

Etude par RMN du solide multi-noyaux et modélisation des paramètres RMN de fluorures et d'oxyfluorures inorganiques

Jamal Dabachi

► To cite this version:

Jamal Dabachi. Etude par RMN du solide multi-noyaux et modélisation des paramètres RMN de fluorures et d'oxyfluorures inorganiques. Matière Condensée [cond-mat]. Le Mans Université, 2017. Français. NNT : 2017LEMA1006 . tel-01822377

HAL Id: tel-01822377 https://theses.hal.science/tel-01822377v1

Submitted on 25 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse de Doctorat

Jamal DABACHI

Mémoire présenté en vue de l'obtention du grade de Docteur de Le Mans Université sous le sceau de l'Université Bretagne Loire

École doctorale : Matière, Molécules, Matériaux en Pays de la Loire (3MPL

Discipline : Physique Spécialité : Physique de la matière condensée Unité de recherche : Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283

Soutenue le 28 avril 2017 Thèse N° : 2017LEMA1006

Etude par RMN du solide multi-noyaux et modélisation des paramètres RMN de fluorures et d'oxyfluorures inorganiques

JURY

Rapporteurs :	Christian BONHOMME, Professeur des universités, Université Pierre et Marie Curie		
	Laurent LE POLLÈS, Maître de conférences HDR, Ecole Nationale Supérieure de Chimie de Rennes		
Examinateurs :	Franck FAYON, Directeur de recherche CNRS, Université d'Orléans		
	Florent BOUCHER, Directeur de recherche CNRS, Université de Nantes		
	Damien DAMBOURNET, Maître de conférences HDR, Université Pierre et Marie Curie		
Directeur de Thèse :	Monique BODY, Maître de conférences HDR, Le Mans Université		
Co-directeur de Thèse :	Christophe LEGEIN, Professeur des universités, Le Mans Université		
Co-encadrant de Thèse :	Jens DITTMER, Professeur des universités, Le Mans Université		

ABREVIATIONS

Résonance Magnétique Nucléaire

- 1D : one-dimensional
- 2D: two-dimensional
- CPMAS : Cross Polarization Magic Angle Spinning
- CSA : Chemical Shift Anisotropy
- CW : Continuous Wave
- DAS : Dynamic Angle Spinning
- DOR : Double Orientation Rotation
- EFG : Electric Field Gradient
- FSLG : Frequency Switch Lee-Goldburg
- GCE : Gradient de Champ Electrique
- LG : Lee-Goldburg
- MAS : Magic Angle Spinning
- PAS : Principal Axis System
- QI : Quadrupolar Interaction
- Q-CPMG : Quadrupolar Carr-Purcell-Meiboom-Gill
- RMN : Résonance Magnétique Nucléaire
- RF: Radio-Fréquence
- SATRAS : SAtellite TRAnsition Spectrocopy
- SPINAL : Small Phase INcremental ALternation
- ST-MAS : Satellite Transition Magic Angle Spinning
- TPPM : Two Pulse Phase Modulated
- T1 : temps de relaxation spin-réseau (longitudinal)
- T2: temps de relaxation spin-spin (transversal)
- TMS : TétraMéthylSilane
- VACPMAS : Variable Amplitude Cross Polarization Magic Angle Spinning
- WURST-QCPMG : Wideband Uniform rates Smooth Trunction- Quadrupolar Carr-Purcell-

Meiboom-Gill

- XiX : X inverse-X
- δ_{iso} : isotropic chemical shift
- $\sigma_{\mbox{\scriptsize iso}}$: isotropic shielding constant
- C_Q : quadrupolar coupling constant

- v_Q : quadrupolar frequency
- $\mathbf{\eta}_{\mathbf{Q}}$: asymmetry parameter

Calculs premiers principes

- APO : Atomic Position Optimized
- AE : All Electron
- BO: Born Oppenheimer
- CASTEP : CAmbridge Serial Total Energy Package
- DFT : Density Functional Theory
- ES : Experimental Structure
- FO: Full Optimized
- GGA : Generalized Gradient Approximation
- GIPAW : Gauge Including Projector Augmented Wave
- HK : Hohenberg Kohn
- KS: Kohn Sham
- LDA : Local Density Approximation
- LSDA : Local Spin Density Approximation
- OTF_USPP : On The fly_UltratSoft PseudoPotential
- PAW : Projector Augmented Wave
- PBE : Perdew, Bruke and Ernzerhof exchange-correlation functional
- SCF : Self Consistent Field
- USPP : UltratSoft PseudoPotential
- VASP : Vienna Ab initio Simulation Package

Cristallographie/Chimie du solide

- ADP : Anisotropic Displacement Parameters
- DRX : Diffraction des Rayons X
- HT : High Temperature
- ICSD : Inorganic Crystal Structure Database
- IDP : Isotropic Displacement Parameters
- **RT** : Room Temperature
- TGA-MS : Thermal Gravimetric Analysis-Mass Spectrometer
- XRPD : X-ray Powder Diffraction
- XRD : X-ray Diffraction

Sommaire

Introduction générale	7
La RMN du solide pour la caractérisation structurale Applications aux fluorures et oxyfluorures inorganiques Plan du manuscrit Références	9 11 15 18
Chapitre I RMN du solide haute résolution et calculs pr	emiers
principes	21
1.1 Introduction 1.2 Théorie de la spectroscopie RMN	23 24
1.2.1 Principe de base d'une expérience RMN	24
1.2.1.1 Dynamique du spin nucléaire 1.2.1.2 Description quantique	24
1.2.1.3 Effet Zeeman	24
1.2.1.4 Le signal RMN : Impulsion simple	
1.2.1.5 Transformée de Fourier d'un signal RMN	27
1.2.1.6 Processus dynamiques : relaxations	
1.2.2 Les interactions internes en RMN du solide	29
1.2.2.1 L'interaction de déplacement chimique	30
1.2.2.2 L'interaction dipolaire	33
1.2.2.3 L'interaction quadripolaire	
1.2.2.4 L'interaction spin-spin indirecte (couplage J)	
1.2.2.5 Les angles d'Euler	37
1.2.3 RMN: Techniques expérimentales	39
1.2.3.1 Sensibilité et rapport signal sur bruit (Signal-to-Noise, S	3/N)39
1.2.3.2. La rotation à l'angle magique (Magic Angle Spinning, N	IAS). 40
1.2.3.3. L'écho de Hahn	42
1.2.3.4 Le découplage hétéronucléaire	44
1.2.3.5 L'expérience de polarisation croisée	

1.2.3.6 RMN haute résolution des noyaux quadripolaires 4
1.2.3.7 Simulation des spectres RMN avec Dmfit5
1.3 Calculs premiers principes des paramètres RMN5
1.3.1 Méthodes de chimie quantique5
1.3.1.1 Problématique5
1.3.1.2 Approximation de Born-Oppenheimer (BO)
1.3.1.3 L'approche Hartree-Fock 5
1.3.1.4 Théorie de la fonctionnelle densité (DFT) 5
1.3.1.5 La modélisation des systèmes périodiques5
1.3.2 Calculs premiers principes des paramètres RMN 6
1.3.2.1 L'approche DFT-PAW/GIPAW implémentée dans le cod
CASTEP
1.3.2.2 L'approche Projector Augmented Waves (PAW)
1.3.2.3 L'approche Gauge Including Projector Augmented Wav
(GIPAW)
1.3.2.4 Optimisation de géométrie6
1.3.2.5 Conventions
Références 6
Chapitre II Etude de fluorures ordonnés : RMN du solide de ¹⁹ F, ⁸⁹
et ³⁹ K et calculs DFT des paramètres RMN de phases du systèm
binaire KF-YF36
2.1 Introduction7
$2.2~\mathrm{RMN}$ du solide de $^{19}\mathrm{F}$, $^{89}\mathrm{Y}$ et $^{39}\mathrm{K}$ et calculs DFT des paramètres RMN d
phases du système binaire KF-YF37
2.3 Conclusion
Références 10

Chapitre III Ré-affinement structural d'oxyfluorures ordonnés :
DRX sur poudre, RMN du solide de $^{19}\mathrm{F}$ et $^{139}\mathrm{La}$ et calculs DFT des
paramètres RMN de deux variétés de LaOF109
3.1 Introduction
paramètres RMN de deux variétés de LaOF
3.3 Conclusion
Références
Chapitre IV Etude de composés désordonnés : Etude de la
composition chimique et de l'ordre O/F dans NbO ₂ F et TaO ₂ F 137
4.1 Introduction
4.2 Etude de la composition chimique et de l'ordre O/F dans NbO ₂ F et TaO ₂ F
4.3 Conclusion
References
Conclusion générale et perspectives
Références
Annexe 1: Paramètres utilisés dans les calculs DFT avec le code
CASTEP-NMR
Annexe 2: Publications et Communications255

Annexe 3: Formations	doctorales suivies.	

Introduction générale

LA RMN DU SOLIDE POUR LA CARACTERISATION STRUCTURALE

La Résonance Magnétique Nucléaire (RMN) du solide est un outil précieux pour la caractérisation de la structure, à l'échelle des premières sphères de coordinence, de matériaux qu'ils soient organiques, inorganiques ou hybrides. Cette technique permet en effet d'observer sélectivement la signature spectroscopique de nombreux noyaux et a priori d'en extraire des informations structurales détaillées: environnement chimique local, degré de distorsion des polyèdres, nombres de sites et multiplicités relatives dans le cas des matériaux cristallins, etc. De plus, des expériences RMN de corrélation homo et hétéronucléaire peuvent fournir des informations sur la proximité spatiale et sur les liaisons entre atomes et aider à ou permettre l'attribution des résonances aux sites cristallographiques. La plupart des interactions affectant les spins nucléaires (voir chapitre 1) étant anisotropes (c'est à dire dépendantes de l'orientation), les spectres RMN de solides présentent le plus souvent des raies larges, empêchant parfois une caractérisation structurale précise [1,2]. Malgré les spectaculaires avancées en RMN du solide (haut champ, rotation ultra rapide à l'angle magique (MAS), séquences d'impulsions pour haute résolution, etc.) permettant d'améliorer la résolution (et concomitamment la sensibilité), certains spectres RMN de solides restent difficiles à analyser, particulièrement dans le cas de structures complexes. Il est alors difficile d'attribuer les signaux à des sites cristallographiques distincts et d'extraire l'information structurale potentiellement disponible. Cette difficulté est fréquemment rencontrée lors de l'étude de matériaux inorganiques contenant des noyaux peu souvent étudiés, car peu abondants ou peu sensibles, pour lesquels il y a donc peu d'information dans la littérature concernant l'acquisition ou l'interprétation des spectres.

