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Résumé

Cette thèse est consacrée à l’étude d’une classe d’équations différentielles à
retard dépendant de l’état – ces équations provenant d’un modèle structuré en
taille.

La principale motivation de cette thèse provient de la volonté d’ajuster les
paramètres du système d’équations étudiées vis-à-vis des données générées par
un simulateur de forêts, appelé SORTIE. Deux types de forêts sont étudiés ici:
d’une part une forêt ne comportant qu’une seule espèce d’arbre, et d’autre part
une forêt comportant deux espèces d’arbres (au chapitre 2). Les simulations
numériques du système d’équations correspondent relativement bien aux don-
nées générées par SORTIE, ce qui montre que le système considéré peut être
utilisé afin d’écrire la dynamique de populations d’une forêt. De plus, un mod-
èle plus étendu prenant en compte la position spatiale des arbres est proposé
dans le chapitre 2, dans le cas de forêts possédant deux espèces d’arbres. Les
simulations numériques de ce modèle permettent de visualiser la propagation
spatiale des forêts.

Les chapitres 3 et 4 se concentrent sur l’analyse mathématique des équa-
tions différentielles à retard considérées. Les propriétés du semi-flot associé
au système sont étudiées au chapitre 3, où l’on démontre en particulier que ce
semi-flot n’est pas continu en temps. Le caractère dissipatif et borné du semi-
flot, pour des modèles de forêts comportant une ou deux espèces d’arbres, est
étudié dans le chapitre 4.

En outre, afin d’étudier la dynamique de population d’une forêt (d’une
seule espèce d’arbre) après l’introduction d’un parasite, nous construisons dans
le chapitre 5 un système proie-prédateur dont la proie (à savoir la forêt) est
modélisée par le système d’équations différentielles à retard dépendant de l’état
étudié auparavant, et dont le prédateur (à savoir le parasite) est modélisé par
une équation différentielle ordinaire. De nombreuses simulations numériques
associées à différents scénarios sont faites, afin d’explorer le comportement
complexe des solutions du au couplage proie-prédateur et les équations à retard
dépendant de l’état.

Mots clés: Équation différentielle à retard dépendant de l’état, semi-flot, bor-
nage des solutions, dissipativité, dynamique des populations de forêts, système
proie-prédateur.





A class of state-dependent delay differential
equations and applications to forest growth

Abstract

This thesis is devoted to the studies of a class of state-dependent delay dif-
ferential equations. This class of equations is derived from a size-structured
model.

The motivation comes from the parameter fittings of this system to a forest
simulator called SORTIE. Cases of both single species forest and two-species
forest are considered in Chapter 2. The numerical simulations of the system
correspond relatively very well to the forest data generated by SORTIE, which
shows that this system is able to be used to describe the population dynamics
of forests. Moreover, an extended model considering the spatial positions of
trees is also proposed in Chapter 2 for the two-species forest case. From the
numerical simulations of this spatial model one can see the diffusion of forests
in space.

Chapter 3 and 4 focus on the mathematical analysis of the state-dependent
delay differential equations. The properties of semiflow generated by this sys-
tem are studied in Chapter 3, where we find that this semiflow is not time-
continuous. The boundedness and dissipativity of the semiflow for both single
species model and multi-species model are studied in Chapter 4.

Furthermore, in order to study the population dynamics after the introduc-
tion of parasites into a forest, a predator-prey system consisting of the above
state-dependent delay differential equation (describing the forest) and an ordi-
nary differential equation (describing the parasites) is constructed in Chapter
5 (only the single species forest is considered here). Numerical simulations
in several scenarios and cases are operated to display the complex behaviours
of solutions appearing in this system with the predator-prey relation and the
state-dependent delay.

Key words: State-dependent delay differential equation, semiflow, bound-
edness of solutions, dissipativity, forest population dynamics, predator-prey
system.
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Chapter 1

Introduction

1.1 History and applications of delay differential
equations

For a very long time, people in various scientific fields have used ordinary or
partial differential equations (since they were born in the late 17th century)
to describe systems of which the future state was determined by the present
state and the rate of change of the state. With a more and more profound
understanding of the world, people gradually found out that in some cases it
would be unrealistic not to consider the influence of the past on the present.
At the IV International Congress of Mathematicians (Rome, April 10th 1908),
Picard [174] pointed out the importance of “heredity” in the modelling of phys-
ical systems, namely the influence of the past state on the present or future
state:

La Mécanique, nous l’avons rappelé, a longtemps postulé plus ou moins
explicitement un principe de non-hérédité. Nous nous accommodons encore
de ce principe, au moins en première approximation, dans les sciences de la
nature inanimée, quoique de nombreux phénomènes indiquent que l’état actuel
garde la trace des états antérieurs.

L’hérédité joue surtout un rôle capital dans les sciences de la vie.
Nous pouvons rêver d’équations fonctionnelles plus compliquées que les pré-

cédentes parce qu’elles renfermeront en outre des intégrales prises entre un
temps passé très éloigné et le temps actuel, intégrales qui apporteront la part
de l’hérédité.

Picard [174] also mentioned the idea of the application of functional differential
equations in some systems:

Parfois, dans certaines questions, l’influence sur une partie du système
des parties éloignées de ce système ne peut être négligée, et le problème pris

1



1.1. History and applications of delay differential equations

dans sa généralité ne se présente plus sous forme d’équations différentielles,
mais sous forme d’équations fonctionnelles où entrent d’ailleurs des dérivées
des fonctions inconnues, les intégrales qui figurent dans ses équations étant
étendues au volume occupé par le système considéré.

Until this time did people begin to think about using delay differential equa-
tions, or functional differential equations to describe dynamics of systems in
other fields of science. Although at this time, these kinds of equations had been
studied for over 100 years (in the late 18th century by Condorcet, Laplace,
Poisson, etc.) [15, 187].

Volterra seemed to be the first to apply this idea. In his work [208, 209, 210,
212, 214], he formulated some general differential equations incorporating the
past states of systems to treat the problems about the hereditary phenomena
and to model viscoelasticity in population dynamics. Unfortunately, his results
were not drawing enough attention [77, 78].

In the 1940s, as mechanics was well developped in the Soviet Union, the
engineers also began to consider in engineering systems and control theory
the hereditary effects, which, they had always known but ignored for lack of
mathematical theory support. The pioneer work was probably from Minorsky
[152] in 1942 in the study of ship stabilization and automatic steering. In
1951, Mishkis published the book Linear differential equations with retarded
argument [154], which is considered to be the first rather complete research
in this area. In the ’50s and ’60s, several books about functional differential
equations appeared [22, 23, 75, 117, 153]. They focused on the linear sys-
tems with retarded arguments and presented a well-organized theory, which
also mathematically supported research in other areas. Now delay differential
equations have been applied in various fields to describe behaviours with time
lags, for example, in economics [19, 23, 27, 31, 137], in physics [62, 64, 192], in
population dynamics [48, 59, 97, 135, 212], in botanics [99, 100, 101, 103], in
epidemiology [28, 35, 47, 91, 92, 189, 207, 223], in medical science [17], even
in pedagogy [68, 69, 70]. I refer to [15, 77, 78, 113] for more applications and
explicit models in various sciences.

One general form of delay differential equations is given by

x′(t) = f(t, x(t), x(t− τ)) (1.1)

where τ > 0 denotes the delay and f is a continuous function on R3. The
initial value problem for delay differential equations is defined by{

x′(t) = f(t, x(t), x(t− τ)), t > t0,
x(t) = ϕ(t), t 6 t0.

An important type of delay differential equations is the case where the delay
τ depends on the state x, which is called state-dependent delay differential

2 Zhengyang Zhang



1. Introduction

equations, for example, the analogous equation to (1.1)

x′(t) = f(t, x(t), x(t− τ(x(t)))).

State-dependent delay differential equations can date back to Poisson [176]
in 1806, but most studies were done in recent fifty years due to the arising
applications in various areas [80]. I will give more information about state-
dependent delay differential equation in Chapter 1.2.

Another general form of equation is given by

x′(t) = f(t, xt), (1.2)

where f : D(⊂ R×C([−τ, 0],Rn))→ Rn is a given functional and the function
xt is defined by

xt : [−τ, 0]→ Rn, xt(θ) := x(t+ θ),

which was first introduced by Hale [76]. Equation (1.2) is also called a func-
tional differential equation. Given the initial condition xt0 = ϕ ∈ C([−τ, 0],Rn),
a solution x(t) of the equation (1.2) will be a continuous function defined on
an interval [t0− τ, t0 +T ) for some T > 0 such that x(t) = ϕ(t) on the interval
[t0− τ, t0], x is continuously differentiable on (t0, t0 +T ), has a right derivative
at t = t0 and satisfies (1.2) on the interval (t0, t0 + T ) [15]. The basic theory
regarding the solution of the equation (1.2) such as the existence, uniqueness,
continuation, differentiability and dependence on initial values and parameters
have been preliminarily studied in many literatures [15, 77, 78, 197]. Different
theories and tools are also used in studying state-dependent delay differential
equations, or functional differential equations [3, 128]. Moreover, I also refer to
some other books about the fundamental theory of delay differential equations
[29, 56, 53, 60]. For some recent advances about delay differential equations, I
refer to [34, 66, 81, 148].

1.2 Overview of the thesis
This thesis deals with the following state-dependent delay differential equation.
Let Ω be a compact subset of Rn (with n > 1). Denote C(Ω) := C(Ω,R) and
C+(Ω) := C(Ω, [0,+∞)) for simplicity. The system considered in the thesis is
the following: ∀t > 0 and ∀x ∈ Ω,

∂tA(t, x) = F (A(t, .), τ(t, .), A(t− τ(t))(., .))(x),∫ 0

−τ(t,x)

f(A(t+ s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,
(1.3)

with the initial condition

A(t, x) = ϕ(t, x),∀t 6 0,

State-dependent delay and forest population dynamics 3



1.2. Overview of the thesis

and ϕ belongs to

Lipα := {φ ∈ C((−∞, 0], C(Ω)) : t→ e−α|t|φ(t, .) is bounded and
Lipschitz continuous from (−∞, 0] to C(Ω)}.

In system (1.3) the map A(t− τ(t)) ∈ C(Ω2) is defined by

A(t− τ(t))(x, y) := A(t− τ(t, x), y).

In this problem the state space Lipα is a Banach space endowed with the norm

‖φ‖Lipα := ‖φα‖∞ + ‖φα‖Lip

where φα : (−∞, 0]→ C(Ω) is defined by

φα(t, x) := e−α|t|φ(t, x),∀t ∈ (−∞, 0], ∀x ∈ Ω. (1.4)

and
‖φα‖∞ := sup

t60
‖φα(t, .)‖∞

and for fixed t,
‖φα(t, .)‖∞ := sup

x∈Ω
|φα(t, x)|

and
‖φα‖Lip := sup

t,s60:t6=s

‖φα(t, .)− φα(s, .)‖∞
|t− s|

.

1.2.1 Comparisons with a forest simulator SORTIE

In Chapter 2, system (1.3) is used in a very specific form as a mathematical
model for forest growth, and numerical simulations are conducted to fit and
compare with a forest simulator SORTIE. The work of Chapter 2 has been
published in [140].

Development of forest growth models has gone through more than 300
years, from the earliest model - yield tables since 1713 [43, 172, 188], to growth
equations since late 1940s, especially the use of differential equations since the
1960s [178]. A rather detailed chart of the development of forest growth models
can be seen in [228]. Among all the forest models, one kind, which is named
individual-based model (IBM), or agent-based model, attracted people’s atten-
tion very much. This kind of model focuses on each individual instead of on
the stand or forest, thus has a higher resolution than the model based on the
whole forest. The first individual-based forest model was developped in 1964
by Newnham [159] for pure Douglas fir stands. After, many types of IBMs for
forests have been constructed.

Gap model is one kind of the forest IBMs that interests people very much.
The principle is that, the large forest ecosystem is considered as a mosaic of
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1. Introduction

patches or gaps when it is investigated, and as a whole when it is modelled
and understood [178]. The first gap model would be the JABOWA model
developped by Botkin et al. [26] for Hubbard Brook Ecosystem, a northern
hardwood forest in New Hampshire USA, which also laid the foundation on this
direction of studies. By modifying the assumptions, functions and submodels
in JABOWA in accordance with specific forests, many other forest gap models
have been developped since then, like FORET [191] for an Appalachian decid-
uous forest, SORTIE [169, 170] for a northern hardwood forest, FORMIX and
FORMIND [98, 107, 108] for a tropical forest, etc.. One may refer to [32] and
[178] for a nice survey about forest gap models. One can also find more types
of forest IBMs and more information in [33, 58, 124, 126, 177, 178, 205, 228].

In Chapter 2, SORTIE is chosen to be the forest simulator which generates
the forest data that is needed in the comparison with the mathematical model.
It is an individual-based forest model developped in the 1990s. A detailed
introduction about SORTIE is presented in Chapter 2.1, and I also refer to the
following original research papers about SORTIE [39, 40, 41, 42, 106, 169, 170,
171, 179]. An important principle behind SORTIE which is worth mentioning
is that light is the only resource considered which influences forests’ growth.
The scientisits have also programmed SORTIE model into a software. There is
a website http://www.sortie-nd.org where one can find this software and help
manuals.

In Chapter 2 SORTIE was run on Ubuntu 16.04 system. The data obtained
from SORTIE are used as the real data of forests in the numerical simulations
and parameter fitting of the following single species model describing the com-
petition for light in forests

dA(t)

dt
= e−µJτ(t) f(A(t))

f(A(t− τ(t)))
βb(A(t− τ(t)))− µAA(t),∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−
(1.5)

where

f(x) =
α

1 + δx
and b(x) = xe−ξx.

In this model, A(t) describes the adult tree population number. A two-species
model (system (2.9), see Chapter 2.3.1) extended from system (1.5) is also
fitted to the forest data in Chapter 2.

Furthermore, with all the parameter values obtained in the above parameter
fitting, a two-species model with space structure (system (2.12), see Chapter
2.4) is also derived and numerically simulated. The diffusion of forests in the
space thus can be observed from the simulation.

Delay differential equation applied in population dynamics started from

State-dependent delay and forest population dynamics 5



1.2. Overview of the thesis

the following Hutchinson’s equation [97]

dN(t)

dt
= rN(t)

(
1− N(t− τ)

K

)
,

and Nicholson’s blowfly equation [160, 161, 173]

dN(t)

dt
= b(N(t− τ))N(t− τ)− λ(N(t))N(t),

which, along with the variations, have always been a research interest [7, 72,
149, 150, 225, 226].

The single species model (1.5) has been previously considered by Smith
[193, 194, 195, 196], where it was derived from the following size-structured
model

∂tu(t, s) + f(A(t))∂su(t, s) = −µ(s)u(t, s), for t > 0, s > s−,

f(A(t))u(t, s−) = βb(A(t)), for t > 0,

u(0, .) = u0(.) ∈ L1
+(s−,+∞).

(1.6)

Such ideas of deriving delay differential equations from structured population
models have been used a lot in the literature [4, 13, 73, 84, 85, 163].

With deeper study and understanding of population dynamics, people
started to consider introducing state-dependent delay into population mod-
els, as was pointed out in Arino et al. [14]:

In the context of population dynamics, the delay arises frequently as the
maturation time from birth to adulthood and this time is in some cases a func-
tion of the total population.

The early work about introducing state-dependent delay into population
dynamical models includes Bélair [21] in 1991 about open-access fisheries, and
Aiello et al. [6] in 1992 about the maturation time of Antarctic whales and seals
in Antarctica. After that, more research following their ideas came up [7, 8,
13, 14, 18, 84, 85, 232]. More studies about delay differential equation models
(and also delay difference equation models) describing population dynamics
can be found in [67, 114, 119, 136, 158, 197].

1.2.2 Semiflow properties

Chapter 3 deals with the semiflow properties of system (1.3), corresponding
to the work in [143]. The definition of a semiflow defined on a general metric
space can be seen in Chapter 3.1, Definition 3.5. The semiflow generated by
system (1.3) is

U(t)(ϕ(., x), τ0(x)) := (At(., x), τ(t, x)),

6 Zhengyang Zhang



1. Introduction

where A(t, x) and τ(t, x) are the solution of system (1.3) with the initial dis-
tribution (ϕ(t, x), τ0(x)).

There are several ways in understanding the delay τ(t, x). One normal
understanding is that τ(t, x) is the solution of the integral equation in (1.3).
In this way τ(t, x) together with At(., x) is treated as a state variable. An-
other understanding is to regard τ(t, x) as the solution of a partial differential
equation obtained by a differentiation on the integral equation in system (1.3),
proved in Chapter 3.3, Lemma 3.9. Furthermore, the result in Chapter 3.3,
Lemma 3.13 shows that this delay term is also a functional of At, which means
that the delay is also a state-dependent delay.

There have been a number of research about the solution and the semiflow
of state-dependent delay differential equations. First results regarding the
general results about the existence and uniqueness of solutions and continuous
dependence on initial conditions were probably from Driver [54, 55] in the study
of a two-body problem in electrodynamics. Studies about state-dependent
delay differential equations have been largely enriched since then, for example,
about the differentiability and smoothness [82, 132], about attractors [95, 118],
about the stability of solutions [74, 145, 146], about periodic solutions [9, 12,
121, 138, 144, 147, 164, 215, 219]. For a very nice survey and basic theoretical
results about functional differential equations with state-dependent delay, I
refer to Hartung et al. [80].

Walther did a series of work [216, 217, 218, 220, 221, 222] on the semiflow
of a general autonomous state-dependent delay differential equation. Partic-
ularly, in [221], he studied the semiflow properties of a general class of state-
dependent delay differential equations with locally bounded delay

x′(t) = g(xt); x0 = ϕ ∈M

in the following exponentially weighted space (with the compatibility condi-
tion)

M := {φ ∈ U : φ′(0) = g(φ)}

where
U ⊂ B1 := {φ ∈ B ∩ C1 : easφ′(s)→ 0 as s→ −∞},

B := {φ ∈ C : easφ(s)→ 0 as s→ −∞},

C := C((−∞, 0],Rn), C1 := C1((−∞, 0],Rn).

In his problem, the delay is finite, yet unbounded. One result he proved was
the continuity of the semiflow with respect to time.

In Chapter 3.3, a relatively complete analysis about the delay τ(t, x) is
given, where it is shown that although from the integral equation of system
(1.3), the delay can be infinite due to the assumptions on the function f , how-
ever, when A(t, x) is bounded, τ(t, x) is also bounded. The semiflow properties
are also studied for the system (1.3) in the exponentially weighted Lipschitz

State-dependent delay and forest population dynamics 7



1.2. Overview of the thesis

space Lipα. The existence and the “state variable continuity” of the semiflow
are proved (see Theorem 3.6). The major principle is to use fixed point the-
orem to find the solution of the system. The difficulty lies in how to find a
proper space and how to define the fixed point problem properly. However, the
semiflow is in general not continuous in time. An example where the semiflow
is not continuous in time is offered in Chapter 3.1 (between Definition 3.5 and
Theorem 3.6). Moreover, we also consider the system in a similar space as in
Walther [221]

Dα := {(φ, τ0) ∈ BUC1
α × C+(Ω) : φ′(0, x) = F (φ(0, .), τ0(.), φ(−τ0(.), .))(x),

∀x ∈ Ω},

where

BUC1
α := {φ ∈ C1((−∞, 0], C(Ω)) : φα ∈ BUC((−∞, 0], C(Ω))

and ∂tφα ∈ BUC((−∞, 0], C(Ω))} ,

and φα is defined in (1.4). The result is Theorem 3.7, where it is shown that
we can choose two different state space for At (Lipα or BUC1

α), but only in
the case of BUC1

α can we get a continuous (in time) semiflow, which is in
accordance with the result in Walther [221]. An illustration can also be seen
at the end of Chapter 3.1. Moreover, for those who might be interested, I refer
to [86, 123] for the research about infinite delay.

1.2.3 Boundedness and dissipativity of solutions

Chapter 4 deals with the boundedness and dissipativity of solutions of system
(1.5) and the extended n-dimensional system (see system (4.5)). This work has
been published in [141]. The dissipativity result describes that the solutions
will eventually go below some constant which is independent of the initial
conditions. A more detailed explanation of “dissipativity” is given in Theorem
4.16 and Theorem 4.21.

Smith dealt with this kind of problem in his work [193, 194], where he used
a change of variable

t̂ =

∫ t

0

f(A(s))ds, t > 0; Â(t̂) = A(t),

and transformed the state-dependent delay into a constant delay (a general
analysis of this kind of change of variable can be found in Otto [168]). Then
he studied the postivity, boundedness, Hopf bifurcation, global attractor and
uniform persistence in the articles. This “change of variable” idea has also
been suscessfully used in Kloosterman et al. [104] for dealing with a nutrient-
phytoplankton-zooplankton model. A similar model as (1.5) was also used in
Brunner et al. [30] about larva development.

8 Zhengyang Zhang



1. Introduction

However, in the case of an n-dimensional system, we can’t find a valid
change of variable any more. So we turn back to the original state-dependent
delay differential equation (1.5) and deal with it directly. The approach to
study the boundedness of solutions contains some similar procedures as the
constant delay case in Smith’s work [193], but more technical details and deli-
cate arguments are needed in the state-dependent delay case. The major idea
is to firstly find a proper bound on a certain interval of time, and then to
prove that for the rest of the timeline the solution won’t exceed this bound.
Following this idea, the dissipativity results can also be proved.

1.2.4 Numerical simulations for a predator-prey system
incorporating the state-dependent delay

Inspired by the above research of the forest growth model, we come up with
the idea of introducing a predator-prey relation into the forest model. The
predator-prey relation in the forest is usually expressed as the forest-pest or
forest-parasite relation. A simple forest-pest mathematical model has been
studied in [11].

In Chapter 5, the following predator-prey system is studied numerically

dA(t)

dt
= f(A(t))

βA(t− τ(t))

f(A(t− τ(t)))
e−µJτ(t) − µAA(t)− γAI(t)A(t)

1 + κA(t)
,∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−,

dI(t)

dt
=

(
εχγAA(t)

1 + κA(t)
− µI

)
I(t)

(1.7)

with the initial distributions

A(t) = A0(t) > 0,∀t ∈ (−∞, 0]; τ(0) = τ0 > 0; I(0) = I0 > 0.

In this model, A(t) describes the adult tree population number, and I(t) de-
scribes the parasite population number. In Chapter 5, this parasite is s species
of pine wood nematode, which causes a serious pine disease – pine wilt disease
across the world [156, 206]. As is explained in Chapter 5, the life cycle of
nematode is very short compared to the pine tree, so the model uses instante-
nous production of nematodes, namely there is no delay term in the nematode
equation.

The predator-prey system dates back to Lotka [129] and Volterra [211, 213]
in the early 20th century, which is also called consumer-resource model in a
general way. The classical Lotka-Volterra model takes the form

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

State-dependent delay and forest population dynamics 9



1.2. Overview of the thesis

where x and y denotes the number of the prey and the predator respectively.
This model has been very well studied in the literature (for example, [83, 158,
201]). I refer to papers [24, 38, 79, 93, 120, 122] and books [151, 166, 224] for
some general introductions and analysis about predator-prey theory.

In the predator-prey system, a concept “functional response” is very impor-
tant in describing the relationship between the predator and the prey. It is the
intake rate of the predator as a function of prey density. On the other words,
it describes the change in the rate of consumption of prey by a predator when
the prey density varies [49]. This concept was first introduced in Holling’s
papers [89, 90]. In the papers Holling also derived three types of functional
responses. Holling’s type I functional response is a linear function

g(x) = βx,

which is basically the one in the Lotka-Volterra model, except that the linear
relation in Holling’s type I functional response only exists up to a certain value
of x and after this certain value, the function g(x) takes a constant value, while
there is no such limitation in Lotka-Volterra model. Holling’s type II functional
response takes the form

g(x) =
ax

1 + ahx
,

and Holling’s type III functional response is

g(x) =
axk

1 + ahxk
.

Different population species will display different functional responses, for ex-
ample, type I for algae and fungi, type II for the invertebrates and type III
for the vertebrates [45]. Predator-prey systems with Holling’s type functional
responses have been extensively studied in the literature (for example [5, 16,
46, 94, 105, 133] and with delays [131, 162, 229]). More kinds of functional
responses were also raised and used in different situations [20, 50, 96, 102, 185].

In system (1.7), Holling’s type I and II functional response are combined

together, namely the function g(A) =
γAA

1 + κA
, which becomes type I when

κ = 0 and type II when κ > 0.
One will observe that when I0 = 0 then I(t) = 0, ∀t > 0, then system

(1.7) corresponds to system (1.5), the one without parasite. On the other
hand, when τ0 = 0 then by Remark 3.10, τ(t) = 0, ∀t > 0, then system (1.7)
becomes the following ODE predator-prey system

dA(t)

dt
= (β − µA)A(t)− γAI(t)A(t)

1 + κA(t)
,

dI(t)

dt
=

(
εχγAA(t)

1 + κA(t)
− µI

)
I(t).
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This chapter is to investigate the influence of introducing nematode into a
pine forest numerically, which can be regarded as a predator-prey system where
the prey has (possibly) a complex dynamics described by a state-dependent
delay differential equations. Three scenarios of forest population (steady solu-
tion, damped oscillating solution and periodic solution) with the introduction
of nematodes are investigated via numerical simulations. Comparisons on two
levels, namely i) forest population with and without nematodes, ii) predator-
prey system with and without state-dependent delay are also studied. Both
cases, either introducing the nematodes or introducting the state-dependent
delay will bring significant changes in the population dynamics. The work of
this chapter has been published in [142].

1.2.5 Discussion

This thesis studies a class of state-dependent delay differential equations.
The motivation comes from the comparison results between the state-

dependent delay differential equation and a forest simulator SORTIE. Adult
population numbers of two species of trees in two cases: single species case
and two-species case are considered. These two species of trees represent two
scenarios of forest population growth: i) going directly to a steady state; ii)
oscillating to a steady state. From the numerical simulations, we observe that
the state-dependent delay differential equation fits the forest data generated
by the simulator SORTIE very well in both cases. Moreover, a spatial version
of the state-dependent delay differential equation for two-species case, which
includes the spatial position of trees, is also proposed in the thesis. Numerical
simulations are also conducted for this spatial model, but there is no fitting
to the forest data due to the reason that we cannot obtain the specific data
of adult population numbers in each spatial position from the simulator SOR-
TIE. However, from the numerical simulations one can still observe the spatial
disperse of the forests. And, by changing parameters which influence the in-
teractions of the two species, we can obtain different evolutional consequences
in the long term: competitive exclusion or coexistence. This actually shows
that in order for the species to coexist, they must have different advantages in
different levels, otherwise one that has no advantages in any aspect must die
out. Specifically speaking, in Figure 2.9, the decrease of ζ21 changes the forest
system from competitive exclusion to coexistence. This can be explained as
the fact that although the species A2 has some advantage before so that it can
dominate, the decrease of ζ21 means that the species A1 has some advantage
on some other level such that the species A2 can influence it less stronger, thus
two species can coexist.

Inspired by the nice simulation results, we propose a general class of state-
dependent delay differential equations which can derive the above one. Similar
systems have been considered in the literature, but the state space is differ-
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1.2. Overview of the thesis

ent. Most papers dealt with systems in the space of continuous differentiable
functions, or in addition, with an exponential weight. In this thesis, I consider
this problem in an exponentially weighted Lipschitz space, which, to my best
knowledge, has not been studied before. The existence of the maximal semi-
flow is studied via the fixed point method and the lower semi-continuity of the
maximal time of existence with respect to the initial conditions is also studied.
A big difference from before is that in general there is no time continuity of this
maximal semiflow. Furthermore, the boundedness of solutions and the dissipa-
tivity of the system are also studied, where we extend the method which was
used before by Smith on constant delay system to adapt to our varing delay
problem.

Lastly, we naturally turn to the thought of the predator-prey relation in
forest, which obviously has influences on forest population growth. Combined
with the serious pine wilt disease, we consider introducing the parasite of the
disease into the forest population growth model, and construct the predator-
prey system with a state-dependent delay differential equation. Preliminary
analysis are from the numerical point of view. From the simulations of the
predator-prey system in three scenarios, we observe the complexity of the
dynamics in two levels: introducing the state-dependent delay into a predator-
prey system and introducing the predator-prey relationship into a single pop-
ulation model. Although there haven’t been any mathmatical analysis of this
kind of system, the numerical simulations help to understand this system in-
tuitively.

More work can be done in this direction. Firstly, since the time when
this kind of system was raised more than 20 years ago, very little studies
have been done. Yet there are a lot of interesting research prospects of this
system in a mathematical point of view, for example, the stability analysis, the
bifurcation analysis, the travelling wave problem. Moreover, there are other
forest simulators in the literature. Is our system capable of fitting other forest
simulators? Different forests might compete for different resources, thus light
might no longer be the main ingredient. So what kind of changes need to
be done accordingly to our system in order to adapt to other forests? These
questions are issued for further research.
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Chapter 2

Comparisons between a forest
computer simulator and a
mathematical model

2.1 Introduction

In the natural ecosystem, forests play an important role. This has motivated a
lot of people to propose computer simulators as well as mathematical models
to describe the dynamical properties of forests. Many computer simulators
(also sometimes called Individual Based Models (IBMs)) have been proposed
and we refer to JABOWA [25, 26], FORET [191], SORTIE [170], FORMIND
[107, 108] and others. These models consist of stochastic processes describing
individual behaviors, such as birth, death, movement, reproduction and so
on. Moreover, these models also permit us to describe the behavior of the
entire plant community. The main advantage is that it provides simulated
data which can be used to analyze such a complex system. Of course this is
a rough description of the real plant community. However, they do supply
powerful experimental tools and describe the forest dynamics reasonably well
[125]. We refer to [126, 177] for a general review about forest IBMs.

