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Titre : Vérification formelle de la configuration des processus métiers dans le Cloud 

Mots clés : Gestion de processus métier, Vérification formelle, Allocation de ressources, Correction. 

Résumé : Motivé par le besoin de la 
« Conception par Réutilisation », les modèles de 
processus configurables ont été proposés pour 
représenter de manière générique des modèles 
de processus similaires. Ils doivent être 
configurés en fonction des besoins d’une 
organisation en sélectionnant des options. 
Comme les modèles de processus configurables 
peuvent être larges et complexes, leur 
configuration sans assistance est sans doute une 
tâche difficile, longue et source d'erreurs. 
De plus, les organisations adoptent de plus en 
plus des environnements Cloud pour déployer et 
exécuter leurs processus afin de bénéficier de 
ressources dynamiques à la demande. 
Néanmoins, en l'absence d'une description 
explicite et formelle de la perspective de 
ressources dans les processus métier existants, 
la correction de la gestion des ressources du 
Cloud ne peut pas être vérifiée. 
 

Dans cette thèse, nous visons à (i) fournir de l’assistance 
et de l’aide à la configuration aux analystes avec des 
options correctes, et (ii) améliorer le support de la 
spécification et de la vérification des ressources Cloud 
dans les processus métier. Pour ce faire, nous proposons 
une approche formelle pour aider à la configuration 
étape par étape en considérant des contraintes 
structurelles et métier. Nous proposons ensuite une 
approche comportementale pour la vérification de la 
configuration tout en réduisant le problème bien connu 
de l'explosion d'espace d'état. Ce travail permet 
d'extraire les options de configuration sans blocage d’un 
seul coup. Enfin, nous proposons une spécification 
formelle pour le comportement d'allocation des 
ressources Cloud dans les modèles de processus métier. 
Cette spécification est utilisée pour valider et vérifier la 
cohérence de l'allocation des ressources Cloud en 
fonction des besoins des utilisateurs et des capacités des 
ressources. 

 

 

Title : Formal verification of business process configuration in the Cloud 

Keywords : Business Process Management, Formal verification, Resource allocation, Correctness. 

Abstract: Motivated by the need for the 
“Design by Reuse”, Configurable process 
models are proposed to represent in a generic 
manner similar process models. They need to be 
configured according to an organization needs 
by selecting design options. As the configurable 
process models may be large and complex, their 
configuration with no assistance is undoubtedly 
a difficult, time-consuming and error-prone 
task.  
Moreover, organizations are increasingly 
adopting cloud environments for deploying and 
executing their processes to benefit from 
dynamically scalable resources on demand.  
Nevertheless, due to the lack of an explicit and 
formal description of the resource perspective in 
the existing business processes, the correctness 
of Cloud resources management cannot be 
verified. 

In this thesis, we target to (i) provide guidance and 
assistance to the analysts in process model configuration 
with correct options, and to (ii) improve the support of 
Cloud   resource specification and verification in 
business processes.  To do so, we propose a formal 
approach for assisting the configuration step-by-step 
with respect to structural and business domain 
constraints. We thereafter propose a behavioral 
approach for configuration verification while reducing 
the well-known state space explosion problem. This 
work allows to extract configuration choices that satisfy 
the deadlock-freeness property at one time. Finally, we 
propose a formal specification for Cloud resource 
allocation behavior in business process models. This 
specification is used to formally validate and check the 
consistency of the Cloud resource allocation in process 
models according to user requirements and resource 
capabilities. 
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Abstract

In the last decade, growing attention has been paid to the emerging concept of Cloud
Computing. Especially in Business Process Management (BPM) domain, business
processes need to be deployed and executed at a high level of performance while re-
ducing the development and maintenance cost. In a such multi-tenant environment,
more and more companies are managing and executing similar processes across or-
ganizational boundaries. The use of Configurable process models came to represent
and group business process that have similarities into a single generic process. The
latter process will be shared among different companies, e.g., different branches, and
adjusted during a configuration phase with respect to each specific company require-
ments. The obtained processes are called variants.

The design of process variants with respect to configuration constraints is becom-
ing challenging. Since, the configurable elements may have complex interdependencies
between their configuration choices, configuring process models is undoubtedly a dif-
ficult, time-consuming and error-prone task. Then, the analysts need assistance and
guidance in order to correctly configuring process variants.

Furthermore, organizations are deploying part or all of their business process
models in the Cloud to benefit from dynamically scalable and shared resources on
demand. Nevertheless, due to the lack of an explicit and formal description of the
resource perspective in the existing business processes, the correctness of Cloud re-
sources management cannot be verified. In fact, the resource perspective in Business
process models is not well addressed in the literature compared to other perspec-
tives, such as the control flow. Also, the proposed approaches often target the human
resources rather than Cloud ones.

In this thesis, we address the above shortcomings by proposing a formal approach
for assisting designers in process model configuration step-by-step. We propose to
verify the configurable process as well as the derived process variants correctness
with respect to structural and business domain constraints provided by configuration
guidelines. We thereafter propose a behavioral approach for configuration verification
while reducing the well-known state space explosion problem. This work allows to
extract configuration choices that satisfy the deadlock-freeness property at one time.
Finally, we propose a formal specification for Cloud resource allocation policies in
business process models. This specification is used to formally validate the consistency
of Cloud resource allocation for process modeling at design time, and to analyze and
check its correctness according to user requirements and resource capabilities.
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1.1 Research Context

Since the beginning of the nineties, business processes (BPs) have gained increased
significance for almost any business. In order to manage and improve their business
processes, organizations are more and more aligning their information systems in a
process-centered way. Along this trend, Process Aware Information Systems (PAISs)
have emerged to better manage and execute operational processes involving people,
applications, and/or information sources on the basis of process models [13]. Most
notable examples of such systems are Workflow Management Systems (WfMSs) [14,
15] and Business Process Management Systems (BPMSs) [16–18].

Business process models are key instruments of Business Process Management
(BPM) in such systems. They explicitly represent business processes in terms of their
activities and the execution constraints between them [3]. While the essence still
quite similar, a range of graphical notations have been proposed for business process
modeling, such as Business Process Model and Notation (BPMN) [19], Event-driven
Process Chain (EPC) [20], Yet Another Workflow Language (YAWL) [21], Unified
Modeling Language (UML) [22], etc. In fact, process modeling is part of the initial
phase of business process lifecycle in a PAIS, that is the process design and analysis
(see Figure 1.3). Once the process model is designed, it needs to be analysed using
validation, simulation and verification techniques. This step is crucial since errors
detected in early design phases will spoil any re-design efforts that might follow.
Next, the second phase is the process model implementation. BPs are automated
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into operational/executable processes. Thirdly, BPs are executed, after deployment
on a PAIS, according to the process model. Finally, in the process diagnosis stage,
process executions are analyzed to identify possible improvements leading to process
re-design.

During recent years, while some organizations still focus on the design and analysis
of their internal activities, an increasing number of them are targeting to align their
BPs across organizational boundaries for collaboration needs. Indeed, two or more
autonomous organizations (maybe also subsidiaries of the same organization) carry
out an organized group of joined activities to achieve a common business objective,
the so-called Inter-Organizational Business Process (IOBP) [23–28]. Typically, col-
laborating business partners (often called tenants) are involved in one ’global’ IOBP
which serves as a contract between them. Each partner has its own ’local’ private
business process which is usually designed separately and in an ad-hoc manner. Since
these corporations are designed in a rigid manner, then it would be inefficient for orga-
nizations to engage (re-)designing and modeling ”from scratch” their process models
without learning from each other’s practice and experience. Moreover, BPs need to
be flexible since organizations are continuously willing to align their processes with
new requirements (e.g., law, regulation, technology, etc.). Configurable process
models were proposed [1, 4, 6, 29–31] as a step toward enabling a process ”design by
reuse” while offering flexibility. Furthermore, corporations most often operate across
organizational boundaries. Then, there is an increasing need to enhance their deploy-
ment in a flexible and controlled manner. One way of facilitating BPs deployment,
is to use Cloud computing infrastructures [32, 33]. Such a multi-tenant environ-
ment supports the sharing of common processes as well as IT resources on demand.
The verification of process configuration as well as the verification of Cloud resource
allocation within a BP are the scope of this thesis work.

Configurable process models were proposed to represent and group business pro-
cesses that have similarities while exhibiting some local variations. These variations
are captured using configurable elements that allow for multiple design options. Such
processes are designed in a generic and integrated manner in order to be shared among
different companies or branches. For instance, considering a hotel reservation agency
that has many branches in different cities and countries, all branches processes in-
clude activities related to hotel searching and selection. Not surprisingly, they may
have many differences depending on specific needs and priorities. An example of such
differences may be a deposit being required to confirm the reservation in some regions
and not in others, or even the type of the deposit may differ among regions (cheque,
cash or credit card). Then, these processes can be configured and adjusted accord-
ing to each specific company requirements by simply selecting the desired options
and deselecting the undesired ones. The obtained individualized processes are called
variants and are produced with a minimal design efforts.

In order to set clear these configuration concepts, let us take the simple example
in Figure 1.1. The configurable process model, on the left hand side of the figure,
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is modeled using the Configurable BPMN (C-BPMN) notation. This notation may
have two types of configurable nodes that are highlighted in a thick border: activi-
ties (represented with rectangles) and connectors (represented with diamonds). More
details about BPMN and C-BPMN are given in Chapter 3. There are three types of
connectors modeling the splits and joins in the model: OR (inclusive choice), XOR
(exclusive choice) and AND (parallel flows). In case of ordinary processes, these
connectors represent run-time choices. Whereas, a configurable element represent a
design-time configuration choice that analysts should take according to each individ-
ual organization needs. Our example contains one configurable activity, A, and two
configurable connectors, s1 and j1. For example, the analyst may choose to exclude
the activity A. As a configurable connector may be configured by removing one or
more input/output branches, then, the analyst may block the first output path of
s1 and the corresponding input path of j1. Then, using the individualization phase,
a configured process model (cf. Variant 1 ) that corresponds to these configuration
choices, is derived in the original process modeling language (i.e., BPMN). Hence,
in this derived model, excluded elements are removed and maintained configurable
elements are replaced with ordinary ones. For instance, the second derived model
Variant 2 in Figure 1.1 is obtained, first, by maintaining the activity A. Second,
since a configurable connector’s type may be changed, j1 is configured from OR to
XOR and s1 is maintained the same. As the obtained variants do not contain any
configurable elements, they can be executed by a PAIS.

A

B

Cx O D

Configurable process model

+

O
s1 j1

s2

j2

A

B

Cx O D

+

O
s1 j1

s2

j2

A

B

Cx x D

+

O
s1 j1

s2

j2

B C D+ O
s2

j2

A

B

Cx x D

+

O
s1 j1

s2

j2

Design time 
choices

Process configuration Process individualization

Variant 1

Variant 2

Figure 1.1: Configuration and individualization of a configurable process model

In this context, the process design phase in the BP lifecycle is replaced with
the configurable process design phase. A number of configurable process model-
ing languages have been recently proposed such as Configurable BPMN (C-BPMN)
(e.g. [6, 9]), Configurable EPC (C-EPC) (e.g. [1, 30]) and Configurable YAWL (C-
YAWL) (e.g. [4]), that extend BPMN, EPC, and YAWL notations respectively with
variable elements. Once the configurable process model is designed, the diagnosis
phase may skip the phase of a new process model re-design (see Figure 1.3). The



20 Introduction

process is instead directly adjusted by model users in the configuration & individu-
alisation phase by applying configuration choices. As the configurable process may
be very complex with a great number of configurable elements, interdependencies
between the configuration choices may be very difficult to untangle. Hence, manu-
ally managing all the configurable elements of a process model one by one, leaving
the designer the full responsibility for applying correct options, may be tedious and
error-prone task. This implies that the configuration phase should also encompass
an analysis step in order to verify and prevent errors in the derived process variants
execution. Recent research work have proposed different approaches to facilitate the
configuration of process models using, for example, configurable nodes [1,34], change
operations [6], templates and rules [35], etc. Some approaches proposed to guide
the configuration or/and to support domain-based constraints [7–9, 36]. Others at-
tempted to ensure the process configuration correctness [10,37–39], but most of them
still suffer form the exponential number of possible configurations.

In another side of such multi-tenant environment, in order to remain competitive,
organizations are increasingly adopting PAIS on Cloud environments to benefit from
rapid adaptability and flexibility in enabling access to IT resources on a ”pay-as-you-
go” basis. Hence, they are deploying part or all of their BPs variants in Cloud in-
frastructures with respect to customer requirements. Specifically, with such dynamic
environment, process activities may be supplied with flexible and dynamic resources
to rapidly and effectively respond to changing demands. These Cloud-delivered re-
sources have the advantage of being elastically scaled on demand, and possibly shared
by several activities. Let as take the example of Figure 1.2 where resources are as-
signed to the process activities. Suppose that activity A needs an elastic compute
resource r1 of 10 GB RAM to perform its task efficiently. This resource’s initial
offered capacity is 10 GB, but in case of changing needs of the activity, it may dy-
namically scale up or down during run-time. This is handled using horizontal (i.e.,
by supplying additional activity instances or removing them as necessary) or verti-
cal (i.e., by increasing or decreasing offered resource capacity as necessary) elasticity
techniques. Moreover, two activities, e.g., B and D, may be storing data in a shared
storage resources r3.
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Figure 1.2: Cloud resource allocation to process model activities

Previous research in the field of resource allocation and management in the BPM
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context mainly regarded human resources [40, 41]. Generally, extensions of business
process models with the representation and the definition of human behavior were
proposed [11, 42–45]. However, less attention has been paid to non-human resource
allocation, especially Cloud ones. Hence, there is a clear lack of formal, unified and
explicit description and representation of Cloud resources in the existing business
process models. Consequently, the correctness and the consistency [46] of Cloud
resources management in BPs cannot be verified. So, in the BPs design and analy-
sis phases, the correctness criteria to be established should encompass not only the
control flow but also the resource management. Thus, we extend these phases with
resources assignement to process activities and resources analysis (see Figure 1.3).

In this thesis, in addition to verifying the configuration aspect of the control flow
(i.e., process activities orchestration in a specific order) in process models, we focus
on enhancing the BP resource perspective by specifically managing and analyzing the
Cloud resource allocation issue. ”The resource perspective centers on the modeling of
resources and their interaction with a process-aware information system (PAIS)” [40].
Formal methods have proved their usefulness in the design of correct systems (e.g.
Petri nets [47], Event calculus [48], LTL [49], Event-B [50]). They promote the use
of mathematical foundations and formal logic to specify and reason about system
properties.
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Figure 1.3: Configuration and Resources in the Business Process Lifecycle (adapted
from [2,3]).

To summarize, Figure 1.3 illustrates the cyclic structure of the process model
lifecycle that consists of the different phases explained above (starting from the design
phase). In this Figure, we highlight two phases that represent the scope of this
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thesis: First, the process configuration and individualization phase is enhanced with
an analysis phase in order to support the assistance and correctness verification of this
configuration. Second, the process design and analysis phases are extended with the
resource perspective in order to integrate the formal description of Cloud resources
and to establish that the allocation behavior is correct.

1.2 Motivation and Problems Description

Our research work is motivated by the following two main issues: How to assist and
verify business process configuration? and How to verify Cloud resource allocation in
business process models?

1.2.1 How to assist and verify business process configuration?

The use of configurable process models still present challenges essentially related to
the identification of the configuration steps with respect to different requirements and
properties. Manual methods for configuring processes are undoubtedly tedious and
error-prone. That is because, in case of complex processes, a very large number of
configurable elements implies very complex inter-dependencies between their configu-
ration alternatives. Therefore, analysts may easily be mistaken in their choices which
undermine the correctness of the resulting variant.

We illustrate our research problem in Figure 1.4. During process configuration
time, the process designer is wondering which configuration choices should he/she
take. Once configured, he/she is not ensured that the derived process variant is correct
with respect to different constraints: related to correctness and domain properties
(i.e., rules allowing to comply with some business requirements). For example, a
configurable activity may be removed from the model. In this case, the remaining
process elements should be re-connected in order to maintain structural correctness
of the model. When configuring a connector, removing an entire branch may lead
to isolated activities. Even worse, the configuration of a join connector may lead to
behavioral problems such as lack of synchronization and deadlock. For example, user
should not configure a join connector to a synchronization if its corresponding split was
already configured to an exclusive choice. This leads to a deadlock as only one branch
is activated after the split, whereas the join needs the completion of all its incoming
branches. These issues may be not easy to spot but have serious consequences on
the process execution. Hence, there is a clear need to guide and assist the business
analyst in order to correctly derive variants.

So far, a number of approaches have addressed the verification of the process
configuration correctness. Some of them have discussed the strcutural correctness
(e.g. [4, 6]). Others have addressed the behavioral correctness (e.g. [10, 37–39]). Tra-
ditionally, behavioral correctness verification often requires the reachability graph
analysis (i.e. compute the state-space of process models). This means that, in case
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Figure 1.4: Our configuration-related research problem

of configurable processes, one needs to analyze the state-space of all possible configu-
rations (e.g. using Woflan tool [51]). This may be too time-consuming and may lead
to a state explosion problem since the number of states grows exponentially with the
number of variation points.

In view of these issues, the process configuration options should be evaluated and
automatically restrained with respect to all configuration, correctness and domain
constraints. Then, the process user should be guided and assisted using these options
in order to derive correct variants. Furthermore, as discussed in this section, be-
havioral verification of the process configuration often encounters the combinatorial
explosion of state-space size challenge. To address our research problems, we need to
answer the following sub-questions:

RQ1: How to identify configuration choices that satisfy designers and clients require-
ments?

RQ2: How to assist the designer in selecting the correct configuration choices?

RQ3: How to avoid the state-space explosion of the configuration verification issue?

1.2.2 How to verify Cloud resource allocation in business process
models?

A PAIS running on a Cloud infrastructure offers the designers the access to a shared
pool of IT resources delivered on demand and the ability to dynamically adjust their
allocation in response to peaks in workload and according to their needs. This raises
the introduction of the two important Cloud features: the shareability and the elas-
ticity. These resources properties may depend on their Cloud providers and process
tenant needs. Firstly, Cloud resources can be elastically scaled on demand to meet the
real-time demand. For instance, in order to handle a growing amount of work, scaling
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up a resource would be accomplished by resizing it. Secondly, different activities can
cooperate to share the available resources in order to realize a specific task or to re-
duce the cost. Hence, Cloud resources may be shared and utilized at the same time by
several tenants (in our case by several activities). Despite their wide-spread adoption
in industry, the management and verification of Cloud resources in BPs still not yet
mature enough. Mainly, considerable work [11, 42–45] have addressed the resource
perspective in business process models by integrating human resource allocation, de-
scription, representation, interactions, roles, etc. Whereas, a formal description and
representation of Cloud resources allocation as well as the assessment and verification
of their properties behavior are still missing. Moreover, traditional process modeling
standards such as BPMN do not support Cloud resource assignment and allocation
parameters setting for process activities.

Establishing the correctness of Cloud resources behavior in BPs is becoming chal-
lenging. By doing so, designers may identify critical usage scenarios that might lead
to emergent behaviors and could undermine the correctness of the process execution.
Having a complex process model allocating many resources with different properties
and dependencies, the designed process and the running process instances behavior
can easily deviate from users’ needs. For example, if an activity’s needed capacity
change at run-time, then its allocated resource should scale up to accommodate this
need. In addition, the designer should respect consistency rules such as: a non-elastic
resource should not be allocated to an activity if its offered capacity does not fit the
needed capacity. These problems are illustrated in Figure 1.5, the process user is
designing his/her process model with the necessary Cloud resources. The selected
resources may have one of the following types: store, compute or network. Also,
dependencies between resources can be captured. For instance, we consider the sub-
stitution dependency that allows to designate a substitute for a resource to perform
the same work as another one in case of its unavailability. Once designed, the de-
signer is wondering whether his/her process is correct in terms of resource allocation
behavior as well as the defined properties and constrains.

Adopting formal methods and techniques to model Cloud-based process models
and their resource allocation behavior can be very effective to validate and check
resource constraints. As they provide a reliable mathematical basis that results in
easily verifiable formal models, inconsistencies related to resource allocation and prop-
erties can be detected before deploying or even purchasing these resources from Cloud
providers.

In this thesis, we aim to extend the resource perspective in business processes
by considering Cloud resources. Hence, we need to formally describe and specify the
Cloud resource behavior in BPs while considering different properties and constraints.
For such purpose, we state the following research questions:

RQ4: How to formally specify and verify Cloud resource allocation behavior in BPs?

RQ5: How to integrate Cloud resources in BP models design?
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1.3 Objectives and Contributions

In the light of the aforementioned shortcomings, the core objectives of this doctoral
thesis are as follows:

• provide guidance and assistance to the analysts in process model con-
figuration with correct options. This objective is threefold: (1) formally
model and specify the process model configuration, (2) identify correct con-
figuration options with respect to different constraints and requirements, and
(3) reduce the state space explosion problem related to process configuration
verification.

• improve the support of Cloud resource specification and verification
in BPs. This objective is threefold: (1) precisely and formally model the Cloud
resource perspective in BPs; (2) verify the Cloud resource allocation behavior in
BPs; and (3) consider Cloud resources constraints and properties (i.e. elasticity
and shareability).

This work strives to achieve the above objectives by proposing three contribu-
tions. The first contribution proposes an automated stepwise approach to assist
the process models configuration in order to obtain correct and domain compliant
variants. We introduce a formal specification of the configurable process model and
the different configuration steps using the formal method Event-B. This specification
includes different constraints related to the process variant structural correctness.
Configuration guidelines referring to domain constraints are formally integrated as
well. We verify and prove the correctness of our Event-B specification using formal
proofs (Proof Obligations). These proofs allow to guarantee that the defined con-
straints are preserved by each configuration step and produce, thus, correct variants.
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Moreover, we adopt the validation of our formal model by animating our specifica-
tion using the plug-in ProB. Finally, this approach was automated by developing a
transformation tool using the ATL model transformation language.

The second contribution aims at especially achieving the behavioral correctness
that captures the dynamics of the executable configured process models. We propose
an automated approach based on a behavioral model to assist the design of process
variants. First, we define a formal model having precise and concise syntax and
semantics for configurable process models using Petri nets. Then, based on this
formal model, we use the Symbolic Observation Graph (SOG) [52, 53] in order to
cope with the combinatorial explosion problem. The SOG is a symbolic representation
formalism that allows to build an abstraction of the reachability state graph of the
formally modeled system. In this work, we adapt and extend the existing definition
and construction algorithm of the SOG graph in order to achieve such abstraction by:
(i) observing the configurable elements of the process that label the SOG arcs, and (ii)
hiding non configurable elements inside the SOG nodes. This reduced graph allows
to extract all the possible configuration choices with respect to the deadlock-freeness
property. Having these choices, the process user may select the combination that best
meets his/her expectations and needs while being ensured that it leads to a correct
process. Experiments have proven that the use of the SOG considerably reduce the
state space size.

The third contribution proposes an Event-B-based approach to formally model
and specify the resource perspective in BP models. The formal model allows for
assigning Cloud resources to BPs activities and verifying the correctness of their
allocation with respect to defined constraints and properties. In essence, we consider
two Cloud properties: the elasticity and the shareability. First, we formalize the
BP control flow perspective, then, we integrate the Cloud resources, their properties
and execution constraints into the model using refinements. We use Event-B tools to
prove and validate our specification by checking the defined properties and constraints
at each process execution step. This refinement approach produces a correct-by-
construction specification since we prove at each step the different properties of the
system. Hence, our formal model guarantees that the process execution does not face
failures and inconsistencies related to the resource sharing and elasticity properties
w.r.t activities capacity and resources capabilities. Finally, with the aim to offer a tool
that allows to assign Cloud resources to process activities, we developed an extension
of the BPMN 2.0 notation in the Signavio modeling tool.

1.4 Road Map

This doctoral thesis is divided into seven chapters.

• Chapter 2: Preliminaries presents the necessary background information
by introducing the process modeling languages as well as the formal descrip-



Road Map 27

tions and notations used throughout the thesis. The business process modeling
language BPMN, and the configurable business process modeling language C-
BPMN, as well as the formal methods Event-B and Petri nets are introduced.

• Chapter 3: State of The Art positions our work, by reviewing existing
literature on the verification of business process models. We also present existing
work addressing the support and the verification of process configuration. The
state of the art in the field of the formalization and the verification of the
resource allocation behavior in BPs is also considered in this chapter.

• Chapter 4: Assisting Correct Process Variant Design with Formal
Guidance describes our Event-B based approach that proposes the formal
specification of the process configuration allowing to assist designers to con-
figure, step-by-step, correct variants. The developed ATL transformation tool
is also pointed out in this chapter.

• Chapter 5: Extracting Deadlock-free Process Variants using Symbolic
Observation Graphs illustrates our SOG-based approach to assist the design
of process variants by generating all the possible configuration choices with
respect to the deadlock-freeness property. In this chapter, we evaluate our
approach using experiments in order to prove the reduction of the state space
size.

• Chapter 6: Towards Correct Cloud Resource Allocation in Business
Processes presents our Event-B-based approach to formally model and specify
the Cloud resource allocation behavior in BP models. We consider the elasticity
and the shareability properties of Cloud resources in this formalization. A
proof of concept is presented allowing to extend the BPMN 2.0 notation in the
Signavio tool for process modeling.

• Chapter 7: Conclusion and Future Work concludes this thesis by summa-
rizing the presented contributions and discussing potential future extensions.
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2.1 Introduction

This chapter presents the basic preliminaries and background needed for the under-
standing of our contributions described in the remainder of this manuscript.

In Section 2.2, we present graph based (configurable) process modeling languages
used to illustrate our research work. Then, Section 2.3 introduces the Event-B formal
method and the Petri nets formalism that we used for the formal modeling of the
both configuration aspect and resource perspective of business processes.

2.2 Process Modeling Languages

”Business processes are what companies do whenever they deliver a service or a
product to customers” [54].

The business process modeling refers to creating business process models that de-
scribe the activities an organization has to perform to achieve a particular business
goal, as well as their (i) execution order and constraints (i.e., control flow), (ii) re-
quired resources, e.g., humans or non-human/computer systems, (i.e., resource flow),
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and (iii) processed data and information (i.e., data flow). Both perspectives: control
flow and resource flow, are considered in the present thesis.

To model and represent business processes, a range of graphical process modeling
languages have been proposed such as BPMN [19], EPC [20], YAWL [21], UML
activity diagram [22], etc. Without limiting the generality of our work, we select and
use BPMN as input notation. BPMN is highly adopted by business analysts since it is
considered as the internationally recognized industry standard notation for business
process description.

A configurable process model is a model that captures multiple variants of a same
business process in a grouped manner. In our work, we use the Configurable BPMN
(C-BPMN) [9, 55, 56], an extension of BPMN, as a configurable process modeling
notation. An overview of BPMN and C-BPMN concepts is provided in the following
sections.

2.2.1 Business Process Model Notation (BPMN)

The Business Process Model Notation (BPMN)1 was first released in 2004 by the Busi-
ness Process Management Initiative (BPMI) [19]. The key objective of this graphical
notation is to support business process management by stakeholders of different roles;
e.g. IT architects, business analysts, process owners, etc. On the one hand, one can
model highly detailed end to end business processes while supporting the modeled pro-
cesses execution. On the other hand, as business stakeholders are notoriously averse
to standards, BPMN offers an increasing business support and an easier modeling
experience.

The BPMN elements can be grouped into four groups Flow Objects, Connecting
Objects, Swimlanes and Artifacts. Flow Objects are the basic graphical elements that
allow to define the behavior of the BPMN model. These elements are depicted in
Figure. 2.1. An activity (also called a task) represents a unit of work that should be
done. It is graphically represented as a rounded corner rectangle. Events include three
types : Start, Intermediate and End events. Each type represents something that
happens during the execution of the business process and is graphically represented
as a circle. Gateways (also called connector) define the control flow divergence, i.e.
split, and convergence, i.e. join. Gateway is graphically represented as a diamond
including a marker that indicates its type. Each type of gateway defines a run-time
decision:

• Exclusive OR (×): Based on conditions, a decision routes the sequence flow to
exactly one of the outgoing branches. Then, the merging waits for one incoming
branch to terminate execution in order to trigger the outgoing branch.

• Inclusive OR (◦): Based on conditions, one or more branches are activated.
Then, the merging waits for all active incoming branches to terminate execution

1In its latest version, BPMN was renamed to ”Business Process Modeling and Notation”



Process Modeling Languages 31

to trigger the outgoing branch.

• Parallel AND (+): When splitting, all outgoing branches are activated simulta-
neously. Then the merging waits for all incoming parallel branches to complete
before triggering the outgoing flow.

Flow Objects are connected to each other using Connecting Objects that include:
Sequence Flow, Message Flow and Association. A Sequence Flow shows the execution
order of flow elements. Message Flow determines the message flowing between pools
or flow elements in pools. An Association allows to associate Data objects to a flow
or to connect them to an activity.

Artifacts are used to provide more details and information about the business
process without affecting the sequence and message flows of the process. There are
three main types of artifacts: data object, group and annotation. For example, Data
object provides some data for an activity performance (capturing the data perspec-
tive). Swimlanes include: Pools and Lanes. Pools group a set of activities that have
some common characteristic, e.g. a specific role, a process participant (capturing the
resource perspective). A lane permits to divide a pool to group specific process steps.

Figure 2.1: The BPMN main elements

2.2.2 Configurable BPMN (C-BPMN)

Configurable BPMN (C-BPMN) is an extension of BPMN to introduce the notion
of variability in business process models. This variability is captured by restricting
the process behavior through configurable elements. The non-configurable elements
represent the commonalities in the configurable model. The configuration decision of
a configurable element is made at design-time [1]. C-BPMN includes two configurable
elements: activities and connectors, which are modeled with a thicker border.

A connector may be configurable to restrict its behavior by (i) changing its type
(e.g. from OR to AND), or/and (ii) restricting its incoming or outgoing branches.
A connector may change its type according to a set of configuration constraints [1]
(see Table 2.1). Each row corresponds to the initial type that can be mapped to one
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or more types in columns. For example, an OR type can be configured to any type
while an AND remains unchangeable. Let us take the example of the configurable
process example in Figure 2.2. The derived variant on the right hand side of the
figure is obtained if, first, the analyst does not need both activities B and C. This
refers to configuring s1 to a sequence starting with A (i.e. the outgoing branch of s3
starting with B is removed). Second, we suppose that the analyst needs the execution
in parallel of the activities D and E. This refers to configuring s2 (resp. j2 ) from
OR-split (resp. OR-join) to AND-split (resp. AND-join) while maintaining the same
outgoing (resp. ingoing) branches.

Table 2.1: Constraints for the configuration of connectors [1]

FROM-TO OR XOR AND seq

OR
√ √ √ √

XOR
√ √

AND
√

A

B

D

x X

E

Configurable process model

O O
s1 j1 s2 j2

Process
Configuration

Possible derived variant

C

A

D

E

+ +
s2 j2

Figure 2.2: A possible process configuration

Also, an activity may be needed in a process variant and not in another depending
on specific requirements. Hence, these activities should be configurable in order to be
included (i.e. configured to ON ) or excluded (i.e. configured to OFF ), or optionally
excluded (i.e. configured to OPT ) from the model [1] (see Figure 2.3). The last
configuration type refers to a run-time choice, whether to execute this activity or to
skip it. This OPT configuration type is out of scope of this thesis. As we discussed
about the variant in Figure 2.2, the analyst does not need the activities B and C.
This also refers to configuring B and C to OFF (they are removed). Whereas, if
he/she choose to maintain them, they will be configured to ON, hence, they will be
kept in the resulting variant.

2.3 Languages for Formal Process Representation

Due to the lack of formal semantics of the process modeling languages, such as BPMN
and C-BPMN, ambiguous interpretations remain possible and the verification and
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Figure 2.3: Possible choices of an activity configuration

validation of the designed process model is left to the testing and deployment phases.
As a consequence, building correct, efficient and trustable process models becomes
a major challenge. In this thesis, we use two formalisms that are Petri nets and
Event-B.

2.3.1 Petri Nets

Petri nets are state-transition systems that offer a formal model for concurrent sys-
tems. Unlike most of the process modeling notations such as those discussed in Section
2.2, they include a mathematical definition of their execution semantics. Petri nets is
a state-based technique that have a strong mathematical foundation and unambiguous
semantics for modeling the behavior of a system.

