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Abstract xv

Hybridization of FETI Methods

Abstract

In this work new domain decomposition methods and new implementations for existing
methods are developed. A new method based on previous domain decomposition
methods is formulated. The classic FETI [30] plus FETI-2LM [35] methods are used to
build the new Hybrid-FETI. The basic idea is to develop a new algorithm that can use
both methods at the same time by choosing in each interface the most suited condition
depending on the characteristics of the problem. By doing this we search to have a faster
and more robust code that can work with configurations that the base methods will not
handle it optimally by himself. The performance is tested on a contact problem.
The following part involves the development of a new implementation for the S-FETI
method [39], the idea is to reduce the memory usage of this method, to make it able
to work in larger problem. Different variation for this method are also proposed, all
searching the reduction of directions stored each iteration of the iterative method.
Finally, an extension of the FETI-2LM method to his block version as in S-FETI, is
developed. Numerical results for the different algorithms are presented.

Keywords: numerical analysis, domain decomposition methods, algebra, scientific
computation

LJLL Laboratoire Jacques-Louis Lions
Laboratoire Jacques-Louis Lions – 4 place Jussieu – Université Pierre et Marie
Curie – Boîte courrier 187 – 75252 Paris Cedex 05 – France
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Introduction

In the last decades and thanks to the increasing computational power, faster

robust and accurate algorithms had been developed to solve numerically a large

variety of problems modeled by Partial Differential Equations (PDE). The use of

multiple processors to increase the speed of calculations leads to the search of

strategies in parallelism that allows to profit of this new computers architectures.

Different parallel iterative and direct methods for solving linear systems had

been developed [70],[25],[3], both with positive and negative features in terms

of speed, memory and accuracy. Results of iterative methods based on Krylov

spaces usually depend on the condition number of the matrix representing the

system, and the memory requirements are usually not an issue, on the other

hand direct methods are more robust but the use of memory can be a problem

for some large systems.

For problems coming from discretization of Finite Element Methods we

have properties that allow us to use a different approach, that is the Domain

Decomposition Methods (DDM), this methods can be considered as an hybrid

between iterative and direct methods [60],[19]. They are based on the partition of

the domain of the problem into subdomains, where smaller system of equations

are defined. From this division, this methods can be categorized into two large

groups, the overlapping and non overlapping methods.

In this work we will focus in some DDM with non overlapping interfaces,

mainly the method of Finite Elements Tearing and Interconnecting or FETI and

other related methods [30],[33],[35].

The objective of our work is to develop new FETI methods, that apply to

particular cases, improving the results shown by the existing methods. Also

we will expand the results on one of the existing FETI methods to extend his

1



2 Introduction

applications to problems in which the current formulations does not allows it.

Contributions of this thesis

The following work is based in one of the most known of the non overlapping

domain decomposition methods, the Finite Element Tearing and Interconnecting

method (FETI) [30],[29].

The works on this method since its first formulation have produced several

improvements to the same [34],[61], but also it has permitted the formulation

of new FETI methods [33],[35]. Within this context, and using the similarities

on the constructions of two of the most used FETI methods, namely the original

FETI-1LM and the later developed FETI-2LM. We will formulate a new algorithm

based in this two methods, that tries to take advantage of the good properties of

one and the other. After the development of this new method, and after a better

understanding of the same we can exhibit his advantages in contact cases where

it outperforms the FETI-1LM and FETI-2LM methods.

In a different line of work, this time following the development of the new

S-FETI method [39], we will continue the analysis within, in order to find

new, faster or more robust forms of the same. Different variations of it will be

formulated and tested, all of them trying to improve the existing results shown

by the method. We will also extend the application of S-FETI to a larger class of

problems, with a new implementation, base on a sparse storage, that reduces the

memory limitations of this method.

Next we will try to use the ideas presented in the formulation of S-FETI to

develop new FETI algorithms with certain improvements, however since they are

in a basic stage they present several issues that leads to new sources of research.

Finally, we use the same idea that led to the S-FETI formulation but this time

is applied to the FETI-2LM method, in order to develop a new Block version of

this last one.

Before giving more details about FETI and the other FETI-like methods, we

want to recall some of the basic linear algebra tools needed in this thesis to

understand this type of algorithms, we refer to the iterative solvers for linear
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systems which are one of the main elements in the different FETI methods.

Iterative methods

We start by showing the basic properties of the iterative Krylov methods used in

the solution of the FETI problems.

Krylov methods

In this section we are interested in solving the following general problem

Ax = b (1)

With A ∈Mn×n(R) square real matrix, x the unknown, b the right hand side

(rhs) known term, both R
n vectors.

Big part of this work is based on the resolution of a linear system of this type

via an iterative method. First we will consider the more general case where A

is invertible and our system has a unique solution. The most used methods to

solve this kind of problems are the ones based on projections in a particular type

of space, the Krylov Space.

From this we can build the Krylov methods, that consist on building some

adequate subspace and project our solution in this space, all by just using simple

operations such as matrix-vector products, dot products or linear combination

of vectors.

This way the Krylov Space can be defined by

Definition 0.1. Lets consider x0 as an initial solution of 1. A Krylov space, denoted
by Kp is the space generated by the residual g0 := Ax0 − b and its successive p − 1

iterative products
Kp = Span{g0,Ag0,A

2g0, ...,A
p−1g0} (2)

We note that this family of subspaces is strictly increasing and bounded, so

it has a maximal dimension that we will call pmax. Also with this definition we

have the next properties
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Lemma 0.2. If Apg0 ∈ Kp then Ap+qg0 ∈ Kp for every q > 0

Proof. By induction. For q ≥ 0, if we have Ap+qg0 ∈ Kp then Ap+qg0 =
p−1∑
k=0

αkA
kg0

and therfore

Ap+q+1g0 =
p−2∑
k=0

αkA
k+1g0 +αp−1A

pg0

=
p−2∑
k=0

αkA
k+1g0 +αp−1

p−1∑
k=0

βkA
kg0

=
p−1∑
k=0

γkA
kg0

(3)

Lemma 0.3. The Krylov space succession its strictly increasing from 1 to pmax then
it stagnates from p = pmax

Proof. If p is the smallest integer that makes Apg0 dependent of previous vectors,

then the vectors (g0,Ag0,A
2g0, . . . ,A

p−1g0) are linearly independent and Kq has a

dimension of q, for every q ≤ p. In particular Kp has a dimension p.

Furthermore, Apg0 ∈ Kp and, from Lemma 0.2, every vector Ap+qg0 is in Kp,

for every q > 0, which implies that Kp+q =Kp for every q > 0.

We then have: K1 ⊂ · · · ⊂ Kp =Kp+q for every q > 0. And by definition of pmax,

we have that p = pmax

Theorem 0.4. The solution of the linear system Ax = b is in the affine space x0+Kpmax

Proof. From Lemma 0.2 and Lemma 0.3 the vectors (g0,Ag0,A
2g0, . . . ,A

pmax−1g0)

are linearly independent and

Apmaxg0 =
pmax−1∑
k=0

αkA
kg0 (4)

In this equation, the coefficient α0 is non null, from which, multiplying doth

terms by A−1 we obtain
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Apmax−1g0 =
pmax−1∑
k=0

αkA
k−1g0 (5)

which is contradictory with the linear dependency of the vectors.

If we divide both terms in Equation 4 by α0 and passing all terms to one side,

we have

g0 +
pmax−1∑
k=1

αk
α0
Akg0 −

1
α0
Apmaxg0 = 0⇔

Ax0 − b+
pmax−1∑
k=1

αk
α0
Akg0 −

1
α0
Apmaxg0 = 0⇔

A

x0 +
pmax−1∑
k=1

αk
α0
Ak−1g0 −

1
α0
Apmax−1g0

 = b⇔

(6)

In practice to build this spaces all we have to do is to compute the basis

of the space, but we will never use the “natural” base because it degenerates

numerically as it grows. In practice if we use the regular double precision in a

standard machine, after about 16 iteration the new values of the succession Apg0

start to be linearly dependent, and depending on the matrix A some values are

way too small or too big to be represented.

With this in consideration we need to find another way to reconstruct this

space, to do so, we build different basis, for example the one called Base of
Arnoldi which has much better numerical properties in terms of representation

and stability. Basically the basis are constructed applying the modified Gram-
Schmidt orthonormalization procedure to the successive matrix products. The

algorithm defined in 1 illustrates this procedure.

With the construction of the Krylov space p basis, that we call Vp, we can

now attack the problem of finding an approximate solution xp. We know, as

shown previously that the real solution is in x0 +Kpmax but since we are working

in limited arithmetic we search a projected solution in the space x0 +Kp. The
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Algorithm 1 Arnoldi iteration algorithm
1: Initialization
2: g0 = Ax0 − b
3: v1 = g0

‖g0‖
4: loop Construction of the j + 1 vector of the base
5: w = Avj
6: for i = 1 to j do
7: αi = (w,vi)
8: w = w −αivi
9: end for

10: vj+1 = w
‖w‖

11: end loop

solution can be written as

xp = x0 +Vpzp (7)

where zp is a p dimension vector. This approximation allows the writing of

the error and residual vectors as

ep := xp − x = x0 − x+Vpzp = e0 +Vpzp

gp := Axp − b = Aep = Ae0 +AVpzp = g0 +AVpzp
(8)

A Krylov method consist, in one hand, of an algorithm to compute the base

of the Krylov Space and on the other hand an optimal criteria to determine

the approximate solution xp. This is made, a priori, by minimizing the error or

residual using an adapted norm.

Lanczos method

We will now explain how to build the solution in the special case when A is a

symmetric matrix. If we define hij to be the coefficient of orthogonalization of

Avj against vi , and also hj+1,j to be the norm of the w vector we get after the

orthogonalization and Vp the matrix of the first p vectors of the Arnoldi’s base,

then we have that
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V t
pVp = Ip

AVp = Vp+1Hp+1,p

(9)

where

Hp+1,p :=



h11 h12 . . . . . . h1p

h21 h22 . . . . . . h2p

0 h32 h33 . . . h3p
...

. . . . . . . . .
...

...
. . . . . .

...

0 . . . . . . 0 hp+1,p


(10)

and so

Hp :=Hpp = V t
pAVp (11)

For the case of a symmetric matrix the matrix Hp is also symmetric an thus

tridiagonal, so the algorithm for the construction of the Base of Arnoldi is

simplified.

Algorithm 2 Algorithm of Lanczos
1: Initialization
2: g0 = Ax0 − b
3: v1 = g0

‖g0‖
4: loop Construction of the j + 1 vector of the base of Lanczos
5: w = Avj
6: hj,j−1 = hj−1,j
7: w = w − hj−1,jvj−1
8: hjj = (w · vj)
9: w = w − hjjvj

10: hj+1,j = ‖w‖
11: vj+1 = w

‖hj+1,j‖
12: end loop

The algorithm described in 2 shows the construction of the base of Arnoldi
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for symmetric matrices, now called Basis of Lanczos. This algorithm has the

property of only use short recurrences in the computation so his cost is constant

in every iteration.

If the matrix is also positive definite, the Lanczosmethod consist on minimize

the error in the norm defined by A.

E(xp) = ‖xp − x‖2A = (A(xp − x) · (xp − x)) = (gp · ep) (12)

This approximate solution has the next properties

Theorem 0.5. The approximate solution xp of the Lanczos method is the projection
of x in x0 +Kp for the inner product derived from A

Proof. From 12 xp is the element from x0 +Kp which has a distance to x minimal

in the A-norm.

Corollary 0.6. The residual vector gp = Axp − b of the Lanczos method is orthogonal
to Kp

Proof. Direct of the properties of projections in affine spaces.

All it is missing is the practical computation of xp. To do so, of 12 and 8 we

have that

E(xp) = (A(e0 +Vpzp) · (e0 +Vpzp)) = (AVpzp ·Vpzp) + 2(g0 ·Vpzp) + (g0 · e0) (13)

To minimize this we only need to use the part that depends on zp and so the

problem is reduce to the minimization of the functional

Jp(zp) =
1
2

(V t
pAVpzp · zp) + (V t

pg0 · zp)

=
1
2

(Tpzp · zp) + (yp · zp)
(14)
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where Tp = Hp is the matrix of the orthonormalization coefficients. This is

a classical finite dimension minimization problem from were we have the next

results

Lemma 0.7. If A is a symmetric positive definite matrix then J (x) = 1
2(Ax ·x)− (b ·x)

is strictly convex

Proof.

=J (αx+ (1−α)y) =

=
1
2
α2(Ax · x) +α(1−α)(Ax · y) +

1
2

(1−α)2(Ay · y)−α(b · x)− (1−α)(b · y)

= αJ (x) + (1−α)J (y)

+
1
2

[
(α2 −α)(Ax · x) + 2α(1−α)(Ax · y) + ((1−α)2 − (1−α))(Ay · y)

]
= αJ (x) + (1−α)J (y) +

1
2
α(α − 1)[(Ax · x)− 2(Ax · y) + (Ay · y)]

(15)

Since A is positive definite, we have

(Ax · x)− 2(Ax · y) + (Ay · y) = (A(x − y) · (x − y)) > 0 (16)

whenever x , y.

Now, if α ∈]0,1[, then α(1−α) < 0, hence

1
2
α(α − 1)[(Ax · x)− 2(Ax · y) + (Ay · y)] < 0 (17)

Theorem 0.8. The functional J (x) = 1
2(Ax ·x)− (b ·x) admits and absolute minimum

x who also verifies Ax = b

Proof. J is strictly convex and lower bounded , because J (x) → +∞ when

‖x‖ → +∞. It is obviously differentiable with a value of

DJ (x) · y = (Ax · y)− (b · y) = ((Ax − b) · y) (18)
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This functional has an absolute minimum in the unique point where his differ-

ential is zero, which is the point where Ax − b = 0

Corollary 0.9. The minimum of E(xp) defined in 13 is the point xp = x0 +Vpzp, zp
being the solution of the system

Tpzp = −yp (19)

Proof. From previous theorem and lemma all we have to prove is that Tp is

positive definite which comes directly from the fact that the matrix A is also

positive definite and the vectors Vp are linearly independent.

The Lanczos method consist on building Tp and yp then find zp and replace it

in 7 to find the approach solution xp who minimizes the error in the A-norm.

One of the good things of this method is that the vectors of the base are

calculated using a short recurrence, but the main drawback is that for the

computation of xp we need to solve a bigger system every step, so the cost grows

as the number of iteration.

Conjugate gradient

The Lanczos method will be a much better algorithm if it could use a short

recurrence for the calculation of the approach solution xp. This can be done if

the first component of zp are the ones of zp−1 which will give a formula of the

type

xp = xp−1 +αpvp (20)

In order to do so, the base of the Krylov space must be one in which the

projection matrix W t
pAWp is a diagonal one. But we will not be able to compute

the error E(xp) because e0 will be unknown, the only way to test the convergence

of the method is by using the dimensionless residual

‖Axp − b‖
‖b‖

< ε (21)

So we are forced to compute the successive gradients in order to control the

method. Since gp ∈ Kp+1 ∩K⊥p we have that gp = ρvp+1, so rather than using the
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orthonormal base of vectors vp we can use the orthogonal base of the gradients,

even if it goes to zero, because we will stop before have any representation

problem.

Let Gp = (g0, g1, . . . , gp−1) as we just saw, Gp = Vp∆p where ∆p is a diagonal

matrix. The projection matrix is also tridiagonal symmetric positive definite

GtpAGp = ∆tpV
t
pAVp∆p = ∆pTp∆p = T̃p (22)

it admits the factorization T̃p = L̃pD̃pL̃tp and so

GtpAGp = L̃pD̃pL̃
t
p⇔ L̃−1

p G
t
pAGpL̃

−t
p = D̃p (23)

The previous shows that the matrix Wp = GpL̃−tp made of linear combinations

of Gp is a A-orthogonal base of Kp.

Since the projection matrix W t
pAWp is diagonal, this base is ideal to use a

short recurrence in the computation of the solution of the optimization problem

12, as it can be built using the relation

WpL̃
t
p = Gp (24)

Let (w0,w1, . . . ,wp−1) be column vectors ofWp and (γ0,γ1, . . . ) the sub-diagonal

elements of L̃−tp , the equation 24 implies

w0 = g0 and γj−1wj−1 +wj = gj ∀j > 0 (25)

With the different relations between xp, gp and wp we can formulate a new

method without only using short recurrences in the construction of every new

vector. Actually, from the previous equation we have

g0 = Ax0 − b and w0 = g0 (26)

From the properties of the base Wp we have

xp = xp−1 + ρp−1wp−1⇔ gp = gp−1 + ρp−1Awp−1 (27)

We know that gp is orthogonal to Kp and so to wp−1, this allows us to obtain
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ρp−1

(gpẇp−1) = (gp−1 ·wp−1) + ρp−1(Awp−1 ·wp−1) = 0⇔ ρp−1 = −
(gp−1 ·wp−1)

(Awp−1 ·wp−1)
(28)

From the equation 25 we can build the new wp with the previous wp−1 and gp

wp = gp −γp−1wp−1 (29)

The coefficient γp−1 is also computed using the A-orthogonality relation

between wp and wp−1

(wp ·Awp−1) = (gp ·Awp−1)−γp−1(wp−1 ·Awp−1) = 0⇔ γp−1 =
(gp ·Awp−1)

(Awp−1 ·wp−1)
(30)

The method defined this way i called the Conjugategradient method and it

can be resumed in 3.

Algorithm 3 Conjugate gradient method
1: Initialization
2: g0 = Ax0 − b
3: w0 = g0

4: loop Iteration of the CG method

5: ρp−1 = −(gp−1 ·wp−1)/(Awp−1 ·wp−1)

6: xp = xp−1 + ρp−1wp−1

7: gp = gp−1 + ρp−1Awp−1

8: if (gp · gp)/(b · b) < ε2 then
9: End

10: end if
11: γp−1 = (gp ·Awp−1)/(Awp−1 ·wp−1)

12: wp = gp −γp−1wp−1

13: end loop

From a theoretical point of view, we do not need any orthogonalization
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to build the new wp descent direction, but in limited arithmetic, errors are

transmitted from each actualization, so in practice, to apply this method in the

domain decomposition framework, we will need to reconjugate the vectors of

the base, and so the storage of this vectors for a robust method is mandatory [66].

Considering this, the lines 11, 12 from the algorithm 3 are now replaced by the

loop necessary to build

γi =
(gp ·Awi)

(Awi ·Awi)
, i = 0, . . . ,p − 1 (31)

and

wp = gp −
p−1∑
i=0

γiwi (32)

ORTHODIR

In the case if a non symmetric matrix, the Hp matrix is no longer tridiagonal.

We can not expect to have short recurrence to build an orthogonal basis of the

Krylov space Kp. Also, A does not define an inner product and the criteria of

optimality E(xp) may not be used. The logical choice for a stopping criteria is

the computation of the square norm of the residual

R(xp) = (A(xp−x) ·A(xp−x)) = (gp ·gp) = ‖xp−x‖2AtA = (AtA(xp−x) · (xp−x)) (33)

We have similar properties as the symmetric case for the approximate solution

that minimizes R(xp)

Theorem 0.10. The approximate solution xp that minimizes R(xp) in x0 +Kp is the
projection of x for the inner product associated to AtA.

Proof. Direct from equation 33.

Corollary 0.11. The residual vector gp = Axp − b is orthogonal to AKp



14 Introduction

Proof. From the properties of projection in an affine space

(AtA(xp − x) ·wp) = (A(xp − x) ·Awp) = (gp ·Awp) = 0, ∀wp ∈ Kp (34)

We have naturally introduced the scalar product defined by AtA that is

symmetric and positive definite if A is invertible. We could think that would be

appropriate to use the Conjugate Gradient method to the system

AtAx = Atb (35)

This equation is call the “Normal equation′′ and it does not have a very good

conditioning since it can be as much as the square of the original conditioning

of A.

The best is to compute the solution using a short recurrence, so from the

theorem 0.10 we know that the any AtA-orthogonal base of Kp, Wp implies that

W t
pA

tAWp should be diagonal.

If we look at the structure of Hp+1,p the matrix H t
p+1,pHp+1,p is full, in this

case the previous basis have no use. To build a AtA-orthogonal base we only

need to apply the modified Gram-Schmidt procedure to the vectors obtained

by successive multiplication for the matrix, using the AtA-norm. With this

considerations we have the next short recurrences

xp = xp−1 + ρpwp

gp = gp−1 + ρpAwp
(36)

and from the AtA-orthonormal properties we have

(gp ·Awp) = 0⇔ (gp−1 ·Awp) + ρp(Awp ·Awp) = 0⇔ ρp = −(gp−1 ·Awp) (37)

and so the algorithm is described in 4

This algorithm forces to save the vectors of the base, but is numerically stable,
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Algorithm 4 ORTHODIR method
1: Initialization
2: g0 = Ax0 − b
3: w0 = g0
4: loop Iterate p = 1, ..., until convergence

5: ρ = − (gp−1·Awp−1)
(Awp−1·Awp−1)

6: xp = xp−1 + ρwp−1
7: gp = gp−1 + ρAwp−1
8: wp = Awp−1
9: for i = 0 to p − 1 do

10: γ = − (Awp·Awi )
(Awi ·Awi )

11: wp = wp +γwi
12: end for
13: end loop

in any case we will deal with this issue in the next chapters.

A small variation of this method, equivalent to the regular and with the same

properties can be made if we change the line 8 and build the next direction using

the gradient, instead of the previous orthonormalized direction, i.e

wp = gp (38)

Parallelization of Krylov methods

The codes presented previously, represent a sequential algorithm, however they

can be easily transformed into its respective parallel version.

The implementation of the parallel version of this type of methods is base on

a message-passing standard, in practical terms this implies the use of libraries

that use the most common parallel computing architectures, the most common

communication protocol is the so-called Message Passing Interface (MPI) [40].

Using this protocol we only add two changes to the usual sequential algorithm

1. Exchange of data between processes (or subdomain in the domain decom-

position framework) to assemble the matrix-vector products. The details
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of how to compute this products will be given when presenting the first

domain decomposition method used in this work.

2. Global reduction operations to add the contribution of each process when

computing the different scalar products.

Using the MPI libraries, or in general any communication protocol, needed

to do the exchanges in parallel algorithm produces synchronization points in

the code that need to be reduced as much as possible to avoid major impact in

the total computation time.

With the previous basic linear algebra and parallel computing considerations

we are ready to presents the main work of this thesis.



Chapter1
Hybrid FETI method

In the domain decomposition framework, the Finite Element Tearing and Inter-

connecting (FETI) methods have proven to be very effective in the solution of

real engineering applications during the last years. This is one of the reason why

its current development keeps up to this day, always searching for faster, precise

and robust new versions. In this context we have developed a new method

built from the base of two existing FETI methods, namely the FETI-1LM and

FETI-2LM. This new method tries to recover the good properties of each method,

in configurations where the use of one or the other is not so clear. For the devel-

opment of this new method, first we need to understand the basics of both basic

FETI methods from a theoretical point of view, but also the implementation

which will be crucial to show how the new method works.

This chapter is presented first introducing the FETI method in his classic

version, including the preconditioners used to achieve good performance and

some implementation considerations. Then the FETI method with two lagrange

multipliers is explained to finally show the new hybrid method that arises from

mixing the two previous FETI methods. The chapter ends with numerical results

for all the methods.

17
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Ω2

Γ3

Ω1

Figure 1.1 – Two subdomain splitting

1.1 Basic FETI method

1.1.1 Model problem and discretization

Model Problem

To begin, we will show the development of the method for a simple model, with

the most basic domain decomposition configuration. All the ideas will later be

extended to different elliptic problems and configurations. Let us first consider

the Poisson problem with Dirichlet boundary condition −∆u = f in Ω

u = 0 on ∂Ω
(1.1)

where Ω∩Rd , d = 2,3 is a bounded domain. To find his variational form, the

Stokes formula is used in 1.1, so the problem is now:

Find u ∈H1
0 (Ω) such that∫

Ω

∇u · ∇v =
∫
Ω

f v ∀v ∈H1
0 (Ω) (1.2)

The domain is now divided into two smaller subdomains Ω(1) and Ω(2). Let

Γ (3) = ∂Ω(1)∩∂Ω(2) be the interface between both subdomains as in Figure 1.1.

This division allows the formulation of two new smaller problems in each
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subdomain that inherits the Dirichlet condition, or any other condition, in a part

of the boundary. This problems are written as −∆u(s) = f (s) in Ω(s)

u(s) = 0 on ∂Ω(s) \ Γ (3) (1.3)

with s = 1,2. It is clear that the solution of 1.1 will satisfy this equations, but the

contrary is not always true, due to the differences that occur in Γ (3).

We continue by using again the Stokes formula to find the variational form

of 1.3∫
Ω

∇u(s)∇v(s) =
∫
Ω

f (s)v(s) +
∫
Γ (3)

∂u(s)

∂n(s)
v(s), ∀v(s) ∈H1

0∂Ω(s)\Γ (3)(Ω
(s)) (1.4)

For a function v ∈H1
0 (Ω), in particular the solution of the problem, his restriction

in the subdomains Ω(s) will be continuous on the interface Γ (3). On the other

hand two functions u(s) that satisfies the local Laplace equations 1.3 will not

necessarily share the same values on Γ (3). Instead they can be used to build a

more general global solution, but not smooth enough as required.

To do this construction, but at the same time recover the unique solution of

1.1 the two variational equations 1.4 are added, giving the following variational

equality∫
Ω

∇u∇v =
∫
Ω

f v +
∫
Γ (3)

(
∂u(1)

∂n(1)
+
∂u(2)

∂n(2)

)
v(3) ∀v ∈H1

0 (Ω) (1.5)

where v(3) = v(1)|Γ (3) = v(2)|Γ (3) .

This formulation shows that a new condition is necessary to have an equiva-

lence between the solution of the global problem and the solution of the local

ones. For u to be in H1
0 (Ω) this admissibility condition imposes the continuity

on the interface

u(1) = u(2) on Γ (3) (1.6)

and also for the same reason (explicit in equation 1.5) we need a condition on
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the flux
∂u(1)

∂n(1) + ∂u
(2)

∂n(2) = 0 on Γ (3) (1.7)

In general, a non overlapping domain decomposition method consist in intro-

ducing boundary conditions on Γ (3) to complement the local equations 1.3 and

to iteratively find the values of these boundary conditions for which both conti-

nuity 1.6 and equilibrium 1.7 interface conditions are satisfied, meaning that

this solution will be the exact same as the global searched one.

Depending on the condition imposed, two basic methods can be derived, the

Schur complement method and the FETI method, later we will show a third

method, also of the FETI type, that comes from using a different condition on

the interface.

The Schur complement method consists in enforcing consistent Dirichlet

boundary conditions on Γ (3) so continuity condition 1.6 is automatically satisfied

u(1) = u(2) = u3 on Γ (3) (1.8)

The local Dirichlet problem to be solved in parallel for a given u3 on each

subdomain is 
−∆u(s) = f (s) in Ω(s)

u(s) = 0 on ∂Ω(s) \ Γ (3)

u(s) = u3 on Γ (3)

(1.9)

We reduce the computation to find the value of u3 for which the equilibrium

interface condition 1.7 is satisfied. From equations 1.9, the functions ∂u
(1)

∂n(1) and

∂u(2)

∂n(2) are continuous depending on u3. The Schur complement method consists

in solving iteratively a condensed interface problem to find u3 whose residual is

equal to ∂u
(1)

∂n(1) + ∂u
(2)

∂n(2) .

The FETI method is based in enforcing consistent Neumann boundary con-

ditions on Γ (3) so now the equilibrium interface condition 1.7 is automatically

satisfied:
∂u(1)

∂n(1) = −∂u
(2)

∂n(2) = λ on Γ (3) (1.10)

the local Neumann problem to be solved in parallel for a given λ on each
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subdomain is 
−∆u(s) = f (s) in Ω(s)

u(s) = 0 on ∂Ω(s) \ Γ (3)

∂u(s)

∂n(s) = ±λ on Γ (3)

(1.11)

Now we compute the value λ on the interface for which the continuity condition

1.6 is satisfied. From equations 1.11, u(1)|Γ (3) and u(2)|Γ (3) are continuous functions

depending on λ. The FETI method consists in solving iteratively a condensed

interface problem to find λ and whose residual is equal to u(1)|Γ (3) −u(2)|Γ (3) .

A different interpretation of the FETI method can be considered if we see the

unknown λ as the Lagrange multiplier of the continuity condition 1.6. The solu-

tion of the global variational problem 1.2 is the field u of H1
0 (Ω) that minimizes

the energy functional

J(v) =
1
2

∫
Ω

∇v · ∇v −
∫
Ω

f v (1.12)

This minimization problem is equivalent to finding the couple of fields (u(1),u(2))

of H1
0∂Ω(1)\Γ (3)(Ω

(1))×H1
0∂Ω(2)\Γ (3)(Ω

(2)) that minimizes the sum of the local energy

functionals

J1(v(1)) + J2(v(2)) =
1
2

∫
Ω(1)
∇v(1) · ∇v(1) −

∫
Ω(2)

f (2)v(2)

+
1
2

∫
Ω(2)
∇v(2) · ∇v(2) −

∫
Ω(2)

f (2)v(2)
(1.13)

under the continuity constraint u(1)|Γ (3) = u(2)|Γ (3) . This condition can be written

under the weak form∫
Γ (3)

(
u(1) −u(2)

)
µ = 0 ∀µ ∈H− 1

2 (Γ (3)) (1.14)

Now, consider the Lagrangian

L(v(1),v(2),µ) =
1
2

∫
Ω(1)
∇v(1) · ∇v(1) −

∫
Ω(1)

f (1)v(1) +
1
2

∫
Ω(2)
∇v(2) · ∇v(2)

−
∫
Ω(2)

f (2)v(2) −
∫
Γ (3)

(
v(1) − v(2)

)
µ

(1.15)
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Γ
Ω

Ω
1

23

Figure 1.2 – Two subdomain divisions with duplicated nodes.

and we note that the saddle point (u(1),u(2),λ) of L inH1
0∂Ω(1)\Γ (3)(Ω

(1))×H1
0∂Ω(2)\Γ (3)(Ω

(2))×

H−
1
2 (Γ (3)) is precisely the point where the variational equations 1.11 and 1.14

are satisfied.

Discretization

Lets consider a discretization of variational equation 1.2 using a finite element

method. This process works for different elliptic partial differential equations

and different finite element discretizations. So from now on we can consider this

as a more general work, as long as we have this type of discretization that will

lead to a system of the following form

Kx = f (1.16)

The global stiffness matrix of the discrete problem can be arranged to have the

block structure showed in equation 1.17, where subscripts i denote the inner

degrees of freedom of subdomains Ω(1) and Ω(2) and subscript b is used for the

nodes on the interface Γ (3) = ∂Ω(1) ∩Ω(2)
K

(1)
ii 0 K

(1)
ib

0 K
(2)
ii K

(2)
ib

K
(1)
bi K

(2)
bi Kbb



x

(1)
i

x
(2)
i

xb

 =


f

(1)
i

f
(2)
i

fb

 (1.17)

The formulation of each local discretization matrix is made considering that

each subdomain has its own mesh and also that the nodes of the interface Γ (3)

are shared by both meshes as in Figure 1.2. So there are two interface blocks,
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one in each local matrix, noted with superscripts (1) and (2) . The local stiffness

matrices of the two subdomains are

K (1) =

 K (1)
ii K

(1)
ib

K
(1)
bi K

(1)
bb

 K (2) =

 K (2)
ii K

(2)
ib

K
(2)
bi K

(2)
bb

 (1.18)

where K (1)
bb +K (2)

bb = Kbb.

The discretization of variational formulation of equation 1.4 in subdomain

Ω(s) leads to the following systems of equations K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb


 x(s)

i

x
(s)
b

 =

 f
(s)
i

f
(s)
b + h(s)

b

 (1.19)

where f (1)
b + f (2)

b = fb and h(s)
b is the vector representing the discretization of the

flux ∂x(s)

∂n(s) on Γ (3).

From this we have and explicit relation between the inner an the interface

nodes

x
(s)
i = K (s)−1

ii f
(s)
i −K

(s)−1

ii K
(s)
ib x

(s)
b (1.20)

from 1.20 and 1.19 the relation linking the trace and the flux of a vector satisfying

the inner subset is derived

h
(s)
b = K

(s)
bi x

(s)
i +K (s)

bb x
(s)
b − f

(s)
b

= K
(s)
bi (K (s)−1

ii f
(s)
i −K

(s)−1

ii K
(s)
ib x

(s)
b ) +K (s)

bb x
(s)
b − f

(s)
b

= (K (s)
bb −K

(s)
bi K

(s)−1

ii Kib)x
(s)
b − (f (s)

b −K
(s)
bi K

(s)−1

ii f
(s)
i )

= S
(s)
bb x

(s)
b − c

(s)
b

(1.21)

S
(s)
bb = K (s)

bb −K
(s)
bi K

(s)−1

ii K
(s)
ib is the Schur complement matrix. It is the discretization

of the Dirichlet to Neumann mapping that defines the bi-continuous one to one

correspondence between the trace and the flux on the boundary (or interface in

our case) of a field that satisfies the Laplace equation inside the subdomain. It is

symmetric positive definite if the K (s) matrix is symmetric positive definite.
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The discretization of continuity 1.6 and flux 1.7 are

x
(1)
b = x(2)

b (1.22)

h
(1)
b + h(2)

b = 0 (1.23)

The last condition, also called equilibrium, combined with 1.19, gives the fol-

lowing interface equation

K
(1)
bi x

(1)
i +K (1)

bb xb − f
(1)
b +K (2)

bi x
(2)
i +K (2)

bb xb − f
(2)
b = 0⇔

K
(1)
bi x

(1)
i +K (2)

bi x
(2)
i + (K (1)

bb +K (2)
bb )xb = f (1)

b + f (2)
b

(1.24)

Finally, for two vectors defined on subdomains Ω(1) and Ω(2) to be considered as

the restrictions of the solution of the global discrete problem 1.17, they must

meet

• the inner equations in each subdomain K
(1)
ii x

(1)
i +K (1)

ib x
(1)
b = f

(1)
i

K
(2)
ii x

(2)
i +K (2)

ib x
(2)
b = f

(2)
i

(1.25)

• the interface equation

K
(1)
bi x

(1)
i +K (2)

bi x
(2)
i +K (1)

bb x
(1)
b +K (2)

bb x
(2)
b = f (1)

b + f (2)
b (1.26)

• the continuity across the interface Γ (3)

x
(1)
b = x(2)

b (1.27)

If we have the continuity relation 1.27 and use the fact that x(1)
b and x

(2)
b

are both equal to the restriction of the global solution on Γ (3) then the inner

equations 1.25 are the first two rows of 1.17 and the interface equations 1.26 are

the third row. Meaning that the methodology derived only from linear algebra is

valid for any finite element discretization of PDEs.
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The inner equations 1.25 are common solution vectors of local problems for

any kind of boundary conditions on Γ (3). Equations 1.27 and 1.26 are the actual

condensed interface problem since the inner equations 1.25 establish that x(1)
i

and x(2)
i can be derived from x

(1)
b and x(2)

b .