SORTIE is a forest simulator based on the forest data observed in and
around Great Mountain Forest (GMF), a privately owned 2500ha forest located
in northwestern Connecticut (41◦57’N, 73◦15’W), USA (see Figure 2.1) in the
year 1990-1992. In SORTIE, four submodels (resource, growth, mortality, and
recruitment) are included to determine the behaviour of each individual. As is
explained in [169], from the point of view of the resource competition, SORTIE
includes only the light competition, since from extra experiments very little
evidence of water or nitrogen limitation has been observed for this particular
forest. Nevertheless water or nitrogen limitation might be vital in other forests.
The lighting mechanism in SORTIE is rather complex and we refer to the
subsection Resource submodel page 3 in [169] for more about this. Tree growth

13



2.1. Introduction

Figure 2.1: The location of the forest - Great Mountain Forest - studied by
SORTIE: northwestern Connecticut (41◦57’N, 73◦15’W), USA.

is described by change of tree size, which is denoted here as the diameter
at a certain height. Two concepts "diam10 (Diameter at 10cm Height)" and
"DBH (Diameter at Breast Height)" are often used to describe the tree growth
and represent the tree size in the analysis of forest dynamics [169, 170, 179].
Thereinto, the diam10 can be used almost throughout the whole life of an
individual, from seedling to adult, while DBH can only be used for adults in
most cases, as it is measured at a higher height. The definition of the breast
height (of an adult human being) is different in different regions, for example,
1.4m in the US and 1.3m in Europe and Canada. But it makes little difference
to the measuring result in many cases. We refer to [106, 169, 170, 171, 179, 202]
for more details of SORTIE.

In this chapter we will extend the model proposed by Hal Smith in [193, 194]
to describe the dynamic of a population that is structured in size with intra-
specific competition for light. For a single species, we will compare such a
mathematical model with SORTIE model for two types of tree (American
beech (FAGR) and eastern hemlock (TSCA)). The reason why we choose par-
ticularly these two types of tree is that after a tentative run of SORTIE, we find
that FAGR and TSCA dominates the forest in an obvious way (see Figure 2.2).
Moreover, based on the parameters estimated separately for each kind of tree,
we will investigate the inter-specific competition for light by assuming that
the growth rate of juveniles is influenced by the number of adults due to the
competition for light between them. We will also extend our modelling effort
by considering the case of two populations distributed in space and competing
for light.
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2. Forest models

Figure 2.2: The output of one run of SORTIE for all the nine species on a
period of 2000 years (1 time step=5 years).

Several mathematical models describing the forest growth were proposed
in the literature. Zavala et al. [231] studied a stage-structured population
model incorporating the light competition respectively in growth, mortality
and recruitment, and gave the conditions for the existence of a steady state
distribution. Angulo et al. [10] continued with a similar model, but they
considered the light competition only in recruitment, and after that they ex-
tended the model to a two-species stand, and gave the positive stationary
distribution for both single-species and two-species model and the conditions
for the coexistence. Cammarano [37] studied a system of Lotka-Volterra type,
incorporating also the light competition and discussed the equilibria and the
coexistence conditions. In this article, based on SORTIE simulated data, we
will exclude the competition occurring in the mortality and recruitment. In
other words, we will see that the best fit for SORTIE model is obtained by
using a model where the competition for light influences only the growth rate
of trees. We also refer to [65, 109, 111, 165, 183, 200, 230] and the references
therein for other models and relevant research.

This chapter is organized as follows. In section 2 we will give a mathe-
matical model for single species, and we will conduct numerical simulations to
compare with SORTIE. In section 3 a mathematical model for two species is
obtained likewise, and we also conduct the comparison with SORTIE. Then in
section 4 we extend it to a 2-dimension spatial model, and conduct numerical
simulations to see the spread of trees in space.

2.2 Single species model

2.2.1 Mathematical modelling

In this section we consider the following model describing the growth of trees
of single species
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

∂tu(t, s) + f(A(t))∂su(t, s)︸ ︷︷ ︸
growth of juvenile trees

= − µ(s)︸︷︷︸
mortality

u(t, s), for t > 0, s > s−,

f(A(t))u(t, s−) = βb(A(t))︸ ︷︷ ︸
flux of newborns

, for t > 0,

u(0, .) = u0(.) ∈ L1
+(s−,+∞).

(2.1)

Here u(t, s) denotes the population density of trees with size s at time t, so∫ s2

s1

u(t, s)ds is the number of trees with size s ∈ [s1, s2] at time t, and A(t) is

the number of adult population at time t. As it will be explained in Appendix
A, the size s is described by a function of diam10

s(t) := ln
r(t)

r−
, and r(t) =

diam10(t)

2

where r− is the minimal radius of the juvenile. The function µ(s) > 0 is the
natural mortality. In the following derivation we will assume for simplicity
that

µ(s) =

{
µA > 0, if s > s∗,
µJ > 0, if s ∈ [s−, s

∗),

where s− > 0 is the minimal size of a juvenile and s∗ satisfying s∗ > s− is the
maximal size of a juvenile (or the minimal size of an adult). The parameter β
is the birth rate in absence of birth limitation, and the term βb(A(t)) describes
the flux of newborns into the population, where b(x) = xe−ξx is the Ricker’s
type birth limitation [180, 181]. The nonlinear growth function f(x) takes the
form

f (x) =
α

1 + δx
, α, δ > 0, (2.2)

which is decreasing, thus taking care of the fact that the more large trees there
are, the slower the growth rate of small trees is. So this shows the type of
competition for light between adults and juveniles. A similar size-structured
population dynamical model with a nonlinear growth rate (taking into account
the competition for a resource) has been studied in Calsina and Saldaña [36].
The function u0(.) represents the initial distribution of the species. Normally
we want the number of the total population to be finite at each time, hence
we have ∫ +∞

s−

u(t, s)ds < +∞, ∀t > 0.

So the natural state space for this model is L1(s−,+∞).
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We will derive the following equations for adults and juveniles under some
assumptions

dA(t)

dt
= f(A(t))j(t, s∗)− µAA(t), for t > 0,

∂tj(t, s) + f(A(t))∂sj(t, s) = −µJj(t, s), for s ∈ [s−, s
∗), t > 0,

f(A(t))j(t, s−) = βb(A(t)), for t > 0,

A(0) = A0 > 0,
j(0, s) = j0(s) > 0, for s ∈ [s−, s

∗),

(2.3)

where j(t, s) represents the population density of juveniles with size s ∈ [s−, s
∗)

at time t. Hence the total number of juveniles at time t is

J(t) =

∫ s∗

s−

j(t, s)ds =

∫ s∗

s−

u(t, s)ds.

And we can assume as follows the adult population number

A(t) =

∫ +∞

s∗
u(t, s)ds. (2.4)

By integrating along the characteristic line of the second equation (of juvenile)
in (2.3), the first equation (of adult) in (2.3) can be rewritten as the following
state-dependent Functional Differential Equation (FDE)

dA(t)

dt
= e−µJτ(t) f(A(t))

f(A(t− τ(t)))
βb(A(t− τ(t)))− µAA(t),∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−
(2.5)

when t > t∗, where t∗ is defined as∫ t∗

0

f(A(σ))dσ = s∗ − s−.

Differentiation of the second equation with respect to t gives the following
system

A′(t) = e−µJτ(t) f(A(t))

f(A(t− τ(t)))
βb(A(t− τ(t)))− µAA(t),

τ ′(t) = 1− f(A(t))

f(A(t− τ(t)))
.

(2.6)

The initial conditions are

A(t) = A0(t) > 0,∀t ∈ (−∞, 0]; τ(0) = τ0 > 0, (2.7)
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where A0(t) is continuous and exponentially bounded, namely for some ϑ > 0

sup
t60

eϑtA0(t) < +∞.

From the second equation of (2.5), as f is decreasing, the delay τ(t) can
become large enough, namely we may have infinite delay. For all the derivations
here, see Appendix A. The semiflow properties of such a state-dependent delay
differential equation will be studied in Chapter 3.

2.2.2 Numerical simulations of two special cases

We conduct numerical simulations for two special cases of the system (2.5).
Special case 1 (f(x) is constant): Assume that f(x) is a constant function
(so the delay τ(t) is also constant by the second equation of (2.5)) and b(x) =
xe−x. Then since the PDE model (2.1) can be transformed (by making a
simple change of variable in time) into an age-structured model, it is known
(see Magal and Ruan [139]) that the system has a Hopf bifurcation around the
positive equilibrium when β increases (see in Figure 2.3).

Figure 2.3: We plot the adult population number A(t) in figure (a) and (c), and
the corresponding delay τ(t) in figure (b) and (d). We fix the parameter values
µJ = 0.2, µA = 0.1, α = 0.5, δ = 0, ξ = 1, s∗ = ln 50, s− = 0, and the initial
distribution A0(t) = 1.5, ∀t ∈ [−100, 0]. In (a) and (b) we set β = 9. The
solution oscillates and then converges to the positive equilibrium. In (c) and
(d) we set β = 25. Changing β from 9 to 25, we observe a Hopf bifurcation.

Special case 2 (b(x) = x): Assume b(x) = x, namely the Ricker’s type birth
function doesn’t appear in system (2.5). It is known that when τ is constant
in the first equation (which becomes linear) of system (2.5), this system is
either exponentially increasing or exponentially decreasing when the time goes
to infinity. However, it has been proved by Smith [193] that Hopf bifurcation
can occur when we take state-dependent delay. This is illustrated in Figure
2.4.
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Figure 2.4: We plot the adult population number A(t) in figure (a) and (c), and
the corresponding delay τ(t) in figure (b) and (d). We fix the parameter values
µJ = µA = 0.1, δ = 0.1, ξ = 0 (remember this means that b(x) = x), and the
initial delay τ0 = 4. The initial distribution is A0(t) = 1.5, ∀t ∈ [0, 200]. In
(a) and (b) we set β = 2.2, then we have the damped oscillating solution which
converges to the positive equilibrium; In (c) and (d) we set β = 4. Changing
β from 2.2 to 4, we observe a Hopf bifurcation.

2.2.3 Comparison with SORTIE

We run the simulator SORTIE with the parameter values given in [106, 170,
179, 202] and get the simulation for the density of adult trees (adults are
defined here as trees having a DBH > 10cm). And as we can see from this
simulation, American beech(FAGR) and eastern hemlock(TSCA) become the
dominant species after a period time. So in this article we will focus on these
two species in two cases: one single species and two-species.

The basic idea of the numerical simulation of (2.5) and comparison is as
follows. Before starting, we need to get the forest data from SORTIE. Since
every run of SORTIE is initiated with a random seed, we conduct 50 runs and
take the average values as our actual data. Moreover, the data that SORTIE
gives are actually the density of the adult population per hectare. As the area
of the sample square is 90000m2 (a square of 300m×300m) = 9 hectares, we
multiply the data by 9 to obtain the total adult population number. We plot
the 50 runs and the average in Figure 2.5 to see the stochastic variation. Now
we will compare our model (2.5) with the mean value over these 50 runs of
SORTIE, and find the best fit. First we need to decide the initial time (for
example, t = 100 as the initial time), and we will use the data from SORTIE
over the time interval [0, 100] as the initial condition. Next we discretize the
parameters µJ , µA, β, ξ, δ, τ0, and for each set of parameters, we calculate the
solution of (2.5) by using the common approximation of the derivative (the
numerical scheme will be conducted via the equivalent system (2.6)), and we
compare the numerical solutions with the data from SORTIE by using the least
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2.2. Single species model

Figure 2.5: Population numbers of 50 random runs from SORTIE for the
adults of two species American beech and eastern hemlock(green curve) and the
average number(red curve) respectively, in a period of 400 timesteps. (a). One
single species American beech; (b). One single species eastern hemlock; (c).
Two-species case: American beech; (d). Two-species case: eastern hemlock.

square method, to find the set of parameter values with which the numerical
result of the model (2.5) and the data have the least difference. Then we use
the following formula (see Appendix A)

∫ 0

−τ0

α

1 + δA(σ)
dσ = s∗ − s−,

to compute α, where we use the Simpson’s rule to calculate the integral. Now
we can keep this set of parameter values, and we have the best fit to SORTIE.

For the first dominant species American beech, we choose the SORTIE data
in the time interval [0,200] as the initial distribution. We have the best fit in
Table 1 and Figure 2.6.
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Parameter Interpretation value Reference
µJ1 natural mortality rate for juveniles 0.03 estimated
µA1 natural mortality rate for adults 0.001 estimated
β1 birth rate in absence of birth limitation 2 estimated
s− minimal size for juvenile 0 [170]
s∗ minimal size for adult ln 50 [179]
ξ1 parameter in the Ricker type function 0 estimated
τ01 time delay of the juveniles present 121 estimated

at time 0 to become adults
α1 growth rate of juveniles without adults 0.1709 computed
δ1 parameter describing the descending 0.1 estimated

speed of the growth rate
when adult population increases

Table 1: Parameter values of the best fit for species 1: American beech.

Figure 2.6: In this figure we show the comparison between SORTIE data and
numerical simulation for American beech. The adult population number A(t)
is plotted in (a) and the delay τ(t) is shown in (b).

Similarly, for the second dominant species eastern hemlock we choose the
SORTIE data in the time interval [0,180] as the initial distribution. We get
the best fit in Table 2 and Figure 2.7.
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Parameter Interpretation value Reference
µJ2 natural mortality rate for juveniles 0.031 estimated
µA2 natural mortality rate for adults 0.0037 estimated
β2 birth rate in absence of birth limitation 4 estimated
s− minimal size for juvenile 0 [170]
s∗ minimal size for adult ln 50 [179]
ξ2 parameter in the Ricker type function 0 estimated
τ02 time delay of the juveniles present 127 estimated

at time 0 to become adults
α2 growth rate of juveniles without adults 0.249 computed
δ2 parameter describing the descending 0.1 estimated

speed of the growth rate
when adult population increases

Table 2: Parameter values of the best fit for species 2: eastern hemlock.

Figure 2.7: In this figure we show the comparison between SORTIE data and
numerical simulation for eastern hemlock. The adult population number A(t)
is plotted in (a) and the delay τ(t) is shown in (b). Notice that this species
will have an oscillation before it converges to the stable positive equilibrium.

Notice that for both species in the single species case, we have ξ1 = ξ2 = 0
as the best fit, which means that there is no Ricker’s type birth limitation
here.
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2.3 Two-species model

2.3.1 Mathematical modelling

System (2.1) can be extended to the case of two species. Taking the previous
best fit ξ1 = ξ2 = 0 into account, we obtain the following system

∂tu1(t, s) + f1(Z1(t))∂su1(t, s) = −µ1(s)u1(t, s), for t > 0, s > s−,
∂tu2(t, s) + f2(Z2(t))∂su2(t, s) = −µ2(s)u2(t, s), for t > 0, s > s−,
f1(Z1(t))u1(t, s−) = β1A1(t), for t > 0,
f2(Z2(t))u2(t, s−) = β2A2(t), for t > 0,
u1(0, ·) = u10(·) ∈ L1

+(s−,+∞),
u2(0, ·) = u20(·) ∈ L1

+(s−,+∞),

(2.8)

where

Zi(t) = ζi1A1(t)+ζi2A2(t), fi(x) =
αi

1 + δix
, µi(s) =

{
µAi > 0, if s > s∗,
µJi > 0, if s ∈ [s−, s

∗),

and ζij > 0 are non-negative constants, αi, δi > 0, i, j = 1, 2. A specific
explanation of the meaning of ζij can be found in Table 3. Notice that we use
the same minimal juvenile size s− and minimal adult size s∗ for both species
(see [169]). After a similar derivation, we have the following state-dependent
delay differential equations

A′i(t) = e−µJiτi(t)
fi(Zi(t))

fi(Zi(t− τi(t)))
βiAi(t− τi(t))− µAiAi(t),∫ t

t−τi(t)
fi(Zi(t))dσ = s∗ − s−,

(2.9)

i = 1, 2. We give the following expression for the sake of numerical simulation
A′i(t) = e−µJiτi(t)

fi(Zi(t))

fi(Zi(t− τi(t)))
βiAi(t− τi(t))− µAiAi(t),

τ ′i(t) = 1− fi(Zi(t))

fi(Zi(t− τi(t)))
.

(2.10)

2.3.2 Comparison with SORTIE

We use the same method of comparison as before and we use the parameters
in Table 1 and Table 2 to simulate the two-species model. We discretize the
new parameters ζij appeared in the competition term, and also by the least
square method, we get the best fit for them: ζ11 = 1, ζ12 = 0.6, ζ21 = 1.6,
ζ22 = 1, and the delay τ01 is increased to 201, τ02 increased to 208. We list
these values in Table 3. The comparison figure is in Figure 2.8.
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Parameter Interpretation value Reference
ζ11 parameter in the competition term 1 estimated

describing the intraspecific competition
among American beech

ζ12 parameter in the competition term 0.6 estimated
describing the interspecific influence of
eastern hemlock on American beech

ζ21 parameter in the competition term 1.6 estimated
describing the interspecific influence of
American beech on eastern hemlock

ζ22 parameter in the competition term 1 estimated
describing the intraspecific competition

among eastern hemlock
τ01 time delay of the American beech juveniles 201 estimated

present at time 0 to become adults
τ02 time delay of the eastern hemlock juveniles 208 estimated

present at time 0 to become adults

Table 3: New parameter values for two-species model.
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Figure 2.8: In this figure we plot the comparison between SORTIE data and
numerical simulation for two-species model (2.9). The figures (a) and (c)
show the adult population number for species 1 American beech and species 2
eastern hemlock respectively. The figures (b) and (d) show the corresponding
time delay.

State-dependent delay and forest population dynamics 25



2.4. Two-species spatial model

By analyzing the existence of positive (coexisting) equilibrium (see Ap-
pendix B), we can also obtain the coexistence of both American beech and
eastern hemlock in Figure 2.9.

Figure 2.9: In this figure we demonstrate that we can pass from competitive ex-
clusion (a)(b)(which corresponds to Figure 2.8) to coexistence (c)(d) by chang-
ing one parameter ζ21. The other parameters are the same as in Figure 2.8.
When ζ21 = 1.6, American beech (a) reaches to a positive steady state while
eastern hemlock (b) disappears gradually. After we decrease the value of ζ21

to 1, both American beech (c) and eastern hemlock (d) go to a positive steady
state, which means coexistence.

2.4 Two-species spatial model

Now we take the spatial position of the individuals into account to see the
spread of the adult population. We assume that the diffusion of individuals is
due to the spreading of seeds around the trunk. This corresponds to assume
that the distribution of seeds, when they fall down around the trunk, follows
a Gaussian distribution. The same idea has already been proposed by Ducrot
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[57]. The spatial model with two species reads as follows



∂tui(t, s, x, y) + fi(Zi(t, x, y))∂sui(t, s, x, y) = −µi(s)ui(t, s, x, y),
for t > 0, s > s−, x ∈ [0, xmax], y ∈ [0, ymax],

fi(Zi(t, x, y))ui(t, s−, x, y) = (I − εi∆)−1(βiAi(t, ., .))(x, y),
for t > 0, x ∈ [0, xmax], y ∈ [0, ymax],

ui(t, x, 0) = ui(t, x, ymax), for x ∈ [0, xmax],
ui(t, 0, y) = ui(t, xmax, y), for y ∈ [0, ymax],
ui(0, s, x, y) = ui0(s, x, y) ∈ L1

+((s−,+∞)× [0, xmax]× [0, ymax]),
(2.11)

where

Zi(t, x, y) = ζi1A1(t, x, y) + ζi2A2(t, x, y), fi(x) =
αi

1 + δix
,

ζij > 0, αi, δi > 0, i = 1, 2, and ∆ is the Laplacian operator with periodic
boundary condition. Similarly, we assume the adult population number

Ai(t, x, y) =

∫ +∞

s∗
ui(t, s, x, y)ds, i = 1, 2,

and by following a similar procedure as before, we get the state-dependent
delay differential equation for the adult

∂Ai(t, x, y)

∂t
=e−µJiτi(t,x,y) fi(Zi(t, x, y))

fi(Zi(t− τi(t, x, y), x, y))
(I − εi∆)−1[βiAi(t−

τi(t, x, y), ., .)](x, y)− µAiAi(t, x, y), for t > t∗,∫ t

t−τi(t,x,y)

fi(Zi(σ, x, y))dσ = s∗ − s−, for t > t∗.

(2.12)

Remark 2.1. The inverted operator (I − εi∆)−1 is defined by using the resol-
vent of the Laplacian operator ∆, which is specifically explained in Appendix C.
It is an operator which maps bounded uniformly continuous functions defined
on R to a space of periodic functions.

We conduct numerical simulations for system (2.12), using the parameters
in Table 1-3, and setting the diffusion coefficient ε1 = 0.01, ε2 = 0.005, in
order to observe the growth and spread of adult population of the two species.
The simulation is conducted in a 300 ∗ 300 square of the x − y plane, as in
the reference [169]. We choose the square [0, 300]× [0, 300] for simplicity. We
use a random initial distribution Ai(0, x, y) defined as follows for both species:
first we discretize the interval [0, 300], then we choose 25 random points in the
square by taking randomly 5 points on x-axis and y-axis respectively and we
assign a non-zero random number to each of the 25 points as the population

State-dependent delay and forest population dynamics 27
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number of adults Ai(0, x, y). For the rest discretized points in the square, we
assign 0 to them.

Next we plot the solutions of system (2.12) at several specified time in
Figure 2.10. The x- and y-axis describe the spatial coordinates, and the z-axis
is the adult population number. In this figure we will observe the growth of
the two species and the spread in space, and we can also see vividly that the
model generates obvious species isolates after some time.

Figure 2.10: In this figure we show the numerical simulations for the spatial
model (2.12), describing the spread of adult population of the two species. The
red part represents species 1 American beech, and the green part represents
species 2 eastern hemlock.
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We also conduct the simulation for longer time, and we get the following
results (of competitive exclusion) in Figure 2.11.

Figure 2.11: This figure shows the change of the distribution of adult popu-
lation of two species in the long run. Notice that eastern hemlock(green) is
disappearing and American beech(red) becomes dominant.
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Summarizing all the figures above, we may conclude that eastern hem-
lock(green) grows and spreads faster than American beech(red) at first, but
after long enough time, American beech begins to show its competency and
gradually becomes the dominant species. This result also coincides with our
previous result without considering the space in Figure 2.8.

Moreover, we plot the total population in the sample square for each species
with respect to time in Figure 2.12. And we can see that the total adult
population for eastern hemlock increases faster than American beech at first,
and then it decreases.

Figure 2.12: In this figure we show the total population in the 300m × 300m
square for each species in 20000 years. A1 represents species 1 American beech,
and A2 represents species 2 eastern hemlock.
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As in Figure 2.9, we can also observe the coexistence of both species in
the spatial model. In Figure 2.13 we plot the long term distributions after the
same change of parameters as in Figure 2.9.

Figure 2.13: The longterm simulation for the spatial model with a change of
the parameter ζ21 from 1.6 to 1. All the other parameters are the same as in
Figure 2.11. We observe the coexistence of both species.

2.5 Discussion
Studies of forest dynamics have a long history[25, 51, 167, 178, 190]. There
have been a large amount of research on either the descriptive model (con-
sisting of several submodels to describe separately every process of the whole
life of individuals) for forests reached by observed data, or the pure mathe-
matical model with numerical computations, separated from data. Here we
first construct a mathematical model and compare this model to the computer
forest simulator SORTIE. Size-structured model with another type of growth
function have been previously used by Strigul et al. [200] for a single species.

We start by fitting the parameters of the model by considering the case of a
single species. Then for two species, we only fit the parameters corresponding
to the competition for light between the two species of trees. Specifically
speaking, we use a classical size-structured model, from which we derive a state-
dependent delay differential equation, and we use this differential equation to
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fit the forest data from SORTIE. This differential equation is mathematically
more tractable than the submodels in SORTIE.

In order to compare our mathematical model with SORTIE, we conduct
numerical simulations and we get the best fit to the SORTIE forest data and
the corresponding parameter values. One result we get is that the type of birth
function of these two species is not of Ricker’s type, as we have ξ = 0 in both
best fits. We then extend our mathematical model to a two-species case with
interspecific competition, and similarly we conduct the numerical comparison
with SORTIE forest data, where we also get a very good fit.

Based on this, we go further and propose a model incorporating the spa-
tial position parameter, to describe the density of population, or further, the
number of population at every specific spatial position. We can see vividly
the spread and succession in our numerical simulation. By using a spatial
model, given the initial distribution we will be able to predict specifically the
population at certain spatial position and time, which is more practical in re-
ality. We refer to [52, 171] for more results about SORTIE model and spatially
distributed forest.

We should mention that our model improves the computer simulator SOR-
TIE from the following perspectives. First, in SORTIE model, every behaviour
of each individual is described separately by a submodel which calculates spe-
cific relevant variables (for example, in the resource submodel, they calculate
the light transmissivity through the crown and determine how much light is
intercepted in each angle, which will be used in the growth submodel), and
then all the behaviours are combined together to get the dynamics of the entire
community. In our mathematical model, we simplify the above complicated
processes of tree physiology by using only several functions instead to describe
the mean behaviour of individuals, which is still effective. Thus there are fewer
parameters to input in our mathematical model (8 parameters (or 4 more pa-
rameters in two-species model), while more than 20 parameters in SORTIE).
This obviously makes it easier to operate the simulation. Second, the time
it takes to run a simulation is much shorter due to the different computing
mechanism. Thus, it’s possible for us to explore the forest dynamics in a very
long time scale. Third, the analysis of the mathematical model also permit
us to study the coexistence of species in ecological time scale, which allows
the maintenance of species diversity in nature. In our simulation, we reach
a result that the population number of eastern hemlock decreases to 0 after
a long enough time, which conforms to the competitive exclusion principle.
However, by analyzing the existence of the interior coexistent equilibrium, we
are able to establish a range of parameters in which the exclusion principle is
no longer true. The coexistence result has also been confirmed by numerical
simulations (with and without space). We refer to [2, 10, 37, 110, 111, 231]
for more results going into that direction. But there are few results analyz-
ing mathematically the coexistence for the solution of the structured model
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with partial differential equations (2.8). Also it is well known that light is
a key influence in many forest systems [204], and our model can be used to
reproduce the complicated mechanisms included into SORTIE model. But in
reality, there are so many influencing factors, such as carbon, nitrogen, water,
etc. [44, 112, 116, 130, 203], not only restricted to light. More work about
these other influencing factors is left for future investigation.
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Chapter 3

Semiflow properties of a system of
state-dependent delay differential
equation

3.1 Introduction
Let Ω be a compact subset of Rn (with n > 1). Denote for simplicity that
C(Ω) := C(Ω,R), C(Ω2) := C(Ω2,R) and C+(Ω) := C(Ω, [0,+∞)). In this
chapter we consider the following class of state-dependent delay differential
equation: ∀t > 0 and ∀x ∈ Ω,

∂tA(t, x) = F (A(t, .), τ(t, .), A(t− τ(t))(., .))(x),∫ 0

−τ(t,x)

f(A(t+ s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,
(3.1)

where F : C(Ω)2 × C(Ω2) → C(Ω) and f : C(Ω) → C(Ω) and A(t − τ(t)) ∈
C(Ω2) is the map defined by

A(t− τ(t))(x, y) := A(t− τ(t, x), y) (3.2)

with the initial condition

A(t, x) = ϕ(t, x),∀t 6 0 and τ(0) = τ0 ∈ C+(Ω),

and the initial distribution ϕ belongs to

Lipα := {φ ∈ C((−∞, 0], C(Ω)) : t→ e−α|t|φ(t, .) is bounded and
Lipschitz continuous from (−∞, 0] to C(Ω)}, α > 0.

Recall that the space Lipα is a Banach space endowed with the norm

‖φ‖Lipα := ‖φα‖∞ + ‖φα‖Lip
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where φα : (−∞, 0]→ C(Ω) is defined by

φα(t, x) := e−α|t|φ(t, x),∀t ∈ (−∞, 0], ∀x ∈ Ω. (3.3)

and
‖φα‖∞ := sup

t60
‖φα(t, .)‖∞

and for fixed t,
‖φα(t, .)‖∞ := sup

x∈Ω
|φα(t, x)|

and
‖φα‖Lip := sup

t,s60:t6=s

‖φα(t, .)− φα(s, .)‖∞
|t− s|

.

In the rest of this chapter the product space Lipα×C(Ω) will be endowed with
the usual product norm

‖(φ, r)‖Lipα×C(Ω) := ‖φ‖Lipα + ‖r‖∞,∀φ ∈ Lipα,∀r ∈ C(Ω).

We will make the following assumptions throughout this chapter.

Assumption 3.1. We assume that the map F : C(Ω)2 × C(Ω2) → C(Ω) is
Lipschitz continuous on bounded sets, that is to say that for each constant
M > 0, there exists a constant L(M) > 0 satisfying

‖F (u, v, w)− F (û, v̂, ŵ)‖∞ 6 L(M) [‖u− û‖∞ + ‖v − v̂‖∞ + ‖w − ŵ‖∞]

whenever ‖u‖∞, ‖û‖∞, ‖v‖∞, ‖v̂‖∞, ‖w‖∞, ‖ŵ‖∞ 6M .
We also assume that the map f : C(Ω) → C(Ω) is Lipschitz continuous

and there exist real numbers Mf > 0 such that

0 < f(ϕ)(x) 6Mf ,∀x ∈ Ω and ∀ϕ ∈ C(Ω),

and f is monotone non-increasing, that is to say that

ϕ(x) 6 ϕ̂(x), ∀x ∈ Ω⇒ f(ϕ)(x) > f(ϕ̂)(x),∀x ∈ Ω.

Examples of state-dependent delay differential equations of this form have
been considered first by Smith [193, 194, 195, 196], and has been successfully
used in [30, 104] (see also the references therein). The motivation to consider in
this chapter such a class of state-dependent delay differential equations comes
from modelling the competition for light in forests in Chapter 2.

