Souha Boubaker Rokbani

Keywords: Gestion de processus métier, Vérification formelle, Allocation de ressources, Correction

Titre : Vérification formelle de la configuration des processus métiers dans le Cloud

Dans cette thèse, nous visons à (i) fournir de l'assistance et de l'aide à la configuration aux analystes avec des options correctes, et (ii) améliorer le support de la spécification et de la vérification des ressources Cloud dans les processus métier. Pour ce faire, nous proposons une approche formelle pour aider à la configuration étape par étape en considérant des contraintes structurelles et métier. Nous proposons ensuite une approche comportementale pour la vérification de la configuration tout en réduisant le problème bien connu de l'explosion d'espace d'état. Ce travail permet d'extraire les options de configuration sans blocage d'un seul coup. Enfin, nous proposons une spécification formelle pour le comportement d'allocation des ressources Cloud dans les modèles de processus métier. Cette spécification est utilisée pour valider et vérifier la cohérence de l'allocation des ressources Cloud en fonction des besoins des utilisateurs et des capacités des ressources.

Title : Formal verification of business process configuration in the Cloud

Keywords : Business Process Management, Formal verification, Resource allocation, Correctness.

Abstract: Motivated by the need for the "Design by Reuse", Configurable process models are proposed to represent in a generic manner similar process models. They need to be configured according to an organization needs by selecting design options. As the configurable process models may be large and complex, their configuration with no assistance is undoubtedly a difficult, time-consuming and error-prone task. Moreover, organizations are increasingly adopting cloud environments for deploying and executing their processes to benefit from dynamically scalable resources on demand. Nevertheless, due to the lack of an explicit and formal description of the resource perspective in the existing business processes, the correctness of Cloud resources management cannot be verified.

In this thesis, we target to (i) provide guidance and assistance to the analysts in process model configuration with correct options, and to (ii) improve the support of Cloud resource specification and verification in business processes. To do so, we propose a formal approach for assisting the configuration step-by-step with respect to structural and business domain constraints. We thereafter propose a behavioral approach for configuration verification while reducing the well-known state space explosion problem. This work allows to extract configuration choices that satisfy the deadlock-freeness property at one time. Finally, we propose a formal specification for Cloud resource allocation behavior in business process models. This specification is used to formally validate and check the consistency of the Cloud resource allocation in process models according to user requirements and resource capabilities.

Acknowledgment " First and foremost, I thank god for giving me strength, knowledge, ability and opportunity to undertake this research work and to continue and complete it satisfactorily. Without His blessings, this achievement would not have been possible. I would like to thank all members of the jury. I thank Professor Djamal Benslimane and Professor Yves Ledru for accepting being my thesis reviewers and for their insightful comments and encouragement. I also thank Professor Daniela Grigori and Dr. Paul Gibson for accepting being my thesis examiners.

I would like to express my deepest thanks and gratitude to my supervisor Walid Gaaloul for his continuous support, patience, motivation, and immense knowledge. His precious guidance and fruitful ideas helped me in all the time of research and writing of my scientific papers as well as this manuscript. His valuable advice, enthusiasm and constant support during this thesis allowed me to acquire new understandings and extend my experiences. I deeply hope that we can continue our collaboration.

I am also grateful to my supervisor Amel Mammar for her encouragement, kindness and wide knowledge in formal specifications. Her precious advice and support have been invaluable. She deserves also special thanks for carefully reading through early drafts of this dissertation. A special gratitude is also due to my supervisor Mohamed Graiet for his great advices and his guidance. I am thankful for the opportunities he provided, and for having faith in me. Special thanks to Kais Klai for the beneficial collaboration we have had. I am deeply grateful for the great deal of time we spent discussing many technical details of our work together. I also want to give special thanks to all the members of the computer science department of Telecom SudParis, especially Djamel Belaid and Brigitte Houassine for their kind help and assistance. I am indebted to many others for comments, discussions, criticism and encouraging enthusiasm: Nour, Rami, Emna, Rania, Hayet, Kunal, Nabila, Slim, Abderrahim.

Last but not least, I would like to say some words in French. Je dédie cette thèse à la mémoire de mon grand-père Baba Hédi qui s'est éteint sans que je puisse lui dire au revoir. Je ne t'oublierai jamais, que le bon DIEU t'accueille dans son paradis.

Je dédie cette thèse à mes chers parents, Leila et Ouanes, symbole de la bonté par excellence et source de tendresse. Merci pour vos sacrifices, vos prières et votre amour inconditionnel. Votre bénédiction m'a permis de devenir ce que je suis aujourd'hui. J'espère avoir réussi à vous rendre fiers de moi. Je remercie également ma soeur Sana et mes deux fréres Seif et Salem, sans oublier ma belle petite niéce Alma. Je tiens

Table of contents

List of Figures

3.8

The five-steps approach for guaranteeing Provop soundness [START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF] . . . 3.9 The RALph approach for graphic resource assignments [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF]

Research Context

Since the beginning of the nineties, business processes (BPs) have gained increased significance for almost any business. In order to manage and improve their business processes, organizations are more and more aligning their information systems in a process-centered way. Along this trend, Process Aware Information Systems (PAISs) have emerged to better manage and execute operational processes involving people, applications, and/or information sources on the basis of process models [START_REF] Dumas | Processaware Information Systems: Bridging People and Software Through Process Technology[END_REF]. Most notable examples of such systems are Workflow Management Systems (WfMSs) [START_REF] Wil | Workflow Management: Models, Methods, and Systems[END_REF][START_REF] Oberweis | Person-to-Application Processes: Workflow Management[END_REF] and Business Process Management Systems (BPMSs) [START_REF] Wil | Business process management: A survey[END_REF][START_REF] Smith | Business process management: the third wave[END_REF][START_REF] Weske | Business Process Management -Concepts, Languages, Architectures[END_REF]. Business process models are key instruments of Business Process Management (BPM) in such systems. They explicitly represent business processes in terms of their activities and the execution constraints between them [3]. While the essence still quite similar, a range of graphical notations have been proposed for business process modeling, such as Business Process Model and Notation (BPMN) [START_REF] Omg | Business process model and notation[END_REF], Event-driven Process Chain (EPC) [START_REF] Scheer | ARIS -vom Geschäftsprozess zum Anwendungssystem[END_REF], Yet Another Workflow Language (YAWL) [START_REF] Van Der Aalst | Yawl: Yet another workflow language[END_REF], Unified Modeling Language (UML) [START_REF]3 OMG. Unified modelling language[END_REF], etc. In fact, process modeling is part of the initial phase of business process lifecycle in a PAIS, that is the process design and analysis (see Figure 1.3). Once the process model is designed, it needs to be analysed using validation, simulation and verification techniques. This step is crucial since errors detected in early design phases will spoil any re-design efforts that might follow. Next, the second phase is the process model implementation. BPs are automated Introduction into operational/executable processes. Thirdly, BPs are executed, after deployment on a PAIS, according to the process model. Finally, in the process diagnosis stage, process executions are analyzed to identify possible improvements leading to process re-design.

During recent years, while some organizations still focus on the design and analysis of their internal activities, an increasing number of them are targeting to align their BPs across organizational boundaries for collaboration needs. Indeed, two or more autonomous organizations (maybe also subsidiaries of the same organization) carry out an organized group of joined activities to achieve a common business objective, the so-called Inter-Organizational Business Process (IOBP) [START_REF] Wil | The p2p approach to interorganizational workflows[END_REF][START_REF] Roger | Designing trustworthy interorganizational trade procedures for open electronic commerce[END_REF][START_REF] Van Der Aalst | Modeling and analyzing interorganizational workflows[END_REF][START_REF] Engel | Analyzing inter-organizational business processes[END_REF][START_REF] Wil | Multiparty contracts: Agreeing and implementing interorganizational processes[END_REF][START_REF] Van Der Aalst | Loosely coupled interorganizational workflows: Modeling and analyzing workflows crossing organizational boundaries[END_REF]. Typically, collaborating business partners (often called tenants) are involved in one 'global' IOBP which serves as a contract between them. Each partner has its own 'local' private business process which is usually designed separately and in an ad-hoc manner. Since these corporations are designed in a rigid manner, then it would be inefficient for organizations to engage (re-)designing and modeling "from scratch" their process models without learning from each other's practice and experience. Moreover, BPs need to be flexible since organizations are continuously willing to align their processes with new requirements (e.g., law, regulation, technology, etc.). Configurable process models were proposed [1,4,6,[START_REF] Gottschalk | Configurable Process Models -A Foundational Approach[END_REF][START_REF] Wil | Configurable process models as a basis for reference modeling[END_REF][START_REF] Dreiling | Configurable process models as a basis for reference modeling -position paper[END_REF] as a step toward enabling a process "design by reuse" while offering flexibility. Furthermore, corporations most often operate across organizational boundaries. Then, there is an increasing need to enhance their deployment in a flexible and controlled manner. One way of facilitating BPs deployment, is to use Cloud computing infrastructures [START_REF] Van Der Aalst | Business process configuration in the cloud: How to support and analyze multi-tenant processes?[END_REF][START_REF] Wil | Configurable services in the cloud: Supporting variability while enabling cross-organizational process mining[END_REF]. Such a multi-tenant environment supports the sharing of common processes as well as IT resources on demand. The verification of process configuration as well as the verification of Cloud resource allocation within a BP are the scope of this thesis work.

Configurable process models were proposed to represent and group business processes that have similarities while exhibiting some local variations. These variations are captured using configurable elements that allow for multiple design options. Such processes are designed in a generic and integrated manner in order to be shared among different companies or branches. For instance, considering a hotel reservation agency that has many branches in different cities and countries, all branches processes include activities related to hotel searching and selection. Not surprisingly, they may have many differences depending on specific needs and priorities. An example of such differences may be a deposit being required to confirm the reservation in some regions and not in others, or even the type of the deposit may differ among regions (cheque, cash or credit card). Then, these processes can be configured and adjusted according to each specific company requirements by simply selecting the desired options and deselecting the undesired ones. The obtained individualized processes are called variants and are produced with a minimal design efforts.

In order to set clear these configuration concepts, let us take the simple example in Figure 1.1. The configurable process model, on the left hand side of the figure, is modeled using the Configurable BPMN (C-BPMN) notation. This notation may have two types of configurable nodes that are highlighted in a thick border: activities (represented with rectangles) and connectors (represented with diamonds). More details about BPMN and C-BPMN are given in Chapter 3. There are three types of connectors modeling the splits and joins in the model: OR (inclusive choice), XOR (exclusive choice) and AND (parallel flows). In case of ordinary processes, these connectors represent run-time choices. Whereas, a configurable element represent a design-time configuration choice that analysts should take according to each individual organization needs. Our example contains one configurable activity, A, and two configurable connectors, s1 and j1. For example, the analyst may choose to exclude the activity A. As a configurable connector may be configured by removing one or more input/output branches, then, the analyst may block the first output path of s1 and the corresponding input path of j1. Then, using the individualization phase, a configured process model (cf. Variant 1) that corresponds to these configuration choices, is derived in the original process modeling language (i.e., BPMN). Hence, in this derived model, excluded elements are removed and maintained configurable elements are replaced with ordinary ones. For instance, the second derived model Variant 2 in Figure 1.1 is obtained, first, by maintaining the activity A. Second, since a configurable connector's type may be changed, j1 is configured from OR to XOR and s1 is maintained the same. As the obtained variants do not contain any configurable elements, they can be executed by a PAIS. In this context, the process design phase in the BP lifecycle is replaced with the configurable process design phase. A number of configurable process modeling languages have been recently proposed such as Configurable BPMN (C-BPMN) (e.g. [6,[START_REF] Assy | Business Process Management: 13th International Conference[END_REF]), Configurable EPC (C-EPC) (e.g. [1,[START_REF] Wil | Configurable process models as a basis for reference modeling[END_REF]) and Configurable YAWL (C-YAWL) (e.g. [4]), that extend BPMN, EPC, and YAWL notations respectively with variable elements. Once the configurable process model is designed, the diagnosis phase may skip the phase of a new process model re-design (see Figure 1.3). The Introduction process is instead directly adjusted by model users in the configuration & individualisation phase by applying configuration choices. As the configurable process may be very complex with a great number of configurable elements, interdependencies between the configuration choices may be very difficult to untangle. Hence, manually managing all the configurable elements of a process model one by one, leaving the designer the full responsibility for applying correct options, may be tedious and error-prone task. This implies that the configuration phase should also encompass an analysis step in order to verify and prevent errors in the derived process variants execution. Recent research work have proposed different approaches to facilitate the configuration of process models using, for example, configurable nodes [1,[START_REF] Recker | On the Syntax of Reference Model Configuration -Transforming the C-EPC into Lawful EPC Models[END_REF], change operations [6], templates and rules [START_REF] Kumar | Design and management of flexible process variants using templates and rules[END_REF], etc. Some approaches proposed to guide the configuration or/and to support domain-based constraints [7][START_REF] Asadi | Development and validation of customized process models[END_REF][START_REF] Assy | Business Process Management: 13th International Conference[END_REF][START_REF] Gröner | Modeling and validation of business process families[END_REF]. Others attempted to ensure the process configuration correctness [START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF][START_REF] Wil | Preserving correctness during business process model configuration[END_REF][START_REF] Wil | Fundamental Approaches to Software Engineering, FASE, chapter Correctness-Preserving Configuration of Business Process Models[END_REF][START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF], but most of them still suffer form the exponential number of possible configurations.

In another side of such multi-tenant environment, in order to remain competitive, organizations are increasingly adopting PAIS on Cloud environments to benefit from rapid adaptability and flexibility in enabling access to IT resources on a "pay-as-yougo" basis. Hence, they are deploying part or all of their BPs variants in Cloud infrastructures with respect to customer requirements. Specifically, with such dynamic environment, process activities may be supplied with flexible and dynamic resources to rapidly and effectively respond to changing demands. These Cloud-delivered resources have the advantage of being elastically scaled on demand, and possibly shared by several activities. Let as take the example of Figure 1.2 where resources are assigned to the process activities. Suppose that activity A needs an elastic compute resource r1 of 10 GB RAM to perform its task efficiently. This resource's initial offered capacity is 10 GB, but in case of changing needs of the activity, it may dynamically scale up or down during run-time. This is handled using horizontal (i.e., by supplying additional activity instances or removing them as necessary) or vertical (i.e., by increasing or decreasing offered resource capacity as necessary) elasticity techniques. Moreover, two activities, e.g., B and D, may be storing data in a shared storage resources r3. context mainly regarded human resources [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF][START_REF] Stroppi | Extended resource perspective support for BPMN and BPEL[END_REF]. Generally, extensions of business process models with the representation and the definition of human behavior were proposed [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF][START_REF] Stroppi | A BPMN 2.0 Extension to Define the Resource Perspective of Business Process Models[END_REF][START_REF] Jesús | Defining the resource perspective in the development of processes-aware information systems[END_REF][START_REF] Cabanillas | Towards Process-Aware Cross-Organizational Human Resource Management[END_REF][START_REF] Cabanillas | Specification and automated design-time analysis of the business process human resource perspective[END_REF]. However, less attention has been paid to non-human resource allocation, especially Cloud ones. Hence, there is a clear lack of formal, unified and explicit description and representation of Cloud resources in the existing business process models. Consequently, the correctness and the consistency [START_REF] Zowghi | On the interplay between consistency, completeness, and correctness in requirements evolution[END_REF] of Cloud resources management in BPs cannot be verified. So, in the BPs design and analysis phases, the correctness criteria to be established should encompass not only the control flow but also the resource management. Thus, we extend these phases with resources assignement to process activities and resources analysis (see Figure 1.3).

In this thesis, in addition to verifying the configuration aspect of the control flow (i.e., process activities orchestration in a specific order) in process models, we focus on enhancing the BP resource perspective by specifically managing and analyzing the Cloud resource allocation issue. "The resource perspective centers on the modeling of resources and their interaction with a process-aware information system (PAIS)" [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF]. Formal methods have proved their usefulness in the design of correct systems (e.g. Petri nets [START_REF] Kiepuszewski | Fundamentals of control flow in workflows[END_REF], Event calculus [START_REF] Kowalski | A logic-based calculus of events[END_REF], LTL [START_REF] Pnueli | The temporal logic of programs[END_REF], Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]). They promote the use of mathematical foundations and formal logic to specify and reason about system properties.

Introduction thesis: First, the process configuration and individualization phase is enhanced with an analysis phase in order to support the assistance and correctness verification of this configuration. Second, the process design and analysis phases are extended with the resource perspective in order to integrate the formal description of Cloud resources and to establish that the allocation behavior is correct.

Motivation and Problems Description

Our research work is motivated by the following two main issues: How to assist and verify business process configuration? and How to verify Cloud resource allocation in business process models?

How to assist and verify business process configuration?

The use of configurable process models still present challenges essentially related to the identification of the configuration steps with respect to different requirements and properties. Manual methods for configuring processes are undoubtedly tedious and error-prone. That is because, in case of complex processes, a very large number of configurable elements implies very complex inter-dependencies between their configuration alternatives. Therefore, analysts may easily be mistaken in their choices which undermine the correctness of the resulting variant.

We illustrate our research problem in Figure 1.4. During process configuration time, the process designer is wondering which configuration choices should he/she take. Once configured, he/she is not ensured that the derived process variant is correct with respect to different constraints: related to correctness and domain properties (i.e., rules allowing to comply with some business requirements). For example, a configurable activity may be removed from the model. In this case, the remaining process elements should be re-connected in order to maintain structural correctness of the model. When configuring a connector, removing an entire branch may lead to isolated activities. Even worse, the configuration of a join connector may lead to behavioral problems such as lack of synchronization and deadlock. For example, user should not configure a join connector to a synchronization if its corresponding split was already configured to an exclusive choice. This leads to a deadlock as only one branch is activated after the split, whereas the join needs the completion of all its incoming branches. These issues may be not easy to spot but have serious consequences on the process execution. Hence, there is a clear need to guide and assist the business analyst in order to correctly derive variants.

So far, a number of approaches have addressed the verification of the process configuration correctness. Some of them have discussed the strcutural correctness (e.g. [4,6]). Others have addressed the behavioral correctness (e.g. [START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF][START_REF] Wil | Preserving correctness during business process model configuration[END_REF][START_REF] Wil | Fundamental Approaches to Software Engineering, FASE, chapter Correctness-Preserving Configuration of Business Process Models[END_REF][START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF]). Traditionally, behavioral correctness verification often requires the reachability graph analysis (i.e. compute the state-space of process models). This means that, in case of configurable processes, one needs to analyze the state-space of all possible configurations (e.g. using Woflan tool [START_REF] Eric | Diagnosing workflow processes using woflan[END_REF]). This may be too time-consuming and may lead to a state explosion problem since the number of states grows exponentially with the number of variation points.

In view of these issues, the process configuration options should be evaluated and automatically restrained with respect to all configuration, correctness and domain constraints. Then, the process user should be guided and assisted using these options in order to derive correct variants. Furthermore, as discussed in this section, behavioral verification of the process configuration often encounters the combinatorial explosion of state-space size challenge. To address our research problems, we need to answer the following sub-questions: RQ1: How to identify configuration choices that satisfy designers and clients requirements?

RQ2: How to assist the designer in selecting the correct configuration choices?

RQ3: How to avoid the state-space explosion of the configuration verification issue?

How to verify Cloud resource allocation in business process models?

Introduction up a resource would be accomplished by resizing it. Secondly, different activities can cooperate to share the available resources in order to realize a specific task or to reduce the cost. Hence, Cloud resources may be shared and utilized at the same time by several tenants (in our case by several activities). Despite their wide-spread adoption in industry, the management and verification of Cloud resources in BPs still not yet mature enough. Mainly, considerable work [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF][START_REF] Stroppi | A BPMN 2.0 Extension to Define the Resource Perspective of Business Process Models[END_REF][START_REF] Jesús | Defining the resource perspective in the development of processes-aware information systems[END_REF][START_REF] Cabanillas | Towards Process-Aware Cross-Organizational Human Resource Management[END_REF][START_REF] Cabanillas | Specification and automated design-time analysis of the business process human resource perspective[END_REF] have addressed the resource perspective in business process models by integrating human resource allocation, description, representation, interactions, roles, etc. Whereas, a formal description and representation of Cloud resources allocation as well as the assessment and verification of their properties behavior are still missing. Moreover, traditional process modeling standards such as BPMN do not support Cloud resource assignment and allocation parameters setting for process activities.

Establishing the correctness of Cloud resources behavior in BPs is becoming challenging. By doing so, designers may identify critical usage scenarios that might lead to emergent behaviors and could undermine the correctness of the process execution. Having a complex process model allocating many resources with different properties and dependencies, the designed process and the running process instances behavior can easily deviate from users' needs. For example, if an activity's needed capacity change at run-time, then its allocated resource should scale up to accommodate this need. In addition, the designer should respect consistency rules such as: a non-elastic resource should not be allocated to an activity if its offered capacity does not fit the needed capacity. These problems are illustrated in Figure 1.5, the process user is designing his/her process model with the necessary Cloud resources. The selected resources may have one of the following types: store, compute or network. Also, dependencies between resources can be captured. For instance, we consider the substitution dependency that allows to designate a substitute for a resource to perform the same work as another one in case of its unavailability. Once designed, the designer is wondering whether his/her process is correct in terms of resource allocation behavior as well as the defined properties and constrains.

Adopting formal methods and techniques to model Cloud-based process models and their resource allocation behavior can be very effective to validate and check resource constraints. As they provide a reliable mathematical basis that results in easily verifiable formal models, inconsistencies related to resource allocation and properties can be detected before deploying or even purchasing these resources from Cloud providers.

In this thesis, we aim to extend the resource perspective in business processes by considering Cloud resources. Hence, we need to formally describe and specify the Cloud resource behavior in BPs while considering different properties and constraints. For such purpose, we state the following research questions: RQ4: How to formally specify and verify Cloud resource allocation behavior in BPs? RQ5: How to integrate Cloud resources in BP models design?

Objectives and Contributions

Objectives and Contributions

In the light of the aforementioned shortcomings, the core objectives of this doctoral thesis are as follows:

• provide guidance and assistance to the analysts in process model configuration with correct options. This objective is threefold: (1) formally model and specify the process model configuration, (2) identify correct configuration options with respect to different constraints and requirements, and

(3) reduce the state space explosion problem related to process configuration verification.

• improve the support of Cloud resource specification and verification in BPs. This objective is threefold: (1) precisely and formally model the Cloud resource perspective in BPs; (2) verify the Cloud resource allocation behavior in BPs; and (3) consider Cloud resources constraints and properties (i.e. elasticity and shareability).

This work strives to achieve the above objectives by proposing three contributions. The first contribution proposes an automated stepwise approach to assist the process models configuration in order to obtain correct and domain compliant variants. We introduce a formal specification of the configurable process model and the different configuration steps using the formal method Event-B. This specification includes different constraints related to the process variant structural correctness. Configuration guidelines referring to domain constraints are formally integrated as well. We verify and prove the correctness of our Event-B specification using formal proofs (Proof Obligations). These proofs allow to guarantee that the defined constraints are preserved by each configuration step and produce, thus, correct variants.

Introduction

Moreover, we adopt the validation of our formal model by animating our specification using the plug-in ProB. Finally, this approach was automated by developing a transformation tool using the ATL model transformation language.

The second contribution aims at especially achieving the behavioral correctness that captures the dynamics of the executable configured process models. We propose an automated approach based on a behavioral model to assist the design of process variants. First, we define a formal model having precise and concise syntax and semantics for configurable process models using Petri nets. Then, based on this formal model, we use the Symbolic Observation Graph (SOG) [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF][START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] in order to cope with the combinatorial explosion problem. The SOG is a symbolic representation formalism that allows to build an abstraction of the reachability state graph of the formally modeled system. In this work, we adapt and extend the existing definition and construction algorithm of the SOG graph in order to achieve such abstraction by: (i) observing the configurable elements of the process that label the SOG arcs, and (ii) hiding non configurable elements inside the SOG nodes. This reduced graph allows to extract all the possible configuration choices with respect to the deadlock-freeness property. Having these choices, the process user may select the combination that best meets his/her expectations and needs while being ensured that it leads to a correct process. Experiments have proven that the use of the SOG considerably reduce the state space size.

The third contribution proposes an Event-B-based approach to formally model and specify the resource perspective in BP models. The formal model allows for assigning Cloud resources to BPs activities and verifying the correctness of their allocation with respect to defined constraints and properties. In essence, we consider two Cloud properties: the elasticity and the shareability. First, we formalize the BP control flow perspective, then, we integrate the Cloud resources, their properties and execution constraints into the model using refinements. We use Event-B tools to prove and validate our specification by checking the defined properties and constraints at each process execution step. This refinement approach produces a correct-byconstruction specification since we prove at each step the different properties of the system. Hence, our formal model guarantees that the process execution does not face failures and inconsistencies related to the resource sharing and elasticity properties w.r.t activities capacity and resources capabilities. Finally, with the aim to offer a tool that allows to assign Cloud resources to process activities, we developed an extension of the BPMN 2.0 notation in the Signavio modeling tool.

Road Map

This doctoral thesis is divided into seven chapters.

• Chapter 2: Preliminaries presents the necessary background information by introducing the process modeling languages as well as the formal descrip-tions and notations used throughout the thesis. The business process modeling language BPMN, and the configurable business process modeling language C-BPMN, as well as the formal methods Event-B and Petri nets are introduced.

• Chapter 3: State of The Art positions our work, by reviewing existing literature on the verification of business process models. We also present existing work addressing the support and the verification of process configuration. The state of the art in the field of the formalization and the verification of the resource allocation behavior in BPs is also considered in this chapter.

• Chapter 4: Assisting Correct Process Variant Design with Formal Guidance describes our Event-B based approach that proposes the formal specification of the process configuration allowing to assist designers to configure, step-by-step, correct variants. The developed ATL transformation tool is also pointed out in this chapter.

• Chapter 5: Extracting Deadlock-free Process Variants using Symbolic Observation Graphs illustrates our SOG-based approach to assist the design of process variants by generating all the possible configuration choices with respect to the deadlock-freeness property. In this chapter, we evaluate our approach using experiments in order to prove the reduction of the state space size.

• Chapter 6: Towards Correct Cloud Resource Allocation in Business Processes presents our Event-B-based approach to formally model and specify the Cloud resource allocation behavior in BP models. We consider the elasticity and the shareability properties of Cloud resources in this formalization. A proof of concept is presented allowing to extend the BPMN 2.0 notation in the Signavio tool for process modeling.

Introduction

This chapter presents the basic preliminaries and background needed for the understanding of our contributions described in the remainder of this manuscript. In Section 2.2, we present graph based (configurable) process modeling languages used to illustrate our research work. Then, Section 2.3 introduces the Event-B formal method and the Petri nets formalism that we used for the formal modeling of the both configuration aspect and resource perspective of business processes.

Process Modeling Languages

"Business processes are what companies do whenever they deliver a service or a product to customers" [START_REF] Dumas | Fundamentals of Business Process Management[END_REF].

The business process modeling refers to creating business process models that describe the activities an organization has to perform to achieve a particular business goal, as well as their (i) execution order and constraints (i.e., control flow), (ii) required resources, e.g., humans or non-human/computer systems, (i.e., resource flow), Preliminaries and (iii) processed data and information (i.e., data flow). Both perspectives: control flow and resource flow, are considered in the present thesis.

To model and represent business processes, a range of graphical process modeling languages have been proposed such as BPMN [START_REF] Omg | Business process model and notation[END_REF], EPC [START_REF] Scheer | ARIS -vom Geschäftsprozess zum Anwendungssystem[END_REF], YAWL [START_REF] Van Der Aalst | Yawl: Yet another workflow language[END_REF], UML activity diagram [START_REF]3 OMG. Unified modelling language[END_REF], etc. Without limiting the generality of our work, we select and use BPMN as input notation. BPMN is highly adopted by business analysts since it is considered as the internationally recognized industry standard notation for business process description.

A configurable process model is a model that captures multiple variants of a same business process in a grouped manner. In our work, we use the Configurable BPMN (C-BPMN) [START_REF] Assy | Business Process Management: 13th International Conference[END_REF][START_REF] Weidmann | Adaptive Business Process Modeling in the Internet of Services (ABIS)[END_REF]56], an extension of BPMN, as a configurable process modeling notation. An overview of BPMN and C-BPMN concepts is provided in the following sections.

Business Process Model Notation (BPMN)

The Business Process Model Notation (BPMN)1 was first released in 2004 by the Business Process Management Initiative (BPMI) [START_REF] Omg | Business process model and notation[END_REF]. The key objective of this graphical notation is to support business process management by stakeholders of different roles; e.g. IT architects, business analysts, process owners, etc. On the one hand, one can model highly detailed end to end business processes while supporting the modeled processes execution. On the other hand, as business stakeholders are notoriously averse to standards, BPMN offers an increasing business support and an easier modeling experience.

The BPMN elements can be grouped into four groups Flow Objects, Connecting Objects, Swimlanes and Artifacts. Flow Objects are the basic graphical elements that allow to define the behavior of the BPMN model. These elements are depicted in Figure . 2.1. An activity (also called a task) represents a unit of work that should be done. It is graphically represented as a rounded corner rectangle. Events include three types : Start, Intermediate and End events. Each type represents something that happens during the execution of the business process and is graphically represented as a circle. Gateways (also called connector) define the control flow divergence, i.e. split, and convergence, i.e. join. Gateway is graphically represented as a diamond including a marker that indicates its type. Each type of gateway defines a run-time decision:

• Exclusive OR (×): Based on conditions, a decision routes the sequence flow to exactly one of the outgoing branches. Then, the merging waits for one incoming branch to terminate execution in order to trigger the outgoing branch.

• Inclusive OR (•): Based on conditions, one or more branches are activated. Then, the merging waits for all active incoming branches to terminate execution

Process Modeling Languages

31

to trigger the outgoing branch.

• Parallel AND (+): When splitting, all outgoing branches are activated simultaneously. Then the merging waits for all incoming parallel branches to complete before triggering the outgoing flow.

Flow Objects are connected to each other using Connecting Objects that include: Sequence Flow, Message Flow and Association. A Sequence Flow shows the execution order of flow elements. Message Flow determines the message flowing between pools or flow elements in pools. An Association allows to associate Data objects to a flow or to connect them to an activity.

Artifacts are used to provide more details and information about the business process without affecting the sequence and message flows of the process. There are three main types of artifacts: data object, group and annotation. For example, Data object provides some data for an activity performance (capturing the data perspective). Swimlanes include: Pools and Lanes. Pools group a set of activities that have some common characteristic, e.g. a specific role, a process participant (capturing the resource perspective). A lane permits to divide a pool to group specific process steps.

Configurable BPMN (C-BPMN)

Configurable BPMN (C-BPMN) is an extension of BPMN to introduce the notion of variability in business process models. This variability is captured by restricting the process behavior through configurable elements. The non-configurable elements represent the commonalities in the configurable model. The configuration decision of a configurable element is made at design-time [1]. C-BPMN includes two configurable elements: activities and connectors, which are modeled with a thicker border.

