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Abstract

Optimization methods for large-scale distributed query pro-

cessing on linked data

Linked Data is a term to define a set of best practices for publishing and interlinking

structured data on the Web. As the number of data providers of Linked Data increases,

the Web becomes a huge global data space. Query federation is one of the approaches

for efficiently querying this distributed data space. It is employed via a federated query

engine which aims to minimize the response time and the completion time. Response

time is the time to generate the first result tuple, whereas completion time refers to

the time to provide all result tuples.

There are three basic steps in a federated query engine which are data source

selection, query optimization, and query execution. This thesis contributes to the

subject of query optimization for query federation. Most of the studies focus on static

query optimization which generates the query plans before the execution and needs

statistics. However, the environment of Linked Data has several difficulties such as

unpredictable data arrival rates and unreliable statistics. As a consequence, static

query optimization can cause inefficient execution plans. These constraints show that

adaptive query optimization should be used for federated query processing on Linked

Data.
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In this thesis, we first propose an adaptive join operator which aims to minimize the

response time and the completion time for federated queries over SPARQL endpoints.

Second, we extend the first proposal to further reduce the completion time. Both

proposals can change the join method and the join order during the execution by using

adaptive query optimization. The proposed operators can handle different data arrival

rates of relations and the lack of statistics about them.

The performance evaluation of this thesis shows the efficiency of the proposed adap-

tive operators. They provide faster completion times and almost the same response

times, compared to symmetric hash join. Compared to bind join, the proposed op-

erators perform substantially better with respect to the response time and can also

provide faster completion times. In addition, the second proposed operator provides

considerably faster response time than bind-bloom join and can improve the comple-

tion time as well. The second proposal also provides faster completion times than the

first proposal in all conditions. In conclusion, the proposed adaptive join operators

provide the best trade-off between the response time and the completion time. Even

though our main objective is to manage different data arrival rates of relations, the

performance evaluation reveals that they are successful in both fixed and different data

arrival rates.

Keywords: Distributed Query Processing, Query Optimization, Adaptive Query Op-

timization, Linked Data, Query Federation, Performance Evaluation
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Résumé

Méthodes d’optimisation pour le traitement de requêtes répar-

ties à grande échelle sur des données liées

Données Liées est un terme pour définir un ensemble de meilleures pratiques pour

la publication et l’interconnexion des données structurées sur le Web. A mesure que

le nombre de fournisseurs de Données Liées augmente, le Web devient un vaste es-

pace de données global. La fédération de requêtes est l’une des approches permettant

d’interroger efficacement cet espace de données distribué. Il est utilisé via un moteur de

requêtes fédéré qui vise à minimiser le temps de réponse du premier tuple du résultat

et le temps d’exécution pour obtenir tous les tuples du résultat.

Il existe trois principales étapes dans un moteur de requêtes fédéré qui sont la

sélection de sources de données, l’optimisation de requêtes et l’exécution de requêtes.

La plupart des études sur l’optimisation de requêtes dans ce contexte se concentrent

sur l’optimisation de requêtes statique qui génère des plans d’exécution de requêtes

avant l’exécution et nécessite des statistiques. Cependant, l’environnement des Données

Liées a plusieurs caractéristiques spécifiques telles que les taux d’arrivée de données

imprévisibles et les statistiques peu fiables. En conséquence, l’optimisation de requêtes

statique peut provoquer des plans d’exécution inefficaces. Ces contraintes montrent que

l’optimisation de requêtes adaptative est une nécessité pour le traitement de requêtes
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fédéré sur les données liées.

Dans cette thèse, nous proposons d’abord un opérateur de jointure adaptatif qui vise

à minimiser le temps de réponse et le temps d’exécution pour les requêtes fédérées sur

les endpoints SPARQL. Deuxièmement, nous étendons la première proposition afin de

réduire encore le temps d’exécution. Les deux propositions peuvent changer la méthode

de jointure et l’ordre de jointures pendant l’exécution en utilisant une optimisation de

requêtes adaptative. Les opérateurs adaptatifs proposés peuvent gérer différents taux

d’arrivée des données et le manque de statistiques sur des relations.

L’évaluation de performances dans cette thèse montre l’efficacité des opérateurs

adaptatifs proposés. Ils offrent des temps d’exécution plus rapides et presque les mêmes

temps de réponse, comparé avec une jointure par hachage symétrique. Par rapport à

bind join, les opérateurs proposés se comportent beaucoup mieux en ce qui concerne le

temps de réponse et peuvent également offrir des temps d’exécution plus rapides. En

outre, le deuxième opérateur proposé obtient un temps de réponse considérablement

plus rapide que la bind-bloom join et peut également améliorer le temps d’exécution.

Comparant les deux propositions, la deuxième offre des temps d’exécution plus rapides

que la première dans toutes les conditions. En résumé, les opérateurs de jointure

adaptatifs proposés présentent le meilleur compromis entre le temps de réponse et

le temps d’exécution. Même si notre objectif principal est de gérer différents taux

d’arrivée des données, l’évaluation de performance révèle qu’ils réussissent à la fois

avec des taux d’arrivée de données fixes et variés.

Mot-clés: Traitement de requêtes distribuées, optimisation de requêtes, optimisation

de requêtes adaptative, données liées, fédération de requêtes, évaluation de perfor-

mances
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Chapter 1

Introduction

Abstract: This chapter introduces the context and motivations of the work presented

in this thesis. We start with describing the context and then we explain our prob-

lem position. We present our proposals to the mentioned problem and discuss our

contributions. Finally, we present the structure of the thesis.
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1.1 Context

The Web, which was proposed by Tim Berners-Lee, is one of the most important

developments of 90s. Although the Web is an information space for humans, it is

meaningless for machines since it consists of documents. In the early 2000s, Berners-Lee

et al. (2001) proposed the Semantic Web in which information is given a well-defined

meaning. In other words, the Semantic Web is an extended version of the Web which

provides a data space for both humans and machines. It is often referred to as the

Web of Data. In order to create such a global data space, the data should be opened,

published, and related to one another according to some rules which are defined by

Berners-Lee (2006). Publishing and connecting structured data on the Web in this way

is defined as Linked Data. It also refers to the collection of interrelated data sources

on the Web. In brief, the Semantic Web is the goal of providing both human-readable

and machine-readable data, whereas Linked Data provides the means to reach that

goal (Bizer et al., 2009).

As stated above, Linked Data makes the Web as a huge global data space which is

referred to as the Semantic Web. Querying this distributed data space is one of the

most important research problems. Therefore, we mainly focus on distributed query

processing on Linked Data in this thesis.

Linked Data query processing infrastructure can be categorized as central repository

and distributed repository, according to the data source location (Rakhmawati et al.,

2013). In central repository infrastructure, all data from different data sources are

aggregated in a single repository before query processing. In distributed repository

infrastructure, the query is executed on the distributed data sources. Although central

repository infrastructure provides efficient query processing, data is not always up-

to-date and adding a new data source is difficult. On the other hand, data is more
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up-to-date in distributed repository infrastructure. There are two main approaches for

query processing based on distributed repository infrastructure which are link traversal

(Hartig et al., 2009a) and query federation (Görlitz and Staab, 2011a).

Link traversal, also called follow-your-nose, can be simply defined as discovering

potentially relevant data by following the links between data. Related data sources

are discovered during the query execution without any data knowledge. One of the

well-known examples of link traversal approach is SQUIN (Hartig et al., 2009b; Hartig,

2013). The data sources are RDF documents in this concept and the intermediate

results are augmented with bindings for the common variables. The major advantage

of link traversal is providing up-to-date results and using the potential of the Web

by discovering data sources at run-time. However, this approach has some remark-

able weaknesses. The results can change according to the starting point and a wrong

starting point can increase intermediate results (Rakhmawati et al., 2013). Although

some heuristic query planning methods are employed by Hartig (2011), the mentioned

weaknesses cannot be solved. In other words, this approach cannot guarantee finding

all results because the relevant data sources change according to the starting point.

The second approach for distributed repository infrastructure, query federation, is

based on dividing a query into its subqueries and distributing them to the related

data sources. These processes are performed with a federated query engine. The

infrastructure is similar to mediation system architecture (Wiederhold, 1992), and thus

the engine can also be called the mediator. There are two main advantages of query

federation. The first one is providing up-to-date results and the other one is the

capability of guaranteeing finding all results. On the other hand, queries are executed

over SPARQL endpoints. For this reason, SPARQL endpoints of each relevant data

source are required in order to execute a query. This can be accepted as a shortcoming
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of this approach. However, (Rakhmawati et al., 2013) remarked that 68.14% of data

sources provide their SPARQL endpoints and we think that this number is increasing

day by day.

The common advantage of link traversal and query federation is providing up-to-

date results due to executing queries on the actual data sources. However, link traversal

does not guarantee complete results and has some performance problems. Because of

these reasons, we turn our attention to the second approach.

In this chapter, we first introduce the query federation approach in Section 2. Then,

in Section 3, we discuss the position of the problem that motivated us for the work

presented in this thesis. In Section 4 and Section 5, we state the contributions of this

thesis and we present the organization of the thesis, respectively.

1.2 Query Federation

Before presenting the query federation approach, we briefly introduce some main con-

cepts of Linked Data which are used several times in the thesis.

• Resource Description Framework (RDF) is defined as a standard model for data

interchange on the Web by W3 Consortium. RDF is also called as triple model

since it has a subject–predicate–object structure. The data model for Linked

Data is RDF.

• Triple patterns are similar to RDF triples except that each of subject, predicate,

and object may be a variable.1 Let s, p, o1 denote a certain subject, predicate,

and object respectively, and ?o2 is a variable object. tp1 = (s, p, o1) is a RDF

1https://www.w3.org/TR/rdf-sparql-query/
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triple, whereas tp2 = (s, p, ?o2) is a triple pattern. tp1 is a triple pattern with

certainty, which does not contain any variables.

• A subquery is a set of triple patterns. Listing 1.1 shows a query which finds

the director and the genre of movies directed by Italians (Haase et al., 2010).

〈?film dbpedia-owl:director ?director〉 is a triple pattern since ?film and ?director

are variables. The federated query engine decides the set of triple patterns that

composes each subquery.

• SPARQL is the query language for Linked Data.

• SPARQL endpoint is an HTTP based query processing service which enables

both humans and machines to query a data source via SPARQL language.

SELECT ?film ? director ?genre WHERE {

?film dbpedia -owl: director ? director .

? director dbpedia -owl: nationality dbpedia :Italy .

?x owl: sameAs ?film .

?x linkedMDB :genre ?genre . }

Listing 1.1: Query example

The main idea of query federation is quite similar to mediator-wrapper architecture

(Wiederhold, 1992). In mediator-wrapper architecture, firstly the relevant data sources

are selected, secondly the query is divided into its subqueries, thirdly subqueries are

executed on the distributed data sources through their wrappers, and finally the results

of the subqueries are combined by a mediator. Thus, a wrapper for each data source

and a mediator are needed in this architecture. The architecture of query federation

is similar to the mediator-wrapper architecture in integrating the information from
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different data sources via a mediator. However, they are different from each other in

accessing the data sources. In the mediator-wrapper architecture, wrappers are used to

access the datasets due to the heterogeneous data models, whereas SPARQL endpoints

are used to access the data sources without wrappers due to the common data model

(RDF) in query federation. Each query is decomposed into subqueries and directed to

the SPARQL endpoints of the selected data sources to be executed. The results of the

subqueries are aggregated and finally returned to the user.

Figure 1.1 summarizes the working principal of a federated query engine which

includes three main tasks as follows: i) data source selection, ii) query optimization,

and iii) query execution. In data source selection, the relevant data sources for each

triple pattern or set of triple patterns of a query are determined. The subqueries and

intermediate results are transmitted over the Web of Data. Thus, query optimization is

substantially important in query federation. The fundamental responsibilities of query

optimization are grouping the triple patterns, deciding the join strategy, and ordering

the triple patterns. Query execution part is dedicated to the execution of the query

operators defined by the optimizer and preparation of the result set.

1.3 Problem Position

In the beginning of the thesis, we survey query processing approaches used in Linked

Data and we turn our attention to query federation which is one of these approaches.

It provides up-to-date results and has the capability of guaranteeing to find all re-

sults. As mentioned previously, query federation is performed with a federated query

engine which has three basic steps as data source selection, query optimization, and

query execution. Since the first step is data source selection, initially researchers have
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Figure 1.1: Federated query processing

mainly focused on data source selection. We aim to contribute to the subject of query

optimization for query federation in this thesis.

There are naive studies about query optimization that generally focus on tradi-

tional query optimization, also called static query optimization (Selinger et al., 1979).

It generates query plans before the execution and needs statistics to estimate the size

of intermediate results. However, federated query processing is done on the distributed

data sources on the Web which causes unpredictable data arrival rates. In addition,

most of the statistics are missing or unreliable. For these reasons, we think that adap-

tive query optimization (Deshpande et al., 2007) should be used in this unpredictable

environment.

The objective of query optimization in federated query engines is to minimize both

the response time and the completion time. Response time refers to the time to gen-

erate the first result tuple, whereas completion time refers to the time to provide all

result tuples. Response time and completion time include communication time, I/O

26



time, and CPU time. Since the communication time dominates other costs in dis-

tributed environments, the main objective of federated query engines can be stated as

to minimize the communication cost. These facts also show the importance of adaptive

query optimization for query federation over Linked Data.

In conclusion, adaptive query optimization deals with unforeseen variations of run-

time environment. In our domain, the run-time environment is the Web of Data, and

the main objective is to minimize the response time and the completion time. Thus,

adaptive query optimization is a need to manage unpredictable data arrival rates and

missing statistics to minimize the response time and the completion time. Acosta et al.

(2011) and Lynden et al. (2011) have shown that response time and completion time

can be decreased 5-6 times and in average by using adaptive query optimization. These

results show the significance of the problem. For these reasons, in this thesis, we focus

on query optimization problem, more specifically, adaptive query optimization in query

federation on Linked Data.

1.4 Contributions

We begin this thesis by surveying query processing approaches used in Linked Data

and focus on query federation which is one of these approaches. Following this survey,

we first propose a join operator which uses adaptive query optimization for federated

queries over SPARQL endpoints. Second, we present an extended version of our first

join operator. We present these operators for both single join and multi-join queries.

The contributions of this thesis are listed as follows:

• A literature survey about federated query processing on Linked Data (Oguz et al.,

2015): We synthesize the data source selection, join methods, and query opti-
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mization methods of existing query federation engines. We also present the major

challenges of federated query processing on Linked Data.

• Adaptive Join Operator (Oguz et al., 2016): As explained in the previous section,

the objective of query optimization in federated query engines is to minimize the

response time and the completion time. The first one is the time to provide the

first result tuple, while the second one is the time to provide all result tuples.

Adaptive join operator aims to manage different data arrival rates of relations

in order to minimize both the response time and the completion time. It is able

to change the join method during the execution according to remaining time

estimations. Thus, it manages different data arrival rates of relations. To the

best of our knowledge, there is not any study that proposes an adaptive join

operator which aims to reduce both the response time and the completion time

for federated queries over SPARQL endpoints. The results of the performance

evaluation show that adaptive join operator provides both optimal response time

and completion time for single join queries and multi-join queries. The proposed

operator provides the best trade-off between the response time and the completion

time in both fixed and different data arrival rates.

• Extended Adaptive Join Operator (Oguz et al., In press): Communication time

has the highest effect on response time and completion time in distributed envi-

ronments. Thus, we can say that the main goal of query optimization in query

federation engines is to minimize the communication cost. To further reduce

the communication time in completion time, we propose an extended version of

the adaptive join operator through adding another join method to our candidate

join methods. The new candidate join method employs a space efficient data
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structure to minimize the communication cost. In conclusion, we improve our

previous proposal in order to further reduce the completion time. Performance

evaluation shows that the extended join operator provides optimal response time.

Furthermore, the proposed operator further reduces the completion time and it

has the adaptation ability to different data arrival rates.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the steps in feder-

ated query processing, gives a detailed synthesis of studies related to query federation

approach and discusses the major challenges of federated query processing on Linked

Data. This chapter also analyzes the studies in relational databases and query fed-

eration which use adaptive query optimization. In Chapter 3, we concentrate on the

adaptive query optimization problem in query federation which is one of the mentioned

challenges in the previous chapter. We first propose an adaptive join operator for sin-

gle join queries and multi-join queries for federated queries over SPARQL endpoints.

Then, we extend our previous proposal to further reduce the completion time. Chapter

4 covers the results and discussions on performance evaluation of the work presented

in the previous chapter. Finally, conclusions and future work are discussed in Chapter

5.
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Chapter 2

State of the Art

Abstract: This chapter provides the literature survey about query processing on

Linked Data. We initially give an overview of query processing approaches on Linked

Data and then focus on the query federation approach. We introduce the main steps in

this approach, and provide a detailed insight on them by comparing the current feder-

ated query engines. Furthermore, we present a qualitative comparison of these engines

and discuss the major challenges of federated query processing on Linked Data. Then,

we continue with the literature review of adaptive query optimization for relational

databases. Finally, we focus on adaptive query optimization in query federation.
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2.1 Introduction

Bizer et al. (2009) defines Linked Data as a set of best practices for publishing and

connecting structured data on the Web. These practices are known as Linked Data

principles. In order to contribute to the Semantic Web, the data should be published

and connected to others according to the Linked Data principles. The resulting form

of the Web data is also referred to as Linked Data (Hartig, 2014). The Linked Data

principles defined by Berners-Lee (2006) are as follows:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

These principles clearly show that Uniform Resource Identifier (URI) (Berners-Lee

et al., 2005), Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999), Resource

Description Framework (RDF) (Klyne and Carroll, 2004), and RDF Query Language

(SPARQL) (Harris et al., 2013) are the building stones of Linked Data. The first and

the second rules declare that an entity should be identified via an HTTP URI scheme

in order to be served as a globally unique identifier, and in order to provide access

to a structured data representation of it. The third rule presents the data model of

Linked Data and the query language for this data model which are RDF and SPARQL,

respectively. RDF provides a graph-based data model that describes things including

their relationships with other things. They are represented as a number of triples

and each triple has three parts which are subject, predicate, and object. Thus, RDF
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is referred to as triple model. Finally, the fourth rule enforces to connect data with

others in order to create Web of Data (Berners-Lee, 2006; Bizer et al., 2009; Hartig

and Langegger, 2010).

Linking Open Data project1 is the most known performer of the Linked Data prin-

ciples (Bizer et al., 2009). Its goal is to extend the Web of Data by identifying the

existing open data sources as RDF and setting RDF links between the data items from

different data sources. The number of data sources related to that project have been

increased from 12 to 1,139 as of May 2007 to January 20172. There are well-known

organizations among the participants, such as BBC (Kobilarov et al., 2009), the New

York Times3, the UK government (Shadbolt et al., 2012), and the Library of Congress

(Ford, 2013). DBpedia (Auer et al., 2007), Linked Movie Database (Hassanzadeh and

Consens, 2009), and MusicBrainz (Swartz, 2002) are also some of the important par-

ticipants.

To conclude, a large number of data providers publish and connect their structured

data on the Web as Linked Data. Thus, the Web of Data becomes a global data space.

In other words, Linked Data creates a global and distributed data space on the Web.

Querying this huge data space is one of the important research questions in this research

topic. Link traversal and query federation are the two approaches for querying this

huge data space on the distributed data sources. Link traversal (Hartig et al., 2009b)

finds the related data sources during the query execution, whereas query federation

(Görlitz and Staab, 2011a) selects the related data sources before the execution. Link

traversal has the disadvantage of not guaranteeing complete results. For this reason,

we concentrate on query federation.

1https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2http://lod-cloud.net/
3http://data.nytimes.com/
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In this chapter, we review the literature of query federation in detail to understand

the state of the art in this approach. In Section 2.2, we introduce the query federation

approach and synthesize the existing data source selection methods, join methods,

and query optimization methods in federated query processing through surveying the

promising federated query engines. We also provide a qualitative comparison of these

studies. In addition, we discuss the challenges of federated query processing on Linked

Data. In Section 2.3, we focus on adaptive query optimization (Deshpande et al., 2007)

which is one the challenges mentioned in the previous section. We first review adaptive

query optimization for relational databases. Then, we focus on the studies in Linked

Data which use adaptive query optimization. Finally in Section 2.4, we present our

conclusions about the literature survey and we introduce the ideas motivating the work

presented in Chapter 3.