Example 3.2 (Finite number of species). The m-species case corresponds
to the case n = 1 and the domain Ω contains exactly m elements. We can
choose for example

Ω = {1, 2, ...,m}
and for x = 1, . . . ,m,

F (A(t, .), τ(t, .), A(t− τ(t))(., .))(x) = G(x,A(t, .), τ(t, x), A(t− τ(t, x))(.))

where G : Ω× R3 → R is a map (see Chapter 2 for more details).
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Example 3.3 (Spatially structured case). For the spatially structured case,
we can choose

Ω = [0, xmax]× [0, ymax].

Moreover assume (for simplicity) that we have a single species, then we can
choose

F (A(t, .), τ(t, .), A1(t, .))(x, y) :=− µAA(t, x, y) + e−µJτ(t,x,y) f(A(t, x, y))

f(A1(t, x, y))
·

(I − ε∆)−1[βA1(t, .)](x, y),

where ∆ is the Laplacian operator on the domain Ω with periodic boundary
conditions. This model corresponds to the spatially structured model in Chapter
2.

Let A ∈ C((−∞, r], C(Ω)) (for some r > 0) be given. Then for each t 6 r,
we will use the standard notation At ∈ C((−∞, 0], C(Ω)), which is the map
defined by

At(θ, .) = A(t+ θ, .),∀θ 6 0.

For clarity we will specify the notion of a solution.

Definition 3.4. Let r ∈ (0,+∞]. A solution of the system (3.1) on [0, r)
is a pair of continuous maps A : (−∞, r) → C(Ω) and τ : [0, r) → C+(Ω)
satisfying

A(t, x) =

 ϕ(0, x) +

∫ t

0

F (A(l, .), τ(l, .), A(l − τ(l))(., .))(x)dl,∀t ∈ [0, r),∀x ∈ Ω,

ϕ(t, x),∀t 6 0,∀x ∈ Ω,

and ∫ t

t−τ(t,x)

f(A(s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,∀t ∈ [0, r),∀x ∈ Ω.

In this problem the initial distribution is (ϕ, τ0). The semiflow generated
by (3.1) is

U(t)(ϕ(., x), τ0(x)) := (At(., x), τ(t, x)),

where A and τ are the solution of (3.1) with the initial distribution (ϕ, τ0).
In order to clarify the notion of semiflow in this context, we introduce the

following definition.

Definition 3.5. Let (M,d) be a metric space. Let U : DU ⊂ [0,+∞)×M →M
be a map defined on the domain

DU := {(t, x) ∈ [0,+∞)×M : 0 6 t < TBU(x)} ,
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where TBU : M → (0,+∞] is a lower semi-continous map (the blow-up time).
We will use the notation

U(t)x := U(t, x),∀(t, x) ∈ DU .

We say that U is a maximal semiflow on M if the following properties are
satisfied:

(i) TBU(U(t)x) + t = TBU(x), ∀x ∈M , ∀t ∈ [0, TBU(x));

(ii) U(0)x = x, ∀x ∈M ;

(iii) U(t)U(s)x = U(t+ s)x, ∀t, s ∈ [0, TBU(x)) with t+ s < TBU(x);

(iv) If TBU(x) < +∞, then

lim
t↗TBU (x)

d(U(t)x, y) = +∞

for some y ∈M .

We will say that the semiflow U is state variable continuous if for each
t > 0, the map x 7→ U(t)x is continuous whenever U(t) is defined for x. We
will say that the semiflow U is locally uniformly state variable continuous
if for each r ∈ [0, TBU(x0)),

lim
x→x0

sup
t∈[0,r]

d(U(t)x,U(t)x0) = 0 (3.4)

whenever the map U(t) is defined for x and x0 and each t ∈ [0, r].
We will say that the semiflow U is continuous if the map (t, x) 7→ U(t)x

is continuous from DU into M .

Actually the semiflow of the state-dependent delay differential equation
(3.1) is not always continuous in time. Assume for example that α = 0,Ω = {1}
and ∀u, v ∈ C(Ω),∀w ∈ C(Ω2),∀x ∈ Ω,

F (u, v, w)(x) ≡ 1 and f(u)(x) ≡ 1.

Consider (A(t), τ(t)) (we omit the x variable since there is only one element
in Ω) the solution of (3.1) with the initial distribution

(ϕ, τ0) = (0Lipα , τ0).

This solution can be solved explicitly:

A(t) =

{
t,∀t > 0,
0,∀t 6 0,

τ(t) = τ0,∀t > 0.
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And the semiflow will be defined by U(t)(0Lipα , τ0) = (At, τ). Notice that the
map t 7→ A(t) is differentiable almost everywhere and

A′(t) =

{
1, if t > 0,
0, if t < 0.

Therefore for each t̂ > 0,

lim
t→t̂
‖At − At̂‖Lip = lim

t→t̂

∥∥A′(t+ .)− A′(t̂+ .)
∥∥
L∞(−∞,0)

= 1.

Therefore due to the discontinuity of A′(t) at time t = 0, the semiflow is not
continuous in time.

The following theorem is the main result of this chapter.

Theorem 3.6. There exists a maximal semiflow U : DU ⊂ [0,+∞)× Lipα ×
C+(Ω) → Lipα × C+(Ω) and its corresponding blow-up time TBU : Lipα ×
C+(Ω) → (0,+∞] such that for each initial distribution (ϕ, τ0) ∈ Lipα ×
C+(Ω), there exists a unique solution A : (−∞, TBU(ϕ, τ0)) → C+(Ω) and
τ : [0, TBU(ϕ, τ0))→ C+(Ω) of (3.1) satisfying

U(t)(ϕ, τ0)(x) = (At(., x), τ(t, x)), ∀t ∈ [0, TBU(ϕ, τ0)),∀x ∈ Ω.

Moreover if TBU(ϕ, τ0) < +∞, then

lim sup
t↗TBU (W0)

‖A(t, .)‖∞ = +∞.

Furthermore the semiflow U has the following properties:

(i) The map TBU is lower semi-continuous and DU is relatively open in
[0,+∞)× Lipα × C+(Ω).

(ii) The semiflow U is locally uniformly state variable continuous in Lipα ×
C+(Ω).

In the sequel we will use the notation

BUCα := {φ ∈ C((−∞, 0], C(Ω)) : φα ∈ BUC((−∞, 0], C(Ω))} , α > 0

where
φα(t, x) := e−α|t|φ(t, x)

and BUC((−∞, 0], C(Ω)) denotes the space of bounded uniformly continu-
ous maps from (−∞, 0] to C(Ω). The space BUCα is again a Banach space
endowed with the norm

‖φ‖BUCα = sup
t60
‖φα(t, .)‖∞.
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We will also use the notation

BUC1
α := {φ ∈ C1((−∞, 0], C(Ω)) : φα ∈ BUC((−∞, 0], C(Ω))

and ∂t(φα) ∈ BUC((−∞, 0], C(Ω))}

and the space BUC1
α is again a Banach space endowed with the norm

‖φ‖BUC1
α

:= ‖φα‖∞ + ‖∂t(φα)‖∞ = ‖φα‖∞ + ‖φα‖Lip.

Now we consider the following set Dα containing the couple (φ, τ0) satisfying
a compatibility condition:

Dα := {(φ, τ0) ∈ BUC1
α × C+(Ω) : ∂tφ(0, x) = F (φ(0, .), τ0(.), φ(−τ0(.), .))(x),

∀x ∈ Ω}.

One can note that Dα is a closed subset of BUC1
α × C+(Ω). Therefore Dα is

a complete metric space endowed with the distance

dDα

(
(φ, τ0), (φ̂, τ̂0)

)
:= ‖φ− φ̂‖BUC1

α
+ ‖τ0 − τ̂0‖∞.

We also have
Dα ⊂ BUC1

α × C+(Ω) ⊂ Lipα × C+(Ω),

and the topologies of BUC1
α × C+(Ω) and Lipα × C+(Ω) coincide on Dα. We

have the following results.

Theorem 3.7. The subdomain Dα is dense in BUCα × C+(Ω), namely

D
BUCα×C+(Ω)

α = BUCα × C+(Ω).

Moreover we have the following properties:

(i) The subdomain Dα is positively invariant by the semiflow U , that is to
say that for each (ϕ, τ0) ∈ Dα,

U(t)(ϕ, τ0) ∈ Dα,∀t ∈ [0, TBU(ϕ, τ0)).

(ii) The semiflow U restricted to Dα is a continuous semiflow when Dα is
endowed with the metric dDα.

Particularly, from (ii), we know that we can choose two different state
spaces for At (Lipα or BUC1

α), but only in the case of BUC1
α can we get a

continuous (in time) semiflow.
In system (3.1), we can see from the second equation that the delay τ(t, x)

is a solution of an integral equation. In the following (Lemma 3.9) we will
see that the delay τ(t, x) can be seen as the solution of a partial differential
equation, too. In Lemma 3.13, we will see that the delay τ(t, x) can be also
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3. Semiflow properties

regarded as a functional of At and (ϕ, τ0), which shows that this delay is
actually a state-dependent delay. Specifically speaking, let δ0 ∈ C+(Ω) be
fixed, then we can define the map τ : D(τ) ⊂ Lipα → [0,+∞) as the solution
of ∫ 0

−τ(φ,x)

f(φ(s, .))(x)ds = δ0(x) (3.5)

with

D(τ) =

{
φ ∈ Lipα : δ0(x) <

∫ 0

−∞
f(φ(s, .))(x)ds,∀x ∈ Ω

}
.

Then we will see that
τ(At, x) = τ(t, x),∀t > 0,

and the first equation in (3.1) can be rewritten as

∂tA(t, x) = F (A(t, .), τ(t, .), A(t− τ(At, .), .))(x),∀t > 0.

State-dependent delay differential equations have been used in the study of
population dynamics of species [6, 7, 85, 104]. We refer in addition to [14, 80]
and the references therein for a nice survey on this topic. Moreover, the semi-
flow properties of a general class of state-dependent delay differential equations
have been recently studied by Walther [221] in Dα.

As an illustration, let us consider for example the following system
∂tA(t, x) = F (A(t, .))(x),∀t > 0, ∀x ∈ Ω,∫ 0

−τ(t,x)

f(A(t+ s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,∀t > 0,∀x ∈ Ω,

and the map F : BUC1
α → R is defined by

F (φ) := φ(−τ(φ))

where τ(φ) is defined as above in (3.5). Assume in addition that f is con-
tinuously differentiable, then by Lemma 3.12, the state-dependent delay τ :
BUCα → C(Ω) is C1. Then for φ0 ∈ BUC1

α, we have

F (ψ + φ0)− F (φ0) = (ψ + φ0)(−τ(ψ + φ0))− φ0(−τ(φ0))

= ψ(−τ(ψ + φ0)) + φ0(−τ(ψ + φ0))− φ0(−τ(φ0)),

from which we deduce the derivative

DF (φ0)ψ = ψ(−τ(φ0)) + φ′0(−τ(φ0)) · ∂φτ(φ0)ψ,

which satisfies the assumption (E) in Walther [221].
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3.2. Density of the domain

In this chapter, we consider the pair (At, τ(t, .)) as the state variable, and
in this case we can also apply the result by Walther in [221] to the delay
differential equation

∂tA(t, x) = F (A(t, .), τ(t, .), A(t− τ(t))(., .))(x),

∂tτ(t, x) = 1− f(A(t, .))(x)

f(A(t− τ(t, .), .))(x)
.

(3.6)

Nevertheless the existence of a maximal semiflow as well as the blow-up time
has been considered by Walther [221].

This chapter is organized as follows. In section 2 we prove that Dα is
dense in BUCα × C+(Ω). In section 3 we prove some results regarding the
delay τ(t, x). In sections 4 and 5 we will investigate the uniqueness and local
existence of solutions, and the properties of semiflows. In the last section of
this chapter, we will illustrate our results by proving the global existence of
solutions for a spatially structured forest model.

3.2 Density of the domain
In this preliminary section we will prove the first result of Theorem 3.7, namely
the density of Dα in the space BUCα × C+(Ω).

Proof. Fix τ0 ∈ C+(Ω). Consider the space

X := C(Ω)×BUCα

which is a Banach space endowed with the usual product norm. Define the
linear operator A : D(A ) ⊂X →X by

A

(
0C(Ω)

ϕ

)
:=

(
−∂tϕ(0, .)

∂tϕ

)
, ∀
(

0C(Ω)

ϕ

)
∈ D(A ),

with
D(A ) := {0C(Ω)} ×BUC1

α.

Then it is not difficult to prove that

D(A ) = {0C(Ω)} ×BUCα. (3.7)

Moreover, the linear operator A is a Hille-Yosida operator (see [127]). More
precisely, we have (0,∞) ⊂ ρ(A ) and for each λ ∈ (0,∞),

(λI −A )−1

(
α
ϕ

)
=

(
0C(Ω)

ψ

)
⇔ ψ(θ, x) =

1

λ
eλθ[α + ϕ(0, x)] +

∫ 0

θ

eλ(θ−l)ϕ(l, x)dl.
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3. Semiflow properties

The linear operator A is Hille-Yosida since we have the following estimation
from [127] ∥∥(λI −A )−n

∥∥
L(X )

6
1

λn
,∀n > 1,∀λ > 0. (3.8)

By using (3.7) and (3.8) and by the fact that

λ(λI −A )−1 − I = A (λI −A )−1,

it follows that

lim
λ→+∞

∥∥∥∥λ(λI −A )−1

(
0C(Ω)

ψ

)
−
(

0C(Ω)

ψ

)∥∥∥∥
X

= lim
λ→+∞

∥∥∥∥A (λI −A )−1

(
0C(Ω)

ψ

)∥∥∥∥
X

6 lim
λ→+∞

1

λ
‖A ‖L(X )

∥∥∥∥(0C(Ω)

ψ

)∥∥∥∥
X

= 0,∀ψ ∈ BUCα. (3.9)

We define the nonlinear map F : D(A )→X ,

F

(
0C(Ω)

ϕ

)
:=

(
F (ϕ(0, .), τ0(.), ϕ(−τ0(.), .))

0BUCα

)
,∀ϕ ∈ BUCα.

We observe that

(ϕ, τ0) ∈ Dα

⇔ (A + F )

(
0C(Ω)

ϕ

)
∈ D(A ) with

(
0C(Ω)

ϕ

)
∈ D(A )

⇔ (I − λA − λF )

(
0C(Ω)

ϕ

)
∈ D(A ) with

(
0C(Ω)

ϕ

)
∈ D(A ),∀λ > 0.

Let
(

0C(Ω)

ψ

)
∈ {0C(Ω)} ×BUCα be fixed. Then for each λ > 0, consider

(I − λA − λF )

(
0C(Ω)

ϕλ

)
=

(
0C(Ω)

ψ

)
with

(
0C(Ω)

ϕλ

)
∈ D(A ),

which is equivalent to the fixed point problem(
0C(Ω)

ϕλ

)
= λ−1

(
λ−1I −A

)−1
(

0C(Ω)

ψ

)
+
(
λ−1I −A

)−1
F

(
0C(Ω)

ϕλ

)
.

Define the map

Φλ

(
0C(Ω)

ϕ

)
:= λ−1

(
λ−1I −A

)−1
(

0C(Ω)

ψ

)
+
(
λ−1I −A

)−1
F

(
0C(Ω)

ϕ

)
.
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3.3. Properties of the integral equation for τ(t, x)

Then r > 0 being fixed, by using the fact that F is Lipschitz on bounded sets
and A is a Hille-Yosida operator, one can prove that there exists η = η(r) > 0
such that

Φλ(Bψ,r) ⊂ Bψ,r,∀λ ∈ (0, η]

and Φλ is a strict contraction on Bψ,r, where

Bψ,r := B

((
0C(Ω)

ψ

)
, r

)

is the ball with center
(

0C(Ω)

ψ

)
and radius r in D(A ) = {0C(Ω)}×BUCα. Thus

by the Banach fixed point theorem, ∀λ ∈ (0, η], there exists
(

0C(Ω)

ϕλ

)
∈ Bψ,r

satisfying

Φλ

(
0C(Ω)

ϕλ

)
=

(
0C(Ω)

ϕλ

)
.

Finally, since
(

0C(Ω)

ψ

)
∈ D(A ) and by using (3.8) and (3.9), we have

lim
λ→0+

∥∥∥∥(0C(Ω)

ϕλ

)
−
(

0C(Ω)

ψ

)∥∥∥∥
X

= lim
λ→0+

∥∥∥∥(λ−1
(
λ−1I −A

)−1 − I)

(
0C(Ω)

ψ

)
+
(
λ−1I −A

)−1
F

(
0C(Ω)

ϕλ

)∥∥∥∥
X

= lim
λ→0+

∥∥∥∥A (
λ−1I −A

)−1
(

0C(Ω)

ψ

)
+
(
λ−1I −A

)−1
F

(
0C(Ω)

ϕλ

)∥∥∥∥
X

6 lim
λ→0+

λ‖A ‖L(X )

∥∥∥∥(0C(Ω)

ψ

)∥∥∥∥
X

+ lim
λ→0+

λ‖F‖L(X )

∥∥∥∥(0C(Ω)

ϕλ

)∥∥∥∥
X

= 0,

which completes the proof.

3.3 Properties of the integral equation for τ (t, x)

In this section we will make the following assumption.

Assumption 3.8. Let (ϕ, τ0) ∈ C((−∞, 0], C(Ω))×C+(Ω). Let A ∈ C((−∞, r),
C(Ω)) (with r ∈ (0,+∞]) be given and satisfy

A(t, .) = ϕ(t, .),∀t 6 0.
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Lemma 3.9. There exists a uniquely determined map τ : [0, r)→ C(Ω) satis-
fying∫ t

t−τ(t,x)

f(A(s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,∀t ∈ [0, r),∀x ∈ Ω. (3.10)

Moreover this uniquely determined map t 7→ τ(t, x) is continuously differen-
tiable and satisfies the following equation ∂tτ(t, x) = 1− f(A(t, .))(x)

f(A(t− τ(t, x), .))(x)
,∀t ∈ [0, r),∀x ∈ Ω,

τ(0, x) = τ0(x).
(3.11)

Conversely if t 7→ τ(t, x) is a C1 map satisfying the above ordinary differential
equation (3.11), then it also satisfies the above integral equation (3.10).

Remark 3.10. By using equation (3.11), it is easy to check that

τ0(x) > 0⇒ τ(t, x) > 0,∀t ∈ [0, r),∀x ∈ Ω,

and
τ0(x) = 0⇒ τ(t, x) = 0, ∀t ∈ [0, r),∀x ∈ Ω.

Proof. Step 1 (Existence of τ(t, x)): By Assumption 3.1, f is strictly pos-
itive, so fix t ∈ [0, r) and x ∈ Ω, and by considering the function τ 7→∫ t

t−τ
f(A(s, .))(x)ds and observing that

∫ t

t−0

f(A(s, .))(x)ds = 0 6
∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,

∫ t

t−(t+τ0(x))

f(A(s, .))(x)ds >
∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,

it follows by the intermediate value theorem that there exists a unique τ(t, x) ∈
[0, t+ τ0(x)] satisfying (3.10).
Step 2 (The map t 7→ t−τ(t, x) is increasing): First we prove that the function
t 7→ t−τ(t, x) is increasing. Indeed, assume by contradiction that t1 < t2 while
t1 − τ(t1, x) > t2 − τ(t2, x), ∀x ∈ Ω, namely we have

t2 − τ(t2, x) 6 t1 − τ(t1, x) 6 t1 < t2.

Then by (3.10) we have∫ t1

t1−τ(t1,x)

f(A(s, .))(x)ds =

∫ t2

t2−τ(t2,x)

f(A(s, .))(x)ds
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=

∫ t1−τ(t1,x)

t2−τ(t2,x)

f(A(s, .))(x)ds+

∫ t1

t1−τ(t1,x)

f(A(s, .))(x)ds

+

∫ t2

t1

f(A(s, .))(x)ds,

thus ∫ t1−τ(t1,x)

t2−τ(t2,x)

f(A(s, .))(x)ds+

∫ t2

t1

f(A(s, .))(x)ds = 0,

which is impossible since the function f is strictly positive.
Step 3 (The continuity of the map x 7→ τ(t, x)): Next we will prove the con-
tinuity of the map x 7→ τ(t, x),Ω → C[0, r). By step 2 we have for each
t ∈ [0, r),

t− τ(t, x) 6 −τ0(x)⇔ 0 6 τ(t, x) 6 t− τ0(x),∀x ∈ Ω.

Now the boundness of the function x 7→ τ(t, x) follows from the boundedness
of τ0(x). Then for any t ∈ [0, r), we know that

τ∞(t) := sup
x∈Ω

τ(x, t) < +∞.

Let ξ(x) :=

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds, ∀x ∈ Ω. Then fix x0 ∈ Ω, for any x ∈ Ω,

we have

|ξ(x0)− ξ(x)| =
∣∣∣∣∫ 0

−τ0(x0)

f(ϕ(s, .))(x0)ds−
∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds

∣∣∣∣
6

∣∣∣∣∣
∫ −τ0(x)

−τ0(x0)

f(ϕ(s, .))(x0)ds

∣∣∣∣∣+

∫ 0

−τ0(x)

|f(ϕ(s, .))(x0)− f(ϕ(s, .))(x)|ds

6 |τ0(x0)− τ0(x)|f(m1)(x0) + τ∞0 sup
s∈[−τ∞0 ,0]

|f(ϕ(s, .))(x0)− f(ϕ(s, .))(x)|,

where m1 is the constant function defined with the constant value

m1(x) = inf
s∈[−τ∞0 ,0]

‖ϕ(s, .)‖∞,∀x ∈ Ω

and τ∞0 := sup
x∈Ω

τ0(x). Then the continuity of ξ(x) in x follows from

lim
x→x0

|ξ(x0)− ξ(x)| = 0

by the continuity of τ0 and f(ϕ). Now for each t ∈ [0, r) fixed, by (3.10) we
have

ξ(x0)− ξ(x) =

∫ t

t−τ(t,x0)

f(A(s, .))(x0)ds−
∫ t

t−τ(t,x)

f(A(s, .))(x)ds
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=

∫ t−τ(t,x)

t−τ(t,x0)

f(A(s, .))(x0)ds+

∫ t

t−τ(t,x)

(f(A(s, .))(x0)− f(A(s, .))(x))ds,

thus∫ t−τ(t,x)

t−τ(t,x0)

f(A(s, .))(x0)ds 6 |ξ(x0)− ξ(x)|+ τ∞(t) sup
s∈[t−τ∞(t),t]

|f(A(s, .))(x0)

−f(A(s, .))(x)|.

On the other hand, we have∫ t−τ(t,x)

t−τ(t,x0)

f(A(s, .))(x0)ds > |τ(t, x0)− τ(t, x)|f(M1)(x0)

where M1 is the constant function defined by

M1(x) := sup
s∈[−τ∞0 ,t]

‖A(s, .)‖∞,∀x ∈ Ω.

Then there exists a constant η := η(t, x0) such that

|τ(t, x0)− τ(t, x)| 6 η

(
|ξ(x0)− ξ(x)|+ sup

s∈[t−τ∞(t),t]

|f(A(s, .))(x0)− f(A(s, .))(x)|

)
.

Then the continuity of τ(t, x) in x follows from

lim
x→x0

|τ(t, x0)− τ(t, x)| = 0

by the continuity of ξ and f(A).
Step 4 (Differentiability of the map t 7→ τ(t, x)): By applying the implicit
function theorem to the map ψ : (0, r)× C(Ω)→ C(Ω) defined by

ψ(t, γ)(x) =

∫ t

γ(x)

f(A(s, .))(x)ds−
∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds

(which is possible since
∂ψ(t, γ)

∂γ
(γ̂)(x) = −f(A(γ(x), .))(x)γ̂(x) and by As-

sumption 3.1, f is strictly positive), we deduce that t 7→ t− τ(t, x) is continu-
ously differentiable on (0, r). Since the above formula of the derivative is also
valid at t = 0 and t = r, the map t 7→ t− τ(t, x) is continuously differentiable
on [0, r]. By calculating the time derivative on both sides of (3.10), we get
that τ(t, x) is a solution of (3.11).
Step 5 ( (3.11)⇒(3.10)): Conversely, assume that τ(t, x) is a solution of (3.11).
Then

f(A(t, .))(x) =

(
1− ∂τ(t, x)

∂t

)
f(A(t− τ(t, x), .))(x),∀t ∈ [0, r),∀x ∈ Ω.

State-dependent delay and forest population dynamics 47



3.3. Properties of the delay term

Integrating both sides with respect to t, we have∫ t

0

f(A(s, .))(x)ds =

∫ t

0

f(A(s− τ(s, x), .))(x)

(
1− ∂τ(s, x)

∂s

)
ds.

Make the change of variable l = s− τ(s, x), we have ∀t ∈ [0, r), ∀x ∈ Ω,∫ t

0

f(A(s, .))(x)ds =

∫ t−τ(t,x)

−τ0(x)

f(A(l, .))(x)dl

⇔
∫ t

t−τ(t,x)

f(A(s, .))(x)ds+

∫ t−τ(t,x)

0

f(A(s, .))(x)ds =

∫ t−τ(t,x)

−τ0(x)

f(A(s, .))(x)ds

⇔
∫ t

t−τ(t,x)

f(A(s, .))(x)ds =

∫ t−τ(t,x)

−τ0(x)

f(A(s, .))(x)ds+

∫ 0

t−τ(t,x)

f(A(s, .))(x)ds

⇔
∫ t

t−τ(t,x)

f(A(s, .))(x)ds =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,

so τ(t, x) also satisfies the equation (3.10).

In order to see that the delay τ is also a functional of At and (ϕ, τ0), we
define the following functional. We define the map τ̂ : D(τ̂) ⊂ BUCα×C(Ω)→
C(Ω) as the solution of∫ 0

−τ̂(φ,δ)(x)

f(φ(s, .))(x)ds = δ(x) (3.12)

where

φ(s, x) :=

{
φ(s, x), if s 6 0
φ(0, x), if s > 0.

Since by Assumption 3.1 the map f(φ(0, .))(x) > 0, then if δ(x) 6 0 we have
τ̂(φ, δ)(x) 6 0 and∫ 0

−τ̂(φ,δ)(x)

f(φ(0, .))(x)ds = δ(x)⇔ τ̂(φ, δ)(x) =
δ(x)

f(φ(0, .))(x)
.

We define the domain D(τ̂) by

D(τ̂) =

{
(φ, δ) ∈ BUCα × C(Ω) : δ(x) <

∫ 0

−∞
f(φ(s, .))(x)ds if δ(x) > 0

}
.

For clarity we prove the following lemma.

Lemma 3.11. For each (φ, δ) ∈ D(τ̂) there exists τ̂(φ, δ) ∈ C(Ω).
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Proof. Let (φ, δ) ∈ D(τ̂) be fixed.
Step 1 (Existence of τ̂(φ, δ)(x)): Let x ∈ Ω be fixed. If δ(x) 6 0, we have

τ̂(φ, δ)(x) =
δ(x)

f(φ(0, .))(x)
.

If δ(x) > 0, by the definition of the domain D(τ̂) we have

δ(x) <

∫ 0

−∞
f(φ(s, .))(x)ds,

therefore by the intermediate value theorem, we can find τ̂(φ, δ)(x) ∈ R such
that

δ(x) =

∫ 0

−τ̂(φ,δ)(x)

f(φ(s, .))(x)ds.

Step 2 (Boundedness of τ̂(φ, δ)(x)): Assume by contradiction that x 7→ τ̂(φ, δ)(x)
is unbounded. Since Ω is compact, we can find a converging sequence xn →
x ∈ Ω as n→ +∞ such that

lim
n→+∞

τ̂(φ, δ)(xn) = +∞.

It is sufficient to consider the case δ(xn) > 0, since the case δ(xn) 6 0 is
explicit. By the continuity of the function δ we can assume that δ(x) > 0. By
the definition of the domain D(τ̂) we have

δ(x) <

∫ 0

−∞
f(φ(s, .))(x)ds.

So we can find a constant M > 0 such that

δ(x) <

∫ 0

−M
f(φ(s, .))(x)ds,

and by continuity we can find a neighborhood U of x such that

δ(x) <

∫ 0

−M
f(φ(s, .))(x)ds,∀x ∈ U.

It follows that for all integer n large enough,

τ̂(φ, δ)(xn) 6M

a contradiction.
Step 3 (Continuity of the map x 7→ τ̂(φ, δ)(x)): From the previous part, we
know that

τ̂∞ := sup
x∈Ω
|τ̂(φ, δ)(x)| < +∞.
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Fix x0 ∈ Ω. If δ(x0) < 0 there is nothing to prove. Let us assume that

δ(x0) > 0.

Let xn → x0 be a converging sequence. If δ(x0) = 0 and there exists a
subsequence {xnk} ⊂ {xn} satisfying δ(xnk) < 0, ∀k ∈ N, then it is clear that
τ̂(φ, δ)(xnk)→ τ̂(φ, δ)(x0) = 0. Assume that δ(xn) > 0 for each integer n > 0.
By (3.12) we have

δ(x0)− δ(x) =

∫ 0

−τ̂(φ,δ)(x0)

f(φ(s, .))(x0)ds−
∫ 0

−τ̂(φ,δ)(x)

f(φ(s, .))(x)ds

=

∫ −τ̂(φ,δ)(x)

−τ̂(φ,δ)(x0)

f(φ(s, .))(x0)ds+

∫ 0

−τ̂(φ,δ)(x)

f(φ(s, .))(x0)ds

−
∫ 0

−τ̂(φ,δ)(x)

f(φ(s, .))(x)ds.

