational results 73

Algorithm 4: General framework for the Branch and Cut and Price algorithm
Data: An undirected graph G = (N, E), a fractional solution y

Result: An integer solution for the 2NCSP

begin

/*Compute the heuristics to initial feasible solutions*/

compute_Initial_Cycles_Greedy();

compute_Initial_Hamiltonian_Cycles();

/*Check if the resulting graph is 2-node-connected*/

FeasibleSolutionFound← False;

repeat

Call the separation procedure for cut and F -partition inequalities;

if there is a cut or an F -partition inequality violated by z then

add the cut to the PL;

end

else

Call the heuristic pricing procedure;

compute_Longest_Cycle_Heuristic_Tabu();

compute_maximum_weight_edge_Heuristic();

if there is a violated cycle then

add the cycle variable;

end

else

Call the exact pricing procedure;

compute_Longest_Cycle_Exact();

if there is a violated cycle then

add the cycle variable;

BranchingIsDone← T rue;

end

else

FeasibleSolutionFound← T rue;

end

end

end

until FeasibleSolutionFound = True;

return FeasibleSolution;

end

4.3 Computational results

The Branch-and-Cut-and-Price algorithm described in the previous section has been
implemented in C++, using SCIP 3.2.1 [4] to manage the Branch-and-Price, and
CPLEX 12.5 as LP-solver for the exact pricing. All experiments were run on a com-

74 Branch-and-Cut-and-Price Algorithm for the 2NCSP

puter equiped with a 2.10 GHz x4 Intel Core(TM) i7-4600U processor and running
under linux with 16 GB of RAM. The maximum CPU time has been fixed to 5 hours.
The test problems we have considered are complete euclidian graphs from SNDLIB
library [1].

The entries of the tables presented below are:

|V | : the number of nodes of the graph,
Gen_Cuts : the number of generated cut and F -partition inequalities,
Gen_Cols : the number of generated columns,
COpt : value of the best upper bound obtained,
Gap : the relative error between the best upper bound and the lower bound

obtained at the root node of the tree,
NSub : the number of nodes in the tree,
CPU : total CPU time in hours:min:sec.

Our first series of experiments concerns the SNDLIB graphs. The results are sum-
murized in Table 4.1. For the SNDLIB graphs, with 11 up to 65 nodes, all the instances
have been solved to optimality within the time limit. The CPU time for these instances,
except the last one, is less than one hour. Some of the instances of the table didn’t
require branching, for example diyuan (11 nodes), newyork (16 nodes) and sun (27
nodes). For all the instances the relative error between the lower bound at the root
node and the best upper bound (Gap) is less than 1 %. We can also see that the column
generation algorithm added a large number of variables and our separation procedures
have detected an important number of cut inequalities and F -partition inequalities.

Our second series of experiments concerns the TSPLIB graphs given in Table 4.2.
The instances we have considered have graphs with 14 up to 137 nodes. We observe
that 12 instances over 13 have been solved to optimality within the time limit. For the
last instance the algorithm has not been able to finish the resolution within 5 hours.
A large number of variables were added by the column generation algorithm, and an
important number of cut inequalities and F -partition inequalities have been generated.
The gap between the lower bound at the root node of the Branch-and-Cut tree and
the best upper bound is less than 0.01 for almost all the instances, except for pr76.

In the rest of this section, we focus on the comparison between the results obtained
by the column generation algorithm and the Branch-and-Cut algorithm presented in
Chapter 3 for k = 2, in terms of CPU time, Gap, number of nodes in the Branch-and-
Cut tree and in terms of best solution.

4.3 Computational results 75

Table 4.1: Results for the SNDLIB instances.

Instance |V | Gen_Cuts Gen_Cols COpt Gap NSub CPU

diyuan 11 2 0 989 0.00 1 0:00:02

pdh_12 11 19 0 18 0.00 1 0:00:03

abilene 12 19 24 121 0.04 15 0:00:18

atlanta 12 17 28 115 0.00 1 0:00:03

polska 12 26 4 27 0.05 11 0:00:01

nobel-us 14 32 0 117 0.00 5 0:00:02

newyork 16 24 56 2335 0.00 1 0:00:04

geant 22 58 80 226 0.02 15 0:00:20

ta1 24 45 27 1859 0.02 27 0:00:31

france 25 52 43 1985 0.01 7 0:00:48

janos-us 26 64 626 178 0.06 25 0:00:21

sun 27 50 22 2849 0.00 1 0:00:08

norway 27 91 1068 3847 0.08 139 0:01:19

janos-us-ca 37 85 14 201 0.06 27 0:00:24

cost266 37 118 7876 173 0.07 103 0:12:59

giul39 39 149 6576 3949 0.05 147 0:09:46

pioro 40 81 2168 3625 0.03 11 0:01:44

germany 50 67 4948 56 0.1 33 0:52:34

ta2 65 148 2439 3455 0.04 3 1:06:10

Table 4.2: Results for the TSPLIB instances.

Instance |V | Gen_Cuts Gen_Cols COpt Gap NSub CPU

burma14 14 38 124 3841 0.06 29 0:00:08

ulysses22 22 56 868 8180 0.07 47 0:00:31

fri26 26 67 65 965 0.01 23 0:01:33

bays 29 84 1498 9884 0.05 55 0:03:41

dantzig42 42 82 1 699 0.00 1 0:00:20

eil51 51 114 6847 482 0.06 19 4:59:01

berlin52 52 141 127 8181 0.04 7 0:05:48

st70 70 191 2970 750 0.05 3 4:51:05

pr76 76 240 2595 130921 0.1 5 4:53:32

kroC100 100 376 2135 23295 0.05 46 2:45:27

lin105 105 420 8771 16766 0.07 36 4:41:23

ch130 130 331 3722 7129 0.07 48 4:55:44

gr137 137 363 5579 79460 0.06 25 5:00:00

76 Branch-and-Cut-and-Price Algorithm for the 2NCSP

The entries of the following tables are:

|V | : the number of nodes of the graph,
COpt_BC : value of the best upper bound obtained by the Branch-and-Cut,
COpt_BCP : value of the best upper bound obtained by the Branch-and-Cut-and-Price,
Gap_BC : the gap for the Branch-and-Cut,
Gap_BCP : the gap for the Branch-and-Cut-and-Price,
NSub_BC : the number of nodes in the tree for the Branch-and-Cut,
NSub_BCP : the number of nodes in the tree for the Branch-and-Cut-and-Price,
CPU_BC : total CPU time for the Branch-and-Cut,
CPU_BCP : total CPU time for the Branch-and-Cut-and-Price.

First, in Table 4.3 we compare the two formulations for the SNDLIB instances. We
observe that for these instances the CPU time for the column generation algorithm is
greater than for the Branch-and-Cut algorithm. We also observe that the number of
instances solved to optimality is quite the same for the two formulations, and the gaps
are generally close. We can also see that most of the instances required more branching
in the column generation algorithm than in the Branch-and-Cut algorithm.

Table 4.3: Branch-and-Cut and Branch-and-Cut-and-Price comparison for SNDLIB
instances.

Instance |V | COpt_BC COpt_BCP Gap_BC Gap_BCP NSub_BC NSub_BCP CPU_BC CPU_BCP

atlanta 12 120 121 0.00 0.4 12 15 0:00:01 0:00:18

polska 12 27 27 4.17 0.05 12 11 0:00:01 0:00:01

nobel-us 14 117 117 0.00 0.00 14 5 0:00:01 0:00:02

newyork 16 2450 2543 0.00 0.04 16 17 0:00:01 0:00:12

geant 22 222 226 0.00 0.02 22 15 0:00:02 0:00:20

ta1 24 1850 1859 0.00 0.02 24 27 0:00:01 0:00:31

france 25 1960 1985 0.00 0.01 25 7 0:00:13 0:00:48

janos-us 26 178 178 0.00 0.06 26 25 0:00:02 0:00:21

norway 27 3720 3847 0.00 0.04 27 25 0:00:02 0:01:02

sun 27 2849 2849 0.88 0.00 27 1 0:00:01 0:00:08

india 35 270 184 0.00 0.06 35 117 0:00:21 0:09:35

cost266 37 165 173 0.00 0.07 37 103 0:00:04 0:12:59

janos-us-ca 37 201 201 0.00 0.06 37 27 0:00:06 0:00:24

giul39 39 3590 3949 0.6 0.05 39 147 0:00:34 0:09:46

pioro 40 3555 3625 0.00 0.03 40 11 0:01:19 0:01:44

ta2 65 3320 3455 0.09 0.04 65 3 0:12:35 1:06:10

Then, in Table 4.4 we compare the two formulations for the TSPLIB graphs. We
observe that the efficiency of the different algorithms for solving the problem is not

4.4 Conclusion 77

the same. For the instances solved to optimality, the total CPU time for the Branch-
and-Cut algorithm is better than for the column generation algorithm, except for the
instance kroC100, it was solved in 3h 49mn 24s for the column generation algorithm
and in 2h 45mn 27s for the Branch-and-Cut algorithm. The important CPU time for
the column generation algorithm can be explained by the fact that the pricing problem
used to solve the linear relaxation of the extended formulation, computes a longest
cycle formulation, which contains a quadratic objective function. Thus, the difference
of CPU time mainly is the time spent by the algorithm for the pricing. However, the
gap obtained by the column generation algorithm is in general better than the gap
obtained by the Branch-and-Cut algorithm.

Table 4.4: Branch-and-Cut and Branch-and-Cut-and-Price comparison for TSPLIB
instances.

Instance |V | COpt_BC COpt_BCP Gap_BC Gap_BCP NSub_BC NSub_BCP CPU_BC CPU_BCP

burma14 14 3323 3841 0.00 0.06 1 29 0:00:01 0:00:08

ulysses22 22 7013 8180 0.00 0.07 1 47 0:00:01 0:00:31

fri26 26 937 965 0.05 0.01 12 23 0:00:54 0:01:33

bays29 29 2020 9884 0.02 0.05 6 55 0:00:15 0:03:41

dantzig42 42 699 699 0.4 0.00 11 1 0:00:20 0:01:42

eil51 51 426 482 0.00 0.06 1 19 0:02:01 4:59:01

berlin52 52 7542 8181 0.00 0.04 1 7 0:00:16 0:05:48

s70 70 675 750 0.15 0.05 5 3 0:12:12 4:51:05

pr76 76 108159 130921 0.01 0.1 8 5 0:41:30 4:53:32

kroC100 100 20749 23295 4.57 0.05 78 46 3:49:24 2:45:27

lin105 105 14379 16766 0.39 0.07 63 36 2:15:24 4:41:23

ch130 130 6110 7129 0.12 0.07 57 48 2:45:25 4:55:44

gr137 137 69853 79460 7.38 0.06 42 25 5:00:00 5:00:00

4.4 Conclusion

In this chapter, we presented an extended formulation for the k-node-connected sub-
graph problem. We studied a column generation algorithm and efficient heuristics for
the resolution of the problem. And using these results we devised a Branch-and-Cut-
and-Price algorithm to solve the problem. The computational results have shown that
the column generation algorithm is effective in solving the problem and producing good
upper bound for the problem. Also, it has been shown that the Branch-and-Cut al-
gorithm is more efficient in solving the problem to optimality. We also observed that
for the column generation algorithm when approaching a near optimal LP value, the

78 Branch-and-Cut-and-Price Algorithm for the 2NCSP

algorithm struggles to find the optimal LP value even though it is close. This phe-
nomenon is known as the tailing off effect. As described in [25], a main explanation for
the tailing off effect is that the dual variables converge slowly towards their respective
optimal value, and, from one iteration to another, take unrelated and random values.
As a future work, we can aim at decreasing this effect, which will improve the efficiency
of the resolution by introducing an algorithm that stabilizes and accelerates the solu-
tion process while remaining within the linear programming framework. The stabilized
algorithm can be used to improve the solution times for difficult instances and to solve
larger ones.

One can also try to extend the approach developed in this chapter to study the
problem for k ≥ 3 with an extended formulation using path variables, and devise
efficient Branch-and-Price and Branch-and-Cut-and-Price algorithms for the problem
in this case.

Chapter 5

The k node-disjoint hop-constrained

survivable network problem

Contents

5.1 Integer Programming Formulation 80

5.2 Polytope and valid inequalities 85

5.2.1 Generalized L-st-path-cut inequalities 86

5.2.2 Double cut inequalities . 86

5.2.3 Triple path-cut inequalities 88

5.2.4 Steiner-partition inequalities 89

5.2.5 Steiner SP-partition inequalities 91

5.2.6 The rooted partition inequalities 92

5.2.7 st-jump inequalities . 93

5.3 Facets of the kNDHP polytope 94

5.4 Conclusion . 104

Given a graph with weights on the edges, a set of origin and destination pairs of
nodes, and two integers L ≥ 2 and k ≥ 2, the k node-disjoint hop-constrained network
design problem is to find a minimum weight subgraph of G such that between every
origin and destination there exist at least k node-disjoint paths of length at most L.

In this chapter we consider this problem from a polyhedral point of view. We propose
an integer linear programming formulation for the problem for L = 2, 3 and investigate
the associated polytope. We introduce new valid inequalities for the problem, and give

80 The k node-disjoint hop-constrained survivable network problem

necessary and sufficient conditions for these inequalities to be facet defining. We also
devise separation algorithms for these inequalities. Using these results, we propose a
Branch-and-Cut algorithm for solving the problem for k ≥ 0 and L = 3, and for k = 2
and L = 4, along with some computational results.

5.1 Integer Programming Formulation

Let G = (V, E) be a graph, and F ⊆ E an edge set which induces a solution of
the kNDHP. As F is a solution of the problem, the subgraph induced by F , say GF ,
contains k edge-disjoint st-paths for every (s, t) ∈ D. Thus, by Menger’s theorem [60],
every st-cut of GF contains at least k edges. Consequently, the incidence vector of F

satisfies the following inequalities

x(δG(W)) ≥ k, for all st-cut δ(W) and (s, t) ∈ D. (5.1)

Inequalities (5.1) are called st-cut inequalities.

Dahl [21] introduces a class of valid inequalities as follows.

Let (V0, ..., VL+1) be a partition of V with s ∈ V0, t ∈ VL+1, and Vi 6= ∅ for all
i ∈ {1, ...L}. Let T be the set of edges uv ∈ E such that u ∈ Vi, v ∈ Vj and |i− j| > 1,
that is,

T = δ(V0, ..., VL+1) \
L⋃

i=0

[Vi, Vi+1].

The set T is called an L-st-path cut. Then the inequality

x(T) ≥ 1

is valid for the L-st-path polyhedron. Using similar type of partitions, we can generalize
these inequalities to the kNDHP as

x(T) ≥ k, for every L-st-path-cut T of G, (5.2)

for any (s, t) ∈ D.

Inequalities of type (5.2) are called L-st-path-cut inequalities. Figure 5.1 shows an
L-st-path-cut.

5.1 Integer Programming Formulation 81

V2
V3 V4

ts

V1V0

Figure 5.1: Support graph of an L-st-path-cut with L = 3 and T formed by the solid
edges

Inequalities (5.1) and (5.2) can be easily adapted in order to ensure the existance
of k node-disjoint paths of length at most L. Given node subsets Z ⊂ V \ {s, t} for
(s, t) ∈ D, and W ⊂ V \ Z, the st-node cut δG\Z(W) of G is the st-cut induced by W

in G \ Z. Any L-st-path cut in G \ Z is called an L-st-node path-cut of G.

A solution x ∈ RE of the kNDHP also satisfies the following inequalities

x(δG\Z(W)) ≥ k − |Z|, for all st-node-cut δG\Z(W), Z ⊂ V \ {s, t} (5.3)

such that 1 ≤ |Z| ≤ k − 1, and (s, t) ∈ D,

x(TG\Z) ≥ k − |Z|, for all L-st-node-path-cut TG\Z of G \ Z, (5.4)

Z ⊂ V \ {s, t}such that 1 ≤ |Z| ≤ k − 1,

and (s, t) ∈ D.

Inequalities (5.3) and (5.4) are called respectively st-node-cut and L-st-node-path-cut

inequalities. Moreover, the incidence vector of an edge set F inducing a solution of the
kNDHP satisfies

x(e) ≥ 0, for all e ∈ E, (5.5)

x(e) ≤ 1, for all e ∈ E. (5.6)

In the following we show that the st-cut, st-node-cut, L-st-path-cut, L-st-node-path-
cut, and trivial inequalities, together with integrality constraints, suffice to formulate
the kNDHP as a 0− 1 linear program when L ∈ {2, 3}.

