TABLE DES MATIÈRES vi A la fin des années 1990, il s'est avéré que l'homologie des foncteurs est particulièrement efficace pour calculer l'homologie stable de familles de groupes à coefficients tordus. Ainsi, les travaux de Betley dans [Bet92] et [Bet99], Scorichenko dans [Sco00] et Suslin dans l'appendice de [FFSS99] pour les groupes linéaires montrent que l'homologie stable des groupes linéaires à coefficients tordus est calculée grâce à l'homologie des foncteurs. De plus, des résultats analogues sont obtenus pour les groupes symétriques par Betley dans [Bet02]. Par ailleurs, dans le cadre de familles de groupes associées à des catégories monoïdales symétriques, Djament et Vespa ont déveviii 0. Chapter. Introduction ix loppé dans [DV10] un cadre général dans lequel les groupes d'homologie stable à coefficients tordus sont calculés par de l'homologie des foncteurs : l'homologie stable à coefficients tordus s'exprime en fonction de l'homologie stable à coefficients constants et l'homologie de la catégorie source des foncteurs associés aux coefficients tordus. Ce cadre a notamment permis de calculer de l'homologie stable à coefficients tordus des groupes orthogonaux et symplectiques dans [DV10] et [Dja12] et des groupes d'automorphismes des groupes libres dans [DV15] et [Dja15].

.

Cette thèse se décompose ainsi en trois parties (rédigées en anglais) dont nous allons donner les résumés détaillés (en français) :

1. la prépublication The Long-Moody construction and polynomial functors [Sou17b] ; 2. la prépublication Generalised Long-Moody functors [Sou17a] ; 3. le chapitre On computations of homology with twisted coefficients for mapping class groups [Sou18] qui donnera lieu à une prépublication.

Introduction

Le groupe de difféotopie d'une variété est un groupe discret associé à cet espace et en définit un invariant fondamental. Dans le cas d'un disque dont n points ont été retirés, il correspond au groupe de tresses sur n brins, noté B n . Ce groupe, implicitement étudié par Hurwitz dans [START_REF] Hurwitz | Über riemann'sche flächen mit gegebenen verzweigungspunkten[END_REF] puis explicitement introduit par Artin dans [START_REF] Artin | Theorie der zöpfe[END_REF], a des liens profonds avec la théorie des noeuds (voir [Bir74a, Jon85, KT08]), la géométrie algébrique et la théorie des groupes finis (voir [START_REF] Vladimir | On some topological invariants of algebraic functions[END_REF][START_REF] Brieskorn | Singular elements of semi-simple algebraic groups[END_REF]). L'étude des représentations linéaires des groupes de tresses constitue ainsi un thème de recherche très riche, intéragissant avec de nombreux domaines des mathématiques. On renvoie à [START_REF] Birman | Braids: a survey[END_REF] pour une présentation plus détaillée de ce sujet.

Il n'y a dans la littérature que peu d'exemples de représentations linéaires des groupes de tresses ne factorisant pas par les groupes symétriques. Parmi ces rares exemples se trouvent les représentations de Burau [START_REF] Burau | Über zopfgruppen und gleichsinnig verdrillte verkettungen[END_REF] et de Lawrence-Krammer [START_REF] Ruth | Homological representations of the hecke algebra[END_REF]. Krammer utilise ces dernières représentations dans [START_REF] Krammer | Braid groups are linear[END_REF] pour démontrer la linéarité des groupes de tresses sur n ≥ 5 brins. Des représentations analogues sont considérées par Bigelow dans [START_REF] Bigelow | Braid groups are linear[END_REF] pour démontrer ce résultat. Enfin, Tong, Yang et Ma ont exhibé dans [START_REF] Tong | A new class of representations of braid groups[END_REF] une famille de représentations simples des groupes de tresses, d'une forme analogue à celles de Burau. De plus, l'état actuel des connaissances ne permet pas d'en établir une classification. Il serait donc intéressant de parvenir à une meilleure compréhension de ces représentations et de s'interroger sur une façon de les relier.

Dans cette optique, le travail découlant d'échanges avec Moody mené par Long en 1994 dans [START_REF] Long | Constructing representations of braid groups[END_REF] s'avère fécond. En effet, considérant une représentation ρ : B n+1 → GL (V), Long introduit une construction nouvelle définissant une représentation LM (ρ) : B n → GL (V ⊕n ), plus complexe que la représentation initiale ρ. Cette construction sera dite de Long-Moody. Par exemple, en l'appliquant à une représentation de dimension un, on obtient la représentation de Burau (non-réduite). Il est à noter que le principe de cette construction était implicitement déjà présent dans les articles [START_REF] Long | On the linear representation of braid groups[END_REF] et [START_REF] Long | On the linear representation of braid groups[END_REF] antérieurs de Long. Une interprétation purement matricielle en est également donnée par Bigelow et Tian en 2008 dans [START_REF] Bigelow | Generalized Long-Moody representations of braid groups[END_REF] : ils donnent des démonstrations analogues des résultats de [START_REF] Long | Constructing representations of braid groups[END_REF] et en étendent certains. Enfin, Birman et Brendle mentionnent la construction de Long-Moody dans leur article de survol sur les tresses [START_REF] Birman | Braids: a survey[END_REF]. Elles insistent en particulier sur l'intérêt qu'en représenterait une étude plus approfondie et posent un problème ouvert (voir [BB05, Open Problem 7]) la concernant, que nous reformulerons de la manière suivante : serait-il possible d'obtenir toutes les représentations unitaires de dimension finie des groupes de tresses par de légères modifications de la construction de Long-Moody ?

De plus, généraliser cette construction pour d'autres familles de groupes s'avérerait fort utile. En effet, l'étude des représentations linéaires des groupes de difféotopie des surfaces ou des variétés de dimension 3 par exemple constitue un sujet de recherche très actif et ces représentations demeurent mal connues. On pourra se référer à [BB05, Section 4.6], [START_REF] Funar | On the TQFT representations of the mapping class groups[END_REF], [START_REF] Korkmaz | Low-dimensional homology groups of mapping class groups: a survey[END_REF] ou [START_REF] Masbaum | On representations of mapping class groups in integral TQFT[END_REF] pour un exposé plus approfondi de ce sujet.

Par ailleurs, Randal-Williams et Wahl démontrent dans [START_REF] Randal | Homological stability for automorphism groups[END_REF] la stabilité homologique avec certains types de coefficients tordus pour une grande variété de familles de groupes, parmi lesquels les groupes de difféotopie des surfaces et de 3-variétés. Plus précisément, la stabilité pour ces derniers est étudiée par rapport au nombre de points marqués ou au genre orientable ou non-orientable des surfaces. Ce travail permet en particulier de retrouver les résultats de stabilité à coefficients tordus par rapport au genre orientable d'Ivanov dans [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF], généralisés par Cohen et Madsen dans [START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF] puis Boldsen dans [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF]. Pour les 3-variétés, la stabilité des groupes de difféotopie est démontrée par rapport à l'itération de la somme connexe sur le bord d'une 3-variété compacte connexe orientée avec une composante de bord.

Les coefficients tordus considérés sont donnés par des foncteurs ayant pour source une catégorie obtenue en appliquant au groupoïde associé à la famille de groupes considérée une construction due à Quillen consistant à ajouter des morphismes au groupoïde (voir [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF]p. 219] et ci-dessous pour plus de détails). Ces foncteurs vii viii 0. Chapter. Introduction doivent vérifier des conditions de polynomialité et sont alors appelés systèmes de coefficients de degré fini. La notion de polynomialité à laquelle il est fait référence ici a d'abord été introduite par Eilenberg et Mac Lane pour des foncteurs sur des catégories de modules en utilisant la notion d'effets croisés dans [START_REF] Eilenberg | On the groups H(Π, n). II. Methods of computation[END_REF]. Elle a été étendue par Djament et Vespa [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] pour des foncteurs ayant pour source une catégorie monoïdale symétrique stricte telle que l'objet unité est objet initial, et ayant pour but une catégorie abélienne. On parle alors de foncteurs fortement polynomiaux. Dans le cas des groupes de difféotopie des surfaces, les catégories associées ne sont pas monoïdales symétriques, mais monoïdales pré-tressées, notion ad hoc introduite par Randal-Williams et Wahl dans [START_REF] Randal | Homological stability for automorphism groups[END_REF]. La définition de foncteur fortement polynomial s'adapte à ce type de catégories et sera traitéef dans le premier chapitre de cette thèse, et est reliée à la notion de système de coefficients de [START_REF] Randal | Homological stability for automorphism groups[END_REF]Section 4].

La littérature ne présente que peu d'exemples de systèmes de coefficients de degré fini quelconque pour les groupes de tresses et plus généralement les groupes de difféotopie des surfaces. Dans le cas des groupe de tresses, Randal-Williams et Wahl démontrent que les représentations de Burau non-réduites forment un système de coefficients de degré un. Par conséquent, on souhaiterait une manière systématique de construire des systèmes de coefficients de degré fini pour ces familles de groupes. A cette fin, la construction de Long-Moody s'avère particulièrement intéressante. En effet, les représentations de Burau non-réduites se retrouvent via la construction de Long-Moody à partir des représentations de dimension un, ces dernières formant un système de coefficients de degré zéro.

Constructions de Long-Moody et foncteurs polynomiaux

Le chapitre 1 de cette thèse porte sur l'étude d'un point de vue fonctoriel et la généralisation de la construction de Long-Moody introduite dans [START_REF] Long | Constructing representations of braid groups[END_REF] pour les groupes de tresses.

Tout d'abord, on adopte un point de vue issu de la théorie des catégories pour étudier cette construction. On peut considérer les groupes de tresses {B n } n∈N comme étant les groupes d'automorphismes d'un groupoïde β, appelé groupoïde des tresses, ayant pour objets les entiers naturels. L'addition sur les entiers naturels induit une structure monoïdale tressée sur β (voir [ML13, Chapter XI] pour plus de détails), ce qui signifie qu'il existe une opération associative B m B n → B m+n compatible avec la composition pour tout n, m ∈ N. On note b β -,-le tressage associé qui permet de commuter les deux termes sur lesquels s'applique l'opération . La construction de Quillen U (voir [Gra76, p. 219]) permet alors de former une nouvelle catégorie Uβ ayant les mêmes objets que β, où les groupes d'automorphismes sont également les groupes de tresses, mais qui possède des morphismes d'un objet n vers un objet m pour n ≤ m contrairement à β. Plus précisément, l'ensemble des morphismes entre de tels objets n et m est un quotient (ensembliste) B m /B m-n si m ≥ n et l'ensemble vide sinon. Un morphisme de n vers m est ainsi noté par une classe d'équivalence [mn, σ] où σ ∈ B m . La structure monoïdale du groupoïde des tresses s'étend à la catégorie Uβ. Cette structure n'est pas tressée mais elle satisfait des conditions plus faibles qui en font ainsi une structure monoïdale pré-tressée au sens de Randal-Williams et Wahl dans [RWW17, Section 1]. Les résultats de stabilité homologique à coefficients tordus pour les groupes de tresses de [RWW17, Section 5] sont établis pour un certain type de foncteurs ayant cette catégorie Uβ pour source. On note Fct (Uβ, K-Mod) la catégorie des foncteurs de Uβ vers la catégorie K-Mod des K-modules pour K un anneau commutatif. Un objet de Fct (Uβ, K-Mod) est ainsi la donnée d'une famille de représentations linéaires des groupes de tresses avec, pour tout entier naturel n, une relation de compatibilité de passage de la représentation de B n à celle de B n+1 liée aux morphismes de la catégorie Uβ. Un premier exemple d'objet non-trivial de Fct (Uβ, K-Mod) (pour K = C t ±1 ) est construit à partir des représentations de Burau non-réduites dans [RWW17, Example 4.3] et est noté Bur t . Cette famille de représentations est dite typique des groupes de tresses dans le sens où elle ne provient pas de représentations des groupes symétriques.

On démontre que les représentations de Burau réduites, les représentations de Tong, Yang et Ma et les représentations de Lawrence-Krammer forment également des objets non-triviaux de Fct (Uβ, K-Mod), respectivement notés Bur t , TYM t et LK (voir la section 1.1.2).

La première étape de ce chapitre consiste alors à s'inspirer de la construction de Long-Moody introduite dans [START_REF] Long | Constructing representations of braid groups[END_REF] afin de construire des endofoncteurs de Fct (Uβ, K-Mod), produisant ainsi de nouveaux objets de cette catégorie. ix x 0. Chapter. Introduction On note F n le groupe libre à n ∈ N éléments, * le produit libre de groupes, et ι F n l'unique morphisme 0 Gr → F n (où 0 Gr désigne le groupe trivial). L'idéal d'augmentation de l'anneau du groupe libre à n éléments est noté I K[F n ] . On considère des familles de morphismes {a n : B n → Aut (F n )} n∈N et {ς n : F n → B n+1 } n∈N . Trois pro- priétés dites de cohérence sur ces familles de morphismes ont alors été exhibées (on renvoie le lecteur à la section 1.2.1 pour le détail de ces conditions, les familles {a n } n∈N et {ς n } n∈N étant alors dites cohérentes) afin de consti- tuer le cadre nécessaire et suffisant au théorème suivant.

Théorème A (Theorem 1.2.20). Soit K un anneau commutatif. Les données suivantes définissent un foncteur exact LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) , appelé foncteur de Long-Moody par rapport aux familles cohérentes de morphismes {a n } n∈N et {ς n } n∈N , défini pour F ∈ Obj (Fct (Uβ, K-Mod)) par :

LM a,ς (F) (n) = I K[F n ] K[F n ]
F (n + 1) , pour tout entier naturel n.

Les morphismes {ς n } n∈N permettent de définir ce produit tensoriel utilisé pour définir le foncteur de Long- Moody. Celui-ci est défini sur les morphismes grâce aux morphismes {a n } n∈N .

Un premier exemple consiste à considérer les représentations d'Artin des groupes de tresses notées {a n,1 } n∈N définies pour n ≥ 1 pour tout générateur d'Artin σ i de B n par

a n,1 (σ i ) : F n -→ F n g j -→      g i+1 si j = i g -1 i+1 g i g i+1 si j = i + 1 g j si j / ∈ {i, i + 1}.
et les morphismes {ς n,1 } n∈N définis pour n ≥ 1 par

ς n,1 : F n -→ B n+1 g i -→ σ 2 1 si i = 1, σ i • ς n,1 (g i-1 ) • σ -1 i si i ∈ {2, . . . , n} .
Ces familles de morphismes sont cohérentes et le foncteur LM a 1 ,ς 1 correspond à la construction originale de Long LM [START_REF] Long | Constructing representations of braid groups[END_REF]. Plus précisément, en notant F |n+1 la restriction d'un objet F de Fct (Uβ, K-Mod) à la sous-catégorie pleine de Uβ ayant pour seul objet n + 1, on a

(LM a 1 ,ς 1 (F)) |n+1 = LM F |n+1 .
Le foncteur de Burau non-réduit Bur t est ainsi équivalent au foncteur obtenu en appliquant LM a 1 ,ς 1 sur un foncteur constant et le foncteur de Lawrence-Krammer LK est un sous-foncteur de celui obtenu en appliquant LM a 1 ,ς 1 sur Bur t . Par ailleurs, en utilisant d'autres familles de morphismes {a n } n∈N (en considérant par exemple les re- présentations dites de Wada voir [START_REF] Wada | Group invariants of links[END_REF][START_REF] Ito | The classification of Wada-type representations of braid groups[END_REF], dont les représentations d'Artin sont des cas particuliers), on peut obtenir d'autres familles de représentations des groupes de tresses : c'est le cas du foncteur de Tong-Yang-Ma TYM t qui s'obtient en appliquant sur un foncteur constant un foncteur de Long-Moody associé à la famille de morphismes {a n,3 } n∈N définis pour tout générateur d'Artin σ i de B n par

a n,3 (σ i ) : F n -→ F n g j -→      g i+1 si j = i g -1 i si j = i + 1 g j si j / ∈ {i, i + 1}.
Dans ce premier chapitre, on étend également la notion de forte polynomialité de [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] aux foncteurs ayant une catégorie monoïdale pré-tressée pour source et l'unité de la structure monoïdale comme objet initial. Plus x 0. Chapter. Introduction xi précisément, pour (M, , 0) une petite catégorie monoïdale stricte pré-tressée et x un objet de M, on note τ x l'en- dofoncteur de Fct (M, K-Mod) (dit de translation) obtenu par précomposition par le foncteur x -. Puisque l'objet 0 est initial dans M, on peut former une transformation naturelle i x : Id → τ x . En considérant le conoyau (respectivement noyau) de i x noté δ x (respectivement κ x ), on obtient la suite exacte courte d'endofoncteurs of Fct (M, K-Mod) : 0 -→ κ x -→ Id -→ τ x -→ δ x -→ 0.

Un objet F de Fct (M, K-Mod) est dit fortement polynomial de degré inférieur ou égal à d ∈ N si δ d+1

x (F) = 0 pour tout objet x de M. On note P ol f ort d (M, K-Mod) la sous-catégorie de Fct (M, K-Mod) formée de ces objets. Par exemple, les foncteurs fortement polynomiaux de degré 0 sont les quotients des foncteurs constants et un foncteur strictement monoïdal par rapport à est fortement polynomial de degré 1.

Les foncteurs fortement polynomiaux pour lesquels Randal-Williams et Wahl démontrent la stabilité homologique à coefficients tordus dans [RWW17, Section 5] vérifient des propriétés plus fortes. On baptise de tels objets des foncteurs très fortement polynomiaux. Plus précisément, un objet F de P ol f ort d (M, K-Mod) est dit très forte- ment polynomial de degré inférieur ou égal à d ∈ N si κ x (F) = 0 et δ x (F) est très fortement polynomial de degré inférieur ou égal à d -1, pour tout objet x de M. Il est ainsi pertinent d'étudier le comportement des foncteurs de Long-Moody sur la (très) forte polynomialité des objets de Fct (Uβ, K-Mod). Il est démontré dans [RWW17, Example 4.15] que le foncteur Bur t est très fortement polynomial de degré 1. On démontre :

Proposition. Le foncteur Bur t est fortement polynomial de degré 2, le foncteur TYM t est très fortement polynomial de degré 1 et le foncteur LK est très fortement polynomial de degré 2.

Sous deux légères hypothèses supplémentaires sur la famille de morphismes {a n } n∈N (on renvoie le lecteur à la section 1.4.1.1 pour le détail de ces conditions), les familles de morphismes {a n } n∈N et {ς n } n∈N sont alors dites fiables. Par exemple, les familles {a n,1 } n∈N et {ς n,1 } n∈N sont fiables. Il s'ensuit alors le résultat suivant : La clef de la démonstration de ce théorème est donnée par les résultats techniques suivants. Un foncteur de Long-Moody LM a,ς associé à des familles fiables de morphismes {a n } n∈N et {ς n } n∈N admet la décomposition suivante par rapport au foncteur de translation :

τ 1 • LM a,ς ∼ = τ 2 ⊕ (LM a,ς • τ 1 ) . Il en découle alors les équivalences δ 1 • LM a,ς ∼ = τ 2 ⊕ (LM a,ς • δ 1 ) et κ 1 • LM a,ς ∼ = LM a,ς • κ 1 .
De cette manière, les foncteurs de Long-Moody permettent de produire de nouvelles familles de représentations linéaires des groupes de tresses, formant des foncteurs (très) fortement polynomiaux en n'importe quel degré. Cela fournit ainsi une grande variété d'exemples de coefficients tordus pour lesquelles le résultat de stabilité homologique de [RWW17, Section 5] est vérifié.

Enfin, on montre qu'il n'est pas possible d'obtenir le foncteur de Tong-Yang-Ma TYM t à partir de l'endofoncteur LM a 1 ,ς 1 associé à la construction originale de Long-Moody. Cela indique qu'il faut au moins considérer les constructions associées à divers morphismes {a n } n∈N afin de pouvoir répondre positivement au problème soulevé par Birman et Brendle dans [START_REF] Birman | Braids: a survey[END_REF]Open Problem 7].

Foncteurs de Long-Moody généralisés

Dans le chapitre 2, le travail du chapitre 1 est étendu à d'autres familles de groupes. En effet, les résultats de stabilité homologique à coefficients tordus de [START_REF] Randal | Homological stability for automorphism groups[END_REF] sont valables dans un cadre beaucoup plus général que celui des groupes de tresses. Ce cadre inclut notamment les groupes de difféotopie de surfaces de genre (orientable ou non-orientable) non-nul. Ne disposant pas d'une classification des représentations linéaires de ces familles, xi xii 0. Chapter. Introduction trouver des foncteurs typiques de ces familles de groupes vérifiant des conditions de polynomialité du type de celles décrites dans la section précédente n'est pas aisé. La construction de diverses familles de représentations linéaires typiques des groupes de tresses dans le chapitre incite donc à généraliser la définition de ce type de foncteurs pour d'autres familles de groupes.

Exposons tout d'abord ce nouveau cadre de travail, s'inspirant de l'exemple qui suit. On note Γ s g,c,1 le groupe de difféotopie d'une surface Σ s g,c,1 compacte connexe de genre orientable g, de genre non-orientable c, ayant une composante de bord et dont on a retiré s points à l'intérieur, et par la somme connexe sur le bord des surfaces.

On définit le groupoïde des surfaces décorées M 2 ayant pour objets les surfaces Σ s g,c,1 g,c,s∈N et les groupes de difféotopie Γ s g,c,1 g,c,s∈N pour groupes d'automorphismes. Il est muni d'une structure monoïdale tressée M 2 , , Σ 0 0,0,1 grâce à la somme connexe sur le bord et dont le disque Σ 0 0,0,1 est l'unité (on renvoie le lecteur à [RWW17, Section 5.6] ou à la section 2.1 pour plus de détails). Ainsi, Σ s g+1,c,1 étant homéomorphe à Σ 1 1,0,1 Σ s g,c,1 , on a des inclusions canoniques Σ 0 1,0,1 , id Σ s g,c,1 : Γ s g,c,1 → Γ s g+1,c,1 et Σ 1 0,0,1 , id Σ s g,c,1 : Γ s g,c,1 → Γ s+1 g,c,1 où les éléments de Γ s g,c,1 sont prolongés à Σ s g+1,c,1 (respectivement Σ s+1 g,c,1 ) par l'identité sur Σ 0 1,0,1 (respectivement Σ 1 0,0,1 ). Il s'agit ainsi de faire varier le genre orientable dans un cas et le nombre de points retirés dans l'autre. Dans le cas général, on considère une famille de groupes {G n } n∈N telle qu'on dispose d'injections canoniques G i → G i+1 issues d'une structure monoïdale sous-jacente. Plus précisément, on suppose qu'il existe un groupoïde (G , , 0 G ) monoïdal strict tressé et qu'il existe des objets {n} n∈N de G tels que Aut G (n) = G n . La construction de Quillen UG (voir [Gra76, p. 219]) a les mêmes objets que G et l'ensemble des morphismes entre deux objets A et B est donné par colim G [Hom G (-A, B)] : cela permet alors d'avoir une catégorie qui possède des morphismes entre objets distincts. Un morphisme entre A et B est ainsi noté [X, φ] où X est un objet tel que X A = B et φ ∈ Aut G (B).

Comme le cas des groupes de difféotopie des surfaces le montre, le groupoïde G peut avoir trop de groupes d'automorphismes par rapport à la famille de groupes à laquelle on s'intéresse. On considère alors les sousgroupoïdes de M 2 suivants :

• M s,c 2 ayant pour objets Σ 0 g,0,1 Σ s 0,c,1 g∈N afin d'étudier la stabilité par rapport au genre orientable ;

• M g,c 2 ayant pour objets Σ s 0,0,1 Σ 0 g,c,1 s∈N afin d'étudier la stabilité par rapport au nombre de points retirés.

Dans le cas général, on souhaite se restreindre au sous-groupoïde dont les groupes d'automorphismes sont exactement les groupes {G n } n∈N . On suppose alors qu'il existe deux objets de G (notés 0 et 1) tels que n = 1 n 0 pour tout entier naturel n. On note alors G (respectivement UG) la sous-catégorie pleine de G (respectivement de UG ) sur les objets 1 n 0 n∈N .

Vient alors l'étape clef de la généralisation des foncteurs de Long-Moody : il s'agit de trouver une famille de groupes {H n } n∈N tels qu'il existe deux familles de morphismes {a n : G n → Aut (H n )} n∈N et {ς n : H n → G n+1 } n∈N vérifiant des conditions de cohérence analogues à celles exhibées dans le chapitre 1. On procède alors de la manière suivante : fixant deux groupes H 0 et H, ce dernier étant supposé non-trivial, on pose H m := H * m * H 0 pour tout entier naturel m et on suppose qu'il existe un foncteur H : UG → Gr tel que H (n) = H n pour tout entier naturel n. Ce foncteur H définit donc une famille de morphismes {a n : G n → Aut (H n )} n∈N . On retrouve le cas étudié dans le chapitre 1 en prenant G n = B n le groupe de tresses sur n brins, H = Z et H 0 le groupe trivial. Si on s'intéresse aux groupes de difféotopie plus généraux Γ s g,c,1 g∈N , on prend H 0 = π 1 Σ s 0,c,1 , p et H = π 1 Σ 0 1,0,1 , p si bien que H n ∼ = π 1 Σ s n,c,1 , p , l'action classique d'un groupe de difféotopie sur le groupe fondamental de la surface permettant de définir le foncteur H. On procède de façon analogue pour les groupes Γ s g,c,1 s∈N . Des conditions de cohérence sont alors définies (généralisant celles du chapitre 1) que doivent satisfaire une famille de morphismes {ς n : H n → G n+1 } n∈N par rapport au foncteur H et au tressage du groupoïde G nécessaires et suffisantes au théorème suivant (on renvoie le lecteur à la section 2.2.1 pour le détail de ces conditions). xii 0. Chapter. Introduction xiii Une des conditions de cohérence technique du chapitre 1 se traduit d'ailleurs dans ce cadre général par le fait que la famille de groupes {H n } n∈N définisse un foncteur H sur la catégorie UG : cela illustre l'intérêt d'avoir un point de vue fonctoriel sur les objets considérés. Remarquons également que les idéaux d'augmentation des anneaux de groupes {R [H n ]} n∈N définissent alors également un foncteur I : UG → R-Mod. On forme alors ce qu'on appelle un système cohérent de Long-Moody noté {H, G, G , ς} et on démontre :

Théorème C (Proposition 2.2.30). Pour {H, G, G , ς} un système cohérent de Long-Moody, les données suivantes définissent un foncteur exact à droite LM {H,G,G ,ς} : Fct (UG, R-Mod) → Fct (UG, R-Mod) appelé foncteur de Long-Moody associé au système {H, G, G , ς}, défini pour F ∈ Obj (Fct (UG, R-Mod)) par :

LM {H,G,G ,ς} (F) (n) = I R[H n ] R[H n ]
F (n + 1) , pour tout objet n de G.

Les morphismes {ς n : H n → G n+1 } n∈N permettent de définir ce produit tensoriel utilisé pour définir le fonc- teur de Long-Moody. Celui-ci est défini sur les morphismes grâce au foncteur I.

Par exemple, considérant un foncteur H, les morphismes triviaux {ς n,t : H n → 0 Gr → G n+1 } n∈N vérifient tou- jours les conditions de cohérence définissant un système de Long-Moody. De plus, on montre que : Proposition. Pour tout objet F de Fct (UG, R-Mod), il y a une équivalence naturelle :

LM {H,G,G ,ς t } (F) ∼ = LM {H,G,G ,ς t } (R) ⊗ R F (1 -) .
Par ailleurs, le premier groupe d'homologie formant un foncteur H 1 (-, R) : Gr → R-Mod (où Gr désigne la catégorie des groupes), la composition H 1 (-, R) • H est un objet de Fct (UG, R-Mod) noté H 1 (H -, R). On remarque ainsi :

Lemme. Si H 0 et H sont des groupes libres, alors le foncteur de Long-Moody LM {H,G,G ,ς} est exact et LM {H,G,G ,ς} (R) ∼ = H 1 (H -, R) , où R désigne le foncteur constant égal à R.

Pour les groupes de difféotopie des surfaces Γ 0 g,0,1 s∈N , en considérant le foncteur de Long-Moody LM {H,M s=0,0 2 ,M 2 ,ς t } , on obtient alors :

LM {H,M s=0,0 2 ,M 2 ,ς t } (R) ∼ = H 1 Σ 0 -,0,1 , R .

Ce dernier foncteur H 1 Σ 0 -,0,1 , R encode les représentations symplectiques des groupes de difféotopie des surfaces. Il est introduit par Cohen et Madsen dans [START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF] et par Boldsen dans [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF], où en particulier la stabilité homologique des groupes Γ 0 g,0,1 g∈N par rapport aux coefficients donnés par ce foncteur est démontrée.

Ainsi, dans le cas où H 0 et H sont des groupes libres, un endofoncteur de Long-Moody LM {H,G,G ,ς t } pour les morphismes triviaux {ς n,t } n∈N est déterminé par le foncteur H 1 (H -, R). Cette propriété n'est plus vraie lors- qu'on s'intéresse à un endofoncteur de Long-Moody LM {H,G,G ,ς} pour des morphismes non-triviaux {ς n } n∈N . En général, l'image d'un foncteur donné n'est alors pas déterminée par le foncteur LM {H,G,G ,ς} (R). Par exemple, dans le cas des groupes de tresses, pour les morphismes non-triviaux {ς n,1 } n∈N , on produit le foncteur LM a 1 ,ς 1 qui permet d'obtenir le foncteur de Burau à partir d'un foncteur constant.

Obtenir de tels morphismes non-triviaux {ς n } n∈N vérifiant les conditions de cohérence pour former des fonc- teurs de Long-Moody constitue une étape difficile. En effet, on ne dispose pas de méthode générale pour en construire en considérant des familles de groupes {G n } n∈N et {H n } n∈N . Cependant, il peut émerger de tels mor- phismes dans certaines situations : c'est le cas des groupes de difféotopie des surfaces Γ s g,0,1 s∈N . On forme alors des morphismes cohérents ς n : π 1 Σ n g,0,1 , p → Γ n+1 g,0,1 n∈N xiii xiv 0. Chapter. Introduction en utilisant le scindement d'une suite exacte de Birman (on renvoie le lecteur à la section 2.3.4 pour plus de détails sur cette définition). L'endofoncteur de Long-Moody ainsi construit LM H,M g,0 2 ,M 2 ,ς produit alors de nouvelles familles de représentations des groupes Γ s g,0,1 s∈N (voir Remarque 2.3.32).

Les notions de forte et très forte polynomialité présentées dans le chapitre 1 s'étendent au cadre plus général considéré ici. En effet, ces notions sont bien définies pour le groupoïde (G , , 0 G ). On peut étendre les définitions de τ 1 , δ 1 et κ 1 pour des objets de Fct (UG, R-Mod) ce qui permet de définir les foncteurs (très) fortement polyno- miaux sur la catégorie UG. Comme pour les groupes de tresses, la stabilité homologique à coefficients tordus des groupes {G n } n∈N considérés dans [RWW17, Section 5] est démontrée pour les objets très fortement polynomiaux de Fct (UG, R-Mod).

Par ailleurs, la notion de polynomialité forte n'est pas la plus adaptée pour étudier le comportement stable d'un objet de Fct (UG, R-Mod). En effet, considérons R : UG → R-Mod le foncteur constant égal à R et, pour un entier naturel i ≥ 1, R ≥i : UG → R-Mod le foncteur constant égal au groupe trivial sur les objets n tels que n < i et le foncteur constant égal à R sur les objets n tels que n ≥ i. Ainsi, R est fortement polynomial de degré 0 et R ≥i est fortement polynomial de degré i alors que ces foncteurs sont égaux pour les objets n tels que n ≥ i. Cela a notamment motivé l'introduction de la notion de faible polynomialité de [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF], définie dans le cas où G = G et (G , , 0 G ) monoïdal symétrique. On montre que cette notion s'étend au cadre plus général considéré ici. A proprement parler, un objet F de Fct (UG, R-Mod) est stablement nul si ∑ n∈N κ 1 n F est égal à F. Ces objets forment une sous-catégorie localisante (voir [START_REF] Gabriel | Des catégories abéliennes[END_REF] pour cette notion) de Fct (UG, R-Mod) dont la catégorie quotient associée est notée St (UG, R-Mod) et π UG la projection associée. L'endofoncteur induit par τ 1 dans St (UG, R-Mod) a un noyau trivial et son conoyau est de nouveau noté δ 1 . Un objet F de Fct (UG, R-Mod) est dit faiblement polynomial de degré inférieur ou égal à d ∈ N si δ d+1 1 (π UG (F)) = 0. Par exemple, un foncteur faiblement polynomial de degré 0 est équivalent à un foncteur constant.

Les propriétés sur les foncteurs fortement polynomiaux des foncteurs de Long-Moody du chapitre 1 dans le cas des groupes de tresses a encouragé à étudier les propriétés sur la polynomialité forte et faible d'un foncteur de Long-Moody dans le présent cadre plus général. Pour un système cohérent de Long-Moody {H, G, G , ς}, en supposant que le foncteur H : G → Gr s'étende à G et admette des propriétés de compatibilité par rapport au produit et au tressage b G -,-(plus précisément on le suppose monoïdal tressé en considérant le produit à la source et le produit libre * pour la catégorie but, voir la section 2.5.3.1 pour plus de détails), le système {H, G, G , ς} est dit fiable. Alors, on généralise le Théorème B et on établit de nouveaux résultats pour les foncteurs faiblement polynomiaux :

Théorème D (Theorem 2.5.29 et Theorem 2.5.36). Pour un système fiable de Long-Moody {H, G, G , ς}, l'endofoncteur associé LM {H,G,G ,ς t } induit un foncteur P ol f ort d (UG, R-Mod) → P ol f ort d+1 (UG, R-Mod) De plus si H 0 et H sont libres, alors le foncteur LM {H,G,G ,ς} augmente de un le degré de très forte polynomialité. Par ailleurs, si H est libre, alors LM {H,G,G ,ς} augmente de un le degré de faible polynomialité si H 0 est libre ou si le groupoïde G est monoïdal symétrique.

Pour les foncteurs fortement polynomiaux, la démonstration de ce théorème est une généralisation de celle du Théorème B : elle repose en effet sur la décomposition suivante par rapport au foncteur de translation

τ 1 • LM {H,G,G ,ς} ∼ = I R[H] R[H]
τ 2 ⊕ LM {H,G,G ,ς} • τ 1 qui permet ensuite de démontrer l'équivalence 

δ 1 • LM {H,G,G ,ς} ∼ = I R[H] R[H] τ 2 ⊕ LM {H,G,G ,ς} • δ 1 . (0.2.1) En revanche, l'équivalence κ 1 • LM {H,G,G ,ς} ∼ = LM {H,G,G ,ς}
LM {H,G,G ,ς} et I R[H] R[H]
τ 2 sont bien définis pour la catégorie quotient St (UG, R-Mod) sous les hypothèses addi- tionnelles de l'énoncé, avant d'à nouveau exploiter l'équivalence analogue à (0.2.1) pour St (UG, R-Mod). Le Théo- rème D permet ainsi par exemple de démontrer que le foncteur H 1 Σ 0 -,0,1 , R des représentations symplectiques est très fortement et faiblement polynomial de degré 1. Il indique également que les foncteurs de Long-Moody produisent une grande variété de foncteurs très fortement polynomiaux en n'importe quel degré, pour lesquels les résultats de stabilité homologique de [START_REF] Randal | Homological stability for automorphism groups[END_REF] sont vérifiés.

Par ailleurs, dans le cas où le groupoïde (G , , 0 G ) est monoïdal symétrique, on s'intéressse à la compatibilité des foncteurs de ). Dans le cas où on considère le groupoïde (FB, , ∅) des ensembles finis avec les bijections pour morphismes et la structure monoïdale symétrique induite par l'union disjointe des ensembles, alors U (FB) s'identifie à la catégorie FI des ensembles finis avec les injections et FI est équivalente à la catégorie FI considérée par Church, Ellenberg et Farb dans [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF] afin d'étudier les objets projectifs de la catégorie Fct (FI, R-Mod). On note UG la sous-catégorie de UG sur les objets de G.

En considérant un système fiable de Long-Moody {H, G, G , ς}, il suffit alors d'imposer une condition additionnelle sur les morphismes {ς n } n∈N (voir la section 2.6.2 pour plus de détails, le système {H, G, G , ς} est alors dit relevable) afin d'étendre la définition d'un foncteur de Long-Moody LM {H,G,G ,ς t } à la catégorie UG. A proprement parler, on démontre que : Théorème E (Proposition 2.6.24 et Proposition 2.6.25). Pour un système relevable de Long-Moody {H, G, G , ς} où G est monoïdal symétrique, il existe un foncteur LM : Fct UG, R-Mod -→ Fct UG, R-Mod tel que le diagramme suivant est commutatif :

Fct UG, R-Mod LM / / incl UG UG * Fct UG, R-Mod incl UG UG * Fct (UG, R-Mod) LM / / Fct (UG, R-Mod) .

Calculs d'homologie à coefficients tordus pour les groupes de difféotopies

Le troisième chapitre porte sur des calculs explicites d'homologie stable à coefficients tordus de groupes de difféotopie de surfaces et de 3-variétés. Nous avons vu dans les sections précédentes que les foncteurs de Long-Moody permettent d'obtenir des coefficients tordus polynomiaux en tout degré pour une famille de groupes {G n } n∈N .

Reprenant les notations des sections précédentes, il s'ensuit tout naturellement la question suivante :

Question. Est-il possible de comparer les homologies stables H * (G ∞ , F ∞ ) et H * G ∞ , LM {H,G,G ,ς} (F ∞ ) pour un objet F de Fct (UG, R-Mod) ?
Dans un premier temps, on répond partiellement à cette question en s'appuyant sur des structures de produits semi-directs apparaissant naturellement pour les groupes de difféotopie et sur la suite spectrale de Lyndon-Hochschild-Serre. On démontre tout d'abord : Théorème F (Corollary 3.2.5). Soit {H, G, G , ς t } un système cohérent de Long-Moody (on rappelle que la famille {ς n,t } n∈N est celle des morphismes triviaux) tel que H n est un groupe libre pour tout entier naturel n. Alors, pour tout objet F de

xv xvi 0. Chapter. Introduction Fct (UG, R-Mod) et tout entier naturel * ≥ 1 : H * -1 G ∞ , LM {H,G,G ,ς t } (F ∞ ) ∼ = H * Colim n∈(N,≤) H n A Q,n G n , F ∞ /H * (G ∞ , F ∞ ) .
Ce résultat général a des applications pour diverses familles de groupes. Tout d'abord, on s'intéresse aux groupes de tresses. Pour un entier naturel n, on note Cox (n) la représentation de Coxeter du groupe de tresses B n et on rappelle que Bur t (n) désigne la représentation non-réduite de Burau. En utilisant le Théorème F et le résultat de stabilité [Gor78, Theorem C], on démontre que : Proposition. Pour tous les entiers naturels n et q tels que n ≥ q + 2 :

H q (B n , Cox (n)) ∼ = C ⊕2 si q ≥ 2, C si q = 0, 1.
Par ailleurs, en utilisant une suite exacte courte faisant intervenir les représentations de Burau réduites et des résultats de [START_REF] Chen | Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields[END_REF], on démontre : Proposition. Pour tous les entiers naturels n ≥ 3 et q ≥ 3 :

H q (B n , Bur t (n)) ∼ =          C t ±1 / (1 -t) si 3 ≤ q < n-2, C t ±1 / (1 -t) si q = n-2 et n est impair, C t ±1 / 1 -t 2 si q = n-2 et n est pair, 0 sinon.
Ensuite, pour les groupes de difféotopie des surfaces, on abrège la notation Γ s g,0,1 (respectivement Γ 0 g,0,1 ) par Γ s g,1 (respectivement Γ g,1 ) . Alors, en combinant le Théorème F et des résultats de stabilité de [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF][START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF], on déduit que : Proposition. Pour des entiers naturels m, n et q tels que 2n ≥ 3q + m, on a un isomorphisme :

H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m ∼ = q-1 2 ≥k≥0 H q-(2k+1) Γ n,1 , H 1 (Σ n,1 , Z) ⊗m-1 .
On retrouve ainsi les résultats de [START_REF] Harer | The third homology group of the moduli space of curves[END_REF] et [START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF].

Enfin, soit G s n,k l'espace topologique composé d'un bouquet de n cercles, k cercles distingués (ie chacun est relié au point base du bouquet par une arête) et s points distingués (ie chacun est relié au point base du bouquet par une arête). On note A s n,k le groupe des composantes connexes par arcs des équivalences d'homotopies de l'espace G s n,k (on renvoie à [HW05] pour plus de détails sur ces groupes). Alors, on prouve : Proposition. Soient s ≥ 2 et q ≥ 1 des entiers naturels et F : gr → Ab (où gr est la catégorie des groupes libres de type fini et Ab est la catégorie des groupes abéliens) réduit (c'est-à-dire nul sur le groupe trivial). Alors, pour tout entier naturel

n ≥ 2q + 1, H q A s n,0 , F (n) = 0.
On déduit par ailleurs de cette proposition et des résultats de stabilité de [START_REF] Hatcher | Stabilization for mapping class groups of 3-manifolds[END_REF] que :

Corollaire. Pour des entiers naturels n ≥ 2q + 2 et k ≥ 0 :

H q A s n,k , Q = 0.
On recouvre ainsi les résultats de [START_REF] Jensen | Homology of holomorphs of free groups[END_REF] pour les holomorphes des groupes libres. Dans un second temps, on effectue des calculs d'homologie stable de groupes de difféotopie pour des coefficients tordus donnés par des représentations factorisant par les groupes symétriques ou hyperoctahédraux. Rappelons qu'on note FI la catégorie des ensembles finis avec les injections pour morphismes 

1. H d (B ∞ , F ∞ ) ∼ = Colim n∈FI H d (PB n , K) ⊗ K F (n)
où PB n désigne le groupe de tresses pures sur n brins ;

2. H d Γ ∞ ∞,1 , F ∞ ∼ = Colim n∈FI k+l=d H k (Γ n,1 , K) ⊗ K H l (CP ∞ ) ×n , K ⊗ K F (n) . En particulier, pour tout entier naturel k : H 2k+1 Γ ∞ ∞,1 , F ∞ = 0. 3. H d Aut Z * k ×∞ , F ∞ = 0 pour tout entier naturel k ≥ 2d + 1.
La démonstration du Théorème G nécessite un résultat général de décomposition de l'homologie stable à coefficients tordus. On reprend les notations et hypothèses de la Section 0.2 : on considère une famille de groupes {G n } n∈N telle qu'il existe un groupoïde (G , , 0 G ) monoïdal strict tressé et qu'il existe des objets de G notés n tels que Aut G (n) = G n pour tout entier naturel n et on note G (respectivement UG) la sous-catégorie pleine de G (respectivement la construction de Quillen UG ) ayant pour objets {n} n∈N . On renvoie le lecteur aux articles [FP03, Section 2] et [DV10, Appendice A] pour une introduction à l'homologie des foncteurs. On démontre alors : Theorem H (Theorem 3.3.7). Soit K un corps. Pour tout foncteur F : UG → K-Mod, on a un isomorphisme de Kmodules : 

H * (G ∞ , F ∞ ) ∼ = k+l= * H k (G ∞ , K) ⊗ K H l (UG, F) .

Introduction

Linear representations of the Artin braid group on n strands B n is a rich subject which appears in diverse contexts in mathematics (see for example [START_REF] Birman | Braids: a survey[END_REF] or [START_REF] Marin | On the representation theory of braid groups[END_REF] for an overview). Even if braid groups are of wild representation type, any new result which allows us to gain a better understanding of them is a useful contribution.

In 1994, as a result of a collaboration with Moody in [START_REF] Long | Constructing representations of braid groups[END_REF], Long gave a method to construct from a linear representation ρ : [Lon94, Theorem 2.1]). Moreover, the construction complicates in a sense the initial representation. For example, applying it to a one dimensional representation of B n+1 , the construction gives a mild variant of the unreduced Burau representation of B n . This method was in fact already implicitly present in two previous articles of Long dated 1989 (see [START_REF] Long | On the linear representation of braid groups[END_REF][START_REF] Long | On the linear representation of braid groups[END_REF]). In the article [START_REF] Bigelow | Generalized Long-Moody representations of braid groups[END_REF] dating from 2008, Bigelow and Tian consider the Long-Moody construction from a matricial point of view. They give alternative and purely algebraic proofs of some results of [START_REF] Long | Constructing representations of braid groups[END_REF], and they slightly extend some of them. In a survey on braid groups (see the Open Problem 7 in [START_REF] Birman | Braids: a survey[END_REF]), Birman and Brendle underline the fact that the Long-Moody construction should be studied in greater detail.

B n+1 → GL (V) a new linear representation LM (ρ) : B n → GL (V ⊕n ) of B n (see
Our work focuses on the study of the Long-Moody construction LM from a functorial point of view. More precisely, we consider the category Uβ associated with braid groups. This category is an example of a general construction due to Quillen (see [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF]) on the braid groupoid β. In particular, the category Uβ has natural numbers N as objects. For each natural number n, the automorphism group Aut Uβ (n) is the braid group B n . Let K-Mod be the category of K-modules, with K a commutative ring, and Fct (Uβ, K-Mod) be the category of the functors from Uβ to K-Mod. An object M of Fct (Uβ, K-Mod) gives by evaluation a family of representations of braid groups {M n : B n → GL (M (n))} n∈N , which satisfies some compatibility properties (see Section 1.1.1). Randal-Williams and Wahl use the category Uβ in [START_REF] Randal | Homological stability for automorphism groups[END_REF] to construct a general framework to prove homological stability for braid groups with twisted coefficients. Namely, they obtain the stability for twisted coefficients given by objects of Fct (Uβ, K-Mod).

In Proposition 1.2.20, we prove that a version of the Long-Moody construction is functorial. We fix two families of morphisms {a n : B n → Aut (F n )} n∈N and {ς n : F n → B n+1 } n∈N , satisfying some coherence properties (see Section 1.2.1). Once this framework set, we show:

Theorem A (Proposition 1.2.20) .

There is a functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod), called the Long- Moody functor with respect to coherent families of morphisms {a n } n∈N and {ς n } n∈N , which satisfies for σ ∈ B n and Among the objects in the category Fct (Uβ, K-Mod) the strong polynomial functors play a key role. This notion extends the classical one of polynomial functors, which were first defined by Eilenberg and Mac Lane in [START_REF] Eilenberg | On the groups H(Π, n). II. Methods of computation[END_REF] for functors on module categories, using cross effects. This definition can also be applied to monoidal categories where the monoidal unit is a null object. Djament and Vespa introduce in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] the definition of strong polynomial functors for symmetric monoidal categories with the monoidal unit being an initial object. Here, the category Uβ is neither symmetric, nor braided, but pre-braided in the sense of [START_REF] Randal | Homological stability for automorphism groups[END_REF]. However, we show that the notion of strong polynomial functor extends to the wider context of pre-braided monoidal categories (see Definition 1.3.4). We also introduce the notion of very strong polynomial functor (see Definition 1.3.16). Strong polynomial functors turn out inter alia to be very useful for homological stability problems. For example, in [START_REF] Randal | Homological stability for automorphism groups[END_REF], Randal-Williams and Wahl prove their homological stability results for twisted coefficients given by a specific kind of strong polynomial functors, namely coefficient systems of finite degree (see [RWW17, Section 4.4]).

We investigate the effects of Long-Moody functors on very strong polynomial functors. We establish the following theorem, under some mild additional conditions (introduced in Section 1.4.1.1) on the families of morphisms {a n } n∈N and {ς n } n∈N , which are then said to be reliable.

Theorem B (Corollary 1.4.28) . Let M be a very strong polynomial functor of Fct (Uβ, K-Mod) of degree n and let {a n } n∈N and {ς n } n∈N be coherent reliable families of morphisms. Then, considering the Long-Moody functor LM a,ς with respect to the morphisms {a n } n∈N and {ς n } n∈N , LM a,ς (M) is a very strong polynomial functor of degree n + 1. Thus, iterating the Long-Moody functor on a very strong polynomial functor of Fct (Uβ, K-Mod) of degree d, we generate polynomial functors of Fct (Uβ, K-Mod), of any degree bigger than d. For instance, Randal-Williams and Wahl define in [RWW17, Example 4.3] a functor Bur t : Uβ → C t ±1 -Mod encoding the unreduced Burau representations. Similarly, we introduce a functor TYM t : Uβ → C t ±1 -Mod corresponding to the representa- tions considered by Tong, Yang and Ma in [START_REF] Tong | A new class of representations of braid groups[END_REF]. These functors Bur t and TYM t are very strong polynomial of degree one (see Proposition 1.3.25), and moreover, we prove that the functor Bur t is equivalent to a functor obtained by applying the Long-Moody construction. Thus, the Long-Moody functors will provide new examples of twisted coefficients corresponding to the framework of [START_REF] Randal | Homological stability for automorphism groups[END_REF].

This construction is extended in the forthcoming work [START_REF] Soulié | The generalized Long-Moody functors[END_REF] for other families of groups, such as automorphism groups of free groups, braid groups of surfaces, mapping class groups of orientable and non-orientable surfaces or mapping class groups of 3-manifolds. The results proved here for (very) strong polynomial functors will also hold in the adapted categorical framework for these different families of groups.

The paper is organized as follows. Following [START_REF] Randal | Homological stability for automorphism groups[END_REF], Section 1.1 introduces the category Uβ and gives first examples of objects of Fct (Uβ, K-Mod). Then, in Section 1.2, we introduce the Long-Moody functors, prove Theorem A and give some of their properties. In Section 1.3, we review the notion of strong polynomial functors and extend the framework of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] to pre-braided monoidal categories. Finally, Section 1.4 is devoted to the proof of Theorem B and to some other properties of these functors. In particular, we tackle the Open Problem 7 of [START_REF] Birman | Braids: a survey[END_REF]. Notation 1.0.1. We will consider a commutative ring K throughout this work. We denote by K-Mod the category of K-modules. We denote by Gr the category of groups.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to denote the objects of C. For D a category, we denote by Fct (C, D) the category of functors from C to D. If 0 is initial object in the category C, then we denote by ι A : 0 → A the unique morphism from 0 to A. The maximal subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are the isomorphisms of C. We denote by G r : Cat → Cat the functor which associates to a category its maximal subgroupoid.

The category Uβ

The aim of this section is to describe the category Uβ associated with braid groups that is central to this paper. On the one hand, we recall some notions and properties about Quillen's construction from a monoidal groupoid and pre-braided monoidal categories introduced by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF]. On the other hand, we introduce examples of functors over the category Uβ.

1. Chapter. The Long-Moody construction and polynomial functors 3 We recall that the braid group on n ≥ 2 strands denoted by B n is the group generated by σ 1 , ..., σ n-1 satisfying the relations:

• ∀i ∈ {1, . . . , n -2}, σ i σ i+1 σ i = σ i+1 σ i σ i+1 ; • ∀i, j ∈ {1, . . . , n -1} such that | i -j |≥ 2, σ i σ j = σ j σ i .
B 0 and B 1 both are the trivial group. The family of braid groups is associated with the following groupoid.

Definition 1.1.1. The braid groupoid β is the groupoid with objects the natural numbers n ∈ N and morphisms (for n, m ∈ N):

Hom β (n, m) = B n if n = m ∅ if n = m.
Remark 1.1.2. The composition of morphisms • in the groupoid β corresponds to the group operation of the braid groups. So we will abuse the notation throughout this work, identifying σ • σ = σσ for all elements σ and σ of B n with n ∈ N (with the convention that we read from the right to the left for the group operation).

Quillen's bracket construction associated with the groupoid β

This section focuses on the presentation and the study of Quillen's bracket construction Uβ (see [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF]p.219]) on the braid groupoid β. It associates to β a monoidal category whose unit is initial. The category Uβ has further properties: Quillen's bracket construction on β is a pre-braided monoidal category (see Section 1.1.1.2) and β is its maximal subgroupoid. For an introduction to (braided) strict monoidal categories, we refer to [ML13, Chapter XI].

Notation 1.1.3. A strict monoidal category will be denoted by (C, , 0), where C is the category, is the monoidal product and 0 is the monoidal unit.

Generalities

In [START_REF] Randal | Homological stability for automorphism groups[END_REF], Randal-Williams and Wahl study a construction due to Quillen in [Gra76, p.219], for a monoidal category S acting on a category X in the case S = X = G where G is a groupoid. It is called Quillen's bracket construction. Our study here is based on [RWW17, Section 1] taking G = β.

Definition 1.1.4. [ML13, Chapter XI, Section 4] A monoidal product : β × β -→ β is defined by the usual addition for the objects and laying two braids side by side for the morphisms. The object 0 is the unit of this monoidal product. The strict monoidal groupoid (β, , 0) is braided, its braiding is denoted by b β -,-. Namely, the braiding is defined for all natural numbers n and m such that n + m ≥ 2 by:

b β n,m = (σ m • • • • • σ 2 • σ 1 ) • • • • • (σ n+m-2 • • • • • σ n • σ n-1 ) • (σ n+m-1 • • • • • σ n+1 • σ n )
where {σ i } i∈{1,...,n+m-1} denote the Artin generators of the braid group B n+m .

We consider the strict monoidal groupoid (β, , 0) throughout this section. Definition 1.1.5. [RWW17, Section 1.1] Quillen's bracket construction on the groupoid β, denoted by Uβ, is the category defined by:

• Objects: Obj (Uβ) = Obj (β) = N;
• Morphisms: for n and n two objects of β, the morphisms from n to n in the category Uβ are given by:

Hom Uβ n, n = colim β Hom β -n, n .
In other words, a morphism from n to n in the category Uβ, denoted by [nn, f ] : n → n , is an equivalence class of pairs (nn, f ) where nn is an object of β, f : (nn) n → n is a morphism of β, in other words 1. Chapter. The Long-Moody construction and polynomial functors an element of B n . The equivalence relation ∼ is defined by (nn, f ) ∼ (nn, f ) if and only if there exists an automorphism g ∈ Aut β (nn) such that the following diagram commutes.