2.2 Federated Query Processing on Linked Data

Federated query processing, which is also called query federation, is based on divid-

ing a query into its subqueries and distributing the query execution of them over the

SPARQL endpoints of the selected data sources. The intermediate results from the

data sources are aggregated and the final results are generated. These processes are

performed with a federated query engine. The engine performs three main steps which

are data source selection, query optimization, and query execution. Data source se-

lection selects the relevant data sources for each triple pattern of a query. Query

optimization is responsible for grouping the triple patterns, deciding the join method,

and ordering the triple patterns. Query optimization is substantially important in

query federation, because the subqueries and the intermediate results are transmitted
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over the Web of Data. The last step, query execution, is dedicated to the execution of

the query operators defined by the optimizer and preparation of the result set.

In the following subsections, we synthesize data source selection methods, join meth-

ods, and query optimization in query federation by surveying the promising engines in

the literature.

2.2.1 Data Source Selection

We classify the data source selection methods as follows: (i) predicate-based selection,

(ii) type-based selection, (iii) rule-based selection, and (iv) SPARQL ASK queries. All

these methods except the last method need metadata catalogs. For this reason, we first

discuss the metadata catalogs in query federation and then propose our classification.

Metadata catalogs can be defined as SPARQL endpoint descriptions that describe

various properties about the data source belonging to this endpoint. The existing

query federation engines use three types of metadata catalogs: (i) service descriptions

(Quilitz and Leser, 2008), (ii) VoID (Vocabulary of Interlinked Datasets) descriptions

(Alexander and Hausenblas, 2009), and (iii) list of predicates. We want to remark that

dataset and data source are used interchangeably.

• Service descriptions: A service description provides metadata about the RDF

data and cover some statistical information such as total triples and number

of triples with a predicate. In other words, a service description specifies the

information about the data source, which means a set of RDF triples, that is

published by a single provider.

• VoID descriptions: VoID descriptions are similar to service descriptions that are

used to provide metadata about the RDF data and cover some statistics about
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it. Furthermore, there is another concept in VoID descriptions which is called

linkset. A linkset describes a set of RDF triples where all subjects refer to one

dataset and all objects belong to another dataset (Alexander and Hausenblas,

2009). Thus, VoID descriptions can be used to describe the metadata of RDF

datasets with the interlinking to other datasets. Moreover, statistics about the

datasets can be defined in VoID descriptions as in service descriptions. Number

of triples and number of instances of a class or property are some examples of the

statistics here. Cyganiak et al. (2011) proposed a VoID guide to data publishers

and consumers. Besides, Charalambidis et al. (2015a) proposed an extension

of VoID descriptions which introduces new concepts in order to provide more

detailed descriptions.

• List of predicates: List of predicates is also used as a metadata catalog. Although

they are useful in order to decide the relevant data sources of a query, they do

not include statistical information about the data.

As mentioned in the beginning of this section, according to our classification, the

data source selection methods in query federation are divided into four basic categories:

predicate-based selection, type-based selection, rule-based selection, and SPARQL ASK

queries.

• Predicate-based selection: It is based on selecting the relevant data sources of

a triple pattern by matching its predicate with the covered predicates in the

metadata catalog.

• Type-based selection: This type of data source selection uses the type definitions

(rdf:type) in the metadata catalogs in order to select the relevant data sources.
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• Rule-based selection: This method selects the relevant data sources according to

defined rules which are generated by analyzing the relations between the triple

patterns of a query. First two categories and this category are not mutually dis-

joint, as rule-based selection includes predicate-based and type-based selections.

• SPARQL ASK queries: A SPARQL ASK query returns a boolean indicating

whether a query pattern matches or not4. Thus, data sources of a query can

be selected by sending SPARQL ASK queries to the candidate endpoints. If the

result of the query is TRUE, this data source is selected as a relevant data source.

DARQ (Quilitz and Leser, 2008) uses service descriptions as metadata catalogs

which must be generated before the query execution. The engine employs predicate-

based data source selection. Hence it compares the predicate of a triple pattern with

the defined predicates of each service description. Therefore, the engine cannot support

unbound predicate triple patterns.

SPLENDID (Görlitz and Staab, 2011b) uses VoID descriptions as metadata catalogs

in data source selection. Data sources are indexed for every predicate and type by

using VoID statistics. However, the statistics in VoID descriptions can be insufficient

to select a triple pattern’s relevant data source or data sources. This situation exists

especially for the triples with common predicates such as rdfs:label. Since almost all

datasets use this predicate, SPLENDID sends SPARQL ASK queries for the triple

patterns with bound variables which are not covered in VoID descriptions. All data

sources are selected for the triple patterns which have unbound predicates. Semagrow

(Charalambidis et al., 2015b) uses VoID descriptions and SPARQL ASK queries in

data source selection. The authors stated that Semagrow’s data source selection is

4https://www.w3.org/TR/rdf-sparql-query/
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pattern-wise like SPLENDID without detailed explanation. For this reason, we accept

that its data source selection method is the same with SPLENDID’s.

LHD (Wang et al., 2013) is another query engine that uses VoID descriptions to-

gether with SPARQL ASK queries in data source selection. It first uses VoID descrip-

tions and then sends SPARQL ASK queries to refine the selected data sources. Its data

source selection is based on predicates as DARQ. However, it can support unbound

predicates without eliminating irrelevant data sources as SPLENDID.

WoDQA (Akar et al., 2012; Yönyül, 2014) also uses VoID descriptions and SPARQL

ASK queries in data source selection. Akar et al. (2012) proposed different rules based

on query pattern analysis, because they think that predicate-based and type-based se-

lections are not enough in order to eliminate all irrelevant data sources due to having

common predicates or types. These rules include three perspectives which are IRI-based

analysis, linking analysis, and shared variable analysis. IRI-based analysis selects the

relevant data sources by matching the IRIs in the triple pattern with the void:uriSpace

and void:vocabulary properties of VoID descriptions. Therefore, IRI-based analysis in-

cludes the predicate-based and type-based selection methods. By this means, WoDQA

does not only selects the data sources according to the predicates or types involved in

a query, it considers all the IRIs in a query. In linking analysis, WoDQA takes into

consideration the linkset definitions in the VoID descriptions. Lastly, in the shared

variables analysis, WoDQA considers that triple patterns with shared variables can

affect their related data sources. In other words, shared variables analysis aims to

eliminate the irrelevant data sources.

List of predicates can also be used as a metadata catalog, as stated previously.

ANAPSID (Acosta et al., 2011) keeps a list of predicates, the execution timeout prop-

erty of the endpoint, and the statistics as a metadata catalog. The endpoints’ execu-
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tion timeouts and statistics are collected by an adaptive sampling technique (Blanco

et al., 2012; Vidal et al., 2010) or they can be collected during the query execution.

ANAPSID uses predicate-based selection and chooses the endpoints whose timeouts

are longer than the estimated execution time of triple patterns. However, the details

are not given in their publication so it is not clear how ANAPSID estimates the triple

patterns’ execution times. ADERIS (Lynden et al., 2010, 2011) also uses list of pred-

icates as metadata catalogs and employs predicate-based selection. It sends SPARQL

SELECT queries with DISTINCT keyword to each endpoint to find out the unique

predicates. Besides, ADERIS adds data sources manually when it is impossible to do

that automatically5.

FedX (Schwarte et al., 2011) sends SPARQL ASK queries for each triple pattern

of a query in order to decide if it can be answered by the endpoint or not. It also

caches the relevance of each triple pattern with each data source in order to minimize

the SPARQL ASK queries.

Table 2.1 shows the data source selection methods in the existing federated query

engines. FedX (Schwarte et al., 2011) just sends SPARQL ASK queries in order to

select the data sources. Although SPLENDID (Görlitz and Staab, 2011b) uses VoID

descriptions to select the data sources based on predicates and types, it sends SPARQL

ASK queries when the descriptions cannot help to select the relevant data sources.

DARQ (Quilitz and Leser, 2008) selects the data sources based on predicates by using

service descriptions. However, it does not send SPARQL ASK queries when the service

description fail to select the related data sources. LHD (Wang et al., 2013) employs

predicate-based selection via VoID descriptions and sends SPARQL ASK queries in

order to eliminate the irrelevant data sources. ANAPSID (Acosta et al., 2011) and

5http://code.google.com/p/sparql-aderis/
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Table 2.1: Data source selection methods in query federation

Predicate-based
selection

Type-based
selection

Rule-based
selection

SPARQL ASK
queries

DARQ X
FedX X
SPLENDID X X X
ANAPSID X
ADERIS X
LHD X X
WoDQA X X
Semagrow X X X

ADERIS (Lynden et al., 2010, 2011) use predicate-based selection as DARQ. However,

ANAPSID also considers the execution timeout information of endpoints as well. Dif-

ferent from other engines, WoDQA (Akar et al., 2012; Yönyül, 2014) aims to eliminate

all irrelevant data sources and employs rule-based selection which includes predicate-

based and type-based selections. It also uses SPARQL ASK queries.

In conclusion, data source selection is a difficult task without metadata catalogs. In

this case, SPARQL ASK queries are used in order to select the relevant data sources.

In addition, Saleem et al. (2016) stated that caching the results of the SPARQL ASK

queries greatly reduces the data source selection time.

2.2.2 Join Methods

The second step in federated query processing is query optimization which covers sub-

query building, join method selection, and join ordering. In order to improve the

coherence of the thesis, we present the join methods in this subsection and we will

discuss the query optimization in the following subsection.

Join methods in the existing engines can be categorized as follows: (i) bind join,
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(ii) nested loop join, (iii) merge join, (iv) hash join, (v) symmetric hash join, and (vi)

multiple hash join.

Bind Join

Bind join (Haas et al., 1997) passes the bindings of the intermediate results of the outer

relation to the inner relation in order to filter the result set. It is substantially efficient

when the intermediate results are small.

Bind join, which is also called bound join, is commonly used by federated query

engines. Schwarte et al. (2011) proposed a bind join technique for FedX which uses

SPARQL UNION6 constructs to group a set of mappings in a subquery to be sent

to the relevant data sources in a single remote request. WoDQA (Akar et al., 2012;

Yönyül, 2014) uses bind join as well. Different from FedX, WoDQA employs bind

join method with SPARQL FILTER7 expression. In addition, SPARQL 1.1 Query

Language8 proposes SERVICE9 keyword to explicitly execute certain subqueries on

different SPARQL endpoints, and WoDQA takes the advantage of SERVICE keyword

in its bind join. Charalambidis et al. (2015b) tested bind join with both UNION and

VALUES10 expressions for Semagrow. Although bind join with UNION expression

requires additional processing in order to map the binding variables and their origi-

nal names, the authors stated that it provides faster completion time than VALUES

expression with the query they tested. Semagrow employs UNION expressions in a

parallel fashion.

DARQ (Quilitz and Leser, 2008), ANAPSID (Acosta et al., 2011), ADERIS (Lynden

6https://www.w3.org/TR/rdf-sparql-query/#alternatives
7https://www.w3.org/TR/sparql11-query/#expressions
8https://www.w3.org/TR/sparql11-query/
9https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/

10https://www.w3.org/TR/sparql11-query/#inline-data
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et al., 2011), SPLENDID (Görlitz and Staab, 2011b), and LHD (Wang et al., 2013)

use bind join as well. We will discuss their usage later. Different from others, DARQ

employs bind join when the data sources have limitations on access patterns (Florescu

et al., 1999). Data sources with limited access patterns need some variables in a query

to be bound in order to answer the query (Quilitz and Leser, 2008). For this reason,

DARQ keeps the definition of limitations on access patterns in service descriptions.

Nested Loop Join

Nested loop join, as understood from its name, performs two nested loops over the

relations. The inner relation is scanned for every binding in the outer relation while

the bindings which provide the join condition are included in the result. Nested loop

join is used by DARQ (Quilitz and Leser, 2008) when there is no limitation on access

patterns. ADERIS (Lynden et al., 2010, 2011) applies index nested loop join method

in query execution which uses an index on join attributes. Hence it provides an efficient

access path for the inner relation.

As mentioned previously, WoDQA (Akar et al., 2012; Yönyül, 2014) uses bind join.

However, it employs nested loop join in order to join the intermediate results of the

relations locally. In other words, WoDQA uses nested loop join as a complementary

part of bind join.

Merge Join

Merge join is based on merging two sorted relations on the join attribute. Hence this

method needs both relations sorted and the join type should be an equi-join that uses

only equality comparisons on the join attribute. Consider two relations with n1 and

n1 tuples, respectively. The cost of nested loop join is proportional to n1 ∗ n2, while
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the cost of merge join is proportional to n1 + n2. Besides, the cost of sorting n pages

is proportional to n log n. As a result, merge join is useful when there is an equi-join

and when the relations are previously sorted. In general, sorting the relations and

employing merge join is efficient when the cardinalities of relations are high (Ozsu

and Valduriez, 2011). Semagrow (Charalambidis et al., 2015b) can employ merge join

method besides bind join. It calculates the costs of both join methods and chooses the

method with the lower cost.

Hash Join

Hash join is another join method used in federated query processing. It consists two

phases. A hash table of one of the relations, generally the relation with the lower

cardinality, is created in the first phase. In the second phase, the other relation’s

tuples are read, hashed and compared with the values in the hash table. These phases

are also referred to as build phase and probe phase, respectively. A result tuple is

generated when a match is found.

SPLENDID (Görlitz and Staab, 2011b) and LHD (Wang et al., 2013) use hash

join which requests the results of the join argument in parallel and joins them locally.

Although hash join is a symmetric join method conceptually, it is asymmetric in its

operands (Wilschut and Apers, 1991).

Symmetric Hash Join

Symmetric hash join (Wilschut and Apers, 1991) is one of the earliest symmetric join

algorithms. It supports pipelining in parallel database systems by maintaining a hash

table for each relation. In other words, symmetric hash join creates two hash tables

instead of generating single hash table as in hash join method. Thus, symmetric hash
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join is a non-blocking join method which produces the output of tuples as early as

possible. When a tuple arrives from a relation, it is probed in the other relation’s hash

table. Besides, the tuple is added to its own hash table to be used later in the process.

Double pipelined hash join (Ives et al., 1999) and XJoin (Urhan and Franklin, 2000)

are the extended versions of symmetric hash join. Different from symmetric hash join,

double pipelined hash join adapts its execution when the memory is insufficient and

XJoin moves some parts of hash tables to the secondary storage when the memory is

full.

Acosta et al. (2011) proposed a non-blocking join method, called adaptive group join

(agjoin), which is based on symmetric hash join and XJoin. By this means, ANAPSID

can produce results even when an endpoint becomes blocked and can hide delays from

users. The authors also proposed another join method called adaptive dependent join

(adjoin) which is an extended version of dependent join (Florescu et al., 1999). It sends

requests to the data sources in an asynchronous fashion and hides delays from the user.

In other words, it sends the request to the second data source when tuples from the

first source are received. Therefore, adjoin can be accepted as bind join, because it

needs the bindings in order to answer the query. Both agjoin and adjoin flush to the

secondary memory when the memory is full as XJoin does.

Multiple Hash Join

LHD (Wang et al., 2013) uses multiple hash tables in order to integrate subqueries in

parallel. The result of a relation is stored in its hash table and it is probed against the

hash tables of other relations. Although using multiple hash tables is similar to multi-

way symmetric hash join (Viglas et al., 2003), their operations are different. LHD uses

these hash tables in order to execute the subqueries in a parallel fashion. Multi-way
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Table 2.2: Join methods in query federation

Bind join Nested
loop join

Merge
join

Hash join Symmetric
hash join

Multiple
hash join

DARQ X X
FedX X
SPLENDID X X
ANAPSID X X
ADERIS X X
LHD X X
WoDQA X
Semagrow X X

symmetric hash join creates and uses them as the tuples from the relations arrive.

Besides, LHD employs bind join when pre-computed bindings are used. It separates

the input bindings via a hash table on the dependent variable. If there is only one

binding in the query, the variables in the query is replaced by the values of the binding.

Otherwise, the bindings are specified with VALUES11 syntax.

Table 2.2 shows the join methods used by federated query engines. As the table

shows, bind join is the most popular join method among the federated query engines.

Different from others, ANAPSID (Acosta et al., 2011) uses a non-blocking join method

which is an extended version of symmetric hash join and XJoin. However, it uses its

own data structure instead of hash tables.

2.2.3 Query Optimization

In this subsection we will discuss the query optimization methods in query federation.

The goal of query optimization in federated query processing is to minimize the response

time and the completion time which include communication time, I/O time, and CPU

11https://www.w3.org/TR/sparql11-query/#inline-data
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time. The communication time dominates the others and it is directly proportional to

the amount of intermediate results. Join method and join order affect the number of

intermediate results. Therefore, join method selection and join ordering are the two

essential parts of query optimization in federated query processing. In addition, the

number of sent HTTP requests to the SPARQL endpoints affects the communication

time as well. For this reason, grouping the appropriate triple patterns and sending them

together to the related endpoint is important in order to reduce the communication

time.

Consequently, query optimizer of a federated query engine covers three main deci-

sions which are subquery building, join method selection, and join ordering. Following

the query optimization, the last step in federated query processing is the query execu-

tion in which subqueries are executed over the SPARQL endpoints of the selected data

sources according to the decisions made in query optimization. In the following of this

section, we will discuss these decisions.

2.2.3.1 Subquery Building

A subquery of a SPARQL query comprises a set of triple patterns. Subquery building

refers to grouping the triple patterns of a query in order to decrease the number of

HTTP requests and intermediate results. We classify the subquery building methods

used in federated query engines as follows: (i) exclusive grouping, (ii) exclusive grouping

considering shared variables, and (iii) owl:sameAs grouping. We first define these

methods and then explain their roles in the existing engines.

• Exclusive grouping: Exclusive grouping is a heuristic which groups the triple

patterns if they have one and only one relevant data source. The grouped triple

patterns are called exclusive groups. In other words, the triple patterns in an
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exclusive group must refer to a single data source. This heuristic aims to reduce

both the HTTP requests and the intermediate results.

• Exclusive grouping considering shared variables: This heuristic is an extended

version of exclusive grouping. It creates different exclusive groups for the triple

patterns without shared variables. Exclusive grouping method can group triple

patterns which do not have shared variables, hence it causes redundant interme-

diate results.

• owl:sameAs grouping: Consider <tp1 = ?x foaf:knows ?y .> and <tp2 = ?y

owl:sameAs ?z> (Schwarte et al., 2011). This method creates a subquery for the

triple pattern which has owl:sameAs predicate with an unbound subject variable

(tp2 ) and the triple pattern with the same unbound variable (tp1 ). It is used

when there is an assumption that this predicate is used in order to indicate the

internal resources of a dataset.

The idea behind the exclusive grouping was proposed by Quilitz and Leser (2008)

for DARQ. However, the method was titled as exclusive grouping by Schwarte et al.

(2011) for FedX. Although ANAPSID (Acosta et al., 2011) does not use the name

of exclusive grouping, it groups the triple patterns which refer to the same endpoint.

SPLENDID (Görlitz and Staab, 2011b) uses both exclusive grouping and owl:sameAs

grouping. The assumption about the owl:sameAs grouping here is that all data sources

describe owl:sameAs links for their data. This grouping can be employed when third

party datasets with external owl:sameAs links do not exist in the federation. Although

Semagrow (Charalambidis et al., 2015b) uses exclusive grouping as well, it is a configu-

ration option which can be disabled. WoDQA (Akar et al., 2012; Yönyül, 2014) is the

only engine which uses exclusive grouping considering shared variables.
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As presented in data source selection, ADERIS (Lynden et al., 2010, 2011) generates

metadata catalogs which cover distinct predicate values of each data source. ADERIS

utilizes from them in subquery building. It groups the subqueries if their predicates

are covered in the same data source. The main idea of this grouping is the same with

exclusive grouping.

In conclusion, there are three methods for subquery building which are exclusive

grouping, exclusive grouping considering shared variables and owl:sameAs grouping.

Although some engines group the triple patterns which refer to the same data source,

they do not name this method as exclusive grouping. On the other hand, owl:sameAs

grouping is used when there is an assumption that this predicate is used for the resources

of one dataset. Each triple pattern of a query is accepted as a subquery without using

these methods.

