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Introduction

Le groupe de difféotopie d"un espace topologique est un groupe discret associé a cet espace et en définit un inva-
riant fondamental. Dans le cas d'un disque dont #n points ont été retirés, il correspond au groupe de tresses sur n
brins, noté B,. Ce groupe, implicitement étudié par Hurwitz dans [ ] puis explicitement introduit par Artin
dans [ ], a des liens profonds avec la théorie des nceuds (voir [ , , 1), la géométrie algébrique
et la théorie des groupes finis (voir [ , ]). L'étude des représentations linéaires des groupes de tresses
constitue ainsi un théme de recherche tres riche, intéragissant avec de nombreux domaines des mathématiques.
On renvoie a [ ] pour une présentation plus détaillée de ce sujet.

Il n’y a dans la littérature que peu d’exemples de représentations linéaires des groupes de tresses ne factori-
sant pas par les groupes symétriques. Parmi ces rares exemples se trouvent les représentations de Burau [ ]
et de Lawrence-Krammer [ ]. Krammer utilise ces dernieres représentations dans [ ] pour démontrer
la linéarité des groupes de tresses sur n > 5 brins. Des représentations analogues sont considérées par Bigelow
dans [ ] pour démontrer ce résultat. Enfin, Tong, Yang et Ma ont exhibé dans [ ] une famille de re-
présentations simples des groupes de tresses, d'une forme analogue a celles de Burau. De plus, 'état actuel des
connaissances ne permet pas d’en établir une classification. Il serait donc intéressant de parvenir a une meilleure
compréhension de ces représentations et de s’interroger sur une fagon de les relier.

Dans cette optique, le travail découlant d’échanges avec Moody mené par Long en 1994 dans [ ] s’avére
fécond. En effet, considérant une représentation p : B, 41 — GL (V), Long introduit une construction nouvelle
définissant une représentation LM (p) : B, — GL (V®"), plus complexe que la représentation initiale p. Cette
construction sera dite de Long-Moody. Par exemple, en 1’appliquant a une représentation de dimension un, on ob-
tient la représentation de Burau (non-réduite). Il est a noter que le principe de cette construction était implicitement
déja présent dans les articles [ Jet[ ] antérieurs de Long. Une interprétation purement matricielle en
est également donnée par Bigelow et Tian en 2008 dans [ ] : ils donnent des démonstrations analogues des
résultats de [ ] et en étendent certains. Enfin, Birman et Brendle mentionnent la construction de Long-Moody
dans leur article de survol sur les tresses [ ]. Elles insistent en particulier sur 'intérét qu’en représenterait une
étude plus approfondie et posent un probleme ouvert (voir [ , Open Problem 7]) la concernant, que nous re-
formulerons de la maniere suivante : serait-il possible d’obtenir toutes les représentations unitaires de dimension
finie des groupes de tresses par de légeres modifications de la construction de Long-Moody ?

De plus, généraliser cette construction pour d’autres familles de groupes s’avérerait fort utile. En effet, I'étude
des représentations linéaires des groupes de difféotopie des surfaces ou des variétés de dimension 3 par exemple
constitue un sujet de recherche tres actif et ces représentations demeurent mal connues. On pourra se référer a
[ , Section 4.6], [ 11 Jou|[ ] pour un exposé plus approfondi de ce sujet.

Par ailleurs, Randal-Williams et Wahl démontrent dans [ ] 1a stabilité homologique avec certains types
de coefficients tordus pour une grande variété de familles de groupes, parmi lesquels les groupes de difféotopie
des surfaces et de 3-variétés. Plus précisément, la stabilité pour ces derniers est étudiée par rapport au nombre de
points marqués ou au genre orientable ou non-orientable des surfaces. Ce travail permet en particulier de retrouver
les résultats de stabilité a coefficients tordus par rapport au genre orientable d'Ivanov dans [ ], généralisés par
Cohen et Madsen dans [ ] puis Boldsen dans [ ]. Pour les 3-variétés, la stabilité des groupes de difféotopie
est démontrée par rapport a l'itération de la somme connexe sur le bord d'une 3-variété compacte connexe orientée
avec une composante de bord.

Les coefficients tordus considérés sont donnés par des foncteurs ayant pour source une catégorie obtenue en
appliquant au groupoide associé a la famille de groupes considérée une construction due a Quillen consistant
a ajouter des morphismes au groupoide (voir [ , P- 219] et ci-dessous pour plus de détails). Ces foncteurs
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viii 0. Chapter. Introduction

doivent vérifier des conditions de polynomialité et sont alors appelés systemes de coefficients de degré fini. La
notion de polynomialité a laquelle il est fait référence ici a d’abord été introduite par Eilenberg et Mac Lane pour
des foncteurs sur des catégories de modules en utilisant la notion d’effets croisés dans | ]. Elle a été étendue
par Djament et Vespa [ ] pour des foncteurs ayant pour source une catégorie monoidale symétrique stricte
telle que I'objet unité est objet initial, et pour but une catégorie abélienne. On parle alors de fonteurs fortement
polynomiaux. Dans le cas des groupes de difféotopie des surfaces, les catégories associées ne sont pas monoidales

symétriques, mais monoidales pré-tressée, notion ad hoc introduite par Randal-Williams et Wahl dans [ 1.
La définition de foncteur fortement polynomial s’adapte a ce type de catégories et sera traité dans le premier
chapitre de cette these, et est reliée a la notion de systeme de coefficients de [ , Section 4].

La littérature ne présente que peu d’exemples de systeme de coefficients de degré fini quelconque pour les
groupes de tresses et plus généralement les groupes de difféotopie des surfaces. Dans le cas des groupe de tresses,
Randal-Williams et Wahl démontrent que les représentations de Burau non-réduites forment un systeme de co-
efficients de degré un. Par conséquent, on souhaiterait une maniere systématique de construire des systémes de
coefficients de degré fini pour ces familles de groupes. A cette fin, la construction de Long-Moody s’avere parti-
culierement intéressante. En effet, les représentations de Burau non-réduites se retrouvent via la construction de
Long-Moody a partir des représentations de dimension un, ces derniéres formant un systéeme de coefficients de
degré zéro.

Le premier objectif de cette these est de fonctorialiser la construction de Long-Moody dans le sens ot elle per-
met de définir un nouveau systeme de coefficients de degré fini a partir de n’importe quel systéme de coefficients
de degré fini. Apres avoir introduit des variantes de cette construction pour les groupes de tresses, on la généralise
pour d’autres familles de groupes. Enfin, I’étude de l'effet des foncteurs ainsi définis sur le degré de polynomialité
fournit le résultat principal de cette these. Ces travaux font 1’objet des chapitres 1 et 2.

Une des motivations principales de ce travail est le calcul de I'homologie stable a coefficients tordus des
groupes de difféotopie des surfaces. En effet, trés peu de résultats de ce type sont connus. Pour les groupes de
tresses, 'homologie a coefficients dans I'anneau des polyndmes de Laurent Z [t*1] est calculée par Callegaro dans
[ ] (généralisant les travaux précédents de De Concini, Procesi et Salvetti dans [ 1), celle a coefficients
dans la représentation de Tong Yang et Ma complexe est obtenue par Callegaro, Moroni et Salvetti dans [ ]
et celle a coefficients dans la représentation de Burau réduite complexe est calculée par Chen dans [ ]. Il est
a noter que le calcul de ’homologie stable des groupes de tresses a coefficients dans n’importe quelle puissance
tensorielle de la représentation de Burau réduite a des applications en arithmétique. En effet, Chen explique dans
[ , Section 4] que ce calcul s’avérerait utile pour 1'étude de la distribution de IF;-points sur une courbe su-
perelliptique. Pour les groupes de difféotopie des surfaces orientables avec une composante de bord, '’homologie
stable par rapport au genre a coefficient dans le premier groupe d’homologie de la surface considérée est obtenue
par Harer dans [ ]. Ce résultat est généralisé en cohomologie par Kawazumi pour toute puissance tenso-
rielle du premier groupe de la surface dans [ 1. Enfin, le premier groupe d’homologie stable des groupes
de difféotopie des surfaces non-orientables avec une composante de bord et a coefficients dans le premier groupe
d’homologie des surfaces considérées est déterminé par Stukow dans [ I

On souhaite ainsi comparer I’homologie stable a coefficients donnés par un foncteur tres fortement polynomial
F a celle a coefficients donnés par I'image de F par un foncteur de Long-Moody. Cette question en toute généralité
s’avere difficile. Néanmoins, dans le chapitre 3, on répond partiellement a ce probleme. En associant cette com-
paraison a des résultats de stabilité homologique a coefficients tordus de Boldsen dans [ ], Cohen et Madsen
dans [ ] et Hanbury dans [ ], on obtient alors des résultats d’homologie stable a coefficients tordus pour
des groupes de difféotopie de surfaces orientables et non-orientables ou pour les holomorphes des groupes libres.
En particulier, on retrouve ainsi par d’autres méthodes le résultat en cohomologie de [ ] dt a Kawazumi et
on généralise les résultats de Jensen de [ ].

A la fin des années 1990, il s’est avéré que I’'homologie des foncteurs est particulierement efficace pour calculer
de 'homologie stable de familles de groupes a coefficients tordus. Ainsi, les travaux de Betley dans [ ] et
[ ], Scorichenko dans [ ] et Suslin dans 1'appendice de [ ] pour les groupes linéaires montrent que
I’'homologie stable des groupes linéaires a coefficients tordus est calculée par de ’homologie des foncteurs. De plus,
des résultats analogues sont obtenus pour les groupes symétriques par Betley dans [ ]. Par ailleurs, dans le
cadre de familles de groupes associées a des catégories monoidales symétriques, Djament et Vespa ont développé
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0. Chapter. Introduction ix

dans [ ] un cadre général dans lequel les groupes d’homologie stable a coefficients tordus sont calculés par
de I'homologie des foncteurs : 'homologie stable a coefficients tordus s’exprime en fonction de I’'homologie stable
a coefficients constants et ’homologie de la catégorie source des foncteurs associés aux coefficients tordus. Ce
cadre a notamment permis de calculer de ’homologie stable a coefficients tordus des groupes orthogonaux et
symplectiques dans [ Jet] ] et des groupes d’automorphismes des groupes libres dans [ Jet[ 1.

L'extension a des familles de groupes associées a des catégories monoidales pré-tressées du résultat de décom-
position de ’homologie stable a coefficients tordus de [ | est effectuée au chapitre 3 du présent manuscrit.
Cela permet d’établir des résultats d’homologie stable pour des groupes de difféotopie des surfaces ou des groupes
d’automorphismes de certains groupes d’Artin a angles droits, a coefficients dans des FI-modules : cette catégorie
de foncteurs associée aux groupes symétriques est abondamment étudiée dans la littérature suite aux travaux de
Church, Ellenberg et Farb dans [ 1.

Cette these se décompose ainsi en trois parties (rédigées en anglais) dont nous allons donner les résumés
détaillés (en francais) :

1. la prépublication The Long-Moody construction and polynomial functors [ I;
2. la prépublication Generalised Long-Moody functors [ 1;
3. le chapitre On computations of homology with twisted coefficients for mapping class groups [ ] qui donnera

lieu a une prépublication.

0.1 Constructions de Long-Moody et foncteurs polynomiaux

Le chapitre 1 de cette thése pour sur 1’étude d"un point de vue fonctoriel et la généralisation de la construction de
Long-Moody introduite dans [ ] pour les groupes de tresses.

Tout d’abord, on adopte un point de vue issu de la théorie des catégories pour étudier cette construction. On
peut considérer les groupes de tresses {B; }, . comme étant les groupes d’automorphismes d’un groupoide S,
appelé groupoide des tresses, ayant pour objets les entiers naturels. L’addition sur les entiers naturels induit une
structure monoidale tressée § sur B (voir [ , Chapter XI] pour plus de détails), ce qui signifie qu’il existe une

opération associative B;,;{/B;, — By;1, compatible avec la composition pour tout n, m € IN. On note bP _ letressage
associé qui permet de commuter les deux termes sur lesquels s’applique l'opération . La construction de Quillen
8 (voir [ , P- 219]) permet alors de former une nouvelle catégorie 4 ayant les mémes objets que B, ol les
groupes d’automorphismes sont également les groupes de tresses, mais qui posseéde des morphismes d’un objet
vers un objet m pour n < m contrairement a . Plus précisément, 'ensemble des morphismes entre de tels objets n
et m est un quotient (ensembliste) B, /B;,—,, si m > n et]’ensemble vide sinon. Un morphisme de n vers m est ainsi
noté par une classe d’équivalence [m — 1, 0| ot ¢ € By,. La structure monoidale du groupoide des tresses s’étend a
la catégorie 4(B. Cette structure n’est pas tressée mais elle satisfait des conditions plus faibles qui en font ainsi une
structure monoidale pré-tressée au sens de Randal-Williams et Wahl dans [ , Section 1]. Les résultats de
stabilité homologique a coefficients tordus pour les groupes de tresses de [ , Section 5] sont établis pour un
certain type de foncteurs ayant cette catégorie 4B pour source. On note Fct (4B, K-Dt0d) la catégorie des foncteurs
de Up vers la catégorie K-Mod des IK-modules pour K un anneau commutatif. Un objet de Fct (4B, K-9t00d) est
ainsi la donnée d’une famille de représentations linéaires des groupes de tresses avec, pour tout entier naturel
n, une relation de compatibilité de passage de la représentation de B, a celle de B,;; liée aux morphismes de
la catégorie 4. Un premier exemple d’objet non-trivial de Fct (U, K-20d) (pour K = C [t*!]) est construit a
partir des représentations de Burau non-réduites dans [ , Example 4.3] et est noté Bur;. Cette famille de
représentations est dite typique des groupes de tresses dans le sens ot1 elle ne provient pas de représentations des
groupes symétriques.

On démontre que les représentations de Burau réduites, les représentations de Tong, Yang et Ma et les repré-
sentations de Lawrence-Krammer forment également des objets non-triviaux de Fct (48, K-0od), respectivement
notés Bur;, TYM, et £8 (voir la section 1.1.2).

La premiere étape de ce chapitre consiste alors a s’inspirer de la construction de Long-Moody introduite dans
[ ] afin de construire des endofoncteurs de Fct (L8, K-2od), produisant ainsi de nouveaux objets de cette
catégorie.
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X 0. Chapter. Introduction

Onnote F;, le groupe libre a n € IN éléments, * le produit libre de groupes, et (g, 'unique morphisme O — Fj
(o1 Og, désigne le groupe trivial). L'idéal d’augmentation de 'anneau du groupe libre a n éléments est noté
ZK(F,]- On considere des familles de morphismes {a, : B, — Aut (Fu)},cn et {6 : Fn = Byy1},cn- Trois pro-
priétés dites de cohérence sur ces familles de morphismes ont alors été exhibées (on renvoie le lecteur a la section
1.2.1 pour le détail de ces conditions, les familles {a,,},, . et {Gn},cpy étant alors dites cohérentes) afin de consti-
tuer le cadre nécessaire et suffisant au théoreme suivant.

Théoreme A (Theorem 1.2.19). Soit K un anneau commutatif. Les données suivantes définissent un foncteur exact
LM, : Fct (U, K-90d) — Fct (UB, K-Mod),

appelé foncteur de Long-Moody par rapport aux familles cohérentes de morphismes {a,}, n et {Gn}, e, défini pour F €
Obj (Fct (UB, K-Mod)) par :
LMg,g (F) (Tl) = I]K[Fn] ]K([XF) ] F (Tl + l) ’

pour tout entier naturel n.

Les morphismes {¢, },c permettent de définir ce produit tensoriel utilisé pour définir le foncteur de Long-
Moody. Celui-ci est défini sur les morphismes grace aux morphismes {a, },,cn-

Un premier exemple consiste a considérer les représentations d’Artin des groupes de tresses notées {a,,1},
définies pour n > 1 pour tout générateur d’Artin o; de B, par

an1 (0’1‘) ZFn — Fn

8it1 sij=i
8§ = (838G sij=i+1
g sij ¢ {i,i+1}.
et les morphismes {¢ 1}, définis pour n > 1 par
Cna1 - F, — B,
NN of sii=1,
' 00 Gna (g,»,l)oalfl sii €{2,...,n}.

Ces familles de morphismes sont cohérentes et le foncteur LM, ¢, correspond a la construction originale de Long
LM] ]. Plus précisément, en notant F,,, ; la restriction d’un objet F de Fct (48, K-900) a la sous-catégorie
pleine de 4B ayant pour seul objet 7 + 1, on a

(LM“LQI (F))\nJrl = LM (FIH—H) .

Le foncteur de Burau non-réduit Bur; est ainsi équivalent au foncteur obtenu en appliquant LM,, ¢, sur un fonc-
teur constant et le foncteur de Lawrence-Krammer £8 est un sous-foncteur de celui obtenu en appliquant LMy, ,
sur Bur;. Par ailleurs, en utilisant d’autres familles de morphismes {an}n N (en considérant par exemple les re-
présentations dites de Wada voir [ , ], dont les représentations d’Artin sont des cas particuliers), on
peut obtenir d’autres familles de représentations des groupes de tresses : c’est le cas du foncteur de Tong-Yang-Ma
TYPM; qui s’obtient en appliquant sur un foncteur constant un foncteur de Long-Moody associé a la famille de
morphismes {a,,3}, . définis pour tout générateur d’Artin 0; de B, par

an3 (0’1‘) :F, — Fy
Qit1 sij=i
gj g;l sij=i+1
Dans ce premier chapitre, on étend également la notion de forte polynomialité de [ ] aux foncteurs ayant
une catégorie monoidale pré-tressée pour source et l'unité de la structure monoidale comme objet initial. Plus
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précisément, pour (901, ,0) une petite catégorie monoidale stricte pré-tressée et x un objet de 91, on note 7, 1'en-
dofoncteur de Fct (9, K-Mtod) (dit de translation) obtenu par précomposition par le foncteur xf—. Puisque 1’ob-
jet O est initial dans 9, on peut former une transformation naturelle iy : Id — 7y. En considérant le conoyau
(respectivement noyau) de iy noté J, (respectivement «y), on obtient la suite exacte courte d’endofoncteurs of
Fct (91, K-90100) :

00—y —Id— 17e — 6 — 0.

Un objet F de Fct (9, K-Mod) est dit fortement polynomial de degré inférieur ou égal a d € N si 6471 (F) = 0

pour tout objet x de 9t. On note Poldfort (9, K-Mod) la sous-catégorie de Fct (9, K-M10d) formée de ces objets. Par
exemple, les foncteurs fortement polynomiaux de degré 0 sont les quotients des foncteurs constants et un foncteur
strictement monoidal par rapport a fj est fortement polynomial de degré 1.

Les foncteurs fortement polynomiaux pour lesquels Randal-Williams et Wahl démontrent la stabilité homolo-
gique a coefficients tordus dans [ , Section 5] vérifient des propriétés plus fortes. On baptise de tels objets

des foncteurs trés fortement polynomiaux. Plus précisément, un objet F de Polﬁm (M, K-9Mt00) est dit tres forte-
ment polynomial de degré inférieur ou égal a d € IN si k, (F) = 0 et 6y (F) est tres fortement polynomial de degré
inférieur ou égal a d — 1, pour tout objet x de 9. 1l est ainsi pertinent d’étudier le comportement des foncteurs
de Long-Moody sur la (tres) forte polynomialité des objets de Fct (L8, K-D0d). Il est démontré dans [ ,
Example 4.15] que le foncteur Bur; est tres fortement polynomial de degré 1. On démontre :

Proposition. Le foncteur Bur; est fortement polynomial de degré 2, le foncteur TYPM; est trés fortement polynomial de
degré 1 et le foncteur £R est tres fortement polynomial de degré 2.

Sous deux légeres hypotheses supplémentaires sur la famille de morphismes {a; } . (on renvoie le lecteur a
la section 1.4.1.1 pour le détail de ces conditions), les familles de morphismes {a,,},,cp; €t {Gn },,cpy sONt alors dites
fiables. Par exemple, les familles {a, 1},.n €t {Gn,1},cpy SOt fiables. Il s’ensuit alors le résultat suivant :

Théoréme B (Corollary 1.4.26 et Theorem 1.4.28). Pour {a}, . et {Gn},cn des familles fiables de morphismes, le
foncteur de Long-Moody associé LM, ¢ induit un foncteur

Polf’" (4B, K-9Mo0) — Poll”"} (448, K-9o0)
pour tout entier naturel d. De plus, si F : UB — K-9Nod est un foncteur tres fortement polynomial de degré d, LM (F) est
tres fortement polynomial de degré d + 1.

La clef de la démonstration de ce théoréme est donnée par les résultats techniques suivants. Un foncteur de
Long-Moody LM, associé a des familles fiables de morphismes {a,},cn et {Gx},cn admet la décomposition
suivante par rapport au foncteur de translation :

TpoLlM; =1 ® (LMgcoT).

Il en découle alors les équivalences 61 c LM, =2 7 @ (LM ¢ 061) et k1 0 LM, = LM, ¢ 0 k7.

De cette maniere, les foncteurs de Long-Moody permettent de produire de nouvelles familles de représenta-
tions linéaires des groupes de tresses, formant des foncteurs (tres) fortement polynomiaux en n’importe quel de-
gré. Cela fournit ainsi une grande variété d’exemples de coefficients tordus pour lesquelles le résultat de stabilité
homologique de [ , Section 5] est vérifié.

Enfin, on montre qu’il n’est pas possible d’obtenir le foncteur de Tong-Yang-Ma TN, a partir de I'endofonc-
teur LM, ¢, associé a la construction originale de Long-Moody. Cela indique qu’il faut au moins considérer les
constructions associées a divers morphismes {4, },, . afin de pouvoir répondre positivement au probleme soulevé
par Birman et Brendle dans [ , Open Problem 7].

0.2 Foncteurs de Long-Moody généralisés

Dans le chapitre 2, le travail du chapitre 1 est étendu a d’autres familles de groupes. En effet, les résultats de
stabilité homologique a coefficients tordus de [ ] sont valables dans un cadre beaucoup plus général que
celui des groupes de tresses. Ce cadre inclut notamment les groupes de difféotopie de surfaces de genre (orientable
ou non-orientable) non-nul. Ne disposant pas d'une classification des représentations linéaires de ces familles,
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trouver des foncteurs typiques de ces familles de groupes vérifiant des conditions de polynomialité du type de
celles décrites dans la section précédente n’est pas aisé. La construction de diverses familles de représentations
linéaires typiques des groupes de tresses dans le chapitre incite donc a généraliser la définition de ce type de
foncteurs pour d’autres familles de groupes.

Exposons tout d’abord ce nouveau cadre de travail, s'inspirant de I'exemple qui suit. On note I}

2,01 le groupe
de difféotopie d'une surface ZJ; .1 compacte connexe de genre orientable g, de genre non-orientable ¢, ayant une

composante de bord et dont on a retiré s points a l'intérieur, et par fj la somme connexe sur le bord des surfaces.

On définit le groupoide des surfaces décorées M, ayant pour objets les surfaces {ZZ, . 1} N et les groupes
=t ) g€

de difféotopie {1"2, c 1} N Pour groupes d’automorphismes. Il est muni d’une structure monoidale tressée
=) ges€
(Mz, g, 28 0 1) grace a la somme connexe sur le bord et dont le disque 28 01 est I'unité (on renvoie le lecteur a

S

[ , Section 5.6] ou a la section 2.1 pour plus de détails). Ainsi, ZJZ el étant homéomorphe a z{orluz 2,017

on a des inclusions canoniques

0 : . TS S 1 . . TS s+1
[Zl,o,vldzgc,l lgen = Tgracn et [Zo,o,lfldzz,c,l] R B

N 214 s LN ¥S . s+1 ,e s 0 .
ol les éléments de I'% 1 sont prolongés a 10 (respectivement X 2.c1) Par l'identité sur X7 , | (respectivement

Z(l),o,l)' Il s’agit ainsi de faire varier le genre orientable dans un cas et le nombre de points retirés dans 1’autre.
Dans le cas général, on considere une famille de groupes {G; }, . telle qu'on dispose d’injections canoniques
G; = G;j1 issues d’une structure monoidale sous-jacente. Plus précisément, on suppose qu’il existe un groupoide
(G’,1,0g/) monoidal strict tressé et qu'il existe des objets {n}, . de G’ tels que Autg (n) = G,. La construction de
Quillen UG’ (voir [ , p- 219]) a les mémes objets que G’ et 'ensemble des morphismes entre deux objets A et B
est donné par coé im [Homg (—4A, B)] : cela permet alors d’avoir une catégorie qui posséde des morphismes entre

objets distincts. Un morphisme entre A et B est ainsi noté [X, ¢] ot1 X est un objet tel que XjA = Bet¢ € Autg (B).

Comme le cas des groupes de difféotopie des surfaces le montre, le groupoide G’ peut avoir trop de familles
d’automorphismes par rapport a la famille de groupes a laquelle on s’intéresse. On considére alors les sous-
groupoides de M suivants :

e M3 ayant pour objets {Zg 0193 o1 } N afin d’étudier la stabilité par rapport au genre orientable ;
20177061 f o

. Mé’xf ayant pour objets {25,0,1 n)jgrc/l }seN afin d’étudier la stabilité par rapport au nombre de points retirés.
Dans le cas général, on souhaite se restreindre au sous-groupoide dont les groupes d’automorphismes sont exac-
tement les groupes {G, },,cp- On suppose alors qu’il existe deux objets de G’ (notés 0 et 1) tels que n = 1940 pour
tout entier naturel #n. On note alors G (respectivement {G) la sous-catégorie pleine de G’ (respectivement de $G’)

sur les objets {1”’ hO}

Vient alors l’étapencelgf de la généralisation des foncteurs de Long-Moody : il s’agit de trouver une famille de
groupes { Hy }, - tels qu'il existe deux familles de morphismes {a, : G, — Aut (Hy)},cn et {6n : Hn — Gui1},en
vérifiant des conditions de cohérence analogues a celles exhibées dans le chapitre 1. On procede alors de la maniére
suivante : fixant deux groupes Hy et H, ce dernier étant supposé non-trivial, on pose H,, := H*™ x Hy pour tout
entier naturel m et on suppose qu'il existe un foncteur A : UG — &t tel que H (n) = H, pour tout entier naturel n.
Ce foncteur H définit donc une famille de morphismes {a,, : G, — Aut (Hy)}, - On retrouve le cas étudié dans
le chapitre 1 en prenant G, = B, le groupe de tresses sur n brins, H = Z et Hy le groupe trivial. Si on s’intéresse

aux groupes de difféotopie plus généraux {FZ o1 }ge]N' on prend Hy = m (Zé, o1 p) et H=rm (2(1),0’1, p) si bien
que H, = m (Zz 1 p), I'action classique d’un groupe de difféotopie sur le groupe fondamental de la surface

permettant de définir le foncteur H. On procéde de fagon analogue pour les groupes {1"2 c 1} N
<t se

Des conditions de cohérence sont alors définies (généralisant celles du chapitre 1) que doivent satisfaire une
famille de morphismes {¢, : H, — Gp41},cn par rapport au foncteur A et au tressage du groupoide G’ néces-
saires et suffisantes au théoreme suivant (on renvoie le lecteur a la section 2.2.1 pour le détail de ces conditions).
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Une des conditions de cohérence technique du chapitre 1 se traduit d’ailleurs dans ce cadre général par le fait que
la famille de groupes { Hy },, . définisse un foncteur H sur la catégorie UG : cela illustre I'intérét d’avoir un point
de vue fonctoriel sur les objets considérés. Remarquons également que les idéaux d’augmentation des anneaux de
groupes {R [Hy]}, o définissent alors également un foncteur Z : G — R-Dt0d. On forme alors ce qu’on appelle
un systéme cohérent de Long-Moody noté {H, G, G’, ¢} et on démontre :

Théoréme C (Proposition 2.2.30). Pour {H,G,G’, ¢} un systéme cohérent de Long-Moody, les données suivantes défi-
nissent un foncteur exact a droite

LMy36,6,c) : Fet (UG, R-Mod) — Fet (UG, R-Mod)
appelé foncteur de Long-Moody associé au systeme {H, G, G', ¢}, défini pour F € Obj (Fct (UG, R-Mod)) par :

LMy36,g/,c} (F) (1) = Tgj,) & F (n+1),

pour tout objet n de G.

Les morphismes {¢, : Hy — Gy 41}, permettent de définir ce produit tensoriel utilisé pour définir le fonc-
teur de Long-Moody. Celui-ci est défini sur les morphismes grace au foncteur Z.

Par exemple, considérant un foncteur H, les morphismes triviaux {G ¢ : Hy = Opr — Gy+1 }neIN vérifient tou-
jours les conditions de cohérence définissant un systéme de Long-Moody. De plus, on montre que :

Proposition. Pour tout objet F de Fct (UG, R-9M0d), il y a une équivalence naturelle :
LM 36,616} (F) = IMy36,61,c,p (R) @ F (15—) -

Par ailleurs, le premier groupe d’homologie formant un foncteur H; (—, R) : &t — R-900 (ot &t désigne la ca-
tégorie des groupes), la composition Hj (—, R) o H est un objet de Fct (4G, R-9t00) noté Hy (H_, R). On remarque
ainsi :

Lemme. Si Hy et H sont des groupes libres, alors le foncteur de Long-Moody LM 4, g g1 o\ est exact et
LMy36,6'cy (R) = Hy (H-,R),
ot R désigne le foncteur constant égal a R.

. P . 0 . 2
Pour les groupes de difféotopie des surfaces {F 2,01 }seN' en considérant le foncteur de Long-Moody LM (M0 My, )

LM{H,M;:O’O,MLQ} (R) = Hy (Z(l'o’llR> '

on obtient alors :

Ce dernier foncteur H; (Zo_’o,l, R) encode les représentations symplectiques des groupes de difféotopie des sur-
faces. 1l est introduit par Cohen et Madsen dans [ ] et par Boldsen dans [ ], ot en particulier la stabilité

homologique des groupes {Fg 0 1} N Par rapport aux coefficients donnés par ce foncteur est démontrée.
OLf e

Ainsi, dans le cas ott Hy et H sont des groupes libres, un endofoncteur de Long-Moody LM 4 g g ,} pour
les morphismes triviaux {¢y ¢ },,cp €st déterminé par le foncteur Hy (H—, R). Cette propriété n’est plus vraie lors-
qu’on s’intéresse & un endofoncteur de Long-Moody LMy g ¢/} pour des morphismes non-triviaux {cs },cn-
En général, 'image d’un foncteur donné n’est alors pas déterminée par le foncteur LM 4 g g/ .} (R). Par exemple,
dans le cas des groupes de tresses, pour les morphismes non-triviaux {¢,1}, . o0 produit le foncteur LMy, ¢,
qui permet d’obtenir le foncteur de Burau a partir d’un foncteur constant.

Obtenir de tels morphismes non-triviaux {¢, },cpy Vérifiant les conditions de cohérence pour former des fonc-
teurs de Long-Moody constitue une étape difficile. En effet, on ne dispose pas de méthode générale pour en
construire en considérant des familles de groupes {G, }, o et {Hn},,cn- Cependant, il peut émerger de tels mor-
phismes dans certaines situations : c’est le cas des groupes de difféotopie des surfaces {qu,o,l} N On forme alors

s€
des morphismes cohérents

. +1
{Qn 1M (Zg,o,lf p) - rgrofl}ne]N
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en utilisant le scindement d"une suite exacte de Birman (on renvoie le lecteur a la section 2.3.4 pour plus de détails
sur cette définition). L'endofoncteur de Long-Moody ainsi construit LM { 2 MEY M g} produit alors de nouvelles
’ 2 2/

familles de représentations des groupes {1’2’0,1 }seN

Les notions de forte et tres forte polynomialité présentées dans le chapitre 1 s’étendent au cadre plus général
considéré ici. En effet, ces notions sont bien définies pour le groupoide (G’, 1, 0g/). On peut étendre les définitions
de 11, 91 et k1 pour des objets de Fct ({G, R-9100) ce qui permet de définir les foncteurs (tres) fortement polyno-
miaux sur la catégorie UG. Comme pour les groupes de tresses, la stabilité homologique a coefficients tordus des
groupes {Gy },,cp considérés dans | , Section 5] est démontrée pour les objets trés fortement polynomiaux
de Fct (4G, R-9t00).

Par ailleurs, la notion de polynomialité forte n’est pas la plus adaptée pour étudier le comportement stable
d’un objet de Fct (UG, R-Mod). En effet, considérons R : {G — R-Mod le foncteur constant égal a R et, pour un
entier naturel i > 1, R>; : UG — R-DM0d le foncteur constant égal au groupe trivial sur les objets 1 tels que n < i
et le foncteur constant égal a R sur les objets n tels que n > i. Ainsi, R est fortement polynomial de degré 0 et
R est fortement polynomial de degré i alors que ces foncteurs sont égaux pour les objets 1 tels que n > i. Cela
a notamment motivé l'introduction de la notion de faible polynomialité de [ ], définie dans le cas o G = G’
et (G',1,05/) monoidal symétrique. On montre que cette notion s’étend au cadre plus général considéré ici. A

proprement parler, un objet F de Fct (UG, R-00d) est stablementnulsi )} ;. F est égala F. Ces objets forment une
nelN
sous-catégorie localisante (voir [ | pour cette notion) de Fct (UG, R-Mod) dont la catégorie quotient associée

est notée St (UG, R-M0d) et 7y g la projection associée. L'endofoncteur induit par 73 dans St (4G, R-9t0d) a un
noyau trivial et son conoyau est de nouveau noté é;. Un objet F de Fct (G, R-9t0d) est dit faiblement polynomial
de degré inférieur ou égal a d € IN si 5?“ (1tyg (F)) = 0. Par exemple, un foncteur faiblement polynomial de
degré 0 est équivalent a un foncteur constant.

Les propriétés sur les foncteurs fortement polynomiaux des foncteurs de Long-Moody du chapitre 1 dans le
cas des groupes de tresses a encouragé a étudier les propriétés sur la polynomialité forte et faible d'un foncteur
de Long-Moody dans le présent cadre plus général. Pour un systéme cohérent de Long-Moody {H, G,G’, ¢}, en
supposant que le foncteur H : G — &t s’étende a G’ et admette des propriétés de compatibilité par rapport

au produit f et au tressage bg/,_ (plus précisément on le suppose monoidal tressé en considérant le produit fj a la
source et le produit libre * pour la catégorie but, voir la section 2.5.3.1 pour plus de détails), le systeme {#, G, G', ¢}
est dit fiable. Alors, on généralise le Théoreme B et on établit de nouveaux résultats pour les foncteurs faiblement
polynomiaux :

Théoréeme D (Theorem 2.5.29 et Theorem 2.5.36). Pour un systéme fiable de Long-Moody {H, G, G’, ¢}, I'endofoncteur
associé LMy g g/ 1 induit un foncteur

Polf™ (4G, R-9Mod) — Poll"t (4G, R-Mod)

De plus si Ho et H sont libres, alors le foncteur LMy, g g1 - augmente de un le degré de tres forte polynomialité. Par ailleurs,

si H est libre, alors LMy, g g/ -\ augmente de un le degré de faible polynomialité si Hy est libre ou si le groupoide G' est
monoidal symétrique.

Pour les foncteurs fortement polynomiaux, la démonstration de ce théoréme est une généralisation de celle du
Théoreme B : elle repose en effet sur la décomposition suivante par rapport au foncteur de translation

T1 © LM{'ng,g/,g} = (IR[H] R([S;[] Tz) (&) (LM{H,Q,Q’,g} o Tl)
qui permet ensuite de démontrer 1'équivalence
51 o LM{H,Q,Q’,Q} = <IR[H] R([X;_I] Tz) ©® (LM{'H,Q,Q/,Q} o 51) . (021)

En revanche, I'équivalence x1 0 LMy3, g ¢/ .} = LMy g g/} © k1 n’est valable qu’en se restreignant au cas ou les
groupes Hy et H sont libres. Pour les foncteurs faiblement polynomiaux, on démontre d’abord que les foncteurs
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LMy3,6,6/c) et Zr(m] ?9 | T sont bien définis pour la catégorie quotient St (UG, R-Mt0d) sous les hypotheses addi-
R[H

tionnelles de 1’énoncé, avant d’a nouveau exploiter I’équivalence analogue a (0.2.1) pour St (4G, R-2100). Le Théo-
réme D permet ainsi par exemple de démontrer que le foncteur H; (ZO_ 01’ R) des représentations symplectiques

est tres fortement et faiblement polynomial de degré 1. Il indique également que les foncteurs de Long-Moody
produisent une grande variété de foncteurs tres fortement polynomiaux en n’importe quel degré, pour lesquels
les résultats de stabilité homologique de [ ] sont vérifiés.

Par ailleurs, dans le cas ot le groupoide (G, i, 0g/) est monoidal symétrique, on s’intéressse a la compatibilité
des foncteurs de Long-Moody avec une construction générale sur G’ introduite dans [ ]. Plus précisément,
en notant Mon; "™ (respectivement Mon’ " "™) la catégorie des catégories monoidales symétriques avec un objet

omm Mon; )" 'adjoint & gauche du foncteur d’oubli MonSIT™ —

initial (respectivement nul), on note - : Mon; o

MonS"™™. Pour un objet M de Mon; ™™ comme par exemple 4G, la catégorie M s’avere entre autre utile dans la
classification des foncteurs faiblement polynomiaux ayant 9t pour source (voir [ , Theorem 3.8]). Dans le cas
ot on considere le groupoide (FB, LI, @) des ensembles finis avec les bijections pour morphismes et la structure
monoidale symétrique induite par 1'union disjointe des ensembles, alors  (FB) s’identifie a la catégorie FI des
ensembles finis avec les injections et FI est équivalente a la catégorie FIf considérée par Church, Ellenberg et Farb
dans [ ] afin d’étudier les objets projectifs de la catégorie Fct (FI, R-9t00d). On note UG la sous-catégorie de
UG’ sur les objets de G.

En considérant un systéme fiable de Long-Moody {#, G, G’, ¢}, il suffit alors d’imposer une condition addition-
nelle sur les morphismes {¢ },cp (Voir la section 2.6.2 pour plus de détails, le systeme {#, G, G’, ¢} est alors dit
relevable) afin d’étendre la définition d"un foncteur de Long-Moody LM, g ¢/ ¢,1 a la catégorie UG, A proprement
parler, on démontre que :

Théoréme E (Proposition 2.6.24 et Proposition 2.6.25). Pour un systeme relevable de Long-Moody {H,G,G’, ¢} o
G’ est monoidal symétrique, il existe un foncteur LM : Fct (@, R-SDTUD) — Fct (ﬂVQ, R-Dﬁob) tel que le diagramme
suivant est commutatif :

Fct (@, R—Smob) M Fct (@, R—S)Jtob)

(inclﬁg) ' i i (inclgg) '

Fct (UG, R-9o0) Fct (4G, R-Mod) .

0.3 Calculs d’homologie a coefficients tordus pour les groupes de difféoto-
pies

Le troisieme chapitre porte sur des calculs explicites d’homologie stable a coefficients tordus de groupes de difféo-
topie de surfaces et de 3-variétés. Nous avons vu dans les sections précédentes que les foncteurs de Long-Moody
permettent d’obtenir des coefficients tordus polynomiaux en tout degré pour une famille de groupes {Gy }, -
Reprenant les notations des sections précédentes, il s’ensuit tout naturellement la question suivante :

Question. Est-il possible de comparer les homologies stables H. (Geo, Foo) €t Hx (Goo, LM 36,6} (Foo)> pour un objet
F de Fct (UG, R-Mod) ?

Dans un premier temps, on répond partiellement a cette question en s’appuyant sur des structures de pro-
duits semi-directs apparaissant naturellement pour les groupes de difféotopie et sur la suite spectrale de Lyndon-
Hochschild-Serre. On démontre tout d’abord :

Théoréme F (Corollary 3.2.5). Soit {H,G,G’, ¢t} un systeme cohérent de Long-Moody (oit on rappelle que la famille
{6nt} nen est celle des morphismes triviaux) tel que H, est un groupe libre pour tout entier naturel n. Alors, pour tout objet
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F de Fct (UG, R-0Mod) et tout entier naturel « > 1 :

ne (N,S -AQ,n

H, (GOQ,LM{H,g,g/,g,} (Foo)) ~H, ( Colim. (Hn x Gn> ,Foo> /H, (Geo, Exo) .

Ce résultat général a des applications pour diverses familles de groupes. Tout d’abord, on s’intéresse aux
groupes de tresses. Pour un entier naturel 1, on note Cor (1) la représentation de Coxeter du groupe de tresses
B, et on rappelle que Bur; (n) désigne la représentation non-réduite de Burau. En utilisant le Théoreme F et le
résultat de stabilité [ , Theorem C], on démontre que :

Proposition. Pour tous les entiers naturels n et q tels quen > q+ 2 :

C®? sig>2,

Hy (B Cor (1)) = {C o

Par ailleurs, en utilisant une suite exacte courte faisant intervenir les représentations de Burau réduites et des
résultats de [ ], on démontre :

Proposition. Pour tous les entiers naturelsn > 3etq > 3:

C[tH]/(1—-t) si3<g<n-2

C [til] /(1 —t) siq=mn-2etnestimpair,
C [til] / (1 — t2) si g = n-2 et n est pair,

0 sinon.

H; (By, Bury (n)) =

Ensuite, pour les groupes de difféotopie des surfaces, on abrege la notation leo,l (respectivement 1"2’0/1 ) par
1"; 1 (respectivement I'y 1) . Alors, en combinant le Théoreme F et des résultats de stabilité de [ , ], on
déduit que :

Proposition. Pour des entiers naturels m, n et q tels que 2n > 3q 4 m, on a un isomorphisme :

H, (Fn,1,H1 (anl,z)@)m) ™) EB H,_ (k1) (rnrerl (Zn,l,Z)(@m*l) '
VTJ>k>0

On retrouve ainsi les résultats de [ Jet[ ].

Enfin, soit &, 1'espace topologique composé d"un bouquet de 1 cercles, k cercles distingués (ie chacun est relié
au point base du bouquet par une aréte) et s points distingués (ie chacun est relié au point base du bouquet par
une aréte). On note A} | le groupe des composantes connexes par arcs des équivalences d’homotopies de I'espace
4, (onrenvoiea [ ] pour plus de détails sur ces groupes). Alors, on prouve :

Proposition. Soient s > 2 et q > 1 des entiers naturels et F : gv — Ab (oit gv est la catégorie des groupes libres de type
fini et Ab est la catégorie des groupes abéliens). Alors, pour tout entier naturel n > 2q +1, Hy (Afz,or F (n)) =0.
On déduit par ailleurs de cette proposition et des résultats de stabilité de [ ] que:

Corollaire. Pour des entiers naturels n > 3q+3 etk > 0:

Hq( ka,Q) = 0.

On recouvre ainsi les résultats de [ ] pour les holomorphes des groupes libres.

Dans un second temps, on effectue des calculs d’homologie stable de groupes de difféotopie pour des co-
efficients tordus donnés par des représentations factorisant par les groupes symétriques ou hyperoctahédraux.
Rappelons qu’on note FI la catégorie des ensembles finis avec les injections pour morphismes. Rappelons égale-

Xn
ment que, pour un entier naturel k fixé, les groupes {Aut ((Z*k) ) } définissent une famille de groupes
nelN
d’Artin a angles droits. On démontre alors :

XVi
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Théoreme G (Proposition 3.4.14, Proposition 3.4.26, Corollary 3.4.30). Soit KK un corps de caractéristique nulle et d
un entier naturel. Pour F : FI — K-9t0d un foncteur, on a :

1. Hy (Beo, Fo) = Colgn <Hd (PB,,K)® F (n)> ot PB,, désigne le groupe de tresses pures sur n brins;
ne K

2. Hy (Fﬁ 1/Foo) =~ Colim [ P (Hk (Tp1,K) ® H ((Cpoo)xn ,]K)) ®F (n)] En particulier, pour tout entier
’ neFl | fqi=d K K
naturel k :

Hpy1 (T 1, Feo) = 0.
X 00 i
3. Hy (Aut ((Z*k> ) , Foo> = 0 pour tout entier naturel k > 2d + 1.

La démonstration du Théoréme G nécessite un résultat général de décomposition de I’'homologie stable a co-
efficients tordus. On reprend les notations et hypotheses de la Section 0.2 : on considére une famille de groupes
{Gn},en telle qu'il existe un groupoide (G, b, 0g/) monoidal strict tressé et qu'il existe des objets de G’ notés n
tels que Autg (n) = Gy, pour tout entier naturel n et on note G (respectivement {G) la sous-catégorie pleine de
G’ (respectivement la construction de Quillen £G’) ayant pour objets {n},.n- On renvoie le lecteur aux articles
[ , Section 2] et [ , Appendice A] pour une introduction a I'homologie des foncteurs. On démontre alors :

Theorem H (Proposition 3.3.7). Soit K un corps. Pour tout foncteur F : 4G — K-90d, on a un isomorphisme de
K-modules :

H. (Geo, Fo) kg}i (Hk (Geo, ) © Hy (UG, F)) .

Ce théoréme est une généralisation du résultat analogue di a Djament et Vespa dans [ , Sections 1 et 2]
dans le cas ou le groupoide (G’, i, 0g/) est monoidal symétrique.

xvii
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Chapter 1

The Long-Moody construction and
polynomial functors

Abstract: In 1994, Long and Moody gave a construction on representations of braid groups which associates a representation
of B, with a representation of B,, 1. In this paper, we prove that this construction is functorial and can be extended: it inspires
endofunctors, called Long-Moody functors, between the category of functors from Quillen’s bracket construction associated
with the braid groupoid to a module category. Then we study the effect of Long-Moody functors on strong polynomial functors:
we prove that they increase by one the degree of very strong polynomiality.

Introduction

Linear representations of the Artin braid group on n strands By, is a rich subject which appears in diverse contexts
in mathematics (see for example [ Jor| ] for an overview). Even if braid groups are of wild representa-
tion type, any new result which allows us to gain a better understanding of them is a useful contribution.

In 1994, as a result of a collaboration with Moody in [ ], Long gave a method to construct from a linear
representation p : B,.1 — GL (V) a new linear representation LM (p) : B, — GL (V®") of B, (see [ ,
Theorem 2.1]). Moreover, the construction complicates in a sense the initial representation. For example, applying
it to a one dimensional representation of B, 1, the construction gives a mild variant of the unreduced Burau
representation of B,,. This method was in fact already implicitly present in two previous articles of Long dated
1989 (see [ , ]). In the article [ ] dating from 2008, Bigelow and Tian consider the Long-Moody
construction from a matricial point of view. They give alternative and purely algebraic proofs of some results of
[ ], and they slightly extend some of them. In a survey on braid groups (see the Open Problem 7 in [ D,
Birman and Brendle underline the fact that the Long-Moody construction should be studied in greater detail.

Our work focuses on the study of the Long-Moody construction LM from a functorial point of view. More
precisely, we consider the category {p associated with braid groups. This category is an example of a general con-
struction due to Quillen (see [ 1) on the braid groupoid B. In particular, the category 4 has natural numbers
IN as objects. For each natural number 1, the automorphism group Autyg (n) is the braid group B;.. Let K-20d be
the category of IK-modules, with K a commutative ring, and Fct (L8, K-0t0d) be the category of the functors from
UB to K-Dt0d. An object M of Fct (LU, K-Dod) gives by evaluation a family of representations of braid groups
{M; : By, = GL (M (n))}, cn- Which satisfies some compatibility properties (see Section 1.1.1). Randal-Williams
and Wahl use the category 4 in [ ] to construct a general framework to prove homological stability for
braid groups with twisted coefficients. Namely, they obtain the stability for twisted coefficients given by objects
of Fct (UB, K-Mt0d).

In Proposition 1.2.19, we prove that a version of the Long-Moody construction is functorial. We fix two fami-
lies of morphisms {a,, : B, — Aut (F,)}, o and {Gn : Fy = B, 41},, o, satisfying some coherence properties (see
Section 1.2.1). Once this framework set, we show:

Theorem A (Proposition 1.2.19) . There is a functor LM, : Fet (UB, K-D0d) — Fct (UB, K-MMod), called the Long-
Moody functor with respect to coherent families of morphisms {ay},cn and {Gn},cn, Which satisfies for ¢ € By, and

1



2 1. Chapter. The Long-Moody construction and polynomial functors

M € Obj (Fet (48, K-Mod))
LM, (M) (¢) = LM (My) (¢).

Among the objects in the category Fct (L8, K-Dt0d) the strong polynomial functors play a key role. This notion
extends the classical one of polynomial functors, which were first defined by Eilenberg and Mac Lane in [ ]
for functors on module categories, using cross effects. This definition can also be applied to monoidal categories
where the monoidal unit is a null object. Djament and Vespa introduce in [ ] the definition of strong polyno-
mial functors for symmetric monoidal categories with the monoidal unit being an initial object. Here, the category
B is neither symmetric, nor braided, but pre-braided in the sense of [ ]. However, we show that the no-
tion of strong polynomial functor extends to the wider context of pre-braided monoidal categories (see Definition
1.3.4). We also introduce the notion of very strong polynomial functor (see Definition 1.3.16). Strong polyno-

mial functors turn out inter alia to be very useful for homological stability problems. For example, in [ 1
Randal-Williams and Wahl prove their homological stability results for twisted coefficients given by a specific kind
of strong polynomial functors, namely coefficient systems of finite degree (see [ , Section 4.4]).

We investigate the effects of Long-Moody functors on very strong polynomial functors. We establish the follow-
ing theorem, under some mild additional conditions (introduced in Section 1.4.1.1) on the families of morphisms
{an},en and {Gn },cn, Which are then said to be reliable.

Theorem B (Corollary 1.4.28) . Let M be a very strong polynomial functor of Fct (4B, K-0R0d) of degree n and let {a, }, o
and {Gn},cn be coherent reliable families of morphisms. Then, considering the Long-Moody functor LM, ¢ with respect to
the morphisms {ay },cp and {Gn},epy, LMa ¢ (M) is a very strong polynomial functor of degree n + 1.

Thus, iterating the Long-Moody functor on a very strong polynomial functor of Fct (4B, K-2t00) of degree d,
we generate polynomial functors of Fct (U, K-9100), of any degree bigger than d. For instance, Randal-Williams
and Wahl define in [ , Example 4.3] a functor Bur; : U — C [til] -Mod encoding the unreduced Burau
representations. Similarly, we introduce a functor TYM; : UB — C [+1] -Mod corresponding to the representa-
tions considered by Tong, Yang and Ma in [ ]. These functors Bur; and TYM; are very strong polynomial
of degree one (see Proposition 1.3.25), and moreover, we prove that the functor Bur; is equivalent to a functor
obtained by applying the Long-Moody construction. Thus, the Long-Moody functors will provide new examples
of twisted coefficients corresponding to the framework of [ 1.

This construction is extended in the forthcoming work [ ] for other families of groups, such as automor-
phism groups of free groups, braid groups of surfaces, mapping class groups of orientable and non-orientable
surfaces or mapping class groups of 3-manifolds. The results proved here for (very) strong polynomial functors
will also hold in the adapted categorical framework for these different families of groups.

The paper is organized as follows. Following [ ], Section 1.1 introduces the category LB and gives
first examples of objects of Fct (Up, K-Mt0d). Then, in Section 1.2, we introduce the Long-Moody functors, prove
Theorem A and give some of their properties. In Section 1.3, we review the notion of strong polynomial functors
and extend the framework of [ ] to pre-braided monoidal categories. Finally, Section 1.4 is devoted to the
proof of Theorem B and to some other properties of these functors. In particular, we tackle the Open Problem 7 of

[BBO5].

Notation 1.0.1. We will consider a commutative ring K throughout this work. We denote by K-9tod the category
of IK-modules. We denote by &t the category of groups.

Let Cat denote the category of small categories. Let € be an object of Cat. We use the abbreviation Obj (€) to
denote the objects of €. For © a category, we denote by Fct (¢, D) the category of functors from € to ®. If 0 is
initial object in the category €, then we denote by 14 : 0 — A the unique morphism from 0 to A. The maximal
subgroupoid ¢t (€) is the subcategory of € which has the same objects as € and of which the morphisms are
the isomorphisms of €. We denote by ¥t : Cat — Cat the functor which associates to a category its maximal
subgroupoid.

