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Introduction 1

The neural activity from in-vivo cortical recordings displays a large degree of temporal and
trial-to-trial irregularity. Multiple layers of variability emerge at multiple time scales and gen-
erate complex patterns of cross-correlations among pairs of neurons in the recorded population.
Dissecting and characterizing the possible sources of neural variability has been a central re-
search topic in theoretical and computational neuroscience. Ultimately, reconstructing where
and how the noise is generated could valuably contribute to our more general understanding
of how the brain encodes and process information.

One remarkable feature of the brain, that has been suggested to play a major role in gener-
ating and shaping variability, is its intricate connectivity structure. Cortical networks, which
constitute the fundamental computational units in the mammalian brain, consist of thousands
of densely packed neurons that are highly inter-connected through recurrent synapses. Several
lines of theoretical research have put forward the hypothesis that irregular activity could emerge
in large cortical circuits as a collective dynamical effect. Purely stochastic spiking can indeed
be generated within simple and deterministic mathematical models where a large number of
elements interact through strong and random recurrent connections. As the latest technolog-
ical advances allow to appreciate increasingly fine patterns in the complex structure of neural
variability, constant theoretical efforts are required to refine and reinvent appropriate network
models which can provide a good explanation of the data.

In this chapter, we briefly review the experimental findings that motivate the theoretical
studies we propose in this thesis. We examine the most successful modelling results that have
been leading our understanding of neural variability across the last two decades. In the last
section, we build on those findings to delineate the outline of this dissertation.

1.1 Irregular firing in cortical networks
The mammalian brain is a complex and powerful computing machine. Cortical assemblies
of excitatory and inhibitory neurons constitute the hardware which processes the inputs and
produces the executable outputs that are demanded in the everyday life tasks. The content of
sensory cues, internal judgements and decision variables is encoded in the brain in the form
of discrete electrical signals, called action potentials [106, 64]. Action potentials, or simply
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1. Introduction

spikes, consist of fast depolarizations of the cell membranes.
In order to support highly sophisticated behaviours, the mammalian brain must be capable

of extremely reliable and precise computations. The brain language, based on spikes, should
thus allow stable and accurate encoding, processing and decoding of information.

The first attempts of systematic in-vivo recordings from cortical cells unveiled a high degree
of complexity in the neural code: in most of the experimental setups, the temporal structure
of the spike trains seems not to reflect any explicit task-related variable. More surprisingly,
the neural code appears to be also strongly variable [93, 115, 43]: the number and the time
position of the spikes change dramatically from one trial to the other of the same recording
session.

A classical example of in-vivo cortical recording is illustrated in Fig. 1.1. The data refer
to the firing activity of a pyramidal cell from the visual area MT of a monkey [120], recorded
while the animal is performing a random-dot motion task [21]. Neurons in area MT are
known to encode the direction of motion of objects in the visual scene. As a consequence, the
cell activity is presumably contributing to the monkey’s behavioural response.

The rastergram in Fig. 1.1 a shows the firing activity of the cell across several identical rep-
etitions of the task. Across the different trials, the spike trains display stereotyped modulations
in the firing rate, which are elicited by a change in the stimulus coherence and luminance. A
closer analysis within a smaller time window with almost flat firing rate, instead, reveals a finer
temporal scale where the spike occurrence seems to be dominated by randomness (Fig. 1.1 b).

Traditionally, the spike train variability has been quantified by looking at the fluctuations
in the number of fired action potentials and in the time lag between two consecutive spikes.
The inter-spike interval (ISI) histogram measured from in-vivo cortical recordings is typically
broad (Fig. 1.1 c), and its tail is compatible with an exponential decay [12]. The broadness of
the ISI histogram can be measured in terms of the coefficient of variation, given by the ratio of
the standard deviation to the mean of the distribution. The value of the coefficient of variation
estimated from in-vivo recordings is high, and fluctuates between 0.5 and 1 [126].

The variability in the spike count is quantified instead by comparing the mean number of
spikes computed within a fixed time window with the trial-to-trial variance. The values of the
mean and the variance are typically found to be comparable (Fig. 1.1 d). The curve can be
fitted with a slightly super-linear relationship in all the brain areas that have been considered
in the literature [43, 144, 22].

Both measures of variability point to a completely stochastic model of spike generation.
A simple Poisson model, which assumes that spikes are fired at random from an underlying
stationary firing rate, predicts both an exponential ISI histogram with unitary coefficient of
variation and a linear increase of the variance with the mean of the spike count.

High levels of variability have been robustly observed across different animal preparations
and across several brain areas [75, 56], suggesting that what we perceive as noise could be an
integrative and fundamental feature of the neural code. Experimental evidence thus quickly
turned into fundamental theoretical questions, such as: is there any significance in the occur-
rence and in the time position of a single spike, or is the information content redundantly
stored in the form of average firing rates? Is variability a coding feature, or a constraint that
the brain has to deal with?

2



1.1. Irregular firing in cortical networks

a. b.

c.

d.

Figure 1.1: Variability in a single neuron spiking activity: recordings from area MT of an alert
monkey attending the random-dot motion task [21]. a. Rastergram and peri-stimulus time
histogram. The same identical visual stimulus is presented across 210 different trials. Firing
rate modulations are elicited by slow variations in the stimulus coherence and luminance. b.
Magnified view of the shaded region in a (from 360 to 460 ms), where the average firing rate
is almost stationary. c. Inter-spike interval histogram. The solid line corresponds to the best
exponential fit to the data. d. Variance in the spike count against the mean spike count. Every
dot of the plot is measured in a different time window and from a restricted subset of trials.
The best fit polynomial curve is displayed as solid line (y = x1.3), while the prediction from a
stationary Poisson process is shown as dashed. Adapted from [120].

1.1.1 Irregular inputs, irregular outputs

Although a comprehensive understanding of the cortical code is far from being achieved, major
progresses have been made in characterizing the possible mechanicistic sources which underlie
the observed variability.

To begin with, neurons are complex and fragile biological devices. As a consequence,
a fraction of variability is likely to be generated intrinsically during the input-output process
which leads to the spike initiation. Possible sources of stochasticity arise from the finite number
of open ion channels in the neuron membrane, from the thermal noise which acts on the charge
carriers, or again from the low effectiveness of synaptic transmission [84, 116, 63].

Although such intrinsic sources of noise are likely to contribute, additional experimental
evidences from in-vitro setups suggest that their role might be of minor relevance. When they
are isolated from their afferent cells, indeed, neurons fairly reliably respond to slowly and fast
modulated input currents [82, 27].

On the other hand, the structure of the total input current that neurons receive when they
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1. Introduction

a. b.

Figure 1.2: Poisson-like firing activity can emerge in model neurons which receive balanced
excitatory and inhibitory input currents. a. Sample time traces of the membrane potential
variable for a leaky integrate-and-fire model [53] of a cortical neuron. The neuron has mem-
brane time constant τ = 10 (all units are arbitrary). The reset is at baseline, and the thresh-
old membrane potential is at Vth = 10. The neuron receives a stationary excitatory input
current together with a stochastic contribution originating from 1000 excitatory and 1000 in-
hibitory pre-synaptic Poisson spike trains. Top: the mean input value exceeds the threshold
potential Vth. The membrane potential quickly climbs to the threshold value and thus quite
regularly generates spikes. Bottom: the mean input lays slightly below the threshold. In its
sub-threshold dynamics, the membrane potential accumulates the Poisson noise, and spikes
are emitted as a result of random fluctuations. b. Random network models where the strength
of excitatory and inhibitory connections is correctly balanced admit a stable state where neu-
rons asynchronously and irregularly emit action potentials. Rasterplot of the simulated spik-
ing activity of 60 units from a larger network of N = 20000 leaky integrate-and-fire neurons.
Model architecture as in [24].

are integrated in the cortical circuits is largely unknown. It is thus legitimate to hypothesise
that neurons do not actively produce, but simply inherit, the noise which is already present at
the level of their inputs. Cortical cells, indeed, integrate the action potentials which are gener-
ated by several thousands of neighbouring cells. If one assumes that neighbouring neurons fire
Poisson spikes, the total input current received by a single cortical neuron is purely stochastic,
its mean and variance being determined by the firing rate of its pre-synaptic afferents.

Crucially, a model neuron which integrates an incoming noisy current can operate in a
regime where the variability in the input is reflected in its output [142, 53]. In order to obtain
irregular outputs, it is critical to assume that the input contributions originating from excitatory
and inhibitory pre-synaptic cells loosely balance each other [119, 120].

In those conditions, the mean input is small and elicits solely sub-threshold responses
in the post-synaptic membrane potential. Since the variance of the input does not vanish,
however, the sub-threshold dynamics is dominated by noise, and spikes can be generated by
random fluctuations of the membrane potential (Fig. 1.2 a.). In this dynamical regime, the
output of the neuron is far from saturation, a desirable feature which allows a wide range of
firing rate responses [120].

The output variability can almost completely match the irregularity of the Poisson pro-
cesses that the neuron receives as input [142]. The output firing rate ϕout depends on the
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1.1. Irregular firing in cortical networks

statistics of the input current, or equivalently, on the average pre-synaptic firing rate ϕin. One
can write [125]:

ϕout = F (ϕin), (1.1)

where the function F incorporates both the details of the input connectivity structure and both
the single-cell biophysical principles of the spike initiation.

If excitatory and inhibitory currents are correctly balanced, one can finally derive a more
global picture where every neuron of the network receives and sends out noise. In a cortical
assembly, indeed, every neuron acts both as input and as output. In the hypothesis that dif-
ferent cells can be considered as statistically equivalent objects, a self-consistent network state
requires [9, 143, 105]:

ϕ = F (ϕ). (1.2)

For a fixed function F , Eq. 1.2 can be used to determine the self-consistent firing rate ϕ at
which every network unit is spiking.

Almost twenty years ago, rigorous mathematical analyses have been used to show that
this self-consistent solution correspond to a stable collective state for the dynamics of random
architectures of excitatory and inhibitory units [24, 145, 11]. In this regime, the input cur-
rent received by every neuron is dynamically maintained close to the threshold value thanks
to the disordered structure of synaptic connections. As a consequence, spikes are driven by
fluctuations and different neurons fire asynchronously (Fig. 1.2 b). Extremely irregular spike
trains emerge, even in absence of external sources of noise, because of the chaotic nature of
the high-dimensional attractor underlying the dynamics.

To conclude, seminal studies have revealed that large, Poisson-like variability can sponta-
neously emerge from the collective dynamics of completely deterministic model neurons that
have been arranged in random architectures. As the mammalian cortex consists of large and
intricate assemblies of neurons, it appears reasonable to hypothesize that collective network
effects might significantly contribute to the total neural variability that has been measured
from data.

1.1.2 Point-process and firing rate variability
If neurons in balanced cortical networks behave as Poisson spike generators, one could ratio-
nally hypotesize that cortical cells mostly encode information through the firing rate variables
which control their irregular spiking. While the network receives and processes its inputs,
firing rates could be stationary or varying in time. As in Fig. 1.1 a, it is tempting to try to
estimate the time course of a single cell firing rate by averaging the neural activity across many
repetitions of the same measurement. Such approach, that has been widely adopted in the
literature, in fact only returns a measure of the trial-averaged firing rate.

More recently, the necessity of considering inter-trial rate fluctuations as well has been
pointed out [140, 35, 31]. Isolating the variability which derives from variations in the firing
rates, in fact, can help build a more precise mapping between neural activity and behaviour,
especially in tasks where the behavioural output is variable itself [34, 33, 49, 102]. In some
cases, furthermore, the cortical response to behavioural stimuli might be not evident at the
level of the average firing rate, while it might appear at the level of the amplitude of single-
trial fluctuations [35]. Finally, it has been suggested that a principled analysis of rate variability
could help distinguishing between alternative computational models for cortical dynamics [35,
31].
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1. Introduction

When the neural activity is averaged across trials, the variability in the firing rates, or
gain variability, is washed out together with the variability associated with the Poisson spike
generation, also referred to as point-process variability. Both sources of irregularity, on the
other hand, are integrated together when standard variability measures are applied, like the
Fano factor for the spike count and the coefficient of variation for the inter-spike intervals.

The two contributions can be disentangled by considering doubly stochastic models of
spike initiation [35, 31, 56]. In those frameworks, spikes are emitted at random from an
underlying time-varying firing rate. Crucially, the rate consists of a deterministic, stimulus-
driven component ν, which is frozen across different trials, and of a trial-dependent gain G
which enters multiplicatively [56]:

ϕ = Gν. (1.3)

Introducing the gain variable G allows to largely improve the precision of the fit to the
neural data recorded from several distinct cortical regions [56]. As shown in Fig. 1.3 a, fur-
thermore, assuming a multiplicative dependence of the rate on the gain predicts an excess of
variance which resembles the super-Poisson variability which has been long observed in the
literature [126, 120, 140]. The time traces of the gain that are directly inferred from the neural
data display indeed large trial-to-trial variability, which can be measured in terms of its coeffi-
cient of variation (Fig. 1.3 b). Larger firing rate variability is typically observed in areas which
are higher in the cortical hierarchy.

The gain auto-correlogram in Fig. 1.3 c reveals that rate fluctuations are typically slow,
with relaxation time scales which can last up to several minutes. On average, the cortical
relaxation time scales follow a precise hierarchical ordering, with sensory and prefrontal areas
exhibiting, respectively, shorter and longer time constants [92].

A significative fraction of the firing rate variability appears to be shared across neurons
covering wide cortical areas, and is likely to importantly contribute to the correlation patterns
between pairs of cells [56, 35]. This observation is agreement with the long-standing hypoth-
esis that rate fluctuations derive from modulations in the excitability controlled by top-down
signals linked to arousal and attention [140].

On the other hand, the shared component of rate variability seems to be restricted to rel-
atively fast fluctuations [56]. The tails of the auto-correlation function which correspond to
slow fluctuations, indeed, are absent in the cross-correlogram measured within pairs of differ-
ent neurons (Fig. 1.3 c). Single neurons thus seem to develop local and extremely slow firing
rate modulations, a scenario which is more difficult to reconcile with a top-down modulatory
hypothesis. Fast and slow firing rate modulations could thus originate from distinct generating
mechanisms.

1.2 Chaotic regimes in networks of firing rate units
One recent hypothesis suggests that, similarly to point-process variability, slow and local firing
rate modulations could be produced intrinsically through the recurrent circuitry of the cortex
[66]. A convenient network model, which spontaneously sustains slowly fluctuating dynamical
regimes, was found almost thirty years ago in a seminal work by Sompolinsky and colleagues
[127].

In this study, the collective behaviour of large disordered networks of non-linear units
is examined (Fig. 1.4 a). Every node in the network is characterized by a continuous state
variable, whose dynamics obeys a smooth evolution law. At every node, the activation variable
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1.2. Chaotic regimes in networks of firing rate units

a. b.

c.

LGN

V1

V2

MT

Figure 1.3: Spike trains from cortical in-vivo recordings can be parsimoniously described by
a doubly stochastic model, where the firing rate across different trials contains both a frozen
and a variable component (Eq. 1.3). a. Spike count variance-to-mean relation for a single V1
neuron stimulated with grating stimuli drifting in different directions. The prediction from
the doubly stochastic model fitted to data is displayed in blue. The prediction from a simple
Poisson model is shown in black. Means and variances were computed over 125 repetitions
of each stimulus direction. b. Trial-to-trial variability of the gain variable inferred from the
doubly stochastic model, quantified through its coefficient of variation. The full distribution
is obtained by performing the analysis on different time windows. Different colors refer to
different data sets, recorded from different cortical areas in the visual pathway. c. Temporal
structure of the inferred gain, measured in four different data sets and averaged across many
recorded cells. Left: auto-correlation, right: cross-correlation. Adapted from [56].

xi, loosely interpreted as the total current entering the unit, is non-linearly transformed into
an output ϕ(xi). Critically, the network architecture is random, i.e. the pairwise coupling
parameters are drawn from a Gaussian probability distribution.

It was found that the overall strength of the network connectivity structure controls the
appearance of smooth chaotic fluctuations from a silent network regime. At the bifurcation
point, an extensive number of eigenvectors become unstable. Network activity is then push-
pulled in many different random directions, resulting in irregular and uncorrelated fluctuations
with complex spatio-temporal profiles (Fig. 1.4 b). In this irregular state, an explicit calculation
of the Lyapunov exponents indicates that fluctuations have exponentially short memory of
their past history. As the dynamics is fully deterministic, network activity is formally chaotic.

A second attractive feature of this network model is the rich variety of activity time scales
that it can support. The time scale of chaotic fluctuations is indeed controlled by the main
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1. Introduction

a. b.

Figure 1.4: Irregular and smooth fluctuations spontaneously emerge as collective phe-
nomenon in networks of randomly coupled non-linear units. a. A random network: activ-
ity in each node is described by a continuous variable xi(t) which obeys a smooth temporal
evolution law. The non-linear input-output transformation performed by single units is mod-
eled through the activation function ϕ(x). b. Sample of chaotic activity in finite networks:
temporal evolution of the activation variable xi for six randomly selected unit. Activity traces
fluctuate irregularly around zero.

parameter of the system, i.e. the overall connectivity strength. Close to the critical point,
the time decay of fluctuations sharply increases; it formally diverges in the limit of infinite
networks size.

Although the network dynamics in [127] can be formally mapped into a standard firing
rate model [42, 151], whether similar irregular states are expected to appear in biologically-
motivated models of cortical networks has been a long-standing question. Indeed, while this
model captures the essence of the non-linear input-output transformation taking place in real
neurons, it lacks the elementary features that would enable a direct comparison with other
more realistic networks models. For many years, very little effort has been devoted to build
and explore such a link.

In the last few years, this class of models has been attracting increasing attention. As
already discussed, this renewed interest can be partially attributed to the recent improvement
in the neural recordings techniques, that have allowed to systematically disentangle multiple
levels of variability in the neural data.

A second significant contribution has come from the recent advances in the research field
at the frontier between neuroscience and machine learning. The model from [127] is indeed
widely adopted in novel lines of research which explore learning and plasticity mechanisms in
recurrent network models [67, 132, 73, 85, 138]. Because of the complex temporal dependen-
cies that are intrinsically generated by recurrent circuits, training recurrent neural networks
has been historically a cumbersome task. A variety of novel training strategies have only re-
cently allowed to efficiently build artificial computational models which can solve elaborate
spatio-temporal tasks. Apart from being attractive tools for the theoretical and machine learn-
ing communities, trained networks have been combined with neural recordings to get valuable
insights on the dynamics and coding principles of the cortex [83, 15, 100, 128, 88].

Despite their efficacy and prediction power, trained neural networks are in most of the
cases black box models designed on obscure – and hard to capture – dynamical principles
[13, 133]. Most of the modelling efforts consecrated to understanding large circuits dynamics
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have been focusing indeed on completely random network architectures [24, 145, 127], where
the relationship between connectivity and dynamics can be understood in great detail. On the
contrary, a rigorous understanding of non-random computational networks presents, from
a theoretical point of view, several novel challenges which still need to be addressed. As a
result, what are the dynamical mechanisms underlying computations in trained networks –
and how variability is characterized in computational circuit models – are still largely unsolved
theoretical questions.

1.3 Outline of the work
In this thesis, we investigate how intrinsically generated variability can be integrated in more
realistic models of cortical networks which can serve as elementary units of computation. The
dissertation collects the results of three years of work and consists of three main parts.

I. In the first part, we take direct inspiration from the original work in [127] and we
design a random network model which includes several additional constraints directly moti-
vated by biology. We consider a network architecture which respects Dale’s law: every unit in
the network can either excite or inhibite his neighbours. Moreover, we include more realistic,
positively defined, current-to-rate activation functions. We show that rate fluctuations appear
in strongly coupled excitatory-inhibitory architectures, and we study how variability depends
on further biophysical restrictions, like firing-rate saturation, heterogeneity in the connectivity
and spiking noise. A constrained network model allows for a neater comparison with the more
realistic networks of spiking units that have been traditionally adopted as models for irregular
activity in cortical circuits. In this perspective, we show that our simple rate description can be
used to help understanding the more complex dynamics generated in strongly inter-connected
networks of leaky integrate-and-fire neurons, where classical mean field approaches fail to pro-
vide a good description of spiking activity [95].

II. In the second part, we turn to a simple computational architecture, which includes a
random network together with a single feedback signal. Such elementary connectivity scheme
has been successfully exploited in different training setups [67, 132]. Since the network con-
nectivity is not far from being completely random, we show that the classical mathematical
tools developed for the analysis of large disordered systems can be fruitfully applied to this sce-
nario. We perform a systematic analysis of a network model designed to behave as a generator
of arbitrary periodic patterns. Consistently with our theory, we show that training perfor-
mance significantly improves in highly disordered architectures. When the random compo-
nent of the connectivity is strong, in fact, the intrinsic heterogeneity prevents network activity
from synchronizing. Learning can thus take advantage of a widely decorrelated set of neural
activitiy from which the desired output pattern can be solidly reconstructed.

III. Random networks with a single feedback unit can be more generally thought as
novel recurrent architectures where the global connectivity structure consists of the sum of a
random and of a unit rank structured term. More in general, the idea that neural computa-
tions in large recurrent networks only rely on low-dimensional connectivity structures is widely
shared across several training frameworks [65, 67, 132, 20, 48]. Motivated by this observation,
in the third part of this dissertation we explore the dynamics of large random networks per-
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turbed by weak, low-dimensional connectivity structures. We find that rank one and rank two
connectivity structures that are generated by high-dimensional random vectors can generate
a rich variety of irregular and heterogeneous dynamical regimes. The knowledge of the stable
states of the dynamics allows to easily design partially structured models which can perform
simple tasks. In the resulting computational models, our theoretical framework allows to pre-
dict the variability properties and the largest relaxation time scales of the dynamics. It further
permits to neatly interpret the low-dimensional evolution of the population activity in terms
of the few structured directions that are specified by the network architecture and inputs.
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Part I

intrinsically-generated
fluctuations in random networks

of excitatory-inhibitory units





Summary of Chapters 2 - 3 - 4

Recurrent networks of non-linear units display a variety of dynamical regimes
depending on the structure of their synaptic connectivity. A particularly remark-
able phenomenon is the appearance of strongly fluctuating, chaotic activity in
networks of deterministic, but randomly connected rate units. How this type of
intrinsically generated fluctuations appears in more realistic networks of spiking
neurons has been a long standing question. The comparison between rate and
spiking networks has in particular been hampered by the fact that most previous
studies on randomly connected rate networks focused on highly simplified models,
in which excitation and inhibition were not segregated and firing rates fluctuated
symmetrically around zero because of built-in symmetries.

To ease the comparison between rate and spiking networks, we investigate the
dynamical regimes of sparse, randomly-connected rate networks with segregated
excitatory and inhibitory populations, and firing rates constrained to be positive.

Extending the dynamical mean field theory, we show that network dynamics
can be effectively described through two coupled equations for the mean activity
and the auto-correlation function. As a consequence, we identify a new signature
of intrinsically generated fluctuations on the level of mean firing rates. We more-
over found that excitatory-inhibitory networks develop two different fluctuating
regimes: for moderate synaptic coupling, recurrent inhibition is sufficient to stabi-
lize fluctuations; for strong coupling, firing rates are stabilized solely by the upper
bound imposed on activity. These results extend to more general network archi-
tectures, and to rate networks receiving noisy inputs mimicking spiking activity.
Finally, we show that signatures of those dynamical regimes appear in networks
of integrate-and-fire neurons.

A substantial fraction of this part of the dissertation is adapted from the
manuscript: Intrinsically-generated fluctuating activity in excitatory-inhibitory net-
works by F. Mastrogiuseppe and S. Ostojic, PLoS Computational Biology (2017)
[87].
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Dynamical Mean Field description of
excitatory-inhibitory networks 2

In the first part of this dissertation, we study how the transition to a chaotic, slowly fluctuating
dynamical regime, which was first observed in [127], translates to more realistic network mod-
els. We design a non-linear firing rate network which includes novel mathematical contraints
motivated by biology, and we quantitatively address its spontaneous dynamics.

If the synaptic coupling is globally weak, firing rate networks can be described with the help
of standard approaches from dynamical systems theory, like linear stability analysis. However,
in the strong coupling regime, a rigorous description of self-sustained fluctuations can be de-
rived only at the statistical level. To this end, we adopt and extend the theoretical framework
first proposed in [127], which provides an adequate description of irregular temporal states.
In such approach, irregular trajectories are thought as random processes sampled from a con-
tinuous probability distribution, whose first two momenta can be computed self-consistently
[127]. This technique, commonly referred to as Dynamical Mean Field (DMF) theory, has
been inherited from the study of disordered systems of interacting spins [40], and provides a
powerful and flexible tool for understanding dynamics in disordered rate networks.

In this chapter, we adapt this approach to the study of more realistic excitatory-inhibitory
network models. We derive the mean field equations which will become the central core of
the analysis which is carried out in details in the rest of part I. To begin with, we review
the methodology of DMF, and we present the results that such theory implies for the original,
highly symmetrical model. This first section is effectively a re-interpretation of the short paper
by [127]. In the second section, we introduce and motivate the more biologically-inspired
model that we aim at studying, and we show that an analogous instability from a fixed point to
chaos can be predicted by means of linear stability arguments. In order to provide an adequate
self-consistent description on the irregular regime above the instability, we extend the DMF
framework to include non-trivial effects due to non-vanishing first-order statistics.
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2. Dynamical Mean Field description of excitatory-inhibitory networks

2.1 Transition to chaos in recurrent random networks
The classical network model in [127] is defined through a non-linear continuous-time dynam-
ics which makes it formally equivalent to a traditional firing rate model [151, 42]. Firing rate
models are meant to provide a high-level description of circuit dynamics, as spiking activity
is averaged over one or more degrees of freedom to derive a simpler description in terms of
smooth state variables. From a classical perspective, firing rate units provide a good descrip-
tion of the average spiking activity in small neural populations. Equivalently, they can well
approximate the firing of single neurons if the synaptic filtering time-scale is large enough.
Although in this chapter we don’t focus on any specific interpretation, a sloppy terminology
where the words unit and neuron are used indifferently will be adopted.

The state of each unit in the network is described through an activation variable xi which is
commonly interpreted as the net input current entering the cell. The current-to-rate transfor-
mation that is performed in spiking neurons is modeled through a monotonically increasing
function ϕ, such that the variable ϕ(xi) represents the instantaneous output firing rate of the
unit.

As the network consists of many units (i = 1, ..., N ), the current entering neuron i in-
cludes many contributions, whose values are proportional to the firing rate of the pre-synaptic
neurons. The strength of the synapse from neuron j to neuron i is modeled through the con-
nectivity parameter Jij . The coupled dynamics obey the following temporal evolution law:

ẋi(t) = −xi(t) +
N∑
j=1

Jijϕ(xj(t)). (2.1)

The first contribution on the r.h.s. is a leak term, which ensures the activation variables xi
decays back to baseline in absence of any forcing current. The incoming contributions from
other units in the network sum linearly. Note that we have rescaled time to set the time
constant to unity.

In the paper by [127], the authors focus on a random all-to-all Gaussian connectivity
(Fig. 2.1 a). We thus have Jij = gχij with χij ∼ N (µ = 0, σ2 = 1/N). Such scaling for the
variance ensures that single units experience finite input fluctuations even in the limit of very
large networks. The parameter g controls the global strength of synaptic coupling. As neurons
can make both excitatory and inhibitory connections, this connectivity scheme does not respect
Dale’s law. The activation function is a symmetric sigmoid (ϕ(x) = tanh(x)), which takes
positive and negative values. In the original network, furthermore, neither constant nor noisy
external inputs are considered.

As we will show in the next sections, all those elements together result in an extremely
simplified dynamics, where the transition to chaos can be only measured at the level of the
second-order statistics of the network activity distribution.

2.1.1 Linear stability analysis
To begin with, we notice that the model admits an homogeneous stationary solution for which
the network is completely silent: x0i = 0 ∀i. For a fixed, randomly chosen connectivity matrix,
the network we consider is fully deterministic, and can therefore be examined using standard
dynamical system techniques [131]. We thus derive a first intuitive picture about the network
dynamics by evaluating the linear stability of the homogeneous fixed point.
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2.1. Transition to chaos in recurrent random networks

a. b. c.

d. e.

Figure 2.1: Linear stability analysis and transition to chaos in all-to-all Gaussian networks
with symmetric activation function [127]. a. The Gaussian connectivity matrix gχij . b-c.
Stationary regime: g = 0.8. In b: eigenspectrum of the stability matrix Sij for a simulated
network of N = 2000 units. In good agreement with the circular law prediction, the eigen-
values lie in a compact circle of radius g (continuous black line). Dashed line: instability
boundary. In c: sample of simulated activity for eight randomly chosen units. d-e. Chaotic
regime: g = 1.2. Same figures as in b-c.

The linear response of the system when pushed away from the fixed point can be studied
by tracking the time evolution of a solution in the form: xi(t) = x0 + δxi(t). Close to the
fixed point, the function ϕ(x) can be expanded up to the linear order in δxi(t). This results
in a system of N coupled linear differential equations, whose dynamical matrix is given by:
Sij = ϕ′(0)gχij − δij . Note that here ϕ′(0) = 1.

As a result, the perturbation δxi(t) will be re-absorbed if Re(λi) < 1 for all i, λi being
the ith eigenvalue of the asymmetric random matrix gχij . We are thus left with the problem
of evaluating the eigenspectrum of a Gaussian random matrix. If one focuses on very large
networks, the circular (or Girko’s) law can be applied [54, 136]: the eigenvalues of gχij lie in
the complex plane within a circular compact set of radius g. Although its prediction is exact
only in the thermodynamic limit (N →∞), the circular law also reasonably well approximate
the eigenspectrum of finite random matrices.

We derive that, at low coupling strength (g < 1), the silent fixed point is stable (Fig. 2.1
b-c). More than this, x0 = 0 is a global attractor, as Sij is a contraction [146]. Numerical sim-
ulations confirm that, in this parameter region, network activity settles into the homogeneous
fixed point. For g > 1, the fixed point is unstable, and the network exhibits ongoing dynamics
in which single neuron activity fluctuates irregularly both in time and across different units
(Fig. 2.1 d-e). As the system is deterministic, these fluctuations are generated intrinsically by
strong feedback along unstable modes, which possess a random structure inherited from the
random connectivity matrix.
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2. Dynamical Mean Field description of excitatory-inhibitory networks

2.1.2 The Dynamical Mean Field theory
The non-stationary regime cannot be easily analyzed with the tools of classical dynamical sys-
tems. To this end, the authors in [127] adopted a mean field approach to develop an effective
statistical description of network activity. In this section, we propose a review of such tech-
nique; our analysis is based on [127] and subsequent works [99, 141, 89].

Rather than attempting to describe single trajectories, the main idea is to focus on their
statistics, which can be determined by averaging over different initial conditions, time and
the different instances of the connectivity matrix. Dynamical Mean Field (DMF) acts by
replacing the fully deterministic interacting network by an equivalent stochastic system. More
specifically, as the interaction between units

∑
j Jijϕ(xj) consists of a sum of a large number of

terms, it can be replaced by a Gaussian stochastic process ηi(t). Such a replacement provides
an exact mathematical description under specific assumptions on the chaotic nature of the
dynamics [16, 90] in the limits of large network size N . In this thesis, we will treat it as an
approximation, and we will assess the accuracy of this approximation by comparing the results
with simulations performed for fixed N .

Replacing the interaction terms by Gaussian processes transforms the system into N iden-
tical Langevin-like equations:

ẋi(t) = −xi(t) + ηi(t). (2.2)

As ηi(t) is a Gaussian noise, each trajectory xi(t) emerges thus as a Gaussian stochastic process.
As we will see, the stochastic processes corresponding to different units become uncorrelated
and statistically equivalent in the limit of a large network, so that the network is effectively
described by a single process.

Within DMF, the mean and correlations of this stochastic process are determined self-
consistently, by requiring that averages over ηi(t) be identical to averages over time, instances
of the connectivity matrix and initial conditions in the original system. Both averages will be
indicated with []. For the mean, we get:

[ηi(t)] = g[

N∑
j=1

χijϕ(xj(t))] = g
N∑
j=1

[χij ][ϕ(xj(t))] = 0 (2.3)

as [χij ] = 0. In the second equality, we assumed that activity of different units decorrelates in
large networks; in particular, that activity of unit j is independent of its outgoing connections
Jij . As we will show in few lines, this assumption is self-consistent. In the mathematical
literature, it has been referred to as local chaos hypothesis [8, 52, 90].

The second-order statistics of the effective input gives instead:

[ηi(t)ηj(t+ τ)] = g2[

N∑
k=1

χikϕ(xk(t))

N∑
l=1

χjlϕ(xl(t+ τ))]

= g2
N∑
k=1

N∑
l=1

[χikχjl][ϕ(xk(t))ϕ(xl(t+ τ))].

(2.4)

As [χikχjl] = δijδkl/N , cross-correlations vanish, while the auto-correlation results in:

[ηi(t)ηi(t+ τ)] = g2[ϕ(xi(t))ϕ(xi(t+ τ))]. (2.5)
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2.1. Transition to chaos in recurrent random networks

We will refer to the firing rate auto-correlation function [ϕ(xi(t))ϕ(xi(t+ τ))] as C(τ). Con-
sistently with our starting hypothesis, the first- and the second-order statistics of the Gaussian
process are uncorrelated from one unit to the other.

Once the probability distribution of the effective input has been characterized, we derive a
statistical description of the network activity in terms of the activation variable xi(t) by solving
the Langevin equation in Eq. 2.2.

Trivially, the first-order statistics of xi(t) and ηi(t) asymptotically coincide, so that the
mean input always vanishes. In order to derive the auto-correlation function∆(τ) = [xi(t)xi(t+
τ)], we derive twice with respect to τ and we combine Eqs. 2.2 and 2.5 to get the following
time evolution law:

∆̈(τ) = ∆(τ)− g2C(τ). (2.6)

We are thus left with the problem of writing down an explicit expression for the firing rate
auto-correlation function C(τ). To this aim, we write x(t) and x(t+ τ) as Gaussian variables
which obey [x(t)x(t + τ)] = ∆(τ) and [x(t)2] = [x(t + τ)2] = ∆0, where we defined the
input variance ∆0 = ∆(τ = 0). One possible choice is:

x(t) =
√

∆0 − |∆(τ)|x1 +
√
|∆(τ)|z

x(t+ τ) =
√
∆0 − |∆(τ)|x2 + sgn(∆(τ))

√
|∆(τ)|z

(2.7)

where x1, x2 and z are Gaussian variables with zero mean and unit variance. For reasons
which will become clear in few steps, we focus on the case ∆(τ) > 0. Under this assumption,
the firing rate auto-correlation function can be written as:

C(τ) =

∫
Dz
[∫
Dxϕ(

√
∆0 −∆(τ)x+

√
∆(τ)z)

]2
(2.8)

where used the short-hand notation:
∫
Dz =

∫ +∞
−∞

e−
z2

2√
2π

dz.
From a technical point of view, Eq. 7.61 is now a second-order differential equation, whose

time evolution depends on its initial condition ∆0. This equation admits different classes of
solutions which are in general hard to isolate in an explicit form. Luckily, we can reshape our
problem into a simpler, more convenient formulation.

Isolating the solutions We observe that Eq. 7.61 can be seen as analogous to the equation
of motion of a classical particle in a one-dimensional potential:

∆̈ = −∂V (∆,∆0)

∂∆
(2.9)

The potential V (∆,∆0) is given by an integration over ∆:

V (∆,∆0) = −
∫ ∆

0
d∆′ [∆′ − g2C(∆′,∆0)

]
. (2.10)

One can check that this results in:

V (∆,∆0) = −
∆2

2
+ g2

∫
Dz
[∫
DxΦ(

√
∆0 −∆x+

√
∆z)

]2
(2.11)
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2. Dynamical Mean Field description of excitatory-inhibitory networks

a. b.

Figure 2.2: Shape of the potential V (∆,∆0) for different initial conditions ∆0. a. Weak
copling regime: g < gC . b. Strong coupling regime: g > gC .

where Φ(x) =
∫ x
−∞ ϕ(x′) dx′. In the present framework, Φ(x) = ln(cosh(x)).

In absence of external noise, the initial condition to be satisfied is ∆̇(τ = 0) = 0, which
implies null kinetic energy for τ = 0. A second condition is given by: ∆0 > |∆(τ)| ∀τ . The
solution ∆(τ) depends on the initial value ∆0, and is governed by the energy conservation
law:

V (∆(τ = 0),∆0) = V (∆(τ =∞),∆0) +
1

2
∆̇(τ =∞)2 (2.12)

The stationary points and the qualitative features of the∆(τ) trajectory depend then on the
shape of the potential V . We notice that for the symmetric model from [127], the derivative
of the potential in ∆ = 0 always vanishes, suggesting a possible equilibrium point. The full
shape of V is determined by the values of g and ∆0. In particular, a critical value gC exists
such that:

• when g < gC , the potential has the shape of a concave parabola centered in ∆ = 0
(Fig. 2.2 a). The only bounded solution is ∆ = ∆0 = 0;

• when g > gC , the potential admits different qualitative configurations and an infinite
number of different ∆(τ) trajectories. In general, the motion in the potential will be
oscillatory (Fig. 2.2 b).

We conclude that, in the weak coupling regime, the only acceptable solution is centered
in 0 and has vanishing variance. In other terms, in agreement with our linear stability analysis,
we must have xi(t) = 0 ∀t.

In the strong coupling regime, we observe that a particular solution exists, for which ∆(τ)
decays to 0 as τ → ∞. In this final state, there is no kinetic energy left. For this particular
class of solutions, Eq. (2.12) reads:

V (∆0,∆0) = V (0,∆0). (2.13)

More explicitly, we have:

∆2
0

2
= g2

{∫
DzΦ2(

√
∆0z)−

(∫
DzΦ(

√
∆0z)

)2
}
. (2.14)
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In the following, we will often use the compact notation:

∆2
0

2
= g2

{
[Φ2]− [Φ]2

}
. (2.15)

A monotonically decaying auto-correlation function implies a dynamics which loses mem-
ory of its previous states, and is compatible with a chaotic state. In the original study by
Sompolinsky et al. [127], the average Lyapunov exponent is computed. It is shown that the
monotonically decreasing solution is the only self-consistent one, as the correspondent Lya-
punov exponent is positive.

Once ∆0 is computed through Eq. 2.15, its value can be injected into Eq. 7.61 to get the
time course of the auto-correlation function. The decay time of ∆(τ), which depends on g,
gives an estimation of time scale of chaotic fluctuations. As the transition in gC is smooth,
the DMF equations can be expanded around the critical coupling to show that such time scale
diverges when approaching the transition from above. Very close to g = gC , the network can
thus support arbitrarily slow spontaneous activity.

Numerical inspection of the mean field solutions suggest that, as it has been predicted
by the linear stability analysis, gC = 1 (Fig. 2.3 b). This can be also rigorously checked by
imposing that, at the transition point, the first and the second derivative of the potential vanish
in ∆ = 0.

To conclude we found that, above g = 1, the DMF predicts the emergence of chaotic
trajectories which fluctuate symmetrically around 0. In the large network limit, different tra-
jectories behave as totally uncoupled processes. Their average amplitude can be computed
numerically as solution of the non-linear self-consistent equation in 2.15.

2.2 Fast dynamics: discrete time evolution
As a side note, we briefly consider a closely related class of models which has been extensively
adopted in the DMF literature. In this formulation, the dynamics is given by a discrete time
update:

xi(t+ 1) =
N∑
j=1

Jijϕ(xj(t)) (2.16)

As there are no leak terms, fluctuations in the input current occur on an extremely fast time-
scale (formally, within one time step). All the other elements of the model, including Jij and
ϕ(x), are taken as in [127].

This discrete-time formulation has been used, for instance, in the first attempts to exploit
random network dynamics for machine learning purposes [67]. It has also been adopted in
several theoretically oriented studies, as analysing fast dynamics has two main advantages:
mean field descriptions are easier to derive [89, 141, 30], and, in finite-size networks, the
quasi-periodical route to chaos can be directly observed [46, 30, 4].

While finite size analysis falls outside the scope of this dissertation, we briefly review how
the mean field equations adapt to discrete-time networks and how this description fits in the
more general DMF framework.

Similar to the continuous-time case, the discrete-time dynamics admits an homogeneous
fixed point in x0 = 0. Furthermore, as it can be easily verified, the linear stability matrix of
this stationary state coincides with Sij = gχij − δij , so that an instability occurs in g = 1. In
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a. b.

c.

Figure 2.3: Discrete-time dynamics in random neural networks. a. Sample of simulated
activity: time traces for eight randomly chosen units in the static (top) and in the chaotic
regime (bottom). b. Bifurcation diagram for the second-order statistics ∆0 as a function of
the coupling strength parameter g. The value of ∆0 is evaluated by solving iteratively the
DMF equations for continuous- (Eq. 2.15) and discrete-time (Eq. 2.20) networks. Vertical
line: critical coupling in gC = 1. c. Temporal shape of the auto-correlation function for fixed
g = 1.3. The time scale of discrete-time dynamics is set arbitrarily.

order to analyze dynamics beyond the instability, we apply DMF arguments. When defining
the effective input ηi(t) =

∑N
j=1 Jijϕ(xj(t)), fast dynamics will translate in the following

simple update rule:
xi(t+ 1) = ηi(t) (2.17)

where, at each time step, xi is simply replaced by the stochastic effective input. As a con-
sequence, by squaring and averaging over all the sources of disorder, we find that the input
current variance obeys the following time evolution:

∆0(t+ 1) = [η2i (t)] = g2[ϕ2(t)]. (2.18)
In the last equality, we used the self-consistent expression for the second-order statistics of
ηi, which can be computed as in the continuous-time case, yielding to the same result. By
expressing x(t) as Gaussian variable, the evolution law for ∆0 can be made explicit:

∆0(t+ 1) = g2
∫
Dzϕ2(

√
∆0(t)z). (2.19)

At equilibrium, the value of ∆0 satisfies the fixed-point condition:

∆0 = g2
∫
Dzϕ2(

√
∆0(t)z). (2.20)
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2.3. Transition to chaos in excitatory-inhibitory neural networks

As it can be easily checked, this equation is satisfied for ∆0 = 0 when g < 1, while it admits a
nontrivial positive solution above gC = 1, corresponding to a fast chaotic phase (Fig. 2.3 b).

The solution that we derive from solving Eq. 2.20 does not coincide exactly with the so-
lution we obtained in the case of continuous-time networks, although they share many quali-
tative features (Fig. 2.3 b). In contrast to discrete-time units, neurons with continuous-time
dynamics act as low-pass filters of their inputs. For this reason, continuous-time chaotic fluc-
tuations are characterized by a slower time scale (Fig. 2.3 c) and a smaller variance ∆0 (Fig. 2.3
b).

We conclude this paragraph with a technical remark: our new equation for ∆0 (Eq. 2.20)
coincides with the general expression for stationary solutions in continuous-time networks.
The latter can be derived from the continuous-time DMF equation ∆̈(τ) = ∆(τ) − g2C(τ)
by setting x(t) = x(t+ τ) and thus ∆̈(τ) = 0. From the analysis we just carried out, we con-
clude that the general stationary solution for continuous-time networks admits, together with
the homogeneous fixed point, a non-homogeneous static branch for g > 1. As it is charac-
terized by positive Lyapunov exponents, this solution is however never stable for continuous-
time networks. This sets a formal equivalence between chaotic discrete-time and stationary
continuous-time solutions which does not depend on the details of the network model. For
this reason, it will return back several times within the body of this dissertation.

2.3 Transition to chaos in excitatory-inhibitory neural networks
As widely discussed in Chapter 1, network models which spontaneously sustain slow and local
firing rate fluctuations are of great interest in the perspective of understanding the large, super-
Poisson variability observed from in-vivo recordings [120, 56].

Furthermore, the random network model in [127] has been adopted in many training
frameworks as a proxy for the unspecialized substrate on which plasticity algorithms can be
applied. The original computational architecture from Jaeger [67], know as echo-state machine,
adopts the variant of the model characterized by discrete-time dynamics [89, 30]. In later years,
several training procedures have been designed for continuous-time models as well [132, 73,
28].

A natural question we would like to address is whether actual cortical networks exhibit
dynamical regimes which are analogous to rate chaos.

The classical network model analyzed in [127] and subsequent studies [132, 73, 99, 6,
7, 130] rely on several simplifying features that prevent a direct comparison with more bi-
ologically constrained models such as networks of spiking neurons. In particular, a major
simplification is a high degree of symmetry in both input currents and firing rates. Indeed,
in the classical model the synaptic strengths are symmetrically distributed around zero, and
excitatory and inhibitory neurons are not segregated into different populations, thus violating
Dale’s law. The current-to-rate activation function is furthermore symmetric around zero, so
that the dynamics are symmetric under sign reversal. As a consequence, the mean activity in
the network is always zero, and the transition to the fluctuating regime is characterized solely
in terms of second order statistics.

To help bridge the gap between the classical model and more realistic spiking networks
[24, 95], recent works have investigated fluctuating activity in rate networks that include ad-
ditional biological constraints [95, 69, 58], such as segregated excitatory-inhibitory popula-
tions, positive firing rates and spiking noise [69]. In general excitatory-inhibitory networks,
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2. Dynamical Mean Field description of excitatory-inhibitory networks

the DMF equations can be formulated, but are difficult to solve, so that these works focused
mostly on the case of purely inhibitory networks. These works therefore left unexplained some
phenomena observed in simulations of excitatory-inhibitory spiking and rate networks [95], in
particular the observation that the onset of fluctuating activity is accompanied by an elevation
of mean firing rate.

Here we investigate the effects of excitation on fluctuating activity in inhibition-dominated
excitatory-inhibitory networks [142, 91, 3, 111, 60, 61]. To this end, we focus on a simplified
network architecture in which excitatory and inhibitory neurons receive statistically identical
inputs [24]. For that architecture, dynamical mean field equations can be fully solved.

2.3.1 The model
We consider a large, randomly connected network of excitatory and inhibitory rate units. Sim-
ilarly to [127], the network dynamics are given by:

ẋi(t) = −xi(t) +
N∑
j=1

Jijϕ(xj(t)) + Ii. (2.21)

In some of the results which follow, we will include a fixed or noisy external current Ii. The
function ϕ(x) is a monotonic, positively defined activation function that transforms input
currents into output activity.

For the sake of simplicity, in most of the applications we restrict ourself to the case of a
threshold-linear activation function with an offset γ. For practical purposes, we take:

ϕ(x) =


0 x < −γ
γ + x −γ ≤ x ≤ ϕmax − γ

ϕmax x > ϕmax − γ

(2.22)

where ϕmax plays the role of the saturation value. In the following, we set γ = 0.5.
We focus on a sparse, two-population synaptic matrix identical to [24, 95]. We first study

the simplest version in which all neurons receive the same number C ≪ N of incoming
connections (respectively CE = fC and CI = (1 − f)C excitatory and inhibitory inputs).
More specifically, here we consider the limit of large N while C (and the synaptic strengths)
are held fixed [9, 24]. We set f = 0.8.

All the excitatory synapses have strength J and all inhibitory synapses have strength−gJ ,
but the precise pattern of connections is assigned randomly (Fig. 2.4 a). For such connectivity,
excitatory and inhibitory neurons are statistically equivalent as they receive statistically identi-
cal inputs. This situation greatly simplifies the mathematical analysis, and allows us to obtain
results in a transparent manner. In a second step, we show that the obtained results extend to
more general types of connectivity.

Our analysis largely builds on the methodology that we have been reviewing in the previous
section for the case of the simpler network as in [127].

2.3.2 Linear stability analysis
As the inputs to all units are statistically identical, the network admits a homogeneous fixed
point in which the activity is constant in time and identical for all units, given by:

x0 = J(CE − gCI)ϕ(x0). (2.23)
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2.3. Transition to chaos in excitatory-inhibitory neural networks

a. b. c.

d. e.

Figure 2.4: Linear stability analysis and transition to chaos in excitatory-inhibitory networks
with threshold-linear activation function. a. The sparse excitatory-inhibitory connectivity ma-
trix Jij . b-c. Stationary regime: J < J0. In b: eigenspectrum of the stability matrix Sij for
a simulated network of N = 2000 units. In good agreement with the circular law prediction,
the eigenvalues lie in a compact circle of approximated radius J

√
CE + g2CI (black contin-

uous line). Black star: eigenspectrum outlier in J(CE − gCI) < 0. Dashed line: instability
boundary. In c: sample of simulated activity for eight randomly chosen units. d-e. Chaotic
regime: J > J0. Same figures as in b-c .

The linear stability of this fixed point is determined by the eigenvalues of the matrix Sij =
ϕ′(x0)Jij .

In the limit of large networks, the eigenspectrum of Jij consists of a continuous part that
is densely distributed in the complex plane over a circle of radius J

√
CE + g2CI , and of

a real outlier given by the effective balance of excitation and inhibition in the connectivity
J(CE − gCI) (Fig. 2.4 b-d) [98, 54, 136, 135]. We focus here on an inhibition-dominated
network corresponding to g > CE/CI . In this regime, the real outlier is always negative and
the stability of the fixed point depends only on the continuous part of the eigenspectrum. The
radius of the eigenspectrum disk, in particular, increases with the coupling J , and an instability
occurs when the radius crosses unity. The critical coupling J0 is given by:

ϕ′(x0)J0
√
CE + g2CI = 1 (2.24)

where x0 depends implicitly on J through Eq. 2.23 and the gain ϕ′(x) is in general finite and
non-negative for all the values of x.

Numerical simulations suggest that, above the instability, the positively-bounded firing
rate trajectories undergo spatial and temporal irregular fluctuations. In order to provide a
characterization of chaotic activity, we extend and adapt the DMF theory to the new architec-
ture. As we will see, the main novelties derive from the necessity to include in the framework
a self-consistent description of the non-vanishing first-order statistics.
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2. Dynamical Mean Field description of excitatory-inhibitory networks

2.3.3 Deriving DMF equations
DMF theory acts by replacing the fully deterministic coupling term

∑
j Jijϕ(xj) + I in

Eq. 2.21 by an equivalent Gaussian stochastic process ηi. Our aim is thus to compute self-
consistently the first and second order moments of the effective noise ηi by averaging over
time, units, initial conditions and realizations of the random matrix. For simplicity, we focus
here on the case of constant and homogeneous inputs.

For the mean, we get:

[ηi(t)] =

 N∑
j=1

Jijϕj(t) + I

 =

CE∑
jE=1

J [ϕjE ]− g

CI∑
jI=1

J [ϕjI ] + I

= J(CE − gCI)[ϕ] + I

(2.25)

where the indices jE and jI run over the excitatory and the inhibitory units pre-synaptic to
unit i. We moreover used the short-hand notation: ϕi(t) := ϕ(xi(t)). We assume that the
mean values of x and ϕ reach stationary values for t→∞, such that [ηi(t)] = [ηi].