Assume without loss of generality that τ̂(φ, δ)(x0) > τ̂(φ, δ)(x), then we have∫ −τ̂(φ,δ)(x)

−τ̂(φ,δ)(x0)

f(φ(s, .))(x0)ds

= (δ(x0)− δ(x)) +

∫ 0

−τ̂(φ,δ)(x)

(f(φ(s, .))(x)− f(φ(s, .))(x0))ds

6 |δ(x0)− δ(x)|+ τ̂∞ sup
s∈[−τ̂∞,0]

|f(φ(s, .))(x)− f(φ(s, .))(x0)|,

and ∫ −τ̂(φ,δ)(x)

−τ̂(φ,δ)(x0)

f(φ(s, .))(x0)ds > |τ̂(φ, δ)(x0)− τ̂(φ, δ)(x)|f(M1)(x0)

whereM1 is the constant function assigned with the single value sup
s∈[−τ̂∞,0]

‖φ(s, .)‖∞.

Thus there exists a constant η := η(x0) such that

|τ̂(φ, δ)(x0)−τ̂(φ, δ)(x)| 6 η

(
|δ(x0)− δ(x)|+ sup

s∈[−τ̂∞,0]

|f(φ(s, .))(x)− f(φ(s, .))(x0)|

)
.

Then the result follows by the continuity of the functions δ and f(φ) in x.

Lemma 3.12. Assume in addition that f is continuously differentiable. Then
the domain D(τ̂) is an open subset of BUCα × C(Ω) and the map τ̂ : D(τ̂) ⊂
BUCα × C(Ω)→ C(Ω) is continuously differentiable.
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Proof. Define the map Γ : BUCα × C(Ω)× C(Ω)→ C(Ω) by

Γ(φ, δ, γ)(x) :=

∫ 0

−γ(x)

f(φ(s, .))(x)ds− δ(x).

Since by Assumption 3.1 the map f is C1, so is the map Γ. By (3.12), we have
Γ(φ, δ, τ̂(φ, δ))(x) = 0 and

∂γΓ(φ, δ, γ)(γ̂)(x) = f(φ(−γ(x), .)γ̂(x).

Since f is strictly positive, it follows that ∂γΓ(φ, δ, γ) is invertible. The result
follows by applying the implicit function theorem.

Lemma 3.13. Set

δ0(x) :=

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds,∀x ∈ Ω.

Then we have the following equality

τ̂(At, δ0)(x) = τ(t, x),∀t ∈ [0, r),

where A is given by Assumption 3.8 and τ(t, x) is the solution of (3.10).

Proof. It is sufficient to observe that ∀t ∈ [0, r) and x ∈ Ω,∫ 0

−τ̂(At,δ0)(x)

f(At(s, .))(x)ds = δ0(x) =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds

=

∫ 0

−τ(t,x)

f(A(t+ s, .))(x)ds

For simplicity, we will write τ(φ, x) instead of τ̂(φ, δ0)(x) if the function δ0

is defined as in Lemma 3.13.

Lemma 3.14. Let φ, φ̂ ∈ BUCα. If φ 6 φ̂, namely φ(s, x) 6 φ̂(s, x),∀s 6
0, x ∈ Ω, then

τ(φ, x) 6 τ(φ̂, x),∀x ∈ Ω.

Proof. By (3.12) we have∫ 0

−τ(φ,x)

f(φ(s, .))(x)ds = δ0(x) =

∫ 0

−τ(φ̂,x)

f(φ̂(s, .))(x)ds.
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Assume by contradiction that there exists x ∈ Ω such that τ(φ, x) > τ(φ̂, x),
then

0 =

∫ 0

−τ(φ,x)

f(φ(s, .))(x)ds−
∫ 0

−τ(φ̂,x)

f(φ̂(s, .))(x)ds

=

∫ −τ(φ̂,x)

−τ(φ,x)

f(φ(s, .))(x)ds+

∫ 0

−τ(φ̂,x)

[f(φ(s, .))− f(φ̂(s, .))](x)ds.

Since by assumption f(φ(s, .))(x) > 0 and τ(φ, x) > τ(φ̂, x), we have∫ −τ(φ̂,x)

−τ(φ,x)

f(φ(s, .))(x)ds > 0.

By assumption we also have f(φ(s, .))(x) > f(φ̂(s, .))(x) when τ(φ, x) >

τ(φ̂, x), then ∫ 0

−τ(φ̂,x)

[f(φ(s, .))− f(φ̂(s, .))](x)ds > 0.

Then we have

0 =

∫ −τ(φ̂,x)

−τ(φ,x)

f(φ(s, .))(x)ds+

∫ 0

−τ(φ̂,x)

[f(φ(s, .))− f(φ̂(s, .))](x)ds > 0 + 0 = 0,

which is a contradiction.

In the following lemma we obtain some a priori estimates for the delay.

Lemma 3.15. Let Assumption 3.8 be satisfied. Assume that there exists a
constant M > 0 such that

sup
t∈[0,r)

‖A(t, .)‖∞ 6M. (3.13)

Then
τmin 6 τ(At, x) 6 τmax,∀t ∈ [0, r),∀x ∈ Ω,

where the constants τmin and τmax are defined as follows:

0 6 τmin :=
inf
x∈Ω

[τ0(x)f(ϕmax)(x)]

sup
x∈Ω

f(−M1)(x)
6 τmax :=

sup
x∈Ω

[τ0(x)f(−ϕmax)(x)]

inf
x∈Ω

f(M1)(x)

with M1 and ϕmax being defined as constant functions as follows

M1(x) := max{M,ϕmax} and ϕmax(x) := sup
t∈[−τ∞0 ,0]

‖ϕ(t, .)‖∞, ∀x ∈ Ω (3.14)

and
τ∞0 := sup

x∈Ω
τ0(x).
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Proof. For any x ∈ Ω and t ∈ [0, r), since by Assumption 3.1 the map f is
decreasing, it follows that∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds =

∫ 0

−τ(At,x)

f(A(t+ s, .))(x)ds =

∫ t

t−τ(At,x)

f(A(l, .))(x)dl

6
∫ t

t−τ(At,x)

f(−M1)(x)ds = τ(At, x) sup
x∈Ω

f(−M1)(x).

Then ∀x ∈ Ω, ∀t ∈ [0, r),

τ(At, x) >

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds

sup
x∈Ω

f(−M1)(x)
>

inf
x∈Ω

[τ0(x)f(ϕmax)(x)]

sup
x∈Ω

f(−M1)(x)
.

The derivation of the estimation from above for τ(t, x) is similar.

Lemma 3.16. Let (ϕ, τ0), (ϕ̃, τ̃0), A, Ã satisfy Assumption 3.8. Assume that

M := max

{
sup
t∈[0,r)

‖A(t, .)‖∞ , sup
t∈[0,r)

‖Ã(t, .)‖∞

}
< +∞.

Then there exists a constant Lτ > 0 such that ∀t ∈ [0, r), ∀x ∈ Ω,

|τ̂(At, δ0)(x)−τ̂(Ãt, δ̃0)(x)| 6 Lτ

[
sup

s∈[−τ̄∞0 ,r)

‖A(s, .)− Ã(s, .)‖∞ + ‖δ0 − δ̃0‖∞

]
,

where δ0 and δ̃0 are defined as in Lemma 3.13 respectively with (ϕ, τ0) and
(ϕ̃, τ̃0) and

τ̃∞0 := max

{
sup
x∈Ω

τ0(x), sup
x∈Ω

τ̃0(x)

}
.

Proof. Let t ∈ [0, r) and x ∈ Ω. Recall from Lemma 3.13 that

δ0(x) =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds and δ̃0(x) =

∫ 0

−τ̃0(x)

f(ϕ̃(s, .))(x)ds,∀x ∈ Ω.

Without loss of generality we may assume that τ̂(At, δ0)(x) > τ̂(Ãt, δ̃0)(x) > 0.
Then we have

δ0(x)− δ̃0(x) =

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds−
∫ 0

−τ̃0(x)

f(ϕ̃(s, .))(x)ds

=

∫ t

t−τ̂(At,δ0)(x)

f(A(s, .))(x)ds−
∫ t

t−τ̂(Ãt,δ̃0)(x)

f(Ã(s, .))(x)ds
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=

∫ t−τ̂(Ãt,δ̃0)(x)

t−τ̂(At,δ0)(x)

f(A(s, .))(x)ds+

∫ t

t−τ̂(Ãt,δ̃0)(x)

[
f(A(s, .))(x)− f(Ã(s, .))(x)

]
ds.

Since by Assumption 3.1, f is Lipschitz continuous, then∫ t−τ̂(Ãt,δ̃0)(x)

t−τ̂(At,δ0)(x)

f(A(s, .))(x)ds

=

∫ t

t−τ̂(Ãt,δ̃0)(x)

[
f(Ã(s, .))(x)− f(A(s, .))(x)

]
ds+ (δ0(x)− δ̃0(x))

6 ‖f‖Lip

∫ t

t−τ̂(Ãt,δ̃0)(x)

‖Ã(s, .)− A(s, .)‖∞ds+ ‖δ0 − δ̃0‖∞

6 τ̄max‖f‖Lip sup
s∈[−τ̃∞0 ,r)

‖A(s, .)− Ã(s, .)‖∞ + ‖δ0 − δ̃0‖∞

where τ̄max := max{τmax, τ̃max} and τmax, τ̃max are obtained in Lemma 3.15. On
the other hand, we have∫ t−τ̂(Ãt,δ̃0)(x)

t−τ̂(At,δ0)(x)

f(A(s, .))(x)ds >
(
τ̂(At, δ0)(x)− τ̂(Ãt, δ̃0)(x)

)
inf
x∈Ω

f(M1)(x)

whereM1 is the constant function defined with the single value max{ϕmax, ϕ̃max,M}
and ϕmax, ϕ̃max are defined in (3.14) respectively with ϕ, ϕ̃. The result fol-
lows.

3.4 Existence and uniqueness of solutions
We start this section with two technical lemmas.

Lemma 3.17. Let a < b be two real numbers. Let χ ∈ Lip([a, b], C(Ω)). Then
for each c ∈ (a, b) we have the following estimation

‖χ‖Lip([a,b],C(Ω)) 6 ‖χ‖Lip([a,c],C(Ω)) + ‖χ‖Lip([c,b],C(Ω)).

where
‖χ‖Lip(I,C(Ω)) := sup

t,s∈I:t6=s

‖χ(t, .)− χ(s, .)‖∞
|t− s|

.

Proof. Let t, s ∈ [a, b] with t > s. Define the function ρ : [0, 1]→ R by

ρ(h) := ‖χ((t− s)h+ s, .)− χ(s, .)‖∞, ∀h ∈ [0, 1].

Then ∀h, ĥ ∈ [0, 1] we have

|ρ(h)− ρ(ĥ)|
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6
∣∣∣‖χ((t− s)h+ s, .)− χ(s, .)‖∞ − ‖χ((t− s)ĥ+ s, .)− χ(s, .)‖∞

∣∣∣
6 ‖χ((t− s)h+ s, .)− χ((t− s)ĥ+ s, .)‖∞
6 ‖χ‖Lip([a,b],C(Ω))|t− s||h− ĥ|,

thus ρ is Lipschitz continuous. Denote

Lip(ρ)(h) := lim sup
ε→0+

ρ(h+ ε)− ρ(h)

ε
,

then

Lip(ρ)(h) 6

{
‖χ‖Lip([a,c],C(Ω))|t− s|, if (t− s)h+ s ∈ [a, c),

‖χ‖Lip([c,b],C(Ω))|t− s|, if (t− s)h+ s ∈ [c, b].

Since ρ is Lipschitz continuous, by using Theorem 8.17 in page 158 of Rudin
[186], we deduce that ρ is differentiable everywhere on a subset of the form
[0, 1] \N (where N has null Lebesgue measure) and

ρ(t) = ρ(0) +

∫ t

0

ρ′(l)dl,∀t ∈ [0, 1].

By using the definition of Lip(ρ)(t) we deduce that

ρ′(t) 6 Lip(ρ)(t) 6 C, ∀t ∈ [0, 1] \N,

where C :=
[
‖χ‖Lip([a,c],C(Ω)) + ‖χ‖Lip([c,b],C(Ω))

]
|t− s|. Therefore we obtain

‖χ(t, .)− χ(s, .)‖∞ = ρ(1)− ρ(0) =

∫ 1

0

ρ′(l)dl 6
∫ 1

0

Cdl

which completes the proof.

Lemma 3.18. Let t > 0. Assume that A ∈ C((−∞, t], C(Ω)) and A0 = ϕ.
Define for each (θ, x) ∈ (−∞, 0]× Ω,

At,α(θ, x) := e−α|θ|At(θ, x) and ϕα(θ, x) := e−α|θ|ϕ(θ, x).

Then we have the following estimations

‖At,α‖∞ 6 sup
θ∈[0,t]

‖eα(θ−t)A(θ, .)‖∞ + e−αt‖ϕα‖∞, (3.15)

‖At,α‖Lip((−∞,0],C(Ω)) 6 ‖At,α‖Lip([−t,0],C(Ω)) + e−αt‖ϕα‖Lip((−∞,0],C(Ω)) (3.16)

and

‖At‖Lipα 6 sup
θ∈[0,t]

‖eα(θ−t)A(θ, .)‖∞ + ‖At,α‖Lip([−t,0],C(Ω)) + e−αt‖ϕ‖Lipα . (3.17)
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Proof. We have for the supremum norm

‖At,α‖∞ = sup
θ60
‖eαθA(t+ θ, .)‖∞ = e−αt sup

θ60
‖eα(t+θ)A(t+ θ, .)‖∞

6 sup
s∈[0,t]

‖eα(s−t)A(s, .)‖∞ + e−αt‖ϕα‖∞.

The result follows by using similar arguments combined with Lemma 3.17 for
the Lipschitz semi-norm.

Lemma 3.19 (Uniqueness of solutions). Let ϕ ∈ Lipα and τ0 ∈ C+(Ω)
satisfy

‖ϕ‖Lipα
+ ‖τ0‖∞ 6M0.

where M0 > 0 is a given real number. Let r ∈ (0,+∞) be given. Then
the equation (3.1) admits at most one solution (A, τ) ∈ C((−∞, r], C(Ω)) ×
C([0, r], C(Ω)).

Proof. Suppose that there exist (A1, τ 1),(A2, τ 2) ∈ C((−∞, r], C(Ω))×C([0, r],
C(Ω)) two solutions of (3.1) on (−∞, r] with

(A1
0, τ

1(0, .)) = (A2
0, τ

2(0, .)) = (ϕ, τ0).

Define

t0 = sup
{
t ∈ [0, r] : A1(s, x) = A2(s, x), τ 1(s, x) = τ 2(s, x),∀s ∈ [0, t],∀x ∈ Ω

}
.

Assume that t0 < r. We first observe that since r is finite, we have

K̃0 := sup
s∈[0,r]

‖A1(s, .)‖∞ + sup
s∈[0,r]

‖A2(s, .)‖∞ < +∞.

By Lemma 3.15, τ 1(t, x) and τ 2(t, x) are also bounded from above (by τ 1
max and

τ 2
max respectively) on t ∈ [0, r]. Since by Assumption 3.1, F : C(Ω)2×C(Ω2)→
C(Ω) is Lipschitz on bounded sets and for each i = 1, 2, each t ∈ [0, r] and
each x ∈ Ω,

Ai(t, x) = ϕ(0, x) +

∫ t

0

F (Ai(l, .), τ i(l, .), Ai(l − τ i(l))(., .))(x)dl,

it follows by using Lemma 3.15 that for each i = 1, 2,

sup
s∈[0,r]

‖F (Ai(s, .), τ i(s, .), Ai(s− τ i(s))(., .))‖∞ < +∞,

and
KL := ‖A1‖Lip([0,r],C(Ω)) + ‖A2‖Lip([0,r],C(Ω)) < +∞.

Set
K0 := 2(K̃0 + ϕmax) + τ 1

max + τ 2
max,
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where ϕmax is defined in (3.14). For each t ∈ [t0, r] and each x ∈ Ω we have

A1(t, x)− A2(t, x) =

∫ t

0

[
F (A1(l, .), τ 1(l, .), A1(l − τ 1(l))(., .))(x)

−F (A2(l, .), τ 2(l, .), A2(l − τ 2(l))(., .))(x)
]
dl,

thus by using the fact that F is Lipschitz on bounded sets, we obtain

‖A1(t, .)− A2(t, .)‖∞ 6 (t− t0)L(K0) sup
s∈[t0,t]

[
‖A1(s, .)− A2(s, .)‖∞

+‖A1(s− τ 1(s))(., .)− A2(s− τ 2(s))(., .)‖∞
+ ‖τ 1(s, .)− τ 2(s, .)‖∞

]
.

Define
‖A1

t − A2
t‖∞ := sup

s60
‖A1(t+ s, .)− A2(t+ s, .)‖∞.

By Lemma 3.16, for each s ∈ [t0, t] we have

‖τ 1(s, .)−τ 2(s, .)‖∞ = ‖τ(A1
s, .)−τ(A2

s, .)‖∞ 6 Lτ‖A1
s−A2

s‖∞ 6 Lτ‖A1
t−A2

t‖∞.

Thus

‖A1(s− τ 1(s))− A2(s− τ 2(s))‖∞
6 ‖A1(s− τ 1(s))− A1(s− τ 2(s))‖∞ + ‖A1(s− τ 2(s))− A2(s− τ 2(s))‖∞
6 KL‖τ 1(s, .)− τ 2(s, .)‖∞ + ‖A1

t − A2
t‖∞,

hence

‖A1(s− τ 1(s))− A2(s− τ 2(s))‖∞ 6 (KLLτ + 1)‖A1
t − A2

t‖∞.

So we obtain for each t ∈ [t0, r],

‖A1
t − A2

t‖∞ 6 (t− t0)L(K0)((KL + 1)Lτ + 2)‖A1
t − A2

t‖∞.

It follows that we can find ε ∈ (0, r − t0) such that

‖A1
t − A2

t‖∞ = 0,∀t ∈ [t0, t0 + ε],

which contradicts with the definition of t0. Thus t0 = r.

Theorem 3.20 (Local existence of solutions). Let M0 > 0 be fixed. Then
for M > M0, there exists a time r = r(M0,M) > 0 such that for each (ϕ, τ0) ∈
Lipα × C+(Ω) satisfying

‖ϕ‖Lipα
+ ‖τ0‖∞ 6M0,

system (3.1) admits a unique solution (A, τ) ∈ C((−∞, r], C(Ω))×C([0, r], C(Ω)).
Moreover,

‖A(t, .)‖∞ 6M,∀t ∈ [0, r].
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Proof. Step 1 (Fixed point problem): We start by defining the fixed point
problem. Let M0 > 0 be fixed. Let ϕ ∈ Lipα and τ0 ∈ C+(Ω) satisfy

‖ϕ‖Lipα
+ ‖τ0‖∞ 6M0.

Let M > M0 be fixed. Define

Eϕ := {A ∈ C((−∞, r], C(Ω)) : A0 = ϕ and sup
t∈[0,r]

‖A(t, .)‖∞ 6M}

where r will be determined later on.
Let Φ : Eϕ → C((−∞, r], C(Ω)) be the map defined as follows: for each

t ∈ [0, r] and x ∈ Ω,

Φ(A)(t)(x) := ϕ(0, x) +

∫ t

0

F (A(l, .), τ(Al, .), A(l − τ(Al, .), .))(x)dl (3.18)

where τ(At, x) is the unique solution of the integral equation (3.10), and for
t 6 0 and x ∈ Ω,

Φ(A)(t)(x) := ϕ(t, x).

Set
M̃ := max{M,ϕmax} (3.19)

where ϕmax is defined in (3.14). For any A ∈ Eϕ and t ∈ [0, r], we have

‖Φ(A)(t)‖∞

6 ‖ϕ(0, .)‖∞ +

∫ t

0

‖F (A(l, .), τ(Al, .), A(l − τ(Al, .), .))‖∞dl

6 M0 +

∫ t

0

‖F (A(l, .), τ(Al, .), A(l − τ(Al, .), .))− F (0, 0, 0)‖∞dl

+

∫ t

0

‖F (0, 0, 0)‖∞dl

6 M0 + r[(2M̃ + τmax)L(2M̃ + τmax) + ‖F (0, 0, 0)‖∞].

Since M > M0 we can find r1 > 0 such that for each r ∈ (0, r1],

M0 + r[(2M̃ + τmax)L(2M̃ + τmax) + ‖F (0, 0, 0)‖∞] 6M,

and it follows that
Φ(Eϕ) ⊂ Eϕ.

Step 2 (Lipschitz estimation): Set

ML :=
M −M0

r
> (2M̃ + τmax)L(2M̃ + τmax) + ‖F (0, 0, 0)‖∞. (3.20)
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For each t, s ∈ [0, r] with t > s and A ∈ Eϕ we have

‖Φ(A)(t)− Φ(A)(s)‖∞
|t− s|

6

∫ t

s

‖F (A(l, .), τ(Al, .), A(l − τ(Al, .), .))‖∞dl

|t− s|

6

∫ t

s

‖F (A(l, .), τ(Al, .), A(l − τ(Al, .), .))− F (0, 0, 0)‖∞dl

|t− s|

+

∫ t

s

‖F (0, 0, 0)‖∞dl

|t− s|
,

thus
‖Φ(A)‖Lip([0,r],C(Ω)) 6ML,∀A ∈ Eϕ.

Step 3 (Iteration procedure): Consider the sequence {An}n∈N ⊂ Eϕ defined by
iteration as follows: for each (t, x) ∈ (−∞, r]× Ω,

A0(t, x) =

{
ϕ(0, x), if t ∈ [0, r],
ϕ(t, x), if t 6 0,

and for each integer n > 0,

An+1(t, x) =

{
Φ(An)(t)(x), if t ∈ [0, r],
ϕ(t, x), if t 6 0.

From step 2 and the definition of A0, we know that for each integer n > 0,

An ∈ Lip([−τ∞0 , r], C(Ω)).

and
‖An‖Lip([−τ∞0 ,r],C(Ω)) 6 max{ML, ‖ϕ‖Lip([−τ∞0 ,0],C(Ω))} =: M̂L.

For each integer n, p > 0, the maps An and Ap coincide for negative time t,
therefore we can define

‖An − Ap‖∞ := sup
t6r
‖An(t, .)− Ap(t, .)‖∞.

Next, we have ∀n ∈ N,

‖An+1 − An‖∞ = sup
t∈[0,r]

‖Φ(An)(t)(.)− Φ(An−1)(t)(.)‖∞

6
∫ r

0

‖F (An(l, .), τ(Anl , .), A
n(l − τ(Anl , .), .))

−F (An−1(l, .), τ(An−1
l , .), An−1(l − τ(An−1

l , .), .))‖∞dl
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6 rL(M̃ + τmax)

[
‖An − An−1‖∞ + sup

l∈[0,r]

‖τ(Anl , .)− τ(An−1
l , .)‖∞

+ sup
l∈[0,r]

‖An(l − τ(Anl , .), .)− An−1(l − τ(An−1
l , .), .)‖∞

]
,

6 rL(M̃ + τmax)
[
‖An − An−1‖∞ + (1 + ‖An‖Lip([−τ∞0 ,r],C(Ω)))

sup
l∈[0,r]

‖τ(Anl , .)− τ(An−1
l , .)‖∞

]
.

By Lemma 3.16, for each integer n > 1 we obtain∥∥An+1 − An
∥∥
∞ 6 rC‖An − An−1‖∞

with C :=
(

2 + Lτ (1 + M̂L)
)
L(M̃ + τmax).

Now we can find r2 ∈ (0, r1] such that r2C < 1/2, and for each r ∈ (0, r2]
we have ∥∥An+1 − An

∥∥
∞ 6

1

2n
‖A1 − A0‖∞,∀n > 1.

It follows that {An|[0,r]} is a Cauchy sequence in the space C([0, r], C(Ω)) and
{An} coincides with ϕ for negative t. Define

A(t, x) :=

{
lim

n→+∞
An(t, x), if t ∈ [0, r], x ∈ Ω,

ϕ(t, x), if t 6 0, x ∈ Ω.

Then we have
lim

n→+∞
‖An − A‖∞ = 0.

By using again Lemma 3.16, we have

sup
l∈[0,r]

‖τ(Anl , .)− τ(Al, .)‖∞ 6 Lτ ‖An − A‖∞ ,∀n > 1.

Finally by taking the limit on both sides of the equation

An+1(t, x) = ϕ(0, x) +

∫ t

0

F (An(l, .), τ(Anl , .), A
n(l − τ(Anl , .), .))(x)dl,

we deduce that the couple (A, τ(At, .)) is a solution of equation (3.1).
Step 4: (Estimation of the solution) We observe that

‖An+1 − A0‖∞ 6 ‖An+1 − An‖∞ + ‖An − An−1‖∞ + . . .+ ‖A1 − A0‖∞

6
n∑
k=0

(
1

2

)n
‖A1 − A0‖∞,
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therefore
‖An+1 − A0‖∞ 6 2‖A1 − A0‖∞,

and by taking the limit when n goes to infinity we obtain

‖A− A0‖∞ 6 2‖A1 − A0‖∞.

From the definition of A1 and A0 we have

‖A1 − A0‖∞ 6
∫ r

0

‖F (A0(l, .), τ(A0
l , .), A

0(l − τ(A0
l , .), .))‖∞dl,

so
‖A1 − A0‖∞ 6 rC1,

where C1 = sup
l∈[0,r]

‖F (A0(l, .), τ(A0
l , .), A

0(l − τ(A0
l , .), .))‖∞. It follows that for

each t ∈ [0, r],

‖A(t, .)‖∞ 6 ‖A(t, .)− ϕ(0, .)‖∞ + ‖ϕ(0, .)‖∞ 6 ‖A− A0‖∞ +M0,

thus
‖A(t, .)‖∞ 6M0 + 2rC1,

and by choosing r small enough we obtain M0 + 2rC1 6 M . The proof is
completed.

From step 2 in the above proof combined with Lemma 3.18, we have the
following corollary.

Corollary 3.21. With the same notation as in Theorem 3.20, we have

At ∈ Lipα,∀t ∈ [0, r],

and there exists M̂ := M̂(M, τmax, α) > M such that

‖At‖Lipα 6 M̂, ∀t ∈ [0, r].

3.5 Properties of the semiflow

For each initial distribution W0 =

(
ϕ
τ0

)
∈ Lipα × C+(Ω), define

TBU(W0) = sup{t > 0 : there exists a solution of (3.1) on the interval [0, t]

with the initial distribution W0},

Observe by Theorem 3.20 that we must have TBU(W0) > 0.
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In this section we investigate the semiflow properties of the map W :
D(W ) ⊂ [0,+∞) × Lipα × C(Ω) → Lipα × C(Ω) defined for each initial
distribution W0 as

W (t,W0)(x) =

(
At(., x)
τ(t, x))

)
where {(A(t, .), τ(t, .))}t∈[0,TBU (W0)) is the solution of (3.1) with initial distribu-
tion W0, which can be defined up to the maximal time of existence TBU(W0).
The domain is

D(W ) =
⋃

W0∈Lipα×C+(Ω)

[0, TBU(W0))× {W0}.

Proof. (First part of Theorem 3.6) Suppose that W0 ∈ Lipα × C+(Ω) satisfies
‖W0‖Lipα×C(Ω) 6M0, where M0 is a positive constant, and define U by

U(t)W0(x) :=

(
At(., x)
τ(t, x)

)
where the map t 7→ (A(t, .), τ(t, .)) defined on [0, TBU(W0)) is the maximal
solution of (3.1) with initial value W0. In this proof, we will verify that U
satisfies the properties (i)-(iv) of Definition 3.5.

The property (ii) of Definition 3.5 is trivially satisfied, since by construction
U(0)W0 = W0.
Step 1 ((i) and (iii) of Definition 3.5): By Lemma 3.9, the map t 7→ (A(t, .), τ(t, .))
is the solution of (3.1) if and only if for each t ∈ [0, TBU(W0)) and each x ∈ Ω
the equations

A(t, x) = ϕ(0, x) +

∫ t

0

F (A(l, .), τ(l, .), A(l − τ(l))(., .))(x)dl,

τ(t, x) = τ0(x) +

∫ t

0

[
1− f(A(l, .))(x)

f(A(l − τ(l))(., .))(x)

]
dl,

(3.21)

are satisfied together with the initial condition

(A0, τ(0, .)) = W0.

Let s ∈ [0, TBU(W0)). Let us prove that

s+ TBU(U(s)W0) 6 TBU(W0)

and for each t ∈ [0, TBU(U(s)W0)),

U(t+ s)W0 = U(t)U(s)W0. (3.22)

For each t ∈ [0, TBU(U(s)W0)),

U(t)U(s)(W0) = U(t)

(
As

τ(s, .)

)
=

(
Ãt
τ̃(t)

)
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where t 7→ (At, τ(t, .)) is the solution of (3.1) with initial condition W0 and
t 7→ (Ãt, τ̃(t, .)) is the solution of (3.1) with initial condition U(s)(W0). Then
we have for each t ∈ [0, TBU(U(s)W0)),

Ã(t, x) = A(s, x) +

∫ t

0

F (Ã(l, .), τ̃(l, .), Ã(l − τ̃(l))(., .))(x)dl

τ̃(t, x) = τ(s, x) +

∫ t

0

[
1− f(Ã(l, .))(x)

f(Ã(l − τ̃(l))(., .))(x)

]
dl

(3.23)

with initial condition
Ã0 = As, τ̃(0, x) = τ(s, x).

Now by setting

(Āt, τ̄(t, .)) :=

{
(Ãt−s, τ̃(t− s, .)), if t ∈ [s, s+ TBU(U(s)W0)),
(At, τ(t, .)), if t ∈ [0, s],

then by using (3.21) and (3.23) we deduce that t 7→ (Āt, τ̄(t, .)) is a solution
of (3.1) on the time interval [0, s + TBU(U(s)W0)) with initial condition W0.
It follows that

s+ TBU(U(s)W0) 6 TBU(W0).