1.1 The category 48

The aim of this section is to describe the category {f associated with braid groups that is central to this paper. On
the one hand, we recall some notions and properties about Quillen’s construction from a monoidal groupoid and
pre-braided monoidal categories introduced by Randal-Williams and Wahl in [ ]. On the other hand, we
introduce examples of functors over the category LS.
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We recall that the braid group on n > 2 strands denoted by B, is the group generated by o7, ..., 0;,_1 satisfying
the relations:

e Vie{l,...,n—2},0i0410; = 0;110i0;11;

e Vi,je{l,...,n—1} suchthat |i—j|>2, gi0; = 0jo;.
By and By both are the trivial group. The family of braid groups is associated with the following groupoid.
Definition 1.1.1. The braid groupoid S is the groupoid with objects the natural numbers n € IN and morphisms
(for n,m € IN):

B, ifn=
Homg (n,m) = ! 1 =

@ ifn #m.
Remark 1.1.2. The composition of morphisms o in the groupoid S corresponds to the group operation of the braid
groups. So we will abuse the notation throughout this work, identifying ¢ o ¢ = ¢¢”’ for all elements ¢ and ¢’ of
B, with n € IN (with the convention that we read from the right to the left for the group operation).

1.1.1 Quillen’s bracket construction associated with the groupoid B

This section focuses on the presentation and the study of Quillen’s bracket construction g (see [ , p-219])
on the braid groupoid B. It associates to § a monoidal category whose unit is initial. The category 4 has further
properties: Quillen’s bracket construction on § is a pre-braided monoidal category (see Section 1.1.1.2) and B is its
maximal subgroupoid. For an introduction to (braided) strict monoidal categories, we refer to [ , Chapter XI].

Notation 1.1.3. A strict monoidal category will be denoted by (&, f,0), where € is the category, i is the monoidal
product and 0 is the monoidal unit.

1.1.1.1 Generalities

In [ ], Randal-Williams and Wahl study a construction due to Quillen in [ , p-219], for a monoidal
category S acting on a category X in the case S = X = ® where & is a groupoid. It is called Quillen’s bracket
construction. Our study here is based on [ , Section 1] taking & = B.

Definition 1.1.4. [ , Chapter XI, Section 4] A monoidal product j : B x B — B is defined by the usual
addition for the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this

monoidal product. The strict monoidal groupoid (B, i, 0) is braided, its braiding is denoted by o _. Namely, the
braiding is defined for all natural numbers n and m such that n +m > 2 by:

bE = (O o 002001) 0 0 (Tupm20 00300 1)0 (Gyim 10+ 00n1100%)
where {0}ic(1, . y4m-—1) denote the Artin generators of the braid group By .

We consider the strict monoidal groupoid (B, f;, 0) throughout this section.

Definition 1.1.5. [ , Section 1.1] Quillen’s bracket construction on the groupoid B, denoted by 4B, is the
category defined by:

* Objects: Obj (UB) = Obj (B) = N;
e Morphisms: for n and n’ two objects of B, the morphisms from 7 to n’ in the category Up are given by:

Homgg (n,n") = coéim [Homg (—fn,n")] .

In other words, a morphism from 7 to n’ in the category 4B, denoted by [n’ — 1, f] : n — n’,is an equivalence
class of pairs (n’ — n, f) where n’ — nis anobject of B, f : (n’ — n) fn — n’ is a morphism of B, in other words

3



4 1. Chapter. The Long-Moody construction and polynomial functors

an element of B,,. The equivalence relation ~ is defined by (n’ — n, f) ~ (n’ —n, f') if and only if there exists
an automorphism g € Autg (n' — n) such that the following diagram commutes.

e For all objects n of 4, the identity morphism in the category Up is given by [0, id,] : n — n.

e Let[n'—n,f]:n—n"and [0 —n’, g] : n’ — n” be two morphisms in the category (8. Then, the composi-
tion in the category 4p is defined by:

[n" —n',glo[n —n,f]l = [n"—n,go (idy_,5f)].

The relationship between the automorphisms of the groupoid B and those of its associated Quillen’s construc-
tion 4B is actually clear. First, let us recall the following notion.

Definition 1.1.6. Let (&, 4,0) be a strict monoidal category. It has no zero divisors if for all objects A and B of &,
AfB = 0ifand onlyif A = B = 0.

The braid groupoid (B, §,0) has no zero divisors. Moreover, by Definition 1.1.1, Autg(0) = {ido}. Hence, we
deduce the following property from [ , Proposition 1.7].

Proposition 1.1.7. The groupoid B is the maximal subgroupoid of .
In addition, (B has the additional useful property.

Proposition 1.1.8. [ , Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (B, 1,0) is an initial
object in the category L(B.

Remark 1.1.9. Let n be a natural number and ¢ € Autg (1). Then, as an element of Homyg (1, n), we will abuse the
notation ¢ = [0, ¢]. This comes from the canonical functor:

B — UB
¢ € Autg(n) — [0,¢].

Finally, we are interested in a way to extend an object of Fct (B, K-910d) to an object of Fct (L8, K-Mt0d). This
amounts to studying the image of the restriction Fct (U, K-2t0d) — Fct (B, K-Dt0d).

Proposition 1.1.10. Let M be an object of Fct (B, K-9Mod). Assume that for all n,n’,n"” € N such that n” > n' > n,
there exists an assignment M ([n' — n,id,/]) : M (n) — M (n") such that:

M ([n" =n',id]) o M ([0 —n,id,y]) = M ([n" —n,id,n]) (1.1.1)
Then, we define a functor M : UB — K-9od (assigning M ([n' —n, o)) = M (0) o M ([n' —n,id,]) forall [n' —n,o] €
Homygg (n,n")) if and only if for all n,n" € N such that n" > n:
M ([n" —n,idy]) o M(c) = M (Yho) o M ([n' —n,id,]) (1.1.2)
forallo € Byandall p € By,
Remark 1.1.11. Note that for n' = n, M ([0’ —n,id]) = Id ().

Proof of Proposition 1.1.10. Let us assume that relation (1.1.2) is satisfied. We have to show that the assignment on
morphisms is well-defined with respect to {{8. First, let us prove that our assignment conforms with the defining
equivalence relation of 4 (see Definition 1.1.5). For n and n’ natural numbers such that n’ > n, let us consider
[ —n,0] and [0’ —n,0'] in Homyg (n,n’) such that there exists ¢ € B,y_, so that ¢’ o (yfid,) = ¢. Since M is

4
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a functor over B, M ([n' —n,c]) = M (¢’) o (M (hid,) o M ([n' — n,id,])). According to the relation (1.1.2) and
since M satisfies the identity axiom, we deduce that M ([n’ —n,c]) = M (¢’) o M (¢hid,) o M ([n' — n,id,]) =
M([n —n,d']).

Now, we have to check the composition axiom. Let 1, n’ and n” be natural numbers such that n”’ > n’ > n,
let ([n" —n,0]) and ([n" —n',0’]) be morphisms respectively in Homyg (n,n") and in Homyg (n',n"). By our
assignment and composition in (B (see Definition 1.1.5) we have that:

M ([n" —n',0']) oM ([0 —n,0]) = M (') o (M ([n" — 1, idyn]) o M()) o M ([ — n, idy]).
According to the relation (1.1.2), we deduce that:
M ([ —u',']) oM ([0 —n,0]) = M(c')o (M([n" —n',idy]) o M(c)) o M ([n —nidy]).
= M(0) o (M (idyr_yir) o M ([n" — 1, idyn])) o M ([ — 1, idy]) .
Hence, it follows from relation (1.1.1) that:
M ([n" —',0")) o M ([ —1,0]) = M (0" o (idyr_i)) o M ([1n" = n,idy]) = M ([n" —1',¢") o [0 —n,0]) .

Conversely, assume that the functor M : 4 — K-21o0 is well-defined. In particular, composition axiom in {8
is satisfied and implies that for all n, ' € N such that n’ > n, for all ¢ € B,:

M ([n' —n,idy]) o M(c) =M ([n' —n,id,y_,bo]).
It follows from the defining equivalence relation of LB (see Definition (1.1.5)) that for all y € B,y_,;:
M ([n" —n,idy]) o M (o) = M ([n' —n,yho]).
We deduce from the composition axiom that relation (1.1.2) is satisfied. O

Proposition 1.1.12. Let M and M’ be objects of Fct (UB, K-Mod) and 5 : M — M’ a natural transformation in the
category Fct (B, K-9od). Then, 17 is a natural transformation in the category Fct (UB, K-9N0d) if and only if for all n,n’ €
IN such that n’ > n:

Hw oM ([0 —n,idy]) =M ([0 —n,id,]) oy (1.1.3)

Proof. The natural transformation 7 extends to the category Fct (4B, K-90d) if and only if for all n,n" € IN such
that ' > n, forall [n' —n,o] € Homyg (n,n'):

M ([0 =n,0]) o =nyoM([n' —n,0o]).
Since 7 is a natural transformation in the category Fct (B, K-900), we already have 1, o M () = M’ (¢) o 1,
Hence, this implies that the necessary and sufficient relation to satisfy is relation (1.1.3). O

1.1.1.2 Pre-braided monoidal category

We present the notion of a pre-braided category, introduced by Randal-Williams and Wahl in [ ]. Thisis a
generalization of that of a braided monoidal category.

Definition 1.1.13. [ , Definition 1.5] Let (€, , 0) be a strict monoidal category such that the unit 0 is initial.
We say that the monoidal category (¢, §,0) is pre-braided if:

¢ The maximal subgroupoid ¢t (¢, {,0) is a braided monoidal category, where the monoidal structure is in-
duced by that of (¢, t,0).

* For all objects A and B of €, the braiding associated with the maximal subgroupoid bng : AlB — BHA
satisfies:
bg,B o (idaluig) = 1pliidg : A — BfA.

Recall that the notation /g : 0 — B was introduced in Notation 1.0.1.

5



6 1. Chapter. The Long-Moody construction and polynomial functors

t1hids

us
by

idaliey

|

Figure 1.1.1: Failure of the braiding property

Since the groupoid (B, i, 0) is braided monoidal and it has no zero divisors, we deduce from [ , Proposition
1.8] the following properties.

Proposition 1.1.14. The category B is pre-braided monoidal. The monoidal structure (£B,4,0) is defined on objects as
that of (B, 1,0) and defined on morphisms letting for [n' —n, f] € Homyg (n,n') and [m" —m,g] € Homyg (m,m’):

o = )2 [ =, ] = [ =) 3 0 =), (5 (i () s )|

In particular, the canonical functor B — 3B is monoidal.

Remark 1.1.15. The category (4B, 1, 0) is pre-braided monoidal, but not braided. Indeed, as Figure 1 shows, the pre-
braiding defined on ${8 is not a braiding: Figure 1 shows that bf,z o (11hidy) # idyh1q whereas these two morphisms

should be equal if P _ were a braiding.

1.1.2 Examples of functors associated with braid representations

Different families of representations of braid groups can be used to form functors over the pre-braided category
4P to the category K-9t0d. Namely, considering {M,, : B, — K-DMod},  representations of braid groups, or
equivalently an object M of Fct (B, K-2100), we are interested in the situations where Proposition 1.1.10 applies so
as to define an object of Fct (4B, K-010d).

Tong-Yang-Ma results In 1996, in the article [ ], Tong, Yang and Ma investigated the representations of
B, where the i-th generator is sent to a matrix of the form Id; | ® T @ Id,_;_q, with T a m X m non-singular
matrix and m > 2. In particular, for m = 2, they prove that there exist up to equivalence only two non trivial
representations of this type. We give here their result and an interpretation of their work from a functorial point
of view, considering the representations over the ring of Laurent polynomials in one variable C [t*1].

Notation 1.1.16. Let gt denote the full subcategory of &t of finitely generated free groups. The free product * :
gt X gvr — gt defines a monoidal structure over gr, with 0 the unit, denoted by (gr, ,0).

Let (N, <) denote the category of natural numbers (natural means non-negative) considered as a poset. For
all natural numbers 1, we denote by 7, the unique element of Hom <) (n,n+1). For all natural numbers n

6
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and 7’ such that n’ > n, we denote by 7,,,, : n — 1’ the unique element of Hom y <) (n,1"), composition of the
morphisms 7,710,500 Yu4+1 © Yu. The addition defines a strict monoidal structure on (IN, <), denoted by
(N, <), +,0).

Definition 1.1.17. Let B_ : (N, <) — &rand GL_ : (N, <) — &t be the functors defined by:

* Objects: for all natural numbers n, B_ (1) = B, the braid group on n strands and GL_ (n) = GL, (C [t*!])
the general linear group of degree n.

* Morphisms: let n be a natural number. We define B_ (y,) = idif— : B, < B, (where f is the monoidal
product introduced in Example 1.1.4). We define GL_ (7,) : GL, (C [t*!]) = GL,41 (C [t*!]) assigning

GL_ (7vn) (¢) = idy @ g forall ¢ € GL, (C [t*1]).

Notation 1.1.18. For all natural numbers n > 2, foralli € {1,...,n — 1}, we denote by incl! : B, = Z — By, the
inclusion morphism induced by:
incl? (oq) = 0.

Theorem 1.1.19. [ , Part II] Let  : B — GL_ be a natural transformation. Assume that for all natural numbers
n>2, foralli € {1,...,n — 1}, the following diagram is commutative:
B, — > GL, (C [*1])
ii’lCl;1 Tidl‘l@—@l‘dnil
+1

Two such natural transformations n and n’ are equivalent if there exists a natural equivalence y : GL_ — GL_ such that
won =1n'. Then, i is equivalent to one of the following natural transformations.

1. The trivial natural transformation, denoted by iv: for every generator o of By, 10y, (07) = Idg, (c[e=1]):

2. The unreduced Burau natural transformation, denoted by bur: for all generators o; of By,
buty (03) = Idi 1 ® B (t) © Idy—i1,
. 1—-¢t ¢
w1thB(t)_[ 1 0}
3. The natural transformation denoted by tym: for every generator o; of By, if n > 2,
tym,, ; (0;) = Id; 1 ® TYM (t) ® Idy,—;_q,

0 ¢

with TYM (t) = [ 10

} . We call it the Tong-Yang-Ma representation.

The unreduced Burau representation (see [ , Section 3.1] or [ , Section 4.2] for more details about
this family of representations) is reducible but indecomposable, whereas the Tong-Yang-Ma representation is irre-
ducible (see [ , Part II]). We can also consider a natural transformation using the family of reduced Burau
representations (see [ , Section 3.3] for more details about the associated family of representations): these are
irreducible subrepresentations of the unreduced Burau representations.

Definition 1.1.20. Let GL_ ;1 : (N, <) — &t be the functor defined by:
* Objects: for all natural numbers 1, GL_ 4 (n) = GL,_; (C [t*!]) the general linear group of degree n — 1.

* Morphisms: let n be a natural number. We define GL_ 1 (vn) : GL,_1 (C [t*]) < GL, (C [t*!]) assigning
GL_ (7vn) (¢) = id; ® g forall ¢ € GL,_; (C [t*1]).

7



8 1. Chapter. The Long-Moody construction and polynomial functors

Definition 1.1.21. The reduced Burau natural transformation, denoted by but : B_ — GL_ ; is defined by:
 For n = 2, one assigns bur (07) = —t.
e For all natural numbers n > 3, we define for every Artin generator o; of B, withi € {2,...,n —2}:
buvy (07) = [d; , ©®B(t) ® Id,_;_»

with

and

_ —t+ 0 — 1 ¢
buty,¢ (07) = [ 11 } @©Idy3 ; bury(oy_1) =1d; 3@ [ 0 _t } :

Let us use these natural transformations to form functors over the category {p. Indeed, a natural transforma-
tiony : B — GL_ (or GL_ ;) provides in particular:

e afunctor N: B — C [t*1] -Mod;

e morphisms N ([n' — n,id,y]) : N (n) — N (') for all natural numbers n’ > n, such that the relation (1.1.1) of
Proposition 1.1.10 is satisfied.

Therefore, according to Proposition 1.1.10, it suffices to show that the relation (1.1.2) is satisfied to prove that 9 is
an object of Fet (4B, C [tﬂ] -Mod).

Notation 1.1.22. Recall that 0 is a null object in the category of R-modules, and that the notation ¢ : 0 — G
was introduced in Notation 1.0.1. Let n € IN. For all natural numbers n and #n’ such that n’ > n, we define

L ® idqtﬂ]en : C [til}aan — C [til}gan/ the embedding of C [til]@n as the submodule of C [til}aan/

C[til]éﬁn’—n

given by the n last copies of C [t*1].

Tong-Yang-Ma functor: This example is based on the family introduced by Tong, Yang and Ma (see Theorem

1.1.19). Let TYM; : B — C [+=1] -90d be the functor defined on objects by TYM; (n) = C [+*!] “" for all nat-
ural numbers 7, and for all numbers n > 2, for every Artin generator o; of By, by TYM, (0;) = tym, ; (0;) for

morphisms. For all natural numbers n and n’ such that n’ > n, we assign TYM; ([n’ —n,id,]) : C [t*1] RN

!/
C [t “" tobe the embedding Lofpanyn Did (1] (where these morphisms are introduced in Notation 1.1.22).

[#+1]
For all natural numbers n” > n’ > n, for all Artin generators 0; € B, and all (RS B, _,, our assignments give:

TYM, (lph(]’) o TYM, ([1’1/ —n, ldn/]) = (Id]‘,l e TYM (t) ) Id(n’—n)—j—l D Idn’fn+i71 & TYM (f) D Idn/7i71>

o (lc[til]@n/” S5) idC[til]en) .

Remark that (Id]',l STYM(t) & Id(n/—n)—j—l) ol . Hence we deduce that

C[til]ﬂj(n/fn) = lﬁ[til]ﬁﬁ(n’—n)

TYM; (Pho) o TP, ([0’ —n,idy]) = VM ([0 —n,id,y]) o TYM; (0)

forallo € B, and all ¢ € B,/_,,. According to Proposition 1.1.10, our assignment defines a functor TYM, : LI —
C [t*1] -90d, called the Tong-Yang-Ma functor.
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Burau functors: Other examples naturally arise from the Burau representations.

Let Bur; : B — C [+£1]-M0d be the functor defined on objects by Bur; (n) = C [F1]™" for all natural
numbers 7, and for all numbers n > 2, for every Artin generator o; of B, by Bur; (0;) = bur,+ (0;) for morphisms.

For all natural numbers n and n’ such that n’ > n, we assign Buv; ([n' —n,id,/]) : C [t!] Ry [+£1] “" to be
the embedding lc[t ﬂ]gmun @ id [t il]%;z (where these morphisms are introduced in Notation 1.1.22).

As for the functor TYM, the assignment for Bur implies that for all natural numbers n”” > n’ > n, forallo € B,
and all ¢ € By, Bur; ([0 —n,id,]) o Burs () = Bury (Pho) o Bury ([’ — n,id,y]). According to Proposition
1.1.10, our assignment defines a functor Bur; : U — C [til] -Mod, called the unreduced Burau functor. This
functor Bur; was already considered by Randal-Williams and Wahl in [ , Example 4.3].

Analogously, we can form a functor from the reduced Burau representations. Let Bur; : B — C [t*1] -Dtod
be the functor defined on objects by Bur; (0) = 0 and Bur; (n) = C [tﬂ] #"~1 for all nonzero natural numbers n,
and by Bur; (0;) = bury,; (0;) for morphisms for every Artin generator 0; of B,, for all numbers n > 2.

For all natural numbers 1 and n’ such that n’ > n, we assign Bur; ([n' — n,id,,]) : C [t*!] ol ¢ [t+1] et
to be the embedding [C[til]&ﬁ”/*" ®id clr? (where these morphisms are introduced in Notation 1.1.22). Re-
peating mutadis mutandis the work done for the functor TYM, the assignment for Bur; implies that for all nat-
ural numbers n” > n’ > n, forall o € B, and all ¢ € B,/_,, Bury ([0’ —n,id,]) o Burs () = Burs (Pyo) o
Bur; ([’ — n,id,]). According to Proposition 1.1.10, our assignment defines a functor Bur; : 4 — C [t£1] -Mod,
called the reduced Burau functor.

Lawrence-Krammer functor: The family of Lawrence-Krammer representations was notably used to prove that
braid groups are linear (see [ , , ]). For this paragraph, we assign K = C [t*1] [g*!] the ring of
Laurent polynomials in two variables and consider the functor GL_ of Definition 1.1.17 with this assignment. Let
L8 : UB — C [t*1] [g*1] -900 be the assignment:

e Objects: for all natural numbers n > 2, LR (n) = @ Viks with forall1 < j < k < n, Vikis a free
1<j<k<n

C [t*1] [¢*!]-module of rank one. Hence, £& (n) = (C [t!] [qil})@n(n_l)/z as C [t*1] [g*!]-modules.
Moreover, one assigns £8 (1) = 0 and £R (0) = 0.

® Morphisms:

— Automorphisms: for all natural numbers 7, for every Artin generator o; of B, (withi € {1,...,n—1}),
forallvjy € Vi (with1 <j <k <m),

Z)]',k ifi¢ {j—l,j,k—l,k},
i+ (P =) v + (- Hogp ifi=j-1,
Ok ifi=jAk—1,
LR(o) v =14 " oy .
v toji+ (1= 1) vji1 — (P —t) quiip1 ifi=k—1#],
vj,i—i—l ifi = k,
—qtzl)i,i+1 ifi = ] =k—1.

— General morphisms: let n, n’ € N, such that n’ > n. For all natural numbers j and k such that
1 < j < k < n, we define the embedding Q]?/'k”, CVik = Vicw-mk+—n) = @ Vi of free

1<j<k<n’
C [#*'] [¢¥']-modules. Then we define £& ([ —n,idy]): @ Vix— @ Vjtobe the embed-
1<j<k<n 1<j<k<n’
ding @ "B’?;c”/.
1<j<k<n
Since we consider a family of representations of B, (see [ ]), the assignment £ defines an object of Fct (B, C [t£1] -Dt0d).

Let n, n’ and n” be natural numbers such that n” > n’ > n. It follows directly from our definitions of
LR([n —n,id,]), LR ([n" —n',id,]) and £& ([n" — n,id,»]) that relation (1.1.1) of Proposition 1.1.10 is satisfied.

9



10 1. Chapter. The Long-Moody construction and polynomial functors

According to the definition of £& (¢7) with 07 an Artin generator of B,,_,, forall v;; € Vj with 1+ (n' —n) <
j<k<n, LR(01)vjx = vjr Hence forall € B,y_,:

LR (Phidy) o LR ([n' —n,idy]) = L& ([0 —n,id,]).

Note also that for all € {1,...,n—1}, for all Vjk € Vjp with 1+ (n'—n) < j <k <, it follows from the
assignment of £R that:

LR (idn’fnhal) (U(n’fn)Jrj,(n’fn)Jrk) = LR (o—n’an) (U(n’fn)Jrj,(n’fn)Jrk) = LR ( [n/ -n, idn’D <£ﬁ (Ul) (Uj,k)) .

Therefore, this implies that for all o € B, £& ([0’ — n,id,y]) o LR (0) = LR (id,y_,00) o LR ([0’ — n,id,]). Hence,
£ satisfies the relation (1.1.2) of Proposition 1.1.10. Hence, the assignment defines a functor £& : 4B — C [t1] [¢F!] -Dod,
called the Lawrence-Krammer functor.

1.2 Functoriality of the Long-Moody construction

The principle of the Long-Moody construction, corresponding to Theorem 2.1 of [ ], is to build a linear rep-
resentation of the braid group B, starting from a representation B, ;. We develop a functorial version of this
construction, which leads to the notion of Long-Moody functors (see Section 1.2.2). Beforehand, we need to intro-
duce various tools, which are consequences of the relationships between braid groups and free groups (see Section
1.2.1). Finally, in Section 1.2.3, we investigate examples of functors which are recovered by Long-Moody functors.

1.2.1 Braid groups and free groups

This section recalls some relationships between braid groups and free groups. We also develop tools which will be
used throughout our work of Sections 1.2.2 and 1.4.
We consider the free group on n generators, which we denote by F, = (g1,...,8n)-

Notation 1.2.1. We denote by eg, the unit element of the free group on n generators F,, for all natural numbers .

Recall that the category of finitely generated free groups is monoidal using free product of groups (see Notation
1.1.16). The object 0 being null in the category gr, recall that g, : 0 — F,, denotes the unique morphism from 0 to
F, as in Notation 1.0.1.

Definition 1.2.2. Let n be a natural number. We consider tg, * idg, : F; < F, ;1. This corresponds to the identi-
fication of F, as the subgroup of F,, 1 generated by the n last copies of F; in F,, ;. Iterating this morphism, we
obtain for all natural numbers n’ > n the morphism ¢, *id, : Fx < F,.

Let {Gy : Fy — By11},cn be a family of group morphisms from the free group F, to the braid group By, 1, for
all natural numbers 1. We require these morphisms to satisfy the following crucial property.

Condition 1.2.3. For all elements g € F,, for all natural numbers n’ > n, the following diagram is commutative in
the category Up:

1h7’l cn(g) 1un
idlh[n’—n,idn/] l \le] h [H,—i’l,idn/]
1gn’ 1pn’.

Su! (an’—n *g>

Remark 1.2.4. Condition 1.2.3 will be used to prove that the Long-Moody functor is well defined on morphisms
with respect to the tensor product structure in Theorem 1.2.19. Moreover, it will also be used in the proof of
Propositions 1.4.14 and 1.4.18.

10



1. Chapter. The Long-Moody construction and polynomial functors 11

Lemma 1.2.5. Condition 2.2.17 is equivalent to assume that for all natural numbers n, for all elements g € F,,, the mor-
phisms {Gn},c Satisfy the following equality in By, o:

((bfl>_1 hz’dn) o (id1tGn (8)) = Gns1 (er, %) © ((bfl)_l hidn> : (1.2.1)

Proof. Let n and n’ be natural numbers such that n/ > n. The equality (1.2.1) implies that forall 1 < k < n’ —n,
the following diagram in the category B is commutative :

Wyt () BSnk—1 (eFk,l *8)

1gn’ 141’
-1 -1
idn/,(wrk)h(bfl) hid<k1)+nl J{idank)h(bfl) uid(k—1)+n
14n’ s

idn’—(n+k) hgn+k ((:‘Fk *g)

Hence composing squares, we obtain that the following diagram is commutative in the category f:

-1 -1 -1
iy _g8(bFy)  tidn i, o0 (0F,)  tidi (6F,) sy
19---5(161) m 19-- -1 (19n) 1gn’
id,1bGn(8) l idy 186011 (er, *€) l J/gn/ (er, #8)
1g---glgn - 15+ - - 41k (14n) - - 1gn'.
iy (vf) Yuid, id, o5 (bF) Yhidy (8F) Yid

By definition of the braiding (see Definition 1.1.1), we deduce that the composition of horizontal arrows is the mor-
-1 -1
phism (bfn,_n) nid, in B. Recall from Proposition 1.1.14 that idq i [’ — n, 0] = [n’ —n, (id1fo) o ((bfﬂ,_n) hidnﬂ .

Hence Condition 2.2.17 is satisfied if we assume that the equality (1.2.1) is satisfied for all natural numbers 7.
Conversely, assume that Condition 2.2.17 is satisfied. Condition 2.2.17 with n’ = n + 1 ensures that:

1 ((F1) i) o Gt (9] = [ Cervg) o (o) )]

Since Autyg (1) = By is the trivial group, we deduce from the defining equivalence relation of 4 (see Definition
1.1.5) the equality in B, 5:

((68) ™ st ) o Gt (@) = 1o (e ) o ((682) i)
O

Remark 1.2.6. It follows from Lemma 1.2.5 that, for i > 2, ¢,,(g;) is determined by ¢, (g1) for k < n by the equalities
(1.2.1).

Example 1.2.7. The family ¢, 1, based on what is called the pure braid local system in the literature (see [ ,
Remark p.223]), is defined by the following inductive assignment for all natural numbers n > 1.

6n1:Fn — By

o o? ifi=1
! 0i9GCn1 (gi—l) 00';1 ifi € {2, ..,I’l} .

We assign g1 to be the trivial morphism.

Proposition 1.2.8. The family of morphisms {1}, satisfies Condition 1.2.3.

11



12 1. Chapter. The Long-Moody construction and polynomial functors

Proof. Relation (1.2.1) is trivially satisfied for n = 0. Let n > 1 be a fixed natural number. By definition 1.1.4, we

-1
have (bf,l) =0y L. For Artin generators 0; and 0,1, the braid relation 0,1 0 0; 0 07,1 = 0; 0 041 0 0; implies

that 01_1 00 =0p0 (712 ) 02_1 o (71_1. Moreover, we have id146, 1 (31) = idlhalz = 022. We deduce that:

((bf,l)l uid'fl) ° (idlhgn,l (gl)) = 0'1_1 00'22
1 -1

= (7200'120(72_ o0y

= Gwil(g)o ((bfl) o uidn) .

Leti € {2,...,n} fixed and assume that the equality is satisfied for i — 1. We deduce from the braid relations and
the equality for g;_ that:

((b{il)l uidn) o (idit6n1 (3)) = o7t o (rsi06n (gi1) 007y

-1 -1
= 01400, © (gn (gi_1)o0 01+i)

— (0’1+i oGn (gi)o (Tl_Jrli) o 0'1_1

= Gwa(814i)© ((bﬁl)_l hidn) .

Hence Relation (1.2.1) of Lemma (1.2.5) is satisfied for all natural numbers. O

Example 1.2.9. Let us consider the trivial morphisms ¢, + : Fy — O0ge — B, for all natural numbers n. The
relation of Lemma 1.2.5 being easily checked, this family of morphisms {G;,+ : Fn — By,41},py satisfies Condition
123

Action of braid groups on automorphism groups of free groups: There are several ways to consider the group
B, as a subgroup of Aut (F,). For instance, the geometric point of view of topology gives us an action of B, on
the free group F;, (see for example [ Jor[ ]) identifying B, as the mapping class group of a n-punctured
disc X ;: fixing a point y on the boundary of the disc X ;, each free generator g; can be taken as a loop of the
disc based y turning around punctures. Each element o of B, as an automorphism up to isotopy of the disc o1

induces a well-defined action on the fundamental group 7y (23,1) 2 F,, called Artin representation (see Example
1.2.15 for more details).

In the sequel, we fix a family of group actions of B, on the free group F: let {a, : B, — Aut (F;)}, . be
a family of group morphisms from the braid group B, to the automorphism group Aut (F,). For the work of
Sections 1.2.2 and 1.4, we need the morphisms a,, : B, — Aut (F,) to satisfy more properties.

Condition 1.2.10. Let n and n’ be natural numbers such that n’ > n. We require (anL" * ian) o(ay(0)) =
(a, (0'h0)) o (an,_n * ian) as morphisms F, — F, for all elements ¢ of B, and ¢’ of B,,_,, ie the following
diagrams are commutative:

an(0) F *idp,
F, —F, F, — s F,

an/—n *lan an/,n *lan
_, FdEy a, (o' idy)

F,—F
" a (id,y_ o) !

Remark 1.2.11. Condition 1.2.10 will be used to define the Long-Moody functor on morphisms in Theorem 1.2.19.
Moreover, it will also be used for the proof of Propositions 1.4.14 and 1.4.18.

12
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We will also require the families of morphisms {¢, : F;, — By, 11}, and {a, : By, — Aut (Fy)}, o to satisfy
the following compatibility relations.

Condition 1.2.12. Let n be a natural number. We assume that the morphism given by the coproduct ¢, * (id1f—) :

F, * B, — B, factors across the canonical surjection to F, x B,. In other words, the following diagram is
an

commutative:
F,“~——F, xB, <—B,

N A

By
where the morphism F, x B, — B,,; is induced by the morphism F, * B, — B, and the group morphism
an

idih— : B, — B,41 is induced by the monoidal structure. This is equivalent to requiring that, for all elements
o € B, and g € F,, the following equality holds in B, ;:

(id150) 0 Gu (8) = Gn (an (7) (8)) © (id150) .

Remark 1.2.13. Condition 1.2.12 is essential in the definition of the Long-Moody functor on objects in Theorem
1.2.19.

We fix a choice for these families of morphisms {¢, : Fy — B,41}, o and {a, : By — Aut (Fy)},en-

Definition 1.2.14. The families {¢, : F; — By, 11}, and {a, : B, — Aut (Fy)}, o are said to be coherent if they
satisfy conditions 1.2.3,1.2.10 and 1.2.12.

Example 1.2.15. A classical family is provided by the Artin representations (see for example [ , Section 1]).
Forn € N, a,1 : B, — Aut (F,) is defined for all elementary braids o; where i € {1,...,n — 1} by:

an1 (0'1') ZFn — Fn

Si+1 ifj=1i
g — {8 &g ifj=i+1
gj ifj¢ {i,i+1}.

It clearly follows from their definitions that the morphisms {a,,; : B, — Aut (F,)}, . satisfy Condition 1.2.10.
Considering also the morphisms {¢, 1 : F;, < Bj,41} zen defined in Example 1.2.7, Condition 1.2.12 is satisfied.
Indeed, it follows from the definitions (see for example [ Jor| , Introduction]) that, for all natural num-
bersn, foralli € {1,...,n—1}and forallj e {1,...,n}:

0149 6n1 (87) = Gna1 (an1 (07) (85)) © 014

Considering the morphisms {a,,1 : By — Aut (Fy)}, . and {g,1: Fy — By 11}, of Example 1.2.7, it follows
from the work lead that these families of morphisms are coherent.

Example 1.2.16. Consider the family of morphisms {g « : Fy — Bj11},cn of Example 1.2.9 and any family of
morphisms {a, : B, — Aut (F,)},.n- Then Condition 1.2.12 is always satisfied. As a consequence, these fami-
lies of morphisms {G,+ : Fy — Byy1},cn and {a, : By, — Aut (F,)}, . are coherent if and only if the family of
morphisms {a, : B, — Aut (F,)}, . satisfies Condition 1.2.10.

1.2.2 The Long-Moody functors

In this section, we prove that the Long-Moody construction of | , Theorem 2.1 ] induces a functor
LM : Fct (848, K-od) — Fct (4B, K-Mod) .

We fix families of morphisms {¢, : Fy — B,11},cn and {a, : B, — Aut (F,)}, o, Which are assumed to be co-
herent (see Definition 1.2.14).

13



14 1. Chapter. The Long-Moody construction and polynomial functors

We first need to make some observations and introduce some tools. Let F be an object of Fct (48, K-0100) and n
be a natural number. A fortiori, the IK-module F (n + 1) is endowed with a left K [B,,;1]-module structure. Using
the morphism ¢, : F; = B,,41, F (n + 1) is a K [F,]-module by restriction.

Let us consider the augmentation ideal of the free group Fy,, denoted by Zgp,). Since it is a (right) K [Fy]-
module, one can form the tensor product Zy(,] K@; F(n+1). Also, for all natural numbers n and n’ such that

n’ > n, the morphism i, *idg, : Fy — F, canonically induces a morphism lI]K[ ] * idI]K[F ,
- F n
n —-n
Z

) . I]K[F”] —
K[F

. In addition, the augmentation ideal Z, is a K [B; |-module too:
/] & K[Fy]

n

Lemma 1.2.17. The action a, : B, — Aut (F,) canonically induces an action of B, on IIK[M denoted by a, : B, —
Aut (IJI([Fn]> (abusing the notation).

Proof. For any group morphism H — Aut (G), the group ring K [G] is canonically an H-module and so is the
augmentation ideal Zg, as a submodule of K [G]. O

Remark 1.2.18. If the family of morphisms {a,, : B, — Aut (F;)}, . is coherent with respect to the family of mor-
phisms {6, : F; — By 41}, the relation of Condition 1.2.10 remains true mutatis mutandis, for all natural num-

bers n and n’, considering the induced morphisms a, : B, — Aut (I]K[Fn]) and lI]K[F ] * idI]K[F E Ik, —
H/*l/l "
I]K [Fn/} '

In the following theorem, we define an endofunctor of Fct (4B, IK-9t0d) corresponding to the Long-Moody con-
struction. It will be called the Long-Moody functor with respectto {¢, : Fy — Byy1},cn and {a, : By — Aut (Fy)},cn-

Theorem 1.2.19. Recall that we have fixed coherent families of morphisms {G,, : ¥y — Byi1},cp and {ay : By — Aut (Fy)},ene
The following assignment defines a functor LM, ¢ : Fet (U, K-9t0d) — Fct (UB, K-DMod).

* Objects: for F € Obj (Fct (4B, K-Mod)), LM, ¢ (F) : UB — K-D0d is defined by:
— Objects: Vn € N, LM, (F) (n) = I, ® F(n+1).
K[Fy]

— Morphisms: for n,n’ € N, such that n' > n, and [n' —n,o] € Homyg (n,n'), assign:

LM (F) ([~ n,0]) (i N ) = 4 (0) ([ P idzm]) (), @  Flil =n)) @),

[Fn] /

n

foralli € Iy, andv € F (n +1).

* Morphisms: let F and G be two objects of Fct (UB, K-DMod), and ny : F — G be a natural transformation. We define
LM, (17) : LMy (F) = LM, ¢ (G) for all natural numbers n by:

(LMg,g (U))n = idI]K[Fn] ]K?l; ]77n+1-

Notation 1.2.20. When there is no ambiguity, once the morphisms {¢, : Fy — B, 1}, and {a, : By — Aut (Fy)},cn
are fixed, we omit them from the notation LM, ¢ for convenience (especially for proofs).

Proof. For this proof, n, n’ and n” are natural numbers such that n”’ > n’ > n.

1. First let us show that the assignment of LM defines an endofunctor of Fct (B8, K-210d). The two first points
generalize the proof of [ , Theorem 2.1]. Let F, G and H be objects of Fct (8, K-Dtod).

14
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(a)

(b)

(©

We first check the compatibility of the assignment LM (F) with respect to the tensor product. Consider
o €Byg€F,i€ Igp,)and v € F(n+1). Since (idi1§0) o gn(g) = ¢n(an () (g)) o (id1fo) b
Condition 1.2.12, we deduce that:

LM (F) (¢) <i ® F(Gn(g))(v)> = an(0) (i) ® F(idi1o) (F(gn(g)) (v))

K[Fy] K[Fy]

= (o) (D) ® (F(gn(an(0)(g)))o F(idio))(v)

K[Fy]
= a,(0)(i-g) ® F(idiho) (v)

KIF,]

= LM(F) (0) (i-g ® (v))

Let us prove that the assignment LM (F) defines an object of Fct (B, K-210d). According to our assign-
ment and since a, and id; j— are group morphisms, it follows from the definition that LM (F) (idg,) =
idym(r)(n)- Hence, it remains to prove that the composition axiom is satisfied. Let ¢ and ¢’ be two ele-
ments of By, i € Iy, and v € F (n + 1). From the functoriality of F over f and the compatibility of the
monoidal structure f with composition, we deduce that F (id14 (¢)) o F (id1f (¢)) = F (id1 (¢/ 0 0)).
Since a;, is a group morphism, we have:

(an (0" 00)) (i) = an (¢") (an (0) (i)

Hence, it follows from the assignment of LM that:

]K[Fn] IK[F"}

= @ (0) @ (@) () @ (F(idit (¢) o F (i3 (0))) (2

= LM(F) (¢/) oLM (F) (0) <i ® v).

LM (F) (¢’ 0 0) <i ® v) = (an(0c'00)) (i) ® F(idif(c’00)) (v
)

KI[Fy]

It remains to check the consistency of our definition of LM on morphisms of Fct (B, K-9t00). Let 7 :
F — G be a natural transformation. Hence, we have that:

G (id1907) © 1 = 111 © F (id140) -
Hence, it follows from the assignment of LM that:
LM (G) (7) o LM (), = LM (17),y o LM (F) (7)

Therefore LM (77) is a morphism in the category Fct (B, K-9t00). Denoting by idr : F — F the identity
natural transformation, it is clear that LM (idf) = idyyy(r). Finally, let us check the composition axiom.
Lety7 : F = Gand p : G — H be natural transformations. Let n be a natural number, i € Zyg,) and
v € F (n). Now, since y and 7 are morphisms in the category Fct (B, K-2100):

M (o), <i]K® v) = i ® (Hnt107nt1) () = LM (), o LM (1), <i ® v)-

(Fx] K[F,] K[F,]

2. Let us prove that the assignment LM lifts to define an endofunctor of Fct (4B, K-2od). Let F, G and H be
objects of Fct (Up, K-Mt0d).

(a)

First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. In
fact, this compatibility being already done for automorphisms (see 1a), the remaining point to prove is

15
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(b)

(©

the compatibility of LM (F) ([n’ —n,id,]). Let g € Fn, i € Igp,) and v € F(n+1). It follows from
Condition 1.2.3 that in B,,41:

ldlh [n, —n, idn’—nhgn (g)] =Gy (an/—n *g) o (ld]h [n/ —-n, Zdn/}) .

Since (lZ]K[F ] * idIK[Fn]) (i-g) = (eIK[F ] * i> . (an,_” *g),we deduce that:

n -—n n-—n

LM (F) ([n' —n,id,]) (i ngﬁn] F(gn(g)) (v)>
— (g, |y ) () F iz =it ]) (F 6 (5)) 0)
K[E,_,] KI[E,/]
B <lI [Fur ] *idIIK[Fn]> (i-g) ® F (idlb [”l - idn’]) (v)

KIF KI[F,,/]

= LM(F) ([n' —n,id,]) (i-g ® v).

KI[Fy]

Let us prove that the assignment LM (F) defines an object of Fct ({8, K-2100) using Proposition 1.1.10.
Recall the compatibility of the monoidal structure f with respect to composition and that F is an object
of Fct (4B, K-Mod). Consider [n' —n,0] € Homgg (n,n’). It follows from our assignment, that:

LM (F) ([n' —n,c]) = LM (F) (¢) o LM (F) ([n' — n,id,y]) .
Moreover, the composition of morphisms introduced in Definition 1.2.2 implies that:
LM (F) ([n" — n,idy]) = LM(F) ([0 —n',idy]) o LM (F) ([’ — n,idy]) .

Hence, the relation (1.1.1) of Proposition 1.1.10 is satisfied. Leto € B, and ¢ € B,,_,,. Since (1, _,, *idy) o
(an (0)) = (a, (Pho)) o (L _y, * idy) by Condition 1.2.10, we deduce that:

LM (F) (yho) oLM (F) ([0’ —n,id,y]) = LM(F) ([n' —n,id,]) o LM (F) (0).

Hence the relation (1.1.2) of Proposition 1.1.10 is also satisfied. Therefore, according to Proposition
1.1.10, since LM (F) is an object of Fct (B, K-M0d), the assignment LM (F) defines an object of Fct (L8, K-Dt0d).

Finally, let us check the consistency of our assignment for LM on morphisms. Let# : F — G be a natural
transformation. We already proved in 1c that LM (7) is a morphism in the category Fct (B, K-0100).
Since 7 is a natural transformation between objects of Fct (L8, K-0t0d), we have that:

G (idily [n" —m,id,y]) © g1 = i1 © F (idh [n' —n,id,]) .
Hence, it follows from the assignment of LM that:
LM (G) ([n' —n,id,]) o LM (1), = LM (1), o LM (F) ([n' — n,id,]).

Hence the relation (1.1.3) of Proposition 1.1.12 is satisfied, and we deduce from this last proposition
that LM () is a morphism in the category Fct (L8, K-200). The verification of the composition axiom
repeats mutatis mutandis the one of 1c.

O

Recall the following fact on the augmentation ideal of the free group F,, where n € IN.

Proposition 1.2.21. [ , Chapter 6, Proposition 6.2.6] The augmentation ideal Ty g, is a free K [F,]-module with basis
theset {(gi—1) |ie{1,...,n}}.

16
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This result allows us to prove the following properties.

Proposition 1.2.22. The functor LM, : Fct (4B, K-D0d) — Fct (UB, K-DMod) is reduced and exact. Moreover, it
commutes with all colimits and all finite limits.

Proof. Let Opc(s18,K-0m00) * 4B — K-DMod denote the null functor. It follows from the definition of the Long-Moody

functor that LM (OFct(uﬂ,IK—imoa)) = OFct(ug K-9M00)-
Let n be a natural number. Since the augmentation ideal Zyg,) is a free K [F,]-module (as stated in Proposition

1.2.21), it is therefore a flat K [F,]-module. Then, the result follows from the fact that the functor IIK[F”} ® —:
K[F,]

K-9tod — K-2Mod is an exact functor, the naturality for morphisms following from the definition of the Long-
Moody functor (see Theorem 1.2.19).
Similarly, the fact that the functor LM, . commutes with all colimits is a formal consequence of the commuta-

tion with all colimits of the tensor products Z g, ® — for all natural numbers n. The commutation result for
K[F,]

finite limits is a property of exact functors (see for example [ , Chapter 8, section 3]). O

Remark 1.2.23. Let F be an object of Fct (L8, K-Dt0d) and 7 a natural number. For all k € {1,...,n}, we denote
F(n+1),=K[(gx—1)] ® F(n+1)with g, a generator of F,. We define an isomorphism
K[Fy]

n

n
An,F :IIK[F,,} ]K%n]F(I’l-Fl) — ](e_alp(n+1)k§ (F (H+1))@n

k-

th

(&x—1) ® v +—> 0,...,0, » ,0,...,0
K[F,]

Thus, for 7 : F — G a natural transformation, with A:
Vn € N, Ay (LM (y)),) = 1,

Hence, we can have a matricial point of view on this construction (see [ , Theorem 2.2]). Similarly, the study
of Bigelow and Tian in [ ] is performed from a purely matricial point of view.

Case of trivial g:  Finally, let us consider the family of morphisms {¢, « : Fy — B, 41}, cp of Example 1.2.9.

Remark 1.2.24. As stated in Example 1.2.16, we only need to consider a family of morphisms {a, : B, — Aut (F;)},
which satisfies Condition 1.2.10 so that the families {¢,« : Fy — B,11},,cn and {a, : B, — Aut (Fy)}, o are co-
herent.

Notation 1.2.25. We denote by X : Up — K-Dod the constant functor such that X (1) = K for all natural numbers
n.

We have the following remarkable property.

Proposition 1.2.26. Let F be an object of Fct (UB, IK-010d) and {a, : By, — Aut (F,)}, o a family of morphisms which
satisfies Condition 1.2.10. Then, as objects of Fct (4B, K-D0od), LM, ¢, (F) = LM, (X) ® F (15—).
K

Proof. Remark 1.2.23 shows that there is an isomorphism of K-modules of the form:

-1
<An,%®id1-"(1hn) )

An,F ®n K
LMy, (F) (1) ———— (F(n+ 1)) ———— LMy, (X) (n) @ F (1n) .
It is straightforward to check that this isomorphism is natural if ¢ is trivial. O

17



18 1. Chapter. The Long-Moody construction and polynomial functors

1.2.3 Evaluation of the Long-Moody functor

A first step to understand the behaviour of a Long-Moody endofunctor is to investigate its effect on the constant
functor X. This is indeed the most basic functor to study. Moreover, as Proposition 1.2.26 shows, the evaluation on
this functor is the fundamental information to understand a given Long-Moody endofunctor when we consider
the family of morphisms {G « : Fx — By 11}, of Example 1.2.9.

Fixing coherent families of morphisms {¢, : F; — By, 11}, and {a, : B, — Aut (F,)}, o, We consider the
Long-Moody functor LM, . For a fixed natural number 7, using the isomorphism A, of Remark 1.2.23, we observe
that LM, ¢ (X) (n) = K®". Moreover, for n and n’ natural numbers such that n’ > n, it follows from the definition
in Theorem 1.2.19 that:

LM, (X) ([n' —n,id,]) = (LI ] * idn> ]K® id,y.

[Fn’]
Using the isomorphisms A, and A, of Remark 1.2.23, we prove that LM, (X) ([0’ —n,id,y]) = tgow—n © idgen
(where 13 ¢, @ idgen was introduced in Notation 1.1.22).

11/771

K
Remark 1.2.27. Once defined on automorphisms, LM, ¢ (X) is defined on general morphisms by precomposition
by tgan—n © idgeon.

Notation 1.2.28. Let y be an invertible element of K. Let yX : B — IK-9od be the functor defined for all natural
numbers n by yX (n) = K and such that:

e ifn=0o0rn =1, then yX (id) = idg;
e if n > 2, for every Artin generator o; of B, (yX) (0;) : K — K is the multiplication by y.

Assigning yX ([n' —n, id,s]) = idk for all natural numbers n’ > #, relations (1.1.1) and (1.1.2) of Proposition 1.1.10
being clearly satisfied, we thus define the functor yX : 4 — K-9t0d. For an object F of Fct (LB, K-Mod), we
denote the functor yX (118<) F : 3B — K-Mod by yF.

1.2.3.1 Computations for LM;

Let us assume that K = C [til]. Let us consider the coherent families of morphisms {G,1 : Fn < Buy1},cn
(introduced in Example 1.2.7) and {a, 1 : By — Aut (Fy)}, o (introduced in Example 1.2.15). We denote by LM;
the associated Long-Moody functor. We are interested in the behaviour of the functor t'LM; (tX) : Uf —
C [+1] -90d on automorphisms of the category 4. Indeed, adding a parameter ¢ is necessary to recover functors
specifically associated with the category 4, such as Bur; (see Section 1.1.2). Let us fix n a natural number and ;
an Artin generator of B,,.

Beforehand, let us understand the action a,,; : B, — Aut (IIK[Fn]) induced by a,,1 : B, — Aut (F,). We
compute:

an (07) : Ikr,) —  ZTk(F,]

git1—1 ifj=i
g—1 — g h8igin—1=1[8—1git1+Igi—1] (1 - 8ff18igi+1) ifj=i+1
gi—1 ifj¢{i,i+1}.
n
0 0 1
Notation 1.2.29. Let us fix the matrices r, = ST for all natural numbers n.
0o .
1 0 0

Hence, we have the following result.

Proposition 1.2.30. The matrices {ry },,c\ define a natural equivalence t~*LM; (tX) 5 Buep.

18
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Proof. Using the isomorphism A, of Remark 1.2.23, we obtain that for ¢; an Artin generator of B;,.:
1 0 1
t7 LMy (tX) (0;) = Idi—1 ® 2 1_p | @i
We deduce that r, o (£ 1LM (tX) (07)) o 1,1 = Burp (07). O

Recovering of the Lawrence-Krammer functor: Let us first introduce the following result due to Long in [ ]
We assume that K = C [+*1] [¢*!]. For this paragraph, we assume that 1 + gt = 0, g has a square root, > = 1 and

3 _
q =
Notation 1.2.31. We denoteby X’ : U — C [t*1] [g%1] -Dtod the constant functor such that X’ (n) = C [t*1] [¢+]

for all natural numbers 1. Generally speaking, for F an object of Fct (L8, K-2t0d) the representation of B, induced
by F will be denoted by Fig, .

Proposition 1.2.32. [ , special case of Corollary 2.10] Let n be a natural number such that n > 4. Then, the Lawrence-
Krammer representation SRy, is a subrepresentation of ¢~ (LM (q (£ LM (tX)))) g, -

We first need to introduce new tools. Let n and m be two natural numbers. Let w,, = (w1, ..., w,) € C" such
that w; # w; if i # j. We consider the configuration space:

Yy, m:{(zl,...,zm)\ziEC,zi;éwkforlSkgn,zi;«ézjifi;éj}.

Whnr

The two following results due to Long will be crucial to prove Proposition 1.2.32.

Proposition 1.2.33. [ , Corollary 2.7] Let n be a natural number and p : B, .1 — GL (V) be a representation of B,
with V a C [t*1] [q*1]-module. Then, the representation defined by Long in [ , Theorem 2.1], which we denote by
LM, is a group morphism:

g LM (gp) : By — GL (Hl (Y%,l,Ep))
for E, a flat vector bundle associated with p (see [ , p- 225-226]).