Ce contexte explique en partie l'utilisation croissante par la communauté de la RMN du solide des calculs premiers principes pour la prédiction des paramètres RMN. L'utilisation de la chimie quantique pour prédire les paramètres RMN n'est pas récente mais elle était limitée, soit à des systèmes isolés, soit, en respectant les conditions aux limites périodiques, aux seuls paramètres quadripolaires (méthode LAPW (Linearized Augmented Plane-Wave), introduite par Blaha et collaborateurs [3]). Dans le premier cas, les systèmes périodiques étaient modélisés par des clusters [4,5] représentant imparfaitement l'état solide réel [6], ceci n'étant pas sans effet sur les paramètres RMN calculés. La seconde approche prend en compte le caractère périodique des solides cristallins et permet de calculer avec précision les tenseurs de gradient de champ électrique (GCE) et donc les paramètres quadripolaires des noyaux éponymes. Elle fut appliquée avec succès à de nombreux noyaux mais force est de reconnaitre que, ne permettant pas le calcul des constantes d'écran, l'attrait de la communauté de la RMN du solide resta limité. L'application des calculs premiers principes aux matériaux solides connut une avancée majeure en 2001 avec l'introduction, par Pickard et Mauri, de l'approche GIPAW (Gauge Including Projector Augmented Waves) [7] permettant, en plus des tenseurs de GCE, le calcul des tenseurs de constantes d'écran en utilisant les conditions aux limites périodiques (voir chapitre 1). Ces calculs peuvent être utilisés pour attribuer les résonances aux sites cristallographiques de matériaux ordonnés et permettent d'accéder à des paramètres difficiles à déterminer expérimentalement (anisotropies, orientation des tenseurs) mais pouvant avoir un effet significatif sur les spectres [8-10]. La possibilité de prédire les spectres peut aider à l'acquisition expérimentale quand les conditions sont délicates, par exemple quand la sensibilité est faible. Les calculs des paramètres RMN peuvent aussi permettre de trancher entre plusieurs modèles structuraux en les comparant aux paramètres RMN expérimentaux. Ils peuvent aussi fournir des informations sur l'existence de mobilité dans le solide. Des différences significatives entre expérience et calculs peuvent en effet suggérer l'existence de dynamique ayant pour conséquence de moyenner les interactions RMN. Enfin, la sensibilité de la RMN à l'environnement local et l'utilisation simultanée de calculs premiers principes pour interpréter les spectres offrent une approche très intéressante pour l'étude des solides cristallins désordonnés, que le désordre soit de position ou de composition [10,11], voire même de matériaux amorphes [8,9].

La possibilité de prédire et de contrôler les propriétés des composés est l'un des objectifs des chimistes de l'état solide. Ceci nécessite la compréhension de la relation structure-propriété des composés dont la première, et peut-être la plus importante étape, est une caractérisation structurale précise. Historiquement, celle-ci a été réalisée en utilisant des techniques basées sur la diffraction en s'appuyant sur l'ordre à longue distance caractéristique de nombreux solides. Lorsque des monocristaux assez gros ne peuvent pas être synthétisés, la détermination structurale doit être réalisée à partir de données de diffraction collectées sur des poudres polycristallines, ce qui reste un challenge dans de nombreux cas. Dans ce contexte, en s'appuyant sur les avancées en RMN du solide et les progrès réalisés dans les calculs de paramètres RMN de systèmes périodiques, le concept de cristallographie RMN a vu le jour il y a quelques années [12]. Il consiste à combiner les données de diffraction, les données RMN expérimentales et les

10

résultats des calculs premiers principes des paramètres RMN dans le processus de résolution structurale pour augmenter les chances de succès et la précision des structures [13-15].

APPLICATIONS AUX FLUORURES ET OXYFLUORURES INORGANIQUES

L'état de l'art de la RMN du solide structurale étant brossé, pour introduire les travaux présentés dans ce manuscrit, il est nécessaire de résumer les études de ce type sur des fluorures et oxyfluorures inorganiques.

Rappelons tout d'abord que le fluor 19 (¹⁹F) est 100 % abondant, qu'il possède un spin nucléaire ½, un rapport gyromagnétique élevé et une large gamme de déplacement chimique isotrope (δ_{iso}) [16,17]. Toutes ces propriétés font du fluor un très bon candidat à l'étude par RMN des fluorures et oxyfluorures inorganiques. La modélisation du δ_{iso} de ¹⁹F dans les fluorures inorganiques est maintenant une longue histoire au Mans. Elle a démarré avec l'élaboration d'un modèle semi-empirique, dit de superposition, de prédiction du δ_{iso} de ¹⁹F [18], abondamment utilisé par la suite malgré certaines limites [19-25]. Elle a continué avec l'utilisation des calculs premiers principes basés sur une approche moléculaire nécessitant la délicate définition de clusters pour décrire la structure cristalline [19,26]. En parallèle, les premiers calculs premiers principes de tenseurs de GCE de fluorures inorganiques, en respectant les conditions aux limites périodiques, étaient réalisés (au Mans essentiellement) en utilisant la méthode LAPW [3]. Les paramètres quadripolaires de divers noyaux (²⁷Al [19,21,27-31], ²³Na [21,27,32], ⁶⁷Zn [33,34], ²⁵Mg [35], ¹³⁹La [35,36], ⁷⁵As [32]) furent calculés dans de nombreux composés, avec une grande précision. Ces calculs ont notamment permis la mise en évidence de l'importance et des effets de l'optimisation, en particulier pour les composés dont les structures ont été déterminées sur poudre [21,28-30,32,34], le réaffinement de la structure de β -Ba₃AIF₉ [29] et des attributions des raies de résonance aux sites cristallographiques pour les composés en présentant plusieurs de même multiplicité [21,29,30]. Notons aussi que les données RMN multinoyaux (¹⁹F, ²⁰⁷Pb et ⁶⁷Zn) ont contribué à la détermination du groupe spatial de Pb_2ZnF_6 [34].

Les premiers calculs de tenseurs d'écran de ¹⁹F dans des fluorures inorganiques réalisés avec la méthode GIPAW furent publiés en 2009 [37] juste avant que le projet

11

régional RMN3MPL¹ (2009-2012), dont c'était l'un des buts, ne démarre. Suivit un très bel exemple de contribution de la RMN et des calculs GIPAW à la description du désordre généré par la substitution F/OH dans un hydroxysilicate fluoré, 4Mg₂SiO₄·Mg(OD_{0.5}F_{0.5})₂ [38]. Deux relations sensiblement différentes entre constantes d'écran isotropes (σ_{iso}) calculées et valeurs de δ_{iso} expérimentales sont reportées dans ces deux études. Ceci a amené les partenaires du projet RMN3MPL à reconsidérer la définition d'une relation, indispensable pour prédire les valeurs de $\delta_{\scriptscriptstyle iso}$ de $^{\scriptscriptstyle 19}F$, entre valeurs de $\sigma_{\scriptscriptstyle iso}$ calculées et valeurs de δ_{iso} expérimentales, pour les fluorures inorganiques. Les fluorures binaires d'alcalins (MF), d'alcalino-terreux (MF₂) et de terres rares de la colonne 3 du tableau périodique (Sc, Y, La) ont été considérés. Il a été montré qu'avec la fonctionnelle PBE [39], pour les orbitales localisées vides des ions Ca²⁺, Sc³⁺ (3d) et La³⁺ (4f), une correction, consistant à augmenter, dans le pseudo-potentiel de l'atome, l'énergie des orbitales considérées, était nécessaire pour calculer précisément les valeurs de $\sigma_{\rm iso}$ de $^{19}\text{F}.$ Une relation (δ_{iso} /CFCl₃ (ppm) = -0,80(3) σ_{iso} + 89(9)) permettant de prédire avec une bonne précision les spectres RMN de ¹⁹F de fluorures cristallisés a été obtenue [35]. De plus, les paramètres quadripolaires expérimentaux de ²⁵Mg dans MgF₂ ont été déterminés et les tenseurs de GCE de 25 Mg dans MgF₂ et de 139 La dans LaF₃ ont été calculés à l'aide des méthodes PAW [40,41] et LAPW [3]. La relation entre valeurs expérimentales de δ_{iso} de 19 F et calculées de σ_{iso} de ¹⁹F a ensuite été étudiée dans le cas des fluorures binaires de métaux de la colonne 13 (GaF₃, InF₃, TIF et plusieurs variétés de AIF₃) [42]. Il a été montré que la relation précédemment établie pour les fluorures d'alcalins, d'alcalino-terreux et de terres rares de la colonne 3 [35] était également valable pour ces composés, confirmant qu'elle permettait de prédire avec une bonne précision les spectres RMN de ¹⁹F d'une large gamme de fluorures cristallisés. Une nouvelle relation a été établie en prenant en compte les valeurs de ces deux études: δ_{iso} /CFCl₃ (ppm) = -0,795(15) σ_{iso} + 89(4). De plus, les paramètres quadripolaires expérimentaux de ⁷¹Ga dans GaF₃ et de ¹¹⁵In dans InF₃ ont été déterminés et les tenseurs de GCE de ²⁷Al dans α -, β - et η -AlF₃, de ⁷¹Ga dans GaF₃ et de ¹¹⁵In dans InF₃ ont été calculés à l'aide de la méthode PAW [40,41]. Pour les composés isomorphes α -AlF₃, GaF₃ et InF₃, les optimisations de géométrie conduisent à une diminution sensible des angles M-F-M et à des constantes de couplage quadripolaire (C₀) de ²⁷Al, ⁷¹Ga et ¹¹⁵In sous-estimées comparées aux valeurs expérimentales. Ceci montre que les effets des optimisations doivent être examinés avec soin et que l'accord entre GCE

¹ Partenaires: Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Institut des Matériaux de Jean Rouxel de Nantes (IMN, UMR CNRS 6502) et Conditions Extrême et Matériaux : Hautes Température et Irradiation (CEMHTI, UPR, CNRS 3079).

et paramètres quadripolaires est certainement le meilleur moyen de s'assurer de la précision de la structure cristalline.