For this, we consider, for each demand (s, t) the directed G̃st = (Ṽst, Ãst) obtained
as follows (see also [10] and [26]). The node set Ṽst is formed by the nodes s, t, the

82 The k node-disjoint hop-constrained survivable network problem

node set of V \ {s, t} and a copy u′ for each node u ∈ V \ {s, t}. The set of arcs Ãst is
obtained as follows. For each edge su ∈ E (resp. ut ∈ E) we add in Ãst an arc (s, u′)
(resp. (u′, t)). For each edge uv ∈ E, with u, v 6= s, t, we add two arcs (u, v′) and (v, u′)
in Ãst. Finally, for each node u ∈ V \ {s, t}, we add an arc (u, u′) in Ãst. It is not hard
to see that that every st-dipath of G̃st corresponds to a 3-st-path of G, and vice-versa.
Also, two node-disjoint 3-st-path of G correspond to two directed node-disjoint st-path
of G̃st. However, the converse is not true, that is two node-disjoint st-dipaths of G̃st

may not correspond to node-disjoint 3-st-paths of G (see Figure 5.2 for illustration).

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��������������

����������������

��������������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

s

u u′

v

w w′

t

v

s

w

t

u

v′

Figure 5.2: Construction of the graph H for L = 3.

Bendali et al. [10] show that every st-cut and 3-st-path-cut C ⊆ E can be associated
with a directed st-cut C̃ ⊆ Ãst which does not contain an arc of the form (u, u′), with
u ∈ V \ {s, t}, and vice-versa. Moreover, they show that a solution x ∈ RE can be
associated with a solution y ∈ RÃst such that x(C) = y(C̃).

Now we give the following theorem.

Theorem 13 Let x ∈ {0, 1}E be an integral solution, which satisfies all the cut and

3-st-path-cut inequalities (5.1) and (5.2). Then, x induces a solution of the kNHDP if

and only if it satisfies all the st-node-cut and 3-st-node-path-cut inequalities.

Proof. As the st-node-cut and the 3-st-node-cut inequalities are valid for the kNDHP,
if x is a solution of the kNDHP, then it satisfies these inequalities.

Now suppose that x does not induce a feasible solution of the kNHDP, that is the
subgraph of G induced by x, denoted by G(x) = (V, E(x)) does not contain k node-
disjoint 3-st-paths for some demand (s, t) ∈ D. We are going to show that there exists

5.1 Integer Programming Formulation 83

an st-node-cut or a 3-st-node-path-cut inequality which is violated by x.
Let G̃st be the directed graph associated with (s, t) as described above, and let ỹ ∈ RÃst

be a weight vector such that

ỹ(a) =





1 if a corresponds to edge e and e ∈ E(x),
0 if a corresponds to edge e and e /∈ E(x),
+∞ if a = (u, u′) for all u ∈ V \ {s, t}.

Remark that, as G is simple, that it is does not contain parallel edges, if two 3-st-
paths P1 and P2 are not node-disjoint, then they are of the form P1 = (s, u, v, t) and
P2 = (s, v, z, t) with u, v, z ∈ V \ {s, t} and u 6= v 6= z. These two paths correspond in
G̃st to paths (s, u, v′, t) and (s, v, z′, t). Conversely, two paths (s, u, v′, t) and (s, v, z′, t)
of G̃st correspond to two paths (s, u, v, t) and (s, v, z, t) which are not node-disjoint.
Consequently, when x is not feasible for the kNHDP, any maximum set of disjoint st-
dipaths of the graph G̃st, will contain two paths of the form (s, u, v′, t) and (s, v, z′, t),
with u, v, z ∈ V \ {s, t} and u 6= v 6= z 6= u.

Now we introduce the following procedure, that we call Procedure BuildZ, which aims
to build a node set Z ⊆ V , from which we will obtain the violated st-node-cut or 3-st-
node-path-cut inequalities. Let Z ⊆ V be a node set of G and denote by Z̃ the nodes of
G̃st corresponding to those of Z, that is Z̃ = {u, u′ such that u ∈ Z}. At the begining
of the procedure Z = ∅. Now compute a maximum flow from s to t in G̃st \ Z̃, with
each arc a ∈ Ãst having the capacity ỹ(a). This gives a maximum set P̃ of node-disjoint
st-dipaths in G̃st \ Z̃. This is because the flow going in or out of a node v ∈ W \ {s′, t′}

is either 0 or 1, for each node v ∈W \{s′, t′} has at most one arc going in from s′ and at
most one arc goint out to t′. Remark that some of these paths may correspond to non
node-disjoint 3-st-paths of G, that is they are of the form (s, u, v′, t) and (s, v, z′, t).
Let P̃′ be the set of these paths. Also let P′ be the set of paths of G corresponding
to those of P̃′ and U ⊆ V the set of nodes of G which are shared by two paths of P′.
Now, add to Z the nodes of U and repeat this procedure until |Z| ≥ k or U = ∅. It
should be noticed that when U = ∅, the arc-disjoint st-dipaths obtained by the com-
putation of the maximum flow in G̃st\Z̃ correspond to node-disjoint 3-st-paths of G\Z.

The identification of the nodes of U can be easily done by simply considering, for
each node u ∈ V \ Z, the arcs entering and leaving nodes u and u′ with flow value 1.
Namely, consider a node v ∈ U . This means that after the maximum flow computation,
there are two paths (s, u, v′, t) and (s, v, z′, t). Since the arc capacities are either 0 or
1, this means that

84 The k node-disjoint hop-constrained survivable network problem

• the flow value on arc (s, v) is 1,

• the flow value on arc (v, v′) is 0,

• the flow value on arc (v′, t) is 1.

Figure 6.2 illustrates the above remark. The solid lines represent arcs having flow
value 1 and dashed lines represent arcs with flow value 0. The flow value of the arcs
represented by dotted lines may be 0 or 1.

s t

u

v

z

u′

v′

z′

Figure 5.3: Two st-dipaths of G̃st \ Z̃ inducing non node-disjoint 3-st-paths in G \ Z.

Thus, let Z ⊆ V \ {s, t} be the node set obtained by the application of procedure
BuildZ. It is not hard to see that by the construction of Z, the graph G(x) contains
|Z| st-paths of the form (s, u, t), for all u ∈ Z. Clearly, these paths are node-disjoint.
This also implies that |Z| ≤ k − 1, for otherwise, G(x) would contain at least k node-
disjoint 3-st-paths, which is not possible. Now compute a maximum flow from s to t

in G̃st \ Z̃, and let f be the value of that flow. By the construction of Z, this later flow
corresponds to a set of f disjoint 3-st-paths of G which are node-disjoint. Moreover,
these paths are node-disjoint from those induced by Z. Thus, together with the paths
induced by Z, we obtain |Z|+ f node-disjoint 3-st-paths in G(x). As by assumption,
G(x) does not contain k node-disjoint 3-st-paths, we have that |Z| + f < k, that is
f < k − |Z|.

Now, as f is the value of the maximum flow of G̃st \ Z, the weight of a minimum
cut C̃ of G̃st \ Z is ỹ(C̃) = f < k − |Z|. Finally, as shown by Bendali et al. [10], C̃

corresponds to to an edge set C which is either an st-cut or a 3-st-path-cut of G \ Z,
that is C corresponds to an st-node-cut or a 3-st-node-path-cut of G whose weight is
x(C) = ỹ(C̃) = f < k − |Z|. Consequently, the st-node-cut or 3-st-node-cut induced
by C is violated by x. �

5.2 Polytope and valid inequalities 85

ts

Figure 5.4: Infeasible solution of the 2NDHP with L = 5 and D = {(s, t)}.

From Theorem 13 the kNDHP is equivalent to

min{cx | x satisfies (5.1)− (5.6) and x ∈ ZE
+}. (5.7)

We will call inequalities (5.1)-(5.6) basic inequalities. Here basic means that they are
necessary in the basic formulation of the problem. We will denote by kNDHP(G, L)
the convex hull of all the integer solutions of (5.1)-(5.6), and call kNDHP(G, L) the

k-Node-Disjoint Hop-Constrained Problem polytope.

Formulation (5.7) is no longer valid for L ≥ 5. Consider for example the graph
shown in Figure 5.4. For k = 2 its incidence vector satisfies inequalities (5.1)-(5.6) but
the graph does not contain two node-disjoint st-paths of length at most L = 5. This
example is borrowed from [50].

5.2 Polytope and valid inequalities

In this section, we present several classes of valid inequalities inspired from the kEDHP
that have been introduced in the literature. Since any solution of the kNDHP is also
solution of the kEDHP, any valid inequality for the kEDHP polytope on G is also
valid for kNDHP(G, L). Also note that if S ⊆ E is a solution of kNDHP in G and
Z ⊂ V , such that |Z| ≤ k − 1, then the restriction of S on G \ Z is a solution of the
(k − |Z|)NDHP on G \ Z with respect to origin-destination pairs contained in G \ Z.

Lemma 9 Let Z ⊂ V , and let D′ ⊆ D be a subset of origin-destination pairs in G\Z.

Suppose that D′ 6= ∅. If an inequality ax ≥ α(k) is valid for kNDHP(G, L) in G with

86 The k node-disjoint hop-constrained survivable network problem

respect to D then the inequality a′x ≥ α(k − |Z|) is valid for kNDHP(G \ Z, L), with

respect to D′, where a′ is the restriction of a on G \ Z.

Note that in Lemma 9 we consider α(k) as a right hand side in the inequality ax ≥ α(k)
just to express the fact that the right hand side of a valid inequality of the kNDHP
may depend of k.

5.2.1 Generalized L-st-path-cut inequalities

Dahl and Gouveia [23] introduce the so-called generalized L-st-path-cut inequalities
for the problem of finding an L-st-path between two nodes s and t. They are defined
as follows. Let (s, t) ∈ D and π = (V0, ..., VL+r), r ≥ 1, be a partition of V such that
s ∈ V0 and t ∈ VL+r. Then the generalized L-st-path-cut inequality induced by (s, t)
and π is

∑

e∈[Vi,Vj],i6=j

min(|i− j| − 1, r)x(e) ≥ r. (5.8)

These inequalities can be easily extended to the kNDHP by replacing the right-hand-
side of inequality (5.8) by (k − |Z|)r, with Z ⊂ V , |Z| ≤ k − 1, yielding

∑

e∈[Vi,Vj],i6=j

min(|i− j| − 1, r)x(e) ≥ (k − |Z|)r. (5.9)

Inequality (5.9) is valid for kNDHP(G, L). A jump is an edge between two non-
consecutive sets of π. Inequality (5.9) gives the minimum number of jumps in a parti-
tion π = (V0, ..., VL+r) needed in a solution of the problem. Inequalities of type (5.9)
will also be called generalized L-st-path-cut inequalities.

5.2.2 Double cut inequalities

Huygens et al. [49] introduce the so-called double cut inequalities for the 2EDHP for
L = 3. They are defined as follows. Consider the partition π = (V 1

0 , V 2
0 , V1, ..., V4) of

V such that (V 1
0 , V 2

0 ∪ V1, V2, V3, V4) induces a 3-st-path-cut, and V1 induces a valid
st-cut in G. If F ⊆ [V 2

0 ∪ V1 ∪ V4, V2] is chosen such that |F | is odd, then the double
cut inequality can be written as

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4])+

x([V1, V3 ∪ V4]) + x([V 2
0 ∪ V1 ∪ V4, V2]) ≥

⌈
3−
|F |

2

⌉
(5.10)

5.2 Polytope and valid inequalities 87

s ts1

V 1
0 V 2

0

V1 V2 V3
V4

edges of the double cut not in F
edges not in the double cut
possible edges of F

Figure 5.5: A double cut with L = 3 and t1 = t.

We now generalize these inequalities for the kNDHP for L ≥ 2. Let Z ⊂ V \ {s, t},
for (s, t) ∈ D, and V0, ..., Vi0−1, V 1

i0
, V 2

i0
, Vi0+1, ..., VL+1 be a family of node subsets of

V \Z such that π = (V0, ..., Vi0−1, V 1
i0

, V 2
i0
∪Vi0+1, ..., VL+1) induces a partition of G \Z.

Suppose that

1. there exists an (s, t) ∈ D such that V 1
i0
∪ V 2

i0
induces an st-node-cut in G \ Z

and s ∈ V 1
i0

or t ∈ V 1
i0

,

2. there exists an (s, t) ∈ D such that Vi0+1 induces an st-node-cut in G \ Z,

3. there exists an (s, t) ∈ D such that π induces an L-st-node-path-cut in G \ Z

with s ∈ V0 (resp. t ∈ V0) and t ∈ VL+1 (resp. s ∈ VL+1).

Let E = [Vi0−1, V 1
i0

]∪ [Vi0+2, V 2
i0
∪ Vi0+1]∪

(
⋃

k,l/∈{i0,i0+1},|k−l|>1
[Vk, Vl]

)
and F ⊆ E such

that |F | and k − |Z| have different parities.

Let also Ê = (
i0−2⋃
i=0

[Vi, Vi+1]) ∪ (
L⋃

i=i0+2
[Vi, Vi+1]) ∪ F . Then we have the following

inequality.

x(δ(π) \ Ê) ≥

⌈
3(k − |Z|)− |F |

2

⌉
(5.11)

Theorem 14 Inequalities (5.11) are valid for kNDHP(G, L).

88 The k node-disjoint hop-constrained survivable network problem

Proof. Let TG\Z be the L-st-node-path-cut of G \ Z induced by the partition π and
Z. Thus, the following inequalities are valid for kNDHP(G, L),

xG\Z(T) ≥ k − |Z|,

x(δG\Z(V 1
i0
∪ V 2

i0
)) ≥ k − |Z|,

x(δG\Z(Vi0+1)) ≥ k − |Z|,

−x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F.

(5.12)

By summing these inequalities, divinding by 2 and rouding up the right hand side,
we obtain inequality (5.11). �

These inequalities will also be called double-cut inequalities.

If L = 3 and i0 = 0, inequality (5.11) can be written as

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])+

x([V 2
0 ∪ V1 ∪ V4, V2] \ F) ≥

⌈
3(k − |Z|)− |F |

2

⌉
. (5.13)

Here π = (V 1
0 , V 2

0 ∪ V1, V2, V3, V4) and F ⊆ [V 2
0 ∪ V1 ∪ V4, V2] such that |F | and k − |Z|

have different parities.

5.2.3 Triple path-cut inequalities

Huygens et al. [49] introduce the so-called triple path-cut inequalities for the 2EDHP
for L = 3. They are defined for a partition (V0, V1, ..., V5) of V with s1, s2 ∈ V0, t1 ∈ V4

and t2 ∈ V5. Then the triple path-cut inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3])+

x([V0 ∪ V1 ∪ V2 ∪ V3, V4 ∪ V5] \ {e}) + x([V4, V5]) ≥ 3 (5.14)

where e ∈ [V2 ∪ V3, V4] ∪ [V3, V5], is valid for 2EDHP(G, 3).

We now generalize these inequalities for the kNDHP for L = 3.

5.2 Polytope and valid inequalities 89

Theorem 15 Let Z ⊂ V \ RD, where RD is the set of terminal nodes of G. Let

(V0, ..., V3, V 1
4 , V 2

4 , V 1
5 , V 2

5) be a family of node sets of V \ Z such that (V0, ...,

V3, V 1
4 ∪V 2

4 , V 1
5 ∪V 2

5) induces a partition of V \Z and there exist two demands {s1, t1}

and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2
4 and t2 ∈ V 2

5 . The sets V 1
4 and V 1

5 may be

empty and s1 and s2 may be the same. Let also V4 = V 1
4 ∪ V 2

4 , V5 = V 1
5 ∪ V 2

5 and

F ⊆ [V2, V 2
4]∪ [V3, V4 ∪ V5] such that |F | and k− |Z| have different parities. Then, the

inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3]) + x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])+

x([V2, V5]) + x(([V2, V4] ∪ [V3, V4 ∪ V5]) \ F) ≥

⌈
3(k − |Z|)− |F |

2

⌉
(5.15)

is valid for kNDHP(G, 3).

