
HAL Id: tel-01820700
https://theses.hal.science/tel-01820700

Submitted on 6 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning: The Multi-Player Case
Julien Pérolat

To cite this version:
Julien Pérolat. Reinforcement Learning: The Multi-Player Case. Artificial Intelligence [cs.AI]. Uni-
versité de Lille 1 - Sciences et Technologies, 2017. English. �NNT : �. �tel-01820700�

https://theses.hal.science/tel-01820700
https://hal.archives-ouvertes.fr

Université des Sciences et des Technologies de Lille
École Doctorale Sciences Pour l’Ingénieur

Thèse de Doctorat

préparée au sein du laboratoire CRIStAL, UMR 9189 Lille 1/CNRS

Spécialité : Informatique

présentée par
Julien PEROLAT

Reinforcement Learning:
The Multi-Player Case

sous la direction de Olivier PIETQUIN

Soutenue publiquement à Villeneuve d’Ascq, le 18 decembre 2017 devant le jury composé de :

D. ERNST Université de Liège Rapporteur
D. PRECUP Université McGill Rapporteur
O. PIETQUIN DeepMind Directeur
L. DUCHIEN Université de Lille Examinateur
R. ORTNER Université de Leoben Examinateur
B. PIOT DeepMind Examinateur
B. SCHERRER Inria Examinateur
K. TUYLS Université de Liverpool Examinateur

English title: Reinforcement Learning : The Multi-Player Case

Mots clés: apprentissage automatique, algorithmes, intelligence artificielle, appren-
tissage par renforcement, théorie des jeux, apprentissage multi-agent.

Key words: machine learning, algorithm, artificial intelligence, reinforcement learn-
ing, game theory, multi-agent learning.

Acknowledgement &
Remerciements

Ce manuscrit de thèse a vu le jour grâce à l’aide de nombreuses personnes que je
tiens à remercier. En premier lieu, je remercie mon directeur de thèse Olivier Pietquin
qui m’a accompagné durant ces trois années. Je tiens aussi à remercier Bilal Piot et
Bruno Scherrer pour leur soutien dès le premier jour. Je n’oublie pas Marie-Annick et
Hugh Gash qui ont relu et corrigé une grande partie de ce manuscrit. Cette thèse doit
aussi beaucoup à l’environnement qu’est l’équipe SequeL dirigé par Philippe Preux. Je
souhaite bien sur remercier les permanents de cette équipe: Michal, Emilie, Odalric,
Romaric, Jérémie, Alessandro, Danil ainsi que les doctorants avec qui j’ai partagé une
partie de cette thèse Florian, Alexandre, Daniele, Marc, Merwan, Pratik, Frederic,
Tomas, Hadrien, Marta, Lilian, Nicolas, Ronan, Jean-Bastien, Guillaume et Romain
pour les tous les bons moments passés ensemble. Cette thèse m’a permis d’effectuer un
stage à DeepMind où j’ai eu l’opportunité de travailler dans l’équipe de Thore Graepel
que je tiens à remercier ainsi que les chercheurs et ingénieurs avec qui j’ai pu travailler
Joel, Karl, Marc et Vinicius. Je terminerai en remerciant ma famille pour la constance
de son soutien tout au long de ces longues années d’étude.

Abstract.

This thesis mainly focuses on learning from historical data in a sequential multi-agent
environment. We studied the problem of batch learning in Markov games (MGs).
Markov games are a generalization of Markov decision processes (MDPs) to the multi-
agent setting. Our approach was to propose learning algorithms to find equilibria in
games where the knowledge of the game is limited to interaction samples (also named
batch data). To achieve this task, we explore two main approaches.

The first approach explored in this thesis is to study approximate dynamic pro-
gramming techniques. We generalize several batch algorithms from MDPs to zero-sum
two-player MGs. This part of our work generalizes several approximate dynamic pro-
gramming bounds from a L∞-norm to a Lp-norm. Then we describe, test and compare
algorithms based on those dynamic programming schemes. But these algorithms are
highly sensitive to the discount factor (a parameter that controls the time horizon of
the problem). To improve those algorithms, we studied many non-stationary variants
of approximate dynamic methods to the zero sum two player case. In the end, we
show that using non-stationary strategies can be used in general sum games. However,
the resulting guarantees are very loose compared to the one on MDPs or zero-sum
two-player MGs.

The second approach studied in this manuscript is the Bellman residual approach.
This approach reduces the problem of learning from batch data to the minimization of
a loss function. In a zero-sum two-player MG, we prove that using a Newton’s method
on some Bellman residuals is either equivalent to the Least Squares Policy Iteration
(LSPI) algorithm or to the Bellman Residual Minimizing Policy Iteration (BRMPI)
algorithm. We leverage this link to address the oscillation of LSPI in MDPs and in
MGs. Then we show that a Bellman residual approach could be used to learn from
batch data in general-sum MGs.

Finally in the last part of this dissertation, we study multi-agent independent learn-
ing in Multi-Stage Games (MSGs). We provide an actor-critic independent learning
algorithm that provably converges in zero-sum two-player MSGs and in cooperative
MSGs and empirically converges using function approximation on the game of Alesia.

Contents

1 Summary of the Notations . 1

Part I. Introduction, Background, and Related Work 3

Chapter 1 Introduction 5

1 Structure of the dissertation . 7
2 Contributions . 8

Chapter 2 Background and Related Work 11

1 Markov Decision Processes . 11
1.1 Exact Algorithms . 15

1.1.1 Value Iteration . 15
1.1.2 Policy Iteration . 15
1.1.3 Modified Policy Iteration 16
1.1.4 Minimization of the Bellman Residual 16

1.2 Batch Algorithms . 17
1.2.1 Fitted-Q iteration and Neural Fitted-Q 17
1.2.2 Least Squares Policy Iteration and Bellman Residual

Minimizing Policy Iteration 18
1.2.3 Approximate Modified Policy Iteration 21
1.2.4 Bellman Residual Minimization 23

1.3 Online Learning in MDPs . 24
1.3.1 Q-learning . 24
1.3.2 SARSA . 25

2 Normal-Form Games . 25
2.1 Nash equilibrium: . 26
2.2 Zero-Sum Normal-Form Games 26

3 General-Sum Markov Games . 27
3.1 Nash Equilibrium ε-Nash Equilibrium 29
3.2 Bellman Operator in General-Sum Games 30
3.3 Zero-Sum Two-Player Markov Games 30
3.4 Exact Algorithms for Zero-Sum Two-Player Markov-Games . . . 32

3.4.1 Value Iteration . 32
3.4.2 Policy Iteration by Hoffman and Karp 33
3.4.3 The Algorithm of Pollatschek and Avi-Itzhak 34
3.4.4 Generalized Policy Iteration 34

VIII Contents

3.4.5 Minimizing the Bellman Residual: Filar and Tolwin-
ski’s Algorithm . 35

3.5 Batch Algorithms for Zero-Sum Two-Player Markov-Games . . . 36
3.5.1 Least-Squares Policy Iteration 36

3.6 Exact Algorithms for General-Sum Markov-Games 37
3.7 Independent Reinforcement Learning for Markov Games 38

3.7.1 Q-Learning Like Algorithms 39
3.7.2 Independent Policy Gradient 39
3.7.3 Fictitious Play . 39

Part II. Approximate Dynamic Programming in Zero-Sum
Two-Player Markov Games 41

Chapter 3 Approximate Dynamic Programming in Games 43

1 Approximate Dynamic Programming: A Unified Scheme 43
1.1 Approximate Generalized Policy Iteration 44
1.2 Error Propagation . 44

2 Empirical Evaluation . 49
2.1 Algorithm . 49
2.2 Analysis . 50
2.3 Complexity analysis . 51
2.4 The Game of Alesia . 51

3 Conclusion and Perspectives . 53
4 Appendix: Demonstration of Lemma 3.2 55

4.1 Demonstration of Theorem 3.1 58
5 Appendix: Bound for AGPI-Q . 60
6 Appendix: Experiments . 61

6.1 Mean square error between approximate value and exact value . 61
6.2 Exact value function, approximate value function and error for

N = 10000 . 61

Chapter 4 Improved Approximate Dynamic Programming Algorithms
using non-stationary Strategies 63

1 Non-Stationary Strategy in Zero-Sum Two-Player Markov Games . . . 63
2 Algorithms . 66

2.1 Value Iteration and Non-Stationary Value Iteration 66
2.2 Policy Search by Dynamic Programming (PSDP) 68
2.3 Non Stationary Policy Iteration (NSPI(m)) 70

Contents IX

2.4 Summary . 71
3 Empirical Evaluation . 71
4 A Comparison . 76
5 Conclusion . 78
6 Appendix: NSVI . 79
7 Appendix: PSDP . 82

7.1 Appendix: PSDP2 . 83
7.2 Appendix: PSDP1 . 84

8 Appendix: NSPI . 85
9 Appendix: Figures . 87

Chapter 5 On the use of non-stationary strategies 91

1 Background on Cyclic Strategies and Nash Equilibrium 92
2 The Value Iteration Algorithm for General-Sum MGs 93
3 Illustrating example of lower bound . 94
4 Approximate Value Iteration . 96
5 Experiments . 97
6 Conclusion . 99
7 Proof of Theorem 5.1 . 100
8 Proof of Theorem 5.2 . 100

Part III. Learning in Games : A Bellman Residual Ap-
proach 103

Chapter 6 Bellman Residual Minimization in Zero-Sum Games 105

1 Background . 106
2 Newton’s Method on the OBR with Linear Function Approximation . . 107

2.1 Newton’s Method on the POBR 108
2.2 Newton’s Method on the OBR 109
2.3 Comparison of BRMPI and Newton-LSPI 110

3 Batch Learning in Games . 110
3.1 Newton-LSPI with Batch Data 111
3.2 BRMPI with Batch Data . 111

4 Quasi-Newton’s Method on the OBR and on the POBR 111
5 Experiments . 113

5.1 Experiments on Markov Decision Processes 114
5.2 Experiments on Markov Games 115

X Contents

6 Conclusion . 115
7 Appendix . 118

7.1 Remark . 118
7.2 Proof of Theorem 6.1 . 119
7.3 Proof of Theorem 6.2 . 120

8 Computation of the Gradient and of the Hessian 121

Chapter 7 Bellman Residual Minimization in General-Sum Games 123

1 Nash, ε-Nash and Weak ε-Nash Equilibrium 123
2 Bellman Residual Minimization in MGs 125
3 The Batch Scenario . 126
4 Neural Network Architecture . 128
5 Experiments . 128
6 Conclusion . 132
7 Proof of the Equivalence of Definition 2.4 and 7.1 134
8 Proof of Theorem 7.1 . 134
9 Additional curves . 135

Part IV. Independent Learning in Games 139

Chapter 8 Actor-Critic Fictitious Play 141

1 Specific Background . 141
2 Actor-Critic Fictitious Play . 144
3 Fictitious play in Markov Games . 145
4 Stochastic Approximation with Two-Timescale 148
5 Experiment on Alesia . 150
6 Conclusion . 152
7 Proof of Lemma 8.2 . 153
8 Proof of Theorem 8.1 . 153
9 Convergence in Cooperative Multistage Games 155
10 Proof of proposition 1 . 155
11 Proof of Proposition 2 . 156
12 Proof of Proposition 3 . 156
13 Analysis of Actor-Critic Fictitious Play 156
14 On the Guarantees of Convergence of OFF-SGSP and ON-SGSP 157

Part V. Conclusions and Future Work 159

Contents XI

1 Conclusion . 161
2 Future Work . 162

Bibliography 165

Summary of the Notations

1 Summary of the Notations
This section we will summarize the definitions and notations introduced in this chapter.
It provides a recapitulation of all general notations and a table comparing the cases of
MDPs, zero-sum two-player MGs and general-sum MGs.

1.1 General Notations
• the set ∆A is the set of the probability distributions on A,

• N the set of integer {0, 1, 2, . . .},

• R the set of real numbers,

• |S| the cardinal of set S,

• 1s̃ is the function defined on S, such that 1s̃(s) = 1 if s̃ = s and 0 otherwise,

• the L+∞-norm is defined as ‖f‖+∞ = sup
x∈X

f(x),

• I is the identity,

• the Lp-norm of the function f (written ‖f‖p) is ‖f‖pp = ∑
x∈X

f(x)p

• The Lρ,p of function f is ‖f‖ρ,p is defined here as ‖f‖pρ,p = ∑
x∈X

ρ(x)f(x)p

• a ∼ π means that a is a random variable drawn according to the law π

1.2 Statistic:
• Unbiased estimator: an estimator θ̂n of the quantity θ is said to be unbiased if
E
[
θ̂n
]
− θ = 0.

• Consistent estimator: an estimator is said to be consistent if lim
n→+∞

θ̂n − θ in
probability.

1.3 Reinforcement Learning and Multi-Agent Reinforcement
Learning Notations

2 Contents

Table 1 – Reinforcement Learning and Multi-Agent Reinforcement Learning Notations

MDP zero-sum two-player MGs general-sum MGs
State space S S S

Number of player 1 2 N

Action space A A1, A2 {Ai}i∈{1,...,N}
reward r(s, a) r(s, a1, a2) r(s,a)
policy π(a|s) µ(a1|s), ν(a2|s) {πi(a|s)}i∈{1,...,N}
kernel p(s′|s, a) p(s′|s, a1, a2) p(s′|s,a)

reward averaged rπ(s) rµ,ν(s) {riπ(s)}i∈{1,...,N}
kernel averaged Pπ(s′|s) Pµ,ν(s′|s) Pπ(s′|s)
kernel Q-function Pπ(s′, a|s) Pµ,ν(s′, b1, b2|s, a1, a2) Pπ(s′, b|s,a)
value function vπ = (I − γPπ)−1 rπ vµ,ν = (I − γPµ,ν)−1 rµ,ν viπ = (I − γPπ)−1 riπ
Q-function Qπ = (I − γPπ)−1 r Qµ,ν = (I − γPµ,ν)−1 r Qi

π = (I − γPπ)−1 ri

Part I

Introduction, Background, and
Related Work

Chapter 1

Introduction

In many areas of research and industry, interaction data are collected. For example,
many databases record professional games of chess, checkers or go. In many areas of
industry, records of interactions between humans or between human and machines are
logged. These data demonstrate an empirical knowledge of the rules of an interaction
that can’t necessarily be explained. For example, it can be hard to program a machine
to interact with a human. We intend to study whether or not it is possible to learn
an interaction strategy from these data. We will take a machine learning perspective
on this problem. We will design and evaluate algorithms to learn interaction strategies
from data without prior knowledge.

This document is devoted to the study of reinforcement learning methods in
multi-agent environments. In reinforcement learning, machines are not explicitly pro-
grammed to perform a task but have to learn through a numerical reward to perform
well. From a single agent environment to multi-agent environments, a large amount of
problems can be studied and many agendas can be followed. The range of problems
arising in multi-agent systems goes from the study of communication to the emer-
gence of coordination and includes game theoretic equilibrium computation. There is
a trove of scientifically relevant problems that are worth studying in multi-agent sys-
tems. First, we shall specify the agenda this work contributes to. In this thesis, we
take a game theoretic approach to multi-agent learning. In classical game theory, each
game player is supposed to know the rules of the game and is aware of the strategies
each player can play and of their pay-off. This thesis shows that a machine can learn
equilibria in games if the knowledge of the game is limited to samples.

In the single agent case, it is fairly straightforward to define what should be learnt.
A single agent should learn how to behave in order to collect maximum rewards. In the
multi-agent case, the optimal behaviour of a player must take into account the other
players. If one agent changes its strategy, the others must adapt to this new strategic
interaction. Co-adaptation is the reason why multi-agent systems are fundamentally
different from single-agent systems. Despite the fact that players can adapt to changes
of their opponents, one can still define stable strategic interaction called equilibrium
in game theory. An equilibrium is a solution concept where players do not have an
incentive to vary their current strategy even if they could. Equilibria have played a
central role in the development of game theory and this thesis will study two forms
of equilibria i.e., the minimax solution and the Nash equilibrium. In zero-sum games,
the canonical solution concept is the minimax strategy which guarantees a minimal
pay-off to a player whatever the opponent does. It also stands that if both players play
their counterpart of the equilibrium, none of them will have an incentive to shift from

6 Chapter 1. Introduction

their current strategy. However, interactions are not necessarily purely adversarial in a
complex multi-agent systems, players might pursue similar objectives in some situations
and might have opposed ones in others. When no reward structure is assumed, the game
is called a general-sum game as opposed to zero-sum two-player games. In general-sum
games, when players choose their strategy secretly and independently the solution
concept that is considered is the Nash equilibrium. Again, in a Nash equilibrium, no
player has an incentive to switch from their current strategy but the goal is not to
exploit the strategy of the others. Our aim is to find a strategy for each player such
that none of them have an incentive to switch. However, in general sum games, playing
a Nash equilibrium does not guarantee a minimal pay-off but it makes cooperation
possible where the minimax solution explicitly prevents it by considering a worst case
scenario.

Markov Games

Markov
Decision
Processes

Multistage
game

Normal
form
Games

Figure 1.1 – Representation of the class of
model we consider

However, one major drawback of clas-
sical game theory is that one needs to
have a perfect knowledge of the interac-
tion between all players. In a general-sum
game, all players must know their own re-
ward and the reward of the opponents to
find a Nash equilibrium. But, in many
situations this knowledge is not available
and can only be observed through past
interactions or while playing the game.
The first case is named the batch scenario
and is the focus of the main part of this
dissertation. The second case is the on-
line scenario and is explored later. In the
batch scenario, the only information on
the game available to learn a strategy for
all players are historical interaction data
between players. For example, the usual
way to teach chess is to first explain the
rules of the game and then to give a few
basic strategies. However, we won’t teach
the machine that way since this method

is game specific and since it uses game specific knowledge. As a comparison, instead of
giving the machine the rules of the game, we give it details of several games and their
outcome. The class of algorithms studied here leverage this historical information to
learn an optimal strategy without being told the rules of the game. The second case
studied in this thesis is independent reinforcement learning. In this setting agents no
longer have access to historical data and must learn their strategy online while inter-
acting with other learning agents. Agents are blind to each other’s actions and only
receive their own reward signal.

In the end, since the knowledge of the system in which players interact is limited to

1. Structure of the dissertation 7

samples of interaction, finding an exact Nash equilibrium or an exact minimax solution
of the game will not be possible. We will learn these equilibria from interaction samples.
To understand to what extent this can be done, we will need to analyse the impact
this approximate knowledge of the game has on the solution.

1 Structure of the dissertation
The next chapter (Chapter 2) introduces the necessary background to game theory,
reinforcement learning, and machine learning used in the dissertation. We provide an
historical overview of the existing Dynamic Programming (DP) techniques to solve
Markov Decision Processes (MDPs) and zero-sum two-player MGs. We also exhibit
links between Bellman residual minimization and DP. Finally, we provide an overview
of independent RL in games. The rest of the document is organized in three parts and
six chapters.

The second part (Part II) of this manuscript is dedicated to the study of Ap-
proximate Dynamic Programming (ADP) techniques to learn from batch data. In
Chapter 3 we introduce a novel family of batch algorithms based on a generic ADP
scheme Approximate Generalized Policy Iteration (AGPI) that includes Approximate
Value Iteration (AVI) and Approximate Policy Iteration (API). These algorithms are
approximate since our knowledge of the game is limited to samples. These errors accu-
mulate from one iteration to an other and have an impact on the accuracy of the final
solution of the algorithm. We provide a unified sensitivity analysis of these algorithms
to errors and provide an empirical evaluation of the algorithm on the game of Alesia.
Chapter 4 explores the use of non-stationary (cyclic) strategies to reduce the sensitivity
of the error on the final solution. We show that there is an explicit trade-off between
the size of the cycle and the quality of the final solution. Finally, in Chapter 5, we
study to which extend using non stationary strategies can be used to solve general-sum
MGs. In this case the size of the cyclic strategy is the only factor that improves the
solution. Whilst in MDPs and in zero-sum two player MGs the number of iterations
was improving the solution, this is not the case for general-sum MGs.

The third part of this dissertation (Part III) studies a Bellman residual approach to
learn from batch data. In zero-sum two-player MGs (Chapter 6) we draw connections
between an existing and unstable algorithm LSPI and Newton’s method on the Bellman
residual. We leverage this connection to improve these algorithms and provide two
stable and efficient algorithms. Then, in Chapter 7, we propose a Bellman residual
approach to learn stationary Nash equilibria from batch data in general-sum MGs
(whilst Chapter 5 only provides a method to learn a non-stationary strategy).

Although this thesis mainly treat the batch scenario, we also are interested in
how agents can reach an equilibrium while acting independently and online. Finding
independent learning algorithms for cooperative and competitive scenarios is usually
treated as a separate agenda in multi-agent RL and we propose in Part IV a unified
learning rule that applies in both cooperative multi-stage games and in competitive
multi-stage games.

8 Chapter 1. Introduction

2 Contributions

The mathematical model we consider to study multi-agent interaction is a Markov game
(or stochastic game). It generalizes MDPs to multi-agent systems. A Markov Game
(MG) is a temporally and spatially extended model of interaction betweenN players. It
is composed of a state space S which contains all the states s in which agents can be. In
every state s, players simultaneously take an action ai in a set Ai(s). As a result of this
joint action (a1, . . . , aN), each player receives a reward ri(s, a1, . . . , aN) and the system
moves to the following state s′ with a probability defined by the transition kernel
p(s′|s, a1, . . . , aN). Usually in these settings, each player’s goal is to find a strategy
πi(.|s) to maximize a long term objective. The long term objective studied in this
thesis is the expected sum of γ discounted rewards (γ ∈ [0, 1[). Reinforcement learning
is usually studied with a single agent using MDPs as a model while the canonical
model used in standard game theory focuses on normal form games which is an MG
with a single state. An-other common model studied in game theory are tree structured
games named here multi-stage games. Multi-stage games are MGs with a probability
transition function that forbids to visiting the same state twice. As an example, an
MDP can model single agent problems such as Atari games, normal form games can
model games such as rock-paper-scissors or the prisoner dilemma, and a multi-stage
game can model the game of Alesia (also known as Oshi-zumo).

The rest of this section sums up the contributions of this thesis. Most of this work
is published or under review.

Approximate Dynamic Programming for Zero-Sum Two-Player Markov
Games: Chapter 3 provides an analysis of error propagation in Approximate
Dynamic Programming applied to zero-sum two-player Stochastic Games. We provide
a novel and unified error propagation analysis in Lp-norm of three well-known
algorithms adapted to Stochastic Games (namely Approximate Value Iteration,
Approximate Policy Iteration and Approximate Generalized Policy Iteration). We
analyse it’s sensitivity to value function approximation error and greedy error on the
final solution. In addition, we provide a practical algorithm (AGPI-Q) to solve infinite
horizon γ-discounted two-player zero-sum Stochastic Games in a batch setting. This
is an extension of the Fitted-Q algorithm (which solves Markov Decisions Processes
from data) and can be non-parametric. Finally, we demonstrate experimentally the
performance of AGPI-Q on a simultaneous two-player game, namely Alesia.

Pérolat, J. Scherrer, B. Piot, B. Pietquin, O, Approximate Dynamic Programming
for Two-Player Zero-Sum Markov Games. In Proceedings of ICML (2015)

Improved Error Propagation Bounds Using Non-Stationary Strategies:
Chapter 4 extends several non-stationary Reinforcement Learning (RL) algorithms
and their theoretical guarantees to the case of γ-discounted zero-sum Markov Games
(MGs). As in the case of Markov Decision Processes (MDPs), non-stationary algo-

2. Contributions 9

rithms are shown to exhibit better performance bounds compared to their stationary
counterparts. This chapter empirically demonstrates, on generic MGs (called Garnets),
that non-stationary algorithms outperform their stationary counterparts. In addition,
we show that performance mostly depends on the nature of the propagation error.
Indeed, algorithms where the error is due to the evaluation of a best-response are
penalized (such as policy iteration like algorithms) compared to those suffering from
a regression error (such as value iteration like algorithms) even if they exhibit better
concentrability coefficients and dependencies on γ.

Pérolat, J. Piot, B. Scherrer, B. Pietquin, O, On the Use of Non-Stationary Strate-
gies for Solving Two-Player Zero-Sum Markov Games. In Proceedings of AISTATS
(2016)

Non-Stationary Strategies in general sum Markov Games: In Chapter 5
we analyse the use of non-stationary strategies in general sum MGs. The value
iteration algorithm is known, in the context of Markov Decision Processes (MDPs)
and zero-sum two-player MGs, to iteratively build a sequence of stationary strategies
converging toward an optimal one. Usually, only the last strategy is used to behave by
the agents. However, in general-sum MGs, running this stationary strategy does not
guarantee convergence to a Nash equilibrium. We show that, if one runs the m last
strategies in a cycle, there is convergence to an ε-Nash equilibrium where ε depends
on the size of the cycle. This bound compares poorly with the MDPs case and the
zero-sum two-player MG case since it does not improve with the number of itera-
tions of the algorithm. This result is tight up to a constant and thus can’t be improved.

Pérolat, J. Piot, B. Pietquin, O., A Study of Value Iteration with Non-Stationary
Strategies in General Sum Markov Games. Learning, Inference and Control of Multi-
Agent Systems. NIPS workshop (2016)

Bellman Residual in Zero-Sum Two-Player Markov Games: Chapter 6
reports theoretical and empirical investigations on the use of quasi-Newton methods
on two kinds of Bellman residual. First, we demonstrate that existing approximate
policy iteration algorithms for MGs and MDPs are Newton’s method on different
kinds of Bellman residual. Consequently, new algorithms are proposed, making use
of quasi-Newton methods to minimize the Optimal Bellman Residual (OBR) and the
Projected OBR (POBR) so as to benefit from enhanced empirical performances at low
cost. Indeed, using a quasi-Newton method approach introduces slight modifications
in terms of coding on those policy iteration algorithms and improves significantly
both their stability and their performance. These phenomena are illustrated in an
experiment conducted on artificially constructed games called Garnets.

Pérolat, J. Piot, B. Geist, M. Scherrer, B. Pietquin, O., Softened Approximate
Policy Iteration for Markov Games. In Proceedings of ICML (2016)

10 Chapter 1. Introduction

Learning Nash Equilibrium in Markov Games: Chapter 7 reports a method
to learn a Nash equilibrium in γ-discounted multiplayer general-sum Markov Games
(MGs) in a batch setting. We introduce a new definition of the ε-Nash equilibrium
in MGs which grasps the strategy’s quality for multiplayer games. We prove that
minimizing the norm of two Bellman-like residuals implies learning such an ε-Nash
equilibrium. Then, we show that minimizing an empirical estimate of the Lp norm of
these Bellman-like residuals allows learning for general-sum games within the batch
setting. Finally, we introduce a neural network architecture that successfully learns a
Nash equilibrium in generic multiplayer general-sum turn-based MGs. This work was
done with Florian Strub who focused on the empirical evaluation of the method.

Pérolat, J. Strub, F. Piot, B. Pietquin, O.,Learning Nash Equilibrium for General-
Sum Markov Games from Batch Data. In Proceedings of AISTATS (2017)

Actor-Critic Fictitious Play: Finally, Chapter 8 makes contributions to indepen-
dent learning in games. We propose an actor-critic algorithm based on the Fictitious-
play process. Our work defines a novel actor-critic method that provably converges in
both zero-sum two-player and cooperative multi-stage games. This work is currently
under review.

Chapter 2

Background and Related Work

Markov Games (MGs) introduced by Shapley (Shapley, 1953) are a generalization of
Markov Decision Processes (MDPs) introduced by Bellman (Bellman, 1957). As many
of the algorithms employed to solve MGs are either a generalization of algorithms for
MDPs or rely on algorithms for MDPs, the first section (Section 1) of this chapter
will attempt to sum up existing work in the reinforcement learning community. This
part will mostly focus on batch and on online learning algorithms. Then, in Section 2,
normal-form games are described. This section introduces basic techniques to solve
zero-sum two-player normal-form games which will be used as a subroutine in some
algorithms for zero-sum two-player MGs. In Section 3, we introduce general-sum MGs.
This section will emphasize the special case of zero-sum two-player MGs and introduce
specific notation as it is the focus of Chapters 3, 4 and 6.

1 Markov Decision Processes
AMarkov Decision Process (MDP) is the canonical model of sequential decision making
under uncertainty as it is a temporally and spatially extended single-agent process. The
situation is the following, an agent lies in a state space S (here we only consider discrete
state spaces). At time t, the agent is in state s = st and has to choose an action a = at
in the finite set A of possible actions in state s. As a result, the agent receives a reward
rt = r(st, at) and the state moves to state st+1 with the probability p(.|st, at). This
model is a reductionist interaction model in multiple ways: first it assumes that the
environment is stationary (i.e. the reward function r(s, a) and the transition kernel
p(.|s, a) do not depend on the time t), second it assumes that no information is hidden
from the agent (i.e. the agent completely knows the state of the environment). Finally,
γ ∈ [0, 1[is the discount factor of the MDP, it controls the horizon of the agent 1

1−γ (i.e.
which is the horizon at which the agent will attempt to accumulate the maximum sum
of rewards). In the end, an MDP M is fully represented by a tuple < S,A, r, p, γ >.

In such an environment, the goal of each agent is to find a policy. This is a decision
rule an agent will apply in an MDP. This rule may depend on time, on the history of
states, on the history of actions and on the history of rewards. It might be deterministic
or stochastic. In an MDP, since the dynamics and the reward are Markovian (i.e. they
only depend on the current state and action), the policy does not need to be history
dependent (Puterman, 1994). In technical terms, a policy {πt(.|s)}t∈N (here a non-
stationary policy) is (for a fixed t) a mapping from a state to a distribution on the
action space S → ∆A (where ∆A is the set of distributions over A and N is the set
of positive integers {0, 1, 2, . . .}). The situation is the following: the process starts at

12 Chapter 2. Background and Related Work

state s0 and the agent chooses an action a0 with probability π0(.|s0). The agent receives
a reward r0 = r(s0, a0) and the environment moves to a next state s1. This process is
repeated sequentially and produces a sequence of states s0, s1, s2, . . . , st, . . . , a sequence
of actions a0, a1, a2, . . . , at, . . . and a sequence of rewards r0, r1, r2, . . . , rt, The goal
of the agent is to cumulate a maximum amount of rewards over time. The criterion we
will study in this dissertation is the expected γ-discounted sum of rewards written as
v{πt}t∈N(s) where {πt}t∈N is the policy of the agent (in the following expression a ∼ π

means that a is a random variable that behaves according to the law π).

v{πt}t∈N(s) = E

[+∞∑
t=0

γtr(st, at)|s0 = s, at ∼ πt(.|st), st+1 ∼ p(.|st, at)
]
. (2.1)

The goal of an agent is to find a policy {πt}t∈N that maximizes the value function
v{πt}t∈N . A policy that satisfies that condition is said to be optimal. The set of optimal
policies is not empty and contains at least one stationary policy (i.e., that does not
depend on time) (Puterman, 1994). Usually, the purpose of an agent is to find a
stationary policy π since it is easier to store a time independent policy rather than
a non-stationary one. However, it might be easier to find a good policy in the set of
non-stationary policies rather than in the set of stationary ones (Scherrer and Lesner,
2012). In the case of a stationary policy, the value function is defined as follows:

vπ(s) = E

[+∞∑
t=0

γtr(st, at)|s0 = s, at ∼ π(.|st), st+1 ∼ p(.|st, at)
]
. (2.2)

The value function achieved by an optimal policy is called the optimal value function
and is defined as follows:

v∗(s) = max
{πt}t∈N

v{πt}t∈N(s) = max
π

vπ(s). (2.3)

In addition to the value function, one usually defines the state-action value function
or Q-function written Qπ(s, a) for a stationary policy π. The Q-function Qπ(s, a)
corresponds to the expected γ-discounted return starting from state s if the agent
takes a as the first action and then selects his next action according to the policy π.

Qπ(s, a) = E

[+∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, at ∼ π(.|st), st+1 ∼ p(.|st, at)
]
, (2.4)

= r(s, a) + γ
∑
s′∈S

p(s′|s, a)vπ(s′). (2.5)

One can also define an optimal state-action value function as follow:

Q∗(s, a) = max
π

Qπ(s, a), (2.6)

= r(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s′). (2.7)

Note that several policies might achieve such an optimal value function or Q-
function. We will often write an optimal policy π∗.

1. Markov Decision Processes 13

Stochastic Matrices and Linear Algebra: To ease the notations and to simplify
the proofs, we will see the value function as a vector of R|S| in the canonical basis
{1s}s∈S (R is the set of real numbers, |X| is the cardinal of the set X and 1s is
the function such that 1s(s) = 1 and ∀s̃ 6= s, 1s(s̃) = 0). These notations will
be introduced using a linear kernel for the sake of generality. Obviously, the vector
vπ = ∑

s∈S
1svπ(s). In this vector space, the vector rπ = ∑

s∈S
1sEa∼π(.|s) [r(s, a)]. The

probability transition kernel Pπ is the stochastic matrix that defines the following
linear transformation:

Pπv =
∑
s∈S

1s
∑
s′∈S

Ea∼π(.|s) [p(s′|s, a)] v(s′). (2.8)

Furthermore, we will define ra = ∑
s∈S

1sr(s, a) and Pav = ∑
s∈S

1s
∑
s′∈S

p(s′|s, a)v(s′)
and pπ(s′|s) = Ea∼π(.|s) [p(s′|s, a)]. With these notations we can define the value func-
tion as follows:

vπ = (I − γPπ)−1 rπ, where I is the identity application. (2.9)

This property is a direct consequence of eq. 2.13 defined below.

Bellman Operator: The key tools of dynamic programming are the so called Bell-
man operators. The first Bellman operator depends on a policy π and can be thought
of as the solution to a one-step evaluation problem. Its application on the value v
produces the value function [Tπv] which is the expected return of the following game:
the agent chooses an action a with probability π(.|s) and receives the random pay-off
r(s, a) + γv(s′) (where s′ ∼ p(.|s, a)). It is a linear operator and is defined as follows:

[Tπv] (s) = rπ(s) + γ
∑
s′∈S

pπ(s′|s)v(s′). (2.10)

Since this operator is linear in the value function, it can be written with the tools
defined in the previous paragraph:

[Tπv] = rπ + γPπv. (2.11)

The second Bellman operator is non-linear. Its value [T ∗v] for the value function v
is the optimal return the agent can get in the game described above. It is often called
the optimal Bellman operator and is defined as follows:

[T ∗v] (s) = max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′)
 . (2.12)

These two operators are γ-contractions with respect to the L+∞-norm. Here the
L+∞-norm of function f : X → R is defined as ‖f‖+∞ = sup

x∈X
f(x). This property

of the optimal Bellman operator is leveraged in the value iteration algorithm (see
Section 1.1.1). Thus, each of these two operators admits a unique fixed point. The

14 Chapter 2. Background and Related Work

fixed point of Tπ is vπ and the fixed point of T ∗ is v∗. Meaning we have the two
following identities:

Tπvπ = vπ, (2.13)
T ∗v∗ = v∗. (2.14)

In addition to these two Bellman operators, we will define [Tav] (s) = r(s, a) +
γ
∑
s∈S

p(s′|s, a)v(s′). From this definition, we can redefine the Q-function as Qπ(s, a) =
Tavπ(s) and the optimal Q-function as Q∗(s, a) = Tav∗(s).

Respectively, one can define operators on Q-functions as follow:

[BπQ] (s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)Ea∼π(.|s′) [Q(s′, a)] , (2.15)

[B∗Q] (s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a

[Q(s′, a)] . (2.16)

These operators are also γ-contractions and their respective fixed points are Qπ (for
operator 2.15) and Q∗ (for 2.16). The linear Bellman operator on a Q-function can be
expressed using linear transformations. Let’s write the state-action transition kernel:

PπQ =
∑

s,a∈S×A
1s,a

∑
s′,b∈S×A

π(b|s′)p(s′|s, a)Q(s′, b). (2.17)

Then, the linear Bellman operator of 2.15 can be expressed as follow:

BπQ = r + γPπQ. (2.18)

Greedy Policy: When given a value function vπ, there is a simple way to retrieve
a policy performing at least as well as π. The idea is to act greedily with respect to
the value function vπ. A policy π is said to be greedy with respect to a value function
v if Tπv = T ∗v. In this case, we say that π ∈ G(v). A policy π is said to be greedy
with respect to a Q-function Q if for all s in S the relation holds Ea∼π(.|s) [Q(s, a)] =
max
a

Q(s, a). Again, we will say that π ∈ G(Q) if a policy π is greedy with respect to
Q . One can prove the two following results:

Theorem 2.1. A policy π is optimal if and only if it is greedy with respect to it’s value
vπ.

vπ = v∗ if and only if π ∈ G(vπ). (2.19)

This first theorem proves that to find an optimal policy, it is sufficient to find an
optimal value. This theorem will be extended for zero-sum two-player Markov-Games
but has no extensions to general sum MGs.

Theorem 2.2. If π′ is greedy with respect to the value vπ of policy π, then vπ′ ≥ vπ

This second theorem proves that a simple way to improve a policy π is to play the
greedy policy π′ with respect to the value vπ. This theorem will be the basis of the
Policy iteration algorithm (Section 1.1.2). These two theorems are standard in ADP
and are proven in (Puterman, 1994).

1. Markov Decision Processes 15

1.1 Exact Algorithms

This section intends to give an overview of the common algorithms used to solve MDPs.
The first family of algorithms are dynamic programming algorithms (Section 1.1.1,
1.1.2, 1.1.3), the second directly minimize the Bellman residual (sec 1.1.4).

1.1.1 Value Iteration

The Value Iteration (VI) algorithm (Puterman, 1994) is based on the γ-contraction
property of the optimal Bellman operator. It repetitively applies the optimal Bellman
Operator on a value function starting from an arbitrary value v0 = 0.

Algorithm 1 Value Iteration
Input: An MDP M , a value v0 = 0 and a maximum number of iterations K.
for k=1,2,...,K-1 do
for all s compute vk(s) = max

a
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vk−1(s′) (or vk = T ∗vk−1)
end for
for all s, a compute QK(s) = r(s, a) +γ

∑
s′∈S

p(s′|s, a)vK−1(s′) and find πK ∈ G(QK)
(or find πK ∈ G(vK) where vK = T ∗vK−1)
Output: πK

The performance of policy πK can be expressed as a distance between vπ and
the value of an optimal strategy v∗. The proof of the following result can be found
in (Puterman, 1994):

‖vπK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.20)

This algorithm performs iterations at a low computational cost but is slow to con-
verge (in the number of iterations) compared to Policy Iteration.

1.1.2 Policy Iteration

The second iterative algorithm presented here is the Policy Iteration (PI) algorithm.
It starts from an arbitrary value v0 and proceeds in two steps. At iteration k it finds
a greedy policy πk with respect to the value vk−1 and then computes the value of that
policy. Finally, it returns πK after K iterations.

This algorithm produces an increasing sequence of values vk. This property is
implied by theorem 2.2. Furthermore, this algorithm is guaranteed to converge in a
finite number of iterations.

Again, one can prove the following result on the performance of policy πK :

‖vπK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.21)

16 Chapter 2. Background and Related Work

Algorithm 2 Policy Iteration
Input: An MDP M , a value v0 = 0 and a maximum number of iterations K.
for k=1,2,...,K do
find πk ∈ G(vk−1)
compute vk = vπk = (I − γPπk)

−1 rπk
end for
Output: πK

The policy iteration is guaranteed to converge in a finite number of steps and its
complexity is polynomial in the size of the state space and of the action space for a
fixed γ (Hansen et al., 2013a, Scherrer, 2016). In the end the Policy Iteration algorithm
performs updates that are heavier VI’s one. This is because the value update is required
to solve a linear system. But PI converges faster in terms of the number of iterations
compared to VI.

1.1.3 Modified Policy Iteration

Modified Policy Iteration (MPI) is an algorithm that bridges the gap between VI and
PI by introducing a parameter m. The parameter m controls the cost of each iteration.
This algorithm reduces to VI if m = 1 and to PI if m = +∞. Indeed, in Algorithm 3 if
m = +∞, the value vk will be the fixed point of Tπk (i.e. the value vπk). And if m = 1,
since πk ∈ G(vk−1) we have T ∗vk−1 = Tπkvk−1 and finally vk = Tπkvk−1 = T ∗vk−1.
Again, this algorithm enjoys the same guarantees of convergence as PI and VI and
surprisingly the performance policy πk does not depends on m.

‖vπK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.22)

This algorithm also enjoys a lower bound of complexity which is detailed in (Lesner
and Scherrer, 2015) for a generalized algorithm.

Algorithm 3 Modified Policy Iteration
Input: An MDP M , a value v0 = 0, a maximum number of iterations K and a
parameter m.
for k=1,2,...,K do
find πk ∈ G(vk−1)
compute vk = (Tπk)

m vk−1
end for
Output: πK

1.1.4 Minimization of the Bellman Residual

The last method we will present here is the direct minimization of the Bellman residual.
Indeed, solving an MDP means finding the fixed point of the operator T ∗. This means

1. Markov Decision Processes 17

that we have to find a value v such that v = T ∗v. The idea is thus to minimize the norm
of the Bellman residual v − T ∗v with some optimization method (Baird et al., 1995).
For example, the minimization of the L2-norm of the Bellman residual with Newton’s
method is in fact the policy iteration algorithm Puterman (1994) (the Lp-norm of the
function f (written ‖f‖p) is ‖f‖pp = ∑

x∈X
f(x)p).

1.2 Batch Algorithms

The previous section (Section 1.1) detailed several algorithms to exactly solve MDPs.
These algorithms are based on the value function and proceed iteratively in two steps.
The first step is a greedy step and requires knowing the model of the MDP (since
for a given value v we need to find a policy π such that T ∗v = Tπv). This section
is devoted to batch algorithms and thus we will need to perform this step without
knowledge of the model. That is why all the algorithms presented in this section
perform iterations on the Q-function instead of the value function. The second step in
these algorithms also requires the model and performs a linear transformation on the
current value v. Again, since we don’t have access to the model, we will replace that
step with a supervised learning step. The underlying idea is that unbiased estimators
of the Bellman operator can be built with samples. The algorithms introduced in
Section 1.2.1 are an adaptation of the value iteration algorithm for the batch setting.
In Section 1.2.2 we will present an adaptation of policy iteration and in Section 1.2.3
we will show how errors are propagated through iterations of modified policy iteration.
Finally, we will show how to adapt the Bellman residual minimization approach to the
Batch setting.

Remark 2.1. An estimator θ̂n of the quantity θ is said to be unbiased if E
[
θ̂n
]
−θ = 0

and it is said to be consistent if lim
n→+∞

θ̂n − θ = 0 in probability.

1.2.1 Fitted-Q iteration and Neural Fitted-Q

These algorithms are value iteration like algorithms. Instead of performing an exact
update Qk = B∗Qk−1 as the VI algorithm on Q-function would, it performs an ap-
proximate update Qk ' B∗Qk−1. Any batch algorithm requires as inputs a set of
data Dn = {(sj, aj, rj, s′j)}j=1,...,n where for all j, the reward rj = r(sj, aj) and where
s′j ∼ p(.|sj, aj). At iteration k, the VI algorithm on Q-functions would perform the
following step:

∀s, a ∈ S × A, Qk(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
b
Qk−1(s′, b). (2.23)

But since batch algorithms do not have access to the model, they will approximate
that step with a regression. First, they will build a dataset {(xj, yj)}j=1,...,n where
xj = (sj, aj) and yj = rj + γmaxaQk−1(s′j, a) and then find a best fit in an hypothesis

18 Chapter 2. Background and Related Work

space F . This means finding Qk ∈ F such that:

Qk ∈ argmin
f∈F

n∑
j=1

l(f(xj), yj). (2.24)

This approach was first studied by Bellman (Bellman et al., 1963) with polynomial
approximations. Fitted-Q (Ernst et al., 2005) iteration considers extra-trees for the
regression method while Neural fitted-Q (Riedmiller, 2005) considers neural networks.
The sample efficiency of this method is analysed in (Antos et al., 2008a).

Algorithm 4 Fitted - Q & Neural fitted-Q
Input: Dn = {(sj, aj, rj, s′j)}j=1,...,n some samples, q0 = 0 a Q-function, F an
hypothesis space and a number of iterations K.
for k=1,2,...,K do
for all j do
qj = r(sj, aj) + γmaxa qk−1(s′j, a)

end for
qk = argminq∈F

n∑
j=1

l(q(sj, aj), qj) where l is a loss function.
end for
Output: qK

As a remark, Ernst (Ernst et al., 2005) also uses his algorithm for continuous
action spaces. The only problem is that it is cumbersome to find the maximum of
the Q-function over the actions. Thus, in their experiment they discretize the action
space to approximate the maximum step. This example emphasizes the necessity of
analysing approximations in the greedy step in approximate dynamic programming
algorithms (Section 1.2.3).

1.2.2 Least Squares Policy Iteration and Bellman Residual Minimizing
Policy Iteration

The Least Squares Policy Iteration (LSPI) algorithm (Lagoudakis and Parr, 2003) and
the Bellman Residual Minimizing Policy Iteration (BRMPI) algorithms are approxi-
mate PI algorithms. They will perform two steps as PI, and both approximate the
policy evaluation steps of PI. Again, as we work with batch data, LSPI and BRMPI
will perform their iterations on the Q-function instead of the value function. At iter-
ation k, the PI algorithm’s evaluation step computes the state-action value function
Qk = Qπk . In the case of LSPI and BRMPI, the Q-function are lying in a d dimen-
sional linear function space FΦ = {Φω, ω ∈ Rd}. The features Φ = [φ1, . . . , φd] are
linearly independent functions from S × A → R and can be thought of as vectors of
size |S|× |A| in the vector space of canonical basis {1s,a}s,a∈S×A. The feature Φ can be
seen as a matrix of size (|S| × |A|)× d and ω a vector of size d. Furthermore, let ρ be
a probability distribution over the state-action space S × A and we will write ∆ρ the
diagonal application that maps 1s,a to ρ(s, a)1s,a. Finally, the orthogonal projection

1. Markov Decision Processes 19

onto FΦ with respect to the Lρ,2-norm is the application Φ(Φ>∆ρΦ)−1Φ>∆ρ = Πρ,Φ.
The Lρ,p of function f is defined here as ‖f‖pρ,p = ∑

x∈X
ρ(x)f(x)p.