In the following, firstly, we formally define the Petri net’s syntax and semantics
as well as some notations. Then, we define its subclass Workflow net.

Syntax: A Petri net is formally defined as follows.

Definition 2.3.1 (Petri Net). A Petri net is a tuple N = 〈P, T, F,W 〉 s.t.:

• P is a finite set of places and T a finite set of transitions with (P ∪T ) 6= ∅ and
P ∩ T = ∅,

• A flow relation F ⊆ (P × T ) ∪ (T × P ),

• W : F → IN+ is a mapping assigning a positive weight to arcs.

A place p is called an input (resp. output) place of a transition t if there exists
an arc from p to t (resp. from t to p). Hence, we define the following notations.
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Notations:

- Each node x ∈ P ∪T of the net has a pre-set and a post-set defined respectively
as follows: •x = {y ∈ P ∪ T | (y, x) ∈ F}, and x• = {y ∈ P ∪ T | (x, y) ∈ F}.
This notation is extended to the sets of nodes X, s.t. X ⊆ P ∪ T , as follows:
•X =

⋃
x∈X

•x, and X• =
⋃
x∈X x

•.

- For a transition t, W−(t) ∈ IN|P | (resp. W+(t) ∈ IN|P |) denotes the vector
where, ∀p ∈ P , W−(t)(p) = W (p, t) (resp. W+(t)(p) = W (t, p)).

- A marking of a Petri net N is a function m : P → IN.

Semantics: Let m be a marking of a Petri net N and let t ∈ T be a transition,

• Enabling rule: the transition t is said to be enabled by m, denoted by m t−→,
iff W−(t) ≤ m.

• Enabling rule: when t is enabled by m, its firing yields a new marking m′,
denoted by m t−→m′, s.t. m′ = m−W−(t) +W+(t).

A Petri net transition t is enabled (i.e., may fire) once its input places are sufficiently
filled. Firing this transition t in a marking m consumes W−(t)(p) tokens from each
of its input places p, and produces W+(t)(p) tokens in each of its output places p.

•
p0

t0 p13

•
p3

t12 2
p2 t2

• •
p4

3

Figure 2.4: An example of a Petri net

An example of a Petri-net is illustrated in Figure 2.4. Places are represented
by circles, transitions by rectangles, and the structure of the graph by arcs. The
place p0 has one token denoted by a black dot. The arc from place p0 to transition
t0 denotes an ordinary arc, i.e., W (p0, t0) = W−(t0)(p0) = 1, indicating that when
firing t0 it consumes one token from p0 (i.e. p0 becomes not marked). similarly,
when firing t0 it consumes also one token from p4 (i.e. p4 becomes marked with
only one token). Whereas, the arc from transition t0 to place p1 has a weight 3, i.e.,
W (t0, p1) = W+(t0)(p1) = 3 indicating that when firing t0, it produces three tokens
in p1.
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Notations:

- For a finite sequence σ = t1 . . . tn, mi
σ−→mn denotes the fact that σ is enabled

by mi, and that its firing leads to mn.

- Given a set of markings S, we denote by Enable(S) the set of transitions enabled
by elements of S.

- The set of markings reachable from a marking m in N is denoted by R(N,m).

- Given the initial marking, denoted mi, the reachability graph of a Petri net N ,
denoted by G(N,mi) , is the graph where nodes are elements of R(N,mi) and
an arc from m to m′, labeled with t, exists iff m t−→m′.

- The set of markings reachable from a marking m, by firing the transitions of a
subset T ′ only is denoted by Sat(m,T ′). By extension, given a set of markings
S and a set of transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T

′).

- For a marking m, m 6→ denotes that m is a dead marking (i.e., there is no
transition s.t. m t−→ which means Enable({m}) = ∅).

A number of sub-classes of Petri Nets have been defined in the literature, we
specifically consider the Workflow (WF) nets [57, 58] which is tailored to express
business process models and is usually used as an intermediary formalism in the
modeling and the verification of the control flow of business processes. A transition is
equivalent to a task in high level process modeling languages (e.g., activity in BPMN).
The flow relation F is equivalent to the control-flow of a process model.

Definition 2.3.2 (WF-Nets). Let WF = 〈P, T, F,W 〉 be a Petri net and F ∗ is the
reflexive transitive closure of F. N is a Workflow net (WF-net) iff:

• there exists exactly one input place i ∈ P , s.t. |•i| = 0,

• there exists exactly one output place o ∈ P , s.t. |o•| = 0,

• each node is on a directed path from the input place to the output place, i.e.
∀n ∈ P ∪ T, (i, n) ∈ F ∗and(n, o) ∈ F ∗.

We note that the initial marking of WF where only i place is marked, is denoted
by mi, and the final marking where o is the sole place holding a token is denoted
by mf . Compared to classical Petri net, a WF-net has two particular places i and o
representing the initial and the final states of the workflow respectively. Yet, the se-
mantics of WF-nets remains as described above. An example of a WF-net is depicted
by Figure 2.5.
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•
i t0 p1

5

t1

2 p2

p3

t2 p4

t3 p5

t4 o

Figure 2.5: An example of a Workflow net

2.3.2 The Event-B Method

Event-B [50] is both a language and a method for formal specification and verification
of secure systems. It has been proposed by J-R Abrial as the successor of the classic B
Method [59]. Event-B has preserved the advantage and the simplicity of the B method
while making improvements in several aspects, including the specification of reactive
systems. Following the B Method, Event-B uses basic mathematical notations, first-
order logic and set theory. It supports a large part of the development life cycle, from
the specification/design phase to the implementation phase. This allows the early
errors detection which prevents from execution errors and facilitates maintenance.

The complexity of a system is mastered thanks to the refinement concept allowing
to gradually introduce the different parts that constitute the system starting from an
abstract specification to a more concrete one. The abstract specification describes
the fundamental properties of the system. Requirements and details are added incre-
mentally through the refinement process.

One benefit of using Event-B is the supporting eclipse-based RODIN2 platform
[60] allowing to analyze, check types, and generating proof obligations of the model.
For this aim, different external tools, e.g. Atelier B provers [61], animators, model-
checkers like ProB [62], can be plugged on RODIN.

2.3.2.1 Machines and Contexts

An Event-B specification is made of two elements: context and machine. The machine
is a fundamental component for the formal construction of a system in Event-B; it
specifies its dynamic part. It includes elements such as variables V , invariants Inv,
and events E that establish the system state change. The variables define the state of
the system to be specified. The possible values that the variables hold are restricted
using invariants written using first-order predicates. Invariants should remain valid
in each state of the system. Thus, they should be valid in the initial state and after
the execution of each event.

Machines often need static elements of the system such as constants C, sets S, and
axioms A that specify their properties. These elements are included in a context that
describes the static part of an Event-B specification. To have access to its elements,

2The Rodin Platform: http://www.event-b.org/platform.html
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a context is seen by a machine (i.e. SEES Context). The structure of machines and
contexts is depicted by Figure 2.6.

MACHINE
Name

SEES
Context

VARIABLES
V

INVARIANTS
Inv

EVENTS
E

END

CONTEXT
Name

EXTENDS
Other contexts

SETS
S

CONSTANTS
C

AXIOMS
A

END

Figure 2.6: Event-B machine and context

An event can be executed if it is enabled, i.e. all the conditions G, named guards,
prior to its execution hold. Among all enabled events, only one is executed. In this
case, substitutions Act, called actions, are applied over variables. In this thesis, we
restrict ourselves to the becomes equal substitution, denoted by (x := e). Each event
has the form depicted in Figure 2.7.

Name

ANY
X

WHEN
G

THEN
Act

END

Name

ANY
Xr

WHEN
Gr

THEN
Actr

END

Figure 2.7: Event-B event and refinement event

2.3.2.2 Refinement in Event-B

Refinement is a process of enriching or modifying a model in order to augment the
functionality being modeled, or/and explain how some purposes are achieved. Both
Event-B elements context and machine can be refined. A context can be extended by
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defining new sets Sr and/or constants Cr together with new axioms Ar. A machine
is refined by adding new variables and/or replacing existing variables by new ones Vr
that are typed with an additional invariant Invr. New events can also be introduced
to implicitly refine a skip event (i.e. It does not modify the already existing variables).
In this thesis, the refined events have the same form (see Figure 2.7).

The main advantages of the refinement process are as follows:

– Simplification of proof obligations (POs) that allow to check the model correct-
ness

– The complexity of the development is apportioned between the abstraction levels

A stepwise refinement approach produces a correct specification by construction since
we prove the different properties of the system at each step.

2.3.2.3 Verification and Validation of Event-B Models

This section describes two complementary techniques to ensure, respectively, the ver-
ification and the validation of an Event-B specification. In the verification step, we
formally check the properties of the system, which are expressed in terms of invariants,
using formal proofs (proof obligations). POs allows to prove that invariants (both the
abstract and the concrete ones) hold in all system states: they hold initially; and
each event preserves them. And then, we adopt the validation of our formal model
by animating our specification using the plug-in ProB. This step allows to discover
and observe the behavior of our specification.

Proof Obligations In order to demonstrate the model correctness, a collection of
proof obligations (POs) is generated by the Rodin tool [60]. These POs ensure that
invariants are preserved by each event. Therefore, for each event, we have to establish
that:

∀S,C, V,X. (A ∧G ∧ Inv ⇒ [Act]Inv)

where [Act]Inv gives the weakest precondition on the before state such that the exe-
cution of Act leads to an after state satisfying Inv.

To prove that a refinement is correct, we have to establish the following two proof
obligations:

• guard refinement: the guard of the refined event should be stronger than the
guard of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr). (A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

• Simulation: the effect of the refined action should be stronger than the effect
of the abstract one:
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∀(S,C, Sr, Cr, V, Vr, X,Xr). (A ∧Ar ∧ Inv ∧ Invr ∧ [Actr]Invr ⇒ [Act]Inv)

Formal definitions of all proof obligations are given in [50]. To discharge the
different proof obligations, the Rodin3 platform offers an automatic prover but also
the possibility to plug additional external provers like the SMT and Atelier B provers
that we use in this work. Both provers offer an automatic and an interactive options
to discharge the proof obligations. Complex proof obligations could be discharged
interactively using the proving perspective of Rodin shown in Figure 2.8.

Figure 2.8: Prooving in Rodin

ProB (model checker/ animator) ProB [62] is an animator and explicit auto-
matic model checker, originally developed for the verification and validation of soft-
ware development based on the B language. Developed at the University of Düsseldorf
starting from 2003, ProB 4 implements an automatic model checking technique to
check LTL (linear temporal logic) [49] and CTL (Computational Tree Logic) [63]
properties against a B specification. The core of ProB is written in a logical pro-
gramming language called Prolog. Its purpose is to be a comprehensive tool in the
area of formal verification methods. Its main functionalities can be summarized up
as follows:

3http://www.event-b.org/install.html
4https://github.com/bendisposto/probparsers
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1. ProB can find a sequence of operations that, starting from a valid initial state
of the machine, moves the machine into a state that violates its invariant,

2. Giving a valid state, ProB can exhibit the operation that make the invariant
violated,

3. ProB allows the animation of the B/EventB specification to permit the user
to play different scenarios from a given starting state that satisfies the invari-
ant. Through a graphical user interface implemented in Tcl/Tk, the animator
provides the user with: (i) the current state, (2) the history of the operation
executions that has led to the current state and (3) a list of all the enabled
operations, along with proper argument instantiations. In this way, the user
does not have to guess the right values for the operation arguments.

4. ProB supports the model checking of the LTL and CTL assertions.

In the domains of BPM and Service Oriented Computing, Event-B was especially
used to address the web services and services composition verification by using proofs
and refinements [64,65]. Specifically, properties related to the transactionnal behavior
of languages like BPEL are checked [66–68]. For instance, in these models, the set of
all basic services is defined in the CONTEXT, and available services are defined as
its variable subset in the MACHINES. Dependencies such as sequence, compensation,
abortion and cancellation are defined using relations in the INVARIANTS clause. The
behavior of services and transitions is insured by events. Other few approaches pro-
posed to verify business process models behavior [69,70]. For example, [69] propose a
translation of the BPMN constructs and features to Event-B model. The control flow
and data flow are considered. All possible processes and their instances, as well as
activities and their possible instances are represented by sets in the CONTEXT. Se-
quence and data flows, are mapped to functions in the INVARIANT clause. Triggers,
such as messages receiving, are captured by events.

In our thesis, we were inspired from these approaches especially in the specification
of the control flow of a process model. Our work is proof-oriented and specifies
a process model and all its properties (related to either configuration or resource
perspective) to obtain an Event-B model. All the Event-B specifications presented
in this manuscript have been verified within the RODIN platform. In Chapter 4,
Event-B is used to formally specify and verify the configuration of a process model.
Then, in Chapter 6, it is used to formally specify and verify the resource perspective
in a BP while especially taking into consideration Cloud properties and constraints.

2.4 Conclusion

This chapter provided the background that helps position our contributions. In fact,
it introduced two types of process modeling languages used in our work, namely
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informal business process modeling languages and notations for formal process spec-
ifications. We presented the Business Process Modeling Notation (BPMN) as an
example of business process modeling languages. We also introduced its extension
with configurable elements, namely the Configurable BPMN (C-BPMN). Formal def-
initions and notations were provided for the Event-B language and the Workflow nets,
which are a subclass of Petri nets. Throughout this manuscript, we use BPMN and
C-BPMN whenever we discuss process models and configurable process models re-
spectively. These notations serve as the starting points for building our approaches.
We also use the illustrated formal languages for specifying and identifying the essence
of process models in two main aspects: configuration and resource allocation, as well
as for reasoning about the correctness of the process models.
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3.1 Introduction

In this chapter, we survey the state of the art that allows to justify our problem
statement and to have a clear position regarding the existing work.

In this these, we are interested in two relevant process modeling perspectives:
the control flow, specifically the configuration aspect, and the resource perspective.
Since some structural or behavioral anomalies may occur in both perspectives, e.g.,
the designed variant may be stuck during execution, or a resource may be allocated
to process activity while not having a sufficient capacity. We propose to discuss the
verification challenge in the BPM field. Specifically, we aim to address the verification
of business process configuration in order to answer the question: How to assist and
verify business process configuration? Then, we aim to examine the process resource
allocation behavior in order to answer the question: How to verify Cloud resource
allocation in business process models?

43
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In the following, we firstly review the state of the art on the verification of business
process models in Section 3.2. Then, in Section 3.3, we study the major existing
approaches that support the process model configuration and the design of variants
while discussing the supported properties and constraints. Afterwards, a broader
view on the resource perspective in BPs is taken in Section 3.4, with a special look at
the Cloud aspect and the allocation behavior verification and formalization. By the
end on the last two sections, we give a comparison of the related approaches and we
identify their shortcomings in order to motivate our research work.

3.2 Verification of Business Process Models

The process verification is the task of determining and checking, whether it exhibits
erroneous behaviors. This refers to process correctness checking. Hence, the verifica-
tion could be applied at design time in order to detect possible errors, and if so, the
model should be modified before execution. The validation aims at checking whether
the system actually behaves as expected. The later is context dependent and can only
be applied with knowledge of the intended business process [71]. Since PAIS rely on
process models for organization’s work execution, careful verification and validation
of process models at design time can greatly improve the reliability and efficiency of
such systems. Therefore, there have been many efforts to achieve that by defining
formal semantics of process models and applied various logics and formal methods.
Since the most widely used process modeling languages do not have formal semantics,
notably EPC [20], BPMN [19], UML activity diagram [22]. Therefore, these modeling
techniques need to be mapped into formal models in order to be verified, e.g., [72–74].

At the beginning, most proposed approaches focused on simple languages, e.g.,
workflow graph model [75], which are even less expressive than classical Petri nets.
After that, the use of Petri net formalism was widely investigated thanks to its un-
derstandable and graphical notation as well as well-defined semantics. The Workflow
nets [57,76] (cf. Section 2.3.1) are its most notably sub-class, that were used as inter-
mediate formalism to verify and analyze workflows/business processes, e.g., [77–85].
Other formal methods were used for verifying BP based on process algebra, such as π-
calculus [86] (e.g., [87,88]) and event calculus [48] (e.g., [89]). Moreover, a number of
proof-based approaches have been proposed to verify business processes [64,66–68,90].
In fact, verifying a formal specification using formal proofs is very important in order
to guarantee the preservation of correctness criteria. Other work applied techniques
for showing consistency of BPs using model checking [91, 92]. These techniques are
used to automatically verify basic requirements of a BP such as the termination and
reachability of states.

Using the different formalisms, proposals usually verify the control flow of a BP
against a correctness criterion. A popular correctness property used in this context
is the soundness. Firstly, a structural soundness [3] criterion has been defined in the
context of Petri nets such that: (1) a process should have exactly one initial node
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and one final node, and (2) each node in the process model is on a path from the
initial node to the final one. Then, with the introduction of Workflow nets, the original
(behavioral) soundness criterion [57,80,93,94] is proposed and then adapted for other
modeling languages. A workflow is said to be sound if and only if, (i) when started,
it can always complete processing (option to complete), (ii) it terminates properly,
i.e. no running tasks when the process ends (proper completion), and (iii) there is
no dead parts or activities, i.e., that will never be executed (no dead transitions).
So, in a sound workflow, anomalies such as deadlock and livelock are absent [95].
In order to decide the soundness of a given process, one can analyse and check its
reachability graph that refers to explicitly representing the different states of a process
instance. Other authors suggest weakening the soundness notion: e.g. the relaxed
soundness [96] states that for each transition there should be at least one proper
execution, which does not prohibit potential deadlocks and livelocks. Also, the notion
of weak soundness [97] allows for dead transitions.

Nevertheless, the above mentioned approaches have mainly focused on verifying
the control flow of process models. The verified processes do not support neither
the configuration aspect nor the allocated resources. On the one hand, the resource
perspective is not well defined in particular when business processes are deployed in
Cloud environments (cf. Section 3.4). Hence, we seek to address the verification
of this perspective. On the other hand, having a configurable process model, the
presented proposals can be used to check every single configured process that can
be derived from it. The configuration that generates an incorrect variant should be
excluded from the set of possible configurations. However, this approach is costly
and may be not feasible in case of configurable process models that yield a large
number of process variants. Our aim is therefore to define an approach that allows
to find correct configuration steps without computing all the possible configurations.
We need to consider correctness properties and to use adequate formal methods. In
the next section, we discuss the existing work on process configuration and on the
verification of different properties and requirements.

3.3 Support and Verification of Business Process Con-
figuration

The goal of configuring a process model is to customize and adapt an original model in
order to better fit the user’s specific needs and requirements. Several approaches have
been proposed to model variability in configurable process models. We distinguish
two types of variability: i) variability by restriction and ii) variability by extension
[98]. The first type is used to restrict the behavior of the configurable process that
should contain all possible behavior of the variants. The second type is used to add
behavior to the configurable process which means that the later process contains the
most common behavior and needs to be extended. Note also that it is possible to
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combine the two types. In Section 3.3.1, we review the major approaches of variability
regarding both types in order to motivate our choice to one of them.

An adaptation of a configurable process model can produce errors in terms of
structure (e.g. disconnected nodes), behavior (e.g. deadlocks and livelocks), and do-
main (e.g. not satisfying a domain constraint). Therefore, the configuration decisions
should not be taken freely and appropriate guidance should be provided. Hence, we
present, in Section 3.3.2, approaches that support domain constraints and decision
guidance. And in Section 3.3.3, we examine the correctness properties supported in
the literature.

3.3.1 Configuration Support

In order to facilitate the design of configurable process models, a number of process
modeling languages have been recently extended with variable elements, namely Con-
figurable Event-driven Process Chain (C-EPC) (e.g. [4, 31, 34, 36, 99]), Configurable
Business Process Model Notation (C-BPMN) (e.g. [6,9,55,100–102]) and Configurable
Yet Another Workflow Language (C-YAWL) (e.g. [6, 102]).

Based on some of them, many approaches have been proposed to represent vari-
ation points in process models. We can classify them into five categories, based on
their underlying variability mechanism: hiding and blocking of elements, configurable
nodes, annotations, fragment change, and templates and rules.

Hiding and Blocking In [29,30], authors introduce a language-independent method-
ology to configure and restrict a workflow model by applying hiding and blocking
operators on edges (i.e. transitions) of Labeled Transition Systems (LTSs). The
blocking decision means that the transition will never be executed. Whereas, the
hiding decision means that the transition will be skipped but the corresponding path
still considered. This transition were called silent action. This approach was applied
in [4] to suggest the extension of YAWL, namely C-YAWL, with the so-called ports as
variation points while still using the blocking and hiding techniques for configuration.
Each task has input port and output port representing respectively the join of arcs
through which the task can be enabled, and the split of arcs that can be enabled after
the task’s completion. For instance, having the example of Figure 3.1, the OR-split
connector is configured by activating the input port and only two the output ports
having condition b and d (cf. green icons). Since each enabled output port refer to
only a single flow, the split behavior is changed into an XOR-split behavior.

Another approach using blocking and hiding operations is introduced in [5]. Au-
thors use CoSeNets (Configurable Service Nets) to represent configurable process
models as a tree-like representation. Each node of a CoSeNet represents a process
operator and each leaf represents a task. Hence, CoSeNet captures a block-structured
process model, an example of such structure is depicted by Figure 3.2. The configu-
ration of this process consists in hiding ad blocking special nodes that connect nodes
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Figure 3.1: An example of configuring a C-YAWL connector: from an OR-split to an
XOR-split [4]

and leafs. Because of its no cycles syntactic restrictions, this structure guarantee
soundness by construction of the configurable process and derived variants. However,
it may be not applicable in case of complex processes (e.g., processes with cycles)

Figure 3.2: An example of a CoSeNet with the corresponding Petri net [5]

Configurable Nodes Rosemann et al. in [1, 34] introduce Configurable EPC (C-
EPC) notation that is an extension of the EPC language. Configuration is achieved
by restricting the behavior of the C-EPC in order to obtain an EPC process model.
This is done thanks to configurable nodes and by assigning to each node one con-
figuration choice or alternative. EPC notation has three main control-flow elements:
event, function and gateway. Only active elements, i.e. functions and connectors,
may be configurable in C-EPC notation. In addition, C-EPC introduce two new
constructs: configuration requirements and guidelines. The role of the configuration
requirements and guidelines is to assist the users in choosing the configuration choices.
We can differentiate configuration requirements and guidelines by being hard and soft
constraints respectively. But both constraints are expressed using logical predicates
of the form if-then rules. An example of a C-EPC process model is illustrated in
Figure 3.3. Configurable nodes are marked with a thicker border. There are three
configurable functions, one configurable XOR connector, one configuration require-
ment and one configuration guideline.
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Figure 3.3: An example of a C-EPC process model [1]

Annotations The PESOA (Process Family Engineering in Service-Oriented Appli-
cations) project [100] defines so-called variant-rich process models as process models
extended with stereotype annotations to identify variation points. For instance, the
variable elements of a process model are marked as variation points using the stereo-
type << V arPoint >>. These stereotypes are applied to both BPMN models and
UML Activity Diagrams. In case of BPMN, annotations can only be applied to ac-
tivities (as well as their connected data objects), While operators’ variability is not
considered. In addition, variant correctness issues were not considered as well.

Fragment change: Provop approach In [6], authors propose the provop (PRO-
cess Variant by OPtions) approach to model process variants by applying a set of
defined operations (i.e., a group of change operations INSERT/DELETE/MOVE
fragment, MODIFY attribute) to a reference process model, namely a base process.
These change operations (e.g. those that usually occur together) are grouped into
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Options. Authors also define option constraints that are similar to the configuration
guidelines and requirements proposed by [1]. Annotated adjustment points are the
points where, by means of the later operations, either a restriction or an extension of
the behavior of the base model can be made.

In Figure 3.4, an example of a base process model having two adjustment points is
provided. Then, three possible variants are derived using specific three options. For
instance, a behavior restriction of the original process is obtained in the first variant
by applying DELETE operation, while a behavior extension is obtained in the second
variant by applying the operation INSSERT process fragment.

Figure 3.4: The provop approach of variant modeling [6]

Templates and Rules Akhil Kumar and Wen Yao [35] introduce the use of con-
figuration rules in order to configure a generic process model, the so-called process
template. A template is represented by a block-structured tree-like process model.
The rules may restrict or extend the template’s behavior via specific change oper-
ations (e.g., insert or delete a task). Authors provide a formal representation of
these business rules and an individualization algorithm that derives the process vari-
ants, given the process template and the configuration rules. One advantage of this
template structure, is that it is relatively simple and can facilitate process variant
configuration. Also, it is proven that change operations cannot cause any syntactical
nor behavioral issues in this structure. However, similar to [100] approach, the defined
configuration rules can only be applied on workflow tasks, but not to connectors.

To represent our configurable process models, we choose to follow the approaches
that use the configurable nodes for two reasons. Firstly, these approaches have a basic
solid theoretical work on reference configurable process modeling in [1]. Secondly, in
our work, we aim at starting from a most generic process that hold all the possible
behavior and, while configuring the model, the designer do not need to add any
information content to that original business process. Instead, the designer restrict
the behavior of the model. Moreover, the modeling language BPMN that we use as a
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starting point to each contribution was extended with configurable nodes to facilitate
configuration.

3.3.2 Domain and Guidance Support

Questionnaires la Rosa et al. [7] propose a novel approach that provides guidance
in configuring process models by means of a set of structured questionnaires. This
configuration approach helps stockholders with no knowledge in the process modeling
field by answering a set of questions expressed in natural language. Questions are
defined by domain experts based on domain constraints, and answered by design-
ers. The answers are then analyzed and used to configure one or more configuration
points in a C-EPC model. This approach is supported by the Synergia1 and Apro-
more2 tools. Similarly, in [103], authors applied the questionnaire approach to derive
executable YAWL models from C-YAWLs. Although this approach offers abstraction
and guidance for the process models configuration, the consideration of correctness
criteria is missing.

Figure 3.5: An example of a questionnaire model [7]

Feature Models Inspired from configuration management in Software Product
Line Engineering (SPLE) [104], authors, in [8, 36, 105], support process models vari-
ability based on feature models [106]. In [105], a process model is considered as
family of services, which are related via data dependencies. Each service can have
any types of variation points that are represented with one or several feature models.

1www.processconfiguration.com
2www.apromore.org
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Each feature represents a property of a specific domain and refers to one configura-
tion alternative. Hence, a configuration is obtained by selecting the desired features.
Families of workflow can be defined as compositions of feature models using proposed
composition operators. However, only the configuration of an activity’s inputs and
outputs is considered. Hence, the control flow cannot be customized. Moreover, the
approach does not provide guidance in configuring feature models. Also, the SPLE
based approaches require that the domain analysts should be familiar with the feature
models. An example of a feature model and a possible configuration is provided in
Figure 3.6.

Figure 3.6: An example of a configured feature model generated after configuration
step [8]

Although the above-mentioned two approaches consider relevant domain con-
straints, they require considerable manual effort and many steps to perform by a
domain expert in order to create the domain model.

Configuration Guidelines Extracted from Process Repositories Assy et
al. [9,107] attempted to address this issue by the use of configuration guidelines for as-
sisting analysts in BPMN configuration. They propose to extract these configuration
guidelines from business process repositories of existing configurations. This allows
to learn from the users’ experience in process configuration. They define a tree-like
structure, so-called configuration guidance model, to represent the configuration op-
tions and the inclusion and exclusion dependencies between them in order to define an
order of configuration choices. In Figure 3.7, an example of a configuration guidance
model is extracted. It gives an hierarchical ordering of the configurable elements of
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a process model based on the tree structure: the parent element is configured before
the child element. However, this approach do not consider any correctness criterion.
In fact, after applying the guidelines, it does not guarantee that the derived variants
do not exhibit structural or behavioral issues.

Figure 3.7: An example of a configuration guidance model [9]

3.3.3 Correctness Support

While configuration approaches allow for an easy adaptation of variants to individual
needs, domain approaches attempted to provide further adaptation by considering
domain constraints and guidelines. However, the correctness of the obtained variants
is not necessarily provided. Since the inter-dependencies between configuration deci-
sions may be very complex and of all kinds, the designers may easily be mistaken in
their configuration choices which may result in critical errors. To address this prob-
lem, a number of approaches have attempted to reach correct process configuration
either syntactically or behaviorally. Syntactical correctness is related to the derived
process structure, for example, by avoiding disconnected nodes. Behavioral correct-
ness is related to ensuring correct behavior of the variants, for example, by avoiding
execution anomalies such as deadlocks and livelocks. Traditionally, the behavioral
correctness related to process configuration can be handled by verifying every single
possible configuration using existing work on verification of business processes and
workflows (cf. Section 3.2). This raised the well known state space explosion prob-
lem. Also these methods are too time-consuming and may be a labor-intensive work
especially in case of large and complex process models with an exponential number
of possible configurations.

In [37, 38], Petri net was used to formalize and verify correctness and soundness
properties of Configurable EPC (C-EPC) processes. They derive propositional logic
constraints that guarantee the behavioral correctness of the configured model. How-
ever in these approaches, authors achieve correctness by checking constraints at each
configuration step. Also, authors impose that the C-EPC process model should be
syntactically correct. In [39], they focused on the behavioral correctness of the config-
ured model and moved the checking up to design time. Thus, propose to find all fea-
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sible configurations prior to execution. This approach is inspired from the ”operating
guidelines” used for partner synthesis [108]. Practically, the used synthesis algorithm
use Open Petri net as a intermediate formalism and to represent the so-called configu-
ration interface. This interface is constructed by adding, for each configurable task, a
number of places, transitions and arcs to the original model. This not only adds com-
plexity to the model, but also results in allowing potentially unreal behaviors. Based
on this interface, an automaton is constructed to represent the configuration guide-
lines. Each path on this automaton corresponds to a feasible configuration. However,
the considered correctness criterion in this work is the weak termination, which means
that when deriving a variant holding unreachable (i.e. dead) transitions, the model
will still be considered behaviorally correct. Finally, this technique was applied on
C-YAWL and the configuration is built by hiding and blocking transitions.

Moreover, some approaches support correctness because of the imposed con-
straints on the structure of the configurable model. For instance, CoSeNets [5] achieve
correctness because of their syntactic restrictions to avoid cycles. The same apply for
approaches [8,35,36,105] that are based on block-structures processes. However, this
type of processes suffers from restrictions in terms of structure and could be not
applicable in case of complex processes.

Regarding the Provop approach, authors in [10] discussed five steps, depicted
in Figure 3.8, for ensuring soundness of derived variant models. This method does
not require the base model to be sound. However, although they propose to reduce
the number of variants to check using context information, they still suffer from the
exponential number of the possible options permutations. So, this approach is not
feasible in large processes and runs into the state space problem. Also, they propose
to check soundness a posteriori. Hence, an incorrect variant is discarded at the end
without any guidance to avoid it.

Figure 3.8: The five-steps approach for guaranteeing Provop soundness [10]

3.3.4 Synthesis

Table 3.1 provides a comparative overview of the presented configuration approaches
in light of our evaluation criteria (inspired from [98]): (1) Process Modeling Language,
(2) Correctness Support, (3) Domain Support (i.e., compliance with domain-specific
configuration constraints), (4) Guidance Support (i.e., providing guidance to users
when taking configuration decisions), and (5) Formal Specification (i.e., providing
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rigorous description in terms of mathematical notations). We further decompose the
Correctness Support column into two sub-criteria: (i) structural , and (ii) behavioral
correctness. Note that, we used ”+” to express that the corresponding criteria is
fulfilled by the corresponding approach, ”-” if it is not fulfilled, and ”±” if it is
partially fulfilled.

First, several approaches have been proposed to model variability and to facilitate
the design of the configurable process models [4, 6, 9, 29–31, 34, 36, 55, 99–102]. The
variability in configurable process models is handled by restricting or/and extension.
We take the standpoint of the configuration by restriction which corresponds to pre-
serving the desired behavior of the model, while removing the undesired one. We
specifically use the configurable nodes approach since, as stated in Section 2.2, we
picked the (C-)BPMN language for modeling (configurable) process models. This no-
tation have two types of configurable nodes: activities or connectors. A configurable
activity may be kept or excluded from the variant. The behavior of a configurable
connector may be restricted either by changing its type or by restricting its outgoing
or incoming sequence of nodes.