La correction de l'énergie des orbitales 4f dans le pseudo-potentiel de La et les relations δ_{iso} - σ_{iso} ont été appliquées avec succès au calcul des valeurs de δ_{iso} de ¹⁹F de RbLaF₄ [43], de α -LaZr₂F₁₁ [44] (pour lesquels les attributions des raies de résonance aux sites ont pu être réalisées expérimentalement via des expériences de corrélation hétéronucléaire et homonucléaire, respectivement) et des deux variétés de LaOF [45] (**chapitre 3**). Laskowski *et al.* [46] ont confirmé que l'origine de l'écart à la pente théorique (-1) de cette relation provient de l'approximation du gradient généralisé (GGA) de la fonction d'échange corrélation.

Deux composés isomorphes, NbF₅ et TaF₅, présentant six sites de fluor distincts ont ensuite été étudiés [47]. Les valeurs expérimentales de δ_{iso} de ¹⁹F ont été déterminées et les tenseurs des constantes d'écran ont été calculés pour les structures expérimentales et optimisées. La linéarité quasi parfaite entre les valeurs de δ_{iso} expérimentales et de σ_{iso} calculées à partir des structures optimisées a permis de proposer une attribution convaincante des raies RMN de ¹⁹F de NbF₅ et TaF₅. Les effets des optimisations de géométrie ont été analysés avec soin, confirmant notamment l'imprécision de la structure expérimentale de NbF₅. Les relations entre valeurs de δ_{iso} , nature des atomes de fluor (pontants ou terminaux), positions des atomes de fluor terminaux (opposés ou perpendiculaires aux pontants), charge des atomes de fluor et ionicité et longueur des liaisons M-F ont été établies. De plus, un très bon accord a été obtenu entre les paramètres quadripolaires de ⁹³Nb calculés, à l'aide de la méthode PAW [40,41] pour la structure optimisée de NbF₅, et les valeurs expérimentales déterminées par NQR il y a plus de trente ans. Les relations entre valeurs de δ_{iso} expérimentales et de σ_{iso} calculées de ¹⁹F établies pour NbF₅ et TaF₅ ont ensuite été utilisées pour estimer les valeurs de δ_{iso} calculés de NbO₂F et TaO₂F, respectivement, dans le chapitre 4.

Les structures cristallines des phases α et β -NaAsF₆ ont été déterminées à partir de données de diffraction des rayons X sur poudre. Le type structural de β -NaAsF₆ a été déterminé grâce aux résultats des expériences de RMN du solide de ¹⁹F et ⁷⁵As. Les études par RMN du solide des noyaux ¹⁹F, ²³Na et ⁷⁵As sont en accord avec les structures cristallines d'un point de vue qualitatif. Les tenseurs de constantes d'écran ont été calculés en utilisant la méthode GIPAW [7] et les tenseurs de GCE en utilisant les méthodes PAW [40,41] et LAPW [3]. Deux difficultés, (i) la rotation des anions rigides et réguliers AsF₆⁻ dans la phase β , mise en évidence par les paramètres de déplacement

13

atomique anisotrope du fluor et conduisant a des longueurs de liaison As-F erronées et (ii) la surestimation des longueurs de liaison As-F par la fonctionnelle PBE [39] utilisée dans les calculs premiers principes ont été surmontées en optimisant complètement les structures (paramètres de maille et positions atomiques puis remise à l'échelle du volume de la maille à la valeur expérimentale) [32].

Si les composés du binaire BaF2-AlF3 ont été abondamment étudiés au Mans [19,20,26,29,30], les structures de deux d'entre eux n'étaient pas connues. L'utilité de l'optimisation de la géométrie dans le cas des structures déterminées à partir de données de diffraction collectées sur poudre a encore été soulignée dans l'étude de Ba₅Al₃F₁₉. Les calculs GIPAW de tenseurs d'écran de ¹⁹F ont permis d'attribuer les raies RMN aux huit sites cristallographiques. Un bon accord entre paramètres quadripolaires expérimentaux et calculées pour les deux sites de ²⁷Al est obtenu. Une analyse détaillée des mouvements des ions F^{-} (réorientation rapide d'octaèdres AIF_{6}^{3-} et échange chimique) est présentée [48]. La structure de Ba₅AlF₁₃ a également été résolue. Cette étude constitue un très bel exemple de cristallographie RMN. En effet, les calculs GIPAW [7] des valeurs de σ_{iso} de ¹⁹F montrent que la position d'un des sites de fluor présentant des distances F-Ba anormalement longues n'est pas correcte dans le premier modèle obtenu à partir de données de diffraction des rayons X (synchrotron). Des données de diffraction de neutrons et des cartes de Fourier ont permis de montrer que cet atome de fluor occupe finalement un site de plus basse symétrie (32e) avec un taux d'occupation de 25%. Les calculs GIPAW [7] réalisés sur 8 modèles inéquivalents (distribution aléatoire des atomes F3 sur 1/4 des sites 32e) permettent d'exclure l'hypothèse d'un désordre statique. L'occupation partielle reflète donc un processus de mouvement local (entre 4 sites 32e voisins) de cet atome de fluor [49]. Notons que pour améliorer l'accord entre valeurs de δ_{iso} de ^{19}F expérimentales et calculées, une relation δ_{iso} - σ_{iso} a été établie à partir de composés du binaire BaF₂-AlF₃. Sans surprise, sa pente (-0,87) est plus élevée en valeur absolue et son ordonnée à l'origine plus élevée (117). La valeur calculée de δ_{iso} de BaF_2 était en effet très sous-estimée (et la plus mal calculée) avec la relation précédemment établie (δ_{iso} /CFCl₃ (ppm) = -0,80(3) σ_{iso} + 89(9)) [35].

D'autres études méritent d'être citées dans le cadre de cette introduction. Tout d'abord, celle de nanoparticules de NaYF₄, très étudié pour ses propriétés de luminescence lorsqu'il est dopé avec des lanthanides et adoptant une structure de type fluorine. Les ions Na⁺ et Y³⁺ occupant le même site cristallographique, les calculs des paramètres RMN des noyaux ¹⁹F, ²³Na et ⁸⁹Y ont été réalisés dans une supermaille 2x2x2.

Un bon accord est obtenu avec les paramètres expérimentaux [50]. Les calculs premiers principes ont aussi été utilisés dans l'étude d'un échantillon de fluoroapatite ($Ca_5(PO_4)_3F$) carbonaté. Ils ont permis de proposer un modèle de défauts composites tétraédriques carbonate-fluorure en accord avec les observations expérimentales (RMN de ¹⁹F et ¹³C, notamment) [51]. La RMN de ¹⁹F et les calculs DFT ont également été précieux pour les études structurales de matériaux zéolite/imidazolium [52], de nanoparticules de silice et d'imidazolium [53] et de verres bioactifs contenant des ions F⁻ et modélisés par dynamique moléculaire [54]. Il a pu être montré qu'il n'y a pas de liaisons Si-F dans ces verres, les ions F⁻ étant entourés exclusivement par des ions sodium et calcium. Enfin, les résolutions structurales combinant diffraction des rayons X, RMN du solide et calculs DFT, de deux hybrides fluorés, ZnAIF₅·[TAZ] [55] et Zn₃Al₂F₁₂·[HAmTAZ]₆ [56], méritent d'être citées.

PLAN DU MANUSCRIT

Ce manuscrit est constitué de deux parties.

La première, constituée du **chapitre 1**, est dédiée à des rappels sur la spectroscopie RMN et les différentes interactions affectant les spins nucléaires. Les expériences exploitées au cours de cette thèse y sont également décrites. Ensuite, les méthodes de chimie quantique pour le calcul des structures électroniques des systèmes périodiques ainsi que les calculs premiers principes des paramètres RMN sont discutées.

La seconde partie est consacrée aux résultats et comporte trois chapitres. Ceux-ci sont constitués d'un article chacun, encadré d'une introduction et d'une conclusion; un des articles est publié [45], un autre soumis et le troisième va l'être aussi rapidement que possible. Que les lecteurs de ce manuscrit indisposés par les manuscrits de thèse constitués d'articles veuillent bien nous excuser.

Le chapitre 2 est consacré à l'étude de cinq composés, γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇ et α -KY₃F₁₀, du binaire KF-YF₃. Cette étude se situe dans la continuité du projet RMN3MPL mais est particulièrement riche de par le nombre de composés, la complexité de leurs structures (nombre de sites cristallographiques) et le caractère multinoyaux (¹⁹F, ³⁹K et ⁸⁹Y) de l'étude RMN. Les spectres de ³⁹K, noyau quadripolaire (*I* = 3/2) de faible rapport gyromagnétique, ont été acquis à haut champ au CEMHTI dans le cadre du TGIR-RMN-THC (Fr3050 CNRS). Les spectres les plus complexes n'auraient pas pu être reconstruits sans connaitre les résultats des calculs. Le lien entre environnement de l'yttrium et valeurs de δ_{iso} de ⁸⁹Y [57] a pu être confirmé et précisé.