Now assume that t 7→ (At, τ(t, .)) is a solution of (3.1) on the time interval
[0, TBU(W0)) with initial condition W0. Let s ∈ [0, TBU(W0)). Then by using
(3.21) it follows that t 7→ (At+s, τ(t + s, .)) defined on [0, TBU(W0) − s) is a
solution of (3.1) with initial condition U(s)W0. It follows that

TBU(W0)− s 6 TBU(U(s)W0)

and the properties (i) and (iii) of Definition 3.5 follow.
Step 2 ((iv) of Definition 3.5): Assume that TBU(W0) < +∞. Suppose that
‖U(t)W0‖Lipα×C(Ω) does not go to +∞ when t↗ TBU(W0). Then there exists
a constant M0 > 0 and a sequence {tn} ⊂ [0, TBU(W0)) such that lim

n→+∞
tn =

TBU(W0), and for any n ∈ N,

‖U(tn)W0‖Lipα×C(Ω) =

∥∥∥∥( Atn
τ(tn, .)

)∥∥∥∥
Lipα×C(Ω)

6M0.

Let W0,n :=

(
Atn

τ(tn, .)

)
. Then by the local existence Theorem 3.20 and Corol-

lary 3.21 we can find a constant M̂ > M0 and a time r = r(M0, M̂) > 0 such
that for any n ∈ N,

TBU(W0,n) > r.

Moreover, from the previous part of the proof we have

TBU(W0) = tn + TBU(W0,n) > tn + r,
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and when n→ +∞ we obtain

TBU(W0) > TBU(W0) + r

a contradiction since r > 0. Thus we have

lim
t↗TBU (W0)

‖U(t)W0‖Lipα×C(Ω) = +∞. (3.24)

Proof. (Second part of Theorem 3.6) Let us prove that if TBU(W0) < +∞ then

lim sup
t↗TBU (W0)

‖A(t, .)‖∞ = +∞.

Assume that TBU(W0) < +∞ and assume by contradiction that

lim sup
t↗TBU (W0)

‖A(t, .)‖∞ < +∞.

Since the map t 7→ t− τ(t, x) is increasing, we have

−τ0(x) 6 t− τ(t, x) 6 t < TBU(W0),∀x ∈ Ω,

therefore
0 6 τ(t, x) 6 TBU(W0) + τ0(x).

And by assumption TBU(W0) < +∞, then

lim sup
t↗TBU (W0)

‖τ(t, .)‖∞ < +∞.

Moreover, for each t ∈ [0, TBU(W0)),

∂tA(t, x) = F (A(t, .), τ(t, .), A(t− τ(t))(., .))(x),

and since F is Lipschitz on bounded sets and by Lemma 3.18 we deduce that

lim sup
t↗TBU (W0)

‖eα.At(.)‖Lip < +∞,

which contradicts (3.24).

Lemma 3.22. We have the following results:

(i) The map W0 7→ TBU(W0) is lower semi-continuous on Lipα × C+(Ω).
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(ii) For every x ∈ Ω, for every W0 ∈ Lipα × C+(Ω), T̂ ∈ (0, TBU(W0)), and
every sequence {W (n)

0 }n∈N ⊂ Lipα × C+(Ω) satisfying

lim
n→+∞

W
(n)
0 = W0 in Lipα × C+(Ω),

we have

lim
n→+∞

sup
t∈[0,T̂ ]

∥∥∥U(t)W
(n)
0 − U(t)W0

∥∥∥
Lipα×C(Ω)

= 0. (3.25)

Proof. Step 1 (Fixed point problem): Let t 7→ (Ā(t, .), τ̄(t, .)) be a solution of
system (3.1) which exists up to the maximal time of existence TBU(W 0) with

the initial distribution W 0 =

(
ϕ̄
τ̄0

)
∈ Lipα × C+(Ω).

Let t∗ ∈ (0, TBU(W 0)) be fixed. By construction the map t 7→ (Āt, τ̄(t, .))
is continuous from [0, TBU(W 0)) to BUCα × C+(Ω). Therefore

sup
t∈[0,t∗]

[
‖Āt‖BUCα + ‖τ̄(t, .)‖∞

]
< +∞,

and since Ā(t, .) satisfies the equation (3.1) for positive time t, it follows that

M̂ := sup
t∈[0,t∗]

‖Āt‖Lipα < +∞.

Let t0 ∈ [0, t∗] and r > 0 with t0 + r < t∗ where r will be determined later on.

Let ε > 0 be fixed. Let W0 =

(
ϕ
τ0

)
∈ Lipα × C+(Ω) satisfy

‖ϕ− Āt0‖Lipα 6 ε and ‖τ0 − τ̄(t0, .)‖∞ 6 ε.

Let M > ε be fixed. Define the space

Eϕ,t0 := {A ∈ BUCα((−∞, r], C(Ω)) : A0 = ϕ and sup
t∈[0,r]

‖A(t, .)− Āt0(t, .)‖∞

6M}.

Let Φ : Eϕ,t0 → C((−∞, r], C(Ω)) be the map defined by

Φ(A)(t)(x) := ϕ(0, x) +

∫ t

0

F (A(l, .), τ̂(Al, δ0), A(l − τ̂(Al, δ0), .))(x)dl (3.26)

whenever t ∈ [0, r] and x ∈ Ω, and

Φ(A)(t)(x) := Āt0(t, x)

whenever t 6 0 and x ∈ Ω.
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In the formula (3.26) the delay τ̂(At, δ0)(x) is the unique solution of∫ 0

−τ̂(At,δ0)(x)

f(A(t+ s, .))(x)ds = δ0(x)

where

δ0(x) :=

∫ 0

−τ0(x)

f(ϕ(s, .))(x)ds.

For any A ∈ Eϕ,t0 , t ∈ [0, r] and x ∈ Ω, we have

|Φ(A)(t)(x)− Āt0(t, x)|

=

∣∣∣∣ϕ(0, x) +

∫ t

0

F (A(l, .), τ̂(Al, δ0), A(l − τ̂(Al, δ0), .))(x)dl

−Āt0(0, x)−
∫ t

0

F (Āt0(l, .), τ̂(Āt0+l, δ̄0), Āt0(l − τ̂(Āt0+l, δ̄0), .))(x)dl

∣∣∣∣
6 ε+

∫ t

0

|F (A(l, .), τ̂(Al, δ0), A(l − τ̂(Al, δ0), .))(x)

−F (Āt0(l, .), τ̂(Āt0+l, δ̄0), Āt0(l − τ̂(Āt0+l, δ̄0), .))(x)|dl,

where

δ̄0(x) =

∫ 0

−τ̄(t0,x)

f(Ā(t0 + s, .))(x)ds =

∫ 0

−τ̄0(x)

f(ϕ̄(s, .))(x)ds.

By Lemma 3.16, we can find a constant Lτ > 0 such that

‖τ̂(Al, δ0)− τ̂(Āt0+l, δ̄0)‖∞

6 Lτ

[
sup

s∈[−max{τ∞0 ,τ̄∞0 },r]
‖A(s, .)− Āt0(s, .)‖∞ + ‖δ0 − δ̄0‖∞

]
where τ∞0 and τ̄∞0 are defined as in Lemma 3.15.

By using the definition of δ0 and δ̄0 we have

‖δ0 − δ̄0‖∞ 6 sup
x∈Ω

∣∣∣∣∣
∫ −τ̄(t0,x)

−τ0(x)

f(ϕ(s, .))(x)ds

∣∣∣∣∣
+ sup

x∈Ω

∣∣∣∣∫ 0

−τ̄(t0,x)

[f(ϕ(s, .))(x)− f(Ā(t0 + s, .))(x)]ds

∣∣∣∣
6 ‖τ0(.)− τ̄(t0, .)‖∞ sup

x∈Ω
f(−ϕmax)(x)

+τ̄∞0 ‖f‖Lip sup
s∈[−τ̄∞0 ,0]

‖ϕ(s, .)− Ā(t0 + s, .)‖∞

6 ε

(
sup
x∈Ω

f(−ϕmax)(x) + τ̄∞0 eατ̄
∞
0 ‖f‖Lip

)
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where ϕmax is defined as in Lemma 3.15.
From the above estimations, it follows that there exists a constant M1 > 0

such that
‖τ̂(Al, δ0)− τ̂(Āt0+l, δ̄0)‖∞ 6M1.

Now, similarly as in step 3 of the proof of Theorem 3.20 to evaluate ‖An+1 −
An‖∞, we deduce that there exists a constant r1 > 0 (independent of ϕ) such
that for each r ∈ (0, r1], we have Φ(Eϕ,t0) ⊂ Eϕ,t0 .
Step 2 (Lipschitz estimation): Similarly as in step 2 of the proof of Theorem
3.20, we can deduce that there exists a constant ML > 0 such that

‖Φ(A)‖Lip([0,r],C(Ω)) 6ML, ∀A ∈ Eϕ,t0 .

Step 3 (Iteration procedure): Consider the sequence {An}n∈N ⊂ Eϕ,t0 defined
by iteration as follows: for each (t, x) ∈ (−∞, r]× Ω,

A0(t, x) = Āt0(t, x),

and for each integer n > 0,

An+1(t, x) :=

{
Φ(An)(t)(x), if t ∈ [0, r],
ϕ(t, x), if t 6 0.

From step 2, we deduce that there exists a constant M̂L > 0 such that for each
integer n > 0,

‖An‖Lip([−τ∞0 ,r],C(Ω)) 6 M̂L.

By using the same argument as in step 3 of the proof of Theorem 3.20, we can
find a constant r2 ∈ (0, r1] (independent of ϕ) such that ∀r ∈ (0, r2],

‖An+1 − An‖∞ 6
1

2n
‖A1 − A0‖∞,∀n > 1.

It follows that {An|[0,r]} is a Cauchy sequence in the space C([0, r], C(Ω)).
Define

A(t, x) :=

{
lim

n→+∞
An(t, x), if t ∈ [0, r], x ∈ Ω,

ϕ(t, x), if t 6 0, x ∈ Ω.

Then we have
lim

n→+∞
‖An − A‖∞ = 0,

and we deduce that (A, τ̂(Al, δ0)) is a solution of (3.1) with the initial distri-
bution (ϕ, τ0).
Step 4 (Estimation of the solution): As in step 4 of the proof of Theorem 3.20,
we also have

‖A− A0‖∞ 6 2‖A1 − A0‖∞.
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Since we have

‖A1 − A0‖∞

= sup
t∈[0,r]

sup
x∈Ω

∣∣∣∣ϕ(0, x) +

∫ t

0

F (A0(l, .), τ̂(A0
l , δ0), A0(l − τ̂(A0

l , δ0), .))(x)dl

−Āt0(t, x)
∣∣

6 sup
t∈[0,r]

‖ϕ(0, .)− Āt0(0, .)‖∞ + sup
x∈Ω

∣∣Āt0(0, .)+∫ t

0

F (A0(l, .), τ̂(A0
l , δ0), A0(l − τ̂(A0

l , δ0), .))(x)dl − Āt0(t, x)

∣∣∣∣
and since Ā(t, x) is a solution, the second term in the above inequality is null.
It follows that

‖A1 − A0‖∞ 6 ε.

Then we obtain

‖A(t, .)− Āt0(t, .)‖∞ 6 2ε,∀t ∈ [t0, t0 + r].

Step 5 (Convergence result): Fix r =
t∗

n
6 r2 for some integer n > 1. Choose

an initial value satisfying

‖ϕ− Āt0‖Lipα 6
ε

2n+1
and ‖τ0 − τ̄(t0, .)‖∞ 6

ε

2n+1
.

By using the above result when t0 = 0, we deduce that

‖A(t, .)− Ā(t, .)‖∞ 6
ε

2n+1
, ∀t ∈ [0, r].

and by induction t0 = kr for k = 0, ..., n we obtain

‖A(t, .)− Ā(t, .)‖∞ 6 ε, ∀t ∈ [0, t∗],

the result follows.

The part of Theorem 3.7: time continuity of the semiflow in BUC1
α is left

to the reader.

3.6 Application to the forest model with space
For x ∈ Ω := [0, 1] and t > 0 we consider the forest spatial model with one
species (parameter meanings as in Chapter 2)

∂tA(t, x) = e−µJτ(t,x) f(A(t, x))

f(A(t− τ(t, x), x))
B(t− τ(t, x), x)− µAA(t, x), (3.27)
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where f is a continuously differentiable and decreasing function and the birth
is defined by

B(t, x) := (I − ε∆)−1[βA(t, .)](x),

where ∆ is the Laplacian operator on the domain Ω with periodic bound-
ary conditions, and the state-dependent delay τ(t, x) is a continuous function
satisfying ∫ t

t−τ(t,x)

f(A(σ, x))dσ =

∫ 0

−τ0(x)

f(ϕ(σ, x))dσ,

and A(t, x) satisfies the initial condition

A(t, x) = ϕ(t, x),∀t 6 0,

with
ϕ ∈ Lipα and ϕ > 0.

The solution of (3.27) is a continuous function A defined on (−∞, r]×Ω (r to
be determined) satisfying

A(t, x) =


ϕ(0, x) +

∫ t

0

[
e−µJτ(s,x) f(A(s, x))

f(A(s− τ(s, x), x))
B(s− τ(s, x), x)

− µAA(s, x)] ds, t > 0, x ∈ Ω,

ϕ(t, x), t 6 0, x ∈ Ω.

It is well known that (I − ε∆)−1 is a positive operator, i.e.

(I − ε∆)−1C+(Ω) ⊂ C+(Ω)

and
‖(I − ε∆)−1‖L(C(Ω)) = 1.

3.6.1 Positivity

Assume that
ϕ(t, x) > 0,∀(t, x) ∈ (−∞, 0]× Ω.

Assume that the solution starting from this initial condition exists up to the
time TBU(ϕ, τ0) > 0. Then we have for each t ∈ [0, TBU(ϕ, τ0)),

A(t, x) =e−µAtϕ(0, x) +

∫ t

0

e−µA(t−s)e−µJτ(s,x) f(A(s, x))

f(A(s− τ(s, x), x))
·

(I − ε∆)−1[βA(s− τ(s, x), .)](x)ds.

Since the operator (I − ε∆)−1 preserves the positivity of the condition and by
Assumption 3.1, f is strictly positive, then the positivity of the solution follows
by using fixed point arguments on A(t, x) in the above integral equation.
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3.6.2 Global existence

Consider the spatial density of juveniles

J(t, x) :=

∫ t

t−τ(t,x)

e−µJ (t−s)β(I − ε∆)−1(A(s, .))(x)ds

for each t ∈ [0, TBU(ϕ, τ0)). It is clear that

J(t, x) > 0,∀t ∈ [0, TBU(ϕ, τ0)). (3.28)

Moreover we have

∂tJ(t, x) =β(I − ε∆)−1(A(t, .))(x)− e−µJτ(t,x) f(A(t, x))

f(A(t− τ(t, x), x))
·

β(I − ε∆)−1(A(t− τ(t, x), .))(x)− µJJ(t, x).

By summing equation (3.27) and the above equation we obtain

∂t[A(t, x) + J(t, x)] = β(I − ε∆)−1(A(t, .))(x)− µAA(t, x)− µJJ(t, x). (3.29)

Set
U(t, x) := A(t, x) + J(t, x),

then we have

∂tU(t, x) 6 β(I − ε∆)−1(U(t, .))(x)− µU(t, x),

where µ := min{µA, µJ}. By using a comparison argument we deduce that

U(t, x) 6 e[β(I−ε∆)−1−µ]t(U(0, .))(x),∀t ∈ [0, TBU(ϕ, τ0)).

Therefore by using (3.28), we deduce that

A(t, x) 6 e[β(I−ε∆)−1−µ]t(U(0, .))(x), ∀t ∈ [0, TBU(ϕ, τ0)),

and by using Theorem 3.6, we must have TBU(ϕ, τ0) = +∞.

70 Zhengyang Zhang



Chapter 4

Boundedness and dissipativity of a
system of state-dependent delay
differential equation

4.1 Introduction
In this chapter we are interested in a state-dependent delay differential equa-
tion modelling the growth of forest. Following Chapter 2, when the forest is
composed of a single species of trees, we have the following system

A′(t) = −µAA(t) + βe−µJτ(t) f(A(t))

f(A(t− τ(t)))
A(t− τ(t)), ∀t > 0,∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ, ∀t > 0,

(4.1)

with the initial conditions

A(t) = ϕ(t) > 0,∀t 6 0 and τ(0) = τ0 > 0,

where ϕ belongs to

Lipα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) ∈ BUC(−∞, 0] ∩ Lip(−∞, 0]

}
,

which is a Banach space endowed with the norm

‖φ‖Lipα := ‖e−α|.|φ(.)‖∞,(−∞,0] + ‖e−α|.|φ(.)‖Lip(−∞,0],

where α > 0, BUC(−∞, 0] denotes the space of bounded uniformly continuous
functions from (−∞, 0] to R, and Lip(−∞, 0] denotes the space of Lipschitz
functions from (−∞, 0] to R.

Equation (4.1) models the dynamics of the adult population of trees. Here
A(t) is the number of adult trees at time t, τ(t) is the time needed by newborns
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to become adult at time t, µA > 0 is the mortality rate of the adult trees,
µJ > 0 is the mortality rate of the juvenile trees, β > 0 is the birth rate. In
the context of forest modelling (see [139]), f(A(t)) describes the growth rate of
juveniles, and the function f is capturing the effect of the competition for light
between adults and juveniles. For mathematical convenience, we will make the
following assumption.

Assumption 4.1. We assume that

(i) The coefficients µA > 0, µJ > 0, β > 0;

(ii) The function f : R→ (0,+∞) is continuously differentiable and

f(x) > 0, lim
x→+∞

f(x) = 0 and f ′(x) 6 0,∀x ∈ R.

Actually system (4.1) has been first derived by Smith [193] from a size-
structured model of the form

A′(t) = −µAA(t) + f(A(t))j(t, s∗), ∀t > 0,

∂tj(t, s) + f(A(t))∂sj(t, s) = −µJj(t, s), ∀s ∈ [s−, s
∗],∀t > 0,

f(A(t))j(t, s−) = βA(t), ∀t > 0,

A(0) = A0 > 0,

j(0, s) = j0(s) > 0,∀s ∈ [s−, s
∗),

where 0 6 s− < s∗ are the minimal and maximal size of juveniles, and j(t, s) is
the density of juveniles with size s at time t. System (4.1) has also been exten-
sively studied by Smith in [193, 194, 195, 196], where the author introduced a
change of variable to transform this kind of state-dependent delay differential
equation into a constant delay differential equation. The change of variable is
given by

x =

∫ t

0

f(A(σ))dσ =: Φ(t).

Set

δ :=

∫ 0

−τ0
f(ϕ(σ))dσ > 0,

then for x > δ,

x− δ =

∫ t

0

f(A(σ))dσ−
∫ t

t−τ(t)

f(A(σ))dσ =

∫ t−τ(t)

0

f(A(σ))dσ = Φ(t− τ(t)),

This means that x − δ corresponds to t − τ(t) under this change of variable.
Moreover by setting W (x) = A(t) and using the same arguments as in Smith
[193], one also has

τ(t) =

∫ 0

−δ
f(W (x+ r))−1dr.

72 Zhengyang Zhang



4. Boundedness and dissipativity

Therefore Smith [193] obtained the following constant delay differential equa-
tion

W ′(x) = −µA
W (x)

f(W (x))
+ βe−µJ

∫ 0
−δ f(W (x+r))−1dr W (x− δ)

f(W (x− δ))
,∀x > 0. (4.2)

Based on the analysis of this equation (4.2), Smith [193, 194, 195, 196] was
able to prove the boundedness of solutions whenever δ > 0. Along the same
line, he was also able to analyse the uniform persistence and Hopf bifurcation
around the positive equilibrium.

Let A ∈ C((−∞, r],R) (for some r > 0) be given. Then for each t 6 r, we
will use the standard notation At ∈ C((−∞, 0],R), which is the map defined
by

At(θ) = A(t+ θ),∀θ 6 0.

For clarity we will specify the notion of a solution.

Definition 4.2. Let r ∈ (0,+∞]. A solution of the system (4.1) on [0, r) is a
pair of continuous maps A : (−∞, r)→ R and τ : [0, r)→ R+ satisfying

A(t) =

 ϕ(0) +

∫ t

0

F (A(σ), τ(σ), A(σ − τ(σ)))dσ,∀t ∈ [0, r),

ϕ(t),∀t 6 0,

and ∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ,∀t ∈ [0, r),

where
F (A, τ, A1) := −µAA+ βe−µJτ

f(A)

f(A1)
A1.

In this problem the initial distribution is (ϕ, τ0). The semiflow generated
by (4.1) is

U(t)(ϕ(.), τ0) := (At(.), τ(t)),

where A(t) and τ(t) is the solution of (4.1) with the initial distribution (ϕ, τ0).
The existence and uniqueness of a maximal semiflow on Lipα × [0,+∞) (with
blowup property when the time gets close to the maximal time of existence
TBU = TBU(ϕ, τ0)) have been studied in the previous chapter.

In order to obtain a global existence result for the solution, we now focus
on the positive solution. From the form of the equation we obtain

ϕ > 0⇒ A(t) > 0,∀t ∈ [0, TBU).

The number of juvenile individuals at time t ∈ [0, TBU) is given by

J(t) :=

∫ t

t−τ(t)

e−µJ (t−σ)βA(σ)dσ,∀t ∈ [0, TBU),
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and A > 0 implies that

J(t) > 0,∀t ∈ [0, TBU).

Moreover we have

J ′(t) = βA(t)− e−µJτ(t) f(A(t))

f(A(t− τ(t)))
βA(t− τ(t))− µJJ(t).

By summing the A and J equations we obtain

[A(t) + J(t)]′ = βA(t)− µAA(t)− µJJ(t). (4.3)

Set
U(t) := A(t) + J(t),

then since A > 0 we have

U ′(t) 6 (β − µ)U(t),

where µ := min{µA, µJ}. By using a comparison argument we deduce that

U(t) 6 e(β−µ)tU(0), ∀t ∈ [0, TBU),

and since J > 0 we deduce that

A(t) 6 e(β−µ)tU(0),∀t ∈ [0, TBU),

and by using Theorem 3.6 in the previous chapter, the maximal time of exis-
tence TBU is equal to +∞. Therefore the well-posedness and the global exis-
tence of solutions of system (4.1) is guaranteed on M := (Lipα × [0,+∞)) ∩
(C+ × [0,+∞)).

The result on boundedness of solutions for this case is as follows.

Theorem 4.3. Let Assumption 4.1 be satisfied. Assume that τ0 > 0. Then
for each ϕ > 0 with ϕ ∈ Lipα, the corresponding solution of system (4.1) is
bounded.

Remark 4.4. One may observe that the boundedness of solutions might not
be true when τ0 = 0. Indeed, by the second equation of (4.1),

τ0 = 0⇒ τ(t) = 0,∀t > 0,

and in this special case the first equation of (4.1) becomes linear:

A′(t) = (β − µA)A(t),∀t > 0. (4.4)

The solution of (4.4) exists but when β−µA > 0, every strictly positive solution
is unbounded.
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4. Boundedness and dissipativity

In Chapter 2, we also constructed a mathematical model for a forest com-
posed of two species of trees. And by comparing it with the forest model
SORTIE, we find that it is capable of describing the dynamics of the two-
species forest. Inspired by this, we now take a step forward and consider the
following n-species model

A′i(t) = −µAiAi(t) + βie
−µJiτi(t)

fi(Zi(t))

fi(Zi(t− τi(t)))
Ai(t− τi(t)),∀t > 0,∫ t

t−τi(t)
fi(Zi(σ))dσ =

∫ 0

−τi0
fi(Ziϕ(σ))dσ, ∀t > 0,

(4.5)
with the initial conditions

Ai(t) = ϕi(t) ∈ Lipα, ϕi(t) > 0,∀t 6 0 and τi(0) = τi0 > 0,

where

Zi(t) =
n∑
j=1

ζijAj(t), Ziϕ(t) :=
n∑
j=1

ζijϕj(t)

with ζij > 0, i = 1, . . . , n. We will use the following assumptions.

Assumption 4.5. We assume that ∀i = 1, . . . , n,

(i) The coefficients µAi > 0, µJi > 0, βi > 0 and ζii > 0;

(ii) The function fi satisfies Assumption 4.1-(ii) and

sup
x>0

fi(x)

fi(cx)
< +∞,∀c > 1. (4.6)

By using the same kind of notion of solutions as in the single species case
(Definition 4.2) and by using the result in Chapter 3, the well-posedness of
(4.5) and the global existence of positive solutions follow.

In this chapter, we will prove the following result for the n-species model
(4.5).

Theorem 4.6. Let Assumption 4.5 be satisfied. Then for each nonnegative
initial values ϕi > 0 with ϕi ∈ Lipα and each τi0 > 0, the corresponding
solution of equation (4.5) is bounded.

Remark 4.7. The proof of Theorem 4.3 (single species case) uses a similar
argument as the proof of Theorem 4.6 (n-species case), which will be presented
in section 3. But for the single species case, the condition (4.6) in Assumption
4.5 is no longer needed.
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4.2. Properties of the integral equation for τ(t)

Remark 4.8. For the n-species case we can no longer use the change of vari-
able employed by Smith in [193, 194] since the delays τi(t) are different in
general. Nevertheless, in the following we show that the arguments employed
to prove the boundedness of solutions and the dissipativity in [193, 194] can be
adapted to the n-species case. The notion of dissipativity will be described in
details in Theorem 4.16 and Theorem 4.21.

Remark 4.9. It is necessary to assume that τi0 > 0 because we possibly have

ζij = 0,∀i 6= j.

Hence it is necessary to assume that in the case of species without coupling,
the solution is bounded.

State-dependent delay differential equations have been used by several
authors to describe the stage-structured population dynamics. We refer to
[6, 7, 13, 80, 85, 104] for more results on this topic. We also refer to Walther
[221] for a very general analysis of the semiflow generated by state-dependent
delay differential equations.

This chapter is organized as follows. In section 2 we will present some
results about the delay τ(t). Section 3 is devoted to the single species model
(4.1). The goal is to clarify the arguments of proof that we will extend later
in sections 4 and 5 to the n-species case. Section 4 is devoted to the proof the
boundedness of solutions for the n-species model (4.5). In section 5, we prove
a dissipativity result for such a system.

4.2 Properties of the integral equation for τ (t)

For simplicity, we focus on the single species model (4.1) in this section. The
same result can be similarly deduced for the n-species model (4.5). We have
the following lemma of the equivalence of the integral equation for τ(t) and an
ordinary differential equation.

Lemma 4.10. Let A : (−∞, r)→ R be a given continuous function with r > 0
and ϕ(t) = A(t), ∀t 6 0. Then there exists a uniquely determined function
τ : [0, r)→ [0,+∞) satisfying∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ,∀t ∈ [0, r). (4.7)

Moreover this uniquely determined function t 7→ τ(t) is continuously differen-
tiable and satisfies the ordinary differential equation

τ ′(t) = 1− f(A(t))

f(A(t− τ(t)))
,∀t ∈ [0, r), and τ(0) = τ0. (4.8)

Conversely if t 7→ τ(t) is a C1 function satisfying the above ordinary differential
equation (4.8), then it also satisfies the above integral equation (4.7).
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Remark 4.11. By using equation (4.8), it is easy to check that

τ0 > 0⇒ τ(t) > 0,∀t ∈ [0, r)

and
τ0 = 0⇒ τ(t) = 0,∀t ∈ [0, r).

Proof. Assume τ0 > 0 (since by Remark 4.11 τ(t) exists for all t ∈ [0, r) when
τ0 = 0). Let t ∈ [0, r]. Since by Assumption 4.1, f is strictly positive, then by

considering the function τ 7→
∫ t

t−τ
f(A(σ))dσ, and observing that∫ t

t−0

f(A(σ))dσ = 0 <

∫ 0

−τ0
f(ϕ(σ))dσ

and ∫ t

t−(t+τ0)

f(A(σ))dσ >

∫ 0

−τ0
f(ϕ(σ))dσ,

it follows by the intermediate value theorem that there exists a unique τ(t) ∈
[0, t+ τ0].

By applying the implicit function theorem to the map

ψ : (t, γ) 7→
∫ t

γ

f(A(σ))dσ −
∫ 0

−τ0
f(ϕ(σ))dσ

(which is possible since
∂ψ

∂γ
= −f(A(γ)) and by Assumption 4.1, f is strictly

positive), we deduce that t 7→ t − τ(t) is continuously differentiable, and by
computing the derivative with respect to t on both sides of (4.7), we deduce
that τ(t) is a solution of (4.8).

Conversely, assume that τ(t) is a solution of (4.8). Then

f(A(t)) = (1− τ ′(t))f(A(t− τ(t))),∀t ∈ [0, r).

Integrating both sides with respect to t, we have∫ t

0

f(A(σ))dσ =

∫ t

0

f(A(σ − τ(σ))) (1− τ ′(σ)) dσ.

Make the change of variable l = σ − τ(σ), we have ∀t ∈ [0, r),∫ t

0

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl

⇔
∫ t

t−τ(t)

f(A(σ))dσ +

∫ t−τ(t)

0

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl

⇔
∫ t

t−τ(t)

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl −

∫ t−τ(t)

0

f(A(σ))dσ,

this implies that τ(t) also satisfies the equation (4.7).