Table 2.3 shows the subquery building methods in query federation. In order

to decrease the HTTP requests, DARQ (Quilitz and Leser, 2008), FedX (Schwarte

et al., 2011), SPLENDID (Görlitz and Staab, 2011b), ANAPSID (Acosta et al., 2011),

ADERIS (Lynden et al., 2010, 2011), and Semagrow (Charalambidis et al., 2015b) use

exclusive grouping, whereas WoDQA (Akar et al., 2012; Yönyül, 2014) employs exclu-

sive grouping considering shared variables with the aim of decreasing the redundant

intermediate results as well. SPLENDID (Görlitz and Staab, 2011b) uses owl:sameAs

grouping and exclusive grouping together. However, owl:sameAs grouping cannot be

used when other datasets use owl:sameAs predicate to define that the resource in their

datasets indicates to the same resource in other datasets. LHD (Wang et al., 2013)

does not group the triple patterns, it sends them in a parallel fashion.
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Table 2.3: Subquery building methods in query federation

Exclusive grouping Exclusive grouping
shared variables

owl:sameAs grouping

DARQ X
FedX X
SPLENDID X X
ANAPSID X
ADERIS X
WoDQA X
Semagrow X

2.2.3.2 Join Ordering

Ibaraki and Kameda (1984) stated that finding an optimization cost for a query is

admitted as computationally intractable. Starting from this point of view, Gardarin

and Valduriez (1990) specified that heuristics are necessary for optimizing the cost

functions. Due to huge and distributed data space, query processing on Linked Data

is a difficult task. Thus, using heuristic methods for join ordering in federated query

processing is an expected case. FedX (Schwarte et al., 2011) and WoDQA (Akar

et al., 2012; Yönyül, 2014) employ various heuristics for join ordering. We name these

heuristics as follows:

• Free variables heuristic (FVH): Considers the number of free and bound variables.

The number of free variables of triple patterns and groups are counted with

considering the already bound variables from the earlier iterations. In other

words, the free variables which have become bound from the earlier iterations are

accepted as bound variables.

• Exclusive group priority heuristic (EGPH): Gives priority to exclusive groups

which are presented in Section 2.2.3.1.
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• Position and type based selectivity heuristic (PTSH): Calculates the heuristic

selectivity value of each triple pattern as multiplying the calculated coefficients

of each node according to their positions with the calculated coefficients of each

node according to their types.

• Shared variables heuristic (SVH): Reorders the join order by considering the

shared variables between triples patterns.

FedX (Schwarte et al., 2011) orders both triple patterns and groups of triple patterns

by using free variables heuristic and exclusive group priority heuristic. Triple patterns

and groups are chosen with the lowest cost iteratively. WoDQA (Akar et al., 2012;

Yönyül, 2014) orders the triple patterns of each query by using position and type based

selectivity heuristic after creating the exclusive groups of each query. The coefficient

of position and types are assigned according to their selectivities. It considers that

subjects are more selective than objects, and objects are more selective than predicates.

A similar strategy is used by Stocker et al. (2008) for the Jena ARQ optimizer in which

they categorize this estimation as heuristics without pre-computed statistics. Although

(Stocker et al., 2008) state that there are more triples matching with a predicate than

a subject or an object in a typical data source, they specify that making a distinction

between subject and object is more difficult. On the other hand, WodQA orders the

selectivities of types as URIs, literals, and variables.

After ordering the triple patterns in an exclusive group by employing position and

type based selectivity heuristic, WoDQA employs shared variables heuristic for ordering

exclusive groups. The triple patterns which do not have shared variables, are changed

with the next triple pattern to process the related joins as early as possible. After or-

dering the triple patterns of each exclusive group, WoDQA orders the exclusive groups.

It calculates the mean selectivity of each group by using position and type based selec-
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tivity heuristic. Lastly, this order is updated by employing shared variables heuristic

for exclusive groups. The exclusive group which has more shared variables than the

consequent group, moves up in the order of exclusive groups. The aim of ordering the

exclusive groups is to decrease intermediate results as well.

DARQ (Quilitz and Leser, 2008), SPLENDID (Görlitz and Staab, 2011b), ADERIS

(Lynden et al., 2010, 2011), LHD (Wang et al., 2013), and Semagrow (Charalambidis

et al., 2015b) use cost-based methods for join ordering. DARQ, SPLENDID, LHD,

and Semagrow use dynamic programming (DP), whereas ADERIS employs greedy al-

gorithm (GA) for the search strategy. Dynamic programming is breadth-first, while

greedy algorithm is depth-first. Hence dynamic programming builds all possible plans

before choosing the best one, whereas greedy algorithm builds only one plan (Ozsu and

Valduriez, 2011). The cost functions of DARQ, SPLENDID, and LHD are explained in

the following subsection. All these engines consider the cardinality estimations, cost for

sending a triple pattern and cost for receiving a result. Although Semagrow considers

the cardinality estimations and communication costs, it assigns a unique communica-

tion cost factor to each data source such as 10%. Charalambidis et al. (2015b) stated

that different communication cost factors can be employed assuming that this informa-

tion is available in the metadata catalogs. DARQ estimates the cardinalities by using

the statistics in the service descriptions. On the other hand, SPLENDID, LHD, and

Semagrow use VoID statistics in order to estimate the cardinalities.

LHD classifies the execution of joins as follows: (i) joins which do not require input

bindings (plain access plan) and (ii) joins which require pre-computed bindings (de-

pendent access plan). The joins in the first class can be executed in a parallel fashion,

whereas the second one should be executed in a sequence due to the need of bind-

ings. LHD uses plain access plans for the triple patterns which have concrete subject
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or object. We refer to that heuristic as concrete subject or object heuristic (CSOH).

Therefore, it first executes these triple patterns and then uses dynamic programming.

Secondly, it determines the actual order of triple patterns to execute them in parallel

by considering the type of access plans, bound variables, and the already bound vari-

ables from the previous iterations. It executes the triple patterns with plain access

plan concurrently, while the triple patterns with the dependent access are executed as

soon as its bindings are ready.

The first version of ADERIS (Lynden et al., 2010) builds predicate tables and

adaptively joins two tables as they become complete while the other predicate tables

are being generated. The second version of ADERIS (Lynden et al., 2011) uses an

adaptive cost model for query optimization. Equation 2.1 (Lynden et al., 2011) shows

the cost model of ADERIS where incard is the estimated input cardinality for each

iteration, lookupT ime refers to the average time taken to probe a given table t and R

is the remaining set of tables that need to be joined to the current plan. Furthermore,

join ordering is based on a greedy algorithm. The engine estimates cardinality at each

stage for join ordering. In brief, ADERIS supports adaptive query processing.

cost(t) = incard · lookupT ime(t) ·
∑
i∈R

lookupT ime(i) · cardEst(t) (2.1)

2.2.3.3 Join Method Selection

As stated in Section 2.2.2, DARQ, SPLENDID, ANAPSID, ADERIS, LHD, and Sema-

grow implement two different join methods. We classify join method selection methods

as follows: (i) binding limitation-based, (ii) cost-based, and (iii) time constrained-

based.

ANAPSID (Acosta et al., 2011) employs bind join when a binding is required by a
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data source, while DARQ (Quilitz and Leser, 2008) uses bind join when the data sources

have limitations on access patterns. We refer to this method as binding limitation-based

(BLB). However, DARQ uses cost models for join method selection when there is no

binding limitation. We refer to this selection method as cost-based (CB).

SPLENDID (Görlitz and Staab, 2011b) uses cost models for join method selection

as DARQ. Equation 2.2 (Quilitz and Leser, 2008) and Equation 2.3 (Quilitz and Leser,

2008) are the cost functions of DARQ for nested loop join and bind join, respectively,

where q and p are the relations, R(q) is the result size of q, ct is the transfer cost for one

tuple, and cr is the transfer cost for one query. q′
2 is the relation with the bindings of

q1. SPLENDID uses the same cost functions (Equation 2.2 and Equation 2.3) for hash

join and bind join, respectively. Although DARQ and SPLENDID consider transfer

costs, they ignore the different data arrival rates of relations.

cost(q1 1NLJ q2) = |R(q1)| · ct + |R(q2)| · ct + 2 · cr (2.2)

cost(q1 1BJ q2) = |R(q1)| · ct + |R(q1)| · cr + |R(q2
′)| · ct (2.3)

As mentioned previously, Semagrow can employ merge join and bind join. When

the join type is equi-join, it calculates their costs and chooses the join method that

has a lower cost. The engine estimates these cost by using the statistics in the VoID

descriptions. Hence the join method selection of Semagrow is cost-based, too.

LHD is yet another federated query engine which selects the join method according

to the cost functions. It proposes two different plans according to the usage of bindings

in query execution, which are plain access plan and dependent access plan. The plain

access plan of a triple pattern executes the triple pattern directly. Therefore, these
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joins, such as hash join and nested loop join, do not need precomputed bindings. The

dependent access plan uses the intermediate bindings in order to execute the triple

pattern. Bind join is an example of these type of joins. Equations 2.4, 2.5, 2.6, and 2.7

(Wang et al., 2013) show the cost functions where a plain access plan of triple pattern

t is denoted as acc(t), and dependent access plan with bindings of q is represented as

acc(q, t). Also rtq is the time of sending a triple pattern or a precomputed result to a

data source, and rtt is the time of receiving a result. These cost functions are quite

similar to the cost models of DARQ and SPLENDID.

After data source selection, ADERIS generates predicate tables for each predicate

in the query where the tables include subject and object values as the columns. These

predicate tables are joined by using index nested loop join. A predicate table can be

missing when an endpoint may refuse to answer the queries due to the timeouts. In

that case, the engine sends a subquery with bindings for the subject or object values

to the corresponding endpoint, hence the join method becomes bind join. We refer to

this selection method as time constrained-based (TCB).

cost(q 1 p) = maximum(cost(q), cost(p)) (2.4)

cost(q 1B p) = cost(q) + cost(acc(card(q), t)) (2.5)

cost(acc(t)) = rtq + card(t) · rtt (2.6)

cost(acc(q, t)) = card(q) · rtq + card(q 1 t) · rtt (2.7)

Table 2.4 shows the join method selection and join ordering methods in query feder-

ation which are substantially related with each other. FedX (Schwarte et al., 2011) and

WoDQA (Akar et al., 2012; Yönyül, 2014) use heuristics, whereas DARQ (Quilitz and
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Leser, 2008), SPLENDID (Görlitz and Staab, 2011b), ADERIS (Lynden et al., 2011),

LHD (Wang et al., 2013), and Semagrow (Charalambidis et al., 2015b) propose cost

functions for join ordering. FedX orders the joins by using free variable heuristic (FVH)

and exclusive grouping priority heuristic (EGPH). WoDQA first orders the triple pat-

terns by using position and type based selectivity heuristic (PTSH) and shared variable

heuristic (SVH). Second, it orders the exclusive groups by SVH. DARQ, SPLENDID,

and Semagrow (Charalambidis et al., 2015b) use cost-based (CB) method and dynamic

programming (DP) for join method selection and join ordering, respectively. DARQ

also uses binding limitation-based (BLB) method for join method selection. ANAPSID

(Acosta et al., 2011) selects the join method by employing BLB as well. LHD uses

concrete subject or object heuristic (CSOH) and employs dynamic programming for

join ordering. It uses CB method for join method selection. ADERIS uses greedy

algorithm (GA) for join ordering and employs time constrained-based (TCB) method

for join method selection.

Table 2.4: Join ordering and join method selection in query federation

Join ordering Join method selection

FVH EPGH PTSH SVH CSOH DP GA BLB TCB CB

DARQ X X X
FedX X X
SPLENDID X X
ANAPSID X
ADERIS X X
LHD X X X
WoDQA X X
Semagrow X X
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2.2.4 Discussion on Query Federation on Linked Data

In this section, we summarize the main results from the previous section with a quali-

tative comparison and we state the challenges in query federation.

We compare the federated query engines qualitatively according to the following

criteria:

• No preprocessing per query: Data source selection without using a metadata

catalog might cause some performance problems due to the need of preprocessing

for each query.

• Unbound predicate queries: Predicates are less selective than subjects and objects

in a typical data source (Stocker et al., 2008). Therefore, selecting the data source

of a query with an unbound predicate is difficult. However, the data source

selection methods of some engines are based on predicates. These engines might

have some problems to handle queries with unbound predicates.

• Parallelisation: Parallelisation is another fact which improves the performances

of engines due to the concurrent query processing. It can be achieved in two forms

which are inter-operator parallelism and intra-operator parallelism. More than

one operations of a query are executed concurrently in inter-operator parallelism,

whereas a single operator is executed by multiple processors in intra-operator

parallelism.

• Adaptive query processing: Adaptive query processing (Deshpande et al., 2007) is

a form of dynamic query processing which reacts to unforeseen variations of run-

time environment (Ozsu and Valduriez, 2011). Since federated query processing

is done on the Web, adaptive query processing is required in order to manage the
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changing conditions such as different data arrival rates, endpoint unavailability,

and timeouts.

Table 2.5 shows the qualitative comparison of the engines with the mentioned cri-

teria. All engines use metadata catalogs in the data source selection except FedX

(Schwarte et al., 2011). For this reason, it needs preprocessing per query before query

processing. It sends SPARQL ASK queries to data sources for each query. However,

it caches these results to be used later. Other engines primarily employ metadata

catalogs. Actually, ADERIS (Lynden et al., 2010, 2011) sends SELECT DISTINCT

queries to decide which predicates are covered by each data source. However, it does

not send individual SPARQL ASK queries for each triple pattern in the query.

DARQ (Quilitz and Leser, 2008), ANAPSID (Acosta et al., 2011), and Sema-

grow(Charalambidis et al., 2015b) cannot manage unbound predicate queries, because

their data source selection methods are predicate based only. Although data selection

methods of ADERIS, SPLENDID (Görlitz and Staab, 2011b), and LHD (Wang et al.,

2013) are based on predicates as well, they handle queries with unbound predicates by

selecting all available data sources. They might cause some performance problems but

the queries with unbound predicates can be supported by this way.

FedX, ANAPSID, LHD, and Semagrow execute the triple patterns in a parallel

fashion. FedX integrates a parallelisation infrastructure to execute subqueries at dif-

ferent endpoints concurrently and uses a pipelining approach to send intermediate

results to the next operator as they are ready. ANAPSID executes the triple patterns

in parallel by proposing a join method based on symmetric hash join and XJoin. LHD

separates the query plans and the communication with data sources for parallelisation.

Several threads are used for sending triple patterns to a data source and for receiving

results from a data source. It also considers the type of access plans, bound variables
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Table 2.5: Comparison of Query Federation Engines

No prepro-
cessing per

query

Unbound
predicate
queries

Parallelisation Adaptive
query

processingInter-operator Intra-operator

DARQ X
FedX X X
SPLENDID X X
ANAPSID X X X
ADERIS X X X
LHD X X X X
WoDQA X X
Semagrow X X

and the already bound variables from the previous iterations to adopt parallelisation.

Furthermore, it uses multiple hash joins. FedX and Semagrow provide inter-operator

parallelism, whereas ANAPSID employs intra-operator parallelism. LHD affords both

inter-operator and intra-operator parallelism.

Only ANAPSID and ADERIS employ adaptive query processing. ANAPSID pro-

poses a non-blocking join method, whereas ADERIS changes the join order dynamically.

Besides, Semagrow uses reactive paradigm for union operators, in which the basic idea

is based on notifying the operators when the data is available. Although it provides a

kind of adaptivity, it can be accepted as a pipelining approach.

2.2.5 Challenges of Query Federation on Linked Data

During surveying the studies in query federation on Linked Data, we have noticed that

there are some challenges and open research issues in this field, which are metadata

management, caching results, and adaptive query processing. In this subsection, we

state the first two challenges and suggest some ideas to handle them. We will discuss
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the third challenge in the following section in detail.

2.2.5.1 Metadata Management

Metadata catalogs are useful in data source selection in query federation. As mentioned

previously, service descriptions, VoID descriptions, and predicate lists are the examples

of metadata catalogs used by the federated query engines. Service descriptions were

presented by Quilitz and Leser (2008) for DARQ and VoID descriptions were proposed

by Cyganiak et al. (2011) as a vocabulary which allows to define linked RDF datasets.

In other words, VoID descriptions aim to provide a standard metadata publishing ap-

proach for RDF data. In addition, statistics about the entire dataset or the linkset can

be expressed in the VoID descriptions and these statistics can be used in query opti-

mization. Therefore, VoID descriptions are more appropriate for generating metadata

catalogs due to providing the metadata of the data sources and their relations with

the other data sources. However, there are some open research questions as follows.

How is this metadata catalog generated? How often is this metadata catalog updated?

More generally, how is metadata management supported?

A few number of data sources provide their metadata descriptions in practice, al-

though most of the engines use metadata catalogs for data source selection. Thus,

existing engines should generate these descriptions before query processing. Actually,

VoID descriptions provide a standardized vocabulary to express the metadata about

the dataset or the linkset and the statistics about the dataset. However, how are the

metadata information and the statistics obtained? In addition, just generating a meta-

data catalog is not enough in practice. Keeping it up-to-date is an important aspect to

be considered. The changes in the datasets should be covered in the catalogs as well.

To conclude, there are two main challenges in metadata catalog usage. The first one
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is generating the metadata catalogs. The other one is keeping the metadata catalogs

up-to-date. In order to overcome these challenges, a metadata catalog management

framework should be generated which can perform the following tasks: (i) gathering

and expressing the metadata of the datasets and maybe the statistics with VoID de-

scriptions, (ii) monitoring the changes in datasets, and (iii) updating the metadata

catalogs according to these changes. Thus, an up-to-date, standardized metadata cat-

alog management can be provided and it can be both used in data source selection and

query optimization in federated query processing.

2.2.5.2 Caching Results

Caching has an important role in improving the performance in distributed query

processing. Adali et al. (1996) proposed a query result caching mechanism by using the

invariants which define the certain relationships between two different queries. When

a query is covered by another query, the results of the covered query can be found from

the cache by employing the invariants. The invariants should be decided through the

knowledge about the data sources in the queries. Another option is employing quite

general invariants with few information about the data source. Adali et al. (1996) stated

that caching provides savings in time, and invariants is useful when the query is not

explicitly cached. Caching is also employed by search engines to improve the response

time as well. Gan and Suel (2009) discussed the studies for caching in search engines

and Cambazoglu et al. (2012) classified the methods of caching as result, similarity,

semantic, and rank caching.

Martin et al. (2010) proposed an approach as a proxy layer between Semantic Web

applications and the SPARQL endpoints for caching. When the query is sent by the

user, the cache is checked and if the results of this query exists in the cache, the answer
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is returned without executing it over the endpoint. If the query is not cached previously,

it is executed over its endpoint and then cached. Another proposal for caching of Linked

Data was presented by Williams and Weaver (2011), which uses the last modification

date information and the up-to-dateness in the HTTP headings. Although these studies

(Martin et al., 2010; Williams and Weaver, 2011) provide caching results for the same

queries, they cannot manage queries with small variations.

Lorey and Naumann (2013) proposed another caching approach for SPARQL queries

with assuming that similar queries are executed over a SPARQL endpoint. For this

reason, its strategy is based on prefetching which allows to gather data that is poten-

tially useful for subsequent queries. In other words, this approach caches the results

of query patterns to be used later. However, when the query pattern is too general,

prefetching can be inefficient on large-scale datasets due to gathering large amount of

data (Yönyül, 2014). Also, this approach cannot find all candidate subgraph matches

of a SPARQL query (Papailiou et al., 2015).

In our literature survey (Oguz et al., 2015), we stated that combining caching results

and live query results can decrease the query processing time of query federation engines

as in distributed mediator systems. We also remarked that this caching mechanism

should cover the subsets of a query and should have an updating strategy in order

to make federated query processing more efficient. Besides, we discussed the usage of

caching and live querying by employing hybrid query processing, which was used for

link traversal (Umbrich et al., 2012a,b).

Papailiou et al. (2015) proposed an approach for adaptive indexing and caching

frequent query patterns by monitoring the workload queries. It uses a canonical labeling

technique for SPARQL queries without apriori knowledge about the dataset and the

workload queries. The queries with different triple pattern orders or variables have the
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same canonical label which is used a key for the cached results. Moreover, Papailiou

et al. (2015) stated that their approach is applicable to all systems.