A connector may be configurable to restrict its behavior by (i) changing its type (e.g. from OR to AND), or/and (ii) restricting its incoming or outgoing branches. A connector may change its type according to a set of configuration constraints [1] (see Table 2.1). Each row corresponds to the initial type that can be mapped to one or more types in columns. For example, an OR type can be configured to any type while an AND remains unchangeable. Let us take the example of the configurable process example in Figure 2.2. The derived variant on the right hand side of the figure is obtained if, first, the analyst does not need both activities B and C. This refers to configuring s1 to a sequence starting with A (i.e. the outgoing branch of s3 starting with B is removed). Second, we suppose that the analyst needs the execution in parallel of the activities D and E. This refers to configuring s2 (resp. j2) from OR-split (resp. OR-join) to AND-split (resp. AND-join) while maintaining the same outgoing (resp. ingoing) branches. Also, an activity may be needed in a process variant and not in another depending on specific requirements. Hence, these activities should be configurable in order to be included (i.e. configured to ON) or excluded (i.e. configured to OFF), or optionally excluded (i.e. configured to OPT) from the model [1] (see Figure 2.3). The last configuration type refers to a run-time choice, whether to execute this activity or to skip it. This OPT configuration type is out of scope of this thesis. As we discussed about the variant in Figure 2.2, the analyst does not need the activities B and C. This also refers to configuring B and C to OFF (they are removed). Whereas, if he/she choose to maintain them, they will be configured to ON, hence, they will be kept in the resulting variant.

Languages for Formal Process Representation

Due to the lack of formal semantics of the process modeling languages, such as BPMN and C-BPMN, ambiguous interpretations remain possible and the verification and As a consequence, building correct, efficient and trustable process models becomes a major challenge. In this thesis, we use two formalisms that are Petri nets and Event-B.

Petri Nets

Petri nets are state-transition systems that offer a formal model for concurrent systems. Unlike most of the process modeling notations such as those discussed in Section 2.2, they include a mathematical definition of their execution semantics. Petri nets is a state-based technique that have a strong mathematical foundation and unambiguous semantics for modeling the behavior of a system.

In the following, firstly, we formally define the Petri net's syntax and semantics as well as some notations. Then, we define its subclass Workflow net.

Syntax: A Petri net is formally defined as follows.

Definition 2.3.1 (Petri Net). A Petri net is a tuple N = P, T, F, W s.t.:

• P is a finite set of places and T a finite set of transitions with (P ∪ T) = ∅ and P ∩ T = ∅,

• A flow relation F ⊆ (P × T) ∪ (T × P),
• W : F → IN + is a mapping assigning a positive weight to arcs.

A place p is called an input (resp. output) place of a transition t if there exists an arc from p to t (resp. from t to p). Hence, we define the following notations.

Preliminaries

Notations:

-Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respectively as follows:

• x = {y ∈ P ∪ T | (y, x) ∈ F }, and x • = {y ∈ P ∪ T | (x, y) ∈ F }.
This notation is extended to the sets of nodes X, s.t. X ⊆ P ∪ T , as follows:

• X = x∈X • x, and X • = x∈X x • . -For a transition t, W -(t) ∈ IN |P | (resp. W + (t) ∈ IN |P |) denotes the vector where, ∀p ∈ P , W -(t)(p) = W (p, t) (resp. W + (t)(p) = W (t, p)).
-A marking of a Petri net N is a function m : P → IN.

Semantics: Let m be a marking of a Petri net N and let t ∈ T be a transition,

• Enabling rule: the transition t is said to be enabled by m, denoted by

m t -→ , iff W -(t) ≤ m.
• Enabling rule: when t is enabled by m, its firing yields a new marking m , denoted by

m t -→ m , s.t. m = m -W -(t) + W + (t).
A Petri net transition t is enabled (i.e., may fire) once its input places are sufficiently filled. Firing this transition t in a marking m consumes W -(t)(p) tokens from each of its input places p, and produces W + (t)(p) tokens in each of its output places p.

•

p 0 t 0 p 1 3 • p 3 t 1 2 2 p 2 t 2 • • p 4 3 Figure 2.4: An example of a Petri net
An example of a Petri-net is illustrated in Figure 2.4. Places are represented by circles, transitions by rectangles, and the structure of the graph by arcs. The place p 0 has one token denoted by a black dot. The arc from place p 0 to transition t 0 denotes an ordinary arc, i.e., W (p 0 , t 0) = W -(t 0)(p 0) = 1, indicating that when firing t 0 it consumes one token from p 0 (i.e. p 0 becomes not marked). similarly, when firing t 0 it consumes also one token from p 4 (i.e. p 4 becomes marked with only one token). Whereas, the arc from transition t 0 to place p 1 has a weight 3, i.e., W (t 0 , p 1) = W + (t 0)(p 1) = 3 indicating that when firing t 0 , it produces three tokens in p 1 .

Notations:

-For a finite sequence σ = t 1 . . . t n , m i σ -→ m n denotes the fact that σ is enabled by m i , and that its firing leads to m n .

-Given a set of markings S, we denote by Enable(S) the set of transitions enabled by elements of S.

-The set of markings reachable from a marking m in N is denoted by R(N, m).

-Given the initial marking, denoted m i , the reachability graph of a Petri net N , denoted by G(N, m i) , is the graph where nodes are elements of R(N, m i) and an arc from m to m , labeled with t, exists iff m t -→ m .

-The set of markings reachable from a marking m, by firing the transitions of a subset T only is denoted by Sat(m, T). By extension, given a set of markings S and a set of transitions T , Sat(S, T) = m∈S Sat(m, T).

-For a marking m, m → denotes that m is a dead marking (i.e., there is no transition s.t. m t -→ which means Enable({m}) = ∅).

A number of sub-classes of Petri Nets have been defined in the literature, we specifically consider the Workflow (WF) nets [START_REF] Wil | The application of petri nets to workflow management[END_REF][START_REF] Ter | Workflow patterns: On the expressive power of (petri-net-based) workflow languages[END_REF] which is tailored to express business process models and is usually used as an intermediary formalism in the modeling and the verification of the control flow of business processes. A transition is equivalent to a task in high level process modeling languages (e.g., activity in BPMN). The flow relation F is equivalent to the control-flow of a process model. Definition 2.3.2 (WF-Nets). Let WF = P, T, F, W be a Petri net and F * is the reflexive transitive closure of F. N is a Workflow net (WF-net) iff:

• there exists exactly one input place i ∈ P , s.t. | • i| = 0,

• there exists exactly one output place o ∈ P , s.t.

|o • | = 0,
• each node is on a directed path from the input place to the output place, i.e.

∀n ∈ P ∪ T, (i, n) ∈ F * and(n, o) ∈ F * .

We note that the initial marking of WF where only i place is marked, is denoted by m i , and the final marking where o is the sole place holding a token is denoted by m f . Compared to classical Petri net, a WF-net has two particular places i and o representing the initial and the final states of the workflow respectively. Yet, the semantics of WF-nets remains as described above. An example of a WF-net is depicted by Figure 2

The Event-B Method

Event-B [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF] is both a language and a method for formal specification and verification of secure systems. It has been proposed by J-R Abrial as the successor of the classic B Method [START_REF] Jensen | The B-book: Assigning Programs to Meanings[END_REF]. Event-B has preserved the advantage and the simplicity of the B method while making improvements in several aspects, including the specification of reactive systems. Following the B Method, Event-B uses basic mathematical notations, firstorder logic and set theory. It supports a large part of the development life cycle, from the specification/design phase to the implementation phase. This allows the early errors detection which prevents from execution errors and facilitates maintenance. The complexity of a system is mastered thanks to the refinement concept allowing to gradually introduce the different parts that constitute the system starting from an abstract specification to a more concrete one. The abstract specification describes the fundamental properties of the system. Requirements and details are added incrementally through the refinement process.

One benefit of using Event-B is the supporting eclipse-based RODIN 2 platform [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in event-b[END_REF] allowing to analyze, check types, and generating proof obligations of the model. For this aim, different external tools, e.g. Atelier B provers [61], animators, modelcheckers like ProB [START_REF] Leuschel | Prob: an automated analysis toolset for the b method[END_REF], can be plugged on RODIN.

Machines and Contexts

An Event-B specification is made of two elements: context and machine. The machine is a fundamental component for the formal construction of a system in Event-B; it specifies its dynamic part. It includes elements such as variables V , invariants Inv, and events E that establish the system state change. The variables define the state of the system to be specified. The possible values that the variables hold are restricted using invariants written using first-order predicates. Invariants should remain valid in each state of the system. Thus, they should be valid in the initial state and after the execution of each event.

Machines often need static elements of the system such as constants C, sets S, and axioms A that specify their properties. These elements are included in a context that describes the static part of an Event-B specification. To have access to its elements, 2 The Rodin Platform: http://www.event-b.org/platform.html a context is seen by a machine (i.e. SEES Context). The structure of machines and contexts is depicted by Figure 2 An event can be executed if it is enabled, i.e. all the conditions G, named guards, prior to its execution hold. Among all enabled events, only one is executed. In this case, substitutions Act, called actions, are applied over variables. In this thesis, we restrict ourselves to the becomes equal substitution, denoted by (x := e). Each event has the form depicted in Figure 2.7. Refinement is a process of enriching or modifying a model in order to augment the functionality being modeled, or/and explain how some purposes are achieved. Both Event-B elements context and machine can be refined. A context can be extended by Preliminaries defining new sets S r and/or constants C r together with new axioms A r . A machine is refined by adding new variables and/or replacing existing variables by new ones V r that are typed with an additional invariant Inv r . New events can also be introduced to implicitly refine a skip event (i.e. It does not modify the already existing variables). In this thesis, the refined events have the same form (see Figure 2.7).

Name

ANY X WHEN G THEN Act END Name ANY X r WHEN G r THEN Act r END
The main advantages of the refinement process are as follows:

-Simplification of proof obligations (POs) that allow to check the model correctness -The complexity of the development is apportioned between the abstraction levels A stepwise refinement approach produces a correct specification by construction since we prove the different properties of the system at each step.

Verification and Validation of Event-B Models

This section describes two complementary techniques to ensure, respectively, the verification and the validation of an Event-B specification. In the verification step, we formally check the properties of the system, which are expressed in terms of invariants, using formal proofs (proof obligations). POs allows to prove that invariants (both the abstract and the concrete ones) hold in all system states: they hold initially; and each event preserves them. And then, we adopt the validation of our formal model by animating our specification using the plug-in ProB. This step allows to discover and observe the behavior of our specification.

Proof Obligations In order to demonstrate the model correctness, a collection of proof obligations (POs) is generated by the Rodin tool [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in event-b[END_REF]. These POs ensure that invariants are preserved by each event. Therefore, for each event, we have to establish that:

∀S, C, V, X. (A ∧ G ∧ Inv ⇒ [Act]Inv)
where [Act]Inv gives the weakest precondition on the before state such that the execution of Act leads to an after state satisfying Inv.

To prove that a refinement is correct, we have to establish the following two proof obligations:

• guard refinement: the guard of the refined event should be stronger than the guard of the abstract one:

∀(S, C, S r , C r , V, V r , X, X r). (A ∧ A r ∧ Inv ∧ Inv r ⇒ (G r ⇒ G))
• Simulation: the effect of the refined action should be stronger than the effect of the abstract one:

∀(S, C, S r , C r , V, V r , X, X r). (A ∧ A r ∧ Inv ∧ Inv r ∧ [Act r]Inv r ⇒ [Act]Inv)
Formal definitions of all proof obligations are given in [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]. To discharge the different proof obligations, the Rodin3 platform offers an automatic prover but also the possibility to plug additional external provers like the SMT and Atelier B provers that we use in this work. Both provers offer an automatic and an interactive options to discharge the proof obligations. Complex proof obligations could be discharged interactively using the proving perspective of Rodin shown in Figure 2.8. [START_REF] Pnueli | The temporal logic of programs[END_REF] and CTL (Computational Tree Logic) [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF] properties against a B specification. The core of ProB is written in a logical programming language called Prolog. Its purpose is to be a comprehensive tool in the area of formal verification methods. Its main functionalities can be summarized up as follows: Preliminaries 1. ProB can find a sequence of operations that, starting from a valid initial state of the machine, moves the machine into a state that violates its invariant, 2. Giving a valid state, ProB can exhibit the operation that make the invariant violated, 3. ProB allows the animation of the B/EventB specification to permit the user to play different scenarios from a given starting state that satisfies the invariant. Through a graphical user interface implemented in Tcl/Tk, the animator provides the user with: (i) the current state, (2) the history of the operation executions that has led to the current state and (3) a list of all the enabled operations, along with proper argument instantiations. In this way, the user does not have to guess the right values for the operation arguments.

4. ProB supports the model checking of the LTL and CTL assertions.

In the domains of BPM and Service Oriented Computing, Event-B was especially used to address the web services and services composition verification by using proofs and refinements [START_REF] Ait-Sadoune | A proof based approach for modelling and verifying web services compositions[END_REF][START_REF] Ait-Sadoune | Stepwise Design of BPEL Web Services Compositions: An Event B Refinement Based Approach[END_REF]. Specifically, properties related to the transactionnal behavior of languages like BPEL are checked [START_REF] Graiet | Event-b based approach for verifying dynamic composite service transactional behavior[END_REF][START_REF] Abbassi | A formal approach for enforcing transactional requirements in web service compositions[END_REF][START_REF] Babin | Formal verification of runtime compensation of web service compositions: A refinement and proof based proposal with event-b[END_REF]. For instance, in these models, the set of all basic services is defined in the CONTEXT, and available services are defined as its variable subset in the MACHINES. Dependencies such as sequence, compensation, abortion and cancellation are defined using relations in the INVARIANTS clause. The behavior of services and transitions is insured by events. Other few approaches proposed to verify business process models behavior [START_REF] Bryans | Formal analysis of bpmn models using event-b[END_REF][START_REF] Poernomo | A mapping from normative requirements to event-b to facilitate verified data-centric business process management[END_REF]. For example, [START_REF] Bryans | Formal analysis of bpmn models using event-b[END_REF] propose a translation of the BPMN constructs and features to Event-B model. The control flow and data flow are considered. All possible processes and their instances, as well as activities and their possible instances are represented by sets in the CONTEXT. Sequence and data flows, are mapped to functions in the INVARIANT clause. Triggers, such as messages receiving, are captured by events.

In our thesis, we were inspired from these approaches especially in the specification of the control flow of a process model. Our work is proof-oriented and specifies a process model and all its properties (related to either configuration or resource perspective) to obtain an Event-B model. All the Event-B specifications presented in this manuscript have been verified within the RODIN platform. In Chapter 4, Event-B is used to formally specify and verify the configuration of a process model. Then, in Chapter 6, it is used to formally specify and verify the resource perspective in a BP while especially taking into consideration Cloud properties and constraints.

Conclusion

This chapter provided the background that helps position our contributions. In fact, it introduced two types of process modeling languages used in our work, namely informal business process modeling languages and notations for formal process specifications. We presented the Business Process Modeling Notation (BPMN) as an example of business process modeling languages. We also introduced its extension with configurable elements, namely the Configurable BPMN (C-BPMN). Formal definitions and notations were provided for the Event-B language and the Workflow nets, which are a subclass of Petri nets. Throughout this manuscript, we use BPMN and C-BPMN whenever we discuss process models and configurable process models respectively. These notations serve as the starting points for building our approaches. We also use the illustrated formal languages for specifying and identifying the essence of process models in two main aspects: configuration and resource allocation, as well as for reasoning about the correctness of the process models.

Introduction

In this chapter, we survey the state of the art that allows to justify our problem statement and to have a clear position regarding the existing work.

In this these, we are interested in two relevant process modeling perspectives: the control flow, specifically the configuration aspect, and the resource perspective. Since some structural or behavioral anomalies may occur in both perspectives, e.g., the designed variant may be stuck during execution, or a resource may be allocated to process activity while not having a sufficient capacity. We propose to discuss the verification challenge in the BPM field. Specifically, we aim to address the verification of business process configuration in order to answer the question: How to assist and verify business process configuration? Then, we aim to examine the process resource allocation behavior in order to answer the question: How to verify Cloud resource allocation in business process models? 44

State of The Art

In the following, we firstly review the state of the art on the verification of business process models in Section 3.2. Then, in Section 3.3, we study the major existing approaches that support the process model configuration and the design of variants while discussing the supported properties and constraints. Afterwards, a broader view on the resource perspective in BPs is taken in Section 3.4, with a special look at the Cloud aspect and the allocation behavior verification and formalization. By the end on the last two sections, we give a comparison of the related approaches and we identify their shortcomings in order to motivate our research work.

Verification of Business Process Models

The process verification is the task of determining and checking, whether it exhibits erroneous behaviors. This refers to process correctness checking. Hence, the verification could be applied at design time in order to detect possible errors, and if so, the model should be modified before execution. The validation aims at checking whether the system actually behaves as expected. The later is context dependent and can only be applied with knowledge of the intended business process [START_REF] Wil | Challenges in business process management: Verification of business processing using petri nets[END_REF]. Since PAIS rely on process models for organization's work execution, careful verification and validation of process models at design time can greatly improve the reliability and efficiency of such systems. Therefore, there have been many efforts to achieve that by defining formal semantics of process models and applied various logics and formal methods. Since the most widely used process modeling languages do not have formal semantics, notably EPC [START_REF] Scheer | ARIS -vom Geschäftsprozess zum Anwendungssystem[END_REF], BPMN [START_REF] Omg | Business process model and notation[END_REF], UML activity diagram [START_REF]3 OMG. Unified modelling language[END_REF]. Therefore, these modeling techniques need to be mapped into formal models in order to be verified, e.g., [START_REF] Van Dongen | Verification of the sap reference models using epc reduction, state-space analysis, and invariants[END_REF][START_REF] Dongen | Structural patterns for soundness of business process models[END_REF][START_REF] Remco | Semantics and analysis of business process models in bpmn[END_REF].

At the beginning, most proposed approaches focused on simple languages, e.g., workflow graph model [START_REF] Sadiq | On correctness issues in conceptual modeling of workflows[END_REF], which are even less expressive than classical Petri nets. After that, the use of Petri net formalism was widely investigated thanks to its understandable and graphical notation as well as well-defined semantics. The Workflow nets [START_REF] Wil | The application of petri nets to workflow management[END_REF][START_REF] Van Der Aalst | Verification of workflow nets[END_REF] (cf. Section 2.3.1) are its most notably sub-class, that were used as intermediate formalism to verify and analyze workflows/business processes, e.g., [START_REF] Wynn | Business process verification -finally a reality![END_REF][START_REF] Boudewijn | Verification of epcs: Using reduction rules and petri nets[END_REF][START_REF] Verbeek | Reduction rules for reset/inhibitor nets[END_REF][START_REF] Van Der Aalst | Business Process Management: Models, Techniques, and Empirical Studies, chapter Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques[END_REF][START_REF] Wil | Verification of workflow task structures: A petri-net-baset approach[END_REF][START_REF] Wynn | Soundness-preserving reduction rules for reset workflow nets[END_REF][START_REF] Clempner | An analytical method for well-formed workflow/petri net verification of classical soundness[END_REF][START_REF] Clempner | Verifying soundness of business processes: A decision process petri nets approach[END_REF][START_REF] He | Verifying the correctness of workflow systems based on workflow net with data constraints[END_REF]. Other formal methods were used for verifying BP based on process algebra, such as πcalculus [START_REF] Milner | Communicating and Mobile Systems: The &Pgr;-calculus[END_REF] (e.g., [START_REF] Puhlmann | Using the π-calculus for formalizing workflow patterns[END_REF][START_REF] Puhlmann | Soundness verification of business processes specified in the pi-calculus[END_REF]) and event calculus [START_REF] Kowalski | A logic-based calculus of events[END_REF] (e.g., [START_REF] Gaaloul | Event-based design and runtime verification of composite service transactional behavior[END_REF]). Moreover, a number of proof-based approaches have been proposed to verify business processes [START_REF] Ait-Sadoune | A proof based approach for modelling and verifying web services compositions[END_REF][START_REF] Graiet | Event-b based approach for verifying dynamic composite service transactional behavior[END_REF][START_REF] Abbassi | A formal approach for enforcing transactional requirements in web service compositions[END_REF][START_REF] Babin | Formal verification of runtime compensation of web service compositions: A refinement and proof based proposal with event-b[END_REF][START_REF] Wang | Describing, verifying and developing web service using the b-method[END_REF]. In fact, verifying a formal specification using formal proofs is very important in order to guarantee the preservation of correctness criteria. Other work applied techniques for showing consistency of BPs using model checking [START_REF] Klai | Symbolic abstraction and deadlockfreeness verification of inter-enterprise processes[END_REF][START_REF] Koehler | From business process model to consistent implementation: a case for formal verification methods[END_REF]. These techniques are used to automatically verify basic requirements of a BP such as the termination and reachability of states.

Using the different formalisms, proposals usually verify the control flow of a BP against a correctness criterion. A popular correctness property used in this context is the soundness. Firstly, a structural soundness [3] criterion has been defined in the context of Petri nets such that: (1) a process should have exactly one initial node and one final node, and (2) each node in the process model is on a path from the initial node to the final one. Then, with the introduction of Workflow nets, the original (behavioral) soundness criterion [START_REF] Wil | The application of petri nets to workflow management[END_REF][START_REF] Van Der Aalst | Business Process Management: Models, Techniques, and Empirical Studies, chapter Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques[END_REF][START_REF] Wil | Soundness of workflow nets: classification, decidability, and analysis[END_REF][START_REF] Fahland | Business Process Management: 7th International Conference[END_REF] is proposed and then adapted for other modeling languages. A workflow is said to be sound if and only if, (i) when started, it can always complete processing (option to complete), (ii) it terminates properly, i.e. no running tasks when the process ends (proper completion), and (iii) there is no dead parts or activities, i.e., that will never be executed (no dead transitions). So, in a sound workflow, anomalies such as deadlock and livelock are absent [START_REF] Van Dongen | Structural patterns for soundness of business process models[END_REF]. In order to decide the soundness of a given process, one can analyse and check its reachability graph that refers to explicitly representing the different states of a process instance. Other authors suggest weakening the soundness notion: e.g. the relaxed soundness [START_REF] Dehnert | Relaxed soundness of business processes[END_REF] states that for each transition there should be at least one proper execution, which does not prohibit potential deadlocks and livelocks. Also, the notion of weak soundness [START_REF] Martens | Analyzing web service based business processes[END_REF] allows for dead transitions.

Nevertheless, the above mentioned approaches have mainly focused on verifying the control flow of process models. The verified processes do not support neither the configuration aspect nor the allocated resources. On the one hand, the resource perspective is not well defined in particular when business processes are deployed in Cloud environments (cf. Section 3.4). Hence, we seek to address the verification of this perspective. On the other hand, having a configurable process model, the presented proposals can be used to check every single configured process that can be derived from it. The configuration that generates an incorrect variant should be excluded from the set of possible configurations. However, this approach is costly and may be not feasible in case of configurable process models that yield a large number of process variants. Our aim is therefore to define an approach that allows to find correct configuration steps without computing all the possible configurations. We need to consider correctness properties and to use adequate formal methods. In the next section, we discuss the existing work on process configuration and on the verification of different properties and requirements.

Support and Verification of Business Process Configuration

The goal of configuring a process model is to customize and adapt an original model in order to better fit the user's specific needs and requirements. Several approaches have been proposed to model variability in configurable process models. We distinguish two types of variability: i) variability by restriction and ii) variability by extension [START_REF] Marcello | Business process variability modeling: A survey[END_REF]. The first type is used to restrict the behavior of the configurable process that should contain all possible behavior of the variants. The second type is used to add behavior to the configurable process which means that the later process contains the most common behavior and needs to be extended. Note also that it is possible to combine the two types. In Section 3.3.1, we review the major approaches of variability regarding both types in order to motivate our choice to one of them. An adaptation of a configurable process model can produce errors in terms of structure (e.g. disconnected nodes), behavior (e.g. deadlocks and livelocks), and domain (e.g. not satisfying a domain constraint). Therefore, the configuration decisions should not be taken freely and appropriate guidance should be provided. Hence, we present, in Section 3.3.2, approaches that support domain constraints and decision guidance. And in Section 3.3.3, we examine the correctness properties supported in the literature.

Configuration Support

In order to facilitate the design of configurable process models, a number of process modeling languages have been recently extended with variable elements, namely Configurable Event-driven Process Chain (C-EPC) (e.g. [4,[START_REF] Dreiling | Configurable process models as a basis for reference modeling -position paper[END_REF][START_REF] Recker | On the Syntax of Reference Model Configuration -Transforming the C-EPC into Lawful EPC Models[END_REF][START_REF] Gröner | Modeling and validation of business process families[END_REF][START_REF] Marcello | Configurable multi-perspective business process models[END_REF]), Configurable Business Process Model Notation (C-BPMN) (e.g. [6,[START_REF] Assy | Business Process Management: 13th International Conference[END_REF][START_REF] Weidmann | Adaptive Business Process Modeling in the Internet of Services (ABIS)[END_REF][START_REF] Schnieders | Variability mechanisms in e-business process families[END_REF][START_REF] Rychkova | Towards adaptability and control for knowledgeintensive business processes: Declarative configurable process specifications[END_REF][START_REF] Puhlmann | Variability mechanisms for process models[END_REF]) and Configurable Yet Another Workflow Language (C-YAWL) (e.g. [6,[START_REF] Puhlmann | Variability mechanisms for process models[END_REF]).

Based on some of them, many approaches have been proposed to represent variation points in process models. We can classify them into five categories, based on their underlying variability mechanism: hiding and blocking of elements, configurable nodes, annotations, fragment change, and templates and rules.

Hiding and Blocking

In [START_REF] Gottschalk | Configurable Process Models -A Foundational Approach[END_REF][START_REF] Wil | Configurable process models as a basis for reference modeling[END_REF], authors introduce a language-independent methodology to configure and restrict a workflow model by applying hiding and blocking operators on edges (i.e. transitions) of Labeled Transition Systems (LTSs). The blocking decision means that the transition will never be executed. Whereas, the hiding decision means that the transition will be skipped but the corresponding path still considered. This transition were called silent action. This approach was applied in [4] to suggest the extension of YAWL, namely C-YAWL, with the so-called ports as variation points while still using the blocking and hiding techniques for configuration. Each task has input port and output port representing respectively the join of arcs through which the task can be enabled, and the split of arcs that can be enabled after the task's completion. For instance, having the example of Figure 3.1, the OR-split connector is configured by activating the input port and only two the output ports having condition b and d (cf. green icons). Since each enabled output port refer to only a single flow, the split behavior is changed into an XOR-split behavior.

Another approach using blocking and hiding operations is introduced in [5]. Authors use CoSeNets (Configurable Service Nets) to represent configurable process models as a tree-like representation. Each node of a CoSeNet represents a process operator and each leaf represents a task. Hence, CoSeNet captures a block-structured process model, an example of such structure is depicted by Figure 3.2. The configuration of this process consists in hiding ad blocking special nodes that connect nodes and leafs. Because of its no cycles syntactic restrictions, this structure guarantee soundness by construction of the configurable process and derived variants. However, it may be not applicable in case of complex processes (e.g., processes with cycles) Configurable Nodes Rosemann et al. in [1,[START_REF] Recker | On the Syntax of Reference Model Configuration -Transforming the C-EPC into Lawful EPC Models[END_REF] introduce Configurable EPC (C-EPC) notation that is an extension of the EPC language. Configuration is achieved by restricting the behavior of the C-EPC in order to obtain an EPC process model. This is done thanks to configurable nodes and by assigning to each node one configuration choice or alternative. EPC notation has three main control-flow elements: event, function and gateway. Only active elements, i.e. functions and connectors, may be configurable in C-EPC notation. In addition, C-EPC introduce two new constructs: configuration requirements and guidelines. The role of the configuration requirements and guidelines is to assist the users in choosing the configuration choices. We can differentiate configuration requirements and guidelines by being hard and soft constraints respectively. But both constraints are expressed using logical predicates of the form if-then rules. An example of a C-EPC process model is illustrated in Figure 3.3. Configurable nodes are marked with a thicker border. There are three configurable functions, one configurable XOR connector, one configuration requirement and one configuration guideline. Annotations The PESOA (Process Family Engineering in Service-Oriented Applications) project [START_REF] Schnieders | Variability mechanisms in e-business process families[END_REF] defines so-called variant-rich process models as process models extended with stereotype annotations to identify variation points. For instance, the variable elements of a process model are marked as variation points using the stereotype << V arP oint >>. These stereotypes are applied to both BPMN models and UML Activity Diagrams. In case of BPMN, annotations can only be applied to activities (as well as their connected data objects), While operators' variability is not considered. In addition, variant correctness issues were not considered as well.

Fragment change: Provop approach In [6], authors propose the provop (PROcess Variant by OPtions) approach to model process variants by applying a set of defined operations (i.e., a group of change operations INSERT/DELETE/MOVE fragment, MODIFY attribute) to a reference process model, namely a base process. These change operations (e.g. those that usually occur together) are grouped into Options. Authors also define option constraints that are similar to the configuration guidelines and requirements proposed by [1]. Annotated adjustment points are the points where, by means of the later operations, either a restriction or an extension of the behavior of the base model can be made.

In Figure 3.4, an example of a base process model having two adjustment points is provided. Then, three possible variants are derived using specific three options. For instance, a behavior restriction of the original process is obtained in the first variant by applying DELETE operation, while a behavior extension is obtained in the second variant by applying the operation INSSERT process fragment.

Figure 3.4: The provop approach of variant modeling [6] Templates and Rules Akhil Kumar and Wen Yao [START_REF] Kumar | Design and management of flexible process variants using templates and rules[END_REF] introduce the use of configuration rules in order to configure a generic process model, the so-called process template. A template is represented by a block-structured tree-like process model. The rules may restrict or extend the template's behavior via specific change operations (e.g., insert or delete a task). Authors provide a formal representation of these business rules and an individualization algorithm that derives the process variants, given the process template and the configuration rules. One advantage of this template structure, is that it is relatively simple and can facilitate process variant configuration. Also, it is proven that change operations cannot cause any syntactical nor behavioral issues in this structure. However, similar to [START_REF] Schnieders | Variability mechanisms in e-business process families[END_REF] approach, the defined configuration rules can only be applied on workflow tasks, but not to connectors.

To represent our configurable process models, we choose to follow the approaches that use the configurable nodes for two reasons. Firstly, these approaches have a basic solid theoretical work on reference configurable process modeling in [1]. Secondly, in our work, we aim at starting from a most generic process that hold all the possible behavior and, while configuring the model, the designer do not need to add any information content to that original business process. Instead, the designer restrict the behavior of the model. Moreover, the modeling language BPMN that we use as a

State of The Art

starting point to each contribution was extended with configurable nodes to facilitate configuration.