1.1.2 FETI one lagrange multiplier

The previous ideas are now formalized for the extended case where we have

Ns > 2 subdomains and and interface Γ , defined as

Γ =
⋃

1≤s,q≤Ns

(∂Ω(s) ∩∂Ω(q)) (1.28)

In the FETI method the discrete flux, noted λ, is the unknown defined in the

nodes along the interface and the jump of the solutions of the local Neumann

problems are the gradient of the condensed interface problem. The discretization

of the local Neumann problems in some subdomain s, can also be written as

K (s)x(s) = f (s) + t(s)
T
B(s)T λ (1.29)

where K (s) is the local stiffness matrix, f (s) the right-hand side vector, t(s) ∈
M#(∂Ω(s))×#(Ω(s)) are trace operators which extracts boundary degrees of freedom

from subdomain Ω(s) and B(s) ∈M#(Γ )×#(∂Ω(s)) are discrete assembling matrices

which connects pairwise degrees of freedom on the interface. In a general case,

the stiffness matrix K (s) , the local solution vector x(s) and the local right-hand

side vector f (s) are defined as

K (s) =

K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

 (1.30)

x(s) =

x(s)
i

x
(s)
b

 , f (s) =

f (s)
i

f
(s)
b

 (1.31)



26 CHAPTER 1. Hybrid FETI method

Figure 1.3 – Multiple interface node.

The i and b subscripts also denotes the interior and interface nodes of the

subdomain respectively. So trace operator applied to the solution x(s) is such that

x
(s)
b = t(s)x(s) (1.32)

The discrete operator B(s) is a defined as the mapping of a vector in local interface

∂Ω(s) on the complete interface, so applied to the solution on the local interface

x
(s)
b we can write the continuity condition across the total interface, degree of

freedom per degree of freedom∑
s

B(s)t(s)x(s) = 0 (1.33)

the restriction of B(s) on interface Γ ij , noted B(ij), is defined as a signed boolean

operator such that B(ij) and B(ji) have opposite signs, providing the continuity

needed. Any node that it’s in more than two subdomains, Figure 1.3, will

generate the same number of continuity conditions and flux as the number of

interfaces who shares it.

With the definition of B(s) and t(s), the solutions x(s) of 1.29 and 1.33 are the

searched restrictions in every subdomain of the global discrete solution of 1.17.

The vectors x(s) are actually continuous and the definition of B(s) is that t(s)
T
B(s)T λ

is zero for the inner nodes of Ω(s) and in the interface we have B(ij)T λ+B(ji)T λ = 0

thanks to the opposite sign. So, again, the assembly of local discrete Neumann

equations 1.29 gives exactly global discrete equation 1.16.
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The gradient of the condensed interface problem is defined as

g =
∑
s

B(s)t(s)x(s) (1.34)

where x(s) is solution of the local discrete Neumann problem 1.29. Continuity

relation 1.33 defines the condensed interface problem for FETI.

“Floating” subdomains

For most subdomains, we face the common case of finding that ∂Ω(s) ∩ ∂Ω is

void, this means that the Dirichlet condition of the problem is not in Ω(s), so

the local discrete Neumann equations 1.29 are ill posed. If K (s) comes from the

Laplace equation, its kernel are the constant fields in the subdomain, if it comes

from three-dimensional linear elasticity, then the kernel is the subspace of rigid

body motions, of dimension 6 in the case of subdomains simply connected.

The pseudo-inverse K (s)+
is now needed and the Cholesky factorization with

partial pivoting is used in the matrix K (s) to achieve this, and also because it

allows to compute a generator of the kernel R(s) and a factorization of a maximal

full rank sub-block. Given the pseudo-inverse K (s)+
and the kernel generator

R(s), the solution x(s) of the discrete system of equation 1.29 can be written as a

particular solution plus an undefined element of the kernel of K (s)

x(s) = K (s)+
(f (s) + t(s)

T
B(s)T λ) +R(s)α(s) (1.35)

From equation 1.29 we see that the right-hand side belongs to the range space of

matrix K (s) , and so is orthogonal to the kernel. This orthogonality constraint

can be written

R(s)T
(
f (s) + t(s)

T
B(s)T λ

)
= 0 (1.36)

This last equation is the admissibility condition for the forces of a floating

subdomain. Its interpretation is that fields belonging to the kernel must have

zero energy.
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Condensed interface problem

Replacing x(s) from equation 1.35 in the continuity condition 1.33 we have∑
s

B(s)t(s)K (s)+
t(s)

T
B(s)T λ+

∑
s

B(s)t(s)R(s)α(s) = −
∑
s

B(s)t(s)K (s)+
f (s) (1.37)

To build the condensed interface problem this previous equation is used, and

the equation 1.36, leading to the problem to be satisfied by λ and the vector of

coefficients of the kernel components α F G

GT 0

λα
 =

dc
 (1.38)

Where:

• F =
∑
s
B(s)t(s)K (s)+

t(s)
T
B(s)T =

∑
s
B(s)S

(s)+

bb B
(s)T dual Schur complement matrix

• Gα =
∑
s
B(s)t(s)R(s)α(s), jump of zero energy fields defined by α(s) in Ω(s)

• GTλ =
(
. . . ,B(s)t(s)R(s), . . .

)T
λ

• d = −
∑
s
B(s)t(s)K (s)+

f (s)

• c =
(
. . . ,−b(s)TR(s), . . .

)T
The condensed interface system 1.38 is an hybrid system. It’s solution λ satisfies

the following orthogonality condition

µT Fλ = µT d,∀µ/GT µ = 0 (1.39)

Now consider λ0, for example

λ0 = AG(GTAG)−1c (1.40)

where A is a matrix symmetric positive definite that is usually taken as being

the identity, but it can also be defined as the preconditioner, later to be defined,

or some scaling matrix. For details, see [62].
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Then this λ0 satisfies the admissibility constraint of equation 1.36 and

GT (λ−λ0) = 0. So, if P is any projector in the kernel of GT , then from equation

1.39 we have that λ is the solution of the following projected problem

P T FP (λ−λ0) = P T (d −Fλ0) (1.41)

The FETI method solves iteratively via a conjugate gradient algorithm the

previous projected condensed interface problem 1.41, using the orthogonal

projector in the kernel of GT .

Interpretation of projector P

The orthogonal projection in the kernel of GT can be written algebraically

P = I −AG
(
GTAG

)−1
GT (1.42)

To compute the projection of a given vector g we mainly solve the problem(
GTAG

)
α = −GT g (1.43)

which is a global coarse grid problem whose unknowns are the coefficients of

zero energy components of the solutions in the floating subdomains.

Now for for a given approximation λp of the flux on the interface, the residual

of the condensed interface problem is

gp =
∑
s

B(s)S
(s)+

bb B
(s)T λp +

∑
s

B(s)t(s)K (s)+
f (s) =

∑
s

B(s)t(s)x(s)p+
(1.44)

where up+
i is the solution of the local Neumann problems, computed using the

pseudo-inverse matrices

x(s)p+
= K (s)+ (

f (s) + t(s)
T
B(s)T λp

)
(1.45)

so the gradient is equal to the jump of this particular solutions. From equations
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1.42 and 1.43, the projected gradient P gp is

P gp = gp +AGαp =
∑
s

B(s)t(s)x(s)p+
+
∑
s

B(s)t(s)R(s)α(s)p (1.46)

So the projected gradient P gp is equal to the jump of the local particular solutions

of Neumann problems x(s)p+
plus the term of zero energy fields with coefficients

α(s)p

x(s)p = x(s)p+
+R(s)α(s)p (1.47)

The definition of the constraint 1.36 associated with the orthogonal projector

1.43 entails that the zero energy components of the jump of the local solution

fields x(s)p are minimal in the sense that this jump is orthogonal to all the traces

of zero energy fields

GT P gp = 0⇔
(
B(s)t(s)R(s)

)T
P gp = 0 ∀s (1.48)

Computing the projected gradient P gp consists in fact in computing the coeffi-

cients αp of optimal local zero energy fields. For the linear elasticity problem, the

zero energy fields are the rigid body motions. The underlying process is a kind

of coarse grid smoothing of approximate solution that ensures a convergence

rate for the overall FETI process asymptotically independent upon the number

of subdomains. Hence, the FETI method with floating subdomains is a kind of

two-level solver that is numerically scalable.

1.1.3 Local preconditioner

The coarse grid smoothing performed by the zero energy fields projector P gives

a convergence rate independent upon the number of subdomains, but this is not

enough to have a convergence rate that is also independent upon the mesh size.

It’s mandatory the use of a preconditioner, which for the FETI method is one of

the “Dirichlet” type.

Consider t(s) the trace or restriction operator on the local interface of subdo-

main Ω(s) . Then the contribution of subdomain s to the condensed interface
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operator, defined in1.37, is

B(s)t(s)K (s)+
t(s)

T
B(s)T (1.49)

and it just depends on the restriction in the interface Γ (s) = ∂Ω(s) of the pseudo-

inverse of K (s), meaning

t(s)K (s)+
t(s)

T
= (K (s)

bb −K
(s)
bi K

(s)−1

ii K
(s)
ib )+ =: S(s)

bb

+
(1.50)

As this matrix is the pseudo-inverse of the Schur complement matrix on the

interface Γ (s), a preconditioner based on local contributions for FETI is

D−1 =
∑
s

B(s)S
(s)
bbB

(s)T (1.51)

where again S(s)
bb is the Schur complement. This preconditioner tries to approxi-

mate the global inverse of local sums by the sum of the local inverse, meaning∑
s

B(s)S
(s)+

bb B
(s)T

+

'
∑
s

B(s)S
(s)
bbB

(s)T (1.52)

The computation of this preconditioner applied to an interface vector w is done

by solving the following local problem with Dirichlet boundary conditions on

the interface Γ (s) defined by the assembled local vector t(s)
T
B(s)TwK (s)

ii K
(s)
ib

0 I


w̃(s)

i

w̃
(s)
b

 = t(s)
T
B(s)Tw =

 0

w
(s)
b

 (1.53)

whose solution is

w̃
(s)
i = −K (s)−1

ii K
(s)
ib w

(s)
b (1.54)

and multiplying by the stiffness matrix to obtainK (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb


w̃(s)

i

w̃
(s)
b

 =

 0

(K (s)
bb −K

(s)
bi K

(s)−1

ii K
(s)
ib )w̃(s)

b

 =

 0

S
(s)
bbw

(s)
b

 (1.55)
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With this preconditioner it has been proved [53],[29], that the FETI method is

asymptotically independent upon the mesh size. With a condition number for

the projected condensed operator bounded by

C(1 + log(
H
h

))2 (1.56)

where h is the mesh size and H is the characteristic subdomain size. Mean-

ing, that when decreasing H the number of subdomains increases and when

decreasing h the finite element mesh is refined (more elements).

So, with both local and global preconditioners, the number of iterations does

not depend anymore on both the number of subdomain nor the mesh size. A

second preconditioner, not mathematically optimal can be introduced, as an

alternative to the cost of implementation of the Dirichlet one, the so called

“Lumped” preconditioner that can de defined as

L−1 =
∑
s

B(s)K
(s)
bbB

(s)T (1.57)

where K (s)
bb is the finite element discretization matrix on the interface nodes.

This preconditioner works as an approximation of the local Schur complements,

with a much more economical implementation because it does not require any

additional storage and involves only matrix-vector products of sizes equal to the

subdomain interfaces.

Both preconditioner were generalized to treat heterogeneous problems [61]

by just redefining the Boolean operator B(s) to a more general one

B̃(s) := β(s)B(s) (1.58)

such that
∑
s
B̃(s)B̃(s)T = I , with β(s) a diagonal scaling matrix, usually based on the

diagonal coefficients of the local stiffness matrix on the interface, the so called

super-lumped scaling. This scaling is a mechanical consistent combination of the

interface reaction forces from the Dirichlet problem in each subdomain. With
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this new scaled assembling operators, the preconditioners are written as

D−1 =
∑
s

B̃(s)S
(s)
bb B̃

(s)T (1.59)

L−1 =
∑
s

B̃(s)K
(s)
bb B̃

(s)T (1.60)

The behaviour of both preconditioner can be seen [29], [61] and will be evocated

in later sections.

1.1.4 FETI Algorithms

Using the definitions in 1.38 and the projector in 1.42, the CG algorithm to solve

the FETI problem 1.41 can be summarized in Algorithm 5.

Algorithm 5 FETI Preconditioned conjugate projected gradient with full recon-
jugation

1: Initialization
2: λ0 = AG[GTAG]−1c
3: g0 = (Fλ0 − d)
4: w0 = PD−1P T g0
5: loop p = 0,1,2, ... until convergence

6: ρp = −
(wp, gp)

(wp,Fwp)
7: λp+1 = λp + ρpwp
8: gp+1 = gp + ρpFwp
9: wp+1 = PD−1P T gp+1

10: for i = 0 to p do

11: γi = −
(wi ,Fwp+1)

(wi ,Fwi)
12: wp+1 = wp+1 +γiwi
13: Fwp+1 = Fwp+1 +γiFwi
14: end for
15: end loop

As we can see, a full reconjugation, instead of the classical CG update without

any, is also used (see the line 10 of the algorithm), because in limited arithmetic

the orthogonal properties of the CG method are lost, specially in the context
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of the FETI methods, where the multiplication by the operator is not totally

accurate, making this part also crucial for good convergence rate [66].

Algorithm 6 FETI-1LM unsymmetric
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = PD−1P (Fλ0 − d)
4: w0 = g0
5: Fw0 = PD−1P Fw0
6: loop ORTHODIR Iteration from p = 0,1, . . . until convergence

7: ρp = −
(Fwp)T gp

(Fwp)T (Fwp)
8: λp+1 = λp + ρpwp
9: gp+1 = gp + ρpFwp

10: loop Construction of the p+ 1 vector of the base FT F-orthonormal
11: wp+1 = gp+1

12: Fwp+1 = PD−1P Fwp+1
13: for i = 0 to p do

14: γi = −
(Fwi)

T (Fwp+1)
(Fwi)

T (Fwi)
15: wp+1 = wp+1 +γiwi
16: Fwp+1 = Fwp+1 +γiFwi
17: end for
18: end loop
19: end loop

Unsymmetric FETI algorithm

The previous method and algorithm only works when the matrix F is symmetric

positive definite, for a more general case when our FETI operator F is no longer

symmetric or non positive definite, as we will see in later sections, the CG

algorithm is no longer appropriate, we use instead the ORTHODIR method with

left preconditioner for unsymmetric matrices, mainly for its implementation,

simplicity and good properties, as is equivalent to the GMRES algorithm [50,

Chapter 12]. One of the main theoretical differences between them two is the

storage of previous computed directions which, in any case, it is done to perform
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a full reorthogonalization that allows the loss of orthogonality of the search

directions and keeps a good convergence ratio.

The full description is done in Algorithm 6.

1.2 FETI with two lagrange multipliers

1.2.1 FETI-2LM

We now present the second FETI method that is used as a base to build our

method. Originally introduced in [35] as a solver for acoustic problems then

extended in [67] and [68] as a robust solver for more general problems. The basic

idea of this method is to impose Robin boundary conditions in the interface to

“glue” the local solutions in order for them to be the restrictions of the global

solution. To have a method useful for different approximations of elliptic PDE,

it will as in FETI, be derived from linear algebra.

To understand how this method works we start with a simple partition of

the total domain Ω into 2 subdomains, as in Figure 1.1. From this splitting and

some linear elliptic PDE problem defined in global domain Ω we use any finite

elements discretization coming from this equations. Again, we use subscript i

for internal nodes and b for the interface ones, the interface defined as Γ (3) =

∂Ω(1) ∩Ω(2). Lets consider the contribution of each subdomain Ω(s), s = 1,2 to

the matrix and right-hand side the finite element discretization

K (s) =

 K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

 , f (s) =

 f (s)
i

f
(s)
b

 (1.61)

where K (s)
bb represents the interaction matrices between the nodes on the inter-

face and those from the interior of Ω(s) independent of each other, the same

happens for f (s)
b . The global block equation system comes from assembling both
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contributions giving
K

(1)
ii 0 K

(1)
ib

0 K
(2)
ii K

(2)
ib

K
(1)
bi K

(2)
bi Kbb



x

(1)
i

x
(2)
i

xb

 =


f

(1)
i

f
(2)
i

fb

 (1.62)

with Kbb = K (1)
bb +K (2)

bb and fb = f (1)
b + f (2)

b . Taking the second line to find x(2)
i and

replacing it in the first and third lines, the system that remains can be written in

the following way K (1)
ii K

(1)
ib

K
(1)
bi K

(1)
bb + (K (2)

bb −K
(2)
bi K

(2)
ii

−1
K

(2)
ib )


 x(1)

i

xb

 =

 f
(1)
i

f
(1)
b + (f (2)

b −K
(2)
bi K

(2)
ii

−1
f

(2)
i )


(1.63)

The same treatment can be done, but eliminating the unknowns of subdomain 1.

And so, for both subdomains we have K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb + S(q)

bb


 x(s)

i

xb

 =

 f
(s)
i

f
(s)
b + c(q)

b

 (1.64)

with S(q)
bb = K (q)

bb −K
(q)
bi K

(q)
ii

−1
K

(q)
ib the Schur complement and c(q)

b := f (q)
b −K

(q)
bi K

(q)
ii

−1
f

(q)
i

the condensed right hand side in the subdomain q, opposite to s.

Previous equation means that the restriction of the global solution is, in

each subdomain, a local solution of a problem with generalized Robin boundary

condition in the interface. The operator of the generalized Robin condition is the

Dirichlet to Neumann operator of the rest of the domain. In fact, the Dirichlet

to Neumann operator describes exactly the behaviour of the boundary of the

outer domain. Enforcing a local generalized Robin boundary condition using

the Dirichlet to Neumann operator of the rest of the domain makes the interface

to behave locally exactly as the rest of the domain forces it to do. Then, the

local problem formulation takes exactly into account the coupling between the

subdomain and the rest of the domain.

Local generalized Robin boundary conditions enforced on both sides of the

same interfaced should be set up independently. This leads to introduce two
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independent interface variables, one for each side. K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb +A(s)

b


 x(s)

i

x
(s)
b

 =

 f
(s)
i

f
(s)
b +λ(s)

 (1.65)

from this local equations, inner equations can be eliminated to get the equivalent

local condensed problem

(K (s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib +A(s)

b ) + x(s)
b = f (s)

b −K
(s)
bi K

(s)
ii

−1
f

(s)
i +λ(s)

(S(s)
bb +A(s)

b )x(s)
b = c(s)

b +λ(s)
(1.66)

And the explicit relation between the trace of the solution and the Lagrange

multiplier is

x
(s)
b = (S(s)

bb +A(s)
b )
−1
λ(s) + (S(s)

bb +A(s)
b )
−1
c

(s)
b (1.67)

Since the boundary conditions on both sides are not consistent, the two interface

conditions 1.27 and 1.26 must be enforced to make the solutions of the local

problems 1.65 to be the restrictions of the solution of the global problem 1.17.

Thanks to the second line of local equation 1.65, the interface equilibrium

condition gives

A
(1)
b x

(1)
b +A(2)

b x
(2)
b = λ(1) +λ(2) (1.68)

The residual of the condensed interface problem is then

x
(1)
b − x

(2)
b = 0

λ(1) +λ(2) −A(1)
b x

(1)
b −A

(2)
b x

(2)
b = 0

(1.69)

where x(s)
b is a function of λ(s) according to equation (1.67). This two equations,

combined with the local problem 1.65 are equivalent to the global block problem

1.62. In this form, equations 1.69 have a mixed form, to avoid this, a new

combination of both equations is done, leading to a new condensed interface
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problem

λ(1) +λ(2) − (A(1)
b +A(2)

b )x(2)
b = 0

λ(2) +λ(1) − (A(2)
b +A(1)

b )x(1)
b = 0

(1.70)

This two forms are equivalent if the sum of the augmentation matrices A(1)
b +A(2)

b

is non singular. This is of course satisfied when the matrix A(s)
b is the Schur

complement of the rest of the domain and easily satisfied when A
(s)
b is any

consistent approximation of the Dirichlet to Neumann operator of the rest of

the domain.

Finally, computing x(s)
b from 1.67 and using it in (1.70), the condensed inter-

face problem used to compute λ(1) and λ(2), can be explicitly defined I I − (A(1)
b +A(2)

b )(S(2)
bb +A(2)

b )−1

I − (A(2)
b +A(1)

b )(S(1)
bb +A(1)

b )−1 I


 λ(1)

λ(2)


=

 (A(1)
b +A(2)

b )(S(2)
bb +A(2)

b )−1c
(2)
b

(A(2)
b +A(1)

b )(S(1)
bb +A(1)

b )−1c
(1)
b


(1.71)

This is method is called FETI-2LM, like 2-Lagrange multiplier FETI method.

1.2.2 Arbitrary mesh partition

Lets show the extension of the previous method to the case of an arbitrary mesh

with a total number of subdomains Ns > 2. The idea is to take the 2 subdo-

main case and apply it to the different interfaces created between neighbours

subdomains.

To define this we start by dividing the total interface boundary Γ into interface

edges Γ j considering that an interface edge is a collection of connecting interface

nodes. The total interface can be written as

Γ =
⋃

1≤s,q≤Ns

(∂Ω(s) ∩∂Ω(q)) (1.72)
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Figure 1.4 – Γ j division example and crosspoint detail.

and we can define more precisely Γ j as

Γ j := Γ (sq) = ∂Ω(s) ∩∂Ω(q), ∀s,q : ∂Ω(s) ∩∂Ω(q) , ∅ (1.73)

The crosspoint are nodes where more than two subdomains are connected, see

Figure 1.4 for an example of 4 subdomains and one crosspoint. We can see

here, that two edges were created in the crosspoint, as diagonal subdomains

are neighbours. For each interface edge Γ j and for each subdomain Ω(s) that

intersects it, lets define a boolean matrix B(s)
Γ j
∈Mdim(Γ j )×dim(Ω(s))(R) by

B
(s)
Γ j
v(s) = v(s)

b |Γ j (1.74)

where the vector v(s) defined in all the nodes of subdomain s can be written by

separating the nodes of the complete local interface from the interior ones as

v(s) =

v(s)
i

v
(s)
b

.
Remark: This definition of interface edges can produce redundancies in the

formulation of the problem. In practice this redundancies do not produce any

negative impact in the FETI methods, on the contrary, for some cases such as the

preconditioning in FETI-1LM they play a vital role, as we will see later in the

text.

With previous definitions we can rewrite the local problem 1.65 and the
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continuity conditions 1.69 for the general caseK (s) +
∑

Γ j⊆Ω(s)

B
(s)T

Γ j
A

(s)
Γ j
B

(s)
Γ j

x(s) = f (s) −
∑

Γ l⊆Ω(s)

B
(s)T

Γ l
λ

(s)
Γ l
, s = 1, . . . ,Ns

B
(s)
Γ j
x(s) − xb|Γ j = 0 ∀Γ j , Ω(s) ⊇ Γ j∑

Ω(q)⊇Γ j

(
λ

(q)
Γ j
−A(q)

Γ j
xb|Γ j

)
= 0 ∀Γ j

(1.75)

where, A(s)
Γ j

is the augmentation matrix in subdomain Ω(s) for the interface Γ j ,

the same way λ(s)
Γ j

is the lagrange multipliers in the interface edge Γ j on the side

of the subdomain s and the vector xb|Γ j is the restriction of the global unknown

x to Γ j . Lets define also, for every Ω(s) the total augmentation matrix

A(s) :=
∑

Γ j⊆Ω(s)

B
(s)T

Γ j
A

(s)
Γ j
B

(s)
Γ j

(1.76)

Finally we can do the condensation of previous equations to obtain the interface

problem

∑
Ω(q)⊇Γ j

λ(q)
Γ j
−A(q)

Γ j
B

(s)
Γ j

(
K (s) +A(s)

)−1 ∑
Γ l⊆Ω(s)

B
(s)T

Γ l
λ

(s)
Γ l


= −

∑
Ω(q)⊇Γ j

A
(q)
Γ j
B

(s)
Γ j

(
K (s) +A(s)

)−1
f (s), ∀Γ j ,∀Ω(s) ⊇ Γ j

(1.77)

This problem can also be written as Fλ = d where F is, in general, a non sym-

metric matrix, defined in the whole interface, so again, the ORTHODIR method

with full reorthogonalization is used to solve the problem. One of the differ-

ences with FETI-1LM is that there are no efficient local preconditioners for this

method, so for the cases were convergence is expected in both methods, the

2LM may be slower. On the contrary, there are cases (e.g. anisotropic materials,

heterogeneities in the interface, etc.) when bad numerical features located across

the interface will not allow the convergence of FETI-1LM, but the use of two

independent lagrange multipliers grant a good handle of this problems and
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ΩS-1

Γb-1

ΩS ΩS+1

Γb

Figure 1.5 – One way splitting.

convergence is achieved, making the FETI-2LM a more robust method.

1.2.3 Optimal Interface Boundary Conditions

As seen in the definition of the FETI-2LM method, a big part of it, comes from

the definition of the augmentation matrix A(s). Different work as been done to

achieve the best numerical choice, next we will show some of them.

From a theoretical point of view, in the case of 2 subdomain the optimal

augmentation matrices are defined as

A
(1)
b := S(2)

bb

A
(2)
b := S(1)

bb

(1.78)

Theorem 1.1. In a case of a two-domain splitting, the simple (Jacobi) iterative
algorithm for 2-Lagrange multiplier with augmented term equal to the complete outer
Schur complement defined as in Equation 1.78 converges in one iteration at most.

Proof. From the definition of A(s)
b := S(q)

bb , s = 1,2, q = 1,2, s , q, the matrix that

defines the method 1.71 is equal to the identity.

In a more general case of a one way division in N subdomains with no

crosspoints, the optimal augmentation can be proved to be the Schur complement

of the rest of the domain. Consider a one-way splitting as in Figure 1.5 and

denote the nodes in the interface with the subscript b − 1 for the left interface

and b for the right. Then the local contributions can be written as
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K (s) =


K

(s)
ii K

(s)
ib−1 K

(s)
ib

K
(s)
b−1i K

(s)
b−1b−1 0

K
(s)
bi 0 K

(s)
bb

 , f (s) =


f

(s)
i

f
(s)
b−1

f
(s)
b

 (1.79)

If we elimiinate the inner nodes, the contributions to the condensed matrix

and right hand side of subdomain Ω(s) is

S(s)
b−1b−1 S

(s)
b−1b

S
(s)
bb−1 S

(s)
bb

 =

K (s)
b−1b−1 −K

(s)
b−1iK

(s)
ii

−1
K

(s)
ib−1 −K (s)

b−1iK
(s)
ii

−1
K

(s)
ib

−K (s)
bi K

(s)
ii

−1
K

(s)
ib−1 K

(s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib

 (1.80)

c(s)
b−1

c
(s)
b

 =

f (s)
b−1 −K

(s)
b−1iK

(s)
ii

−1
f

(s)
i

f
(s)
b −K

(s)
bi K

(s)
ii

−1
f

(s)
i

 (1.81)

After assembling the local contributions, the global condensed problem is a

block tridiagonal system


. . . . . . 0 0

S
(s−1)
b−1b−2 S

(s−1)
b−1b−1 + S(s)

b−1b−1 S
(s)
b−1b 0

0 S
(s)
bb−1 S

(s)
bb + S(s+1)

bb S
(s+1)
bb+1

0 0 . . . . . .

 ,


. . .

c
(s−1)
b−1 + c(s)

b−1

c
(s)
b + c(s+1)

b

. . .

 (1.82)

If this system is factorized by successive condensations from both sides up to

the subdomain Ω(s), the following condensed problem is obtained in subdomain

s

S(−)
b−1b−1 + S(s)

b−1b−1 S
(s)
b−1b

S
(s)
bb−1 S

(s)
bb + S(+)

bb


x(s)
b−1

x
(s)
b

 =

c(−)
b−1 + c(s)

b−1

c
(s)
b + c(+)

b

 (1.83)

where the terms with (+) and (−) superscript are recursively denoted by
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S
(−)
b−1b−1 = S

(s)
b−1b−1 − S

(s)
b−1b

[
S

(s)
bb + S(+)

bb

]−1
S

(s)
bb−1

S
(+)
bb = S

(s)
bb − S

(s)
bb−1

[
S

(−)
b−1b−1 + S(s)

b−1b−1

]−1
S

(s)
b−1b

c
(−)
b−1 = c

(s)
b − S

(s)
bb−1

[
S

(−)
b−1b−1 + S(s)

b−1b−1

]−1 [
c

(−)
b−1 + c(s)

b−1

]
c

(+)
b = c

(s)
b−1 − S

(s)
b−1b

[
S

(s)
bb + S(+)

bb

]−1 [
c

(s)
b + c(+)

b

]
(1.84)

Previous system suggest that the optimal term to add to the local matrix problem

K (s) is S(−) on the left interface nodes and S(+) on the right ones, since Ω(s) is the

only subdomain with right hand side non null, then c(−)
b−1 = 0 and c(+)

b = 0 and the

system is the exact condensation of local augmented problem
K

(s)
ii K

(s)
ib−1 K

(s)
ib

K
(s)
b−1i K

(s)
b−1b−1 + S(−)

b−1b−1 0

K
(s)
bi 0 K

(s)
bb + S(+)

bb



x

(s)
i

x
(s)
b−1

x
(s)
b

 =


f

(s)
i

f
(s)
b−1

f
(s)
b

 (1.85)

In this case, we have the following theorem

Theorem 1.2. In a case of a one way splitting, the Jacobi iterative algorithm for the
two-Lagrange multiplier FETI method with augmented term equal to the complete
outer Schur complement (as in Equation 1.85) converges in a number of iteration
equal to the number of subdomains minus one.

Proof. See Roux et al. [67].

With this theorem we know that in every subdomain the optimal augmenta-

tion term, in a one way split, correspond to the Schur complement of the outer

domain, which in practice is impossible to compute. Furthermore this matrix is

a full matrix, even if it was available for free, using it in the generalized Robin

boundary condition would make the local problem too expensive to solve so it is

mandatory to find sparse approximations.

In this context, several approaches had been done [68], from which we can

name the following:
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Schur neighbour: In a physical context, the complete outer Schur complement

matrix represent the interactions of all the degree of freedom of the subdomains,

condensed on the interfaces. This condensation only with the neighboring sub-

domains, leads to approximate the complete outer Schur complement with the

neighbour Schur complement. In this case the cost of computation and the

exchange of data are reduced to the neighboring subdomains only. Even though

this is a good theoretical approximation, in practice it still has a very expensive

cost. From this first approach defines the next two approximations, that try to

mimic the behavior of the neighbour Schur complement, but with an sparse and

not expensive approximation of it, that gives good convergence for the FETI-2LM

method.

Lumped approximation: It has been shown in [67] that an approximation of

the neighbor Schur complement matrix K (s)
bb −K

(s)
bi K

(s)
ii

−1
K

(s)
ib with its first term

K
(s)
bb gives good results. This way to approximate, is very easy to implement since

this matrix is computed by the neighboring subdomain during the assembly

procedure and the integration of the contribution of the interface nodes. Only

one exchange with the neighboring subdomain is required for this regularization

procedure, the results are however not as good as we would hope, so a third and

better approximation will be finally used.

Sparse approximation based on patches along the interface: This sparse approx-

imation for the neighboring Schur complement, leads to better results than

the lumped approximation, as shown in [67] and is the only one used later in

the numerical results section. The goal is emulate the spectral density of the

neighbour Schur complement matrix as close as possible.

A dense, but cheaper approximation can be made if the condensation process

is done only considering a neighbouring area of the interface, that is, the Schur

complement is computed by

S̃(s) = K (s)
bb −K

(s)
bj K

(s)−1

jj K
(s)
jb , s = 1,2,∀j ∈ Vd (1.86)

where the nodes j are no longer all the interior nodes, but instead they belong to
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the set

Vd = { indexes of interior nodes, such that the minimum connectivity

distance between each of these nodes and the nodes belonging to the

interface is lower than d,d ∈N}.

Even though this procedure reduces the computational cost of the Schur comple-

ment, it generates a dense augmentation matrix, which adds an extra cost to the

forward-backward substitution in the method. However its from this idea that

the sparse approximation is build.

We start again with the 2 subdomain case, as the general case is direct.

The idea is to perform the condensation only in a small part of the interface,

called patch [68]. Lets define the following subsets of indexes for the nodes of

Ω(s), s = 1,2:

VΩ(s) = { indexes of nodes inside the subdomain Ω(s)}

VΓ = { indexes of nodes inside the interface Γ }

V
j
p = { indexes of the nodes inVΓ such that the minimum connectivity

distance between each of these nodes and the node labelled j

is lower or equal than p,p ∈N}

V
j
p,d = { indexes of the nodes in VΩ(s) such that the minimum connectivity

distance between each of these nodes and the nodes in V j
p

is lower or equal than d,d ∈N}
(1.87)

In other words, V j
p is a patch of radius p around some node j, and V j

p,d is the

neighbouring area of depth d of this patch.