FedX (Schwarte et al., 2011) caches the results of the SPARQL ASK queries in the

data source selection. WoDQA (Yönyül, 2014) caches the results of queries without

considering subquery macthing. AVALANCHE (Basca and Bernstein, 2014), which

is a technique for querying Web of Data, caches partial results of a query during the

execution which can be used for the same subquery. We think that federated query

engines should extend their caching mechanism in order to minimize their response

and completion times.

2.3 Adaptive Query Optimization

In this section, we discuss the research on adaptive query optimization in both relational

databases and query federation over Linked Data.

2.3.1 Adaptive Query Optimization for Relational Databases

Query optimization, which is performed by a query optimizer, refers to the process of

generating an execution plan for the query. Therefore, the query optimizer is essential

for a database management system engine. The query optimizer consists three com-

ponents: a search space, a cost model, and a search strategy. The search space refers

to the possible execution plans for the query. The cost model estimates the cost of a

given execution plan. The search strategy explores the search space and selects the

best plan with respect to the cost model. In other words, the query optimizer selects

the execution plan which has the lowest cost according to the cost model (Ozsu and

Valduriez, 2011; Yin et al., 2015).

63



Traditional query optimization (Selinger et al., 1979) can be inefficient in distributed

systems due to the strong variations in the environment. Different from traditional

query processing, adaptive query processing covers monitoring, assessing, and reacting

activities in order to handle unforeseen variations of run-time conditions. Therefore,

adaptive query processing has a feedback loop between the execution environment

and the query optimizer (Ozsu and Valduriez, 2011). Adaptive query processing and

adaptive query optimization are often used interchangeably.

Adaptive query processing for relational databases has been studied in detail by

the database community. There are various degrees of adaptivity from evolutionary

methods to revolutionary methods (Laddhad, 2006). Evolutionary methods focus on

generating plans that can be switched during the execution according to delays or

estimation errors. Their level of modification is inter-operator in which the feedback

is collected from different physical operators (Gounaris et al., 2002). Some known

examples of evolutionary methods are query scrambling (Amsaleg et al., 1998), mid-

query re-optimization (Kabra and DeWitt, 1998), Tukwilla / ECA rules (Ives et al.,

1999), proactive re-optimization (Babu et al., 2005), and progressive query optimization

(Han et al., 2007; Markl et al., 2004; Kache et al., 2006). Revolutionary methods are

more recent and their level of modification is intra-operator in which the feedback is

collected during the evaluation of a physical operator (Gounaris et al., 2002). First

group of intra-operator methods are adaptive operators like double pipelined hash

join (Ives et al., 1999), XJoin (Urhan and Franklin, 2000), and mobile join (Arcangeli

et al., 2004; Ozakar et al., 2005). The operators in this group is able to adapt its

execution according to the variations during the execution. Second group of intra-

operator methods come up with the invention of eddies which enable researchers to

optimize the query processing from fine-grained to tuple-level (Avnur and Hellerstein,
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2000; Raman et al., 2003; Deshpande, 2004; Deshpande and Hellerstein, 2004; Bizarro

et al., 2005; Zhou et al., 2005).

2.3.2 Adaptive Query Optimization for Query Federation on

Linked Data

Query federation over Linked Data is done on the distributed data sources on the

Web. Hence data arrival rates of relations are unpredictable and most of the statis-

tics are missing or unreliable. Therefore, we think that adaptive query optimization

(Deshpande et al., 2007) is a necessity in order to handle such strong variations of this

environment.

ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011) are the

two federated query engines which use adaptive query optimization over SPARQL

endpoints. ANAPSID proposes a non-blocking join method based on symmetric hash

join (Wilschut and Apers, 1991) and Xjoin (Urhan and Franklin, 2000). ADERIS

(Lynden et al., 2010) joins two predicate tables as they become complete, whereas

ADERIS (Lynden et al., 2011) uses a cost model for dynamically changing the join

order. Also, AVALANCHE (Basca and Bernstein, 2010, 2014) considers adaptivity.

It collects statistical information about relevant data sources and then generates its

execution plan to provide the first k tuples. The proposals of this thesis, namely

AJO (Oguz et al., 2016) and EAJO (Oguz et al., 2016), also consider adaptive query

optimization.

Table 2.6 shows the comparison of adaptive query optimization in query federation

depending on the following criteria:

• Server (S): Indicates the type of the server for publication and querying of Linked
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Data. SPARQL endpoints (se) and triple pattern fragment servers (tpfs) are the

possible values. A triple pattern fragment (Verborgh et al., 2014) is a Linked Data

Fragment with three components which are selector, count metadata, and con-

trols. A selector is a single triple pattern, count metadata refers to as metadata

with total triple count, and controls provide retrieving any other triple pattern

fragment of the same dataset.

• Join Method (JM): Shows the used join methods in the studies which are catego-

rized as nested loop join (nlj), index nested loop join (inlj), symmetric hash join

(shj), bind join (bj), and bind-bloom join (bbj).

• Type of Statistics (ToS): States of the collection time of statistics which has the

following values: run-time (rt) and metadata (md).

• Frequency of Feedback (FoF): Shows the level of modification and has two possible

values: inter-operator (inter) and intra-operator (intra).

• Type of Event (ToE): Shows the case triggering the decision and has two values

which are data arrival rates (dar) and any.

• Logical Plan (LP): Displays the query plan modifications at the logical level and

are categorized as reformulation of the remaining plan (rf), operator reorder-

ing (op_ro), and no effects (no) for adaptive query optimization in relational

databases by Gounaris et al. (2002). Reformulation of the remaining plan in-

cludes the operator reordering.

• Physical Plan (PP): Represents the query plan modifications at the physical level

and are categorized as usage of adaptive operators (uao), operator replacement

(op_rep), and no effects (no) for relational databases by Gounaris et al. (2002).
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• Type of Modification (ToM): Can be employed as rescheduling (rs), dynamic

operator (do), and rescheduling and replacement (rs & rp).

As shown in Table 2.6, ADERIS (Lynden et al., 2011), ANAPSID (Acosta et al.,

2011), AVALANCHE (Basca and Bernstein, 2014), AJO (Oguz et al., 2016), and EAJO

(Oguz et al., 2016) use adaptive query optimization for queries over SPARQL endpoints.

On the other hand, nLDE (Acosta and Vidal, 2015) proposes a client-side engine against

triple pattern fragment servers which is similar to distributed eddies (Tian and DeWitt,

2003). Hence nLDE uses adaptive query optimization for queries over triple pattern

fragments.

The proposals for SPARQL endpoints prefer to collect the statistics in run-time

due to unreliable or missing statistics. Therefore, up-to-dateness of statistics is pro-

vided. On the other hand, nLDE uses metadata catalogs for the statistical information

because triple pattern fragments contain both data, metadata, and controls. The sec-

ond parameter in Table 2.6 is the join method. Bind join is used by all the studies,

except nLDE, and nested loop join is employed by ADERIS and nLDE. ANAPSID

proposes two join methods which are agjoin and adjoin. The first one is a non-blocking

join method which is based on symmetric hash join and XJoin. The second one is

an extended version of dependent join (Florescu et al., 1999) which sends the request

to the second data source when tuples from the first source are received. Adjoin can

be accepted as a bind join because it needs the bindings. As illustrated in Table 2.6,

ANAPSID, AJO, nLDE and EAJO have the opportunity to produce results incremen-

tally since they use symmetric hash join. AVALANCHE defines its join method as

distributed join and it employs bloom filter optimised joins to reduce communication

cost. The difference between distributed join and bind join is not explained in their pa-

pers. We categorize its join methods as bind join and bind-bloom join. AVALANCHE
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Table 2.6: Comparison of adaptive query optimization in query federation

S JM ToS FoF ToE LP PP ToM
ADERIS se inlj/bj rt inter any op_ro uao rs
ANAPSID se shj/bj rt intra dar no uao do
AVALANCHE se bj/bbj rt inter dar op_ro no rs
nLDE tpfs shj/nlj md intra any op_ro no rs
AJO se shj/bj rt intra dar rf op_rep rs&rp
EAJO se shj/bj/bbj rt intra dar rf op_rep rs&rp

and EAJO, in brief, can use bind-bloom join which has the advantage of decrease the

completion time.

The third parameter for the comparison is the frequency of feedback. The studies

in inter-operator level collect feedback from different physical operators and react to

the execution of them according to the feedback. On the other hand, feedback is

collected during the processing of the physical operator in the intra-operator level.

The limit of collection can vary from a single tuple to a block of tuples (Gounaris

et al., 2002). ADERIS and AVALANCHE have the inter-operator feedback frequency,

whereas ANAPSID, nLDE, AJO and EAJO have the intra-operator one. ANAPSID’s

feedback belongs to using an adaptive operator. The difference between the intra-

operator of nLDE and our proposals (AJO and EAJO) is based on the amount of

accumulated data before reacting. Although nLDE checks the feedback for each tuple,

AJO and EAJO do it when all tuples of a relation arrive. The next parameter is the

type of event. ANAPSID, AVALANCHE, AJO and EAJO focus on data arrival rates,

whereas ADERIS and nLDE check their decisions at each step.

AJO and EAJO distinguish from others when we consider the sixth and seventh

parameters in Table 2.6, namely logical plan and physical plan. Different from others,

AJO and EAJO provide reformulation of the remaining plan at the logical level, and
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operator replacement at the physical level by the ability of changing both the join order

and the join method.

The last comparison parameter is the type of modification. ANAPSID’s type of

modification belongs to a dynamic operator, whereas the types of modification of

ADERIS, AVALANCHE and nLDE are rescheduling due to changing the join order for

the rest of the query. AJO and EAJO, besides rescheduling, cover replacement which

has the meaning of changing the join method.

2.4 Conclusion

In the first section of this chapter, we have analyzed and synthesized the fundamental

components of federated query processing which are data source selection, join meth-

ods, and query optimization. We have compared the existing federated query engines

according to our proposed classifications. We have also stated the major challenges

in federated query processing which are metadata management, caching results, and

adaptive query processing; and we have discussed the first two challenges. Since we

believe that the third challenge is the most crucial one, we have discussed it separately

in the second section.

Linked Data environment has strong difficulties such as unpredictable data arrival

rates and unreliable statistics. Most of the studies of query optimization in query

federation focus on static query optimization (Selinger et al., 1979) which generates

query execution plans before the execution and needs statistics (Quilitz and Leser,

2008; Schwarte et al., 2011; Görlitz and Staab, 2011b; Wang et al., 2013; Charalambidis

et al., 2015b). However, static query optimization can cause inefficient execution plans.

We think that adaptive query optimization (Deshpande et al., 2007) can handle the
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mentioned difficulties of Linked Data environment.

ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 2010, 2011) use adap-

tive query optimization for federated queries over SPARQL endpoints. ANAPSID aims

to minimize the response time, while ADERIS intends to minimize the completion time.

However, to the best of our knowledge, there is not any study that aims to minimize

both the response and the completion times when the query is executed over SPARQL

endpoints.

In this thesis, we propose adaptive join operators which aim to minimize the re-

sponse time and the completion time for federated queries over SPARQL endpoints.

Both of our proposals can change the join method and the join order during the execu-

tion by using adaptive query optimization. Different from other studies which consider

adaptive query optimization in query federation, our proposals can reformulate the

remaining plan by replacing the join operator or changing the join order.

In the following chapter, we first present our operators which aim to handle the

variations of Linked Data environment with considering the main goal of query opti-

mization in federated query processing.
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Chapter 3

Optimization Methods for Query

Federation on Linked Data

Abstract: In this chapter, we present two proposals which aim to contribute to the

query optimization of federated query processing on Linked Data. Since the objective

of query optimization in federated query engines is to minimize the response time

and the completion time, we first propose an adaptive join operator for federated

queries over SPARQL endpoints with this goal. The proposed operator can change

the join method during the execution by using adaptive query optimization. The

operator can also change the join order in order to minimize the completion time. It

can handle unexpected data arrival rates of relations and missing statistics. To the

best of our knowledge, adaptive join operator is the first study which aims to minimize

both the response time and the completion time for federated queries over SPARQL

endpoints. Second, we propose an extension of the adaptive join operator, namely

extended adaptive join operator, which aims to further reduce the completion time by

employing an additional join method.
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3.1 Introduction

So far, we have presented the context, the position of the problem that motivated us for

the work in this thesis, and the current state of the art. As mentioned in the previous

chapters, federated query processing is performed with a federated query engine which

distributes the subqueries to the SPARQL endpoints of the selected data sources to

execute and then integrates the results of the subqueries to generate the final result set.

The objective of query optimization in these engines is to minimize the response and

the completion times. Response time refers to the time to produce the first result tuple,

while completion time refers to the time to provide all result tuples. Communication

cost is the dominant cost in both response time and completion time. Thus, the main

goal of federated query engines can be stated as to minimize the communication cost.

To summarize the existing studies, Schwarte et al. (2011) use heuristics in query

optimization, whereas Quilitz and Leser (2008), Görlitz and Staab (2011a) and Wang

et al. (2013) concentrate on static query optimization which produces an execution

plan at query compilation time and uses statistics to estimate the cardinality of the

intermediate results. However, federated query processing is done on the distributed

data sources on the Web, and due to this, data arrival rates are unpredictable. In ad-

dition, most of the statistics are missing or unreliable. For these reasons, we think that

adaptive query optimization (Deshpande et al., 2007) is a need in this unpredictable

environment. However, there are only two engines, ANAPSID (Acosta et al., 2011)

and ADERIS (Lynden et al., 2010, 2011) which consider adaptive query optimization

for query federation. Acosta et al. (2011) proposed a non-blocking join method based

on symmetric hash join (Wilschut and Apers, 1991) and Xjoin (Urhan and Franklin,

2000) to minimize the response time, whereas Lynden et al. (2011) proposed a cost

model for dynamically changing the join order to minimize the completion time. In
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addition to these federated query engines, Basca and Bernstein (2010, 2014) proposed

a technique called AVALANCHE which gathers statistics on the fly before query exe-

cution and produces only the first k results with the aim of minimizing the response

time. To the best of our knowledge, there is not any study that exploits an adaptive

join operator that aims to minimize both the response time and the completion time

for federated queries over SPARQL endpoints. In addition, communication time has

the highest effect on overall cost as mentioned earlier. Therefore, join method has an

important role in query optimization. However, there is not any study which changes

the join method during the execution according to the data arrival rates.

The contribution of this chapter is as follows. First, we propose an adaptive join

operator for federated query processing on Linked Data which can change the join

method during the execution by using adaptive query optimization. Second, we propose

an extended version of our previous operator, called extended adaptive join operator,

which aims to further reduce the completion time.

In Section 3.2, we propose the adaptive join operator and present the algorithms

for single join queries and multi-join queries in detail. In Section 3.3, we introduce

the extended adaptive join operator and its algorithms for both single and multi-join

queries.

3.2 Adaptive Join Operator for Federated Queries

Join method selection plays an important role in query optimization. Symmetric hash

join (Wilschut and Apers, 1991) is a join method which maintains a hash table for

each relation. Therefore, it is defined as a non-blocking join method and produces the

first result tuple as early as possible. Bind join (Haas et al., 1997), which is the most
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popular join method among the federated query engines (Oguz et al., 2015), passes

the bindings of the intermediate results of the outer relation to the inner relation in

order to filter the result set. In brief, symmetric hash join provides short response

time, whereas bind join provides short completion time when the cardinality of the

intermediate results is low.

Equation 3.1 and Equation 3.2 are the cost functions of symmetric hash join and

bind join, respectively. Equation 3.2 is a variation of the formula used by (Quilitz and

Leser, 2008) in which they assume that the transfer costs of different relations are the

same. However, we consider different transfer costs of relations. Ri and Rj are the

relations while card(R) is the number of tuples in R. The transfer costs of Ri and Rj for

one result tuple are cti
and ctj

, respectively. Rj
′ is the relation with the bindings of Ri.

Actually, card(Rj
′) means card(Ri1Rj) when we assume that the common attribute

values are unique.

cost(Ri 1SHJ Rj) = max
((

card(Ri) · cti

)
,
(
card(Rj) · ctj

))
(3.1)

cost(Ri 1BJ Rj) = card(Ri) · cti
+ card(Ri) · ctj

+ card(Rj
′) · ctj

(3.2)

Static query optimization decides the join method before the query execution and

thus it can cause inefficient query plans due to unpredictable data arrival rates and

missing statistics. The join cardinality, card(Ri1Rj), and the data arrival rates of

relations are unknown before the query execution. Using bind join can cause response

time problem if the data arrival rate of the first relation is slow. On the other hand,

symmetric hash join can produce the first result tuple as soon as there is a match

between Ri and Rj, without waiting for all tuples of Ri to arrive. However, if the
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cardinality of Rj is very high while the join cardinality is low, the query completion

time of symmetric hash join can be longer than the completion time of bind join.

Since the data arrival rates of relations are known after a short time of execution,

the remaining completion times can be estimated. For these reasons, we propose to

set the join method as symmetric hash join in the beginning in order to minimize the

response time, and to use cost functions after having information about the data arrival

rates of endpoints to minimize the completion time. We decide whether to change the

join method to bind join according to the cost estimations. In order to learn the

cardinalities of relations, we send count queries in the beginning of the execution. As

mentioned before, the communication time dominates the I/O time and CPU time.

Hence the costs of count queries are negligible. In brief, our approach is based on the

idea of changing the join method during the query execution according to the data

arrival rates and the join cardinalities with the aim of minimizing both the response

time and the completion time.

3.2.1 Adaptive Join Operator for Single Join Queries

In this subsection, we first present the algorithm of the adaptive join operator for single

join queries. Second, we propose the join cardinality estimation formula and the cost

estimations for symmetric hash join and bind join.

Figure 3.1 summarizes the adaptive join operator for single join queries. Our oper-

ator always begins with symmetric hash join and it calculates the estimated remaining

times for both join methods when all the tuples of a relation arrive. It changes the join

method to bind join if the remaining time of bind join is less than the remaining time

of symmetric hash join. Adaptive join operator not only can change the join method,

but also has the ability to change the join order.
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Figure 3.1: Adaptive join operator for single join queries

The algorithm of the adaptive join operator for single join queries is depicted in

Algorithm 1. Firstly, the adaptive operator sends count queries to the SPARQL end-

points of data sources Ri and Rj in order to learn their cardinalities. The operator

always begins with symmetric hash join in order to produce the first result tuple as

early as possible. In other words, it always sets the join method as symmetric hash
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join in the beginning in order to minimize the response time. During the execution,

when all the tuples from one data source arrive and the tuples from the other data

source continue to arrive, the adaptive join operator estimates the remaining time of

continuing with symmetric hash join and the remaining time of switching to bind join.

It selects the join method according to these cost estimations. If the operator switches

to bind join, it emits the duplicate results of symmetric hash join and bind join. The

cardinality estimation formula and the remaining time estimation formulas will be pre-

sented in the following of this subsection. We use the term “cardinality” instead of

“number of triple patterns” in the rest of the paper.

Algorithm 1: Adaptive join operator for single join queries
1 |Ri| ←− cardinality of Ri received from the COUNT query

2 |Rj| ←− cardinality of Rj received from the COUNT query

3 |Ri_arrived| ←− cardinality of arrived Ri tuples

4 |Rj_arrived| ←− cardinality of arrived Rj tuples

5 Set JOIN method as Symmetric Hash Join (SHJ)
6 while (|Ri_arrived| < |Ri| or |Rj_arrived| < |Rj|) do
7 if (|Ri_arrived| == |Ri| and |Rj_arrived| < |Rj| or

|Rj_arrived| == |Rj| and |Ri_arrived| < |Ri|) then
8 ERTSHJ ←− estimated remaining time if continued using SHJ

9 ERTBJ ←− estimated remaining time if switched to Bind Join (BJ)
10 if (ERTSHJ > ERTBJ) then
11 Set JOIN method as BJ
12 Emit the duplicate results of SHJ and BJ
13 end
14 end
15 end
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Cardinality and Remaining Time Estimations

In this subsection, we explain our cardinality and remaining time estimations which are

used in the decision of the join method for the rest of the execution. These estimates

are calculated when all the tuples of a relation arrive from its SPARQL endpoint.