Les chapitres 3 et 4 sont consacrés à l'étude d'oxyfluorures cristallins. Deux raisons justifient l'étude de ces composés. Tout d'abord, les techniques de diffraction communes (rayons X, neutrons ou électrons) ne permettent de distinguer l'oxygène du fluor. Dans les oxyfluorures (supposés) ordonnés, des calculs de valence de liaison permettent de distinguer les positions des atomes d'oxygène de celles des atomes de fluor. Dans les oxyfluorures (supposés) désordonnés, les atomes d'oxygène et les atomes de fluor occupent statistiquement tous les sites anioniques. Alors que la RMN de ¹⁹F peut permettre d'identifier et quantifier les divers environnements locaux des atomes de fluor et donc de vérifier rapidement le caractère ordonné ou désordonné de la répartition des atomes de fluor et d'oxygène, elle est rarement utilisée [38,45,51,58-66]. Les calculs GIPAW des paramètres RMN sont bien évidemment encore plus rares [38,45,51]. L'autre raison a trait à la volonté, à terme, de faire profiter de l'expérience acquise sur des systèmes pas trop complexes, aux études structurales menées par mes encadrants, dans le cadre de diverses collaborations, portant souvent sur des (oxy)-(hydroxy)-fluorures plus ou moins désordonnés [63,64,66-76].

Le **chapitre 3** est dédié à l'étude des deux variétés de LaOF: rhomboédrique (β-LaOF) et tétragonale (t-LaOF). Les structures ont dû être réaffinées en inversant les positions atomiques de l'oxygène et du fluor attribuées initialement en supposant que les distances La-F sont plus courtes que les distances La-O [77]. Les spectres de ¹⁹F et ¹³⁹La, enregistrés à haut champ au CEMHTI dans le cadre du TGIR-RMN-THC, confirment le caractère ordonné de ces deux phases. L'accord entre paramètres RMN expérimentaux et calculés de ¹⁹F et ¹³⁹La souligne la précision de nos modèles structuraux.

Enfin, le **chapitre 4** est consacré à l'étude des oxyfluorures de niobium et de tantale, NbO₂F et TaO₂F. Ce sont des composés synthétisés en milieux aqueux au Mans depuis de nombreuses années, plus récemment car ce sont des produits intermédiaires de synthèse en phase solide d'oxyfluorures plus complexes [63,66]. Des spectres RMN de ¹⁹F de ces composés ont été enregistrés au Mans il y a plus de dix ans et mis de côté puisque, contre toute attente, ils présentaient deux contributions principales... Cette énigme est enfin résolue. La contribution non attendue provient de l'existence de lacunes cationiques provoquée par la substitution des atomes d'oxygène par des groupements hydroxyles et/ou des atomes de fluor. La synthèse en milieu aqueux conduit en effet à des composés hydroxylés lacunaires $M_{1-x}\Box_x(O,OH,F)_3$ dont la formulation a été déterminée en combinant RMN du solide de ¹⁹F, diffraction des rayons-X sur poudre et analyses thermogravimétriques. La synthèse par voie solide [78] permet d'obtenir des composés (presque) purs. La description de la structure de NbO₂F et TaO₂F par le type ReO₃ avec une distribution aléatoire des atomes d'oxygène et de fluor dans le seul site anionique disponible [79] n'est pas satisfaisante puisqu'un ordre partiel O/F avait été mis en évidence [80]. Les supermailles construites et optimisées sont plus réalistes que les modèles précédemment proposés [80,81] puisque constituées d'octaèdres MX_6 angulairement et radialement distordus, comme attendu dans des composés désordonnés. La modélisation structurale de NbO₂F et TaO₂F par ces supermailles optimisées est validée par le très bon accord entre les paramètres RMN de ¹⁹F et ⁹³Nb calculés et expérimentaux.

REFERENCES

[1] D. Apperley, R. K. Harris, P. Hodgkinson, Solid state NMR: basic principles & practice, Momentum Press LLC, New York, 2012.

[2] S. E. Ashbrook, D.M. Dawson, J. M. Griffin, in Inorg Mat Ser, ed. D. W. Bruce, D. Ohare, R. I. Walton, Blackwell Science Publ, Oxford, 2014, pp. 1–88.

[3] P. Blaha, K. H. Schwarz, P. Herzig, Phys. Rev. Lett. 54 (1985) 1192-1195.

[4] W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, 2nd edn, 2001.

[5] Calculation of NMR and EPR Parameters: Theory and Applications, ed. M. Kaupp, M. Bühl, V. G. Malkin, Wiley-VCH, Weinheim, 2004.

[6] C. J. Pickard, F. Mauri, in Calculation of NMR and EPR Parameters: Theory and Applications, ed.

M. Kaupp, M. Bühl, V. G. Malkin, Wiley-VCH, Weinheim, 2004, pp. 265–278.

[7] C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[8] T. Charpentier, Solid State Nucl. Magn. Reson. 40 (2011) 1–20.

[9] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 112 (2012) 5733–5779.

[10] S. E. Ashbrook, D. M. Dawson, Acc. Chem. Res. 46 (2013) 1964–1974.

[11] D. Massiot, R. J. Messinger, S. Cadars, M. Deschamps, V. Montouillout, N. Pellerin, E. Véron, M. Allix, P. Florian, F. Fayon, Acc. Chem. Res. 46 (2013) 1975–1984.

[12] R. K. Harris, R. D. Wasylishen, M. J. Duer (Eds.), NMR Crystallography, John Wiley & Sons Ltd, Chichester, UK, 2009.

[13] C. Martineau, J. Senker, F. Taulelle, Annu. Rep. NMR Spectrosc. 82 (2014) 1–57.

[14] C. Martineau, Solid State Nucl. Magn. Reson. 63-64 (2014) 1–12.

[15] S. E. Ashbrook, D. McKay, Chem. Commun. 52 (2016) 7186–7204.

[16] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 73 (2001) 1795–1818.

[17] J. M. Miller, Prog. Nucl. Magn. Reson. Spectrosc. 28 (1996) 255-281.

[18] B. Bureau, G. Silly, J.-Y. Buzaré, J. Emery, Chem. Phys. 249 (1999) 89–104.

[19] M. Body, Thèse de Doctorat, Université du Maine, 2005.

[20] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, Inorg. Chem. 43 (2004) 2474–2485.

[21] C. Martineau, M. Body, C. Legein, J.-Y. Buzaré, G. Silly, F. Fayon, Inorg. Chem. 45 (2006) 10215– 10223.

[22] C. Legein, F. Fayon, C. Martineau, M. Body, J.-Y. Buzaré, D. Massiot, E. Durand, A. Tressaud, A.

Demourgues, O. Péron, B. Boulard, Inorg. Chem. 45 (2006) 10636–10641.

[23] F. Le Berre, M.-P. Crosnier-Lopez, C. Galven, J.-L. Fourquet, C. Legein, M. Body, J.-Y. Buzaré, Dalton Trans. (2007) 2457–2466.

[24] L. Sronek, J. Lhoste, M. Gaudon, C. Legein, J.-Y. Buzaré, M. Body, G. Criniere, A. Tressaud, S. Pechev, A. Demourgues, J. Phys. Chem. C (2008) 112, 860–866.

[25] C. Galven, C. Legein, M. Body, J.-L. Fourquet, J.-Y. Buzaré, F. Le Berre, M.-P. Crosnier-Lopez, Eur. J. Inorg. Chem. (2010) 33,5272–5283.

[26] M. Body, G. Silly, C. Legein, J.-Y. Buzaré , J. Phys. Chem. B 109 (2005) 10270–10278.

[27] G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, Solid State Nucl. Magn. Reson. 25 (2004) 241-251.

[28] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, P. Blaha, J. Solid State Chem. 178 (2005) 3655–3661.

[29] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, P. Blaha, Chem. Phys. Lett. 424 (2006) 321–326.

[30] M. Body, C. Legein, J.-Y. Buzaré, G. Silly, P. Blaha, C. Martineau, F. Calvayrac, J. Phys. Chem. A 111 (2007) 11876–11884.

[31] B. Zhou, B. L. Sherriff, J. S. Hartman, G. Wu, Am. Miner. 92 (2007) 34-43.

[32] M. Biswal, M. Body, C. Legein, G. Corbel, A. Sadoc, F. Boucher, J. Phys. Chem. C 116 (2012) 11682–11693.

[33] T. J. Bastow, Chem. Phys. Lett. 380 (2003) 516-520.

[34] C. Martineau, F. Fayon, C. Legein, J.-Y. Buzaré, D. Massiot, M. Body, F. Goutenoire, Dalton Trans. 44 (2008) 6150–6158.

[35] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[36] K. J. Ooms, K. W. Feindel, M. J. Willans, R. E. Wasylishen, J. V. Hanna, K. J. Pike, M. E. Smith, Solid State Nucl. Magn. Reson. 28 (2005) 125–134.

[37] A. Zheng, S.-B. Liu, F. Deng, J. Phys. Chem. C 113 (2009) 15018–15023.

[38] J. M. Griffin, J. R. Yates, A. J. Berry, S. Wimperis, S. E. Ashbrook, J. Am. Chem. Soc. 132 (2010) 15651–15660.

[39] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

[40] H.M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter 57 (1998) 14690– 14697.

[41] P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.

[42] A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot, F. Fayon, Solid State Nucl. Magn. Reson. 59-60 (2014) 1–7.

[43] A.-L. Rollet, M. Allix, E. Veron, M. Deschamps, V. Montouillout, M. R. Suchomel, E. Suard, M. Barre, M. Ocaña, A. Sadoc, F. Boucher, C. Bessada, D. Massiot, F. Fayon, Inorg. Chem. 51 (2012) 2272–2282.

[44] C. Martineau, C. Legein, M. Body, O. Péron, B. Boulard, F. Fayon, J. Solid State Chem. 199 (2013) 326–333.

[45] J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein, Dalton Trans. 44 (2015) 20675–2068.

[46] R. Laskowski, P. Blaha, F. Tran, Phys. Rev. B 87 (2013) 195130.

[47] M. Biswal, M. Body, C. Legein, A. Sadoc, F. Boucher, J. Solid State Chem. 207 (2013) 208–217.

[48] C. Martineau, F. Fayon, M. Suchomel, M. Allix, D. Massiot, F. Taulelle, Inorg. Chem. 50 (2011) 2644–2653.

[49] C. Martineau, M. Allix, M. R. Suchomel, F. Porcher, F. Vivet, C. Legein, M. Body, D. Massiot, F. Taulelle, F. Fayon, Dalton Trans. 45 (2016) 15565–15574.

[50] A. A. Arnold, V. Terskikh, Q. Y. Li, R. Naccache, I. Marcotte, J. A. Capobianco, J. Phys. Chem. C 117 (2013) 25733–25741.