This approximation consists on defining an sparse augmentation matrix, in

order to avoid the increase on the bandwidth of the local problem matrix. This

augmentation matrix is build by local condensation along the interface and

extraction of some coefficients. The algorithm to compute the augmentation

matrix A(q)
b , q = 1,2 is described in 7.
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Algorithm 7 Sparse approximation of neighbour Schur complement
1: Initialization of p and d.

2: Construction of the sparse structure of the interface matrix A
(q)
b ∈

R
dimVΓ ×dimVΓ .

3: Construction of the sparse structure of the subdomain matrix K (s) ∈
R
dimV

Ω(s)×dimVΩ(s) .

4: Assembly of the matrix K (s).

5: for j in VΓ do
6: Extraction of the coefficients K (s)

mn, (m,n) ∈ V j
p,d ×V

j
p,d , and construction of

the sparse matrix K̃ (s) ∈RdimV
j
p,d×dimV

j
p,d with these coefficients.

7: Computation of the dense matrix S̃(s) by condensation of the matrix K̃ (s)

on the patch V j
p .

8: Extraction of the coefficients of the line associated with the node j from

the matrix S̃(s) and insertion inside the matrix A(q)
b at the line associated with

the node j.

9: end for
10: Construction of the symmetric matrix A(q)

b = 1
2

(
A

(q)T

b +A(q)
b

)
.

The augmentation matrix build up to the last line of the algorithm is non

symmetric, so we symmetrize the matrix to avoid this drawback.

The same algorithm is used in any other subdomain in the general case,

considering one neighbor at the time to build one augmentation matrix A(s)
Γ j

for

every neighbour that will be added to the corresponding local matrix K (s). As an

example the regular mesh with Q1-finite elements is presented in Figure 1.6.

This numbering leads to the definition, for the node 13, with p = 1 and d = 1,2,

of the subsets of indexes

V 13
1 = {7,13,19}

V 13
1,1 = {1,2,8,14,20,26,25}

V 13
1,2 = {1,2,8,14,20,26,25,3,9,15,21,27,33,32,31}

(1.88)

These subsets correspond to the overlapping layers represented Figure 1.7.
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   1                2                 3                  4                 5                 6

   7                 8                 9                10                11              12

   13               14               15               16               17               18  

   19               20               21               22              23               24  

   25               26               27               28               29               30  

   31               32               33               34               35               36  

   37               38               39               40               41               42  

   43               44               45               46               47               48  

Figure 1.6 – Nodes numbering in subdomain Ω(s).

With the previous computation of the augmentation matrix, the final algorithm

is the one described theoretically in previous section Algorithm 6, but without

any projection nor preconditioning, since the local problems are all well posed.

The full orthogonalization process is kept as it is needed to avoid the loss of

orthogonality produced when multiplying by the FETI operator.

In practice, even if the algorithms are similar between this method and the

non symmetric version of FETI-1LM, we have to point out that most of the

implementation differences are in the construction of local problems, since

we need to add the computed A(s) matrix. The other big difference is in the

computation by this new operator, this is done by changing the assembly of the

residuals according to the definition in Equation 1.77.
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Figure 1.7 – Interface patch of size p = 1 (red) with one and two layers d = 1,2
(blue).

1.3 New FETI as an hybrid between one and two la-

grange methods

1.3.1 Development

Now we are ready to present a new method that arises "directly" if we think on

the properties of each previous method and the fact that both share similarities

in their implementations. The main idea is to mix the good convergence and

speed of the FETI-1LM method with the robustness of the FETI-2LM for the

more complex scenarios that usually we have to face in real life applications.

To show this we can see in Figure 1.8 a contact problem coming from the

basic scheme model of a rolling bearing, this kind of problems can be easily

extended to other contact schemes were we want to compute the interactions

between objects of different materials, that can be as different as steel and rubber.

The heterogeneous problem with contact boundary conditions imposed with the

penalty method is a type of problem that can make the discretization matrix of

the model and consequently the FETI operator, very ill conditioned.

In this configuration a natural interface will be the one that divides the two

materials, if this is the case, then the FETI-1LM method with the extended

preconditioner will be appropriate to handle the heterogenities. However, this is

not always the case when you do an automatic partitioning of the global mesh,
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P

Figure 1.8 – A contact problem.

or if, for example, we use different discretizations that leads to different types of

meshing, then we will have the case of a non conforming mesh. Other cases were

anisotropic materials needs to be modeled, will also give bad numerical features

on the interface. For those problems the FETI-1LM will not assure the usual fast

convergence. The FETI-2LM method is in general a more robust method, due to

the formulation of two independent lagrange multipliers, that can surpass this

numerical issues.

If we think now in the interfaces that are completely contained in one of the

two material, or in general do not present numerical issues, the regular FETI

method will be more suited as we will get a faster convergence.

Using one or the other will gives us either fast or accurate results, but we can

try to get both of these good features if we choose properly which method to

apply in every interface. If we manage to make the choice that better suits every

local interface, then we will most likely have a new hybrid method with both

good qualities.

This method we will call it Hybrid-FETI and it’s formulation can be described

mathematically as previous methods, but this time starting from a different basic

configuration, as we need at least two different local interfaces. For simplicity

reason the basic problem consist in three subdomains and two interfaces that

are completely independent of one another and no crosspoints as shown in

Figure 1.9. In any case the generalization is straightforward since the interfaces

are always disconnected with FETI approaches.
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Ω Γ Ω Γ Ω1 2 31LM 2LM

Figure 1.9 – Three subdomain divisions.

Using the subscript notation of previous sections, we have i for interior nodes

and b for the ones on the interface Γ = Γ 1 ∪ Γ 2, we have that for each subdomain

Ω(s), s = 1,2,3 the contribution to the matrix and right hand side of a finite

element discretization.

K (s) =

K (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

 , f (s) =

f (s)
i

f
(s)
b

 (1.89)

The global discretization matrix of the form Kx = f (as in 1.16) can be written

from the assembling of the local problems
K

(1)
ii 0 0 K

(1)
ib

0 K
(2)
ii 0 K

(2)
ib

0 0 K
(3)
ii K

(3)
ib

K
(1)
bi K

(2)
bi K

(3)
bi Kbb




x

(1)
i

x
(2)
i

x
(3)
i

xb


=


f

(1)
i

f
(2)
i

f
(3)
i

fb


(1.90)

up to here we have the same as previous methods, but now we need to look in

detail the interactions that happen in this particular interface, so we can separate

it and impose the different boundary conditions, to form the correspondent local

problems for each method.

If we use the subscript b1 for the interface Γ 1 in which we will impose
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the Neumann condition as in the 1LM method and the subscript b2 for the

2LM interface where a Robin condition is imposed, then the previous local

contributions are

K
(1)
bi =

K (1)
b1i

0

 , K
(2)
bi =

K (2)
b1i

K
(2)
b2i

 , K
(3)
bi =

 0

K
(3)
b2i


K

(1)
ib =

[
K

(1)
ib1

0
]
, K

(2)
ib =

[
K

(2)
ib1

K
(2)
ib2

]
, K

(3)
ib =

[
0 K

(3)
ib2

] (1.91)

As for the interaction between the interfaces, we have

Kbb = K (1)
bb +K (2)

bb +K (3)
bb =

K (1)
b1b1

0

0 0

+

K (2)
b1b1

0

0 K
(2)
b2b2

+

0 0

0 K
(3)
b2b2


fb = f (1)

b + f (2)
b + f (3)

b =

f (1)
b1

0

+

f (2)
b1

f
(2)
b2

+

 0

f
(3)
b2


(1.92)

And the unknown displacements are

xb =

xb1

xb2

 (1.93)

With the previous separation, we can form the local Neumann, Robin and hybrid

problems to solve in each subdomain. For the first problem, we introduce a

single langrage multiplier to haveK (1)
ii K

(1)
ib1

K
(1)
b1i

K
(1)
b1b1


x(1)
i

x
(1)
b1

 =

 f
(1)
i

f
(1)
b1

+λ(1)
b1

 (1.94)

For the second subdomain, we form the hybrid local problem, where the lagrange

multiplier introduced for the first subdomain is shared in the "left" interface, an

we add 2 extra at the interface in the "right" and the augmentation matrix, as in
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the 2LM method, with this we have
K

(2)
ii K

(2)
ib1

K
(2)
ib2

K
(2)
b1i

K
(2)
b1b1

0

K
(2)
b2i

0 K
(2)
b2b2

+A(2)
b2



x

(2)
i

x
(2)
b1

x
(2)
b2

 =


f

(2)
i

f
(2)
b1

+λ(2)
b1

f
(2)
b2

+λ(2)
b2

 (1.95)

And for the third subdomain,K (3)
ii K

(3)
ib2

K
(3)
b2i

K
(3)
b2b2

+A(3)
b2


x(3)
i

x
(3)
b2

 =

 f
(3)
i

f
(3)
b2

+λ(3)
b2

 (1.96)

Since in the interface between subdomains 1 and 2 we have one lagrange multi-

plier, with opposite values stored in each subdomain, we will denote it as

λb1 = λ(1)
b1 = −λ(2)

b1 (1.97)

Now, using the same condensation process as previous methods, we will use the

explicit relation between the multipliers and the displacements to eliminate the

unknowns of the inner nodes of each subdomain. Lets take the first subdomain,

where we know from the first equation in 1.94 that

x
(1)
i = −K (1)−1

ii K
(1)
ib1
x

(1)
b1

+K (1)−1

ii f
(1)
i (1.98)

introducing it in the second equation we have

λb1
= K (1)

b1i
x

(1)
i +K (1)

b1b1
x

(1)
b1
− b(1)

f1

= −K (1)
b1i
K

(1)−1

ii K
(1)
ib1
x

(1)
b1

+K (1)
b1b1

x
(1)
b1
− f (1)

b1
+K (1)

b1i
K

(1)−1

ii f
(1)
i

= S(1)
b1b1

x
(1)
b1
− c(1)

b1

(1.99)

here S(1)
b1b1

:= K (1)
b1b1
−K (1)

b1i
K

(1)−1

ii K
(1)
ib1

is the Schur complement of the domain 1 in

the interface 1LM and c
(1)
b1

:= f
(1)
b1
− K (1)

b1i
K

(1)−1

ii f
(1)
i . With this we can have the

displacement as a function of λb1

x
(1)
b1

= F(1)λb1
+F(1)c

(1)
b1

(1.100)
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where

F(1) := S(1)−1

b1b1
(1.101)

is the inverse of the Schur complement.

For the second subdomain, we have from the first line in 1.95 that

x
(2)
i = −K (2)−1

ii K
(2)
ib1
x

(2)
b1
−K (2)−1

ii K
(2)
ib2
x

(2)
b2

+K (2)−1

ii f
(2)
i (1.102)

replacing in the second and third equation, we haveλb1

λ
(2)
b2

 =

 K
(2)
b1i
x

(2)
i +K (2)

b1b1
x

(2)
b1
− b(2)

b1

K
(2)
b2i
x

(2)
i + (K (2)

b2b2
+A(2)

b2
)x(2)
b2
− b(2)

b2


=

K (2)
b1b1
−K (2)

b1i
K

(2)−1

ii K
(2)
ib1

−K (2)
b1i
K

(2)−1

ii K
(2)
ib2

−K (2)
b2i
K

(2)−1

ii K
(2)
ib1

K
(2)
b2b2
−K (2)

b2i
K

(2)−1

ii K
(2)
ib2

+A(2)
b2


x(2)
b1

x
(2)
b2

+

−f (2)
b1

+K (2)
b1i
K

(2)−1

ii f
(2)
i

−f (2)
b2

+K (2)
b1i
K

(2)−1

ii f
(2)
i


=

S(2)
b1b1

S
(2)
b1b2

S
(2)
b2b1

S
(2)
b2b2

+A(2)
b2


x(2)
b1

x
(2)
b2

−
c(2)
b1

c
(2)
b2


(1.103)

where again the S terms denotes the corresponding Schur complements of the

subdomain 2 in the interfaces 1LM and 2LM and c
(2)
b1

:= f
(2)
b1
− K (2)

b1i
K

(2)−1

ii f
(2)
i ,

c
(2)
b2

= f (2)
b2
−K (2)

b1i
K

(2)−1

ii f
(2)
i . So both the displacements of both local interfaces are

x(2)
b1

x
(2)
b2

 = F(2)

λb1

λ
(2)
b2

+F(2)

c(2)
b1

c
(2)
b2

 (1.104)

here we have

F(2) :=

S(2)
b1b1

S
(2)
b1b2

S
(2)
b2b1

S
(2)
b2b2

+A(2)
b2


−1

(1.105)

We can divide F(2) in blocks, such that

F(2) :=

F(2)
b1b1

F
(2)
b1b2

F
(2)
b2b1

F
(2)
b2b2

 (1.106)
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then we can also build a separate explicit relation for both displacements in this

subdomain x(2)
b1

x
(2)
b2

 =

F(2)
b1b1

λb1
+F(2)

b1b2
λ

(2)
b2

+F(2)
b1b1

c
(2)
b1

+F(2)
b1b2

c
(2)
b2

F
(2)
b2b1

λb1
+F(2)

b2b2
λ

(2)
b2

+F(2)
b2b1

c
(2)
b1

+F(2)
b2b2

c
(2)
b2

 (1.107)

For the third subdomain, we do the same previous treatment to obtain first

x
(3)
i = −K (3)−1

ii K
(3)
ib2
x

(3)
b2

+K (3)−1

ii f
(3)
i (1.108)

and then replace it in the second equation of 1.96

λ
(3)
b2

= K (3)
b2i
x

(3)
i + (K (3)

b2b2
+A(3)

b2
)x(3)
b2
− f (3)

b2

= −K (3)
b2i
K

(3)−1

ii K
(3)
ib2
x

(3)
b2

+ (K (3)
b2b2

+A(3)
b2

)x(3)
b2
− f (3)

b2
+K (3)

b2i
K

(3)−1

ii f
(3)
i

= (S(3)
b2b2

+A(3)
b2

)x(3)
b2
− c(3)

b2

(1.109)

With analogous definitions of each term, as before. The equivalence in this case

is given by the next equation

x
(3)
b2

= F(3)λ
(3)
b2

+F(3)c
(3)
b2

(1.110)

where

F(3) := (S(3)
b2b2

+A(3)
b2

)−1 (1.111)

is the inverse of the Schur complements plus the augmentation term in this

subdomain.

The continuity conditions needed in every case will vary depending on the

interface. For the interface 1LM, eliminating the jump of the interface solution

is enough to achieve this, meaning

x
(1)
b1
− x(2)

b1
= 0 (1.112)

but for the interface 2LM, since the interface condition is not consistent, as seen
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in 1.69 we need to add another constraint that gives us a residual of the form

x
(2)
b2
− x(3)

b2
= 0

λ
(2)
b2

+λ(3)
b2
−A(2)

b2
x

(2)
b2
−A(3)

b2
x

(3)
b2

= 0
(1.113)

this mixed form is recombined as in the 2LM method so together with Equa-

tion 1.112 we obtain the conditions needed to impose continuity across complete

the interface

x
(1)
b1
− x(2)

b1
= 0

λ
(2)
b2

+λ(3)
b2
− (A(2)

b2
+A(3)

b2
)x(2)
b2

= 0

λ
(2)
b2

+λ(3)
b2
− (A(2)

b2
+A(3)

b2
)x(3)
b2

= 0

(1.114)

With this equations plus the relations between the lagrange multipliers and the

different displacement, coming from the solution of local problems 1.100,1.107,1.110,

we can do the condensation of previous problems on to the interface for the

hybrid method
F(1) +F(2)

b1b1
−F(2)

b1b2
0(

A
(2)
b2

+A(3)
b2

)
F

(2)
b2b1

I −
(
A

(2)
b2

+A(3)
b2

)
F

(2)
b2b2

I

0 I I −
(
A

(2)
b2

+A(3)
b2

)
F(3)



λb1

λ
(2)
b2

λ
(3)
b2


=


−F(1)c

(1)
b1

+F(2)
b1b1

c
(2)
b1

+F(2)
b1b2

c
(2)
b2(

A
(2)
b2

+A(3)
b2

)(
F

(2)
b2b1

c
(2)
b1

+F(2)
b2b2

c
(2)
b1

)
(
A

(2)
b2

+A(3)
b2

)
F(3)c

(3)
b2


(1.115)

This matrix is not symmetric, so an ORTHODIR method with full reconju-

gation is used to solve it. We name the previous method Hybrid-FETI as in a

hybridization between FETI-1LM and FETI-2LM.
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1.3.2 Extension to a general problem

For the case of a general problem with Ns > 2, we proceed as in the 2LM method,

and we divide the total interface into neighbouring interface edges so that each

one is treated depending on the chosen method.

We split the total interface nodes into this interface edges, that correspond

to a collection of connecting interface nodes, denoted Γ j as we did for the 2LM

case.

We also add a unique marker to this edges in order to know a priori which

one correspond to each method, we denote the marked edges as Γ j1lm and Γ
j
2lm for

both FETI-1LM and FETI-2LM methods respectively. Crosspoints in particular

are edges of one node, were we can arbitrarily marked them 1LM or 2LM, we

will see the impact this choice in the numerical experiments.

We also define the boolean matrix B(s)
Γ j

for subdomain Ω(s) as the restriction

of a vector defined in Ω(s) to its values on the interface Γj , i.e

B
(s)
Γ j
v(s) = v(s)

b |Γ j (1.116)

again v(s) =

v(s)
i

v
(s)
b

 with the notation for interior and interfaces nodes being i and

b respectively.

With this definitions we can write the local problems for subdomain Ω(s) as

well as the conditions to get the continuity, for the general case

K (s) +
∑

Γ
j
2lm⊆Ω

(s)

B
(s)T

Γ
j
2lm

A
(s)

Γ
j
2lm

B
(s)

Γ
j
2lm

x(s) = f (s) −
∑

Γ l⊆Ω(s)

B
(s)T

Γ l
λ

(s)
Γ l
, s = 1, . . . ,Ns

B
(s)
Γ j
x(s) − xb|Γ j = 0 ∀Γ j , Ω(s) ⊇ Γ j∑

Ω(q)⊇Γ j2lm

(
λ

(q)

Γ
j
2lm

−A(q)

Γ
j
2lm

xb|Γ j2lm

)
= 0 ∀Γ j2lm

(1.117)
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where A(s)

Γ
j
2lm

is the augmentation matrix in subdomain Ω(s) for the interface Γ
j
2lm,

the other terms are defined analogous as for the case in FETI-2LM. Lets also

define the total augmentation matrix for a subdomain that contains an edge

”2lm”, where if not the case, its value is zero

A
(s)
2lm :=

∑
Γ
j
2lm⊆Ω

(s)

B
(s)T

Γ
j
2lm

A
(s)

Γ
j
2lm

B
(s)

Γ
j
2lm

(1.118)

With this equation we can do the condensation and obtain the problem to

solve in the interface. Since, in general, two methods are used, then equations

in the interface will also need to be separated, finally we have the interface

problems

∑
Ω(q)⊇Γ j2lm

λ(q)

Γ
j
2lm

−A(q)

Γ
j
2lm

B
(s)

Γ
j
2lm

(
K (s) +A(s)

2lm

)−1 ∑
Γ l⊆Ω(s)

B
(s)T

Γ l
λ

(s)
Γ l


= −

∑
Ω(q)⊇Γ j2lm

A
(q)

Γ
j
2lm

B
(s)

Γ
j
2lm

(
K (s) +A(s)

2lm

)−1
f (s) ∀Γ j2lm,∀Ω

(s) ⊇ Γ
j
2lm

(1.119)

B
(s)

Γ
j
1lm

(
K (s) +A(s)

2lm

)+

λΓ j1lm +
∑

Γ l2lm⊆Ω
(s)

B
(s)T

Γ l2lm
λ

(s)
Γ l2lm

+B(s)

Γ
j
1lm

R(s)α(s)

+B(q)

Γ
j
1lm

(
K (q) +A(q)

2lm

)+

λΓ j1lm − ∑
Γ l2lm⊆Ω

(q)

B
(q)T

Γ l2lm
λ

(q)
Γ l2lm

−B(q)

Γ
j
1lm

R(q)α(q) =

−B(s)

Γ
j
1lm

(
K (s) +A(s)

2lm

)+
f (s) +B(q)

Γ
j
1lm

(
K (q) +A(q)

2lm

)+
f (q) ∀Γ j1lm = Ω(s) ∩Ω(q)

(1.120)

where the terms R(s) (or q) is a kernel generator for the matrix K (s) with some

coefficients α(s) such that the admissibility condition 1.36 for this "floating

domain" is fulfilled. We need then to use the same projection strategy explained

in section 1.1.2, in order to treat this subdomains. In the case that the subdomain

contains a 2LM interface large enough (for example, two or more nodes for a 2D
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elasticity problem, three for 3D elasticity, etc) the term A
(s)
2lm makes that there is

no longer a kernel, so R(s) is zero.

This interface problem can also be written as Fλ = d with F being non

symmetric, so we use ORTHODIR version with left preconditioner and full

reconjugation. We will talk about this preconditioner in the next section.

1.3.3 Preconditioner

If we want this method to be scalable for the mesh size, we need to find a

preconditioner as in FETI-1LM. Up to this day no optimal preconditioner as been

found for the FETI-2LM, but this method has been tested and shown numerically

to be scalable for the mesh size on his own [35]. No extra computation needs to

be done for the interface edges where the Robin condition is imposed. On the

other hand, for those where one lagrange multiplier is used, a preconditioner is

mandatory in order to keep the convergence independent of the mesh size.

We will base the preconditioner on local information, just as the FETI-1LM

does. If we look at the Dirichlet preconditioner from a mechanical point of view,

we know it consist on solving a local problem whose boundary condition is the

jump in the displacements fields along this subdomain interfaces. The solution

of this problem allows to compute the corresponding interface traction forces

and therefore a correction to the FETI operator.

From this process we built the Dirichlet preconditioner, as already detailed

in subsection 1.1.3, by applying it to all the interface edges and then adding this

local contributions.

The local problem to solve, then comes from solving the following Dirichlet

problem in Ω(s) K (s)
ii K

(s)
ib

0 I


w(s)

i

w
(s)
b

 =

 0

{w(s)
b }

 (1.121)

the subscript i is for interior nodes and b for the interface, so the jumps are

imposed along the total local interfaces.

We can use this same preconditioner as a first approximation for our method,

in this case the definition will be similar to the one in FETI-1LM, but we apply it

only on the interface edges Γ j marked as 1LM.
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We compute the multiplication of a vector w restricted to the interface edges

Γ
j
1lm by our preconditioner as

D−1
Γ
j
1lm

w|
Γ
j
1lm

=
(
B

(s)

Γ
j
1lm

S
(s)
bbB

(s)T

Γ
j
1lm

+B(q)

Γ
j
1lm

S
(q)
bb B

(q)T

Γ
j
1lm

)
w|

Γ
j
1lm
, ∀Γ j1lm : Γ j1lm = ∂Ω(s) ∩∂Ω(q)

(1.122)

where S(s)
bb (or q) is the Schur complement of the subdomains interior nodes

into the local interface and the matrices B(s) are the signed assembly matrices,

but can also be taken as their generalisation for heterogeneous problems, i.e

B̃(s) = B(s)β(s) with β(s) some scaling matrix.

The multiplication by this operator are made in an analogous way to the case

1LM, first computing the Schur complements in each side of the interface, then

making the exchange with the neighbour subdomain. We can write the previous

preconditioner as a global matrix of the form

D−1w =


∑

Γ
j
1lm⊆Γ

D−1
Γ
j
1lm

w (1.123)

with w any vector defined in the interface Γ .

One problem that we encounter in this preconditioner, happens when in some

subdomain the local interface is composed of both 1LM and 2LM interface edges.

In this case when we apply the previous preconditioner, we are also imposing a

jump in the 2LM edges, but not of the same type, as a Robin condition is used

here. In Figure 1.10 we can see the two different boundary conditions that were

used, the upper one corresponding to the usual Dirichlet preconditioner, and

the bottom one represent an option to build a new preconditioner.

The advantage of this boundary conditions is that now we obtain the exact

local inverse of the Hybrid-FETI operator. The preconditioner is then changed

to solve this problem in the subdomains with shared edges. It involves the

computation of a different Schur complement, this time with the augmentation

matrix that allows to mimic the behaviour of the local interface marked as 2LM

and therefore of the whole subdomain.

Formally this is achieved by solving the following Dirichlet problem in every
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Ω2

Dirichlet

Ω2Γ1LM Γ2LM

Ω2

RobinDirichlet

Dirichlet

Figure 1.10 – Boundary conditions for both preconditioners.

subdomain with at least one edge marked as 1LM
K

(s)
ii K

(s)
ib1lm

K
(s)
ib2lm

0 I 0

0 0 I



w

(s)
i

w
(s)
b1lm

w
(s)
b2lm

 =


0

{w(s)
b1lm
}

0

 (1.124)

where b1lm,b2lm are subscript for the union of local edges marked as 1LM and

2LM respectively. Here we impose the computed jump only in the 1LM edges and

zero in the 2LM. Then we compute the respective traction forces by multiplying

against the matrix of the local problem. This leads to the computation of the

following Schur complement

S
(s)
bb =

K (s)
b1lmb1lm

0

0 K
(s)
b2lmb2lm

+A(s)
b2lm

− [K (s)
b1lmi

K
(s)
b2lmi

]
K

(s)−1

ii

K (s)
ib1lm

K
(s)
ib2lm


=

S̃(s)
b1lmb1lm

S
(s)
b1lmb2lm

S
(s)
b2lmb1lm

S
(s)
b2lmb2lm

+A(s)
b2lm


(1.125)

The structure of this matrix is the same as usual and correspond to the local

inverse of the condensed interface problem (as seen in 1.105).

With this computation of the Schur complement, the preconditioner for

every interface edge Γ j with one lagrange multiplier is defined the same way
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as previous, but remembering that the Schur complement now includes the

augmentation matrices (whenever they exist)

R−1
Γ
j
1lm

w|
Γ
j
1lm

=
(
B

(s)

Γ
j
1lm

S̃
(s)
bbB

(s)T

Γ
j
1lm

+B(q)

Γ
j
1lm

S̃
(q)
bb B

(q)T

Γ
j
1lm

)
w|

Γ
j
1lm
,

∀Γ j1lm : Γ j1lm = ∂Ω(s) ∩∂Ω(q)
(1.126)

the definition of every term, other than the Schur complement, are the same as

previous (including the consideration of the B matrices as scaling ones). This

preconditioner can also be written in the form of a global matrix denoted R−1 as

in "Robin" preconditioner

R−1w =


∑

Γ
j
1lm⊆Γ

R−1
Γ
j
1lm

w (1.127)

1.3.4 Implementation

The parallel computation of the FETI methods is done by subdomains structures

that are used to store the residuals of the FETI methods in general. This struc-

tures for both FETI-1LM and FETI-2LM are basically the same, so in practical

terms even if we use 1 lagrange multiplier (gradient) for the interface, the values

of this vector will be stored in both subdomains sharing the local edge (actually

one saves λ|Γ j and the other −λ|Γ j ).

Depending on the method this computation of the residuals involves the

resolution of the corresponding local Neumann and Robin problems in order

to compute x(i)
b . In general for our method there will be at least one subdo-

main where the local problem solved is the one that comes from imposing both

conditions at the same time.

Lets recall how the gradients are computed for each method. To do so, lets

take as example the division of a domain into two subdomains Ω(1), Ω(2) with

an interface Γ b. We take this simple case because the procedure is the same for

every interface edge in a more general partition.
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The preconditioned gradient to compute for the 1LM method, is then

g =D−1(Fλ− d) =D−1(x(2)
b − x

(1)
b ) (1.128)

where x(s)
b , s = 1,2 are the displacement of the interface nodes of each subdomain.

No projection will be shown here as the implementation is analogous to the 1LM

method and applies only to subdomains where the local interface is completely

marked as 1LM.

If we look at previous computation from an implementation point of view,

we have that for each process that computes each subdomain, the gradient is

obtained as

g =

g(1)
b

g
(2)
b

 =D−1

x(2)
b − x

(1)
b

x
(1)
b − x

(2)
b

 (1.129)

where the process s computes and stores g(s)
b , s = 1,2. We also note that g(1)

b =

−g(2)
b as in this case the unknown is a single lagrange multiplier along the

interface.

Now for the 2LM method, the gradient is computed from equations 1.70,

meaning that for each process we have

g =

g(1)
b

g
(2)
b

 =

λ(1)
b +λ(2)

b − (A(1)
b +A(2)

b )x(2)
b

λ
(2)
b +λ(1)

b − (A(1)
b +A(2)

b )x(1)
b

 (1.130)

the values of g(1)
b and g(2)

b are different, since 2 independent lagrange multipliers

are used for this method, but we can see that the computation structure is

the same as the FETI-1LM method. The difference here lies in the exchanges

needed to compute both gradients, in the case of the 2LM method more than

one exchange is needed.

The computation of the gradients is the base to the computation by the F

operator, needed in the use of the iterative method. For the case of an arbitrary

number of subdomains, the previous computations is extended by defining a

division of the total interface into interface edges as previously done. So, the

multiplication of a vector v defined in the interface by the FETI operator is done

by:
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• Solving the local problems
(
K (s) +A(s)

2lm

)
with the right hand side equal to

t(s)
T
B(s)v =

 0

v
(s)
b

 and computing x(s)
b .

• Assembly of the corresponding gradient, passing the information from one

subdomain to its neighbours

The first part is similar for the FETI-1LM, FETI-2LM and our method, only

changing the existence of the augmentation term when some 2LM marked edge

is present. Is in the assembly part of the gradient where we need to do the mix

of both method.

To explain this in detail, lets take the same case of a three subdomain division

as Figure 1.9 with one lagrange multiplier to the "left" and two to the "right".

If we want to solve it using the FETI-1LM method we will have the following

preconditioned gradient at each iteration

g =


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(1.131)

where the multiplication by the preconditioner was explained in the subsec-

tion 1.1.3.

If we think on solving it using only the FETI-2LM method, then the gradient

will be

g =
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(1.132)

As for the preconditioned gradient of our method the computation is done by
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assembling
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in here the preconditioner D−1 is reduced to D−1
Γ
b1
1lm

and affects the gradient only

in the interface edge "1LM" leaving the last two lines untouched.

The previous computation of the residuals allows us to obtain in an analog

way the multiplications by the FETI operator for each of the three methods, by

changing only the corresponding gradient.

With this, the new method is complete and a formal algorithm can be de-

scribed and implemented. As already said, the operator is non symmetric due to

the fact that it shares blocks of the also non symmetric 2LM operator, so we use

the iterative ORTHODIR method with left preconditioner and full reconjugation,

for the same reasons as we use it in the unsymmetric and 2LM methods.

The FETI-1LM method for unsymmetric matrices described in Algorithm 6

is the base of our implementation. Both of them share theoretical resemblance,

changing the definition of our operator F and also modifying D to D1lm because

when using the preconditioner, it is used only in the 1LM interface edges.

In practice the modifications are more complex so we are listing them

• Marking of the interface edges.

• Correct construction of the local problems, meaning that we add the aug-

mentation matrix in the subdomains with an edge 2LM.

• Change in the computation of the residuals for the multiplication by our

new operator.

• Modify the local Dirichlet problem to apply the different preconditioners

and use them only in the 1LM interface edges.

• Project only in the subdomains with a complete local interface 1LM (this

is done automatically, after computing the corresponding kernel in each

subdomain).
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In the next section we will test numerically our method to show the advan-

tages of it in some kind of difficult problems.

1.4 Numerical results

In this section we will show a comparative performance of the methods presented

in this chapter.

To begin with, we present the formulation of the Poisson problem in 3D with

Dirichlet condition in a part of the boundary. Let Ω ⊆R
3 be a bounded domain

and let ∂ΩD ⊆ ∂Ω be a part of the boundary, where null Dirichlet conditions

will be imposed. Given f ∈ L2(Ω), the problem is

Find u ∈H1(Ω) such that
−ν∆u = f in Ω

u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂Ω \ΩD

(1.134)

with ν ∈R+, the parameter that will define the difference between materials and

therefore in the local stiffness matrices of any possible divisions of Ω.

Let V := {v ∈H1(Ω) : v|∂ΩD
= 0}. Then, the weak or variational formulation

of previous problem is

Find u ∈ V such that

ν

∫
Ω

∇u · ∇vdx =
∫
Ω

f v, ∀v ∈ V (1.135)

This problem is discretized using tri-linear Q
1 finite elements functions,

leading to already known global system of equations

Kx = f (1.136)



66 CHAPTER 1. Hybrid FETI method

Figure 1.11 – Two material bar.

1.4.1 Two material bar

In our first test we will model a bar of two different materials under the gravity,

see Figure 1.11, in this case Ω = [0,10]× [0,1]× [0,1], f = (0,0, g)T . The boundary

fixed is ∂ΩD = {(x,y,z) ∈ ∂Ω : x = 0∨ x = 10}.
The problem will consist on a bar with two blocks of a different material

across the x-axis, they are located at the same distance of each boundary. The

idea is to represent a localized heterogeneous zone in a general homogeneous

domain, leaving only a few interfaces with a bad local conditioning. For each

material we have the following values of their parameters

ν1 = 105, "blue" blocks

ν2 = 100, otherwise
(1.137)

Depending on the subdomain partition that we do, we change the size of

the blocks to match the interfaces of the subdomains in the different divisions.

Since the total domain is divided into slices, we assign one of values of ν to each

subdomains, leaving only two in each case different from the rest, this way we

only have heterogenities across four of the interfaces.

Before doing any comparative test against other FETI methods, we need

to check the performance of both possible preconditioners for this method,
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Number of Hybrid-FETI Hybrid-FETI
subdomains Dirichlet Robin

64 20 18
125 20 20
250 19 21

Table 1.1 – Convergence of Hybrid-FETI preconditioner (Number of iterations)

namely the Dirichlet or Robin one. We will test this problem for three different

number of subdomains. The number of global elements in each computation is

constant of 75 thousand elements per subdomain. Also, following the definition

of Algorithm 7, we calculate the augmentation matrices for the 2LM interfaces

by setting the patch size as 1 and the depth size as 3.

For all cases in this chapter we use the following global stopping criterion

‖Kxp − f ‖2
‖f ‖2

< 10−4 (1.138)

but we also use a second criterion, that is, the relative norm of the jump of the

solution between subdomains [36].