Lemma 1.2.34. [ , Lemma 2.9] For all natural numbers m, there is an isomorphism of abelian groups:
B (Yo i, Exy, ) 2 HY (Yo, H" (Yo, o Exy ) )
In particular, for m = 1, H? (waz, Exan) =~ H! (Yyn,ll H! (YynH,Z' Exg, ) )
Proof of Proposition 1.2.33. By Proposition 1.2.33, we can write as a representation:
oM (g (7 LM (1)) By = GL (Y (Ya, 1, Erotoan) ) ) -

A fortiori by Lemma 1.2.34, g~ 1L M (q (t’lﬁM (t%‘BH) )) is an action of B, on H? (Y%,z, Ex g, ) In particular,
form = 2 and n > 4, according to [ , Theorem 5.1], the representation of B, factoring through the Iwahori-
Hecke algebra H,, (t) corresponding to the Young diagram (n — 2,2) is a subrepresentation of g ~! LM (q (t’lﬁ/\/l (t% B, ) ) ) .
Moreover, this representation is equivalent to the Lawrence-Krammer representation by [ , Section 5]. By the
definition of the Long-Moody construction (see [ , Theorem 2.1]), g1 LM (q (t‘lﬁM (t%‘Bn) )) is the rep-

resentation qfl (1LMy) (q (FlLMl (t%))) B -

We denote by £8=* : B — (C [t*1]) [g7!] -Dod the subfunctor of the Lawrence-Krammer defined in Ex-
ample 1.1.2 which is null on the objects such that n < 4. The result of Proposition 1.2.32 induces the existence of

19



20 1. Chapter. The Long-Moody construction and polynomial functors

an intertwining I,, : C [t*1] [¢%] ent=1)/2 ¢ [t+1] [¢%] “1 ) for all natural numbers n > 4. In other words,

the exists a C [t*!] [g%!]-module morphism such that for all ¢ € B, the following diagram is commutative.
C [#1] [¢*1] on(n=-1/2¢ b _ [£41] [4%1] ®n(n+1)

Eﬁ(ﬂ)l lq1(T1LM1)(q(t1LM1(f3€)))(U)
en(n—1)/2 Iy en(n+1
C [t:tl] [q:tl] (n=1)/2¢ C [t:tl] [qil] (n+1)

According to Remark 1.2.27, since £R ([n’ —n,id,/]) agrees with GL_ ('yn(nﬂ),n/(nlﬂ)) (see Definition (1.1.17)),
this intertwining defines in fact a natural transformation. Thus we have proven the following result.

Proposition 1.2.35. The functor £8=* is a subfunctor of g1 (LM (g (t7'LM; (£X))) =%

1.2.3.2 Computations for other cases

Let us introduce examples of Long-Moody functors which arise using other actions a,, : B, — Aut (F,).

Wada representations In 1992, Wada introduced in [ ] a certain type of family of representations of braid
groups. We give here a functorial approach to this work.

Definition 1.2.36. Let Aut_ : (IN, <) — &t be the functor defined by:

* Objects: for all natural numbers n, Aut_ (n) = Aut (F,) the automorphism group of the free group on n
generators;

e Morphisms: let n be a natural number. We define Aut_ (vy,) : Aut (F,) — Aut (F,11) assigning Aut_ (v,) (¢) =
idy x @ for all ¢ € Aut (F,), using the monoidal category (gt, *,0) recalled in Notation 1.1.16.

Definition 1.2.37. Let us consider two different non-trivial reduced words W (g1,¢2) and V (g1, g2) on F,, such
that:

e the assignments g1 — W (g1, g2) and g» — V (g1, §2) define a automorphism of Fy;
e the assignment (W, V) : B, — Aut (F,):
Wi(g1,8) ifj=1
[(W, V) ()] (g)) = {V((gi,gi)) ifj. _,
is a morphism.
Two morphisms (W, V) : B — Aut (F,) and (W', V') : B, — Aut (F;) are said to be swap-dual if W’ (g1, ¢2) =
V (g2,41) and V' (g1,82) = W (g2, 41), backward-dual if W’ (g1, 2) = (W (gfl,g;))_l and V' (g1,92)
(V (gl_l,gz_l))il, inverse if (W, V') = (W, V)fl.

Definition 1.2.38. [ ] Let W (g1, 82) and V (g1, g2) be two words on F,. A natural transformation W : B_ —
Aut_ is said to be of Wada-type if for all natural numbers #n, for all i € {1,...,n — 1}, the following diagram is
commutative (we recall that incl} was introduced in Notation 1.1.18 and Aut_ (7, ;) in Definition 1.2.2):

By —— > Aut (F,)
incl! T TA”‘E— (VZfi) *idg,
B, W Aut (Fp).

20
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Remark 1.2.39. Note that therefore a Wada-type natural transformation is entirely determined by the choice of
(W, V).

Wada conjectured a classification of these type of representations. This conjecture was proved by Ito in [ 1.

Theorem 1.2.40. [ ] There are seven classes of Wada-type natural transformation VW up to the swap-dual, backward-dual
and inverse equivalences, listed below.

1. (W, V), (81,82) = (82,85'818, ™) where m € Z;

2. (W, V), (81,82) = (81, 82);

3. (W,V)?, (glng) = gZ/gfl);

b

(W, V)4 (81,82) = (82,828182 1);

N

- (W, V)g (81,82) = (82 1/gzg1gz);

N

(
(
5. (W,V)s (31,82) = (87 87");
(
(

(W, V)7 (81,82) = (8182 '81 1,g1g§)-

Remark 1.2.41. Note that the action given by the first Wada representation with m = 1 is a generalization of the
Artin representation.

Notation 1.2.42. The actions given by the k-th Wada-type natural transformation will be denoted by a,,; : B, —
Aut (Fy,). In particular, for k = 1 with m = 1, we recover the Artin representation (see Example 1.2.15).
Forall1l < k < 8, it clearly follows from their definitions that the families of morphisms {an,k : By, — Aut (Fy) }n N

satisfy Condition 1.2.10. Hence, for 1 < k < 8, we consider a family of morphisms {gn/k :F, — Bn+1} assumed

to be coherent with respect to the morphisms {a,, s : B, < Aut (F,)} cn (in the sense of Definition 1.2.14). Such
morphisms ¢, x always exist because we could at least take the family of morphisms {¢ « : F, — B,41} (since
the family of morphisms {a, ; : B, — Aut (F,)}, o Satisties Condition 1.2.10 see Example 1.2.16). We denote by
LM : Fct (4B, K-9t0d) — Fct (UB, K-M0d) the corresponding Long-Moody functor defined in Proposition 1.2.19
fori e {1,...,8}.

Let us imitate the procedure of Section 1.2.3.1. We assume that K = C [#*!]. Let n be a fixed natural number.
Let us consider the case of k = 2. Using the isomorphism A, of Remark 1.2.23, we obtain the functor LM, (X) :
UB — C [+1] -9M0d, defined for 0; € B, by:

11

LM, (F) (0;) = (F (7))“".

For k = 3, using A;,, we compute that the functor 1LM; (tX): U — C [til] -Moo is defined for o; € B, by:

FILM; (1%) (07) = Idiq @ [ (1) s (8:) } @ Idy_i 1.

Hence, the functor ¢ ~'LMj (tX) is very similar to the one associated with the Tong-Yang-Ma representations (recall
Definition 1.1.2). We deduce from straightforward matrix computations and Remark 1.2.27 that the identity natural
equivalence gives t 1LMj (tX) = TYM ¢, 2 (g)-

For the actions given by the Wada-type natural transformation 4, 5, 6 and 7 in Theorem 1.2.40, the produced
functors LM; (X) : 48 — C [+*1] -900d are mild variants of what is given by the case i = 1.
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1.3 Strong polynomial functors

We deal here with the concept of a strong polynomial functor. This type of functor will be the core of our work
in Section 4. We review (and actually extend) the definition and properties of a strong polynomial functor due

to Djament and Vespa in [ ] and also a particular case of coefficient systems of finite degree used by Randal-
Williams and Wahl in [ ].
In [ , Section 1], Djament and Vespa construct a framework to define strong polynomial functors in

the category Fct (9, A), where 9 is a symmetric monoidal category, the unit is an initial object and A is an
abelian category. Here, we generalize this definition for functors from pre-braided monoidal categories having the
same additional property. In particular, the notion of strong polynomial functor will be defined for the category
Fct (4B, K-20d). The keypoint of this section is Proposition 1.3.2, in so far as it constitutes the crucial property
necessary and sufficient to extend the definition of strong polynomial functor to the pre-braided case.

1.3.1 Strong polynomiality
We first introduce the translation functor, which plays the central role in the definition of strong polynomiality.

Definition 1.3.1. Let (90,15,0) be a strict monoidal small category, let © be a category and let x be an object of
M. The monoidal structure defines the endofunctor xf— : MM — M. We define the translation by x functor
Ty : Fet (9, ©) — Fct (M, D) to be the endofunctor obtained by precomposition by the functor xf—.

The following proposition establishes the commutation of two translation functors associated with two objects
of M. It is the keystone property to define strong polynomial functors.

Proposition 1.3.2. Let (90,1, 0) be a pre-braided strict monoidal small category (see Definition 1.1.13) and © be a category.
Let x and y be two objects of M. Then, there exists a natural isomorphism between functors from Fct (9, D) to Fct (9, D):

Ty © Ty = Ty O Ty.

Proof. First, because of the associativity of the monoidal product j and the strictness of 9)t, we have that 7, o 7, =
Tygy and Ty © Ty = Ty, We denote by b%’?, the pre-braiding of M. The key point is the fact that as b’z)f, is a braiding

on the maximal subgroupoid of 9 (see Definition 1.1.13), b% : xfy = yhx defines an isomorphism. Hence,

*
precomposition by b%hidm defines a natural transformation (b%hidm) D Tygy — Typye It is an isomorphism

1 *
since we analogously construct an inverse natural transformation ((bgﬁy) hidgm) Tygr = Tay- O

Remark 1.3.3. In Proposition 1.3.2, the natural isomorphism is not unique: as the proof shows, we could have
-1

used the morphism (b%) gidgy instead to define an isomorphism between Ty, (F) and 7, (F). In fact, a

category only needs to be equipped with natural (in x and y) isomorphisms xfjy = yhx to satisfy the conclusion of

Proposition 1.3.2.

Let us move on to the introduction of the evanescence and difference functors, which will characterize the
(very) strong polynomiality of a functor in Fct (90, A). Recall that, if 9 is a small category and A is an abelian
category, then the functor category Fct (9, A) is an abelian category (see [ , Chapter VIII]).

From now until the end of Section 1.3, we fix (90,1, 0) a pre-braided strict monoidal category such that the
monoidal unit 0 is an initial object, A an abelian category and x denotes an object of 9.

Definition 1.3.4. For all objects F of Fct (", .A), we denote by ix (F) : 79 (F) — 7y (F) the natural transformation
induced by the unique morphism , : 0 — x of 9. This induces iy : Idgcyon,4) — Tx a natural transformation
of Fct (M, A). Since the category Fct (9, A) is abelian, the kernel and cokernel of the natural transformation iy
exist. We define the functors xx = ker (ix) and 6y = coker (iy). The endofunctors x, and Jy of Fct (9, A) are called
respectively evanescence and difference functor associated with x.

The following proposition presents elementary properties of the translation, evanescence and difference func-
tors. They are either consequences of the definitions, or direct generalizations of the framework considered in
[ ] where 91 is symmetric monoidal.
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Proposition 1.3.5. Let y be an object of M. Then the translation functor Ty is exact and we have the following exact sequence
in the category of endofunctors of Fct (I, A):
0 ke 25 1d 5 1, A5 5 0. (1.3.1)

Moreover, for a short exact sequence 0 — F — G — H — 0 in the category Fct (O, A), there is a natural exact
sequence in the category Fct (9, A):

0 — kx (F) — kx (G) —> kx (H) —> 65 (F) — 6x (G) — 0x (H) — 0. (1.3.2)
In addition:
1. The translation endofunctor T, of Fct (I, A) commutes with limits and colimits.
2. The difference endofunctors 6 and d, of Fet (I, A) commute up to natural isomorphism. They commute with colimits.
3. The endofunctors xy and xy of Fet (M, A) commute up to natural isomorphism. They commute with limits.
4. The natural inclusion Ky o ky < Ky is an isomorphism.
5. The translation endofunctor Ty and the difference endofunctor 6, commute up to natural isomorphism.
6. The translation endofunctor T, and the endofunctor x,, commute up to natural isomorphism.
7. We have the following natural exact sequence in the category of endofunctors of Fct (9, A):
0 — Ky — Ky —> Tuky — Oy — 5xuy — Ty — 0. (1.3.3)
Proof. In the symmetric monoidal case, this is [ , Proposition 1.4]: the numbered properties are formal conse-

quences of the commutation property of the translation endofunctors given by Proposition 1.3.2. Hence, the proofs
carry over mutatis mutandis to the pre-braided setting. O

Using Proposition 1.3.5, we can define strong polynomial functors.

Definition 1.3.6. We recursively define on n € IN the category Pol; "8 (M, A) of strong polynomial functors of
degree less than or equal to 1 to be the full subcategory of Fct (901, A) as follows:

1. Ifn < 0, Poly™"8 (9, A) = {0};

2. if n > 0, the objects of Poly " (9, A) are the functors F such that for all objects x of 9, the functor Jy (F) is
an object of Politiolng (M, A).

For an object F of Fct (9, A) which is strong polynomial of degree less than or equal to n € IN, the smallestd € IN
(d < n) for which F is an object of Pol;tmng (9, A) is called the strong degree of F.

Remark 1.3.7. By Proposition 1.1.14, the category (B, 1, 0) is a pre-braided monoidal category such that 0 is initial
object. This example is the first one which led us to extend the definition of [ ]. Thus, we have a well-defined
notion of strong polynomial functor for the category (8.

The following three propositions are important properties of the framework in [ ] adapted to the pre-
braided case. Their proofs follow directly from those of their analogues in [ , Propositions 1.7, 1.8 and 1.9].

Proposition 1.3.8. [ , Proposition 1.7] Let O’ be another pre-braided strict monoidal category and a : M — ' be

strong

a strong monoidal functor. Then, the precomposition by « restricts to a functor from Pol;, (M, A) to Poly "8 (o, A).

Proposition 1.3.9. [ , Proposition 1.8] The category Pol;""8 (9, A) is closed under the translation endofunctor Ty,
under quotient, under extension and under colimits. Moreover, assuming that there exists a set € of objects of 9 such that:

Vm € Obj (M), I{e;};c; € Obj (&) where I is finite, m = 1 e;,
iel

then, an object F of Fct (O, A) belongs to Poly, " (I, A) if and only if 8, (F) is an object of Polffiol”g (M, A) for all
objects e of €.
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Corollary 1.3.10. Let n be a natural number. Let F be a strong polynomial functor of degree n in the category Fct (9, A).
Then a direct summand of F is necessarily an object of the category Poly "8 (om, A).

strong

Proof. According to Proposition 1.3.9, the category Pol;, (9, A) is closed under quotients. O

Remark 1.3.11. The category Pol; ™" (91, A) is not necessarily closed under subobjects. For example, we will see
in Section 1.3.3 that for M = 4B and A = C [t*!] -90d, the functor Bur; is a subobject of 73 Bur; (see Proposition

1.3.28), Bur; is strong polynomial of degree 2 (see Proposition 1.3.28) whereas 71*But; is strong polynomial of
degree 1 (see Proposition 1.3.29). If we assume that the unit 0 is also a terminal object of 9, then «, is the null
endofunctor, éy is exact and commutes with all limits. In this case, the category Pol,itmng (", A) is closed under
subobjects.

Remark 1.3.12. If we consider 9 = 18, then each object 7 (ie a natural number) is clearly 1°". Hence, because of
the last statement of Proposition 1.3.9, when we will deal with strong polynomiality of objects in Fct (4B, A), it
will suffice to consider 3.

Proposition 1.3.13. [ , Proposition 1.9] Let F be an object of Fct (9, A). Then, the functor F is an object of
Polgtmng (M, A) if and only if it the quotient of a constant functor of Fct (O, A).

Finally, let us point out the following property of the strong polynomial degree with respect to the translation
functor.

Lemma 1.3.14. Let d and k be natural numbers and F be an object of Fct (LB, K-DMod) such that 7 (F) is an object of
Polfitm”g (UB, K-M0d). Then, F is an object of Pol .y (LB, K-Dod).

Proof. We proceed by induction on the degree of polynomiality of 7 (F). First, assuming that 7 (F) belongs to

Polgtmng (UB, K-Mod), we deduce from the commutation property 6 of Proposition 2.4.2 that 7 (6:F) = 0. It
follows from the definition of 7 (F) (see Definition 1.3.1) that for all n > 2, 61 (F) (n) = 0. Hence

61--+0161 (F) =0
—_———
k+1 times
and therefore F is an object of Polj (LB, K-2od). Now, assume that 7 (F) is a strong polynomial functor of degree
d > 0. Since (1, 001) (F) = (61 0 7¢) (F) by the commutation property 6 of Proposition 2.4.2, (74 0 d1) (F) is an
object of Polztiolng (UB, K-Mod). The inductive hypothesis implies that é; (F) is an object of Polztﬁng (UB, K-tod).
O

Remark 1.3.15. Let us consider the atomic functor 2, (with n > 0), which is strong polynomial of degree n (see
Example 1.3.21). Then i () = AP, is strong polynomial of degree n — k, for k a natural number such that k < n.
This illustrates the fact that d + k is the best boundary for the degree of polynomiality in Lemma 1.3.14.

1.3.2 Very strong polynomial functors

Let us introduce a particular type of strong polynomial functor, related to coefficient systems of finite degree (see
Remark 1.3.17 below). We recall that we consider a pre-braided strict monoidal category (90, ,0) such that the
monoidal unit 0 is an initial object and an abelian category .A.

Definition 1.3.16. We recursively define the category VPol, (M, A) of very strong polynomial functors of degree
less than or equal to 7 to be the full subcategory of Pol; "8 (9, A) as follows:

1. If n < 0, VPol, (M, A) = {0};

2. ifn > 0,a functor F € Pol,sfmng (9, A) is an object of VPol, (9, A) if for all objects x of M, x, (F) = 0 and
the functor d, (F) is an object of VPol,,_1 (I, A).

For an object F of Fct (91, A) which is very strong polynomial of degree less than or equal to n € IN, the
smallest 4 € IN (d < n) for which F is an object of VPol; (I, A) is called the very strong degree of F.
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Remark 1.3.17. A certain type of functor, called a coefficient system of finite degree, closely related to the strong
polynomial one, is used by Randal-Williams and Wahl in [ , Definition 4.10] for their homological stability
theorems, generalizing the concept introduced by van der Kallen for general linear groups [ ]. Using the
framework introduced by Randal-Williams and Wahl, a coefficient system in every object x of Mt of degree n at
N = 0is a very strong polynomial functor.

Remark 1.3.18. As we force x, to be null for all objects x of 9, the category VPol, (9, A) is closed under kernel
functors of the epimorphisms. In particular, this category is closed under direct summands. However, VPol,, (2, A)
is not necessarily closed under subobjects. For instance, as for Remark 1.3.11, we have that the functor Burv; is
strong polynomial of degree 2 (see Proposition 1.3.28), the functor 7;Bur; is very strong polynomial of degree 1
(see Proposition 1.3.29), but Bur; is a subobject of 7y Bur; (see Proposition 1.3.28).

Proposition 1.3.19. The category VPol,, (M, A) is closed under the translation endofunctor Ty, under kernel of epimor-
phism and under extension. Moreover, assuming that there exists a set € of objects of 9 such that:

Vm € Obj (M), 3{e;};c; € Obj (€) (where I is finite), m = 1 e;,
i€l
then, an object F of Fct (9, A) belongs to VPol, (M, A) ifand only if k, (F) = 0and b, (F) is an object of VPol,,_1 (M, A)
for all objects e of €.

Proof. The first assertion follows from the fact that for all objects x of 9, the endofunctor 7, commutes with the
endofunctors é, and « (see Proposition 1.3.5). For the second and third assertions, let us consider two short exact
sequences of Fet (M, A4): 0 — G — F — F, — 0and 0 — F3 — H — F; — 0 with F; a very strong
polynomial functor of degree n for all i. Let x be an object of t. We use the exact sequence (1.3.2) of Proposition
1.3.5 to obtain the two following exact sequences in the category Fct (91, A):

0— % (G) —0—0—06,(G) — I (F1) — 6x () — 0;

0—0—xy(H) —0— 0y (F) — 6x(H) — 5 (Fy) — 0.

Therefore, xx (G) = kx (H) = 0 and the result follows directly by induction on the degree of polynomiality. For the
last point, we consider the long exact sequence (1.3.3) of Proposition 1.3.5 applied to an object F of VPol,, (9, A)
to obtain the following exact sequence in the category Fct (91, A):

0 — &y (F) — Kyyy (F) — Tuiy (F) — 0y (F) — dyyy (F) — T6x (F) — 0.

Hence, by induction on the length of objects as monoidal product of {e;},.;, we deduce that x,, (F) = 0 for all
objects m of M if and only if x. (F) = 0 for all objects ¢ of €. Moreover, since VPol, (M, A) is closed under
extension and by the translation endofunctor 7y, the result follows by induction on the degree of polynomiality
n. O

Proposition 1.3.20. Let F be an object of Fct (M, A). The functor F is an object of VPoly (I, A) if and only if it is
isomorphic to T F for all natural numbers k.

Proof. The result follows using the long exact sequence (2.4.3) of Proposition 2.4.2 applied to F. O

The following example show that there exist strong polynomial functors which are not very strong polynomial
in any degree.

Example 1.3.21. Let us consider the categories 4 and KK-9t0d, and n a natural number. Let K be considered as an
object of K-Mtod and 0 be the trivial K-module. Let 2, be an object of Fct (8, K-210d), defined by:

K ifn=
* Objects: Vm € N, A, (m) = { nn=im

0 otherwise’

* Morphisms: let [j — i, f] with f € B, be a morphism from i to j in the category (. Then:

mn(f):{idk ifi=j=n

0 otherwise.
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26 1. Chapter. The Long-Moody construction and polynomial functors

The functor 2, is called an atomic functor in K of degree n. For coherence, we fix 2_; to be the null functor of
Fct (UB, K-Mod). Then, it is clear that i, (2,) is the zero natural transformation. On the one hand, we deduce the
following natural equivalence x; () = 2, and a fortiori 2, is not a very strong polynomial functor. On the other

hand, it is worth noting the natural equivalence 6; (%) = 71 (2,,) and the fact that 7y () = 2,,_1. Therefore, we
recursively prove that 2, is a strong polynomial functor of degree .

Remark 1.3.22. Contrary to Poly,""8 (2, A), a quotient of an object F of VPol, (M, A) is not necessarily a very
strong polynomial functor. For example, for M = 4P and A = K-Mod, let us consider the functor Ay defined in
Example 1.3.21, which we proved to be a strong polynomial functor of degree 0. Let 2 be the constant object of
Fct (UB, K-90d) equal to K. Then, we define a natural transformation a : 2 — 2 assigning:

idg ifn=0

VneN, a, = .
tx  otherwise.

Moreover, it is an epimorphism in the category Fct (4Up,K-0t0d) since for all natural numbers n, coker (x,) =
Ok-2t00. We proved in Example 1.3.21 that 2l is not a very strong polynomial functor of degree 0 whereas 2 is a
very strong polynomial functor of degree 0 by Proposition 1.3.20.

Finally, let us remark the following behaviour of the translation functor with respect to very strong polynomial
degree.

Lemma 1.3.23. Let d and k be a natural numbers and F be an object of VPoly (9, K-9M0d). Then the functor 7y (F) is very
strong polynomial of degree equal to that of F.

Proof. We proceed by induction on the degree of polynomiality of F. First, if we assume that F belongs to
VPoly (MM, K-Mod), then according to Proposition 1.3.20, 7 (F) = F is a degree 0 very strong polynomial func-
tor. Now, assume that F is a very strong polynomial functor of degree n > 0. Using the commutation properties
5 and 6 of Proposition 2.4.2, we deduce that («; o) (F) = (tro%y) (F) = 0and (61 01) (F) = (1% 097) (F).
Since the functor d; (F) is a degree n — 1 very strong polynomial functor, the result follows from the inductive
hypothesis. O

Remark 1.3.24. The previous proof does not work for strong polynomial functors since the initial step fails. Indeed,
considering the atomic functor 2(;, which is strong polynomial of degree 1 (see Example 1.3.21), then 7, (2lp) = 0.

1.3.3 Examples of polynomial functors over

The different functors introduced in Section 1.1.2 are strong polynomial functors.

Very strong polynomial functors of degree one: Let us first investigate the polynomiality of the functors Bur;
and TYM,.

Proposition 1.3.25. The functors Buvy and TYM, are very strong polynomial functors of degree 1.
Proof. For the functor Bur, this is a consequence of [ , Example 4.15]. We will thus focus on the case

of the functor TYM;. Let n be a natural number. By Remark 1.3.12, it is enough to consider the application
i1 TYM ([0, idy]) = lc[til]ﬂi”/*’l @ l'dc[til}ﬂan. This map is a monomorphism and its cokernel is C [t*!]. Hence

x1TYM; is the null functor of Fet (UB, C [t=!] -Mod). Let n’ be a natural number such that n’ > n and let
[n' —n,0] € Homyg (n,n'). By naturality and the universal property of the cokernel, there exists a unique en-

domorphism of C [t*1] such that the following diagram commutes, where the lines are exact. It is exactly the
definition of &, TYM; ([0’ — n, o]).

tc [[il} ®ch [til] ©n

0—C[#1]*" c[ ¥ L[] ——0
Tﬂjim([n'n,a])i J(Tl(f@fm)([”/”/‘ﬂ) 3
! ! V
0 —C[#£1]*" : ol - C [t1] ——o.
lC[til} @ldc[til]®’7l n'+1
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1. Chapter. The Long-Moody construction and polynomial functors 27

For all (a,b) € C[Fl]@&C [til]@” =C [til]@nﬂ, T (DM, ([ —n,0]) (a,b) = (a, TYM, ([0’ —n,0]) (b)).
Therefore, (77,41 © T (FYMy) ([n' —n,0])) (a,b) = a = 7,41 (a,b). Hence, id- [1] also makes the diagram com-
mutative and thus 6;TYM; ([0’ —n,0]) = idc[tﬂ]. Hence, 6;TYM; is the constant functor equal to C [tX1]. A

fortiori, because of Proposition 1.3.20, J; TYM; is a very strong polynomial functor of degree 0. O

The particular case of Bur;:

Definition 1.3.26. Let 77 : 4 — C [til] -Mod be the subobject of the constant functor X (see Notation 1.2.25)
such that 7 (0) = 0 and 7; (n) = C [+*!] for all non-zero natural numbers 7.

Remark 1.3.27. It follows from Definition 1.3.26 that §; 77 = 2y (where 2y is introduced in Example 1.3.21). There-
fore, 77 is a strong polynomial functor of degree 1, but is not very strong polynomial. Nevertheless, it is worth
noting that ;77 = 0.

Proposition 1.3.28. The functor Bur is a strong polynomial functor of degree 2. This functor is not very strong polynomial.
More precisely, we have the following short exact sequence in Fet (4, C [t+1] -90d):

0—— Bury —— 1 Buryy —= T ——=0.

Proof. The natural transformation i1 (Bur;),, : Bur; (n) — 7 Bur; (n) (introduced in Definition 1.3.4) is defined to

be tC [tﬂ]'@"’—" ® idc[t ﬂ]ﬂﬂ"*]' Let n > 2 be a natural number. This map is a monomorphism (so x;Bur; = 0) and its

cokernel is C [t*!]. Repeating mutatis mutandis the work done in the proof of Proposition 1.3.25, we deduce that
for all [n' —n,0] € Homgg (n,n") (withn' > n > 2), 5;Bur; ([n' —n,0]) = Ido:[til]' In addition, since Bur; (1) =0
and 71 Bur; (1) = C [+'], we deduce that 6;Bur; (1) = C [~'] and foralln’ > 1, forall [n' — 1,0] € Homgg (1,1”),
51Bury ([0’ —1,0]) = Id (1] Hence, we prove that §;Bur; = T; where Tj is introduced in Definition 1.3.26. The
results follow from the fact that d; 77 = 2y by Remark 1.3.27. O

For formal reasons (see Proposition 1.3.5), But; is a subfunctor of 71Bur;. The following proposition illustrates
Remarks 1.3.11 and 1.3.18.

Proposition 1.3.29. The functor 1y Bur; is a very strong polynomial functor of degree 1.

Proof. Repeating mutatis mutandis the work done in the proof of Proposition 1.3.28, we prove that J;But; is the
constant functor equal to C [t*!] (denoted by X in Notation 1.2.25). Since X is a constant functor, J;Bur; is by
Proposition 1.3.20 a very strong polynomial functor of degree 0. O

A very strong polynomial functor of degree two: We could have defined the unreduced Burau functor of Ex-
ample 1.1.2 assigning ((C [t']) [¢F!] )@n to each object n € IN.

Notation 1.3.30. Abusing the notation, (C [t1]) [¢*!] : UB — (C [t*1]) [g!] -90d denotes the constant functor
at (C [+F1]) [¢9%!]. The functor Bur; [® | (C [t£1]) [¢*!] is denoted by Bur; : LB — (C [+F1]) [gE1] -Mod.
C[+1

Remark 1.3.31. These functors (C [t*1]) [¢*!] and Bur; are also very strong polynomial of degree one (the proof
is exactly the same as the one for Bur; in Proposition 1.3.27).

Lemma 1.3.32. Considering the modified version of the unreduced Burau functor of Remark 1.3.30, then we have 61 £R =
%Iltt.

Proof. We consider the application i1 £8 ([0,id,]). This map is a monomorphism and its cokernel is @ V; 1.
1<i<n

Let n and 1’ be two natural numbers such that n’ > n. Let [n' —n, 0] € Homgg (n,n’). By naturality and because
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28 1. Chapter. The Long-Moody construction and polynomial functors

of the universal property of the cokernel, there exists a unique endomorphism of (C [t*!]) [¢*!]-modules such
that the following diagram commutes, where the lines are exact. It is exactly the definition of §; £& ([n’ — n,0]).

LR([1,id114]) Tty
0—— D Vix ® Vi ® Vi;,——0
1<j<k<n 1<i<I<n+1 2<I<n+1
SR([n’n,a])l J/Tl(Sﬁ)([n’n,ﬂ]) 31
v
0— & Vip : D Vir p— Viy —=0.
1<ji<k<n’ eR([Lidy, ) 1<I'<n'+1 n 2<1'<n/+1
Letic {1,...,n—1},1 € {2,...,n +1} and vy ; be an element of V; ;. Then we compute:
oy ifi+1¢{I—1,1},
T LR(07) 011 = LR (0144) (011) = { torivr + (1= 1) 010 — (P — 1) qUigrize ifi+2=1,
U1,i42 ifi+1=1

We deduce that in the canonical basis {e1,e13,...,e1,41}of @& Vi
2<I<n+1

0 t

513,@ (U’i) = Idl',1 @ |: 1 1—¢

:| @ Idn,,',l = %Iltt (‘Ti) .

So as to identify 61 £8, it remains to consider the action on morphisms of type (1, id,]. According to the definition
of the Lawrence-Krammer functor, we have 7y (£R) ([1,id,]) = £R (0’1_ 1) o £R ([1,idy42]) and:

Ork ifke{3,...,n+2},
£R =3
(01) (v1,) {_qﬂym if k = 2.

It follows that forallv;; € V;; with1 <i<I<n+1:

. V141 ifi=1landl € {2,...,n+1},
i1 07 <£ﬁ><[1,zdn1>(vi,l>={ol B andied J

Hence, we deduce that forall 2 <1 < n+1,6€8([1,idn]) (v1;) = v11 = B ([1,id,]) (v1,). O
Proposition 1.3.33. The functor £8 is a very strong polynomial functor of degree 2.

Proof. Let n be a natural number. By Remark 1.3.12, we only have to consider the application i1 £8 ([0, id,]). Since
this map is a monomorphism with cokernel @ V;, 1, x1£R is the null constant functor. Since the functor Bur;

1<i<n
is very strong polynomial of degree one (following exactly the same proof as the one of Proposition 1.3.25), we
deduce from Lemma 1.3.32 that £8 is very strong polynomial of degree two. O

1.4 The Long-Moody functor applied to polynomial functors

Let us move on to the effect of the Long-Moody functors on (very) strong polynomial functors. For this purpose,
it is enough by Remark 1.3.12 to consider the cokernel of the map i; LM. First, we decompose the functor 71 o LM
(see Proposition 1.4.19) so as to understand the behaviour of the image of i LM through this decomposition. This
allows us to prove a splitting decomposition of the difference functor (see Theorem 1.4.23). This is the key point to
prove our main results, namely Corollary 1.4.27 and Theorem 1.4.28. Finally, we give some additional properties
of Long-Moody functors with respect to polynomial functors.

Let {Gy : Fy = By41},cn and {a, : By, — Aut (F,)}, . be coherent families of morphisms (see Definition
1.2.14), with associated Long-Moody functor LM, ¢ (see Theorem 1.2.19), which we fix for all the work of this
section (in particular, we omit the “a, ¢” from the notation).
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1.4.1 Decomposition of the translation functor

We introduce two functors which will play a key role in the main result. First, let us recall the following crucial
property of the augmentation ideal of a free product of groups, which follows by combining [ , Lemma 4.3]
and [ , Theorem 4.7].

Proposition 1.4.1. Let G and H be groups. Then, there is a natural K [G * H]-module isomorphism:

Ik iGsm) = <I]K[G] ® ]K[G*H}> @ (IIK[H] ® IK[G*H]> :
KIG] K[H]

Remark 1.4.2. In the statement of Proposition 1.4.1, recall that the augmentation ideal Zy g (respectively T ) is
a free right K [G]-module (respectively K [H]-module) by Proposition 1.2.21. Moreover, the group ring K [G * H]
is a left K [G]-module (respectively left K [H]-module) via the morphism idg * 1ty : G — G x H (respectively
igxidg: H— Gx*H).
Notation 1.4.3. Let n and n’ be natural numbers such that n’ > n. We consider the morphism idg, *tg, : Fy < Fy.
This corresponds to the identification of F, as the subgroup of F,/ generated by the n first copies of F; in F,;s.

In addition, the group morphism idg, * (g, : F; < F,s canonically induces a K-module morphism idIIK[Fn] *
T, _,) K (]

For F an object of Fct (4B, K-Mod), we consider the functor (73 o LM) (F). For all natural numbers n, by
Proposition 1.4.1, we have a K [F1,]-module isomorphism:

IH([FHn] ]I<[§8;+ | F (1’[ + 2)

= ((I]K[Fl] IK%] K [F1+n}> ® (Ilk[m ]K%] K [F1+n]>> IK[I% | F(n+2).

Now, by Remark 1.4.2, the K [F,1]-module F (n + 2) is a K [F;|-module via

F (QH_” (idF] * l]:n)) :F1 — Autkonon (P (7’[ + 2))

and K [F,]-module via
F (gl-i-n (lFl * ian)) :Fn — Autgones (F(n+2)).

Therefore, because of the distributivity of tensor product with respect to the direct sum, we have the following
proposition.

Proposition 1.4.4. Let F € Obj (Fct (UB, K-90d)) and n be a natural number. Then, we have the following K-module
isomorphism:

uLM(F) (n) = (IIK[Fl] ]K‘[El? ]F(”Jrz)) ® <IJK[Fn] ]K% ]F("+2)> ~ (1.4.1)
1 n

Definition 1.4.5. For all natural numbers n and F € Obj (Fct (Up, K-0t0d)), we denote by

¢ v (F), the monomorphism of IK-modules (idI]K[Fl] * lI]K[Fn]) lK[l(:X) idr(ni2) t IK(E,) ]K% ]F (n+2) =< LM (F) (n),
1+n 1

* ( (F), the monomorphism of IK-modules (lZ]K[Fl] * idIIK[Fn]) ” ® idrni2) i IK(E,) ]K([% ]F (n+2) = LM (F) (n),

[ 14+n
associated with the direct sum of Proposition 1.4.4.

The aim of this section is in fact to show that this IK-module decomposition leads to a decomposition of 7 LM
(see Theorem 1.4.23) as a functor.
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30 1. Chapter. The Long-Moody construction and polynomial functors

1.4.1.1 Additional conditions

We need two additional conditions so as to make the decomposition of Proposition 1.4.4 functorial. First, we
require the morphisms {a, : B, — Aut (F,)},  to satisfy the following property.

-1
Condition 1.4.6. Let n and n’ be natural numbers such that n’ > n. We require a; ((blﬁ n,_n) hidn> o

(LF;zl—n *idg, +1) o (idI:1 * an) = idp, * ip,,- In other words, the following diagram is commutative:

F ldFl *an/ F

1 1+n’

. -1

id, *iF, \L Tan/ ((bf,n’—n) hldn>
F1+n Fn’—n * Fl+n = Fl+n"

L *id
For 1

Remark 1.4.7. Condition 1.4.6 will be used to define an intermediary functor (see Proposition 1.4.14).

In addition, we will assume that the morphisms {a, : B, — Aut (F,)}, . satisfy the following condition.

Condition 1.4.8. Let n and n’ be natural numbers such that n’ > n. We require a,, (id,y_,1—) : B, — Aut (F,)
maps to the stabilizer of the homomorphism idg , *, : Fy_, — F,y, ie for all element ¢ of By, the following
diagram is commutative:

id *1
F)l/*l’l Fn

F, ,— """ _F,
ian,n% /;(idn,nng)
F,.

Remark 1.4.9. Condition 1.4.8 will be used in the proof of Propositions 1.4.14 and 1.4.15.

Remark 1.4.10. The relations of Conditions 1.4.6 and 1.4.8 remain true mutatis mutandis, for all natural numbers n,

considering the induced morphisms a,, : B, — Aut (IIK[F,,]) and idIIK[ b ¥ 1T, | t Ik, <= I]K[F ]

[Fn/fn
Definition 1.4.11. If the morphisms {a, : B, — Aut (F;)}, . also satisfy conditions 1.4.6 and 1.4.8, the coherent
families of morphisms {G, : F; < B, 41},cn and {a, : By, — Aut (F;)}, o are said to be reliable.

Proposition 1.4.12. The coherent families of morphisms {a, 1 : By, — Aut (Fy)}, o and {Gn1 : Fn = Byy1}, o of Ex-
amples 1.2.7 and 1.2.15 are reliable.

-1
Proof. Recall from Definition 1.1.4 that (bﬁ ) =0 Lo oy To.iio Ur;l_n. We consider the element ep , g1 *

1,n'—n
eF, = §w'—n+1 € Fw )11y The definition of a,, 1 gives thatay (0w —n) (8 —n) = Lu—n11- Therefore, we have
that:

—1 _
Mywa ((Tn/_n> (gn’fnwtl) = &' —n-

-1
Iterating this observation, we deduce that aq ((bf n,_n) hidn> (8w—ni1) = &1 € F1 . Hence, the family of

morphisms {a, 1 : B, — Aut (F,)}, . satisfies Condition 1.4.6.
Similarly to Example 1.2.15 earlier, for all ¢ € F,,_,, and each Artin generator 0; € By, a,y (id,_,40;) (g *e,) =
g * ep,. Hence, the family of morphisms {a,, : By — Aut (Fy)}, o satisfies Condition 1.4.8. O

From now until the end of Section 1.4, we fix coherent reliable families of morphisms {¢, : F;, — B, 1}, cn
and {a, : B, — Aut (Fy)}, -
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1.4.1.2 The intermediary functors

The functor 7»:  Let us consider the factor Zg g, ® F(n+2)of 5LM (F) (n) in the decomposition of Proposi-
KF,]
tion 1.4.4.

Notation 1.4.13. For all objects F of Fet (U, K-Mo0), for all natural numbers 1, we denote Zy (g, ({8 | F(n+2) by
K[F;

Y (F) (n).
Recall the monomorphisms {v (F), : Y (F) (n) < LM (F) (n)}, o of Definition 1.4.5.

Proposition 1.4.14. Let F be an object of Fct (UB, K-900d). For all natural numbers n and n’ such that n' > n, and for all
[n' —n,0] € Homyg (n,n'), assign:

Y (F) ([Tl/ — 1’1,0’]) = idIlK[Fl] ]K%l] F (ldzh [7’1/ — 1’1,0’]) .

This defines a subfunctor Y (F) : 4 — K-DMod of 7y LM (F), using the monomorphisms {v (F),}, cn-

Proof. Let us check that the assignment Y (F) is well defined with respect to the tensor product. Let n and n’ be
natural numbers such that n’ > n, and [n' —n, 0] € Homyg (n,n") with ¢ € B,. Recall from Proposition 1.1.14

-1
thatidyfj [’ — n, 0] = |n' —n, (idyho) o ((bgﬂ,n) bidnﬂ . On the one hand, by Condition 1.2.12, we have:

(id2h0) 0 G11w (81) = Graw (A14w (id10) (81)) © (id240) -

Hence, it follows from Condition 1.4.8 that

(id250) 0 614 (81) = G14 (81) © (id2fi0r) - (14.2)
On the other hand, Condition 1.4.6 gives that

-1
81 = Aap/ ((blﬁ,n/n) hidnJrl) (gn/—n+1>
and by Condition 1.4.8 we have
-1

g1 = (zdlh (65, ) hzdn> (g1)-

By the definition of the braiding bP _ (see Definition 1.1.4), we deduce that:
B\
S1+4n (g1> = GCi14n (a2+n’ ((bz,n’—n> th”) (gn’n+1)> .

Then, it follows from the combination of Conditions 1.2.3 and 1.2.12 that as morphisms in (8:
-1
|:7’l’ — N, G140 (gl) o ((bg,n’—n) uldn>:|

= [ () i) o G310 1.43)

Hence, we deduce from the relations (1.4.2) and (1.4.3) that:
-1
{n/ —n, ((idzba) o <<b§n,n) hidn>> o (id,y_ 06140 (81))]
= {n n,614m (81) < (idyto) o ( n) hzdn>)] .

A fortiori, F (idaf [n' —n,0]) o F(¢144 (1)) = F(¢14w (g1)) © F (id2ff [/’ — n,0]). Hence, our assignment is well
defined with respect to the tensor product.
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32 1. Chapter. The Long-Moody construction and polynomial functors

Let us prove that the subspaces Y (F) (1) are stable under the action of ¢{8. Leti € Zkp,j and v € F (n+2).
We deduce from the definition of the monoidal structure morphisms of {f (see Proposition 1.1.14) and from the
definition of the Long-Moody functor (see Theorem 1.2.19) that, for all i € Ty ) and forall v € F (n +2):

(s (5) (1 =)o ) (1,9 0]

K[Fy]

—ay, (id150) (a1+n/ ((bf nun)il W") (‘IK[F

® F(idifid1 [0 —n,0]) (v).
]K[Fn’ﬂ}

} * idI]K[Fl] *lIK[Fn]> (Z)>

l’l/*l/l

It follows from Condition 1.4.6 that:
B -t
a1y <(b1,n,n> hzdn> (LIIK[F

Since by Condition 1.4.8, aq,, (id140) (idZ]K[Fl] * lIIK[F ,]> (i) = (idI]K[Fl] * [IIK[F ]

] ’ idI’K[Fl] * IZ]K[F”]> 0= <idIK[F1] * IZ]K[FH/]> -

nlfn

) (i) for all elements o of B,,

we deduce that:

(@) (- no]) ov®) (1,8 0) = @O [ -nal) (1,0 o).

K[F] K[Fy]

Therefore, the functorial structure of 7 LM (F) induces by restriction the one of Y (F). O

Now, we can lift this link between Y (F) of 71 LM (F) to endofunctors of Fct (L8, K-Dod).
Proposition 1.4.15. Let F and G be two objects of Fct (U, K-DN0d), and n : F — G be a natural transformation. For all

natural numbers n, assign :

(Y (17));’1 = idZ]K[Fﬂ ]K([gli']] Mn+2-

Then we define a subfunctor Y : Fct (UB, K-90d) — Fet (UB, K-DMod) of 71 LM using the monomorphisms {v (F),, }, cn-

Proof. The consistency of our definition follows repeating mutatis mutandis point 4 of the proof of Theorem 1.2.19.
It directly follows from the definitions of (Y (77)),,, v (G),, and 71 o LM (see Definition 1.2.2) that v (G), o (Y) (17),, =
(TlOLM) (W)nOU(P)n‘ -

n’

In fact, we have an easy description of the functor Y.
Proposition 1.4.16. There is a natural equivalence Y = 1, where T, is the translation functor introduced in Definition 1.3.1.
Proof. Let F be an object of Fct (L8, K-2od). By Proposition 1.2.21, for all natural numbers 1, we have an isomor-

phism:

K[Fy]

(g1—-1) ® v
K[Fy]

Xnp: Ik ® F(n+2) — F(n+2).
—

[

It follows from Definition 1.3.1 and Proposition 1.4.14 that the isomorphisms {x,,r },,cp define the desired natural

equivalence Y X T. O
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The functor LM o 71:  Now, let us consider the part Zgg,) ® F(n+2)of 7y o LM (F) (1) in the decomposition
K|[F,]

of Proposition 1.4.4. In fact, we are going to prove that these modules assemble to form a functor which identifies
with LM (77 F). We recall from Theorem 1.2.19 and Definition 1.3.1 the following fact.

Remark 1.4.17. The functor LM o 17 : Fct (4B, K-9t00) — Fct (U, K-M0d) is defined by:
e for F € Obj (Fct (4B, K-Mod)), Vn € N, (LM o7y) (F) (n) = Ik, (fi) ] F (n+2), where F (n+2) is a left
K[Fy
K [F,]-module using F (id1icn (—)) : Fn — Autgoneo (F(n+2)). For n,n’ € N, such that n’ > n, and

[ —n,0] € Homgg (n,n'):

(LMom) (F) ([0 —n,0]) =ay (0) (Lz * idI]K[Fn]> ® F(idygidif [n' —n,0]).
K[Fy_,) K[F,]

* Morphisms: let F and G be two objects of Fct (L8, K-M0d), and # : F — G be a natural transformation. The
natural transformation (LMo 1) (1) : (LMo1) (F) = (LMo 1) (G) for all natural numbers 7 is given by:

(LMom) (1)), = idrye, ® fni2

&
K[Fy]

Proposition 1.4.18. Forall F € Obj (Fct (UB, K-DMod)), the monomorphisms {¢ (F), }, o (see Definition 1.4.5) allow to
define a natural transformation &' (F) : (LMo 1y) (F) — (1, o LM) (F) where, for all natural numbers n:

g (F), = (LI]K[Fl] * idI]K[Fn]> ® F <(bf,l>_l hidn> .

]K[F1+n}

This yields a natural transformation ¢ : LM o1 — 7 o LM.

Proof. Let n and n’ be natural numbers such that n’ > n, and [0’ —n,0] € Homyg (n,n') with ¢ € B,,. Let
i € Igp,, v € F(n+2) and g € F,. By Condition 1.2.3 (using Lemma 1.2.5 with n’ = n + 1) the following
equality holds in B, »:

() st ) o Gitcn (90) = Gren (er, <)o ( (86:) i ).

Recall that F (n + 2) is a K [F,]-module via F (14, © (1, * idp,)) and 7 F (n + 1) isa K [F,]-module via F (id1f (g, o idE,)).
Then it follows that the assignment &’ (F),, is well-defined with respect to the tensor product structures of (LM o 1) (F) (n)
and (13 o LM) (F) (n). Moreover, we compute that:

K[Fy]

=y (idh0) (mw <(bf’n,n>l uidn> (ZI]K[FHM] . idzw) (i))
® F ((bfl)lh [n’—n,a]> (v).

K[F,/ 4

((moLM) (F) ([n" —n,0])) o (&' (F),) (z’ ® v)

It follows from Condition 1.2.10 that:

B -1 . . N . .
T ((blﬂ’—") ”ld”) ° (‘IIK[FW_”] * Zd%n]) (i) = (‘Zk[fm,_n] * ’dfmﬂ) (@).

Again by Condition 1.2.10, we deduce that:

ar4n/ (1d1h0) o ([I]K[F )
1+n"—n

" idzm]) (1) = iz, *  (0) (LZ e idZK[Fn]) (i).

ﬂ/*il
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34 1. Chapter. The Long-Moody construction and polynomial functors

Hence, we deduce that:

(7 o LM) (F) ([ =, 0])) o (&' (F),)) = (&' (F)y) o (LMo ) (F) ([ = 1n,0])).

Lety : F — G be a natural transformation in the category Fct (4, K-9100) and let n be a natural number. Since
1 is a natural transformation, we have:

G ((bfl)_l hidn> O fnsa = pso O F ((b{fl)_l hidn> .

Hence, we deduce from the definitions of 7y o LM (see Theorem 1.2.19) and of LM o 7y (see Remark 1.4.17) that:
¢'(G)yo(IMom) (1), = (1 0LM) (1), 0 & (F),,.

1.4.1.3 Splitting of the translation functor

Now, we can establish a decomposition result for the translation functor applied to a Long-Moody functor.

Proposition 1.4.19. There is a natural equivalence of endofunctors of Fct (LU, K-2t0d):
oM~ 1 ® (LMoT).

Proof. Recall the natural transformations v : Y — 73 o LM (introduced in Proposition 1.4.15) and ' : LM o1y —
71 o LM (defined in Proposition 1.4.18). The direct sum in the category Fct (4B, K-9t0d) (induced by the direct
sum in the category IK-0t00) allows us to define a natural transformation:

vp& YD (LMot) — (10 LM) (F).

This is a natural equivalence since for all natural numbers 7, we have an isomorphism of IK-modules according to
Proposition 1.4.4: Y (F) (n) & (LMo 1) (F) (n) = (19 o LM) (F) (n). We conclude using Proposition 1.4.16. O

1.4.2 Splitting of the difference functor

Recall the natural transformation 71 : Idg(ygK-moo) — T1 Of Fet (4B, K-Dod). Our aim is to study the cok-
ernel of i; o LM. We recall that for F an object of Fct (4B, K-2t0d), for all natural numbers 1, (i1LM) (F), =
LM (F) ([1,id14y]) (see Definition 1.3.4).

Remark 1.4.20. Explicitly for all elements i of Zy g, ), for all elements v of F (n):

(i{LM) (F),, (i ® v) - (lzk[F] *idI]K[Fn]) (1)) ® F(idibnbida) (0).
K 1

(Fu] K[Fy]
The natural transformation LM oi;: Let us consider the exact sequence (1.3.1) in the category of endofunctors
of Fct (4B, K-9100) of Proposition 1.3.5:

Q i A
0 K1 ! Id i T ! 51 0.

Since the Long-Moody functor is exact (see Proposition 1.2.22), we have the following exact sequence:

LM(() LM (i) LM(4,)
0— LMo LM LMot — ) IMos — 0. (1.4.4)

Remark 1.4.21. From the definition of LM (see Theorem 1.2.19), we deduce that for F an object of Fct ({8, K-0t0d),
for all natural numbers n, for all elements i of Z(,), for all elements v of F (n):

LM (i) (F), (ik®]v> —i ® F(ubidihid,) (o).

[F K[Fy]

Recall the natural transformation &’ : LM o 7y — 73 o LM introduced in 1.4.18.
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1. Chapter. The Long-Moody construction and polynomial functors 35

Lemma 1.4.22. As natural transformations from LM to 71 o LM, which are endofunctors of the category Fct (818, K-Dod),
the following equality holds:
¢'o (LM (i1)) = i, LM.

Proof. Let F be an object of Fct (UB, K-900d). Let n be a natural number. Let i be an element of (g, and let v

-1
be an element of F (n). Since (bfl) o (114id1) = id1hy by Definition 1.1.13, we deduce from Proposition 1.4.18,
Remark 1.4.21 and Remark 1.4.20, that:

(& o (LM (ir))) (F), (i ®}v>:(id1*i) ® F(idhnhid,) (0) = (iLM) (F), (iﬂ(@}v).

IK[F K[F1+n]

Decomposition results: Lemma 1.4.22 leads to the following key result.
Theorem 1.4.23. There is a natural equivalence in the category Fet (Up, K-Dt0d):
yjoLM =1 @ (LMoJdy).
Proof. It follows from the definition of 71 (see Proposition 1.3.5) and from Lemma 1.4.22 that the following diagram

is commutative and the row is an exact sequence:

O, LM i LM A LM
0——=x10oLM LM 71 o LM
L

510LM —= 0

& | by Lemma 1.4.22
M(i1)
LM —LMom.
We denote by iquMoﬁ the inclusion morphism LM o 17 < 7 & (LM o 7). Then, recalling the exact sequence (1.4.4),
we obtain that the following diagram is commutative and that the two rows are exact:

00LM ijoLM A1oLM
0——>x;0LM LM 7 LM 5 0 LM

0  (145)
2 by Proposition 1.4.19Tu@§’

LM

iiPMOTlo(LM(il);(Z @ ( 9] Tl) idTZEB(LM(Al)) %) & ( o l)

A fortiori, by definition of §; (see Definition 1.3.4) and the universal property of the cokernel, we deduce that:

T, ® (LMo dy) = 61 o LM.

Furthermore, we can determine the behaviour of the evanescence functor.

Theorem 1.4.24. The endofunctor x1 commutes with the endofunctor LM. In other words, there is a natural equivalence
K10 LM = LM o «3.