Equation 3.3 shows the cost function of bind join where Ri and Rj are relations,

|R| is the number of tuples in R, cti
is the transfer cost of Ri for one result tuple, and

ctj
is the transfer cost of Rj for one result tuple. Rj

′ is the relation with the bindings

of Ri. Hence |Rj
′| is the cardinality of Rj which is reduced by the bindings of Ri. |Rj

′|

is equal to the join cardinality, |Ri1Rj|, when we assume that the common attribute

values are unique.

cost(Ri 1BJ Rj) = |Ri| · cti
+ |Ri| · ctj

+ |Rj
′| · ctj

(3.3)

Equation 3.4 is the cardinality estimation formula for the second relation reduced

with the bindings of the first relation. |Ri1Rj_arrived| is the cardinality of Ri1Rj_arrived,

|Rj| is the cardinality of Rj, and |Rj_arrived| is the cardinality of arrived tuples of Rj.

We use this formula in order to calculate the estimated cardinality of Rj
′ when all the

tuples of Ri arrive. We expect that there is a directional proportion between the join

cardinality and the number of tuples of Rj.

|Rj_estimation′| = |Ri1Rj_arrived| · |Rj|
|Rj_arrived|

(3.4)

As stated earlier, when all the tuples of Ri arrive, the algorithm estimates the

remaining time if the adaptive join operator continues with symmetric hash join and

the remaining time if it changes the join method to bind join. We have an idea about the

data arrival rate of Rj during the execution, so the estimation is possible. Equation 3.5

79



shows the estimated remaining time if the adaptive operator continues with symmetric

hash join, ERTSHJ , where |Rj| is the cardinality of Rj, |Rj_arrived| is the cardinality

of arrived tuples of Rj, and tRj_arrived is the time for Rj_arrived tuples to arrive.

ERTSHJ = (|Rj|−|Rj_arrived|) · tRj_arrived

|Rj_arrived|
(3.5)

Equation 3.6 show the estimated remaining time if the algorithm switches to bind

join, ERTBJ , where |Ri| is the cardinality of Ri, tST is the time for sending one result

tuple to the SPARQL endpoint of Rj (≈ tRj_arrived

|Rj_arrived|), |Rj_estimation′| is the estimated

cardinality of Rj
′, |Rj_arrived| is the cardinality of arrived tuples of Rj, and tRj_arrived

is the time for Rj_arrived tuples to arrive. The estimated remaining time for bind join

includes sending all tuples of Ri to the endpoint of Rj, and the retrieving time of Rj
′

from the endpoint of Rj.

ERTBJ = (|Ri| · tST ) + |Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.6)

3.2.2 Adaptive Join Operator for Multi-Join Queries

In this subsection, we introduce the adaptive join operator for multi-join queries which

means there are more than two relations in the query. In other words, the query is

comprised of more than two subqueries.

Figure 3.2 and Algorithm 2 explain the working principle of the adaptive join oper-

ator for multi-join queries. The operator uses multi-way symmetric hash join (Viglas

et al., 2003) in the beginning instead of symmetric hash join since there are more than

two relations to be joined. When all the tuples of a relation arrive, called Ri, the

algorithm estimates the remaining time if the adaptive join operator switches to bind
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join for each relation which has a common attribute with Ri. The algorithm chooses

the relation with minimum estimated bind join cost, called Rj, and compares the fol-

lowing costs: i) estimated remaining time if it changes the join method to bind join

for Ri and Rj and continues with multi-way symmetric hash join for other relations,

ii) estimated remaining time if the operator continues with multi-way symmetric hash

join for all relations. The adaptive join operator chooses the minimum cost and the

above procedure is repeated every time a relation is completely received.

Figure 3.2: Adaptive join operator for multi-join queries
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Algorithm 2: Adaptive join operator for multi-join queries
1 S ←− {R1, R2, R3, . . . , Rn}
2 MIN_ERTBJ ←−∞
3 BJ_Candidate←− Φ
4 Start MSHJ(S)
5 while (S is not empty) do
6 if (all the tuples of Ri arrive) then
7 ERTMSHJ ←− ERT if continued with MSHJ

8 foreach Rj having a common attribute with Ri do
9 ERTBJ_Rij

←− ERT if switched to BJ for Ri and Rj

10 if (ERTBJ_Rij
< MIN_ERTBJ) then

11 MIN_ERTBJ ←− ERTBJ_Rij

12 BJ_Candidate←− {Ri, Rj}
13 end
14 end
15 if (MIN_ERTBJ <= ERTMSHJ) then
16 Ŕi ←− BJ(Ri, Rj)
17 S ←− S −BJ_Candidate + {Ŕi}
18 Run MSHJ(S) and eliminate duplicate results
19 end
20 end
21 end
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Cardinality and Remaining Time Estimations

Let R1, R2, . . . and Rn are the relations of the query. When all tuples of a relation,

called Ri arrive, we calculate the estimated remaining times if the adaptive join operator

changes the join method to bind join for each relation which has a common attribute

with Ri. Let Rj is the relation to be joined with Ri. We use Equation 3.7 for the

estimated cardinality of the second relation which is reduced by the bindings of the

first relation, called Rj
′ |Ri1Rj_arrived| is the cardinality of Ri1Rj_arrived, |Rj| is the

cardinality of Rj, and |Rj_arrived| is the cardinality of arrived tuples of Rj. We use

this formula in order to calculate the estimated cardinality of Rj
′ when all the tuples

of Ri arrive. We need this estimation in order to calculate the estimated remaining

time whether the adaptive join operator switches to bind join for Ri and Rj or it

continues with multi-way symmetric hash join for all relations. In fact, we use the

same cardinality estimation for single join queries and multi-join queries.

|Rj_estimation′| = |Ri1Rj_arrived| · |Rj|
|Rj_arrived|

(3.7)

The estimated remaining time for multi-way symmetric hash join is shown in Equa-

tion 3.8, where |Rk| is the cardinality of Rk, |Rk_arrived| is the cardinality of arrived

tuples of Rk, and tRk_arrived is the time for Rk_arrived tuples to arrive. The completion

time of multi-way symmetric hash join is equal to the maximum completion time of

the relations which are involved in the query.

ERTMSHJ = max
((|Rk| − |Rk_arrived|) · tRk_arrived

|Rk_arrived|
)
where k ∈ [1, . . . , n] (3.8)

Equation 3.9 shows the estimated remaining time if the adaptive join operator
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uses bind join for Ri and Rj, and employs multi-way symmetric hash join for the other

relations of the query. |Ri| is the cardinality of Ri, tST is the time for sending one query

to the SPARQL endpoint of Rj(≈ tRj_arrived

|Rj_arrived|), |Ri1Rj| is the estimated cardinality of

Ri1Rj, |Rj_arrived| is the cardinality of arrived tuples of Rj, and tRj_arrived is the time

for Rj_arrived tuples to arrive. ERTrest is the estimated remaining time for the rest

of other relations to arrive as shown in Equation 3.10 where k ∈ [1, . . . , n], k 6= i and

k 6= j.

ERTBJ_Rij
= max

(
(|Ri| · tST + |Ri1Rj| · tRj_arrived

|Rj_arrived|
), ERTrest

)
(3.9)

ERTrest = max
((|Rk| − |Rk_arrived|) · tRk_arrived

|Rk_arrived|

)
(3.10)

3.3 Extended Adaptive Join Operator for Feder-

ated Queries

In this section, we propose an extended version of the adaptive join operator which

is improved with bind-bloom join (Basca and Bernstein, 2014; Groppe et al., 2015) to

further reduce the communication time and, consequently, to minimize the completion

time.

We first summarize the symmetric hash join and the bind join which are explained

in the previous sections and then we explain the principles of bloom filter and bind-

bloom join. Second, we present the extended adaptive join operator for single join

queries and multi-join queries.
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3.3.1 Background

We have explained the principles of symmetric hash join and bind join, and we have

introduced their cost functions in the previous sections. Symmetric hash join provides

short response time since it operates the subqueries in a parallel fashion. On the other

hand, bind join passes the intermediate results of the first relation to the second relation

in order to filter the result set. Hence bind join is successful with respect to completion

time when the cardinalities of the first relation and the intermediate results are low.

As mentioned earlier, communication cost is the dominant cost in distributed envi-

ronments. In order to reduce the communication cost, a space efficient data structure

called bloom filter (Bloom, 1970) is widely used in relational databases (Mackert and

Lohman, 1986; Mullin, 1990; Michael et al., 2007; Ives and Taylor, 2008). It is utilized

in different Linked Data subjects such as identity reasoning (Williams, 2008) and data

source selection (Hose and Schenkel, 2012). Bloom filter is also used to reduce the

communication cost in two studies of Linked Data (Basca and Bernstein, 2014; Groppe

et al., 2015). We briefly explain the bloom filter before presenting our proposal which

uses it in order to reduce the communication cost.

Bloom filter (Bloom, 1970) is a data structure which represents a set of elements

in a bit vector with a low rate of false positives. The idea is to represent a set S =

{e1, e2, . . . , en} of n elements in a vector v of m bits. Initially all the bits are set to 0.

Then, k independent hash functions, h1, h2, . . . , hk, with range {1, . . . , m} are used.

For each element ei ∈ S, the bits at positions h1(e1), h2(e1), . . . , hk(e1) in v are set to

1. Given a query for ej, the bits at positions h1(ej), h2(ej), . . . , hk(ej) are checked. If

any of them is 0, certainly ej is not in set S. Otherwise, ej is accepted as a member

of set S, although there is a probability that it is not a member (Fan et al., 2000).

Independent of the size of the elements, less than 10 bits per element are required for
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a 1% false positive probability (Bonomi et al., 2006).

We propose to use b bits per each element and k hash functions in order to minimize

the false positive rate (Fan et al., 2000). We propose a custom SPARQL function Check-

Bloom(?commonAttribute, ?bitVector) which returns true if the positions correspond-

ing to h1(?commonAttribute), h2(?commonAttribute), . . . , hk(?commonAttribute) are

set to 1 in bloom filter ?bitV ector.

We explain the advantage of using a bloom filter in bind join by using the federated

query example in Listing 3.1. Initially, the first subquery is executed on :service1,

and then the second subquery is executed on :service2 with the bindings of the first

subquery as shown in Listing 3.2. The intermediate results from :service1 are shown

in Table 3.1. Query size is proportional to the number of intermediate results and

the communication cost increases as the number of intermediate results increases. In

order to decrease this cost, bind join can be employed by using a bloom filter as

shown in Listing 3.3 where BloomFilter is a bit array whose length in bits is equal to

multiplication of the number of distinct common attribute values and b bits. Since our

proposal uses b bits per each intermediate result, the size of the bloom filter in bits is

equal to multiplication of the number of distinct common attribute values and b bits.

As a result, bloom filter decreases the size of the intermediate results.

SELECT * WHERE {

SERVICE <:s1 > { ? student :name : studentName . }

SERVICE <:s2 > { ? student : enroll ? course . } }

Listing 3.1: Federated query example

Table 3.1: Intermediate re-
sults

Line student

1 student_1

... ...

n student_n

86



SELECT * WHERE {

? student : enroll ? course .

FILTER ( ? student =: student_1 ||

... ||

? student =: student_n ) }

Listing 3.2: Bind query

PREFIX ex:<http :// irit.fr/ bloom />

SELECT * WHERE {

? student : enroll ? course .

FILTER ( ex: CheckBloom (? student ,

" BloomFilter " ) ) }

Listing 3.3: Bind query with bloom filter

Although bind-bloom join reduces the size of sent data to the second relation, bind

join can be more efficient than bind-bloom join in some cases according to the number

of false positives and the size of the result set. For this reason, our proposal estimates

the remaining times of bind join and bind-bloom join when the tuples of a relation all

arrive. We will present the extended adaptive join operator for single join queries and

multi-join queries in the following of this section.

3.3.2 Extended Adaptive Join Operator for Single Join Queries

Algorithm 3 shows the pseudo code of the extended adaptive join operator for single

join queries. Firstly, we send count queries to the endpoints of data sources R1 and R2

in order to learn their cardinalities. We always begin with symmetric hash join in order

to minimize the response time. During the execution, when all the tuples from a data

source arrive and the tuples from the other data source continue to arrive, we estimate

the remaining times of continuing with symmetric hash join, switching to bind join,

and switching to bind-bloom join. We decide the join method according to these cost

estimations. If we switch to bind join or bind-bloom join, we emit the duplicate results

of symmetric hash join with bind join or bind-bloom join. The cardinality estimation

formula and the remaining time estimation formulas are presented in the following of

this subsection.
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Algorithm 3: Extended adaptive join operator for single join queries
1 |R1| ←− cardinality of R1 received from the COUNT query

2 |R2| ←− cardinality of R2 received from the COUNT query

3 |R1arrived| ←− cardinality of arrived R1 tuples

4 |R2arrived| ←− cardinality of arrived R2 tuples

5 Set JOIN method as Symmetric Hash Join (SHJ)
6 while (|R1arrived| < |R1| or |R2arrived| < |R2|) do
7 if (|R1arrived| == |R1| and |R2arrived| < |R2| or

|R2arrived| == |R2| and |R1arrived| < |R1|) then
8 ERTSHJ ←− estimated remaining time (ERT ) if continued with SHJ

9 ERTBJ ←− ERT if switched to Bind Join (BJ)
10 ERTBBJ ←− ERT if switched to Bind−Bloom Join (BBJ)
11 Set MIN_ERT to the minimum among ERTSHJ , ERTBJ and ERTBBJ

12 if (MIN_ERT == ERTBJ) then
13 Set JOIN method as BJ
14 Emit the duplicate results of SHJ and BJ
15 end
16 if (MIN_ERT == ERTBBJ) then
17 Set JOIN method as BBJ
18 Emit the duplicate results of SHJ and BBJ
19 end
20 end
21 end
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Cardinality and Remaining Time Estimations

Equation 3.11 shows the cost function of bind join where Ri and Rj are relations, |R|

is the number of tuples in R, and ct is the transfer cost of R for one result tuple. Rj
′

is the relation with the bindings of Ri. In order to estimate the remaining times of

bind join and bind-bloom join, we need the estimated cardinality of the second relation

which is reduced by the bindings of the first relation, namely Rj
′. In the adaptive join

operator, we assume that the common attribute values are unique. In this case, we

consider the possibility of including duplicate values on the common attributes of the

relations.

cost(Ri 1BJ Rj) = |Ri| · cti
+ |Ri| · ctj

+ |Rj
′| · ctj

(3.11)

Before presenting our cardinality and remaining time estimations, we want to clar-

ify and define the average duplication factor of a relation. Let Ri and Rj are the two

relations which have a common attribute. Average duplication factor of Ri on Rj,

ADF (Ri, Rj), is the average duplication factor value of Ri on each common attribute

value of Ri and Rj. The formula for ADF (Ri, Rj) is depicted in Equation 3.12 where

|Ri| is the cardinality of Ri and |Ri_uca| is the is the cardinality of unique common at-

tribute values in Ri. We define an average duplication factor since we cannot guarantee

a constant duplication factor for each attribute.

ADF (Ri, Rj) = |Ri|
|Ri_uca|

(3.12)

Assume that the relations, namely Ri and Rj, contains the attribute values which

are shown in Table 3.2. The common attribute between Ri and Rj is a as indicated in

the table. ADF (Ri, Rj) calculation for the example relations can be seen below:
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ADF (Ri, Rj) = |Ri|
|Ri_uca|

= 7
4 = 1.75

Table 3.2: Example relations Ri and Rj

Ri

a b
a1 b1
a1 b2
a2 b3
a2 b4
a3 b5
a4 b6
a4 b7

Rj

a c
a1 c1
a2 c2
a5 c3
a6 c4
a7 c5
a8 c6
a9 c7

Equation 3.13 is used to estimate the cardinality of the second relation which is

reduced by the bindings of the first relation. |Ri1Rj_arrived| is the cardinality of

Ri1Rj_arrived, |Rj| is the cardinality of Rj, |Rj_arrived| is the cardinality of arrived

tuples of Rj, and ADF (Ri, Rj) is the average duplication factor of Ri on each common

attribute value of Ri and Rj. The extended adaptive join operator uses the estimated

cardinality in order to estimate the remaining times of bind join and bind-bloom join.

In other words, the operator employs Equation 3.13 in order to calculate the estimated

cardinality of Rj
′ when all the tuples of Ri arrive. We expect that there is a directional

proportion between the join cardinality and the number of tuples of Rj.

|Rj_estimation′| = |Ri1Rj_arrived| · |Rj|
|Rj_arrived|

/
ADF (Ri, Rj) (3.13)

As stated in the beginning of this subsection, when all the tuples of Ri arrive,

the algorithm estimates three remaining times as follows: (i) the remaining time if the
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extended adaptive join operator continues with symmetric hash join, (ii) the remaining

time if it changes the join method to bind join, and (iii) the remaining time if it changes

the join method to bind-bloom join. During the execution, we have an idea about the

data arrival rate of Rj, and thus the estimation is possible. Equation 3.14 shows

the estimated remaining time for symmetric hash join, ERTSHJ , where |Rj| is the

cardinality of Rj, |Rj_arrived| is the cardinality of arrived tuples of Rj, and tRj_arrived

is the time for Rj_arrived tuples to arrive.

ERTSHJ =

(
|Rj|−|Rj_arrived|

)
· tRj_arrived

|Rj_arrived|
(3.14)

Equation 3.15 shows the estimated remaining time if the algorithm switches to bind

join, namely ERTBJ . |Ri_uca| is the is the cardinality of unique common attribute

values in Ri, tST is the time for sending one result tuple to the SPARQL endpoint

of Rj (≈ tRj_arrived

|Rj_arrived|), and |Rj_estimation′| is the estimated cardinality of Rj which

is reduced by the bindings of Ri. |Rj_arrived| is the cardinality of arrived tuples of

Rj, and tRj_arrived is the time for Rj_arrived tuples to arrive. The estimated remaining

time for bind join includes sending all tuples of Ri_uca to the endpoint of Rj, and the

retrieving time of Rj
′ from the endpoint of Rj.

ERTBJ =
(
|Ri_uca| · tST

)
+ |Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.15)

Equation 3.16 shows the estimated remaining time if the algorithm switches to bind-

bloom join, namely ERTBBJ , where b is the number of bits per each element, |Ri_uca|

is the cardinality of unique common attribute values in Ri, drj is the data arrival

rate (in bits/seconds) of the SPARQL endpoint (≈ s(|Rj_arrived|)
|Rj_arrived| , where s(|Rj_arrived|)

is the size of Rj_arrived tuples in bits), |Rj_estimation′| is the estimated cardinality of
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Rj reduced by the bindings of Ri, |fp| is the estimated cardinality of false positives,

|Rj_arrived| is the cardinality of arrived tuples of Rj, and tRj_arrived is the time for

Rj_arrived tuples to arrive. The estimated remaining time for bind-bloom join includes

sending unique common tuples of Ri in a bloom filter to the endpoint of Rj, and the

retrieving time of Rj
′ from the endpoint of Rj.

ERTBBJ = b · |Ri_uca|
drj

+

(
|Rj_estimation′|+ |fp|

)
· tRj_arrived

|Rj_arrived|
(3.16)

3.3.3 Extended Adaptive Join Operator for Multi-Join Queries

In multi-join queries, we begin with a non-blocking join method in order to minimize

the response time as in single join queries. In this case, we use multi-way symmetric

hash join (Viglas et al., 2003) since there are more than two relations. The algorithm of

the extended operator for multi-join queries is depicted in Algorithm 4. When all the

tuples from a relation arrive, called Ri, the algorithm estimates the remaining times if

the extended adaptive join operator switches to bind join or bind-bloom join for each

relation which has a common attribute with Ri. The algorithm chooses the relation

with the minimum estimated bind join cost and the minimum estimated bind-bloom

cost, called Rj. Then, the algorithm compares the following estimated times: (i) the

remaining time if the operator continues with multi-way symmetric hash join for all

relations belonging to the query, (ii) the remaining time if the operator changes the

join method to bind join for Ri1Rj and uses multi-way symmetric hash join for the

other relations, (ii) the remaining time if the operator changes the join method to bind-

bloom join for Ri1Rj and uses multi-way symmetric hash join for the other relations.