State-dependent delay and forest population dynamics 77



4.3. Boundedness and dissipativity in the single species case

The delay τ(t) can be regarded as a functional of At ∈ Lipα. Indeed, given
a constant C > 0, we can define the map τ̂ : D(τ̂) ⊂ C(−∞, 0] × [0,+∞) →
[0,+∞) as the solution of the integral equation∫ 0

−τ̂(φ,C)

f(φ(σ))dσ = C (4.9)

and the map τ̂ is defined on the domain

D(τ̂) =

{
(φ,C) ∈ C((−∞, 0])× [0,+∞) : C <

∫ 0

−∞
f(φ(σ))dσ

}
,

where the last integral is defined as the limit lim
x→−∞

∫ 0

x

f(φ(σ))dσ (which always

exists since f > 0).

Lemma 4.12. Set C0 :=

∫ 0

−τ0
f(ϕ(σ))dσ, then we have the following relation

τ̂(At, C0) = τ(t),∀t ∈ (0, r),

where τ(t) is the solution of (4.7).

Proof. It is sufficient to observe that ∀t ∈ (0, r),∫ 0

−τ̂(At,C0)

f(At(σ))dσ =

∫ t

t−τ̂(At,C0)

f(A(σ))dσ = C0.

4.3 Boundedness and dissipativity in the single
species case

Without loss of generality we assume in this section that∫ 0

−τ0
f(ϕ(σ))dσ = 1.

The following property is fundamental in this problem (see Lemma 3.9 step 2
for a proof).

Lemma 4.13. Let Assumption 4.1 be satisfied. Then the function t− τ(t) is
strictly increasing with respect to t where τ(t) is the solution of (4.1).

The first step to prove the boundedness is to prove that the map t 7→ t−τ(t)
crosses 0.
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4. Boundedness and dissipativity

Lemma 4.14. Let Assumption 4.1 be satisfied. Then there exists t∗ > 0 such
that t∗ − τ(t∗) = 0. Moreover, if A(t) is a solution of system (4.1), ∀t > 0,
then A(t) is bounded on [0, t∗].

Proof. Rewrite the first equation of (4.1) as follows:

A′(t) = f(A(t))[−µAB(A(t)) + βe−µJτ(t)B(A(t− τ(t)))], ∀t > 0,

where
B(x) =

x

f(x)

is an increasing function and B(x)↗ +∞ as x→ +∞, since we have

B(x) >
x

f(0)
when x > 0.

We define t̂ as

t̂ := sup{t > 0 : l − τ(l) 6 0, ∀l ∈ [0, t]}.

This is well defined because the set on the right side contains at least one
element 0. By Lemma 4.13, we know that the function t − τ(t) is strictly
increasing, then we can assume by contradiction that t̂ = +∞, which means
that

t− τ(t) < 0, ∀t > 0,

or more precisely,
t− τ(t) ∈ [−τ0, 0), ∀t > 0.

Then the equation at the beginning of this proof can be written as

A′(t) = f(A(t))[−µAB(A(t)) + βe−µJτ(t)B(ϕ(t− τ(t)))], ∀t > 0, (4.10)

We define

Γ := βB

(
sup

t∈[−τ0,0]

ϕ(t)

)
> 0,

Then A(t) 6 Â(t), ∀t > 0, where Â(t) is the solution of{
Â′(t) = −µAÂ(t) + Γf(Â(t)),

Â(0) = ϕ(0) > 0.
(4.11)

Define gΓ(Â(t)) := −µAÂ(t)+Γf(Â(t)),∀t > 0. Apparently gΓ(Â) is monotone
decreasing with respect to Â and we have

gΓ(0) = Γf(0) > 0, lim
Â→+∞

gΓ(Â) = −∞.
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Fixing Â∗ ∈ [ϕ(0),+∞) such that gΓ(Â∗) 6 0, we have

A(t) 6 Â(t) 6 Â∗,∀t > 0.

Now

1 =

∫ t

t−τ(t)

f(A(σ))dσ >
∫ t

0

f(A(σ))dσ >
∫ t

0

f(Â∗)dσ = tf(Â∗)

which is not possible for all t > 0 (since f(Â∗) > 0). By using the same
comparison principle argument on [0, t∗] we get the boundedness of A(t) on
[0, t∗] (bounded above by Â∗).

Proof of Theorem 4.3. We have that ∀t > 0,

A′(t) = −µAA(t) + βe−µJτ(t)f(A(t))B(A(t− τ(t))) > −µAA(t),

where B is defined in the same way as in the proof of Lemma 4.14 and that
the solution of

z′(t) = −µAz(t), z(0) = m. (4.12)

is
z(t) = z(t;m) = me−µAt, t > 0.

Step 1: For each m > 0, we define τm > 0 as the unique solution of the integral
equation ∫ τm

0

f(z(σ))dσ = 1,

which is equivalent to the integral equation∫ τm

0

f(me−µAσ)dσ = 1.

The existence of τm and the fact that τm → +∞ as m → +∞ can be proved
in a similar way as in section 4 (see case 2 in the proof of Lemma 4.19 for a
detailed proof).
Step 2: Let m > 0 large enough such that

βe−µJτm < µA. (4.13)

Step 3: Due to the fact that the function B is increasing and unbounded and
B(0) = 0, we can find N > 0, such that

B(x) >
µA
β

B(N)⇒ x > m.

Step 4: By Lemma 4.14, we can find K > N , such that

A(t) 6 K, ∀t ∈ [0, t∗].
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Step 5: Next we will show that ∀t > t∗, A(t) 6 K. Define

tK := sup{t > 0 : A(l) 6 K, ∀l ∈ [0, t]},

and assume by contradiction that tK is finite. Then tK > t∗ and tK satisfies
the following properties

A(t) 6 K, ∀t ∈ [0, tK);A(tK) = K,A′(tK) > 0. (4.14)

Now by using (4.10) and the fact that A′(tK) > 0, we obtain

βB(A(tK − τ(tK))) > βe−µJτ(tK)B(A(tK − τ(tK)))

> µAB(A(tK)) = µAB(K) > µAB(N),

and by using step 3 we deduce that

A(tK − τ(tK)) > m.

By using a comparison principle on

A′(t) > −µAA(t), ∀t > tK − τ(tK), A(tK − τ(tK)) > m

and the equation (4.12), we have

A(t) > z(t− tK + τ(tK)),∀t > tK − τ(tK).

Now since x 7→ f(x) is decreasing we deduce that

1 =

∫ tK

tK−τ(tK)

f(A(σ))dσ 6
∫ tK

tK−τ(tK)

f(z(σ−tK+τ(tK)))dσ =

∫ τ(tK)

0

f(z(σ))dσ.

By the definition of τm, we must have

τ(tK) > τm. (4.15)

By using (4.13)-(4.15), we obtain

0 6 A′(tK) = f(A(tK))
[
−µAB(A(tK)) + βe−µJτ(tK)B(A(tK − τ(tK)))

]
= f(K)

[
−µAB(K) + βe−µJτ(tK)B(A(tK − τ(tK)))

]
6 f(K)

[
−µAB(K) + βe−µJτmB(A(tK − τ(tK)))

]
6 f(K)

(
−µAB(K) + βe−µJτmB(K)

)
= K

(
−µA + βe−µJτm

)
< 0. (4.16)

This contradiction shows that tK cannot be finite. By using the definition of
tK we deduce that A(t) 6 K, ∀t > t∗.
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In the rest of this section we study the dissipativity of the system, namely
we look for an asymptotic uniform bound for solutions starting in some bounded
sets. In order to study this property we need the following lemma.

Lemma 4.15. Let Assumptions 4.1 be satisfied. Suppose that (A(t), τ(t)) is
the solution of system (4.1), then

lim
t→+∞

[t− τ(t)] = +∞.

Proof. If τ0 = 0, then τ(t) = 0,∀t > 0 and there is nothing to prove. If
τ0 > 0, then by Theorem 4.3 we know that t 7→ A(t) is bounded from above
by a certain constant K > 0. Since τ(t) is the unique solution of the integral
equation ∫ 0

−τ(t)

f(A(t+ σ))dσ = δ, ∀t > 0

where

δ :=

∫ 0

−τ0
f(ϕ(σ))dσ > 0,

by using the fact that x 7→ f(x) is decreasing we deduce that τ(t)f(K) 6
δ,∀t > 0, and it follows that t 7→ τ(t) is bounded by f(K)−1δ. This completes
the proof.

Theorem 4.16 (Dissipativity). Let α > 0 and τ0 > 0. Let Assumption 4.1
be satisfied. Let B ⊂ Lipα be a bounded subset and [τmin, τmax] ⊂ (0,+∞) be a
fixed interval. Denote

δmin := inf
(ϕ,τ0)∈B×[τmin,τmax]

∫ 0

−τ0
f(ϕ(σ))dσ > 0.

Then for each initial condition (ϕ, τ0) ∈ B× [τmin, τmax], there exists a constant
M∗ = M∗(δmin) > 0 (independent of the initial condition) such that

lim sup
t→+∞

A(t) 6M∗.

Proof. Similarly as in step 1 of the proof of Theorem 4.3, we consider τm the
unique solution of the integral equation∫ τm

0

f(me−µAσ)dσ = δmin.

Then we can find M∗ > 0 (large enough) such that for each M >M∗, the two
following inequalities

− µA + βe−µJτm < 0 with m :=
µAM

β
(4.17)
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and
− µA + βe−µJ

δmin
f(M) < 0 (4.18)

are satisfied.
Now suppose that we can find t 7→ (A(t), τ(t)) the solution of system (4.1)

with the initial condition (ϕ, τ0) ∈ B × [τmin, τmax] satisfying

M := lim sup
t→+∞

A(t) >M∗.

Then we have the following alternative:
Case 1: There exists a sequence {tn}n∈N which satisfies lim

n→+∞
tn = +∞ and

for any tn,
A′(tn) = 0,

and
A(tn)→M as n→ +∞.

Then we have

0 = A′(tn) = −µAA(tn) + βe−µJτ(tn) f(A(tn))

f(A(tn − τ(tn)))
A(tn − τ(tn)).

By taking the supremum limit on both sides when n → +∞ and notice that
e−µJτ(tn) 6 1, we have

0 6 −µAM + βf(M) lim sup
n→+∞

A(tn − τ(tn))

f(A(tn − τ(tn)))
,

and since the map x 7→ 1

f(x)
is increasing, we deduce that

0 6 −µAM + β
f(M)

f(M)
lim sup
n→+∞

A(tn − τ(tn)).

Hence
lim sup
n→+∞

A(tn − τ(tn)) >
µAM

β
= m. (4.19)

Now we replace in (4.12) z(t) and m by zn(t) and mn where mn → m as
n→ +∞, then we can repeat the steps of the proof of Theorem 4.3 and notice
that

δmin 6
∫ tn

tn−τ(tn)

f(A(σ))dσ 6
∫ tn

tn−τ(tn)

f(z(σ−tn+τ(tn)))dσ =

∫ τ(tn)

0

f(z(σ))dσ,

we get τ(tn) > τm. Thus we can repeat the procedure in (4.16) and get a
contradiction

0 = lim
n→+∞

A′(tn) 6M
(
−µA + βe−µJτm

)
< 0.
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Case 2: The solution A(t) is eventually monotone. So we can assume that
there exists a time t̄ > 0 such that

A′(t) > 0,∀t > t̄

(the case A′(t) 6 0, ∀t > t̄ being similar). Since A(t) is eventually increasing,
we deduce that

lim
t→+∞

At = M in Cα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) is bounded

}
where Cα is the Banach space endowed with the norm ‖φ‖Cα := ‖e−α|.|φ(.)‖∞.

As A(t) is bounded, {A′t}t>0 is relatively compact in Lipα (since α > 0,
A(t) satisfies system (4.1) and by applying the Arzelà-Ascoli theorem locally
on the bounded interval [−θ∗, 0] for each θ∗ > 0 and by using the step method
to extend to (−∞, 0]), we get

lim
t→+∞

A′t = 0 in L∞α :=
{
φ : e−α|.|φ(.) ∈ L∞(−∞, 0]

}
where L∞α is the Banach space endowed with the norm ‖φ‖L∞α := ‖e−α|.|φ(.)‖L∞ .

Moreover, we have

δmin 6
∫ t

t−τ(t)

f(A(σ))dσ =: δ,

and by taking the limit when t→ +∞ (and since by Lemma 4.15 t− τ(t)→
+∞) we obtain

lim
t→+∞

τ(t) =
δ

f(M)
>

δmin

f(M)
.

By taking the limit when t → +∞ in the first equation of system (4.1) we
obtain the following contradiction

0 = lim
t→+∞

A′t 6 −µAM + βe−µJ
δmin
f(M)

f(M)

f(M)
M < 0.

Both cases lead to a contradiction, which implies that

lim sup
t→+∞

A(t) 6M∗.

4.4 Boundedness of solutions in n-species case
In this section we will investigate the boundedness of a trajectory of system
(4.5) with the initial conditions satisfying∫ 0

−τi0
fi(Ziϕ(σ))dσ > 0,∀i = 1, ..., n.
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Multiplying each of the above integrals by a positive constant, in this section
we can assume without loss of generality that

Assumption 4.17. ∫ 0

−τi0
fi(Ziϕ(σ))dσ = 1,∀i = 1, ..., n.

We also have the following lemma from Lemma 3.9 step 2.

Lemma 4.18. Let Assumptions 4.5 be satisfied. Then the functions t − τi(t)
are strictly increasing with respect to t, ∀i = 1, . . . , n.

Next we will prove the following result.

Lemma 4.19. Let Assumptions 4.5 and 4.17 be satisfied. Then for each i =
1, . . . , n there exists t∗i > 0 such that t∗i − τi(t∗i ) = 0.

Proof. For each i = 1, . . . , n we define

t∗i := sup{t > 0 : s− τi(s) 6 0,∀s ∈ [0, t]}.

Case 1: We assume that all the elements of {t∗i }ni=1 are infinite, and we will
prove that this is not possible. By the above definition of t∗i , we have ∀t > 0,
t− τi(t) 6 0, or precisely,

t− τi(t) ∈ [−τi0, 0].

Then the equation for Ai(t) becomes

A′i(t) = −µAiAi(t) + βie
−µJiτi(t)

fi(Zi(t))

fi(Ziϕ(t− τi(t)))
ϕi(t− τi(t)),∀t > 0.

We set
Γi := βi sup

t∈[−τi0,0]

ϕi(t)

fi(Ziϕ(t))
> 0.

Since fi(Zi(t)) 6 fi(ζiiAi(t)),∀t > 0, then we have Ai(t) 6 Âi(t), ∀t > 0,
where Âi(t) is the solution of{

Â′i(t) = −µAiÂi(t) + Γifi(ζiiÂi(t)), ∀t > 0,

Âi(0) = ϕi(0) > 0.

Define gΓi(Âi(t)) := −µAiÂi(t) + Γifi(ζiiÂi(t)),∀t > 0, i = 1, . . . , n. As gΓi(Âi)
is decreasing with Âi and we have

gΓi(0) = Γifi(0) > 0, lim
Âi→+∞

gΓi(Âi) = −∞,
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so fixing Â∗i ∈ [ϕi(0),+∞) such that gΓi(Â
∗
i ) 6 0, we have

Ai(t) 6 Âi(t) 6 Â∗i , ∀t > 0.

Now since by assumption t− τi(t) 6 0, ∀t > 0, we obtain for each t > 0

1 =

∫ t

t−τi(t)
fi(Zi(σ))dσ >

∫ t

0

fi(Zi(σ))dσ > tfi

(
n∑
j=1

ζijÂ
∗
j

)
(4.20)

which is impossible.
Case 2: We assume that exactly j elements of {t∗i }ni=1 are finite, where 1 6 j <
n, and we will prove that this is not possible, either. Without loss of generality
we might assume that t∗1, . . . , t∗j are finite and t∗j+1, . . . , t

∗
n are infinite. Firstly

we prove that A1(t), . . . , An(t) are bounded on [0,+∞).
Following a similar argument as in case 1, for each i = j + 1, . . . , n, as t∗i is

infinite, we can find Â∗i ∈ [ϕi(0),+∞) such that

Ai(t) 6 Â∗i ,∀t > 0.

For each k = 1, . . . , j, consider

zk(t) = zk(t;mk) = mke
−µAk t, t > 0

where mk > 0 will be fixed later on and as before zk(t) is a solution of the
following ordinary differential equation

z′k(t) = −µAkzk(t), zk(0) = mk. (4.21)

We define τk,mk > 0 as the unique solution of the integral equation∫ τk,mk

0

fk(ζkkzk(σ))dσ = 1. (4.22)

By Assumption 4.5-(i), we have ζkk > 0 and∫ τ

0

fk(ζkkzk(σ))dσ >
∫ τ

0

fk(ζkkmk)dσ = τfk(ζkkmk) > 0 when τ > 0,

therefore τk,mk > 0 exists and is finite. Next we observe that we have

τk,mk → +∞ as mk → +∞. (4.23)

Indeed, assume by contradiction that there exists a subsequence {mk,l}l>0 →
+∞ and a sequence {τk,mk,l}l>0 bounded by τ ∗ > 0. Then we have

1 =

∫ τk,mk,l

0

fk(ζkkzk(σ))dσ 6
∫ τ∗

0

fk(ζkkzk(σ))dσ → 0 as l→ +∞
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which is impossible.
By Assumption 4.5-(ii), for each c > 1,

Mfk(c) := sup
x>0

fk(x)

fk(cx)
< +∞.

By using (4.23) we can fix mk (large enough) such that

− µAk + βke
−µJkτk,mkMfk

(
ζk1 + · · ·+ ζkn

ζkk

)
< 0. (4.24)

For a constant K > 0, define

tK := sup{t > 0 : max{A1(s), . . . , Aj(s)} 6 K, ∀s ∈ [0, t]}.

Let us now prove that A1(t), . . . , Aj(t) are bounded on [0,+∞). Assume by
contradiction that tK is finite for each K > 0 large enough. Then at least one
of Ak(t), k = 1, . . . , j reaches K at tK . Assume that Ai(K)(tK) = K. Firstly
we prove that

tK − τi(K)(tK) > 0 (4.25)

for each K > 0 large enough. Otherwise ∃K large enough such that tK −
τi(K)(tK) < 0. Assume without loss of generality that i(K) = 1. We know that
tK must be smaller than t∗1, then we can use the same comparison principle
arguments as in case 1 on the interval of time [0, t∗1], and we can find Â∗1 > 0
(independent of K) such that

K = A1(tK) 6 Â∗1,

which becomes impossible whenever K becomes large enough. We deduce that
(4.25) holds true.

Now we will prove Ai(K)(tK − τi(K)(tK)) → +∞ when K → +∞. By
assumption tK is finite, and by definition of tK we have

Ai(K)(t) 6 K, ∀t ∈ [0, tK ]

and we must have
A′i(K)(tK) > 0.

Then

0 6 A′i(K)(tK) = −µAi(K)
Ai(K)(tK)

+β1e
−µJi(K)

τi(K)(tK) fi(K)(Zi(K)(tK))

fi(K)(Zi(K)(tK − τi(K)(tK)))
Ai(K)(tK − τi(K)(tK))

6 −µAi(K)
K + βi(K)

fi(K)(ζi(K),i(K)K)

fi(K)((ζi(K),1 + · · ·+ ζi(K),n)K̂)
Ai(K)(tK − τi(K)(tK)),
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where

K̂ := max

{
K, Â∗j+1, . . . , Â

∗
n, max
t∈[−τ10,0]

ϕ1(t), . . . , max
t∈[−τn0,0]

ϕn(t)

}
.

Notice that
(ζi(K),1 + · · ·+ ζi(K),n)K̂

ζi(K),i(K)K
> 1, we have

Ai(K)(tK − τi(K)(tK)) >
µAi(K)

K

βi(K)

·
fi(K)((ζi(K),1 + · · ·+ ζi(K),n)K̂)

fi(K)(ζi(K),i(K)K)

>
µAi(K)

K

βi(K)

· 1

Mfi(K)

(
(ζi(K),1+···+ζi(K),n)K̂

ζi(K),i(K)K

) .
Now since for all K > 0 large enough K̂ = K, we deduce that

Ai(K)(tK − τi(K)(tK))→ +∞ as K → +∞.

By using (4.25), we can fix K large enough such that

Ai(K)(tK − τi(K)(tK)) > mi(K) and tK − τi(K)(tK) > 0.

By using the comparison principle on equation (4.21) and

A′i(K)(t) > −µAi(K)
Ai(K)(t),∀t > tK − τi(K)(tK)

with
Ai(K)(tK − τi(K)(tK)) > mi(K),

we have

Ai(K)(t) > zi(K)(t− tK + τi(K)(tK)),∀t > tK − τi(K)(tK).

An integration shows that

1 =

∫ tK

tK−τi(K)(tK)

fi(K)(Zi(K)(σ))dσ 6
∫ tK

tK−τi(K)(tK)

fi(K)(ζi(K),i(K)Ai(K)(σ))dσ

6
∫ tK

tK−τi(K)(tK)

fi(K)(ζi(K),i(K)zi(K)(σ − tK + τi(K)(tK)))dσ

=

∫ τi(K)(tK)

0

fi(K)(ζi(K),i(K)zi(K)(σ))dσ.

By the definition of τi(K),mi(K)
> 0 (defined as the solution of (4.22)), we have

τi(K)(tK) > τi(K),mi(K)
.
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Now by using (4.24), we have

0 6 A′i(K)(tK) = −µAi(K)
Ai(K)(tK)

+βi(K)e
−µJi(K)

τi(K)(tK) fi(K)(Zi(K)(tK))

fi(K)(Zi(K)(tK − τi(K)(tK)))
Ai(K)(tK − τi(K)(tK))

= fi(K)(Zi(K)(tK))

[
−µAi(K)

Ai(K)(tK)

fi(K)(Zi(K)(tK))

+βi(K)e
−µJi(K)

τi(K)(tK) Ai(K)(tK − τi(K)(tK))

fi(K)(Zi(K)(tK − τi(K)(tK)))

]
6 fi(K)(Zi(K)(tK))

[
−µAi(K)

K

fi(K)(ζi(K),i(K)K)

+βi(K)e
−µJi(K)

τi(K),mi(K)
K

fi(K)((ζi(K),1 + · · ·+ ζi(K),n)K)

]
=

fi(K)(Zi(K)(tK))K

fi(K)(ζi(K),i(K)K)

[
−µAi(K)

+βi(K)e
−µJi(K)

τi(K),mi(K)
fi(K)(ζi(K),i(K)K)

f1((ζi(K),1 + · · ·+ ζi(K),n)K)

]
6

fi(K)(Zi(K)(tK))K

fi(K)(ζi(K),i(K)K)

[
−µAi(K)

+βi(K)e
−µJi(K)

τi(K),mi(K)Mfi(K)

(
ζi(K),1 + · · ·+ ζi(K),n

ζi(K),i(K)

)]
< 0, (4.26)

which leads to a contradiction. Thus for K > 0 large enough tK is infinite,
namely

Ak(t) 6 K, ∀t > 0,∀k = 1, . . . , j.

Observe that by assumption t∗j+1, . . . , t
∗
n are infinite, which means that t −

τi(t) 6 0,∀t > 0,∀i = j + 1, . . . , n, therefore we deduce that for all t > 0,

1 =

∫ t

t−τi(t)
fi(Zi(σ))dσ >

∫ t

0

fi(Zi(σ))dσ

>
∫ t

0

fi((ζi1 + · · ·+ ζij)K + ζi,j+1Â
∗
j+1 + · · ·+ ζinÂ

∗
n)dσ

= tfi((ζi1 + · · ·+ ζij)K + ζi,j+1Â
∗
j+1 + · · ·+ ζinÂ

∗
n)

which is impossible when t is large enough. The proof is completed.

Proof of Theorem 4.6. For each i = 1, . . . , n, we define τi,mi satisfying∫ τi,mi

0

fi(ζiizi(σ))dσ = 1,
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where zi(t) = mie
−µAi t, t > 0. Like the (4.24) in case 2 of Lemma 4.19, we can

similarly fix mi large enough such that

βie
−µJiτi,miMfi

(
ζi1 + · · ·+ ζin

ζii

)
< µAi .

For a constant K > 0, we define

tK := sup{t > 0 : max{A1(s), . . . , An(s)} 6 K, ∀s ∈ [0, t]}.

Then similar to the procedure of case 2 in the proof of Lemma 4.19, we can get
a K large enough and we can deduce that tK = +∞. Thus Ai(t) is bounded
for all t > 0.

4.5 Dissipativity result in n-species case
In this section we will investigate the dissipativity of system (4.5). First, we
have the following lemma similar to Lemma 4.15.

Lemma 4.20. Let Assumptions 4.5 be satisfied. Suppose that (Ai(t), τi(t)) is
the solution of system (4.5), then

lim
t→+∞

[t− τi(t)] = +∞.

Proof. If τi0 = 0, then again there is nothing to prove. When τi0 > 0, by
Theorem 4.6 we know that t 7→ Ai(t) is bounded from above by a certain
constant K > 0. Since τi(t) is the unique solution of the integral equation∫ t

t−τi(t)
fi(Zi(σ))dσ = δ̂, ∀t > 0

where δ̂ :=

∫ 0

−τi0
fi(Ziϕ(σ))dσ > 0, then similar as the proof of Lemma 4.15, we

deduce that t 7→ τi(t) is bounded by fi((ζi1 + . . .+ ζin)K)−1δ̂. This completes
the proof.

Theorem 4.21 (Dissipativity). Let Assumption 4.5 be satisfied. Let Bi ⊂
Lipα be a bounded subset and [τi,min, τi,max] ⊂ (0,+∞) be a fixed interval, i =
1, . . . , n. Let

B :=
n∏
i=1

Bi and Iτ :=
n∏
i=1

[τi,min, τi,max].

Denote

δ̂min := inf
i

inf
(ϕi,τi0)∈Bi×[τi,min,τi,max]

∫ 0

−τi0
fi(Ziϕ(σ))dσ.
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Then for each initial condition (ϕ, τ0) ∈ B × Iτ where ϕ := (ϕ1, . . . , ϕn) and
τ0 = (τ10, . . . , τn0), there exists a constant M∗ = M∗(δ̂min) > 0 (independent
of the initial condition) such that

lim sup
t→+∞

max
i=1,...,n

{Ai(t)} 6M∗.

Proof. Similarly as in case 2 of the proof of Lemma 4.19, for each i we consider
τi,mi the unique solution of the integral equation∫ τi,mi

0

fi(ζiizi(σ))dσ = δ̂min.

Then we can find M∗ > 0 (large enough) such that for each M >M∗, the two
following inequalities

− µAi + βie
−µJiτi,miMfi

(
ζi1 + · · ·+ ζin

ζii

)
< 0 (4.27)

with mi :=
µAiM

βi
· 1

Mfi

(
ζi1+···+ζin

ζii

) and

− µAi + βie
−µJi

δ̂min
fi(ζiiM)Mfi

(
ζi1 + · · ·+ ζin

ζii

)
< 0 (4.28)

are satisfied for any i = 1, . . . , n.
Now suppose that we can find t 7→ (A(t), τ(t)) the solution of system (4.5)

with the initial condition (ϕ, τ0) ∈ B × Iτ satisfying

M := lim sup
t→+∞

max
i=1,...,n

{Ai(t)} >M∗.

Without loss of generality we might assume that M = lim sup
t→+∞

A1(t). Then we

have the following alternative:
Case 1: There exists a sequence {tn}n∈N which satisfies lim

n→+∞
tn = +∞ and

for any tn,
A′1(tn) = 0,

and
A1(tn)→M as n→ +∞.

Then we have

0 = A′1(tn) = −µA1A1(tn) + β1e
−µJ1τ1(tn) f1(Z1(tn))

f1(Z1(tn − τ1(tn)))
A1(tn − τ1(tn)).
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By taking the supremum limit on both sides when n → +∞ and notice that
e−µJ1τ1(tn) 6 1, we have

0 6 −µA1M + β1f1(ζ11M) lim sup
n→+∞

A1(tn − τ1(tn))

f1(Z1(tn − τ1(tn)))
,

and since the map x 7→ 1

f(x)
is increasing, we deduce that

0 6 −µA1M + β1
f1(ζ11M)

f1((ζ11 + . . .+ ζ1n)M)
lim sup
n→+∞

A1(tn − τ1(tn)).

Hence

lim sup
n→+∞

A1(tn − τ1(tn)) >
µA1M

β1

· 1

Mf1

(
ζ11+···+ζ1n

ζ11

) = m1. (4.29)

Now by using the similar idea in case 1 of the proof of Theorem 4.16 and by
using a similar method as in case 2 of the proof of Lemma 4.19 and by noticing
that

δ̂min 6
∫ tn

tn−τ1(tn)

f1(Z1(σ))dσ 6
∫ tn

tn−τ1(tn)

f1(ζ11A1(σ))dσ

6
∫ tn

tn−τ1(tn)

f1(ζ11z1(σ − tn + τ1(tn)))dσ =

∫ τ1(tn)

0

f1(ζ11z1(σ))dσ,

we get τ1(tn) > τ1,m1 . Thus we can repeat the procedure in (4.26) and get a
contradiction

0 = lim
n→+∞

A′1(tn) 6M

(
−µA1 + β1e

−µJ1τ1,m1Mf1

(
ζ11 + · · ·+ ζ1n

ζ11

))
< 0.

Case 2: The solution A1(t) is eventually monotone. So we can assume that
there exists a time t̄ > 0 such that

A′1(t) > 0,∀t > t̄

(the case A′1(t) 6 0,∀t > t̄ being similar). Since A1(t) is eventually increasing,
we deduce that

lim
t→+∞

A1,t = M in Cα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) is bounded

}
where Cα is the Banach space endowed with the norm ‖φ‖Cα := ‖e−α|.|φ(.)‖∞.

As A1(t) is bounded, {A′1,t}t>1 is relatively compact in Lipα (since α >
0, Ai(t), i = 1, . . . , n satisfy the system (4.5) and by applying Arzelà-Ascoli
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theorem locally on the bounded interval [−θ∗, 0] for each θ∗ > 0 and by using
the step method to extend to (−∞, 0]), we get

lim
t→+∞

A′1,t = 0 in L∞α :=
{
φ : e−α|.|φ(.) ∈ L∞(−∞, 0]

}
where L∞α is the Banach space endowed with the norm ‖φ‖L∞α := ‖e−α|.|φ(.)‖L∞ .