Proof. Let T1 be the 3-s1t1-node-path-cut induced by the partition (V0, V1∪V5, V2, V3∪

V 1
4 , V 2

4) and Z, and T2 and T3 be the 3-s2t2-node-path-cuts induced by the partitions
(V0, V1 ∪ V4, V2, V3 ∪ V 1

5 , V 2
5) and (V0, V1, V2, V3 ∪ V4 ∪ V 1

5 , V 2
5), respectively, and Z. The

following inequalities are valid for kNDHP(G, 3).

xG\Z(T1) ≥ k − |Z|,

xG\Z(T2) ≥ k − |Z|,

xG\Z(T3) ≥ k − |Z|,

−x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ ([V2, V 2
4] ∪ [V3, V4 ∪ V5]) \ F.

(5.16)

By summing these inequalities, divinding by 2 and rouding up the right hand side,
we obtain inequality (5.15). �

Inequalities (5.15) will also be called triple-path-cut inequalities. Figure 5.6 gives an
illustration.

5.2.4 Steiner-partition inequalities

Let RD be the set of terminal nodes of G. Let Z ⊂ V \RD, and (V0, V1, ..., Vp), p ≥ 2,
be a partition of V \Z such that V0 ⊆ V \RD, and for all i ∈ {1, ..., p} there is a demand

90 The k node-disjoint hop-constrained survivable network problem

t2

V0 V1

V4

edges of the triple path cut not in F
edges not in the triple path cut
possible edges of F

t1

V2 V3
V5

s1

Figure 5.6: A triple-path cut with k = 2, L = 3 and s1 = s2.

{s, t} ∈ D such that Vi induces an st-cut of G. We can see that V0 may be empty.
The partition (V0, V1, ..., Vp) is called a Steiner-partition. And we have the following
inequality

x(δG\Z(V0, ..., Vp)) ≥

⌈
(k − |Z|)p

2

⌉
. (5.17)

Inequalities of type (5.17) will be called Steiner-partition inequalities.

Theorem 16 Inequalities (5.17) are valid for kNDHP(G, L).

Proof. The following inequalities are valid for kNDHP(G, L).

xG\Z(Vi) ≥ k − |Z|, for i = 1, ..., p,

x(e) ≥ 0, for all e ∈ δ(V0).

(5.18)

By adding them we obtain

2x(δG\Z(V0,, Vp)) ≥ (k − |Z|)p.

By dividing by 2 and rounding up the right hand side, we get inequality (5.17). �

5.2 Polytope and valid inequalities 91

5.2.5 Steiner SP-partition inequalities

Diarrassouba et al. [27] introduced the so-called Steiner SP-partition inequalities for
the kEDHP. In what follows we extend these inequalities to the kNDHP. They are
defined as follows. Let Z ⊂ V \RD, where RD is the set of terminal nodes of G. Consider
a partition π = (V1, ..., Vp), p ≥ 3, of V \Z, such that the graph Gπ = (Vπ, Eπ) is series-
parallel (Gπ is the graph obtained by contracting the sets Vi, i = 1, ...p). Suppose that
Vπ = {v1, ..., vp} where vi is the node of Gπ obtained after the contraction of the set
Vi, i = 1, ..., p. The partition π is called a Steiner-SP-partition if and only if π is a
Steiner-partition and either

1. p = 3 or

2. p ≥ 4 and there exists a node vi0
∈ Vπ incident to exactly two nodes vi0−1

and vi0+1 such that after the contraction of the sets Vi0
, Vi0−1 and Vi0

, Vi0+1, the
partitions π1 and π2 obtained from π are also Steiner-SP-partitions.

Theorem 17 [27] Let π = (V1, ..., Vp), p ≥ 3, be a partition of V such that Gπ is series-

parallel. The partition π is a Steiner-SP-partition of G if and only if the subgraph of

GD induced by π is connected.

From Theorem 17, note that if the demand graph is connected, then every Steiner-
partition of V \Z inducing a series-parallel subgraph of G\Z is a Steiner-SP -partition
of V \ Z. With a Steiner-SP-partition (V1, ..., Vp), p ≥ 3, we associate the following
inequality

x(δG\Z(V1, ..., Vp)) ≥

⌈
k − |Z|

2

⌉
p− 1. (5.19)

Inequalities of type (5.19) are called Steiner-SP-partition inequalities.

Theorem 18 Inequalities (5.19) are valid for kNDHP(G, L).

Proof. Let π = (V1, ..., Vp) be a Steiner-SP-partition. The proof is by induction on
p. If p = 3, as π is a Steiner-partition then we associate with π the inequality

92 The k node-disjoint hop-constrained survivable network problem

x(δG\Z(V1, V2, V3)) ≥

⌈
3(k − |Z|)

2

⌉
= 3

⌈
(k − |Z|)

2

⌉
− 1. (5.20)

Now suppose that every inequality (5.19) induced by a Steiner-SP-partition of p

elements, p ≥ 3, is valid for kNDHP(G, 3) and let π = (V1, ..., Vp,

Vp+1) be a Steiner-SP-partition. Since Gπ is series-parallel, then there exists a node
set Vi0

of π such that it is incident to exactly two elements of π, Vi0−1 and Vi0+1.
Let T1 = [Vi0

, Vi0+1] and T2 = [Vi0
, Vi0−1]. As π is a Steiner-SP-partition, it is also a

Steiner-partition. As Vi0
and Z ⊂ V \ {s, t} induce a valid st-node-cut inequality, for

some {s, t} ∈ D. Thus x(T1) + x(T2) ≥ k − |Z|. W.l.o.g., we suppose that

x(T1) ≥

⌈
(k − |Z|)

2

⌉
. (5.21)

Let π′ = (V1, ..., Vi0−2, Vi0−1 ∪ Vi0
, Vi0+1, ..., Vp+1) be a partition. As π is a Steiner-SP-

partition which contains more than three elements, π′ is also a Steiner-SP-partition with
p elements. Then, by the induction hypothesis, we have the following valid Steiner-SP-
partition inequality induced by π′.

x(δG\Z(V1, ..., Vi0−2, Vi0−1 ∪ Vi0
, Vi0+1, ..., Vp+1)) ≥

⌈
k − |Z|

2

⌉
p− 1. (5.22)

By summing the inequalities (5.21) and (5.22), we get

x(δG\Z(V1, ..., Vp, Vp+1)) ≥

⌈
k − |Z|

2

⌉
(p + 1)− 1. (5.23)

Hence, we have the result. �

5.2.6 The rooted partition inequalities

A further class of valid inequalities is the rooted partition inequalities. We consider p

demands, |D| ≥ p ≥ 2, of the form (s, ti), i = 1, ...p, for s ∈ V and ti ∈ V \ {s}. Let
(V0, V1, ..., Vp) be a partition of V such that s ∈ V0 and ti ∈ Vi, for all i ∈ {1, ..., p}.
This partition is called a rooted partition. Huygens et al. [49] showed that, for any
L ≥ 2, the following inequality is valid for the 2EDHP polytope.

x(δ(V0, V1, ..., Vp)) ≥

⌈
(L + 1)p

L

⌉
. (5.24)

5.2 Polytope and valid inequalities 93

For a subset Z ⊂ V with |Z| = k−2, the following inequality is valid for kNDHP(G, L).

x(δG\Z(V0, V1, ..., Vp)) ≥

⌈
(L + 1)p

L

⌉
. (5.25)

5.2.7 st-jump inequalities

Theorem 19 Suppose that |V | ≥ 5 and L = 3. Let (s, t) ∈ D, Z ⊂ V , and consider

the partition π = (V0, V1, ..., V4) of V \ Z such that s ∈ V0 and t ∈ V4. Let Ui be a set

of nodes of Vi, i = 1, 2, 3, such that |Ui| = k − 1. Then the st-jump inequality

2∑

i=0

x([Vi, Vi+2]) +
1∑

i=0

4∑

j≥i+3

2x([Vi, Vj]) +
1∑

i=0

x([Vi, Vi+1 \ Ui+1])

+
3∑

i=2

x([Vi \ Ui, Vi+1]) ≥

⌈
4k + 3

5

⌉
(5.26)

is valid for the kNDHP(G, 3).

Proof. Let U1 ⊂ V1, U2 ⊂ V2 and U3 ⊂ V3 and let T1, T2, T3 and T4, be the
L-st-path-cuts induced by (V0, U1, V2 ∪ V1 \ U1, V3, V4), (V0, V1, U2, V3 ∪ V2 \ U2, V4),
(V0, V1 ∪ V2 \ U2, U2, V3, V4) and (V0, V1, V2 ∪ V3 \ U3, U3, V4), respectively. Then by
summing the L-st-path-cut inequalities induced by Ti, i = 1, ..., 4, and the following
st-node-cut inequalities induced by V0 and U1, V0 ∪ V1 and U2, and V4 and U3,

x(δG\{U1}(V0)) ≥k − 1,

x(δG\{U2}(V0 ∪ V1))≥k − 1,

x(δG\{U3}(V4)) ≥k − 1,

we obtain the inequality

4∑

i=1

x(Ti) + x(δG\{U1}(V0)) + x(δG\{U2}(V0 ∪ V1)) + x(δG\{U3}(V4))≥4k + 3.

This together with

x(e) ≥ 0, for all e ∈ δ(V1 \ U1, V3) ∪ δ(V2 \ U2, V4) ∪ δ(V1, V3 \ U3),

3x(e) ≥ 0, for all e ∈ δ(V0, V1 \ U1 ∪ V4) ∪ δ(V1, V2 \ U2) ∪ δ(V3 \ U3, V4),

4x(e) ≥ 0, for all e ∈ δ(V0 ∪ V2 \ U2 ∪ V3) ∪ δ(V1, V4),

94 The k node-disjoint hop-constrained survivable network problem

gives the inequality

2∑

i=0

5x([Vi, Vi+2]) +
1∑

i=0

4∑

j≥i+3

10x([Vi, Vj]) +
1∑

i=0

5x([Vi, Vi+1 \ Ui+1])

+
3∑

i=2

5x([Vi \ {ui}, Vi+1]) ≥ 4k + 3.

Dividing the resulting inequality by 5, and rounding up the right-hand side, we obtain
inequality (5.26).

�

5.3 Facets of the kNDHP polytope

In this section, we investigate the conditions under which the inequalities presented in
the previous section define facets of kNDHP(G, L). First, we discuss the dimension of
kNDHP(G, L).

An edge e ∈ E is said to be essential if there is no solution of the kNDHP on the
graph obtained by deleting the edge e from G. Therefore e is essential if and only if it
belongs to either an st-cut or an L-st-path-cut of cardinality k, or, to an st-node-cut
or an L-st-path-node-cut of cardinality k − |Z|. Then we have the following theorem.

Theorem 20 dim(kNDHP(G, L)) = |E|−|E∗|, where |E∗| is the set of essential edges.

Proof. We have that the edges of E∗ belong to every solution of the problem, meaning
that, xF (e) = 1, for all e ∈ E∗, and every solution F ⊆ E of the problem. Then we have
dim(kNDHP(G, L)) ≤ |E|−|E∗|. By considering the edge sets E and Ef = E\{f}, for
every f ∈ E \E∗, we can clearly see that they form |E| − |E∗|+ 1 solutions, and their
incidence vectors are affinely independent. Therefore dim(kNDHP(G, L)) ≥ |E|−|E∗|,
and the result follows.

�

Corollary 7 kNDHP(G, L) is full dimensional if G = (V, E) is complete and |V | ≥

k + 2.

5.3 Facets of the kNDHP polytope 95

In the following we assume that G is complete and has at least k + 2 nodes. By
Corollary 7, kNDHP(G, L) is then full dimensional.

Now we investigate the conditions under which the trivial and basic inequalities define
facets.

Theorem 21 Inequality x(e) ≤ 1 defines a facet of kNDHP(G, L) for every e ∈ E.

Proof. For all f ∈ E \ {e}, consider the edge sets Ef = E \ {f}. Hence, E and
the edge sets Ef constitute a set of |E| solutions of the kNDHP. Furthermore, their
incidence vectors satisfy x(e) = 1 and are affinely independent.

�

Theorem 22 Inequality x(e) ≥ 0, with e = uv ∈ E, defines a facet of

kNDHP(G, L) if one of the following conditions hold.

1) |V | ≥ k + 3,

2) |V | = k + 2, |D| ≤ k − 1 and (u, v) /∈ D.

Proof. Suppose that |V | = k + 2, |D| ≤ k − 1, and (u, v) /∈ D. Then, the edge
sets E \ {e} and Ef = E \ {e, f}, for all f ∈ E \ {e}, are solutions of kNDHP whose
incidence vectors satisfy x(e) = 0 and are affinely independent.

Now, suppose that |V | ≥ k + 3. Then for all the demands (s, t) ∈ D, the graph
G contains k + 2 node-disjoint st-paths (edge st and the k + 1 paths of the form
(s, u, t), u ∈ V \ {s, t}). Thus the sets E \ {e} and Ef = E \ {e, f}, for all f ∈ E \ {e},
form a set of |E| solutions of the kNDHP. Moreover, their incidence vectors satisfy
x(e) = 0 and are affinely independent. Hence x(e) ≥ 0 defines a facet of kNDHP(G, L).

�

In what follows, we investigate the conditions under which the st-cut and the st-
node-cut inequalities define facets of kNDHP(G, L).

Theorem 23 The st-cut inequalities x(δ(W)) ≥ k define facets of

kNDHP(G, L) when |D| = 1.

96 The k node-disjoint hop-constrained survivable network problem

Proof. We denote by ax ≥ α the st-cut inequality induced by W , and let F = {x ∈
kNDHP(G, L) | ax = α}. Suppose there exists a defining facet inequality bx ≥ β such
that F ⊆ F ′ = {x ∈ kNDHP(G, L) | bx = β}. We will prove that there is a scalar
ρ such that b = ρa. As |V | ≥ k + 2, there exists W1 ⊆ W \ {s} and W2 ⊆ W \ {t}

such that |W1| + |W2| = k. Let E1 = {sv, v ∈ W2} ∪ {ut, u ∈ W1} and T1 = E1 ∪ E0

where E0 = E(W) ∪ E(W). Clearly, T1 is a solution of the kNDHP, and its incidence
vector satisfies ax ≥ α with equality. Consider an edge e ∈ E1. It is not hard to see
that T2 = (T1 \ {e}) ∪ {st} is a solution of the kNDHP and its incidence vector also
satisfies ax ≥ α with equality. Thus bxT1 = bxT2 . Since bxT2 = bxT1 − b(e) + b(st), we
obtain that b(e) = b(st). As e is an arbitrary edge in E1, this implies that

b(e) = b(st) = ρ for some ρ ∈ R for all e ∈ E1. (5.27)

Now consider an edge f = uv ∈ δ(W) \ E1, with u ∈ W \ {s} and v ∈ W \ {t}. We
distinguish two cases.

Case 1. u ∈W1, v ∈ W2.

Consider T3 = (T1 \ {sv, ut}) ∪ {f, st}. Clearly, T3 is a solution of the kNDHP and
its incidence vector satisfies ax = α. Hence, we have that bxT3 = bxT1 . This implies
that b(sv) + b(ut) = b(f) + b(st). From (5.27), it follows that b(f) = ρ.

Case 2.u ∈ W1 (resp. u ∈W \ (W1 ∪ {s})), v ∈W \ (W2 ∪ {t}) (resp. v ∈W2).

Consider the edge set T4 = (T1 \ {tu}) ∪ {f}. It is easy to see that T4 is a solution
of kNDHP such that axT4 = α. Hence bxT4 = β. As bxT1 = β, it follows that
b(f) = b(tu) = ρ.

If u ∈W \ (W1 ∪ {s}) and v ∈W2 we also obtain by symmetry that b(f) = ρ.

Thus, together with (5.27) we obtain that b(e) = ρ for all e ∈ δ(W).

Now consider an edge e ∈ E0, and suppose, w.l.o.g., that e ∈ E(W). If e does not
belong to an L-st-path of T1, then the edge set T5 = T1 \ {e} also induces a solution
of the kNDHP and satisfies axT5 = α. Hence we have that bxT5 = bxT1 implying
b(e) = 0. If e belongs to an L-st-path of T1, say (su, ut) where e = su, then the edge
set T6 = (T1\{su, ut})∪{st} induces a solution of the kNDHP, and its incidence vector
satisfies axT6 = α. Consequently bxT7 = bxT1 and therefore, b(st) = b(su) + b(ut). As
(5.27), b(ut) = b(st), it follows that b(su) = 0.

Hence b(e) = 0 for all e ∈ E0.