(n -n) n g id n f / / n (n -n) n f : :
• For all objects n of Uβ, the identity morphism in the category Uβ is given by [0, id n ] : n → n.

• Let [nn, f ] : n → n and [nn , g] : n → n be two morphisms in the category Uβ. Then, the composition in the category Uβ is defined by:

n -n , g • n -n, f = n -n, g • (id n -n f ) .
The relationship between the automorphisms of the groupoid β and those of its associated Quillen's construction Uβ is actually clear. First, let us recall the following notion. Definition 1.1.6. Let (G, , 0) be a strict monoidal category. It has no zero divisors if for all objects A and B of G,

A B ∼ = 0 if and only if A ∼ = B ∼ = 0.
The braid groupoid (β, , 0) has no zero divisors. Moreover, by Definition 1.1.1, Aut β (0) = {id 0 }. Hence, we deduce the following property from [RWW17, Proposition 1.7].

Proposition 1.1.7. The groupoid β is the maximal subgroupoid of Uβ.

In addition, Uβ has the additional useful property. Proposition 1.1.8. [RWW17, Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (β, , 0) is an initial object in the category Uβ.

Remark 1.1.9. Let n be a natural number and φ ∈ Aut β (n). Then, as an element of Hom Uβ (n, n), we will abuse the notation φ = [0, φ]. This comes from the canonical functor:

β → Uβ φ ∈ Aut β (n) → [0, φ] .
Finally, we are interested in a way to extend an object of Fct (β, K-Mod) to an object of Fct (Uβ, K-Mod). This amounts to studying the image of the restriction Fct (Uβ, K-Mod) → Fct (β, K-Mod).

Proposition 1.1.10. Let M be an object of Fct (β, K-Mod). Assume that for all n, n , n ∈ N such that n ≥ n ≥ n, there exists an assignment M (

[n -n, id n ]) : M (n) → M (n ) such that: M n -n , id n • M n -n, id n = M n -n, id n (1.1.1)
Then, we define a functor M :

Uβ → K-Mod (assigning M ([n -n, σ]) = M (σ) • M ([n -n, id n ]) for all [n -n, σ] ∈ Hom Uβ (n, n )) if and only if for all n, n ∈ N such that n ≥ n: M n -n, id n • M (σ) = M (ψ σ) • M n -n, id n (1.1.2) for all σ ∈ B n and all ψ ∈ B n -n . Remark 1.1.11. Note that for n = n, M ([n -n, id n ]) = Id M(n) .
Proof of Proposition 1.1.10. Let us assume that relation (1.1.2) is satisfied. We have to show that the assignment on morphisms is well-defined with respect to Uβ. First, let us prove that our assignment conforms with the defining equivalence relation of Uβ (see Definition 1.1.5). For n and n natural numbers such that n ≥ n, let us consider

[n -n, σ] and [n -n, σ ] in Hom Uβ (n, n ) such that there exists ψ ∈ B n -n so that σ • (ψ id n ) = σ. Since M is a functor over β, M ([n -n, σ]) = M (σ ) • (M (ψ id n ) • M ([n -n, id n ])).
According to the relation (1.1.2) and since M satisfies the identity axiom, we deduce that

M ([n -n, σ]) = M (σ ) • M (ψ id n ) • M ([n -n, id n ]) = M ([n -n, σ ]
). Now, we have to check the composition axiom. Let n, n and n be natural numbers such that n ≥ n ≥ n, let ([nn, σ]) and ([nn , σ ]) be morphisms respectively in Hom Uβ (n, n ) and in Hom Uβ (n , n ). By our assignment and composition in Uβ (see Definition 1.1.5) we have that:

M n -n , σ • M n -n, σ = M σ • M n -n , id n • M (σ) • M n -n, id n .
According to the relation (1.1.2), we deduce that:

M n -n , σ • M n -n, σ = M σ • M n -n , id n • M (σ) • M n -n, id n . = M σ • M (id n -n σ) • M n -n , id n • M n -n, id n .
Hence, it follows from relation (1.1.1) that:

M n -n , σ • M n -n, σ = M σ • (id n -n σ) • M n -n, id n = M n -n , σ • n -n, σ .
Conversely, assume that the functor M : Uβ → K-Mod is well-defined. In particular, composition axiom in Uβ is satisfied and implies that for all n, n ∈ N such that n ≥ n, for all σ ∈ B n :

M n -n, id n • M (σ) = M n -n, id n -n σ .
It follows from the defining equivalence relation of Uβ (see Definition (1.1.5)) that for all ψ ∈ B n -n :

M n -n, id n • M (σ) = M n -n, ψ σ .
We deduce from the composition axiom that relation (1.1.2) is satisfied.

Proposition 1.1.12. Let M and M be objects of Fct (Uβ, K-Mod) and η : M → M a natural transformation in the category Fct (β, K-Mod). Then, η is a natural transformation in the category Fct (Uβ, K-Mod) if and only if for all n, n ∈ N such that n ≥ n:

η n • M n -n, id n = M n -n, id n • η n . (1.1.3)
Proof. The natural transformation η extends to the category Fct (Uβ, K-Mod) if and only if for all n, n ∈ N such that n ≥ n, for all [nn, σ] ∈ Hom Uβ (n, n ):

M n -n, σ • η n = η n • M n -n, σ .
Since η is a natural transformation in the category Fct (β, K-Mod), we already have

η n • M (σ) = M (σ) • η n .
Hence, this implies that the necessary and sufficient relation to satisfy is relation (1.1.3).

Pre-braided monoidal category

We present the notion of a pre-braided category, introduced by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF]. This is a generalization of that of a braided monoidal category.

Definition 1.1.13. [RWW17, Definition 1.5] Let (C, , 0) be a strict monoidal category such that the unit 0 is initial. We say that the monoidal category (C, , 0) is pre-braided if:

• The maximal subgroupoid G r (C, , 0) is a braided monoidal category, where the monoidal structure is in- duced by that of (C, , 0).

• For all objects A and B of C, the braiding associated with the maximal subgroupoid b

C A,B : A B -→ B A satisfies: b C A,B • (id A ι B ) = ι B id A : A -→ B A.
Recall that the notation ι B : 0 → B was introduced in Notation 1.0.1. Since the groupoid (β, , 0) is braided monoidal and it has no zero divisors, we deduce from [RWW17, Proposition 1.8] the following properties.
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Proposition 1.1.14. The category Uβ is pre-braided monoidal. The monoidal structure (Uβ, , 0) is defined on objects as that of (β, , 0) and defined on morphisms letting for [n

-n, f ] ∈ Hom Uβ (n, n ) and [m -m, g] ∈ Hom Uβ (m, m ): m -m, g n -n, f = m -m n -n , (g f ) • id m -m b β m,n -n -1
id n .

In particular, the canonical functor β → Uβ is monoidal.

Remark 1.1.15. The category (Uβ, , 0) is pre-braided monoidal, but not braided. Indeed, as Figure 1 shows, the pre- braiding defined on Uβ is not a braiding: Figure 1 shows that b β 1,2 • (ι 1 id 2 ) = id 2 ι 1 whereas these two morphisms should be equal if b β -,-were a braiding.

Examples of functors associated with braid representations

Different families of representations of braid groups can be used to form functors over the pre-braided category Uβ to the category K-Mod. Namely, considering {M n : B n → K-Mod} n∈N representations of braid groups, or equivalently an object M of Fct (β, K-Mod), we are interested in the situations where Proposition 1.1.10 applies so as to define an object of Fct (Uβ, K-Mod).

Tong-Yang-Ma results

In 1996, in the article [START_REF] Tong | A new class of representations of braid groups[END_REF], Tong, Yang and Ma investigated the representations of B n where the i-th generator is sent to a matrix of the form Id i-1 ⊕ T ⊕ Id n-i-1 , with T a m × m non-singular matrix and m ≥ 2. In particular, for m = 2, they prove that there exist up to equivalence only two non trivial representations of this type. We give here their result and an interpretation of their work from a functorial point of view, considering the representations over the ring of Laurent polynomials in one variable C t ±1 . Notation 1.1.16. Let gr denote the full subcategory of Gr of finitely generated free groups. The free product * : gr × gr → gr defines a monoidal structure over gr, with 0 the unit, denoted by (gr, * , 0).

Let (N, ≤) denote the category of natural numbers (natural means non-negative) considered as a poset. For all natural numbers n, we denote by γ n the unique element of Hom (N,≤) (n, n + 1). For all natural numbers n and n such that n ≥ n, we denote by γ n,n : n → n the unique element of Hom

(N,≤) (n, n ), composition of the morphisms γ n -1 • γ n -2 • • • • • γ n+1 • γ n .
The addition defines a strict monoidal structure on (N, ≤), denoted by ((N, ≤) , +, 0). Definition 1.1.17. Let B -: (N, ≤) → Gr and GL -: (N, ≤) → Gr be the functors defined by:

• Objects: for all natural numbers n, B -(n) = B n the braid group on n strands and GL -

(n) = GL n C t ±1
the general linear group of degree n.

• Morphisms: let n be a natural number. We define

B -(γ n ) = id 1 -: B n → B n+1 (where is the monoidal product introduced in Example 1.1.4). We define GL -(γ n ) : GL n C t ±1 → GL n+1 C t ±1 assigning GL -(γ n ) (ϕ) = id 1 ⊕ ϕ for all ϕ ∈ GL n C t ±1 .
Notation 1.1.18. For all natural numbers n ≥ 2, for all i ∈ {1, . . . , n -1}, we denote by incl n i : B 2 ∼ = Z → B n the inclusion morphism induced by:

incl n i (σ 1 ) = σ i .
Theorem 1.1.19. [TYM96, Part II] Let η : B --→ GL -be a natural transformation. Assume that for all natural numbers n ≥ 2, for all i ∈ {1, . . . , n -1}, the following diagram is commutative:

B n η n / / GL n C t ±1 B 2 η 2 / / incl n i O O GL 2 C t ±1 . id i-1 ⊕-⊕id n-i-1 O O
Two such natural transformations η and η are equivalent if there exists a natural equivalence µ : GL --→ GL -such that µ • η = η . Then, η is equivalent to one of the following natural transformations.

1. The trivial natural transformation, denoted by id: for every generator

σ i of B n , id n (σ i ) = Id GL n (C[t ±1 ]) .
2. The unreduced Burau natural transformation, denoted by bur: for all generators σ i of B n ,

bur n,t (σ i ) = Id i-1 ⊕ B (t) ⊕ Id n-i-1 , with B (t) = 1 -t 1 t 0 .
3. The natural transformation denoted by tym: for every generator

σ i of B n if n ≥ 2, tym n,t (σ i ) = Id i-1 ⊕ TYM (t) ⊕ Id n-i-1 ,
with TYM (t) = 0 t 1 0 . We call it the Tong-Yang-Ma representation.

The unreduced Burau representation (see [KT08, Section 3.1] or [BB05, Section 4.2] for more details about this family of representations) is reducible but indecomposable, whereas the Tong-Yang-Ma representation is irreducible (see [START_REF] Tong | A new class of representations of braid groups[END_REF]Part II]). We can also consider a natural transformation using the family of reduced Burau representations (see [START_REF] Kassel | Braid groups[END_REF]Section 3.3] for more details about the associated family of representations): these are irreducible subrepresentations of the unreduced Burau representations.

Definition 1.1.20. Let GL --1 : (N, ≤) → Gr be the functor defined by:

• Objects: for all natural numbers n, GL --1 (n) = GL n-1 C t ±1 the general linear group of degree n -1.

• Morphisms: let n be a natural number. We define

GL --1 (γ n ) : GL n-1 C t ±1 → GL n C t ±1 assigning GL -(γ n ) (ϕ) = id 1 ⊕ ϕ for all ϕ ∈ GL n-1 C t ±1 .
1. Chapter. The Long-Moody construction and polynomial functors Definition 1.1.21. The reduced Burau natural transformation, denoted by bur : B -→ GL --1 is defined by:

• For n = 2, one assigns bur (σ 1 ) = -t.

• For all natural numbers n ≥ 3, we define for every Artin generator σ i of B n with i ∈ {2, . . . , n -2}:

bur n,t (σ i ) = Id i-2 ⊕ B (t) ⊕ Id n-i-2 with B (t) =   1 t 0 0 -t 0 0 1 1   and bur n,t (σ 1 ) = -t 0 1 1 ⊕ Id n-3 ; bur n,t (σ n-1 ) = Id n-3 ⊕ 1 t 0 -t .
Let us use these natural transformations to form functors over the category Uβ. Indeed, a natural transformation η : B -→ GL -(or GL --1 ) provides in particular: For all natural numbers n ≥ n ≥ n, for all Artin generators σ i ∈ B n and all ψ j ∈ B n -n , our assignments give: 

• a functor N : β -→ C t ±1 -Mod; • morphisms N ([n -n, id n ]) : N (n) → N (n )
TYM t (ψ σ) • TYM t n -n, id n = Id j-1 ⊕ TYM (t) ⊕ Id (n -n)-j-1 ⊕ Id n -n+i-1 ⊕ TYM (t) ⊕ Id n -i-1 • ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ] ⊕n . Remark that Id j-1 ⊕ TYM (t) ⊕ Id (n -n)-j-1 • ι C[t ±1 ] ⊕(n -n) = ι C[t ±1 ] ⊕(n -n) .

Lawrence-Krammer functor:

The family of Lawrence-Krammer representations was notably used to prove that braid groups are linear (see [START_REF] Bigelow | Homological representations of the Iwahori-Hecke algebra[END_REF][START_REF] Kohno | Homological representations of braid groups and kz connections[END_REF][START_REF] Krammer | Braid groups are linear[END_REF]). For this paragraph, we assign K = C t ±1 q ±1 the ring of Laurent polynomials in two variables and consider the functor GL -of Definition 1.1.17 with this assignment. Let LK : Uβ → C t ±1 q ±1 -Mod be the assignment:

• Objects: for all natural numbers n ≥ 2, LK (n) = 1≤j<k≤n

V j,k , with for all 1 ≤ j < k ≤ n, V j,k is a free C t ±1 q ±1 -module of rank one. Hence, LK (n) ∼ = C t ±1 q ±1 ⊕n(n-1)/2 as C t ±1 q ±1 -modules. Moreover, one assigns LK (1) = 0 and LK (0) = 0.

• Morphisms:

-Automorphisms: for all natural numbers n, for every Artin generator σ i of B n (with i ∈ {1, . . . , n -1}), for all v j,k ∈ V j,k (with 1

≤ j < k ≤ n), LK (σ i ) v j,k =                    v j,k if i / ∈ {j -1, j, k -1, k}, tv i,k + t 2 -t v i,i+1 + (1 -t) v i+1,k if i = j -1, v i+1,k if i = j = k -1, tv j,i + (1 -t) v j,i+1 -t 2 -t qv i,i+1 if i = k -1 = j, v j,i+1 if i = k, -qt 2 v i,i+1 if i = j = k -1.
-General morphisms: let n, n ∈ N, such that n ≥ n. For all natural numbers j and k such that 1 ≤ j < k ≤ n, we define the embedding V n,n j,k :

V j,k ∼ -→ V j+(n -n),k+(n -n) → 1≤j<k≤n V j,k of free C t ±1 q ±1 -modules. Then we define LK ([n -n, id n ]) : 1≤j<k≤n V j,k → 1≤j<k≤n V j,k to be the embed- ding 1≤j<k≤n V n,n j,k .
Since we consider a family of representations of B n (see [START_REF] Krammer | Braid groups are linear[END_REF]), the assignment LK defines an object of Fct β, C t ±1 -Mod .

Let n, n and n be natural numbers such that n ≥ n ≥ n. It follows directly from our definitions of LK ([nn, id n ]), LK ([nn , id n ]) and LK ([nn, id n ]) that relation (1.1.1) of Proposition 1.1.10 is satisfied. According to the definition of LK (σ l ) with σ l an Artin generator of B n -n , for all v j,k ∈

V j,k with 1 + (n -n) ≤ j < k ≤ n , LK (σ l ) v j,k = v j,k . Hence for all ψ ∈ B n -n : LK (ψ id n ) • LK n -n, id n = LK n -n, id n .
Note also that for all l ∈ {1, . . . , n -1}, for all v j,k ∈ V j,k with 1 + (nn) ≤ j < k ≤ n , it follows from the assignment of LK that:

LK (id n -n σ l ) v (n -n)+j,(n -n)+k = LK (σ n -n+l ) v (n -n)+j,(n -n)+k = LK n -n, id n LK (σ l ) v j,k .
Therefore, this implies that for all 

σ ∈ B n , LK ([n -n, id n ]) • LK (σ) = LK (id n -n σ) • LK ([n -n, id n ]).

Braid groups and free groups

This section recalls some relationships between braid groups and free groups. We also develop tools which will be used throughout our work of Sections 1.2.2 and 1.4. We consider the free group on n generators, which we denote by F n = g 1 , . . . , g n .

Notation 1.2.1. We denote by e F n the unit element of the free group on n generators F n , for all natural numbers n.

Recall that the category of finitely generated free groups is monoidal using free product of groups (see Notation 1.1.16). The object 0 being null in the category gr, recall that ι F n : 0 → F n denotes the unique morphism from 0 to F n as in Notation 1.0.1. Definition 1.2.2. Let n be a natural number. We consider ι F 1 * id F n : F n → F n+1 . This corresponds to the identification of F n as the subgroup of F n+1 generated by the n last copies of F 1 in F n+1 . Iterating this morphism, we obtain for all natural numbers n ≥ n the morphism ι F n -n * id F n :

F n → F n .
Let {ς n : F n → B n+1 } n∈N be a family of group morphisms from the free group F n to the braid group B n+1 , for all natural numbers n. We require these morphisms to satisfy the following crucial property.

Condition 1.2.3. For all elements g ∈ F n , for all natural numbers n ≥ n, the following diagram is commutative in the category Uβ:

1 n ς n (g) / / id 1 [n -n,id n ] 1 n id 1 [n -n,id n ] 1 n ς n e F n -n * g / / 1 n .
Remark 1.2.4. Condition 1.2.3 will be used to prove that the Long-Moody functor is well defined on morphisms with respect to the tensor product structure in Theorem 1.2.20. Moreover, it will also be used in the proof of Propositions 1.4.14 and 1.4.18.

Lemma 1.2.5. Condition 2.2.17 is equivalent to assume that for all natural numbers n, for all elements g ∈ F n , the morphisms {ς n } n∈N satisfy the following equality in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς n+1 e F 1 * g • b β 1,1 -1 id n . (1.2.1)
Proof. Let n and n be natural numbers such that n ≥ n. The equality (1.2.1) implies that for all 1 ≤ k ≤ nn, the following diagram in the category β is commutative :

1 n id n -(n+k) ς n+k-1 e F k-1 * g / / id n -(n+k) b β 1,1 -1 id (k-1)+n 1 n id n -(n+k) b β 1,1 -1 id (k-1)+n 1 n id n -(n+k) ς n+k (eF k * g) / / 1 n .
Hence composing squares, we obtain that the following diagram is commutative in the category β:

1 • • • (1 1) n id n -n-1 b β 1,1 -1 id n / / id n ς n (g) 1 • • • 1 (1 n) id n -1 ς n+1 (eF 1 * g) id n -n-2 b β 1,1 -1 id 1+n / / • • • b β 1,1 -1 id n -1 / / 1 n ς n (eF 1 * g) 1 • • • 1 n id n -n-1 b β 1,1 -1 id n / / 1 • • • 1 (1 n) id n -n-2 b β 1,1 -1 id 1+n / / • • • b β 1,1 -1 id n -1 / / 1 n .
By definition of the braiding (see Definition 1.1.1), we deduce that the composition of horizontal arrows is the mor-

phism b β 1,n -n -1 id n in β. Recall from Proposition 1.1.14 that id 1 [n -n, σ] = n -n, (id 1 σ) • b β 1,n -n -1 id n .
Hence Condition 2.2.17 is satisfied if we assume that the equality (1.2.1) is satisfied for all natural numbers n.

Conversely, assume that Condition 2.2.17 is satisfied. Condition 2.2.17 with n = n + 1 ensures that:

1, b β 1,1 -1 id n • (id 1 ς n (g)) = 1, ς n e F 1 * g • b β 1,1 -1 id n .
Since Aut Uβ (1) = B 1 is the trivial group, we deduce from the defining equivalence relation of Uβ (see Definition 1.1.5) the equality in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς 1+n e F 1 * g • b β 1,1 -1 id n .
Remark 

ς n,1 : F n -→ B n+1 g i -→ σ 2 1 if i = 1 σ -1 1 • σ -1 2 • • • • • σ -1 i-1 • σ 2 i • σ i-1 • • • • • σ 2 • σ 1 if i ∈ {2, . . . , n} .
We assign ς 0,1 to be the trivial morphism. 

= σ -1 1 .
Moreover, for all i ∈ {2, . . . , n}, we have and ς n+1 e F 1 * g i-1 = ς n+1 (g i )

id 1 ς n,1 (g i-1 ) = σ -1 2 • • • • • σ -1 i-1 • σ 2 i • σ i-1 • • • • • σ 2 . We deduce that: b β 1,1 -1 id n • (id 1 ς n,1 (g i-1 )) • b β 1,1 id n = ς n,1 (g i ) .
Hence Relation (2.2.2) of Lemma (2.2.18) is satisfied for all natural numbers. Example 1.2.9. Let us consider the trivial morphisms ς n, * : F n → 0 Gr → B n+1 for all natural numbers n. The relation of Lemma 1.2.5 being easily checked, this family of morphisms {ς n, * :

F n → B n+1 } n∈N satisfies Condition 1.2.3
Action of braid groups on automorphism groups of free groups: There are several ways to consider the group B n as a subgroup of Aut (F n ). For instance, the geometric point of view of topology gives us an action of B n on the free group F n (see for example [START_REF] Birman | Braids, links, and mapping class groups[END_REF] or [START_REF] Kassel | Braid groups[END_REF]) identifying B n as the mapping class group of a n-punctured disc Σ n 0,1 : fixing a point y on the boundary of the disc Σ n 0,1 , each free generator g i can be taken as a loop of the disc based y turning around punctures. Each element σ of B n , as an automorphism up to isotopy of the disc Σ n 0,1 , induces a well-defined action on the fundamental group π 1 Σ n 0,1 ∼ = F n called Artin representation (see Example 1.2.15 for more details).

In the sequel, we fix a family of group actions of B n on the free group F n : let {a n : B n → Aut (F n )} n∈N be a family of group morphisms from the braid group B n to the automorphism group Aut (F n ). For the work of Sections 1.2.2 and 1.4, we need the morphisms a n : B n → Aut (F n ) to satisfy more properties. Condition 1.2.10. Let n and n be natural numbers such that n ≥ n. We require

ι F n -n * id F n • (a n (σ)) = (a n (σ σ)) • ι F n -n * id F n as morphisms F n → F n
for all elements σ of B n and σ of B n -n , ie the following diagrams are commutative:

F n a n (σ) / / ι F n -n * id Fn F n ι F n -n * id Fn F n ι F n -n * id Fn / / ι F n -n * id Fn F n F n a n (id n -n σ) / / F n F n . a n (σ id n ) = =
Remark 1.2.11. Condition 1.2.10 will be used to define the Long-Moody functor on morphisms in Theorem 1.2.20. Moreover, it will also be used for the proof of Propositions 1.4.14 and 1.4.18. We will also require the families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N to satisfy the following compatibility relations.

Condition 1.2.12. Let n be a natural number. We assume that the morphism given by the coproduct ς n * (id 1 -) : 

F n * B n → B n+1
F n / / ς n " " F n a n B n B n ? _ o o id 1 - | | B n+1 .
where the morphism F n a n B n → B n+1 is induced by the morphism F n * B n → B n+1 and the group morphism id 1 -: B n → B n+1 is induced by the monoidal structure. This is equivalent to requiring that, for all elements σ ∈ B n and g ∈ F n , the following equality holds in B n+1 :

(id For n ∈ N, a n,1 : B n → Aut (F n ) is defined for all elementary braids σ i where i ∈ {1, . . . , n -1} by:

1 σ) • ς n (g) = ς n (a n (σ) (g)) • (id 1 σ)
a n,1 (σ i ) : F n -→ F n g j -→      g i+1 if j = i g -1 i+1 g i g i+1 if j = i + 1 g j if j / ∈ {i, i + 1}.
It clearly follows from their definitions that the morphisms {a n,1 :

B n → Aut (F n )} n∈N satisfy Condition 1.2.10.
The morphisms {a n,1 : B n → Aut (F n )} n∈N together with the morphisms {ς n,1 : F n → B n+1 } n∈N of Example 1.2.7 satisfy Condition 2.2.24.

Proof. Let i be a fixed natural number in {1, . . . , n -1}. We prove that the equality (1.2.2) of Condition 2.2.24 is satisfied for all Artin generator σ i and all generator g j of the free group (with j ∈ {1, . . . , n}). First, it follows from the braid relation σ i σ i+1 σ i = σ i+1 σ i σ i+1 that:

σ -1 1+i • σ -1 i • σ -2 1+i • σ 2 i • σ 2 1+i • σ i • σ 1+i = σ -1 i • σ 2 1+i • σ i ,
and we deduce that:

σ -1 1+i • ς n,1 (a n,1 (σ i ) (g 1+i )) • σ 1+i = ς n,1 (g 1+i ) . Also, the braid relation σ i+1 • σ i • σ i+1 = σ i • σ i+1 • σ i implies that σ -1 1 • σ 2 i+1 • σ i = σ i+1 • σ 2 i • σ -1
i+1 and a fortiori:

σ -1 1+i • ς n,1 (a n,1 (σ i ) (g i )) • σ 1+i = ς n,1 ((g i )) .
Finally, for a fixed j / ∈ {i, i + 1}, the commutation relation σ i σ j = σ j σ i and from the braid relation

σ i σ i+1 σ i = σ i+1 σ i σ i+1 give directly: ς n,1 g j = σ -1 1+i • ς n,1 a n,1 (σ i ) g j • σ 1+i .
Corollary 1.2.16. The families of morphisms {a n,1 : B n → Aut (F n )} n∈N and {ς n,1 :

F n → B n+1 } n∈N are coherent.
Example 1.2.17. Consider the family of morphisms {ς n, * : F n → B n+1 } n∈N of Example 1.2.9 and any family of morphisms {a n : B n → Aut (F n )} n∈N . Then Condition 1.2.12 is always satisfied. As a consequence, these fami- lies of morphisms {ς n, * : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are coherent if and only if the family of morphisms {a n : B n → Aut (F n )} n∈N satisfies Condition 1.2.10.

The Long-Moody functors

In this section, we prove that the Long-Moody construction of [Lon94, Theorem 2.1 ] induces a functor

LM : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) .
We fix families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N , which are assumed to be co- herent (see Definition 1.2.14).

We first need to make some observations and introduce some tools. Let F be an object of Fct (Uβ, K-Mod) and n be a natural number. A fortiori, the K-module F (n + 1) is endowed with a left K [B n+1 ]-module structure. Using the morphism ς n : F (n + 1). Also, for all natural numbers n and n such that

F n → B n+1 , F (n + 1) is a K [F n ]-module by restriction.
n ≥ n, the morphism ι F n -n * id F n : F n → F n canonically induces a morphism ι I K [ F n -n ] * id I K[Fn ] : I K[F n ] → I K[F n ] . In addition, the augmentation ideal I K[F n ] is a K [B n ]-module too:
Lemma 1.2.18. The action a n : B n → Aut (F n ) canonically induces an action of B n on I K[F n ] denoted by a n : B n → Aut I K[F n ] (abusing the notation).

Proof. For any group morphism H → Aut (G), the group ring K [G] is canonically an H-module and so is the augmentation ideal I G , as a submodule of K [G].

Remark 1.2.19. If the family of morphisms {a n : B n → Aut (F n )} n∈N is coherent with respect to the family of mor- phisms {ς n : F n → B n+1 } n∈N , the relation of Condition 1.2.10 remains true mutatis mutandis, for all natural num- bers n and n , considering the induced morphisms a n :

B n → Aut I K[F n ] and ι I K [ F n -n ] * id I K[Fn ] : I K[F n ] → I K[F n ] .
In the following theorem, we define an endofunctor of Fct (Uβ, K-Mod) corresponding to the Long-Moody con- struction. It will be called the Long-Moody functor with respect to {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N .
Theorem 1.2.20. Recall that we have fixed coherent families of morphisms {ς n : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N .
The following assignment defines a functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod).

• Objects: for F ∈ Obj (Fct (Uβ, K-Mod)), LM a,ς (F) : Uβ → K-Mod is defined by:

-Objects: ∀n ∈ N, LM a,ς (F) (n) = I K[F n ] K[F n ] F (n + 1).
-Morphisms: for n, n ∈ N, such that n ≥ n, and [nn, σ] ∈ Hom Uβ (n, n ), assign:

LM a,ς (F) n -n, σ i K[F n ] v = a n (σ) ι I K [ F n -n ] * id I K[Fn ] (i) K[F n ] F id 1 n -n, σ (v) ,
for all i ∈ I K[F n ] and v ∈ F (n + 1).

• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. We define LM a,ς (η) : LM a,ς (F) → LM a,ς (G) for all natural numbers n by:

(LM a,ς (η)) n = id I K[Fn ] K[F n ] η n+1 .
In particular, the Long-Moody functor LM a,ς induces an endofunctor of the category Fct (β, K-Mod).

Notation 1.2.21. When there is no ambiguity, once the morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are fixed, we omit them from the notation LM a,ς for convenience (especially for proofs).

Proof. For this proof, n, n and n are natural numbers such that n ≥ n ≥ n.

1. First let us show that the assignment of LM defines an endofunctor of Fct (β, K-Mod). The two first points generalize the proof of [Lon94, Theorem 2.1]. Let F, G and H be objects of Fct (β, K-Mod).

(a) We first check the compatibility of the assignment LM (F) with respect to the tensor product. Consider

σ ∈ B n g ∈ F n , i ∈ I K[F n ] and v ∈ F (n + 1). Since (id 1 σ) • ς n (g) = ς n (a n (σ) (g)) • (id 1 σ) by
Condition 1.2.12, we deduce that:

LM (F) (σ) i K[F n ] F (ς n (g)) (v) = a n (σ) (i) K[F n ] F (id 1 σ) (F (ς n (g)) (v)) = a n (σ) (i) K[F n ] (F (ς n (a n (σ) (g))) • F (id 1 σ)) (v) = a n (σ) (i • g) K[F n ] F (id 1 σ) (v) = LM (F) (σ) i • g K[F n ] (v) .
(b) Let us prove that the assignment LM (F) defines an object of Fct (β, K-Mod). According to our assign- ment and since a n and id 1are group morphisms, it follows from the definition that LM (F) (id

B n ) = id LM(F)(n)
. Hence, it remains to prove that the composition axiom is satisfied. Let σ and σ be two elements of B n , i ∈ I K[F n ] and v ∈ F (n + 1). From the functoriality of F over β and the compatibility of the monoidal structure with composition, we deduce that F (id

1 (σ )) • F (id 1 (σ)) = F (id 1 (σ • σ)).
Since a n is a group morphism, we have:

a n σ • σ (i) = a n σ (a n (σ) (i)) .
Hence, it follows from the assignment of LM that:

LM (F) σ • σ i K[F n ] v = a n σ • σ (i) K[F n ] F id 1 σ • σ (v) = a n σ (a n (σ) (i)) K[F n ] F id 1 σ • F (id 1 (σ)) (v) = LM (F) σ • LM (F) (σ) i K[F n ]
v .

(c) It remains to check the consistency of our definition of LM on morphisms of Fct (β, K-Mod). Let η : F → G be a natural transformation. Hence, we have that:

G (id 1 σ) • η n+1 = η n +1 • F (id 1 σ) .
Hence, it follows from the assignment of LM that:

LM (G) (σ) • LM (η) n = LM (η) n • LM (F) (σ)
Therefore LM (η) is a morphism in the category Fct (β, K-Mod). Denoting by id F : F → F the identity natural transformation, it is clear that LM (id F ) = id LM(F) . Finally, let us check the composition axiom. Let η : F → G and µ : G → H be natural transformations. Let n be a natural number, i ∈ I K[F n ] and v ∈ F (n). Now, since µ and η are morphisms in the category Fct (β, K-Mod):

LM (µ • η) n i K[F n ] v = i K[F n ] (µ n+1 • η n+1 ) (v) = LM (µ) n • LM (η) n i K[F n ] v .
2. Let us prove that the assignment LM lifts to define an endofunctor of Fct (Uβ, K-Mod). Let F, G and H be objects of Fct (Uβ, K-Mod).

(a) First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. In fact, this compatibility being already done for automorphisms (see 1a), the remaining point to prove is the compatibility of LM (F) ([nn, id n ]). Let g ∈ F n , i ∈ I K[F n ] and v ∈ F (n + 1). It follows from Condition 1.2.3 that in B n+1 :

id 1 n -n, id n -n ς n (g) = ς n e F n -n * g • id 1 n -n, id n .
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Since ι I K [ F n -n ] * id I K[Fn ] (i • g) = e I K [ F n -n ] * i • e F n -n * g , we deduce that: LM (F) n -n, id n i K[F n ] F (ς n (g)) (v) = ι I K [ F n -n ] * id I K[Fn ] (i) K[F n ] F id 1 n -n, id n (F (ς n (g)) (v)) = ι I K [ F n -n ] * id I K[Fn ] (i • g) K[F n ] F id 1 n -n, id n (v) = LM (F) n -n, id n i • g K[F n ]
v .

(b) Let us prove that the assignment LM (F) defines an object of Fct (Uβ, K-Mod) using Proposition 1.1.10. Recall the compatibility of the monoidal structure with respect to composition and that F is an object of Fct (Uβ, K-Mod). Consider [nn, σ] ∈ Hom Uβ (n, n ). It follows from our assignment, that:

LM (F) n -n, σ = LM (F) (σ) • LM (F) n -n, id n .
Moreover, the composition of morphisms introduced in Definition 1.2.2 implies that:

LM (F) n -n, id n = LM (F) n -n , id n • LM (F) n -n, id n .
Hence, the relation (

1.1.1) of Proposition 1.1.10 is satisfied. Let σ ∈ B n and ψ ∈ B n -n . Since (ι n -n * id n ) • (a n (σ)) = (a n (ψ σ)) • (ι n -n * id n ) by Condition 1.
2.10, we deduce that:

LM (F) (ψ σ) • LM (F) n -n, id n = LM (F) n -n, id n • LM (F) (σ) .
Hence the relation (1.1.2) of Proposition 1.1.10 is also satisfied. Therefore, according to Proposition 1.1.10, since LM (F) is an object of Fct (β, K-Mod), the assignment LM (F) defines an object of Fct (Uβ, K-Mod).

(c) Finally, let us check the consistency of our assignment for LM on morphisms. Let η : F → G be a natural transformation. We already proved in 1c that LM (η) is a morphism in the category Fct (β, K-Mod).

Since η is a natural transformation between objects of Fct (Uβ, K-Mod), we have that:

G id 1 n -n, id n • η n+1 = η n +1 • F id 1 n -n, id n .
Hence, it follows from the assignment of LM that:

LM (G) n -n, id n • LM (η) n = LM (η) n • LM (F) n -n, id n .
Hence the relation (1.1.3) of Proposition 1.1.12 is satisfied, and we deduce from this last proposition that LM (η) is a morphism in the category Fct (Uβ, K-Mod). The verification of the composition axiom repeats mutatis mutandis the one of 1c.

Recall the following fact on the augmentation ideal of the free group F n where n ∈ N.

Proposition 1.2.22. [Wei94, Chapter 6, Proposition 6.2.6] The augmentation ideal

I K[F n ] is a free K [F n ]-module with basis the set {(g i -1) | i ∈ {1, . . . , n}}.
This result allows us to prove the following properties.

Proposition 1.2.23. The functor LM a,ς : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) is reduced and exact. Moreover, it commutes with all colimits and all finite limits.

Proof. Let 0 Fct(Uβ,K-Mod) : Uβ → K-Mod denote the null functor. It follows from the definition of the Long-Moody functor that LM 0 Fct(Uβ,K-Mod) = 0 Fct(Uβ,K-Mod) .

Let n be a natural number. Since the augmentation ideal I K[F n ] is a free K [F n ]-module (as stated in Proposition 1.2.22), it is therefore a flat K [F n ]-module. Then, the result follows from the fact that the functor I K

[F n ] K[F n ]
-: K-Mod → K-Mod is an exact functor, the naturality for morphisms following from the definition of the Long-Moody functor (see Theorem 1.2.20).

Similarly, the fact that the functor LM a,ς commutes with all colimits is a formal consequence of the commutation with all colimits of the tensor products

I K[F n ] K[F n ]
for all natural numbers n. The commutation result for finite limits is a property of exact functors (see for example [ML13, Chapter 8, section 3]).

Remark 1.2.24. Let F be an object of Fct (Uβ, K-Mod) and n a natural number. For all k ∈ {1, . . . , n}, we denote

F (n + 1) k = K [(g k -1)] K[F n ]
F (n + 1) with g k a generator of F n . We define an isomorphism

Λ n,F : I K[F n ] K[F n ] F (n + 1) -→ n k=1 F (n + 1) k ∼ = (F (n + 1)) ⊕n (g k -1) K[F n ] v -→   0, . . . , 0, k-th v , 0, . . . , 0   .
Thus, for η : F → G a natural transformation, with Λ:

∀n ∈ N, Λ n ((LM (η)) n ) = η ⊕n n+1 .
Hence, we can have a matricial point of view on this construction (see [Lon94, Theorem 2.2]). Similarly, the study of Bigelow and Tian in [START_REF] Bigelow | Generalized Long-Moody representations of braid groups[END_REF] is performed from a purely matricial point of view.

Case of trivial ς: Finally, let us consider the family of morphisms {ς n, * : F n → B n+1 } n∈N of Example 1.2.9.

Remark 1.2.25. As stated in Example 1.2.17, we only need to consider a family of morphisms {a n : B n → Aut (F n )} n∈N which satisfies Condition 1.2.10 so that the families {ς n, * : F n → B n+1 } n∈N and {a n :

B n → Aut (F n )} n∈N are co- herent.
Notation 1.2.26. We denote by X : Uβ → K-Mod the constant functor such that X (n) = K for all natural numbers n.

We have the following remarkable property.

Proposition 1.2.27. Let F be an object of Fct (Uβ, K-Mod) and {a n : B n → Aut (F n )} n∈N a family of morphisms which satisfies Condition 1.2.10. Then, as objects of Fct (Uβ,

K-Mod), LM a,ς * (F) ∼ = LM a,ς * (X) ⊗ K F (1 -).
Proof. Remark 1.2.24 shows that there is an isomorphism of K-modules of the form:

LM a,ς * (F) (n) Λ n,F / / (F (n + 1)) ⊕n Λ n,X ⊗ K id F(1 n) -1 / / LM a,ς * (X) (n) ⊗ K F (1 n) .
It is straightforward to check that this isomorphism is natural if ς is trivial.

Evaluation of the Long-Moody functor

A first step to understand the behaviour of a Long-Moody endofunctor is to investigate its effect on the constant functor X. This is indeed the most basic functor to study. Moreover, as Proposition 2.2.39 shows, the evaluation on this functor is the fundamental information to understand a given Long-Moody endofunctor when we consider the family of morphisms {ς n, * :

F n → B n+1 } n∈N of Example 2.2.22.
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Fixing coherent families of morphisms {ς n :

F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N , we consider the Long-Moody functor LM a,ς : Fct (β, K-Mod) → Fct (β, K-Mod) .
For a fixed natural number n, using the isomorphism Λ n of Remark 1.2.24, we observe that LM a,ς (X) (n) ∼ = K ⊕n . Notation 1.2.28. Let y be an invertible element of K. Let yX : β → K-Mod be the functor defined for all natural numbers n by yX (n) = K and such that:

• if n = 0 or n = 1, then yX (id) = id K ; • if n ≥ 2, for every Artin generator σ i of B n , (yX) (σ i ) : K → K is the multiplication by y.
For an object F of Fct (β, K-Mod), we denote the functor yX ⊗ K F : β → K-Mod by yF.

Computations for LM 1

Let us assume that K = C t ±1 . Let us consider the coherent families of morphisms {ς n,1 :

F n → B n+1 } n∈N (intro- duced in Example 1.2.7) and {a n,1 : B n → Aut (F n )} n∈N (introduced in Example 1.2.15
). We denote by LM 1 the as- sociated Long-Moody functor. We are interested in the behaviour of the functor t -1 LM 1 (tX Beforehand, let us understand the action a n,1 :

) : β -→ C t ±1 -
B n -→ Aut I K[F n ] induced by a n,1 : B n → Aut (F n ). We compute: a n,1 (σ i ) : I K[F n ] -→ I K[F n ] g j -1 -→        g i+1 -1 if j = i g -1 i+1 g i g i+1 -1 = [g i -1] g i+1 + [g i+1 -1] 1 -g -1 i+1 g i g i+1 if j = i + 1 g j -1 if j / ∈ {i, i + 1} . Notation 1.2.29. Let us fix the matrices r n = n       0 • • • 0 1 . . . . . . . . . 0 0 . . . . . . . . . 1 0 • • • 0      
for all natural numbers n.

Hence, we have the following result.

Proposition 1.2.30. The matrices {r n } n∈N define a natural equivalence t -1 LM 1 (tX) r -→ Bur t 2 as objects of Fct (β, K-Mod).

Proof. Using the isomorphism Λ n of Remark 1.2.24, we obtain that for σ i an Artin generator of B n :

t -1 LM 1 (tX) (σ i ) = Id i-1 ⊕ 0 t 2 1 1 -t 2 ⊕ Id n-i-1 . We deduce that r n • t -1 LM 1 (tX) (σ i ) • r -1 n = Bur t 2 (σ i ).
Recovering of the Lawrence-Krammer functor: Let us first introduce the following result due to Long in [START_REF] Long | Constructing representations of braid groups[END_REF].

We assume that K = C t ±1 q ±1 . For this paragraph, we assume that 1 + qt = 0, q has a square root, q 2 = 1 and q 3 = 1.

Notation 1.2.31. We denote by X : β -→ C t ±1 q ±1 -Mod the constant functor such that X (n) = C t ±1 q ±1 for all natural numbers n. Generally speaking, for F an object of Fct (β, K-Mod) the representation of B n induced by F will be denoted by

F |B n .
Proposition 1.2.32. [Lon94, special case of Corollary 2.10] Let n be a natural number such that n ≥ 4. Then, the Lawrence-Krammer representation

LK |B n is a subrepresentation of q -1 LM 1 q t -1 LM 1 (tX) |B n .
We first need to introduce new tools. Let n and m be two natural numbers. Let w n = (w 1 , . . . , w n ) ∈ C n such that w i = w j if i = j. We consider the configuration space:

Y w n ,m = (z 1 , . . . , z m ) | z i ∈ C, z i = w k for 1 ≤ k ≤ n, z i = z j if i = j .
The two following results due to Long will be crucial to prove Proposition 1.2.32. Proposition 1.2.33. [Lon94, Corollary 2.7] Let n be a natural number and ρ : B n+1 → GL (V) be a representation of B n with V a C t ±1 q ±1 -module. Then, the representation defined by Long in [Lon94, Theorem 2.1], which we denote by LM, is a group morphism:

q -1 LM (qρ

) : B n → GL H 1 Y w n ,1 , E ρ
for E ρ a flat vector bundle associated with ρ (see [START_REF] Long | Constructing representations of braid groups[END_REF]).

Lemma 1.2.34. [Lon94, Lemma 2.9] For all natural numbers m, there is an isomorphism of abelian groups:

H m+1 Y w n ,m+1 , E X |Bn ∼ = H 1 Y w n ,1 , H m Y w n+1 ,m , E X |Bn .
In particular, for m = 1,

H 2 Y w n ,2 , E X |Bn ∼ = H 1 Y w n ,1 , H 1 Y w n+1 ,2 , E X |Bn .
Proof of Proposition 2.33. By Proposition 1.2.33, we can write as a representation:

q -1 LM q t -1 LM (tX) : B n → GL H 1 Y w n ,1 , E t -1 LM(tX) . A fortiori by Lemma 1.2.34, q -1 LM q t -1 LM tX |B n is an action of B n on H 2 Y w n ,2 , E X |Bn .
In particular, for m = 2 and n ≥ 4, according to [Law90a, Theorem 5.1], the representation of B n factoring through the Iwahori-Hecke algebra H n (t) corresponding to the Young diagram (n -2, 2) is a subrepresentation of q -1 LM q t -1 LM tX |B n . Moreover, this representation is equivalent to the Lawrence-Krammer representation by [START_REF] Bigelow | The Lawrence-Krammer representation[END_REF]Section 5]. By the definition of the Long-Moody construction (see [START_REF] Long | Constructing representations of braid groups[END_REF]Theorem 2

.1]), q -1 LM q t -1 LM tX |B n is the rep- resentation q -1 (τ 1 LM 1 ) q t -1 LM 1 (tX) |B n .
We denote by LK ≥4 : β -→ C t ±1 q ±1 -Mod the subfunctor of the Lawrence-Krammer defined in Example 1.1.2 which is null on the objects such that n < 4. The result of Proposition 1.2.32 implies that: Proposition 1.2.35. The functor LK ≥4 is a subfunctor of q -1 (τ 1 LM 1 ) q t -1 LM 1 (tX) ≥4 .

Computations for other cases

Let us introduce examples of Long-Moody functors which arise using other actions a

n : B n → Aut (F n ).

Wada representations

In 1992, Wada introduced in [Wad92] a certain type of family of representations of braid groups. We give here a functorial approach to this work. Definition 1.2.36. Let Aut -: (N, ≤) → Gr be the functor defined by:

• Objects: for all natural numbers n, Aut -(n) = Aut (F n ) the automorphism group of the free group on n generators;

• Morphisms: let n be a natural number. We define

Aut -(γ n ) : Aut (F n ) → Aut (F n+1 ) assigning Aut -(γ n ) (ϕ) = id 1 * ϕ for all ϕ ∈ Aut (F n )
, using the monoidal category (gr, * , 0) recalled in Notation 2.2.6.

Definition 1.2.37. Let us consider two different non-trivial reduced words W (g 1 , g 2 ) and V (g 1 , g 2 ) on F 2 , such that:
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• the assignments g 1 → W (g 1 , g 2 ) and g 2 → V (g 1 , g 2 ) define a automorphism of F 2 ;

• the assignment (W,

V) : B 2 -→ Aut (F 2 ): [(W, V) (σ 1 )] g j = W (g 1 , g 2 ) if j = 1 V (g 1 , g 2 ) if j = 2 is a morphism. Two morphisms (W, V) : B 2 -→ Aut (F 2 ) and (W , V ) : B 2 → Aut (F 2 ) are said to be swap-dual if W (g 1 , g 2 ) = V (g 2 , g 1 ) and V (g 1 , g 2 ) = W (g 2 , g 1 ), backward-dual if W (g 1 , g 2 ) = W g -1 1 , g -1 2 -1 and V (g 1 , g 2 ) = V g -1 1 , g -1 2 -1 , inverse if (W , V ) = (W, V) -1 .
Definition 1.2.38. [START_REF] Wada | Group invariants of links[END_REF] Let W (g 1 , g 2 ) and V (g 1 , g 2 ) be two words on F 2 . A natural transformation W : B -→ Autis said to be of Wada-type if for all natural numbers n, for all i ∈ {1, . . . , n -1}, the following diagram is commutative (we recall that incl n i was introduced in Notation 1.1.18 and Aut -(γ 2,i ) in Definition 1.2.2):

B n W n / / Aut (F n ) B 2 (W,V) / / incl n i O O Aut (F 2 ) . Aut -(γ2,i) * idF n-i-1 O O
Remark 1.2.39. Note that therefore a Wada-type natural transformation is entirely determined by the choice of (W, V).

Wada conjectured a classification of these type of representations. This conjecture was proved by Ito in [START_REF] Ito | The classification of Wada-type representations of braid groups[END_REF].

Theorem 1.2.40. [START_REF] Ito | The classification of Wada-type representations of braid groups[END_REF] There are seven classes of Wada-type natural transformation W up to the swap-dual, backward-dual and inverse equivalences, listed below.

1. (W, V) 1,m (g 1 , g 2 ) = g 2 , g m 2 g 1 g -m 2
where m ∈ Z;

2. (W, V) 2 (g 1 , g 2 ) = (g 1 , g 2 ); 3. (W, V) 3 (g 1 , g 2 ) = g 2 , g -1 1 ; 4. (W, V) 4 (g 1 , g 2 ) = g 2 , g 2 g 1 g -1 2 ; 5. (W, V) 5 (g 1 , g 2 ) = g -1 1 , g -1 2 ; 6. (W, V) 6 (g 1 , g 2 ) = g -1 2 , g 2 g 1 g 2 ; 7. (W, V) 7 (g 1 , g 2 ) = g 1 g -1 2 g -1 1 , g 1 g 2 2 .
Remark 1.2.41. Note that the action given by the first Wada representation with m = 1 is a generalization of the Artin representation. Notation 1.2.42. The actions given by the k-th Wada-type natural transformation will be denoted by a n,k : B n → Aut (F n ). In particular, for k = 1 with m = 1, we recover the Artin representation (see Example 1.2.15).

For all 1 ≤ k ≤ 8, it clearly follows from their definitions that the families of morphisms a n,k : B n → Aut (F n ) n∈N satisfy Condition 1.2.10. Hence, for 1 ≤ k ≤ 8, we consider a family of morphisms ς n,k : F n → B n+1 assumed to be coherent with respect to the morphisms a n,k : B n → Aut (F n ) n∈N (in the sense of Definition 1.2.14). Such morphisms ς n,k always exist because we could at least take the family of morphisms {ς n, * : F n → B n+1 } (see Ex- ample 1.2.17). We denote by LM k : Fct (β, K-Mod) → Fct (β, K-Mod) the corresponding Long-Moody functor defined in Theorem 2.2.30 for k ∈ {1, . . . , 8}.

Let us imitate the procedure of Section 1.2.3.1. We assume that K = C t ±1 . Let n be a fixed natural number. Let us consider the case of k = 2. Using the isomorphism Λ n of Remark 1.2.24, we obtain the functor LM 2 (X) : β → C t ±1 -Mod, defined for σ i ∈ B n by:

LM 2 (F) (σ i ) = (F (σ i )) ⊕n .
For k = 3, using Λ n , we compute that the functor t -1 LM 3 (tX) : β → C t ±1 -Mod is defined for σ i ∈ B n by:

t -1 LM 3 (tX) (σ i ) = Id i-1 ⊕ 0 -ς n,3 (g i ) 1 0 ⊕ Id n-i-1 .
Hence, the functor t -1 LM 3 (tX) is very similar to the one associated with the Tong-Yang-Ma representations (recall Definition 1.1.2). We deduce that the identity natural equivalence gives

t -1 LM 3 (tX) ∼ = TYM -ς n,3 (g i ) as objects of Fct (β, K-Mod).
For the actions given by the Wada-type natural transformation 4, 5, 6 and 7 in Theorem 1.2.40, the produced functors t -1 LM i (tX) : β -→ C t ±1 -Mod are mild variants of what is given by the case i = 1.

Strong polynomial functors

We deal here with the concept of a strong polynomial functor. This type of functor will be the core of our work in Section 4. We review (and actually extend) the definition and properties of a strong polynomial functor due to Djament and Vespa in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] and also a particular case of coefficient systems of finite degree used by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF].

In [DV17, Section 1], Djament and Vespa construct a framework to define strong polynomial functors in the category Fct (M, A), where M is a symmetric monoidal category, the unit is an initial object and A is an abelian category. Here, we generalize this definition for functors from pre-braided monoidal categories having the same additional property. In particular, the notion of strong polynomial functor will be defined for the category Fct (Uβ, K-Mod). The keypoint of this section is Proposition 1.3.2, in so far as it constitutes the crucial property necessary and sufficient to extend the definition of strong polynomial functor to the pre-braided case.

Strong polynomiality

We first introduce the translation functor, which plays the central role in the definition of strong polynomiality. Definition 1.3.1. Let (M, , 0) be a strict monoidal small category, let D be a category and let x be an object of M. The monoidal structure defines the endofunctor x -: M -→ M. We define the translation by x functor τ x : Fct (M, D) → Fct (M, D) to be the endofunctor obtained by precomposition by the functor x -.

The following proposition establishes the commutation of two translation functors associated with two objects of M. It is the keystone property to define strong polynomial functors.

Proposition 1.3.2. Let (M, , 0) be a pre-braided strict monoidal small category (see Definition 1.1.13) and D be a category. Let x and y be two objects of M. Then, there exists a natural isomorphism between functors from Fct (M, D) to Fct (M, D):

τ x • τ y ∼ = τ y • τ x .
Proof. First, because of the associativity of the monoidal product and the strictness of M, we have that τ x • τ y = τ x y and τ y • τ x = τ y x . We denote by b M -,-the pre-braiding of M. The key point is the fact that as b M -,-is a braiding on the maximal subgroupoid of M (see Definition 1. id M instead to define an isomorphism between τ x y (F) and τ y x (F). In fact, a category only needs to be equipped with natural (in x and y) isomorphisms x y ∼ = y x to satisfy the conclusion of Proposition 1.3.2.

Let us move on to the introduction of the evanescence and difference functors, which will characterize the (very) strong polynomiality of a functor in Fct (M, A). Recall that, if M is a small category and A is an abelian category, then the functor category Fct (M, A) is an abelian category (see [START_REF] Mac | Categories for the working mathematician[END_REF]Chapter VIII]).

From now until the end of Section 1.3, we fix (M, , 0) a pre-braided strict monoidal category such that the monoidal unit 0 is an initial object, A an abelian category and x denotes an object of M. Definition 1.3.4. For all objects F of Fct (M, A), we denote by i x (F) : τ 0 (F) → τ x (F) the natural transformation induced by the unique morphism ι x : 0 → x of M. This induces i x : Id Fct(M,A) → τ x a natural transformation of Fct (M, A). Since the category Fct (M, A) is abelian, the kernel and cokernel of the natural transformation i x exist. We define the functors κ x = ker (i x ) and δ x = coker (i x ). The endofunctors κ x and δ x of Fct (M, A) are called respectively evanescence and difference functor associated with x.