Domain and Guidance Support

Questionnaires la Rosa et al. [7] propose a novel approach that provides guidance in configuring process models by means of a set of structured questionnaires. This configuration approach helps stockholders with no knowledge in the process modeling field by answering a set of questions expressed in natural language. Questions are defined by domain experts based on domain constraints, and answered by designers. The answers are then analyzed and used to configure one or more configuration points in a C-EPC model. This approach is supported by the Synergia1 and Apromore2 tools. Similarly, in [START_REF] Marcello | Linking Domain Models and Process Models for Reference Model Configuration[END_REF], authors applied the questionnaire approach to derive executable YAWL models from C-YAWLs. Although this approach offers abstraction and guidance for the process models configuration, the consideration of correctness criteria is missing. Feature Models Inspired from configuration management in Software Product Line Engineering (SPLE) [START_REF] Paul | Managing variability for software product lines: Working with variability mechanisms[END_REF], authors, in [START_REF] Asadi | Development and validation of customized process models[END_REF][START_REF] Gröner | Modeling and validation of business process families[END_REF][START_REF] Mathieu Acher | Managing Variability in Workflow with Feature Model Composition Operators[END_REF], support process models variability based on feature models [START_REF] Kang | Feature-oriented domain analysis (foda) feasibility study[END_REF]. In [START_REF] Mathieu Acher | Managing Variability in Workflow with Feature Model Composition Operators[END_REF], a process model is considered as family of services, which are related via data dependencies. Each service can have any types of variation points that are represented with one or several feature models.

Each feature represents a property of a specific domain and refers to one configuration alternative. Hence, a configuration is obtained by selecting the desired features. Families of workflow can be defined as compositions of feature models using proposed composition operators. However, only the configuration of an activity's inputs and outputs is considered. Hence, the control flow cannot be customized. Moreover, the approach does not provide guidance in configuring feature models. Also, the SPLE based approaches require that the domain analysts should be familiar with the feature models. An example of a feature model and a possible configuration is provided in Figure 3.6. Although the above-mentioned two approaches consider relevant domain constraints, they require considerable manual effort and many steps to perform by a domain expert in order to create the domain model.

Configuration Guidelines Extracted from Process Repositories Assy et al. [START_REF] Assy | Business Process Management: 13th International Conference[END_REF][START_REF] Assy | Automated support of the variability in configurable process models[END_REF] attempted to address this issue by the use of configuration guidelines for assisting analysts in BPMN configuration. They propose to extract these configuration guidelines from business process repositories of existing configurations. This allows to learn from the users' experience in process configuration. They define a tree-like structure, so-called configuration guidance model, to represent the configuration options and the inclusion and exclusion dependencies between them in order to define an order of configuration choices. In Figure 3.7, an example of a configuration guidance model is extracted. It gives an hierarchical ordering of the configurable elements of a process model based on the tree structure: the parent element is configured before the child element. However, this approach do not consider any correctness criterion. In fact, after applying the guidelines, it does not guarantee that the derived variants do not exhibit structural or behavioral issues.

Correctness Support

While configuration approaches allow for an easy adaptation of variants to individual needs, domain approaches attempted to provide further adaptation by considering domain constraints and guidelines. However, the correctness of the obtained variants is not necessarily provided. Since the inter-dependencies between configuration decisions may be very complex and of all kinds, the designers may easily be mistaken in their configuration choices which may result in critical errors. To address this problem, a number of approaches have attempted to reach correct process configuration either syntactically or behaviorally. Syntactical correctness is related to the derived process structure, for example, by avoiding disconnected nodes. Behavioral correctness is related to ensuring correct behavior of the variants, for example, by avoiding execution anomalies such as deadlocks and livelocks. Traditionally, the behavioral correctness related to process configuration can be handled by verifying every single possible configuration using existing work on verification of business processes and workflows (cf. Section 3.2). This raised the well known state space explosion problem. Also these methods are too time-consuming and may be a labor-intensive work especially in case of large and complex process models with an exponential number of possible configurations.

In [START_REF] Wil | Preserving correctness during business process model configuration[END_REF][START_REF] Wil | Fundamental Approaches to Software Engineering, FASE, chapter Correctness-Preserving Configuration of Business Process Models[END_REF], Petri net was used to formalize and verify correctness and soundness properties of Configurable EPC (C-EPC) processes. They derive propositional logic constraints that guarantee the behavioral correctness of the configured model. However in these approaches, authors achieve correctness by checking constraints at each configuration step. Also, authors impose that the C-EPC process model should be syntactically correct. In [START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF], they focused on the behavioral correctness of the configured model and moved the checking up to design time. Thus, propose to find all fea-sible configurations prior to execution. This approach is inspired from the "operating guidelines" used for partner synthesis [START_REF] Wolf | Does My Service Have Partners?[END_REF]. Practically, the used synthesis algorithm use Open Petri net as a intermediate formalism and to represent the so-called configuration interface. This interface is constructed by adding, for each configurable task, a number of places, transitions and arcs to the original model. This not only adds complexity to the model, but also results in allowing potentially unreal behaviors. Based on this interface, an automaton is constructed to represent the configuration guidelines. Each path on this automaton corresponds to a feasible configuration. However, the considered correctness criterion in this work is the weak termination, which means that when deriving a variant holding unreachable (i.e. dead) transitions, the model will still be considered behaviorally correct. Finally, this technique was applied on C-YAWL and the configuration is built by hiding and blocking transitions.

Moreover, some approaches support correctness because of the imposed constraints on the structure of the configurable model. For instance, CoSeNets [5] achieve correctness because of their syntactic restrictions to avoid cycles. The same apply for approaches [START_REF] Asadi | Development and validation of customized process models[END_REF][START_REF] Kumar | Design and management of flexible process variants using templates and rules[END_REF][START_REF] Gröner | Modeling and validation of business process families[END_REF][START_REF] Mathieu Acher | Managing Variability in Workflow with Feature Model Composition Operators[END_REF] that are based on block-structures processes. However, this type of processes suffers from restrictions in terms of structure and could be not applicable in case of complex processes.

Regarding the Provop approach, authors in [START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF] discussed five steps, depicted in Figure 3.8, for ensuring soundness of derived variant models. This method does not require the base model to be sound. However, although they propose to reduce the number of variants to check using context information, they still suffer from the exponential number of the possible options permutations. So, this approach is not feasible in large processes and runs into the state space problem. Also, they propose to check soundness a posteriori. Hence, an incorrect variant is discarded at the end without any guidance to avoid it.

Synthesis

Table 3.1 provides a comparative overview of the presented configuration approaches in light of our evaluation criteria (inspired from [START_REF] Marcello | Business process variability modeling: A survey[END_REF]): (1) Process Modeling Language, (2) Correctness Support, (3) Domain Support (i.e., compliance with domain-specific configuration constraints), (4) Guidance Support (i.e., providing guidance to users when taking configuration decisions), and (5) Formal Specification (i.e., providing rigorous description in terms of mathematical notations). We further decompose the Correctness Support column into two sub-criteria: (i) structural , and (ii) behavioral correctness. Note that, we used "+" to express that the corresponding criteria is fulfilled by the corresponding approach, "-" if it is not fulfilled, and "±" if it is partially fulfilled.

First, several approaches have been proposed to model variability and to facilitate the design of the configurable process models [4, 6, 9, 29-31, 34, 36, 55, 99-102]. The variability in configurable process models is handled by restricting or/and extension. We take the standpoint of the configuration by restriction which corresponds to preserving the desired behavior of the model, while removing the undesired one. We specifically use the configurable nodes approach since, as stated in Section 2.2, we picked the (C-)BPMN language for modeling (configurable) process models. This notation have two types of configurable nodes: activities or connectors. A configurable activity may be kept or excluded from the variant. The behavior of a configurable connector may be restricted either by changing its type or by restricting its outgoing or incoming sequence of nodes.

Then, on the one hand, some approaches proposed to guide the configuration or/and to support domain-based constraints [7-9, 36, 103, 105, 107]. Many of them require considerable manual steps from a domain expert to create the variant model. This may be an tedious task in case of large processes. While these approaches have not considered any correctness criteria, others attempted to verify and ensure the design of correct variant. We note that basic syntactical constraints were considered when defining configurable process model [1,[START_REF] Recker | On the Syntax of Reference Model Configuration -Transforming the C-EPC into Lawful EPC Models[END_REF]. Some approaches achieved correctness thanks to their restrictive block-structured processes [5,[START_REF] Asadi | Development and validation of customized process models[END_REF][START_REF] Kumar | Design and management of flexible process variants using templates and rules[END_REF][START_REF] Gröner | Modeling and validation of business process families[END_REF][START_REF] Mathieu Acher | Managing Variability in Workflow with Feature Model Composition Operators[END_REF]. Most importantly, other work attempted to ensure the behavioral correctness of the derived variants [4,6,[START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF][START_REF] Gottschalk | Configurable Process Models -A Foundational Approach[END_REF][START_REF] Wil | Configurable process models as a basis for reference modeling[END_REF][START_REF] Wil | Preserving correctness during business process model configuration[END_REF][START_REF] Wil | Fundamental Approaches to Software Engineering, FASE, chapter Correctness-Preserving Configuration of Business Process Models[END_REF][START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF]. Whereas, most of them still suffer form the exponential number of possible configurations. The most notably work addressing this issue is [START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF], however, the considered correctness criterion is the weak termination that permits unreachable nodes. Finally, even if the above proposals try to achieve configuration correctness, they nevertheless often lack the necessary guidance to become adaptable to a given domain and do not support the BPMN notation.

In our work, we propose to sustain the two aforementioned groups of approaches in order to offer the needed support for domain, guidance, and correctness. We propose to guide and assist the designer in deriving correct variants. Hence, we target to apply formal methods to verify the process configuration while respecting a set of constraints dealing with correctness and domain. For that aim, we propose two complementary approaches. The fist contribution in Chapter 4 deals with deriving structurally correct and domain-compliant variants. We also verify erroneous patterns that may affect the behavior of the process (which explains the ± symbol in the column behavioral correctness of Table 3.1). We use Event-B tools to perform an incremental verification by checking these constraints at each intermediate step of the configuration procedure. The second contribution in Chapter 5 addresses the Formalization and Verification of the Resource Allocation Behavior in Business Processes 55

behavior verification of process configuration in order to derive deadlock-free variants. This work addresses the problem of the configurable models state-space explosion by using an abstraction of the reachability graph, namely the SOG. [START_REF] Gröner | Modeling and validation of business process families[END_REF][START_REF] Mathieu Acher | Managing Variability in Workflow with Feature Model Composition Operators[END_REF] Block-structured

h h h h h h h h h h h h

C-YAWL + ± - - + [5] CoSeNets + ± - - ± [1, 34] C-EPC + - + - + [37, 38] C-EPC + + - - + [39] C-EPC + + + - + [100] annotated BPMN - - - - ± [6, 10] any + + - - ± [35] Block-structured + + - ± ± [7, 103] C-EPC/ C-YAWL ± - + + ± [8,
+ + + - + [9, 107] C-BPMN - - + + - Chapter 4 C-BPMN + ± + + + Chapter 5 C-BPMN + + + + +
Table 3.1: Evaluation of related configuration approaches

Formalization and Verification of the Resource Allocation Behavior in Business Processes

Having discussed in the previous sections some aspects about the control flow perspective of business processes, now we focus on the resource perspective that concerns the management of human as well as non-human resources during the process lifecycle. Motivated by the need to achieving optimal process execution, efficient resource allocation in BPs is being increasingly explored. Actually, few works are handling the resource perspective in BPM and they mainly focused on human resources behavior and allocation (cf. Section 3.4.1). Whereas, the usage of Cloud resources to allow activities execution of such processes is becoming very challenging (cf. Section 3.4.2).

Resource Allocation in Business Processes

In [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF], series of Workflow Resource Patterns were proposed to capture the various ways in which human resources are represented and executed in workfows. Patterns allow to assess the expressiveness of process models in a language-independent manner. The creation patterns are of specific interest to our work since they are related to resource selection and specify different ways of resource allocation to activities. For instance, direct-allocation (Pattern R-DA) and capability-based allocation (Pattern R-CBA) are two examples of allocation patterns. The direct-allocation provides the ability to specify at design time the resources that will execute a process activity. While the capability-based allocation provides the ability to allocate a resource to

State of The Art

an activity based on its specific capabilities compared to the corresponding activity specific requirements. Stroppi et al. [START_REF] Stroppi | A BPMN 2.0 Extension to Define the Resource Perspective of Business Process Models[END_REF] developed an extension to BPMN models that enrich process models with human resources definition. This work also provides an extension of the BPMN 2.0 metamodel and comply with the assignment patterns defined by the workflow resource patterns. Afterwards, same authors [START_REF] Jesús | Defining the resource perspective in the development of processes-aware information systems[END_REF] propose to identify resource perspective aspects and requirements in executable workflow specifications (in Workflow Management Systems (WfMSs)), and provide a supporting tool implementation.

Also, based on these resource patterns, few works focused on the human resource behavior management [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF][START_REF] Cabanillas | Towards Process-Aware Cross-Organizational Human Resource Management[END_REF]. Lately, Cabanillas et al. propose a complete graphical notation for assigning human resources to business process activities, the so-called RALph (Resource Assignment Language Graph). Formal semantics of this notation is obtained through its mapping to Resource Assignment Language (RAL) [START_REF] Cabanillas | Specification and automated design-time analysis of the business process human resource perspective[END_REF], a textual language (modeling language independent) for defining resource assignments in business processes. In the RALph notation, four types of resource entities are proposed (as depicted by Figure 3.9): persons, roles, positions, and organizational units. Capability entities are persons having specific capabilities. Resource assignments are expressed using connectors (i.e. same connectors linking activities in control flow). Resources dependencies as well as resource-activity dependencies were considered. Figure 3.9: The RALph approach for graphic resource assignments [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF] In [START_REF] Havur | Resource Allocation with Dependencies in Business Process Management Systems[END_REF], a formal approach was developed for deriving an optimal work schedule while considering dependencies and resource conflicts between work items. Authors

Formalization and Verification of the Resource Allocation Behavior in Business

Processes 57 used Answer Set Programming (ASP) for formal specification while taking into account human and non-human local resources.

As we can notice, the main focus in the literature regarding resource perspective is on human resources and their representation. However, they do not consider neither the representation of Cloud resources in BPs nor the verification of their allocation behavior.

Cloud Resource Allocation in Business Processes

Nowadays, there is a clear need from organizations to benefit from the Cloud Computing technologies in order to optimize their business processes. In such a multi-tenant environment, dynamically scalable and often virtualized resources on demand are offered. The benefits of Business Process Management BPM in a Cloud environment have been highlighted by different authors [START_REF] Duipmans | Towards a bpm cloud architecture with data and activity distribution[END_REF][START_REF] Schulte | Elastic business process management: State of the art and open challenges for BPM in the cloud[END_REF]. In this section, we review some existing approaches that focused on the cloud resources allocation to business processes.

Existing researches usually focused on aspects like orchestration, scheduling and optimization. For instance, approaches in [START_REF] Abrishami | Deadlineconstrained workflow scheduling algorithms for infrastructure as a service clouds[END_REF][START_REF] Hoenisch | Self-adaptive resource allocation for elastic process execution[END_REF][START_REF] Hoenisch | Workflow scheduling and resource allocation for cloud-based execution of elastic processes[END_REF][START_REF] Bessai | Scheduling strategies for business process applications in cloud environments[END_REF][START_REF] Varalakshmi | An Optimal Workflow Based Scheduling and Resource Allocation in Cloud[END_REF] were interested in workflow scheduling strategies and resource allocation algorithms that allow to use Cloud resources in an optimal way. The elasticity property of processes is considered either at an IaaS [START_REF] Abrishami | Deadlineconstrained workflow scheduling algorithms for infrastructure as a service clouds[END_REF] or a Paas [START_REF] Hoenisch | Self-adaptive resource allocation for elastic process execution[END_REF][START_REF] Hoenisch | Workflow scheduling and resource allocation for cloud-based execution of elastic processes[END_REF] Cloud.

Moreover, some early research efforts adressed the issue of resource allocation optimization in business processes execution. For example, trying to minimize cost and to improve the execution performances, [START_REF] Huang | Reinforcement learning based resource allocation in business process management[END_REF] propose a mechanism for resource allocation decision modeling based on Reinforcement Learning. The technique suggested in [START_REF] Mastelic | Predicting resource allocation and costs for business processes in the cloud[END_REF] predicts the execution path in order to estimate Cloud resource requirements prior to execution using process model metrics. Then, based on this prediction as well as pricing strategies, it allows an efficient allocation of the cloud resources while optimizing the leasing cost. Byun et al [START_REF] Byun | Cost optimized provisioning of elastic resources for application workflows[END_REF] propose an algorithm, named PBTS (Partitioned Balanced Time Scheduling), that aims to find the minimum number of computing resources for workflow execution under a user-specified deadline.

However, only non-functional behavior of the resource allocation is most often considered, in terms of response time and financial cost. The functional behavior correctness of resource allocation with respect to Cloud properties is still missing

Verification of Resource Allocation Behavior

As we have explained in Section 3.2, existing approaches tackling formal verification of business business processes have mainly considered the control flow perspective and transactional behavior of services, but have neglected the resource perspective. Few attempts and research studies based on formal methods are currently addressing the formal modeling and analysis of Cloud properties. For instance, authors, in [START_REF] Bersani | Towards the formalization of properties of cloud-based elastic systems[END_REF], adopted a temporal logic called CLTLt(D) (Timed Constraint LTL) to formalize the elastic behavior of Cloud-based systems. Authors formalize properties related to horizontal elasticity, resource management and quality of service QoS. Then, they propose to check whether these properties hold or not during execution of a cloud-based system. Authors in [START_REF] Sahli | A brs-based approach to model and verify cloud systems elasticity[END_REF] used bigraphical reactive systems (BRS) for specifying both structural and behavioral aspects of elastic cloud-based systems. Then, they used Maude's model-checking invariants technique to simulate and verify the elasticity property by ensuring that the Cloud system scale up/down when needed. Gambi et al. [START_REF] Gambi | Iterative test suites refinement for elastic computing systems[END_REF] adopted the state transition systems to formalize Cloud-based systems while taking into account elasticity properties. This formalization is then used to automatically generate load test cases focusing on plastic behavior of elastic systems. Plasticity is verified by ensuring that, for each scaling up, there should correspond a scaling down. While, the aforementioned approaches considers the elasticity properties of resources or services in Cloud-based systems, they do not take into account the process perspective.

Authors in [START_REF] Klai | Formal modeling of elastic service-based business processes[END_REF] defined a formal model based on Petri nets for horizontally elastic service-based business processes (SBPs) in the Cloud. Authors proposed to obtain an elastic SBP by composing its WF-net with each Petri net-based elastic controller of its services. The elasticity properties were formally characterized using Computational Tree Logic (CTL). Amziani et al. [START_REF] Amziani | Formal modeling and evaluation of service-based business process elasticity in the cloud[END_REF] defined a formal framework for the description and evaluation of service-based business processes elasticity and their strategies. Thereafter, they proposed to assess the correctness of the defined duplication and the consolidation mechanisms (i.e., the horizontal elasticity operators) by guaranteeing that the semantics of the SBP is preserved. An extension of this approach was proposed in [START_REF] Amziani | Formal modeling and evaluation of stateful service-based business process elasticity in the cloud[END_REF] in order to support stateful SBP. In a similar vein, authors in [START_REF] Graiet | A verification and deployment approach for elastic component-based applications[END_REF], suggested an Event-B based approach for formal specification of correct elastic component-based applications. Horizontal elasticity mechanisms are expressed in terms of events. The verification of the preservation of the functional and non-functional properties is done using proof obligations and animation. Nevertheless, in the above mentioned approaches, only the horizontal elasticity that refers to replicating or removing instances of cloud services is taken into account.

Very recently, some approaches have attempted to formalize Cloud resource allocation problem in BPs, but considered other Cloud constraints rather than the elasticity and the shareability particularilly. For example, in [START_REF] Ben Halima | Formal verification of time-aware cloud resource allocation in business process[END_REF], authors formalized temporal constraints for cloud resources allocation in cloud-based business processes. And in [START_REF] Hachicha | Social-based semantic framework for cloud resource management in business processes[END_REF] authors formalized cloud resource allocation in the context of social business processes. (5) the verified Cloud properties. As previously mentioned, we use "+" if the criteria is fulfilled and "-" otherwise. We can observe that process perspective, resource perspective and cloud properties verification are only partially covered or not at all. The resource perspective is actually well addressed, however only focusing on human resources (line 1). Mainly, an extension of business process models with the representation and the definition of human behavior is proposed [START_REF] Cabanillas | RALph: A Graphical Notation for Resource Assignments in Business Processes[END_REF][START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF][START_REF] Stroppi | A BPMN 2.0 Extension to Define the Resource Perspective of Business Process Models[END_REF][START_REF] Jesús | Defining the resource perspective in the development of processes-aware information systems[END_REF][START_REF] Cabanillas | Towards Process-Aware Cross-Organizational Human Resource Management[END_REF][START_REF] Cabanillas | Specification and automated design-time analysis of the business process human resource perspective[END_REF]. However, less attention has been paid to Cloud resource allocation in BPM field. In our work, we aim at supporting the Cloud resource allocation representation and verification in BP models.

Synthesis

h h h h h h h h h h h h

Indeed, researches on Cloud resource management can be classified into two groupes: in the BPM context, or in the Cloud-based systems context. On the one hand, in the first group (line 2), approaches integrated Cloud resources into process models, however they were only interested either in allocation aspects such as orchestration, scheduling and optimization; or in only temporal and social constraints formalization [112-119, 127, 128]. They did not provide formal specification or representation for the Cloud resource elasticity behavior and no verification techniques are used. While in our work, we propose to formally specify resource allocation in BPs that integrates Cloud aspects. We also seek for checking Cloud resource properties and constraints.

On the other hand, in the second group (line 3), approaches basically focused on the verification of horizontal elasticity aspects of resources in Cloud based systems rather then processes [START_REF] Kang | Feature-oriented domain analysis (foda) feasibility study[END_REF][START_REF] Bersani | Towards the formalization of properties of cloud-based elastic systems[END_REF][START_REF] Sahli | A brs-based approach to model and verify cloud systems elasticity[END_REF]. Moreover, attempts to verify elasticity of process models in a Cloud context (line 4) were limited to horizontal elasticity at the service level without considering the vertical elasticity aspect [START_REF] Klai | Formal modeling of elastic service-based business processes[END_REF][START_REF] Amziani | Formal modeling and evaluation of service-based business process elasticity in the cloud[END_REF][START_REF] Amziani | Formal modeling and evaluation of stateful service-based business process elasticity in the cloud[END_REF][START_REF] Graiet | A verification and deployment approach for elastic component-based applications[END_REF]. By contrast, our work considers particularly the vertical elasticity of Cloud resources. In fact, we aim to check behavior of the resource allocation correctness with respect to two Cloud resource properties: (1) the vertical elasticity that consists of the ability to dynamically adjust process resources by scaling their capabilities up/down when needed (according to the process workload), and (2) the shareability of resources which consists of the ability to use resource by multiples activities.

In this work, we propose to use the Event-B formal method. Compared to the other formal languages, the strong point of Event-B is that it supports the incremental design and modeling of the process using the step-wise refinement concept. Instead of defining the whole system properties and functionalities at the same time (what State of The Art other approaches often do), Event-B allows to gradually introduce the different parts of the system starting from an abstract model to a more concrete one. Thus, at each specific abstraction level, a set of properties and rules is introduced. Then, these properties are maintained at each refined level. The consistency between the different refinement levels is obtained by formal proofs.

Conclusion

This chapter serves to present different approaches that are relevant to our work. First we reviewed the existing work on the verification of business process models. Then, we classified the existing approaches related to Business process configuration into three major categories: configuration-based approaches, domain and guidancebased approaches, and the ones dealing with ensuring variants correctness. We briefly introduced them and we provided their principles. Regarding the existing approaches related to the resource allocation behavior in business processes, we presented three groups: we started by the ones dealing with the resources perspective in BPM field, then we looked at specifically the Cloud resources integration in BPs, and finally we tackled the verification issue in this perspective.

Introduction

Depending on specific needs of an organization, a configurable process model need to be adapted and configured. As we explained in chapters 1 and 3, manually applying configuration choices is far from trivial, especially in case of large configurable process models involving complex inter-dependencies between their elements configuration choices. Such inter-dependencies may be difficult to unravel without guidance. In addition, manually considering business domain constraints may be also a tedious and error-prone task. In the light of these difficulties, the business analyst may be easily mistaken in selecting configuration choices leading to incorrect derived variants in terms of structure, behavior or domain. This chapter addresses the research questions: RQ1: How to identify configuration choices that satisfy designers and clients requirements? and RQ2: How to assist the designer in selecting the correct configuration choices?

To answer these questions, the contribution of this chapter is to provide guidance and assistance in the process configuration task with adequate possible choices at each step. Since formal methods have proven their benefits in performing mathematical analysis allowing to rigorously and precisely reason about a system. We propose a formal specification describing the process configuration task using Event-B. Moreover, we formally define different constraints and properties that each configuration step should preserve. These constraints and properties are related to (i) configuration, (ii) structural correctness; and (iii) domain-based configuration guidelines. Moreover, at each configuration step, our specification should consider previously selected choices. Hence, the approach targets to achieve the following objectives:

-Objective 1 : analyze and check the correctness of a configurable process model; -Objective 2 : derive correct variants with respect to different constraints at each configuration step;

-Objective 3 : integrate Configuration guidelines [1] (i.e., if-then rules based on specific domain or context) in our formal model to ensure that the obtained variants comply with their domain constraints.

Once obtained, our formal specification is verified using Event-B provers, e.g. Ate-lierB provers, that produce proof obligations allowing to ensure that these constraints are preserved by the configuration steps. Also, using animation, with ProB, we exhibit a significant witnesses that different scenarios can be played. Thus, we ensure, before the proof phase that can be long and complex, that constraints and properties are evaluated at each step and hence the resulting variant preserves them as well. So, Event-B tools allows to perform an incremental verification by checking different constraints at each intermediate step of the configuration procedure. Thus, we obtain a correct-by-construction model that assists the designers in their configuration task.

In the following, we start by giving an example to motivate our work in Section 4.2. Then, we present an overall overview of our approach in Section 4.3. We illustrate our approach first step that consists in the formalization of a regular process model in Section 4.4. Section 4.5 formally introduces configurable elements as well as corresponding constraints. Afterwards, configuration steps that represent our configuration model for extracting correct variants are formalized in Section 4.6. Finally, we formalize configuration guidelines taking into account domain constraints in Section 4.7. The verification and validation of this approach using the RODIN tool, as well as its evaluation using experiments on a case study are depicted in Section 4.8.

The work in this chapter was partially published in conference proceedings [START_REF] Boubaker | An event-b based approach for ensuring correct configurable business processes[END_REF][START_REF] Boubaker | A formal guidance approach for correct process configuration[END_REF].

Motivating Example

Let us introduce our motivating example used through the present chapter. A configurable process model for the hotel reservation and car rental agency is captured by Figure 4.1. The configurable process is modeled using the Configurable BPMN (C-BPMN). Without limiting the generality of our work, we use C-BPMN as notation for configurable process modeling, since BPMN is considered as the internationally recognized industry standard notation for business process description. It is also worth noting that our work can be easily adapted to other graph-based business process modeling notations such as C-EPC. In this process, the customer first submits a request through a web form (a1). Next, five main functionalities are proposed: (1) the user profile search or creation: the process fragment in the red dashed rectangle, (2) the recommendation of hotels or/and cars: the process fragment in the green dashed rectangle; (3) hotels or/and cars searching and selection: the process fragment in the blue dashed rectangle; (4) checking phase: the process fragment in the violet dashed rectangle; (5) discount offer: the process fragment in the black dashed rectangle; and, (6) payment: the process fragment in the yellow dashed rectangle. Finally, an email of confirmation is sent to the customer using the activity a17.

As we have explained in Chapter 2, the C-BPMN notation includes two configurable elements: activities and connectors. In this example, 20 configurable elements (12 connectors and 8 activities) are highlighted with a thicker border. For instance, activities a1 and a18 are non-configurable, so they should be included in every configured variant. Whereas, the activity a9 and the connector s1 may vary from one process to another, as they are configurable. This configurable process will be shared between different users from different branches. Moreover, it will be configured according to their preferences and regulations.

In Figure 4.2, we give an example of a process variant of this configurable process modeled with BPMN 2.0 and used by a hotel reservation branch. Here, we suppose that this branch does not need the recommendation functionality for cars (i.e., activity a4 is removed). But, it needs the execution of the search and selection for hotels only (i.e., the entire branch starting from a7 is removed). Additionally, it needs a simultaneous execution of the hotel availability checking and the credit card checking tasks (i.e. this refers to modifying the connectors s6 and j7 types from OR to AND while removing activity a10). Finally the branch choose to adopt online payments only (i.e., activity a16 is removed). As a result of such configuration choices, we obtain the individualized process of Configuration correctness checking In Figure 4.3a, s5 has been configured to a sequence starting from a9 (the edge between s5 and a7 disappears). Thus, the produced process is not sound, since activities a7 and a8 become unreachable from the initial event: they are dead as they can never be executed. In this chapter, we aim at preventing such configurations by formally ensuring that every connector configuration involving outgoing or incoming branches restriction is implicitly followed by a transformation phase allowing to remove the isolated activities from the resulting process. An isolated node is detected either if it is unreachable from the initial event, or it is not on a path leading to a final event.

Besides checking this structural property of the configurable process model, we aim also to prevent problems that may affect the soundness of the derived process variants [START_REF] Van Dongen | Structural patterns for soundness of business process models[END_REF]. In the following, we illustrate two error patterns [START_REF] Van Dongen | Structural patterns for soundness of business process models[END_REF] that would happen during the process configuration resulting from mismatches between splits and joins: deadlock and lack of synchronization.

• In Figure 4.3b, the join operator j2 has been configured to an XOR while the connector s1 had been already configured to an AND-split. The two outgoing branches from the AND-split will be activated, however, the XOR-join needs the completion of exactly one of its incoming branches. This leads to multiple terminations of the process referred to as lack of synchronization problem.

• In Figure 4.3c, the connector s4 has been configured to an XOR-split and the corresponding join j4 to an AND-join. This implies a deadlock, as only one branch is activated after the XOR-split, whereas the AND-join needs the completion of all its incoming branches.