‖xp − xp−1‖2
‖xp‖2

< 10−4 (1.139)

The results are shown in Table 1.1. In this case there is no significant dif-

ference between both of them, even in some cases the Dirichlet preconditioner

performs better than the Robin. We think that this is due to the fact that the

small number of interfaces where the preconditioner is different is not high

enough to let the differences to be clear. In examples where more subdomains

share the two types of interface the difference is more evident (See the contact

case 1.4.2).

We also note, that almost no augmentation in the number of iterations is

present, even if we have increased the number of subdomains, this good quality is

explained because the most part of the interfaces were marked as 1LM, meaning

that we are very close to the regular FETI-1LM method. We hope in any case to
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Figure 1.12 – Hybrid-FETI Iterations versus Elements number.

keep this property even in the harder problems.

We will see now, how the Hybrid method performs when increasing the

number of elements per subdomains, we hope that also some of the other prop-

erties of the methods FETI-1LM and FETI-2LM are hold in the Hybrid case, in

particular the property of having a small increase in the number of iterations

when the number of elements in a subdomain is augmented. Hence, we test

different values of h (mesh size) for a constant of 64 subdomains, the results are

summarized in Figure 1.12.

From Table 1.1 and Figure 1.12 we can see that, as expected, the number

of iterations after augmenting the local size of the problems or the number

of subdomains does not change considerably. This is due to the fact that this

method is build from a combination of two numerically scalable methods.

One of the main issues of the new method, lies in the problem of which

interfaces should be marked as 1LM or 2LM. The intuition tells that the interfaces

where the materials change should be marked as 2LM and the rest as 1LM. We

will now test this choice against a different one, where two extra interfaces are

marked as 2LM, as seen in Figure 1.13. The idea is to "cover" the problematic



1.4. Numerical results 69
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Figure 1.13 – a) Regular interface marking. b) Extra covering marking.

interfaces, in this case is the jump of materials, but in other cases this interfaces

will not be so clear, so extending the 2LM marked interfaces will result mainly in

a more robust method, as the 1LM interfaces will not always achieve convergence,

but it will be probably slower.

For the rest of this basic tests, no difference will be done between precondi-

tioners as they are minimal.

The results can be seen in the Table 1.2 and, in terms of speed, keeping the

number of 2LM interfaces at a minimum will improve the convergence rate.

Given that this it not completely clear for every case, the extension of 2LM

interfaces, in order to "cover" the difficult interfaces, will give us a more robust

method.

In order to achieve a better performance, in the following for the Hybrid-FETI

case we will mark as 2LM the interface that connects different materials and all

the rest will be treated as 1LM.
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Number of Regular Extra interface
subdomains marking marking

64 18 79
125 20 76
250 21 64

Table 1.2 – Convergence of different marking Hybrid-FETI (Number of iterations)

Number of FETI-1LM Unsymmetric FETI-2LM Hybrid-FETI
subdomains FETI-1LM

64 13 15 151 14
125 14 14 283 15
250 13 17 715 15

Table 1.3 – Convergence of the different methods (Number of iterations)

With the defaults parameters for the Hybrid method, now we can perform

a comparative against the two base method. In general the problem we are

solving in this section cause no performance impact to the FETI-1LM with the

basic Dirichlet preconditioner, however what we hope to obtain in this case is

an improvement against the behaviour of the FETI-2LM. The idea is to show

later some examples where we only have a good convergence for the FETI-2LM

method, in which we will also hope to be a better alternative.

We modify the configuration of previous case to solve something closer to

the type of problems where we want to apply this method. Hence, only a

different block is considered, located in the center of the structure, with different

parameters of value

ν1 = 105, center block

ν2 = 100, otherwise
(1.140)

With this considerations in Table 1.3 we can see the results in term of itera-

tions for the different methods.
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As expected, the symmetric FETI-1LM is the most suited method for this

type of problem, however we wanted to show the non symmetric version of

this method because the problem solved when working with contact models

(one of our main objectives) is non symmetric, and in this case the performance

is comparable to the one of Hybrid-FETI. As for the FETI-2LM, the very poor

performance is explained by the type of divisions used, in this particular one,

since the information is transmitted neighbour by neighbour, in order for it to

cross the whole structure, we need at least the number of subdomains before

achieving convergence.

Even if the FETI-2LM is at it worst, this case represents a good example of

the problems we may find in applications, with two blocks separated by a small

part with really bad conditioning (contact, non-conforming meshes, etc). Here

the performance of the Hybrid method clearly outperforms that of FETI-2LM,

meaning that we have ameliorated in terms of speed, the more robust method,

which will be our next goal when we try to solve problems where the convergence

for the FETI-1LM method is not assured.

1.4.2 Contact Problem

Our next test case will try to expose the advantages of this new method against

both base ones. To achieve this, we will present and solve a contact problem.

Contact problems are often found in the structural engineering context,

particularly when analyzing the assembly of different substructures. They are

characterized by a non-penetration condition in an active area of contact which

is not know a priori, this condition is modeled as constraint of a minimization

problem. For these reasons, these problems may lead to stiff non-linear systems

of equations.

Several simplification to the general contact models can be done to reduce

the computational complexity of the solvers needed. In this line, we can name a

still large class of contact problems that are characterized by the fact that one

of the contacting bodies is much more stiffer than the other. Also, considering

that the displacement of the contact body is constrained in only one direction

we then have the so called unilateral contact problems. We also assume that
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the displacements are small and the deformation is linearly elastic (this is for

presentation purposes, as in practice a large displacements model will be used).

The final assumption to do is to not consider the effects of friction, which will

simplify the contact constraints that we will establish later.

We start the formulation of this simplified contact model by recalling the 2D

linear elasticity problem in a standard finite element framework. The equations

that model this problem can be written as

−div(σ (u)) = f, in Ω

u = 0 in ∂ΩD

σ (u) ·n = 0 in ∂Ω \∂ΩD

(1.141)

where

σij(u) = 2µεij(u) +λδijdiv(u)

εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
µ =

E
2(1 + ν)

λ =
Eν

(1 + ν)(1− 2ν)

(1.142)

in this context µ and λ are the Lamé coefficients, E and ν are the Young’s

Modulus and Poisson ratio respectively. The different materials are defined by

their values of E and ν, variation of this values in a generated structure will

create the heterogeneities along or across the interfaces.

This model correspond to the static linear elasticity, however for the next

part, the displacements and several other components of the model will have a

temporal dependency that we will not note, as we will just be testing the Hybrid

method to solve this standard static model in a "fixed" final time T .

Lets present one of the classic mathematical formulations of a contact prob-

lem. We start as usual with a domain Ω that denotes the initial state of a linear

elastic body, ∂ΩC will be the part of its boundary that is a potential area of
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Figure 1.14 – a) Contact problem. b) Initial gap. c) Contact pressure.

contact, unknown a priori, nC is the outward normal to ∂ΩC at a point M , ∂Ω′C
also the potential area of contact with ∂ΩC but for another linear elastic body,

and n′C = −nC is the outward normal to ∂Ω′C at the point M ′ facing point M (see

the left image in Figure 1.14).

Let u denotes the displacement field (in one direction), the discontinuity of u

in the normal direction at point M ∈ ∂ΩC can be written as

δu(M) = u(M) ·nC +u(M ′) ·n′C = u(M) ·nC −u(M ′) ·nC
= (u(M)−u(M ′)) ·nC

(1.143)

we write the non-penetration condition in the next form

δu(M)− c(M)0 ≤ 0 (1.144)

where c(M)0 denotes the initial gap, that we assume small, at the point M in Ω

(see center image of Figure 1.14).

Let t = σ (M)n be the traction vector at point M, and tn = t · n the normal

component of t. If ∂ΩC and ∂Ω′C are in contact, the pressure at M is positive,

which implies that tn ≤ 0 (see right image in Figure 1.14).

As already said, we assume unilateral conditions for the contact problem,

which leads to the Signorini −Fichera type of conditions, defined by:

• If δu(M)− c(M)0 = 0 then tn ≤ 0 and the contact is said to be active.

• If δu(M)− c(M)0 < 0 then tn = 0 and the contact is said to be inactive.

This relations can be rewritten equivalently as conditions on ∂ΩC , so for the

unilateral frictionless contact problem, we have
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tn ≤ 0

δu(M)− c(M)0 ≤ 0

tn · (δu(M)− c(M)0) = 0

(1.145)

In a finite element framework, we need to state this contact model in a

different way, hence we present now one of the variational formulations of this

problem. In this case we will formulate the previous model as a minimization

problem with variational inequalities.

We define the following spaces

V = {v ∈ (H1(Ω))2 : v|∂ΩD
= 0} (1.146)

and

U = {v ∈ V : v ·n− c(M)0 ≤ 0 on ∂ΩC} (1.147)

We define then the bilinear and linear forms

a(u,v) := 2
∫
Ω

µε(u) : ε(v)dx+
∫
Ω

λ(∇ ·u)(∇ · v)dx

b(v) :=
∫
Ω

〈f,v〉dx
(1.148)

where

〈f,v〉 =
2∑
i=1

fivi (1.149)

and finally

F(v) =
1
2
a(v,v)− b(v) (1.150)

then for a given force f ∈ V ′ the variational formulation of our contact problem

is

Find u ∈U such that

a(u,v−u) ≥ f (v−u), ∀v ∈U (1.151)
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or

F(u) ≤ F(v) ∀v ∈U (1.152)

With this presentation, a minimization method can be applied to solve this

constrained problem.

For the solution of contact problems, we can not forget that two-types of non-

linearities exist, the geometrical ones and in the materials. In the geometric non-

linearities we encounter the ones derived from large displacements, deformation

and contact constraints. An iterative incremental solution procedure is used

then to obtain non-linear solution as a series of linear ones.

Discretization of this problem via finite elements, plus the Penalty method
or the Lagrange multiplier method [82] to impose the contact condition is one

of the form of solving this contact problem, however different methods can

be constructed starting from this. In this context, different FETI-like type of

methods have been developed to solve this non-linear problem [4], [26], [23].

They are all based in the basic linear FETI method.

To state our comparative test case, we will use some results of a particular

contact solver thanks to Alexandros Markopoulos, [24]. So from now on, we will

only consider a FETI-like with the penalty method to solve the contact problem,

since there is a better treatment of the contact constraint with no extra variables

at the cost of ill-conditioned problems, that we will try to overcome.

For a contact problem, after the solver convergence we obtain a final active

area of contact, with this we can "lock" the substructures in this final configura-

tion, just by considering both contact bodies as a single conforming structure.

This characteristic comes from the fact that a node-to-segment discretization

is done in the contact area, that also treats with the large displacements non-

linearities of the model [80]. This type of discretization, along with the penalty

method, implies that, virtual contact elements are added on one of the contact

bodies, this elements from a mechanical point of view represent the elements

that connect this body to an imaginary string, that when the contact is active,

should have a very high stiffness, in order to impose the non penetration condi-
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tion.

When iterating to solve the non linearities, at the beginning the penalty

parameter is not necessarily very high and non-physical penetration may occur,

but when approaching to the final computed loads we must increase the value of

it, in order to nullify this penetration and have a correct imposition of the contact

condition. Is this treatment, the one that produces the very ill-conditioning of

the local stiffness matrices, when the contact area is active.

For this reason that, unlike FETI-1LM, the FETI-2LM is a more suited method

to solve this kind of problem. The difference is that in FETI-2LM the operator

is provided with augmentation or regularization matrices, added to this local

stiffness problems, thanks to the generalized Robin condition imposed in the

interfaces. This matrices are usually taken as approximations of the Schur

complement of the neighbour subdomain, meaning that even if the stiffness of

one neighbour subdomain is orders of magnitude larger than the other (this

happens when the penalization parameter is acting in contact) it will be taken

into account by its neighbour.

To see this regularization, we just need to recall the definition of the FETI-

2LM operator for a two subdomain case I I − (A(1)
b +A(2)

b )(S(2)
bb +A(2)

b )−1

I − (A(2)
b +A(1)

b )(S(1)
bb +A(1)

b )−1 I

 (1.153)

where we take A(1)
b ≈ S

2
bb and A(2)

b ≈ S
1
bb in order to have an operator less affected

by the ill-conditioning produced by the penalization method.

After the computation of the final contact area, we can perform a standard

stress analysis of that configuration under the computed external loads pro-

duced by the interaction of both structures, including the penalization in the

local stiffness matrices that share an interface with active contact. In this static

problem we can compare the two standard FETI method against the new Hybrid

solver.

In the first problem to solve, we have a block in top of a semi-circle, see

Figure 1.15. The top block is the stiffer body and the bottom one is assumed to
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Figure 1.15 – First example, initial configuration and subdomain division.

have large displacements. The values for their respective Young’s modulus and

Poisson ratio are

Etop = 10000, νtop = 0.4

Ebottom = 6, νbottom = 0.3
(1.154)

The total domain is divided into six subdomains, two for the bottom structure

and four for the top one, then a vertical gravity-like force is applied, i.e f =

(0,−10). The Dirichlet condition is applied to the base of the bottom structure,

and in order to give an initial stability, the two top corners of the block are also

fixed.

Then, in Figure 1.16 we can see the solution, after applying the contact solver.

This allows to compute the final active contact zone, that is the bottom of the

square block, in which the ill-conditioning is concentrated. The forces needed to

obtain such a bending are also given by the solver.

One of the main issues shown in the previous test case was the definition

of the 1LM or 2LM interfaces. When solving contact problems, we have the

advantage of working with two separate and, a priori, known structures. This

allows to recognize each subdomain as part of one or the other structure, which
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Displace magnitude

1.015e+00

0.76138

0.50759

0.25379

0.000e+00

Figure 1.16 – First example, final configuration (solution).

at the same time automatizes the process of marking the different interfaces in

the following wayMark Γ (ij) as 1LM if Ω(i),Ω(j) are in the same body
Mark Γ (ij) as 2LM Otherwise

(1.155)

With this process, plus the Robin or Dirichlet preconditioner, diminishing

the stopping criterions to errors less than 10−6 and a patch size of 3 and path

depth of 5 for the augmentation matrices in the 2LM interfaces, we can launch

our test for the final configuration of the contact problem, see results in Table 1.4.

The following final two cases of this chapter, model a physically more stable

structure, where the same top block is now over an square bottom structure.

This time we have augmented the number of subdomains to emphasize the

advantages of the Hybrid method.

The top and first structure is divided into 16 subdomains and the bottom and

second into 9 subdomains for the first case and 25 subdomains for the second.

Dirichlet conditions are imposed in the base of the second structure and the top

block is completely free, as the contact zone can offer enough initial stability, see

Figure 1.17.

Again the contact solver gives us the final contact interfaces plus the forces
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Figure 1.17 – Second example, initial configuration.

Subdomains Global FETI-1LM FETI-2LM Hybrid-FETI Hybrid-FETI
equations (Robin) (Dirichlet)

6 956 X 29 34 34
25 31954 61 119 50 51
41 5540 X 111 69 74

Table 1.4 – Convergence of the three contact examples for the different FETI
methods (Number of iterations)

needed. The different methods are then tested to compare the convergence rate.

In the Table 1.4 we can see the number of iterations in each method for different

problem sizes.

In the results we can see that for both cases, the number of iterations for the

Hybrid method is smaller than for the other two methods. Compared to the

FETI-1LM we have gained in robustness since we only see convergence in the

much more stable structure that is the second case, but also we improved the

convergence ratio in this case, showing a better general performance for this

type of problems. If we compare against the FETI-2LM method, we can see that

in the biggest case the number of iterations used by the Hybrid method is less
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than half of the ones needed originally and at the same time we manage to keep

the robustness given by this method.

Finally we point out that when the number of subdomains augments, we only

see a small increase in the total iterations, in accord with the results shown in

the first example of the two material bar.

1.5 Conclusion

In general the results given by the Hybrid-FETI method show us a positive first

approach for the development of a general FETI method that tries to keep the

good performance of the basic FETI-1LM method and the robustness of FETI-

2LM. This advantages are clearer in the context of solving the ill-conditioned

problems arising from the simplest contact models. In this cases the advantages

in terms of easier implementation and improved convergence shown in the

numerical results gives us a very good start in the search of general better

algorithms.

The next steps for this method is to perform test in bigger and less "academic"

test, but since our preliminary results show and improvement, we can only

hope the same for the bigger and more complex cases. Also, a different type of

problems can be tested, which are a class of non-conforming problems where

the use of mortar elements can affect the conditioning of the local matrices

forcing the use of FETI-2LM in the complete structure [65], where in practice

only a small part of the problem needs such a treatment, making or method also

appropriate to this type of problems.
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Block FETI methods

Different improvements to make more robust and efficient FETI methods have

been developed in recent years, but for some harder engineering problems

the performance is still very poor. To face this challenging problems, the

Simultaneous-FETI or S-FETI was developed, first in [17] for a two subdomain

case, then generalized for arbitrary configurations in [39]. The main characteris-

tic of the S-FETI method it’s the generation from the preconditioning of more

than one search direction for the Conjugate Gradient method, leading to a more

efficient and in general more robust method.

With this new method, as usual in the practical use of FETI methods, a

full reorthogonalization is mandatory, forcing the storage of all the new search

directions. Depending on the problem, specially when the number of subdo-

mains increases, the total number of directions to store can be a drawback due

to memory limitations, making the S-FETI method impractical for this type of

problems.

In this chapter we treat the problem of memory limitation of the S-FETI

method using the sparse properties of the block of vectors from which we

construct the search directions, in order to reduce the total memory allocated

by the method. The strategy will be to rebuild at every iteration the search

directions using this sparse blocks and some small coefficient matrices.

The introduction of this reconstruction steps will add computations that

from a local point of view will be more expensive, but since this cost is small

81
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compared to the time spend in the communication of the different processes,

the total time used can be as good as the original method. The simplest of the

implementations of this idea will not be enough to achieve the good performance

needed, but it will show the pertinence of the storage used and the precision

achieved in relation to the method with no special storage. Later we will show

some optimizations based on the parallel properties of the code that improve

the computation time, making a more efficient algorithm.

This chapter start showing the basics of preconditioning in FETI, then we

show how the ideas in the preconditioning steps lead to the formulation of

the basic S-FETI method for two subdomains. We continue by presenting the

formal general method, including its implementation and cost. Then we show in

detail the way of sorting search directions in the presence of linear dependency

between them, we also add a second strategy to achieve this. We continue with

the new storage, reconstruction of the search directions and the optimizations

in the code to finally show some numerical results to compare the different

algorithms.

2.1 Introduction and preliminarities

The development of the S-FETI method begins in [17] when searching for im-

provements to the Dirichlet preconditioner in FETI. For this reason, in this

section, we will follow the same path from the basics of the preconditioner that

will lead to the first version of S-FETI.

2.1.1 Dirichlet preconditioner for two subdomains

We will start by revisiting the Dirichlet preconditioner at its basic, for a two

subdomain case. The notation in this case will be analogous to the previous

chapter.

The objective of a preconditioner for the PCPG Algorithm 5 used in FETI,

is to build in every iteration p a correction to the Lagrange multipliers given

an interface compatibility error, i.e. a jump denoted as g. (In the case of the

elasticity problem this is a jump in the displacement, but depending on the
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problem this may change. Also we drop the notation as an iterative vector gp for

simplicity).

Let us consider the two subdomain case as in Figure 1.2 from section 1.1.1.

Where the associated unknown are

x(s) =

x(s)
i

x
(s)
b

 , s = 1,2 (2.1)

the subscripts i,b represent interior and interface nodes respectively. The jump

is then written as

g = B(1)x
(1)
b +B(2)x

(2)
b (2.2)

with B the signed boolean operator that defined this continuity condition as in

Equation 1.33. We can then build a continuous interface approximate solution

by averaging the already computed x(s)

x̂
(1)
b =

1
2

(
x

(1)
b −B

(1)T B(2)x
(2)
b

)
x̂

(2)
b =

1
2

(
x

(2)
b −B

(2)T B(1)x
(1)
b

) (2.3)

The operator B(s)T B(q) is the correspondence between the numbering of the

interface nodes in Ω(s) and Ω(q). The interface approximate solution corrections

are

δx
(1)
b = x̂(1)

b − x
(1)
b = −1

2
B(1)T g

δx
(2)
b = x̂(2)

b − x
(2)
b = −1

2
B(2)T g

(2.4)

If we modify the internal nodes to satisfy the internal equilibrium (the first

equation in the local problem 1.29) then we have the correction

δx
(s)
i = −K (s)−1

ii K
(s)
ib δx

(s)
b (2.5)

Multiplying by the local matrix, the interface response corrections on the inter-
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face Γ are computed by

δf
(s)
b = S(s)

bb δx
(s)
b (2.6)

In general δf (1)
b , δf

(2)
b so the interface response is not uniquely defined. So

again, an averaging is done as previously with the approximate solution, then

the interface response correction will be chosen as

z = −1
2

(
B(1)δf

(1)
b +B(2)δf

(2)
b

)
(2.7)

This correspond to a new search direction in the CG algorithm. If we look at this

definition, using 2.4 and 2.6, we can also write it as

z =

1
4

2∑
s=1

B(s)S
(s)
bbB

(s)T
g (2.8)

which is equivalent to the definition of the Dirichlet preconditioner of subsec-

tion 1.1.3 with the scaling matrices in consideration. If the two matrices S(s)
bb are

the same, for example in a totally symmetric splitting of a simple square, then

the preconditioner is the exact inverse of the operator FETI, if not the case, we

only have locally the exact inverse of this operator.

The difference between this Dirichlet preconditioner and his basic non-scaled

form lies in what its defined as a Consistent preconditioner. In the next part,

we will give the definition and develop this subject in order to generalize the

preconditioner to arbitrary partitions and heterogeneous problems.

2.1.2 Consistent preconditioners

Preliminaries

We begin by recalling the signed boolean matrices needed to formulate the

problem in general subdomain division. For an arbitrary partition into Ns ≥ 2,

we define

Γ (s) = ∂Ω(s)\∂Ω (2.9)



2.1. Introduction and preliminarities 85

this is the interface boundary of Ω(s) for s = 1, . . . ,Ns, then we define the global

interface as

Γ = ∪
s
Γ (s) (2.10)

Next we consider the signed boolean matrix B(s) as the matrix that maps the nodes

from the local interface Γ (s) into the global one Γ . The sign of the represented

nodes is such that the opposite sign is in the position that represents the same

global node on the neighbour subdomain.

The global interface will again be divided into interface edges Γ j defined as

Γ j := Γ (sq) = ∂Ω(s) ∩∂Ω(q), ∀s,q = 1, . . . ,Ns (2.11)

The crosspoints are then nodes shared by more than two edges. It follows

that B(s) : Γ (s)→ Γ can be partitioned as

B(s) =


B

(s)
Γ 1

B
(s)
Γ 2

...

B
(s)

Γ n
(s)


(2.12)

with n(s) the number of neighbours of Ω(s) and where B(s)
Γ j

is the restriction of B(s)

to Γ j . We define also the global assembly operator

B =
[
B(1) · · · B(Ns)

]
(2.13)

Next we define the multiplicity of a node in Γ j as mj , and for each node its

values is

mj = |neighbours|+ 1 (2.14)

the multiplicity varies in each node of the edge, but for simplicity we will denote

as a single one for each Γ j . In general, mj ≤ 2 and for a crosspoint mj > 2. Since

one lagrange multiplier is used to glue any pair of d.o.f in an edge Γ j , there are

exactly (mj − 1) lagrange multipliers applied to each d.o.f in any edge.

From equation 2.12 and knowing that there are nodes shared by more than
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two subdomains we can see that

B
(s)T

Γ j
B

(s)
Γ j

= (mj − 1)I (2.15)

then for each subdomain we have that

B(s)T B(s) =
[
B

(s)T

Γ 1 . . . B
(s)T

Γ n
(s)

]
B

(s)
Γ 1

. . .

B
(s)

Γ n
(s)


= B(s)T

Γ 1 B
(s)
Γ 1 + · · ·+B(s)T

Γ n
(s)B

(s)

Γ n
(s)

= (m1 − 1)I + · · ·+ (mn(s) − 1)I

= diag(mj − 1)

(2.16)

Finally we can write

B(s)T B(s) + I = diag(mj) (2.17)

where diag(mj) is the diagonal matrix with the multiplicity of the nodes in the

edges Γ j ⊆ Γ (s).

Remark: This form of gluing connecting d.o.f introduces redundancies in the

compatibility constraints at the crosspoints (continuity). However we will see

that this redundancy is essential for an efficient preconditioner.

Consistent preconditioner

With previous definitions, we can analyse the preconditioner in terms of a

general partition of the domain in Ns > 2 subdomains.

Recalling the physical interpretation of the projected gradient in the FETI-

1LM method, we know it is a jump of the displacement field across the subdo-

main interface boundaries

g =
Ns∑
s=1

B(s)x
(s)
b (2.18)

So, from a mechanical point of view the objective of a preconditioner F̃−1 based

on local problems is to generate a correction of the Lagrange multipliers z and
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its corresponding local interface forces B(s)T z = B(s)T [F̃−1g] in order to reduce the

jump g as much as possible.

The basic preconditioning, either Dirichlet or Lumped, applied to the pro-

jected gradient g is defined in general terms as

z = F̃−1g =
Ns∑
s=1

B(s)
(
S

(s)
bb or K (s)

bb

)
B(s)T g (2.19)

this operator is build in a three-step procedure, starting with g

1 We define the approximate solution corrections δx(s)
b and this are imposed

in the local interfaces Γ (s) as follows

δx
(s)
b = B(s)T g (2.20)

this means that for every d.o.f. we impose a correction equal to the sum of

the jumps with every neighbouring d.o.f.

2 Next, the discrete Dirichlet-to-Neumann operator on the interface nodes

δf
(s)
b is evaluated

δf
(s)
b =

(
S

(s)
bb

)
δx

(s)
b (2.21)

The difference between the Dirichlet preconditioner based on this operator

and the Lumped one lies in this step where we replace previous computa-

tion by

δf
(s)
b =

(
K

(s)
bb

)
δx

(s)
b (2.22)

and we note the fact that the Lumped operator K (s)
bb assumes that the

internal nodes are fixed.

3 Finally, the jump of internal nodal responses δf (s)
b are computed to obtain

the correction z of the Lagrange multiplier

z =
Ns∑
s=1

B(s)δf
(s)
b (2.23)
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S(s)
bb

g zδx(s)
b

δf(s)
b

  K(s)
bb

Figure 2.1 – Preconditioner construction

We can now define what is a Consistent preconditioner and it correspond to a

preconditioner build following the previous three steps, but where the approxi-

mate solution corrections δx(s)
b fulfill the compatibility condition, meaning that

are continuous across the interface and also the Lagrange multipliers corrections

z are chosen based in near equilibrium concepts, that will be explained in the

next paragraphs.

The first condition is fulfilled if we use an averaging process as the one shown

for the two subdomain case. This idea of imposing a common value (e.g. the

average) to every node independently on the interface, will also be valid for the

general case, i.e. considering crosspoint.

Graphically, the three steps construction can be seen in Figure 2.1

From Figure 2.1 (a) and (b) shows how the increments δx(s)
b are chosen so

that the corrected interface approximate solution x̂(s)
b satisfy the interface com-

patibility. Following Equation 2.21 we compute the nodal interface responses

required to maintain the increment δx(s)
b . This mapping δf (s)

b do not satisfy

the interface equilibrium unless the corrected solutions x̂(s)
b are the exact final

solution. In Figure 2.1 (d) we compute the Lagrange multiplier corrections z.

Interface Lagrange multipliers are naturally self-equilibrated in the sense that

they result in interface values B(s)T z that are in equilibrium. Hence, it is in

general impossible to define z such that B(s)T z restores the interface response

corrections δf (s)
b . Nevertheless, we require that z be constructed in such a way

that as the δf (s)
b approach equilibrium, B(s)T z is exactly δf (s)

b .
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Lets consider the global interface response correction δ̂f b as the vector de-

fined in the interface, such that

δf
(s)
b = δ̂f b|Γ (s) (2.24)

We can say now that a Consistent Preconditioner is the one that it has

1. Consistent approximate solution increments δx(s)
b , i.e.

Ns∑
s=1

B(s)x̂
(s)
b =

Ns∑
s=1

B(s)
(
x

(s)
b + δx(s)

b

)
= 0 (2.25)

2. Consistent Lagrange multiplier corrections z, i.e.

if
δ̂f b ∈ Im(B) (2.26)

then, for each s = 1, . . . ,Ns
B(s)T z = δf (s)

b (2.27)

The Equation 2.26 is the interface equilibrium as it express that the sum of this

boundary interactions δf (s)
b acting on an interface d.o.f. are zero, i.e

∀i ∈ Γ ,
Ns∑
s=1

δf
(s)
i = 0 (2.28)

At a subdomain level the condition 2.26 can also be written

δf
(s)
b −B

(s)T
Ns∑
r=1
r,s

B(r)δf
(r)
b = 0 (2.29)

With this definition, it can be expected that preconditioners that fulfills it are

better than the ones who does not, this was shown in [61]. In this sense we will

explain the modifications done to the basic Dirichlet preconditioner in order to

make it a consistent one, leading to a new structure that will be generalized in

order to have a preconditioner also suited for heterogeneous problems (across
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the interface).

Remark:

1 The basic Dirichlet or lumped preconditioner are not consistent. If we look

at the definition of δx(s)
b we have that

Ns∑
s=1

B(s)
(
x

(s)
b + δx(s)

b

)
= g +

Ns∑
s=1

B(s)B(s)T g , 0 (2.30)

which violates the compatibility condition for the solution correction.

Furthermore, if we take the construction

z =
Ns∑
s=1

B(s)δf
(s)
b (2.31)

and we assume that Equation 2.29 holds, then we have

B(s)T z = B(s)T
Ns∑
r=1

B(r)δf
(r)
b

= B(s)T B(s)δf
(s)
b +B(s)T

Ns∑
r=1
r,s

B(r)δf
(r)
b

=
(
B(s)T B(s) + I

)
δf

(s)
b

(2.32)

and using Equation 2.17

B(s)T z = diag(mj)δf
(s)
b , δf

(s)
b (2.33)

2 The natural self-equilibrium of the Lagrange multipliers can be expressed

replacing δf (s)
b by B(s)T z in Equation 2.29

B(s)T z −B(s)T
Ns∑
r=1
r,s

B(r)B(r)T z = 0 (2.34)
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Ω2

Ω4

Ω1

Ω3

x(2)2

g

x(1)2

x(1)1

x(2)1

x(4)1x(3)1

~x

Figure 2.2 – 4 Subdomain problem

from where we have

B(s)T = B(s)T
Ns∑
r=1
r,s

B(r)B(r)T (2.35)

this is a direct consequence of the fact that the compatibility conditions

are defined between any pair of connecting d.o.f.

Consistent preconditioner for homogeneous problems

For homogeneous problems, consistent preconditioners are constructed by ex-

tending the averaging scheme used in the two subdomain case, see subsec-

tion 2.1.1. For clarity we will start showing it for a 4 subdomain case as in

Figure 2.2 then generalizing it for arbitrary meshes.

We assume that all subdomains have similar stiffness matrices, i.e. are build

for subdomains of similar materials, geometrical and discretization properties.

Therefore, the construction of the compatible interface solution is done by
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imposing an averaging as follows

x̂
(1)
1 = x̂(2)

1 = x̂(3)
1 = x̂(4)

1 =
x

(1)
1 + x(2)

1 + x(3)
1 + x(4)

1

4

x̂
(1)
2 = x̂(2)

2 =
x

(1)
2 + x(2)

2

2

(2.36)

which implies that the following corrections are consistent

δx
(1)
1 = x̂(1)

1 − x
(1)
1

=

(
x

(2)
1 − x

(1)
1

)
+
(
x

(3)
1 − x

(1)
1

)
+
(
x

(4)
1 − x

(1)
1

)
4

δx
(2)
1 =

(
x

(1)
1 − x

(2)
1

)
+
(
x

(3)
1 − x

(2)
1

)
+
(
x

(4)
1 − x

(2)
1

)
4

...

δx
(1)
2 =

(
x

(2)
2 − x

(1)
2

)
2

δx
(2)
2 =

(
x

(1)
2 − x

(2)
2

)
2

(2.37)

If the interface nodal responses are computed as in Equation 2.21, then, in

general, they will not be in equilibrium. For instance if we see the node 2, we

have that δf (1)
2 , δf

(2)
2 . So the Lagrange multiplier correction is constructed

by doing the same averaging between the results of the Dirichlet-to-Neumann

mapping, as follows

z7 =
−δf (1)

2 + δf (2)
2

2
(2.38)

The minus sign in here comes from the fact that this vectors have opposite

directions, because by convention, the entries of B(s)
Γ j

(Γ j connecting subdomains

s and q) are +1 if s > q and −1 otherwise. We chose to do same averaging to keep

a symmetric preconditioner. Doing the analogous averaging for the crosspoint
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of multiplicity 4, we have the corrections

z1 =
−δf (1)

1 + δf (2)
1

4
, z2 =

−δf (2)
1 + δf (3)

1

4

z3 =
−δf (3)

1 + δf (4)
1

4
, z4 =

−δf (1)
1 + δf (4)

1

4

z5 =
−δf (1)

1 + δf (3)
1

4
, z6 =

−δf (2)
1 + δf (4)

1

4

(2.39)

and the evaluation of z = F̃−1g is complete.

We can check that this Lagrange multiplier correction is consistent, in fact

if
4∑
s=1

δf
(s)

1 = 0 and
2∑
s=1

δf
(s)

2 = 0 (2.40)

then

B(1)T z =

−z1 − z4 − z5

−z7


=


1
4

(
δf

(1)
1 − δf (2)

1

)
+ 1

4

(
δf

(1)
1 − δf (4)

1

)
+ 1

4

(
δf

(1)
1 − δf (3)

1

)
δf

(1)
1 − δf (1)

1
2


=

δf (1)
1

δf
(1)

2


(2.41)

And the same happens in analogous way with the other subdomains, so for the

4 subdomain case the averaging process shows the construction of a consistent

preconditioner (Dirichlet or Lumped).