5.3 Facets of the kNDHP polytope 97

Finally, we have that

b(e) =

{
ρ for all e ∈ δ(W),
0 if not.

Consequently, b = ρa with ρ ∈ R, which finishes the proof. �

Theorem 24 If |V | ≥ 2k + 1 and |D| = 1 with D = {(s, t)}, then every st-node-cut

inequality x(δG\Z(W)) ≥ k − |Z| where Z ⊂ V \ {s, t}, and such that s ∈ W , t /∈ W

and W \ {s} 6= ∅ 6= V \ ((W ∪ Z) \ {t}), defines a facet of kNDHP(G, L).

Proof. Let us denote by ax ≥ α the inequality (5.3) induced by W and Z, and let
bx ≥ β be a facet defining inequality of kNDHP(G, L) such that {x ∈ kNDHP(G, L) :
ax = α} ⊆ {x ∈ kNDHP(G, L) : bx = β}. As before we will show that there exists a
scalar ρ ∈ R such that b = ρa.

The idea of the proof is to use the fact that x(δG\Z(W)) ≥ k − |Z| is a valid cut
inequality for (k − |Z|)NDHP(G \ Z, L), and hence, by Theorem 23, defines a facet of
(k − |Z|)NDHP(G \ Z, L). Thus there exist dim((k − |Z|)NDHP(G \ Z, L)) solutions
of the (k − |Z|)NDHP on G \ Z whose incidence vectors satisfy x(δG\Z(W)) ≥ k − |Z|

with equality and are affinely independent. In what follows, we will use these solutions
to build |E| solutions of the kNDHP on G satisfying x(δG\Z(W)) ≥ k − |Z| with
equality and which are affinely independent. Notice that as G is complete, |Z| ≤
k − 1 and |V | ≥ 2k + 1, G \ Z is also complete with |V \ Z| ≥ k + 2. Thus, by
Corollary 7, the polytope (k − |Z|)NDHP(G \ Z, L) is full dimensional, and hence
dim((k − |Z|)NDHP(G \ Z, L)) = |E| − |δ(Z)| − |E(Z)|.

As x(δG\Z(W)) ≥ k−|Z| defines a facet of (k−|Z|)NDHP(G\Z, L), there must exist
m′ = |E| − |δ(Z)| − |E(Z)| solutions of the (k − |Z|)NDHP on G \ Z, denoted by T ′

i ,
i = 1, ..., m′, whose incidence vectors are affinely independent and satisfy x(δG\Z(W)) =
k − |Z|.

The edge sets Ti = T ′
i ∪ δ(Z) ∪ E(Z), for all i ∈ {1, ..., m′}, induce solutions of

the kNDHP. Indeed, since G is complete, the paths (s, z, t), z ∈ Z, form a set of |Z|
st-paths of length 2 in G. As these st-paths are node-disjoint and do not intersect
V \ (Z ∪{s, t}), they form with the s-paths of T ′

i a set at least k node-disjoint st-paths
in G, for i = 1, ..., m′. Which implies that Ti, i = 1, ..., m′ are solutions of kNDHP.

98 The k node-disjoint hop-constrained survivable network problem

Furthermore, their incidence vectors satisfy x(δG\Z(W)) = k − |Z| and are affinely
independant.

Let a′ and b′ be the restriction on E \ (δ(Z) ∪E(Z)) of a and b, respectively. Thus,
we have a′xTi = α, for i = 1, ..., m′. Therefore, b′xTi = β, for i = 1, ..., m′. As xTi ,
i = 1, ..., m′, are affinely independent and α 6= 0, it follows that xTi , i = 1, ..., m′, are
linearly independent. Consequently, a is the unique solution of the system a′xTi = α,
for i = 1, ..., m′. Let ρ be such that β = ρα. It then follows that b′ = ρa′. This implies
that b(e) = 0 for all e ∈ E(W) ∪E(W).

Now we will show that b(e) = 0 for all e ∈ δ(Z) ∪ E(Z). Let us denote the edges of
E(Z)∪δ(Z)\

⋃
z∈Z
{sz, zt} by ej, j = 1, ..., |δ(Z)|+ |E(Z)|−2|Z|. Consider the edge sets

Γm′+j = Tm′\{ej}, for j = 1, ..., |δ(Z)|+|E(Z)|−2|Z|. We can see that these sets induce
solutions of the kNDHP, and their incidence vectors satsify x(δG\Z(W)) = k− |Z|. As
axTm′ = axΓm′+j = α, it follows that bxTm′ = bxΓm′+j = β. Hence, b(ej) = 0 for
j = 1, ..., |δ(Z)|+ |E(Z)| − 2|Z|.

Let T1 be the set among T1, ..., Tm′ containing the edge st. Such a set exists since the
inequality defines a facet of kNDHP(G\, L) on G\Z different from a trivial inequality.
As W\{s} 6= ∅ 6= V \((W∪Z)\{t}). Let u1 ∈W\{s}, u2 ∈ (V \(W∪Z))\{t} and z ∈ Z.
Consider the edge sets T0 = (T1 \ {sz}) ∪ {su1, u1z} and T ′

0 = (T1 \ {zt}) ∪ {sz, zu2}.
T0 and T1 are solutions of the kNDHP (Recall that the path (sz, zt) belongs to Ti).
Moreover we have axT0 = axT1 = α. Thus bxT1 = bxT0 = bxT ′

0 = β. As b(su1) =
b(u1z) = b(zu2) = b(u2t) = 0, it follows that b(sz) = b(zt) = 0.

Therefore b = ρa, which ends the proof of the theorem. �

In what follows we describe conditions under which the L-st-path and L-node-st-path
cut inequalities define facets when L = 3.

Theorem 25 If |D| = 1, a 3-st-path inequality (5.2) induced by a partition π =
(V0, ...V4) with s ∈ V0 and t ∈ V4, defines a facet of kNDHP(G, 3) if and only if

(1) |V0| = |V4| = 1,

(2) |[s, V1]|+ |[V3, t]| ≥ k.

Proof. Let T be the 3-path-cut induced by π = (V0, ..., V4) such that s ∈ V0 and
t ∈ V4. Let us denote by ax ≥ α the L-st-path inequality induced by T , and let
F = {x ∈ kNDHP(G, 3) | ax = α}.

5.3 Facets of the kNDHP polytope 99

Necessity. (1) We will show that if |V0| ≥ 2, inequality x(T) ≥ k does not define
a facet. The case where |V4| ≥ 2 follows by symmetry. Suppose that |V0| ≥ 2 and
consider the partition π′ = (V ′

0 , ..., V ′
4) given by

V ′
0 = {s},

V ′
1 = V1 ∪ (V0 \ {s}),

V ′
i = Vi, i = 2, 3, 4.

The partition π′ produces a 3-path-cut inequality x(T ′) ≥ k, where T ′ = T \ [V0 \

{s}, V2]. Since G is complete, [V0 \ {s}, V2] 6= ∅ and T ′ is strictly contained in T . Thus,
x(T) ≥ k is redundant with respect to the inequalities

x(T ′) ≥ k,

x(e) ≥ 0 for all e ∈ [V0 \ {s}, V2],

and cannot define a facet.

(2) Suppose that Condition 1) holds, and that F is a facet of kNDHP(G, 3) different
from a trivial inequality. Thus there exists a solution F of the kNDHP such that
xF ∈ F and F ∩ [V1, V3] 6= ∅. If this is not the case, then F would be equivalent to
a facet defined by any of the inequalities x(e) ≥ 0, e ∈ [V1, V3]. Note that, since each
3-st-path of F intersects T at least once and |F ∩T | = k, F necessarily contains exactly
k node-disjoint 3-st-paths. Moreover, each of these paths intersects T only once. If ui

is a node of Vi, i = 1, ..., 3, this implies that every 3-st-path of F is of the form

(i) (su1, u1u2, u2t), (su2, u2u3, u3t), (su1, u1t), (su3, u3t), (st) or

(ii) (su1, u1u3, u3t).

If P is one of these st-paths, then |P ∩ A| = 1 (resp. |P ∩ A| = 2) if P is of
type (i) (resp. (ii)), where A = [s, V1] ∪ [V3, t] ∪ {st}. As F ∩ [V1, V3] 6= ∅, it follows
that F contains at least one path of type (ii) and therefore |F ∩ A| ≥ k + 1. Hence
|[s, V1]|+ |[V3, t]| ≥ k.

Sufficiency. Suppose that Conditions (1) and (2) hold. Now suppose that there exist
a facet defining inequality bx ≥ β such that F ⊆ {x ∈ kNDHP(G, 3) |
bx = β}. As before, we will show that there exists a scalar ρ 6= 0 such that b = ρa.
As |[s, V1]| + |[V3, t]| ≥ k, there exist two node sets U1 ⊆ V1 and U3 ⊆ V3 such that
|U1|+|U3| = k. Consider the edge subset S1 formed by the st-paths (su, ut), u ∈ U1∪U3.

100 The k node-disjoint hop-constrained survivable network problem

Clearly these st-paths form a set of k node-disjoint 3-st-paths. Moreover, each of these
paths intersects T only once. Thus S1 induces a solution of kNDHP and its incidence
vector belongs to F .

Let e ∈ S1∩T . Let S2 = (S1\{e})∪{st}. Since S2 is a solution of the kNDHP whose
incidence vector belongs to F , we have bsS2 = bxS1 = β, implying that b(e) = b(st).
As e is an arbitrary edge, we obtain that

b(e) = ρ for all e ∈ (S1 ∩ T) ∪ {st}, for some ρ ∈ R. (5.28)

Consider now e ∈ E \ T . If e /∈ S1, clearly S3 = S1 ∪ {e} is a solution of kNDHP.
Moreover, its incidence vector belongs to F . Hence, b(e) = bxS3 − bxS1 = 0. If
e ∈ S1 \ T , then e is either of the form su, u ∈ U1, or vt, v ∈ U3. Suppose, w.l.o.g.,
that e = su, the case where e = vt is similar. Note that, by the definition of S1,
ut also belongs to S1. Let S4 = (S1 \ {su, ut}) ∪ {st}. We have that S4 induces a
solution of the kNDHP and xS4 ∈ F . Hence, bxS4 = bxS1 = β and, in consequence,
b(su) + b(ut) = b(st). As, by (5.28), b(ut) = b(st), we have that b(su) = 0. Thus, we
obtain that

b(e) = 0 for all e ∈ E \ T. (5.29)

Now let e ∈ T \ S1. Suppose that e = sv with v ∈ V2. The case where e ∈ [V2, t]
is similar. By construction S1 contains an st-path of the form (su3, u3t) where u3 is a
node of V3. Then the edge set S5 = (S1 \ {su3})∪ {e, vu3} is a solution of the kNDHP
whose incidence vector belongs to F . Thus, bS5 − bS1 = b(e) + b(vu3) − b(su3) = 0.
From (5.28) and (5.29), we then get b(e) = ρ.

Let e = sv with v ∈ V3. The case where e ∈ [V1, t] is similar. Consider the edge set
S6 = (S1 \ {su3}) ∪ {e, vt}, where u3 is a node of U3, which induces a solution of the
kNDHP. Moreover, its incidence vector belongs to F . Hence bxS6 − bxS1 + b(vt) =
b(e)− b(su3) + b(vt) = 0. By (5.28) and (5.29), we get b(e) = ρ.

Now suppose that e = uv ∈ [V1, V3]. If u ∈ U1 and v ∈ U3, then by considering the
edge set S8 = (S1 \ {ut, sv})∪{e, st}, which is a solution of kNDHP with xT8 ∈ F , we
get b(e)+b(st) = b(sv)+b(ut). From (5.28) and (5.29), we have that b(e) = ρ. If u /∈ U1

and v ∈ U3, then by considering the edge set S9 = (S1 \ {sv}) ∪ {su, e}, we obtain
along the same line that b(e) = ρ. If u ∈ U1 and v /∈ U3, it follows by symmetry that
b(e) = ρ. If u /∈ U1 and v /∈ U3, since the edge set S10 = (S1 \ {su1, u1t}) ∪ {su, e, vt}

is a solution of kNDHP with xT10 ∈ F , we get as before b(e) = ρ. Thus, we obtain

b(e) = ρ for all e ∈ T \ (S1 ∪ {st}). (5.30)

5.3 Facets of the kNDHP polytope 101

From (5.28)-(5.30), we have

b(e) =

{
ρ for all e ∈ T,

0 if not.

Therefore, b = ρa, and the proof is complete.

�

Theorem 26 If |D| = 1, a 3-st-node-path-cut inequality (5.4) induced by a node subset

Z ⊂ V , such that |Z| ≤ k− 1, and a partition π = (V0, ...V4) of V \Z, with s ∈ V0 and

t ∈ V4, defines a facet of kNDHP(G, 3) if and only if

(1) |V0| = |V4| = 1,

(2) |[s, V1]|+ |[V3, t]| ≥ k − |Z|.

Proof. The idea of the proof is the same as that used in proving Theorem 24. We can
also use the fact that a 3-st-node-path-cut inequality, x(TG\Z) ≥ k−|Z|, for some 3-st-
path-cut T and some node set Z ⊂ V \{s, t}, is valid for (k−|Z|)NDHP(G\Z, 3) (recall
that (k − |Z|)NDHP(G \ Z, 3) is the polytope associated with the 3-hop-constrained
st-path problem on the graph G \ Z).
Note as before that G is complete, |Z| ≤ k−1 and |V | ≥ 2k +1, then G\Z is complete
with |V \ Z| ≥ k + 2. By Corollary 7 the polytope (k − Z)NDHP(G \ Z, 3) is full
dimensional. Thus dim((k − |Z|)NDHP(G \ Z, 3))= |E| − |δ(Z)| − |E(Z)|.

As x(TG\Z) ≥ k − |Z| defines a facet of (k − |Z|)NDHP(G \ Z, 3), there exist n′ =
|E| − |δ(Z)| − |E(Z)| solutions of the (k − |Z|)NDHP on G \ Z. We will denote
them by S ′

i, i = 1, ..., n′, their incidence vectors are affinely independent and satisfy
x(TG\Z) = k − |Z|. The st-paths of S ′

i, i = 1, ..., m, are node-disjoint, hence they are
solutions of the polytope (k − |Z|)NDHP(G \ Z, 3).

The edge sets Si = S ′
i ∪ δ(Z) ∪ E(Z), for all i ∈ {1, ..., n′}, induce solutions of the

kNDHP. Since S ′
i, i ∈ {1, ..., n′} is a solution of the (k − |Z|)NDHP on G \ Z, there

exist (k − |Z|) st-paths of length at most 3, in the subgraph of G \ Z induced by S ′
i.

We will denote them by Hl, l = 1, ..., k−|Z|. Moreover, as G is complete, the edges sz

and zt, for all z ∈ Z, are in G, and the sets (s, z, t), z ∈ Z, form |Z| st-paths of length
2 in G. Hence the paths Hl, l = 1, ..., k − |Z| and (s, z, t), z ∈ Z, are node-disjoint.

102 The k node-disjoint hop-constrained survivable network problem

Thus, the sets Si, i = 1, ..., n′ induce n′ solutions of the kNDHP on G. Furthermore,
their incidence vectors satisfy x(TG\Z) = k − |Z|.

Let a′ and b′ be the restriction on E \ (δ(Z) ∪E(Z)) of a and b, respectively. Thus,
we have a′xSi = α, for i = 1, ..., n′. Therefore, b′xSi = β, for i = 1, ..., n′. As xSi ,
i = 1, ..., n′, are affinely independent and α 6= 0, it follows that xSi 6= 0, i = 1, ...n′,
and hence, xSi , i = 1, ..., n′, are linearly independent. Consequently, a is the unique
solution of the system a′xSi = α, for i = 1, ..., n′. Let ρ be such that β = ρα. It then
follows that b′ = ρa′. This implies that b(e) = 0 for all e ∈ E \ T .

Now we will show that b(e) = 0 for all e ∈ δ(Z) ∪ E(Z). Let us denote the edges
of E(Z) ∪ δ(Z) \

⋃
z∈Z
{sz, zt} by ej , j = 1, ..., |δ(Z)| + |E(Z)| − 2|Z|. Consider the

edge set Ωn′+j = Sn′ \ {ej}, for j = 1, ..., |δ(Z)| + |E(Z)| − 2|Z|. These sets clearly
induce solutions of the kNDHP, and their incidence vectors satsify x(TG\Z) = k − |Z|.
As axSn′ = axΩn′+j = α, it follows that bxSn′ = bxΩn′+j = β. Hence, b(ej) = 0 for
j = 1, ..., |δ(Z)|+ |E(Z)| − 2|Z|.