The following proposition presents elementary properties of the translation, evanescence and difference functors. They are either consequences of the definitions, or direct generalizations of the framework considered in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] where M is symmetric monoidal.

Proposition 1.3.5. Let y be an object of M. Then the translation functor τ x is exact and we have the following exact sequence in the category of endofunctors of Fct (M, A):

0 -→ κ x Ω x -→ Id i x -→ τ x ∆ x -→ δ x -→ 0. (1.3.1)
Moreover, for a short exact sequence 0 -→ F -→ G -→ H -→ 0 in the category Fct (M, A), there is a natural exact sequence in the category Fct (M, A):

0 -→ κ x (F) -→ κ x (G) -→ κ x (H) -→ δ x (F) -→ δ x (G) -→ δ x (H) -→ 0. (1.3.2)
In addition:

1. The translation endofunctor τ x of Fct (M, A) commutes with limits and colimits.

2. The difference endofunctors δ x and δ y of Fct (M, A) commute up to natural isomorphism. They commute with colimits.

3. The endofunctors κ x and κ y of Fct (M, A) commute up to natural isomorphism. They commute with limits.

The natural inclusion κ

x • κ x → κ x is an isomorphism.
5. The translation endofunctor τ x and the difference endofunctor δ y commute up to natural isomorphism.

6. The translation endofunctor τ x and the endofunctor κ y commute up to natural isomorphism.

7. We have the following natural exact sequence in the category of endofunctors of Fct (M, A):

0 -→ κ y -→ κ x y -→ τ x κ y -→ δ y -→ δ x y -→ τ y δ x -→ 0. (1.3.3)
Proof. In the symmetric monoidal case, this is [DV17, Proposition 1.4]: the numbered properties are formal consequences of the commutation property of the translation endofunctors given by Proposition 1.3.2. Hence, the proofs carry over mutatis mutandis to the pre-braided setting.

Using Proposition 1.3.5, we can define strong polynomial functors.

Definition 1.3.6. We recursively define on n ∈ N the category P ol strong n (M, A) of strong polynomial functors of degree less than or equal to n to be the full subcategory of Fct (M, A) as follows:

1. If n < 0, P ol strong n (M, A) = {0};
2. if n ≥ 0, the objects of P ol strong n (M, A) are the functors F such that for all objects x of M, the functor δ x (F) is an object of P ol strong n-1 (M, A). For an object F of Fct (M, A) which is strong polynomial of degree less than or equal to n ∈ N, the smallest d ∈ N (d ≤ n) for which F is an object of P ol strong d (M, A) is called the strong degree of F. Remark 1.3.7. By Proposition 1.1.14, the category (Uβ, , 0) is a pre-braided monoidal category such that 0 is initial object. This example is the first one which led us to extend the definition of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]. Thus, we have a well-defined notion of strong polynomial functor for the category Uβ.

The following three propositions are important properties of the framework in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] adapted to the prebraided case. Their proofs follow directly from those of their analogues in [DV17, Propositions 1.7, 1.8 and 1.9]. Proposition 1.3.8. [DV17, Proposition 1.7] Let M be another pre-braided strict monoidal category and α : M -→ M be a strong monoidal functor. Then, the precomposition by α restricts to a functor from P ol strong n (M , A) to P ol strong n (M, A).

Proposition 1.3.9. [DV17, Proposition 1.8] The category P ol strong n (M, A) is closed under the translation endofunctor τ x , under quotient, under extension and under colimits. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {e i } i∈I ∈ Obj (E) where I is finite, m ∼ = i∈I e i , then, an object F of Fct (M, A) belongs to P ol strong n (M, A) if and only if δ e (F) is an object of P ol strong n-1 (M, A) for all objects e of E.
Corollary 1.3.10. Let n be a natural number. Let F be a strong polynomial functor of degree n in the category Fct (M, A). Then a direct summand of F is necessarily an object of the category P ol strong n (M, A).

Proof. According to Proposition 1.3.9, the category P ol strong n (M, A) is closed under quotients.

Remark 1.3.11. The category P ol strong n (M, A) is not necessarily closed under subobjects. For example, we will see in Section 1.3.3 that for M = Uβ and A = C t ±1 -Mod, the functor Bur t is a subobject of τ 1 Bur t (see Proposition 1.3.28), Bur t is strong polynomial of degree 2 (see Proposition 1.3.28) whereas τ 1 Bur t is strong polynomial of degree 1 (see Proposition 1.3.29). If we assume that the unit 0 is also a terminal object of M, then κ x is the null endofunctor, δ x is exact and commutes with all limits. In this case, the category P ol strong n (M, A) is closed under subobjects. Remark 1.3.12. If we consider M = Uβ, then each object n (ie a natural number) is clearly 1 n . Hence, because of the last statement of Proposition 1.3.9, when we will deal with strong polynomiality of objects in Fct (Uβ, A), it will suffice to consider τ 1 .

Proposition 1.3.13. [DV17, Proposition 1.9] Let F be an object of Fct (M, A). Then, the functor F is an object of P ol strong 0 (M, A) if and only if it the quotient of a constant functor of Fct (M, A).

Finally, let us point out the following property of the strong polynomial degree with respect to the translation functor.

Lemma 1.3.14. Let d and k be natural numbers and F be an object of Fct (Uβ, K-Mod) such that τ k (F) is an object of P ol strong d (Uβ, K-Mod). Then, F is an object of P ol d+k (Uβ, K-Mod).

Proof. We proceed by induction on the degree of polynomiality of τ k (F). First, assuming that τ k (F) belongs to P ol strong 0 (Uβ, K-Mod), we deduce from the commutation property 6 of Proposition 2.4.2 that τ k (δ 1 F) = 0. It follows from the definition of τ k (F) (see Definition 1.3.1) that for all n ≥ 2, δ 1 (F) (n) = 0. Hence

δ 1 • • • δ 1 δ 1 k + 1 times (F) ∼ = 0 and therefore F is an object of P ol k (Uβ, K-Mod). Now, assume that τ k (F) is a strong polynomial functor of degree d ≥ 0. Since (τ k • δ 1 ) (F) ∼ = (δ 1 • τ k ) (F) by the commutation property 6 of Proposition 2.4.2, (τ k • δ 1 ) (F) is an object of P ol strong d-1 (Uβ, K-Mod).
The inductive hypothesis implies that δ 1 (F) is an object of P ol strong d+k (Uβ, K-Mod).
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Remark 1.3.15. Let us consider the atomic functor A n (with n > 0), which is strong polynomial of degree n (see Example 1.3.21). Then τ k (A n ) ∼ = A ⊕n n-k is strong polynomial of degree nk, for k a natural number such that k ≤ n. This illustrates the fact that d + k is the best boundary for the degree of polynomiality in Lemma 1.3.14.

Very strong polynomial functors

Let us introduce a particular type of strong polynomial functor, related to coefficient systems of finite degree (see Remark 1.3.17 below). We recall that we consider a pre-braided strict monoidal category (M, , 0) such that the monoidal unit 0 is an initial object and an abelian category A.

Definition 1.3.16. We recursively define the category V P ol n (M, A) of very strong polynomial functors of degree less than or equal to n to be the full subcategory of P ol strong n (M, A) as follows:

1. If n < 0, V P ol n (M, A) = {0}; 2. if n ≥ 0, a functor F ∈ P ol strong n (M, A) is an object of V P ol n (M, A) if for all objects x of M, κ x (F) = 0 and the functor δ x (F) is an object of V P ol n-1 (M, A).
For an object F of Fct (M, A) which is very strong polynomial of degree less than or equal to n ∈ N, the smallest d ∈ N (d ≤ n) for which F is an object of V P ol d (M, A) is called the very strong degree of F. Remark 1.3.17. A certain type of functor, called a coefficient system of finite degree, closely related to the strong polynomial one, is used by Randal-Williams and Wahl in [RWW17, Definition 4.10] for their homological stability theorems, generalizing the concept introduced by van der Kallen for general linear groups [vdK80]. Using the framework introduced by Randal-Williams and Wahl, a coefficient system in every object x of M of degree n at N = 0 is a very strong polynomial functor. Remark 1.3.18. As we force κ x to be null for all objects x of M, the category V P ol n (M, A) is closed under kernel functors of the epimorphisms. In particular, this category is closed under direct summands. However, V P ol n (M, A) is not necessarily closed under subobjects. For instance, as for Remark 1.3.11, we have that the functor Bur t is strong polynomial of degree 2 (see Proposition 1.3.28), the functor τ 1 Bur t is very strong polynomial of degree 1 (see Proposition 1.3.29), but Bur t is a subobject of τ 1 Bur t (see Proposition 1.3.28).

Proposition 1.3.19. The category V P ol n (M, A) is closed under the translation endofunctor τ x , under kernel of epimorphism and under extension. Moreover, assuming that there exists a set E of objects of M such that:

∀m ∈ Obj (M) , ∃ {e i } i∈I ∈ Obj (E) (where I is finite), m ∼ = i∈I e i ,
then, an object F of Fct (M, A) belongs to V P ol n (M, A) if and only if κ e (F) = 0 and δ e (F) is an object of V P ol n-1 (M, A) for all objects e of E.

Proof. The first assertion follows from the fact that for all objects x of M, the endofunctor τ x commutes with the endofunctors δ x and κ x (see Proposition 1.3.5). For the second and third assertions, let us consider two short exact sequences of Fct (M, A):

0 -→ G -→ F 1 -→ F 2 -→ 0 and 0 -→ F 3 -→ H -→ F 4 -→ 0 with F i a
very strong polynomial functor of degree n for all i. Let x be an object of M. We use the exact sequence (1.3.2) of Proposition 1.3.5 to obtain the two following exact sequences in the category Fct (M, A):

0 -→ κ x (G) -→ 0 -→ 0 -→ δ x (G) -→ δ x (F 1 ) -→ δ x (F 2 ) -→ 0; 0 -→ 0 -→ κ x (H) -→ 0 -→ δ x (F 3 ) -→ δ x (H) -→ δ x (F 4 ) -→ 0.
Therefore, κ x (G) = κ x (H) = 0 and the result follows directly by induction on the degree of polynomiality. For the last point, we consider the long exact sequence (1.3.3) of Proposition 1.3.5 applied to an object F of V P ol n (M, A) to obtain the following exact sequence in the category Fct (M, A):

0 -→ κ y (F) -→ κ x y (F) -→ τ x κ y (F) -→ δ y (F) -→ δ x y (F) -→ τ y δ x (F) -→ 0.
Hence, by induction on the length of objects as monoidal product of {e i } i∈I , we deduce that κ m (F) = 0 for all objects m of M if and only if κ e (F) = 0 for all objects e of E. Moreover, since V P ol n (M, A) is closed under extension and by the translation endofunctor τ y , the result follows by induction on the degree of polynomiality n.

Proposition 1.3.20. Let F be an object of Fct (M, A). The functor F is an object of V P ol 0 (M, A) if and only if it is isomorphic to τ k F for all natural numbers k.

Proof. The result follows using the long exact sequence (2.4.3) of Proposition 2.4.2 applied to F.

The following example show that there exist strong polynomial functors which are not very strong polynomial in any degree.

Example 1.3.21. Let us consider the categories Uβ and K-Mod, and n a natural number. Let K be considered as an object of K-Mod and 0 be the trivial K-module. Let A n be an object of Fct (Uβ, K-Mod), defined by:

• Objects: ∀m ∈ N, A n (m) = K if n = m 0 otherwise . • Morphisms: let [j -i, f
] with f ∈ B n be a morphism from i to j in the category Uβ. Then:

A n ( f ) = id K if i = j = n 0 otherwise.
The functor A n is called an atomic functor in K of degree n. For coherence, we fix A -1 to be the null functor of Fct (Uβ, K-Mod). Then, it is clear that i p (A n ) is the zero natural transformation. On the one hand, we deduce the following natural equivalence κ 1 (A n ) ∼ = A n and a fortiori A n is not a very strong polynomial functor. On the other hand, it is worth noting the natural equivalence

δ 1 (A n ) ∼ = τ 1 (A n ) and the fact that τ 1 (A n ) ∼ = A n-1
. Therefore, we recursively prove that A n is a strong polynomial functor of degree n.

Remark 1.3.22. Contrary to P ol strong n (M, A), a quotient of an object F of V P ol n (M, A) is not necessarily a very strong polynomial functor. For example, for M = Uβ and A = K-Mod, let us consider the functor A 0 defined in Example 1.3.21, which we proved to be a strong polynomial functor of degree 0. Let A be the constant object of Fct (Uβ, K-Mod) equal to K. Then, we define a natural transformation α : A → A 0 assigning:

∀n ∈ N, α n = id K if n = 0 t K otherwise.
Moreover, it is an epimorphism in the category Fct (Uβ, K-Mod) since for all natural numbers n, coker (α n ) = 0 K-Mod . We proved in Example 1.3.21 that A 0 is not a very strong polynomial functor of degree 0 whereas A is a very strong polynomial functor of degree 0 by Proposition 1.3.20.

Finally, let us remark the following behaviour of the translation functor with respect to very strong polynomial degree.

Lemma 1.3.23. Let d and k be a natural numbers and F be an object of V P ol d (M, K-Mod). Then the functor τ k (F) is very strong polynomial of degree equal to that of F.

Proof. We proceed by induction on the degree of polynomiality of F. First, if we assume that F belongs to V P ol 0 (M, K-Mod), then according to Proposition 1.3.20, τ k (F) ∼ = F is a degree 0 very strong polynomial func- tor. Now, assume that F is a very strong polynomial functor of degree n ≥ 0. Using the commutation properties 5 and 6 of Proposition 2.4.2, we deduce that (κ

1 • τ k ) (F) ∼ = (τ k • κ 1 ) (F) = 0 and (δ 1 • τ k ) (F) ∼ = (τ k • δ 1 ) (F).
Since the functor δ 1 (F) is a degree n -1 very strong polynomial functor, the result follows from the inductive hypothesis.

Remark 1.3.24. The previous proof does not work for strong polynomial functors since the initial step fails. Indeed, considering the atomic functor A 1 , which is strong polynomial of degree 1 (see Example 1.3.21), then τ 2 (A 0 ) = 0.

Examples of polynomial functors over Uβ

The different functors introduced in Section 1.1.2 are strong polynomial functors.
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Very strong polynomial functors of degree one: Let us first investigate the polynomiality of the functors Bur t and TYM t .

Proposition 1.3.25. The functors Bur t and TYM t are very strong polynomial functors of degree 1.

Proof. For the functor Bur t , this is a consequence of [RWW17, Example 4.15]. We will thus focus on the case of the functor TYM t . Let n be a natural number. By Remark 1.3.12, it is enough to consider the application

i 1 TYM t ([0, id n ]) = ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ]
⊕n . This map is a monomorphism and its cokernel is C t ±1 . Hence κ 1 TYM t is the null functor of Fct Uβ, C t ±1 -Mod . Let n be a natural number such that n ≥ n and let [nn, σ] ∈ Hom Uβ (n, n ). By naturality and the universal property of the cokernel, there exists a unique en- domorphism of C t ±1 such that the following diagram commutes, where the lines are exact. It is exactly the

definition of δ 1 TYM t ([n -n, σ]). 0 / / C t ±1 ⊕n ι C [ t ±1 ] ⊕id C [ t ±1 ] ⊕n / / TYM([n -n,σ]) C t ±1 ⊕n+1 π n+1 / / τ 1 (TYM)([n -n,σ]) C t ±1 / / ∃! 0 0 / / C t ±1 ⊕n ι C [ t ±1 ] ⊕id C [ t ±1 ] ⊕n / / C t ±1 ⊕n +1 π n +1 / / C t ±1 / / 0. For all (a, b) ∈ C t ±1 ⊕ C t ±1 ⊕n = C t ±1 ⊕n+1 , τ 1 (TYM t ) ([n -n, σ]) (a, b) = (a, TYM t ([n -n, σ]) (b)). Therefore, (π n +1 • τ 1 (TYM t ) ([n -n, σ])) (a, b) = a = π n+1 (a, b). Hence, id C[t ±1 ] also makes the diagram com- mutative and thus δ 1 TYM t ([n -n, σ]) = id C[t ±1 ] .
Hence, δ 1 TYM t is the constant functor equal to C t ±1 . A fortiori, because of Proposition 1.3.20, δ 1 TYM t is a very strong polynomial functor of degree 0.

The particular case of Bur t : Definition 1.3.26. Let T 1 : Uβ -→ C t ±1 -Mod be the subobject of the constant functor X (see Notation 1.2.26) such that T 1 (0) = 0 and T 1 (n) = C t ±1 for all non-zero natural numbers n.

Remark 1.3.27. It follows from Definition 1.3.26 that δ 1 T 1 ∼ = A 0 (where A 0 is introduced in Example 1.3.21). There- fore, T 1 is a strong polynomial functor of degree 1, but is not very strong polynomial. Nevertheless, it is worth noting that κ 1 T 1 = 0.

Proposition 1.3.28. The functor Bur is a strong polynomial functor of degree 2. This functor is not very strong polynomial.

More precisely, we have the following short exact sequence in Fct Uβ, C t ±1 -Mod :

0 / / Bur t / / τ 1 Bur t / / T 1 / / 0 . Proof. The natural transformation i 1 Bur t n : Bur t (n) → τ 1 Bur t (n) (introduced in Definition 1.3.4) is defined to be ι C[t ±1 ] ⊕n -n ⊕ id C[t ±1 ] ⊕n-1 .
Let n ≥ 2 be a natural number. This map is a monomorphism (so κ 1 Bur t = 0) and its cokernel is C t ±1 . Repeating mutatis mutandis the work done in the proof of Proposition 1.3.25, we deduce that for all

[n -n, σ] ∈ Hom Uβ (n, n ) (with n ≥ n ≥ 2), δ 1 Bur t ([n -n, σ]) = Id C[t ±1 ] . In addition, since Bur t (1) = 0 and τ 1 Bur t (1) = C t ±1 , we deduce that δ 1 Bur t (1) = C t ±1 and for all n ≥ 1, for all [n -1, σ] ∈ Hom Uβ (1, n ), δ 1 Bur t ([n -1, σ]) = Id C[t ±1 ]
. Hence, we prove that δ 1 Bur t ∼ = T 1 where T 1 is introduced in Definition 1.3.26. The results follow from the fact that δ 1 T 1 ∼ = A 0 by Remark 1.3.27.

For formal reasons (see Proposition 1.3.5), Bur t is a subfunctor of τ 1 Bur t . The following proposition illustrates Remarks 1.3.11 and 1.3.18.

Proposition 1.3.29. The functor τ 1 Bur t is a very strong polynomial functor of degree 1.

Proof. Repeating mutatis mutandis the work done in the proof of Proposition 1.3.28, we prove that δ 1 Bur t is the constant functor equal to C t ±1 (denoted by X in Notation 1.2.26). Since X is a constant functor, δ 1 Bur t is by Proposition 1.3.20 a very strong polynomial functor of degree 0.

A very strong polynomial functor of degree two: We could have defined the unreduced Burau functor of Example 1.1.2 assigning C t ±1 q ±1 ⊕n to each object n ∈ N.

Notation 1.3.30. Abusing the notation, C t ±1 q ±1 : Uβ → C t ±1 q ±1 -Mod denotes the constant functor at C t ±1 q ±1 . The functor

Bur t ⊗ C[t ±1 ] C t ±1 q ±1 is denoted by B ur t : Uβ → C t ±1 q ±1 -Mod.
Remark 1.3.31. These functors C t ±1 q ±1 and B ur t are also very strong polynomial of degree one (the proof is exactly the same as the one for Bur t in Proposition 1.3.27).

Lemma 1.3.32. Considering the modified version of the unreduced Burau functor of Remark 1.3.30, then we have δ 1 LK = B ur t .

Proof. We consider the application i 1 LK ([0, id n ]). This map is a monomorphism and its cokernel is

1≤i≤n V i,n+1 .
Let n and n be two natural numbers such that n ≥ n.

Let [n -n, σ] ∈ Hom Uβ (n, n ).
By naturality and because of the universal property of the cokernel, there exists a unique endomorphism of C t ±1 q ±1 -modules such that the following diagram commutes, where the lines are exact. It is exactly the definition of

δ 1 LK ([n -n, σ]). 0 / / 1≤j<k≤n V j,k LK([1,id 1+n ]) / / LK([n -n,σ]) 1≤i<l≤n+1 V i,l oooπ n / / τ 1 (LK)([n -n,σ]) 2≤l≤n+1 V 1,l / / ∃! 0 0 / / 1≤j <k ≤n V j ,k LK([1,id 1+n ]) / / 1≤l ≤n +1 V i ,l oooπ n / / 2≤l ≤n +1 V 1,l / / 0. Let i ∈ {1, . . . , n -1}, l ∈ {2, . . . , n + 1} and v 1,l be an element of V 1,l .
Then we compute:

τ 1 LK (σ i ) v 1,l = LK (σ 1+i ) (v 1,l ) =      v 1,l if i + 1 / ∈ {l -1, l}, tv 1,i+1 + (1 -t) v 1,i+2 -t 2 -t qv i+1,i+2 if i + 2 = l, v 1,i+2 if i + 1 = l.
We deduce that in the canonical basis {e 1,2 , e 1,3 , . . . , e 1,n+1 } of 2≤l≤n+1 V 1,l :

δ 1 LK (σ i ) = Id i-1 ⊕ 0 t 1 1 -t ⊕ Id n-i-1 = r n • B ur t (σ i ) • r -1 n .
So as to identify δ 1 LK, it remains to consider the action on morphisms of type [1, id n ]. According to the definition of the Lawrence-Krammer functor, we have

τ 1 (LK) ([1, id n ]) = LK σ -1 1 • LK ([1, id n+2 ]) and: LK (σ 1 ) (v 1,k ) = v 2,k if k ∈ {3, . . . , n + 2}, -qt 2 v 1,2 if k = 2. It follows that for all v i,l ∈ V i,l with 1 ≤ i < l ≤ n + 1: π n+1 • τ 1 (LK) ([1, id n ]) (v i,l ) = v i,l+1 if i = 1 and l ∈ {2, . . . , n + 1}, 0 otherwise.
Hence, we deduce that for all 2

≤ l ≤ n + 1, δ 1 LK ([1, id n ]) (v 1,l ) = v 1,l+1 = B ur t ([1, id n ]) (v 1,l ).
Proposition 1.3.33. The functor LK is a very strong polynomial functor of degree 2.

Proof. Let n be a natural number. By Remark 1.3.12, we only have to consider the application i 1 LK ([0, id n ]). Since this map is a monomorphism with cokernel 1≤i≤n V i,n+1 , κ 1 LK is the null constant functor. Since the functor B ur t is very strong polynomial of degree one (following exactly the same proof as the one of Proposition 1.3.25), we deduce from Lemma 1.3.32 that LK is very strong polynomial of degree two.

The Long-Moody functor applied to polynomial functors

Let us move on to the effect of the Long-Moody functors on (very) strong polynomial functors. For this purpose, it is enough by Remark 1.3.12 to consider the cokernel of the map i 1 LM. First, we decompose the functor τ 1 • LM (see Proposition 1.4.19) so as to understand the behaviour of the image of i 1 LM through this decomposition. This allows us to prove a splitting decomposition of the difference functor (see Theorem 1.4.23). This is the key point to prove our main results, namely Corollary 1.4.27 and Theorem 1.4.28. Finally, we give some additional properties of Long-Moody functors with respect to polynomial functors. Let {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N be coherent families of morphisms (see Definition 1.2.14), with associated Long-Moody functor LM a,ς (see Theorem 1.2.20), which we fix for all the work of this section (in particular, we omit the "a, ς" from the notation).

Decomposition of the translation functor

We introduce two functors which will play a key role in the main result. First, let us recall the following crucial property of the augmentation ideal of a free product of groups, which follows by combining [START_REF] Daniel | Groups of cohomological dimension one[END_REF] 

I K[G * H] ∼ = I K[G] ⊗ K[G] K [G * H] ⊕ I K[H] ⊗ K[H] K [G * H] .
Remark 1.4.2. In the statement of Proposition 1.4.1, recall that the augmentation ideal

I K[G] (respectively I K[H] ) is a free right K [G]-module (respectively K [H]-module) by Proposition 1.2.22. Moreover, the group ring K [G * H] is a left K [G]-module (respectively left K [H]-module) via the morphism id G * ι H : G → G * H (respectively ι G * id H : H → G * H ).
Notation 1.4.3. Let n and n be natural numbers such that n ≥ n. We consider the morphism id

F n * ι F n -n : F n → F n .
This corresponds to the identification of F n as the subgroup of F n generated by the n first copies of F 1 in F n .

In addition, the group morphism id

F n * ι F n -n : F n → F n canonically induces a K-module morphism id I K[Fn ] * ι I K [ F n -n ] : I K[F n ] → I K[F n ] .
For F an object of Fct (Uβ, K-Mod), we consider the functor (τ 1 • LM) (F). For all natural numbers n, by Proposition 1.4.1, we have a K [F 1+n ]-module isomorphism:

I K[F 1+n ] K[F 1+n ] F (n + 2) ∼ = I K[F 1 ] K[F 1 ] K [F 1+n ] ⊕ I K[F n ] K[F n ] K [F 1+n ] K[F 1+n ] F (n + 2) . Now, by Remark 1.4.2, the K [F n+1 ]-module F (n + 2) is a K [F 1 ]-module via F ς 1+n id F 1 * ι F n : F 1 → Aut K-Mod (F (n + 2))
and

K [F n ]-module via F ς 1+n ι F 1 * id F n : F n → Aut K-Mod (F (n + 2)) .
Therefore, because of the distributivity of tensor product with respect to the direct sum, we have the following proposition.

Proposition 1.4.4. Let F ∈ Obj (Fct (Uβ, K-Mod)) and n be a natural number. Then, we have the following K-module isomorphism:

τ 1 LM (F) (n) ∼ = I K[F 1 ] K[F 1 ] F (n + 2) ⊕ I K[F n ] K[F n ] F (n + 2) . (1.4.1)
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• υ (F) n the monomorphism of K-modules id I K[F 1 ] * ι I K[Fn ] K[F 1+n ] id F(n+2) : I K[F 1 ] K[F 1 ] F (n + 2) → τ 1 LM (F) (n), • ξ (F) n the monomorphism of K-modules ι I K[F 1 ] * id I K[Fn ] K[F 1+n ] id F(n+2) : I K[F n ] K[F n ] F (n + 2) → τ 1 LM (F) (n),
associated with the direct sum of Proposition 1.4.4.

The aim of this section is in fact to show that this K-module decomposition leads to a decomposition of τ 1 LM (see Theorem 1.4.23) as a functor.

Additional conditions

We need two additional conditions so as to make the decomposition of Proposition 1.4.4 functorial. First, we require the morphisms {a n : B n → Aut (F n )} n∈N to satisfy the following property.

Condition 1.4.6. Let n and n be natural numbers such that n ≥ n. We require a 1+n b

β 1,n -n -1 id n • ι F n -n * id F n+1 • id F 1 * ι F n = id F 1 * ι F n .
In other words, the following diagram is commutative:

F 1 id F 1 * ι Fn id F 1 * ι F n / / F 1+n F 1+n ι F n -n * id F 1+n / / F n -n * F 1+n ∼ = F 1+n . a 1+n b β 1,n -n -1 id n O O
Remark 1.4.7. Condition 1.4.6 will be used to define an intermediary functor (see Proposition 1.4.14).

In addition, we will assume that the morphisms {a n : B n → Aut (F n )} n∈N satisfy the following condition.

Condition 1.4.8. Let n and n be natural numbers such that n ≥ n. We require a n (id n -n -) : B n → Aut (F n ) maps to the stabilizer of the homomorphism id F n -n * ι F n : F n -n -→ F n , ie for all element σ of B n the following diagram is commutative:

F n -n id F n -n * ι Fn / / id F n -n * ι Fn " " F n F n . a n (id n -n σ) = =
Remark 1.4.9. Condition 1.4.8 will be used in the proof of Propositions 1.4.14 and 1.4.15.

Remark 1.4.10. The relations of Conditions 1.4.6 and 1.4.8 remain true mutatis mutandis, for all natural numbers n, considering the induced morphisms a n :

B n → Aut I K[F n ] and id I K[Fn ] * ι I K [ F n -n ] : I K[F n ] → I K[F n ] .
Definition 1.4.11. If the morphisms {a n : B n → Aut (F n )} n∈N also satisfy conditions 1.4.6 and 1.4.8, the coherent families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are said to be reliable.

Proposition 1.4.12. The coherent families of morphisms {a n,1 : B n → Aut (F n )} n∈N and {ς n,1 : F n → B n+1 } n∈N of Ex- amples 1.2.7 and 1.2.15 are reliable.

Proof. Recall from Definition 1.1.4 that b

β 1,n -n -1 = σ -1 1 • σ -1 2 • • • • • σ -1 n -n . We consider the element e F n -n * g 1 * e F n = g n -n+1 ∈ F (n -n)+1+n . The definition of a n,1 gives that a 1+n ,1 (σ n -n ) (g n -n ) = g n -n+1
. Therefore, we have that:

a 1+n ,1 σ -1 n -n (g n -n+1 ) = g n -n .
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Iterating this observation, we deduce that a 1+n b

β 1,n -n -1 id n (g n -n+1 ) = g 1 ∈ F 1+n .
Hence, the family of morphisms {a n,1 : B n → Aut (F n )} n∈N satisfies Condition 1.4.6. Similarly to Example 1.2.15 earlier, for all g ∈ F n -n and each Artin generator

σ i ∈ B n , a n (id n -n σ i ) (g * e F n ) = g * e F n .
Hence, the family of morphisms {a n,1 : B n → Aut (F n )} n∈N satisfies Condition 1.4.8.

From now until the end of Section 1.4, we fix coherent reliable families of morphisms {ς n :

F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N .

The intermediary functors

The functor τ 2 : Let us consider the factor

I K[F 1 ] K[F 1 ] F (n + 2) of τ 1 LM (F) (n) in the decomposition of Proposi- tion 1.4.4.
Notation 1.4.13. For all objects F of Fct (Uβ, K-Mod), for all natural numbers n, we denote

I K[F 1 ] K[F 1 ] F (n + 2) by Υ (F) (n).
Recall the monomorphisms {υ (F) n :

Υ (F) (n) → τ 1 LM (F) (n)} n∈N of Definition 1.4.5.
Proposition 1.4.14. Let F be an object of Fct (Uβ, K-Mod). For all natural numbers n and n such that n ≥ n, and for all [nn, σ] ∈ Hom Uβ (n, n ), assign:

Υ (F) n -n, σ = id I K[F 1 ] K[F 1 ] F id 2 n -n, σ .
This defines a subfunctor Υ (F) : Uβ → K-Mod of τ 1 LM (F), using the monomorphisms {υ (F) n } n∈N .

Proof. Let us check that the assignment Υ (F) is well defined with respect to the tensor product. Let n and n be natural numbers such that n ≥ n, and

[n -n, σ] ∈ Hom Uβ (n, n ) with σ ∈ B n . Recall from Proposition 1.1.14 that id 2 [n -n, σ] = n -n, (id 2 σ) • b β 2,n -n -1
id n . On the one hand, by Condition 1.2.12, we have:

(id 2 σ) • ς 1+n (g 1 ) = ς 1+n (a 1+n (id 1 σ) (g 1 )) • (id 2 σ) .
Hence, it follows from Condition 1.4.8 that

(id 2 σ) • ς 1+n (g 1 ) = ς 1+n (g 1 ) • (id 2 σ) . (1.4.2)
On the other hand, Condition 1.4.6 gives that

g 1 = a 2+n b β 1,n -n -1 id n+1 (g n -n+1 )
and by Condition 1.4.8 we have

g 1 = a 2+n id 1 b β 1,n -n -1 id n (g 1 ) .
By the definition of the braiding b β -,-(see Definition 1.1.4), we deduce that:

ς 1+n (g 1 ) = ς 1+n a 2+n b β 2,n -n -1 id n (g n -n+1 ) .
Then, it follows from the combination of Conditions 1.2.3 and 1.2.12 that as morphisms in Uβ:

n -n, ς 1+n (g 1 ) • b β 2,n -n -1 id n = n -n, b β 2,n -n -1 id n • (id n -n ς 1+n (g 1 )) . (1.4.3)
Hence, we deduce from the relations (1.4.2) and (1.4.3) that:

n -n, (id 2 σ) • b β 2,n -n -1 id n • (id n -n ς 1+n (g 1 )) = n -n, ς 1+n (g 1 ) • (id 2 σ) • b β 2,n -n -1 id n . A fortiori, F (id 2 [n -n, σ]) • F (ς 1+n (g 1 )) = F (ς 1+n (g 1 )) • F (id 2 [n -n, σ]).
Hence, our assignment is well defined with respect to the tensor product.

Let us prove that the subspaces Υ (F) (n) are stable under the action of Uβ. Let i ∈ I K[F 1 ] and v ∈ F (n + 2). We deduce from the definition of the monoidal structure morphisms of Uβ (see Proposition 1.1.14) and from the definition of the Long-Moody functor (see Theorem 1.2.20) that, for all i ∈ I K[F 1 ] and for all v ∈ F (n + 2):

τ 1 LM (F) n -n, σ • υ (F) n i K[F 1 ] v =a 1+n (id 1 σ) a 1+n b β 1,n -n -1 id n ι I K [ F n -n ] * id I K[F 1 ] * ι I K[Fn ] (i) K[F n +1 ] F id 1 id 1 n -n, σ (v) .
It follows from Condition 1.4.6 that:

a 1+n b β 1,n -n -1 id n ι I K [ F n -n ] * id I K[F 1 ] * ι I K[Fn ] (i) = id I K[F 1 ] * ι I K [ F n ] (i) .
Since by Condition 1.4.8, a 1+n (id

1 σ) id I K[F 1 ] * ι I K [ F n ] (i) = id I K[F 1 ] * ι I K [ F n ] (i) for all elements σ of B n ,
we deduce that:

τ 1 LM (F) n -n, σ • υ (F) n i K[F 1 ] v = υ (F) n • Υ (F) n -n, σ i K[F m ] v .
Therefore, the functorial structure of τ 1 LM (F) induces by restriction the one of Υ (F).

Now, we can lift this link between Υ (F) of τ 1 LM (F) to endofunctors of Fct (Uβ, K-Mod).

Proposition 1.4.15. Let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. For all natural numbers n, assign :

(Υ (η)) n = id I K[F 1 ] K[F 1 ] η n+2 .
Then we define a subfunctor Υ : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) of τ 1 LM using the monomorphisms {υ (F) n } n∈N .

Proof. The consistency of our definition follows repeating mutatis mutandis point 4 of the proof of Theorem 1.2.20. It directly follows from the definitions of (Υ (η)

) n , υ (G) n and τ 1 • LM (see Definition 1.2.2) that υ (G) n • (Υ) (η) n = (τ 1 • LM) (η) n • υ (F) n .
In fact, we have an easy description of the functor Υ.

Proposition 1.4.16. There is a natural equivalence Υ ∼ = τ 2 where τ 2 is the translation functor introduced in Definition 1.3.1.

Proof. Let F be an object of Fct (Uβ, K-Mod). By Proposition 1.2.22, for all natural numbers n, we have an isomor- phism:

χ n,F : I K[F 1 ] K[F 1 ] F (n + 2) ∼ = -→ F (n + 2) .
(g 1 -1) 

K[F n ] v -→ v It follows
I K[F n ] K[F n ] F (n + 2) of τ 1 • LM (F) (n) in the decomposition
of Proposition 1.4.4. In fact, we are going to prove that these modules assemble to form a functor which identifies with LM (τ 1 F). We recall from Theorem 1.2.20 and Definition 1.3.1 the following fact.

Remark 1.4.17. The functor LM • τ 1 : Fct (Uβ, K-Mod) → Fct (Uβ, K-Mod) is defined by:

• for F ∈ Obj (Fct (Uβ, K-Mod)), ∀n ∈ N, (LM • τ 1 ) (F) (n) = I K[F n ] K[F n ] F (n + 2), where F (n + 2) is a left K [F n ]-module using F (id 1 ς n (-)) : F n → Aut K-Mod (F (n + 2)). For n, n ∈ N, such that n ≥ n, and [n -n, σ] ∈ Hom Uβ (n, n ): (LM • τ 1 ) (F) n -n, σ = a n (σ) ι I K [ F n -n ] * id I K[Fn ] K[F n ] F id 1 id 1 n -n, σ .
• Morphisms: let F and G be two objects of Fct (Uβ, K-Mod), and η : F → G be a natural transformation. The natural transformation (LM

• τ 1 ) (η) : (LM • τ 1 ) (F) → (LM • τ 1 ) (G)
for all natural numbers n is given by:

((LM • τ 1 ) (η)) n = id I K[Fn ] K[F n ] η n+2 .
Proposition 1.4.18. For all F ∈ Obj (Fct (Uβ, K-Mod)), the monomorphisms {ξ (F) n } n∈N (see Definition 1.4.5) allow to define a natural transformation ξ (F)

: (LM • τ 1 ) (F) → (τ 1 • LM) (F)
where, for all natural numbers n:

ξ (F) n = ι I K[F 1 ] * id I K[Fn ] K[F 1+n ] F b β 1,1 -1 id n .
This yields a natural transformation ξ :

LM • τ 1 → τ 1 • LM.
Proof. Let n and n be natural numbers such that n ≥ n, and

[n -n, σ] ∈ Hom Uβ (n, n ) with σ ∈ B n . Let i ∈ I K[F n ] , v ∈ F (n +
2) and g ∈ F n . By Condition 1.2.3 (using Lemma 1.2.5 with n = n + 1) the following equality holds in B n+2 :

b β 1,1 -1 id n • (id 1 ς n (g)) = ς 1+n e F 1 * g • b β 1,1 -1 id n . Recall that F (n + 2) is a K [F n ]-module via F ς 1+n • ι F 1 * id F n and τ 1 F (n + 1) is a K [F n ]-module via F (id 1 (ς n • id F n )).
Then it follows that the assignment ξ (F) n is well-defined with respect to the tensor product structures of (LM

• τ 1 ) (F) (n) and (τ 1 • LM) (F) (n).
Moreover, we compute that:

(τ 1 • LM) (F) n -n, σ • ξ (F) n i K[F n ] v = a 1+n (id 1 σ) a 1+n b β 1,n -n -1 id n ι I K [ F 1+n -n ] * id I K[Fn ] (i) K[F n +1 ] F b β 1,1 -1 n -n, σ (v) .
It follows from Condition 1.2.10 that:

a 1+n b β 1,n -n 1.
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(τ 1 • LM) (F) n -n, σ • ξ (F) n = ξ (F) n • (LM • τ 1 ) (F) n -n, σ .
Let η : F → G be a natural transformation in the category Fct (Uβ, K-Mod) and let n be a natural number. Since η is a natural transformation, we have:

G b β 1,1 -1 id n • η n+2 = η n+2 • F b β 1,1 -1 id n .
Hence, we deduce from the definitions of τ 1 • LM (see Theorem 1.2.20) and of LM • τ 1 (see Remark 1.4.17) that:

ξ (G) n • (LM • τ 1 ) (η) n = (τ 1 • LM) (η) n • ξ (F) n .

Splitting of the translation functor

Now, we can establish a decomposition result for the translation functor applied to a Long-Moody functor.

Proposition 1.4.19. There is a natural equivalence of endofunctors of Fct (Uβ, K-Mod):

τ 1 • LM ∼ = τ 2 ⊕ (LM • τ 1 ) .
Proof. Recall the natural transformations υ :

Υ → τ 1 • LM (introduced in Proposition 1.4.15) and ξ : LM • τ 1 → τ 1 • LM (defined in Proposition 1.4.18
). The direct sum in the category Fct (Uβ, K-Mod) (induced by the direct sum in the category K-Mod) allows us to define a natural transformation:

υ ⊕ ξ : Υ ⊕ (LM • τ 1 ) -→ (τ 1 • LM) (F) .
This is a natural equivalence since for all natural numbers n, we have an isomorphism of K-modules according to Proposition 1.4.4:

Υ (F) (n) ⊕ (LM • τ 1 ) (F) (n) ∼ = (τ 1 • LM) (F) (n).
We conclude using Proposition 1.4.16.

Splitting of the difference functor

Recall the natural transformation i 1 : Id Fct(Uβ,K-Mod) → τ 1 of Fct (Uβ, K-Mod). Our aim is to study the cok- ernel of i 1 • LM. We recall that for F an object of Fct (Uβ, K-Mod), for all natural numbers n, (i

1 LM) (F) n = LM (F) ([1, id 1+n ]) (see Definition 1.3.4).
Remark 1.4.20. Explicitly for all elements i of I K[F n ] , for all elements v of F (n):

(i 1 LM) (F) n i K[F n ] v = ι I K[F 1 ] * id I K[Fn ] (i) K[F 1+n ] F (id 1 ι 1 id n ) (v) .
The natural transformation LM • i 1 : Let us consider the exact sequence (1.3.1) in the category of endofunctors of Fct (Uβ, K-Mod) of Proposition 1.3.5:

0 / / κ 1 Ω 1 / / Id i 1 / / τ 1 ∆ 1 / / δ 1 / / 0 .
Since the Long-Moody functor is exact (see Proposition 1.2.23), we have the following exact sequence:

0 / / LM • κ 1 oooLM(Ω 1 ) / / LM LM(i 1 ) / / LM • τ 1 LM(∆ 1 ) / / LM • δ 1 / / 0 . (1.4.4)
Remark 1.4.21. From the definition of LM (see Theorem 1.2.20), we deduce that for F an object of Fct (Uβ, K-Mod), for all natural numbers n, for all elements i of I K[F n ] , for all elements v of F (n):

LM (i 1 ) (F) n i K[F n ] v = i K[F n ] F (ι 1 id 1 id n ) (v) .
Recall the natural transformation ξ : As natural transformations from LM to τ 1 • LM, which are endofunctors of the category Fct (Uβ, K-Mod), the following equality holds: ξ • (LM (i 1 )) = i 1 LM. Proof. Let F be an object of Fct (Uβ, K-Mod). Let n be a natural number. Let i be an element of I K[F n ] and let v be an element of

LM • τ 1 → τ 1 • LM introduced in 1.4.18.
F (n). Since b β 1,1 -1
• (ι 1 id 1 ) = id 1 ι 1 by Definition 1.1.13, we deduce from Proposition 1.4.18, Remark 1.4.21 and Remark 1.4.20, that:

ξ • (LM (i 1 )) (F) n i K[F n ] v = (id 1 * i) K[F 1+n ] F (id 1 ι 1 id n ) (v) = (i 1 LM) (F) n i K[F n ] v .
Decomposition results: Lemma 1.4.22 leads to the following key result.

Theorem 1.4.23. There is a natural equivalence in the category Fct (Uβ, K-Mod):

δ 1 • LM ∼ = τ 2 ⊕ (LM • δ 1 ) .
Proof. It follows from the definition of i 1 (see Proposition 1.3.5) and from Lemma 1.4.22 that the following diagram is commutative and the row is an exact sequence:

0 / / κ 1 • LM oooΩ 1 LM / / LM i 1 LM / / τ 1 • LM ∆ 1 LM / / δ 1 • LM / / 0 LM LM(i 1 ) / / LM • τ 1 . ? by Lemma 1.4.22 ξ O O We denote by i ⊕ LM•τ 1 the inclusion morphism LM • τ 1 → τ 2 ⊕ (LM • τ 1 ).
Then, recalling the exact sequence (1.4.4), we obtain that the following diagram is commutative and that the two rows are exact:

0 / / κ 1 • LM oooΩ 1 •LM / / LM i 1 •LM / / τ 1 LM ∆ 1 •LM / / δ 1 • LM / / 0 LM i ⊕ LM•τ 1 •(LM(i 1 )) / / τ 2 ⊕ (LM • τ 1 ) id τ 2 ⊕(LM(∆ 1 )) / / υ⊕ξ ∼ = by Proposition 1.4.19 O O τ 2 ⊕ (LM • δ 1 ) / / 0.
(1.4.5)

A fortiori, by definition of δ 1 (see Definition 1.3.4) and the universal property of the cokernel, we deduce that:

τ 2 ⊕ (LM • δ 1 ) ∼ = δ 1 • LM.
Furthermore, we can determine the behaviour of the evanescence functor.

Theorem 1.4.24. The endofunctor κ 1 commutes with the endofunctor LM. In other words, there is a natural equivalence

κ 1 • LM ∼ = LM • κ 1 . Proof. Recall the exact sequence (1.4.4). Since the inclusion morphism i ⊕ LM•τ 1 : LM • τ 1 → τ 2 ⊕ (LM • τ 1
) is a monomorphism, we deduce that the functor LM • κ 1 is also the kernel of the natural transformation i ⊕ LM•τ 1 • (LM • i 1 ). Hence, recalling the commutative diagram (1.4.5), we obtain the following commutative diagram, in which the two rows are exact sequences.

0 / / κ 1 • LM oooΩ 1 LM / / LM i 1 LM / / τ 1 • LM ∆ 1 LM / / δ 1 • LM / / 0 0 / / LM • κ 1 oooLM(Ω 1 ) / / LM i ⊕ LM•τ 1 •(LM(i 1 )) / / τ 2 ⊕ (LM • τ 1 ) id τ 2 ⊕(LM(∆ 1 )) / / υ⊕ξ ∼ = by Proposition 1.4.19 O O τ 2 ⊕ (LM • δ 1 ) / / ∼ = by Theorem 1.4.23
O O 0 By the unicity up to isomorphism of the kernel, we conclude that κ 1

• LM ∼ = LM • κ 1 .

Increase of the polynomial degree

The results formulated in Theorems 1.4.23 and 1.4.24 allow us to understand the effect of the Long-Moody functors on (very) strong polynomial functors.

Proposition 1.4.25. Let F be a non-null object of Fct (Uβ, K-Mod). If the functor F is strong polynomial of degree d, then:

1. the functor τ 2 (F) belongs to P ol strong d

(Uβ, K-Mod);

2. the functor LM (F) belongs to P ol strong d+1 (Uβ, K-Mod).

Proof. We prove these two results by induction on the degree of polynomiality. For the first result, it follows from the commutation property 5 of Proposition 1.3.5 for τ 2 . For the second result, let us first consider F a strong polynomial functor of degree 0. By Theorem 1.4.23, we obtain that δ 1 LM (F) ∼ = τ 2 (F). Therefore LM (F) is a strong polynomial functor of degree less than or equal to 1. Now, assume that F is a strong polynomial functor of degree n ≥ 0. By Theorem 1.4.23:

δ 1 LM (F) ∼ = LM (δ 1 F) ⊕ τ 2 (F)
. By the inductive hypothesis and the result on τ 2 , we deduce that LM (F) is a strong polynomial functor of degree less than or equal to n + 1.

Corollary 1.4.26. For all natural numbers d, the endofunctor LM of Fct (Uβ, K-Mod) restricts to a functor:

LM : P ol strong d (Uβ, K-Mod) -→ P ol strong d+1 (Uβ, K-Mod) .
Corollary 1.4.27. Let d be a natural number and F be an object of P ol strong d

(Uβ, K-Mod) such that the strong polynomial degree of τ 2 (F) is equal to d. Then, the functor LM (F) is a strong polynomial functor of degree equal to d + 1.

Theorem 1.4.28. Let d be a natural number and F be an object of V P ol d (Uβ, K-Mod) of degree equal to d. Then, the functor LM (F) is a very strong polynomial functor of degree equal to d + 1.

Proof. Using Lemma 1.3.23, it follows from Corollary 1.4.27 that LM (F) is a strong polynomial functor of degree equal to n + 1. Since the functor LM commutes with the evanescence functor κ 1 by Theorem 1.4.24, we deduce that (κ 1 • LM) (F) ∼ = (LM • κ 1 ) (F) = 0. Moreover, using Theorem 1.4.23, we have:

(κ 1 • (δ 1 • LM)) (F) ∼ = (κ 1 • τ 2 ) (F) (κ 1 • (LM • δ 1 )) (F) .
Therefore, the fact that τ 2 commutes with the evanescence functor κ 1 (see the commutation property 6 of Proposition 1.3.5) and Theorem 1.4.24 together imply that:

(κ 1 • (δ 1 • LM)) (F) ∼ = (τ 2 • κ 1 ) (F) (LM • (κ 1 • δ 1 )) (F) .
The result then follows from the fact that F is an object of V P ol n (Uβ, K-Mod) and τ 2 is a reduced endofunctor of the category Fct (Uβ, K-Mod).

Example 1.4.29. By Proposition 1.3.20, X is a very strong polynomial functor of degree 0. Now applying the Long-Moody functor LM 1 , we proved in Proposition 1.2.30 that t -1 LM 1 (tX) is naturally equivalent to Bur t 2 , which is very strong polynomial of degree 1 by Proposition 1.3.25.

Other properties of the Long-Moody functors

We have proven in the previous section that a Long-Moody functor sends (very) strong polynomial functors to (very) strong polynomial functors. We can also prove that a (very) strong polynomial functor in the essential image of a Long-Moody functor is necessarily the image of another strong polynomial functor.

Proposition 1.4.30. Let d be a natural number. Let F be a strong polynomial functor of degree d in the category Fct (Uβ, K-Mod).

Assume that there exists an object G of the category Fct (Uβ, K-Mod) such that LM (G) = F. Then, the functor G is a strong polynomial functor of degree less than or equal to d + 1 in the category Fct (Uβ, K-Mod).
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Proof. It follows from Theorem 1.4.23 that:

δ 1 F ∼ = τ 2 (G) ⊕ (LM • δ 1 ) (G) .
According to Corollary 1.3.10, the functor τ 2 (G) is an object of the category P ol strong d-1 (Uβ, K-Mod), and because of Lemma 1.3.14 the functor G is an object of the category P ol strong d+1 (Uβ, K-Mod).

Proposition 1.4.31. The Long-Moody functor LM : Fct (Uβ, K-Mod) -→ Fct (Uβ, K-Mod) is not essentially surjective.

Proof. Let l be a natural number. Let E l : Uβ -→ K-Mod be the functor which factorizes through the category N, such that E l (n) = K ⊕n l for all natural numbers n and for all

[n -n, σ] ∈ Hom Uβ (n, n ) (with n, n natural numbers such that n ≥ n), E l ([n -n, σ]) = ι C[t ±1 ] ⊕n l -n l ⊕ id C[t ±1 ] ⊕n l .
In particular, for all natural numbers n, for every Artin generator σ i of B n , E l (σ i ) = id K ⊕n l . It inductively follows from this definition and direct computations that E l is a very strong polynomial functor of degree l.

Let us assume that LM is essentially surjective. Hence, there exists an object F of Fct (Uβ, K-Mod) such that LM (F) ∼ = E l . Because of the definition of LM (F) on morphisms (see Theorem 1.2.20), this implies that for all natural numbers n and for all σ ∈ B n , a n (σ) = id n . Also, if LM is essentially surjective, there exists an object T of the category Fct (Uβ, K-Mod) such that we can recover the Burau functor from LM (T), ie something like αLM (T) (see Notation 1.2.28) with α ∈ K. We deduce from the definition of LM (T) on objects and morphisms that for all n ≥ 1, T (n) = K and for all generator σ i of B n :

LM (T) (σ i ) = T (σ i ) • Id n .
Then necessarily, for all i ∈ {1, . . . , n}, T (σ i ) = δ such that δ 2 = t and we consider δ -1 LM (T). We deduce that there exists a natural transformation ω : δ -1 LM (T) ∼ = → Bur t . This contradicts the fact that for all σ ∈ B n , a n (σ) = id n .

Remark 1.4.32. The proof of Proposition 1.4.31 shows in particular that a Long-Moody functor LM is not essentially surjective on very strong polynomial functors in any degree.

In [BB05, Section 4.7, Open Problem 7], Birman and Brendle ask "whether all finite dimensional unitary matrix representations of B n arise in a manner which is related to the construction" recalled in Theorem 1.2.20. Since the Tong-Yang-Ma and unreduced Burau representations recalled in Theorem 1.1.19 are unitary representations, the proof of Proposition 1.4.31 shows that any Long-Moody functor (and especially the one based on the version of the construction of Theorem 1.2.20) cannot provide all the functors encoding unitary representations. Therefore, we refine the problem asking whether all functors encoding families of finite dimensional unitary representations of braid groups lie in the image of a Long-Moody functor.

Remark 1.4.33. Another question is to ask whether we can directly obtain the reduced Burau functor Bur t by a Long-Moody functor. Recall that for all natural numbers n, Bur t (n) = C t ±1 ⊕n-1 and LM (F) (n) ∼ = (F (n + 1)) ⊕n for any Long-Moody functor LM and any object F of Fct (Uβ, K-Mod) (see Remark 1.2.24). Therefore, for dimen- sional considerations on the objects, it is clear that we have to consider a modified version of the Long-Moody construction. This modification would be to take the tensor product with

I F n-1 on F n-1 , the K-module F (n + 1) being a K [F n-1 ]-module using a morphism F n-1 → F n-1 a n B n+1 → B n+1
for all natural numbers n, where

a n : B n+1 → Aut (F n-1 ) is a group morphism.

Introduction

In 1994, as a result of a collaboration with Moody, Long [START_REF] Long | Constructing representations of braid groups[END_REF] gave a method to construct from a linear representation ρ : B n+1 → GL (V) a new linear representation lm (ρ) : B n → GL (V ⊕n ) of braid groups, where B n denotes the braid group on n strands. Applying this construction to a one dimensional representation of B n+1 , one obtains a mild variant of the unreduced Burau representation of B n . This construction depends on families of group morphisms a n : B n → Aut (F n ) and ς n : F n → B n+1 , where F n denotes the free group on n generators. Long and Moody fixed such a choice but a similar construction can be made for other choices (see [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]). In [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF], it is proved that the Long-Moody construction and the ones obtained from other choices of a n and ς n are functorial; more precisely, we consider the category Uβ associated with braid groups, given by Quillen's bracket construction (see [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF]p.219]) applied to the braid groupoid β, and the functor category Fct (Uβ, R-Mod), where R-Mod is the category of R-modules (with R a commutative ring). For choices of a n and ς n there is a functor LM a,ς : Fct (Uβ, R-Mod) → Fct (Uβ, R-Mod), called the Long-Moody functor associated with the morphisms a n and ς n . These functors allow inter alia to recover functors encoding the well-known families of Burau and Tong-Yang-Ma representations, by applying appropriate Long-Moody functors to a constant functor (see [Sou17b, Section 2.3]).