Then, on the one hand, some approaches proposed to guide the configuration
or/and to support domain-based constraints [7–9, 36, 103, 105, 107]. Many of them
require considerable manual steps from a domain expert to create the variant model.
This may be an tedious task in case of large processes. While these approaches have
not considered any correctness criteria, others attempted to verify and ensure the
design of correct variant. We note that basic syntactical constraints were considered
when defining configurable process model [1, 34]. Some approaches achieved cor-
rectness thanks to their restrictive block-structured processes [5, 8, 35, 36, 105]. Most
importantly, other work attempted to ensure the behavioral correctness of the derived
variants [4, 6, 10, 29, 30, 37–39]. Whereas, most of them still suffer form the exponen-
tial number of possible configurations. The most notably work addressing this issue
is [39], however, the considered correctness criterion is the weak termination that
permits unreachable nodes. Finally, even if the above proposals try to achieve con-
figuration correctness, they nevertheless often lack the necessary guidance to become
adaptable to a given domain and do not support the BPMN notation.

In our work, we propose to sustain the two aforementioned groups of approaches
in order to offer the needed support for domain, guidance, and correctness. We
propose to guide and assist the designer in deriving correct variants. Hence, we
target to apply formal methods to verify the process configuration while respecting a
set of constraints dealing with correctness and domain. For that aim, we propose two
complementary approaches. The fist contribution in Chapter 4 deals with deriving
structurally correct and domain-compliant variants. We also verify erroneous patterns
that may affect the behavior of the process (which explains the ± symbol in the
column behavioral correctness of Table 3.1). We use Event-B tools to perform an
incremental verification by checking these constraints at each intermediate step of
the configuration procedure. The second contribution in Chapter 5 addresses the
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behavior verification of process configuration in order to derive deadlock-free variants.
This work addresses the problem of the configurable models state-space explosion by
using an abstraction of the reachability graph, namely the SOG.

hhhhhhhhhhhhApproaches
Criteria

Process Modeling Correctness Support Domain Guidance Formal

Language structural behavioral Support Support Specification
[4, 29,30] C-YAWL + ± - - +

[5] CoSeNets + ± - - ±
[1, 34] C-EPC + - + - +
[37,38] C-EPC + + - - +

[39] C-EPC + + + - +
[100] annotated BPMN - - - - ±
[6, 10] any + + - - ±
[35] Block-structured + + - ± ±

[7, 103] C-EPC/ C-YAWL ± - + + ±
[8, 36,105] Block-structured + + + - +

[9,107] C-BPMN - - + + -
Chapter 4 C-BPMN + ± + + +
Chapter 5 C-BPMN + + + + +

Table 3.1: Evaluation of related configuration approaches

3.4 Formalization and Verification of the Resource Allo-
cation Behavior in Business Processes

Having discussed in the previous sections some aspects about the control flow per-
spective of business processes, now we focus on the resource perspective that concerns
the management of human as well as non-human resources during the process lifecy-
cle. Motivated by the need to achieving optimal process execution, efficient resource
allocation in BPs is being increasingly explored. Actually, few works are handling the
resource perspective in BPM and they mainly focused on human resources behavior
and allocation (cf. Section 3.4.1). Whereas, the usage of Cloud resources to allow
activities execution of such processes is becoming very challenging (cf. Section 3.4.2).

3.4.1 Resource Allocation in Business Processes

In [40], series of Workflow Resource Patterns were proposed to capture the various
ways in which human resources are represented and executed in workfows. Patterns
allow to assess the expressiveness of process models in a language-independent man-
ner. The creation patterns are of specific interest to our work since they are related to
resource selection and specify different ways of resource allocation to activities. For
instance, direct-allocation (Pattern R-DA) and capability-based allocation (Pattern
R-CBA) are two examples of allocation patterns. The direct-allocation provides the
ability to specify at design time the resources that will execute a process activity.
While the capability-based allocation provides the ability to allocate a resource to
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an activity based on its specific capabilities compared to the corresponding activity
specific requirements.

Stroppi et al. [42] developed an extension to BPMN models that enrich process
models with human resources definition. This work also provides an extension of
the BPMN 2.0 metamodel and comply with the assignment patterns defined by the
workflow resource patterns. Afterwards, same authors [43] propose to identify re-
source perspective aspects and requirements in executable workflow specifications (in
Workflow Management Systems (WfMSs)), and provide a supporting tool implemen-
tation.

Also, based on these resource patterns, few works focused on the human resource
behavior management [11,44]. Lately, Cabanillas et al. propose a complete graphical
notation for assigning human resources to business process activities, the so-called
RALph (Resource Assignment Language Graph). Formal semantics of this notation
is obtained through its mapping to Resource Assignment Language (RAL) [45], a
textual language (modeling language independent) for defining resource assignments
in business processes. In the RALph notation, four types of resource entities are pro-
posed ( as depicted by Figure 3.9): persons, roles, positions, and organizational units.
Capability entities are persons having specific capabilities. Resource assignments are
expressed using connectors (i.e. same connectors linking activities in control flow).
Resources dependencies as well as resource-activity dependencies were considered.

Figure 3.9: The RALph approach for graphic resource assignments [11]

In [109], a formal approach was developed for deriving an optimal work schedule
while considering dependencies and resource conflicts between work items. Authors
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used Answer Set Programming (ASP) for formal specification while taking into ac-
count human and non-human local resources.

As we can notice, the main focus in the literature regarding resource perspective is
on human resources and their representation. However, they do not consider neither
the representation of Cloud resources in BPs nor the verification of their allocation
behavior.

3.4.2 Cloud Resource Allocation in Business Processes

Nowadays, there is a clear need from organizations to benefit from the Cloud Comput-
ing technologies in order to optimize their business processes. In such a multi-tenant
environment, dynamically scalable and often virtualized resources on demand are of-
fered. The benefits of Business Process Management BPM in a Cloud environment
have been highlighted by different authors [110,111]. In this section, we review some
existing approaches that focused on the cloud resources allocation to business pro-
cesses.

Existing researches usually focused on aspects like orchestration, scheduling and
optimization. For instance, approaches in [112–116] were interested in workflow
scheduling strategies and resource allocation algorithms that allow to use Cloud re-
sources in an optimal way. The elasticity property of processes is considered either
at an IaaS [112] or a Paas [113,114] Cloud.

Moreover, some early research efforts adressed the issue of resource allocation op-
timization in business processes execution. For example, trying to minimize cost and
to improve the execution performances, [117] propose a mechanism for resource allo-
cation decision modeling based on Reinforcement Learning. The technique suggested
in [118] predicts the execution path in order to estimate Cloud resource requirements
prior to execution using process model metrics. Then, based on this prediction as
well as pricing strategies, it allows an efficient allocation of the cloud resources while
optimizing the leasing cost. Byun et al [119] propose an algorithm, named PBTS
(Partitioned Balanced Time Scheduling), that aims to find the minimum number of
computing resources for workflow execution under a user-specified deadline.

However, only non-functional behavior of the resource allocation is most often
considered, in terms of response time and financial cost. The functional behavior
correctness of resource allocation with respect to Cloud properties is still missing

3.4.3 Verification of Resource Allocation Behavior

As we have explained in Section 3.2, existing approaches tackling formal verification
of business business processes have mainly considered the control flow perspective
and transactional behavior of services, but have neglected the resource perspective.
Few attempts and research studies based on formal methods are currently addressing
the formal modeling and analysis of Cloud properties. For instance, authors, in [120],
adopted a temporal logic called CLTLt(D) (Timed Constraint LTL) to formalize the
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elastic behavior of Cloud-based systems. Authors formalize properties related to hori-
zontal elasticity, resource management and quality of service QoS. Then, they propose
to check whether these properties hold or not during execution of a cloud-based sys-
tem. Authors in [121] used bigraphical reactive systems (BRS) for specifying both
structural and behavioral aspects of elastic cloud-based systems. Then, they used
Maude’s model-checking invariants technique to simulate and verify the elasticity
property by ensuring that the Cloud system scale up/down when needed. Gambi
et al. [122] adopted the state transition systems to formalize Cloud-based systems
while taking into account elasticity properties. This formalization is then used to
automatically generate load test cases focusing on plastic behavior of elastic systems.
Plasticity is verified by ensuring that, for each scaling up, there should correspond
a scaling down. While, the aforementioned approaches considers the elasticity prop-
erties of resources or services in Cloud-based systems, they do not take into account
the process perspective.

Authors in [123] defined a formal model based on Petri nets for horizontally elastic
service-based business processes (SBPs) in the Cloud. Authors proposed to obtain
an elastic SBP by composing its WF-net with each Petri net-based elastic controller
of its services. The elasticity properties were formally characterized using Compu-
tational Tree Logic (CTL). Amziani et al. [124] defined a formal framework for the
description and evaluation of service-based business processes elasticity and their
strategies. Thereafter, they proposed to assess the correctness of the defined du-
plication and the consolidation mechanisms (i.e., the horizontal elasticity operators)
by guaranteeing that the semantics of the SBP is preserved. An extension of this
approach was proposed in [125] in order to support stateful SBP. In a similar vein,
authors in [126], suggested an Event-B based approach for formal specification of
correct elastic component-based applications. Horizontal elasticity mechanisms are
expressed in terms of events. The verification of the preservation of the functional
and non-functional properties is done using proof obligations and animation. Never-
theless, in the above mentioned approaches, only the horizontal elasticity that refers
to replicating or removing instances of cloud services is taken into account.

Very recently, some approaches have attempted to formalize Cloud resource alloca-
tion problem in BPs, but considered other Cloud constraints rather than the elasticity
and the shareability particularilly. For example, in [127], authors formalized tempo-
ral constraints for cloud resources allocation in cloud-based business processes. And
in [128] authors formalized cloud resource allocation in the context of social business
processes.

3.4.4 Synthesis

Table 3.2 summarizes the evaluation of the approaches presented above and align them
with important criteria in the context of our work. Hence, we consider: (1) Process
perspective, (2) Resource perspective, (3) Human resource, (4) Cloud resource, and
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(5) the verified Cloud properties. As previously mentioned, we use ”+” if the criteria
is fulfilled and ”-” otherwise.
hhhhhhhhhhhhApproaches

Criteria
Process Resource Human Cloud Verified Cloud

perspective perspective Resource Resource properties
[11,40,42–45] + + + - -

[112–119,127,128] + + - + -
[106,120,121] - - - + Horizontal elasticity

[123–126] + - - + Horizontal elasticity

Table 3.2: Evaluation of related resource-based approaches

We can observe that process perspective, resource perspective and cloud proper-
ties verification are only partially covered or not at all. The resource perspective is
actually well addressed, however only focusing on human resources (line 1). Mainly,
an extension of business process models with the representation and the definition of
human behavior is proposed [11,40,42–45]. However, less attention has been paid to
Cloud resource allocation in BPM field. In our work, we aim at supporting the Cloud
resource allocation representation and verification in BP models.

Indeed, researches on Cloud resource management can be classified into two
groupes: in the BPM context, or in the Cloud-based systems context. On the one
hand, in the first group (line 2), approaches integrated Cloud resources into process
models, however they were only interested either in allocation aspects such as or-
chestration, scheduling and optimization; or in only temporal and social constraints
formalization [112–119,127,128]. They did not provide formal specification or repre-
sentation for the Cloud resource elasticity behavior and no verification techniques are
used. While in our work, we propose to formally specify resource allocation in BPs
that integrates Cloud aspects. We also seek for checking Cloud resource properties
and constraints.

On the other hand, in the second group (line 3), approaches basically focused on
the verification of horizontal elasticity aspects of resources in Cloud based systems
rather then processes [106,120,121]. Moreover, attempts to verify elasticity of process
models in a Cloud context (line 4) were limited to horizontal elasticity at the service
level without considering the vertical elasticity aspect [123–126]. By contrast, our
work considers particularly the vertical elasticity of Cloud resources. In fact, we aim
to check behavior of the resource allocation correctness with respect to two Cloud re-
source properties: (1) the vertical elasticity that consists of the ability to dynamically
adjust process resources by scaling their capabilities up/down when needed (accord-
ing to the process workload), and (2) the shareability of resources which consists of
the ability to use resource by multiples activities.

In this work, we propose to use the Event-B formal method. Compared to the
other formal languages, the strong point of Event-B is that it supports the incremental
design and modeling of the process using the step-wise refinement concept. Instead
of defining the whole system properties and functionalities at the same time (what
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other approaches often do), Event-B allows to gradually introduce the different parts
of the system starting from an abstract model to a more concrete one. Thus, at each
specific abstraction level, a set of properties and rules is introduced. Then, these
properties are maintained at each refined level. The consistency between the different
refinement levels is obtained by formal proofs.

3.5 Conclusion

This chapter serves to present different approaches that are relevant to our work.
First we reviewed the existing work on the verification of business process models.
Then, we classified the existing approaches related to Business process configuration
into three major categories: configuration-based approaches, domain and guidance-
based approaches, and the ones dealing with ensuring variants correctness. We briefly
introduced them and we provided their principles. Regarding the existing approaches
related to the resource allocation behavior in business processes, we presented three
groups: we started by the ones dealing with the resources perspective in BPM field,
then we looked at specifically the Cloud resources integration in BPs, and finally we
tackled the verification issue in this perspective.
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4.1 Introduction

Depending on specific needs of an organization, a configurable process model need to
be adapted and configured. As we explained in chapters 1 and 3, manually apply-
ing configuration choices is far from trivial, especially in case of large configurable
process models involving complex inter-dependencies between their elements configu-
ration choices. Such inter-dependencies may be difficult to unravel without guidance.
In addition, manually considering business domain constraints may be also a tedious
and error-prone task. In the light of these difficulties, the business analyst may be
easily mistaken in selecting configuration choices leading to incorrect derived variants
in terms of structure, behavior or domain. This chapter addresses the research ques-
tions: RQ1: How to identify configuration choices that satisfy designers and clients
requirements? and RQ2: How to assist the designer in selecting the correct configu-
ration choices?

To answer these questions, the contribution of this chapter is to provide guidance
and assistance in the process configuration task with adequate possible choices at each
step. Since formal methods have proven their benefits in performing mathematical
analysis allowing to rigorously and precisely reason about a system. We propose a for-
mal specification describing the process configuration task using Event-B. Moreover,
we formally define different constraints and properties that each configuration step
should preserve. These constraints and properties are related to (i) configuration, (ii)
structural correctness; and (iii) domain-based configuration guidelines. Moreover, at
each configuration step, our specification should consider previously selected choices.
Hence, the approach targets to achieve the following objectives:

– Objective 1 : analyze and check the correctness of a configurable process model;

– Objective 2 : derive correct variants with respect to different constraints at each
configuration step;

– Objective 3 : integrate Configuration guidelines [1] (i.e., if-then rules based on
specific domain or context) in our formal model to ensure that the obtained
variants comply with their domain constraints.

Once obtained, our formal specification is verified using Event-B provers, e.g. Ate-
lierB provers, that produce proof obligations allowing to ensure that these constraints
are preserved by the configuration steps. Also, using animation, with ProB, we ex-
hibit a significant witnesses that different scenarios can be played. Thus, we ensure,
before the proof phase that can be long and complex, that constraints and properties
are evaluated at each step and hence the resulting variant preserves them as well.
So, Event-B tools allows to perform an incremental verification by checking different
constraints at each intermediate step of the configuration procedure. Thus, we obtain
a correct-by-construction model that assists the designers in their configuration task.
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In the following, we start by giving an example to motivate our work in Section
4.2. Then, we present an overall overview of our approach in Section 4.3. We illus-
trate our approach first step that consists in the formalization of a regular process
model in Section 4.4. Section 4.5 formally introduces configurable elements as well as
corresponding constraints. Afterwards, configuration steps that represent our config-
uration model for extracting correct variants are formalized in Section 4.6. Finally, we
formalize configuration guidelines taking into account domain constraints in Section
4.7. The verification and validation of this approach using the RODIN tool, as well
as its evaluation using experiments on a case study are depicted in Section 4.8.

The work in this chapter was partially published in conference proceedings [129,
130].

4.2 Motivating Example

Let us introduce our motivating example used through the present chapter. A con-
figurable process model for the hotel reservation and car rental agency is captured by
Figure 4.1. The configurable process is modeled using the Configurable BPMN (C-
BPMN). Without limiting the generality of our work, we use C-BPMN as notation for
configurable process modeling, since BPMN is considered as the internationally rec-
ognized industry standard notation for business process description. It is also worth
noting that our work can be easily adapted to other graph-based business process
modeling notations such as C-EPC.
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Figure 4.1: A configurable process model of a hotel and car reservation agency

In this process, the customer first submits a request through a web form (a1 ).
Next, five main functionalities are proposed: (1) the user profile search or creation:
the process fragment in the red dashed rectangle, (2) the recommendation of hotels
or/and cars: the process fragment in the green dashed rectangle; (3) hotels or/and
cars searching and selection: the process fragment in the blue dashed rectangle; (4)
checking phase: the process fragment in the violet dashed rectangle; (5) discount offer:
the process fragment in the black dashed rectangle; and, (6) payment: the process
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fragment in the yellow dashed rectangle. Finally, an email of confirmation is sent to
the customer using the activity a17.

As we have explained in Chapter 2, the C-BPMN notation includes two config-
urable elements: activities and connectors. In this example, 20 configurable elements
(12 connectors and 8 activities) are highlighted with a thicker border. For instance,
activities a1 and a18 are non-configurable, so they should be included in every con-
figured variant. Whereas, the activity a9 and the connector s1 may vary from one
process to another, as they are configurable. This configurable process will be shared
between different users from different branches. Moreover, it will be configured ac-
cording to their preferences and regulations.

In Figure 4.2, we give an example of a process variant of this configurable process
modeled with BPMN 2.0 and used by a hotel reservation branch. Here, we suppose
that this branch does not need the recommendation functionality for cars (i.e., activity
a4 is removed). But, it needs the execution of the search and selection for hotels
only (i.e., the entire branch starting from a7 is removed). Additionally, it needs a
simultaneous execution of the hotel availability checking and the credit card checking
tasks (i.e. this refers to modifying the connectors s6 and j7 types from OR to AND
while removing activity a10 ). Finally the branch choose to adopt online payments
only (i.e., activity a16 is removed). As a result of such configuration choices, we
obtain the individualized process of Figure 4.2.
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Figure 4.2: A hotel reservation variant of the configurable process in Figure 4.1

Configuration correctness checking In Figure 4.3a, s5 has been configured to
a sequence starting from a9 (the edge between s5 and a7 disappears). Thus, the
produced process is not sound, since activities a7 and a8 become unreachable from
the initial event: they are dead as they can never be executed. In this chapter,
we aim at preventing such configurations by formally ensuring that every connector
configuration involving outgoing or incoming branches restriction is implicitly followed
by a transformation phase allowing to remove the isolated activities from the resulting
process. An isolated node is detected either if it is unreachable from the initial event,
or it is not on a path leading to a final event.

Besides checking this structural property of the configurable process model, we
aim also to prevent problems that may affect the soundness of the derived process
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variants [95]. In the following, we illustrate two error patterns [95] that would happen
during the process configuration resulting from mismatches between splits and joins:
deadlock and lack of synchronization.

• In Figure 4.3b, the join operator j2 has been configured to an XOR while the
connector s1 had been already configured to an AND-split. The two outgoing
branches from the AND-split will be activated, however, the XOR-join needs
the completion of exactly one of its incoming branches. This leads to multiple
terminations of the process referred to as lack of synchronization problem.

• In Figure 4.3c, the connector s4 has been configured to an XOR-split and the
corresponding join j4 to an AND-join. This implies a deadlock, as only one
branch is activated after the XOR-split, whereas the AND-join needs the com-
pletion of all its incoming branches.

The prevention of these erroneous situations will be discussed in detail in Section
4.5.
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Figure 4.3: Examples of configuration mistakes

Configuration guidelines To comply with specific domain business needs, the
process analyst needs further guidelines to derive specific variants. Configuration
guidelines provide recommendations and proposed best practices for a specific domain
[1]. An example of such guidelines satisfied by the variant of Figure 4.2 is: ”if the
hotel recommendation functionality is included (i.e. a3) in the derived variant, then
the hotel searching functionality (i.e. a7) should be also included.” These guidelines
are expressed in the form of logical If-Then-rules where the if and then parts contain
configurations of different configurable elements. Such rules considerably increase
the difficulty of manually applying configuration options. Hence, we will discuss the
integration of these constraints into our configuration approach in Section 4.7.

Now, we assume that, in Figure 4.4, a process analyst is designing a ”hotel and car
reservation” process variant starting from the configurable process model. Here, when
configuring a split connector, e.g. s1, or a join connector, e.g. j4, respectively; the
designer should wonder about (point (1)) the configured type, the number of output or
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input branches respectively; or (point (2)) the already configured connectors in order
to take them into account. Regarding configurable activities, e.g. a3, designer should
choose whether to include or to exclude them from the resulting process variant
(point (3)). The same principle applies for the rest of configurable elements. To
answer these wonderings while configuring correctly, he/she should consider, at the
same time, constraints related to configuration (e.g., an AND connector should not
be configured to a sequence), as well as structure and domain constraints discussed
above. Configuration steps with respect to all these constraints will be formally
specified in Section 4.6. Note that, our contribution consists not only in proving the
correctness of the process configuration steps but also in guiding analyst choices with
respect to these constraints using the ProB animator (cf. Section 4.8.2).

Web form

request (a1)
?

s1

X
s2

O
j2

Find user

profile (a2)
O

s3

Recommend

hotels (a3)

Recommend

cars (a4)

O
j1

New user

(a5)

Which type?

How many outputs?

(1)

Include?

Exclude?
(3)

How others were
configured?

(2)

Search hotel

(a7)

O
s4

Select hotel

(a8)

Search car

(a9)

O
s5

Select car

(a10)

O
j3

?
j4

Select

package (a6)

O
s6

Check credit

card (a11)

Check hotel

availability

(a12)

Check car

availability

(a13)

O
j5

X
s7

Discount

(a14)

Request

aborded (a18)

X
s8

X
j6

Online

payment (a15)

Cash

payment (a16) Confirmation

(a17)

Figure 4.4: A hotel and car reservation process variant designing

4.3 Approach Overview

This section gives an overview of our contribution detailed in the next sections. Fig-
ure 4.5 depicts the configuration model that we propose in this chapter allowing to
assist the designer in his/her decisions leading to correct process variants. Basically,
using Event-B as a formal method, we defined a model of two abstraction levels: the
first level introduces our model for process model configuration allowing to preserve
correctness (machine M0). In this machine, we formally specify a process model (cf.
Section 4.4) as well as configurable elements and the corresponding constraints (cf.
Section 4.5). Configuration steps and their correctness are ensured by events and
invariants (cf. Section 4.6). Next, configuration guidelines are formally integrated
to our model in the second abstraction level as a model refinement of the first level
(machine M1, cf. Section 4.7). Event-B defines proof obligations to guarantee that
the invariants are preserved by all events (see Section 4.8.1).
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Figure 4.5: Our approach overview

First of all, on the top left side of the Figure 4.5, we have as input of our ap-
proach the Event-B representation of the configurable process model. Its correctness
is verified with respect to the different properties expressed using invariants. The
configuration can start only if all the invariants are verified. This allows to achieve
our objective 1 (defined in Section 4.1). Then, the analyst uses ProB animator [62]
to perform configuration steps involving each element’s configuration (cf. Section
4.8.2): firstly, the guards of each event are evaluated (step 1). These guards include
both correctness and domain constraints. Moreover, events guards check for each
connector’s configuration, the type of the previously configured ones in order to pre-
vent eventual mismatching. Then, only events whose guards are fulfilled are enabled
(step 2). Thus, the configuration step can be applied (step 3). The set of potential
configuration options is updated after each step. These steps are repeated (step 4.i)
while there are configurable elements. As a result, the analyst derives a correct and
domain-compliant process variant (step 4.ii), satisfying our objectives 2 and 3.

4.4 Formal Specification of a Business Process Model

The control-flow (or process) perspective describes activities and their execution or-
dering through different constructors, which permit flow of execution control [47]. In
this subsection, we introduce the first step of our formalization which consists of two
abstraction levels in order to consider this process perspective.



68 Assisting Correct Process Variant Design with Formal Guidance

4.4.1 Business Process Model Graph

A business process consists of a set of activities that are performed in coordination
in an organizational and technical environment. These activities jointly realize a
business goal [3]. More formally, a business process model is composed of a number
of activities or tasks which are connected to form a directed graph. Thus, we present
an abstract formal definition of a business process model as follows.

Definition 4.4.1 (Business process model). A business process model is a directed
graph Bp = < NODES, Initial, F inal, SEQ,CON Type > where:

• NODES is the set of nodes that may be either activities ACT , split connectors
CON S, or join connectors CON J ;

• Initial ∈ ACT in the unique initial activity;

• Final ⊂ ACT in the non-empty set of final activities;

• SEQ : NODES ←→ NODES is edges connecting two nodes and is defined as
the control flow relationship between them;

• CON Type : CON S∪CON J −→ TY PES is a function that assigns for each
connector, either a split or a join, a type in {OR,XOR,AND}

In the following subsection, we use this definition in the Event-B modeling of a
business process.

4.4.2 Business Process Modeling using Event-B

We start the formal modeling of our configuration approach using Event-B by intro-
ducing the first level of our specification which holds processes, activities and their
relationships. The semantics of the Event-B mathematical symbols used throughout
this chapter are illustrated in Appendix B.

Firstly, we present the context C0 depicted by Listing 1 which holds the following
finite sets: (i) BPS (axm1 ), which defines the set of possible processes, (ii) NODES
(axm2 ), which contains three values denoting types of nodes (axm3 ): activities (i.e.
ACTS ), split connectors (i.e. CON S ), and join connectors (i.e. CON J ), and (iii)
TYPES, which defines three types of connectors (axm4 ): OR, XOR and AND. In
order to initialize our model, we use constants to represent the different elements of
these sets.
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Listing 1: Context C0’s constants and sets

CONTEXT C0
SETS BPS NODES TY PES
CONSTANTS ACTS CON S CON J AND XOR OR

{a1} {a2} {a3} ... {s1} {s2} {s3} ...
AXIOMS

axm1 : finite(BPS)
axm2 : finite(NODES)
axm3 : partition(NODES,ACTS,CON S,CON J)
axm4 : partition(TY PES, {AND}, {XOR}, {OR})
axm5 : partition(ACTS, {a1}, {a2}, {a3}, ...)
axm6 : partition(CON S, {s1}, {s2}, {s3}, ...)

...

Afterwards, we define the machine M0 which sees the context C0 described above.
The variables of M0 and their typing invariants are given in Listing 2. We define
a variable BP to store the created processes. To map each process to its nodes, we
introduce the relation BP Nodes from BP to NODES (Inv2 ). We define the start
and the end events as activities using respectively the total function Initial (Inv3 )
and the relation Final (Inv4 ); since we assume that a process has exactly one initial
activity but may have several final ones. In BPMN, each connector, either a split or
a join, has a type. This is modeled using the total function CON Type (Inv5 ). The
execution ordering between the different nodes is modeled using the total function
SEQ (Inv6 ).

Listing 2: Machine M0’s variables and typing invariants

MACHINE M0
SEES C0
VARIABLES BP BP Nodes Initial F inal SEQ CON Type
INVARIANTS

Inv1 : BP ⊆ BPS
Inv2 : BP Nodes ∈ BP ↔ NODES
Inv3 : Initial ∈ BP → ACTS
Inv4 : Final ∈ BP ↔ ACTS ∧ dom(Final) = BP
Inv5 : CON Type ∈ BP Nodes . (CON S ∪ CON J)→ TY PES
Inv6 : SEQ ∈ BP → (NODES ↔ NODES)

4.5 Formal Specification of a Configurable Process Model

To take the configurable nodes into account, we define a total function Configurable Nodes
(Inv22, Listing. 3) returning a Boolean value to state whether a given node is config-
urable or not in each process in which it appears.

We assume that a configurable process could be changed by applying a sequence
of operations on it (e.g. excluding an activity or changing a connector type). So, at
each configuration step, we define the process change using the partial function
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Listing 3: Configuration invariants

Inv22 : Configurable Nodes ∈ BP Nodes→ BOOL
Inv23 : Is Configuration Of ∈ BP 7→BP
Inv24 : Is Configuration Of = Is Configuration OFFAct ∪ Is Configuration ONAct ∪

Is Configuration OR S ∪ Is Configuration OR J ∪
... ∪ Is Configuration ToSeq

Is Configuration Of (Inv23, Listing. 3). For instance, a couple (bp2, bp1 ) belongs
to Is Configuration Of if and only if at least one potential configuration has been
applied on bp1 in order to obtain a configured process bp2. Inv24 asserts that
these configurations could affect either (i) activity configuration, by excluding (i.e.
Is Configuration OFFAct) or including it (i.e. Is Configuration ONAct), or (ii) con-
nector configuration, by restricting splits outgowing branches (i.e. Is Configuration OR S,
Is Configuration XOR S and Is Configuration AND S ), by restricting joins incoming
branches (i.e. Is Configuration OR J, Is Configuration XOR J and Is Configuration AND J )
or by keeping only one branch (i.e. Is Configuration ToSeq). These configuration
types are further detailed in the following sections.

Structural Constraints In order to ensure consistent and structurally correct pro-
cess control flow, we define a set of constraints to be respected. We illustrate some of
them in Listing 4:

• Except the initial and the final nodes, each activity have exactly one incoming
(Inv11 1) and one outgoing arc (Inv12 2).

• A split connector has exactly one incoming (Inv13 ) and at least two outgoings
arcs (Inv14 ).

• A join connector has exactly one outgoing arc (Inv15 ), and at least two incom-
ings arcs (Inv16 ).

Listing 4: Structural constraints invariants

....

Inv11 : ∀bp.(bp ∈ BP ⇒ (ACTS / SEQ(bp)) ∈ ACTS ∩ BP Nodes[{bp}] \ Final[{bp}]
→ BP Nodes[{bp}] \ Initial[{bp}]

Inv12 : ∀bp.(bp ∈ BP ⇒ (SEQ(bp) . ACTS) ∼∈ ACTS ∩ BP Nodes[{bp}] \ Initial[{bp}]
→ BP Nodes[{bp}] \ Final[{bp}]

Inv13 : ∀bp.(bp ∈ BP ⇒ CON S / (SEQ(bp) ∼) ∈ CON S ∩BP Nodes[{bp}]� NODES)
Inv14 : ∀bp, nd.(bp ∈ BP ∧ nd ∈ CON S ∧ bp 7→ nd ∈ BP Nodes⇒ card(SEQ(bp)[{nd}]) ≥ 2)
Inv15 : ∀bp.(bp ∈ BP ⇒ CON J / SEQ(bp) ∈ CON J ∩BP Nodes[{bp}]� NODES)
Inv16 : ∀bp, nd.(bp ∈ BP ∧ nd ∈ CON J ∧ bp 7→ nd ∈ BP Nodes⇒ card(SEQ(bp) ∼ [{nd}]) ≥ 2)
....

1A / f denotes a domain restriction: A / f = {x 7→ y|x 7→ y ∈ f ∧ x ∈ A}
2The inverse of a function f , (f−1), is denoted in Event-B as (f ∼).



Formal Specification of a Configurable Process Model 71

A process is considered to be structurally sound [3] if it fulfills the following two
conditions:

• all nodes of the process can be activated, i.e. every node can be reached from
the initial activity, as depicted by Inv20 in Listing. 5 where cls3 is the transitive
closure of the relation SEQ(bp); and

• for each activity in the process, there is at least one possible path leading from
this activity to a final activity, i.e. the termination is always possible. This
condition is captured by Inv21 of Listing. 5.

Listing 5: Soundness constraints invariants

Inv20 : ∀bp, node.(bp 7→ node ∈ BP Nodes ∧ node 6= Initial(bp)⇒ node ∈ (cls(SEQ(bp)))[{Initial(bp)}])
Inv21 : ∀bp, node.(bp 7→ node ∈ BP Nodes ∧ node /∈ Final[{bp}] ⇒

(cls(SEQ(bp)))[{node}] ∩ Final[{bp}] 6= ∅)

Erroneous patterns The configuration of a business process model may affect the
soundness by two types of potential errors: lack of synchronization and deadlocks [95].
These situations result from a mismatch between splits and joins. To formally prevent
these situations during configuration procedure, we defined six invariants: three for
the splits and three for the joins. These invariants should be preserved by all the events
that we define in the following subsections to capture the configuration operations.