Let S1 be the set among S1, ..., Sn′ containing the edge st. Such a set exists since, as
noted before, xSi 6= 0 for i = 1, ..., n′. Let u1 ∈ V1, u2 ∈ VL and z ∈ Z. Consider the
edge set S0 = (S1\{sz})∪{su1, u1z} and S ′

0 = (S1\{zt})∪{sz, zu2}. It clearly induces
a solution of the kNDHP. Moreover we have x(TG\Z) = k − |Z|. Thus, bxT1 = bxT0 =
bxT ′

0 = β. As b(su1) = b(u1z) = b(zu2) = b(u2t) = 0, it follows that b(sz) = b(zt) = 0.
Therefore b = ρa, which ends the proof of the theorem. �

Note that Theorem 21, 22, 23 and 24 are valid for L ≥ 4.

Lemma 10 The double cut inequality induced by the node sets V 1
0 , V 2

0 ∪V1, V2, ..., VL+1

of V \ Z, F ⊆ E and {s, t} ∈ D with s ∈ V 1
0 and t ∈ VL+1, can be written as

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1))

+ x(E \ F)− x(F) + |F | ≥ 3(k − |Z|) + 1 (5.31)

where TG\Z is the L-st-node-path-cut induced by the partition (V 1
0 , V 2

0 ∪V1, V2, ..., VL+1).
Moreover, the double cut inequality (5.13) is tight for a solution x̃ ∈ RE if and only if

one of the following conditions holds.

i) x̃(E \ F)− x̃(F) + |F | = 1 and x̃(TG\Z) = x̃(δG\Z(V 1
0 ∪ V 2

0)) = x̃(δG\Z(V1)) =
k − |Z|;

5.3 Facets of the kNDHP polytope 103

ii) x̃(E \ F)− x̃(F) + |F | = 0 and

a) x̃(TG\Z) = k − |Z| + 1, x̃(δG\Z(V 1
0 ∪ V 2

0)) = k − |Z| and x̃(δG\Z(V1)) =
k − |Z|;

b) x̃(TG\Z) = k − |Z|, x̃(δG\Z(V 1
0 ∪ V 2

0)) = k − |Z| + 1 and x̃(δG\Z(V1)) =
k − |Z|;

c) x̃(TG\Z) = k − |Z|, x̃(δG\Z(V 1
0 ∪ V 2

0)) = k − |Z| and x̃(δG\Z(V1)) =
k − |Z|+ 1;

Proof. Let C be the double cut inducing inequality (5.13). Then inequality (5.13)
can be written as

x(C \ E) + x(E \ F) ≥
3(k − |Z|)− |F |+ 1

2
.

Thus we have

2x(C \ E) + 2x(E)− 2x(F) ≥ 3(k − |Z|)− |F |+ 1. (5.32)

By summing the left hand side of the L-st-node-path-cut inequality induced by TG\Z

and the node-cut inequalities induced by δG\Z(V 1
0 ∪ V 2

0) and δG\Z(V1), we obtain

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1)) = 2x(C \ E) + x(E). (5.33)

By combining (5.32) and (5.33), we get

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1)) + x(E)− 2x(F) ≥ 3(k − |Z|)− |F |+ 1.

Therefore

x(TG\Z) + x(δG\Z(V 1
0 ∪ V 2

0)) + x(δG\Z(V1)) + x(E \ F)− x(F) + |F | ≥ 3(k − |Z|) + 1.

Hence, the double cut inequality (5.13) is equivalent to (5.31).

Suppose that the double cut inequality is tight for a solution x̃, that is

x̃(TG\Z) + x̃(δG\Z(V 1
0 ∪ V 2

0)) + x̃(δG\Z(V1)) + x̃(E \ F)− x̃(F) + |F | = 3(k − |Z|) + 1

104 The k node-disjoint hop-constrained survivable network problem

As x̃(TG\Z) ≥ k − |Z|, x̃(δG\Z(V 1
0 ∪ V 2

0)) ≥ k − |Z| and x̃(δG\Z(V1)) ≥ k − |Z|, we
have that x̃(E \F)− x̃(F) + |F | ≤ 1. Thus, if x̃(E \F)− x̃(F) + |F | = 1, we have that
x̃(TG\Z) = x̃(δG\Z(V 1

0 ∪ V 2
0)) = x̃(δG\Z(V1)) = k − |Z|. If x̃(E \ F)− x̃(F) + |F | = 0,

then either x̃(TG\Z) or x̃(δG\Z(V 1
0 ∪ V 2

0)) or x̃(δG\Z(V1)) is equal to k− |Z|+ 1 and the
others are equal to k − |Z|, and the statement follows. �

Theorem 27 The double cut inequality (5.13) defines a facet of kNDHP(G, 3) only if

i) |V 1
0 | = |V4| = 1,

ii) |[V 1
0 , V 2

0 ∪ V1] ∪ [V3, V4] ∪ [V 1
0 , V4]| ≥ k − |Z|.

Proof. i) Let C be the double cut inducing inequality (5.13). Using the following
family of sets Π = (V 1

0 , V 2
0 , V1, V2, ..., V4). Suppose that |V 1

0 | > 1, the case when
|VL+1| > 1 is similar. Consider the family of sets Π′ = {{s}, V 1

0 \ {s}, V 2
0 , V1, ..., V4}.

Let C ′ be the double cut induced by Π′ and F . Since C = C ′ ∪ [V 1
0 \ {s}, V1], then

the double cut inequality induced by Π is redundant with respect to the one induced
by Π′, and the trivial inequalities x(e) ≥ 0 for all e ∈ [V 1

0 \ {s}, V1]. Thus it does not
define a facet.
ii) Let F be a facet defining double cut inequality and let TG\Z be the 3-st-node-path-
cut induced by the partition (V 1

0 , V 2
0 ∪V1, V2, ..., V4). As F defines a facet different from

the node-cut inequalities, there exists a solution x0 ∈ F such that x0(δG\Z(V 1
0 ∪V 2

0)) ≥
k − |Z| + 1. Then by Lemma 10, x0(T) = k − |Z|. Thus, x0 induces a graph which
contains exactly k− |Z| node-disjoint 3-st-paths, P1, ..., Pk−|Z|. Furthermore, each Pi,
i = 1, ..., k−|Z| intersects TG\Z in only one edge. Thus either Pi∩[V0, V4] 6= ∅ or Pi uses
at least one edge between two non consecutive set of the partition (V 1

0 , V 2
0 , V1, V2, ..., V4).

In the latter case, Pi must intersect either [V 1
0 , V 2

0 ∪ V1] or [V3, V4] or both. Hence, we
have that |[V 1

0 , V 2
0 ∪ V1] ∪ [V3, V4] ∪ [V 1

0 , V4]| ≥ k − |Z|. Which ends the proof. �

5.4 Conclusion

In this chapter, we have studied the k-Node-Disjoint Hop-Constrained Network Design
Problem (kNDHP) when L ∈ {2, 3, 4}. We have introduced an integer programming
formulation for the problem when L ∈ {2, 3} and investigated the associated polytope.
We have presented several classes of valid inequalities and presented conditions under
which these inequalities define facets.

Chapter 6

Branch-and-Cut Algorithm for the

kNDHP

Contents

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3

and k ≥ 3 . 105

6.1.1 The general framework . 106

6.1.2 Separation procedures . 107

6.1.3 Computational Results . 113

6.2 Branch-and-Cut Algorithm for the kNDHP with L = 4

and k = 2 . 119

6.2.1 The general framework . 119

6.2.2 Separation procedures . 119

6.2.3 Computational results . 120

6.3 Conclusion . 122

6.1 Branch-and-Cut Algorithm for the kNDHP with

L = 3 and k ≥ 3

In this section, we present a Branch-and-Cut algorithm for the kNDHP when L =
3. First, we present the general framework of the algorithm and then present the
separation procedures we have devised for the inequalities involved in the algorithm.

106 Branch-and-Cut Algorithm for the kNDHP

6.1.1 The general framework

Our algorithm starts by solving the linear relaxation of Formulation (5.7), that is,

min{cx | x ∈ RE
+ satisfies (5.1)− (5.6)}. (6.1)

Since inequalities (5.1), (5.2), (5.3) and (5.4) are exponential in number in (6.1), we
solve this linear relaxation using the so-called cutting plane method. We recall that the
cutting plane method finds an optimal solution of a linear program by solving a series
of LPs, each of them containing a subset of the constraints of the original LP. For our
purpose, the algorithm starts with an LP containing the cut constraints (5.1) induced
by terminal nodes and the trivial inequalities (5.5) and (5.6)

Min
∑

e∈E

c(e)x(e)

s.t.

x(δ(u)) ≥ k, for all u ∈ RD,

x(e) ≥ 0, for all e ∈ E,

x(e) ≤ 1, for all e ∈ E.

Then, it iteratively adds the inequalities (5.1)-(5.4) that are violated by the solution
x∗ of the current LP. The cutting plane algorithm stops when all the inequalities (5.1)-
(5.4) are satisfied by x∗. In this case, x∗ is optimal for (6.1). For finding inequalities
(5.1)-(5.4) that are violated by x∗, if there is any, we solve the so-called separation
problem associated with these inequalities. Recall that the separation problem associ-
ated with a family of inequalities F and a solution x is to verify if x satisfies all the
inequalities of F, and if not, to exhibit at least one of them which is violated by x. An
algorithm solving a separation problem is called a separation algorithm.

At the end of the cutting plane algorithm, if x∗ is integral, then it is optimal for the
problem (5.7). If x∗ is fractional, then we reinforce the linear relaxation of the problem
by adding, if possible, further valid inequalities. For this, we also add the Steiner SP-
partition inequalities (5.19), the double cut inequalities (5.11) and the Steiner partition
inequalities (5.17) in the cutting plane algorithm. The separation of the inequalities
used in the Branch-and-Cut algorithm are performed in the following order

1) st-cut and L-st-path-cut inequalities,

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 107

2) st-node-cut and L-st-node-path-cut inequalities (only for integral solutions),

3) Steiner SP-partition inequalities,

4) double cut inequalities,

5) Steiner partition inequalities.

Notice that the st-node-cut and L-st-node-path-cut inequalities are separated only
for integral solutions. Indeed, as we will see in the next subsection, these two families
of inequalities can be efficiently separated when the solution x∗ is integral.

All the inequalities that are added during the Branch-and-Cut algorithm are consid-
ered as global (i.e., valid at every node of the Branch-and-Cut tree) and we may add
several inequalities at each iteration. Furthermore, we proceed to the separation of a
class of inequalities only when the separation of the previous class of inequalities has
not found any violated inequalities.

In the following, we describe the separation algorithms we have devised for the in-
equalities (5.1)-(5.4), the Steiner SP-partition inequalities (5.19), the double cut in-
equalities (5.11) and the Steiner partition inequalities (5.17).

6.1.2 Separation procedures

6.1.2.1 Separation of st-cut and 3-st-path-cut inequalities

We discuss first the separation of the st-cut and 3-st-path-cut inequalities (5.1) and
(5.2). We give the theorem below which shows that the separation problem of these
inequalities reduces to computing a maximum flow in a special graph, and hence can
be solved in polynomial time.

Theorem 28 The separation problem of st-cut and 3-st-path-cut inequalities (5.1)

and (5.2) reduces to computing maximum flows in a special graph and can be solved in

O(|D||E|2|V |) time.

108 Branch-and-Cut Algorithm for the kNDHP

Graph G̃s1,t1
Graph G̃s1,t2

Graph G̃s3,t3

s1 t1

t2s3

u t3

Graph G

t3

s3

t2

u u′

t′

2

s′

3

t′

3

t1
s1

t1

t3

u

s3

t′

1

u′

t′

3

s′

3

s1 t2

s1

t1

u

t2

t′

1

s′

1

u′

t′

2

s3 t3

Figure 6.1: Construction of graphs G̃st with D = {(s1, t1), (s1, t2), (s3, t3)}.

Proof. Let x ∈ RE be the solution for which we are separating the natural inequalities
(5.1) and (5.2). To separate them, we consider the following graph transformation from
[10] (see also [27]). Let (s, t) ∈ D and let Vst = V \ {s, t}, V ′

st be a copy of Vst and
Ṽst = Vst ∪ V ′

st ∪ {s, t}. The copy in V ′
st of a node u ∈ Vst will be denoted by u′. From

G and (s, t), we build the directed graph G̃st = (Ṽst, Ãst). Its arc set Ãst is obtained
as follows. For an edge of the form st ∈ E, we add an arc (s, t) in Ãst. For each edge
su ∈ E, u 6= t, (resp. vt ∈ E, v 6= s), we add in Ãst an arc (s, u), u ∈ Vst (resp. (v′, t),
v′ ∈ V ′

st). For each edge uv ∈ E, with u, v /∈ {s, t}, we add two arcs (u, v′) and (v, u′)
in Ãst, with u, v ∈ Vst and u′, v′ ∈ V ′

st. Finally, for each node u ∈ V \ {s, t}, we add an
arc (u, u′) in Ãst (see Figure 6.1 for an illustration).

Notice that for each (s, t) ∈ D, |Ṽst| = 2|V |−2 and |Ãst| = 2|E|−|δ(s)|−|δ(t)|+|[s, t]|.

Bendali et al. [10] showed that there is a one-to-one correspondence between the
st-cuts and the 3-st-path-cuts in G and the st-dicuts in G̃st which do not contain arcs
of the form (u, u′), for all u ∈ V \ {s, t}. Moreover, if each arc a ∈ Ãst, corresponding
to an edge e ∈ E, is assigned the capacity c̃(a) = x(e) and each arc of the form (u, u′)
is assigned an infinite capacity, then the weight of an st-cut or 3-st-path-cut in G with
respect to x is the same as that of the corresponding st-dicut in G̃st with respect to
capacity vector c̃. Thus, for a given (s, t) ∈ D, there is an st-cut or 3-st-path-cut
inequality violated by x if and only if there is an st-dicut in G̃st whose capacity is < k.
Moreover, if there is a violated st-cut or 3-st-path-cut inequality induced by an edge
set C ⊆ E, that is there is an st-dicut C̃ ⊆ Ãst whose weight is < k, then the edges of
C are those corresponding to the arcs of C̃. Therefore, the separation problem of the

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 109

st-cut and the 3-st-path-cut inequalities reduces to computing a minimum st-dicut in
G̃st with respect to the capacity vector c̃. By the Max Flow-Min Cut Theorem, this
can be done by computing a maximum flow from s to t in G̃st.

Finally, the maximum flow computation in G̃st can be handled by the Edmonds-Karp
algorithm [35] which runs in O(|Ãst|

2|Ṽst|) = O(|E|2|V |) time. Since this procedure
is performed |D| times (one for each demand), the whole separation algorithm can be
implemented to run in O(|D||E|2|V |) time, and hence is polynomial. �

Our separation algorithm for st-cut and 3-st-path-cut inequalities is based on The-
orem 28. It starts, for each demand (s, t) ∈ D, by building the graph G̃st and then,
computing a minimum weight st-dicut, say C̃, w.r.t. weight vector c̃. If the weight
of such a st-dicut is < k, then the edge set C of G corresponding to the arcs of C̃

corresponds to either a st-cut or a 3-st-path-cut which induces a violated inequality.
The separation algorithm stops when it finds, for a given demand, a violated inequality
or when all the demands have been considered without finding any violated inequality.
From Theorem 28, this algorithm solves the separation problem of inequalities (5.1)
and (5.2) in polynomial time.

6.1.2.2 Separation of st-node-cut and 3-st-node-path-cut inequalities

Now, we discuss the separation problem of st-node-cut and 3-st-node-path-cut inequal-
ities (5.3) and (5.4). As mentionned before, we consider the separation problem of these
inequalities only in the case where the considered solution x ∈ RE is integral. We re-
strict to this case because first, in order to guarantee that the B&C algorithm is correct,
it is enough to separate the st-node-cut and 3-st-node-path-cut inequalities for integral
solutions, only. Also, as we will see below, inequalities (5.3) and (5.4) can be separated
in polynomial time when x is integral. Thus, suppose that x is integral, and w.l.o.g.,
satifies all the st-cut and 3-st-path-cut inequalities (5.1) and (5.2). Under these as-
sumptions, solving the separation problem of inequalities (5.3) and (5.4) consists in
saying if x is feasible for the kNDHP or not. Indeed, on one hand, if x is feasible, then
it satisfies all the st-node-cut and 3-st-node-path-cut inequalities. On the other hand,
if x is not feasible for the kNDHP, then for some demand (s, t) ∈ D, there exists a
node set Z ⊆ V such that |Z| ≤ k − 1, and an st-node-cut or a 3-st-node-path-cut C

of G w.r.t. Z such that x(C) < k − |Z|. Thus, the aim of our separation algorithm is
to say if the subgraph of G induced by x contains, for each (s, t) ∈ D, k node-disjoint
3-st-paths, and if not, find node set Z and an st-node-cut or a 3-st-node-path-cut w.r.t.