Least Squares Policy Iteration: At each iterations for a policy π, the PI algorithm
finds Q satisfying Q = TπQ. Instead, LSPI finds ω satisfying the projected fixed point
equation:

Φω = Πρ,ΦTπΦω. (2.25)

The solution for ω of this equality is given by:

ω = A−1
ρ,Φ,πbρ,Φ, (2.26)

where Aρ,Φ,π = Φ>∆ρ(Φ− γPπΦ), (2.27)
and bρ,Φ = Φ∆ρr. (2.28)

Given a batch of data Dn = {(sj, aj, rj, s′j)}j=1,...,n, the matrix Aρ,Φ,π and the vector
bρ,Φ can be estimated as follow:

ÂΦ,π,Dn = 1
n

n∑
j=1

Φ(sj, aj)
(

Φ(sj, aj)− γ
∑
a∈A

π(a|s′j)Φ(s′j, a)
)
, (2.29)

b̂Φ,Dn = 1
n

n∑
j=1

Φ(sj, aj)r(sj, aj). (2.30)

If the data in Dn are independent and distributed according the distribution ρ, ÂΦ,π,Dn
and b̂Φ,Dn are consistent estimators of Aρ,Φ,π and bρ,Φ. Furthermore, Â−1

Φ,π,Dn can be be
efficiently computed with the Scherman-Morison formula which provides an optimized
version of the algorithm. The algorithm in its most simple version is presented in
Algorithm 5.

Algorithm 5 Least Squares Policy Iteration (LSPI)
Input: A batch Dn = {(sj, aj, rj, s′j)}j=1,...,n, a feature space Φ, an initial
parametrization ω0 = 0 and a number of iterations K.
for k=1,2,...,K do
find πk ∈ G(Φωk−1)
compute ÂΦ,πk,Dn and b̂Φ,Dn as in formula 2.96 and 2.97.
compute ωk = Â−1

Φ,πk,Dn b̂Φ,Dn
end for
Output: πK

Bellman Residual Minimizing Policy Iteration: This second algorithm is less
popular that LSPI. It is roughly sketched in (Lagoudakis and Parr, 2003). We provide
details here as it will be improved in Chapter 6 and since it illustrates bias issues in the

20 Chapter 2. Background and Related Work

estimation of the Bellman residual. These bias issues will be encountered in Chapter 6
and in Chapter 7.

Instead of finding the fixed point of the projected Bellman operator to approximate
Qπ, BRMPI finds ω that minimizes the Bellman residual ‖Φω−TπΦω‖ρ,2. The solution
to this minimization problem is:

ω = C−1
ρ,Φ,πdρ,Φ, (2.31)

where Cρ,Φ,π = Φ>(I − γPπ)>∆ρ(I − γPπ)Φ, (2.32)
and bρ,Φ,π = Φ>(I − γPπ)>∆ρr. (2.33)

This approach can also be implemented with batch data but the resulting solu-
tion for this estimation proposed by Lagoudakis and Parr is a biased and inconsistent
estimator of Cρ,Φ,π. The following estimators ĈΦ,π,Dn and b̂Φ,π,Dn of Cρ,Φ,π and bρ,Φ,π
are:

ĈΦ,π,Dn = 1
n

n∑
j=1

(
Φ(sj, aj)− γ

∑
a∈A

π(a|s′j)Φ(s′j, a)
)(

Φ(sj, aj)− γ
∑
a∈A

π(a|s′j)Φ(s′j, a)
)>

,

(2.34)

d̂Φ,π,Dn = 1
n

n∑
j=1

(
Φ(sj, aj)− γ

∑
a∈A

π(a|s′j)Φ(s′j, a)
)>

r(sj, aj). (2.35)

Algorithm 6 Bellman Residual Minimizing Policy Iteration (BRMPI)
Input: A batch Dn = {(sj, aj, rj, s′j)}j=1,...,n, a feature space Φ, an initial
parametrization ω0 = 0 and a number of iterations K.
for k=1,2,...,K do
find πk ∈ G(Φωk−1)
compute ÂΦ,πk,Dn and b̂Φ,Dn as in formula 2.34 and 2.35.
compute ωk = Â−1

Φ,πk,Dn b̂Φ,Dn
end for
Output: πK

As described in (Lagoudakis and Parr, 2003) the BRMPI algorithm would be as
in Algorithm 6. The bias of the estimator can be solved with a generative model
of the MDP. If, for each sample of the bacth, the next state can be sampled two
times independently (i.e. the batch would be Dn = {(sj, aj, rj, s′j, s′′j)}j=1,...,n where
s′′j ∼ p(.|sj, aj)), one can get the following unbiased estimator from the batch:

ĈΦ,π,Dn = 1
n

n∑
j=1

(
Φ(sj, aj)− γ

∑
a∈A

π(a|s′j)Φ(s′j, a)
)(

Φ(sj, aj)− γ
∑
a∈A

π(a|s′j)Φ(s′′j , a)
)>

.

(2.36)

This presentation of LSPI and BRMPI sums up useful background for this disserta-
tion. These algorithms have been extensively studied in the literature. Although LSPI

1. Markov Decision Processes 21

is a batch algorithm, it has been adapted to the online setting (Buşoniu et al., 2010,
Li et al., 2009). The sample complexity of LSPI has been analysed by Lazaric et al.
(2012) and the one of BRMPI by Antos et al. (2008b). The sample-complexity of pol-
icy evaluation through Bellman residual minimization has been analysed in (Maillard
et al., 2010).

1.2.3 Approximate Modified Policy Iteration

In the two previous sections (Section 1.2.1 and 1.2.2) we introduced approximations of
VI and PI. These approximations are made in the evaluation step (i.e. vk = Tπkvk−1
for VI and vk = (Tπk)

+∞ vk−1 for PI). In this section, we present results that shed light
on the robustness of these algorithms to errors. Imagine that instead of performing
the iteration vk = Tπkvk−1 (where πk ∈ G(vk−1)), the update of vk is made up to an
error εk such that vk = Tπkvk−1 + εk. But approximations can also occur in the greedy
step (Gabillon et al., 2011, Scherrer et al., 2012) as discussed in Section 1.2.1 and,
instead of taking a greedy action, some algorithms select suboptimal actions in some
states. We shall write π ∈ Ĝε′(v) if T ∗v ≤ Tπv+ ε′. In this section we provide the state
of the art sensitivity analysis of Approximate Modified Policy Iteration (AMPI) like
algorithms. The generic scheme studied is described in Algorithm 7 and applies to all
algorithms described in Section 1.2.1 and in Section 1.2.2.

Algorithm 7 Approximate Modified Policy Iteration
Input: An MDP M , a value v0 = 0, a maximum number of iterations K and a
parameter m.
for k=1,2,...,K do
find πk ∈ Ĝε′

k
(vk−1)

compute vk = (Tπk)
m vk−1 + εk

end for
Output: πK

The following analysis is standard in approximate dynamic programming algo-
rithms. As this kind of analysis will be done for several algorithms in Part II we
detail here the case of AMPI of Scherrer et al. (2012). These bounds are decomposed
in a sum of 3 terms: the value update error, the greedy error and a concentration term.
Each of these terms is decomposed in a product of 3 quantities. All these terms can
be controlled: the first one can be controlled by the accuracy of the value function
update, the second one can be controlled making small approximation on the greedy
step and the last one by the number of iterations of the algorithm. These analysis were
performed in L∞-norm and then were performed in Lp-norm (Farahmand et al., 2010,
Antos et al., 2008a, Munos, 2007).

The performance of AMPI after k-iterations measures in Lρ,p-norm the distance
between vπk and v∗. The measure ρ specifies the distribution over the state space on
which the performance needs to be accurate. Thus, we will bound the norm ‖v∗ −
vπk‖ρ,p. Since our method performs approximations at each iteration, our bound will

22 Chapter 2. Background and Related Work

depend on ε1, . . . , εk−1 and ε′1, . . . , ε
′
k. These errors are supposed to be controlled in

Lσ,pq′-norm where σ is the distribution on which the estimation is supposed to be
accurate. For instance in Fitted-Q iteration, εj, j ≤ k the error of the regression at
iteration j. In that case, σ is the distribution of the data and d = 2 (since the L2 loss
is often used for trees). Theorem 2.3 shows the impact of the approximation on the
final solution.

Theorem 2.3. Let ρ and σ be distributions over states. Let p, q and q’ be such that
1
q

+ 1
q′

= 1. Then, after k iterations, we have:

‖v∗ − vπk‖ρ,p ≤
2(γ − γk)(C1,k,0

q)
1
p

(1− γ)2 sup
1≤j≤k−1

‖εj‖σ,pq′︸ ︷︷ ︸
value update error

+
(1− γk)(C0,k,0

q)
1
p

(1− γ)2 sup
1≤j≤k

‖ε′j‖σ,pq′︸ ︷︷ ︸
greedy error

,

(2.37)

+ 2γk
1− γ (Ck,k+1,0

q)
1
p min (‖v∗ − v0‖σ,pq′ , ‖v0 − Tπ1v0‖σ,pq′)︸ ︷︷ ︸

contraction term

. (2.38)

where

Cl,k,dq = (1− γ)2

γl − γk
k−1∑
i=l

∞∑
j=i

γjcq(j + d), (2.39)

with the following norm of a Radon-Nikodym derivative:

cq(j) = sup
π1,...,πj

∥∥∥∥∥d(ρPπ1 ...Pπj)
dσ

∥∥∥∥∥
q,σ

. (2.40)

The contribution of the value update error can be divided in three parts:

2(γ − γk)(C1,k,0
q)

1
p

(1− γ)2 sup
1≤j≤k−1

‖εj‖σ,pq′︸ ︷︷ ︸
value update error

= 2(γ − γk)
(1− γ)2︸ ︷︷ ︸
γ-sensitivity

(C1,k,0
q)

1
p︸ ︷︷ ︸

concentrability coeficient

sup
1≤j≤k−1

‖εj‖σ,pq′︸ ︷︷ ︸
ε-error

.

(2.41)

The sensitivity to γ is of the order of the square of the horizon 1
1−γ . The sensitivity

to the error ε depends on the maximum of the norm of the errors. The concentrability
coefficient (C1,k,0

q)
1
p measures the impact of controlling the error with respect to measure

σ and guaranteeing a performance on measure ρ. It is a discounted sum of the norm of
the Radon-Nikodym derivative cq(j) (in discrete actions spaces, this derivative is the
ratio of ρPπ1 ...Pπj and σ). The larger j is the more cq(j) is discounted in the coefficient
Cl,k,dq . Indeed, if we only have access to samples to control the regression error of a part
of the state-action space that is never visited from the part of the state-action space on
which we want to give guarantees, then the concentrability coefficient will be infinite.
As an example, the concentrability coefficient will always be finite if the measure σ is

1. Markov Decision Processes 23

uniform. The reader can find in (Scherrer, 2014) a detailed and meticulous comparison
of the different concentrability coefficients.

The greedy error term can be decomposed in the same way and is comparable to
the value update error term:

(1− γk)(C0,k,0
q)

1
p

(1− γ)2 sup
1≤j≤k

‖ε′j‖σ,pq′︸ ︷︷ ︸
greedy error

= (1− γk)
(1− γ)2︸ ︷︷ ︸
γ-sensitivity

(C0,k,0
q)

1
p︸ ︷︷ ︸

concentrability coeficient

sup
1≤j≤k

‖ε′j‖σ,pq′︸ ︷︷ ︸
ε-error

. (2.42)

Finally, the last term of that sum is the contraction term and can be decomposed
in three terms:

2γk
1− γ (Ck,k+1,0

q)
1
p min (‖v∗ − v0‖σ,pq′ , ‖v0 − Tπ1v0‖σ,pq′)︸ ︷︷ ︸

contraction term

= (2.43)

2γk
1− γ︸ ︷︷ ︸

γ-contraction

(Ck,k+1,0
q)

1
p︸ ︷︷ ︸

concentrability coeficient

min (‖v∗ − v0‖σ,pq′ , ‖v0 − Tπ1v0‖σ,pq′)︸ ︷︷ ︸
error initial value

. (2.44)

This last term converges to zero at a geometrical rate (since the γ-contraction term
is O(γk)). It also depends on a concentrability coefficient (Ck,k+1,0

q)
1
p and on a term

that reflects how close the initial solution v0 is from the optimal solution v∗.

Non-Stationary Policies in MDPs: As described in this section, the sensitivity to
γ is one of the strongest drawbacks of AMPI algorithms. One way to reduce this depen-
dency is to use a non-stationary policy. In (Scherrer and Lesner, 2012), Scherrer shows
that using cyclic policies reduces the dependency on γ. In this paper, they prove that
playing the m last policies given by approximate value iterations (instead of playing πK
at each time step, they play the cyclical policy πK , πK−1, . . . , πK−m+1, πK , πK−1, . . .).
In the case of cyclical policies, the γ-sensitivity of approximate value iteration is

2(γ−γk)
(1−γ)(1−γm) instead of 2(γ−γk)

(1−γ)2 for the value update error and 1−γk
(1−γ)(1−γm) instead of 1−γk

(1−γ)2

for the greedy error term. The AMPI algorithm was adapted to use non-stationary
strategies and analysed in (Lesner and Scherrer, 2015).

1.2.4 Bellman Residual Minimization

This section on Bellman residual minimization introduces an approach existing in
MDPs that we will study in MGs (part III).

Finding an optimal policy can be achieved in MDPs if one finds the optimal Q-
function Q∗. This can be achieved by the minimization of the Optimal Bellman Resid-
ual (OBR) ‖Q − B∗Q‖ρ,2. If π is greedy with respect to any Q the following bounds
on ‖Q∗ −Qπ‖ρ,2 stands (Piot et al., 2014a)

‖Q∗ −Qπ‖ρ,2 ≤
2

1− γ

(
C2(ρ, π) + C2(ρ, π∗)

2

) 1
2

‖B∗Q−Q‖ρ,2. (2.45)

24 Chapter 2. Background and Related Work

with C2(ρ, π) = ||∂ρ
>(1−γ)(I−γPπ)−1

∂ρ>
||2,ρ the Radon-Nikodym derivative of the Kernel

(1− γ)(I − γPπ)−1.
The optimal Bellman residual minimization approach is to use a batch of data

Dn = {(sj, aj, rj, s′j)}j=1,...,n to estimate the OBR. In (Piot et al., 2014a), the following
estimator is proposed:

ĴOBR(Q) =
n∑
j=1

(
Q(sj, aj)− rj − γmax

a
Q(s′j, a)

)2
. (2.46)

The goal is now to minimize a loss where Q ∈ F with any relevant optimization
technique:

Q = argmin
Q∈F

ĴOBR(Q). (2.47)

This estimator is biased and not consistent (Piot et al., 2014b,a) in the case of a
stochastic dynamic. Many techniques have been developed to improve the estimation
of the OBR including (Grunewalder et al., 2012, Taylor and Parr, 2012, Maillard et al.,
2010).

1.3 Online Learning in MDPs

The last part of this dissertation will study independent learning in multi-stage games.
As independent learning is a generalization to MGs of online learning in MDPs, we
briefly introduce here two basic algorithms.

Whilst batch algorithms were designed to learn a near optimal behaviour without
being able to access the environment, online algorithms were designed to learn a policy
in interaction with the environment. At time t, the agent is in state st and takes an
action at. With the reward rt collected, the agent will perform an update.

1.3.1 Q-learning

The Q-learning algorithm (Watkins and Dayan, 1992) learns the optimal Q-function.
This algorithm is an off-policy algorithm (there is a fixed policy used to behave which
is different from the learnt policy). At each step the algorithm updates the Q-function
in order to estimate the optimal Q-function Q∗. For the on-policy version of the Q-
learning algorithm, the policy to select the action at at time t is usually an ε-greedy
policy with respect to the current estimate of the Q-function.

2. Normal-Form Games 25

Algorithm 8 Q-learning
Input: An MDP M , a Q-value Q0 = 0, an initial state s0 and a number of
iterations T .
for t=0,1,2,...,T-1 do
take action at according to an exploration policy (usually ε greedy policy),
collect reward rt ∼ r(st, at) and move to state st+1 ∼ p(.|st, at),
update Qt+1: Qt+1(st, at) = Qt(st, at) + αt

(
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

)
end for
Output: QT

1.3.2 SARSA

The SARSA algorithm will instead update the value according to the so called "Tem-
poral difference" error. For a given behavioural policy π, the Q-learning algorithm will
learn the optimal Q-function whilst SARSA will learn the Q-function associated with
the behaved policy Qπ.

Algorithm 9 SARSA
Input: An MDP M , a Q-value Q0 = 0, an initial state s0 and a number of
iterations T .
for t=1,2,...,T do
take action at according to an exploration policy (usually the ε greedy policy),
collect reward rt ∼ r(st, at) and move to state st+1 ∼ p(.|st, at),
Qt+1(st, at) = Qt(st, at) + αt (rt + γQt(st+1, at+1)−Qt(st, at))

end for
Output: QT

2 Normal-Form Games

Before introducing Markov Games (MGs), we will first shortly introduce Normal Form
Games (NFGs) which is a stateless MG. In MDPs or in single agent problems, there is
only a single way to define an optimal policy. In a multi-agent system, many solutions
can be studied. In this section, we will introduce two of them: the minimax solution
and the Nash equilibrium. These two notions will be generalized in the next section to
Markov games.

In an N -player NFG, each player chooses actions ai in a finite set Ai of available
actions. Each player receives an individual reward ri(a1, . . . , aN) ∈ R. For the sake
of simplicity, we will write the joint action a = (a1, . . . , aN) = (ai,a-i) where a-i is
the joint action of every player except player i. The goal of each player is to find a
strategy πi ∈ ∆(Ai). If every player plays his strategy, player i receives the average
reward Ea∼π [ri(a)]. Again, the joint policy of all players is π and the joint policy

26 Chapter 2. Background and Related Work

of every player except player i is π-i. Finally, an NFG can be represented as a tuple
< {Ai}i∈{1,...,N}, {ri(a)}i∈{1,...,N} >.

In an NFG, the equivalent of a value function for player i would be riπ = Ea∼π [ri(a)]
and the equivalent of a Q-function would be riπ-i(ai) = Ea-i∼π-i

[
ri(ai,a-i)

]

2.1 Nash equilibrium:
This thesis will focus on Nash equilibrium as a solution concept. In a Nash equilibrium,
no player has an incentive to switch from his current strategy if other players stick to
their own. The common way to define a Nash equilibrium is the following:

Definition 2.1. A strategy π is a Nash equilibrium if:

∀i ∈ {1, . . . , N}, riπ = max
ai

riπ-i(ai). (2.48)

This definition can also be rewritten in reinforcement learning language as follows:

Definition 2.2. A strategy π is a Nash equilibrium if:

∀i ∈ {1, . . . , N}, πi ∈ G(riπ-i), (2.49)

As in the previous section, G(riπ-i) = {π| Eai∼π[riπ-i(ai)] = max
ai

riπ-i(ai)}

Finding a Nash equilibrium in Normal form games is considered as a hard algo-
rithmic problem (Daskalakis et al., 2009). Several algorithms can be used to solve this
problem such as the Lemke Howson algorithm or searching in the support space for
the two-player case (Shoham and Leyton-Brown, 2008). The problem is considered to
be "hopelessly impractical to solve exactly" for more than two players (Shoham and
Leyton-Brown, 2008). These algorithms will not be presented in details here as these
methods will not be used in this thesis(see (Nisan et al., 2007, Shoham and Leyton-
Brown, 2008) for more involved explanations).

2.2 Zero-Sum Normal-Form Games
Zero-sum two-player NFG is one of the class of NFGs where a Nash equilibrium can be
found in a reasonable time. A zero-sum two-player NFG is an NFG where N = 2 and
where for all a1, a2 ∈ A1 ×A2, r1(a1, a2) = −r2(a1, a2) = r(a1, a2). In that case, player
1 will attempt to maximize his expected outcome while the second player’s goal is to
minimize it. In that case, the concept of a Nash equilibrium and the minimax solution
are equivalent. In the specific case of zero-sum two-player games we will define µ the
policy of player 1 and ν the policy of player 2.

Definition 2.3. A pair of strategies (µ, ν) is a Nash equilibrium if:

µ ∈ argmax
µ∈∆(A1)

min
a2

Ea1∼µ[r(a1, a2)], (2.50)

ν ∈ argmin
ν∈∆(A2)

max
a1

Ea2∼ν [r(a1, a2)]. (2.51)

3. General-Sum Markov Games 27

Furthermore, all Nash equilibria in zero-sum two-player NFGs achieve the same value:

v∗ = max
µ∈∆(A1)

min
a2

Ea1∼µ[r(a1, a2)] = min
ν∈∆(A2)

max
a1

Ea2∼ν [r(a1, a2)]. (2.52)

In a zero-sum two-player game, the minimax strategy can be found in the set of
stochastic strategies. That’s why in equation (2.50), the policy µ needs to be found in
the set of distributions over A1. But a best response of player 2 against µ can always
be found in the set of deterministic strategies. That’s why in equation (2.50), a2 is
located in the set of deterministic strategies even if ν (defined in (2.51)) would be a
valid best response.

This optimal value v∗ is the solution of two dual linear programs. The first linear
program involves the strategy of player 1 (µ) and finds the value that maximizes over
µ the minimum over a2 of Ea1∼µ[r(a1, a2)]:

max v∗

Subject to
∑
a1∈A1

r(a1, a2)µ(a1) ≥ v∗, ∀a2 ∈ A2

∑
a1∈A1

µ(a1) = 1

µ(a1) ≥ 0, a1 ∈ A1

It’s dual involves the strategy of player 2 ν and finds the value that minimizes over
ν the maximum over a2 of Ea2∼ν [r(a1, a2)]:

min v∗

Subject to
∑
a2∈A2

r(a1, a2)ν(a2) ≤ v∗, ∀a1 ∈ A1

∑
a2∈A2

ν(a2) = 1

ν(a2) ≥ 0, a2 ∈ A2

These two programs can be solved with any linear programming algorithms such as
the simplex method or the interior point method. The complexity of a linear program
depends on the number of constrains c = |A1|+ |A2|+ 1 or in the number of variables
|A1| for the first linear program and |A2| the number of variables for the second one.
For instance, the complexity of the simplex method is exponential in c in the worst
case (for both linear programs) while the complexity of the interior point method is
O(|A1|3.5) for the first linear program and O(|A2|3.5) for the second one (Karmarkar,
1984). Linear programming was adapted to solve large turn taking partial information
games (Koller et al., 1994). It was the state of the art technique to solve poker before
Counter Factual Regret minimization (CFR) (Zinkevich et al., 2008).

3 General-Sum Markov Games
General-sum Markov Games (MG) are a generalization of MDPs for the multi-player
scenario and a generalization of NFGs to environments where the interactions also

28 Chapter 2. Background and Related Work

depend on state. In an MG, N players evolve in a discrete state space S. As in MDPs,
the interaction is sequential and at time t, players belong to state st. In that state,
they all simultaneously choose an action ait in the action space Ai (ait is the action
of player i at time t) and receive a reward ri(st, a1

t , . . . , a
N
t). Again, we will write

a = (a1, . . . , aN) = (ai,a-i) where a-i is the joint action of every player except player
i. Then, the state changes to state st+1 ∼ p(.|st, a1

t , . . . , a
N
t) where p(.|s, a1, . . . , aN) is

the transition kernel of the MG. The constant γ ∈ [0, 1] is the discount factor of the
MG. Finally, an MG is a tuple < S, {Ai}i∈{1,...,N}, {ri}i∈{1,...,N}, p, γ >.

In an MG, each player’s goal is to find a strategy {πit}t∈R. The strategy πit at
time t is a mapping from the state space to the a distribution over the action space
(i.e. πit ∈ ∆AS). These strategies are independent and actions are supposed to be
chosen simultaneously. Again, we will define {πt}t∈N as the joint strategy of all players
and {π-i

t }t∈N as the strategy of every player except i. If the strategy is stationary, it
will be written πi, π and π-i. Furthermore, we will often use short notations such
as π(b|s) = π1(b1|s) × · · · × πN(bN |s) or π-i(b-i|s) = π1(b1|s) × · · · × πi−1(bi−1|s) ×
πi+1(bi+1|s)× · · · × πN(bN |s)

The value for player i in state s is his expected γ discounted sum of rewards starting
from state s when all players play their part of the joint policy {πt}t∈N:

vi{πt}t∈N(s) = E

[+∞∑
t=0

γtri(st,at)|s0 = s, at ∼ πt(.|st), st+1 ∼ p(.|st,at)
]
. (2.53)

When this strategy is stationary, the value function of player i is defined as:

viπ(s) = E

[+∞∑
t=0

γtri(st,at)|s0 = s, at ∼ π(.|st), st+1 ∼ p(.|st,at)
]
. (2.54)

In the case of stationary strategies, if every player except player i sticks to his
strategy π-i the value the best response player i can achieve is:

v∗iπ-i(s) = max
πi

E

[+∞∑
t=0

γtri(st,at)|s0 = s, at ∼ π(.|st), st+1 ∼ p(.|st,at)
]
. (2.55)

This value exists since when the strategy of the opponents π-i is fixed, the model
reduces to an MDP for player i. This value of the best response is the optimal value
of that MDP. The following Q-function can be defined:

Qi
π(s,a) = E

[+∞∑
t=0

γtri(st,at)|s0 = s, a0 = a, at ∼ π(.|st), st+1 ∼ p(.|st,at)
]
, (2.56)

= ri(s,a) + γ
∑
s′∈S

p(s′|s,a)viπ(s′). (2.57)

One can also define the Q-function for player i of the best response:

Q∗iπ-i(s,a) = max
πi

Qi
π(s,a), (2.58)

= ri(s,a) + γ
∑
s′∈S

p(s′|s,a)vi∗π-i(s′). (2.59)

3. General-Sum Markov Games 29

These Q-functions are respectively the value for player i in state s if all players
start from action a when they play the joint strategy π and when player i plays a best
response to policy π-i.

Stochastic Matrices and Linear Algebra: As for MDPs, we can define the linear
operator as the transition kernel. The probability transition kernel Pπ is the stochastic
matrix that defines the following linear transformation:

Pπv =
∑
s∈S

1s
∑
s′∈S

Ea∼π(.|s) [p(s′|s,a)] v(s′). (2.60)

Furthermore, we will define riπ = ∑
s∈S

1sEa∼π[ri(s,a)] and pπ(s′|s) =
Ea∼π(.|s) [p(s′|s,a)]. With these notations we can rewrite the value function as fol-
lows:

viπ = (I − γPπ)−1 riπ (2.61)

The linear Bellman operator on Q-function can be expressed with linear operators.
Let’s define the state-action transition kernel:

PπQ =
∑

s,a∈S×A
1s,a

∑
s′,b∈S×A

π(b|s′)p(s′|s,a)Q(s′, b), (2.62)

and the reward:

ri =
∑

s,a∈S×A
1s,ari(s,a). (2.63)

with these definitions, we have:

Qi
π = (I − γPπ)−1 ri. (2.64)

3.1 Nash Equilibrium ε-Nash Equilibrium
A Nash equilibrium is a game theoretic solution concept. In a Nash equilibrium, no
player can improve his own value by changing his strategy if the other players stick to
their strategies (Filar and Vrieze, 2012). In Markov games, this definition must stand
in all states:

Definition 2.4. In an MG, a strategy π is a Nash equilibrium if: ∀i ∈ {1, ..., N}, viπ =
v∗i
π-i .

In an MDP, a Nash equilibrium is simply the optimal strategy. An ε-Nash equilib-
rium is a relaxed solution concept in game theory. When all players play an ε-Nash
equilibrium the value they receive is at most ε sub-optimal compared to a best response.
Formally (Filar and Vrieze, 2012):

Definition 2.5. In an MG, a strategy π is an ε-Nash equilibrium if:
∀i ∈ {1, ..., N}, viπ + ε ≥ v∗iπ-i

30 Chapter 2. Background and Related Work

3.2 Bellman Operator in General-Sum Games

As explained above, when the strategy of all opponents is fixed, the problem reduces
to an MDP. Thus, two Bellman operator can be defined per player.[

T iπv
]

(s) = riπ(s) + γ
∑
s′∈S

pπ(s′|s)v(s′) (2.65)[
T iπv

]
= riπ + γPπv (2.66)

The Bellman operator of the best response of player i to strategy π-i:

[
T ∗iπ-iv

]
(s) = max

πi

riπi,π−i + γ
∑
s′∈S

pπi,π−i(s′|s)v(s′)
 (2.67)

Respectively, one can define operators on Q-functions as follow:[
BiπQ

]
(s,a) = ri(s,a) + γ

∑
s′∈S

p(s′|s,a)Eb∼π(.|s′) [Q(s′, b)] (2.68)

= r + γPπQ (2.69)[
B∗iπQ

]
(s,a) = ri(s,a) + γ

∑
s′∈S

p(s′|s,a) max
bi

Eb-i∼π-i(.|s′) [Q(s′, b)] (2.70)

Again, the fixed point of T iπ is viπ, the fixed point of T ∗iπ-i is v∗iπ-i , the fixed point of
Biπ is Qi

π and the fixed point of B∗iπ is Q∗iπ .

3.3 Zero-Sum Two-Player Markov Games

As for NFGs we will introduce specific notations and highlight the properties specific
to zero-sum two-player MGs. In a zero-sum two-player MG the reward of Player 1
is the loss of Player 2. Thus, for all s, a1, a2 ∈ S × A1 × A2 we have r1(s, a1, a2) =
−r2(s, a1, a2) = r(s, a1, a2). In this setting, player 1 will attempt to maximize his
rewards while player 2 will attempt to minimize his losses. In this specific setting, we
will define the strategy of player 1 (µ) instead of π1 and the strategy of player 2 (ν)
instead of π2. The value of the joint policy (µ, ν) is:

vµ,ν = v1
µ,ν = v1

π1,π2 . (2.71)

The value of the best response of player 2 to the strategy of player 1 µ is:

vµ = min
ν
vµ,ν = −v∗2µ . (2.72)

In an MG, there exists a unique value for all Nash equilibrium:

v∗ = min
ν

max
µ

vµ,ν = max
µ

min
ν
vµ,ν . (2.73)

3. General-Sum Markov Games 31

Bellman Operator: In zero-sum two-player MGs, five Bellman Operator can be
described. Three of them correspond to the Bellman operators for general sum MGs
(i.e. the Bellman operators introduced in eq. 2.74, eq. 2.75 and eq. 2.77).

Tµ,νv = rµ,ν + γPµ,νv (2.74)

Tµv = min
ν
Tµ,νv (2.75)

T v = max
µ
Tµv (2.76)

T̂νv = max
µ
Tµ,νv (2.77)

T̂ v = min
ν
T̂νv (2.78)

The operator Tµ,ν is either T 1
µ,ν or v → −T 2

µ,ν(−v). The operator Tµ is v → −T ∗2µ (−v)
and T̂ν is T ∗1ν . However, operator T and T̂ have no equivalent in general-sum games.
These two operators are equivalent (Patek, 1997) and are γ-contractions. The fixed
point of T and T̂ is v∗.

Q-Functions and Operators on the Q-Functions: These five operators have their
counterparts for Q-functions. For the sake of completeness, we briefly define them in
this paragraph. The linear operator Bµ,ν is equal to B1

µ,ν and equal to Q→ −B2
µ,ν(−Q).

The operator Bµ is v → −B∗2µ (−v) and the operator B̂ν is T ∗1ν . Finally, the equivalents
of T and T̂ are:

[BQ] (s, a1, a2) = r(s, a1, a2) + γ
∑
s′∈S

p(s′|s, a1, a2) max
µ∈∆A1

min
ν∈∆A2

Eb1∼µ,b2∼ν [Q(s′, b1, b2)],

(2.79)[
B̂Q

]
(s, a1, a2) = r(s, a1, a2) + γ

∑
s′∈S

p(s′|s, a1, a2) min
ν∈∆A2

max
µ∈∆A1

Eb1∼µ,b2∼ν [Q(s′, b1, b2)].

(2.80)

The fixed point of Bµ,ν is the state-action value function of the joint strategy µ, ν
and will be written Qµ,ν = Q1

µ,ν = −Q2
µ,ν . The fixed point of Bµ is the Q-function of

the best response of player 2 to the strategy µ and will be written Qµ = −Q∗2µ . The
minimax state-action value function is Q∗ and is the fixed point of B or B̂.

Greedy Strategy in Zero-Sum Two-Player Markov Games: The notion of
greedy strategy in zero-sum two-player MGs is slightly different from the case of MDPs.
In zero-sum two-player MGs we need to take the point of view of one player (player 1
or player 2). The canonical way to do it is to take the point of view of player 1 but the
two point of view are dual. A strategy µ is said to be greedy with respect to a value
function v if Tµv = T v and we will define G(v) = {µ| Tµv = T v}. A strategy µ is greedy
with respect to a Q-function if for all s we have min

ν∈∆A2
max
µ∈∆A1

Ea1∼µ,a2∼ν [Q(s, a1, a2)] =
min
ν∈∆A2

Ea1∼µ(.|s),a2∼ν [Q(s, a1, a2)] and we will define it µ ∈ G(Q). We choose this defini-
tion of a greedy strategy with the intention to build policy iteration algorithms that
converges to the minimax value v∗ but others operators could be considered if the
problem was to find a best response to some strategy. Again, two results similar to the
case of MDPs and can be found:

32 Chapter 2. Background and Related Work

Theorem 2.4. A strategy µ is optimal if and only if it is greedy with respect to it’s
value vµ.

vµ = v∗ if and only if µ ∈ G(vµ) (2.81)

This first theorem implies that the optimal policy can be retrieved from the optimal
value.

Theorem 2.5. If µ′ is greedy with respect to the value vµ of strategy µ, then vµ′ ≥ vµ

This second theorem proves that a simple way to improve a strategy π is to play
the greedy strategy π′ with respect to the value vπ. This theorem will be the basis of
the Policy Iteration algorithm for zero-sum two-player MGs (Section 3.4.2). These two
theorems can be deduced from (Patek, 1997).

3.4 Exact Algorithms for Zero-Sum Two-Player Markov-
Games

The Value Iteration (VI) algorithm for zero-sum two-player MGs (Shapley, 1953) will
be detailed in Section 3.4.1 and is a generalization of the VI algorithm for MDPs (Sec-
tion 1.1.1). As in MDPs, VI is relatively slow at the beginning even if iterations are
computationally cheap. This motivates the use of algorithms that have more com-
putationally intensive iterations such as the Policy Iteration algorithm. Howard’s PI
algorithm for MDPs (detailed in sec 1.1.2) has two extensions to zero-sum two-player
MGs. The first one is Hoffman and Karp’s Policy Iteration Hoffman and Karp (1966).
This algorithm is cumbersome since it requires solving an MDP as a subroutine (see
Section 3.4.2). To address this issue, Pollatschek and Avi-Itzhak (Pollatschek and Avi-
Itzhak, 1969) proposed their own generalization of the Howard PI algorithm that only
requires a joint strategy evaluation subroutine (see Section 3.4.3). Despite being effi-
cient in practice, this algorithm was not proven to converge in all zero-sum two-player
MGs. In fact, less than 10 years later Van Der Wal presented a simple counterex-
ample (Van Der Wal, 1978) on which the Pollatschek and Avi-Itzhak’s algorithm was
oscillating. In the same paper, he presented his own improvement of the Hoffman
and Karp’s PI algorithm named the Generalized Policy Iteration (GPI) (detailed in
Section 3.4.4). This algorithm is a generalization to zero-sum two-player MGs of MPI
(Section 1.1.3). More than 10 year later, Filar and Tolwinski revisited the Pollatschek
and Avi-Itzhak’s algorithm. They proved that this algorithm was in fact a Newton’s
method and the L2-norm of the Optimal Bellman Residual (OBR). Furthermore, af-
ter showing that every local minimum of the OBR is in fact a global minimum, they
suggest the use of a quasi-Newton method on the OBR instead of a Newton’s method.
This last method is detailed in 3.4.5.

3.4.1 Value Iteration

The value iteration algorithm (see Algorithm 10) was proposed by Shapley in the same
paper introducing MGs (Shapley, 1953). It iteratively applies the Bellman operator

3. General-Sum Markov Games 33

T at each iteration. This algorithm produces a sequence of values vk and an implicit
sequence of greedy strategies µk with respect to vk. Each iteration’s cost is |S| times
the cost of solving a minimax problem. This cost thus depends on the choice of the
algorithm for the minimax problem(see Section 2.2).

Algorithm 10 Value Iteration
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K-1 do
vk = T vk−1

end for
find µK ∈ G(vK−1)
Output: µK

The performance of µK is usually determined as the norm of the difference between
vµK and the minimax value v∗. The prof of the following result can be found in (Patek,
1997):

‖vµK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.82)

As for MDPs, the cost of each iteration is relatively low compared to other methods
but the convergence of this method is slow in the number of iterations.

3.4.2 Policy Iteration by Hoffman and Karp

Hoffman and Karp’s PI has two steps per iteration. Suppose we are at iteration k.
The first step is to find a greedy strategy µk with respect to the previous value vk−1.
This greedy step requires solving a minimax problem per state. The second step of this
process is to find the value of a best response to µk. This step requires building the
MDP of the kernel Ea1∼µ(.|s)[p(.|s, a1, a2)] and of the reward Ea1∼µ(.|s)[r(s, a1, a2)] and
to solve it by minimizing the sum of rewards instead of maximizing them. This second
step computes vµk . Any algorithm solving an MDP can be selected for this second step
and the complexity of the overall method will depend on the algorithm selected. This
algorithm reduces to policy iteration in the case the MG is an MDP (i.e. in the case
|A2| = 1).

This algorithm produces an increasing sequence of values vk. This property is
implied by theorem 2.5.

Again, one can prove the following result on the performance of policy πK :

‖vµK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.83)

This bound shows the same asymptotic performance as the one of Value Itera-
tion. But in practice, PI for zero-sum two-player MGs converges faster than VI (Van

34 Chapter 2. Background and Related Work

Algorithm 11 Policy Iteration
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk ∈ G(vk−1) (min max step)
compute vk = vµk (solving an MDP)

end for
Output: µK

Der Wal, 1978). Further results can be proven on the number of iterations of PI for
turn taking games (Hansen et al., 2013b). However, to the best of our knowledge, no
better convergence guarantees exist in the case of simultaneous move games.

3.4.3 The Algorithm of Pollatschek and Avi-Itzhak

As described in the previous section, Hoffman and Karp’s PI algorithm is cumbersome
since it requires solving an MDP at each iteration. Pollatschek and Avi-Itzhak’s algo-
rithm (Algorithm 12) is an attempt to address this issue by changing the second step
of the algorithm. Instead of solving an MDP at the second step of the iteration, this
algorithm evaluates the joint strategy µk, νk. Pollatschek and Avi-Itzhak’s algorithm is
said to be efficient in practice (Van Der Wal, 1978) but lacks theoretical guarantees of
convergence to a minimax solution. In fact, Van Der Wal proved that it was oscillating
in certain cases.

Algorithm 12 Algorithm of Pollatschek and Avi-Itzhak
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk, νk such that Tµk,νkvk−1 = Tµkvk−1 = T̂νkvk−1 = T vk−1
compute vk = vµk,νk = (I − γPµk,νk)−1rµk,νk

end for
Output: µK

3.4.4 Generalized Policy Iteration

In the same paper proving the flaws of Pollatschek and Avi-Itzhak’s algorithm (Van
Der Wal, 1978), Van Der Wal gave his own solution to the Hoffman and Karp’s PI
problem. He introduces the Generalize Policy Iteration algorithm (GPI) that general-
izes the MPI (Section 1.1.3) to MGs. GPI also introduces a parameter m that controls
the cost of each iteration. This algorithm also reduces to VI if m = 1 and also reduces
to Hoffman and Karp’ PI if m = +∞. Indeed, in Algorithm 13 if m = +∞, the
value vk is the value vµk . If m = 1, since µk ∈ G(vk−1) we have T vk−1 = Tµkvk−1 and

3. General-Sum Markov Games 35

finally vk = Tµkvk−1 = T vk−1. Again, this algorithm enjoys the same guarantees of
convergence as PI and VI and again the performance policy µk does not depend on m.

‖vµK − v∗‖+∞ ≤
2γK
1− γ ‖v

∗ − v0‖+∞. (2.84)

But as shown by in (Van Der Wal, 1978), this algorithm converges faster than VI.
And its cost per iteration is lower than the PI by Hoffman and Karp.

Algorithm 13 Generalized Policy Iteration
Input: An MDP M , a value v0 = 0, a maximum number of iterations K and a
parameter m.
for k=1,2,...,K do
find µk ∈ G(vk−1)
compute vk = (Tµk)

m vk−1
end for
Output: µK

3.4.5 Minimizing the Bellman Residual: Filar and Tolwinski’s Algorithm

We will take extra care to detail this algorithm as it inspired the work detailed in
Chapter 6.

In an enlightening paper, Filar and Tolwinski prove that the Pollatschek and Avi-
Itzhak algorithm is a Newton’s method on the L2-norm of the Optimal Bellman
Residual (OBR) JOBR(v) = ‖v − T v‖2 = (v − T v)> (v − T v). Indeed, the gra-
dient of JOBR(v) is ∇JOBR(v) = (I − γPµ,ν)>(v − T v) and the Hessian matrix is
HJOBR(v) = (I−γPµ,ν)>(I−γPµ,ν) where µ, ν are such that Tµ,νv = Tµv = T̂νv = T v.
From value vk, the update vk+1 of the Newton’s method is

vk+1 = vk − (HJOBR(vk))−1∇JOBR(vk), (2.85)

= vk −
(
(I − γPµk,νk)>(I − γPµk,νk)

)−1
(I − γPµk,νk)>(vk − T vk), (2.86)

= vk − (I − γPµk,νk)−1(vk − Tµk,νkvk), (2.87)
= vk − (I − γPµk,νk)−1((I − γPµk,νk)vk − rµk,νk), (2.88)
= vk − vk + (I − γPµk,νk)−1rµk,νk , (2.89)
= (I − γPµk,νk)−1rµk,νk = vµk,νk . (2.90)

Thus, the idea of Filar and Tolwinski is to make the use of a quasi-Newton method
instead of Newton’s method. At each iteration, they introduce a step size αk chosen
by line search (Amijo’s rule (Filar and Tolwinski, 1991)) instead of using a step size of
1. The update becomes:

vk+1 = (1− αk)vk + αkvµk,νk . (2.91)

36 Chapter 2. Background and Related Work

Furthermore, they notice that the gradient of JOBR(v) is null if and only if v−T v =
0. Thus every local minimum of the OBR is a global minimum. Thus, they claim
that their algorithm converges to a global minimum. The algorithm is described in
Algorithm 14.

Algorithm 14 Filar and Tolwinski’s Algorithm
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk, νk such that Tµk,νkvk−1 = Tµkvk−1 = T̂νkvk−1 = T vk−1
compute vµk,νk = (I − γPµk,νk)−1rµk,νk
find αk according to Amijo’s rule for the function JOBR
update vk+1 = (1− αk)vk + αkvµk,νk

end for
Output: µK

3.5 Batch Algorithms for Zero-Sum Two-Player Markov-
Games

Even if many batch algorithms were developed for MDPs, this topic remains superfi-
cially explored in Markov Games. The only algorithm handling batch data is LSPI for
zero-sum two-player MGs (Lagoudakis and Parr, 2002) is a generalization of the LSPI
algorithm from MDPs to zero-sum two-player MGs. Again, as any batch algorithm
LSPI will perform its iterations on the Q-function and will take as input a batch of
data Dn = {(sj, aj, rj, s′j)}j=1,...,n where for all j, the reward rj = r(sj, aj) and where
s′j ∼ p(.|sj, aj)

3.5.1 Least-Squares Policy Iteration

The LSPI algorithm for MGs (Lagoudakis and Parr, 2002) is a batch version of the
algorithm of Pollatschek and Avi-Itzhak algorithm. The first step of the iteration of the
algorithm is the greedy part. This part is similar to the LSPI algorithm for MDPs but
instead of finding an argmax, it will find a minimax solution. The second step of an
iteration of LSPI finds an approximation of the Q-function of the joint policy found at
the previous iteration. This approximation of the value function lies in a feature space
FΦ = {Φω, ω ∈ Rd} where Φ = [φ1, . . . , φd] are linearly independent functions from
S ×A1 ×A2 → R. These features can be thought of as vectors of an |S| × |A1| × |A2|-
dimensional vector space. We will define ρ as a distribution of the state-action space
and ∆ρ the diagonal application that maps 1s,a1,a2 to ρ(s, a1, a2)1s,a1,a2 and finally, the
projection on the feature space FΦ with respect to the Lρ,2 is Πρ,Φ.