[51] H. Yi, E. Balan, C. Gervais, L. Segalen, F. Fayon, D. Roche, A. Person, G. Morin, M. Guillaumet, M. Blanchard, M. Lazzeri, F. Babonneau, Am. Mineral. 98 (2013) 1066–1069.

[52] A. Rojas, L. Gómez-Hortigüela, M. A. Camblor, J. Am. Chem. Soc. 134 (2012) 3845-3856.

[53] M.-A. Neouze, M. Kronstein, M. Litschauer, M. Puchberger, C. Coelho, C. Bonhomme, C. Gervais, F. Tielens, Chem. Eur. J. 20 (2014) 15188–15196.

[54] A. Pedone, T. Charpentier, M. C. Menziani, J. Mater. Chem. 22 (2012) 12599–12608.

[55] A. Cadiau, C. Martineau, M. Leblanc, V. Maisonneuve, A. Hémon-Ribaud, F. Taulelle, K. Adil, J. Mater. Chem. 21 (2011) 3949–3951.

[56] C. Martineau, A. Cadiau, B. Bouchevreau, J. Senker, F. Taulelle, K. Adil, Dalton Trans. 41 (2012) 6232–6241.

[57] T. Krahl, G. Scholz, E. Kemnitz, J. Phys. Chem. C 118 (2014) 21066–21074.

[58] L. S. Du, F. Wang, C. P. Grey, J. Solid State Chem. 140 (1998) 285–294.

[59] L. S. Du, A. Samoson, T. Tuherm, C. P. Grey, Chem. Mater. 12 (2000) 3611–3616.

[60] J. H. Choy, J. Y. Kim, S. J. Kim, J. S. Sohn, Chem. Mater. 13 (2001) 906–912.

[61] L. S. Du, R. W. Schurko, N. Kim, C. P. Grey, J. Phys. Chem. A 106 (2002) 7876–7886.

[62] J. Köhler, A. Simon, L. Van Wüllen, S. Cordier, T. Roisnel, M. Poulain, M. Somer, Z. Anorg. Allg. Chem. 628 (2002) 2683–2690.

[63] F. Le Berre, M.-P. Crosnier-Lopez, C. Galven, J.-L. Fourquet, C. Legein, M. Body, J.-Y. Buzaré, Dalton Trans. (2007) 2457–2466.

[64] L. Sronek, J. Lhoste, M. Gaudon, C. Legein, J.-Y. Buzaré, M. Body, G. Crinière, A. Tressaud, S. Pechev, A. Demourgues, J. Phys. Chem. C 112 (2008) 860–866.

[65] T. M. Alam, J. S. Clawson, F. Bonhomme, S. G. Thoma, M. A. Rodriguez, S. Zheng, J. Autschbach, Chem. Mater. 20 (2008) 2205–2217.

[66] C. Galven, C. Legein, M. Body, J.-L. Fourquet, J.-Y. Buzaré, F. Le Berre, M.-P. Crosnier-Lopez, Eur. J. Inorg. Chem. (2010) 5272–5283.

[67] D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.-C. Lavalley, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, Chem. Mater. 20 (2008) 1459–1469.

[68] D. Dambournet, A. Demourgues, C. Martineau, E. Durand, J. Majimel, A. Vimont, H. Leclerc, J.-C. Lavalley, M. Daturi, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, J. Mater. Chem. 18 (2008) 2483–2492.

[69] D. Dambournet, A. Demourgues, C. Martineau, J. Majimel, M. Feist, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, J. Phys. Chem. C 112 (2008) 12374–12380.

[70] D. Dambournet, A. Demourgues, C. Martineau, E. Durand, J. Majimel, C. Legein, J.-Y. Buzaré, F. Fayon, A. Vimont, H. Leclerc, A. Tressaud, Chem. Mater. 20 (**2008)** 7095–7106.

[71] J. Lhoste, M. Body, C. Legein, A. Ribaud, M. Leblanc, V. Maisonneuve, J. Solid State Chem. 217 (2014) 72–79.

[72] W. Li, D. Corradini, M. Body, C. Legein, M. Salanne, J. Ma, K. W. Chapman, P. J. Chupas, A.-L.

Rollet, C. Julien, K. Zhagib, M. Duttine, A. Demourgues, H. Groult, D. Dambournet, Chem. Mater. 27 (2015) 5014–5019.

[73] W. Li, M. Body, C. Legein, O. J. Borkiewicz, D. Dambournet, Inorg. Chem. 55 (2016) 7182–7187.

[74] W. Li, M. Body, C. Legein, D. Dambournet, Cryst. Growth Des. 16 (2016) 5441–5447.

[75] W. Li, M. Body, C. Legein, O. J. Borkiewicz, D. Dambournet, Eur. J. Inorg. Chem. (2017) 192–197.

[76] W. Li, M. Body, C. Legein, D. Dambournet, J. Solid State Chem. 246 (2017) 113–118.

[77] W. H. Zachariasen, Acta Crystallogr. 4 (1951) 231–236.

[78] A. P. Wilkinson, R. E. Josefsberg, L. C. Gallington, C. R. Morelock, C. M. Monaco, J. Solid State Chem. 213 (2014) 38–42.

[79] L. K. Frevel, H. W. Rinn, Acta Crystallogr. 9 (1956) 626–627.

[80] F. J. Brink, R. L. Withers, L. Norén, J. Solid State Chem. 166 (2002) 73-80.

[81] C. R. Morelock, B. K. Greve, M. Cetinkol, K. W. Chapman, P. J. Chupas, A. P. Wilkinson, Chem. Mater. 25 (2013) 1900–1904.

Chapitre I

RMN du solide haute résolution et calculs premiers principes

1.1 INTRODUCTION

Ce chapitre décrit les principes de base de la Résonance Magnétique Nucléaire (RMN) et les calculs premiers principes des paramètres RMN.

Dans la première partie, les différentes interactions RMN sont présentées sous forme de Hamiltoniens. Nous présentons également les techniques expérimentales de la RMN du solide haute résolution dont la rotation à l'angle magique (Magic Angle Spinning, MAS) [1-3] et quelques séquences exploitées au cours de cette thèse comme l'écho de Hahn [4], le transfert de polarisation croisée (CP-MAS) [5], et les séquences Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) [6,7] et Wideband Uniform Rate Smooth Truncation-QCPMG (WURST-QCPMG) [8].

La deuxième partie de ce chapitre est une introduction aux calculs premiers principes des paramètres RMN dans les systèmes périodiques. Dans un premier temps, nous donnons quelques généralités sur les méthodes de chimie quantique telles que l'approche Hartree-Fock (HF) [9] et la théorie de la fonctionnelle de la densité (DFT) [10,11] pour les calculs des structures électroniques, et quelques éléments et spécificités de la modélisation des solides cristallins. Dans un deuxième temps, les méthodes Projector Augmented Waves (PAW) [12,13] et Gauge Including Projector Augmented Waves (GIPAW) [14,15] pour le calcul des paramètres RMN sont discutées.

1.2 THEORIE DE LA SPECTROSCOPIE RMN

1.2.1 PRINCIPE DE BASE D'UNE EXPERIENCE RMN

1.2.1.1 Dynamique du spin nucléaire

Tous les noyaux atomiques ont des propriétés fondamentales, telles qu'une masse m et une charge q. Cependant une propriété intrinsèque déterminée par la mécanique quantique est celle du moment cinétique du spin (Figure 1.1).

Dans l'état fondamental, de nombreux isotopes possèdent un moment cinétique de spin \vec{I} , et un moment dipolaire magnétique $\vec{\mu}$, proportionnel à ce moment cinétique de spin tel que :

$$\vec{\mu} = \gamma \hbar \vec{l} \quad (1.1)$$

où γ est le rapport gyromagnétique du noyau, propre à chaque isotope, positif ou négatif, et \hbar est la constante de Planck, h, divisée par 2π .

Figure 1.1. Représentation schématique d'un spin nucléaire [16].

1.2.1.2 Description quantique

Dans un champ magnétique, les composantes I_x , I_y et I_z de l'opérateur de moment cinétique \vec{I} sont distinguées et en général on choisit I_z suivant \vec{B}_0 . D'après la mécanique quantique, les propriétés du moment cinétique \vec{I} sont :

 $I^{2}|I,m\rangle = I(I+1)|I,m\rangle$ (1.2) et $I_{z}|I,m\rangle = m|I,m\rangle$ (1.3)

avec $|I,m\rangle$ les vecteurs propres de I^2 et I_z , dont les valeurs propres vérifient :

$$I^2 = \hbar \sqrt{I(I+1)}$$
 (1.4) et $I_z = \hbar m_I$ (1.5)

où m_I est le nombre quantique magnétique prenant les valeurs : $m_I = -I, -I + 1, ..., I - 1, I$. Il y a (2I + 1) valeurs de m_I , et par conséquent, un nombre égal d'orientations possibles du moment cinétique.

1.2.1.3 Effet Zeeman

Sous l'effet du champ magnétique statique $\vec{B}_0 = B_0 \cdot \vec{u}_z$ (1.6), le moment magnétique du noyau précesse autour de ce champ magnétique à une vitesse angulaire $\Omega_0 = -\gamma B_0$ (1.7). De plus, il génère une levée de dégénérescence des états de spins en (2I + 1) niveaux d'énergie équidistants (Figure 1.2). C'est l'effet Zeeman [17]. Les niveaux d'énergie Zeeman sont donnés par l'équation aux valeurs propres :

$$\hat{\mathcal{H}}_{Zeeman}|I,m\rangle = E_{m,I}|I,m\rangle$$
 (1.8)

où $\hat{\mathcal{H}}_{Zeeman}$ est l'opérateur Hamiltonien Zeeman pour un spin nucléaire I dans le champ \vec{B}_0 , donné par la relation suivante :

$$\widehat{\mathcal{H}}_{Zeeman} = \vec{\mu}_{z} \cdot \vec{B}_{0} = -\gamma \hbar B_{0} \hat{\mathbf{l}}_{z} \quad (1.9)$$

avec I_z , la composante de l'opérateur Î, parallèle au champ magnétique statique \vec{B}_0 .