Under the same hypothesis, the second moment [ηi(t)ηj(t+ τ)] is given by:

[ηi(t)ηj(t+ τ)] =

[
N∑
k=1

Jikϕk(t)

N∑
l=1

Jjlϕl(t+ τ)

]
+ 2IJ(CE − gCI)[ϕ] + I2. (2.26)

In order to evaluate the first term in the r.h.s., we differentiate two cases: first, we take
i = j, yielding the noise auto-correlation. The sum over k (resp. l) can be split into a sum
over kE and kI (resp. lE and lI ) by segregating the contributions from the two populations.
We thus get:[

N∑
k=1

Jikϕk(t)
N∑
l=1

Jilϕl(t+ τ)

]
=

 NE∑
kE=1

JikEϕkE (t)

NE∑
lE=1

JilEϕlE (t+ τ)


+

 NI∑
kI=1

JikIϕkI (t)

NI∑
lI=1

JilIϕlI (t+ τ)

+ 2

 NE∑
kE=1

JikEϕkE (t)

NI∑
lI=1

JilIϕlI (t+ τ)

 .

(2.27)

We focus on the first term of the sum (same considerations hold for the second two), and
we differentiate contributions from kE = lE and kE ̸= lE . Setting kE = lE returns a
contribution equal to CEJ

2[ϕ2]. In the sum with kE ̸= lE , as C is fixed, we obtain exactly
CE(CE − 1) contributions of value J2[ϕ]2. This gives, for the two populations:[

N∑
k=1

Jikϕk(t)
N∑
l=1

Jilϕl(t+ τ)

]
= CEJ

2[ϕi(t)ϕi(t+ τ)] + CE(CE − 1)J2[ϕ]2

− 2CECIgJ
2[ϕ]2 + CIg

2J2[ϕi(t)ϕi(t+ τ)] + CI(CI − 1)g2J2[ϕ]2

= J2(CE + g2CI)[ϕi(t)ϕi(t+ τ)] + J2(CE − gCI)
2[ϕ]2 − J2(CE + g2CI)[ϕ]

2.

(2.28)

By defining the rate auto-correlation function C(τ) = [ϕi(t)ϕi(t+ τ)], we finally get:

[ηi(t)ηi(t+ τ)]− [ηi]
2 = J2(CE + g2CI){C(τ)− [ϕ]2}. (2.29)
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When i ̸= j, we instead obtain:[
N∑
k=1

Jikϕk(t)

N∑
l=1

Jjlϕl(t+ τ)

]
= C2

EJ
2[ϕ]2 + pCEJ

2{C(τ)− [ϕ]2}+ C2
I g

2J2[ϕ]2

+ pCIg
2J2{C(τ)− [ϕ]2} − 2CECIgJ

2[ϕ]2.

(2.30)

The constant p corresponds to the probability that, given that k is a pre-synaptic afferent
of neuron i, the same neuron is connected also to neuron j. Because of sparsity, we expect
this value to be small. More precisely, as N is assumed to be large, we can approximate the
probability p with C/N . We eventually find:

[ηi(t)ηi(t+ τ)]− [ηi]
2 = pJ2(CE + g2CI){C(τ)− [ϕ]2} ∼ 0 (2.31)

because p→ 0 when N →∞.
Once the statistics of the effective stochastic term ηi are known, we can describe the input

current x in terms of its mean µ = [xi] and its mean-subtracted correlation function ∆(τ) =
[xi(t)xi(t+ τ)]− [xi]

2. The mean field current xi(t) emerging from the stochastic process in
Eq. 2.2 behaves as a time-correlated Gaussian variable. First we observe that, asymptotically,
its mean value µ coincides with the mean of the noise term ηi:

µ = J(CE − gCI)[ϕ] + I. (2.32)

By combining Eqs. 2.2 and 2.29, we moreover get the second equation for the auto-
correlation evolution:

∆̈(τ) = ∆(τ)− J2(CE + g2CI){C(τ)− [ϕ]2}. (2.33)

By explicitly constructing x(t) and x(t + τ) in terms of unit Gaussian variables, we self-
consistently rewrite the firing rate statistics [ϕ] and C(τ), as integrals over the Gaussian dis-
tributions:

[ϕ] =

∫
Dzϕ(µ+

√
∆0z)

C(τ) =

∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆(τ)x+

√
∆(τ)z)

]2
.

(2.34)

As we did in Section 2.1, we transform the problem into the equivalent classical motion in a
one-dimensional potential. The potential V (∆,∆0) becomes:

V (∆,∆0) = −
∆2

2
+J2(CE+g2CI)

{∫
Dz
[∫
DxΦ(µ+

√
∆0 −∆x+

√
∆z)

]2
−∆[ϕ]2

}
(2.35)

where Φ(x) is the primitive of the threshold-linear activation function ϕ(x).
Similarly to the simpler model, the derivative of the potential in ∆ = 0 is always 0, sug-

gesting a possible equilibrium point where the current distribution is concentrated in its mean
value µ. Note that the existence of the stationary point in 0 stems from the −∆[ϕ]2 term in
the potential, which comes from taking the connectivity degree C fixed for each unit in the
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2. Dynamical Mean Field description of excitatory-inhibitory networks

network (for a comparison with the equations obtained for random in-degree networks, see
Chapter 3 and Appendix B).

Similarly again, the exact shape of the potential is controlled by the value of the synaptic
strength J . A critical coupling JC exists such that, for J < JC , the only bounded solution is
centered in µ and has ∆0 = 0. This solution corresponds to the homogeneous fixed point we
analyzed in paragraph 7.3.4.

The chaotic solution for J > JC can be instead isolated by imposing:

V (∆0,∆0) = V (0,∆0) (2.36)

which transforms into:

∆2
0

2
=J2(CE + g2CI)

{∫
DzΦ2(µ+

√
∆0z)−

(∫
DzΦ(µ+

√
∆0z)

)2

−∆0

(∫
Dzϕ(µ+

√
∆0z)

)2
}
.

(2.37)

Note that the unknown first-order momentum µ enters explicitely in the equation for ∆0,
which has to be solved together with the equation for the mean:

µ = J(CE − gCI)

∫
Dzϕ(µ+

√
∆0z) + I. (2.38)

In a more compact form, we can reduce the system of equations to:

µ = J(CE − gCI)[ϕ] + I

∆2
0

2
= J2(CE + g2CI)

{
[Φ2]− [Φ]2 −∆0[ϕ]

2
}
.

(2.39)

Once µ and ∆0 are computed, their value can be injected into Eq. 2.33 to get the time course
of the auto-correlation function.

We finally observe that, similarly to what we found in Section 2.2, the mean field equations
admit a non-homogeneous stationary branch above JC . Such solution, which corresponds to
a chaotic regime in discrete-time models, is never stable for continuous-time dynamics, and
will not be considered in most of the following analysis.

Onself-averaging andE-I segregation Not surprisingly, the mean field equations we derived
rely on the assumption of sparsity in the connectivity: C ≪ N . Classic DMF theory, indeed,
requires synaptic entries Jij to be independent one from each other. Fixing the number of
non-zero connections for each unit is imposing a strong dependence among the entries in
each row of the synaptic matrix. Nevertheless, we expect this dependence to become very
weak when N → ∞, and we find that DMF can still predict correctly the system behavior,
keeping however a trace of the network homogeneity through the term −[ϕ]2 in Eq. 2.33.
Fixing the degree C sets to zero the asymptotic value of the auto-correlation function, and
results in a perfect self-averaging and homogeneity of activity statistics in the population.

We remark that finding the DMF solution for an excitatory-inhibitory network reduces
here to solving a system of two-equations. A large simplification in the problem comes here
from considering networks where excitatory and inhibitory units receive statistically equivalent
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2.3. Transition to chaos in excitatory-inhibitory neural networks

inputs. DMF theory models indeed the statistical distribution of the input currents inside each
network unit. For this reason, it does not include any element deriving from the segregation
of the excitatory and the inhibitory populations in a two-columns connectivity structure. In
consequence, for identical sets of parameters, we expect the same DMF equations to hold in
more generic networks, where each neuron receive CE excitatory and CI inhibitory inputs, but
can make excitatory or inhibitory output connections. In appendix A, we checked the validity
of this observation.

In a more general case, where excitation and inhibition are characterized as distinguishable
populations with their own statistics, solving the DMF equations becomes computationally
costly. The main complication comes from the absence of any equivalent classical motion in a
potential. For that reason, previous studies have focused mostly on the case of purely inhibitory
populations [69, 58].

A systematic analysis of mean field equations and their solutions will be presented in the
next chapter.
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Two regimes of fluctuating activity 3

In this chapter, we solve the mean field equations for excitatory-inhibitory network models
that we derived in detail in Chapter 2.

For fixed values of the activation upper-bound ϕmax, we find that solutions are always fi-
nite, as the size of chaotic fluctuations is bounded. When the threshold-linear activation func-
tion has no saturation values, instead, the stability of the fluctuating activity regime depends
on the exact value of the overall synaptic coupling. To begin with, we rigorously compute the
boundary between stable and run-away activity regions for the simplest network architecture
where there are no external inputs and the connectivity in-degree C is fixed.

In a second step, we check how different biological constraints (details on the network
architecture, spiking noise etc.) qualitatively and quantitatively perturb the dynamical regimes
of the network. We find that stable chaotic activity, where fluctuations are bounded solely by
recurrent inhibition, robustly appears in many generalized network models.

3.1 Dynamical Mean Field solutions
In all the cases that we consider, extracting solutions from the DMF equations corresponds
to solving a system of several non-linear coupled equations which involve single or multiple
Gaussian integrals. Importantly, for threshold-linear activation functions, an analytical ex-
pression for many of these integrals can be derived. Iteration is a practical and stable method
for exactly computing the solutions of the DMF system of equations.

For a network architecture where the number of incoming connections is fixed, DMF
theory reduces to a system of two equations (Eq. 2.39).

In agreement with the dynamical systems analysis in paragraph 7.3.4, at low coupling val-
ues, the DMF theory predicts a solution with vanishing variance and auto-correlation (Fig. 3.1
a). Input currents set into a stationary and uniform value, corresponding to their mean µ. The
predicted value of µ coincides with the homogeneous fixed point x0, representing a low firing
rate background activity (Fig. 3.1 c). As the coupling J is increased, the mean current be-
comes increasingly negative because inhibition dominates, and the mean firing rate decreases
(Fig. 3.1 c-d).

For a critical coupling strength J = JC (which coincides with J0, where the fixed point
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a. b.

c. d.

Figure 3.1: DMF description of network activity with a threshold-linear activation function.
The dynamics mean field results are shown in full lines, numerical simulations as points. a.
Input current variance as a function of the synaptic coupling J . Vertical grey lines indicate the
critical value JC . Grey points show time and population averages performed on 4 realizations
of simulated networks, N = 7000. b. Normalized auto-correlation function for increasing
values of the synaptic coupling (indicated by colored triangles in panel d). c-d. First order
statistics: mean input current and mean firing rate. Choice of the parameters: g = 5, C = 100,
ϕmax = 2.

solution loses stability), DMF predicts the onset of a second solution with fluctuations of
non-vanishing magnitude. Above JC , the variance of the activity grows smoothly from zero
(Fig. 3.1 a), and the auto-correlation ∆(τ) acquires a temporal structure, exponentially decay-
ing to zero as τ → ∞. Close to the critical coupling, the dynamics exhibit a critical slowing
down and the decay timescale diverges at JC , a behavior characteristic of a critical phase tran-
sition [127] (Fig. 3.1 b).

The onset of irregular, fluctuating activity is characterized by a transition of the second-
order statistics from zero to a non-vanishing value. The appearance of fluctuations, however,
directly affects also the first-order statistics. As the firing rates are constrained to be positive,
large fluctuations induce deviations of the mean firing rate [ϕ] and the mean input current µ
from their fixed point solutions. In particular, as J increases, larger and larger fluctuations
in the current lead to an effective increase in the mean firing rate although the network is
inhibition-dominated (Fig. 3.1 a-c-d). The increase in mean firing rate with synaptic coupling
is therefore a signature of the onset of fluctuating activity in this class of excitatory-inhibitory
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networks.

3.2 Intermediate and strong coupling chaotic regimes
The mean field approach revealed that, above the critical coupling JC , the network generates
fluctuating but stable, stationary activity. The dynamical systems analysis, however, showed
that the dynamics of an equivalent linearized network are unstable and divergent for identical
parameter values. The stability of the fluctuating activity is therefore necessarily due to the
two non-linear constraints present in the system: the requirement that firing rates are positive,
and the requirement that firing rates are limited by an upper bound ϕmax.

In order to isolate the two contributions, we examined how the amplitude of fluctuating
activity depends on the upper bound on firing rates ϕmax. Ultimately, we take this bound to
infinity, leaving the activity unbounded. Solving the corresponding DMF equations revealed
the presence of two qualitatively different regimes of fluctuating activity above Jc (Fig. 3.2).

For intermediate coupling values, the magnitude of fluctuations and the mean firing rate
depend only weakly on the upper bound ϕmax. In particular, for ϕmax → ∞ the dynamics
remain stable and bounded. The positive feedback that generates the linear instability is domi-
nantly due to negative, inhibitory interactions multiplying positive firing rates in the linearized
model. In this regime, the requirement that firing rates are positive, combined with dominant
inhibition, is sufficient to stabilize this feedback and the fluctuating dynamics.

For larger coupling values, the dynamics depend strongly on the upper bound ϕmax. As
ϕmax is increased, the magnitude of fluctuations and the mean firing rate continuously increase
and diverge for ϕmax →∞. For large coupling values, the fluctuating dynamics are therefore
stabilized by the upper bound and become unstable in absence of saturation, even though
inhibition is globally stronger than excitation.

Fig. 3.2 d summarizes the qualitative changes in the dependence on the upper bound ϕmax.
In the fixed point regime, mean inputs are suppressed by inhibition, and they correspond to
the low-gain region of ϕ(x), which is independent of ϕmax. Above JC , in the intermediate
regime, the solution rapidly saturates to a limiting value. In the strong coupling regime, the
mean firing rate, as well as the mean input µ, and its standard deviation

√
∆0 grow linearly

with the upper bound ϕmax. We observe that when ϕmax is large, numerically simulated mean
activity show larger deviations from the theoretically predicted value, because of larger finite
size effects (for a more detailed discussion, see in Appendix A).

The two regimes of fluctuating activity are characterized by different scalings of the first-
and second-order statistics with the upper-bound ϕmax. In the absence of upper bound on the
activity, i.e. in the limit ϕmax →∞, the two regimes are sharply separated by a second “critical”
coupling JD: below JD, the network reaches a stable fluctuating steady-state and DMF admits
a solution; above JD, the network has no stable steady-state, and DMF admits no solution.
JD corresponds to the value of the coupling for which the DMF solution diverges, and can be
determined analytically (see in next paragraph). For a fixed, finite value of the upper bound
ϕmax, there is however no sign of transition as the coupling is increased past JD. Indeed, for
a fixed ϕmax, the network reaches a stable fluctuating steady state on both sides of JD, and
no qualitative difference is apparent between these two steady states. The difference appears
only when the value of the upper bound ϕmax is varied. JD therefore separates two dynamical
regimes in which the statistics of the activity scale differently with the upper-bound ϕmax, but
for a fixed, finite ϕmax it does not correspond to an instability. The second “critical” coupling
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a. b.

c. d.

Figure 3.2: Appearance of three dynamical regimes in excitatory-inhibitory rate networks,
dynamical mean field predictions. Threshold-linear activation function saturating at different
values of the upper bound ϕmax. a-b-c. DMF characterization of the statistics for different
values of the saturation value ϕmax. In a, input current variance, in b, input current mean, in
c, mean firing rate. Vertical grey lines indicate the critical couplings JC and JD. d. Mean
firing rate dependence on the upper bound ϕmax, for three coupling values corresponding to
the three different dynamical regimes (indicated by triangles in panel c). Dots show time and
population averages performed on 4 realizations of simulated networks, N = 6000. Choice
of the parameters: g = 5, C = 100.

JD is therefore qualitatively different from the critical coupling JC , which is associated with
an instability for any value of ϕmax.

In summary, the two non-linearities induced by the two requirements that the firing
rates are positive and bounded play asymmetrical roles in stabilizing fluctuating dynamics.
In excitatory-inhibitory networks considered here, this asymmetry leads to two qualitatively
different fluctuating regimes.

3.2.1 Computing JD

In order to obtain a closed expression for computing JD, we study the behavior of the DMF
solution close to the second critical coupling JD, for a non-saturating activation function where
ϕmax →∞. When J approaches JD, ∆0 →∞, while µ→ −∞.

Led by dimensionality arguments, we assume that, close to the divergence point, the ratio
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k = µ/
√
∆0 is constant. With a threshold-linear transfer function, it is possible to compute

analytically the three Gaussian integrals implicit in Eq. 2.39 and to provide an explicit analytic
form of the DMF equations. The equation for the mean translates into:

µ = J(CE − gCI)[ϕ] = J(CE − gCI)

{(
1

2
+ µ

)(
1

2
− g(xa)

)
+

√
∆0

2π
e−

1
2
x2
a

}
(3.1)

where xa = 1√
∆0

(
−1

2 − µ
)
∼ −k and where we have defined: g(x) = 1

2 erf(x/
√
2).

When J → JD, by keeping only the leading order in
√
∆0, we find µ = k̂

√
∆0 with:

k̂ =
J(CE − gCI)

e−
k2

2√
2π

1− J(CE − gCI)(
1
2 +G(k))

. (3.2)

By imposing k = k̂, one can determine self-consistently the value of k for each value of J .
We introduce µ = k

√
∆0 into the second equation for ∆0. By keeping only the leading order

in ∆0, we find: √
∆0 = f(k)

f(k) =
J2(CE + g2CI)T (k)

1
2 − J2(CE + g2CI)S(k)

(3.3)

with:

S(k) =
1

4
k4
[
1

2
+ g(k)

]
+

1

4
k3

e−
k2

2

√
2π

+ k2

[
3

2

(
1

2
+ g(k)

)
−
(
1

2
+ g(k)

)2
]

+ k

5
4

e−
k2

2

√
2π
− 2

(
1

2
+ g(k)

)
e−

k2

2

√
2π

+
3

4

(
1

2
+ g(k)

)
−

e−
k2

2

√
2π

2

−


(
1

2
k2 +
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(3.4)

In order to obtain a solution ∆0, from Eq. 3.3 we require the function f(k) to be positive. We
observe that f diverges when its denominator crosses zero. Here f(k) changes sign, becoming
negative. We use this condition to determine JD (Fig. 3.3):

J2
D(CE + g2CI)S(k(JD)) =

1

2
. (3.5)

The value of JD depends both on the relative strength of inhibition g, and the total number
of incoming connections C (Fig. 3.3). Increasing either g or C increases the total variance of
the interaction matrix Jij , shifting the instability of the homogeneous fixed point to lower cou-
plings. The size of the intermediate fluctuating regime however depends only weakly on the
number of incoming connections C (Fig. 3.3 a). In contrast, increasing the relative strength
of inhibition diminishes the influence of the upper bound and enlarges the phase space re-
gion corresponding to the intermediate regime, where fluctuations are stabilized intrinsically
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3. Two regimes of fluctuating activity

a. b.

Figure 3.3: Phase diagram of the dynamics: dependence on the connectivity in-degree C (a)
and on the inhibition dominance parameter g (b). All other parameters are kept fixed as in
Fig. 3.2.

by recurrent inhibition (Fig. 3.3 b). The second critical coupling JD is in particular expected
to increase with g and diverge for purely inhibitory networks. However, for very large rel-
ative inhibition, numerical simulations show strong deviations from DMF predictions, due
to the breakdown of the Gaussian approximation which overestimates positive feedback (see
Appendix A).

3.2.2 Purely inhibitory networks
To identify the specific role of excitation in the dynamics described above, we briefly con-
sider here the case of networks consisting of a single inhibitory population. Purely inhibitory
networks display a transition from a fixed point regime to chaotic fluctuations [69, 58]. The
amplitude of fluctuations appears to be in general much smaller than in excitatory-inhibitory
networks, but increases with the constant external current I (Fig. 3.4 a). In contrast to our
findings for networks in which both excitation and inhibition are present, in purely inhibitory
networks intrinsically generated fluctuations lead to a very weak increase in mean firing rates
compared to the fixed point (Fig. 3.4 b-c). This effect can be understood by noting that within
the dynamical mean field theory, the mean rate is given by (µ− I)/J(CE − gCI). The term
CE − gCI in the denominator determines the sensitivity of the mean firing rate to changes
in mean input. This term is always negative as we are considering inhibition-dominated net-
works, but its absolute value is much smaller in presence of excitation, i.e. when excitation
and inhibition approximately balance, compared to purely inhibitory networks. As the onset
of intrinsically generated fluctuations modifies the value of the mean input with respect to its
value in the fixed point solution (Fig. 3.1 c, Fig. 3.4 b), this simplified argument explains why
the mean firing rates in the inhibitory network are much less sensitive to fluctuations than in
the excitatory-inhibitory case.

Moreover, the second fluctuating regime found in E-I networks does not appear in purely
inhibitory networks. Indeed, the divergence of first- and second-order statistics that occurs in
E-I networks requires positive feedback that is absent in purely inhibitory networks. Note that
for purely inhibitory, sparse networks, important deviations can exist at very large couplings
between the dynamical mean field theory and simulations (see Appendix A for a more detailed

38



3.3. Extensions to more general classes of networks

a.

b. c.

Figure 3.4: Statistical description of the activity in purely inhibitory networks. Results of
the dynamical mean field theory (obtained through setting CE = 0 and g = 1) for different
values of the excitatory external current I . a. Input current variance, b. mean current and
c. mean firing rate as a function of the synaptic coupling J . Vertical grey lines indicate the
critical value JC .

discussion).
The two main findings reported above, the strong influence of intrinsically generated fluc-

tuations on mean firing rate, and the existence of two different fluctuating regimes therefore
critically rely on the presence of excitation in the network.

3.3 Extensions to more general classes of networks

In a second step, we extend our analysis to more complex models of excitatory-inhibitory
networks. In all the cases that we study, the DMF equations can still be derived and solved
numerically, but an analytical expression for the divergence coupling JD is typically harder to
derive.

In Appendix B we show in details how the mean field equations should be modified in
order to include the new additional constraints within the self-consistent description. Here,
we focus on the results and their implications.
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3. Two regimes of fluctuating activity

3.3.1 The effect of noise

To begin with, we investigated whether the two different fluctuating regimes described above
can be still observed when spiking noise is added to the dynamics. Following [69], we added
a Poisson spiking mechanism on the rate dynamics in Eq. 2.21, and let the different units
interact through spikes (see Appendix B). Within a mean field approach, interaction through
spikes lead to an additive white noise term in the dynamics [69, 55]. To determine the effect
of this additional term on the dynamics, we first treated it as external noise and systematically
varied its amplitude as a free parameter.

The main effect of noise is to induce fluctuations in the activity for all values of network
parameters (Fig. 3.5 a). As a result, in presence of noise, the sharp transition between constant
and fluctuating activity is clearly lost. The feedback mechanism that generates intrinsic fluc-
tuations nevertheless still operates and strongly amplifies the fluctuations induced by external
noise.

The DMF framework can be extended to include external noise and determine the addi-
tional variability generated by network feedback (see also Appendix B). When the coupling
J is small, the temporal fluctuations in the activity are essentially generated by the filtering
of external noise. Beyond the original transition at JC , instead, when the feedback fluctua-
tions grow rapidly with synaptic coupling, the contribution of external noise becomes rapidly
negligible with respect to the intrinsically-generated fluctuations (Fig. 3.5 a).

As shown also in other studies [69, 55], a dramatic effect of introducing external noise
is a strong reduction of the timescale of fluctuations close to JC . In absence of noise, just
above the fixed point instability at JC , purely deterministic rate networks are characterized by
the onset of infinitely slow fluctuations. These slow fluctuations are however of vanishingly
small magnitude, and strongly sensitive to external noise. Any finite amount of external noise
eliminates the diverging timescale. For weak external noise, a maximum in the timescale
can be still seen close to JC , but it quickly disappears as the magnitude of noise is increased.
For modest amounts of external noise, the timescale of the fluctuating dynamics becomes a
monotonic function of synaptic coupling (Fig. 3.5 b).

While in presence of external noise there is therefore no formal critical phase transition,
the dynamics still smoothly change from externally-generated fluctuations around a fixed point
into intrinsically-generated, non-linear fluctuations. This change of regime is not necessarily
reflected in the timescale of the dynamics, but can clearly be seen in the excess variance, and
also in the first-order statistics such as the mean-firing rate, which again strongly increases
with coupling. Moreover, we found that the existence of the second fluctuating regime is
totally insensitive to noise: above the second critical coupling JD, the activity is only stabilized
by the upper bound on the firing rates, and diverges in its absence. In that parameter region,
intrinsically-generated fluctuations diverge, and the external noise contributes only a negligible
amount.

We considered so far the effect of an external white noise of arbitrary amplitude. If that
noise represents spiking interactions, its variance is however not a free parameter, but instead
given by J2(CE + g2CI)[ϕ]/τ̄ . In particular, the amplitude of spiking noise increases both
with the synaptic coupling and with the mean firing rate [ϕ], which itself depends on the
coupling and fluctuations as pointed out above. As a result, the amplitude of the spiking noise
dramatically increases in the fluctuating regime (Fig. 3.5 d). When J becomes close to the
second critical coupling JD, the spiking noise however still contributes only weakly to the
total variance (see in Appendix B), and the value of JD is not affected by it (Fig. 3.6 a-b). The
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3.3. Extensions to more general classes of networks

a. b.

c. d.

Figure 3.5: Statistical description of the activity in excitatory-inhibitory networks with ex-
ternal and spiking noise. The dynamical mean field results are shown in full lines, numerical
simulations as points. a. Input current variance in presence of external noise, for increasing
values of the noise amplitude (white noise, variance equal to 2∆ext). Blue dots: results of
numerical simulations for ∆ext = 0.13, N = 7500, average of 4 realizations of the synap-
tic matrix. The grey vertical line shows the critical coupling JC in the deterministic model.
Dashed lines indicate the statistics of an effective fixed point, where the only variance is gen-
erated by the noise contribution ∆ext. The fixed point firing rate is computed as a Gaussian
average, with the mean given by the fixed point x0 and the variance provided solely by the
noise term. The deflection from the effective fixed point underlines an internal amplification
of noise produced by network feedback. b. Fluctuations relaxation time, measured as the auto-
correlation ∆(τ) full width at half maximum. c. Normalized auto-correlation for fixed J and
different levels of noise. The corresponding coupling value is indicated on the x axis of panel b.
d. Input variance in a network with spiking dynamics, where spikes are generated according
to inhomogeneous Poisson processes. Increasing the time constant of rate dynamics τ̄ (see in
Appendix B) decreases the amplitude of spiking noise. Choice of the parameters: g = 4.1,
C = 100.
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3. Two regimes of fluctuating activity

a. b.

Figure 3.6: Appearance of the three dynamical regimes in a network with spiking noise: input
current variance (a) and mean firing rate (b) for different saturation values ϕmax. Choice of
the parameters: g = 4.1, C = 100.

amplitude of spiking noise is also inversely proportional the timescale τ̄ of the dynamics (see
Eq. 6 in Appendix B). Slower dynamics tend to smooth out fluctuations due to spiking inputs
(Fig. 3.5 d), reduce the amount of spiking and noise and therefore favor the appearance of
slow fluctuations close to the critical coupling JC [69].

In conclusion, the main new findings reported above, the influence of intrinsically gener-
ated fluctuations on mean firing rate, and the existence of two different fluctuating regimes are
still observed in presence of external or spike-generated noise. In particular, above the second
transition, intrinsically generated fluctuations can be arbitrarily strong and therefore play the
dominant role with respect to external or spiking noise.

3.3.2 Connectivity with stochastic in-degree
We now turn to networks in which the number of incoming connections is not fixed for all
the neurons, but fluctuates stochastically around a mean value C. We consider a connectivity
scheme in which each excitatory (resp. inhibitory) neuron makes a connection of strength J
(resp. −gJ) with probability C/N .

In this class of networks, the number of incoming connections per neuron has a variance
equal to the mean. As a consequence, in the stationary state, the total input strongly varies
among units. In contrast to the case of a fixed in-degree, the network does not admit an
homogeneous fixed point. The fixed point is instead heterogeneous, and more difficult to
study using dynamical systems tools.

The dynamical mean field approach can however be extended to include the heterogeneity
generated by the variable number of incoming connections [141, 69, 58]. As derived in Ap-
pendix B, the stationary distributions are now described by a mean and a static variance ∆0

that obey:

µ = J(CE − gCI)[ϕ] + I,

∆0 = J2(CE + g2CI)[ϕ
2].

(3.6)

The stationary solution loses stability at a critical value J = JC . In the strong coupling
regimes, DMF predicts the onset of a time-dependent solution with a decaying autocorrelation
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3.3. Extensions to more general classes of networks

a. b.

c.

Figure 3.7: Mean field characterization of the activity in networks with stochastic in-degree.
The dynamical mean field results are shown in full lines, numerical simulations as points. a.
Total input current variance ∆0. The heterogeneity in the connectivity induces an additional
quenched variance∆∞ (shown in dashed blue for the fixed point, and yellow for the fluctuating
solution, where it corresponds to ∆0). Red (resp. yellow) points show time and population
averages of ∆0 (resp. ∆∞) performed on 3 realizations of simulated networks, N = 6500.
b. Isolated contribution of temporal fluctuations to the variance. (c) Mean firing rate, for
different values of the saturation ϕmax. Grey dashed lines indicate the stationary solution,
becoming a thick colored line, corresponding to the chaotic phase, at JC . Choice of the
parameters: g = 5, C = 100, ϕmax = 2.

function, with initial condition ∆0 and asymptotic value ∆∞. The values of µ, ∆0 and ∆∞ are
determined as solution of a system of three equations (see in Appendix B). In this regime, the
effective amplitude of temporal fluctuations is given by the difference ∆0−∆∞ (Fig. 3.7 b). A
non-zero value of ∆∞ reflects the heterogeneity in the connectivity and indicates a qualitative
change in the dynamics: single neuron activity is not ergodic and stays highly self-correlated
even after long times. Note moreover that because the static variance increases with coupling
(Fig. 3.7 a), the mean activity increases with coupling for the static solution. In the fluctuating
regime, as the additional temporal variance ∆0 −∆∞ is weaker than the static variance ∆∞,
temporal fluctuations do not lead to a noticeable increase in mean firing rate with respect to
the static solution (Fig. 3.7 c).

Fig. 3.7 c displays the dependence on the upper bound ϕmax of the mean field solution.
We first note that in networks with very variable in-degree , the critical value JC weakly de-
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3. Two regimes of fluctuating activity

pends on the saturation upper bound due to large static heterogeneity. Above JC , an inter-
mediate regime exists where the activity is stabilized by inhibition, and remains finite even in
absence of upper bound. For couplings above a second critical coupling JD, the dynamics are
stabilized only by the upper bound ϕmax. Networks with variable in-degree therefore show
the same three dynamical regimes as networks with fixed degree, the main difference being
that variable in-degree can reduce the extent of the intermediate regime between JC and JD.

3.3.3 General excitatory-inhibitory networks
In the class of networks we investigated so far, excitatory and inhibitory units received sta-
tistically equivalent inputs. Under this assumption, the network dynamics are characterized
by a single mean and variance for both excitatory and inhibitory populations, which consider-
ably simplifies the mean field description. Here we relax this assumption and show that the
properties of intrinsically generated fluctuations described so far do not critically depend on
it.

We consider a more general class of networks, in which synaptic connections are arranged
in a block matrix:

J = J

(
JEE JEI
JIE JII

)
(3.7)

where each block Jkk′ is a sparse matrix, containing on each row Ckk′ non-zero entries of value
jkk′ . The parameter J represents a global scaling on the intensity of the synaptic strength.
For the sake of simplicity, we restrict ourselves to the following configuration: each row of J
contains exactly CE non-zero excitatory entries in the blocks of the excitatory column, and
exactly CI inhibitory entries in the inhibitory blocks. Non-zero elements are equal to jE in
JEE, to−gEjE in JEI, to jI in JIE, and to−gIjI in JII. The previous case is recovered by setting
jE = jI = 1 and gE = gI .

The network admits a fixed point in which the activities are different for excitatory and
inhibitory units, but homogeneous within the two populations. This fixed point is given by:(

xE0
xI0

)
= J

(
jE(CEϕ(x

E
0 )− gECIϕ(x

I
0))

jI(CEϕ(x
E
0 )− gICIϕ(x

I
0))

)
(3.8)

where xE0 and xI0 are the fixed-point inputs to the two populations.
The linear stability of the fixed point is determined by the eigenvalues of the matrix:

S = J

(
ϕ′(xE0 )JEE ϕ′(xI0)JEI
ϕ′(xE0 )JIE ϕ′(xI0)JII

)
(3.9)

The fixed point is stable if the real part of all the eigenvalues is smaller than one. As for simple,
column-like E-I matrices, the eigenspectrum of S is composed of a discrete and a densely
distributed part, in which the bulk of the eigenvalues are distributed on a circle in the complex
plane [6, 7, 5]. The discrete component consists instead of two eigenvalues, which in general
can be complex, potentially inducing various kinds of fixed point instabilities (for the details,
see Appendix B). As in the previous paragraphs, we consider a regime where both gE and
gI are strong enough to dominate excitation, and the outlier eigenvalues have negative real
part. In those conditions, the first instability to occur is the chaotic one, where the radius of
the complex circle of the eigenspectrum crosses unity. This radius increases with the overall
coupling J , defining a critical value JC where the fixed point loses stability.
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3.4. Relation to previous works

Dynamical mean field equations for the fluctuating regime above the instability are, in this
general case, much harder to solve as they now involve two means and two auto-correlation
functions, one for each populations. For that reason, we restrict ourselves to a slightly different
dynamical system with discrete-time evolution:

xi(t+ 1) =

N∑
j=1

Jijϕ(xj(t)). (3.10)

Such a network corresponds to extremely fast dynamics with no current filtering (Fig. 3.8 a-b).
Previous works [89, 30, 141] have studied that class of models in case of synaptic matrices that
lacked E-I separation, and for activation functions that were symmetric. These works pointed
out strong analogies with the dynamics emerging in continuous time [127]. Discrete-time
dynamics can however induce a new, period-doubling bifurcation when inhibition is strong.
We therefore restrict the analysis to a regime where inhibition is dominating but not excessively
strong. Notice that in general, outside the range of parameters considered in this analysis, we
expect generic E-I networks to display a richer variety of dynamical regimes.

To begin with, we observe that the fixed-point (Eq. 3.8) and its stability conditions (Eq. 3.9)
are identical for continuous and discrete dynamics. For discrete time, the DMF equations are
however much simpler than for continuous dynamics, and can be easily fully solved even if the
two populations are characterized now by different values of mean and variance.

Solving the DMF equations confirms that the transition to chaos in this class of models is
characterized by the same qualitative features as before (Fig. 3.8 c-d). As the order parameter J
is increased, the means and the variances of both the E and the I population display a transition
from the fixed point solution to a fluctuating regime characterized by positive variance ∆0

and increasing mean firing rate. By smoothly increasing the upper bound of the saturation
function ϕmax as before, we find a second critical value JD at which the firing activity of both
populations diverge (Fig. 3.8 e-f). We conclude that the distinction in three regimes reported
so far can be extended to discrete-time dynamics; in this simplified framework, our results
extend to more general E-I connectivity matrices.

3.4 Relation to previous works
The transition from fixed point to fluctuating activity was first studied by Sompolinsky, Crisanti
and Sommers [127]. As discussed in details in Chapter 2, in that classical work, the connec-
tivity was Gaussian and the activation function symmetric around zero, so that the dynamics
exhibited a sign-reversal symmetry. An important consequence of this symmetry is that the
mean activity was always zero, and the transition was characterized solely in terms of second-
order statistics, which were described through a dynamical mean field equation.

Recent studies have examined more general and biologically plausible networks [6, 7, 58,
69]. Two of those studies [58, 69] derived dynamical mean field (DMF) equations to net-
works with segregated excitatory and inhibitory populations, and asymmetric, positively de-
fined transfer functions. The DMF equations are however challenging to solve in the general
case of two distinct excitatory and inhibitory populations (see Appendix B). The two stud-
ies therefore analyzed in detail DMF solutions for purely inhibitory networks, and explored
fluctuating activity in excitatory-inhibitory networks mainly through simulations.

In contrast to these recent works, here we exploited a simplified network architecture, in
which DMF equations can be fully analyzed for excitatory-inhibitory networks. We found the
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a. b.

c. d.

e. f.

Figure 3.8: Fluctuating dynamics in more general networks where excitatory and inhibitory
neurons are not statistically equivalent. Discrete-time rate evolution. a-b. Network discrete-
time activity: numerical integration of the Eq. 3.10, firing rates of randomly selected units.
Excitatory neurons are plotted in the red scale, inhibitory ones in the blue one. N = 1000. In
a, J < JC ; in b, J > JC . c-d. Statistical characterization of network activity, respectively in
terms of the input variance and the mean firing rate. Dynamical mean field results are shown
in full lines. Dashed lines: fixed points. Dots: numerical simulations, N = 7500, average over
3 realizations. Vertical grey lines indicate the critical value JC . ϕmax = 1. e-f. Mean firing
rate for different values of the saturation ϕmax, in the excitatory and the inhibitory population.
Choice of the parameters: jE = 0.1, jI = 1.5jE , gE = 4.5, gI = 4.2, C = 100.
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3.4. Relation to previous works

presence of excitation qualitatively changes the nature of the dynamics, even though inhibition
dominates. In purely inhibitory networks, fluctuations are weaker than in excitatory-inhibitory
networks, and as a result do not affect first-order statistics.

In [69], the authors used transfer functions without upper bounds, and found that the
chaotic state can undergo an instability in which the activity diverges. This instability is directly
related to the transition between the two fluctuating regimes which we studied in detail for
bounded transfer functions. Here we showed that these two dynamical regimes can in fact be
distinguished only if the upper bound is varied: for a fixed upper bound, there is no sign of a
transition. Moreover, we showed that excitation is required for the appearance of the second
fluctuating regime, as this regime relies on positive feedback. For purely inhibitory networks,
in which positive feedback is absent, simulations show that the second fluctuating regime does
not occur, although it is predicted by dynamical mean field theory: indeed DMF relies on a
gaussian approximation which does not restrict the interactions to be strictly negative, and
therefore artifactually introduces positive feedback at strong coupling.

Finally, previous studies [58, 69] focused on networks with random in-degree or Gaus-
sian coupling. In such networks, the quenched component of the coupling matrix leads to
quenched heterogeneity in the stationary solution. In the present work, we instead mostly
studied networks with fixed in-degree. We showed that in such a setting a homogeneous dis-
tribution is the stable solution, so that the quenched variability is not required for the transition
to fluctuating activity.
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Rate fluctuations in spiking networks 4

In the spirit of investigating how the classical results from [127] apply to realistic models of
cortical circuits, we studied the dynamics of constrained networks of firing rate units. Up to
this point, we did not specify how rate units should be interpreted in terms of single cortical
neurons, whose activity is characterized instead in terms of discrete action potentials.

In the present chapter, we investigate how our results can be mapped to traditional network
models with spiking dynamics. We specifically study whether the rate dynamics can be used
to shed light on the phenomena which have been numerically reported in networks of leaky
integrate-and-fire neurons, and cannot be explained in terms of classical mean field approaches
[95].

As mentioned in Chapter 1, when the overall synaptic coupling is small, traditional mean
field theories for spiking networks correctly predict an asynchronous dynamical regime, where
neurons fire Poisson-like action potentials with stationary and homogeneous firing rate [24].
At high coupling strength, the equilibrium firing rate undergoes an instability to strongly fluc-
tuating activity, which cannot be captured by the traditional mean field theory.

Classical mean field approaches for spiking networks differ from DMF as they provide
a self-consistent description only at the level of the mean firing rate. The firing rate of the
network can be determined as the fixed point of a self-consistent equation which includes the
biophysical details of the network model [9]. Around those firing rate equilibrium points, rate
dynamics has been proved to provide a crude but sometimes effective approximation of spiking
activity [96, 114, 95]. In the approximated description, the spiking network is replaced by a
network of rate units with exactly the same excitatory-inhibitory architecture.

In the same spirit, here we show that a simple network of rate units, whose input-to-rate
activation function has been design to capture the main mechanisms of spike initiation, is
able of reproducing the main qualitative features that have been observed in simulations of
spiking network models. We interpret the results in terms of the two different regimes of
fluctuating activity that have been found in Chapter 3 and we predict that, at high coupling
strength, the average network firing rate is mostly controlled by the value of the refractory
period. We confirm this prediction by performing direct numerical simulations in networks
of leaky integrate-and-fire units.
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4. Rate fluctuations in spiking networks

4.1 Rate networks with a LIF transfer function
We focus again on the fixed in-degree synaptic matrix in which the inputs to excitatory and in-
hibitory neurons are statistically equivalent, but consider a rate network in which the dynamics
are now given by:

ϕ̇i(t) = −ϕi(t) + F (µi(t), σi(t)) (4.1)
where:

µi(t) = µ0 + τm
∑
j

Jijϕj(t)

σ2
i (t) = τm

∑
j

J2
ijϕj(t)

(4.2)

Here ϕi is the firing rate of unit i, µ0 is a constant external input, and τm = 20 ms is the mem-
brane time constant. The function F (µ, σ) is the input-output function of a leaky integrate-
and-fire neuron receiving a white-noise input of mean µ and variance σ [125, 101]:

F (µ, σ2) =

[
τrp + 2τm

∫ Vth−µ

σ

Vr−µ
σ

dueu2

∫ u

−∞
d νe−ν2

]−1

(4.3)

where Vth and Vr are the threshold and reset potentials of the LIF neurons, and τrp is the
refractory period.

The firing rate model defined in Eq. 4.1 is directly related to the mean field theory for net-
works of LIF neurons interacting through instantaneous synapses [25, 24, 95]. More specifi-
cally, the fixed point of the dynamics defined in Eq. 4.1 is identical to the equilibrium firing
rate in the classical asynchronous state of a network of LIF neurons with an identical connec-
tivity as the rate model [25, 24]. Eq. 4.1 can then be seen as simplified dynamics around this
equilibrium point [96, 114]. A linear stability analysis of the fixed point for the rate model pre-
dicts an instability analogous to the one found in threshold-linear rate models. A comparison
with a network of LIF neurons shows that this instability predicts a change in the dynamics
in the corresponding spiking network, although there may be quantitative deviations in the
precise location of the instability.

The dynamics of Eq. 4.1 have been analytically investigated only up to the instability [95].
To investigate the dynamics above the instability, we set xi(t) =

∑N
j=1 Jijϕj(t), and rewrite

the dynamics in the more familiar form:

ẋi(t) = −xi(t) +
N∑
j=1

JijF (τmxj(t), σj(t)) (4.4)

The main novelty with respect to previously studied rate models is that the input-output trans-
fer function F depends on the standard deviation σj of the input current to the unit j. A
dependence on a time-varying σj is however difficult to include in the dynamical mean field
approach. As a step forward, we fix σj to its average value independent of j and time, which
corresponds to substituting all the firing rates with a constant effective value ϕ̄:

σ2 ∼ τm
∑
j

J2
ijϕ̄ = τmJ2(CE + g2CI)ϕ̄ (4.5)
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4.1. Rate networks with a LIF transfer function

a.

b. c.

Figure 4.1: Dynamical mean field characterization of rate network activity with a LIF ac-
tivation function, where we set σ2 = τmJ2(CE + g2CI)ϕ̄, ϕ̄ = 20 Hz. a-b-c. Statistical
characterization for τr = 0.5 ms: input variance, mean input current and mean firing rate.
Grey vertical lines indicate the position of the critical coupling. Choice of the parameters:
g = 5, C = 100, µ0 = 24 mV.

With this substitution, we are back to a classical rate model with an LIF transfer function.
Quantitatively the dynamics of that model are not identical to the model defined in Eq. 4.1,
but they can be studied using dynamical mean field theory. We therefore focus on qualitative
features of the dynamics rather than quantitative comparisons between models.

Solving the dynamical mean field equations shows that the dynamics in the rate model with
and LIF transfer function are qualitatively similar to the threshold-linear rate model studied
above. As the coupling strength J is increased above a critical value, the fixed point loses
stability, and a fluctuating regime emerges. The amplitude of the fluctuations increases with
coupling (Fig. 4.1 a), and induces an increase of the mean firing rate with respect to values
predicted for the fixed point (Fig. 4.1 c).

In the LIF transfer function, the upper bound on the firing rate is given by the inverse
of the refractory period. For that transfer function, changing the refractory period does not
modify only the upper bound, but instead affects the full function. For different values of
the refractory periods, the fixed point firing rate and the location of the instability therefore
change, but these effects are very small for refractory periods below one millisecond.

Varying the refractory period reveals two different fluctuating regimes as found in threshold-
linear rate models (Fig. 4.2 a-b-c). At intermediate couplings, the fluctuating dynamics de-
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a. b.

c.

Figure 4.2: Dynamical mean field characterization of rate network activity with a LIF ac-
tivation function, appearance of the two regimes. a-b. Mean firing rate and rate standard
deviation for different values of the refractory period, determining slightly different positions
of the transition (grey lines). Choice of the parameters: g = 5, C = 100, µ0 = 24 mV. c.
Mean firing rate dependence on the refractory period, the inverse of which determines the
saturation value of the transfer function. The three values of the synaptic coupling, indicated
by triangles in a, correspond to the three different regimes.

pend weakly on the refractory period and remain bounded if the refractory period is set to
zero. At strong couplings, the fluctuating dynamics are stabilized only by the presence of the
upper bound, and diverge if the refractory period is set to zero. The main difference with the
threshold-linear model is that the additional dependence on the coupling J induced by σ on
the transfer function reduces the extent of the intermediate regime.

4.2 Spiking networks of leaky integrate-and-fire neurons:
numerical results

Having established the existence of two different regimes of fluctuating activity in rate net-
works with an LIF transfer function, we next consider spiking networks of LIF neurons. To
compare the different regimes of activity in spiking networks with the regimes we found in
rate networks, we performed direct numerical simulations of a spiking LIF network.
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4.2. Spiking networks of leaky integrate-and-fire neurons: numerical results

a. b.

c. d.

e. f.

Figure 4.3: Statistical characterization of activity in a network of leaky integrate-and-fire
neurons. a. Mean firing rate. Numerical simulations (N = 20000) are in good agreement with
the LIF mean field prediction (grey line) for low coupling values (J < 0.5). For high values
of J (J > 0.8), mean firing rates diverge and becomes highly dependent on the refractory
period. b. Firing rate variance, computed on instantaneous firing rates evaluated with a 50 ms
Gaussian filter. c. Spike autocorrelation function, computed with 1 ms time bins, for three
different values of the coupling J (τrp = 0.5). d. Dependence on J and N of correlations and
synchrony, quantified by the std of the population-averaged spiking rate, normalized by the
square root of the mean firing rate (τrp = 0.05). Std is computed within a time bin of 1 ms.
e-f. Direct dependence between the mean firing rate and refractory period. Panel e shows the
low and intermediate coupling regime. Panel f shows the high coupling regime. Colored dots:
simulated networks with N = 20000. Lighter dashed lines (when visible) show the result for
N = 10000. In all the panels, choice of the parameters: g = 5, C = 500, ∆=1.1 ms, µ0 = 24
mV.
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4. Rate fluctuations in spiking networks

The membrane potential dynamics of the i-th LIF neuron are given by:

τm
dVi

dt
= −Vi + µ0 +RIi(t) + µext(t) (4.6)

where τm = 20 ms is the membrane time constant, µ0 is a constant offset current, and RIi is
the total synaptic input from within the network. When the membrane potential crosses the
threshold Vth = 20 mV, an action potential is emitted and the membrane potential is reset to
the value Vr = 10 mV. The dynamics resume after a refractory period τr, the value of which
was systematically varied. The total synaptic input to the i-th neuron is:

RIi(t) = τm
∑
j

Jij
∑
k

δ(t− t
(k)
j −∆) (4.7)

where Jij is the amplitude of the post-synaptic potential evoked in neuron i by an action
potential occurring in neuron j, and ∆ is the synaptic delay (here taken to be 1.1 ms). Note
that if the synaptic delay is shorter than the refractory period, the network develops spurious
synchronization. The connectivity matrix Jij was identical to the rate network with fixed in-
degree described above.

We examined the effects of the coupling strength and refractory period on first- and
second-order statistics (Fig. 4.3 a-b), i.e. the mean firing rate and the variance of the activity
(computed on instantaneous firing rates evaluated with a 50 ms Gaussian filter).

For low couplings strengths, the mean firing rate in the network is close to the value pre-
dicted for the fixed point of Eq. 4.1, i.e. the equilibrium asynchronous state, and essentially
independent of the refractory period. Similarly, the variance of the activity remains at low val-
ues independent of the refractory period. As the synaptic strength is increased, the mean firing
rate deviates positively from the equilibrium value (Fig. 4.3 a), and the variance of the activity
increases (Fig. 4.3 b). For intermediate and strong synaptic coupling, the values of first- and
second-order activity statistics become dependent on the values of the refractory period.

Specifically, for intermediate values of the coupling, the mean firing rate increases with
decreasing refractory period, but saturates with decreasing refractory period (Fig. 4.3 e). This is
similar to the behavior of the rate networks in the inhibition-stabilized fluctuating regime. For
large values of the coupling, the mean firing rate instead diverges linearly with the inverse of the
refractory period (Fig. 4.3 f), a behavior analogous to rate networks in the second fluctuating
regime in which the dynamics are only stabilized by the upper bound on the activity. The
strength of the sensitivity to the refractory period depends on the inhibitory coupling: the
stronger the relative inhibitory coupling, the weaker the sensitivity to the refractory period.

The main qualitative signatures of the two fluctuating regimes found in networks of rate
units are therefore also observed in networks of spiking LIF neurons. It should be however
noted that the details of the dynamics are different in rate and LIF networks. In particular,
the shape of auto-correlation functions is different, as LIF neurons display a richer temporal
structure at low and intermediate coupling strengths. At strong coupling, the auto-correlation
function resembles those of rate networks with spiking interactions (see Fig. 3.5 c), in partic-
ular it displays a characteristic cusp at zero time-lag. The simulated LIF networks show no
sign of critical slowing down, as expected from the analysis of the effects of spiking noise on
the activity.