Instead, LSPI finds ω satisfying the projected fixed point equation:

Φω = Πρ,ΦBµ,νΦω. (2.92)

3. General-Sum Markov Games 37

The solution for ω of this equality is given by:

ω = A−1
ρ,Φ,µ,νbρ,Φ, (2.93)

where Aρ,Φ,µ,ν = Φ>∆ρ(Φ− γPµ,νΦ), (2.94)
and bρ,Φ = Φ∆ρr. (2.95)

Given a batch of data Dn = {(sj, a1
j , a

2
j , rj, s

′
j)}j=1,...,n, the matrix Aρ,Φ,µ,ν and the

vector bρ,Φ can be estimated as follow:

ÂΦ,µ,ν,Dn = 1
n

n∑
j=1

Φ(sj, a1
j , a

2
j)
Φ(sj, a1

j , a
2
j)− γ

∑
a1,a2∈A1×A2

µ(a1|s′j)ν(a2|s′j)Φ(s′j, a1, a2)
 ,

(2.96)

b̂Φ,Dn = 1
n

n∑
j=1

Φ(sj, a1
j , a

2
j)r(sj, a1

j , a
2
j). (2.97)

If the data in Dn are independent and distributed according the distribution ρ,
ÂΦ,µ,ν,Dn and b̂Φ,Dn are consistent estimators of Aρ,Φ,µ,ν and bρ,Φ. Furthermore, Â−1

Φ,µ,ν,Dn
can be be efficiently computed with the Scherman-Morison formula which provides
an optimized version of the algorithm. The algorithm in it’s most simple version is
presented in Algorithm 15.

Algorithm 15 Least Squares Policy Iteration for MGs(LSPI)
Input: A batch Dn = {(sj, a1

j , a
2
j , rj, s

′
j)}j=1,...,n, a feature space Φ, an initial

parametrization ω0 = 0 and a number of iterations K.
for k=1,2,...,K do
find µk, νk such that µk ∈ G(Φωk−1) and νk is a policy such that
Ea1∼µ(.|s), a2∼ν(.|s)[Φωk−1(a1, a2, s)] = min

a2
Ea1∼µ(.|s)[Φωk−1(a1, a2, s)]

compute ÂΦ,µk,νk,Dn and b̂Φ,Dn as in formula 2.96 and 2.97.
compute ωk = Â−1

Φ,µk,νk,Dn b̂Φ,Dn
end for
Output: µK

3.6 Exact Algorithms for General-Sum Markov-Games
There is a trove of approaches to solve general sum MGs. This section will provide an
overview of those methods with an emphasis on independent reinforcement learning
methods.

Multi Objective Linear Programming and Homotopy: One way to solve MGs
is to generalize the homotopy method. This method was studied widely in the two
last decades and is model based (Herings and Peeters, 2004, 2010, Borkovsky et al.,
2010). Like many algorithms to solve MGs, it scales poorly with the number of players

38 Chapter 2. Background and Related Work

(the homotopy method scales exponentially). Multi Objective Linear Programming
was studied in (Dermed and Isbell, 2009). These two methods are only tractable for
small size problems (as reported in (Prasad et al., 2015))

Rational Learning: Rational learning is guaranteed to converge to a Nash equi-
librium (Kalai and Lehrer, 1993) but is not an independent learning procedure. In
a Bayesian manner, players maintain a prior on the strategy of the opponents. This
algorithm is only guaranteed to converge in repeated games.

Evolutionary Game Theory: In (Akchurina, 2009), an evolutionary game theoretic
approach is generalized to Markov games. This work uses numerical methods to find
rest points of the replicator dynamic equation. This procedure is also model-based and
hardly scale to large state spaces and large action spaces. Furthermore, no guarantee
on the accuracy of the approximation is provided.

Two-timescale algorithms in MGs: Two-timescale algorithms have been the sub-
ject of a wide literature in MDPs that starts from the seminal work of Borkar (1997a).
These works mainly analyze the use of linear function approximations. However, when
applied independently in a multiagent setting, those algorithms no longer have con-
vergence guarantees (even without function approximation). In (Prasad et al., 2015),
the authors attempt to provide an on-line model-free algorithm with guarantees. This
approach requires each player to observe the rewards of the others. The authors claim
that their algorithm is guaranteed to converge to a Nash equilibrium but the proof of
this algorithm is broken (details in App. 14).

Sampling Based Algorithms in MSGs and Conterfactual Regret Minimiza-
tion Algorithms (CFR): A trove variety of algorithms exists to compute Nash
equilibria in MSGs. A review of those algorithms can be found in (Bošanský et al.,
2016). Those algorithms require that one can query the model at each stage of the
game but they do not belong to the family of independent RL methods. Another fam-
ily of algorithms related to our work are the CFR algorithms and their wide number
of variations. Even if these algorithms have sample-based variations (Lanctot et al.,
2009), none of those variations are based on independent learning rules.

3.7 Independent Reinforcement Learning for Markov Games
Several major issues prevent direct use of standard RL algorithms with multi-agent
systems. First, blindly applying single agent RL in a decentralized fashion implies
that, from each agent’s point of view, the other agents are part of the environment.
Such an hypothesis breaks a crucial RL assumption that the environment is (at least
almost) stationary (Laurent et al., 2011). Second, it introduces partial observability as
each agent’s knowledge is restricted to its own actions and rewards while its behavior
should depend on others’ strategies.

3. General-Sum Markov Games 39

Independent reinforcement learning in games has been studied widely in the case of
normal form games and include regret minimization approaches (Bubeck and Cesa-
Bianchi, 2012, Cesa-Bianchi and Lugosi, 2006) or stochastic approximation algo-
rithms (Leslie and Collins, 2006). However, to our knowledge, none of the previous
methods have been extended to independent reinforcement learning in Markov Games
or any intermediate models such as MSGs with guarantees of convergence both for
cooperative and zero-sum cases. Addressing both cases are still treated as separate
agendas since the seminal paper by Shoham et al. (2007).

3.7.1 Q-Learning Like Algorithms

On-line algorithms like Q-learning (Watkins and Dayan, 1992) are often used in co-
operative multi-agent learning environments but fail to learn a stationary strategy in
simultaneous zero-sum two-player games. They fail in this setting because, in simulta-
neous zero-sum two-player games, it is not sufficient to use a greedy strategy to learn
a Nash equilibrium. In (Littman, 1994), the Q-learning method is adapted to guaran-
tee convergence to zero-sum two-player MGs. Other adaptations to N -player games
were developed (Hu and Wellman, 2003, Greenwald et al., 2003). However, all these
methods require the observation of the opponents’ action and the two last ones are
guaranteed to converge only under very conservative hypotheses. Moreover, these are
not independent methods as each player needs to observe the rewards of the others.

3.7.2 Independent Policy Gradient

In MGs and in NFGs, previous work on decentralized learning includes the study of
policy hill climbing (Bowling and Veloso, 2001). In this approach, each agent follows a
gradient ascent on his expected outcome. This method enjoys limited guarantees and
fails to converge in zero-sum games. The behavior of this algorithm can be improved
using heuristics on the learning rate as reported in (Bowling and Veloso, 2001). It
can also scale up using function approximation as in (Banerjee and Peng, 2003) which
results in an actor-critic like method and fits in our setting.

3.7.3 Fictitious Play

Fictitious play is a model-based process that learns Nash equilibria in some subclass
normal form games. It has been widely studied and required assumptions were weak-
ened over time (Leslie and Collins, 2006, Hofbauer and Sandholm, 2002) since the
original article by Robinson Robinson (1951). It has been extended to extensive form
games (game trees) and, to a lesser extent, to function approximation (Heinrich et al.,
2015). However, theoretical work on this process is neither on-line nor decentralized
except from Leslie and Collins (2006) work which focus on NFGs. Fictitious play en-
joys several convergence guarantees (Hofbauer and Sandholm, 2002) which makes it a
good candidate for learning in simultaneous multi-stage games. The original fictitious
play creates a sequence of policies πn. At each iteration n, players play their best

40 Chapter 2. Background and Related Work

response against the average policy played by the opponent until iteration n. This
average policy per players evolve as follows:

πin+1 =
(

1− 1
n

)
πin+1 + 1

n
B
(
riπ-i

n

)
Where B

(
riπ-i

n

)
is a greedy policy of with respect to the reward riπ-i

n
(formally we have

B
(
riπ-i

n

)
∈ G(riπ-i

n
)).

This process is often studied as a continuous time process formalized as a differen-
tial inclusion. This continuous time process follows the following differential inclusion
equation:

π̇it ∈ G
(
riπ-i

t

)
− πit (2.98)

The process defined in Equation (2.99) has been weakened to allow the use of
approximate best responses. In Hofbauer and Sandholm (2002), the approximate best
response is defined in a generalized manner but can be thought as a softmax over
the reward function. The differential inclusion defined above becomes a differential
equation:

π̇it ∈ Bσ

(
riπ-i

t

)
− πit (2.99)

This process will be generalized to multi stage games in Chapter 8.

Part II

Approximate Dynamic
Programming in Zero-Sum
Two-Player Markov Games

Chapter 3

Approximate Dynamic
Programming in Games : A Unified

Analysis

This chapter details the contributions of (Perolat et al., 2015). The first part of this
chapter reports a unified analysis of several approximate dynamic programming algo-
rithms for MGs comparable to the one of section 1.2.3 on MDP. The second part of
this chapter proposes a batch algorithm based on generalized policy iteration (Sec-
tion 3.4.4). First we briefly recall the VI algorithm, the PI algorithm and the GPI
algorithm. Then we present the scheme of approximation and analyse it. Finally, we
propose our novel Batch algorithm for MGs and report its empirical evaluation.

1 Approximate Dynamic Programming: A Unified
Scheme

The three algorithms we intend to analyse are VI, PI and GPI. Each iteration of these
algorithms can be decomposed in two steps. The greedy step is common to all of
them and the evaluation step implements a different strategy for each of them. Each
iteration of the VI algorithm can be written as follows:

vk+1 = T vk.

This can equivalently be written in two steps as follows:

µk+1 = G(vk),
vk+1 = Tµk+1vk.

This two-step decomposition of these algorithms is straightforward for PI and GPI.
Indeed, each iterations of PI can be written as:

µk+1 = G(vk),
vk+1 = vµk+1 = (Tµk+1)+∞vk.

44 Chapter 3. Approximate Dynamic Programming in Games

Finally, GPI bridges the gap between PI and VI:

µk+1 = G(vk),
vk+1 = (Tµk+1)mvk.

It is clear that GPI generalizes VI and PI. In particular, an error propagation bound
for VI (when m = 1) and PI (when m = ∞) will follow from the analysis we shall
provide for GPI. Thus, only an approximate version of GPI will be analysed. This
analysis will give insights on the VI and PI algorithms as they are limit cases.

Remark 3.1. In turn-based games, each state is controlled by a single player. In
the zero-sum two-player MGs framework, they can be seen as a game where ∀s ∈
S, card(A1(s)) = 1 or card(A2(s)) = 1. In this special case, optimal strategies are
deterministic (Hansen et al., 2013b). Furthermore, and as we already mentioned, the
greedy step (see definition in Section 2) reduces to finding a maximum rather than a
minimax equilibrium and is thus significantly simpler. Furthermore, one can see an
MDP as a zero-sum two-player MG where one player has no influence on both the
reward and the dynamics. Therefore, our analysis should be consistent with previous
MDP analyses.

1.1 Approximate Generalized Policy Iteration
As its exact counterpart, Approximate Generalized Policy Iteration (AGPI) proceeds
in two steps (Algorithm 16). Unlike GPI, each steps of AGPI accounts for errors
in each step of the iteration. The greedy step can select a strategy that is not a
minimax strategy. At iteration k, this strategy can be ε′k suboptimal and we shall
write µk ← Ĝε′

k
(vk−1) for:

T vk−1 ≤ Tµkvk−1 + ε′k (3.1)
or, ∀µ′ Tµ′vk−1 ≤ Tµkvk−1 + ε′k. (3.2)

In other words, the strategy µ is not necessarily the best strategy, but it must be
guaranteed to be ε′ away from the best strategy in the worst case.

At iteration k the evaluation step may have an additive error εk:

vk = (Tµk)mvk−1 + εk. (3.3)

In the evaluation step the strategy µk is fixed and the operator Tµk · = minν Tµk,ν · is
applied m times. From the point of view of the minimizer, this step finds an optimal
value for a γ-discounted m-horizon problem.

1.2 Error Propagation
The goal of our analysis is to report the impact of previous errors {εi}i∈{1,...,k−1} and
{ε′i}i∈{1,...,k} on the current strategy µk. Thus, we are interested in bounding the dif-
ference

lk = v∗ − vµk ≥ 0,

1. Approximate Dynamic Programming: A Unified Scheme 45

Algorithm 16 Approximate Generalized Policy Iteration
Input: An MDP M , a value v0 = 0, a maximum number of iterations K and a
parameter m.
for k=1,2,...,K do
find µk ∈ Ĝε′

k
(vk−1)

compute vk = (Tµk)
m vk−1 + εk

end for
Output: µK

where v∗ is the minimax value of the game (obtained when both players play the Nash
equilibrium µ∗ and ν∗) and where vµk is the value when the maximizer plays µk and
the minimizer plays the optimal counter-strategy against µk. This is a natural measure
of quality for the strategy µk that would be output by the approximate algorithm.

The following elements will be key properties in our analysis. By definition, we
have:

∀ν,∀v, Tµv ≤ Tµ,νv. (3.4)

In addition, we shall consider a few notations. The minimizer policies νik, ν̃k, ν̂k
and νk are policies that respectively satisfy:

(Tµk)i+1vk−1 = Tµk,νik ...Tµk,ν1
k
Tµkvk−1. (3.5)

The strategy νik is an argmin strategy of Player 2 when Player 1 plays the strategy µk
with respect to the value Tµk)ivk−1. The strategy ν̃k is is an argmin strategy for Player
2 when Player 1 chooses the strategy µ∗ with respect to the value vk:

Tµ∗vk = Tµ∗,ν̃kvk. (3.6)

The strategy ν̂k (respectively νk) is also an argmin strategy for Player 2 when Player
1 chooses the strategy µk with respect to the value vk (respectively vµk).

Tµkvk = Tµk,ν̂kvk, (3.7)

Tµkvµk = Tµk,νkvµk . (3.8)

In order to bound lk, we will study the following quantities similar to those introduced
by Scherrer et al. (2012) (recall that Tµ and Tµ,ν are defined in Section 3.3 and the
stochastic kernel is defined in Section 2.62):

dk = v∗ − (Tµk)mvk−1 = v∗ − (vk − εk), (3.9)
sk = (Tµk)mvk−1 − vµk = (vk − εk)− vµk , (3.10)
bk = vk − Tµk+1vk, (3.11)
xk = (I − γPµk,ν̂k)εk + ε′k+1, (3.12)
yk = −γPµ∗,ν̃kεk + ε′k+1. (3.13)

Notice that lk = dk + sk. We shall prove the following relations, similar to the one
proved in Scherrer et al. (2012).

46 Chapter 3. Approximate Dynamic Programming in Games

Lemma 3.1. The following linear relations hold:

bk ≤ γPµk,ν̂kγPµk,νm−1
k

...γPµk,ν1
k
bk−1 + xk, (3.14)

dk+1 ≤ γPµ∗,ν̃kdk + yk +
m−1∑
j=1

γPµk,νjk
...γPµk,ν1

k
bk, (3.15)

sk ≤ (γPµk,νk)m(
∞∑
i=1

γPµk,νik ...γPµk,ν1
k
bk−1). (3.16)

Contrary to the analysis of Scherrer et al. (2012) for MDPs in which the operator
Tµ is affine, it is in our case non-linear. The proof that we now develop is thus more
technical.

Proof. Let us start with bk:

bk = vk − Tµk+1vk,

= vk − Tµkvk + Tµkvk − Tµk+1vk.

From equation (3.2) we have Tµkvk ≤ Tµk+1vk + ε′k+1 (since µk+1 ∈ Ĝε′
k+1

(vk)) then:

bk ≤ vk − Tµkvk + ε′k+1,

= vk − εk − Tµkvk︸ ︷︷ ︸
=Tµk,ν̂kvk

+γPµk,ν̂kεk + εk − γPµk,ν̂kεk + ε′k+1,

= vk − εk − Tµk,ν̂k(vk − εk)︸ ︷︷ ︸
Tµk,ν̂k is affine

+(I − γPµk,ν̂k)εk + ε′k+1.

From Equation (3.3), we have vk − εk = (Tµk)mvk−1. Thus,

bk ≤ (Tµk)mvk−1 − Tµk,ν̂k(Tµk)mvk−1 + xk (Eq. (3.5)) ,
= (Tµk)mvk−1 − Tµk,ν̂kTµk,νm−1

k
...Tµk,ν1

k
(Tµkvk−1) + xk (Eq. (3.5)),

≤ Tµk,ν̂kTµk,νm−1
k

...Tµk,ν1
k
vk−1 − Tµk,ν̂kTµk,νm−1

k
...Tµk,ν1

k
(Tµkvk−1) + xk (Eq. (3.4)),

= γPµk,ν̂kγPµk,νm−1
k

...γPµk,ν1
k
(vk−1 − Tµkvk−1) + xk,

≤ γPµk,ν̂kγPµk,νm−1
k

...γPµk,ν1
k
bk−1 + xk.

To bound dk+1, we decompose it in the three following terms:

dk+1 = v∗ − (Tµk+1)mvk,
= Tµ∗v∗ − Tµ∗vk︸ ︷︷ ︸

1©
+ Tµ∗vk − Tµk+1vk︸ ︷︷ ︸

2©
+ Tµk+1vk − (Tµk+1)mvk︸ ︷︷ ︸

3©
.

1. Approximate Dynamic Programming: A Unified Scheme 47

In this equation, term 1© can be upper-bounded as follows:

Tµ∗v∗ − Tµ∗vk
= Tµ∗v∗ − Tµ∗,ν̃kvk with ν̃k defined in Eq. (3.6),
≤ Tµ∗,ν̃kv∗ − Tµ∗,ν̃kvk since ∀ν, Tµ∗ . ≤ Tµ∗,ν .
= γPµ∗,ν̃k(v∗ − vk).

By definition 2© is bounded by the greedy error:

Tµ∗vk − Tµk+1vk ≤ ε′k+1(3.2) with µ← µ∗, k ← k + 1

Finally, bounding term 3© involves the bk quantity:

Tµk+1vk − (Tµk+1)mvk,

=
m−1∑
j=1

(Tµk+1)jvk − (Tµk+1)j+1vk,

=
m−1∑
j=1

(Tµk+1)jvk − Tµk+1,ν
j
k+1
...Tµk+1,ν

1
k+1
Tµk+1vk,

≤
m−1∑
j=1

[Tµk+1,ν
j
k+1
...Tµk+1,ν

1
k+1
vk − Tµk+1,ν

j
k+1
...Tµk+1,ν

1
k+1
Tµk+1vk] see (3.4),

=
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1

(vk − Tµk+1vk),

=
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1
bk.

Then dk+1 becomes:

dk+1 ≤ γPµ∗,ν̃k(v∗ − vk) + ε′k+1 +
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1
bk,

≤ γPµ∗,ν̃k(v∗ − vk) + γPµ∗,ν̃kεk − Pµ∗,ν̃kεk + ε′k+1 +
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1
bk,

≤ γPµ∗,ν̃k(v∗ − (vk − εk︸ ︷︷ ︸
(Tµk)mvk−1

))−Pµ∗,ν̃kεk + ε′k+1︸ ︷︷ ︸
yk

+
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1
bk,

≤ γPµ∗,ν̃kdk + yk +
m−1∑
j=1

γPµk+1,ν
j
k+1
...γPµk+1,ν

1
k+1
bk.

48 Chapter 3. Approximate Dynamic Programming in Games

Let us finally bound sk:

sk = (Tµk)mvk−1 − vµk ,
= (Tµk)mvk−1 − (Tµk)∞vk−1,

= (Tµk)mvk−1 − (Tµk)m(Tµk)∞vk−1,

= (Tµk)mvk−1 − (Tµk,νk)m(Tµk)∞vk−1, with νk defined in (3.8)
≤ (Tµk,νk)mvk−1 − (Tµk,νk)m(Tµk)∞vk−1 since (3.4),
= (γPµk,νk)m(vk−1 − (Tµk)∞vk−1),

= (γPµk,νk)m(
∞∑
i=0

(Tµk)ivk−1 − (Tµk)i(Tµkvk−1)),

≤ (γPµk,νk)m
∞∑
i=0

γPµk,νik
...γPµk,ν1

k
(vk−1 − Tµkvk−1),

≤ (γPµk,νk)m
∞∑
i=0

γPµk,νik
...γPµk,ν1

k
bk−1.

From linear recursive relations of the kind of Lemma 3.1, Scherrer et al. (2012) show
how to deduce a bound on the Lp-norm of lk. This part of the proof being identical to
that of Scherrer et al. (2012), we do not develop it here. For completeness however, we
include it in Appendix 4.1 of this chapter.

Theorem 3.1. Let ρ and σ be distributions over states. Let p, q and q’ be such that
1
q

+ 1
q′

= 1. Then, after k iterations, we have:

‖lk‖p,ρ ≤
2(γ − γk)(C1,k,0

q)
1
p

(1− γ)2 sup
1≤j≤k−1

‖εj‖pq′,σ︸ ︷︷ ︸
value update error

+
(1− γk)(C0,k,0

q)
1
p

(1− γ)2 sup
1≤j≤k

∥∥∥ε′j∥∥∥pq′,σ︸ ︷︷ ︸
greedy error

,

+ 2γk
1− γ (Ck,k+1,0

q)
1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ)︸ ︷︷ ︸

contraction term

.

where

Cl,k,dq = (1− γ)2

γl − γk
k−1∑
i=l

∞∑
j=i

γjcq(j + d), (3.17)

with the following norm of a Radon-Nikodym derivative:

cq(j) = sup
µ1,ν1,...,µj ,νj

∥∥∥∥∥d(ρPµ1,ν1 ...Pµj ,νj)
dσ

∥∥∥∥∥
q,σ

. (3.18)

This bound is again similar to the one of Section 1.2.3. It involves three terms
similar to the one of theorem 2.3. The value update error, the greedy error and the
concentration are comparable to the previous terms of theorem 2.3. The only major
difference is the definition of the concentrability coeficient which generalizes the one

2. Empirical Evaluation 49

for MDPs to zero-sum two-player MGs. The bound is consistent with previous analysis
on MDPs (Section 1.2.3). Furthermore, if player 2 has no influence on the MG, the
bound of theorem 3.1 is the one theorem 2.3. In addition, when p tends to infinity, the
bound becomes:

lim inf
k→+∞

‖lk‖∞ ≤
2γ

(1− γ)2 ε+ 1
(1− γ)2 ε

′,

where ε and ε′ are respectively the sup of errors at the evaluation step and the sup of
errors at the greedy step in ∞-norm. We thus recover the bounds computed by Patek
(1997).

Remark 3.2. In the case of an MG with no discount factor but with an absorbing
state the expression given in lemma 3.1 is still valid. Instead of having a γ-discounted
transition kernel we would have a simple transition kernel. And if this transition kernel
has the following property

∃l, sup
µ0,ν0,...,µl,νl

|
∥∥∥∥∥

l∏
i=0

Pµi,νi

∥∥∥∥∥
∞
≤ γ < 1,

we could still have an upper bounds on the propagation of errors.

2 Empirical Evaluation
The analysis of error propagation presented in Section 1.2 is general enough to develop
several implementations. From the moment one can control the error made at each
iteration step, the bound presented in Theorem 3.1 applies.

2.1 Algorithm
In this section, we present the Approximate Generalized Policy Iteration-Q (AGPI-Q)
algorithm which is an extension to MG of Fitted-Q. This algorithm is offline and uses
the so-called state-action value function Q. The state-action value function extends
the value function by adding two degrees of freedom for the first action of each player.
More formally, the state-action value function Qµ,ν(s, a, b) is defined as

Qµ,ν(s, a1, a2) = E[r(s, a1, a2)] +
∑
s′∈S

p(s′|s, a1, a2)vµ,ν(s′).

We assume we are given some samples ((sj, a1
j , a

2
j), rj, s′j)j=1,...,N and an initial Q-

function (here we chose the null function). As it is an instance of AGPI, each iteration
of this algorithm is made of a greedy step and an estimation step. The algorithm is
precisely described in Algorithm 17.

For the greedy step, the minimax policy for the maximizer on each matrix game
defined by (qk(s′j, a1, a2))a1,a2 . In general, this step involves solving N linear programs;
recall that in the case of a turn-based game this step reduces to finding a maximum.

50 Chapter 3. Approximate Dynamic Programming in Games

Algorithm 17 AGPI - Q for Batch sample
Input: ((sj, a1

j , a
2
j), rj, x′j)j=1,...,N some samples,

q0 = 0 a Q-function,
F an hypothesis space
for k=1,2,...,K do

Greedy step:
for all j do
ā1
j = argmaxā minb̄ qk−1(s′j, ā, b̄) (solving a matrix game)

end for
Evaluation step:
qk,0 = qk−1
for i=1,...,m do
for all j do
qj = r(sj, a1

j , a
2
j) + γminb qk,i−1(s′j, ā1

j , b)
end for
qk,i = argminq∈F

N∑
j=1

l(q(sj, a1
j , a

2
j), qj)

Where l is a loss function.
qk = qk,m

end for
end for

The evaluation step involves solving the MDP with an horizon m for the minimizer.
This part is similar to fitted-Q iteration. At each step, we try to find the best fit over
our hypothesis space for the next Q-function according to some loss function l(x, y)
(often, l(x, y) = |x− y|2).

2.2 Analysis

For this algorithm, we have ε′k = 0 and εk the error made on qk at each iteration. Let
us note εk,i the error for fitting the Q-function on the feature space.

We have qk,i+1 = Bµkqk,i + εi. Let us define νk,i such as Bmµkqk,0 =
Bµk,νk,m−1 ...Bµk,νk,0qk,0. Furthermore we have qk,i+1 ≤ Bµk,νk,iqk,i + εk,i. On the one
hand, we have:

εk = qk,m − Bmµkqk,0, (3.19)

≤ Bµk,νk,m−1 ...Bµk,νk,0qk,0 +
m−1∑
i=0
Pµk,νk,m−1 ...Pµk,νk,i+1εk,i − Bµk,νk,m−1 ...Bµk,νk,0qk,0,

(3.20)

≤
m−1∑
i=0
Pµk,νk,m−1 ...Pµk,νk,i+1εk,i. (3.21)

2. Empirical Evaluation 51

On the other hand (with ν̃k,i as qk,i+1 = Bµk,ν̃k,iqk,i + εk,i), we have:

εk = qk,m − Bmµkqk,0, (3.22)

≥ Bµk,ν̃k,m−1 ...Bµk,ν̃k,0qk,0 +
m−1∑
i=0
Pµk,ν̃k,m−1 ...Pµk,ν̃k,i+1εk,i − Bµk,ν̃k,m−1 ...Bµk,ν̃k,0qk,0,

(3.23)

≥
m−1∑
i=0
Pµk,ν̃k,m−1 ...Pµk,ν̃k,i+1εk,i. (3.24)

From these inequalities, we can provide the following bound (the proof is given in
Appendix 5):

‖lk‖p,ρ ≤
2(γ − γk)(1− γm)

(1− γ)3 (C1,k,0,m,0
q)

1
p sup

i,l
‖εi,l‖pq′,σ (3.25)

+ 2γk
1− γ (Ck,k+1,0

q)
1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ), (3.26)

with

Cl,k,l′,k′,dq = (3.27)
(1− γ)3

(γl − γk)(γl′ − γk′)

k−1∑
i=l

k′−1∑
i′=l′

∞∑
j=i+i′

γjcq(j + d). (3.28)

2.3 Complexity analysis
At the greedy step, the algorithm solves N minimax equilibria for a zero-sum matrix
game. This is usually done by linear programming (Section 2.2). For state s, the
complexity of such an operation is the complexity of solving a linear program with
cs = 1 + card(A1(s)) + card(A2(s)) constrains and with card(A1(s)) variables. Let us
note L(cs, card(A1(s))) this complexity. Then, the complexity of this step is bounded
by NL(c, a) (with c = sup

s∈{x′1,...,x′N}
cs and a = sup

s∈{x′1,...,x′N}
card(A1(s))). Using the

simplex method, L(c, a) may grow exponentially with c while with the interior point
method, L(c, a) is O(a3.5) (Karmarkar, 1984). The time to compute qj in the evaluation
step depends on finding a maximum over A2(x′j). And the regression complexity to find
qk,i depends on the regression technique. Let us note this complexity R(N). Finally,
the complexity of this step is mR(N).

The overall complexity of an iteration is thus O(NL(c, a) + mR(N)); in general,
the complexity of solving the linear program will be the limiting factor for games with
a large amount of actions.

2.4 The Game of Alesia
Alesia (Perolat et al., 2015, Meyer et al., 1997), which resembles the Oshi-Zumo game
in (Buro, 2004, Bošanský et al., 2016) (meaning "the pushing sumo"), is a two-player

52 Chapter 3. Approximate Dynamic Programming in Games

board game where each player starts with N coins. They are positioned in the middle
of a board with 2K + 1 different positions (see Figure 3.1). At each round, each
player chooses secretly a certain amount of coins to bid (let’s say (a0, a1)). If the
player’s budget is not null, he has to bet at least one coin. If player 1’s bid is larger
(respectively smaller) than the one of player 2, player 1 (respectively player 1) moves
toward his side of the board. If the bids are equal, then players will stay on their
current position. In all cases, all bets is discounted from the budget. This process
continues until players have no coins left or until one player reaches one side of the
board. The final position determines the winner. The game ends with a draw if no one
succeeded to reach his side of the board. If player 2 (respectively player 1) reaches his
side of the board, the reward is (−1, 1) (respectively (1,−1)).

5 4 3 2 1

5 4 3 2 1

(N ,N)

(N−a0,
N − a1)

a0 < a1

Figure 3.1 – Alesia rules for K = 2.

We perform the evaluation of AGPI-Q on the Alesia game described above. We
assume that both players start with a budget N = 20 et K = 2. As a baseline, we
use the exact solution of the problem provided by VI. We have run the algorithm
for k = 10 iterations and for m ∈ {1, 2, 3, 4, 5} evaluation steps. We have considered
different sample set sizes, n = 2500, 5000, 10000. Each experiment is repeated 20 times.
First, we generate n uniform samples (sj) over the state space. Then, for each state, we
draw uniformly the actions of each player in the set of their own action space in that
state a1

j , a2
j , rj = r(sj, a1

j , a
2
j) and compute the next state s′j. As hypothesis space, we

use CART trees (Breiman et al., 1984) which exemplifies the non-parametric property
of the algorithm.

The performance of the algorithm is measured as the mean-squared error between
the value function vk(s) = minb maxa qk(s, a, b) where qk is the output of the algorithm
AGPI-Q and the actual value function computed via VI. Figure 3.2 shows the evolution
of performance along iterations for n = 10000 for the different values of the parameter
m. Figure 3.3 shows the exact value function (Fig. 3.3(a)) and the approximated one
vk (Fig. 3.3(b)). The complete list of experiments results can be found in the appendix,
especially for different size of sample set n = 2500 and n = 5000.

For each size of sample set, the asymptotic convergence is better for small values
of m. This conforms to Eq. (3.26), in which the term 2(γ−γk)(1−γm)

(1−γ)3 increases with m.
However, for small values of k, the mean-squared error is reducing whenm is increasing.
This is consistent with experimental results when using MPI for MDP: the bigger m,
the higher the convergence rate. The price to pay for this acceleration of convergence
towards the optimal value is an heavier evaluation step. This is similar to results in

3. Conclusion and Perspectives 53

the exact case (Puterman, 1994). Overall, this suggests using large values of m at the
beginning of the algorithm and reducing the values of m as k grows to get a smaller
asymptotic error.

Figure 3.2 – Mean-squared error (y-axis) between the estimated value function and the
true value function at step k (x-axis). For N = 20 and n = 10000

3 Conclusion and Perspectives

This work provides a novel and unified error propagation analysis in Lp-norm of well-
known algorithms (API, AVI and AGPI) for zero-sum two-player MGs. It extends the
error propagation analyses of Scherrer et al. (2012) for MDPs to zero-sum two-player
MGs and of Patek (1997) which is an L∞-norm analysis for only API. In addition,
we provide a practical algorithm (AGPI-Q) which learns a good approximation of the
Nash Equilibrium from batch data provided in the form of transitions sampled from
actual games (the dynamics is not known). This algorithm is an extension of Fitted-Q
for zero-sum two-player MGs and can thus be non-parametric. No features need to be
provided or hand-crafted for each different application which is a significant advantage.

54 Chapter 3. Approximate Dynamic Programming in Games

(a) Exact value for the Alesia game for player’s
budget 0...20 and for token position 3

(b) Value computed by AGPI-Q for the game
of Alesia for player’s budget 0...20 and for to-
ken position 3

Figure 3.3 – Value functions at token position 3

Finally, we empirically demonstrate that AGPI-Q performs well on a simultaneous two-
player game, namely Alesia.

It appears that the provided bound is highly sensitive to γ (which is a common
problem of ADP). This is critical and further work should concentrate on reducing the
impact of γ in the final error bound. One solution explored in the next chapter is the
use of non stationary strategies as they reduce the γ-sensitivity in the case of MDPs.

4. Appendix: Demonstration of Lemma 3.2 55

4 Appendix: Demonstration of Lemma 3.2

The following proof is similar to the one for MDP Scherrer et al. (2012) we write it
for the sake of completeness. Furthermore, equation (3.34) is the starting point of the
proof of (3.26).

We will use the same abusive but simplifying notation as in (Scherrer et al., 2012).
We will note Γn any product of n discounted transition Kernel. Then Γn represents the
set {γPµ1,ν1 , ... , γPµn,νn , with µi, νi random strategies}. Then Γn is the represent a
class of discounted stochastic matrix. One should read Γn as there exists γP1, ..., γPn
such as Γn represents the product γP1...γPn. For example we have the following
property:

α1Γiα2Γj + α3Γk = α1α2Γi+j + α3Γk.

We can rewrite Lemma 3.1 in this Simple way:

bk ≤ Γmbk−1 + xk, (3.29)

dk+1 ≤ Γdk + yk +
m−1∑
j=1

Γjbk, (3.30)

sk ≤ Γm(
∞∑
i=1

Γibk−1). (3.31)

We prove these three inequalities:

bk ≤
k∑
i=1

Γm(k−i)xk + Γmkb0

dk ≤
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

mi−1∑
j=i

Γjxk−i +
mk−1∑
i=k

Γib0 + Γkd0︸ ︷︷ ︸
zk

sk ≤
k−1∑
i=1

∞∑
j=mi

Γj+m(k−i)xi + (
∞∑

j=mk
Γj)b0︸ ︷︷ ︸

z′
k

First inequality. After expanding (3.29) we get:

bk ≤
k∑
i=1

Γm(k−i)xk + Γmkb0 (3.32)

56 Chapter 3. Approximate Dynamic Programming in Games

Second inequality :

dk ≤ Γkd0 +
k−1∑
j=0

Γk−1−j(yj + (
m−1∑
l=1

Γl)bj)

≤ Γkd0 +
k−1∑
j=0

Γk−1−j[yj + (
m−1∑
l=1

Γl)(
j∑
i=1

Γm(j−i)xi + Γmjb0)]

=
k∑
i=1

Γi−1yk−i +
k−1∑
j=0

m−1∑
l=1

j∑
i=1

Γk−1−j+l+m(j−i)xi + zk

=
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

k−1∑
j=i

m−1∑
l=1

Γk−1+l+j(m−1)−mixi + zk

=
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

m(k−i)−1∑
j=k−i

Γjxi + zk

=
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

mi−1∑
j=i

Γjxk−i + zk

With zk:

zk =
k−1∑
j=0

m−1∑
l=1

Γk−1−j+l+mjb0 + Γkd0

=
mk−1∑
i=k

Γib0 + Γkd0

last inequality (we replace bk−1 with it’s expression (3.32)):

sk ≤
k−1∑
i=1

∞∑
j=mi

Γj+m(k−i)xi + (
∞∑

j=mk
Γj)b0︸ ︷︷ ︸

z′
k

And finally bounding lk

lk = dk + sk (3.33)

≤
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

∞∑
j=i

Γjxk−i︸ ︷︷ ︸
Depend on errors

+ zk + z′k︸ ︷︷ ︸
Depend on initial condition

(3.34)

ηk = zk + z′k =
∞∑
i=k

Γib0 + Γkd0

Then we prove the following lemma which is similar to that for MDP given by
Scherrer et al. (2012):

4. Appendix: Demonstration of Lemma 3.2 57

Lemma 3.2. ∀k ≥ 1

|lk| ≤2
k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
k−1∑
i=0

∞∑
j=i

Γj
∣∣∣ε′k−i∣∣∣+ h(k), (3.35)

with h(k) = 2
∞∑
i=k

Γi |b0| or 2
∞∑
i=k

Γi |d0| . (3.36)

Relation between b0 and d0:

b0 = v0 − Tµ1v0

= v0 − v∗ + Tµ∗v∗ − Tµ∗v0 + Tµ∗v0 − Tµ1v0

≤ −d0 + γPµ∗,ν̃0d0 + ε′1

≤ (I − γPµ∗,ν̃0)(−d0) + ε′1

d0 ≤ (I − γPµ∗,ν̃0)−1(ε′1 − b0)

One should notice that in a discrete state space Pµ,ν is a stochastic matrix. Then
I − γPµ∗,ν̃0 is invertible since γPµ∗,ν̃0 has a spectral radius < 1.

then:

|ηk| ≤
∞∑
i=k

Γi((I − γPµ∗,ν̃0) |d0|+ |ε′1|) + Γk |d0|

≤
∞∑
i=k

Γi((I + Γ) |d0|+ |ε′1|) + Γk |d0|

≤ 2
∞∑
i=k

Γi |d0|+
∞∑
i=k

Γi |ε′1|

and also:

|ηk| ≤
∞∑
i=k

Γi |b0|+ Γk(I − γPµ∗,ν̃0)−1(|ε′1|+ |b0|)

≤
∞∑
i=k

Γi |b0|+ Γk
∞∑
i=0

Γ(|ε′1|+ |b0|)

≤ 2
∞∑
i=k

Γi |b0|+
∞∑
i=k

Γi |ε′1|

because lk is positive we have then:

58 Chapter 3. Approximate Dynamic Programming in Games

|lk| ≤
k∑
i=1

Γi−1 |yk−i|+
k−1∑
i=1

∞∑
j=i

Γj |xk−i|+ |ηk|

≤
k∑
i=1

Γi−1(Γ |εk−i|+
∣∣∣ε′k+1−i

∣∣∣) +
k−1∑
i=1

∞∑
j=i

Γj((I + Γ) |εk−i|+
∣∣∣ε′k+1−i

∣∣∣) + |ηk| note that ε0 = 0

≤
k−1∑
i=1

(Γi +
∞∑
j=i

(Γj + Γj+1)) |εk−i|+
k−1∑
i=1

(Γi−1 +
∞∑
j=i

Γj)
∣∣∣ε′k+1−i

∣∣∣+ Γk−1 |ε′1|+
∞∑
i=k

Γi |ε′1|+ h(k)

≤ 2
k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
k−1∑
i=0

∞∑
j=i

Γj
∣∣∣ε′k−i∣∣∣+ h(k) with h(k) = 2

∞∑
i=k

Γi |b0| or 2
∞∑
i=k

Γi |d0|

(3.37)

4.1 Demonstration of Theorem 3.1

Let us recall Scherrer’s lemma (demonstration can be found in Scherrer et al. (2012)).

Lemma 3.3. Let I and (Ji)i∈I be a sets of positive integers, {I1, ... , In} a partition
of I. Let f and (gi)i∈I be function such as:

|f | ≤
∑
i∈I

∑
j∈Ji

Γj |gi| =
n∑
l=1

∑
i∈Il

∑
j∈Ji

Γj |gi| .

Then for all p, q and q′ such as 1
q

+ 1
q′

= 1 and for all distribution ρ and σ we have

‖f‖p,ρ ≤
n∑
l=1

(Cq(l))
1
p sup
i∈Il
‖gi‖pq′,σ

∑
i∈Il

∑
j∈Ji

γj.

with the concentrability coefficient written:

Cq(l) =

∑
i∈Il

∑
j∈Ji

γjcq(j)∑
i∈Il

∑
j∈Ji

γj
.

Theorem 3.1 can be proven by applying lemma 4.2 with:

I = {1, ..., 2k}
I = {I1, I2, I3}, I1 = {1, 2, ..., k − 1}, I2 = {k, ..., 2k − 1}, I3 = {2k}

4. Appendix: Demonstration of Lemma 3.2 59

∀i ∈ I1

gi = 2εk−i
Ji = {i, i+ 1, ...}

∀i ∈ I2

gi = ε′k−(i−k)

Ji = {i− k, i− k + 1, ...}

∀i ∈ I3

gi = 2d0 or 2b0

Ji = {k, k + 1, ...}

60 Chapter 3. Approximate Dynamic Programming in Games

5 Appendix: Bound for AGPI-Q
From (3.34) and with xk = (I − Γ)εk and yk = −Γεk we can compute:

lk = dk + sk (3.38)

≤
k∑
i=1

Γi−1Γ(−εk−i) +
k−1∑
i=1

∞∑
j=i

Γj(I − Γ)εk−i + zk + z′k (3.39)

≤
k∑
i=1

Γi−1Γ
[
m−1∑
l=0

Γm−l−1(−εk−i,l)
]

+
k−1∑
i=1

∞∑
j=i

Γj(I − Γ)
[
m−1∑
l=0

Γm−l−1εk−i,l

]
+ zk + z′k

(3.40)

In (3.39) we use (3.24) to bound −εk−i and (3.21) to bound εk−i Since lk ≥ 0:

|lk| ≤
k∑
i=1

Γi
[
m−1∑
l=0

Γm−l−1 |εk−i,l|
]

+
k−1∑
i=1

∞∑
j=i

Γj(I + Γ)
[
m−1∑
l=0

Γm−l−1 |εk−i,l|
]

+ h(k) with ε0,l = 0

(3.41)

≤ 2
k−1∑
i=1

∞∑
j=i

Γj
[
m−1∑
l=0

Γl |εk−i,m−l−1|
]

+ h(k) (3.42)

≤ 2
k−1∑
i=1

m−1∑
l=0

∞∑
j=i+l

Γj |εk−i,m−l−1|+ h(k) (3.43)

with lemma 4.2 applied to:

I = {1, ..., (k − 1)m+ 1}
I = {I1, I2}, I1 = {1, 2, ..., (k − 1)m}, I2 = {(k − 1)m+ 1}

∀ξ ∈ I1, ξ = i+ (k − 1)l
gξ = 2εk−i,m−l−1

Jξ = {i+ l, i+ l + 1, ...}

∀i ∈ I2

gi = 2d0 or 2b0

Ji = {k, k + 1, ...}

The result is:

‖lk‖p,ρ ≤
2(γ − γk)(1− γm)

(1− γ)3 (C1,k,0,m,0
q)

1
p sup

i,l
‖εi,l‖pq′,σ + 2γk

1− γ (Ck,k+1,0
q)

1
p min(‖d0‖pq′,σ , ‖b0‖pq′,σ).

With:

Cl,k,l′,k′,dq = (1− γ)3

(γl − γk)(γl′ − γk′)

k−1∑
i=l

k′−1∑
i′=l′

∞∑
j=i+i′

γjcq(j + d). (3.44)

6. Appendix: Experiments 61

6 Appendix: Experiments

Results for experiments for N = 2500 (Figure 3.4(a)) and N = 5000 (Figure 3.4(b))

6.1 Mean square error between approximate value and exact
value

1 2 3 4 5 6 7 8 9 10
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

er
ro

r

m=1
m=2
m=3
m=4
m=5

(a) Mean square error (y-axis) between the
estimated value function and the true value
function at step k (x-axis). For n = 20 and
N = 2500

1 2 3 4 5 6 7 8 9 10
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

er
ro

r

m=1
m=2
m=3
m=4
m=5

(b) Mean square error (y-axis) between the
estimated value function and the true value
function at step k (x-axis). For n = 20 and
N = 5000

6.2 Exact value function, approximate value function and er-
ror for N = 10000

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0

5

10

15

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4 – Exact value for the game of ALESIA. From left to right the value of the
game (for player’s budget = 0...20) for token’s position 5 to 1

62 Chapter 3. Approximate Dynamic Programming in Games

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15
0

5

10

15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.5 – Value computed by AGPI-Q for the game of ALESIA. From left to right
the approximate value of the game (for player’s budget = 0...20) for token’s position 5
to 1

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0 5 10 15
0

5

10

15

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0 5 10 15
0

5

10

15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.6 – Absolute difference between value computed by AGPI-Q and the exact
value. From left to right the error of the game (for player’s budget = 0...20) for token’s
position 5 to 1

Chapter 4

Improved bounds using
non-stationary Strategies

In this chapter, we explore a solution to decrease the γ-sensitivity of classical ADP
algorithms (Perolat et al., 2016). Section 1.2.3 describes how the use of non-stationary
policies can be leveraged in MDPs to reduce the γ-sensitivity from 2(γ−γk)

(1−γ)2 to 2(γ−γk)
(1−γ)(1−γm)

or to improve the concentrability coefficient. In that section, we explore how similar
techniques can be used in zero-sum two-player MGs. From the point of view of player
1, the principle is the same. Instead of playing a stationary strategy µK given by some
algorithm, the player will play a cyclic strategy (µK , µK−1, . . . , µK−m+1, µK , µK−1, . . .).
To ease the notations, we will write such a strategy µK , µK−1, . . . , µK−m+1 = µk,m.
Using cyclic strategies in zero-sum two-player MGs provides a similar reduction in the
γ-sensitivity of the algorithm as the one existing for MDPs. This chapter is organized in
three parts. First, it provides definitions and properties required for this chapter. Then,
we will present four ADP schemes using non-stationary strategies and provide their
sensitivity analysis. Finally, an empirical evaluation of most algorithms is conducted
in the last part of this chapter.