Lets show the extension of this averaging process to arbitrary meshes. Con-

sider any edge Γ i , then the compatible solutions x̂(s)
Γ i

can be constructed by

averaging all the nodes belonging to Γ i

x̂
(s)
Γ j

=
∑

r:Γ i⊆{Γ∩Γ (r)}

1
mi
x

(r)
Γ i

(2.42)
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where mi is the multiplicity of nodes in the edge Γ i . Then we build the following

consistent corrections

δx
(s)
Γ j

= x̂(s)
Γ j
− x(s)

Γ j

=
∑

r:Γ i⊆{Γ∩Γ (r)}
r,s

1
mi

(
x

(r)
Γ i
− x(s)

Γ i

)
(2.43)

and extended to the total subdomain interface we have

δx
(s)
b = −B(s)T diag

(
1
mj

) Ns∑
r=1

B(r)x
(r)
b

= −B(s)T E(s)g

(2.44)

where E(s) is a diagonal matrix with values that correspond to the multiplicity of

nodes in the edges that intersect Ω(s). This matrix can be seen as a scaling matrix.

Now we compute the interface responses δf (s)
b associated with this corrections

δx
(s)
b , the same as before we simply use Equation 2.21, as for the consistent

Lagrange multiplier corrections, we generalize the averaging showed in 2.38 and

2.39 to obtain

z = F̃−1g = diag
(

1
mi

) Ns∑
r=1

B(r)δf
(r)
b (2.45)

Again, lets check the consistency of this correction. We assume the interface

equilibrium condition 2.26 and using also 2.17 we have

B(s)T z = diag
(

1
mi

) Ns∑
r=1

B(s)T B(r)δf
(r)
b

= diag
(

1
mi

)
B(s)T B(s)δf

(s)
b + diag

(
1
mi

) Ns∑
r=1
r,s

B(s)T B(r)δf
(r)
b

= diag
(

1
mi

)
(diag (mi)− I)δf

(s)
b + diag

(
1
mi

)
δf

(s)
b

= δf (s)
b

(2.46)
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from which we have the consistency of the Lagrange multiplier correction z.

With this, we can write the consistent version of the Dirichlet and Lumped

preconditioners

D−1 =
∑
s

E(s)B(s)S
(s)
bbB

(s)T E(s) (2.47)

L−1 =
∑
s

E(s)B(s)K
(s)
bbB

(s)T E(s) (2.48)

Consistent preconditioner for heterogeneous problems

The previous scaling works in homogeneous problems when the stiffness ma-

trices of neighbouring subdomains are similar, and we can think that the com-

patible field is in the "middle" of them. In heterogeneous problem this is not

the case, as we can presume that the compatible solution will be closer to the

subdomain with a higher stiffness (from a mechanical point of view), making the

previous scaling to degrade in terms of convergence for this kind of problems.

To correct this behaviour, we will define a more general scaling, also consistent,

that can acknowledge this differences.

We start again by explaining the idea in a 4 subdomain case, as in Figure 2.2.

In this configuration we define the more general compatible field as

x̂
(1)
1 = x̂(2)

1 = x̂(3)
1 = x̂(4)

1

= β(1)
1 x̂

(1)
1 + β(2)

1 x̂
(2)
1 + β(3)

1 x̂
(3)
1 + β(4)

1 x̂
(4)
1

x̂
(1)
2 = x̂(2)

2

= β(1)
2 x̂

(1)
2 + β(2)

2 x̂
(2)
2

(2.49)

where the β(s)
k terms are smoothing or weighting coefficients defined in every

interface d.o.f. k of subdomain Ω(s). This coefficients must also be constrained

by

β
(1)
1 + β(2)

1 + β(3)
1 + β(4)

1 = 1

β
(1)
2 + β(2)

2 = 1
(2.50)

with this, the corrections vanish when the solution before weighting is already
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compatible. In this case, the consistent corrections are

δx
(1)
1 = x̂(1)

1 − x
(1)
1

= β(2)
1

(
x

(2)
1 − x

(1)
1

)
+ β(3)

1

(
x

(3)
1 − x

(1)
1

)
+ β(4)

1

(
x

(4)
1 − x

(1)
1

)
...

δx
(1)
2 = β(2)

2

(
x

(2)
2 − x

(1)
2

)
δx

(2)
2 = β(1)

2

(
x

(1)
2 − x

(2)
2

)
(2.51)

the interface responses are again computed using Equation 2.21, so the correc-

tions for the Lagrange multipliers are build using the same weighting

z1 = −β(2)
1 δf

(1)
1 + β(1)

1 δf
(2)

1 , z2 = −β(3)
1 δf

(2)
1 + β(2)

1 δf
(3)

1

z3 = −β(4)
1 δf

(3)
1 + β(3)

1 δf
(4)

1 , z4 = −β(4)
1 δf

(1)
1 + β(1)

1 δf
(4)

1

z5 = −β(3)
1 δf

(1)
1 + β(1)

1 δf
(3)

1 , z6 = −β(4)
1 δf

(2)
1 + β(2)

1 δf
(4)

1

z7 = −β(2)
2 δf

(1)
2 + β(2)

1 δf
(2)

2

(2.52)

Previous correction are in fact consistent, lets consider that the condition 2.26 is

fulfilled, then for the subdomain 1 we have

if
4∑
s=1

δf
(s)

1 = 0 and
2∑
s=1

δf
(s)

2 = 0 (2.53)

then

B(1)T z =

−z1 − z4 − z5

−z7


=


(
β

(2)
1 + β(4)

1 + β(3)
1

)
δf

(1)
1 − β(1)

1

(
δf

(2)
1 + δf (3)

1 + δf (4)
1

)
β

(2)
2 δf

(1)
2 − (1− β(2)

2 )δf (2)
2


=

δf (1)
1

δf
(1)

2


(2.54)
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The same happens for the other subdomains.

This process defines a generalization of the weighting procedure for an

arbitrary number of subdomains. The analysis is analogous as previous, but

considering a more general scaling matrix β(s), defined as the diagonal matrix of

weighting coefficients of the interface d.o.f. belonging to the neighbours of Ω(s).

The choice of this coefficients can be done using a physical criteria. In the

case of an elasticity problem (works for any elliptic PDE problem) we decouple

all the interface d.o.f. assuming that each one of them is connected to a stiffness-

free covering subdomain via a spring, in other words we see the stiffness of each

subdomain lumped to its interface, so the lumped stiffness matrix is diagonal

equal to diag
(
K

(s)
bb

)
, this weighting procedure is usually called Superlumped.

In general the coefficients are computed as the ratio between the stiffness

of an interface d.o.f. in some subdomain and the sum of all the stiffness of the

connected to this d.o.f. in all neighbouring subdomains. For example, for the 4

subdomain case, we have

β
(1)
1 =

k
(1)
11

k
(1)
11 + k(2)

11 + k(3)
11 + k(4)

11

β
(2)
1 =

k
(2)
11

k
(1)
11 + k(2)

11 + k(3)
11 + k(4)

11
...

β
(1)
2 =

k
(1)
22

k
(1)
22 + k(2)

22

β
(2)
2 =

k
(2)
22

k
(1)
22 + k(2)

22

(2.55)

And in general, this coefficients are computed for every edge Γ i by

β
(s)
Γ i

= diag
(
K

(s)
Γ i

)
∑

r:Γ j⊆{Γ∩Γ (r)}

diag
(
K

(s)
Γ j

)
−1

(2.56)
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So finally the preconditioners Dirichlet and Lumped respectively, added this

Superlumped scaling can be written as

D−1 =
∑
s

β(s)B(s)S
(s)
bbB

(s)T β(s) =
∑
s

B̃(s)S
(s)
bb B̃

(s)T (2.57)

L−1 =
∑
s

β(s)B(s)K
(s)
bbB

(s)T β(s) =
∑
s

B̃(s)K
(s)
bb B̃

(s)T (2.58)

with

B̃(s) := β(s)B(s) (2.59)

Remark: The implementation of this scaling is computationally efficient, it has

practically no difference in time cost with the basic form. We can see this

negligible extra cost summarized as

• One unique extra communication between processes, used to share the

stiffness values from neighbouring d.o.f.

• Construction of diagonal matrices β(s).

• At every multiplication by the preconditioner we add two extra by this

local diagonal scaling, which are negligible in parallel computation.

2.1.3 Simultaneous FETI

As seen in previous subsection the Dirichlet (or Lumped) preconditioner are

two correctors of the Lagrange multipliers imposed in the interface, they use

an averaging or scaling on the interface to make this correction consistent. This

averaging is necessary because the interface computed responses δf (s)
b to obtain

a compatible solution are, in general, different in two connected d.o.f.

The idea is now to use this two different corrected responses independently,

as search directions for the Conjugate Gradient method, as shown in [17].

We start again by showing this in a two-subdomain division, so lets consider

the p iteration of the CG method applied to the FETI-1LM method (no projection

is consider in this simple case). Then, we first solve the local Dirichlet problem

consisting in enforcing on the interface the compatibility gap gp and we compute
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the boundary reaction which write

δf (s),p = S(s)
bb B̃

(s)T gp, s = 1,2 (2.60)

In the classical Dirichlet preconditioner we evaluate and approximate correction

to the Lagrange multipliers by computing a weighted inter-subdomain vector

based on δf (s),p. Let us now consider this boundary conditions on each side

of the interface as descent direction for the CG algorithm by writing the new

update of the interface Lagrange multiplier λ

λp+1 = λp + ρ(1),pB̃(1)δf (1),p + ρ(2),pB̃(2)δf (2),p (2.61)

Assuming now that, instead of using this boundary reactions directly, we use

δλ(1),p = B̃(1)δf (1),p +
2∑
s=1

p−1∑
l=0

α(s),lδλ(s),l

δλ(2),p = B̃(2)δf (2),p +α(2),pδf (1),p +
2∑
s=1

p−1∑
l=0

γ (s),lδλ(s),l

(2.62)

such that δλ(2),p is orthogonal to δλ(1),p and that both directions are orthogonal

to all previous directions

δλ(1),pT Fδλ(2),p = 0

δλ(s),pT Fδλ(r),l = 0, r, s = 1,2 l = 0, . . . ,p − 1
(2.63)

Then, the new update is

λp+1 = λp + ρ(1),pδλ(1),p + ρ(2),pδλ(2),p

gp+1 = gp + ρ(1),pFδλ(1),p + ρ(2),pFδλ(2),p
(2.64)

the direction coefficient ρ(s),p can be determined by this new orthogonality



100 CHAPTER 2. Block FETI methods

relations

(gp+1 · δλ(1),p) = (gp · δλ(1),p) + ρ(1),p(Fδλ(1),p · δλ(1),p) + ρ(2),p(Fδλ(2),p · δλ(1),p)

0 = (gp · δλ(1),p) + ρ(1),p(Fδλ(1),p · δλ(1),p)

(2.65)

(gp+1 · δλ(2),p) = (gp · δλ(2),p) + ρ(1),p(Fδλ(1),p · δλ(2),p) + ρ(2),p(Fδλ(2),p · δλ(2),p)

0 = (gp · δλ(2),p) + ρ(2),p(Fδλ(2),p · δλ(2),p)

(2.66)

which implies

ρ(s),p = −
(gp · δλ(s),p)

(δλ(s),p ·Fδλ(s),p)
, s = 1,2 (2.67)

that correspond to the same as the regular CG method. With this we can note

that one of the fundamental features of this new algorithm is that even if at each

iteration the minimization is done with respect to two descent directions, the

cost of this is equivalent to the cost of a normal conjugate gradient direction.

Actually, recalling that the directions come from a Dirichlet problem, we note

that

FB̃(1)δf (1),p =
(
B̃(1)S

(1)−1

bb B̃(1)T + B̃(2)S
(2)−1

bb B̃(2)T
)
B̃(1)S

(1)
bb B̃

(1)T gp

= gp + B̃(2)S
(2)−1

bb B̃(2)T B̃(1)δf (1),p
(2.68)

FB̃(2)δf (2),p =
(
B̃(1)S

(1)−1

bb B̃(1)T + B̃(2)S
(2)−1

bb B̃(2)T
)
B̃(2)S

(2)
bb B̃

(2)T gp

= gp + B̃(1)S
(1)−1

bb B̃(1)T B̃(2)δf (2),p
(2.69)

And in this case we see that applying the FETI operator to both descent directions

only requires one Neumann solution per subdomain.

In the generalized version, we don’t expect to have this exact same property

of cost equivalency between method, but we do expect a reduced number of

multiplication by the FETI operator that will lead to a faster method in general.

We will now show the extension done in [39] to this new method for arbitrary

meshes.
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2.1.4 The Algorithm

The idea is to exploit the additive structure of the preconditioner in FETI and

generate several search directions, instead of one, in every step of the CG method.

The basic S-FETI method generates one for each subdomain, but in a straightfor-

ward way this number can be two times the total number of local interfaces in

the problem.

In this section the notation and definitions comes from the previous chap-

ter, where the original FETI method is described. With this in mind, we can

remember the construction of a search direction in the classical FETI method.

We denote this direction w ∈ Rn, n being the size of the interface, used by the

Conjugate Gradient algorithm.

The consistent Dirichlet operator, defined in 2.57, is first applied to the global

residual vector g

w =D−1g =

∑
s

D(s)−1

g (2.70)

where

D(s)−1
= B̃(s)S

(s)
bb B̃

(s)T (2.71)

then the vector w is orthogonalized with respect to previous search directions to

generate the new one.

The idea of S-FETI is to improve the minimisation process in CG by spanning

a search space, not from the addition of local contributions, but from each

of this terms separately, letting the process to choose the best combination.

Although more costly, this optimal combination minimizes the residual in the

space generated by

Z =
[
D(1)−1

g,D(2)−1
g, . . . ,D(Ns)−1

g
]

(2.72)

where Ns is the number of subdomains.

Each one of this columns is then projected and orthogonalized to give the

blockW ofNs columns, where each column correspond to a new search direction.

The update of the solution λ of the CG algorithm at the p iteration is done

simultaneously (analogous to Equation 2.64) for all this orthogonal vectors in
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a similar way that the classic CG, by adding the linear combination of these

directions that minimizes the error in the F-norm

λp+1 = λp +Wpρp (2.73)

with ρp ∈RNs such that

ρp = (W T
p FWp)+ZTp gp (2.74)

Since the classical search direction is such that

wp =Wp(1, . . . ,1)T ∈ range(Wp) (2.75)

this new approximation is better than the usual one given by the CG algorithm.

We can see the need of find the inverse of the matrix W T
p FWp ∈ R

Ns×Ns .

Because Wp is formed from local contributions, we would expect that it is full-

ranked. This is not always the case (details will be given in later sections) and we

only have a symmetric positive semidefinite matrix that can be pseudo-inverted.

To avoid this pseudo inversion, another equivalent option is to eliminate

some directions to recover a smaller full-ranked family inWp. The approximated

solution will be the same, but fewer vectors would need to be stored at every

iteration.

To build this smaller full-ranked family, a rank revealing Cholesky factoriza-

tion with complete pivoting is used, giving

NT (W T
p FWp)N = LLT (2.76)

where N is a permutation matrix and

L =

L̃ 0

× 0

 (2.77)

with L̃ a lower triangular matrix of full rank. The F-orthogonalization of the
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directions in the block Wp can be done by

Wp←WpN

L̃−T0


FWp← FWpN

L̃−T0


(2.78)

where we are suppressing the redundant directions. The computation of the

optimization parameters ρp is now

ρp =W T
p gp (2.79)

In Algorithm 8 we can find the description for this method. The definition of

the projection and the matrices to compute λ0 are defined as in previous FETI

methods (5).

Algorithm 8 S-FETI algorithm
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = P T (Fλ0 − d)
4: Z0 = [. . . ,D(s)−1

g0, . . . ], s = 1,Ns
5: W0 = P Z0
6: loop Iterate p = 0,1,2, ... until convergence
7: NLLTNT =W T

p FWp

8: Wp =WpNL
−T

9: ρp = −W T
p gp

10: λp+1 = λp +Wpρp
11: gp+1 = gp + P T FWpρp
12: Zp+1 = [. . . ,D(s)−1

gp+1, . . . ], s = 1,Ns
13: Wp+1 = P Zp+1
14: for i = 0 to p do
15: Φi = −W T

i FWp+1
16: Wp+1 =Wp+1 +WiΦi
17: FWp+1 = FWp+1 +FWiΦi
18: end for
19: end loop
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We note that when building the block of search directions in every iteration

we are not making this block orthogonal to the ones computed in previous

steps, meaning that in fact we are losing the short recurrence of the Conjugate

Gradient method, adding the need of doing a full orthogonalization at every

iteration. In any case this drawback is only theoretical since in practice this full

orthogonalization is also needed in order to keep the numerical accuracy of FETI

methods in general.

With this orthogonalization it can be proved the following minimization

property

Theorem 2.1. The approximate solution computed by the p iteration of the S-FETI
method minimizes the error ‖λp − P λ‖F over the space

λp ∈
p−1⊕
i=0

span
{
Wi

}
(2.80)

where ⊕ is the direct sum and Wi is defined by Algorithm 8

Proof. The proof is done in [39] following the usual demonstration for CG, see

[69].

One particularity of this method is that we are no longer minimizing over

a Krylov space. This is because at every iteration, the approximate solution

is updated in the different directions given by the optimal combination of all

local preconditioners, making the coefficients ρ to change from one iteration

to another. This fact won’t allow to find a bound (heuristic) for the number of

iterations, but in any case we will expect a good robustness that can be explained

by the similarities of this method and the FETI-Geneo method [75].

Remark The S-FETI method has been shown to be very efficient on hard

problems where the classical FETI require many iterations. The convergence

is comparable to the one in FETI-Geneo algorithm where a coarse space is

constructed by solving in each subdomain and at every iteration the generalized
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eigenvalue problem

S
(s)
bb v

(s) −µB(s)TD−1B(s)v(s) = 0 s = 1, . . . ,Ns (2.81)

This problem allows to isolate the part of the solution on which the precondi-

tioner is not sufficiently efficient for the iterative solver to perform well. The

vectors detected are the ones where the restriction of the global preconditioner is

not a good approximation of the non-assembled local component S(s)
bb of the FETI

operator. In S-FETI the solution space comes from the successive applications

of the local non-assembled components B(s)S
(s)
bbB

(s)T and the assembled FETI

operator F, so the block of search directions spans a space where the local effects

are taken in account. It is then similar to the deflated space where the Geneo

iterations take place, and thus convergence is expected to be very fast.

Extension to local interface division

In the regular first version of the S-FETI method, the preconditioner is decom-

posed in the local contributions

D(s)−1
= B(s)S

(s)
bbB

(s)T (2.82)

where S(s)
bb is the Schur complement of the internal nodes into the interface

ones. This implies that we use the complete local interface Γ (s) to build the

different search directions, but different interactions can occur for the same

subdomain, depending on the characteristics of each of his neighbours. If all

of the neighbours have similar properties, then the use of the complete local

interface is justified. If this is not the case, for example in Figure 2.3, then we

can again divide the local interface into the different interface edges, one for

each neighbour, to take into account this differences, increasing the number of

search directions built and improving the approximation of the local behaviour,

hence ameliorating the convergence of the method.

The formal construction of this search directions comes from the definition

of the preconditioner, and the definition of the interface edge given in previous
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E1=0,1 E3=1000

E2=10

Γ(1)
1

Γ(2)
1

Γ(2)
2

Γ(1)
2

Γ(3)
1

Γ(3)
2

Figure 2.3 – Local interfaces with completely different subdomains (Young’s
modulus 0,1 ≤ E ≤ 1000)

sections. Lets consider the Dirichlet preconditioner with any consistent scaling

D−1 =
Ns∑
s=1

B̃(s)S
(s)
bb B̃

(s)T (2.83)

then in the S-FETI method we consider the local contributions separately

D(s)−1
= B̃(s)S

(s)
bb B̃

(s)T (2.84)

from which we created theNs different search directions. This operator is applied

in the CG method to the computed gradient g, defined in the total interface Γ .

To do this we first multiply by the assembling scaled matrix B̃(s)T and then we

compute the forces needed to have this displacement

δf
(s)
bb = S(s)

bb B̃
(s)T g (2.85)

We know that this forces are defined in the local interface Γ (s), but since their

interactions may change from one neighbour to another, we create new vectors
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that reflect this interactions separately by considering the restrictions to the

interface edges Γ (sq) = ∂Ω(s) ∪∂Ω(q)

δf
(s)
Γ (sq) = δf (s)

bb |Γ (sq) s = 1, . . . ,Ns, q = 1, . . . ,n(s) (2.86)

where n(s) is the number of neighbour subdomains in Ω(s). We extend this vector

by zero to match the size of the interface Γ (s)

f̃
(s)
Γ (sq) =



0
...

0

δf
(s)
Γ (sq)

0
...

0


(2.87)

each one of this vectors is rescaled to recover the consistent property, and with

this form the columns of the block used to build the different search directions

D
(s)−1

Γ (sq) g = B̃(s)f̃
(s)
Γ (sq) s = 1, . . . ,Ns, q = 1, . . . ,n(s) (2.88)

so finally the search space will now be generated by the block

Z =
[
. . . ,D

(s)−1

Γ (sq) g, . . .
]

s = 1, . . . ,Ns, q = 1, . . . ,n(s) (2.89)

in this case we won’t be having one column from each subdomain, but instead

there will be one for each local edge (or neighbour). This will allow to span an

even bigger search space at the cost of computing all the extra directions.

Graphically we can see the difference between this block and the regular one,
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Ω1 Ω3   

Ω2

z1

z2 z3

z4

Figure 2.4 – Three subdomain subdivision and computed corrections

by looking at Figure 2.4 an noting that the blocks in both cases will be

Subdomain division⇒ Z =

z1 z2 0

0 z3 z4


Interface division⇒ Z =

z1 z2 0 0

0 0 z3 z4


(2.90)

We note here that when the problem is divided in much more subdomains, the

block Z will show an sparse pattern, since in every column, only the values

associated to Γ (s) (or in particular Γ (sq)) are non zero. This fact will be a very

important in the practical implementation of the method, as we will see later in

this section.

As done in the regular S-FETI to compute the final search directions, each of

the columns of Z needs to be projected and then orthogonalized with the previ-

ous directions. Then we use the same rank revealing strategy 2.78 to compute

the inverse of W T
p FWp and eliminate the useless directions. The algorithm is

analogous to the previous one and is described in 9.

Both algorithm for S-FETI, shows an implementation in general lines of the

method, but several optimizations can be done by using different strategies, all

of this in order to reach for the maximum performance of this method.
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Algorithm 9 S-FETI algorithm interface
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = P T (Fλ0 − d)

4: Z0 = [. . . ,D(s)−1

Γ (sq) g0, . . . ], s = 1,Ns q = 1, . . . ,n(s)

5: W0 = P Z0
6: loop Iterate p = 0,1,2, ... until convergence
7: NLLTNT =W T

p FWp

8: Wp =WpNL
−T

9: ρp = −W T
p gp

10: λp+1 = λp +Wpρp
11: gp+1 = gp + P T FWpρp

12: Zp+1 = [. . . ,D(s)−1

Γ (sq) gp+1, . . . ], s = 1,Ns q = 1, . . . ,n(s)

13: Wp+1 = P Zp+1
14: for i = 0 to p do
15: Φi = −W T

i FWp+1
16: Wp+1 =Wp+1 +WiΦi
17: FWp+1 = FWp+1 +FWiΦi
18: end for
19: end loop
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2.1.5 Cost and implementation of S-FETI

One of the characteristic of this method is the reduction in the number of total

iterations versus the classical FETI, at the cost of the extra computations in each

step. However, even if the cost of in each iteration does require a much larger

computational effort, several strategies in the implementation of the code leads

to efficient local and global optimizations, in order to reduce this cost differences.

We start by summarizing the main changes in the cost of S-FETI vs FETI-1LM.

1. The number of exchanges phases is the same. The communications between

neighbours are almost identical, with one less interface exchange when

computing the Dirichlet preconditioner.

The main difference is that the exchanges in S-FETI involve more data,

increasing to NT ×NT for the matrices W T
p FWp, Φ and to NT for the vector

ρ, where NT is either the number of subdomains (in the basic S-FETI) or

NT = O(Ns) (actually is two times the number of local interfaces) when

using the local interface subdivision. Also the full reorthogonalization

process is now done in a block way, so we change the vector operations by

matrix operations, so again, same number of exchanges and computation,

but with more data involved.

The advantages from keeping the number of interchanges, but increasing

the size of the data are more clear if we consider the time consumption of

the communications within an MPI implementation [13].

In general the cost of communication between processes (in our case, the

total number of processes is the number of subdomains) can be described

by

T (n) = α +nβ (2.91)

where

n :number of dataitems.

α :startup time.

β :transmissiontimeper dataitem.

(2.92)
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The start-up cost is due to both hardware and software overhead on the

sending and the receiving process. Typically, α is four to five orders

of magnitude greater than β, where β is on the order of the cost of an

instruction.

All this considerations, gives us some general lower bounds in time for

the communications, the most important one in the start-up time, which

depends on the number of processes (subdomains), and is independent of

the type of communication, either send-receive or reduce operations. This

is

T (n) ≥ log2(p)α, p : processes (2.93)

For this reason, avoiding communication is a main issue in parallel pro-

gramming and therefore, in the S-FETI method, big part of the speedup

comes from the reduction in the total number of exchange phases (as they

are the same as in FETI per iteration, but the total iterations are reduced).

2. The addition of a Cholesky factorization of the small NT ×NT dense sym-

metric positive semidefinite matrix W T
p FWp is now needed.

In the next section we will give more details about this and we will show

an alternative to this procedure.

3. The number of stored directions is increased. Since the number of search

directions increases in every iteration, we now store block of directions Wp

and FWp instead of single vectors.

A priori this difference may not be very significant, but as we will see

later, it will turn in a mayor drawback for some cases, specially when us-

ing the modified version of S-FETI, where even more directions are created.

4. In general, the most costly part of a FETI algorithm is the computation of

solutions of the local Neumann and Dirichlet problems in each subdomain.
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In the case of the Dirichlet problem for the preconditioning, there is no

difference between the methods, but the F operator must now be applied to

theNT columns inWp, meaning that, a priori, NT local Neumann problems

should be solved at every iteration. However, this computations can be

performed efficiently, see Table 2.1.

As already said in the first point, communication cost is mainly driven by

the start-up time, and when multiplying F by a block instead of a vector,

the number of interchanges does not change, only the size of it, meaning

that we will avoid the significant start-up time, for each iteration reduced

with this method.

Another point to consider is that block operations are proportionally less

expensive than single vector ones -e.g. N times a matrix-vector product

versus a matrix-matrix product with N columns in the second matrix-, this

is because the computation time is driven by the memory access. More

details of this will be in the following implementation part.

Finally, but more important in our case, is the clever use of the locality of

data. Lets note that the matrix Zp+1 is a sparse matrix, this is due to the

fact that each column associated to the preconditioner coming from the

subdomain Ω(s) is non zero only in the local interface Γ (s) (or Γ (sq)) while

in contrast Wp+1 it is not, because of the projection and orthogonalization.

Moreover, we can observe that

FWj+1 = FPZj+1 +
j∑
i=0

FWiΦij

=
(
FZj+1 −FAG[GTAG]−1GTZj+1

)
+

j∑
i=0

FWiΦij

(2.94)

where we remember that A is a symmetric matrix, that can be the taken

as the preconditioner, some scaling matrix or the identity matrix in the

simplest case.

The theoretical optimal choice for A is to use the preconditioner, either
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Dirichlet or Lumped A = D−1 or A = L−1 respectively. Both choices are

rather computationally expensive compared to some other alternatives.

From here on, we will choose

A =
Ns∑
s=1

B̃(s)diag
(
K

(s)
bb

)
B̃(s)T (2.95)

This is the so called Sumper Lumped scaling, which has the property of

being computationally inexpensive. This comes from the fact that we

only need to multiply locally by a diagonal matrix. At the same time, the

convergence ratio of the FETI method is improved, see [36].

Previous equation shows that in every iteration we only need to solve the

localized problems FZp+1 using the sparsity of Zp+1 and the computation

of the projection is done by computing the also sparse matrix (FAG) during

the initialization once and for all.

More details of this computations will be given in the details of the implementa-

tion to come next.

Remark: With all this differences, the final extra cost per iteration remains

very small when NT is not too large. Also, the total of Neumann problems to

solve in each subdomain can be done simultaneously as a block, greatly reducing

the cost of the method.

This extra costs needs to be compared with the final number of iterations given

by the method, where a reduction of the order of NT is expected, making the

total time of this method an improvement compared to the computation time in

FETI-1LM.

To understand how some of the computations are done in order to improve

the efficiency of S-FETI, we can now give some details of the practical implemen-

tation

1. Lets return to the last point in the cost of the S-FETI method, the simulta-
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neous forward-backward substitutions. By definition, the columns of Zp
related to Ω(s) (the s-column in the regular S-FETI) are nonzero only on the

interface Γ (sq), so given a column in Zp, its product by F requires solving a

Neumann problem only in the subdomain itself and its neighbour Ω(q). On

the other hand, given one subdomain Ω(s), the workload associated with

the computation of FZp isN Neumann solves, where

Subdomain division⇒N = neighbours+ 1

Interface division⇒N = 2×neighbours
(2.96)

In particular, this is much fewer than the rank of ZTp , which is in the order

of the number of subdomains (the exact number of subdomain in the first

version).

If we compute the multiple local solutions at once, the efficiency is greatly

improved on a multi-core machine. In fact, the difference between doingN
forward-backward substitution for the separate vectors and doing a single

substitution with N -rhs (right hand side) lies in the number of memory

accesses between them. In the second case we do almost the same number

of accesses than a single rhs (which is the number of non zero entries of

the factorized matrix), meaning that even if we multiply the arithmetic

complexity byN we will not have the bottleneck that is the memory access.

To understand this we need to see how the memory access on a single or

multi-core machine works. On a single core machine, we identify 5 levels

of memory from which the data must move before doing a computation

at the top. This leveles can be seen as a pyramid, where the top of the

pyramid contains the memory that is the fastest, and also the smallest, and

the bottom of the pyramid contains the memory that is the slowest but also

the largest.

The best routines to take advantage of such a pyramid are the Basic Linear

Algebra Subprograms of level 3 kernels (BLAS3). The reason they can take

the greatest advantage of this hierarchy is that their memory interaction

can be organized in a fashion such that it takes advantage of the various
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Number of cores Substitutions Time (s)
1 1 0.7

12 12 1

Table 2.1 – Time for forward-backward substitution on multi-core processor.

stages of the pyramid, this leads to have an order of magnitude more

computation than memory interaction. In Level-2 BLAS we have O(n2)

data moves and O(n2) operations, whereas in BLAS3 we have the same

number of data moves O(n2) but we improve the operations to O(n3).

The pyramid concept does not completely map to modern multi-core

optimization, however the difference is that on multi-core, there are often

many cores at the top of the pyramid, and they may have a shared memories

between them.

As an example given in [39] we can name the case of a sparse matrix of

dimension 2× 105 on a 12-core Intel Nehalem processor, Santa Clara, Cali-

fornia, US. In Table 2.1 we can see the time for a single forward-backward

substitution versus 12 simultaneous substitutions on 12 cores using the

PARDISO solver [71]. With this results we can see that a good local op-

timization reduces the impact of the extra computations in S-FETI on

multi-core machines.

2. Another important issue is the parallel implementation of the projector P .

Lets recall its definition

P = I −AG(GTAG)−1GT (2.97)

as previously said, we will consider A as the super lumped scaling to avoid

expensive extra computational cost, the projector is then denoted by PA.

Even if this projection is not local, it only performs a low-rank correction.

With this, the computation of P Zp implies a small extra cost.
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In practice what it is done, is first consider

PAZp = Zp − (AG)αp where αp solves (GTAG)αp = GTZp (2.98)

This will guarantee that GT PIZp = 0. We recall the definition of G

G =
[
B(1)t(1)R(1) . . .B(Ns)t(Ns)R(Ns)

]
(2.99)

where R(s) = ker(Ω(s)). Comparing the definition of G and Zp we can see

that their sparse pattern are very similar, in fact in both cases for each

column associated to the subdomain Ω(s) the pattern is the same, meaning

that, given a column Z(sq)
p of Zp, GTZ(sq)

p is computed by applying only dot

products by the columns of G corresponding to Ω(s) and its neighbours.

The matrix (GTAG) is factorized during the initialization, so the compu-

tation of αp is done via a forward-backward substitution. Furthermore, it

can be done in parallel, each subdomain Ω(s) solving for his own columns

(the ones associated to Γ (sq), q = 1, . . . ,n(s)) the following system

(GTAG)α(sq)
p = GTZ(sq)

p (2.100)

We know that αp is a dense matrix with the same number of rows that the

rank(GT ) and with NT columns (the same as Zp), but in any case, once it is

computed we only require a low-rank correction of Zp in each subdomain,

because only a few columns of G are nonzero in Ω(s), with this we compute

the total correction

PAZp = Zp −AGαp (2.101)

To understand better this procedure, and the general implementation

for the treatment of each sparse block, we will define what we call the

coarse modes, this modes correspond to the non-null vectors in each one of

the columns of the matrices Z,G,FZ,FAG. They are stored in each local

interface of each subdomain, and have a correspondence with the named

global matrices.

In the left part of Figure 2.5 we show from a subdomain point of view
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the different coarse modes stored. They are the local (but shared with

neighbours) modes that describes Z or G, so for each interface we save

one local mode and one from its neighbour. This double storage allows

to perform computations of, for example GTZ, in each subdomain by

only performing dot products between the coarse modes saved in each

interface of each subdomain. This way of storage is generalized to allow

local computations between this 4 matrices only by performing operations

between the different modes stored this way.

In the case of the multiplication by the operator F, we perform in each

subdomain a forward-backward substitution of each one of the modes

previously described or in the basic case they are considered as an single

mode (when doing the local subdivision it is 2×neighours), and then also

storing the resulting (more numerous) modes in each interface.

Also in the left drawing we see the subdomains sharing the interfaces

involved in multiplications by the F operator.

In the right part of Figure 2.5 we show the coarse modes that describes

FZ or FAG stored in one of the interfaces of certain subdomains. For each

local interface we save the modes corresponding to the local modes after

the forward-backward substitution plus the modes of the neighbour after

the substitution.