Proof. Recall the exact sequence (1.4.4). Since the inclusion morphism i?Moﬁ LMot — 1@ (LMoT)isa

monomorphism, we deduce that the functor LM o x; is also the kernel of the natural transformation iﬁfMOT] °

(LM o). Hence, recalling the commutative diagram (1.4.5), we obtain the following commutative diagram, in
which the two rows are exact sequences.

QlLM i] LM AlLM
0——=xoLM LM 710 LM 610LM 0
2 by Proposition 1.4.19Tu@§’ Tﬁ‘ by Theorem 1.4.23
0——=LMox LM @ (LMoT) ——> 1B (LMo d ) ——=0
vy Moz, ©(LM(i1)) 28 ( ) idr, ®(LM(A1)) 2@ ( 2
By the unicity up to isomorphism of the kernel, we conclude that x; c LM = LM o x;. O
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36 1. Chapter. The Long-Moody construction and polynomial functors

1.4.3 Increase of the polynomial degree

The results formulated in Theorems 1.4.23 and 1.4.24 allow us to understand the effect of the Long-Moody functors
on (very) strong polynomial functors.

Proposition 1.4.25. Let F be a non-null object of Fct (UB, K-9t00). If the functor F is strong polynomial of degree d, then:
1. the functor T, (F) belongs to ’Pol;tmng (UB, K-Mtod);

2. the functor LM (F) belongs to Polztﬂng (UB, K-Mod).

Proof. We prove these two results by induction on the degree of polynomiality. For the first result, it follows
from the commutation property 5 of Proposition 1.3.5 for 1. For the second result, let us first consider F a strong
polynomial functor of degree 0. By Theorem 1.4.23, we obtain that §1LM (F) = 1, (F). Therefore LM (F) is a
strong polynomial functor of degree less than or equal to 1. Now, assume that F is a strong polynomial functor of
degree n > 0. By Theorem 1.4.23: ;LM (F) = LM (61F) @ 1 (F). By the inductive hypothesis and the result on
Ty, we deduce that LM (F) is a strong polynomial functor of degree less than or equal to  + 1. O

Corollary 1.4.26. For all natural numbers d, the endofunctor LM of Fct (U, K-9t0d) restricts to a functor:

LM : Poly"" (U, K-9Mod) — Poly )" (UB, K-0d).

Corollary 1.4.27. Let d be a natural number and F be an object of Pol;tmng (UB, K-0Mod) such that the strong polynomial
degree of Ty (F) is equal to d. Then, the functor LM (F) is a strong polynomial functor of degree equal to d + 1.

Theorem 1.4.28. Let d be a natural number and F be an object of V'Poly (UB, K-9t0d) of degree equal to d. Then, the
functor LM (F) is a very strong polynomial functor of degree equal to d + 1.

Proof. Using Lemma 1.3.23, it follows from Corollary 1.4.27 that LM (F) is a strong polynomial functor of degree
equal to n + 1. Since the functor LM commutes with the evanescence functor x; by Theorem 1.4.24, we deduce
that (x; o LM) (F) = (LMo k7) (F) = 0. Moreover, using Theorem 1.4.23, we have:

(k10 (810 LM)) (F) = (x1 0 12) (F) P (1 © (LM 0 61)) (F).

Therefore, the fact that 7, commutes with the evanescence functor x; (see the commutation property 6 of Proposi-
tion 1.3.5) and Theorem 1.4.24 together imply that:

(k10 (810 LM)) (F) = (20 x1) (F) (P (LMo (k1 061)) (F).

The result then follows from the fact that F is an object of VPol,, (4, K-Dt0d) and 1, is a reduced endofunctor of
the category Fct (4B, K-D100). O

Example 1.4.29. By Proposition 1.3.20, X is a very strong polynomial functor of degree 0. Now applying the Long-
Moody functor LMj, we proved in Proposition 1.2.30 that t LM (+X) is naturally equivalent to Bur, which is
very strong polynomial of degree 1 by Proposition 1.3.25.

1.4.4 Other properties of the Long-Moody functors

We have proven in the previous section that a Long-Moody functor sends (very) strong polynomial functors to
(very) strong polynomial functors. We can also prove that a (very) strong polynomial functor in the essential
image of a Long-Moody functor is necessarily the image of another strong polynomial functor.

Proposition 1.4.30. Let d be a natural number. Let F be a strong polynomial functor of degree d in the category Fet (U, K-Dt0d).
Assume that there exists an object G of the category Fct (UB, K-910d) such that LM (G) = F. Then, the functor G is a
strong polynomial functor of degree less than or equal to d + 1 in the category Fct (LU, K-0t0d).
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Proof. It follows from Theorem 1.4.23 that:
HF=n (G) S (LM o 51) (G) .

According to Corollary 1.3.10, the functor 1, (G) is an object of the category Pol;tiolng (UB, K-Mod), and because of

Lemma 1.3.14 the functor G is an object of the category Pol;tfl"g (UB, K-Mod). O

Proposition 1.4.31. The Long-Moody functor LM : Fct (4, K-9t0d) — Fct (UB, K-Mod) is not essentially surjective.

Proof. Let | be a natural number. Let E; : $f — K-Dt0d be the functor which factorizes through the category
N, such that E; (n) = K®"' for all natural numbers n and for all [n' —n,0] € Homgg (n,n") (with n, n’ natural

numbers such that n’ > n), E; ([0 —n,0]) = oparon @ idc[ o) ol - In particular, for all natural numbers n, for
#=1]° t

every Artin generator 0; of By, E; (0;) = idy - Itinductively follows from this definition and direct computations
that E; is a very strong polynomial functor of degree I.

Let us assume that LM is essentially surjective. Hence, there exists an object F of Fct (L8, K-0t0d) such that
LM (F) = E;. Because of the definition of LM (F) on morphisms (see Theorem 1.2.19), this implies that for all
natural numbers n and for all ¢ € B, a, (0) = id,. Also, if LM is essentially surjective, there exists an object T of
the category Fct (Up, K-Dt00) such that we can recover the Burau functor from LM (T), ie something like LM (T')
(see Notation 1.2.28) with « € K. We deduce from the definition of LM (T) on objects and morphisms that for all
n>1, T (n) = Kand for all generator o; of By,:

LM (T) (U'i) = T(O’Z‘) . Idn

Then necessarily, for all i € {1,...,n}, T(c;) = ¢ such that 6> = t and we consider 5 LM (T). We deduce

that there exists a natural transformation w : 6 1LM (T) = Bur;. This contradicts the fact that for all ¢ € By,
an (0-) - idn. D

Remark 1.4.32. The proof of Proposition 1.4.31 shows in particular that a Long-Moody functor LM is not essentially
surjective on very strong polynomial functors in any degree.

In| , Section 4.7, Open Problem 7], Birman and Brendle ask “whether all finite dimensional unitary matrix
representations of B, arise in a manner which is related to the construction” recalled in Theorem 1.2.19. Since the
Tong-Yang-Ma and unreduced Burau representations recalled in Theorem 1.1.19 are unitary representations, the
proof of Proposition 1.4.31 shows that any Long-Moody functor (and especially the one based on the version of
the construction of Theorem 1.2.19) cannot provide all the functors encoding unitary representations. Therefore,
we refine the problem asking whether all functors encoding families of finite dimensional unitary representations
of braid groups lie in the image of a Long-Moody functor.

Remark 1.4.33. Another question is to ask whether we can directly obtain the reduced Burau functor Bur; by a

Long-Moody functor. Recall that for all natural numbers 1, Bur; (n) = C [t+1] 1 and LM (F) (n) = (F(n+1))*"
for any Long-Moody functor LM and any object F of Fct (L8, K-0t0d) (see Remark 1.2.23). Therefore, for dimen-
sional considerations on the objects, it is clear that we have to consider a modified version of the Long-Moody
construction. This modification would be to take the tensor product with Zg, | on F,,_1, the K-module F (n + 1)

being a K [F,_1]-module using a morphism F,_; — <Fn1 X Bn+1) — B,,11 for all natural numbers n, where
@

ay, : B,y1 — Aut (F,_1) is a group morphism.
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Chapter 2

Generalised Long-Moody functors

Abstract: In this paper, we generalise the Long-Moody construction for braid groups to other families of groups, such
as mapping class groups of orientable and non-orientable surfaces or symmetric groups. Fixing an appropriate family of
groups, we define endofunctors, called Long-Moody functors, between the category of functors from the homogeneous category
associated with the family of groups to a module category. We prove that, under some additional assumptions, the Long-Moody
functors increase by one the degree of (very) strong and weak polynomiality of functors. For the particular case of braid groups,
we recover the results previously obtained by the author.

Introduction

In 1994, as a result of a collaboration with Moody, Long [ ] gave a method to construct from a linear rep-
resentation p : B, 1 — GL (V) a new linear representation Im (p) : B, — GL (V%) of braid groups, where B,
denotes the braid group on n strands. Applying this construction to a one dimensional representation of B, 1,
one obtains a mild variant of the unreduced Burau representation of B,. This construction depends on families
of group morphisms a, : B, — Aut (F,) and ¢, : F, — B,1, where F,, denotes the free group on n generators.
Long and Moody fixed such a choice but a similar construction can be made for other choices (see [ D- In
[ ], itis proved that the Long-Moody construction and the ones obtained from other choices of 4, and ¢, are
functorial; more precisely, we consider the category {p associated with braid groups, given by Quillen’s bracket
construction (see [ , p-219]) applied to the braid groupoid B, and the functor category Fct (4B, R-9t0d), where
R-IMod is the category of R-modules (with R a commutative ring). For choices of a, and ¢, there is a functor
LM, : Fct (4B, R-Mod) — Fct (U, R-Mod), called the Long-Moody functor associated with the morphisms
a, and ¢,. These functors allow inter alia to recover functors encoding the well-known families of Burau and
Tong-Yang-Ma representations, by applying appropriate Long-Moody functors to a constant functor (see [ ,
Section 2.3]).

Moreover, studying the behaviour of Long-Moody functors on a very strong polynomial of degree n functor
(see [ , Section 2] for an introduction of this notion, inspired of [ , Section 1]), it is shown that LM (F) is
a very strong polynomial functor of degree 1 41 (see [ , Section 4]). Thus, the Long-Moody functors provide
by iteration very strong polynomial functors of Fct (4B, R-0t0d) in any degree. This type of functor turns out to
be very useful for homological stability problems: in [ ], Randal-Williams and Wahl prove homological
stability for different families of groups for coefficients given by a very strong polynomial functor. Besides braid
groups, their results also hold among others for automorphism groups of free products of groups, mapping class
groups of orientable and non-orientable surfaces or mapping class groups of 3-manifolds. As for braid groups, the
representation theory of these groups is complicated and a current research topic (see for example [ , Section
4.6],[ 11 Jor[ ])- A fortiori, the very strong polynomial functors associated with these groups are
not well-known.

The aim of this paper is to extend the Long-Moody construction to other families of groups and the study
of its behaviour on (very) strong polynomial functors. In addition, we are also interested in the effect of this
construction on weak polynomial functors, a notion introduced by Djament and Vespa in [ , Section 3.1] for
symmetric monoidal categories and extended in the pre-braided case in the present paper (see Section 2.5.6). This
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40 2. Chapter. Generalised Long-Moody functors

last notion is more appropriate for understanding the stable behaviour of a given functor.

For this, we consider a family of groups {Hy },,cn, Where Hy, is the free product H*™ * Hy, with H and Hy
two given groups, and the groupoid G associated with a family of groups {Gy }, - More precisely, the groupoid
g is assumed to be a subgroupoid of a braided monoidal groupoid (G’,,0g/) (see Section 2.2.1.1) such that the
set of objects of G is isomorphic to the natural numbers, its objects are denoted by 7 (for n a natural number) and
the automorphism group Autg (1) is the group G,. We denote by 4G the full subcategory generated by G in the
category 4G’ provided by Quillen’s bracket construction (see Section 2.1). We denote by IR(n,) the augmentation
ideal of the group H,. For families of morphisms G, — Aut(H,) and H, — G, satisfying some coherence
properties (see Sections 2.2.1.1 and 2.2.1.2), using the same principle as for braid groups in [ , Section 3], we
prove:

Theorem A (Proposition 2.2.30, Theorem 2.5.29 and Theorem 2.5.36). For H and Hy two groups, assume that the
families of groups {Hy = H*™ + Ho},, oy and {Gu},cn satisfy Assumptions 2.2.1 and 2.2.13, and Conditions 2.2.17,
2.2.24. Then, there exists a functor LM : Fct (4G, R-9t00) — Fct (UG, R-90d), called a Long-Moody functor, such that:

for all objects F of Fct (141G, R-9t0d) and n objects of G.
Moreover, if Assumption 2.5.16 and Condition 2.5.9 are satisfied, then:

* The functor LM increases by one the very strong polynomial degree if H and Hy are free.

e If H is free, then the functor LM increases by one the weak polynomial degree if Hy is free or if the groupoid G' is
symmetric monoidal.

For the family of braid groups {B; }, ., the first statement of this theorem corresponds to [ , Theorem
A] and the others recover [ , Theorem B]. Additionally, in this paper, we prove that the families of sym-
metric groups, automorphism groups of free products of groups, surface braid groups, mapping class groups of
orientable and non-orientable surfaces or mapping class groups of 3-manifolds fit into this framework. We de-
termine the effect of a Long-Moody functor on a constant functor, which is the most basic functor to study. As
an example, for the family of mapping class group of compact orientable connected surfaces of genus ¢ with one
boundary component, from a constant functor, we recover a functor encoding the family of symplectic represen-
tations of mapping class groups, which is therefore very strong and weak polynomial of degree 1 (see Corollary
2.5.31).

When the groupoid G’ is symmetric monoidal, the homogenous category 4G’ is also symmetric monoidal
(see [ , Proposition 1.8]). In this case, we extend a Long-Moody endofunctor from Fct (4G, R-0100) to a
category of functors from a symmetric monoidal category where the unit is a null object. More precisely, denoting
by Mon "™ (resp. Mon; |™) the category of symmetric strict monoidal small categories (9, 1,0) such that

null
the unit 0 is an initial object (resp. a null object), we are interested in the left adjoint of the forgetful functor

Mon; JH™ < Mon ™™, This functor was considered by Djament and Vespa in [ , Section 3] and is denoted
by — : Mon ™™ — Mon ™. We prove that, under an additional assumption(see Section 2.6.2), a Long-Moody

functor LM : Fct (UG, R-M0d) — Fct (4G, R-9M0d) extends to a functor LM :Fct (@, R—Sﬁob) —Fct (@, R—,‘Jﬁua) .
Explicitly:

Theorem B (Propositions 2.6.24 and 2.6.25). Assume that families of groups {Hp },,cny and {Gn},,cp Satisfy the same
properties as in Theorem A as well as Condition 2.6.20. Then, there exists a functor LM : Fct (@, R—S)’JTOD) — Fct (@ , R—imob)
such that the following diagram is commutative:

LM

Fct (LTQ R—,‘moa)

(inclgg)*l J{(inclgg)*

Fct (4G, R-900) Fct (4G, R-DMod) .

Fet ({@ R-zmoa)
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2. Chapter. Generalised Long-Moody functors 41

Finally, the framework and definition of generalised Long-Moody functors in Section 2.2 leads to the wider
notion of tensorial functors introduced in Section 2.7.

The paper is organized as follows. In Section 2.1, we recall necessary notions on Quillen’s bracket construction.
In Section 2.2, after setting up the general framework of the families of groups which we will deal with, in par-
ticular exposing the properties they have to satisfy, we define the generalisation and give some first properties of
the Long-Moody functors. Section 2.3 is devoted to the application of Long-Moody functors for the mapping class
groups of surfaces, recovering in particular the case of braid groups. In Section 2.4, we recall the notions of strong
and very strong polynomial functors for our framework, and we adapt in this context the one of weak polynomial
functors introduced in [ , Section 3.1]. Then, in Section 2.5, we are interested in the effect of Long-Moody
functors on strong and weak polynomial functors, presenting in particular the keystone relations of the differ-
ence and evanescence functors with Long-Moody functors. In Section 2.6, we prove that in the situation where a
symmetric monoidal category is considered, we can extend a Long-Moody functor taking as source the category
modified by the construction —. Finally, in Section 2.7, we introduce the notion of tensorial functors.

Notation 2.0.1. We fix a commutative ring R throughout this work. We denote by R-0tod the category of R-modules.
We denote by &t the category of groups and by * the coproduct in this category.

Let Cat denote the category of small categories. Let € be an object of Cat. We use the abbreviation Obj (€) to
denote the objects of €. If there exists an initial object & in the category €, then we denote by 14 : @ — A the
unique morphism from & to A. If * is terminal object in the category €, then we denote by t4 : A — * the unique
morphism from A to *.

The maximal subgroupoid ¢t (€) is the subcategory of € which has the same objects as € and of which the
morphisms are the isomorphisms of €. We denote by ¥t : €at — Cat the functor which associates to a category
its maximal subgroupoid.

For © a category and ¢ a small category, we denote by Fct (€, D) the category of functors from ¢ to D.

We denote by B the braid groupoid: its objects are the natural numbers n € IN and its morphisms are (for
n,m € N):

B, ifn=m

Homy (n,m) = {@ if n # m.

2.1 Recollections on Quillen’s bracket construction

The aim of this section is to introduce the categorical framework necessary for our study. In particular, we recall
notions and properties of Quillen’s bracket construction introduced in [ , P-219] for a monoidal category S
acting on a category X, in the case S = X = & where & is a groupoid. Our review here is based on [ ,
Section 1] to which we refer the reader for further details.

Beforehand, we take this opportunity to introduce or recall some terminology about strict monoidal categories.
We refer to [ ] for an introduction to (braided) strict monoidal categories and the skeleton of a category.

Notation 2.1.1. A strict monoidal category will be denoted by (&, f,0), where € is the category, f is the monoidal
product and 0 is the monoidal unit. If it is braided, then its braiding is denoted by bfw : AyB = BHA for all objects
Aand Bof €.

Definition 2.1.2. Let (&, j, 0) be a strict monoidal category. A full subcategory ® of € is said to be finitely generated
by the monoidal structure if there exists a finite set E of objects of the category € such that for all objects d of ©, d
is isomorphic to a finite monoidal product of objects of E.

We fix a strict monoidal groupoid (&, j,0) throughout this section, so as to define Quillen’s bracket con-
struction i following [ 1.

Definition 2.1.3. [ , Section 1.1] Quillen’s bracket construction on the groupoid &, denoted by 4(&, is the
category defined by:

* Objects: Obj (UB) = Obj (&);
* Morphisms: for A and B objects of &:
Homygg (A, B) = co(lyjim [Homg (—hA, B)].
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42 2. Chapter. Generalised Long-Moody functors

Thus, a morphism from A to B in the category U® is an equivalence class of pairs (X, f), where X is an object
of  and f : XjA — B is a morphism of &; this is denoted by [X, f] : A — B.

e For all objects X of 4®, the identity morphism in the category U® is given by [0, idx] : X — X.
e Let[X,f]: A—> Band[Y,g] : B— C be two morphisms in the category {®. Then, the composition in the
category L& is defined by:
[Y, 8l o [X, f] = [Y8X, g o (idytf)] .
Proposition 2.1.4. [ , Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (&, 4,0) is an initial
object in the category U®.

Remark 2.1.5. Let X be an object of &. Let ¢ € Autg (X). Then, as an element of Homyg (X, X), we will abuse the
notation and write ¢ for [0, ¢]. This comes from the canonical functor cye : & — U® defined as the identity on
objects and sending ¢ € Autg (X) to [0, ¢].

A natural question to ask is the relationship between the automorphisms of the groupoid & and those of its
associated Quillen bracket construction 4. Recall the following notion.

Definition 2.1.6. The strict monoidal groupoid (&, 4, 0) has no zero divisors if, for all objects A and B of &, A§B = 0
ifand only if A = B = 0.

Then, recall the result:

Proposition 2.1.7. [ , Proposition 1.7] Assume that the strict monoidal groupoid (&, 4,0) has no zero divisors and
that Autg (0) = {ido}. Then, the groupoid & is the maximal subgroupoid of .

Henceforth, we assume that the strict monoidal groupoid (&, fj, 0) has no zero divisors and that Autg (0) =

{ido}.

A natural question is to wonder when an object of Fct (&, %) extends to an object of Fct (4&, ¢') for a category
¢, which is the aim of the following lemma. Analogous statements can be found in [ , Proposition 2.4] and
[ , Lemma 1.12] (for the category p for this last reference).

Lemma 2.1.8. Let ¢ be a category and F an object of Fct (&, %). Assume that for A, X,Y € Obj (®), there exist assign-
ments F ([X,idxya]) : F (A) — F (X§A) such that:

F ([lethXhA]) oF ([XrlanA]) =F ([th,ldyhxu/d) . (211)

Then, the assignments F ([X,«]) = F (y) o F ([X,idxya]) for all [X, ] € Homyg (A, idx;a) define a functor F : 4& —
€ if and only if for all A, X € Obj (®), forall " € Autg (A) and all ' € Autg (X):

F([X,idxya]) o F (v") = F (v'17") o F ([X,idxya]) - (2.1.2)

Proof. Assume that relation (2.1.2) is satisfied. Note that (2.1.1) implies that F ([0,id4]) = idp(4) for all objects
A. First, let us prove that our assignment conforms with the defining equivalence relation of 4&. Let A, X ¢
Obj (&). Let 7,7y € Autg (XA) such that there exists € Autg (X) so that 7' o (Phid4) = 7. According to
the relation (2.1.2) and since F is a functor over &, we deduce that F ([X,]) = F (7') o F ([X,idxya]) o F (ida) =
F([X,v']). Now, let us check the composition axiom. Let A, X,Y € Obj (&), let ([X,v]) € Homgyg (A, X§A) and
([Y,+']) Homye (X§A, YEX1A). We deduce from relation (2.1.2) that:

F([Y,7']) oF([X,7]) = F()o (F(idyhy)oF ([Y,idyexzal)) o F ([X,idxyal) -
So, it follows from relation (2.1.1) that:
F([Y,7']) o F([X,7]) = F (v o (idyly)) o F ([YuX/idYuXhA]) =F([Y,7]o[X,7]).

Conversely, assume that the functor F : & — ¢ is well-defined. In particular, the composition axiom in U® is
satisfied and implies that for all A, X € Obj (®), for all v € Autg (A), F ([X,idx;a]) o F (v) = F([X,idxb7]). So
it follows from the defining equivalence relation of (& that relation (2.1.2) is satisfied. O
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2. Chapter. Generalised Long-Moody functors 43

Similarly, we can find a criterion for extending a morphism in the category Fct (&, %) to a morphism in the
category Fct (U8, 7).

Lemma 2.1.9. Let € be a category, F and G be objects of Fct (U&,€) and 1 : F — G a natural transformation in
Fct (®,%). The restriction Fct (U, €) — Fct (&,€) is obtained by precomposing by the canonical inclusion cgg of
Remark 2.1.5. Then, 1 is a natural transformation in the category Fct (U&, €) if and only if for all A,B € Obj (®) such
that B = X§A with X € Obj (&):

1 o F (X, idg]) = G ([X, idg]) o 4. 213)
Proof. The natural transformation # extends to the category Fct (1&, ¥) if and only if for all A, B € Obj (&) such
that B = XA with X € Obj (&), for all [X, 7] € Homyg (A, B):

e o F([X,7]) = G([X,7]) e7a.

Since 7 is a natural transformation in the category Fct (8, %), we already have g o F(y) = G(y) o54. So, 1
extends to the category Fct (&, %) if and only if relation (2.1.3) is satisfied.

Pre-braided monoidal categories: If the strict monoidal groupoid (&, f, 0) is braided, Quillen’s bracket construc-
tion (& inherits a strict monoidal structure (see Proposition 2.1.12). However, the braiding b@ does not extend
in general to 4®. First recall the notion of a pre-braided monoidal category, generalising that of a braided strict
monoidal category, introduced by Randal-Williams and Wahl in [ 1.

Definition 2.1.10. [ , Definition 1.5] Let (&, ;, 0) be a strict monoidal category such that the unit 0 is initial.
We say that the monoidal category (¢, ,0) is pre-braided if:

¢ The maximal subgroupoid ¢t (¢) (see Notation 2.0.1) is a braided monoidal category, where the monoidal
structure is induced by that of (€, £, 0).

* For all objects A and B of €, the braiding associated with the maximal subgroupoid bS,B : AjB — BHA
satisfies:
b po (idatitp) = tphids : A — BRA.
(The notation (g : 0 — B was introduced in Notation 2.0.1).

Remark 2.1.11. A braided monoidal category is automatically pre-braided. However, a pre-braided monoidal
category is not necessarily braided (see for example [ , Remark 1.15]).

Finally, let us give the following key property when Quillen’s bracket construction is applied on a strict
monoidal groupoid (&, f,0).

Proposition 2.1.12. [ , Proposition 1.8] Suppose that the strict monoidal groupoid (&, ,0) has no zero divisors and
that Autg (0) = {ido}. If the groupoid (&, 1,0) is braided, then the category (U®, i, 0) is pre-braided monoidal. If moreover
(8,14,0) is symmetric monoidal, then the category (&, 8, 0) is symmetric monoidal.

Remark 2.1.13. The monoidal structure on the category (4U®,1,0) is defined on objects by that of (&,4,0) and
defined on morphisms by letting for [X, f] € Homyge (A, B) and [Y, g] € Homge (C, D):

X, 713 (¥, = | X0V, (72) o (s (1) e )|

In particular, the canonical functor & — (& (see Remark 2.1.5) is monoidal.

2.2 The generalised Long-Moody functors

In this section, we develop a generalisation of the Long-Moody functors (see [ , Section 2]) inspired by the
Long-Moody construction (see [ , Theorem 2.1]). First, we introduce the general framework of our study (see
Section 2.2.1). Then, we define the generalised Long-Moody functors and establish their first properties in Section
22.2.

The two first subsections are generalisations of [ , Section 2.1] and [ , Section 2.2]. We give a new
approach to some tools and conditions previously considered in [ , Section 2], allowing a wider application
of our constructions. We will emphasise the new aspects of this work, giving details only when necessary for the
convenience of the reader or for the sake of completeness.
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44 2. Chapter. Generalised Long-Moody functors

2.2.1 Framework of the construction

Throughout Section 2.2, we consider a groupoid G such that Obj (G) = N.

2.2.1.1 Monoidal properties of G

First, we assume that a monoidal structure is induced on the groupoid G. Namely:
Assumption 2.2.1. There exists (G', 1§, 0g:) a skeletal braided monoidal groupoid with no zero divisors such that Autg: (0g) =
{ido g,} and:

* G is a full subgroupoid of G';

o there exist two objects 0 and 1 of G' such that for all objects x of G, there exists a unique n € N such that x = 19"40.

By hypothesis G is finitely generated by the monoidal structure of (G’, f, 0g/) with {0, 1} as generating set. The

object 0 should not be confused with the unit Og/ of the monoidal structure . For n a natural number, the objects
1% and 1””h0 of G'are different. In particular, 1t”b0 is an object of G whereas 1% is not. However, one could be

77

tempted to denote both of them by “n”. To avoid this confusion, we introduce the following notation:

Notation 2.2.2. For all natural numbers 71, we denote the object 1740 of G by 1 and the object 1% of G’ by n. Note
thatif G’ = G, thenn = n.

Remark 2.2.3. Under the properties of Assumption 2.2.1, Quillen’s bracket construction ({G, , 0g/) is a pre-braided
monoidal category such that the unit Og/ is an initial object (see Proposition 2.1.12).

Definition 2.2.4. Let 4G be the full subcategory of £IG’ on the objects of G.

Remark 2.2.5. Let m, n and n’ be natural numbers such that #n’ > n. Then:
s min=m+n;

e considering the morphism [’ — n,id,,/|, then the “n’ — n” in the notation is not an object of G: it is the unique
object of G’ such that (n' — n) in = n’ as objects of G.

Warning: the category G is not in general Quillen’s bracket construction of Definition 2.1.3. However, assum-
ing that G’ = @, then 4G is indeed Quillen’s bracket construction bracket construction, 0 = 0g: and we have a
is pre-braided monoidal structure (LG, ,0). This is for instance the case in the previous work [ 1, where
G’ = G = Bis the braid groupoid (see Notation 2.0.1).

The present framework allows us to work with more examples, such as mapping class groups of surfaces with
non-zero (orientable or non-orientable) genus (see Section 2.3.3). For instance, in the various situations of Section
2.3, the groupoids M, °, M, * and M5 (see Sections 2.3.3 and 2.3.4) are full subgroupoids of the braided monoidal

groupoid (zmz, i 28,0,1) (see Proposition 2.3.4).

Finally, as the objects of £IG are natural numbers, we consider:

Definition 2.2.6. Let (N, <) be the category of natural numbers (natural means non-negative) considered as a
directed set.

Notation 2.2.7. For all natural numbers 1, we denote by 7, the unique element of Hom <) (n,n+1). For all

natural numbers 7 and n’ such that n’ > n, we denote by 7, : n — n’ the unique element of Homy <) (1,1),
composition of the morphisms 7,/ 10,7200 Yy41 © Vs The addition defines a strict monoidal structure on
(N, <), denoted by ((IN, <), +,0).

Definition 2.2.8. Let ¢ : (N, <) — 4G be the faithful functor defined by ¢ (n) = nand & (v,) = [1,idy,] for all
natural numbers 7.
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2.21.2 Long-Moody triple

Let us fix Hy and H two groups, with H non-trivial.
Notation 2.2.9. For all natural numbers m, we denote the free product H*" * Hy by H;;. We denote by ey (resp.
ep,) the identity element of the group H (resp. Hp).

Example 2.2.10. The classical example is the free group on m generators denoted by F,, = (fi,..., f). Indeed,
taking H to be Z and Hj to be the trivial group Og., one identifies F;;, = Z*™. The framework of [ ] uses this
example H;, = Fy,.

Remark 2.2.11. In many examples considered here, such as mapping class groups of surfaces with non-zero genus
(see Section 2.3), Hy is non-trivial, contrary to [ ].

The object O, being null in the category of groups &r, recall that ¢ : 0. — G introduced in Notation 2.0.1
denotes the unique morphism from Og. to the group G. We consider 1y * idy,, : Hy < H,,41 which corresponds
to the identification of Hy, as the subgroup of H,,;| generated by the m last copies of H in H,,;. Iterating this
morphism, we obtain for all natural numbers m’ > m the morphism Lpps (' —m) * idg, : Hn — Hyy.

Notation 2.2.12. For all natural numbers n, we denote by G, the automorphism group Autg (n).

We require the groups G, to have an action on the groups H;, for all natural numbers n. More precisely:

Assumption 2.2.13. There exists a functor H : G — &t such that:
* for all objects n of G, H (n) = Hy. In other words, H (1“%0) = H,, for all natural numbers n.

o H([1,idys1]) = tp * idp, for all natural numbers n.

Consequences of Assumption 2.2.13 will be heavily used in our study, for instance in the key results Theorem
2.2.30 and Proposition 2.5.12. The following lemma clarifies some subtleties of Assumption 2.2.13. It also implies
that Condition 2.11 of [ ] is equivalent to this previous assumption.

Lemma 2.2.14. The functor ‘H of Assumption 2.2.13 restricts to a functor </ : G X 4G X &t such that for natural
numbers n and n', for all elements g of G, and ¢’ of Gy _:

H (Ynw) 0 (8) =  (8'5g) 0 H (V) (221)
as morphisms Hy, — H,y.
Proof. This is a straightforward consequence of Lemma 2.1.8. O
Remark 2.2.15. The functor H of Assumption 2.2.13 provides group morphisms:

Gn — Autg, (Hy)

for all natural numbers 7, satisfying compatibility relations in ${G given by relation (2.2.1) of Lemma 2.2.14.
Definition 2.2.16. The groupoid G and a fixed functor H form a Long-Moody triple if Assumptions 2.2.1 and 2.2.13
are satisfied. It is denoted by (#, G, G’).
2.2.1.3 Coherence conditions

For our framework, we require two additional general conditions (see Conditions 2.2.17 and 2.2.24).
We fix a Long-Moody triple (#, G, G’) throughout the remainder of this section.
Recall that we assume Obj (G) = IN so we denote objects of G by n with n a natural number and that the

braiding associated with (G’, 1, 0) is denoted by b%ﬁ, (see Notation 2.1.1).

First, we need to consider particular group morphisms from the group Hy to G, 41 = Autg (n+1) for all
natural numbers 7. The condition that they have to satisfy will be used to prove that the generalised Long-Moody
functor is well defined on morphisms with respect to the tensor product structure in Theorem 2.2.30. Moreover, it
will also be used in the proof of Propositions 2.5.23 and 2.5.12.
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46 2. Chapter. Generalised Long-Moody functors

Condition 2.2.17. There exist group morphisms {¢, : Hy — G,41},cn such that for all elements 1 € Hy, for all
natural numbers n and n’ such that n’ > #, the following diagram is commutative in the category UG:

Gn(h)

lon 1hn
id [ —n,id,,/ | i lidl a[n' —n,id,|
g’ 1.
Su! <<1H*(n’—n) *idHn> (h)>

Remark 2.2.18. By definition of the braiding b?’/,, we have:

' -1, L . / -1
(65, ) tidn = ((bgl) hzdn> o (ujlh (65 1) hzdn_1> .
Hence, a straightforward recursion (see for example the proof of [ , Lemma 2.5]) proves that Condition

2.2.17 is equivalent to assuming that for all elements /1 € Hy, for all natural numbers #, the morphisms {¢; } obj(9)
satisfy the following equality, as morphisms in the category {G:

L ((65) " bida) o Gisen )] = 16 Gt ()0 ((851) i) .
It follows from Remark 2.2.18 that:

Proposition 2.2.19. Assume that for all elements h € Hy, for all natural numbers n, the following equality holds in G, 1p:

((bf}’l)_l hidn) o (idiicn (1) = cuir (H ([1,idyia]) (W) o ((b{;)_l uidn>. (222)

Then, Condition 2.2.17 is satisfied.

Remark 2.2.20. If Autyg (1) = {id;}, Condition 2.2.17 is equivalent to the equality (2.2.2) for all elements h € Hy,
for all natural numbers #.

When (UG’,5,0g/) = (44G,5,0g) = (4B,15,0), Condition 2.2.17 recovers [ , Conditions 2.3]. For this
particular, the assumption Autyg (1) = {id;} is satisfied and a fortiori equality (2.2.2). However, this is not
necessarily the case for all the examples which fit into the present larger framework, such as mapping class groups
of surfaces with non-zero genus (see Section 2.3.3). Nevertheless, in Section 2.5, we will have to assume that the
stronger equality (2.2.2) holds (see Condition 2.5.9).

Notation 2.2.21. For all natural numbers 1, we denote by ¢, ; the trivial morphism H;, — 0g+ — Gj41.
Example 2.2.22. The family of morphisms {¢,  : H, — Gy+1},c satisfies Condition 2.2.17.

We fix a family of morphisms {¢, : Hy, — Gy 41}, satisfying the Condition 2.2.17. We require a compatibility
relation between the morphisms {¢, : Hy — Gy,41},cn and the functor . This is essential in the definition of the
Long-Moody functor on objects in Theorem 2.2.30 (see Condition 2.2.24).

Notation 2.2.23. For all natural numbers n, we denote by <7, : G, — Autg, (Hy) the group morphisms induced by
the functor H.

Condition 2.2.24. Let n be a natural number. We assume that the morphism given by the coproduct ¢, * id§— :
H, * Gu — G4 factors across the canonical surjection to H;, % G;. In other words, the following diagram is

“n

commutative:
H,“—— H,, x G, =—G,

A

Gn+1/
where the morphism H, x G, — G4 is induced by the morphism H;, * G, — G,41 and the group morphism

idig—: Gy — Gyaq is indilced by the monoidal structure of Assumption 2.2.1.
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Remark 2.2.25. When (UG, ,0g/) = (4G, 1,0g) = (UB, ,0), Condition 2.2.24 recovers [ , Conditions 2.12].

Definition 2.2.26. With the previous notation, a coherent Long-Moody system, denoted by {H, G, G’, ¢}, is a Long-
Moody triple (H, G, G') equipped with group morphisms {¢x : Hn = Gp11},copj(g) satisfying Conditions 2.2.17
and 2.2.24.

Remark 2.2.27. Condition 2.2.24 is satisfied for the family of morphisms {¢;+ : Hy — Gy41},cn of Example 2.2.22
and any functor H : 4G’ — &r. A fortiori, we define a coherent Long-Moody system {#H, G, G',¢_ +}.

2.2.2 Definition of the generalised Long-Moody functors

This section deals with introducing generalised Long-Moody functors, inspired from the Long-Moody construc-
tion [ ]. It generalises and adapts [ , Section 2.2] to a larger setting. A large variety of groups falls
within this framework (see Sections 2.3 and 2.6.3). Moreover, the new point of view on some tools detailed in
Section 2.2.2.1 allows a clearer understanding of this construction.

2221 Group ring and augmentation ideal functors

For all objects G of &, the group rings RG] (resp. augmentation ideals Z(;)) assemble to define the group
ring functor R [—] : &t — R-9100 (resp. the augmentation ideal functor IRH : &t — R-900). Let (H,G,G') a
Long-Moody triple. Thanks to Assumption 2.2.13, we introduce the following two functors:

Definition 2.2.28. Let R [H] : UG — R-9t0d and 7 : 4G — R-DMod be the functors defined by the composites

R —
4G " e 2L Rood

and
T
4G s e 2L Roooo

We call R [H] (resp. Z) the group ring (resp. the augmentation ideal) functor induced by the Long-Moody triple
GANADE

Compared to the particular case of braid groups in [ ], to introduce these functors for the generalisation
of Long-Moody functors gives a more conceptual point of view on underlying structure of this construction. For
the augmentation ideals, the functor Z encodes the consequences of Condition 2.11 of [ ] in the previous
framework.

2.2.2.2 The Long-Moody functors

We fix a coherent Long-Moody system {#, G, G’, ¢} throughout this section.

Notation 2.2.29. When there is no ambiguity, once the Long-Moody system {#, G, G ’,c} is fixed, we omit it from
the notation.

Let F be an object of Fct (4G, R-9t00) and # be a natural number. The R-module F (n + 1) is simultaneously
endowed with a R [G,,+1]-module structure and a (left) R [H,|-module structure via the morphism ¢, : H, —

Gni1. As the augmentation ideal Zg(p,) is a right R [Hy]-module, we can consider the tensor product Z(y,) [® |
R[Hy

F (n +1). In the following theorem, using this tensor product, we define an endofunctor of Fct (LG, R-0Mod).

Theorem 2.2.30. The following assignment defines a functor LMy g g/ ¢,y © Fet (4G, R-9od) — Fet (4G, R-9Mod). It
is called the (generalised) Long-Moody functor associated with the coherent Long-Moody system {H,G,G’,¢}.

* Objects: for F € Obj (Fet (UG, R-9M0d)), LM (3, g/ ¢} (F) : UG — R-DMod is defined by:

- ObjECtSI Vﬂ S Ob] (g), LM{H,Q,Q/,Q} (F) (ﬂ) = IR[Hn] R[}Gﬁ[ | F (I’l + 1)
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— Morphisms: let n,n’ € IN, such that ' > n, and [n' — n,g] € Homygg (n,n’). We define

LM3,.6,,c) (F) ([0 =n,8]) : Tpin,) @ F(nt1) = Ty ® F (n' +1)

R[H,]
to be the unique morphism, denoted by Z ([n’ —n,g]) ® F (idif[n’ —n, g]), induced by the universal prop-

®
R[Hy]

R[H,/]
erty of the tensor product ® with respect to the R [Hy]-balanced map
R[Hy)
]
I([n'—n,g]) < F(idya[n' —n, R[H,
Trin,) * F(n£1) S Tr{p, > F( 1) —>Tgpy ) R[g ]F(L/Jfl) :

* Morphisms: let F and G be two objects of Fct (4G, R-000), and 17 : F — G be a natural transformation. We define
LMy3.6,6',cy (1) : LMy36,6/ ¢} (F) = LMy g g 1 (G) for all objects n of G to be the unique morphism, denoted

by idIR[H | ® Mt induced by the universal property of the tensor product ® with respect to the R [Hy]-balanced
" R[H, T R[Hp]
map
idIR[Hn] X’Yﬁ R%ﬂ]
IRy, x F(n+1) I[m,] % G (n+1) — Ig[n,] R[% ] G(n+1).

Proof. For this proof, F, G and H are objects of Fct (4G, R-MMod), n, n’ and n” are natural numbers such that
n"” > n’ > n. We have three points to prove.

1. First, let us show that the assignment of LM (F) on morphisms is well-defined. Consider [n’ —n, g] and
[n" —n,¢'] such that [n' —n, g] = [0’ —n,¢']. In other words, we assume that there exists i € G,,_, so that
¢' o (phid,) = g. Since the monoidal product f is well-defined on UG’ by Proposition 2.1.12 and as g is a
full subcategory of 4G’, we deduce that idfj [’ —n, g| = id14 [n’ — n, ¢’]. So it follows from Definition 2.2.28
and Assumption 2.2.13 that:

Z([n—ng]) Q]?F (idif [0 —n,g]) = Z([n'—n{g]) %F (id1g [0 —n,g']).
After checking that Z ([n’ —n,g]) [® | F (id1f[n" —n, g]) is a R [Hy|-balanced map, it will follow from this
R[H,y
relation that LM (F) ([0’ —n, g]) = LM (F) ([0’ —n, ¢’]). Therefore, we will have proved that the assignment

of LM (F) on morphisms respects the defining equivalence relation of 4G.

Proving that Z ([n’ —n, g]) [® | F (id1f[n" —n, g]) is a R [Hy]-balanced map amounts to show that for all
R|H, ,

n

he H’rl andi € IR[HH]:

Z([n"—ng]) (i-h)R[ﬁ ]F(idlh (' —n,g]) = I([n’—n,g})R[ﬁ ]F(idlh [n" —n,8]) o F(cu (h))

Recall from Definition 2.2.28 and Assumption 2.2.13 that:

T ([0~ nyidy]) ) = T ([~ midy]) () - H ([ — n, idyg]) ()

and that the group morphism 7, : G, — Autr.gneo (IR[ Hn]> defined by the functor Z is canonically induced
by o/, : Gu — Aute. (Hy) (see Notation 2.2.23). Therefore, forallh € Hy, and i € Zgp,:

([ =ngl)i-h)=T([n"=ngl]) (@) H([n"=ng])®n).

Hence, proving the compatibility with respect to the tensor product amounts to proving that:
F(idg[n" —n,g])oF(gn (h)) = F(cw (H ([0 —n,g])(h)))oF (idit [0 —n,g]). (2.2.3)
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Using Condition 2.2.17, we have:
[nf —n, <(b1,;/n) o nz‘dn> o (idy —nbiGn (h))]
_ {n' e (M ([ = nidy]) () o <(bg;/n)l uidnﬂ .

Since (id14g) o ¢, (H ([0' — n,id,y]) (h)) = H ([n' — n,g]) (h) o (id14g) by Condition 2.2.24, we have:
{Tl/ —n, (id1g) o ((blg,,n’n)_l ﬁidn> o (idy—plign (h))}
- {n’ — 1,6 (H ([0 —n,g]) (h)) o (id14g) o ((blg,/n/_n)l uidnﬂ :

The desired equality (2.2.3) follows from the functoriality of F.

2. Let us prove that the assignment LM (F) is a functor. Since Z and F are functors and id;f— is a group mor-
phism, it follows from the definition that LM (F) (idx) = idym(r)(n)- The composition axiom follows from
the functorialities of F and Z over {G (see Proposition 2.2.28) and from the compatibility of the monoidal
structure j with composition.

3. The remaining point to check for LM to be a functor is the consistency of our definition on morphisms. For
1 : F = G a natural transformation, we have:

G (i [n' —ngl) onpuis = mwar o F (iditi [n' —ng]).
Hence, it follows that:
LM (G) ([n' —m,g]) oLM (1), = LM(y), oLM(F) ([n' —n,g]).

Therefore LM () is a morphism in the category Fct (£1G, R-9t00). Denoting by idr : F — F the identity
natural transformation, it is clear that LM (idp) = idpnr)- Finally, let us check the composition axiom. Let
#:F — Gand yu : G — H be natural transformations. Let n be a natural number. Now, because y and # are
morphisms in the category Fct (UG, R-0t0d):

LM (‘u © 17)@ = idIR[Hn] R[}ef[ ] (:uﬂo 77@) (ZJ) =LM (V)EO LM (77)@'

Remark 2.2.31. When (4G, ,0g/) = (11G,5,0g) = (UB, 1, 0), Theorem 2.2.30 recovers [ , Theorem 2.19].

Remark 2.2.32. If we had considered a Long-Moody triple (#, G, G’) together with group morphisms ¢, : H, —
Gy +1 for all natural numbers # such that only Condition 2.2.24 is satisfied (but not necessarily satisfying Condi-
tion 2.2.17), then the assignments of Theorem 2.2.30 defines a functor with G as source category LM(3 ¢ g1 :
Fct (G, R-900) — Fct (G, R-900).

Let us give some immediate properties of a Long-Moody functor.

Proposition 2.2.33. The functor LM associated with the coherent Long-Moody system {H, G, G, ¢} is reduced, right exact
and commutes with all colimits.

Proof. Let Opcy(s1g,r-mm00) : 4G — R-90100 denote the null functor. It follows from the definition of the Long-Moody

functor that LM (OFct(ug,R-mUa)) = Ofct(s1G,R-900), 1€ LM is reduced.

The right-exactness of the Long-Moody functor is a consequence of the well-known fact that the functor Zg [® |
R[Hy

— ¢ R-9MMod — R-Mod is right exact for all natural numbers 7 (see for example [ , Application 2.6.2]), the

naturality for morphisms following from the definition of the Long-Moody functor. Similarly, the commutation

property with all colimits is a formal consequence of the commutation with all colimits of the tensor products

Trig,1 ® — for all natural numbers n. O
[Hn] R[Hy]
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2.2.2.3 Case of free groups

Recall the following result.
Lemma 2.2.34. Let G be a group. The augmentation ideal Ig(g is a projective R [G|-module if and only if G is a free group.

Proof. Let us assume that Zgg is a projective R [G]-module. The following short exact sequence is a projective
resolution of R as a R [G]-module.

0 — Zgjg) — R[G] — R—0

Hence the homological dimension of G is one. Thus, according to a theorem due to Swan [ , Theorem A], G
is a free group. The converse is a classical result of homological algebra (see [ , Corollary 6.2.7]). O

Corollary 2.2.35. If Hy and H are free groups, then the Long-Moody functor associated with the coherent Long-Moody
system {H,G,G’, ¢} is exact and commutes with all finite limits.

Proof. Let n be a natural number. Since the augmentation ideal Zg(y,) is a projective R [Hy]-module (by Lemma

2.2.34), it is a flat R [H,]-module. Then, the result follows from the fact that the functor Zy Hy ® —: R-9t00 —
R[H,]

R-9tod is an exact functor, the naturality for morphisms following from the definition of the Long-Moody functor
(see Theorem 2.2.30). The commutation result for finite limits is a general property of exact functors (see for
example [ , Chapter 8, section 3]). O

Remark2.2.36. Assume that H is a free group. Let M be a R [H]-module. Since H is free, Ty is a free R [H]-module
of rank rank (H), hence there are isomorphisms of R-modules:

IR[H] ® M= (IR[H] ® R) Q@ M =2 MErank(H)
R[H] R[H] R

We denote by A, ;1)1 the composition of these isomorphisms.

First homology of H functor: We denote by R : G — R-tod the constant functor at R. Assuming that Hy
and H are free groups, applying classical homological algebra (see [ , Corollary 6.2.7]), we deduce that for all
natural numbers n:

LM3,6,6'c) (R) (n) = Hi (Hu, R). (2.2.4)

This isomorphism is functorial. Indeed, since the homology group H; (—, R) defines a functor from the category
&t to the category R-Mod (see for example [ , Section 8]), we can introduce the following functor:

Definition 2.2.37. Let (#,G,G’) be a Long-Moody triple. The homology groups {H; (Hy, R)},cp assemble to
define a functor H; (H_, R) : 4G — R-9100 by the composition:

H Hl(flR)

Ug &t R-2tod .

Then, the isomorphism (2.2.4) extends to define a natural equivalence:
Lemma 2.2.38. If Hy and H are free groups, then as functor 3G — R-tod:
LM{'H,Q,Q’,(;} (R) = H] (Hf,R) .

Proof. The naturality follows from the fact that the assignments of the functor H; (H_, R) (see Definition 2.2.37)
and 7 (see Definition 2.2.28) on morphisms of 4G are both induced by the functor . O
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2.2.2.4 Case of trivial ¢

As stated in Remark 2.2.27, any functor H : {IG — &t gives a coherent Long-Moody system {#,G,G’,¢_+}. We
have the following property:

Proposition 2.2.39. Let F be an object of Fct (UG, R-9t0d). Then, as objects of Fct (4G, R-0100):
LM{31,6,6',c,y (F) = EM3,6,61¢,) (R) @ F (15—) .-

Proof. Let n be a natural number. The action induced by ¢, : H, — Gy41 of Example 2.2.22 makes F (14+n) =
F (1hn) a trivial R [H,]-module. A fortiori, there is an R-module isomorphism:

IRim,] R[}‘% | F(nt1) = (IR[Hn] Rﬁ% ]R> ®F (1an).

It is straightforward to check that this isomorphism is natural. O

2.3 Applications for mapping class groups of surfaces

In [ ], Long-Moody functors were defined for braid groups B, which are the mapping class groups of a n-
punctured disc. Therefore, the groups {G, },,cj for which it is natural to define the first generalised Long-Moody
functors are mapping class groups of surfaces. In this section, we will focus on exhibiting the functors that we
recover by applying the Long-Moody functors on the constant functor R. We are interested in these functors for
two reasons. First, R is the most basic functor to study. Secondly, considering the particular case of the family of
trivial morphisms {¢ ¢ : Hy — Gp41},cn, understanding LM (R) allows us to describe completely LM (F) for all
objects F of Fct (UG, R-Mod) by Proposition 2.2.39.

2.3.1 The monoidal groupoid associated with surfaces

Let us first introduce a suitable category for our work, inspired by [ , Section 5.6]. Namely:
Definition 2.3.1. The decorated surfaces groupoid M is the groupoid defined by:

* Objects: decorated surfaces (S, I), where S is a smooth connected compact surface with one boundary com-
ponent denoted by dpS with I : [—1,1] < 9S is a parametrised interval in the boundary and p = 0 € I a
basepoint, where a finite number of points is removed from the interior of S (in other words with punctures);

* Morphisms: the isotopy classes of homeomorphisms restricting to the identity on a neighbourhood of the
parametrised interval I, freely moving the punctures, denoted by 7toHomeo! (S, {punctures}).

Remark 2.3.2. A homeomorphism of a surface which fixes an interval in a boundary component is isotopic to a
homeomorphism which fixes pointwise the boundary component of the surface. Denote by $ the surface obtained
from S € Obj (M;) removing a disc on a neighbourhood of each puncture. Note from [ , Section 1.4.2]
that 7toHomeo! (S, {punctures}) identifies with the group 7oDif f% () of isotopy classes of diffeomorphisms of
$ fixing the boundary component 9y and moving freely the other boundary components.

When the surface S is orientable, the orientation on S is induced by the orientation of I. The isotopy classes of
homeomorphisms then automatically preserve that orientation as they restrict to the identity on a neighbourhood
of I.

Notation 2.3.3. When there is no ambiguity, we omit the parametrised interval I from the notation.
We denote by XJ ;| a disc. We fix a unit disc with one puncture denoted by X} ;, a torus with one boundary

component denoted by 2(1],0,1 and a Mobius band denoted by 28’1,1.

The groupoid M has a monoidal structure induced by gluing; for completeness, the definition is outlined
below (see [ , Section 5.6.1] for technical details). For two decorated surfaces (S1,I;) and (S, ), the
boundary connected sum (S1, 1) ff (Sa, ) = (S18S2, [14]1) is defined with 5145, the surface obtained from gluing
51 and S, along the half-interval Il+ and the half-interval I, ,and Iyl = I; U Ij . The homeomorphisms being the
identity on a neighbourhood of the parametrised intervals I; and I, we canonically extend the homeomorphisms
of S and S, to 5141S,. Hence, we have:
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Proposition 2.3.4. [ , Proposition 5.18] The boundary connected sum i induces a strict braided monoidal structure
0 o . . 0 _ .
(Mz, g, (20,0’1, I ) ) There are no zero divisors in the category My and Aut 4, (20,0’1) = {zd 20, }

Soby) (S1, 1) (S2, I) — (S2, ) 1 (S1, I1) is given by doing half a
Dehn twist in a pair of pants neighbourhood of 951 and 9S; (see [ , Section 5.6.1, Figure 2]).