An example of the lack of synchronization situation is captured by joining with an
XOR operator, a control-flow that was split by an AND operator (cf. Figure 4.3b).
The two outgoing branches from the AND-split will be activated, however, the XOR-
join needs the completion of exactly one of its incoming branches. Thanks to Inv25
(Listing. 6), this situation leading to an improper termination is not allowed in our
model. Specifically, having a AND-split operator ops (line 2), for each couple of
outgoing nodes n1 and n2 (line 3), the first common node opj (lines 4 to 6) should
be an AND (line 7) or a not yet configured OR connector that should be eventually

Listing 6: Synchronization invariant

1 Inv25 : ∀bp, ops, n1, n2.(bp 7→ ops ∈ BP Nodes . CON S
2 ∧ CON Type(bp 7→ ops) = AND
3 ∧ n1 ∈ SEQ(bp)[{ops}] ∧ n2 ∈ SEQ(bp)[{ops}] ∧ n1 6= n2
4 ⇒ (∀opj.opj ∈(∪t.t ∈ ((cls(SEQ(bp)))[{n1}] ∪ {n1})
5 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2}) ∧ SEQ(bp) ∼ [{t}] ∩ (((cls(SEQ(bp)))[{n1}] ∪ {n1})
6 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2})) = ∅ | {t})
7 ⇒ (CON Type(bp 7→ opj) = AND
8 ∨ (CON Type(bp 7→ opj) = OR ∧ Configurable Nodes(bp 7→ opj) = TRUE)) ))

3cls(r) denotes the closure of the relation r defined, for each relation (r ∈ S ↔ S), by:

(1) cls(r) =
⋃

i=1..∞ ri ; (2) r1 = r ; and (3) for each n >= 2rn = (r; rn−1)

The transitive closure formulations were expressed as machine theorems.
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configured as an AND (line 8). Note that, Having two nodes n1 and n2, the first
common node is the first node which belongs to the transitive closure of both nodes
n1 and n2

Similar invariants are defined to ensure a deadlock-free control flow which is an
important criterion for soundness. We aim to guarantee the absence of situations
where a node can never be activated (cf. Figure 4.3a). We model such situations
using Inv26 in Listing. 7. This invariant asserts that an OR-split or an XOR-split
should not be followed by an AND-join. Basically, having a split type different from
AND (lines 2 and 3), we check that, for each couple of outgoing nodes n1 and n2
(line 4), the first common node (lines 5 to 7) is not an AND-join (line 8).

Listing 7: Deadlock-freeness invariant

1 Inv26 : ∀bp, ops, n1, n2.(bp 7→ ops ∈ BP Nodes . CON S
2 ∧ (CON Type(bp 7→ ops) = XOR
3 ∨ (CON Type(bp 7→ ops) = OR ∧ Configurable Nodes(bp 7→ ops) = FALSE))
4 ∧ n1 ∈ SEQ(bp)[{ops}] ∧ n2 ∈ SEQ(bp)[{ops}] ∧ n1 6= n2
5 ⇒ (∀opj.opj ∈ (∪t.t ∈ ((cls(SEQ(bp)))[{n1}] ∪ {n1})
6 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2}) ∧ SEQ(bp) ∼ [{t}] ∩ (((cls(SEQ(bp)))[{n1}] ∪ {n1})
7 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2})) = ∅ | {t}))
8 ⇒ CON Type(bp 7→ opj) 6= AND ))

In the following section, we tackle the configuration procedure. Hence, we define
configuration operations to apply on a business process as well as a set of configuration
constraints to be respected.

4.6 Formal Specification of Configuration Steps

In this section, we introduce the formalization of process elements configuration:
activity configuration, and connector configuration. In this formalization, each con-
figuration step is performed by a single event. In order to derive correct variants,
we define a set of constraints using invariants and event guards. Then, we prove
that each event preserves them, which implies that the erroneous situations presented
above will be avoided, namely the deadlock and the lack of synchronization.

4.6.1 Activity Configuration

A configurable activity could be included or excluded in a process variant according
to the process analyst choice. To define this activity configuration, two events and
two invariants defining configuration constraints are introduced.

With regard to invariants, they allow to define the configuration constrains before
and after variables change by the defined events. For instance, we take the example of
excluding an activity, the invariant inv27 (cf. Listing 8) insures that for each couple
(bp2, bp1) belonging to Is Configuration OFFAct (line 2), such that bp2 process
results from bp1. Then, there exists an activity act ; such that: (i) act should be
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configurable activity belonging to bp1 (lines 4 to 5); (ii) act is the only difference
between bp1 nodes and bp2 nodes (line 6); (iii) act and its dependencies are removed
from bp1 and a new dependency linking its predecessor and its successor is created in
bp2 (line 7); (iv) all activities other than act retain the same configuration (lines 8 to
9); (v) all connectors retain the same type (lines 12 to 13); and (vi) initial and final
activities remain the same (lines 10 to 11). Likewise, a second invariant is defined to
constrain the activity preservation after its configuration.

Listing 8: OFF Activity Configuration invariant

1 Inv27 : ∀bp1, bp2. (bp1 ∈ BP ∧ bp2 ∈ BP ∧
2 bp2 7→ bp1 ∈ Is Configuration OFFAct
3 ⇒
4 ∃ act.(act ∈ ACTS ∧ act ∈ BP Nodes[{bp1}]
5 ∧ bp1 7→ act 7→ TRUE ∈ Configurable Nodes
6 ∧ BP Nodes[{bp1}] \BP Nodes[{bp2}] = {act}
7 ∧ SEQ(bp2) = (({act} C− SEQ(bp1)) B− {act}) ∪ ((SEQ(bp1)) ∼ [{act}]× ((SEQ(bp1))[{act}])) )
8 ∧ (∀ actx. actx ∈ ran({bp1} / dom(Configurable Nodes)) \ {act}
9 ⇒ Configurable Nodes(bp2 7→ actx) = Configurable Nodes(bp1 7→ actx) )
10 ∧ Initial(bp2) = Initial(bp1)
11 ∧ Final[{bp2}] = Final[{bp1}]
12 ∧ ∀con. (con ∈ BP Nodes[{bp1}] ∩ (CON S ∪ CON J)⇒
13 CON Type(bp1 7→ con) = CON Type(bp2 7→ con)) )

With regard to events, activity configuration is performed through either: (i)
ConfigureACTON event which keeps the activity; or (ii) ConfigureACTOFF event
which excludes it. We present in Listing. 9 the ConfigureACTOFF event. Based on a
configurable process bp1, a configured process bp2 is a result of excluding an activity
act. As guard, in addition to typing ones (grd1 and grd2 ), act must be configurable
(grd3 ). This event allows bp2 to inherit from bp1 : (i) its nodes whilst removing act
(act2 ), (ii) its initial and final activities (act3 and act4 ), (iii) all its nodes relations
(i.e. SEQ(bp1)) while removing act dependencies and creating a new one connecting
act successor and predecessor (act5 ), (iv) its configurable nodes (act6 ), and (v) the
types of its connectors (act7 ). Finally, we define bp2 as a configuration of bp1 whilst
excluding act (act8 ). Similarly, the event ConfigureACTON allows to maintain the
same process by keeping the configurable activity. The only change applied on the
resulting process consists in making the activity as non configurable.

4.6.2 Connector Configuration

A connector configuration represents a decision point that is of relevance during the
process configuration life cycle. Each decision has to consider the following require-
ments: (1) the configuration constraints for each type of connector (e.g. an AND
could not be configured to an XOR), (2) only configurable nodes can be removed in
order to avoid unreachable nodes, and (3) the connectors types matching checking in
order to prevent erroneous situations.
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Listing 9: Excluding activity event

ConfigureACTOFF , ANY bp1 bp2 act
WHERE

grd1: bp1 ∈ BP ∧ act ∈ ACTS ∧ bp1 7→ act ∈ BP Nodes
grd2: bp2 ∈ BPS \BP
grd3: Configurable Nodes(bp1 7→ act) = TRUE

...

THEN

act1: BP := BP ∪ {bp2}
act2: BP Nodes := BP Nodes ∪ ({bp2} × (BP Nodes[{bp1}] \ {act}))
act3: Initial(bp2) := Initial(bp1)
act4: Final := Final ∪ ({bp2} × (Final[{bp1}]))
act5: SEQ(bp2) := (({act} C− SEQ(bp1)) B− {act}) ∪((SEQ(bp1)) ∼ [{act}]× SEQ(bp1)[{act}])
act6: Configurable Nodes := Configurable Nodes ∪ (t node.node ∈ BP Nodes[{bp1}] \ {act}

| {bp2 7→ node 7→ Configurable Nodes(bp1 7→ node)})
act7: CON Type := CON Type ∪ (t con.con ∈ BP Nodes[{bp1}] ∩ (CON S ∪ CON J)

| {bp2 7→ con 7→ CON Type(bp1 7→ con)})
act8: Is Configuration OFFAct := Is Configuration OFFAct ∪ {bp2 7→ bp1}

Concretely, in order to obtain a well-structured configured process, an invariant for
each configuration choice should be respected. For instance, in case of OR-split
configuration, the invariant Inv29 (see Listing.10) ensures that for each couple (bp2,
bp1) belonging to Is Configuration OR S (line 1) there exists an OR split operator ops
(line 3) which belongs to both bp1 and bp2 nodes (line 4) such that ops is configurable
in bp1 (line 5) and non configurable in bp2 (line 6). Also other connectors in the
processes do not change type (lines 7-8). According to this configuration, some nodes
(line 9) as well as their dependencies (line 10) may be removed when restricting ops
outgoings. No additional dependencies are created as well. Finally, the initial and
final activities always remain the same (lines 11 to 12).

Listing 10: Or Split configuration invariant

1 Inv29 : ∀bp1, bp2.(bp1 ∈ BP ∧ bp2 ∈ BP ∧ bp2 7→ bp1 ∈ Is Configuration OR S
2 ⇒ (
3 ∃ ops.(ops ∈ CON S ∧ bp1 7→ ops 7→ OR ∈ CON Type
4 ∧ ops ∈ BP Nodes[{bp1}] ∧ ops ∈ BP Nodes[{bp2}]
5 ∧ bp1 7→ ops 7→ TRUE ∈ Configurable Nodes
6 ∧ bp2 7→ ops 7→ FALSE ∈ Configurable Nodes
7 ∧ ∀con.(con ∈ BP Nodes[{bp1}] ∩ (CON S ∪ CON J) \ {ops}
8 ⇒ CON Type(bp1 7→ con) = CON Type(bp2 7→ con)))
9 ∧ BP Nodes[{bp2}] ⊆ BP Nodes[{bp1}]
10 ∧ SEQ(bp2) ⊆ SEQ(bp1)
11 ∧ Initial(bp2) = Initial(bp1)
12 ∧ Final[{bp2}] = Final[{bp1}] ) )

These configuration choices are insured by two events (either split or join) for each
connector type. A first set of events model the split configuration: ConfigureORSplit,
ConfigureXORSplit and ConfigureANDSplit. A second set of events model the join
configuration: ConfigureORJoin, ConfigureXORJoin and ConfigureANDJoin.

For instance, Listing.11 illustrates the event ConfigureORSplit. This event allows
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configuring a configurable split connector ops (grd3 ) from OR type (grd4 ) to any
type to (grd5 ) (as OR could be configured to any type, see line 1 of Table 2.1). This
event enables also to preserve the branches starting by nodes in nodes. Obviously,
the number of remaining branches should be greater than two (grd6 ). However, each
branch can be removed only if all its nodes are configurable (grd8 ). Furthermore,
our model avoids connectors types mismatching by considering corresponding join
connectors. For example, using grd11, for each two outgoing branches n1 and n2, if
the corresponding join is an AND, then the split should be configured to an AND as
well.

Listing 11: Or Split configuration event

ConfigureORSplit , ANY bp1 bp2 ops nodes
to deletedNodes subgraph conToSeq

WHERE

grd1: bp1 ∈ BP ∧ ops ∈ CON S ∧ bp1 7→ ops ∈ BP Nodes
grd2: bp2 ∈ BPS \BP
grd3: Configurable Nodes(bp1 7→ ops) = TRUE
grd4: CON Type(bp1 7→ ops) = OR
grd5: to ∈ TY PES
grd6: nodes ⊆ SEQ(bp1)[{ops}] ∧ card(nodes) ≥ 2
grd7: deletedNodes = (∪zz. zz ∈ BP Nodes[bp1] \ {Initial(bp1)} ∧

zz /∈ (cls(SEQ(bp1) \ (ops× (SEQ(bp1)[{ops}] \ nodes))) [{Initial(bp1)}]) | {zz})
grd8: deletedNodes ⊆ Configurable Nodes v [{TRUE}][{bp1}]
grd9: subgraph = (deletedNodes C− (SEQ(bp1)\ ({ops} × (SEQ(bp1)[{ops}] \ nodes)))) B−deletedNodes
grd10:conToSeq = (∪x.x ∈ CON S ∧ card(subgraph[{x}]) = 1 | {x})

∪ (∪x.x ∧ CON J ∧ card(subgraph ∼ [{x}]) = 1 | {x})
grd11: ∃n1, n2.( n1 ∈ nodes ∧ n2 ∈ nodes ∧ n1 6= n2
∧ ( (∃opj.opj ∈ (∪t.t ∈ ((cls(SEQ(bp1)))[{n1}] ∪ {n1})

∩((cls(SEQ(bp1)))[{n2}] ∪ {n2})
∧ SEQ(bp1) ∼ [{t}] ∩ (((cls(SEQ(bp1)))[{n1}] ∪ {n1})∩

((cls(SEQ(bp1)))[{n2}] ∪ {n2})) = ∅ | {t})
∧ CON Type(bp1 7→ opj) = AND ))

⇒ to = AND
...

THEN

...

Similarly, the join operator configuration may depend on one or more splits. Thus,
the corresponding split of each two ingoing branches is taken into account by checking
its configured or not yet configured type using guards. For instance, in the event deal-
ing with configuring OR-join, namely ConfigureORJoin, we add the grd9 in Listing.12
to verify that: If there exists two distinct nodes n1 and n2 belonging to opj incom-
ings (line 1), and having the first common previous node (lines 2-3) configured to an
XOR type (line 4), then opj should not be configured to an AND (line 5). Hence, this
condition guarantees a deadlock-free configuration of this join operator. Similarly, we
add other guards to avoid the lack of synchronization situation.

Listing 12: Or join guard

1 grd9 : ∃n1, n2.( n1 ∈ nodes ∧ n2 ∈ nodes ∧ n1 6= n2
2 ∧ ( (∃ops. ops ∈

(tt. t ∈ ((cls((SEQ(bp1)) ∼))[{n1}] ∪ {n1}) ∩ ((cls((SEQ(bp1)) ∼))[{n2}] ∪ {n2})
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3 ∧ SEQ(bp1)[{t}] ∩ (((cls((SEQ(bp1)) ∼))[{n1}] ∪ {n1}) ∩
((cls((SEQ(bp1)) ∼))[{n2}] ∪ {n2})) = ∅ | {t})

4 ∧ CON Type(bp1 7→ ops) = XOR ))
5 ⇒ to 6= AND

Besides the configuration of a connector from one type to another, it is possible to
configure it to a sequence by keeping a single branch. This is defined using the events
ConfigureCONSToSeq (for a split connector) and ConfigureCONJToSeq (for a join
connector). As mentioned previously, only OR and XOR types could be configured
to a sequence. This constraints is ensured by a guard (grd6 : CON Type(bp1 7→
ops) 6= AND). This event checks also whether the corresponding join (resp. split)
should be mapped into a sequence or not. As a result, the branch to retain is linked
to the predecessor and the successor of the deleted operators.

4.7 Introduction of the Configuration Guidelines into
the Model

Process providers may define specific business domain constraints for their process
configurations. Thus, configuration guidelines are introduced to depict relevant inter-
dependencies between the configuration decisions in order to be inline with domain
constraints and best practices. Such guidelines are expressed via logical expressions
of the form If-Then-rules. Both the if and then parts contain statements about
binding configurable nodes to concrete values [1]. As examples of such rules:

if a9 = OFF and s5 = Seq(a7) then a14 = OFF (4.1)

if a3 = ON then a7 = ON (4.2)

if s3 = Seq(a3) and s5 = Seq(a7) then s6 = OR(a11, a12) (4.3)

This means that: (4.1) if the car searching and selection functionalities are ex-
cluded in a given variant, then the discount activity is excluded too; (4.2) if the
hotel recommendation functionality is included in the derived variant, then the hotel
searching functionality should be also included; and (4.3) if the car searching, selec-
tion and also the car recommendation functionalities are excluded, then the checking
for car availability should be ignored as well.

Note that, the if-part may contain many conditions and the then-part contains
only one statement or consequent. If the conditions are true (i.e., the configuration
choices were applied in a previous step), then the consequent statement should be
respected (i.e., only this configuration choice should be applied). For example, the
rule (4.2) have one condition (i.e., a3 = ON) and one consequent configuration that
should follow this condition (i.e. a7 should be set ON). Whereas, rules (4.1) and
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(4.3) have two condition statements (e.g., a9 = OFF and s5 = Seq(a7)) that need to
be applied in order to require the application of the consequent configuration.

In order to integrate these domain constraints in our model, we define a second
abstraction level, namely machine M1, that refines the machine M0. In fact, we
define for each type of then-part statement one invariant. In other words, we define
one invariant for each element configuration that represent a consequent to other
configuration choices. We give three examples of such invariants in Listing.13. For
instance, the relation ConfigurationG ACT (inv1 ) defines a guideline that leads to a
specific configuration (either ON or OFF ) of a specific activity. Thus, the guideline
may have five different conditions: an activity configuration (line 1), a split or join
configuration to a type (line 2), and a split or join configuration to a sequence (line
3). Similarly, ConfigurationG CONS (resp. ConfigurationG CONJ ) defines the
guideline for a split (resp. a join) connector configuration to a specific type and specific
outgoing (resp. ingoing) branches. And ConfigurationG CONS SEQ represent the
guideline for recommending a sequence configuration after the application of some
conditions.

Listing 13: Guidelines invariants

1 Inv1 : ConfigurationG ACT ∈ P(ACTS × CONF ) ×
2 P(CON S × TY PES×P1(NODES)) × P(CON J × TY PES×P1(NODES)) ×
3 P(CON S ×NODES) × P(CON J ×NODES) ←→ ACTS × CONF
4 Inv2 : ConfigurationG CONS ∈ P(ACTS × CONF ) ×
5 P(CON S × TY PES×P1(NODES)) × P(CON J × TY PES×P1(NODES)) ×
6 P(CON S ×NODES) × P(CON J ×NODES) ←→ CON S × TY PES× P1(NODES)
7 Inv3 : ConfigurationG CONS SEQ ∈ P(ACTS × CONF ) ×
8 P(CON S × TY PES×P1(NODES)) × P(CON J × TY PES×P1(NODES)) ×
9 P(CON S ×NODES) × P(CON J ×NODES) ←→ CON S× NODES

...

As each configuration step must fulfill the configuration guidelines, we refined our
abstract events by adding one guard for each guideline. For instance, considering the
first example (4.1) above, we have {a9 7→ OFF} 7→ ∅ 7→ ∅ 7→ {s5 7→ a7} 7→ ∅ 7→
(a14 7→ OFF ) ∈ ConfigurationG ACT. Thus, we have two conditions consisting of
{a9 7→ OFF} and {s5 7→ a7} that if satisfied, a14 should be mapped to OFF. Hence,
we added a guard in the event ConfigureACTON to ensure that in order to set an
activity to ON at least one condition is not satisfied in a guideline leading to the
configuration of this activity to OFF. In this particular case, a14 can be set to ON
if a9 and s5 have been both configured and a9 has been set to ON or s5 has not
been configured as a sequence of a7. Reciprocally, the configuration a14 to ON is not
allowed if at least one of a9 and s5 is not configured yet or both have been configured
according to the guideline.
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4.8 Verification and Validation

4.8.1 Verification using Proofs

In order to demonstrate that the formal specification of configurable process models
is correct, a the number of generated proof obligations (POs) should be discharged.
Using the Rodin tool [60], our model generated 358 proof obligations; most of them
(272 POs ' 76%) were automatically discharged; more complex ones (86 POs ' 24%)
required the interaction with the provers to help them find the right rules to apply
but also to define additional rules that may lack in the rule base of the prover.
These POs ensure that the invariants which model the different constraints on the
configurable business processes and the derived variants, are always satisfied (i.e. they
hold initially; and each event preserves them). For each event of the form (WHEN
G THEN Act) with G and Act representing the guard and the action respectively,
the following proof obligation is generated to verify that the execution of the action
Act under the guard G permits to preserve the invariant [50]: (Inv ∧G)⇒ [Act]Inv.

An example of the proofs, we have established, concerns the event Configure-
ACTOFF correctness with respect to the invariant inv20: we have to prove that even
if an activity act is removed (set to OFF), it remains possible to reach each node from
the initial one. This holds since we have added a control from linking the predecessor
of act to its successor. To discharge this proof that refers to the closure of a relation,
we have added the rule defining the closure of the union of two relation s and r:

r ∈ t↔ t ∧ s ∈ t↔ t⇒ cls(r ∪ s) = cls(r)((id(t) ∪ cls(r)); s)+; (id(t) ∪ cls(r))

4.8.2 Validation by Animation

Now, based on a correct model, we validate our Event-B specification by animation
and model checking using the ProB plugin [62]. Concretely, we play and observe
different scenarios and check the behavior of our model by showing at each step the
values of each variable, which events are enabled or not.

For instance, we illustrate the animation of the scenario captured by the Fig-
ure 4.3b in Section 4.2 as follows. After initializing the model using our motivating
configurable process (cf. Figure 4.1 in Section 4.2), i.e. after triggering the first event:
Initialization, all invariants should be respected to ensure the correctness of the con-
figurable process model. This verification is ensured by the ProB animation view as
depicted in the bottom side (1) of the Figure 4.6. Next, we process our scenario by
triggering enabled events, and at each configuration step, we observe that invariants
are always re-established:

i) we trigger theConfigureORSplit event to configure the split operator s1 from
OR to an AND (to = AND) while maintaining the same branches,

ii) s3 and j1 are configured (using ConfigureToSeq event) to a sequence starting
from a3 (a3 is set to ON as well),
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iii) the activity a7 is set to ON (using ConfigureACTON event). Since a3 is
included in the previous step, the mapping of a7 to OFF is not allowed in
accordance with the guideline (2) defined in Section 4.7,

iv) s5 and j3 are also configured to a sequence starting from a7 ; only this branch
should be preserved, since the second branch nodes are configurable. Next,

iv) when configuring the join operator j2, the only allowed alternative is to fire
the event ConfigureORJoin with the connector type parameter AND (see Fig-
ure 4.6).

Figure 4.6: The connector j2 configuration restriction using ProB

By formally defining the correct configurations, we guaranteed that the resulted
variant have not improper termination caused by the lack of synchronization.

4.8.3 Case Study

In order to evaluate the practical usefulness and identify the opportunities of using
our approach, we conducted a case study with a group of business process experts and
analysts. In the following, we examine its objectives, analyze and discuss its practical
experience in conducting business process model configuration.
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4.8.3.1 Objective

The main goal of our work is to evaluate how our approach helps and guides analysts
in generating correct and domain-compliant process configuration. Therefore, we
define the following research question: How can our approach assist process analyst
in applying correct configuration steps?

To answer this question, we formulate three hypotheses that our approach allows:

(H1) to save time and facilitate the identification of the configuration steps;

(H2) to guarantee a correct process model at each configuration step; and

(H3) to derive domain-compliant process variants based on the configuration guide-
lines.

4.8.3.2 Design, Data Collection and Execution

Our case study is a real configurable supervision process adopted by Orange, a french
telecom industrial partner. Different variants of this process are used by Orange
affiliates in different cities and countries according to their specific needs. Based on
28 variants, a set of configuration guidelines was generated by an automated approach
and validated by a domain expert [9].

With a population of 9 participants that are familiar with process configuration,
we targeted experiments to derive a set of different variants using the considered
configurable process model. With this purpose, we divided the population into three
groups of three people each. After a workshop organized to explain the basics needed
in this study, the first group (G1) is asked to manually derive a maximum of process
variants without any guidance. Then, the second group (G2) is also asked to manually
derive process variants, but, while providing them with the generated configuration
guidelines rules. Whereas, the third group (G3) is provided with the complete Event-B
model (installed under the RODIN tool) and asked to generate process variants with
respect to the allowed configuration choices by the model checking. So, participants
of latter group can apply only configuration steps that are allowed by our model. As
mentioned in the previous sections, this model includes both correctness and domain
constraints. However, the first two groups take the burden of verifying the correctness
of their choices.

The resulted process variants are then collected for comparison. In order to answer
the identified research question and confirm its hypotheses, we evaluated the results
according to two parameters: (1) the time needed to derive process variants for the
different groups, (2) the number of errors for the identified correctness and domain
constraints.
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4.8.3.3 Results Analysis and Findings

Regarding the time needed to derive variants, the group G1 took in average 16 minutes
and the group G2 took in average 14 minutes, whereas the group G3 took only 5
minutes. Table 4.1 shows the distribution of the time according to the correctness
and the business criteria. Through this table, we notice that the more participants of
G1 and G2 take time in deriving variants the less correctness errors are detected. This
can explain that participants are making a special effort. Also, it is clear that the first
two groups took much more time in deriving correct and domain-compliant variants
than the group G3. It is worth noting that all derived variants by G3 contain neither
structural nor behavioral correctness errors. No domain errors are detected as well.
Moreover, the participants of group G3 affirmed that the ProB model checker is quite
straightforward to use and it assisted them in defining appropriate configuration steps.
They easily followed the enabled events to make their choices which helped them to be
compliant not only to correctness constraints but also to domain recommendations.
As a result, we concluded that our approach allows (1) to save time and to assist
users in defining their configuration choices, which supports the hypothesis H1 ; and
(2) to respect correctness and domain constraints, supporting H2 and H3.

Table 4.1: The average time in minutes unit spent to derive variants either correct
(C) or not (¬C), and either business-complaint (B) or not (¬B)

XXXXXXXXXXGroup
Variant

C & B C & ¬B ¬C & B ¬C & ¬B

G1 23 17 15 8
G2 17 × 11 ×
G3 5 × × ×

4.8.3.4 Threats to Validity

First, the small number of the collected process variants, used to generate our config-
uration guidelines, can be considered as a threat of validity. However, in this study
we have chosen 28 variants that are relevant and depict various business needs. Sec-
ondly, one case study has been only conducted by 9 participants. We believe that a
larger group of participants with varied backgrounds need to be used to highlight the
validity and reliability of the experiments results. We leave this to future work.

4.8.4 ATL Model Transformation: BPMN to Event-B

In this section, we describe our Model-to-Model transformation that we developed to
map the BPMN process models into an Event-B specification using the ATL model
transformation language. A model transformation is the automatic creation of target
models from source models. Figure 4.7 presents the structure of the tool that we
implemented.
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Figure 4.7: Structure of the BPMN to Event-B transformation tool

This tool takes as input an XML file that contains a textual representation of a
BPMN model to which a number of transformations are applied in order to create
the code for the corresponding Event-B model. The complete process comprises four
transformations: (1) one Text To Model transformation (T2M), (2) two Model To
Model transformations (M2M), and (3) one Model To Text transformation (M2T).

The first transformation consists in injecting the input XML file via Xtext. We
started by defining the BPMN grammar and, using Xtext, were able to generate a
lexical analyser and a meta-model to which that grammar conforms. This meta-
model is the one used for this T2M transformation. In fact, this first step consists
in transforming the textual representation of the input BPMN model contained in
the input XML file into an XMI model conforming to the previously generated meta-
model.

The second transformation is an endogenous one that takes as input the out-
put model of the first transformation. It is implemented using ATL. The target
meta-model to which conforms the resulting XMI model of this transformation is an
extended version of the BPMN meta-model (BPMN20.ecore) as defined and used by
the Eclipse BPMN2 Modeler. It is an extended version because we had to integrate
elements specific to configurable Business processes as the original meta-model does
not support such concepts. In terms of correspondences between the elements of the
input and output models, this transformation brings no change. Nevertheless, it was
necessary to use a number of ATL helpers to guarantee the accuracy of the resulting
model.

The third transformation is at the core of the whole transformation process. It is
an exogenous ATL transformation that, taking as input the output of the previous
transformation, generates an XMI model that conforms to the Event-B meta-model
(EVENTB.ecore). This meta-model is the same one used by the Rodin platform. The
transition between the two models pertaining to two different languages is achieved
by applying a set of transformation rules and helpers that associate BPMN elements
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to Event-B elements.

The last transformation treats the extraction phase using Xpand. The goal of this
step is to transform the Event-B XMI model resulting from the third transformation
into a textual Event-B code. Consequently, the execution of this transformation
generates an Event-B project, including both a context and a machine, that can be
directly imported and used by the Rodin platform.

Transformation rules and helpers We choose to give some examples of transfor-
mation rules and helpers from the third transformation as it is the one that bears the
most important correspondences and closes the gap between the BPMN and Event-B
languages. Figure 4.8 shows the three main transformation rules which are respon-
sible for the creation of the whole Event-B project including the context and the
machine. These rules use multiple other transformation rules and helpers in order
to create all the required Event-B elements. For example, the helpers used for the
creation of the axioms axm6 and axm7 of the Event-B model’s context can be seen
in figures 4.9 and 4.10 respectively. Similarly, the helper responsible for the creation
of the initialisation event in model’s machine is given in figure 4.11. We note that we
use helpers for the creation of the actions 11 to 17 only since the rest of the actions
(1 to 10) are invariable, that is to say, the do not depend on the input BPMN model.

Figure 4.8: The Process2Project, Process2Context and Process2Machine rules

Threats to validity It is worth mentioning that, in order to validate this transfor-
mation work, we have developed the reverse-engineering of the transformation process.
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Figure 4.9: The getAxiom6() helper

Figure 4.10: The getAxiom7() helper

In fact, we have implemented the reverse transformations to prove that, starting from
the resulting Event-B code, we can regenerate the initial textual representation of the
used BPMN model.

Although we were able to assess the conformity of the reverse-engineered BPMN
model to the one initially used by the first transformation process by comparing their
textual representations, we had trouble in the visualization of the former. In fact,
this problem stems from the inability of the Signavio tool to edit models that had
not initially been created by the said tool due to some required graphical data in the
XML file. However, we were able to visualize reverse-engineered BPMN models that
did not include any configurable element using the Eclipse BPMN2 Modeler.

4.9 Conclusion and Discussion

Our main contribution in this work is the formal specification of process model con-
figuration allowing to assist designers to configure, step-by-step, correct variants. We
answered two research questions raised in Chapter 1 as follows:

RQ1: How to identify configuration choices that satisfy designers and clients require-
ments? We proposed a formal Event-B based approach to derive correct variants
from well-defined configurable processes. We reached our goal in considering dif-
ferent constraints related to: (i) configuration (e.g., an XOR may be configured
only by restricting its ingoing/outgoing branches), (ii) structural correctness
(e.g., no dead activities), (iii) erroneous patterns (e.g., no mismatching between
connectors configurations that may result in behavioral problems) and (iv) do-
main compliance (the configuration of an element effects another to satisfy client
expectations). The defined constraints and properties for a correct configuration
are expressed in terms of mathematical predicates (i.e., invariants). The config-
uration steps are modeled using events. The events are constrained by means
of specified enabling conditions (i.e., guards). We used the Event-B tools to
prove the correctness of our specification by checking the defined properties by
discharging Proof Obligations. At each configuration step, the events are eval-
uated and only configurations leading to variants satisfying invariants can be
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Figure 4.11: The getInitialisationEvent() helper

applied. Animation tools are used to validate this assumption.

RQ2: How to assist the designer in selecting the correct configuration choices? Our
proposed approach allows to guide the analyst by providing at each step the
potential configuration choices. Concretely, this is achieved by using animation
interface of the ProB tool. In fact, analyst is provided with our specification
installed on the RODIN tool, and then he/she is able to generate process variants
with respect to the allowed steps by the model checking. Hence, he/she should
follow the enabled events to make their configuration choices. Our case study
showed that the use of our approach was easy and saved users considerable time
in identifying the configuration steps that are compliant not only to correctness
constraints but also to domain recommendations.

Note that in order to automate our approach, we have developed a transformation
tool to map BPMN process models into an Event-B specification.