Again, this implementation in form of coarse modes, allows the computa-

tions of matrix products such asGT (FAG), only by performing dot products

between this modes. This implementation also explains how the single

multi-rhs substitution is done, just by arranging (copy) the coarse modes

in a block matrix. The same way we can improve multiple dot products

computations by arranging the modes in order to perform matrix-vector

products or matrix-matrix products that improve the performance of this

type of computations (See previous point).

3. The previous process it is also important in the calculations to obtain FWp.

Lets recall that the orthogonalization process that leads to FWp is applied

to the block FPZp, so we need first to compute this block. To do so, we use
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SUBDOMAIN INTERFACE

Ω(s) Ω(q)Ω(s)

Figure 2.5 –
Subdomain point of view (Left): In red the coarse modes describing Z or G owned
by subdomain Ω(s), in black the interfaces where F times the red modes is also
non null.
Interface point of view (Right): In doted lines the coarse modes describing FZ or
FAG owned by local interface Γ (sq) between subdomains Ω(s) and Ω(q), in black
the modes where, due to Γ (sq), ZT (FZ) is non null.

the matrix αp previously computed in the previous point, the we need to

do

FPZp = FZp − (FAG)αp (2.102)

Again what we are doing here is a low-rank correction, but this time of FZp.

The difference is that,to do this corrections, we now use the sparse pattern

of (FAG) (each column is nonzero in Ω(s) and its neighbours) instead of

the one in G. The sparse matrix (FAG) is calculated at the initialization

once and for all.

4. The last item is the one regarding the orthogonalization and full reorthog-

onalization procedures for the search directions. As said in the previous

item, once the block P Zp is computed they must be F-orthogonalized to

obtain the search directions Wp and its corresponding block FWp. This

can be achieved by using the classical modified Gram-Schmidt procedure,

which will require the use of many communications between subdomains,
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typically Message Passing Interface (MPI) reductions of dimension 1.

To avoid this many communications we can compute (P Zp)T (FPZp) by

using the local contribution of each subdomain obtained with the BLAS3

and then doing only one MPI reduction. The Cholesky factorization is then

applied to compute the block of directions Wp as in line [8] of Algorithm 9.

As for the full reorthogonalization process, we use a block modified Gram-

Schmidt procedure with this same BLAS3 strategy in order to have a

number of MPI reductions equal to the ones used in classical FETI, but

changing from one vector to a matrix and also changing the size of the

reductions from 1 to at most NT ×NT .

The evaluation of all this considerations for a good implementation will be

shown in the numerical results at the end of this chapter.

2.2 Sorting search directions in S-FETI

The block version of the FETI method is proved to be a great improvement in

comparison with his basic version, all based in the idea of enlarging the search

space of the solution. As a consequence of this extension, we have changes

in the algorithm that will impact the execution time. We already name in

the previous chapter the main differences between them, we studied the cost

difference between FETI and S-FETI where we point out the need to inverse the

matrix W T FW .

This matrix is in general positive semi definite because of the linear depen-

dency that may occur in the directions built so we can only aim to compute a

pseudo inverse, but for this same reason it can also be used to sort the different

directions between the useful ones and the rest. Even if, a priori, the computa-

tion of this pseudo inverse is cheap in terms of time consumption his impact in

the final results of the algorithm needs a detailed study.
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2.2.1 Linear dependence in block FETI directions

We start this section by recalling the search block built from the preconditioner,

that is computed in every iteration as

Wp = P Zp +
p−1∑
i=0

WiΦip (2.103)

This block is orthogonalized with respect to previous blocks Wi already stored.

Also the columns of each of the stored block, need to form an F-orthonormal

family, which is the norm used in CG algorithm, i.e. for every block they need to

fulfill

W T
p FWp = I (2.104)

From this we know that we also have to find a decomposition of W T
p FWp that

allows us to modify the basic blocks to build this orthonormal family, thus the

need to study the properties of this matrix.

Since F is symmetric it’s clear that this matrix is also symmetric, but it is not

so evident that will be positive definite. The lack of this property comes from the

fact that a linear dependence between the columns of Wp can appear at certain

point of the main iteration. This dependence comes mainly from two issues, the

first is the convergence in some of the local interfaces and second is the working

precision.

To give a better understanding of the first issue, we have to consider that

the global interface is built from the smaller local interfaces that exist between

two neighbour subdomain, and the characteristics of each of this local interfaces

varies from one to another, all being of variable size (as in number of d.o.f.) and

also with different mechanical properties along the same. Both characteristic

have an impact in the convergence of the method.

For the simpler or smaller local interfaces we expect a faster convergence, for

example in a 2D elasticity problem, if the interface is made of 1 node (e.g. in a

corner) the convergence is achieved in 2 iterations, so the columns created from

this interface (in the subdivided version of S-FETI) will be no longer useful and

the linear dependence appears.
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For the problem of representation in limited precision arithmetic, depending

on the configuration, but also closely related to the phenomenon of achieved

convergence, we can have directions whose differences are so small that it’s

difficult to distinguish it from numeric noise, meaning that in practice we have

the same direction, so the use of them is redundant.

With both previous issues in consideration it is clear that the matrix W T
p FWp

is only positive semi-definite so no full inverse exists. We have two choices

from here, either compute a pseudo inverse and use the complete block with

redundancies, or we can sort the directions in order to build a smaller but

full block with the exact same information but less computational effort in the

operations to follow.

The second choice is in practice the best one. To make this sorting, in [39] a

Cholesky factorization is proposed, but we can also add a second way that consist

in apply a diagonalization process to the matrix W T
p FWp. Both procedures will

be detailed in the next sections.

2.2.2 Cholesky factorization with complete pivoting

For the process of F-orthonormalization done to the block of search directions,

as already said, we start with the decomposition of the W T
p FWp matrix. Since

this matrix is symmetric we can use the Cholesky decomposition, instead of a

regular QR decomposition, meaning that at each step of the algorithm a lower

triangular matrix Lp is built. This matrix is such that

W T
p FWp = LpL

T
p (2.105)

This decomposition only works if the previous matrix is of full ranking, since

this is not our case, we need to use the alternative Cholesky decomposition with

complete pivoting (symmetric pivoting) described in [44]. The algorithm for this

factorization is proved to work as a rank revealing procedure. This is achieved

by computing an square permutation matrix N , in this case the decomposition

can be written as

NTW T
p FWpN = LpL

T
p (2.106)
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and if we look in detail the matrix Lp we know that it can be described as

Lp =

L̃p 0

× 0

 (2.107)

where

L̃p ∈Rr×r (2.108)

this smaller matrix is lower triangular with positive elements in the diagonal

and it has a full rank r ≤NT , which is at the same time the rank of the W T
p FWp

matrix.

The existence of the permutation matrix (proved in [46], Thm. 10.9) allows

to sort the directions that are useful from the rest. This is simply done by taking

the first r columns of WpN .

In summary, at each iteration of the method, the directions to be used and

stored are defined as

Wp← (WpN )
[
L̃−1
p 0

]T
(2.109)

this block of sorted directions fulfills the 2.104 condition, in fact[
L̃−1
p 0

]
(WpN )T F(WpN )

[
L̃−1
p 0

]T
=

[
L̃−1
p 0

]
LpL

T
p

[
L̃−1
p 0

]T
=

[
L̃−1
p L̃p 0

] [
L̃−1
p L̃p 0

]T
=

I0


(2.110)

with I ∈Rr×r .

The algorithm for the computation of the Cholesky factorization, introduces

the use of a new parameter ε > 0 close to zero, to determine at which point

we are in the presence of linear dependence. If this parameter is too small we

can be working within the numerical noise and losing precision in the total

convergence, but on the contrary using one that is too big can have the impact of

losing directions that may be important for the convergence.

Finding the optimal ε is not easy task and is usually chosen based in nu-

merical experiences, but as a basic consideration, we’ll try to be closer to the
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"losing" directions approach because, even if we can have a slower convergence,

eventually we will recover this directions in later iterations. On the other hand,

working within the range of the natural noise of the method, can only introduce

sources of error harder to control, and may even be ending in blowups.

Usually a regular double precision implementation should be enough, but

introducing new sources of numerical instabilities needs to be done carefully,

so later in numerical tests we’ll compare the use of quadruple precision in the

computation of the Cholesky decomposition for this matrix, as an alternative for

accurately capture the directions needed.

2.2.3 Diagonalization of search directions block

The second way to treat the sorting of independent search directions can be done

using a diagonalization process. At first we now that this procedure will lead to

the decomposition

W T
p FWp = EpDpE

−1
p (2.111)

Where Ep is the matrix of the eigenvectors in the columns, and Dp is a diagonal

matrix with the eigenvalues in the diagonal. In our case, the matrix is real and

symmetric so we have that E−1
p = ETp . Hence, if we are looking for a block that

fulfills the condition 2.104 we can use the previous decomposition to build it.

First, we know that

W T
p FWp = EpDpE

T
p (2.112)

this implies that

ETpW
T
p FWpEp =Dp (2.113)

and since the matrix Dp is diagonal, we can easily find its inverse and even

more we can divide it into the multiplication of two diagonal invertible matrices,

meaning that we build

ETpW
T
p FWpEp =D1/2

p D1/2
p

(WpEpD
−1/2
p )T F(WpEpD

−1/2
p ) = I

(2.114)



124 CHAPTER 2. Block FETI methods

And so our F-orthogonalized search directions can be constructed by doing

Wp←WpEpD
−1/2
p (2.115)

The previous diagonalization process works if the matrix W T
p FWp is invertible,

but we only have that is positive semi-definite, so the eigenvectors are greater or

equal than zero.

The common algorithms for the computation of eigenvalues can be used to

obtain them in descending (or ascending) order. This fact will allow us to build

a smaller F-orthonormal full block of search directions by taking into account

the biggest of this eigenvalues and their associated eigenvectors, so again, the

construction is the same as previous, but we will only consider the r biggest

eigenvalues to build then the block

Wp←WpẼpD̃
−1/2
p (2.116)

where

rank(W T
p FWp) = rank(ẼTp ) = rank(D̃p) = r (2.117)

meaning that no information will be missing from this sorting.

The treatment of the linear dependencies, is still limited by some ε > 0

parameter, but now this is done in a clearer way, because the algorithm for the

computation of the eigenvectors and eigenvalues will give them in decreasing

order, so the biggest values, and thus the most important ones, are the first

columns of Ep so we can eliminate the smallest eigenvalues and vectors below

the threshold ε. In this case the dependence between this parameter and the

final result is less important than in the cholesky factorization because we do not

eliminate certain directions, but instead we build a smaller full block containing

all the relevant information.

The impact in time of the diagonalization process is minimal, because of the

size of the matrix we are solving depends on the number of subdomains. Also the

use of LAPACK algorithm with BLAS optimization, allows a fast computation in

every subdomain.
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Subdomains Iterations Memory (Gb) Directions stored
125 7 484 11176

Table 2.2 – Direction stored in a 5x5x5 cube configuration

Remark: Later in the numerical results we will also show the impact in the

use of the Lumped preconditioner, as an economical alternative to add into this

new decomposition.

2.3 Memory usage in S-FETI

In previous sections we stipulate that one of the difference between the S-FETI

method and the classical FETI lies in the total memory use of both of them. For

the classical FETI, only two vectors are stored at each iteration, they correspond

to the search direction and its multiplication by F. On the other hand, in S-FETI

the number of search directions built in every iteration is increased, making

mandatory the storage of blocks Wp and FWp. This difference is in fact one main

drawback in the implementation of S-FETI.

The total number of directions stored depends and grows linearly as the

number of iterations, this value is in every step usually the number of columns

in Zp (in practice, due to linearity of the directions, we expect a smaller number

that correspond to Rank(ZTp )). In 2D problems this is not much of an issue, but

in 3D even in small cases this needs to be considered, for example if our domain

is a small cube divided into 5×5×5 smaller cubes, we see in 2.2 that the number

of stored directions at each step is of 1600 directions approximately, a fact that

comes only from the geometry of the problem. Now for the total memory needed

this will depend on the size of the triangulation of the mesh, in this case of about

105 elements in each subdomain.

To be able to use this method in bigger configurations we will change the

usual, direct storage and use a different strategy. We know that the time of a

parallel application is limited by the exchange of information between processes,

so if we add some, not too expensive, extra computation we hope to have an

implementation as fast as the original one, but without the memory constraint.
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2.3.1 New sparse storage

The idea of this new storage is to, reconstruct the search directions at every

iteration, that is, to compute the projection and the full reorthogonalization of

the columns in Zp, by storing matrices that are either sparse or small ones.

This is done by saving at each iteration the sparse matrices, Zp and FZp,

instead of the full Wp = P Zp and FWp = P FZp. With this sparse matrices we

also compute and store some smaller coefficient matrices that will allow this

reconstruction. The size of this new matrices will depend on the number of

used search directions at each iteration, and will be independent of the size of

the mesh, so in general, it will be a small number compared to the size of the

problem.

The memory needed for the storage will now be limited in a more important

way on the problem configurations, that determines the maximum total search

directions in every iteration, rather than the size of the discretization. Compared

with the total unknowns of the problem, this number (NT ) is usually a small

one, because the number of neighbours of each subdomain is also limited, so

the problems that we can solve can increase in its total size and have a smaller

impact in the memory used by it, allowing us to use the S-FETI method in bigger

problems.

The fact that we no longer store the complete search directions will also have

an impact in the precision achieved with this implementation, but we hope to

keep the good accuracy of the S-FETI method or at least be close enough to make

this a useful algorithm, we will later discuss this fact in the numerical results.

2.3.2 Reconstruction of search directions

In this section we will show the details used by the algorithm of the sparse

storage for the S-FETI method.

Idea of the reconstruction

Use the definition of the projector and full reorthogonalization process, to try

to find a recurrence for the coefficients that define each search direction. Lets
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consider the sparse matrices Zp from 2.89 and lets recall the definition of the

projector

P = I −AG(GTAG)GT (2.118)

with A a symmetric matrix, that can be the identity, the preconditioner or some

scaling matrix. We also know that to apply this projector we use low-rank

corrections as in 2.101. Starting from Zp we have

Z1 =⇒ P Z1 = Z1 + (AG)D1 (2.119)

its clear that

GT P Z1 = 0 (2.120)

and that the computation of D1 is done by solving

(GTAG)D1 = −GTZ1 (2.121)

meaning that the value of D1 is

D1 = −(GTAG)−1GTZ1 (2.122)

Since no previous directions were computed, we have our first search direction

block, and the projection coefficients that define it

W1 := Z1

∆1 :=D1

PW1 := P Z1 = Z1 + (AG)∆1

(2.123)

In the next iteration and from the definition of the S-FETI method, we build the

sparse block Z2, then we apply the same process for this block

Z2 =⇒ P Z2 = Z2 + (AG)D2 (2.124)

where

GT P Z2 = 0 (2.125)
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and D2 is computed by solving

(GTAG)D2 = −GTZ2 (2.126)

so again, its value is

D2 = −(GTAG)−1GTZ2 (2.127)

Now, we need to consider the full reorthogonalization against the directions

built in the previous step. Hence we have

W2 = Z2 +W1Φ12

=⇒ PW2 = P Z2 + PW1Φ12

(2.128)

and to compute Φ12 we use the orthogonality properties of the new directions

and the previous ones in the CG algorithm

(FPW1)T PW2 = 0 (2.129)

replacing PW2 we have

(FPW1)T (PW1)Φ12 = −(FPW1)T P Z2 (2.130)

this problem is solved in order to compute Φ12 whose value is

Φ12 = −
[
(PW1)T (FPW1)

]−1
(FPW1)T P Z2 (2.131)

then, in 2.128 we use the projection definition again, to obtain

PW2 = Z2 + (AG)D2 + (Z1 + (AG)D1)Φ12

= Z2 +Z1Φ12 + (AG)(D2 +D1Φ12)
(2.132)

so

PW2 = Z2 +Z1B12 + (AG)∆2 (2.133)
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where

B12 := Φ12 and ∆2 :=D2 +D1Φ12 (2.134)

but also, since

W2 = Z2 +Z1B12 (2.135)

the we have that

PW2 =W2 + (AG)∆2 (2.136)

from this equation, plus from 2.128 and 2.133 we extend the recurrence to a

general case where we have the next equivalent equations

PWp =Wp + (AG)∆p (2.137)

PWp = P Zp +
p−1∑
j=1

PWjΦjp (2.138)

PWp = Zp +
p−1∑
j=1

ZjBjp + (AG)∆p (2.139)

With the previous recurrences in mind, we will formalize and explicit the com-

putation of the coefficient matrices Bjp and ∆p that needs to be stored. This

matrices along with the sparse ones Zp define the construction of the search

directions.

Remark: From previous construction we can extend the sparse multiplication

against the operator F, namely from Equation 2.133 we have

FPW2 = FZ2 +FZ1B12 + (FAG)∆2 (2.140)

and then in the general form, using Equation 2.139 we have

FPWp = FZp +
p−1∑
j=1

FZjBjp + (FAG)∆p (2.141)
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Formal construction

At the p iteration, we apply to Zp the low-rank correction definition of P

P Zp = Zp + (AG)Dp (2.142)

with

Dp = −(GTAG)−1GTZp (2.143)

also from the definition of P , we apply it this time to the reorthogonalized block

Wp

PWp =Wp + (AG)∆p (2.144)

later we will compute ∆p, not from the classical definition, but recursively.

On the other hand and to avoid notation problems, lets consider some itera-

tion j. We replace in the previous equation 2.144 the computation of Wj (Wp in

there) by the Gram-Schmidt orthogonalization process applied to Zj

PWj = Zj +
j−1∑
i=1

ZiBij + (AG)∆j (2.145)

with Bij to be computed later, recursively. If we replace this in 2.138 that actually

correspond to the formal construction of the orthogonalized and projected search

directions, then we have

PWp = P Zp +
p−1∑
j=1

Zj +
j−1∑
i=1

ZiBij + (AG)∆j

Φjp
= Zp + (AG)Dp +

p−1∑
j=1

ZjΦjp +
p−1∑
j=1

j−1∑
i=1

ZiBijΦjp +
p−1∑
j=1

(AG)∆jΦjp

=

Zp +
p−1∑
j=1

ZjΦjp +
p−1∑
j=1

j−1∑
i=1

ZiBijΦjp

+ (AG)


p−1∑
j=1

∆jΦjp +Dp


(2.146)

from this equation and 2.144 it’s clear that we can define the computation of Wp
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and ∆p as

Wp = Zp +
p−1∑
j=1

ZjΦjp +
p−1∑
j=1

j−1∑
i=1

ZiBijΦjp (2.147)

∆p =
p−1∑
j=1

∆jΦjp +Dp (2.148)

Developing the computation of Wp

Wp = Zp +
p−1∑
j=1

ZjΦjp +
p−1∑
j=1

j−1∑
i=1

ZiBijΦjp

= Zp +
p−1∑
j=1

ZjΦjp +
p−2∑
i=1

Zi


p−1∑
j=i+1

BijΦjp


= Zp +

p−1∑
i=1

ZiΦip +
p−2∑
i=1

Zi


p−1∑
j=i+1

BijΦjp


(2.149)

and thus our orthogonalized search direction is

Wp = Zp +
p−1∑
i=1

ZiBip (2.150)

with

Bip := Φip +
p−1∑
j=i+1

BijΦjp (2.151)

Finally, using the computation of Wp from 2.150 and ∆p defined recursively in

2.148, the projected search directions at the p iteration can now be computed as

PWp =Wp + (AG)∆p (2.152)

So we can now reconstruct the directions only from the sparse matrices Zj ,

j = 1, . . .p and the small matrices Bij , ∆j and Φij , i = 1, . . . , j, j = 1, . . .p that are

stored instead of the full larger matrices Wp or FWp.
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At each iteration with start with the Zp matrix that is built from previous

gradient and with it we can easily compute the coefficients Dp that do not need

to be stored (we can, for example use the same memory space that uses ∆p and

later overwrite it).

To define the computation of the coefficients in Φip we need to add some

extra calculus, that cannot be based in the storage of any mesh dependant full

vector. To achieve this, lets consider at each iteration the generalization of 2.129,

thats based in the general orthogonal properties of the CG algorithm

(FPWj)
T PWp = 0 for j < p

(FPWj)
T (P Zp +

p−1∑
j=1

PWjΦjp) = 0
(2.153)

which implies

(FPWj)
T (PWj)Φjp = −(FPWj)

T P Zp for j < p (2.154)

The left side matrix correspond to the matrix symmetric positive semi-definite

that needs to be pseudo inverted at each iteration. To simplify the computations

we apply the cholesky decomposition to it, giving

LjL
T
j Φjp = −

(
FPWj

)T
P Zp (2.155)

The Lj matrix need to be stored at every iteration, but then again this are small

triangular matrices of size rank(ZTj ).

The right hand side, is the one needing a special treatment as it depends

on full terms that we do not want to store. For the P Zp term, the definition of

P is enough to avoid the full storage, as for the term FPWj , instead of using

it directly, we also need to use the reconstructions that comes from the sparse

matrices.

From the construction of PWj in 2.145 and the fact that F is a linear operator,



2.3. Memory usage in S-FETI 133

we have

FPWj = FZj +
j−1∑
i=1

FZiBij + (FAG)∆j (2.156)

From this, as expected, we also need to store the sparse term FZj .

Finally the right term in 2.155 is now computed

(
FPWj

)T
(P Zp) =

FZj +
j−1∑
i=1

FZiBij + (FAG)∆j


T Zp + (AG)Dp


=ZTj (FZp) +

j−1∑
i=1

BTijZ
T
i (FZp) +∆Tj (FAG)TZp+

+ZTj (FAG)Dp +
j−1∑
i=1

BTijZ
T
i (FAG)Dp +∆Tj (AG)T (FAG)Dp

(2.157)

We have to compute the six previous terms at every iteration for j = 1,p −
1. With this we can know obtain from 2.155 the values of Φjp and the new

implementation is completed.

Next we present a summary of the computations needed and the matrices

stored in this new algorithm for the S-FETI method.

(AG)T (FAG) : Computed once for all and sparse stored

ZTj FZp : Computed at every iteration for j = 1,p − 1 and sparse stored

ZTp (FAG) : Computed at every iteration and sparse stored

(2.158)

Dp : Computed at every iteration and overwritten by ∆p

∆p : Small matrix stored every iteration

(AG)T (FAG)∆p : Small matrix stored every iteration

Φjp : Small matrices stored every iteration, for j = 1,p − 1

Bjp : Small matrices stored every iteration, for j = 1,p − 1

(2.159)
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With all this considerations, we can describe the S-FETI method with this

new search directions storage in Algorithm 10
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Algorithm 10 S-FETI with Sparse Storage
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = Fλ0 − d
4: loop Iterate p = 0,1,2, ... until convergence

5: Zp = [. . . , F̃(s)−1

Γ (sq) P
T gp, . . . ], s = 1,Ns q = 1, . . . ,n(s)

6: Qp = FZp
7: Dp = −(GTAG)−1GTZp
8: for j = 0 to p − 1 do
9: Sjp = ZTj Qp

10: end for
11: Tp = ZTp (FAG)

12: for j = 0 to p − 1 do

13: Φ = STjp +
j−1∑
i=0

STipBij + Tp∆j

14: Φ = ΦT + TjDj +
j−1∑
i=0

BTijTiDp +UT
j Dp

15: Φjp = −(LjL
T
j )−1Φ

16: end for

17: ∆p =Dp +
p−1∑
j=0

Φjp

18: Up = (AG)T (FAG)∆p
19: for j = 0 to p − 1 do

20: Bjp = Φjp +
p−1∑
i=j+1

BjiΦip

21: end for

22: W = Zp +
p−1∑
j=0

ZjBjp + (AG)∆p . Compute projected

and reorthogonalized blocks
23: FW =Qp +

p−1∑
j=0

QjBjp + (FAG)∆p

24: NpLpL
T
pN

T
p =W T (FW )

25: ρ = −(L̃pL̃Tp )−1(WNp)T gp . L̃p ∈Rr×r is full ranked

26: λp+1 = λp + (WNp)ρ

27: gp+1 = gp + (FWNp)ρ

28: end loop
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Compared with the S-FETI method, we just replaced the projection and

full reorthogonalization processes to build W and FW , the rest is analogous,

including the use of different preconditioners as well as the rank revealing

strategy.

2.3.3 Implementation details and exploitable parallelism

In previous section, in order to save memory usage, we introduced several extra

computations to the basic S-FETI algorithm. If we want this method to be as

fast as the full version, all this new computations needs to be implemented

in the most efficient way possible. The algorithm shown in 10 describes a

simple presentation of the construction of the search directions, that can be

implemented in a straitforward way, but here we will give some considerations

that can give an important time boost to the implementation of this method.

Before explaining this, we will explain the sparsity of the new extra terms

2.158 that we need to compute and store, lets recall them

(G)T (FG), ZTj FZp, Z
T
p (FG) (2.160)

with j = 1, . . . ,p − 1 and for simplicity we consider A = I . If we look at this three

terms we note that each one shares very similar structures, this comes from the

definitions of Z and G

G =
[
B(1)t(1)R(1), . . . ,B(Ns)t(Ns)R(Ns)

]
Z =

[
B(1)∆f (1), . . . ,B(Ns)∆f (Ns)

] (2.161)

again for simplicity, no scaling is considered in Z, we consider the complete

local interface in Z (without any subdivision) and we think in R(s) = Ker(Ω(s))

as a single vector in Ω(s). In both cases the extension to local interface division

and kernels with more than one vector is straightforward, because each column

associated to a subdomain s can be consider to have the exact same structure.

With this definitions we see that G and Z have the same sparse structure

given by the definition of boolean matrices B(s), to see it more clearly, lets take

as example the Figure 2.6, where the domain is divided in 6 subdomains in a
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w1 w2 w3 w4 w5

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Figure 2.6 – One-way split of six subdomains

one-way split. Lets denote any vector defined in the interface of subdomain s as

v
(s)
b , and divide a vector w along the total interface into local interface blocks

w =



w1

w2

w3

w4

w5


(2.162)

we see that the size and structure of w is the same as B(s)v
(s)
b , for any s = 1, . . .6.

With this, each column of G and Z, defined in the whole interface, have the

following structure

B(1)v
(1)
b =



×
0

0

0

0


, B(2)v

(2)
b =



×
×
0

0

0


, B(3)v

(3)
b =



0

×
×
0

0


,

B(4)v
(4)
b =



0

0

×
×
0


, B(5)v

(5)
b =



0

0

0

×
×


, B(6)v

(6)
b =



0

0

0

0

×


,

(2.163)

Here we see that in each column only a small part of the interface is non zero,

and it correspond to the d.o.f. in the column s shared by the subdomain s

(Ω(s) ∩ Γ , 0).
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The next structure to consider is the one of the terms FG and FZ, that are

the multiplications of previous blocks by the FETI operator. From the definition

of F we can see the structure of each previous blocks multiplied by F depends

on the multiplication of the boolean matrices

B(s)T B(q), ∀s,q = 1, . . . ,Ns (2.164)

When subdomains s and q are neighbours, this multiplication is non zero, so

when multiplying Z or G by F only local interfaces corresponding to the neigh-

bours are non zero. In our example the structures are

FB(1)v
(1)
b =



×
×
0

0

0


, FB(2)v

(2)
b =



×
×
×
0

0


, FB(3)v

(3)
b =



×
×
×
×
0


,

FB(4)v
(4)
b =



0

×
×
×
×


, FB(5)v

(5)
b =



0

0

×
×
×


, FB(6)v

(6)
b =



0

0

0

×
×


,

(2.165)

With previous blocks, the final structure for the terms (G)T (FG), ZTj FZp, ZTp (FG)

is given, in this case, by

× 0 0 0 0

× × 0 0 0

0 × × 0 0

0 0 × × 0

0 0 0 × ×
0 0 0 0 ×





× × × 0 0 0

× × × × 0 0

0 × × × × 0

0 0 × × × ×
0 0 0 × × ×


=



× × × 0 0 0

× × × × 0 0

× × × × × 0

0 × × × × ×
0 0 × × × ×
0 0 0 × × ×


(2.166)

here we see that the terms that are non zero, correspond in each subdomain to

the subdomain itself plus its neighbours plus the neighbours of neighbours. This
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is a general fact that comes from the definitions of Z, G and F

(GT FG)ik = v(i)T

b B(i)T
∑
s

B(s)S
(s)−1

bb B(s)T
B(k)v

(k)
b (2.167)

in here the term (GT FG)ik is non zero if B(i)T B(s) and B(s)T B(k) are non zero, which

occurs when the subdomains i-s and s-j are neighbours.

Even though the last term is less sparse that both terms Z and FZ (G and FG)

its total size is much smaller than previous blocks since they are square matrices

of size NT .

Optimization of the code

With this structures in mind we can now give the details of several possible

optimization to any basic implementation of Algorithm 10. Lets remember that

as part of the new orthogonalization process we have to compute the six terms in

2.157, so the improvements come, in one hand, from the fact that some matrix

vector computations can be done as block, using the advantages of BLAS3, and

on the other hand some of the coefficient matrices computations can be done in

parallel.

This changes to optimize the code can be summarized as:

• Concatenated allocation in memory of the terms Zj with j = 1, ...,p − 1 so

that the computation of ZTj (FZp) can now be done as a single block for all

j.

To understand this, lets see how the computation of each term ZTj (FZp) is

done locally. Lets consider a column associated to the subdomain s of Zp,

defined in the complete interface, but taking only local values

z
(s)
p = B(s)f̃

(s)
Γ (sq) (2.168)
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where f̃ (s)
Γ (sq) is defined in 2.87. Then, each value of ZTj (FZp) is computed as

(ZTj FZp)ik = z(i)T

j Fz
(k)
p

= z(i)T

j

∑
s

F(s)

z(k)
p

=
∑
s

z
(i)T

j F(s)z
(k)
p

(2.169)

where, as usual, F(s) = B(s)S
(s)−1

bb B(s)T and as seen previously, the values that

are non zero are the ones where i-s and s-k are neighbours. This implies

that in each subdomain s, we need to do an exchange with every neighbour

and store in s the vector z(k)
p , then we compute, exchange and store F(s)z

(k)
p

at every iteration.

In general, each subdomain s will compute and store the sparse vectors

z
(s)
p ,F(s)z

(s)
p , z

(k)
p ,F(s)z

(k)
p , where k ∈ neighbour(s).

Finally each subdomain s will compute the local dot products

z
(i)
j F

(s)z
(k)
p , ∀i,k ∈ neighbour(s)∪ {s} (2.170)

then an assembly into (ZTj FZp)ik plus a global reduction are done to com-

pute the total matrix ZTj (FZp). This are small sparse matrices stored in

every subdomain.

This computation, is done for each j = 1, . . . ,p−1 at the p iteration, meaning,

that we repeat this process p − 1 times at each iteration, with the corre-

sponding load of doing the p−1 global reductions and (p−1)-times the dot

products.

In order to improve the time of this calculations what we can do is to take

advantage of block implementation, as already done in this chapter. To do

so, in every subdomain Ω(s) we do a pseudoallocation that will concatenate

the newly computed and exchanged local vectors z(i)
p into a block of vectors[

z
(i)
1 , . . . , z

(i)
p−1

]
, ∀i ∈ neighbour(s)∪ {s} (2.171)
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with this we can compute the terms in Equation 2.170 as a block[
z

(i)
1 , . . . , z

(i)
p−1

]T
F(s)z

(k)
p , ∀i,k ∈ neighbour(s)∪ {s} (2.172)

we can use the optimized libraries BLAS3 to obtain a better performance

than usual dot products.

Since every Zj shares the same structure, a multiple assemblage can be

done into the different ZTj FZp, and, for each j at the same time, only a

single reduction is now done (slightly bigger in size). We then reduce the

number of global exchanges from p − 1 to 1 in each iteration, improving

them, and thus the time cost.

• If we look at the following term in the loop to compute Φjp

j−1∑
i=1

BTijTiDp (2.173)

we can see that the matrix Dp is independent of the addition, so it can be

treated as 
j−1∑
i=1

BTijTi

Dp (2.174)

so the term between parentheses is independent of the iteration p and can

be computed in previous iterations.

Therefore, instead of doing computations of the type (FAG)Dp, we can

compute and save

Vp←


p−1∑
i=1

BTipTi

 (2.175)

This computation is added after the matrices Bip are calculated. We store

this sum as a single matrix to use it directly in the next iterations. This

term is another small matrix, so the memory cost is still controlled.
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• Thanks to the first point in here, the matrices needed for the computations

of the terms Φjp for all j < p, are global and shared in each subdomain,

including the matrices coming from the Cholesky factorization. Hence, a

prori, each process compute the same terms.

This involves the computation of several small matrix products, that in-

crease in numbers at each iteration. To avoid this increasing computations,

the calculation of Φjp for each j = 1,p − 1, can be done in parallel.

Each process j can now be in charge of each matrix Φjp, up to a limit of Ns
matrices (the total number of processes). This means that after the iteration

p > Ns the first process will need to do the computation of two matrices Φjp
and then for each extra iteration, another process will be in charge of the

new computations. Since the number of iterations of the S-FETI method is

expected to be low, there will be some rare cases where this will happen.

Even if, a priori, this parallelization will speed up the total time, we cannot

forget that a global exchange is added after, so that every process can have

access to the new computed Φjp matrices. The impact of this optimization

will be tested in the numerical examples.

2.4 Numerical results

In this section we want to focus in the S-FETI method, by testing the different

implementations and changes done to the method that are presented in this

chapter. The objective is to see the comparative advantages or disadvantages

that can show each one of them.

To begin with, we will solve the Poisson problem in 3D with Dirichlet con-

dition in a part of the boundary. Let Ω ⊆ R
3 be a bounded domain, let also

∂ΩD ⊆ ∂Ω be a part of the boundary where Dirichlet conditions will be imposed.

Given f ∈ L2(Ω), the problem is
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Find u ∈H1(Ω) such that
−ν∆u = f in Ω

u = 0 on ∂ΩD
∂u
∂n

= 0 on ∂Ω \ΩD

(2.176)

with ν ∈R+, a parameter that characterizes the medium or material and therefore

will produce the differences in the local stiffness matrices of the subdomains

when a partition of Ω is created.