The braiding of the monoidal structure b{\;lz I

Definition 2.3.5. Let 91, be the full subgroupoid of M of the boundary connected sum on the objects 28,0’1, 26,0,1'
Z(l],o,l and 28,1,1. Let M1, be the skeleton of 9t,.

Remark 2.3.6. Let S be an object of the groupoid 9,. Then, there exist g, s,c € IN such that there is an homeomor-

phism:
S (52(1),0,1> b (52(1),0,1> f (528,1,1) '

Then, since My is skeletal, S is denoted by ZZ,, o1

A fortiori, by Proposition 2.3.4:

Proposition 2.3.7. The groupoid (Dﬁz, b, 28/0,1) is small skeletal braided monoidal with no zero divisors and such that
Autgy, (28,011) = {zd 2, } The braiding of the monoidal structure is denoted by b~ .
By Definition 2.1.3, we denote by (91 Quillen’s bracket construction on the groupoid (zmz, h, 28 0 1) ; by Propo-

sition 2.1.12 we obtain a pre-braided strict monoidal category (uzmz, b, 28/0 1) .

2.3.2 Fundamental group functor

Let us introduce a non-trivial functor with 9%, as source category. The isotopy classes of the homeomorphisms
of a surface S € Obj ("My) act on its fundamental group 711 (S, p) (see for example [ , Chapter 4]).

Notation 2.3.8. We denote this action by ag : moHomeo! (S, {punctures}) — Autg. (711 (S,p)). So, we define a
functor 1y (—, p) : (9312, h,Zgrl) — gt assigning 711 (—, p) (S) = 711 (S, p) on objects and for all ¢ € muDiff? (S),

1 (= p) (¢) = as (¢)-
Remark 2.3.9. In Notation 2.3.8, we fix maps

rtgHomeo! (S, {punctures}) — Aute. (711 (S, p)).

Note that we could make other choices of such morphisms so that the following study still works. We refer to
Remark 2.3.42 for more details about this fact for the particular case of braid groups.

Notation 2.3.10. Let gt denote the full subcategory of &t of finitely-generated free groups. The free product * :
gt X gr — gt defines a monoidal structure on g, with 0 the unit, denoted by (gt, *,0).

Lemma 2.3.11. The functor 1y (—, p) : (zmz, h'zg,o,l) — (gt, *,0g¢) is strict monoidal.
Proof. By Van Kampen'’s theorem (see for example [ , Section 1.2]), we have that, for S, S’ € Obj (9;,):
m (8'48,p) = (S, p) x 1 (S, p).

It is clear that 7tgHomeo! (S, {punctures}) (resp. 7mgHomeo! (S’, {punctures})) acts trivially on 7ty (S’, p) (resp.
71 (S, p)) in 711 (S'8S, p). Therefore, id (_ ) *id, (_ ,) is a natural equivalence. O

Proposition 2.3.12. The functor 1ty (—, p) of Lemma 2.3.11 extends to a functor 7r1 (—, p) : 49, — gv by assigning for
all ,S' € Obj (My):

1 (=, p) ([S'idsis]) = try(stp) * iy (s,p)-
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Proof. It follows from the definitions that relation (2.1.1) of Lemma 2.1.8 is satisfied for

m (= p) [Z(l),o,vidzg)/o,lus} » T (=p) {Zg,o,yidzgollus} and 711 (—, p) {Zg,l,vid/\fzglns} :

Let S and S’ be objects of M. Let ¢ € rogHomeo! (S, {punctures}) and ¢’ € royHomeo! (S', {punctures}). Accord-
ing to Lemma 2.3.11:

m (= p) (9'ip) oy (=, p) ([Sidss]) = (i (= p) (@) x 1 (= p) (9)) o1 (=, p) ([Sidgs]) -

Hence, by definition of the morphism ¢, (s ), we have:

m (= p) (9'hp) omi (=, p) ([Sidss]) = m (= p) ([ idgys]) omi (=, p) (o).

Relation (2.1.2) of Lemma 2.1.8 is thus satisfied, which implies the desired result. O

2.3.3 Modifying the orientable or non-orientable genus

We fix the number s of punctures throughout Section 2.3.3.

2.3.3.1 Orientable surfaces:

Let 9)?; ** be the full subgroupoid of 901, of orientable surfaces with s punctures. According to Proposition 2.3.6,
the objects are {Z; 0 1} N Therefore, Obj (9)?; ’S> = N and the groupoid zm; * is finitely generated by the
) ne

monoidal structure in (S)ﬁz, b 20, 1). Hence, by Proposition 2.3.7 Assumption 2.2.1 is satisfied for the groupoid
(WZ' 0, Z;8,0,1) :

Notation 2.3.13. Denote the mapping class group 7toHomeo! (ZZ,O 1 {punctures}) by I, foralln € N.

Let H be the group m (2(1),0,1'79> = F; and Hyp be the group m (26,0,1,;7) =~ F;. and therefore, H, =

M (qu,o,lf p) & Fy,4s for all natural numbers n. We denote by 711 (ZJS_ 01 p) the associated functor of Assump-
tion 2.2.13.

Proposition 2.3.14. {nl (ZJS_ 01/ p) , sm; S, My, g_,t} is a coherent Long-Moody system, where Gy ¢ : 111 (wa/l, p) —

I3 ., is the trivial morphism for all natural numbers n (see Example 2.2.22).

s
n+1,

Proof. The functor H, extends to give a functor 71y (ZJS_ 01/ p) : {19 — &t by Proposition 2.3.12, so that As-
sumption 2.2.13 is satisfied. Thus the result follows from Remark 2.2.27. O

Example 2.3.15. We denote by H; (ZS_ 01/ R) the functor induced by the functor H; (H—, R) of Proposition 2.2.37.

For all natural numbers 1, the action of I'; ; on H; (22/0,1, R) is the symplectic representation of the mapping class
group I} ;. We deduce from Lemma 2.2.38 that:

Hi (X% 01, R) = LM, ( (2.3.1)

I 01p) G S M6 } (R).

Remark 2.3.16. This functor was introduced by Cohen and Madsen in [ ] and by Boldsen in [ ]. Further-
more, the homology of the mapping class groups I';, ; for a large natural number n with coefficients H; (22,0’1, R)
were computed by Harer in [ , Section 7] (see also the forthcoming work [ D.

Assume that R = C and s = 0. Since the morphisms T%_ |, — Aut (711 (Zg 4101/ p)) are non-trivial for
o) MGt} (R) (n) is not trivial for n > 3. So the

result (2.3.1) is consistent with [ , Theorem 1] asserting that for n > 3, a non-trivial linear representation of
I', 1 of dimension 2# is equivalent to the symplectic representation.

natural numbers n > 2, the action of 1"2,1 on LM (0
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2.3.3.2 Non-orientable surfaces:
Let M, *° be the full subgroupoid of M, on non-orientable surfaces with s punctures. According to Proposition

2.3.6, its objects are | X¢ . Therefore, Obj (M, °) = N and the groupoid 9, *° is finitely generated by the
) 01 f eN J\# group 2 y & y

monoidal structure of (93?2, i 28’0,1> . Thus, by Proposition 2.3.7, Assumption 2.2.1 is satisfied using the groupoid
(WZI h/ 28’011) .
Notation 2.3.17. Denote the mapping class group 7toHomeo! (Zg,nll, {punctures}) by N | foralln € N.

Let H be the group m; (28,1,1’ p) =~ Fy and Hy be m; (ZS,O,l’ p) =~ F,, so that H, = m; (Z?J,n,lf p) = F, s forall

natural numbers n. We denote by 711 ( X3 ., p) the associated functor of Assumption 2.2.13.
y 0,—1/P p

Proposition 2.3.18. The setting {7‘[1 (Zgﬁl, p) , My S My, g_,t} is a coherent Long-Moody system, where ¢, + : 111 (Zanrl, p) —

N1 1 is the trivial morphism for all natural numbers n (see Example 2.2.22).

Proof. The functor 1y (Zf)ﬁ,l, p) extends to give a functor 713 (25,7,1' p) D UM, S B by Proposition 2.3.12; so
that Assumption 2.2.13 is satisfied. Hence the result follows from Remark 2.2.27. O

Example 2.3.19. We denote by H; (Zf)ﬁl, R) the functor induced by the functor H; (H—, R) of Proposition 2.2.37.
We deduce from Lemma 2.2.38 that:

H; (26,7,111{) = LM{nl(25/7/1,;7),93127’5,9312@7;} (R).
Remark 2.3.20. Proposition 2.2.39 ensures that the functor LM (ma (55 p) % e 1) is determined by H; (Zg 1 R) .
0,—1P) 22,6 -, 7

Remark 2.3.21. In [ ], Stukow computes the homology groups H; (Nn,1/ Hy (Zg,n,l' Z)) for all natural num-
bers n.

2.3.4 Modifying the number of punctures

We fix a natural number g throughout Section 2.3.4, and let 9:n§'° be the full subgroupoid of M, on surfaces
with orientable genus g and non-orientable genus 0. According to Proposition 2.3.6, the objects of DJT‘E’O are
{Zz"o'l}neN' Therefore, Obj (sm§"’) = NN and the groupoid im§’0 is finitely generated by the monoidal struc-

ture in (9)?2, i 28,0,1) . By Proposition 2.3.7, the groupoid (zmz, i 28,0,1) satisfies Assumption 2.2.1.
Let H be the group m; (2(13,0,1' p) = F; and Hj be the group 1y (22,0’1, p) & Fy,. Therefore, H, = 7y (Z;O’l, p) =

F) 124 for all natural numbers n. We denote by 71q (Z p ) the associated functor of Assumption 2.2.13 defined

20,17
by (Zg,O,l’ p) (n) =m (2§,0,1r p) for all natural numbers #.

To define the group morphisms {gn T (Zg,o,lf p) — 1";0’1 }nG]N considered in this section, we first need to

recall some classical facts about mapping class groups of surfaces.

[1]’111 the subgroup of the mapping class group

Notation 2.3.22. For all natural numbers n, we denote by T 2,0

rtgHomeo! (Z(l),oﬂzg,o,l/ {punctures}) = l"gﬁ

where the puncture of the surface 2(1),0,1 in 2(1),0,1 IJZ;,O,1 is fixed. Hence, there is a canonical embedding & : FE]Oq —

1+n
rg,O,l‘
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Remark 2.3.23. Denoting by ze > ] 01 the surface Z 0,1 With a marked point denoted by x, the group l"[ L 0.1 1s isomor-

[x)n

phic to the isotopy classes of homeomorphlsms of the surface X ¢,0,1 Testricting to the identity on the boundary

component, freely moving the punctures and fixing pointwise the marked point x (see [ , Section 4.1.2]).

Recall that for all natural numbers n and g, 711 (2;0,1/ x) is a free group with generators {f;};. {1,..n+2g}- Each

¢
generator f; is represented by a simple closed curve a, in Z([gxg)nl based at x. Let N (f) = S! x [~1,1] be a tubular
neighbourgood of the curve ag. Denote by f;~ and f:* the isotopy classes of the curves ¢! (S! x {—1}) and

¢~ (S! x {1}). The group morphism Push : (ZZ%OJ’ x) — FE]Oq is defined by sending f; to Ty-© where 1,

s, o
denotes the Dehn twist along a simple closed curve « (see [ , Fact 4.7]). The Birman exact sequence uses the
map Push to describe the effect of forgetting a marked point fixed by the mapping class group. Namely:

Theorem 2.3.24. [ , Theorem 4.6] Let n be a natural number such that 2g +n > 2. The following sequence is exact:

[1],1 F orget

n Push
1——m (Zg,o,lfx) —T, 01

—T, —1 (2.3.2)

where the map Forget : 1"511)’,”1 — 1";0’1 is induced by forgetting that the point x is marked.
Lemma 2.3.25. Let n be a natural number such that 2g +n > 2. The Birman exact sequence splits, hence induces an

isomorphism ! ]ori é T <2§,0,1'p> , ;4 | B 20,1 (where s is introduced in Notation 2.3.8).

g ,1

Proof. Recall that there is an homeomorphism Z[xg)’q = 0 1h2 g0,1- Hence, the embedding of 2;,0,1 into Z([gxg]q

[x] (1

as the complement of the disc 20,0’1 with the marked point x induces an injective morphism l"g/o,l — T g,Ol,nl‘ The

action of Iy 20,1 ON 701 (ZJ; 017 x) is denoted by ay, . This provides a splitting of the exact sequence (2.3.2) and
i ¢,0,1

hence we have an isomorphism:

Recall that the definition of boundary connected sum in 91, (see Proposition 2.3.4) implies that the point p € 82?2] 1

belongs to the intersection of BZEX(])’? and 0X7 2,0, N Z([)x(]) 1 uzg 0,1- Hence we can consider a path 7y in Z([) (]) 1 connecting

the point p to x. Moving the point p to x along such a path  induces an isomorphism:

An (Zg,o,lf p) Sm (Zg,o,er) .

Since l";oll acts trivially on the disc Z([)X]o,l with the marked point x in Z([)x]o 1 uzg 01 =% [X]O 1» we deduce that for all

<P€r§,o,1i
Mioags, () =afy (9)o A

80,1

Hence, the following morphism is well-defined with respect to the semidirect product structure:

g (Zg,o,l'i’)ﬂ X Toor — m (Ez,o,vx) % T
Ze01 ”):Z o1

(fr9) — (Aa(f) ¢).

This is an isomorphism by the five lemma. O
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56 2. Chapter. Generalised Long-Moody functors

Definition 2.3.26. Let n be a natural number such that 2g +n > 2. We define the morphism ¢, 1 : 73 (2;0,1' p) —

I’;B”l to be the composition:

n n n B n & rin
7T] (ngorl’ p) — 7-(1 (Zgroll, p) X I‘glorl — r ,0,1 — r ,0,1.
IZZnO] g 8
8,

If ¢ = 0, we define gp 1 : ™ (Zg,o,lf p) — Og. to be the trivial morphism and ¢1; : ™ (Z(l),oll, p) — B, to be the

morphism sending the generator f; of 7 (2(1),0 1 p) to 07 (where 07 denotes the Artin generator of the braid group
on two strands By).

Remark 2.3.27. For 2g +n > 2, a generator f; of my (Zgo,l, p) = < fi,ee, fn+2g> is represented by a simple closed

curve in Zg,o,l based at p. Using a path 7 in Z([f(])’

éxg)q based at the marked point x filling in the additional puncture. By the definitions

of the morphisms # (see Lemma 2.3.25) and & (see Notation 2.3.22), the generator f; is sent by ¢, 1 to T o T};rl,

éxg)q encircling a tubular neighbourgood

(i connecting the point p to x, we thus associate to the generator f;

’

a simple closed curve ay, in X

where f; and f; are the isotopy classes of the simple closed curves in X
of the curve ay,.

Lemma 2.3.28. The setting {71?1 (ZJ;O 17 p) , 9)?%’0, M2, Gn1 } satisfies Condition 2.2.24.

Proof. Itis clear from our assignments that if 2g +n > 2, then the composition F§,0,1 — M (Zg,o,l' p) a; 1";,0’1 A
2,01
P
l"[gll)nl — l";gf’l is the morphism id s h—: l";,m — 1";%”1 Hence, the following diagram is commutative:
m (Zg,o,lf P) ——m (Zg,o,lf P) . F§,o,1 = 1“Zv,o,l
o0
Cn1
If ¢ = 0, the braid groups By and B; being the trivial group, Condition 2.2.24 is easily checked. O
Furthermore, we have the property:
Lemma 2.3.29. The morphism ¢, 1 satisfies Condition 2.2.17 for any natural number n.
Proof. If g = 0 and n < 1, the result follows from [ , Proposition 2.8]. Assume that 2g +n > 2. Let us

fix basis (fi, ..., fut2g) Of Fying = m (Zg/o,l,p) and (fi,..., fignt2g) Of Fipniog = 1 (Z;,Bﬁ,p). Namely, a
generator f; is represented by a simple loop either encircling a meridian or a parallel of one of the copies of the
torus X9 ,, or else encircling a circle around one of the copies of the one punctured disc X} ; ;. By our conventions,

the generator f; of (ZZEOJ’ p) is sent through

. . . 1
Hs [1, ld@] = [n_l (Z(l),o’yp) * ld7T1 (22014)) st (Zg,o,l/ P) — T (Zgir)’nl, P)

to the generator f1,; of m; (2;,45”1, p). So according to Remark 2.2.18, it is enough to prove that, as elements of

2+n .,
r 201"

—1 —1
gn+1,1<f1+i>o<(b§fz ) um) = ((b;" ) uidn>o<id1ngn,1 F). 33
0,0,17%0,0,1 0,0,17%0,0,1

56




2. Chapter. Generalised Long-Moody functors 57

1 1 n
X0 o0 Lo

Sn+1,1 (.f1+i)

——

Rue

(bxé-n-lvxé.m) - bid,

Figure 2.3.1: Proof of equality (2.3.3)

Let ay, (resp. By, ;) be the simple loop associated to the generator f; (resp. f14) in X gl]oq (resp. X 0,01 ) based

at the marked point filling in the additional puncture (see Remark 2.3.27). Recall that:

1], 14n

N gl V=1, ot !
Gn1 (fi) Ty O Ty and Gni1,1 (f144) T 0 T

where f; and f;" (resp. f 4; and fi ';) are the isotopy classes of the simple closed curves in Z,'E%nl (resp. Z[gl})”lﬁ")

obtained by pushing ay, (resp. By, ) off itself to the left and right. Since b?}z is given by doing half a Dehn

1
0,0,1 ’20,0,1

-1
twist in a pair of pants neighbourhood of 62(1),0,1 and 82(1),0,1, applying <b?§2 51 ) gidy sends ay, to Br .., fi

0,0,17<0,0,1
-1
to fi; and fif to f1++i (see Figure 2.3.1). Hence conjugating idzémh (Tf‘ ° TJ;}) by (b?}z 51 ) hid, gives
0, ! i 0,0,1770,0,1
T, © 1'11 . A fortiori the equality (2.3.3) is satisfied. O
fa AL

Corollary 2.3.30. With the previous assignments and notation, {m (Zgo,y p) ,zmg"’, 9)?2,9_,1} is a coherent Long-
Moody system.
Proof. We have already checked Assumption 2.2.1. Moreover, the functor 7 (Z};O 17 p) extends to give a functor

m (Z;O,l, p) : U5 — &r by Proposition 2.3.12 so that Assumption 2.2.13 is satisfied. Conditions 2.2.24 and
2.2.17 are checked in Lemmas 2.3.28 and 2.3.29. O

Example 2.3.31. We denote by H; (2;011, R) the functor induced by the functor H; (—, R) of Proposition 2.2.37.
We deduce from Lemma 2.2.38 that:

H (Zg,o,l' R) = LM{”1 (2;0,1rp)f9ﬁ§’0r9ﬁ2,€—,1} (R).
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58 2. Chapter. Generalised Long-Moody functors

Remark 2.3.32. Contrary to the cases of Section 2.3.3, since the morphisms ¢, are not trivial, the computation

o on an object F of Fct , R-9)t0o0 | 1s not given roposition 2.2.39. We thus
fLM{ﬂ< } bj Fof F uzm§'°R5m i gi byP position 2.2.39. Wi h
1

_ 0
3,0,1,P> ,im§ AN2,601

obtain new families of representations of the mapping class groups {l"g 0 1} N'
) ne

Remark 2.3.33. Instead of modifying only the number of punctures or only the orientable or non-orientable genus,
we can modify several of these parameters at the same time.

For instance, let 2t 27 be the full subgroupoid of M, on surfaces {ZZ 0 1} N (see Proposition 2.3.6). Let H be
8 At ne
the group m; (Z%,O,l’ p) = F3 and Hy be the trivial group m; (28’011, p), and a fortiori H, = 7y (22,0,1' p) = F3,

for all natural numbers n. We denote by 7y (27

~ 01 p) the associated functor of Assumption 2.2.13. Thanks to the

canonical embedding (using Notation 2.3.22):

/ [1] 14+n I (0 n ~ Tltn
& T, 50 (—> I, 01 = moHomeo X3 0182001/ {punctures} =T o1

we define the morphism gi? s (ZJ’; 017 p) — F%iz 0,1 to be the composition using Lemma 2.3.25:

1
1 (Zho1,p) < T (ZZ,o,lfp) ><‘ l"n01 = l“[ ] 0,1 ‘% r%iﬁor

Repeating mutatis mutandis the proofs of Lemmas 2.3.28 and 2.3.29 and of Corollary 2.3.30 shows that
{7[1 (Z:,O"l/ p) 7 £)J,t(z),g,p/ m2/ g%f’l }

is a coherent Long-Moody system. Denoting by H; (Z:’O,l, R) the functor induced by H; (—, R) of Proposition
2.2.37, we deduce from Lemma 2.2.38 that:

Hy (Z:,O,l’R) = LM{”l(Z:,o,l'l’)'smg,gm’imz’g%ﬁ} -

Since the morphisms gi’l] are not trivial, we obtain families of representations of the mapping class groups {I"Z 01 } N
, 01 e

by iterating LM { } which are not determined by H; (Z: 01 R) using Proposition 2.2.39.

7'[1( 1/P) mng’mz’ggll’

2.3.5 Surface braid groups

We fix a natural number g throughout Section 2.3.5; let B, (resp. %%’O) be the subgroupoid of 91, (resp. Dﬁg’o) with
the same objects and with morphisms those that become trivial forgetting all the punctures. Namely, for all objects
Z§,0,1 of My, we have the following short exact sequence (see for example [G] P, Section 2.4]):

— 10 1

80,1

1—=BS — 1"

80,1

where Bj = B (Zg 0 1) denotes the braid group of the surface X" 0,1+ Note that Obj <%§,0) = IN. The monoidal
structure (M, 1, 0) restricts to a braided monoidal structure on the subgroupoid 9B, denoted in the same way

(B2,1,0). Remark that the groupoid EBg’O is finitely generated by the monoidal structure in (%2, 023, 1). By
Proposition 2.3.7, Assumption 2.2.1 is thus satisfied using the groupoid (%2, g, 20 0,0 1)

Let H be the free group 71 (2(1],0’1, p) = Fy and Hj be the free group ( 2,0,17 p) & Fpg. For all natural
numbers 11, we consider the restriction

71 (=, P)yges, © UB2 — UM, ) o
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2. Chapter. Generalised Long-Moody functors 59

defined by the morphisms

ayn
b . RS n 801 n
QZ;,O’] . BS — rglorl — 7-[] (ngorl’ P) ’

b
to obtain the associated functor 71; (Z;O 17 p) : ﬂ%«g'o — Bt of Assumption 2.2.13.

8
[]n

of the surface 2(1),0,1 is fixed. This group B‘[gl]/n is also known as the intertwining (1, #)-braid group on the surface

Notation 2.3.34. For all natural numbers 11, we denote by B, the subgroup of B (Z(l) 01 hZZ 0 1) where the puncture

2§,1 (see for example [ , Section 1]) which is the kernel of the morphism:
(1]n (1]
l"g/1 — l“g,1 —1
defined by filling in the n punctures. Hence, there is a canonical embedding:

&% . BS

14+n 0 ~ RS
e ker (rg,O,l — rg,O,l) =By,

Lemma 2.3.35. For all natural numbers n, there is an isomorphism:

8 Z n 8
B[l],n =7 (Zg,(),lr P) bx Bn~
ﬂzn
2,01

Proof. Recall the isomorphism of Lemma 2.3.28:

nn Z
Teon=m (Zg,o,lfp) 2 Toon
Ze.01
The desired isomorphism is a consequence of the universal property of the kernel of the morphism I‘E]Onl —
1]
Too1— 1 O

Definition 2.3.36. Let n be a natural number such that 2g +n > 2. We define the morphism ‘55,1 ) (2;0,1/ p) —
BS

14 to be the composition:

b
n n § % ng & ps
m (2&0/1, p) — m (Zg,O,l'p) ﬂbx By, = Bm,n — B,

Z201
If ¢ = 0, we define gg; : 1 (Zg,o,l' p) — Og. to be the trivial morphism and g1 : 71y (Z(l),o,l, p) — B, to be the

morphism sending the generator f; of 71 (2(1) 017 p) to 07 (where 07 denotes the Artin generator of the braid group
on two strands B»).

Lemma 2.3.37. The setting {7{5’, %%’0, B, 93,1} satisfies Condition 2.2.24.
Proof. The proof follows mutatis mutandis that of Lemma 2.3.28. O
Proposition 2.3.38. With the previous assignments and notation, {’Hé’, %5’0, By, gi/l } is a coherent Long-Moody system.

b b
Proof. The functor 7 (2;’0,1, p) extends to give a functor 7 (2;,0,1/ p) : UB3 — Bt by Proposition 2.3.12, so

that Assumption 2.2.13 is satisfied. Condition 2.2.24 is checked in Lemma 2.3.37. Finally, as Bﬁ is a subgroup of

I" |, repeating mutatis mutandis the proof of Lemma 2.3.29, the morphisms ¢! ; satisfy Condition 2.2.17 for all
&Y, n,

natural numbers 7. O
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Example 2.3.39. We denote by H; (Zg_o 17 R) o the restriction of the functor induced by the functor H; (Zg_O 17 R)
,0, ) ,0,

of Example 2.3.31 to the subcategory ﬂ%g’o of uzmg'o. We deduce from Lemma 2.2.38 that:

H; (2*

0,17 (R) .

R). =LM o o
B, {nl (z;o/l,p) B ,*Bz,g,,l}

Remark 2.3.40. As for Example 2.3.31, since the morphisms {(;2 1 } are not trivial, the computation of LM b .o
7+ ) neN {m <2§/011,p> M3, By,
on an object F of Fct (Ll%g’o, R—Emoo) is not a priori determined by H; (Zg_o 17 R)% using Proposition 2.2.39.
,0, )

Hence, the iterates of the Long-Moody functor LM define new representations for surface

b
{ s (250,1 rP) ,9315"0,‘32,@",1 }
braid groups. As far as the author knows, there are very few explicit examples of representations of surfaces braid
groups for g > 1.

The case of braid groups: Assuming that ¢ = 0 and that H, = m (28,0,1, p) ~ F,, we recover the results of

[ ]. Indeed, in this case we consider the category ﬂ%g’o = ilB, which is Quillen’s bracket construction on
the braid groupoid B (see Notation 2.0.1). The choice 92,1 : F, — By41 of Definition 2.3.36 corresponds to the
morphism introduced in [ , Example 2.7]:

F, — Bn+1

£ o7 ifi=1
l gioguy (fii1)oo;t ifie{2,...,n}.

In Notation 2.3.8, we fixed the actions

agp, i Bn=Tgoq — Aute (m1 (Z60,.P))
which correspond to Artin’s representations for all natural numbers n. By [ , Section 2.3.1] we obtain:

Proposition 2.3.41. LM { } = LM; where LM, denotes the Long-Moody functor of [ , Sec-

7T1( 670,1’]’7) b’%glo'%zlgi,l
tion 2.3.1]. In particular, if R = C [til] by [ . Proposition 2.31] we have:

F1. LM (t~C [tﬂD ~ Burp,

{’Hsb/%g/or%bgtl,] }
where Bury : UP — C [+1] -DNod denotes the functor associated with the family of unreduced Burau representations with
parameter t2 (see [ , Section 1.2]).

Remark 2.3.42. As pointed out in Remark 2.3.9 and in [ , Section 2.3.2], we could have chosen other actions
a, : B, — Aut(F,) and morphims ¢, : F, — B,,;. For instance, the functor associated with the family of
Tong-Yang-Ma representations (see [ , Section 1.2]) is recovered by the Long-Moody functor defined using
a Wada representation other than the Artin representation (see [ , Section 2.3.2]).

This way, we can recover all the Long-Moody functors introduced in [ ]. In addition, the new framework
developped in the present paper recovers even more families of representations of braid groups that we could not
obtain with the work of [ ]. Let us give an example illustrating this fact.

Example 2.3.43. Let n be a natural number. Using the terminology of [ ], there is a classical geometric em-
bedding %, : Byy41 — 1"2’0’1 that sends the standard generators of the braid group to Dehn twists around a fixed
system of meridians and parallels on the surface 22,0/1 (we refer to [ , Section 1] for more details about this
embedding). Let W be the subgroupoid of M, 0 defined by the embeddings {#1} e We assign H to be the
group 71 (22,011, p) and Hj to be the trivial group.
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b,2
Hence, the functor 71y (29/0,1, p) of Section 2.3.3.1 provides a functor 7y (2‘1,0/1, p) CUW — Llf)ﬁ; 0 B

by restriction so that Assumption 2.2.13 is satisfied. We consider g+ : 711 (22 01’ p) — B,,41 the trivial morphism

b,2
(see Example 2.2.22). According to Remark 2.2.27, {m (Z(l 01’ p) W, 93?; ’O, g,t} is a coherent Long-Moody

system. Then, it is clear from Lemma 2.2.38 that:

Hi (20 4,R)  =LM {

R
uw 7T1(Eg'o/l'l’)b'szlmz,gn,r}( )

where H; (Z‘i 01,R> denotes the restriction of the functor H; (Z(l 0 1,R) to the category YV. In [ ],
My MW My

Callegaro and Salvetti compute the homology of braid groups with twisted coefficients given by the functor
0
H (Z—forl’z)uw'

Remark 2.3.44. In [ ], Hy is the free group on n generators F,. A fortiori, for dimensional considerations on
the objects, there was no way to directly recover the functor of Example 2.3.43 applying a Long-Moody functor
with this setting.

Remark 2.3.45. Assume that ¢ > 1 and consider the presentation of surface braid groups {B%} N introduced by
ne

Bellingeri in [ ]. Following the situation for braid groups, we can consider functors of type

1. IMpen, ) (r-c[])

where, for an object F of Fct (M‘Bg’o, R—Emob), t-F: M‘B‘g'o — C [til] -Mod is the functor defined for all natural
numbers n by t - F (n) = F (n) and such that:

e for braid generators {0;};c(y, 1y of By, (t-F) (0;) = F(oy);
e for generators {ai}ie{l,...,g} and {bi}ie{l,...,g} of BS, (t-F) (a;) =t-F(a;)and (t-F) (b;) = t-F (b;) .

These functors induce new representations of surface braid groups. The analogous approach for braid groups (see

Proposition 2.3.41) allowed us to recover inter alia the unreduced Burau representations. Note that the restriction

of the linear representations induced by t ! - LM { HB0 ¢ } (t-C [t*1]) (or by any iteration of such type of func-
r=92 s6n,l

tors) do not restrict to the unreduced Burau or Lawrence-Krammer-Bigelow representations for braid groups by
[ , Section 5].

2.4 Strong and weak polynomial functors

This section introduces the notions of (very) strong and weak polynomial functors with respect to the framework
of the present paper. The first subsection presents the notions of strong and very strong polynomial functors and
their first properties. We thus extend [ , Section 3] to a slightly larger framework. In the second subsection,
we introduce the notion weak polynomial functors for pre-braided monoidal categories with an initial object and
study their basic properties, generalising the previous notion of [ , Section 1].

2.4.1 Strong and very strong polynomial functors

For the remainder of Section 2.4.1, (9,1, 0) is a pre-braided strict monoidal small category where the unit 0 is
an initial object. We consider 901 a full subcategory of (", ,0). Finally, we fix .4 an abelian category.

In this section, we introduce the notions of strong and very strong polynomiality for objects in the functor
category Fct (M, A). In | , Section 3], a framework is given for defining the notions of strong and very strong
polynomial functors in the category Fct (M, A), where M is a pre-braided monoidal category where the unit is an
initial object. It generalises the previous work of Djament and Vespa in [ , Section 1]. We also refer to [ 1

61



62 2. Chapter. Generalised Long-Moody functors

for a comparison of the various instances of the notions of twisted coefficient system and polynomial functor. This
section thus extends the definitions and properties of [ , Section 3] to the present larger framework, the
various proofs being direct generalisations of this previous work.

Notation 2.4.1. We denote by Obj ('), the set of objects m" of M’ such that m'gm is an object of M for all objects m
of M.

Let m € Obj (9'),. We denote by T : Fet (2, A) — Fet (9, A) the translation functor defined by 7 (F) =
F (mh—), ip : Id — Ty, the natural transformation of Fct (9, R-M100) induced by the unique morphism ¢, : 0 — m.

We define d,, = coker (i) the difference functor and «,, = ker (i,,) the evanescence functor. The following basic
properties are direct generalisations of [ , Propositions 3.2 and 3.5]:

Proposition 2.4.2. Let m,m’ € Obj (9’ );- Then the translation functor T, is exact and we have the following exact
sequence of endofunctors of Fct (9, A):

Im

(L. TN 5 LU N SRS} 2.4.1)

Moreover, for a short exact sequence 0 — F — G — H — 0 in the category Fct (9, A), there is a natural exact
sequence in the category Fct (9, A):

0 — & (F) — km (G) — Kk (H) — 0 (F) — 0 (G) — 6 (H) — 0. (24.2)

In addition, the functors T, and T, commute up to natural isomorphism and they commute with limits and colimits; the
difference functors 6, and 6, commute up to natural isomorphism and they commute with colimits; the functors k,, and i,
commute up to natural isomorphism and they commute with limits; the functor T, commute with the functors d,, and K, up
to natural isomorphism.

We can define the notions of strong and very strong polynomial functors using Proposition 2.4.2. Namely:

Definition 2.4.3. We recursively define on d € IN the categories Pol;tmng (M, A) and VPol, (901, A) of strong and
very strong polynomial functors of degree less than or equal to d to be the full subcategories of Fct (9, A) as
follows:

1. Ifd < 0, Pol}™"8 (2, A) = VPoly (M, A) = {0};

2. if d > 0, the objects of Pol;tmng (9, A) are the functors F such that for all m € Obj (I');, the functor

Om (F) is an object of Pol;tiolng (9, A); the objects of V'Pol; (90, A) are the objects F of Pol; (I, A) such that
&m (F) = 0 and the functor d,, (F) is an object of VPol;_1 (9, A) for all m € Obj ('),

For an object F of Fct (M, A) which is strong (respectively very strong) polynomial of degree less than or equal

to n € N, the smallest natural number d < n for which F is an object of Pol;tmng (M, A) (resp. VPoly (I, A)) is
called the strong (resp. very strong) degree of F.

Finally, let us recall the following useful properties of the categories associated with strong and very strong
polynomial functors. They are direct generalisations of [ , Propositions 3.9 and 3.19].

Proposition 2.4.4. We assume that the category O is finitely generated by the monoidal structure in (9, 4,0). We denote
by E a finite generating set of .

Let d be a natural number. The category POZZMMg (M, A) is closed under the translation functor, under quotient, under
extension and under colimits. The category V' Poly (9, A) is closed under the translation functors, under normal subobjects
and under extension.

Moreover, an object F of Fct (9, A) belongs to Pol;mmg (M, A) (resp. VPoly (M, A)) if and only if 5. (F) is an object

ofPol;tiolng (9, A) (resp. « (F) = 0 and J, (F) is an object of VPol, 1 (9, A)), for all objects e of E N Obj (M),
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2. Chapter. Generalised Long-Moody functors 63

2.4.2 Weak polynomial functors

We deal here with the concept of weak polynomial functor. It is introduced by Djament and Vespa in [ ,
Section 1] in the category Fct (S, A) where S is a symmetric monoidal category where the unit is an initial object,
and A is a Grothendieck category. Weak polynomial functors form a thick subcategory of Fct (S, A) (see Defini-
tion 2.4.13 and Proposition 2.4.16). In particular, this notion happens to be more appropriate to study the stable
behaviour for objects of the category Fct (S, A) (see [ , Section 5], [ ] and Remark 2.5.39).

We adapt the definition and properties of weak polynomial functors in the present larger setting. In particular,
the notion of weak polynomial functor will be well-defined for the category Fct (UG, R-0t0d) where UG is Quillen’s
bracket construction applied to the groupoid G given by a reliable Long-Moody system {#, G, G’, ¢}. We refer the
reader to [ , Chapitres II et III] for general notions on abelian categories and quotient abelian category which
will be necessary for this section. A Grothendieck category is a cocomplete abelian category which admits a gen-
erator and such that direct limits are exact.

For the remainder of Section 2.4.2, we assume that the abelian category A is a Grothendieck category. We
recall that we consider (90U, 1,0) a pre-braided strict monoidal small category where the unit 0 is an initial
object and 97 a full subcategory of (9, 1,0) finitely generated by the monoidal structure.

Remark 2.4.5. We recall that therefore the functor category Fct (90, A) is a Grothendieck category (see [ D.
Definition 2.4.6. [ , Definition 1.10] Let F be an object of Fct (91, . A). The subfunctor Y xmF of F is
meObj(M’),

denoted by « (F). The functor F is said to be stably null if x (F) = F. Stably null objects of Fct (91, A) form a full
subcategory of Fct (91, A), denoted by Sn (901, A).

We have the following basic properties:

Lemma 2.4.7. The functor « is left exact. Moreover, the functor x (F) is an object of Sn (9, A) for all objects F of
Fct (90, A).
Proof. A filtration on the evanescence functors {x, } meObj(M’), is given by the inclusions x,; < &, and k, —

Kypn induced by n — n'n and n’ — n'in. Hence, « is left exact as the filtered colimit of the left exact functors
{%m} meovj(on),- For F an object of Fet (9, A), k. F is an object of Sn (M, A) for all m € Obj (90", since filtered

colimit commute with finite limits (see [ , Chapter IX, section 2, Theorem 1]). Hence, the second result follows
from the commutation of x with filtered colimits since it is a filtered colimit (see [ , Chapter IX, section 2]). O
The following property is an extension of the result [ , Corollary 1.15].

Proposition 2.4.8. The category Sn (9, A) is a thick subcategory of Fct (O, A) and it is closed under colimits.

Proof. Recall that the functor x commutes with filtered colimits (see Remark 2.4.7). Hence, the category Sn (901, A)
is closed under filtered colimits. As Fct (901, A) is a Grothendieck category, the category Sn (901, A) is closed under
colimits (see [ , Chapters V and IX]).

Let us prove that Sn (9, A) is a thick subcategory of Fct (9, A). Let G be a subfunctor of F. As Fct (I, A) isa
Grothendieck category, we denote by F/G the quotient. Hence, since « is left exact, the following diagram (where
the lines are exact and the vertical arrows are the inclusions) is commutative:

0 K(f) KT)HK(FfG)
0 G F F/G 0.

It follows from the five lemma that Sn (90, A) is closed under subobject.
Let f : F — Q — 0be an epimorphism of Fct (9, A). Consider the following commutative diagram where the
vertical arrows are the inclusions:
( f)
Q
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64 2. Chapter. Generalised Long-Moody functors

Thus if F € Obj (Sn (901, A)), then the arrow « (Q) — Q is an equality. Hence, Sn (9, A) is closed under quotient.

Finally, let 0 — B % F — Q — 0 be a short exact sequence of Fct (9, A) with B,Q € Obj (Sn (MM, A)).
For m € Obj (M'),, let Fy, be the pullback of the morphisms F — Q and «,, (Q) < Q. Note that F is thus the
filtered colimit (with respect to the inclusions) of the pullbacks {Fm}mEObj(Em’)h' We denote by B, the kernel of

Fn — x5 (Q). Recall that x commutes with filtered colimits and that filtered colimits in A are exact (since it is a
Grothendieck category). Hence, it is enough to prove that Fy, is in Sn (9, A) for all m € Obj (M'),. As Ky is the
kernel of a natural transformation between the identity functor and a left exact functor, x, o x, is isomorphic to
xm. By the universal property of the kernel, there exists a unique morphism ¢ such that the following diagram is
commutative:

0 B Fy K (Q) ———= 0
im(Bm)\L P 7,) g lim(Fm) \Lim(Km(Q))_O
A
0 —— Ty (By) —— T (F) —— T (km (Q)) —— 0.

Forallm € Obj (M), let @1 (T (km (B))) be the pullback of the morphisms ¢ : Fyy — Ty (By) and Ty (5 (Bm)) <
Ty (Bm ). As a pullback commutes with a filtered colimit in an abelian category and since 7, commutes with filtered
colimits, we deduce that

. -1 _
S, (97" (o (i (Bu)))) = Fo

In addition, for all m € Obj (M), the following diagram is commutative:

Fin

iﬂ‘l I}’I(Fm)
/ lim(Fm) :
(a)

m (& im m (Fm
o, (Bm)T—>Tm(Fm) (i (F))

liln(Tnz(an))

T Tm (Fm) = Tugm (Pm) .
Tm(im(Bm)
Tme(lx)

T Tn (Bm) i> T Tn (Bm)

We deduce from the previous commutative diagram and the universal property of the kernel that there exists an
inclusion morphism ¢! (T, (km (Bw))) <= Ky (F) for all m € Obj (I );- Using the definition of x as a filtered

colimit (see Definition 2.4.6), we deduce that %%lgm : (¢! (T (m (Bm)))) is a subobject of « (Fy,). Hence, we
meObj(M'),

have « (Fy,) = Fy and thus Sn (901, A) is closed under extension. O

Remark 2.4.9. We see here why we require the category A to have more properties than just being an abelian
category: it is necessary for the proof of Proposition 2.4.8 to assume that the filtered colimits in the category A are
exact, which is the case for a Grothendieck category.

The thickness property of Proposition 2.4.8 ensures that we can consider the quotient category of Fct (9, A)
by Sn (I, A) (see [ , Chapter III]).

Definition 2.4.10. [ , Definition 1.16] Let St (9, A) be the quotient category Fct (901, A)/Sn (9, A). The
canonical functor associated with this quotient is denoted by 7oy : Fet (9, A) — Fct (9, A)/Sn (9, A), the right
adjoint functor of 7oy (see [ , Section 3.1]) is denoted by sy : Fct (M, A)/Sn (M, A) — Fct (M, A) and
called the section functor.

Remark 2.4.11. The functor 719y is exact, essentially surjective and commutes with all colimits (see [ , Chapter
3)).

The following proposition introduces the induced translation and difference functors on the category St (911, A).
Its proof is analogous to that of [ , Proposition 1.19], using Proposition 2.4.2 which extends [ , Proposition
1.4].
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2. Chapter. Generalised Long-Moody functors 65

Proposition 2.4.12. [ , Proposition 1.19] Let m € Obj (9'),. The translation functor T, and the difference functor

Om of Ect (9N, A) respectively induce an exact endofunctor of St (9, A) which commute with colimits, respectively again
called the translation functor T, and the difference functor 6,,. In addition:

1. The following relations hold: 6., o Tton = 7Ton © Oy and Ty, © TTop = TTon © T

2. The exact sequence (2.4.1) induces a short exact sequence of endofunctors of St (9, A):
0 — Id ™ 7, A% 6,0 — 0. (2.4.3)

3. For another object m’ of 9, the endofunctors 8y, 6.y, Tm and T,y of St(IM, A) pairwise commute up to natural
isomorphism.

We can now introduce the notion of a weak polynomial functor.

Definition 2.4.13. [ , Definition 1.22] We recursively define on d € IN the category Pol; (9, A) of polynomial
functors of degree less than or equal to 1 to be the full subcategory of St (91, A) as follows:

1. Ifd < 0, Poly (M, A) = {0};

2. ifd > 0, the objects of Pol; (9, A) are the functors F such that the functor dy (F) is an object of Pol; 1 (90, A)
for all x € Obj (M),

For an object F of St (91, . A) which is polynomial of degree less than or equal to d € IN, the smallest natural
number n < d for which F is an object of Pol; (9, A) is called the degree of F. An object F of Fct (9, A) is weak
polynomial of degree at most d if its image 7oy (F) is an object of Pol; (9, A). The degree of polynomiality of
mtop (F) is called the (weak) degree of F.

Remark 2.4.14. A strong polynomial functor of degree d is always weak polynomial of degree less than or equal to
d by the first property of Proposition 2.4.12.

We conclude this subsection by giving some important properties of the categories of weak polynomial func-
tors. Their proofs follow mutatis mutandis their analogues in [ , Section 1].

Proposition 2.4.15. [ , Proposition 1.24] We assume that the category 9t is finitely generated by the monoidal structure
in (MM, 4,0). We denote by E a finite generating set of M. Let F be an object of St (M, A) and d be a natural number. Then,
the functor F is an object of Poly (M, A) if and only if the functor o, (F) is an object of Poly_1 (9, A) for all objects e of
ENObj (M'),.

Proposition 2.4.16. [ , Proposition 1.25] Let d be a natural number. The subcategory Poly (9, A) of St (9, A) is
thick and closed under limits and colimits.

Proposition 2.4.17. [ , Proposition 1.26] There is an equivalence of categories:
A~ Poly (901, A) .

Finally, if the category (M, 4,0) is symmetric monoidal as in [ ], we have an equivalent definition of
stably null functor of Fct (9, A). Namely, following mutatis mutandis [ , Section 1.2] and the proof of | ,
Proposition 1.13], we have:

Lemma 2.4.18. We assume that the category (9, 1,0) is symmetric monoidal and that there exist two objects e and e’ of

~

' such that for all objects m of the category O, there exists a natural number n such that m = e¥ge’. Then, an object

F of Fct (M, A) is stably null if and only if C?lim) (P (eh”he’)) = 0, where (N, <) is considered as a subcategory of
ne(IN,<

M using the functor (N, <) — M sending a natural number n to ™’ and assigning telid iy to the unique morphism

Yn:n—n+1

Remark 2.4.19. In some situations, this alternative definition is more convenient than the original one of Definition
2.4.6. This is the case for example for the proof of Lemma 2.5.33.
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66 2. Chapter. Generalised Long-Moody functors

2.5 Behaviour of the generalised Long-Moody functors on polynomial func-
tors

In this section, we study the effect of the generalised Long-Moody functors on (very) strong and weak polynomial
functors. Indeed, they have the property to increase by one the degree of very strong and weak polynomiality,
assuming that the groups H and H are free (see Theorems 2.5.29 and 2.5.36). The five first subsections generalise
[ , Part 4]. We will insist on the aspects which differ from this previous work. The last subsection gives new
results on the effect of Long-Moody functors on weak polynomial functors.

Let {#,G,G’, ¢} be a coherent Long-Moody system (see Definition 2.2.26), which is fixed throughout this sec-
tion. We consider the associated Long-Moody functor LM g g/ ,1 (see Theorem 2.2.30), which we fix for all the
work of this section (in particular, we omit the “{H, G, G’,¢n}” from the notation most of the time).

Remark 2.5.1. If we consider 91 to be the category $1G associated with the coherent Long-Moody system {#, G, G', ¢},
it is enough to use the translation functor 7y, as stated in Propositions 2.4.4 and 2.4.15. Indeed, the category 4G is
generated by 1 using the monoidal product  (see Section 2.2.1.1).

2.5.1 Preliminaries

The observations of this first subsection are generalisations of [ , Section 4.1]. Recall the following crucial
property of the augmentation ideal of a free product of groups.

Proposition 2.5.2. [ , Section 4, Lemma 4.3 and Theorem 4.7] Let Gy and G, be groups. Then, there is a natural
R [Gy * Gy]-module isomorphism:

ZR[Gl*GZ] = <IR[G1] R%]] R [Gl * GZ]) @ <IR[G2] R%z] R [Gl * Gz]) .

Remark 2.5.3. The augmentation ideal Zg(g,| (respectively Tg(c,)) is a right R [G1]-module (respectively R [Go]-
module). Moreover, the group ring R [Gy * Gy] is a left R [G1]-module (respectively left R [Gy]-module) via the
morphism idg, * ig, : G1 = Gy * Gy (respectively (g, *idg, : G2 — G1 * Gy ).

For F an object of Fct (UG, R-Mod), recall that we introduced the augmentation ideal functor Z in Definition
2.2.28. For all natural numbers n, by Proposition 2.5.2, we have a R [H * H,|-module isomorphism:

I(n+1) ® F(n+2)

R[H1+)1}
= ((IR[H] ® R[H1+n]> © <I(”) ® R[H1+n]>> ® F(n+2).
R[H] R[Hy R[Hi14]

Notation 2.5.4. Let n and n’ be natural numbers such that n’ > n. We denote by Z ([’ — n,idyy]) : Zgipen) — I (1)
the R-module morphism induced by the group morphism idp«n %1y, = H™ — H,y.

Recall thatt; : G = Og. (see Notation 2.0.1) denotes the unique morphism from the group G to Og.. We denote
by 7 ([ —n,idy]) : T (') — gy the R-module morphism induced by the group morphism idpm * tg,
Hn’ — H*",

Remark 2.5.5. By Remark 2.5.3, the R [Hj,|-module F (n + 2) is a R [H]-module via

F(G1yno (idg*1tp,)): H— Autrones (F (n+2))

and R [Hy]-module via
F(G14n 0 (1t xidp,)) : Hyn — Autg.ones (F (n+2)).

Then, the distributivity of the tensor product with respect to direct sum gives:
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Lemma 2.5.6. Let F € Obj (Fct (UG, R-9M0d)) and n be a natural number. Then, we have the following R-module isomor-
phism:

7LM (F) (n) = (IR[H} ® F(n+ 2)) ® (I (n) ® F(n+ 2)) . (2.5.1)
R[H] R[Hny]
Definition 2.5.7. For all natural numbers n and F € Obj (Fct (UG, R-0t0d)), we denote by

* v (F), the monomorphism of R-modules Z ([n, id,;11]) [ ® ] idE(n12) t Ir[H] ?i)] F(n+2)— LM (F) (n),
- H1+n T R[H

* {(F), the monomorphism of R-modules 7 ([1,id,11]) ® idpni2y: Z(n) ® F(n+2)— nLM(F)(n),
B R[Hip) R[H,]

associated with the direct sum of Lemma 2.5.6.

Similarly to [ , Section 4.1], this R-module decomposition will lead (under an additional assumption, see
Section 2.5.3.1) to a decomposition of 71 LM (see Corollary 2.5.25) as a functor.

2.5.2 Factorisation of the natural transformation ;LM by LM (i;)

Recall from Proposition 2.4.2 the exact sequence in the category of endofunctors of Fct (41G, R-Mtod), which defines
the natural transformation i;:

(@) i A
0 K —Id — > s 4y 0. (2.5.2)

Our objective is to study the cokernel of the natural transformation ijLM : LM — 11 o LM. We recall that for F an
object of Fct (UG, R-M0d), for all natural numbers #, this is defined by the morphisms:

(iLM) (F), = LM (F) (i1hidy) = LM (F) ([1,id1.,]) : LM (F) (1) — 5 LM (F) (n).

n
Since the generalised Long-Moody functor is right-exact (see Proposition 2.2.33), we have the following exact
sequence:

LM(i;) LM(4)

LM LMo T

LMod; ——=0. (2.5.3)

Remark 2.5.8. If the groups Hy and H are free, since the generalised Long-Moody functor is then exact (see Corol-
lary 2.2.35), the following sequence is exact:

LM()y) LM (i) LM(4,)
0——= LMok LM LMoty ——————=LMoé ——=0. (2.5.4)

First of all, we impose an additional condition on the morphisms {¢, : Hy — Gy41},,eN-

Condition 2.5.9. The group morphisms {¢, : H; — Gy41},cn of Condition 2.2.17 are such that for all elements
h € Hy, for all natural numbers #, the following equality holds in G, 5:

((blg,’l ) hidn) o (idiicn (1)) = cur (H ([Lidysa]) (1) 0 ((blg,/l ) uz‘dn> |

Remark 2.5.10. As stated in Remark 2.2.18, Condition 2.5.9 implies Condition 2.2.17.
Remark 2.5.11. The family of trivial morphisms {¢, : Hy — Gp41},cp Satisfies Condition 2.2.17.
Henceforth, we assume that Condition 2.5.9 is satisfied by the coherent Long-Moody system {H, G, G’,¢}.

We show in Lemma 2.5.13 that /1LM factors through LM (i1). Beforehand, we remark that the R-modules

R[H,]
with LM (1 F).

{I (n) ® F(n+ 2)} in the decomposition of Proposition 2.5.6 assemble to form a functor which identifies
nelN
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Proposition 2.5.12. For all F € Obj (Fct (4G, R-900)), the monomorphisms {¢ (F), },,cn (see Definition 2.5.7), induce
a natural transformation &' (F) : (LMo 1y) (F) — (1 o LM) (F), assigning for all natural numbers n:

& (F), = (idz(m) N ]F ((blg,’l)l hidn)> o (F),.

1+n
This yields a natural transformation ' : LM o1 — 7y o LM.