Moreover, studying the behaviour of Long-Moody functors on a very strong polynomial of degree n functor (see [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF] Section 2] for an introduction of this notion, inspired of [DV17, Section 1]), it is shown that LM (F) is a very strong polynomial functor of degree n + 1 (see [Sou17b, Section 4]). Thus, the Long-Moody functors provide by iteration very strong polynomial functors of Fct (Uβ, R-Mod) in any degree. This type of functor turns out to be very useful for homological stability problems: in [RWW17], Randal-Williams and Wahl prove homological stability for different families of groups for coefficients given by a very strong polynomial functor. Besides braid groups, their results also hold among others for automorphism groups of free products of groups, mapping class groups of orientable and non-orientable surfaces or mapping class groups of 3-manifolds. As for braid groups, the representation theory of these groups is complicated and a current research topic (see for example [BB05, Section 4.6], [START_REF] Funar | On the TQFT representations of the mapping class groups[END_REF], [START_REF] Korkmaz | Low-dimensional homology groups of mapping class groups: a survey[END_REF] or [START_REF] Masbaum | On representations of mapping class groups in integral TQFT[END_REF]). A fortiori, the very strong polynomial functors associated with these groups are not well-known.

The aim of this paper is to extend the Long-Moody construction to other families of groups and the study of its behaviour on (very) strong polynomial functors. In addition, we are also interested in the effect of this construction on weak polynomial functors, a notion introduced by Djament and Vespa in [DV17, Section 3.1] for symmetric monoidal categories and extended in the pre-braided case in the present paper (see Section 2.5.6). This 2. Chapter. Generalised Long-Moody functors last notion is more appropriate for understanding the stable behaviour of a given functor.

For this, we consider a family of groups {H m } m∈N , where H m is the free product H * m * H 0 , with H and H 0 two given groups, and the groupoid G associated with a family of groups {G n } n∈N . More precisely, the groupoid G is assumed to be a subgroupoid of a braided monoidal groupoid (G , , 0 G ) (see Section 2.2.1.1) such that the set of objects of G is isomorphic to the natural numbers, its objects are denoted by n (for n a natural number) and the automorphism group Aut G (n) is the group G n . We denote by UG the full subcategory generated by G in the category UG provided by Quillen's bracket construction (see Section 2.1). We denote by I R[H n ] the augmentation ideal of the group H n . For families of morphisms G n → Aut (H n ) and H n → G n+1 satisfying some coherence properties (see Sections 2.2.1.1 and 2.2.1.2), using the same principle as for braid groups in [Sou17b, Section 3], we prove:

Theorem A (Proposition 2.2.30, Theorem 2.5.29 and Theorem 2.5.36). For H and H 0 two groups, assume that the families of groups {H m = H * m * H 0 } m∈N and {G n } n∈N satisfy Assumptions 2.2.1 and 2.2.13, and Conditions 2.2.17, 2.2.24. Then, there exists a functor LM : Fct (UG, R-Mod) → Fct (UG, R-Mod), called a Long-Moody functor, such that:

LM (F) (n) = I R[H n ] R[H n ] F (n + 1)
for all objects F of Fct (UG, R-Mod) and n objects of G.

Moreover, if Assumption 2.5.16 and Condition 2.5.9 are satisfied, then:

• The functor LM increases by one the very strong polynomial degree if H and H 0 are free.

• If H is free, then the functor LM increases by one the weak polynomial degree if H 0 is free or if the groupoid G is symmetric monoidal.

For the family of braid groups {B n } n∈N , the first statement of this theorem corresponds to [Sou17b, Theorem A] and the others recover [Sou17b, Theorem B]. Additionally, in this paper, we prove that the families of symmetric groups, automorphism groups of free products of groups, surface braid groups, mapping class groups of orientable and non-orientable surfaces or mapping class groups of 3-manifolds fit into this framework. We determine the effect of a Long-Moody functor on a constant functor, which is the most basic functor to study. As an example, for the family of mapping class group of compact orientable connected surfaces of genus g with one boundary component, from a constant functor, we recover a functor encoding the family of symplectic representations of mapping class groups, which is therefore very strong and weak polynomial of degree 1 (see Corollary 2.5.31).

When the groupoid G is symmetric monoidal, the homogenous category UG is also symmetric monoidal (see [RWW17, Proposition 1.8]). In this case, we extend a Long-Moody endofunctor from Fct (UG, R-Mod) to a category of functors from a symmetric monoidal category where the unit is a null object. More precisely, denoting by Mon symm ini (resp. Mon symm null ) the category of symmetric strict monoidal small categories (M, , 0) such that the unit 0 is an initial object (resp. a null object), we are interested in the left adjoint of the forgetful functor Mon symm null → Mon symm ini . This functor was considered by Djament and Vespa in [DV17, Section 3] and is denoted by -: Mon symm ini → Mon symm null . We prove that, under an additional assumption(see Section 2.6.2), a Long-Moody functor LM : Fct (UG, R-Mod) → Fct (UG, R-Mod) extends to a functor LM :Fct UG, R-Mod →Fct UG, R-Mod . Explicitly: Theorem B (Propositions 2.6.24 and 2.6.25). Assume that families of groups {H m } m∈N and {G n } n∈N satisfy the same properties as in Theorem A as well as Condition 2.6.20. Then, there exists a functor LM : Fct UG, R-Mod → Fct UG, R-Mod such that the following diagram is commutative:

Fct UG, R-Mod LM / / incl UG UG * Fct UG, R-Mod incl UG UG * Fct (UG, R-Mod) LM / / Fct (UG, R-Mod) .
Finally, the framework and definition of generalised Long-Moody functors in Section 2.2 leads to the wider notion of tensorial functors introduced in Section 2.7.

The paper is organized as follows. In Section 2.1, we recall necessary notions on Quillen's bracket construction. In Section 2.2, after setting up the general framework of the families of groups which we will deal with, in particular exposing the properties they have to satisfy, we define the generalisation and give some first properties of the Long-Moody functors. Section 2.3 is devoted to the application of Long-Moody functors for the mapping class groups of surfaces, recovering in particular the case of braid groups. In Section 2.4, we recall the notions of strong and very strong polynomial functors for our framework, and we adapt in this context the one of weak polynomial functors introduced in [DV17, Section 3.1]. Then, in Section 2.5, we are interested in the effect of Long-Moody functors on strong and weak polynomial functors, presenting in particular the keystone relations of the difference and evanescence functors with Long-Moody functors. In Section 2.6, we prove that in the situation where a symmetric monoidal category is considered, we can extend a Long-Moody functor taking as source the category modified by the construction -. Finally, in Section 2.7, we introduce the notion of tensorial functors. Notation 2.0.1. We fix a commutative ring R throughout this work. We denote by R-Mod the category of R-modules. We denote by Gr the category of groups and by * the coproduct in this category.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to denote the objects of C. If there exists an initial object Ø in the category C, then we denote by ι A : Ø -→ A the unique morphism from Ø to A. If * is terminal object in the category C, then we denote by t A : A -→ * the unique morphism from A to * .

The maximal subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are the isomorphisms of C. We denote by G r : Cat -→ Cat the functor which associates to a category its maximal subgroupoid.

For D a category and C a small category, we denote by Fct (C, D) the category of functors from C to D. We denote by β the braid groupoid: its objects are the natural numbers n ∈ N and its morphisms are (for n, m ∈ N):

Hom β (n, m) = B n if n = m ∅ if n = m.

Recollections on Quillen's bracket construction

The aim of this section is to introduce the categorical framework necessary for our study. In particular, we recall notions and properties of Quillen's bracket construction introduced in [Gra76, p.219] for a monoidal category S acting on a category X, in the case S = X = G where G is a groupoid. Our review here is based on [RWW17, Section 1] to which we refer the reader for further details. Beforehand, we take this opportunity to introduce or recall some terminology about strict monoidal categories. We refer to [START_REF] Mac | Categories for the working mathematician[END_REF] for an introduction to (braided) strict monoidal categories and the skeleton of a category. Notation 2.1.1. A strict monoidal category will be denoted by (C, , 0), where C is the category, is the monoidal product and 0 is the monoidal unit. If it is braided, then its braiding is denoted by b C A,B : A B ∼ → B A for all objects A and B of C. Definition 2.1.2. Let (C, , 0) be a strict monoidal category. A full subcategory D of C is said to be finitely generated by the monoidal structure if there exists a finite set E of objects of the category C such that for all objects d of D, d is isomorphic to a finite monoidal product of objects of E.

We fix a strict monoidal groupoid (G, , 0) throughout this section, so as to define Quillen's bracket con- struction U following [START_REF] Grayson | Higher algebraic K-theory: II (after Daniel Quillen)[END_REF].

Definition 2.1.3. [RWW17, Section 1.1] Quillen's bracket construction on the groupoid G, denoted by UG, is the category defined by:

• Objects: Obj (UG) = Obj (G);

• Morphisms: for A and B objects of G:

Hom UG (A, B) = colim G [Hom G (-A, B)] .
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Thus, a morphism from A to B in the category UG is an equivalence class of pairs (X, f ), where X is an object of G and f :

X A → B is a morphism of G; this is denoted by [X, f ] : A → B.
• For all objects X of UG, the identity morphism in the category UG is given by [0, id X ] : X -→ X.

• Let [X, f ] : A -→ B and [Y, g] : B -→ C be two morphisms in the category UG. Then, the composition in the category UG is defined by:

[Y, g] • [X, f ] = [Y X, g • (id Y f )] .
Proposition 2.1.4. [RWW17, Proposition 1.8 (i)] The unit 0 of the monoidal structure of the groupoid (G, , 0) is an initial object in the category UG.

Remark 2.1.5. Let X be an object of G. Let φ ∈ Aut G (X). Then, as an element of Hom UG (X, X), we will abuse the notation and write φ for [0, φ]. This comes from the canonical functor c UG : G → UG defined as the identity on objects and sending φ ∈ Aut G (X) to [0, φ].

A natural question to ask is the relationship between the automorphisms of the groupoid G and those of its associated Quillen bracket construction UG. Recall the following notion. Definition 2.1.6. The strict monoidal groupoid (G, , 0) has no zero divisors if, for all objects A and B of G, A B ∼ = 0 if and only if

A ∼ = B ∼ = 0.
Then, recall the result: Proposition 2.1.7. [RWW17, Proposition 1.7] Assume that the strict monoidal groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }. Then, the groupoid G is the maximal subgroupoid of UG.

Henceforth, we assume that the strict monoidal groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }.

A natural question is to wonder when an object of Fct (G, C ) extends to an object of Fct (UG, C ) for a category C , which is the aim of the following lemma. Analogous statements can be found in [RWW17, Proposition 2.4] and [Sou17b, Lemma 1.12] (for the category Uβ for this last reference).

Lemma 2.1.8. Let C be a category and F an object of Fct (G, C ). Assume that for A, X, Y ∈ Obj (G), there exist assign- ments F X, id X A :

F (A) → F (X A) such that: F Y, id Y X A • F X, id X A = F Y X, id Y X A .
(2.1.1)

Then, the assignments F ([X, γ]) = F (γ) • F X, id X A for all [X, γ] ∈ Hom UG A, id X A define a functor F : UG → C if and only if for all A, X ∈ Obj (G), for all γ ∈ Aut G (A) and all γ ∈ Aut G (X):

F X, id X A • F γ = F γ γ • F X, id X A . (2.1.2) Proof. Assume that relation (2.1.2) is satisfied. Note that (2.1.1) implies that F ([0, id A ]) = id F(A)
for all objects A. First, let us prove that our assignment conforms with the defining equivalence relation of UG

. Let A, X ∈ Obj (G). Let γ, γ ∈ Aut G (X A) such that there exists ψ ∈ Aut G (X) so that γ • (ψ id A ) = γ. According to the relation (2.1.2) and since F is a functor over G, we deduce that F ([X, γ]) = F (γ ) • F X, id X A • F (id A ) = F ([X, γ ]). Now, let us check the composition axiom. Let A, X, Y ∈ Obj (G), let ([X, γ]) ∈ Hom UG (A, X A) and ([Y, γ ]) Hom UG (X A, Y X A).
We deduce from relation (2.1.2) that:

F Y, γ • F ([X, γ]) = F γ • F (id Y γ) • F Y, id Y X A • F X, id X A .
So, it follows from relation (2.1.1) that:

F Y, γ • F ([X, γ]) = F γ • (id Y γ) • F Y X, id Y X A = F Y, γ • [X, γ] .
Conversely, assume that the functor F : UG → C is well-defined. In particular, the composition axiom in UG is satisfied and implies that for all A, X ∈ Obj (G), for all γ ∈ Aut G (A), F X, id X A • F (γ) = F ([X, id X γ]). So it follows from the defining equivalence relation of UG that relation (2.1.2) is satisfied.

Similarly, we can find a criterion for extending a morphism in the category Fct (G, C ) to a morphism in the category Fct (UG, C ).

Lemma 2.1.9. Let C be a category, F and G be objects of Fct (UG, C ) and η : F → G a natural transformation in Fct (G, C ). The restriction Fct (UG, C ) → Fct (G, C ) is obtained by precomposing by the canonical inclusion c UG of Remark 2.1.5. Then, η is a natural transformation in the category Fct (UG, C ) if and only if for all A, B ∈ Obj (G) such that B ∼ = X A with X ∈ Obj (G):

η B • F ([X, id B ]) = G ([X, id B ]) • η A . (2.1.3)
Proof. The natural transformation η extends to the category Fct (UG, C ) if and only if for all A, B ∈ Obj (G) such that B ∼ = X A with X ∈ Obj (G), for all [X, γ] ∈ Hom UG (A, B):

η B • F ([X, γ]) = G ([X, γ]) • η A . Since η is a natural transformation in the category Fct (G, C ), we already have η B • F (γ) = G (γ) • η A . So, η extends to the category Fct (UG, C ) if and only if relation (2.1.3) is satisfied.
Pre-braided monoidal categories: If the strict monoidal groupoid (G, , 0) is braided, Quillen's bracket construc- tion UG inherits a strict monoidal structure (see Proposition 2.1.12). However, the braiding b G -,-does not extend in general to UG. First recall the notion of a pre-braided monoidal category, generalising that of a braided strict monoidal category, introduced by Randal-Williams and Wahl in [START_REF] Randal | Homological stability for automorphism groups[END_REF].

Definition 2.1.10. [RWW17, Definition 1.5] Let (C, , 0) be a strict monoidal category such that the unit 0 is initial. We say that the monoidal category (C, , 0) is pre-braided if:

• The maximal subgroupoid G r (C) (see Notation 2.0.1) is a braided monoidal category, where the monoidal structure is induced by that of (C, , 0).

• For all objects A and B of C, the braiding associated with the maximal subgroupoid b

C A,B : A B -→ B A satisfies: b C A,B • (id A ι B ) = ι B id A : A -→ B A.
(The notation ι B : 0 → B was introduced in Notation 2.0.1).

Remark 2.1.11. A braided monoidal category is automatically pre-braided. However, a pre-braided monoidal category is not necessarily braided (see for example [Sou17b, Remark 1.15]).

Finally, let us give the following key property when Quillen's bracket construction is applied on a strict monoidal groupoid (G, , 0). Proposition 2.1.12. [RWW17, Proposition 1.8] Suppose that the strict monoidal groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }. If the groupoid (G, , 0) is braided, then the category (UG, , 0) is pre-braided monoidal. If moreover (G, , 0) is symmetric monoidal, then the category (UG, , 0) is symmetric monoidal. Remark 2.1.13. The monoidal structure on the category (UG, , 0) is defined on objects by that of (G, , 0) and defined on morphisms by letting for [X, f ] ∈ Hom UG (A, B) and [Y, g] ∈ Hom UG (C, D):

[X, f ] [Y, g] = X Y, ( f g) • id X b G A,Y -1 id C .
In particular, the canonical functor G → UG (see Remark 2.1.5) is monoidal.

The generalised Long-Moody functors

In this section, we develop a generalisation of the Long-Moody functors (see [Sou17b, Section 2]) inspired by the Long-Moody construction (see [Lon94, Theorem 2.1]). First, we introduce the general framework of our study (see Section 2.2.1). Then, we define the generalised Long-Moody functors and establish their first properties in Section 2.2.2. The two first subsections are generalisations of [Sou17b, Section 2.1] and [Sou17b, Section 2.2]. We give a new approach to some tools and conditions previously considered in [Sou17b, Section 2], allowing a wider application of our constructions. We will emphasise the new aspects of this work, giving details only when necessary for the convenience of the reader or for the sake of completeness.

Framework of the construction

Throughout Section 2.2, we consider a groupoid G such that Obj (G) ∼ = N.

Monoidal properties of G

First, we assume that a monoidal structure is induced on the groupoid G. Namely: Assumption 2.2.1. There exists (G , , 0 G ) a braided monoidal groupoid with no zero divisors such that Aut G (0 G ) = id 0 G and:

• G is a full subgroupoid of G ;

• there exist two objects 0 and 1 of G such that for all objects x of G, there exists a unique n ∈ N such that x = 1 n 0.

By hypothesis G is finitely generated by the monoidal structure of (G , , 0 G ) with {0, 1} as generating set. The object 0 should not be confused with the unit 0 G of the monoidal structure . For n a natural number, the objects 1 n and 1 n 0 of G are different. In particular, 1 n 0 is an object of G whereas 1 n is not. However, one could be tempted to denote both of them by "n". To avoid this confusion, we introduce the following notation: Notation 2.2.2. For all natural numbers n, we denote the object 1 n 0 of G by n and the object 1 n of G by n. Note that if G = G, then n = n.

Remark 2.2.3. Under the properties of Assumption 2.2.1, Quillen's bracket construction (UG , , 0 G ) is a pre-braided monoidal category such that the unit 0 G is an initial object (see Proposition 2.1.12). Definition 2.2.4. Let UG be the full subcategory of UG on the objects of G.

Remark 2.2.5. Let m, n and n be natural numbers such that n ≥ n. Then:

• m n = m + n;
• considering the morphism nn, id n , then the "nn" in the notation is not an object of G: it is the unique object of G such that (nn) n = n as objects of G.

Warning: the category UG is not in general Quillen's bracket construction of Definition 2.1.3. However, assuming that G = G, then UG is indeed Quillen's bracket construction bracket construction, 0 = 0 G and we have a is pre-braided monoidal structure (UG, , 0). This is for instance the case in the previous work [Sou17b], where G = G = β is the braid groupoid (see Notation 2.0.1).

The present framework allows us to work with more examples, such as mapping class groups of surfaces with non-zero (orientable or non-orientable) genus (see Section 2.3.3). For instance, in the various situations of Section 2.3, the groupoids M +,s 2 , M -,s 2 and M g,c 2 (see Sections 2.3.3 and 2.3.4) are full subgroupoids of the braided monoidal groupoid M 2 , , Σ 0 0,0,1 (see Proposition 2.3.4). Finally, as the objects of UG are natural numbers, we consider: Definition 2.2.6. Let (N, ≤) be the category of natural numbers (natural means non-negative) considered as a directed set.

Notation 2.2.7. For all natural numbers n, we denote by γ n the unique element of Hom (N,≤) (n, n + 1). For all natural numbers n and n such that n ≥ n, we denote by γ n,n : n → n the unique element of Hom (N,≤) (n, n ), composition of the morphisms

γ n -1 • γ n -2 • • • • • γ n+1 • γ n .
The addition defines a strict monoidal structure on (N, ≤), denoted by ((N, ≤) , +, 0). Definition 2.2.8. Let O : (N, ≤) → UG be the faithful functor defined by O (n) = n and O (γ n ) = 1, id 1+n for all natural numbers n.

Long-Moody triple

Let us fix H 0 and H two groups, with H non-trivial.

Notation 2.2.9. For all natural numbers m, we denote the free product H * m * H 0 by H m . We denote by e H (resp. e H 0 ) the identity element of the group H (resp. H 0 ).

Example 2.2.10. The classical example is the free group on m generators denoted by F m = f 1 , . . . , f m . Indeed, taking H to be Z and H 0 to be the trivial group 0 Gr , one identifies F m ∼ = Z * m . The framework of [Sou17b] uses this example H m = F m .

Remark 2.2.11. In many examples considered here, such as mapping class groups of surfaces with non-zero genus (see Section 2.3), H 0 is non-trivial, contrary to [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF].

The object 0 Gr being null in the category of groups Gr, recall that ι G : 0 Gr → G introduced in Notation 2.0.1 denotes the unique morphism from 0 Gr to the group G. We consider ι H * id H m : H m → H m+1 which corresponds to the identification of H m as the subgroup of H m+1 generated by the m last copies of H in H m+1 . Iterating this morphism, we obtain for all natural numbers m ≥ m the morphism ι H * (m -m) * id H m : H m → H m . Notation 2.2.12. For all natural numbers n, we denote by G n the automorphism group Aut G (n).

We require the groups G n to have an action on the groups H n for all natural numbers n. More precisely: Assumption 2.2.13. There exists a functor H : UG → Gr such that:

• for all objects n of G, H (n) = H n . In other words, H 1 n 0 = H n for all natural numbers n.

• H 1, id n+1 = ι H * id H n for all natural numbers n.

Consequences of Assumption 2.2.13 will be heavily used in our study, for instance in the key results Theorem 2.2.30 and Proposition 2.5.12. The following lemma clarifies some subtleties of Assumption 2.2.13. It also implies that Condition 2.11 of [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF] is equivalent to this previous assumption. Lemma 2.2.14. The functor H of Assumption 2.2.13 restricts to a functor A : G c UG → UG H → Gr such that for natural numbers n and n , for all elements g of G n and g of G n -n :

H γ n,n • A (g) = A g g • H γ n,n
(2.2.1)

as morphisms H n → H n .
Proof. This is a straightforward consequence of Lemma 2.1.8. 

Coherence conditions

For our framework, we require two additional general conditions (see Conditions 2.2.17 and 2.2.24).

We fix a Long-Moody triple (H, G, G ) throughout the remainder of this section.

Recall that we assume Obj (G) ∼ = N so we denote objects of G by n with n a natural number and that the braiding associated with (G , , 0) is denoted by b G -,-(see Notation 2.1.1). First, we need to consider particular group morphisms from the group H n to G n+1 = Aut G (n + 1) for all natural numbers n. The condition that they have to satisfy will be used to prove that the generalised Long-Moody functor is well defined on morphisms with respect to the tensor product structure in Theorem 2.2.30. Moreover, it will also be used in the proof of Propositions 2.5.23 and 2.5.12. 44 2. Chapter. Generalised Long-Moody functors Condition 2.2.17. There exist group morphisms {ς n : H n → G n+1 } n∈N such that for all elements h ∈ H n , for all natural numbers n and n such that n ≥ n, the following diagram is commutative in the category UG:

1 n ς n (h) / / id 1 [n -n,id n ] 1 n id 1 [n -n,id n ] 1 n ς n ι H * (n -n) * id Hn (h)
/ / 1 n .

Remark 2.2.18. By definition of the braiding b G -,-, we have:

b G 1,n -n -1 id n = b G 1,1 -1 id n • id 1 b G 1,(n -n)-1 -1 id n-1 .
Hence, a straightforward recursion (see for example the proof of [Sou17b, Lemma 2.5]) proves that Condition 2.2.17 is equivalent to assuming that for all elements h ∈ H n , for all natural numbers n, the morphisms {ς n } Obj(G) satisfy the following equality, as morphisms in the category UG:

1, b G 1,1 -1 id n • (id 1 ς n (h)) = 1, ς n+1 ((ι H * id H n ) (h)) • b G 1,1 -1 id n .
It follows from Remark 2.2.18 that:

Proposition 2.2.19. Assume that for all elements h ∈ H n , for all natural numbers n, the following equality holds in G n+2 :

b G 1,1 -1 id n • (id 1 ς n (h)) = ς n+1 H 1, id n+1 (h) • b G 1,1 -1 id n . (2.2.2)
Then, Condition 2.2.17 is satisfied.

Remark 2.2.20. If Aut UG (1) = {id 1 }, Condition 2.2.17 is equivalent to the equality (2.2.2) for all elements h ∈ H n , for all natural numbers n.

When (UG , , 0 G ) = (UG, , 0 G ) = (Uβ, , 0), Condition 2.2.17 recovers [Sou17b, Conditions 2.3]. For this particular, the assumption Aut Uβ (1) = {id 1 } is satisfied and a fortiori equality (2.2.2). However, this is not necessarily the case for all the examples which fit into the present larger framework, such as mapping class groups of surfaces with non-zero genus (see Section 2.3.3). Nevertheless, in Section 2.5, we will have to assume that the stronger equality (2.2.2) holds (see Condition 2.5.9). Notation 2.2.21. For all natural numbers n, we denote by ς n,t the trivial morphism

H n → 0 Gr → G n+1 .
Example 2.2.22. The family of morphisms {ς n,t : H n → G n+1 } n∈N satisfies Condition 2.2.17.

We fix a family of morphisms {ς n : H n → G n+1 } n∈N satisfying the Condition 2.2.17. We require a compatibility relation between the morphisms {ς n : H n → G n+1 } n∈N and the functor H. This is essential in the definition of the Long-Moody functor on objects in Theorem 2.2.30 (see Condition 2.2.24). Notation 2.2.23. For all natural numbers n, we denote by A n : G n → Aut Gr (H n ) the group morphisms induced by the functor H.

Condition 2.2.24. Let n be a natural number. We assume that the morphism given by the coproduct ς n * id 1 -:

H n * G n → G n+1 factors across the canonical surjection to H n A n G n .
In other words, the following diagram is commutative:

H n / / ς n # # H n A n G n G n ? _ o o id 1 - { { G n+1 ,
where the morphism H n A n G n → G n+1 is induced by the morphism H n * G n → G n+1 and the group morphism id 1 -: G n → G n+1 is induced by the monoidal structure of Assumption 2.2.1.

Remark 2.2.25. When (UG , , 0 G ) = (UG, , 0 G ) = (Uβ, , 0), Condition 2.2.24 recovers [Sou17b, Conditions 2.12]. Definition 2.2.26. With the previous notation, a coherent Long-Moody system, denoted by {H, G, G , ς}, is a Long-Moody triple (H, G, G ) equipped with group morphisms {ς n : H n → G n+1 } n∈Obj(G) satisfying Conditions 2.2.17 and 2.2.24.

Remark 2.2.27. Condition 2.2.24 is satisfied for the family of morphisms {ς n,t : H n → G n+1 } n∈N of Example 2.2.22 and any functor H : UG → Gr. A fortiori, we define a coherent Long-Moody system {H, G, G , ς -,t }.

Definition of the generalised Long-Moody functors

This section deals with introducing generalised Long-Moody functors, inspired from the Long-Moody construction [START_REF] Long | Constructing representations of braid groups[END_REF]. It generalises and adapts [Sou17b, Section 2.2] to a larger setting. A large variety of groups falls within this framework (see Sections 2.3 and 2.6.3). Moreover, the new point of view on some tools detailed in Section 2.2.2.1 allows a clearer understanding of this construction.

Group ring and augmentation ideal functors

For all objects G of Gr, the group rings R [G] (resp. augmentation ideals I R[G] ) assemble to define the group ring functor R [-] : Gr → R-Mod (resp. the augmentation ideal functor I R[-] : Gr → R-Mod). Let (H, G, G ) a Long-Moody triple. Thanks to Assumption 2.2.13, we introduce the following two functors: Definition 2.2.28. Let R [H] : UG → R-Mod and I : UG → R-Mod be the functors defined by the composites

UG H / / Gr R[-] / / R-Mod and UG H / / Gr I R[-] / / R-Mod .
We call R [H] (resp. I) the group ring (resp. the augmentation ideal) functor induced by the Long-Moody triple (H, G, G ).

Compared to the particular case of braid groups in [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF], to introduce these functors for the generalisation of Long-Moody functors gives a more conceptual point of view on underlying structure of this construction. For the augmentation ideals, the functor I encodes the consequences of Condition 2.11 of [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF] in the previous framework.

The Long-Moody functors

We fix a coherent Long-Moody system {H, G, G , ς} throughout this section. Notation 2.2.29. When there is no ambiguity, once the Long-Moody system {H, G, G , ς} is fixed, we omit it from the notation.

Let F be an object of Fct (UG, R-Mod) and n be a natural number. The R-module F (n + 1) is simultaneously endowed with a R [G n+1 ]-module structure and a (left) R [H n ]-module structure via the morphism ς n :

H n → G n+1 . As the augmentation ideal I R[H n ] is a right R [H n ]-module, we can consider the tensor product I R[H n ] R[H n ]
F (n + 1). In the following theorem, using this tensor product, we define an endofunctor of Fct (UG, R-Mod).

Theorem 2.2.30. The following assignment defines a functor LM {H,G,G ,ς n } : Fct (UG, R-Mod) → Fct (UG, R-Mod). It is called the (generalised) Long-Moody functor associated with the coherent Long-Moody system {H, G, G , ς}.

• Objects: for F ∈ Obj (Fct (UG, R-Mod)), LM {H,G,G ,ς} (F) : UG → R-Mod is defined by:

-Objects: ∀n ∈ Obj (G), LM {H,G,G ,ς} (F) (n) = I R[H n ] R[H n ]
F (n + 1).

Chapter. Generalised Long-Moody functors

-Morphisms: let n, n ∈ N, such that n ≥ n, and [nn, g] ∈ Hom UG (n, n ). We define

LM {H,G,G ,ς} (F) n -n, g : I R[H n ] R[H n ] F (n + 1) → I R[H n ] R[H n ] F n + 1 to be the unique morphism, denoted by I ([n -n, g]) R[H n ] F (id 1 [n -n, g]),
induced by the universal property of the tensor product

R[H n ] with respect to the R [H n ]-balanced map I R[H n ] × F (n + 1) I([n -n,g])×F(id 1 [n -n,g]) / / I R[H n ] × F (n + 1) R [ H n ] / / I R[H n ] R[H n ] F (n + 1) .
• Morphisms: let F and G be two objects of Fct (UG, R-Mod), and η : F → G be a natural transformation. We define with respect to the R [H n ]-balanced

LM {H,G,G ,ς} (η) : LM {H,G,G ,ς} (F) → LM {H,G,G ,ς} (G)
map I R[H n ] × F (n + 1) id I R[Hn ] ×η n+1 / / I R[H n ] × G (n + 1) R[Hn ] / / I R[H n ] R[H n ] G (n + 1) .
Proof. For this proof, F, G and H are objects of Fct (UG, R-Mod), n, n and n are natural numbers such that n ≥ n ≥ n. We have three points to prove.

1. First, let us show that the assignment of LM (F) on morphisms is well-defined. Consider [nn, g] and

[n -n, g ] such that [n -n, g] = [n -n, g ].
In other words, we assume that there exists ψ ∈ G n -n so that g • (ψ id n ) = g. Since the monoidal product is well-defined on UG by Proposition 2.1.12 and as UG is a full subcategory of UG , we deduce that id 1 [nn, g] = id 1 [nn, g ]. So it follows from Definition 2.2.28 and Assumption 2.2.13 that:

I n -n, g R F id 1 n -n, g = I n -n, g R F id 1 n -n, g . After checking that I ([n -n, g]) R[H n ] F (id 1 [n -n, g]) is a R [H n ]-balanced map, it will follow from this relation that LM (F) ([n -n, g]) = LM (F) ([n -n, g ]).
Therefore, we will have proved that the assignment of LM (F) on morphisms respects the defining equivalence relation of UG.

Proving that I ([n -n, g]) R[H n ] F (id 1 [n -n, g]) is a R [H n ]-balanced map amounts to show that for all h ∈ H n and i ∈ I R[H n ] : I n -n, g (i • h) R[H n ] F id 1 n -n, g = I n -n, g R[H n ] F id 1 n -n, g • F (ς n (h))
Recall from Definition 2.2.28 and Assumption 2.2.13 that:

I n -n, id n (i • h) = I n -n, id n (i) • H n -n, id n (h)
and that the group morphism 

I n : G n → Aut R-Mod I R[H n ] defined
I n -n, g (i • h) = I n -n, g (i) • H n -n, g (h) .
Hence, proving the compatibility with respect to the tensor product amounts to proving that:

F id 1 n -n, g • F (ς n (h)) = F ς n H n -n, g (h) • F id 1 n -n, g . (2.2.3)
Using Condition 2.2.17, we have:

n -n, b G 1,n -n -1 id n • (id n -n ς n (h)) = n -n, ς n H n -n, id n (h) • b G 1,n -n -1 id n . Since (id 1 g) • ς n H n -n, id n (h) = H ([n -n, g]) (h) • (id 1 g
) by Condition 2.2.24, we have:

n -n, (id 1 g) • b G 1,n -n -1 id n • (id n -n ς n (h)) = n -n, ς n H n -n, g (h) • (id 1 g) • b G 1,n -n -1 id n .
The desired equality (2.2.3) follows from the functoriality of F.

2. Let us prove that the assignment LM (F) is a functor. Since I and F are functors and id 1is a group morphism, it follows from the definition that LM (F) (id n ) = id LM(F)(n) . The composition axiom follows from the functorialities of F and I over UG (see Proposition 2.2.28) and from the compatibility of the monoidal structure with composition.

3. The remaining point to check for LM to be a functor is the consistency of our definition on morphisms. For η : F → G a natural transformation, we have:

G id 1 n -n, g • η n+1 = η n +1 • F id 1 n -n, g .
Hence, it follows that:

LM (G) n -n, g • LM (η) n = LM (η) n • LM (F) n -n, g .
Therefore LM (η) is a morphism in the category Fct (UG, R-Mod). Denoting by id F : F → F the identity natural transformation, it is clear that LM (id F ) = id LM(F) . Finally, let us check the composition axiom. Let η : F → G and µ : G → H be natural transformations. Let n be a natural number. Now, because µ and η are morphisms in the category Fct (UG, R-Mod):

LM (µ • η) n = id I R[Hn ] R[H n ] µ n+1 • η n+1 (v) = LM (µ) n • LM (η) n .
Remark 2.2.31. When (UG , , 0 G ) = (UG, , 0 G ) = (Uβ, , 0), Theorem 2.2.30 recovers [Sou17b 

} : Fct (G, R-Mod) → Fct (G, R-Mod).
Let us give some immediate properties of a Long-Moody functor. -: R-Mod -→ R-Mod is right exact for all natural numbers n (see for example [Wei94, Application 2.6.2]), the naturality for morphisms following from the definition of the Long-Moody functor. Similarly, the commutation property with all colimits is a formal consequence of the commutation with all colimits of the tensor products

I R[H n ] R[H n ]
for all natural numbers n. 

Case of free groups

Recall the following result.

Lemma 2.2.34. Let G be a group. The augmentation ideal I R[G] is a projective R [G]-module if and only if G is a free group.

Proof. Let us assume that I R[G] is a projective R [G]-module. The following short exact sequence is a projective resolution of R as a R [G]-module.

0 -→ I R[G] -→ R [G] -→ R -→ 0
Hence the homological dimension of G is one. Thus, according to a theorem due to Swan [Swa69 

I R[H] R[H] M ∼ = I R[H] R[H] R R M ∼ = M ⊕rank(H) .
We denote by Λ rank(H),M the composition of these isomorphisms.

First homology of H functor:

We denote by R : UG → R-Mod the constant functor at R. Assuming that H 0 and H are free groups, applying classical homological algebra (see [Wei94, Corollary 6.2.7]), we deduce that for all natural numbers n:

LM {H,G,G ,ς} (R) (n) ∼ = H 1 (H n , R) . (2.2.4)
This isomorphism is functorial. Indeed, since the homology group H 1 (-, R) defines a functor from the category Gr to the category R-Mod (see for example [Bro12, Section 8]), we can introduce the following functor:

Definition 2.2.37. Let (H, G, G ) be a Long-Moody triple. The homology groups {H 1 (H n , R)} n∈N assemble to define a functor H 1 (H -, R) : UG → R-Mod by the composition:

UG H / / Gr H 1 (-,R) / / R-Mod .
Then, the isomorphism (2.2.4) extends to define a natural equivalence:

Lemma 2.2.38. If H 0 and H are free groups, then as functor UG → R-Mod:

LM {H,G,G ,ς} (R) ∼ = H 1 (H -, R) .
Proof. The naturality follows from the fact that the assignments of the functor H 1 (H -, R) (see Definition 2.2.37) and I (see Definition 2.2.28) on morphisms of UG are both induced by the functor H.

Case of trivial ς

As stated in Remark 2.2.27, any functor H : UG → Gr gives a coherent Long-Moody system {H, G, G , ς -,t }. We have the following property:

Proposition 2.2.39. Let F be an object of Fct (UG, R-Mod). Then, as objects of Fct (UG, R-Mod):

LM {H,G,G ,ς t } (F) ∼ = LM {H,G,G ,ς t } (R) ⊗ R F (1 -) .
Proof. Let n be a natural number. The action induced by ς n,t :

H n → G n+1 of Example 2.2.22 makes F (1 + n) = F (1 n) a trivial R [H n ]-module. A fortiori, there is an R-module isomorphism: I R[H n ] R[H n ] F (n + 1) ∼ = I R[H n ] R[H n ] R R F (1 n) .
It is straightforward to check that this isomorphism is natural.

Applications for mapping class groups of surfaces

In [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF], Long-Moody functors were defined for braid groups B n , which are the mapping class groups of a npunctured disc. Therefore, the groups {G n } n∈N for which it is natural to define the first generalised Long-Moody functors are mapping class groups of surfaces. In this section, we will focus on exhibiting the functors that we recover by applying the Long-Moody functors on the constant functor R. We are interested in these functors for two reasons. First, R is the most basic functor to study. Secondly, considering the particular case of the family of trivial morphisms {ς n,t : H n → G n+1 } n∈N , understanding LM (R) allows us to describe completely LM (F) for all objects F of Fct (UG, R-Mod) by Proposition 2.2.39.

The monoidal groupoid associated with surfaces

Let us first introduce a suitable category for our work, inspired by [RWW17, Section 5.6]. Namely:

Definition 2.3.1. The decorated surfaces groupoid M 2 is the groupoid defined by:

• Objects: decorated surfaces (S, I), where S is a smooth connected compact surface with one boundary com- ponent denoted by ∂ 0 S with I : [-1, 1] → ∂S is a parametrised interval in the boundary and p = 0 ∈ I a basepoint, where a finite number of points is removed from the interior of S (in other words with punctures);

• Morphisms: the isotopy classes of homeomorphisms restricting to the identity on a neighbourhood of the parametrised interval I, freely moving the punctures, denoted by π 0 Homeo I (S, {punctures}).

Remark 2.3.2. A homeomorphism of a surface which fixes an interval in a boundary component is isotopic to a homeomorphism which fixes pointwise the boundary component of the surface. Denote by Ŝ the surface obtained from S ∈ Obj (M 2 ) removing a disc on a neighbourhood of each puncture. Note from [FM11, Section 1.4.2] that π 0 Homeo I (S, {punctures}) identifies with the group π 0 Di f f ∂ 0 Ŝ of isotopy classes of diffeomorphisms of Ŝ fixing the boundary component ∂ 0 and moving freely the other boundary components.

When the surface S is orientable, the orientation on S is induced by the orientation of I. The isotopy classes of homeomorphisms then automatically preserve that orientation as they restrict to the identity on a neighbourhood of I. Notation 2.3.3. When there is no ambiguity, we omit the parametrised interval I from the notation.

We denote by Σ 0 0,0,1 a disc. We fix a unit disc with one puncture denoted by Σ 1 0,0,1 , a torus with one boundary component denoted by Σ 0 1,0,1 and a Möbius band denoted by Σ 0 0,1,1 . The groupoid M 2 has a monoidal structure induced by gluing; for completeness, the definition is outlined below (see [RWW17, Section 5.6.1] for technical details). For two decorated surfaces (S 1 , I 1 ) and (S 2 , I 2 ), the boundary connected sum (S 1 , I 1 ) (S 2 , I 2 ) = (S 1 S 2 , I 1 I 2 ) is defined with S 1 S 2 the surface obtained from gluing S 1 and S 2 along the half-interval I + 1 and the half-interval I - 2 , and

I 1 I 2 = I - 1 I + 2 .
The homeomorphisms being the identity on a neighbourhood of the parametrised intervals I 1 and I 2 , we canonically extend the homeomorphisms of S 1 and S 2 to S 1 S 2 . Hence, we have: 2. Chapter. Generalised Long-Moody functors Proposition 2.3.4. [RWW17, Proposition 5.18] The boundary connected sum induces a strict braided monoidal structure M 2 , , Σ 0 0,0,1 , I . There are no zero divisors in the category M 2 and Aut M 2 Σ 0 0,0,1 = id Σ 0 0,0,1 .

The braiding of the monoidal structure b M 2 (S 1 ,I 1 ),(S 2 ,I 2 ) : (S 1 , I 1 ) (S 2 , I 2 ) → (S 2 , I 2 ) (S 1 , I 1 ) is given by doing half a Dehn twist in a pair of pants neighbourhood of ∂S 1 and ∂S 2 (see [RWW17, Section 5.6.1, Figure 2]). Definition 2.3.5. Let M2 be the full subgroupoid of M 2 of the boundary connected sum on the objects Σ 0 0,0,1 , Σ 1 0,0,1 , Σ 0 1,0,1 and Σ 0 0,1,1 . Let M 2 be the skeleton of M2 .

Remark 2.3.6. Let S be an object of the groupoid M 2 . Then, there exist g, s, c ∈ N such that there is an homeomorphism:

S ∼ = s Σ 1 0,0,1 g Σ 0 1,0,1 c Σ 0 0,1,1 .
A fortiori, by Proposition 2.3.4:

Proposition 2.3.7. The groupoid M 2 , , Σ 0 0,0,1 is small braided monoidal with no zero divisors and such that Aut M 2 Σ 0 0,0,1 = id Σ 0 0,0,1 . The braiding of the monoidal structure is denoted by b M 2 -,-.

By Definition 2.1.3, we denote by UM 2 Quillen's bracket construction on the groupoid M 2 , , Σ 0 0,0,1 ; by Proposition 2.1.12 we obtain a pre-braided strict monoidal category UM 2 , , Σ 0 0,0,1 .

Fundamental group functor

Let us introduce a non-trivial functor with UM 2 as source category. The isotopy classes of the homeomorphisms of a surface S ∈ Obj (M 2 ) act on its fundamental group π 1 (S, p) (see for example [FM11, Chapter 4]).

Notation 2.3.8. We denote this action by a S : π 0 Homeo I (S, {punctures}) → Aut Gr (π 1 (S, p)). So, we define a functor π 1 (-, p) : M 2 , , Σ 0 0,1 → gr assigning π 1 (-, p) (S) = π 1 (S, p) on objects and for all ϕ ∈ π 0 Di f f ∂ (S), π 1 (-, p) (ϕ) = a S (ϕ). Remark 2.3.9. In Notation 2.3.8, we fix maps π 0 Homeo I (S, {punctures}) → Aut Gr (π 1 (S, p)) .

Note that we could make other choices of such morphisms so that the following study still works. We refer to Remark 2.3.42 for more details about this fact for the particular case of braid groups.

Notation 2.3.10. Let gr denote the full subcategory of Gr of finitely-generated free groups. The free product * : gr × gr → gr defines a monoidal structure on gr, with 0 the unit, denoted by (gr, * , 0). Lemma 2.3.11. The functor π 1 (-, p) : M 2 , , Σ 0 0,0,1 → (gr, * , 0 Gr ) is strict monoidal.

Proof. By Van Kampen's theorem (see for example [Hat02, Section 1.2]), we have that, for S, S ∈ Obj (M 2 ):

π 1 S S, p ∼ = π 1 S , p * π 1 (S, p) .
It is clear that π 0 Homeo I (S, {punctures}) (resp. π 0 Homeo I (S , {punctures})) acts trivially on π 1 (S , p) (resp. π 1 (S, p)) in π 1 (S S, p). Therefore, id π 1 (-,p) * id π 1 (-,p) is a natural equivalence.

Proposition 2.3.12. The functor π 1 (-, p) of Lemma 2.3.11 extends to a functor π 1 (-, p) : UM 2 → gr by assigning for all S, S ∈ Obj (M 2 ):

π 1 (-, p) S , id S S = ι π 1 (S ,p) * id π 1 (S,p) .

Proof. It follows from the definitions that relation (2.1.1) of Lemma 2.1.8 is satisfied for π 1 (-, p) Σ 1 0,0,1 , id Σ 1 0,0,1 S , π 1 (-, p) Σ 0 1,0,1 , id Σ 0 1,0,1 S and π 1 (-, p) Σ 0 0,1,1 , id N Σ 0 1,1 S .

Let S and S be objects of M 2 . Let ϕ ∈ π 0 Homeo I (S, {punctures}) and ϕ ∈ π 0 Homeo I (S , {punctures}). Accord- ing to Lemma 2.3.11:

π 1 (-, p) ϕ ϕ • π 1 (-, p) S , id S S = π 1 (-, p) ϕ * π 1 (-, p) (ϕ) • π 1 (-, p) S , id S S .
Hence, by definition of the morphism ι π 1 (S ,p) , we have:

π 1 (-, p) ϕ ϕ • π 1 (-, p) S , id S S = π 1 (-, p) S , id S S • π 1 (-, p) (ϕ) .
Relation (2.1.2) of Lemma 2.1.8 is thus satisfied, which implies the desired result.

Modifying the orientable or non-orientable genus

We fix the number s of punctures throughout Section 2.3.3.

Orientable surfaces:

Let M +,s 2 be the full subgroupoid of M 2 of orientable surfaces with s punctures. According to Proposition 2.3.6, the objects are Σ s n,0,1 n∈N . Therefore, Obj M +,s 2 ∼ = N and the groupoid M +,s 2 is finitely generated by the monoidal structure in M 2 , , Σ 0 0,0,1 . Hence, by Proposition 2.3.7 Assumption 2.2.1 is satisfied for the groupoid M 2 , , Σ 0 0,0,1 .

Notation 2.3.13. Denote the mapping class group π 0 Homeo I Σ s n,0,1 , {punctures} by Γ s n,1 , for all n ∈ N.

Let H be the group π 1 Σ 0 1,0,1 , p ∼ = F 2 and H 0 be the group π 1 Σ s 0,0,1 , p ∼ = F s . and therefore, H n ∼ = π 1 Σ s n,0,1 , p ∼ = F 2n+s for all natural numbers n. We denote by π 1 Σ s -,0,1 , p the associated functor of Assumption 2.2.13. Proposition 2.3.14. π 1 Σ s -,0,1 , p , M +,s 2 , M 2 , ς -,t is a coherent Long-Moody system, where ς n,t : π 1 Σ s n,0,1 , p → Γ s n+1,1 is the trivial morphism for all natural numbers n (see Example 2.2.22).

Proof. The functor H g extends to give a functor π 1 Σ s -,0,1 , p : UM +,s 2 → Gr by Proposition 2.3.12, so that Assumption 2.2.13 is satisfied. Thus the result follows from Remark 2.2.27.

Example 2.3.15. We denote by H 1 Σ s -,0,1 , R the functor induced by the functor H 1 (H -, R) of Proposition2.2.37. For all natural numbers n and s = 0, the action of Γ n,1 on H 1 Σ 0 n,0,1 , R is the symplectic representation of the mapping class group Γ s n,1 . We deduce from Lemma 2.2.38 that:

H 1 Σ s -,0,1 , R ∼ = LM {π1(Σ s -,0,1 ,p),M +,s 2 ,M 2 ,ς -,t } (R) . (2.3.1)
Remark 2.3.16. This functor was introduced by Cohen and Madsen in [START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF] and by Boldsen in [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF]. Furthermore, the homology of the mapping class groups Γ n,1 for a large natural number n with coefficients H 1 Σ 0 n,0,1 , R were computed by Harer in [Har91, Section 7] (see also the forthcoming work [START_REF] Soulié | Computations of homology with twisted coefficients for mapping class groups[END_REF]).

Assume that R = C and s = 0. Since the morphisms Γ 0 n+1,1 → Aut π 1 Σ 0 n+1,0,1 , p are non-trivial for natural numbers n ≥ 2, the action of Γ 0 n,1 on LM {π1(Σ 0 -,0,1 ,p),M +,s 52 2. Chapter. Generalised Long-Moody functors

Non-orientable surfaces:

Let M -,s 2 be the full subgroupoid of M 2 on non-orientable surfaces with s punctures. According to Proposition 2.3.6, its objects are Σ s 0,n,1 n∈N . Therefore, Obj M -,s 2 ∼ = N and the groupoid M -,s 2 is finitely generated by the monoidal structure of M 2 , , Σ 0 0,0,1 . Thus, by Proposition 2.3.7, Assumption 2.2.1 is satisfied using the groupoid M 2 , , Σ 0 0,0,1 .

Notation 2.3.17. Denote the mapping class group π 0 Homeo I Σ s 0,n,1 , {punctures} by N s n,1 for all n ∈ N.

Let H be the group π 1 Σ 0 0,1,1 , p ∼ = F 1 and H 0 be π 1 Σ s 0,0,1 , p ∼ = F s , so that H n ∼ = π 1 Σ s 0,n,1 , p ∼ = F n+s for all natural numbers n. We denote by π 1 Σ s 0,-,1 , p the associated functor of Assumption 2.2.13.

Proposition 2.3.18. The setting π 1 Σ s 0,-,1 , p , M -,s 2 , M 2 , ς -,t is a coherent Long-Moody system, where ς n,t : π 1 Σ s 0,n,1 , p → N s n+1,1 is the trivial morphism for all natural numbers n (see Example 2.2.22).

Proof. The functor π 1 Σ s 0,-,1 , p extends to give a functor π 1 Σ s 0,-,1 , p : UM -,s 2 → Gr by Proposition 2.3.12; so that Assumption 2.2.13 is satisfied. Hence the result follows from Remark 2.2.27.

Example 2.3.19. We denote by H 1 Σ s 0,-,1 , R the functor induced by the functor H 1 (H -, R) of Proposition 2.2.37. We deduce from Lemma 2.2.38 that:

H 1 Σ s 0,-,1 , R ∼ = LM {π1(Σ s 0,-,1 ,p),M -,s 2 ,M 2 ,ς -,t } (R) .
Remark 2.3.20. Proposition 2.2.39 ensures that the functor LM {π1(Σ s 0,-,1 ,p),M -,s 2 ,M 2 ,ς -,t } is determined by H 1 Σ s 0,-,1 , R .

Remark 2.3.21. In [START_REF] Stukow | The twist subgroup of the mapping class group of a nonorientable surface[END_REF], Stukow computes the homology groups H 1 N n,1 , H 1 Σ 0 0,n,1 , Z for all natural numbers n.

Modifying the number of punctures

We fix a natural number g throughout Section 2.3.4, and let M g,0 2 be the full subgroupoid of M 2 on surfaces with orientable genus g and non-orientable genus 0. According to Proposition 2.3.6, the objects of M g,0 2 are Σ n g,0,1 n∈N . Therefore, Obj M g,0 2 ∼ = N and the groupoid M g,0 2 is finitely generated by the monoidal structure in M 2 , , Σ 0 0,0,1 . By Proposition 2.3.7, the groupoid M 2 , , Σ 0 0,0,1 satisfies Assumption 2.2.1. Let H be the group π 1 Σ 1 0,0,1 , p ∼ = F 1 and H 0 be the group π 1 Σ 0 g,0,1 , p ∼ = F 2g . Therefore, H n = π 1 Σ n g,0,1 , p ∼ = F n+2g for all natural numbers n. We denote by π 1 Σ - g,0,1 , p the associated functor of Assumption 2.2.13 defined by π 1 Σ - g,0,1 , p (n) = π 1 Σ n g,0,1 , p for all natural numbers n. To define the group morphisms ς n : π 1 Σ n g,0,1 , p → Γ n g,0,1 n∈N considered in this section, we first need to recall some classical facts about mapping class groups of surfaces.

Notation 2.3.22. For all natural numbers n, we denote by Γ

[1],n g,0,1 the subgroup of the mapping class group

π 0 Homeo I Σ 1 0,0,1 Σ n g,0,1 , {punctures} ∼ = Γ 1+n g,0,1
where the puncture of the surface Σ 1 0,0,1 in Σ 1 0,0,1 Σ n g,0,1 is fixed. Hence, there is a canonical embedding E : Γ

[1],n g,0,1 → Γ 1+n g,0,1 .

Remark 2.3.23. Denoting by Σ

[x],n g,0,1 the surface Σ n g,0,1 with a marked point denoted by x, the group Γ

[1],n g,0,1 is isomorphic to the isotopy classes of homeomorphisms of the surface Σ [x],n g,0,1 restricting to the identity on the boundary component, freely moving the punctures and fixing pointwise the marked point x (see [FM11, Section 4.1.2]).

Recall that for all natural numbers n and g, π 1 Σ n g,0,1 , x is a free group with generators { f i } i∈{1,...,n+2g} . Each

generator f i is represented by a simple closed curve α f i in Σ [x],n g,0,1 based at x. Let N ( f ) φ ∼ = S 1 × [-1
, 1] be a tubular neighbourgood of the curve α f i . Denote by f - i and f + i the isotopy classes of the curves φ -1 S 1 × {-1} and φ -1 S 1 × {1} . The group morphism Push :

π 1 Σ n g,0,1 , x → Γ [1],n g,0,1 is defined by sending f i to τ f - i • τ -1 f + i
, where τ α denotes the Dehn twist along a simple closed curve α (see [START_REF] Farb | A Primer on Mapping Class Groups (PMS-49)[END_REF]Fact 4.7]). The Birman exact sequence uses the map Push to describe the effect of forgetting a marked point fixed by the mapping class group. Namely:

Theorem 2.3.24. [FM11, Theorem 4.6] Let n be a natural number such that 2g + n ≥ 2. The following sequence is exact:

1 / / π 1 Σ n g,0,1 , x Push / / Γ [1],n g,0,1 Forget / / Γ n g,0,1 / / 1 (2.3.2)
where the map Forget : Γ

[1],n g,0,1 → Γ n g,0,1 is induced by forgetting that the point x is marked.