Let V := {v ∈H1(Ω) : v|∂ΩD
= 0}. Then, the weak or variational formulation

of previous problem is

Find u ∈ V such that

ν

∫
Ω

∇u · ∇vdx =
∫
Ω

f v, ∀v ∈ V (2.177)

This problem is discretized using bi or tri-linear Q1 finite elements functions,

leading to the known global system of equations

Kx = f (2.178)

2.4.1 FETI and S-FETI

Using the system arising from the finite element method for the Poisson problem

we will start by revisiting some of the numerical results shown in [39], but

adding some small differences that we will consider to be our basic starting

S-FETI algorithm when doing the comparative performance of the different

implementations.

In terms of the method itself, the local interface subdivision will be the de-

fault, mainly because we want to reduce to a minimum the number of iterations

by augmenting the number of search directions created each step.

Also a small variation will be used in the detection of the kernels and the

solutions of local problems, usually the PARDISO solver ([58],[57]) for the sparse

local solutions is used in this type of implementation, but in our case we will

change this to the use of a different solver, the one called DISSECTION Solver.
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Z

YX

Figure 2.7 – Cube with 125 subdomains.

This different solver allows a more robust computation of the kernels and re-

cently it has shown an improved general performance for double and quadruple

computations, compared to the usual Intel PARDISO implementations, see [78].

In this first case, for the 3D Poisson problem, we model the cube Ω = [0,1]3,

with null Dirichlet boundary in ∂ΩD = {(x,y,z) ∈ ∂Ω : x = 0∨ x = 1}, also f = 1.

We divide the cube into 125 smaller cubes, and define ν = 100 for the whole

domain, see Figure 2.7, then each subdomain is divided into 75 thousand ele-

ments approximately,

We consider as a stopping criterion the same as previous chapter, that is the

global relative error and the relative solution jump norm across the interfaces.

In some cases precision measures will be performed, if that is not the case the

criteria will be to stop when both errors are less than 10−6.

We consider the "Super lumped" scaling for the projection, i.e P = PA =

I − AG(GTAG)−1GT with A as in Equation 2.95, and the consistent weighted

Dirichlet preconditioner as the global preconditioner.

The results are noted in Table 2.3. We can see here that the number of

iterations is greatly reduced, but at the cost of adding also the extra search

directions. This change tries to reduces the impact of communications between

processes which is usually the bottleneck in parallel algorithms.
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S-FETI Total Iterations
decomposition Search Directions

Local subdomain 1125 9

Local interface 6356 4

Table 2.3 – Difference in subdomain division versus local interface division
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Figure 2.8 – Time of Pardiso vs Dissection for different element number in each
subdomain.

In the next case, if we use the local interface subdivision that generates more

search directions per iteration, the difference between solvers can be exposed, as

the number of local solutions is augmented and therefore the total time cost will

depend more on the solver than in the regular S-FETI or simply FETI.

The following test, as well as all the time performance test of this chapter,

were done with a fortran-mpi implementation, on a machine SGI UV 2000

with 32 CPUs Intel Xeon 64 bits EvyBridge E4650 of 10 cores each one, with a

frequency of up to 2.4 GHz.
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Z

YX

Figure 2.9 – Checkerboard cube with 125 subdomains.

In the graphic of Figure 2.8 we can see that independent of the size problem,

the total time is reduced when using the Dissection solver. This speedup however

is at an extra memory cost. From now on, both local interface subdivision and

Dissection will be the default for the following S-FETI test.

2.4.2 Decomposition of WtFW

Following the propositions of section 2.2 in this part we will compare the dif-

ferent strategies to sort the search directions built in S-FETI. We can name both

Cholesky and Eigenvalues Decompositions of the matrix W T FW .

For this problem, we use the same cube as before, with 125 smaller cubes,

but we make an heterogeneous case, where we change the parameter ν to be 100

and 103 in a checkerboard configuration, as seen in Figure 2.9 and we use the

local interface subdivision for the S-FETI method.

In this configuration, what we want is to produce a "high enough" number

of search directions that can allow us to see the differences between sorting

methods and the sensibility to the zero value parameters. Is this process which

introduces new sources of numerical instability, so as a first approach, although

very time costly, the use of quadruple precision in the decomposition process

may improve the quality of the same and possibly reduce the numerical noise.

We test for different values of ε and we check the number of directions kept as
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ε Implementation Search directions Minimal Iterations
per iteration error to error

10−4 QUAD 1247 6.0537x10−5 8

10−4 DOUBLE 1245 9.0064x10−5 8

10−6 QUAD 1356 1.7085x10−3 6

10−6 DOUBLE 1356 1.7131x10−3 6

10−10 QUAD 1498 6.4209x10−3 5

10−10 DOUBLE 1494 1.6876x10−3 5

Table 2.4 – Quadruple vs Double comparison

well as the total iterations.

In Table 2.4 we see that as the parameter ε is closer to zero, clearly the number

of directions saved augments, and thanks to the full reorthogonalization we also

gain in iteration numbers, but the extra directions used are not entirely the

ones that we hope to capture with this method, this is show in the minimal

error column where bigger values are obtained if we use more of them. Also a

small gain in precision is obtained when we use the quadruple precision, but

since the behaviour of both implementations is the same and the cost of the

quadruple computations is much more elevated, we will perform only double

implementations with the already named value for ε.

A significant more precise method (smaller minimal error) is obtained when

we do not consider values of ε too close to zero, meaning values that may be

within the limits of just noise, so a value of, for example ε = 10−4 is a much better

alternative than ε = 10−6 or any value smaller than that.

Remark: The solver Dissection also comes with a quadruple implementation

for solving the local problems and doing the computation of the kernel. However

there were no significant advantages in this context that could suggest the use of

this still expensive new implementation. Simple Jacobi one step improvement

used to augment the precision of the local solver are enough to obtain the same

results as a complete quadruple computation performed by Dissection.
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Next we want to compare the performance of the alternative eigenvalue

decomposition. From here on, only double precision implementation will be

considered.

One of the advantages searched in changing the decomposition is to make

the method less sensitive to parameter variations, in this case, the value of ε > 0

used to identify linear dependency and also to diminish the number of saved

directions without loosing in performance.

When using the Cholesky decomposition we can add an extra parameter that

can recognizes when a gap between the decreasing pivots is too big. This gap is

an indicator that we may enter into the limits of the noise directions, making

this decomposition somehow more robust, as we avoid the noise at the cost of

eliminating some other maybe useful directions. In any case this "lost" directions

are usually recovered in later iterations.

For the Eigenvalue decomposition, we have also added an extra parameter to

limit the number of directions saved. It works after the computation with max

tolerance (given by the machine precision) of the eigenvalue algorithm. Then it

limits the stored directions to the ones associated to the relative eigenvalues that

are bigger than this new tolerance ε. This way of sorting directions, is a much

more stable algorithm for sorting the directions than the previous Cholesky

decomposition.

In the Table 2.5 we show the number of directions kept with each zero value

until max precision for each method is achieved.

Here we can see that the bigger values of ε reduces the number of directions

kept, but the convergence is still assured, as the important information is kept

in the directions associated to the bigger eigenvalues. The eigenvalue decompo-

sition in this case is less sensitive to variations in the zero parameters and in all

the cases shows a reduction in the number of directions kept and total iteration

number, meaning that at a small cost (in parallel computation it is negligible) we

can have a method with less memory charge, less total iterations and improved

precision.

We also insist in the fact that a much more precise method is obtained when

using values of ε not so close to zero, just ε = 10−4 is more than enough to reduce
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ε Implementation Search directions Minimal Iterations
per iteration error to error

10−4 CHOLESKY 1245 9.0064x10−5 8

10−4 EIGEN 1183 1.7590x10−8 11

10−6 CHOLESKY 1356 1.7131x10−3 6

10−6 EIGEN 1299 1.7082x10−5 8

10−10 CHOLESKY 1494 1.6876x10−3 5

10−10 EIGEN 1474 2.2169x10−3 5

Table 2.5 – Iterations/Search Directions results for different values of ε.

the minimal error and at the same time reduce the stored directions.

2.4.3 S-FETI with sparse storage

In this section we want to test the new sparse storage implementation for the

S-FETI method, in terms of both time and memory usage.

The model problem is again the 3D Poisson equations, solved in the cube

Ω = [0,1]3, with the same boundary conditions and source as the previous

examples.

We also use 125 subdomains with local interface subdivisions, in order

to have at least the same amount of search directions as previous case. The

parameter ν will represent the homogeneous case, meaning that we will have

one material as shown in Figure 2.7. The time, memory and precision measures

will be more important, rather than the number of iterations since this term

should not change between the two sparse implementations and we hope to have

similar results between the sparse and the full versions.

We start by testing the speed and precision achieved by the two versions of

the SPARSE-S-FETI method, the first with a straitghtforward implementation

when operating with the sparse blocks and the second one with optimizations in

memory allocation to use the BLAS3 routines and reduce the bottleneck of doing

several matrix-vector operations instead of just one matrix-matrix product. We
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Method Elements Time Max local memory
Subdomain (s) (Gb)

SPARSE-S-FETI 103823 571.1 4.91
SPARSE-OPT-S-FETI 103823 289.4 4.63

SPARSE-S-FETI 148877 648.1 6.57
SPARSE-OPT-S-FETI 148877 339.8 6.13

Table 2.6 – SPARSE vs SPARSE-OPT

also change the full reorthogonalization process by making only one process to

orthogonalize each saved block and then sending the information to the rest of

the processes, see the last point in section 2.3.3.

The results in terms of memory and time are shown in Table 2.6, where we

measure the total time used and also the maximum between the memory used

by each process. We can see an speed up of roughly two times for both examples

with 100 and 150 thousand elements approximately in each subdomain. We did

not added the expected results in terms of number of iterations and precision,

where there is no difference between both implementations. Since no precision

is lost, plus the gain shown in the memory column and also in the time obtained,

makes the second implementation to be the one used from here on.

The objective of the sparse storage implementation is to keep a memory usage

controlled in order to be able to use this method for the biggest applications. In

this part we will compare the memory usage of the SPARSE-OPT implementation

versus the regular FULL one.

In the Figure 2.10 we can see the maximum memory usage between process

of both methods for the same problem, but with two different number of total

elements in each one. Since we are interested in memory performance we

will force to save all the search directions, with no regarding whatsoever of

convergence, this is because we want an upper estimate in terms of memory

versus the number of iterations. In this example we are using a number of 2072

directions in each iteration.

For the FULL-S-FETI method, we have a linear relation between the number
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Figure 2.10 – Max local memory usage in cube problem for 75 (left) and 300
(right) thousand elements per subdomain.

of iterations (starting from 2) and the memory usage, or in this case the number

of search directions stored, since every vector uses the same size. For the sparse

storage, this iteration/memory relation is in general quadratic, however this

relation is between the number of iterations and the size of the coefficient

matrices stored, which are, as already explained dense but much smaller than a

regular full block of search directions and is also independent of the size of the

mesh (the size of the full vectors). In any case there is still an increasing linear

relation between the sparse stored directions (Zp to recall) and the iterations,

but as explained previously the size of them is less than the full block and it

depends on the neighbour connectivity of each subdomain.

This results shows that the difference between the SPARSE storage and the

FULL implementation is more clear as we augment the number of elements in

each subdomain. In the first case, the FULL case is a better option, but as we get

close to sizes of around 300 thousand elements in each subdomain the need of

the sparse storage is more evident if we want to be able to solve this and other

larger problems.

The following test to do, once the memory advantages of the sparse storage

were established, is a time consumption test between the SPARSE-OPT and

regular method to see the cost of all the extra computations.

The problem to solve is the same checkerboard configuration as previous

with two materials, ν1 = 100 and ν2 = 104. The results are shown in Table 2.7
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Method Elements Iterations Time Precision
Subdomain (s)

FULL-S-FETI 103823 11 620.1 4.3295x10−5

SPARSE-OPT-S-FETI 103823 11 624.8 2.0870x10−4

FULL-S-FETI 148877 11 755.1 1.9688x10−4

SPARSE-OPT-S-FETI 148877 11 756.9 1.8155x10−4

Table 2.7 – FULL vs SPARSE-OPT

where we see that the differences in precision and number of iterations are

negligible. In the same way, the time difference is small considering the size of

the problems, and it goes down whenever the problem gets bigger. We can say

then that the new implementation is suitable to test big cases where the memory

is a limitation.

2.4.4 General comparison

Finally we want to test the difference between the two existent preconditioners

for S-FETI, the Dirichlet and Lumped. We test for memory, number of iterations

and total time for the computations.

Added to this, we want to compare the sparse and full storage implementa-

tions with this preconditioners, as well as the two decomposition for sorting the

search direction. The idea is to have global view that can gives some notion of

which method should we use in different situations.

− Type of implementation: FULL-S-FETI or SPARSE-OPT-S-FETI

− Preconditioner: Dirichlet or Lumped.

− Decomposition method for W T FW : Cholesky or Eigenvalue.

− Elimination of corner crosspoint interfaces: Yes or no.

We added the last point since in practical engineering applications, the corner

interfaces are really rare and almost nonexistent. This is due to the fact that the
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domain division are done automatically by a mesh partitioning algorithm, such

as METIS ([47]). This type of algorithm, with a regular cartesian mesh, does not

create the corner interfaces that we usually see in square or cubes division of a

domain. To see the difference in term of number of local solves and total search

directions, we can "eliminate" this corners and test the method in a more realistic

way, with non of the search directions created by this corner interfaces. In our

particular case, we lower the number of total search direction per iteration from

2072 to 600.

One if the crucial difference that we want to test is the one produced by the

different preconditioners available, in this case the consistent weighted Dirichlet

and the, also consistent Lumped preconditioner. If we look at both definitions in

Equation 2.57, Equation 2.58, and knowing that a multiplication by the Schur

complement implies the resolution of a local problem, we can name two of

the big differences between them, this is, the computational and memory cost,

where for both characteristics the Dirichlet is much more expensive, however we

expect a reduced number of iteration for this preconditioner, since it consider the

variation of the complete subdomain and not only of the nodes in the interface.

The test case will be the exact same as previous, with 125 subdomains in

a checkerboard configuration for the ν parameter and with 150 thousand ele-

ments per subdomain. In this case we will perform several computations and, as

already said, we will measure the time and memory performance of them. Each

result will be a different combination of four variables

In the Table 2.8 we show the results obtained, we note that due to the charac-

teristic of the problem, meaning a number of subdomain and size of the mesh

not high enough, we obtain results that does not go with the lines of what to

expect, as we see a reduction in time for the SPARSE-OPT, but with a higher

memory usage. In Table 2.9 a remarkable speedup is obtained for this case when

using the SPARSE implementation.

The elimination of corner interfaces also produces a reduction in the total

time, making this results closer to a real implementation with automatic subdo-

main partitioning. In terms of memory usage, there is no big difference between
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Implementation Precon- Decom- Max local Iterations Time
ditioner position memory (s)

(Gb)
FULL Dirichlet Cholesky 5.98 7 429.0
FULL Dirichlet Eigen 5.93 7 432.4
FULL Lumped Cholesky 4.67 8 507.6
FULL Lumped Eigen 5.02 11 825.0

SPARSE-OPT Dirichlet Cholesky 6.27 7 340.8
SPARSE-OPT Dirichlet Eigen 6.32 7 331.4
SPARSE-OPT Lumped Cholesky 5.43 8 410.4
SPARSE-OPT Lumped Eigen 7.77 11 812.5

Table 2.8 – Comparative between variations of S-FETI with corner interfaces.
125 subdomains and 150 thousand elements per subdomain.

Implementation Precon- Decom- Max local Iterations Time
ditioner position memory (s)

(Gb)
FULL Dirichlet Cholesky 5.21 12 119.6
FULL Dirichlet Eigen 5.21 12 123.4
FULL Lumped Cholesky 4.46 24 366.9
FULL Lumped Eigen 4.58 25 390.0

SPARSE-OPT Dirichlet Cholesky 4.43 12 59.7
SPARSE-OPT Dirichlet Eigen 4.41 12 60.6
SPARSE-OPT Lumped Cholesky 4.31 24 158.3
SPARSE-OPT Lumped Eigen 4.09 25 171.4

Table 2.9 – Comparative between variations of S-FETI without corner interfaces.
125 subdomains and 150 thousand elements per subdomain.



2.5. Conclusion 155

methods, since the size of the problem is not big enough to make them clearer,

as was the case presented before in this section. In any case we still recall that

depending on memory availability the use of one or the other is recommended.

2.5 Conclusion

Several implementation changes have been introduced in this chapter, most

of them showing an improved performance compared to the basic S-FETI. We

added a new way of sorting search directions, the Eigenvalue decomposition can

show to be a more robust option that reduces the number of directions stored

in each iteration. In terms of memory usage we developed a new sparse storage

that allows to use this method in bigger applications without losing significant

performance. The use of the Dissection solver with his kernel detection algo-

rithm are a good alternative for the largely used PARDISO solver. The Lumped

preconditioner for this method, even if the results shown here are not definitive

to say in which cases should be used, is still a good alternative to reduce memory

and computation efforts, further testing will be done to this preconditioner as

part of the future work.

Finally, other changes and comparatives can still be performed, leaving space

for improvements to this method and its implementations. This is all part of the

future work for this method.
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Chapter3
Block strategies as a preconditioner

As a continuity on the development of the domain decomposition methods, in

particular the FETI method, always searching for a fast and accurate algorithm

that can be used in as much problems as possible, we will try now a different

approach to the improvements already done to the S-FETI, using some of the

ideas exposed in the previous chapter.

The main advantage shown by the S-FETI method is the construction of an

enlarged search space in the Conjugate Gradient algorithm where the capture of

the largest eigenvalues of the FETI operator, even for some hard problems, can

be achieved in very few iterations. The price to paid for this is the use of large

amounts of memory that can render impractical its use for some big problems,

usually found in real applications, in this context we already developed a way to

circumvent this limitation by using a sparse storage of the directions.

In this chapter, we will try to mimic the precision and memory use of the

original FETI method, improving the convergence ratio by building a new pre-

conditioner based on the enlarged space generated by the S-FETI method. This

new preconditioner is a priori more expensive, but hopefully the faster con-

vergence expected will compensate this and we may have a useful method for

practical use.

This chapter starts with some preliminaries to understand the idea of the

new preconditioned FETI method, later we will show a natural extension of this

idea that mixes it with the S-FETI method to end up with numerical results of

157
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both new methods.

3.1 Introduction and preliminaries

The FETI method is based in finding the solution of an interface problem using

the Preconditioned Conjugate Gradient Method. This iterative method (CG) has

been largely studied over the years, leading to different results in its research

from which several generalizations were made to it.

Within this generalizations we can name the Flexible Conjugate Gradient,

the Multipreconditioned CG and the Method of Conjugate Directions. Although

the last one was developed before the CG method it can still be considered as

one of the generalization of it.

We will now show in detail, two of this methods and their relation of some

of them with previous FETI methods. This relations will allow to understand

the roots of the new FETI methods proposed in this chapter and justify its

convergence.

3.1.1 Method of Conjugate Directions

We consider the solution of the general system

Fλ = d (3.1)

with F symmetric positive definite.

This method, shown in [45] can be considered as a more general method than

the CG method.

In this method the search directions

w1,w2, . . . (3.2)

are selected to be mutually conjugate, that is

(wi ,Fwj) = 0, ∀i , j (3.3)
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and no further restriction is imposed in them. The norm considered here is the

one induced by F, because, as already said, is a symmetric positive definitive

operator.

The resume of the algorithm is done in 11. We can see that the CD-method

Algorithm 11 Method of Conjugate Directions
1: Initialization
2: Choose an approximation vector λ0
3: g0 = Fλ0 − d
4: Choose any non-zero vector w0
5: loop p = 0,1,2, ... until convergence

6: ρp = −
(wp, gp)

(wp,Fwp)
7: λp+1 = λp + ρpwp
8: gp+1 = gp + ρpFwp
9: Choose a direction wp+1 such that (wp+1,Fwj) = 0, ∀j = 0, . . . ,p

10: end loop

is not precise, in the sense that no formula is given for choosing the search

directions. Depending on how to build this directions, different methods can

be obtained (including the CG method). Later we will explicit this definition in

order to formulate the new FETI method.

The basic properties of this method are given by the following theorems

Theorem 3.1. The search directions w1,w2, . . . are mutually conjugate. The residual
vector gp is orthogonal to w1,w2, . . . ,wp−1. The inner product of wp with the residuals
g0, . . . , gp is the same. All this can be written as

(wi ,Fwj) = 0, i , j (3.4)

(wi , gp) = 0, i = 0,1, . . .p − 1 (3.5)

(wp, g0) = (wp, g1) = · · · = (wp, gp) (3.6)

The scalar ρp can be given by the formula

ρp = −
(wp, g0)

(wp,Fwp)
(3.7)



160 CHAPTER 3. Block strategies as a preconditioner

Proof. From the last line in 11 we have directly 3.4. Next, using the update of

the gradient, we have that

(wi , gp+1) = (wi , gp) + ρp(wi ,Fwp) (3.8)

if i = p then, by the definition of ρp we know that

(wi , gp+1) = 0 (3.9)

Moreover, from Equation 3.4 we have

(wi , gp+1) = (wi , gp) (3.10)

Equations 3.5 and 3.6 follow from the last two relations. The last equation 3.7

follows from 3.6 and 3.4.

As for the convergence of the method we have the following theorem

Theorem 3.2. The CD-method is an p-step method (p ≤ n) in the sense that at the
p-iteration the estimate λp is the solution λ

Proof. Let p be the first integer, such that

y0 = λ−λ0 ∈ span{w0, . . . ,wp−1} (3.11)

Clearly m ≤ n since the vectors are w0,w1, . . . are linearly independent. On the

other hand, we may choose scalar α0, . . . ,αp−1 such that

y0 = α0w0 + · · ·+αp−1wp−1 (3.12)

Hence,

λ = λ0 +α0w0 + · · ·+αp−1wp−1 (3.13)

Moreover

g0 = Fλ0 − d = F(λ0 −λ) = −α0Fw0 − · · · −αp−1Fwp−1 (3.14)
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Computing the inner product

(wi , g0) = −α0(wi ,Fw0)− · · · −αp−1(wi ,Fwp−1)

= −αi(wi ,Fwi)
(3.15)

an using 3.7 we imply that αi = ρi and hence λ = λm.

Finally, we can see that the approximated solution improves with the number

of iterations and the error is minimized at each step.

Theorem 3.3. Let λ be the solution of 3.1 and f be the error function

f (v) = ‖λ− v‖F = (λ− v,F(λ− v)) = (v,Fv)− 2(v,d) + (λ,d) (3.16)

then, the point λp minimizes f (v) on the line v = λp−1 +αwp−1. In fact, the point λp
minimizes f (v) on the space

λ0 + span{w0, . . . ,wp−1} (3.17)

and this space contains the vectors, λ0, . . . ,λp

Proof. If w is a search direction, then we have

f (v +αw) = f (v)− 2α(w,g) +α2(v,Fv) (3.18)

where

g = d −Fv = F(λ− v) (3.19)

Considered as a function of α the function f (v +αw) has a minimum value at

α = ρ, where

ρ =
(w,g)

(w,Fw)
(3.20)

Comparing this, with the definition of ρp in the algorithm, we have the mini-

mization result.

For the last part, lets consider the point v ∈ λ+ span{wO, . . . ,wp−1}, then we

have

v = λ0 +α0w0 + · · ·+αp−1wp−1 (3.21)
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applying f

f (v) = f (λ0)−
p−1∑
i=0

[2αi(wi , g0)−α2
i (wi ,Fwi)] (3.22)

At its minimum we have

αi =
(wi , g0)

(wi ,Fwi)
(3.23)

and so αi = −ρi , for all i = 0, . . . ,p − 1. Then is clear that the minimum point is

λp.

Considering the previous theorems, as long as we do the full reconjugation,

we have the liberty to build the search directions in any form we want.

3.1.2 Flexible Conjugate Gradient

As a continuation of the previous Conjugate Directions method, and within

the Conjugate Gradient framework, we can name the General CG or Flexible

CG (as denoted in [55]). We consider again the problem 3.1, solved with the

Preconditioned CG method, the idea is to add at each iteration of the CG method

a preconditioner step with the aim of accelerate the convergence by using suitable

search directions, usually this is achieve by finding the solution of a problem of

the type

Bx = y (3.24)

so that the conditioning of the matrix B−1F is smaller than the conditioning of F.

In PCG the preconditioner B−1 is symmetric positive-definite and fixed, in

order to keep the convergence properties of CG. In the Flexible-CG we relax this

conditions and change the preconditioning step to a general mapping

g→B[g] (3.25)

this mapping also tries to approximate the inverse of F in order to improve the

converge. This more general mapping does not need to have and explicit form as

it can be a recursive non-linear mapping. We will simply consider it as a general

procedure to approximate the inverse of F.
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With this preconditioning procedure and using a full reorthogonalization

process we can define the algorithm for the Flexible CG method in 12. This

Algorithm 12 Flexible Conjugate Gradient Method
1: Initialization
2: Choose an approximation vector λ0
3: g0 = Fλ0 − d
4: w0 = B[g0]
5: loop p = 0,1,2, ... until convergence

6: ρp = −
(wp, gp)

(wp,Fwp)
7: λp+1 = λp + ρpwp
8: gp+1 = gp + ρpFwp
9: wp+1 = B[gp]

10: for i = 0 to p do

11: γ = −
(wi ,Fwp+1)

(wi ,Fwi)
12: wp+1 = wp+1 +γwi
13: end for
14: end loop

algorithm explicits the construction of the F-conjugate search directions by

introducing a preconditioning procedure and applying the Modified Gram-

Schmidt procedure in order to build the new directions.

It is also essentially the same CG algorithm used by FETI, the main difference

lies in the preconditioner. If we consider B as the Dirichlet or Lumped precondi-

tioner, we can recover the usual FETI method.

Remark: The detailed convergence properties of this algorithm, including

bounds for the error, depend on the definition of the mapping B, were conditions

on coercivity and boundness are assumed [7]. In our case, and in order to keep

the mapping as general as possible, we will only consider the previously shown

convergence of the CD-method to validate our new FETI method with recursive

preconditioner.
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3.2 FETI with recursive preconditioner

The Simultaneous-FETI method can be considered as a Multipreconditioned CG

method [39], this is because the fact that several directions are created in the

preconditioning step, thanks to the additive nature of the Dirichlet precondi-

tioner in FETI. Closely related to this method we have the Flexible CG in which

recursive or non-linear preconditioners can be used at the cost of doing a full

reorthogonalization of the search directions (truncated orthogonalization are

also possibles). In the FETI framework there are no practical problems in the

use of this extra computations, since we are forced to do them in order to keep a

good convergence (See [66]).

Following this idea, and since we already do a full reorthogonalization, we

can consider the general method of Conjugate Directions which give us total

liberty in the creation of the search directions, as long as they are conjugate

between them, more precisely F-conjugate (F being the FETI operator, which is

symmetric positive definite).

This last part made us think in consider a sort of mixing of this methods,

where we consider some special preconditioner that changes from iteration to

iteration, but it is a much better preconditioner than the usual Dirichlet in the

FETI method, since it is built straightforward from the one in S-FETI where

clearly a better approximation is obtained at every iteration. Even if we are

not exactly in the conditions to consider this new method as a Flexible CG

method, we can see it as a Conjugate Directions method, where the convergence

is assured.

Now we will show the details of this new method, and later its extension to

an "in between" method, if we consider the S-FETI method and this new one.

3.2.1 One direction from S-FETI block

We derive this new method starting with the FETI basic algorithm, and modifying

the preconditioning step

wp = F̃−1gp (3.26)
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with F̃−1 being any suited preconditioner (mainly the Dirichlet or Lumped one).

Even though the multiplication for this precondition matrix is not computed in a

direct way, we can still consider this step as simple and not so expensive (details

about this have been discussed in previous chapters), the main difference will be

in this step, where a more elaborated preconditioner will be constructed.

We change this multiplication by the Dirichlet or Lumped operator for the

definition of a new procedure (or mapping) B based on the block construction

done in S-FETI.

The idea behind this is to use of the minimization process of the CG method

applied in the S-FETI method, where we construct a bigger search space, based

in the combination of local terms. Lets recall this process in Algorithm 13 where

after the computation of the search directions block, we obtain the optimiza-

tion parameters and update the solution In this new method we will consider

Algorithm 13 Minimization process in S-FETI

1:
...

2: ρp = −W T
p gp

3: λp+1 = λp +Wpρp

4:
...

the update vector Wpρp as our unique search direction, for it contains all the

information from the non local preconditioner, and it can help speed the process

of capture of the eigenvalues. Meaning that at every iteration of the Conjugate

Gradient method, we will define the search direction as

wp =Wpρp = −Wp(W T
p gp) (3.27)

The construction ofWp was already explained when we define the S-FETI method

in chapter 2 and it involves the solution of several Neumann and Dirichlet

problem (if Dirichlet preconditioner is used), so it is more costly than the regular

preconditioner. This extra cost compared to the gain in the convergence will be

tested in the numerical examples.

Adding the construction of the block Wp to our new search direction allows

to explicit the definition of the procedure B[g] used as a preconditioner. This
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mapping is described in Algorithm 14. The notation in this procedure is

Algorithm 14 Preconditioning procedure B
1: Input Residual vector g

2: Z = [. . . ,D(s)−1

Γ (sq) g, . . . ] . Local Dirichlet preconditioner
3: W = P Z . FETI Projection
4: NLLTNT =W T FW . Cholesky decomposition
5: W =WNL−T

6: ρ = −W T g
7: w =Wρ
8: Return B[g]← w

the same as in chapter 2 so D(s)−1

Γ (sq) is the local preconditioner partitioned into

neighbour interfaces and the matrix N is the permutation matrix coming from

the Cholesky factorization applied to W T FW .

Basically what we are doing is similar to what we do in any preconditioned

CG algorithm, that is, a process from which we take the gradient and we apply a

certain operator to build a search direction that approximates to the actual error

F−1gp, at the p iteration. The difference in this case is that the search direction

does not come from a direct multiplication for a fixed matrix, but from a more

complicated process that in the end makes the new direction to depend on the

previous gradient.

The final method is shown in Algorithm 15. What we describe is a modifica-

tion of the FETI method (using the Flexible CG instead of classical CG), in which

we change the computation of the preconditioner with the procedure coming

from S-FETI that allows to define B[·] in Algorithm 14. The definition of the

projection operator P , the matrix A, the matrices G of the FETI coarse space and

the block of vectors of the kernel R are defined in the same way as previous

methods (FETI-1LM or S-FETI).

We hope that with this new method we are going to recover the accuracy

and memory usage of the basic FETI method, by only storing one direction

per iteration and at the same time diminishing the roundoff effects of the extra

sources of numerical noise that can be found in the S-FETI method. As for the

advantages, the number of iterations will be reduced, due to the improved way to
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Algorithm 15 FETI block to one direction Algorithm
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = (Fλ0 − d)
4: w0 = B[P T g0]
5: loop Iterate p = 0,1,2, ... until convergence

6: αp = −
(gp,wp)

(wp,Fwp)
7: λp+1 = λp +αpwp
8: gp+1 = gp +αpFwp
9: wp+1 = B[P T gp+1]

10: for i = 0 to p do

11: γi = −
(wi ,Fwp+1)

(wi ,Fwi)
12: wp+1 = wp+1 +γiwi
13: Fwp+1 = Fwp+1 +γiFwi
14: end for
15: end loop

capture the largest eigenvalues, and we expect this will be enough to compensate

for the extra cost on the mapping of the preconditioner.

Cost of the method

Considering the cost of the original FETI method and the one of the S-FETI

method, we can give a comparative estimate of the performance of this method

against the original FETI at each iteration.

We know by its definition that all we need to compare is in the precondition-

ing step in FETI versus the preconditioning procedure defined in Algorithm 14.

We note that this is also because the procedure B[·] will also give the vector Fwp
at the end of the procedure since its value correspond to FWρ, hence no extra

multiplication by F are needed after this part.

Based on the analysis of the cost in S-FETI we can say that the most expensive

part here will also be the computation of the block FW . This includes a projection

and several forward-backward computations, but we can use the same strategies

to minimizes the computations as done in S-FETI, meaning that for each iteration
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we only add to a process the workload of N Neumann solves, with N being

either neighbours + 1 or 2 × neighbours depending on the construction of the

blocks. The projection is also done using low-rank corrections. For details in the

cost of S-FETI and thus this preconditioning procedure, see the section 2.1.5 in

the previous chapter.

Finally we can say that the cost of each iteration is approximately an iteration

of S-FETI (which is at the same time have a few extra cost compared to FETI)

plus an iteration of FETI without the Neumann solution, but since we can not

estimate the number of iteration needed for convergence (hopefully much less

than FETI), we will analyse in the numerical examples the real performance of

this method and test different ways to compute the blockW used in the mapping

B[·], namely the diagonalization process in the treatment of the term W T FW

and the use of the Lumped preconditioner.

3.2.2 Linear combination of directions from block

In this section we will extend the previous idea of using the added combination

Wρ built in the S-FETI method as a single direction, to an "in between" method,

where we will save in addition to the unique previous directions a reduced

number of vectors containing the information of the block of search directions

generated by S-FETI. This number will be a limited number of vectors between 1

and the total number of linear independent search directions in the iteration NS .

In order to achieve this, we will proceed in a similar way as before, only this

time, instead of using the FETI method as a base we will use the S-FETI method

and we will change the directions stored after the update of the gradient at the

end of each iteration.

First we will recall the construction of the block of directions W in S-FETI,

but this time computed with the eigenvalues decomposition, since this will allow

to sort the total independent search directions in decreasing order of importance.

In this case, starting from the gradient we have that
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Algorithm 16 Block construction in S-FETI

1:
...

2: Wp = [. . . ,D(s)−1

Γ sq
gp, . . . ]

3: EDET =W T
p FWp

4: Wp =WpED
−1/2T

5:
...

From here we know that the matrix Wp is formed by columns of normalized

vectors that are sorted in decreasing order from the ones that capture the bigger

eigenvalues of the FETI operator to the ones that represent the smaller ones.