The above procedure is repeated every time a relation is completely received.
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Algorithm 4: Extended adaptive join operator for multi-join queries
1 S ←− {R1, R2, . . . , Rn}
2 Send COUNT queries to the endpoints of R1, R2, . . . , Rn

3 MIN_ERTBJ = MIN_ERTBBJ ←−∞
4 MIN_ETBJ = MIN_ETBBJ ←−∞
5 BJ_Candidate = BBJ_Candidate←− Φ
6 Start MSHJ(S)
7 while (S is not empty) do
8 if (all the tuples of Ri arrive) then
9 ERTMSHJ ←− ERT if continued with MSHJ

10 foreach Rj having a common attribute with Ri do
11 ERTBJ_Rij

←− ERT if switched to BJ for Ri and Rj

ERTBBJ_Rij
←− ERT if switched to BBJ for Ri and Rj

ETBJ_Rij
←− estimated time for BJ between Ri and Rj

ETBBJ_Rij
←− estimated time for BBJ between Ri and Rj

12 if (ERTBJ_Rij
< MIN_ERTBJ) then

13 MIN_ERTBJ ←− ERTBJ_Rij

14 MIN_ETBJ ←− ETBJ_Rij

15 BJ_Candidate←− {Ri, Rj}
16 end
17 if (ERTBBJ_Rij

< MIN_ERTBBJ) then
18 MIN_ERTBBJ ←− ERTBBJ_Rij

19 MIN_ETBBJ ←− ETBBJ_Rij

20 BBJ_Candidate←− {Ri, Rj}
21 end
22 end
23 if (MIN_ERTBJ <= ERTMSHJ) then
24 if (ETBBJ_Rij

< ETBJ_Rij
) then

25 Ŕi ←− BBJ(Ri, Rj)
26 S ←− S −BBJ_Candidate + {Ŕi}
27 Run MSHJ(S) and eliminate duplicate results
28 end
29 Ŕi ←− BJ(Ri, Rj)
30 S ←− S −BJ_Candidate + {Ŕi}
31 Run MSHJ(S) and eliminate duplicate results
32 end
33 end
34 end
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Cardinality and Remaining Time Estimations

We use the same formula for single join queries and multi-join queries to estimate

the cardinality of the second relation reduced by the bindings of the first relation.

Therefore, we use Equation 3.13 which is shown in Section 3.3.2 for multi-join queries

as well. We need this estimation in order to calculate the estimated remaining times

for the following cases: (i) if the operator switches to bind join for Ri1Rj, (ii) if the

operator switches to bind-bloom join for Ri1Rj, and (ii) if the operator continues with

multi-way symmetric hash join.

Equation 3.17 shows the estimated remaining time if the extended adaptive join

operator continues with multi-way symmetric hash join. Completion time is equal to

the maximum completion time of the relations belonging to the query.

ERTMSHJ = max
((|Rk| − |Rk_arrived|) · tRk_arrived

|Rk_arrived|

)
where k ∈ [1, . . . , n] (3.17)

Equation 3.18 shows the estimated remaining time if the extended adaptive join

operator employs bind join for Ri and Rj, and uses multi-way symmetric hash join for

the other relations belonging to the query. It is equal to the maximum time between

ETBJ_Rij
and ERTrest. ETBJ_Rij

is the estimated time if the operator employs bind

join for Ri and Rj. ERTrest is the estimated remaining time for the rest of other

relations to arrive. ETBJ_Rij
is shown in Equation 3.19. |Ri_uca| is the cardinality of

unique common attribute values in Ri, tST is the time for sending one result tuple to the

SPARQL endpoint (≈ tRj_arrived

|Rj_arrived|), and |Rj_estimation′| is the estimated cardinality

of Rj which is reduced by the bindings of Ri. |Rj_arrived| is the cardinality of arrived

tuples of Rj, |Rj_arrived| is the cardinality of arrived tuples of Rj, and tRj_arrived is the
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time for Rj_arrived tuples to arrive. ERTrest is calculated by using Equation 3.20

where k ∈ [1, . . . , n], k 6= i and k 6= j. |Rk| is the cardinality of Rk, |Rk_arrived| is the

cardinality of arrived tuples of Rk, and tRk_arrived is the time for Rk_arrived tuples to

arrive.

ERTBJ_Rij
= max(ETBJ_Rij

, ERTrest) (3.18)

ETBJ_Rij
= (|Ri_uca| · tST ) + |Rj_estimation′| · tRj_arrived

|Rj_arrived|
(3.19)

ERTrest = max
((|Rk| − |Rk_arrived|

)
· tRk_arrived

|Rk_arrived|

)
(3.20)

Equation 3.21 shows the estimated remaining time if the extended operator switches

to bind-bloom join for Ri and Rj, and uses multi-way symmetric hash join for the other

relations belonging to the query. It is equal to the maximum time between ETBBJ_Rij

and ERTrest. ETBBJ_Rij
is the estimated time if the operator employs bind-bloom

join for Ri and Rj. ERTrest is the estimated remaining time for the rest of other

relations to arrive. ETBBJ_Rij
is calculated by using Equation 3.22. b is the number

of bits per each element, |Ri_uca| is the cardinality of Ri, and drj is the data arrival

rate (in bits/seconds) of the SPARQL endpoint (≈ s(|Rj_arrived|)
|Rj_arrived| , where s(|Rj_arrived|)

is the size of Rj_arrived tuples in bits). |Rj_estimation′| is the estimated cardinality

of Rj reduced by the bindings of Ri, |fp| is the estimated cardinality of false positives,

and tRj_arrived is the time for Rj_arrived tuples to arrive. We use Equation 3.13 and

Equation 3.20 in order to calculate |Rj_estimation′| and ERTrest, respectively.

ERTBBJ_Rij
= max

(
ETBBJ_Rij

, ERTrest

)
(3.21)
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ETBBJ_Rij
= b · |Ri_uca|

drj

+

(
|Rj_estimation′|+ |fp|

)
· tRj_arrived

|Rj_arrived|
(3.22)

3.4 Conclusion

Query optimization in query federation aims to minimize the response time and the

completion time. Query federation distributes the subqueries of a query to the relevant

SPARQL endpoints to be executed and then aggregates their results. However, the

data arrival rates of relations are unpredictable since the execution is done on the

distributed data sources on the Web. Moreover, the most of the statistics are missing.

These constraints show that adaptive query optimization (Deshpande et al., 2007) is a

need for query federation over SPARQL endpoints.

In this chapter, we presented two proposals which use adaptive query optimization

for SPARQL query federation in order to minimize both the response time and the

completion time. Since the communication cost mainly dominates the other costs in

distributed environments, we focused on the minimization of the communication cost.

First proposal, namely adaptive join operator, initially sends count queries to the

endpoints of relations in order to learn their cardinalities. The operator always begins

with symmetric hash join and multi-way symmetric hash join for single join queries

and multi-join queries, respectively, with the aim of minimization of the response time.

The data arrival rates of relations are known after a short time of execution. For single

join queries, the operator estimates the remaining times for symmetric hash join and

bind join when all the tuples of a relation arrive. Different from single join queries,

the operator chooses the minimum bind join cost between the received relation and the
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relation which has a common attribute with this relation. Then, the operator compares

the following cases: i) remaining time of continuing with multi-way symmetrich hash

join for all relations, and ii) the remamining time of using bind join for the relations

with the minimum bind join cost and using multi-way symmetric hash join for the rest

of the relations. According to the remaining time estimations, the operator decides

whether to change the join method to bind join or not.

In the second study, we proposed the extended adaptive join operator which is the

improved version of our previous proposal. We aimed to further reduce the communi-

cation cost. For this reason, we included the bind-bloom join, which is a kind of bind

join enhanced with bloom filter, to the candidate join methods. Since a bloom filter

can contain a low rate of false positives, we keep bind join in our candidate join meth-

ods. The extended join operator again begins with symmetric hash join and multi-way

symmetric hash join for single and multi-join queries, respectively. When all the tuples

of a relation arrive, the remaining time estimations are calculated for symmetric hash

join (or multi-way hash join), bind join and bind-bloom join.

The goal of the proposed operators are as follows: i) minimization of both the

response time and the completion time, ii) managing with different data arrival rates,

iii) handling the problem of missing statistics. The proposed adaptive join operators

use a non-blocking join method in the beginning and they can change the join method

during the execution to minimize the completion time. Moreover, both operators can

change the join order as well. Therefore, both of our proposals aim to provide the best

trade-off between the response time and the completion time.
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Chapter 4

Performance Evaluation

Abstract: This section provides the performance evaluations of our proposals, namely

adaptive join operator and extended adaptive join operator. We use response time and

completion time as evaluation metrics. First, we evaluate and discuss the performance

evaluation of the adaptive join operator for single join queries and multi-join queries.

We compare the proposed operator with symmetric hash join and bind join. We discuss

the impact of data sizes and the data arrival rates. Second, we present the results and

discussions on the performance evaluation of the extended adaptive join operator for

single join queries and multi-join queries. We evaluate the performances of the extended

operator, symmetric hash join, bind join, bind-bloom join, and adaptive join operator.

We again discuss the impact of data sizes and the data arrival rates. In addition, we

show the impact of bit vector size for the extended adaptive join operator. We also

present the speedup of the extended adaptive join operator compared to the adaptive

join operator with respect to the completion time.
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4.1 Introduction

This chapter includes two main sections as follows. Section 4.2 presents the perfor-

mance evaluation of adaptive join operator and Section 4.3 provides the performance

evaluation of extended adaptive join operator. The performances of both operators

are evaluated for single join queries and multi-join queries. There are two relations in

single join queries, while there are three relations in multi-join queries.

As stated in the previous chapters, the goal of query optimization in query feder-

ation is to minimize the response time and the completion time. For this reason, we

used them as evaluation metrics. Both of them include communication time, I/O time,

and CPU time. We mentioned earlier that query cost in distributed environments is

mainly defined by the communication cost. In order to simulate the real network con-

ditions and consider only the communication cost, we conducted our experiments in

the network simulator ns-3 1.

We analyze sample result sizes and consequently we assume that the size of all

queries is the same and each result tuple is considered to have the same size as well.

Each query size is accepted as 500 bytes, whereas each result tuple size is employed

as 250 bytes. Each count query size is assumed as 750 bytes and the message size is

set to 100 tuples. Each selectivity factor is 0.5/
(
max(cardinality of R1, cardinality

of R2)
)
(Shekita et al., 1993). We set the low, medium, and high cardinality as 1000

tuples, 5000 tuples, and 10000 tuples, respectively. We analyze the data arrival rates

of 28 endpoints to assign the range of data arrival rates of relations in simulations. We

conducted the simulations with different data arrival rates as explained in the following

sections, however we always fixed their delays to 10 ms.

1https://www.nsnam.org/
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4.2 Performance Evaluation of Adaptive Join Op-

erator

In this section, we present the evaluation results on the performances of symmetric

hash join (or multi-way symmetric hash join), bind join, and adaptive join operator

for single join queries and multi-join queries. The reason of comparing our proposal

with symmetric hash join and bind join is as follows. Symmetric hash join provides

efficient response time by being a non-blocking join method. Bind join provides efficient

completion time under some conditions, as mentioned in previous chapters. Besides, it

is the most popular join method among the query federation engines.

4.2.1 Performance Evaluation for Single Join Queries

In this subsection, we compare adaptive join operator (AJO) with symmetric hash join

(SHJ), and bind join (BJ) in two cases. We aim to show the impact of data sizes and

data arrival rates in the first and the second case, respectively.

4.2.1.1 Impact of Data Sizes

In this case, we fixed the data arrival rates of both endpoints to 0.5 Mbps. In order to

analyze the impact of data sizes on the behaviours of SHJ, BJ, and AJO, we calculated

their response times and completion times when the data sizes of R1 and R2 were

low-low (LL), low-medium (LM), low-high (LH), medium-low (ML), medium-medium

(MM), medium-high (MH), high-low (HL), high-medium (HM), and high-high (HH),

respectively.

Figure 4.1 depicts the behaviours of SHJ, BJ, and AJO with different data size

conditions while the data arrival rates of both relations are fixed. As shown in Figure
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(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.1: Data arrival rates of R1 and R2 are fixed

4.1.a, BJ has the worst response time for all conditions, while SHJ and AJO behave

similar to each other. As the data size of R1 increases, the response time of BJ

increases as well due to waiting for the arrival of all tuples of R1 and sending them

to the endpoint of R2. On the other hand, SHJ and AJO can generate the first result

tuple as soon as there is a match between R1 and R2, without waiting for all tuples of

R1 to arrive.

Completion time of BJ is shorter than others when the cardinality of R1 is low and

the cardinality of R2 is medium or high, as shown in Figure 4.1.b. On the other hand,

SHJ and AJO perform better than BJ in seven of nine conditions. AJO’s completion

time is the best when the cardinality of R1 is medium or high, and the cardinality of

R2 is low. Also, AJO’s completion time is faster than SHJ’s when the cardinality of

R1 is low and the cardinality of R2 is medium or high.
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The speedup2 values between AJO and SHJ can be seen in Figure 4.1.c. Although

they have almost the same response time for all cases, the completion time of AJO is

3 times as fast compared to SHJ when one of the relation’s cardinality is high and the

other one’s is low. As Figure 4.1.d displays, compared to BJ, AJO provides speedup in

response time from 5.9 times to 45.5 times. AJO also provides speedup in completion

time up to 6 times except two cases.

4.2.1.2 Impact of Data Arrival Rates

In this case, we fixed the data arrival rate of R1 to 2 Mbps and changed the data

arrival rate of R2. We conducted the simulations for two different cardinality options:

i) low cardinality of R1 and high cardinality of R2; ii) high cardinality of R1 and low

cardinality of R2.

Low Cardinality of R1 and High Cardinality of R2

As Figure 4.2.a shows, SHJ and AJO provide almost the same response time. On the

other hand, the response time of BJ is always longer than SHJ’s and AJO’s. The gap

between the response times of BJ and the others increases when the data arrival rate

of R2 gets slower.

Figure 4.2.b displays the completion times of SHJ, BJ, and AJO. BJ provides

shorter completion times than others in all data arrival rate conditions because the

first relation’s cardinality is low. However, AJO always provides shorter completion

time than SHJ due to changing the join method as BJ during the execution. As the

data arrival rate of the second relation gets faster, the difference between BJ and others

decreases.
2Speedup of x compared to y (response time) = response time of y / response time of x

Speedup of x compared to y (completion time) = completion time of y / completion time of x
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(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.2: Data sizes of R1 and R2 are fixed with card(R1)� card(R2)

As shown in Figure 4.2.c, compared to SHJ, AJO has almost the same response

time, however it can provide speedup in completion time up to 3.4 times. Although

the speedup decreases while the second relation’s data arrival rate increases, we expect

it to be nearly 1 in the worst case. The reason of this is based on the working principal

of AJO. It changes the join method to BJ when it estimates that BJ is more efficient

than SHJ. Otherwise, AJO does not change the join method; it continues with SHJ.

Compared to BJ, AJO degrades completion time up to 0.8 times, however it can

improve the response time up to 4.9 times, as illustrated in Figure 4.2.d.

High Cardinality of R1 and Low Cardinality of R2

The results observed from Figure 4.3.a are similar to the results in Figure 4.2.a. Since

the cardinality of the first relation is high in this case, the response time of BJ is
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(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Figure 4.3: Data sizes of R1 and R2 are fixed with card(R1)� card(R2)

dramatically longer than SHJ’s and AJO’s. The response times of SHJ and AJO are

nearly the same.

As shown in Figure 4.3.b, the completion times of SHJ and AJO are shorter than

the completion time of BJ in all of the conditions because the first relation’s cardinality

is high. AJO performs better than SHJ in all data arrival rate conditions. It changes

the join method to BJ and the join order when all the tuples of the second relation

arrive.

Compared to SHJ, AJO has almost the same response time, however the speedup

in completion time varies from 1.4 times to 2.2 times as illustrated in Figure 4.3.c.

Compared to BJ, AJO improves both the response time and the completion time as

displayed in 4.3.d. The speedup in response time increases from 11 times to 34.3 times

while the speedup in completion time varies from 2.8 to 6.2 times.
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4.2.1.3 Discussion on the Performance Evaluation

Simulation results showed that SHJ performs the best response time because it can

generate the first result tuple as soon as possible. AJO has the same advantage in

response time since it always uses SHJ in the beginning. BJ provides longer response

time because it has the disadvantage of waiting the results of the first relation. As the

cardinality of the first relation increases, this disadvantage becomes more evident.

BJ can provide shorter completion time when the cardinality of the first relation is

low. The gap between SHJ and BJ increases as the cardinality of the other relation

increases. On the other hand, AJO can change the join method to BJ in these cases.

To conclude, SHJ provides the shortest response time, whereas the owner of the best

performance in completion time is changed according to the cardinalities of relations

and data arrival rates. AJO provides optimal response time due to beginning with

SHJ. On the other hand, AJO can change the join method to BJ if it decides that it

provides shorter completion time than SHJ. It can also change the join order in order

to minimize the completion time. In brief, AJO provides optimal response time and

completion time for single join queries.

4.2.2 Performance Evaluation for Multi-Join Queries

In this subsection, we analyze the performances of multi-way symmetric hash join

(MSHJ), BJ and AJO when there are three relations in the query.

Listing 4.1 displays a query example that we use in our experiments. R1 (service1)

and R2 (service2) have a common attribute, ?student, R2 and R3 (service3) have a

common attribute, ?course.
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SELECT ? student ?level ? course ? instructorName WHERE {

SERVICE <:service1 > { ? student :name : studentName .

? student :level ?level . }

SERVICE <:service2 > { ? student : enroll ? course . }

SERVICE <:service3 > { ? course : instructor ? instructorName . } }

Listing 4.1: Query example

4.2.2.1 Impact of Data Sizes

In order to show the impact of data sizes on the behaviours of MSHJ, BJ, and AJO, we

fixed the data arrival rates of all relations to 0.5 Mbps. We conducted our experiments

when the data sizes of R1, R2, R3 were low-low-low (LLL), low-medium-high (LMH),

low-high-high (LHH), high-medium-low (HML), high-high-low (HHL), and high-high-

high (HHH).

As Figure 4.4.a shows, the response times of MSHJ and AJO are almost the same,

whereas BJ’s response time is substantially longer in cardinality conditions. On the

other hand, as illustrated in Figure 4.4.b, BJ provides the best completion time when

the first relation’s cardinality is low. However, AJO’s completion time is quite similar

because it can change the join method to bind join in these conditions. When the first

relation’s cardinality is high, BJ’s completion time becomes substantially longer while

AJO has the best performance due to changing the join order.

As shown in Figure 4.4.c, compared to MSHJ, AJO has almost the same response

time, however it can provide speedup in completion time up to 2.2 times. Speedup

comparison between AJO and BJ is displayed in Figure 4.4.d. Compared to BJ, AJO

degrades completion time 0.85 times when the cardinalities are LMH and LHH, however
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(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.4: Data arrival rates of R1, R2 and R3 are fixed

it provides speedup in completion times in other conditions. The speedup value differs

from 2.62 times to 6.56 times. In addition, AJO provides speedup in response time in

all conditions, which is between 5.75 and 47.38 times.

4.2.2.2 Impact of Data Arrival Rates

Our aim in this case is to show the effect of different data arrival rates on the perfor-

mances of MSHJ, BJ, and AJO. For this reason, we fixed the data arrival rates of R1

and R3 to 2 Mbps and changed the data arrival rate of R2

We conducted the simulations for two different cardinality options: i) low cardinal-

ity of R1, high cardinality of R2, and high cardinality of R3 (LHH); ii) high cardinality

of R1, high cardinality of R2 and low cardinality of R3 (HHL).
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Low Cardinality of R1, High Cardinality of R2, and High Cardinality of R3

In this case, as displayed in Figure 4.5.a, BJ has the worst response time in all data ar-

rival rates of R2, while MSHJ and AJO have almost the same response time. However,

as shown in Figure 4.5.b, BJ’s completion time is shorter than MSHJ’s completion time

which has the disadvantage of waiting all the tuples of R2 and R3. On the other hand,

AJO performs much better than MSHJ. Its completion time is close to BJ’s completion

time because it changes the join method to BJ for R1 and R2, and (R11R2) and R3

during the execution. The reason of the success of BJ in completion time is related to

the low cardinality of the first relation.