Lemma 2.3.25. Let n be a natural number such that 2g + n ≥ 2. The Birman exact sequence splits, hence induces an isomorphism Γ

[1],n g,0,1

B ∼ = π 1 Σ n g,0,1 , p a Σ n g,0,1
Γ n g,0,1 (where a Σ n g,0,1 is introduced in Notation 2.3.8).

Proof. Recall that there is an homeomorphism Σ

[x],n g,0,1 ∼ = Σ [x] 0,0,1 Σ n g,0,1 . Hence, the embedding of Σ n g,0,1 into Σ [x],n g,0,1
as the complement of the disc Σ

[x] 0,0,1 with the marked point x induces an injective morphism Γ n g,0,1 → Γ

[1],n g,0,1 . The action of Γ n g,0,1 on π 1 Σ n g,0,1 , x is denoted by a x Σ n g,0,1

. This provides a splitting of the exact sequence (2.3.2) and hence we have an isomorphism:

Γ [1],n g,0,1 ∼ = π 1 Σ n g,0,1 , x a x Σ n g,0,1 Γ n g,0,1 .
Recall that the definition of boundary connected sum in M 2 (see Proposition 2.3.4) implies that the point p ∈ ∂Σ

[x],n g,0,1 belongs to the intersection of ∂Σ

[x],0 0,0,1 and ∂Σ n g,0,1 in Σ

[x],0 0,0,1 Σ n g,0,1 . Hence we can consider a path γ in Σ

[x],0 0,0,1 connecting the point p to x. Moving the point p to x along such a path γ induces an isomorphism:

λ n : π 1 Σ n g,0,1 , p ∼ = → π 1 Σ n g,0,1 , x .
Since Γ n g,0,1 acts trivially on the disc Σ

[x] 0,0,1 with the marked point x in Σ [x] 0,0,1 Σ n g,0,1 ∼ = Σ [x],n
g,0,1 , we deduce that for all φ ∈ Γ n g,0,1 :

λ n • a Σ n g,0,1 (φ) = a x Σ n g,0,1 (φ) • λ n .
Hence, the following morphism is well-defined with respect to the semidirect product structure:

π 1 Σ n g,0,1 , p a Σ n g,0,1 Γ n g,0,1 -→ π 1 Σ n g,0,1 , x a x Σ n g,0,1 Γ n g,0,1 ( f , φ) -→ (λ n ( f ) , φ) .
This is an isomorphism by the five lemma. Let n be a natural number such that 2g + n ≥ 2. We define the morphism ς n,1 : π 1 Σ n g,0,1 , p → Γ 1+n g,0,1 to be the composition:

π 1 Σ n g,0,1 , p → π 1 Σ n g,0,1 , p a Σ n g,0,1 Γ n g,0,1 B → Γ [1],n g,0,1 E → Γ 1+n g,0,1 .
If g = 0, we define ς 0,1 : π 1 Σ 0 0,0,1 , p → 0 Gr to be the trivial morphism and ς 1,1 : π 1 Σ 1 0,0,1 , p → B 2 to be the morphism sending the generator f 1 of π 1 Σ 1 0,0,1 , p to σ 2 1 (where σ 1 denotes the Artin generator of the braid group on two strands B 2 ).

Remark 2.3.27. For 2g + n ≥ 2, a generator f i of π 1 Σ n g,0,1 , p ∼ = f 1 , . . . , f n+2g is represented by a simple closed curve in Σ n g,0,1 based at p. Using a path γ in Σ

[x],0 0,0,1 connecting the point p to x, we thus associate to the generator f i a simple closed curve α f i in Σ

[x],n g,0,1 based at the marked point x filling in the additional puncture. By the definitions of the morphisms B (see Lemma 2.3.25) and E (see Notation 2.3.22), the generator f i is sent by 

ς n,1 to τ f - i • τ -1 f + i ,
+ n ≥ 2, then the composition Γ n g,0,1 → π 1 Σ n g,0,1 , p a Σ n g,0,1 Γ n g,0,1 B → Γ [1],n g,0,1 E → Γ 1+n g,0,1 is the morphism id Σ 1 0,0,1 -: Γ n g,0,1 → Γ 1+n g,0,1 .
Hence, the following diagram is commutative:

π 1 Σ n g,0,1 , p / / ς n,1 ( ( 
π 1 Σ n g,0,1 , p a Σ n g,0,1 Γ n g,0,1 E •B Γ n g,0,1 ? _ o o id Σ 1 0,0,1 - x x Γ 1+n
g,0,1 .

If g = 0, the braid groups B 0 and B 1 being the trivial group, Condition 2.2.24 is easily checked.

Furthermore, we have the property:

Lemma 2.3.29. The morphism ς n,1 satisfies Condition 2.2.17 for any natural number n.

Proof. If g = 0 and n ≤ 1, the result follows from [Sou17b, Proposition 2.8]. Assume that 2g + n ≥ 2. Let us fix basis f 1 , . . . , f n+2g of F n+2g ∼ = π 1 Σ n g,0,1 , p and f 1 , . . . , f 1+n+2g of F 1+n+2g ∼ = π 1 Σ 1+n g,0,1 , p . Namely, a generator f i is represented by a simple loop either encircling a meridian or a parallel of one of the copies of the torus Σ 0 1,0,1 , or else encircling a circle around one of the copies of the one punctured disc Σ 1 0,0,1 . By our conventions, the generator f i of π 1 Σ n g,0,1 , p is sent through

H s 1, id n+1 = ι π 1 (Σ 1 0,0,1 ,p) * id π 1 Σ n g,0,1 ,p : π 1 Σ n g,0,1 , p → π 1 Σ 1+n g,0,1 , p
to the generator f 1+i of π 1 Σ 1+n g,0,1 , p . So according to Remark 2.2.18, it is enough to prove that, as elements of Γ 2+n g,0,1 :

ς n+1,1 ( f 1+i ) • b M 2 Σ 1 0,0,1 ,Σ 1 0,0,1 -1 id n = b M 2 Σ 1 0,0,1 ,Σ 1 0,0,1 -1 id n • (id 1 ς n,1 ( f i )) . (2.3.3) Figure 2.3.1: Proof of equality (2.3.3)
Let α f i (resp. β f 1+i ) be the simple loop associated to the generator f i (resp. f 1+i ) in Σ

[1],n g,0,1 (resp. Σ

[1],1+n g,0,1 ) based at the marked point filling in the additional puncture (see Remark 2.3.27). Recall that:

ς n,1 ( f i ) = τ f - i • τ -1 f + i and ς n+1,1 ( f 1+i ) = τ f - 1+i • τ -1 f + 1+i
where f - i and f + i (resp. f - 1+i and f + 1+i ) are the isotopy classes of the simple closed curves in Σ

[1],n g,0,1 (resp. Σ

[1],1+n g,0,1 ) obtained by pushing α f i (resp. β f 1+i ) off itself to the left and right. Since b M 2 Σ 1 0,0,1 ,Σ 1 0,0,1 is given by doing half a Dehn twist in a pair of pants neighbourhood of ∂Σ 1 0,0,1 and

∂Σ 1 0,0,1 , applying b M 2 Σ 1 0,0,1 ,Σ 1 0,0,1 -1 id n sends α f i to β f 1+i , f - i to f - 1+i and f + i to f + 1+i (see Figure 2.3.1). Hence conjugating id Σ 1 0,0,1 τ f - i • τ -1 f + i by b M 2 Σ 1 0,0,1 ,Σ 1 0,0,1 -1 id n gives τ f - 1+i • τ -1 f + 1+i . A fortiori the equality (2.3.3) is satisfied.
Corollary 2.3.30. With the previous assignments and notation,

π 1 Σ - g,0,1 , p , M g,0 2 , M 2 , ς -,1 is a coherent Long- Moody system.
Proof. We have already checked Assumption 2.2.1. Moreover, the functor π 1 Σ - g,0,1 , p extends to give a functor

π 1 Σ - g,0,1 , p : UM g,c
2 → Gr by Proposition 2.3.12 so that Assumption 2.2.13 is satisfied. Conditions 2.2.24 and 2.2.17 are checked in Lemmas 2.3.28 and 2.3.29.

Example 2.3.31. We denote by H 1 Σ - g,0,1 , R the functor induced by the functor H 1 (-, R) of Proposition 2.2.37. We deduce from Lemma 2.2.38 that: For instance, let M 0 2,g,p be the full subgroupoid of M 2 on surfaces Σ n n,0,1 n∈N (see Proposition 2.3.6). Let H be the group π 1 Σ 1 1,0,1 , p ∼ = F 3 and H 0 be the trivial group π 1 Σ 0 0,0,1 , p , and a fortiori H n = π 1 Σ n n,0,1 , p = F 3n for all natural numbers n. We denote by π 1 Σ - -,0,1 , p the associated functor of Assumption 2.2.13. Thanks to the canonical embedding (using Notation 2.3.22):

H 1 Σ - g,0,1 , R ∼ = LM π 1 Σ - g,0,1 ,p ,M g,0 2 ,M 2 ,ς -,1 ( 
E : Γ [1],n n,0,1 E → Γ 1+n n,0,1 → π 0 Homeo I Σ 0 1,0,1 Σ n n,0,1 , {punctures} ∼ = Γ 1+n 1+n,0,1 ,
we define the morphism ς g,p n,1 : π 1 Σ n n,0,1 , p → Γ 1+n 1+n,0,1 to be the composition using Lemma 2.3.25:

π 1 Σ n n,0,1 , p → π 1 Σ n n,0,1 , p a S Γ n n,0,1 B ∼ = Γ [1],n n,0,1 E → Γ 1+n 1+n,0,1 .
Repeating mutatis mutandis the proofs of Lemmas 2.3.28 and 2.3.29 and of Corollary 2.3.30 shows that

π 1 Σ - -,0,1 , p , M 0 2,g,p , M 2 , ς g,p -,1
is a coherent Long-Moody system. Denoting by H 1 Σ - -,0,1 , R the functor induced by H 1 (-, R) of Proposition 2.2.37, we deduce from Lemma 2.2.38 that:

H 1 Σ - -,0,1 , R ∼ = LM π 1 (Σ - -,0,1 ,p),M 0 2,g,p ,M 2 ,ς g,p -,1 (R) .
Since the morphisms ς g,p n,1 are not trivial, we obtain families of representations of the mapping class groups Γ n n,0,1 n∈N by iterating LM π 1 (Σ - -,0,1 ,p),M 0 2,g,p ,M 2 ,ς g,p n,1 which are not determined by H 1 Σ - -,0,1 , R using Proposition 2.2.39.

Surface braid groups

We fix a natural number g throughout Section 2.3.5; let B 2 (resp. B g,0

2 ) be the subgroupoid of M 2 (resp. M g,0

2 ) with the same objects and with morphisms those that become trivial forgetting all the punctures. Namely, for all objects Σ n g,0,1 of M 2 , we have the following short exact sequence (see for example [GJP, Section 2.4]):

1 / / B g n / / Γ n g,0,1 / / Γ 0 g,0,1 / / 1
where B g n = B Σ n g,0,1 denotes the braid group of the surface Σ n g,0,1 . Note that Obj B g,0 2 ∼ = N. The monoidal structure (M 2 , , 0) restricts to a braided monoidal structure on the subgroupoid B 2 , denoted in the same way (B 2 , , 0). Remark that the groupoid B g,0 2 is finitely generated by the monoidal structure in B 2 , , Σ 0 0,0,1 . By Proposition 2.3.7, Assumption 2.2.1 is thus satisfied using the groupoid B 2 , , Σ 0 0,0,1 . Let H be the free group π 1 Σ 1 0,0,1 , p ∼ = F 1 and H 0 be the free group π 1 Σ 0 g,0,1 , p ∼ = F 2g . For all natural numbers n, we consider the restriction

π 1 (-, p) UB 2 : UB 2 → UM 2 π 1 (-,p)
-→ gr defined by the morphisms ,n the subgroup of B Σ 1 0,0,1 Σ n g,0,1 where the puncture of the surface Σ 1 0,0,1 is fixed. This group

a b Σ n g,0,1 : B g s → Γ n g,0,1 a Σ n g,0,1 -→ π 1 Σ n g,
B g [1]
,n is also known as the intertwining (1, n)-braid group on the surface Σ n g,1 (see for example [AK10, Section 1]) which is the kernel of the morphism:

Γ [1],n g,1 → Γ [1]
g,1 → 1 defined by filling in the n punctures. Hence, there is a canonical embedding:

E b : B g [1],n → ker Γ 1+n g,0,1 → Γ 0 g,0,1 ∼ = B g 1+n .
Lemma 2.3.35. For all natural numbers n, there is an isomorphism:

B g [1],n B ∼ = π 1 Σ n g,0,1 , p a b Σ n g,0,1 B g n .
Proof. Recall the isomorphism of Lemma 2.3.28:

Γ [1],n g,0,1 B ∼ = π 1 Σ n g,0,1 , p a Σ n g,0,1 Γ n g,0,1 .
The desired isomorphism is a consequence of the universal property of the kernel of the morphism

Γ [1],n g,0,1 → Γ [1] g,0,1 → 1.
Definition 2.3.36. Let n be a natural number such that 2g + n ≥ 2. We define the morphism ς b n,1 : π 1 Σ n g,0,1 , p → B g 1+n to be the composition:

π 1 Σ n g,0,1 , p → π 1 Σ n g,0,1 , p a b Σ n g,0,1 B g n B → B g [1],n E b → B g 1+n .
If g = 0, we define ς 0,1 : π 1 Σ 0 0,0,1 , p → 0 Gr to be the trivial morphism and ς 1,1 : π 1 Σ 1 0,0,1 , p → B 2 to be the morphism sending the generator f 1 of π 1 Σ 1 0,0,1 , p to σ 2 1 (where σ 1 denotes the are not trivial, the computation of LM

H 1 Σ - g,0,1 , R B 2 ∼ = LM π 1 Σ - g,0,1 ,p b ,B g,0 2 ,B 2 ,ς -,1 (R) .
π 1 Σ - g,0,1 ,p b ,M g,0 2 ,B 2 , on an object F of Fct UB g,0 2 , R-Mod is not a priori determined by H 1 Σ - g,0,1 , R B 2
using Proposition 2.2.39.

Hence, the iterates of the Long-Moody functor LM

π 1 Σ - g,0,1 ,p b ,M g,0 2 ,B 2 ,ς n,1
define new representations for surface braid groups. As far as the author knows, there are very few explicit examples of representations of surfaces braid groups for g ≥ 1.

The case of braid groups: Assuming that g = 0 and that H n = π 1 Σ n 0,0,1 , p ∼ = F n , we recover the results of [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]. Indeed, in this case we consider the category UB 0,0 2 = Uβ, which is Quillen's bracket construction on the braid groupoid β (see Notation 2.0.1). The choice ς b n,1 : F n → B n+1 of Definition 2.3.36 corresponds to the morphism introduced in [Sou17b, Example 2.7]:

ς n,1 : F n -→ B n+1 g i -→ σ 2 1 if i = 1 σ -1 1 • σ -1 2 • • • • • σ -1 i-1 • σ 2 i • σ i-1 • • • • • σ 2 • σ 1 if i ∈ {2, . . . , n} .
In Notation 2.3.8, we fixed the actions This way, we can recover all the Long-Moody functors introduced in [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]. In addition, the new framework developped in the present paper recovers even more families of representations of braid groups that we could not obtain with the work of [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]. Let us give an example illustrating this fact.

a Σ n 0,0,1 : B n ∼ = Γ n 0,0,1 → Aut Gr π 1 Σ n 0,
Example 2.3.43. Let n be a natural number. Using the terminology of [START_REF] Wajnryb | Artin groups and geometric monodromy[END_REF], there is a classical geometric embedding W n : B 2n+1 → Γ 0 n,0,1 that sends the standard generators of the braid group to Dehn twists around a fixed system of meridians and parallels on the surface Σ 0 n,0,1 (we refer to [BT12, Section 1] for more details about this embedding). Let W be the subgroupoid of M +,0 Hence, the functor π 1 Σ 0 -,0,1 , p of Section 2.3.3.1 provides a functor π 1 Σ 0 -,0,1 , p b,2

: UW → UM , W , M +,0 2 , ς -,t is a coherent Long-Moody system. Then, it is clear from Lemma 2.2.38 that:

H 1 Σ 0 -,0,1 , R UW ∼ = LM π 1 (Σ 0 -,0,1 ,p) b,2 ,W ,M 2 ,ς n,t (R)
where H 1 Σ 0 -,0,1 , R UW denotes the restriction of the functor H 1 Σ 0 -,0,1 , R to the category UW. In [CS17], Callegaro and Salvetti compute the homology of braid groups with twisted coefficients given by the functor introduced by

H 1 Σ 0 -,
Bellingeri in [START_REF] Bellingeri | On presentations of surface braid groups[END_REF]. Following the situation for braid groups, we can consider functors of type

t -1 • LM H b s ,B g,0 2 ,ς -,1 t • C t ±1
where, for an object

F of Fct UB g,0 2 , R-Mod , t • F : UB g,0 2 → C t ±1
-Mod is the functor defined for all natural numbers n by t • F (n) = F (n) and such that:

• for braid generators {σ i } i∈{1,...,n-1} of B g n , (t • F) (σ i ) = F (σ i );
• for generators {a i } i∈{1,...,g} and {b i } i∈{1,...,g} of B g n , (t

• F) (a i ) = t • F (a i ) and (t • F) (b i ) = t • F (b i ) .
These functors induce new representations of surface braid groups. The analogous approach for braid groups (see Proposition 2.3.41) allowed us to recover inter alia the unreduced Burau representations. Note that the restriction of the linear representations induced by t -1 • LM H,B g,0 2 ,ς n,1 t • C t ±1 (or by any iteration of such type of functors) do not restrict to the unreduced Burau or Lawrence-Krammer-Bigelow representations for braid groups by [BGG17, Section 5].

Strong and weak polynomial functors

This section introduces the notions of (very) strong and weak polynomial functors with respect to the framework of the present paper. The first subsection presents the notions of strong and very strong polynomial functors and their first properties. We thus extend [Sou18, Section 3] to a slightly larger framework. In the second subsection, we introduce the notion weak polynomial functors for pre-braided monoidal categories with an initial object and study their basic properties, generalising the previous notion of [DV17, Section 1].

Strong and very strong polynomial functors

For the remainder of Section 2.4.1, (M , , 0) is a pre-braided strict monoidal small category where the unit 0 is an initial object. We consider M a full subcategory of (M , , 0). Finally, we fix A an abelian category.

In this section, we introduce the notions of strong and very strong polynomiality for objects in the functor category Fct (M, A). In [Sou17b, Section 3], a framework is given for defining the notions of strong and very strong polynomial functors in the category Fct (M, A), where M is a pre-braided monoidal category where the unit is an initial object. It generalises the previous work of Djament and Vespa in [DV17, Section 1]. We also refer to [START_REF] Palmer | A comparison of twisted coefficient systems[END_REF] 60 2. Chapter. Generalised Long-Moody functors for a comparison of the various instances of the notions of twisted coefficient system and polynomial functor. This section thus extends the definitions and properties of [Sou17b, Section 3] to the present larger framework, the various proofs being direct generalisations of this previous work.

Notation 2.4.1. We denote by Obj (M ) the set of objects m of M such that m m is an object of M for all objects m of M.

Let m ∈ Obj (M ) . We denote by τ m : Fct (M, A) → Fct (M, A) the translation functor defined by τ m (F) = F (m -), i m : Id → τ m the natural transformation of Fct (M, R-Mod) induced by the unique morphism ι m : 0 → m. We define δ m = coker (i m ) the difference functor and κ m = ker (i m ) the evanescence functor. The following basic properties are direct generalisations of [Sou17b, Propositions 3.2 and 3.5]: Proposition 2.4.2. Let m, m ∈ Obj (M ) . Then the translation functor τ m is exact and we have the following exact sequence of endofunctors of Fct (M, A):

0 -→ κ m Ω m -→ Id i m -→ τ m ∆ m -→ δ m -→ 0.
(2.4.1)

Moreover, for a short exact sequence 0 -→ F -→ G -→ H -→ 0 in the category Fct (M, A), there is a natural exact sequence in the category Fct (M, A):

0 -→ κ m (F) -→ κ m (G) -→ κ m (H) -→ δ m (F) -→ δ m (G) -→ δ m (H) -→ 0. (2.4.2)
In addition, the functors τ m and τ m commute up to natural isomorphism and they commute with limits and colimits; the difference functors δ m and δ m commute up to natural isomorphism and they commute with colimits; the functors κ m and κ m commute up to natural isomorphism and they commute with limits; the functor τ m commute with the functors δ m and κ m up to natural isomorphism.

We can define the notions of strong and very strong polynomial functors using Proposition 2.4.2. Namely:

Definition 2.4.3. We recursively define on d ∈ N the categories P ol strong d (M, A) and V P ol d (M, A) of strong and very strong polynomial functors of degree less than or equal to d to be the full subcategories of Fct (M, A) as follows:

1. If d < 0, P ol strong d (M, A) = V P ol d (M, A) = {0};
2. if d ≥ 0, the objects of P ol strong d (M, A) are the functors F such that for all m ∈ Obj (M ) , the functor δ m (F) is an object of P ol strong d-1 (M, A); the objects of V P ol d (M, A) are the objects F of P ol d (M, A) such that κ m (F) = 0 and the functor δ m (F) is an object of V P ol d-1 (M, A) for all m ∈ Obj (M ) .

For an object F of Fct (M, A) which is strong (respectively very strong) polynomial of degree less than or equal to n ∈ N, the smallest natural number d ≤ n for which F is an object of P ol strong d (M, A) (resp. V P ol d (M, A) ) is called the strong (resp. very strong) degree of F.

Finally, let us recall the following useful properties of the categories associated with strong and very strong polynomial functors. They are direct generalisations of [Sou17b, Propositions 3.9 and 3.19].

Proposition 2.4.4. We assume that the category M is finitely generated by the monoidal structure in (M , , 0). We denote by E a finite generating set of M.

Let d be a natural number. The category P ol (M, A) (resp. V P ol d (M, A)) if and only if δ e (F) is an object of P ol strong d-1 (M, A) (resp. κ e (F) = 0 and δ e (F) is an object of V P ol n-1 (M, A)), for all objects e of E ∩ Obj (M ) .

Weak polynomial functors

We deal here with the concept of weak polynomial functor. It is introduced by Djament and Vespa in [DV17, Section 1] in the category Fct (S, A) where S is a symmetric monoidal category where the unit is an initial object, and A is a Grothendieck category. Weak polynomial functors form a thick subcategory of Fct (S, A) (see Defini- tion 2.4.13 and Proposition 2.4.16). In particular, this notion happens to be more appropriate to study the stable behaviour for objects of the category Fct (S, A) (see [DV17, Section 5], [Dja17] and Remark 2.5.39).

We adapt the definition and properties of weak polynomial functors in the present larger setting. In particular, the notion of weak polynomial functor will be well-defined for the category Fct (UG, R-Mod) where UG is Quillen's bracket construction applied to the groupoid G given by a reliable Long-Moody system {H, G, G , ς}. We refer the reader to [Gab62, Chapitres II et III] for general notions on abelian categories and quotient abelian category which will be necessary for this section. A Grothendieck category is a cocomplete abelian category which admits a generator and such that direct limits are exact.

For the remainder of Section 2.4.2, we assume that the abelian category A is a Grothendieck category. We recall that we consider (M , , 0) a pre-braided strict monoidal small category where the unit 0 is an initial object and M a full subcategory of (M , , 0) finitely generated by the monoidal structure. Remark 2.4.5. We recall that therefore the functor category Fct (M, A) is a Grothendieck category (see [START_REF] Gabriel | Des catégories abéliennes[END_REF]). Definition 2.4.6. [DV17, Definition 1.10] Let F be an object of Fct (M, A). The subfunctor

∑ m∈Obj(M ) κ m F of F is denoted by κ (F).
The functor F is said to be stably null if κ (F) = F. Stably null objects of Fct (M, A) form a full subcategory of Fct (M, A), denoted by Sn (M, A).

We have the following basic properties:

Lemma 2.4.7. The functor κ is left exact. Moreover, the functor κ (F) is an object of Sn (M, A) for all objects F of Fct (M, A).

Proof. A filtration on the evanescence functors {κ m } m∈Obj(M ) is given by the inclusions κ n → κ n n and κ n → κ n n induced by n → n n and n → n n. Hence, κ is left exact as the filtered colimit of the left exact functors {κ m } m∈Obj(M ) . For F an object of Fct (M, A), κ m F is an object of Sn (M, A) for all m ∈ Obj (M ) since filtered colimit commute with finite limits (see [ML13, Chapter IX, section 2, Theorem 1]). Hence, the second result follows from the commutation of κ with filtered colimits since it is a filtered colimit (see [ML13, Chapter IX, section 2]).

The following property is an extension of the result [DV17 (M,A). Let G be a subfunctor of F. As Fct (M, A) is a Grothendieck category, we denote by F/G the quotient. Hence, since κ is left exact, the following diagram (where the lines are exact and the vertical arrows are the inclusions) is commutative:

0 / / κ (G) / / _ κ (F) / / _ κ (F/G) _ 0 / / G / / F / / F/G / / 0.
It follows from the five lemma that Sn (M, A) is closed under subobject. Let f : F → Q → 0 be an epimorphism of Fct (M, A). Consider the following commutative diagram where the vertical arrows are the inclusions:

κ(F) κ( f ) / / _ κ(Q) _ F f / / Q / / 0.
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Thus if F ∈ Obj (Sn (M, A)), then the arrow κ (Q) → Q is an equality. Hence, Sn (M, A) is closed under quotient. Finally, let 0 → B → F → Q → 0 be a short exact sequence of Fct (M, A) with B, Q ∈ Obj (Sn (M, A)). Let m be an object of Obj (M ) . Let F m be the pullback of the morphisms F Q and κ m (Q) → Q: F is thus the filtered colimit (with respect to the inclusions) of the pullbacks {F m } m∈Obj(M ) . Let B m be the kernel of F m κ m (Q). Recall that κ commutes with filtered colimits and that filtered colimits in A are exact (since it is a Grothendieck category). Hence, it is enough to prove that F m is in Sn (M, A) for all m ∈ Obj (M ) to show that Sn (M, A) is closed under extension. As κ m is the kernel of a natural transformation between the identity functor and a left exact functor, κ m • κ m is isomorphic to κ m and therefore i m (κ m (Q)) = 0. By the universal property of the kernel, there exists a unique morphism ϕ m such that the following diagram is commutative:

0 / / B m i m (B m ) α / / F m i m (F m ) / / ϕ m y y κ m (Q) i m (κ m (Q))=0 / / 0 0 / / τ m (B m ) / / τ m (F m ) / / τ m (κ m (Q)) / / 0. For all n ∈ Obj (M ) , let ϕ -1 m (τ m (κ n (B m ))) be the pullback of the morphisms ϕ m : F m → τ m (B m ) and τ m (κ n (B m )) → τ m (B m ).
As a pullback commutes with a filtered colimit in an abelian category and since τ m commutes with filtered colimits, we deduce that Colim

n∈Obj(M ) ϕ -1 m (τ m (κ n (B m ))) = F m .
In addition, since M is pre-braided monoidal (see Definition 3.1.6), the precomposition by b M n,m

-1 id M defines a natural isomorphism b M n,m -1 id M * : τ m • τ n ∼ -→ τ n • τ m for all n ∈ Obj (M ) , such that b M n,m -1 id M * • (τ m • i n ) = (i n • τ m )
in the category of endofunctors of Fct (M, A). Hence, the following diagram is commutative for all n ∈ Obj (M ) :

F m ϕ m x x i n (F m ) i n m (F m ) + + τ m (B m ) i n (τ m (B m )) τ m (i n (B m )) t t τ m (α) / / τ m (F m ) i n (τ m (F m )) / / τ n τ m (F m ) ∼ = τ n m (F m ) . τ m τ n (B m ) b M n,m -1 id M * ∼ = / / τ n τ m (B m ) τ n τ m (α) 2 2
We deduce from the previous commutative diagram and the universal property of the kernel that there exists an

inclusion morphism ϕ -1 m (τ m (κ n (B m ))) → κ n m (F m ) for all n ∈ Obj (M ) .
Using the definition of κ as a filtered colimit (see Definition 2.4.6), we deduce that Colim

n∈Obj(M ) ϕ -1 m (τ m (κ n (B m ))) is a subobject of κ (F m ). Hence, we have κ (F m ) = F m and thus Sn (M, A) is closed under extension.
Remark 2.4.9. We see here why we require the category A to have more properties than just being an abelian category: it is necessary for the proof of Proposition 2.4.8 to assume that the filtered colimits in the category A are exact, which is the case for a Grothendieck category. The thickness property of Proposition 2.4.8 ensures that we can consider the quotient category of Fct (M, A) by Sn (M, A) (see [START_REF] Gabriel | Des catégories abéliennes[END_REF] Chapter III]). Remark 2.4.11. The functor π M is exact, essentially surjective and commutes with all colimits (see [Gab62, Chapter 3]).

The following proposition introduces the induced translation and difference functors on the category St (M, A). Its proof is analogous to that of [DV17, Proposition 1.19], using Proposition 2.4.2 which extends [DV17, Proposition 1.4].

Proposition 2.4.12. [DV17, Proposition 1.19] Let m ∈ Obj (M ) . The translation functor τ m and the difference functor δ m of Fct (M, A) respectively induce an exact endofunctor of St (M, A) which commute with colimits, respectively again called the translation functor τ m and the difference functor δ m . In addition:

1. The following relations hold:

δ m • π M = π M • δ m and τ m • π M = π M • τ m .
2. The exact sequence (2.4.1) induces a short exact sequence of endofunctors of St (M, A):

0 -→ Id i m -→ τ m ∆ m -→ δ m -→ 0.
(2.4.3)

3. For another object m of M, the endofunctors δ m , δ m , τ m and τ m of St (M, A) pairwise commute up to natural isomorphism.

We can now introduce the notion of a weak polynomial functor.

Definition 2.4.13. [DV17, Definition 1.22] We recursively define on d ∈ N the category P ol d (M, A) of polynomial functors of degree less than or equal to n to be the full subcategory of St (M, A) as follows:

1. If d < 0, P ol d (M, A) = {0};
2. if d ≥ 0, the objects of P ol d (M, A) are the functors F such that the functor δ x (F) is an object of P ol d-1 (M, A) for all x ∈ Obj (M ) .

For an object F of St (M, A) which is polynomial of degree less than or equal to d ∈ N, the smallest natural number n ≤ d for which F is an object of P ol d (M, A) is called the degree of F. An object F of Fct (M, A) is weak polynomial of degree at most d if its image π M (F) is an object of P ol d (M, A). The degree of polynomiality of π M (F) is called the (weak) degree of F. Remark 2.4.14. A strong polynomial functor of degree d is always weak polynomial of degree less than or equal to d by the first property of Proposition 2.4.12. We conclude this subsection by giving some important properties of the categories of weak polynomial functors. Their proofs follow mutatis mutandis their analogues in [DV17, Section 1].

Proposition 2.4.15. [DV17, Proposition 1.24] We assume that the category M is finitely generated by the monoidal structure in (M , , 0). We denote by E a finite generating set of M. Let F be an object of St (M, A) and d be a natural number. Then, the functor F is an object of P ol d (M, A) if and only if the functor δ e (F) is an object of P ol d-1 (M, A) for all objects e of E ∩ Obj (M ) . Proposition 2.4.17. [DV17, Proposition 1.26] There is an equivalence of categories:

A P ol 0 (M, A) .
Finally, if the category (M , , 0) is symmetric monoidal as in [DV17], we have an equivalent definition of stably null functor of Fct (M, A). Namely, following mutatis mutandis [DV17, Section 1.2] and the proof of [DV17, Proposition 1.13], we have: Lemma 2.4.18. We assume that the category (M , , 0) is symmetric monoidal and that there exist two objects e and e of M such that for all objects m of the category M, there exists a natural number n such that m ∼ = e n e . Then, an object F of Fct (M, A) is stably null if and only if Colim n∈(N,≤) F e n e = 0, where (N, ≤) is considered as a subcategory of M using the functor (N, ≤) → M sending a natural number n to e n e and assigning ι e id e n e to the unique morphism γ n : n → n + 1. Remark 2.4.19. In some situations, this alternative definition is more convenient than the original one of Definition 2.4.6. This is the case for example for the proof of Lemma 2.5.33.

Behaviour of the generalised Long-Moody functors on polynomial functors

In this section, we study the effect of the generalised Long-Moody functors on (very) strong and weak polynomial functors. Indeed, they have the property to increase by one the degree of very strong and weak polynomiality, assuming that the groups H and H 0 are free (see Theorems 2.5.29 and 2.5.36). The five first subsections generalise [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]Part 4]. We will insist on the aspects which differ from this previous work. The last subsection gives new results on the effect of Long-Moody functors on weak polynomial functors.

Let {H, G, G , ς} be a coherent Long-Moody system (see Definition 2.2.26), which is fixed throughout this section. We consider the associated Long-Moody functor LM {H,G,G ,ς n } (see Theorem 2.2.30), which we fix for all the work of this section (in particular, we omit the "{H, G, G , ς n }" from the notation most of the time).

Remark 2.5.1. If we consider M to be the category UG associated with the coherent Long-Moody system {H, G, G , ς}, it is enough to use the translation functor τ 1 , as stated in Propositions 2.4.4 and 2.4.15. Indeed, the category UG is generated by 1 using the monoidal product (see Section 2.2.1.1).

Preliminaries

The observations of this first subsection are generalisations of [Sou17b, Section 4.1]. Recall the following crucial property of the augmentation ideal of a free product of groups.

Proposition 2.5.2. [Coh72, Section 4, Lemma 4.3 and Theorem 4.7] Let G 1 and G 2 be groups. Then, there is a

natural R [G 1 * G 2 ]-module isomorphism: I R[G 1 * G 2 ] ∼ = I R[G 1 ] ⊗ R[G 1 ] R [G 1 * G 2 ] ⊕ I R[G 2 ] ⊗ R[G 2 ] R [G 1 * G 2 ] . Remark 2.5.3. The augmentation ideal I R[G 1 ] (respectively I R[G 2 ] ) is a right R [G 1 ]-module (respectively R [G 2 ]- module). Moreover, the group ring R [G 1 * G 2 ] is a left R [G 1 ]-module (respectively left R [G 2 ]-module) via the morphism id G 1 * ι G 2 : G 1 → G 1 * G 2 (respectively ι G 1 * id G 2 : G 2 → G 1 * G 2 ).
For F an object of Fct (UG, R-Mod), recall that we introduced the augmentation ideal functor I in Definition 2.2.28. For all natural numbers n, by Proposition 2.5.2, we have a R [H * H n ]-module isomorphism:

I (n + 1) R[H 1+n ] F (n + 2) ∼ = I R[H] R[H] R [H 1+n ] ⊕ I (n) R[H n ] R [H 1+n ] R[H 1+n ] F (n + 2) .
Notation 2.5.4. Let n and n be natural numbers such that n ≥ n. We denote by

I n -n, id n : I R[H * n ] → I (n ) the R-module morphism induced by the group morphism id H * n * ι H n -n : H * n → H n .
Recall that t G : G → 0 Gr (see Notation 2.0.1) denotes the unique morphism from the group G to 0 Gr . We denote by I -1 nn, id n : I (n ) → I R[H * n ] the R-module morphism induced by the group morphism id H * n * t H n -n :

H n → H * n . Remark 2.5.5. By Remark 2.5.3, the R [H 1+n ]-module F (n + 2) is a R [H]-module via F (ς 1+n • (id H * ι H n )) : H → Aut R-Mod (F (n + 2)) and R [H n ]-module via F (ς 1+n • (ι H * id H n )) : H n → Aut R-Mod (F (n + 2)) .
Then, the distributivity of the tensor product with respect to direct sum gives:

Lemma 2.5.6. Let F ∈ Obj (Fct (UG, R-Mod)) and n be a natural number. Then, we have the following R-module isomor- phism:

τ 1 LM (F) (n) ∼ = I R[H] R[H] F (n + 2) ⊕ I (n) R[H n ] F (n + 2) .
(2.5.1) Definition 2.5.7. For all natural numbers n and F ∈ Obj (Fct (UG, R-Mod)), we denote by

• υ (F) n the monomorphism of R-modules I ([n, id n+1 ]) R[H 1+n ] id F(n+2) : I R[H] R[H] F (n + 2) → τ 1 LM (F) (n), • ξ (F) n the monomorphism of R-modules I 1, id n+1 R[H 1+n ] id F(n+2) : I (n) R[H n ] F (n + 2) → τ 1 LM (F) (n),
associated with the direct sum of Lemma 2.5.6.

Similarly to [Sou17b, Section 4.1], this R-module decomposition will lead (under an additional assumption, see Section 2.5.3.1) to a decomposition of τ 1 LM (see Corollary 2.5.25) as a functor.

Factorisation of the natural transformation i 1 LM by LM (i 1 )

Recall from Proposition 2.4.2 the exact sequence in the category of endofunctors of Fct (UG, R-Mod), which defines the natural transformation i 1 :

0 / / κ 1 Ω 1 / / Id i 1 / / τ 1 ∆ 1 / / δ 1 / / 0 . (2.5.2)
Our objective is to study the cokernel of the natural transformation i 1 LM : LM → τ 1 • LM. We recall that for F an object of Fct (UG, R-Mod), for all natural numbers n, this is defined by the morphisms:

(i 1 LM) (F) n = LM (F) (ι 1 id n ) = LM (F) 1, id 1+n : LM (F) (n) → τ 1 LM (F) (n) .
Since the generalised Long-Moody functor is right-exact (see Proposition 2.2.33), we have the following exact sequence:

LM LM(i 1 ) / / LM • τ 1 LM(∆ 1 ) / / LM • δ 1 / / 0 .
(2.5.3) Remark 2.5.8. If the groups H 0 and H are free, since the generalised Long-Moody functor is then exact (see Corollary 2.2.35), the following sequence is exact:

0 / / LM • κ 1 oooLM(Ω 1 ) / / LM LM(i 1 ) / / LM • τ 1 LM(∆ 1 ) / / LM • δ 1 / / 0 . (2.5.4)
First of all, we impose an additional condition on the morphisms {ς n :

H n → G n+1 } n∈N .
Condition 2.5.9. The group morphisms {ς n : H n → G n+1 } n∈N of Condition 2.2.17 are such that for all elements h ∈ H n , for all natural numbers n, the following equality holds in

G n+2 : b G 1,1 -1 id n • (id 1 ς n (h)) = ς n+1 H 1, id n+1 (h) • b G 1,1 -1 id n .
Remark 2.5.10. As stated in Remark 2.2.18, Condition 2.5.9 implies Condition 2.2.17.

Remark 2.5.11. The family of trivial morphisms {ς n,t : H n → G n+1 } n∈N satisfies Condition 2.2.17.

Henceforth, we assume that Condition 2.5.9 is satisfied by the coherent Long-Moody system {H, G, G , ς}.

We show in Lemma 2.5.13 that i 1 LM factors through LM (i 1 ). Beforehand, we remark that the R-modules

I (n) R[H n ] F (n + 2)
n∈N in the decomposition of Proposition 2.5.6 assemble to form a functor which identifies with LM (τ 1 F).

We denote by the natural transformation τ 1 • LM → Coker (ξ ) in the diagram of Proposition 2.5.14. By Lemma 2.5.6, it is clear that the R-modules Coker (ξ ) (n) are isomorphic to the factor I R

[H] R[H] F (n + 2) of τ 1 LM (F) (n) for all natural numbers n. Recall the notation I -1 n -n, id 1+n
introduced in Notation 2.5.4. It follows from Lemma 2.5.6 and Lemma 2.5.13 that for all F ∈ Obj (Fct (UG, R-Mod)) and for all natural numbers n and n such that n ≥ n:

(F) n = I -1 n, id n+1 R[H 1+n ] id F(n+2) .
This leads ineluctably to wonder if the decomposition of Lemma 2.5.6 is functorial. To prove this, we need a further assumption.

Additional assumption

Consider the functor H : UG → Gr given by the coherent Long-Moody system. Recall the pre-braided monoidal category (UG , , 0 G ) given by Assumption 2.2.1. Notation 2.5.15. We denote by Gr H,H 0 the full subcategory of Gr of the finite free products on the objects 0 Gr , H and H 0 . The free product * defines a symmetric strict monoidal product on Gr H,H 0 , with 0 Gr the unit. The symmetry of the monoidal structure is given by the canonical bijection A * B ∼ = B * A which permutes the two terms of the free product, for A and B two objects of Gr H,H 0 . Let G (0,1) be the full subgroupoid of (G , , 0 G ) of the finite monoidal products (ie using ) on the objects 0 G , 0 and 1 of G . Note that the monoidal structure restricts to give a braided monoidal groupoid G (0,1) , , 0 G .

Under an additional assumption on the augmentation ideal functor I, we have a enlightening description of the functor Coker (ξ ). Namely, we assume: Assumption 2.5.16. The functor H of Assumption 2.2.13 defines a braided strict monoidal functor H : G (0,1) , , 0 G → Gr H,H 0 , * , 0 Gr . Lemma 2.5.17. Assumption 2.5.16 implies in particular that for all natural numbers m and n, for all g ∈ G n :

• H (id m g) • (id H * m * ι H n ) = (id H * m * ι H n ); • H b G m,n = b Gr H,H 0 H * m ,H * n .
Proof. These relations are straightforward consequences of the definition of a braided strict monoidal functor.

As the functor I is induced by H (see Definition 2.2.28) and the morphisms I ([nn, id n ]) are induced by the morphisms id H * n * ι H n -n : H * n → H n (see Notation 2.5.4), we deduce from Assumption 2.5.16 the following relations, used in the proof of Proposition 2.5.23: Corollary 2.5.18. For all n and n be natural numbers such that n ≥ n, for all g ∈ G n :

• I (id n -n g) • I n -n, id n = I n -n, id n ; • I b G 1,n -n -1 id n • I n -n, id n +1 • I n, id n+1 = I n, id n+1 .
Remark 2.5.19. The relations of Corollary 2.5.18 will be used to prove Proposition 2.5.23.

Remark 2.5.20. When (UG , , 0 G ) = (UG, , 0 G ) = (Uβ, , 0), Lemma 2.5.17 shows that Assumption 2.5.16 implies assuming [Sou17b, Condition 4.8] and [Sou17b, Condition 4.6].

Definition 2.5.21. A coherent Long-Moody system {H, G, G , ς} is said to be reliable if it satisfies Condition 2.5.9 and Assumption 2.5.16.

From now until the end of Section 2.5, we assume that the fixed coherent Long-Moody system {H, G, G , ς} is reliable. 68 2. Chapter. Generalised Long-Moody functors

Identification with a translation functor

Now, we can prove that the isomorphism Coker (ξ

) (n) ∼ = I R[H] R[H] (τ 2 F) (n) is functorial. Lemma 2.5.22. For F an object of Fct (UG, R-Mod), the R-modules I R[H] R[H] (τ 2 F) (n) n∈N assemble to form a functor I R[H] R[H] (τ 2 F) : UG → R-Mod. Assigning id I R[H] R[H]
τ 2 (η) for any natural transformation η of Fct (UG, R-Mod), we define an endofunctor:

I R[H] R[H] τ 2 : Fct (UG, R-Mod) → Fct (UG, R-Mod) .
Proof. The result is clear from the functoriality of F.

Proposition 2.5.23. Let F be an object of Fct (UG, R-Mod). The monomorphisms {υ (F) n } n∈N (see Definition 2.5.7) define a natural transformation υ (F)

: I R[H] R[H] (τ 2 F) → (τ 1 • LM) (F).
This yields a natural transformation υ :

I R[H] R[H] τ 2 → τ 1 • LM.
Proof. This generalises [Sou17b, Proposition 4.14]; we give the key points for the convenience of the reader.Let n and n be natural numbers such that n ≥ n, [nn, g] ∈ Hom UG (n, n ) and h ∈ H. Note that, by Lemma 2.5.17, as morphisms H → H 2+n :

H b G 2,n -n -1 id n • ι H n -n * id 1 * ι H 1+n = H id 1 b G 1,n -n -1 id n id 1 * ι H 1+n = id 1 * ι H 1+n .
Hence, we deduce that:

ς 1+n id H * ι H n -n (h) = ς 1+n H b G 2,n -n -1 id n ι H n -n * id 1 * ι H 1+n (h) .
Then, it follows from Conditions 2.5.9 and 2.2.24 that as morphisms in UG:

n -n, ς 1+n id H * ι H n -n (h) • b G 2,n -n -1 id n = n -n, b G 2,n -n -1 id n • (id n -n ς 1+n ((id H * ι H n ) (h))) .
(2.5.5)

Since by Condition 2.2.24

(id 2 g) • ς 1+n id H * ι H n -n (h) = ς 1+n H (id 2 g) id H * ι H n -n (h) • (id 2 g) ,
it follows from the first relation of Lemma 2.5.17 that

(id 2 g) • ς 1+n id H * ι H n -n (h) = ς 1+n id H * ι H n -n (h) • (id 2 g) .
(2.5.6)

Hence, it follows from the combination of the relations (2.5.5) and (2.5.6) that:

n -n, (id 2 g) • b G 2,n -n -1 id n • id n -n ς 1+n id H * n * ι H n -n (h) = n -n, ς 1+n id H * n * ι H n -n (h) • (id 2 g) • b G 2,n -n -1 id n . A fortiori, F (id 2 [n -n, g]) • F (ς 1+n (h)) = F (ς 1+n (h)) • F (id 2 [n -n, g]).
Hence, υ (F) is well defined with respect to the tensor product.

To prove that υ (F) is a natural transformation, remark that the relations of Corollary 2.5.18 imply that:

I (id 1 g) • I b G 1,n -n -1 id n • I n -n, id n +1 • I n, id n+1 = I n, id n+1 .
We then deduce from the definition of the generalised Long-Moody functor (see Theorem 2.2.30) that:

τ 1 LM (F) n -n, g • υ (F) n = υ (F) n • I R[H] R[H] τ 2 (F) n -n, g .
The proof that υ is a natural transformation follows mutatis mutandis that of [Sou17b, Proposition 4.15].

Remark 2.5.24. Since it follows from Notation 2.5.

4 that I -1 n, id n+1 • I n, id n+1 = id I R[H] for all natural numbers n, it is clear that υ : I R[H] R[H] τ 2 → τ 1 • LM is a right inverse of the natural transformation : τ 1 • LM → Coker (ξ ).
Corollary 2.5.25. For {H, G, G , ς} a reliable Long-Moody system, as endofunctors of Fct (UG, R-Mod):

Coker ξ ∼ = I R[H] R[H] τ 2 ,
and there is a natural equivalence of endofunctors of Fct (UG, R-Mod):

τ 1 • LM ∼ = I R[H] R[H] τ 2 ⊕ (LM • τ 1 ) . (2.5.7) 
Furthermore, if we assume that the groups H 0 and H are free, the isomorphisms Λ rank(H),M of Remark 2.2.36 provide a

natural equivalence I R[H] R[H] τ 2 ∼ = τ ⊕rank(H) 2
.

Key relations with the difference and evanescence functors

This section presents the key relations of the generalised Long-Moody functors with the evanescence and difference functors. Lemma 2.5.13 and Corollary 2.5.25 lead to the following result.

Theorem 2.5.26. Let {H, G, G , ς} be a reliable Long-Moody system. There is a natural equivalence in the category Fct (UG, R-Mod):

δ 1 • LM ∼ = I R[H] R[H] τ 2 ⊕ (LM • δ 1 ) . (2.5.8)
Moreover, if we assume that the groups H 0 and H are free, then the evanescence endofunctor κ 1 commutes with the endofunctor LM and the isomorphisms Λ rank(H),M of Remark 2.2.36 provide a natural equivalence:

δ 1 • LM ∼ = τ ⊕rank(H) 2 ⊕ (LM • δ 1 ) .
(2.5.9)

Proof. This generalises [Sou17b, Theorems 4.23 and 4.24]. We denote by i ⊕ LM•τ 1 the inclusion morphism LM • τ 1 → τ 2 ⊕ (LM • τ 1 ). Then, recalling the exact sequence (2.5.3), we obtain that the following diagram is commutative and that the two rows are exact:

LM i 1 •LM / / τ 1 LM ∆ 1 •LM / / δ 1 • LM / / 0 LM i ⊕ LM•τ 1 •(LM•i 1 ) / / I R[H] R[H] τ 2 ⊕ (LM • τ 1 ) id τ 2 ⊕(LM•∆ 1 ) / / υ⊕ξ ∼ = by Corollary 2.5.25 O O I R[H] R[H] τ 2 ⊕ (LM • δ 1 ) / / 0.
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A fortiori, by the universal property of the cokernel and 5-lemma, we deduce that τ 2 ⊕ (LM

• δ 1 ) ∼ = δ 1 • LM.
Furthermore, assuming that the groups H 0 and H are free, so that we have the exact sequence (2.5.4) of Remark 2.5.8, we obtain the following commutative diagram, in which the two rows are exact sequences:

0 / / κ 1 • LM oooΩ 1 LM / / LM i 1 •LM / / τ 1 LM 0 / / LM • κ 1 oooLM(Ω 1 ) / / LM i ⊕ LM•τ 1 •(LM•i 1 ) / / I R[H] R[H] τ 2 ⊕ (LM • τ 1 ) . υ⊕ξ ∼ = O O
By the universal property of of the kernel, we conclude that κ 1

• LM ∼ = LM • κ 1 .
Remark 2.5.27. Let m ≥ 1 be a natural number. Assume that the groups H 0 and H are free. Repeating mutatis mutandis the work of Sections 2.5.1, 2.5.2 and 2.5.3.1, we prove that:

τ m • LM ∼ = I R[H] R[H] τ m+1 ⊕ (LM • τ m ) .
Then, following the proof of Theorem 2.5.26, it follows from the exactness of the Long-Moody functor (see Corollary 2.2.35) that the evanescence endofunctor κ m commutes with the Long-Moody functor.

Effect on strong polynomial functors

Here, we focus on the behaviour of the generalised Long-Moody functor on (very) strong polynomial functors, recovering the results of [Sou17b, Section 4.3]. Beforehand, remark the following property. τ 2 commutes with the difference functor δ 1 . Moreover, if H is free, then

I R[H] R[H]
τ 2 (F) commutes with the evanescence functor κ m for all natural numbers m ≥ 1.

Proof. The commutation result with the difference functor δ 1 is a consequence of the right-exactness of the functor

I R[H] R[H]
-: R-Mod → R-Mod, of the exactness and the commutation property of the translation functor τ 2 (see Proposition 2.4.2). Assuming that the group H is free, the functor

I R[H] R[H]
-: R-Mod → R-Mod is exact (as a consequence of Lemma 2.2.34). Hence, the claim follows from the commutation of the evanescence functor κ m with the translation functor τ 2 (see Proposition 2.4.2).

Theorem 2.5.29. Let d be a natural number and F be an object of Fct (UG, R-Mod). Recall that we consider a reliable Long-Moody system {H, G, G , ς}. If the functor F is strong polynomial of degree d, then:

• the functor I R[H] R[H] τ 2 (F) belongs to P ol strong d (UG, R-Mod); • the functor LM (F) belongs to P ol strong d+1 (UG, R-Mod).
Moreover, if the groups H 0 and H are free and F is very strong polynomial of degree d, then the functor LM (F) is a very strong polynomial functor of degree equal to d + 1.

Proof. This generalises [Sou17b, Proposition 4.25, Theorems 4.28]. By induction on the polynomial degree, the result on

I R[H] R[H]
τ 2 (F) follows from Lemma 2.5.28 and we deduce the first result on LM (F) using the relation (2.5.8) of Theorem 2.5.26.

Assume now that the groups H 0 and H are free groups. Recall that H is non-trivial. For a very strong polynomial functor F of degree d, an easy induction on the polynomial degree proves that τ rank(H) 2 (F) is very strong polynomial of degree d. A fortiori, the result follows from the relation (2.5.9) of Theorem 2.5.26.
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Proof. Assume that H 0 and H are free. Recall from Remark 2.5.27 and Lemma 2.5.28 that the endofunctors LM and

I R[H] R[H]
τ 2 commute with the evanescence functor κ m for all natural numbers m ≥ 1. It follows from Proposition

and the commutation with all colimits of

I R[H] R[H] -: R-Mod → R-Mod that if F is in Sn (UG, R-Mod), then: κ (LM (F)) = LM (κ (F)) = LM (F) and κ I R[H] R[H] F = I R[H] R[H] κ (F) = I R[H] R[H] F.
If one of H 0 or H is not free, the hypothesis that G is symmetric monoidal allows Lemma 2.4.18 to be applied. For all natural numbers n and n such that n ≥ n, recall that LM (F) nn, id n is the unique morphism induced by the universal property of the tensor product with respect to the map

I R[H n ] × F (1 + n) I ([n -n,id n ])×F(id1 [n -n,id n ]) / / I R[H n ] × F (1 + n ) R [ H n ] / / I R[H n ] R[H n ] F (1 + n ) .
For a fixed natural number n, let i ∈ I R[H n ] and let x ∈ F (1 + n). We assume that F is in Sn (UG, R-Mod). Since the translation functor τ 1 commutes with all the evanescence functors (see Proposition 2.4.2),

τ 1 F is in Sn (UG, R-Mod).
Recall that by Lemma 2.4.18, Colim n∈(N,≤)

(τ 1 F (n)) = 0, where (N, ≤) is a subcategory of UG via the functor O of Definition 2.2.8. This is equivalent to the fact that for all natural numbers n, for all x ∈ F (1 + n), there exists a natural number m x such that F id 1 m xn, id m x (x) = 0 and a fortiori:

LM (F) m x -n, id m x i R[H n ] x = 0. Hence, Colim n∈(N,≤) (LM (F) (n)) = 0. The result for I R[H] R[H]
τ 2 (F) follows using previous argument.

From now until the end of Section 2.5.6, we assume that the groups H 0 and H are free, or that the groupoid (G , , 0) is symmetric monoidal. By Lemma 2.5.33, the endofunctors LM and I R

[H] R[H]
τ 2 induce two functors on the quotient category St (UG, R-Mod), denoted by

LM St : St (UG, R-Mod) → St (UG, R-Mod) and I R[H] R[H] τ 2 St : St (UG, R-Mod) → St (UG, R-Mod) .
Remark 2.5.34. If H is a free group, the isomorphisms Λ rank(H),M of Remark 2.2.36 provide a natural equivalence:

I R[H] R[H] τ 2 ∼ = τ ⊕rank(H) 2 .
(2.5.10) τ 2 of Lemma 2.5.28 with respect to the difference functor remain true for the induced functors in the category St (UG, R-Mod).