Moreover, we have

δ̂min 6
∫ t

t−τ1(t)

f1(Z1(σ))dσ =: δ1,

and by taking the limit when t→ +∞ (and since by Lemma 4.20 t− τ1(t)→
+∞) we obtain

lim
t→+∞

τ1(t) =
δ1

f((ζ11 + . . .+ ζ1n)M)
>

δ̂min

f(ζ11M)
.

By taking the limit when t → +∞ in the first equation of system (4.5) we
obtain the following contradiction

0 = lim
t→+∞

A′1,t 6 −µA1M + β1e
−µJ1

δ̂min
f1(ζ11M)

f1(ζ11M)

f1((ζ11 + · · ·+ ζ1n)M)
M < 0.

Both cases lead to a contradiction, which proves that

lim sup
t→+∞

max
i=1,...,n

{Ai(t)} 6M∗.
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Chapter 5

Numerical simulations of a forest
and parasite prey-predator model

5.1 Introduction

Pine wilt disease (PWD) is one of the most serious disease of pine species in all
over the world. The pine wood nematode (PWN) Bursaphelenchus xylophilus,
the pathogenic agent of PWD, is a native nematode species in north America.
This kind of parasite is transmitted from tree to tree by a species of insect
Monochamus. It was first introduced in Japan in the early 20th century and
spreaded into other Asian countries (China, Korea, etc.) in the 1980s. In 1999,
it was first detected in Portugal [155] and the only insect vector isMonochamus
galloprovincialis [198, 199]. Till 2008, with the detection of this PWN in other
areas of Portugal and even on the Island of Madeira, the entire territory of
Portugal was affected [182]. PWD also spreads into other European countries
due to the wood transportation. For more information about the spread of
PWD in Europe and in the world, we refer in addition to [156, 157, 206] and
the references therein.

In this paper we consider the population of nematode, which is a parasite
spreading into a wild pine tree forest. This means that we totally neglect the
way the nematode spreads in between the pine trees, namely the insect vector
Monochamus galloprovincialis. The life cycle of nematode is very short (around
4 days). In comparison, the pine tree’s life cycle is rather slow. Therefore it
makes sense to use instantenous production of new nematodes while pine trees
are degraded by nematodes and pine trees serve as a resource to produce
new nematodes. We refer to [115] for more information about the biology of
nematode.

There have been some attempts to build a model to describe the dynamics
in the pine-nematode community ([71] and the references therein). In this
paper, in order to describe the relationship between pine trees and nematodes,
we will use a predator-prey system which goes back to Lotka [129] and Volterra
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[211, 213] in the early 20th century. More generally speaking, the class of system
we have in mind is the so-called consumer-resource model which attracts a lot
of interests in ecology during the last four decades. We refer to [87, 88, 122,
134, 149, 184] and the references therein for a nice overview on this subject. Let
A(t) be the number of adult pine trees, and I(t) be the number of nematodes.
We consider a simplified model for the population dynamic of pine trees and
nematodes 

dA(t)

dt
= (β − µA)A(t)− γAI(t)A(t)

1 + κA(t)︸ ︷︷ ︸
pine tree destruction

,

dI(t)

dt
=

 εχγAA(t)

1 + κA(t)︸ ︷︷ ︸
production of new nematodes

− µI

 I(t),

(5.1)

where β > 0 is the birth rate of trees, µA > 0 is the natural mortality of adult
trees, γA > 0 is the number of adult trees consumed per nematode per unit
time, κ > 0 is interpreted as a constant handling time for each prey captured
[1, 49, 102], ε > 0 is the conversion efficiency from tree biomass to nematode
biomass, χ > 0 is the birth rate of nematodes, µI > 0 is the natural mortality
of nematodes.

One may observe that the special case κ = 0 of system (5.1) corresponds
to the classical Lotka-Volterra model, while the case κ > 0 corresponds to the
Holling’s type II functional response [89, 90]. In the article we will investigate
both cases for κ.

In order to incorporate the vital dynamic of the population of trees, we
need to add a limitation of the growth of trees due to the competition for light.
This can be achieved by using the so-called size-structured models. We refer
to [138, 193, 194, 227] for a nice survey on this topic. In [138] a comparison of
size-structured model with a forest computer simulator has been successfully
done, and the model considered takes the following form{

∂tu(t, s) + f(A(t))∂su(t, s) = −µ(s)u(t, s), for t > 0, s > s−,

f(A(t))u(t, s−) = βA(t), for t > 0
(5.2)

with the initial distribution of trees

u(0, .) = u0(.) ∈ L1
+(0,+∞),

where s− > 0 is the minimal size of juvenile trees and s 7→ u(t, s) is the
density of population of trees of size s at time t, which means that for each
s2 > s1 > s−, ∫ s2

s1

u(t, s)ds
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is the number of trees of size in between s1 and s2 at time t. Therefore the
total number of trees in the population is

U(t) =

∫ +∞

s−

u(t, s)ds.

We assume that the number of adult and juvenile trees are respectively given
by

A(t) :=

∫ +∞

s∗
u(t, s)ds and J(t) :=

∫ s∗

s−

u(t, s)ds

where s∗ > s− is the size of maturity for trees, namely the minimal size of
adult trees.

Moreover, to describe the fact that the more adult trees there are, the less
light is left to juvenile trees to grow, we assume that the growth speed depends
on the number of adults, namely

f(A(t)) :=
α

1 + δA(t)
,

where α > 0 and δ > 0 are parameters that will be determined later on.
The full model combining both the parasite destruction and the vital dy-

namic of the population of tree is the following
∂tu(t, s) + f(A(t))∂su(t, s) = −

[
µ(s) +

γ(s)I(t)

1 + κA(t)

]
u(t, s), for s > s−, t > 0,

f(A(t))u(t, s−) = βA(t), for t > 0,

dI(t)

dt
=

εχ

1 + κA(t)

∫ +∞

s−

γ(s)u(t, s)dsI(t)− µII(t), for t > 0,

(5.3)
with the initial distributions

u(0, .) = u0(.) ∈ L1
+(0,+∞); I(0) = I0 > 0.

In system (5.3) µ(s) > 0 is the mortality of trees of size s and γ(s) > 0 is the
number of trees of size s consumed per nematode per unit time. We assume
for simplicity that

µ(s) =

{
µA > 0, if s > s∗,
µJ > 0, if s < s∗,

γ(s) =

{
γA > 0, if s > s∗,
γJ > 0, if s < s∗.

As is described in Appendix D (see also in Chapter 2 and [193, 194]), we can
transform system (5.3) into the following state-dependent delay differential
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equations

dA(t)

dt
= f(A(t))

βA(t− τ(t))

f(A(t− τ(t)))
e−µJτ(t)−γJ

∫ t
t−τ(t)

I(l)
1+κA(l)

dl − µAA(t)− γAI(t)A(t)

1 + κA(t)
,∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−,

dI(t)

dt
=

[
εχ

1 + κA(t)
(γAA(t) + γJJ(t))− µI

]
I(t),

(5.4)
with the initial distributions

A(t) = A0(t) > 0,∀t ∈ (−∞, 0]; τ(0) = τ0 > 0; I(0) = I0 > 0.

In system (5.4), the function τ(t) describes the time needed by a tree to grow
to the maturity size s∗ at time t from the minimal size s−, namely τ(t) is the
time needed for a tree to become mature at time t. A detailed explanation
will also be found in Appendix D.

In the following we will assume for simplicity that γA > 0 and γJ = 0.
Therefore in this article we consider the following model

dA(t)

dt
= f(A(t))

βA(t− τ(t))

f(A(t− τ(t)))
e−µJτ(t) − µAA(t)− γAI(t)A(t)

1 + κA(t)
,∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−,

dI(t)

dt
=

(
εχγAA(t)

1 + κA(t)
− µI

)
I(t)

(5.5)

with the initial distributions

A(t) = A0(t) > 0, ∀t ∈ (−∞, 0]; τ(0) = τ0 > 0; I(0) = I0 > 0.

The first basic fact about system (5.5) is that when I0 = 0 then

I(t) = 0,∀t > 0.

Therefore I0 = 0 corresponds to the model without parasite, namely equation
(2.5).

One can also prove that (see in Chapter 3, Remark 3.10) when τ0 = 0 then

τ(t) = 0,∀t > 0.

This means that when τ0 = 0, the system (5.5) becomes (5.1).
The goal of this article is to investigate the influence of introducing nema-

tode into a pine tree forest population. This can be regarded as a predator-prey
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system where the prey has (possibly) a complex dynamics describing a state-
dependent delay differential equations. We will investigate some scenarios of
the tree population and add the parasite into such a population.

This chapter is organized as follows. In section 2 we compute the positive
interior equilibrium. In section 3, we will conduct the numerical simulations
of system (5.5). We will start by reviewing some "classical" results about the
predator-prey model in ODE case (5.1). Then we will conduct some simula-
tions of system (5.5) in several cases and scenarios (see Table 1). We conclude
the paper by discussing the numerical results to see what influence the matu-
ration delay and the introduction of nematodes bring to the solutions.

5.2 Positive interior equilibrium
The system (5.5) has a unique interior equilibrium

A :=
µI

εχγA − µIκ
, τ :=

s∗ − s−
f(A)

and I :=
(
βe−µJτ − µA

) 1 + κA

γA
.

Therefore system (1.5) will have a unique positive interior equilibrium if and
only if

εχγA − µIκ > 0 and βe−µJτ − µA > 0. (5.6)

In particular if we assume that τ = 0 (i.e. s∗ − s− = 0), we obtain a unique
positive interior equilibrium for system (5.1) if and only if

εχγA − µIκ > 0 and β − µA > 0. (5.7)

Remark 5.1. Even though we don’t know how to investigate analytically the
uniform persistence for system (5.5), we strongly suspect that the parasite will
persist if and only if the condition (5.6) is satisfied. Therefore one may compare
conditions (5.6) and (5.7) to see the effect of the vital dynamic of the tree
population on the persistence of parasite.

5.3 Numerical simulations
In this section we will conduct numerical simulations of system (5.5). Accord-
ing to the analysis in Chapter 2, we have two scenarios of population dynamics
of adult trees population A(t) without nematodes (namely when I0 = 0): a
steady solution (Scenario 1), a damped oscillating solution (Scenario 2). And
by changing one parameter µJ in Scenario 1, we will get a third scenario: a
periodic solution (Scenario 3). We list all the parameters used in the numerical
simulations for the three scenarios in Table 1 and calculate the positive interior
equilibrium in Table 2.
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Parameter Holling’s type I functional response Holling’s type II functional response
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

µJ 0.03 0.031 0.0036 0.03 0.031 0.03
µA 0.001 0.0037 0.001 0.001 0.0037 0.06
β 2 4 2 2 4 2
δ 0.1 0.1 0.1 0.1 0.1 0.1
α 0.1709 0.249 0.1709 0.1709 0.249 0.1709
τ0 121 127 121 121 127 121
s− 0 0 0 0 0 0
s∗ 0.5318 0.4164 0.5318 0.5318 0.4164 0.5318
γA 0.001 0.001 0.001 0.001 0.001 0.001
κ 0 0 0 0.0001 0.0001 0.0001
ε 1 1 1 0.68/1/10 0.68/1/10 0.68/1/10
χ 0.1 0.1 0.1 0.1 0.1 0.1
µI 0.05 0.05 0.05 0.05 0.05 0.05

Table 1: We show in this table the parameter values used in the numeri-
cal simulations of system (5.5). The first six parameter values come from
Chapter 2 Table 1-3. We set s− = 0 for simplicity and we use the formula∫ 0

−τ0 f(A(s))ds = s∗ − s− to calculate s∗. Notice also that with Holling’s type
II functional response, we will investigate three cases regarding different values
of the conversion efficiency ε = 0.68, ε = 1 and ε = 10 for each scenario. Sce-
nario 1-3 correspond to three different dynamics of adult tree population. This
will serve to investigate the effect of the introduction of nematodes depending
on the type of dynamics of adult tree population.

Equilibrium Holling’s type I functional response
Scenario 1 Scenario 2 Scenario 3

A 500 500 500
τ 158.6998 85.2867 158.6998
I 16.1142 280.6375 1128.56

Equilibrium Holling’s type II functional response, Scenario 1
ε = 0.68 ε = 1 ε = 10

A 793.6508 526.3158 50.2513
τ 250.0769 166.8887 18.7488
I 0.1118 13.0384 1144.3

Table 2: This table gives the values of positive interior equilibria of system
(5.5) with the parameter values given in Table 1 for Scenario 1-3 with Holling’s
type I functional response and for Scenario 1 with Holling’s type II functional
response.

5.3.1 Model without maturation period - case τ = 0

In this subsection we will review some results about the classical predator-prey
ODE system (5.1).
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Holling’s type I functional response - case κ = 0

Set κ = 0, then system (5.1) becomes the classical Lotka-Volterra model
dA(t)

dt
= (β − µA)A(t)− γAI(t)A(t),

dI(t)

dt
= (εχγAA(t)− µI)I(t).

(5.8)

We use the parameter values of Scenario 1 with Holling’s type I functional
response in Table 1 for the numerical simulations in Figure 5.1.

Figure 5.1: We plot the simulation of system (5.8) with parameters of Sce-
nario 1 with Holling’s type I functional response in Table 1: β = 2,
µA = 0.001, γA = 0.001, ε = 1, χ = 0.1, µI = 0.05. The initial
values (A0, I0) are (550, 2200)(yellow curve), (2000, 2500)(orange curve) and
(901.3603, 1000)(blue curve). Figure (a) and (b) show the adult tree population
number A(t) and the nematode population number I(t) respectively. Figure (c)
shows the trajectory on the phase plane. The positive interior equilibrium is
(500, 1999).

For the parameter values of the other two scenarios with Holling’s type
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I functional response, the behaviours are similar (periodic solutions) and we
omit those figures here.

Holling’s type II functional response - case κ > 0

We use the parameter values of Scenario 2 with Holling’s type II functional
response in Table 1 for the numerical simulations of system (5.1) and we get
the following trajectory spiraling around the positive interior equilibrium on
the phase plane.

Figure 5.2: We plot the simulation of system (5.1) with parameters of Scenario
2 with Holling’s type II functional response in Table 1: β = 4, µA = 0.0037,
γA = 0.001, ε = 1, χ = 0.1, µI = 0.05, κ = 0.0001. The initial values are
A0 = 526, I0 = 4206. Figure (a) and (b) show the adult tree population number
A(t) and the nematode population number I(t) respectively. Figure (c) shows
the trajectory on the phase plane. A simple calculation shows that the positive
interior equilibrium is (526.3158, 4206.6).

We can see from Figure 5.2 that after spiraling around the positive equilib-
rium, the solutions follow a line and blow up when the time t goes to infinity.
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For the remaining sets of parameters corresponding to the other two scenarios
in Table 1, similar behaviours happen.

5.3.2 Simulation with maturation period - case τ > 0

In this section we conduct numerical simulations of the system (5.5) with
parameter values given in Table 1.

Holling’s type I functional response - case κ = 0

We set κ = 0 in this part to see the behaviours of the system (5.5) with the
Holling’s type I functional response.
Scenario 1 (no oscillations): In this part, the parameters of the system are
chosen such that in absence of parasite (i.e. when I0 = 0), the number of adult
trees A(t) has no oscillations around the positive equilibrium A (see Figure
5.3).

Figure 5.3: We plot the simulation of forest model (5.5) with parameters of
Scenario 1 with Holling’s type I functional response in Table 1: µA = 0.001,
µJ = 0.03, β = 2, δ = 0.1, γA = 0.001, κ = 0, ε = 1, χ = 0.1, µI = 0.05.
We take the distribution of A(t) on the time interval [0, 200] (which comes
from the data in Chapter 2) and τ0 = 121 as the initial distribution and at
the time t = 200 we introduce the nematodes with the initial value I0 = 0.
Figure (a) shows the adult tree population number A(t) and Figure (b) shows
the corresponding time delay τ(t).

Now we introduce the nematodes, namely we set I0 = 1000, and we have
the following figures.
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Figure 5.4: We plot the simulation of the system (5.5) for Scenario 1 with
Holling’s type I functional response in this figure. The parameters and the
initial distributions are the same as in Figure 5.3 except that at the time t = 200
we introduce the nematodes with the initial value I0 = 1000. Figure (a) and
(b) show the adult tree population number A(t) and the nematode population
number I(t) respectively. Figure (c) shows the corresponding time delay τ(t)
and Figure (d) shows the behaviour on the phase plane.

We find that after the introduction of nematodes, the steady solution A(t)
becomes oscillated with a varying amplitude and the maturation period τ(t)
of trees is decreased. But after conducting a longtime simulation, we see that
the amplitude of A(t) is gradually stablized and the trajectory converges to
what seems to be a limit cycle (see Figure 5.5). This seems to be related to the
periodic solution of the Lotka-Volterra model. Moreover, the maximal value of
A(t) is also increased after we introduce the nematodes. However, compared
with the Lotka-Volterra model (the blue curve in Figure 5.1), the amplitudes
of oscillations of both A(t) and I(t) are reduced here.
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Figure 5.5: We plot the longtime behaviour of the simulation in Figure 5.4
in the time interval [14000, 15000]. The parameters and the initial distribution
are the same as in Figure 5.4. Figure (a) and (b) show the adult tree population
number A(t) and the nematode population number I(t) respectively. Figure (c)
shows the trajectory on the phase plane.
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Scenario 2 (damped oscillations): In this part, the parameters of the
system are chosen such that in absence of parasite (i.e. when I0 = 0), the
number of adult trees A(t) has some damped oscillations around the positive
equilibrium A (see Figure 5.6).

Figure 5.6: We plot the simulation of forest model (5.5) with parameters of
Scenario 2 with Holling’s type I functional response in Table 1: µA = 0.0037,
µJ = 0.031, β = 4, δ = 0.1, γA = 0.001, κ = 0, ε = 1, χ = 0.1, µI = 0.05.
We take the distribution of A(t) on the time interval [0, 180] (which comes
from the data in Chapter 2) and τ0 = 127 as the initial distribution and at
the time t = 180 we introduce the nematodes with the initial value I0 = 0.
Figure (a) shows the adult tree population number A(t) and Figure (b) shows
the corresponding time delay τ(t).

Now if we introduce the nematodes and fix I0 = 1000, we obtain Figure 5.7.
We can see that the damped oscillating solution A(t) becomes undamped and
the amplitude is varying more significantly and more rapidly after we introduce
the nematodes. However, the maximal value of A(t) is decreased instead and
the maturation period τ(t) of the trees is also decreased. Compared with
the Lotka-Volterra model (the blue curve in Figure 5.1), the amplitudes of
oscillations of both A(t) and I(t) are also reduced here. On the other hand,
compared with Scenario 1, the longtime behaviour is different. The solutions
A(t) and I(t) are still oscillating but they exhibit some kind of superposition of
periodic orbits (see Figure 5.8). The nematode population number I(t) is also
increased and the maturation period τ(t) is decreased compared with Scenario
1.
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Figure 5.7: We plot the simulation of the system (5.5) for Scenario 2 with
Holling’s type I functional response in this figure. The parameters and the
initial distributions are the same as in Figure 5.6 except that at the time t = 180
we introduce the nematodes with the initial value I0 = 1000. Figure (a) and
(b) show the adult tree population number A(t) and the nematode population
number I(t) respectively. Figure (c) shows the corresponding time delay τ(t)
and figure (d) shows the behaviour on the phase plane.
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Figure 5.8: We plot the longtime behaviour of the simulation in Figure 5.7 in
the time interval [156000, 160000]. The parameters and the initial distribution
are the same as in Figure 5.7. Figure (a) and (b) show the adult tree population
number A(t) and the nematode population number I(t) respectively. Figure (c)
shows the trajectory on the phase plane. The solutions look like some kind of
superposition of periodic orbits.
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Scenario 3 (undamped oscillations): In Scenario 3, the only change is the
parameter µJ , which passes from 0.03 in Scenario 1 to 0.0036 in Scenario 3. As
a consequence, in absence of parasite (i.e. when I0 = 0), the number of adult
trees A(t) has some undamped oscillations around the positive equilibrium A
(see Figure 5.9).

Figure 5.9: We plot the simulation of forest model (5.5) with parameters of
Scenario 3 with Holling’s type I functional response in Table 1: µA = 0.001,
µJ = 0.0036, β = 2, δ = 0.1, γA = 0.001, κ = 0, ε = 1, χ = 0.1, µI = 0.05.
We take the distribution of A(t) on the time interval [0, 200] (which comes
from the data in Chapter 2) and τ0 = 121 as the initial distribution and at
the time t = 200 we introduce the nematodes with the initial value I0 = 0.
Figure (a) shows the adult tree population number A(t) and Figure (b) shows
the corresponding time delay τ(t).

Now we set I0 = 1000, and we have the following figures. We can see
that after we introduce the nematodes, the periodic solution of A(t) is no
longer periodic but with complex oscillations around the positive equilibrium
(500, 1128.56) (see Figure 5.11 for a detailed view). Compared with the Lotka-
Volterra model (the blue curve in Figure 5.1), the range of oscillations of both
A(t) and I(t) is also reduced, as the previous two scenarios do. Compared
with the previous two scenarios, the range of the oscillation of A(t) is reduced,
while the number of nematodes I(t) is largely increased. The maturation delay
of the tree population is also increased, which might be the consequence of the
large quantity of nematodes slowing down the growth of trees.
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5.3. Numerical simulations

Figure 5.10: We plot the simulation of the system (5.5) for Scenario 3 in this
figure. The parameters and the initial distributions are the same as in Figure
5.9 except that at the time t = 200 we introduce the nematodes with the initial
value I0 = 1000. FIgure (a) and (b) show the adult tree population number
A(t) and the nematode population number I(t) respectively. Figure (c) shows
the corresponding time delay τ(t) and Figure (d) shows the behaviour on the
phase plane.
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5. Forest and parasite model

Figure 5.11: We plot the longtime behaviour of the simulation in Figure 5.10
in the time interval [19000, 20000]. The parameters and the initial distribution
are the same as in Figure 5.10. Figure (a) and (b) show the adult tree popula-
tion number A(t) and the nematode population number I(t) respectively. The
solutions oscillate around the positive equilibrium (500, 1128.56).
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5.3. Numerical simulations

Holling’s type II functional response - case κ > 0

Now we turn to the Holling’s type II functional response. We will set κ =
0.0001 in this part.

We start with the numerical simulation of Scenario 1. When I0 = 0, this
will be the same result as in Figure 5.3, namely the forest model without
nematode will have no oscillations. Now we set I0 = 1000 and ε = 0.68, and
we get the following results.

Figure 5.12: We plot the simulation of the system (5.5) with parameters of
Scenario 1 with Holling’s type II functional response in Table 1: µA = 0.001,
µJ = 0.03, β = 2, δ = 0.1, γA = 0.001, κ = 0.0001, ε = 0.68, χ = 0.1,
µI = 0.05. We take the distribution of A(t) on the time interval [0, 200] and
τ0 = 121 as the initial distribution and at the time t = 200 we introduce
the nematodes with the initial value I0 = 1000. Figure (a) and (b) show the
adult tree population number A(t) and the nematode population number I(t)
respectively. Figure (c) shows the corresponding time delay τ(t) and Figure (d)
shows the behaviour on the phase plane. The solutions A(t) and I(t) converge
to the positive interior equilibrium (793.6508, 0.1118) (calculated in Table 2).
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5. Forest and parasite model

We can see that after the introduction of nematodes, the solution A(t) is
oscillating and both solutions A(t) and I(t) converge to the positive interior
equilibrium (793.6508, 0.1118), and as the equilibrium of I(t) is very small
(0.1118), the longtime behaviour is actually still similar to the system without
nematode, namely Figure 5.3. This is probably due to the small value of
the conversion efficiency ε and thus the biomass transformed from trees to
nematodes is rather little, which is a disadvantage for the nematodes to persist
in a large quantity. Something else happens if we set ε larger.

Figure 5.13: We plot the simulation of the system (5.5) for Scenario 1 with
Holling’s type II functional response in this figure. The parameters and initial
distributions and the meaning of each figure are the same as in Figure 5.12
except that ε = 1. We get oscillating solutions.

With the increase of the conversion efficiency ε = 1, which creates some
benefits for the nematode at some level, we get the uniform persistence for
both solutions A(t) and I(t), and both solutions exhibit largely perturbed
oscillations and the amplitude is largely varying at the beginning and then
become stable (actually a long time simulation shows that the "stable" ampli-
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5.3. Numerical simulations

tude is still increasing very slowly). This also shows that the positive equilib-
rium (526.3158, 13.0384) (calculated in Table 2) is not stable. Moreover, the
maximal value of A(t) is increased and the maturation period τ(t) of trees is
decreased compared with both the case ε = 0.68 (Figure 5.12) and the case
I0 = 0 (Figure 5.3).

We increase ε again to see what happens next.

Figure 5.14: We plot the simulation of the system (5.5) for Scenario 1 with
Holling’s type II functional response in this figure. The parameters and initial
distributions and the meaning of each figure are the same as in Figure 5.12
except that ε = 10. We get slightly oscillating solutions.

When we set ε = 10, no complex oscillations are occurring as in the case
ε = 1. The nematode population I(t) reaches a large quantity quickly after it is
introduced, due to the high conversion efficiency, and thus the tree population
is decreased quickly. After this the tree population oscillates to almost an
extinction state but they persist again. This is possibly because the decrease
of the tree population leads to the decrease of the nematode population, which
creates again a favorable environment for the trees to survive. The solutions
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5. Forest and parasite model

both persist in the end and are continuously oscillating with small amplitudes
(see Figure 5.15).

Figure 5.15: We plot the simulation of the solution A(t) and I(t) in Figure 5.14
in the time interval [1800, 2000] in this figure. The solutions are oscillating with
small amplitude.

Remark 5.2. We have run some simulations for the other two scenarios with
different values of ε and we find that the system exhibits similar behaviors than
Scenario 1. We have also run some simulations for the system with Holling’s
type III functional response, namely the following system

dA(t)

dt
= f(A(t))

βA(t− τ(t))

f(A(t− τ(t)))
e−µJτ(t) − µAA(t)− γAI(t)A2(t)

1 + κA2(t)
,∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−,

dI(t)

dt
=

(
εχγAA

2(t)

1 + κA2(t)
− µI

)
I(t).

We also have similar simulations as in the case of Holling’s type II functional
response.

5.4 Discussion
Predator and prey systems, or more generally, consumer and resource, is play-
ing a fondamental role in ecology. Different mechanisms between predator and
prey will lead to different models with different functional responses [1, 175].
In this paper, we build a predator-prey model with Holling’s type I and II
functional response and with a state-dependent maturation delay for the prey
population. This is based on a forest model, which is constructed in [138]
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5.4. Discussion

and in general leads to three scenarios of forest population dynamics (no oscil-
lations, damped oscillations, undamped oscillations), and we incorporate the
nematode population into this forest model.

We conduct numerical simulations for the three scenarios and two types of
functional responses. First, with Holling’s type I functional response, after we
introduce a non-null state-dependent delay to describe the maturation period
of the tree population, the solutions start with complex oscillations and then
become regular, that is to say, the solutions converge to a limit cycle again in
Scenario 1 and undergoes some superposition of two oscillations in Scenario
2 and 3. Moreover, for all the three scenarios, the two solutions still persist,
only with a reduced amplitude of oscillations compared with the corresponding
system without the maturation delay (system (5.8)).

With Holling’s type II functional response, the system is perturbed vastly
after the introduction of the maturation delay, and the previous unbounded
solution becomes bounded. But this also depends on the rate of conversion
efficiency of the energy from prey to predator. When this rate is too low, the
predator can’t persist, and thus the system has similar behaviours as when
there is no predator. If this rate of conversion efficiency is rather high, the
system risks of going to extinction for both predator and prey but it adapts
itself to a persisting state again.

Now, from another point of view, after we introduce the nematodes into
the forest, no matter which type of functional response it is, we see that the
solution A(t) which doesn’t oscillate before (Scenario 1) starts to oscillate,
and which has oscillations (damped or periodic) before (Scenario 2 and 3)
undergoes undamped oscillation after the introduction of nematodes.

We might also notice that after the introduction of nematodes, the matura-
tion delay τ(t) is also reduced for all three scenarios and two types of functional
responses. That is because with the introduction of nematodes I(t), the adult
tree population number A(t) is affected, then by the second equation of system
(5.5), which is used to solve τ(t), this maturation delay will also be affected.
Moreover, we need to point out that the unit of the solution τ(t) is "year".
Then there seems to be something unrealistic here in that in some cases, the
equilibrium of τ(t) is more than 100, which means that it needs more that 100
years for a tree to grow mature. Actually, the delay τ(t) is used to describe the
time needed for the trees to grow to be adults, and also, to be able to produce
new generations in the middle of a forest. This means that the trees can be
affected by the other surrounding trees, then not so many trees can survive to
be able to produce an adult tree and thus on average it takes a longer time for
them to grow.
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Appendix A

Derivation of the state-dependent
FDE (2.6)

The single species model (2.1) we consider here is very similar with the one con-
sidered by H. Smith in [193]. Nevertheless, our mortality rate µ(s) is dependent
on the size s, so we will re-derive the state dependent FDE for completeness.
Differentiating (2.4) with respect to t, we have

dA(t)

dt
=

∫ +∞

s∗
∂tu(t, s)ds = −f(A(t))

∫ +∞

s∗
∂su(t, s)ds−

∫ +∞

s∗
µ(s)u(t, s)ds

= f(A(t))u(t, s∗)−
∫ +∞

s∗
µ(s)u(t, s)ds. (A.1)

Next we deal with the term u(t, s∗). The characteristic curves for the first
equation in (2.1) are (shown in Figure A.1)

ds(t)

dt
= f(A(t)). (A.2)

Then we have the following representation of s

C +

∫ t

0

f(A(σ))dσ = s(t). (A.3)

Suppose t∗ is the time when juveniles present at time 0 become adults, namely∫ t∗

0

f(A(σ))dσ = s∗ − s−. (A.4)

We can see that the curve

S =

{
(t, s) : 0 6 t 6 t∗, s = s− +

∫ t

0

f(A(σ))dσ

}
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Figure A.1: In this figure we present the characteristic curves (A.2).

divides the strip [0,+∞) × [s−, s
∗] into two parts R1 and R2. Assuming that

s− s− 6
∫ t

0

f(A(σ))dσ, then we can find T (t, s) > 0 such that

∫ t

t−T (t,s)

f(A(σ))dσ = s− s− (A.5)

in the region R2, so it denotes the time it takes for a juvenile to grow to size s
at time t from the minimal size s−. Replacing s in u(t, s) with (A.3), we can
compute formally as follows, assuming that u is a C1-function

d

dt
u

(
t, C +

∫ t

0

f(A(σ))dσ

)
= ∂tu

(
t, C +

∫ t

0

f(A(σ))dσ

)
+ f(A(t))∂su

(
t, C +

∫ t

0

f(A(σ))dσ

)
= −µ

(
C +

∫ t

0

f(A(σ))dσ

)
u

(
t, C +

∫ t

0

f(A(σ))dσ

)
.