1 Non-Stationary Strategy in Zero-Sum Two-
Player Markov Games

The value of a joint non-stationary strategy was defined in 2.53. If player 1 plays a non-
stationary strategy of lengthM (a tuple (µ0, µ1, . . . , µM−1)), the value (vµ0,µ1,...,µM−1) of
this non-stationary strategy is the expected cumulative γ-discounted reward the player
gets when his adversary plays the optimal counter strategy. Formally:

vµ0,µ1,...,µM−1(s) = min
(νt)t∈N

E

[+∞∑
t=0

γtrµi,νt(st)|s0 = s, st+1 ∼ Pµi,νt(.|st), i = t mod(M)
]
.

(4.1)

In other words, the strategy used in state s and at time t will depend on t. Instead
of always following a single strategy the player will follow a cyclic strategy. At time
t = 0 the player will play µ0, at time t = 1 he will play µ1 and at time t = Mj + i

(∀i ∈ {0, . . . ,M − 1}, ∀j ∈ N) he will play strategy µi. This value is the fixed point of

64
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

the operator Tµ0 . . . TµM−1 . Thus, we have:

vµ0,µ1,...,µM−1 = Tµ0 . . . TµM−1vµ0,µ1,...,µM−1 . (4.2)

Proof. This property might appear intuitive but its proof remains technical. We want
to show:

vµ0,µ1,...,µM−1(s) = min
(νt)t∈N

E

[+∞∑
t=0

γtrµi,νt(st)|s0 = s, st+1 ∼ Pµi,νt(.|st), i = t [M]
]
.

Is the fixed point of operator Tµ0 . . . TµM−1 .
This property seems intuitive. However, it’s demonstration is non standard. First

we build an MDP with a state space of size M × |S|. Then we prove the value we are
interested in is a sub-vector of the optimal value of the large MDP. Finally we prove
the sub-vector is a fixed point of Tµ0 . . . TµM−1 .

Let us define the following MDP with the same γ:
S̃ = S × {0, . . . ,M − 1}.
For (s, i) ∈ S̃ we have Ã((s, i)) = A(s)× {i}.

p̃((s′, i)|(s, j), (a2, j)) = δ{i=j+1[M]}
∑

a1∈A1(s)
µj(a1|s)p(s′|s, a1, a2) (4.3)

r̃((s, j), (a2, j)) =
∑

a1∈A1(s)
µj(a1|s)r(s, a1, a2) (4.4)

The Kernel and reward are defined as follow:

P̃ν̃((s′, i)|(s, j)) = Ea2∼ν̃(.|(s,j))[p̃((s′, i)|(s, j), (a2, j))]

One should notice that (s′, i) ∼ P̃ν̃(.|(s, j)) then i = j + 1[M] (obvious consequence of
(4.3))

r̃ν̃((s, j)) = Ea2∼ν̃(.|(s,j))[r̃((s, j), (a2, j))]

Instead of trying to maximize we will try to minimize the cumulated γ-discounted
reward. Let ṽ∗ be the optimal value of that MDP:

ṽ∗(s̃) = min
(ν̃t)t∈N

E[
+∞∑
t=0

γtr̃ν̃t(s̃t)|s0 = s̃, s̃t+1 ∼ P̃ν̃t(.|s̃t)] (4.5)

1. Non-Stationary Strategy in Zero-Sum Two-Player Markov Games 65

then:

ṽ∗((s, 0)) (4.6)

= min
(ν̃t)t∈N

E[
+∞∑
t=0

γtr̃ν̃t(s̃t)|s0 = (s, 0), s̃t+1 ∼ P̃ν̃t(.|s̃t)], (4.7)

= min
(ν̃t)t∈N

E[
+∞∑
t=0

γtr̃ν̃t((st, i))|s0 = (s, 0), s̃t+1 ∼ P̃ν̃t(.|(st, i)), i = t [M]], (4.8)

= min
(ν̃t)t∈N

E[
+∞∑
t=0

γtr̃ν̃t((st, i))|s0 = (s, 0), st+1 ∼ Pµi,νt(.|st), i = t [M], νt(.|s) = ν̃t(.|(s, j))],

(4.9)

= min
(ν̃t)t∈N

E[
+∞∑
t=0

γtrµi,νt(st)|s0 = (s, 0), st+1 ∼ Pµi,νt(.|st), i = t [M], νt(.|s) = ν̃t(.|(s, j))],

(4.10)

= min
(νt)t∈N

E[
+∞∑
t=0

γtrµi,νt(st)|s0 = s, st+1 ∼ Pµi,νt(.|st), i = t [M]], (4.11)

= vµ0,µ1,...,µM−1(s). (4.12)

Let ṽ be a value function and let ṽi, i ∈ {0, . . . ,M − 1} be the restriction to S×{i}
of ṽ.

From (4.3) we also have: Bν̃ ṽ = r̃ν̃ + P̃ν̃ ṽ =



Tµ0,ν0 ṽ1
Tµ1,ν1 ṽ2

...
TµM−2,νM−2 ṽM−1
TµM−1,νM−1 ṽ0

 where νj(.|s) ∼

ν̃(.|(s, j)) thus, we have: Bṽ = minν̃(r̃ν̃ + P̃ν̃ ṽ) =



Tµ0 ṽ1
Tµ1 ṽ2
...

TµM−2 ṽM−1
TµM−1 ṽ0


But from basic property of dynamic programming we have:

BM ṽ∗ = ṽ∗

and finally, from the definition of B and from (4.12) we have:

(Tµ0 . . . TµM−1 ṽ0)((s, 0)) = ṽ0((s, 0)) = vµ0,µ1,...,µM−1(s)

This property is a key of our analysis. It becomes now possible to use similar proof
techniques as the ones used in previous chapter.

66
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

2 Algorithms
This section presents extensions to two-player zero-sum MGs of three non-stationary
algorithms, namely Policy Search by Dynamic Programming (PSDP), Non-Stationary
Value Iteration (NSVI) and Non-Stationary Policy Iteration (NSPI), known for improv-
ing the error bounds for MDPs. For MDPs, PSDP is known to have the best concen-
trability coefficient (Scherrer, 2014), while NSVI and NSPI have a reduced dependency
over γ compared to their stationary counterparts. Here, in addition to defining the
extensions of those algorithms, we also prove theoretical guarantees of performance.

2.1 Value Iteration and Non-Stationary Value Iteration

The structure of the NSVI algorithm and of the VI algorithm are very similar. As a
reminder, the VI algorithm proceeds in two steps. The first step of each iterations is
the greedy step and the second step is an evaluation step. We consider the case where,
at iteration k, the greedy step picks an ε′k-greedy strategy (i.e. µk ∈ Gε′

k
(vk−1)) and

the evaluation step is made up to an evaluation error εk. Iteration k can be formally
described as follow:

T vk−1 ≤ Tµkvk−1 + ε′k, (approximate greedy step)

vk = Tµkvk−1 + εk. (approximate evaluation step)

As in the previous chapter, we consider that those errors propagate from one iteration
to the next, and we will analyse how far the final strategy may be from optimal. Again,
to measure the performance of such an algorithm, we will bound (according to some
norm) the distance between the optimal value and the value of the final strategy when
the opponent is playing optimally.

The VI algorithm presented above produces a sequence of values v0, . . . , vk and, im-
plicitly, strategies µ0, . . . , µk. The non-stationary variation of VI for MGs, NSVI (Al-
gorithm 18), simply consists in playing the m last strategies generated by VI for MGs.
As described in the introduction, this strategy is written µk,m = µk, µk−1, . . . , µk−m+1.
In the following, we provide a bound in Lp-norm for NSVI in the framework of zero-sum
two-player MGs. The goal is to bound the difference between the optimal value v∗ and
the value vµk,m = vµk,µk−1,...,µk−m+1 of the m last strategies generated by VI.

Algorithm 18 Non-Stationary Value Iteration
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk ∈ Gε′

k
(vk−1)

vk = Tµkvk−1 + εk
end for
Output: µK,m = (µK , µK−1, . . . , µK−m+1)

2. Algorithms 67

Usually, one is only able to control ε and ε′ according to some norm ‖.‖pq′,σ and
wants to control the difference of value functions according to some other norm ‖.‖p,ρ
(this is explained in 1.2.3 for MDPs and in the previous chapter for zero-sum two-player
MGs). The following theorem provides a performance guarantee in Lp-norm:

Theorem 4.1. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then for a non-stationary policy of size m and after k iterations

we have:∥∥∥v∗ − vµk,m∥∥∥p,ρ ≤ 2(γ − γk)(C1,k,0,m
q)

1
p

(1− γ)(1− γm) sup
1≤j≤k−1

‖εj‖pq′,σ︸ ︷︷ ︸
value update error

+
(1− γk)(C0,k,0,m

q)
1
p

(1− γ)(1− γm) sup
1≤j≤k

∥∥∥ε′j∥∥∥pq′,σ︸ ︷︷ ︸
greedy error

(4.13)

+ 2γk
1− γm (Ck,k+1,0,m

q)
1
p ‖v∗ − v0‖pq′,σ︸ ︷︷ ︸

contraction term

, (4.14)

With:
Cl,k,d,mq = (1− γ)(1− γm)

γl − γk
k−1∑
i=l

∞∑
j=0

γi+jmcq(i+ jm+ d)

and where:
cq(j) = sup

µ1,ν1,...,µj ,νj

∥∥∥∥∥d(ρPµ1,ν1 . . . Pµj ,νj)
dσ

∥∥∥∥∥
q,σ

.

Proof. The full proof is left in appendix 6. Techniques used for the previous bound are
similar to the ones used to analyse AGPI.

Each term of this bound is decomposed in three elements. The contraction term is
essentially equivalent to the one of VI. The γ-contraction term 2γk

1−γm (instead of 2γk
1−γ)

is slightly improved and converges to zero at a geometrical rate. The concentrability
coefficient is improved in some sense (Scherrer, 2014) (if it is infinite, it implies that
the one of VI is infinite). Finally, the error on the initial value is slightly worse but
we believe that extra care in the analysis would provide the same dependency on the
initial value.

As for the error propagation bounds, the difference between VI and NSVI is way
more significant (here we analyse both the value update error and the greedy error).
Whilst the γ-sensitivity of VI is of the order of 1

(1−γ)2 , the γ-sensitivity of VI is of the
order of 1

(1−γ)(1−γm) . For instance, if γ = 0.99 (which is a typical choice in applications)
we have 1

(1−γ)2 = 10000 for VI and 1
(1−γ)(1−γm) if of the order of 5000 for m = 2, 2000

for m = 5 and 1000 for m = 10. Again, the concentrability coefficient is improved and
the ε-error remains the same in both cases.

From an implementation point of view, this technique introduces an explicit trade-
off between memory and error. Indeed, m strategies have to be stored instead of 1 to
decrease the value function approximation error from 2γε

(1−γ)2 to 2γε
(1−γ)(1−γm) . Moreover,

a benefit of the use of a non-stationary strategy in VI is that it comes from a known
algorithm and thus needs very little implementation effort.

68
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

Remark 4.1. We can notice the full bound matches the bound on stationary strategies
in Lp-norm of the previous chapter for the first and second terms. It also matches the
one in L∞-norm for non-stationary policies of Scherrer and Lesner (2012) in the case
of MDPs.

2.2 Policy Search by Dynamic Programming (PSDP)
PSDP was first introduced by Bagnell et al. (2003) for solving undiscounted MDPs and
undiscounted Partially Observable MDPs (POMDPs), but a natural variant using non-
stationary strategies can be used for the discounted case (Scherrer, 2014). When ap-
plied to MDPs, this algorithm enjoys the best concentrability coefficient among several
algorithms based on policy iteration, namely Non-stationary Policy Iteration (NSPI),
Conservative Policy Iteration (CPI), Approximate Policy Iteration (API) and NSPI(m)
(see Scherrer (2014) for more details). In this section, we describe two extensions of
PSDP (PSDP1 and PSDP2) to two-player zero-sum MGs. Both algorithms reduce to
PSDP in the case of MDPs but only one of them can be practically implemented in the
case of a MG (PSDP2). Still, we present PSDP1 since its concentrability coefficient is
close to the one given by Scherrer for PSDP in MDPs. The main difference between
those two schemes is that PSDP1 involves the non-linear operator Tµ whilst PSDP2
involves operator Tµ,ν

Algorithm 19 PSDP1
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk ∈ G(vσk−1),
vσk−1 = Tµk−1 . . . Tµ00 + εk−1

end for
Output: µK,K+1 = (µK , µK−1, . . . , µ0)

PSDP1: A first natural extension of PSDP in the case of γ-discounted Markov games
is the following. At each step the algorithm returns a strategy µk for the maximizer,
such that T vσk−1 = Tµkvσk−1 where vσk−1 = Tµk−1 . . . Tµ00 + εk−1. Following any non-
stationary strategy that uses σk (= µk, . . . , µ0) for the k + 1 first steps, we have the
following performance guarantee:

Theorem 4.2. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then we have:

∥∥∥v∗ − vµk,k+1

∥∥∥
p,ρ
≤

2(C1,k,0
µ∗,q)

1
p

1− γ sup
0≤j≤k

‖εj‖pq′,σ

+ o(γk), (4.15)

2. Algorithms 69

with:
Cl,k,dµ∗,q = 1− γ

γl − γk
k−1∑
i=l

γicµ∗,q(i+ d)

and where:
cµ∗,q(j) = sup

ν1,...,νj ,µj

∥∥∥∥∥d(ρPµ∗,ν1 . . . Pµ∗,νj−1Pµj ,νj)
dσ

∥∥∥∥∥
q,σ

.

Proof. The full proof is left in appendix 7.2.

The concentrability coefficient of this algorithm is similar to the one of its MDP
counterpart: with respect to the first player, it has the advantage of depending mostly
on the optimal strategy µ∗. However, estimating at each iteration Tµk−1 . . . Tµ00 requires
solving a control problem and thus might be computationally prohibitive. Therefore,
we introduce a second version of PSDP for games, which does not require to solve a
control problem at each iteration.

Algorithm 20 PSDP2
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find (µk, νk) such that T vσk−1 = Tµkvσk−1 and Tµkvσk−1 = Tµk,νkvσk−1 ,
vσk−1 = Tµk−1,νk−1 . . . Tµ0,ν00 + εk

end for
Output: µK,K+1 = (µK , µK−1, . . . , µ0)

PSDP2: This algorithm creates a sequence of strategies ((µk, νk),. . . ,(µ0, ν0)). At
each step k the algorithm returns a pair of strategies (µk, νk) such that T vσk−1 =
Tµkvσk−1 and Tµkvσk−1 = Tµk,νkvσk−1 (where vσk−1 = Tµk−1,νk−1 . . . Tµ0,ν00+εk). To analyze
how the error propagates through iterations, we will compare the value of the non-
stationary strategy µk,k+1 (=µk,. . . ,µ0) against the value of best response to the optimal
strategy.

Theorem 4.3. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then we have:

∥∥∥v∗ − vµk,k+1

∥∥∥
p,ρ
≤

4(C1,k,0
q)

1
p

1− γ sup
0≤j≤k

‖εj‖pq′,σ

+ o(γk), (4.16)

with:
Cl,k,dq = 1− γ

γl − γk
k−1∑
i=l

γicq(i+ d).

Proof. The full proof is left in appendix 7.1.

70
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

PSDP1 and PSDP2 are different algorithms since one requires to solve a finite
horizon γ-discounted MDP (PSDP1) as a subroutine whilst the second one (PSDP2)
only requires to evaluate a joint strategy. Thus, the error term εk in PSDP1 is an error
due to solving a control problem, while the error term εk in PSDP2 comes from a pure
estimation error.

However, both algorithms share the same issue. Both algorithms require the storage
of all strategies from the very first iteration. The algorithm PSDP1 needs to store k
strategies at iteration k while PSDP2 needs 2k at the same stage. However PSDP2
alleviates a major constraint of PSDP1: it doesn’t need an optimization subroutine at
each iteration. The price to pay for that simplicity is to store 2k strategies and a worse
concentrability coefficient.

Indeed, one can notice that ∀j ∈ N cµ∗,q(j) ≤ cq(j) and thus Cl,k,dµ∗,q ≤ Cl,k,dq .
And thus, the concentrability coefficient of PSDP2 is worse than PSDP1’s. More-
over, Cl,k,d,mq = (1 − γm)Cl,k,dq + γmCl,k,d+m,m

q meaning intuitively that Cl,k,dq is Cl,k,d,mq

when m goes to infinity. This also means that if Cl,k,dq =∞, then we have Cl,k,d,mq =∞.
In that sense, one can argue that PSDP2 offers a better concentrability coefficient than
NSVI. Finally, PSDP1 and PSDP2 enjoy a better γ-sensitivity than NSVI for the value
update error (4

1−γ instead of 2(γ−γk)
(1−γ)(1−γm))

2.3 Non Stationary Policy Iteration (NSPI(m))

The approximate version of PI has the same guarantees in terms of greedy error and
approximation error as VI. Like VI, there exists a non-stationary version of policy
iteration that was originally designed for MDPs by Scherrer and Lesner (2012). Instead
of estimating the value of the current policy at each iteration, it estimates the value of
the non-stationary policy formed by the last m policies. Generalized to MGs, NSPI(m)
estimates the value of the best response to the last m strategies.

Algorithm 21 NSPI
Input: An zero-sum two-player MG MG, a value v0 = 0 and a maximum number
of iterations K.
for k=1,2,...,K do
find µk ∈ G(vk−1),
vk = vµk,m + εk

end for
Output: µK,m = (µK , µK−1, . . . , µK−m+1)

Doing so, the algorithm NSPI(m) tackles the memory issue of PSDP. It allows
controling the size of the stored non-stationary strategy. NSPI(m) proceeds in two
steps. First, it computes an approximation vk of vµk,m (vk = vµk,m + εk). Here, vµk,m
is the value of the best response of the minimizer to strategy µk,m = µk, . . . , µk−m+1
(defined in Section 1). Then it moves to a new strategy µk+1 satisfying T vk = Tµk+1vk.

3. Empirical Evaluation 71

Theorem 4.4. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then for a non-stationary policy of size m and after k iterations

we have:

∥∥∥v∗ − vµk,m∥∥∥p,ρ ≤2γ(C1,k−m+2,0,m
q)

1
p

(1− γ)(1− γm) sup
m≤j≤k−1

‖εj‖pq′,σ

+ o(γk). (4.17)

Proof. The full proof is left in appendix 8.

The NSPI dependency over γ and the concentrability coefficient involved in the
NSPI bound are similar to those found for NSVI. However, in the MDP case the policy
evaluation error is responsible for the error εk and in the MG case the error comes from
solving a full control problem.

2.4 Summary
To sum up, both NSVI and NSPI enjoy a reduced dependency over γ (i.e. 1

(1−γ)(1−γm))
when considering non-stationary strategies. They exhibit similar concentrability co-
efficients but the origin of the error is different (a regression for NSVI and a policy
evaluation or a control problem for NSPI). PSDP1 and PSDP2 enjoys an even better
dependency on γ (i.e. 1

1−γ). The concentrability coefficient of PSDP1 is better than
that of PSDP2 which is better than those of NSVI and NSPI. However, the error in-
volved in the analysis of PSDP1 is caused by solving a full control problem (which
makes this algorithm impractical) while the error in PSDP2 comes from a simple re-
gression.

3 Empirical Evaluation
The previous section provided, for each new algorithm, a performance bound that
assumes a worst case error propagation. Examples suggesting the bound is tight were
provided by Scherrer and Lesner (2012) for MDPs in the case of L∞ analysis (p =∞).
Since those examples apply on MDPs, they also apply to MGs. Those specific examples
are pathological problems and, in practice, the bounds will generally be conservative.
Furthermore, our analysis of the term εk somehow hides the sources of errors that may
vary a lot among the different algorithms. To ensure these techniques are relevant in
practice and to go beyond the theoretical analysis, we tested them on synthetic MDPs
and turn-based MGs, named Garnets (Archibald et al., 1995).

Garnets for MDPs: A Garnet is originally an abstract class of MDPs. It is gener-
ated according to three parameters (NS,NA,NB). Parameters NS and NA are respec-
tively the number of states and the number of actions. Parameter NB is the branching
factor defining the number of possible next states for any state-action pair. The pro-
cedure to generate the transition kernel p(s′|s, a) is the following. First, one should

72
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

draw a partition of [0, 1] by drawing NB − 1 cutting points uniformly over [0, 1] noted
(pi)1≤i≤NB−1 and sorted in increasing order (let us note p0 = 0 and pNB = 1). Then,
one draws a subset {s1, . . . , sNB} of size NB of the state space S. This can be done by
drawing without replacement NB states from the state space S. Finally, one assigns
p(s′i|s, a) according to the following rule: ∀i ∈ {1, . . . , NB}, p(si|s, a) = pi − pi−1. The
reward function r(s) depends on the experiment.

Garnet for two-player turn-based MGs We are interested in a special kind of
MGs, namely turn-based games. Here, turn-based games are two-player zero-sum
MGs where, at each state, only one player has the control on the game. The gener-
ating process for this kind of Garnet is the same as the one for MDPs. Then we will
independently decide for each state which player has the control over the state. The
probability of state s to be controlled by player 1 is 1

2 .

Experiments In the two categories of Garnets described previously we ran tests
on Garnets of size NS = 100, with NA ∈ {2, 5, 8} and NB ∈ {1, 2, 5}. The experi-
ment aims at analyzing the impact of the use of non-stationary strategies considering
different amounts of samples at each iteration for each algorithm. Here, the reward
for each state-action couple is null except for a given proportion (named the sparsity
∈ {0.05, 0.1, 0.5}) drawn according to a normal distribution of mean 0 and of vari-
ance 1. Algorithms are based on the state-actions value function (defined in 3.3):
Qµ,ν(s, a1, a2) = r(s, a1, a2) + ∑

s′∈S
p(s′|s, a1, a2)vµ,ν(s′).

The analysis of previous section still holds since one can consider an equivalent (but
larger) MG whose state space is composed of state-action pairs. Moreover, each evalua-
tion step consists in approximating the state-action(s) value function. We approximate
the value function by minimizing a L2 norm on a tabular basis with a regularization
also in L2 norm. All the following considers simultaneous MGs. To retrieve algorithms
for MDPs, consider that the minimizer always has a single action. To retrieve algo-
rithms for turn-based MGs, consider that at each state only a single player has more
than one action.

Experiments are limited to finite states MGs. Moreover, Garnets have an erratic
dynamic since next states are drawn without replacement within the set of states,
thus the dynamic is not regular in any sens. Garnets are thus tough to optimize.
Experiments on simultaneous games are not provided due to difficulties encountered
to optimize such games. We believe Garnets are too hard to optimize when it comes
to simultaneous games.

In all presented graphs, the performance of a strategy µ (which might be stationary
or not) is measured as ‖v

∗−vµ‖u,2
‖v∗‖u,2

where u is the uniform measure over the state-action(s)
space. The value vµ is computed exactly with the policy iteration algorithm. In every
curve, the confidence interval is proportional to the standard deviation. To compare
algorithms on a fair basis, their implementation relies on a sample-based approximation
involving an equivalent number of samples. In all tests, we could not notice a significant

3. Empirical Evaluation 73

influence of NA. Moreover the sparsity only influences the amount of samples needed
to solve the MG.

NSVI The NSVI algorithm starts with a null Q-functions Q0(s, a1, a2). At each
iteration we draw uniformly over the state-actions space (si, a1

i , a
2
i) then we compute

ri = r(si, a1
i , a

2
i) and draw s′i ∼ p(.|si, a1

i , a
2
i) for i ∈ {1, . . . , Nk}. Then we compute

qi = ri+γmina2 Ea1∼µk(.|s′i)[Qk(s′i, a1, a2)]. The next state-actions value function Qk+1
is the best fit over the training dataset {(si, a1

i , a
2
i), qi}i∈{1,...,Nk}. In all experiments

on NSVI, all samples are refreshed after each iteration. The first advantage of using

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

Figure 4.1 – Performance (y-axis) of the strategy at step k (x-axis) for NSVI for a
strategy of length 10 (right) and length 1 (left). Results are averaged over 70 Garnets
NS = 100 , NA = 5, NB = 1 (top) and NB = 2 (bottom). All Garnets have a sparsity
of 0.5 and γ = 0.9. Each step of the algorithm uses 2.25×NA ×NS samples.

non-stationary strategies in VI is the reduction of the standard deviation of the value
vµk,...,µk−m+1 . Figure 4.1 shows the reduction of the variance when running a non-
stationary strategy. Intuitively one can think of it as a way of averaging over the last
m strategies the resulting value. Moreover, the larger m is the more the performance
concentrates (the parameter m is varied in figure 4.1, 4.4, 4.5, 4.6 and 4.7). A second

74
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

advantage is the improvement of the average performance when NB (the branching
factor of the problem) is low. One the negative side, since we are mixing last m
strategies, the asymptotic performance is reached after more iterations (see Figure
4.1).

PSDP2 In practice PSDP2 builds Nk rollout (indexed by j)
{(si,j, a1

i,j, a
2
i,j, ri,j)}i∈{0,...,k+1} at iteration k. Where (s0,j, a

1
0,j, a

2
0,j) are drawn uniformly

over the state-actions space and where si+1,j ∼ p(.|si,j, a1
i,j, a

2
i,j), a1

i+1,j ∼ µk−i(.|si+1,j),
a2
i+1,j ∼ νk−i(.|si+1,j) and ri+1,j = r(si+1,j, a

1
i+1,j, a

2
i+1,j). Then we build the dataset

{(s0,j, a
1
0,j, a

2
0,j),

k+1∑
i=0

γiri,j}j∈{0,...,Nk}. The state-actions value function Qk+1 is the best
fit over the training dataset. Strategies µk+1 and νk+1 are the exact minmax strategies
with respect to Qk+1.

From an implementation point of view, PSDP2 uses (k + 2)×Nk samples at each
iteration (parameterNk is varied in the figures 4.2 and 4.7). Furthermore, the algorithm
uses rollouts of increasing size. As a side effect, the variance of

k+1∑
i=0

γiri,j increases
with iterations for non-deterministic MDPs and MGs. This makes the regression of
Qk+1 less practical. To tackle this issue, we use a procedure, named resampling, that
consists in averaging the cumulative γ-discounted reward

k+1∑
i=0

γiri,j over different rollouts
launched from the same state-actions triplet (s0,j, a

1
0,j, a

2
0,j). In figure 4.2 the two top

curves display the performance of PSDP2 with (on the right) and without (on the
left) resampling trajectories on deterministic MGs. The two figures on the bottom are
however obtained on non-deterministic MGs. One can notice a significant improvement
of the algorithm when using resampling on non-deterministic MGs illustrating the
variance issue raised in the foregoing paragraph.

PSDP1 We do not provide experiments within the PSDP1 scheme. Each iteration
of PSDP1 consists in solving a finite horizon control problem (i.e. approximating
vσk = Tµk . . . Tµ00). The problem of estimating vσk reduces to solving a finite horizon
MDP with non stationary dynamics. To do so, one should either use Fitted-Q iterations
or PSDP for MDPs. In the first case, one would not see the benefit of such a scheme
compared to the use NSVI. Indeed, each iterations of PSDP1 would be as heavy in term
of computation as NSVI. In the second case, one would not see the benefit compared
PSDP2 since each iterations would be as heavy as PSDP2.

NSPI(m) At iteration k, NSPI(m) approximates the best response of the non-
stationary strategy µk, . . . , µk−m+1. In the case of an MDP, this results in evaluating
a policy. The evaluation of a stationary policy is done by an approximate iteration of
Tµ. This procedure can be done by a procedure close to Fitted-Q iteration in which
the strategy µ is used at each iteration instead of the greedy policy. The evaluation of
the non-stationary policy µk, . . . , µk−m+1 is done by approximately applying in a cycle
Tµk , . . . , Tµk−m+1 . For MG, the subroutine will contain l ×m iterations. At iteration

3. Empirical Evaluation 75

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP2

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP2 with resampling

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP2

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP2 with resampling

Figure 4.2 – Performance (y-axis) of the strategy of length k + 1 at step k (x-axis)
for PSDP2 without resampling (left) with a 10 times resampling (right). Results are
averaged over 70 Garnets NS = 100 , NA = 5, NB = 1 (top) and NB = 2 (bottom).
All Garnets have a sparsity of 0.5 and γ = 0.9. Each step of the algorithm uses
2.25×NA ×NS rollouts.

p ∈ {1, . . . , l×m} the subroutine computes one step of Fitted-Q iteration considering
the maximizer’s strategy is fixed and of value µk−m+(p−1 mod(m))+1 and taking the greedy
action for the minimizer. In this subroutine the dataset is fixed (it is only refreshed
at each iteration of the overall NSPI(m) procedure). The parameter l is chosen large
enough to achieve a given level of accuracy, that is having γm×l below a given threshold.
Note that for small values of k (i.e. k < m) this implementation of the algorithm finds
an approximate best response of the non-stationary strategy µk, . . . , µ1 (of size k and
not m). As for VI, the use of non-stationary strategies reduces the standard deviation
of the performance as m grows. Figure 4.3 shows also an improvement of the average
performance as m grows.

76
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI30

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI30

Figure 4.3 – Performance (y-axis) of the strategy at step k (x-axis) for NSPI for a
strategy of length 10 (left) and 30 (right). results are averaged over 70 Garnets NS =
100 , NA = 8, NB = 1 (top) and NB = 2 (bottom). All Garnets have a sparsity of 0.5
and γ = 0.9. Each step of the algorithm uses 2.25×NA ×NS samples.

4 A Comparison

From the theoretical analysis, one may conclude that PSDP1 is the best scheme to
solve MGs. It’s dependency over γ is the lowest among the analyzed algorithms and it
exhibits the best concentrability coefficient. However, from the implementation point of
view this scheme is a very cumbersome since it implies solving a finite horizon control
problem of increasing size, meaning using an algorithm like Fitted-Q or PSDP as a
subroutine at each iteration. PSDP2 tackles the main issue of PSDP1. This algorithm
doesn’t need to solve a control problem as a subroutine but a simple supervised learning
step is enough. The price to pay is a worst bound and the storage of 2× k instead of
k strategies.

As in PSDP1, the NSPI algorithm needs to solve a control problem as a subroutine
but it only considers a constant number of strategies. Thus NSPI solves the memory
issue of PSDP1 and PSDP2. The γ-sensitivity of the error bound is reduced from

4. A Comparison 77

roughly 1
(1−γ)2 to 1

(1−γ)(1−γm) where m is the length of the non-stationary strategy
considered. Nevertheless, the error term of PSDP2 derives from a supervised learning
problem while it comes from a control problem in NSPI. Thus, controlling the error of
PSDP2 might be easier than controlling the error of NSPI.

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI5

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI30

Figure 4.4 – Performance (y-axis) of the strategy at step k (x-axis) for NSVI, PSDP and
NSPI. Results are averaged over 70 Garnets NS = 100 , NA = 8, NB = 1. All Garnets
have a sparsity of 0.5 and γ = 0.9. Each step of NSPI and NSVI uses 2.25×NA ×NS

samples. Each step of PSDP2 uses 2.25×NA ×NS rollouts.

The NSVI algorithm enjoys an error propagation bound similar to the NSPI one.
However the error of NSVI derives from a simple supervised learning problem instead of
a full control problem as for NSPI. Figure 4.4 compares NSPI and NSVI with the same
number of samples at each iteration. It clearly shows NSVI performs better in average
performance and regarding the standard deviation of the performance. For turn-based
MGs the NSVI algorithm performs better than NSPI on Garnets. Furthermore one
iteration of NSPI costs significantly more than an iteration of NSVI. Figure 4.4 also
compares PSDP2 and NSVI. Even if PSDP2 uses k times more samples than NSVI
at iteration k, it barely achieves the same performance as NSVI (in the case of a
non-deterministic game this is not even the case, see Figure 4.6 in the appendix).

78
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

5 Conclusion
In this chapter, we explored the generalization of different techniques known for MDPs
to zero-sum two-player MGs. These techniques make the use of non-stationary strate-
gies to improve the error propagation bounds of several known dynamic program-
ming algorithms. The theoretical analysis shows a reduced dependency over γ of non-
stationary algorithms. For instance NSVI and NSPI have a dependency of 2γ

(1−γ)(1−γm)
instead of 2γ

(1−γ)2 for the corresponding stationary algorithm. PSDP2 has a dependency
of 2

(1−γ) over γ and it enjoys a better concentrability constant than NSPI and NSVI.
The empirical study shows the dependency on the error is the main factor when com-
paring algorithms with the same budget of samples. The nature of the error seems to
be crucial. NSVI outperforms NSPI since a simple regression produces less error than
a policy evaluation or even a full control problem. NSVI outperforms PSDP2 since it
is more thrifty in terms of samples per iteration.

One of the downside of this analysis is that it is limited to zero-sum two-player
MGs whilst the use of cyclic strategies was suggested in general-sum games (Zinkevich
et al., 2006). In the next chapter we will explore to which extent it is easier to find
cyclic equilibria in general-sum MGs instead of a stationary one for the VI algorithm.

6. Appendix: NSVI 79

6 Appendix: NSVI
First, let us define a (somehow abusive) simplifying notation. Γn will represents
any products of n discounted transition kernels. Then, Γn represents the class
{γPµ1,ν1γPµn,νn , with µi, νi random strategies}. For example, the following prop-
erty holds aΓibΓj + cΓk = abΓi+j + cΓk.

NSVI with a greedy and an evaluation error:

T vk−1 ≤ Tµkvk−1 + ε′k, (approximate greedy step)

vk = Tµkvk−1 + εk. (approximate evaluation step)
The following lemma shows how errors propagate through iterations.

Lemma 4.1. ∀M < k:∣∣∣v∗ − vµk,M ∣∣∣ ≤ ∞∑
j=0

ΓMj

[
2Γk |v∗ − v0|+ 2

k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣∣ε′k−i∣∣∣

]
. (4.18)

Proof. We will bound the error made while running the non-stationary strategy
(µk, . . . , µk−M+1) rather than the optimal strategy. This means bounding the following
positive quantity:
v∗ − vµk,M

To do so let us first bound the following quantity:

Tµkvk−1 − vµk,M (4.19)
= Tµkvk−1 − Tµk . . . Tµk−M+1vµk,M , (with (4.2)) (4.20)
= Tµkvk−1 − Tµk,ν̂k . . . Tµk−M+1,ν̂k−M+1vµk,M , (4.21)

Where ν̂k−i such as Tµk−i,ν̂k−i . . . Tµk−M+1,ν̂k−M+1vµk,M = Tµk−i . . . Tµk−M+1vµk,M

≤ Tµk,ν̂k . . . Tµk−M+1,ν̂k−M+1vk−M +
i=M−1∑
i=1

γPµk,ν̂k . . . γPµk−i+1,ν̂k−i+1εk−i

− Tµk,ν̂k . . . Tµk−M+1,ν̂k−M+1vµk,M , (4.22)
since vi = Tµivi−1 + εi, ∀vTµkv ≤ Tµk,ν̂kv and since Tµk,ν̂k is affine
≤ γPµk,ν̂k . . . γPµk−M+1,ν̂k−M+1(vk−M − vµk,M)

+
i=M−1∑
i=1

γPµk,ν̂k . . . γPµk−i+1,ν̂k−i+1εk−i. (4.23)

We also have:

v∗ − vk = T v∗ − T vk−1 + T vk−1 − vk, (4.24)
≤ Tµ∗v∗ − Tµ∗vk−1 − εk + ε′k, (4.25)

(since Tµ∗vk−1 ≤ T vk−1 and Tµ∗v∗ = T v∗)
≤ Tµ∗,ν̃k−1v

∗ − Tµ∗,ν̃k−1vk−1 − εk + ε′k, (4.26)
(with Tµ∗,ν̃k−1vk−1 = Tµ∗vk−1 and Tµ∗v∗ ≤ Tµ∗,ν̃k−1v

∗)
≤ γPµ∗,ν̃k−1(v∗ − vk−1)− εk + ε′k. (4.27)

80
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

And we have:

v∗ − vk = T v∗ − Tµkvk−1 + Tµkvk−1 − vk, (4.28)
≥ Tµkv∗ − Tµkvk−1 − εk, (4.29)

(since Tµkv∗ ≤ T v∗)
≥ Tµk,ν∗kv

∗ − Tµk,ν∗kvk−1 − εk, (4.30)
(where Tµk,ν∗kv

∗ = Tµkv∗ and since Tµkvk−1 ≤ Tµk,ν∗kvk−1)
≥ γPµk,ν∗k (v∗ − vk−1)− εk. (4.31)

(4.32)

which can also be written:

vk − v∗ ≤ γPµk,ν∗k (vk−1 − v∗) + εk.

Using the Γn notation .

v∗ − vk ≤ Γk(v∗ − v0)−
k−1∑
i=0

Γiεk−i +
k−1∑
i=0

Γiε′k−i, (4.33)

vk − v∗ ≤ Γk(v0 − v∗) +
k−1∑
i=0

Γiεk−i. (4.34)

v∗ − vµk,M = T v∗ − T vk−1 + T vk−1 − vµk,M , (4.35)
≤ Tµ∗v∗ − Tµ∗vk−1 + T vk−1 − vµk,M , (4.36)
(since Tµ∗vk−1 ≤ T vk−1)
≤ Tµ∗,ν̃k−1v

∗ − Tµ∗,ν̃k−1vk−1 + T vk−1 − vµk,M , (4.37)
with ν̃k−1 defined in (4.26)
≤ γPµ∗,ν̃k−1(v∗ − vk−1) + Tµkvk−1 − vµk,M + ε′k, (4.38)

≤ Γ(v∗ − vk−1) + ΓM(vk−M − vµk,M) +
M−1∑
i=1

Γiεk−i + ε′k,With (4.23) (4.39)

≤ Γ(v∗ − vk−1) + ΓM(vk−M − v∗) + ΓM(v∗ − vµk,M)

+
M−1∑
i=1

Γiεk−i + ε′k. (4.40)

Then combining (4.33), (4.34) and (4.40):

v∗ − vµk,M ≤ Γk(v∗ − v0)−
k−1∑
i=1

Γiεk−i +
k−1∑
i=1

Γiε′k−i + Γk(v0 − v∗)

+ ΓM
k−M−1∑
i=0

Γiεk−M−i +
M−1∑
i=1

Γiεk−i + ε′k + ΓM(v∗ − vµk,M), (4.41)

∣∣∣v∗ − vµk,M ∣∣∣ ≤ 2Γk |v∗ − v0|+ 2
k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣∣ε′k−i∣∣∣+ ΓM

∣∣∣v∗ − vµk,M ∣∣∣ . (4.42)

(4.43)

6. Appendix: NSVI 81

And finally:

∣∣∣v∗ − vµk,M ∣∣∣ ≤ ∞∑
j=0

ΓMj[2Γk |v∗ − v0|+ 2
k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣∣ε′k−i∣∣∣]. (4.44)

Full analysis of NSVI Usually, one is only able to control the ε and ε′ according to
some norm ‖.‖q,µ and wants to control the difference of value according to some other

norm ‖.‖p,ρ where ‖f‖p,σ =
(∑
s∈S
|f(s)|pσ(s)

) 1
p

. Then the following theorem controls

the convergence in Lp-norm:

Theorem 4.5. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then for a non-stationary policy of size M and after k iterations

we have:

∥∥∥v∗ − vµk,M∥∥∥p,ρ ≤ 2(γ − γk)(C1,k,0,M
q)

1
p

(1− γ)(1− γM) sup
1≤j≤k−1

‖εj‖pq′,σ

+
(1− γk)(C0,k,0,M

q)
1
p

(1− γ)(1− γM) sup
1≤j≤k

∥∥∥ε′j∥∥∥pq′,σ
+ 2γk

1− γM (Ck,k+1,0,M
q)

1
p ‖v∗ − v0‖pq′,σ , (4.45)

With:
Cl,k,d,Mq = (1− γ)(1− γM)

γl − γk
k−1∑
i=l

∞∑
j=0

γi+jMcq(i+ jM + d)

and where:
cq(j) = sup

µ1,ν1,...,µj ,νj

∥∥∥∥∥d(ρPµ1,ν1 . . . Pµj ,νj)
dσ

∥∥∥∥∥
q,σ

.

Proof. The full proof uses standard techniques of ADP analysis. It involves a standard
lemma of ADP analysis. Let us recall it (demonstration can be found in Scherrer et al.
(2012)).

Lemma 4.2. Let I and (Ji)i∈I be a sets of positive integers, {I1, . . . , In} a partition
of I. Let f and (gi)i∈I be function such as:

|f | ≤
∑
i∈I

∑
j∈Ji

Γj |gi| =
n∑
l=1

∑
i∈Il

∑
j∈Ji

Γj |gi| .

Then for all p, q and q′ such as 1
q

+ 1
q′

= 1 and for all distribution ρ and σ we have

‖f‖p,ρ ≤
n∑
l=1

(Cq(l))
1
p sup
i∈Il
‖gi‖pq′,σ

∑
i∈Il

∑
j∈Ji

γj.

82
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

with the concentrability coefficient written:

Cq(l) =

∑
i∈Il

∑
j∈Ji

γjcq(j)∑
i∈Il

∑
j∈Ji

γj
.

Theorem 4.5 can be proven by applying lemma 4.2 with:

I = {1, . . . , 2k}
I = {I1, I2, I3}, I1 = {1, 2, . . . , k − 1}, I2 = {k, . . . , 2k − 1}, I3 = {2k}

∀i ∈ I1

gi = 2εk−i
Ji = {i, i+M, i+ 2M, . . .}

∀i ∈ I2

gi = ε′k−(i−k)

Ji = {i− k, i− k +M, i− k + 2M, . . .}

∀i ∈ I3

gi = |v∗ − v0|
Ji = {k, k +M,k + 2M, . . .}

With lemma 3 of Scherrer et al. (2012). we have:

∥∥∥v∗ − vµk,M∥∥∥p,ρ ≤ 2(γ − γk)(C1,k,0,M
q)

1
p

(1− γ)(1− γM) sup
1≤j≤k−1

‖εj‖pq′,µ

+
(1− γk)(C0,k,0,M

q)
1
p

(1− γ)(1− γM) sup
1≤j≤k

∥∥∥ε′j∥∥∥pq′,µ
+ 2γk

1− γM (Ck,k+1,0,M
q)

1
p ‖v∗ − v0‖pq′,µ . (4.46)

7 Appendix: PSDP

In this section we prove the two theorems for PSDP schemes (theorem 4.2) and 4.3).

7. Appendix: PSDP 83

7.1 Appendix: PSDP2
First let us remind the PSDP1 algorithm.

vσk = Tµk,νk . . . Tµ0,ν00 + εk (4.47)
T vσk = Tµk+1vσk and Tµk+1vσk = Tµk+1,νk+1vσk (4.48)

Let’s note vµk,k+1 = Tµk . . . Tµ0vµk,k+1 and only in this section vµ′
k,k−i

=
Tµk−i . . . Tµ0vµk,k+1 .

To prove theorem 4.2 we will first prove the following lemma:

Lemma 4.3. ∀k > 0:

0 ≤ vµ∗ − vµk,k+1 ≤Γk+1
µ∗ v

∗ + Γµ∗Γkvµk,k+1 +
k∑
i=1

Γiµ∗ε′k−i +
k∑
i=1

Γµ∗Γi−1ε′k−i (4.49)

With ε′k = Γεk−1 − εk

Proof.

v∗ − vµk,k+1 = Tµ∗v∗ − Tµ∗vσk−1 + Tµ∗vσk−1 − Tµkvµ′k,k−1
(4.50)

≤ γPµ∗,ν̃k(v∗ − vσk−1) + Tµ∗vσk−1 − Tµ∗vµ′k,k−1
(4.51)

≤ γPµ∗,ν̃k(v∗ − vσk−1) + γPµ∗,ν̄k(vσk−1 − vµ′k,k−1
) (4.52)

≤ Γµ∗ (v∗ − vσk−1)︸ ︷︷ ︸
(1)

+Γµ∗ (vσk−1 − vµ′k,k−1
)︸ ︷︷ ︸

(2)

(4.53)

To prove (1):

v∗ − vσk = Tµ∗v∗ − Tµk,νk(vσk−1 − εk−1)− εk, (4.54)
= Tµ∗v∗ − Tµk,νkvσk−1 + γPµk,νkεk−1 − εk, (4.55)
= Tµ∗v∗ − Tµkvσk−1 + γPµk,νkεk−1 − εk, (4.56)
= Tµ∗v∗ − Tµ∗vσk−1 + Tµ∗vσk−1 − Tµkvσk−1 + γPµk,νkεk−1 − εk, (4.57)
≤ Tµ∗v∗ − Tµ∗,ν̃kvσk−1 + T vσk−1 − Tµkvσk−1︸ ︷︷ ︸

= 0

+γPµk,νkεk−1 − εk, (4.58)

≤ Tµ∗,ν̃kv∗ − Tµ∗,ν̃kvσk−1 + γPµk,νkεk−1 − εk︸ ︷︷ ︸
= ε′k

, (4.59)

≤ γPµ∗,ν̃k(v∗ − vσk−1) + ε′k, (4.60)

≤ γPµ∗,ν̃k . . . γPµ∗,ν̃0(v∗) +
k−1∑
i=0

γPµ∗,ν̃k . . . γPµ∗,ν̃k−i+1ε
′
k−i, (4.61)

≤ Γk+1
µ∗ (vµ∗)−

k−1∑
i=0

Γiµ∗εk−i +
k−1∑
i=0

Γiµ∗Γεk−i−1. (4.62)

84
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

To prove (2):
vσk−1 − vµ′k,k−1

= vσk−1 − Tµk−1 . . . Tµ0vµk,k+1 , (4.63)
= Tµk−1,νk−1(vσk−2 − εk−2) + εk−1 − Tµk−1 . . . Tµ0vµk,k+1 , (4.64)
= Tµk−1,νk−1vσk−2 − Pµk−1,νk−1εk−2 + εk−1 − Tµk−1 . . . Tµ0vµk,k+1 , (4.65)
= Tµk−1vσk−2 − Tµk−1 . . . Tµ0vµk,k+1 − ε′k−1, (4.66)
= Tµk−1vσk−2 − Tµk−1,ν̂k−1 . . . Tµ0vµk,k+1 − ε′k−1, (4.67)
= Tµk−1vσk−2 − Tµk−1,ν̂k−1 . . . Tµ0vµk,k+1 − ε′k−1, (4.68)
≤ Tµk−1,ν̂k−1vσk−2 − Tµk−1,ν̂k−1 . . . Tµ0vµk,k+1 − ε′k−1, (4.69)
≤ γPµk−1,ν̂k−1(vσk−2 − vµ′k,k−2

)− ε′k−1, (4.70)
≤ γPµk−1,ν̂k−1 . . . γPµ0,ν̂0(0− vµk,k+1)

−
k∑
i=1

γPµk−1,ν̂k−1 . . . γPµk−i+1,ν̂k−i+1ε
′
k−i, (4.71)

≤ Γkvµk,k+1 −
k∑
i=1

Γi−1ε′k−i. (4.72)

Finally:
v∗ − vµk,k+1 ≤ Γµ∗(v∗ − vσk−1) + Γµ∗(vσk−1 − vµ′k,k−1

) (4.73)

≤ Γk+1
µ∗ v

∗ +
k−1∑
i=0

Γi+1
µ∗ ε

′
k−1−i + Γµ∗Γkvµk,k+1 −

k∑
i=1

Γµ∗Γi−1ε′k−i (4.74)

≤ Γk+1
µ∗ v

∗ + Γµ∗Γkvµk,k+1 +
k∑
i=1

Γiµ∗ε′k−i −
k∑
i=1

Γµ∗Γi−1ε′k−i (4.75)

Finally, noticing v∗ and vµk,k+1 ≤ Vmax we have:

0 ≤ vµ∗ − vµk,k+1 ≤ Γk+1
µ∗ v

∗ + Γµ∗Γkvµk,k+1 +
k∑
i=1

Γiµ∗ε′k−i +
k∑
i=1

Γµ∗Γi−1ε′k−i (4.76)

≤ 2γk+1Vmax +
k∑
i=1

Γiµ∗(Γεk−i−1 − εk−i) +
k∑
i=1

Γµ∗Γi−1(Γεk−i−1 − εk−i)

(4.77)∣∣∣vµ∗ − vµk,k+1

∣∣∣ ≤ 2γk+1Vmax + 4
k∑
i=0

Γi |εk−i| (4.78)

Lemma 4.2 concludes the proof of theorem 4.2.