Thus, for F an object of Fct (UG, R-Mod), if the functor I R[H] R[H] τ 2 (F) is in Sn (UG, R-Mod), then the functor F is in Sn (UG, R-Mod). A fortiori, the induced functor I R[H] R[H]
Proposition 2.5.35. Let F be an object of St (UG, R-Mod). Then, as objects of St (UG, R-Mod), there are natural equiva- lences:

δ 1 I R[H] R[H] τ 2 St (F) ∼ = I R[H] R[H]
τ 2

St

(δ 1 F) , (2.5.11)

δ 1 LM St (F) ∼ = I R[H] R[H] τ 2 St (F) ⊕ LM St (δ 1 F) .
(2.5.12)

Proof. As a consequence of the definitions of the induced difference functor (see Proposition 2.4.12) and of the

induced functors I R[H] R[H]
τ 2

St

and LM St , we have natural equivalences:

δ 1 I R[H] R[H] τ 2 St ∼ = δ 1 I R[H] R[H] τ 2 St and δ 1 LM St ∼ = (δ 1 • LM) St .
Hence, the result follows from Lemma 2.5.28 and Theorem 2.5.26.

Theorem 2.5.36. Let d be a natural number and F be an object of Fct (UG, R-Mod). Assume that the groups H 0 and H are free, or that the groupoid (G , , 0) is symmetric monoidal. Assume that F is weak polynomial of degree d. Then the functor

I R[H] R[H]
τ 2 (F) is a weak polynomial functor of degree less than or equal to d and the functor LM (F) is a weak polynomial functor of degree less than or equal to d + 1.

Moreover, if H is free, then the functor I R[H] R[H]
τ 2 (F) is a weak polynomial functor of degree d and the functor LM (F) is a weak polynomial functor of degree d + 1.

Proof. The first result for I R[H] R[H]

τ 2 is a direct consequence of the relation (2.5.11) of Proposition 2.5.35. If H is a free group, we proceed by induction on the degree of polynomiality of F. If F is weak polynomial of degree 0, then according to Proposition 2.4.17, there exists a constant functor C of St (UG, R-Mod) such that π UG (F) ∼ = C. By Remark 2.5.34, we have

I R[H] R[H] τ 2 St (C) ∼ = C ⊕rank(H)
which is a degree 0 weak polynomial functor. Now, assume that F is weak polynomial functor of degree n ≥ 0. The result follows from the relation (2.5.11) of Proposition 2.5.35 and the inductive hypothesis.

For LM, we also proceed by induction. Assume that F is a weak polynomial functor of degree 0. So π UG (F) is a constant functor according to Proposition 2.4.17. By the equivalence (2.5.12) of Proposition 2.5.35, we have:

δ 1 (π UG (LM (F))) ∼ = I R[H] R[H] τ 2 (π UG (F)) . According to the result on I R[H] R[H]
τ 2 , this is weak polynomial functor of degree less than or equal to 0, and if H is free the degree is exactly 0. Therefore, LM (F) is a weak polynomial functor of degree less than or equal to 1. Now, assume that F is a weak polynomial functor of degree d ≥ 1. By the equivalence (2.5.12):

δ 1 (π UG (LM (F))) ∼ = I R[H] R[H] τ 2 (π UG (F)) LM St (δ 1 (π UG (F))) .
The result follows from the inductive hypothesis and the result on

I R[H] R[H] τ 2 .

The case of symmetric monoidal categories

We fix{H, G, G , ς} a reliable Long-Moody system (see Definition 2.5.21) throughout this section. For the work of this section, we make the following assumption.

Assumption 2.6.1. We assume that the braided monoidal groupoid (G, , 0 G ) of Assumption 2.2.1.1 is symmetric monoidal.

Remark 2.6.2. A fortiori, the pre-braided homogenous category (UG , , 0 G ) is symmetric monoidal, using Propo- sition 2.1.12.

General constructions for symmetric monoidal categories

We present a category of generalised Cospan introduced in [Ves08, Ves06, Ves05], and inspired by the span category due to Bénabou in [START_REF] Bénabou | Introduction to bicategories[END_REF]. The following definition is a direct extension of [Ves08, Definitions 2.5 and 2.6].

Definition 2.6.3. The category Cospan † (UG) is the category which has the same objects as UG and for n, m ∈ N,

Hom Cospan † (UG) (n, m) is the equivalence class of diagrams n [p-n,ϕ] / / p m [p-m,ψ]
o o where p is a natural number such that p ≥ n, m, [pn, ϕ] ∈ Hom UG (n, m) and [pm, ψ] ∈ Hom UG m, p . The equivalence relation is the one generated on Hom Cospan † (UG) (n, m) by the relation R defined by

n [p-n,ϕ] / / p m [p-m,ψ] o o R n [q-n,ϕ ] / / q m [q-m,ψ ]
o o if and only if there exists a morphism [qp, α] ∈ Hom UG p, q such that the following diagram commutes:

n [q-n,ϕ ] [p-n,ϕ] / / p [q-p,α] m [q-m,ψ ] [p-m,ψ] o o q.
For all objects n ∈ N, the identity morphism in the category Cospan † (UG) is given by n

id n / / n n id n o o . Let ϕ = n [p-n,α] / / p m [p-m,β] o o and ψ = m [k-m,γ] / / k l [k-l,δ]
o o be two morphisms in the category Cospan † (UG).

The composition in the category Cospan † (UG) is defined by:

ψ • ϕ = n A -→ (k -m) (p -m) m B ←-l where A = (k -m) + (p -n) , id k-m β -1 • α and B = (p -m) + (k -l) , b G k-m,p-m -1 id m • id p-m γ -1 • δ .
Remark 2.6.4. The fact that the category is well-defined follows analogously to [Ves08, Lemme 2.7].

Proposition 2.6.9. Let C be a category, and M and M be objects of Fct Cospan † (UG) , C and η : M → M a natural transformation in the category Fct (UG, C ). Then, η is a natural transformation in the category Fct Cospan † (UG) , C if and only if for all n, n ∈ N such that n ≥ n:

η n • M R n -n, id n = M R n -n, id n • η n .
(2.6.4)

Proof. The natural transformation η extends to the category Fct Cospan † (UG) , C if and only if for all n, n ∈ N

such that n ≥ n, for all R ([p -m, ψ]) • L ([p -n, ϕ]) ∈ Hom Cospan † (UG) (n, n ): M (R ([p -m, ψ]) • L ([p -n, ϕ])) • η n = η n • M (R ([p -m, ψ]) • L ([p -n, ϕ])) .
Since η is a natural transformation in the category Fct (UG, C ), we already have

η p • M (L ([p -n, ϕ])) = M (L ([p -n, ϕ])) • η n .
Hence, this implies that the necessary and sufficient relation to satisfy is relation (2.6.4).

Equivalence with --construction:

We denote by Mon symm ini (resp. Mon symm null ) the category of symmetric strict monoidal small categories (M, , 0) such that the unit 0 is an initial object (resp. a null object). We denote by -: Mon 

P ol d M, A /P ol d-1 M, A ∼ = P ol d (M, A) /P ol d-1 (M, A)
and for the category H (C) of Hermitian objects in an additive category C equipped with a duality functor D : C op → C, they prove that the forgetful functor H (C) → C induces an equivalence

P ol d H (C), A ∼ = P ol d (C, A) .
The functor -generalises constructions considered by other authors. For instance, let FI denote the category of finite sets and injections, which is equivalent to Quillen's construction UΣ over the groupoid associated with symmetric groups (see Section 2.6.3.1). The category FI is equivalent to the category FI considered by Church, Ellenberg and Farb in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF], to study the projective objects of the category Fct (FI, R-Mod).

We recall the explicit description of the functor -given in [DV17, Proposition 3.4].

Definition 2.6.10. [DV17, Section 3] Let M ∈ Obj Mon symm ini . The category M is the category which has the same objects as M and for all m, m ∈ Obj (M),

Hom M (m, m ) = Colim M (τ m Hom M (m, -)).
Remark 2.6.11. As stated in [DV17, Section 3], the symmetric strict monoidal structure (M, , 0) extends to a sym- metric strict monoidal structure M, , 0 , taking the colimit using the symmetry of the considered structure.

Notation 2.6.12. Considering the Long-Moody system {H, G, G , ς}, we denote by UG the full subcategory of UG on the objects of G.

As suggested in [DV17, Exemple 3.3], the category UG is equivalent to Cospan † (UG). Define the functor Ξ : UG → Cospan † (UG) to be the identity on objects and sending any morphism f ∈ Hom UG (n, n ), represented by some

[p + n -n, ϕ] ∈ Hom UG n, p n to n [p+n -n,ϕ] / / p n n p,id p n o o .
It is a direct consequence of the equivalence relations in Cospan † (UG) that this functor is well-defined. Proof. We clearly define an inverse Ξ -1 : Cospan † (UG) → UG assigning the identity on objects and sending any morphism of Cospan † (UG)

n [p-n,ϕ] / / p m [p-m,ψ] o o = n [p-n,ψ -1 •ϕ] / / p m [p-m,id m ] o o
to the morphism of Hom UG (n, m) represented by pn, ψ -1 • ϕ ∈ Hom UG n, p .

Remark 2.6.14. By Remark 2.6.11, we are given a symmetric strict monoidal structure UG , , 0 and a fortiori on Cospan † (UG ), induced by the one of (UG , , 0).

Lifted functors for symmetric monoidal categories

The aim of this section is to prove that, under an additional condition (see Condition 2.6.20), the generalised Long-Moody functor LM : Fct (UG, R-Mod) → Fct (UG, R-Mod) defined in Proposition 2.2.30 can be lifted to a functor LM : Fct UG, R-Mod → Fct UG, R-Mod . Let introduce these additional properties. Recall that we introduced the augmentation ideal functor I : UG → R-Mod in Definition 2.2.28.

Notation 2.6.15. Recall that t G : G → 0 Gr denotes the unique morphism from the group G to 0 Gr . Let H op : (N op , ≤) → Gr be the family of groups defined on objects by H op (m) = H m for all natural numbers m, and for morphisms by H op (γ m ) = t H * id H m . We denote for natural numbers n ≥ n by I op nn, id n : I (n ) → I (n) the R-module morphism canonically induced for the augmentation ideals by the group morphism t H * (n -n) * id H n :

H n → H n .
This new functor H op satisfies analogous properties to that of the functor H (see Assumption 2.2.13). Indeed, we have: Proposition 2.6.16. The functor H op of Notation 2.6.15 defines a functor H op : UG op → Gr such that H op 1, id n+1 = H op (γ n ) for all natural numbers n, and H op (g) = H g -1 for all g ∈ G n and all natural numbers n.

Proof. By Lemma 2.1.8, it is enough to prove that for all natural numbers n and n such that n ≥ n, for all g ∈ G n -n and g ∈ G n :

H op n -n, id n • H g g -1 = H (g) -1 • H op n -n, id n .
This follows from the definition of the morphism t H n -n * id H n and the fact that the functor H : G (0,1) → Gr H,H 0 is strict monoidal by Assumption 2.5.16.

Remark 2.6.17. Similarly to Definition 2.2.28, the functor H op induces a functor I op : UG op → R-Mod assigning n → I R[H n ] and the assignments for [nn, g] ∈ Hom UG (n, n ) are the R-modules morphisms:

I op n -n, g = I op n -n, id n • I (g) -1 .
(2.6.5) Also, we deduce from Lemma 2.1.8 for n and n be natural numbers, for all elements g of G n and g of G n -n , as morphisms H n → H n :

I op n -n, id n • I g g -1 = I (g) -1 • I op n -n, id n .
Moreover, note that the following property is satisfied. This will be used in the proof of Theorem 2.6.24.

Lemma 2.6.18. Let k, l and n be natural numbers such that k, l ≥ n. The following diagram is commutative with q = (l

-n) (k -n) n: H k H op ([k-n,id k ]) H l-n,id q / / H q H b G k-n,l-n id n / / H q H op k-n,id q H n H([l-n,id l ]) / / H l .
Proof. Recall that the functor H : G (0,1) → Gr H,H 0 is braided strict monoidal by Assumption 2.5.16. Hence this result is a direct consequence of the definitions of the morphisms t H k-n * id H n and t H k-n * id H l .

Remark 2.6.19. Lemma 2.6.18 remains true for the functors I and I op . Finally, we require the following property for the morphisms {ς n : H n → G n+1 } n∈N of Condition 2.5.9.

Condition 2.6.20. For all elements h ∈ H n , for all natural numbers n ≥ n, the following diagram is commutative in the category UG:

1 n ς n (h) / / id 1 R([n -n,id n ]) 1 n id 1 R([n -n,id n ]) 1 n ς n (H op ([n -n,id n ])(h))
/ / 1 n.

Remark 2.6.21. It follows from the equivalence relation of Definition 2.6.3 that Condition 2.2.17 is equivalent to assuming that for all natural numbers n, for all elements h ∈ H n+1 , the morphisms {ς n } n∈N satisfy the following equality in G n+1 :

ς n+1 (h) • id 1 1, id n+1 = 1, b G 1,1 -1 id n • (id 1 ς n ((t H * id H n ) (h))) .
Definition 2.6.22. A reliable Long-Moody system {H, G, G , ς} is said to be liftable if it satisfies Condition 2.6.20.

Remark 2.6.23. Consider the family of morphisms {ς n,t : H n → G n+1 } n∈N of Example 2.2.22. Then Condition 2.6.20 is always satisfied and therefore the reliable Long-Moody system {H, G, G , ς -,t } is always liftable.

In the following theorem, we prove that a generalised Long-Moody functor associated with a liftable Long-Moody system {H, G, G , ς} defines an endofunctor of Fct UG, R-Mod . It will be called the lifted generalised Long-Moody functor.

Theorem 2.6.24. Let {H, G, G , ς} be a liftable Long-Moody system. The following assignment defines a functor LM {H,G,G ,ς} :

Fct UG, R-Mod → Fct UG, R-Mod .

• Objects: for F ∈ Obj Fct UG, R-Mod , LM {H,G,G ,ς} (F) : UG → R-Mod is defined by:

-Objects: ∀n ∈ Obj (G), LM {H,G,G ,ς} (F) (n) = I R[H n ] R[H n ]
F (n + 1).

-Morphisms: for n, n ∈ N and R (

[k -n , g ]) • L ([k -n, g]) ∈ Hom UG (n, n ). We define LM {H,G,G ,ς} (F) R k -n , g • L ([k -n, g]) : I R[H n ] R[H n ] F (n + 1) → I R[H n ] R[H n ] F n + 1
to be the unique morphism induced by the universal property of the tensor product

R[H n ]
with respect to the

R [H n ]-balanced map I R[H n ] × F (n + 1) Ξ([n -n,g]) / / I R[H n ] × F (n + 1) R [ H n ] / / I R[H n ] R[H n ] F (n + 1) , 2. Chapter. Generalised Long-Moody functors with Ξ n -n, g = I op k -n , g • I ([k -n, g]) ×F id 1 R k -n , g • L ([k -n, g]) .
• Morphisms: let F and G be two objects of Fct UG, R-Mod , and η : F → G be a natural transformation. We define

LM {H,G,G ,ς} (η) : LM {H,G,G ,ς} (F) → LM {H,G,G ,ς} ( 
G) for all natural numbers n by:

LM {H,G,G ,ς} (η) n = id I R[Hn ] R[H n ] η n+1 .
Proof. We have three points to prove. Let F ∈ Obj Fct UG, R-Mod .

1. First, let us check the compatibility of the assignment LM (F) with respect to the tensor product. Recall that the R-module F (n + 1) is endowed with a (left) R [H n ]-module structure using the morphism ς n : H n → G n+1 . This compatibility holds for morphisms of type L (see Notation 2.6.5) by the definition of LM (F), Lemma 2.6.7 ensures that the remaining point to prove is the compatibility of LM (F) R nn, id n with n and n natural numbers such that n ≥ n. Let h ∈ H n and i ∈ I R[H n ] . It follows from Condition 2.6.20 that in G n+1 :

id 1 R n -n, id n • ς n (h) = ς n H op n -n, id n (h) • id 1 R n -n, id n . Since I op n -n, id n (i • h) = I op n -n, id n (i) • H op n -n, id n (h), we deduce that: LM (F) R n -n, id n i R[H n ] F (ς n (h)) (v) = I op n -n, id n (i) R[H n ] F (ς n (H op (h))) F id 1 n -n, id n (v) = I op n -n, id n (i • h) R[H n ] F id 1 n -n, id n (v) = LM (F) R n -n, id n i • h R[H n ] v .
2. Let us prove that the assignment LM (F) is a functor. Recall that the functor LM (F) is well-defined by Theorem 2.2.30.

Let [k -n, φ] ∈ Hom UG (n, k), [k -n , ψ] ∈ Hom UG (n , k), [n -m, χ] ∈ Hom UG (m, n) and [l -n, ω] ∈ Hom UG (n, l
) with natural numbers l, k, n, n , m such that l ≥ n, k ≥ n, k ≥ n and n ≥ m. By relation (2.6.5) of Remark 2.6.17, we have:

I op ([k -n, φ]) • I ([k -n, φ]) = id I R[Hn ] ,
thus it follows from the compatibility of the monoidal structure with composition and the functoriality of F that:

LM (F) (R ([k -n, φ])) • LM (F) (L ([k -n, φ])) = id LM(F)(n) .
Hence, according to Proposition 2.6.8, it is enough to check the relations (2.6.1), (2.6.2) and (2.6.3). The relation (2.6.1) follows from the definition of LM (F) on morphisms and the fact that F is a functor. Now, let us prove that LM (F) satisfies the relation (2.6.2). The functoriality of I op deduced from Proposition 2.6.16 ensures that:

I op ([k -m, id k-n χ]) • I φ -1 = I op ([n -m, χ]) • I op ([k -n, φ]) .
Then, the desired result follows from the compatibility of the monoidal structure with composition and the functoriality of F. Finally, let us prove that LM (F) satisfies the relation (2.6.3). The functoriality of I by Definition 2.2.28 and the one of I op deduced from Proposition 2.6.16 imply that:

I op k -n, b G k-n,l-n -1 id n • id k-n ω -1 • I l -n, id l-n φ -1 = I (ω) • I op k -n, id l+k-n • I b G k-n,l-n id n • I l -n, id l+k-n • I op (φ) .
By Remark (2.6.19), we have:

I op k -n, id l+k-n • I b G k-n,l-n id n • I l -n, id l+k-n = I l -n, id l • I op k -n, id k .
Hence:

I op k -n, b G k-n,l-n -1 id n • id l-n ω -1 • I l -n, φ -1 = I ([l -n, ω]) • I op ([k -n, φ]) .
Again the compatibility of the monoidal structure with composition and the functoriality of F finally imply that the composition axiom is satisfied.

3. The remaining point to check for LM to be a functor is the consistency of our definition on morphisms.

Recalling that the functor LM is well-defined by Theorem 2.2.30, according to Proposition 2.6.9, we only have to check that for η : F → G natural transformation:

LM (η n ) • LM (F) R n -n, id n = LM (G) R n -n, id n • LM (η n ) .
This is a consequence of the definition of the naturality of η and the assignment of LM (η). The verification of the composition axiom repeats mutatis mutandis the one of Theorem 2.2.30.

Corollary 2.6.25. The following diagram is commutative:

Fct UG, R-Mod LM {H,G,ςn } / / incl UG UG * Fct UG, R-Mod incl UG UG * Fct (UG, R-Mod) LM {H,G,ςn } / / Fct (UG, R-Mod) ,
where incl UG UG * denotes the precomposition by the functor incl UG UG introduced in Remark 2.6.6.

Proof. Let F be an object of Fct UG, R-Mod . Recall that for n, n

∈ N such that n ≥ n, Hom UG (n, n ) = L ([n -n, g]) ∈ Hom UG (n, n ) .
Hence, the commutativity of the diagram follows from the definition of LM on morphisms of type L ([nn, g]) in Theorem 2.6.24.

Examples

The homological stability with twisted coefficients result due to Randal-Williams and Wahl [RWW17, Theorem A] (recalled in Theorem 2.5.32) holds for families of groups other that mapping class groups of surfaces: it is also true for symmetric groups, automorphism groups of free products of groups and mapping class groups of compact, connected, oriented 3-manifolds with boundary (see [RWW17, Section 5]). The following work presents the use of Long-Moody functors in these situations and provides very strong polynomial functors in any degree for these families of groups. In particular, for automorphism groups of free products of groups and mapping class groups of 3-manifolds, Long-Moody functors come in handy in so far as there are very few examples of very strong polynomial functors associated with these families of groups. 82 2. Chapter. Generalised Long-Moody functors

Symmetric groups

Let Σ be the skeleton of the groupoid of finite sets and bijections. Note that Obj (Σ) ∼ = N and that the auto- morphism groups are the symmetric groups S n . The disjoint union of finite sets induces a monoidal structure (Σ, , 0), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the canonical bijection b Σ n 1 ,n 2 : n 1 n 2 → n 2 n 1 for all natural numbers n 1 and n 2 . Remark 2.6.26. The category UΣ is equivalent to the category of finite sets and injections FI studied in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF].

Furthermore, the classical surjections B n p n S n n∈N , sending each Artin generator σ i ∈ B n to the transposition τ i ∈ S n for all i ∈ {1, . . . , n -1} and for all natural numbers n, assemble to define a functor P : Uβ → UΣ.

In addition, it is clear that the functor P is strict monoidal with respect to the monoidal structures (Uβ, , 0) and (UΣ, , 0).

Notation 2.6.27. For all natural numbers n, we denote by a S n : S n → Aut (F n ) the morphism defined by a S n (σ) ( f i ) = f σ(i) for all σ ∈ S n and generator f i of F n .

Let H be the free group F 1 and H 0 be the trivial group. Thus, we define functors H S : Σ → gr assigning H S (n) = F n on objects and for all σ ∈ S n , H S (σ) = a S n (σ).

Lemma 2.6.28. The functor H S : (Σ, , 0) → (gr, * , 0 Gr ) is symmetric strict monoidal. Moreover, the functor H S extends to define a functor H S : UΣ → gr assigning for all natural numbers n 1 and n 2 :

H S [n 1 , id n 1 n 2 ] = ι n 1 ⊕ id n 2 .
Proof. Fixing a basis for H S (n) for any natural number n, we deduce that for n 1 , n 2 ∈ Obj (Σ):

H S (n 1 n 2 ) ∼ = H S (n 1 ) * H S (n 2 ) .
It is clear that S n 1 (resp. S n 2 ) acts trivially on H S (n 2 ) (resp. H S (n 1 )) in H S (n 1 n 2 ). Therefore, id H S (n 1 ) * id H S (n 2 ) is a natural equivalence. Moreover, it is clear from the fact that the functor H S is strict monoidal that the symmetry b gr H S (n 1 ),H S (n 2 ) is equal to H S b Σ n 1 ,n 2 . It follows from the assignments that relation (2.1.1) of Lemma 2.1.8 is satisfied by H S [n 1 , id n 1 n 2 ]. Let σ 1 ∈ S n 1 and σ 2 ∈ S n 2 . Then, it follows from the definition of ι n 1 that:

H S (σ 1 σ 2 ) • H S [n 1 , id n 1 n 2 ] = (H S (σ 1 ) * H S (σ 2 )) • H S [n 1 , id n 1 n 2 ] = H S [n 1 , id n 1 n 2 ] • H S (σ 2 ) .
Relation (2.1.2) of Lemma 2.1.8 is thus satisfied, which implies the desired result.

Corollary 2.6.29. With the previous assignments and notations, {H S , Σ, Σ, ς -,t } defines a liftable Long-Moody system, where ς n,t : F n → S n+1 is the trivial morphism for all natural numbers n (see Example 2.2.22).

Proof. The Long-Moody system {H S , Σ, Σ, ς -,t } is reliable by Remark 2.2.27, Assumptions 2.2.13 and 2.5.16 being satisfied by Lemma 2.6.28 and Assumption 2.2.1 being checked using the groupoid (Σ, , 0) (noting this category has no zero divisors and that Aut Σ (0 Σ ) = id 0 Σ ). We conclude using Remark 2.6.23.

The functor LM {H S ,Σ,Σ,ς n,t } defined by this liftable Long-Moody system is closely related to the functor LM {H b s ,B 0,0 2 ,ς b n,1 } = LM 1 for braid groups (see Proposition 2.3.41) introduced in [Sou17b, Section 1.3].

Proposition 2.6.30. The following diagram is commutative:

Fct (Uβ, R-Mod) LM 1 / / Fct (Uβ, R-Mod) Fct (UΣ, R-Mod) LM {H S ,Σ,Σ,ς n,t } / / (P) * O O Fct (UΣ, R-Mod) , (P) * O O
where (P) * denotes the precomposition by the functor P introduced in Remark 2.6.26.

Proof. First, it follows from p n+1 σ 2 i = 1 S n (where 1 S n is the neutral element of S n ) that p n+1 • ς n,1 = ς n,t . A fortiori, the definition of a Long-Moody functor (see Theorem 2.2.30), the fact that P is strict monoidal (see Remark 2.6.26) and that H b s ([nn, id n ]) = H S ([nn, id n ]) for all natural numbers n ≥ n, ensure that it is enough to prove that for all object F of Fct (UΣ, R-Mod), for all Artin generators σ i ∈ B n for n a natural number:

I 1 (σ i ) R[F n ] (F • P) (id 1 σ i ) = I S (P (σ i )) R[F n ]
F (id 1 P (σ i )) .

(2.6.6) First, we deduce from the strict monoidal property of P that(F • P) (id 1 σ i ) = F (id 1 P (σ i )). It follows from the definition of Artin representation (see [Sou17b, Section 2.3.1]) that:

I 1 (σ i ) : I K[F n ] -→ I K[F n ] f j -1 -→        f i+1 -1 if j = i f -1 i+1 f i f i+1 -1 = [ f i -1] f i+1 + [ f i+1 -1] 1 -f -1 i+1 f i f i+1 if j = i + 1 f j -1 if j / ∈ {i, i + 1} .
We deduce from the relations p n+1 • ς n,1 = ς n,t and I S (P (σ i ))

( f i+1 -1) = f i -1 that if j = i + 1: I 1 (σ i ) ( f i+1 -1) R[F n ] (F • P) (id 1 σ i ) = [ f i -1] R[F n ] F (ς n,t ( f i+1 )) (F • P) (id 1 σ i ) + [ f i+1 -1] R[F n ] F ς n,t (1) -ς n,t f -1 i+1 f i f i+1 (F • P) (id 1 σ i ) = I S (P (σ i )) ( f i+1 -1) R[F n ] F (id 1 P (σ i )) .
The others cases being clear, this proves that the relation (2.6.6) is true.

Notation 2.6.31. For all natural numbers, we denote by Perm n the permutation representation of the symmetric group to GL n (R). Namely, it is defined assigning:

Perm n (σ i ) = Id R ⊕i ⊕ 0 1 1 0 ⊕ Id R ⊕n-i-1
for every transposition σ i ∈ S n (with i ∈ {1, . . . , n -1}).

It is a well-known fact (see for example [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]) that the permutation representations {Perm n } n∈N assemble to form a functor Perm : UΣ → R-Mod. Namely, for all natural numbers n and n such that n ≥ n:

Perm nn, id n = ι R ⊕(n -n) ⊕ id R ⊕n and the relations (2.1.1) and (2.1.2) of Lemma 2.1.8 are easily checked. In particular, the functor Perm can be seen as the restriction of the unreduced Burau functor Bur 1 to UΣ.

Corollary 2.6.32. For R : UΣ → R-Mod the constant functor:

LM {H S ,Σ,ς n,t } (R) ∼ = Perm.
Remark 2.6.33. By Proposition 2.2.39, all the iterations of LM {H S ,Σ,ς n,t } on an object F of Fct (UΣ, R-Mod) are de- termined by Perm.

We conclude the study for symmetric groups giving the following result, obtained as a corollary of [Lon94, Theorem 4.3].

Proposition 2.6.34. Let m be a natural number. Consider the iteration LM •(m+1) {H S ,Σ,ς n,t } (R) of the Long-Moody functor LM {H S ,Σ,ς n,t } . Then, all the irreducible representations of the symmetric group S m are subrepresentations of the induced representation

LM •(m+1) {H S ,Σ,ς n,t } (R) |S m : S m → GL M (R)
where M = (2m+1)! m! .

Chapter. Generalised Long-Moody functors

Automorphisms of free products of groups

Let H and H 0 be two arbitrary groups. Recall from Notation 2.2.9 that H m denotes the free product H * m * H 0 for all natural numbers m. Notation 2.6.35. We denote by H f p the functor of Assumption 2.2.13 for this example. Namely, H f p : (N, ≤) → Gr is defined for all natural integers n assigning

H f p (n) = H n and H f p (γ n ) = ι H * id H n .
Let fG denote the skeleton of the groupoid f G of finitely-generated groups and their isomorphisms introduced in [RWW17, Section 5.2]. The free product of groups * induces a strict symmetric monoidal structure (fG, * , 0 Gr ). In particular, the symmetry of the monoidal structure b fG G 1 ,G 2 is given by the canonical permutation of the free product. Hence, we deduce: Lemma 2.6.36. The groupoid (fG, * , 0 Gr ) is symmetric strict monoidal with no zero divisors and Aut fG (0 Gr ) = id 0 Gr . Notation 2.6.37. We denote by Id UfG the identity endofunctor of (UfG, * , 0).

Let fG H,H 0 be the full subgroupoid of fG of the groups {H m } m∈N . Note that Obj fG H,H 0 ∼ = N and that the groupoid fG H,H 0 is finitely generated by the free product in (fG, * , 0 Gr ).

Corollary 2.6.38. With the previous notations, H f p , fG H,H 0 , fG, ς -,t (where ς n,t : H n → Aut (H n+1 ) is the trivial morphism for all natural numbers n) defines a reliable Long-Moody systems.

Proof. By Lemma 2.6.36, Assumption 2.2.1 is satisfied using the groupoid (fG, * , 0 Gr ). Remark 2.6.37 ensures that Assumptions 2.2.13 and 2.5.16 are satisfied using the identity functor Id UfG . We conclude using Remark 2.6.23.

Remark 2.6.39. Assume that R = Z. Let H = π 1 (P), with P an orientable prime 3-manifold different from the 3- disc D 3 , whose diffeomorphism group surjects onto the automorphism group of its fundamental group. Let H 0 = π 1 (M), with M a finite connected sum of prime 3-manifolds different from the 3-disc D 3 , whose diffeomorphisms groups surject onto the automorphism groups of their fundamental groups. Under mild additional technical assumptions on P and M (see hypothesis (1), (2) and (3) of [RWW17, Theorem 5.2.2]), according to [RWW17, Theorem 5.7], there is homological stability for the automorphism groups Aut (H * n * H 0 ) with twisted coefficients given by all the iterations of LM H f p ,fG H,H 0 ,ς n,conj

and LM H f p ,fG H,H 0 ,ς n,t on a very strong polynomial functor M of Fct UfG Z,0 Gr , Z-Mod using Theorem 2.5.29. Assume now that H 0 is the trivial group and H = Z. By Theorem 2.5.29, [RWW17, Theorem 5.4] ensures that there is homological stability for the automorphism groups of free groups Aut (F n ) with twisted coefficients given by all the iterations of LM H f p ,fG H,H 0 ,fG,ς n,t on a very strong polynomial functor M of Fct UfG Z,0 Gr , Z-Mod .

Example 2.6.40. Let a R : gr → R-Mod denote the abelianisation functor tensorized by R, with gr the category introduced in Notation 2.3.10. This functor is a fundamental object in the category Fct (gr, R-Mod). Indeed, the stable homology computations for automorphism groups Aut (F n ) with twisted coeffcients of [DV15] rely heavily on the study of the functor a R : a polynomial functor in the category Fct (gr, R-Mod) can be obtained by extensions of functors factoring through a R (see [DV15, Section 2]) and a general cancellation criterion for functor homology groups can be drawn from an explicit projective resolution of a R (see [DV15, Section 4]). Furthermore, Satoh computes the homology groups

H 1 (Aut (F n ) , a Z (n)) for n ≥ 2 in [Sat06].
We consider the functor i : UfG Z,0 Gr → gr defined in [DV15, Definition 4.2]. More precisely, it is the identity on objects and it sends a morphism [n 2n 1 , g] : Z * n 1 → Z * n 2 of UfG Z,0 Gr (where g ∈ Aut Gr (Z * n 2 )) to the morphism

g • ι Z * (n 2 -n 1 ) * id Z * n 1 : Z * n 1 → Z * n 2 of gr.
Hence, we define a functor a R • i : UfG Z,0 Gr → R-Mod. We deduce from Lemma 2.2.38 that:

a R • i ∼ = LM H f p ,fG H,H 0 ,fG,ς n,t (R) .

Remark 2.6.41. As pointed out in Proposition 2.2.39, a R • i is enough to determine all the iterations of LM H f p ,fG H,H 0 ,fG,ς n,t on an object F of Fct UfG Z,0 Gr , R-Mod .

Tools and framework

Let us first generalise the framework of Section 2.2.1.

Tensorial framework

Throughout this section, we fix two groups H and H 0 , λ a natural number and an increasing map ϕ : N → N.

Assumption 2.7.1. There exists a functor H ϕ : UG → Gr such that:

• for all objects n of G, 

H (n) = H * ϕ(n) * H 0 ; • H 1, id n+1 = ι H * (ϕ(m+1)-ϕ(m)) * id H ϕ (m)
λ n ς n (h) / / id λ [n -n,id n ] λ n id λ [n -n,id n ] λ n ς n (H([n -n,id n ])(h)) / / λ n .
Once a choice of morphisms ς n : H ϕ(n) → G λ+n n∈N satisfying the Condition 2.7.4 is made, we require:

Condition 2.7.5. Let n be a natural number. We assume that the morphism given by the coproduct H ϕ(n) * G n → G λ+n factors across the canonical surjection to H ϕ(n)

A ϕ(n)
G n . In other words, the following diagram is commutative:

H ϕ(n) / / ς n % % H ϕ(n) A ϕ(n) G n G n ? _ o o id λ - z z G λ+n .
where the morphism H ϕ(n) 

A ϕ(n) G n → G λ+n is induced by the morphism H ϕ(n) * G n → G

Tensorial functor category

Fix a tensorial framework λ, ϕ, H ϕ , G, ς n . The work of Section 2.7.2 requires introducing a subcategory of Fct (UG, R-Mod). Definition 2.7.8. Let Fct (UG, R-Mod) {λ,ϕ,Hϕ,G,ςn} be the full subcategory of Fct (UG, R-Mod) on objects I such that the R-module I (n) has a right R H ϕ(n) -module structure for all natural numbers n, given by:

I n -n, g (i • h) = I n -n, g (i) • H ϕ n -n, g (h) ,
(2.7.1) for all h ∈ H ϕ(n) , i ∈ I (n) and [nn, g] ∈ Hom UG (n, n ). It is called the tensorial functor category associated with the tensorial framework λ, ϕ, H ϕ , G, ς n .

Example 2.7.9. Considering a Long-Moody system {H, G, G , ς n }, the augmentation ideal functor of Definition 2.2.28 is a functor in the category Fct (UG, R-Mod) {1,id N ,H,G,ς n } .

Definition of tensorial right functors

We fix a tensorial framework λ, ϕ, H ϕ , G, ς n throughout this section.

Notation 2.7.10. When there is no ambiguity, we omit the notation for the tensorial framework λ, ϕ, H ϕ , G, ς n .

Theorem 2.7.11. The following assignment defines a bifunctor T {λ,ϕ,Hϕ,G,ςn} : Fct (UG, R-Mod) {λ,ϕ,Hϕ,G,ςn} × Fct (UG, R-Mod) → Fct (UG, R-Mod) , called the tensorial functor associated with the coherent Long-Moody system λ, ϕ, H ϕ , G, G , ς n .

• Objects: for I ∈ Obj Fct (UG, R-Mod) {λ,ϕ,Hϕ,G,ςn} and F ∈ Obj (Fct (UG, R-Mod)), T {λ,ϕ,Hϕ,G,ςn} (I, F) : UG → R-Mod is defined by:

-Objects: ∀n ∈ Obj (G), T {λ,ϕ,Hϕ,G,ςn} (I,

F) (n) = I (n) R[H ϕ(n) ] F (λ + n).
-Morphisms: for n, n ∈ N, such that n ≥ n, and [nn, g] ∈ Hom UG (n, n ), assign:

T {λ,ϕ,Hϕ,G,ςn} (I,

F) n -n, g = I n -n, g R H ϕ(n )
F id λ nn, g .

• Morphisms: let F and G be objects of Fct (UG, R-Mod), I and J be objects of Obj Fct (UG, R-Mod) {λ,ϕ,Hϕ,G,ςn} , η : F → G and µ : I → J be natural transformations. For all objects n of G, we define T {λ,ϕ,Hϕ,G,ςn} (µ, η) : T {λ,ϕ,Hϕ,G,ςn} (I, F) → T {λ,ϕ,Hϕ,G,ςn} (J, G) by: T {λ,ϕ,Hϕ,G,ςn} (F) (η)

n = µ n R[H ϕ(n) ] η λ+n .
Proof. The proof generalises the one of Theorem 2.2.30. For this proof, F, G and H are objects of Fct (UG, R-Mod), I, J and K are two objects of Fct (UG, R-Mod) {λ,ϕ,Hϕ,G,ςn} , n, n and n are natural numbers such that n ≥ n ≥ n.

There are three points to check.

1. First, we have to preove that the assignment of T (I, F) on morphisms makes sense. Considering [nn, g] and [nn, g ] such that [nn, g] = [nn, g ], ie assume that there exists ψ ∈ G n -n so that g • (ψ id n ) = g. Since the monoidal product is well-defined on UG (see Proposition 2.1.12), recalling that I and F are functors on UG, we deduce that:

I n -n, g R F id λ n -n, g = I n -n, g R F id λ n -n, g .
So it remains to check the compatibility of the assignment T (I, F) with respect to the tensor products, ie to show that for all h ∈ H ϕ(n) and i ∈ I (n):

I n -n, g (i • h) R H ϕ(n ) F id λ n -n, g = I n -n, g R H ϕ(n ) F id λ n -n, g • F (ς n (h))
Recalling the equality 2.7.1, the compatibility with respect to the tensor product amounts to proving that:

F id λ n -n, g • F (ς n (h)) = F ς n H ϕ n -n, g (h) • F id λ n -n, g .
This is a direct consequence of Conditions 2.7.4 and 2.7.5.

2. Let us prove that the assignment T (I, F) is a functor. The functorialities of I and F over UG and from the compatibility of the monoidal structure with composition imply the composition axiom and that:

T (I, F) (id G n ) = id T(I,F)(n) .
3. The remaining point to check for T to be a functor is the consistency of our definition on morphisms. For η : F → G and µ : I → J natural transformations, it is clear to check that:

T (J, G) n -n, g • T (µ, η) n = T (µ, η) n • T (I, F) n -n, g .
Therefore T (µ, η) is a morphism in the category Fct (UG, R-Mod). It is clear that T (id I , id F ) = id T(I,F) . Finally, let η : F → G, η : G → H, µ : I → J and µ : J → K be natural transformations. Let n be a natural number. Now, because η, η , µ and µ are morphisms in the category Fct (UG, R-Mod), we deduce that:

T µ , η • (µ, η) n = µ n • µ n R[H ϕ(n) ] η λ+n • η λ+n (v) = T µ , η n • T (µ, η) n .
Example 2.7.12. Consider a Long-Moody system {H, G, G , ς n } and the augmentation ideal functor I of Definition 2.2.28. Then: LM {H,G,ς n } = T {1,id N ,H,G,ς n } (I, -) .

Introduction

In [START_REF] Randal | Homological stability for automorphism groups[END_REF], Randal-Williams and Wahl prove homological stability for some families of mapping class groups of surfaces and 3-manifolds, with twisted coefficients given by particular kind of functors. Namely, they consider a set of groups {G n } n∈N such that there exists a canonical injection G n → G n+1 for all natural numbers n. We denote by G the groupoid with natural numbers as objects and the groups {G n } n∈N as automorphism groups, by UG the Quillen's bracket construction on G (see Section 3.1), and by Ab the category of abelian groups. Randal-Williams and Wahl show that if F : UG → Ab is a very strong polynomial functor of degree d (see [START_REF] Soulié | The generalized Long-Moody functors[END_REF]Section 4] for this notion), then the canonical induced maps

H * (G n , F (n)) → H * (G n+1 , F (n + 1))
are isomorphisms for N ( * , d) ≤ n with some N ( * , d) ∈ N depending on * and d. The value of the homology for n ≥ N ( * , d) is called the stable homology of the family of groups {G n } n∈N and denoted by H * (G ∞ , F ∞ ).

In this paper, we are interested in explicit computations of the stable homology with twisted coefficients for mapping class groups of surfaces and 3-manifolds. On the one hand, we use semidirect product structures naturally arising from mapping class groups to compute their stable homology with particular twisted coefficients. Namely, on the strength of Lyndon-Hochschild-Serre spectral sequence, we prove: Theorem A (Proposition 3.2.18, Theorems 3.2.17, 3.2.29 and 3.2.45). We have:

1. For n a natural number, we denote by B n the braid group on n strands, by Cox (n) the complex Coxeter representation and by Bur t (n) the unreduced Burau representation of B n . From the stability result [Gor78, Theorem C], we deduce that for all natural numbers n ≥ q + 2:

H q (B n , Cox (n)) ∼ = C ⊕2 if q ≥ 2, C if q = 0, 1.
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H q (B n , Bur t (n)) ∼ =          C t ±1 / (1 -t) if 3 ≤ q < n-2, C t ±1 / (1 -t) if q = n
-2 and n is odd, C t ±1 / 1t 2 if q = n-2 and n is even, 0 otherwise.

2. We denote by Γ g,1 the isotopy classes of diffeomorphisms restricting to the identity on the boundary component of a compact connected orientable surface with one boundary component and genus g ≥ 0. Then, from the stability results of [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF][START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF], for m, n and q natural numbers such that 2n ≥ 3q + m, there is an isomorphism:

H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m ∼ = q-1 2 ≥k≥0 H q-(2k+1) Γ n,1 , H 1 (Σ n,1 , Z) ⊗m-1 .
Hence, we recover inter alia results of [START_REF] Harer | The third homology group of the moduli space of curves[END_REF] and [START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF].

3. We denote by A s n,k the group of path-components of the space of homotopy equivalences of the space G s n,k with n ∈ N circles, k ∈ N distinguished circles and s ∈ N basepoints (we refer the reader to Section 3.2.2.4 for an introduction to these groups). Let s ≥ 2 and q ≥ 1 be natural numbers and F : gr → Ab a reduced polynomial functor where gr denotes the category of finitely generated free groups. Then, from the stability results of [START_REF] Hatcher | Stabilization for mapping class groups of 3-manifolds[END_REF], for all natural numbers n ≥ 2q + 1:

H q A s n,0 , F (n) = 0.
Moreover, H q A s n,k , Q = 0 for all natural numbers n ≥ 2q + 2 and k ≥ 0. We thus recover the results of [Jen04] for holomorphs of free groups.

On the other hand, we deal with stable homology for mapping class groups with twisted coefficients factoring through some finite groups. Let (Σ, , 0) (resp. (WΣ, , 0)) be the symmetric monoidal groupoid with objects the natural numbers and automorphism groups the symmetric groups (resp. hyperoctahedral groups). Note that Quillen's bracket construction UΣ (see Section 3.1) is equivalent to the category FI of finite sets and injections used inter alia in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. For R a commutative ring, R-Mod denotes the category of R-modules. We prove the following results.

Theorem B (Proposition 3.4.14, Proposition 3.4.22, Proposition 3.4.26, Corollary 3.4.30). Let K be a field of characteristic zero and d be a natural number. Considering functors F : FI → K-Mod and G : U (WΣ) → K-Mod, we have:

1. H d (B ∞ , F ∞ ) ∼ = Colim n∈FI H d (PB n , K) ⊗ K F (n)
where B n (respectively PB n ) denotes the braid (respectively pure braid) group on n strands.

H

d (S ∞ , G ∞ ) ∼ = Colim n∈U(WΣ) H d (PS n , K) ⊗ K G (n)
where S n (respectively PS n ) denotes the symmetric (respec- tively pure symmetric) automorphisms group of free group on n strands (we refer the reader to Section 3.4.2.2 for the definitions of these groups).

H

d Γ ∞ ∞,1 , F ∞ ∼ = Colim n∈FI k+l=d H k (Γ n,1 , K) ⊗ K H l (CP ∞ ) ×n , K ⊗ K F ( 
n) , where Γ s g,1 denotes the isotopy classes of diffeomorphisms permuting the marked points and restricting to the identity on the boundary component of a compact connected orientable surface with one boundary component, genus g ≥ 0 and s ≥ 0 marked points. In particular, H 2k+1 Γ ∞ ∞,1 , F ∞ = 0 for all natural numbers k.

H d Aut

Z * k ×∞ , F ∞ = 0 for a fixed natural number k ≥ 2d + 1.
The proof of Theorem B requires a splitting result for the twisted stable homology for some families of groups: this decomposition consists in the graded direct sum of tensor products of the homology of an associated category with the stable homology with constant coefficients. Namely, we consider a pre-braided locally homogeneous category (UG, , 0) (we refer the reader to Section 3.1 for an introduction to these notions) such that the unit 0 is an initial object. We denote by UG (A,X) the full subcategory of UG on the objects A X n n∈N and by H * UG (A,X) , F the homology of the category UG (A,X) (we refer the reader to the papers [FP03, Section 2] and [DV10, Appendice A] for an introduction to this last notion). We prove the following statement.

Theorem C (Proposition 3.3.7) . Let K be a field. For all functors F : UG (A,X) → K-Mod, we have a natural isomorphism of K-modules:

H * (G ∞ , F ∞ ) ∼ = k+l= * H k (G ∞ , K) ⊗ K H l UG (A,X) , F .
If the groupoid G is symmetric monoidal, then Theorem C recovers the previous analogous results [DV10, Propositions 2.22, 2.26].

For sake of completeness, we finally recall that for braid groups, the homology with coefficients in the ring of Laurent polynomials Z t ±1 is computed by Callegaro in [START_REF] Callegaro | The homology of the Milnor fiber for classical braid groups[END_REF], the one with coefficients in the Tong-Yang-Ma representations (see [START_REF] Tong | A new class of representations of braid groups[END_REF]) is obtained by Callegaro, Moroni and Salvetti in [START_REF] Callegaro | Cohomology of Artin groups of type Ãn , B n and applications[END_REF] and the one with coefficients in the reduced Burau representations is computed by Chen in [START_REF] Chen | Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields[END_REF]. Futhermore, the first stable homology group of compact connected non-orientable surfaces with one boundary component with coefficients in the first homology group of the considered surface is computed by Stukow in [START_REF] Stukow | The first homology group of the mapping class group of a nonorientable surface with twisted coefficients[END_REF].

The paper is organized as follows. In Section 3.1, we recall necessary notions on Quillen's bracket construction, pre-braided monoidal categories and locally homogeneous categories. In Section 3.2, after setting up the general framework for the families of groups we will deal with and applying Lyndon-Hochschild-Serre spectral sequence, we prove the various results of Theorem A. Section 3.3 is devoted to the proof of the splitting general result Theorem C for the stable homology. Finally, in Section 3.4, we deal with the twisted stable homology for mapping class groups with non-trivial finite quotient groups and prove Theorem B. Notation 3.0.1. We fix R a commutative ring and K a field throughout this work. We denote by R-Mod and K-Mod the categories of R-modules and K-vector spaces.

We denote by (N, ≤) the category of natural numbers (natural means non-negative) considered as a directed set. For all natural numbers n, we denote by γ n the unique element of Hom (N,≤) (n, n + 1). For all natural numbers n and n such that n ≥ n, we denote by γ n,n : n → n the unique element of Hom (N,≤) (n, n ), composition of the morphisms γ

n -1 • γ n -2 • • • • • γ n+1 • γ n .
The addition defines a strict monoidal structure on (N, ≤), denoted by ((N, ≤) , +, 0).

We denote by Gr the category of groups and by * the coproduct in this category. We denote by Ab the full subcategory of Gr of abelian groups. We denote by gr the full subcategory of Gr of finitely generated free groups. The fee product of groups is denoted by * and defines a monoidal structure over gr, with the trivial group 0 Gr the unit, denoted by (gr, * , 0 Gr ). We denote by × the direct product of groups and by Aut Gr (G) (or Aut (G)) the automorphism group of a group G.

Let Cat denote the category of small categories. Let C be an object of Cat. We use the abbreviation Obj (C) to denote the objects of C. For D a category, we denote by Fct (C, D) the category of functors from C to D. If 0 is initial object in the category C, then we denote by ι A : 0 → A the unique morphism from 0 to A. The maximal subgroupoid G r (C) is the subcategory of C which has the same objects as C and of which the morphisms are the isomorphisms of C. We denote by G r : Cat → Cat the functor which associates to a category its maximal subgroupoid.

Definition 3.0.2. A family of groups is a functor G -: (N, ≤) -→ Gr such that for all natural numbers n, G -(γ n ) : G n → G n+1 is an injective group morphism.

For an introduction to braided monoidal categories, we refer to [ML13, Section XI]. Standardly, a strict monoidal category will be denoted by (C, , 0), where : C × C → C is the monoidal structure and 0 is the monoidal unit. If the category is braided, we denote by b C -,-its braiding.

Definition 3.1.6. [RWW17, Definition 1.5] Let (C, , 0) be a strict monoidal category such that the unit 0 is initial. We say that the monoidal category (C, , 0) is pre-braided if:

• The maximal subgroupoid G r (C, , 0) (see Notation 3.0.1) is a braided monoidal category, where the monoidal structure is induced by that of (C, , 0).

• For all objects A and B of C, the braiding associated with the maximal subgroupoid b Finally, recall the remarkable behaviour of Quillen's bracket construction over the strict monoidal groupoid (G, , 0). Proposition 3.1.8. [RWW17, Proposition 1.8] Suppose that the strict monoidal groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }. If the groupoid (G, , 0) is braided, then the category (UG, , 0) is pre-braided monoidal. If the groupoid (G, , 0) is symmetric, then the category (UG, , 0) is symmetric monoidal.

C A,B : A B -→ B A satisfies: b C A,B • (id A ι B ) = ι B id A : A -→ B A. ( 3 
The monoidal structure on the category (UG, , 0) is defined on objects as for (G, , 0) and defined on morphisms by letting, for [X, f ] ∈ Hom UG (A, B) and [Y, g] ∈ Hom UG (C, D):

[X, f ] [Y, g] = X Y, ( f g) • id X b G A,Y -1 id C .
In particular, the canonical functor G → UG (see Remark 3.1.4) is monoidal.

Locally homogeneous categories

The notion of homogeneous category is introduced by Randal-Williams and Wahl in [RWW17, Section 1], inspired by the set-up of Djament and Vespa in [DV10, Section 1.2]. With two additional assumptions, Quillen's construction UG from a strict monoidal groupoid (G, , 0) is endowed with an homogeneous category structure. This type of category are very useful to deal with homological stability with twisted coefficients questions (see [START_REF] Randal | Homological stability for automorphism groups[END_REF]) or to work on the stable homology with twisted coefficient (see [START_REF] Djament | Sur l'homologie des groupes orthogonaux et symplectiques à coefficients tordus[END_REF], [START_REF] Djament | Sur l'homologie des groupes d'automorphismes des groupes libres à coefficients polynomiaux[END_REF] and Section 3.3). Let (C, , 0) be a small strict monoidal category in which the unit 0 is also initial. For all objects A and B of C, we consider the morphism ι A id B : 0 B -→ A B and a set of morphisms characterised by this morphism:

Fix A (B) = {φ ∈ Aut (A B) | φ • (ι A id B ) = ι A id B } .
Remark 3.1.9. Since (C, , 0) is assumed to be small, Hom C (A, B) is a set and Aut C (B) defines a group (with composition of morphisms as the group product). The group Aut C (B) acts by post-composition on Hom C (A, B):

Aut C (B) × Hom C (A, B) -→ Hom C (A, B). (φ, f ) -→ φ • f Definition 3.1.10. Let (C, , 0 
) be a small strict monoidal category where the unit 0 is initial. We consider the following axioms:

• (H1): for all objects A and B of the category C, the action by post-composition of Aut C (B) on Hom C (A, B) is transitive.

• (LH1): for a pair of objects (A, X): for all natural numbers 0 ≤ p < n, the action by post-composition of Aut C (A X n ) on Hom C (X (p+1) , A X n is transitive.

• (H2): for all objects A and B of the category C, the map

Aut C (A) -→ Aut C (A B) f -→ f id B
is injective with image Fix A (B).
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• (LH2): for a pair of objects (A, X): for all natural numbers 0 ≤ p < n, the map

Aut C (A X (n-p-1) ) -→ Aut C (A X n ). f -→ f id X (p+1)
is injective with image Fix A X (n-p-1) X (p+1) .

The category (C, , 0) is locally homogeneous at a pair of objects (A, X) (respectively homogeneous) if it satisfies the axioms (LH1) and (LH2) at (A, X) (respectively the axioms (H1) and (H2)).

Remark 3.1.11. If (C, , 0) is a homogeneous category, then it follows form axioms (H1) and (H2) that for all objects A and B:

Hom C (B, A B) ∼ = Aut C (A B) /Aut C (A) ,
where Aut C (A) acts on Aut C (A B) by precomposition.

We now give the two additional properties so that if a strict monoidal groupoid (G, , 0) satisfy them, then Quillen's bracket construction UG is (locally) homogeneous. Definition 3.1.12. Let (C, , 0) be a strict monoidal category. We define two assumptions.