This is a separable ODE with respect to t. Integration of this equation, and
by using the initial distribution and the boundary condition, we obtain the
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A. Derivation of the FDE

following expression of u(t, s)

u(t, s) =



u0

(
s−

∫ t

0

f(A(σ))dσ

)
e−

∫ t
0 µ(s−

∫ t
0 f(A(σ))dσ+

∫ l
0 f(A(σ))dσ)dl,

if s > s− +
∫ t

0
f(A(σ))dσ,

βb(A(t− T (t, s)))

f(A(t− T (t, s)))
e−

∫ t
t−T (t,s) µ(s−+

∫ l
t−T (t,s) f(A(σ))dσ)dl,

if s 6 s− +
∫ t

0
f(A(σ))dσ.

(A.6)
Whenever s∗ − s− 6

∫ t
0
f(A(σ))dσ, we can specifically define τ(t) := T (t, s∗)

as the solution of ∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−. (A.7)

Actually the term τ(t) = T (t, s∗) represents the time spent by a newborn
becoming an adult.

We now assume the mortality function as follows

µ(s) =

{
µA > 0, if s > s∗,
µJ > 0, if s ∈ [s−, s

∗).

Then when s = s∗, we have for t ∈ [0, t∗],

u(t, s∗) = u0

(
s∗ −

∫ t

0

f(A(σ))dσ

)
e−µJ t,

and for t > t∗,

u(t, s∗) =
βb(A(t− τ(t)))

f(A(t− τ(t)))
e−µJτ(t).

Replacing u(t, s∗) back in (A.1), we get the model (2.5).
By differentiating the second equation of (2.5) in time, we obtain

d

dt

∫ t

t−τ(t)

f(A(σ))dσ = 0⇔ f(A(t))− f(A(t− τ(t))) (1− τ ′(t)) = 0.

Therefore the state-dependent delay differential equation (2.6) is derived.

Remark A.1. Note that the function t→ t−τ(t) is strictly increasing because

d

dt
(t− τ(t)) =

f(A(t))

f(A(t− τ(t)))
> 0.

Remark A.2. Notice that system (2.5) is valid when t > t∗. However, as this
system is autonomous, we can make a translation so that the initial time of the
system will become t = 0. But the numerical simulations are still conducted
with the initial time t = t∗ for the sake of simplicity.
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We conduct a comparison between the growth function (2.2) and the in-
trinsic function of the growth submodel in the simulator SORTIE. From the
model (2.3), we only care about the growth of juveniles, so first we assume the
radius function of a juvenile

r(t) =
diam10(t)

2

where diam10 represents the diameter at 10cm height. We use the following
change of variable to define the size s which we are using in the model (2.1)

s(t) := ln
r(t)

r−
, (A.8)

where r− is the minimal radius of the juvenile. We will have

s′(t) =
r′(t)

r(t)
= f(A(t)).

Then the approximation of the derivative of r(t), which describes the growth
of the radius, is

r(t+ ∆t)− r(t)
∆t

= r(t) · α

1 + δA(t)
= r(t) · αA(t)−1

δ + A(t)−1
. (A.9)

Take ∆t = 1 (one year), then (A.9) shows the increase of the radius in one
year.

On the other hand, we have the following formula for growth in SORTIE
from [106, 169, 170]

Annual Radius Increase = Radius · G1 ·GLI
G1

G2

+ GLI
, (A.10)

where G1 is the asymptotic growth rate at high light and G2 is the slope at
0 or low light. The term GLI (global light index) describes the percentage of
light transmitted through tree gaps and perceived by trees, thus is a measure
for light. Comparing the two formulas (A.9) and A.10, we find that they have
the same form, and the parameters A(t)−1, α, δ correspond to GLI, G1, G1/G2

respectively. So the choice of the growth function (2.2) is reasonable. Plus,
this also explains what is size s in our model (2.1). By this definition of s(t),
we have the minimal size of juveniles s− = 0 (as r(t) = r−), and the minimal
size of adults s∗ = ln(r∗/r−), where r∗ is the minimal radius of adults.
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Appendix B

Positive equilibrium for
two-species model (2.9)

We compute the positive equilibrium for the system (2.9), which is, we compute
the solution for the following equations

0 = e−µJ1τ1β1A1 − µA1A1,∫ t

t−τ1

α1

1 + δ1(ζ11A1 + ζ12A2)
dσ = s∗ − s−,

(B.1)

and 
0 = e−µJ2τ2β2A2 − µA2A2,∫ t

t−τ2

α2

1 + δ2(ζ21A1 + ζ22A2)
dσ = s∗ − s−,

(B.2)

Obviously, A1 = 0, A2 = 0 is a trivial equilibrium for the species, in which
case we have

τ1 =
s∗ − s−
α1

, τ2 =
s∗ − s−
α2

.

Moreover, we have two "boundary" equilibrium (Ā1, 0) and (0, Ã2), where

Ā1 =
1

δ1ζ11

(
α1

µJ1(s
∗ − s−)

ln
β1

µA1

− 1

)
,

τ̄1 =
1

µJ1
ln

β1

µA1

, τ̄2 =
(s∗ − s−)(1 + δ2ζ21Ā1)

α2

,

and

Ã2 =
1

δ2ζ22

(
α2

µJ2(s
∗ − s−)

ln
β2

µA2

− 1

)
,

τ̃1 =
(s∗ − s−)(1 + δ1ζ12Ã2)

α1

, τ̃2 =
1

µJ2
ln

β2

µA2

.
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Now we turn to the positive equilibrium. As A1, A2 6= 0, we solve the first
equation in (B.1) and (B.2) and get

τ1 =
1

µJ1
ln

β1

µA1

, τ2 =
1

µJ2
ln

β2

µA2

(B.3)

By the second equation of (B.1) and (B.2), we have
ζ11A1 + ζ12A2 =

1

δ1

(
α1τ1

s∗ − s−
− 1

)
,

ζ21A1 + ζ22A2 =
1

δ2

(
α2τ2

s∗ − s−
− 1

) (B.4)

We replace τ1 and τ2 in (B.4) by (B.3), and we get the following linear equations{
ζ11A1 + ζ12A2 = Φ1,
ζ21A1 + ζ22A2 = Φ2,

(B.5)

where

Φ1 :=
1

δ1

[
α1

µJ1(s
∗ − s−)

ln
β1

µA1

− 1

]
, Φ2 :=

1

δ2

[
α2

µJ2(s
∗ − s−)

ln
β2

µA2

− 1

]
.

First, as we want a positive solution, we need the following conditions

Φ1 > 0, Φ2 > 0. (B.6)

We solve the equation (B.5) directly without considering its solvability

A1 =
ζ22Φ1 − ζ12Φ2

ζ11ζ22 − ζ12ζ21

, A2 =
ζ11Φ2 − ζ21Φ1

ζ11ζ22 − ζ12ζ21

. (B.7)

In order to have a positive solution, we need the following conditions
ζ11ζ22 − ζ12ζ21 > 0,
ζ22Φ1 − ζ12Φ2 > 0,
ζ11Φ2 − ζ21Φ1 > 0,

or


ζ11ζ22 − ζ12ζ21 < 0,
ζ22Φ1 − ζ12Φ2 < 0,
ζ11Φ2 − ζ21Φ1 < 0,

(B.8)

or in another simplified form

ζ12

ζ22

<
Φ1

Φ2

<
ζ11

ζ21

, or
ζ11

ζ21

<
Φ1

Φ2

<
ζ12

ζ22

, (B.9)

So we have

Lemma B.1. Under the condition (B.6) and (B.9), the equations (B.1) and
(B.2) have a positive equilibrium as in (B.7).
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B. Positive equilibrium

We check the conditions (B.6) and (B.9) for our previous results in Table
1-3, and we have

Φ1 = 100.6839 > 0, Ψ2 = 133.4324 > 0,

ζ12

ζ22

= 0.6,
Φ1

Φ2

= 0.7546,
ζ11

ζ21

= 0.625,

which does not satisfy the condition (B.9), so there is no positive equilibrium
in our previous simulation, and eastern hemlock is disappearing. In order to
have a positive equilibrium, we reduce the influence of American beech towards
eastern hemlock, namely we lower ζ21 from 1.6 to 1. Then we have

ζ11

ζ21

= 1,

which satisfies the condition (B.9). And we have the coexistence of both species
as is shown in Figure 2.9 and Figure 2.13.
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Appendix C

Resolvent of the Laplacian
operator ∆ in (2.11)

Assume that ψ(x, y) : [0, xmax] × [0, ymax] → R is a function. The resolvent
of the Laplacian operator ∆ with periodic boundary condition is given for
(x, y) ∈ [0, xmax]× [0, ymax] by

(λI − ε∆)−1(ψ)(x, y) =

∫ +∞

0

e−λtT∆(εt)(ψ̂)(x, y)dt, (C.1)

where ψ̂ extends ψ periodically on R× R, that is to say

ψ̂(x, y) = ψ(x, y), ∀(x, y) ∈ [0, xmax]× [0, ymax]

and {
ψ̂(x+ xmax, y) = ψ̂(x, y),∀x, y ∈ R,
ψ̂(x, y + ymax) = ψ̂(x, y),∀x, y ∈ R.

Moreover T∆(t) is the semigroup generated by the Laplacian operator ∆. A
result in Engel and Nagel [61, p. 69] shows that

T∆(t)(ψ̂)(x, y) =
1

4πt

∫∫
R2

e−
(x−x̂)2+(y−ŷ)2

4t ψ̂(x̂, ŷ)dx̂dŷ. (C.2)

The numerical approximation of (I−εi∆)−1 is given by the matrix (I+εiA)−1

where

A =


B C 0 ... C

C B
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . . . . C
C ... 0 C B

 ,
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where

B =



2
dx2

+ 2
dy2

− 1
dx2

0 ... ... − 1
dx2

− 1
dx2

2
dx2

+ 2
dy2

− 1
dx2

. . . ...

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . . . . − 1
dx2

− 1
dx2

... ... 0 − 1
dx2

2
dx2

+ 2
dy2


and

C =


− 1
dy2

0 ... 0

0
. . . . . . ...

... . . . . . . 0
0 ... 0 − 1

dy2

 .
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Appendix D

Derivation of the state-dependent
delay differential equation (5.4)

We can transform the system (5.3) into a state-dependent delay differential
equation using the method in Appendix A and [193, 194]. Differentiating the
following formula

A(t) =

∫ +∞

s∗
u(t, s)ds

with respect to t, we have

dA(t)

dt
=

∫ +∞

s∗
∂tu(t, s)ds

= −f(A(t))

∫ +∞

s∗
∂su(t, s)ds−

∫ +∞

s∗

[
µ(s) +

γ(s)I(t)

1 + κA(t)

]
u(t, s)ds

= f(A(t))u(t, s∗)−
∫ +∞

s∗

[
µ(s) +

γ(s)I(t)

1 + κA(t)

]
u(t, s)ds. (D.1)

Next we deal with the term u(t, s∗). The characteristic curves for the first
equation in (5.3) are (shown in Figure D.1)

ds(t)

dt
= f(A(t)). (D.2)

Then we will have the following representation of s

s(t) = C +

∫ t

0

f(A(σ))dσ. (D.3)

Suppose t∗ is the time when juveniles present at time 0 become adults, namely∫ t∗

0

f(A(σ))dσ = s∗ − s−.
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Figure D.1: In this figure we present the characteristic curves (D.2).

We can see that the curve

S =

{
(t, s) : 0 6 t 6 t∗, s = s− +

∫ t

0

f(A(σ))dσ

}
divides the strip [0,+∞) × [s−, s

∗] into two parts R1 and R2. Assuming that
s− s− 6

∫ t
0
f(A(σ))dσ, then we can find T (t, s) > 0 such that∫ t

t−T (t,s)

f(A(σ))dσ = s− s−

in the region R2, so it denotes the time it takes for a juvenile to grow to size s
at time t from the minimal size s−. Replacing s in u(t, s) with (D.3), we can
compute formally as follows, assuming that u is a C1-function:

d

dt
u

(
t, C +

∫ t

0

f(A(σ))dσ

)
= ∂tu

(
t, C +

∫ t

0

f(A(σ))dσ

)
+ f(A(t))∂su

(
t, C +

∫ t

0

f(A(σ))dσ

)

= −

µ(C +

∫ t

0

f(A(σ))dσ

)
+
γ
(
C +

∫ t
0
f(A(σ))dσ

)
I(t)

1 + κA(t)

u (t, C+
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D. Derivation of the forest parasite FDE

∫ t

0

f(A(σ))dσ

)
.

This is a separable ODE with respect to t. Integration of this equation, and
by using the initial distribution and the boundary condition, we obtain the
following expression of u(t, s)

u(t, s) =



u0

(
s−

∫ t

0

f(A(σ))dσ

)
exp

{
−
∫ t

0

[
µ

(
s−

∫ t

0

f(A(σ))dσ+

∫ l

0

f(A(σ))dσ

)
+
γ
(
s−

∫ t
0
f(A(σ))dσ +

∫ l
0
f(A(σ))dσ

)
I(l)

1 + κA(l)

 dl
 ,

if s > s− +

∫ t

0

f(A(σ))dσ,

βA(t− T (t, s))

f(A(t− T (t, s)))
exp

{
−
∫ t

t−T (t,s)

[
µ

(
s− +

∫ l

t−T (t,s)

f(A(σ))dσ

)

+
γ
(
s− +

∫ l
t−T (t,s)

f(A(σ))dσ
)
I(l)

1 + κA(l)

 dl
 , if s 6 s− +

∫ t

0

f(A(σ))dσ.

(D.4)

Whenever s∗ − s− 6
∫ t

0

f(A(σ))dσ, we can specifically define τ(t) := T (t, s∗)

as the solution of ∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−. (D.5)

Actually the term τ(t) = T (t, s∗) represents the maturation period of one
individual.

We now assume

µ(s) =

{
µA > 0, if s > s∗,
µJ > 0, if s < s∗,

γ(s) =

{
γA > 0, if s > s∗,
γJ > 0, if s < s∗.

Then the third equation of (5.3) becomes

dI(t)

dt
=

[
εχ

1 + κA(t)
(γAA(t) + γJJ(t))− µI

]
I(t). (D.6)

When s = s∗, we have for t ∈ [0, t∗],

u(t, s∗) = u0

(
s∗ −

∫ t

0

f(A(σ))dσ

)
e−µJ t−γJ

∫ t
0

I(l)
1+κA(l)

dl,

and for t > t∗,

u(t, s∗) =
βA(t− τ(t))

f(A(t− τ(t)))
e−µJτ(t)−γJ

∫ t
t−τ(t)

I(l)
1+κA(l)

dl.
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Replacing u(t, s∗) back in (D.1) for t > t∗, we get the equation of A(t) in (5.4):

dA(t)

dt
=

f(A(t))

f(A(t− τ(t)))
e−µJτ(t)−γJ

∫ t
t−τ(t)

I(l)
1+κA(l)

dlβA(t− τ(t))

−µAA(t)− γA
A(t)

1 + κA(t)
I(t).

(D.7)

Set γJ = 0. Then when t > t∗, system (5.3) is transformed into system (5.5).
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Appendix E

Derivation of the numerical
scheme of (5.5)

We will give the numerical scheme in this appendix for the system (5.5). First
we can rewrite system (5.5) in the following form:

A′(t) = F (A(t), I(t), τ(t), A(t− τ(t))),∫ t

t−τ(t)

f(A(σ))dσ = s∗ − s−,

I ′(t) = G(A(t), I(t)).

(E.1)

where

F (A0, I, τ, A−τ ) :=
f(A0)

f(A−τ )
e−µJτβA−τ − µAA0 − γA

A0

1 + κA0

I

and
G(A, I) :=

(
εχγAA

1 + κA
− µI

)
I.

First we give a derivation of the numerical scheme of the computation of τ(t).
From the second equation of (E.1) we have∫ t

t−τ(t)

f(A(σ))dσ =

∫ t+∆t

t+∆t−τ(t+∆t)

f(A(σ))dσ,

which is equivalent to∫ t+∆t

t−τ(t)

f(A(σ))dσ+

∫ t

t+∆t

f(A(σ))dσ =

∫ t−τ(t)

t+∆t−τ(t+∆t)

f(A(σ))dσ+

∫ t+∆t

t−τ(t)

f(A(σ))dσ.

So ∫ t

t+∆t

f(A(σ))dσ =

∫ t−τ(t)

t+∆t−τ(t+∆t)

f(A(σ))dσ. (E.2)
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Assume ∆t is small enough, then f(A(σ)) can be seen as a constant function
on the interval [t, t+∆t] and [t−τ(t), t+∆t−τ(t+∆t)]. Thus we approximate
f(A(σ)) by f(A(t)) in the first integral and by f(A(t − τ(t))) in the second
integral in (E.2), and we have the following approximation

∆tf(A(t)) = (∆t− τ(t+ ∆t) + τ(t))f(A(t− τ(t))),

and
τ(t+ ∆t) = τ(t) + ∆t

(
1− f(A(t))

f(A(t− τ(t)))

)
.

Then the numerical scheme used in this article will be
A(t+ ∆t) = ∆tF (A(t), I(t), τ(t), A(t− τ(t))) + A(t),

τ(t+ ∆t) = ∆t

(
1− f(A(t))

f(A(t− τ(t)))

)
+ τ(t),

I(t+ ∆t) = ∆tG(A(t), I(t)) + I(t).

(E.3)

It remains to find a numerical approximation to calculate A(t− τ(t)), namely
the past value of A at time t− τ(t) in the above approximation, which might
not be given in the previous calculation because t − τ(t) might not be in our
discretized sequence of time for the simulation. In order to determine this
value, we use the method of linear interpolation. First we determine the time
interval [tn, tn+1] (with tn := n∆t for some integer n ∈ Z) to which the time
t− τ(t) belongs, then we use the following linear interpolation

A(t− τ(t)) ≈ A(tn) + (t− τ(t)− tn)
A(tn+1)− A(tn)

tn+1 − tn
(E.4)

to get the approximation of the value A(t− τ(t)). This will be more accurate
than the rough approximation of using just A(tn) or A(tn+1).
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Appendix F

MATLAB codes

In this section I present one MATLAB code of the numerical simulations in
this thesis. Due to the length of various MATLAB codes built for this thesis,
I will present only one code here. I refer to [235] for the numerical simulations
of two-species case in Chapter 2, [236] for the numerical simulations of two-
species case with spatial structure in Chapter 2, and [237] for the numerical
simulations of forest-parasite model in Chapter 5.

The following MATLAB code corresponds to Figure 2.6, the parameter fit-
ting for the first species FAGR in the single species case in Chapter 2. This
code goes together with the file DATAoldtime.dat corresponding to the simula-
tion for SORTIE, which can be downloaded from [233]. For the second species
in the single species case, the code is similar, available on [234], with a change
of original data and parameter range.
f unc t i on compaFAGR

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load the data o f 50 runs and compute the average
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DATAold=load ( ’DATAoldtime . dat ’ , ’− a s c i i ’ ) ;
DATAold(2 :51 , : )=9∗DATAold ( 2 : 5 1 , : ) ;

dto=5;
o ldt ime=DATAold ( 1 , : ) ;
Not=s i z e ( o ldt ime ) ;
not=Not ( 2 ) ;
dtn=1;
newtime=0:dtn : 2 000 ;
Nnt=s i z e ( newtime ) ;
nnt=Nnt ( 2 ) ;

DATAnew=ze ro s (50 , nnt ) ;

f o r i =1:50
DATAnew( i ,1)=DATAold( i +1 ,1) ;
f o r j =2:nnt
j1=c e i l ( newtime ( j ) / 5 ) ; % dec ide in which i n t e r v a l o f the o r i g i n a l t imes ca l e
DATAnew( i , j )=(newtime ( j )−oldt ime ( j1 ) )∗ (DATAold( i +1, j1+1)−DATAold( i +1, j1 ))/5+DATAold( i +1, j1 ) ;

end
end

DATAnewave=mean(DATAnew) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the best f i t o f the parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s2=log ( 5 0 ) ;
s1=0;
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Ddelta =0.1;
Dxi=1;
Dtau0=1;
DMuJ=0.01;
DMuA=0.001;
Dbeta=0.5;

deltamax =0.1;
ximax=0;
tau0max=200;
MuJmax=0.03;
MuAmax=0.001;
betamax=2;

de l t a =0:Ddelta : deltamax ;
x i =0:Dxi : ximax ;
tau0=0:Dtau0 : tau0max ;
MuJ=0.03:DMuJ:MuJmax ;
MuA=0.001:DMuA:MuAmax;
beta=0:Dbeta : betamax ;

Ndelta=s i z e ( de l t a ) ;
nde l ta=Ndelta ( 2 ) ;
Nxi=s i z e ( x i ) ;
nxi=Nxi ( 2 ) ;
Ntau0=s i z e ( tau0 ) ;
ntau0=Ntau0 ( 2 ) ;
NMuJ=s i z e (MuJ) ;
nMuJ=NMuJ( 2 ) ;
NMuA=s i z e (MuA) ;
nMuA=NMuA( 2 ) ;
Nbeta=s i z e ( beta ) ;
nbeta=Nbeta ( 2 ) ;

Dt=1;
tmax=2000;

Timen=0:Dt : tau0max ;
Ntn=s i z e (Timen ) ;
ntn=Ntn ( 2 ) ;
Timep=tau0max+Dt : Dt : tmax ;
Ntp=s i z e (Timep ) ;
ntp=Ntp ( 2 ) ;

f o r iTimen=1:ntn
A( iTimen)=DATAnewave( iTimen ) ;

end

iLS=1;

t i c
f o r i d e l t a =1: nde l ta
f o r i x i =1: nxi
f o r i tau0 =1:ntau0
f o r iMuJ=1:nMuJ
f o r iMuA=1:nMuA
fo r ib e ta =1: nbeta
tau (1)=(1−(1+ de l t a ( i d e l t a )∗A(1))/(1+ de l t a ( i d e l t a )∗A( ntn ) ) )∗Dt+tau0 ( i tau0 ) ;
A( ntn+1)=(beta ( ib e ta )∗ exp(−MuJ( iMuJ)∗ tau0 ( i tau0)−x i ( i x i )∗A(1) )∗A(1)∗(1+ de l t a ( i d e l t a )∗
A(1))/(1+ de l t a ( i d e l t a )∗A( ntn))−MuA(iMuA)∗A( ntn ))∗Dt+A( ntn ) ;
f o r i =2:ntp
%j=min( c e i l ( ( i ∗Dt+tau0max+Dt−tau ( i −1))/Dt)+ntn−2, i+ntn−2);
%j=min ( c e i l ( ( t−tau (1 , i ) )/Dt)+n1 , i+n1 ) ;
j=max(1 ,min ( i−1−c e i l ( ( tau ( i−1)−tau0max )/Dt ) , ntn+i −2)) ;
A1=A( j +1);
tau ( i )=(1−(1+de l t a ( i d e l t a )∗A1)/(1+ de l t a ( i d e l t a )∗A( ntn+i −1)))∗Dt+tau ( i −1);
A( ntn+i )=( beta ( ib e ta )∗ exp(−MuJ( iMuJ)∗ tau ( i−1)−x i ( i x i )∗A1)∗A1∗(1+ de l t a ( i d e l t a )∗A1)/(1+
de l t a ( i d e l t a )∗A( ntn+i−1))−MuA(iMuA)∗A( ntn+i −1))∗Dt+A( ntn+i −1);

end
LS( iLS)=sum((DATAnewave( ntn : 1 : ntn+ntp)−A( ntn : 1 : ntn+ntp ) ) . ∗ (DATAnewave( ntn : 1 : ntn+ntp)−
A( ntn : 1 : ntn+ntp ) ) ) ;
Fdelta ( iLS)=de l t a ( i d e l t a ) ;
Fxi ( iLS)=x i ( i x i ) ;
Ftau0 ( iLS)=tau0 ( i tau0 ) ;
FMuJ( iLS)=MuJ( iMuJ ) ;
FMuA( iLS)=MuA(iMuA ) ;
Fbeta ( iLS)=beta ( ib e ta ) ;
iLS=iLS+1;

end
end

end
end

end
end
toc

[C, I ]=min (LS)
f d e l t a=Fdelta ( I )
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F. MATLAB codes

f x i=Fxi ( I )
f tau0=Ftau0 ( I )
fMuJ=FMuJ( I )
fMuA=FMuA( I )
fbe ta=Fbeta ( I )

%%%%%%%%%%% compute alpha us ing simpson method %%%%%%%%

tminsimp=−f tau0 ;
tmaxsimp=0;
Dtsimp=Dt ;
Timesimp=tminsimp : Dtsimp : tmaxsimp ;

ntsimp=s i z e (Timesimp ) ;
auxsimp=round ( ntsimp ( 2 ) / 2 ) ;
i f (2∗ auxsimp>ntsimp (2 ) )

Timesimp=(tminsimp−Dtsimp ) : Dtsimp : 0 ;
end
ntsimp=s i z e (Timesimp ) ;
nsimp=ntsimp ( 2 ) ;

Asimp=A(1 : nsimp ) ;
Isimp=1./(1+ f d e l t a ∗Asimp ) ;

% C means the sum
n1simp=nsimp/2−1;
I1simp=ze ro s (1 , n1simp ) ;
Csimp=0;
f o r i =1:n1simp

Csimp=Csimp+Isimp (2∗ i ) ;
I1simp (1 , i )=Csimp ;

end

I2simp=ze ro s (1 , n1simp+1);
Csimp=0;
f o r i =1:n1simp+1

Csimp=Csimp+Isimp (1 ,2∗ i −1);
I2simp (1 , i )=Csimp ;

end

Xsimp=Dtsimp/3∗( Isimp (1)+2∗ I1simp (1 , n1simp)+4∗ I2simp (1 , n1simp+1)+Isimp (2∗( n1simp+1)))

fa lpha=(s2−s1 )/Xsimp

%%%%%%%%%%%%%%%% alpha end %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%
% plo t the best f i t and the data
%%%%%%%%%%%%%%%%%%

tau(1)=(1−(1+ f d e l t a ∗A(1))/(1+ f d e l t a ∗A( ntn ) ) )∗Dt+ftau0 ;
A( ntn+1)=( fbe ta ∗exp(−fMuJ∗ ftau0−f x i ∗A(1) )∗A(1)∗(1+ f d e l t a ∗A(1))/(1+ f d e l t a ∗A( ntn))−fMuA∗A( ntn ) )
∗Dt+A( ntn ) ;
Timep1(1)=tau0max+Dt ;
f o r i =2:ntp
%j=min( c e i l ( ( i ∗Dt+tau0max+Dt−tau ( i −1))/Dt)+ntn−2, i+ntn−2);
j=max(1 ,min ( i−1−c e i l ( ( tau ( i−1)−tau0max )/Dt ) , ntn+i ) ) ;
A1=A( j ) ;
tau ( i )=(1−(1+ f d e l t a ∗A1)/(1+ f d e l t a ∗A( ntn+i −1)))∗Dt+tau ( i −1);
A( ntn+i )=( fbe ta ∗exp(−fMuJ∗ tau ( i−1)− f x i ∗A1)∗A1∗(1+ f d e l t a ∗A1)/(1+ f d e l t a ∗A( ntn+i−1))−fMuA
∗A( ntn+i −1))∗Dt+A( ntn+i −1);
Timep1 ( i )=Timep1 ( i−1)+Dt ;

end

Timep2=[Timen , Timep1 ] ;

subplot (1 , 2 , 1 )
p lo t (Timep2 ,A( 1 : ntn+ntp ) , ’−− ’ ,Timep2 ,DATAnewave , ’ LineWidth ’ , 2 )
legend ( ’ s imulat ion ’ , ’ data ’ , ’ Location ’ , ’ best ’ )
x l ab e l ( ’ t ’ ) ;
y l=y l abe l ( ’A( t ) ’ ) ;
s e t ( yl , ’ Rotation ’ , 0 ) ;
t i t l e ( ’ ( a ) ’ )

subplot (1 , 2 , 2 )
p lo t (Timep1 , tau , ’ LineWidth ’ , 2 )
x l ab e l ( ’ t ’ ) ;
y l=y l abe l ( ’\ tau ( t ) ’ ) ;
s e t ( yl , ’ Rotation ’ , 0 ) ;
t i t l e ( ’ ( b ) ’ )

saveas ( gcf , ’ 1 ’ , ’ f i g ’ )
end
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