Moreover, strong finite-size effects are present in the simulations. To quantify correlations
among units and synchrony effects deriving from finite-size effects, we measure the standard
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deviation of the amplitude of fluctuations in the population-averaged activity, normalized by
the square root of the mean firing rate (Fig. 4.3 d). Correlations and synchrony appear to
be stronger for small values of the refractory period. The effect of correlations is furthermore
weaker in the low and high coupling regimes, and it has a maximum for intermediate couplings.
However, whatever the value of J , they decay as the system size is increased (for a more detailed
characterization, see Appendix B).

In summary, for the range of values of the refractory period considered here, the activity
in a network of spiking neurons is in qualitative agreement with predictions of the simple rate
models analyzed in the previous sections. The rate model introduced in Eq. 4.1 however does
not provide exact quantitative predictions for the firing rate statistics above the instability. In
particular, due to the numerical limitations in considering the limit τrp → 0, it is not possible
to evaluate exactly through simulations the position of an equivalent critical value JD.

4.3 Discussion
How a regime analogous to rate chaos appears in networks of integrate-and-fire neurons has
been a topic of intense debate. Two different scenarios have been proposed: (i) rate chaos
appears in networks of spiking neurons only in the limit of very slow synaptic or membrane
time-constants [58]; (ii) rate chaos appears in generic excitatory-inhibitory networks, i.e. for
arbitrarily fast synaptic time-constants [95]. The heart of the debate has been the nature of
the signature of rate chaos.

The classical signature of the transition to rate chaos is critical slowing-down, i.e. the di-
vergence of the timescale of rate fluctuations close to the critical coupling [127]. As it has
been shown (see also parallel studies [55, 69]), spiking interactions induce noise in the dynam-
ics, and critical slowing down is very sensitive to the amplitude of such noise. The amplitude
of this spiking noise is moreover proportional to 1/

√
τ̄ , where τ̄ is the timescale of the rate

model, usually interpreted as the slowest timescale in the system (either membrane or synap-
tic timescale). Critical-slowing down can therefore be observed only when the membrane or
synaptic timescales are very slow and filter out the spiking noise [58, 69].

Here we have shown that for networks with E-I connectivity and positive firing rates, a
novel signature of fluctuating activity appears simply at the level of mean and variance of firing-
rates, which become highly sensitive to the upper bound at strong coupling. In contrast to
critical slowing-down, this signature of strongly fluctuating activity appears to be very robust to
noise, and therefore independent of the timescale of the synapses or membrane time constant.
Simulations of networks of integrate-and-fire neurons reveal such signatures of underlying
fluctuating activity for arbitrarily fast synaptic time-constants, although no critical slowing
down is seen or expected.

The results presented here therefore reconcile the two proposed scenarios: a sharp phase-
transition to fluctuating activity characterized by critical slowing down appears only in the limit
of very slow synaptic or membrane time-constants; a smooth cross-over to strongly fluctuating
activity can however be observed for arbitrarily fast synaptic time-constants.

4.3.1 Mean field theories and rate-based descriptions of integrate-and-fire
networks

The dynamical mean field theory used here to analyze rate networks should be contrasted with
mean field theories developed for integrate-and-fire networks. Classical mean field theories

55



4. Rate fluctuations in spiking networks

for networks of integrate-and-fire neurons lead to a self-consistent firing rate description of
the equilibrium asynchronous state [9, 25, 24], but this effective description is however not
consistent at the level of the second order statistics. Mean field theories for IF neurons assume
indeed that the input to each neuron consists of white noise, originating from Poisson spiking;
however the firing of an integrate-and-fire neuron in response to white-noise inputs is in
general not Poisson [94], so that the Poisson assumption is not self-consistent. In spite of this,
mean field theory predicts well the first-order statistics over a large parameter range [57], but
fails at strong coupling when the activity is strongly non-Poisson [95].

Extending mean field theory to determine analytically self-consistent second-order statis-
tics is challenging for spiking networks. Several numerical approaches have been developed
[77, 47, 149], but their range of convergence appears to be limited. A recent analysis of that
type has suggested the existence of an instability driven by second-order statistics as the cou-
pling is increased [149].

A simpler route to incorporate non-trivial second order statics in the mean field description
is to describe the different neurons as Poisson processes with rates that vary in time. One
way to do this is to replace every neuron by a linear-nonlinear (LN) unit that transforms its
inputs into an output firing rate, and previous works have shown that such an approximation
can lead to remarkably accurate results [96, 137, 97, 114]. If one moreover approximates
the linear filter in the LN unit by an exponential, this approach results in a mapping from a
network of integrate-and-fire neurons to a network of rate units with identical connectivity
[95]. Note that such an approximation is not quantitatively accurate for the leaky integrate-
and-fire model with fast synaptic timescales - indeed the linear response of that model contains
a very fast component (1/

√
t divergence in the impulse response at short times, see [96]). A

single timescale exponential however describes much better dynamics of other models, such
as the exponential integrate-and-fire [96]. The accuracy of the mapping from integrate-and-
fire to rate networks also depends on synaptic timescales which influence both the amplitude
of synaptic noise and the transfer function itself [26]. It has been argued that the mapping
becomes exact in the limit of infinitely long timescales [123, 58].

In this study, we have analyzed rate networks using dynamical mean field theory. This
version of mean field theory is different from the one used for integrate-and-fire networks as
it determines self-consistently and analytically not only the first-order statistics, but also the
second-order statistics, i.e. the full auto-correlation function of neural activity. Note that this
is similar in spirit to the approach developed for integrate-and-fire networks [77, 47, 149],
except that integrate-and-fire neurons are replaced by simpler, analytically tractable rate units.
Dynamical mean field theory reveals that at large coupling, network feedback strongly ampli-
fies the fluctuations in the activity, which in turn lead to an increase in mean firing rates, as
seen in networks of spiking neurons [95]. The rate-model moreover correctly predicts that for
strong coupling, the activity is highly sensitive to the upper bound set by the refractory period,
although the mean activity is well below saturation.

As pointed out above, the mapping from an integrate-and-fire to a rate network is based
on a number of approximations and simplifications. The fluctuating state in the rate network
therefore does not in general lead to a quantitatively correct description of the activity in a
network of integrate-and-fire neurons. However, the rate model does capture the existence of
a fundamental instability, which amplifies fluctuations through network feedback.
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Computing with recurrent networks: an overview 5

Recurrent networks of intricately connected cells represent the elementary units of computa-
tion in the cortex. Computations can be thought as specific – possibly non-linear – input-
output relationships which are implemented at the population level by orchestrating together
a wide spectrum of single cells responses.

The dynamical mechanisms which support computations in cortical recurrent networks
can be investigated by building artificial network models which are able to satisfy the input-
output rules specified by different tasks. Historically, computational network models have
been constructed by exploiting two main approaches. The network structure can be explicitely
designed by following a simple, and often low-dimensional, theoretical intuition; in alterna-
tive, it can be obtained algorithmically by training unspecialized network models on synthetic
data [13]. Traditional hand-crafted models are often easier to analyse, but suffer from the
drawback of being hard to match with the high degree of spatial and temporal disorder that
has been observed from in-vivo recordings of cortical activity. On the other hand, computa-
tions and complexity appear to be naturally combined in the network models which come out
of algorithmic training procedures, but the exact dynamical mechanisms on which they are
built are often hard to capture.

In this chapter, we review the main ideas, results and limitations of both approaches. In
the spirit of providing a quantitative understanding of the dynamics within recurrent compu-
tational networks, the two frameworks are adopted and mixed together in the two parts which
constitute the rest of this dissertation.

5.1 Designing structured recurrent networks
In the theoretical literature related to the study of dynamics in recurrent neural networks, ran-
dom networks have historically gained a prominent position [127, 24, 143, 105]. In a random
network, there are no preferred units with specified input or functional role: the activity pro-
file of every neuron in the population can be thought instead as randomly extracted from a
continuous probability distribution. For this reason, the neural activity can be characterized
with purely statistical approaches, which considerably simplify the analysis [127, 24].

As discussed in Chapter 1, random networks have become a fruitful theoretical paradigm
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that has led to the development of fundamental concepts such as excitation-inhibition balance
[24, 143] and decorrelation [105]. However, randomly connected recurrent networks display
only very stereotyped responses to external inputs and can implement only a limited range
of input-output computations [99, 74]. Moreover, the connectivity structure of real cortical
circuits is thought to possess significantly non-random features [59, 129].

Networks of excitatory and inhibitory neurons constitute the fundamental computational
units of the cortex. A central hypothesis in neurobiology states that cortical computations, in
the form of arbitrary input-output associations, emerge from precise patterns in the synaptic
connectivity. Connectivity structures are created and continuously reshaped, at different time
scales, from a variety of synaptic plasticity mechanisms [38, 1].

Directly measuring the strength of the synaptic connections among pairs of neurons is
a complex experimental process which can give access to a limited fraction of information
[129, 71]. As a consequence, the strategies that the brain adopts to solve and implement its
tasks are mostly unknown. To fill this gap, synthetic network models, which are able to solve
some among the tasks that cortical networks are likely to face, can be built and analyzed.

Traditionally, ad-hoc network models have been explicitly designed by combining intu-
ition with experimental insights. This class of hand-crafted models consists of connectivity
structures that, associated to simple single neuron models, returns circuits which correctly im-
plements the desired task. This approach results in task-specific models with little degree of
flexibility.

In hand-crafted computational models, the strengths of all synapses and the activity of all
neurons are known, yet an understanding of the relation between connectivity, dynamics and
computations has been achieved only in very specific cases. Hand-crafted recurrent networks
are typically large-size implementations of discrete [65, 148] or continuous [118, 17, 29, 124,
81] dynamical attractors, that have been constrained to reproduce some distinctive features
of the recorded neural activity. One well-known example is given by the network models for
working memory [109, 50], where a subset of similarly tuned units display sustained activity
in absence of driving inputs [147, 152, 81].

Some effort has been devoted to reconciling hand-crafted networks with the large neural
variability which has been observed in data. In some cases, the original connectivity structure
– often simple and homogeneous – has been combined with disordered synapses, resulting in
network models where computations co-exists with Poisson-like firing [147, 110, 104, 121].
It is more difficult, however, to generalize hand-crafted architectures to other more recent
experimental findings.

In most of hand-crafted network models, neurons are identified by their tuning properties.
Units with similar tuning have highly homogeneous average activity profiles. On the contrary,
recent advances in the recording techniques have revealed that neural responses are much more
complex and heterogeneous than what hypothesized decades ago [32, 107]. Although a mi-
nor fraction of cells display clear and stereotyped tuning properties, the response profile of the
majority of neurons is typically found to be mixed, non-stationary and multi-phasic (Fig. 5.1)
[32, 23, 83, 37, 107]. Broad and non-stationary selectivity properties might contribute to en-
rich the computational capacity of standard network models, as they project the neural activity
in a higher-dimensional space where simple computations like discrimination can be more
robustly performed [107, 14].

Heterogeneous and non-stationary responses cannot be trivially incorporated in the highly
simplified computational structure of hand-crafted networks. Very recently, a complemen-
tary line of research, which aims at building computational models by algorithmic approaches
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300 ms

A 44 A 13 B 101

Figure 5.1: Tuning properties of three sample neurons from the motor cortex of two monkeys
A and B, while the animals are performing a reaching task. Seven reaching directions have
been tested. Internal and external panels correspond to two different fixation-target distances.
Purple and blue traces display the inter-trial average firing rate for fast and slow reach move-
ments. Grey traces plot the mean hand velocity, which is comparable by experimental design.
Vertical calibration bars indicate 20 spikes/s. Adapted from [32].

rather than by inspection, has been proposed and successfully tested in a variety of different
scenarios [15, 13].

5.2 Training structured recurrent networks
Computational network models are circuit implementations of specific tasks. Once the task
has been modeled as a specified input-output transformation, random neural networks can be
trained on synthetic data by trial and error. The training algorithm, which is iterated up to
convergence, determines how synaptic modifications should be computed in every trial.

Because of the intricate temporal dependencies generated by recurrent dynamics, design-
ing efficient learning algorithms for recurrent neural networks has ben historically a cumber-
some task. Indeed, the traditional approaches that have permitted, in the eighties, to efficiently
train multi-layered feedforward architecture [112] do not readily generalize to recurrent mod-
els [18]. More refined and alternative solutions have been developed in the last fifteen years,
leading to a new fruitful research line at the intersection between machine learning and com-
putational neuroscience. In the following, we introduce in detail the computing architectures
which will be considered in the rest of Parts II and III.

5.2.1 Reservoir computing
A clever strategy to circumvent the problem of dealing with long-standing temporal feedbacks
was proposed sixteen years ago in the parallel works of Jaeger [67] and Maass [79].

Both approaches aim at exploiting to the maximal degree the rich dynamics which is in-
trinsically generated in large random architectures. To this aim, only a minimal set of synaptic
connections is exposed to plasticity. Spontaneous activity acts as a reservoir of basis function
from which a wide set of target responses can be reconstructed. For this reason, both methods
commonly undergo under the name of reservoir computing.

In the following, we focus on the continuous-time formulation of the network setup by
[67, 68]. A random network of rate units, equivalent to the model in [127] (see also Chapter 2),
is trained to associate a given time-varying output f(t) to a given input function I(t) (Fig. 5.2
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b.

a. c.

Figure 5.2: Reservoir training: architecture and principles of echo-state machines [67]. a.
Original open-loop reservoir architecture. A time-varying input current is injected in a ran-
dom network, and the input-evoked response is used as a set of basis functions to reconstruct
the target function f(t). The output is defined at the level of a linear readout of signal z(t).
b. The input-driven response, time traces of four arbitrarily selected units. The input current
consist of a sum of two sinusoidal functions. The random network response is more temporally
complex, and strongly heterogeneous. This response can be used to approximate a huge num-
ber of different periodic functions. c. Reservoir closed-loop architecture: the linear output
z(t) is used itself as a forcing input.

a). The reservoir dynamics read:

ẋi(t) = −xi(t) + g
N∑
j=1

χijϕ(xj(t)) + uiI(t), (5.1)

where the input weights ui areO(1) and can be set at random. The network output is defined
at the level of a readout signal z(t), where the network activity is linearly combined using a
decoding vector w:

z(t) =
N∑
j=1

wjϕ(xj(t)). (5.2)

In contrast to traditional hand-crafted models, computations in reservoir machines are
based on the input-dependent time course of neural trajectories, which involve both transient
and attractor dynamics [28].

Solely the outgoing weights wj are tuned during learning, which makes training a partic-
ularly easy task. From the point of view of the output unit, the architecture presents in fact
no feedback loops. Since the input function is fixed, the input-driven response of the random
network can be determined by simply integrating the dynamics over time. Because of the dis-
ordered and non-linear dynamics of the reservoir, the activity profiles of different units reflect
the input dynamics but display more heterogeneous and rich temporal properties (Fig. 5.2 b).
Once the time traces of neural activity have been stored, Eq. 5.2 can be thought as a set of lin-
ear constraints - one for every point in time - on the outgoing weights wj . If the input and the
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output function are well matched, the system of equations admits at least one solution, which
can be computed by inverting Eq. 5.2 through standard numerical techniques like least-square
minimization [67].

In order to avoid unpredictable network responses, traditional reservoirs operate out of the
chaotic regime. As discussed in Chapter 2, in absence of external input currents, this condition
is equivalent to imposing overall connectivity strengths g smaller than unity. As observed in a
variety of different frameworks, however, external inputs have the effect of further stabilizing
stationary and time-varying attractors [99, 89, 86, 87], so that in practice milder conditions on
g need to be imposed. As the training procedure directly exploits the spontaneous input-driven
dynamics of the network, no further subtle stability issues must be considered.

The domain of target functions which can be reconstructed at the output level is tightly
constrained by the temporal structure of the input. Nevertheless, the recurrent circuitry of the
reservoir can be used to significantly slow down the transient reservoir response. As shown in
Chapter 2, the largest decay time scale of a random reservoir increases with g, and diverges
at the boundary with the chaotic regime. It has been proposed that reservoir machines which
have been tuned right below the instability to chaos possess slow response properties which
turn into optimal temporal computational capacities [19, 76].

5.2.2 Closing the loop
For certain input-output pairs, appropriately tuning the reservoir parameters is not sufficient to
circumvent the problem. Consider for example the case of a pattern generator network which
associates to a stationary input level an output sinusoid with the same frequency. In cases like
that one, additional inputs which possess the spatial-temporal structure of the outputs must
be considered.

One parsimonious option consists of exploiting the output signal itself as forcing input
function [67, 80]. When the output is used as input, a feedback element is introduced in the
architecture (Fig. 5.2 c). The reservoir dynamics transforms into:

ẋi(t) = −xi(t) + g

N∑
j=1

χijϕ(xj(t)) + uiz(t), (5.3)

which can be combined with Eq. 5.2 to give:

ẋi(t) = −xi(t) +
N∑
j=1

(gχij + uiwj)ϕ(xj(t)). (5.4)

The global feedback architecture can thus be interpreted as a novel recurrent architecture,
where the random connectivity has been summed to a one-dimensional structured element.

Because of the feedback, any change in the output weightswj results in finite perturbations
to the reservoir dynamics. As a consequence, the training procedure which applies to open-
loop architectures does not directly extend to closed-loop networks.

In order to find a proper training strategy we observe that, in the final trained network,
the unique feedback signal z(t) must faithfully reproduce the target f(t). Once the feedback
has been clamped by setting z(t) = f(t), the reservoir response is univocally determined. The
output weights wj can thus be determined as in the open-loop case by properly combining the
reservoir activity profiles into the output target function.
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Even if the training procedure remains simple enough, introducing feedback readout units
comes at the price of generating more complex, and hard to predict, recurrent dynamics. The
batch training procedure returns in fact a network model which admits a self-consistent so-
lution where the readout signal z(t) coincide with the target. It does not allow to control,
however, the number and the stability properties of all the dynamical attractors that are gen-
erated with the weights update. As a consequence, the spontaneous dynamics of the final
network model might deviate from the target because of instability or multi-stability issues.

Training can be improved by transforming batch into online update rules. Online proce-
dures [132, 73, 45] force the synaptic updates to take into account the spontaneous recurrent
dynamics of the closed-loop network. Progressive weights modifications occur indeed together
with the integration in time of the network activity. As a result, some among the dynamical
instabilities can be sampled and avoided. In contrast to batch techniques, during online train-
ing the learning algorithm is iterated over a large number of steps, until synaptic modifications
reach convergence.

Online training algorithms have been applied to different network architectures. In its
original formulation, the FORCE training algorithm [132] has been used mostly on feed-
back reservoir architectures similar to [67]. In most of the later training procedures, plasticity
has been extended instead to a larger subsample or to the totality of the N2 synapses of the
recurrent network [73, 45].

5.2.3 Understanding trained networks
Together with novel optimization techniques [85], online training algorithms have been suc-
cessfully adopted in the last few years to construct a new class of structured networks models.

Trained neural networks implements neural computations by means of heterogeneous and
non-stationary activity patterns [15, 134], which can in some cases provide a better expla-
nation of neural data than traditionally designed architectures. The algorithmic approach is
furthermore beneficial when dealing with complex behavioural tasks, for which hand-crafted
implementations are very difficult to design [83]. Finally, random networks can be trained on
in-vivo neural recordings, which opens the possibility to directly infer the synaptic connectivity
schemes that the brain adopts to implement specific tasks [100].

In contrast to the simple and homogeneous synaptic schemes from hand-crafted models,
the connectivity structures emerging from training are extremely complex and hard to interpret.
The general computational principles which underly the task implementation are furthermore
hard to isolate, as the network units often display mixed and time-varying tuning properties.

From a more theoretical perspective, the dynamical principles underlying asymptotic and
transient activity in trained networks are most of the time obscure as well [13]. Very recently,
progress has been made in reverse-engeneering, both numerically [133] and theoretically [108],
the specific network architectures which directly emerge from training. Apart from reverse-
engeneering, transforming trained recurrent networks into a formalized computational frame-
work requires to answer more general theoretical questions lying at the intersection between
the fields of network dynamics, random matrix and control theory. A unified theoretical setup
would allow to answer fundamentally unsolved questions like: are there limitations in the
computational power of the different network architectures? Which are the input-output rela-
tionships that their dynamics can implement? Which are the optimal parameters which allow
good training performances?

In the spirit of developing a theoretical understanding of trained networks, reservoir ar-
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chitectures might represent a particularly fertile field of investigation [108]. As most of the
synaptic connectivity is random, reservoir networks might partly benefit from the standard
statistical approaches which have been developed for purely random networks.

Already at the level of random network dynamics, a series of open problems still waits
to be exactly quantified. For example, although the interactions between external inputs and
chaotic activity have been addressed in many simplified scenarios [89, 99, 69, 87], very little is
known about the general properties of time-varying responses in setups which more directly
apply to reservoir machines [86]. A step in this direction is taken in the next chapter of this
thesis.
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Summary of Chapter 6

Neural activity in strongly connected random networks is highly heteroge-
neous and dynamically complex. One recent line of research suggests that, per-
haps counter-intuitively, such disordered states are highly desirable if the network
aims at performing robust and high-precision spatio-temporal tasks. If the dy-
namics are driven in a sub-instability regime where chaotic fluctuations are sup-
pressed by the external inputs, activity traces can be used as a rich basis set from
which a large number of complex target functions can be reconstructed. This idea
has been developing as a new machine learning set of techniques under the name
of reservoir computing.

Very few studies have focused on the dynamical mechanisms which allow such
training procedures to be effective. The result is a very poor understanding of suc-
cesses and failures which are obtained when training with those algorithms. In
order to start developing a more rigorous understanding of those computational
frameworks, we perform a quantitative analysis of a feedback reservoir architec-
ture which is trained to reproduce periodic output functions.

In analysing the existence and the degeneracy of the global solutions, we find
that a critical role is played by the degree of synchronization with which recurrent
random networks respond to synchronized inputs. We show that, within a simple
linear network, weak synchronization can be achieved with low frequency target
functions and highly disordered connectivities, which set the network dynamics
just below the boundary to instability. Remarkably, common training algorithms
like the recursive least-square minimization seem to efficiently take advantage
from desynchronized reservoir activity. Numerical investigations, furthermore,
suggest that weakly-coupled non-linear networks display response properties and
performances which are comparable with the simplified linear models. Our anal-
ysis thus provide a good description of trained non-linear networks in the low-
coupling strength regime.

The main results of this part of the dissertation derive from a work which has
been conducted as a Summer School project, held in Woods Hole in 2015 (MCN:
Methods in Computational Neuroscience). The project has been done under the
supervision of H. Sompolinsky and R. Rubin.
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A quantitative analysis of trained recurrent networks is a complex problem which can be ap-
proached in several different ways. From this perspecive, some simple recurrent setups, like
the feedback architecture which is widely adopted in [68, 132], might represent a particularly
fertile ground.

One possibility is to zoom in, after learning, on the portion of the neural circuit contained
inside the reservoir. As its recurrent connectivity is not affected by synaptic plasticity mech-
anisms, from a technical point of view such a network is purely random. As a consequence,
mean field approaches could indicate a way to characterize quantitatively its response proper-
ties and the expected dynamical regimes.

In this chapter, we perform a quantitative analysis of a feedback architecture which is
trained to reconstruct periodic output functions. We show that understanding how random
reservoir networks respond to synchronized inputs is a crucial step in defining the limitations
and the computational properties of those architectures.

We look for exact and statistical characterizations of network activity in the case of a linear
input-to-rate activation function. We show that already such a simple setup presents non-
trivial resonances and synchronization properties, which suggest a an optimal range of param-
eters for training algorithms performances.

6.1 From feedback architectures to auto-encoders and viceversa
We focus on a single feedback reservoir architecture, inspired from [68, 132] (see also Chapter
5). The output signal z(t) is linearly extracted from a random reservoir of rate units, and the
same signal is provided as a feedback to the neural population through some arbitrary weights
ui (Fig. 6.1 a). The evolution of the reservoir activity follows the usual rate dynamics (Eqs. 2.1
and 5.3) [127], and we indicate with Jij = gχij its random connectivity. The decoding set is
the only synaptic component which is affected by learning, and it is indicated with {wj}.

During learning, the readout signal z(t) =
∑

j wjϕ(xj(t)) is trained to reproduce a cer-
tain target function f(t). In this study, we consider a periodic function f(t), and we expand
it in a finite number of sinusoidal components.

We look for a rigorous description of the whole trained system which would help to answer
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a.

b.

Figure 6.1: Network architectures considered in this analysis. a. Feedback architecture from
[132]. The only learnt synaptic weights are the decoding ones, and they are drawn in red. After
learning, the readout signal z(t) coincides with the target function, which in the figure is a
simple sinusoid. b. The corresponding auto-encoder architecture, where the feedback wiring
is cut and the target function f(t) acts both as input and as output.

the following questions: how is this configuration sustainable for the global network dynamics?
Which kind of target functions are admitted, and which values of the network parameters need
to be adopted?

To this end, we imagine to set our analysis at the end of the learning procedure, such
that we can safely assume z(t) = f(t). We then transform the feedback architecture into an
open-loop, auto-encoder setup (Fig. 6.1 b). After training, the original reservoir is equiv-
alent to a random network which receives the target function f(t) as an external driving
input. This input reshapes deterministically the reservoir activity into a temporal response
{ϕ(xi(t))}. In a second step, activity is decoded to reconstruct back the target function,
through f(t) =

∑
j wjϕ(xj(t)). The analysis is thus conducted in two steps: in the en-

coding phase, we determine the activity response {ϕ(xi(t))}; in the decoding phase, we use
the solution to constrain the output weights and solve the decoder equation as a function of
the N variables wj . The auto-encoder formulation allows to assess the existence and compute
the degeneracy of the solution {wj}∗.

We observe that, both in linear and non-linear network architectures, any solution to the
open-loop problem is not guaranteed to be stable with respect to the global dynamics of the
closed feedback network (see, for example, [108] and Part III). However, as it will be shown in
the following paragraphs, global stability is particularly easy to assess in the simplified network
model that we are going to consider.

6.1.1 Exact solution
We start by solving the encoding step, which corresponds to study how a random network
responds to synchronized temporal signals. The external input entering different units is given
by uif(t), and is thus highly correlated in time from one unit to the other. Several studies
have investigated the dynamics of continuous-time random networks in presence of external
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inputs, but they have focused on the case of decorrelated [99, 89, 55, 87] or stationary signals
[69, 58, 87].

Synchronized inputs imply a non-trivial time course for the population-averaged activity
[86]. This feature makes a quantitative analysis more complex from a technical point of view.
We thus focus on the simpler case of linear rate models, and we set ϕ(x) = x. With this
choice, the solution to the encoding step can be computed exactly. Note that, for stability
reasons (see Chapter 2), we need to restrict ourselves to weakly-coupled networks: g < 1.

We start from considering a purely sinusoidal target function: f(t) = cos(ω0t). Network
dynamics in the encoding step can be written as follows:

ẋi(t) = −xi(t) + g

N∑
j=1

χijxj(t) + ui cos(ω0t). (6.1)

Note that here, as in the previous chapters, we have rescaled time to set the time constant of
integration to unity.

We decompose xi(t) on the basis given by the eigenvectors of the random matrix gχij .
We indicate the eigenvectors set by {v⃗l}, and the corresponding complex eigenvalues by {λl}.
We obtain: xi =

∑
l xlv

l
i and ui =

∑
l ulv

l
i. On this basis, Eq. 6.1 reads:

ẋl(t) = −(1− λl)xl(t) + ul cos(ω0t) (6.2)

whose asymptotic solution is given by:

xl(t) =
ul

2[(1− λl) + iω0]
eiω0t +

ul
2[(1− λl)− iω0]

e−iω0t. (6.3)

Notice that we expect both ul and λl to be complex. Combining the eigenvectors in pairs of
complex conjugates we can write the final expression for xi as:

xi(t) =
∑
l′

Xl′ cos(ω0t+ γl′) (6.4)

where the index l′ runs over each pair of complex conjugates and each real eigenvalue. By
summing over l′, we conclude that the activity of single neurons is oscillating with frequency
ω0:

xi(t) = Ai cos(ω0t+ φi). (6.5)

For every reservoir network χij , the amplitudes Ai and the phases φi can be written in terms
of the vector ui and of the random eigenvalues and eigenvectors of the matrix χij .

Once the deterministic network response has been computed, we turn to the decoder phase.
We ask whether a proper set of weights {wj} exists such that we can write:

f(t) = cos(ω0t) =
N∑
j=1

wjAj cos(ω0t+ φj)

=

N∑
j=1

wj [Aj cos(ω0t) cos(φj)−Aj sin(ω0t) sin(φj)] .

(6.6)
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This equation can be interpreted in the complex plane as a system of two constraints (one for
the real, and one for the imaginary part) on the variables wj :

1 =

N∑
j=1

wjAj cos(φj)

0 =
N∑
j=1

wjAj sin(φj),

(6.7)

Equivalently, in a matrix form, we obtain:

Dw =

(
1
0

)
(6.8)

where D, named decodability matrix, is a 2×N matrix containing the real and the imaginary
parts of the Fourier amplitude of oscillations:

D =

(
A1 cos(φ1) A2 cos(φ2) ... AN cos(φN )
A1 sin(φ1) A2 sin(φ2) AN sin(φN )

)
. (6.9)

Because of the Rouché-Capelli theorem for undetermined systems, Eq. 6.8 admits at least
one solution if the decodability matrix is full-rank (rank two in the present case of a single
frequency target). By expliciting the values of the amplitudes and phases Ai and ϕi, one can
check that this is the case for every connectivity matrix χij which admits at least a pair of non
identical eigenvalues. In the only pathological case of a matrix of real and identical eigenval-
ues, the single neurons response synchronize. Equivalently, the complex amplitudes of the N
oscillatory traces are represented in the complex plane by parallel vectors. As a consequence,
their real and imaginary part cannot be combined together as in Eq. 6.7 to reconstruct target
functions of arbitrary phases.

In the following, we will focus on the well-behaved case of finite-size random reservoirs,
which typically admit complex and distinct eigenvalues. In this case, only two free values of
{wi} are needed to satisfy the auto-encoder problem for a single frequency target function.

6.1.2 The effective dynamics
We suppose now to select one of the possible solutions. The simplest choice corresponds to
fix all the decoding weights to 0 except for the first two. For a particular realization of gχij ,
A1 and A2, φ1 and φ2 can be computed numerically; once they have been fixed, the solution
{w1, w2} can be derived by solving Eq. 6.6.

We can then close the loop and transform the auto-encoder back into a feedback archi-
tecture. The resulting autonomous dynamics is governed by the connectivity matrix Jij =
gχij + uiwj . Such a network admits a self-consistent oscillating solution. We conclude that
the eigenspectrum of Jij needs to include a pair of complex conjugate eigenvalues whose real
part lies exactly on the critical line, while their imaginary part corresponds to the forcing fre-
quency ω0. We indicate those eigenvalues with λ0 and λ∗

0. Note that the value of all the other
eigenvalues is not determined. If their real part is smaller than unity, the trained networks is
in a marginally stable oscillating state.

We test this procedure in finite networks and we confirm the expectations (Fig. 6.2). In
every trial, tuning w1 and w2 translates into a pair of eigenvalues with fixed frequency tuned
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a. b.

Figure 6.2: Transforming auto-encoder solutions into global dynamics. a. In this trial, the
auto-encoder solution is marginally stable. Top: in red, eigenspectrum of the effective connec-
tivity matrix Jij = gχij+uiwj . A pair of complex eigenvalues has been tuned to the instability
line at 1. Their imaginary part lies exactly on the two horizontal lines where Im(λ) = ±ω0.
Black dots in the background: original eigenspectrum of gχij . Bottom: sample of activity
from the closed-loop dynamics (5 randomly chosen units). b. The auto-encoder solution is
not stable. Figures as in a.

on the instability line. Apart from them, most of the remaining eigenvalues still lie close to
the circular region, although they never remain in the same position. The position of few of
them deviates significantly, and two possible scenarios are verified.

In cases as in Fig. 6.2 a, which correspond to the majority of the trials, all the outliers lie
below the instability line. As a result, network activity displays marginally stable oscillations.
In cases as in Fig. 6.2 b, one or more outliers induce an instability to run away activity. As
the position of random outliers typically fluctuates around the circle, unstable solutions are in
this framework a small minority.

In conclusion we found that, as expected (see [108] and Chapter 8), the stability of the
auto-encoder solution is not trivially ensured when the full feedback architecture is considered.
Nevertheless, online training algorithms like recurrent least-square minimization might be
able to overcome the instabilities: as the degeneracy in the space of the solutions is huge, they
could be able to find at least one configuration corresponding to (marginally) stable oscillations.
Diverging activity, indeed, would imply finite error values, which force new updates in every
value of the decoding weights.

We compare our predictions with the performances of the FORCE online learning scheme.
We started from a random feedback architecture as in Fig. 6.1 a, and we trained the decoding
weights with a recursive least-square (RLS) algorithm [132].

We find that online training can sample and avoid the unstable solutions, resulting in
fast convergence around the marginally stable oscillating state (Fig. 6.3 a). During training,
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a.

b. c.

Figure 6.3: Training linear feedback architectures to reproduce a single sinusoid as target func-
tion. a. Activity before, during and after training through the recursive least-square (RLS)
algorithm [132]. Time traces of single units activity are shown in grey. The network recon-
struction (in red) well corresponds to the target function (in black) during and after learning. In
blue: average size of weight update at each iteration step. As training converges, ẇ becomes
very small but never equals 0. Choice of the training parameters: learning rate parameter
α = 1 [132], learning time bin δt = 0.05 (in units of the implicit network time scale τ = 1).
b. Eigenspectrum of the effective matrix Jij = gχij + uiwj at 6 time points during train-
ing. On the pink horizontal lines: Im(λ) = ±ω0. c. Exact value of the real part of the λ0

eigenvalue during a long training session. Different traces correspond to different networks
realizations. Fluctuations around the critical boundary are very small in size. If the time step
of training is small enough, oscillations slowly converge to 1.

the eigenspectrum of the global connectivity matrix is shaped to obtain a pair of marginally
stable eigenvalues which correspond to the target frequency (Fig. 6.3 b). Because of the
finite precision of numerics, however, training convergence is never exact. The least-square
algorithm keeps on tuning the synaptic weights, resulting in very small oscillations of the real
part of the outliers λ0 and λ∗

0 around the critical value (Fig. 6.3 b-c). The fine tuning to
the marginally stable state can be improved by adopting smaller time intervals for the weights
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6.2. A mean field analysis

update.
If training is precise enough, post-training oscillations will mimic the target function f(t)

with high precision for a reasonable time length (as in Fig. 6.3 a), before exploding or decaying
back to 0.

We notice that, in contrast to the simple solutions that we explicitly designed, the distri-
bution of the decoding weights wi which are found by FORCE is broad, and it is well fitted
by a Gaussian bell (not shown). This comes as a consequence of the step-by-step optimization
process which, to begin with, projects the decoding weights in the direction of the random
initial condition: wi ← xi(t1).

To conclude, we remark that training performance in linear networks strongly depends on
the values of the reservoir parameters, and it can be compromised by adopting more complex
target functions. A more extensive discussion on the topic is presented in the next sections.

6.1.3 Multiple frequencies
As a next stage, we ask whether our feedback architecture is able to learn a target function f(t)
which oscillates at more than one frequency. We take for simplicity f(t) = a1 cos(ω1t+α1)+
a2 cos(ω2t+ α2).

The response of the network consists of two terms which sum linearly:

xi(t) = A1
i cos(ω1t+ φ1

i ) +A2
i cos(ω2t+ φ2

i ) (6.10)

while the decoder step translates into:

a1 cos(ω1t+ α1) + a2 cos(ω2t+ α2) =

N∑
i=1

wi

[
A1

i cos(ω1t+ φ1
i ) +A2

i cos(ω2t+ φ2
i )
]

(6.11)
which is now effectively imposing 4 constraints on the N decoding weights wi.

By induction, one would conclude that the auto-encoder system can be trained on to a
maximum number of frequencies which equals N/2. In practice, for any target frequency,
the network should rely on a pair of oscillators which are not in phase. Loosely speaking,
asynchrony is required to balance the two phases in order to align the response with the target
phase αn. As a consequence, in order to learn complex periodic functions, we crucially need
the neural response to spread over a wide spectrum of phases.

In the exact solution we derived, the phases and the amplitudes of single neuron activ-
ity non trivially depend on the single realization of the system through its eigenvectors and
through the weights ui. As a consequence, as we increase the system size N to accommodate
more and more frequencies, it is not straightforward to predict how the phases will distribute.

6.2 A mean field analysis
We thus consider again the easiest case of a single-frequency forcing function f(t) and we ask:
what is the limit distribution for the phases of the different units response, in the limit of large
networks? Does network activity synchronize in the thermodynamic limit?

In order to answer this question, we develop an alternative description based on a statistical
characterization of the amplitudes and the phases in the network response.
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6. Analysis of a linear trained network

For mathematical convenience, we put ourselves in the worst case scenario, where the
forcing input is exactly equal for every neuron: ui = 1 ∀i. Broadly distributed input weights
can nevertheless easily be included in the mean field description.

We aim at providing an effective description of the dynamics:

ẋi(t) = −xi(t) +
N∑
j=1

Jijxj(t) + cos(ω0t) (6.12)

in the limit N → ∞. We inject our guess: xi(t) = Ai cos(ω0t + ϕi) into the equation. We
obtain:

−Aiω0 sin(ω0t+ ϕi) = −Ai cos(ω0t+ ϕi) +

N∑
j=1

JijAj sin(ω0t+ ϕj) + cos(ω0t). (6.13)

We expand the sinusoidal functions, and we treat separately the term corresponding to sin(ω0t)
ad cos(ω0t), obtaining:

−Aiω0 sinϕi = −Ai cosϕi +
N∑
j=1

JijAj cosϕj + 1

−Aiω0 cosϕi = Ai sinϕi −
N∑
j=1

JijAj sinϕj .

(6.14)

We now define: Xi = Ai(cosϕi − i sinϕi) = Aie
−iϕi corresponding to the Fourier

amplitude of activity xi(t) in the frequency ω0. We define the coupling noise: Zi = ηxi + iηyi ,
with ηxi =

∑
j JijAj cosϕj and ηyi = −

∑
j JijAj sinϕj , such that Zi =

∑
j JijXj . The

term noise is adopted from the Dynamical Mean Field (DMF) terminology (see in Chapter 2),
and stems from the expectation that coupling terms, which consist of large sums of disordered
terms, effectively behave as completely random variables.

By summing the two equations in Eq. 6.14, one finds:

Xi =
1 + Zi

(1− iω0)
. (6.15)

The solution in the Fourier space is thus given by the sum of two contributions. The first
term, X0 = 1/(1 − iω0), is homogeneous, and coincides with the response that would be
measured in non-coupled reservoirs (g = 0). The second one, δXi, is an interaction term, and
is proportional to the coupling noise Zi.

We aim at computing a probability distribution for the real and the complex part of Xi

by averaging over different network units, or, equivalently, over different realizations of the
random connectivity matrix. Similarly to standard DMF techniques (see in Chapter 2), we
start by considering the distribution of the coupling noise Zi, which can be computed self-
consistently. Under the hypothesis that activity decorrelates in very large networks, we obtain:

[Zi] = g
N∑
j=1

[χij ][Xj ] = 0 (6.16)

as in the random reservoir [χij ] = 0. This immediately suggests that [δXi] = 0.
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As all the cross-terms vanish, we are left with three second order statistics to compute:

[Z2
i ] = g2

N∑
j=1

N∑
k=1

[χijχik][XjXk] = g2[X2
i ] = g2[(X0 + δXi)

2] = g2
{

1 + [Z2
i ]

(1− iω0)2

}
(6.17)

as [χijχik] = δjk/N . In the same way we get:

[Z∗2
i ] = g2

{
1 + [Z∗2

i ]

(1 + iω0)2

}
[|Zi|2] = g2

{
1 + [|Zi|2]
1 + ω2

0

}
.

(6.18)

One can easily solve the equations above, finally obtaining the statistics of the interaction
noise:

[Z2
i ] =

g2

(1− iω0)2 − g2

[Z∗2
i ] =

g2

(1 + iω0)2 − g2

[|Zi|2] =
g2

1 + iω2
0 − g2

(6.19)

from which the statistics of the interaction response δXi can be derived:

[δX2] =
g2

(1− iω0)2
1

(1− iω0)2 − g2
= α(g, ω0)

[|δX|2] = g2

1 + ω2
0

1

(1 + ω0)2 − g2
= β(g, ω0).

(6.20)

Note that we omitted the subscript i, as the population is homogeneous on average.
We finally isolate the real and the imaginary part of the second order statistics:

[δX2
x] =

1

2
(β +Re(α))

[δX2
y ] =

1

2
(β −Re(α))

[δXxδXy] =
Im(α)

2

(6.21)

where a little algebra gives:

Re(α) =
g2
[
1− 6ω2

0 + ω4
0 + g2(ω2

0 − 1)
]

(1 + ω2
0)

2
[
g4 + 2g2(ω2

0 − 1) + (1 + ω2
0)

2
]

Im(α) = − 2g2ω0(−2 + g2 + 2ω2
0)

(1 + ω2
0)

2
[
g4 + 2g2(ω2

0 − 1) + (1 + ω2
0)

2
] . (6.22)

To sum up, we computed the first and second order statistics of the network activity distri-
bution in terms of its Fourier transform corresponding to the frequency ω0. We found that, in
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the complex plane, the distribution of Xi is centered around the uncoupled response X0. We
examined the statistics of the deviations from X0 and we found that their real and imaginary
parts are correlated. As a consequence, according to a mean field approximation, δXi must be
distributed in the polar plane according to a multi-variate Gaussian law, of mean (0, 0) and
covariance matrix defined by Eq. 6.21.

To every point in the complex plane corresponds, in the time domain, one oscillation of
frequency ω0 with fixed phase and amplitude. Instead of trying to compute an explicit joint
probability distribution for the amplitudes and the phases, we study the mean field solutions
in the polar plane, and we map them numerically in the time domain.

6.2.1 Results
Fig. 6.4 a shows the predicted distribution of the Fourier amplitude Xi for fixed values of the
parameters g and ω0. We compare the theoretical expectation with the distribution obtained
by numerically simulating activity in a finite-size network (N = 2000, right panel) and we
find a good agreement.

The fact that the real and the imaginary component of δXi are correlated implies that,
even in disordered networks (g > 0), the response in the complex plane can potentially align,
thus yielding completely synchronized oscillations.

The exact shape of the predicted distribution depends on both parameters g and ω0. In
general, if we fix ω0 and we vary g from 0 to 1, we observe a gradual increase in the phase
spread of Xi as the interactions become stronger and stronger (Fig. 6.4 b). When g is small,
the response Xi has small amplitude and is almost aligned on the same phase angle. When
g is close to 1, instead, the response is highly delocalized around the common term X0. We
conclude that, for fixed values of ω0, g = 1 represents the optimal parameter choice.

The phase spread shows an additional, non monotonic, dependence on the forcing fre-
quency ω0. We rigorously quantify the phase spread by measuring the standard deviation of
the phases distribution after having remapped them to the interval [0, π] (responses with phases
γ and γ + π are considered synchronized as weights wi can take both positive and negative
values). Fig. 6.4 c reveals that, when the frequency is too large, the phase spread decreases.
For any value of g, furthermore, we find an optimal finite frequency ω̃0 for which the phase
spread is maximum. The optimal frequency is typically small, it varies non-monotonically with
g, and it converges to zero close to the instability in g = 1.

We conclude that the maximum phase spread can be achieved with extremely slow target
functions and strongly coupled networks (g ∼ 1). In those conditions, the degeneracy of the
solutions to the auto-encoder problem is expected to be large. On the contrary, we found that
in large networks complete network synchronization is expected to occur only in completely
decoupled reservoirs, which correspond to g = 0.

6.3 A comparison with trained networks
Strong desynchronization is expected to be an essential requirement for learning complex pe-
riodic functions. In the case of simple sinusoids, however, we predicted that any small but
finite phase spread should ensure the existence of a finite number of auto-encoder solutions.
These solutions indeed exist and can be computed numerically, as in paragraph 6.1.2, for any
value of the parameters ω0 and g. Numerically computing the eigenspectra of the global con-
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a.

b.

c.

Figure 6.4: Network response predicted by the mean field theory: distribution of the Fourier
amplitude Xi in the complex plane. a. On the left: the theoretically predicted distribution is
centered in X0 (central black dot), and deviations are distributed according to a multivariate
Gaussian. Choice of the parameters: g = 0.8, ω0 = 0.3. On the right: comparison with
simulated activity in a finite network, N = 2000. b. Predicted distribution for fixed ω0 = 0.3
as the coupling g is increased. c. Spread in the distribution of the response phases. Networks
units are maximally desynchronized when the forcing frequency is small and the coupling
strength is high.

nectivity matrix Jij suggests furthermore that a large fraction of them are dynamically stable
(see below).

Similarly, we expect the auto-encoder problem to admit at least one solution for any ran-
dom reservoir which consists of more than two units, as complete synchronization in very
small networks is highly implausible to occur.
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A different question is whether a batch or an online training algorithm can robustly build a
stable solution starting from a small number of almost in-phase oscillators, or whether a wider
set of decorrelated basis functions is required.

In order to address this point, we first test online algorithms on the simpler problem
of looking for auto-encoder solutions by solving for {wj} the decoding equation f(t) =∑

j wjϕ(xj).

6.3.1 Training auto-encoders
In this setting, the forcing input is clamped to the target function f(t) before, during and after
learning. Any change in the decoding weights do not thus propagate to the network dynamics.
We use the recursive least square (RLS) algorithm on the weights wi to enforce numerically
and dynamically the decoding step that we solved analytically in the previous section.

As we aim at comparing the results with training performance in full feedback architec-
tures, we measure learning performance by computing the average post-learning reconstruc-
tion error within a small time window. As in linear networks the optimal solution is only
marginally stable, every successfully trained network suffers indeed of long term stability is-
sues. By measuring post-training error in a relatively short time window we aim at quantifying
whether a marginally stable solution was found, while partially ignoring how much fine tuning
was achieved.

In Fig. 6.5 a, we train the random reservoir on a slow target function (ω0 = 1), and
we look at the average performance as the coupling g is increased. The results show that
training performance is seriously impaired at low g values, where oscillating activity is almost
synchronized, while it rapidly improves at larger coupling strengths. Furthermore, learning
performs better in larger size networks.

In Fig. 6.5 b-c, we consider large reservoirs, and we ask how training performance changes
when the target pulsation ω0 is increased. Again, we find that larger target frequencies, and
thus larger synchronization, translate into more serious training impairments.

6.3.2 Training feedback architectures
In a second step, we apply the RLS algorithm to the original feedback architecture as in [132].
In this configuration, the forcing input z(t) is kept dynamically close to the target function
f(t) through the online weights update.

We find that training the whole feedback architecture typically results in worse perfor-
mances. This suggests that, even if a solution exists and can be found algorithmically starting
from the asymptotic network response, an addition effort is required to efficiently stabilize the
recurrent feedback dynamics.

However, similarly to what observed in Fig. 6.5 in the case of clamped inputs, the er-
ror decreases in the parameter regions which imply larger desynchronization in the reservoir
response.

More in detail, in the left panel of Fig. 6.6 a, we show that the post-training reconstruction
error sensibly decreases as g increases runs from 0 to 1.

As in this framework the training algorithm is searching for full feedback solutions, one
could hypothesize that failures at small g derive from an increase in the fraction of unstable
solutions. To rule out this possibility, we estimate the relative number of unstable solutions
by solving numerically the decoding equations as in paragraph 6.1.2. We iterate this proce-
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a.

b.

c.

Figure 6.5: Recursive least square (RLS) performance in training the decoding weights wi

when the reservoir input is clamped to the target function f(t) = cos(ω0t). Training parame-
ters as in Fig. 6.3. Performance is measured as the average absolute error within one time step
of integration of post-learning activity, during a short time interval T after training (T = 30).
Average over 15 different trained networks. As the target frequency is increased, smaller train-
ing time steps have been adopted. a. Average reconstruction error in small networks for
increasing values of the coupling g. Even if one solution exists for any network size N > 2,
training performance depends on the network size. Performance, furthermore, significantly
improves in strongly coupled networks, as the oscillating response desynchronizes. Note that
extremely small values of the learning rate parameter α seem to alleviate training impairments
at small g values, but they don’t prevent large errors in the post-learning reconstruction signal.
Forcing pulsation: ω0 = 1. b-c. Performance in larger networks (N = 300) as a function of
g for faster and slower target functions. Details as in a. At smaller frequencies, activity is less
synchronized and learning is more precise.

dure over many trials and we assess stability by looking at the eigenspectrum of the global
connectivity matrix Jij = gχij + uiwj .

We find that the fraction of unstable solutions is extremely small at small g values, while it
approaches one half when the eigenvalues circle is close to the instability line (Fig. 6.6 a, right
panel). The fraction of unstable solutions grows almost linearly with g and does not signifi-
cantly depend on the networks size N and on the target frequency ω0. At high g values, the
portion of unstable solutions is high but the reconstruction error is small in every training trial.
We conclude that, at least in the case of simple target functions and strong reservoir desyn-

83



6. Analysis of a linear trained network

a.

b.

Figure 6.6: RLS algorithm performance in training the decoding weights when the feedback
input to the reservoir z(t) is constructed dynamically from network activity. Training param-
eters and details as in Fig. 6.5. a. Training feedback architectures for different values of the
coupling strength g and different reservoir sizes N . Left panel: training performance mea-
sured as the average post-training reconstruction error. Right: brute force estimation of the
fraction of unstable open-loop solutions. Training failures at small g values cannot be due to
an increase in the fraction of unstable solutions, as the trend goes in the opposite direction.
Forcing pulsation: ω0 = 0.5. b. Training feedback architectures for different values of the
coupling strength g and different target pulsations ω0. Details as in a, N = 150.

chronization, online training algorithms can robustly isolate stable from unstable solutions.
In Fig. 6.6 b we show that, similarly to the auto-encoder configuration, training improves

dramatically when adopting slow target functions. In the right panel we show that this effect
cannot be explained by instability arguments either.

6.3.3 Discussion

To sum up, we found that the common RLS algorithm is not always able to stably converge
to a solution, even in cases where more than one solution is analytically guaranteed to exist.
Training performance improves significantly in the parameter regions where the mean field
theory predicts the phase spread to be maximal. In these phase space regions, training algo-
rithms can rely on a widely distributed basis set of oscillations which can be efficiently balanced
to align the network reconstruction to the target response.
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Training failures cannot be due to dynamical instabilities, as they also occur in the open-
loop setting. They more probably derive from severe precision limitations in the numerical
computations that are prescribed by the recursive least-square (RLS) algorithm. In this hy-
pothesis, synchronized reservoir activity and ill-conditioned computations would emerge, re-
spectively, as the dynamical and statistical expressions of the same fundamental problem.