7.2 Appendix: PSDP1
Below is reminded the scheme of PSDP1

vσk = Tµk . . . Tµ00 + εk (4.79)
T vσk = Tµk+1vσk and Tµk+1vσk = Tµk+1,νk+1vσk (4.80)

8. Appendix: NSPI 85

First we will prove the following lemma:

Lemma 4.4. ∀k > 0:

vµ∗ − vσk ≤Γk+1
µ∗ v

∗ +
k∑
i=1

Γiµ∗ε′k−i (4.81)

With Γnµ∗ representing the class of kernel products
{γPµ∗,ν1γPµ∗,νn , with µi, νi random strategies}. And with ε′k = Γεk−1 − εk

Proof. The proof comes from previous section. It is the bound of (1).

Noticing vµk,k+1 ≥ vσk − γk+1Vmax and v∗ ≤ Vmax we have:

0 ≤ vµ∗ − vµk,k+1 ≤2γk+1Vmax + 2
k∑
i=0

Γi−1
µ∗ Γεk−i (4.82)

Lemma 4.2 concludes the proof of theorem 4.3. However one has to do the proof with
cµ∗,q(j) instead of cq(j).

8 Appendix: NSPI

We remind the non-stationary strategy of length m µk, . . . , µk−m+1 is written µk,m
and in this section µ′k,m = µk−m+1, µk, . . . , µk−m+1, µk, Let also note Tµk,m =
Tµk . . . Tµk−m+1 . Then we will have vµk,m = Tµk,mvµk,m and vµ′

k,m
= Tµk−m+1vµk,m .

NSPI:

vk = vµk,m + εk (4.83)
T vk = Tµk+1vk (4.84)

First let’s prove the following lemma.

Lemma 4.5. ∀k ≥ m:

0 ≤ v∗ − vµk+1,m ≤Γk−m+1
µ∗ (v∗ − vµm,m) + 2

k−m∑
j=0

Γjµ∗Γ(
+∞∑
i=0

Γim)εk−j (4.85)

86
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

Proof. First we need an upper bound for:

vµ′
k,m
− vµµk+1,m

= Tµk−m+1vµk,m − vµk+1,m (4.86)
≤ Tµk−m+1,ν̂k−m+1vµk,m − vµk+1,m (4.87)

with Tµk−m+1,ν̂k−m+1vk = Tµk−m+1vk

≤ Tµk−m+1,ν̂k−m+1(vk − εk)− vµk+1,m (4.88)
≤ Tµk−m+1,ν̂k−m+1vk − γPµk−m+1,ν̂k−m+1εk − vµk+1,m (4.89)
≤ Tµk−m+1vk − vµk+1,m − γPµk−m+1,ν̂k−m+1εk (4.90)
≤ Tµk+1vk − vµk+1,m − γPµk−m+1,ν̂k−m+1εk (4.91)
≤ Tµk+1(vµk,m + εk)− vµk+1,m − γPµk−m+1,ν̂k−m+1εk (4.92)
≤ Tµk+1,ν̃k+1vµk,m − vµk+1,m + γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.93)

with Tµk+1,ν̂k+1vµk,m = Tµk+1vµk,m

≤ Tµk+1vµk,m − vµk+1,m + γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.94)
= Tµk+1 . . . Tµk−m+1vµk,m − Tµk+1 . . . Tµk−m+2vµk+1,m

+ γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.95)
= Tµk+1 . . . Tµk−m+1vµk,m − Tµk+1,ν̄k+1 . . . Tµk−m+2,ν̄k−m+2vµk+1,m

+ γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.96)
with Tµk+1,ν̄k+1 . . . Tµk−m+2,ν̄k−m+2vµk+1,m = Tµk+1 . . . Tµk−m+2vµk+1,m

≤ γPµk+1,ν̄k+1 . . . γPµk−m+2,ν̄k−m+2︸ ︷︷ ︸
Γ̄k+1,m

(Tµk−m+1vµk,m︸ ︷︷ ︸
vµ′
k,m

−vµk+1,m)

+ γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.97)
Then: (4.98)

≤ (I − Γ̄k+1,m)−1γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.99)

Proof of the lemma:

v∗ − vµk+1,m = Tµ∗v∗ − Tµk+1,mvµk+1,m (4.100)
= Tµ∗v∗ − Tµ∗vµk,m + Tµ∗vµk,m − Tµk+1,m+1vµk,m

+ Tµk+1,m+1vµk,m − Tµk+1,mvµk+1,m (4.101)
≤ γPµ∗,ν∗

k,m
(v∗ − vµk,m) + Γ̄k+1,m(Tµk−m+1vµk,m − vµk+1,m)

+ Tµ∗vµk,m − Tµk+1vµk,m︸ ︷︷ ︸
(1)

(4.102)

Where Tµ∗vµk,m = Tµ∗,ν∗
k,m
vµk,m (4.103)

(1):

Tµ∗vµk,m − Tµk+1vµk,m = Tµ∗vµk,m − Tµ∗vk + Tµ∗vk − Tµk+1vk︸ ︷︷ ︸
≤0

+ Tµk+1vk − Tµk+1vµk,m (4.104)

9. Appendix: Figures 87

≤ γPµ∗,ν∗
k+1

(vµk,m − vk) + γPµk+1,ν̃k+1(vk − vµk,m) (4.105)
with Tµ∗vk = Tµ∗,ν∗

k+1
vk

≤ γ(Pµk+1,ν̃k+1 − Pµ∗,ν∗k+1
)εk (4.106)

And finally:

v∗ − vµk+1,m ≤ Γµ∗(v∗ − vµk,m) + γ(Pµk+1,ν̃k+1 − Pµ∗,ν∗k+1
)εk (4.107)

+ Γ̄k+1,m(I − Γ̄k+1,m)−1γ(Pµk+1,ν̃k+1 − Pµk−m+1,ν̂k−m+1)εk (4.108)

≤ Γµ∗(v∗ − vµk,m) + 2Γ(
+∞∑
i=0

Γim)εk (4.109)

≤ Γk−m+1
µ∗ (v∗ − vµm,m) + 2

k−m∑
j=0

Γjµ∗Γ(
+∞∑
i=0

Γim)εk−j (4.110)

Theorem 4.6. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals
such that 1

q
+ 1

q′
= 1, then for a non-stationary policy of size M and after k iterations

we have:

∥∥∥v∗ − vµk,m∥∥∥p,ρ ≤ 2(γ − γk−m+2)(C1,k−m+2,0,m
q)

1
p

(1− γ)(1− γm) sup
m≤j≤k−1

‖εj‖pq′,σ

+ γk−m(cq(k −m))
1
p

∥∥∥v∗ − vµm,m∥∥∥pq′,σ , (4.111)

Proof. The proof of the theorem 4.6 is done by applying lemma 4.2

Then theorem 4.4 falls using theorem 4.6.

9 Appendix: Figures

88
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI2

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI5

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI2

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI5

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

Figure 4.5 – Performance (y-axis) of the strategy at step k (x-axis) for NSVI for a
strategy of length 10,5,2 and 1 from right to left. Those curves are averaged over 70
Garnet NS = 100 , NA = 5, NB = 1 (for the two curves on the top) and NB = 2
(for the two curves on the bottom). All curves have a sparsity of 0.5. Each step of the
algorithm uses 2.25×NA ×NS samples.

9. Appendix: Figures 89

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI5

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSVI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 PSDP

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI10

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0 NSPI30

Figure 4.6 – Performance (y-axis) of the strategy at step k (x-axis) for NSVI, PSDP
and NSPI. Those curves are averaged over 70 Garnet NS = 100 , NA = 8, NB = 2.
All garnet have a sparsity of 0.5 and γ = 0.9. Each step of NSPI and NSVI uses
2.25×NA×NS samples at each step. Each step of PSDP2 uses 2.25×NA×NS rollout
at each step.

90
Chapter 4. Improved Approximate Dynamic Programming Algorithms

using non-stationary Strategies

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSVI1

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSVI2

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSVI5

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSVI10

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 PSDP

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSPI

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSPI10

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0 NSPI30

Figure 4.7 – Performance (y-axis) of the strategy at step k (x-axis) for NSVI, PSDP
and NSPI. Those curves are averaged over 40 Garnet NS = 100 , NA = 5, NB = 1. All
garnet have a sparsity of 0.5 and γ = 0.9. Each step of NSPI, NSVI and PSDP uses
0.75× k ×NA ×NS samples at step k.

Chapter 5

Non-Stationary Startegies in
General-Sum Markov Games

This chapter focuses on the use of non-stationary strategies in general-sum MGs. In
general sum games, two key properties that exist in zero-sum two-player MGs are
missing. Those two properties are: i) the optimal Bellman operator is a γ-contraction
(which guarantees the convergence toward the optimal value) and ii) acting greedily
with respect to the optimal value generates the optimal strategy. In general-sum MGs,
the first property does not hold since there is no known Bellman operator converging
to the value of a Nash equilibrium (there is no known equivalent of T ∗ and T). The
existence of such an operator is unlikely since there is not a unique Nash equilibrium
in general sum MGs. In addition, the existence of turn-based games with a unique
stochastic Nash equilibrium contradicts the second property (Zinkevich et al., 2006).
Indeed, acting greedily in that turn-based case would lead to a deterministic strategy
which is not the unique stochastic Nash equilibrium we are looking for. Therefore
and more generally, Zinkevich’s example implies that no algorithm based on the value
function would lead to a stationary Nash equilibrium in the case of general-sum MGs.

This is unfortunate since value function based algorithms, such as VI, benefit from
a wide literature from MDPs and zero-sum two-player MGs. As described in the two
previous chapters, these algorithms can handle value functions approximation as well
as errors in the greedy step. It also holds in a wide range of practical scenarios such as
when the dynamic is known, when only a simulator is available or when only a batch of
data is provided (Perolat et al., 2015, Ernst et al., 2005, Munos, 2007, Bertsekas, 1995).
But, even if VI does not converge, it seems, as mentioned by (Zinkevich et al., 2006),
that VI cycles after a certain number of iterations. Thus, as suggested in (Zinkevich
et al., 2006), it is worth studying to what extent the use of non-stationary (cyclic)
strategies gives some guarantees of convergence to a Nash equilibrium. Loose guaran-
tees of convergence under very strong hypotheses and under a constrained definition of
an ε-correlated equilibrium are given in (Zinkevich et al., 2006). Even if their work fo-
cuses on correlated equilibrium (which is not the case here), two questions arise: i) how
long would it take to converge to an ε-equilibrium (for a given ε), ii) how long should
be the cycle for a given ε? In this chapter, we explore to which extent the techniques
presented in the previous chapter can be used in general sum games. We first show
that the non-stationary strategy found by the VI algorithm is an ε-Nash equilibrium
where ε is only controlled by the length of the cycle and not by the number of itera-
tions (which answers the two questions) contrary to MDPs. More precisely, we provide
an upper bound of convergence O(γm1−γ) where m is the length of the cycle whereas in

92 Chapter 5. On the use of non-stationary strategies

MDPs the upper bound is O(γk

(1−γ)(1−γm)) where k is the number of iterations. Second,
we providing an example where the bound is tight up to a multiplicative constant.
This example demonstrates that using value iteration with non-stationary strategies
provides no better guarantees than approximating the infinite horizon γ-discounted
problem with a finite horizon problem (of horizon m). In other words, playing the
cyclic strategy (of VI) gives no better guarantee than playing first the m strategies of
VI and then any arbitrary strategy.

1 Background on Cyclic Strategies and Nash Equi-
librium

A cyclic strategy πcycle,M = (π0, . . . ,πM−1) is a joint strategy where each player will
play at time t the strategy πj where j ≡ t (mod M). The value of such a strategy is
the following:

viπcycle,M (s) = E

[+∞∑
t=0

γtriπj (st)|s0 = s, st+1 ∼ Pπj (.|st), j ≡ t (mod M)
]
. (5.1)

This value is the fixed point of the operator T iπ0 . . . T iπM−1
. The best response of player

i against the cyclic strategy of all other players π-i
cycle,M is the following:

v∗iπ-i
cycle,M

(s) = max
πit,t∈N

E

[+∞∑
t=0

γtriπit,π-i
j

(st)|s0 = s, st+1 ∼ Pπit,π-i
j

(.|st), j ≡ t (mod M)
]
. (5.2)

This value is the fixed point of operator T ∗iπ-i
0
. . . T ∗iπ-i

M−1
. The demonstration of this

property was done in the context of zero-sum games in the previous chapter.

Nash and ε-Nash Equilibrium in N-Player MGs: A canonical definition of a
Nash equilibrium for a cyclic strategy is the following: if everyone commits to play the
cyclic strategy, no players has an incentive to deviate unilaterally from his strategy.
And, in an ε-Nash equilibrium, no player has more than an ε incentive to deviate
unilaterally from their own strategy. Formally:

Definition 5.1. In a MG a cyclic strategy πcycle,M is a Nash equilibrium if ∀i:
viπcycle,M

= v∗iπ-i
cycle,M

.

Definition 5.2. In a MG, a cyclic strategy πcycle,M is an ε-Nash equilibrium if:
‖‖viπcycle,M

− v∗iπ-i
cycle,M

‖s,∞‖i,∞ ≤ ε.

Remark 5.1. This definition of a cyclic Nash equilibrium is consistent with the one
of (Scherrer and Lesner, 2012) when reduced to an MDP. However, the definition of
(Zinkevich et al., 2006) is stronger when reduced to Nash equilibrium. It requires the
definition 5.2 to be valid for every cyclic permutation of the cyclic strategy.

2. The Value Iteration Algorithm for General-Sum MGs 93

2 The Value Iteration Algorithm for General-Sum
MGs

In this section, we define the VI algorithm for general-sum MGs. Then, we prove a
bound of performance of 4γm

1−γwhich is rather poor compared to the bound for MDPs and
zero-sum two-player MGs (2γk

1−γm). However, this bound is tight up to a multiplicative
constant as shown in App. 3. Finally, we empirically illustrate the use of non-stationary
strategies in general-sum games.

The VI algorithm is a popular method used to find optimal or near optimal strate-
gies for MDPs (Bertsekas, 1995) or zero-sum two-player MGs (Shapley, 1953, Perolat
et al., 2015). However, it is known not to converge toward a Nash equilibrium for
general-sum MGs. (Zinkevich et al., 2006) suggest to look for cyclic strategies instead
of stationary strategies. Here, we present a non-stationary version of the VI algorithm
for general-sum MGs (a stationary version is described in (Kearns et al., 2000)).

Algorithm 22 Non-Stationary Value Iteration
Input: constant m, k and (v1

0, . . . , v
N
0) = (0, . . . , 0)

for l = 1 to k do
1© Find πl such as ∀i ∈ {1, . . . , N},T iπlv

i
l−1 = T ∗iπ-i

l
vil−1 (Computing a Nash equilib-

rium in each state).
2© ∀i ∈ {1, . . . , N}, compute vil = T iπlv

i
l−1 (Applying the Bellman operator)

end for
Return: (πk, . . . ,πk−m+1)

Theorem 5.1. The NSVI algorithm produces a strategy πk,m = (πk, . . . ,πk−m+1)
which is a 4γmRmax

1−γ -Nash equilibrium.

Proof. The proof is left in Appendix 7

The performance of the non-stationary VI algorithm for MDPs is 2Rmaxγk

(1−γ)(1−γm) which
is way better than the bound for general-sum MGs since the number of iterations k
comes into account. In MDPs the number of iterations controls the quality of the
strategy. In MGs, if we define the performance criterion as the norm of Def. 5.2, the
corresponding bound is 4γmRmax

1−γ (cf. Th. 5.1). Thus, in the general-sum case, the
quality of the joint non-stationary strategy only depends on the length of the cycle. As
a comparison, the guarantee would be the same if one would play first the m strategies
(πk, . . . ,πk−m+1) and then an arbitrary strategy. This bound seems limited since it
means that we can do no better than planning m steps forward with the VI algorithm.
We show in Section 3 that for all k in N and for all m in {1, . . . , k} there exists an MG
such that ‖‖viπk,m − v

∗i
π-i
k,m
‖s,∞‖i,∞ ≥ γm

1−γ (with Rmax = 1). This example shows that
our bound is tight up to a multiplicative constant. Still, Theorem 5.1 shows that one
can compute a cyclic Nash equilibrium from value functions which is not the case of a
stationary Nash equilibrium (Zinkevich et al., 2006).

94 Chapter 5. On the use of non-stationary strategies

3 Illustrating example of lower bound

−k · · · −2 −1 0 1 · · · k − 1

b a

0 0 0 0 d

0 h

0 d

0 h

0 0

1

0 0

(a) Reward of Player 1.

−k · · · −2 −1 0 1 · · · k − 1

b a

0 0 0 0 d

0 h

1 d

0 h

1 1

1

0 0

(b) Reward of Player 2.

Figure 5.1 – Example of game matching the lower bound. Actions are in blue and
Rewards in red

In this section, we build an artificial example of a general-sum MG for which the
performance criterion (cf Def. 5.2) matches, up to a multiplicative constant, the upper
bound of Th. 5.1. The example is shown in Fig. 5.1. It is a turn-based two-player
general-sum MG with state space S = {a, b,−k,−k + 1, . . . , k − 2, k − 1}. In every
state only one action is available to players but two states {0, 1} where each player has
two actions. The rewards depend on the state and on the action. In state 0, Player 1
(Fig. 5.1(a)) has two actions A1(0) = {h, d}. In state −1, Player 2 (Fig. 5.1(b)) has
also two actions A2(−1) = {h, d}.

Since the game is turn-based, the greedy step which implies computing a Nash
equilibrium in each state reduces to finding an argmax. When the argmax is not
unique, we always choose action h over action d. As the greedy strategy is deter-
ministic, instead of writing π = (π2(.| − 1), π1(.|0)) for the sake of clarity we write
π = (a2, a1) with π2(a2| − 1) = 1 and π1(a1|0) = 1. The value function will be written
(v(a), v(b), v(−k), . . . , v(k − 1)).

VI instantiation The VI algorithm produces the following sequence of values and
strategies: Obviously v1

0 = v2
0 = (0, . . . , 0) Then, for 0 < l < k we have:

3. Illustrating example of lower bound 95

πl = (h, h) (5.3)

v1
l = (0, 0, 0, . . . , v1

l (k − l) = γl−1 − γl

1− γ , . . . ,
γ0 − γl

1− γ), (5.4)

v2
l = (0, 0, 0, . . . , v2

l (1) = γ0 − γl

1− γ , . . . ,
γ0 − γl

1− γ). (5.5)

And for l = k, Player 1 has an incentive to switch from action h to action d. Thus, we
have:

πk = (h, d) (5.6)

v1
l = (0, 0, 0, . . . , v1

l (0) = γk−1 − γk

1− γ , . . . ,
γ0 − γk

1− γ), (5.7)

v2
l = (0, 0, 0, . . . , v2

l (0) = γ0 − γk

1− γ , . . . ,
γ0 − γk

1− γ). (5.8)

Values, and Values of Bests Responses: Let’s compute the performance criterion
of Def. 5.2 for l in {1, . . . , k}.

If l < k we have:

v1
πl,m

= (0, 0, 0, . . . , 0, γ
k−2

1− γ , . . . ,
1

1− γ), (5.9)

v∗1π-1
l,m

= (0, 0, 0, . . . , 0, γ
k−1

1− γ , . . . ,
1

1− γ), (5.10)

v2
πl,m

= (0, 0, 0, . . . , 0, v1
πl,m

(1) = 1
1− γ , . . . ,

1
1− γ), (5.11)

v∗2π-2
l,m

= (0, 0, 0, . . . , 0, v∗2π-2
l,m

(1) = 1
1− γ , . . . ,

1
1− γ). (5.12)

When l < k, the cyclic joint strategy is in fact a stationary one (h, h). Then, the joint
strategy when Player 1 plays his best response is (h, d) and is (h, h) when Player 2
plays his best response (since both actions are equivalent for him).

Therefore, the performance criterion is:

∀l < k,

∥∥∥∥∥
∥∥∥∥viπl,m − v∗iπ-i

l,m

∥∥∥∥
s,∞

∥∥∥∥∥
i,∞

= γk−1

1− γ .

When l = k:

96 Chapter 5. On the use of non-stationary strategies

v1
πl,m

= (0, 0, 0, . . . , 0, γ
k−1

1− γ , . . . ,
1

1− γ), (5.13)

v∗1π-1
l,m

= (0, 0, 0, . . . , 0, γ
k−1

1− γ , . . . ,
1

1− γ), (5.14)

v2
πl,m

= (0, 0, 0, . . . , 0, v1
πl,m

(0) = 1
1− γ , . . . ,

1
1− γ), (5.15)

v∗2π-2
l,m

= (0, 0, 0, . . . 0, v∗2π-2
l,m

(−m) = γm

1− γ , 0, . . . , . . . , 0, v
∗2
π-2
l,m

(0) = 1
1− γ , . . . ,

1
1− γ), (5.16)

∀i ∈ N, v∗2π-2
l,m

(−im) = γim

1− γ . (5.17)

In this case, the cyclic joint strategy is πl,m = ((h, d), (h, h), . . . , (h, h)). The Player
1’s best response is the joint strategy ((h, d), . . . , (h, d)) and the Player 2’ best is the
joint strategy ((d, d), (d, h), . . . , (d, h)).

When l = k the performance criterion is:∥∥∥∥∥
∥∥∥∥viπl,m − v∗iπ-i

l,m

∥∥∥∥
s,∞

∥∥∥∥∥
i,∞

= γm

1− γ .

Then ∀k ∈ N, ∀m ∈ {1, . . . , k}, there exists an MG (our example for instance) such
that: ∥∥∥∥∥

∥∥∥∥viπk,m − v∗iπ-i
k,m

∥∥∥∥
s,∞

∥∥∥∥∥
i,∞
≥ γm

1− γ .

Remark 5.2. The reader should notice that the size of the example matters. Indeed,
if one runs the VI algorithm for l > k, one would find a Nash equilibrium of the MG
(i.e. (d, d)).

The reason why this example gives the proper lower bound is that Player 1’s actions
control Player 2’s rewards (in state 0). Thus, one can design an MG where the VI
algorithm takes an arbitrary long time until Player 1 changes his action (that is the
role played by states 1, . . . , k − 1). Until Player 1 switch from action h to action d

in state 0 (as we said before this time can be arbitrarily long) Player 2 does not see
the difference between action h and action d in state 1. That is why the number of
iterations k does not come into account in the bound.

4 Approximate Value Iteration
In this section, we consider the same approach as in previous chapters to analyse the
impact of such an approximation on the performance is to consider two sources of
errors arising at each step of VI as illustrated in Algorithm 23.
Theorem 5.2. The approximate NSVI algorithm produces a strategy πk,m which is an
ε-Nash equilibrium. Where:

ε =4γmRmax
1− γ + 1− γk

1− γ sup
l∈{0,...,k−1}

‖ε′ik−l‖i,∞ + 2γ − γ
k

1− γ sup
l∈{1,...,k−1}

‖εik−l‖i,∞. (5.18)

5. Experiments 97

Algorithm 23 Non Stationary Approximate Value Iteration
Input: constant m,K and (v1

0, . . . , v
N
0) = (0, . . . , 0)

for k = 1 to K do
1© Find πk such as ∀i ∈ {1, . . . , N},T iπkv

i
k−1 + ε′ik ≥ T ∗iπ-i

k
vik−1.

2© ∀i ∈ {1, . . . , N}, compute vik = T iπkv
i
k−1 + εik

end for
Return: (πK , . . . ,πK−m+1)

Proof. The proof is left in Appendix 8.

5 Experiments

We empirically illustrate the previous theoretical results on Garnets (Chapter 4). They
are randomly generated synthetic MGs with three parameters (NS, NA, NB). The pa-
rameter NS is the number of states, NA is the number of actions and NB is a parameter
controlling the branching factor of the MDP. The process to generate a Garnet is the
same as the one for two player zero-sum MGs except for the reward. Here, reward
function only depends on the state and is drawn according to a centered normal law
of variance 1. Only a given ratio (the sparsity) of rewards are non-null.

Figure 5.2(a) and 5.2(b) show ‖v∗iπ-i
k,m
− viπk,m‖2\‖v∗iπ-i

k,m
‖2 according to k. It is a nor-

malized way to quantify what a player could win by switching his strategy unilaterally.
From now on, we will refer to this quantity as the performance of the algorithm even
though the lower the better. The envelope in figures 5.2(a) and 5.2(b) are proportional
to the standard deviation of the performance measure.

The bound of theorem 5.1 does guarantee to improve the performance as m grows.
Figure 5.2(a) shows the performance of the stationary strategy πk of Players 1 and
2 according to the number of iterations. One can notice that, in the beginning, the
performance seems to decrease exponentially toward a asymptotic regime. Then there is
no more improvement. Figure 5.2(b) presents the performance for the cyclic strategy of
length 10 (πk, . . . ,πk−9) at iteration k. For the non-stationary strategy the performance
still converges toward some stationary regime but the performance on that regime is
improved.

Then we compare the performance with respect to m while varying γ. According
to the bound of Theorem 5.1, ‖v∗iπ-i

k,m
− viπk,m‖2 should be lower than 4γmRmax

1−γ . Fig-
ure 5.3(a) reports an experiment where VI is ran with k = 200. It shows the logarithm
of the expected performance of the cyclic strategy πk,m for m ∈ {5, 10, 15, . . . , 100} and
γ ∈ {0.9, 0.95, 0.99} for Player 1. In the worst case, the logarithm of the expected per-
formance should decrease as m log(γ). This is confirmed even in the case of randomly
generated MGs.

We applied approximate VI on Garnets to illustrate the empirical validity of the
bound of Theorem 5.2. To do so, in Algorithm 23, we consider step 1© as exact,

98 Chapter 5. On the use of non-stationary strategies

(a) Stationary VI (b) Non-Stationary VI

Figure 5.2 – Performance (y-axis) as a function of k (x-axis) for VI with a stationary
strategy 5.2(a) and a cyclic strategy of length 10 5.2(b). Results are averaged over 100
Garnets NS = 100 , NA = 10, NB = 2. All Garnets have a sparsity of 0.2 and γ = 0.99.

(a) Non-Stationary VI (b) Approximate Non-Stationary VI

Figure 5.3 – Log of the expected performance (y-axis) as a function of m (x-axis) for
NSVI with k = 200 for different value of γ (γ ∈ {0.9, 0.95, 0.99}). Results are averaged
over 160 Garnets NS = 100, NA = 10, NB = 8. All Garnets have a sparsity of 0.7.

but in step 2© we introduce an error εik generated according to a centered Gaussian
distribution of standard deviation σ = 0.1. For small lengths of the non-stationary
strategy, the performance is lower when γ is small. For small cyclic strategies, the
term 4γmRmax

1−γ is dominant and it seems that the behavior of the algorithm is the same
as the one on Fig. 5.3(a). Then, in Fig. 5.3(b) the performance seems to saturate for
long cycles. Indeed, for large m the dominant term is 2γ−γ

k

1−γ supl∈{1,...,k−1} ‖εik−l‖i,∞ +
1−γk
1−γ supl∈{0,...,k−1} ‖ε′

i
k−l‖i,∞while the performance is normalized by the norm of v∗iπ-i

k,m

(which is proportional to 1
1−γ). Thus the sensitivity to γ is reduced for large m and all

curves converge toward the same value.

6. Conclusion 99

6 Conclusion
The use of cyclic strategies has been the focus of recent works in approximate Dynamic
Programming (DP) on MDPs (Scherrer and Lesner, 2012) and in zero-sum two-player
MGs (see the previous chapter). However, these work concentrate on reducing the
sensitivity to the error propagated through iterations. In this chapter, we highlight
their use in exact DP for general-sum MGs.

Our main contribution is to show that Value Iteration (VI) can still be used to solve
general-sum MGs when considering non-stationary strategies. Our approach relies on
the fact that an infinite horizon γ-discounted MG can be well approximated by a finite
horizon γ-discounted MG. We solve am-finite horizon γ-discounted MG with somewhat
similar techniques as in (Kearns et al., 2000) (which gives us a non-stationary strategy).
Then, we show that playing this strategy in a cycle gives a satisfactory non-stationary
solution to the infinite horizon γ-discounted problem. Finally, we exhibit an example
showing that this guarantee can only be improved by a multiplicative constant. This
example emphasizes a strong limitation of the use of cyclic strategies in VI for general-
sum games. Indeed, the lower bound demonstrates that playing a cyclic strategy does
not grant better guarantees than playing first the m strategies of VI and then playing
any random strategy.

100 Chapter 5. On the use of non-stationary strategies

7 Proof of Theorem 5.1
From definition 5.2, we know that we should bound the following L∞-norm∥∥∥∥∥
∥∥∥∥viπk,m − v∗iπ-i

k,m

∥∥∥∥
s,∞

∥∥∥∥∥
i,∞

.

In other words, we want to compare ∀i ∈ {1, . . . , N} the value of πk,m (i.e. viπk,m =
T iπk . . . T

i
πk−m+1

viπk,m) with the value of the best response of player i to others’ joint
strategy π-i

k,m = (π-i
k , . . . ,π

-i
k−m+1) (i.e. v∗iπ-i

k,m
= T ∗iπ-i

k
. . . T ∗iπ-i

k−m+1
v∗iπ-i

k,m
). Let’s define π̄il

the strategy such as T iπ̄i
k
,π-i
k
. . . T iπ̄i

k−m+1,π
-i
k−m+1

v∗iπ-i
k,m

= T ∗iπ-i
k
. . . T ∗iπ-i

k−m+1
v∗iπ-i

k,m
. Then ∀i ∈

{1, . . . , N} we have:

0 ≤v∗iπ-i
k,m
− viπk,m (5.19)

= T ∗iπ-i
k
. . . T ∗iπ-i

k−m+1
v∗iπ-i

k,m
− T iπk . . . T

i
πk−m+1

viπk,m , (5.20)

= T ∗iπ-i
k
. . . T ∗iπ-i

k−m+1
v∗iπ-i

k,m
− T ∗iπ-i

k
. . . T ∗iπ-i

k−m+1
vik−m

+ T iπk . . . T
i
πk−m+1

vik−m − T iπk . . . T
i
πk−m+1

viπk,m , (5.21)

= γPπk . . . γPπk−m+1(vik−m − viπk,m)

+ T iπ̄i
k
,π-i
k
. . . T iπ̄i

k−m+1,π
-i
k−m+1

v∗iπ-i
k,m
− T ∗iπ-i

k
. . . T ∗iπ-i

k−m+1
vik−m, (5.22)

≤ γPπk . . . γPπk−m+1(vik−m − viπk,m) + T iπ̄i
k
,π-i
k
. . . T iπ̄i

k−m+1,π
-i
k−m+1

v∗iπ-i
k,m

− T iπ̄i
k
,π-i
k
. . . T iπ̄i

k−m+1,π
-i
k−m+1

vik−m, (5.23)

≤ γPπk . . . γPπk−m+1(vik−m − viπk,m)

+ γPπ̄i
k
,π-i
k
. . . γPπ̄i

k−m+1,π
-i
k−m+1

(v∗iπ-i
k,m
− vik−m). (5.24)

Finally, ∀i ∈ {1, . . . , N} (noticing that the three quantities v∗iπ-i
k,m

, vik−m and viπk,m are
smaller than Rmax

1−γ):

v∗iπ-i
k,m
− viπk,m ≤

4γmRmax

1− γ . (5.25)

8 Proof of Theorem 5.2
Here we write (π̃ik, . . . , π̃i1) such as T ∗iπ-i

k
. . . T ∗iπ-i

1
vi0 = T iπ̃i

k
,π-i
k
. . . T iπ̃i1,π-i

1
vi0.

0 ≤ v∗iπ-i
k,m
− viπk,m ≤ v∗iπ-i

k,m
− T iπkv

i
k−1 + T iπkv

i
k−1 − viπk,m , (5.26)

≤ v∗iπ-i
k,m
− T ∗iπ-i

k
vik−1 + ε′ik + T iπkv

i
k−1 − viπk,m , (5.27)

≤ v∗iπ-i
k,m
− T iπ̃i

k
,π-i
k
vik−1 + ε′ik + T iπkv

i
k−1 − viπk,m . (5.28)

With vik−1 = T iπk−1
vik−2 + εik−1, with T iπkv

i
k−1 ≥ T ∗iπ-i

k
vik−1 − ε′

i
k and noticing that for all

v ≤ v′ and for all π we have T iπv ≤ T iπv′, then:

8. Proof of Theorem 5.2 101

v∗iπ-i
k,m
− viπk,m ≤ v

∗i
π-i
k,m
− T iπ̃i

k
,π-i
k
T ∗iπ-i

k−1
vik−2 + T iπkT

i
πk−1

vik−2 − viπk,m + ε′ik

+ γPπ̃i
k
,π-i
k
ε′ik−1 − γPπ̃i

k
,π-i
k
εik−1 + γPπkε

i
k−1, (5.29)

≤ v∗iπ-i
k,m
− T iπ̃i

k
,π-i
k
T iπ̃i

k−1,π
-i
k−1

vik−2 + T iπkT
i
πk−1

vik−2 − viπk,m + ε′ik

+ γPπ̃i
k
,π-i
k
ε′ik−1 − γPπ̃i

k
,π-i
k
εik−1 + γPπkε

i
k−1, (5.30)

≤ v∗iπ-i
k,m
− T iπ̃i

k
,π-i
k
. . . T iπ̃i1,π-i

1
vi0 + T iπk . . . T

i
π1v

i
0 − viπk,m (5.31)

+
k−1∑
j=0

γPπ̃i
k
,π-i
k
. . . γPπ̃i

k−j+1,π
-i
k−j+1

ε′ik−j (5.32)

−
k−1∑
j=1

γPπ̃i
k
,π-i
k
. . . γPπ̃i

k−j+1,π
-i
k−j+1

εik−j (5.33)

+
k−1∑
j=1

γPπk . . . γPπk−j+1ε
i
k−j . (5.34)

With ṽik−m = T iπk−m
. . . T iπ1

vi0, with v̄ik−m = T iπ̃i
k−m,π

-i
k−m

. . . T iπ̃i1,π-i
1
vi0, noticing

v̄ik−m and ṽik−m ≤ 1
1−γ and from the proof of Th. 5.1 we have:

v∗iπ-i
k,m
− T iπ̃i

k
,π-i
k
. . . T iπ̃i

k−m+1,π
-i
k−m+1

. . . T iπ̃i1,π-i
1
vi0 + T iπk . . . T

i
πk−m+1

. . . T iπ1
vi0 − viπk,m (5.35)

= T ∗iπ-i
k
. . . T ∗iπ-i

k−m+1
v∗iπ-i

k,m
− T ∗iπ-i

k
. . . T ∗iπ-i

k−m+1
v̄ik−m

+ T iπk . . . T
i
πk−m+1

ṽik−m − T iπk . . . T
i
πk−m+1

viπk,m , (5.36)

≤ 4γmRmax

1− γ . (5.37)

And the three sums (5.32), (5.33) and (5.34) are bounded by:

2γ − γ
k

1− γ sup
l∈{1,...,k−1}

‖εik−l‖i,∞ + 1− γk
1− γ sup

l∈{0,...,k−1}
‖ε′ik−l‖i,∞, (5.38)

which concludes the proof.

Part III

Learning in Games : A Bellman
Residual Approach

Chapter 6

Bellman Residual Minimization in
Zero-Sum Games

The first part of this dissertation explored how ADP methods could be used to produce
sample based algorithms for games. In MDPs, the Policy Iteration (PI) algorithm can
also be seen as a Newton’s method on the Optimal Bellman Residual (OBR) ‖v−T ∗v‖2.
However, in zero-sum two player MGs, the Newton’s method on the OBR (Pollatschek
and Avi-Itzhak’s algorithm) does not reduce to the policy iteration for zero-sum two-
player MGs (Hoffman and Karp’s algorithm). In a nutshell, this chapter shows that
two sample-based approximate PI algorithms for MDPs (Least-Squares Policy Iteration
(LSPI) and Bellman Residual Minimizing Policy Iteration (BRMPI)) and one algorithm
for two player MGs (LSPI for MGs) can be seen as Newton’s methods on some form
of the OBR.

This simple observation leads to several novel contributions. First it reveals that
the LSPI algorithm for zero-sum two-player MGs (which is a sample-based algorithm
using function approximation) is the Pollatschek and Avi-Itzhak’s algorithm when the
model is known and when no function approximation is used. Thus, the LSPI algorithm
for MGs does not converge even when the model is known since the Pollatschek and
Avi-Itzhak’s algorithm can oscillate. All these algorithms (LSPI and BRMPI) suffers
from oscillation issues. Our second set of contributions is to consider the use of the
quasi-Newton methods instead of Newton’s method to address this oscillation problem.
This solution was introduced to solve the oscillation issue of the (Pollatschek and
Avi-Itzhak’s algorithm in (Filar and Tolwinski, 1991). The modification of Filar and
Tolwinski amounts to use a quasi-Newton method on the L2-norm of the OBR instead
of a Newton’s Method. Their proof of convergence is based on the assumption that the
L2-norm of the OBR is smooth, which is untrue in general (as we show at the end of
Section 1). Indeed, the derivative of the L2-norm of the OBR might be discontinuous
and thus a quasi-Newton method is not anymore guaranteed to converge to a local
minimum (counterexamples exist Lewis and Overton (2013)). But, in practice (Lewis
and Overton, 2013), using quasi-Newton methods often leads to pretty good solutions
even in the non-smooth case.

The resulting algorithms are more thrifty than other approximate PI like algorithms
and do not suffer from the oscillation problem.

106 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

1 Background

First let us recall quickly the PI algorithm for MDP and the (Pollatschek and Avi-
Itzhak’s algorithm. The two algorithms perform similar updates are detailed in the
following table (table 6.1):

Table 6.1 – Policy Iteration and (Pollatschek and Avi-Itzhak’s algorithm

Policy Iteration Pollatschek and Avi-Itzhak
πk such as Tπkvk−1 = T ∗vk−1 µk, νk such as T vk−1 = Tµkvk−1 = Tµk,νkvk−1 = T̂νkvk−1

vk = vπk vk = vµk,νk

The algorithm of Pollatschek and Avi-Itzhak does not compute the best response
at each iteration as the PI algorithm of Hoffman and Karp. Instead, it computes the
value of a joint strategy. The complexity of computing the fixed point of Tµk+1,νk+1 is
just inverting a matrix of size card(S) instead of solving an MDP (as in the algorithm
of Hoffman and Karp). However, this scheme doesn’t work in general (Van Der Wal,
1978).

Let us recall some part of the related work described in Section 3.4. Van Der Wal
(1978) shows that Shapley’s algorithm is slower in practice than the (Pollatschek and
Avi-Itzhak’s algorithm and the Hoffman and Karp’s PI. It thus motivates the use of PI
schemes. Between the two extensions of PI to games, the Pollatschek and Avi-Itzhak’s
algorithm is the less computationally intensive. In (Filar and Tolwinski, 1991), this
algorithm is slightly modified to introduce a learning rate. The update is vk+1 =
αvµk+1,νk+1 + (1−α)vk where α is chosen according to Armijo’s Rule. This comes from
the fact that the Pollatschek and Avi-Itzhak’s algorithm is a Newton’s method on the
L2-norm of the Bellman residual ||v − T ∗v||22 (proof in Section 3.4.5). The adaptation
of the Pollatschek and Avi-Itzhak’s algorithm introduced by Filar and Tolwinski (1991)
uses a quasi-Newton method instead of a Newton’s method on the objective J (v) =
||v−T ∗v||22. To argue for the convergence of their algorithm towards the optimal value
of the game, Filar and Tolwinski show first that a local minimum of the objective is also
a global minimum and then they assure that their quasi-Newton method converges to
a local minimum. However, they use a version of the Zoutendijk theorem Nocedal and
Wright (2006) to prove the convergence to a local minimum. This theorem requires
the gradient of the objective function (L2-norm of the Bellman residual) to exists (in
the Fréchet sense) and to be a Lipschitz function. This assumption does not hold in
the case of MDPs or MGs because of the max and minmax operators respectively. The
question whether there is convergence to a local minimum or not when the gradient
is not Lipschitz is still an open problem in optimization. However, empirical evidence
suggests quasi-Newton methods always converge to a Clarke stationary point even when
the gradient is not Lipschitz Lewis and Overton (2009, 2013). This means that, despite
Pollatschek and Avi-Itzhak’s proof does not stand, there is good evidence that using
quasi-Newton methods will empirically perform well. Again, there are no theoretical
guarantees that quasi-Newton methods converge to a local optimum in the case of

2. Newton’s Method on the OBR with Linear Function Approximation107

non-convex and non-smooth functions Lewis and Overton (2013) (which is the case of
the Bellman residual). But, as written by Lemaréchal it can be "good practice to use a
quasi-Newton method in nonsmooth optimization" in his opinion it "is essentially due
to the fact that inaccurate line-searches are made". He also indicates that there are "no
theoretical possibility to prove convergence to the right point (in fact counterexamples
exist)" (see Lewis and Overton (2009)).

Newton’s method and quasi-Newton methods: Newton’s method is an opti-
mization technique aiming at minimizing a function f : Rn → R. Starting from
x0 ∈ Rn, it computes the sequence (xn)n∈N such that:

xn+1 = xn − [Hf(xn)]−1∇f(xn), (6.1)

where Hf(xn) and ∇f(xn) are respectively the Hessian matrix and the gradient in
xn. This method might be unstable Nocedal and Wright (2006) and one way to soften
it is to introduce a learning rate αk meeting the Wolf conditions and to compute the
sequence:

xn+1 = xn − αk[Hf(xn)]−1∇f(xn). (6.2)

This is a quasi-Newton method. When the function f is not differentiable (in the
classical Fréchet sense), one can use more general definitions of differential (or gradient)
such as the Clarke differential cla for instance. In Section 2, we discuss our choice of
differential for our specific objectives which are not differentiable everywhere due to
the use of the minmax operator.

2 Newton’s Method on the OBR with Linear Func-
tion Approximation

As in Section 3.5.1 and in Section 1.2.2, in Chapter 2 Q-functions are represented
as a linear combination of d linear independent features Φ = [φ1, φ2, ..., φd], where
φi ∈ RS×A2 . Thus, for each ω ∈ Rd, we can define a Q-function Qω = ∑d

i=1 ωiφi = Φω.
We also define the linear span corresponding to Φ as Span(Φ) = {Qω}ω∈Rd . Moreover,
it is usual to see Φ as a matrix where Φ[(s, a, b), i] = φi(s, a, b). Thus, we haveQω = Φω.
In addition, we recall that for any element Q of RS×A2 , its orthogonal projection Πρ,ΦQ

under a non-null measure ρ over S × A2 is defined as:

Πρ,ΦQ = argmin
u∈Span(Φ)

‖Q− u‖2,ρ = Φ(Φ>∆ρΦ)−1Φ>∆ρQ, (6.3)

Two canonical objectives to minimize can be defined in order to search for a Q-
function within Span(Φ): the OBR JOBR(ω) and the POBR JPOBR(ω):

JOBR(ω) = 1
2 ||Φω − T

∗Φω||22,ρ, (6.4)

JPOBR(ω) = 1
2 ||Φω − Πρ,ΦT ∗Φω||22,ρ, (6.5)

= 1
2 ||Φ

>(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω)||22,ρ. (6.6)

108 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

Notice that explicit minimization of the OBR through gradient descent is not new (Piot
et al., 2014a, Baird et al., 1995), as for the POBR with approximate stochastic gradient
descent (Maei et al., 2010). However, few works, at our knowledge, focus on the use
of Newton’s or quasi-Newton techniques to minimize those objectives. The Newton’s
method requires computing a gradient and a Hessian matrix. This means that one
needs to compute the derivative of T ∗Φω with respect to ω.