• (C): for all objects A, B and

C of C, if A C ∼ = B C then A ∼ = B.
• (LC): for a pair of objects (A, X): for all natural numbers 0 ≤

p < n, if Y ∈ Obj (C) is such that Y X (p+1) ∼ = A X n then Y ∼ = A X (n-p-1) .
• (I): for all objects A, B of C, the following morphism is injective:

Aut C (A) -→ Aut C (A B). f -→ f id B
• (LI): for a pair of objects (A, X): for all natural numbers 0 ≤ p < n, the following morphism is injective:

Aut C (A X (n-p-1) ) -→ Aut C (A X n ). f -→ f id X (p+1)
Theorem 3.1.13. [RWW17, Theorem 1.10] Let (G, , 0) be a braided monoidal groupoid with no zero divisors. If the groupoid G satisfies (C) and (I), then UG is homogeneous. If the groupoid G satisfies (LC) and (LI) for a pair of objects (A, X), then UG is locally homogeneous at (A, X).

Twisted stable homologies of semidirect products

This section introduces a general method to compute the stable homology with twisted coefficients using semidirect product structures arising naturally from the families of mapping class groups. We first establish the general result of Corollary 3.2.5 for the homology of semidirect products with twisted coefficients. This result is then applied in Section 3.2.2 to compute explicitly some homology groups with twisted coefficients for braid groups, mapping class groups of orientable and non-orientable surfaces and automorphisms of free groups with boundaries.

Framework of the study

A general result for the homology of semidirect products

First, we present some properties for the homology with twisted coefficients for a semidirect product using Lyndon-Hochschild-Serre spectral sequence and prove the general statement of Corollary 3.2.5. Let Q be a groupoid with natural numbers as objects and denote by Aut Q (n) = Q n the automorphism groups.

Assumption 3.2.1. We assume that there exists a family of free groups K -: (N, ≤) → Gr and a functor A Q : Q → Gr such that A Q (n) = K n for all natural numbers n.

Notation 3.2.2. For all natural numbers n, we denote by A Q,n : Q n → Aut Gr (K n ) the group morphisms induced by the functor A Q .

Using Assumption 3.2.1, we form the split short exact sequence:

1 / / K n k n / / K n A Q,n Q n q n / / Q n / / 1 (3.2.1)
and we denote by s n :

Q n → K n A Q,n
Q n the splitting of q n . For all natural numbers n, we fix

M n a R K n A Q,n Q n - module.
Notation 3.2.3. We abuse the notation and write M n for Res

K n A Q,n Q n K n (M n ), where Res K n A Q,n Q n K n denotes the restriction functor. Proposition 3.2.4. For M n an R K n A Q,n
Q n -module, the short exact sequence (3.2.1) induces a long exact sequence:

• • • / / H * +1 (Q n , H 0 (K n , M n )) d 2 * +1,0 H * -1 (Q n , H 1 (K n , M n )) ϕ * / / H * K n A Q,n Q n , M n ψ * / / H * (Q n , H 0 (K n , M n )) d 2 * ,0 H * -2 (Q n , H 1 (K n , M n )) / / • • • (3.2.2)
where d 2 p,q p,q∈N denote the differentials of the second page of the Lyndon-Hochschild-Serre spectral sequence associated with the short exact sequence (3.2.1).

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence (see for instance [Wei94, Proposition 6.8.2]) to the short exact sequence (3.2.1), we obtain the following convergent first quadrant spectral sequence:

E 2 pq : H p Q n , H q (K n , M n ) =⇒ H p+q K n A Q,n Q n , M n . (3.2.3)
Since K n is a free group, H q (K n , M n ) = 0 for q ≥ 2 (see for instance [Wei94, Proposition 6.2.7]). The result is a classical consequence of the fact that the spectral sequence (3.2.3) has only two rows (see for instance [Wei94, Exercise 5.2.2]). In particular, the map ϕ * is defined by the composition:

H * -1 (Q n , H 1 (K n , M n )) ϕ * * * H * -1 (Q n , H 1 (K n , M n )) /Im d 2 * +1,0 / / H * K n A Q,n Q n , M n ; 97 Lemma 3.2.7. Assigning A Q ([1, id n+1 ]) = K -(γ n
) for all natural numbers n, we define a functor A Q : UQ → Gr.

Proof. We use Lemma 3.1.5 to prove this result: namely, we show that relations (3.1.1) and (3.1.2) of this lemma are satisfied. It follows from the fact that K -is a functor on (N, ≤), that the relation (3.1.1) of Lemma 3.1.5 is satisfied by A Q . Let n and n be natural numbers such that n ≥ n, let q ∈ Q n and q ∈ Q n . We denote by e K n the neutral element of K n . Since A Q is monoidal, we compute for all k ∈ K n :

A Q q q • A Q n , id n +n (k) = A Q q * A Q (q) e K n * k = e K n * A Q (q) (k) = A Q n , id n +n • A Q (q) (k) .
Hence, the relation (3.1.2) of Lemma (3.1.5) is satisfied by A Q .

Let F be an object of Fct (UQ, R-Mod) and n be a natural number.

Notation 3.2.8. We denote by ς n,t the trivial morphisms

K n → 0 Gr → Q n+1 .
Hence, the Q n+1 -module F (n + 1) is both a Q n -module using precomposition by the morphism id 1 -: Q n → Q n+1 and a trivial K n -module using precomposition by ς n,t . Recall that the homology group H 1 (-, R) defines a functor from the category Gr to the category R-Mod (see for example [Bro12, Section 8]). Hence, we define a functor H 1 (A Q , R) : UG → R-Mod by the composition:

UQ A Q / / Gr H 1 (-,R) / / R-Mod .
In addition, the pointwise tensor product of two objects of Fct (UQ, R-Mod) defines an object of Fct (UQ, R-Mod), assigning

F ⊗ R F (n) = F (n) ⊗ R F (n) 
for F, F ∈ Fct (UQ, R-Mod) and for all objects n of UQ.

Taking up the notations and framework of [START_REF] Soulié | The generalized Long-Moody functors[END_REF], we deduce that:

Lemma 3.2.9. [Sou17a, Lemma 2.37 and Proposition 2.38] If Assumption 3.2.6 is satisfied, then for all objects F of Fct (UQ, R-Mod), there is a isomorphism in the category Fct (UQ, R-Mod):

H 1 (K -, R) ⊗ R F (1 -) ∼ = LM {A Q ,Q,Q,ς n,t } (F) ,
where LM {A Q ,Q,Q,ς n,t } denotes the Long-Moody functor associated with the functor A Q , the braided monoidal groupoid (Q, , 0) and the family of trivial morphisms {ς n,t } n∈N .

We refer the reader to [Sou17a, Section 3] for an introduction to the notion of strong polynomial functors. It thus follows from Lemma 3.2.9 and [Sou17a, Theorem A] that: Corollary 3.2.10. Let F be an object of Fct (UQ, R-Mod). If F is a strong polynomial functor of degree equal to d, then H 1 (K -, R) ⊗ R F (1 -) is a strong polynomial functor of degree less than or equal to d.

Applications

Many families of mapping class groups fit into the framework of Section 3.2.1. Proposition 3.2.4 and Corollary 3.2.5 are key results to compute the homology with twisted coefficients for these families of groups.

Braid groups

We denote by B n the braid group on n strands and by F n the free group on n generators. The braid groupoid β is the groupoid with objects the natural numbers n ∈ N and braid groups as automorphism groups. It is endowed with a strict braided monoidal product : β × β -→ β, defined by the usual addition for the objects and laying 100 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups two braids side by side for the morphisms. The object 0 is the unit of this monoidal product. The braiding of the strict monoidal groupoid (β, , 0) is defined for all natural numbers n and m by: b

β n,m = (σ m • • • • • σ 2 • σ 1 ) • • • • • (σ n+m-2 • • • • • σ n • σ n-1 ) • (σ n+m-1 • • • • • σ n+1 • σ n )
where {σ i } i∈{1,...,n+m-1} denote the Artin generators of the braid group B n+m . We refer the reader to [ML13, Chapter XI, Section 4] for more details.

For all natural numbers n, Artin representations a n : B n → Aut (F n ) are defined for all elementary braids σ i where i ∈ {1, . . . , n -1} by:

a n (σ i ) : F n -→ F n g j -→      g i+1 if j = i g -1 i+1 g i g i+1 if j = i + 1 g j if j / ∈ {i, i + 1}.
Identifying B n as the mapping class group of a n-punctured disc, a n is the induced action on the fundamental group of the n-punctured disc. Artin representations thus provide a functor A β : β -→ Gr and Assumption 3.2.6 is satisfied.

Remark 3.2.11. For all natural numbers n, the semidirect product

F n A β,n
B n identifies with the annular braid group, also known as circular braid group or Artin group of type B n (see [START_REF] Callegaro | Cohomology of Artin groups of type Ãn , B n and applications[END_REF]), denoted by CB n : this is the subgroup of B n+1 that leaves the first puncture invariant. We refer the reader to [CMS08, Section 2] for more details. In [Gor78, Theorem C], Gorjunov computes the cohomology groups H q (CB n , Q). Therefore, using the universal coefficient theorem for cohomology (see for example [Wei94, Theorem 3.6.5]), it follows that for n ≥ q + 2:

H q F n A β,n B n , C ∼ = C ⊕2 if q ≥ 1 C if q = 0.
Computation of H * (B n , Bur t ): For this paragraph, we fix R = C t ±1 , the ring of Laurent polynomials in one variable. In [Sou17b, Section 1.2], we prove that the unreduced Burau (respectively reduced Burau) representations of braid groups assemble to form a functor Bur t : Uβ → C t ±1 -Mod (respectively Bur t : Uβ → C t ±1 -Mod).

In [START_REF] Chen | Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields[END_REF], Chen computes the homology groups of braid groups with coefficients in the reduced Burau functor. We briefly review here the work led for this computation. Notation 3.2.12. We denote by C t ±1 the object of Fct Uβ, C t ±1 -Mod which is constant at C t ±1 . Theorem 3.2.13. [Che17, Theorem 1] For n ≥ 3, we have: B n on C t ±1 . Then, [Che17, Lemma 3] proves that for q and n ≥ 3 natural numbers, there is an isomorphism of C t ±1 -modules:

H q B n , Bur t (n) ∼ =                0 if q = 0, C t ±1 / (1 -t) if 1 ≤ q < n-2, C t ±1 / (1 -t) if q = n-2 and n is odd, C t ±1 / 1 -t 2 if q = n-2
H q B n , Bur t (n) ∼ = H q B n , H 1 F n , C t ±1 .
Note that H 0 F n , C t ±1 ∼ = C and recall that H * (B n , C) = 0 if * ≥ 2 (see for example [Ver98, Section 4]). Hence, the result follows from Proposition 3.2.4 and the computation in [CMS08, Theorem 4.2] of

H q F n A β,n B n , C t ±1 .
Remark 3.2.14. In [Sou17b, Section 1.2], we also prove that the family of Tong-Yang-Ma representations (see [START_REF] Tong | A new class of representations of braid groups[END_REF]) of braid groups assemble to form a functor TYM t : Uβ → C t ±1 -Mod. As in [CMS08, Proposition 4.3], we can prove using Schapiro's lemma that for n ≥ 3 and q ≥ 2:

H q (B n , TYM t (n)) ∼ = H q-1 B n , Bur t (n) .
The following proposition relates the reduced and unreduced Burau functors. Proof. For all natural numbers n, we fix:

r n = n          1 -1 0 • • • 0 0 1 . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . 1 -1 0 • • • • • • 0 1          .
Then, for all i ∈ {1, . . . , n -1} and n ≥ 3,

r n • Bur t (σ i ) • r -1 n = n Bur t (σ i ) 0 L i 1 where L i = n 0 • • • 0 δ i,n-1 1
and δ i,n-1 denotes the Kronecker delta. Hence, the functor (Bur t ) ≥3 is equivalent to the functor Bur t : Uβ -→ ). For all natural numbers n ≥ 3, the projections p n : C t ±1 ⊕n C t ±1 ⊕n-1 on the n -1 first copies of C t ±1 determine the natural transformation p of the short exact sequence (3.2.5). It is clear that the kernel of this natural transformation is C t ±1 ≥3 . Hence, we can prove: Theorem 3.2.17. For all natural numbers n ≥ 3 and q ≥ 3: 

H q (B n , Bur t (n)) ∼ =          C t ±1 / (1 -t) if 3 ≤ q < n-2, C t ±1 / (1 -t) if q = n-2 and n is odd, C t ±1 / 1 -t 2 if q = n-2
(n) = C ⊕n-1 for all natural numbers n ≥ 1, Cox ([1, id n+1 ]) = ι C ⊕ id C ⊕n and Cox ([1, id n+1 ]) = ι C ⊕ id C ⊕n-1
, and for all Artin generator σ i of B n :

Cox (σ i ) = Id i-1 ⊕ 0 1 1 0 ⊕ Id n-i-1 and Cox (σ i ) = Id i-2 ⊕   1 1 0 0 -1 0 0 1 1   ⊕ Id n-i-2 .
The unreduced (respectively reduced) Coxeter representation corresponds for each natural number n to the representation of B n factoring through the permutation (respectively standard) representation of symmetric group on n elements.

Proposition 3.2.18. For all natural numbers n ≥ q + 2:

H q (B n , Cox (n)) ∼ = C ⊕2 if q ≥ 2, C if q = 0, 1.
Proof. Let n be a natural number. Note that the free group F n acts trivially on Cox (n) and therefore Assumption 3.2.6 is satisfied. In addition, we have

Cox (n) ∼ = H 1 (F n , C) ,
and the actions of B n on Cox (n) and H 1 (F n , C) are the same: it is given by the permutation of the copies of C. Since

H k (B n , C) = C if k = 0, 1 0 
otherwise (see for example [Ver98, Section 4]), the result follows from Corollary 3.2.5.

It follows from the long exact sequence analogous to (3.2.6) with t specialized at 1, that:

Corollary 3.2.19. For all natural numbers n and q such that n ≥ 3 and n ≥ q + 2:

H q B n , Cox (n) ∼ =      0 if q = 0, C if q = 1, C ⊕2 if q ≥ 2,
Remark 3.2.20. In [Vas92, Chapter II, Section 5], using analogous methods, Vassiliev computes the cohomology groups H q (B n , Cox (n)) and H q B n , Cox (n) . Using the universal coefficient theorem for twisted coefficients (see for example [God58, Théorème I.5.5.2]), Proposition 3.2.18 and Corollary 3.2.19 recover these results.

Mapping class groups of orientable surfaces

Let Σ s g,i denote a smooth compact connected orientable surface with (orientable) genus g ∈ N, s ∈ N marked points and i ∈ {1, 2} boundary components with I : [-1, 1] → ∂Σ s g,i a parametrised interval in the boundary. We denote by Γ s g,1 (resp. Γ

[s] g,1 ) the isotopy classes of diffeomorphisms of Σ s g,1 preserving the orientation, restricting to the identity on a neighbourhood of the parametrised interval I and permuting (resp. fixing) the marked points (if s = 0, we omit it from the notation). Recall that fixing the interval I is the same as fixing the whole boundary component pointwise. When there is no ambiguity, we omit the parametrised interval I from the notation.

We denote by Γ g,2 the isotopy classes of diffeomorphisms of Σ 0 g,2 preserving the orientation and restricting to the identity on a neighbourhood of the parametrised interval I and fixing the other boundary component pointwise. Recall that R is a commutative ring and we assume that the various mapping class groups act trivially on it.

The following result is an essential tool for our work:

Theorem 3.2.21. [START_REF] Birman | Braids, links, and mapping class groups[END_REF] Let g ≥ 1, s ≥ 0 be natural numbers and x be a marked point in the interior of Σ s g,1 . Deleting x induces a map Γ

[s+1] g,1 → Γ [s]
g,1 which defines the following short exact sequence:

1 / / π 1 Σ s g,1 , x / / Γ [s+1] g,1 / / Γ [s] g,1 / / 1. (3.2.7)
Gluing a disc with a marked point disc Σ 1 0,1 on the boundary component without I induces the following short exact sequence: Proof. The embedding of Σ s g,1 into Σ s+1 g,1 as the complement of the disc Σ 1 0,1 with the marked point x induces an injective morphism Γ

1 / / Z / / Γ g,2 / / Γ 1 g,1 / / 1. ( 3 
[s] g,1 → Γ [s+1]
g,1 . This provides a splitting of the exact sequence (3.2.7) and we have an isomorphism:

Γ [s+1] g,1 ∼ = π 1 Σ s g,1 , x a x Σ s g,1 Γ [s] g,1 .
Let us introduce a suitable groupoid for our work, inspired by [RWW17, Section 5.6].

Definition 3.2.24. Let s be a fixed natural number. Let M s 2 be the skeleton of the groupoid defined by:

• Objects: the smooth compact connected orientable surfaces Σ s n,1 for all natural numbers n with x a basepoint in the interior; 

• Morphisms: Aut M s 2 Σ s n,1 = Γ s n,
: M s 2 → Gr such that A (n) = π 1 Σ s n,1 ,
x for all natural numbers n. Hence, recalling that π 1 Σ s n,1 , x is a free group of rank 2n + s, Assumption 3.2.1 is satisfied. Proposition 3.2.26. Let n, s and q ≥ 1 be natural numbers. Let M n be a R Γ 

Γ

[s] g,1 ) on which π 1 Σ s n,1 , x acts trivially. Then:

H q Γ [s+1] n,1 , M n ∼ = H q-1 Γ [s] n,1 , H 1 Σ s n,1 , R ⊗ R M n ⊕ H q Γ [s] n,1 , M n . (3.2.9)
Proof. The result follows from Corollary 3.2.5 and Lemma 3.2.23.
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We fix a natural number n such that 2n ≥ 3q + m. Using Theorem 3.2.28 and Proposition 3.2.26, the projection

H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m ⊕ H q-1 Γ n,1 , H 1 (Σ n,1 , Z) ⊗m+1 H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m
defines a splitting of ϕ q in the long exact sequence (3.2.10):

• • • -→ H q Γ n,2 , H 1 (Σ n,1 , Z) ⊗m ϕ q / / ∼ = by Theorem 3.2.28 H q Γ 1 n,1 , H 1 (Σ n,1 , Z) ⊗m d 2 q,0 -→ • • • ∼ = by Proposition 3.2.26 H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m H q Γ n,1 , H 1 (Σ n,1 , Z) ⊗m ⊕ H q-1 Γ n,1 , H 1 (Σ n,1 , Z) ⊗m+1 . splitting o o o o
Hence, using again Proposition 3.2.26, we have the following isomorphism:

H q-1 Γ n,1 , H 1 (Σ n,1 , Z) ⊗m+1 ∼ = H q-2 Γ n,1 , H 1 (Σ n,1 , Z) ⊗m ⊕ H q-3 Γ n,1 , H 1 (Σ n,1 , Z) ⊗m+1 .
The result thus follows by induction on q.

Remark 3.2.30. For m = 1 and rational coefficients, the result of Theorem 3.2.29 recovers the computation due to Harer [Har91, Theorem 7.1.(b)], where the index of the direct sum in this reference should start at i = 1.

In [START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF], Kawazumi leads the analogous computation for cohomology: namely, [Kaw08, Theorem 1.B.] gives the stable cohomology value H q Γ ∞,1 , H 1 (Σ ∞,1 , Z) ⊗m for all natural numbers q and m. The method and techniques used in [START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF] are different from the ones presented here. Using the universal coefficient theorem for twisted coefficients (see for example [God58, Théorème I.5.5.2]), Theorem 3.2.29 recovers the computation of [Kaw08, Theorem 1.B.].

Computation of H d Γ [s]

∞,1 , Z : Another application of Proposition 3.2.26 is to compute the stable homology groups H d Γ

[s]

∞,1 , Z for all natural numbers d. Using Proposition 3.2.26 with constant module Z and Theorem 3.2.29 with m = 1, we prove: Theorem 3.2.31. Let n and q be natural numbers such that 2n ≥ 3q. Then, there is an isomorphism:

H q Γ [s+1] n,1 , Z ∼ = q 2 ≥k≥0 H q-2k Γ [s]
n,1 , Z . Furthermore, using other techniques (namely an equivalence of classifying spaces), Bödigheimer and Tillmann prove the equivalent result: Theorem 3.2.33. [BT01, Corollary 1.2] Let q and n be natural numbers such that n ≥ 2q. For all natural numbers s:

H q Γ [s] n,1 , Z ∼ = k+l=q H k (Γ n,1 , Z) ⊗ Z H l (CP ∞ ) ×s , Z ∼ = H k (Γ n,1 , Z) ⊗ Z Z [x 1 , . . . , x s ] ,
where CP ∞ denotes the infinite dimensional complex projective space and each x i has degree two.

Remark 3.2.39. Assigning M n = Z for all natural numbers n, the isomorphism (3.2.12) thus allows to compute the twisted stable homology with twisted coefficient H q-1 (N ∞,1 , H 1 (N Σ ∞,1 , Z)) from the stable homologies with rational coefficient H q N 1 ∞,1 , Z and H q (N ∞,1 , Z) for all natural numbers q. Unfortunately, as far as the author knows, even if H q (N ∞,1 , Z) is computed in [RW08] for 1 ≤ q ≤ 6, the stable homology H q N 1 ∞,1 , Z is computed only for q = 1. Namely, it follows by the computations of Korkmaz in [START_REF] Korkmaz | First homology group of mapping class groups of nonorientable surfaces[END_REF] and the stability result with respect to marked points of Hanbury in [START_REF] Hanbury | Homological stability of non-orientable mapping class groups with marked points[END_REF] that H 1 N 1 ∞,1 , Z = Z 2 and a fortiori H 0 (N ∞,1 , H 1 (N Σ ∞,1 , Z)) = 0 by [START_REF] Randal-Williams | The homology of the stable nonorientable mapping class group[END_REF].

Also, note that Stukow computes H 1 (N n,1 , H 1 (N Σ n,1 , Z)) in [Stu14, Theorem 1.1] for n ≥ 3. Using [RW08], we deduce that H 2 N 1 ∞,1 , Z ∼ = Z ⊕5 2 .

Automorphisms of free groups with boundaries

Let G n,k denote the topological space consisting of the wedge of n ∈ N circles together with k distinguished circles joined by arcs to the basepoint. For s ∈ N, let G s n,k be the space obtained from G n,k by wedging s -1 edges at the basepoint. We denote by A s n,k the group of path-components of the space of homotopy equivalences of G s n,k which fix the k distinguished circles and the s basepoints. For instance, for n a natural number and denoting by F n the free group of rank n, then A 1 n,0 is isomorphic to the automorphism group of F n denoted by Aut (F n ) and A 2 n,0 is isomorphic to the holomorph of the free group F n . We refer the reader to [START_REF] Hatcher | Stabilization for the automorphisms of free groups with boundaries[END_REF] and [START_REF] Jensen | Homology of holomorphs of free groups[END_REF] for more details on these groups.

For k, n ∈ N, we denote by Aut n,k the subgroup of Aut (F n+k ) of automorphisms that take each of the last k generators to a conjugate of itself. We recall that the homotopy long exact sequence associated with the fibration induced by restricting the homotopy equivalences of G n,k to their rotations of the k distinguished circles provides a surjective map A n,k

Aut n,k .

Notation 3.2.40. For k, n ∈ N, we denote by a A n,k the composition A 1 n,k → A n,k Aut n,k → Aut (F n+k ) where the map A 1 n,k → A n,k forgets the basepoint. We recall the following useful result: Lemma 3.2.41. [START_REF] Hatcher | Stabilization for the automorphisms of free groups with boundaries[END_REF] Let n, k and s ≥ 2 be natural numbers. There is a split short exact sequence where A 1 n,k acts diagonally on (F n+k ) s-1 via the map a A n,k : A 1 n,k → Aut (F n+k ). We introduce the suitable groupoid to work with the automorphisms of free groups with boundaries. Definition 3.2.42. Let k and s be fixed natural numbers. Let A s,k be the groupoid with the topological spaces G s n,k as objects and A s n,k as automorphism groups for all natural numbers. Remark 3.2.43. In particular, for s = 1 and k = 0, A 1,0 is the maximal subgroupoid of the category gr of finitely generated free groups. The coproduct * thus induces a strict symmetric monoidal structure (A 1,0 , * , 0 Gr ). Moreover, we define a functor i : UA 1,0 → gr by the identity on objects and sending a morphism [n 2n 1 , g] : F n 1 → F n 2 of UA 1,0 (where g ∈ Aut Gr (F n 2 )) to the morphism g • ι F n 2 -n 1 * id F n 1 : F n 1 → F n 2 of gr.

Let k and s ≥ 1 be natural numbers. Precomposing by the surjection (N, ≤) → UG (A,X) be the faithful and essentially surjective functor assigning O (n) = A X n and O (γ n ) = id A X n ι X for all natural numbers n.

A s n,k A s-1 n,k
Notation 3.3.5. For all natural numbers n, we denote the automorphism group Aut G (A X n ) by G n and the group morphism G n → G n+1 taking ϕ to ϕ id X by g n . Hence, we define a family of groups G -: (N, ≤) -→ Gr using the functor O.

Since 0 is an initial object in UG, we have canonical morphisms in UG for all natural numbers n and n such that n ≥ n: id A X n ι X (n -n) : A X n → A X n .

We fix F an object of Fct UG (A,X) , K-Mod . Our goal is to compute the stable homology of the family of groups G -with coefficients given by F.

Notation 3.3.6. We denote by G ∞ the colimit with respect to (N, ≤) of the family of groups G -and by F ∞ the colimit of the G n -modules F A X n with respect to the morphisms F id A X n ι X (n -n) . Recall from Definition 3.3.4 that there is a faithful functor O G (A,X) : (N, ≤) → UG (A,X) . Then we denote H * (G ∞ , F ∞ ) = Colim n∈(N,≤) H * (G (n) , F A X n ) . This notation makes sense since group homology commutes with filtered colimits (see [Wei94, Theorem 2.6.10]).

Splitting result for stable homology

As categories with one object, the groups {G n } n∈N are subcategories of UG (A,X) . We denote by Π : G ∞ × UG (A,X) → UG (A,X) the projection functor and by Π * the precomposition by Π. Hence, for all natural numbers n, the canonical group morphism G n → G ∞ and the faithful functors G n → UG (A,X) induce a natural inclusion functor Ψ F,n : H * G n , F A X n → H * G ∞ × UG (A,X) , Π * F by the functoriality of the homology of categories (see [DV10, Appendice A]).

Using the group morphisms g n and the morphisms id A X n ι X , by the functoriality in two variables of group homology (see for example [Bro12, Section III.8]), we define maps H * G n , F A X n → H * G n+1 , F A X (n+1) such that the inclusion functors Ψ F,n are natural with respect to n. Hence, we form a morphism:

Ψ F : H * (G ∞ , F ∞ ) → H * G ∞ × UG (A,X) , Π * F .
Let us state the main result of this section. Theorem 3.3.7. Let K be a field. We consider a pre-braided locally homogeneous at (A, X) category UG (A,X) , , 0 such that the unit 0 is an initial object, as detailed in Section 3.3.1. For all functors F : UG (A,X) → K-Mod, the morphism Ψ F is a K-modules isomorphism. Moreover, Ψ F decomposes as a natural isomorphism:

H * (G ∞ , F ∞ ) ∼ = k+l= * H k (G ∞ , K) ⊗ K H l UG (A,X) , F . 
Proof. Let i and j be natural numbers. The morphism G j → G i+j defined by ϕ → X i ϕ is conjugated to the one defined by ϕ → ϕ X i using the braiding b G X j ,X i -1

: X i X j → X j X i of the pre-braided monoidal structure, recalling from the relation (3.1.3) of Definition (3.1.6) that:

b G A X j ,X i -1
• ι X i id A X j = id X j ι X i and b G A X j ,X i • id A X j ι X i = ι X i id A X j .

The result then follows mutatis mutandis from the proof of [DV10, Proposition 2.22]. As pointed out in [DV10, Remark 2.23], this is the only place in this framework where the symmetry of the monoidal structure is used: all the other constructions and proofs work exactly in the same way assuming the monoidal structure is pre-braided. However, for the convenience of the reader, we detail here a proof assuming for simplicity that A = 0. Recall from Remark 3.3.3 that the pre-braided category UG (0,X) , , 0 is thus homogeneous. Note that the morphism Remark 3.4.4. Recall that the associated Quillen's bracket construction (UG, G , 0) and (UC, C , 0) are pre-braided strict monoidal by Proposition 3.1.8.

Using the functors O G and O C introduced in Definition 3.4.3, the natural transformation c : G -→ C -identifies the morphisms [nn, id n ] (with natural numbers n ≥ n) of UG and UC. The criteria (3.1.1) and (3.1.2) of Lemma 3.1.5 being trivially checked, we abuse the notation and write c for the functor UG → UC induced by c : G → C.

The short exact sequence (3.4.1) implies that the braided strict monoidal structure (G, G , 0 G ) induces a braided strict monoidal structure on K, denoted by (K, G , 0 G ), such that:

K -(γ n ) = id 1 G -: K n → K n+1
for all natural numbers n. As for the morphisms {c n } n∈N , the morphisms {k n } n∈N induce a strict monoidal functor k : UK → UG.

We fix F an object of Fct (UG, K-Mod).

Notation 3.4.5. For all natural numbers n, we abuse the notation and write F (n) for Res G n K n (F (n)), where Res G n K n denotes the restriction functor.

Our aim is to compute the stable homology H * (G ∞ , F ∞ ) of the family of groups G -. A first step is given by the following result: Proposition 3.4.6. Let K -, G -and C -be three families of groups fitting in the short exact sequence (3.4.1), such that the group C n is finite for all natural numbers n and Assumption 3.4.2 is satisfied. Then, for all natural numbers q: H q (G n , F (n)) ∼ = H 0 C n , H q (K n , F (n)) .

(3.4.2)

Proof. Applying the Lyndon-Hochschild-Serre spectral sequence for the short exact sequence (3.4.1), we obtain the following convergent first quadrant spectral sequence:

E 2 pq : H p C n , H q (K n , F (n)) =⇒ H p+q (G n , F (n)) . (3.4.3)
Fixing n a natural number, we have for p = 0:

H p C n , H q (K n , F (n)) = 0, since C n is a finite group (see for example [Wei94, Proposition 6.1.10]). Hence, the second page of the spectral sequence (3.4.3) has non-zero terms only on the 0-th column and zero differentials. A fortiori, the convergence gives that E 2 = E ∞ and this gives the desired result.

A general equivalence for stable homology

Let us focus on a key property for the homologies of the kernels {K n } n∈N which improves Proposition (3.4.6). Remark 3.4.7. Let n be a natural number. As K n is a normal subgroup of G n , the map conj n : G n → Aut Gr (K n ) sending an element g ∈ G n to the left conjugation by g is a group morphism.

Lemma 3.4.8. We define a functor K-: UG → Gr assigning K-(n) = K n for all natural numbers n and:

1. for all g ∈ G n , K-(g) ∈ Aut Gr (K n ) to be conj n (g) : k → gkg -1 for all k ∈ K n , 2. K-([1, id n+1 ]) = id 1 G -.

Proof. It follows from the first assignment of Lemma 3.4.8 that we define a functor K-: G → Gr. The relation (3.1.1) of Lemma 3.1.5 follows from the definition of the monoidal product G .

Let n and n be natural numbers such that n ≥ n, let g ∈ G n and g ∈ G n . We compute for all k ∈ K n : Proposition 3.4.9. Let K -, G -and C -three families of groups fitting into the short exact sequence (3.4.1)such that Assumption 3.4.2 is satisfied and let F be an object of Fct (UG, K-Mod). Then, for all natural numbers q, the homology groups H q (K n , F (n)) n∈N define a functor H q (K -, F (-)) : UC → K-Mod.

K-g G g • K-n , id n +n (k) = g G g (id n G k) g G g -1 = id n G gkg -1 = K-n , id n +n • K-(g) (k) .
Proof. Let P be the category of pairs (G, M) where G is a group and M is a G-module for objects; for (G, M) and (G , M ) objects of P, a morphism from (G, M) to (G , M ) is a pair (ϕ, α) where ϕ ∈ Hom Gr (G, G ) and α : M → M is a G-module morphism, where M is endowed with a G-module structure via ϕ. Using the functor F : UG → K-Mod, by Lemma 3.4.8 K-defines a functor K-, F (-) : UG → P. Recall from [Wei94, Section 6.7.5] or [Bro12, Section 8] that group homology defines a covariant functor H * : P → K-Mod for all q ∈ N. Hence the composition with the functor K-, F (-) : UG → P gives a functor:

H q (K -, F (-)) : UG → K-Mod.

Moreover, since inner automorphisms act trivially in homology, we deduce that for all natural numbers n, the conjugation action of G n on (K n , F (n)) induces an action of C n on H * (K n , F (n)) (see for instance [Bro12, Section 8, Proposition 8.1 and Corollary 8.2] for more details). The monoidal structures (G, G , 0 G ) and (C, C , 0 C ) being compatible by Assumption 3.4.2, we deduce that the functor H q (K -, F (-)) factors through the category UC using the functor c : UG → UC.

Finally, recall the following property for the homology of a category: Proposition 3.4.10. [FP03, Example 2.5] Let C be an object of Cat and let F be an object of Fct (C, R-Mod). Then, H 0 (C, F) is isomorphic to the colimit over C of the functor F : C → R-Mod.

We thus deduce from Proposition 3.4.9:

Corollary 3.4.11. Let K -, G -and C -three families of groups fitting in the short exact sequence (3.4.1), such that the group C n is finite for all natural numbers n and Assumption 3.4.2 is satisfied. Then, for all natural numbers q:

H q (G ∞ , F ∞ ) ∼ = Colim l∈UC H q (K l , F (l)) .

Moreover, if F factors through the category UC (in other words, F : UG c → UC → K-Mod), then:

H q (G ∞ , F ∞ ) ∼ = Colim l∈UC H q (K l , K) ⊗ K F (l) .

Proof. Applying Theorem 3.3.7 to Proposition 3.4.6, we obtain that:

Colim n∈N H 0 C n , H q (K n , F (n)) ∼ = Colim n∈N H 0 (C n , K) ⊗ K H 0 UC, H q (K -, F) .
The first result thus follows from the fact that H 0 UC, H q (K -, F) ∼ = Colim l∈UC H q (K l , F (l)) by Proposition 3.4.10 and as H 0 (C n , K) ∼ = K.

Applications

We present now how to apply the general result of Corollary 3.4.11 for various families of groups related to mapping class groups. Beforehand, we fix some notations. Notation 3.4.12. We denote by S n the symmetric group on n elements.

Let Σ be the skeleton of the groupoid of finite sets and bijections. Note that Obj (Σ) ∼ = N and that the auto- morphism groups are the symmetric groups S n . The disjoint union of finite sets induces a monoidal structure (Σ, , 0), the unit 0 being the empty set. This groupoid is symmetric monoidal, the symmetry being given by the canonical bijection n 1 n 2 ∼ → n 2 n 1 for all natural numbers n 1 and n 2 . The category UΣ is equivalent to the category of finite sets and injections FI studied in [START_REF] Church | FI-modules and stability for representations of symmetric groups[END_REF]. Notation 3.4.13. We denote by S -: (N, ≤) → Gr the family of groups defined by S -(n) = S n and S -(γ n ) = id 1for all natural numbers n.

Braid groups

We denote by PB n the pure braid group on n strands. Recall from Section 3.2.2.1 that the braid groupoid β (which has natural numbers as objects and braid groups as automorphism groups) is endowed with a braided strict monoidal structure (β, , 0). The classical surjections B n p n S n n∈N , sending each Artin generator σ i ∈ B n to the transposition τ i ∈ S n for all i ∈ {1, . . . , n -1} and for all natural numbers n, assemble to define a functor P : Uβ → FI. In addition, it is clear that the functor P is strict monoidal with respect to the monoidal structures (Uβ, , 0) and (FI, , 0). In addition, they define the following short exact sequence for all natural numbers n (see for example [START_REF] Birman | Braids, links, and mapping class groups[END_REF] or Proposition 3.4.14. Let F be an object of Fct (Uβ, K-Mod). For all natural numbers q, H q (B ∞ , F ∞ ) ∼ = Colim n∈FI H q (PB n , F (n)) , and if F factors through the category FI, then:

H q (B ∞ , F ∞ ) ∼ = Colim n∈FI H q (PB n , K) ⊗ K F (n) .
Remark 3.4.15. The rational cohomology ring of the pure braid group on n ∈ N strands is computed by Arnol'd in [START_REF] Vladimir | The cohomology ring of the colored braid group[END_REF]. Namely, H * (PB n , Q) is the graded exterior algebra generated by the degree one classes ω i,j for i, j ∈ {1, . . . , n} and i < j, subject to the relations ω i,j ω j,k + ω j,k ω k,i + ω k,i ω i,j = 0. Note that using the universal coefficient theorem for cohomology (see for example [Wei94, Theorem 3.6.5]) and since H q (PB n , K) is a finite-dimensional vector space, the homology group H q (PB n , K) ∼ = H q (PB n , K).

We recall that by the universal coefficient theorem for cohomology and since H q (PB n , K) is a finite-dimensional vector space, H q (PB n , K) ∼ = Hom K-Mod H q (PB n , K) , K and therefore Colim n∈FI H q (PB n , K) ∼ = Lim n∈FI H q (PB n , K) . Since H q (PB n , K) is a quotient of the exterior algebra Λ q ω i,j , we deduce that for q > n ≥ 2, H q (PB n , K) = 0. Hence, Colim n∈FI H q (PB n , K) = 0 for q ≥ 2. Furthermore, by direct computations, we have that H 0 (PB n , K) = K and Colim n∈FI (H 1 (PB n , K)) = K. Hence, we recover the classical result of the homology of braid groups with constant coefficients in a field of characteristic zero (see for example [Ver98, Section 4]).

Symmetric automorphisms groups of free groups

We focus on symmetric automorphisms groups of free groups, also known as string motion groups. We refer the reader to [START_REF] Damiani | A journey through loop braid groups[END_REF] for a complete and unified presentation of the various definitions of this group. We recall here an algebraic definition of these groups. Definition 3.4.16. Let n be a natural number. The symmetric automorphism group of free group of rank n, denoted by S n , is the group defined by a presentation given by generators σ i , τ i , ρ j | i ∈ {1, . . . , n -1} and j ∈ {1, . . . , n} Remark 3.4.19. By [HW05, Theorem 1.1], the mapping class group π 0 Di f f S 1 × D 2 \ D 3 n rel D 2 / twists is isomorphic to S n for all natural numbers n.

Recall from [RWW17, Section 5.7] that the boundary connected sum along marked half-discs defines a monoidal product on SA, and the 3-disc D 3 is the unit. The braiding of the monoidal structure is given by doing half a Dehn twist in a neighbourhood of the marked half-disc and it is a symmetry. We refer to [RWW17, Section 5.7] for more technical details on this operation.

Notation 3.4.20. We denote by W n the hyperoctahedral group, namely the wreath product (Z/2Z) S n , where S n acts on (Z/2Z) n permuting the copies of Z/2Z. Let WΣ be the skeleton of the groupoid with finite sets as objects and hyperoctahedral groups automorphism group. As for the groupoid Σ, the disjoint union of finite sets induces a symmetric monoidal structure (Σ, , 0), the unit 0 being the empty set. We denote by S -: (N, ≤) → Gr the family of groups defined by S -(n) = S n and S -(γ n ) = id 1for all natural numbers n.

Moreover, we have the following result: Lemma 3.4.21. [START_REF] Brownstein | Cohomology of the group of motions of n strings in 3-space[END_REF] For all natural numbers, we have the following short exact sequence:

1 / / PS n / / S n ps n / / W n / / 1 .
It is clear that the surjections {ps n } n∈N define a strict monoidal functor PS : SA → WΣ. Let PS -: (N, ≤) → Gr and S -: (N, ≤) → Gr be the families of groups defined by PS -(n) = PS n , S -(n) = S n and S -(γ n ) = PS -(γ n ) = id 1for all natural numbers n. Hence Assumption 3.4.2 is satisfied and therefore by Corollary 3.4.11: Proposition 3.4.22. Let F be an object of Fct (UA, K-Mod). For all natural numbers q, H q (S ∞ , F ∞ ) ∼ = Colim n∈U(SA) H q (PS n , F (n)) , and if F factors through the category U (WΣ), then: H q (S ∞ , F ∞ ) ∼ = Colim n∈U(WΣ) H q (PS n , K) ⊗ K F (n) .

Remark 3.4.23. By [JMM06, Theorem 6.7], the cohomology ring H * (PS n , Z) is the exterior algebra generated by the degree-one classes α * i,j for i, j ∈ {1, . . . , n} and i = j, subject to the relations α * i,j ∧ α * j,i = 0 and α * k,j ∧ α * j,i = α * k,j ∧ α * k,iα * i,j ∧ α * k,i . A fortiori, we compute for all natural numbers q:

H q (PS n , K) ∼ = H q (PS n , Z) ⊗ Z K.

Using a combinatorial argument, Wilson proves in [Wil12, Sections 6 and 7] that the trivial W n -representation does not occur in H q (PS n , K) for q ≥ 1 and n large enough, and a fortiori,

H q (S ∞ , K) ∼ = Colim n∈U(WΣ)
H q (PS n , K) = 0.

Mapping class group of orientable surfaces

We take the notations of Section 3.2.2.2.

Definition 3.4.24. Let M 2 be the skeleton of the groupoid defined by:

• Objects: the smooth compact connected orientable surfaces Σ n n,1 for all natural numbers n;

• Morphisms: Aut M 2 Σ n n,1 = Γ n n,1 for all natural numbers n.
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In other words, for all natural numbers n, denoting by e n : S n → Aut Aut (A) ×n the permutation action of the symmetric group S n of factors Aut (A) in Aut (A) ×n , Proposition 3.4.27 is equivalent to the fact that:

Aut A ×n ∼ = Aut (A) ×n e n S n .

Definition 3.4.28. Let R A be the groupoid with the groups A ×n for all natural numbers n as objects and Aut (A ×n ) as automorphism groups.

Note that the groupoid G = R A is symmetric monoidal (see [GW16, Section 5]). The direct product × induces a strict symmetric monoidal structure (R A , ×, 0 Gr ) (we refer the reader to [GW16, Section 1] if more details is needed). It is clear that the surjections {s n } n∈N define a strict monoidal functor S : R A → Σ. Let Aut (A ×-) : (N, ≤) → Gr and Aut (A) ×-: (N, ≤) → Gr be the families of groups defined by Aut (A ×-) (n) = Aut (A ×n ), Aut (A) ×-(n) = Aut (A) ×n and Aut (A ×-) (γ n ) = Aut (A) ×-(γ n ) = id 1 ×for all natural numbers n. Hence Assumption 3.4.2 is satisfied and therefore by Corollary 3.4.11: Proposition 3.4.29. Let F be an object of Fct (UR A , K-Mod) and A be a fixed unfactorizable right-angled Artin group different from Z. For all natural numbers q, H q (Aut (A ×∞ ) , F ∞ ) ∼ = Colim n∈UR A H q Aut (A) ×n , F (n) , and if F factors through the category FI, then:

H q Aut A ×∞ , F ∞ ∼ = Colim n∈FI H q Aut (A) ×n , K ⊗ K F (n) .
(3.4.4)

Corollary 3.4.30. Let A be a fixed unfactorizable right-angled Artin group different from Z, such that there exists N A ∈ N such that H q (Aut (A) , K) = 0 for 1 ≤ q ≤ N A . Then for all objects F of Fct (UR A , K-Mod) factoring through the category FI, for all natural numbers q such that 1 ≤ q ≤ N A :

H q Aut A ×∞ , F ∞ = 0.

Proof. It follows from Künneth Theorem (see for example [Wei94, Exercise 6.1.7]) that for all natural numbers q such that 1 ≤ q ≤ N A , H q Aut (A) ×n , K = 0. Then, the result follows from (3.4.4).

Example 3.4.31. Recall that F k denotes the free group on k generators for all natural numbers k. According to [Gal11, Corollary 1.2], for k ≥ 2q + 1 and q = 0, H q (Aut (F k ) , K) = 0. Let F be an object of Fct UR F k , K-Mod factoring through the category FI. Hence, for all natural numbers q and k such that 1 ≤ q ≤ k-1 2 :

H q Aut (F k ) ×∞ , F ∞ = 0.

In particular, H q Aut (F ∞ ) ×∞ , F ∞ = 0 for all objects F of Fct (gr, K-Mod) factoring through the category FI. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d'autres familles de groupes. Le dernier chapitre concerne des calculs d'homologie stable pour les groupes de difféotopie.

Mots-Clés : groupe de difféotopie, foncteurs polynomiaux, construction de Long-Moody, homologie stable.

Among the linear representations of braid groups, Burau representations are recovered from a trivial representation using a construction introduced by Long in 1994, following a collaboration with Moody. This construction, called the Long-Moody construction, thus allows to construct more and more complex representations of braid groups. In this thesis, we have a functorial point of view on this construction, which allows find more easily some variants. Moreover, the degree of polynomiality of a functor measures its complexity. We thus show that the Long-Moody construction defines a functor LM, which increases the degree of polynomiality. Furthermore, we define analogous functors for other families of groups such as mapping class groups of surfaces and 3-manifolds, symmetric groups or automorphism groups of free groups. They satisfy similar properties on the polynomiality. Hence, Long-Moody functors provide twisted coefficients fitting into the framework of the homological stability results of Randal-Williams and Wahl for the aforementioned families of groups. Finally, we give a comparison result for the stable homology with coefficient given by a functor F and the one with coefficient given by the functor LM(F), obtained applying a Long-Moody functor. This thesis has three chapters. The first one introduces Long-Moody functors for braid groups and deals with their effect on the polynomiality. The first one deals with the generalisation of Long-Moody functors for other families of groups. The last chapter touches on stable homology computations for mapping class group. Keywords : mapping class groups, polynomial functors, Long-Moody construction, stable homology.

Arthur Soulié

Constructions de Long-Moody et fonceurs polynomiaux !

Théorème B (

 ( Corollary 1.4.26 et Theorem 1.4.28). Pour {a n } n∈N et {ς n } n∈N des familles fiables de morphismes, le foncteur de Long-Moody associé LM a,ς induit un foncteur P ol f ort d (Uβ, K-Mod) → P ol f ort d+1 (Uβ, K-Mod) pour tout entier naturel d. De plus, si F : Uβ → K-Mod est un foncteur très fortement polynomial de degré d, LM (F) est très fortement polynomial de degré d + 1.

  Long-Moody avec une construction générale sur UG introduite dans [DV17]. Plus précisément, en notant Mon symm ini (respectivement Mon symm nul ) la catégorie des catégories monoïdales symétriques avec un objet initial (respectivement nul), on note -: Mon symm ini → Mon symm nul l'adjoint à gauche du foncteur d'oubli Mon symm nul → Mon symm ini . Pour un objet M de Mon symm ini comme par exemple UG , la catégorie M s'avère entre autre utile dans la classification des foncteurs faiblement polynomiaux ayant M pour source (voir [DV17, Theorem 3.8]

  Ce théorème est une généralisation du résultat analogue dû à Djament et Vespa dans [DV10, Sections 1 et 2] dans le cas où le groupoïde (G , , 0 G ) est monoïdal symétrique. xvii xviii 0. Chapter. Introduction xviii

Figure 1

 1 Figure 1.1.1: Failure of the braiding property

10 1 .

 1 Chapter. The Long-Moody construction and polynomial functors

  factors across the canonical surjection to F n a n B n . In other words, the following diagram is commutative:

  1. Chapter. The Long-Moody construction and polynomial functorsLet us consider the augmentation ideal of the free group F n , denoted byI K[F n ] . Since it is a (right) K [F n ]module, one can form the tensor product I K[F n ] K[F n ]

  1.13), b M x,y : x y ∼ = -→ y x defines an isomorphism. Hence, precomposition by b M x,y id M defines a natural transformation b M x,y id M * : τ x y → τ y x . It is an isomorphism since we analogously construct an inverse natural transformation b M x,y -1 id M * : τ y x → τ x y . 1. Chapter. The Long-Moody construction and polynomial functors Remark 1.3.3. In Proposition 1.3.2, the natural isomorphism is not unique: as the proof shows, we could have used the morphism b M y,x -1

34 1 .

 1 Chapter. The Long-Moody construction and polynomial functors Lemma 1.4.22.

Proposition 2.2. 33 .

 33 The functor LM associated with the coherent Long-Moody system {H, G, G , ς} is reduced, right exact and commutes with all colimits. Proof. Let 0 Fct(UG,R-Mod) : UG → R-Mod denote the null functor. It follows from the definition of the Long-Moody functor that LM 0 Fct(UG,R-Mod) = 0 Fct(UG,R-Mod) , ie LM is reduced. The right-exactness of the Long-Moody functor is a consequence of the well-known fact that the functor I R[H n ] R[H n ]

48 2 .

 2 Chapter. Generalised Long-Moody functors

  Remark 2.3.40. As for Example 2.3.31, since the morphisms ς b n,1 n∈N

  strong d (M, A) is closed under the translation functor, under quotient, under extension and under colimits. The category V P ol d (M, A) is closed under the translation functors, under normal subobjects and under extension.Moreover, an object F of Fct (M, A) belongs to P ol strong d

  Definition 2.4.10. [DV17, Definition 1.16] Let St (M, A) be the quotient category Fct (M, A)/Sn (M, A). The canonical functor associated with this quotient is denoted by π M : Fct (M, A) → Fct (M, A)/Sn (M, A), the right adjoint functor of π M (see [Gab62, Section 3.1]) is denoted by s M : Fct (M, A)/Sn (M, A) → Fct (M, A) and called the section functor.

  Proposition 2.4.16. [DV17, Proposition 1.25] Let d be a natural number. The subcategory P ol d (M, A) of St (M, A) is thick and closed under limits and colimits.

Lemma 2.5. 28 .

 28 The functor I R[H] R[H]

.

  The behaviour of the Long-Moody functor of Theorem 2.5.26 and I R[H] R[H] 

  symm ini → Mon symm null the left adjoint of the forgetful functor Mon symm null → Mon symm ini , considered by Djament and Vespa in [DV17, Section 3]. This construction is notably used to classify weak polynomial objects of Fct (M, A) for M ∈ Obj Mon symm ini and A a Grothendieck category in [DV17, Theorem 3.8]. More precisely, for all natural numbers d, Djament and Vespa prove that

78 2 .

 2 Chapter. Generalised Long-Moody functors Proposition 2.6.13. The functor Ξ : UG → Cospan † (UG) is an equivalence of categories.

  Remark 3.2.32. The analogous isomorphism for the rational homology is obtained by Harer in [Har91, Theorem 7.1.(a)].

  where the map A s n,k → A s-1 n,k forgets the last basepoint and a fortioriA s n,k ∼ = (F n+k ) s-1 A 1 n,k

  Hence, the relation (3.1.2) is satisfied a fortiori the result follows from Lemma 3.1.5. 111 112 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups Lemma 3.4.8 is useful to prove the following key result.

  n / / B n p n / / S n / / 1 .Let PB -: (N, ≤) → Gr and B -: (N, ≤) → Gr be the families of groups defined byPB -(n) = PB n , B -(n) = B n and B -(γ n ) = PB -(γ n ) = id 1 -for all natural numbers n. Hence Assumption 3.4.2 is satisfied and therefore by Corollary 3.4.11:

  Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d'une représentation triviale via une construction introduite par Long en 1994, à l'issue d'une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d'en dégager plus aisément des variantes. De plus, le degré de polynomialité d'un foncteur permet d'en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d'autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d'automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l'homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM (F ) obtenu en appliquant un foncteur de Long-Moody. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d'autres familles de groupes. Le dernier chapitre concerne des calculs d'homologie stable pour les groupes de difféotopie. INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE UMR 7501 Université de Strasbourg et CNRS 7 Rue René Descartes 67 084 STRASBOURG CEDEX Tél. 03 68 85 01 29 Fax 03 68 85 03 28 www-irma.u-strasbg.fr irma@math.unistra.fr IRMA 2018/001 http ://tel.archives-ouvertes.fr/tel-01819086 ISSN 0755-3390 Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d'une représentation triviale via une construction introduite par Long en 1994, à l'issue d'une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d'en dégager plus aisément des variantes. De plus, le degré de polynomialité d'un foncteur permet d'en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d'autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d'automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l'homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM(F) obtenu en appliquant un foncteur de Long-Moody.
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Tong-Yang-Ma functor: This example

  ±1 ⊕n → C t ±1 ⊕n the embedding of C t ±1 ⊕n as the submodule of C t ±1 ⊕n given by the n last copies of C t ±1 . is based on the family introduced by Tong, Yang and Ma (see Theorem 1.1.19). Let TYM t : β → C t ±1 -Mod be the functor defined on objects by TYM t (n) = C t ±1 ⊕n for all natural numbers n, and for all numbers n ≥ 2, for every Artin generator σ i of B n , by TYM t (σ i ) = tym n,t (σ i ) for morphisms. For all natural numbers n and n such that n ≥ n, we assign TYM t ([nn, id n ]) : C t ±1 ⊕n →

					for all natural numbers n ≥ n, such that the relation (1.1.1) of
		Proposition 1.1.10 is satisfied.
	Therefore, according to Proposition 1.1.10, it suffices to show that the relation (1.1.2) is satisfied to prove that N is
	an object of Fct Uβ, C t ±1 -Mod .
	Notation 1.1.22. Recall that 0 is a null object in the category of R-modules, and that the notation ι G : 0 → G
	was introduced in Notation 1.0.1. Let n ∈ N. For all natural numbers n and n such that n ≥ n, we define
	ι	C[t ±1 ]	⊕n -n ⊕ id C[t ±1 ]	
	C t ±1 ⊕n to be the embedding ι	C[t ±1 ]	⊕n -n ⊕ id C[t ±1 ]	⊕n (where these morphisms are introduced in Notation 1.1.22).