In order to test this hypothesis in a theoretically simplified framework, one could try to
solve numerically the whole decodability set of equations (Eq. 6.8). Similarly to the RLS
algorithm, one can consider its least square solution, which is given by:

w = DT (DTD)−1F. (6.23)

Our analytical approach ensures the square matrix DTD to be full rank and thus invertible
for large and random reservoirs. It does not exclude, however, that the matrix might be very
ill-conditioned for certain values of the network parameters. Note that the entries of the DTD
matrix are naturally returned by our mean field approach, so that further analytical steps might
be easily taken in this direction. We leave those investigations to future analysis.

6.4 Towards non-linear networks
The numerical analysis we performed suggests that linear networks optimally learn arbitrarily
slow signals in a parameter region close to the instability due to large couplings strengths.

In non-linear networks, the overall coupling g can be pushed to large values without in-
ducing destabilizations to run away activity. A different kind of instability is expected to occur
at g = 1 (see also Chapters 1 and 2), which leads to the onset of irregular chaotic fluctuations.
In presence of external forcing inputs, however, the instability coupling is expected to be larger
than unity. The exact value of gC non trivially depends on the amplitude and the frequency of
the periodic forcing [99].

As it was already mentioned, a full characterization of non-linear networks response is a
challenge that presents several technical difficulties. Here we take an exploratory approach
and we compute numerically the phase distribution that we predicted analytically in the case
of linear networks (Fig. 6.4 c).

6.4.1 Response in non-linear random reservoirs
We consider values of the coupling strengths at which network activity is still deterministic (in
the case of our target function: 0 < g ≲ 1.8). When a sinusoidal input is injected into a non-
linear network, together with a response in the forcing frequency, a response in the harmonic
frequencies can be elicited as well. Multi-frequencies responses dominate at high coupling
values. We isolate the phase of oscillations at the main pulsation ω0 through a numerical
Fourier decomposition.

The result is shown in Fig. 6.7. To begin with, we observe that the order of magnitude
of phase spread for linear and non-linear networks is essentially comparable. As in linear
networks, furthermore, the phase dispersion increases with g. For any coupling value, our
results reveal a finite optimal frequency at which desynchronization is maximum. For high
values of g, sinusoidal functions with pulsation ω0 ∼ 1 (in the implicit network time scale,
given by τ = 1) result into an optimal response.

We finally observe that, similarly to what we found in Section 6.2, the phase spread falls
down monotonically at large ω0 values when the coupling is smaller than 1. At high g values,
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a.

Figure 6.7: Non-linear network response: numerical analysis. a. Phase dispersion, measured
as the standard deviation of the phase distribution in the support [0, π] across different units
of the same network. Average over 5 sample networks, N = 3000. We restricted the analysis
to the response relative to the peak pulsation ω0.

instead, the degree of synchrony seem to saturate to constant values in the high frequency
domain (for ω0 > 4, it converges around 18◦ when g = 1.8), suggesting that non-linear
networks can more robustly respond to high frequency forcing in the parameter region where
chaotic fluctuations are quenched by the external input.

6.4.2 Training non-linear networks
If synchronization properties are similar in linear and non-linear reservoirs, one can ask whether
online training algorithms require strongly desynchronized activity also when training is per-
formed within non-linear architectures. To conclude this chapter, we thus perform a system-
atic analysis of training performances within non-linear architectures. As it will be shown,
the training impairment which is observed at weak coupling strengths strongly resembles the
problems that have been observed in linear models.

It has been already observed that the FORCE training performance is optimal for param-
eter values near to the edge of chaos, i.e. at coupling strengths g which are close to gC [132].
We replicate this result in our framework by training non-linear feedback architectures on a
single frequency target function, and we measure performance by computing the after training
reconstruction error over a long time window T .

As expected, performance is optimal in the g > 1 region where activation traces are
strongly non-linear and network activity is stabilized thanks to the readout feedback input
(Fig. 6.8 a and c, third row). Above gC , activity becomes unpredictable, and chaotic fluctua-
tions bring the network reconstruction far from the target function, resulting in a large average
error (Fig. 6.8 c, fourth row).

A similarly large error is measured at small g values. In contrast to the high coupling
region, however, when g ≲ 1, training correctly converges. For finite training steps, neverthe-
less, the reconstruction z(t) is never exactly tuned to the target frequency. As a result, when
post-synaptic activity is integrated over a long time window, the target and the reconstruction
functions completely desynchronize, and the training error is on average large (Fig. 6.8 c, first
and second row). This kind of error can be controlled and decreased by adopting smaller and
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c.

a. b.

Figure 6.8: FORCE training within the original non-linear architecture. Target function:
f(t) = cos(ω0t), ω0 = 0.5. Training parameters as in Fig. 6.3. a. Performance, measured as
the average absolute error during post-training reconstruction. Red line: the error is averaged
over a long time window: T = 500 (in the implicit network time scale where τ = 1). A large
reconstruction error is measured similarly in the almost linear (g < 1) and chaotic (g > 1.9)
regimes. Grey line: the error is averaged over a short time window, T = 30, comparable with
the choice we adopted in the previous sections with linear networks. Note that with this choice,
the training performance in the weak coupling regime is quantitatively comparable with the
results we obtained by training purely linear feedback architectures. b. Eigenspectrum of the
global network connectivity Jij = gχij +wj at the end of training. We considered two values
of the synaptic strength g, indicated in a by the black stars. On the pink horizontal lines:
Im(λ) = ±ω0. c. Target function (grey) and network reconstruction (orange) after the end
of the learning period. We adopted four values of g, which are indicated in b by the orange
bars. While the long-term reconstruction error is large both at small and large g values, in the
weak coupling regime the error comes from a small frequency mismatch.

87



6. Analysis of a linear trained network

smaller update time steps. Note that in non-linear networks, oscillating activity appears as
a result of a saturation-stabilized Hopf bifurcation. As a result, tuning both the real and the
imaginary part of the eigenvalues lying above the critical line directly affects the final frequency
of oscillations.

The same behaviour has been observed in linear networks, where the online tuning of the
forcing eigenvalues λ0 and λ∗

0 is never exact, and results in a mismatch (together with decaying
or exploding activity) on the long run.

Learning in the weak coupling regime presents also other similarities with training in
the linear case. First, the training performance smoothly improves with increasing coupling
values (Fig. 6.8 a). After training, furthermore, the fixed point in 0 is unstable only in one
planar direction, which is defined by two complex conjugate eigenvectors whose eigenvalues
lie above the critical line (Fig. 6.8 b, left). Their imaginary part reasonably well explains the
learnt target frequency. Finally, in the weak coupling regime, training acts through very strong
weights modifications during a first phase, and it keeps on tuning the exact value of the unstable
eigenvalues during the second phase (not shown).

As g becomes close to 1, the global dynamics properties start to diverge smoothly from
almost-linear features. The fixed point in zero becomes unstable with respect to a large number
of directions, and a direct check at its stability matrix (coinciding with Jij , as ϕ′(0) = 1), is no
longer very informative (Fig. 6.8 b, right). The eigenspectrum that we obtain, furthermore,
changes significantly and quantitatively in different training trials.

In those conditions, learning is extremely stable over time and the error is minimized. One
possibility would be that training in this regime is taking advantage of higher and higher desyn-
chronization properties which increase monotonically with g (see in Fig. 6.7). However, the
complete picture is likely to be more complex. Our analysis, indeed, did not take into account
several different elements which are likely to play an important role in strongly connected
non-linear networks. Above all, we did not consider the effect of having multiple responses
at higher harmonics, and we did not address the consequences of a significative change in the
phase space topology, suggested by the large number of unstable directions for the stationary
solution in 0.

How those different elements contribute to extremely high precision training is still an
open question.
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Part III

linking connectivity, dynamics and
computations





Summary of Chapters 7 - 8 - 9

Synaptic connectivity determines the dynamics and computations performed
by neural circuits. Due to the highly recurrent nature of circuitry in cortical net-
works, the relationship between connectivity, dynamics and computations is com-
plex, and understanding it requires theoretical models. Classical models of re-
current networks are based on connectivity that is either fully random or highly
structured, e.g. clustered. Experimental measurements in contrast show that cor-
tical connectivity lies somewhere between these two extremes. Moreover, a num-
ber of functional approaches suggest that a minimal amount of structure in the
connectivity is sufficient to implement a large range of computations.

Based on these observations, here we develop a theory of recurrent networks
with a connectivity consisting of a combination of a random part and a minimal,
low dimensional structure. We show that in such networks, the dynamics are
low-dimensional and can be directly inferred from connectivity using a geometri-
cal approach. We exploit this understanding to determine minimal connectivity
structures required to implement specific computations. We find that the dynam-
ical range and computational capacity of a network quickly increases with the
dimensionality of the structure in the connectivity. Our simplified theoretical
framework captures and connects a number of outstanding experimental observa-
tions, in particular the fact that neural representations are high-dimensional and
distributed, while dynamics are low-dimensional, with a dimensionality that in-
creases with task complexity. Altogether our results suggest a simple general prin-
ciple for relating connectivity, dynamics and computations: the low-dimensional
structure of the connectivity matrix determines low-dimensional dynamics and
computations in recurrent networks.

A substantial fraction of this part of the dissertation is adapted from the
manuscript: Linking dynamics, connectivity and computations by F. Mastrogiuseppe
and S. Ostojic, submitted.
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Dynamics of networks with unit rank structure 7

Understanding the relationship between synaptic connectivity, neural activity and behavior
is the central endeavor of neuroscience. Networks of neurons encode incoming stimuli in
terms of electrical activity, and transform this information into decisions and motor actions
through synaptic interactions, thus implementing computations that underly behavior. Reach-
ing a simple, mechanistic grasp on the relation between connectivity, activity and behavior is
however highly challenging. Cortical networks, which are believed to constitute fundamental
computational units in the mammalian brain, consist of thousands of neurons that are highly
inter-connected through recurrent synapses. Even if one was able to experimentally record the
activity of every neuron and the strength of each synapse in a behaving animal – the ultimate
goal of current technological developments –, understanding the causal relationships between
these quantities would remain a daunting task because an appropriate conceptual framework
is currently lacking [117, 51]. Simplified, computational models of neural networks provide
a testbed for developing such a framework. In computational models, the strengths of all
synapses and the activity of all neurons are known, yet an understanding of the relation be-
tween connectivity, dynamics and computations has been achieved only in very specific cases
[17, 29, 124, 147, 81].

One of the most popular and best-studied classes of network models is based on fully
random recurrent cortical connectivity [127, 24, 143]. Such networks display self-sustained ir-
regular activity that closely resembles spontaneous cortical patterns recorded in-vivo [126, 119,
120]. The relationship between connectivity and dynamics can be understood in great detail
in this case, and randomly-connected networks have become a central theoretical paradigm
that has led to the development of fundamental concepts such as excitation-inhibition bal-
ance and decorrelation [105]. However, randomly connected recurrent networks display only
very stereotyped responses to external inputs and can implement only a limited range of input-
output computations [99, 74]. To implement more elaborate computations, classical network
models rely instead on highly structured connectivity, in which every neuron belongs to a
distinct cluster, and is selective to only one feature of the task [147, 9, 81]. Actual cortical con-
nectivity appears to be neither fully random nor fully structured [59, 129], and the activity of
individual neurons displays a similar mixture of stereotopy and disorder [107, 83, 32]. To take
these observations into account, and implement general-purpose computations in recurrent
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networks, a number of functional approaches have been developed for designing appropriate
connectivity matrices [65, 67, 80, 132, 48, 13]. A general conceptual picture of how connec-
tivity determines dynamics and computations is however currently missing.

Remarkably, albeit developed independently and motivated by different goals, several of
the functional approaches for designing connectivity appear to have reached similar solutions,
in which the computations performed by the network rely on a minimal, low rank structure
in the synaptic matrix. In classical Hopfield networks [65, 110, 104], a rank one term is
added to the connectivity matrix for every item to be memorized. In echo-state [67, 80]
and FORCE learning [132], and similarly within the Neural Engineering Framework [48],
computations are implemented through feedback loops that are mathematically equivalent to
adding rank one components to the otherwise random connectivity matrix. In the predictive
spiking theory [20] the requirement that information is represented efficiently leads again to
a connectivity matrix with low rank structure. Taken together, the results of these studies
suggest that low rank structure added on top of random recurrent connectivity may provide a
general and unifying framework for implementing computations in recurrent networks.

Based on this observation, in the last part of this dissertation we develop a theory of large,
random networks perturbed by weak, low dimensional connectivity, and examine the compu-
tational capacity of such a setup.

We start by showing that in such networks, both spontaneous and stimulus-evoked ac-
tivity are low dimensional and can be predicted from the geometrical relationship between a
small number of high-dimensional vectors that represent the connectivity structure and the
incoming stimuli. This understanding of the relationship between connectivity and network
dynamics will allow us in the next chapters to directly design minimal, low rank connectivity
structures that implement specific computations.

Here, we start by considering the simplest possible type of low dimensional connectivity,
a matrix Pij with unit rank. Examples of higher rank structures will be discussed in Chapter
8.

7.1 One dimensional spontaneous activity in networks with unit
rank structure

We studied a classical network of N firing rate units with a sigmoid input-output transfer
function [127, 132, 73]. The connectivity matrix consisted of a sum of a structured, low rank
matrix Pij and a random, full-rank matrix of strength controlled by a parameter g, which we
also denote as disorder strength. We considered the low rank component of the connectivity
to be fixed and uncorrelated with the random part, which was considered unknown except for
its statistics (mean 0, variance g2

N ). In absence of structured connectivity, the dynamics are
determined by the strength g of the random connectivity: for g < 1, the activity in absence of
inputs decays to zero, while for g > 1 it displays strong, chaotic fluctuations [127]. Our aim
was to understand how the interplay between the fixed, low rank part and the random part of
the connectivity shapes the dynamics of activity in the network. We first describe spontaneous
dynamics in the network, and later turn to effects of inputs.

We found that an effective, statistical description of the dynamics can be mathematically
derived if the network is large and the low dimensional part of the connectivity is weak (i.e. if
Pij scales inversely with the number of units N in the network). In this situation, the activity
of the unit i can be described in terms of the mean and variance of the total input it receives,
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7.1. One dimensional spontaneous activity in networks with unit rank structure

determined by averaging over different realizations of the random part of the connectivity
matrix. Dynamical equations for these quantities can be derived by extending the classical
dynamical mean field theory [127]. Full details of the analysis are provided in Section 7.3,
here we summarize the main results.

A matrix Pij with unit rank can be written as:

Pij =
minj

N
(7.1)

where m = {mi} and n = {nj} are two N-dimensional vectors which we call respectively
the right- and left-structure vectors. These vectors fully specify the structured part of the
connectivity, and we consider them arbitrary, but fixed and uncorrelated with the random part
of the connectivity. In the following, we will show that the network dynamics can be directly
understood from the geometrical arrangement of the vectors m and n.

Our analysis reveals that at equilibrium, the average input µi to unit i is given by

µi = κmi, (7.2)
where

κ =
1

N

N∑
j=1

nj

[
ϕj

]
. (7.3)

The scalar quantity κ represents the overlap between the left structure vector n and the
N-dimensional vector [ϕ] = {

[
ϕj

]
} that describes the average firing activity of the units in

the network ([ϕj ] is the firing rate of unit j averaged over different realizations of the random
component of the connectivity). The overlap κ therefore quantifies the degree of structure
along the vector n in the activity of the network. If κ > 0, the equilibrium activity of each
neuron is correlated with the corresponding component of the vector n, while κ = 0 implies
no such structure is present.

For a given realization of the random component of the connectivity, the equilibrium input
to unit i will deviate from the expected mean µi, and these static fluctuations can be quanti-
fied by the corresponding, static variance. Strong random connectivity may moreover induce
chaotic fluctuations, which lead to an additional temporal variance. The overlap κ and the
static and temporal variances are macroscopic network quantities that obey a set of coupled
equations (see Eqs. 7.17, 7.29 and 7.66). Those equations can be solved to determine the
possible regimes of network dynamics.

Similarly to fully random networks, two general types of activity can emerge: static, fixed
point dynamics, and fluctuating, chaotic activity. We start by describing static dynamics, ex-
pected to occur when the random part of the connectivity is not too strong.

If one represents the network activity as a point in the N−dimensional space where every
dimension corresponds to the activity of a single unit, Eq. 7.2 shows that the structured part of
the connectivity induces a one-dimensional organization of the spontaneous activity along the
vector m. This one-dimensional organization however emerges only if the overlap κ does not
vanish. As the activity of the network is organized along the vector m, and κ quantifies the
projection of the activity onto the vector n, non-vanishing values of κ require a non-vanishing
overlap between vectorsm andn. This overlap, given bymTn/N =

∑
j mjnj/N corresponds

in fact to the eigenvalue of the rank one matrix Pij and directly quantifies the strength of the
structure in the connectivity. The connectivity structure strength mTn/N and the activity
structure strength κ are therefore directly related, but in a highly non-linear manner. If the
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connectivity structure is weak, the network only exhibits homogeneous, unstructured activity
corresponding to κ = 0, so that the average input is zero for all units (Fig. 7.1 b blue). If
the connectivity structure is strong, structured, heterogeneous activity emerges (κ > 0), and
the activity of the network at equilibrium is organized in one dimension along the vector m
(Fig. 7.1 b green and Fig. 7.2 b), while the random connectivity induces additional fluctuations
along the remaining N−1 directions. Note that because of the symmetry in the specific input-
output function we use, when a heterogeneous equilibrium state exists, the configuration with
the opposite sign is an equilibrium state too, so that the network activity is bistable (for more
general asymmetric transfer functions, this bistability is still present, although the symmetry
is lost, see Appendix C).

The random part of the connectivity disrupts the organization of the activity induced by the
connectivity structure through two different effects. The first effect is that increasing the dis-
order strength g leads to stronger fluctuations of equilibrium inputs around the average values
µi (Fig. 7.2 c). As the fluctuations are identical for all units (i.e. unstructured), their increase
results in a progressive reduction of the structure in the activity quantified by κ (Fig. 7.2 b). A
second, distinct effect is that increasing the disorder strength tends to destabilize equilibrium
activity.

The stability of the dynamics can be assessed by examining the temporal evolution close to
equilibrium, which is in general determined by the spectrum of eigenvalues at the correspond-
ing fixed point. In our case, this spectrum consists of two components: a continuous, random
component distributed within a circle in the complex plane, and a single outlier induced by
the structured part of the connectivity (Fig. 7.1 b). The radius of the continuous component
and the value of the outlier depend on the connectivity parameters. Although the two quan-
tities in general are non-trivially coupled, the value of the radius is mostly controlled by the
strength of the disorder, while the value of the outlier increases with the strength of the rank
one structure (Fig. 7.2 a). The equilibrium is stable as long as the real part of all eigenvalues
is less than unity.

The appearance of one dimensional structured activity with increasing connectivity struc-
ture strength corresponds to the instability induced by the outlier crossing unity (Fig. 7.1 b
green). Increasing the disorder strength on the other hand leads to another instability, cor-
responding to the radius of the continuous component crossing unity (Fig. 7.1 b orange and
red). This instability gives rise to chaotic, fluctuating activity. To describe this type of dynam-
ics, the macroscopic equations for network activity need to be supplemented with a variable
quantifying temporal fluctuations.

Similarly to static activity, depending on the strength of the structured connectivity two
different types of chaotic dynamics can emerge. If the disorder in the connectivity is much
stronger than structure, the overlap κ is zero (Fig. 7.2 b). As a result, the mean activity of
all units vanishes and the dynamics consist of unstructured, N−dimensional temporal fluctua-
tions (Fig. 7.2 c), as in the classical chaotic state of fully random networks (Fig. 7.1 b red). In
contrast, if the strengths of the random and structured connectivity are comparable, the over-
lap κ is non-zero, and a new type of chaotic activity emerges, in which κ > 0 so that the mean
activity of different units is structured in one dimension along the direction m as shown by
Eq. 7.2, but the activity of different units now fluctuates in time (Fig. 7.1 b orange). Similarly
to structured static activity, in this situation the system is bistable as states with opposite signs
are always admissible.

The phase diagram in Fig. 7.1 a summarizes the different types of dynamics that can
emerge as function of the strength of structured and random components of the connectivity
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Figure 7.1: Spontaneous activity in random networks with unit rank connectivity structure.
Results from the Dynamical Mean Field (DMF) theory: phase diagram. a. Dynamical
regimes of the network activity as function of the structure connectivity strength mTn/N and
the disorder strength g. Hatched areas indicate the parameter regions where two stable DMF
solutions exist and network activity is bistable. Shaded areas indicate the phase space regions
where network dynamics are chaotic. b. For parameter values indicated by the colored dots in
the phase diagram, samples of activity from finite networks simulations are shown. Time is
renormalized by the time constant of individual units. Next to each panel, the eigenspectrum
of the stability matrix of the homogeneous fixed point (Sij = Jij) is displayed in blue. When a
structured, bistable stationary state exists, the corresponding eigenspectrum (Sij = ϕ′(x0j )Jij)
is shown in green. Dots: the eigenvalues are computed numerically if the corresponding state
is stable; black lines: theoretical prediction. In this figure, Σm = 1.0 and Σn = 0.2. Note
that the precise position of the instability to chaos depends on the value of Σm.

matrix. Altogether, the structured component of connectivity favors a one-dimensional orga-
nization of network activity, while the random component favors high-dimensional, chaotic
fluctuations. Particularly interesting activity emerges when the structure and disorder are com-
parable, in which case the dynamics show one-dimensional structure combined with high-
dimensional temporal fluctuations. This structured chaotic activity can give rise to dynamics
with very slow timescales [66] (see Appendix D).
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Figure 7.2: Spontaneous activity in random networks with unit rank connectivity structure.
Results from the Dynamical Mean Field (DMF) theory: bifurcation diagrams. Network ac-
tivity stability properties and statistics as the disorder strength g is increased and the structure
strength is fixed to 2.2 (dashed horizontal line in the phase diagram in Fig. 7.1 a). a. Stability
of the structured stationary state. Theoretical prediction for the radius of the compact part
of the eigenspectrum and the outlier position. b. Amount of structure in the activity along
the vector m, as quantified by κ = ⟨ni[ϕi]⟩. c. Variance of the input to a given network unit
induced by random connectivity. Blue and pink: static variance, red: temporal variance. In b-
c, top panels display statistics for stationary dynamics and bottom panels display statistics for
chaotic activity. The solutions of DMF theory are displayed as continuous (resp. dashed) lines
if they correspond to a stable (resp. unstable) dynamics. Dots: network activity statistics mea-
sured in simulations of finite-size networks, starting from initial conditions centered around
m and -m. Activity is integrated up to T = 800. In simulations, N = 5000, and statistics are
averaged over 15 different network realizations. The error bars, when visible, correspond to
the standard deviation of the mean (as in every other figure, if not differently specified). The
structure vectors m and n were generated from Gaussian distributions, and overlap only along
the unitary direction (Mm > 0, Mn > 0, ρ = 0, see Section 7.3). As shown in Section 7.3,
qualitatively similar regimes are obtained when the overlap is defined on an arbitrary direction.
In this figure Σm = 1.0 and Σn = 0.2. Note that the precise position of the instability to
chaos depends on the value of Σm.

7.2 Two dimensional activity in response to an input
Having described spontaneous activity in networks with rank one connectivity structure, we
now turn to the response to an external input (Fig. 7.3 a). Our effective statistical description
can be directly extended to that situation, and predicts that if each unit i receives a constant
external input Ii, at equilibrium its total input is on average:

µi = κmi + Ii. (7.4)

At the level of the N-dimensional space representing the activity of the whole population,
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Eq. 7.4 shows that the network activity in presence of an input lies on the two-dimensional
plane spanned by the right-structure vector m and the vector I = {Ii} that corresponds to
the pattern of external inputs to the N units. The contribution of the vector m to this two-
dimensional activity is quantified by the overlap κ between the network activity [ϕ] and the
left-structure vectorn introduced in Eq. 7.3. If κ = 0, the network activity is one-dimensional,
and simply reproduces the pattern of external inputs. If κ ̸= 0, the network response is instead
a non-trivial two-dimensional combination of the input and connectivity structure patterns.
In general, the value of κ, and therefore the organization of network activity, depends on the
geometric arrangement of the input vector I with respect to the connectivity structure vectors
m and n, as well as on the strength of the random component of the connectivity g.

A non-vanishing κ, together with non-trivial two-dimensional activity, can be obtained
from a variety of configurations of the vectors I , m and n. To start with, we consider the
geometrical configuration obtained when the structure vectors m and n are orthogonal to each
other (Fig. 7.3 b). In that case, the overlap between them is zero, and the spontaneous activity
in the network bears no sign of the underlying connectivity structure. Adding an external
input can however reveal this structure and generate non-trivial two-dimensional activity. This
happens if the input vector I has a non-zero overlap with the left-structure vector n. In
such a situation, the activity ϕ of the network will have a component along n because of
the inputs, leading to a non-zero overlap κ, which from Eq. 7.4 implies that the network
activity will have a component along the right-structure vector m. Increasing the external
input along the direction of n will therefore increase the output along m (although m and n
are orthogonal) (Fig. 7.3 d, top), while increasing the input along a direction orthogonal to n
will decrease activity along m (Fig. 7.3 d, bottom) and even possibly totally eliminate it. Note
that irrespective of its direction, an external input tends to suppress chaos present for strong
random connectivity (Fig. 7.3 c), but whether this suppression is accompanied by an increase
in the two-dimensional structure in the activity depends on the direction of the input with
respect to the left-structure vector n.

A different geometrical configuration is obtained when the structure vectors m and n have
a non-zero overlap along a common direction. As already shown in Fig. 7.2, an overlap larger
than unity between m and n will induce a non-zero overlap κ, and non-trivial, structured
spontaneous dynamics. Adding an external input will modify κ, but also the nature of the
dynamics. Here we focus on the region of parameter space where the strength of disorder
g is larger than unity, so that in absence of inputs the network can display structured static
activity (κ ̸= 0), structured chaotic activity (κ ̸= 0) or homogeneous chaotic activity (κ = 0),
depending on the strength of the structured connectivity. Adding an external input along the
direction of the left-structure vector n progressively suppresses both bistability and fluctuating,
chaotic activity (Fig. 7.3 f), and amplifies the structure in network activity by increasing the
overlap κ (Fig. 7.3 g). Large external inputs along the parallel direction therefore reliably
set the network into a state in which the activity is a two-dimensional combination of the
input direction and the structure direction m. Note that this occurs even if the connectivity
structure strength is too weak to induce structured spontaneous activity (mTn/N < 1): adding
the external input along the structured direction unveils the structured connectivity and leads
to non-zero κ and therefore two dimensional network activity even in that case (Fig. 7.3 g,
bottom). An external input added along a direction orthogonal to bothm andn also suppresses
chaotic and bistable activity, but in contrast decreases the overlap κ and the amount of two-
dimensional structure.

When the structure vectors m and n overlap, but are not identical, the left-structure vector
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Figure 7.3 (previous page): External inputs lead to two-dimensional activity in random net-
works with unit rank structure. a. The pattern of external inputs can be represented by an
N-dimensional vector I = {Ii}, where Ii is the input to unit i. DMF theory shows that
the network activity lies on average in the plane defined by the input vector I and the right-
structure vectorm. The precise organization and the regime of network activity are determined
by the geometrical arrangement of the vector I and the structure vectors m and n. Three dif-
ferent cases are illustrated: b-d. The structure vectors m and n are orthogonal to each other,
and the external input pattern I has a component along n and a component orthogonal to
both m and n. e-g. The structure vectors m and n have a non-zero overlap. The external in-
put pattern I overlaps with n along its non-shared component (indicated by n⊥), and is thus
orthogonal to m. h-j. The structure vectors m and n have a non-zero overlap. The external
input pattern I is a sum of a component along n∥, the direction common to m and n, and a
component along n⊥, the direction of n perpendicular to n∥. The component along n∥ can
play the role of a fixed, modulatory input, while the component along n⊥ represents a variable
stimulus. b, e, h: summaries of the geometrical arrangement of the three vectors of interest m,
n and I in each case. In the case of non-vanishing structure strengths, vectors m and n overlap
on the direction corresponding to the shaded axis. c, f, i: phase diagrams showing the type
of dynamical activity as function of input and connectivity structure strength. As in Fig. 7.1,
shaded areas indicate chaotic dynamics; hatched areas indicate that two stable DMF solutions
exist and network activity is bistable. When two stable solutions exist, the yellow and the
red letter indicate whether each of them is stationary (S) or chaotic (C). Note that stationary
and chaotic dynamics can coexist (SC region). d, g, j: component of network activity along
the right-structure vector m, as quantified by the overlap κ (see Eq. 7.4). Parameter values
correspond to dashed grey lines in the phase diagrams. Details and colors as in Fig. 7.2. The
two rightmost pannels in a show transient network dynamics in response to a step input. Left:
time traces of the activation variable for four randomly selected units. Right: the population
activity is projected onto the plane defined by the vectors m and În⊥ , which corresponds to
the input direction parallel to n⊥. The start and end parameters are indicated by grey dots in
the phase diagram f. Light blue trace: theoretical prediction. Grey traces: trajectories of seven
different network realizations, N = 4000. Individual trajectories deviate from the theoretical
prediction because of finite-size fluctuations. The average across different realizations is shown
as the black trace. The black points indicate the velocity of the trajectory, as they are equally
spaced in time. As in Fig. 7.1, the structure vectors m and n are generated from a Gaussian
distribution, and for the sake of simplicity, we consider overlap directions which are aligned
with the unitary vector u. In this figure, g = 2.2, Σm = 1.0, Σn = 1.0.
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7. Dynamics of networks with unit rank structure

n can be decomposed in a sum of two orthogonal components: a component along the overlap
(n∥) and a component perpendicular to the overlap (n⊥). The network can therefore receive a
superposition of two orthogonal inputs, one along each of these directions (Fig. 7.3 h). One
of these inputs can for instance represent a stimulus, while the other can play the role of a
fixed top-down or contextual modulation. In such a setting, the value of the modulatory input
directly controls the extent of the bistable range in response to the stimulus (Fig. 7.3 i-j). We
will show in the following that this simple non-linear phenomenon can play an important
computational role.

So far we have described only the equilibrium state attained after applying an external
input for a long time. The two-dimensional nature of the dynamics in response to external
inputs is however particularly apparent at the level of temporal responses to inputs. Transient,
input-driven dynamics can be analyzed within our theoretical framework by linearizing the
dynamics around the corresponding equilibrium state. Our theory predicts that a step input
generates two-dimensional trajectories in the m− I plane. The predicted trajectories capture
well the average dynamics due to structured connectivity (Fig. 7.3 a, right). For a fixed, finite-
size network, the directions defined by m and I correspond to the two dominant dimensions
of the activity that would be obtained for instance using a dimension-reduction analysis such
as Principal Components Analysis [41]. The random part of connectivity leads to additional
fluctuations in the remaining N − 2 directions.

In summary, external inputs in general suppress chaotic and bistable dynamics (Fig. 7.3 c, f,
i), and therefore always decrease the amount of variability in the dynamics. The specific effects
of inputs on the structure of network activity however depend on the geometrical arrangement
of the pattern of inputs with respect to the connectivity structure vectors m and n. These two
structure vectors appear to play different roles. The vector m determines the output pattern of
network activity, while the vector n instead selects the inputs that give rise to patterned outputs.
An output structured alongm can be obtained either when n selects recurrent inputs (non-zero
overlap between n and m) or when it selects external inputs (non-zero overlap between n and
I).

7.3 The mean field framework
We introduce here the theoretical framework that has been used to derive the results shown
in Section 7.1 and 7.2. We first present in detail the model that we adopt, and we later derive
the mean field equations that have been solved in order to characterize the network activity.

7.3.1 The network model
We studied the dynamics of a large network of rate units. Similarly to the models adopted
in Parts I and II, every unit in the network is characterized by a continuous variable xi(t),
commonly interpreted as the total input current. More generically, we also refer to xi(t) as
the activation variable. The output of each unit is a non-linear function of its inputs mod-
eled as a sigmoidal function ϕ(x). In line with previous works [127, 132, 73, 108], we use
ϕ(x) = tanh(x). In Appendix C we show that qualitatively similar dynamical regimes ap-
pear in network models with more realistic, positively defined activation functions. The trans-
formed variable ϕ(xi(t)) is interpreted as the firing rate of unit i, and is also referred to as the
activity variable.
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The time evolution is specified by the following dynamics:

ẋi(t) = −xi(t) +
N∑
j=1

Jijϕ(xj(t)) + Ii. (7.5)

We focus on a particular class of connectivity matrices, which can be written as a sum of
two terms:

Jij = gχij + Pij . (7.6)
Similarly to [127], χij is a Gaussian all-to-all random matrix, where every element is drawn
from a centered normal distribution with variance 1/N . The parameter g scales the strength of
random connections in the network. The second term Pij is a low rank matrix. More precisely,
we impose rank(Pij)≪ N .

To begin with, we focused on the simplest case where Pij is a rank one matrix, which can
generally be written as the external product between two one-dimensional vectors m and n:

Pij =
minj

N
. (7.7)

The theoretical framework is extended to the case of rank two structures in Chapter 8. The
entries of vectors m and n are independent of the random bulk of the connectivity χij . Note
that the only non-zero eigenvalue of P is given by the scalar product mTn/N , and the corre-
sponding right and left eigenvectors are, respectively, vectors m and n. In the following, we
will therefore refer to mTn/N as the structure strength, and to m and n as the right- and
left-structure vectors.

As stated in Eq. 7.7, we consider here structured perturbations which scale weakly in the
large N limit, i.e. as 1/N . In contrast, the elements of the all-to-all, random connectivity
component χij scale as 1/

√
N . We will show that such a choice nevertheless results in finite

O(1) perturbations of network dynamics.

7.3.2 Computing the network statistics
In this study, we consider the low rank part of the connectivity fixed, while the random part
varies between different realizations of the connectivity. The resulting network activity is there-
fore partially random and partially determined by the structure vectors m and n. Our aim is
to characterize the dynamics that emerge from the interplay between these two components
as the main parameters of the architecture, the structure strength mTn/N and the disorder
strength g, are varied. We start by examining the activity in absence of external inputs (Ii = 0
∀i in Eq. 7.5).

Our mathematical analysis of network dynamics is based on a Dynamical Mean Field
(DMF) approach [127, 99, 69, 58] (see also Chapter 2), which allows us to derive an effective
description of the activity states by averaging over the disorder originating from the random
part of the connectivity. Across different realizations of the random connectivity matrix χij ,
the network dynamics are characterized in terms of a probability distribution, whose first- and
second-order statistics are computed self-consistently.

The DMF theory relies on the hypothesis that a disordered component in the coupling
structure, here represented by χij , efficiently decorrelates single neuron activity when the net-
work is sufficiently large [16, 90]. In this limit, each unit obeys a Langevin-like equation:

ẋi(t) = −xi(t) + ηi(t), (7.8)
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where the forcing term ηi is given by a Gaussian process. This Gaussian process can in principle
have different first and second-order statistics for each unit, but is otherwise independently
drawn across different units. We will show that the hypothesis of decorrelated activity is self-
consistent for the specific network architecture we study.

Within the DMF theory, each variable xi(t) is therefore the solution of a time-dependent
random process, and is thus fully determined by the statistics of the effective noise ηi(t). In
our framework, from Eq. 7.5, we have:

ηi(t) = g

N∑
j=1

χijϕ(xj(t)) +
mi

N

N∑
j=1

njϕ(xj(t)). (7.9)

As in standard DMF derivations, we characterize self-consistently the distribution of ηi by
averaging over different realizations of the random matrix χij [127, 99, 89]. In the following,
[.] indicates an average over the realizations of the random matrix χij , while ⟨.⟩ stands for an
average over different units of the network. Note that the network activity can be equivalently
characterized in terms of input current variables xi(t) or their non-linear transforms ϕ(xi(t)).
As these two quantities are not independent, the statistics of the distribution of the latter can
be written in terms of the statistics of the former.

The mean of the effective noise received by unit i is given by:

[ηi(t)] = g
N∑
j=1

[χijϕ(xj(t))] +
mi

N

N∑
j=1

nj [ϕ(xj(t))]. (7.10)

Under the hypothesis that in large networks, neural activity decorrelates (more specifically,
that activity ϕ(xj(t)) is independent of its outgoing weights), we have:

[ηi(t)] = g

N∑
j=1

[χij ][ϕ(xj(t))] +
mi

N

N∑
j=1

nj [ϕ(xj(t))] = miκ (7.11)

as [χij ] = 0. Here we introduced

κ :=
1

N

N∑
j=1

nj [ϕ(xj(t))] = ⟨nj [ϕj(t)]⟩, (7.12)

which quantifies the overlap between the mean population activity vector and the left structure
vector n. In the last equation, we adopted the short-hand notation ϕi(t) := ϕ(xi(t)).

Similarly, the noise correlation function is given by

[ηi(t)ηj(t+ τ)] =g2
N∑
k=1

N∑
l=1

[χikχjl][ϕ(xk(t))ϕ(xl(t+ τ))]

+
mimj

N2

N∑
k=1

N∑
l=1

nknl[ϕ(xk(t))ϕ(xl(t+ τ))].

(7.13)

Note that every cross-term in the product vanish since [χij ] = 0. Similarly to standard DMF
derivations [127], the first term on the r.h.s. vanishes for cross-correlations (i ̸= j) while it
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survives in the auto-correlation function (i = j), as [χikχjl] = δijδkl/N . We get:

[ηi(t)ηj(t+ τ)] = δijg
2⟨[ϕi(t)ϕi(t+ τ)]⟩+ mimj

N2

N∑
k=1

N∑
l=1

nknl[ϕ(xk(t))ϕ(xl(t+ τ))].

(7.14)
We focus now on the second term in the right-hand side. The corresponding sum contains N
terms where k = l. This contribution vanishes in the largeN limit because of the 1/N2 scaling.
According to our starting hypothesis, when k ̸= l, activity decorrelates: [ϕk(t)ϕl(t + τ)] =
[ϕk(t)][ϕl(t+ τ)]. To the leading order in N , we get:

[ηi(t)ηj(t+ τ)] = δijg
2⟨[ϕi(t)ϕi(t+ τ)]⟩+ mimj

N2

∑
k

nk[ϕ(xk(t))]
∑
l ̸=k

nl[ϕ(xl(t+ τ))]

= δijg
2⟨[ϕi(t)ϕi(t+ τ)]⟩+mimjκ

2

(7.15)

so that:
[ηi(t)ηj(t+ τ)]− [ηi(t)][ηj(t)] = δijg

2⟨[ϕi(t)ϕi(t+ τ)]⟩. (7.16)

We therefore find that the statistics of the effective input are uncorrelated across different units,
so that our initial hypothesis is self-consistent.

To conclude, for every unit i, we computed the first- and the second-order statistics of
the effective input ηi(t). The expressions we obtained show that the individual noise statistics
depend on the statistics of the full network activity. In particular, the mean of the effective
input depends on the average overlap κ, but varies from unit to unit through the components of
the right-structure vector m. On the other hand, the auto-correlation of the effective input is
identical for all units, and determined by the population-averaged firing rate auto-correlation
⟨[ϕi(t)ϕi(t+ τ)]⟩.

Once the statistics of ηi(t) have been determined, a self-consistent solution for the activa-
tion variable xi(t) can be derived by solving the Langevin-like stochastic process from Eq. 7.8.
As a first step, we look at its stationary solutions, which correspond to the fixed points of the
original network dynamics.

7.3.3 Dynamical Mean Field equations for stationary solutions
For any solution that does not depend on time, the mean µi and the variance ∆I

0 of the variable
xi with respect to different realizations of the random connectivity coincide with the statistics
of the effective noise ηi. From Eqs. 7.11 and 7.16, the mean µi and variance ∆I

0 of the input
to unit i therefore read

µi := [xi] = miκ

∆I
0 := [x2i ]− [xi]

2 = g2⟨[ϕ2
i ]⟩

(7.17)

while any other cross-variance [xixj ] − [xi][xj ] vanishes. We conclude that, on average, the
structured connectivity Pij shapes the network activity along the direction specified by its
right eigenvector m. Such a heterogeneous stationary state critically relies on a non-vanishing
overlap κ between the left eigenvector n and the average population activity vector [ϕ]. Across
different realizations of the random connectivity, the input currents xi fluctuate around these
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mean values. The typical size of fluctuations is determined by the individual variance ∆I
0, equal

for every unit in the network (Fig. 7.4 a).
The r.h.s. of Eq. 7.17 contains two population averaged quantities, the overlap κ and the

second moment of the activity ⟨[ϕ2
i ]⟩. To close the equations, these quantities need to be

expressed self-consistently. Averaging Eq. 7.17 over the population, we get expressions for
the population-averaged mean µ and variance ∆0 of the input:

µ := ⟨[xi]⟩ = Mmκ

∆0 := ⟨[x2i ]⟩ − ⟨[xi]⟩2 = g2⟨[ϕ2
i ]⟩+ (⟨m2

i ⟩ − ⟨mi⟩2)κ2.
(7.18)

Note that the total population variance ∆0 is a sum of two terms: the first term, proportional
to the strength of the random part of connectivity, coincides with the individual variability ∆I

0

which emerges from different realizations of χij ; the second term, proportional to the variance
of the right-structure vector m, coincides with the variance induced at the population level by
the spread of the mean values µi ∝ mi. When the vector m is homogeneous (mi = m̄), input
currents xi are centered around the same mean value µ, and the second variance term vanishes.

We next derive appropriate expression for the r.h.s. terms κ and ⟨[ϕ2
i ]⟩. To start with,

we rewrite [ϕi] by substituting the average over the random connectivity with the equivalent
Gaussian integral:

[ϕi] =

∫
dxiϕ(xi)

=

∫
Dzϕ(µi +

√
∆I

0z)

(7.19)

where we used the short-hand notation
∫
Dz =

∫ +∞
−∞

e−
z2

2√
2π

d z. To obtain κ, [ϕi] needs
to be multiplied by ni and averaged over the population. This average can be expressed by
representing the fixed vectors m and n through the joint distribution of their elements over
the components:

p(m,n) =
1

N

N∑
j=1

δ(m−mj)δ(n− nj). (7.20)

This leads to

κ = ⟨ni

∫
Dzϕ(µi +

√
∆I

0z)⟩

=

∫
dm

∫
dn p(m,n) n

∫
Dzϕ(mκ+

√
∆I

0z).

(7.21)

Similarly, a suitable expression for the second-order momentum of the firing rate is given by:

⟨[ϕ2
i ]⟩ =

∫
dm p(m)

∫
Dzϕ2(mκ+

√
∆I

0z). (7.22)

Eqs. 7.21 and 7.22, combined with Eq. 7.18, provide a closed set of equations for deter-
mining κ and ∆0 once the vectors m and n have been specified.

To further simplify the problem, we reduce the full distribution p(m,n) of elements mi

and ni to their first- and second-order momenta. That is equivalent to substituting the prob-
ability density p(m,n) with a bivariate Gaussian distribution. We therefore write:

m = Mm +Σm

√
1− ρ x1 +Σm

√
ρ y

n = Mn +Σn

√
1− ρ x2 +Σn

√
ρ y

(7.23)
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where x1, x2 and y are three normal Gaussian processes. Here, Mm (resp. Mn) and Σm

(resp. Σn) correspond to the mean and the standard deviation of m (resp. n), while the
covariance between m and n is given by ⟨mini⟩ −MmMn = ΣmΣnρ. Within a geometrical
interpretation, Mm and Mn are the projections of N−dimensional vectors m and n onto
the unitary vector u = (1, 1, ...1)/N , Σm

√
ρ and Σn

√
ρ are the projection onto a direction

direction orthogonal to u and common to m and n, and Σm
√
1− ρ and Σn

√
1− ρ scale the

parts of m and n that are mutually orthogonal (Fig. 7.4 a).
The expression for κ becomes:

κ =

∫
Dy
∫
Dx2 (Mn +Σn

√
1− ρx2 +Σn

√
ρy)

×
∫
Dz
∫
Dx1 ϕ(κ(Mm +Σm

√
1− ρx1 +Σm

√
ρy) +

√
∆I

0z)

(7.24)

which gives rise to three terms when expanding the sum Mn +Σn
√
1− ρx2 +Σn

√
ρy. The

first term can be rewritten as:

Mn

∫
Dz ϕ(Mmκ+

√
∆I

0 +Σ2
mκ2z)

= Mn

∫
Dz ϕ(µ+

√
∆0z)

= Mn⟨[ϕi]⟩,

(7.25)

which coincides with the overlap between vectors n and [ϕ] along the unitary direction u =
(1, 1, ...1)/N . In the last step, we rewrote our expression for κ in terms of the population
averaged statistics µ and ∆0 (Eq. 7.18).

The second term vanishes, while the third one gives:

Σn
√
ρ

∫
Dy y

∫
Dz
∫
Dx1 ϕ(κ(Mm +Σm

√
1− ρx1 +Σm

√
ρy) +

√
∆I

0z)

= κρΣmΣn⟨[ϕ′
i]⟩

(7.26)

which coincides with the overlap between n and [ϕ] in a direction orthogonal to u. Here we
used the equality: ∫

Dz zf(z) =
∫
Dz d f(z)

d z (7.27)

which is obtained by integrating by parts.
Through a similar reasoning we obtain:

⟨[ϕ2
i ]⟩ =

∫
Dz ϕ2(µ+

√
∆0z) (7.28)

as in standard DMF derivations.
To conclude, the mean field description of stationary solutions reduces to the system of

three implicit equations for µ, κ and ∆0:

µ = Mmκ

∆0 = g2⟨[x2i ]⟩+Σ2
mκ2

κ = Mm⟨[ϕi]⟩+ κρΣmΣn⟨[ϕ′
i]⟩.

(7.29)
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a. b.

Figure 7.4: Dynamical Mean Field description of stationary solutions. a. Across different
realizations of the random connectivity χij , the activation variables xi fluctuate around their
mean values µi. The typical size of such deviations is given by the individual variance ∆I

0.
Continuous lines: distributions obtained for two sample units by solving the DMF equations
once the structure term Pij has been fixed. Histograms: numerical distribution from finite-
size networks with the same structure Pij . Ntr = 300 different realizations of the random
connectivity term χij have been simulated. b. Mismatch between the statistics measured
in finite-size networks (xsim) and the theoretical prediction (xth) as the network size N is
increased. The error is normalized: |xsim − xth|/xth. For every realization of Pij , ∆I

0 is
measured across 100 different realizations of the random bulk χij . Average over 10 rank one
structures. The error bars (as in every other figure, if not differently specified) correspond to
the standard deviation of the mean. Dashed lines: power-law best fit (y ∝ Nγ). The values
of γ are indicated in the legend. Choice of the parameters: g = 0.6, ρ = 0, MmMn = 2.2,
Σm = 2.0, Σn = 1.0.

Both averages ⟨[.]⟩ are performed with respect to a Gaussian distribution of mean µ and vari-
ance ∆0. Once µ, ∆0 and κ have been determined, the single unit mean µi and the individual
variance ∆I

0 are obtained from Eq. 7.17.
The dynamical mean field equations given in Eq. 7.29 can be fully solved to determine

stationary solutions. Detailed descriptions of these solutions are provided further down for
two particular cases: (i) overlap between m and n only along the unitary direction u (Mm ̸= 0,
Mn ̸= 0, ρ = 0); (ii) overlap between m and n only in a direction orthogonal to u (Mm =
Mn = 0, ρ ̸= 0). Here we just note that in general, comparisons with simulations shows that
the DMF values that we obtain by solving the system in 7.29 approximate well the statistics
of finite-size networks. The mismatch between the two decreases in average as the size of the
network N is increased (Fig. 7.4 b). Note that for unit rank structures, although we used a
Gaussian approximation for m and n when computing the averages, our calculation gives good
results also when the distribution of m and n is strongly non-Gaussian (see Appendix E).

7.3.4 Transient dynamics and stability of stationary solutions
We now turn to transient dynamics around fixed points, and to the related problem of evaluat-
ing whether the stationary solutions found within DMF are stable with respect to the original
network dynamics (Eq. 7.5).

For any given realization of the connectivity matrix, the network we consider is completely
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deterministic. We can then study the local, transient dynamics by linearizing the dynamics
around any stationary solution. We therefore look at the time evolution of a small displacement
away from the fixed point: x(t) = x0i + x1i (t). For any generic stationary solution {x0i } the
linearized dynamics are given by the stability matrix Sij which reads:

Sij = ϕ′(x0j )
(
gχij +

minj

N

)
. (7.30)

If the real part of every eigenvalue of Sij is smaller than unity, the perturbation decays in time
and thus the stationary solution is stable.

Homogeneous stationary solutions We first consider homogeneous stationary solutions, for
which x0i = x̄ for all units. A particular homogeneous solution is the trivial solution xi =
0, which the network admits for all parameter values when the transfer function is ϕ(x) =
tanh(x). Other homogeneous solutions can be obtained when the vector m is homogeneous,
i.e. mi = m̄ for all i.

For homogeneous solutions, the stability matrix reduces to a scaled version of the connec-
tivity matrix Jij :

Sij = ϕ′(x̄)Jij . (7.31)
We are thus left with the problem of evaluating the eigenspectrum of the global connectivity
matrix Jij . The matrix Jij consists of a full-rank component χij , the entries of which are
drawn at random, and of a structured component of small dimensionality with fixed entries.
We focus on the limit of large networks; in that limit, an analytical prediction for the spectrum
of its eigenvalues can be derived.

Because of the 1/N scaling, the matrix norm of Pij is bounded as N increases. We can
then apply results from random matrix theory [135] which predict that, in the large N limit,
the eigenspectra of the random and the structured parts don’t interact, but sum together. The
eigenspectrum of Jij therefore consists of two separated components, inherited respectively
from the random and the structured terms (Fig. 7.5 a). Similarly to [54, 136], the random
term χij returns a set of N − 1 eigenvalues which lie on the complex plane in a compact
circular region of radius g. In addition to this component, the eigenspectrum of Jij contains
the non-zero eigenvalues of Pij : in the case of a rank one matrix, one single outlier eigenvalue
is centered at the position

∑
imini/N = ⟨mini⟩. In Fig. 7.5 b we measure both the outlier

position and the radius of the compact circular component. We show that deviations from the
theoretical predictions are in general small and decay to zero as the system size is increased.

Going back to the stability matrix Sij = ϕ′(x̄)Jij , we conclude that a homogeneous
stationary solution can lose stability in two different ways, when either mTn/N or g become
larger than 1/ϕ′(x̄). We expect different kinds of instabilities to occur in the two cases. When
g crosses the instability line, a large number of random directions become unstable at the same
time. As in [127], this instability is expected to lead to the onset of irregular temporal activity.
When the instability is lead by the outlier, instead, the trivial fixed point becomes unstable in
one unique direction given by the corresponding eigenvector. When g = 0, this eigenvector
coincides exactly with m. For finite values of the disorder g, the outlier eigenvector fluctuates
depending on the random part of the connectivity, but remains strongly correlated with m
(Fig. 7.5 c), which therefore determines the average direction of the instability. Above the
instability, as the network dynamics is completely symmetric with respect to a change of sign of
the input variables, we expect the non-linear boundaries to generate two symmetric stationary
solutions.
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a.

c.b.