Proof. Let n be a natural number. The fact that the assignment ¢’ (F),, is well-defined with respect to the tensor
product structures is a direct consequence of Condition 2.5.9 (see [ , Proposition 4.18]).

Let us show that ¢’ (F) is a natural transformation. Let n and 7’ be natural numbers such that n’ > n, and
[n" —mn,g] € Homgg (n,n’). Since Z is a functor and by the defining equivalence relation of {G’ (see Definition
2.1.3) and since 4G is a full subcategory of £1G’, we have:

T (idif [n' —n,8]) o Z ([1,idys1]) = Z([n —n+1,(id15g)])
T([Lidyaa]) o Z ([0 = n.g]).

So we deduce that:
(1o LM) (F) ([0 = n,8])) o (&' (F),)) = (&' (F)y ) o (LMo m) (F) ([n' = n,8])).

That ¢’ is a natural transformation follows, mutatis mutandis, from the argument in the proof of [ , Propo-
sition 4.18]. n

Now, using the natural transformation ¢’, we can prove the desired following factorisation.
Lemma 2.5.13. As natural transformations from LM to Ty o LM, the following equality holds:
¢ o (LM (1)) = i LM.

i\ -1
Proof. Let F be an object of Fct (UG, R-Mod). Let n be a natural number. Since (blgl) o (11hidy) = idq 41 by
Definition 2.1.10, we deduce from Proposition 2.5.12 that:

2.5.3 Study of Coker (¢')

It follows from the definition of i; and from Lemma 2.5.13 that the following diagram is commutative and the rows
are exact sequences in the category of endofunctors of Fct (UG, R-Dt0d):

O;LM LM A LM

0——=x;0oLM LM 710 LM 0joLM ——=0
LM(iﬂl

0——=1LMo Tlc% 7 0 LM Coker (¢') ——0.

by Lemma 2.5.13
The universal property of the cokernel implies:

Proposition 2.5.14. There exists a unique natural transformation LM o 67 — 61 o LM such that the following diagram is
commutative and the rows are exact sequences in the category of endofunctors of Fct (4G, R-00100):

OHLMOQLHOLMHCOICEV((:/)*>0

Vo

0 ——LMod — & o LM —— Coker (') —— 0.
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We denote by ¢ the natural transformation 7y o LM — Coker (¢') in the diagram of Proposition 2.5.14. By
Lemma 2.5.6, it is clear that the R-modules Coker (') (1) are isomorphic to the factor Zg;y ® F(n+2) of
R[H]

71LM (F) (n) for all natural numbers 1. Recall the notation 7 ([0 —n, id1 | ) introduced in Notation 2.5.4. It

follows from Lemma 2.5.6 and Lemma 2.5.13 that for all F € Obj (Fct (4G, R-Mod)) and for all natural numbers n
and #’ such that n’ > n:

=1 . .
F), =1 n,id, ® id .
o(F), (I idua]) @ idr)

This leads ineluctably to wonder if the decomposition of Lemma 2.5.6 is functorial. To prove this, we need a
further assumption.

2.53.1 Additional assumption

Consider the functor H : 4G’ — &t given by the coherent Long-Moody system. Recall the pre-braided monoidal
category (UG, 5,0g/) given by Assumption 2.2.1.

Notation 2.5.15. We denote by &ty , the full subcategory of &r of the finite free products on the objects O, H and
Hp. The free product * defines a symmetric strict monoidal product on &ty p,, with O, the unit. The symmetry
of the monoidal structure is given by the canonical bijection A * B = B x A which permutes the two terms of the
free product, for A and B two objects of &ty py,.

Let gzoll) be the full subgroupoid of (G’, 1, 0g/) of the finite monoidal products (ie using ) on the objects 0g/, 0

and 1 of G'. Note that the monoidal structure § restricts to give a braided monoidal groupoid (Q 20 L Og/) .

Under an additional assumption on the augmentation ideal functor Z, we have a enlightening description of
the functor Coker (¢’). Namely, we assume:

Assumption 2.5.16. The functor H of Assumption 2.2.13 defines a braided strict monoidal functor H : (ggo 1y i Og/> —
(Svh,Hy, *, O )-

Lemma 2.5.17. Assumption 2.5.16 implies in particular that for all natural numbers m and n, for all g € Gy:
o H (idmubg) o (idgem * 1gy,) = (idpem * 15, );
o 1 (b5,) = byiii.
Proof. These relations are straightforward consequences of the definition of a braided strict monoidal functor. [

As the functor 7 is induced by H (see Definition 2.2.28) and the morphisms Z ([n’ — n,id,]) are induced by
the morphisms idpn 1y, —+ H*™ — H,/ (see Notation 2.5.4), we deduce from Assumption 2.5.16 the following
relations, used in the proof of Proposition 2.5.23:

Corollary 2.5.18. For all n and n' be natural numbers such that n' > n, forall g € Gp:

o Z(idy _,88) oL ([0 —n,idy]) =T ([n' —n,idy]);

s <(b1fn,n)_l hidn> o (Z([n —midysa]) o T ([midusa])) =T ([n,idusa]).

Remark 2.5.19. The relations of Corollary 2.5.18 will be used to prove Proposition 2.5.23.
Remark 2.5.20. When (UG, 5,05/) = (UG, 1,0g) = (448, 8,0), Lemma 2.5.17 shows that Assumption 2.5.16 implies
assuming [ , Condition 4.8] and [ , Condition 4.6].

Definition 2.5.21. A coherent Long-Moody system {#, G, G’, ¢} is said to be reliable if it satisfies Condition 2.5.9
and Assumption 2.5.16.

From now until the end of Section 2.5, we assume that the fixed coherent Long-Moody system {#, G, G’, ¢}
is reliable.
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2.5.3.2 Identification with a translation functor

Now, we can prove that the isomorphism Coker ({') (1) = Zgiyy; ® (wF) (1) is functorial.
R[H

[H]

Lemma 2.5.22. For F an object of Fct (4G, R-90100), the R-modules {IR[H] ® (mF) (n) } assemble to form a functor
R[H]

nelN

® T (1) for any natural transformation 1 of Fct (UG, R-0Mod), we
H

(oF) : UG — R-90d. Assigning idIR[H] 2
R

IR ®
R[H]
define an endofunctor:
IRin ([X)]Tz : Fet (UG, R-900) — Fct (UG, R-DMod) .
R[H

Proof. The result is clear from the functoriality of F. O

Proposition 2.5.23. Let F be an object of Fct (UG, R-9M0d). The monomorphisms {v (F),}, o (see Definition 2.5.7)
define a natural transformation v (F) : Igiy) ® (©F) — (11 oLM)(F). This yields a natural transformation v :
R[H]

IR[H] ® T — T1 © LM.
R[H]
Proof. This generalises [ , Proposition 4.14]; we give the key points for the convenience of the reader.Let n

and 7’ be natural numbers such that n’ > n, [0’ —n,g] € Homyg (n,n’) and h € H. Note that, by Lemma 2.5.17,
as morphisms H — Hj, :

H ((bzg,/n/n>_1 ﬂid”> O (tywon*idy*1y,,) = H (idlh <(b%n,n)_1 hidn)> (idl * LHHH/)

id] * lH1+n’ .

Hence, we deduce that:

Cltn’ ((idH * lHn’—n) (h)) = Gi4n/ (H ((bzg,,n/—n>l Uidn> (lHn’—n * idy * lH1+n) (h)) .

Then, it follows from Conditions 2.5.9 and 2.2.24 that as morphisms in {G:

/ -1
(R (C 1) (A A ]
/ -1, . .
- [ n, ((bgn,_n) uzdn) o (idys b1 en ((idpt * 11,) <h>>>] . (255)
Since by Condition 2.2.24
(id238) © 1o ((idi % tm, ) (1) = Grow (H (idatg) (idus %1, ) (W) o (idatig),

it follows from the first relation of Lemma 2.5.17 that

(ida5g) o 61w ((idu 1, ) (1) = rw ((idn 1, ) () o (idatg). (2.5.6)
Hence, it follows from the combination of the relations (2.5.5) and (2.5.6) that:

/ -1 . .
[n/ — 1, (idaig) o ((bzrn,_n) uzdn> ° (zdn,_nugw ((dem . lHn_n) (h)))}

_ {n, — 1, Grow ((idon 11, ) () o (idatg) o ((bz,nf_n)l um)] :

A fortiori, F (idaff [n' —n,g]) o F(g144 (1)) = F(g14w (h)) o F (idaf [n" — n,g]). Hence, v (F) is well defined with
respect to the tensor product.
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To prove that v (F) is a natural transformation, remark that the relations of Corollary 2.5.18 imply that:

/ _1 . . - . - .
T (id1hg) o T ((b%n’n) hzdn> o (I ([n’ —n, Zdﬂ’ilD oZ ([n, wl@])) =7 ([nidyi1])-
We then deduce from the definition of the generalised Long-Moody functor (see Theorem 2.2.30) that:
(uLM (F) ([n' —n,g])ov(F),) = v(F)yo (IR[H] R([X;ﬂ T2> (F) ([0 —n,g])-

The proof that v is a natural transformation follows mutatis mutandis that of [ , Proposition 4.15]. O

Remark 2.5.24. Since it follows from Notation 2.5.4 that 7 - ([nidys1]) o Z ([n,idysa]) = idIR[H] for all natural
numbers 7, it is clear that v : T ® T — 7 0o LMis aright inverse of the natural transformation ¢ : 7y o LM —

R[H]
Coker (&").
Corollary 2.5.25. For {H,G,G’, ¢} a reliable Long-Moody system, as endofunctors of Fct (UG, R-Mod):

Coker (&) 2T ® T,
(&) = gy oy
and there is a natural equivalence of endofunctors of Fct (UG, R-0od):
T1oLM = <IR[H] ® Tz) S (LM o Tl) . (257)
R[H]

Furthermore, if we assume that the groups Ho and H are free, the isomorphisms Ayqux(m),m of Remark 2.2.36 provide a

~ T@rank(H).

natural equivalence Ty (g »ET,

®
R[H]
2.5.4 Key relations with the difference and evanescence functors

This section presents the key relations of the generalised Long-Moody functors with the evanescence and differ-
ence functors. Lemma 2.5.13 and Corollary 2.5.25 lead to the following result.

Theorem 2.5.26. Let {H,G,G’, ¢} be a reliable Long-Moody system. There is a natural equivalence in the category
Fct (4G, R-900):

01oLM = (IR[H] R%] Tz) D (LM o (51) . (2.5.8)

Moreover, if we assume that the groups Hy and H are free, then the evanescence endofunctor k1 commutes with the endofunc-
tor LM and the isomorphisms Ay, m of Remark 2.2.36 provide a natural equivalence:

510 LM = o H) g (LMo 6y) . (2.5.9)
Proof. This generalises [ , Theorems 4.23 and 4.24]. We denote by if‘?MOTl the inclusion morphism LM o 7 —

T, @ (LMo 17). Then, recalling the exact sequence (2.5.3), we obtain that the following diagram is commutative
and that the two rows are exact:

ijoLM A1oLM
LM LM 6joLM———0
= by Corollary 2'5'25TU@§/
LM - T ® h|®(LMoy) —— | 7, ® | P (LMod ) ——0.
i{ o, ©(LMoit) < RIH pih 2) ( 1) idy@(LMoA,) < RIH] pihg 2) ( )
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72 2. Chapter. Generalised Long-Moody functors

A fortiori, by the universal property of the cokernel and 5-lemma, we deduce that 7p & (LM 0 1) = 6; o LM.
Furthermore, assuming that the groups Hy and H are free, so that we have the exact sequence (2.5.4) of Remark
2.5.8, we obtain the following commutative diagram, in which the two rows are exact sequences:

O LM ijoLM

0— % 0LM 7LM

QTU@?

LM
0——LM LM 7z LM .
M T M) Eator (LMoir) < R[H] R%ﬂ T2> @© (LMo )

By the universal property of of the kernel, we conclude that x; o LM = LM o x;. O

Remark 2.5.27. Let m > 1 be a natural number. Assume that the groups Hy and H are free. Repeating mutatis
mutandis the work of Sections 2.5.1, 2.5.2 and 2.5.3.1, we prove that:

T © LM = (IR[H] R%—I] Tm+1> @ (LMo Ty).

Then, following the proof of Theorem 2.5.26, it follows from the exactness of the Long-Moody functor (see Corol-
lary 2.2.35) that the evanescence endofunctor x;, commutes with the Long-Moody functor.

2.5.5 Effect on strong polynomial functors

Here, we focus on the behaviour of the generalised Long-Moody functor on (very) strong polynomial functors,
recovering the results of [ , Section 4.3]. Beforehand, remark the following property.

Lemma 2.5.28. The functor Iy ® T commutes with the difference functor 61. Moreover, if H is free, then Ir(y; &
R[H] R[H]
T (F) commutes with the evanescence functor ky, for all natural numbers m > 1.

Proof. The commutation result with the difference functor J; is a consequence of the right-exactness of the functor

IR(H] R([E% ] — : R-Mod — R-Mo0, of the exactness and the commutation property of the translation functor 7, (see

Proposition 2.4.2). Assuming that the group H is free, the functor Zgy — : R-90od — R-Mod is exact (as

®
R[H]
a consequence of Lemma 2.2.34). Hence, the claim follows from the commutation of the evanescence functor #;,
with the translation functor 1, (see Proposition 2.4.2). O

Theorem 2.5.29. Let d be a natural number and F be an object of Fct (UG, R-900). Recall that we consider a reliable
Long-Moody system {H, G, G’, g}. If the functor F is strong polynomial of degree d, then:

* the functor Iy ?3) ] T, (F) belongs to Pol;frong (UG, R-Mod);
R[H

e the functor LM (F) belongs to Polfltﬂng (UG, R-9700).

Moreover, if the groups Hy and H are free and F is very strong polynomial of degree d, then the functor LM (F) is a very
strong polynomial functor of degree equal to d + 1.

Proof. This generalises [ , Proposition 4.25, Theorems 4.28]. By induction on the polynomial degree, the
result on Zgy) ® 7 (F) follows from Lemma 2.5.28 and we deduce the first result on LM (F) using the relation
R[H]

(2.5.8) of Theorem 2.5.26.

Assume now that the groups Hy and H are free groups. Recall that H is non-trivial. For a very strong poly-

nomial functor F of degree d, an easy induction on the polynomial degree proves that sznk(H) (F) is very strong

polynomial of degree d. A fortiori, the result follows from the relation (2.5.9) of Theorem 2.5.26. O
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Applications:
Proposition 2.5.30. The coherent Long-Moody systems {H,G,G’, ¢} of Sections 2.3.3, 2.3.4 and 2.3.5 are reliable (see
Definition 2.5.21).

gt
m1(S,p),m1(S',p)

is equal to 1y (bgﬁsz,, p) . Hence the functor 711 (—, p) is braided strict monoidal and a fortiori Assumption 2.5.16 is

Proof. Recall from Lemma 2.3.11 that the functor 71y (—, p) is strict monoidal, it is clear that the symmetry b

satisfied.
For the families of trivial {g; ¢}, we have already noted in Remark 2.5.11 that Condition 2.5.9 is automati-

cally satisfied. For the family of morphisms {¢ 1}, and {gz 1 } N the equality (2.3.3) of Lemma 2.3.29 implies
n
that Condition 2.5.9 is satisfied. O

Hence, applying a Long-Moody functor on the constant functor R, we prove:

Corollary 2.5.31. The following functors are very strong polynomial of degree one:

Hi (22 4, R) of Example 2.3.15;

Hi (5,1, R) of Example 2.3.19;

e Hy (Z;C,l, R) of Example 2.3.31;

* Hy (20,,R) oy O Example 2.3.43;

e H; (Z;,c,lf R) s, of Example 2.3.39.

In[ , Section 5], Randal-Williams and Wahl prove homological stability for the families of mapping class
groups of surfaces families considered in Section 2.3, with twisted coefficients given by very strong polynomial
functors. This framework is generalised by Krannich to a topological setting in [ ]. Namely, for the coherent

Long-Moody systems {#, G, G’, ¢} introduced in the examples of Section 2.3, they show:

Theorem 2.5.32. [ , Theorem A] If F : 1G — Z-9od is a very strong polynomial functor of degree d, then the
canonical maps
Hi (G, F (1)) = Hs (Guy1, F(n 1))

are isomorphisms for N (x,r) < n with N (x,r) € IN depending on * and r.

As representation theory of mapping class groups of surfaces is difficult and a current important research topic
(see for example [ , Section 4.6], [ Jor| 1), there are very few examples of very strong polynomial
functors over {G. Using Long-Moody functors (and in particular their iterates), we thus provide very strong
polynomial functors in any degree for these families of groups.

2.5.6 Effect on weak polynomial functors

We investigate the effect on weak polynomial functors of the Long-Moody functor associated with the reliable
Long-Moody system {#, G, G, ¢}. The first step of this study consists in defining the Long-Moody functor on the
quotient category St (4G, R-9t0d). First, note the following property.

Lemma 2.5.33. Let F be an object of Fct (UG, R-90d). Assume that the groups Hy and H are free, or that the groupoid
(G',8,0) is symmetric monoidal. If the functor F is in Sn ({G, R-9od), then the functors LM (F) and Zg(p ([X>] T (F)
R[H

are in Sn (4G, R-Mod).

73



74 2. Chapter. Generalised Long-Moody functors

Proof. Assume that Hy and H are free. Recall from Remark 2.5.27 and Lemma 2.5.28 that the endofunctors LM and
Ir(a) ® T commute with the evanescence functor «y, for all natural numbers m > 1. It follows from Proposition
R[H]

2.2.33 and the commutation with all colimits of Zgy ® — : R-D0d — R-Mod that if F is in Sn (UG, R-Mod),
R[H]
then:

If one of Hy or H is not free, the hypothesis that G’ is symmetric monoidal allows Lemma 2.4.18 to be applied.
For all natural numbers n and n’ such that n’ > n, recall that LM (F) ([n' —n,id,/]) is the unique morphism
induced by the universal property of the tensor product with respect to the map

®
I(|n'—n,id, | ) xF(idik|n'—n,id,, R[H,,/
IR[HH] % F(l +n> ([’1 n,i 7])>< (1 1 [n ni J)IR[Hn,} % F(l +n/) L)]IR[HM] ® F(lJrn/) )

For a fixed natural number 7, let i € Zgpy,) and let x € F (1 + n). We assume that F is in Sn (4G, R-Dt0?). Since the

translation functor 71 commutes with all the evanescence functors (see Proposition 2.4.2), 7y F is in Sn (4G, R-0100).

Recall that by Lemma 2.4.18, C(olim) (rF (n)) = 0, where (IN, <) is a subcategory of G via the functor & of
ne(IN,<

Definition 2.2.8. This is equivalent to the fact that for all natural numbers n, for all x € F (14 n), there exists a

natural number m, such that F (idlh [mx —-n, ide (x) = 0 and a fortiori:

LM (F) ({mx —n,id&D (z‘R% ]x> ~0.

Hence, Colim (LM (F) (n)) = 0. The result for Zg(y; ® T (F) follows using previous argument. O
ne(N,<) R[H]

From now until the end of Section 2.5.6, we assume that the groups Hy and H are free, or that the groupoid
(G',1,0) is symmetric monoidal.

By Lemma 2.5.33, the endofunctors LM and Zg ?@ | T, induce two functors on the quotient category St (G, R-000),
R[H

denoted by
LMsg; : St (4G, R-9Mod) — St (841G, R-Mod) and (IR[H] ® T2> : St (UG, R-9M00d) — St (UG, R-9Mod) .
R[H] St

Remark 2.5.34. If H is a free group, the isomorphisms A, 4, (mr),m 0f Remark 2.2.36 provide a natural equivalence:

Grank(H)

IR[H] R%_H %) = T2 (2510)

Thus, for F an object of Fet (UG, R-Mod), if the functor T ® 72 (F) is in Sn (UG, R-Mod), then the functor F is

R[H]
in Sn ($1G, R-Mod). A fortiori, the induced functor (I R[H] ({X) ] Tz) is equivalent to the functor Tz@mnk(H ).
R[H
St

The behaviour of the Long-Moody functor of Theorem 2.5.26 and gy, T, of Lemma 2.5.28 with respect to

Y
R[H]
the difference functor remain true for the induced functors in the category St (4G, R-010d).

Proposition 2.5.35. Let F be an object of St (LG, R-Mod). Then, as objects of St (LG, R-Mod), there are natural equiva-
lences:
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&1 <IR[H] ® Tz) (F) = (IR[H] ® Tz) (61F), (2.5.11)
RH] ) g, RH] ) g,
61LMg; (P) = (IR[H] ® Tz) (F) ®& LMg; ((511:) . (2.5.12)
R[H] St

Proof. As a consequence of the definitions of the induced difference functor (see Proposition 2.4.12) and of the

induced functors <IR[ H] <[® | T2> and LMg;, we have natural equivalences:
R[H
St

1 IR[H] ® T =4 IR[H] ® T and 51LMStg((510LM)St.
R[H] St R[H] St

Hence, the result follows from Lemma 2.5.28 and Theorem 2.5.26. O

Theorem 2.5.36. Let d be a natural number and F be an object of Fct (UG, R-DMod). Assume that the groups Hy and H are

free, or that the groupoid (G', 4,0) is symmetric monoidal. Assume that F is weak polynomial of degree d. Then the functor

IRy ® T (F) is a weak polynomial functor of degree less than or equal to d and the functor LM (F) is a weak polynomial
R[H]

functor of degree less than or equal to d + 1.
Moreover, if H is free, then the functor Zgy; ® o (F) is a weak polynomial functor of degree d and the functor LM (F)
R[H]

is a weak polynomial functor of degree d + 1.

Proof. The first result for () ® 1 is a direct consequence of the relation (2.5.11) of Proposition 2.5.35. If H is
R[H]

a free group, we proceed by induction on the degree of polynomiality of F. If F is weak polynomial of degree 0,
then according to Proposition 2.4.17, there exists a constant functor C of St (4G, R-9t0d) such that rryg (F) = C.
By Remark 2.5.34, we have

IR[H] R T (C) o C@mnk(H)
R[H] St

which is a degree 0 weak polynomial functor. Now, assume that F is weak polynomial functor of degree n > 0.
The result follows from the relation (2.5.11) of Proposition 2.5.35 and the inductive hypothesis.

For LM, we also proceed by induction. Assume that F is a weak polynomial functor of degree 0. So 7rgg (F) is
a constant functor according to Proposition 2.4.17. By the equivalence (2.5.12) of Proposition 2.5.35, we have:

o1 (myg (LM (F))) = (IR[H] ® Tz) (rtug (F))-
R[H]

According to the result on Zg (fb ] T, this is weak polynomial functor of degree less than or equal to 0, and if H
R[H

is free the degree is exactly 0. Therefore, LM (F) is a weak polynomial functor of degree less than or equal to 1.
Now, assume that F is a weak polynomial functor of degree d > 1. By the equivalence (2.5.12):

o1 (7tyg (LM (F))) = (IR[H] R‘%ﬂ T2) (myg (F)) @ LMs (61 (7t (F))) -

The result follows from the inductive hypothesis and the result on Zg g ({X) | . O
R[H
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Examples and applications: Examples of weak polynomial functors for mapping class groups of surfaces are
given by Theorem 2.5.36. Indeed, the constant functor R being weak polynomial of degree 0 (according to Propo-
sition 2.4.17 since 7ty g (R) = R), applying a Long-Moody functor to the constant functor R we obtain:

Proposition 2.5.37. The following functors are weak polynomial of degree one:

e H; (Zi,o,lfR) of Example 2.3.15;

=

. H 29,0,1'R)MW of Example 2.3.43;
R Example 2.3.39.
>il‘32 of Example

Recall from Remark 2.4.14 that a strong polynomial functor is always weak polynomial. The converse is false
(see [ , Example 4.4] for a counterexample). The weak polynomial degree of a strong polynomial functor can
be strictly smaller than its strong polynomial degree as the following example shows. Recall from [ , Section
1.3] the functor Bur : 4B — C [+1] -Mod which encodes the family of reduced Burau representations.

Proposition 2.5.38. The functor Bur : U — C [t1] -90d is a strong polynomial functor of degree 2 and weak polynomial
of degree 1.

Proof. The strong polynomial result is proved in [ , Proposition 3.28], using the following short exact se-
quence in Fet (4B, C [t£!] -90d):

0— Bur; — > 1y Bur; —> Roy — >0,

where R>; is the subfunctor of R which is null at 0 and equal to R elsewhere. The functor 7y being exact (see
Remark 2.4.11), we deduce that:

o1 (mug (Buvr)) = 7yg (R>1).
The functor R>1 is a subfunctor of a weak polynomial functor of degree 0 and it is not stably null. So, we deduce

from Proposition 2.4.16 that R is weak polynomial of degree 0 and therefore the functor Bur; is weak polynomial
of degree 1. 0

Remark 2.5.39. The fact that the reduced Burau functor is a strong polynomial functor of degree 2 is a consequence
of an unstable phenomenon for the first values of this functor. Namely, this comes from the equivalence §; Bur; =
R>1 where R is strong polynomial of degree 1 and note that however R is constant for n > 1.

Another fundamental reason for the notion of of weak polynomial functors to be introduced in [ ]is that,

contrary to the category 73012”0"g (M, A) (see [ , Remark 3.18]), the category Pol; (I, A) is localizing (see
Proposition 2.4.16). This allows the quotient categories

Polyq (M, A) /Poly (9, A)

to be considered. The main results of [ ] concern the study of these quotient categories for 9t the category
of Hermitian objects in an additive category C equipped with a duality functor. Remark that as a consequence of
Theorem 2.5.36, we obtain:

Proposition 2.5.40. The Long-Moody functor defined by the reliable Long-Moody system {H,G,G’, ¢} induces a functor:
Pol; (141G, R-Mod) /Poly_1 (UG, R-9Mod) — Poly 1 (UG, R-Mod) /Poly (UG, R-DMoed),

if the groups Hy and H are free, or if the groupoid (G, 1,0) is symmetric monoidal.
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2.6 The case of symmetric monoidal categories

We fix{H,G,G’, ¢} areliable Long-Moody system (see Definition 2.5.21) throughout this section. For the work of
this section, we make the following assumption.

Assumption 2.6.1. We assume that the braided monoidal groupoid (G, 1, 0g) of Assumption 2.2.1.1 is symmetric monoidal.
Remark 2.6.2. A fortiori, the pre-braided homogenous category (4G, f, 0g/) is symmetric monoidal, using Propo-

sition 2.1.12.

2.6.1 General constructions for symmetric monoidal categories

We present a category of generalised Cospan introduced in [ , , ], and inspired by the span category
due to Bénabou in [ ]. The following definition is a direct extension of [ , Definitions 2.5 and 2.6].

Definition 2.6.3. The category Cospan' (4{G) is the category which has the same objects as ${G and for n,m € NN,

Hom o pant (1) (n,m) is the equivalence class of diagrams ( n M P w] m > where p is a natural number

such that p > n,m, [p —n, 9| € Homyg (n,m) and [p —m, ] € Homygg (m, B)' The equivalence relation is the
one generated on Homcospan+(ug) (n, m) by the relation # defined by

if and only if there exists a morphism [q — p,a] € Homyg (E’ ﬂ) such that the following diagram commutes:

[p—n,9] [p—m,y]

[q—-1,¢']

S

dy dy
For all objects n € IN, the identity morphism in the category Cospan' (4G) is given by ( n o n >

Let o — [p—na] [p—mp] _ k=my], [k=1J] . . +
etog=( n——sp<—m )andyp = ( m ——k<——1 ) be two morphisms in the category Cospan’ (4G).

The composition in the category Cospan® (4G) is defined by:

o= (1" (k—m)h(p—m)bm < 1)

where
A= [=m)+(p—n),ide i (B ou)]
and
' -1 . _
B— [(p —m)+(k—1), ((bgm’pm) nzdm) o (zdpfmh (7 1 05))} '
Remark 2.6.4. The fact that the category is well-defined follows analogously to [ , Lemme 2.7].
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Notation 2.6.5. Let n and n’ be natural numbers such that n’ > n. In the category Cospan' (4G), a morphism

[}’l/—l’l,(p] ’ ldi / . / . ’ ldﬂ /[”/_”rf/’] .
of type ( n——n' <——n’ ) is denoted by L ([n’ —n, ¢]) and a morphism of type ( ' ——=n'<—n ) is

denoted by R ([n’ — n, ¢]), where [n' — n, 9] € Homgg (n,n’).

+
Remark 2.6.6. The morphisms of type £ in notation 2.6.5 induce a canonical inclusion functor inclﬁgs})an e
$UG < Cospan' (4G) defined as the identity on objects and sending any [n' — 1, ¢] € Homyg (n,1n’) to £ ([0’ —n, ¢)).

t
In the same way, the morphisms of type R in Notation 2.6.5 induce a canonical inclusion functor inclf[gigan 9

4GP « Cospan' (UG) defined as the identity on objects and sending any [’ — n, ¢] € Homggor (n',n)to R ([n' —n, ¢]).

The following property is a direct consequence from the composition in the category Cospan' ($1G).

Lemma 2.6.7. [ , Proposition 2.2.10] Let p, n and m be natural numbers such that p > n and p > m. Any morphisms

< n png) 4 “’l"”m > in the category Cospan® (UG) admits the following decomposition:

<ﬂwr’w]m> =R([p—my))oL([p—n¢]).

Finally, we are interested in a way to extend an object of Fct (UG, R-0t0d) to an object of Fct (Cosparfr ug), R-Emob) .

Proposition 2.6.8. Let ¢ be a category and M be an object of Fct (UG, €). Assume that for all n,n" € N such that n’ > n,
M ([n' —n,idy]) : M (n) — M (1) is left-invertible and we set M (R ([n’ — n,id,s])) a left inverse.

Then, assigning M (R ([’ —n,9])) = M (R ([0’ —n,id,y])) o M (v)"" (for all [n' —n,v] € Homygo (', n)
defines a functor M : Cospan' (UG) — € if and only if for all natural numbers 1,k,n,n',m such that | > n, k > n,
k > n' and n > m, for all [k —n,¢| € Homgg (n, k), [k—n',¢] € Homyg (n', k), [n —m, x] € Homyg (m,n) and
[l —n,w] € Homgg (n,1):

~—

MR ([~ 9]) o £ (Kk—ng)) = MR ([k—n',])) oML (k—ng]), @61)
M(R (fn—m,x]) oR (k—n,9]) = M(R(fn—m,x]))oM(R (fk—n,9])), 262)
M(L([I=nw))oR (k—mng])) = MLl -nw))oM(R (k- mng)). 26)

Proof. First, we have to show that the assignment of M on morphisms is well-defined with respect to the defining
equivalence relation of the category Cospan® (UG). Let A = R ([p — m, ¢])o L ([p — n, ¢]) and B = R ([p' — m, ¢']) o
L ([p' —n, ¢']) be two morphisms such that AZB. Denoting by [p’ — p, a] € Homyg (E’ 4 ) a morphism such that
AZB (see Definition 2.6.3), since:

M(R([p' = p.a])) oM (L ([p" = pa])) =idy,

we directly conclude from the compositions relations (2.6.1) and (2.6.3) that M (B) = M (A).

Remark that since M is a functor over the category iIG, the identity axiom and the composition axiom for
morphisms of type L ([k —n, $]) o L ([n — m, x]) (see Notation 2.6.5) are already checked. Now, it is clear from the
definition of morphisms in the category Cospan' (UG) that composition axiom for the category Cospan' (4G) is
satisfied by M if and only if the three relations (2.6.1), (2.6.2) and (2.6.3) are checked.

A criterion for extending natural transformations from Fct (4G, R-90t00) to Fct (Cospan+ (ug), R—Dﬁob) can

o . . + . Cospan'(1G) .
similarly be given. As UG is a subcategory of Cospan' (UG) by inclg , an object of the functor category

Fct (CospamJr ug), R-S)JTOD) is an object of Fct (LG, R-0M0d). Abusing the notation, the restriction of an object of
Fct (Cosparfr ug), R-Dﬁob) to Fct (UG, R-M0?) is denoted in the same way.
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Proposition 2.6.9. Let € be a category, and M and M' be objects of Fct (Cospan‘L ug),e ) and  : M — M’ a natural

transformation in the category Fct (4G, €'). Then, 1 is a natural transformation in the category Fct (Cospan+ ug), ‘K) if
and only if for all n,n’ € N such that n' > n:

H 0 M (R ([ —n,idy])) = M' (R ([ = n,idy])) o 1a. (2.6.4)

Proof. The natural transformation # extends to the category Fct (Cospan‘L ug), ‘5) if and only if for all n,n’ € N
such thatn’ > n, forall R ([p —m,¢]) o L ([p — n, ¢]) € Hom g spant (s10) (n,n'):

M (R([p—m,¢])o L([p—n,9]) oty =nyoM(R([p—my])oL([p—n09]).

Since 77 is a natural transformation in the category Fet (UG, ¢), we already have 17, o M (L ([p — n, ¢])) = M' (L ([p —

11w - Hence, this implies that the necessary and sufficient relation to satisfy is relation (2.6.4). O

Equivalence with =-construction: ~ We denote by Mton{)™™ (resp. Mon?)\I™) the category of symmetric strict

monoidal small categories (90,4, 0) such that the unit 0 is an initial object (resp. a null object). We denote by
T Mo — Mon? )™ the left adjoint of the forgetful functor MonS )™ < Mon ™™, considered by Djament

and Veslgél in| , Section 3]. This construction is notably used to classify weak pol‘;ﬁomial objects of Fct (M, A)

for M € Obj(Mon;™™) and A a Grothendieck category in [ , Theorem 3.8]. More precisely, for all natural
numbers d, Djament and Vespa prove that

Pol, (ﬁ A) /Poly (ﬁ A) =~ Poly (M, A) /Poly_q (MM, A)

and for the category H (C) of Hermitian objects in an additive category C equipped with a duality functor D :

C° — C, they prove that the forgetful functor H (C) — C induces an equivalence
Pol, (ﬁ@ A) = Poly (C,A).

The functor = generalises constructions considered by other authors. For instance, let FI denote the category
of finite sets and injections, which is equivalent to Quillen’s construction 4> over the groupoid associated with
symmetric groups (see Section 2.6.3.1). The category FI is equivalent to the category FIf considered by Church,
Ellenberg and Farb in [ ], to study the projective objects of the category Fct (FI, R-9)t00).

We recall the explicit description of the functor = given in [ , Proposition 3.4].

Definition 2.6.10. [ , Section 3] Let 90 € Obj (Monf"™™). The category 9 is the category which has the same

ini

objects as M and for all m, m" € Obj (M), Homgy (m,m') = C%}tim (T Homgy (m, —)).

Remark 2.6.11. As stated in [ , Section 3], the symmetric strict monoidal structure (91, i, 0) extends to a sym-

metric strict monoidal structure (97“(, b, O) , taking the colimit using the symmetry of the considered structure.

Notation 2.6.12. Considering the Long-Moody system {#, G, G’, ¢}, we denote by UG the full subcategory of UG’
on the objects of G.

As suggested in [ , Exemple 3.3], the category UG is equivalent to Cospan' (4G). Define the functor Z :
4G — Cospan' (UG) to be the identity on objects and sending any morphism f € H oM (n, 1), represented by

some [p+n’ —n, ¢| € Homyg (Q,M) to

<n [p+n'—n,¢] put’ {”’idm] n,>'

It is a direct consequence of the equivalence relations in Cospan’ (4G) that this functor is well-defined.
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Proposition 2.6.13. The functor & : UG — Cospan’ (UG) is an equivalence of categories.

Proof. We clearly define an inverse £~! : Cospan’ (4G) — UG assigning the identity on objects and sending any
morphism of Cospan’ (4G)

< p=ng) [p=my] >_ < [p-nyo]  [p-midy) >
n——=p<—m )={(n p m

to the morphism of Hom g (n, m) represented by [p —n, ¢~ o 9] € Homyg (ﬂ, B)‘ O

Remark 2.6.14. By Remark 2.6.11, we are given a symmetric strict monoidal structure (iTg/’ b, O) and a fortiori on
Cospan' (4G"), induced by the one of (4G’, 1,0).

2.6.2 Lifted functors for symmetric monoidal categories

The aim of this section is to prove that, under an additional condition (see Condition 2.6.20), the generalised Long-
Moody functor LM : Fct (UG, R-M0d) — Fct (UG, R-M0d) defined in Proposition 2.2.30 can be lifted to a functor

LM : Fct (@, R—Sﬁob) — Fct (LTQ, R—Emob). Let introduce these additional properties. Recall that we introduced
the augmentation ideal functor Z : UG — R-9Mod in Definition 2.2.28.

Notation 2.6.15. Recall that tg : G — 0Og, denotes the unique morphism from the group G to Og,. Let HP :
(N7, <) — &t be the family of groups defined on objects by #°F (m) = H,, for all natural numbers m, and for
morphisms by H? (yy) = ty *idp,,. We denote for natural numbers n’ > nby Z ([n' — n,id,/]) : Z (n") — I (n)
the R-module morphism canonically induced for the augmentation ideals by the group morphism ¢ *idy, -
Hn’ — H,.

This new functor H°7 satisfies analogous properties to that of the functor H (see Assumption 2.2.13). Indeed,
we have:

H*(l’l/*ﬂ)

Proposition 2.6.16. The functor H°P of Notation 2.6.15 defines a functor HP : UG — & such that HP ([1,id,11]) =
HOP (yn) for all natural numbers n, and H°P (g) = H (g~ 1) for all g € G, and all natural numbers n.

Proof. By Lemma 2.1.8, it is enough to prove that for all natural numbers n and n’ such thatn’ > n, forallg’ € G,/
and g € Gy:

HOP ([0 —n,idy]) oM (g'g) " = H(g) T oHP ([n —n,idy]).

This follows from the definition of the morphism ¢ Hy , * idy, and the fact that the functor H : G EO ) Sty g, is
strict monoidal by Assumption 2.5.16. O

Remark 2.6.17. Similarly to Definition 2.2.28, the functor H°7 induces a functor Z°7 : {G°? — R-9od assigning
n = Tgy,) and the assignments for [n' —n,g| € Homyg (1, n’) are the R-modules morphisms:

I ([n' —n,g]) = I ([n' —n,idy])oZ(g)"". (2.6.5)

Also, we deduce from Lemma 2.1.8 for n and n’ be natural numbers, for all elements ¢ of G, and ¢’ of G,/_,, as
morphisms H,, — Hy:

I ([0 = nidy]) o T (g'1g) " =T (g) " o2 ([0 — n,idy]).
Moreover, note that the following property is satisfied. This will be used in the proof of Theorem 2.6.24.

Lemma 2.6.18. Let k, | and n be natural numbers such that k,1 > n. The following diagram is commutative with q =

(1 =)t (k=) o
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—1,idg Ig—n 1t
H H([1-nidy) ) ", H(bf ,, bidn) ",
(i) | [ (i)
H, H,.
H([1-n,id}))

Proof. Recall that the functor H : QEO ) &ty g, is braided strict monoidal by Assumption 2.5.16. Hence this
result is a direct consequence of the definitions of the morphisms ty, *idy, and ty, *idy,. O

Remark 2.6.19. Lemma 2.6.18 remains true for the functors 7 and Z°F.
Finally, we require the following property for the morphisms {G, : Hy — Gy41},cn of Condition 2.5.9.

Condition 2.6.20. For all elements i € H,,, for all natural numbers n’ > n, the following diagram is commutative
in the category {G:

i (h
1! G (h) Lo’
id 4R ([0 —n,id,]) iidlhR([n’—n,idn/])
1gn 1gn.

Gn (W ([ =mid,y]) (1))

Remark 2.6.21. It follows from the equivalence relation of Definition 2.6.3 that Condition 2.2.17 is equivalent to
assuming that for all natural numbers 7, for all elements i1 € H, 1, the morphisms {¢},, satisfy the following
equality in G, 41:

st (00 (i L ity)) = |1 ((66,) 5t ) o (it (b <) 0]

Definition 2.6.22. A reliable Long-Moody system {#, G, G’, ¢} is said to be liftable if it satisfies Condition 2.6.20.

Remark 2.6.23. Consider the family of morphisms {G + : Hy — G,41},cp of Example 2.2.22. Then Condition 2.6.20
is always satisfied and therefore the reliable Long-Moody system {#, G, G’, g :} is always liftable.

In the following theorem, we prove that a generalised Long-Moody functor associated with a liftable Long-
Moody system {H, G, G’,¢} defines an endofunctor of Fct (@, R-S)JTOD). It will be called the lifted generalised
Long-Moody functor.

Theorem 2.6.24. Let {H, G, G, ¢} be aliftable Long-Moody system. The following assignment defines a functor I/‘.\M{H’g,g/’g} :
Fet (UG, R-Mod ) — Fet (4G, R-Mod).
¢ Objects: for F € Obj (Fct (LTQ, R—Dﬁob)), fl\v/[{;{,grg/,g} (F) : UG — R-DMod is defined by:
— Objects: Vn € Obj (G), LMy36.gr,cy (F) (n) = T,y ® F(n+1).

R[Hy]
= Morphisms: for n,n" € N and R ([k —n’,g']) o L ([k —n,g]) € Homgg (n,n"). We define

LM3,6,6'c) (F) (R ([k=1",8']) o £ (k= n,8])) : Tria, e, F D) = Tepy Ko F(n'+1)

to be the unique morphism induced by the universal property of the tensor product ® with respect to the

n

R [Hy]-balanced map

E([n' —ng]) R[H,]

IR[H,,} x F (7’1 + 1) %IR[H
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with

E(n'=ngl) = @7 ([k=n"g]) oI (fk—ng])
xF (i1 (R ([k—n',8']) o L ([k—n,g]))).

* Morphisms: let F and G be two objects of Fct (@, R—Dﬁob), and ny : F — G be a natural transformation. We define
ﬁ\//l{H,g,g/,g} (n): ﬁ\//l{H,g,g/,g} (F) — Ijl\v/[{;.llglg/,g} (G) for all natural numbers n by:

Nn41-

(LM{’HIQIQ’,g} (77))ﬂ = idIR[Hn] R[}%n]

Proof. We have three points to prove. Let F € Obj (Fct (@, R—imob) )

1. First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. Recall that
the R-module F (n+ 1) is endowed with a (left) R [H,]|-module structure using the morphism ¢, : H, —
Gpn+1. This compatibility holds for morphisms of type £ (see Notation 2.6.5) by the definition of LM (F),

Lemma 2.6.7 ensures that the remaining point to prove is the compatibility of LM (F) (R ([n' — n,id,/]))
with n and n’ natural numbers such that ' > n. Leth € H,y and i € IR[ H, ] It follows from Condition 2.6.20

that in G;,11: !
(id14R ([0 —n,idy])) o g (h) = g (K ([0 —n,idy]) (h)) o (id1hR ([n" —n,idy])).

Since Z° ([0’ —n,id,y]) (i-h) = I° ([n' —n,id]) (i) - HP ([n" —n,id,]) (h), we deduce that:

LM (F) (R([n’—n,idn/}))<i ® F(gn(h))(v)>

R[Hn’]
= I —mide]) () @ Flen (7 () F (idat [0 = n,idy]) (0)
= I ([ —nidy]) (i-h) (& F [0 —n,idy]) (0)

LM (F) (R ([0 —n,id,])) (i-h ® v).

R[Hn’]

2. Let us prove that the assignment LM (F) is a functor. Recall that the functor LM (F) is well-defined by
Theorem 2.2.30. Let [k —n,¢] € Homyg (n,k), [k —n',¢] € Homgyg (n', k), [n —m, x] € Homgg (m,n) and
[l —n,w] € Homyg (n,1) with natural numbers I, k,n,n’,m such that! > n, k > n,k > n’ and n > m. By
relation (2.6.5) of Remark 2.6.17, we have:

T ([k . 9]) o T ([k = n,9]) = iz,

thus it follows from the compatibility of the monoidal structure § with composition and the functoriality of
F that:

LM (F) (R ([k = n,¢])) o LM (F) (L ([k = n,¢])) = idizg(p)n)-
Hence, according to Proposition 2.6.8, it is enough to check the relations (2.6.1), (2.6.2) and (2.6.3).
The relation (2.6.1) follows from the definition of LM (F) on morphisms and the fact that F is a functor. Now,

let us prove that LM (F) satisfies the relation (2.6.2). The functoriality of Z°% deduced from Proposition 2.6.16
ensures that:

2% ([k— m,idg b)) o Z (¢71) = 2% (In— m, x]) o (fk =, 9]) .
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Then, the desired result follows from the compatibility of the monoidal structure § with composition and

the functoriality of F. Finally, let us prove that LM (F) satisfies the relation (2.6.3). The functoriality of Z by
Definition 2.2.28 and the one of Z°7 deduced from Proposition 2.6.16 imply that:

20 (Jemn, ((6,10) s ) © (it (01)) | ) o (1=t 1))
= T(w)o (IUP ({kf n, idl*";”}) oZ (bfin,lfnuidﬂ) ol ({l -, idM}D oI (¢).

By Remark (2.6.19), we have:

7 ([k=midige ] ) o T (b, i) o T ([1 = midiin] ) =T ([1=n,idy]) o T ([k = n, idg])

Hence:
2o ([, (,0,) i) o (it ()] ) o2 ([1-m07))
= Z(I-nw])oT% (k—ng]).

Again the compatibility of the monoidal structure § with composition and the functoriality of F finally imply
that the composition axiom is satisfied.

3. The remaining point to check for LM to be a functor is the consistency of our definition on morphisms.
Recalling that the functor LM is well-defined by Theorem 2.2.30, according to Proposition 2.6.9, we only
have to check that for 7 : F — G natural transformation:

LM (1) o LM (F) (R ([ — 1, idy])) = DM (G) (R ([ — m,id,])) o LM ()

This is a consequence of the definition of the naturality of 77 and the assignment of LM (7). The verification
of the composition axiom repeats mutatis mutandis the one of Theorem 2.2.30.

O
Corollary 2.6.25. The following diagram is commutative:

LM{31,6,60)

Fct (LTQ R-zmoa)

(inclgg)*i

Fct (4G, R-9M0d)

Fct (LTQ R-i)ﬁoa)

l (inclﬁé) '

LM
o) Fet (UG, R-Mod),

s .
where (inclﬁg) denotes the precomposition by the functor inclﬁg introduced in Remark 2.6.6.

Proof. Let F be an object of Fct (@, R—i)ﬁob). Recall that for n, n’ € N such that n’ > n, Homyg (n,n') =

{C ([n'—n,g]) € H om e (n,n) } Hence, the commutativity of the diagram follows from the definition of LM on
morphisms of type L ([n’ — n, g]) in Theorem 2.6.24. O

2.6.3 Examples

The homological stability with twisted coefficients result due to Randal-Williams and Wahl [ , Theorem A]
(recalled in Theorem 2.5.32) holds for families of groups other that mapping class groups of surfaces: it is also true
for symmetric groups, automorphism groups of free products of groups and mapping class groups of compact,
connected, oriented 3-manifolds with boundary (see [ , Section 5]). The following work presents the use
of Long-Moody functors in these situations and provides very strong polynomial functors in any degree for these
families of groups. In particular, for automorphism groups of free products of groups and mapping class groups
of 3-manifolds, Long-Moody functors come in handy in so far as there are very few examples of very strong
polynomial functors associated with these families of groups.
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2.6.3.1 Symmetric groups

Let X be the skeleton of the groupoid of finite sets and bijections. Note that Obj (X) = N and that the auto-
morphism groups are the symmetric groups &,. The disjoint union of finite sets L induces a monoidal structure
(X,U,0), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the
canonical bijection b% :ny Uny — ny Uny for all natural numbers 11 and n5.

ny,mny
Remark 2.6.26. The category LX is equivalent to the category of finite sets and injections FI studied in [ 1.
. L Pn . . .
Furthermore, the classical surjections { B, - &, , sending each Artin generator o; € B, to the transposition

nelN
T, € G, foralli € {1,...,n—1} and for all natural numbers n, assemble to define a functor P : UB — UX.
In addition, it is clear that the functor 8 is strict monoidal with respect to the monoidal structures (£(8,,0) and
(Ux%, L, 0).
Notation 2.6.27. For all natural numbers 1, we denote by a$ : &, — Aut (F,) the morphism defined by a¥ (¢) (f;) =
fo(iy forall o € &, and generator f; of Fy,.

Let H be the free group F; and Hj be the trivial group. Thus, we define functors Hg : £ — gt assigning
He (n) = Fy, on objects and for all o € &, He (0) = a¥ (o).

Lemma 2.6.28. The functor He : (X,U,0) — (g, *,0¢,) is symmetric strict monoidal. Moreover, the functor Hg
extends to define a functor Heg : UL — gr assigning for all natural numbers ny and ny:

HG [nlzidnlunz] = ln] D l.an.
Proof. Fixing a basis for Hg (n) for any natural number 1, we deduce that for n1, n, € Obj (X):
HG (7’11 L 1’12) =~ 7—[6 (nl) * 7—[6 (”2) .

It is clear that &, (resp. &,,) acts trivially on He (12) (resp. He (1)) in He (n1 Unz). Therefore, idy g (4, *
idy (n,) 18 @ natural equivalence. Moreover, it is clear from the fact that the functor H is strict monoidal that the

gr

symmetry b isequal to Hg (b§1,nz)'

He (m1),He (n2)
It follows from the assignments that relation (2.1.1) of Lemma 2.1.8 is satisfied by H& [n1, idnlUnz]. Letoy € 6y

and 0y € &y,. Then, it follows from the definition of ¢, that:
He (01 U)o He [n1,idnm,] = (He (01) * He (02)) o He (11, idn,in,]
= Hs [”1/ idnlunz] oHg (0’2) .

Relation (2.1.2) of Lemma 2.1.8 is thus satisfied, which implies the desired result. O

Corollary 2.6.29. With the previous assignments and notations, {Hs, L, X, +} defines a liftable Long-Moody system,
where Gy ¢+ By — &,,41 is the trivial morphism for all natural numbers n (see Example 2.2.22).

Proof. The Long-Moody system {Hg, %, X, ¢+ } is reliable by Remark 2.2.27, Assumptions 2.2.13 and 2.5.16 being
satisfied by Lemma 2.6.28 and Assumption 2.2.1 being checked using the groupoid (X, U, 0) (noting this category
has no zero divisors and that Auty, (Ox) = {ialo2 }). We conclude using Remark 2.6.23. O

The functor LM 4, 5 v ¢, ,} defined by this liftable Long-Moody system is closely related to the functor LM e e

LM; for braid groups (see Proposition 2.3.41) introduced in [ , Section 1.3].

Proposition 2.6.30. The following diagram is commutative:

Fet (448, R-9M0d) i Fet (48, R-9M0d)
(P T T (B
LM{Hg,z,z,gn,t}
Fct (UX, R-900) Fct (UX, R-90d),

where (P)™ denotes the precomposition by the functor 5B introduced in Remark 2.6.26.
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Proof. First, it follows from p,, 1 ((Tl-z) = lg, (where 1g,, is the neutral element of &) that p, 410641 = Gut A
fortiori, the definition of a Long-Moody functor (see Theorem 2.2.30), the fact that 3 is strict monoidal (see Remark
2.6.26) and that H? ([n' — n,id,]) = He ([n' — n,id,y]) for all natural numbers n’ > n, ensure that it is enough to
prove that for all object F of Fct (UX, R-9t00), for all Artin generators 0; € B, for n a natural number:

Ty (i) ® (Fo'P)(idifo;) = Zs (P(oy)) ® F(idiUP(c3)). (2.6.6)
R[Fy] R[Fy]

n

First, we deduce from the strict monoidal property of P that(F o B) (id1fo;) = F (id1 U*B (07)). It follows from the
definition of Artin representation (see [ , Section 2.3.1]) that:

Ti (0i) : Ikr,) —  ZK[F)

fiy1 =1 ifj=i
fi=1 = SfMifra =1 == foa + i =1 (1= fGlfifin) ifj=i+1
fi—1 ifjg {i,i+1}.

We deduce from the relations pj,11 06,1 = Gnt and Zg (P (07)) (fiz1 —1) = fi— 1thatif j=i+1:
Iy (07) (firn —1) ® (FoR)(idifo;) = [fi—1] ® F(gnt(fix1)) (FoP) (idifo;)

R[Fy] R[F,]
i =11 © F(en (0= enr (ffifin)) (Fop) Giditen)
= Is (‘B(‘Ti))(fiﬂ—l)R‘[%]F(idl LB (03)) -

The others cases being clear, this proves that the relation (2.6.6) is true. O

Notation 2.6.31. For all natural numbers, we denote by ‘Berm,, the permutation representation of the symmetric
group to GL, (R). Namely, it is defined assigning:

1
Perm,, (0;) = Idgei @ { (1) 0 } @ Idgan-i

for every transposition 0; € &, (withi € {1,...,n—1}).