Computing the gradient of T ∗Φω with respect to ω As shown by Correa and
Seeger (1985), when for a fixed ω, there exists a unique pair of strategies (µω, νω) such
that T ∗Φω = Tµω ,νωΦω = TµωΦω = T̃νωΦω, the gradient of T ∗Φ on ω, is simply the
gradient of the linearized operator Tµω ,νωΦ = r+ γPµω ,νωΦ. From now on, we will note
Pµω ,νω = Pω and Tµω ,νω = Tω.

When there exist Uω and Vω such that, for all µ in Uω and for all ν in Vω, T ∗Φω =
Tµ,νΦω = TµΦω = T̃νΦω, then the directional derivative of T ∗Φω (written ∂dT ∗Φω)
is minν∈Vω maxµ∈Uω ∂dTµ,νΦ (Correa and Seeger, 1985). In practice, when the minmax
is not unique, a pair of strategies (µω, νω) is chosen in Uω × Vω and T ∗Φ is linearized
with TωΦ to compute the gradient: ∇T ∗Φω = ∇TωΦω = γPωΦ.

For example, in the Pollatschek and Avi-Itzhak’s algorithm (Φ = I), a couple
(µω, νω) is chosen such that T ∗Φω = TωΦω = TµωΦω = T̃νωΦω which is the pair of
strategies for which the chosen gradient is γPωΦ. In LSPI for games, the gradient
is not the gradient of the linearized operator Tω. Rather, they choose Tµ,ν such that
T ∗Φω = Tµ,νΦω = TµΦω and with ν a deterministic strategy. Thus, the LSPI algorithm
as it has been described by Lagoudakis and Parr (2002) does not follow the gradient
γPωΦ. From now, we will call the Newton-LSPI algorithm the one with the Newton’s
gradient γPωΦ. The reader should notice that this difference only appears when it
comes to MGs and that Newton-LSPI is exactly LSPI when applied to MDPs since
ν is not considered in MDPs. This also proves that LSPI for MGs is almost the
(Pollatschek and Avi-Itzhak’s algorithm when Φ = I as it almost perform the same
greedy step. Interestingly, the example of Van Der Wal also applies and thus LSPI is
not guaranteed to converge in MGs whether the function approximation is stable or
not.

2.1 Newton’s Method on the POBR
As mentioned in the previous section, the Newton’s method on the POBR reduces
to the LSPI algorithm but with a slightly different choice of the gradient. Here, we
will consider the POBR with the linearized gradient (∇T ∗Φω = ∇TωΦω = γPωΦ)
described previously. Let’s write Aω = Φ>∆ρ(I − γPωk)Φ and b = Φ>∆ρr

The POBR gradient is (for details see appendix 8):

∇JPOBR(ω) = A>ω (Φ>∆ρΦ)−1(Aωω − b). (6.7)

The Hessian matrix is (for details see appendix 8):

HJPOBR(ω) = A>ω (Φ>∆ρΦ)−1Aω. (6.8)

2. Newton’s Method on the OBR with Linear Function Approximation109

If the matrix Aω is invertible and if ρ is a non-null measure on S × A2, the Newton’s
method direction is:

[HJPOBR(ω)]−1∇JPOBR(ω) = (Aω)−1(Aωω − b). (6.9)

The update of ωk of the Newton’s method is thus:

ωk+1 = ωk − (Aωk)−1(Aωkωk − b) = (Aωk)−1b,

which is the update of the Newton-LSPI algorithm (Lagoudakis and Parr, 2003). The
Newton-LSPI algorithm optimizes JPOBR(ω) as a cost function, which might never
be zero (see Remark 7.1 below). Moreover, to our knowledge, controlling the POBR
does not allow controlling the quality of the final policy. The main benefit of the
Newton-LSPI algorithm is that the matrix Aωk is easy to estimate from batch data
whether the state space is continuous or not. This makes Newton-LSPI a very practical
algorithm Lagoudakis and Parr (2002).

It is well known that, for a fixed policy, the minimum of the projected Bellman
residual 1

2 ||Φ
>(Φ>∆ρΦ)−1Φ>∆ρ(Φω − TπΦω)||22,ρ is equal to 0 Koller and Parr (2000)

for all but finitely many number of γ. Nonetheless, we can show that it is not the case
for the POBR. In other words, the minimum of 1

2 ||Φ
>(Φ>∆ρΦ)−1Φ>∆ρ(Φω−T ∗Φω)||22,ρ

might be positive for a continuous interval of γ (see appendix 7.1).

2.2 Newton’s Method on the OBR
Here we will note Cω = Φ>(I − γPω)>∆ρ(I − γPω)Φ and eω = Φ>(I − γPω)>∆ρr.
Applying the Newton’s method to the residual JOBR(ω) gives the following algorithm:

ω0 = 0, (6.10)
ωk+1 = ωk + (HJOBR(ωk))−1∇JOBR(ωk). (6.11)

The gradient is (for details see appendix 8):

∇JOBR(ω) = Cωω − eω.

The Hessian matrix is (for details see appendix 8):

HJOBR(ω) = Cω.

The update of ωk of the Newton’s method is:

ωk+1 = ωk − (Cωk)−1(Cωωk − eωk),
= (Cωk)−1eωk .

Lagoudakis and Parr (2003) propose this algorithm as an alternative method to
learn an optimal policy in MDPs and call it Bellman Residual Minimization Policy
Iteration (BRMPI). Extension to games is easy as shown previously.

110 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

2.3 Comparison of BRMPI and Newton-LSPI
In MGs, the two algorithms previously described derive from the Pollatschek and Avi-
Itzhak algorithm and are thus not guaranteed to converge (Van Der Wal, 1978). They
both follow the Newton’s direction of either JOBR or JPOBR. On the one hand, the cost
function JOBR(ω) controls the norm ||Q∗ − Qµ||2 where µ is the maximizer’s greedy
strategy with respect to Φω and Qµ the fixed point of Tµ (see Piot et al. (2014a) in the
case of an MDP). In consequence, minimizing the OBR gives a nearly optimal strategy.
However, there are no easy ways to estimate the matrix Cω and the vector eω from
data, especially when the state space is continuous. One possible way to obtain such
estimates is to use embeddings in RKHS (Grunewalder et al., 2012).

Theorem 6.1. Let Q be a value function and let µ be a greedy strategy on Q (i.e.
T ∗Q = TµQ). Then we have:

||Q∗ −Qµ||2,ρ ≤
2

1− γ

(
C2(ρ, µ, ν) + C2(ρ, µ∗, ν̃)

2

) 1
2

||T ∗Q−Q||2,ρ

with µ, ν, µ∗ and ν̃ strategies such that T ∗Q∗ = Tµ∗Q∗, Tµ∗,ν̃Q = Tµ∗Q, Tµ,νQµ = TµQµ

and Tµ,νQ = TµQ. And with C2(ρ, µ, ν) = ||∂ρ
>(1−γ)(I−γPµ,ν)−1

∂ρ>
||2,ρ L∈-norm of the

Radon-Nikodym derivative of the Kernel (1− γ)(I − γPµ,ν)−1.

Proof. Proof in appendix 7.

On the other hand, applying the Newton’s method to JPOBR(ω) is easy. Estimat-
ing Aω and bω is computationally cheap. However, minimizing JPOBR(ω) does not
guarantee to find a good strategy.

Concerning the stability, Newton-LSPI is clearly the less stable one. The Hessian
matrix HJPOBR(ω) might not even be invertible since Aω is not invertible for a finite
number of values of γ (Koller and Parr, 2000). For BRMPI however the Hessian
HJOBR(ω) is always invertible and the cosine between the Newton’s update and the
gradient is bounded away from zero.

Theorem 6.2. For an MG with finite state space, there exists δ > 0 such that:

− JOBR(ω)>(HJOBR(ω))−1JOBR(ω)
||JOBR(ω)||2||(HJOBR(ω))−1JOBR(ω)||2

≤ −δ.

Proof. Proof in appendix 7

This means that, when on a point ω where the derivative is well defined, the New-
ton’s update is guaranteed to decrease the OBR in a neighborhood of ω.

3 Batch Learning in Games
In the batch scenario, the dynamics and the reward function are known only through
logs of interactions between the two players and the environment. These logs are a

4. Quasi-Newton’s Method on the OBR and on the POBR 111

collection of tuple {(si, a1
i , a

2
i , ri, s

′
i)}i∈{1,...,N} where (si, a1

i , a
2
i) is drawn from a distri-

bution ρ where ri = r(si, a1
i , a

2
i) and where s′i ∼ p(.|si, a1

i , a
2
i). Thus, at each iteration

of Newton-LSPI or of BRMPI, the objective will be to estimate one matrix and one
vector.

3.1 Newton-LSPI with Batch Data
Newton-LSPI with batch data proceeds as follows. The goal is to estimate the ma-
trix Aω and the vector b (the estimates will be noted Âω and b̂). The procedure is
described in Algorithm 24 where µω and νω are the minmax strategies with respect to
the approximate Q-function Φω.

The update of Âω is convenient since it allows computing (Âω)−1 very effi-
ciently (Lagoudakis and Parr, 2003) with the Sherman–Morrison formula. Then doing
Newton-LSPI with batch data corresponds simply in updating our parameter ω as
follows:

ωk+1 = (Âωk)−1b̂. (6.12)

Algorithm 24 LSPI-Matrix update
Input: DN = ((xj, a1

j , a
2
j), rj, x′j)j=1,...,N some samples, Φ a d dimensional feature

space and ω.
for i ∈ {1, ..., N} do
Âω+ = φ(si, a1

i , a
2
i)[φ(si, a1

i , a
2
i)−γ

∑
b1∈A1(s′i)

∑
b2∈A2(s′i)

µω(s′i, b1)νω(s′i, b2)φ(s′i, b1, b2)]>

b̂ + = φ(si, a1
i , a

2
i)ri

end for
output: Âω, b̂

3.2 BRMPI with Batch Data
A natural extension of BRMPI to batch data when the state space is finite is to find
estimates of Cω and eω. To do so we first estimate (I − γPω) (noted B̂ω) and r (noted
r̂). The procedure is described in Algorithm-25.

Then, estimates of Cω and eω would be respectively Ĉω = Φ>B̂>ω B̂ωΦ and êω =
Φ>B̂>ω r̂. Those estimates are clearly biased estimates of Cω and eω. Thus, the Newton’s
update is:

ωk+1 = (Ĉωk)−1êωk . (6.13)

4 Quasi-Newton’s Method on the OBR and on the
POBR

In this section, a quasi-Newton’s method is applied to the norm of the OBR and of the
PORBR. This corresponds to the introduction of a learning rate in Newton-LSPI and

112 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

Algorithm 25 BRMPI-Matrix update
Input: DN = ((xj, a1

j , a
2
j), rj, x′j)j=1,...,N some samples, Φ a d dimensional feature

space and ω.
for i ∈ {1, ..., N} do
B̂ω(si, a1

i , a
2
i , si, a

1
i , a

2
i) + = 1

for b1 ∈ A1(s′i) and b2 ∈ A2(s′i) do
B̂ω(si, a1

i , a
2
i , s
′
i, b

1, b2)+ = −γµω(s′i, b1)νω(s′i, b2)
end for
r̂(si, a1

i , a
2
i)← r̂(si, a1

i , a
2
i) + ri

end for

BRMPI and their batch versions described in the herein-before section. In (Filar and
Tolwinski, 1991) the learning rate is chosen to verify Amijo’s rule for the exact case
(Amijo’s rule is satisfied when the first Wolf condition is satisfied eq. (6.14)). We choose
to use a learning rate according to the Wolf conditions for the case with linear function
approximation. There exist theorems to guarantee convergence to a local minimum
when the gradient is a Lipschitz function which is not the case here. However, there
are empirical evidences that using inexact line search improves convergence to a local
minimum of the objective function (Lewis and Overton, 2009).

In both Newton-LSPI and BRMPI, when the dynamics is known and in the batch
scenario, the update takes the following shape:

ωk+1 = (Ξωk)−1ψωk

and the objective is to minimize a L2 norm of the following shape (the corresponding
notations is given in table 6.2):

f(ω) = ‖Ψωω − υ‖ρ,2.

Let’s note the Newton’s update:

gωk = (Ξωk)−1ψωk − ωk,

The quasi-Newton method will instead perform the following update:

ωk+1 = (1− αk)ωk + αk(Ξωk)−1ψωk ,

where the learning rate α is chosen to satisfy the Wolf conditions (0 < c1 < c2 < 1):

f(ω + αgω) ≤ f(ω) + c1αg
>
ω .∇f(ω) (6.14)

f(ω + αgω) ≥ f(ω) + c2αg
>
ω .∇f(ω) (6.15)

Constants c1 is typically chosen around 10−4 and c2 is usually chosen close to 0.9.
Condition (6.14) ensures that the learning rate is not too large whereas condition (6.15)
guarantees a large enough learning rate.

5. Experiments 113

Table 6.2 – Parameters for LSPI, BRMPI and their Batch version

LSPI BRMPI Batch LSPI Batch BRMPI
Ξωk Aωk Cω = Φ>B>ωBωΦ Âωk Ĉω = Φ>B̂>ω B̂ωΦ
ψωk b eω = Φ>B>ω r b̂ êω = Φ>B̂>ω r̂
Ψω Φ(Φ>∆ρΦ)−1Aω BωΦ Âω B̂ωΦ
υ Φ(Φ>∆ρΦ)−1b r b̂ r̂

ρ ρ ρ uniform uniform

5 Experiments

To empirically illustrate the application of quasi-Newton methods to both MDPs and
MGs, we ran experiments on Garnets (defined in Chapter 4). A Garnet is an abstract
class of MDPs. It is described by a triplet (NS, NA, NB). The parameter NB, the
branching factor, denotes the number of reachable states from any state-action pair.
In one of our experiment, we enforced some regularity in the dynamics. Usually (as
described in Chapter 4), for all (s, a) we generate the following transition distribution
p(.|s, a) according to the following procedure: first one draws uniformly NB − 1 points
over [0, 1]. Let’s note those numbers (pi)1≤i≤NB−1 (in increasing order) and p0 = 0 and
pNB = 1. Then we draw a subset of size NB of {1, ..., NS} written {s′1, ..., s′NB}. The
second type of Garnet, {s′1, ..., s′NB} is drawn in a subset of {1, ..., NS} centered around
s (meaning we will draw states s′ such that |s − s′| ≤ ζ in the experiment ζ = NB).
Finally, we define the kernel as follows, ∀i ∈ {1, ..., NB}, p(s′i|s, a) = pi − pi−1. The
reward function will depend on the experiment.

For simultaneous two-player zero-sum MGs the NA parameter will describe the
number of actions both players will be allowed to play at each state in the MG. The
kernel p(.|a1, a2, s) is generated according to the same procedure as for MDPs.

Results always show the performance of the strategy with respect to the iteration
number. The performance of a strategy µ is quantified as the following ratio: ||Q

∗−Qµ||2
||Q∗||2 .

This is the normalized norm of the difference between the optimal Q-function of the
MG and the Q-function of strategy µ considering the opponent plays his best response.
Results are averaged over experiments and the envelope is proportional to the standard
deviation.

The main purpose of the two following subsections is to emphasize the effects of
quasi-Newton methods both on the stability and on the performance of the algorithms.
In those experiments, we can notice the importance of tuning constants c1 and c2 from
equations (6.14) and (6.15). Here, c1 = 10−4 and c2 = 0.9. We performed the line
search as follows: if condition (6.14) was not checked we decreased the learning rate
geometrically αk ← η × αk and, if condition (6.15) was not checked, we increased it
geometrically αk ← 1

η
×αk (η = 0.9). This was done until both conditions were checked.

114 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

Algorithm 26 quasi-Newton LSPI
Input: DN = ((xj, a1

j , a
2
j), rj, x′j)j=1,...,N some samples, Φ a d dimensional feature

space and ω0 = 0. Constants c1(= 10−4),c2(= 0.9), η(= 0.9), α0 = 1, αmin(= 10−10)
and αmin(= 1.0).
let’s suppose there is an algorithm f such that Âω, b̂ = f(DN , ω,Φ) (the procedure
is described in Section 3.1)
for k=1,2,...,K do
Âωk , b̂ = f(DN , ωk,Φ)
gωk = (Âωk)−1b̂− ωk
pωk = Â>ωk(Âωkωk − b̂)
αk = αk−1
lωk = ||Âωkωk − b̂||22
Âωk+αkgωk , b̂ = f(DN , ωk + αkgωk ,Φ)
l = ||Âωk+αkgωk (ωk + αkgωk)− b̂||22
if l > lωk + c1αkg

>
ωk
pωk then

while l > lωk + c1αkg
>
ωk
pωk and αk ≥ αmin do

αk ← αk × η
Âωk+αkgωk , b̂ = f(DN , ωk + αkgωk ,Φ)
l = ||Âωk+αkgωk (ωk + αkgωk)− b̂||22

end while
end if
if l < lωk + c1αkg

>
ωk
pωk then

while l < lωk + c1αkg
>
ωk
pωk and αk ≤ αmax do

αk ← αk
η

Âωk+αkgωk , b̂ = f(DN , ωk + αkgωk ,Φ)
l = ||Âωk+αkgωk (ωk + αkgωk)− b̂||22

end while
end if
ωk+1 = ωk + αkgωk

end for
output: ΦωK+1

5.1 Experiments on Markov Decision Processes

The PI algorithm for MDPs is known to converge because it builds a sequence of
increasing values while searching in an underlying finite policy space Puterman (1994).
This does not stand anymore when it comes to function approximation, since the
argument of increasing values is not verified. As a result, the LSPI algorithm is not
proven to converge in general for MDPs.

We ran experiments on Garnets to compare LSPI and BRMPI (Newton’s meth-
ods) with their quasi-Newton counterparts (Softened LSPI described in Algorithm-26).
Here, the reward function depends on states and actions, and only a ratio of the rewards

6. Conclusion 115

were non-zero (this ratio is called the sparsity). Experiments of figure 6.1 was done on
type 2 Garnets (with a regular dynamic). The feature space Φ has d = 0.2×NS ×NA

features. Those d features are vectors randomly generated according to a Gaussian
law.

First, one can notice that quasi-Newton version of LSPI and respectively BRMPI
did not under-perform LSPI and respectively BRMPI. Figure 6.1 illustrates that quasi-
Newton methods do not under perform their respective counterparts. We noticed that
the BRMPI algorithm often oscillates from one iteration to another. The use of quasi-
Newton method usually eliminates that instability.

In Figure 6.1 the Garnet is drawn with NB = 10. Usually, MDPs with high branch-
ing factors are easier to optimize since a high branching factor has a tendency to
smooth the optimal value function. Figure 6.1 shows the effect of the learning rate on
the learning curve. Especially in the case of Newton-LSPI, introducing a learning rate
improves both the stability and the performance of the algorithm. Also, we can notice
that the BRMPI algorithm oscillates on MDPs.

5.2 Experiments on Markov Games
We ran experiments on MG Garnets to compare Newton’s method and quasi-Newton
method. In the hereafter experiment, the reward function only depends on the state.
Only a ratio of rewards are non-zero and are drawn according to a normal law. Again,
we compared Newton-LSPI and BRMPI with their quasi-Newton counterparts. The
feature space is also randomly generated according to a Gaussian law. But, we needed
more features compared to the MDP case to learn a strategy. In the following experi-
ment, we used d = 0.8×NA ×NA ×NS features.

Compared to experiments on MDPs, one can notice that the variance of the perfor-
mance is higher even if we use more features, more samples on MGs with less actions.
We do not fully understand why it is significantly harder to learn a good strategy in an
MG compared to an MDP. The reason might be that simultaneous games are simply
more complex to optimize or that comparing with the value of a best response is too
conservative. Anyway, the use of quasi-Newton method appears to be useful even with
this conservative performance criterion.

Here again, one can notice that quasi-Newton methods did not under-perform their
counterparts. Although, we could not notice huge gaps in the performance (Figure 6.2
and 6.3) as in experiments on MDPs, quasi-Newton methods did reduce the unstable
behavior of the strategy (Figure 6.2).

6 Conclusion
To sum up this chapter, we first pointed out the fact that the proof of convergence
of Filar and Tolwinski’s algorithm is based on assumptions that do not hold. Second,
we found out that, as a consequence of the instability of the Pollatschek and Avi-
Itzhak algorithm, LSPI for games does not converge whether the linear approximation

116 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
BRMPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened BRMPI

Figure 6.1 – Performance (y-axis) of the strategy at step k (x-axis) for LSPI, BRMPI
and the corresponding quasi-Newton method. Results are averaged over 50 Garnets
NS = 100, NA = 8, NB = 10. All Garnets have a sparsity of 0.5 and γ = 0.99. The
number of batch samples used is 0.5×NA ×NS.

is stable or not. Third, we showed that LSPI and BRMPI can be regarded as Newton’s
methods. Fourth, this naturally led to the use of quasi-Newton methods instead of
Newton’s method as they result in more stable solutions. And, finally, these slight
modifications on algorithms for games dramatically improve the stability of one of
the most popular model-free algorithms to solve MDPs on synthetic problems, namely
LSPI. We make novel connections between approximate policy iteration schemes on
both MDPs and MGs and optimization methods. It describes three algorithms as
Newton’s method on different Bellman residuals. This unified picture of three popular
algorithms naturally led to the use of quasi-Newton methods which is believed, in the
optimization community, to be steady and to perform better in practice (Nocedal and
Wright, 2006).

Yet, this chapter rises three open questions: first, since LSPI and BRMPI with
batch data are minimizing some empirical residual, a natural question is whether those
estimators are good estimators of the residual or not. Few works exist on direct min-

6. Conclusion 117

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
BRMPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened BRMPI

Figure 6.2 – Performance (y-axis) of the strategy at step k (x-axis) for Newton-LSPI,
BRMPI and the corresponding quasi-Newton method. Results are averaged over 50
Garnets NS = 50, NA = 2, NB = 1. All Garnets have a sparsity of 0.3 and γ = 0.9.
The number of batch samples used is 1.0×NA ×NA ×NS.

imization of the OBR (Baird et al., 1995, Piot et al., 2014a). Piot et al. proved that
minimizing a specific estimate of the Optimal Bellman residual on MDPs is consistent
in the Vapnik sense. A second question is whether it makes sense theoretically to min-
imize the POBR or not. Little is known on the quality of the solution given by the
minimum of the POBR and research should be conducted in that sense. Finally, since
the goal is to minimize some Bellman residual, a third question is whether there exist
smarter methods than quasi-Newton ones to minimize the considered residual. There
exists a trove of Newton-like methods that are known to perform well on non-smooth
functions. One interesting perspective would be to study how the BFGS method (No-
cedal and Wright, 2006, Lewis and Overton, 2013) would perform, as it does not require
to compute and invert the Hessian matrix at each iteration.

But in the end, minimizing the Bellman residual can only be used in zero-sum
games as there exists no known Bellman operator for general sum MGs and as no
value function based method can find a Nash equilibrium Zinkevich et al. (2006).

118 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened LSPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
BRMPI

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0
Softened BRMPI

Figure 6.3 – Performance (y-axis) of the strategy at step k (x-axis) for Newton-LSPI,
BRMPI and the corresponding quasi-Newton method. Results are averaged over 50
Garnets NS = 50 , NA = 2, NB = 4. All Garnets have a sparsity of 0.3 and γ = 0.9.
The number of batch samples used is 2.0×NA ×NA ×NS.

7 Appendix

7.1 Remark
The minimum of POBR JPOBR(ω) might not be 0. Indeed, let us consider the following
simple example on an MDP with only two actions:

r =
(

0
1

)
, Pa1 =

(1
2

1
2

0 1

)
, Pa2 =

(1
2

1
2

1 0

)
,Φ =

(
1
2

)

One can notice that, if ω ≥ 0, then a1 is greedy with respect to Φω. If ω ≤ 0, then a2
is greedy with respect to Φω.

(Φ>Φ)−1Φ>(Ta1Φω − Φω) = 1
5(2 + (5.5γ − 5)ω)

(Φ>Φ)−1Φ>(Ta2Φω − Φω) = 1
5(2 + (3.5γ − 5)ω)

7. Appendix 119

Then, for γ ∈ [10
11 , 1], the value of (Φ>Φ)−1Φ>(T ∗Φω−Φω) is a piecewise linear function.

It is decreasing when ω ≤ 0 and increasing when ω ≥ 0. For ω = 0 it is equal to 2
5 .

Thus JPOBR(ω) is positive (JPOBR(ω) ≥ 4
25).

7.2 Proof of Theorem 6.1
Let us recall theorem 6.1

Let Q be a value function and let µ be a greedy strategy on v (meaning T ∗v = Tµv).
Then we have:

||Q∗ −Qµ||2 ≤
C

1− γ ||Q− T
∗Q||2

Proof.

Q∗ −Qµ = T ∗Q∗ − T ∗Q+ TµQ− TµQµ (6.16)
≤ Tµ∗Q∗ − Tµ∗Q+ Tµ,νQ− Tµ,νQµ (6.17)
≤ Tµ∗,ν̃Q∗ − Tµ∗,ν̃Q+ Tµ,νQ− Tµ,νQµ (6.18)

(6.19)

with T ∗Q∗ = Tµ∗Q∗, Tµ∗,ν̃Q = Tµ∗Q and Tµ,νQµ = TµQµ. We will note µ the strategy
such that Tµ,νQ = TµQ

(I − γPµ∗,ν̃)(Q∗ −Qµ) ≤ (γPµ∗,ν̃ − γPµ,ν)(Q−Qµ) (6.20)

Now let’s bound Q−Qµ

Q−Qµ = Q−Qµ,ν = Q− (I − γPµ,ν)−1r (6.21)
= (I − γPµ,ν)−1(Q− γPµ,νQ− r) (6.22)
= (I − γPµ,ν)−1(Q− Tµ,νQ) (6.23)
≤ (I − γPµ,ν)−1(Q− TµQ) (6.24)
≤ (I − γPµ,ν)−1(Q− T ∗Q) (6.25)

and:

Qµ −Q ≤ Qµ,ν −Q ≤ (I − γPµ,ν)−1(Tµ,νQ−Q) (6.26)
≤ (I − γPµ,ν)−1(T ∗Q−Q) (6.27)

Finally:
Q∗ −Qµ ≤ [(I − γPµ,ν)−1 + (I − γPµ∗,ν̃)−1]|T ∗Q−Q|

with C2(ρ, µ, ν) = ||∂ρ
>(1−γ)(I−γPµ,ν)−1

∂ρ>
||2,ρ the Radon-Nikodym derivative of the

Kernel (1− γ)(I − γPµ,ν)−1.
Then we have:
||Q∗ −Qµ||2,ρ ≤ 2

1−γ

(
C2(ρ,µ,ν)+C2(ρ,µ∗,ν̃)

2

) 1
2 ||T ∗Q−Q||2,ρ

120 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

7.3 Proof of Theorem 6.2
Let us recall theorem 6.2:

For a MG with a finite state space, there exists δ > 0 such that:

− JOBR(ω)>(HJOBR(ω))−1JOBR(ω)
||JOBR(ω)||2||(HJOBR(ω))−1JOBR(ω)||2

≤ −δ

Proof. If γ ∈ [0, 1[, then HJ (ω) is invertible and thus it is a definite positive symmet-
ric matrix. Let’s note L

1
2
ω the root square of (HJOBR(ω))−1 (then (HJOBR(ω))−1 =

L
1
2
ωL

1
2
ω = Lω). Then:

− JOBR(ω)>(HJOBR(ω))−1JOBR(ω)
||JOBR(ω)||2||(HJOBR(ω))−1JOBR(ω)||2

= − ||L
1
2
ωJOBR(ω)||22

||JOBR(ω)||2||LωJOBR(ω)||2
(6.28)

We have:

||JOBR(ω)||2 = ||L−
1
2

ω L
1
2
ωJOBR(ω)||2 ≤ ||L

− 1
2

ω ||2||L
1
2
ωJOBR(ω)||2 (6.29)

And:

||LωJOBR(ω)||2 = ||L
1
2
ωL

1
2
ωJOBR(ω)||2 ≤ ||L

1
2
ω ||2||L

1
2
ωJOBR(ω)||2 (6.30)

Then:

− ||L
1
2
ωJOBR(ω)||22

||JOBR(ω)||2||LωJOBR(ω)||2
≤ −1
||L

1
2
ω ||2||L

− 1
2

ω ||2

Furthermore with ||.||2 ≤ c1||.||∞ (here c1 = 2
√
|S| × |A|2) and with noticing 1 − γ ≤

||(I − γPω)||∞ ≤ 1 + γ:

||L−
1
2

ω ||2 = ||∆
1
2
ρ (I − γPω)Φ||2 ≤ ||∆

1
2
ρ ||2||(I − γPω)||2||Φ||2 ≤ c1(1 + γ) 2

√
ρmaxλΦ

max

Where λΦ
max is the largest eigenvalue of Φ>Φ, and ρmax is the maximum of ρ

||L
1
2
ω ||2 = sup

ω

√
ω>(Φ>(I − γPω)>∆ρ(I − γPω)Φ)−1ω

ω>ω
= 1

infω
√

ω>Φ>(I−γPω)>∆ρ(I−γPω)Φω
ω>ω

But:

inf
ω

√
ω>Φ>(I − γPω)>∆ρ(I − γPω)Φω

ω>ω
≥ inf

X

√
X>(I − γPω)>∆ρ(I − γPω)X

X>X
inf
ω

√
ω>Φ>Φω
ω>ω

≥ 1
||(∆

1
2
ρ (I − γPω))−1||2

2
√
λΦ
min

WithFilar and Tolwinski (1991) we have that ||∆−
1
2

ρ (I − γPω)−1||2 ≤ c1
(1−γ) 2√ρmin

8. Computation of the Gradient and of the Hessian 121

Then:
||L

1
2
ω ||2 ≤

c1
(1− γ) 2

√
ρminλΦ

min

Finally we have:

− JOBR(ω)>(HJOBR(ω))−1JOBR(ω)
||JOBR(ω)||2||(HJOBR(ω))−1JOBR(ω)||2

≤ − 1− γ
c2

1(1 + γ)
2

√√√√ ρminλΦ
min

ρmaxλΦ
max

8 Computation of the Gradient and of the Hessian
Let’s remind the reader:

JOBR(ω) = 1
2 ||Φω − T

∗Φω||22,ρ, (6.31)

= 1
2(Φω − T ∗Φω)>∆ρ(Φω − T ∗Φω), (6.32)

JPOBR(ω) = 1
2 ||Φω − Πρ,ΦT ∗Φω||22,ρ, (6.33)

= 1
2 ||Φ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω)||22,ρ, (6.34)

= 1
2
[
Φ(Φ>∆ρΦ)−1∆ρΦ>∆ρ(Φω − T ∗Φω)

]>
∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω)

(6.35)

∇JPOBR(ω) = ∂

∂ω

[
Φ(Φ>∆ρΦ)−1∆ρΦ>∆ρ(Φω − T ∗Φω)

]>
∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω)

(6.36)
= Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω)

(6.37)
= Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω) (6.38)
= Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − TωΦω) (6.39)
= Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ((I − γPω)Φω − r) (6.40)

Then obviously:

HJPOBR(ω) = ∂

∂ω>
Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(Φω − T ∗Φω) (6.41)

= Φ>(I − γPω)>∆ρΦ(Φ>∆ρΦ)−1Φ>∆ρ(I − γPω)Φ (6.42)

And for JOBR

∇JOBR(ω) = ∂

∂ω
[Φω − T ∗Φω]>∆ρ(Φω − T ∗Φω) (6.43)

= Φ>(I − γPω)>∆ρ(Φω − T ∗Φω) (6.44)
= Φ>(I − γPω)>∆ρ((I − γPω)Φω − r) (6.45)

122 Chapter 6. Bellman Residual Minimization in Zero-Sum Games

Then obviously:

HJOBR(ω) = ∂

∂ω>
Φ>(I − γPω)>∆ρ(Φω − T ∗Φω) (6.46)

= Φ>(I − γPω)>∆ρ(I − γPω)Φ (6.47)

Chapter 7

Bellman Residual Minimization in
General-Sum Games

None of the approaches described in the last four chapters are meant to find a sta-
tionary Nash equilibrium in general-sum MGs. The very reason why all the previous
approaches can’t find a stationary Nash equilibrium is that they are all value function
based methods. Approximate dynamic programming algorithms iterate over a value
function or a state-action value function and the Bellman residual approach developed
in the previous chapter also estimates a value function. In all these methods, the policy
is implicitly defined by the value function. In general-sum MGs, value function based
methods can’t find a stationary Nash equilibrium. Zinkevich et al. found an example
of turn-taking general-sum MGs for which no value function based method can find a
stationary Nash equilibrium.

Exact methods to solve general-sum MGs have been developed in the past two
decades. These methods are generally hopelessly difficult when more than two players
are interacting. Thus, extending exact algorithms to the batch scenario and to func-
tion approximation seems to be a risky path as all exact algorithms require too much
computation. Our approach is to reduce the problem to the minimization of a loss
function over the polices and over the state action value functions. This loss is a sum
over players of two Bellman residuals. This loss is non convex and thus, the method is
not guaranteed to converge when the model is known and when no function approxi-
mations are used. However, our method can be efficiently estimated with samples and
support approximation both on the policy and on the state-actions value function.

The first key ingredient of our method is to define as a norm a weaker notion
of an ε-Nash equilibrium than the one in 3.1. Since this norm can not be directly
optimized and estimated with batch data, we define a surrogate loss (a sum of Bellman
residuals) that can be estimated with batch data and supports function approximation.
As there are no theoretical guarantees of convergence of these methods, we evaluate
its soundness on randomly generated MDPs and general-sum MGs.

1 Nash, ε-Nash and Weak ε-Nash Equilibrium
We have defined the Notion of Nash equilibrium in Section 3.1. It states that one
player cannot improve his own value by switching his strategy if the other players do

124 Chapter 7. Bellman Residual Minimization in General-Sum Games

not vary their own one Filar and Vrieze (2012). The goal here is to find one strategy for
players which is as close as possible to a Nash equilibrium. The definition of Section 3.1
definition can be rewritten with Bellman operators:

Definition 7.1. In an MG, a strategy π is a Nash equilibrium if ∃v such as ∀i ∈
{1, ..., N}, T iπvi = vi and T ∗iπ-ivi = vi.

Proof. The proof is left in appendix 7.

We will use the definition of ε-Nash equilibrium in to quantify the performance of a
joint strategy in MGs. As in MDP the criterion to evaluate a policy is the distance of
it’s value vπ to the optimal value v∗, in MGs, we will use the maximum over player of
the distance between a joint value viπ to the value of a best response v∗iπ-i . In the case
of a single player MG (or MDP), a Nash equilibrium is simply the optimal strategy.
Formally Filar and Vrieze (2012):

Definition 7.2. In an MG, a strategy π is an ε-Nash equilibrium if:
∀i ∈ {1, ..., N}, viπ + ε ≥ v∗iπ-i

or ∀i ∈ {1, ..., N}, v∗iπ-i − viπ ≤ ε,

which is equivalent to:
∥∥∥∥∥∥∥v∗iπ-i − viπ

∥∥∥
s,∞

∥∥∥∥
i,∞
≤ ε.

An ε-Nash equilibrium is a relaxed solution concept in game theory. When all
players play an ε-Nash equilibrium the value they will receive is at most ε sub-optimal
compared to a best response. Interestingly, when considering an MDP, the defini-
tion of an ε-Nash equilibrium is reduced to control the L+∞-norm between the value
of the players’ strategy and the optimal value. However, it is known that approx-
imate dynamic programming algorithms do not control a L+∞-norm but rather an
Lp-norm Munos and Szepesvári (2008) (we take the definition of the Lp-norm of Piot
et al. (2014a)). Using Lp-norm is necessary for approximate dynamic programming
algorithms to use complexity bounds from learning theory Piot et al. (2014a). The
convergence of these algorithms was analyzed using supervised learning bounds in Lp-
norm and thus guaranties are given in Lp-norm Scherrer et al. (2012). In addition,
Bellman residual approaches on MDPs also give guaranties in Lp-norm Maillard et al.
(2010), Piot et al. (2014a). Thus, we define a natural relaxation of the previous defini-
tion of the ε-Nash equilibrium in Lp-norm which is consistent with the existing work
on MDPs.

Definition 7.3. In an MG, π is a weak ε-Nash equilibrium if:
∥∥∥∥∥∥∥v∗iπ-i − viπ

∥∥∥
µ(s),p

∥∥∥∥
ρ(i),p

≤
ε.

One should notice that an ε-Nash equilibrium is a weak ε-Nash equilibrium (as an
L+∞-norm is an upper bound of any Lp-norm with respect to any probability measure).
Conversely, a weak ε-Nash equilibrium is not always an ε-Nash equilibrium. Further-
more, both ε do not need to be equal. The notion of weak ε-Nash equilibrium defines
a performance criterion to evaluate a strategy while seeking for a Nash equilibrium.
Thus, this definition has the great advantage to provide a convincing way to evaluate

2. Bellman Residual Minimization in MGs 125

the final strategy. In the case of an MDP, it states that a weak ε-Nash equilibrium
only consists in controlling the difference in Lp-norm between the optimal value and
the value of the learned strategy. For an MG, this criterion is an Lp-norm over players
(i ∈ {1, . . . , N}) of an Lp-norm over states (s ∈ S) of the difference between the value
of the joint strategy π for player i in state s and of his best response against the joint
strategy π-i. In the following, we consider that learning a Nash equilibrium should
result in minimizing the loss

∥∥∥∥∥∥∥v∗iπ-i − viπ
∥∥∥
µ(s),p

∥∥∥∥
ρ(i),p

. For each player, we want to mini-

mize the difference between the value of his strategy and a best response considering
the strategy of the other players is fixed. However, a direct minimization of that norm
is not possible in the batch setting even for MDPs. Indeed, v∗iπ-i cannot be directly
observed and be used as a target. A common strategy to alleviate this problem is to
minimize a surrogate loss. In MDPs, a possible surrogate loss is the optimal Bellman
residual ‖v− T ∗v‖µ,p (where µ is a distribution over states and T ∗ is the optimal Bell-
man operator for MDPs) Piot et al. (2014a), Baird et al. (1995). The optimal policy is
then extracted from the learnt optimal value (or Q-value in general). In the following
section, we extend this Bellman residual approach to MGs.

2 Bellman Residual Minimization in MGs
Optimal Bellman residual minimization can’t be generalized to general-sum MGs as it
is because multi-player strategies cannot be directly extracted from value functions as
shown in (Zinkevich et al., 2006). Yet, from Definition 7.1, we know that a joint strategy
π is a Nash equilibrium if there exists v such that, for any player i, vi is the value of
the joint strategy π for player i (i.e. T iπvi = vi) and vi is the value of the best response
player i can achieve regarding the opponent’s strategy π-i (i.e. T ∗iπ-ivi = vi). We thus
propose to build a second Bellman-like residual optimizing over the set of strategies
so as to directly learn a weak ε-Nash equilibrium. The first (traditional) residual (i.e.∥∥∥T ∗iπ-ivi − vi

∥∥∥
ρ(i),p

) forces the value of each player to be close to their respective best
response to every other player while the second residual (i.e. ‖T iπvi − vi‖ρ(i),p) will
force every player to play the strategy corresponding to that value.

One can thus wonder how close from a Nash-Equilibrium π would be if there existed
v such that T ∗iπ-ivi ≈ vi and T iπvi ≈ vi. In this section, we prove that, if we are
able to control over (v,π) a sum of the Lp-norm of the associated Bellman residuals
(
∥∥∥T ∗iπ-iv

i − vi
∥∥∥
µ,p

and
∥∥T iπvi − vi∥∥µ,p), then we are able to control

∥∥∥∥∥∥∥v∗iπ-i − viπ
∥∥∥
µ(s),p

∥∥∥∥
ρ(i),p

.

Theorem 7.1. ∀p, p′ positive reals such that 1
p

+ 1
p′

= 1 and ∀(v1, . . . , vN):

∥∥∥∥∥∥∥v∗iπ-i − viπ
∥∥∥
µ(s),p

∥∥∥∥
ρ(i),p

≤2
1
p′C∞(µ, ν)

1
p

1− γ (7.1)

×
[
N∑
i=1

ρ(i)
(∥∥∥T ∗iπ-iv

i − vi
∥∥∥p
ν,p

+
∥∥∥T iπvi − vi∥∥∥p

ν,p

)] 1
p

, (7.2)

126 Chapter 7. Bellman Residual Minimization in General-Sum Games

with the following concentrability coefficient (the norm of a Radon-Nikodym derivative).
C∞(µ, ν, πi,π-i) =

∥∥∥∥∂µT (1−γ)(I−γP
πi,π-i)−1

∂νT

∥∥∥∥
ν,∞

and C∞(µ, ν) = supπ C∞(µ, ν, πi,π-i).

Proof. The proof is left in appendix 8.

This theorem shows that an ε-Nash equilibrium can be controlled by the sum over
the players of the sum of the norm of two Bellman-like residuals: the Bellman Residual
of the best response of each player and the Bellman residual of the joint strategy. If
the residual of the best response of player i (

∥∥∥T ∗iπ-ivi − vi
∥∥∥p
ν,p
) is small, then the value

vi is close to the value of the best response v∗iπ-i and if the Bellman residual of the joint
strategy ‖T iπvi − vi‖

p
ν,p for player i is small, then vi is close to viπ. In the end, if all

those residuals are small, the joint strategy is an ε-Nash equilibrium with ε small since
v∗iπ-i ' vi ' viπ.

Theorem 7.1 also emphasizes the necessity of a weakened notion of an ε-Nash equi-
librium. It is much easier to control a Lp-norm than a L∞-norm with samples. In the
following, the weighted sum of the norms of the two Bellman residuals will be noted
as: fν,ρ,p(π,v) =

N∑
i=1

ρ(i)
(∥∥∥T ∗iπ-iv

i − vi
∥∥∥p
ν,p

+
∥∥T iπvi − vi∥∥pν,p).

Finding a Nash equilibrium is then reduced to a non-convex optimization prob-
lem. If we can find a (π,v) such that fν,ρ,p(π,v) = 0, then the joint strategy π
is a Nash equilibrium. This procedure relies on a search over the joint value func-
tion space and the joint strategy space. Besides, if the state space or the number of
joint actions is too large, the search over values and strategies might be intractable.
We addressed the issue by making use of approximate value functions and strategies.
Actually, Theorem 7.1 can be extended with function approximation. A good joint
strategy πθ within an approximate strategy space Π can still be found by computing
πθ,vη ∈ argmin

θ, η
fν,ρ,p(πθ,vη) (where θ and η respectively parameterize πθ,vη). Even

with function approximation, the learned joint strategy πθ would be at least a weak

ε-Nash equilibrium (with ε ≤ 2
1
p′ C∞(µ,ν)

1
p

1−γ fν,ρ,p(πθ,vη)). This is, to our knowledge, the
first approach to solve MGs within an approximate strategy space and an approximate
value function space in the batch setting.

3 The Batch Scenario
In this section, we explain how to learn a weak ε-Nash equilibrium from Theorem 7.1
with approximate strategies and an approximate value functions. As said previously,
we will focus on the batch setting where only a finite number of historical data sampled
from an MG are available. As for previous batch algorithms, we will work on state-
actions value functions (the definition of the Q-function can be found in Section 3 and
the one of Bellman operators can be found in Section 3.2).

Thus, we will have to minimize the following function depending on strategies and
Q-functions:

3. The Batch Scenario 127

f(Q,π) =
N∑
i=1

ρ(i)
(∥∥∥B∗iπ-iQ

i −Qi
∥∥∥p
ν,p

+
∥∥∥BiπQi −Qi∥∥∥p

ν,p

)
(7.3)

The batch scenario consists in having a set of k samples
(sj, (a1

j , ..., a
N
j), (r1

j , ..., r
N
j), s′j)j∈{1,...,k} where rij = ri(sj, a1

j , ..., a
N
j) and where the

next state is sampled according to p(.|sj, a1
j , ..., a

N
j). From Equation (7.3), we can

minimize the empirical-norm by using the k samples to obtain the empirical estimator
of the Bellman residual error.

f̃k(Q,π) =
k∑
j=1

N∑
i=1

ρ(i)
[∣∣∣B∗iπ-iQ

i(sj ,aj)−Qi(sj ,aj)
∣∣∣p +

∣∣∣BiπQi(sj ,aj)−Qi(sj ,aj)∣∣∣p
]
, (7.4)

For more details, an extensive analysis beyond the minimization of the Bellman residual
in MDPs can be found in Piot et al. (2014a). In the following we discuss the estimation
of the two Bellman residuals

∣∣∣B∗iπ-iQ
i(sj ,aj)−Qi(sj ,aj)

∣∣∣pand ∣∣BiπQi(sj ,aj)−Qi(sj ,aj)∣∣pin
different cases.