⊕n : C t

  Hence we deduce that TYM t (ψ σ) • TYM t nn, id n = TYM t nn, id n • TYM t (σ) for all σ ∈ B n and all ψ ∈ B n -n . According to Proposition 1.1.10, our assignment defines a functor TYM t : Uβ → C t ±1 -Mod, called the Tong-Yang-Ma functor. Other examples naturally arise from the Burau representations.Let Bur t : β -→ C t ±1 -Mod be the functor defined on objects by Bur t (n) = C t ±1 ⊕n for all natural numbers n, and for all numbers n ≥ 2, for every Artin generator σ i of B n , by Bur t (σ i ) = bur n,t (σ i ) for morphisms.For all natural numbers n and n such that n ≥ n, we assign Bur t ([nn, id n ]) : C t ±1 ⊕n → C t ±1 ⊕n to be the embedding ι As for the functor TYM, the assignment for Bur implies that for all natural numbers n ≥ n ≥ n, for all σ ∈ B n and all ψ ∈ B n -n , Bur t ([nn, id n ])• Bur t (σ) = Bur t (ψ σ) • Bur t ([nn, id n ]).According to Proposition 1.1.10, our assignment defines a functor Bur t : Uβ -→ C t ±1 -Mod, called the unreduced Burau functor. This functor Bur t was already considered by Randal-Williams and Wahl in [RWW17, Example 4.3].Analogously, we can form a functor from the reduced Burau representations. Let Bur t : β -→ C t ±1 -Mod be the functor defined on objects by Bur t (0) = 0 and Bur t (n) = C t ±1 ⊕n-1 for all nonzero natural numbers n, and by Bur t (σ i ) = bur n,t (σ i ) for morphisms for every Artin generator σ i of B n for all numbers n ≥ 2.For all natural numbers n and n such that n ≥ n, we assign Bur t ([nn, id n ]) the work done for the functor TYM, the assignment for Bur t implies that for all natural numbers n ≥ n ≥ n, for all σ ∈ B n and all ψ ∈ B n -n , Bur t ([nn, id n ]) • Bur t (σ) = Bur t (ψ σ) • Bur t ([nn, id n ]). According to Proposition 1.1.10, our assignment defines a functor Bur t : Uβ -→ C t ±1 -Mod, called the reduced Burau functor.

	Burau functors: C[t ±1 ]	⊕n -n ⊕ id C[t ±1 ]	⊕n (where these morphisms are introduced in Notation 1.1.22).
						: C t ±1 ⊕n-1 → C t ±1 ⊕n -1
	to be the embedding ι	C[t ±1 ]	⊕n -n ⊕ id	C[t ±1 ]	⊕n-1 (where these morphisms are introduced in Notation 1.1.22). Re-
	peating mutadis mutandis		

Functoriality of the Long-Moody construction

  

	Hence,
	LK satisfies the relation (1.1.2) of Proposition 1.1.10. Hence, the assignment defines a functor LK : Uβ → C t ±1 q ±1 -Mod,
	called the Lawrence-Krammer functor.
	1.2 The principle of the Long-Moody construction, corresponding to Theorem 2.1 of [Lon94], is to build a linear rep-
	resentation of the braid group B n starting from a representation B n+1 . We develop a functorial version of this
	construction, which leads to the notion of Long-Moody functors (see Section 1.2.2). Beforehand, we need to intro-
	duce various tools, which are consequences of the relationships between braid groups and free groups (see Section
	1.2.1). Finally, in Section 1.2.3, we investigate examples of functors which are recovered by Long-Moody functors.

  1.2.6. It follows from Lemma 1.2.5 that, for i ≥ 2, ς n (g i ) is determined by ς k (g 1 ) for k ≤ n by the equalities (1.2.1).

	Example 1.2.7. The family ς n,1 , based on what is called the pure braid local system in the literature (see [Lon94,
	Remark p.223]), is defined by the following inductive assignment for all natural numbers n ≥ 1.

Proposition 1.2.8. The

  family of morphisms {ς n,1 } n∈N satisfies Condition 2.2.17.

	12	1. Chapter. The Long-Moody construction and polynomial functors
	Proof. Relation (2.2.2) is trivially satisfied for n = 0. Let n ≥ 1 be a fixed natural number. By definition 1.1.4, we
	1,1 have b β	-1

Definition 1.2.14. The

  We fix a choice for these families of morphisms {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N . families {ς n : F n → B n+1 } n∈N and {a n : B n → Aut (F n )} n∈N are said to be coherent if they

	1. Chapter. The Long-Moody construction and polynomial functors	13
	Remark 1.2.13. Condition 1.2.12 is essential in the definition of the Long-Moody functor on objects in Theorem
	1.2.20.	
	satisfy conditions 1.2.3, 1.2.10 and 1.2.12.	
	Example 1.2.15. A classical family is provided by the Artin representations (see for example [Bir74b, Section 1]).
	.	(1.2.2)

  Let G and H be groups. Then, there is a natural K [G * H]-module isomorphism:

	Lemma 4.3]
	and [Coh72, Theorem 4.7].
	Proposition 1.4.1.

  Remark 2.2.15. The functor H of Assumption 2.2.13 provides group morphisms:G n → Aut Gr (H n )for all natural numbers n, satisfying compatibility relations in UG given by relation (2.2.1) of Lemma 2.2.14. The groupoid G and a fixed functor H form a Long-Moody triple if Assumptions 2.2.1 and 2.2.13 are satisfied. It is denoted by (H, G, G ).

	Definition 2.2.16.

  for all objects n of G to be the unique morphism, denoted by idI R[Hn ] R[H n ]η n+1 , induced by the universal property of the tensor product

R[H n ]

  by the functor I is canonically induced by A n : G n → Aut Gr (H n ) (see Notation 2.2.23). Therefore, for all h ∈ H n and i ∈ I R[H n ] :

  G n+1 for all natural numbers n such that only Condition 2.2.24 is satisfied (but not necessarily satisfying Condition 2.2.17), then the assignments of Theorem 2.2.30 defines a functor with G as source category LM {H,G,G ,ς n

, Theorem 2.19]. Remark 2.2.32. If we had considered a Long-Moody triple (H, G, G ) together with group morphisms ς n : H n →

  , Theorem A], G is a free group. The converse is a classical result of homological algebra (see [Wei94, Corollary 6.2.7]). If H 0 and H are free groups, then the Long-Moody functor associated with the coherent Long-Moody system {H, G, G , ς} is exact and commutes with all finite limits.

	Corollary 2.2.35.

Proof. Let n be a natural number. Since the augmentation ideal I R[H n ] is a projective R [H n ]-module (by Lemma 2.2.34), it is a flat R [H n ]-module. Then, the result follows from the fact that the functor I R

[H n ] R[H n ]

-: R-Mod → R-Mod is an exact functor, the naturality for morphisms following from the definition of the Long-Moody functor (see Theorem 2.2.30). The commutation result for finite limits is a general property of exact functors (see for example [ML13, Chapter 8, section 3]).

Remark 2.2.36. Assume that H is a free group. Let M be a R [H]-module. Since H is free, I R[H] is a free R [H]-module of rank rank (H), hence there are isomorphisms of R-modules:

  R) .Remark 2.3.32. Contrary to the cases of Section 2.3.3, since the morphisms ς n,1 are not trivial, the computation Remark 2.3.33. Instead of modifying only the number of punctures or only the orientable or non-orientable genus, we can modify several of these parameters at the same time.

				2. Chapter. Generalised Long-Moody functors
	of LM	π 1 Σ -g,0,1 ,p ,M	g,0 2 ,M 2 ,ς n,1	on an object F of Fct UM 2 , R-Mod is not given by Proposition 2.2.39. We thus g,0
	obtain new families of representations of the mapping class groups Γ n g,0,1 n∈N	.
				55

  0,1 , p , to obtain the associated functor π 1 Σ - g,0,1 , p

	g,0 2 → Gr of Assumption 2.2.13.
	Notation 2.3.34. For all natural numbers n, we denote by B	g [1]

b

: UB

  Artin generator of the braid group on two strands B 2 ). Gr by Proposition 2.3.12, so that Assumption 2.2.13 is satisfied. Condition 2.2.24 is checked in Lemma 2.3.37. Finally, as B

	58	2. Chapter. Generalised Long-Moody functors
	Example 2.3.39. We denote by H 1 Σ -g,0,1 , R of Example 2.3.31 to the subcategory UB g,0 2 of UM the restriction of the functor induced by the functor H 1 Σ -g,0,1 , R UB 2 g,0 2 . We deduce from Lemma 2.2.38 that:
	Lemma 2.3.37. The setting H b s , B	g,0 2 , B 2 , ς b n,1 satisfies Condition 2.2.24.
	Proof. The proof follows mutatis mutandis that of Lemma 2.3.28.
	Proposition 2.3.38. With the previous assignments and notation, H b s , B	g,0 2 , B 2 , ς b -,1 is a coherent Long-Moody system.
		57

Proof. The functor π

1 Σ - g,0,1 , p b extends to give a functor π 1 Σ - g,0,1 , p b : UB g 2 → g n is a subgroup of Γ n

g,0,1 , repeating mutatis mutandis the proof of Lemma 2.3.29, the morphisms ς b n,1 satisfy Condition 2.2.17 for all natural numbers n.

  Bur t 2 , where Bur t 2 : Uβ → C t ±1 -Mod denotes the functor associated with the family of unreduced Burau representations with parameter t 2 (see [Sou17b, Section 1.2]). Remark 2.3.42. As pointed out in Remark 2.3.9 and in [Sou17b, Section 2.3.2], we could have chosen other actions a n : B n → Aut (F n ) and morphims ς n : F n → B n+1 . For instance, the functor associated with the family of Tong-Yang-Ma representations (see [Sou17b, Section 1.2]) is recovered by the Long-Moody functor defined using a Wada representation other than the Artin representation (see [Sou17b, Section 2.3.2]).

	Proposition 2.3.41. LM	π 1 (Σ -0,0,1 ,p)	b ,B 0,0 2 ,B 2 ,ς b -,1

0,1 , p , which correspond to Artin's representations for all natural numbers n. By [Sou17b, Section 2.3.1] we obtain: = LM 1 where LM 1 denotes the Long-Moody functor of [Sou17b, Section 2.3.1]. In particular, if R = C t ±1 , by [Sou17b, Proposition 2.31] we have:

t -1 • LM {H b s ,B 0,0 2 ,B 2 ,ς b -,1 } t • C t ±1 ∼ =

  Gr by restriction so that Assumption 2.2.13 is satisfied. We consider ς n,t : π 1 Σ 0 n,0,1 , p → B n+1 the trivial morphism (see Example 2.2.22). According to Remark 2.2.27, π 1 Σ 0 -,0,1 , p

	+,0 2 → b,2

  Remark 2.3.44. In[START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF], H n is the free group on n generators F n . A fortiori, for dimensional considerations on the objects, there was no way to directly recover the functor of Example 2.3.43 applying a Long-Moody functor with this setting.Remark 2.3.45. Assume that g ≥ 1 and consider the presentation of surface braid groups B

	g
	n n∈N

0,1 , Z UW .

  for all natural numbers n. Remark 2.7.2. Assigning ϕ = id N , we recover the situation of Assumption 2.2.13. Notation 2.7.3. For all natural numbers, we denote by A ϕ(n) : G n → Aut G H ϕ(n) the morphism induced by the functor H ϕ by Assumption 2.7.1. There exist group morphisms ς n : H ϕ(n) → G λ+n n∈N such that for all elements h ∈ H ϕ(n) , for all natural numbers n and n such that n ≥ n, the following diagram is commutative in the category UG:

	Generalising Section 2.2.1.3, we need two additional conditions for our framework. First, we require:
	Condition 2.7.4.

  λ+n and the group morphism id λ -: G n → G λ+n is induced by the monoidal structure of Assumption 2.2.1. We say that the groupoid G, λ ∈ N, ϕ : N → N, the functor H of Assumption 2.7.1 and morphisms ς n : H ϕ(n) → G λ+n n∈N form a tensorial framework, denoted by λ, ϕ, H ϕ , G, ς n , if Assumptions 2.7.1 and Conditions 2.7.4 and 2.7.5 are satisfied. Assigning λ = 1 and ϕ = id N , we recover the definition of a Long-Moody system of Definition 2.2.26.

	Definition 2.7.6. Example 2.7.7. 2. Chapter. Generalised Long-Moody functors

  For all natural numbers n, we consider C t ±1 as a trivial B n -module and assume that each generator of the free group F n acts on C t ±1 by multiplying by t. It follows from the definition of Artin representation that these actions induce a well-defined action of the semi-direct product F

		and n is even,
	0	otherwise.
	Proof.	

n A β,n

  Notation 3.2.15. For an object F of Fct Uβ, C t ±1 -Mod , for all natural numbers k, we denote by F ≥k : Uβ -→ C t ±1 -Mod the subfunctor of F which is null on the objects such that n < k and equal to F for n ≥ k. We have the following short exact sequence in Fct Uβ, C t ±1 -Mod :

	Proposition 3.2.16. 0	/ / C t ±1	≥3	/ / (Bur t ) ≥3	p / / Bur t ≥3	/ / 0 .	(3.2.5)

  ±1 -Mod which assigns C t ±1 ⊕n for all objects, the matrixBur t (σ i ) 0 L i 1 for all Artin generator σ i of B n and Bur t ([1, id n ]) : C t ±1 ⊕n → C t ±1 ⊕n+1 is the embedding ι C[t ±1 ] ⊕ id C[t ±1 ]⊕n for all natural numbers n (recall from Notation 3.0.1 that ι C[t ±1 ] denotes the unique group morphism 0 Gr → C t ±1

C t

  Computations of stable homology with twisted coefficients for mapping class groups Proof. Let n ≥ 3 be a fixed natural number. From the short exact sequence of Proposition 3.2.16, we deduce the long exact sequence in homology:• • • / / H * B n , C t ±1 / / H * (B n , Bur t (n)) / / H * B n , Bur t (n) / / H * -1 B n , C t ±1 / / • • •The unreduced (respectively reduced) Coxeter representations of braid groups (see [Vas92, Chapter II, Section 5] for this terminology) is given by specializing the unreduced (respectively reduced) Burau representations at t = 1. Namely, the Coxeter functor Cox : Uβ → C-Mod and reduced Coxeter functor Cox : Uβ → C-Mod are defined by Cox (n) = C ⊕n and Cox

	102	3. Chapter. (3.2.6)
	Since H k B n , C t ±1 =	C t ±1 if k = 0, 1 0 otherwise	(see for example [Ver98, Section 4]), the result follows from Theo-
	rem 3.2.13.		
	Computation of H	
				and n is even,
			0	otherwise.
				101

* (B n , Cox):

  .2.8) Notation 3.2.22. For all natural numbers g and s, we denote by a x

	Σ s g,1	the action of the mapping class group Γ	[s] g,1 on
	the fundamental group of the surface π 1 Σ s g,1 , x .		

Lemma 3.2.23. The short exact sequence (3.2.7) splits.

  1 for all natural numbers n.

	Remark 3.2.25. The morphisms a x Σ s n,1 n∈N	of Notation 3.2.22 assemble to define a functor A M s 2

  (see Lemma 3.2.41), the morphisms a A n,k n∈N of Notation 3.2.40 assemble to define a functor A A s,k : A s,k → Gr such that A A s,k (n) = F n+k for all natural numbers n. Hence, Assumption 3.2.1 is satisfied. Let O G (A,X) :

	Definition 3.3.4.	
	• • •	A 1 n,k

Le premier objectif de cette thèse est de fonctorialiser la construction de Long-Moody dans le sens où elle permet de définir un nouveau système de coefficients de degré fini à partir de n'importe quel système de coefficients de degré fini. Après avoir introduit des variantes de cette construction pour les groupes de tresses, on la généralise pour d'autres familles de groupes. Enfin, l'étude de l'effet des foncteurs ainsi définis sur le degré de polynomialité fournit le résultat principal de cette thèse. Ces travaux font l'objet des chapitres 1 et 2.Une des motivations principales de ce travail est le calcul de l'homologie stable à coefficients tordus des groupes de difféotopie des surfaces. En effet, très peu de résultats de ce type sont connus. Pour les groupes de tresses, l'homologie à coefficients dans l'anneau des polynômes de Laurent Z t ±1 est calculée par Callegaro dans[START_REF] Callegaro | The homology of the Milnor fiber for classical braid groups[END_REF] (généralisant les travaux précédents de De Concini, Procesi et Salvetti dans[START_REF] Concini | Arithmetic properties of the cohomology of braid groups[END_REF]), celle à coefficients dans la représentation de Tong Yang et Ma complexe est obtenue par Callegaro, Moroni et Salvetti dans[START_REF] Callegaro | Cohomology of Artin groups of type Ãn , B n and applications[END_REF] et celle à coefficients dans la représentation de Burau réduite complexe est calculée par Chen dans[START_REF] Chen | Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields[END_REF]. Il est à noter que le calcul de l'homologie stable des groupes de tresses à coefficients dans n'importe quelle puissance tensorielle de la représentation de Burau réduite a des applications en arithmétique. En effet, Chen explique dans [Che17, Section 4] que ce calcul s'avérerait utile pour l'étude de la distribution de F q -points sur une courbe hyperelliptique. Pour les groupes de difféotopie des surfaces orientables avec une composante de bord, l'homologie stable par rapport au genre à coefficient dans le premier groupe d'homologie de la surface considérée est obtenue par Harer dans[START_REF] Harer | The third homology group of the moduli space of curves[END_REF]. Ce résultat est généralisé en cohomologie par Kawazumi pour toute puissance tensorielle du premier groupe de la surface dans[START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF]. Enfin, le premier groupe d'homologie stable des groupes de difféotopie des surfaces non-orientables avec une composante de bord et à coefficients dans le premier groupe d'homologie des surfaces considérées est déterminé par Stukow dans[START_REF] Stukow | The first homology group of the mapping class group of a nonorientable surface with twisted coefficients[END_REF].On souhaite ainsi comparer l'homologie stable à coefficients donnés par un foncteur très fortement polynomial F à celle à coefficients donnés par l'image de F par un foncteur de Long-Moody. Cette question en toute généralité s'avère difficile. Néanmoins, dans le chapitre 3, on répond partiellement à ce problème. En associant cette comparaison à des résultats de stabilité homologique à coefficients tordus de Boldsen dans[START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF], Cohen et Madsen dans[START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF] et Hanbury dans[START_REF] Hanbury | Homological stability of non-orientable mapping class groups with marked points[END_REF], on obtient alors des résultats d'homologie stable à coefficients tordus pour des groupes de difféotopie de surfaces orientables et non-orientables ou pour les holomorphes des groupes libres. En particulier, on retrouve ainsi par d'autres méthodes le résultat en cohomologie de[START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF] dû à Kawazumi et on généralise les résultats de Jensen de[START_REF] Jensen | Homology of holomorphs of free groups[END_REF].
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,M 2 ,ς n,t } (R) (n) is not trivial for n ≥

So the result (2.3.1) is consistent with [Kor11, Theorem 1] asserting that for n ≥ 3, a non-trivial linear representation of Γ n,1 of dimension 2n is equivalent to the symplectic representation.

defined by the embeddings {W n } n∈N . We assign H to be the group π 1 Σ 0 n,0,1 , p and H 0 to be the trivial group.

Chapter. Computations of stable homology with twisted coefficients for mapping class groups
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Proposition 2.5.12. For all F ∈ Obj (Fct (UG, R-Mod)), the monomorphisms {ξ (F) n } n∈N (see Definition 2.5.7), induce a natural transformation ξ (F) : (LM • τ 1 ) (F) → (τ 1 • LM) (F), assigning for all natural numbers n:

This yields a natural transformation ξ : LM • τ 1 → τ 1 • LM.

Proof. Let n be a natural number. The fact that the assignment ξ (F) n is well-defined with respect to the tensor product structures is a direct consequence of Condition 2.5.9 (see [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]Proposition 4.18]).

Let us show that ξ (F) is a natural transformation. Let n and n be natural numbers such that n ≥ n, and [nn, g] ∈ Hom UG (n, n ). Since I is a functor and by the defining equivalence relation of UG (see Definition 2.1.3) and since UG is a full subcategory of UG , we have:

So we deduce that:

That ξ is a natural transformation follows, mutatis mutandis, from the argument in the proof of [Sou17b, Proposition 4.18]. Now, using the natural transformation ξ , we can prove the desired following factorisation.

Lemma 2.5.13. As natural transformations from LM to τ 1 • LM, the following equality holds:

Proof. Let F be an object of Fct (UG, R-Mod). Let n be a natural number. Since b G 1,1 -1

• (ι 1 id 1 ) = id 1 ι 1 by Definition 2.1.10, we deduce from Proposition 2.5.12 that:

F (id 1 ι 1 id n ) = (i 1 LM) (F) n .

Study of Coker (ξ )

It follows from the definition of i 1 and from Lemma 2.5.13 that the following diagram is commutative and the rows are exact sequences in the category of endofunctors of Fct (UG, R-Mod): Proof. Recall from Lemma 2.3.11 that the functor π 1 (-, p) is strict monoidal, it is clear that the symmetry b gr π 1 (S,p),π 1 (S ,p) is equal to π 1 b M 2 S,S , p . Hence the functor π 1 (-, p) is braided strict monoidal and a fortiori Assumption 2.5.16 is satisfied.

For the families of trivial {ς n,t } n∈N , we have already noted in Remark 2.5.11 that Condition 2.5.9 is automati- cally satisfied. For the family of morphisms {ς n,1 } n∈N and ς b n,1 n∈N , the equality (2.3.3) of Lemma 2.3.29 implies that Condition 2.5.9 is satisfied.

Hence, applying a Long-Moody functor on the constant functor R, we prove:

Corollary 2.5.31. The following functors are very strong polynomial of degree one:

• H 1 Σ s -,0,1 , R of Example 2.3.15;

• H 1 Σ s 0,-,1 , R of Example 2.3.19;

• H 1 Σ - g,c,1 , R of Example 2.3.31;

of Example 2.3.39.

In [RWW17, Section 5], Randal-Williams and Wahl prove homological stability for the families of mapping class groups of surfaces families considered in Section 2.3, with twisted coefficients given by very strong polynomial functors. This framework is generalised by Krannich to a topological setting in [START_REF] Krannich | Homological stability of topological moduli spaces[END_REF]. Namely, for the coherent Long-Moody systems {H, G, G , ς} introduced in the examples of Section 2.3, they show: Theorem 2.5.32. [RWW17, Theorem A] If F : UG → Z-Mod is a very strong polynomial functor of degree d, then the canonical maps

are isomorphisms for N ( * , r) ≤ n with N ( * , r) ∈ N depending on * and r.

As representation theory of mapping class groups of surfaces is difficult and a current important research topic (see for example [BB05, Section 4.6], [START_REF] Funar | On the TQFT representations of the mapping class groups[END_REF] or [START_REF] Korkmaz | Low-dimensional homology groups of mapping class groups: a survey[END_REF]), there are very few examples of very strong polynomial functors over UG. Using Long-Moody functors (and in particular their iterates), we thus provide very strong polynomial functors in any degree for these families of groups.

Effect on weak polynomial functors

We investigate the effect on weak polynomial functors of the Long-Moody functor associated with the reliable Long-Moody system {H, G, G , ς}. The first step of this study consists in defining the Long-Moody functor on the quotient category St (UG, R-Mod). First, note the following property. Lemma 2.5.33. Let F be an object of Fct (UG, R-Mod). Assume that the groups H 0 and H are free, or that the groupoid (G , , 0) is symmetric monoidal. If the functor F is in Sn (UG, R-Mod), then the functors LM (F) and I R

Chapter. Generalised Long-Moody functors

Examples and applications: Examples of weak polynomial functors for mapping class groups of surfaces are given by Theorem 2.5.36. Indeed, the constant functor R being weak polynomial of degree 0 (according to Proposition 2.4.17 since π UG (R) = R), applying a Long-Moody functor to the constant functor R we obtain: Proposition 2.5.37. The following functors are weak polynomial of degree one:

Recall from Remark 2.4.14 that a strong polynomial functor is always weak polynomial. The converse is false (see [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]Example 4.4] for a counterexample). The weak polynomial degree of a strong polynomial functor can be strictly smaller than its strong polynomial degree as the following example shows. Recall from [Sou17b, Section 1.3] the functor Bur : Uβ → C t ±1 -Mod which encodes the family of reduced Burau representations. Proposition 2.5.38. The functor Bur : Uβ → C t ±1 -Mod is a strong polynomial functor of degree 2 and weak polynomial of degree 1.

Proof. The strong polynomial result is proved in [Sou17b, Proposition 3.28], using the following short exact sequence in Fct Uβ, C t ±1 -Mod :

where R ≥1 is the subfunctor of R which is null at 0 and equal to R elsewhere. The functor π UG being exact (see Remark 2.4.11), we deduce that:

The functor R ≥1 is a subfunctor of a weak polynomial functor of degree 0 and it is not stably null. So, we deduce from Proposition 2.4.16 that R ≥1 is weak polynomial of degree 0 and therefore the functor Bur t is weak polynomial of degree 1.

Remark 2.5.39. The fact that the reduced Burau functor is a strong polynomial functor of degree 2 is a consequence of an unstable phenomenon for the first values of this functor. Namely, this comes from the equivalence δ 1 Bur t ∼ = R ≥1 where R ≥1 is strong polynomial of degree 1 and note that however R ≥1 is constant for n ≥ 1. Another fundamental reason for the notion of of weak polynomial functors to be introduced in [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] is that, contrary to the category P ol strong d (M, A) (see [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF]Remark 3.18]), the category P ol d (M, A) is localizing (see Proposition 2.4.16). This allows the quotient categories P ol d+1 (M, A) /P ol d (M, A) to be considered. The main results of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF] concern the study of these quotient categories for M the category of Hermitian objects in an additive category C equipped with a duality functor. Remark that as a consequence of Theorem 2.5.36, we obtain: Proposition 2.5.40. The Long-Moody functor defined by the reliable Long-Moody system {H, G, G , ς} induces a functor: P ol d (UG, R-Mod) /P ol d-1 (UG, R-Mod) → P ol d+1 (UG, R-Mod) /P ol d (UG, R-Mod) , if the groups H 0 and H are free, or if the groupoid (G , , 0) is symmetric monoidal. : UG → Cospan † (UG) defined as the identity on objects and sending any [n

In the same way, the morphisms of type R in Notation 2.6.5 induce a canonical inclusion functor incl Cospan † (UG) UG op : UG op → Cospan † (UG) defined as the identity on objects and sending any [n

The following property is a direct consequence from the composition in the category Cospan † (UG). 

Finally, we are interested in a way to extend an object of Fct (UG, R-Mod) to an object of Fct Cospan † (UG) , R-Mod .

Proposition 2.6.8. Let C be a category and M be an object of Fct (UG, C ). Assume that for all n, n ∈ N such that n ≥ n, M nn, id n :

(2.6.1)

(2.6.3)

Proof. First, we have to show that the assignment of M on morphisms is well-defined with respect to the defining equivalence relation of the category Cospan † (UG).

) be two morphisms such that ARB. Denoting by [pp, α] ∈ Hom UG p, p a morphism such that ARB (see Definition 2.6.3), since:

we directly conclude from the compositions relations (2.6.1) and (2.6.3) that M (B) = M (A).

Remark that since M is a functor over the category UG, the identity axiom and the composition axiom for morphisms of type L ([kn, φ]) • L ([nm, χ]) (see Notation 2.6.5) are already checked. Now, it is clear from the definition of morphisms in the category Cospan † (UG) that composition axiom for the category Cospan † (UG) is satisfied by M if and only if the three relations (2.6.1), (2.6.2) and (2.6.3) are checked.

A criterion for extending natural transformations from Fct (UG, R-Mod) to Fct Cospan † (UG) , R-Mod can similarly be given. As UG is a subcategory of Cospan † (UG) by incl Cospan † (UG) UG , an object of the functor category Fct Cospan † (UG) , R-Mod is an object of Fct (UG, R-Mod). Abusing the notation, the restriction of an object of Fct Cospan † (UG) , R-Mod to Fct (UG, R-Mod) is denoted in the same way.

Mapping class groups of 3-manifolds

Let us introduce from [RWW17, Section 5.6] the suitable category to work with. Namely: Definition 2.6.42. The oriented 3-manifold groupoid M + 3 and M 3 + are the groupoids defined by:

• Objects: compact, connected, oriented 3-manifold M with boundary, equipped with a marked disc D 2 → ∂M in its boundary;

• Morphisms: :

for M + 3 : the isotopy classes of orientation preserving diffeomorphisms restricting to the identity on the disc, denoted by π 0 Di f f M rel D 2 ;

Dehn twists along spheres and discs, denoted by

Henceforth, we fix two objects M 0 and M of M + 3 . Recall from [RWW17, Section 5.7] that the boundary connected sum along marked half-discs defines a monoidal product for M + 3 and M 3 + , and the unit disc D 3 is the unit. The braiding of the monoidal structure is given by doing half a Dehn twist in a neighbourhood of the marked half-discs b

and it is a symmetry. By the Poincaré conjecture, there are no zero divisors in M + 3 and M 3 + . We refer to [RWW17, Section 5.7] for more technical details on this operation.

Notation 2.6.43. We denote by

the boundary connected sums of D 3 , M 0 and M.

Corollary 2.6.44. The groupoids M + 3,(M,M 0 ) , , D 3 and M + 3,(M,M 0 ) , , D 3 are small symmetric strict monoidal with no zero divisors and automorphisms group of D 3 in each of these groupoids is trivial.

For N an object of M + 3 , the mapping class group π 0 Di f f N rel D 2 (and a fortiori π 0 Di f f N rel D 2 / twists ) acts on the fundamental group π 1 (N). We define functors:

Recall that by Van Kampen's theorem

for two objects M 1 and M 2 of M + 3 . Recall the symmetric symmetric monoidal category Gr π 1 (M),π 1 (M 0 ) , * , 0 Gr introduced in Notation 2.5.15 and the groupoid fG defined in Section 2.6.3.2. Repeating mutatis mutandis the work of Lemma 2.3.11 and Proposition 2.3.12, we deduce that: Proposition 2.6.45. The following functors are symmetric strict monoidal:

They define functors π

.

Let M + 3,M,M 0 (resp. M + 3,M,M 0 ) be the full subgroupoid of M + 3,(M,M 0 ) (resp. M + 3,(M,M 0 ) ) of the groups M m M 0 m∈N .

Note that Obj M + 3,M,M 0 = Obj M + 3,M,M 0 ∼ = N and that the groupoid M + 3,M,M 0 (resp. M + 3,M,M 0 ) is finitely generated by the free product in M + 3,(M,M 0 ) , , D 3 (resp. M + 3,(M,M 0 ) , , D 3 ). 85 86 2. Chapter. Generalised Long-Moody functors Proposition 2.6.46. With the previous notations, π 1 , M + 3,M,M 0 , M + 3,(M,M 0 ) , ς n,t and π

, ς -,t define liftable Long-Moody systems, where ς n,t is the trivial morphism in both cases for all natural numbers n (see Example 2.2.22).

Proof. These Long-Moody systems are reliable by Remark 2.2.27, Assumptions 2.2.13 and 2.5.16 being satisfied by Proposition 2.6.45 and Assumption 2.2.1 being checked using the groupoids M + 3,(M,M 0 ) and M + 3,(M,M 0 ) (by Corollary 2.6.44). We conclude using Remark 2.6.23.

Handlebody mapping class groups: Take M 0 = D 2 and M = S 1 × D 2 , with S 1 the 1-sphere and D 2 the 2-disc. Then, for all natural numbers n:

is the handlebody mapping class group of a surface of genus n fixing a disc on the boundary pointwise.

Example 2.6.47. Consider the liftable Long-Moody system π 1 ,

, ς -,t of Proposition 2.6.46. In this case:

We denote by H 1 S 1 × D 2 -, R the functor induced by the functor H 1 (H -, R) of Proposition 2.2.37. For all natural numbers n, the action of H n,1 on H 1 S 1 × D 2 n , R is the natural representation of the handlebody mapping class group H n,1 . We deduce from Lemma 2.2.38 that:

Furthermore, recall that the handlebody mapping class group H n,1 is a subgroup of the mapping class group Γ n,1 of the surface Σ 0 n,0,1 for all natural numbers n. Hence, we can define another Long-Moody system associated with handlebody mapping class groups. Recall the reliable Long-Moody H g , M +,s 2 , M 2 , ς n,t system of Section 2.3.3.1. Proposition 2.6.48. The setting H g , M + 3,S 1 ×D 2 ,D 2 , M + 3,(S 1 ×D 2 ,D 2 ) , ς -,t (with ς n,t : π 1 Σ 0 n,0,1 , p → H n+1,1 the trivial morphism for all natural numbers n) is a liftable Long-Moody system.

Proof. Since we consider the family of trivial morphisms, by Remarks 2.2.27 and 2.6.23, it is enough to check that Assumptions 2.2.13 , 2.5.16 and 2.2.1 are satisfied.

Assumption 2.2.1 is checked using the groupoid M 2 (see Section 2.3.2). The groupoid M + 3,S 1 ×D 2 ,D 2 is a subgroupoid of M 2 using the embeddings H n,1 → Γ n,1 for all natural numbers n. Therefore Assumptions 2.2.13 and 2.5.16 are satisfied repeating mutatis mutandis the work of Lemma 2.3.11 and Proposition 2.3.12.

Example 2.6.49. Assume that π 1 Σ 0 1,0,1 , p acts trivially on the commutative ring R. We denote by H 1 (Σ -,1 , R) S 1 ×D 2 the functor induced by the functor H 1 (H -, R) of Proposition 2.2.37. We deduce from Lemma 2.2.38 that:

Remark 2.6.50. In [START_REF] Ishida | A twisted first homology group of the handlebody mapping class group[END_REF], Ishida and Sato compute the homology groups H 1 H n,1 , H 1 (Σ -,1 , R) S 1 ×D 2 for all natural numbers n.

Tensorial functors

This last section introduces a new construction of which generalised Long-Moody functors are particular cases. It is inter alia useful for the forthcoming work [START_REF] Soulié | Computations of homology with twisted coefficients for mapping class groups[END_REF]. We fix a groupoid G such that Obj (G) ∼ = N such that Assumption 2.2.1 is satisfied. Recall that for all natural numbers n, the automorphism groups Aut G (n) are denoted by G n .

3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

Categorical framework

This section recollects Quillen's bracket construction, pre-braided monoidal categories and locally homogeneous categories for the convenience of the reader. It takes up the framework of [RWW17, Section 1].

Quillen's bracket construction

We fix a strict monoidal groupoid (G, , 0). Definition 3.1.1. [RWW17, Section 1.1] Quillen's construction on the groupoid G, denoted by UG is the category defined by:

• Objects: Obj (UG) = Obj (G);

• Morphisms: for A and B objects of G,

A morphism from A to B in the category UG is an equivalence class of pairs (X, f ), where X is an object of G and f :

• For all objects X of UG, the identity morphism in the category UG is given by [0, id X ] : X -→ X.

• Let [X, f ] : A -→ B and [Y, g] : B -→ C be morphisms in the category UG. Then, the composition in the category UG is defined by:

Ìt is clear that the unit 0 of the monoidal structure of the groupoid (G, , 0) is an initial object in the category UG (see [RWW17, Proposition 1.8 (i)]). Definition 3.1.2. The strict monoidal category (G, , 0) is said to have no zero divisors if for all objects A and B of G, A B ∼ = 0 if and only if A ∼ = B ∼ = 0. Proposition 3.1.3. [RWW17, Proposition 1.7] Assume that the strict monoidal groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }. Then, the groupoid G is the maximal subgroupoid of UG.

Henceforth, we assume that the groupoid (G, , 0) has no zero divisors and that Aut G (0) = {id 0 }. Remark 3.1.4. Let X be an object of G. Let φ ∈ Aut G (X). Then, as an element of Hom UG (X, X), we will abuse the notation and write φ for [0, φ].

Finally, we recall the following lemma.

Lemma 3.1.5. [Sou17a, Lemma 1.8]Let C be a category and F an object of Fct (G, C ). Assume that for A, X, Y ∈ Obj (G), there exist assignments F X, id X A :

Then, the assignment F ([X, g]) = F (g) • F X, id X A for [X, g] ∈ Hom UG A, id X A defines a functor F : UG → C if and only if for all A, X ∈ Obj (G), for all g ∈ Aut G (A) and all g ∈ Aut G (X):

Pre-braided monoidal categories:

Assuming that the strict monoidal groupoid (G, , 0) is braided, Quillen's construction UG will also inherit a strict monoidal structure (see Proposition 3.1.8). Beforehand, we recall the notion of pre-braided category, introduced by Randal-Williams and Wahl in [RWW17, Section 1].

3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups

Q n (M n ), induced by the composition:

Corollary 3.2.5. Let n be a natural number. Assume that the free group K n acts trivially on the R-module M n . Then, for all natural numbers q ≥ 1:

(3.2.4)

Proof. First, as M n is a trivial K n -module:

and the coinflation map

example [Wei94, Section 6.7.3]). Hence, denoting by H * (p n , M n ) the map induced in homology by p n :

Section 6.7.5]), we deduce that:

By the functoriality of the homology (see [Wei94, Section 6.7.5]), the splitting s n :

Hence, H * (p n , M n ) is an epimorphism and a fortiori Ker d 2 * ,0 ∼ = H * (Q n , M n ). Therefore, d 2 * ,0 = 0 and the exact sequence (3.2.2) gives a split short exact sequence of abelian groups for every q ≥ 1:

Relation to Long-Moody functors:

In [START_REF] Soulié | The Long-Moody construction and polynomial functors[END_REF][START_REF] Soulié | The generalized Long-Moody functors[END_REF], the notion of Long-Moody functor is set for the groupoid (Q, , 0) and the family of groups K -. Our aim here is to outline the relation between the twisted coefficients H 1 (K n , R) ⊗ R M n appearing in Corollary 3.2.5 and the notion of Long-Moody functor so as to prove Corollary 3.2.10. This last result will be useful to prove Theorem 3.2.45.

Assumption 3.2.6. We assume that the groupoid Q is a braided strict monoidal category (we denote by (Q, , 0) the monoidal structure) and that there exists a free group K such that K n ∼ = K * n for all natural numbers n. Moreover, we assume that K -(γ n ) = ι K * id K n for all natural numbers n (we recall that γ n is the unique element of Aut (N,≤) (n, n + 1) see Notation 3.0.1) and that the functor A Q of Assumption 3.2.1 defines a strict monoidal functor (Q, , 0) → (gr, * , 0).

Throughout the remainder of Section 3.2.1, we assume that Assumption 3.2.6 is satisfied. This allows to define the functor K -on the category UQ:

Chapter. Computations of stable homology with twisted coefficients for mapping class groups

Computation of H d Γ ∞,1 , H 1 (Σ ∞,1 , Z) ⊗m : A first application of Proposition 3.2.26 is to compute the stable homology groups H d Γ ∞,1 , H 1 (Σ ∞,1 , Z) ⊗m for all natural numbers m and d. We consider the groupoid M 0 2 (see Definition 3.2.24). By [RWW17, Proposition 5.18], the boundary connected sum induces a strict braided monoidal structure M 0 2 , , Σ 0 0,1 , I . By Van Kampen's theorem, the fundamental group functor π 1 (-, x) : M 2 , , Σ 0 0,1 → (gr, * , 0 Gr ) is strict monoidal and assigning for all n, n ∈ N

defines a functor π 1 (-, x) : UM 0 2 → gr. We refer to [Sou17a, Section 3.2] for more details. Hence Assumption (3.2.6) is satisfied. Recall that the homology group H 1 (-, Z) defines a functor from the category Gr to the cate- gory Ab (see for example [Bro12, Section 8]). As π 1 Σ 0 n,1 , x is finitely generated for all natural numbers n, the target category of the composition H 1 (-, Z) • π 1 (-, x) is the full subcategory of Ab of finitely generated abelian groups, denoted by ab. Hence, for m a natural number, we define a functor H 1 (Σ -,1 , Z) ⊗m : UM 0 2 → ab by the composition:

where -⊗m : ab → ab sends an object G to G ⊗m .

Remark 3.2.27. Let m be a natural number. We refer to [Sou17b, Section 4] for the notion of very strong polynomial functors. As π 1 (-, x) is a strict monoidal functor, we deduce from [Sou17b, Proposition 3.8] that H 1 (Σ -,1 , Z) is very strong polynomial of degree 1. Using again [Sou17b, Proposition 3.8], we deduce that H 1 (Σ -,1 , Z) ⊗m is a very strong polynomial functor of degree m.

Note that for all natural numbers n, since the free group π 1 (Σ n,1 , x) acts trivially on the homology group H 1 (Σ n,1 , Z), we have an isomorphism:

For all natural numbers n, the action of Γ n,2 on H 1 (Σ n,1 , Z) ⊗m is induced by the one of Γ n,1 via the surjections Γ n,2 Γ 1 n,1

Γ n,1 . Using the terminology of [Bol12] and [CM09], H 1 (Σ -,1 , Z) ⊗m is thus a coefficient system of degree m. Hence, it follows from the stability results of Boldsen [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF] or Cohen and Madsen [START_REF] Cohen | Surfaces in a background space and the homology of mapping class groups[END_REF] that: Theorem 3.2.28. [START_REF] Søren | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF]Theorem 4.17][CM09, Theorem 0.4] Let m, n and q be natural numbers such that 2n ≥ 3q + m:

Then, we can prove: Theorem 3.2.29. Let m, n and q be natural numbers such that 2n ≥ 3q + m. Then, there is an isomorphism:

Proof. The Lyndon-Hochschild-Serre spectral sequence with coefficients given by H 1 (Σ n,1 , Z) ⊗m associated with the short exact sequence (3.2.8) has only two non-trivial rows. Hence, for all natural numbers n ≥ 1, we obtain the following long exact sequence.
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Mapping class groups of non-orientable surfaces

Let N Σ g,1 denote a smooth compact connected non-orientable surface with non-orientable genus g ∈ N and one boundary component with I : [-1, 1] → ∂N Σ g,1 a parametrised interval in the boundary. We denote by N g,1 the isotopy classes of diffeomorphisms restricting to the identity on a neighbourhood of the parametrised interval I.

Recall from [FM11, Section 1.4.2] that the mapping class group N g,1 identifies with the group of isotopy classes of homeomorphisms of N Σ g,1 . Recall that fixing the interval I is the same as fixing the whole boundary component pointwise. When there is no ambiguity, we omit the parametrised interval I from the notation.

Notation 3.2.34. For all natural numbers g, we denote by a x

the action of the mapping class group N g,1 on the fundamental group of the surface π 1 N Σ g,1 , x with x a basepoint in the interior of N Σ g,1 . We denote by N 1 g,1

the isotopy classes of diffeomorphisms restricting to the identity on a neighbourhood of the parametrised interval I and fixing the marked point.

Let us establish the following result, analogous to the short exact sequence (3.2.7) of Theorem 3.2.21:

Proposition 3.2.35. Let g ≥ 3 be a natural number and x be a marked point in the interior of N Σ g,1 . Deleting x induces a map N 1 g,1 → N g,1 which defines the following split short exact sequence:

.2.11)

A fortiori, there is an isomorphism:

Proof. We denote by Homeo ∂ N Σ g,1 the group of self-homeomorphisms preserving the boundary of N Σ g,1 and by Homeo ∂ N Σ g,1 , x the group of self-homeomorphisms of N Σ g,1 preserving the boundary which fix the point x. We have a surjective map Homeo N Σ g,1 Int N Σ g,1 (where Int N Σ g,1 denotes the interior of the surface N Σ g,1 ) defined by ϕ → ϕ (x). This is a fiber bundle with fiber Homeo N Σ g,1 , x . Hamstrom proves in [Ham66, Theorem 5.3] that Homeo ∂ N Σ g,1 is contractible. Similar results can be found in [Gra73, Théorème 2] or [START_REF] Earle | Teichmüller theory for surfaces with boundary[END_REF]. Hence, the short exact sequence (3.2.11) is induced by the homotopy long exact sequence associated with the fibration Homeo N Σ g,1

Int N Σ g,1 . The embedding of N Σ g,1 into N Σ 1 g,1 as the complement of the disc Σ 1 0,1 with the marked point x induces an injective morphism N g,1 → N 1 g,1 . This provides a splitting of the exact sequence (3.2.11).

Let us introduce a suitable groupoid for our work, inspired by [RWW17, Section 5.6].

Definition 3.2.36. Let M - 2 be the skeleton of the groupoid defined by:

• Objects: the smooth compact connected non-orientable surfaces N Σ n,1 for all natural numbers n with x ∈ int (N Σ n,1 ) a basepoint;

• Morphisms:

Remark 3.2.37. The morphisms a x N Σ n,1 n∈N of Notation 3.2.34 assemble to define a functor A M -

x) for all natural numbers n. Hence, recalling that π 1 (N Σ n,1 , x) is a free group of rank n, Assumption 3.2.1 is satisfied.

Hence, we deduce from Corollary 3.2.5 and Proposition 3.2.35 that: Corollary 3.2.38. Let n ≥ 3 and q ≥ 1 be natural numbers. Let M n be a R N 1 n,1 -module (and a fortiori a R [N n,1 ]-module using the surjection N 1 g,1 N g,1 ) on which π 1 (N Σ n,1 , x) acts trivially. Then:

(3.2.12) 108 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups Furthermore, we recall the stable homology result for automorphism groups of free groups due to Galatius for constant coefficients and Djament and Vespa for twisted coefficients: Theorem 3.2.44. Let q ≥ 1 be a natural number. Then:

• [DV15, Théorème 1] for F : gr → Ab a reduced (ie null on the trivial group) polynomial functor such that F (0) = 0, then H q (Aut (F n ) , F (n)) = 0 for n ≥ 2q + 1.

Hence, we can establish the main result of Section 3.2.2.4.

Theorem 3.2.45. Let s ≥ 2 and q ≥ 1 be natural numbers.

1. Let F : gr → Ab be a reduced polynomial functor such that F (0) = 0. The action of A s n,0 on F (n) is induced by the surjections A s n,0

A s-1 n,0

2. For all natural numbers n ≥ 3q + 3 and k ≥ 0, H q A s n,k , Q = 0.

Proof. We consider the functor F • i : UA 1,0 → Ab. As i is a strict monoidal functor, we deduce from [Sou17b,

→ gr → Ab is a strong polynomial functor. Hence, the first result follows from Corollary 3.2.5 and Theorem 3.2.44.

In [HW10, Theorem 1.1], Hatcher and Wahl prove that the stabilization morphism A s n,k → A s n,k+1 induces an isomorphism for the rational homology

The second result thus follows from the previous statement. 

A general result for twisted stable homology

In this section, we prove a decomposition result for the stable homology with twisted coefficients for families of groups whose associated groupoid is a full subcategory of a pre-braided locally homogeneous groupoid (see Theorem 3.3.7). It extends a previous analogous result due Djament and Vespa in [DV10, Section 1 and 2] when the ambient monoidal structure is symmetric.

We refer the reader to the papers [FP03, Section 2] and [DV10, Appendice A] for an introduction to homological algebra in functor categories and we assume that all the definitions, properties and results there are known.

General framework

Throughout Section 3.3, we consider (G, , 0) a small braided strict monoidal groupoid with no zero divisors (see Definition 3.1.2), such that Aut G (0) = {id 0 } and K is a field. We fix a pair of objects (A, X) of G and assume that G satisfies the properties (LC) and (LI) of Definition 3.1.12 at (A, X). Remark 3.3.1. By Theorem 3.1.13, Quillen's bracket construction UG is locally homogeneous at (A, X). Definition 3.3.2. Let G (A,X) (respectively UG (A,X) ) be the full subgroupoid of G (respectively UG) on the objects A X n n∈N . Remark 3.3.3. If A = 0, then the braided monoidal structure (G, , 0) induces a small braided strict monoidal structure on G (0,X) , denoted by G (0,X) , , 0 . Moreover, Quillen's bracket construction UG (0,X) is homogeneous by Theorem 3.1.13. 110 3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups Ψ F is a morphism of δ-functors commuting with filtered colimits (see [Wei94, Section 2.1]). Since the category Fct UG (0,X) , K-Mod has enough projectives, provided by direct sums of the standard projective generators functors P UG (0,X) X n = K Hom UG (0,X) X n ,for all natural numbers n (see [DV10, Appendice A]), we only have to show that Ψ F is an isomorphism when F = P UG (0,X)

X n

. Indeed, the result for an ordinary functor F thus follows from a resolution of F by direct sums of P UG (0,X) X n . We deduce from Remark 3.1.11 that for all natural numbers m ≥ n, we have the isomorphism of G m -sets:

Hence, P

K as G m -modules. Therefore, it follows from Schapiro's lemma (see [START_REF] Weibel | An introduction to homological algebra[END_REF]Section 6.3]) that:

Taking the colimit with respect to m, we deduce the isomorphism H * G ∞ , P

We conclude using the first Künneth spectral sequence of [DV10, Proposition 2.16]:

.

The second part of the statement follows applying Künneth formula for homology of categories (see [DV10, Proposition 2.27]).

Twisted stable homologies for FI-modules and related functors

In this section, we present a general principle to compute the twisted stable homology for mapping class groups with non-trivial finite quotient groups. In Section 3.4.1, we establish in Corollary 3.4.11 a general formula to compute the stable homology with twisted coefficients given by functors over categories associated with the aforementionned finite quotient groups. This allows to set explicit formulas for the stable homology with coefficients given by FI-modules for braid groups, mapping class groups of orientable surfaces and some particular right-angled Artin groups in Section 3.4.2. Throughout Section 3.4, we assume that the field K is of characteristic 0. Let us consider three families of groups K -, G -and C -(see Definition 3.0.2), such that the group C n is finite for all natural numbers n, and which fit into the following short exact sequence in the category Fct ((N, ≤) , Gr):

where k : K -→ G -and c : G -→ C -are natural transformations and 0 denotes the constant object of Fct ((N, ≤) , Gr) at 0 Gr . Notation 3.4.1. Let K, G and C denote the groupoids with natural numbers as objects and Aut K

We assume that these groupoids satisfy further properties:

Assumption 3.4.2. The groupoids G and C are endowed with braided strict monoidal structures (G, G , 0 G ) and (C, C , 0 C ), where G and C are defined by the addition on objects, such that:

• the morphisms {c n } n∈N induce a strict monoidal functor c : G → C defined by the identity on objects; 

] for all natural numbers n.

3. Chapter. Computations of stable homology with twisted coefficients for mapping class groups together with relations:

For all natural numbers i, j ∈ {1, . . . , n} such that i = j, we denote by α i,j the composition:

The pure string motion group of rank n, denoted by PS n is the subgroup of S n generated by the elements α i,j | i, j ∈ {1, . . . , n} , i = j with the relations:

Remark 3.4.17. Symmetric automorphisms groups of free group are a generalisation of braid groups. Let C n = c 1 c 2 • • • c n be the disjoint union of n smoothly embedded, oriented, unlinked, unknotted circles c i in the ball D 3 . Then, S n is isomorphic to the group of isotopy classes of self-homeomorphisms of D 3 that preserve its orientation, fixes its boundary pointwise, and globally fixes C n (see [Dam17, Section 2]). Denoting by F n the free group of rank n, S n identifies with the subgroup of the automorphism group Aut (F n ) of the automorphisms which map each generator of F n to a conjugate of this generator or of the inverse of a generator (see [START_REF] Damiani | A journey through loop braid groups[END_REF]Section 4]). This justifies the denomination of symmetric automorphisms groups of free group for S n . Furthermore, to introduce a suitable categorical framework for symmetric automorphisms groups of free groups, we need another equivalent definition. Denoting by D 2 the 2-disc, D 3 the 3-disc and S 1 the 1-sphere, we consider the compact, connected, oriented 3-manifold with boundary S 1 × D 2 \ D 3 , equipped with a marked disc D 2 → ∂ S 1 × D 2 \ D 3 in its boundary. We denote by the boundary connected sum along marked half-discs between two compact, connected, oriented 3-manifolds with boundary. Definition 3.4.18. Let SA be the groupoid defined by: • Objects: the finite boundary connected sums of S 1 × D 2 \ D 3 ; namely, S 1 × D 2 \ D 3 n for n ∈ N;

• Morphisms: the isotopy classes of orientation preserving diffeomorphisms restricting to the identity on the marked disc modulo Dehn twists along embedded 2-spheres, denoted by -,1 : (N, ≤) → Gr and Γ - -,1 : (N, ≤) → Gr be the families of groups defined by Γ

[-]

n,1 , Γ - -,1 (n) = Γ n n,1 and Γ

[-]

-,1 (γ n ) = Γ - -,1 (γ n ) = id 1for all natural numbers n. Hence Assumption 3.4.2 is satisfied. Remark 3.4.25. Let n be a natural number. The action of the symmetric group S n on Γ

[n] n,1 is induced by the natural action of S n on Σ n n,1 given by permuting the marked points. Recall from Theorems 3.2.31 and 3.2.33 that for all natural numbers q such that n ≥ 2q:

Hence, according to the decomposition of the classifying space associated with the pure mapping class groups in [BT01, Theorem 1], the action of S n on H q Γ

[n] n,1 , K corresponds to permuting the variables {x i } i∈{1,...,n} on the right hand side.

A fortiori the homology group H * (Γ n,1 , K) is a trivial S n -module. Recall also from [MW07] that:

where each κ i has degree 2i.

By Corollary 3.4.11, we have:

Proposition 3.4.26. Let F be an object of Fct (UM 2 , K-Mod). For all natural numbers q, H q Γ ∞ ∞,1 ,

n,1 , F (n) , and if F factors through the category FI, then:

In particular, if F factors through the category FI, then H 2k+1 Γ ∞ ∞,1 , F ∞ = 0 for all natural numbers k.

Particular right-angled Artin groups

A right-angled Artin group (abbreviated RAAG) is a group with a finite set of generators {s i } 1≤i≤k with k ∈ N and relations s i s j = s j s i for some i, j ∈ {1, . . . , n}. For instance, the free group on k generators F k is a RAAG. By [GW16, Proposition 3.1], any RAAG admits a maximal decomposition as a direct product of RAAGs, unique up to isomorphism and permutation of the factors. A RAAG is said to be unfactorizable if its maximal decomposition is itself. We refer to [START_REF] Vogtmann | Out(F n ) and everything in between: automorphism groups of RAAGs[END_REF] or [GW16, Section 3] for more details on these groups.

Let A be a fixed unfactorizable RAAG different from Z. We have the following key property:

Proposition 3.4.27. [GW16, Proposition 3.3] For all natural numbers n, we have the following split short exact sequence:

1 / / Aut (A) ×n i n / / Aut (A ×n ) iiiiiiis n / / S n / / 1.