The major benefit of this approach is the incremental verification procedure that
allows the checking of the defined properties at each step of the development us-
ing generated Proof Obligations. POs are theorems that must be proved, in order
to ensure that the developed specification is correct and consistent. Compared to
other methods, Event-B has the advantage of rigorous reasoning tools assisting the
verification task by modeling, proving and validating a system.

Although this approach has proven its effectiveness in assisting process configura-
tion, the considered structural properties may be not sufficient to decide soundness.
For instance, on the right hand side of the Figure 4.12, a structurally correct process
variant is captured. In fact, each activity is on a path from the initial activity a1
to the final one a8 (i.e., structurally sound). Also, suppose that, as depicted by the
figure, one has configured s1 to AND-split and both s2 and s3 to XOR-split, then,
when configuring j1 and j2 one can notice that our model allows their configuration
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to AND-join. Hence, s2 and s3 are not their corresponding splits since there is no
mismatching between them. The first common node of s2 outgoings, for example, is
neither j1 nor j2, it is, instead, j3. Hence, the model is considered correct once j3 is
configured to XOR-join. Indeed, during execution, it is possible to activate a3 and
a5, which allows the activation of a7 after their termination. However, this proper
termination may be not preserved in all possible process instances; e.g. in cases where
a2 and a5 are executed, neither a6 nor a7 could be enabled, which causes a dead-
lock. Thus, this process instance cannot terminate properly. In order to detect such
problems, one should verify the behavior of the process instances. This implies the
need for the analysis of the reachability graph of the BP. This graph refers to the
representation of the different states that a process instance can take [3]. For this,
formal execution semantics of the process modeling language (BPMN in our case)
have to be taken into account. Since Event-B could hardly represent such dynamic
semantics, we propose to adopt the more adapted Petri-net formalism. In the next
chapter, we tackle the behavior verification of the process configuration relying on
a Petri-net-based model and the SOG abstraction model. The SOG method [52, 53]
will help to reduce the size of the reachability graph that may exponentially increase
with the number of configurable elements.
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5.1 Introduction

As we have discussed, process models configuration is notoriously difficult and error
prone. Hence, the assistance and the verification of the configuration has become a
must. In the Chapter 4, we presented an approach to assist the design of business
process variants step-by-step during the configuration time. However, we especially
focused on the designed configurable model structure. In fact, the verified constraints
are expressed in terms of invariants specifying the variant structure that should be
respected in order to prevent errors. For example, to avoid deadlocks, we cannot
configure a join connector to a synchronization while its corresponding split was
already configured to an exclusive choice. Whereas, structural verification may be
not sufficient since some behavior anomalies may not be detected. As the Event-B
method is not adequate to verify the dynamics of the possible executions of a process
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variant, in this chapter, we choose to adopt new formal method (based on Petri-
nets). Nevertheless, in the context of process configuration, checking the behavioral
correctness of every single possible variant is obviously very time consuming and
even unfeasible in case of large real-life models. This typically refers to solving the
problem of an exponential number of states. So far, some approaches have attempted
to verify behavioral correctness but have faced this exponential number of states
(e.g. [10]). Very few have addressed the configuration behavior verification while
trying to reduce this state-space explosion problem (e.g. [37,39]) but still suffer from
the exponential complexity of generating their reachability graph. This work aims to
address this problem while verifying one of the most important behavioral correctness
properties a process execution should hold, that is, the deadlock-freeness. Hence, in
this chapter we aim at addressing three research questions: RQ1: How to identify
configuration choices that satisfy designers and clients requirements?, RQ2: How to
assist the designer in selecting the correct configuration choices? and RQ3: How to
avoid the state-space explosion of the configuration verification issue?

In order to remedy the raised problems, we propose to use the Symbolic Obser-
vation Graph (SOG for short) [52, 53] to verify and abstract the representation of a
configurable process model. The SOG is a versatile symbolic representation formal-
ism that allows to build an abstraction of the reachability state graph of a formally
modeled system (e.g. using Petri net). In our work, we start by adapting Petri-net
formalism in order to formally represent a configurable process (cf. Section 5.3).
Note that our work does not rely on specific Petri net properties but can be applied
to any formal model as soon as states and transitions relations are well defined. De-
pending on the property or aspect we are interested in, the SOG abstraction is built
over a particular set of defined observed elements, namely Obs. In our case, we are
interested in the verification of process configurations, so the SOG is based on the set
of its configurable elements.

This abstraction offers a two-fold advantage: (1) the analysis and the verifica-
tion of the corresponding configurable process can be reduced to the analysis of its
abstraction, and (2) the set of combinations of elements configurations that result
in deadlock-free variants are obtained prior to configuration time. Once found, these
combinations are used to assist the business analyst in deriving deadlock-free variants.

In the following, we start by giving an overall overview of our approach in Sec-
tion 5.2. Then, the new Petri net-based models for business process models and for
configurable process models as well as their semantics are defined in Section 5.3. In
Section 5.4, we define the Symbolic Observation Graph associated with the defined
configurable formal model. Afterwards, we illustrate our approach based on the SOG
construction algorithm in Section 5.5. With the aim to prove the reduction of the
configurable model state-space size, we conduct experiments in Section 5.6.

The work presented in this chapter was published in a conference proceedings [131].
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5.2 Approach Overview

The SOG-based approach that we define to generate deadlock-free process variants
consists of:

(1) defining a formal model for the configurable process model having concise and
not ambiguous syntax and semantics, that we called CBP2PN. This semantics
takes into account configurable connectors. For this aim, we rely on Petri nets,
specifically the WF nets sub-class that we explained in Section 2.3.1. This will
allow us to map an input C-BPMN process to a formal model having well-defined
semantics (see Section 5.3).

(2) adapting and extending not only the SOG definition but also the construction
algorithm of the SOG graph. In this extension three main points are considered:
(i) observe and highlight configurable connectors that label the graph arcs; (ii)
hide non-configurable elements’ states in aggregates, i.e., the SOG nodes (see
Section 5.4); and (iii) restrict the graph nodes to the ones belonging to paths
leading to deadlock-free configurations (see Section 5.5). As a result, we obtain
a reduced SOG graph that groups the behavior of all correct configurations.
The set of correct configurations combinations is also extracted. We note that
the extraction of correct configurations is performed on-the-fly during the SOG
construction w.r.t the above defined points. Hence, using a developed tool that
implements this algorithm with respect to the semantics defines in the first step,
we obtain the set of correct configurations leading to deadlock-free variants.

(3) this set of correct configurations is finally supplied to the business analyst in
order to derive deadlock-free variants, with no need to verify correctness at each
intermediate configuration step.

Figure 5.1 illustrates the followed milestones, using our approach, in order to
obtain a deadlock-free variant starting from, as depicted on the left-hand side of the
figure, a configurable business process model in C-BPMN notation. In this chapter,
we use the simplified example in Figure 5.2 for the illustration of our approach.

5.3 Formal Model for Configurable Business Processes

In order to obtain an abstract formal definition of a business process model, we
formally map a process in BPMN notation to Petri nets, specifically into a new model
called Business Process Petri Nets (BP2PN ). It is an enriched version of a WF-net
with new transitions representing the process connectors and having a specific type.
Then, we extend the BP2PN to take into account configurable connectors, leading to a
new model, namely the Configurable Business Process Petri Nets (CBP2PN ). Authors
in [74] have established a mapping from well-formed BPMN models to Petri nets. In
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Figure 5.1: The SOG-based approach overview
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Figure 5.2: A configurable hotel booking process model

this work, we extend this mapping by preserving connectors blocks as transitions
allowing to define configurable transitions.

5.3.1 Business Process Petri Nets (BP2PN)

A Business Process Petri Net is formally defined in Definition 5.3.1. Note that, we
use the definitions and notations earlier presented for Petri nets and Workflow nets
in Section 2.3.1.

Definition 5.3.1 (BP2PN). A BP2PN is a tuple B = 〈P, T ∪OP,F,W,O〉 where:

• 〈P, T ∪OP,F,W 〉 is a WF-Net,

• F ⊆ (P × T ∪OP ) ∪ (T ∪OP × P ) is the flow relation,
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• O : OP → {OR−, OR+, XOR−, XOR+, AND−, AND+} is a mapping that
assigns a type to each operator/connector.

BP2PN is a Workflow net such that, the set of places P corresponds to the
set of conditions determining the enabling of a task or a connector; and the set of
transitions T ∪OP corresponds to the set of tasks T and connectors OP . These nodes
are interconnected through a set of arcs (using F ). Each connector must either be
a join (the − right exponent) or a split (the + exponent) while having a type: OR,
XOR or AND. In Figure 5.3 we represent the mapping of BP2PN connectors (both
splits and joins) to standard Petri nets places, transitions and arcs.

BP2PN Petri net BP2PN Petri net
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Figure 5.3: The BP2PN connectors mapping to classical Petri Nets

Semantics: In the previous notation, we retain the connectors blocks and we
define new execution semantics inspired from the original semantics of Petri nets.

Given a marking m of a BP2PN, B, the fireability and the firing of any tran-
sition in T ∪ {t ∈ OP | O(t) ∈ {AND−, AND+}} follows the original seman-
tics of Petri nets presented in Section 2.3.1. However, a transition t ∈ OP s.t.
O(t) ∈ {OR−, OR+, XOR−, XOR+} follows a new semantics:

Let m be a marking of B, and t be a transition of OP , i.e., t ∈ OP . We denote
by m t−→ the fact that t is enabled by m, and we denote by m t−→m′ the fact that
m′ is reached by firing t from m. Then the enabling rule as well as the firing of the
transition t at the marking m leading to a marking m′ are defined as follows.

• if t ∈ OP ∧O(t) = OR−

– Enabling rule: m enables t iff ∃S ⊆ •t s.t. m|S ≥W−(t)|S

– Firing rule: when m enables t, the firing of t from m leads to a marking
m′ iff m′ = m − W−(t)|S + W+(t) where S is the biggest subset of •t
satisfying m|S ≥W−(t)|S .
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• if t ∈ OP ∧O(t) = XOR−

– Enabling rule: m enables t iff ∃p ∈ •t s.t. m(p) ≥ W−(t)(p) ∧ ∀q ∈
•t, m(q) < W−(t)(q)

– Firing rule: when m enables t, the firing of t from m leads to a marking
m′ iff m′ = m −W−(t))|{p} + W+(t) where p is the sole place satisfying
the firability condition.

• if t ∈ OP ∧O(t) = OR+ (resp. O(t) = XOR+)

– Firing rule: when m enables t, the firing of t from m leads to a marking
m′ iff ∃S ⊆ t• (resp. ∃p ∈ t•) s.t. m′ = m −W−(t) + W+(t)|S (resp.
m′ = m−W−(t) +W+(t)|{p}).

Note that only the firing of transitions t s.t. O(t) ∈ {OR+, XOR+} is defined
because the enabling rule follows the original semantics.

Figure 5.4 illustrates the enabling and the firing of each connector type of BP2PN
connectors, either a split or a join. For example, the enabling of a split connector,
of any type, needs the input places to be sufficiently marked, same as standard Petri
net transition. Similarly, the firing of an AND+ connector follows this semantics and
produces tokens in every output place.

However, we adapted these rules in case of OR and XOR connectors. For instance,
we emphasize that the semantics of a join transitionOR− is inline with the well defined
Pattern 8 in [132] (Multi merge), that expressly allows the firing of the join as soon as
its condition is satisfied (without synchronizing the different flows), e.g., having the
OR− of Figure 5.4 with two inputs p1 and p2, one of the following markings enables
the transition: m1 (only p1 is marked), m2 (only p2 is marked), or m1 2 (both places
are marked). We note that, we are currently working on an extension of this work
to consider the semantics of the Pattern 7 (Synchronizing Merge). This semantics
expressly impose that, first there is at least one token in at least one of its incoming
branches, then it should be checked that for an incoming branch having no token, it
is not possible for a token to reach this flow [74,133].

It is worth mentioning also that the new semantics of OR+ and XOR+ leads to
non-deterministic firing. For instance, having the split transition OR+ of the Figure
5.4 with two output places p2 and p3, its firing leads to 3 possible reachable markings:
m2 (only p2 is marked), m3 (only p3 is marked), or m2 3 (both places are marked).

Since we are particularly interested in this chapter in verifying the deadlock-
freeness property, we introduce the definition of this property in case of BP2PN as
follows.

Definition 5.3.2 (Deadlock-free BP2PN). Let B = 〈P, T ∪OP,F,W,O〉 be a BP2PN
and mi, mf be the initial (i.e. only i is marked) and final (i.e. only o is marked)
markings respectively. B is said to be deadlock-free iff 6 ∃m ∈ (R(N,mi) \ {mf}) s.t.
m 6→.
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OR+ enabling firing XOR+ enabling firing OR−enabling firing XOR− enabling firing

p1

p2

p3

or+ p1

p2

p3

or+ p1

p2

p3

xor+ p1

p2

p3

xor+

p1

p2

p3or−

p1

p2

p3or−

p1

p2

p3xor−

p1

p2

p3xor−

p1

p2

p3

or+ p1

p2

p3

xor+

p1

p2

p3or−

p1

p2

p3xor−

AND+ enabling firing AND− enabling firing

p1

p2

p3

or+ p1

p2

p3

and+ p1

p2

p3

and+

p1

p2

p3or−

p1

p2

p3and−

p1

p2

p3and−

Figure 5.4: Enabling and Firing examples

Hence, according to this definition, a BP2PN, B, is deadlock-free iff there is no
dead marking m reachable from the initial marking mi.

5.3.2 Configurable Business Process Petri Nets (CBP2PN)

Definition 5.3.3 (CBP2PN). A CBP2PN is a tuple CB = 〈P, T ∪OP,F,W,O ,C 〉
where:

• 〈P, T ∪OP,F,W,O〉 is a BP2PN;

• C : OP → {true, false} is a function stating whether a connector is configurable
or not. For instance, configurable connectors are any t ∈ OP s.t. C (t) = true).

Back to our example, the C-BPMN process model of Figure 5.2 is mapped onto
CBP2PN in Figure 5.5. In this notation, according to Definition 5.3.3, activities
and connectors are modeled by transitions and their ordering is modeled by places
connecting the different transitions. Configurable transitions are also highlighted with
a thick border. This example includes 6 configurable transitions: s1, s3, s4, j2, j3 and
j4.

We denote by OP c the set of configurable operators s.t. OP c = {o ∈ OP |
C (o) = true}. A configurable operator cc ∈ OPc includes a generic behavior which
is restricted using the configuration phase. It is configured by changing its type (e.g.
from OR to AND) w.r.t. the set of configuration constraints [1] defined in Section
2.2.2. Here, we recall these constraints in Table 5.1 while adopting the notations of
the BP2PN connectors in Definition 5.3.1. Each row corresponds to a configurable
connector that can be configured to one or more of the connectors in columns. Thus,
these constraints allow to specify which regular connector’s type may be used in the
derived process variant. For example, a configurable OR can be configured to any
connector’s type, while a configurable AND can only be configured to an AND. As can
be noticed, we omit the sequence configuration column in this table, as in this work
we are only interested in the configuration of connectors by changing their types. As
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an extension to this work, we are currently working on the connectors configuration
by restricting output or input branches, as well as the activity configuration (i.e. to
ON or OFF).

In the following, we define a configuration of a connector tc ∈ OP c by Conf(tc) ∈
{OR−, OR+, XOR−, XOR+, AND−, AND+} and the set of all possible configura-
tions of tc by AllConf(tc).

Table 5.1: Connectors configuration constraints [1] having x ∈ {+,−}.
FROM-TO ORx XORx ANDx

ORx √ √ √

XORx √

ANDx √

Note that, when configuring all configurable connectors of a CBP2PN, we obtain a
BP2PN, as a configurable connector is changed into regular connector after configura-
tion. One possible configuration of the process net of Figure 5.5 is depicted by Figure
5.6. This variant is derived by selecting the following configuration choices: (i) s1,
s3 and s4 are configured to regular XOR+, (ii) j2 is configured to a regular AND−;
and (iii) j3 and j4 are configured to regular XOR−. As mentioned previously, the
resulting process is a BP2PN since it does not contain any configurable transitions.
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Figure 5.5: The CBP2PN of the configurable process in Figure 5.2
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Figure 5.6: A possible variant of the CBP2PN in Figure 5.5

Semantics: The semantics of CBP2PN is described in the following, on the one
hand, by inheriting the dynamics of BP2PN for non configurable connectors, on
the other hand, by adding new semantics for configurable ones. This semantics is
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defined such that any reachable marking by any possible instance of a configuration
is represented. In the following, we consider a configurable transition as the union of
all its possible configurations. That way, we can define its enabling and firing rules
as if it is the union of all executable configured transitions. Since a configuration of
AND−, AND+, XOR− and XOR+ do not change type, its semantics remains the
same as previously defined. Regarding configurable OR− and OR+ transitions, the
fireability and the firing rules follow the new semantics as follows.

Let m be a marking and tc be a transition of OP c, s.t. O(tc) ∈ {OR−, OR+}:

• Enabling rule: m enables tc, denoted by m tc−→ iff ∃x ∈ AllConf(tc) s.t. m x−→

• Firing rule: when m enables tc, for some configuration x of tc, the firing of tc

from m, under configuration x, leads to a marking m′, denoted by m tc,x−→m′ iff
m x−→m′

Using this semantics, the reachability marking graph associated with a CBP2PN
covers the behavior of all the possible configurations. For instance, having the
CBP2PN of Figure 5.5, the configurable transition s1 could be configured either
to: (i) AND+, with all of its output places marked, (ii) XOR+, with only one of
the output places marked, or (iii) OR+ with one or more output places marked (see
Figure 5.7).

Figure 5.7: Markings graph example in case of a non-configurable and a configurable
transition exhibiting non-determinism

Definition 5.3.4 (Deadlock-free CBP2PN). Let CB be a CBP2PN. CB is said to be
deadlock-free if at least one deadlock-free BP2PN could be configured from it.

Our CBP2PN of Figure 5.5 is considered to be deadlock-free since one can con-
figure at least one correct variant by choosing XOR type as configuration choice for
all its configurable connectors (the correctness of such a variant is proven in Section
5.5). However, incorrect variants could be derived from this process as well. For
instance, one can choose the alternatives presented earlier of Figure 5.6 that leads to
a deadlock caused by an exclusive choice XOR+ (i.e. s1) followed by a synchronizing
join AND− (i.e. j2). In this situation, in order to be enabled, the transition AND−

will be waiting for both places p8 and p9 to be marked, however only one could be
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marked. So, the resulting variant could never terminate properly and the correspond-
ing reachability graph contains a dead marking (i.e., from which no transition could
be enabled).

In this work, we aim to check the behavior correctness of all possible configurations
of a configurable model CBP2PN. This refers to verifying the reachability graph
that covers them all. Obviously, this leads to the well known state space explosion
problem. In order to reduce the underlying problem, we propose to use the Symbolic
Observation Graph (SOG). In the following section, we formally define the SOG
graph. The SOG-based abstraction technique was introduced for model checking
of concurrent systems [52] and then applied on the verification of inter-enterprise
business processes [91].

5.4 The Symbolic Observation Graph (SOG)

The Symbolic Observation Graph was initially introduced in [52] as an abstraction of
the reachability state graph of concurrent systems. An event-based verification was
applied on formula of LTL \X (LTL minus the next operator). Then, the SOG was
extended to its state-based form in [53].

In this section, we define the SOG based on our formal model introduced in Section
5.3, namely the CBP2PN, and then we will see in the next sections how to use them
in our verification approach.

Depending on a specific property we are interested in, the SOG is built over a
particular set of observed elements, denoted by Obs. In our work, we are interested
in observing the configuration behavior, that is why we define Obs as the set of
configurable transitions. since only configurable connectors are considered in this
work , given a CBP2PN, we define Obs as follows: Obs = OP c. Whereas, the other
transitions belongs to the set of unobserved ones, denoted by UnObs, this means that
UnObs = (T ∪OP ) \Obs.

In such a way, as illustrated in Figure 5.8, we construct the Symbolic Observation
Graph (SOG) as a graph where each node is a set of states linked by unobserved
transitions, and each arc linking two nodes is labeled by an observed transition.
Nodes of the SOG are called aggregates and are represented and managed efficiently
using Binary Decision Diagrams (BDDs). As a result, by highlighting configurable
transitions, the SOG represents the global behavior of a process configuration in only
one reduced graph.

In the following, we present the adaption of the SOG to our process configuration
issue. So, firstly we formally define the new aggregation criterion in Definition 5.4.1
such that: (1) the states belonging to the same aggregate must be be linked by non
configurable transitions, and (2) the firing of a configurable transition by a state in an
aggregate must lead to another aggregate. Hence, an aggregate is defined as follows.
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Figure 5.8: The Symbolic Observation Graph (SOG)

Definition 5.4.1 (Aggregate). Let N = 〈P, T ∪OP,F,W,O ,C 〉 be a CBP2PN hav-
ing mi and mf as initial and final markings respectively. An aggregate A of N w.r.t.
Obs is a triplet 〈S, d, f〉 s.t.:

• S ⊆ R(N ,mi) is a set of reachable markings, where ∀s ∈ S:

- (∃(s′, u) ∈ R(N ,mi)×UnObs | s u−→s′)⇔ s′ ∈ S;

- (∃(s′, o) ∈ R(N ,mi) × Obs | s o−→s′) ∧ (@(s′′, u) ∈ S × UnObs) | s′′ u−→s′) ⇔
s′ 6∈ S.

• d ∈ {true, false}; d = true iff S contains a dead state.

• f ∈ {true, false}; f = true iff S contains a final state (i.e. mf ∈ S).

In addition to the d and f attributes of an aggregate, the above definition specifies
the states that must belong to an aggregate (the aggregation criterium) and those that
must be excluded: (1) For any state s in the aggregate, any state s′ being reachable
from s by the occurrence of an unobserved transition, belongs necessarily to the same
aggregate. (2) For any state s in the aggregate, any state s′ which is reachable from
s by the occurrence of an observed transition is necessarily outside the aggregate,
unless s′ is reachable from a state s′′ in the aggregate by an unobserved transition.
In the following, we denote by A.S, A.d and A.f , the attributes of an aggregate A.

Before providing the definition of the SOG associated with a CBP2PN, let us
introduce the operations Sat and Out as follows.

• Sat(S,UnObs) calculates the closure of a set of markings S by the set of un-
observed transitions UnObs. In other words, it returns the set of reachable
markings from any marking in S, by unobserved transitions. It is formally
defined as follows:

Sat(S,UnObs) = {s′ ∈ R(N ,mi) | ∃s ∈ S ∧ ∃t ∈ UnObs, s t−→s′}

• Out(a, t) returns, for an aggregate a and an observed transition t, the set of
states that are outside of a and reachable from some state in a by firing t. It is
formally defined as follows:

Out(a, t) = {s′ ∈ R(N ,mi) | ∃s ∈ a.S, s t−→s′}
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Definition 5.4.2 (Deterministic SOG). Let N = 〈P, T ∪OP,F,W,O ,C 〉 be a CBP2PN
having mi and mf as initial and final markings respectively. The Deterministic Sym-
bolic Observation Graph (SOG) associated with N is a graph G = 〈A,Obs,→, A0,Ω〉
where:

(1) A is a non empty finite set of aggregates satisfying :

• ∀a ∈ A, ∀t ∈ Obs, Out(a, t) 6= ∅ =⇒ ∃a′ ∈ A s.t. a′ = Sat(Out(a, t),UnObs)

(2) →⊆ A×Obs×A is the transition relation where:

• ((a, t, a′) ∈→′)⇔ ((t ∈ Obs)∧Out(a, t) 6= ∅∧a′ = Sat(Out(a, t),UnObs))

(3) A0 is the initial aggregate s.t. A0.S = Sat(mi, UnObs).

(4) Ω = {a ∈ A | mf ∈ a.S}.

The nodes of the symbolic observation graph are aggregates (1). The finite set
of aggregates A of a SOG is defined in a complete manner so that the necessary
aggregates are represented. Point (2) defines the transitions relation: there exists an
arc, labeled with an observed transition t, from a to a′ iff a′ is obtained by saturation
(by applying Sat) on the set of reached states (obtained using Out(a, t)) by the firing
of t from a.S. The last two points of Definition 5.4.2 characterize the initial aggregate
A0 and the set of final aggregates Ω (i.e. aggregates containing the final marking)
respectively.

Starting from the initial marking, the original SOG construction algorithm in-
troduced in [52] follows a classical depth-first search based traversal of the built
aggregates. Each aggregate is built by a transitive closure (using Sat) application
on unobserved transitions. The successor a′ of an aggregate a is built by, first, firing
an observed transition from states of a, then by adding all the reachable states by
unobserved transition.

At this stage, the correctness of the SOG can be formally characterized as follows.

Definition 5.4.3 (Correct SOG). Let N = 〈P, T ∪OP,F,W,O ,C 〉 be a CBP2PN.
Let G = 〈A,Obs,→, A0,Ω〉 the SOG associated with N .

G is correct iff there exists a configuration c of N (c = {〈t, Conf(t)〉 : t ∈ OP c})
s.t. for every path π = A0

t1,conf(t1)−−−−−−−→ A1 . . . An−1
tn,conf(tn)−−−−−−−→ An, with An ∈ Ω; if

{〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} =c then ∀0 ≤ i ≤ n,Ai.d = false .

Based on Definition 5.3.4, characterizing a deadlock-free CBP2PN, and Defini-
tion 5.4.3, characterizing a correct SOG associated with a CBP2PN, the following
result naturally links these two characterizations.

Proposition 5.4.1. Let N = 〈P, T ∪OP,F,W,O ,C 〉 be a CBP2PN. Let G = 〈A,Obs,→, A0,Ω〉
the SOG associated with N . Then, N is deadlock-free iff G is correct.
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Proof. Let N be a CBP2PN and G its corresponding SOG. First, according to Def-
inition 5.4.3, if G is correct then there exists a configuration c s.t. for every path π

in the SOG having π = A0
t1,conf(t1)−−−−−−−→ A1 . . . An−1

tn,conf(tn)−−−−−−−→ An, with An ∈ Ω; if it’s
configurations set {〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} is equal to c, then all aggregates are
deadlock-free, i.e. Ai.d = false, 0 ≤ i ≤ n. Since the SOG preserves by construction
all possible configurations of N , then each path from the initial to the final aggregate
represents one configuration allowing to derive one variant. Hence, there exist at
least a deadlock-free variant of N . Consequently, according to Definition 5.3.4, N is
correct.

In the following, we propose to adapt the original SOG construction algorithm
[52], associated with a CBP2PN, in three ways. First, by adopting the new semantics.
Second, the deadlock-freeness property is checked on the fly, such that any aggregate
containing a deadlock state is not inserted in the graph and so are all the underlying
paths. Finally, the set of correct configurations is extracted on-the-fly.

5.5 Extracting Deadlock-free Configurations using the
SOG

In this section, we present the core contribution of this work: The construction al-
gorithm of the SOG associated with a CBP2PN. Campared to the original SOG
construction algorithm [52], Algorithm 5.10 allows to reduce the SOG, by removing,
on-the-fly, the paths involved in incorrect configurations, and by saving, within the
initial aggregate the correct configurations.

Used data: To reach this goal, we firstly define the different data used in this
algorithm. As input, a CBP2PN, namely N , the set of the observed transitions Obs
as well as the initial and the final markings mi, mf are introduced.

Then, we add two new attributes to an aggregate a ∈ A:

– ccc is the set of correct (possibly partial) configurations, starting from the
aggregate a and leading to a final aggregate;

– ncncnc is the set of incorrect (possibly partial) configurations, starting from the
aggregate a and leading to a dead one (i.e. including a dead state).

Once the SOG is built, the set of correct configurations will be saved within the initial
aggregate.

In addition to this set of configurations C, the algorithm also returns as output
the SOG graph G, containing aggregates (in A set), and edges ( in → relation).

Another fundamental data used in the SOG construction is the stack st, containing
a couple of the to-be-treated aggregates associated with the set of its fireable observed
transitions Fobs.
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Algorithm 1 Deadlock-free Symbolic Observation Graph

Require: N 〈P, T ∪OP,F,W,O ,C 〉, Obs, mi, mf

Ensure: G〈A,Obs,→, A0,Ω〉 , C
1: Vertices A=∅; vertex a, a′; {Aggregates}
2: Vertices C =∅; {Correct configurations}
3: set S, S′, UnObs = (T ∪OP ) \Obs, Fobs, F

′
obs;

4: stack st; Edges E= ∅;
5: S = Sat({mi}, UnObs); {first Aggregate}
6: a.S = S;
7: a.d = DetectDead(a.S);
8: a.f = IsF inal(a);
9: Fobs = fireableObs(a); {fireable observed transitions of a}

10: st.Push(〈a, Fobs〉);
11: while st 6= ∅ do
12: 〈a, Fobs〉 = st.Top();
13: if (Fobs 6= ∅) then
14: t = Fobs.next();
15: S′ = Out(a.S, t)
16: if (S′ 6= ∅) then
17: S′ = Sat(S′, UnObs);
18: a′.S = S′;
19: a′.d = DetectDead(a′.S);
20: a′.f = IsF inal(a′);
21: if (¬a′.d) then {there is no dead state in a’}
22: if (6 ∃x ∈ A s.t. x == a′) then {a’ found for the first time}
23: F ′obs = fireableObs(a′);
24: st.Push(〈a′, F ′obs〉);
25: else {a’ is an existing aggregate}
26: free a′;
27: Let a′ be the already existing aggregate;
28: UpdateC(a, a′, t);

29: UpdateNC(a, a′, t);
30: end if
31: → = → ∪{a, 〈t, Conf(t)〉, a′};
32: else {there is a dead state in a’}
33: a.nc = a.nc ∪ {〈t, Conf(t)〉};
34: recRemoveAggregate(a, t)
35: end if
36: end if
37: a.c = a.c ∪ {〈t, Conf(t)〉};
38: CompareCorrect(a);
39: st.Pop();
40: A = A ∪ {a} ;
41: if (mi ∈ a.S) then
42: C = a.c;
43: end if
44: end if
45: end while
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Algorithm steps: In the following, we go through Algorithm 5.10 to explain the
main steps. We use for illustration our running example and the corresponding re-
sultant reduced SOG in Figure 5.9. Note that the main novelties of this algorithm
w.r.t. the algorithm of [52], are underlined.

The first step of Algorithm 5.10 (lines 5− 10) allows to build the initial aggregate
A0 by applying the saturation on the initial marking and to push it onto the stack.
Then, the main loop (lines 11 − 45) processes the set of to-be-treated aggregates as
follows: First, a stack item (i.e., 〈a, Fobs〉) holding the current aggregate a and its Fobs,
is picked (line 12). Then, the corresponding current observed transition t belonging
to Fobs, if any, is selected (line 14), and the successor a′ of the current aggregate a
by that transition t is calculated (lines 15 − 20). Note that, the calculation of the
reachable states by using the operations Sat and Out respects the semantics defined
in Subsection 5.3.2. This includes the computation of the dead (line 19) and final (line
20) attributes, i.e., a′.d and a′.f respectively (cf. Definition 5.4.1), of the obtained
successor aggregate. The function DetectDead checks if there exists a dead state
s ∈ a′.S from which neither transition could be enabled (i.e. Enable(s) = ∅).

If the latter checked aggregate is deadlock-free (line 21), and if it has not already
been explored (does not exist in the aggregates set A) (line 22), then it is pushed onto
the stack with its set of fireable observed transitions Fobs (lines 23− 24).

For instance, following the path at the top of Figure 5.9, the new aggregates: A0

until the final one A6 are consecutively pushed onto the stack one after the other.
Since A6 is a final aggregate (i.e., does not enable any observable transition), the
corresponding configuration is considered correct (line 37) and it is popped from
the stack (line 39), and then we start the loop again by picking A5 to consider its
remaining observed transitions (in this case the transition 〈j4, OR〉 leads again to
A6). After that, since 〈j4, AND〉 can not be fired from A5, we pick A4, and so on.