La valeur propre $E_{m,I}$ est l'énergie associée au vecteur propre $|I, m\rangle$, telle que :

$$E_{m,I} = -\gamma m_I \hbar B_0 \qquad (1.10).$$

Les niveaux d'énergie Zeeman sont donc séparés par :

$$\Delta E = \hbar \gamma B_0 = h \nu_0 \quad (1.11)$$

où v_0 est la fréquence de Larmor de l'isotope dans le champ magnétique \vec{B}_0 , telle que $v_0 = \frac{|\gamma|B_0}{2\pi}$. Cette fréquence est également fréquence de résonance pour l'absorption des ondes électromagnétiques et est proportionnelle au champ magnétique appliqué.

Figure 1.2. Représentation schématique de l'effet Zeeman pour un spin nucléaire I = 1/2.

Quelques propriétés des noyaux étudiés par RMN dans ce manuscrit sont listées dans le tableau 1.1.

Noyau	Ι	γ	Abondance	Q	Fréquence de
			naturene		Larmor
Ή	1/2	26,75	100	/	300,13
¹⁹ F	1/2	25,18	100	/	282,40
³⁹ K	3/2	1,25	23,95	5.58	14,00
⁸⁹ Y	1/2	-1,16	100	/	14,70
⁹³ Nb	9/2	-6,56	100	-32	73,46
¹³⁹ La	7/2	38,01	99,91	20	42,39

Tableau 1.1. Spin nucléaire I, rapport gyromagnétique γ (10⁷ rad $T^{1} s^{-1}$), abondance naturelle (%), moment quadripolaire Q [18] ($fm^{2} = 0,01$ barn) pour des noyaux de spin I > 1/2, et fréquence de Larmor (MHz) pour un champ B_{0} de 7 T [19].

Pour $I = \frac{1}{2}$, la différence d'énergie produit une différence de population entre les deux niveaux, qui s'exprime dans le cadre de la statistique de Boltzmann pour un ensemble de spins, comme ceci [20] :

$$\frac{N^{-1/2}}{N^{+1/2}} = exp\left(-\frac{\Delta E}{kT}\right) = exp\left(\frac{-\gamma\hbar B_0}{kT}\right) \quad (1.12)$$

où k est la constante de Boltzmann ($k = 1,38 \times 10^{-23}$ J. K⁻¹) et T la température absolue. Cette différence de population entre les niveaux d'énergie crée dans un échantillon une aimantation macroscopique M_0 parallèle à \vec{B}_0 . D'après la loi de Curie, l'intensité de cette aimantation est donnée par la relation suivante :

$$M_0 = \frac{N\gamma^2 B_0 \hbar^2 I(I+1)}{3kT} \quad (1.13)$$

avec N le nombre de particules.

1.2.1.4 Le signal RMN : Impulsion simple

La RMN est basée sur l'étude du comportement de l'aimantation nucléaire, plongée dans un champ magnétique statique intense \vec{B}_0 , et modifiée par un champ radiofréquence $\vec{B}_0(t)$ plus faible. Les impulsions radiofréquences (*rf*) qui se propagent à travers une bobine génèrent un champ magnétique oscillant $\vec{B}_{RF}(t)$ orienté selon l'axe de la bobine, qui est souvent perpendiculaire au champ magnétique statique \vec{B}_0 . Quand $\vec{B}_{RF}(t)$ oscille à la fréquence de Larmor du noyau étudié, il peut induire des transitions entre les états de spin.

L'opérateur Hamiltonien de l'interaction radiofréquence est :

$$\widehat{\mathcal{H}}_{RF} = -B_{RF}(t)cos[\nu_{RF}t + \varphi(t)]\sum_{i}\gamma_{n}^{i}\hat{l}_{x}^{i} \quad (1.14)$$

où v_{RF} est la fréquence émettrice, et φ la phase appliquée au champ radiofréquence. Dans le référentiel tournant (suivant l'axe z), quand une impulsion rf ($v_{RF} \approx v_0$) est appliquée, les effets du champ magnétique statique \vec{B}_0 sont réduits par un facteur de $\frac{\nu_{RF}}{\nu_0}$, et $\vec{B}_{RF}(t)$ apparait comme un champ magnétique dominant.

Figure 1.3. Séquence d'impulsion simple d'une expérience RMN 1D. T₂ est le temps de relaxation transversal.

Lorsqu'une impulsion rf de durée τ_P est appliquée le long de la direction +x du référentiel tournant, l'angle de basculement de l'aimantation macroscopique est donné par $\theta_P = \tau_P \gamma B_{RF}(t)$ (1.15). Ainsi, une impulsion 90° correspond à un angle de basculement de $\theta_P = \frac{\pi}{2}$. L'aimantation nucléaire est alors basculée dans le plan xy, et on obtient donc une aimantation transverse M_{xy} . Le retour à l'équilibre de l'aimantation macroscopique induit un faible courant électrique oscillant dans la bobine RMN (Figure 1.3), appelé décroissance libre de l'induction (Free Induction Decay, FID).

1.2.1.5 Transformée de Fourier d'un signal RMN

Le signal de précession libre est décrit par une fonction dans le domaine temporel, qui peut s'exprimer comme :

$$F(t) = Ae^{i\omega_0 t}e^{-\frac{t}{T_2}}$$
 (1.16)

avec A l'amplitude de la fonction, ω_0 la fréquence du spin considéré dans le référentiel tournant et T_2 le temps de relaxation.

Cette fonction peut être transformée en une fonction dans le domaine fréquentiel par transformation de Fourier. Dans le cas d'un signal RMN obtenu en détection simple on a :

$$F(\omega) = T\{F(t)\} = A \int_0^{+\infty} e^{i(\omega - \omega_0)} e^{-\frac{t}{T_2}} dt = \frac{AT_2}{1 + T_2^2(\omega - \omega_0)^2} - i \frac{AT_2^2}{1 + T_2^2(\omega - \omega_0)} \quad (1.17).$$

Le premier terme correspond à la partie réelle, et le deuxième terme à la partie imaginaire. Les deux parties sont présentées Figure 1.4 sous forme de courbes.

Figure 1.4. Fonction $F(\omega)$ dans le domaine fréquentiel sous forme de raie en absorption (à gauche, partie réelle) et sous forme de raie en dispersion (à droite, partie imaginaire)

1.2.1.6 Processus dynamiques : relaxations

Deux phénomènes sont responsables de l'atténuation progressive de l'aimantation macroscopique M au cours du temps (Figure 1.5) : le retour à sa position d'équilibre parallèle au champ magnétique statique \vec{B}_0 , caractérisé par une constante de temps T_1 , dit temps de relaxation longitudinale (spin-réseau), et la perte de cohérence entre les spins nucléaires, caractérisée par un temps de relaxation T_2 , appelé temps de relaxation transversale (spin-spin).

Figure 1.5. Retour à l'équilibre et précession de l'aimantation macroscopique [21].

Après une impulsion *rf*, le système de spins $(I = \frac{1}{2})$ revient à son état d'équilibre thermique. Cet effet se produit comme une relaxation des états de niveaux de spin par échange d'énergie avec l'environnement, et l'aimantation macroscopique retourne donc progressivement à sa position d'équilibre parallèle à \vec{B}_0 . Les mécanismes de la relaxation longitudinale sont liés aux fluctuations des champs magnétiques locaux dues à l'agitation thermique. Ces fluctuations ont la capacité d'induire des transitions entre états quantiques du système de spins et peuvent ainsi ramener le système de spins vers son état d'équilibre thermique. Ce temps de relaxation T_1 détermine le temps de recyclage entre deux acquisitions (souvent choisi tel que 5× T_1) lors d'une expérience RMN. Dans les liquides, les temps de relaxation T_1 des protons sont typiquement de l'ordre de quelques secondes [22].

La relaxation transversale est due aux interactions entre spins. En effet, les interactions entre dipôles magnétiques voisins génèrent au niveau de chaque dipôle un champ magnétique local \vec{B}_L . Le champ local fluctue dans le temps, par exemple à la suite de changement d'états quantiques. Il en résulte des fluctuations de la fréquence de résonance des spins, fluctuations qui réduisent la cohérence de phase de leur précession. Cette perte de cohérence constitue le mécanisme de relaxation transversale. Le temps de relaxation transversale, T_2 , se manifeste comme une décroissance exponentielle du signal de la FID. En pratique, un temps de relaxation effectif T_2^* est observé. En RMN du solide, T_2^* provient de l'élargissement inhomogène dû aux inhomogénéités du champ statique \vec{B}_0 , à la distribution de déplacements chimiques (dans les composés désordonnés), ou à l'anisotropie de déplacement chimique ou encore à l'interaction quadripolaire.

1.2.2 Les interactions internes en RMN du solide

Il existe plusieurs interactions aux échelles atomiques et moléculaires, qui peuvent être observées par RMN. Ces interactions dont l'origine est magnétique ou électrostatique sont les suivantes : l'interaction de déplacement chimique qui résulte de l'interaction entre les noyaux observés et les électrons, l'interaction dipolaire qui est à l'origine de l'interaction magnétique entre spins nucléaires, l'interaction indirecte (couplage *J*) qui résulte de l'interaction magnétique entre spins nucléaires au travers des liaisons chimiques, et l'interaction quadripolaire électrique créée par l'interaction électrostatique entre un noyau quadripolaire (pour lequel I > 1/2) et le champ électrique environnant.

L'opérateur Hamiltonien total qui gouverne toutes les interactions s'écrit :

$$\widehat{\mathcal{H}}_{RMN} = \widehat{\mathcal{H}}_{CS} + \widehat{\mathcal{H}}_{D} + \widehat{\mathcal{H}}_{J} + \widehat{\mathcal{H}}_{Q} \quad (1.18).$$

 $\hat{\mathcal{H}}_{CS}$ est l'opérateur Hamiltonien qui décrit l'interaction de déplacement chimique, $\hat{\mathcal{H}}_{D}$ et $\hat{\mathcal{H}}_{J}$ sont respectivement les opérateurs Hamiltonien des interactions de couplage spin-spin dipolaire direct et indirect et $\hat{\mathcal{H}}_{Q}$ est l'opérateur Hamiltonien de l'interaction quadripolaire. Chaque interaction peut donner une information précieuse sur la nature et

la structure du matériau. L'ensemble de ces interactions est résumé dans le tableau 1.2, qui indique la gamme de fréquence pour chacune et les informations structurales apportées. Au cours de cette thèse, nous nous sommes limités à l'étude des interactions de déplacement chimique et quadripolaire.