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.5: Data sizes of R1, R2, R3 are fixed with card(R1)� card(R2) = card(R3)

Figure 4.5.c illustrates the speedup of AJO compared to MSHJ with respect to the

response time and the completion time. MSHJ’s completion time is related to the time
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of the latest arrival of the relation. Hence MSHJ’s completion time is related to the

arrival times of R2 and R3 because the data arrival rates of R1 and R2 are the same (2

Mbps), while the cardinalities of them are low and high, respectively. Its completion

time does not change when the data arrival of R2 is equal or faster than 2 Mbps. In

other words, the completion time of MSHJ remains the same after this data arrival rate

of R2 because the tuples of R3 arrive lastly. On the other hand, AJO’s completion time

decreases as the data arrival of R2 increases. Compared to MSHJ, AJO has almost the

same response time but it can provide speedup in completion time up to 3.4 times.

As Figure 4.5.d shows, compared to BJ, AJO degrades the completion time up to

0.8 times, it can improve the response time up to 3.9 times. Although BJ provides

shorter completion time since the first relation cardinality is low, AJO can decide to

change the join method to BJ during the execution.

High Cardinality of R1, High Cardinality of R2, and Low Cardinality of R3

The results observed from Figure 4.6.a are similar to the results in Figure 4.5.a. BJ

performs the worst response time again, whereas MSHJ and AJO have almost the same

response time. However, the gap between the response times of BJ and the others’ are

dramatically high because the first relation’s cardinality is high. As the data arrival

rate of the second relation increases, response times of all of them decreases.

Figure 4.5.b compares performances of MSHJ, BJ, and AJO with respect to their

completion times. AJO has the best completion time in all conditions. The completion

times of AJO and BJ decreases as the data arrival rate of R2 increases. On the other

hand, the completion time of MSHJ remains constant when the data arrival rate of R2

is more than 2 Mbps since R1’s cardinality is high and its data arrival rate is 2 Mbps.

Compared to MSHJ, AJO has almost the same response time but it can provide
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(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Figure 4.6: Data sizes of R1, R2, R3 are fixed with card(R1) = card(R2)� card(R3)

speedup in completion time up to 3.4 times as shown in Figure 4.6.c. Compared to BJ,

AJO improves both the response time and the completion time up to 43.9 times and

6.5 times, respectively, as illustrated in Figure 4.6.d.

4.2.2.3 Discussion on the Performance Evaluation

We analyzed the impact of cardinalities and data arrival rates of relations in this

subsection. Simulation results showed that MSHJ provides the best response time in

all cases and AJO has almost the same response time due to beginning with MSHJ.

The response time of BJ is mostly affected by the first relation’s cardinality.

When we focus on the completion time, we see that MSHJ’s completion time de-

pends on the data arrival rate of the relation which has the highest cardinality. BJ’s

completion time is the best when the first relation’s cardinality is low, however it per-
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forms the worst completion time when the first relation’s cardinality is high. On the

other hand, AJO has the closest completion time to BJ when the first relation’s car-

dinality is low. AJO can provide the best completion time when the first relation’s

cardinality is high since it can change the join order and the join method. In both car-

dinality cases, completion times of both BJ and AJO decrease as the second relation’s

data arrival gets faster.

In conclusion, AJO provides both optimal response time and completion time for

multi-join queries due to beginning with MSHJ and having the ability to change the

join method during the execution. The adaptive join operator can also change the join

order.

4.3 Performance Evaluation of Extended Adaptive

Join Operator

In this section, we analyze and evaluate performances of symmetric hash join (or multi-

way symmetric hash join), bind join, bind-bloom join, adaptive join operator, and

extended adaptive join operator for single join queries and multi-join queries. Focus

of the evaluation is on their performances with respect to the response time and the

completion time since the goal of query optimization in query federation is to mini-

mize them both. Speedup3 comparison between our previous proposal, adaptive join

operator (Oguz et al., 2016), and extended adaptive join operator is also presented to

be self-contained and to show the contribution of our new proposal.

Although we assume that the common attribute values are unique in the perfor-

mance evaluation of the adaptive join operator in Section 4.2, we consider the possibility
3Speedup of x compared to y (%) = (completion time of y - completion time of x) / (completion

time of y) * 100
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of including duplicate values on the common attributes of relations in the performance

evaluation of the extended adaptive join operator. Average duplication factors on the

common attributes of relations are assigned randomly between 1 and 5, both inclusive.

Average duplication factor = 1 means that there are not any duplicates, whereas av-

erage duplication factor = 5 means that there are 5 duplicates per value in average on

the common attributes of the relations. For this reason, we ran each test 100 times

when we assigned the duplication factors randomly. In some cases, we fixed the average

duplication factors in order to understand the impact of the duplication factors as well.

We used 8 bits per each element and 6 hash functions for bind-bloom join.

4.3.1 Performance Evaluation for Single Join Queries

In this subsection, we compare extended adaptive join operator (EAJO) with symmet-

ric hash join (SHJ), bind join (BJ), bind-bloom join (BBJ), and adaptive join operator

(AJO) in two cases. Our aim is to show the impact of data sizes in the first case, while

we focus on the effect of different data arrival rates in the second case.

In addition, we compare AJO and EAJO with different m/n values and k indepen-

dent hash functions where m refers to the number of bits in the bit vector, and n refers

to the number of elements in the set. The aim in this case is to show the impact of bit

vector size for the extended adaptive join operator.

4.3.1.1 Impact of Data Sizes

The behaviours of the SHJ, BJ, BBJ, AJO, and EAJO were analyzed when the data

arrival rates of both endpoints were fixed to 0.5 Mbps while the data sizes of R1 and R2

were changed. In order to analyze all conditions, we calculated the response times and

the completion times when the data sizes of R1 and R2 were low-low (LL), low-medium
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(LM), low-high (LH), medium-low (ML), medium-medium (MM), medium-high (MH),

high-low (HL), high-medium (HM), and high-high (HH), respectively. Average dupli-

cation factors on the common attributes of relations were given randomly between 1

and 5, both inclusive.

As Figure 4.7.a shows, for all conditions, BJ and BBJ have longer response times

than SHJ, AJO, and EAJO which behave similarly. As the data size of R1 increases,

the response times of BJ and BBJ increase as well, due to waiting for the arrival of all

results of R1 and sending the unique common attributes to the endpoint of R2. As a

result of using a bloom filter for sending the common attributes in BBJ, it provides

a slightly better response time than BJ. SHJ, AJO, and EAJO can generate the first

result tuple as soon as there is a match between R1 and R2, without waiting for all

tuples of R1 to arrive.

BBJ’s completion time is always shorter than BJ’s due to the bloom filter usage as

illustrated in 4.7.b. For this reason, we consider the completion times of BBJ instead

of BJ’s for comparing with others. When the cardinalities are low-medium, low-high

and medium-high, (i.e., |R1| < |R2|), BBJ’s completion time is the shortest. However,

EAJO’s completion time is quite similar to BBJ’s because it changes the join method to

BBJ when it decides that it is more efficient than SHJ or BJ. EAJO performs the best

when the cardinalities of relations are medium-low, high-low and high-medium (i.e.,

|R1| > |R2|), respectively. When the cardinalities of R1 and R2 are the same, low-low,

medium-medium, high-high, SHJ, AJO, and EAJO provide the best performance in

completion time at the same time. The data arrival rates and the cardinalities of the

relations are the same in these cases. As a result, all the tuples of both relations arrive

at the same time. SHJ is the most efficient join method for these cases. Both AJO

and EAJO, therefore, decide to continue with SHJ in such cases. To conclude the
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(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.7: Data arrival rates of R1 and R2 are fixed

comparison of completion times, we can say that EAJO has the capability to choose

the most efficient join method during the execution. For this reason, it provides or

shares the best completion time in six of nine conditions. Also, it has the most similar

completion time to the best join method in the remaining three conditions.

Figure 4.7.c shows the achieved speedup in completion time by EAJO compared to

AJO. As shown in the figure, EAJO provides speedup between 17.8% and 19.4% when

the cardinalities of relations are different. The reason of the difference between the

speedup percentages is based on the different average duplication factors. We can say

the speedup of EAJO compared to AJO is 18.2% in average. EAJO does not provide

speedup when the cardinalities of relations are the same, because both AJO and EAJO

decide to continue with SHJ for the reasons explained previously.
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4.3.1.2 Impact of Data Arrival Rates

In this case, we fixed the data arrival rate of R1 and changed the data arrival rate of R2.

We conducted the simulations for two different cardinality options: i) low cardinality

of R1 and high cardinality of R2; ii) high cardinality of R1 and low cardinality of R2.

Average duplication factors on the common attributes of relations were given randomly

between 1 and 5, both inclusive. However, we fixed the average duplication factors in

speedup comparison between EAJO and AJO in order to understand the impact of the

duplication factors as well.

Low Cardinality of R1 and High Cardinality of R2

We conducted the simulations for two different conditions: i) when the data arrival

rate of R1 was fixed to 2 Mbps, and ii) when the data arrival rate of R1 was fixed to

0.5 Mbps. As Figures 4.8.a and 4.8.b show, BJ’s and BBJ’s response times are always

longer than the response times of SHJ, AJO, and EAJO. The gap between the response

times of BJ and BBJ; and the others increases when the data arrival rate of R2 gets

slower. SHJ provides the shortest response time in both conditions. AJO and EAJO

provide almost the same response time due to beginning with SHJ. Thus, SHJ, AJO,

and EAJO are the best in terms of response time at the same time.

As displayed in Figure 4.8.c, BBJ’s completion time is always shorter than BJ’s

due to the usage of bloom filter. For this reason, we consider the completion time of

BBJ instead of the completion time of BJ when we compare the completion times of

operators. BBJ provides the shortest completion time in all conditions, because the

first relation’s cardinality is low and its data arrival rate is relatively fast. As the data

arrival rate of the second relation gets faster, EAJO provides similar completion time

with BBJ. The completion time of EAJO is always faster than SHJ and AJO.
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(a) Response time when data arrival rate of R1 is
fixed to 2 Mbps and data arrival rate of R2 is changed

(b) Response time when data arrival rate of R1 is
fixed to 0.5 Mbps and data arrival rate of R2 is
changed

(c) Completion time when data arrival rate of R1
is fixed to 2 Mbps and data arrival rate of R2 is
changed

(d) Completion time when data arrival rate of R1
is fixed to 0.5 Mbps and data arrival rate of R2 is
changed

Figure 4.8: Data sizes of R1 and R2 are fixed with card(R1)� card(R2)

Figure 4.8.d shows the completion time comparison when the first relation’s data

arrival rate is fixed to 0.5 Mbps. BBJ provides the shortest completion time until the

second relation’s data arrival rate is 4.5 Mbps. However, EAJO has almost the same

completion time with BBJ because it has the ability to change the join method to BBJ

during the execution. When the second relation’s data arrival rate is faster or equal to

5.5 Mbps, SHJ provides the shortest completion time. In these cases, AJO and EAJO

have the same completion time due to changing the join method to SHJ. In brief, the

winner of the completion time is changed according to the data arrival rates. However,

EAJO can choose the best join method during the execution.

Table 4.1 shows the speedup in completion time of EAJO compared to AJO when
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the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed

from 0.5 Mbps to 6.5 Mbps. The used average duplication factors are 1, 2 and 5,

respectively where 1 means there are not any duplicates. For each data arrival rate of

R2, AJO and EAJO change the join method to BJ and BBJ, respectively. Although

EAJO provides speedup in all cases, due to decreasing the data size of unique common

attributes by using a bloom filter, the speedup decreases as the second relation’s data

arrival rate increases. The reason of this decrease in the speedup is because of the effect

of the decrease in the size of the sent data as the network speed increases. Another

key point to remember is that the speedup remains quite similar after a certain point

due to the same reason.

Table 4.1: Speedup of EAJO compared to AJO when card(R1) � card(R2) and the
data arrival rate of R1 is 2 Mbps

Data arrival
rate of R2 in
Mbps

Average duplication factors
1 2 5

0.5 35.28% 22.53% 11.57%
1.5 25.65% 13.99% 7.07%
2.5 20.39% 10.71% 5.70%
3.5 15.99% 8.47% 4.80%
4.5 12.51% 7.44% 4.47%
5.5 10.55% 6.81% 4.32%
6.5 9.64% 6.37% 4.24%

Table 4.2 shows the speedup gained by EAJO when the first relation’s data arrival

rate is fixed to 0.5 Mbps. In this case, EAJO provides speedup until the second

relation’s data arrival rate is equal or faster than 4.5 Mbps, because both AJO and

EAJO decide to continue with SHJ after this data arrival rate. As shown in both Table

4.1 and Table 4.2, the speedup decreases as the average duplication factors increase.
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Table 4.2: Speedup of EAJO compared to AJO when card(R1) � card(R2) and the
data arrival rate of R1 is 0.5 Mbps

Data arrival
rate of R2 in
Mbps

Average duplication factors
1 2 5

0.5 30.61% 18.62% 9.16%
1.5 17.29% 8.72% 4.20%
2.5 12.41% 6.08% 3.12%
3.5 9.75% 4.91% 2.71%
4.5 − 4.27% 2.51%

High Cardinality of R1 and Low Cardinality of R2

We again conducted the simulations for two different conditions: i) when the data

arrival rate of R1 is fixed to 2 Mbps, and ii) when the data arrival rate of R1 is fixed

to 0.5 Mbps.

The results observed from Figure 4.9.a and Figure 4.9.b are similar to the results

in Figure 4.8.a and Figure 4.8.b, respectively. Since the cardinality of the first relation

is high in this case, response times of BJ and BBJ are substantially longer than SHJ

and also longer than AJO and EAJO as expected. The response times of SHJ, AJO,

and EAJO are nearly the same.

As illustrated in Figure 4.9.c, EAJO provides the best completion time in all data

arrival rates of the second relation. SHJ, BJ, and BBJ should wait the arrival of all

tuples related to the first relation whose cardinality is high. However, AJO and EAJO

can change the join method and the join order when the second relation’s tuples all

arrive. Compared to AJO, EAJO has the advantage of changing the join method to

BBJ. Figure 4.9.d compares the completion times when the first relation’s data arrival

rate is fixed to 0.5 Mbps. The results are similar to the previous one. EAJO provides
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(a) Response time when data arrival rate of R1 is
fixed to 2 Mbps and data arrival rate of R2 is changed

(b) Response time when data arrival rate of R1 is
fixed to 0.5 Mbps and data arrival rate of R2 is
changed

(c) Completion time when data arrival rate of R1
is fixed to 2 Mbps and data arrival rate of R2 is
changed

(d) Completion time when data arrival rate of R1
is fixed to 0.5 Mbps and data arrival rate of R2 is
changed

Figure 4.9: Data sizes of R1 and R2 are fixed with card(R1)� card(R2)

the shortest completion time once again. The gap between EAJO and the others is

even higher.

Table 4.3 and Table 4.4 show the gained speedup in completion time by EAJO

compared to AJO. In all conditions, both AJO and EAJO change the join order as

R2 1 R1. Actually, the gained time of EAJO compared to AJO remains the same,

because the unique common attributes are sent to the endpoint of R1, and its data

arrival rate is fixed. However, overall time decreases up to a certain value as the data

arrival rate of R2 increases. For this reason, the speedup increases up to that certain

value for both conditions as the data arrival rate of R2 increases. The speedup also

increases as the average duplication factors decrease.
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Table 4.3: Speedup of EAJO compared to AJO when card(R1) � card(R2) and the
data arrival rate of R1 is 2 Mbps

Data arrival
rate of R2 in
Mbps

Average duplication factors
1 2 5

0.5 14.47% 7.12% 3.53%
1.5 20.92% 10.89% 5.58%
2.5 22.80% 12.08% 6.26%
3.5 23.24% 12.37% 6.42%
4.5 23.24% 12.37% 6.42%
5.5 23.24% 12.37% 6.42%

Table 4.4: Speedup of EAJO compared to AJO when card(R1) � card(R2) and the
data arrival rate of R1 is 0.5 Mbps

Data arrival
rate of R2 in
Mbps

Average duplication factors
1 2 5

0.5 30.61% 18.62% 9.16%
1.5 33.51% 21.00% 10.60%
2.5 35.28% 22.53% 11.57%
3.5 37.37% 24.40% 12.81%
4.5 37.37% 24.40% 12.81%
5.5 39.80% 26.69% 14.39%
6.5 39.80% 26.69% 14.39%

4.3.1.3 Impact of Bit Vector Size

As explained in Section 3.3.1, a bloom filter represents a set S = {e1, e2, . . . , en} of n

elements in a vector v of m bits. Initially all the bits are set to 0. Then, k independent

hash functions, h1, h2, . . . , hk, with range {1, . . . , m} are used. In this part, we aim

to analyze the impact of m/n by changing it between 2 and 22. In each m/n value,

we used the number of hash functions, k, which minimizes the false positive rate (Fan

et al., 2000). Table 4.5 shows the m/n and k combinations used in our experiments.
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Table 4.5: The m/n and k combinations used for bloom filter

m/n k
2 1
4 3
6 4
8 6
10 7
12 8
14 10
16 11
18 12
20 14
22 15

In order to analyze the impact of the bit vector size, we set different m/n values while

we fixed the data arrival rates of both endpoints to 2 Mbps, and the cardinalities of

relations to low and high, respectively.

Since AJO does not use a bloom filter, its completion time remained the same in all

cases. In other words, we compared the completion times of AJO and EAJO when the

data arrival rates of both relations and the cardinalities of relations were fixed, while

different m/n values were used in EAJO. First, the average duplication factors on the

common attribute of relations were given randomly between 1 and 5, both inclusive.

Second, the average duplication factors were set to 2.

Figure 4.10.a shows the achieved speedup in completion time by EAJO compared to

AJO in different m/n values when the average duplication factors are given randomly.

The results observed from the experiment appears to suggest that the gained speedup

is not affected by the m/n value when it is between 6 and 20, inclusively. The best

performance is provided when the m/n is equal to 8.

Figure 4.10.b shows the gained speedup in completion time by EAJO when the
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(a) Random average duplication factors (b) Fixed average duplication factors

Figure 4.10: Speedup of EAJO compared to AJO when the m/n and k combinations
used

average duplication factors are equal to 2. The results are similar to the results in

Figure 4.10.a. The speedup values are almost the same when the m/n is between 8

and 16.

4.3.1.4 Discussion on the Performance Evaluation

The simulation results demonstrated that SHJ provides the best response time in all

conditions since it is a non-blocking join operator. It produces the first result tuple as

early as possible. Our previous and current proposals, namely AJO and EAJO, provide

almost the same response time with SHJ, due to setting the join method as SHJ in

the beginning. The response times of BJ and BBJ are dramatically longer because of

waiting for all tuples of the first relation to arrive. On the other hand, BJ or BBJ

can provide better completion times when the first relation’s cardinality is low and the

second relation’s cardinality is high. However, AJO can change the join method to BJ,

and EAJO can change the join method to BJ or BBJ in this condition.

EAJO provides the best completion time when the first relation’s cardinality is high

and the second relation’s cardinality is low. This conclusion is valid in all data arrival

combinations that we tested.
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To conclude, SHJ is the most successful join method with respect to response time.

However, the best join method in completion time can differ according to the cardi-

nalities and the data arrival rates of relations. In addition, the results showed that

BBJ provides better completion times than BJ in all conditions. Our proposal, EAJO,

provides an optimal response time by beginning with SHJ. It provides an optimal com-

pletion time by changing the join method or join order during the execution. In brief,

EAJO gives the best trade-off between the response time and the completion time.

Another key fact to remember is that EAJO always provides better completion time

than AJO.

4.3.2 Performance Evaluation for Multi-Join Queries

In this subsection, we compare EAJO with multi-way symmetric hash join (MSHJ),

BJ, BBJ, and AJO when there are three relations in the query. We use the same

example query in our experiments which is given in Section 4.2.2.

We have conducted our experiments in two main cases. Our aim in the first case

is to show the impact of data sizes, while we want to show the impact of data arrival

rates in the second case.

4.3.2.1 Impact of Data Sizes

Since our aim in this case is to show the impact of data sizes, we fixed the data arrival

rates of all relations to 0.5 Mbps. We conducted our experiments when the data sizes of

R1, R2, R3 were low-low-low (LLL), low-medium-high (LMH), low-high-high (LHH),

high-medium-low (HML), high-high-low (HHL), and high-high-high (HHH).