The prevention of these erroneous situations will be discussed in detail in Section 4.5. Configuration guidelines To comply with specific domain business needs, the process analyst needs further guidelines to derive specific variants. Configuration guidelines provide recommendations and proposed best practices for a specific domain [1]. An example of such guidelines satisfied by the variant of Figure 4.2 is: "if the hotel recommendation functionality is included (i.e. a3) in the derived variant, then the hotel searching functionality (i.e. a7) should be also included." These guidelines are expressed in the form of logical If-Then-rules where the if and then parts contain configurations of different configurable elements. Such rules considerably increase the difficulty of manually applying configuration options. Hence, we will discuss the integration of these constraints into our configuration approach in Section 4.7. Now, we assume that, in Figure 4.4, a process analyst is designing a "hotel and car reservation" process variant starting from the configurable process model. Here, when configuring a split connector, e.g. s1, or a join connector, e.g. j4, respectively; the designer should wonder about (point (1)) the configured type, the number of output or input branches respectively; or (point (2)) the already configured connectors in order to take them into account. Regarding configurable activities, e.g. a3, designer should choose whether to include or to exclude them from the resulting process variant (point (3)). The same principle applies for the rest of configurable elements. To answer these wonderings while configuring correctly, he/she should consider, at the same time, constraints related to configuration (e.g., an AND connector should not be configured to a sequence), as well as structure and domain constraints discussed above. Configuration steps with respect to all these constraints will be formally specified in Section 4.6. Note that, our contribution consists not only in proving the correctness of the process configuration steps but also in guiding analyst choices with respect to these constraints using the ProB animator (cf. Section 4.8.2). First of all, on the top left side of the Figure 4.5, we have as input of our approach the Event-B representation of the configurable process model. Its correctness is verified with respect to the different properties expressed using invariants. The configuration can start only if all the invariants are verified. This allows to achieve our objective 1 (defined in Section 4.1). Then, the analyst uses ProB animator [START_REF] Leuschel | Prob: an automated analysis toolset for the b method[END_REF] to perform configuration steps involving each element's configuration (cf. Section 4.8.2): firstly, the guards of each event are evaluated (step 1). These guards include both correctness and domain constraints. Moreover, events guards check for each connector's configuration, the type of the previously configured ones in order to prevent eventual mismatching. Then, only events whose guards are fulfilled are enabled (step 2). Thus, the configuration step can be applied (step 3). The set of potential configuration options is updated after each step. These steps are repeated (step 4.i) while there are configurable elements. As a result, the analyst derives a correct and domain-compliant process variant (step 4.ii), satisfying our objectives 2 and 3.

Formal Specification of a Business Process Model

The control-flow (or process) perspective describes activities and their execution ordering through different constructors, which permit flow of execution control [START_REF] Kiepuszewski | Fundamentals of control flow in workflows[END_REF]. In this subsection, we introduce the first step of our formalization which consists of two abstraction levels in order to consider this process perspective.

Business Process Model Graph

A business process consists of a set of activities that are performed in coordination in an organizational and technical environment. These activities jointly realize a business goal [3]. More formally, a business process model is composed of a number of activities or tasks which are connected to form a directed graph. Thus, we present an abstract formal definition of a business process model as follows.

Definition 4.4.1 (Business process model). A business process model is a directed graph Bp = < N ODES, Initial, F inal, SEQ, CON T ype > where:

• N ODES is the set of nodes that may be either activities ACT , split connectors CON S, or join connectors CON J;

• Initial ∈ ACT in the unique initial activity;

• F inal ⊂ ACT in the non-empty set of final activities;

• SEQ : N ODES ←→ N ODES is edges connecting two nodes and is defined as the control flow relationship between them;

• CON T ype : CON S ∪CON J -→ T Y P ES is a function that assigns for each connector, either a split or a join, a type in {OR, XOR, AN D}

In the following subsection, we use this definition in the Event-B modeling of a business process.

Business Process Modeling using Event-B

We start the formal modeling of our configuration approach using Event-B by introducing the first level of our specification which holds processes, activities and their relationships. The semantics of the Event-B mathematical symbols used throughout this chapter are illustrated in Appendix B.

Firstly, we present the context C0 depicted by Listing 1 which holds the following finite sets: (i) BPS (axm1), which defines the set of possible processes, (ii) NODES (axm2), which contains three values denoting types of nodes (axm3): activities (i.e. ACTS), split connectors (i.e. CON S), and join connectors (i.e. CON J), and (iii) TYPES, which defines three types of connectors (axm4): OR, XOR and AND. In order to initialize our model, we use constants to represent the different elements of these sets. Afterwards, we define the machine M0 which sees the context C0 described above.

Formal Specification of a Configurable Process Model

The variables of M0 and their typing invariants are given in Listing 2. We define a variable BP to store the created processes. To map each process to its nodes, we introduce the relation BP Nodes from BP to NODES (Inv2). We define the start and the end events as activities using respectively the total function Initial (Inv3) and the relation Final (Inv4); since we assume that a process has exactly one initial activity but may have several final ones. In BPMN, each connector, either a split or a join, has a type. This is modeled using the total function CON Type (Inv5). The execution ordering between the different nodes is modeled using the total function SEQ (Inv6).

Listing 2: Machine M0's variables and typing invariants

MACHINE M 0 SEES C0 VARIABLES BP BP N odes Initial F inal SEQ CON T ype INVARIANTS Inv1 : BP ⊆ BP S Inv2 : BP N odes ∈ BP ↔ N ODES Inv3 : Initial ∈ BP → ACT S Inv4 : F inal ∈ BP ↔ ACT S ∧ dom(F inal) = BP Inv5 : CON T ype ∈ BP N odes (CON S ∪ CON J) → T Y P ES Inv6 : SEQ ∈ BP → (N ODES ↔ N ODES)

Formal Specification of a Configurable Process Model

To take the configurable nodes into account, we define a total function Configurable Nodes (Inv22, Listing. 3) returning a Boolean value to state whether a given node is configurable or not in each process in which it appears. We assume that a configurable process could be changed by applying a sequence of operations on it (e.g. excluding an activity or changing a connector type). So, at each configuration step, we define the process change using the partial function

Structural Constraints

In order to ensure consistent and structurally correct process control flow, we define a set of constraints to be respected. We illustrate some of them in Listing 4:

• Except the initial and the final nodes, each activity have exactly one incoming (Inv111) and one outgoing arc (Inv122).

• A split connector has exactly one incoming (Inv13) and at least two outgoings arcs (Inv14).

• A join connector has exactly one outgoing arc (Inv15), and at least two incomings arcs (Inv16).

Listing 4: Structural constraints invariants

.... Inv11 : ∀bp.(bp ∈ BP ⇒ (ACT S SEQ(bp)) ∈ ACT S ∩ BP N odes[{bp}] \ F inal[{bp}] → BP N odes[{bp}] \ Initial[{bp}] Inv12 : ∀bp.(bp ∈ BP ⇒ (SEQ(bp) ACT S) ∼∈ ACT S ∩ BP N odes[{bp}] \ Initial[{bp}] → BP N odes[{bp}] \ F inal[{bp}] Inv13 : ∀bp.(bp ∈ BP ⇒ CON S (SEQ(bp) ∼) ∈ CON S ∩ BP N odes[{bp}] N ODES) Inv14 : ∀bp, nd.(bp ∈ BP ∧ nd ∈ CON S ∧ bp → nd ∈ BP N odes ⇒ card(SEQ(bp)[{nd}]) ≥ 2) Inv15 : ∀bp.(bp ∈ BP ⇒ CON J SEQ(bp) ∈ CON J ∩ BP N odes[{bp}] N ODES) Inv16 : ∀bp, nd.(bp ∈ BP ∧ nd ∈ CON J ∧ bp → nd ∈ BP N odes ⇒ card(SEQ(bp) ∼ [{nd}]) ≥ 2)
A process is considered to be structurally sound [3] if it fulfills the following two conditions:

• all nodes of the process can be activated, i.e. every node can be reached from the initial activity, as depicted by Inv20 in Listing. 5 where cls 3 is the transitive closure of the relation SEQ(bp); and

• for each activity in the process, there is at least one possible path leading from this activity to a final activity, i.e. the termination is always possible. This condition is captured by Inv21 of Listing. 5.

Listing 5: Soundness constraints invariants

Inv20 : ∀bp, node.(bp → node ∈ BP N odes ∧ node = Initial(bp) ⇒ node ∈ (cls(SEQ(bp)))[{Initial(bp)}]) Inv21 : ∀bp, node.(bp → node ∈ BP N odes ∧ node / ∈ F inal[{bp}] ⇒ (cls(SEQ(bp)))[{node}] ∩ F inal[{bp}] = ∅)
Erroneous patterns The configuration of a business process model may affect the soundness by two types of potential errors: lack of synchronization and deadlocks [START_REF] Van Dongen | Structural patterns for soundness of business process models[END_REF]. These situations result from a mismatch between splits and joins. To formally prevent these situations during configuration procedure, we defined six invariants: three for the splits and three for the joins. These invariants should be preserved by all the events that we define in the following subsections to capture the configuration operations. An example of the lack of synchronization situation is captured by joining with an XOR operator, a control-flow that was split by an AND operator (cf. Figure 4.3b). The two outgoing branches from the AND-split will be activated, however, the XORjoin needs the completion of exactly one of its incoming branches. Thanks to Inv25 (Listing. 6), this situation leading to an improper termination is not allowed in our model. Specifically, having a AND-split operator ops (line 2), for each couple of outgoing nodes n1 and n2 (line 3), the first common node opj (lines 4 to 6) should be an AND (line 7) or a not yet configured OR connector that should be eventually Listing 6: Synchronization invariant

1 Inv25 : ∀bp, ops, n1, n2.(bp → ops ∈ BP N odes CON S 2 ∧ CON T ype(bp → ops) = AN D 3 ∧ n1 ∈ SEQ(bp)[{ops}] ∧ n2 ∈ SEQ(bp)[{ops}] ∧ n1 = n2 4 ⇒ (∀opj.opj ∈(∪t.t ∈ ((cls(SEQ(bp)))[{n1}] ∪ {n1}) 5 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2}) ∧ SEQ(bp) ∼ [{t}] ∩ (((cls(SEQ(bp)))[{n1}] ∪ {n1}) 6 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2})) = ∅ | {t}) 7 ⇒ (CON T ype(bp → opj) = AN D 8 ∨ (CON T ype(bp → opj) = OR ∧ Conf igurable N odes(bp → opj) = T RU E))))
3 cls(r) denotes the closure of the relation r defined, for each relation (r ∈ S ↔ S), by:

(1) cls(r) = i=1..∞ r i ; (2) r 1 = r ; and (3) for each n >= 2r n = (r; r n-1)

The transitive closure formulations were expressed as machine theorems.

configured as an AND (line 8). Note that, Having two nodes n1 and n2, the first common node is the first node which belongs to the transitive closure of both nodes n1 and n2 Similar invariants are defined to ensure a deadlock-free control flow which is an important criterion for soundness. We aim to guarantee the absence of situations where a node can never be activated (cf. Figure 4.3a). We model such situations using Inv26 in Listing. 7. This invariant asserts that an OR-split or an XOR-split should not be followed by an AND-join. Basically, having a split type different from AND (lines 2 and 3), we check that, for each couple of outgoing nodes n1 and n2 (line 4), the first common node (lines 5 to 7) is not an AND-join (line 8).

Listing 7: Deadlock-freeness invariant

1 Inv26 : ∀bp, ops, n1, n2.(bp → ops ∈ BP N odes CON S 2 ∧ (CON T ype(bp → ops) = XOR 3 ∨ (CON T ype(bp → ops) = OR ∧ Conf igurable N odes(bp → ops) = F ALSE)) 4 ∧ n1 ∈ SEQ(bp)[{ops}] ∧ n2 ∈ SEQ(bp)[{ops}] ∧ n1 = n2 5 ⇒ (∀opj.opj ∈ (∪t.t ∈ ((cls(SEQ(bp)))[{n1}] ∪ {n1}) 6 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2}) ∧ SEQ(bp) ∼ [{t}] ∩ (((cls(SEQ(bp)))[{n1}] ∪ {n1}) 7 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2})) = ∅ | {t})) 8 ⇒ CON T ype(bp → opj) = AN D))
In the following section, we tackle the configuration procedure. Hence, we define configuration operations to apply on a business process as well as a set of configuration constraints to be respected.

Formal Specification of Configuration Steps

In this section, we introduce the formalization of process elements configuration: activity configuration, and connector configuration. In this formalization, each configuration step is performed by a single event. In order to derive correct variants, we define a set of constraints using invariants and event guards. Then, we prove that each event preserves them, which implies that the erroneous situations presented above will be avoided, namely the deadlock and the lack of synchronization.

Activity Configuration

A configurable activity could be included or excluded in a process variant according to the process analyst choice. To define this activity configuration, two events and two invariants defining configuration constraints are introduced.

With regard to invariants, they allow to define the configuration constrains before and after variables change by the defined events. For instance, we take the example of excluding an activity, the invariant inv27 (cf. Listing 8) insures that for each couple (bp2, bp1) belonging to Is Configuration OFFAct (line 2), such that bp2 process results from bp1. Then, there exists an activity act; such that: (i) act should be configurable activity belonging to bp1 (lines 4 to 5); (ii) act is the only difference between bp1 nodes and bp2 nodes (line 6); (iii) act and its dependencies are removed from bp1 and a new dependency linking its predecessor and its successor is created in bp2 (line 7); (iv) all activities other than act retain the same configuration (lines 8 to 9); (v) all connectors retain the same type (lines 12 to 13); and (vi) initial and final activities remain the same (lines 10 to 11). Likewise, a second invariant is defined to constrain the activity preservation after its configuration.

Listing 8: OFF Activity Configuration invariant

1 Inv27 : ∀bp1, bp2. (bp1 ∈ BP ∧ bp2 ∈ BP ∧ 2 bp2 → bp1 ∈ Is Conf iguration OF F Act 3 ⇒ 4 ∃ act.(act ∈ ACT S ∧ act ∈ BP N odes[{bp1}] 5 ∧ bp1 → act → T RU E ∈ Conf igurable N odes 6 ∧ BP N odes[{bp1}] \ BP N odes[{bp2}] = {act} 7 ∧ SEQ(bp2) = (({act} -SEQ(bp1)) -{act}) ∪ ((SEQ(bp1)) ∼ [{act}] × ((SEQ(bp1))[{act}]))) 8 ∧ (∀ actx. actx ∈ ran({bp1} dom(Conf igurable N odes)) \ {act} 9 ⇒ Conf igurable N odes(bp2 → actx) = Conf igurable N odes(bp1 → actx)) 10 ∧ Initial(bp2) = Initial(bp1) 11 ∧ F inal[{bp2}] = F inal[{bp1}] 12 ∧ ∀con. (con ∈ BP N odes[{bp1}] ∩ (CON S ∪ CON J) ⇒ 13 CON T ype(bp1 → con) = CON T ype(bp2 → con)))
With regard to events, activity configuration is performed through either: (i) ConfigureACTON event which keeps the activity; or (ii) ConfigureACTOFF event which excludes it. We present in Listing. 9 the ConfigureACTOFF event. Based on a configurable process bp1, a configured process bp2 is a result of excluding an activity act. As guard, in addition to typing ones (grd1 and grd2), act must be configurable (grd3). This event allows bp2 to inherit from bp1 : (i) its nodes whilst removing act (act2), (ii) its initial and final activities (act3 and act4), (iii) all its nodes relations (i.e. SEQ(bp1)) while removing act dependencies and creating a new one connecting act successor and predecessor (act5), (iv) its configurable nodes (act6), and (v) the types of its connectors (act7). Finally, we define bp2 as a configuration of bp1 whilst excluding act (act8). Similarly, the event ConfigureACTON allows to maintain the same process by keeping the configurable activity. The only change applied on the resulting process consists in making the activity as non configurable.

Connector Configuration

A connector configuration represents a decision point that is of relevance during the process configuration life cycle. Each decision has to consider the following requirements: (1) the configuration constraints for each type of connector (e.g. an AND could not be configured to an XOR), (2) only configurable nodes can be removed in order to avoid unreachable nodes, and (3) the connectors types matching checking in order to prevent erroneous situations.

F inal := F inal ∪ ({bp2} × (F inal[{bp1}])) act5 : SEQ(bp2) := (({act} -SEQ(bp1)) -{act}) ∪((SEQ(bp1)) ∼ [{act}] × SEQ(bp1)[{act}]) act6 : Conf igurable N odes := Conf igurable N odes ∪ (node.node ∈ BP N odes[{bp1}] \ {act} | {bp2 → node → Conf igurable N odes(bp1 → node)}) act7 : CON T ype := CON T ype ∪ (con.con ∈ BP N odes[{bp1}] ∩ (CON S ∪ CON J) | {bp2 → con → CON T ype(bp1 → con)}) act8 : Is Conf iguration OF F Act := Is Conf iguration OF F Act ∪ {bp2 → bp1}
Concretely, in order to obtain a well-structured configured process, an invariant for each configuration choice should be respected. For instance, in case of OR-split configuration, the invariant Inv29 (see Listing.10) ensures that for each couple (bp2, bp1) belonging to Is Configuration OR S (line 1) there exists an OR split operator ops (line 3) which belongs to both bp1 and bp2 nodes (line 4) such that ops is configurable in bp1 (line 5) and non configurable in bp2 (line 6). Also other connectors in the processes do not change type (lines 7-8). According to this configuration, some nodes (line 9) as well as their dependencies (line 10) may be removed when restricting ops outgoings. No additional dependencies are created as well. Finally, the initial and final activities always remain the same (lines 11 to 12).

Listing 10: Or Split configuration invariant

1 Inv29 : ∀bp1, bp2.(bp1 ∈ BP ∧ bp2 ∈ BP ∧ bp2 → bp1 ∈ Is Conf iguration OR S 2 ⇒ (3 ∃ ops.(ops ∈ CON S ∧ bp1 → ops → OR ∈ CON T ype 4 ∧ ops ∈ BP N odes[{bp1}] ∧ ops ∈ BP N odes[{bp2}] 5 ∧ bp1 → ops → T RU E ∈ Conf igurable N odes 6 ∧ bp2 → ops → F ALSE ∈ Conf igurable N odes 7 ∧ ∀con.(con ∈ BP N odes[{bp1}] ∩ (CON S ∪ CON J) \ {ops} 8 ⇒ CON T ype(bp1 → con) = CON T ype(bp2 → con))) 9 ∧ BP N odes[{bp2}] ⊆ BP N odes[{bp1}] 10 ∧ SEQ(bp2) ⊆ SEQ(bp1) 11 ∧ Initial(bp2) = Initial(bp1) 12 ∧ F inal[{bp2}] = F inal[{bp1}]))
These configuration choices are insured by two events (either split or join) for each connector type. A first set of events model the split configuration: ConfigureORSplit, ConfigureXORSplit and ConfigureANDSplit. A second set of events model the join configuration: ConfigureORJoin, ConfigureXORJoin and ConfigureANDJoin.

For instance, Listing.11 illustrates the event ConfigureORSplit. This event allows configuring a configurable split connector ops (grd3) from OR type (grd4) to any type to (grd5) (as OR could be configured to any type, see line 1 of Table 2.1). This event enables also to preserve the branches starting by nodes in nodes. Obviously, the number of remaining branches should be greater than two (grd6). However, each branch can be removed only if all its nodes are configurable (grd8). Furthermore, our model avoids connectors types mismatching by considering corresponding join connectors. For example, using grd11, for each two outgoing branches n1 and n2, if the corresponding join is an AND, then the split should be configured to an AND as well.

Listing 11: Or Split configuration event

Confi gureORSplit ANY bp1 bp2 ops nodes to deletedN odes subgraph conT oSeq

WHERE grd1 : bp1 ∈ BP ∧ ops ∈ CON S ∧ bp1 → ops ∈ BP N odes grd2 : bp2 ∈ BP S \ BP grd3 : Conf igurable N odes(bp1 → ops) = T RU E grd4 : CON T ype(bp1 → ops) = OR grd5 : to ∈ T Y P ES grd6 : nodes ⊆ SEQ(bp1)[{ops}] ∧ card(nodes) ≥ 2 grd7 : deletedN odes = (∪zz. zz ∈ BP N odes[bp1] \ {Initial(bp1)} ∧ zz / ∈ (cls(SEQ(bp1) \ (ops × (SEQ(bp1)[{ops}] \ nodes))) [{Initial(bp1)}]) | {zz}) grd8 : deletedN odes ⊆ Conf igurable N odes [{T RU E}][{bp1}] grd9 : subgraph = (deletedN odes -(SEQ(bp1)\ ({ops} × (SEQ(bp1)[{ops}] \ nodes)))) -deletedN odes grd10 :conT oSeq = (∪x.x ∈ CON S ∧ card(subgraph[{x}]) = 1 | {x}) ∪ (∪x.x ∧ CON J ∧ card(subgraph ∼ [{x}]) = 1 | {x}) grd11 : ∃n1, n2.(n1 ∈ nodes ∧ n2 ∈ nodes ∧ n1 = n2 ∧ ((∃opj.opj ∈ (∪t.t ∈ ((cls(SEQ(bp1)))[{n1}] ∪ {n1}) ∩((cls(SEQ(bp1)))[{n2}] ∪ {n2}) ∧ SEQ(bp1) ∼ [{t}] ∩ (((cls(SEQ(bp1)))[{n1}] ∪ {n1})∩ ((cls(SEQ(bp1)))[{n2}] ∪ {n2})) = ∅ | {t}) ∧ CON T ype(bp1 → opj) = AN D)) ⇒ to = AN D ... THEN ...
Similarly, the join operator configuration may depend on one or more splits. Thus, the corresponding split of each two ingoing branches is taken into account by checking its configured or not yet configured type using guards. For instance, in the event dealing with configuring OR-join, namely ConfigureORJoin, we add the grd9 in Listing.12 to verify that: If there exists two distinct nodes n1 and n2 belonging to opj incomings (line 1), and having the first common previous node (lines 2-3) configured to an XOR type (line 4), then opj should not be configured to an AND (line 5). Hence, this condition guarantees a deadlock-free configuration of this join operator. Similarly, we add other guards to avoid the lack of synchronization situation.

Listing 12: Or join guard

1 grd9 : ∃n1, n2.(n1 ∈ nodes ∧ n2 ∈ nodes ∧ n1 = n2 2 ∧ ((∃ops. ops ∈ (t. t ∈ ((cls((SEQ(bp1)) ∼))[{n1}] ∪ {n1}) ∩ ((cls((SEQ(bp1)) ∼))[{n2}] ∪ {n2}) 3 ∧ SEQ(bp1)[{t}] ∩ (((cls((SEQ(bp1)) ∼))[{n1}] ∪ {n1}) ∩ ((cls((SEQ(bp1)) ∼))[{n2}] ∪ {n2})) = ∅ | {t}) 4 ∧ CON T ype(bp1 → ops) = XOR)) 5 ⇒ to = AN D
Besides the configuration of a connector from one type to another, it is possible to configure it to a sequence by keeping a single branch. This is defined using the events ConfigureCONSToSeq (for a split connector) and ConfigureCONJToSeq (for a join connector). As mentioned previously, only OR and XOR types could be configured to a sequence. This constraints is ensured by a guard (grd6 : CON T ype(bp1 → ops) = AN D). This event checks also whether the corresponding join (resp. split) should be mapped into a sequence or not. As a result, the branch to retain is linked to the predecessor and the successor of the deleted operators.

Introduction of the Configuration Guidelines into the Model

Process providers may define specific business domain constraints for their process configurations. Thus, configuration guidelines are introduced to depict relevant interdependencies between the configuration decisions in order to be inline with domain constraints and best practices. Such guidelines are expressed via logical expressions of the form If-Then-rules. Both the if and then parts contain statements about binding configurable nodes to concrete values [1]. As examples of such rules:

if a9 = OF F and s5 = Seq(a7) then a14 = OF F (4.1)

if a3 = ON then a7 = ON (4.2)
if s3 = Seq(a3) and s5 = Seq(a7) then s6 = OR(a11, a12)

This means that: (4.1) if the car searching and selection functionalities are excluded in a given variant, then the discount activity is excluded too; (4.2) if the hotel recommendation functionality is included in the derived variant, then the hotel searching functionality should be also included; and (4.3) if the car searching, selection and also the car recommendation functionalities are excluded, then the checking for car availability should be ignored as well.

Note that, the if-part may contain many conditions and the then-part contains only one statement or consequent. If the conditions are true (i.e., the configuration choices were applied in a previous step), then the consequent statement should be respected (i.e., only this configuration choice should be applied). For example, the rule (4.2) have one condition (i.e., a3 = ON) and one consequent configuration that should follow this condition (i.e. a7 should be set ON). Whereas, rules (4.1) and (4.3) have two condition statements (e.g., a9 = OF F and s5 = Seq(a7)) that need to be applied in order to require the application of the consequent configuration.

In order to integrate these domain constraints in our model, we define a second abstraction level, namely machine M1, that refines the machine M0. In fact, we define for each type of then-part statement one invariant. In other words, we define one invariant for each element configuration that represent a consequent to other configuration choices. We give three examples of such invariants in Listing. [START_REF] Dumas | Processaware Information Systems: Bridging People and Software Through Process Technology[END_REF]. For instance, the relation ConfigurationG ACT (inv1) defines a guideline that leads to a specific configuration (either ON or OFF) of a specific activity. Thus, the guideline may have five different conditions: an activity configuration (line 1), a split or join configuration to a type (line 2), and a split or join configuration to a sequence (line 3). Similarly, ConfigurationG CONS (resp.

ConfigurationG CONJ) defines the guideline for a split (resp. a join) connector configuration to a specific type and specific outgoing (resp. ingoing) branches. And Conf igurationG CON S SEQ represent the guideline for recommending a sequence configuration after the application of some conditions.

Listing 13: Guidelines invariants As each configuration step must fulfill the configuration guidelines, we refined our abstract events by adding one guard for each guideline. For instance, considering the first example (4.1) above, we have {a9 → OF F } → ∅ → ∅ → {s5 → a7} → ∅ → (a14 → OF F) ∈ ConfigurationG ACT. Thus, we have two conditions consisting of {a9 → OF F } and {s5 → a7} that if satisfied, a14 should be mapped to OFF. Hence, we added a guard in the event ConfigureACTON to ensure that in order to set an activity to ON at least one condition is not satisfied in a guideline leading to the configuration of this activity to OFF. In this particular case, a14 can be set to ON if a9 and s5 have been both configured and a9 has been set to ON or s5 has not been configured as a sequence of a7. Reciprocally, the configuration a14 to ON is not allowed if at least one of a9 and s5 is not configured yet or both have been configured according to the guideline.

Assisting Correct Process Variant Design with Formal Guidance

Verification and Validation

Verification using Proofs

In order to demonstrate that the formal specification of configurable process models is correct, a the number of generated proof obligations (POs) should be discharged. Using the Rodin tool [START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in event-b[END_REF], our model generated 358 proof obligations; most of them (272 POs 76%) were automatically discharged; more complex ones (86 POs 24%) required the interaction with the provers to help them find the right rules to apply but also to define additional rules that may lack in the rule base of the prover. These POs ensure that the invariants which model the different constraints on the configurable business processes and the derived variants, are always satisfied (i.e. they hold initially; and each event preserves them). For each event of the form (WHEN G THEN Act) with G and Act representing the guard and the action respectively, the following proof obligation is generated to verify that the execution of the action Act under the guard G permits to preserve the invariant [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]

: (Inv ∧ G) ⇒ [Act]Inv.
An example of the proofs, we have established, concerns the event Configure-ACTOFF correctness with respect to the invariant inv20: we have to prove that even if an activity act is removed (set to OFF), it remains possible to reach each node from the initial one. This holds since we have added a control from linking the predecessor of act to its successor. To discharge this proof that refers to the closure of a relation, we have added the rule defining the closure of the union of two relation s and r: r ∈ t ↔ t ∧ s ∈ t ↔ t ⇒ cls(r ∪ s) = cls(r)((id(t) ∪ cls(r)); s)+; (id(t) ∪ cls(r))

Validation by Animation

Now, based on a correct model, we validate our Event-B specification by animation and model checking using the ProB plugin [START_REF] Leuschel | Prob: an automated analysis toolset for the b method[END_REF]. Concretely, we play and observe different scenarios and check the behavior of our model by showing at each step the values of each variable, which events are enabled or not.

For instance, we illustrate the animation of the scenario captured by the Figure 4.3b in Section 4.2 as follows. After initializing the model using our motivating configurable process (cf. Figure 4.1 in Section 4.2), i.e. after triggering the first event: Initialization, all invariants should be respected to ensure the correctness of the configurable process model. This verification is ensured by the ProB animation view as depicted in the bottom side (1) of the Figure 4.6. Next, we process our scenario by triggering enabled events, and at each configuration step, we observe that invariants are always re-established: i) we trigger theConfigureORSplit event to configure the split operator s1 from OR to an AND (to = AND) while maintaining the same branches, ii) s3 and j1 are configured (using ConfigureToSeq event) to a sequence starting from a3 (a3 is set to ON as well),

iii) the activity a7 is set to ON (using ConfigureACTON event). Since a3 is included in the previous step, the mapping of a7 to OFF is not allowed in accordance with the guideline (2) defined in Section 4.7, iv) s5 and j3 are also configured to a sequence starting from a7 ; only this branch should be preserved, since the second branch nodes are configurable. Next, iv) when configuring the join operator j2, the only allowed alternative is to fire the event ConfigureORJoin with the connector type parameter AND (see Fig-

Case Study

In order to evaluate the practical usefulness and identify the opportunities of using our approach, we conducted a case study with a group of business process experts and analysts. In the following, we examine its objectives, analyze and discuss its practical experience in conducting business process model configuration.

Objective

The main goal of our work is to evaluate how our approach helps and guides analysts in generating correct and domain-compliant process configuration. Therefore, we define the following research question: How can our approach assist process analyst in applying correct configuration steps?

To answer this question, we formulate three hypotheses that our approach allows:

(H1) to save time and facilitate the identification of the configuration steps;

(H2) to guarantee a correct process model at each configuration step; and

(H3) to derive domain-compliant process variants based on the configuration guidelines.

Design, Data Collection and Execution

Our case study is a real configurable supervision process adopted by Orange, a french telecom industrial partner. Different variants of this process are used by Orange affiliates in different cities and countries according to their specific needs. Based on 28 variants, a set of configuration guidelines was generated by an automated approach and validated by a domain expert [START_REF] Assy | Business Process Management: 13th International Conference[END_REF]. With a population of 9 participants that are familiar with process configuration, we targeted experiments to derive a set of different variants using the considered configurable process model. With this purpose, we divided the population into three groups of three people each. After a workshop organized to explain the basics needed in this study, the first group (G 1) is asked to manually derive a maximum of process variants without any guidance. Then, the second group (G 2) is also asked to manually derive process variants, but, while providing them with the generated configuration guidelines rules. Whereas, the third group (G 3) is provided with the complete Event-B model (installed under the RODIN tool) and asked to generate process variants with respect to the allowed configuration choices by the model checking. So, participants of latter group can apply only configuration steps that are allowed by our model. As mentioned in the previous sections, this model includes both correctness and domain constraints. However, the first two groups take the burden of verifying the correctness of their choices.