Deterministic Dynamics: With deterministic dynamics, the estimation is straight-
forward. We estimate BiπQi(sj ,aj) with rij + γEb∼π[Qi(s′j ,b)] and B∗i

π-iQ
i(sj ,aj) with

rij + γmax
bi

[
Eb-i∼π-i [Qi(s′j , bi, b-i)]

]
, where the expectation are:

Eb∼π[Qi(s′,b)] =
∑
b1∈A1

. . .
∑

bN∈AN
π1(b1|s′) . . . πN (bN |s′)Qi(s′, b1, . . . , bN)

and where

Eb-i∼π-i [Qi(s′, bi, b-i)] =
∑
b1∈A1

. . .
∑

bi−1∈Ai−1

∑
bi+1∈Ai+1

. . .
∑

bN∈AN
π1(b1|s′) . . .

. . . πi−1(bi−1|s′)πi+1(bi+1|s′) . . . πN (bN |s′)Qi(s′, b1, . . . , bN)

Note that this computation can be turned into tensor operations as described in
Appendix-9 and thus the architecture can be implemented using relevant libraries.

Stochastic Dynamics: In the case of stochastic dynamics, the previous estima-
tor (7.3) is known to be biased Maillard et al. (2010), Piot et al. (2014a). If the
dynamic is known, one can use the following unbiased estimator: BiπQi(sj ,aj) is
estimated with rij + γ

∑
s′∈S

p(s′|sj ,aj)Eb∼π[Qi(s′,b)] and B∗i
π-iQ

i(sj ,aj) with rij +

γ
∑
s′∈S

p(s′|sj ,aj) max
bi

[
Eb-i∼π-i [Qi(s′, bi, b-i)]

]
.

If the dynamic of the game is not known (e.g. batch scenario), the unbiased es-
timator cannot be used since the kernel of the MG is required and other techniques
must be applied. One idea would be to first learn an approximation of this kernel.
For instance, one could extend the MDP techniques to MGs such as embedding a ker-
nel in a Reproducing Kernel Hilbert Space (RKHS) Grunewalder et al. (2012), Piot

128 Chapter 7. Bellman Residual Minimization in General-Sum Games

et al. (2014b,a) or using kernel estimators Taylor and Parr (2012), Piot et al. (2014a).
Therefore, p(s′|sj,aj) would be replaced by an estimator of the dynamics p̃(s′|sj,aj)
in the previous equation. If a generative model is available, the issue can be addressed
with double sampling as discussed in (Maillard et al., 2010, Piot et al., 2014a).

4 Neural Network Architecture
Minimizing the sum of Bellman residuals is a challenging problem as the objective
function is not convex. It is all the more difficult as both the Q-function and the
strategy of every player must be learned independently. Nevertheless, neural networks
have been able to provide good solutions to problems that require minimizing non-
convex objective such as image classification or speech recognition LeCun et al. (2015).
Furthermore, neural networks were successfully applied to reinforcement learning to
approximate the Q-function Mnih et al. (2015) in one agent MGs with eclectic state
representation.

Here, we introduce a novel neural architecture1 that implements our Bellman resid-
ual approach. For every player, a two-fold network is defined: the Q-network that
learns a Q-function and a π-network that learns the stochastic strategy of the players.
The Q-network is a multilayer perceptron which takes the state representation as input.
It outputs the predicted Q-values of the individual action such as the network used
by Mnih et al. (2015). Identically, the π-network is also a multilayer perceptron which
takes the state representation as input. It outputs a probability distribution over the
action space by using a softmax. We then compute the two Bellman residuals for every
player following Equation 7.5. Finally, we back-propagate the error by using classic
gradient descent operations.

In our experiments, we focus on deterministic turn-based games. It entails a specific
neural architecture that is fully described in Figure 7.6. During the training phase, all
the Q-networks and the π-networks of the players are used to minimize the Bellman
residual. Once the training is over, only the π-network is kept to retrieve the strategy
of each player. Note that this architecture differs from classic actor-critic networks Lil-
licrap et al. (2016) for several reasons. Although Q-network is an intermediate support
to the computation of π-network, neither policy gradient nor advantage functions are
used in our model. Besides, the Q-network is simply discarded at the end of the train-
ing. Our method directly searches in the strategy space by minimizing the Bellman
residual.

5 Experiments
In this section, we report an empirical evaluation of our method on randomly generated
MGs. This class of problems has been first described by Archibald et al. (1995) for
MDPs and has been studied for the minimization of the optimal Bellman residual Piot

1https://github.com/fstrub95/nash_network

https://github.com/fstrub95/nash_network

5. Experiments 129

et al. (2014a) and in zero-sum two-player MGs Perolat et al. (2016). First, we extend
the class of randomly generated MDPs to general-sum MGs, then we describe the
training setting, finally we analyze the results. Without loss of generality we focus
on deterministic turn-based MGs for practical reasons. Indeed, in simultaneous games
the complexity of the state actions space grows exponentially with the number of
player whereas in turn-based MGs it only grows linearly. Besides, as in the case of
simultaneous actions, a Nash equilibrium in a turn-based MG (even deterministic)
might be a stochastic strategy Zinkevich et al. (2006). In a turn-based MG, only
one player can choose an action in each state. Finally, we run our experiments on
deterministic MGs to avoid bias in the estimator as discussed in Section 3.

To sum up, we use turn-based games to avoid the exponential growth of the number
of actions and deterministic games to avoid bias in the estimator. The techniques de-
scribed in Section 3 could be implemented with a slight modification of the architecture
described in Section 4.

Benchmark: Again we use artificially generated MGs to test our approach. The
general procedure to generate a Garnet is described in Chapter 4. We chose this
benchmark for two reasons. First, we chose them for the repeatability of our result
on several instances of the same class of MGs. Second, the underlying model of the
dynamics of the Garnet is fully known. Thus, it is possible to investigate whether an
ε-Nash equilibrium have been reached during the training and to quantify the ε. It
would have been impossible to do so with more complex games. We only investigate
NB = 1 to avoid the bias issue and the dynamics is defined as follow. For each state
and action (s, a), we randomly pick the next state s′ in the neighbourhood of indices of
s where s′ follow a rounded normal distribution N (s, σ̂s′). We then build the transition
matrix such as p(s′|s, a) = 1. Next, we enforce an arbitrary reward structure into the
Garnet to enable the emergence of a Nash equilibrium. Each player i has a random
critical state ŝi and the reward of this player linearly decreases by the distance (encoded
by indices) to his critical state. Therefore, the goal of the player is to get as close as
possible from his critical state. Some players may have close critical states and may
act together while other players have to follow opposite directions. A Gaussian noise
of standard deviation σ̂noise is added to the reward, then we sparsify it with a ratio
mnoise to harden the task. Finally, a player is selected uniformly over {1, . . . , N} for
every state once for all. The resulting vector vc encodes which player plays at each
state as it is a turn-based game. Concretely, a Garnet works as follows: Given a state
s, a player is first selected according the vector vc(s). This player then chooses an
action according its strategy πi. Once the action is picked, every player i receives its
individual reward ri(s, a). Finally, the game moves to a new state according p(s′|s, a)
and a new state’s player (vc(s′)). Again, the goal of each player is to move as close
as possible to its critical state. Thus, players benefit from choosing the action that
maximizes its cumulative reward and leads to a state controlled by a non-adversarial
player.

Finally, samples (s, (a1, . . . , aN), (r1, . . . , rN), s′) are generated by randomly select-

130 Chapter 7. Bellman Residual Minimization in General-Sum Games

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rr
o
r

v
s

B
e
st

 R
e
sp

o
n
se

1 Player - Ns:100 Na:5

Network policy
Random policy

0.0

0.1

0.2

0.3

0.4

0.5

0.6
5 Players - Ns:100 Na:5

Network policy
Random policy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

B
e
llm

a
n
 r

e
si

d
u
a
l
E
rr

o
r

-
lo

g
1

0 Train dataset
Test dataset

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Train dataset
Test dataset

0 250 500 750 1000 1250 1500 1750
epoch epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rr
o
r

v
s

B
e
st

 R
e
sp

o
n
se Average network policy

Average random policy

0 250 500 750 1000 1250 1500 1750
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Average network policy
Average random policy

Figure 7.1 – (top) Evolution of the Error vs Best Response during the training for a
given Garnet. In both cases, players manage to iteratively improve their strategies.
A strong drop may occur when one of the player finds a important move. (middle)
Empirical Bellman residual for the training dataset and the testing dataset. It high-
lights the link between minimizing the Bellman residual and the quality of the learned
strategy. (bottom) Average Error vs Best Response averaged over every players, Gar-
nets and every batch. It highlights the robustness of minimizing the Bellman residual
over several games. Experiments are run on 5 Garnets which is re-sampled 5 times to
average the metrics.

ing a state and an action uniformly. The reward, the next state, and the next player
are selected according to the model described above.

Evaluation: Our goal is to verify whether the-joint strategy of the players is an ε-
Nash equilibrium. To do so, we first retrieve the strategy of every player by evaluating
the πi-networks over the state space. Then, given π, we can exactly evaluate the value
of the joint strategy viπ for each player i and the value of the best response to the
strategy of the others v∗iπ-i . The value viπ is computed by inverting the linear system
viπ = (I − γPπ)−1riπ. The value v∗iπ-i is computed with the policy iteration algorithm.
Finally, we compute the Error vs Best Response for every player defined as ‖v

i
π−v∗iπ-i‖2

‖v∗i
π-i‖2

.
If this metric is close to zero for all players, the players reach a weak ε-Nash equilibrium
with ε close to zero. Actually, Error vs Best Response is a normalized quantification

5. Experiments 131

of how sub-optimal the player’s strategy is compared to his best response. It indicates
the sub-optimality margin of the policy of a player compared to his best response while
other players keep playing the same strategies. If this metric is close to zero for all
players, then they have little incentive to switch from their current strategy. It is an
ε-Nash equilibrium. In addition, we keep track of the empirical norm of the Bellman
residual on both the training dataset and the test dataset as it is our training objective.

Training parameters: We use N -player Garnet with 1, 2 or 5 players. The state
space and the action space are respectively of size 100 and 5. The state is encoded by
a binary vector. The transition kernel is built with a standard deviation σ̂s′ of 1. The
reward function is ri(s) = 2 min(|s−ŝi|,NS)−|s−ŝi|)

NS
(it is a circular reward function). The

reward sparsity mnoise is set to 0.5 and the reward white noise σ̂noise has a standard
deviation of 0.05. The discount factor γ is set to 0.9. The Q-networks and π-networks
have one hidden layers of size 80 with RELUs Goodfellow et al. (2016). Q-networks have
no output transfer function while π-networks have a softmax. The gradient descent
is performed with AdamGrad Goodfellow et al. (2016) with an initial learning rate of
1e-3 for the Q-network and 5e-5 for the π-networks. We use a weight decay of 1e-6.
The training set is composed of 5NSNA samples split into random minibatch of size 20
while the testing dataset contains NSNA samples. The neural network is implemented
by using the python framework Tensorflow Abadi et al. (2015). The source code is
available on Github (Hidden for blind review) to run the experiments.

Results: Results for 1 player (MDP) and 5 players are reported in Figure 7.1. Ad-
ditional settings are reported in the Appendix-9 such as the two-player case and the
tabular cases. In those scenarios, the quality of the learned strategies converges in
parallel with the empirical Bellman residual. Once the training is over, the players can
increase their cumulative reward by no more than 8% on average over the state space.
Therefore, neural networks succeed in learning a weak ε-Nash equilibrium. Note that
it is impossible to reach a zero error as (i) we are in the batch setting, (ii) we use func-
tion approximation and (iii) we only control a weak ε-Nash equilibrium. Moreover, the
quality of the strategies are well-balanced among the players as the standard deviation
is below 5 points.

Our neural architecture has good scaling properties. First, scaling from 2 players
to 5 results in the same strategy quality. Furthermore, it can be adapted to a wide
variety of problems by only changing the bottom of each network to fit with the state
representation of the problem.

Discussions: The neural architecture faces some over-fitting issues. It requires a
high number of samples to converge as described on Figure 7.2. Lillicrap et al. (2016)
introduces several tricks that may improve the training. Furthermore, we run addi-
tional experiments on non-deterministic Garnets but the result remains less conclusive.
Indeed, the estimators of the Bellman residuals are biased for stochastic dynamics. As
discussed, embedding the kernel or using kernel estimators may help to estimate prop-

132 Chapter 7. Bellman Residual Minimization in General-Sum Games

0 1 2 3 4 5 6
Sampling coefficient : alpha

0.0

0.1

0.2

0.3

0.4

0.5
%

 E
rro

r v
s B

es
t R

es
po

ns
e

2 Players - Ns:100 Na:5
Average Network
Average Random

Figure 7.2 – Impact of the number of samples on the quality of the learned strategy.
The number of samples per batch is computed by Nsamples = αNANS. Experiments
are run on 3 different Garnets which are re-sampled 3 times to average the metrics.

erly the cost function (Equation (7.4)). Finally, our algorithm only seeks for a single
Nash-Equilibrium when several equilibria might exist. Finding a specific equilibrium
among others is out of the scope of this thesis.

6 Conclusion

In this chapter, we present a novel approach to learn a Nash equilibrium in MGs.
The contributions are both theoretical and empirical. First, we define a new (weaker)
concept of an ε-Nash equilibrium. We prove that minimizing the sum of different
Bellman residuals is sufficient to learn a weak ε-Nash equilibrium. From this result, we
provide empirical estimators of these Bellman residuals with batch data. Finally, we
describe a novel neural network architecture to learn a Nash equilibrium from batch
data. This architecture does not rely on a specific MG. It also scales to a high number
of players for turn taking games. Thus it can be applied to a trove of applications.

This chapter concludes this part on Bellman residual minimization. Whilst approx-
imate dynamic programming was not a convincing approach to learn Nash equilibria,
Bellman residual minimization seems to be a reasonable approach for general sum

6. Conclusion 133

MGs. This approach does not reduce to the existing ones in MDPs and in zero-sum
two-player MGs. Indeed, general-sum MGs lack key properties of MDPs and zero-sum
two-player MGs. In MDPs and in zero-sum two-player MGs only require finding the
solution of a single fixed point equation whilst an N -player general sum MG requires
solving 2N fixed point equations simultaneously.

134 Chapter 7. Bellman Residual Minimization in General-Sum Games

7 Proof of the Equivalence of Definition 2.4 and 7.1
Proof of the equivalence between definition 7.1 and 2.4.

(7.1) ⇒ (2.4):
If ∃v such as ∀i ∈ {1, ..., N}, T iπvi = vi and T ∗iπ-ivi = vi, then ∀i ∈ {1, ..., N},

vi = viπi,π-i and vi = max
π̃i

viπ̃i,π-i .

(2.4) ⇒ (7.1):
if ∀i ∈ {1, ..., N}, viπi,π-i = max

π̃i
viπ̃i,π-i ., then ∀i ∈ {1, ..., N}, the value vi = viπi,π-i is

such as T iπvi = vi and T ∗iπ-ivi = vi.

8 Proof of Theorem 7.1
First we will prove the following lemma. The proof is strongly inspired by previous
work on the minimization of the Bellman residual for MDPs Piot et al. (2014a).

Lemma 7.1. let p and p′ be a real numbers such that 1
p

+ 1
p′

= 1, then ∀v,π and
∀i ∈ {1, ..., N}:∥∥∥viπi∗,π-i − viπi,π-i

∥∥∥
µ,p

(7.5)

≤ 1
1− γ

(
C∞(µ, ν, πi∗,π-i)

p′
p + C∞(µ, ν, πi,π-i)

p′
p

) 1
p′
[∥∥∥T ∗iπ-iv

i − vi
∥∥∥p
µ,p

+
∥∥∥T iπvi − vi∥∥∥p

µ,p

] 1
p

,

(7.6)

where πi∗ is the best response to π-i. Meaning viπi∗,π-i is the fixed point of T ∗iπ-i. And with

the following concentrability coefficient C∞(µ, ν, πi,π-i) =
∥∥∥∥∂µT (1−γ)(I−γP

πi,π-i)−1

∂νT

∥∥∥∥
ν,∞

.

Proof. The proof uses similar techniques as in Piot et al. (2014a). First we have:

viπi,π-i − vi = (I − γPπi,π-i)−1(riπi,π-i − (I − γPπi,π-i)vi), (7.7)
= (I − γPπi,π-i)−1(T iπi,π-ivi − vi). (7.8)

But we also have:

viπi∗,π-i − vi = (I − γPπi∗,π-i)−1(T iπi∗,π-iv
i − vi),

then:

viπi∗,π-i − viπi,π-i = viπi∗,π-i − vi + vi − viπi,π-i , (7.9)
= (I − γPπi∗,π-i)−1(T iπi∗,π-iv

i − vi)− (I − γPπi,π-i)−1(T iπi,π-ivi − vi),
(7.10)

≤ (I − γPπi∗,π-i)−1(T ∗iπ-ivi − vi)− (I − γPπi,π-i)−1(T iπi,π-ivi − vi),
(7.11)

≤ (I − γPπi∗,π-i)−1
∣∣∣T ∗iπ-ivi − vi

∣∣∣+ (I − γPπi,π-i)−1
∣∣∣T iπi,π-ivi − vi

∣∣∣ .
(7.12)

9. Additional curves 135

Finally, using the same technique as the one in Piot et al. (2014a), we get:∥∥∥viπi∗,π-i − viπi,π-i

∥∥∥
µ,p

(7.13)

≤
∥∥∥(I − γPπi∗,π-i)−1

∣∣∣T ∗iπ-ivi − vi
∣∣∣∥∥∥
µ,p

+
∥∥∥(I − γPπi,π-i)−1

∣∣∣T iπi,π-ivi − vi
∣∣∣∥∥∥
µ,p
, (7.14)

≤ 1
1− γ

[
C∞(µ, ν, πi∗,π-i)

1
p

∥∥∥T ∗iπ-ivi − vi
∥∥∥
ν,p

+ C∞(µ, ν, πi,π-i)
1
p

∥∥∥T ∗iπ-ivi − vi
∥∥∥
ν,p

]
,

(7.15)

≤ 1
1− γ

(
C∞(µ, ν, πi∗,π-i)

p′
p + C∞(µ, ν, πi,π-i)

p′
p

) 1
p′
[∥∥∥T ∗iπ-ivi − vi

∥∥∥p
ν,p

+
∥∥∥T iπvi − vi∥∥∥pν,p

] 1
p

.

(7.16)

Theorem 7.1 falls in two steps:∥∥∥∥∥
∥∥∥∥max

π̃i
vπ̃i,π-i − viπ

∥∥∥∥
µ(s),p

∥∥∥∥∥
ρ(i),p

≤ 1
1− γ

[
max

i∈{1,...,N}

(
C∞(µ, ν, πi∗,π-i)

p′
p + C∞(µ, ν, πi,π-i)

p′
p

) 1
p′
]

(7.17)

×
[
N∑
i=1

ρ(i)
(∥∥∥T ∗iπ-iv

i − vi
∥∥∥p
ν,p

+
∥∥∥T iπvi − vi∥∥∥p

ν,p

)] 1
p

, (7.18)

≤ 2
1
p′C∞(µ, ν)

1
p

1− γ

[
N∑
i=1

ρ(i)
(∥∥∥T ∗iπ-iv

i − vi
∥∥∥p
ν,p

+
∥∥∥T iπvi − vi∥∥∥p

ν,p

)] 1
p

,

(7.19)

with C∞(µ, ν) =
(

sup
πi,π-i

C∞(µ, ν, πi,π-i)
)

The first inequality is proven using lemma 1 and Holder inequality. The second
inequality falls noticing ∀πi,π-i, C∞(µ, ν, πi,π-i) ≤ sup

πi,π-i
C∞(µ, ν, πi,π-i).

9 Additional curves
This section provides additional curves regarding the training of the Network.

136 Chapter 7. Bellman Residual Minimization in General-Sum Games

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rro
r v

s B
es

t R
es

po
ns

e

2 Players - Ns:100 Na:5
Network policy
Random policy

0.0

0.1

0.2

0.3

0.4

0.5

0.6 5 Players - Ns:100 Na:5
Network policy
Random policy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Be
llm

an
 re

sid
ua

l E
rro

r -
 lo

g1
0 Train dataset

Test dataset

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Train dataset
Test dataset

0 250 500 750 1000 1250 1500 1750
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rro
r v

s B
es

t R
es

po
ns

e Average network policy
Average random policy

0 250 500 750 1000 1250 1500 1750
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Average network policy
Average random policy

Figure 7.3 – (top) Evolution of the Error vs Best Response during the training for a
given Garnet. (middle) Empirical Bellman residual for the training dataset and the
testing dataset. (bottom) Average Error vs Best Response averaged over every players,
Garnets and every batch. Experiments are run on 5 Garnets which is re-sampled 5
times to average the metrics.

9. Additional curves 137

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rro
r v

s B
es

t R
es

po
ns

e

1 Players - Ns:100 Na:5
Random policy
Network policy

0.0

0.1

0.2

0.3

0.4

0.5

0.6 2 Players - Ns:100 Na:5
Random policy
Network policy

0.0

0.1

0.2

0.3

0.4

0.5

0.6 5 Players - Ns:100 Na:5
Random policy
Network policy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Be
llm

an
 re

sid
ua

l E
rro

r -
 lo

g1
0 Train dataset

Test dataset

3.0

2.5

2.0

1.5

1.0

0.5

0.0
Train dataset
Test dataset

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Train dataset
Test dataset

0 250 500 750 1000 1250 1500 1750
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 E

rro
r v

s B
es

t R
es

po
ns

e Average random policy
Average network policy

0 250 500 750 1000 1250 1500 1750
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Average random policy
Average network policy

0 250 500 750 1000 1250 1500 1750
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Average random policy
Average network policy

Figure 7.4 – Tabular basis. One may notice that the tabular case works well for a 1
player game (MDP). Yet, the more players there are, the worth it performs. Experi-
ments are run on 5 Garnets which is re-sampled 5 times to average the metrics.

0 250 500 750 1000 1250 1500 1750
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

%
 E

rro
r v

s B
es

t R
es

po
ns

e

Network policy
Random policy

0 250 500 750 1000 1250 1500 1750
epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Di
st

rib
ut

io
n

ov
er

 a
ct

io
n

Action 0
Action 1
Action 2
Action 3
Action 4

Figure 7.5 – (left)Evolution of the Error vs Best Response during the training for a given
Garnet. When the Garnet has a complex structure or the batch is badly distributed,
one player sometimes fails to learn a good strategy. (right) Distribution of actions in
the strategy among the players with the highest probability. This plots highlights that
π-networks do modify the strategy during the training

138 Chapter 7. Bellman Residual Minimization in General-Sum Games

Shared
weights

SelectSelect

𝜋𝜃 𝑠′
𝑆 → 𝐴

max

−γ ×

+

+

action

next player

𝑄𝜃 𝑠, 𝑎
𝑆 → 𝐴

𝑄𝜃 𝑠′, 𝑏
𝑆 → 𝐴

reward

state next state next state

next player

Matrices: 𝐽 x 1

Matrices: 𝐽 x 𝐴

Dot product

+
× Sum, product

terms by terms

Multiplexer

B

p
AY

𝑌 =
𝐴 𝑖 𝑖𝑓 𝑖 ≠ 𝑝

𝐵 𝑖(A.0) (B)

(D)

(C.1)

(E)

(H)

(G)
−γ ×

(F)
reward

(A.1)

(C.0)

(C.2)

Figure 7.6 – This scheme summarizes the neural architecture that learns a Nash
equilibrium by minimizing the Bellman residual for turn-based games. Each player
has two networks : a Q-network that learns a state-action value function and a π-
network that learns the strategy of the player. The final loss is an empirical esti-
mate of the sum of Bellman residuals given a batch of data of the following shape
(s, (a1, . . . , aN), (r1, . . . , rN), s′). The equation (7.4) can be divided into key opera-
tions that are described below. For each player i : first of all, in (A.0) we compute
Qi(s, a1, . . . , aN) by computing the tensor Qi(s,a) and then by selecting the value of
Qi(s,a) (A.1) given the action of the batch. Step (B) computes the tensor Qi(s′, b)
and step (C.0) computes the strategy πi(.|s′). In all Bellman residuals we need to
average over the strategy of players Qi(s′, b). Since we focus on turn-based MGs, we
will only average over the strategy of the player controlling next state s′ (in the fol-
lowing, this player is called the next player). In (C.1) we select the strategy π(.|s′)
of the next player given the batch. In (C.2) we duplicate the strategy of the next
player for all other players. In (D) we compute the dot product between the Qi(s′, b)
and the strategy of the next player to obtain Eb∼π[Qi(s′,b)] and in (E) we pick
the highest expected rewards and obtain max

b
Qi(s′, b). Step (F) aims at computing

max
bi

[
Eb-i∼π-i [Qi(s′, bi, b-i)]

]
and, since we deal with a turn-based MG, we need to select

between the output of (D) or (E) according to the next player. For all i, we either select
the one coming from (E) if the next player is i or the one from (D) otherwise. In (G)
we compute the error between the reward ri to Qi(s, a)−γmax

bi

[
Eb-i∼π-i [Qi(s′, bi, b-i)]

]
and in (H) between ri and γEb∼π[Qi(s′,b)]−Qi(s, a). The final loss is the sum of all
the residuals.

Part IV

Independent Learning in Games

Chapter 8

Actor-Critic Fictitious Play

This chapter contributes to filling a gap in the MARL literature by providing two
online independent RL algorithms converging to a Nash equilibrium in multi-stage
games both in the cooperative case and the zero-sum two-player case. Those two cases
used to be treated as different agendas since the seminal paper of Shoham et al. (2007)
and we expect our work to serve as a milestone to reconcile them going further than
normal form games (Leslie and Collins, 2006, Hofbauer and Sandholm, 2002).

We proposed two novel on-line and decentralized algorithms inspired by actor-critic
architectures for Markov Games, each of them working on two time-scales. Those two
algorithms perform the same actors’ update but use different methods for the critic.
The first one performs an off-policy control step whilst the second relies on a policy
evaluation step. Although the actor-critic architecture is popular for its success in
solving continuous action RL domains, we chose this architecture for a different reason.
Our framework requires handling non-stationarity (because of adaptation of the other
players) which is another nice property of actor-critic architectures. Our algorithms are
stochastic approximations of two dynamical systems that generalize the work of Leslie
and Collins (2006) and Hofbauer and Sandholm (2002) on the fictitious play process
from normal form games to multistage games Bošanský et al. (2016).

In the following, we first describe the necessary background in both game theory
and RL (Section 1) to introduce our first contribution, the two-timescale algorithms
(Section 2). These algorithms are stochastic approximations of two continuous-time
processes defined in Section 3. Then, we study (in Section 3) the asymptotic behavior of
these continuous-time processes and show, as a second contribution, that they converge
in self-play in cooperative games and in zero-sum two-player games. In Section 4, our
third contribution proves that the algorithms are stochastic approximations of the two
continuous-time processes. Finally, we perform an empirical evaluation (in Section 5).

1 Specific Background
Multistage Game: We consider games that can be modeled as trees (see Fig. 8.1 in
appendix). The state s̃ is the root of the game tree and each state can be reached with
some non-zero probability with at least a deterministic joint strategy. Furthermore,
we enforce the fact that once a state is visited, it can never be visited again except
state Ω, the end of the game. Formally, a multistage game is an MG with an initial

142 Chapter 8. Actor-Critic Fictitious Play

state s̃ ∈ S and an absorbing state Ω ∈ S. To enforce that a state can be only visited
once, we define an ordering bijection φ : S → {1, . . . , |S|} where |S| is the cardinal
of S, φ(s̃) = |S|, φ(Ω) = 1 and such that ∀s, s′ ∈ S × S\{(Ω,Ω)}, φ(s) ≤ φ(s′) ⇒
∀π, Pπ(s′|s) = 0. Moreover the reward in state Ω is null (meaning r(Ω, .) = 0) and
no player has more than one action available in that absorbing state. Furthermore, for
any state s ∈ S\{s̃,Ω} there exists a deterministic strategy π and a time t ≤ |S| such
that P tπ(s|s̃) > 0. This condition means that every states can be reached from state s̃
with at least a deterministic strategy.

12

-1

max

min

...

(ai,a-i)

s′ ∼ p(.|s̃,a)

Ω

s̃

Figure 8.1 – Example of a two-player zero-sum multistage game with deterministic
dynamics.

1.1 Specific Operators and Value Functions
We define here specific best responses operators and values. Instead of using argmax
as a greedy strategy, we will use a smooth version of the argmax (i.e. a Logit choice
function). In this subsection, we review notations introduced in Chapter 2 and define
ones specific to this chapter.

Value Function and State-Action Value Function: In a γ-discounted multistage
game, (with γ ∈ (0, 1)), the value is defined as in MGs (see Section 3 of Chapter 2):

viπ(s) = E[
+∞∑
t=0

γtriπ(st)|s0 = s, st+1 ∼ Pπ(.|st)],

=
(
I + γPπ + · · ·+ γ|S|P |S|π

)
riπ.

1. Specific Background 143

Note that for a multistage game, the value function is well defined even for γ = 1
since the process has an absorbing state Ω where the reward function is null. For
t > |S|, we have that P tπriπ = 0 since after |S| steps (at most) the process ends up
in the absorbing state Ω. We can also define a state-action value function per player,
that is the value of performing action ai in state s and then following its strategy:
Qi
π(s, ai) = riπ-i(s, ai) + γ

∑
s′
pπ-i(s′|s, ai)viπ(s′) (8.1).

Logit Choice Function: when given a choice between actions a ∈ A based on
an expected value Q(a) (in the following Q(a) will be the state-action value function
Qi
π(s, ai) or Q∗iσ,π-i(s, ai) defined below), it is common not to take the action that max-

imizes Q(a) but to choose suboptimal actions so as to favor exploration. One common
choice of suboptimal actions is to pick them according to the logit choice function
Bη(Q)(a) = exp(η-1Q(a))∑

ã
exp(η-1Q(ã)) . We will write Cη(Q) = ∑

ã∈AQ(ã)Bη(Q)(ã) the expected
outcome if actions are taken according to the logit choice function. This definition
can be generalized to the notion of choice probability function (see remark 8.1) and
will be written Bσ(Q) and Cσ(Q) where σ is a function in R∆A. Here ∆A is the set
of distributions over actions. In the case of the logit choice function, η is linked to σ
through the following formula σ(π) = ∑

a ηπ(a) ln(π(a)).

Best Responses: If the strategy π-i of all opponents is fixed, the value of the best
response is v∗iσ,π-i and is recursively defined as follows (starting from Ω and going in
increasing order with respect to φ): v∗i

σ,π-i(s) = Cσ(ri
π-i(s, ai)+

∑
s′∈S pπ-i(s′|s, ai)v∗iσ,π-i(s′)).

From the definition of that value function, we define the corresponding Q-function:
Q∗i
σ,π-i(s, ai) = ri

π-i(s, ai) + γ
∑
s′ pπ-i(s′|s, ai)v∗iσ,π-i(s′). (8.2)

Bellman Operators: We define the two following Bellman operators on the
Q-function: [

T iπQ
i
]
(s, ai) = ri

π-i(s, ai) + γ
∑
s′ pπ-i(s′|s, ai)Ebi∼πi(.|s′)

[
Qi(s′, bi)

]
, and

[T ∗i
σ,π-iQ

i](s, ai) = ri
π-i(s, ai) + γ

∑
s′ pπ-i(s′|s, ai)Cσ

(
Qi(s′, .)

)
. The value Qi

π is the fixed
point of the operator T iπ and Q∗iσ,π-i is the fixed point of the operator T ∗iσ,π-i . Further-
more, a strategy π̃i is greedy with respect to a Q-function Qi if T ∗iσ,π-iQi = T iπ̃i,π-iQi.

Operators on the Value Function: we define the counterparts of those operators
on value functions as follows: [T iπvi] (s) = riπ(s) + γ

∑
s′ pπ(s′|s)vi(s′) , [T iπvi] = riπ +

γPπvi and [T ∗i
σ,π-iv

i] = Cσ(ri
π-i(s, .) + γ

∑
s′ pπ-i(s′|s, .)vi(s′)). (8.3) From these definitions,

we have the two following value functions: v∗iσ,π-i(s) = Cσ(Q∗iσ,π-i(s, .)) and viπ(s) =
Ebi∼πi(.|s) [Qi

π(s, bi)].

Smooth Nash Equilibrium: The goal in this setting is to find a strategy πi for each
player that recursively (in increasing order with respect to function φ(.)) fulfills the
following condition: ∀i, Eai∼πi(.|s)

[
Qiπ(s, .)

]
= Cσ(Qiσ,π(s, .)). As a consequence, we have

that Q∗iσ,π-i = Qi
π and viπ = v∗iσ,π-i . Furthermore, in the case of a zero-sum two-player

game, we have viπ = −v-iπ (where v-iπ is the value function of the opponent)

144 Chapter 8. Actor-Critic Fictitious Play

2 Actor-Critic Fictitious Play

We present here our first contribution: the actor-critic fictitious play algorithm for
MGs. This is an on-line and decentralized process. At each time-step n, all players
are in state sn, players choose independently an action ain according to their current
strategy πin(.|sn) and observe independently one from another a reward signal rin =
ri(sn,an). The process is decentralized, meaning players do not observe others’ actions
nor their rewards. Then, the game moves to the following state sn+1. If the process
reaches the absorbing state Ω, we simply restart from the beginning (s̃).

Algorithm 27 On-line Actor Critic Fictitious Play
Input: An initial strategy πi0 and an initial value vi0 = 0. Two learning rates
{αn}n≥0, {βn}n≥0 satisfying assumption A 3 and an initial state s0 = s̃.
for n=1,2,... do
Agent i draws action ain ∼ πi(.|sn).
Agent i observes reward rin = ri(sn,an).
Every player observes the next state sn+1 ∼ p(.|sn,an).
actor step
πin+1(sn, .) = (1− βn)πin(sn, .) + βnBσ(Qin(sn, .))
critic step
Either an off-policy control step:
Qin+1(sn, ain) = (1− αn)Qin(sn, ain) + αn

(
rin + Cσ

(
Qin(sn+1, .)

))
Or a policy evaluation step:
Qin+1(sn, ain) = (1− αn)Qin(sn, ain) + αn

(
rin + Eb∼πin(.|sn+1)

(
Qin(sn+1, b)

))
if sn+1 = Ω then
sn+1 = s̃.

end if
end for
Return The joint strategy π and values vi for all i.

The learning algorithm performs two updates. First, it updates the players’ strategy
(actors’ update). The strategy πin+1 is a mixture between the current strategy πin and
either a local best response Bσ(Qi

πn(sn, .)) or a global best response Bσ(Q∗iσ,π-i
n

(sn, .)).
The actors’ update is performed according to a slow timescale βn. Second, it performs
the critics’ update which evaluates the current strategy. It happens on a fast timescale
αn on which we can consider that the strategy of every player is stationary. If at the
actors’ step we want to act according to a local best response dynamics, the critic step
will perform a policy evaluation step. If we want to perform a global best response
dynamics, the critic will perform an off-policy evaluation step. Thus, at the slow
timescale, the Q-function Qi

n has almost converged to Q∗iσ,π-i
n
or to Qi

πn . Therefore, we
obtain canonically two algorithms.

In the next section, as a second contribution, we introduce the two dynamical
processes corresponding to these algorithms and we prove that they possess desirable

3. Fictitious play in Markov Games 145

properties (i.e. rationality and convergence in self play for zero-sum two-player and
cooperative games). The proofs rely non trivial techniques to propagate the Lyapunov
stability property of the Fictitious play process of these ODE on the tree structure of
the multistage games. Then in Section 4, as a third contribution, we show formally that
these two algorithms (Algorithm 27) are stochastic approximations of those dynamical
processes. This is again non-trivial as we need to prove the convergence of a two-time
scale discrete scheme depending on a Markov chain.

Remark 8.1. In the previous section, we defined the logit choice function. One
can generalize this notion with the concept of choice probability function (see Hof-
bauer and Sandholm (2002)). Imagine a player is given a choice of an action a ∈ A
based on the outcome Q(a). Instead of choosing based on the outcome Q(a), he
also obtains an additive random payoff εa and chooses with respect to Q(a) + εa.
The vector (εa)a∈A is a positive random variable taking it’s value in R|A| and does
not depend on Q(a). These choice probability functions allow us to get smooth
Bellman operators and ease the analysis of our algorithms. A choice probability
function is defined as follows: Bσ(Q)(a) = P (argmaxã∈A[Q(ã) + εã] = a). This defi-
nition is equivalent to the following one where σ(.) is a deterministic perturbation:
Bσ(Q) = argmaxπ̃∈∆(A)[Eã∼π̃[Q(ã)] − σ(π̃)]. The function Cσ(Q) is the average value
considering the choice probability function Bσ(Q): Cσ(Q) =

∑
ã∈AQ(ã)Bσ(Q)(ã). This

perturbation is said admissible Hofbauer and Sandholm (2002) if for all y, ∇2σ(y) is
positive definite on R0 = {z ∈ Rn : ∑j zj = 0}, and if ‖∇σ(y)‖ goes to infinity as y
approaches the boundary of ∆A. For example, Bσ(Q)(a) = exp(η-1Q(a))∑

ã
exp(η-1Q(ã)) if the σ(.)

perturbation is defined as σ(π) = ∑
a ηπ(a) ln(π(a)). In that case, the noise εã follows

a Gumbel distribution. From now on, we consider that σ(.) is fixed.

3 Fictitious play in Markov Games
In this section, we propose novel definitions for two perturbed best response dynamics in
the case of MGs. These dynamics are defined as a set of Ordinary Differential Equations
(ODE) that generalizes the continuous time Fictitious play process to MSGs Hofbauer
and Sandholm (2002). Then, we prove the convergence of these processes in multistage
games. To do so, we build on the work of Hofbauer and Sandholm (2002) on the
stability of the Fictitious play process in normal form games. By induction on the tree
structure of multistage games, we prove that our processes have stable attractors in
zero-sum two-player and in cooperative multistage games. Later in Section 4, we will
prove that our actor-critic algorithms track the solutions of that ODE and thus are
guaranteed to converge in both settings. The first one considers a local best response
dynamics: π̇it(.|s) = dπt(s)[Bσ(Qi

πt(s, .))− πit(.|s)] (8.4)
The second process considers a global best response:

π̇it(.|s) = dπt(s)[Bσ(Q∗i
σ,π-i

t
(s, .))− πit(.|s)] (8.5)

Remark 8.2. The distribution dπ is the stationary distribution of the Markov process
defined by s′ ∼ pπ(.|s) and if s′ = Ω, we restart the process from s̃. One can show that

146 Chapter 8. Actor-Critic Fictitious Play

if we start the process with a strategy π0 that gives a non-null probability for each
action and each player, the distribution over states dπt(s) is never null since we consider
that there is at least a deterministic strategy that reaches any state. Furthermore, since
we consider smooth best response dynamics, the smooth best response will assign to
each action some probability which is bounded away from zero (since the Q-function
are bounded). Thus, we can always consider that we will visit each state with some
minimal probability (i.e. dπt(s) ≥ δ > 0).

Two properties are usually desirable for such a stochastic process which are ratio-
nality and convergence in self-play Bowling and Veloso (2001). Rationality implies that
if other players converge to a stationary strategy, the learning algorithm will converge
to a best response strategy. The convergence property received many definitions in the
MARL literature and usually ensures convergence of the algorithm against a class of
other algorithms or convergence in self-play. Here, we choose the later.

Rationality: For the rest of this paragraph, let us study a fixed player i. First, if
we consider the case where other players are stationary (i.e. π-i

t = π-i), the strat-
egy of player i will converge to Bσ(Q∗iσ,π-i(s, .)) for the second process Eq. (8.5) (since
Bσ(Q∗i

σ,π-i(s, .))does not depend on πit the solution of the second process converges expo-
nentially toward the best response strategy). For the first process, let us show that if
the strategy πi follows the dynamics described by (8.4), it converges to a best response
strategy. The proof of this property requires the following two technical lemmas.

(T, δ)-perturbation: Let us consider the following ODE where h(.) : Rn → Rn is a
Lipschitz continuous function: ż(t) = h(z(t)) (8.6)

We consider the case where ODE (8.6) has an asymptotically stable attractor set
J . A bounded measurable function y(.) : R+ → RN is a (T, δ)-perturbation of (8.6)
(T, δ > 0) if there exist 0 = T0 < T1 < T2 < · · · < Tn with Ti+1 − Ti ≥ T and solutions
zj(t), t ∈ [Tj, Tj+1] of (8.6) for all j ≥ 0 such that sup

t∈[Tj ,Tj+1]
‖zj(t) − y(t)‖ < δ. The

following technical lemma can be proved Borkar (1997b).

Lemma 8.1. Given ε, T > 0, there exists a δ̄ > 0 such that for δ ∈ (0, δ̄), every
(T, δ)-perturbation of Eq. (8.6) converges to J ε (def: the ε-neighborhood of J).

The next lemma is used all over this section. It proves that if, instead of following
a given process ẋ(t) = f (x(t)), one follows a perturbed version of that process ẏ(t) =
ft (y(t)) one converges to the set of stable equilibria of the unperturbed process if ft(.)
converges toward f(.).

Lemma 8.2. Let’s study the two following ODE ẋ(t) = f (x(t)) and ẏ(t) = ft (y(t))
and let’s assume that lim sup ‖f(.)− ft(.)‖ → 0 uniformly. Furthermore, let’s assume
that f is Lipschitz continuous. Then, any bounded solution of ẏ(t) = ft (y(t)) converges
to the set of attractors of ẋ(t) = f (x(t)).

3. Fictitious play in Markov Games 147

Proof. The full proof of this lemma is left in appendix 7. It shows that all bounded
solutions of the time dependent ODE is a (T, δ)-perturbation of the other ODE.

Now, we show that if player i follows the direction given by the local best response
dynamics Eq. (8.4), it converges to a best response to π-i.

Proposition 1. In any game, if the strategy π-i of the opponents is fixed, the pro-
cess (8.4) converges to a best response.

Proof. The proof of that property is left in appendix 10

Now, let’s consider the case where the strategy of other players π-i
t converges to a

stationary strategy π-i. In that case, one can show that, for a fixed i, the solutions of
ODE (8.4) and (8.5) are the same as if π-i

t was fixed.

Proposition 2. If π-i
t → π-i, then the solutions of ODE (8.4) and (8.5) are the same

as the one of:

π̇it(.|s) = dπit,π-i(s)[Bσ(Qiπit,π-i(s, .))− πit(.|s)] and π̇it(.|s) = dπit,π-i(s)[Bσ(Q∗iσ,π-i(s, .))− πit(.|s)]

Proof. The proof of that property is left in appendix 11

Thus, if all other players converge to a stationary strategy, the strategy of player i
converges to a best response to π-i.

Convergence in Multistage Games: Concerning the convergence in self-play of
those two fictitious play processes, one must first be aware that they will not converge
in all multistage games. Even in normal form games, the fictitious play process is
known to be unstable in some cases. For example, the fictitious play process is known
to oscillate in some two-player games Shapley (1964). More surprisingly, Hart and Mas-
Colell (2003) proved in the case of normal form games that there exists no uncoupled
dynamics which guarantees Nash convergence. In their paper, they consider dynamics
for each player which only depends on its own reward and possibly on the strategy of
all players. They present an example in which this class of dynamical systems has no
stable equilibrium. We were able to prove the convergence of our process in the case
of zero-sum two-player and cooperative multistage games.

Proposition 3. In a zero-sum two player multistage game, the process (8.4) and the
process (8.5) converge to a smooth Nash equilibrium π.

Proof. The proof of that property is left in appendix 12

Remark 8.3. Proposition 3 can be adapted to study the cooperative case (i.e. when
players receive the same reward ∀i, j ri(s,a) = rj(s,a)). The proof in the cooperative
case also works by induction. The corresponding proposition and proof can be found
in the appendix 9.

148 Chapter 8. Actor-Critic Fictitious Play

4 Stochastic Approximation with Two-Timescale
In this section, we provide a novel stochastic approximation theorem taking advantage
of two independent techniques. First, we use two timescales because the process we
are studying (defined on the strategy of each player called the actor) has a complex
dependency on the strategy of all players through the Q-function (the critic). In an
on-line setting, one can’t have access to the Q-function of a given strategy (either Qi

π

or Q∗iσ,π-i) as it is an asymptotic solution of the critic process. Thus formally, we look
for an asymptotically stable solution of ẏ(t) = g(µ(y(t)), y(t)) (actors’ update) where
µ(y) is the stable solution of another process ẋ(t) = f(x(t), y)(critics’ update). In
our case µ(y) is either Qi

π or Q∗iσ,π-i , y is the strategy and x the action-value function.
Instead of waiting until the subroutine converges (the critic part) to iterate over the
main routine (the actor part), Borkar (1997b) gives an elegant solution to that class
of problems by using two timescales to update simultaneously xn and yn. The process
xn will be updated according to a "fast" timescale αn. On that timescale, yn behaves
as if it was stationary and thus, xn is an estimate of µ(yn) (i.e. ‖µ(yn) − xn‖ → 0).
The process yn will move on a "slower" timescale βn. On that slower timescale, one
can treat the process xn as µ(yn) and thus, yn will converge to a stable solution of
ẏ(t) = g(µ(y(t)), y(t)).

Second we use an averaging technique. Our process is on-line and follows a Marko-
vian dynamics controlled by the policy πn. All policies and Q-functions are only
updated on state sn. Thus, the two processes xn and yn also depend on a Markov
process Zn controlled by yn. Again, Borkar (2006) shows that, in the case of a simple
timescale, the process yn+1 = yn+αnf(yn, Zn) tracks the solution of ẏ(t) = f̄(y(t), dy(t))
where f̄(y(t), dy(t)) is the average of f over the stationary distribution of Zn (the dis-
tribution dy). Formally, f̄(y, dy) = ∑

z∈Z f(y, z)dy(z). In our case, we need to study
the following recursion:

xn+1 = xn + αnf(xn, yn, Zn), (8.7)
yn+1 = yn + βng(xn, yn, Zn), (8.8)

Where:

Assumption 1. Functions f and g are jointly continuous in their arguments and
Lipschitz in their two first arguments uniformly with respect to the third.