A0

A1

S1, XOR

A2

S3, XOR
A3

J2, OR

J2, XOR

A4
J3, OR

J3, XOR

A8

S1, AND

A11
S3, XOR

3

A12

J2, OR

2

A13

J3, OR

1

A9
S3, AND

A10
J2, AND

J3, AND

A5

S4, XOR

A7

S4, AND

A6

J4, OR

J4, XOR

J4, AND

Figure 5.9: The obtained reduced SOG of the CBP2PN in Figure 5.5

If the newly built successor aggregate a′ has been already treated and added to
aggregates set (lines 25−30). Then, as illustrated in Figure 5.10, the current aggregate
a inherits from a′ its correct and incorrect configurations, c and nc respectively. In
the figure, inside an aggregate, the green list represent the correct configurations
and the red one represent the incorrect configurations. Obviously, we add to these
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configurations the transition linking a to a′. In our Algorithm, this is ensured by the
functions UpdateC and UpdateNC (lines 28− 29).

t1

Ѵ:Ø
X:Ø

Ѵ:c(a’)
X:nc(a’)

a1

a

a’ ϵ A t’

The arc between a and a’
is added

a inherits C and NC of a’

The successor a’ of a is an already 
treated aggregate

….

….

t1

Ѵ:c(a’)
X:nc(a’)

a1

a

a’ ϵ A

….

….

Ѵ:c(a’).t’

X:nc(a’).t’

Figure 5.10: The case of a successor aggregate already treated

The function UpdateC also verifies that, starting from the same aggregate a, a
correct configuration do not include an existing (or to-be-treated) incorrect one, as in
this case it leads to a deadlock in a different transitions’ firing order. Regarding our
SOG in Figure 5.9, consider the aggregate A10 obtained through A8 and A9, the firing
of 〈j3, AND〉 leads to the existing aggregate A4. As A4 was already dealt with earlier
through the path on top of the graph, this means that 3 correct partial configurations
are added to this aggregate, namely {〈s4, XOR〉,〈j4, XOR〉}, {〈s4, XOR〉, 〈j4, OR〉}
and {〈s4, AND〉,〈j4, AND〉}. Hence, A10 inherits these configurations while being
concatenated to the current fired transition 〈j3, AND〉.

Regarding an aggregate a′ holding a dead state, firstly, the corresponding fired
observed transition is concatenated to the incorrect configurations of its predeces-
sor a (line 33). Obviously, a′ is not pushed onto the stack and no edge is cre-
ated. Then, we recursively verify its predecessors starting from a using the function
recRemoveAggregate(a, t) (line 34). Using this function, each predecessor aggregate
is removed only if the states enabling the current one becomes dead (i.e. there is no
other enabled transition from that state). In this case, its successors are also recur-
sively eliminated in case they do not have other predecessors. As an example, the red
path in Figure 5.9 refers to firing 〈s1, AND〉, 〈s3, XOR〉 then 〈j2, OR〉. According
to our semantics, 〈j3, OR〉 may be fired by 4 possible markings in the aggregate A12,
namely m12 (i.e., the place p12 marked), m10 14 (i.e., both places p10 and p14 are
marked), m11 14 and m12 14. However, in case of firing by either m10 14 or m11 14, the
obtained aggregate will allow a second firing of the same transition (i.e. using the
remaining token in p10 or p11). This leads to a final state holding two tokens, which
is a dead state in our approach. Hence, according to Algorithm 5.10 the obtained
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aggregate is eliminated as well as its predecessors A12 and A11 (following the blue
dashed line). And yet, since it enables 〈S3, AND〉, A10 is not deleted. Similarly,
going backwards to A0 after entirely processing A8 and A9, we obtain the complete
correct configurations 13− 15 depicted in Table 5.2.

To better explain the evolution of the sets of correct and incorrect configurations in
the aggregates, we illustrate the steps of pushing and popping aggregates to/from the
stack using an example in Figure 5.11. First of all, starting from the calculated initial
aggregate a0, aggregates are consecutively pushed into the stack (step 1). Initially,
the set of correct configurations as well as incorrect ones are empty (represented in
the figure using green and red lists inside the aggregates). Then, when the final
aggregate a7 (holding the final marking) is found, it is popped from the stack (since
no more transitions may occur) and the configuration c6 is added to the correct
configurations of its predecessor a6 (step 2). Next, a6 is picked to inspect if there
remains fireable observed transitions, which is not the case. So, it is also popped and
the set of correct configurations of a5 is updated by adding c5. Here, a5 still have
a fireable transition that is c7. Hence, we push the aggregates a8 and a9 and we
find out that the latter holds a dead state. So, it is popped from the stack (step 6),
as well as a8, however in this case the set of incorrect configurations is updated at
each step. Thus, a5 includes two partial configurations one correct and another one
incorrect (step 7). Similarly, we check the remaining transitions and so on. This way,
correct and incorrect configurations are computed backwards starting from the final
aggregate to the initial one. Hence, the initial aggregate will hold the complete sets
of configurations.

It is worth noting that before popping an aggregate from the stack and storing it
in the graph (lines 39− 40), a final check is carried out on its correct configurations
by the function CompareCorrect (line 38). Actually, many observed transitions may
be fired from the same aggregate, so some of the corresponding correct configurations
may refer to the same one. Hence, a correct sequence is preserved if, for every first fired
observed transition op, (i) it is fireable by the states that have fired another sequence
starting by op (i.e. different configurations), or (ii) if their common operators have
the same configured type (i.e. the same configurations but in a different order).
Otherwise, the sequence is considered as incorrect and is eliminated.

Finally, the set of correct configurations is obtained from the initial aggregate, the
last one popped from the stack. As a result, each path of the obtained SOG starting
from the initial aggregate and leading to a final aggregate, represents one possible
configuration and belongs to the set of configurations C. In this case, this configu-
ration leads to a deadlock-free BP2PN. Note that, different paths could represent a
configuration (e.g. two concurrent configurable connectors).

Usage: The reduced SOG of our example contains 8 nodes and 10 arcs, and all
correct configurations are summarized in Table 5.2. Hence, the analyst may be helped
on-the-fly during the configuration process by confronting his/her configurations with
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Figure 5.11: An example illustrating aggregates configurations lists when pushing and
popping them from the stack

the correct configurations in this table.

For instance, we can evaluate the correctness of the BP2PN variant discussed in
Section 5.3.2. After applying 〈s1, XOR〉, the control-flow is either propagated through
the place p2 or p8. In this case, it is clear that the connector j2 (i.e. after applying
〈j2, AND〉) could never be enabled, which causes a deadlock. Relying on Table 5.2,
we can notice that there is no configuration starting with {〈s1, XOR〉, 〈j2, AND〉}.

Using the SOG, the state space is greatly reduced in three fashions: (i) only
configurable transitions are observed, and the remaining transitions are hided in ag-
gregates; (ii) the graph is deterministic since it groups, for each configuration, all
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reachable markings in one aggregate; and (iii) the different process variants share
common markings in one common SOG graph, instead of constructing graphs as
much as the number of possible configurations. In the following section, we conduct
experiments to demonstrate such mitigation of the state explosion problem as well as
the feasibility of our approach.

Table 5.2: Deadlock-free extracted configurations for the CBP2PN in Figure 5.5

S1 S2 J2 J3 S4 J3

1 XOR+ XOR+ XOR− XOR− XOR+ XOR+

2 XOR+ XOR+ XOR− XOR− XOR+ OR+

3 XOR+ XOR+ XOR− XOR− AND+ AND+

4 XOR+ XOR+ XOR− OR− XOR+ XOR+

5 XOR+ XOR+ XOR− OR− XOR+ OR+

6 XOR+ XOR+ XOR− OR− AND+ AND+

7 XOR+ XOR+ OR− XOR− XOR+ XOR+

8 XOR+ XOR+ OR− XOR− XOR+ OR+

9 XOR+ XOR+ OR− XOR− AND+ AND+

10 XOR+ XOR+ OR− OR− XOR+ XOR+

11 XOR+ XOR+ OR− OR− XOR+ OR+

12 XOR+ XOR+ OR− OR− AND+ AND+

13 AND+ AND+ AND− AND− XOR+ XOR+

14 AND+ AND+ AND− AND− XOR+ OR+

15 AND+ AND+ AND− AND− AND− AND−

5.6 Validation and Experiments

To prove its feasibility, we have implemented and deployed our approach as an exten-
sion of an existing tool that initially computes the SOG of a petri-net model w.r.t. a
set of observed transitions. As explained previously, this extension takes into account
the new semantics presented in this chapter for CBP2PN models. It also allows to
symbolically detect on-the-fly deadlocks within aggregates and to reduce the SOG
accordingly.

The developed tool takes as input a GrML (Graph Markup Language) file [134],
an XML file describing the CBP2PN model (i.e. transitions, operators annotated
as configurable, and arcs) and returns the reduced SOG and the correct configura-
tions. The translation of CBP2PN model into GrML file is done as follows. Each
model element is associated with a node tag in this file. These tags are differentiated
using the value of the attribute ”nodeType”: (1) transition have three defined at-
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tributes: ”name”, ”configurable” (specifying configurable transitions using a Boolean
value), ”operator” (defining an operator type: ORPLUS, ORMOINS, ANDPLUS,
ANDMOINS, ORMOINS, XORMOINS, or null in case of a regular transition), and
”observed” (specifying observed transitions using a Boolean value); (2) ”place” have
two defined attributes: ”name” and ”marking” (defining the marking at the initial
state); and (3) ”arc” have the attribute ”valuation” that defines its weight. Finally,
we define the attribute ”finalMarking” defining the final place and its possible number
of tokens.

In order to evaluate its performances and to demonstrate the opportunities offered
by our approach, we performed experiments to show (i) the reduction of the space
explosion problem and (ii) the impact of the input model structure on the size of the
obtained SOG. Firstly, we propose to explore the size of the constructed SOG using
our tool against a naive approach, where each variant of a CBP2PN is built and
analyzed separately. Secondly, we propose to analyse the impact of the variation of
the structure complexity and the number of observed transitions of a CBP2PN, on the
size of the corresponding SOG. Taking our running example model (cf. Figure 5.5),
this variation leads to 86 different process models. We basically evaluate the structure
complexity using the well known metric CFC (Control Flow Complexity) [135] which
is defined as:

CFC =
∑

c∈AND+

1 +
∑

c∈XOR+

|c•|+
∑

c∈OR+

(2|
•c| − 1)

Table 5.3 contains three multi-columns. The first one varies the considered pa-
rameters of the CBP2PN model (i.e. CFC and observed transitions (Obs)) and gives
the number of possible configurations for each variation. Then, the size of the ob-
tained SOG is evaluated in terms of number of correct configurations (Nb correct
confs), aggregates (A), edges (E) and execution time. This graph is finally compared
against the naive approach. However, since the naive approach is very fastidious, we
built only the reachability graphs corresponding to the correct configurations. The
three first columns give the average number if states, arcs and execution time over
these correct configurations. The last column, gives the worst execution time in case
all the configuration have been analyzed to extract correct ones. The construction
of the reachability graph hase been performed with our SOG-based tool as well, by
observing all the transitions of the model (in this case, the SOG coincides with the
reachability graph).

In this evaluation, as we can observe from the Table 5.3, we took into account
three levels of complexity (depending on the number of OR+). The higher the value
of CFC, the more complex is a process’s configuration, since the number of possible
configurations increases with the number of configurable OR connectors. For example,
the CFC value 21 regards the process with only OR connectors, we can observe
that the number of possible configurations as well as the extracted correct ones are
relatively high compared to those having CFC 10. Moreover, the more transitions are
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Table 5.3: Checking deadlock-freeness on SOG vs RG

CBP2PN SOG Naive approach (RG)
CFC

Obs
Nb

possible
Nb

correct
A(avg) E(avg)

Exec Sates Arcs Exec time Overall
Exec

(avg) confs(avg) confs(avg) time(sec) (sum) (sum) correct(sec) time(sec)

21
6 729 15 13 26 1.580 283.50 331.95 0.051 2.478

5 243 5.66 8.66 16 0.693 104.14 133.57 0.017 0.729

3OR+ 4 81 2.33 5.66 8.66 0.353 42.17 49.62 0.007 0.243

3 27 1 4 4 0.044 18 21 0.003 0.070

15.5
6 243 11.33 11 21 0.093 208.47 243.25 0.037 0.802

5 81 5 7.77 13.77 0.051 93 106.30 0.017 0.267

2OR+ 4 57.85 3.66 6.09 10.33 0.030 66.72 77.81 0.012 0.191

3 22.50 2 4.33 5.83 0.018 36.20 42.20 0.006 0.068

10
6 81 8 9.50 17.50 0.015 144 168 0.024 0.243
5 54 4 7 11.83 0.010 72 84 0.014 0.184

1OR+ 4 18 4.25 5.75 9.87 0.008 76.71 89.46 0.014 0.058

3 13.24 2.58 4.23 6.29 0.006 46.44 54.18 0.008 0.040

observed, the less reduced is the SOG comparing to the reachability graph.

Comparing to the naive approach, the obtained results in Table 5.3 show that
the SOG is always significantly smaller in terms of number of states and arcs. For
example, in case of a model having 6 configurable operators with OR type (i.e. the
first row), we can observe that the obtained SOG includes only 13 aggregates and 26
arcs which is very reduced comparing to the size of the original graph of 729 possible
configurations. Indeed, after applying a naive approach on only correct configurations
(i.e. extracted from the SOG), the obtained graph has almost 283 states and 331 arcs
resulting from the sum of 15 reachability graphs. Consequently, our work not only
helps finding correct configurations but also further minimize the memory usage and
the computing time, since only one reduced graph is constructed. To ensure the
reproducibility of our experiments, please refer to our web page1.

5.7 Discussion

As discussed in this thesis, the verification of process configuration appears as a
core challenge to avoid the derived variants execution problems. To deal with this
challenge, we proposed to improve this verification task by using two complementary
contributions based on formal methods. The two approaches have some commonalities

1http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation
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and some differences to be noted:

– The verified properties: in the approach presented in Chapter 4, we consider
our process model as a graph and we reason about correctness while essentially
taking into account its structure. In fact, we verify structural properties such
as, an activity should be on a path from the initial node to the final one. Also,
we check erroneous patterns that my affect soundness property and thus af-
fect the behavior of the model. This verification is actually done based on the
structure of the graph. For example, we check that there is not a mismatching
between split and join configurations that may cause a deadlock or a lack of
synchronization. For instance, when joining by an AND connector a control
flow that was previously split by an XOR connector, this implies a deadlock.
However, structural correctness may be not sufficient. Some behavioral prob-
lems may be not easy to detect by exploring the structure of the model and
need, instead, the analysis of the process instance states (cf. Section 4.9). For
that aim, we proposed our second contribution in order to remedy this short-
coming by verifying the behavior of the process executions. The verification
is achieved using well-defined semantics describing the dynamics of the process
variants executions. This work focus on the deadlock-freeness property but can
be easily adapted in order to obtain sound [57, 93] process variants. Another
type of considered properties is the domain constraints. We check that the con-
figuration of a process variant comply with some domain requirements specified
by business analysts. These constrains are not yet integrated in the SOG-based
contribution. We leave this for future work.

– The problem of state space explosion: In the first contribution, the calculation of
possible configurations of elements is done one after the other. This means that
the state space of configurations is reduced after each configuration application.
Also, in case of a split (resp. join) configuration, the calculation considers
only the corresponding joins (resp. splits) that comes after (resp. before) this
connector. We do believe that our proof-based Event-B specification implicitly
do not suffer from the state explosion problem. The main contribution of second
SOG-based approach is actually the significant redaction of space state size. In
fact, this is achieved by the compact and aggregated representation of all the
possible configurations reachability graphs in one reduced SOG. The aggregation
criterion is the connectors configuration. The experimental evaluation then goes
on to examine the consequences of the structure and the number of configurable
elements in the input process on the state space size.

– The considered configurations constraints: In the Event-B-based model, we con-
sidered all elements configurations, i.e. activities and connectors. However, in
the second approach, we firstly dealt with the configuration of connectors, then
we are currently working on integrating other configuration constraints, such as
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removing activities. This is done by extending the presented semantics while
preserving the same SOG definition and algorithm. Also, new semantics of
OR-join connectors needs to be integrated. It is worth noting that Event-B
based approach have the advantage of easily integrating new properties and
constraints to the specification.

5.8 Conclusion

Our main contribution in this work is the SOG-based configuration model allowing
to extract deadlock-free variants at design time while reducing the state explosion
problem. We answered three research questions raised in the thesis problematic (Sec-
tion 1.2) as follows:

RQ1: How to identify configuration choices that satisfy designers and clients require-
ments? In order to extract the complete list of the configuration choices that
satisfy the considered property, i.e., the deadlock-freeness, we proposed a new
SOG-based configuration approach. Basically, with the aim to verify behavioral
issues, we firstly defined formal execution semantics of the configurable process
model using Petri net (since the C-BPMN do not have formal semantics). Based
on this formal model, we proposed an extension of the SOG definition such that
nodes hold non configurable elements states, and each arc is labeled with a con-
figurable element and its possible configuration. Then, the SOG-construction
algorithm is extended in order to eliminate dead nodes on-the-fly. As a result,
we obtained a graph including deadlock-free nodes, and thus, every path from
the initial node to the final one represent a correct configuration. Our approach
was validated by developing an extension to the SOG existing tool. This tool
takes into consideration the new semantics of our model and the modifications
made to the SOG definition and algorithm.

RQ2: How to assist the designer in selecting the correct configuration choices? As
we mentioned, this approach generates all correct configuration choices. So,
this configurations list is supplied to the process analyst with the C-BPMN
configurable process. Hence, he/she may choose to apply the configuration
that better satisfies his/her needs and preferences while being insured that the
derived variant is correct. Consequently, no need to check correctness at each
intermediate configuration step.

RQ3: How to avoid the space-state explosion of the configuration verification issue?
The major advantage of this approach is the considerable reduction of the state
space size. This achieved thanks to the compact and aggregated representation
of all the possible configurations reachability graphs provided by the SOG. The
experiments we conducted using our developed tool prove that our approach
have addressed this problem.
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To build toward our main goal regarding process configuration verification: provide
guidance and assistance to the analysts in process model configuration with correct
options, we proposed two complementary contributions using two different formalisms.
In the next chapter, we target to address our second goal towards improving the
support of Cloud resource specification and verification in BPs.
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6.1 Introduction

Nowadays, a growing number of companies are using Cloud Computing to optimize
their business processes by using dynamically scalable and often virtualized resources
on demand. Nevertheless, due to the lack of an explicit and formal description of
the resource perspective in the existing business processes, Cloud resource allocation
cannot be efficiently and correctly managed. The aim of this chapter is to offer a
formal definition of the resource perspective in BPs as a step towards ensuring a
correct and consistent Cloud resource allocation in business process modeling. For
this purpose, we intend to answer the following research questions: RQ4: How to
formally specify and verify the Cloud resource allocation in BPs? and RQ5: How to
integrate Cloud resources in BP models design?

Concretely, we propose a formal specification based on the Event-B method for
the resource perspective in BP models. This specification is used to formally validate
the consistency of Cloud resource allocation for process modeling at design time,
and to analyze and check its correctness according to user requirements and resource
capabilities. In this work, we are specifically interested in formalizing and verifying
Cloud resources properties (i.e., elasticity and shareability) and dependencies (i.e.,
allocation and substitution).

More practically, we propose to use the step-wise refinement technique by struc-
turing the development into a chain of machines linked by refinement relations. This
refinement approach produces a correct-by-construction specification since we prove
at each step the different properties of the system. Regarding the proving and verifi-
cation tasks, we use Event-B tools, first, to generate proof obligations that guarantee
the constraints preservation. The process execution steps are ensured by events, and
the different constraints are expressed in terms of invariants. Prior to the proof activ-
ity, that can be long and complex, we use the ProB animator to play some scenarios
and gain some insurance about the correctness of the Event-B specification.

The remainder of this chapter is organized as follows. We start by giving a mo-
tivating example to illustrate our approach in Section 6.2. We present the overview
of our formal specification in Section 6.3. The Cloud resource types and properties
are pointed out in conformity with the OCCI standard, and a formal definition of a
required resource and the Cloud resource-based business process model are described
in Section 6.4. Section 6.5 illustrates our formal specification of the control flow per-
spective in BPs. Section 6.6 tackles the formalization of Cloud resource allocation in
business processes. The verification and the validation of our Event-B specification
are presented in Section 6.7. Finally, we present our proof of concept to integrate
resource description into a process modeling tool in Section 6.8.

The content of this chapter was published in conferences proceedings [136, 137]
and peerreviewed journal [138].
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6.2 Motivating example

In the following, we present our motivating example of the process model in Fig-
ure 6.1. Cloud resources are assigned to different activities. Since traditional process
modeling standards does not support resource perspective, we have added the Cloud
resource representation to Signavio Process Editor 1 which is an existing web-based
platform for business process modeling (see Section 6.8). Three Cloud resources types
are taken into account: storage, network, and compute. In addition to the control flow
relation between activities depicted by arrows (thereafter will be named activation
dependency), we consider two other dependencies: (i) dependency between an activ-
ity and a resource, named allocation dependency and (ii) dependency between two
resources, named substitution dependency. The latter dependency means that, in case
of its absence or unavailability, a resource would most likely name a substitute to do
the same work on its behalf. These dependencies are depicted by dotted arcs.

Concretely, the execution of the activity a1 is performed in a virtual machine (i.e.
resource Compute1 ) with 4 GB of RAM and 100 GB of disk. Moreover, both a7
and a8 activities are sharing a database service (i.e. resource Store1 ) hosted in the
Cloud with 1 GB of storage size. a8 and a12 activities are hosted in the same virtual
machine Compute2 with 8 GB of RAM and 100 GB of disk. Besides, a15 is hosted
in a private local machine and needs to communicate with a virtual machine via a
virtual networking Cloud resource (i.e. resource Network1 ). Finally, the activity a6
stores its data in a local database, (i.e. resource Store2 ) with 1 TB of storage size.
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Figure 6.1: A process variant and its resources

Furthermore, we used different types of resources coming from different Cloud
providers (especially Microsoft Azure and Google). Thus, the process tenant can
freely purchase and configure the resources it uses to meet its requirements. The used

1https://code.google.com/p/signavio-core-components/
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resources can be classified into two groups. Elastic resources are Cloud resources
having specific set of policies agreed through an SLA between the Cloud provider and
the process tenant. In our example, Compute1, Store1, Compute2 and Network1 are
configured to be elastic resources. In order to handle concurrent requests, the elastic
resource instance has the ability to change its capacity to accommodate the work-
load. Hence, the Cloud consumer pays for what it consumes. Non-elastic resources
are classical on-premises resources having fixed capacity (i.e. cannot be changed at
runtime). In our example, Store2 is non-elastic, therefore its capacity can not ex-
ceed 1 GB. Also, these resources may be shareable or non-shareable. In our example,
(1) Compute1 and Store1 are two resources commonly shareable, which means that
two or more activity instances can be executed at the same time. (2) Compute2
and Store2 are two resources exclusively shareable, which means that two or more
activity instances can use them but not at the same time. Finally, (3) Network1 is
non-shareable resource, which means that it can be used by only one activity instance
and is released after activity instance’s completion.

Moreover, dependencies between resources can be captured. In this work, we con-
sider the substitution dependency. For instance, the computing resource compute3
can substitute the computing resource compute2 if this latter becomes no more avail-
able. Obviously, Compute3 should provide the same properties and policies. The
same shall apply to the networking resource network2 which substitutes the network-
ing resource network1.

As we can notice, the model is complex and contains many properties and depen-
dencies, so the designed process and the running process instances behavior can easily
deviate from users’ needs. Basically, the designer should respect several model con-
sistency rules. For instance, an exclusive shareable resource (e.g. Compute2 ) cannot
be consumed by more than one activity instance at the same time. Also, a non-elastic
resource, for example Store2, cannot be allocated by an activity instance of TP while
its available capacity does not fit the needed capacity. So, in order to validate and
check these resource constraints, we propose to apply formal techniques to avoid, on
the one hand, structural inconsistencies before deploying or even purchasing these
resources from Cloud providers, and, on the other hand, behavioral inconsistencies
which may occur during runtime.

6.3 Approach Overview

Let us recall that an Event-B specification is structured around machines and con-
texts. A key concept in this work is the use of the stepwise refinement. This concept
consists in progressively making an abstract specification more precise through incre-
mental steps. Figure 6.2 depicts the formalization architecture of our Event-B model
which is composed of five abstraction levels. Each level is a refinement of the previous
one and adds specific constraints and requirements towards the formalization of the
Cloud resource allocation behavior.
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Figure 6.2: Event-B model

(1) The machine BPM0 is the most abstract one and it starts by the the modeling
of the control flow perspective. It introduces the different variables and their
invariants allowing to model the coordination between the process activities.
This machine sees a context BPC0 that defines some sets and constants (see
Section 6.5.1).

(2) The machine BPM1 refines BPM0 and introduces the process and the activity
execution instances in order to consider the runtime requirements. This machine
sees a context BPC1 which extends the context BPC0 (see Section 6.5.2).

(3) The machine BPM2 refines BPM1 by adding the allocated resources to a pro-
cess activities as well as the substitute resources. In this refinement level, the
shareability property of a Cloud resource is pointed out. This machine sees the
context BPC2 which extends BPC1 (see Section 6.6.1).

(4) The machine BPM3 refines BPM2 and further details related to resource in-
stances are added. This machine sees the context BPC3 which extends BPC2
(see Section 6.6.1.3).

(5) The machine BPM4 refines BPM3 and introduces the elasticity property of a
Cloud resource. The elasticity mechanisms are modeled using events in this ma-
chine. This machine sees the context BPC4 which extends BPC3 (see Section
6.6.2).

The following sections describe these abstraction levels in detail. But before, let
as discuss Cloud resources types and properties in the next section.

6.4 Cloud Computing Resources : OCCI Standard

The emerging Cloud Computing paradigm offers a pool of shared resources between
applications at three different layers: at the top layer Software-as-a-Service (SaaS),
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consumers can remotely access software applications via web based interfaces; the
middle layer Platform-as-a-Service (PaaS) provides an operational platform allow-
ing customers to manage, develop and execute their applications; and at the bottom
layer Infrastructure-as-a-Service (IaaS), consumers may access to highly automated
and scalable resources delivered as a service via the Internet. These resources that
may be compute/servers, cloud storage and networking capability are needed to power
or support users applications. IaaS provides the highest level of flexibility and man-
agement control regarding offered resources.

In this work, we focus on the IaaS layer, and assume that offered resources at
this level are compute, network, and storage. Cloud resources may be modeled with
different existing standards such as, TOSCA [139] (Topology and Orchestration Spec-
ification for cloud Applications), OCCI [140] (Open Cloud Computing Interface), and
CIMI [141] (Cloud Infrastructure Management Interface). In order to describe our
cloud resources, we use OCCI that is a set of open standards and specifications that
was initially developed for IaaS cloud offerings. In the following, we present concepts
and properties that we use in the reminder of this chapter to characterize relevant
behavior of Cloud resource-based process models. This section is divided into three
subsections dealing with: resource types, properties, and formal definition of resource
and Cloud resource-based process model.

6.4.1 Cloud Resource Types

The Cloud Computing delivers three important types of Infrastructure as a Service
(IaaS) resources on demand. As can be seen in the OCCI infrastructure [12] class
diagram of Figure 6.3, three classes inherit from the core basic Resource class that
was defined in OCCI core Model [142]. Hence, a Resource is specialized into:

a) Compute represent processing resources that are a collection of Physical Machines
(PMs), each comprised of one or more processors, memory, network interface and
local I/O, which together provide the computational capacity of a Cloud environ-
ment [143] (e.g., a virtual machine).

b) Network represent networking entities that may be needed to interconnect these
PMs with a high-bandwidth network (e.g., a virtual switch).

c) Storage represent data persistent storage services.

6.4.2 Cloud Resource Properties

The above presented resources may be classified by considering two relevant Cloud
Computing properties: (i) the resource elasticity, and (ii) the resource sharing. In
this work, we focus on the vertical elasticity property of Cloud resources which refers
to adding or reducing resource’s capacity to an activity.
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Figure 6.3: Class diagram of OCCI Infrastructure types [12]

According to Table 6.1, a Cloud resource may be either elastic or non elastic,
and either shareable or non shareable. Also, the definition of a shareable resource is
refined into two properties: exclusive shareable or common shareable.

Table 6.1: Cloud Resource Properties description

Type Description
Elastic A resource is elastic, if it can be resized up or

down by changing its capacity at runtime.
Non Elastic A resource is non elastic, if its capacity is fixed

and can not be modified at runtime.

Shareable
Exclusive A resource is exclusive shareable if its in-

stances can be allocated and used by different
activities’ instances but not at the same time.

Common A resource is common shareable if its instances
can be allocated and consumed by several ac-
tivities’ instances at the same time.

Non Shareable A resource is Non shareable if it can be allo-
cated to only one activity instance.

6.4.3 Abstract Definition of a Cloud Resource-based Process

In addition to activities ordering captured by the control flow perspective, resources
may be needed for activities execution such as users, machines, services, etc. As
discussed earlier, we focus on non-human ones, particularly Cloud resources. More-
over, several relationships could be captured. In light of this, we present an abstract
formal definition of a business process model taking into account the Cloud resource
properties and relationships (see Definition 6.4.1):
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Definition 6.4.1 (Cloud Resource-based process model). A business process model
is a tuple Bp = < ACT,RES,E,Da, Dr, Ca > where:

• ACT is the set of activities;

• RES is the set of used resources;

• E : ACT ↔ ACT is a control flow relationship between two activities. In this
work we define two types of relationships: AND and OR activation depen-
dencies;

• Da : RES ↔ ACT is a relationship between a resource and an activity. In this
work we define the relationship: the allocation dependency;

• Dr : RES ↔ RES is a relationship between two resources. In this work we
define the relationship: the Substitution dependency;

• Ca : Da → N is the needed resource capacity for each activity execution.

More Formally, we define a required resource for a specific task as a set of four
elements. In fact, a resource (1) has a type (i.e. Storage, Network or Compute),
(2) may be shareable or not, (3) may be exclusive or common shareable, (3) may be
elastic or not, and (4) has a capacity. We formally define a resource as follows (see
Definition 6.4.2):

Definition 6.4.2 (Resource). A required resource r ∈ RES (i.e. RES is the set of
available resources) is defined as a tuple r =< T, Shareable, ExclusiveShareable, Elastic, Cr >
where:

• T : RES → {Storage,Network, Compute} is a function that assigns for each
resource r ∈ RES a type. In case of Cloud resources we consider three types:
Storage, Network and Compute.

• Shareable : RES → BOOL is a function that assigns for each resource r ∈
RES the value TRUE if it is Shareable, and FALSE if it is not.

• ExclusiveShareable : Shareable−1[{TRUE}] → BOOL is a function that as-
signs for each shareable resource the value TRUE if it is exclusive shareable,
and FALSE if it is common shareable.

• Elastic : RES → BOOL is a function that assigns for each resource r ∈ RES
the value TRUE if it is Elastic, and FALSE if it is not.

• Cr : RES → Nis a function that assigns for each resource r ∈ RES a capacity.
In case of non-elastic resources this capacity is fixed (as a constant value) and
does not change, and in case of elastic ones it is variable.

In Sections 6.5 and 6.6, we describe our Event-B formal model based on Definitions
6.4.1 and 6.4.2 .
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6.5 Formal Specification of a Business Process Model

The control-flow (or process) perspective describes activities and their execution or-
dering through different constructors, which permit flow of execution control [47]. In
this section, we introduce the first step of our formalization which consists of two
levels of abstraction considering this process perspective. Firstly, in Section 6.5.1, we
present the first abstraction level of our formal specification that addresses the control
flow of process models. Secondly, in Section 6.5.2, we formalize the process execution
dynamics behavior relying on the activity instance lifecycle. Please note that, the
semantics of the Event-B mathematical symbols used throughout this chapter are
illustrated in Appendix B.

6.5.1 Modeling Control Flow using Event-B

In the abstract model, we introduce the first level of our specification which holds
processes, activities and their relationships.

Firstly, in the first context BPC0 illustrated in Listing 14, we use a finite set BP
(axm1) to define the set of possible processes, and a finite set ACT (axm2) to define
the set of possible process activities.

Listing 14: BPC0’s sets and axioms

CONTEXT BPC0
SETS BP ACT
AXIOMS

axm1 : finite(BP )
axm2 : finite(ACT )

Then, we define the initial machine BPM0 which sees the context BPC0 described
above. Listing 15 shows the variables and the invariants of BPM0. To map each
process to its activities, we introduce the variable BP activities (Inv1). To model the
order in which the different activities will be performed in the process, we add two
variables AND ActivationDep (Inv2) and OR ActivationDep (Inv4). These activation
dependencies specify which activity must finish execution to activate a given activity.