110 Branch-and-Cut Algorithm for the kNDHP

Z which induces an inequality (5.3) or (5.4) violated by x.

In the sequel, we present the main ingredient and main results that will support our
algorithm. First, consider a demand (s, t) ∈ D and let G̃st be the directed graph de-
scribed in the proof of Theorem 28. Also let c̃ be the associated weight vector. Remark
that, as G is simple, that is does not contain parallel edges, if two 3-st-paths P1 and
P2 are not node-disjoint, then they are of the form P1 = (s, u, v, t) and P2 = (s, v, z, t)
with u, v, z ∈ V \{s, t} and u 6= v 6= z 6= u. These two paths correspond in G̃st to paths
(s, u, v′, t) and (s, v, z′, t). Conversely, two paths (s, u, v′, t) and (s, v, z′, t) of G̃st corre-
spond to two paths (s, u, v, t) and (s, v, z, t) which are not node-disjoint. Consequently,
when x is not feasible for the kNDHP, any maximum set of disjoint st-dipaths of the
graph G̃st, for some demand (s, t) ∈ D, will contain two paths of the form (s, u, v′, t)
and (s, v, z′, t), with u, v, z ∈ V \ {s, t} and u 6= v 6= z 6= u.

Now we give the following procedure, that we call Procedure BuildZ, which aims
to build a node Z ⊆ V . The procedure works as follows. Let Z ⊆ V be a node
set of G and denote by Z̃ the nodes of G̃st corresponding to those of Z, that is
Z̃ = {u, u′ such that u ∈ Z}. At the begining of the procedure Z = ∅. Now, compute
a maximum flow from s to t in the graph G̃st \ Z̃, with each arc a ∈ Ãst having the
capacity c̃(a). This gives a maximum set P̃ of arc-disjoint st-dipaths in G̃st\Z̃. Remark
that some of those paths may correspond to non node-disjoint 3-st-paths of G, that is
they are of the form (s, u, v′, t) and (s, v, z′, t). Let P̃′ be the set of these paths. Also
let P′ be the set of paths of G corresponding to those of P̃′ and U ⊆ V the set of nodes
of G which are shared by two paths of P′. Now, add to Z the nodes of U and repeat
this procedure until |Z| ≥ k or U = ∅. It should be noticed that when U = ∅, the
arc-disjoint st-dipaths obtained by the computation of the maximum flow in G̃st \ Z̃

correspond to node-disjoint 3-st-paths of G \ Z.

The identification of the nodes of U can be easily done by simply watching, for each
node u ∈ V \ Z, the arcs entering and leaving nodes u and u′ with flow value 1 and 0.
Namely, consider a node v ∈ U . This means that after the maximum flow computation,
there are two paths (s, u, v′, t) and (s, v, z′, t). Since the arc capacities are either 0 or
1, this means that

• the flow value on arc (s, v) is 1,

• the flow value on arc (v, z′) is 1, for some z ∈ V \ {s, t, v},

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 111

• the flow value on arc (v, v′) is 0,

• the flow value on arc (v′, t) is 1.

Figure 6.2 illustrates the above remark. The solid lines represent arcs having flow
value 1 and dashed lines represent arcs with flow value 0. The flow value of the arcs
represented by dotted lines may be 0 or 1.

s t

u

v

z

u′

v′

z′

Figure 6.2: Two st-dipaths of G̃st \ Z̃ inducing non node-disjoint 3-st-paths in G \ Z.

Observe that using Edmonds-Karp algorithm’s [35] for each maximum flow compu-
tation, the identification of the node set U at each iteration can be implemented to
run in O(|E|2|V | + |V |2) = O(|E|2|V |). Also, Procedure BuildZ runs in at most k

iterations. Therefore, Procedure BuildZ builds a node set Z in O(k|E|2|V |) time.

Now, we give the following theorem.

Theorem 29 Let x ∈ {0, 1}E be an integral solution and (s, t) ∈ D. Assume that

x satisfies all the st-cut and 3-st-path-cut inequalities. Let Z ⊆ V be the node set

obtained by the application of Procedure BuildZ. Then, there is a st-node-cut or a 3-

st-node-path-cut inequality violated by x if and only if |Z| ≤ k − 1 and the minimum

weight of a cut of G̃st \ Z̃ is < k − |Z|.

Proof. Suppose that |Z| ≤ k − 1 and a minimum weight st-dicut δ+

G̃st\Z
(W̃), w.r.t

weight vector c̃, is such that c̃(δ+

G̃st\Z
(W̃)) < k − |Z|. As shown by Bendali et al. [10],

this st-dicut corresponds to an st-cut or a 3-st-path-cut of G \Z. Let C be this st-cut
or 3-st-path-cut. Moreover, we have that x(C) = c̃(δ+

G̃st\Z̃
(W̃)) < k − |Z|. Thus, C

112 Branch-and-Cut Algorithm for the kNDHP

induces a st-node-cut or 3-st-node-path-cut inequality violated by x.

Now suppose that |Z| ≥ k. By the construction procedure of Z, the subgraph of G

induced by x contains edges of the form su and ut, for every node u ∈ Z, which form
|Z| paths (s, u, t). Clearly, these paths are node-disjoint, and hence, the subgraph of
G induced by x contains |Z| ≥ k node-disjoint 3-st-paths. Consequently, x satisfies all
the st-node-cut and 3-st-node-path-cut inequalities.

Finally, suppose that |Z| ≤ k− 1 and f = c̃(δ+

G̃st\Z̃
(W̃)) ≥ k− |Z|, where W̃ induces

a minimum weight st-dicut of G̃st \ Z̃, w.r.t. to weight vector c̃. As before, by the
construction procedure of Z, the subgraph of G induced by x contains |Z| node-disjoint
3-st-paths. Also, the construction of Z implies the graph G̃st\Z̃ contains f arc-disjoint
st-dipaths which correspond to f node-disjoint 3-st-paths of G. Moreover, these later
node-disjoint 3-st-paths are node-disjoint from those induced by Z. Consequently,
the subgraph of G induced by x contains f + |Z| ≥ k − |Z| + |Z| = k node-disjoint
3-st-paths, which implies that x satisfies all the st-node-cut and 3-st-node-path-cut
inequalities. �

Now we describe our separation algorithm for st-node-cut and 3-st-node-path-cut
inequalities when x is integral and satisfies all the st-cut and 3-st-path-cut inequali-
ties. For each demand (s, t) ∈ D, we build the graph G̃st and let c̃ be the associated
weight vector. Then we build, using Procedure BuildZ, the node set Z and let f be
the weight of a minimum weight cut of G̃st \ Z̃, w.r.t. weight vector c̃. If |Z| ≤ k − 1
and f < k − |Z|, then, by Theorem 29, there is an st-node-cut or a 3-st-node-path-
cut C ⊆ E which induces an inequality (5.3) or (5.4) violated by x. If |Z| ≥ k or
f ≥ k−|Z|, then we move to another demand. The algorithm stops when it has found
a violated inequality (5.3) or (5.4) for some demand (s, t) ∈ D or when all the demands
have been explored without finding any violated inequality.

The separation algorithm can be implemented to run in O(|D|k|E|2|V |) time, which
is polynomial.

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 113

6.1.2.3 Separation of double cut, Steiner SP-partition and partition in-

equalities

Now we consider the separation of Inequalities (5.11), (5.19) and (5.17). For our pur-
pose, we look for those inequalities (5.11), (5.19) and (5.17) defined with a node set
Z = ∅. To separate them, we use the separation heuristics developed in [26].

The heuristic developed for the double cut inequalities is implemented to run in
O
(
|V |3 log |V | (2|V |+|Dsource|+|Ddest|)2

(|V |−1)(|V |+|Dsource|+|Ddest|)

)
time. Here Dsource and Ddest denote the sets

of nodes which are, respectively, the source and destination in a demand, which is
polynomial.

For SP-partition inequalities (5.19), the heuristic proposed by [26] is implemented to
run in O(|V ||E|+ |D|), while the separation heuristic for partition inequalities (5.17)
proposed by [26] is implemented to run in O(|V ||E|+ |R|2(|E|+ |D|)), where R is the
set of terminal nodes.

Clearly, the three heuristics run in polynomial time.

6.1.3 Computational Results

We have implemented our Branch-and-Cut algorithm in C++, using CPLEX 12.5 and
Concert Technology [3]. It was tested on a Xeon Quad-Core E5507 machine with a
2.27 GHz processor and 8GB RAM, running under Linux. The maximum CPU time
has been fixed to 5 hours. Each instance is composed of a graph from TSPLIB [2] and
a set of demands. TSPLIB graphs are complete Euclidean graphs, that is each node is
assigned coordinates in the plane, and the weight of each edge is given by the Euclidean
distance between its endnodes. The demands used in the instances are randomly gen-
erated. Each set of demands is either rooted, that is, of the form {(s, ti) : i = 1, ..., d}

(s is the root node of the demands), or arbitrary.

The computational results are given in Tables 6.1-6.6. Each instance is described by
the number of nodes of the graph and the number of demands. The number of nodes
is preceded either by “r" if the demands are rooted or “a" if they are not rooted. The
entries of the various tables presented below are:

114 Branch-and-Cut Algorithm for the kNDHP

|V | : the number of nodes of the graph,

|D| : the number of demands,

C-LPC : the number of generated st-cut and 3-st-path-cut inequalities,

NC-NLPC : the number of generated st-node-cut and 3-st-node-path-cut inequalities,

SP : the number of generated Steiner SP-partition inequalities,

DC : the number of generated double cut inequalities,

DC : the number of generated Steiner partition inequalities,

COpt : value of the best upper bound obtained,

Gap : the relative error between the best upper bound and the lower bound

obtained at the root node of the Branch-and-Cut tree,

NSub : the number of nodes in the Branch-and-Cut tree,

CPU : total CPU time of the first run in hours:min.sec.

Note that for some instances, the algorithm spends all the CPU time (5 hours) with-
out finding any feasible solution. In this case, the best upper bound (COpt) and the
error with the lower bound achieved at the root node of the Branch-and-Cut tree (Gap)
are indicated with “-".

Our first series of experiments concerns the kNDHP with k = 3 and L = 3. The
results are given in Tables 6.1 and 6.2.

Table 6.1: Results for k = 3, L = 3 and rooted demands.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

r 21 15 11775 74 10 0 0 5526 9.23 2265 00:04:46

r 21 17 22356 228 0 0 0 5939 9.4 4518 00:18:24

r 21 20 71354 116 0 0 0 6466 9.54 17673 03:10:39

r 30 15 15599 264 14 0 0 10109 6.87 1521 00:12:06

r 30 20 58659 1516 12 0 0 11376 8.41 15280 05:00:00

r 30 25 80999 615 18 0 0 12661 12.33 14281 05:00:00

r 48 20 51038 1632 26 0 0 18337 18.1 6133 05:00:00

r 48 30 66277 898 10 0 0 25437 28.68 5305 05:00:00

r 48 40 69242 257 2 0 0 31693 30.17 5628 05:00:00

r 52 20 49717 1674 22 0 0 11170 9.15 5707 05:00:00

r 52 30 62698 1692 18 0 0 14626 17.11 3845 05:00:00

r 52 40 68794 1024 16 0 0 17920 21.86 4953 05:00:00

r 52 50 77808 142 0 0 0 20873 24.49 4397 05:00:00

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 115

Table 6.2: Results for k = 3, L = 3 and arbitrary demands.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

a 21 10 56593 2 0 483 0 6680 8.66 9191 05:00:00

a 21 11 29325 2 0 375 1 6770 6.8 2614 00:57:32

a 30 10 44057 25 18 38 0 10354 6.64 13274 05:00:00

a 30 15 53545 86 0 462 0 13936 11.69 6399 05:00:00

a 48 15 34047 0 0 20 0 - - 1119 05:00:00

a 48 20 28329 0 2 10 0 - - 229 05:00:00

a 48 24 23975 0 0 11 0 - - 103 05:00:00

a 52 20 30157 108 6 41 0 - - 1735 05:00:00

a 52 26 24217 0 0 96 0 - - 307 05:00:00

We can see that for the rooted instances (Table 6.1), the algorithm has solved to
optimality 4 instances out of 13, with graphs having up to 30 nodes and with 15 de-
mands, and the CPU time varying from 4 minutes to 18 minutes. The gap achieved
between the best upper bound (that is, the optimal solution) and the lower bound at
the root node of the Branch-and-Cut tree (Gap) is relatively small (less than 10%)
for these instances. For the instances that have not been solved to optimality, the
value of the gap are also relatively small: less than 10% for 5 of them and less 31%
for the 4 other instances. Table 6.1 also shows that a very large number of st-cut
and 3-st-path-cut inequalities have been generated during the resolution. Also, a large
number of st-node-cut and 3-st-node-path-cut inequalities have been generated for all
the instances. We can also see that several Steiner SP-partition have been generated
but no double cut and Steiner partition inequalities have been generated.

For the arbitrary demands, the algorithm has solved to optimality only one instance
(d-21-11) over nine and has spent all the CPU for the other instances. Also, it has not
found even a feasible solution for 5 instances. For the instances r-21-10, d-30-10 and
d-30-15, that have not been solved to optimality, the gap between the lower bound at
the root node of the Branch-and-Cut tree and the best upper bound is less than 12%.
We can also see, as for the rooted instances, that a very large number of st-cut and 3-st-
path-cut inequalities have been generated, but less st-node-cut and 3-st-node-path-cut
inequalities have been generated. We can also notice that some Steiner SP-partition
and a quite large number of double cut inequalities have been generated in the resolu-
tion.

Our next series of experiments concerns the kNDHP with k = 4 and L = 3. The
results are given in Tables 6.3 and 6.4. Notice that in this case, the Steiner SP-partition
and Steiner partition inequalities are not included in the Branch-and-Cut algorithm

116 Branch-and-Cut Algorithm for the kNDHP

as they are redundant w.r.t. st-cut inequalities. Thus, the corresponding columns in
Tables 6.3 and 6.4 are omitted.

Table 6.3: Results for k = 4, L = 3 and rooted demands.

|V | |D| C-LPC NC-NLPC DC COpt Gap NSub CPU

r 21 15 4923 52 0 7322 4.57 1078 00:00:50

r 21 17 5732 24 0 7826 4.56 1186 00:01:06

r 21 20 35317 9 0 8556 5.32 17991 01:11:08

r 30 15 48473 2266 0 14315 6.66 10718 05:00:00

r 30 20 23784 0 0 15041 4.19 5664 00:35:22

r 30 25 54445 595 0 16379 5.93 11631 05:00:00

r 48 20 40090 1784 0 26131 20.86 6929 05:00:00

r 48 30 43988 621 0 29806 16.86 4140 05:00:00

r 48 40 51107 232 0 40037 24.77 4302 05:00:00

r 52 20 39125 1346 0 15480 8.72 5106 05:00:00

r 52 30 42750 2760 0 20976 20.28 5192 05:00:00

r 52 40 49499 831 0 24343 21.52 4865 05:00:00

r 52 50 56313 282 0 26541 17.92 4472 05:00:00

Table 6.4: Results for k = 4, L = 3 and arbitrary demands.

|V | |D| C-LPC NC-NLPC DC COpt Gap NSub CPU

a 21 10 50711 108 858 9339 10.37 9674 05:00:00

a 21 11 55432 127 703 9864 12.52 10221 05:00:00

a 30 10 36595 116 152 14582 6.3 9817 05:00:00

a 30 15 39442 37 319 18961 10.19 4593 05:00:00

a 48 15 24750 0 20 - - 589 05:00:00

a 48 20 20007 0 4 - - 137 05:00:00

a 48 24 16095 0 2 - - 47 05:00:00

a 52 20 21556 0 54 - - 867 05:00:00

a 52 26 14635 0 35 - - 215 05:00:00

The results of Table 6.3 show that for the rooted instances, 4 instances over 13 have
been solved to optimality. For the other instances, the gap is less than 9% for three
instances and less than 22% for six instances. The results also show that a very large
number of st-cut and 3-st-path-cut inequalities are generated while a large number
of st-node-cut and 3-st-node-path-cut inequalities are generated for all the instances.
Also, no double cut inequalities are generated for all the instances we have considered.