It is a well-known fact (see for example [ ]) that the permutation representations {Berm,, }, . assemble
to form a functor Perm : UE — R-90d. Namely, for all natural numbers n and n’ such that n’ > n:

Perm ([0’ —n,id,y]) = Leo(n—n) © idRen

and the relations (2.1.1) and (2.1.2) of Lemma 2.1.8 are easily checked. In particular, the functor Perm can be seen
as the restriction of the unreduced Burau functor Bur; to UX.

Corollary 2.6.32. For R : UX — R-910d the constant functor:
LM 3¢ 5c,,) (R) = Perm.

Remark 2.6.33. By Proposition 2.2.39, all the iterations of LM 4 s ...} on an object F of Fct (UZ, R-9t0d) are de-
termined by ‘Perm.

We conclude the study for symmetric groups giving the following result, obtained as a corollary of [ :
Theorem 4.3].

C{)g_'lnc Jé)gnt} (R) of the Long-Moody functor

LMy 2., ) Then, all the irreducible representations of the symmetric group &y, are subrepresentations of the induced
representation

Proposition 2.6.34. Let m be a natural number. Consider the iteration LM

o(m+1
LM{,EL;"G,Z)&M} (R)s,, : Sm = GLy (R)

where M = (zmmﬁl)l.
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86 2. Chapter. Generalised Long-Moody functors

2.6.3.2 Automorphisms of free products of groups

Let H and Hj be two arbitrary groups. Recall from Notation 2.2.9 that H,, denotes the free product H*" « Hy for
all natural numbers m.

Notation 2.6.35. We denote by H s, the functor of Assumption 2.2.13 for this example. Namely, H¢, : (N, <) — &t
is defined for all natural integers n assigning H,, (1) = Hy and Hyp (vn) = tp * idp,,.

Let & denote the skeleton of the groupoid fG of finitely-generated groups and their isomorphisms introduced
in [ , Section 5.2]. The free product of groups * induces a strict symmetric monoidal structure (f&, %, 0gy).
In particular, the symmetry of the monoidal structure béﬁ c, is given by the canonical permutation of the free

1,52
product. Hence, we deduce:

Lemma 2.6.36. The groupoid (&, *,0g.) is skeletal symmetric strict monoidal with no zero divisors and Autje (Og.) =
{idoeﬁt }
Notation 2.6.37. We denote by Idy ;e the identity endofunctor of (Uj&, *,0).

Let & i, be the full subgroupoid of §& of the groups {Hy },,cn- Note that Obj (j6 5 p,) = N and that the
groupoid & p, is finitely generated by the free product in (f&, *, Ogs. ).

Corollary 2.6.38. With the previous notations, {pr,ft’ﬁH,Ho,f@,g_,t} (where Gn ¢ : Hy — Aut (Hy11) is the trivial
morphism for all natural numbers n) defines a reliable Long-Moody systems.

Proof. By Lemma 2.6.36, Assumption 2.2.1 is satisfied using the groupoid (f&, *,0g.). Remark 2.6.37 ensures that
Assumptions 2.2.13 and 2.5.16 are satisfied using the identity functor Idy;¢s. We conclude using Remark 2.6.23. [

Remark 2.6.39. Assume that R = Z. Let H = 1y (P), with P an orientable prime 3-manifold different from the 3-
disc ID3, whose diffeomorphism group surjects onto the automorphism group of its fundamental group. Let Hy =
71 (M), with M a finite connected sum of prime 3-manifolds different from the 3-disc D3, whose diffeomorphisms
groups surject onto the automorphism groups of their fundamental groups. Under mild additional technical
assumptions on P and M (see hypothesis (1), (2) and (3) of [ , Theorem 5.2.2]), according to [ ,
Theorem 5.7], there is homological stability for the automorphism groups Aut (H*" * Hy) with twisted coefficients

given by all the iterations of LM and LM on a very strong polynomial functor M
{ } {%fpzfﬁH,HO ,Qn,t}

prlfﬁﬂ,Holgn,conj
of Fet (UfG 7, ., Z-Mo0d) using Theorem 2.5.29.

Assume now that Hj is the trivial group and H = Z. By Theorem 2.5.29, [ , Theorem 5.4] ensures that
there is homological stability for the automorphism groups of free groups Aut (F,) with twisted coefficients given

by all the iterations of LM { He (65 i } on a very strong polynomial functor M of Fet (Ui® o, , Z-9Mod).
fp T H,Hy TS /o, t

Example 2.6.40. Let ag : gr — R-9t0d denote the abelianisation functor tensorized by R, with gr the category
introduced in Notation 2.3.10. This functor is a fundamental object in the category Fct (gr, R-Dt00). Indeed, the
stable homology computations for automorphism groups Aut (F,) with twisted coeffcients of [ ] rely heavily
on the study of the functor ag: a polynomial functor in the category Fct (gt, R-0t0d) can be obtained by extensions
of functors factoring through ar (see [ , Section 2]) and a general cancellation criterion for functor homology
groups can be drawn from an explicit projective resolution of ag (see [ , Section 4]). Furthermore, Satoh
computes the homology groups Hy (Aut (F,),az (n)) forn > 2in [ I

We consider the functor i : Uj&7 o, — gr defined in [ , Definition 4.2]. More precisely, it is the identity on
objects and it sends a morphism [ny — 11, 8] : Z*" — Z*"2 of Ui 4 o, (Where ¢ € Autg, (Z*"2)) to the morphism
go (lZ*(HZ’"l) * idZ*nl) 1 Z¥M — Z*" of gr. Hence, we define a functor ag oi : Uf&z,, — R-D0d. We deduce
from Lemma 2.2.38 that:

| = LM R).
aR ot {’prrf@H,HUrf@rgn,f} ( )

Remark 2.6.41. Aspointed out in Proposition 2.2.39, ag o i is enough to determine all the iterations of LM { My 1611 f QSan,t}
on an object F of Fet (Uf& 7 g, , R-9M0d).
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2.6.3.3 Mapping class groups of 3-manifolds

Let us introduce from [ , Section 5.6] the suitable category to work with. Namely:
Definition 2.6.42. The oriented 3-manifold groupoid M; and My are the groupoids defined by:

e Objects: compact, connected, oriented 3-manifold M with boundary, equipped with a marked disc ID?> — oM
in its boundary;

* Morphisms: :
— for 95 : the isotopy classes of orientation preserving diffeomorphisms restricting to the identity on the
disc, denoted by 7o (Diff (M rel D?));
— for M3 : 7y (Diff (M rel ID?)) modulo Dehn twists along spheres and discs, denoted by

7o (Dif f (Mrel D?)) /it

Henceforth, we fix two objects My and M of 97 .
Recall from [ , Section 5.7] that the boundary connected sum along marked half-discs f§ defines a

monoidal product for M7 and M, and the unit disc D3 is the unit. The braiding of the monoidal structure
+
is given by doing half a Dehn twist in a neighbourhood of the marked half-discs biﬁ M, - MiiMy — MpgMy and

it is a symmetry. By the Poincaré conjecture, there are no zero divisors in 2] and M3 . We refer to [ ,
Section 5.7] for more technical details on this operation.

Notation 2.6.43. We denote by M} (M) (Tesp- ﬁ; (M,Mp)) the full subgroupoid of 2 (resp. M5 ") generated by

the boundary connected sums of ID3, My and M.
Corollary 2.6.44. The groupoids (S)ﬁ; (M, Mo)” u,D?’) and (ﬁ; (M,My) u,D?’) are small skeletal symmetric strict monoidal
with no zero divisors and automorphisms group of ID? in each of these groupoids is trivial.

For N an object of M}, the mapping class group 1o (Dif f (N rel ID?)) (and a fortiori 7ty (Dif f (N rel D?)) / tapists)
acts on the fundamental group 771 (N). We define functors:

Ltwists . (Fprt
7T1 : (m;(M,MO)/h/DS) — (f®/ *, OQﬁt) and 7-[11‘ ' ° <m3,(M,M0)’h’ D3> — (f®/ *, Oﬁt) °

Recall that by Van Kampen’s theorem 711 (M1§M;) = 111 (M) * 711 (My) for two objects M; and M, of S)ﬁ;r . Re-
call the symmetric symmetric monoidal category (6tm( M), 71 (Mg) 7 *7 Ogt) introduced in Notation 2.5.15 and the

groupoid f& defined in Section 2.6.3.2. Repeating mutatis mutandis the work of Lemma 2.3.11 and Proposition
2.3.12, we deduce that:

Proposition 2.6.45. The following functors are symmetric strict monoidal:
[wwists . (gt
m (W;(M,MO)/H,]D3) - (@'tnl(M),nl(MO)/*/O@t) and 7oy (m&(M,MO)/hrlD?’) - (Qitnl(M),ﬂ:l(MO)/*/O@t)‘

They define functors 7ty : U9MNT

M) & and 7'[1/“”"5“ Im;,(M,MO) — ®v assigning for My, M € {M, My}:

4 H / wists 4 — ;
m ([Ml,ldMﬂMz]) = lﬂ?l(Ml) ® ldﬂ](Mz) and nlt ; ([MlIZdMlan]) - [n.l/twists (My) S Zdn.l/twists (Mz)

Let 5, . (resp. M3 1, M) be the full subgroupoid of M (M, My) (ESP- Ay (M,Mp)) Of the groups {M”m hMO}
Note that Obj (93“(; M Mo) = Obj (ﬁ;M Mo) = N and that the groupoid My, ,, (resp. ﬁ; M,M,) is finitely gen-
erated by the free product in (DJT;(M Mo)? b, ]D3) (resp. (ﬁ;(M,MO), b, ]D3) ).
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88 2. Chapter. Generalised Long-Moody functors

Proposition 2.6.46. With the previous notations, {nl, 9)1;” M, Mo im; (M, M)’ gn,t} and {7-[1/ fwiStsrﬁ;,M,Mgrﬁ;: (M.Mg)+ 6= t}
define liftable Long-Moody systems, where ¢, ¢ is the trivial morphism in both cases for all natural numbers n (see Example
2.2.22).

Proof. These Long-Moody systems are reliable by Remark 2.2.27, Assumptions 2.2.13 and 2.5.16 being satisfied by
Proposition 2.6.45 and Assumption 2.2.1 being checked using the groupoids 9)?; (M,Mo) and ﬁ; (M,m,) (by Corol-
lary 2.6.44). We conclude using Remark 2.6.23. O

Handlebody mapping class groups: Take My = ID? and M = S! x ID?, with S! the 1-sphere and ID? the 2-disc.
Then, for all natural numbers n:
Autm+ (1’1) = %,1

3,81 xID2,D2
is the handlebody mapping class group of a surface of genus # fixing a disc on the boundary pointwise.

Example 2.6.47. Consider the liftable Long-Moody system {7‘[1, sm;sl D2 D2’ 93?; (81xD2,D2)7 g_,t} of Proposition

2.6.46. In this case:
1 2\ _ ~
nl(S ><]D> = (fi, ..., fa) 2 Fp.

We denote by H; ((Sl x D?) -, R) the functor induced by the functor H; (H_, R) of Proposition 2.2.37. For all

natural numbers 7, the action of J4, 1 on H; ((Sl X ]Dz)hn , R) is the natural representation of the handlebody
mapping class group %, 1. We deduce from Lemma 2.2.38 that:

n,
Hy ( (S'xD? ,R):LM R).
1 (( ) {ﬂl'm;SIX]Dz,Dz'gn’f} ( )
Furthermore, recall that the handlebody mapping class group 7, ; is a subgroup of the mapping class group
I'; 1 of the surface 22’0,1 for all natural numbers n. Hence, we can define another Long-Moody system associated

with handlebody mapping class groups. Recall the reliable Long-Moody {’Hg, M7, My, gn,t} system of Section
2.3.3.1.

Proposition 2.6.48. The setting {Hg, m;slxDz,Dz’m;(SlxDz,D2)’g_'t} (with ¢np @ ™ (22,0,1'17) — M1, the
trivial morphism for all natural numbers n) is a liftable Long-Moody system.

Proof. Since we consider the family of trivial morphisms, by Remarks 2.2.27 and 2.6.23, it is enough to check that
Assumptions 2.2.13 ,2.5.16 and 2.2.1 are satisfied.

Assumption 2.2.1 is checked using the groupoid 9% (see Section 2.3.2). The groupoid 9.

3,51 xD2, D2
groupoid of M, using the embeddings /7, 1 — T, 1 for all natural numbers n. Therefore Assumptions 2.2.13 and
2.5.16 are satisfied repeating mutatis mutandis the work of Lemma 2.3.11 and Proposition 2.3.12. O

is a sub-

Example 2.6.49. Assume that 71 (Z(l),o,lf p) acts trivially on the commutative ring R. We denote by Hy (X_ 1, R)g1 .2
the functor induced by the functor H; (H_, R) of Proposition 2.2.37. We deduce from Lemma 2.2.38 that:

Hi (Z-1, R)g1p2 = LM{yg,zm;sl o225 | (R).

Remark 2.6.50. In[1517], Ishida and Sato compute the homology groups Hy (74,1, Hi (X_ 1, R)g1, 2 ) for all natural
numbers 7.

2.7 Tensorial functors

This last section introduces a new construction of which generalised Long-Moody functors are particular cases.
It is inter alia useful for the forthcoming work [ ]. We fix a groupoid G such that Obj (G) = N such that
Assumption 2.2.1 is satisfied. Recall that for all natural numbers 7, the automorphism groups Autg (1) are denoted
by Gy.
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2.7.1 Tools and framework

Let us first generalise the framework of Section 2.2.1.

2.7.1.1 Tensorial framework

Throughout this section, we fix two groups H and Hy, A a natural number and an increasing map ¢ : N — IN.

Assumption 2.7.1. There exists a functor H : UG — &t such that:
e for all objects n of G, H (n) = H*?(") x Hy;
o H([Lidps1]) = tppiomiry-gm) * iy, (m) for all natural numbers n.

Remark 2.7.2. Assigning ¢ = id, we recover the situation of Assumption 2.2.13.

Notation 2.7.3. For all natural numbers, we denote by 7, ,) : Gn — Autg (Hq)(n)) the morphism induced by the
functor H, by Assumption 2.7.1.

Generalising Section 2.2.1.3, we need two additional conditions for our framework. First, we require:

Condition 2.7.4. There exist group morphisms {gn tHpmy = G A+n} N such that for all elements i € H,,), for
ne

all natural numbers n and n’ such that n’ > #, the following diagram is commutative in the category UG:

Gn(h)

Afn Atn
idAh{n’n,idn/]l lid)‘h[”,n,id”/]
Agn! A’

o (M ([0 —njid,y])(h))

Once a choice of morphisms {gn tHymy — G /\+n} N satisfying the Condition 2.7.4 is made, we require:
n

Condition 2.7.5. Let n be a natural number. We assume that the morphism given by the coproduct Hy(,;) * Gn —

Ga+n factors across the canonical surjection to Hy ;) x  Gy. In other words, the following diagram is commuta-
o,
¢(n)

tive:

H  —— H(P(”) %X] Gn <—)Gn

p(n)

G/\-‘r}’l'

@(n)

where the morphism H,, Mx Gn — Gjyy is induced by the morphism Hy () * Gn — G4, and the group
¢(n)
morphism idf— : G, — G, ., is induced by the monoidal structure of Assumption 2.2.1.
Definition 2.7.6. We say that the groupoid G, A € N, ¢ : IN — N, the functor H of Assumption 2.7.1 and
morphisms {gn : Hy(n) = Grtan N form a tensorial framework, denoted by {A, ¢, Hy,G,6x }, if Assumptions
ne
2.7.1 and Conditions 2.7.4 and 2.7.5 are satisfied.

Example 2.7.7. Assigning A = 1 and ¢ = idy, we recover the definition of a Long-Moody system of Definition
2.2.26.
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90 2. Chapter. Generalised Long-Moody functors

2.7.1.2 Tensorial functor category

Fix a tensorial framework {A, ¢, "y, G,cn}. The work of Section 2.7.2 requires introducing a subcategory of
Fct (UG, R-M00).

Definition 2.7.8. Let Fct (4G, R-900) } be the full subcategory of Fct (UG, R-Mt0d) on objects I such

{/\,q),H(p,g,Qn

that the R-module I (n) has a right R {qu(n) -module structure for all natural numbers n, given by:

I([n =ng]) (i-h) = I([n' = n,g]) (i) - Ho ([n" = n,8]) (), (27.1)

forallh € Hyy,), i € Z(n)and [n' —n,g] € Homyg (n,n’). It is called the tensorial functor category associated
with the tensorial framework {)\, ®,Hep,G,6n }

Example 2.7.9. Considering a Long-Moody system {#, G, G’,¢,}, the augmentation ideal functor of Definition
2.2.28is a functor in the category Fet (UG, R-900) 11 iy 2/ 6,c,.}-
2.7.2 Definition of tensorial right functors

We fix a tensorial framework {)\, o, He, G, gn} throughout this section.

Notation 2.7.10. When there is no ambiguity, we omit the notation for the tensorial framework {)\, ®, ", G, 6n }

Theorem 2.7.11. The following assignment defines a bifunctor
(Z{/\/([)/,thgrgn} : Fet (UG, R-S)Jtob){)\’%ﬁw/g/gn} x Fet (4G, R-Mod) — Fet (UG, R-Mod),
called the tensorial functor associated with the coherent Long-Moody system {)\, ¢, Hep, G, G, cn }

e Objects: for I € Obj (Fct (UG, R-Mod) ¢, «p,m,g,gﬂ}) and F € Obj (Fet (41G, R-M0)), Ty, 30 6.y (LF) :
UG — R-DMod is defined by:

— Objects: Vn € Obj (G), T{A,(p,ng,Qn} (IF)(n) =1(n) R[I;@ | F(A+n).
o(n)

— Morphisms: for n,n’ € IN, such that n’ > n, and [n' — n,g] € Homygg (n,n'), assign:

o tpGe) LE) (W =ngl) =I([n"—ngl) ® F(idg[n'—ng]).
R[H‘/’(”l)]

* Morphisms: let F and G be objects of Fct (UG, R-Mod), I and | be objects of Obj (Fct (UG, R-Mod) (MoHy0, gn})’
n:F —= Gand y : I — | be natural transformations. For all objects n of G, we define Q{A,(p,Hzp,g,gn} (u,m) =

(S{/\,(P’H(wg’gn} (I,P) — T{/\,ql?,'Hzp,g,gn} (], G) by

(Trpnpe) FI), = 2 s

Proof. The proof generalises the one of Theorem 2.2.30. For this proof, F, G and H are objects of Fct (LG, R-0od),
I, ] and K are two objects of Fct (UG, R-9)t00) (Mg HoGren}? n, n' and n” are natural numbers such that n”’ > n’ > n.

There are three points to check.
1. First, we have to preove that the assignment of ¥ (I, F) on morphisms makes sense. Considering [n’ — 1, g]
and [n' —n,¢'| such that [n' — n, g] = [0’ —n, ¢'], ie assume that there exists ¢ € G,,_, so that ¢’ o (¢hid,) =

g. Since the monoidal product j is well-defined on 4G’ (see Proposition 2.1.12), recalling that I and F are
functors on UG, we deduce that:

(' —mg) @F idat [ ~m,g]) = 1([n' ~ng])@F (idst [ ~n,g]).
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So it remains to check the compatibility of the assignment ¥ (I, F) with respect to the tensor products, ie to
show that forallh € H,(,,) and i € Z (n):

I([n'=ng|)(i-h) ® F(id\g[n'—n,g]) = I([n'—ng]) & F(id\fg[n'—n,g])oF(cu(h))
R[H, ()] R[Hy (]

Recalling the equality 2.7.1, the compatibility with respect to the tensor product amounts to proving that:

F(idpyg[n'—n,g]) oF(gn(h)) = F(cw (He ([0 —n,g]) (h))) oF (idrt[n" —n,g]).
This is a direct consequence of Conditions 2.7.4 and 2.7.5.

2. Let us prove that the assignment ¥ (I, F) is a functor. The functorialities of I and F over 4G and from the
compatibility of the monoidal structure § with composition imply the composition axiom and that:

T (I, F) (idg,) = ids(1,r)(n)-

3. The remaining point to check for ¥ to be a functor is the consistency of our definition on morphisms. For
7 : F = Gand p : I — ] natural transformations, it is clear to check that:

T(,G) ([0 =ngl)eT(wn)y, = T(y)yoT(LF) ([0 —ng]).

Therefore T (y,7) is a morphism in the category Fect (4G, R-M0d). It is clear that T (idy, idp) = id<(jp).
Finally, let7 : F — G, ' : G — H, y : I — Jand p : ] — K be natural transformations. Let n be a natural
number. Now, because 7, 11’, 4 and p/ are morphisms in the category Fct (4G, R-M0d), we deduce that:

T(Won')ewm), = (VIQOVE)R[H@’ ](nmonm) (@) =T (W 1), 0T (1)
@(n)

O

Example 2.7.12. Consider a Long-Moody system {#, G, G !,6n} and the augmentation ideal functor Z of Definition
2.2.28. Then:

LM{H,grQn} = z{1,id]N,')"[,gzgn}’ (I/ _) .
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Chapter 3

Computations of stable homology with
twisted coefficients for mapping class
groups

Abstract: In this paper, we compute the stable homology of braid groups, mapping class groups of surfaces and of automor-
phism groups of certain right-angled Artin groups with twisted coefficients. On the one hand, the computations are led using
semidirect product structures arising naturally from these groups. On the one hand, we compute the the stable homology with
twisted coefficients by FI-modules. This notably uses a decomposition result of the stable homology with twisted coefficients
due to Djament and Vespa for symmetric monoidal categories, and we take this opportunity to extend this result to pre-braided
monoidal categories.

Introduction

In [ ], Randal-Williams and Wahl prove homological stability for some families of mapping class groups of
surfaces and 3-manifolds, with twisted coefficients given by particular kind of functors. Namely, they consider a
set of groups {Gy },,cp such that there exists a canonical injection G,, < Gy,1 for all natural numbers . We denote
by G the groupoid with natural numbers as objects and the groups {Gj }, o as automorphism groups, by 4G the
Quillen’s bracket construction on G (see Section 3.1), and by Ab the category of abelian groups. Randal-Williams
and Wahl show that if F : ${G — Ab is a very strong polynomial functor of degree d (see [ , Section 4] for
this notion), then the canonical induced maps

H. (Gu, E (1)) — Hy (Gys1, F (n+1))

are isomorphisms for N (x,d) < n with some N (x,d) € IN depending on * and d. The value of the homology for
n > N (*,d) is called the stable homology of the family of groups {G, }, . and denoted by H, (Geo, Fro).

In this paper, we are interested in explicit computations of the stable homology with twisted coefficients for
mapping class groups of surfaces and 3-manifolds. On the one hand, we use semidirect product structures nat-
urally arising from mapping class groups to compute their stable homology with particular twisted coefficients.
Namely, on the strength of Lyndon-Hochschild-Serre spectral sequence, we prove:

Theorem A (Proposition 3.2.18, Theorems 3.2.17, 3.2.29 and 3.2.45). We have:

1. For n a natural number, we denote by By, the braid group on n strands, by Cox (n) the complex Coxeter representation
and by Bur; (n) the unreduced Burau representation of B,. From the stability result [ , Theorem C], we
deduce that for all natural numbers n > q + 2:

C@Z lfq > 2,

Hy (Bn, Cor (n)) = {C ifg=0,1
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Hence, we recover a result of [ , Chapter 11, Section 5]. Moreover, for all natural numbers n > 3 and q > 3:

C[t*]/(1—t) if3<q<n-2
C[t¥1]/(1—t) ifq=n-2andnisodd,
C [til] / (1—1#2) ifq=n-2andnis even,
otherwise.

Hy (By, Bury (n)) =

o

. We denote by Ty 1 the isotopy classes of diffeomorphisms restricting to the identity on the boundary component of a

compact connected orientable surface with one boundary component and genus § > 0. Then, from the stability results
of [ , 1, for m, n and q natural numbers such that 2n > 3q + m, there is an isomorphism:

Hy (Fn,1,H1 (Zn,l,Z)®m> o @ Hq—(2k+1) (rn,l/Hl (anllz)&n—l) .
EaES

Hence, we recover inter alia results of [ Tand [ 1.

. We denote by A3, | the group of path-components of the space of homotopy equivalences of the space 47, with n € N

circles, k € IN distinguished circles and s € IN basepoints (we refer the reader to Section 3.2.2.4 for an introduction
to these groups). Let s > 2 and q > 1 be natural numbers and F : gt — Ab a polynomial functor where gt denotes
the category of finitely generated free groups. Then, from the stability results of [ 1, for all natural numbers
n>2q+1:

Hy (A5, 0, F (n)) =0.

Moreover, H, (A;’k, Q) = 0 for all natural numbers n > 3q + 3 and k > 0. We thus recover the results of [ ]
for holomorphs of free groups.

On the other hand, we deal with stable homology for mapping class groups with twisted coefficients factoring

through some finite groups. Let (X,U,0) (resp. (WZ,U,0)) be the symmetric monoidal groupoid with objects
the natural numbers and automorphism groups the symmetric groups (resp. hyperoctahedral groups). Note that
Quillen’s bracket construction X (see Section 3.1) is equivalent to the category FI of finite sets and injections
used inter alia in [ ]. For R a commutative ring, R-910d denotes the category of R-modules. We prove the
following results.

Theorem B (Proposition 3.4.14, Proposition 3.4.22, Proposition 3.4.26, Corollary 3.4.30). Let K be a field of char-

acteristic zero and d be a natural number. Considering functors F : FI — K-0od and G : 4 (WX) — K-Dod, we
have:

K

1. Hj (Boo, Fo) = COZEIW (Hd (PB,,K)®F (n)) where By, (respectively PB,,) denotes the braid (respectively pure
ne

braid) group on n strands.

. Hj (¥, Gs) =2 Colim (Hd (25, K)®G (n)> where ., (respectively &.7,) denotes the symmetric (respec-
K

nes(We)
tively pure symmetric) automorphisms group of free group on n strands (we refer the reader to Section 3.4.2.2 for the
definitions of these groups).

00,17

n€Fl | kyi=d
classes of diffeomorphisms permuting the marked points and restricting to the identity on the boundary component
of a compact connected orientable surface with one boundary component, genus g > 0 and s > 0 marked points. In

. Hy (F°° Foo) > Colim | & (Hk (Ty1,K) <H8<> H ((CP"")X",]K)) (]I}?F (n)] , where Iy | denotes the isotopy

00
00,17

particular, Hpy 1 (F Foo) = 0 for all natural numbers k.

4. Hy (Aut <(Z*k) Xoo) , Foo> = 0 for a fixed natural number k > 2d + 1.
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The proof of Theorem B requires a splitting result for the twisted stable homology for some families of groups:
this decomposition consists in the graded direct sum of tensor products of the homology of an associated category
with the stable homology with constant coefficients. Namely, we consider a pre-braided locally homogeneous
category (4G, ,0) (we refer the reader to Section 3.1 for an introduction to these notions) such that the unit 0 is an

initial object. We denote by ug( AX) the full subcategory of 4G on the objects {AhX an } N and by H, (ng( AX)s F )
ne

the homology of the category £G4 x) (we refer the reader to the papers [ , Section 2] and [ , Appendice
A] for an introduction to this last notion). We prove the following statement.

Theorem C (Proposition 3.3.7) . Let K be a field. For all functors F : UG 4 x) — K-DNod, we have a natural isomorphism
of K-modules:

H, (Geo, Fo) = €D (Hk (Ges, K) @ Hy (ug(A,Xy F)) .
k+1=x

If the groupoid G is symmetric monoidal, then Theorem C recovers the previous analogous results [ ,
Propositions 2.22, 2.26].

For sake of completeness, we finally recall that for braid groups, the homology with coefficients in the ring
of Laurent polynomials Z [t*!] is computed by Callegaro in [ ], the one with coefficients in the Tong-Yang-
Ma representations (see [ ]) is obtained by Callegaro, Moroni and Salvetti in [ ] and the one with
coefficients in the reduced Burau representations is computed by Chen in [ ]. Futhermore, the first stable
homology group of compact connected non-orientable surfaces with one boundary component with coefficients
in the first homology group of the considered surface is computed by Stukow in [ 1.

The paper is organized as follows. In Section 3.1, we recall necessary notions on Quillen’s bracket construction,
pre-braided monoidal categories and locally homogeneous categories. In Section 3.2, after setting up the general
framework for the families of groups we will deal with and applying Lyndon-Hochschild-Serre spectral sequence,
we prove the various results of Theorem A. Section 3.3 is devoted to the proof of the splitting general result
Theorem C for the stable homology. Finally, in Section 3.4, we deal with the twisted stable homology for mapping
class groups with non-trivial finite quotient groups and prove Theorem B.

Notation 3.0.1. We fix R a commutative ring and K a field throughout this work. We denote by R-M0d and K-9tod
the categories of R-modules and K-vector spaces.

We denote by (IN, <) the category of natural numbers (natural means non-negative) considered as a directed
set. For all natural numbers 1, we denote by 7, the unique element of H 01N, <) (n,n 4 1). For all natural numbers
n and n’ such that n’ > n, we denote by 7,,,s : n — 1’ the unique element of Hom <) (1,1'), composition of the
morphisms 7,71 0¥, 500,410 ¥y The addition defines a strict monoidal structure on (IN, <), denoted by
(N, <), +,0).

We denote by &t the category of groups and by * the coproduct in this category. We denote by Ab the full
subcategory of &t of abelian groups. We denote by gt the full subcategory of &t of finitely generated free groups.
The fee product of groups is denoted by * and defines a monoidal structure over gr, with the trivial group Og.
the unit, denoted by (gt, *, 0. ). We denote by x the direct product of groups and by Autg. (G) (or Aut (G)) the
automorphism group of a group G.

Let Cat denote the category of small categories. Let € be an object of €at. We use the abbreviation Obj (€) to
denote the objects of €. For © a category, we denote by Fct (€, D) the category of functors from ¢ to ©. If 0 is
initial object in the category €, then we denote by 14 : 0 — A the unique morphism from 0 to A. The maximal
subgroupoid ¥t (€) is the subcategory of € which has the same objects as ¢ and of which the morphisms are
the isomorphisms of €. We denote by ¢t : Cat — Cat the functor which associates to a category its maximal
subgroupoid.

Definition 3.0.2. A family of groups is a functor G_ : (IN, <) — &t such that for all natural numbers n, G_ (y,) :
G, — Gy41 is an injective group morphism.

For an introduction to braided monoidal categories, we refer to [ , Section XI]. Standardly, a strict monoidal
category will be denoted by (¢,5,0), where f : € x € — € is the monoidal structure and 0 is the monoidal unit. If
the category is braided, we denote by bS, its braiding.
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96 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

3.1 Categorical framework

This section recollects Quillen’s bracket construction, pre-braided monoidal categories and locally homogeneous
categories for the convenience of the reader. It takes up the framework of [ , Section 1].

3.1.1 Quillen’s bracket construction
We fix a strict monoidal groupoid (&, 4,0).

Definition 3.1.1. [ , Section 1.1] Quillen’s construction on the groupoid &, denoted by (& is the category
defined by:

e Objects: Obj (UB) = Obj (8);
* Morphisms: for A and B objects of &,

Homgyg (A, B) = co(l}jim [Home (—1A, B)].

A morphism from A to B in the category U® is an equivalence class of pairs (X, f), where X is an object of &
and f : XA — B is a morphism of &; this is denoted by [X, f] : A — B.

e For all objects X of &, the identity morphism in the category U® is given by [0, idx] : X — X.

e Let [X,f] : A — Band [Y,g] : B— C be morphisms in the category {{&. Then, the composition in the
category @& is defined by:

[Y, gl o [X, f] = [Y8X, g o (idygf)].

It is clear that the unit 0 of the monoidal structure of the groupoid (&, ,0) is an initial object in the category
UG (see [ , Proposition 1.8 (i)]).

Definition 3.1.2. The strict monoidal category (&, f,0) is said to have no zero divisors if for all objects A and B of
®, AjB = 0if and only if A = B = 0.

Proposition 3.1.3. [ , Proposition 1.7] Assume that the strict monoidal groupoid (&, 4, 0) has no zero divisors and
that Aute (0) = {ido}. Then, the groupoid & is the maximal subgroupoid of $®.

Henceforth, we assume that the groupoid (&, fj, 0) has no zero divisors and that Auts (0) = {idg}.

Remark 3.1.4. Let X be an object of &. Let ¢ € Autg (X). Then, as an element of Homy g (X, X), we will abuse the
notation and write ¢ for [0, ¢].

Finally, we recall the following lemma.

Lemma 3.1.5. [ , Lemma 1.8]Let € be a category and F an object of Fct (&, ¢). Assume that for A, X,Y € Obj (&),
there exist assignments F ([X,idxy]) : F (A) — F (X§A) such that:

F ([Y, idyﬂth]) oF ([X, idth]) =F ([YhX, l‘dyﬂthD . (3.1.1)

Then, the assignment F ([X, g]) = F () o F ([X,idxya]) for [X,g] € Homyge (A, idx;a) defines a functor F : & — €
if and only if for all A, X € Obj (), forall " € Autg (A)andall ' € Autg (X):

F([X, idxsa]) o F (") = F(g'18") o F ([X, idxya]) - (3.1.2)

3.1.2 Pre-braided monoidal categories:

Assuming that the strict monoidal groupoid (&, t, 0) is braided, Quillen’s construction 4® will also inherit a strict
monoidal structure (see Proposition 3.1.8). Beforehand, we recall the notion of pre-braided category, introduced
by Randal-Williams and Wahl in [ , Section 1].
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3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups 97

Definition 3.1.6. [ , Definition 1 5] Let (€, 1,0) be a strict monoidal category such that the unit 0 is initial.
We say that the monoidal category (¢, 4,0) is pre-braided if:

e The maximal subgroupoid ¢t (€, f, 0) (see Notation 3.0.1) is a braided monoidal category, where the monoidal
structure is induced by that of (¢ h 0).

¢ For all objects A and B of €, the braiding associated with the maximal subgroupoid bS,B : AjB — BhA
satisfies:
b po (idatig) = tphida : A — BRA. (3.1.3)
Remark 3.1.7. A braided monoidal category is automatically pre-braided. However, a pre-braided monoidal cate-
gory is not necessarily braided (see for example [ , Remark 1.15]).
Finally, let us give the remarkable behaviour of Quillen’s bracket construction over the strict monoidal groupoid
(8,4,0).

Proposition 3.1.8. [ , Proposition 1.8] Suppose that the strict monoidal groupoid (&, 1, 0) has no zero divisors and
that Aute (0) = {ido}. If the groupoid (®,14,0) is braided, then the category (4&,4,0) is pre-braided monoidal. If the
groupoid (&, 1,0) is symmetric, then the category (44&, ,0) is symmetric monoidal.

The monoidal structure on the category (U®,14,0) is defined on objects as for (®,4,0) and defined on morphisms by
letting, for [X, f] € Homye (A, B) and [Y, g] € Homgg (C,D):

X, 718 1v,8] = X, (Fzg) o (it (69y) " vidc )|

In particular, the canonical functor & — U& (see Remark 3.1.4) is monoidal.

3.1.3 Locally homogeneous categories

The notion of homogeneous category is introduced by Randal-Williams and Wahl in [ , Section 1], inspired
by the set-up of Djament and Vespa in [ , Section 1.2]. With two additional assumptions, Quillen’s construc-
tion {& from a strict monoidal groupoid (&, f,0) is endowed with an homogeneous category structure. This type
of category are very useful to deal with homological stability with twisted coefficients questions (see [ ]) or
to work on the stable homology with twisted coefficient (see [ 11 ] and Section 3.3).

Let (€, ,0) be a small strict monoidal category in which the unit 0 is also initial. For all objects A and B of €,
we consider the morphism ¢,4fidg : 0§B — AfB and a set of morphisms characterised by this morphism:

Fixs (B) = {¢ € Aut (A4B) [ ¢ o (1aliidp) = 1ahidp}.

Remark 3.1.9. Since (€, f,0) is assumed to be small, Homg (A, B) is a set and Aute(B) defines a group (with com-
position of morphisms as the group product). The group Aute(B) acts by post-composition on Home (A, B):

Autg(B) x Home(A,B) — Homg(A,B).
(¢ f) — pof

Definition 3.1.10. Let (¢, f,0) be a small strict monoidal category where the unit 0 is initial. We consider the
following axioms:

* (H1): for all objects A and B of the category €, the action by post-composition of Aute(B) on Home (A, B)
is transitive.

e (LH1): for a pair of objects (A4, X): for all natural numbers 0 < p < n, the action by post-composition of
Aute(AX"™) on Hom ((XWH), AhXh") is transitive.
* (H2): for all objects A and B of the category €, the map

Ath(A) — AMf@(AhB)
f — fhidp

is injective with image Fix 4 (B).
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98 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

e (LH2): for a pair of objects (A, X): for all natural numbers 0 < p < n, the map

Aute(AgXHn=r=1))  —  Aute(AX).
f — fhidygp

is injective with image FixAqu(,z,p,l) (XH(PH)).
The category (€, ,0) is locally homogeneous at a pair of objects (A, X) (respectively homogeneous) if it satisfies
the axioms (LH1) and (LH2) at (A, X) (respectively the axioms (H1) and (H2)).
(

Remark 3.1.11. If (€, 1, 0) is a homogeneous category, then it follows form axioms (H1) and (H2) that for all objects
A and B:
Homg (B, AtB) = Aute (AfB) /Aute (A),
where Autg (A) acts on Autg (AfB) by precomposition.
We now give the two additional properties so that if a strict monoidal groupoid (&, fj,0) satisfy them, then
Quillen’s bracket construction 4U® is (locally) homogeneous.

Definition 3.1.12. Let (¢, ,0) be a strict monoidal category. We define two assumptions.
* (C): for all objects A, B and C of ¢, if AjC = BC then A = B.

e (LC): for a pair of objects (A, X): for all natural numbers 0 < p < n,if Y € Obj (€) is such that Y X(P+1) =
ApX" then Y = AgXi(n—p-1),

e (I): for all objects A, B of €, the following morphism is injective:

Autq;(A) — AMi’@(AhB)
f — fhidp

* (LI): for a pair of objects (A, X): for all natural numbers 0 < p < n, the following morphism is injective:

Aute (AgXH=p=1)) 5 Aute(AgXI).
f > flidygp

Theorem 3.1.13. [ , Theorem 1.10] Let (&, , 0) be a braided monoidal groupoid with no zero divisors. If the groupoid
& satisfies (C) and (I), then U® is homogeneous. If the groupoid & satisfies (LC) and (LI) for a pair of objects (A, X), then
U is locally homogeneous at (A, X).

3.2 Twisted stable homologies of semidirect products

This section introduces a general method to compute the stable homology with twisted coefficients using semidi-
rect product structures arising naturally from the families of mapping class groups. We first establish the general
result of Corollary 3.2.5 for the homology of semidirect products with twisted coefficients. This result is then
applied in Section 3.2.2 to compute explicitly some homology groups with twisted coefficients for braid groups,
mapping class groups of orientable and non-orientable surfaces and automorphisms of free groups with bound-
aries.

3.2.1 Framework of the study
3.2.1.1 A general result for the homology of semidirect products

First, we present some properties for the homology with twisted coefficients for a semidirect product using
Lyndon-Hochschild-Serre spectral sequence and prove the general statement of Corollary 3.2.5. Let Q be a groupoid
with natural numbers as objects and denote by Autg (1) = Q, the automorphism groups.
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Assumption 3.2.1. We assume that there exists a family of free groups K_ : (N, <) — &vand a functor Ag : Q — &t
such that Ag (n) = Ky, for all natural numbers n.

Notation 3.2.2. For all natural numbers 1, we denote by Ag ,, : Qu — Autg, (Ky,) the group morphisms induced
by the functor Ag.

Using Assumption 3.2.1, we form the split short exact sequence:

1— Ky —"o Ky % Qn s Qp ——1 (3.2.1)
n
and we denote by s, : Q; — Ky A>4 Qy the splitting of g,,. For all natural numbers n, we fix M, a R |K;; % Qn] -
on on

module.

Ky % Qp Ky % Qn
. . . ‘A n A n . .
Notation 3.2.3. We abuse the notation and write M,, for ResKn o (M,), where ResKﬂ 2" denotes the restriction
functor.

Proposition 3.2.4. The short exact sequence (3.2.1) induces a long exact sequence:

> H*+1 (Qn/ HO (Kn; Mn)) (3~2-2)

ldiﬂ,o
Py

H*—l (Qn/ Hl (Kﬂ/ Mn)) i> H* (Kn .AX] Qn/ Mn) —— H* (Qn/ HO (Kn/ Mn))
on

2
d*,O

H**Z (Q'rlr Hl (Ki’l/ M'rl)) —

for My, an R | K, A><1 in -module and where {d%J q} N denote the differentials of the second page of the Lyndon-
Qn " pac

Hochschild-Serre spectral sequence associated with the short exact sequence (3.2.1).

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence (see for instance [ , Proposition 6.8.2]) to the
short exact sequence (3.2.1), we obtain the following convergent first quadrant spectral sequence:

Epq : Hp (Qu, Hy (Ku, My)) => Hpy (Kn s Qn,Mn> . (3.2.3)
Qn

By Assumption (3.2.1), Hy (Ky, M) = 0 for g > 2 (see for instance [ , Proposition 6.2.7]). The result is a
classical consequence of the fact that the spectral sequence (3.2.3) has only two rows (see for instance [
Exercise 5.2.2]). In particular, the map ¢, is defined by the composition:

7

H*,1 (Qn/ Hl (Kn/“MH))

H, 4 (Qn/ H, (Knr Mn)) /Im <d>2k+1’0>c—> H. (Kn .AX] Qn/ Mn) ;
on
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100 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

the map 9. is the coinflation map Coinf%’ % On (M), induced by the composition:
Agn

H, (Kn X Qn,Mn> Ker (dilo)

Agn
b
N
H* (Qn/ HO (Kn/ Mn)) .
O

Corollary 3.2.5. Let n be a natural number. Assume that the free group Ky, acts trivially on the R-module My,. Then, for all
natural numbers g > 1:

Hq <Kn AN in Ml’l) = qul <Qn/ Hl (KH/ R) % Mn) EB Hq (Q}’l/ Mn) . (324)
Qn
Proof. First, as M, is a trivial K;,-module:

Hl (Kn/Mn) = H1 (Kn,R) %Mn and H() (Kn/Mn) & Mn,

and the coinflation map . = Coinfl%1 w 0, (Mn) is equal to the corestriction maps Cores%‘d4>q 0, (My) (see for
Qn on
example [ , Section 6.7.3]). Hence, denoting by H. (pu, M) the map induced in homology by p, : K, A><1
on
Qn — Qy (see [ , Section 6.7.5]), we deduce that:

lP* = H., (Pn/ Mn) .

By the functoriality of the homology (see [ , Section 6.7.5]), the splitting s, : Q; — K, A><1 Qy of py in-
on
duces a splitting in homology H. (s, M) of Hy (pn, My). Hence, H, (pn, M;) is an epimorphism and a fortiori

Ker (dE,(,) = H, (Qu, M;). Therefore, dilo = 0 and the exact sequence (3.2.2) gives a split short exact sequence of
abelian groups for every g > 1:

[ Hi(pn,Mn)
1= Hy1 ((Qu i (K, R) @ Moy ) = Hy ( K 1 Qu, My | = Hy (Qu, My) — 1.
on

3.2.1.2 Relation to Long-Moody functors:

In [ , ], the notion of Long-Moody functor is set for the groupoid (Q, f,0) and the family of groups
K_. Our aim here is to outline the relation between the twisted coefficients H; (K;, R) ® M, appearing in Corollary
R

3.2.5 and the notion of Long-Moody functor so as to prove Corollary 3.2.10. This last result will be useful to prove
Theorem 3.2.45.

Assumption 3.2.6. We assume that the groupoid Q is a braided strict monoidal category (we denote by (Q,8,0) the
monoidal structure) and that there exists a free group K such that K, = K*" for all natural numbers n. Moreover, we
assume that K— (7yn) = i * idg,, for all natural numbers n (we recall that vy, is the unique element of Aut( < (n) see
Notation 3.0.1) and that the functor Ag of Assumption 3.2.1 defines a strict monoidal functor (Q,1,0) — (gt, *,0).

Throughout the remainder of Section 3.2.1, we assume that Assumption 3.2.6 is satisfied. This allows to define
the functor K_ on the category {Q:
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Lemma 3.2.7. Assigning Ag ([1,id,+1]) = K_ (yn) for all natural numbers n, we define a functor Ag : 4Q — Gr.

Proof. We use Lemma 3.1.5 to prove this result: namely, we show that relations (3.1.1) and (3.1.2) of this lemma are
satisfied. It follows from the fact that K_ is a functor on (IN, <), that the relation (3.1.1) of Lemma 3.1.5 is satisfied
by Ag. Let n and n’ be natural numbers such that n’ > n,let g € Qu and ¢' € Q,s. We denote by ek , the neutral
element of K,;. We compute for all k € Kj;:

(Ao (a'39) o Ag ([ idwa])) (k) = (Ag (¢') * Ag (a)) (ex, *k)
ex,, * Ao (q) (K)
= (Ao ([, idyn]) 0 Ag (9)) (k).

Hence, the relation (3.1.2) of Lemma (3.1.5) is satisfied by A. O

Let F be an object of Fct (£{Q, R-9100) and # be a natural number.
Notation 3.2.8. We denote by ¢, + the trivial morphisms K, — Oge — Quy1.

Hence, the Q,,+1-module F (n + 1) is both a Q,-module using precomposition by the morphism id1f— : Q, —
Q41 and a trivial K,-module using precomposition by ¢, ¢ Recall that the homology group H; (—,R) defines
a functor from the category &r to the category R-91od (see for example [ , Section 8]). Hence, we define a
functor Hy (Ag, R) : G — R-Mod by the composition:

A Hy(—,R
40 25 e 1CR_ R-moo .

In addition, the pointwise tensor product of two objects of Fct (UQ, R-9t00) defines an object of Fct (£(Q, R-Mod),
assigning

<F ® F’) (n) =F(n)®F (n)

R

for F, F’ € Fct (41Q, R-9100) and for all objects 1 of UQ.
Taking up the notations and framework of [ ], we deduce that:

Lemma 3.2.9. [ , Lemma 2.37 and Proposition 2.38] If Assumption 3.2.6 is satisfied, then for all objects F of Fct (UQ, R-90100),
there is a isomorphism in the category Fct (UQ, R-9)t00):

Hi (K- R) @ F (15-) 2 LM, 00,,,) (),
where LMy 4,,0,0,,,} denotes the Long-Moody functor associated with the functor Ag, the braided monoidal groupoid
(Q,1,0) and the family of trivial morphisms {Gu},cn-

We refer the reader to [ , Section 3] for an introduction to the notion of strong polynomial functors. It
thus follows from Lemma 3.2.9 and [ , Theorem A] that:

Corollary 3.2.10. Let F be an object of Fct (UQ, R-90d). If F is a strong polynomial functor of degree equal to d, then
H; (K-, R) ® F (14—) is a strong polynomial functor of degree less than or equal to d.
R

3.2.2 Applications

Many families of mapping class groups fit into the framework of Section 3.2.1. Proposition 3.2.4 and Corollary
3.2.5 are key results to compute the homology with twisted coefficients for these families of groups.

3.2.2.1 Braid groups

We denote by B, the braid group on 7 strands and by F,, the free group on n generators. The braid groupoid B is
the groupoid with objects the natural numbers n € IN and braid groups as automorphism groups. It is endowed
with a strict braided monoidal product fj : B x B — B, defined by the usual addition for the objects and laying
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102 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

two braids side by side for the morphisms. The object 0 is the unit of this monoidal product. The braiding of the
strict monoidal groupoid (B, b, 0) is defined for all natural numbers n and m by:

bE = (Gmo-00p007) 00 (Cuim 2000400, 1) 0 (Cyim 10001100
where {0;},. {1,..n+m—1} denote the Artin generators of the braid group By 1, We refer the reader to [ ,
Chapter XI, Section 4] for more details.

For all natural numbers n, Artin representations a, : B, — Aut (F,) are defined for all elementary braids o;
wherei € {1,...,n—1} by:

ay(0;): ¥, — Fy

Sit+1 ifj=i
g > 8&.h8igi ifj=i+1
g ifj ¢ {ii+1).

Identifying B, as the mapping class group of a n-punctured disc, a, is the induced action on the fundamental
group of the n-punctured disc. Artin representations thus provide a functor Ag : B — &r and Assumption 3.2.6
is satisfied.

Remark 3.2.11. For all natural numbers 7, the semidirect product F, A>4 B, identifies with the annular braid group,
Bn
also known as circular braid group or Artin group of type B, (see [ 1), denoted by CBy;: this is the subgroup

of B, ;1 that leaves the first puncture invariant. We refer the reader to [ , Section 2] for more details. In
[ , Theorem C], Gorjunov computes the cohomology groups H7 (CB,, Q). Therefore, using the universal
coefficient theorem for cohomology (see for example [ , Theorem 3.6.5]), it follows that for n > g + 2:

@2 >
Hy(F, % B,c) =S Ha=21
‘Aﬁ,n C lfq:O

Computation of H, (B, Bur;): For this paragraph, we fix R = C [til} , the ring of Laurent polynomials in one

variable. In [ , Section 1.2], we prove that the unreduced Burau (respectively reduced Burau) representations
of braid groups assemble to form a functor Bur; : 4B — C [tF1] -Dod (respectively Bur; : LB — C [t£1] -Mod).

In|[ ], Chen computes the homology groups of braid groups with coefficients in the reduced Burau func-
tor. We briefly review here the work led for this computation.

Notation 3.2.12. We denote by C [t*1] the object of Fct (£I, C [t*1] -tod) which is constant at C [t*1].

Theorem 3.2.13. [ , Theorem 1] For n > 3, we have:

ifg=0,
[/ (1=t if1<q<n-2,
[(tF1]/ (1—t) ifq=n-2andnisodd,
[(tH1] / (1 —#2) ifq = n—-2and n is even,
otherwise.

Hy (By, Bur; (n)) =

©cnnnee

Proof. For all natural numbers 7, we consider C [t*!] as a trivial B,-module and assume that each generator of

the free group F, acts on C [+*!] by multiplying by t. It follows from the definition of Artin representation that
these actions induce a well-defined action of the semi-direct product F, x B, on C [til]. Then, [ , Lemma
Bn

3] proves that for g and n > 3 natural numbers, there is an isomorphism of C [

t*1]-modules:

Hy (By, But: (n)) = Hy (Ba, Hr (F., C [11])).
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Note that Hy (Fn, C [til]) & C and recall that H, (B,;,C) = 0if * > 2 (see for example [ , Section 4]). Hence,

the result follows from Proposition 3.2.4 and the computation in [ , Theorem 4.2] of
+1
H, (Fn 2B C [ D :
O
Remark3.2.14. In|[ , Section 1.2], we also prove that the family of Tong-Yang-Ma representations (see [ D
of braid groups assemble to form a functor TYM; : LI — C [til] -Mod. Asin [ , Proposition 4.3], we can

prove using Schapiro’s lemma that for n > 3 and g > 2:
Hy (B, TYM; (n)) = Hy—q (By, Bur; (n)) .

The following proposition relates the reduced and unreduced Burau functors.

Notation 3.2.15. For an object F of Fct (88, C [t*1] -9t00), for all natural numbers k, we denote by F>y : U —»
C [+*1] -900d the subfunctor of F which is null on the objects such that n < k and equal to F for n > k.

Proposition 3.2.16. We have the following short exact sequence in Fct (4, C [t1] -00od):

0—— (C [F1]) 5 — (Burr)oy — = (Bury) ,, —>0. (3.2.5)

Proof. For all natural numbers n, we fix:

n
(1 -1 0 0 7
0 1
rn =
0
1 -1
0 0 1
n
[P n
Th , -1 __ Bury (0’1‘) 0 _
en, forallie {1,...,n—1}andn > 3,r, 0 Bux; (0;)or, " = L. 1 whereLi—[O e 0 iy 1 ]
1
and J;,1 denotes the Kronecker delta. Hence, the functor (Bur;). is equivalent to the functor B, : Uup —
C [+1] -9%0d which assigns C [t*1] “for all objects, the matrix [ gButLt‘((Ti) (1) ] for all Artin generator o; of B,
1

and B ([1,idy]) : C [ti-l]ﬂén C [til]@n-&-l is the embedding ) & idC on for all natural numbers n (re-

[#+1]

call from Notation 3.0.1 that L[] denotes the unique group morphism Og, — C [t*!]