Figure 4.11.a, Figure 4.11.b and Figure 4.11.c compare the response times of MSHJ,

BJ, BJBF, AJO, and EAJO when the average duplication factors are 1, 2 and 5,
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respectively. In all average duplication factors, MSHJ, AJO, and EAJO provide the

best response time, whereas BJ performs the worst one and BBJ follows it. When

the cardinality of the first relation is high, the response times of BJ and BBJ become

dramatically longer due to waiting for the arrival of all results of the first relation.

As the duplication factor increases, the response times of BJ and BBJ shorten due to

the decrease in the number of unique common attribute values. In other words, the

number of attribute values to send to the other endpoints is decreased as the average

duplication factor increases. Although the response times of BJ and BBJ decrease as

the average duplication factor increases, their response times are dramatically longer

than MSHJ, AJO, and EAJO.

Figures 4.11.d, 4.11.e and 4.11.f show the completion times of MSHJ, BJ, BBJ,

AJO, and EAJO. When the cardinalities are HML or HHL, EAJO performs the best

completion time and AJO has the closest completion time to it. The difference between

EAJO and others, except AJO, is substantially high. When the cardinalities of all

relations are the same, namely LLL or HHH, MSHJ, AJO, and EAJO share the best

completion time, whereas BJ performs the worst. When the cardinalities are LMH

or LHH, BBJ performs the shortest completion time. EAJO’s completion time is the

second best when the average duplication factors are 1. BJ performs slightly better

than EAJO when the average duplication factors are 2 or 5. To conclude, EAJO

performs or shares the best completion time in four of six cases due to having the

adaptation ability.

Table 4.6 displays the speedup in completion time of EAJO compared to AJO when

the data arrival rates of R1, R2 and R3 are fixed. As shown in the table, when the

cardinalities of relations are different, EAJO provides speedup from 6.40% to 31.33%.

Although the speedup is not affected by the cardinalities of relations, it increases as
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the average duplication factors decrease. EAJO does not provide speedup when the

cardinalities of relations are the same, because both AJO and EAJO decide to continue

with MSHJ.

(a) Response time when average duplication factors
are 1

(b) Response time when average duplication factors
are 2

(c) Response time when average duplication factors
are 5

(d) Completion time when average duplication fac-
tors are 1

(e) Completion time when average duplication fac-
tors are 2

(f) Completion time when average duplication fac-
tors are 5

Figure 4.11: Data arrival rates of R1, R2 and R3 are fixed
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Table 4.6: Speedup of EAJO compared to AJO when data arrival rates are fixed

Data sizes of
R1, R2 and R3

Average duplication factors
1 2 5

LMH 31.33% 16.55% 6.40%
LHH 31.33% 16.55% 6.40%
HML 31.33% 16.55% 6.40%
HHL 31.33% 16.55% 6.40%

4.3.2.2 Impact of Data Arrival Rates

In this case, we fixed the data arrival rates of R1 and R3 to 2 Mbps, and changed the

data arrival rate of R2 in order to show the impact of data arrival rates on MSHJ,

BJ, BBJ, AJO, and EAJO. We conducted the simulations for two different cardinality

options: i) low cardinality of R1, high cardinality of R2, and high cardinality of R3

(LHH); ii) high cardinality of R1, high cardinality of R2, and low cardinality of R3

(HHL). LHH and HHL are chosen because EAJO performs the worst and the best

completion times among their results with other combinations in the previous section.

Since we showed the effect of average duplication factors previously, we fixed the average

duplication factors to 2 in these experiments.

Low Cardinality of R1, High Cardinality of R2, High Cardinality of R3

Figure 4.12.a shows the response times of MSHJ, BJ, BBJ, AJO, and EAJO when the

cardinalities of relations are low, high and high, respectively. As shown in the figure,

response times of MSHJ, AJO, and EAJO are almost the same, while BJ’s and BBJ’s

response times are highly longer than them.

Figure 4.12.b indicates that the completion times in ascending order are of BBJ,

BJ, EAJO, AJO, and MSHJ. When the first relation’s cardinality is low and its data

arrival is relatively fast, BBJ and BJ provide better completion times. The completion
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time of MSHJ is the worst one in all cases due to having the disadvantage of waiting

all the tuples of R2 and R3. However, AJO and EAJO change their join methods to

BJ and BBJ, respectively, when the tuples of the first relation all arrive. Therefore,

EAJO performs almost the same completion time with BJ, and provides slightly worse

completion time than BBJ. BBJ’s and BJ’s both response times and completion times

would increase, if the first relation’s cardinality were medium or high.

Figure 4.12.c shows the speedup in completion time of EAJO compared to AJO

when the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2

is changed, with card(R1) � card(R2) = card(R3). The speedup decreases as the

second relation’s data arrival rate increases, because the impact of the decrease in the

size of the sent data over the network decreases as the network speed increases.

(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.12: Data sizes of R1, R2 and R3 are fixed with card(R1) � card(R2) =
card(R3)
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High Cardinality of R1, High Cardinality of R2, Low Cardinality of R3

The results observed from Figure 4.13.a are similar to the results in Figure 4.12.a. BJ

and BBJ provide the worst response time again, whereas MSHJ, AJO, and EAJO have

almost the same response time. Since the cardinality of the first relation is high in this

case, response times of BJ and BBJ are dramatically longer than others.

EAJO provides the best completion time in all cases as shown in Figure 4.13.b. The

completion times in ascending order are of EAJO, AJO, MSHJ, BBJ, and BJ when

the second relation’s data arrival rate is equal or faster than 1.5 Mbps. EAJO and

AJO have the advantage of using BJ or BBJ when the tuples of R3 all arrive, whose

cardinality is low. EAJO outperforms AJO in all cases due to the usage of bloom filter

for sending the common attributes.

(a) Response time (b) Completion time

(c) Speedup of EAJO compared to AJO

Figure 4.13: Data sizes of R1, R2 and R3 are fixed with card(R1) = card(R2) �
card(R3)
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Figure 4.13.c illustrates the speedup in completion time of EAJO compared to AJO

when the data arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is

changed, with card(R1) = card(R2)� card(R3). Compared to AJO, EAJO provides

speedup in completion time due to the usage of bloom filter. It sends less data size

through the network. The speedup decreases while the second relation’s data arrival

rate increases, because the effect of the decrease in the size of the sent data decreases as

the network speed increases. The results are the same with the results in Figure 4.12.c.

The cardinalities of R1, R2 and R3 are low-high-high and high-high-low in these cases,

respectively. The common attributes exist between R1 - R2; and R2 - R3. In the first

case, when the cardinalities are low-high-high, the tuples of R1 all arrive firstly, and

AJO and EAJO change the join method for R1 and R2 to BJ or BBJ, respectively. In

the second case, when the cardinalities are high-high-low, the tuples of R3 all arrive

firstly. As a result, AJO and EAJO change the join method for R3 and R2 to BJ or

BBJ, respectively. For this reason, the achieved speedups are the same in both cases.

4.3.2.3 Discussion on the Performance Evaluation

The simulation results showed that MSHJ, which is a non-blocking join method, pro-

vides the best response time in all conditions. AJO and EAJO have almost the same

response time with MSHJ, due to setting the join method as MSHJ at the beginning.

The response times of BJ and BBJ are dramatically longer because of waiting the

arrival of all tuples belonging to the first relation.

The results also demonstrated that BBJ provides the best completion time when

the first relation’s cardinality is low and the other relations’ cardinalities are medium

or high. However, EAJO can change the join method to BBJ in these conditions.

On the other hand, EAJO provides the best completion time when the first relation’s
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cardinality is high. This conclusion is valid in all data arrival combinations that we

tested.

In conclusion, MSHJ is the best join method in response time. However, the best

join method in completion time differs according to the relations’ cardinalities and

data arrival rates. EAJO provides an optimal response time by beginning with MSHJ

and an optimal completion time by changing the join method or join order during the

execution. We can conclude that EAJO gives the best trade-off between the response

time and the completion time. We also emphasize that EAJO always provides better

completion time than AJO.

4.4 Conclusion

In this chapter, we presented and discussed the performance evaluations of adaptive

join operator and extended adaptive join operator for single join and multi-join queries.

The results of the performance evaluation showed the efficiency of the proposed

operators. Both of them have almost the same response time with symmetric hash

join and multi-way symmetric hash join, but they can provide faster completion times.

Compared to bind join, adaptive join operator performs substantially better with re-

spect to the response time and can also improve the completion time. Extended adap-

tive join operator performs substantially better with respect to the response time than

both bind join and bind-bloom join, and it can also improve the completion time.

Moreover, both operators have the adaptation ability to different data arrival rates.

Extended adaptive join operator has the same response time with adaptive join

operator. However, it provides faster completion times in all conditions, because it

utilizes the bloom filter for sending the common attributes to the other endpoint. Ex-
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perimental results also showed that bind-bloom join provides better completion times

than bind join in all conditions. These results allow us to suggest that using bloom

filters in bind join.

In conclusion, adaptive join operator provides optimal response time and completion

time for single join queries and multi-join queries. Furthermore, the extended version

of the adaptive join operator succeeds to further reduce the completion time.
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Chapter 5

Conclusion and Future Work

Abstract: In this chapter, we review the presented work in this thesis, highlighting

the proposed methods and our contributions. We discuss the performance evaluation

and finally we conclude the thesis by presenting possible future work.
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5.1 Thesis Review

Linked Data, which is the fundamental part of the Web of Data, evolves the current

Web into a huge global data space. Since this data space is distributed on the Web,

query optimization is one of the most important research topics in federated query

processing on Linked Data. The objective of query optimization is to minimize the

response time and the completion time. Response time is the time to generate the first

result tuple, while completion time is the time to provide all result tuples. The commu-

nication cost is the dominant cost in them both, hence the goal of query optimization

in federated query processing can be described as to minimize the communication cost.

For this reason, this thesis focuses on minimizing the communication time belonging

to the response time and the completion time for query federation.

Federated queries are executed over the SPARQL endpoints of the Linked Data

sources on the Web. There are various challenges in this distributed environment such

as inaccurate or missing statistics, and different data arrival rates of relations. We think

that adaptive query optimization (Deshpande et al., 2007) should be used in order to

manage these challenges. Although there are various federated query engines which use

static query optimization (Quilitz and Leser, 2008; Görlitz and Staab, 2011b; Schwarte

et al., 2011; Akar et al., 2012; Wang et al., 2013; Yönyül, 2014), there are a few engines

which consider adaptive query optimization (Acosta et al., 2011; Lynden et al., 2010,

2011). There is another study which considers adaptive query optimization in some

way, called AVALANCHE (Basca and Bernstein, 2010, 2014). Some of these adaptive

studies aim to minimize the response time (Acosta et al., 2011; Basca and Bernstein,

2010, 2014), whereas the others aim to minimize the completion time (Lynden et al.,

2010, 2011). To the best of our knowledge, the work in this thesis is the first study in

query federation over SPARQL endpoints that aims to minimize them both.
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In this thesis, we first surveyed the literature of federated query processing on

Linked Data and presented the major challenges in this research topic (Oguz et al.,

2015). We believe that this survey contributes to the existing literature and we hope

that it will be useful for future research in this area.

Second, we focused on adaptive query optimization, which is one of the challenges

mentioned in the literature survey. We proposed an adaptive join operator (AJO)

(Oguz et al., 2016) in order to minimize both the response time and the completion

time. This operator handles different data arrival rates of relations and missing statis-

tics. AJO begins with symmetric hash join (SHJ) (Wilschut and Apers, 1991) in order

to minimize the response time. It considers changing the join method to bind join (BJ)

(Haas et al., 1997) when all the tuples of a relation arrive. Hence it can change the

join order and the join method during the execution. Moreover, our proposal works

without requiring the predefined statistics.

Finally, we proposed an extended version of adaptive join operator (EAJO) (Oguz

et al., In press) which aims to further reduce the completion time by employing bind-

bloom join (BBJ) (Basca and Bernstein, 2014; Groppe et al., 2015) to minimize the

communication time. We presented both our proposals for single join and multi-join

queries.

In the performance evaluation of this thesis, we compared AJO with SHJ and BJ

with respect to the response time and the completion time. The reason of comparing

AJO with SHJ and BJ is as follows. SHJ is a non-blocking join operator, hence it

minimizes the response time. On the other hand, BJ can minimize the completion time

in some conditions and also it is the most popular join method among the federated

query engines.

We included BBJ and AJO to the compared methods in the performance study
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of EAJO. Response time and completion time were once again chosen as evaluation

metrics to show success in query optimization. We evaluated the mentioned rival

operators in different cases in order to show the impact of data sizes and the impact

of data arrival rates on their performances.

The performance evaluation of this thesis showed the efficiency of the proposed

operators. Since SHJ and MSHJ are non-blocking join methods, they provide the

shortest response times for single and multi-join queries, respectively. AJO and EAJO

have almost the same response time with SHJ or MSHJ because of using these join

methods in the beginning. The response times of BJ and BBJ are mostly affected by

the cardinality and the data arrival rate of the first relation. Their response times

are dramatically longer because of waiting the arrival of all tuples belonging to the

first relation. As the cardinality of the first relation increases or as the data arrival

rate of the first relation decreases, this disadvantage becomes more evident. The most

successful join method in completion time can differ according to the cardinalities and

the data arrival rates of relations. BJ and BBJ can provide shorter completion times

when the cardinality of the first relation is low. The gap between them and SHJ or

MSHJ increases as the cardinality of the other relation increases. In addition, BBJ

provides shorter completion times than BJ in all conditions.

AJO and EAJO provide almost the same response time with SHJ and MSHJ,

and they can provide faster completion times. Compared to BJ, our proposals perform

substantially better with respect to the response time and can provide faster completion

times. In addition, EAJO provides substantially faster response time than BBJ and

can improve the completion time as well. Moreover, EAJO provides faster completion

times than AJO in all conditions.

In conclusion, the proposed operators provide the best trade-off between the re-
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sponse time and the completion time. The performance evaluation revealed that they

are successful in both fixed and different data arrival rates, even though our main

objective is to manage different data arrival rates of relations.

5.2 Future Work

As a future work, we are motivated to consider the case where a relation is distributed

over multiple sources. In this case, we should not only deal with the different data

arrival rates of SPARQL endpoints belonging to the relations, but also the different

data arrival rates of SPARQL endpoints belonging to the multiple sources of each

relation.

Our current adaptive join operator calculates the remaining times for possible join

methods when all the tuples of a relation arrive. We plan to extend it with additional

feedback such as changes in the data arrival rates of relations during the execution.

In the current study, we consider the data arrival rates of relations when a SPARQL

endpoint completes the data transfer. By this extension, we can improve the frequency

of feedback of our operator and consider the changes in the data arrival rates of all re-

lations. Other possible perspectives are to focus on metadata management and caching

results which are the other presented challenges in federated query processing on Linked

Data discussed in Section 2.2.5.

Verborgh et al. (2014) proposed triple pattern fragments which provide a new way

of publishing Linked Data on the Web. A triple pattern fragment is defined as a

Linked Data Fragment with a triple pattern as selector, count metadata, and the

controls to retrieve other triple pattern fragments of the dataset1. The authors stated

that client-side query processing using triple pattern fragments provides live data as
1http://linkeddatafragments.org/in-depth/#tpf
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query processing over SPARQL endpoints. They also remarked that it handles some

challenges of the endpoints such as low bandwidth and high server cost. It could be

an interesting future research topic to study query optimization for queries over triple

pattern fragments.
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Optimization methods for large-scale distributed query processing on linked data

Linked Data is a term to define a set of best practices for publishing and interlinking structured data on the
Web. As the number of data providers of Linked Data increases, the Web becomes a huge global data space. Query
federation is one of the approaches for efficiently querying this distributed data space. It is employed via a federated
query engine which aims to minimize the response time and the completion time. Response time is the time to generate
the first result tuple, whereas completion time refers to the time to provide all result tuples.

There are three basic steps in a federated query engine which are data source selection, query optimization, and
query execution. This thesis contributes to the subject of query optimization for query federation. Most of the
studies focus on static query optimization which generates the query plans before the execution and needs statistics.
However, the environment of Linked Data has several difficulties such as unpredictable data arrival rates and unreliable
statistics. As a consequence, static query optimization can cause inefficient execution plans. These constraints show
that adaptive query optimization should be used for federated query processing on Linked Data.

In this thesis, we first propose an adaptive join operator which aims to minimize the response time and the
completion time for federated queries over SPARQL endpoints. Second, we extend the first proposal to further reduce
the completion time. Both proposals can change the join method and the join order during the execution by using
adaptive query optimization. The proposed operators can handle different data arrival rates of relations and the lack
of statistics about them.

The performance evaluation of this thesis shows the efficiency of the proposed adaptive operators. They provide
faster completion times and almost the same response times, compared to symmetric hash join. Compared to bind
join, the proposed operators perform substantially better with respect to the response time and can also provide
faster completion times. In addition, the second proposed operator provides considerably faster response time than
bind-bloom join and can improve the completion time as well. The second proposal also provides faster completion
times than the first proposal in all conditions. In conclusion, the proposed adaptive join operators provide the best
trade-off between the response time and the completion time. Even though our main objective is to manage different
data arrival rates of relations, the performance evaluation reveals that they are successful in both fixed and different
data arrival rates.

Keywords: Distributed Query Processing, Query Optimization, Adaptive Query Optimization, Linked Data, Query
Federation, Performance Evaluation

Méthodes d’optimisation pour le traitement de requêtes réparties à grande échelle sur
des données liées

Données Liées est un terme pour définir un ensemble de meilleures pratiques pour la publication et l’interconnexion
des données structurées sur le Web. A mesure que le nombre de fournisseurs de Données Liées augmente, le Web
devient un vaste espace de données global. La fédération de requêtes est l’une des approches permettant d’interroger
efficacement cet espace de données distribué. Il est utilisé via un moteur de requêtes fédéré qui vise à minimiser le
temps de réponse du premier tuple du résultat et le temps d’exécution pour obtenir tous les tuples du résultat.

Il existe trois principales étapes dans un moteur de requêtes fédéré qui sont la sélection de sources de données,
l’optimisation de requêtes et l’exécution de requêtes. La plupart des études sur l’optimisation de requêtes dans ce
contexte se concentrent sur l’optimisation de requêtes statique qui génère des plans d’exécution de requêtes avant
l’exécution et nécessite des statistiques. Cependant, l’environnement des Données Liées a plusieurs caractéristiques
spécifiques telles que les taux d’arrivée de données imprévisibles et les statistiques peu fiables. En conséquence,
l’optimisation de requêtes statique peut provoquer des plans d’exécution inefficaces. Ces contraintes montrent que
l’optimisation de requêtes adaptative est une nécessité pour le traitement de requêtes fédéré sur les données liées.

Dans cette thèse, nous proposons d’abord un opérateur de jointure adaptatif qui vise à minimiser le temps de
réponse et le temps d’exécution pour les requêtes fédérées sur les endpoints SPARQL. Deuxièmement, nous étendons la
première proposition afin de réduire encore le temps d’exécution. Les deux propositions peuvent changer la méthode de
jointure et l’ordre de jointures pendant l’exécution en utilisant une optimisation de requêtes adaptative. Les opérateurs
adaptatifs proposés peuvent gérer différents taux d’arrivée des données et le manque de statistiques sur des relations.

L’évaluation de performances dans cette thèse montre l’efficacité des opérateurs adaptatifs proposés. Ils offrent
des temps d’exécution plus rapides et presque les mêmes temps de réponse, comparé avec une jointure par hachage
symétrique. Par rapport à bind join, les opérateurs proposés se comportent beaucoup mieux en ce qui concerne le
temps de réponse et peuvent également offrir des temps d’exécution plus rapides. En outre, le deuxième opérateur
proposé obtient un temps de réponse considérablement plus rapide que la bind-bloom join et peut également améliorer
le temps d’exécution. Comparant les deux propositions, la deuxième offre des temps d’exécution plus rapides que la
première dans toutes les conditions. En résumé, les opérateurs de jointure adaptatifs proposés présentent le meilleur
compromis entre le temps de réponse et le temps d’exécution. Même si notre objectif principal est de gérer différents
taux d’arrivée des données, l’évaluation de performance révèle qu’ils réussissent à la fois avec des taux d’arrivée de
données fixes et variés.

Mots-clés: Traitement de requêtes distribuées, optimisation de requêtes, optimisation de requêtes adaptative, données
liées, fédération de requêtes, évaluation de performances