For arbitrary demands (Tables 6.4), all the instances have not been solved to opti-
mality within the CPU time limit. Also, for five instances (from d-48-15 to d-52-26)
over nine, the algorithm has not found a feasible solution. For the others, the gap
is less than 13%. Contrarily to rooted demands, a quite large number of double cut
inequalities have been generated.

6.1 Branch-and-Cut Algorithm for the kNDHP with L = 3 and k ≥ 3 117

Now we turn out attention to the resolution of the kNDHP with k = 5 and L = 3.
The results are given in Tables 6.5 and 6.6 below.

Table 6.5: Results for k = 5, L = 3 and rooted demands.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

r 21 15 8854 173 0 0 0 9560 3.24 3283 00:03:45

r 21 17 23490 804 0 0 0 10235 3.93 19537 00:54:09

r 21 20 31742 958 0 0 0 11095 4.1 59210 03:18:34

r 30 15 80055 6007 0 0 0 19624 10.01 25045 05:00:00

r 30 20 87973 838 0 0 0 20444 5.78 19283 05:00:00

r 30 25 77565 670 0 0 0 21604 5.31 23220 05:00:00

r 48 20 55964 4334 0 0 0 32753 18.53 11308 05:00:00

r 48 30 59897 1414 0 0 0 41200 22.3 9979 05:00:00

r 48 40 68991 319 0 0 0 48194 20.02 7758 05:00:00

r 52 20 55456 5330 0 0 0 28222 34.95 10387 05:00:00

r 52 30 56528 3283 0 0 0 31443 31.67 9388 05:00:00

r 52 40 61465 1330 0 0 0 30645 20.24 7997 05:00:00

r 52 50 77724 275 0 0 0 33994 17.27 8225 05:00:00

Table 6.6: Results for k = 5, L = 3 and arbitrary demands.

|V | |D| C-LPC NC-NLPC SP DC P COpt Gap NSub CPU

a 21 10 71158 279 0 645 0 11703 7.8 23196 05:00:00

a 21 11 74831 516 0 1097 1 12533 11.58 24980 05:00:00

a 30 10 49032 305 4 0 0 18613 2.94 20559 05:00:00

a 30 15 56285 242 0 589 0 24043 8.29 9227 05:00:00

a 48 15 37209 91 0 8 0 - - 2479 05:00:00

a 48 20 28574 0 0 2 0 - - 303 05:00:00

a 48 24 24246 0 0 0 0 - - 113 05:00:00

a 52 20 33492 29 0 0 0 30754 17.31 2065 05:00:00

a 52 26 25465 0 0 20 0 - - 347 05:00:00

We can see from Table 6.5, that for the rooted instances, the algorithm has solved
to optimality three instances over 13. For the other ten instances, the gaps is less than
10%, for only three of them. For the remaining instances, the gaps are between 10%
and 35%. Also, we notice that a large number of st-cut, 3-st-path-cut, st-node-cut
and 3-st-node-path-cut inequalities are generated. However, no Steiner SP-partition,
double cut and Steiner partition inequalities are generated. For the arbitrary demands
(Table 6.6), all the instances have not been solved to optimality, and, for four instances,
the algorithm has not found a feasible solution. We also notice that few Steiner SP-
partition and Steiner partition inequalities and a quite large number of double cut
inequalities have been generated.

In these experiments, we have also tried to check the impact of the different classes of
inequalities we have considered in our algorithm. As we can see in the various tables,

118 Branch-and-Cut Algorithm for the kNDHP

Steiner SP-partition and double cut inequalities are generated in quite large number,
and very few Steiner partition inequalities are found. We also observe that in the three
cases k = 3, 4, 5, the double cut inequalities are not generated when the demands are
rooted, and several of them are generated when the demands are arbitrary. In contrast
with double cut inequalities, Steiner SP-partition inequalities are mainly generated
when the demands are rooted, and few of them are generated for arbitrary demands.
This observation can be compared with those of Diarrassouba et al. [28] who devised
a Branch-and-Cut algorithm for the kNDHP with k = 2. In their experiments, they
showed that the double cut inequalities were mainly generated when the demands are
arbitrary. This suggests that the double cut inequalities (5.11) are mainly involved in
the resolution of the problem when the demands are arbitrary, and when the demands
are rooted, Steiner SP-partition inequalities may play an important role in solving the
problem.

To conclude this experimental study, we have checked the impact of the connectivity
on the resolution of the problem. Such a comparison has been made by Bendali et al.
[9], for the k-edge-connected subgraph problem, and by Diarrassouba et al. [27], for
the kEHDP, that is the hop-constrained survivable network design problem in which
the L-st-paths are required to be edge-disjoint, for each demand (s, t) ∈ D. In both
studies, the computational results suggest that the problem becomes easier to solve
when the connectivity increases. However, for the kNDHP, our computational results
do not allow to make the same conclusion. Indeed, by comparing Tables 6.1, 6.3 and
6.5, we can see that most of the instances that have not been solved to optimality for
k = 3 have also not been solved to optimality for k = 4 and k = 5. Also, the number of
nodes in the Branch-and-Cut tree is quite large in the three cases. Also, the different
gaps achieved do not allow to see if the problem becomes easier when k increases. In
fact, for some instances, like r-21-20, the gap decreases as k increases, while for some
other instances, like r-30-15, the gap is better when k = 4 than when k = 3 and
k = 5. Even, for some instances, like r-48-20, the gaps increase as k increases. The
observations are the same for the arbitrary demands, that is, we cannot conclude from
Tables 6.2, 6.4 and 6.6 that the resolution of the kNDHP becomes easier when the
connectivity k increases.

6.2 Branch-and-Cut Algorithm for the kNDHP with L = 4 and k = 2 119

6.2 Branch-and-Cut Algorithm for the kNDHP with

L = 4 and k = 2

In this section, we present a Branch-and-Cut algorithm for the kNDHP when L = 4 and
k = 2, based on the formulation presented in [50]. The formulation uses inequalities
(5.1)-(5.6). First, we present the general framework of the algorithm and then present
the separation procedures we have devised for the inequalities involved in the algorithm.

6.2.1 The general framework

The general framework of the algorithm is similar to the one presented before. To
reinforce the linear relaxation of this problem we add the rooted partition inequalities
(5.25) in the cutting plane algorithm. The separation of the inequalities used in the
Branch-and-Cut algorithm are performed in the following order

1) st-cut and st-node-cut inequalities,

2) rooted partition inequalities,

3) L-st-path-cut inequalities and L-st-node-path-cut inequalities (only for integral
solutions).

We apply the rooted partition inequalities (5.25) for the rooted 2NDHP (that is,
when the set of demands is rooted in a single node) and do not apply them when
arbitrary demands are considered.
Notice that the L-st-path-cut and L-st-node-path-cut inequalities are separated only
for integral solutions. Indeed, as we will see in the next subsection, these two families
of inequalities can be efficiently separated when the solution x∗ is integral.
In the following, we describe the separation algorithms we have devised for the inequal-
ities (5.1)-(5.4) and the rooted partition inequalities (5.25).

6.2.2 Separation procedures

6.2.2.1 Separation of st-cut inequalities and st-node-cut

It is well known that the separation of the st-cut inequalities (5.1) (resp. the st-node-
cut inequalities (5.3)) reduces to computing a minimum weight cut in G (resp. in G\z

120 Branch-and-Cut Algorithm for the kNDHP

for all z ∈ V \ {s, t}) with respect to weight vector y. Indeed, there is a violated cut
inequality (5.1) (resp. st-node-cut inequality (5.3)) if and only if the minimum weight
of a cut, w.r.t. weight vector y, is < 2 (resp. < 1). One can compute a minimum
weight cut in polynomial time by using any minimum cut algorithm, and especially
by using the Gomory-Hu algorithm [40] which computes the so-called Gomory-Hu cut
tree. This algorithm consists in |V | − 1 maximum flow computations.

6.2.2.2 Separation of 4-st-path-cut and 4-st-node-path-cut inequalities

Now, we discuss the separation problem of 4-st-path-cut and 4-st-node-path-cut in-
equalities (5.2) and (5.4). As mentionned before, we consider the separation problem
of these inequalities only in the case where the considered solution x ∈ RE , is integral.
The idea is similar to the one presented in the proof of the formulation in [50]. Consider
an edge subset F ⊆ E, and let GF be the graph induced by F . First we compute a
Dijkstra algorithm to obtain a shortest st-path (in number of hops), say P0, in G. If
|P0| > 4, then we detect a violated 4-path-cut inequality. We define Vi, i = 0, ..., 4,

as the subset of nodes at distance i from s in G, and V5 = V \ (
4⋃

i=0
Vi). We add the

corresponding 4-path-cut inequality induced by the partition (V1, ..., V5) to the LP. If
|P0| ≤ 4, then we look for a second shortest path in G \ {st}, say P1, such that P0

and P1 are node-disjoint. If |P1| ≤ 4, then F induces a solution for the 2NDHP. If
|P1| > 4, there are two cases. The first case is when |P0| = 1, that is P0 = (st), we
define a 4-path-cut inequality in the same way as in the previous case, and we add the
violated inequality to the LP. The second case is when |P0| > 1, in that case we remove
the nodes of P0, say vP0

i , i = 1, ..., |P0|, one by one, then we define the corresponding
4-node-path-cuts in G \ vP0

i in the same way, and add them to the LP.

6.2.2.3 Separation of rooted partition inequalities

To separate inequalities (5.25), we use the separation heuristic presented in [49]. This
heuristic has been implemented to run in polynomial time.

6.2.3 Computational results

The same computational environment presented in the previous section is used for
these experiments. Note that the rooted partition inequalities (5.25) are only used for

6.2 Branch-and-Cut Algorithm for the kNDHP with L = 4 and k = 2 121

the instances with rooted demands.

The computational results are given in Tables 6.7 and 6.8. The entries of these two
tables are the same as those of Section 6.1.3, except for Table 6.8, for which we add
the entry

RP : the number of generated rooted partition inequalities.

Table 6.7: Results for k = 2, L = 4 and arbitrary demands.

|V | |D| C-NC LPC-NLPC COpt Gap NSub CPU

a 5 2 1 0 2314 0 1 0:00:01

a 10 3 17 15 2358 1.64 23 0:00:01

a 10 4 30 175 2773 10.1 186 0:00:01

a 10 5 15 326 3219 11.14 615 0:00:01

a 14 5 46 102 3326 7.18 356 0:00:01

a 14 7 195 1604 3796 9.72 6439 0:00:08

a 17 8 3589 45507 3079 31.71 608368 5:00:00

a 21 10 2361 37423 4720 40.59 334898 5:00:00

a 21 11 2893 36324 4770 41.44 334084 5:00:00

a 48 10 26795 19456 57349 87.33 154736 5:00:00

a 48 15 22343 32540 - - 145813 5:00:00

a 48 24 17236 30632 - - 245307 5:00:00

a 52 10 33319 16521 19769 74.6 107555 5:00:00

a 52 15 29114 15508 32592 81.2 124780 5:00:00

a 52 20 14288 33394 - - 162161 5:00:00

a 52 26 10778 33464 - - 198811 5:00:00

We can see that for the rooted demands (Table 6.8), the algorithm has solved to
optimality 7 instances out of 19 within the time limit. We can observe that the gaps
obtained are quite large for most of the instances, but it is less than 30% for the rel-
atively small instances. Table 6.8 also shows that a very large number of st-cut and
3-st-path-cut inequalities have been generated during the resolution, and a large num-
ber of st-node-cut and 3-st-node-path-cut inequalities have been generated for all the
instances. We can also see that several rooted partition inequalities have been gener-
ated for some instances.

122 Branch-and-Cut Algorithm for the kNDHP

Table 6.8: Results for k = 2, L = 4 and rooted demands.

|V | |D| C-NC LPC-NLPC RP COpt Gap NSub CPU

r 10 5 41 24 36 2358 1.35 17 0:00:01

r 10 7 18 18 22 2848 4.09 23 0:00:01

r 10 9 15 565 19 3481 12.28 588 0:00:01

r 14 5 520 444 0 2601 7.9 383 0:00:01

r 14 7 862 4177 882 2998 17.61 5820 0:00:36

r 14 10 622 3481 668 3662 7.04 10540 0:00:31

r 17 16 3202 83928 0 2700 22.65 380463 5:00:00

r 21 7 717 1272 0 1789 6.59 425 0:00:02

r 21 10 15721 35009 0 2570 25.91 431618 5:00:00

r 30 29 7391 200914 0 13549 54.59 163377 5:00:00

r 48 10 60181 46849 0 27557 77.47 81057 5:00:00

r 48 15 69824 71232 0 37962 82.38 77855 5:00:00

r 48 20 89805 86653 0 27814 72.68 70272 5:00:00

r 48 30 87560 158432 0 38629 79.03 105848 5:00:00

r 52 10 85786 59630 0 23916 83.1 62374 5:00:00

r 52 20 116638 109693 0 19426 72.81 50496 5:00:00

r 52 30 111091 174649 0 22143 72.07 63565 5:00:00

r 52 40 43333 262234 0 22378 70.09 109805 5:00:00

r 52 50 18217 281265 0 20731 64.4 120560 5:00:00

For the arbitrary demands, the algorithm has solved to optimality 6 instances, with
graphs having up to 14 nodes and with 7 demands, and has spent all the CPU for the
other instances. We can also see, as for the rooted demands, that a very large number
of st-cut and 3-st-path-cut inequalities have been generated, and as much st-node-cut
and 3-st-node-path-cut inequalities have been generated. We also note that the number
of nodes in the Branch-and-Cut tree is quite large for the two types of demands. Also,
the different gaps achieved are important for the big instances. Finally, we notice that
for the arbitrary demands, the algorithm ran out of memory for 4 instances, and did
not find a feasible solution.

6.3 Conclusion

In this chapter, we have studied the k-Node-Disjoint Hop-Constrained Network Design
Problem (kNDHP) when L ∈ {2, 3, 4}. We have introduced an integer programming
formulation for the problem when L ∈ {2, 3} and investigated the associated polytope.

6.3 Conclusion 123

We have presented several classes of valid inequalities and presented conditions under
which these inequalities define facets. Then, we have devised a Branch-and-Cut al-
gorithm for solving the problem based on the inequalities we have presented before.
In particular, we have discussed the separation problem of the st-cut, 3-st-path-cut,
st-node-cut, 3-st-node-path-cut inequalities, as well as that of the Steiner SP-partition,
Steiner partition and double cut inequalities. Finally, we have presented Branch-and-
Cut and computational results for the problem when L = 3 and k = 3, 4, 5 on one
hand, and when L = 4 and k = 2 on the other hand.

The experiments we have done in this chapter have shown that the Branch-and-Cut
algorithm is quite efficient for solving the kNDHP when L = 3 and k = 3, 4, 5, and
this, for both rooted and arbitrary sets of demands. They also pointed out that the
large size instances are still difficult to solve within 5 hours of CPU time, but the gaps
achieved, are in most cases quite interesting. Moreover, the experiments have shown
the importance of Steiner SP-partition and double cut inequalities (5.17) and (5.11) are
important in solving the problem, and that Steiner partition inequalities (5.19) seems
to be less effective.

It should also be noticed that, contrarily to the survivable network design problem
without hop constraints (or the kNCSP with L ≥ |V | − 1), our experiments cannot
permit to conclude on the impact of an increasing of the connectivity k on the reso-
lution of the problem. In fact, previous experiments done for the survivable network
design problem (see [9] and [31], for example) have concluded that the problem with-
out considering hop constraints seems to become easier when k increases. In our case
(the kNDHP with L < |V | − 1), the impact of the connectivity on the resolution is
less clear. It even seems, when comparing the results for L = 3 and L = 4, that the
kNDHP becomes more difficult to solve when L increases.

The computational study pointed out that a very large number of st-cut and 3-st-
path-cut inequalities are generated during the resolution of the problem. This can
be an issue since it yields the Branch-and-Cut algorithm to manage a huge pool of
constraints and can imply an execessive CPU time consumption for constraints man-
agement. This can even yield the Branch-and-Cut algorithm to solve linear programs
with a large number, but still polynomial, number of constraints. Finally, all this may
prevent the algorithm from a good exploration of the Branch-and-Cut tree.