). For all natural numbers

n > 3, the projections p, : C [tilan - C [til]en_l on the n — 1 first copies of C [+*!] determine the natural
transformation p of the short exact sequence (3.2.5). It is clear that the kernel of this natural transformation is
(C[])2s O

Hence, we can prove:
Theorem 3.2.17. For all natural numbers n > 3 and q > 3:
C[tH]/(1-1t) if3<qg<n-2
C[tH]/(1—t) ifg=n-2andnisodd,

C[t]/ (1—#) ifq=n-2andniseven,
0 otherwise.

H, (B, Buyy (n)) =
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Proof. Let n > 3 be a fixed natural number. From the short exact sequence of Proposition 3.2.16, we deduce the
long exact sequence in homology:

-+ —— H, (By,,C [t*']) — H, (By, Bux; (n)) — H, (B,, Bur; (n)) — H,_ (B, C [F]) —— - -

(3.2.6)
: 11 C[!] ifk=0,1 _
Since Hy (B, C [t]) = " (see for example [ , Section 4]), the result follows from Theo-
0 otherwise
rem 3.2.13. N

Computation of H, (B, €or): The unreduced (respectively reduced) Coxeter representations of braid groups
(see [ , Chapter II, Section 5] for this terminology) is given by specializing the unreduced (respectively re-
duced) Burau representations at ¢ = 1. Namely, the Coxeter functor Cor : U — C-Mod and reduced Coxeter
functor oy : UB — C-Mod are defined by Cox (n) = C®" and Cor (n) = C**~! for all natural numbers n > 1,
Cor ([1,idy41]) = 1c ®idcen and Cor ([1,idy41]) = ic @ idgen—1, and for all Artin generator o; of By:

1 1 0
Cor(o;) =1d; 1 & |: (1) él) ] ® Id,_;_1 and 9:702:((71‘) =Id ,®| 0 -1 0 ] @ Id,_; ».
0 1 1

The unreduced (respectively reduced) Coxeter representation corresponds for each natural number 7 to the repre-
sentation of B, factoring through the permutation (respectively standard) representation of symmetric group on
n elements.

Proposition 3.2.18. For all natural numbers n > q + 2:

CEBZ lfq > 2,

Hy (By, Cox (1)) = {C ifg=0,1.

Proof. Let n be a natural number. Note that the free group F, acts trivially on €or (1) and therefore Assumption
3.2.6 is satisfied. In addition, we have
Cor (n) = Hy (Fy, C),

and the actions of B,, on €oy (1) and Hy (F;, C) are the same: it is given by the permutation of the copies of C. Since

C ifk=0,1
H; (B, C) = {

|~ (see for example [ , Section 4]), the result follows from Corollary 3.2.5. O
0 otherwise

It follows from the long exact sequence analogous to (3.2.6) with t specialized at 1, that:

Corollary 3.2.19. For all natural numbers n and q such that n > 3and n > q+ 2:

0 ifg=0,
Hy (B, €ox(n)) =< C ifg=1,
CEBZ lfq Z 2,
Remark 3.2.20. In [ , Chapter II, Section 5], using analogous methods, Vassiliev computes the cohomology
groups H7 (B, €ox (n)) and HY (B, €or (1)). Using the universal coefficient theorem for twisted coefficients (see
for example [ , Théoréme 1.5.5.2]), Proposition 3.2.18 and Corollary 3.2.19 recover these results.

3.2.2.2 Mapping class groups of orientable surfaces

Let ZJZ”- denote a smooth compact connected orientable surface with (orientable) genus ¢ € IN, s € IN marked
points and i € {1,2} boundary components with I : [-1,1] — 82;1- a parametrised interval in the boundary. We

denote by 1";1 (resp. 1"5]1) the isotopy classes of diffeomorphisms of er,l preserving the orientation, restricting to
the identity on a neighbourhood of the parametrised interval I and permuting (resp. fixing) the marked points
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(if s = 0, we omit it from the notation). Recall that fixing the interval I is the same as fixing the whole boundary
component pointwise. When there is no ambiguity, we omit the parametrised interval I from the notation.

We denote by I'q > the isotopy classes of diffeomorphisms of 22,2 preserving the orientation and restricting to
the identity on a neighbourhood of the parametrised interval I and fixing the other boundary component point-
wise. Recall that R is a commutative ring and we assume that the various mapping class groups act trivially on
it.

The following result is an essential tool for our work:

Theorem 3.2.21. [ I Let g > 1, s > 0 be natural numbers and x be a marked point in the interior of Zz,l' Deleting x

[s]

. [s+1]
induces a map Iop =Ty

which defines the following short exact sequence:

1—m (55,7) — 15— 18 —1. (32.7)

’ ’

Gluing a disc with a marked point disc X | on the boundary component without I induces the following short exact sequence:

1 Z T2 r;l 1. (3.2.8)

Notation 3.2.22. For all natural numbers ¢ and s, we denote by agzﬂ the action of the mapping class group 1"5’]1 on

the fundamental group of the surface 7 (22,,1, x) .

Lemma 3.2.23. The short exact sequence (3.2.7) splits.

Proof. The embedding of X5 , into Z;ﬁl as the complement of the disc 2(1),1 with the marked point x induces
[s] [s+1]

an injective morphism I o1 r ol - This provides a splitting of the exact sequence (3.2.7) and we have an
isomorphism:
[s+1] ~ s]
b e oy (Zz,ll,x> 0 T
5,
O
Let us introduce a suitable groupoid for our work, inspired by [ , Section 5.6].

Definition 3.2.24. Let s be a fixed natural number. Let 9t} be the skeleton of the groupoid defined by:

* Objects: the smooth compact connected orientable surfaces X? | for all natural numbers # with x a basepoint
in the interior;

* Morphisms: Autoys (251,1) = I, ; for all natural numbers n.

Remark 3.2.25. The morphisms {ags 1} of Notation 3.2.22 assemble to define a functor Agys : 95 — &r such

nelN

that A(n) = m <Z§1,1/ x) for all natural numbers n. Hence, recalling that 77; (Zzll,x) is a free group of rank

2n + s, Assumption 3.2.1 is satisfied.

Proposition 3.2.26. Let n, s and q > 1 be natural numbers. Let My be a R {FET”} -module (and a fortiori a R {FEH -

module using the surjection l"[gsT” — l"[gs]l) on which 1y <Zf1,1, x) acts trivially. Then:

Hy (51", M) = Hy <r}f}1,H1 (S R) € Mn) @ Hy (T, My ) . (3.2.9)

Proof. The result follows from Corollary 3.2.5 and Lemma 3.2.23. O
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Computation of H, (1"00,1, H; (200/1,Z)®m): A first application of Proposition 3.2.26 is to compute the stable

homology groups Hj (Foo,l, H; (Zoo,l,Z)®m) for all natural numbers m and d. We consider the groupoid 913
(see Definition 3.2.24). By [ , Proposition 5.18], the boundary connected sum f induces a strict braided
monoidal structure (img, h, (Zg 11 )) By Van Kampen'’s theorem, the fundamental group functor 7j (—, x) :

(9)?2, b, 28,1> — (gt, %, 0gs) is strict monoidal and assigning for all n,n’ € N

(=, x) ([anfl’idzn’+n,1i|) T (S,0) idnl(zn/l'x)/

defines a functor 7y (—, x) : UMJ — gr. We refer to [ , Section 3.2] for more details. Hence Assumption
(3.2.6) is satisfied. Recall that the homology group H; (—,Z) defines a functor from the category &t to the cate-

gory Ab (see for example [ , Section 8]). As 711 (22’1, x) is finitely generated for all natural numbers 7, the

target category of the composition Hj (—,Z) o 7r1 (—, x) is the full subcategory of Ab of finitely generated abelian
groups, denoted by ab. Hence, for m a natural number, we define a functor Hy (X_1,Z)®" : 499 — ab by the
composition:

(%) Hi(~/2) _om

UMY ’ &t ’ ab ab ,
where —*™ : ab — ab sends an object G to G¥™.
Remark 3.2.27. Let m be a natural number. We refer to [ , Section 4] for the notion of very strong polynomial
functors. As 711 (—, x) is a strict monoidal functor, we deduce from [ , Proposition 3.8] that Hy (X_1,Z) is
very strong polynomial of degree 1. Using again [ , Proposition 3.8], we deduce that H; (X_1,Z)*" is a

very strong polynomial functor of degree m.
Note that for all natural numbers n, since the free group m; (2,1, x) acts trivially on the homology group
Hy (X£,,1,2), we have an isomorphism:

(B0 5.0 2°) 50 2

For all natural numbers #, the action of I',» on Hy (X, 1, Z)®m is induced by the one of T, ; via the surjections
o — F}zll — I, 1. Using the terminology of [ ]and [ 1, Hy (2,,1,Z)®m is thus a coefficient system of
degree m. Hence, it follows from the stability results of Boldsen [ ] or Cohen and Madsen [ ] that:

Theorem 3.2.28. [ , Theorem 4.17][ , Theorem 0.4] Let m, n and q be natural numbers such that 2n > 3q + m:
Hy (Tn2, H (£1,2)°") = Hy (T, Hr (200, 2)™") .

Then, we can prove:

Theorem 3.2.29. Let m, n and q be natural numbers such that 2n > 3q + m. Then, there is an isomorphism:

Hy (rn,erl (Zn,1,Z)®m) ~ @ Hpum (Fn,1,H1 (En,1/Z)®m_1) :
By
Proof. The Lyndon-Hochschild-Serre spectral sequence with coefficients given by Hy (Z,, 1, Z)“" associated with
the short exact sequence (3.2.8) has only two non-trivial rows. Hence, for all natural numbers n > 1, we obtain the
following long exact sequence.

2 2
dq+1,0

_ ? d 0
= Hy (r}l,yHl (Zn,LZ)@(mH)) —Hy (r”rZ' Hy (Zn,l,Z)W) —> H, (r}le (Zn,1,Z)®m) —
(3.2.10)

106



3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups 107

We fix a natural number n such that 2n > 3g + m. Using Theorem 3.2.28 and Proposition 3.2.26, the projection
Hy (Tup, Hy (01, 2)°") @ Hy o (T, Hi (S0, 2)°" ) = Hy (T, By (200, 2) ")
defines a splitting of ¢, in the long exact sequence (3.2.10):

2

, d

® Pq ® a0
o Hy (rn,ZrHl (Zn1, 2Z) m) H, (r}l,l,Hl (Zn1,Z) ’”) BULO
2 by Theorem 3.2.28l lﬁ by Proposition 3.2.26

splitting

Hg (Fn,l,Hl (Zn,l,Z)®m) <« H, (1"”,1,H1 (Zn,1,Z)®m) ® H, 1 (rn,erl (Zn,lrz)®m+1) '

Hence, using again Proposition 3.2.26, we have the following isomorphism:

Hy (rn,erl (Zn,1,Z)®mH) = H;2 (rn,erl (Zn,1,Z)®m) ® Hy3 (rn,erl (En,llz)@)mﬂ) :
The result thus follows by induction on g. O
Remark 3.2.30. For m = 1 and rational coefficients, the result of Theorem 3.2.29 recovers the computation due to
Harer [ , Theorem 7.1.(b)], where the index of the direct sum in this reference should start ati = 1.

In [ ], Kawazumi leads the analogous computation for cohomology: namely, [ , Theorem 1.B.]
gives the stable cohomology value

H1 (Foo,h Hy (Zm,llz)®m>

for all natural numbers g and m. The method and techniques used in [ ] are different from the ones presented
here. Using the universal coefficient theorem for twisted coefficients (see for example [ , Théoréeme 1.5.5.2]),
Theorem 3.2.29 recovers the computation of [ , Theorem 1.B.].

Computation of H, (l"c[i],l,Z): Another application of Proposition 3.2.26 is to compute the stable homology

[s]
0,17

groups Hy (F Z) for all natural numbers d. Using Proposition 3.2.26 with constant module Z and Theorem

3.2.29 with m = 1, we prove:
Theorem 3.2.31. Let n and q be natural numbers such that 2n > 3q. Then, there is an isomorphism:
[s+1] ~ [s]
H‘i (rn,l ’Z> = @ Hq72k (rn,l’z) :
HES

Remark 3.2.32. The analogous isomorphism for the rational homology is obtained by Harer in [ , Theorem
7.1.(a)].

Furthermore, using other techniques (namely an equivalence of classifying spaces), Bodigheimer and Tillmann
prove the equivalent result:

Theorem 3.2.33. [ , Corollary 1.2] Let q and n be natural numbers such that n > 2q. For all natural numbers s:

Hq (r,[f,]l,z> o~ ke? (Hk (rnll,Z) % H;, <(CP°°)><S ,Z))
+i1=q

= Hy(Ty1,Z) %Z [x1,...,%s],

where CP* denotes the infinite dimensional complex projective space and each x; has degree two.
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3.2.2.3 Mapping class groups of non-orientable surfaces

Let X, 1 denote a smooth compact connected non-orientable surface with non-orientable genus ¢ € IN and one
boundary component with I : [~1,1] — N X, 1 a parametrised interval in the boundary. We denote by N, ; the
isotopy classes of diffeomorphisms restricting to the identity on a neighbourhood of the parametrised interval I.
Recall from [ , Section 1.4.2] that the mapping class group N, 1 identifies with the group of isotopy classes of
homeomorphisms of A'X, ;. Recall that fixing the interval I is the same as fixing the whole boundary component
pointwise. When there is no ambiguity, we omit the parametrised interval I from the notation.

Notation 3.2.34. For all natural numbers g, we denote by aj(\/zgl the action of the mapping class group N1 on the

fundamental group of the surface 71y (N Zg 1, x) with x a basepoint in the interior of N'Z, ;. We denote by N, ;1
the isotopy classes of diffeomorphisms restricting to the identity on a neighbourhood of the parametrised interval
I and fixing the marked point.

Let us establish the following result, analogous to the short exact sequence (3.2.7) of Theorem 3.2.21:

Proposition 3.2.35. Let ¢ > 3 be a natural number and x be a marked point in the interior of N'Xg 1. Deleting x induces a
map N, g} 1 — N1 which defines the following split short exact sequence:

1——m (NZg1,x) N Ng 1 L. (3.2.11)

A fortiori, there is an isomorphism:

N;’l = (NZg1,x) x N 1.

a
NZeq

Proof. We denote by Homeo? (N'Zg1) the group of self-homeomorphisms preserving the boundary of N'X, ; and
by Homeo? (N'E,1, x) the group of self-homeomorphisms of N’ ; preserving the boundary which fix the point
x. We have a surjective map Homeo (N'Z, 1) — Int (N'Z, 1) (where Int (N'Z, 1) denotes the interior of the surface
NZ,; 1) defined by ¢ — ¢ (x). This is a fiber bundle with fiber Homeo (N'Z, 1, x). Hamstrom proves in [ ,

Theorem 5.3] that Homeo® (N'Zg 1) is contractible. Similar results can be found in [ , Théoreme 2] or | I
Hence, the short exact sequence (3.2.11) is induced by the homotopy long exact sequence associated with the
fibration Homeo (N'Zg1) — Int (N'Xg1).

The embedding of V'Y, 1 into A/ Z}g,l as the complement of the disc 2(1),1 with the marked point x induces an
injective morphism Ng 1 < N, 81,1. This provides a splitting of the exact sequence (3.2.11). O

Let us introduce a suitable groupoid for our work, inspired by [ , Section 5.6].

Definition 3.2.36. Let M, be the skeleton of the groupoid defined by:

* Objects: the smooth compact connected non-orientable surfaces N'Z, ; for all natural numbers n with x €
int (N2, 1) a basepoint;

e Morphisms: Autm; (NZ, 1) = Ny for all natural numbers .

Remark 3.2.37. The morphisms {“7\/2 1} N
n, ne

such that A (n) = m1 (NX, 1, x) for all natural numbers n. Hence, recalling that 7ty (N'X, 1, x) is a free group of
rank 1, Assumption 3.2.1 is satisfied.

of Notation 3.2.34 assemble to define a functor Am; M, — Gt

Hence, we deduce from Corollary 3.2.5 and Proposition 3.2.35 that:

Corollary 3.2.38. Let n > 3 and q > 1 be natural numbers. Let M, bea R [anl] -module (and a fortiori a R [N, 1]-module
using the surjection N ;}1 — Ng1) on which 1ty (N'Zy,1, x) acts trivially. Then:

Hy (Mba, M) 2 Hyoo (Wi, B (00, R) 6 My ) @ Hy (W, M), (6212)
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Remark 3.2.39. Assigning M, = Z for all natural numbers 7, the isomorphism (3.2.12) thus allows to compute
the twisted stable homology with twisted coefficient H, 1 (Ne,1, H1 (N Zeo1, Z)) from the stable homologies with

rational coefficient H, (./\/ Ololl, Z) and H; (N1, Z) for all natural numbers q. Unfortunately, as far as the author

knows, even if Hy (Noo,lr Z) is computed in [ ] for 1 < g < 6, the stable homology Hy (./\f Ololl, Z) is computed
only for g = 1. Namely, it follows by the computations of Korkmaz in [ ] and the stability result with respect
to marked points of Hanbury in [ ] that H; (/\/'010’1, Z) = Z; and a fortiori Hy (N1, H1 (N X1, Z)) = 0 by

[ I
Also, note that Stukow computes Hy (N, 1, Hy (NZ,1,Z)) in [ , Theorem 1.1] for n > 3. Using [ ],

we deduce that H (./\/Ololl, Z) =~ 75°.

3.2.2.4 Automorphisms of free groups with boundaries

Let &, x denote the topological space consisting of the wedge of n € IN circles together with k distinguished circles
joined by arcs to the basepoint. For s € N, let 47, be the space obtained from &, ; by wedging s — 1 edges at the
basepoint. We denote by A] | the group of path- components of the space of homotopy equivalences of ¢, , which
fix the k distinguished Clrcles and the s basepoints. For instance, for n a natural number and denoting by F, the
free group of rank 7, then Al n0 18 isomorphic to the automorphism group of F, denoted by Aut (F,) and A2 1,0 18
isomorphic to the holomorph ‘of the free group F,,. We refer the reader to [ ]and [ ] for more detalls on
these groups.

For k,n € IN, we denote by Aut, j the subgroup of Aut (F, ) of automorphisms that take each of the last k
generators to a conjugate of itself. We recall that the homotopy long exact sequence associated with the fibration
induced by restricting the homotopy equivalences of ¢, | to their rotations of the k distinguished circles provides
a surjective map A,  — Aut, .

Notation 3.2.40. For k,n € N, we denote by a4, the composition A;la,k — Apx — Aut, . — Aut (F, ;) where the
map Al , — A, forgets the basepoint.

We recall the following useful result:

Lemma 3.2.41. [ I Let n, k and s > 2 be natural numbers. There is a split short exact sequence

1——=F, AS Al 1, (3.2.13)
where the map A3 | — A;S1_1<1 forgets the last basepoint and a fortiori
A5 = (Fupp)’ ™ % AL
nk = (Fupr)” 0 Ag

where A}, , acts diagonally on (Fpix)’ " viathemap ay,, - Ap = Aut (Fyp).
We introduce the suitable groupoid to work with the automorphisms of free groups with boundaries.

Definition 3.2.42. Let k and s be fixed natural numbers Let 2, ; be the groupoid with the topological spaces ¥
as objects and A3 ; as automorphism groups for all natural numbers.

Remark 3.2.43. In particular, for s = 1 and k = 0, 2l o is the maximal subgroupoid of the category gr of finitely gen-
erated free groups. The coproduct * thus induces a strict symmetric monoidal structure (2 o, *,0g.). Moreover,
we define a functor i : 42(; ) — gt by the identity on objects and sending a morphism [ny — 11, g] : F;;, — F, of

U o (Where g € Autg, (Fp,)) to the morphism g o (anzﬂ11 * ianl) : Fy, < Fy, of gu.
Let k and s > 1 be natural numbers. Precomposing by the surjection

s s—1 1
An,k - An,k I An,k

(see Lemma 3.2.41), the morphisms {11 A, k} N of Notation 3.2.40 assemble to define a functor Ag_, : A, — St
K pe :

such that Ay, (n) = F, 44 for all natural numbers n. Hence, Assumption 3.2.1 is satisfied.
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Furthermore, we recall the stable homology result for automorphism groups of free groups due to Galatius for
constant coefficients and Djament and Vespa for twisted coefficients:

Theorem 3.2.44. Let g > 1 be a natural number. Then:
o[ Iforn >2q+1, Hy (Aut (F,),Q) =0;

o/ , Théoreme 1] for F : gv — Ab a polynomial functor such that F (0) = 0, then Hy (Aut (F,),F (n)) = 0 for
n>2q+1

Hence, we can establish the main result of Section 3.2.2.4.

Theorem 3.2.45. Let s > 2 and g > 1 be natural numbers.
1. Let F : gt — Ab bea polynomial functor such that F (0) = 0. The action of A3, o on F (n) is induced by the surjections
A= A = - = Ay,
For all natural numbers n > 2q + 1:
Hq( ;,OIF(n)) =0.
2. For all natural numbers n > 3q + 3 and k > 0, H, (A;,k, Q) =0.

Proof. We consider the functor Foi : 429 — Ab. As i is a strict monoidal functor, we deduce from [ ,

Proposition 3.8] that F o is strong polynomial. It follows from Corollary 3.2.10 that Hy (F,, F (—)) : 423 o EN gt —
Ab is a strong polynomial functor. Hence, the first result follows from Corollary 3.2.5 and Theorem 3.2.44.

In [ , Theorem B], Hatcher and Wahl prove that the stabilization morphism Aj , — Aj ;| induces an
isomorphism for the rational homology H, (Ail k7 Q> = H, (Ail r +1,Q) if n > 3g + 3. The second result thus
follows from the previous statement. O

Remark 3.2.46. For k = 0 and s = 2, Theorem 3.2.45 recovers the results [ , Theorem 1.2 (b) and (c)] due to
Jensen.

3.3 A general result for twisted stable homology

In this section, we prove a decomposition result for the stable homology with twisted coefficients for families
of groups whose associated groupoid is a full subcategory of a pre-braided locally homogeneous groupoid (see

Theorem 3.3.7). It extends a previous analogous result due Djament and Vespa in [ , Section 1 and 2] when
the ambient monoidal structure is symmetric.
We refer the reader to the papers [ , Section 2] and [ , Appendice A] for an introduction to homological

algebra in functor categories and we assume that all the definitions, properties and results there are known.

3.3.1 General framework

Throughout Section 3.3, we consider (G, ,0) a small braided strict monoidal groupoid with no zero divisors
(see Definition 3.1.2), such that Autg(0) = {idy} and K is a field. We fix a pair of objects (A4, X) of G and assume
that G satisfies the properties (LC) and (LI) of Definition 3.1.12 at (A, X).

Remark 3.3.1. By Theorem 3.1.13, Quillen’s bracket construction {G is locally homogeneous at (A, X).
Definition 3.3.2. Let G4 x) (respectively 4G, x)) be the full subgroupoid of G (respectively £lG) on the objects
()

Remark 3.3.3. If A = 0, then the braided monoidal structure (G, f,0) induces a small braided strict monoidal
structure on §(q x), denoted by (g(o, x)- s 0) - Moreover, Quillen’s bracket construction 4G x) is homogeneous by
Theorem 3.1.13.

neN’
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Definition 3.3.4. Let 0, , (N, <) — 4G4 x) be the faithful and essentially surjective functor assigning &' (n) =
AX¥ and O (v,) = id 5, xmGix for all natural numbers n.

Notation 3.3.5. For all natural numbers 1, we denote the automorphism group Autg(AiX™) by G, and the group
morphism G, — G, taking ¢ to ¢hidx by g,. Hence, we define a family of groups G_ : (N, <) — &t using
the functor .

Since 0 is an initial object in 4G, we have canonical morphisms in 4G for all natural numbers 1 and »n’ such that
n' > n:
id gy xen o) ApX™ — AgXI

We fix F an object of Fct (ug( AX)s ]K-E))Tob). Our goal is to compute the stable homology of the family of groups
G_ with coefficients given by F.
Notation 3.3.6. We denote by G, the colimit with respect to (IN, <) of the family of groups G_ and by Fx the colimit

of the G,,-modules F (AuXh”) with respect to the morphisms F (id Apxan it (' —n) ) . Recall from Definition 3.3.4 that

there is a faithful functor g, , . - (N, <) = 4G4 x)- Then we denote H. (G, Feo) = C?Hl\%'m) (H*(G (n),F (Ath"))).
, ne(N,<

This notation makes sense since group homology commutes with filtered colimits (see [ , Theorem 2.6.10]).

3.3.2 Splitting result for stable homology

As categories with one object, the groups {Gn},c are subcategories of UG 4 x). We denote by IT : Geo X
UG(a,x) = UG(4,x) the projection functor and by IT* the precomposition by I1. Hence, for all natural numbers
n, the canonical group morphism G, — Geo and the faithful functors G, — 4G4 x) induce a natural inclusion

functor ¥, : Hy (Gn, F (AhX h”)) — H, (Goo X UG (4 x), [T'F ) by the functoriality of the homology of categories

(see [ , Appendice A]).
Using the group morphisms g, and the morphisms id ,, x:x it x, by the functoriality in two variables of group ho-

mology (see for example [ , Section II1.8]), we define maps H. (Gn, F (AhXh”) ) — H, (Gn+1, F (AhXh(”H)) )
such that the inclusion functors ¥r, are natural with respect to n. Hence, we form a morphism:

¥r : H, (Goo, Fxo) — H, (Goo X uQ(A,X),H*F) .

Let us state the main result of this section.

Theorem 3.3.7. Let K be a field. We consider a pre-braided locally homogeneous at (A, X) category (ug( Ax) 0 0) such

that the unit O is an initial object, as detailed in Section 3.3.1. For all functors F : 1G4 x) — K-D0d, the morphism ¥ is
a IK-modules isomorphism. Moreover, Yy decomposes as a natural isomorphism:

H, (Geo, Foo) = €D (Hk (Ges, K) @ Hy (ug(A,Xy F)) .
k+1=x

Proof. Let i and j be natural numbers. The morphism G; — G, defined by ¢ — X%4¢ is conjugated to the one

, -1 A R
defined by ¢ + @i X" using the braiding (b)g(tj th) : X¥hXY — X¥hXY¥ of the pre-braided monoidal structure,

recalling from the relation (3.1.3) of Definition (3.1.6) that:

g -1 . . g . .
(bAhth,XJi) o (thihldAhth) = ldxl]'n[Xhi and bAJth,th o (ldAbXVthJi) = thihldAhXJf‘

The result then follows mutatis mutandis from the proof of [ , Proposition 2.22]. As pointed out in [ ,
Remark 2.23], this is the only place in this framework where the symmetry of the monoidal structure is used: all
the other constructions and proofs work exactly in the same way assuming the monoidal structure is pre-braided.

However, for the convenience of the reader, we detail here a proof assuming for simplicity that A = 0. Recall

from Remark 3.3.3 that the pre-braided category (ug(o,x)/ b, O) is thus homogeneous. Note that the morphism
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112 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

Y¥r is a morphism of é-functors commuting with filtered colimits (see [ , Section 2.1]). Since the category
Fct (ng (0,X)7 IK-E))IUD) has enough projectives, provided by direct sums of the standard projective generators func-

i
tors P o _ K {Homug(o % (Xh”, 7)} for all natural numbers n (see [ , Appendice A]), we only have to

Xtn
. . . UG
show that ¥ is an isomorphism when F = P

St X) Indeed, the result for an ordinary functor F thus follows from

. . Y
a resolution of F by direct sums of P, ¥

in :
We deduce from Remark 3.1.11 tﬁat for all natural numbers m > n, we have the isomorphism of G,-sets:

Homug(olx) (th,XHM) >~ Gu/Gu—n-

Hence, P;gn(o’x) (Xbm) > K[Gp] K g@ ]]K as Gp-modules. Therefore, it follows from Schapiro’s lemma (see

[ , Section 6.3]) that:
$1G
H. (Gm'Pan(O'X> (Xhm)) ~ H, (Gpn,K).

o0r s
conclude using the first Kiinneth spectral sequence of [ , Proposition 2.16]:

U
Taking the colimit with respect to m, we deduce the isomorphism H, (G P Y1) (Xh°°>) = H, (Goo, K). We

x (pH9
H, (Goo, K) 2 H, (Goo X UG x), 11 ( pigo ) ) '
The second part of the statement follows applying Kiinneth formula for homology of categories (see [ , Propo-
sition 2.27]). O

3.4 Twisted stable homologies for FI-modules and related functors

In this section, we present a general principle to compute the twisted stable homology for mapping class groups
with non-trivial finite quotient groups. In Section 3.4.1, we establish in Corollary 3.4.11 a general formula to com-
pute the stable homology with twisted coefficients given by functors over categories associated with the aforemen-
tionned finite quotient groups. This allows to set explicit formulas for the stable homology with coefficients given
by FI-modules for braid groups, mapping class groups of orientable surfaces and some particular right-angled
Artin groups in Section 3.4.2.

Throughout Section 3.4, we assume that the field K is of characteristic 0.

Let us consider three families of groups K_, G_ and C_ (see Definition 3.0.2), such that the group C, is finite
for all natural numbers 1, and which fit into the following short exact sequence in the category Fct ((IN, <), ®t):

0 K —*.G

C_ 0, (3.4.1)

where k : KL — G_ and ¢ : G- — C_ are natural transformations and 0 denotes the constant object of
Fct (N, <), ®r) at Og..

Notation 3.4.1. Let IC, G and C denote the groupoids with natural numbers as objects and Autx (n) = Ky, Autg (n) =
Gy and Aute (n) = C, for morphisms.

We assume that these groupoids satisfy further properties:

Assumption 3.4.2. The groupoids G and C are endowed with braided strict monoidal structures (G,tg,0g) and (C, ¢, 0¢),
where g and ¢ are defined by the addition on objects, such that:

* the morphisms {cy }, o induce a strict monoidal functor ¢ : G — C defined by the identity on objects;
* G_ (yn) =iditig— : Gy = Gy and C_ () = idibc— : Cy — Cy4q for all natural numbers n.

Definition 3.4.3. Let 0 : (N, <) — 4G and & : (N, <) — 4C be the faithful and essentially surjective functors
assigning 0, (n) = 0, (n) = nand g (n) = O (n) = [1,id,1] for all natural numbers 7.
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Remark 3.4.4. Recall that the associated Quillen’s bracket construction (4G, fg,0) and ($IC, b, 0) are pre-braided
strict monoidal by Proposition 3.1.8.

Using the functors &7, and &, introduced in Definition 3.4.3, the natural transformation ¢ : G_ — C_ identifies
the morphisms [n’ — n, id,/] (with natural numbers n’ > n) of {G and $IC. The criteria (3.1.1) and (3.1.2) of Lemma
3.1.5 being trivially checked, we abuse the notation and write ¢ for the functor 4G — 4C induced by ¢ : G — C.

The short exact sequence (3.4.1) implies that the braided strict monoidal structure (G, g, 0g) induces a braided
strict monoidal structure on K, denoted by (K, ig, 0g), such that:

K- (vn) = idiig—: Ky = Ky pq

for all natural numbers n. As for the morphisms {c;},cn, the morphisms {k;,}, p induce a strict monoidal
functor ¢ : UK — UG.

We fix F an object of Fct (UG, K-9t00).
G

Notation 3.4.5. For all natural numbers 1, we abuse the notation and write F (1) for Res" (F (1)), where Resg"
denotes the restriction functor.

Our aim is to compute the stable homology H; (Geo, Fso) 0f the family of groups G_. A first step is given by the
following result:

Proposition 3.4.6. Let K_, G_ and C_ be three families of groups fitting in the short exact sequence (3.4.1) and such that
Assumption 3.4.2 is satisfied. Then, for all natural numbers q:

Hy (Gy, F (n)) 2 Hy (Cy, Hy (Ku, F (1)) . (3.4.2)

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence for the short exact sequence (3.4.1), we obtain the
following convergent first quadrant spectral sequence:

Epq : Hp (Cu, Hy (K, F (1)) = Hp14 (Gu, F (n)). (3.4.3)

Fixing n a natural number, we have for p # 0:

H, (Cu, Hy (Ku, F (1)) =0,

since C, is a finite group (see for example [ , Proposition 6.1.10]). Hence, the second page of the spectral
sequence (3.4.3) has non-zero terms only on the 0-th column and zero differentials. A fortiori, the convergence
gives that E2 = E* and this gives the desired result. O

3.4.1 A general equivalence for stable homology

Let us focus on a key property for the homologies of the kernels {Kj, },, .y which improves Proposition (3.4.6).

Remark 3.4.7. Let n be a natural number. As K, is a normal subgroup of G,, the map conj, : G, — Autg, (Ky)
sending an element g € Gy, to the left conjugation by g is a group morphism.

Lemma 3.4.8. We define a functor K_ : 4G — ®v assigning K_ (n) = K, for all natural numbers n and:
1. forall g € Gn, K_ (g) € Aute. (Ky) to be conjy (g) : k + gkg™! forall k € Ky,
2. K- ([1,idy11]) = id1hg—.

Proof. It follows from the first assignment of Lemma 3.4.8 that we define a functor K_ : G — ®t. The relation
(3.1.1) of Lemma 3.1.5 follows from the definition of the monoidal product fg.
Let n and n’ be natural numbers such that n’ > n,let ¢ € G, and ¢’ € G,,. We compute for all k € Ky,

(K- (g'tigg) o K- ([0’ idy1n])) (k) (¢'56g) (id,vigk) (8'168) "
idy g (gkg ")
= (R ([ idwn]) 0 R (8)) (F).

Hence, the relation (3.1.2) is satisfied a fortiori the result follows from Lemma 3.1.5. O
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114 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

Lemma 3.4.8 is useful to prove the following key result.

Proposition 3.4.9. Let K_, G_ and C_ three families of groups fitting into the short exact sequence (3.4.1)such that As-
sumption 3.4.2 is satisfied and let F be an object of Fct (UG, K-90d). Then, for all natural numbers q, the homology groups
{Hy (K, F (1)) },,cy define a functor Hy (K-, F (—)) : 4C — K-9od.

Proof. Let & be the category of pairs (G, M) where G is a group and M is a G-module for objects; for (G, M)
and (G, M) objects of &, a morphism from (G, M) to (G, M’) is a pair (¢, «) where ¢ € Homg, (G,G') and
a : M — M’ is a G-module morphism, where M’ is endowed with a G-module structure via ¢. Using the functor
F : 4G — K-9M0d, by Lemma 3.4.8 K_ defines a functor (K_, F (—)) : 4G — 2. Recall from [ , Section 6.7.5]
or [ , Section 8] that group homology defines a covariant functor H, : & — K-9o0 for all 4 € IN. Hence the
composition with the functor (K_, F (—)) : 4G — & gives a functor:

Hy (K—, F(=)) : 4G — K-Mod.

Moreover, since inner automorphisms act trivially in homology, we deduce that for all natural numbers #, the
conjugation action of G, on (Kj, F (n)) induces an action of C, on H, (K, F (n)) (see for instance [ , Section
8, Proposition 8.1 and Corollary 8.2] for more details). The monoidal structures (G, ig, 0g) and (C, i, 0¢) being
compatible by Assumption 3.4.2, we deduce that the functor H; (K—, F (—)) factors through the category C using
the functor ¢ : 4G — UC. O

Finally, recall the following property for the homology of a category:

Proposition 3.4.10. [ , Example 2.5] Let € be an object of Cat and let F be an object of Fct (€, R-9t00). Then, Hy (¢, F)
is isomorphic to the colimit over € of the functor F : € — R-90d.

We thus deduce from Proposition 3.4.9:

Corollary 3.4.11. Let K_, G_ and C_ three families of groups fitting in the short exact sequence (3.4.1) and such that
Assumption (3.4.2) is satisfied. Then, for all natural numbers q:

Hy (G, Fo) = Colim (Hy (Kj, F (1)) .
7 (Geo, Fo) olim (Hy (Ky, F (1))

Moreover, if F factors through the category $IC (in other words, F : 4G ~» IC — K-D0d), then:

H; (Goo, Feo) = Coli H, (K;,,K)®F(l)].
1 (6o Fo) = ol By (6,1 9 7 1)

Proof. Applying Theorem 3.3.7 to Proposition 3.4.6, we obtain that:
Cnoell%'\lm (Ho (Cn, Hy (Ky, F (n)))) = Cnoel]{\lm (HO (Cn, K) (H8<> Hy (4C, Hy (K_,F))) .

The first result thus follows from the fact that Hy (UC, Hy (K_,F)) = (%ogligz (Hq (K;, F (1)) by Proposition 3.4.10
€
and as Hy (C,, K) = K. O

3.4.2 Applications

We present now how to apply the general result of Corollary 3.4.11 for various families of groups related to map-
ping class groups. Beforehand, we fix some notations.
Notation 3.4.12. We denote by &,, the symmetric group on n elements.

Let X be the skeleton of the groupoid of finite sets and bijections. Note that Obj (X) = IN and that the auto-
morphism groups are the symmetric groups &,. The disjoint union of finite sets LI induces a monoidal structure
(X,U,0), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the
canonical bijection nq LI 115 5 ny Ung for all natural numbers n; and n,. The category LX is equivalent to the
category of finite sets and injections FI studied in [ 1.

Notation 3.4.13. We denote by &_ : (N, <) — &t the family of groups defined by 6_ (n) = &, and &6_ (v,,) =
id1 U — for all natural numbers 7.
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3.4.2.1 Braid groups

We denote by PB;, the pure braid group on # strands. Recall from Section 3.2.2.1 that the braid groupoid B (which
has natural numbers as objects and braid groups as automorphism groups) is endowed with a braided strict
monoidal structure (8, 1,0).

The classical surjections {Bn e Gn} , sending each Artin generator o; € B, to the transposition 7; € &,
neN

foralli € {1,...,n—1} and for all natural numbers 7, assemble to define a functor P : 4B — FI. In addition,

it is clear that the functor 3 is strict monoidal with respect to the monoidal structures (8, 4,0) and (FI, L, 0). In

addition, they define the following short exact sequence for all natural numbers 7 (see for example [ ]or

[KT08]):

pn

1 PB, B, Sy 1.

Let PB_ : (N, <) — &rand B_ : (N, <) — &t be the families of groups defined by PB_ (n) = PB,, B_ (n) = B,
and B_ () = PB_ (y,) = id1§— for all natural numbers n. Hence Assumption 3.4.2 is satisfied and therefore by
Corollary 3.4.11:

Proposition 3.4.14. Let F be an object of Fct (UB, IK-D0d). For all natural numbers q, Hy (Boo, Foo) = Colgn (Hq (PB,,, F (n))),
ne

and if F factors through the category F1, then:
Hy (Beo, i) 2= Colim <Hq (PB,, K) @ F (n)) .

Remark 3.4.15. The rational cohomology ring of the pure braid group on n € N strands is computed by Arnol’d

in [ ]. Namely, H* (PB,, Q) is the graded exterior algebra generated by the degree one classes w;; for
i,j € {1,...,n} and i < j, subject to the relations w; jw; + wjwi,; + wg,;w;; = 0. Note that using the uni-
versal coefficient theorem for cohomology (see for example [ , Theorem 3.6.5]) and since H7 (PB,,K) is a

finite-dimensional vector space, the homology group H, (PB,, K) = H7 (PB,, K).

We recall that by the universal coefficient theorem for cohomology and since H7 (PB,,, K) is a finite-dimensional
vector space, H7 (PB,, K) = Homg.onoo (Hy (PBy, K), K) and therefore Colé'rln (Hy (PB,, K)) = Li;nl (Hy (PB,, K)).
ne ne

Since Hy (PB;, K) is a quotient of the exterior algebra A7 [a)i,j] , we deduce that for ¢ > n > 2, H; (PB,;,K) = 0.
Hence, Col érln (Hy (PB,,K)) = 0 for g > 2. Furthermore, by direct computations, we have that Hy (PB,,, K) = K
ne
and Col gn (H; (PB,, K)) = K. Hence, we recover the classical result of the homology of braid groups with con-
ne

stant coefficients in a field of characteristic zero (see for example [ , Section 4]).

3.4.2.2 Symmetric automorphisms groups of free groups

We focus on symmetric automorphisms groups of free groups, also known as string motion groups. We refer the
reader to [ ] for a complete and unified presentation of the various definitions of this group. We recall here
an algebraic definition of these groups.

Definition 3.4.16. Let n be a natural number. The symmetric automorphism group of free group of rank 7, denoted
by .7y, is the group defined by a presentation given by generators {c;, 7;,0; | i € {1,...,n =1} and j € {1,...,n}}
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116 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

together with relations:

Oi0k = Ok0;j

0i0i410;i = Ui1+10i0i4+1
T = T T

TTit1T = T41T T4
=1

1

OiTy = kUi

Ti0i+10i = 0i+10iTi41
OiTi+1Ti = Ti+1Ti0i+1

PjPk = PkPj
j=1

Pj0;i = 0ip;j
PjTi = TiPj+1
P = Tif)
PiTi = TiPi+1

—1 _
TG0 "TiPi = Pi+10i

if|i—k|>2,
ifie{l,...,n—2},
if |i—k|>2,

ifie{l,..,n-2}
ifie{l,...,n-1},
ifli—k|>2,

ifie{l,..,n-2}
ifie{l,..,n-2}

if|j—k|>1,
ifje{l,...,n—1},
if|i—jl>2,
ifie{l,...,n—1},
if|i—j|>2,

ifie{l,. .. ,n-1},
ifie{l,. .., n-1}.

For all natural numbers i,j € {1,...,n} such that i # j, we denote by a; ; the composition:

Tflo'[flo

71 . : DR . .
; i1 ..-o‘[],iloo']o’(]_lo O0Ti+1°0T.

The pure string motion group of rank n, denoted by #.7}, is the subgroup of .7, generated by the elements
{aij|i,je{1,...,n},i+# j} with the relations:

0G0k, 1 = Ok, 1,5,
Ok = &j ik,

Kij ("‘i,k“j,k) = ("‘i,k"‘j,k) &ij-

Remark 3.4.17. Symmetric automorphisms groups of free group are a generalisation of braid groups. Let C,, =
cp Uy U--- Ucy be the disjoint union of n smoothly embedded, oriented, unlinked, unknotted circles c; in the
ball D3. Then, .#, is isomorphic to the group of isotopy classes of self-homeomorphisms of D3 that preserve its
orientation, fixes its boundary pointwise, and globally fixes C;, (see [ , Section 2]).

Denoting by F, the free group of rank 1, ./}, identifies with the subgroup of the automorphism group Aut (F)
of the automorphisms which map each generator of F, to a conjugate of this generator or of the inverse of a
generator (see [ , Section 4]). This justifies the denomination of symmetric automorphisms groups of free
group for .7;.

Furthermore, to introduce a suitable categorical framework for symmetric automorphisms groups of free
groups, we need another equivalent definition. Denoting by ID? the 2-disc, ID? the 3-disc and S! the 1-sphere, we
consider the compact, connected, oriented 3-manifold with boundary (81 X ]DZ) \ D3, equipped with a marked

disc D? < 9 (S! x ID?) \ D in its boundary. We denote by § the boundary connected sum along marked half-discs
between two compact, connected, oriented 3-manifolds with boundary.

Definition 3.4.18. Let &2 be the groupoid defined by:

* Objects: the finite boundary connected sums of (S! x ID?) \ D% namely, ((S! x D?) \ D?) " forn € N;

* Morphisms: the isotopy classes of orientation preserving diffeomorphisms restricting to the identity on the
marked disc modulo Dehn twists along embedded 2-spheres, denoted by

0 <Diff (((sl x D?) \ID?’)hn rel D2)> / twists-
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Remark 3.4.19. By [ , Theorem 1.1], the mapping class group 7ty (Diff (((51 X IDZ) \1D3) i rel ]D2>) / twists
is isomorphic to .}, for all natural numbers #.

Recall from [ , Section 5.7] that the boundary connected sum along marked half-discs f§ defines a
monoidal product on &2, and the 3-disc ID? is the unit. The braiding of the monoidal structure is given by doing
half a Dehn twist in a neighbourhood of the marked half-disc and it is a symmetry. We refer to [ , Section
5.7] for more technical details on this operation.

Notation 3.4.20. We denote by W, the hyperoctahedral group, namely the wreath product (Z/2Z)! &,, where
&, acts on (Z/2Z)" permuting the copies of Z/2Z. Let WX be the skeleton of the groupoid with finite sets as
objects and hyperoctahedral groups automorphism group. As for the groupoid %, the disjoint union of finite sets L
induces a symmetric monoidal structure (X, L, 0), the unit 0 being the empty set. We denote by . : (N, <) — &t
the family of groups defined by .7 (n) = .#;; and . (7y,) = id; U — for all natural numbers 7.

Moreover, we have the following result:

Lemma 3.4.21. [ | For all natural numbers, we have the following short exact sequence:

psy,

1—— 2% S W, 1.

Itis clear that the surjections {ps, },, . define a strict monoidal functor P& : GA — WZ. Let .7 : (N, <) —
Grand .7 : (N, <) — &t be the families of groups defined by #.7_ (n) = 2.7, /_ (n) = S and S_ (7y) =
PSS (yn) = id1g— for all natural numbers n. Hence Assumption 3.4.2 is satisfied and therefore by Corollary
3.4.11:

Proposition 3.4.22. Let F be an object of Fct (UL, IK-90100d). For all natural numbers q,

H, (S, F) 2 Colim (H, (2.9, F )
g ( ) neg(gg[)( g ( (n)))

and if F factors through the category $\ (WX), then:

Hy (S0, Fo) = Colim (Hq (27, K)QF (n)) .

neU(W) K
Remark 3.4.23. By [ , Theorem 6.7], the cohomology ring H* (#.%,,, Z) is the exterior algebra generated by
the degree-one classes a;; for i,j € {1,...,n} and i # j, subject to the relations api A a;i = 0 and tx,’;’j Nag; =

alf,]- ANag; — zx;‘,j A ay ;. A fortiori, we compute for all natural numbers g:
Hy (2%, K) =2 H1 (2%, Z) %@ K.

Using a combinatorial argument, Wilson proves in [ , Sections 6 and 7] that the trivial W,,—representation does
not occur in H7 (2., K) for ¢ > 1 and n large enough, and a fortiori,

H; (Y, K) = Coli H, (£.%,,K)) =0.
g ( ) neg(%}%)( q( n ))

3.4.2.3 Mapping class group of orientable surfaces
We take the notations of Section 3.2.2.2.

Definition 3.4.24. Let 91, be the skeleton of the groupoid defined by:

* Objects: the smooth compact connected orientable surfaces X' ; for all natural numbers #;

* Morphisms: Autgy, (Zz,l) = I’} ; for all natural numbers n.
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By [ , Proposition 5.18], the boundary connected sum f induces a strict braided monoidal structure
(sz, b, (Zg,lf I ) ) Moreover, the injections {FL"]l SN FZJ} N induced by the inclusions
n

] n ] n
H OMEeOfy the marked points (Z n,l) — H Omeopermute the marked points ( n,l)

provide the following short exact sequence for all natural numbers 7 (see for example [ )E
i)l

pmy,

Sy 1.

n
LT =T
It is clear that the surjections {pm,}, p define a strict monoidal functor 9t — X. Let 1”[:]1 : (N, <) — &t
and I, : (N, <) — &t be the families of groups defined by 1"[_7]1 (n) = FL"]l, I”y(n) =T}, and 1"[_7]1 (vn) =
I'” | (7n) = id1§— for all natural numbers n. Hence Assumption 3.4.2 is satisfied.

Remark 3.4.25. Let n be a natural number. The action of the symmetric group &, on F[ ] is induced by the natural
action of &, on X} ;| given by permuting the marked points. Recall from Theorems 3 2 31 and 3.2.33 that for all
natural numbers q such thatn > 2g:

Hy (an}l’ ) =~ Hy (I'y1,K) % K [xq,...,%n].

Hence, according to the decomposition of the classifying space associated with the pure mapping class groups in
[ , Theorem 1], the action of &, on H, (T (1] ]K) corresponds to permuting the variables {xi}ie {1,..n} ON the

n,1’
right hand side.
A fortiori the homology group H (T',,1,K) is a trivial &,-module. Recall also from [ ] that:

H* (1”00/1,]K) =K [K],Kz, .. ]
where each x; has degree 2i.
By Corollary 3.4.11, we have:
Proposition 3.4.26. Let F be an object of Fct (UM, K-M0d). For all natural numbers g,

Hy (T4, Fes) = Colim (Hq (rLﬂ,F( ))) ,

and if F factors through the category F1, then:

H, (T, F) =2 Colim ( s (Hk (T2, K) @ H ((CPOO)XHIIKD %F(n)) .

neFl k+l=q

In particular, if F factors through the category F1, then Hpy 1 (l"oo 17 Foo) = 0 for all natural numbers k.

3.4.2.4 Particular right-angled Artin groups

A right-angled Artin group (abbreviated RAAG) is a group with a finite set of generators {s;}, ;- with k € N
and relations s;s; = s;s; for some i,j € {1,...,n}. For instance, the free group on k generators Fy is a RAAG. By
[ , Proposition 3.1], any RAAG admits a maximal decomposition as a direct product of RAAGs, unique up to
isomorphism and permutation of the factors. A RAAG is said to be unfactorizable if its maximal decomposition is
itself. We refer to [ Jor|[ , Section 3] for more details on these groups.

Let A be a fixed unfactorizable RAAG different from Z. We have the following key property:

Proposition 3.4.27. [ , Proposition 3.3] For all natural numbers n, we have the following split short exact sequence:

1 Aut (A" " Aut (A7) o &, = 1.
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In other words, for all natural numbers 7, denoting by ¢, : &, — Aut (Aut (A) X") the permutation action of

the symmetric group &, of factors Aut (A) in Aut (A)™", Proposition 3.4.27 is equivalent to the fact that:

Aut (A*") = Aut (A)™" x &,
en

Definition 3.4.28. Let R 4 be the groupoid with the groups A*" for all natural numbers # as objects and Aut (A*")
as automorphism groups.

Note that the groupoid G = R 4 is symmetric monoidal (see [ , Section 5]). The direct product x induces
a strict symmetric monoidal structure (R4, X,0g.) (we refer the reader to [ , Section 1] if more details is
needed). It is clear that the surjections {s; }, . define a strict monoidal functor S : R4 — X. Let Aut (A*7) :
(N, <) — &rand Aut (A)*" : (N, <) — &t be the families of groups defined by Aut (A*~) (n) = Aut (A*"),
Aut (A)*~ (n) = Aut (A)"™" and Aut (A*7) (1) = Aut (A)*~ (yn) = idy x — for all natural numbers n. Hence
Assumption 3.4.2 is satisfied and therefore by Corollary 3.4.11:

Proposition 3.4.29. Let F be an object of Fct (UR 4, K-DMod) and A be a fixed unfactorizable right-angled Artin group
different from Z. For all natural numbers q, Hy (Aut (A**), Fs) = C(ﬂg’zm (Hq (Aut (A", F (n)) ), and if F factors

ne A
through the category F1I, then:

Hy (Aut (A*) , Fs) 2 Colim (Hq (Aut (4)™K) O F (n)> : (3.4.4)

Corollary 3.4.30. Let A be a fixed unfactorizable right-angled Artin group different from Z, such that there exists N4 € IN
such that Hy (Aut (A),K) = 0 for 1 < g < Na. Then for all objects F of Fct (UR 4, K-D0d) factoring through the
category FI, for all natural numbers q such that 1 < g < Ny:

Hy (Aut (A**®) , Fy) = 0.

Proof. It follows from Kiinneth Theorem (see for example [ , Exercise 6.1.7]) that for all natural numbers g
such that1 < g < Ny, Hy (Aut (A", ]K) = 0. Then, the result follows from (3.4.4). O

Example 3.4.31. Recall that F; denotes the free group on k generators for all natural numbers k. According to
[ , Corollary 1.2], for k > 2q+1and q # 0, Hy (Aut (F),K) = 0. Let F be an object of Fct (URg,, K-9700)

factoring through the category FI. Hence, for all natural numbers g and k such that 1 < g < k%l:
H, (Aut ((F)*®) , Fs) =0.

In particular, Hy (Aut ( (Feo) X°°) , Foo) = 0 for all objects F of Fct (gt, K-210d) factoring through the category FI.
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