The resulted process variants are then collected for comparison. In order to answer the identified research question and confirm its hypotheses, we evaluated the results according to two parameters: (1) the time needed to derive process variants for the different groups, (2) the number of errors for the identified correctness and domain constraints.

Results Analysis and Findings

Regarding the time needed to derive variants, the group G 1 took in average 16 minutes and the group G 2 took in average 14 minutes, whereas the group G 3 took only 5 minutes. Table 4.1 shows the distribution of the time according to the correctness and the business criteria. Through this table, we notice that the more participants of G 1 and G 2 take time in deriving variants the less correctness errors are detected. This can explain that participants are making a special effort. Also, it is clear that the first two groups took much more time in deriving correct and domain-compliant variants than the group G 3 . It is worth noting that all derived variants by G 3 contain neither structural nor behavioral correctness errors. No domain errors are detected as well. Moreover, the participants of group G 3 affirmed that the ProB model checker is quite straightforward to use and it assisted them in defining appropriate configuration steps. They easily followed the enabled events to make their choices which helped them to be compliant not only to correctness constraints but also to domain recommendations. As a result, we concluded that our approach allows (1) to save time and to assist users in defining their configuration choices, which supports the hypothesis H1 ; and (2) to respect correctness and domain constraints, supporting H2 and H3.

Table 4.1: The average time in minutes unit spent to derive variants either correct (C) or not (¬C), and either business-complaint (B) or not (¬B)

X X X X X X X X X X Group Variant C & B C & ¬B ¬C & B ¬C & ¬B G 1 23 17 15 8 G 2 17 × 11 × G 3 5 × × ×

Threats to Validity

First, the small number of the collected process variants, used to generate our configuration guidelines, can be considered as a threat of validity. However, in this study we have chosen 28 variants that are relevant and depict various business needs. Secondly, one case study has been only conducted by 9 participants. We believe that a larger group of participants with varied backgrounds need to be used to highlight the validity and reliability of the experiments results. We leave this to future work.

ATL Model Transformation: BPMN to Event-B

In this section, we describe our Model-to-Model transformation that we developed to map the BPMN process models into an Event-B specification using the ATL model transformation language. A model transformation is the automatic creation of target models from source models. Figure 4.7 presents the structure of the tool that we implemented. The first transformation consists in injecting the input XML file via Xtext. We started by defining the BPMN grammar and, using Xtext, were able to generate a lexical analyser and a meta-model to which that grammar conforms. This metamodel is the one used for this T2M transformation. In fact, this first step consists in transforming the textual representation of the input BPMN model contained in the input XML file into an XMI model conforming to the previously generated metamodel.

The second transformation is an endogenous one that takes as input the output model of the first transformation. It is implemented using ATL. The target meta-model to which conforms the resulting XMI model of this transformation is an extended version of the BPMN meta-model (BPMN20.ecore) as defined and used by the Eclipse BPMN2 Modeler. It is an extended version because we had to integrate elements specific to configurable Business processes as the original meta-model does not support such concepts. In terms of correspondences between the elements of the input and output models, this transformation brings no change. Nevertheless, it was necessary to use a number of ATL helpers to guarantee the accuracy of the resulting model.

The third transformation is at the core of the whole transformation process. It is an exogenous ATL transformation that, taking as input the output of the previous transformation, generates an XMI model that conforms to the Event-B meta-model (EVENTB.ecore). This meta-model is the same one used by the Rodin platform. The transition between the two models pertaining to two different languages is achieved by applying a set of transformation rules and helpers that associate BPMN elements to Event-B elements.

The last transformation treats the extraction phase using Xpand. The goal of this step is to transform the Event-B XMI model resulting from the third transformation into a textual Event-B code. Consequently, the execution of this transformation generates an Event-B project, including both a context and a machine, that can be directly imported and used by the Rodin platform.

Transformation rules and helpers

We choose to give some examples of transformation rules and helpers from the third transformation as it is the one that bears the most important correspondences and closes the gap between the BPMN and Event-B languages. Figure 4.8 shows the three main transformation rules which are responsible for the creation of the whole Event-B project including the context and the machine. These rules use multiple other transformation rules and helpers in order to create all the required Event-B elements. For example, the helpers used for the creation of the axioms axm6 and axm7 of the Event-B model's context can be seen in figures 4.9 and 4.10 respectively. Similarly, the helper responsible for the creation of the initialisation event in model's machine is given in figure 4.11. We note that we use helpers for the creation of the actions 11 to 17 only since the rest of the actions (1 to 10) are invariable, that is to say, the do not depend on the input BPMN model. In fact, we have implemented the reverse transformations to prove that, starting from the resulting Event-B code, we can regenerate the initial textual representation of the used BPMN model.

Although we were able to assess the conformity of the reverse-engineered BPMN model to the one initially used by the first transformation process by comparing their textual representations, we had trouble in the visualization of the former. In fact, this problem stems from the inability of the Signavio tool to edit models that had not initially been created by the said tool due to some required graphical data in the XML file. However, we were able to visualize reverse-engineered BPMN models that did not include any configurable element using the Eclipse BPMN2 Modeler.

Conclusion and Discussion

Our main contribution in this work is the formal specification of process model configuration allowing to assist designers to configure, step-by-step, correct variants. We answered two research questions raised in Chapter 1 as follows:

RQ1: How to identify configuration choices that satisfy designers and clients requirements? We proposed a formal Event-B based approach to derive correct variants from well-defined configurable processes. We reached our goal in considering different constraints related to: (i) configuration (e.g., an XOR may be configured only by restricting its ingoing/outgoing branches), (ii) structural correctness (e.g., no dead activities), (iii) erroneous patterns (e.g., no mismatching between connectors configurations that may result in behavioral problems) and (iv) domain compliance (the configuration of an element effects another to satisfy client expectations). The defined constraints and properties for a correct configuration are expressed in terms of mathematical predicates (i.e., invariants). The configuration steps are modeled using events. The events are constrained by means of specified enabling conditions (i.e., guards). We used the Event-B tools to prove the correctness of our specification by checking the defined properties by discharging Proof Obligations. At each configuration step, the events are evaluated and only configurations leading to variants satisfying invariants can be RQ2: How to assist the designer in selecting the correct configuration choices? Our proposed approach allows to guide the analyst by providing at each step the potential configuration choices. Concretely, this is achieved by using animation interface of the ProB tool. In fact, analyst is provided with our specification installed on the RODIN tool, and then he/she is able to generate process variants with respect to the allowed steps by the model checking. Hence, he/she should follow the enabled events to make their configuration choices. Our case study showed that the use of our approach was easy and saved users considerable time in identifying the configuration steps that are compliant not only to correctness constraints but also to domain recommendations.

Note that in order to automate our approach, we have developed a transformation tool to map BPMN process models into an Event-B specification.

The major benefit of this approach is the incremental verification procedure that allows the checking of the defined properties at each step of the development using generated Proof Obligations. POs are theorems that must be proved, in order to ensure that the developed specification is correct and consistent. Compared to other methods, Event-B has the advantage of rigorous reasoning tools assisting the verification task by modeling, proving and validating a system.

Although this approach has proven its effectiveness in assisting process configuration, the considered structural properties may be not sufficient to decide soundness. For instance, on the right hand side of the Figure 4.12, a structurally correct process variant is captured. In fact, each activity is on a path from the initial activity a1 to the final one a8 (i.e., structurally sound). Also, suppose that, as depicted by the figure, one has configured s1 to AND-split and both s2 and s3 to XOR-split, then, when configuring j1 and j2 one can notice that our model allows their configuration to AND-join. Hence, s2 and s3 are not their corresponding splits since there is no mismatching between them. The first common node of s2 outgoings, for example, is neither j1 nor j2, it is, instead, j3. Hence, the model is considered correct once j3 is configured to XOR-join. Indeed, during execution, it is possible to activate a3 and a5, which allows the activation of a7 after their termination. However, this proper termination may be not preserved in all possible process instances; e.g. in cases where a2 and a5 are executed, neither a6 nor a7 could be enabled, which causes a deadlock. Thus, this process instance cannot terminate properly. In order to detect such problems, one should verify the behavior of the process instances. This implies the need for the analysis of the reachability graph of the BP. This graph refers to the representation of the different states that a process instance can take [3]. For this, formal execution semantics of the process modeling language (BPMN in our case) have to be taken into account. Since Event-B could hardly represent such dynamic semantics, we propose to adopt the more adapted Petri-net formalism. In the next chapter, we tackle the behavior verification of the process configuration relying on a Petri-net-based model and the SOG abstraction model. The SOG method [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF][START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] will help to reduce the size of the reachability graph that may exponentially increase with the number of configurable elements. Extracting Deadlock-free Process Variants using Symbolic Observation Graphs

Introduction

As we have discussed, process models configuration is notoriously difficult and error prone. Hence, the assistance and the verification of the configuration has become a must. In the Chapter 4, we presented an approach to assist the design of business process variants step-by-step during the configuration time. However, we especially focused on the designed configurable model structure. In fact, the verified constraints are expressed in terms of invariants specifying the variant structure that should be respected in order to prevent errors. For example, to avoid deadlocks, we cannot configure a join connector to a synchronization while its corresponding split was already configured to an exclusive choice. Whereas, structural verification may be not sufficient since some behavior anomalies may not be detected. As the Event-B method is not adequate to verify the dynamics of the possible executions of a process

Extracting Deadlock-free Process Variants using Symbolic Observation Graphs variant, in this chapter, we choose to adopt new formal method (based on Petrinets). Nevertheless, in the context of process configuration, checking the behavioral correctness of every single possible variant is obviously very time consuming and even unfeasible in case of large real-life models. This typically refers to solving the problem of an exponential number of states. So far, some approaches have attempted to verify behavioral correctness but have faced this exponential number of states (e.g. [START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF]). Very few have addressed the configuration behavior verification while trying to reduce this state-space explosion problem (e.g. [START_REF] Wil | Preserving correctness during business process model configuration[END_REF][START_REF] Wil | Ensuring correctness during process configuration via partner synthesis[END_REF]) but still suffer from the exponential complexity of generating their reachability graph. This work aims to address this problem while verifying one of the most important behavioral correctness properties a process execution should hold, that is, the deadlock-freeness. Hence, in this chapter we aim at addressing three research questions: RQ1: How to identify configuration choices that satisfy designers and clients requirements?, RQ2: How to assist the designer in selecting the correct configuration choices? and RQ3: How to avoid the state-space explosion of the configuration verification issue?

In order to remedy the raised problems, we propose to use the Symbolic Observation Graph (SOG for short) [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF][START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] to verify and abstract the representation of a configurable process model. The SOG is a versatile symbolic representation formalism that allows to build an abstraction of the reachability state graph of a formally modeled system (e.g. using Petri net). In our work, we start by adapting Petri-net formalism in order to formally represent a configurable process (cf. Section 5.3). Note that our work does not rely on specific Petri net properties but can be applied to any formal model as soon as states and transitions relations are well defined. Depending on the property or aspect we are interested in, the SOG abstraction is built over a particular set of defined observed elements, namely Obs. In our case, we are interested in the verification of process configurations, so the SOG is based on the set of its configurable elements. This abstraction offers a two-fold advantage: (1) the analysis and the verification of the corresponding configurable process can be reduced to the analysis of its abstraction, and (2) the set of combinations of elements configurations that result in deadlock-free variants are obtained prior to configuration time. Once found, these combinations are used to assist the business analyst in deriving deadlock-free variants.

In the following, we start by giving an overall overview of our approach in Section 5.2. Then, the new Petri net-based models for business process models and for configurable process models as well as their semantics are defined in Section 5.3. In Section 5.4, we define the Symbolic Observation Graph associated with the defined configurable formal model. Afterwards, we illustrate our approach based on the SOG construction algorithm in Section 5.5. With the aim to prove the reduction of the configurable model state-space size, we conduct experiments in Section 5.6.

The work presented in this chapter was published in a conference proceedings [START_REF] Boubaker | Deadlock-freeness verification of business process configuration using SOG[END_REF].

Approach Overview 89

Approach Overview

The SOG-based approach that we define to generate deadlock-free process variants consists of:

(1) defining a formal model for the configurable process model having concise and not ambiguous syntax and semantics, that we called CBP2PN. This semantics takes into account configurable connectors. For this aim, we rely on Petri nets, specifically the WF nets sub-class that we explained in Section 2.3.1. This will allow us to map an input C-BPMN process to a formal model having well-defined semantics (see Section 5.3).

(2) adapting and extending not only the SOG definition but also the construction algorithm of the SOG graph. In this extension three main points are considered: (i) observe and highlight configurable connectors that label the graph arcs; (ii) hide non-configurable elements' states in aggregates, i.e., the SOG nodes (see Section 5.4); and (iii) restrict the graph nodes to the ones belonging to paths leading to deadlock-free configurations (see Section 5.5). As a result, we obtain a reduced SOG graph that groups the behavior of all correct configurations. The set of correct configurations combinations is also extracted. We note that the extraction of correct configurations is performed on-the-fly during the SOG construction w.r.t the above defined points. Hence, using a developed tool that implements this algorithm with respect to the semantics defines in the first step, we obtain the set of correct configurations leading to deadlock-free variants.

(3) this set of correct configurations is finally supplied to the business analyst in order to derive deadlock-free variants, with no need to verify correctness at each intermediate configuration step.

Figure 5.1 illustrates the followed milestones, using our approach, in order to obtain a deadlock-free variant starting from, as depicted on the left-hand side of the figure, a configurable business process model in C-BPMN notation. In this chapter, we use the simplified example in Figure 5.2 for the illustration of our approach.

Formal Model for Configurable Business Processes

In order to obtain an abstract formal definition of a business process model, we formally map a process in BPMN notation to Petri nets, specifically into a new model called Business Process Petri Nets (BP2PN). It is an enriched version of a WF-net with new transitions representing the process connectors and having a specific type. Then, we extend the BP2PN to take into account configurable connectors, leading to a new model, namely the Configurable Business Process Petri Nets (CBP2PN). Authors in [START_REF] Remco | Semantics and analysis of business process models in bpmn[END_REF] have established a mapping from well-formed BPMN models to Petri nets. In Extracting Deadlock-free Process Variants using Symbolic Observation Graphs

Business Process Petri Nets (BP2PN)

A Business Process Petri Net is formally defined in Definition 5.3.1. Note that, we use the definitions and notations earlier presented for Petri nets and Workflow nets in Section 2.3.1.

Definition 5.3.1 (BP2PN).

A BP2PN is a tuple B = P, T ∪ OP, F, W, O where:

• P, T ∪ OP, F, W is a WF-Net, • F ⊆ (P × T ∪ OP) ∪ (T ∪ OP × P) is the flow relation,

Formal Model for Configurable Business Processes

91

• O : OP → {OR -, OR + , XOR -, XOR + , AN D -, AN D + } is a mapping that assigns a type to each operator/connector.

BP2PN is a Workflow net such that, the set of places P corresponds to the set of conditions determining the enabling of a task or a connector; and the set of transitions T ∪OP corresponds to the set of tasks T and connectors OP . These nodes are interconnected through a set of arcs (using F). Each connector must either be a join (the -right exponent) or a split (the + exponent) while having a type: OR, XOR or AND. In Figure 5.3 we represent the mapping of BP2PN connectors (both splits and joins) to standard Petri nets places, transitions and arcs.

Semantics:

In the previous notation, we retain the connectors blocks and we define new execution semantics inspired from the original semantics of Petri nets.

Given a marking m of a BP2PN, B, the fireability and the firing of any transition in T ∪ {t ∈ OP | O(t) ∈ {AN D -, AN D + }} follows the original semantics of Petri nets presented in Section 2.3.1. However, a transition t ∈ OP s.t. O(t) ∈ {OR -, OR + , XOR -, XOR + } follows a new semantics:

Let m be a marking of B, and t be a transition of OP , i.e., t ∈ OP . We denote by m t -→ the fact that t is enabled by m, and we denote by m t -→ m the fact that m is reached by firing t from m. Then the enabling rule as well as the firing of the transition t at the marking m leading to a marking m are defined as follows.

• if t ∈ OP ∧ O(t) = OR - -Enabling rule: m enables t iff ∃S ⊆ • t s.t. m |S ≥ W -(t) |S
-Firing rule: when m enables t, the firing of t from m leads to a marking

m iff m = m -W -(t) |S + W + (t) where S is the biggest subset of • t satisfying m |S ≥ W -(t) |S . • if t ∈ OP ∧ O(t) = XOR - -Enabling rule: m enables t iff ∃p ∈ • t s.t. m(p) ≥ W -(t)(p) ∧ ∀q ∈ • t, m(q) < W -(t)(q)
-Firing rule: when m enables t, the firing of t from m leads to a marking

m iff m = m -W -(t)) |{p} + W + (t)
where p is the sole place satisfying the firability condition.

• if t ∈ OP ∧ O(t) = OR + (resp. O(t) = XOR +)
-Firing rule: when m enables t, the firing of t from m leads to a marking

m iff ∃S ⊆ t • (resp. ∃p ∈ t •) s.t. m = m -W -(t) + W + (t) |S (resp. m = m -W -(t) + W + (t) |{p}).
Note that only the firing of transitions t s.t. O(t) ∈ {OR + , XOR + } is defined because the enabling rule follows the original semantics.

Figure 5.4 illustrates the enabling and the firing of each connector type of BP2PN connectors, either a split or a join. For example, the enabling of a split connector, of any type, needs the input places to be sufficiently marked, same as standard Petri net transition. Similarly, the firing of an AN D + connector follows this semantics and produces tokens in every output place.

However, we adapted these rules in case of OR and XOR connectors. For instance, we emphasize that the semantics of a join transition OR -is inline with the well defined Pattern 8 in [START_REF] Van Der Aalst | Workflow patterns[END_REF] (Multi merge), that expressly allows the firing of the join as soon as its condition is satisfied (without synchronizing the different flows), e.g., having the OR -of Figure 5.4 with two inputs p 1 and p 2 , one of the following markings enables the transition: m 1 (only p 1 is marked), m 2 (only p 2 is marked), or m 1 2 (both places are marked). We note that, we are currently working on an extension of this work to consider the semantics of the Pattern 7 (Synchronizing Merge). This semantics expressly impose that, first there is at least one token in at least one of its incoming branches, then it should be checked that for an incoming branch having no token, it is not possible for a token to reach this flow [START_REF] Remco | Semantics and analysis of business process models in bpmn[END_REF][START_REF] Dumas | Semantics of standard process models with or-joins[END_REF].

It is worth mentioning also that the new semantics of OR + and XOR + leads to non-deterministic firing. For instance, having the split transition OR + of the Figure 5.4 with two output places p 2 and p 3 , its firing leads to 3 possible reachable markings: m 2 (only p 2 is marked), m 3 (only p 3 is marked), or m 2 3 (both places are marked).

Since we are particularly interested in this chapter in verifying the deadlockfreeness property, we introduce the definition of this property in case of BP2PN as follows.

Definition 5.3.2 (Deadlock-free BP2PN). Let B = P, T ∪ OP, F, W, O be a BP2PN and m i , m f be the initial (i.e. only i is marked) and final (i.e. only o is marked) markings respectively. B is said to be deadlock-free iff ∃m ∈ (R(N, m i) \ {m f }) s.t. m →. Hence, according to this definition, a BP2PN, B, is deadlock-free iff there is no dead marking m reachable from the initial marking m i .

Configurable Business Process Petri Nets (CBP2PN)

Definition 5.3.3 (CBP2PN). A CBP2PN is a tuple CB = P, T ∪ OP, F, W, O, C where:

• P, T ∪ OP, F, W, O is a BP2PN;
• C : OP → {true, f alse} is a function stating whether a connector is configurable or not. For instance, configurable connectors are any t ∈ OP s.t. C (t) = true).

Back to our example, the C-BPMN process model of Figure 5.2 is mapped onto CBP2PN in Figure 5.5. In this notation, according to Definition 5.3.3, activities and connectors are modeled by transitions and their ordering is modeled by places connecting the different transitions. Configurable transitions are also highlighted with a thick border. This example includes 6 configurable transitions: s 1 , s 3 , s 4 , j 2 , j 3 and j 4 .

We denote by OP c the set of configurable operators s.t.

OP c = {o ∈ OP | C (o) = true}. A configurable operator c c ∈ OP c includes
a generic behavior which is restricted using the configuration phase. It is configured by changing its type (e.g. from OR to AND) w.r.t. the set of configuration constraints [1] defined in Section 2.2.2. Here, we recall these constraints in Table 5.1 while adopting the notations of the BP2PN connectors in Definition 5.3.1. Each row corresponds to a configurable connector that can be configured to one or more of the connectors in columns. Thus, these constraints allow to specify which regular connector's type may be used in the derived process variant. For example, a configurable OR can be configured to any connector's type, while a configurable AND can only be configured to an AND. As can be noticed, we omit the sequence configuration column in this table, as in this work we are only interested in the configuration of connectors by changing their types. As Extracting Deadlock-free Process Variants using Symbolic Observation Graphs an extension to this work, we are currently working on the connectors configuration by restricting output or input branches, as well as the activity configuration (i.e. to ON or OFF).

In the following, we define a configuration of a connector t c ∈ OP c by Conf (t c) ∈ {OR -, OR + , XOR -, XOR + , AN D -, AN D + } and the set of all possible configurations of t c by AllConf (t c). Table 5.1: Connectors configuration constraints [1]

having x ∈ {+, -}. FROM-TO OR x XOR x AND x OR x √ √ √ XOR x √ AND x √
Note that, when configuring all configurable connectors of a CBP2PN, we obtain a BP2PN, as a configurable connector is changed into regular connector after configuration. One possible configuration of the process net of Figure 5.5 is depicted by Figure 5.6. This variant is derived by selecting the following configuration choices: (i) s 1 , s 3 and s 4 are configured to regular XOR + , (ii) j 2 is configured to a regular AN D -; and (iii) j 3 and j 4 are configured to regular XOR -. As mentioned previously, the resulting process is a BP2PN since it does not contain any configurable transitions.

Semantics:

The semantics of CBP2PN is described in the following, on the one hand, by inheriting the dynamics of BP2PN for non configurable connectors, on the other hand, by adding new semantics for configurable ones. This semantics is defined such that any reachable marking by any possible instance of a configuration is represented. In the following, we consider a configurable transition as the union of all its possible configurations. That way, we can define its enabling and firing rules as if it is the union of all executable configured transitions. Since a configuration of AN D -, AN D + , XOR -and XOR + do not change type, its semantics remains the same as previously defined. Regarding configurable OR -and OR + transitions, the fireability and the firing rules follow the new semantics as follows.

Let m be a marking and t c be a transition of OP c , s.t. O(t c) ∈ {OR -, OR + }:

• Enabling rule: m enables t c , denoted by

m t c -→ iff ∃x ∈ AllConf (t c) s.t. m x -→
• Firing rule: when m enables t c , for some configuration x of t c , the firing of t c from m, under configuration x, leads to a marking m , denoted by

m t c ,x -→ m iff m x -→ m
Using this semantics, the reachability marking graph associated with a CBP2PN covers the behavior of all the possible configurations. For instance, having the CBP2PN of Figure 5.5, the configurable transition s1 could be configured either to: (i) AN D + , with all of its output places marked, (ii) XOR + , with only one of the output places marked, or (iii) OR + with one or more output places marked (see Figure 5.7). Let CB be a CBP2PN. CB is said to be deadlock-free if at least one deadlock-free BP2PN could be configured from it.

Our CBP2PN of Figure 5.5 is considered to be deadlock-free since one can configure at least one correct variant by choosing XOR type as configuration choice for all its configurable connectors (the correctness of such a variant is proven in Section 5.5). However, incorrect variants could be derived from this process as well. For instance, one can choose the alternatives presented earlier of Figure 5.6 that leads to a deadlock caused by an exclusive choice XOR + (i.e. s 1) followed by a synchronizing join AN D -(i.e. j 2). In this situation, in order to be enabled, the transition AN D - will be waiting for both places p 8 and p 9 to be marked, however only one could be Extracting Deadlock-free Process Variants using Symbolic Observation Graphs marked. So, the resulting variant could never terminate properly and the corresponding reachability graph contains a dead marking (i.e., from which no transition could be enabled).

In this work, we aim to check the behavior correctness of all possible configurations of a configurable model CBP2PN. This refers to verifying the reachability graph that covers them all. Obviously, this leads to the well known state space explosion problem. In order to reduce the underlying problem, we propose to use the Symbolic Observation Graph (SOG). In the following section, we formally define the SOG graph. The SOG-based abstraction technique was introduced for model checking of concurrent systems [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF] and then applied on the verification of inter-enterprise business processes [START_REF] Klai | Symbolic abstraction and deadlockfreeness verification of inter-enterprise processes[END_REF].

The Symbolic Observation Graph (SOG)

The Symbolic Observation Graph was initially introduced in [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF] as an abstraction of the reachability state graph of concurrent systems. An event-based verification was applied on formula of LT L \ X (LTL minus the next operator). Then, the SOG was extended to its state-based form in [START_REF] Klai | Modular construction of the symbolic observation graph[END_REF].

In this section, we define the SOG based on our formal model introduced in Section 5.3, namely the CBP2PN, and then we will see in the next sections how to use them in our verification approach.

Depending on a specific property we are interested in, the SOG is built over a particular set of observed elements, denoted by Obs. In our work, we are interested in observing the configuration behavior, that is why we define Obs as the set of configurable transitions. since only configurable connectors are considered in this work , given a CBP2PN, we define Obs as follows: Obs = OP c . Whereas, the other transitions belongs to the set of unobserved ones, denoted by UnObs, this means that UnObs = (T ∪ OP) \ Obs.

In such a way, as illustrated in Figure 5.8, we construct the Symbolic Observation Graph (SOG) as a graph where each node is a set of states linked by unobserved transitions, and each arc linking two nodes is labeled by an observed transition. Nodes of the SOG are called aggregates and are represented and managed efficiently using Binary Decision Diagrams (BDDs). As a result, by highlighting configurable transitions, the SOG represents the global behavior of a process configuration in only one reduced graph.

In the following, we present the adaption of the SOG to our process configuration issue. So, firstly we formally define the new aggregation criterion in Definition 5.4.1 such that: (1) the states belonging to the same aggregate must be be linked by non configurable transitions, and (2) the firing of a configurable transition by a state in an aggregate must lead to another aggregate. Hence, an aggregate is defined as follows.

The Symbolic Observation Graph (SOG) • S ⊆ R(N , m i) is a set of reachable markings, where ∀s ∈ S:

-(∃(s , u) ∈ R(N , m i) × UnObs | s u -→ s) ⇔ s ∈ S; -(∃(s , o) ∈ R(N , m i) × Obs | s o -→ s) ∧ ((s , u) ∈ S × UnObs) | s u -→ s) ⇔ s ∈ S.
• d ∈ {true, f alse}; d = true iff S contains a dead state.

• f ∈ {true, f alse}; f = true iff S contains a final state (i.e. m f ∈ S).

In addition to the d and f attributes of an aggregate, the above definition specifies the states that must belong to an aggregate (the aggregation criterium) and those that must be excluded: (1) For any state s in the aggregate, any state s being reachable from s by the occurrence of an unobserved transition, belongs necessarily to the same aggregate. (2) For any state s in the aggregate, any state s which is reachable from s by the occurrence of an observed transition is necessarily outside the aggregate, unless s is reachable from a state s in the aggregate by an unobserved transition. In the following, we denote by A.S, A.d and A.f , the attributes of an aggregate A.

Before providing the definition of the SOG associated with a CBP2PN, let us introduce the operations Sat and Out as follows.

• Sat(S, U nObs) calculates the closure of a set of markings S by the set of unobserved transitions U nObs. In other words, it returns the set of reachable markings from any marking in S, by unobserved transitions. It is formally defined as follows:

Sat(S, U nObs) = {s ∈ R(N , m i) | ∃s ∈ S ∧ ∃t ∈ U nObs, s t -→ s }
• Out(a, t) returns, for an aggregate a and an observed transition t, the set of states that are outside of a and reachable from some state in a by firing t. It is formally defined as follows:

Out(a, t) = {s ∈ R(N , m i) | ∃s ∈ a.S, s t -→ s }
Extracting Deadlock-free Process Variants using Symbolic Observation Graphs Definition 5.4.2 (Deterministic SOG). Let N = P, T ∪ OP, F, W, O, C be a CBP2PN having m i and m f as initial and final markings respectively. The Deterministic Symbolic Observation Graph (SOG) associated with N is a graph G = A, Obs, →, A 0 , Ω where:

(1) A is a non empty finite set of aggregates satisfying :

• ∀a ∈ A, ∀t ∈ Obs, Out(a, t) = ∅ =⇒ ∃a ∈ A s.t. a = Sat(Out(a, t), UnObs)
(2) →⊆ A × Obs × A is the transition relation where:

• ((a, t, a) ∈→) ⇔ ((t ∈ Obs) ∧ Out(a, t) = ∅ ∧ a = Sat(Out(a, t), UnObs)) (3) A 0 is the initial aggregate s.t. A 0 .S = Sat(m i , U nObs). (4) Ω = {a ∈ A | m f ∈ a.S}.
The nodes of the symbolic observation graph are aggregates (1). The finite set of aggregates A of a SOG is defined in a complete manner so that the necessary aggregates are represented. Point (2) defines the transitions relation: there exists an arc, labeled with an observed transition t, from a to a iff a is obtained by saturation (by applying Sat) on the set of reached states (obtained using Out(a, t)) by the firing of t from a.S. The last two points of Definition 5.4.2 characterize the initial aggregate A 0 and the set of final aggregates Ω (i.e. aggregates containing the final marking) respectively.

Starting from the initial marking, the original SOG construction algorithm introduced in [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF] follows a classical depth-first search based traversal of the built aggregates. Each aggregate is built by a transitive closure (using Sat) application on unobserved transitions. The successor a of an aggregate a is built by, first, firing an observed transition from states of a, then by adding all the reachable states by unobserved transition.

At this stage, the correctness of the SOG can be formally characterized as follows.

Definition 5.4.3 (Correct SOG). Let N = P, T ∪ OP, F, W, O, C be a CBP2PN. Let G = A, Obs, →, A 0 , Ω the SOG associated with N . G is correct iff there exists a configuration c of N (c = { t, Conf (t) : t ∈ OP c }) s.t. for every path π = A 0 t 1 ,conf (t 1) -------→ A 1 . . . A n-1 tn,conf (tn) -------→ A n , with A n ∈ Ω; if { t i , Conf (t i) : 0 ≤ i ≤ n} =c then ∀0 ≤ i ≤ n, A i .d = f alse .
Based on Definition 5.3.4, characterizing a deadlock-free CBP2PN, and Definition 5.4.3, characterizing a correct SOG associated with a CBP2PN, the following result naturally links these two characterizations. Proposition 5.4.1. Let N = P, T ∪ OP, F, W, O, C be a CBP2PN. Let G = A, Obs, →, A 0 , Ω the SOG associated with N . Then, N is deadlock-free iff G is correct.