Type d'interaction	Domaine de fréquence	Dépendance en champ	Information structurale
Couplage quadripolaire (I > 1/2)	0-10 ⁶	1 ^{er} ordre : indépendant 2 ^{ème} ordre :∝ 1/ B 0	Géométrie
Déplacement chimique	0-10 ⁴		Nature des
		$\propto B_0$	premiers voisins,
			coordinences
Couplage dipolaire	0-10 ⁴		Proximité
		indépendant	spatiale,
			distances
Couplage J	0-10 ³	indépendent	Liaisons,
		independant	distances

Tableau 1.2. Gamme de fréquence des différentes interactions internes, dépendance en champ magnétique \vec{B}_0 et informations structurales tirées de chaque interaction.

1.2.2.1 L'interaction de déplacement chimique

Le champ magnétique statique \vec{B}_0 peut induire un mouvement des électrons dans les orbitales moléculaires/atomiques, qui à son tour peut produire des champs magnétiques locaux induits, \vec{B}_{ind} , plus faibles. Ces champs induits contribuent à un faible blindage ($\vec{B}_0 \notin \vec{B}_{ind}$), ou déblindage ($\vec{B}_0 \parallel \vec{B}_{ind}$) des noyaux, conduisant à de légères variations de la fréquence de Larmor. Cette interaction est connue sous le nom d'écran magnétique nucléaire. Le champ magnétique auquel est soumis le noyau peut s'écrire :

$$\vec{B}_{eff} = \vec{B}_0(1 - \sigma)$$
 (1.19)

avec σ , le coefficient d'écran tel que : $\sigma = \sigma_d + \sigma_p$ (1.20). Ce coefficient est composé d'une contribution diamagnétique positive, σ_d , générée par la précession de Larmor des électrons périphériques dans le champ magnétique statique \vec{B}_0 , qui tend à écranter le champ magnétique vu par le noyau, et d'une contribution paramagnétique négative, σ_p , qui provient de la déformation des couches électroniques sous l'effet du champ magnétique \vec{B}_0 et amplifie le champ magnétique au niveau du noyau.

Le signe et l'intensité de l'écrantage magnétique dépendent de la structure chimique et de l'orientation par rapport à \vec{B}_0 . L'opérateur Hamiltonien de l'interaction de déplacement chimique s'écrit sous la forme [23] :

$$\widehat{\mathcal{H}}_{CS} = \gamma \hbar \widehat{I}_Z \sigma B_0 \quad (1.21)$$

 σ est un tenseur de rang deux, de trace non nulle, qui s'exprime dans son système d'axes propres sous la forme :

$$\sigma = \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{yy} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix} \quad (1.22)$$

avec $|\sigma_{xx} - \sigma_{iso}| \leq |\sigma_{yy} - \sigma_{iso}| \leq |\sigma_{zz} - \sigma_{iso}|$ (1.23), où $\sigma_{iso} = \frac{1}{3} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})$ (1.24) est la constante d'écran isotrope. Les valeurs propres, σ_{ii} , sont perpendiculaires entre elles et représentent l'écrantage magnétique dans les trois directions autour des noyaux (Figure 1.6).

L'anisotropie du tenseur d'écran σ_{csa} est définie comme $\sigma_{csa} = \sigma_{zz} - \sigma_{iso}$ (1.25), et son paramètre d'asymétrie, η_{cs} , comme $\eta_{cs} = \frac{\sigma_{xx} - \sigma_{yy}}{\sigma_{iso}}$ (1.26).

Figure 1.6. A gauche, illustration schématique de l'interaction d'écrantage magnétique. A droite la représentation visuelle du tenseur d'écran.

Pour une orientation quelconque du tenseur par rapport au champ magnétique statique, l'opérateur Hamiltonien d'écran s'écrit :

$$\widehat{\mathcal{H}}_{CS} = \gamma \widehat{I}_Z B_0 \left[\sigma_{iso} + \frac{\sigma_{CSA}}{2} \left(3\cos^2\theta - 1 + \eta_{CS} \sin^2\theta \cos^2\phi \right) \right] \quad (1.27)$$

où θ et ϕ représentent les angles polaires. Dans un échantillon pulvérulent, toutes les orientations possibles des cristallites existent, et donc toutes les combinaisons de θ et ϕ . Par conséquent, chaque cristallite possède une fréquence de résonance légèrement différente, provoquant un élargissement des raies de résonance.

Dans une expérience RMN, la position des raies de résonance est mesurée par rapport à une raie de référence. Cette position est nommée le déplacement chimique, δ , exprimé en partie par millions (ppm) et défini comme ceci :

$$\delta/ppm = \frac{\omega_{iso} - \omega_{ref}}{\omega_{ref}} 10^6 = \frac{\sigma_{ref} - \sigma_{iso}}{1 - \sigma_{ref}} 10^6 \approx (\sigma_{ref} - \sigma) 10^6 \quad (1.28).$$

Le déplacement chimique isotrope, δ_{iso} , est défini de la manière suivante :

$$\delta_{iso} = \frac{1}{3} \left(\delta_{xx} + \delta_{yy} + \delta_{zz} \right) \quad (1.29)$$

avec la convention $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$ (1.30).

Les composantes du tenseur de déplacement chimique, dans son système d'axes propres sont $\delta_{xx} = \frac{1}{3} \left(\sigma_{ref} - \sigma_{xx} \right) 10^6$ (1.31), $\delta_{yy} = \frac{1}{3} \left(\sigma_{ref} - \sigma_{yy} \right) 10^6$ (1.32) et $\delta_{zz} = \frac{1}{3} \left(\sigma_{ref} - \sigma_{zz} \right) 10^6$ (1.33).

On définit aussi l'anisotropie de déplacement chimique:

$$\delta_{CSA}(ppm) = \delta_{zz} - \delta_{iso} \quad (1.34).$$

Le paramètre d'asymétrie s'écrit sous la forme : $\eta_{CS} = \frac{\delta_{yy} - \delta_{xx}}{\delta_{CSA}}$ (1.35).

Figure 1.7. Spectres RMN statiques de ¹⁹F simulés, à 20 T, pour $\delta_{iso} = -34,1$ ppm, $\delta_{CSA} = -35$ ppm et différentes valeurs de η_{CS} .

L'interaction de déplacement chimique fournit des informations précieuses sur la structure à l'échelle locale, en particulier sur la coordinence et la nature des premiers voisins. L'anisotropie de déplacement chimique est parfois l'interaction dominante. L'effet de l'asymétrie de déplacement chimique sur la forme des raies de résonance d'un spectre de poudre est montré Figure 1.7.

1.2.2.2 L'interaction dipolaire

avec : A

L'interaction magnétique dipôle-dipôle résulte de l'interaction d'un spin nucléaire avec le champ magnétique généré par un autre spin nucléaire à travers l'espace et viceversa. Le couplage dipolaire dépend de la distance internucléaire, r, et des rapports gyromagnétiques des noyaux couplés. Pour deux noyaux I et S de nature différente (I, S : système hétéronucléaire), l'opérateur Hamiltonien dipolaire peut s'écrire de la manière suivante :

$$\widehat{\mathcal{H}}_{D} = \frac{\mu_{0}}{4\pi} \hbar \gamma_{I} \gamma_{S} \left(\frac{\vec{l} \cdot \vec{S}}{r_{IS}^{3}} - 3 \frac{(\vec{l} \cdot \vec{r}_{IS}) \cdot (\vec{S} \cdot \vec{r}_{IS})}{r_{IS}^{5}} \right) \quad (1.36)$$

avec r_{IS} la distance internucléaire, μ_0 la perméabilité dans le vide, et γ_I et γ_S les rapports gyromagnétiques des noyaux I et S.

$$\hat{\mathcal{H}}_{D} = \frac{\mu_{0}}{4\pi} \hbar \gamma_{I} \gamma_{S} (A + B + C + D + E + F) \qquad (1.37)$$
$$= (1 - 3\cos^{2}\theta) \hat{I}_{z} \hat{S}_{z} \quad (1.38), B = -\frac{1}{4} (1 - 3\cos^{2}\theta) (\hat{I}_{+} \hat{S}_{-} + \hat{I}_{-} \hat{S}_{+}) \quad (1.39),$$

$$C = -\frac{3}{2}sin\theta cos\theta e^{-i\phi} (\hat{I}_z \hat{S}_+ + \hat{I}_+ \hat{S}_z) \quad (1.40), D = -\frac{3}{2}sin\theta cos\theta e^{i\phi} (\hat{I}_z \hat{S}_- + \hat{I}_- \hat{S}_z) \quad (1.41),$$
$$E = -\frac{3}{4}sin^2\theta e^{-2i\phi} \hat{I}_+ \hat{S}_+ \quad (1.42), \text{ et } F = -\frac{3}{4}sin^2\theta e^{2i\phi} \hat{I}_- \hat{S}_- \quad (1.43)$$

avec θ l'angle polaire qui décrit l'orientation de \vec{r}_{IS} par rapport au champ \vec{B}_0 , ϕ l'angle azimutal (Figure 1.8), \hat{I}_z et \hat{S}_z les composantes suivant z des opérateurs de moment cinétique \hat{I} et \hat{S} , respectivement, \hat{I}_+ et \hat{I}_- les opérateurs de création et d'annihilation du spin I et \hat{S}_+ et \hat{S}_- , les opérateurs de création et d'annihilation du spin S.