• AND ActivationDep (inv2) states which activities instances have to finish their
executions to activate another activity.

For instance, having BP0 the process fragment of our motivating example in
the Figure 6.4a, BP0 7→ {a17 7→ a15, a17 7→ a16} ∈ AND ActivationDep
means that in order to activate an instance of the activity a17, an instance of
each activity among a15 and a16 must finish execution. Moreover, BP0 7→
{a15 7→ a14, a16 7→ a14} ∈ AND ActivationDep means that in order to acti-
vate instances of both activities a15 and a16, the activity instance of a14 should
finish execution. This dependency is used also in case of a sequence between
two activities;
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• OR ActivationDep (inv4) states that we have two or more alternative paths,
i.e. one or more of the alternative paths or activities may be chosen. For
example, having similarly the process fragment BP0 of Figure 6.4b, BP0 7→
{a17 7→ a15, a17 7→ a16} ∈ OR ActivationDep means that in order to activate
an instance the activity a17, one instance of either the activity a15 or the
activity a16 must finish its execution. It is worth noting that, in this work,
OR ActivationDep may represent the inclusive OR or the exclusive OR.

Invariants Inv3 and Inv5 guarantee that two activities related with an activation
dependency relationship belong to the same process.

Listing 15: BPM0’s variables and invariants

MACHINE BPM0
SEES BPC0
VARIABLES BP activities AND ActivationDep OR ActivationDep
INVARIANTS

Inv1 : BP activities ∈ BP ←→ ACT
Inv2 : AND ActivationDep ∈ BP −→ (ACT ←→ ACT )
Inv3 : ∀p.(p ∈ BP ⇒ AND ActivationDep(p) ⊆ BP activities[{p}]×BP activities[{p}])
Inv4 : OR ActivationDep ∈ BP −→ (ACT ←→ ACT )
Inv5 : ∀p.(p ∈ BP ⇒ OR ActivationDep(p) ⊆ BP activities[{p}]×BP activities[{p}])
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Figure 6.4: Examples of process fragments for the activation relations illustration

In the machine BPM0, we define our first event, as shown in Listing. 16. The
event CreateBP allows to construct a new process model bp by adding its activities
acts and relationships between activities, i.e. activation dependencies and activDep
and or activDep.

Listing 16: Business process creation event, Machine BPM0

CreateBP ,
ANY bp acts and activDep or activDep
WHERE

grd1: bp ∈ BP ∧ bp /∈ dom(BP activities)
grd2: acts ⊆ ACT ∧ acts 6= ∅
grd3: and activDep ⊆ acts× acts
grd4: or activDep ⊆ acts× acts
THEN

act1: BP activities := BP activities ∪ ({bp} × acts)
act2: AND ActivationDep(bp) := and activDep
act3: OR ActivationDep(bp) := or activDep
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In order to manage the addition or deletion of activities and their relations in an
existing process (i.e. already created using the previous event), we add the following
events: (1) the events AddACT and RemoveACT for respectively adding and remov-
ing activities, (2) the events AddAND Dep and RemoveAND Dep for respectively
adding and removing an AND activation dependency, and (3) the events AddOR Dep
and RemoveOR Dep for respectively adding and removing an OR activation depen-
dency.

6.5.2 Introducing Execution Instances: First Level of Refinement

An execution instance of a workflow model is called a case or a process instance. In
this step, we specify the process instances behavior. For this aim, we start by in-
troducing the context BPC1 that extends the first one, i.e., BPC0. As illustrated
in the Listing. 17, we define the set of possible processes’ instances as a carrier
set BP INSTANCES. This context is seen by a new machine BPM1 captured by
Listing. 18. Of course, to make possible the use of its variable and the triggering
of its events, this machine refines the machine BPM0 described above (i.e., using
REFINES in Event-B). In BPM1, we define a variable BP Instances to store all
created processes’ instances. Then, it is obvious that BP Instances is a subset of
BP INSTANCES (Inv1). In the same way, we define the set of all activities’ in-
stances, as a carrier set ACT INSTANCES in BPC1, and the created activities’
instances, as the subset ACT Instances (Inv3).

Each activity instance during its lifetime goes through different states. Figure 6.5
depicts an activity instance life cycle inspired by the Workflow Management Coalition
(WfMC) [144]. After its creation, the activity instance moves to the state Initiated.
During this state a resource may be allocated to this activity instance. Then, the state
becomes Running when a work item is created and assigned to the activity instance
for processing. An activity instance may be canceled while being either Initiated
or Running. A successful execution toggles between Running state and Completed
state. Whereas an unsuccessful execution moves from the state Running to the state
Failed. These states are defined as distinct subsets of the set ACT STATES in axm2
of Listing. 17.

Initiated Running

Failed

Completed

Canceled

Figure 6.5: Activity instance life cycle



122 Towards Correct Cloud Resource Allocation in Business Processes

Listing 17: BPC1’s sets and axioms

CONTEXT BPC1
EXTENDS BPC0
SETS BP INSTANCES ACT INSTANCES ACT STATES
CONSTANTS initiated running failed canceled completed
AXIOMS

axm1 : finite(ACT INSTANCES)
axm2 : partition(ACT STATES, {initiated}, {running}, {failed}, {canceled}, {completed})

We define a total function ACT Instances State, which gives the current state of each
activity instance (Inv5 ). The variable BP Instances Type (Inv2 ) (resp. ACT Instances Type
(Inv4 )) defines the process (resp. the activity) to which an instance belongs. Also, we
introduce the variable ACT Instances BP Instances to define the process instance
to which belongs an activity instance (Inv6 ).

Listing 18: The first refinement machine, Machine BPM1

MACHINE BPM1 REFINES BPM0
SEES BPC1
VARIABLES BP Instances BP Instances Type
ACT Instances ACT Instances Type ACT Instances State
ACT Instances BP Instances
INVARIANTS

Inv1: BP Instances ⊆ BP INSTANCES
Inv2: BP Instances Type ∈ BP Instances −→ BP
Inv3: ACT Instances ⊆ ACT INSTANCES
Inv4: ACT Instances Type ∈ ACT Instances −→ ACT
Inv5: ACT Instances State ∈ ACT Instances→ ACT STATES
Inv6: ACT Instances BP Instances ∈ ACT Instances −→ BP Instances
...... //here we omit other detailed invariants

Once we defined the different constants, variables and typing constraints related
to process instances, we focus now on formally modeling the behavior of an activity
instance. We define a set of events that will serve to modify the state of an activity
instance w.r.t. Figure 6.5. For that aim, we defined an event for each transition from
an activity instance state to another. We introduce the following events.

• Process instance creation: First of all, the AddBpInst event is defined. Its
occurrence allows the creation of a new process instance bpi of a process bp;

• Activity instance creation: The AddACTInst event allows the creation of an
activity instance ai, having initially the state initiated, in the process instance
bpi;

• Activity instance execution: The RunACTInst event allows the execution of an
activity instance ai by changing its state to running ;
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• Activity instance termination: The CompleteACTInst event permits an activity
instance ai to complete execution successfully, by moving its state from running
to completed ;

• Activity instance cancellation: The CancelACTInst event interrupts the activity
instance execution and cancel it, so its state passes from running to canceled ;

• Activity instance failure: The FailACTInst event represents the case of any
failure of the activity instance performance, then its state moves from running
to failed.

Let as give more details about some of the above mentioned events. For instance,
Listing. 192 depicts the AddACTInst event that allows the creation of the new instance
ai of a process activity ac. Then, ac should belong to the process of bpi (grd2), and
the state of the created activity instance should be initialized to initiated (act4 ).

Listing 19: Activity instance adding event, Machine BPM1

AddACTInst ,
ANY bpi ac ai
WHERE

grd1: bpi ∈ BP Instances
grd2: ac ∈ ACT ∧ ac ∈ BP activities[{BP Instances Type(bpi)}]
grd3: ai ∈ ACT INSTANCES ∧ ai /∈ ACT Instances
grd4: ACT Instances BP Instances ∼ [{bpi}] ∩ ACT Instances Type ∼ [{ac}] = ∅
THEN

act1: ACT Instances := ACT Instances ∪ {ai}
act2: ACT Instances Type(ai) := ac
act3: ACT Instances BP Instances(ai) := bpi
act4: ACT Instances State(ai) := initiated
AND

As shown in Listing. 20, the event RunACTInst activates an activity instance
ai by changing its state from initiated to running (grd2 and act1 respectively). As
we discussed earlier, the AND and OR activation dependencies define the succession
relationships between two activities. Thus, the guard grd3 expresses the fact that the
activity instance ai, as a successor to a set of activities instances, may be activated
only after all their executions completion (AND activation condition). A similar guard
is added to express OR activation condition.

Listing 20: Activity instance execution event, Machine BPM1

RunACTInst ,
ANY ai
WHERE

grd1: ai ∈ ACT Instances
grd2: ACT Instances State(ai) = initiated
grd3: ∀ac. (ac ∈ ACT ∧ ACT Instances Type(ai) 7→ ac

∈ AND ActivationDep(BP Instances Type( ACT Instances BP Instances(ai)))

2The inverse of a function f , (f−1), is denoted in Event-B as (f ∼).
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⇒ card(card(card( ACT Instances BP Instances ∼ [{ ACT Instances BP Instances(ai)}]
∩ ACT Instances Type ∼ [{ACT Instances Type(ai)}]

∩ ACT Instances State ∼ [{running}] )))
< card(card(card( ACT Instances BP Instances ∼ [{ ACT Instances BP Instances(ai)}]
∩ ACT Instances Type ∼ [{ac}] ∩ ACT Instances State ∼ [{completed}]) )))

. . .
THEN

act1: ACT Instances State(ai) := running
AND

Regarding the event CompleteACTInst, the Listing. 21 indicates that the state of
an activity instance ai passes from the state running to the state completed (grd2
and act1) in order to complete successfully.

Listing 21: Activity instance completion event, Machine BPM1

CompleteACTInst ,
ANY ai
WHERE

grd1: ai ∈ ACT Instances
grd2: ACT Instances State(ai) = running
THEN

act1: ACT Instances State(ai) := completed
AND

Figure 6.6 specifies the sequencing between these BPM1 machine’s events. The
diagram explicitly illustrates that the consequence of the CreateBP event occurrence
may allow, at this refined level, the triggering of AddBpInst event followed by Ad-
dACTInst event, followed by either CancellACTInst or RunACTInst events (having
the activity instance state initiated). Then, after triggering the event RunACTInst,
the activity instance state becomes running which allows it to be completed success-
fully, using the event CompleteACTInst, or unsuccessfully, using CancelACTInst or
FailACTInst events.

So far, at this level, we have not yet considered the resources that may be used by
the activity instances during their lifecycle described above. The resource perspective
is the subject of the next section.

6.6 Formal Specification of the Resource Perspective

In this section, we define our last three abstraction levels taking into consideration
the resource perspective and the different resource properties. We try to formally
specify the resource allocation in our model relying on some patterns defined by N.
Russel et al. in [40].
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Figure 6.6: Business process execution events, Machine BPM1

6.6.1 Modeling Resource Allocation: Second and Third Levels of
Refinement

At this stage, we extend the context BPC1 by adding resources into our model (see
Listing. 22). For this aim, we introduce a new finite set named RES (axm1 ) in the
context BPC2 to represent all available resources. Then, as seen in Section 6.4.1,
a resource has three main types RESType: compute, storage, network (axm2 ). We
define a constant function RES Type mapping each resource to its type (axm3 ). We
also introduce the relation BP Resources to the second refinement machine BPM2
(see Listing. 23), in order to map each process to its resources (Inv1 ). An available
resource can be added to (resp. removed from) a process using the event AddRES
(resp. RemoveRES ).

Listing 22: Context BPC2

Context BPC2 EXTENDS BPC1
SETS RES RESType
CONSTANS compute storage network RES Type
AXIOMS

axm1: finite(RES)
axm2: partition(RESType, {compute}, {storage}, {network})
axm3: RES Type ∈ RES −→ RESType

In our work, we specify the identity of the required resource responsible for ex-
ecuting an activity at design time, which is in conformity with the pattern Direct
Allocation (WRP-01) defined by N. Russel et al. in [40]. Thus, we formally define
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the allocation dependency between an activity and a resource using a new variable
AllocationDep (Inv2, Listing. 23). This latter denotes, for each process, the relation of
a possible allocation between a resource and an activity. We can add (resp. remove)
an allocation dependency using the event AddAllocDep (resp. the event RemoveAl-
locDep).

Listing 23: Allocation dependency invariants, Machine BPM2

Inv1: BP Resources ∈ dom(BP activities)↔ RES
Inv2: AllocationDep ∈ BP Resources↔ ACT
Inv3: ∀bp, res. (bp 7→ res ∈ dom(AllocationDep) ⇒ AllocationDep[{bp 7→ res}] ⊆ BP activities[{bp}])

For instance, taking back our motivating process model in Figure 6.1, we define an
allocation dependency between a1 and Compute1 as follows: BP0 7→ Compute1 7→
a1 ∈ AllocationDep; which means that, in the process BP0, an instance of the activity
a1 needs an instance of the resource Compute1 to complete its execution. Of course,
this implies that a1 should belong to BP0 (i.e. BP0 7→ a1 ∈ BP activities) as
constrained by the invariant Inv3 in Listing. 23.

6.6.1.1 Introducing Shareability Property

As we have discussed in Section 6.4.2, a Cloud resource may be shareable or non-
shareable. Also, a resource may be shareable in a given process and non-shareable
in another. So, we add a variable Shareable defined as a total function (cf. Inv4,
Listing 24) that, for each couple (process, its resource), defines whether the resource
is shareable or not (using a boolean value). Invariant Inv5 specifies that only shareable
resources may have several allocation dependencies (i.e., card(AllocationDep[{bpres}]) >
1).

Besides, in order to further refine the shareability property, we define a total
function ExclusiveShareable (Inv6, Listing 24) having as input all shareable resources
of a specific process and returns (i) TRUE if the resource is exclusive shareable,
or (ii) FALSE if it is common shareable. Then, we define two events AddRES and
RemoveRES that allows to respectively add and remove a resource to/from a process.
In the event AddRES, we add two parameters to specify whether the added resource is
shareable, non-shareable, exclusive shareable or common shareable. The shareability
property is also managed using two events: to make a resource shareable (resp. non-
shareable) we use the event MakeRESShareable (resp. MakeRESNonShareable).

Listing 24: Shareability property invariants, Machine BPM2

Inv4: Shareable ∈ dom(AllocationDep)→ BOOL
Inv5: ∀bpres. (card(AllocationDep[{bpres}]) > 1 ⇒ Shareable(bpres) = TRUE)
Inv6: ExclusiveShareable ∈ Shareable ∼ [{TRUE}]→ BOOL
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6.6.1.2 Introducing Substitution Dependency

The substitution dependency captures the possibility to replace a resource by another
to perform some work in case of its unavailability or absence. For this aim, we
introduce the relationship SubstitutionDep (cf. Inv7, Listing. 25) which maps each
allocation dependency, linking a process and its resource to an activity, to a substitute
resource. Obviously, the substitute resource should belong to the considered process
(inv8 ). In addition, it should not have an allocation dependency with the considered
activity (Inv9 ), in order to avoid redundancy, which also implies an irreflexive relation
(i.e. a resource should not substitute itself). Furthermore, a substitute resource
inherits all the privileges/properties of the resource it substitutes for. So, they must
have the same resource type and the same shareable property’s value (Inv10 ). Also, in
case of a shareable resource, they should have the same exclusive shareable property’s
value (Inv11 ). For instance, in our motivating example, we need to substitute the
resource compute2 by the resource having the same type (i.e. a computing resource),
namely compute3. Hence, compute3 must have the same properties as compute2 (i.e.
shareable and exclusive).

Listing 25: Substitution dependency invariants, Machine BPM2

Inv7: SubstitutionDep ∈ AllocationDep↔ RES
Inv8: ∀bp, ac, re1, re2.(bp 7→ re1 7→ ac 7→ re2 ∈ SubstitutionDep ⇒ re2 ∈ BP Resources[{bp}]
Inv9: ∀bp, ac, re1, re2.(bp 7→ re1 7→ ac 7→ re2 ∈ SubstitutionDep

⇒ bp 7→ re2 7→ ac /∈ AllocationDep)
Inv10: ∀bp, ac, re1, re2.(bp 7→ re1 7→ ac 7→ re2 ∈ SubstitutionDep

⇒ RES Type(re1) = RES Type(re2) ∧ Shareable(bp 7→ re1) = Shareable(bp 7→ re2))
Inv11: ∀bp, ac, re1, re2.(bp 7→ re1 7→ ac 7→ re2 ∈ SubstitutionDep

∧ bp 7→ re1 ∈ Shareable ∼ [{TRUE}]
⇒ ExclusiveShareable(bp 7→ re1) = ExclusiveShareable(bp 7→ re2))

It is worth noting that, at each step, some of the previously presented events are
refined to take into account the new properties and requirements. For instance, as
can be seen in Listing 26, additional parameters are added in the refinement event
CreateBP, namely res (set of resources), allocDep (allocation dependencies between
bp, res and acts), shar (shareable or non-shareable res), exclushar (exclusive or com-
mon shareable res) and subDep (resources in res having substitution dependencies).
Thus, corresponding guards are needed.

Listing 26: Business process creation event, Machine BPM2

CreateBP , REFINES CreateBP
ANY

bp acts and activDep or activDep res allocDep shar exclushar subDep
WHERE

// see Listing 16

grd5: res ⊆ RES
grd6: allocDep ∈ {bp} × res↔ acts
grd7: shar ∈ {bp} × res→ BOOL
grd8: ∀r. (r ∈ res ∧ card(allocDep[{bp 7→ r}]) > 1 ⇒ shar(bp 7→ r) = TRUE)
grd9: exclushar ∈ shar ∼ [{TRUE}]→ BOOL
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grd10: subDep ∈ allocDep↔ res
THEN

// see Listing 16

act5: AllocationDep := AllocationDep ∪ allocDep
act6: Shareable := Shareable ∪ shar
act7: BP Resources := BP Resources ∪ ({bp} × res)
act8: ExclusiveShareable := ExclusiveShareable ∪ exclushar
act9: SubstitutionDep := SubstitutionDep ∪ subDep

6.6.1.3 Introducing Resource Instances

In the third level of refinement, we introduce the resource instances. First, in the
context BPC3, we add a new set RES INSTANCES for all available resources in-
stances. Afterwards, we add the set of created resources instances RES Instances
in the refinement machine BPM3 (cf. inv1, Listing 27). Besides, we map each re-
source instance to its resource type using the function RES Instances Type (inv2 )
and we map each resource instance to the process instance to which it belongs using
the function RES Instances BP Instances (inv3 ).

Listing 27: Resource instances invariants, Machine BPM3

Inv1: RES Instances ⊆ RES INSTANCES
Inv2: RES Instances Type ∈ RES Instances −→ RES
Inv3: RES Instances BP Instances ∈ RES Instances −→ BP Instances

It is worth pointing out that each resource instance goes through different states
during its lifetime in a business process execution. Figure 6.7 illustrates resource
instance’s states and transitions. This life cycle is made independently of the Cloud
resource type. After its creation, a resource is in the Inactive state. When it is
allocated to an activity instance it moves to the state Allocated. Once the activity
instance starts its execution, the resource moves to the state Consumed. While being
in consumption, a Cloud resource could be resized (more details are given in Section
6.6.2). After the activity instance completion, the resource becomes Inactive, for a
future reallocation, if it is shareable, otherwise it is Released (i.e. withdrawn).

Inactive Allocated Consumed

Released

Figure 6.7: Resource instances’ states

Formally, we define the set of resources’ instances belonging to one of the fol-
lowing states: Inactive, Allocated, Consumed (see Listing. 28). Obviously, when a
resource instance is released, it will no longer be existing (i.e. it becomes not in
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RES Instances). Allocated and Consumed are two relations specifying a resource
instance’s states according to an activity instance (Inv6 and Inv7, Listing. 28). For
example, having the resource Compute1 commonly shared between two instances of
a1, namely a11 and a12, an instance of Compute1 could be allocated to a11 and con-
sumed by a12 at the same time. So here, after completion of a12, the resource state
could not become Inactive until the completion of a11.

Listing 28: Resource states invariants, Machine BPM3

Inv5: Inactive ⊆ RES Instances
Inv6: Allocated ∈ RES Instances \ Inactive ↔ ACT Instances State ∼ [{initiated}]
Inv7: Consumed ∈ RES Instance \ Inactive ↔ ACT Instances State ∼ [{running}]
... //here we omit other detailed invariants

Inv11: ∀ri, bpi.(ri 7→ bpi ∈ RES Instances BP Instances
⇒ BP Instances Type(bpi) 7→ RES Instances Type(ri) ∈ dom(AllocationDep))

Inv12: ∀bpi, r.(bpi ∈ BP Instances ∧ r ∈ RES ∧ BP Instances Type(bpi) 7→ r ∈ dom(AllocationDep)
⇒ card(RES Instances BP Instances ∼ [{bpi}] ∩ RES Instances Type ∼ [{r}]) 6 1)

Inv13: Allocated ∩ Consumed = ∅

Other invariants are added to this machine to ensure the consistency of our model.
For instance, the invariant Inv11 specifies that a resource instance cannot be created
for a process instance whose process does not have an allocation dependency with
the corresponding resource. Also, the invariant Inv12 ensures that, for each process
instance, only one resource instance of a given resource could be created. This con-
straint is also ensured by the guard grd3 of the event AddRESInst (see Listing. 29)
which allows to add a resource instance ri of a resource r to a process instance bpi.
Obviously, a resource instance cannot be allocated and consumed by the same activity
instance at the same time (inv13 ).

Listing 29: Add resource instance event, Machine BPM3

AddRESInst ,
ANY bpi r ri
WHERE

grd1: r ∈ BP Resources[{BP Instances Type(bpi)}]
grd2: ri ∈ RES INSTANCES ∧ ri /∈ RES Instances
grd3: RES Instances BP Instances ∼ [{bpi}]∩ RES Instances Type ∼ [{r}] = ∅
THEN

act1: RES Instances := RES Instances ∪ {ri}
act2: RES Instances Type(ri) := r
act3: RES Instances BP Instances(ri) := bpi
act4: Inactive := Inactive ∪ {ri}

To model the resource allocation of a created resource instance ri to an activity
instance ai, we introduce the event AllocateRESInst in Listing. 30. This event is
guarded by five conditions: (i) ai ’s current state is initiated (grd2 ), (ii) the resource
instance ri is not released (grd3 ), (iii) the activity to which ai belongs and the resource
to which ri belongs have an allocation dependency between them (grd4 ), (iv) ri is
Inactive or its resource type is common shareable (grd5 ), and (v) ri and ai belong to
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the same process instance (grd6 ). As a result, the resource instance ri is allocated to
the activity instance ai (act2 ).

Listing 30: Allocate resource instance event, Machine BPM3

AllocateRESInst ,
ANY ai ri
WHERE

grd1: ai ∈ ACT Instances
grd2: ACT Instances State(ai) = initiated
grd3: ri ∈ RES Instances ∧ ri 7→ ai /∈ Allocated
grd4: BP Instances Type(ACT Instances BP Instances(ai)) 7→ RES Instances Type(ri)

∈ AllocationDep ∼ [{ACT Instances Type(ai)}]
grd5: ri ∈ Inactive ∨ BP Instances Type(

ACT Instances BP Instances(ai)) 7→ RES Instances Type(ri)
∈ ExclusiveShareable ∼ [{FALSE}]

grd6 RES Instances BP Instances(ri) = ACT Instances BP Instances(ai)
THEN

act1: Inactive := Inactive \ {ri}
act2: Allocated := Allocated ∪ {ri 7→ ai}

After the completion, failure or cancellation of an activity instance, the intro-
duced resource instance should be either released (in case of non-shareable resources),
or returned to Inactive state waiting to be reallocated (if only the current activity
instance is using it). This is modeled using the event FreeRESInst.

6.6.2 Introducing the Elasticity Property: Fourth Level of Refine-
ment

In this section, we outline the elasticity property of Cloud resources in the final
refinement machine BPM4. For this aim, we add a variable Elastic (Inv1, Listing. 31)
returning TRUE if the resource is elastic and FALSE otherwise. Obviously, we refine
the event AddRES by adding a parameter to specify if the added resource is elastic
or not.

Moreover, the allocation relationship between activities and resources in our model
is based on specific capabilities that they possess. This corresponds to the pattern
Capability-based Allocation (WRP-08) defined by N. Russel et al. in [40]. This pat-
tern supports the allocation by the matching of specific activities requirements with
the capabilities of resources. In our case, we take into consideration the capacity of re-
sources (whether elastic on not) and the required capacity for each activity. Therefore,
we first introduce the constant RES Capacity (in the context BPC4 ) to define the
initial offered capacity of a resource and the variable RESInstance Capacity (Inv2 ) to
define a resource instance capacity which may vary in case of elastic resources. Then,
we define for each specific allocation dependency between an activity and a non-elastic
resource, the required/needed capacity for a correct performance using the function
ACT RES Needs (Inv3 and Inv4, Listing. 31)3. However, in case of elastic resources,

3A / f denotes a domain restriction: A / f = {x 7→ y|x 7→ y ∈ f ∧ x ∈ A}
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these capacity needs may increase or decrease at runtime depending on the dynam-
ics of the received requests. So, we define the function ACTInstance RES Needs
(Inv5 ) to specify the activity instance need while consuming a resource instance. The
event SetElasticNeed is specified to manage this capacity variation.

Listing 31: Machine BPM4’s invariants

Inv1: Elastic ∈ BP Resources→ BOOL
Inv2: RESInstance Capacity ∈ RES Instances→ N1
Inv3: ACT RES Needs ∈ AllocationDep 7→N1
Inv4: (Elastic ∼ [{FALSE}] C AllocationDep) ⊆ dom(ACT RES Needs)
Inv5: ACTInstance RES Needs ∈ Consumed 7→N1
Inv6: ∀bp, r.(r ∈ RES ∧ bp ∈ BP ∧ bp 7→ r ∈ dom(AllocationDep) ∧ Elastic(bp 7→ r) = FALSE

⇒ SUM(({bp 7→ r} ×BP activities[{bp}]) / ACT RES Needs) 6 RES Capacity(r))
Inv7: ∀ai, ri.(ai ∈ ACT Instances ∧ ri ∈ RES Instances∧

ACT Instances State(ai) = completed ∧ ri 7→ ai ∈ Consumed
∧ ri 7→ ai ∈ dom(ACTInstance RES Needs)⇒

ACTInstance RES Needs(ri 7→ ai) 6 RESInstance Capacity(ri))

As we have seen, the non-elastic resource’s capacity cannot be changed. So, in
order to ensure a correct allocation dependency, the sum (using a new SUM operator)
of all needed capacities of all the allocation dependencies of a non-elastic resource must
be lower or equal to its offered capacity (Inv6, Listing. 31). Moreover, at run-time, an
activity instance should not complete execution until having the needed capacity of its
consumed resource instance (Inv7, Listing. 31). Also, we have added this constraint
as a guard in the refined event CompleteACTInst.

We have defined the SUM operator to be able to sum several needed capacities
(axm1, Listing. 32). More precisely, this operator allows to sum the values of the hash
table: (AllocationDep, capacity value) pairs. This specific operator is not already
defined in Event-B. Therefore, we have defined it as a Theory using the axioms of the
Listing. 32.

Listing 32: The SUM operator’s axioms

axm1: SUM ∈ (BP ×RES ×ACT 7→N1)→ N
axm2: SUM(∅) = 0
axm3: ∀x, y. (x ∈ BP ×RES ×AC ∧ y ∈ N1 ⇒ SUM({x 7→ y}) = y) ⇒ SUM({x 7→ y}) = y)
axm4: ∀s, t. (s ∈ (BP ×RES ×ACT ) 7→N1 ∧ t ∈ (BP ×RES ×ACT ); 7→N1

⇒ SUM(s ∪ t) = SUM(s) + SUM(t))

As mentioned earlier, an activity instance may require more/less capacity at run-
time, which is due to changes in demand or workloads in a Cloud environment. Our
model must be able to react to these dynamic changes. This is handled by using
two events, ResizeUpRESInst and ResizeDownRESInst that respectively increases
and decreases the capacity of a resource instance according to the activities instances
needs. For instance, at runtime, when the activity instance demand increases and
becomes greater than the resource instance capacity (grd3, Listing. 33), the elastic re-
source instance’s capacity can be modified using the event ResizeUpRESInst to have
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a value greater or equal to the activity instance need (grd4 ). Otherwise, the activity
instance could not complete its execution.

Listing 33: Elasticity event, Machine BPM4

ResizeUpRESInst ,
ANY ri val
WHERE

grd1: ri ∈ RES Instances \ Inactive ∧ val ∈ N1
grd2: ri ∈ RES Instances Type ∼ [(Elastic ∼ [{TRUE}])[BP ]]
grd3: SUM(({ri} × Consumed[{ri}]) / ACTInstance RES Needs) > RESInstance Capacity(ri)
grd4: SUM(({ri} × Consumed[{ri}]) / ACTInstance RES Needs) 6 val
THEN

act1: RESInstance Capacity(ri) := val
AND

6.7 Verification and Validation

6.7.1 Verification using Proofs

The proof statistics, given in Fig. 6.2, show that 338 proof obligations were generated
by the Rodin platform. 257 proof obligations (76%) were automatically discharged
while others, which are more complex ones, require the interaction with the provers
to help them find the right rules to apply.

Machines/Contexts Total POs Automatic Interactive
BPC0 0 0 0
BPC1 0 0 0
BPC2 0 0 0
BPC3 0 0 0
BPC4 0 0 0
BPM0 34 22 12
BPM1 61 46 15
BPM2 52 38 14
BPM3 112 89 23
BPM4 79 62 17
Overall 338 257 (76%) 81 (24%)

Table 6.2: Proof statistics

As an example, when modeling the second refinement machine BMP2, in the
refined event CreateBP (see Listing 26) we have started by adding two new param-
eters: the parameter allocDep, to define allocation dependency (grd6 : allocDep ∈
{bp} × RES ↔ acts); and the parameter shar, to define the corresponding share-
able resources (grd7 : shar ∈ dom(allocDep) → BOOL). This refinement gives rise
to four new proof obligations (one for each of inv2, inv3, inv4 and inv5 of Listing.
23). The PO CreateBP/inv5/INV was not automatically discharged. Using the proof
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obligation explorer we can inspect this unproved PO and see that it has a goal as
follows:

∀bpres. card((AllocationDep ∪ allocDep)[{bpres}]) > 1

=⇒ (Shareable ∪ shar)(bpres) = TRUE (6.1)

Clearly this cannot be proven because Inv5 depicted in Listing. 23 has not yet been
considered by the prover. Moreover, this proof needs several steps to be discharged.
Let bpres0 be a couple of a process and a resource, which satisfies (6.1).

We have to demonstrate that:

(Shareable ∪ shar)(bpres0) = TRUE (6.2)

under the hypothesis:

card((AllocationDep ∪ allocDep)[{bpres0}]) > 1 (6.3)

To do so, we proceed by case-based reasoning by distinguishing two cases:

1. bpres0 ∈ dom(AllocationDep): which means that the process is already exist-
ing, so we have necessarily:

bpres0 ∈ dom(Shareable)

hence, the goal (6.2) is written into 4:

Shareable(bpres0) = TRUE (6.4)

and the hypothesis (6.3) is written into:

card(AllocationDep[{bpres0}]) > 1 (6.5)

thus, the instanciation of the invariant Inv5 of listing 23 by bpres0 gives:

card(AllocationDep[{bpres0}]) > 1

⇒ Shareable(bpres0) = TRUE (6.6)

So, the goal (6.4) is accomplished using (6.5) + (6.6) + Modus ponens5 rule.

4(F ∪G)(x) = G(x) if x ∈ dom(G)
5The modus ponens rule: If (P ∧ P ⇒ Q) then Q
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2. bpres0 ∈ {bp} × res: which means that there exists a resource r1 ∈ res such
that:

bpre0 = bp 7→ r1 (6.7)

hence, having (6.7), the goal (6.2) is written into:

shar(bp 7→ r1) = TRUE (6.8)

and the hypothesis (6.3) is written into:

card(allocDep[{bp 7→ r1}]) > 1 (6.9)

Moreover, the instanciatiation of the grd8 :

grd8 : ∀r.(r ∈ res∧ card(allocDep[{bp 7→ r}]) > 1 ⇒ shar(bp 7→ r) = TRUE)

by r1 gives:

card(allocDep[{bp 7→ r1}]) > 1

⇒ shar(bp 7→ r1) = TRUE (6.10)

Consequently, (6.10) + (6.9) + the modus ponens rule prove (6.8)

Thus, the PO (6.1) is proven. The proof tree in Figure 6.8 shows the proving
process of this PO.