Proof. Let N be a CBP2PN and G its corresponding SOG. First, according to Definition 5.4.3, if G is correct then there exists a configuration c s.t. for every path π

in the SOG having π = A 0 t 1 ,conf (t 1) -------→ A 1 . . . A n-1 tn,conf (tn) -------→ A n , with A n ∈ Ω; if it's configurations set { t i , Conf (t i) : 0 ≤ i ≤ n} is equal to c,
then all aggregates are deadlock-free, i.e. A i .d = f alse, 0 ≤ i ≤ n. Since the SOG preserves by construction all possible configurations of N , then each path from the initial to the final aggregate represents one configuration allowing to derive one variant. Hence, there exist at least a deadlock-free variant of N . Consequently, according to Definition 5.3.4, N is correct.

In the following, we propose to adapt the original SOG construction algorithm [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF], associated with a CBP2PN, in three ways. First, by adopting the new semantics. Second, the deadlock-freeness property is checked on the fly, such that any aggregate containing a deadlock state is not inserted in the graph and so are all the underlying paths. Finally, the set of correct configurations is extracted on-the-fly.

Extracting Deadlock-free Configurations using the SOG

In this section, we present the core contribution of this work: The construction algorithm of the SOG associated with a CBP2PN. Campared to the original SOG construction algorithm [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF], Algorithm 5.10 allows to reduce the SOG, by removing, on-the-fly, the paths involved in incorrect configurations, and by saving, within the initial aggregate the correct configurations.

Used data: To reach this goal, we firstly define the different data used in this algorithm. As input, a CBP2PN, namely N , the set of the observed transitions Obs as well as the initial and the final markings m i , m f are introduced. Then, we add two new attributes to an aggregate a ∈ A:

-c c c is the set of correct (possibly partial) configurations, starting from the aggregate a and leading to a final aggregate; -nc nc nc is the set of incorrect (possibly partial) configurations, starting from the aggregate a and leading to a dead one (i.e. including a dead state).

Once the SOG is built, the set of correct configurations will be saved within the initial aggregate.

In addition to this set of configurations C, the algorithm also returns as output the SOG graph G, containing aggregates (in A set), and edges (in → relation).

Another fundamental data used in the SOG construction is the stack st, containing a couple of the to-be-treated aggregates associated with the set of its fireable observed transitions F obs .

Algorithm steps: In the following, we go through Algorithm 5.10 to explain the main steps. We use for illustration our running example and the corresponding resultant reduced SOG in Figure 5.9. Note that the main novelties of this algorithm w.r.t. the algorithm of [START_REF] Haddad | Design and evaluation of a symbolic and abstraction-based model checker[END_REF], are underlined.

The first step of Algorithm 5.10 (lines 5 -10) allows to build the initial aggregate A 0 by applying the saturation on the initial marking and to push it onto the stack. Then, the main loop (lines 11 -45) processes the set of to-be-treated aggregates as follows: First, a stack item (i.e., a, F obs) holding the current aggregate a and its F obs , is picked (line 12). Then, the corresponding current observed transition t belonging to F obs , if any, is selected (line 14), and the successor a of the current aggregate a by that transition t is calculated (lines 15 -20). Note that, the calculation of the reachable states by using the operations Sat and Out respects the semantics defined in Subsection 5.3.2. This includes the computation of the dead (line 19) and final (line 20) attributes, i.e., a .d and a .f respectively (cf. Definition 5.4.1), of the obtained successor aggregate. The function DetectDead checks if there exists a dead state s ∈ a .S from which neither transition could be enabled (i.e. Enable(s) = ∅).

If the latter checked aggregate is deadlock-free (line 21), and if it has not already been explored (does not exist in the aggregates set A) (line 22), then it is pushed onto the stack with its set of fireable observed transitions F obs (lines 23 -24).

For instance, following the path at the top of Figure 5.9, the new aggregates: A 0 until the final one A 6 are consecutively pushed onto the stack one after the other. Since A 6 is a final aggregate (i.e., does not enable any observable transition), the corresponding configuration is considered correct (line 37) and it is popped from the stack (line 39), and then we start the loop again by picking A 5 to consider its remaining observed transitions (in this case the transition j4, OR leads again to A 6). After that, since j4, AN D can not be fired from A 5 , we pick A 4 , and so on. If the newly built successor aggregate a has been already treated and added to aggregates set (lines 25-30). Then, as illustrated in Figure 5.10, the current aggregate a inherits from a its correct and incorrect configurations, c and nc respectively. In the figure, inside an aggregate, the green list represent the correct configurations and the red one represent the incorrect configurations. Obviously, we add to these 102 Extracting Deadlock-free Process Variants using Symbolic Observation Graphs configurations the transition linking a to a . In our Algorithm, this is ensured by the functions UpdateC and UpdateNC (lines 28 -29).

A 0 A 1 S 1 , XOR A 2 S 3 , XOR A 3 J 2 , OR J 2 , XOR A 4 J 3 , OR J 3 , XOR A 8 S 1 , AN D A 11 S 3 , XOR 3
A 12 J 2 , OR 2
A 13 J 3 , OR 1 A 9 S 3 , AN D A 10 J 2 , AN D J 3 , AN D A 5 S 4 , XOR A 7 S 4 , AN D A 6 J 4 , OR J 4 , XOR J 4 , AN D
t 1 Ѵ:Ø X:Ø Ѵ:c(a') X:nc(a') a 1 a a' ϵ A t'
The arc between a and a' is added a inherits C and NC of a'

The successor a' of a is an already treated aggregate

….

…. The function UpdateC also verifies that, starting from the same aggregate a, a correct configuration do not include an existing (or to-be-treated) incorrect one, as in this case it leads to a deadlock in a different transitions' firing order. Regarding our SOG in Figure 5.9, consider the aggregate A 10 obtained through A 8 and A 9 , the firing of j3, AN D leads to the existing aggregate A 4 . As A 4 was already dealt with earlier through the path on top of the graph, this means that 3 correct partial configurations are added to this aggregate, namely { s4, XOR , j4, XOR }, { s4, XOR , j4, OR } and { s4, AN D , j4, AN D }. Hence, A 10 inherits these configurations while being concatenated to the current fired transition j3, AN D .

t 1 Ѵ:c(a') X:nc(a')
Regarding an aggregate a holding a dead state, firstly, the corresponding fired observed transition is concatenated to the incorrect configurations of its predecessor a (line 33). Obviously, a is not pushed onto the stack and no edge is created. Then, we recursively verify its predecessors starting from a using the function recRemoveAggregate(a, t) (line 34). Using this function, each predecessor aggregate is removed only if the states enabling the current one becomes dead (i.e. there is no other enabled transition from that state). In this case, its successors are also recursively eliminated in case they do not have other predecessors. As an example, the red path in Figure 5.9 refers to firing s 1 , AN D , s 3 , XOR then j 2 , OR . According to our semantics, j 3 , OR may be fired by 4 possible markings in the aggregate A 12 , namely m 12 (i.e., the place p12 marked), m 10 14 (i.e., both places p10 and p14 are marked), m 11 14 and m 12 14 . However, in case of firing by either m 10 14 or m 11 14 , the obtained aggregate will allow a second firing of the same transition (i.e. using the remaining token in p 10 or p 11). This leads to a final state holding two tokens, which is a dead state in our approach. Hence, according to Algorithm 5.10 the obtained aggregate is eliminated as well as its predecessors A 12 and A 11 (following the blue dashed line). And yet, since it enables S 3 , AN D , A 10 is not deleted. Similarly, going backwards to A 0 after entirely processing A 8 and A 9 , we obtain the complete correct configurations 13 -15 depicted in Table 5.2.

To better explain the evolution of the sets of correct and incorrect configurations in the aggregates, we illustrate the steps of pushing and popping aggregates to/from the stack using an example in Figure 5.11. First of all, starting from the calculated initial aggregate a 0 , aggregates are consecutively pushed into the stack (step 1). Initially, the set of correct configurations as well as incorrect ones are empty (represented in the figure using green and red lists inside the aggregates). Then, when the final aggregate a 7 (holding the final marking) is found, it is popped from the stack (since no more transitions may occur) and the configuration c6 is added to the correct configurations of its predecessor a 6 (step 2). Next, a 6 is picked to inspect if there remains fireable observed transitions, which is not the case. So, it is also popped and the set of correct configurations of a 5 is updated by adding c5. Here, a 5 still have a fireable transition that is c7. Hence, we push the aggregates a 8 and a 9 and we find out that the latter holds a dead state. So, it is popped from the stack (step 6), as well as a 8 , however in this case the set of incorrect configurations is updated at each step. Thus, a 5 includes two partial configurations one correct and another one incorrect (step 7). Similarly, we check the remaining transitions and so on. This way, correct and incorrect configurations are computed backwards starting from the final aggregate to the initial one. Hence, the initial aggregate will hold the complete sets of configurations.

It is worth noting that before popping an aggregate from the stack and storing it in the graph (lines 39 -40), a final check is carried out on its correct configurations by the function CompareCorrect (line 38). Actually, many observed transitions may be fired from the same aggregate, so some of the corresponding correct configurations may refer to the same one. Hence, a correct sequence is preserved if, for every first fired observed transition op, (i) it is fireable by the states that have fired another sequence starting by op (i.e. different configurations), or (ii) if their common operators have the same configured type (i.e. the same configurations but in a different order). Otherwise, the sequence is considered as incorrect and is eliminated.

Finally, the set of correct configurations is obtained from the initial aggregate, the last one popped from the stack. As a result, each path of the obtained SOG starting from the initial aggregate and leading to a final aggregate, represents one possible configuration and belongs to the set of configurations C. In this case, this configuration leads to a deadlock-free BP2PN. Note that, different paths could represent a configuration (e.g. two concurrent configurable connectors).

Usage:

The reduced SOG of our example contains 8 nodes and 10 arcs, and all correct configurations are summarized in Table 5.2. Hence, the analyst may be helped on-the-fly during the configuration process by confronting his/her configurations with No more Fireable transitions for a5 then pop it For instance, we can evaluate the correctness of the BP2PN variant discussed in Section 5.3.2. After applying s 1 , XOR , the control-flow is either propagated through the place p 2 or p 8 . In this case, it is clear that the connector j 2 (i.e. after applying j 2 , AN D) could never be enabled, which causes a deadlock. Relying on Table 5.2, we can notice that there is no configuration starting with { s 1 , XOR , j 2 , AN D }.

Pop update v & x v:c4.c5.c6 x:c4.c7.c8 . . . x:Ø v:Ø x:Ø v:Ø x:Ø a9 is a dead aggregate v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø v:Ø x:Ø Pop update v & x a0 v:Ø x:Ø a0 v:Ø x:Ø a0 v:Ø x:Ø a0 v:Ø x:Ø
Using the SOG, the state space is greatly reduced in three fashions: (i) only configurable transitions are observed, and the remaining transitions are hided in aggregates; (ii) the graph is deterministic since it groups, for each configuration, all Validation and Experiments 105 reachable markings in one aggregate; and (iii) the different process variants share common markings in one common SOG graph, instead of constructing graphs as much as the number of possible configurations. In the following section, we conduct experiments to demonstrate such mitigation of the state explosion problem as well as the feasibility of our approach. Table 5.2: Deadlock-free extracted configurations for the CBP2PN in Figure 5.5

S1 S2 J2 J3 S4 J3
1 XOR + XOR + XOR -XOR -XOR + XOR + 2 XOR + XOR + XOR -XOR -XOR + OR + 3 XOR + XOR + XOR -XOR -AN D + AN D + 4 XOR + XOR + XOR -OR -XOR + XOR + 5 XOR + XOR + XOR -OR -XOR + OR + 6 XOR + XOR + XOR -OR -AN D + AN D + 7 XOR + XOR + OR -XOR -XOR + XOR + 8 XOR + XOR + OR -XOR -XOR + OR + 9 XOR + XOR + OR -XOR -AN D + AN D + 10 XOR + XOR + OR - OR -XOR + XOR + 11 XOR + XOR + OR - OR -XOR + OR + 12 XOR + XOR + OR - OR -AN D + AN D + 13 AN D + AN D + AN D -AN D -XOR + XOR + 14 AN D + AN D + AN D -AN D -XOR + OR + 15 AN D + AN D + AN D -AN D -AN D -AN D -

Validation and Experiments

To prove its feasibility, we have implemented and deployed our approach as an extension of an existing tool that initially computes the SOG of a petri-net model w.r.t. a set of observed transitions. As explained previously, this extension takes into account the new semantics presented in this chapter for CBP2PN models. It also allows to symbolically detect on-the-fly deadlocks within aggregates and to reduce the SOG accordingly.

The developed tool takes as input a GrML (Graph Markup Language) file [START_REF] Brandes | GraphML Progress Report Structural Layer Proposal[END_REF], an XML file describing the CBP2PN model (i.e. transitions, operators annotated as configurable, and arcs) and returns the reduced SOG and the correct configurations. The translation of CBP2PN model into GrML file is done as follows. Each model element is associated with a node tag in this file. These tags are differentiated using the value of the attribute "nodeType": (1) transition have three defined at-tributes: "name", "configurable" (specifying configurable transitions using a Boolean value), "operator" (defining an operator type: ORPLUS, ORMOINS, ANDPLUS, ANDMOINS, ORMOINS, XORMOINS, or null in case of a regular transition), and "observed" (specifying observed transitions using a Boolean value); (2) "place" have two defined attributes: "name" and "marking" (defining the marking at the initial state); and (3) "arc" have the attribute "valuation" that defines its weight. Finally, we define the attribute "finalMarking" defining the final place and its possible number of tokens.

In order to evaluate its performances and to demonstrate the opportunities offered by our approach, we performed experiments to show (i) the reduction of the space explosion problem and (ii) the impact of the input model structure on the size of the obtained SOG. Firstly, we propose to explore the size of the constructed SOG using our tool against a naive approach, where each variant of a CBP2PN is built and analyzed separately. Secondly, we propose to analyse the impact of the variation of the structure complexity and the number of observed transitions of a CBP2PN, on the size of the corresponding SOG. Taking our running example model (cf. Figure 5.5), this variation leads to 86 different process models. We basically evaluate the structure complexity using the well known metric CFC (Control Flow Complexity) [START_REF] Cardoso | Business process control-flow complexity: Metric, evaluation, and validation[END_REF] which is defined as:

CF C = c∈AN D + 1 + c∈XOR + |c • | + c∈OR + (2 | • c| -1)
Table 5.3 contains three multi-columns. The first one varies the considered parameters of the CBP2PN model (i.e. CFC and observed transitions (Obs)) and gives the number of possible configurations for each variation. Then, the size of the obtained SOG is evaluated in terms of number of correct configurations (Nb correct confs), aggregates (A), edges (E) and execution time. This graph is finally compared against the naive approach. However, since the naive approach is very fastidious, we built only the reachability graphs corresponding to the correct configurations. The three first columns give the average number if states, arcs and execution time over these correct configurations. The last column, gives the worst execution time in case all the configuration have been analyzed to extract correct ones. The construction of the reachability graph hase been performed with our SOG-based tool as well, by observing all the transitions of the model (in this case, the SOG coincides with the reachability graph).

In this evaluation, as we can observe from the Table 5.3, we took into account three levels of complexity (depending on the number of OR +). The higher the value of CFC, the more complex is a process's configuration, since the number of possible configurations increases with the number of configurable OR connectors. For example, the CFC value 21 regards the process with only OR connectors, we can observe that the number of possible configurations as well as the extracted correct ones are relatively high compared to those having CFC 10. Moreover, the more transitions are observed, the less reduced is the SOG comparing to the reachability graph.

Comparing to the naive approach, the obtained results in Table 5.3 show that the SOG is always significantly smaller in terms of number of states and arcs. For example, in case of a model having 6 configurable operators with OR type (i.e. the first row), we can observe that the obtained SOG includes only 13 aggregates and 26 arcs which is very reduced comparing to the size of the original graph of 729 possible configurations. Indeed, after applying a naive approach on only correct configurations (i.e. extracted from the SOG), the obtained graph has almost 283 states and 331 arcs resulting from the sum of 15 reachability graphs. Consequently, our work not only helps finding correct configurations but also further minimize the memory usage and the computing time, since only one reduced graph is constructed. To ensure the reproducibility of our experiments, please refer to our web page1 .

Discussion

As discussed in this thesis, the verification of process configuration appears as a core challenge to avoid the derived variants execution problems. To deal with this challenge, we proposed to improve this verification task by using two complementary contributions based on formal methods. The two approaches have some commonalities 108 Extracting Deadlock-free Process Variants using Symbolic Observation Graphs and some differences to be noted:

-The verified properties: in the approach presented in Chapter 4, we consider our process model as a graph and we reason about correctness while essentially taking into account its structure. In fact, we verify structural properties such as, an activity should be on a path from the initial node to the final one. Also, we check erroneous patterns that my affect soundness property and thus affect the behavior of the model. This verification is actually done based on the structure of the graph. For example, we check that there is not a mismatching between split and join configurations that may cause a deadlock or a lack of synchronization. For instance, when joining by an AND connector a control flow that was previously split by an XOR connector, this implies a deadlock. However, structural correctness may be not sufficient. Some behavioral problems may be not easy to detect by exploring the structure of the model and need, instead, the analysis of the process instance states (cf. Section 4.9). For that aim, we proposed our second contribution in order to remedy this shortcoming by verifying the behavior of the process executions. The verification is achieved using well-defined semantics describing the dynamics of the process variants executions. This work focus on the deadlock-freeness property but can be easily adapted in order to obtain sound [START_REF] Wil | The application of petri nets to workflow management[END_REF][START_REF] Wil | Soundness of workflow nets: classification, decidability, and analysis[END_REF] process variants. Another type of considered properties is the domain constraints. We check that the configuration of a process variant comply with some domain requirements specified by business analysts. These constrains are not yet integrated in the SOG-based contribution. We leave this for future work.

-The problem of state space explosion: In the first contribution, the calculation of possible configurations of elements is done one after the other. This means that the state space of configurations is reduced after each configuration application. Also, in case of a split (resp. join) configuration, the calculation considers only the corresponding joins (resp. splits) that comes after (resp. before) this connector. We do believe that our proof-based Event-B specification implicitly do not suffer from the state explosion problem. The main contribution of second SOG-based approach is actually the significant redaction of space state size. In fact, this is achieved by the compact and aggregated representation of all the possible configurations reachability graphs in one reduced SOG. The aggregation criterion is the connectors configuration. The experimental evaluation then goes on to examine the consequences of the structure and the number of configurable elements in the input process on the state space size.

-The considered configurations constraints: In the Event-B-based model, we considered all elements configurations, i.e. activities and connectors. However, in the second approach, we firstly dealt with the configuration of connectors, then we are currently working on integrating other configuration constraints, such as removing activities. This is done by extending the presented semantics while preserving the same SOG definition and algorithm. Also, new semantics of OR-join connectors needs to be integrated. It is worth noting that Event-B based approach have the advantage of easily integrating new properties and constraints to the specification.

Conclusion

Our main contribution in this work is the SOG-based configuration model allowing to extract deadlock-free variants at design time while reducing the state explosion problem. We answered three research questions raised in the thesis problematic (Section 1.2) as follows:

RQ1: How to identify configuration choices that satisfy designers and clients requirements? In order to extract the complete list of the configuration choices that satisfy the considered property, i.e., the deadlock-freeness, we proposed a new SOG-based configuration approach. Basically, with the aim to verify behavioral issues, we firstly defined formal execution semantics of the configurable process model using Petri net (since the C-BPMN do not have formal semantics). Based on this formal model, we proposed an extension of the SOG definition such that nodes hold non configurable elements states, and each arc is labeled with a configurable element and its possible configuration. Then, the SOG-construction algorithm is extended in order to eliminate dead nodes on-the-fly. As a result, we obtained a graph including deadlock-free nodes, and thus, every path from the initial node to the final one represent a correct configuration. Our approach was validated by developing an extension to the SOG existing tool. This tool takes into consideration the new semantics of our model and the modifications made to the SOG definition and algorithm.

RQ2: How to assist the designer in selecting the correct configuration choices? As we mentioned, this approach generates all correct configuration choices. So, this configurations list is supplied to the process analyst with the C-BPMN configurable process. Hence, he/she may choose to apply the configuration that better satisfies his/her needs and preferences while being insured that the derived variant is correct. Consequently, no need to check correctness at each intermediate configuration step.

RQ3: How to avoid the space-state explosion of the configuration verification issue?

The major advantage of this approach is the considerable reduction of the state space size. This achieved thanks to the compact and aggregated representation of all the possible configurations reachability graphs provided by the SOG. The experiments we conducted using our developed tool prove that our approach have addressed this problem.

110 Extracting Deadlock-free Process Variants using Symbolic Observation Graphs

To build toward our main goal regarding process configuration verification: provide guidance and assistance to the analysts in process model configuration with correct options, we proposed two complementary contributions using two different formalisms. In the next chapter, we target to address our second goal towards improving the support of Cloud resource specification and verification in BPs.

Towards Correct Cloud Resource Allocation in Business Processes

Introduction

Nowadays, a growing number of companies are using Cloud Computing to optimize their business processes by using dynamically scalable and often virtualized resources on demand. Nevertheless, due to the lack of an explicit and formal description of the resource perspective in the existing business processes, Cloud resource allocation cannot be efficiently and correctly managed. The aim of this chapter is to offer a formal definition of the resource perspective in BPs as a step towards ensuring a correct and consistent Cloud resource allocation in business process modeling. For this purpose, we intend to answer the following research questions: RQ4: How to formally specify and verify the Cloud resource allocation in BPs? and RQ5: How to integrate Cloud resources in BP models design?

Concretely, we propose a formal specification based on the Event-B method for the resource perspective in BP models. This specification is used to formally validate the consistency of Cloud resource allocation for process modeling at design time, and to analyze and check its correctness according to user requirements and resource capabilities. In this work, we are specifically interested in formalizing and verifying Cloud resources properties (i.e., elasticity and shareability) and dependencies (i.e., allocation and substitution).

More practically, we propose to use the step-wise refinement technique by structuring the development into a chain of machines linked by refinement relations. This refinement approach produces a correct-by-construction specification since we prove at each step the different properties of the system. Regarding the proving and verification tasks, we use Event-B tools, first, to generate proof obligations that guarantee the constraints preservation. The process execution steps are ensured by events, and the different constraints are expressed in terms of invariants. Prior to the proof activity, that can be long and complex, we use the ProB animator to play some scenarios and gain some insurance about the correctness of the Event-B specification.

The remainder of this chapter is organized as follows. We start by giving a motivating example to illustrate our approach in Section 6.2. We present the overview of our formal specification in Section 6.3. The Cloud resource types and properties are pointed out in conformity with the OCCI standard, and a formal definition of a required resource and the Cloud resource-based business process model are described in Section 6.4. Section 6.5 illustrates our formal specification of the control flow perspective in BPs. Section 6.6 tackles the formalization of Cloud resource allocation in business processes. The verification and the validation of our Event-B specification are presented in Section 6.7. Finally, we present our proof of concept to integrate resource description into a process modeling tool in Section 6.8.

The content of this chapter was published in conferences proceedings [START_REF] Boubaker | Formal verification of cloud resource allocation in business processes using event-b[END_REF][START_REF] Boubaker | Event-b based approach for verifying cloud resource allocation in business process[END_REF] and peerreviewed journal [START_REF] Graiet | Towards correct cloud resource allocation in business processes[END_REF].

Motivating example

In the following, we present our motivating example of the process model in Figure 6.1. Cloud resources are assigned to different activities. Since traditional process modeling standards does not support resource perspective, we have added the Cloud resource representation to Signavio Process Editor1 which is an existing web-based platform for business process modeling (see Section 6.8). Three Cloud resources types are taken into account: storage, network, and compute. In addition to the control flow relation between activities depicted by arrows (thereafter will be named activation dependency), we consider two other dependencies: (i) dependency between an activity and a resource, named allocation dependency and (ii) dependency between two resources, named substitution dependency. The latter dependency means that, in case of its absence or unavailability, a resource would most likely name a substitute to do the same work on its behalf. These dependencies are depicted by dotted arcs.

Concretely, the execution of the activity a1 is performed in a virtual machine (i.e. resource Compute1) with 4 GB of RAM and 100 GB of disk. Moreover, both a7 and a8 activities are sharing a database service (i.e. resource Store1) hosted in the Cloud with 1 GB of storage size. a8 and a12 activities are hosted in the same virtual machine Compute2 with 8 GB of RAM and 100 GB of disk. Besides, a15 is hosted in a private local machine and needs to communicate with a virtual machine via a virtual networking Cloud resource (i.e. resource Network1). Finally, the activity a6 stores its data in a local database, (i.e. resource Store2) with 1 TB of storage size. Furthermore, we used different types of resources coming from different Cloud providers (especially Microsoft Azure and Google). Thus, the process tenant can freely purchase and configure the resources it uses to meet its requirements. The used resources can be classified into two groups. Elastic resources are Cloud resources having specific set of policies agreed through an SLA between the Cloud provider and the process tenant. In our example, Compute1, Store1, Compute2 and Network1 are configured to be elastic resources. In order to handle concurrent requests, the elastic resource instance has the ability to change its capacity to accommodate the workload. Hence, the Cloud consumer pays for what it consumes. Non-elastic resources are classical on-premises resources having fixed capacity (i.e. cannot be changed at runtime). In our example, Store2 is non-elastic, therefore its capacity can not exceed 1 GB. Also, these resources may be shareable or non-shareable. In our example, (1) Compute1 and Store1 are two resources commonly shareable, which means that two or more activity instances can be executed at the same time. (2) Compute2 and Store2 are two resources exclusively shareable, which means that two or more activity instances can use them but not at the same time. Finally, (3) Network1 is non-shareable resource, which means that it can be used by only one activity instance and is released after activity instance's completion.

Moreover, dependencies between resources can be captured. In this work, we consider the substitution dependency. For instance, the computing resource compute3 can substitute the computing resource compute2 if this latter becomes no more available. Obviously, Compute3 should provide the same properties and policies. The same shall apply to the networking resource network2 which substitutes the networking resource network1.

As we can notice, the model is complex and contains many properties and dependencies, so the designed process and the running process instances behavior can easily deviate from users' needs. Basically, the designer should respect several model consistency rules. For instance, an exclusive shareable resource (e.g. Compute2) cannot be consumed by more than one activity instance at the same time. Also, a non-elastic resource, for example Store2, cannot be allocated by an activity instance of TP while its available capacity does not fit the needed capacity. So, in order to validate and check these resource constraints, we propose to apply formal techniques to avoid, on the one hand, structural inconsistencies before deploying or even purchasing these resources from Cloud providers, and, on the other hand, behavioral inconsistencies which may occur during runtime.

Approach Overview

Let us recall that an Event-B specification is structured around machines and contexts. A key concept in this work is the use of the stepwise refinement. This concept consists in progressively making an abstract specification more precise through incremental steps. Figure 6.2 depicts the formalization architecture of our Event-B model which is composed of five abstraction levels. Each level is a refinement of the previous one and adds specific constraints and requirements towards the formalization of the Cloud resource allocation behavior. This machine sees a context BPC0 that defines some sets and constants (see Section 6.5.1).

(2) The machine BPM1 refines BPM0 and introduces the process and the activity execution instances in order to consider the runtime requirements. This machine sees a context BPC1 which extends the context BPC0 (see Section 6.5.2).

(3) The machine BPM2 refines BPM1 by adding the allocated resources to a process activities as well as the substitute resources. In this refinement level, the shareability property of a Cloud resource is pointed out. This machine sees the context BPC2 which extends BPC1 (see Section 6.6.1).

(4) The machine BPM3 refines BPM2 and further details related to resource instances are added. This machine sees the context BPC3 which extends BPC2 (see Section 6.6.1.3).

(5) The machine BPM4 refines BPM3 and introduces the elasticity property of a Cloud resource. The elasticity mechanisms are modeled using events in this machine. This machine sees the context BPC4 which extends BPC3 (see Section 6.6.2).

The following sections describe these abstraction levels in detail. But before, let as discuss Cloud resources types and properties in the next section.

Cloud Computing Resources : OCCI Standard

The emerging Cloud Computing paradigm offers a pool of shared resources between applications at three different layers: at the top layer Software-as-a-Service (SaaS), consumers can remotely access software applications via web based interfaces; the middle layer Platform-as-a-Service (PaaS) provides an operational platform allowing customers to manage, develop and execute their applications; and at the bottom layer Infrastructure-as-a-Service (IaaS), consumers may access to highly automated and scalable resources delivered as a service via the Internet. These resources that may be compute/servers, cloud storage and networking capability are needed to power or support users applications. IaaS provides the highest level of flexibility and management control regarding offered resources.

In this work, we focus on the IaaS layer, and assume that offered resources at this level are compute, network, and storage. Cloud resources may be modeled with different existing standards such as, TOSCA [START_REF]Topology and orchestration specification for cloud applications (tosca)[END_REF] (Topology and Orchestration Specification for cloud Applications), OCCI [140] (Open Cloud Computing Interface), and CIMI [141] (Cloud Infrastructure Management Interface). In order to describe our cloud resources, we use OCCI that is a set of open standards and specifications that was initially developed for IaaS cloud offerings. In the following, we present concepts and properties that we use in the reminder of this chapter to characterize relevant behavior of Cloud resource-based process models. This section is divided into three subsections dealing with: resource types, properties, and formal definition of resource and Cloud resource-based process model.

Cloud Resource Types

The Cloud Computing delivers three important types of Infrastructure as a Service (IaaS) resources on demand. As can be seen in the OCCI infrastructure [START_REF]Open cloud computing interface -infrastructure[END_REF] class diagram of Figure 6.3, three classes inherit from the core basic Resource class that was defined in OCCI core Model [142]. Hence, a Resource is specialized into: a) Compute represent processing resources that are a collection of Physical Machines (PMs), each comprised of one or more processors, memory, network interface and local I/O, which together provide the computational capacity of a Cloud environment [START_REF] Jennings | Resource management in clouds: Survey and research challenges[END_REF] (e.g., a virtual machine).

b) Network represent networking entities that may be needed to interconnect these PMs with a high-bandwidth network (e.g., a virtual switch). c) Storage represent data persistent storage services.

Cloud Resource Properties

The above presented resources may be classified by considering two relevant Cloud Computing properties: (i) the resource elasticity, and (ii) the resource sharing. In this work, we focus on the vertical elasticity property of Cloud resources which refers to adding or reducing resource's capacity to an activity. • ACT is the set of activities;

• RES is the set of used resources;

• E : ACT ↔ ACT is a control flow relationship between two activities. In this work we define two types of relationships: AND and OR activation dependencies;

• D a : RES ↔ ACT is a relationship between a resource and an activity. In this work we define the relationship: the allocation dependency;

• D r : RES ↔ RES is a relationship between two resources. In this work we define the relationship: the Substitution dependency;

• C a : D a → N is the needed resource capacity for each activity execution.