Figure 7.5: Eigenspectrum of the partially structured connectivity matrix Jij , related to the
stability matrix Sij of the homogeneous fixed points through: Sij = ϕ′(x̄)Jij . a. Eigenspec-
trum of Jij in the complex plane. Red dots: eigenspectrum of a single realization Jij of size
N = 1000. In black: theoretical prediction. Every matrix Jij consists of a random and of a
fixed structure term. In the large matrix limit, the two eigenspectra sum together. The black
circle has radius equal to the total random strength g, and the black star indicates the position
of the non-zero eigenvalue of the rank one structure Pij . b. Finite size deviations from the
theoretical prediction as the matrix size is increased. Details as in Fig. 7.4 b. The error is
measured across Ntr = 100 finite size matrices. c. Pearson correlation coefficient between
the structure eigenvector m and the eigenvector ê which corresponds to the outlier eigenvalue.
Choice of the parameters: ρ = 0, MmMn = 1.43, Σm = 0.33, Σn = 0.8. In a and b,
g = 0.7.

Heterogeneous stationary solutions A second type of possible stationary solutions are het-
erogeneous fixed points, in which different units reach different equilibrium values. For such
fixed points, the linearized stability matrix Sij is obtained by multiplying each column of the
connectivity matrix Jij by a different gain value (see Eq. 7.30), so that the eigenspectrum of
Sij is not identical to the spectrum of Jij .

Numerical investigations reveal that, as for Jij , the eigenspectrum of Sij consists of two
discrete components: one compact set ofN−1 eigenvalues contained in a circle on the complex
plane, and a single isolated outlier eigenvalue (Fig. 7.6 a).

As previously noticed in [58], the radius of the circular compact set r can be computed
as in [98, 6, 5] by summing the variances of the distributions in every column of Sij . To the

112



7.3. The mean field framework

leading order in N :

r = g

√√√√ N∑
j=1

ϕ′2(x0j ) (7.32)

which, in large networks, can be approximated by the mean field average:

r = g
√
⟨[ϕ′2

i ]⟩. (7.33)

Note that, because of the weak scaling in Pij , the structured connectivity term does not appear
explicitly in the expression for the radius. As the structured part of the connectivity determines
the heterogeneous fixed point, the value of r however depends implicitly on the structured
connectivity term through ⟨[ϕ′2

i ]⟩, which is computed as a Gaussian integral over a distribution
with mean µ and variance ∆0 given by Eq. 7.29. In Fig. 7.6 a-b we show that Eq. 7.33
approximates well the radius of finite-size, numerically computed eigenspectra. Whenever the
mean field theory predicts instabilities led by r, we expect the network dynamics to converge to
irregular non-stationary solutions. Consistently, at the critical point, where r = 1, the DMF
equations predict the onset of temporally fluctuating solutions (see later on in Section 7.3).

We now turn to the problem of evaluating the position of the outlier eigenvalue. In the case
of heterogeneous fixed points, the structured and the random components of the matrix Sij are
strongly correlated, as they both scale with the multiplicative factor ϕ′(x0j ), which correlates
with the particular realization of the random part of the connectivity χij . As a consequence,
χij cannot be considered as a truly random matrix with respect to miϕ(x

0
j )nj/N , and in

contrast to the case of homogeneous fixed points, results from [135] do not hold.
We determined numerically the position of the outlier in finite-size eigenspectra (Fig. 7.6

a-d). We found that its value indeed significantly deviates from the only non-zero eigenvalue
of the rank one structure miϕ(x

0
j )nj/N , which can be computed in the mean field frame-

work (when ρ = 0, it corresponds to MmMn⟨[ϕ′
i]⟩ + MnκΣ

2
m⟨[ϕ′′

i ]⟩). On the other hand,
the value of the outlier coincides exactly with the eigenvalue of miϕ(x

0
j )nj/N whenever the

random component χij is shuffled (black dots in Fig. 7.6 d). This observation confirms that
the position of the outlier critically depends on the correlations existing between the rank one
structure miϕ(x

0
j )nj/N and its specific realization of the random bulk χij .

Mean field analysis of transient dynamics and stability of stationary solutions As for het-
erogeneous fixed points we were not able to assess the position of the outlying eigenvalue
using random matrix theory, we turned to a mean field analysis to determine transient activity.
This analysis allowed us to determine accurately the position of the outlier, and therefore the
stability of heterogeneous fixed points. The approach exploited here is based on [69].

We consider the stability of the single units activation variable xi when averaged across
different realizations of the random connectivity and its random eigenmodes. Directly averag-
ing the network dynamics defined in Eq. 7.5 yields the time evolution of the mean activation
µi of unit i:

µ̇i(t) = −µi(t) +miκ(t). (7.34)

We observe that we can write: µi(t) = miκ̃(t), where κ̃ is the low-pass filtered version of κ:
(1 + d / d t)κ̃(t) = κ(t). Small perturbations around the fixed point solution read: µi(t) =
µ0
i + µ1

i (t). The equilibrium values µ0
i correspond to the DMF stationary solution computed
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a. b.

c. d.

Figure 7.6: Analysis of the eigenspectrum of the linear stability matrix Sij for heterogeneous
stationary solutions. a. Eigenspectrum of Sij in the complex plane. Red dots: eigenspectrum
of a single, finite-size realization of Sij , N = 2500. The radius of the black circle corresponds
to the theoretical prediction r = g⟨[ϕ′2

i ]⟩
1
2 . The black star indicates the position of the non-

zero eigenvalue of the rank one structure miϕ(x
0
j )nj/N , which deviates significantly from the

position of the outlier eigenvalue. We thus address the problem of evaluating the position of
the outlier eigenvalue through a mean field stability analysis, whose prediction is indicated by
the blue star. b. Mismatch between the results from simulations and mean field predictions for
the radius and the outlier position. The error is measured as an average over Ntr = 30 finite
size matrices, and decays as the system size is increased. Details as in Fig. 7.4 b. c. Pearson
correlation coefficient between the structure eigenvector m and the outlier eigenvector ê as
the random strength g is increased and more disorder is injected into the network. Vertical
line: at large g values, the outlier eigenvalue get absorbed by the bulk, so that its position
cannot be directly measured. d. Radius and outlier of the stability eigenspectrum for increasing
random strength values. The dots indicate the results of numerical simulations fromN = 2500
networks, averaged over Ntr = 30 trials. In grey: radius of the compact bulk (continuous line:
mean field prediction r). In blue: position of the outlier eigenvalue (continuous dark and
light lines: first and second eigenvalue of matrixM given in Eq. 7.60). In black: position of
the outlier when χij is shuffled (continuous line: mean field prediction for the outlier of the
structured part miϕ(x

0
j )nj/N ). Choice of the parameters: ρ = 0, MmMn = 2.2, Σm = 0.4,

Σn = 2. In a and b, g = 0.5.
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from Eq. 7.17 and 7.29: µ0
i = miκ

0. The first-order perturbations thus obey:

µ̇i
1(t) = −µ1

i (t) +miκ
1(t), (7.35)

indicating that the decay time scale of the mean activity is inherited by the decay time constant
of κ1. An additional equation for the time evolution of κ1 thus needs to be derived.

When activity is perturbed, the non-linear transform ϕi can be evaluated at the first order:
ϕ0
i → ϕ0

i + ϕ1
i (t) = ϕ(x0i ) + ϕ′(x0i )x

1
i (t). As a consequence, the first-order in κ reads:

κ1(t) = ⟨ni[ϕ
′(x0i )x

1
i (t)]⟩. (7.36)

Summing Eq. 7.36 to its time-derivative, we get:

κ̇1(t) = −κ1(t) + (1 +
d

d t)⟨ni[ϕ
′(x0i )x

1
i (t)]⟩. (7.37)

In order to simplify the r.h.s., we start by considering the average with respect the random
part of the connectivity for a single unit i. In order to compute [ϕ′(x0i )x

1
i ], we explicitly

build x0i and xti := xi(t) as Gaussian variables centered respectively in µ0
i and µt

i, which are
proportional to mi. The individual variances of their distributions are time-dependent (∆I0

0

and ∆It
0 ), and they share some correlated variability ∆I,t0 = [xtix

0
i ]− [xti][x

0
i ]. As a result, we

can write:

x0i = µ0
i +

√
∆I0

0 −∆I,t0x1 +
√
∆I,t0y

xti = µt
i +
√
∆It

0 −∆I,t0x2 +
√
∆I,t0y

(7.38)

so that, for the first-order response, we get:

x1i = µ1
i +

√
∆It

0 −∆I,t0x2 −
√
∆I0

0 −∆I,t0x1. (7.39)

As in classical DMF derivations [127, 99, 69], x1, x2 and y are standard normal variables. By
integrating over their distributions we can write:

[ϕ′(x0i )x
1
i ] =

∫
Dx1

∫
Dx2

(
µ1
i +

√
∆It

0 −∆I,t0x2 −
√
∆I0

0 −∆I,t0x1

)
×
∫
Dyϕ′

(
µ0
i +

√
∆I0

0 −∆I,t0x1 +
√
∆I,t0y

)
.

(7.40)

Integrating by parts as in Eq. 7.27 we finally get:

[ϕ′(x0i )x
1
i ] = µ1

i [ϕ
′
i] +

(
∆I,t0 −∆I0

0

)
[ϕ′′

i ] (7.41)

where the Gaussian integrals [ϕ′
i] and [ϕ′′

i ] are evaluated at the fixed point.
Note that, at the fixed point, ∆I,t0 = ∆I0

0 . As a consequence, ∆I,t0 −∆I0
0 gives a first-

order response:

∆I,10 := ∆I,t0 −∆I0
0 = [x1ix

0
i ]− [x1i ][x

0
i ] = [x1ix

0
i ]− µ0

iµ
1
i (7.42)

115



7. Dynamics of networks with unit rank structure

which can be rewritten as a function of the global second-order statistics ∆10 = ⟨[x1ix0i ]⟩ −
⟨[x1i ]⟩⟨[x0i ]⟩ as:

∆I,10 = ∆10 − {⟨µ1
iµ

0
i ⟩ − ⟨µ1

i ⟩⟨µ0
i ⟩}

= ∆10 − Σ2
mκ̃0κ̃1.

(7.43)

Furthermore, we observe that we can write:

∆10 =
1

2
∆1

0 (7.44)

which allows us to rewrite the second-order statistics in terms of equal-time variance pertur-
bations: ∆1

0 = ∆t
0 −∆0

0. Eq. 7.44 derives from considering that, by definition:

∆10 =
N∑
j=1

x1j
∂∆t0

∂xtj

∣∣∣
0

∆1
0 =

N∑
j=1

x1j
∂∆t

0

∂xtj

∣∣∣
0

(7.45)

and by observing that when the derivatives are evaluated at the fixed point, we have:

∂∆t0

∂xtj

∣∣∣
0
=

1

2

∂∆t
0

∂xtj

∣∣∣
0
. (7.46)

Eq. 7.41 thus becomes:

[ϕ′(x0i )x
1
i ] = mi κ̃

1[ϕ′
i] +

(
∆1

0

2
− Σ2

mκ̃0κ̃1
)
[ϕ′′

i ]. (7.47)

In a second step, we perform the average across different units of the population, by writing
m and n as in Eq. 7.23. After some algebra, we get:

⟨ni[ϕ
′(x0i )x

1
i (t)]⟩ = κ̃1

[
(MmMn + ρΣmΣn)⟨[ϕ′

i]⟩+ ρκ0MmΣmΣn⟨[ϕ′′
i ]⟩
]

+
∆1

0

2

[
Mn⟨[ϕ′′

i ]⟩+ ρκ0ΣmΣn⟨[ϕ′′′
i ]⟩
]

:= κ̃1a+∆1
0 b

(7.48)

where constants a and b were defined as:

a = (MmMn + ρΣmΣn)⟨[ϕ′
i]⟩+ ρκ0MmΣmΣn⟨[ϕ′′

i ]⟩

b =
1

2

{
Mn⟨[ϕ′′

i ]⟩+ ρκ0ΣmΣn⟨[ϕ′′′
i ]⟩
}
.

(7.49)

The time evolution of κ can be finally rewritten as:

κ̇1(t) = −κ1(t) + (1 +
d

d t)
{
κ̃1a+∆1

0b
}
, (7.50)

so that the time evolution of the perturbed variance must be considered as well.
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7.3. The mean field framework

In order to isolate the evolution law of ∆0, we rewrite the activation variable xi(t) by
separating the uniform and the heterogeneous components: xi(t) = µ(t) + δxi(t). The time
evolution for the residual δxi(t) is given by:

˙δxi(t) = −δxi(t) + g

N∑
j=1

χijϕ(xj(t)) + (mi −Mm)κ(t) (7.51)

so that, squaring:(d δxi(t)
d t

)2

+ 2δxi(t)
d δxi(t)

d t + δxi(t)
2 = g2

N∑
j=1

N∑
k=1

χijχikϕ(xj(t))ϕ(xk(t))

+ (mi −Mm)2κ(t)2 + g(mi −Mm)κ(t)

N∑
k=1

χijϕ(xk(t)).

(7.52)

Averaging over i and the realizations of the disorder yields:

d∆0(t)

d t = −∆0(t) + g2⟨[ϕ2
i (t)]⟩+Σ2

mκ(t)2 − ⟨

[(d δxi(t)
d t

)2
]
⟩

:= −∆0(t) +G(µ,∆0, κ)− ⟨

[(d δxi(t)
d t

)2
]
⟩

(7.53)

as by definition we have: ⟨[δx2i (t)]⟩ = ∆0(t).
Expanding the dynamics of ∆0 to the first order, we get:

∆̇1
0(t) = −∆

1
0(t) + µ1∂G

∂µ

∣∣∣
0
+∆1

0

∂G

∂∆0

∣∣∣
0
+ κ1

∂G

∂κ

∣∣∣
0
. (7.54)

Note that we could neglect the contributions originating from the last term of Eq. 7.53 because
they do not enter at the leading order. Indeed we have:

∂

∂µ
⟨

[(d δxi(t)
d t

)2
]
⟩
∣∣∣
0
= 2⟨

[d δxi(t)
d t

∂

∂µ

d δxi(t)
d t

]
⟩
∣∣∣
0
= 0 (7.55)

since temporal derivatives for every i vanish when evaluated at the fixed point.
A little algebra returns the last three linear coefficients:

∂G

∂µ

∣∣∣
0
= 2g2⟨[ϕiϕ

′
i]⟩

∂G

∂∆0

∣∣∣
0
= g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

∂G

∂κ

∣∣∣
0
= 2Σ2

mκ0.

(7.56)

Collecting all the results together in Eq. 7.50 we obtain:

κ̇1(t) = −κ1(t) + aκ1(t) + b

{
µ1∂G

∂µ

∣∣∣
0
+∆1

0

∂G

∂∆0

∣∣∣
0
+ κ1

∂G

∂κ

∣∣∣
0

}
. (7.57)
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By averaging Eq. 7.34 we furthermore obtain:

µ̇1(t) = −µ1(t) +Mmκ1. (7.58)

We finally obtained that the perturbation time scale is determined by the population-
averaged dynamics:

d
d t

µ1

∆1
0

κ1

 = −

µ1

∆1
0

κ1

+M

µ1

∆1
0

κ1

 (7.59)

where the evolution matrixM is defined as:

M =

 0 0 Mm

2g2⟨[ϕiϕ
′
i]⟩ g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2Σ2
mκ0

2bg2⟨[ϕiϕ
′
i]⟩ bg2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

b2Σ2
mκ0 + a

 . (7.60)

Note that one eigenvalue of matrix M, which corresponds to the low-pass filtering be-
tween κ and µ, is always fixed to zero.

Eqs. 7.59 and 7.60 reveal that, during the relaxation to equilibrium, the transient dynam-
ics of the first- and second-order statistics of the activity are tighly coupled. Diagonalising
M allows to retrieve the largest decay timescale of the network, which indicates the average,
structural stability of stationary states.

When an outlier eigenvalue is present in the eigenspectrum of the stability matrix Sij ,
the largest decay time scale from M predicts its position. The corresponding eigenvector ê
contains indeed a structured component along m, which is not washed out by averaging across
different realizations of χij .

The second non-zero eigenvalue ofM, which vanishes at g = 0, measures a second and
smaller effective timescale, which derives from averaging across the remaining N − 1 random
modes.

Varying g, we computed the largest eigenvalue ofM for corresponding stationary solutions
of mean field equations. In Fig. 7.6 d we show that, when the stability eigenspectrum includes
an outlier eigenvalue, its position is correctly predicted by the largest eigenvalue ofM. The
mismatch between the two values is small and can be understood as a finite-size effect (Fig. 7.6
b, grey).

To conclude, we found that the stability of arbitrary stationary solutions can be assessed
by evaluating, with the help of mean field theory, both the values of the radius (Eq. 7.33)
and the outlier (Eq. 7.60) of the stability eigenspectrum. Instabilities led by the two different
components are expected to reshape activity into two qualitatively different classes of dynam-
ical regimes, which are discussed in detail, further in the chapter, for two specific classes of
structures.

7.3.5 Dynamical Mean Field equations for chaotic solutions
When a stationary state loses stability due to the compact component of the stability eigenspec-
trum, the network activity starts developing irregular temporal fluctuations (for more details,
see Chapter 2). Such temporally fluctuating state can be described within the DMF theory by
taking into account the full temporal auto-correlation function of the effective noise ηi [127].
For the sake of simplicity, here we derive directly the mean field equations for population-
averaged statistics, and we eventually link them back to single unit quantities.
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By differentiating twice Eq. 7.8, and by substituting the appropriate expression for the
statistics of the noise ηi, we derive that the auto-correlation function∆(τ) = ⟨[xi(t+τ)xi(t)]⟩−
⟨[xi(t)]⟩2 obeys the second-order differential equation:

∆̈(τ) = ∆(τ)− g2⟨[ϕi(t)ϕi(t+ τ)]⟩ − Σ2
mκ2. (7.61)

In this context, the activation variance∆0 coincides with the peak of the full auto-correlation
function: ∆0 = ∆(τ = 0). We expect the total variance to include a temporal term, co-
inciding with the amplitude of chaotic fluctuations, and a quenched one, representing the
spread across the population due to the disorder in χij and the structure imposed by the right-
structure vector m.

In order to compute the full rate auto-correlation function ⟨[ϕi(t)ϕi(t+ τ)]⟩, we need to
explicitly build two correlated Gaussian variables x(t) and x(+τ), such that:

⟨[xi(t)]⟩ = ⟨[xi(t+ τ)]⟩ = µ

⟨[x2i (t)]⟩ − ⟨[xi(t)]⟩2 = ⟨[x2i (t+ τ)]⟩ − ⟨[xi(t)]⟩2 = ∆0

⟨[xi(t+ τ)xi(t)]⟩ − ⟨[xi(t)]⟩2 = ∆(τ).

(7.62)

Following previous studies [127, 99], we obtain:

⟨[ϕi(t)ϕi(t+ τ)]⟩ =
∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆x+

√
∆z)

]2
(7.63)

where we used the short-hand notation ∆ := ∆(τ) and we assumed for simplicity ∆ > 0. As
we show later, this requirement is satisfied by our final solution.

In order to visualize the dynamics of the solutions of Eq. 7.61, we study the equivalent
problem of a classical particle moving in a one-dimensional potential [127, 99]:

∆̈(τ) = −∂V

∂∆
(7.64)

where the potential V is given by an integration over ∆:

V (∆,∆0) = −
∆2

2
+ g2⟨[Φi(t)Φi(t+ τ)]⟩+Σ2

mκ2∆ (7.65)

and Φ(x) =
∫ x
−∞ ϕ(x′) dx′. As the potential V depends self-consistently on the initial condi-

tion ∆0, the shape of the auto-correlation function ∆(τ) depends parametrically on the value
of ∆0. Similarly to previous works, we isolate the solutions that decay monotonically from ∆0

to an asymptotic value ∆(τ →∞) := ∆∞, where ∆∞ is determined by dV / d∆|∆=∆∞ = 0.
This translates into the first condition to be imposed. A second equation comes from the en-
ergy conservation condition: V (∆0,∆0) = V (∆∞,∆0). Combined with the usual equation
for the mean µ and the overlap κ, the system of equations to be solved becomes:
µ = Mmκ

κ = Mn⟨[ϕi]⟩+ ρκ⟨[ϕ′
i]⟩

∆2
0 −∆2

∞
2

= g2

{∫
DzΦ2(µ+

√
∆0z)−

∫
Dz
[∫
DxΦ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2}
+Σ2

mκ2(∆0 −∆∞)

∆∞ = g2
∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2
+Σ2

mκ2.

(7.66)
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The temporally fluctuating state is therefore described by a closed set of equations of the
mean activity µ, the overlap κ, the zero-lag variance ∆0 and the long-time variance ∆∞. The
difference between ∆0 −∆∞ represents the amplitude of temporal fluctuations. If temporal
fluctuations are absent, ∆0 = ∆∞, and the system of equations we just derived reduces to the
DMF description for stationary solutions given in Eq. 7.29.

A similar set of equations can be derived for single unit activity. As for static stationary
states, the mean activity of unit i is given by

µi = miκ. (7.67)

The static variance around this mean activity is identical for all units and given by

∆I
∞ = g2

∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2
= ∆∞ − Σ2

mκ2 (7.68)

while the temporal component ∆I
T of the variance is identical to the population averaged

temporal variance
∆I

T = ∆0 −∆∞. (7.69)
To conclude, similarly to static stationary states, the structured connectivity Pij shapes

network activity in the direction defined by its right eigenvector m whenever the overlap κ
does not vanish. For this reason, the mean field theory predicts in some parameter regions the
existence of more than one chaotic solution (for further details, see Appendix D). A formal
analysis of the stability properties of the different solutions has not been performed. We never-
theless observe from numerical simulations that chaotic solutions tend to inherit the stability
properties of the stationary solution they develop from. Specifically, when an homogeneous
solution generates two heterogeneous bistable ones, we notice that the former loses stability
in favour of the latter.

We finally observe that the critical coupling at which the DMF theory predicts the onset
of chaotic fluctuations can be computed by imposing that, at the critical point, the concavity
of the potential function V (∆) is inverted [127, 58]:

d2 V (∆,∆0)

d∆2

∣∣∣
∆∞

= 0 (7.70)

and the temporal component of the variance vanishes: ∆0 = ∆∞. These two conditions are
equivalent to the expression: 1 = g2⟨[ϕ′2

i ]⟩ where, as we saw, g2⟨[ϕ′2
i ]⟩ coincides with the

value of the radius of the compact component of the stability eigenspectrum (Eq. 7.33). In
the phase diagram of Fig. 7.1 a, we solved this equation for g to derive the position of the
instability boundary from stationary to chaotic regimes (red line).

7.3.6 Structures overlapping on the unitary direction
In this section, we analyze in detail a specific case, in which the structure vectors m and n
overlap solely along the unitary direction u = (1, 1, ...1)/N . Within the statistical description
of vector components, in this situation the joint probability density p(m,n) can be replaced
by the product two normal distributions (respectively, N (Mm,Σ2

m) and N (Mn,Σ
2
n)). The

mean values Mm and Mn represent the projections of m and n on the common direction
u, and the overlap between m and n is given by MmMn. The components m and n are
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otherwise independent, the fluctuations representing the remaining parts of m and n that lie
along mutually orthogonal directions. In this situation, the expression for κ simplifies to

κ = ⟨ni[ϕi]⟩
= Mn⟨[ϕi]⟩

(7.71)

so that a non-zero overlap κ can be obtained only if the mean population activity ⟨[ϕi]⟩ is
non-zero. Choosing independently drawn m and n vectors thus simplifies the mean field
network description. The main qualitative features resulting from the interaction between the
structured and the random component of the connectivity can however already be observed,
and more easily understood, within this simplified setting.

Stationary solutions The DMF description for stationary solutions reduces to a system of
two non-linear equations for the population averaged mean µ and variance ∆0:

µ = MmMn⟨[ϕi]⟩ := F (µ,∆0)

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

mM2
n⟨[ϕi]⟩2 := G(µ,∆0).

(7.72)

The population averages ⟨[ϕi]⟩ and ⟨[ϕ2
i ]⟩ are computed as Gaussian integrals similarly to

Eq. 7.28. Eq. 7.72 can be solved numerically for µ and ∆0 by iterating the equations up
to convergence, which is equivalent to numerically simulating the two-dimensional dynamical
system given by

µ̇(t) = −µ+ F (µ,∆0)

∆̇0(t) = −∆0 +G(µ,∆0),
(7.73)

since the fixed points of this dynamical system correspond to solutions of Eq. 7.72.
As the system of equations in 7.72 is two-dimensional, we can investigate the number and

the nature of stationary solutions through a simple graphical approach (Fig. 7.7). We plot on
the µ−∆0 plane the loci of points where the two individual equations

µ = F (µ,∆0)

∆0 = G(µ,∆0)
(7.74)

are satisfied. In analogy with dynamical systems approaches, we refer to the two corresponding
curves as the DMF nullclines. The solutions of Eq. 7.72 are then given by the intersections of
the two nullclines.

To begin with, we focus on the nullcline defined by the first equation (also referred to as the
µ nullcline). With respect to µ, F (µ,∆0) is an odd sigmoidal function whose maximal slope
depends on the value of ∆0 and MmMn. When g = 0 and Σm = 0, the input variance ∆0

vanishes. In this case, the points of the µ nullcline trivially reduce to the roots of the equation:
µ = MmMnϕ(µ), which admits either one (MmMn < 1), or three solutions (MmMn > 1).
Non-zero values of g and Σm imply finite and positive values of ∆0. As ∆0 increases, the
solutions to the equation µ = MmMn⟨[ϕi]⟩ vary smoothly, delining the full nullcline in the
µ−∆0 plane. As in the case without disorder (g = 0 and Σm = 0), for low structure strengths
(MmMn < 1), the µ nullcline consists of a unique branch: µ = 0 ∀∆0 (Fig. 7.7 b). At high
structure strengths (MmMn > 1), instead, its shape smoothly transform into a symmetric
pitchfork (Fig. 7.7 c).
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MmMn < 1

MmMn > 1

g > 1g < 1

Figure 7.7: Dynamical Mean Field description for partially structured networks whose right
and left vectors overlap solely on the unitary direction (ρ = 0). Graphical analysis of stationary
solutions. Large figures: nullcline plots for the population-averaged DMF equations in 7.72.
Black dots indicate the solutions that are stable with respect to the outlier eigenvalue. Four
set of parameters (two values for MmMn, two for g) have been selected. Note that the shape
of the µ and the ∆0 nullcline depends only, respectively, on the value of the structure and the
random strengths MmMn and g. For the figures in the first (resp. second) row, the structure
strength MmMn = 0.55 (resp. MmMn = 2.0) is weak (resp. strong). For the figures in the
first (resp. second) column: the random strength g = 0.7 (resp. g = 2.0) is weak (resp. strong).
The small figures side associated to every row and column show how the µ (for the rows) and
∆0 (for the columns) nullclines have been built. We solve µ = F (µ) (resp. ∆0 = G(∆0)) for
different initial values of ∆0 (resp. µ). Different initial conditions are displayed in gray scale.
Dark grey refers to ∆0 = 0 (resp. µ = 0). The dots indicate the solutions for different initial
values, which together generate the nullcline curves.

The ∆0 nullcline is given by the solutions of ∆0 = G(µ,∆0) for ∆0 as function of µ. As
G(µ,∆0) depends quadratically on µ, the ∆0 nullcline has a symmetric V -shape centered in
µ = 0. The ordinate of its vertex is controlled by the parameter g, as the second term of the
second equation in 7.72 vanishes at µ = 0. For µ = 0, the slope of G(µ,∆0) in ∆0 = 0 is
equal to g2. As a consequence, for g < 1, the vertex of the ∆0 nullcline is fixed in (0, 0), while
for g > 1, the vertex is located at ∆0 > 0 and an isolated point remains at (0, 0).

The stationary solutions of the DMF equations are determined by the intersections be-
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tween the two nullclines. For all values of the parameters, the nullclines intersect in µ = 0,
∆0 = 0, corresponding to the trivial, homogeneous stationary solution. The existence of other
solutions are determined by the qualitative features of the individual nullclines, that depend
on whether MmMn and g are smaller or greater than one (Fig. 7.7). The following qualitative
situations can be distinguished: (i) for MmMn < 1 and g < 1, only the trivial solutions exist;
(ii) for MmMn > 1, two additional, symmetric solutions exist for non-zero values of µ and
∆0, corresponding to symmetric, heterogeneous stationary states; (iii) for g > 1, an additional
solution exist for µ = 0 and ∆0 > 0, corresponding to a heterogeneous solution in which
individual units have non-zero stationary activity, but the population-average vanishes. For
MmMn > 1, this solution can co-exist with the symmetric heterogeneous ones, but in the
limit of large g these solutions disappear (Fig. 7.7).

The next step is to assess the stability of the various solutions. As explained earlier on, the
stability of the trivial state µ = 0, ∆0 = 0 can be readily assessed using random matrix theory
arguments (Fig. 7.5). This state is stable only for MmMn < 1 and g < 1. At MmMn = 1, it
loses stability due to the outlying eigenvalue of the stability matrix, leading to the bifurcation
already observed at the level of nullclines. At g = 1, the instability is due to the radius of the
bulk of the spectrum. This leads to a chaotic state, not predicted from the nullclines for the
stationary solutions.

The stability of heterogeneous stationary states is assessed by determining separately the
radius of the bulk of the spectrum and the position of the outlier (Fig. 7.6). The radius is
determined from Eq. 7.33. The outlier is instead computed as the leading eigenvalue of the
stability matrix given in Eq. 7.60. Note that, in the present framework, it is possible to show
that the latter is equivalent to computing the leading stability eigenvalue of the effective dy-
namical system introduced in Eq. 7.73, linearized around the corresponding fixed point. The
bifurcation obtained when the outlier crosses unity is equivalent to the bifurcation predicted
from the nullclines when the symmetric solutions disappear in favor of the heterogeneous so-
lution of mean zero (Fig. 7.7). For MmMn > 1, we however find that as g is increased, the
radius of the bulk of the spectrum always leads to a chaotic instability before the outlier be-
comes unstable. Correspondingly, the µ = 0 and ∆0 > 0 stationary state that exist for large
g is never stable.

Chaotic solutions For large g, the instabilities of the stationary points generated by the bulk
of the spectrum are expected to give rise to chaotic dynamics. We therefore turn to the DMF
theory for chaotic states, which are described by an addition variable that quantifies temporal
fluctuations. For the case studied here of structure vectors m and n overlapping only along
the unitary direction, Eqs. 7.66 become

µ = F (µ,∆0,∆∞) = MmMn

∫
Dzϕ(µ+

√
∆0z)

∆0 = G(µ,∆0,∆∞) =

[
∆2

∞ + 2g2
{∫
DzΦ2(µ+

√
∆0z)

−
∫
Dz
[∫
DxΦ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2}
+M2

nΣ
2
m⟨[ϕi]⟩2(∆0 −∆∞)

] 1
2

∆∞ = H(µ,∆0,∆∞) = g2
∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2
+M2

nΣ
2
m⟨[ϕi]⟩2.

(7.75)
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As the system to be solved is now three-dimensional, graphical approaches have only lim-
ited use. As for the stationary state, a practical and stable way to find numerically the solutions
is to iterate the dynamical system given by

µ̇ = −µ+ F (µ,∆0)

∆̇0 = −∆0 +G(µ,∆0)

∆̇∞ = −∆∞ +H(µ,∆∞).

(7.76)

Note that stationary states simply correspond to solutions for which ∆0 = ∆∞.
As for stationary solutions, different types of chaotic solutions appear depending on the

values of the structure strength MmMn and the disorder strength g. If g > 1 and MmMn < 1,
a single chaotic state exists corresponding to µ = 0 and ∆∞ = 0, meaning that the temporally
averaged activity of all units vanishes, so that fluctuations are only temporal (Fig. 7.1 b red).
As MmMn crosses unity, two symmetric states appear with non-zero values of µ and ∆∞.
These states correspond to bistable heterogeneous chaotic states (Fig. 7.1 b orange) that are
analogous to bistable heterogeneous stationary states.

The critical disorder strength gB at which heterogeneous chaotic states emerge (grey bound-
ary in the phase diagram of Fig. 7.1) is computed by evaluating the linear stability of the
dynamics in 7.76 around the central solution (0,∆0, 0). A long but straightforward algebra
reveals that the stability matrix, evaluated in (0,∆0, 0), is simply given byMmMn⟨ϕ′⟩ 0 0

0
g2(⟨ϕ2⟩+⟨Φϕ′⟩−⟨Φ⟩⟨ϕ′⟩)

∆0
0

0 0 g2⟨ϕ′⟩2

 , (7.77)

such that gB corresponds to the value of the random strength g for which the largest of its
three eigenvalues crosses unity.

7.3.7 Structures overlapping on an arbitrary direction
In the previous paragraph, we focused on the simplified scenario where the structure vectors
m and n overlapped only in the unitary direction. Here, we briefly turn to the opposite case
where the overlap along the unitary direction u vanishes (i.e. Mm = 0, Mn = 0), but the
overlap ρ along a direction orthogonal to u is non-zero (Fig. 7.8 a). As we will show, although
the equations describing the network activity present some formal differences, they lead to
qualitatively similar regimes. The same qualitative results apply as well to the general case,
where an overlap exists on both the unitary and an orthogonal direction.

The network dynamics can be studied by solving the DMF equations 7.29 and 7.66 by
setting µ = 0. Stationary solutions are now determined by:

κ = ρκΣmΣn⟨[ϕ′
i(0,∆0)]⟩ := F (κ,∆0)

∆0 = g2⟨[ϕ2
i (0,∆0)]⟩+Σ2

mκ2 := G(κ,∆0).
(7.78)

Note that, in this more general case, the relevant first-order statistics of network activity
is given by the overlap κ, which now can take non-zero values even when the population-
averaged activity ⟨[ϕi]⟩ vanishes.

As in the previous case, the stationary solutions can be analyzed in terms of nullclines.
The main difference lies in the κ nullcline given by κ = ρκΣmΣn⟨[ϕ′

i(0,∆0)]⟩. As both sides
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of the first equation are linear and homogeneous in κ, two classes of solutions exist: a trivial
solution (κ = 0 for any ∆0), and a non-trivial one (∆0 = ∆̃0 for any κ), with ∆̃0 determined
by:

⟨[ϕ′
i(0, ∆̃0)]⟩ = 1/(ρΣmΣn). (7.79)

Because 0 < ϕ′(x) < 1, Eq. 7.79 admits non-trivial solutions only for sufficiently large
overlap values: ρ > 1/ΣmΣn. In consequence, the κ nullcline takes qualitatively different
shapes depending on the value of ρ: (i) for ρ < 1/ΣmΣn, it consists only of vertical branch
κ = 0 (ii) for ρ > 1/ΣmΣn and additional horizontal branch ∆0 = ∆̃0 appears (Fig. 7.8).

The∆0 branch is qualitatively similar to the previously studied case ofm and n overlapping
along the unitary direction, with a qualitative change when the disorder parameter g crosses
unity.

The stationary solutions are given by the intersections between the two nullclines. Al-
though the shape of the κ nullcline is distinct from the shape of the µ nullcline studied in
the previous case, qualitatively similar regimes are found. The trivial stationary state κ = 0,
∆0 = 0 exists for all parameter values. When the structure strength ρΣmΣn exceeds unity,
two symmetric heterogeneous states appear with non-zero κ values of opposite signs (but van-
ishing mean µ). Finally for large g an additional state appears with κ = 0, ∆0 > 0.

Similarly to Fig. 7.2, the solutions of Eq. 7.78, which correspond to stationary activity
states, are shown in blue in Fig. 7.9. In Fig. 7.9 a we address their stability properties: again
we find that when non-centered stationary solutions exist, the central fixed point becomes
instable. The instability is led by the outlier eigenvalue of its stability eigenspectrum. Similarly
to Fig. 7.1, furthermore, the DMF theory predicts an instability to chaotic phases for high g
values. As for stationary states, both heterogeneous and homogeneous chaotic solutions are
admitted (Fig. 7.9 b-c); heterogeneous chaotic states exist in a parameter region where the
values of g and ρ are comparable.

7.3.8 Response to external inputs
To conclude, following Section 7.2, we examine the effect of non-vanishing external inputs
on the network dynamics. We consider the situation in which every unit receives a potentially
different input Ii, so that the pattern of inputs at the network level is characterized by the
N-dimensional vector I = {Ii}. The network dynamics in general depend on the geomet-
rical arrangement of the vector I with respect to the structure vectors m and n. Within the
statistical description used in DMF theory, the input pattern is therefore characterized by the
first- and second-order statistics MI and ΣI of its elements, as well as by the value of the
correlations ΣmI and ΣnI with the vectors m and n. In geometric terms, MI quantifies the
component of I along the unit direction u, while ΣmI and ΣnI quantify the overlaps with m
and n along directions orthogonal to u. For the sake of simplicity, we consider two structure
vectors m and n that overlap solely on the unitary direction (ρ = 0). The two vectors thus
read (see Eq. 7.23):

m = Mm +Σmx1

n = Mn +Σnx2.
(7.80)

The input pattern can overlap with the structure vectors on the common (u) and on the or-
thogonal directions (x1 and x2). It can moreover include further orthogonal components of
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g > 1g < 1

ρΣmΣn > 1

ρΣmΣn < 1

Figure 7.8: Dynamical Mean Field description of stationary solutions for partially structured
networks whose right and left vectors overlap onto an arbitrary direction y (Mm = Mn = 0).
Graphical analysis of stationary solutions. Large figures: nullcline plots for the population-
averaged DMF equations in 7.78. Black dots indicate the solutions that are stable with respect
to the outlier eigenvalue. Four set of parameters (two values for ρΣmΣn, two for g) have been
selected. Note that the shape of the κ and the ∆0 nullcline depends only, respectively, on the
value of the structure and the random strengths ρΣmΣn and g. For the figures in the first
(resp. second) row, the structure strength ρΣmΣn (resp. ρΣmΣn) is weak (resp. strong). For
the figures in the first (resp. second) column: the random strength g = 0.5 (resp. g = 1.7)
is weak (resp. strong). The small figures associated to every row and column show how the
κ (for the rows) and ∆0 (for the columns) nullclines have been built. We solve κ = F (κ)
(resp. ∆0 = G(∆0)) for different initial values of ∆0 (resp. κ). Different initial conditions
are displayed in gray scale. Dark grey refers to ∆0 = 0 (resp. κ = 0). The dots indicate the
solutions for different initial values, which together generate the nullcline curves.

strength Σ⊥. The most general expression for the input vector can thus be written as:

Ii = MI +
ΣmI

Σm
x1 +

ΣnI

Σn
x2 +Σ⊥h (7.81)

where h is a standard normal vector. We first focus on the equilibrium response to constant
inputs, and then turn to transient dynamics.
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b.a.

Stationary

Chaotic

c.

Figure 7.9: Dynamical Mean Field description for partially structured networks whose gen-
erating vectors m and n overlap onto an arbitrary direction y (Mm = Mn = 0). Bifurcation
diagram of the network activity statistics as the random strength g is increased. a. Stability
eigenspectrum of stationary solutions, mean field prediction for the radius of the compact part
and the outlier position. b. Overlap κ = ⟨ni[ϕi]⟩. c. Individual second order statistics. The
DMF solutions are displayed as continuous (resp. dashed) lines if they correspond to a stable
(resp. unstable) state. In c-d, top panels display statistics for stationary solutions and bottom
panels display statistics for chaotic solutions. Dots: we measured network activity statistics in
finite-size networks, starting from globally positive and negative initial conditions. Activity is
integrated up to T = 600. N = 4000, average over 10 different network realizations. Choice
of the parameters: Σm = Σn = 1.5, ρ = 2.0/ΣmΣn.

The mean field equations in presence of external inputs can be derived in a straightforward
fashion by following the same steps as in the input-free case. We start by considering the
statistics of the effective coupling term, which is given by ξi(t) = ηi(t) + Ii(t), with ηi(t)
defined as in Eq. 7.9. We can then exploit the statistics of ηi(t) which have been computed
in the previous paragraphs to obtain the equation for the mean activity:

µi = [xi] = miκ+ Ii. (7.82)

Eq. 7.82 indicates that the direction of the average network activity is determined by a com-
bination of the structured recurrent connectivity and the external input pattern. The final
direction of the activation vector in the N-dimensional population space is controlled by the
value of the overlap κ, which depends on the relative orientations of m, n and I . Its value is
given by the self-consistent equation:

κ = ⟨ni[ϕi]⟩

= ⟨ni

∫
Dzϕ(miκ+ Ii +

√
∆I

0z)⟩

= Mn⟨[ϕi]⟩+ΣnI⟨[ϕ′
i]⟩,

(7.83)
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as both vectors m and I share non-trivial overlap directions with n.
The second-order statistics of the noise are given by:

[ξi(t)ξj(t+ τ)] = δijg
2⟨[ϕi(t)ϕi(t+ τ)]⟩+mimjκ

2 + (miIj +mjIi)κ+ IiIj . (7.84)

Averaging across the population we obtain:

⟨[ξi(t)ξi(t+ τ)]⟩ − ⟨[ξi(t)]2 = g2⟨[ϕ2
i ]⟩+Σ2

mκ2 + 2ΣmIκ+Σ2
I . (7.85)

The first term of the r.h.s. represents the quenched variability inherited from the random con-
nectivity matrix, while Σ2

µ = Σ2
mκ2 + 2ΣmIκ + Σ2

I represents the variance induced by the
structure, which is inherited from both vectors m and I (Eq. 7.82). From Eq. 7.81, the vari-
ance of the input reads:

Σ2
I =

Σ2
mI

Σ2
m

+
Σ2
nI

Σ2
n

+Σ2
⊥. (7.86)

The final DMF equations to be solved are given by the following system:

µ = Mmκ+MI

∆̈ = ∆−
{
g2⟨[ϕi(t)ϕ(t+ τ)]⟩+Σ2

mκ2 + 2ΣmIκ+Σ2
I

}
κ = Mn⟨[ϕi]⟩+ΣnI⟨[ϕ′

i]⟩
(7.87)

which, similarly to the cases we examined in detail so far, admits both stationary and chaotic
solutions. As for spontaneous dynamics, the instabilities to chaos are computed by evaluating
the radius of the eigenspectrum of the stability matrix Sij (Eq. 7.33). The stability matrix can
admit an outlier eigenvalue as well, whose value can be predicted with a mean field stability
analysis. Extending the arguments already presented in the previous paragraphs allows to show
that the effective stability matrixM is given by:

M =

 0 0 Mm

2g2⟨[ϕiϕ
′
i]⟩ g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2Σ2
mκ0 + 2ΣmI

2bg2⟨[ϕiϕ
′
i]⟩ bg2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

b(2Σ2
mκ0 + 2ΣmI) + a

 , (7.88)

with:

a = MmMn⟨[ϕ′
i]⟩+MmΣnI⟨[ϕ′′

i ]⟩

b =
1

2

{
Mn⟨[ϕ′′

i ]⟩+ΣnI⟨[ϕ′′′
i ]⟩
}
.

(7.89)

As in the input-free case, when the stability eigenspectrum contains one outlier eigenvalue, its
position is well predicted by the largest eigenvalue ofM.

In the following, we refer to Fig. 7.3 and analyse in detail the contribution of every input
direction to the final network dynamics.

In Fig. 7.3 c-d-e, we consider a unit rank structure whose vectors m and n are orthogonal:
Mm = Mn = 0. The input pattern overlaps with n along x2, and includes an additional
orthogonal component along z (Σ⊥ > 0). We furthermore assume ΣmI = 0.

As can be seen from the equation for κ (Eq. 7.87), the overlap between the input and the
left vector n has the effect of increasing the value of κ, which would otherwise vanish since
the structure has null strength. In response to the input, a structured state emerges. From the
same equation, furthermore, one can notice that the ΣnI term has the effect of breaking the
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sign reversal symmetry (x → −x) that characterizes the mean field equations in the case of
spontaneous dynamics.

On the other hand, increasing the strength of the orthogonal input component Σ⊥ does
not directly affect the equation for κ. Nevertheless, the orthogonal input Σ⊥ tends to increase
the value of ∆0 through Σ2

I . Since ⟨[ϕ′(x)]⟩ decreases with ∆0, larger values of ΣI imply
smaller values of κ. External inputs that are orthogonal to n have thus the effect of reducing
structured activity. Note that a similar effect is obtained for external inputs correlating with
m along x1 (ΣmI > 0).

In the rest of Fig. 7.3, we include non vanishing structure strengths (Mm,Mn ̸= 0).
In Fig. 7.3 f-g-h, the input pattern overlaps with n on a direction that is orthogonal to the

structure overlap (MI = 0, ΣnI > 0). The external input has in this case three major effects.
First, by breaking the sign reversal symmetry, it disrupts the symmetry between the two stable
solutions when bistability is created at large structure strengths. Second, it increases the value
of ∆0 through ΣI , which in turns reduces the extension of the bistability regions in the phase
diagram. Third, it tends to suppress chaotic activity.

Finally, external inputs allined with the non-shared (x2) and the shared (u) directions of n
affect the mean field equations in slightly different ways, but effectively influence the dynamics
in a very similar fashion. In Fig. 7.3 i-j-k, we include an input component along the structure
overlap direction (MI > 0). We show that the contribution coming from positive MI values
sums with the contribution along x2 given by ΣnI , and contributes to reducing the phase space
area corresponding to chaotic and bistable activity. Different input directions along different
n components can thus be used to tune the degree of symmetry breaking introduced in the
mean field solutions.

Asymmetric solutions A major effect of external inputs is that they break the sign reversal
symmetry (x→ −x) present in the network dynamics without inputs. As a consequence, in
the parameter regions where the network dynamics admit bistable structured states, the two
stable solutions are characterized by different statistics and stability properties.

To illustrate this effect, we focus on the simple case where the external input pattern I
overlaps with the structure vector m and n solely on the unitary direction (MI ̸= 0, ΣmI =
ΣnI = 0). The solutions of the system of equations corresponding to stationary states can be
visualised with the help of the graphical approach, which unveils the symmetry breaking of
network dynamics induced by external inputs (Fig. 7.10).

Similarly to the input free case (Fig. 7.7 and 7.8), the ∆0 nullcline consists of a symmetric
V -shaped curve. In contrast to before, however, the vertex of the nullcline is no longer fixed
in (0, 0), but takes positive ordinate values also at low g values. The value of G(0,∆0), indeed,
does not vanish, because of the finite contribution from the input pattern Σ2

I .
The nullcline curves of µ are instead strongly asymmetric. For low MmMn values, one

singleµ nullcline exists. In contrast to the input-free case, this nullcline is no longer centered in
zero. As a consequence, it intersects the ∆0 nullclines in one non-zero point, corresponding to
a unique heterogeneous stationary solution. As MmMn increases, a second, separated branch
can appear. In contrast to the input-free case, the structure strength at which the second
branch appears is not always equal to unity, but depends on the mean value of the input. If
MmMn is strong enough, the negative branch of the nullcline can intersect the ∆0 nullcline
in two different fixed points, while a third solution is built on the positive µ nullcline. As
g increases, the two intersections on the negative branch become closer and closer and they
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gLow High

MmMnLow

MmMnHigh
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Figure 7.10: Dynamical Mean Field description for partially structured networks whose right
and left vectors overlap solely on the unitary direction (ρ = 0) in presence of external input
patterns. Graphical analysis of stationary solutions. Large figures: nullcline plots for the
population-averaged DMF equations in 7.87. Black dots indicate the solutions that are stable
with respect to the outlier eigenvalue. Four set of parameters (two values for MmMn, two
for g) have been selected. Note that the shape of the µ and the ∆0 nullcline depends only,
respectively, on the value of the structure and the random strengths MmMn and g together
with the input statistics. For the figures in the first (resp. second) row, the structure strength
MmMn = 0.55 (resp. MmMn = 2.0) is weak (resp. strong). For the figures in the first
(resp. second) column: the random strength g = 0.7 (resp. g = 2.0) is weak (resp. strong).
The small figures associated to every row and column show how the µ (for the rows) and ∆0

(for the columns) nullclines have been built. We solve µ = F (µ) (resp. ∆0 = G(∆0)) for
different initial values of ∆0 (resp. µ). Different initial conditions are displayed in gray scale.
Dark grey refers to ∆0 = 0 (resp. µ = 0). The dots indicate the solutions for different initial
values, which together generate the nullcline curves. Choice of the parameters: MI = 0.13,
ΣnI = ΣmI = 0, ΣI = 0.3.
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Figure 7.11: External inputs disrupt the sign reversal symmetry of the network dynamics:
effect on the phase diagram. As in Fig. 7.10, the input vector is aligned with the common
direction of the structure vectors m and n, which coincides with the unitary one (ΣnI =
ΣmI = Σ⊥ = 0). Similarly to Fig. 7.1 a, we vary the main parameters of the recurrent
connectivity: the structure and the random strength. In contrast to Fig. 7.1, however, note
that different bistable solutions lose stability on different critical boundaries. As in Fig. 7.1,
shaded areas indicate chaotic dynamics; hatched areas indicate that two stable DMF solutions
exist and network activity is bistable. When two stable solutions exist, the yellow and the
red letter indicate wheter each of them is stationary (S) or chaotic (C). Note that stationary
and chaotic dynamics can coexist (SC region). Choice of the parameters: ΣnI = ΣmI = 0,
MI = 0.1, MmMn = 2.2, Σm = Σn = 0.

eventually collapse together. At a critical value gB , the network activity discontinuously jumps
from negative to positive mean solutions.

As they are no longer symmetrical, the stability of the positive and the negative fixed points
has to be assessed separately, and gives raise to different instability boundaries. Computing
the position of the outlier reveals that, when more than one solution is admitted by the mean
field system of equations, the centered one is always unstable.

As the stability boundaries of different stationary solutions do not necessarily coincide, in
presence of external input patterns the phase diagram of the dynamics are in general more
complex (Fig. 7.3). Specifically, hybrid dynamical regimes, where one static solution co-exist
with a chaotic attractor, can be observed. A phase diagram similar to the one in Fig. 7.1 a,
which illustrate the dependence on the two main connectivity parameters g and mTn/N , is
shown in Fig. 7.11.

Transient dynamics We now turn to transient dynamics evoked by a temporal step in the
external input (Fig. 7.3 b). We specifically examine the projection of the activation vector and
its average onto the two salient directions spanned by vectors m and I .

The transient dynamics of relaxation to a stationary solution can be assessed by linearizing
the mean field dynamics. We compute the time course of the average activation vector {µi},
and we finally project it onto the two orthogonal directions which are indicated in the small
insets of Fig. 7.3 b.