Assumption 2. The controlled Markov process Zn takes its value in a discrete space
Z controlled by variable yn. The variable Zn+1 follows the kernel p(.|Zn, yn) which is
uniformly continuous in yn. Furthermore, let us suppose that if yn = y, the Markov
chain Zn has a unique invariant distribution dy(.).

We note f̄(x, y, dy) = ∑
z∈Z f(x, y, z)dy(z) the function f averaged over the station-

ary distribution of the Markov chain defined in the previous assumption. Similarly,
ḡ(x, y, dy) = ∑

z∈Z g(x, y, z)dy(z).

4. Stochastic Approximation with Two-Timescale 149

Assumption 3. The sequences {αn}n≥0 and {βn}n≥0 are two positives decreasing step-
size sequences satisfying: ∑

n≥0
αn = ∑

n≥0
βn = ∞, ∑

n≥0
α2
n < ∞, ∑

n≥0
β2
n < ∞ and βn =

o(αn)

Assumption 4. We need sup
n
‖xn‖ <∞ and sup

n
‖yn‖ <∞

Assumption 5. For any constant y, the ODE: ẋ(t) = f̄(x(t), y, dy), has a globally
asymptotically stable equilibrium µ(y). That stable equilibrium µ(.) is a Lipschitz con-
tinuous function.

Assumption 6. The ODE ẏ(t) = ḡ
(
µ (y(t)) , y(t), dy(t)

)
has a globally asymptotically

stable equilibrium y∗

Theorem 8.1. (xn, yn)→ (µ(y∗), y∗) almost surely (a.s.).

Analysis of Actor-Critic Fictitious Play: The analysis of our two algorithms is
a direct application of the previous theorem and is left in appendix (App. 13). In a
nutshell, the critic Qn is updated on a fast timescale (i.e. xn) and we will prove that it’s
recursion satisfy assumption A 1, A 2, A 3, A 4, and A 5. The actor πn is updated on a
slow timescale (i.e. yn) and satisfy assumption A 1, A 2, A 3, A 4, and A 6. Thanks to
the use of choice probability function, assumption A 1 is satisfied on the slow timescale
since a choice probability function is lipschitz with respect to the Q-function. The
two on-line algorithms we present here (Algo 27) are stochastic approximations of the
two dynamical systems (8.4) and (8.5). In an on-line setting, the interaction between
players proceeds as follows. At a step n, players are in state sn and individually take an
action ain ∼ πin(.|sn). Each of them receives a reward ri(sn, a1

n, . . . , a
N
n) and the process

moves from state sn to state sn+1 ∼ p(.|sn, a1
n, . . . , a

N
n). In addition, we consider the

controlled Markov process Zn = (sn, a1
n, . . . , a

N
n , sn+1) (controlled by the strategy πn).

Finally, if sn+1 = Ω, we restart from state s̃ and Zn+1 = (s̃, . . .). We define the
following two-timescale processes (with αn and βn defined as in A 3):

πin+1 = πin + βn1sn1>sn
[
Bσ(Qin(sn, .))− πin(.|sn)

]
(8.9)

And:

Qin+1 = Qin + αn1(sn,ain)1>(sn,ain)

[
ri(sn,an) + Cσ

(
Qin(sn+1, .)

)
−Qin(sn, ain)

]
(8.10)

Or:

Qin+1 = Qin + αn1(sn,ain)1>(sn,ain)

[
ri(sn,an) + Ebi∼πi(.|sn+1)

(
Qin(sn+1, b

i)
)
−Qin(sn, ain)

]
(8.11)

Assumption A 1 and assumption A 2 are verified. Regarding assumption A 4, the
strategy πin is obviously bounded since it remains in the simplex. If Qi

0 = 0, the state-
action value function is bounded as follows ‖Qi

n(s, a)‖ ≤ φ(s)Rmax (this can be shown
by recursion). The two faster processes(Eq. (8.22) and (8.23)) track the two following
ODE:

Q̇it(s, ai) = dπ(s)πi(.|s)
([
T ∗iσ,π-iQ

i
t

]
(s, ai)−Qit(s, ai)

)

150 Chapter 8. Actor-Critic Fictitious Play

And
Q̇it(s, ai) = dπ(s)πi(.|s)

([
T iπQ

i
t

]
(s, ai)−Qit(s, ai)

)
Those two equations admit as an attractor Q∗iσ,π-i and Qi

π. Then, the strategy recur-
sion follows either ODE (8.4) (if the subroutine is defined by Eq. (8.23)) or ODE (8.5)
(if the subroutine is defined by (8.22)).

5 Experiment on Alesia
The game of Alesia is described in Chapter 3. This game is challenging in many
aspects. First, rewards are sparse and are received at the end of the game. Furthermore,
strategies need to be stochastic Buro (2004), Bošanský et al. (2016). The performance
criterion used to compare algorithms is the difference of the value of the joint strategy
viπ(s̃) and the value of the best response vi0,π-i(s̃) without any perturbation σ (i.e.
σ = 0)

0 500000 1000000 1500000 2000000 2500000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

ACFP control player 0

ACFP control player 1

ACFP evaluation player 1

ACFP evaluation player 0

Figure 8.2 – Performance of the strategy πi (y-axis) along iterations (x-axis).

We ran experiments for a game with learning rates of the form αn = α0aα
aα+nbα and

βn = β0aβ

aβ+nbβ
. We used a logit choice function with η decaying with the number of

iterations ηn = η0aη
aη+n . The two step-sizes αn and βn were chosen to satisfy the conditions

of Theorem 8.1. The experiments were ran with an initial budget of N = 10 and a
board of size K = 3. The step-size parameters were (α0, aα, bα) = (0.1, 104, 0.8),

5. Experiment on Alesia 151

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e7

0.0

0.2

0.4

0.6

0.8

1.0
P

er
fo

rm
an

ce

ACFP control player 0

ACFP control player 1

Figure 8.3 – Performance of the strategy πi (y-axis) along iterations (x-axis).

(β0, aβ, bβ) = (0.01, 104, 1.0) and (η0, aη) = (0.1, 106). The results are displayed in
figure 8.2 and shows that both algorithms learn a strategy that tend to be closer
to its own best response over learning (meaning that both algorithms learn a Nash
equilibrium). An empirical finding is that ACFP with a control critic converges faster
than the one with a policy evaluation critic on that game.

Function approximation: We also ran these experiments with function approx-
imations both on the strategy and on the Q-function. The main issue in Alesia is
that the number of actions available to each player depends on the remaining bud-
get of the player. For each player, we aggregated states for which the budget of the
player is fixed. The aggregated states are consecutive states with respect to the bud-
get of the other players’. The results reported in Figure 8.3 show that our method
is robust to this form of function approximation. We ran experiment with an initial
budget of N = 15 on which the algorithm was able to learn a minimax strategy. The
step-size parameters were (α0, aα, bα) = (0.1, 105, 0.9), (β0, aβ, bβ) = (0.01, 105, 1.0) and
(η0, aη) = (0.05, 108).

152 Chapter 8. Actor-Critic Fictitious Play

6 Conclusion
This chapter explores two independent RL algorithms that provably converge to Nash
equilibria in zero-sum MSGs and in cooperative MSGs. This work studies extensions of
the Fictitious play process from normal form games to MSGs. Compared to previous
families of methods (Bowling and Veloso, 2001, Littman, 1994), these algorithms can
be applied to a larger number of settings without heuristics and without knowing the
opponents actions. The main contributions were algorithmic and theoretical but we
also proposed an empirical evaluation that provides good evidence that our methods
are applicable to real problems and could scale up thanks to function approximation.

Several interesting research paths remain to be explored. The first is the study
of the stability of the two dynamical processes in MGs. The proof given for MSGs
propagates the convergence property from the end of the game to the initial state.
Since MGs have a graph structure, this technique can’t be applied. Thus, other stability
arguments must be found to ensure convergence in MGs. The second research path
could be to further study the use of function approximation. Whilst there is a wide
literature dealing with the off-policy evaluation part or the off-policy control (Watkins
and Dayan, 1992), the update of the strategy using general function approximation
remains challenging. The main issue is that the strategy space should support convex
combination with a best response. The convex combination of the strategy and the
best response could be fitted at each iteration using a classification neural network.

7. Proof of Lemma 8.2 153

7 Proof of Lemma 8.2
Lemma 8.2: Let’s study the two following ODE ẋ(t) = f (x(t)) and ẏ(t) = ft (y(t))
and let’s assume that lim sup ‖f(.)− ft(.)‖ → 0 uniformly. Furthermore, let’s assume
that f is Lipschitz continuous. Then, any solution of ẏ(t) = ft (y(t)) converges to the
set of attractors of ẋ(t) = f (x(t)).

Proof. let us fix t such as for all T > 0, ‖f(.)− ft+T (.)‖ ≤ ε. if x(t) = y(t), then:

x(t+ T)− y(t+ T) =
t+T∫
t

[f(x(τ))− f(y(τ))] dτ +
t+T∫
t

[f(y(τ))− fτ (y(τ))] dτ (8.12)

‖(x− y)(t+ T)‖ ≤
t+T∫
t

‖f(x(τ))− f(y(τ))‖dτ +
t+T∫
t

‖f(y(τ))− fτ (y(τ))‖dτ (8.13)

≤ K
t+T∫
t

‖(x− y)(τ)‖dτ + Tε (8.14)

Let’s write g(T) = ‖(x− y)(t+ T)‖. We have g(T) ≤ K
T∫
0
g(τ)dτ + Tε

Let’s write h(T) = Tε+K
T∫
0
g(τ)dτ+ ε

K
and h′(T) = ε+Kg(T) ≤ ε+K(h(T)− ε

K
) ≤

Kh(T)
With the differential form of the Grönwall lemma:

h(δ) ≤ h(0) exp(KT) = ε

K
exp(KT)

And we have ‖(x− y)(t+ T)‖ = g(T) ≤ ε
K (exp(KT)− 1)

This inequality means that, given T , for all δ we can choose t0 large enough such
that any trajectory of ẏ(t) = ft0+t (y(t)) is a (T, δ)-perturbation of ẋ(t) = f (x(t)).
Then, lemma 8.1 concludes the proof.

8 Proof of Theorem 8.1

xn+1 = xn + αnf(xn, yn, Zn), (8.15)
yn+1 = yn + βng(xn, yn, Zn), (8.16)

Where:
A 1. Functions f and g are jointly continuous in their arguments and Lipschitz in

their two first arguments uniformly with respect to the third,
A 2. The controlled Markov process Zn takes its value in a discrete space Z con-

trolled by variable yn. The variable Zn+1 follows the transition kernel p(.|Zn, yn) which
is uniformly continuous in yn. Furthermore, let us suppose that if yn = y, the Markov
chain Zn has a unique invariant distribution dy(.).

154 Chapter 8. Actor-Critic Fictitious Play

From now on, we define f̄(x, y, dy) = ∑
z∈Z

f(x, y, z)dy(z) which is the function f

averaged over the stationary distribution of the Markov chain defined in the previous
assumption. Similarly, ḡ(x, y, dy) = ∑

z∈Z
g(x, y, z)dy(z).

A 3. The sequences {αn}n≥0 and {βn}n≥0 are two positives decreasing step-size
sequences satisfying: ∑

n≥0
αn = ∑

n≥0
βn =∞, ∑

n≥0
α2
n <∞, ∑

n≥0
β2
n <∞ and βn = o(αn)

A 4. We need sup
n
‖xn‖ <∞ and sup

n
‖yn‖ <∞

A 5. For any constant y, the ODE:

dx(t)
dt

= f̄(x(t), y, dy), (8.17)

has a globally asymptotically stable equilibrium µ(y). That stable equilibrium µ(.) is a
Lipschitz continuous function.

A 6. The ODE:

dy(t)
dt

= ḡ
(
µ (y(t)) , y(t), dy(t)

)
(8.18)

has a globally asymptotically stable equilibrium y∗

Theorem 8.1. (xn, yn)→ (µ(y∗), y∗) almost surely (a.s.).

Proof. First, rewrite Eq. (8.8) as:

yn+1 = yn + αn

[
βn
αn
g(xn, yn, Zn)

]
.

Since the function g is Lipschitz in the two first arguments (A 1), since Z is discrete
(A 2) and since xn and yn are bounded (A 4), then we have that βn

αn
g(xn, yn, Zn) → 0

a.s.. Then from corollary 81 of chapter 6.3 of Borkar (2009) (first presented in (Borkar,
2006)) it follows that (xn, yn) converges to an internally chain transitive invariant set
of the ODE ẏ(t) = 0 and ẋ(t) = f̄(x(t), y(t), dy(t)). In other words, ‖xn − µ(yn)‖ → 0
a.s..

Second, let’s write (8.8) as:

yn+1 = yn + αn
[
g(µ(yn), yn, Zn) + (g(xn, yn, Zn)− g(µ(yn), yn, Zn))

]
. (8.19)

Since g(., ., .) is Lipschitz in the two first variables uniformly with respect to the third
one, we have that ‖g(xn, yn, Zn) − g(µ(yn), yn, Zn)‖ ≤ K‖xn − µ(yn)‖ (for some K).
Then Eq. (8.8) can be rewritten as:

yn+1 = yn + αn
[
g(µ(yn), yn, Zn) + εn

]
, (8.20)

where εn → 0 a.s.. Again, from corollary 8 of chapter 6.3 of Borkar (2009), we have
that yn → y∗ and xn → µ(y∗)

1As written in chapter 2 Borkar (2009) in all stochastic approximation scheme studied in the book
(except those in chapter 9) can be added a noise εn that converges to 0 a.s.

9. Convergence in Cooperative Multistage Games 155

9 Convergence in Cooperative Multistage Games

In a cooperative game (as defined in (Busoniu et al., 2008)), the reward signal is as
follows: ∀s, i, j ri(s,a) = rj(s,a)). Thus we have the property that ∀s, i, j viπ(s) =
vjπ(s)

Proposition 4. In a cooperative two player multistage game, the process (8.4) and
the process (8.5) converge to a smooth Nash equilibrium π.

Proof. The proof of this result works again by induction on the set Sn = {s ∈ S|φ(s) ≤
n}. Let’s suppose that for all states s in Sn, the process converges to a smooth Nash
equilibrium. This means that for all states in s ∈ Sn and for all players i, the strategies
πit(.|s) converge to πi(.|s) such as viπ(s) = v∗iσ,π-i(s). We also have that ∀i, j viπ(s) =
vjπ(s).

Let ŝ be the state such that φ(ŝ) = n+ 1. Then, we define:

M i(ŝ, ai,a-i) = ri(ŝ, ai,a-i) +
∑
s′∈S

p(s′|ŝ, ai,a-i)viπ(s′)

M i
t (ŝ, ai,a-i) = ri(ŝ, ai,a-i) +

∑
s′∈S

p(s′|ŝ, ai,a-i)viπt(s
′)

And:
M∗it (ŝ, ai,a-i) = ri(ŝ, ai,a-i) +

∑
s′∈S

p(s′|ŝ, ai,a-i)v∗i
σ,π-i

t
(s′)

Since the strategy πit(.|s) converges to πi(.|s), we have viπt(s) and v∗i
σ,π-i

t
(s) that con-

verges to viπ(s) for all s ∈ Sn and finally M i
t (ŝ, ai,a-i) and M∗i

t (ŝ, ai,a-i) converges to
M i(ŝ, ai,a-i). Then, lemma 8.2 and results of convergence of stochastic fictitious play
for N -player potential games from Hofbauer and Sandholm (2002) guarantees that the
process in state ŝ will converge to a smooth Nash equilibrium of the normal form game
defined by M i(ŝ, ai,a-i). Finally, we have viπ(ŝ) = v∗iσ,π-i(ŝ) and ∀i, j viπ(ŝ) = vjπ(ŝ).

10 Proof of proposition 1

Proof. We prove the result by induction on the set Sn = {s ∈ S|φ(s) ≤ n}. First,
the property is true in state Ω since by definition, there is only one action available
per player. Suppose that for all s ∈ Sn, the process converges to a best response (i.e.
viπ(s) = v∗iσ,π-i). Let ŝ be the state of order n+1 (i.e. φ(ŝ) = n+1). From the definition
of the Q-function (Eq. (8.1) and (8.2)), we have that in ŝ the Qi

πit,π
-i(ŝ, .) converges to

Qi
π(ŝ, .) uniformly over the actions. Moreover, since for all s ∈ Sn, viπ(s) = v∗iσ,π-i we

have that Qi
π(ŝ, .) = Q∗iσ,π-i(ŝ, .). From lemma 8.2, we get the convergence of πi(.|ŝ) to

a best response if the distribution dπ is non-null in all states (see remark 8.2).

156 Chapter 8. Actor-Critic Fictitious Play

11 Proof of Proposition 2

Proof. The proof comes from the fact that Bσ

(
Qi
πi,π-i

t
(s, .)

)
converges to

Bσ

(
Qi
πi,π-i(s, .)

)
uniformly with respect to πi (since the Q-function is polynomial in

π and Bσ (.) is Lipschitz with respect to the Q-function. Moreover, since the state
space is finite, simple convergence imply the uniform convergence) and the fact that
Bσ

(
Qi
πi,π-i(s, .)

)
is Lipschitz with respect to πi.

12 Proof of Proposition 3
Proof. The proof of this result works by induction on the set Sn = {s ∈ S|φ(s) ≤ n}.
Again, the property is true in state Ω. Let’s suppose that for all states s in Sn, the
process converges to a smooth Nash equilibrium. This means that for all states in
s ∈ Sn and for all players i, the strategies πit(.|s) converge to πi(.|s) such as viπ(s) =
v∗iσ,π-i(s). We also have that viπ(s) = −v-iπ(s).

Let ŝ be the state such that φ(ŝ) = n+ 1. Then, we define:

M i(ŝ, ai,a-i) = ri(ŝ, ai,a-i) +
∑
s′∈S

p(s′|ŝ, ai,a-i)viπ(s′)

M i
t (ŝ, ai,a-i) = ri(ŝ, ai,a-i) +

∑
s′∈S

p(s′|ŝ, ai,a-i)viπt(s
′)

And:
M∗it (ŝ, ai,a-i) = ri(ŝ, ai,a-i) +

∑
s′∈S

p(s′|ŝ, ai,a-i)v∗i
σ,π-i

t
(s′)

Since the strategy πit(.|s) converges to πi(.|s), we have viπt(s) and v∗i
σ,π-i

t
(s) that con-

verges to viπ(s) for all s ∈ Sn and finally M i
t (ŝ, ai, a-) and M∗i

t (ŝ, ai, a-) converges to
M i(ŝ, ai, a-). Then, lemma 8.2 and results of convergence of stochastic fictitious play
from Hofbauer and Sandholm (2002) guarantees that the process in state ŝ will con-
verge to a smooth Nash equilibrium of the normal form game defined by M i(ŝ, ai,a-i).
Finally, we have viπ(ŝ) = v∗iσ,π-i(ŝ) and viπ(ŝ) = −v-iπ(ŝ).

13 Analysis of Actor-Critic Fictitious Play
The two on-line algorithms we present here (Algo 27) are stochastic approximations
of the two dynamical systems (8.4) and (8.5). In an on-line setting, the interaction
between players proceeds as follows. At a step n, players are in state sn and individually
take an action ain ∼ πin(.|sn). Each of them receives a reward ri(sn, a1

n, . . . , a
N
n) and

the process moves from state sn to state sn+1 ∼ p(.|sn, a1
n, . . . , a

N
n). In addition, we

consider the controlled Markov process Zn = (sn, a1
n, . . . , a

N
n , sn+1) (controlled by the

strategy πn). Finally, if sn+1 = Ω, we restart from state s̃ and Zn+1 = (s̃, . . .). We
define the following two-timescale processes (with αn and βn defined as in A 3):

πin+1 = πin + βn1sn1>sn
[
Bσ(Qin(sn, .))− πin(.|sn)

]
(8.21)

14. On the Guarantees of Convergence of OFF-SGSP and ON-SGSP 157

And:

Qin+1 = Qin + αn1(sn,ain)1>(sn,ain)

[
ri(sn,an) + Cσ

(
Qin(sn+1, .)

)
−Qin(sn, ain)

]
(8.22)

Or:

Qin+1 = Qin + αn1(sn,ain)1>(sn,ain)

[
ri(sn,an) + Ebi∼πi(.|sn+1)

(
Qin(sn+1, b

i)
)
−Qin(sn, ain)

]
(8.23)

Assumption A 1 and assumption A 2 are verified. Regarding assumption A 4, the
strategy πin is obviously bounded since it remains in the simplex. If Qi

0 = 0, the state-
action value function is bounded as follows ‖Qi

n(s, a)‖ ≤ φ(s)Rmax (this can be shown
by recursion). The two faster processes(Eq. (8.22) and (8.23)) track the two following
ODE:

Q̇it(s, ai) = dπ(s)πi(.|s)
([
T ∗iσ,π-iQ

i
t

]
(s, ai)−Qit(s, ai)

)
And

Q̇it(s, ai) = dπ(s)πi(.|s)
([
T iπQ

i
t

]
(s, ai)−Qit(s, ai)

)
Those two equations admit as an attractor Q∗iσ,π-i and Qi

π. Then, the strategy recur-
sion follows either ODE (8.4) (if the subroutine is defined by Eq. (8.23)) or ODE (8.5)
(if the subroutine is defined by (8.22)).

14 On the Guarantees of Convergence of OFF-
SGSP and ON-SGSP

The main contribution to the field of MARL related to our work is the paper of Prasad
& al Prasad et al. (2015). These algorithms are not decentralized but one of them,
ON-SGSP, is an on-line and model-free algorithm. This paper proposes two algorithms
OFF-SGSP and ON-SGSP which are stochastic approximations of a dynamical system
described in section 8. The authors claims that these algorithms converges to a Nash
equilibrium of the game. The proof of the stability given in lemma 11 is wrong. In the
following we point out the issue with this proof.

Using their notations:

• G is the set of Nash equilibrium (the feasible set of the optimization problem),

• K is the limit set of the dynamical system (and G ⊂ K)

• K1 is the set of limits points of the dynamical system which are Nash equilibrium
K ∩G

• K2 is the complementary of K1 in K (i.e. K2 = K\K2)

158 Chapter 8. Actor-Critic Fictitious Play

Lemma 11 shows that K2 contains only unstable equilibrium and conclude that both
processes converges to K1 and thus to a Nash equilibrium since K1 is not empty (this
fact is proven early in the paper).

Unfortunately, that proof contains a mistake. The proof proceeds as follows: They
show that if π∗ ∈ K2 then there exists ai,x and i such that gix,ai(viπ, π−i) > 0 and
they conclude that consequently ∂f(vπ ,π)

∂πi
< 0. However, there is no direct link between

the sine of gix,ai(viπ, π−i) and
∂f(vπ ,π)
∂πi

since f(vπ, π) =
N∑
i=1

∑
x∈S

∑
z∈Ai(x)

πi(x, z)gix,z(viπ, π−i).

This imply that both processes might converge in K2 (i.e. not to a Nash equilibrium).

Part V

Conclusions and Future Work

1. Conclusion 161

1 Conclusion

This thesis is devoted to the study of learning in games from interaction data. We
consider that the interaction can be modelled as a Markov Game (MG). This model
is a generalization of the Markov Decision Process to the multi-agent setting and a
generalization of normal form games to multi-state models. We studied two kinds of
problems. The first one is the problem of learning from batch data, meaning that
there is no way to collect new interaction data from the model. The second one is
independent reinforcement learning where each agent plays independently one from an
other without knowing the others behaviour.

In part II, we extend several ADP techniques from MDPs to zero-sum two-player
MGs. In Chapter 3 we extend known ADP bounds for zero-sum two-player MGs
from the L+∞-norm to the Lp-norm. Those ADP bounds are consistent with previous
analysis of modified policy iteration in MDP. Based on these results, we propose a
non-parametric batch algorithm to learn Nash equilibria in zero-sum two-player MGs.
We tested this approach on the game of Alesia and Chapter 4 explores the use of
non-stationary strategies to improve the guarantees of Chapter 3. To do so, we de-
fined extensions of most ADP algorithms for zero-sum two-player MGs to the use of
non-stationary strategies. These non-stationary algorithms improve both theoretically
and empirically their stationary counterpart. The main improvement is to reduce the
γ-sensitivity of the contribution of the error from O

(
1

(1−γ)2

)
to O

(
1

(1−γ)(1−γm)

)
. Fur-

thermore, whilst the value iteration algorithm enjoys the worst guarantees, it is the one
that performs the best in practice on randomly generated zero-sum two-player MGs.
Chapter 5 investigates the use of non-stationary strategies in general-sum MGs as was
suggested in previous work (Zinkevich et al., 2006). We prove that the γ-sensitivity of
value iteration in general-sum MGs is improved by the use of non-stationary strategies
but that it can’t match the performance of value iteration in MDPs or in zero-sum
two-player MGS. In the case of general-sum games, the only factor that counts is the
length of the cycle and not the number of iterations.

Part III explores the Bellman residual approach to solve MDPs, zero-sum two-
player MGs and general-sum MGs. In Chapter 6, we proved that a lot of existing
batch algorithms to solve MDPs and zero-sum two player MGs could be seen as a
Newton’s method on some Bellman residuals. We leveraged this link and proposed
the use of quasi-Newton methods to improve convergence at a small computation cost.
Empirical evaluation on randomly generated MDPs and zero-sum two-player MGs show
improvement both in stability and performance of our method compared to existing
ones. However, this method can’t be applied directly to general sum games. The next
chapter (Chapter 7) generalizes this Bellman residual approach to general-sum MGs.
This method relies on the minimization of two Bellman residuals per player and does
not reduce to the one for MDPs and zero-sum two-player MGs. The minimization
of the Bellman residual is not guaranteed. However, having a small Bellman residual
guarantees having an ε-Nash equilibrium. This approach was empirically investigated
on randomly generated MGs and shows promising results.

162

Part IV (Chapter 8) studies another scenario. Instead of being given a fixed amount
of data we study an online learning problem. Here players must learn while they play
in an independent manner. We proposed an independent RL algorithm that provably
converges to zero-sum two-player Multi-Stage Games (MSGs) and cooperative MSGs
and tested with function approximation.

2 Future Work
This thesis mainly contributes to the problem of learning from batch data and the
algorithms we created and studied are based on Approximate Dynamic Programming
and Bellman Residual Minimization. These approaches could be extended in other
settings as in the MDP literature.

The first part of this dissertation studies batch learning using Approximate dynamic
programming. But when a generative model of the game is provided, many other
approaches can be used to perform each iteration of the inner loop of AGPI-Q. This
inner loop is required to provide an approximate solution of a finite horizon MDP of
length m. Using batch data restricts the number of possible methods (we only used
approximate value iteration to solve that part). When a generative model of the game
is provided, one can use a vast amount of methods. For instance, one could use Monte
Carlo tree search to evaluate the best response of the computation.

We have seen in Chapter 3 that the use of value iteration gave the best asymp-
totic performance but that early convergence could be improved using large m. In that
chapter, we suggest using large m at the beginning and reducing it after a while. Chap-
ter 4 suggests using non-stationary strategies to improve the asymptotic performance of
ADP methods. The value iteration algorithm using non-stationary strategies that had
the best asymptotic performance but the early convergence is slowed down compared
to stationary algorithms. Adapting AGPI-Q to the use of non-stationary strategies
could improve early convergence while getting the same asymptotic performance.

In Chapter 6 we propose using a Bellman residual approach to learn from batch
data. We proved that using quasi Newton methods on a Bellman residual is more stable
and more accurate than using LSPI or BRMPI. These methods are hardly comparable
to approximate dynamic programming methods in theory but an exhaustive empirical
comparison can still be done and building a large benchmark of simultaneous move
MGs where using stochastic strategies is compulsory, would definitely be a valuable
contribution to that field of research.

We proved that LSPI could be improved using quasi Newton methods. And LSPI
has been adapted to the online setting. In MDPs and in zero-sum two-player MGs,
it could be interesting to investigate whether or not the use of second order methods
could be used online to solve MGs. Many advances in stochastic second order methods
have been made in recent years and it could be interesting to investigate its application
to online learning in MDPs and in zero-sum two-player MGs.

In Chapter 7 we have generalized the Bellman residual approach to general-sum
MGs but this method hardly scales when the actions are taken simultaneously. Future

2. Future Work 163

work in this direction should focus on whether or not it is possible to only get a
dependency on the action of one player instead of the joint action. One idea could be
to use importance sampling if the policy used to collect the data is known.

Finally, the last part of this dissertation focused on independent learning in Multi
Stage Games (MSGs). We could provide an algorithm that is guaranteed to converge
to a smooth Nash equilibrium in the case of a zero-sum two-player MSG and in the
case of a cooperative MSG. In future work, we plan to investigate whether or not,
this process converges in MGs (without assuming a tree structure). Another way to
improve that work would be to propose different kinds of algorithms using more general
function approximations than state aggregation.

As a long term perspective, many areas of MARL remain to explore. In this thesis
we assumed that the reward function was a parameter of the problem but this assump-
tion is not always realistic. In RL, this problem is addressed with different approaches
such as inverse reinforcement learning , imitation learning or apprenticeship learning.
These three approaches remain superficially explored in the MARL literature compared
to the state of the art in RL. In this manuscript, we only studied the batch case and the
online learning case. We could explore how to leverage batch data or demonstrations
of an optimal policy to accelerate the learning process.

Bibliography

Optimization and Nonsmooth Analysis. (→ page 107.)

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org. (→ page 131.)

N. Akchurina. Multiagent Reinforcement Learning: Algorithm Converging to Nash
Equilibrium in General-Sum Discounted Stochastic Games. In Proc. of AAMAS,
2009. (→ page 38.)

A. Antos, C. Szepesvári, and R. Munos. Fitted-Q Iteration in Continuous Action-Space
MDPs. In Proc. of NIPS, 2008a. (→ pages 18 and 21.)

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71, 2008b. (→ page 21.)

T. Archibald, K. McKinnon, and L. Thomas. On the Generation of Markov De-
cision Processes. Journal of the Operational Research Society, 46:354–361, 1995.
(→ pages 71 and 128.)

J. A. Bagnell, S. M. Kakade, J. G. Schneider, and A. Y. Ng. Policy Search by Dynamic
Programming. In Proc. of NIPS, page None, 2003. (→ page 68.)

L. Baird et al. Residual Algorithms: Reinforcement Learning with Function Approxi-
mation. In Proc. of ICML, 1995. (→ pages 17, 108, 117, and 125.)

B. Banerjee and J. Peng. Adaptive policy gradient in multiagent learning. In Proc.
AAMAS. ACM, 2003. (→ page 39.)

R. Bellman. Dynamic Programming. Princeton University Press, 1957. (→ page 11.)

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation–a new computa-
tional technique in dynamic programming: Allocation processes. Mathematics of
Computation, 17, 1963. (→ page 18.)

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena
Scientific Belmont, MA, 1995. (→ pages 91 and 93.)

http://tensorflow.org/

166 Bibliography

V. Borkar. Stochastic Approximation with Two Time Scales. Systems & Control
Letters, 29(5):291–294, 1997a. (→ page 38.)

V. Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
1997b. (→ pages 146 and 148.)

V. S. Borkar. Stochastic approximation with ‘controlled markov’noise. Systems &
control letters, 2006. (→ pages 148 and 154.)

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. 2009.
(→ page 154.)

R. N. Borkovsky, U. Doraszelski, and Y. Kryukov. A user’s guide to solving dy-
namic stochastic games using the homotopy method. Operations Research, 58, 2010.
(→ page 37.)

B. Bošanský, V. Lisý, M. Lanctot, J. Čermák, and M. Winands. Algorithms for com-
puting strategies in two-player simultaneous move games. Artificial Intelligence, 237:
1 – 40, 2016. (→ pages 38, 51, 141, and 150.)

M. Bowling and M. Veloso. Rational and Convergent Learning in Stochastic Games.
In Proc. of IJCAI, 2001. (→ pages 39, 146, and 152.)

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees. CRC press, 1984. (→ page 52.)

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122,
2012. (→ page 39.)

M. Buro. Solving the Oshi-Zumo Game, pages 361–366. Springer US, 2004. (→ pages 51
and 150.)

L. Busoniu, R. Babuska, and B. De Schutter. A Comprehensive Survey of Multiagent
Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 2008. (→ page 155.)

L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška. Online least-squares policy
iteration for reinforcement learning control. In American Control Conference (ACC),
2010, 2010. (→ page 21.)

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge Univer-
sity Press, New York, NY, USA, 2006. (→ page 39.)

R. Correa and A. Seeger. Directional Derivative of a Minimax Function. Nonlinear
Analysis: Theory, Methods & Applications, 9(1):13–22, 1985. (→ page 108.)

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. (→ page 26.)

Bibliography 167

L. M. Dermed and C. L. Isbell. Solving stochastic games. In Advances in Neural
Information Processing Systems, 2009. (→ page 38.)

D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learn-
ing. In Journal of Machine Learning Research, pages 503–556, 2005. (→ pages 18
and 91.)

A.-M. Farahmand, C. Szepesvári, and R. Munos. Error Propagation for Approximate
Policy and Value Iteration. In Proc. of NIPS, 2010. (→ page 21.)

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer Science &
Business Media, 2012. (→ pages 29 and 124.)

J. A. Filar and B. Tolwinski. On the Algorithm of Pollatschek and Avi-ltzhak. Springer,
1991. (→ pages 32, 35, 105, 106, 112, and 120.)

V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scherrer. Classification-Based Policy
Iteration with a Critic. In Proc. of ICML, pages 1049–1056, 2011. (→ page 21.)

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Book in preparation for
MIT Press, 2016. (→ page 131.)

A. Greenwald, K. Hall, and R. Serrano. Correlated Q-learning. In Proc. of ICML,
2003. (→ page 39.)

S. Grunewalder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton. Modelling
Transition Dynamics in MDPs With RKHS Embeddings. In Proc. of ICML, 2012.
(→ pages 24, 110, and 127.)

T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. J. ACM,
60(1), 2013a. (→ page 16.)

T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy Iteration is Strongly Polynomial
for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor. JACM,
60(1):1, 2013b. (→ pages 34 and 44.)

S. Hart and A. Mas-Colell. Uncoupled dynamics do not lead to nash equilibrium. The
American Economic Review, 2003. (→ page 147.)

J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form games. In
Proc. of ICML, 2015. (→ page 39.)

J.-J. Herings and R. J. Peeters. Stationary equilibria in stochastic games: Structure,
selection, and computation. Journal of Economic Theory, 118, 2004. (→ page 37.)

P. J.-J. Herings and R. Peeters. Homotopy methods to compute equilibria in game
theory. Economic Theory, 42, 2010. (→ page 37.)

168 Bibliography

J. Hofbauer and W. Sandholm. On the global convergence of stochastic fictitious play.
Econometrica, 70(6):2265–2294, 2002. (→ pages 39, 40, 141, 145, 155, and 156.)

A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, 1966. (→ page 32.)

J. Hu and M. P. Wellman. Nash Q-Learning for General-Sum Stochastic Games.
Journal of Machine Learning Research, 4:1039–1069, 2003. (→ page 39.)

E. Kalai and E. Lehrer. Rational learning leads to nash equilibrium. Econometrica:
Journal of the Econometric Society, 1993. (→ page 38.)

N. Karmarkar. A New Polynomial-time Algorithm for Linear Programming. In Proc.
of ACM Symposium on Theory of Computing, 1984. (→ pages 27 and 51.)

M. Kearns, Y. Mansour, and S. Singh. Fast Planning in Stochastic Games. In Proc.
of UAI, 2000. (→ pages 93 and 99.)

D. Koller and R. Parr. Policy Iteration for Factored MDPs. In Proc. of UAI, pages
326–334, 2000. (→ pages 109 and 110.)

D. Koller, N. Megiddo, and B. Von Stengel. Fast algorithms for finding randomized
strategies in game trees. In Proc. of STOC. ACM, 1994. (→ page 27.)

M. G. Lagoudakis and R. Parr. Value Function Approximation in Zero-Sum Markov
Games. In Proc. of UAI, 2002. (→ pages 36, 108, and 109.)

M. G. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine
Learning Research, pages 1107–1149, 2003. (→ pages 18, 19, 20, 109, and 111.)

M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling. Monte carlo sampling for regret
minimization in extensive games. In Proc. of NIPS, 2009. (→ page 38.)

G. J. Laurent, L. Matignon, and N. Le Fort-Piat. The world of Independent learners
is not Markovian. International Journal of Knowledge-Based and Intelligent Engi-
neering Systems, 2011. (→ page 38.)

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of least-squares
policy iteration. Journal of Machine Learning Research, 13, 2012. (→ page 21.)

Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521:436–444, 2015.
(→ page 128.)

D. Leslie and E. Collins. Generalised weakened fictitious play. Games and Economic
Behavior, 56(2):285–298, 2006. (→ pages 39 and 141.)

B. Lesner and B. Scherrer. Non-stationary approximate modified policy iteration. 2015.
(→ pages 16 and 23.)

Bibliography 169

A. S. Lewis and M. L. Overton. Nonsmooth Optimization via BFGS. Submitted to
SIAM J. Optimiz, 2009. (→ pages 106, 107, and 112.)

A. S. Lewis and M. L. Overton. Nonsmooth Optimization via Quasi-Newton Meth-
ods. Mathematical Programming, 141(1-2):135–163, 2013. (→ pages 105, 106, 107,
and 117.)

L. Li, M. L. Littman, and C. R. Mansley. Online exploration in least-squares policy
iteration. In Proc. of AAMAS, 2009. (→ page 21.)

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous Control with Deep Reinforcement Learning. In Proc. of
ICLR, 2016. (→ pages 128 and 131.)

M. L. Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learn-
ing. In Proc. of ICML, 1994. (→ pages 39 and 152.)

H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton. Toward Off-Policy Learning
Control with Function Approximation. In Proc. of ICML, pages 719–726, 2010.
(→ page 108.)

O.-A. Maillard, R. Munos, A. Lazaric, and M. Ghavamzadeh. Finite-Sample Analysis
of Bellman Residual Minimization. In Proc. of ACML, 2010. (→ pages 21, 24, 124,
127, and 128.)

C. Meyer, J. Ganascia, and J. Zucker. Learning Strategies in Games by Anticipa-
tion. In Proc. of IJCAI 97, August 23-29, 1997, 2 Volumes, pages 698–707, 1997.
(→ page 51.)

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-Level Control Through
Deep Reinforcement Learning. Nature, 518:529–533, 2015. (→ page 128.)

R. Munos. Performance Bounds in Lp-norm for Approximate Value Iteration. SIAM
Journal on Control and Optimization, 46(2):541–561, 2007. (→ pages 21 and 91.)

R. Munos and C. Szepesvári. Finite-Time Bounds for Fitted Value Iteration. The
Journal of Machine Learning Research, 9:815–857, 2008. (→ page 124.)

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory,
volume 1. Cambridge University Press Cambridge, 2007. (→ page 26.)

J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business Media,
2006. (→ pages 106, 107, 116, and 117.)

S. D. Patek. Stochastic Shortest Path Games: Theory and Algorithms. PhD the-
sis, Massachusetts Institute of Technology, Laboratory for Information and Decision
Systems, 1997. (→ pages 31, 32, 33, 49, and 53.)

170 Bibliography

J. Perolat, B. Scherrer, B. Piot, and O. Pietquin. Approximate Dynamic Programming
for Two-Player Zero-Sum Markov Games. In Proc. of ICML, 2015. (→ pages 43, 51,
91, and 93.)

J. Perolat, B. Piot, B. Scherrer, and O. Pietquin. On the use of non-stationary strate-
gies for solving two-player zero-sum markov games. In Proc. of AISTATS, 2016.
(→ pages 63 and 129.)

B. Piot, M. Geist, and O. Pietquin. Difference of convex functions programming for
reinforcement learning. In Proc. of NIPS, 2014a. (→ pages 23, 24, 108, 110, 117,
124, 125, 127, 128, 134, and 135.)

B. Piot, M. Geist, and O. Pietquin. Boosted Bellman Residual Minimization Handling
Expert Demonstrations. In Proc. of ECML, 2014b. (→ pages 24 and 127.)

M. Pollatschek and B. Avi-Itzhak. Algorithms for Stochastic Games with Geometrical
Interpretation. Management Science, 15(7):399–415, 1969. (→ page 32.)

H. Prasad, P. LA, and S. Bhatnagar. Two-Timescale Algorithms for Learning Nash
Equilibria in General-Sum Stochastic Games. In Proc. of AAMAS, 2015. (→ pages 38
and 157.)

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, 1994. (→ pages 11, 12, 14, 15, 17, 53, and 114.)

M. Riedmiller. Neural Fitted Q Iteration–First Experiences with a Data Efficient
Neural Reinforcement Learning Method. In Proc. of ECML. 2005. (→ page 18.)

J. Robinson. An iterative method of solving a game. Annals of mathematics, pages
296–301, 1951. (→ page 39.)

B. Scherrer. Approximate Policy Iteration Schemes: A Comparison. In Proc. of ICML,
2014. (→ pages 23, 66, 67, and 68.)

B. Scherrer. Improved and generalized upper bounds on the complexity of policy
iteration. Mathematics of Operations Research, 41(3), 2016. (→ page 16.)

B. Scherrer and B. Lesner. On the Use of Non-Stationary Policies for Stationary
Infinite-Horizon Markov Decision Processes. In Proc. of NIPS, 2012. (→ pages 12,
23, 68, 70, 71, 92, and 99.)

B. Scherrer, M. Ghavamzadeh, V. Gabillon, and M. Geist. Approximate Modified
Policy Iteration. In Proc. of ICML, 2012. (→ pages 21, 45, 46, 48, 53, 55, 56, 58,
81, 82, and 124.)

L. S. Shapley. Stochastic Games. In Proc. of the National Academy of Sciences of the
United States of America, 1953. (→ pages 11, 32, and 93.)

Bibliography 171

L. S. Shapley. Some topics in two-person games. Advances in game theory, 1964.
(→ page 147.)

Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press, 2008. (→ page 26.)

Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the answer, what is
the question? Artificial Intelligence, 171(7):365 – 377, 2007. (→ pages 39 and 141.)

G. Taylor and R. Parr. Value Function Approximation in Noisy Environments Using
Locally Smoothed Regularized Approximate Linear Programs. In Proc. of UAI, 2012.
(→ pages 24 and 128.)

J. Van Der Wal. Discounted Markov Games: Generalized Policy Iteration Method.
Journal of Optimization Theory and Applications, 25(1):125–138, 1978. (→ pages 32,
33, 34, 35, 106, and 110.)

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.
(→ pages 24, 39, and 152.)

M. Zinkevich, A. Greenwald, and M. Littman. Cyclic Equilibria in Markov Games. In
Proc. of NIPS, 2006. (→ pages 78, 91, 92, 93, 117, 123, 125, 129, and 161.)

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in
games with incomplete information. In Proc. of NIPS, 2008. (→ page 27.)

172 Bibliography

	Summary of the Notations
	Part I. Introduction, Background, and Related Work
	Chapter Introduction
	3
	Structure of the dissertation
	Contributions

	Chapter Background and Related Work
	3
	Markov Decision Processes
	Normal-Form Games
	General-Sum Markov Games

	Part II. Approximate Dynamic Programming in Zero-Sum Two-Player Markov Games
	Chapter Approximate Dynamic Programming in Games
	2
	Approximate Dynamic Programming: A Unified Scheme
	Empirical Evaluation
	Conclusion and Perspectives
	Appendix: Demonstration of Lemma 3.2
	Appendix: Bound for AGPI-Q
	Appendix: Experiments

	2
	Chapter Improved Approximate Dynamic Programming Algorithms using non-stationary Strategies
	2
	Non-Stationary Strategy in Zero-Sum Two-Player Markov Games
	Algorithms
	Empirical Evaluation
	A Comparison
	Conclusion
	Appendix: NSVI
	Appendix: PSDP
	Appendix: NSPI
	Appendix: Figures

	2
	Chapter On the use of non-stationary strategies
	2
	Background on Cyclic Strategies and Nash Equilibrium
	The Value Iteration Algorithm for General-Sum MGs
	Illustrating example of lower bound
	Approximate Value Iteration
	Experiments
	Conclusion
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	2
	Part III. Learning in Games : A Bellman Residual Approach
	Chapter Bellman Residual Minimization in Zero-Sum Games
	2
	Background
	Newton's Method on the OBR with Linear Function Approximation
	Batch Learning in Games
	Quasi-Newton's Method on the OBR and on the POBR
	Experiments
	Conclusion
	Appendix
	Computation of the Gradient and of the Hessian

	Chapter Bellman Residual Minimization in General-Sum Games
	2
	Nash, -Nash and Weak -Nash Equilibrium
	Bellman Residual Minimization in MGs
	The Batch Scenario
	Neural Network Architecture
	Experiments
	Conclusion
	Proof of the Equivalence of Definition 2.4 and 7.1
	Proof of Theorem 7.1
	Additional curves

	Part IV. Independent Learning in Games
	Chapter Actor-Critic Fictitious Play
	1
	Specific Background
	Actor-Critic Fictitious Play
	Fictitious play in Markov Games
	Stochastic Approximation with Two-Timescale
	Experiment on Alesia
	Conclusion
	Proof of Lemma 8.2
	Proof of Theorem 8.1
	Convergence in Cooperative Multistage Games
	Proof of proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Analysis of Actor-Critic Fictitious Play
	On the Guarantees of Convergence of OFF-SGSP and ON-SGSP

	Part V. Conclusions and Future Work
	1
	Conclusion
	Future Work
	Bibliography