More Formally, we define a required resource for a specific task as a set of four elements. In fact, a resource (1) has a type (i.e. Storage, Network or Compute), (2) may be shareable or not, (3) may be exclusive or common shareable, (3) may be elastic or not, and (4) has a capacity. We formally define a resource as follows (see Definition 6.4.2): Definition 6.4.2 (Resource). A required resource r ∈ RES (i.e. RES is the set of available resources) is defined as a tuple r =< T, Shareable, ExclusiveShareable, Elastic, C r > where:

• T : RES → {Storage, N etwork, Compute} is a function that assigns for each resource r ∈ RES a type. In case of Cloud resources we consider three types: Storage, Network and Compute.

• Shareable : RES → BOOL is a function that assigns for each resource r ∈ RES the value TRUE if it is Shareable, and FALSE if it is not.

• ExclusiveShareable : Shareable -1 [{T RU E}] → BOOL is a function that assigns for each shareable resource the value TRUE if it is exclusive shareable, and FALSE if it is common shareable.

• Elastic : RES → BOOL is a function that assigns for each resource r ∈ RES the value TRUE if it is Elastic, and FALSE if it is not.

• C r : RES → Nis a function that assigns for each resource r ∈ RES a capacity. In case of non-elastic resources this capacity is fixed (as a constant value) and does not change, and in case of elastic ones it is variable.

In Sections 6.5 and 6.6, we describe our Event-B formal model based on Definitions 6.4.1 and 6.4.2 .

• OR ActivationDep (inv4) states that we have two or more alternative paths, i.e. one or more of the alternative paths or activities may be chosen. For example, having similarly the process fragment BP 0 of Figure 6.4b, BP 0 → {a17 → a15, a17 → a16} ∈ OR ActivationDep means that in order to activate an instance the activity a17, one instance of either the activity a15 or the activity a16 must finish its execution. It is worth noting that, in this work, OR ActivationDep may represent the inclusive OR or the exclusive OR.

Invariants Inv3 and Inv5 guarantee that two activities related with an activation dependency relationship belong to the same process. In order to manage the addition or deletion of activities and their relations in an existing process (i.e. already created using the previous event), we add the following events: (1) the events AddACT and RemoveACT for respectively adding and removing activities, (2) the events AddAND Dep and RemoveAND Dep for respectively adding and removing an AND activation dependency, and (3) the events AddOR Dep and RemoveOR Dep for respectively adding and removing an OR activation dependency.

Introducing Execution Instances: First Level of Refinement

An execution instance of a workflow model is called a case or a process instance. In this step, we specify the process instances behavior. For this aim, we start by introducing the context BPC1 that extends the first one, i.e., BPC0. As illustrated in the Listing. 17, we define the set of possible processes' instances as a carrier set BP INSTANCES. This context is seen by a new machine BPM1 captured by Listing. 18. Of course, to make possible the use of its variable and the triggering of its events, this machine refines the machine BPM0 described above (i.e., using REFINES in Event-B). In BPM1, we define a variable BP Instances to store all created processes' instances. Then, it is obvious that BP Instances is a subset of BP INSTANCES (Inv1). In the same way, we define the set of all activities' instances, as a carrier set ACT INSTANCES in BPC1, and the created activities' instances, as the subset ACT Instances (Inv3).

Each activity instance during its lifetime goes through different states. Figure 6.5 depicts an activity instance life cycle inspired by the Workflow Management Coalition (WfMC) [START_REF] Hollingsworth | Workflow management coalition the workflow reference model[END_REF]. After its creation, the activity instance moves to the state Initiated. During this state a resource may be allocated to this activity instance. Then, the state becomes Running when a work item is created and assigned to the activity instance for processing. An activity instance may be canceled while being either Initiated or Running. A successful execution toggles between Running state and Completed state. Whereas an unsuccessful execution moves from the state Running to the state Failed. These states are defined as distinct subsets of the set ACT STATES in axm2 of Listing. 17. We define a total function ACT Instances State, which gives the current state of each activity instance (Inv5). The variable BP Instances Type (Inv2) (resp. ACT Instances Type (Inv4)) defines the process (resp. the activity) to which an instance belongs. Also, we introduce the variable ACT Instances BP Instances to define the process instance to which belongs an activity instance (Inv6). Once we defined the different constants, variables and typing constraints related to process instances, we focus now on formally modeling the behavior of an activity instance. We define a set of events that will serve to modify the state of an activity instance w.r.t. Figure 6.5. For that aim, we defined an event for each transition from an activity instance state to another. We introduce the following events.

Initiated Running

• Process instance creation: First of all, the AddBpInst event is defined. Its occurrence allows the creation of a new process instance bpi of a process bp;

• Activity instance creation: The AddACTInst event allows the creation of an activity instance ai, having initially the state initiated, in the process instance bpi;

• Activity instance execution: The RunACTInst event allows the execution of an activity instance ai by changing its state to running;

Formal Specification of a Business Process Model

123

• Activity instance termination: The CompleteACTInst event permits an activity instance ai to complete execution successfully, by moving its state from running to completed ;

• Activity instance cancellation: The CancelACTInst event interrupts the activity instance execution and cancel it, so its state passes from running to canceled ;

• Activity instance failure: The FailACTInst event represents the case of any failure of the activity instance performance, then its state moves from running to failed.

Let as give more details about some of the above mentioned events. For instance, Listing. 192 depicts the AddACTInst event that allows the creation of the new instance ai of a process activity ac. Then, ac should belong to the process of bpi (grd2), and the state of the created activity instance should be initialized to initiated (act4). As shown in Listing. 20, the event RunACTInst activates an activity instance ai by changing its state from initiated to running (grd2 and act1 respectively). As we discussed earlier, the AND and OR activation dependencies define the succession relationships between two activities. Thus, the guard grd3 expresses the fact that the activity instance ai, as a successor to a set of activities instances, may be activated only after all their executions completion (AND activation condition). A similar guard is added to express OR activation condition. .6 specifies the sequencing between these BPM1 machine's events. The diagram explicitly illustrates that the consequence of the CreateBP event occurrence may allow, at this refined level, the triggering of AddBpInst event followed by Ad-dACTInst event, followed by either CancellACTInst or RunACTInst events (having the activity instance state initiated). Then, after triggering the event RunACTInst, the activity instance state becomes running which allows it to be completed successfully, using the event CompleteACTInst, or unsuccessfully, using CancelACTInst or FailACTInst events.

So far, at this level, we have not yet considered the resources that may be used by the activity instances during their lifecycle described above. The resource perspective is the subject of the next section.

Formal Specification of the Resource Perspective

In this section, we define our last three abstraction levels taking into consideration the resource perspective and the different resource properties. We try to formally specify the resource allocation in our model relying on some patterns defined by N. Russel et al. in [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF]. [START_REF]3 OMG. Unified modelling language[END_REF]. For this aim, we introduce a new finite set named RES (axm1) in the context BPC2 to represent all available resources. Then, as seen in Section 6.4.1, a resource has three main types RESType: compute, storage, network (axm2). We define a constant function RES Type mapping each resource to its type (axm3). We also introduce the relation BP Resources to the second refinement machine BPM2 (see Listing. 23), in order to map each process to its resources (Inv1). An available resource can be added to (resp. removed from) a process using the event AddRES (resp. RemoveRES).

Listing 22: Context BPC2 In our work, we specify the identity of the required resource responsible for executing an activity at design time, which is in conformity with the pattern Direct Allocation (WRP-01) defined by N. Russel et al. in [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF]. Thus, we formally define the allocation dependency between an activity and a resource using a new variable AllocationDep (Inv2, Listing. 23). This latter denotes, for each process, the relation of a possible allocation between a resource and an activity. We can add (resp. remove) an allocation dependency using the event AddAllocDep (resp. the event RemoveAl-locDep).

Listing 23: Allocation dependency invariants, Machine BPM2

Inv1 : BP Resources ∈ dom(BP activities) ↔ RES Inv2 : AllocationDep ∈ BP Resources ↔ ACT Inv3 : ∀bp, res. (bp → res ∈ dom(AllocationDep) ⇒ AllocationDep[{bp → res}] ⊆ BP activities[{bp}])
For instance, taking back our motivating process model in Figure 6.1, we define an allocation dependency between a1 and Compute1 as follows: BP 0 → Compute1 → a1 ∈ AllocationDep; which means that, in the process BP0, an instance of the activity a1 needs an instance of the resource Compute1 to complete its execution. Of course, this implies that a1 should belong to BP0 (i.e. BP 0 → a1 ∈ BP activities) as constrained by the invariant Inv3 in Listing. 23.

Introducing Shareability Property

As we have discussed in Section 6.4.2, a Cloud resource may be shareable or nonshareable. Also, a resource may be shareable in a given process and non-shareable in another. So, we add a variable Shareable defined as a total function (cf. Inv4, Listing 24) that, for each couple (process, its resource), defines whether the resource is shareable or not (using a boolean value). Invariant Inv5 specifies that only shareable resources may have several allocation dependencies (i.e., card(AllocationDep[{bpres}]) > 1).

Besides, in order to further refine the shareability property, we define a total function ExclusiveShareable (Inv6, Listing 24) having as input all shareable resources of a specific process and returns (i) TRUE if the resource is exclusive shareable, or (ii) FALSE if it is common shareable. Then, we define two events AddRES and RemoveRES that allows to respectively add and remove a resource to/from a process. In the event AddRES, we add two parameters to specify whether the added resource is shareable, non-shareable, exclusive shareable or common shareable. The shareability property is also managed using two events: to make a resource shareable (resp. nonshareable) we use the event MakeRESShareable (resp. MakeRESNonShareable).

Listing 24: Shareability property invariants, Machine BPM2

Inv4 : Shareable ∈ dom(AllocationDep) → BOOL Inv5 : ∀bpres. (card(AllocationDep[{bpres}]) > 1 ⇒ Shareable(bpres) = T RU E) Inv6 : ExclusiveShareable ∈ Shareable ∼ [{T RU E}] → BOOL 6.6.1.

Introducing Substitution Dependency

The substitution dependency captures the possibility to replace a resource by another to perform some work in case of its unavailability or absence. For this aim, we introduce the relationship SubstitutionDep (cf. Inv7, Listing. 25) which maps each allocation dependency, linking a process and its resource to an activity, to a substitute resource. Obviously, the substitute resource should belong to the considered process (inv8). In addition, it should not have an allocation dependency with the considered activity (Inv9), in order to avoid redundancy, which also implies an irreflexive relation (i.e. a resource should not substitute itself). Furthermore, a substitute resource inherits all the privileges/properties of the resource it substitutes for. So, they must have the same resource type and the same shareable property's value (Inv10). Also, in case of a shareable resource, they should have the same exclusive shareable property's value (Inv11). For instance, in our motivating example, we need to substitute the resource compute2 by the resource having the same type (i.e. a computing resource), namely compute3. Hence, compute3 must have the same properties as compute2 (i.e. shareable and exclusive).

Listing 25: Substitution dependency invariants, Machine BPM2

Inv7 : SubstitutionDep ∈ AllocationDep ↔ RES Inv8 : ∀bp, ac, re1, re2.(bp → re1 → ac → re2 ∈ SubstitutionDep ⇒ re2 ∈ BP Resources[{bp}] Inv9 : ∀bp, ac, re1, re2.(bp → re1 → ac → re2 ∈ SubstitutionDep ⇒ bp → re2 → ac / ∈ AllocationDep) Inv10 : ∀bp, ac, re1, re2.(bp → re1 → ac → re2 ∈ SubstitutionDep ⇒ RES T ype(re1) = RES T ype(re2) ∧ Shareable(bp → re1) = Shareable(bp → re2)) Inv11 : ∀bp, ac, re1, re2.(bp → re1 → ac → re2 ∈ SubstitutionDep ∧ bp → re1 ∈ Shareable ∼ [{T RU E}] ⇒ ExclusiveShareable(bp → re1) = ExclusiveShareable(bp → re2))
It is worth noting that, at each step, some of the previously presented events are refined to take into account the new properties and requirements. For instance, as can be seen in Listing 26, additional parameters are added in the refinement event CreateBP, namely res (set of resources), allocDep (allocation dependencies between bp, res and acts), shar (shareable or non-shareable res), exclushar (exclusive or common shareable res) and subDep (resources in res having substitution dependencies). Thus, corresponding guards are needed. In the third level of refinement, we introduce the resource instances. First, in the context BPC3, we add a new set RES INSTANCES for all available resources instances. Afterwards, we add the set of created resources instances RES Instances in the refinement machine BPM3 (cf. inv1, Listing 27). Besides, we map each resource instance to its resource type using the function RES Instances T ype (inv2) and we map each resource instance to the process instance to which it belongs using the function RES Instances BP Instances (inv3). It is worth pointing out that each resource instance goes through different states during its lifetime in a business process execution. Figure 6.7 illustrates resource instance's states and transitions. This life cycle is made independently of the Cloud resource type. After its creation, a resource is in the Inactive state. When it is allocated to an activity instance it moves to the state Allocated. Once the activity instance starts its execution, the resource moves to the state Consumed. While being in consumption, a Cloud resource could be resized (more details are given in Section 6.6.2). After the activity instance completion, the resource becomes Inactive, for a future reallocation, if it is shareable, otherwise it is Released (i.e. withdrawn). Formally, we define the set of resources' instances belonging to one of the following states: Inactive, Allocated, Consumed (see Listing. 28). Obviously, when a resource instance is released, it will no longer be existing (i.e. it becomes not in Formal Specification of the Resource Perspective 129 RES Instances). Allocated and Consumed are two relations specifying a resource instance's states according to an activity instance (Inv6 and Inv7, Listing. 28). For example, having the resource Compute1 commonly shared between two instances of a1, namely a1 1 and a1 2 , an instance of Compute1 could be allocated to a1 1 and consumed by a1 2 at the same time. So here, after completion of a1 2 , the resource state could not become Inactive until the completion of a1 1 . Other invariants are added to this machine to ensure the consistency of our model. For instance, the invariant Inv11 specifies that a resource instance cannot be created for a process instance whose process does not have an allocation dependency with the corresponding resource. Also, the invariant Inv12 ensures that, for each process instance, only one resource instance of a given resource could be created. This constraint is also ensured by the guard grd3 of the event AddRESInst (see Listing. 29) which allows to add a resource instance ri of a resource r to a process instance bpi. Obviously, a resource instance cannot be allocated and consumed by the same activity instance at the same time (inv13). To model the resource allocation of a created resource instance ri to an activity instance ai, we introduce the event AllocateRESInst in Listing. 30. This event is guarded by five conditions: (i) ai 's current state is initiated (grd2), (ii) the resource instance ri is not released (grd3), (iii) the activity to which ai belongs and the resource to which ri belongs have an allocation dependency between them (grd4), (iv) ri is Inactive or its resource type is common shareable (grd5), and (v) ri and ai belong to Towards Correct Cloud Resource Allocation in Business Processes the same process instance (grd6). As a result, the resource instance ri is allocated to the activity instance ai (act2). After the completion, failure or cancellation of an activity instance, the introduced resource instance should be either released (in case of non-shareable resources), or returned to Inactive state waiting to be reallocated (if only the current activity instance is using it). This is modeled using the event FreeRESInst.

Inactive Allocated Consumed

Released

Introducing the Elasticity Property: Fourth Level of Refinement

In this section, we outline the elasticity property of Cloud resources in the final refinement machine BPM4. For this aim, we add a variable Elastic (Inv1, Listing. 31) returning TRUE if the resource is elastic and FALSE otherwise. Obviously, we refine the event AddRES by adding a parameter to specify if the added resource is elastic or not. Moreover, the allocation relationship between activities and resources in our model is based on specific capabilities that they possess. This corresponds to the pattern Capability-based Allocation (WRP-08) defined by N. Russel et al. in [START_REF] Russell | Workflow resource patterns: Identification, representation and tool support[END_REF]. This pattern supports the allocation by the matching of specific activities requirements with the capabilities of resources. In our case, we take into consideration the capacity of resources (whether elastic on not) and the required capacity for each activity. Therefore, we first introduce the constant RES Capacity (in the context BPC4) to define the initial offered capacity of a resource and the variable RESInstance Capacity (Inv2) to define a resource instance capacity which may vary in case of elastic resources. Then, we define for each specific allocation dependency between an activity and a non-elastic resource, the required/needed capacity for a correct performance using the function ACT RES N eeds (Inv3 and Inv4, Listing. 31) 3 . However, in case of elastic resources, Towards Correct Cloud Resource Allocation in Business Processes a value greater or equal to the activity instance need (grd4). Otherwise, the activity instance could not complete its execution. The proof statistics, given in Fig. 6.2, show that 338 proof obligations were generated by the Rodin platform. 257 proof obligations (76%) were automatically discharged while others, which are more complex ones, require the interaction with the provers to help them find the right rules to apply. Clearly this cannot be proven because Inv5 depicted in Listing. [START_REF] Wil | The p2p approach to interorganizational workflows[END_REF] has not yet been considered by the prover. Moreover, this proof needs several steps to be discharged. Let bpres0 be a couple of a process and a resource, which satisfies (6.1).

We have to demonstrate that:

(Shareable ∪ shar)(bpres0) = T RU E (6.2)

under the hypothesis:

card((AllocationDep ∪ allocDep)[{bpres0}]) > 1 (6.3)
To do so, we proceed by case-based reasoning by distinguishing two cases:

1. bpres0 ∈ dom(AllocationDep): which means that the process is already existing, so we have necessarily: So, the goal (6.4) is accomplished using (6.5) + (6.6) + Modus ponens5 rule. For instance, we animated the complete behavior of an activity instance from its creation until its completion while verifying the different states in which it may move. We have also verified the allocation of resources to activities and checked how an elastic resource instance adapts its capacity when capacity needs increase/decrease.

In order to highlight the different steps of a process execution taking into account all dependencies described above (i.e. activation, allocation and substitution) as well as resource properties (i.e. shareable and elastic resources), we have successfully applied the animation of ProB on our final level of refinement model using our case study of Figure 6.1 as follows.

6.9, the second allocation of the resource network1 is not proposed in the list of choices. Also, we specify the activity needed capacity in case of non-elastic resources. Figure 6.9: Animating the case of non-shareable resource 3. We add two substitution dependencies using the event AddSubstDep: between Compute2 and Compute3, and between network1 and network2 ;

4. We create an instance of BP0, named BP01 using AddBpInst.

5. We create an instance of each activity belonging to BPO: a1, a2, a3, etc., named a1 1, a2 1, a3 1, etc. As expected the state of each instance is initiated, cf.

Proof of Concept: Integration of Cloud Resource Representation

As a proof of concept, we have extended the Signavio Process Editor6 .

Signavio is an open source web application for modeling business processes in BPMN that supports its latest version of BPMN 2.0. Since this application does not support Cloud resources representation and management, we have extended the BPMN 2.0 with the considered Cloud resource types, i.e., storage, network, and compute; and integrated their representation in the modeling interface.

A screen-shot of the graphical interface is depicted by Figure 6.11. As shown, graphical elements that represent each type of resource are highlited in the red square. The designer may drag and drop the needed resource and link it to the desired activity using an association. Also, he/she can specify the attributes of each designed resource such as cores, speed, hostname, etc. This resource representation comply with the Open Cloud Computing Interface (OCCI) standard [START_REF] Edmonds | Toward an open cloud standard[END_REF]. We have also considered the substitution relationship between two resources. So, substitute resources may also be assigned to other resources using an association. Hence, this web application extension offers the designer the ability to assign Cloud resources to process activities and to define the different dependencies between them7 .

It is worth noting that we have extended the BPMN XSD (XML Schema Definition) file that describes the structure of a BPMN Model (i.e., it defines the different elements and attributes). We have added an element tag for each resource type. Figure 6.12 illustrate one of these elements dedicated for the compute resource as well as the different defined attributes As an output, this extension allows to generate the BPMN XML file including the resources tags.

Conclusion

Our contribution in this work is the formal specification of the Cloud resource allocation in business processes while considering Cloud resources constraints and properties. We attempted to respond to our defined research questions as follows:

RQ4: How to formally specify and verify Cloud resource allocation behavior in BPs?

we introduced an Event-B based model that formally specify the resource allocation behavior in a business process within a Cloud environment. Different properties were formalized. For instance, resource sharing has been regarded as a relevant property of Cloud computing. We also considered vertical elasticity property which refers to adding or reducing resources capacity to an activity. However we haven't yet considered horizontal elasticity property which refers to adding additional activity instances or removing them as necessary as well as some local properties such as safety and liveness properties. We leave these limitations for the future work. This approach allows to check different Cloud resource properties and constraints while considering both the design and the runtime requirements. The correctness and the consistency of our approach are checked by discharging proof obligations and by animating the specification using the ProB plugin.

RQ5: How to integrate Cloud resources in BP models design? We developed an extension to the Signavio modeling tool as a proof of concept to integrate Cloud resources in process modeling. Hence, we extended the latest version of BPMN 2.0 with the definition of the three types of IaaS Cloud resources. Then, we added their representation in the Signavio interface as well as their attributes and dependencies.

As we can remark, the Event-B specification we have built makes a separation between the control flow and the resource perspective modeling. In fact, we started by the more abstract model that specify processes, activities and their ordering, and then we added progressively: (i) activities instances behavior with respect to their lifecycle, (ii) resources and their instances behavior as well, and (iii) the different considered properties and dependencies. The advantage of such a separation is twofold. New control flow or resource requirements or properties can be integrated to the model without altering the existing Event-B specification. In addition, the verification and validation phase may be applied on specific parts of the development. So, depending on the designers qualifications, we may assign to them specific parts checking rather then the complete model. Furthermore, in the near future, we target to consider Cloud resource allocation in our behavioral verification approach. Hence, we aim at defining new formal execution semantics based on Petri nets that takes into consideration resource instances and orchestration between available ones.

Chapter 7

Conclusion and Future Work " Configurable process models allow a systematic reuse of business processes in a flexible way. Recently, they are increasingly adopted thanks to their integrated representation of the common and variable parts of a family of processes. These processes are typically adjusted according to the organization specific needs and preferences. In another side, more and more organizations are adopting PAIS on cloud environments to benefit from a large pool of shared Cloud resources. These resources may be assigned to process activities to accommodate dynamic demands. This thesis strives to address two main research questions: How to assist and verify business process configuration? and How to verify Cloud resource allocation in business process models?.

The first problem stems from the lack of assistance in the process configuration task in order to obtain correct variants. Indeed, when considering complex configurable processes with potentially large number of configurable elements, this task becomes quiet difficult and error-prone. Also, the exponential number of possible variants quickly leads to the combinatorial explosion of the state space.

The second problem is justified by the lack of a formal and explicit description of Cloud resources in BPs while considering Cloud properties. Indeed, previous work in the field of resource perspective in BPs mainly addressed the human resources. The Cloud resources allocation, properties and interactions has not been considered yet.

In this manuscript, we presented in details three contributions to respond to the mentioned problems. In this final chapter, we summarize our work in Section 7.1 and present our future research directions in Section 7.2.

Fulfillment of Objectives

The first aim of the research presented in this thesis is to provide guidance and assistance to the analysts in process model configuration with correct options. This manuscript presents two approaches that contributed to this goal.

In the first contribution, we propose a formal Event-B based approach to derive correct variants step-by-step. Such a configuration approach guides the analyst by providing at each step the potential configuration choices. For each configurable element (i.e., activity and connector), we formalized configuration choices using events. 142

Conclusion and Future Work

Then, we defined a set of constraints using invariants specifying the variant structure that should be respected in order to prevent errors. These constraints are related to structure (e.g., every node should be reachable from the initial activity), soundness (no deadlocks and lack of synchronization situations), but also domain requirements provided by configuration guidelines. The verification of the preservation of all the defined constraints and requirements was done using proof obligations generated by the Rodin tool. This tool also supports the validation of our specification using animation. This approach has been automated through the use of a model transformation language, ATL. Such a tool allows to map a C-BPMN process model into the corresponding Event-B specification. Finally, our conducted case study showed the practical usefulness of our approach as well as the facility in identifying the configuration choices.

In the second contribution, we are interested in the definition of deadlock-freeness variants while reducing the state space explosion problem. In this work, the verified correctness criterion of the obtained variant is the deadlock-freeness. Traditionally, such behavioral property verification can be handled by verifying the behavior of all possible configurations. This means that the reachability state graph of all possible variants need to be explored leading to the state explosion problem. An effective solution to this issue is proposed in this work by abstractly representing all possible configurations in a reduced SOG graph. To this end, we adapt the original SOG definition and construction algorithm based on observed configurable elements as follows. First, the SOG abstraction is defined such that the observed configurable connectors label the graph arcs and the non-configurable elements are hidden in the graph nodes. Since the SOG should be associated with a formal model, we use Petri nets as a pivot formalism to represent a C-BPMN process by defining the corresponding syntax and semantics. Then, relying on this semantics, we extend the SOG construction algorithm in order to check the deadlock-freeness property on-the-fly. In fact, aggregates are constructed in a depth-first search style such that any aggregate containing a deadlock state is not inserted in the graph and so are all the underlying paths. As a result, we obtain a reduced graph as well as a set of correct configurations. Then, this set will serve to support analysts during configuration. Our approach was implemented as an extension to an existing tool to implement the proposed algorithm. Preliminary experiments show that our approach outperforms naive approaches in terms of size of the explored configurable models.

The third contribution of this thesis aims at improving the support of Cloud resource specification and verification in BPs. To reach this goal, we introduced an Event-B based model that formally specifies and verifies the resource allocation behavior in a business process deployed in a Cloud infrastructure. In fact, We have applied a correct-by-construction refinement technique in order to formally model and reason about a process model from both perspectives: control flow and resource flow. We started by the more abstract model that specifies process models, activities and their ordering, and then we added progressively details to introduce (i) activities instances behavior with respect to their lifecycle, (ii) resources allocation to activities, (iii) resources instances behavior with respect to their lifecycle as well, and (iv) the different considered properties and dependencies. In this approach, we considered the resource sharing that has been regarded as a relevant property of Cloud computing allowing multiple activities to allocate the same resource simultaneously. We also considered the resource vertical elasticity that refers to adding or reducing resources capacity to an activity. The correctness and the consistency of our approach were checked by discharging proof obligations and by animating the specification using the ProB plugin. Finally, as a proof of concept, we integrated the representation of Cloud resources according to the OCCI standard in the BPMN modeling language definition.

Future Research Directions

Our work opens several research perspectives to accomplish in short and middle terms. At first, we intend to enrich our work with additional properties, constraints, perspectives, etc. This would provide higher expressiveness to our research. Then, we plan to study the adaptability to change in process configuration. Finally, we intend to entirely automate our configuration approaches.

More expressiveness. We are currently working on extending our second contribution presented in Chapter 5. Firstly, we are considering configurable processes with cycles and synchronizing OR-joins. Regarding cycles, we propose to adapt our algorithm in order to consider them while building the SOG aggregates. As we have explained in Section 5.5, the construction algorithm is performed, first, by pushing the initial aggregate into a stack, then, by incrementally pushing new aggregates linked with observed transitions. These aggregates are popped from the stack and added to the graph once entirely checked. Hence, we aim to check the case of a found successor aggregate that is already in the stack (previously pushed and not yet popped). In this case, the found aggregate is both successor and predecessor of an aggregate since it is not entirely treated and may still have other observed transitions to fire. Regarding OR-joins, we propose to adapt our proposed semantics to consider the Synchronizing Merge captured by the Pattern 7 in [START_REF] Van Der Aalst | Workflow patterns[END_REF]. New semantics should expressly impose that, first there is at least one token in at least one of its incoming branches, then it should be checked that for an incoming branch having no token, it is not possible for a token to reach this flow [START_REF] Remco | Semantics and analysis of business process models in bpmn[END_REF][START_REF] Dumas | Semantics of standard process models with or-joins[END_REF]. Secondly, we are working on respecting additional configuration constraints: activity configuration and connectors configuration by restricting output or input branches. This needs to be done by adapting our semantics in order to consider not only skipping one activity in case of its configuration to OFF, but also by removing an entire branch that is an output (resp. input) of a split (resp. join). Then, we aim at adapting the SOG construction algorithm in order to integrate other correctness constraints, e.g., soundness. Furthermore, we intend to enrich our configuration approaches with other important perspectives such as the resource and the data perspectives. Regarding resource perspective, in the work of Hachicha et al. [START_REF] Hachicha | A configurable resource allocation for multi-tenant process development in the cloud[END_REF], configurable operators for resource configuration were proposed in order to support the resource variability. Through configuration, these operators allow designers to easily derive variants by selecting the desired resources. However, such new dependencies between activities and resources were not formally specified and verified. As future work, we aim at adding a formal specification and verification phase that may assist and recommend resource configuration. After that, we target to take into account the analyst specified QoS constraints as well as the Cloud resource properties in order to derive adequate process variants. Moreover, we plan to identify the impact of the configuration of a multi-perspective configurable process on the process variants correctness and performance.

Our last approach might not cover every need for every organization in terms of resources. Indeed, our Event-B model could be extended to consider (i) additional resource types, e.g., PaaS and SaaS resources, (ii) QoS constraints and temporal requirements, (iii) additional dependencies between resources, e.g., delegation and peering, (iv) allowed actions, e.g., create, edit and delete. Also, we aim to consider horizontal elasticity property which refers to adding additional activity instances or removing them as necessary. More adaptability. In real-life process models, any changes to the process environment also lead to changes and variation in the process model: either if it is the configurable process model or even its derived process variants. Indeed, organization are continuously willing to align their processes with new requirements (e.g., new law, regulation, technology, etc.). As our ultimate goal is to prevent organizations from redesigning their processes "from scratch", then, the adaptation to change of these processes need to be considered with minimal effort. Hence, we plan to specify techniques to manage the change of a configurable process model and adapt its process variants to match the new requirements, and vise versa (cf. Figure 7.1). These techniques need to maintain the overall consistency between a configurable process model and its derived variants.

Configurable process model Process Variants

Tool support. As can be noticed, an automatic support of the configuration restriction and analysis step in a process modeling tool is missing in the current implementation of our work. Using a previous extension in our research team [START_REF] Assy | Automated support of the variability in configurable process models[END_REF], the Signavio process modeling tool was adapted to support configurable elements, and thus, it allows the modeling of a configurable process. However, the configuration of this process is not considered yet. Hence, we are currently working on a proof-of-concept of the SOG-based approach that consists of an extension of this web application. This extension considers the configuration aspect and, most importantly, restricts the configuration with only correct options. The set of correct configurations are extracted from our developed SOG-based tool based on the modeled configurable process in the Signavio interface. Using this tool, we target to conduct experiments with large process models data set to show the effectiveness of our work.