Similarly to Eq. 7.34, the time evolution of µi is governed by:

µ̇i(t) = −µi(t) +miκ(t) + Ii(t) (7.90)
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so that, at every point in time:

µi(t) = miκ̃(t) + Ĩi(t), (7.91)

where κ̃(t) and Ĩi(t) coincide with the low-pass filtered versions of κ(t) and I(t).
When the network activity is freely decaying back to an equilibrium stationary state, Ĩi(t)

coincides with a simple exponential relaxation to the pattern Ii. The decay time scale is set by
the time evolution of activity (Eq. 7.5), which is taken here to be equal to unity:

Ĩi(t) = Ii + (Iici − Ii)e
−t. (7.92)

The time scale of κ̃(t) is inherited by the dynamics of κ(t). We thus refer to our mean
field stability analysis, and we compute the relaxation time of the population statistics κ(t) as
the largest eigenvalue of the stability matrixM. The eigenvalue predicts a time constant τr,
which is in general larger than unity. As a consequence, the relaxation of κ(t) obeys, for small
displacements:

κ(t) = κ0 + (κic − κ0)e−
t
τr , (7.93)

where the asymptotic value of κ0 is determined from the equilibrium mean field equations
(Eqs. 7.87). Finally, the time course of κ̃(t) is derived as the low-pass filter version of Eq. 7.93
with unit decay time scale.
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In Chapter 7, we developed a simple geometric understanding of the dynamics in networks
with a given one-dimensional connectivity structure. We now reverse our approach to study
how a given computation can be implemented by choosing appropriately the structured part
of the connectivity. To this aim, we exploit our understanding of the input-driven dynamics in
networks with unit rank structures, and we extend our theoretical framework to specific rank
two connectivity setups.

Throughout this chapter, our approach consists of starting by fixing a task, which implies
a qualitative input-output relationship to be implemented by the network. We then explic-
itly design a suitable low-dimensional structure which forces the network to satisfy this rule.
This approach results in model networks with low-dimensional dynamics which robustly im-
plement computations, by tolerating large amounts of noise and temporal fluctuations. The
computational networks we derive operate in stable dynamical regimes, and our theoretical
approach allows to quantitatively determine the expected output and its relaxation time scale.

Note that this approach conceptually differs from the procedures which are typically used
in supervised training. Here, the input-output relationship determined by the task is fulfilled
only at a qualitative level: in contrast to supervised training, the exact output values are not
fixed by the problem. An alternative, training-oriented approach, is adopted and discussed in
Chapter 9.

8.1 Computing with unit rank structures: the Go-Nogo task
We consider first the computation underlying one of the most basic behavioral tasks, the Go-
Nogo stimulus detection. In this task, an animal has to produce a specific motor response, e.g.
press a lever or lick a spout, in response to a specific sensory stimulus (the Go stimulus), and
ignore all other stimuli (Nogo stimuli). We will show that a recurrent network with a rank-one
connectivity structure provides a simple but computationally powerful implementation of this
task. We provide here the main results, and we discuss the details about the theoretical setting
in Section 8.1.1.

We model the sensory stimuli as random patterns of external inputs to the network, so
that each stimulus is represented by a fixed, randomly-chosen N−dimensional vector I(k). To
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a. b.

wi

z(t)

I
(k)
i

Figure 8.1: Implementing a simple computation with a unit rank connectivity structure: a
network model for the Go-Nogo task. a. We consider a random network with unit rank
connectivity structure. Stimuli are modeled as fixed, randomly generated patterns of inputs
I(k). The network output is given by a linear readout z(t) =

∑
iwiϕi(t)/N , where the readout

weights wi are fixed and randomly chosen. Our aim is to design a unit rank structure which
allows this specific network output to activate selectively in response to the Go pattern I(0).
b. A possible solution is obtained by selecting m = w and n = I(0). We look at the behavior
of a finite-size network (N = 2500) in a stationary (top: g = 0.8) and in a chaotic (bottom:
g = 2.4) dynamical regime. In the time window corresponding to the grey hatched region, an
input pattern is presented to the network. Blue trace: readout in response to the Go stimulus
I(0). Grey trace: readout in response to Nogo inputs I(k) for k ̸= 1. As shown in Fig. 8.2,
most of the network variability is averaged at the level of the readout. In a finite size network,
however, small temporal fluctuations can be seen at the level of the readout z(t).

model the motor response, we supplement the network with an output unit, which produces a
linear readout z(t) = 1

N

∑
iwiϕi(t) of network activity (Fig. 8.1 a). The readout weights wi

are chosen randomly and form also a fixed N−dimensional vector w. The task of the network
is to produce an output that is selective to the Go stimulus: the readout z needs to be non-zero
for the input pattern I(0) that corresponds to the Go stimulus, and zero for any other input
I(k), k > 0. Moreover, we require that the network output is specific to the chosen readout w,
so that reading out network activity along a direction uncorrelated (orthogonal) to w should
lead to no output.

Our aim is to determine twoN-dimensional vectorsm and n that generate the appropriate
rank one connectivity structure to implement the task. As shown in Eq. 7.4 and Fig. 7.3,
the response of the network to the input pattern I(k) is in general two-dimensional and lies
in the plane spanned by the vectors m and I(k). The output unit will produce a non-zero
readout only if the readout vector w has a non-vanishing overlap with either m or I(k). As
w is assumed to be uncorrelated, and therefore orthogonal, to all input patterns, this implies
that the structure vector m needs to have a non-zero overlap with the readout vector w for
the network to produce a non-trivial output. This output will depend on the specific input
through the overlap κ between the network activity and the left-structure vector n. Assuming
this vector is orthogonal to m, as shown in Fig. 7.3, the overlap κ will be non-zero only if n
has a non-vanishing overlap with the input pattern I(k). Choosing m = w and n = I(0), we
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8.1. Computing with unit rank structures: the Go-Nogo task

therefore obtain the simplest rank-one connectivity that implements the desired computation.
Such a network generates non-zero activity along the direction m only if the input pattern is
I(0), thus implementing selectivity to the Go stimulus (Fig. 8.1 b). As the output direction m
is aligned with the readout vector w, the readout of the activity along any direction orthogonal
to w will be zero, so that the network response is also specific to the fixed readout. Note that
within this simple model, the representations are highly distributed over the population, and
every unit is by construction selective to a mix of several stimuli and the output [107]. In
particular, the network response always contains a component along the direction of the input
stimulus, so that information about the input is always present and can be extracted with the
appropriate readout. This observation is consistent with the ubiquitous finding that higher
cortical areas generally encode both the outcome of a decision and the original stimuli that led
to that decision [113, 62].

The determined unit rank connectivity structure implements the scaffold for the desired
input-output transform, but the random part of the connectivity adds variability around the
target output. As shown in Fig. 7.2 c, the fluctuations of the activity of each unit around
the value set by the unit rank connectivity structure increase with the strength g of disorder.
Summing the activity of individual units through the readout unit however averages out these
fluctuations, so that the readout error decreases with network size as 1/

√
N (Fig. 8.2 a). For

large g, the activity in the network becomes chaotic, but the structured connectivity ensures
that the network still performs the required computation, albeit with additional temporal fluc-
tuations in finite-size networks (Fig. 8.1 b, bottom).

The simple rank-one implementation of the Go-Nogo discrimination task has very desir-
able computational properties, in particular in terms of generalization to noisy or novel stimuli.
Suppose for instance that the Go stimulus is corrupted with noise, so that the network receives
an input pattern that is correlated with the Go stimulus, but not identical to it. With the above
choice for the implementation of the task (m = w and n = I(0), w and I(0) uncorrelated),
the output of the network to the noisy stimulus will be approximately proportional to the
correlation coefficient between the input and the Go pattern (Fig. 8.2 b).

A more selective, non-linear readout can be obtained with a slightly different choice of
structure vectors, in which m and n still have a non-zero overlap with respectively w and I(0),
but also include a non-zero mutual overlap, i.e. a component in a shared direction orthogonal
to w and I(0) (Fig. 8.2 c). In that case, if the correlation between the input and and the Go
stimulus is low, the network will be in a bistable regime (Fig. 7.3 j-k) in which the two states
will average each other out, so that the readout will be close to zero. In contrast, for inputs
strongly correlated with the Go stimulus, only a single state is stable and leads to a strong
readout. The output therefore behave in a binary, all-or-none manner, and can implement a
finer discrimination between correlated inputs. The threshold that sets the boundary between
Go and Nogo responses can in particular be controlled by an additional input. As shown in
Fig. 7.3 i-j, a fixed input along the direction of the overlap between m and n determines the
extent of the bistable region. Changing the value of this input will therefore modulate the
position of the threshold, and can even totally suppress the output. This additional input can
therefore for instance implement a contextual modulation or gating of the output.

The computation in the network can also be extended in a straightforward way to the
detection of a category of Go stimuli, rather than a single stimulus. Suppose two instances of
the category are represented by input vectors I(0) and I(1). Choosing the left-structure vector
n as the average between I(0) and I(1) will directly implement the selectivity to these two
individual stimuli, but also to any intermediate stimulus represented as a linear combination
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a. b.

c. d.

Figure 8.2: Implementing a simple computation with a unit rank connectivity structure: per-
formance of the network model for the Go-Nogo task. a. Absolute distance between the
theoretical prediction and the value of the readout z obtained from finite-size realizations. As
expected, the magnitude of the average normalized error decays with the network size N . In
grey: g = 0.2, in black: g = 1. Dashed lines: power-law best fit (y ∝ Nγ). The values of γ
are indicated in the legend. b. Readout in response to the Go stimulus corrupted by noise. In
blue, readout for decoding weights equal to wi, and a stimulus that includes a non-zero over-
lap with both the Go input I(0) and an additional noise component. Continuous lines: DMF
theoretical prediction; dots: readout value measured from finite-size networks (N = 3000, av-
erage over 30 different realizations). In grey, readout using a random set of decoding weights.
c. When the structure vectors m and n share a strong overlap onto a common direction (here
ρm = ρn = 2.0, see Section 8.1.1), the readout only responds for overlap values above a given
threshold. If the overlap is below threshold, activity is bistable (see Fig. 7.3 j-k), and the av-
erage is close to zero. We show an average over 60 realizations, where the network activity is
initialized from random initial conditions. Dark and light blue correspond to two different
values of the modulatory inputs, which have the effect of controlling the position of the tran-
sition: γ = ±0.2. d. Generalization properties of the selective response. We select two Go
stimuli I(0) and I(1), and we set n = I(0) + I(1). We build the input pattern as a normalized
mixture of the two preferred patterns, and we gradually increase the component along I(0).
The readout z(t) robustly responds to every mixture input, and the small modulation in the
output value is masked by finite size fluctuations in finite networks. In this figure, the input
and the readout vectors are Gaussian patterns of standard deviation Σ = 1.2.
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of I(0) and I(1). The network therefore automatically generalizes the detection to novel stimuli,
that have not been directly represented at the level of connectivity (Fig. 8.2 d).

8.1.1 Mean field equations

We provide here a quantitative characterization of the rank one network we have built to per-
form selective and specific input-output associations as in a Go-Nogo detection task (Fig. 8.1).

In each trial the network receives an input specified by an N-dimensional vector I taken
from a set of p possible input vectors {I(k)}k=0...p, with p ≪ N . The components of the
input patterns are generated independently from a Gaussian distribution of mean zero and
variance ΣI . As the components of the inputs are uncorrelated, the input vectors {I(k)}k=0...p

are mutually orthogonal in the limit of large N . The network activity is moreover read out
linearly through a vector w generated from a Gaussian distribution of mean zero and variance
Σw, so that the readout value is given by:

z = ⟨wi[ϕi]⟩. (8.1)

Our aim is to determine structure vectors m and n such that: (i) the readout is selective,
i.e. z ̸= 0 if the input is I(0) and z = 0 for inputs I(k), k ≥ 1; (ii) the readout is specific
to the vector w, i.e. it is zero for any readout vector uncorrelated with w. We have shown
that the simplest network architecture which satisfies these requirements is given by m = w
and n = I(0), i.e. the right-structure vector m corresponds to the readout vector, and the
left-structure vector corresponds to the preferred stimulus I(0).

The response of the network can be analysed by looking at stationary and chaotic solutions
of Eq. 7.87. In the case analyzed here, the structure vectors have no overlap direction, so we
set Mm = Mn = MI = ΣmI = 0, which implies µ = 0. The first-order network statistics is
determined by the overlap ΣnI between the left-structure vector and the input vector. As the
left-structure is given by I(0), ΣnI is the overlap between the current input pattern I and the
preferred pattern I(0), that we indicate by ∆ := ⟨I(0)i Ii⟩. When varying the amount of noise,
the total input variance ΣI is kept fixed. The total input is therefore constructed as

I = I(0)
∆

Σ2
I

+ x

√
Σ2
I −

∆2

Σ4
I

, (8.2)

where the noise vector x is generated from a normal Gaussian distribution.
From Eq. 7.83 we have:

κ = ⟨ni[ϕi]⟩

= ⟨I(0)i [ϕi]⟩
= ∆⟨[ϕ′

i]⟩.
(8.3)

As a consequence, the first-order statistics κ vanishes in response to any input pattern orthog-
onal to I(0).
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When activity is readout by the specific decoding vector w, the readout signal takes value:

z = ⟨wi[ϕi]⟩

= ⟨wi

∫
Dzϕ(miκ+ Ii +

√
∆I

0z)⟩

= ⟨wi

∫
Dzϕ(wiκ+ Ii +

√
∆I

0z)⟩

= κΣ2
w⟨[ϕ′

i]⟩,

(8.4)

while we trivially obtain z = 0 for any decoding set orthogonal to both structure vectors m
and n.

In conclusion, a non-vanishing readout response requires both an external input correlated
with the Go pattern I(0) and a decoding set correlated with the specifically designed readout
w.

In Fig. 8.2 d, we test the generalization properties of a a network which responds to two
Go patterns I(0) and I(1). We examine the response to a normalized mixture input defined
as:

I =
√
αI(0) +

√
1− αI(1), (8.5)

so that the variance of the total input is fixed and equal to Σ2
I .

Detectors of correlations In Fig. 8.2 c, we show that it is possible to obtain highly non-linear
readout responses by considering non-vanishing overlaps between the structure vectors m and
n. The simplest setup consists of taking:

m = w + ρmz

n = I(0) + ρnz,
(8.6)

where z is a standard gaussian vector which defines an additional direction orthogonal both to
w and I(0). In this configuration, the structure strength is given by ρmρn.

As it has been shown in Fig. 7.1, large values of the structure overlap ρmρn generate
two bistable solutions. If the external input correlates with the preferred one (∆ > 0), two
asymmetric solutions exist only when the value of the input ∆ is not too large (see Fig. 7.3
f-g). In this regime, the two stable values of κ average very close to zero, so that (because
of Eq. 8.4) the average readout vanishes. When the correlation ∆ is large, instead, only the
positive branch of the solution is retrieved (Fig. 7.3 f-g). The average value of κ, and thus the
readout signal, are positive for every initial condition of the dynamics.

The threshold value for ∆ at which the readout value becomes positive is mostly deter-
mined by the strength of the structure overlap (see Fig. 7.3 f), and depends on the input and
readout parameters ΣI and Σw. As it has been shown in Fig. 7.3 i-j, moreover, the position
of the transition can be further controlled by introducing additional external inputs which cor-
relate with the left-structure vector n on directions that are perpendicular to I(0). Here we
adopt modulatory inputs γ that are aligned on the shared z direction:

I = I(0)
∆

Σ2
I

+ x

√
Σ2
I −

∆2

Σ4
I

+ γz. (8.7)

For practical purposes, in order to obtain the results of Fig. 8.2 c, we first fix the values
of ΣI , Σw and ρn. We then tune the value of ρm in order to obtain a threshold value for ∆
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close to 0.5. We finally considered two modulatory inputs of different sign (γ1 = 0.2 and
γ2 = −0.2), that have the effect of moving the value of the threshold in the two different
directions.

8.2 Computing with rank two structures
This far we focused on unit rank structure in the connectivity. A more general structured
component of rank r ≪ N can be written as

Pij =
m

(1)
i n

(1)
j

N
+ . . .+

m
(r)
i n

(r)
j

N
, (8.8)

and is in principle characterized by 2r vectors m(k) and n(k). Based on the analysis of the
unit rank case, we expect that the dynamics of a network with rank r structure to lie in the
r−dimensional subspace spanned by the r right-structure vectors mk, k = 1 . . . r. The details
of the dynamics will depend on the geometrical arrangement of these 2r vectors among them-
selves and with respect to the input pattern. The number of possible configurations increases
very quickly with the structure rank. In the remaining of this manuscript, we will explore only
the rank two case, and show that even for r = 2 the dynamical and computational repertoire
is already rich.

A rank two connectivity structure is fully specified by two right vectors m(1) and m(2), and
two left vectors n(1) and n(2):

Pij =
m

(1)
i n

(1)
j

N
+

m
(2)
i n

(2)
j

N
, (8.9)

where the vector pairs m(1) and m(2), n(1) and n(2) are assumed to be linearly independent.
The activity of the network in response to an input pattern Ii is in general given by

µi = κ1m
(1)
i + κ2m

(2)
i + Ii, (8.10)

where κ1 and κ2 are the projections of average network activity [ϕ] on the left-structure vec-
tors n(1) and n(2). The activity evoked in response to an input is therefore in general three-
dimensional, and lies in a subspace spanned by the right-structure vectors m(1) and m(2) and
the input vector I .

As in the case of unit rank structures, we determine the network statistics by exploiting the
link between linear stability analysis and mean field description. The study of the properties of
eigenvalues and eigenvectors for the low-dimensional matrix Pij helps to predict the complex
behaviour of activity above the instability and to restrict our attention to the cases of interest.

Note that the non-linear network dynamics is determined by the relative orientation of
the structure and input vectors, but also by the characteristics of the statistical distribution of
their elements. In contrast to the cases we analyzed so far, the distribution of the entries in
the structure vectors can play indeed a major role when the rank of Pij is larger than unity. In
the following, we focus on the case of broadly, normally distributed patterns.

Throughout the rest of this chapter, we consider several specific rank two configurations
which are of interest for computational applications.
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8.3 Implementing the 2AFC task
As direct extension of the network architecture presented in Section 8.1, we design a rank two
structure which allows multiple specific and selective input-output associations.

We consider the simplest possible rank two connectivity matrix, where the four structure
vectors are independently chosen and therefore mutually orthogonal.

As the overlap between left- and right-structure vectors vanishes, in absence of inputs there
is no structure in the spontaneous activity. As we formally show in the following, structure
in the activity can only be evoked by input patterns that overlap with a left-structure vector.
As the left-structure vectors n(1) and n(2) are orthogonal, they select independent inputs and
project them onto independent output directions m(1) and m(2). The two unit-rank terms in
the connectivity therefore implement two independent input-output channels.

Such a setup for instance allows us to directly extend the implementation of the Go-Nogo
task to a two alternative-choice task (2AFC) (Fig. 8.3 a-b), in which two different classes of
inputs (implemented by n(1) and n(2)) are mapped to two different readout directions (m(1)

and m(2)). Another possibility is that the two input directions represent two different features
of the stimulus (e.g. color and motion [83]) that are bound together in the network activity,
but can be independently extracted by reading-out along the directions of m(1) and m(2).

8.3.1 Mean field equations
We start by analyzing in detail the input-free dynamics of a network with a rank two structure
that has been built from orthogonal structure vectors. Similarly to the unit rank case, if the
structure vectors are orthogonal, the network is silent in absence of external inputs: κ1 =
κ2 = 0. A single homogeneous state – stationary or chaotic – is the unique stable attractor of
the dynamics. Consistently, the eigenspectrum of Jij does not contain any outlier, since every
eigenvalue of Pij vanishes.

In order to compute the eigenspectrum ofPij , we can rotate the matrix onto a basis defined
by an orthonormal set of vectors, and compute its eigenvalues in the transformed basis. For
simplicity, we consider an orthonormal set whose first four vectors are built from the structure
vectors:

u1 = α1m
(1)

u2 = α2m
(2)

u3 = α3n
(1)

u4 = α4n
(2),

(8.11)

where the coefficient αk (k = 1, ..., 4) denote the normalization factors. In this basis, the first
four rows and columns of the rotated matrix P ′

ij read:

P ′
ij =

1

N


0 0 1

α1α3
0

0 0 0 1
α2α4

0 0 0 0
0 0 0 0

 , (8.12)

all the remaining entries being fixed to 0. From the present matrix form, it easy to verify that
all the eigenvalues of P ′

ij , and thus all the eigenvalues of Pij , vanish. Note that rewriting Pij in
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b.

c.

a.

d.

Figure 8.3: Rank two structures with null overlap can be used to implement multiple input-
output selective associations as in the 2AFC task. a. The partially structured reservoir receives
an external input pattern I

(k)
i . The recurrent structure is defined as in Eq. 8.18. b. Samples of

the readout activity in the stationary and in the chaotic regime. The response of the z(1) (resp.
z(2)) readout is displayed in red (resp. green). During the shaded time window, the stimulus
I(1) is presented to the network, and the readout signal z(1) displays a response. c. Readouts
values as a function of the value of the overlap between the presented and the preferred input
I(1). The input overlap values are normalized by the total input variance ΣI . Grey: activity
is decoded from an additional random and orthogonal decoding set. Continuous lines: DMF
prediction, dots: average response over Ntr = 6 networks of size N = 2000. d. Outliers in
the stability eigenspectrum as a function of the overlap ΣnI . Note that one outlier vanishes
for every value of the input overlap. The grey dashed line indicate the value of the radius of
the compact part of the eigenspectrum. Red dots: real part of the smallest and largest eigen-
values in the spectrum obtained from numerical simulations. Outliers can only be measured
numerically when their value is larger than the radius in absolute value. In this panel: g = 0.1.
Choice of the parameters: g = 0.8, ΣI = 1.4, Σw = 1.2.
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an orthonormal basis simplifies the search for its eigenvalues also in more complex cases where
the structure vectors share several overlap directions. In those cases, a proper basis needs to be
built starting from the structure vectors through a Gram-Schmidt orthonormalization process.

As a side note we observe that, even though P ′
ij (and thus Pij) admits only vanishing

eigenvalues, its rank is still equal to two. Indeed, the rank can be computed as N minus the
dimensionality of the kernel associated to P ′

ij , defined by any vector x obeying P ′x = 0. As
P ′
ij contains N −2 empty rows, the last equations imposes two independent contraints on the

components of x. As a consequence, the dimensionality of the kernel equals N − 2, and the
rank is equal to two.

We turn to consider the non-trivial responses that are obtained in presence of external
inputs. We examine the network dynamics in response to an input Ĩ which partially correlates
with one of the left-structure vectors, here n(1) (see Eq. 8.2):

Ĩ = n(1)ΣnI

Σ2
I

+ x

√
Σ2
I −

Σ2
nI

Σ4
I

. (8.13)

Similarly to the unit rank case, we find that Ĩ elicits a network response in the plane
Ĩ −m(1). The overlap values are indeed given by:

κ1 = ΣnI⟨[ϕ′
i]⟩

κ2 = 0,
(8.14)

and they can be used to close the mean field equations together with the equation for the first
(µ = 0) and second-order statistics. In the case of stationary states we have:

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

m

(
κ21 + κ22

)
+Σ2

I . (8.15)

Similar arguments allow to derive the two equations needed for the chaotic states.
In order to assess the stability of the stationary states, we extend the procedure illustrated

in Chapter 7 and we evaluate the position of the outliers in the stability eigenspectrum by
computing the eigenvalues of a reduced stability matrixM. The step-by-step derivation ofM
in the case of generic rank two structures is given in Appendix F. The result can be written as:

M =


0 0 0 0

2g2⟨[ϕiϕ
′
i]⟩ g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2Σ2
mκ01 2Σ2

mκ02
2b1g

2⟨[ϕiϕ
′
i]⟩ b1g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b1Σ
2
mκ01 + a11 2b1Σ

2
mκ02 + a12

2b2g
2⟨[ϕiϕ

′
i]⟩ b2g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b2Σ
2
mκ01 + a21 2b2Σ

2
mκ02 + a22

 .

(8.16)
In the case of orthogonal structures and correlated input patterns Ĩ , a little algebra reveals that
all the a values vanish, while we have:

b1 =
1

2
ΣnI⟨[ϕ′′

i ]⟩

b2 = 0.
(8.17)

We conclude that the first and the last row ofM always vanish. Furthermore, the second
and the third rows are proportional one to the other. As a consequence, the stability analysis
predicts at most one outlier eigenvalue, which is indeed observed in the spectrum (Fig. 8.3 d).
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The outlier is negative, as the effect of introducing inputs in the direction of the left vector
n(1) is to further stabilize the dynamics. As it will be shown, more than one outlier can be
observed in the case where the low-dimensional structure involves overlap directions.

To conclude, we discuss how orthogonal rank two structures can be used to build up a
network implementation for the two-alternative forced choice (2AFC) task. Let us consider
again a model network which receives one among several orthogonal input patterns I(k). The
network is provided with two output readout signals, defined as: z(1) = ⟨w(1)[ϕi]⟩ and z(2) =
⟨w(2)[ϕi]⟩, where w(1) and w(2) are two orthogonal readout sets. We want the network to
associate a response in z(1) (resp. z(2)) every time an input pattern which is partially correlated
to I(1) (resp. I(2)) is presented. Similarly to Fig. 8.1, the simplest structure which correctly
implements the task is given by:

m(1) = w(1)

m(2) = w(2)

n(1) = I(1)

n(2) = I(2).

(8.18)

The resulting selectivity and specificity properties of the network response are illustrated in
Fig. 8.3 b-c.

8.4 Building a ring attractor
Overlaps between different structure vectors give rise to more complex spontaneous dynamics,
and a richer range of responses to external inputs. As a direct extension of the unit rank
case, we consider next the situation where the pairs m(1) − n(1) and m(2) − n(2) each share a
different common direction, the corresponding overlaps being ρ1 = m(1)Tn(1)/N and ρ2 =
m(2)Tn(2)/N . As in the unit rank case, each of these overlaps can lead to bistable, structured
spontaneous activity, so that in general there will be four structured spontaneous states (two
states with κ1 ̸= 0, κ2 = 0 for ρ1 > 1 and two states with κ1 = 0, κ2 ̸= 0 for ρ2 > 1).

A particularly interesting situation however occurs when the two unit rank contributions
are symmetric, so that the two overlaps are equal, ρ1 = ρ2 = ρ. In that case, our theoretical
analysis predicts the existence of a continuum of structured spontaneous states that explore a
two-dimensional circle in the m(1) −m2 plane (Fig. 8.4), i.e. a so-called ring attractor [17],
embedded in the N-dimensional space of activity. That theoretical prediction formally holds
in the limit of infinite-size networks; in simulations of finite size networks, the dynamics in-
stead always converge on a small number of equilibrium spontaneous states located on the
ring [10, 29]. The equilibrium reached in a given situation is determined by the corresponding
realization of the random part of the connectivity, and the initial conditions. Different realiza-
tions of the random connectivity lead to different equilibrium states, which all however lie on
the predicted ring (Fig. 8.4 a). For a given realization of the random connectivity, transient
dynamics moreover show a clear signature of the ring structure. Indeed the points on the ring
are close to stable and form a slow manifold (Fig. 8.4 a). The convergence to the equilibrium
activity is therefore very slow, and the the temporal dynamics explore the ring structure.

The ring structure in the dynamics is remarkably robust with respect to the random part
of the connectivity, which affects it in two different manners (Fig. 8.4 c-d). First, increasing
the disorder strength g eventually leads to chaotic activity as in the unit-rank case. Second,
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e.

d.c.

a.

b.

Stationary

Chaotic

increasing g decreases the radius of the ring until it vanishes. Interestingly, the onset of chaos
takes place before the ring vanishes, so that when structure and disorder have comparable
strengths, chaotic states with ring structure appear. Simulations of finite size networks show
that in this situation, the chaotic dynamics are low-dimensional and either explore the whole
ring structure, or jump between two states along the ring (Fig. 8.4 b).

An external input along a given direction in n(1)−n(2) plane will in general eliminate the
continuum of ring solutions, and stabilize the dynamics along one the corresponding direction
in the m(1) − m(2) plane (Fig. 8.4 e). If the input is weak, although our theory predicts a
single stable solution, finite-size simulations still show clear signatures of the underlying ring
attractor, as the equilibrium states still depend on the realization of the random connectivity,
and the transients display slow dynamics along the ring (Fig. 8.4 e, top). If the input is strong,
only one equilibrium state persists, the transients are faster and do not necessary lie along the
ring (Fig. 8.4 e, bottom). Finally inputs that are orthogonal to the n(1) − n(2) plane preserve
the ring structure, and only modulate its radius.

Overlaps within the m(1) − n(1) and m(2) − n(2) pairs in a rank two structure therefore
lead to novel dynamical phenomena with respect to a unit rank structure, and in particular
ring attractors that have been implicated in modelling a range of experimental phenomena
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Figure 8.4 (previous page): Ring attractor from rank two connectivity structure. a. Sample
of activity from a finite-size realization (N = 4000) of the structured connectivity matrix.
Activity is initialized in two different initial conditions (light and dark blue), indicated by the
small arrows. Left: time traces of the activation variables for three randomly selected network
units. Note the long time range on the x axis. Right: population activity projected on the plane
spanned by the right vectors m(1) and m(2). The ring solution predicted by the mean field
theory is displayed in light gray. The strength of the disorder is g = 0.5, so that the network
is in a stationary regime. In the small inset, we reproduce the theoretical prediction together
with the final state of additionalNtr = 20 networks realizations, that are displayed as grey dots.
b. Sample of activity for two finite-size realizations (N = 4000) of the structured connectivity
matrix (light and dark red). Details as in a. The strength of random connections is g = 2.1,
so that the network is in a chaotic regime. Chaotic fluctuations can occur together with a slow
exploration of the ring (light red). If two specific states on the ring appear to be more stable,
chaotic fluctuations can induce jumps between the two of them (dark red). c-d. Mean field
characterization of the ring structure: radius of the ring attractor and stability eigenvalues. All
the details are as in Fig. 7.2. Dots: numerical results from finite-size (N = 5000) networks,
average over 10 realizations of the connectivity matrix. e. Input response for two finite-size
networks. Input patterns which correlate with the left vector n(1) reduce the ring attractor to
a single stable state (black square). Activity is thus projected in the direction spanned by the
right vector m(1). The grey ring displays the mean field solution in absence of external inputs
(g = 0.5, as in a). In the top panel, the input is weak (ΣI = 0.2). The transient dynamics
as well as the equilibrium state lie close to the ring structure. In the bottom panel, the input
is strong (ΣI = 0.6), and the ring structure is not anymore apparent. Figure details as in a-b,
with Σ = 2.0, ρ1 = ρ2 = 1.6.

such as orientation selectivity [17], grid cells [29] and working memory [39]. More generally
each of the pairs out of the four vectors m(1), n(1),m(2), n(2) may share a common direction.
Instead of attempting to map all existing possibilities, in the next two sections we describe two
particularly interesting setups.

8.4.1 Mean field equations
We provide here a quantitative characterization of the partially structured networks that have
been used to build continuous ring attractors. We consider rank two structures where the two
structure pairs m(1) and n(1), m(2) and n(2) share two different overlap directions, defined by
vectors y1 and y2. We set:

m(1) =
√
Σ2 − ρ21 x1 + ρ1y1

m(2) =
√
Σ2 − ρ22 x2 + ρ2y2

n(1) =
√

Σ2 − ρ21 x3 + ρ1y1

n(2) =
√

Σ2 − ρ22 x4 + ρ2y2.

(8.19)

where Σ2 is the variance of the structure vectors and ρ21 and ρ22 quantify the overlaps along the
directions y1 and y2.
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By rotating Pij onto the orthonormal basis that can be built from m(1) and m(2) by orthog-
onalizing the left vectors n(1) and n(2), one can easily check that the two non-zero eigenvalues
of Pij are given by λ1 = ρ21 and λ2 = ρ22. They correspond, respectively, to the two right-
eigenvectors m(1) and m(2). In absence of external inputs, an instability is thus likely to occur
in the direction of the m(k) vector which corresponds to the strongest overlap.

The specific case we consider in Fig. 8.4 corresponds to the degenerate condition where
the two overlaps are equally strong, ρ1 = ρ2 = ρ, and any combination of m(1) and m(2) is a
right-eigenvector. The mean field equations for the first-order statistics read:

κ1 = ρ2κ1⟨[ϕ′
i]⟩

κ2 = ρ2κ2⟨[ϕ′
i]⟩.

(8.20)

Similarly to Eq. 7.78, the two equations admit a silent (κ1 = κ2 = 0) and a non-trivial state,
determined by two identical conditions which read:

1 = ρ2⟨[ϕ′
i(0, ∆̃0)]⟩. (8.21)

The equation above determines the value of ∆0 = ∆̃0. Note that the non-trivial state exists
only for ρ > 1.

A second condition is imposed by the equation for the second-order momentum which
reads, for stationary solutions:

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

(
κ21 + κ22

)
. (8.22)

As the value of ∆0 is fixed, the mean field set of equations fixes only the sum κ21+κ22, but not
each single component. The mean field thus returns a one-dimensional continuum of solutions,
the shape of which resembles a ring of radius

√
κ21 + κ22 in the m(1)−m(2) plane (see Fig. 8.4

a-b). Similarly to the unit rank case, the value of the radius can be computed explicitly by
solving numerically the two mean field equations (three in the case of chaotic regimes), and
depends on the relative magnitude of ρ2 compared to g (Fig. Fig. 8.4 c). Highly disordered
connectivities have the usual effect of suppressing non-trivial structured solutions in favour of
homogeneous and unstructured states. For sufficiently high g values, furthermore, structured
solution can display chaotic dynamics (Fig. 8.4 c, red).

A linear stability analysis reveals that the one-dimensional solution consists of a continuous
set of marginally stable states. Similarly to the orthogonal vectors case, the position of the
outliers in the eigenspectra of Sij can be evaluated by computing the reduced stability matrix
M, which reads:

M =


0 0 0 0

2g2⟨[ϕiϕ
′
i]⟩ g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2Σ2
mκ01 2Σ2

mκ02
2b1g

2⟨[ϕiϕ
′
i]⟩ b1g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b1Σ
2
mκ01 + a11 2b1Σ

2
mκ02

2b2g
2⟨[ϕiϕ

′
i]⟩ b2g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b2Σ
2
mκ01 2b2Σ

2
mκ02 + a22

 ,

(8.23)
with:

a11 = ρ2⟨[ϕ′
i]⟩

b1 =
1

2
ρ2κ01⟨[ϕ′′′

i ]⟩
(8.24)
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b.a.

Figure 8.5: Mean field solutions for network models with rank two structures characterized
by pairwise, internal overlaps ρ2. Response to the input pattern Ĩ , which correlates with the
component x3 of the left-structure vector n(1) (α = 0 in Eq. 8.26). a. Values of the overlaps κ1
and κ2 as a function of the parameter ρ, which controls the structure strength. Stable solutions
are plotted as continuous lines, unstable ones as dashed. Solid (resp. transparent) lines refer
to weak (resp. strong) external inputs: ΣI = 0.2 (resp. 0.6). The vertical gray line indicate the
value of ρ that has been used in Fig. 8.4. b. Value of the largest outlier in the eigenspectrum
of the linear stability matrix Sij , computed from the reduced matrixM (Eq. 8.23). Note that
only one branch of the solution (the one corresponding to positive κ1 values) is stable. Choice
of the parameters: Σ = 2.0, ρ = 1.6, g = 0.5.

and

a22 = ρ2⟨[ϕ′
i]⟩

b2 =
1

2
ρ2κ02⟨[ϕ′′′

i ]⟩.
(8.25)

As shown in Fig. 8.4 d, diagonalizing the stability matrix M returns the values of two
distinct outlier eigenvalues. The third non-zero eigenvalue ofM lays instead systematically
inside the compact component of the spectrum, and corresponds to an average measure of
the time scales inherited by the random modes. One of the two outliers is tuned exactly
on the stability boundary for every value of the parameters which generate a ring solution.
This marginally stable eigenvalue is responsible for the slow dynamical time scales which are
observed in numerical simulations of the network activity (Fig. 8.4 a-b).

We next examine how the structured, ring-shaped solution is perturbed by the injection
of external input patterns.

We consider an input pattern Ĩ of variance Σ2
I . When Ĩ does not share any overlap direc-

tion with the left vectors n(1) and n(2), the mean field equations are affected solely by an extra
term ΣI which needs to be included in the equation for the second-order statistics (Eq. 8.22).
As the equations for the first-order statistics do not change, the one-dimensional degeneracy
of the solution persists. The extra term Σ2

I however decreases the value of the radius of the
ring.

When the input contains a component which overlaps with one or both left vectors n(1)

and n(2), the degeneracy in the two equations for κ1 and κ2 is broken. As a consequence, the
one-dimensional solution collapses onto a unique stable point. Consider for example an input
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pattern of the form:
Ĩ = ΣI

(√
1− α x3 +

√
α x4

)
. (8.26)

The equations for the first order become:

κ1 =
(
ρ2κ1 +ΣI

√
1− α

√
Σ2 − ρ2

)
⟨[ϕ′

i]⟩

κ2 =
(
ρ2κ2 +ΣI

√
α
√
Σ2 − ρ2

)
⟨[ϕ′

i]⟩
(8.27)

or, alternatively:

κ1 =
ΣI

√
1− α

√
Σ2 − ρ2⟨[ϕ′

i]⟩
1− ρ2⟨[ϕ′

i]⟩

κ2 =
ΣI
√
α
√
Σ2 − ρ2⟨[ϕ′

i]⟩
1− ρ2⟨[ϕ′

i]⟩
.

(8.28)

The values of κ1 and κ2 are thus uniquely specified, and can be computed by iterating the two
equations together with the expression for the second-order statistics:

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

(
κ21 + κ22

)
+Σ2

I . (8.29)

In a similar way, the presence of correlated external inputs affect the values of the entries
of the reduced stability matrixM:

b1 =
1

2

(
ρ2κ01 +ΣI

√
1− α

√
Σ2 − ρ2

)
⟨[ϕ′′′

i ]⟩

b2 =
1

2

(
ρ2κ02 +ΣI

√
α
√
Σ2 − ρ2

)
⟨[ϕ′′′

i ]⟩.
(8.30)

In Fig. 8.4 and 8.5, we focus on the case of an external input pattern aligned with x3 (and
thus n(1)) . We fix α = 0, that implies κ2 = 0.

Solving the mean field equations reveal that, according to the strength of the input ΣI ,
one or three fixed points exist. When the input is weak with respect to the structure overlap
ρ2, two fixed points appear in the proximity of the ring, along the direction defined by the
axis κ2 = 0 (Fig. 8.4 e top and Fig. 8.5 a). In particular, when Ĩ positively correlates with
n(1), only the fixed point with positive value of κ1 gets stabilized. The remaining two solutions
are characterized by one outlier eigenvalue which lays above the instability boundary, and are
thus unstable (Fig. 8.5 a-b). On the other hand, when the input is sufficiently strong, solely
the stable fixed point survives (Fig. 8.4 e bottom and Fig. 8.5 a-b). Activity is then robustly
projected in the direction defined by the right vector m(1).

8.5 Implementing a context-dependent discrimination task
To illustrate the computational capacity of networks with rank two structures, here we exploit
them to implement a complex behavioral task, a context-dependent decision making paradigm
inspired by a non-human primate study [83].

We consider a situation where the stimuli consist of combinations of two different features
A and B. In the experimental study [83], the stimuli were random dot kinetograms, and the
features A and B correspond to the direction of motion and color of these stimuli. The tasks
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consists in classifying the stimuli according to one of those features, the relevant one being
indicated by an explicit contextual cue.

Population recordings in the prefrontal cortex showed that the relevant stimulus feature
was not pre-selected in the sensory areas, but that both motion and color signals were present in
the prefrontal cortex independently of the contextual cue. The representation of these signals
was highly mixed and distributed over the recorded PFC population, but could be captured by
two main directions in the neural space. Following these experimental observations and the
model used in [83], we represented the pattern of inputs to the network on a given trial as a
vector I given by (Fig. 8.6):

I = cAIA + cBIB + γAIctxA + γBIctxB + noise. (8.31)

Here cA and cB are two scalar values that represent the strengths of features A and B in the
presented stimulus, while γA and γB are two binary values that represent the presence or ab-
sence of the cues for context A and B. IA, IB, IctxA and IctxB are N-dimensional vectors that
represent the directions of population inputs corresponding to stimulus features and contextual
cues. These vectors are generated randomly and fixed, while the four scalars cA, cB, γA and
γB vary from trial to trial. Note that the two stimulus features are represented as being orthog-
onal, so that the sensory stimuli cover a portion of the two-dimensional subspace spanned by
IA and IB . The contextual cues increase the dimensionality of the total input to the network
to four.

We implemented a Go-Nogo version of the task, in which the output is required to be
non-zero when the relevant feature is stronger than a prescribed threshold (arbitrarily set to
0.5).

The output of the network is determined through a linear readout of the network activity
(Fig. 8.6). A key experimental observation is that the direction of the population readout
does not depend on the contextual cue. Following [83], we will therefore represent the linear
readout as a fixed random vector w. As both the readout direction w and input directions
IA, IB, IctxA and IctxB have been generated randomly, individual neurons represent complex
mixtures of stimulus, context and choice signals as observed experimentally.

The crux of this computational task is that on every trial the irrelevant feature of the task
needs to be ignored, even if it is stronger than the relevant feature (e.g. color coherence stronger
than motion coherence on a motion trial). The central difficulty is that that the readout is
context-independent. Without this constraint, two orthogonal readouts could be used to se-
lect independently the two orthogonal features, and the task could be implemented as a rela-
tively straight-forward extension of the one-dimensional Go-Nogo detection task (Fig. 8.3).
We will nevertheless show that the context-dependent task can be implemented using sin-
gle readout by exploiting non-linear gating mechanisms to select the relevant feature. This
implementation is achieved with a rank two structure constructed using vectors that have a
geometrical arrangement with a direct interpretation in terms of input and readout vectors.

As described above, a rank-two connectivity matrix is specified by two right-structure
vectors m(1) and m(2) and two left-structure vectors n(1) and n(2). As shown earlier, the
right-structure vectors determine the output of network dynamics and can be used to generate
the required readout. We will therefore use two vectors m(1) and m(2) that have a common
component along the readout vector w. The left-structure vectors n(1) and n(2) select the
input patterns that lead to outputs along m(1) and m(2). We want these two vectors to pick
up respectively the features A and B of the stimulus, n(1) and n(2) therefore need to have
components along respectively the directions of IA and IB . Finally, the contextual inputs need
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Figure 8.6: Implementing context-dependent computations by using rank two structured con-
nectivities: a two-features discrimination task. The model network receives a mixture of inputs
along four main directions (Eq. 8.31): two feature-specified directions IA and IB , and two or-
thogonal directions that are used to modulate the network response in a contex-dependent
fashion. The network output z is linearly extracted from the network activity through a single
readout set w. The task consists of detecting the presence of strong A (resp. B) inputs during
a context A (resp. B) trials, while ignoring the non-relevant feature B (resp. A). In this exam-
ple (bottom): the readout signal does not respond before T = 40, since both input strengths
are low. At later times, when the strength of input A becomes large, the network responds
only during context A trials, while it remains silent if context B is selected.

to induce a non-linear gating of the selected signals. As shown in Fig. 8.2 c, in a unit-rank
structure, such gating can be implemented using input along the common direction between
left- and right-structure vectors. We therefore add common components to m(1) − n(1) and
m(2)−n(2) along respectively the motion and color context vectors IctxA and IctxB . The final
rank-two setup is described in detail in the next section.

Comparing theoretical predictions and simulations shows that the constructed network
performs the required context-dependent computation (Fig. 8.7). Depending on the contex-
tual cue, the output is produced based on only one of the two orthogonal features: in context A,
the output is independent of the values of feature B, and conversely in context B. The output
therefore behaves as if it were based on two orthogonal readout directions, yet the readout direc-
tion is unique and fixed. The context dependent output relies instead on a context-dependent
selection of the relevant input features. Such a mechanism was previously suggested based on
experimental data by reverse-engineering a trained recurrent network [83]. Here we show that
it can be implemented by relying on non-linear dynamics in a network with rank two connec-
tivity structure. Strikingly, the dynamics of the constructed network lie close to a continuum,
ring attractor, similarly to what was found in trained recurrent networks [83].
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b.

a.

Figure 8.7: Implementing context-dependent computations by using rank two structured
connectivities: performance. a. Top row: readout network response for increasing values of
the input strengths along the stimuli directions IA and IB . The colormap shows the results
from simulated activity in finite-size networks of size N = 6500, averaged over 50 different
realizations. The mean field theory predicts, on average, high readout values above the the
threshold value indicated by the white dashed line. Left and right plots show results for the
two different contexts A and B. Bottom row: readout response averaged over different values
of feature B. The theoretical prediction is displayed as continuous line, the simulated data
as dots. b. Time-dependent population activity, projected on the directions that are more
salient to the task, as indicated in the small insets. Simulated activity for a single network
realization; average over random initial conditions. Top (resp. bottom) row: activity during
context A (resp. B) trials. The green (resp. magenta) trajectories refer to network activity
for different values of the A (resp. B) feature, averaged across the B (resp. A) feature. The
grey dots indicate the theoretical prediction for the steady-state readout values. In this figure:
ΣI = Σw = 1.2, ρm = 1.45, ρn = 3, βm = 0.6, βn = 1 (see Section 8.5.1). The values of γA
and γB are fixed to [0.08,−0.14] (resp. [−0.14, 0.08]) during the context A (resp. context B)
trials.
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8.5.1 Mean field equations
Here we provide details on the rank two implementation of the context-dependent discrimina-
tion task. The stimuli consist of combination of two different featuresA andB that correspond
to inputs along two directions IA and IB . Contextual cues are represented as additional inputs
along directions IctxA and IctxB . The total input pattern to the network on a given trial is
therefore given by

Ĩ =
∆A

Σ2
I

IA +

√
Σ2
I −

(
∆A

Σ2
I

)2

x1 + γAIctxA +
∆B

Σ2
I

IB +

√
Σ2
I −

(
∆B

Σ2
I

)2

x2 + γBIctxB.

(8.32)
The values ∆A and ∆B express the strength of the signal along the two input directions. The
vectors x1 and x2 are two noise terms, while γA and γB control the two modulatory inputs
which are taken in the normalized directions defined by IctxA and IctxB . In Fig. 8.7 and 8.8,
we indicate with cA and cB the normalized strengths ∆A/Σ

2
I and ∆B/Σ

2
I .

In order to design a suitable rank two connectivity matrix, we directly extended the frame-
work that has been used to obtain non-linear outputs in a detection task (Fig. 8.2 c). We
set:

m(1) = y(A) + ρmIctxA

n(1) = IA + ρnIctxA

m(2) = y(B) + ρmIctxB

n(2) = IB + ρnIctxB.

(8.33)

Note that, because the only overlap directions (IctxA and IctxB) are internal to the m(1)−n(1)

and m(1) − n(1) pairs, Eq. 8.33 describes a rank two structure which generates a continuous
ring attractor as in Fig. 8.4.

In order to implement detection in a context-dependent way, we define a unique readout
signal z(t) by using a common readout set w:

z = ⟨wi[ϕi]⟩. (8.34)

The readout z(t) should detect the presence of both stimuli directions. As a consequence, it
should be sensitive to both overlap values κ1 and κ2. For this reason, we introduce a common
term in the four structure vectors that is aligned to the common readout. We obtain:

m(1) = y(A) + ρmIctxA + βmw

n(1) = IA + ρnIctxA + βnw

m(2) = y(B) + ρmIctxB + βmw

n(2) = IB + ρnIctxB + βnw.

(8.35)

Introducing a common overlap direction has the effect of destabilizing the continuous
attractor dynamics along the direction κ1 = κ2, where two stable and symmetric fixed points
are generated. The equations for the first-order input-free dynamics read indeed:

κ1 = ⟨n(1)[ϕi]⟩ = ρmρnκ1⟨[ϕ′
i]⟩+ βmβn(κ1 + κ2)⟨[ϕ′

i]⟩
κ2 = ⟨n(2)[ϕi]⟩ = ρmρnκ2⟨[ϕ′

i]⟩+ βmβn(κ1 + κ2)⟨[ϕ′
i]⟩

(8.36)
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b.a. c.

Figure 8.8: Rank two structures for implementing non-linear detection in a context-
dependent fashion: theoretical mean field predictions. a. Values of the first-order statistics
κ1 (continuous) and κ2 (dashed) as a function of the overlap strength along the stimulus IA:
mean field prediction. The results are shown for four different values of the overlap strength
along the second stimulus IB . Colors and legend as in Fig. 8.7. Top (resp. bottom): context
A (B) is selected. b. Readout value, built by summing and averaging the values of κ1 and
κ2 over the initial conditions (Eq. 8.37). Details as in a. c. Average normalized error in the
two contexts as a function of the network size N . Details as in Fig. 7.4 b. Parameters as in
Fig. 8.7.

from which the value of κ1 = κ2 = κ̄ can be derived by dividing and multipyling together the
two equations. The final readout signal contains a contribution from both first-order statistics:

z(t) = ⟨wi[ϕi]⟩ = β2
mΣ2

w(κ1 + κ2)⟨[ϕ′
i]⟩. (8.37)

In the present case, the modulatory inputs along IctxA and IctxB are used to gate a context-
dependent response. Similarly to Fig. 8.2 c, a strong and negative gating variable along IctxA
can completely suppress the response to stimulus IA, so that the readout signal is left free to
respond to IB . Fig. 8.8 a-b displays the values of the first-order statistics and the readout
response in the two contexts. Note that, when the response to IA (resp. IB) is blocked at
the level of the readout, the relative first-order statistics κ1 (resp. κ2) does not vanish, but it
actively contributes to the final network response.

The exact effect of the modulatory inputs is quantified by solving the mean field equations,
that can be derived by straightforwardly extending the calculations performed in the unit rank
case. For the first-order statistics, we obtain:

κ1 = ⟨[ϕ′
i]⟩ {ρmρnκ1 + βmβn(κ1 + κ2) + ∆A + ρnγA}

κ2 = ⟨[ϕ′
i]⟩ {ρmρnκ2 + βmβn(κ1 + κ2) + ∆B + ρnγB}

(8.38)
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while the second-order gives, in the case of stationary regimes:
∆0 = g2⟨[ϕ2

i ]⟩+Σ2
w(κ

2
1+κ22)+β2

m(κ21+κ22)+2Σ2
I+(ρmκ1+γA)

2+(ρmκ2+γB)
2. (8.39)

The average activation variable of single neurons contains entangled contributions from
the main directions of the dynamics, which are inherited both from the external inputs and
the recurrent architecture:

µi = [xi] =(y
(A)
i + ρmIctxA,i + βmwi)κ1 + (y

(B)
i + ρmIctxB,i + βmwi)κ2

+
∆A

Σ2
I

IA,i +
∆B

Σ2
I

IB,i + γ1IctxA,i + γ2IctxB,i.
(8.40)

In Fig. 8.7 b, we project the average activity [ϕi] in the directions that are more salient to the
task. The projection along w, which reflects the output decision, is proportional to the readout
value (Eq. 8.37). The input signals affect instead the average activity through the values of κ1
and κ2, but can be also readout directly along the input directions, yielding:

⟨IA[ϕi]⟩ = ∆A⟨[ϕ′
i]⟩

⟨IB[ϕi]⟩ = ∆B⟨[ϕ′
i]⟩.