124 Branch-and-Cut Algorithm for the kNDHP

The above observations suggests that an efficient algorithm for the kNDHP requires a
tighter formulation for the problem, which may efficiently include simultaneously both
the disjoint paths and the hop contraints. Also, it may require a deeper investigation
of the polytope of the problem in order to provide more facet-defining inequalities and
yield an efficient Branch-and-Cut algorithm.

For theoretical purposes, it should be interesting to study the polyope of the kNDHP
in some special cases, like for example when the graph is series-parallel. Also, one could
investigate the problem with respect to the distribution of the demands, since it may
influence the polyhedral description of the solutions of the problem, and probably the
efficiency of resolution algorithms.

Another question which would be of interest is to see whether one can use directed
models for the kNDHP. This may provide stronger integer linear programming formu-
lations. This is one of our research lines in the future.

Conclusion

In this thesis, we have studied, within a polyhedral context, two survivable network
design problems, the k-node-connected subgraph (kNCSP) and the k node-disjoint
hop-constrained survivable network (kNDHP) problems. In particular, we have con-
sidered these problems in the case where a high level of connectivity is required, that
is when k ≥ 3. These two problems are NP-hard when k ≥ 2.

In the first part, we considered the k-node-connected subgraph problem (kNCSP).
We focused our attention on the polyhedron associated with this problem. We derived
new classes of valid inequalities. We then described necessary and sufficient conditions
for theses inequalities to define facets. Moreover, we have studied some reduction
operations inspired from the ones introduced by Didi Biha and Mahjoub [13] (see also
[11]). These allow to perform the separation of the valid inequalities in a reduced graph.
Using these results, we have devised a Branch-and-Cut algorithm for the problem
and given computational results for k = 3, 4, 5. The later was implemented to solve
instances from SNDlib and TSPlib with realistic topologies. The experiments show
in particular the efficiency of the separation procedure used in the Branch-and-Cut
algorithm and the significant improvement enabled by the introduced inequalities on
strengthening the linear relaxation of the problem.

We studied afterwards a hop-constrained version of the problem that is kNDHP,
taking into account the length of the paths between every origin and destination of
the demands. We introduced a new integer linear programming formulation for the
problem. We studied the polyhedron associated with the formulation, in an attempt
to describe strong valid inequalities for the problem. We investigated the properties of
this polyhedron as well as the facial structure of the basic inequalities. This led us to
define several classes of valid inequalities, that are facets of polyhedron under certain
necessary and sufficient conditions, that we described. These valid inequalities were
incorporated within a Branch-and-Cut framework. The obtained algorithm allowed to
solve the problem for arbitrary and realistic instances from the TSPlib.

126 Conclusion

There are many directions in which the research in this thesis can be continued for
both considered problems.

The experiments we have performed for the kNDHP for k = 3, 4, 5 and L = 3 have
relatively high CPU time. It would be interesting to pursue the approach used here
for the kNDHP when L = 3. One may lead a deeper investigation of the polytope
of the problem by using the appropriate directed graphs and exploiting the known
results on arc-disjoint paths problems in directed graphs. This may help to provide
new facet defining inequalities. It would also be interesting, from an algorithmic point
of view, to improve the separation procedures provided for the various inequalities we
have introduced in this work. We need to develop more efficient separation heuristics
for the Branch-and-Cut algorithm. It will be also interesting to focus on more sophis-
ticated preprocessing methods in order facilitate the problem resolution. It will also
be interesting to perform the experimentations for the kNDHP for L = 4.

The same kind of study can be used for the kNDHP when L ≥ 5. If possible,
this may provide an integer programming formulation for the problem as well as a
Branch-and-Cut algorithm for all k ≥ 2 and L = 5.

Bibliography

[1] http://sndlib.zib.de/home.action.

[2] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[3] http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.

[4] http://scip.zib.de/.

[5] Two-edge Connected spanning subgraphs A. R. Mahjoub and polyhedral. Two-
edge connected spanning subgraphs and polyhedra. Mathematical Programmig,
64:199–208, 1992.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems, 2003.

[7] Francisco Barahona and Ali Ridha Mahjoub. On two-connected subgraph poly-
topes. Discrete Mathematics, 147(1):19 – 34, 1995.

[8] Cynthia Barnhart. Planning and control of transportation systems: stochastic
optimization for robust planning in transportation. Technical report, 2000.

[9] F. Bendali, I. Diarrassouba, M. Didi Biha, A.R. Mahjoub, and J. Mailfert. A
branch-and-cut algorithm for the k-edge-connected subgraph problem. Networks,
55:13–32, 2010.

[10] F. Bendali, I. Diarrassouba, A.R. Mahjoub, and J. Mailfert. The k edge-disjoint
3-hop-constrained paths polytope. Discrete Optimization, 7:222–233, 2010.

[11] M. Didi Biha. Graphes k-arêtes connexes et polyèdres. PhD thesis, Université de
Bretagne Occidentale, Brest, 1998.

[12] M. Didi Biha and A.R. Mahjoub. k-edge connected polyhedra on series-parallel
graphs. Operations Research Letters, 19:71–78, 1996.

128 BIBLIOGRAPHY

[13] M. Didi Biha and A.R. Mahjoub. The k-edge connected subgraph problem i: Poly-
topes and critical extreme points. Linear Algebra and its Applications, 381:117–
139, 2004.

[14] Q. Botton, B. Fortz, L. Gouveia, and M. Poss. Benders decomposition for the hop-
constrained survivable network design problem. INFORMS J Comput, 25:13–26,
2013.

[15] Q. Botton, Bernard Fortz, and Luis Gouveia. On the hop-constrained survivable
network design problem with reliable edges. Computers & Operations Research,
64:159–167, 2015.

[16] Gilmore P. C. and R. E. Gomory. A linear programming approach to the cutting-
stock problem. Operations Research, 9:849–859, 1961.

[17] Gilmore P. C. and R. E. Gomory. A linear programming approach to the cutting-
stock problem - part ii. Operations Research, 11:863–888, 1963.

[18] Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel. Orientation-
based models for {0,1,2}-survivable network design: theory and practice. Mathe-

matical Programming, 124(1):413–439, Jul 2010.

[19] S. Chopra. The k-edge connected spanning subgraph polyhedron. SIAM J Discrete

Mathematics, 7:245–259, 1994.

[20] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a
graph and some related integer polyhedra. Mathematical Programmig, 33:1âĂŞ27,
1985.

[21] G. Dahl. Notes on polyhedra associated with hop-constrained paths. Operations

Research Letters, 25:97–100, 1999.

[22] G. Dahl, N. Foldnes, and L. Gouveia. A note on hopconstrained walk polytopes.
Operations Research Letters, 32:345–349, 2004.

[23] G. Dahl and L. Gouveia. On the directed hop-constrained shortest path problem.
Operations Research Letters, 32:15–22, 2004.

[24] George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations Research, 8:101–111, 1960.

[25] Jacques Desrosiers and Marco E. Lübbecke. A Primer in Column Generation,
pages 1–32. Springer US, Boston, MA, 2005.

BIBLIOGRAPHY 129

[26] I. Diarrassouba. Survivable network design problems with high connectivity re-

quirements. PhD thesis, Université Blaise Pascal, 2009.

[27] I. Diarrassouba, V. Gabrel, A. R. Mahjoub, L. Gouveia, and P. Pesneau. Integer
programming formulations for the k-edge-connected 3-hop-constrained network
design problem. Networks, 67:148–169, 2016.

[28] I. Diarrassouba, H. Kutucu, and A. R. Mahjoub. Two node-disjoint hop-
constrained survivable network design and polyhedra. Networks, 67:316–337, 2016.

[29] I. Diarrassouba, M. Mahjoub, and A. R. Mahjoub. The k-node-connected sub-
graph problem: Formulation, polyhedra and branch-and-cut. Mathematical Pro-

gramming, 124(1):413–439, Jul 2010.

[30] I. Diarrassouba, M. Mahjoub, and A. R. Mahjoub. The k-node-connected subgraph
problem: Formulation, polyhedra and branch-and-cut. In Proceedings - CIE 45:

2015 International Conference on Computers and Industrial Engineering, 2015.

[31] I. Diarrassouba, M. Mahjoub, A. R. Mahjoub, and R. Taktak. The k-node con-
nected subgraph problem: Polyhedral analysis and branch-and-cut. Electronic

Notes in Discrete Mathematics, 52:117–124, 2016.

[32] E. T. Dixon and S. E. Goodman. An algorithm for the longest cycle problem.
Networks, 6:139–149, 1976.

[33] J. Edmonds. Covers and packings in a family of sets. Bulletin of the American

Mathematical Society, 68(5):494–499, 1962.

[34] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of

Research of the National Bureau of Standards (B) 69, 69:9–14, 1965.

[35] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19:248–264, 1972.

[36] Manuel Fuentes, Luis Cadarso, and Ángel Marín. A new approach to crew schedul-
ing in rapid transit networks. Transportation Research Procedia, 10:554 – 563,
2015. 18th Euro Working Group on Transportation, EWGT 2015, 14-16 July
2015, Delft, The Netherlands.

[37] M. R. Garey and D. J. Johnson. Computer and intractability: A guide to the

theory of NP -completness. W. H. Freeman, 1979.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

130 BIBLIOGRAPHY

[39] Michel X. Goemans and Dimitris J. Bertsimas. Survivable networks, linear pro-
gramming relaxations and the parsimonious property. Math. Program., 60(2):145–
166, June 1993.

[40] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Society for Industrial

and Applied Mathematics, 9:551–570, 1961.

[41] L. Gouveia, P. Patricio, and A. de Sousa. Compact models for hop-constrained
node survivable network design, an application to mpls, telecommunications plan-
ning: Innovations in pricing, network design and management. Springer, 33:167–
180, 2005.

[42] Luis Gouveia and Markus Leitner. Design of survivable networks with vulnerability
constraints. European Journal of Operational Research, 258(1):89 – 103, 2017.

[43] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[44] M. Grötschel and C.L. Monma. Integer polyhedra arising from certain network
design problems with connectivity constraints. SIAM J Discrete Mathematics,
3:502–523, 1990.

[45] M. Grötschel, C.L. Monma, and M. Stoer. Polyhedral approaches to network
survivability. Series in Discrete Mathematics & Theoretical Computer Science,
5:121–141, 1991.

[46] M. Grötschel, C.L. Monma, and M. Stoer. Computational results with a cut-
ting plane algorithm for designing communication networks with low-connectivity
constraints. Operations Research, 40:309–330, 1992.

[47] M. Grötschel, C.L. Monma, and M. Stoer. Polyhedral and computational inves-
tigations for designing communication networks with high survivability require-
ments. Operations Research, 43:1012–1024, 1995.

[48] A.R. Mahjoub H. Kerivin and C. Nocq. (1,2)-Survivable Networks: Facets and

Branch&Cut, pages 121–152. MPS/SIAM Optimization, 2004.

[49] D. Huygens, M. Labbé, A.R. Mahjoub, and P. Pesneau. The two-edge connected
hop-constrained network design problem: Valid inequalities and branch-and-cut.
Networks, 49:116–133, 2007.

[50] D. Huygens and A.R. Mahjoub. Integer programming formulations for the two
4-hop-constrained paths problem. Networks, 43:135–144, 2007.

BIBLIOGRAPHY 131

[51] D. Huygens, A.R. Mahjoub, and P. Pesneau. Two edge-disjoint hop-constrained
paths and polyhedra. SIAM J Discrete Mathematics, 18:287–312, 2004.

[52] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints.
Springer, Boston, MA, 2005.

[53] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
1972.

[54] H. Kerivin and A. Ridha Mahjoub. Design of survivable networks: A survey.
Networks, 46:1–21, 2005.

[55] C-W. Ko and C. L. Monma. Heuristics for designing highly survivable communi-
cation networks. In New Jersey, 1989.

[56] A. R. Mahjoub. Polyhedral Approaches, pages 261–324. Wiley Online Library,
2013.

[57] A. R. Mahjoub and C. Nocq. On the linear relaxation of the 2-node connected
subgraph polytope. Discrete Applied Mathematics, 95:389–416, 1999.

[58] A. R. Mahjoub, L. Simonetti, and E. Uchoa. Hop-level flow formulation for the
hop constrained survivable network design problem. Lecture Notes in Computer

Science, 61:176–181, 2011.

[59] M. Mahjoub, I. Diarrassouba, A.R. Mahjoub, and R. Taktak. The survivable k-
node-connected network design problem: Valid inequalities and branch-and-cut.
Computers & Industrial Engineering, 112:690 – 705, 2017.

[60] K. Menger. Zur allgemeinen kurventhorie. Fundamanta Mathematicae, 10:96–115,
1927.

[61] Inge Røpke. Theories of practice - new inspiration for ecological economic studies
on consumption. Ecological Economics, 68(10):2490 – 2497, 2009.

[62] M. W. P. Savelsbergh. A branch-and-price algorithm for the generalized assign-
ment problem. Operations Research, 45:831–841, 1997.

[63] A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency. Algorithms

and Combinatorics, volume 24. Springer, 2003.

[64] François Vanderbeck and Laurence A. Wolsey. An exact algorithm for IP column
generation. Oper. Res. Lett., 19(4):151–159, 1996.

[65] Inken Wierstra and Jürgen Alves. The c-myc promoter: Still mystery and chal-
lenge. Advances in Cancer Research, 99:113 – 333, 2008.

Résumé

Dans un graphe non orienté, le prob-

lème du sous-graphe k-sommet con-

nexe consiste à déterminer un sous-

graphe de poids minimum tel que

entre chaque paires de sommets, il

existe k chemins sommet-disjoints.

Ce modèle a été étudié dans la lit-

térature en termes d’arête connex-

ité. Cependant, le cas de la som-

met connexité n’a pas été traité

jusqu’à présent. Nous décrivons de

nouvelles inégalités valides et nous

présentons un algorithme de Coupes

et Branchements ainsi qu’une large

étude expérimentale qui montrent

l’efficacité des contraintes utilisées.

Nous proposons ensuite une formu-

lation étendue pour le même prob-

lème pour une connexité k = 2,

suivi d’un algorithme de Génération

de Colonnes et Branchements pour

résoudre cette formulation.

Nous étudions ensuite la version

avec chemins bornés du problème.

Le problème consiste à trouver un

sous-graphe de poids minimum, tel

que entre chaque paire d’origine-

destination, il existe k chemins

sommet-disjoints de longueur au

plus L. Nous proposons une for-

mulation linéaire en nombres entiers

pour L = 2, 3. Nous présentons de

nouvelles inégalités valides et nous

proposons des algorithmes de sépa-

ration pour ces contraintes. Nous

présentons ensuite un algorithme de

Coupes et Branchements qu’on a

testé sur différentes instances.

Mots Clés

Conception de réseaux, Polytope,

Facette, Séparation, Algorithme de

Coupes et Branchements, Algo-

rithme de Génération de Colonnes et

Branchements.

Abstract

Given a weighted undirected graph

and an integer k, the k-node-

connected subgraph problem is to

find a minimum weight subgraph

which contains k-node-disjoint paths

between every pair of nodes. We in-

troduce new classes of valid inequal-

ities and discuss their facial aspect.

We also devise separation routines,

investigate the structural properties

of the linear relaxation and discuss

some reduction operations that can

be used in a preprocessing phase

for the separation. Using these re-

sults, we devise a Branch-and-Cut al-

gorithm and present some computa-

tional results. Then we present a new

extended formulation for the the k-

node-connected subgraph problem,

along with a Branch-and-Cut-and-

Price algorithm for solving the prob-

lem.

Next, we investigate the hop-

constrained version of the problem.

The k node-disjoint hop-constrained

network design problem is to find a

minimum weight subgraph such that

between every origin and destination

there exist at least k node-disjoint

paths of length at most L. We

propose an integer linear program-

ming formulation for L = 2, 3 and

investigate the associated polytope.

We introduce valid inequalities and

devise separation algorithms. Then,

we propose a B&C algorithm for

solving the problem along with some

computational results.

Keywords

k-node-connected graph, k-node-

disjoint hop-constrained paths,

Survivable Network, Polytope,

Facets, Separation, Branch-and-Cut,

Branch-and-Cut-and-Price.