Is from this characteristic that we can use and save the more relevant di-

rections. In the previous case we added each column to build a unique search

direction

wp =Wpρ =

 W 1
p . . . W

NS
p



ρ1
...

ρNS

 =
∑
i

ρiW
i
p (3.28)

with ρ the vector of minimization parameters ρ = −Wpgp. This time we split

this sum and we will recover a new block of search directions, smaller than the

previous one, and to try and not to lose information we add an extra direction

either the vector Wpρ, this implies the construction of yet another block W̃p

defined by

W̃p =

 Wpρ ρ1W
1
p . . . ρMW

M
p

 (3.29)

Where M is a number that depends on the number of columns, fixed by the

user, that we will study in detail in the numerical tests. What we try to accom-

plish here is the reduction of the relevant information to a limited number of

search directions, improving convergence but with controlled memory usage, at

expenses of the extra computations needed to build the original Wp.

As previous method, the definition of the FETI projector P is as usual. In

Algorithm 17 we described the final algorithm, build from the basic S-FETI, but

changing the construction of the stored block directions. The definition of the
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projection and all the matrices to compute λ0 are defined as in previous FETI

methods ( see 1.1.2).

Algorithm 17 FETI block with reduced saved directions algorithm
1: Initialization
2: λ0 = AG[GTAG]−1(−RT c)
3: g0 = (Fλ0 − d)
4: loop Iterate p = 0,1,2, ... until convergence

5: Z =
[
. . . ,D

(s)−1

Γ (sq) gp, . . .
]

. Local Dirichlet preconditioner

6: W = P Z . FETI Projection
7: for i = 0 to p do
8: Γi = −W T

i FW
9: W =W + ΓiWi

10: FW = FW + ΓiFWi
11: end for
12: EDET =W T FW
13: W =WED−1/2

14: ρ = −W T gp
15: λp+1 = λp +Wρ
16: gp+1 = gp +FWρ

17: Wp =
[
Wρ,ρ1W 1, . . . ,ρNWM

]
18: FWp =

[
FWρ,ρ1FW 1, . . . ,ρNFWM

]
19: end loop

Since the base of this algorithm is S-FETI, its convergence is assured. This

fact comes from the Theorem 2.1 where the result is independent on the precon-

ditioner or the construction of the block of search directions, as long as they are

F-conjugate, which clearly is our case.

Cost of the method

The cost of this algorithm, at every step, is derived directly from the cost of

S-FETI in subsection 2.1.5, since we do the same construction to obtain the block

of search directions. The only difference is the size of the stored vector that may

be reduced as much as we want, however in the next section we will try to find

the "optimal" value of needed stored directions.
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3.3 Numerical results

Since the methods shown in this chapter can be considered as variations of the

S-FETI algorithm, the characteristics of them in terms of problems that can

or cannot solve are very similar to the original S-FETI. Is for this reason that

a simple test case can and will be considered next, in order to make this first

comparative between this methods.

The Poisson problem, or any other simple case, solved in 3D will allow us to

do this first comparative of both method presented in this chapter.

We recall the variational formulation of this problem for some parameter

ν ∈R+ and some bounded Ω ∈R3.

Find u ∈ V such that

ν

∫
Ω

∇u · ∇vdx =
∫
Ω

f v, ∀v ∈ V (3.30)

where

V :=
{
v ∈H1(Ω) : v|∂ΩD

= 0
}

(3.31)

and ∂ΩD is the section of the boundary where we impose u = 0.

A finite element discretization, using tri-linear Q1 functions is used to ap-

proximate the solution of this problem.

We finish the problem by setting the characteristics of our model, which in

this case are a cube domain Ω = [0,1]3 with boundary conditions in ∂ΩD = {x =

0} ∪ {x = 1}, the value of the source is f = 1 and the parameter ν will have an

homogeneous value along the domain.

The cube will be divided in 125 smaller cubes of equal size, with variable

number of elements in each one, and the stopping criterion is the same as

previous chapters.

3.3.1 Storage of single direction

The first method to test will be the one where all the search directions are

reduced to a single one. In simpler terms, we reduce the S-FETI approach to a

FETI method with a more expensive preconditioner.
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Method Elements Iterations
Subdomains

FETI-1LM 74088 17
S-FETI 74088 7

SINGLE_DIR-S-FETI 74088 14
FETI-1LM 195112 18

S-FETI 195112 7
SINGLE_DIR-S-FETI 195112 15

Table 3.1 – Convergence comparative.

In terms of memory, we recover the same use as the FETI-1LM original, so no

test related to memory will be performed.

Our first and main approach will be to asset the number of iterations needed

to converge for this method and compare it to the original FETI-1LM. Using

the already described configuration, with ν = 10−3. we can see the results in

Table 3.1.

In terms of iteration numbers we can see a reduction in the total number of

them, compared to FETI-1LM, but no versus S-FETI. This goes with the lines

of what we expected, meaning that an expensive preconditioner can improve

the FETI-1LM method, but the information lost when storing the constructed

directions as a single vector will reduce the convergence compared to S-FETI.

In any case, the excessive cost of this approach does not compensate for the

good results shown when reducing iterations of FETI-1LM.

3.3.2 Storage of reduced directions

We continue with the extension of previous method, so in this case, we change

the reduction of the search directions from a single vector to a small number of

vectors. Since this vectors are computed in descending order of importance, we

want to keep a minimal number of search directions without loss of convergence.

We continue to use the same test case, that is, the Poisson problem in the

cube with 125 subdomains and fixed 75 thousand elements per subdomain. This
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Figure 3.1 – Iterations versus percentage of computed directions. Example 1

is complex enough, mainly due to the number if directions produced in each

iterations, so we can expose the differences between this method and the original

S-FETI and FETI.

In the definition of this method, we have to choose a fixed number of search

directions to keep at every iterations. In that sense a fixed number M was

introduced, but what we actually do in practice is to save a percentage of the

independent search directions. This value has a great impact in the method, so

we need to do variation of it to try in find an "optimal" value if possible.

In Figure 3.1 we show the behaviour of the method in terms of total iterations

versus the percentage of directions stored. Lets recall that the total number of

search directions generated, without consider linear independence is 2072, from

which we do a first reduction in number, to later keep a part of this reduced

number.

In this image we see the behaviour of the method, with an initial fast reduc-

tion in the number of iterations, even if we store only a small percentage of

directions, such as 10%. Values close to this can be considered as "optimal" for

this method if we are looking for memory reduction and higher precision for the
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method. Depending on the problem to solve and the machine used, we choose

the best suited value for every case.

3.4 Conclusion

The variations of the S-FETI method shown in this chapter, are a priori ideas

worth testing, since the storage of the information produced by S-FETI can

be an issue. Numerical results shows that in the actual conditions of the first

variation, even if we obtain and improvement in terms of iterations to conver-

gence, precision and memory, there is no gain total time due to the too much

expensive cost of the implementations used. The second method arises as an

alternative to certain particular cases, where at the price of more iterations we

reduce the memory usage. In any case, we find important to state this results,

to avoid the same work in them and at the same time, it can still be source of

new development for the S-FETI and other FETI like domain decomposition

methods.



Chapter4
FETI-2LM with enlarged search space

In this final chapter we will now show the extension of the main idea in the

S-FETI method, that is, enriching the search space of the FETI algorithm, but

this time to one of the other FETI method shown in this thesis, in particular the

FETI-2LM method.

The FETI-1LM and FETI-2LM methods share similarities in the iterative

algorithm used, both of them are Krylov based, the Conjugate Gradient and the

ORTHODIR method. This fact makes the idea of enriching the search space in

FETI-2LM, a priori, a good one, but big part of the convergence properties of

S-FETI comes from splitting the preconditioner to isolate the modes that make

the convergence slower, meaning that the fast convergence can be expected, also

because the relation of this method with the FETI-Geneo method which has a

proven fast convergence speed.

In the FETI-2LM method we no longer have an optimal preconditioner, nor a

method to compare, so we do not expect to have the same speed up as in S-FETI,

but we will have in any case an large improvement in the convergence, due to

the constructions of directions using local properties that tend to get lost in the

FETI-2LM method, but also we will gain from the size of the new enriched space

compared to the original one. Finally in terms of time spend, we will be applying

the same implementation strategies as in S-FETI, hence a time speedup is most

assured.

We start by recalling the FETI-2LM method, to then pass directly to the

175
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Ω(2)

Γ(3)

Ω(1)

λ(2)

 λ(1)

Robin
Condition

Figure 4.1 – Two subdomains with Robin Interface Condition

formulation of the new Block-2LM method, we end this chapter by showing

some numerical examples to test this new method and compared it to the original

FETI-2LM.

4.1 Introduction

Most of the elements needed in this chapter, were already described throughout

the previous chapters, but in any case we want to recapitulate some of the more

important ones, in order to keep clarity in the new method to be constructed.

4.1.1 The FETI-2LM method

This method started as a solver for acoustic problems, first shown in [35], then it

was generalized in [67] and [68] as a robust solver for problems coming from

any Finite Element discretization of an elliptical partial differential equation.

It is based on the imposition of a Robin condition on the interface, see

Figure 4.1, in order to "glue" the solutions of each subdomain. We will recall

the basic formulation for a two-subdomain division, as the general formulation

comes from using the two-subdomain case in each pair of neighbour subdomains.

Consider the linear problem, arising from a Finite Element discretization of

a PDE

Kx = f (4.1)



4.1. Introduction 177

We divide the global problem in two subdomains Ω(1), Ω(2) and their interface

Γ (3). Then the global problem has the structure
K

(1)
ii 0 K

(1)
ib

0 K
(2)
ii K

(2)
ib

K
(1)
bi K

(2)
bi K

(1)
bb +K (2)

bb



x

(1)
i

x
(2)
i

xb

 =


f

(1)
i

f
(2)
i

f
(1)
b + f (2)

b

 (4.2)

and the subdomain stiffness matrices and right hand sides are:

K (1) =

K (1)
ii K

(1)
ib

K
(1)
bi K

(1)
bb

 , f (1) =

f (1)
i

f
(1)
b

 K (2) =

K (2)
ii K

(2)
ib

K
(2)
bi K

(2)
bb

 , f (2) =

f (2)
i

f
(2)
b


(4.3)

The FETI-2LM method comes from the imposition of independent generalized

Robin condition on the interface Γ (3).

The discrete local problem are thenK (s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb +A(s)

bb


x(s)
i

x
(s)
b

 =

 f
(s)
i

f
(s)
b +λ(s)

b

 , s = 1,2 (4.4)

The augmentation matrix A(s)
bb will be considered as an sparse approximation of

the neighbour Schur complement, as seen in subsection 1.2.3.

In order to be the restrictions of the global problem, each local solution must

satisfy two conditions, first the continuity condition:

x
(1)
b − x

(2)
b = 0 (4.5)

The second condition is the interface equilibrium, which is the last line in the

global block formulation

K
(1)
bi x

(1)
i +K (2)

bi x
(2)
i + (K (1)

bb +K (2)
bb )xb = f (1)

b + f (2)
b (4.6)

if we use the continuity condition, we have

K
(1)
bi x

(1)
i +K (2)

bi x
(2)
i +K (1)

bb x
(1)
b +K (2)

bb x
(2)
b = f (1)

b + f (2)
b (4.7)
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Now using the last line of the local problems, we can write the equilibrium

condition as

A
(1)
bb x

(1)
b +A(2)

bb x
(2)
b = λ(1)

b +λ(2)
b (4.8)

we combine both continuity and equilibrium conditions to obtain the interface

mixed equations

A
(1)
bb x

(2)
b +A(2)

bb x
(2)
b = λ(1)

b +λ(2)
b

A
(1)
bb x

(1)
b +A(2)

bb x
(1)
b = λ(1)

b +λ(2)
b

(4.9)

Additionally, by eliminating the inner unknowns on the Robin local problem, we

can obtain the explicit relation between the trace of the solution on the interface

x
(s)
b and the discrete augmented flux λ(s)

b

(K (s)
bb −K

(s)
bi K

(s)−1

ii K
(s)
ib +A(s)

bb)x(s)
b = λ(s)

b + f (s)
b −K

(s)
bi K

(s)−1

ii f
(s)
i (4.10)

We denote by S(s)
bb := K

(s)
bb −K

(s)
bi K

(s)−1

ii K
(s)
ib the Schur complement matrix and by

c
(s)
b = f (s)

b −K
(s)
bi K

(s)−1

ii f
(s)
i the condensed right-hand side.

Replacing x
(s)
b by their values as functions of λ(s)

b coming from previous

explicit relation into the mixed equations 4.9, we can write the condensed

interface problem of the form Fλ = d associated to the FETI-2LM method I I − (A(1)
bb +A(2)

bb )(S(2)
bb +A(2)

bb )−1

I − (A(1)
bb +A(2)

bb )(S(1)
bb +A(1)

bb )−1 I


λ(1)
b

λ
(2)
b


=

(A(1)
bb +A(2)

bb )(S(2)
bb +A(2)

bb )−1c
(2)
b

(A(1)
bb +A(2)

bb )(S(1)
bb +A(1)

bb )−1c
(1)
b


(4.11)

The definition and implementation of this method for general problems, comes

from the computation of this operator between every two neighbour subdomains

in a general configuration.

The previous condensed non symmetric problem is solved using the OR-

THODIR iterative method. This is because in the general case, the operators is

dense so its assembling is computationally inefficient. On the contrary, in order

to multiply some vector by this operator (denoted F as usual FETI methods)
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we only need local data and exchanges between neighbours, hence an iterative

method such as ORTHODIR is more suited.

We present in 18 the ORTHODIR algorithm used in FETI-2LM, as it will be

the base to construct its generalized block version.

Algorithm 18 FETI-2LM algorithm
1: Initialization
2: λ0 = 0
3: g0 = (Fλ0 − d)
4: w0 = g0
5: loop ORTHODIR Iteration from p = 0,1, . . . until convergence

6: ρp = −
(Fwp)T gp

(Fwp)T (Fwp)
7: λp+1 = λp + ρpwp
8: gp+1 = gp + ρpFwp
9: loop Construction of the p+ 1 vector of the base FT F-orthonormal

10: wp+1 = gp+1 . wp+1 = Fwp is replaced by the gradient
11: for i = 0 to p do

12: γi = −
(Fwi)

T (Fwp+1)
(Fwi)

T (Fwi)
13: wp+1 = wp+1 +γiwi
14: Fwp+1 = Fwp+1 +γiFwi
15: end for
16: end loop
17: end loop

In the next section we will extend this algorithm to its block version using

the decomposition of the gradient to build the block of search directions used to

update the solution in every iteration.

4.2 The Block-2LM Algorithm

Following the work done in the development of the S-FETI method, we can

apply the same strategy to the FETI-2LM method. In this case, the method called

Block-2LM, will build a search space based on the separation of the gradient,

with the difference that the gradient this time will no longer be preconditioned,
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but it can also be considered as a sum of local gradients that when separated

will improve the mimic of the local subdomains behaviour. In any case, since in

FETI-2LM we have two independent lagrange multipliers instead of one in each

the interface, we can create as much directions as the S-FETI method in both of

its version (subdomain or interface divisions).

Following the notation of chapter 2, the gradient g ∈ Rn in the FETI-2LM

method is

g =


g(1)

...

g(Ns)

 (4.12)

with Ns being the number of subdomains. Also g(i) ∈Rmi , mi ≤ n are the values

of the global gradient in the subdomain Ω(s), this local gradients are independent

from each other since there are two lagrange multipliers on the interface. This

subdivision is enough to form a new block of directions, all by considering the

fact that g can be written as

g =
Ns∑
s=1

ḡ(s) (4.13)

where ḡ(s) ∈Rn is the extension by zero of each local vector, i.e.

ḡ(s) =



0
...

0

g(s)

0
...

0


(4.14)

with this division, our block of search directions will be defined by

Z =
[
ḡ(1), ḡ(2) . . . , ḡ(Ns)

]
(4.15)

Which is similar to the subdomain division in S-FETI.
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In an analogous way, to form the interface subdivision, we can consider at

the local level that g(s) can also be decomposed in smaller vectors, one for each

of the subdomain neighbours

g(s) =


g

(s),1
loc
...

g
(s),n(s)

loc

 (4.16)

with n(s) the number of neighbours of subdomain Ω(s). Hence, the general

gradient can also be written as

g =
Ns∑
s=1

n(s)∑
i=1

g(s),i (4.17)

where g(s),i ∈Rn is again an extension by zero, defined as

g(s),i :=



0
...

0

g
(s),i
loc

0
...

0


s = 1, . . . ,Ns, i = 1, . . . ,n(s) (4.18)

From the equation 4.17, we can use the additive form of the gradient in order

to define the new search space for the Block-2LM method. This space will be

spanned at each iteration by the column vectors in

Z =
[
g(1),1, . . . , g(1),n(1)

, . . . , g(Ns),1, . . . , g(Ns),n(Ns)
]

(4.19)

The iterative algorithm used for the FETI-2LM method is the ORTHODIR

method, so the Krylov space built is formed from the successive matrix gra-

dient product, orthonormalized using the FT F-norm. We are now spanning a
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different search space, but the use of this bigger space still implies the conver-

gence of the method since it contains the original Krylov space, this result comes

from the definition of Z and the fact that

Span{g(1) + · · ·+ g(m)} ⊆ Span{g(1), . . . , g(m)} (4.20)

for any vectors g(i) ∈Rm, m ∈N, i = 1, . . . ,m.

Since the norm used in this method changes, from F to FT F-norm, the matrix

that needs to be inverted also changes. This matrix is used to obtain the block of

orthonormal vectors and also to obtain the optimal descent coefficients. In this

case this matrix correspond to (FW )T FW , where W is the block after applying

the full reorthogonalization, i.e. at the p-iteration we have

Wp = Zp +
p∑
i=0

WiΦi (4.21)

The same linear dependency issue occurs for this matrix as in the S-FETI 2.2.

Lets recall that this is due to the phenomenon of work within the computer

precision or because we achieve convergence in some of the interfaces before the

other. This dependency between columns in Z leads to a positive semi-definite

(FW )T (FW ) matrix, so as previous treatment, the Cholesky decomposition with

partial pivoting will be used to select the directions to be used (The Eigenvalues

decomposition is also valid). The algorithm is described in 19.

4.3 Implementation and cost of the method

The difference in cost between the FETI-2LM and Block-2LM are similar as the

one from FETI and S-FETI, we can name the augmentation on the size of the

information shared between neighbours, but with no incremental number of

exchanges, and we also have the pseudo-inversion of the matrix (FW )T (FW ),

both of this changes are fairly cheap ones.

The most expensive part is again the multiplication by the FETI operator, this

can be done with a simple straightforward implementation that solves a local



4.3. Implementation and cost of the method 183

Algorithm 19 Block FETI-2LM method
1: Initialization
2: λ0 = 0
3: g0 = Fλ0 − b
4: Z0 = [. . . , g(s),i

0 , . . . ], s = 1,Ns, i = 1,n(s)

5: W0 = Z0
6: loop Block ORTHODIR Iteration from p = 0,1 . . . convergence
7: NpLpL

T
pN

T
p = (FWp)T (FWp) . Cholesky factorization

8: Wp =WpNpL
−T
p . Eliminates useless directions and

9: FWp = FWpNpL
−T
p . FT F-orthogonalizes blocks

10: ρp = −(FWp)T gp
11: λp+1 = λp +Wpρp
12: gp+1 = gp +FWpρp
13: loop Construction of the p+ 1 vector of the base FT F-orthonormal
14: Zp+1 = [. . . , g(s),i

p+1 , . . . ], s = 1,Ns, i = 1,n(s)

15: for i = 0 to p do
16: Φi = −(FWi)T (FZp+1)
17: Wp+1 = Zp+1 +WiΦi
18: FWp+1 = FZp+1 +FWiΦi
19: end for
20: end loop
21: end loop
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problem for each column in Z, this can only serve for academical purposes, to

know the precision and convergence behaviour of it, but if we want a practical

method we need again to exploit the sparse structure of the search directions

matrix Z.

We know from the definition that the columns g(s),i of Z are non null only

on the interface of subdomain Ω(s) and the multiplication by the FETI operator

only requires, at the subdomain level, the solution of a number of local problems

equal to the number of neighbours, which can be done in a block implementation.

With this consideration we can have the speed up to make this method useful in

real problems, since the time spend during the resolutions we hope to recover it

by reducing the iterations needed for convergence.

To understand the implementation of this method, we will again use the so

called Coarse Modes, that correspond to the non-null vectors in each column of

Z or FZ. This modes are stored locally in each subdomain, in this case we have

one mode for each neighbour, this correspond to each of the vectors g(s),i
loc defined

in Equation 4.16, but at the same time we shared them with every neighbour, for

further computations, e.g. multiplication by the FETI operator.

In Figure 4.2 we can see in the left, the described modes owned by the

subdomains, where in dotted lines are the ones own by a subdomain, also we see

the subdomains involved in the computing of FZ, and in the right, the dotted

modes are the ones owned by the red interface, at the same time this modes are

non null modes of FZ in the red interface, this comes from the definition of the

operator.

To better understand this, lets look at the definition of the operator F for a

single interface

F

λ(s)
1

λ
(q)
1

 =

λ(s)
1 +λ(q)

1 − (A(s) +A(q))(S(q) +A(q))−1λ
(q)
1

λ
(s)
1 +λ(q)

1 − (A(s) +A(q))(S(s) +A(s))−1λ
(s)
1

 (4.22)

this implies that for the case of the Block-2LM, at the interface level, we have to
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SUBDOMAIN INTERFACE

Ω(s)Ω(s) Ω(q)

Figure 4.2 –
Left: In red the coarse modes describing Z owned by subdomain Ω(s). In dotted
lines, the modes shared between Ω(s) and the subdomains involved in multiply-
ing by the FETI-2LM operator.
Right: In dotted lines the coarse modes describing FZ owned by local interface
of Ω(s) and conversely they are the non null modes in the interface in red.

compute

F

λ(s)
1

0

 =

 λ
(s)
1

λ
(s)
1 − (A(s) +A(q))(S(s) +A(s))−1λ

(s)
1


F

 0

λ
(q)
1

 =

λ(q)
1 − (A(s) +A(q))(S(q) +A(q))−1λ

(q)
1

λ
(q)
1


(4.23)

We note that each subdomain solves one local problem for each local interface

(number of neighbours). All the local solutions plus the multiplication by local

augmentation matrix are then send together to each of the neighbours, meaning

we send the vectors

(S(s) +A(s))−1λ
(s)
1

A(s)(S(s) +A(s))−1λ
(s)
1

(4.24)

this for every local computation performed, allowing to multiply this by the

local augmentation matrix associated to the interface and in general compute
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and store a local contribution to FZ. With this, each local interface stores the

contributions to FZ done by the neighbour subdomain.

Finally, in terms of memory use, the same issue described in chapter 2 is

expected with this implementation, but we can again use the same strategy to

store the sparse directions and reconstruct them later, although we will leave

that as a future work.

Remark: We want to point out some of the differences between this method

and S-FETI, mainly the fact that no projection is needed in this case, so no extra

cost is added in this part and also the fact that the connectivity is more limited

than in the S-FETI method, thanks to the FETI-2LM operator, hence we need

less modes stored in each interface.

4.4 Numerical results

In this section, we will be performing another basic comparative testing, that will

include, mainly the FETI-2LM and Block-2LM methods. Classical comparison

between iteration number, as well as a full fortran-mpi implementation to

measure for time performance will be analyzed.

To perform this benchmark, we do no need for a special complex case, as one

of the main properties of both method is the robustness and is expected to be

similar. We will leave the tests for complex cases as future work. From now on,

we will focus on the study of the basic Poisson problem in 3D, with tri-linear

Q
1 functions for the finite element discretization. For more details, see the

numerical results in chapter 3 and chapter 2. We just recall the existence of the

ν parameter, that also in this case will change between neighbour subdomains,

meaning that an heterogeneous checkerboard type of configuration will be tested,

and blocks of two different materials will be used.

4.4.1 Block-2LM vs 2LM

The global domain is again the cube Ω = [0,1]3, several subdomain divisions

will be done, all characterized by being smaller cubes of equal size. We want to
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Method Elements
subdomain Iterations Time (s)

FETI-2LM 46656 87 8.1
BLOCK-2LM 46656 50 2115.1

FETI-2LM 74088 91 14.5
BLOCK-2LM 74088 57 3516.4

FETI-2LM 103823 93 21.7
BLOCK-2LM 103823 62 7919.6

Table 4.1 – 64 subdomains

Method Elements
subdomain Iterations Time (s)

FETI-2LM 1000 39 0.1
BLOCK-2LM 1000 24 375.7

FETI-2LM 27000 45 3.3
BLOCK-2LM 27000 41 7377.0

Table 4.2 – 125 subdomains

see the impact of augmenting the generated search directions in each iteration.

As usual the global error and solution jump across the interfaces will be our

stopping criterion, when both of them are less to 10−4. We have diminished

this value to be able to use the Block version in cases where the memory is an

important constraint.

In the tables 4.1 and 4.2 we can see a general comparative of both methods.

We have set the values for the parameter patch_size = 2 and patch_depth = 3, see

Algorithm 7, also the number of elements per subdomain is change, as well as

the total number of subdomains (cubes). The values of the parameter ν are 100

and 105 in a checkerboard configuration Figure 2.9.

In the results we can see the reduction in the number of iteration when com-

paring the two methods, however its values are not small enough to compensate

for the time spend in each iteration. This slowdown in the total time is mainly

due to the full reconjugation, where after a certain number of total iterations the

number of matrix-matrix products needed is too costly.
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This effects is less present in the S-FETI methods, because the computation

in this part can be reduced by 2 since the values of the Lagrange multiplier are

shared by neighbour subdomains, but in this case we are forced to work with

full size blocks of search directions since two independent Lagrange multipliers

are used in this case. Also the number of iterations goes up as high as 62 and the

quadratic effects of full reorthogonalization produces the notorious slowdown.

We consider this implementation as a first step before doing the sparse stor-

age implementation, the same way that was done in chapter 2. In that case the

performance of this method, specially when doing the full reconjugation, should

be several times faster, and hence a method to be used in practical applications.

Remark: As part of the future work, we leave the test of a variation of this

method, with even more directions per iterations, the idea is to use the neighbour

local gradient as a new direction doubling the number of directions built. The

normal block of directions, using the notation of this chapter, is defined as

Z =
[
. . . , g(s),1, . . . , g(s),n(s)

, . . .
]
, s = 1, . . . ,Ns (4.25)

and when doubling the direction we will have

Z =
[
. . . , g(s),1, gvec{(s),1}, . . . , g(s),n(s)

, gvec{(s),n
(s)}, . . .

]
, s = 1, . . . ,Ns (4.26)

where gvec{(s),i} is the extension by zero (using the same position as the non zero

values of g(s),i) of the local gradient coming from the neighbour subdomain of

Ω(s) through his local interface i.

4.5 Conclusion

A new Block method as been developed for the FETI-2LM following the ideas

used in S-FETI. Although the properties of FETI-2LM, such as the lack of a

preconditioner or the fact that two lagrange multipliers are already imposed in

the interfaces, make this method a less appropriate candidate for a block version

than the FETI-1LM was. However the fact of enlarging the search space, still
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predicts a better convergence in terms of iterations for this method.

The numerical results validate the reduction of iterations needed by this

method to converge. Nevertheless this reduction is not compensated as in

the S-FETI case, mainly because the total number of iterations achieved is not

sufficiently small to keep the time spend in the full reconjugation as a factor

controlled. Making this factor the major slowdown for the Block-2LM method.

Alternatives to the reconjugation must be found, mainly the sparse storage

proposed in chapter 2, but we leave that as a future work.
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Conclusion and perspectives

Throughout the work done in the four chapters exposed in this thesis, we have

detailed several improvement to existing classic FETI method found in the litera-

ture that are currently used in real life applications that comes from the industry,

namely structure, electromagnetism models among others.

The first part consisted in the development of the Hybrid-FETI method, born

from the mixing of the FETI-1LM and FETI-2LM methods. This methods consist

in the imposition of either Neumann or Robin conditions, as done in FETI-1LM

and FETI-2LM respectively, in the local interfaces as way of "gluing" them.

Due to the particularities of both base methods, the Hybrid-FETI is well

suited for solving problems where a small number of interfaces present a bad

conditions beyond the heterogeneities. This is the case of contact problems,

where the contact area presents an ill-conditioning which the FETI-1LM even

with the consistent version of the Dirichlet method does not assure the conver-

gence. This problems are usually solved using the FETI-2LM due to the formula-

tion with two independent lagrange multipliers provided by this method, that

handles the issue of the contact area. Since the use of the FETI-2LM is only

required for the contact area, we can improve the global convergence by treating

the non contact interfaces with the regular and faster FETI method. This global

liberty of choice for the interfaces is our new Hybrid-FETI method.

When imposing one or the other type of interfaces, we form subdomains

where both methods are active, forcing us to create a preconditioner optimal

for this subdomains. In the subdomains where only the Neumann boundary

condition is imposed, we use the regular Dirichlet preconditioner to boost the

global convergence. In this context, as an extension of the regular Dirichlet
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preconditioner, the Robin preconditioner was developed. This preconditioner

differs from the Dirichlet only in the subdomains with mixed interfaces, in this

subdomains the augmentation matrix present in the local problem is added to

the Schur complement usually computed in the Dirichlet preconditioner.

Although we see and improvement with the Robin preconditioner, we leave

as future work for this part the development of an additional preconditioner for

the 2LM interfaces where no preconditioner is actually applied or in general a

new preconditioner for the global operator of the Hybrid-FETI.

Looking at numerical results, the best one obtained by this new method are

seen in the contact case where we reduced by almost two times the number

of iterations of the only working base method, which is the FETI-2LM. This

reductions should be directly applied to a reduction in terms of total time, but

since we did not have the chance to test bigger cases, this will rest as a developing

work. In this same line, we want to extend the application of the Hybrid-FETI

to other problems solved only by the FETI-2LM method, for example the ones

arising from the use of mortar elements to treat non-conforming meshes, where

also an ill-conditioning is present in a localized zone, see [65].

In the second part, we present the development of the S-FETI starting from

his first version presented by [17] to his more precise general formulation,

shown in [39]. The development of the consistent Dirichlet preconditioner is

also exposed, as this is a key part of the good behaviour of S-FETI. Details of the

implementation were also explained, also needed to understand the new sparse

storage developed in this chapter.

Following the presentation of the method, we introduced a variation to the

original method. This change comes from the problem of treating the linear

dependency usually present when constructing a block of search directions.

This dependency comes from different elements, that are present in almost all

problems. A good recognition of them can have a large impact in the final

results. The Eigenvalue decomposition is proposed as an alternative to the basic

Cholesky factorization that uses the basic S-FETI, the idea of this variation is to

keep the good behaviour but using less directions in each iteration.

Confirmed by the numerical results we can see that the same convergence
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can be achieved, but using less directions in each iteration. This reduction

comes from the fact that the Eigenvalue decomposition can order the orthogonal

search directions in order of relevance an reduce the complete information

contained in a block of directions, on the contrary the Cholesky decomposition

only eliminates the ones considered problematic, a process that leads to lost of

information at each iteration.

One of the goals of the Eigenvalue decomposition is try to reduce the number

of directions used in each iteration, and therefore make the usage of memory

S-FETI method less expensive. Even though there is an improvement present in

here, the memory cost of this method makes it limited if we want to solve bigger

cases, to solve this, a new sparse storage was developed. This implementation

is based on the sparsity present in the block of search directions, where at

a local level each block of directions contains non null columns in the ones

representing the same subdomain and its neighbours. Using this information we

can reconstruct the directions from a series of smaller coefficient matrices and at

the same time we can reduce the multiplication of the sparse blocks by the FETI

operator to faster matrix-matrix computations.

In the numerical results we show that the impact in total time done by the

extra computations is negligible if we do a correct implementation. Several

improvements to the basic implementation were introduced, leading to a new

S-FETI with sparse storage as fast as the original one, however there is still room

for new improvements as we have augmented the complexity of the algorithm

by introducing several new sources of computations, that can be also improved.

We leave that as future work.

The third chapter is dedicated to test different ideas regarding variations of

the S-FETI, we can name the two main ones, which consist on one side of using

the block of search directions build by S-FETI as a preconditioner for the original

FETI method, and the second idea is to add to the search direction created in the

first method a small part of the directions associated to the biggest eigenvalues

when doing the decomposition of W tFW .

Both of the method show an improvement in term of iterations needed for

convergence, but due to the expensive cost of the first one of them, it can only be
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considered for academical purposes an future development of methods derived

from S-FETI. The second one, needs further tests to asset his value.

Finally, the Block-2LM method was developed as an extension of FETI-2LM,

using the same ideas that lead to the S-FETI method. The construction of a bigger

search space containing the original Krylov space assures convergence. Sparsity

of the search directions helps to speed up this method, reducing drastically the

number of forward-backward reductions done in every iteration.

The results confirm a reduction in the number of iterations, although not

as important as the one seen in S-FETI and also with no reduction in the total

time spend, however this method is considered as a first step, since an sparse

storage version is also needed in this case, knowing that the reduction achieved

is not small enough and that we will want to solve some big cases presented in

problems arising from electromagnetism, as the ones seen in [8],[64].
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Hybridization of FETI Methods

Abstract

In this work new domain decomposition methods and new implementations for existing
methods are developed. A new method based on previous domain decomposition
methods is formulated. The classic FETI [30] plus FETI-2LM [35] methods are used to
build the new Hybrid-FETI. The basic idea is to develop a new algorithm that can use
both methods at the same time by choosing in each interface the most suited condition
depending on the characteristics of the problem. By doing this we search to have a faster
and more robust code that can work with configurations that the base methods will not
handle it optimally by himself. The performance is tested on a contact problem.
The following part involves the development of a new implementation for the S-FETI
method [39], the idea is to reduce the memory usage of this method, to make it able
to work in larger problem. Different variation for this method are also proposed, all
searching the reduction of directions stored each iteration of the iterative method.
Finally, an extension of the FETI-2LM method to his block version as in S-FETI, is
developed. Numerical results for the different algorithms are presented.

Keywords: numerical analysis, domain decomposition methods, algebra, scientific
computation
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