(8.41)

Note that the projection on the input direction IA (resp. IB) is proportional to the signal
∆A (resp. ∆B) regardless of the configuration of the modulatory inputs selecting one input
channel or the other.

In more practical terms, in order to obtain the network architecture that has been used
in Fig. 8.7, we fixed the parameters step by step. We first considered input patterns only
along IA (∆B = 0), and we fix two arbitrary values of βm and βn. In particular, we consider
intermediate values of β. Large values of β tends to return large variance activity, which require
to evaluate with very high precision the Gaussian integrals which are present in the mean field
equations. Small values of β bring instead the network activity closer to a continuous-attractor
structure, and turn into larger finite-size effects. In a second step, we fix ρm and ρn such that
the network detects normalized input components along IA only when they are larger than
a threshold value, that is taken around 0.5. We then looked for a pair of gating variables
strengths [γA, γB] which completely suppresses the response to IA by extending the extent of
bistable activity. The opposite pattern can be used to block the response in IB and allow a
response in IA.

Once the response in IA has been blocked, it can be verified that the network solely re-
sponds to inputs which contain a response along IB that is larger than a threshold close to
0.5. Note that, similarly to Fig. 8.8 b, different values of ∆A only minimally affect the exact
position of the threshold.

To conclude, we remark that this procedure leaves the freedom of fixing the network pa-
rameters in many different configurations. The parameters that have been used in Fig. 8.7 have
been indicated in the caption. Such complex architecture leads to larger finite-size effects that
the respective unit-rank setup which acts as a single detector of correlations. In particular, the
error than is performed at the level of the readout is larger but it decays with the system size,
as expected for deviations induced by finite-size effects (Fig. 8.8 c).

8.6 Oscillations and temporal outputs
We now turn to a final example of dynamical and computational regimes in a network with
rank two connectivity structure. We consider a geometrical configuration in which the right
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and left vectors corresponding to the two parts of the rank two connectivity structure exhibit
cross-overlaps, such that m(1) has a non-zero overlap with n(2), and similary for m(2) and
n(1) (see further in Section 8.6.1). We moreover assume that one of these cross-overlaps,
e.g. between m(1) and n(2) is negative, so that the two vectors are anti-correlated. In such
a configuration, the activity generated along m(1) by the first unit-rank structure will be fed
negatively into the second unit-rank structure, giving rise to an effective negative feedback
loop. In addition, we assume that some internal overlap is also present between left and right
vectors that correspond to the same part of the connectivity structure, e.g. m(1) and n(1) (see
Section 8.6.1).

The negative feedback loop implemented by this rank two structure will tend to generate
oscillatory activity. Mathematically, this oscillatory activity corresponds to a pair of complex
conjugate eigenvalues that lie outside of the continuous part of the spectrum (Fig. 8.9). For
moderate amounts of cross-overlap, these eigenvalues do not destabilize the equilibrium ac-
tivity, but lead to oscillatory transients (Fig. 8.9 b). At the level of individual neurons, these
transients are highly heterogeneous and multi-phasic, the precise trajectories being determined
by the specific set of initial conditions. At the population level, the transients are however dom-
inantly two-dimensional, and lie mainly within the plane defined by the two right-structure
vectors m(1) and m(2) as expected from Eq. 8.10. Different initial conditions give rise to dif-
ferent trajectories in the m(1)−m(2) plane that display rotational activity in the same direction.
Overall, this rotational transient activity bears a strong resemblance with the population activ-
ity recorded during movement onset in the motor cortex [36]. Note that within our framework,
the directions capturing rotational activity in the population space can be directly predicted by
the connectivity: they are simply given by the right-structure vectors m(1) and m(2).

As the cross-coupling is increased, the complex conjugate eigenvalue cross the stability
boundary and give rise to sustained oscillations (Fig. 8.9 c). In this dynamical state, the ac-
tivity of each unit oscillates periodically, but the amplitudes and phases of different units are
highly heterogeneous. As a result, different units are out of phase, and the oscillatory activity
is not apparent at the population-average level, yet the the population as a whole exhibits rota-
tional activity in the m(1)−m(2) plane. Note that the distribution of phases across units can be
directly read from the shape of the trajectories in m(1) −m(2) plane (see Section 8.6.1): sym-
metric, circular trajectories correspond to a flat distribution of phases, while more elongated
trajectories correspond to peaked distributions.

The amount of cross-overlap between left- and right- structure vectors directly controls the
frequency of population activity at the oscillation onset (Fig. 8.9 a). In contrast, as the internal
overlap is increased, the oscillatory activity becomes increasingly non-linear (Fig. 8.9 d) and
eventually disappears in favor to a dynamical regime in which two equilibrium states are stable
(Fig. 8.9 a). Close to that transition, highly non-linear oscillatory activity can be understood
as periodic jumps between two equilibrium states. On the other hand, increasing the strength
of random connections leads to an increase of activity in the directions perpendicular to m(1)

and m(2) and eventually generates chaotic activity. As shown for other types of rank one
and two connectivity structures, when the strengths of the structured and random parts of
the connectivity are comparable, a hybrid regime appears in which the activity displays low-
dimensional, structured chaos, in particular quasi-periodic states that resemble mixtures of
oscillatory and chaotic activity (Fig. 8.9 e). In that regime, numerical simulations show strong
finite-size effects that remain to be more fully understood.

The highly heterogeneous oscillatory activity generated by this type of rank two connectiv-
ity has interesting computational properties. Since different units have very diverse temporal
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profiles of activity, a linear readout unit added to the network can exploit them as a rich basis
set for constructing a range of periodic outputs (Fig. 8.9 f). A rank-two connectivity structure
can therefore be exploited to generate outputs similar for instance to FORCE learning [132]
(see Chapter 5).

8.6.1 Mean field equations
We considered the following configuration:

m(1) = αx1 + ρy1

m(2) = αx2 + ρy2

n(1) = αx3 + ρy2 + γρy1

n(2) = αx4 − ρy1,

(8.42)

where the right- and the left-structure vectors share two cross-overlap directions y1 and y2.
Note that the vectors in one of the two pairs, m(1)−n(2), are negatively correlated. A second
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Figure 8.9 (previous page): Oscillatory activity from rank two structures that include a cross
overlap between left- and right- vectors. a. Top: phase diagram for the rank two structure
we adopt (see Methods). For different values of the internal and the cross overlaps, the trivial
fixed point can lose stability and give rise to oscillatory or stationary structured activity. The
Hopf bifurcation is indicated in blue, the instability to stationary activity in grey. The light-
blue parameter region corresponds to sustained non-linear oscillations. Bottom: frequency of
oscillations along the Hopf bifurcation boundary, in units defined by the implicit time scale
of the network dynamics. b-c-d-e. Samples of activity for different connectivity parameters.
From left to right: stability eigenspectrum of the trivial fixed point (theory and simulations),
sample of activation trajectories (the population average is indicated in dashed black), and
population dynamics projected on the right-structure vectors m(1) and m(2). The parameters
that have been used for every sample are indicated in a. b: Oscillatory transients in the fixed
point regime. c: Stable oscillations above the Hopf instability. The elongated shape of the
closed trajectory on the m(1) − m(2) plane is inherited by the phase distribution across the
population, and can be tuned by slightly modifying the parameters of the rank two structure
(see Section 8.6.1). d: Highly non-linear oscillations close to the boundary with bistable ac-
tivity. e: Oscillatory activity at high g values, where dynamics include a chaotic component. f.
When oscillations are strongly non-linear, their spectrum includes a large variety of frequen-
cies that can be used to reproduce highly non-linear periodic patterns. We designed three
random readout vectors and we linearly decoded activity from the dynamical regime in d to
generate periodic non-linear outputs, which are displayed in grey.

overlap is introduced internally to the m(1) − n(1) pair, and scales with the parameter γ. The
directions xj , with k = 1, ..., 4, represent uncorrelated terms. Note that different values of
α affect quantitatively the network statistics, but they do not change the phase diagram in
Fig. 8.9 a.

By rotating Pij on a proper orthonormal basis, one can check that its eigenvalues are given
by:

λ± =
γρ2

2

(
1±

√
1− 4

γ2

)
, (8.43)

and they are complex conjugate for γ < 2. In this case, the internal overlap γ have the effect
of returning a non-vanishing real part. The two complex conjugate eigenvectors are given by:

e± =
(
−γ

2
m(1) +m(2)

)
± i

√∣∣∣∣1− 4

γ2

∣∣∣∣m(1). (8.44)

The eigenspectrum of Jij = gχij + Pij inherits the pair of non-zero eigenvalues of Pij .
When g < 1 and γ < 2, the trivial fixed point thus undergoes an Hopf bifurcation when
the real part of λ crosses unity (Fig. 8.9 a, blue). When γ > 2, instead, the two eigenvalues
are real. One bifurcation to bistable stationary activity occurs when the largest eigenvalue λ+

crosses unity (Fig. 8.9 a, gray).
On the boundary corresponding to the Hopf bifurcation, the frequency of instability ωH

is determined by the imaginary part of Eq. 8.43. At the instability, the oscillatory activity of
unit i can be represented as a point on the complex plane. Since close to the bifurcation we
can write:

µi = e+i e
iωH t + c.c. , (8.45)
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its coordinates are given by the real and the imaginary part of the ith component of the complex
eigenvector e+. The phase of oscillation can then be computed as the angle defined by this
point with respect to the real axis. Note that the disorder in the elements of the eigenvector
e+, which is inherited by the random distribution of the entries of the structure vectors m(1)

and m(2), tends to favour a broad distribution of phases across the population.
In the limit case where the real and the imaginary parts of the complex amplitude of the

oscillators are randomly and independently distributed, the population response resembles a
circular cloud in the complex plane. In this case, the phase distribution across the population
is flat. Note that a completely flat phases distribution can be obtained for arbitrary frequency
values by adopting a rank two structure where an internal overlap of magnitude γρ2 exists
between vectors m(2) and n(2) as well.

In the present case, for every finite value of γ, the real and the imaginary part of e+i are anti-
correlated through m(1) (Eq. 8.44). Correlations tend to align the network response on two
main and opposite phases, as shown in the phase histograms of Fig. 8.9 c-d. The distribution
of phases becomes sharper and sharper in the γ → 2 limit, as the distribution in the complex
plane collapses on the real axis.

The phase distribution across the population is reflected in the shape of the closed orbit
defined by activity on the m(1) −m(2) plane, whose components are given by κ1 and κ2. Be-
cause of Eq. 8.10, the phase of the oscillations in κ1 (resp. κ2) can be computed by projecting
the eigenvector e+ on the right-structure vectors n(1) and n(2):

κ1 = |κ1|ei(Φ1+ωH t) + c.c. = ⟨n(1)
i [ϕi]⟩

κ2 = |κ2|ei(Φ2+ωH t) + c.c. = ⟨n(2)
i [ϕi]⟩

(8.46)

By using Eqs. 8.44 and 8.45 we get, in the linear regime:

κ1 =

[
⟨n(1)

i m
(2)
i ⟩ −

γ

2
⟨n(1)

i m
(1)
i ⟩+ i⟨n(1)

i m
(1)
i ⟩

√∣∣∣∣1− 4

γ2

∣∣∣∣
]
eiωH t + c.c.

=

[
ρ2
(
1− γ2

2

)
+ iγρ2

√∣∣∣∣1− 4

γ2

∣∣∣∣
]
eiωH t + c.c.

(8.47)

while:

κ2 =

[
⟨n(2)

i m
(2)
i ⟩ −

γ

2
⟨n(2)

i m
(1)
i ⟩+ i⟨n(2)

i m
(1)
i ⟩

√∣∣∣∣1− 4

γ2
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]
eiωH t + c.c.

=

[
ρ2

γ

2
− iρ2

√∣∣∣∣1− 4

γ2

∣∣∣∣
]
eiωH t + c.c.

(8.48)

When γ is close to 2, the complex amplitudes of κ1 and κ2 vanish. However, their real part
have different sign. We thus get: Φ2 = 0, Φ1 = π. As a consequence, at large γ values, the
oscillatory activity in κ1 and κ2 tends to be strongly in anti-phase.

Stationary solutions can be instead easily analyzed with the standard mean field approach.
The equations for the first order statistics read:

κ1 = (γρ2κ1 + ρ2κ2)⟨[ϕ′
i]⟩

κ2 = −ρ2κ1⟨[ϕ′
i]⟩.

(8.49)
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The two equations can be combined together to give the following condition on ⟨[ϕ′
i]⟩, which

in turn determines the value of ∆0:

ρ4⟨[ϕ′
i]⟩2 − γρ2⟨[ϕ′

i]⟩+ 1 = 0. (8.50)

The mean field equations thus admit two solutions, given by:

⟨[ϕ′
i]⟩± =

γ

2ρ2

(
1 +±

√
1− 4

γ2

)
(8.51)

which, similarly to Eq. 8.43, take real values for γ > 2. Because of the constraints on the
sigmoidal activation function, the mean field solutions are acceptable only if |⟨[ϕ′

i]⟩| < 1.
As it can be easily checked, the condition ⟨[ϕ′

i]⟩− < 1 coincides with imposing λ+ > 1.
We conclude that two stationary solutions exist above the instability boundary of the trivial
fixed point (Fig. 8.9 a, gray). A second pair of solutions appears for ⟨[ϕ′

i]⟩− < 1, which
coincide with λ− > 1 (Fig. 8.9 a, dashed), where the second outlier of Jij becomes unstable.
This second pair of solutions is however always dynamically unstable, as it can be checked by
evaluating the outliers of their stability matrix through Eq. 46. The coefficients of the reduced
matrixM read:

a11 = γρ2⟨[ϕ′
i]⟩

a12 = ρ2⟨[ϕ′
i]⟩

b1 =
1

2
ρ2(κ20 + γκ10)⟨[ϕ′′

i ]⟩
(8.52)

and

a21 = −ρ2⟨[ϕ′]⟩
a22 = 0

b2 = −
1

2
ρ2κ10⟨[ϕ′′]⟩.

(8.53)

On the phase diagram boundary corresponding to γ = 2, the stable and the unstable
pair of stationary solutions annihilate and disappear. At slightly smaller values of γ (γ ≲ 2),
the network develops highly non-linear and slow oscillations which can be though as smooth
jumps between the two annihilation points (Fig. 8.9 c-d).

8.7 Discussion
Motivated by the observation that a variety of approaches for implementing computations
in recurrent networks rely on a common type of structure in the connectivity, we studied a
class of network models in which the connectivity matrix consists of a sum of a fixed, low-
rank term and a random, full rank part. We found that in this model class, both spontaneous
and stimulus-evoked activity in large networks could be described in detail using a mean field
analysis. This approach led us to a simple, geometrical understanding of the relationship be-
tween connectivity and dynamics, and allowed us to design minimal connectivity structures
that implemented specific computations.

Our central result is that the low-rank structure in the connectivity matrix induces low-
dimensional dynamics in the network, a hallmark of population activity recorded in behaving
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animals [51]. While low-dimensional activity is usually detected using dimensional-reduction
techniques [41], our analysis allows to directly identify the low-dimensional subspace that con-
tains the dominant part of the dynamics, and provides a direct interpretation of this subspace
in terms of connectivity structure. This relationship between connectivity and dynamics is
however highly non-linear, and we have showed that the dynamical repertoire of the network
increases quickly with the rank of the connectivity structure. As a consequence, rank two
connectivity already leads to a rich range of dynamics that is sufficient to implement complex
computations.

A key component of our analysis is the simple fact that a matrix of rank r is fully specified
by 2r N-dimensional vectors, where N is the size of the network. We have shown that the
dynamics in the network can be intuitively understood from the geometrical arrangement of
these 2r structure vectors with respect to N−dimensional vectors representing the patterns
of inputs. We have specifically focused on the case where both structure and input vectors
are fixed, but generated from a random distribution. While geometry in dimensions larger
than three is generally hard to grasp, dealing with a small number of very high-dimensional
random vectors is relatively straightforward as their geometry reduces to stochastic calculus.
High-dimensional random vectors moreover have very interesting computational properties
that have been pointed out within the framework of so-called hyper-dimensional computing
[70]. Low-rank random recurrent networks studied here directly inherit properties such as the
ability to easily generalize or bind features, and moreover combine theses generic properties
with additional non-linear features such as gating. We have showed that these non-linear
features can be exploited in particular to implement context-dependent computations.

A traditional approach for implementing computations in recurrent networks has been to
endow them with a clustered [147, 78] or distance-dependent connectivity [17]. Such net-
works inherently display low-dimensional dynamics similar to our framework [78, 150], as
clustered connectivity is in fact a special case of low-rank connectivity. The main difference
with the framework studied here is that clustered connectivity is highly ordered, since each
neuron belongs to a single cluster and therefore is selective to only one feature (a given stim-
ulus, or a given output). Neurons in clustered networks are therefore highly specialized and
display so called pure selectivity. Here instead we have considered random low-rank struc-
tures, in which stimuli and outputs are represented in a random, highly distributed manner
and individual neurons are typically responsive to several stimuli, outputs, or combinations be-
tween stimuli and outputs. Such mixed selectivity is a ubiquitous property of cortical neurons
[107, 32], and confers additional computational properties related to the hyper-geometrical
framework [15]. While the dynamics lie in a low-dimensional subspace, this subspace is ran-
domly embedded within the N−dimensional space. Moreover, while many of the dynamical
regimes found in our framework are identical to dynamical regimes in networks with clus-
tered, or distance-dependent connectivity, we have shown that the combination of random
and structured connectivity can give rise to novel regimes, in which the activity is chaotic, but
explores an underlying structure. Such a combination of fluctuating and structured activity
can in particular give rise to slow timescales in the dynamics (see Appendix D). Our analyses
also show that some dynamical regimes require less connectivity than previously thought. For
instance, classical implementations of ring attractors rely on distance-dependent connectivity
with a ring structure. Here instead we found that this ring-structure in the connectivity is not
necessary, as a rank-two connectivity (with an inherent symmetry) is sufficient to generate
ring attractors.

This study is closely related to the classical framework of Hopfield networks [65]. The aim
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of Hopfield networks is to store in memory specific patterns of activity by creating for each pat-
tern a corresponding fixed-point in the network dynamics. This is achieved by adding a rank-
one term for each memorized item, and one approach for investigating the capacity of such a
setup has been the mean field theory of a network with a connectivity that consists of a sum of
a rank one term and a random matrix [139, 110, 122]. While this approach is clearly close to
the one adopted in the present study, there are important differences. Within Hopfield net-
works, the unit rank terms are symmetric, so that the corresponding left- and right-structure
vectors are identical for each pattern. Moreover, the unit rank terms corresponding to different
patterns are generally uncorrelated. In contrast, here we have considered the more general case
where the left- and right-eigenvectors are different, and potentially correlated between differ-
ent rank one terms. Most importantly, our main focus was on responses to external inputs,
and input-output computations rather than fixed points of spontaneous activity. In particular
we showed that left- and right- structure vectors play different roles with respect to processing
inputs, the left-structure vector playing the role of input-selection, and the right-structure vec-
tor determining the output of the network. While in Hopfield networks the number of fixed
points increases linearly with the rank of the connectivity matrix [10, 2], we have shown that
the full dynamical repertoire of the network depends on the geometrical arrangement between
left- and right-vectors, the combinatorics of which potentially increases exponentially with the
rank of the structure term. Whether the relationship between the dynamical repertoire and
the rank of perturbations is really exponential remains to be determined, but our study shows
that for rank-two perturbations the dynamics are already very rich and sufficient to implement
complex computations.

Our study is also closely related to echo-state networks (ESN) [67, 68] and FORCE learn-
ing [132]. In those frameworks, randomly connected recurrent networks are trained to produce
specified outputs using a feedback loop from the readout unit to the network. Mathematically,
adding a feedback loop is exactly equivalent to adding a rank-one term to the random connec-
tivity matrix [80], where the left-structure vector corresponds to the read-out vector and the
right-structure vector corresponds to the feedback (note that in the computational implementa-
tions presented here, the readout is instead determined by the right-structure vector). In their
most basic implementation, both echo-state and Force learning train only the readout weights,
but the details of the learning procedure differ between the two. The training is moreover per-
formed for a fixed realization of the random connectivity, hence the final rank-one structure
obtained from Echo-state and Force learning is correlated with the specific realization of the
random part of the connectivity. Moreover, the unit rank perturbation may be strong. In
contrast, here we studied the situation where the low-rank structure is weak and independent
from the random part. How important are the correlations? The answer appears to depend
on the specific learning procedure. In Chapter 9, we extend our approach to the specific case
of echo-state networks trained to produce a constant output [108]. We show that in the solu-
tion found by ESN, the correlations between the rank one structure and the realization of the
random matrix are weak and merely act to reduce the error in the readout. This error scales
as 1/

√
N in absence of correlations, but is reduced to zero thanks to the correlations between

the unit rank term and the random connectivity.
The network model used in this study is the one used in most studies based on trained

recurrent networks [132, 73, 15, 100, 45, 83, 134]. While this model is very popular, it is
highly simplified and lacks many biophysical constraints, the most basic ones being positive
firing rates, the segregation between excitation and inhibition and interactions through spikes.
Recent works have investigated extensions of the abstract model used here to networks with
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biophysical constraints [58, 69, 87]. The main difficulty is that additional constraints make the
mean-field analysis more complex. In the Appendix C, we extend our analysis to positive input-
output functions and show that little changes. In a first approximation, excitation-inhibition
segregation corresponds to adding an additional (clustered) unit rank structure [87]. Inter-
actions through spikes can be approximated using an additional external noise [87, 55, 69].
Additional investigations will be needed to determine the specific effect on each of these con-
straints on the dynamics and computations in networks with low-rank connectivity structure.

Despite its highly simplified and abstracted nature, the network model examined here
captures and connects a number of outstanding experimental observations. First, as pointed
out above, the representations of stimuli and outputs are high-dimensional, distributed and
mixed, while the computations are based on low-dimensional dynamics on these represen-
tations. Both of these properties are shared by a large number of population recordings in
behaving animals [51]. Second, the network naturally reproduces the experimental fact that
stimulus onset reduces the variability in neural activity, a property shared by a large number
of cortical areas [35]. In our model, this reduction of variability is based on two mechanisms
that so far have been considered separately: a reduction of multi-stable activity [78, 44] and
a quench of chaotic fluctuations in the network [99]. Third, the unit rank structure inferred
from computational constraints reproduces known properties of synaptic connectivity. We
have shown that in order to produce desired computations, the left-structure vector needs to
be correlated with the pattern of inputs that corresponds to the preferred stimulus. As a con-
sequence, if two neurons both strongly encode that stimulus, their reciprocal connections will
be stronger than average. This property directly corresponds to the experimental finding that
neurons with similar tuning properties are connected by strong reciprocal synapses [71, 72].
Another computational constraint in our framework is that the right-structure vector is corre-
lated with the output readout vector. This implies that two neurons with strong selectivity for
a given decision are also connected by strong recurrent connections. To our knowledge, this
prediction remains to be tested experimentally.

The connectivity matrices we considered consisted of an explicit sum of a low-rank and a
random part. While this may seem as a severe restriction, in fact any arbitrary matrix can be
approximated with a low-rank one by keeping a small number of dominant singular values and
associated vectors – the basic principle underlying dimensionality reduction. From this point
of view, our theory suggests a simple principle: the low-dimensional structure in connectiv-
ity determines low-dimensional dynamics and computational properties of recurrent networks.
While more work is needed to establish under which precise conditions this statement holds,
this principle provides a simple and practically useful working hypothesis for relating connec-
tivity, dynamics and computations in trained neural networks, and one day in experimental
setups in which both activity and connectivity are recorded.
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A supervised training perspective 9

Throughout Chapter 8, we have been exploiting the theoretical framework we developed in
Chapter 7 to explicitly design robust computational models. As discussed in Chapter 5, a
different and widely adopted approach for constructing network models which can operate as
computational units consists of supervised training procedures. In those frameworks, the exact
output of the network is fixed, and weights updates are applied to the synaptic connections of
the network in order to match the network output to the desired target.

In the spirit of helping clarifying the theoretical underpinning of trained network dynamics
(see also Chapter 6), here we more directly apply our theoretical framework to such approaches.
To this end, we focus on two simple tasks which can be solved by adopting appropriate weak
and uncorrelated unit rank structures.

Following the theoretical framework derived in Section 7.3, we consider the mean field
equations which describe the resulting computational setup. Similarly to an algorithm which
seeks least-square solutions, the mean field equations can be inverted to derive the statistics
of the appropriate low rank structure which appropriately fulfills the task. Once the unit
rank structure has been determined, the number and the stability of the mean field solutions
can be quantitatively assessed. Critically, we find that this approach, where the required low-
dimensional structure is computed by blindly fixing the network output, can result in non-
trivial instabilities even in extremely simplified computational setups. Furthermore, we show
that the same kind of instabilities are observed in traditionally trained networks.

9.1 Input-output patterns associations
In a first step, we consider the network architecture that we extensively analyzed in Chapter 7:
a recurrent neural network, whose connectivity structure consists of the sum of a random and
a unit rank component, receives a N−dimensional pattern I = {Ii} as external input. We
examine to which extent the pattern of equilibrium firing rates ϕ = {ϕi} of individual units
can be set to a specified pattern p = {pi} (Fig. 9.1 a) by imposing the structure vectors m and
n.

As in Chapters 7 and 8, we consider that the disordered part of the connectivity is random
and cannot be controlled. We therefore impose the output pattern p only at the level of the
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a. b.

c.

Ii pi

Figure 9.1: Implementing specific input-output associations using rank one connectivity
structures. a. Every unit receives a constant input of value Ii. We aim to construct a rank
one connectivity such that the output ϕ(xi) of unit i is on average equal to the target value
pi. b. Example of a stable input-output association in a finite-size network. The structure
vectors m and n are determined by inverting the DMF equations, as described in the text.
The network activity converges close to the imposed output pattern (black dashed lines). The
firing rate variables are displayed for three randomly selected units, shown in three different
colors. For each unit, temporal trajectories of activity are shown for three different realizations
of the random connectivity χij . The pattern statistics are indicated by the small squares in the
phase diagram of Fig. 9.2 a. The side panel shows the stability eigenspectrum as predicted by
the mean field analysis, with the vertical black dashed line indicating the stability boundary.
The right panel displays the stationary nullclines for the mean field equations of the resulting
structured network (see Section 7.3.6). The state corresponding to the desired computation is
indicated by the black dot. Note that, together with the desired state, the final network can
admit other mean field solutions. c. Example of an unstable input-output association. Details
as in b. Choice of the parameters: see Fig. 9.2.

average with respect to disordered connectivity:

[ϕi] = pi. (9.1)

In the most generic configuration, the input and the target pattern share an overlap direc-
tion. With no loss of generality, we focus on the case where the overlap occurs on the unitary
direction, which is equivalent to considering input and output vectors of non-vanishing mean.

For a fixed network structure and a given external input, the dynamical mean field theory
yields a set of equations for the network output. These equations can in principle be inverted
to determine the structure vectors m and n that lead to the desired output p.
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9.1.1 Inverting the mean field equations
In Chapter 7, we derived that the direction of the network activation is determined by the
input pattern and the right-structure vector m:

µi = miκ+ Ii, (9.2)

while at the level of the network activity we have:

[ϕi] =

∫
Dz ϕ(miκ+ Ii +

√
∆I

0z). (9.3)

Our aim is therefore to solve for mi and ni the following equation:

pi =

∫
Dz ϕ(miκ+ Ii +

√
∆I

0z). (9.4)

Note that for fixed ∆I
0, this equation can be rewritten as

pi = Φ(miκ+ Ii), (9.5)

where Φ is a monotonically increasing, sigmoid function obtained by integrating ϕ over the
noise term. If κ is moreover known, and non-zero, mi is simply given by

mi =
Φ−1 (pi)− Ii

κ
. (9.6)

In the final configuration, the direction of m is then determined by the geometrical arrange-
ment of vectors p and I . The main task is to determine the network-averaged quantities κ and
∆I

0 which are consistent with the specific input-output transformation.
As noted in the previous Chapters, the left- and right-structure vectors m and n play dif-

ferent roles in producing the output pattern. The elements of the vector m directly determine
the output of the network, but this output is realized only if the overlap κ is non-zero. The role
of n is precisely to yield a non-zero overlap κ with the network activity by selecting appropriate
inputs. As described in Section 7.2, a non-zero overlap can be obtained in several manners, in
either by having a non-zero overlap between n and m or between n and I , or a combination
of both. In Section 8.1, non-vanishing values of κ have been obtained by tuning n along the
component of the input vector that is perpendicular to m. Here, we focus here on a different
geometrical arrangement, in which I and n overlap in the unitary direction, which is shared
between I and p (and thus m). As it will be shown in Section 9.2.1, this configuration re-
sembles the network structure that emerges from numerical training and results in non-trivial
stability properties.

We then take MI , Mn > 0. We moreover set Mn = 1 and we indicate by M and Σ the
mean and variance of the unknown structure vector m. Eq. 9.4 thus transforms into:

pi =

∫
Dz ϕ(mi⟨[ϕi]⟩+ Ii +

√
∆I

0z). (9.7)

The value of mi can thus be computed once the mean field statistics ⟨[ϕi]⟩ and ∆I
0 have been

computed. Their value depends self-consistently on the value of the input and the output
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9. A supervised training perspective

patterns that we are trying to impose, so that additional constraints on the activity statistics
have to be taken into account.

For simplicity, we focus on a network in a stationary state; similar arguments can be used
to derive the equations for the chaotic case. The network activity is determined by the two
mean field equations:

µ = M⟨[ϕi]⟩+MI

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

µ

(9.8)

with Σ2
µ = Σ2⟨[ϕi]⟩2 + 2ΣmI⟨[ϕi]⟩ + Σ2

I . Eq. 9.8 contains 5 unknown variables: the two
activation statistics (µ, ∆0) and the structure parameters (mean M , variance Σ of the vector
m and correlation ΣmI between m and I). In order to close the system, we derive three
additional equations by constraining the output activity statistics to be compatible with the
output pattern pi.

We start by imposing:

Mp = ⟨pi⟩ =
∫
Dzϕ(µ+∆0) = ⟨[ϕi]⟩. (9.9)

Similarly, for the second order statistics, we impose ⟨[ϕi]
2⟩ = ⟨p2i ⟩ = M2

p +Σ2
p, which reads:

M2
p +Σ2

p = ⟨
[∫
Dz ϕ(mi⟨[ϕi]⟩+ Ii +

√
∆I

0z)

]2
⟩

=

∫
Dy
[∫
Dz ϕ(µ+Σµy +

√
∆I

0z)

]2
.

(9.10)

The last condition on ΣmI comes instead from imposing:

MIMp = ⟨Iipi⟩ = ⟨Ii[ϕi]⟩ = ⟨Ii
∫
Dzϕ(mi⟨[ϕi]⟩+ Ii +

√
∆0z)⟩. (9.11)

Similarly to standard DMF derivations, we explicitly build mi and Ii as correlated Gaussian
variables to get:

MpMI =

∫
Dw

∫
Dx2(MI +

√
Σ2
I − ΣmIx2 +

√
ΣmIw)

∫
Dz ϕ(µ

+
√
ΣmI(1 + ⟨[ϕi]⟩)w +

√
∆I

0 + (Σ2 − ΣmI)⟨[ϕi]⟩2z +
√
Σ2
I − ΣmIx2).

(9.12)

A little algebra, together with Eq. 7.27, returns the final result:

ΣmI = −
Σ2
I

Mp
. (9.13)

We are thus left with the final set of equations in (µ,∆0,M,Σ):

µ = M⟨[ϕi]⟩+MI

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

µ

Mp = ⟨[ϕi]⟩

Σ2
p +M2

p = ⟨[ϕi]
2⟩ =

∫
Dx
[∫
Dzϕ(µ+Σµx+

√
∆I

0z)

]2 (9.14)

170



9.1. Input-output patterns associations

with Σ2
µ = Σ2M2

p − Σ2
I . Once the self-consistent network statistics have been computed as

a solution of Eq. 9.14, the structure eigenvector m can be found by solving Eq. 9.7 for every
unit i.

Clearly, not every output pattern can be implemented by the network. In particular, for
each i, pi needs to lie in the output range of the sigmoidal transfer function ϕ(x) (e.g. for
ϕ(x) = tanh(x), we can only expect to correctly reproduce the patterns for which |pi| < 1 for
all units). A significant additional complication is that the obtained solution may not be stable
with respect to the dynamics of the recurrent network. In order to assess the stability of an
obtained solution, we therefore determine the properties of its stability eigenspectrum by com-
puting the value of the radius and the position of the outlier eigenvalues in the eigenspectrum
(Eqs. 7.33 and 7.88).

9.1.2 Stable and unstable associations
Fig. 9.1 b illustrates a case in which the output pattern pi is correctly implemented: for any
realization of the random part of the connectivity χij , the network rate variables converge
close to the target pattern. In the stability eigenspectrum predicted by the mean field theory,
all the eigenvalues lie well below the instability boundary. A nullcline plot reveals that such
fixed point is the only stationary state of the dynamics.

Fig. 9.1 c shows instead a case in which the target output corresponds to an unstable
solution of the dynamics, and therefore cannot be reached. Iterating the recurrent dynamics
with the computed structure vectors m and n, brings the network activity far from the desired
output pattern p. The stability eigenspectrum includes an unstable outlier eigenvalue above the
instability threshold. The nullcline plot reveals that in this case, the solution found by solving
the system in 9.14 corresponds to the unstable fixed point built on the intermediate branch of
the µ nullcline (see Section 7.3.8).

More generally, the set of outputs that can be implemented in a stable manner can be
determined as function of the statistics of input and output patterns. The corresponding phase
diagram (Fig. 9.2 a) shows that unstable solutions occupy a sizable portion of the parameter
space.

By inverting the mean field equations, we imposed the prescribed output on the level of
the average with respect to the random connectivity. In a specific instantiation of the ran-
dom connectivity, the actual network output will deviate with respect to the average output.
The magnitude of the error in the output depends on network parameters and can be directly
computed within our theoretical framework. When the output pattern is correctly learnt, our
mean field framework allows us to estimate the variability between different realizations of the
random connectivity, and therefore the error in the output (Fig. 9.2 b). The amplitude of the
error at the level of individual units (defined as CI

0 = ⟨[ϕ2
i ]⟩−⟨[ϕi]

2⟩) depends on the patterns
parameters and in general increases super-linearly with the strength g of random connections.
For g > 1, the network can approximate the pattern p by producing either static or structured
chaotic activity, in which the activity of unit i is on average pi, but temporal fluctuations are
present in addition to static ones. In this regime of strong disorder, the error at the level of
individual units is large. If the similarity to the target pattern p is however quantified at the
population level by computing the normalized overlap between the network activity ϕ and the
pattern p, the variability in individual units compensate each other, and the error decreases as
1/
√
N in finite networks (Fig. 9.2 c).
To conclude, we have shown that our theoretical approach allows us to determine one-

171



9. A supervised training perspective

a.

b.

StableUnstable

c.

Figure 9.2: Implementing specific input-output associations using rank one connectivity
structures: performance. a. Stability of the solutions as a function of the output pattern
statistics. White (resp. light blue) areas: the association is stable (resp. unstable). Hatched ar-
eas: the association cannot be realised as the output statistics are incompatible with the shape
of the sigmoidal activation function. The instability region is displayed for three values of the
mean input pattern MI , ranging from 0.8 (dark) to 2 (light). b. When the output pattern
is correctly learnt, the output activity of each unit fluctuates around the target value pi. The
amplitude of this variability can be measured as CI

0 = ⟨[ϕ2
i ]⟩ − ⟨[ϕi]

2⟩, and depends on the
statistics of the input and the output patterns. Here, the magnitude of the variability is shown
for two different values of the mean of the output pattern Mp. Continuous lines: DMF the-
oretical prediction. Dots: average variability measured for 4 input-output associations. For
every pair, CI

0 is measured across 15 realizations of the random connectivity χij . c. Although
single units activity can strongly fluctuate around the output pattern, this variability is largely
washed out when the activity vector ϕ is projected on the output p. The value of the projection
can be predicted with the mean field theory. In finite size networks, small deviations from
the theoretical expectation can be measured because of finite size effects. As expected, the
magnitude of the average normalized error decays with the network size. In grey: g = 0.2, in
black: g = 1. Dashed lines: power-law best fit (y ∝ Nγ). The values of γ are indicated in
the legend. In this figure, if not differently indicated, g = 0.2, ΣI = 0.1. The input and the
output pattern vectors are uniformly distributed.
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dimensional connectivity structures that lead to a specified output in response to a given input
and to assess the stability of the resulting recurrent network. We found that unstable associa-
tions can be realised for certain values of the statistics of the input and the output patterns. Un-
stable computations derive from the presence of non-zero asymmetric solutions in the bistable
dynamical regimes where the network is projected into (see Section 7.3.8). As in Fig. 7.1,
bistable activity can appear because of non-vanishing overlaps between the input, the output
and the left-structure vector, that are amplified when the mean field solutions are inverted.

This result suggests that, for the present task, exploiting non-bistable regimes might result
in better training. That can be achieved, similarly to Section 8.1, by imposing non-vanishing
values of κ through aligning the left-structure vector n solely along the non-shared component
of I . In this case, as it has been shown Fig. 7.3 b-c-d, a single stable state is created.

Having found that this simple task admits two conceptually alternative solutions, we turn
to investigate the strategy that is adopted by simple training procedures. Note that the solu-
tions which are found by our framework are restricted to the class of weak low-dimensional
matrices that are not fine-tuned to a specific realization of the noise in the random bulk con-
nectivity matrix. On the contrary, trained networks might implement the same task by ex-
ploiting both stronger scaling properties and fine-tuned correlations between the random and
the structured connectivity.

In the next section, we address this question in the setup of a a classic echo-state architec-
ture (see Chapter 5). By exploiting our theoretical framework, we design a mean field solution
which rely on weak and uncorrelated structures. We then compare our result which the solu-
tion that is returned by a least-square batch update and with the dynamics which is directly
measured in trained networks.

9.2 Input-output associations in echo-state architectures
In echo-state computing, the network output is not defined for every unit, but only at the level
of a single readout z(t). The readout activity is given by a linear combination of the network
rate variables:

z(t) =
N∑
j=1

wjϕ(xj(t)). (9.15)

As the readout signal is fed back to the network, the reservoir dynamics read:

ẋi(t) = −xi + g

N∑
j=1

χijϕ(xj(t)) + uiz(t) + Ii. (9.16)

Combined together, Eqs. 9.15 and 9.16 describe a network architecture which is equivalent to
the network model with unit rank structure that we considered so far, with ui = mi, wi = ni

and z = κ.
As in echo-state machines, we consider the feedback weights m to be fixed. Without loss

of generality, we fix mi = 1 ∀i. We aim at deriving the left-structure vector n which allows
the reservoir network to associate an output constant signal: z(t) = A to an external input
pattern I (Fig. 9.3 a).

We start by deriving a network solution from the usual mean field framework, and we
assess its stability.
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The mean field equations which describe the desired dynamics (κ = z = A) are:
µ = A+MI

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

I

(9.17)

if the network is in a stationary state. Eq. 7.66 can be used to trivially extend this reasoning
to chaotic states. In terms of the echo-state training procedure (see Chapter 5), the equations
in 9.17 coincide with the mean field characterization of the open-loop system, where the
feedback signal is clamped to the target A [108]. We first solve Eq. 9.17 to derive the self-
consistent network statistics µ and ∆0. As a second step, similarly to Section 9.1, we design a
left-structure vector n which overlaps with m, thus resulting in non-vanishing κ values. We
obtain A = κ = Mn⟨[ϕi]⟩, which gives:

Mn =
A

⟨[ϕi]⟩
(9.18)

and we design n as any random vector of fixed mean Mn. Note that the same choice of n
equivalently applies to every realization of the random bulk χij .

Once the connectivity structure has been fixed, the mean field equations can be reshaped
back into the usual form:

µ = Mn⟨[ϕi]⟩+MI

∆0 = g2⟨[ϕ2
i ]⟩+Σ2

I

(9.19)

which coincides with the whole-network (or closed-loop) mean field description. By using
the standard DMF tools (see Chapter 7), we can thus evaluate the stability of the solution and
the total number of stable states admitted by the network dynamics.

In Fig. 9.3 b, we display the transient activity of a network that has been trained to match
the target signal starting from a static and a chaotic dynamical regimes. In the two examples,
the association is stable and the readout signal z(t) converges to the target A.

In Fig. 9.3 c, we fix the target to A = 1.3, and look at the readout values predicted by
the mean field theory for increasing values of the mean of the external input pattern. Simi-
larly to Section. 9.1, we find that, when the external input has a non-vanishing overlap with
the structure vectors (MI ̸= 0), the stability of computations is not always guaranteed. In
particular, when MI is large in absolute value, the association is stable and corresponds to
the only possible network solution. The association is instead unstable in the range of values:
−A < MI < M∗

I , where the target z = A corresponds to the intermediate and unstable
branch of the mean field solutions. Finally, for an intermediate range of values above M∗

I ,
the association is stable, but a second stable state is admitted by the dynamics. Similarly to
the previous section, bistability is induced by non-vanishing overlaps between the structure
vectors m and n, and can be avoided by tuning n along the direction of I that is orthogonal
to the unitary one.

Fig. 9.3 d indicates the stability of the input-output association in terms of the readout
target A and the mean input MI . Note that the stability boundaries only display a weak
dependence with respect to the random strength g. They also display a dependence on the
input pattern ΣI (not shown): larger ΣI values have the effect of extending the instability
surface.

To conclude, we observe that our theoretical framework allows to exactly match the out-
put z to the target A solely in the case of infinite size networks. In finite networks, small
fluctuations of order O(1/

√
N) are expected to appear at the level of the readout.
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b.

c.

a.

d.

Unstable

Stable

Stable

Figure 9.3: Designing specific rank one structures which force echo-state architectures to
reproduce a constant fixed point at the level of the readout. a. The network output is defined
at the level of z = κ, which also acts as a stabilizing feedback input. For a fixed input pattern I ,
we want the network to respond with a constant signal: z = A. b. We derive the appropriate
structure statistics by solving Eq. 9.17 and we let the network dynamics evolve. Examples
from the parameter region where the association is stable. Top: network in a stationary, and
down: network in a chaotic regime. Light blue: target, dark blue: network reconstruction,
and grey: activity traces for randomly selected units in the network. c. From the closed-loop
mean field equations 9.19 we predict the value of the readout signal z (grey horizontal line:
target A). The two stable solutions are drawn in red, the unstable one in grey. Shaded area:
the input-output association corresponds to the unstable mean field solution. Choice of the
parameters: g = 0.5, Σ2

I = 0. d. Stability phase diagram for fixed ΣI = 0. The stability
boundary weakly depends on the value of g.

9.2.1 A comparison with trained networks

When echo-state networks are numerically trained, finite-size reservoirs are employed. The
unit rank structure which is returned by training algorithms is typically fine-tuned to the spe-
cific realization of the noise in the random bulk χij . By exploiting such correlations, the match
between the readout and the target can be made exact for arbitrary network sizes.

When the readout weights nj are trained offline through least-square error minimization
[67], an explicit expression for nj can be derived [108]. First, the asymptotic open-loop solu-
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tion is measured numerically:

x∗i = miA+ Ii + g

N∑
j=1

χijϕ(x
∗
j ) (9.20)

and second, the decoding weights are set accordingly:

nj = A
ϕ(x∗j )

N⟨ϕ2(x∗j )⟩
. (9.21)

The effect of such a choice is to obtain exactly z = A for whatever network size.
Note that the least-square minimization returns a structure solution whose scaling is weak

(O(1/N)) as in our model architecture.
Note also that such training setting can only operate in conditions where the open-loop

solution (Eq. 9.20) is stable with respect to chaos. On the contrary, the mean field approach
developed in the previous paragraph can be easily extended to take temporal fluctuations into
account.

From Eq. 9.20, we expect the open loop activity ϕ(x∗j ) to include a component along
the right-structure vector m and one along the input I . Since the left vector n is taken to
be proportional to ϕ(x∗j ) (Eq. 9.21), the training procedure naturally introduces an overlap
direction between the two structure vectors m and n. In order to facilitate a direct comparison
with our mean field theory, we consider the case where I is parallel to m (ΣI = 0), so that the
value of κ only includes the effect of the overlaps along the unitary direction.

We then design finite-size echo-state networks by following the offline least-square ap-
proach. In Fig. 9.4 a, we measure the final value of the readout unit z. Remarkably, we
observe that the dynamics of the resulting network matches well the DMF prediction that
we derived for rank one structures which are totally uncorrelated with respect to the random
bulk of the connectivity χij (Fig. 9.3 c). More specifically, the mean field predicts with good
accuracy the stability of the input-output association and the number of global attractor of the
dynamics.

We further look at the stability matrix of the final fixed point, and we find that its eigen-
spectrum consists of a compact dense component and of a single outlier eigenvalue [108]. In
Fig. 9.4 b, we show that the position of the outlier is in good agreement with our mean field
prediction, which can be computed as in Section 7.3.4.

In [108], it has been shown that when the vector n is set by offline training (Eq. 9.21),
the position of the outlier eigenvalue can be exactly computed using control theory arguments.
We find that the prediction by [108] almost coincides with the one returned by our mean field
theory, although only one branch of the global network solution (the one corresponding to
z = A) is retrieved in this case.

This strict quantitative agreement suggests that, at least in the present setting, the dynamics
of the trained network is only minimally affected by the fine-tuned correlations existing by the
finite-sized bulk χij and the solution nj . In particular, the least-square algorithm seems not
to be able to exploit such correlations in order to improve the stability of the final trained
network.

Similarly to the two cases we studied so far, an instability occurs when the structure overlap
induced by the training algorithm becomes strong. In those cases, batch procedures based on
the least-square approach are in fact not able to tell apart dynamically stable from unstable
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a. b.

Figure 9.4: Echo-state architectures: comparing mean field solutions with the output of
trained reservoirs. The training procedure is an offline least-square error minimization. a. The
mean field prediction (continuous lines), computed as in Fig. 9.3 c, predicts with good accuracy
the behaviour of trained networks (dots). The network readout converges to A (horizontal
gray lines) only outside the instability region (shaded area). b. Outlier eigenvalue in the
stability eigenspectrum of the final fixed point. Continuous lines: mean field prediction for the
three global network solutions. Black dashed lines: position of the outlier which includes the
correlations between the bulk and the structure [108]. Dots: eigenvalue position as measured
in trained networks. In simulations, choice of the parameters: g = 0.5, ΣI = 0, N = 2000.

solutions. Note that the same kind of instability occur in the more general case where the input
vector is taken to be orthogonal to m, because of the non-vanishing correlations between m
and n that are naturally induced by Eq. 9.21. As we discussed in Section 9.1, our theoretical
framework suggests that a possible strategy to circumvent instabilities consists of operating
with non-vanishing κ values that are generated by vectors n and I overlapping on a direction
perpendicular tom. Here we found that the least-square solutions adopt instead a non-optimal
strategy.

Finally, the least-square approach permits to design a left vector n which allows the net-
work to perform multiple input-output associations with a unique rank one structure. In order
to study such setup, the fine-tuned correlations between nj and χij must be crucially taken
into account, so that our theory cannot be directly applied. Such setup, however, seem to suf-
fer of even larger stability issues [108], suggesting that also in that case the training procedure
is not able of exploiting correlations to improve the stability of the final network.

9.2.2 Different activation functions
To conclude, we present a simple application of our theoretical setup.

In [108], the authors focus on the study of the fixed point task in absence of external
inputs. At the end of the analysis, they discuss the dependence of stability properties of the
solution on the exact shape of the activation function ϕ(x). It is found that adopting a classical
sigmoidal function (ϕ(x) = tanh(x)) guarantees stability for any target value. On the contrary,
the input-output association is always unstable when the activation function is threshold linear
with positive offset. Stability depends instead on the architecture parameters when a saturation
threshold is imposed on ϕ(x).

Here we observe that this result can be easily understood within our framework. In a mean
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b.a. c.

Figure 9.5: Echo-state architectures: dependence of stability on the activation function ϕ(x),
as in [108]. Graphical solution to Eq. 9.22. Black (grey) dots indicate stable (unstable) so-
lutions. a. In the classical case, with ϕ(x) = tanh(x) all the fixed point tasks are stable in
absence of external inputs. The only unstable fixed point corresponds indeed with the trivial
one. b. When the activation function is threshold linear, the only non-trivial fixed point is
always unstable, as it is built on the high-gain branch of αϕ(x). c. When a saturation value
is added, a second stable fixed point appears; if the solution is built on the saturating branch
of the activation function, the input-output association is stable.

field perspective, the solution is built by tuning the overlap between the two structure vectors
along the unitary direction. The structure of the resulting fixed points can be readout from the
noise-free case (g = 0), which reads (see Section 7.3.6):

x0 = αϕ(x0) (9.22)

where α measures the structure strength. In Section 7.3.6, we have shown that adding noise in
the random bulk and additional directions to the structure vectors does not change the stability
properties of the resulting stationary solutions.

In the classical case with ϕ(x) = tanh(x), Eq. 9.22 determines two non-trivial symmetric
fixed points (Fig. 9.5 a). Because of the sigmoidal saturation, it is easy to check that both non-
trivial solutions are stable (ϕ′(x0) < 0 in x0 ̸= 0). As a consequence, in absence of external
inputs, every fixed point is expected to be stable. This result is in agreement with the results
from the previous paragraph where we take MI = 0: bistability exists but the only unstable
solution is locked in zero, so that it is never selected by training.

When a threshold linear function is adopted, one stable and one unstable fixed points are
created. The stable one is locked in x0 = 0, so that non-trivial fixed points are always built on
the unstable solution, and training is expected to fail. Finally, adding a saturating threshold
induces the presence of a second stable fixed point, so that non-trivial solutions can both be
stable or unstable according to the readout target and the architecture parameters. As we saw,
both solutions are indeed indistinguishable from the point of view of the training algorithm.