Then, we used ProB to verify several dynamic properties that cannot be specified
as invariants since they refer to several states of the system taken at different moments.
Such properties have been specified using LTL [80]. For instance, we have verified
that after its creation, an activity instance is in the state initiated using an LTL
formula involving the next operator:

G(x /∈ ACT Instances⇒
X(x ∈ ACT Instances⇒ ACT Instances State(x) = initiated))

6.7.2 Validation by Animation

Using animation, we have played and observed different scenarios and have checked
the behavior of our model. In this work, we use the ProB plugin for this animation.
The process of animating an Event-B model involves three steps: (1) we first give
values to the constants and carrier sets in the context (in our case we used the context
BPC4 ), and (2) we start the animation by firing the INITIALISATION event to set
the system in its initial state; then, (3) we proceed the steps of our scenario, and
for each step: (i) the animator computes all guards of all events, enables the ones
with true guards, and shows parameters which make these guards true; then, (ii) we
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Figure 6.8: Rodin interface for discharging Proof Obligations

pick one value, if any, which allows to fire the enabled event and, in consequence, the
substitutions are computed. Finally, (iii) the animator checks if the invariants still
hold.

For instance, we animated the complete behavior of an activity instance from its
creation until its completion while verifying the different states in which it may move.
We have also verified the allocation of resources to activities and checked how an
elastic resource instance adapts its capacity when capacity needs increase/decrease.

In order to highlight the different steps of a process execution taking into account
all dependencies described above (i.e. activation, allocation and substitution) as well
as resource properties (i.e. shareable and elastic resources), we have successfully
applied the animation of ProB on our final level of refinement model using our case
study of Figure 6.1 as follows.

1. We create the business process BP0, its activities and their activation depen-
dencies, and its resources corresponding to our case study. We also specify if
the added resources are: (i) shareable or not, (ii) exclusive or common shareable
and (iii) elastic or not. For example Compute1 is common shareable and elastic.

2. We add the allocation dependencies, e.g. between a1 and Compute1, between
a7 and Store1, etc. Note that after adding an allocation dependency between
Network1 and a15, we cannot add another allocation dependency with this
resource since it is not shareable. As can be seen in the screen shot of Figure
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6.9, the second allocation of the resource network1 is not proposed in the list
of choices. Also, we specify the activity needed capacity in case of non-elastic
resources.

Figure 6.9: Animating the case of non-shareable resource

3. We add two substitution dependencies using the event AddSubstDep: between
Compute2 and Compute3, and between network1 and network2 ;

4. We create an instance of BP0, named BP01 using AddBpInst.

5. We create an instance of each activity belonging to BPO : a1, a2, a3, etc.,
named a1 1, a2 1, a3 1, etc. As expected the state of each instance is initiated,
cf. Figure 6.10.

Figure 6.10: Extract of the animation values of Machine BPM1 after adding activities
instances

6. In order to execute these activities which mainly use resources, we need to
add an instance of each resource: Compute1, Store1, etc., named Compute11,
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Store11, etc.

7. Then, we allocate each resource instance to its corresponding activity instance.
For example, AllocateRESInst(a1 1,Compute11), to do so, an allocation depen-
dency was necessarily added in a previous step between a1 and Compute1.

Here, when having an allocation dependency, e.g. BP0 7→ Compute2 7→
a8 ∈ AllocationDep, and Compute3 could substitute Compute2, i.e. BP0 7→
Compute2 7→ a8 7→ Compute3 ∈ SubstitutionDep, we have the choice to al-
locate an instance of a8 to either an instance of Compute2 or an instance of
Compute3.

8. Now, we can run a1 1. As some resources are elastic, their instances can be
resized up or down. For example, when having Compute11 ’s capacity equal to 2
and a1 1 ’s needed capacity equal to 3, then we must resize up Compute11 (i.e.
by applying ResizeUpRESInst(Compute11,3)). Each activity instance could
not complete its execution until its resource instance capacity covers its need.
Also, we could not execute a2 1 before having executed a1 1, due to the AND
activation dependency between a2 and a1, etc.

6.8 Proof of Concept: Integration of Cloud Resource
Representation

As a proof of concept, we have extended the Signavio Process Editor6. Signavio
is an open source web application for modeling business processes in BPMN that
supports its latest version of BPMN 2.0. Since this application does not support
Cloud resources representation and management, we have extended the BPMN 2.0
with the considered Cloud resource types, i.e., storage, network, and compute; and
integrated their representation in the modeling interface.

A screen-shot of the graphical interface is depicted by Figure 6.11. As shown,
graphical elements that represent each type of resource are highlited in the red square.
The designer may drag and drop the needed resource and link it to the desired activity
using an association. Also, he/she can specify the attributes of each designed resource
such as cores, speed, hostname, etc. This resource representation comply with the
Open Cloud Computing Interface (OCCI) standard [145]. We have also considered
the substitution relationship between two resources. So, substitute resources may
also be assigned to other resources using an association. Hence, this web application
extension offers the designer the ability to assign Cloud resources to process activities
and to define the different dependencies between them7.

6http://www.signavio.com/
7Please refer to our web page for source code: http://www-inf.it-sudparis.eu/SIMBAD/tools/

BPMEventBModel
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It is worth noting that we have extended the BPMN XSD (XML Schema Defini-
tion) file that describes the structure of a BPMN Model (i.e., it defines the different
elements and attributes). We have added an element tag for each resource type. Fig-
ure 6.12 illustrate one of these elements dedicated for the compute resource as well
as the different defined attributes As an output, this extension allows to generate the
BPMN XML file including the resources tags.

Figure 6.11: A screen-shot of the graphical interface for our Cloud resource-based
process modeling in Signavio

Figure 6.12: Excerpt of the xsd file ”semantics.xsd” of the BPMN 2.0 extension
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6.9 Conclusion

Our contribution in this work is the formal specification of the Cloud resource allo-
cation in business processes while considering Cloud resources constraints and prop-
erties. We attempted to respond to our defined research questions as follows:

RQ4: How to formally specify and verify Cloud resource allocation behavior in BPs?
we introduced an Event-B based model that formally specify the resource al-
location behavior in a business process within a Cloud environment. Different
properties were formalized. For instance, resource sharing has been regarded as
a relevant property of Cloud computing. We also considered vertical elasticity
property which refers to adding or reducing resources capacity to an activity.
However we haven’t yet considered horizontal elasticity property which refers
to adding additional activity instances or removing them as necessary as well
as some local properties such as safety and liveness properties. We leave these
limitations for the future work. This approach allows to check different Cloud
resource properties and constraints while considering both the design and the
runtime requirements. The correctness and the consistency of our approach
are checked by discharging proof obligations and by animating the specification
using the ProB plugin.

RQ5: How to integrate Cloud resources in BP models design? We developed an ex-
tension to the Signavio modeling tool as a proof of concept to integrate Cloud
resources in process modeling. Hence, we extended the latest version of BPMN
2.0 with the definition of the three types of IaaS Cloud resources. Then, we
added their representation in the Signavio interface as well as their attributes
and dependencies.

As we can remark, the Event-B specification we have built makes a separation between
the control flow and the resource perspective modeling. In fact, we started by the
more abstract model that specify processes, activities and their ordering, and then we
added progressively: (i) activities instances behavior with respect to their lifecycle,
(ii) resources and their instances behavior as well, and (iii) the different considered
properties and dependencies. The advantage of such a separation is twofold. New
control flow or resource requirements or properties can be integrated to the model
without altering the existing Event-B specification. In addition, the verification and
validation phase may be applied on specific parts of the development. So, depending
on the designers qualifications, we may assign to them specific parts checking rather
then the complete model.

Furthermore, in the near future, we target to consider Cloud resource allocation in
our behavioral verification approach. Hence, we aim at defining new formal execution
semantics based on Petri nets that takes into consideration resource instances and
orchestration between available ones.
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Chapter 7

Conclusion and Future Work
G

Configurable process models allow a systematic reuse of business processes in a
flexible way. Recently, they are increasingly adopted thanks to their integrated repre-
sentation of the common and variable parts of a family of processes. These processes
are typically adjusted according to the organization specific needs and preferences. In
another side, more and more organizations are adopting PAIS on cloud environments
to benefit from a large pool of shared Cloud resources. These resources may be as-
signed to process activities to accommodate dynamic demands. This thesis strives to
address two main research questions: How to assist and verify business process con-
figuration? and How to verify Cloud resource allocation in business process models?.

The first problem stems from the lack of assistance in the process configuration
task in order to obtain correct variants. Indeed, when considering complex config-
urable processes with potentially large number of configurable elements, this task
becomes quiet difficult and error-prone. Also, the exponential number of possible
variants quickly leads to the combinatorial explosion of the state space.

The second problem is justified by the lack of a formal and explicit description of
Cloud resources in BPs while considering Cloud properties. Indeed, previous work in
the field of resource perspective in BPs mainly addressed the human resources. The
Cloud resources allocation, properties and interactions has not been considered yet.

In this manuscript, we presented in details three contributions to respond to the
mentioned problems. In this final chapter, we summarize our work in Section 7.1
and present our future research directions in Section 7.2.

7.1 Fulfillment of Objectives

The first aim of the research presented in this thesis is to provide guidance and
assistance to the analysts in process model configuration with correct options. This
manuscript presents two approaches that contributed to this goal.

In the first contribution, we propose a formal Event-B based approach to derive
correct variants step-by-step. Such a configuration approach guides the analyst by
providing at each step the potential configuration choices. For each configurable ele-
ment (i.e., activity and connector), we formalized configuration choices using events.
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Then, we defined a set of constraints using invariants specifying the variant structure
that should be respected in order to prevent errors. These constraints are related to
structure (e.g., every node should be reachable from the initial activity), soundness
(no deadlocks and lack of synchronization situations), but also domain requirements
provided by configuration guidelines. The verification of the preservation of all the
defined constraints and requirements was done using proof obligations generated by
the Rodin tool. This tool also supports the validation of our specification using
animation. This approach has been automated through the use of a model transfor-
mation language, ATL. Such a tool allows to map a C-BPMN process model into the
corresponding Event-B specification. Finally, our conducted case study showed the
practical usefulness of our approach as well as the facility in identifying the configu-
ration choices.

In the second contribution, we are interested in the definition of deadlock-freeness
variants while reducing the state space explosion problem. In this work, the verified
correctness criterion of the obtained variant is the deadlock-freeness. Traditionally,
such behavioral property verification can be handled by verifying the behavior of all
possible configurations. This means that the reachability state graph of all possible
variants need to be explored leading to the state explosion problem. An effective
solution to this issue is proposed in this work by abstractly representing all possible
configurations in a reduced SOG graph. To this end, we adapt the original SOG defi-
nition and construction algorithm based on observed configurable elements as follows.
First, the SOG abstraction is defined such that the observed configurable connectors
label the graph arcs and the non-configurable elements are hidden in the graph nodes.
Since the SOG should be associated with a formal model, we use Petri nets as a pivot
formalism to represent a C-BPMN process by defining the corresponding syntax and
semantics. Then, relying on this semantics, we extend the SOG construction algo-
rithm in order to check the deadlock-freeness property on-the-fly. In fact, aggregates
are constructed in a depth-first search style such that any aggregate containing a
deadlock state is not inserted in the graph and so are all the underlying paths. As
a result, we obtain a reduced graph as well as a set of correct configurations. Then,
this set will serve to support analysts during configuration. Our approach was im-
plemented as an extension to an existing tool to implement the proposed algorithm.
Preliminary experiments show that our approach outperforms naive approaches in
terms of size of the explored configurable models.

The third contribution of this thesis aims at improving the support of Cloud
resource specification and verification in BPs. To reach this goal, we introduced
an Event-B based model that formally specifies and verifies the resource allocation
behavior in a business process deployed in a Cloud infrastructure. In fact, We have
applied a correct-by-construction refinement technique in order to formally model
and reason about a process model from both perspectives: control flow and resource
flow. We started by the more abstract model that specifies process models, activities
and their ordering, and then we added progressively details to introduce (i) activities
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instances behavior with respect to their lifecycle, (ii) resources allocation to activities,
(iii) resources instances behavior with respect to their lifecycle as well, and (iv) the
different considered properties and dependencies. In this approach, we considered the
resource sharing that has been regarded as a relevant property of Cloud computing
allowing multiple activities to allocate the same resource simultaneously. We also
considered the resource vertical elasticity that refers to adding or reducing resources
capacity to an activity. The correctness and the consistency of our approach were
checked by discharging proof obligations and by animating the specification using
the ProB plugin. Finally, as a proof of concept, we integrated the representation of
Cloud resources according to the OCCI standard in the BPMN modeling language
definition.

7.2 Future Research Directions

Our work opens several research perspectives to accomplish in short and middle terms.
At first, we intend to enrich our work with additional properties, constraints, perspec-
tives, etc. This would provide higher expressiveness to our research. Then, we plan
to study the adaptability to change in process configuration. Finally, we intend to
entirely automate our configuration approaches.

More expressiveness. We are currently working on extending our second con-
tribution presented in Chapter 5. Firstly, we are considering configurable processes
with cycles and synchronizing OR-joins. Regarding cycles, we propose to adapt our
algorithm in order to consider them while building the SOG aggregates. As we have
explained in Section 5.5, the construction algorithm is performed, first, by pushing the
initial aggregate into a stack, then, by incrementally pushing new aggregates linked
with observed transitions. These aggregates are popped from the stack and added to
the graph once entirely checked. Hence, we aim to check the case of a found successor
aggregate that is already in the stack (previously pushed and not yet popped). In this
case, the found aggregate is both successor and predecessor of an aggregate since it is
not entirely treated and may still have other observed transitions to fire. Regarding
OR-joins, we propose to adapt our proposed semantics to consider the Synchronizing
Merge captured by the Pattern 7 in [132]. New semantics should expressly impose
that, first there is at least one token in at least one of its incoming branches, then it
should be checked that for an incoming branch having no token, it is not possible for
a token to reach this flow [74,133]. Secondly, we are working on respecting additional
configuration constraints: activity configuration and connectors configuration by re-
stricting output or input branches. This needs to be done by adapting our semantics
in order to consider not only skipping one activity in case of its configuration to OFF,
but also by removing an entire branch that is an output (resp. input) of a split (resp.
join). Then, we aim at adapting the SOG construction algorithm in order to integrate
other correctness constraints, e.g., soundness.
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Furthermore, we intend to enrich our configuration approaches with other impor-
tant perspectives such as the resource and the data perspectives. Regarding resource
perspective, in the work of Hachicha et al. [146], configurable operators for resource
configuration were proposed in order to support the resource variability. Through con-
figuration, these operators allow designers to easily derive variants by selecting the
desired resources. However, such new dependencies between activities and resources
were not formally specified and verified. As future work, we aim at adding a formal
specification and verification phase that may assist and recommend resource configu-
ration. After that, we target to take into account the analyst specified QoS constraints
as well as the Cloud resource properties in order to derive adequate process variants.
Moreover, we plan to identify the impact of the configuration of a multi-perspective
configurable process on the process variants correctness and performance.

Our last approach might not cover every need for every organization in terms of
resources. Indeed, our Event-B model could be extended to consider (i) additional
resource types, e.g., PaaS and SaaS resources, (ii) QoS constraints and temporal
requirements, (iii) additional dependencies between resources, e.g., delegation and
peering, (iv) allowed actions, e.g., create, edit and delete. Also, we aim to consider
horizontal elasticity property which refers to adding additional activity instances or
removing them as necessary.

Configurable process 
model

Process Variants

ChangeAdaptation

Figure 7.1: Need for adaptability
to change

More adaptability. In real-life process mod-
els, any changes to the process environment also
lead to changes and variation in the process
model: either if it is the configurable process
model or even its derived process variants. In-
deed, organization are continuously willing to
align their processes with new requirements (e.g.,
new law, regulation, technology, etc.). As our ul-
timate goal is to prevent organizations from re-
designing their processes ”from scratch”, then,
the adaptation to change of these processes need
to be considered with minimal effort. Hence, we plan to specify techniques to manage
the change of a configurable process model and adapt its process variants to match the
new requirements, and vise versa (cf. Figure 7.1). These techniques need to maintain
the overall consistency between a configurable process model and its derived variants.

Tool support. As can be noticed, an automatic support of the configuration re-
striction and analysis step in a process modeling tool is missing in the current im-
plementation of our work. Using a previous extension in our research team [107],
the Signavio process modeling tool was adapted to support configurable elements,
and thus, it allows the modeling of a configurable process. However, the configu-
ration of this process is not considered yet. Hence, we are currently working on a
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proof-of-concept of the SOG-based approach that consists of an extension of this web
application. This extension considers the configuration aspect and, most importantly,
restricts the configuration with only correct options. The set of correct configurations
are extracted from our developed SOG-based tool based on the modeled configurable
process in the Signavio interface. Using this tool, we target to conduct experiments
with large process models data set to show the effectiveness of our work.
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Now this is not the end.
It is not even the beginning of the end.
But it is, perhaps,
the end of the beginning.

Winston Churchill



Appendices

147





Appendix A

List of publications

1. Mohamed Graiet, Amel Mammar, Souha Boubaker, Walid Gaaloul, Towards
Correct Cloud Resource Allocation in Business Processes, IEEE Transactions
on Services Computing 10(1): 23-36 (2017)

2. Souha Boubaker, Kais Klai, Katia Schmitz, Mohamed Graiet, Walid Gaaloul,
Deadlock-Freeness Verification of Business Process Configuration Using SOG, -
15th International Conference Service-Oriented Computing, ICSOC 2017, Malaga,
Spain, November 13-16, 96-112.

3. Souha Boubaker, Amel Mammar, Mohamed Graiet, Walid Gaaloul, Formal
Verification of Cloud Resource Allocation in Business Processes Using Event-B,
30th IEEE International Conference on Advanced Information Networking and
Applications, AINA 2016, Crans-Montana, Switzerland, 23-25 March, 746-753

4. Souha Boubaker, Amel Mammar, Mohamed Graiet, Walid Gaaloul, A Formal
Guidance Approach for Correct Process Configuration, Service-Oriented Com-
puting - 14th International Conference, ICSOC 2016, Banff, AB, Canada, Oc-
tober 10-13, 483-498.

5. Souha Boubaker, Amel Mammar, Mohamed Graiet, Walid Gaaloul, An Event-
B Based Approach for Ensuring Correct Configurable Business Processes, IEEE
International Conference on Web Services, ICWS 2016, San Francisco, CA,
USA, June 27 - July 2, 460-467

6. Souha Boubaker, Walid Gaaloul, Mohamed Graiet, Nejib Ben Hadj-Alouane,
Event-B Based Approach for Verifying Cloud Resource Allocation in Business
Process, IEEE International Conference on Services Computing, SCC 2015, New
York City, NY, USA, June 27 - July 2, 538-545.

149



150 List of publications



Appendix B

Event-B Symbols Summary

Table B.1 gives the semantics of some mathematical symbols used in this manuscript
where:

• A and B denote any sets of elements,

• A1 and B1 denote any subsets of A and B respectively,

• S denotes any set expression.

Symbol Semantics
Relation(R ∈ A↔ B) R ⊆ {a 7→ b·a ∈ A ∧ b ∈ B}
Inverse(R ∼) R ∼= {b 7→ a·a 7→ b ∈ R}
Image(R[A1]) R[A1] = {b1 ·(b1 ∈ B ∧ ∃a1 ·(a1 ∈ A1 ∧ a1 7→ b1 ∈ R))}
Domain(dom(R)) dom(R) = {a1 ·(a1 ∈ A ∧ ∃b1 ·(b1 ∈ B ∧ a1 7→ b1 ∈ R))}
Range(ran(R)) ran(R) = {b1 ·(b1 ∈ B ∧ ∃a1 ·(a1 ∈ A ∧ a1 7→ b1 ∈ R))}
Domain restriction(A1 CR) A1 CR = {a 7→ b·(a 7→ b ∈ R ∧ a ∈ A1)}
Range restriction(RBB1) RBB1 = {a 7→ b·(a 7→ b ∈ R ∧ b ∈ B1)}
Domain subtraction (A1 C−R) A1 C−R = {a 7→ b·(a 7→ b ∈ R ∧ a /∈ A1)}
Range subtraction (RB−B1) RB−B1 = {a 7→ b·(a 7→ b ∈ R ∧ b /∈ B1)}
Partial function(f ∈ A 7→B) f ∈ A 7→B

⇔
f ∈ A↔ B ∧ ∀a·(a ∈ A⇒ card(f [{a}]) ≤ 1)

Total function(f ∈ A→B) f ∈ A→B
⇔

f ∈ A 7→B ∧ dom(f) = A
Surjective function(f ∈ A 7�B) f ∈ A 7�B

⇔
f ∈ A 7→B ∧ ran(f) = B

Injective function(f ∈ A 7�B) f ∈ A 7�B
⇔

f ∈ A 7→B ∧ f ∼∈ B 7→A
Quantified union(

⋃
x·(P |S)) if ∀x.(P ⇒ S ⊆ T ) then⋃

x·(P |E) = {y ·y ∈ T ∧ ∃z ·(z ∈ T ∧ P ∧ y ∈ S)}

Table B.1: Some Event-B symbols and their semantics
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[52] Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a sym-
bolic and abstraction-based model checker. In Farn Wang, editor, Automated
Technology for Verification and Analysis, pages 196–210, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[53] K. Klai and L. Petrucci. Modular construction of the symbolic observation
graph. In 2008 8th International Conference on Application of Concurrency to
System Design, pages 88–97, June 2008.

[54] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Funda-
mentals of Business Process Management. Springer, 2013.

[55] Monika Weidmann, Falko Kötter, Maximilien Kintz, Daniel Schleicher, Ralph
Mietzner, and Frank Leymann. Adaptive Business Process Modeling in the
Internet of Services (ABIS). In Proceedings of the Sixth International Confer-
ence on Internet, Web Applications, and Services (ICIW) 2011, editors, Adap-
tive Business Process Modeling in the Internet of Services (ABIS), pages 29–34.
Xpert Publishing Services, March 2011.

[56] PhD thesis.

[57] Wil M. P. van der Aalst. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[58] Arthur ter Hofstede and Wil van der Aalst. Workflow patterns: On the expres-
sive power of (petri-net-based) workflow languages. In Jensen, editor, Fourth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools., pages 1–17, Aarhus, Denmark, 2002. Department of Computer Science,
University of Aarhus.

[59] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, New York, NY, USA, 1996.



158 Bibliography

[60] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in event-b. STTT, 12(6):447–466, 2010.

[61] Atelier b tool homepage. http://www.atelierb.eu/en/atelier-b-tools/.

[62] M. Leuschel and M. Butler. Prob: an automated analysis toolset for the
b method. International Journal on Software Tools for Technology Transfer,
10(2):185–203, 2008.

[63] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52–71, 1982.

[64] I. Ait-Sadoune and Y. Ait-Ameur. A proof based approach for modelling and
verifying web services compositions. In 2009 14th IEEE International Confer-
ence on Engineering of Complex Computer Systems, pages 1–10, June 2009.

[65] Idir Ait-Sadoune and Yamine Ait-Ameur. Stepwise Design of BPEL Web Ser-
vices Compositions: An Event B Refinement Based Approach, pages 51–68.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[66] Mohamed Graiet, Imed Abbassi, Lazhar Hamel, Mohamed Tahar Bhiri, Mourad
Kmimech, and Walid Gaaloul. Event-b based approach for verifying dynamic
composite service transactional behavior. In IEEE 20th International Confer-
ence on Web Services, pages 251–259, 2013.

[67] Imed Abbassi, Mohamed Graiet, Walid Gaaloul, and Nejib Ben Hadj-Alouane.
A formal approach for enforcing transactional requirements in web service com-
positions. In IEEE International Conference on Services Computing, pages
637–644, 2014.

[68] G. Babin, Y. A. Ameur, and M. Pantel. Formal verification of runtime com-
pensation of web service compositions: A refinement and proof based proposal
with event-b. In IEEE International Conference on Services Computing (SCC),
pages 98–105, June 2015.

[69] Jeremy W. Bryans and Wei Wei. Formal analysis of bpmn models using event-b.
In Stefan Kowalewski and Marco Roveri, editors, Formal Methods for Industrial
Critical Systems, pages 33–49, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[70] Iman Poernomo and Timur Umarov. A mapping from normative require-
ments to event-b to facilitate verified data-centric business process management.
In Tomasz Szmuc, Marcin Szpyrka, and Jaroslav Zendulka, editors, Advances
in Software Engineering Techniques, pages 136–149, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.



Bibliography 159

[71] Wil M. P. van der Aalst. Challenges in business process management: Verifica-
tion of business processing using petri nets. Bulletin of the EATCS, 80:174–199,
2003.

[72] B.F. van Dongen, M.H. Jansen-Vullers, H.M.W. Verbeek, and W.M.P. van der
Aalst. Verification of the sap reference models using epc reduction, state-space
analysis, and invariants. Computers in Industry, 58(6):578 – 601, 2007.

[73] B. f. V. Dongen, J. Mendling, and W. m. p. V. Der Aalst. Structural patterns
for soundness of business process models. In 2006 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’06), pages 116–
128, Oct 2006.

[74] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis
of business process models in bpmn. Information and Software Technology,
50(12):1281 – 1294, 2008.

[75] Wasim Sadiq and Maria E. Orlowska. On correctness issues in conceptual mod-
eling of workflows, 1997.

[76] W. M. P. van der Aalst. Verification of workflow nets. In Pierre Azéma and
Gianfranco Balbo, editors, Application and Theory of Petri Nets 1997, pages
407–426, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[77] M.T. Wynn, H.M.W. Verbeek, W.M. van der Aalst, A.H.M. ter Hofstede, and
D. Edmond. Business process verification - finally a reality! Business Process
Management Journal, 15(1):74–92, 2009.

[78] Boudewijn F. van Dongen, Wil M. P. van der Aalst, and H. M. W. Verbeek.
Verification of epcs: Using reduction rules and petri nets. In Oscar Pastor
and João Falcão e Cunha, editors, Advanced Information Systems Engineering,
pages 372–386, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[79] H.M.W. Verbeek, M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofst-
ede. Reduction rules for reset/inhibitor nets. Journal of Computer and System
Sciences, 76(2):125 – 143, 2010.

[80] W.M.P van der Aalst. Business Process Management: Models, Techniques, and
Empirical Studies, chapter Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques, pages 161–183. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000.

[81] Wil M.P. van der Aalst and Arthur H.M. ter Hofstede. Verification of workflow
task structures: A petri-net-baset approach. Information Systems, 25(1):43 –
69, 2000.



160 Bibliography

[82] M.T. Wynn, H.M.W. Verbeek, W.M.P. van der Aalst, A.H.M. ter Hofstede,
and D. Edmond. Soundness-preserving reduction rules for reset workflow nets.
Information Sciences, 179(6):769 – 790, 2009.

[83] Julio Clempner. An analytical method for well-formed workflow/petri net veri-
fication of classical soundness. Int. J. Appl. Math. Comput. Sci., 24(4):931–939,
December 2014.

[84] Julio Clempner. Verifying soundness of business processes: A decision process
petri nets approach. Expert Systems with Applications, 41(11):5030 – 5040,
2014.

[85] Y. He, G. Liu, D. Xiang, J. Sun, C. Yan, and C. Jiang. Verifying the correctness
of workflow systems based on workflow net with data constraints. IEEE Access,
6:11412–11423, 2018.

[86] Robin Milner. Communicating and Mobile Systems: The &Pgr;-calculus. Cam-
bridge University Press, New York, NY, USA, 1999.

[87] Frank Puhlmann and Mathias Weske. Using the π-calculus for formalizing
workflow patterns. In Wil M. P. van der Aalst, Boualem Benatallah, Fabio
Casati, and Francisco Curbera, editors, Business Process Management, pages
153–168, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[88] Frank Puhlmann. Soundness verification of business processes specified in the
pi-calculus. In Proceedings of the 2007 OTM Confederated International Confer-
ence on On the Move to Meaningful Internet Systems: CoopIS, DOA, ODBASE,
GADA, and IS - Volume Part I, OTM’07, pages 6–23, Berlin, Heidelberg, 2007.
Springer-Verlag.

[89] W. Gaaloul, S. Bhiri, and M. Rouached. Event-based design and runtime ver-
ification of composite service transactional behavior. IEEE T. Services Com-
puting, 3(1):32–45, 2010.

[90] S. Wang, J. Wan, and X. Yang. Describing, verifying and developing web
service using the b-method. In International Conference on Next Generation
Web Services Practices, pages 11–16, Sept 2006.

[91] Kais Klai, Samir Tata, and Jörg Desel. Symbolic abstraction and deadlock-
freeness verification of inter-enterprise processes. In Umeshwar Dayal, Johann
Eder, Jana Koehler, and Hajo A. Reijers, editors, Business Process Manage-
ment, pages 294–309, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[92] J. Koehler, G. Tirenni, and S. Kumaran. From business process model to
consistent implementation: a case for formal verification methods. In Pro-
ceedings. Sixth International Enterprise Distributed Object Computing, pages
96–106, 2002.



Bibliography 161

[93] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Na-
talia Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar Wynn.
Soundness of workflow nets: classification, decidability, and analysis. Formal
Aspects of Computing, 23(3):333–363, 2010.

[94] Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann,
Hagen Völzer, and Karsten Wolf. Business Process Management: 7th Interna-
tional Conference, BPM. Proceedings, chapter Instantaneous Soundness Check-
ing of Industrial Business Process Models, pages 278–293. 2009.

[95] B.F. Van Dongen, J. Mendling, and W.M.P Van Der Aalst. Structural patterns
for soundness of business process models. In Enterprise Distributed Object Com-
puting Conference, pages 116–128, 2006.

[96] Juliane Dehnert and Peter Rittgen. Relaxed soundness of business processes. In
Proceedings of the 13th International Conference on Advanced Information Sys-
tems Engineering, CAiSE ’01, pages 157–170, London, UK, UK, 2001. Springer-
Verlag.

[97] Axel Martens. Analyzing web service based business processes. In Proceedings
of the 8th International Conference, Held As Part of the Joint European Con-
ference on Theory and Practice of Software Conference on Fundamental Ap-
proaches to Software Engineering, FASE’05, pages 19–33, Berlin, Heidelberg,
2005. Springer-Verlag.

[98] Marcello La Rosa, Wil M. P. Van Der Aalst, Marlon Dumas, and Fredrik P.
Milani. Business process variability modeling: A survey. ACM Comput. Surv.,
50(1):2:1–2:45, March 2017.

[99] Marcello La Rosa, Marlon Dumas, Arthur H.M. ter Hofstede, and Jan Mendling.
Configurable multi-perspective business process models. Information Systems,
36(2):313 – 340, 2011. Special Issue: Semantic Integration of Data, Multimedia,
and Services.

[100] Arnd Schnieders and Frank Puhlmann. Variability mechanisms in e-business
process families. In Business Information Systems, 9th International Confer-
ence on Business Information Systems, BIS 2006, May 31 - June 2, 2006,
Klagenfurt, Austria, pages 583–601, 2006.

[101] I. Rychkova and S. Nurcan. Towards adaptability and control for knowledge-
intensive business processes: Declarative configurable process specifications. In
2011 44th Hawaii International Conference on System Sciences, pages 1–10,
Jan 2011.

[102] Frank Puhlmann. Variability mechanisms for process models. 01 2005.



162 Bibliography

[103] Marcello La Rosa, Florian Gottschalk, Marlon Dumas, and Wil M. P. van der
Aalst. Linking Domain Models and Process Models for Reference Model Config-
uration, pages 417–430. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[104] Paul C. Clements. Managing variability for software product lines: Working
with variability mechanisms. In 10th International Software Product Line Con-
ference (SPLC’06), pages 207–208, Aug 2006.

[105] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Manag-
ing Variability in Workflow with Feature Model Composition Operators. In In-
ternational Conference on Software Composition 2010, LNCS, page 16, Malaga,
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