1. 1

 1 Configuration and individualization of a configurable process model . . 1.2 Cloud resource allocation to process model activities 1.3 Configuration and Resources in the Business Process Lifecycle (adapted from [2, 3]). 1.4 Our configuration-related research problem 1.5 Our Resource-related research problem 2.1 The BPMN main elements . 2.2 A possible process configuration . 2.3 Possible choices of an activity configuration 2.4 An example of a Petri net . 2.5 An example of a Workflow net . 2.6 Event-B machine and context . 2.7 Event-B event and refinement event 2.8 Prooving in Rodin .3.1 An example of configuring a C-YAWL connector: from an OR-split to an XOR-split [4] . 3.2 An example of a CoSeNet with the corresponding Petri net [5] 3.3 An example of a C-EPC process model [1] 3.4 The provop approach of variant modeling [6] 3.5 An example of a questionnaire model [7] 3.6 An example of a configured feature model generated after configuration step [8] . 3.7 An example of a configuration guidance model [9]

4. 1 A

 1 configurable process model of a hotel and car reservation agency . . 4.2 A hotel reservation variant of the configurable process in Figure 4.1 . . 4.3 Examples of configuration mistakes . 4.4 A hotel and car reservation process variant designing 4.5 Our approach overview . 4.6 The connector j2 configuration restriction using ProB 4.7 Structure of the BPMN to Event-B transformation tool 4.8 The Process2Project, Process2Context and Process2Machine rules . . 4.9 The getAxiom6() helper . 4.10 The getAxiom7() helper . 4.11 The getInitialisationEvent() helper . 4.12 counter example .

Figure 1 . 1 :

 11 Figure 1.1: Configuration and individualization of a configurable process model

Figure 1 . 2 :

 12 Figure 1.2: Cloud resource allocation to process model activities

Figure 1 . 4 :

 14 Figure 1.4: Our configuration-related research problem

Figure 1 . 5 :

 15 Figure 1.5: Our Resource-related research problem

Figure 2 . 1 :

 21 Figure 2.1: The BPMN main elements

Figure 2 . 2 :

 22 Figure 2.2: A possible process configuration

Figure 2 . 3 :

 23 Figure 2.3: Possible choices of an activity configuration

Figure 2 . 6 :

 26 Figure 2.6: Event-B machine and context

Figure 2 . 7 :

 27 Figure 2.7: Event-B event and refinement event

Figure 2 . 8 :

 28 Figure 2.8: Prooving in Rodin

Figure 3 . 1 :

 31 Figure 3.1: An example of configuring a C-YAWL connector: from an OR-split to an XOR-split [4]

Figure 3 . 2 :

 32 Figure 3.2: An example of a CoSeNet with the corresponding Petri net[5]

Figure 3 . 3 :

 33 Figure 3.3: An example of a C-EPC process model [1]

Figure 3 . 5 :

 35 Figure 3.5: An example of a questionnaire model[7]

Figure 3 . 6 :

 36 Figure 3.6: An example of a configured feature model generated after configuration step[START_REF] Asadi | Development and validation of customized process models[END_REF]

Figure 3 . 7 :

 37 Figure 3.7: An example of a configuration guidance model [9]

Figure 3 . 8 :

 38 Figure 3.8:The five-steps approach for guaranteeing Provop soundness[START_REF] Hallerbach | Guaranteeing soundness of configurable process variants in provop[END_REF]

Figure 4 . 1 :

 41 Figure 4.1: A configurable process model of a hotel and car reservation agency

Figure 4

 4

Figure 4 . 2 :

 42 Figure 4.2: A hotel reservation variant of the configurable process in Figure 4.1

Figure 4 . 3 :

 43 Figure 4.3: Examples of configuration mistakes

Figure 4 . 4 :

 44 Figure 4.4: A hotel and car reservation process variant designing

Figure 4 . 5 :

 45 Figure 4.5: Our approach overview

69 Listing 1 :

 691 Context C0's constants and sets CONTEXT C0 SETS BP S N ODES T Y P ES CONSTANTS ACT S CON S CON J AN D XOR OR {a1} {a2} {a3} ... {s1} {s2} {s3} ... AXIOMS axm1 : f inite(BP S) axm2 : f inite(N ODES) axm3 : partition(N ODES, ACT S, CON S, CON J) axm4 : partition(T Y P ES, {AN D}, {XOR}, {OR}) axm5 : partition(ACT S, {a1}, {a2}, {a3}, ...) axm6 : partition(CON S, {s1}, {s2}, {s3}, ...)...

Listing 9 :

 9 Excluding activity eventConfigureACTOFF ANY bp1 bp2 act WHERE grd1 : bp1 ∈ BP ∧ act ∈ ACT S ∧ bp1 → act ∈ BP N odes grd2 : bp2 ∈ BP S \ BP grd3 : Conf igurable N odes(bp1 → act) = T RU E ... THEN act1 : BP := BP ∪ {bp2} act2 : BP N odes := BP N odes ∪ ({bp2} × (BP N odes[{bp1}] \ {act})) act3 : Initial(bp2) := Initial(bp1) act4 :

1:

 Inv1 Conf igurationG ACT ∈ P(ACT S × CON F) × 2 P(CON S × T Y P ES×P1(N ODES)) × P(CON J × T Y P ES×P1(N ODES)) × 3 P(CON S × N ODES) × P(CON J × N ODES) ←→ ACT S × CON F 4 Inv2 : Conf igurationG CON S ∈ P(ACT S × CON F) × 5 P(CON S × T Y P ES×P1(N ODES)) × P(CON J × T Y P ES×P1(N ODES)) × 6 P(CON S × N ODES) × P(CON J × N ODES) ←→ CON S × T Y P ES× P1(N ODES) 7 Inv3 : Conf igurationG CON S SEQ ∈ P(ACT S × CON F) × 8 P(CON S × T Y P ES×P1(N ODES)) × P(CON J × T Y P ES×P1(N ODES)) × 9 P(CON S × N ODES) × P(CON J × N ODES) ←→ CON S× N ODES ...

Figure 4 . 6 :

 46 Figure 4.6: The connector j2 configuration restriction using ProB

Figure 4 . 7 :

 47 Figure 4.7: Structure of the BPMN to Event-B transformation tool

Figure 4 . 8 :

 48 Figure 4.8: The Process2Project, Process2Context and Process2Machine rules

Figure 4 . 9 :

 49 Figure 4.9: The getAxiom6() helper

Figure 4 . 10 :

 410 Figure 4.10: The getAxiom7() helper

Conclusion and Discussion 85 Figure 4 . 11 :

 85411 Figure 4.11: The getInitialisationEvent() helper

Figure 4 .

 4 Figure 4.12: counter example

Figure 5 . 1 :Figure 5 . 2 :

 5152 Figure 5.1: The SOG-based approach overview

Figure 5 . 3 :

 53 Figure 5.3: The BP2PN connectors mapping to classical Petri Nets

Figure 5 . 4 :

 54 Figure 5.4: Enabling and Firing examples

Figure 5 . 6 :

 56 Figure 5.6: A possible variant of the CBP2PN in Figure 5.5

Figure 5 . 7 :

 57 Figure 5.7: Markings graph example in case of a non-configurable and a configurable transition exhibiting non-determinism

Figure 5 . 8 :

 58 Figure 5.8: The Symbolic Observation Graph (SOG)

Figure 5 . 9 :

 59 Figure 5.9: The obtained reduced SOG of the CBP2PN in Figure 5.5

Figure 5 . 10 :

 510 Figure 5.10: The case of a successor aggregate already treated

Figure 5 . 11 :

 511 Figure 5.11: An example illustrating aggregates configurations lists when pushing and popping them from the stack

Figure 6 . 1 :

 61 Figure 6.1: A process variant and its resources

Figure 6 . 2 :

 62 Figure 6.2: Event-B model

Listing 15 :Figure 6 . 4 :

 1564 Figure 6.4: Examples of process fragments for the activation relations illustration

Listing 16 :

 16 Business process creation event, Machine BPM0 CreateBP ANY bp acts and activDep or activDep WHERE grd1 : bp ∈ BP ∧ bp / ∈ dom(BP activities) grd2 : acts ⊆ ACT ∧ acts = ∅ grd3 : and activDep ⊆ acts × acts grd4 : or activDep ⊆ acts × acts THEN act1 : BP activities := BP activities ∪ ({bp} × acts) act2 : AN D ActivationDep(bp) := and activDep act3 : OR ActivationDep(bp) := or activDep

Listing 18 :

 18 The first refinement machine, Machine BPM1 MACHINE BP M 1 REFINES BP M 0 SEES BP C1 VARIABLES BP Instances BP Instances T ype ACT Instances ACT Instances T ype ACT Instances State ACT Instances BP Instances INVARIANTS Inv1 : BP Instances ⊆ BP IN ST AN CES Inv2 : BP Instances T ype ∈ BP Instances -→ BP Inv3 : ACT Instances ⊆ ACT IN ST AN CES Inv4 : ACT Instances T ype ∈ ACT Instances -→ ACT Inv5 : ACT Instances State ∈ ACT Instances → ACT ST AT ES Inv6 : ACT Instances BP Instances ∈ ACT Instances -→ BP Instances // here we omit other detailed invariants

Listing 19 :

 19 Activity instance adding event, Machine BPM1 AddACTInst ANY bpi ac ai WHERE grd1 : bpi ∈ BP Instances grd2 : ac ∈ ACT ∧ ac ∈ BP activities[{BP Instances T ype(bpi)}] grd3 : ai ∈ ACT IN ST AN CES ∧ ai / ∈ ACT Instances grd4 : ACT Instances BP Instances ∼ [{bpi}] ∩ ACT Instances T ype ∼ [{ac}] = ∅ THEN act1 : ACT Instances := ACT Instances ∪ {ai} act2 : ACT Instances T ype(ai) := ac act3 : ACT Instances BP Instances(ai) := bpi act4 : ACT Instances State(ai) := initiated AND

Listing 20 :

 20 Figure 6.6 specifies the sequencing between these BPM1 machine's events. The diagram explicitly illustrates that the consequence of the CreateBP event occurrence may allow, at this refined level, the triggering of AddBpInst event followed by Ad-dACTInst event, followed by either CancellACTInst or RunACTInst events (having the activity instance state initiated). Then, after triggering the event RunACTInst, the activity instance state becomes running which allows it to be completed successfully, using the event CompleteACTInst, or unsuccessfully, using CancelACTInst or FailACTInst events.

Figure 6 . 6 :

 66 Figure 6.6: Business process execution events, Machine BPM1

Listing 27 :

 27 Resource instances invariants, Machine BPM3 Inv1 : RES Instances ⊆ RES IN ST AN CES Inv2 : RES Instances T ype ∈ RES Instances -→ RES Inv3 : RES Instances BP Instances ∈ RES Instances -→ BP Instances

Figure 6 . 7 :

 67 Figure 6.7: Resource instances' states

Listing 28 :

 28 Resource states invariants, Machine BPM3 Inv5 : Inactive ⊆ RES Instances Inv6 : Allocated ∈ RES Instances \ Inactive ↔ ACT Instances State ∼ [{initiated}] Inv7 : Consumed ∈ RES Instance \ Inactive ↔ ACT Instances State ∼ [{running}] ... // here we omit other detailed invariants Inv11 : ∀ri, bpi.(ri → bpi ∈ RES Instances BP Instances ⇒ BP Instances T ype(bpi) → RES Instances T ype(ri) ∈ dom(AllocationDep)) Inv12 : ∀bpi, r.(bpi ∈ BP Instances ∧ r ∈ RES ∧ BP Instances T ype(bpi) → r ∈ dom(AllocationDep) ⇒ card(RES Instances BP Instances ∼ [{bpi}] ∩ RES Instances T ype ∼ [{r}]) 1) Inv13 : Allocated ∩ Consumed = ∅

Listing 29 :

 29 Add resource instance event, Machine BPM3 AddRESInst ANY bpi r ri WHERE grd1 : r ∈ BP Resources[{BP Instances T ype(bpi)}] grd2 : ri ∈ RES IN ST AN CES ∧ ri / ∈ RES Instances grd3 : RES Instances BP Instances ∼ [{bpi}]∩ RES Instances T ype ∼ [{r}] = ∅ THEN act1 : RES Instances := RES Instances ∪ {ri} act2 : RES Instances T ype(ri) := r act3 : RES Instances BP Instances(ri) := bpi act4 : Inactive := Inactive ∪ {ri}

Listing 30 :

 30 Allocate resource instance event, Machine BPM3 AllocateRESInst ANY ai ri WHERE grd1 : ai ∈ ACT Instances grd2 : ACT Instances State(ai) = initiated grd3 : ri ∈ RES Instances ∧ ri → ai / ∈ Allocated grd4 : BP Instances T ype(ACT Instances BP Instances(ai)) → RES Instances T ype(ri) ∈ AllocationDep ∼ [{ACT Instances T ype(ai)}] grd5 : ri ∈ Inactive ∨ BP Instances T ype(ACT Instances BP Instances(ai)) → RES Instances T ype(ri) ∈ ExclusiveShareable ∼ [{F ALSE}] grd6 RES Instances BP Instances(ri) = ACT Instances BP Instances(ai) THEN act1 : Inactive := Inactive \ {ri} act2 : Allocated := Allocated ∪ {ri → ai}

Listing 33 :

 33 Elasticity event, Machine BPM4 ResizeUpRESInst ANY ri val WHERE grd1 : ri ∈ RES Instances \ Inactive ∧ val ∈ N 1 grd2 : ri ∈ RES Instances T ype ∼ [(Elastic ∼ [{T RU E}])[BP]] grd3 : SU M (({ri} × Consumed[{ri}]) ACT Instance RES N eeds) > RESInstance Capacity(ri) grd4 : SU M (({ri} × Consumed[{ri}]) ACT Instance RES N eeds) val THEN act1 : RESInstance Capacity(ri) := val AND 6.7 Verification and Validation 6.7.1 Verification using Proofs

) we have started by adding two new parameters: the parameter allocDep, to define allocation dependency (grd6 : allocDep ∈ {bp} × RES ↔ acts); and the parameter shar, to define the corresponding shareable resources (grd7 : shar ∈ dom(allocDep) → BOOL). This refinement gives rise to four new proof obligations (one for each of inv2, inv3, inv4 and inv5 of Listing. 23). The PO CreateBP/inv5/INV was not automatically discharged. Using the proof obligation explorer we can inspect this unproved PO and see that it has a goal as follows: ∀bpres. card((AllocationDep ∪ allocDep)[{bpres}]) > 1 =⇒ (Shareable ∪ shar)(bpres) = T RU E (6.1)

1 ⇒

 1 bpres0 ∈ dom(Shareable) hence, the goal (6.2) is written into4 :Shareable(bpres0) = T RU E (6.4)and the hypothesis (6.3) is written into:card(AllocationDep[{bpres0}]) > 1 (6.5)thus, the instanciation of the invariant Inv5 of listing 23 by bpres0 gives:card(AllocationDep[{bpres0}]) > Shareable(bpres0) = T RU E (6.6)

Figure 6 . 8 :

 68 Figure 6.8: Rodin interface for discharging Proof Obligations

 Figure 6.10.

Figure 6 . 10 :

 610 Figure 6.10: Extract of the animation values of Machine BPM1 after adding activities instances

Figure 6 .

 6 Figure 6.11: A screen-shot of the graphical interface for our Cloud resource-based process modeling in Signavio

Figure 7 . 1 :

 71 Figure 7.1: Need for adaptability to change

 1.1 Research Context .

17 1.2 Motivation and Problems Description 22 1.2.1 How to assist and verify business process configuration? 22 1.2.2 How to verify Cloud resource allocation in business process models? 23 1.3 Objectives and Contributions . 25 1.4 Road Map . 26

 Process Modeling Languages . 29 2.2.1 Business Process Model Notation (BPMN) 30 2.2.2 Configurable BPMN (C-BPMN) 31 2.3 Languages for Formal Process Representation 32 2.3.1 Petri Nets . 33 2.3.2 The Event-B Method . 36

	Chapter 2
	Preliminaries
	Contents

• Chapter 7: Conclusion and Future Work concludes this thesis by summarizing the presented contributions and discussing potential future extensions. 2.1 Introduction . 29 2.2 2.3.2.1 Machines and Contexts 36 2.3.2.2 Refinement in Event-B 37 2.3.2.3 Verification and Validation of Event-B Models 38 2.4 Conclusion . 40

Table 2 .

 2

		1: Constraints for the configuration of connectors [1]
		FROM-TO OR XOR AND seq √ √ √ √ OR √ √ XOR AND √
	A			
			D	
				j2
	s1	j1 s2		
	x	X	O	O
				Process
	B		E	
				Configuration
	Configurable process model		Possible derived variant

 .5.

							Preliminaries
	•	5	2	p 2	t 2	p 4
	i	t 0	p 1	t 1		t 4	o
				p 3	t 3	p 5
		Figure 2.5: An example of a Workflow net

 .6.

	MACHINE	CONTEXT
	Name	Name
	SEES	EXTENDS
	Context	Other contexts
	VARIABLES	SETS
	V	S
	INVARIANTS	CONSTANTS
	Inv	C
	EVENTS	AXIOMS
	E	A
	END	END

Table 3 .

 3 2 summarizes the evaluation of the approaches presented above and align them with important criteria in the context of our work. Hence, we consider: (1) Process perspective, (2) Resource perspective, (3) Human resource, (4) Cloud resource, and Formalization and Verification of the Resource Allocation Behavior in Business Processes 59

Table 3 .

 3 2: Evaluation of related resource-based approaches

	Approaches	Criteria	Process	Resource	Human	Cloud	Verified Cloud
			perspective	perspective	Resource	Resource	properties
	[11, 40, 42-45]	+	+	+	-	-
	[112-119, 127, 128]	+	+	-	+	-
	[106, 120, 121]	-	-	-	+	Horizontal elasticity
	[123-126]		+	-	-	+	Horizontal elasticity

 This section gives an overview of our contribution detailed in the next sections. Figure4.5 depicts the configuration model that we propose in this chapter allowing to assist the designer in his/her decisions leading to correct process variants.

			Event-B	
			Model	
	Configurable process		Context		Process variant
			C0	
		As input		
			SEES	
			Machine	
			M0	
		Is incorrect	REFINES	
		If violated	Machine M1		Correct & domain-compliant
		invariant			process variant
			If Correct
			4.i	Partially configured
					As final
		As input	
				process
					output
	Computing event guards Correctness Domain	N configurations	Firing an appropriate event	4.ii
	constraints	constraints		
				3
	of M0	of M1		
	1			
			enabled events	
			(possible	
			configurations)	
		2		
					Basically,
	using Event-B as a formal method, we defined a model of two abstraction levels: the
	first level introduces our model for process model configuration allowing to preserve
	correctness (machine M0). In this machine, we formally specify a process model (cf.
	Section 4.4) as well as configurable elements and the corresponding constraints (cf.
	Section 4.5). Configuration steps and their correctness are ensured by events and
	invariants (cf. Section 4.6). Next, configuration guidelines are formally integrated

to our model in the second abstraction level as a model refinement of the first level (machine M1, cf. Section 4.7). Event-B defines proof obligations to guarantee that the invariants are preserved by all events (see Section 4.8.1).

 Assisting Correct Process Variant Design with Formal Guidance Conf igurable N odes ∈ BP N odes → BOOL Inv23 : Is Conf iguration Of ∈ BP → BP Inv24 : Is Conf iguration Of = Is Conf iguration OF F Act ∪ Is Conf iguration ON Act ∪ Is Conf iguration OR S ∪ Is Conf iguration OR J ∪ ... ∪ Is Conf iguration T oSeq Is Configuration Of (Inv23, Listing. 3). For instance, a couple (bp2, bp1) belongs to Is Configuration Of if and only if at least one potential configuration has been applied on bp1 in order to obtain a configured process bp2. Inv24 asserts that these configurations could affect either (i) activity configuration, by excluding (i.e.

	Listing 3: Configuration invariants

Inv22 : Is Configuration OFFAct) or including it (i.e. Is Configuration ONAct), or (ii) connector configuration, by restricting splits outgowing branches (i.e. Is Configuration OR S, Is Configuration XOR S and Is Configuration AND S), by restricting joins incoming branches (i.e. Is Configuration OR J, Is Configuration XOR J and Is Configuration AND J) or by keeping only one branch (i.e. Is Configuration ToSeq). These configuration types are further detailed in the following sections.

 p 0 a 1 p 1 s 1

			XOR + p 3	a 2	p 4	XOR -	OR +						p 21	a 9	
	OR +	p 2	s 2 OR -	p 5	a 3	p 6	j 1	p 7 s 3 p 9	p 13 OR -	a 4 p 14	OR +	p 16	a 7	p 17	p 20	OR -
		p 8	j 2		p 10	a 5 p 11 a 6 p 12	j 3	p 15 s 4	p 18	a 8	p 19	j 4	
	Figure 5.5: The CBP2PN of the configurable process in Figure 5.2			
			XOR + p 3	a 2	p 4	XOR -	XOR +					p 21	a 9	
	p 0 a 1 p 1 s 1 XOR +	p 2	s 2 AN D -	p 5	a 3	p 6	j 1	p 7 s 3 p 9	p 13 XOR -	a 4 p 14	XOR +	p 16	a 7	p 17	p 20	XOR -
		p 8	j 2		p 10	a 5 p 11 a 6 p 12	j 3	p 15 s 4	p 18	a 8	p 19	j 4	

Discussion 107 Table 5 .

 1075 3: Checking deadlock-freeness on SOG vs RG

		CBP2PN		SOG				Naive approach (RG)	
	CFC	Obs	Nb possible	Nb correct	A(avg) E(avg)	Exec	Sates	Arcs	Exec time	Overall Exec
	(avg)		confs(avg) confs(avg)			time(sec) (sum)	(sum)	correct(sec) time(sec)
	21	6	729	15	13	26	1.580	283.50 331.95	0.051	2.478
		5	243	5.66	8.66	16	0.693	104.14 133.57	0.017	0.729
	3OR +	4	81	2.33	5.66	8.66	0.353	42.17	49.62	0.007	0.243
		3	27	1	4	4	0.044	18	21	0.003	0.070
	15.5	6	243	11.33	11	21	0.093	208.47 243.25	0.037	0.802
		5	81	5	7.77	13.77	0.051	93	106.30	0.017	0.267
	2OR +	4	57.85	3.66	6.09	10.33	0.030	66.72	77.81	0.012	0.191
		3	22.50	2	4.33	5.83	0.018	36.20	42.20	0.006	0.068
	10	6 5	81 54	8 4	9.50 7	17.50 11.83	0.015 0.010	144 72	168 84	0.024 0.014	0.243 0.184
	1OR +	4	18	4.25	5.75	9.87	0.008	76.71	89.46	0.014	0.058
		3	13.24	2.58	4.23	6.29	0.006	46.44	54.18	0.008	0.040

 Towards Correct Cloud Resource Allocation in Business Processes Definition 6.4.1 (Cloud Resource-based process model). A business process model is a tuple Bp = < ACT, RES, E, D a , D r , C a > where:

 .5: Activity instance life cycle Towards Correct Cloud Resource Allocation in Business Processes

		Listing 17: BPC1's sets and axioms
	CONTEXT	BP C1
	EXTENDS	BP C0
	SETS	BP IN ST AN CES ACT IN ST AN CES ACT ST AT ES
	CONSTANTS	initiated running f ailed canceled completed
	AXIOMS	
	axm1 : f inite(ACT IN ST AN CES)
	axm2 : partition(ACT ST AT ES, {initiated}, {running}, {f ailed}, {canceled}, {completed})

Table 6 .

 6 2: Proof statisticsAs an example, when modeling the second refinement machine BMP2, in the refined event CreateBP (seeListing 26

Process

In its latest version, BPMN was renamed to "Business Process Modeling and Notation"

http://www.event-b.org/install.html

https://github.com/bendisposto/probparsers

www.processconfiguration.com

www.apromore.org

A f denotes a domain restriction:A f = {x → y|x → y ∈ f ∧ x ∈ A}

The inverse of a function f , (f -1), is denoted in Event-B as (f ∼).

http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation

https://code.google.com/p/signavio-core-components/

The inverse of a function f , (f -1), is denoted in Event-B as (f ∼).

A f denotes a domain restriction:A f = {x → y|x → y ∈ f ∧ x ∈ A}

(F ∪ G)(x) = G(x) if x ∈ dom(G)

The modus ponens rule: If (P ∧ P ⇒ Q) then Q

http://www.signavio.com/

Please refer to our web page for source code: http://www-inf.it-sudparis.eu/SIMBAD/tools/ BPMEventBModel

1. We create the business process BP0, its activities and their activation dependencies, and its resources corresponding to our case study. We also specify if the added resources are: (i) shareable or not, (ii) exclusive or common shareable and (iii) elastic or not. For example Compute1 is common shareable and elastic.

2. We add the allocation dependencies, e.g. between a1 and Compute1, between a7 and Store1, etc. Note that after adding an allocation dependency between Network1 and a15, we cannot add another allocation dependency with this resource since it is not shareable. As can be seen in the screen shot of Figure

Event-B Symbols Summary

Bibliography

a, F obs = st.T op(); 13: if (F obs = ∅) then F obs = f ireableObs(a); 24: st.P ush(a , F obs);

25:

else {a' is an existing aggregate} 26: free a ;

27:

Let a be the already existing aggregate;

28:

U pdateC(a, a , t);

29:

U pdateN C(a, a , t); According to Table 6.1, a Cloud resource may be either elastic or non elastic, and either shareable or non shareable. Also, the definition of a shareable resource is refined into two properties: exclusive shareable or common shareable.

Abstract Definition of a Cloud Resource-based Process

In addition to activities ordering captured by the control flow perspective, resources may be needed for activities execution such as users, machines, services, etc. As discussed earlier, we focus on non-human ones, particularly Cloud resources. Moreover, several relationships could be captured. In light of this, we present an abstract formal definition of a business process model taking into account the Cloud resource properties and relationships (see Definition 6.4.1):

Formal Specification of a Business Process Model

The control-flow (or process) perspective describes activities and their execution ordering through different constructors, which permit flow of execution control [START_REF] Kiepuszewski | Fundamentals of control flow in workflows[END_REF]. In this section, we introduce the first step of our formalization which consists of two levels of abstraction considering this process perspective. Firstly, in Section 6.5.1, we present the first abstraction level of our formal specification that addresses the control flow of process models. Secondly, in Section 6.5.2, we formalize the process execution dynamics behavior relying on the activity instance lifecycle. Please note that, the semantics of the Event-B mathematical symbols used throughout this chapter are illustrated in Appendix B.

Modeling Control Flow using Event-B

In the abstract model, we introduce the first level of our specification which holds processes, activities and their relationships. Firstly, in the first context BPC0 illustrated in Listing 14, we use a finite set BP (axm1) to define the set of possible processes, and a finite set ACT (axm2) to define the set of possible process activities.

Listing 14: BPC0's sets and axioms

Then, we define the initial machine BPM0 which sees the context BPC0 described above. Listing 15 shows the variables and the invariants of BPM0. To map each process to its activities, we introduce the variable BP activities (Inv1). To model the order in which the different activities will be performed in the process, we add two variables AND ActivationDep (Inv2) and OR ActivationDep (Inv4). These activation dependencies specify which activity must finish execution to activate a given activity.

• AND ActivationDep (inv2) states which activities instances have to finish their executions to activate another activity.

For instance, having BP 0 the process fragment of our motivating example in the Figure 6.4a, BP 0 → {a17 → a15, a17 → a16} ∈ AN D ActivationDep means that in order to activate an instance of the activity a17, an instance of each activity among a15 and a16 must finish execution. Moreover, BP 0 → {a15 → a14, a16 → a14} ∈ AN D ActivationDep means that in order to activate instances of both activities a15 and a16, the activity instance of a14 should finish execution. This dependency is used also in case of a sequence between two activities; these capacity needs may increase or decrease at runtime depending on the dynamics of the received requests. So, we define the function ACT Instance RES N eeds (Inv5) to specify the activity instance need while consuming a resource instance. The event SetElasticNeed is specified to manage this capacity variation.

Listing 31: Machine BPM4's invariants

As we have seen, the non-elastic resource's capacity cannot be changed. So, in order to ensure a correct allocation dependency, the sum (using a new SUM operator) of all needed capacities of all the allocation dependencies of a non-elastic resource must be lower or equal to its offered capacity (Inv6, Listing. 31). Moreover, at run-time, an activity instance should not complete execution until having the needed capacity of its consumed resource instance (Inv7, Listing. 31). Also, we have added this constraint as a guard in the refined event CompleteACTInst.

We have defined the SUM operator to be able to sum several needed capacities (axm1, Listing. 32). More precisely, this operator allows to sum the values of the hash table: (AllocationDep, capacity value) pairs. This specific operator is not already defined in Event-B. Therefore, we have defined it as a Theory using the axioms of the Listing. 32.

Listing 32: The SUM operator's axioms

As mentioned earlier, an activity instance may require more/less capacity at runtime, which is due to changes in demand or workloads in a Cloud environment. Our model must be able to react to these dynamic changes. This is handled by using two events, ResizeUpRESInst and ResizeDownRESInst that respectively increases and decreases the capacity of a resource instance according to the activities instances needs. For instance, at runtime, when the activity instance demand increases and becomes greater than the resource instance capacity (grd3, Listing. 33), the elastic resource instance's capacity can be modified using the event ResizeUpRESInst to have Towards Correct Cloud Resource Allocation in Business Processes 2. bpres0 ∈ {bp} × res: which means that there exists a resource r1 ∈ res such that:

hence, having (6.7), the goal (6.2) is written into:

and the hypothesis (6.3) is written into:

Moreover, the instanciatiation of the grd8 :

by r1 gives:

Consequently, (6.10) + (6.9) + the modus ponens rule prove (6.8) Thus, the PO (6.1) is proven. The proof tree in Figure 6.8 shows the proving process of this PO.

Then, we used ProB to verify several dynamic properties that cannot be specified as invariants since they refer to several states of the system taken at different moments. Such properties have been specified using LTL [START_REF] Van Der Aalst | Business Process Management: Models, Techniques, and Empirical Studies, chapter Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques[END_REF]. For instance, we have verified that after its creation, an activity instance is in the state initiated using an LTL formula involving the next operator:

Validation by Animation

Using animation, we have played and observed different scenarios and have checked the behavior of our model. In this work, we use the ProB plugin for this animation. The process of animating an Event-B model involves three steps: (1) we first give values to the constants and carrier sets in the context (in our case we used the context BPC4), and (2) we start the animation by firing the INITIALISATION event to set the system in its initial state; then, (3) we proceed the steps of our scenario, and for each step: (i) the animator computes all guards of all events, enables the ones with true guards, and shows parameters which make these guards true; then, (ii) we

Conclusion and Future Work

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

Winston Churchill

Appendices

List of publications

Appendix B

Event-B Symbols Summary

Table B.1 gives the semantics of some mathematical symbols used in this manuscript where:

• A and B denote any sets of elements,

• A 1 and B 1 denote any subsets of A and B respectively,