An analysis of network models with more general positively defined activation functions
is presented in Appendix C.
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Appendix A
Finite size effects and limits of the DMF assumptions

We test numerically the validity of the Gaussian assumptions and the predictions emerging
from the DMF theory in the case of excitatory-inhibitory networks (see Chapters 2, 3, 4). We
found two main sources of discrepancies between the theory and numerics, namely finite-size
effects and the asymmetry between excitation and inhibition.

Finite size effects
As a first step, we analyzed the magnitude of finite size effects deriving from taking finite
network sizes. Fig. 1 a shows a good agreement between simulated data and theoretical ex-
pectations. The magnitude of finite size effects shrinks as the network size is increased and
cross-correlations between different units decay (Fig. 1 c, left panel).

In Fig. 1 b we tested instead the effect of increasing the in-degree C when N is kept
fixed. When C is constant and homogeneous in the two populations, our mean field approach
requires network sparseness (C ≪ N ). Consistently, we find an increase in the deviations
from the theoretical prediction when C is increased (Fig. 1c, right panel).

Both the N and C dependencies have the effect of weakly reducing fluctuations variance
with respect to the one expected in the thermodynamic limit. The numerically obtained x
distribution is in good agreement with the assumption of DMF, which states that current
variables xi are distributed, for large time t and size N , according to a Gaussian distribution
of mean µ and variance ∆0.

Correlations for high ϕmax

We observe that stronger deviations from the theoretical predictions can arise when the upper-
bound ϕmax on the transfer function is large and the network is in the intermediate and strong
coupling regime. By simulating the network activity in that case, we observe stronger cross-
correlations among units, which can cause larger fluctuations in the population-averaged firing
rate.
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a.

b.

c.

Figure 1: Comparison between dynamical mean field predictions and numerical simulations:
general finite size effects. a. Dependence on the system size N (C = 100). Fistribution of
the input current x in the population and in different time steps. The numerical distribution is
obtained through averaging over 3 realizations of the synaptic matrix. Light green: simulated
data distribution, dark green: best Gaussian fit to data, red: DMF prediction. b. As in a,
dependence on the in-degree C (N = 6500). c. Normalized deviations from the DMF theo-
retical value. The log-log dependence is fitted with a linear function, γ giving the coefficient
of the linear term. Choice of the parameters: g = 4.1, J = 0.2, ϕmax = 2.

In Fig. 2 a we check that those deviations can still be understood as finite size effects: the
distance between the DMF value and the observed ones, which now is larger, decreases with
N as the correlation among units decay. Equivalently, the variance of the fluctuations in the
population-averaged input current and firing rate decays consistently as ∼ 1/N .

The same effect, and even stronger deviations, are observed in rate models where the trans-
fer function is chosen to mimic LIF neurons.

As a side note, we remark that strong correlations in numerical simulations are observed
also in the case of spiking networks of LIF neurons with small refractory period and inter-
mediate coupling values (Fig. 2 b). Also in this case, correlations are reflected in strong time
fluctuations in the population averaged firing rate. Their amplitude should scale with the sys-
tem size as 1/N in the case of independent Poisson processes. This relationship, which is well
fitted in the weak and strong coupling regimes (not shown), appears to transform into a weaker
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a. b.

Figure 2: Comparison between dynamical mean field predictions and numerical simulations:
high saturation bounds. a. Finite size effects in rate networks with large saturation upper-
bound. Top: sample of network activity, single units. Middle: population averaged firing rate.
Choice of the parameters: g = 5, J = 0.14, ϕmax = 240. Bottom: normalized variance of
the population-averaged firing rate as a function of the network size. b. Finite size effects
in networks of LIF neurons with small refractory period. Top: sample of network activity,
rastergram of 80 randomly selected neurons. Middle: population averaged firing rate. Choice
of the parameters: N = 20000, C = 500, g = 5, τrp = 0.01 ms, J = 0.9 mV. Bottom:
normalized variance of the population-averaged firing rate as a function of the network size
(computed with 1 ms bins).

power law decay for intermediate J values.

Limits of the Gaussian approximation
A different effect is found by increasing the dominance of inhibition over excitation in the
network, i.e. by increasing g, or equivalently, by decreasing f . As shown in Fig. 3 a, inhibition
dominance can significantly deform the shape of the distribution, which displays suppressed
tails for positive currents. As the inhibition dominance is increased, since ϕ(xi) is positive and
Jij strongly negative on average, the fluctuations become increasingly skewed in the negative
direction. As expected, the Gaussian approximation does not fit well the simulated data. Fig. 3
b-c shows that the same effect is quite general and extends to networks where excitation and
inhibition are not segregated or the connectivity C is random.
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a.

b. c. d.

Figure 3: Comparison between dynamical mean field predictions and numerical simulations:
the effects of strong inhibition. Distribution of the input current x in the population and in
different time steps. The numerical distribution is obtained through averaging over 3 realiza-
tions of the synaptic matrix. Light green/orange: simulated data distribution, dark green/or-
ange: best Gaussian fit to data, red: DMF prediction. Choice of the parameters: C = 100,
N = 6500, J = 0.2. a. Dependence on the inhibition dominance g. b. Numerical dis-
tribution for a network with a synaptic matrix where C is fixed, as above, but excitatory and
inhibitory units are shuffled. c. As above, with a synaptic matrix where C is random. d. As
above, with the equivalent Gaussian matrix, whose statistics match the ones of the sparse one.

An extreme consequence of this effect is the failure of DMF in describing purely in-
hibitory networks in absence of external excitatory currents, where the effective coupling
ηi(t) =

∑
j Jijϕ(xj(t)) is strictly non-positive at all times. In this case, DMF erroneously

predicts a critical coupling JD between a bounded and an unbounded regime, the divergence
being led by the positive tails of the Gaussian bell (not shown). In contrast, in absence of any
positive feedback, purely inhibitory networks cannot display a transition to run-away activity.

As a final remark, we observe that the agreement between simulated activity and mean
field predictions in the case of purely inhibitory networks is in general less good than the one
we found for E-I architectures (not shown).

We conclude that the Gaussian hypothesis adopted in the DMF framework is a reasonable
approximation only when inhibition does not overly dominate excitation. Finally, we remark
that this limitations critically depends on adopting sparse matrices where non-zero entries have
fixed values. If adopting a Gaussian, fully-connected connectivity, whose mean and variance
are matching the ones of the original matrix:

[Jij ] =
J

N
(CE − gCI)

[J2
ij ] =

J2

N
(CE + g2CI)

(1)
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Limits of the Gaussian approximation

numerical simulations reveal that, whatever the degree of inhibition, positive entries are strong
enough to balance the distribution, which strongly resembles again a Gaussian bell Fig. 3 d.
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In Chapter 2, we provide a step-by-step derivation of the Dynamical Mean Field equation
in the case of the simplest excitatory-inhibitory (E-I) architecture, where the connectivity in-
degree is fixed and external inputs are constant and homogeneous.

Here we relax some of these assumptions, and we provide a detailed account on how mean
field equations should be modified in the case of more general E-I network models. The
solutions to the new sets of equations are presented and discussed in Chapter 3.

Mean field theory in presence of noise
In order to investigate the effect of an external noisy input on the dynamical regimes, we
introduced an additive, white noise term in the network dynamics equations, which read:

ẋi(t) = −xi(t) +
N∑
j=1

Jijϕ(xj(t)) + ξi(t) (2)

with [ξi(t)] = 0 and [ξi(t)ξj(t+ τ)] = 2∆extδijδ(τ).
As above, we replace the forcing term

∑
j Jijϕ(xj) + ξi by an effective noise ηi. By

following the same steps as before we find:

[ηi(t)] = J(CE − gCI)[ϕ]

[ηi(t)ηi(t+ τ)]− [ηi]
2 = δij

[
J2(CE + g2CI)

{
C(τ)− [ϕ]2

}
+ 2∆extδ(τ)

] (3)

which translates into:

∆̈(τ) = ∆(τ)− J2(CE + g2CI){C(τ)− [ϕ]2}+ 2∆extδ(τ). (4)

We conclude that the external noise acts on the auto-correlation function by modifying
its initial condition into: ∆̇(0+) = −∆̇(0−) = −∆ext. In terms of the analogy with the 1D
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motion, the presence of noise translates into an additive kinetic term in τ = 0, which one has
to take into account while writing down the energy balance:

V (∆0,∆0) +
1

2
∆̇(0)2 = V (0,∆0) (5)

to be solved again together with the equation for the mean µ. The potential V (∆,∆0), in
contrast, remains unperturbed. The main effect of including a kinetic term at τ = 0 consists
in allowing a variance ∆0 ̸= 0 also in the low coupling regime, where the potential has the
usual shape as in Fig. 2.2 a.

From a mean field perspective, white noise can be studied as a proxy for the effect induced
by spikes on the rate dynamics. In order to better quantify this effect, following [69], we
add a spiking mechanism on the rate dynamics in Eq. 2.21. Spikes are emitted according to
independent inhomogeneous Poisson processes of rate ϕ(xj(t)), which obeys:

τ̄ ẋ(t) = −x(t) +
N∑
j=1

Jijχj(t) (6)

and χj(t) is the spike train emitted by neuron j: χj(t) =
∑

k δ(t− tkj ).
This simple spiking mechanism can be again incorporated into a DMF description. Here,

following [69], we show that the resulting equations correspond to an usual rate model with
additive white noise, whose variance is given by J2(CE + g2CI)[ϕ]/τ̄ . The mean field forcing
noise is in this case ηi(t) =

∑
j Jijχj(t). By separating Jij into the sum of its mean and a

zero-mean term, we get that the usual equation for the first order statistics holds:

[ηi] = J(CE − gCI)[ϕ]. (7)

In order to compute the noise auto-correlation, we separate ηi into a rate and a zero-mean
spikes contribution: ηi = ηri +ηspi , where ηri =

∑
j Jijϕ(xj) and ηspi =

∑
j Jij{χj−ϕ(xj)}.

The auto-correlation of the rate component returns the usual contribution:

[(ηri (t)− [ηri ])(η
r
j (t+ τ)− [ηrj ])] = δijJ

2(CE + g2CI){C(τ)− [ϕ]2} (8)

while the auto-correlation of the spikes term generates the instantaneous variability in-
duced by the Poisson process:

[(ηspi (t)− [ηspi ])(ηspj (t+ τ)− [ηspj ])] = δijJ
2(CE + g2CI)[ϕ]δ(τ). (9)

By summing the two contributions together, and rescaling time appropriately, we obtain the
evolution equation for ∆(τ) equivalent to Eq. 4 with a self-consistent white noise term:

∆̈(τ) = ∆(τ)− J2(CE + g2CI){C(τ)− [ϕ]2 +
[ϕ]

τ̄
δ(τ)}. (10)

Mean field theory with stochastic in-degree
We derive here the dynamical mean field equations for networks in which the total number of
inputs C varies randomly between different units in the network. We focus on a connectivity
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matrix with one excitatory and one inhibitory column. In the excitatory column, each element
Jij is drawn from the following discrete distribution:

Jij =

{
J p = CE/NE = C/N
0 otherwise.

Up to the the order O(1/N), the statistics of the entries Jij are are:

[Jij ] =
J

N
C, (11)

[J2
ij ] =

J2

N
C. (12)

The inhibitory column is defined in a similar way, if substituting J with −gJ .
We proceed in the same order as in the previous sections. We define the effective stochastic

coupling, given by ηi(t) =
∑

j Jijϕ(xj(t)). We compute the equations for the mean and the
correlation of the Gaussian noise ηi in the thermodynamic limit.

We will find that the variance associated to the single neuron activity will consist of a
temporal component, coinciding with the amplitude squared of chaotic fluctuations, and of a
quenched term, which appears when sampling different realizations of the random connectiv-
ity matrix.

For a given realization and a given unit i, the temporal auto-correlation coincides with:
[ηi(t)ηi(t + τ)]t,ic − [ηi]

2
t,ic by averaging over time and over different initial conditions. In a

second step, averaging over all the units in the population, or equivalently, over the realizations
of the matrix Jij , returns the average size of deviations from single unit mean within one single
trial [[ηi(t)ηi(t + τ)]t,ic − [ηi]

2
t,ic]J = [ηi(t)ηi(t + τ)] − [[ηi]

2
t,ic]J . Remember that, in our

notation, [] indicates an average over time, initial conditions, and matrix realizations. One can
compute self-consistently this quantity and check that it coincides with the expression for the
total second order moment we found in the previous paragraph for the fixed in-degree case.

In order to close the expression for the DMF equations, we will need to express all the
averages of ϕ in terms of the total variance ∆0, which includes quenched variability. For this
reason, we compute the average deviations from [ηi(t)ηi(t+τ)] with respect to the population
mean [ηi]. As a result, the second moment [ηi(t)ηj(t + τ)] − [ηi(t)]

2 will now include the
static trial-to-trial variability.

For the mean, we get:

[ηi(t)] =

 NE∑
jE=1

JijEϕjE (t)

+

 NI∑
jI=1

JijIϕjI (t)

 = (NE [JijE ] +NI [JijI ]) [ϕ]

= J(CE − gCI)[ϕ].

(13)
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Applying the same steps as before, we compute the second order statistics:

[ηi(t)ηi(t+ τ)] =

[
N∑
k=1

Jikϕk(t)

N∑
l=1

Jilϕl(t+ τ)

]

=

 NE∑
kE=1

JikEϕkE (t)

NE∑
lE=1

JilEϕlE (t+ τ)

+

 NI∑
kI=1

JikIϕkI (t)

NI∑
lI=1

JilIϕlI (t+ τ)


+ 2

 NE∑
kE=1

JikEϕkE (t)

NI∑
lI=1

JilIϕlI (t+ τ)

 .

(14)

Again, we consider separate contributions from diagonal (k = l) and off-diagonal (k ̸= l)
terms. This results in:

[ηi(t)ηi(t+ τ)] = CEJ
2[ϕi(t)ϕi(t+ τ)] + C2

E(1− 1/NE)J
2[ϕ]2

− 2CECIgJ
2[ϕ]2 + CIg

2J2[ϕi(t)ϕi(t+ τ)] + C2
I (1− 1/NI)g

2J2[ϕ]2.
(15)

As we can see, diagonal terms behave, on average, like in the fixed in-degree case. To estimate
the off-diagonal contributions, we observe that for every kE index, the expected number of
other non-zero incoming connections is CE(1−1/NE). As a consequence, the kE ̸= lE sum
contains on average C2

E terms of value J2 [ϕ]2 in the limit N → ∞. Note that in the fixed
in-degree case, the same sum contained exactly CE(CE − 1) terms. That resulted in a smaller
value for the second order statistics, which does not include the contribution from stochasticity
in the number of incoming connections. Similar arguments hold for the inhibitory units.

To conclude, in the large network limit, we found:

[ηi(t)ηi(t+ τ)] = J2(CE + g2CI)⟨ϕi(t)ϕi(t+ τ)⟩+ J2(CE − gCI)
2 [ϕ]2 (16)

such that the final result reads:

[ηi(t)ηi(t+ τ)]− [ηi(t)]
2 = J2(CE + g2CI)C(τ). (17)

As before, one can then check that the cross-correlation between different units vanishes.
The noise distribution determines the following self-consistent potential:

V (∆,∆0) = −
∆2

2
+ J2(CE + g2CI)

∫
Dz
[∫
DxΦ(µ+

√
∆0 − |∆|x+

√
|∆|z)

]2
.

(18)
In contrast with the potential of Eq. 2.35, which was found for networks with fixed in-

degree, here we observe the lack of the term −∆[ϕ]2. As a consequence, the new potential is
flat around a non-zero ∆ = ∆∞ value, which represents the asymptotic population disorder.

As usually, we derive the DMF solution in the weak and in the strong coupling regime
thanks to the analogy with the one-dimensional equation of motion. When J < JC , the
potential has the shape of a concave parabola, the vertex of which is shifted to ∆∞ ̸= 0. The
only acceptable physical solution is here ∆(τ) = ∆0 = ∆∞. In order to determine its value,
we use the condition emerging from setting ∆̈ = 0:

∆0 = J2(CE + g2CI)

∫
Dzϕ2(µ+

√
∆0z) (19)
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to be solved together with the equation for the mean:

µ = J(CE − gCI)

∫
Dzϕ(µ+

√
∆0z). (20)

When J > JC , the auto-correlation acquires a temporal structure. The stable solution is
monotonically decreasing from ∆0 to a value ∆∞, and we need to self-consistently determine
µ, ∆∞ and ∆0 through three coupled equations. Apart from the usual one for µ, a second
equation is given by the energy conservation law:

V (∆0,∆0) = V (∆∞,∆0) (21)

which reads:

∆2
0 −∆2

∞
2

= J2(CE + g2CI)

{∫
DzΦ2(µ+

√
∆0z)

−
∫
Dz
[∫
DxΦ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2}
.

(22)

The third equation emerges from setting ∆̈ = 0 at ∆∞, which gives:

∆∞ = J2(CE + g2CI)

∫
Dz
[∫
Dxϕ(µ+

√
∆0 −∆∞x+

√
∆∞z)

]2
. (23)

Mean field theory in general E-I networks
We discuss here the more general case of a block connectivity matrix, corresponding to one
excitatory and one inhibitory population receiving statistically different inputs. The synaptic
matrix is now given by:

J = J

(
JEE JEI
JIE JII

)
. (24)

Each row of J contains exactly CE non-zero excitatory entries in the blocks of the excitatory
column, and exactly CI inhibitory entries in the inhibitory blocks. Non-zero elements are
equal to jE in JEE, to −gEjE in JEI, to jI in JIE, and to −gIjI in JII.

The network admits a fixed point (xE0 , xI0) which is homogeneous within the two different
populations: (

xE0
xI0

)
= J

(
jE(CEϕ(x

E
0 )− gECIϕ(x

I
0))

jI(CEϕ(x
E
0 )− gICIϕ(x

I
0))

)
. (25)

With linear stability analysis, we obtain that the fixed point stability is determined by the
eigenvalues of matrix:

S = J

(
ϕ′
EJEE ϕ′

I JEI
ϕ′
EJIE ϕ′

I JII

)
(26)

where we used the short-handed notation ϕ′
k = ϕ′(xk0).

The eigenspectrum of S consists of a densely distributed component, represented by a circle
in the complex plane, and a discrete component, consisting of two outlier eigenvalues. The
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radius of the complex circle is determined by the 2× 2 matrix containing the variance of the
entries distributions in the four blocks, multiplied by N [6, 7, 5]:

Σ = J2

(
ϕ′
E
2CEj

2
E ϕ′

I
2CIg

2
Ej

2
E

ϕ′
E
2CEj

2
I ϕ′

I
2CIg

2
I j

2
I

)
. (27)

More precisely, the radius of the circle is given by the square root of its larger eigenvalues:

r =

[
1

2
J2
{
CEϕ

′
E
2
j2E + CIϕ

′
I
2
g2I j

2
I

+

√
(CEϕ′

E
2j2E + CIϕ′

I
2g2I j

2
I )

2 − 4CECIϕ′
E
2ϕ′

I
2j2Ej

2
I (−g2E + g2I )

}] 1
2

(28)

where the derivative terms ϕ′
k contain an additional dependency on J .

In order to determine the two outlier eigenvalues, we construct the 2×2 matrix containing
the mean of S in each of the four blocks, multiplied by N :

M = J

(
ϕ′
ECEjE −ϕ′

ICIgEjE
ϕ′
ECEjI −ϕ′

ICIgIjI

)
. (29)

The outliers correspond to the two eigenvalues of M, and are given by:

ξ± =
1

2
J

{
ϕ′
ECEjE − ϕ′

ICIgIjI ±
√

(ϕ′
ECEjE − ϕ′

ICIgIjI)2 + 4ϕ′
Eϕ

′
ICECIjEjI(−gE + gI)

}
.

(30)
Notice that, if gE is sufficiently larger than gI , the outlier eigenvalues can be complex

conjugates.
We focus on the case where, by increasing the global coupling J , the instability to chaos

is the first bifurcation to take place. As in the simpler case when excitatory and inhibitory
populations are identical, we need the real part of the outliers to be negative or positive but
smaller than the radius r of the densely distributed component of the eigenspectrum. This
requirement can be accomplished by imposing relative inhibitory strengths gE and gI strong
enough to overcome excitation in the network. For a connectivity matrix which satisfies the
conditions above, an instability to a fluctuating regime occurs when the radius r crosses unity.

We can use again DMF to analyze the network activity below the instability. To start with,
dealing with continuous-time dynamics, one can easily generalize the mean field equations we
recovered for the simpler two-column connectivity. In the new configuration, the aim of mean
field theory is to determine two values of the mean activity and two values for the variance,
one for each population.

By following the same steps as before, we define ηEi =
∑N

j=1 Jijϕ(xj(t)) for each i be-
longing to the E population, and ηEi =

∑N
j=1 Jijϕ(xj(t)) for each i belonging to I . Those

two variables represent the effective stochastic inputs to excitatory or inhibitory units which
replace the deterministic network interactions. Under the same hypothesis as before, we com-
pute the statistics of the ηEi and ηIi distributions. For the mean, we find:( [

ηEi
][

ηIi
] ) = J

(
CEjE −CIgEjE
CEjI −CIgIjI

)( [
ϕE
][

ϕI
] ) . (31)
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For the second order statistics, we have: [
(ηEi (t)− [ηEi ])(η

E
j (t+ τ)− [ηEj ])

][
(ηIi (t)− [ηIi ])(η

I
j (t+ τ)− [ηIj ])

]  = J2

(
CEj

2
E CIg

2
Ej

2
E

CEj
2
I CIg

2
I j

2
I

)(
CE(τ)−

[
ϕE
]2

CI(τ)−
[
ϕI
]2
)
.

(32)
By using those results, we obtain two equations for the mean values of the input currents:(

µE

µI

)
= J

(
CEjE −CIgEjE
CEjI −CIgIjI

)( [
ϕE
][

ϕI
] ) (33)

and two differential equations for the auto-correlation functions, which can be summarized
as: (

∆̈E(τ)

∆̈I(τ)

)
=

(
∆E(τ)
∆I(τ)

)
− J2

(
CEj

2
E CIg

2
Ej

2
E

CEj
2
I CIg

2
I j

2
I

)(
CE(τ)−

[
ϕE
]2

CI(τ)−
[
ϕI
]2
)
. (34)

All the mean values are defined and computed as before, the population averages to be taken
only over the E or the I population.

The main difficulty in solving Eqs. 33 and 34 comes from the absence of an analogy with
an equation of motion for a classical particle in a potential. Unfortunately, indeed, isolating
the self-consistent solution in absence of an analogous suitable potential V (∆E(τ),∆I(τ))
appears to be computationally very costly.

However, if we restrict ourselves to discrete-time rate dynamics:

xi(t+ 1) =

N∑
j=1

Jijϕ(xj(t)). (35)

DMF equations can still easily be solved. With discrete-time evolution, the mean field dy-
namics reads:

xi(t+ 1) = ηi(t) (36)
which identifies directly the input current variable xi with the stochastic process ηi. In con-
trast to the continuous case, where self-consistent noise is filtered by a Langevin process, the
resulting dynamics is extremely fast. As a consequence, the statistics of ηi directly translates
into the statistics of x. We are left with four variables, to be determined according to four
equations, which can be synthesized in the following way:(

µE

µI

)
= J

(
CEjE −CIgEjE
CEjI −CIgIjI

)( [
ϕE
][

ϕI
] ) (37)

(
∆E

0

∆I
0

)
= J2

(
CEj

2
E CIg

2
Ej

2
E

CEj
2
I CIg

2
I j

2
I

)( [
ϕE2

]
−
[
ϕE
]2[

ϕI2
]
−
[
ϕI
]2
)
. (38)

As usual, firing rate statistics are computed as averages with respect to a Gaussian distribution
with mean µE (µI ) and variance ∆E

0 (∆I
0).

When adopting discrete-time dynamics, a second condition has to be imposed on the con-
nectivity matrix. To prevent phase-doubling bifurcations specific to discrete-time dynamics,
we need the real part of the outliers to be strictly smaller than r in modulus. An isolated outlier
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on the negative real axis, indeed, would lose stability and induce fast oscillations in the activity
before the transition to chaos takes place. The latter condition is satisfied in a regime where in-
hibition is only weakly dominating, coinciding with the phase region where the approximation
provided by DMF is very good (see in Appendix A).
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Unit rank structures in networks with positive activation
functions

In Chapters 7, 8 and 9, we performed our analysis of partially structured networks by adopting
a completely symmetric network model, whose input-free solutions are invariant under the
sign transformation xi(t) → −xi(t). As it was shown in Section 7.3.8, symmetry can be
broken by including additional external input currents. Another possibility, which brings the
network closer to biologically inspired circuit models, is to adopt a non symmetric, positively
defined activation function ϕ(x).

Here, we specifically investigate the effect of changing the transfer function to: ϕ(x) =
1+ tanh(c(x−γ)). Adding a shift γ is equivalent to include an external and constant negative
input. The parameter c, instead, rescales the slope of ϕ(x) at the inflection point.

For simplicity, we fix γ = 1 and c = 1.5. We furthermore restrict the analysis to the case
of unit rank structures whose right- and left-structure vectors solely overlap on the unitary
direction (ρ = 0).

In absence of any disorder (g = Σm = 0), the fixed point equation reads: x0 = MmMnϕ(x
0).

The unstable fixed point thus coincides with x0 = 1, while the two stable ones are built on the
high and low firing rate branches of ϕ(x). In contrast to the symmetric case we studied so far,
a modulation in MmMn changes both the maximal slope slope and the central intersection of
ϕ(x) with the bisector. As a consequence, when MmMn ≳ 1, the central fixed point moves
to small firing rate values. For MmMn ≫ 1 it finally merge with the low firing state, so that
only one high-firing rate fixed point exists. Similarly, when MmMn ≲ 1, the unstable fixed
point moves towards the high firing one, before annihilating with it and disappearing. In this
regime, one unique low-firing rate state exists.

Dynamical Mean Field solutions
When the network solutions are not homogeneous, the behaviour of the static and chaotic
solutions needs to be studied with the usual mean field tools. The Dynamical Mean Field
(DMF) sets of equations 7.72 and 7.66 were derived for an arbitrary activation function, so
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they can directly be adopted in the present scenario. We start from graphically analysing the
stationary solutions in Eq. 7.72, and we plot the two nullclines of the system for different
values of the architecture parameters.

Fig. 4 a (left) displays the µ nullclines for different MmMn values. The result is in
agreement with the simple picture we derived in the case of homogeneous fixed points. At
MmMn = 1, the unstable branch coincides with µ = 1, and the stable ones are symmetric.
Around MmMn = 1, the perfect pitchfork is broken in one or the other direction, generating
a first stable continuous branch and a second one, where one unstable and one stable solution
merge at low or high firing rate. For extremely low (high) MmMn values, finally, there’s just
one nullcline at low (high) µ values.

The ∆0 nullcline (Fig. 4 a, right) displays a more complex behaviour with respect to the
symmetric ϕ(x) = tanh(x) case. When g is sufficiently large, indeed, it can become a non-
monotonic function of the mean input µ, transforming into a S-shaped nullcline. As it will
be shown in detail, this more complex shape is able to induce bistable activity even when
the µ nullcline is reduced to a single continuous branch. This situation is reminiscent of the
fluctuations driven bistable regime in [103].

We find that the system admits two classes of stable solutions (Fig. 4 b-c). The first one,
plotted in Fig. 4 b, takes large mean and variance values. It suddenly disappears on the leftmost
grey boundary of the plot, in a parameter region which co-exist with the second solution. The
latter solution, plotted in Fig. 4 c, takes typically small values of µ and ∆0, and disappears on
the rightmost boundary with a first-order transition as well.

In order to dissect more systematically the nature of those solutions, and the kind of bi-
furcations taking place on the stability boundaries, we imagine to fix the structure strength
(dashed lines in Fig. 4 b), and to gradually increase the random strength g.

First, in Fig. 5, we fix the structure strength to high values: MmMn = 1.2. The bifurcation
pattern occurring in this case resembles what we observed in the original case with ϕ(x) =
tanh(x). At low values of g, two stable fixed points are built, respectively, on the high and
on the low branches of the µ nullcline. For that reason, we call this state LH (cfr Fig. 8).
When the random strength is too strong, the low firing rate fixed point annihilates, and only
one high firing solution survives (H state). Such solution finally smoothly transforms into a
chaotic one. Both instabilities are correctly predicted by our estimation of the compact and
the discrete components of the stability eigenspectrum Sij .

When MmMn is exactly equal to unity (Fig. 6), the nullcline for µ is a perfectly symmetric
pitchfork. At small g values, similarly to the previous case, network activity is bistable and
admits one L and one H stationary state. As g increases, the ∆0 intersect the high firing rate
branch at smaller and smaller values of µ. Finally, the H state is lost, and the second stable
fixed point is realized on the intermediate branch at µ = 1. This bistable state is thus formally
a LI state. Finally, at large g values, the two intersections on the low rate branch collapse
together and disappear. Bistability is lost and only one intermediate (I) state exist.

The intermediate branch of the µ nullcline exists only when MmMn is exactly equal to
unity. For this reason, I states are represented in phase diagram regions with null measure
(dashed line in Fig. 8). However, I states separate the phase diagram in two macro areas:
below the dashed line, every stationary and chaotic solution is build on the same low firing
rate branch of the µ nullcline, and is thus formally a L state.

When only L states are present, bifurcations are discontinuous and S-shaped. They can be
observed for slightly smaller values of the structure strength: in Fig. 7, we fix MmMn = 0.98.
In this case, while a classical LH state exists at small g values, the bistable state at large random
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Dynamical Mean Field solutions

a.

b.

c.

Figure 4: Dynamical Mean Field stationary solutions in network models with non-
symmetric, positively defined activation functions. a. Nullclines for the system of equations
in 7.72. Left: µ nullclines for different values of the structure strength parameter MmMn.
Right: ∆0 nullclines for different values of the random strength g. b-c. Stationary stable so-
lutions plotted as color maps on the parameter space defined by the random and the structure
strengths. The two main classes of continuous solutions are displayed, respectively, in panels
b and c. Left: µ, right: ∆0. Dark grey continuous lines: boundaries of the parameter region
where both stable solutions exist. Horizontal dashed lines: values of the structure strength
used for the bifurcation analysis in Fig. 5, 6 and 7.

strengths involves two stable solutions which originate both a low firing rates (LL state). The
two states strongly differ in the value of their variance. When g is sufficiently large, one unique
low firing rate, high variance state survives.

All the different activity states are finally sketched in the phase diagram of Fig. 8. The
exact shape of the phase diagram depends on the value of the parameters c and γ. Note that
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Appendix C
Unit rank structures in networks with positive activation functions

a.

b.

Figure 5: Dynamical Mean Field stationary solutions in network models with ϕ(x) = 1 +
tanh(c(x−γ)). The structure strength is fixed to 1.2 (top dashed line in Fig. 4 b). a. Graphical
analysis of the system of equations in 7.72 for g = 0.4 and g = 1. Details as in Fig. 7.4. b.
Bifurcation diagrams for increasing values of the random strength g.

the LL bistability region can disappear from the phase diagram when the two parameters c
and γ take too small or too large values.
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Dynamical Mean Field solutions

a.

b.

Figure 6: Dynamical Mean Field stationary solutions in network models with ϕ(x) =
1 + tanh(c(x − γ)). The structure strength is fixed to 1 (center dashed line in Fig. 4 b).
a. Graphical analysis of the system of equations in 7.72 for g = 0.3, 0.75, 1.0 and 1.3. Details
as in Fig. 7.4. b. Bifurcation diagrams for increasing values of the random strength g.
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a.

b.

Figure 7: Dynamical Mean Field stationary solutions in network models with ϕ(x) = 1 +
tanh(c(x − γ)). The structure strength is fixed to 0.98 (bottom dashed line in Fig. 4 b). a.
Graphical analysis of the system of equations in 7.72 for g = 0.3, 0.6, 0.7 and 1.2. Details as
in Fig. 7.4. b. Bifurcation diagrams for increasing values of the random strength g.

LH

L

H H

L

L

LL

LL

Figure 8: Phase diagram of activity in network models with ϕ(x) = 1 + tanh(c(x − γ)).
Activity states are classified as L (H) if they are built on the low (high) firing rate branch of
the µ nullcline. Hatched area: phase space region where activity is bistable. Dashed line:
phase space region where the H solution transforms into L, smoothly passing through an
intermediate I solution. Red line: instability to chaos of the high variance solution. Shaded
area: the high variance solution is chaotic.

200



Appendix D
Two time scales of fluctuations in networks with unit rank
structure

In Chapter 7, we studied the dynamics of large networks whose connectivity matrix includes
a unit rank structured term. We found that, when the structure strength is large, the DMF
theory predicts two stable states, which can be stationary or chaotic.

Both in stationary and chaotic bistable solutions, the population-averaged statistics of the
activation variable xi are stationary. When activity is chaotic, indeed, irregular temporal fluc-
tuations are decorrelated from one unit to the other, so that the central limit theorem applies
at every time step, and the network statistics are constant in time.

In finite size networks, however, the network statistics are not stationary. Their dynam-
ics display instead two different time scales. The instantaneous population-averaged activity
undergoes small fluctuations of amplitudeO(1/

√
N), whose time scale reflects the relaxation

decay of chaotic activity. When two chaotic attractors exist, furthermore, the mean activation
displays also sharp transitions from positive to negative values and viceversa (Fig. 9 a). Those
sudden jumps correspond to global transitions from one stable attractor to the other, which
are made possible by the self-sustained temporal fluctuations.

We first consider transition events as point processes, and we measure the average tran-
sition rate. We arbitrarily define a transition point as the time step at which the population-
averaged activation crosses zero. The transition rate thus depends on the amplitude of finite-
size fluctuations measured with respect to the average phase space distance between the two
attractors. As a consequence, we expect the transition rate to depend on the architecture param-
eters and on the network size, but also to vary strongly from one realization of the connectivity
matrix to the other.

Consistently with our DMF description, we find that transitions between attractors be-
come rarer and rarer as the network size N is increased (Fig. 9 b).

We then measure the Fano factor to evaluate the variability in the count of transition events.
Fig. 9 c reveals that, quite robustly with respect to the system size N , the average Fano factor
noisily oscillates around 1.

In a second step, we numerically analyse the two different time scales of network activity
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a.

b. c.

Figure 9: Chaotic activity in finite-size networks reveals transitions between the two bistable
symmetric attractors. a. Samples of activity displaying attractors jumps. Top: activation
variable for five randomly selected units (light blue). Transitions occur at the network level: at
the transition point, every unit jumps from one attractor to the other. Dashed blue line: time-
dependent population average. Middle and bottom: time-dependent population average in
two different trials. The mean activation displays small finite-size fluctuations together with
larger excursions associated with the transitions from one attractor to the other (grey points). b.
The transition rate decays to zero as the network size N is increased. Dashed lines: power-law
best fit. c. Fano factor of the transition point process for different values of the network size
N . For every realization of the network, the jumps count is measured in different windows of
the total integration time T = 15.000. The Fano factor is measured for every realization and
then averaged over Ntr = 30 different networks. Choice of the parameters: ρ = 0, g = 3.,
MmMn = 3.6, Σm = 0.
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a. b.

Figure 10: Dynamics of finite-size networks in the chaotic state are effectively characterized
by two distinct time scales. a. Both time scales depend on the network architecture parameters.
Here, we fix the random strength g = 3 and we increase the structure strength. Below the
leftmost vertical grey line, DMF predicts an homogeneous chaotic regime; above the rightmost
vertical line, two heterogeneous stationary states. Transitions between the two attractors are
expected instead in the intermediate region. The average persistence time τp, measured as the
average time interval between two transitions, grows with the structure strength, and reaches a
plateau corresponding to the total simulation time (horizontal grey line) close to the transition
to stationary states. The second time scale τr is given by the relaxation time scale of chaotic
fluctuations. Pink line: DMF prediction, measured as the full width half maximum of the
auto-correlation function ∆(τ). Pink dots: a rough estimate of τr from finite size networks
is obtained by rectifying the population average signal and we computing the full width half
maximum of its auto-correlation function. b. The transition rate grows monotonically with
the average overlap, measured from within the DMF framework. Choice of the parameters:
ρ = 0, g = 3., Σm = 0, N = 1300.

as the strength of the structured component of the connectivity is increased (Fig. 10 a).
The first dynamical scale is given by the relaxation time constant (τr), which coincides with

the time course of chaotic fluctuations. Its value can be derived within the DMF framework
by computing the time decay of the full auto-correlation function ∆(τ). The second time scale
is the persistence time constant (τp), coinciding with the average time interval separating two
attractors transitions.

When the structure is weak (left region of Fig. 10 a), the network is in the classical ho-
mogeneous chaotic state [127]. The persistence time scale coincides here with the relaxation
time constant of chaotic fluctuations. When the structured and the random components have
comparable strengths, instead, two heterogeneous chaotic phases co-exist (middle region of
Fig. 10 a). In this regime, the average persistence time increases monotonically with the struc-
ture strength. The relaxation time undergoes a very slow increase before sharply diverging
at the boundary with stationary states, but the increase takes place on a much smaller scale.
Finally, if the structure is too strong (right of Fig. 10 a), the two bistable states become sta-
tionary. In this region, τr is formally infinite, while τp coincides with the total duration of our
simulations.

The increase of the persistence length with the structure strength can be linked to the
increase in the phase space distance between the two attractors, centered respectively in µ and
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−µ. Single units trajectories are centered in µ +
√
∆∞ and −µ −

√
∆∞, and span in time

a phase space region of typical radius
√
∆0 −∆∞. If this radius is large enough with respect

to µ, the two attractors significantly overlap and the network activity is likely to explore both
trajectories during the same trial because of self-sustained disordered fluctuations.

We propose a measure for the population-averaged overlap π, and we check that it cor-
relates with the transition frequency that we observe in finite size networks. For every unit,
the typical overlap between its positive and its negative trajectories is given by πi = 2(−µ −√
∆∞z+

√
∆0 −∆∞). So that, averaging across the population: π = 2(−µ+

√
∆0 −∆∞).

When poisitive, π returns an overlap; when negative, it measures a distance between the two
orbits. Finally, when the two chaotic attractors completely, π = 2

√
∆0. We thus define the

average overlap as the normalized quantity:

π =
−µ+

√
∆0 −∆∞√
∆0

(39)

which has a maximum in 1 when the overlap is complete (µ = 0, ∆∞ = 0).
For every set of the architecture parameters, the theoretical expected value of the overlap

can be computed within the DMF framework. In Fig. 10 b we show that, in finite-size
networks, the transition probability between the two chaotic attractors monotonically increases
with the attractors overlap in the phase space.
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Appendix E
Non-Gaussian unit rank structures

Our analysis of random networks with unit rank structures relies on a purely statistical mean
field description. In Section 7.3 we found that, according to the DMF theory, single neuron
activation variables can be approximated by random processes centered around the mean values
µi (we set for simplicity Ii = 0). Because of the χij component of the connectivity, which
is randomly drawn at every trial, the neural activation variable xi fluctuates around µi with
normally distributed deviations of average size

√
∆I

0.
The distribution of mean values µi is inherited by the distribution of the structure eigen-

vector m. When elements mi are normally distributed, the global probability distribution
for the whole network population is given by a convolution of Gaussian distributions, and is
thus Gaussian itself (Fig. 11 a). In this case, as population averages are written as Gaussian
integrals, the DMF equations that we derived are exact.

When m is not a Gaussian vector, the population distribution is in general more complex.
In Fig. 11 b-c, we show the population distribution obtained from finite networks when the
elements in m are uniformly or bimodally distributed. When the random strength g vanishes,
the network distribution coincides with the distribution of m. As g is increased, more and
more quenched disorder is injected in the network activity by the random connectivity term,
and the distribution becomes smoother. When g is sufficiently large, finally, network activity
becomes homogeneous: µi = 0 ∀i (see paragraph 7.3.3), and the population distribution
becomes exactly Gaussian.

At intermediate g values, deriving within the DMF framework the full network distribu-
tion requires some additional effort. However, our theoretically predicted DMF values for the
first- and second-order momenta can still be adopted to reasonably approximate non-Gaussian
distributions. In Fig. 12, we show that indeed the theoretically predicted DMF statistics are
in good agreement with the momenta which are measured in finite-size non-Gaussian net-
works. For the networks we tested, the elements of m are drawn from a uniform or a bimodal
distribution. Finally, note that Gaussian descriptions do not trivially extend to other structure
distributions when the rank of Pij is larger than one. In those conditions, different distribu-
tions can lead to substantially different network dynamics.
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a.

b.

c.

Figure 11: Network activity distribution as the distribution of elements within the structure
eigenvector m is varied. Histograms: distribution of numerically simulated activity in a finite-
size network (N = 3000). Continuous lines: DMF Gaussian prediction. a. Elements of
m are distributed according to a Gaussian distribution. For any value of g, the population
distribution is Gaussian, and is in good agreement with the theoretically predicted probability
density. b-c. When m is not a Gaussian vector, the population distribution is in general not
Gaussian; the agreement with the DMF Gaussian prediction improves as g increases. In b,
elements of m are drawn randomly from a uniform distribution, centered around Mm; in c,
the distribution is bimodal: every mi takes values Mm− δ and Mm+ δ with equal probability.
Choice of the parameters: ρ = 0, MmMn = 2.2.
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a. b.

Figure 12: Validity of the naive DMF description for network models where the distribution
of the structure eigenvector m is not Gaussian. We measure the relative mismatch between the
DMF theoretical prediction and the statistics which are numerically measured in finite-size
networks as the size of the system is increased. Dashed lines: power-law best fit. Details as
in Fig. 7.4 b. a. Elements of m are drawn randomly from a uniform distribution, centered
around Mm. b. The distribution of elements of m is bimodal: every mi takes values Mm − δ
and Mm+δ with equal probability. Choice of the parameters: ρ = 0, g = 0.6, MmMn = 2.2.
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Appendix F
Stability analysis in networks with rank two structures

We address here the stability properties of the stationary states which emerge from the dynam-
ics of networks with generic rank two structures.

For those solutions, the expression of the mean field equations for the first- and second-
order statistics are determined by the geometrical arrangement of the structure and the input
vectors. They have been derived fir different setups in Chapter 8. Similarly to the unit rank
case, the simplest mean field solutions correspond to stationary states, which inherit the struc-
ture of the most unstable eigenvectors of the connectivity matrix Jij . The stability of the
heterogeneous stationary states can be assessed as usual by evaluating separately the value of
the radius (Eq. 7.33) and the position of the outliers of the linear stability matrix Sij .

Similarly to the unit rank case, it is possible to compute the position of the outlier eigen-
values by studying the linearized dynamics of the network statistics close to the fixed point,
that is given by:

d
d t


µ1

∆1
0

κ11
κ12

 = −


µ1

∆1
0

κ11
κ12

+M


µ1

∆1
0

κ11
κ12

 . (40)

Note that, in κlk, the subscript k = 1, 2 refers to the left vector n(k) with which the overlap
is computed, while the superscript l = 0, 1 indicates the order of the perturbation away from
the fixed point.

In order to compute the elements of the linear stability matrixM, we follow and extend the
reasonings that have been discussed in details for the unit rank case. We start by considering
the time evolution of the linearized activity µ1

i , which similarly to Eq. 7.34 reads:

µ̇1
i (t) = −µ1

i +m
(1)
i κ11 +m

(2)
i κ12. (41)

At every point in time, we can write: µt
i = m

(1)
i κ̃t1+m

(2)
i κ̃t2, where κ̃tk is the low-pass filtered

version of κtk: (1 + d / d t)κ̃tk = κtk.
In the case of orthogonal and random structure vectors, we get:

µ̇1(t) = −µ1, (42)
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so that the elements in the first row ofM vanish. In analogy with Eq. 7.53, the linearized
dynamics of ∆0 gives instead:

∆̇1
0 = −∆

1
0 + 2g2⟨[ϕiϕ

′
i]⟩µ1 + g2{⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩}∆1

0 + 2Σ2
mκ01κ

1
1 + 2Σ2

mκ02κ
1
2. (43)

Similarly to the unit rank case (Eq. 7.36), in order to determine the linear response of κ1
we need to compute:

κ11 = ⟨n
(1)
i [x1iϕ

′(x0i )]⟩ = ⟨n
(1)
i µi[ϕ

′
i]⟩ −

(
∆1

0

2
− ⟨µ1

iµ
0
i ⟩ − ⟨µ1

i ⟩⟨µ0
i ⟩
)
⟨n(1)

i [ϕ′′
i ]⟩ (44)

A similar expression can be derived for the second first-order statistics κ12.
In general, the integrals in the r.h.s. can be expressed in terms of the perturbations κ̃11, κ̃12

and ∆1
0, leading to expressions in the form:

κ11 = a11κ̃
1
1 + a12κ̃

1
2 + b1∆

1
0

κ12 = a21κ̃
1
1 + a22κ̃

1
2 + b2∆

1
0.

(45)

Applying the operator (1 + d / d t) to the Eq. 44 allows to reshape the results in the final
matrix form:

M =


0 0 0 0

2g2⟨[ϕiϕ
′
i]⟩ g2

{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2Σ2
mκ01 2Σ2

mκ02
2b1g

2⟨[ϕiϕ
′
i]⟩ b1g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b1Σ
2
mκ01 + a11 2b1Σ

2
mκ02 + a12

2b2g
2⟨[ϕiϕ

′
i]⟩ b2g

2
{
⟨[ϕ′2

i ]⟩+ ⟨[ϕiϕ
′′
i ]⟩
}

2b2Σ
2
mκ01 + a21 2b2Σ

2
mκ02 + a22

 ,

(46)
The values of the constants a and b depend on the geometric arrangement of the structure and
the input vectors. Their value has been computed for different setups throughout Chapter 8.
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Résumé 
Le cortex cérébral des mammifères est constitué de 
larges et complexes réseaux de neurones. La tâche de 
ces assemblées de cellules est d’encoder et de traiter, 
le plus précisément possible, l'information sensorielle 
issue de notre environnement extérieur. De façon 
surprenante, les enregistrements électrophysiologiques 
effectués sur des animaux en comportement ont montré 
que l’activité corticale est excessivement irrégulière. Les 
motifs temporels d’activité ainsi que les taux de 
décharge moyens des cellules varient considérablement 
d’une expérience à l’autre, et ce malgré des conditions 
expér imen ta les so igneusement ma in tenues à 
l’identique. 
Une hypothèse communément répandue suggère 
qu'une partie importante de cette variabilité émerge de 
la connectivité récurrente des réseaux. Cette hypothèse 
se fonde sur la modélisation des réseaux fortement 
couplés. Une étude classique [Sompolinsky et al, 1988] 
a en effet montré qu'un réseau de cellules aux 
connections aléatoires exhibe une transition de phase: 
l’activité passe d'un point fixe ou le réseau est inactif, à 
un régime chaotique, où les taux de décharge des 
cellules fluctuent au cours du temps et d’une cellule à 
l ’autre. Ces analyses soulèvent néanmoins de 
nombreuse questions: De telles fluctuations sont-elles 
encore visibles dans des réseaux corticaux aux 
architectures plus réalistes? De quelle façon cette 
variabilité intrinsèque dépend-elle des paramètres 
biophysiques des cellules et de leurs constantes de 
temps? Dans quelle mesure de tels réseaux chaotiques 
peuvent-ils sous-tendre des computations? 
Dans cette thèse, on étudiera la dynamique et les 
propriétés computationnelles de modèles de circuits de 
neurones à l’activité hétérogène et variable. Pour ce 
faire, les outils mathématiques proviendront en grande 
partie des systèmes dynamiques et des matrices 
aléatoires. Ces approches seront couplées aux 
méthodes statistiques des champs moyens développées 
pour la physique des systèmes désordonnées. 
Dans la première partie de cette thèse, on étudiera le 
rôle de nouvelles contraintes biophysiques dans 
l'apparition d’une activité irrégulière dans des réseaux 
de neurones aux connections aléatoires.  Dans la 
deuxième et la troisième partie, on analysera les 
caractéristiques de cette variabilité intrinsèque dans des 
réseaux partiellement structurées supportant des 
calculs simples comme la prise de décision ou la 
création de motifs temporels. Enfin, inspirés des récents 
progrès dans le domaine de l’apprentissage statistique, 
nous analyserons l’interaction entre une architecture 
aléatoire et une structure de basse dimension dans la 
dynamique des réseaux non-linéaires. Comme nous le 
verrons, les modèles ainsi obtenus reproduisent 
naturellement un phénomène communément observé 
dans des enregistrements électrophysiologiques: une 
dynamique de population de basse dimension combinée 
avec représentations neuronales  irrégulières, à haute 
dimension, et mixtes. 

Mots Clés 
réseaux neuronaux - dynamique des réseaux - théorie 
du champ moyen - variabilité - neurosciences 
computationnelles 

Abstract 
The mammalian cortex consists of large and intricate 
networks of spiking neurons. The task of these 
complex recurrent assemblies is to encode and 
process with high precision the sensory information 
which flows in from the external environment. 
Perhaps surprisingly, electrophysiological recordings 
from behaving animals have pointed out a high 
degree of irregularity in cortical activity. The patterns 
of spikes and the average firing rates change 
dramatically when recorded in different trials, even if 
the experimental conditions and the encoded sensory 
stimuli are carefully kept fixed.  
One current hypothesis suggests that a substantial 
fraction of that variability emerges intrinsically 
because of the recurrent circuitry, as it has been 
o b s e r v e d i n n e t w o r k m o d e l s o f s t r o n g l y 
interconnected units. In particular, a classical study 
[Sompolinsky et al, 1988] has shown that networks of 
randomly coupled rate units can exhibit a transition 
from a fixed point, where the network is silent, to 
chaotic activity, where firing rates fluctuate in time 
and across units. Such analysis left a large number 
of questions unsolved: can fluctuating activity be 
observed in realistic cortical architectures? How does 
variability depend on the biophysical parameters and 
t ime sca les? How can re l iab le in format ion 
transmission and manipulation be implemented with 
such a noisy code?  
In this thesis, we study the spontaneous dynamics 
and the computational properties of realistic models 
of large neural circuits which intrinsically produce 
highly variable and heterogeneous activity. The 
mathematical tools of our analysis are inherited from 
dynamical systems and random matrix theory, and 
they are combined with the mean field statistical 
approaches developed for the study of physical 
disordered systems.  
In the first part of the dissertation, we study how 
strong rate irregularities can emerge in random 
networks of rate units which obey some among the 
biophysical constraints that real cortical neurons are 
subject to. In the second and third part of the 
dissertation, we investigate how variability is 
characterized in partially structured models which 
can support  simple computations like pattern 
generation and decision making. To this aim, inspired 
by recent advances in networks training techniques, 
we address how random connectivity and low-
dimensional structure interact in the non-linear 
network dynamics. The network models that we 
derive naturally capture the ubiquitous experimental 
observations that the population dynamics is low-
dimensional, while neural representations are 
irregular, high-dimensional and mixed. 
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