Dans le cas d'une interaction dipolaire hétéronucléaire, seule la partie *A* commute avec l'Hamiltonien Zeeman, et la partie séculaire de l'Hamiltonien s'écrit comme ceci [24]:

$$\widehat{\mathcal{H}}_d^{h\acute{e}t\acute{e}ro} = -d(3cos^2\theta - 1)\widehat{I}_z\widehat{S}_z \quad (1.44)$$

avec, $d = \left(\frac{\mu_0}{4\pi}\right) \frac{\gamma_I \gamma_S}{r_{IS}^3} \hbar$ (1.45), appelée constante de couplage dipolaire.

Figure 1.8. Représentation de l'orientation d'un vecteur internucléaire \vec{r}_{IS} *dans le repère du laboratoire.*

Dans le cas d'un système homonucléaire, les termes A et B commutent avec l'Hamiltonien Zeeman, et la partie séculaire du couplage homonucléaire ($\hat{I}_1 \hat{I}_2$) est donnée par :

$$\hat{\mathcal{H}}_{d}^{homo} = -d' \frac{(3\cos^2\theta - 1)}{2} (3\hat{l}_{1z}\hat{l}_{2z} - \hat{l}_{1}.\hat{l}_{2}) \quad (1.46)$$

avec $d' = \left(\frac{\mu_0}{4\pi}\right) \frac{\gamma_I^2}{r_{IS}^3} \hbar$ (1.47), la constante de couplage dipolaire homonucléaire.

En RMN du solide, l'interaction dipolaire se manifeste par un élargissement homogène des raies de résonance. Sa force dépend essentiellement de la distance entre les deux noyaux et des rapports gyromagnétiques.

1.2.2.3 L'interaction quadripolaire

Les noyaux de spin nucléaire I > 1/2 présentent une distribution asymétrique des charges nucléaires, ce qui donne naissance à un moment quadripolaire électrique Q. L'interaction quadripolaire a pour origine le couplage entre ce moment quadripolaire électrique Q et le gradient de champ électrique (GCE) local autour du noyau (Figure 1.9). Généralement, le GCE est généré par une distribution des charges électriques des électrons autour de ce noyau. Cette interaction locale traduit l'asymétrie de l'environnement électrique du noyau observé. Dans le cas des matériaux solides, l'interaction quadripolaire peut atteindre plusieurs MHz, et conduire à l'apparition de singularités dans la forme des raies et à un fort élargissement du spectre.

Figure 1.9. Représentations du GCE autour d'un noyau quadripolaire (à gauche) et du tenseur de GCE (à droite).

Le couplage entre le moment quadripolaire électrique Q d'un noyau I et le GCE V est exprimé par l'opérateur Hamiltonien comme ceci :

$$\widehat{\mathcal{H}}_Q = \frac{eQ}{2I(2I-1)\hbar} \widehat{I} V \widehat{I} \quad (1.48)$$

où e est la charge de l'électron et V est le tenseur de GCE (qui correspond à la dérivée seconde du potentiel électrostatique), de rang 2. Dans son système d'axes propres, le tenseur de GCE est décrit par la matrice suivante :

$$V = \begin{pmatrix} V_{xx} & 0 & 0\\ 0 & V_{yy} & 0\\ 0 & 0 & V_{zz} \end{pmatrix}$$
(1.49)

où les trois composantes respectent la convention suivante:

$$|V_{xx}| \le |V_{yy}| \le |V_{zz}| \quad (1.50).$$

L'équation de Laplace impose une trace nulle au tenseur, soit $V_{xx} + V_{yy} + V_{zz} = 0$ (1.51).

Deux paramètres suffisent pour décrire le tenseur V. La composante principale du tenseur de GCE, V_{zz} , est proportionnelle à la constante de couplage quadripolaire C_Q qui est un paramètre ayant la dimension d'une fréquence:

$$C_Q = \frac{eQ \, V_{zz}}{\hbar} \qquad (1.52).$$

La fréquence quadripolaire v_Q , et le produit quadripolaire P_Q s'expriment en fonction de la constante de couplage quadripolaire C_Q par $v_Q = \frac{3C_Q}{2I(2I-1)}$ (1.53) et $P_Q =$

 $C_Q \sqrt{1 + \frac{\eta_Q^2}{3}}$ (1.54) où η_Q est le paramètre d'asymétrie défini par les trois composantes du tenseur GCE : $\eta_Q = \frac{V_{xx} - V_{yy}}{V_{zz}} (0 \le \eta_Q \le 1)$ (1.55). Les paramètres quadripolaires caractérisent la symétrie locale d'un noyau. Si le noyau observé occupe un site de symétrie cubique alors $V_{xx} = V_{yy} = V_{zz} = 0$ et $C_Q = 0$ et $\eta_Q = 0$. $V_{xx} = V_{yy}$ et $C_Q \neq 0$ et $\eta_Q = 0$ pour les sites de symétrie élevé (-3m, 4mm, 3m,...).

Généralement, l'opérateur Hamiltonien de l'interaction quadripolaire contient à la fois un terme du premier ordre, et un terme de second ordre:

$$\widehat{\mathcal{H}}_Q = \widehat{\mathcal{H}}_Q^{(1)} + \widehat{\mathcal{H}}_Q^{(2)} \quad (1.56).$$

Quand l'interaction Zeeman est très grande devant l'interaction quadripolaire, cette dernière est alors considérée comme une perturbation de l'interaction Zeeman, et on définit l'opérateur Hamiltonien quadripolaire au premier ordre:

$$\widehat{\mathcal{H}}_{Q}^{(1)} = \frac{C_{Q}}{8I(2I-1)} \left(3\cos^{2}\theta - 1 - \eta_{Q}\sin^{2}\theta\cos2\phi \left(3\hat{I}_{Z}^{2} - \hat{I}^{2}\right) \right)$$
(1.57)

La fréquence quadripolaire au premier ordre est donnée par :

$$\omega_{m,m-1}^{(1)} = -\omega_0 - \frac{1}{4}(2m-1)\left[\left(3\cos^2\theta - 1 + \eta_Q \sin^2\theta \cos^2\phi\right)\right] \quad (1.58),$$

avec (θ, ϕ) les angles polaires qui orientent le tenseur de GCE par rapport au référentiel du laboratoire.

Les couplages quadripolaires forts nécessitent un traitement par la théorie de perturbation au second ordre. Pour une transition $1/2 \leftrightarrow -1/2$, la fréquence quadripolaire du second ordre est donnée par [25]:

$$\omega_{1/2 \leftrightarrow -1/2}^{(2)} = -\frac{1}{6\omega_0} \omega_Q^2 [\hat{I}(\hat{I}+1) - \frac{3}{4}] [(A(\eta, \phi)\cos^4\beta + B(\eta, \phi)\cos^2\theta + C(\eta, \phi)] (1.59),$$

avec $A(\eta, \phi) = -\frac{27}{8} + \frac{9}{4}\eta\cos 2\phi - \frac{3}{8}\eta^2\cos^2 2\phi$ (1.60),
 $B(\eta, \phi) = -\frac{30}{8} + \frac{\eta^2}{2} - 2\eta\cos 2\phi$ (1.61)
et $C(\eta, \phi) = -\frac{3}{8} + \frac{\eta^2}{3} - \frac{\eta}{4}\cos 2\phi - \frac{3}{8}\eta^2\cos^2 2\phi$ (1.62).

L'interaction quadripolaire au second ordre affecte aussi bien la transition centrale (CT) que les transitions satellites (ST). Dans l'équation 1.59 le terme $\frac{1}{\omega_0}$ indique que l'interaction du second ordre est inversement proportionnelle au champ magnétique statique.

Les effets des interactions quadripolaires des premier et second ordres sur les niveaux d'énergie pour un noyau de spin 3/2 sont montrés Figure 1.10.

Figure 1.10. Niveaux d'énergie d'un spin 3/2, sous l'effet de l'interaction Zeeman, et de l'interaction quadripolaire de premier et second ordres. La CT n'est pas affectée par l'interaction quadripolaire du premier ordre, alors que toutes les transitions sont affectées par l'interaction quadripolaire de second ordre.

1.2.2.4 L'interaction spin-spin indirecte (couplage J)

L'interaction spin-spin indirecte, caractérisée par la constante de couplage J, résulte de l'interaction entre les spins nucléaires à travers les électrons qui participent à la liaison chimique. L'opérateur Hamiltonien correspondant à l'interaction du couplage J entre un spin I et un spin S est donné par [17] :

$$\widehat{\mathcal{H}}_{IS}^{J} = 2\pi J \widehat{I} \widehat{S} \quad (1.63)$$

où J est le tenseur du couplage J asymétrique, qui possède une trace non-nulle. La partie séculaire du Hamiltonien de couplage J correspondant à l'interaction du couplage indirecte entre un spin I et un spin S est donnée par:

$$\mathcal{H}_{IS}^{J} = 2\pi J_{IS} I_z S_z \quad (1.64)$$

où J_{IS} est la constante de couplage J entre les noyaux I et S.

1.2.2.5 Les angles d'Euler [26]

Comme vu précédemment, l'interaction quadripolaire et l'interaction de déplacement chimique sont toutes les deux anisotropes, et sont décrites par leurs tenseurs V et δ . Lorsque ces deux interactions sont présentes, le spectre RMN est alors influencé par les orientations relatives de ces deux tenseurs.

Les angles d'Euler (α, β, γ) relient les systèmes de coordonnées des tenseur V et δ , et leurs origines (Figure 1.11). L'angle β , l'angle entre V_{zz} et δ_{zz} , a une influence plus importante que les autres angles sur la forme de la raie.

Figure 1.11. Représentation schématique de l'orientation relative de deux tenseurs exprimée par les angles d'Euler (α , β , γ). Les axes principaux du tenseur de déplacement chimique (δ_{xx} , δ_{yy} , δ_{zz}) sont repérés par rapport aux axes principaux du tenseur de GCE (V_{xx} , V_{yy} , V_{zz}).

1.2.3 RMN: TECHNIQUES EXPERIMENTALES

Dans cette section sont décrites les différentes techniques RMN mises en œuvre pour les fluorures et oxyfluorures inorganiques diamagnétiques étudiés.

Les spectres RMN présentés dans ce manuscrit ont été enregistrés sur le spectromètre Bruker Avance III 300 (7 T) de l'IMMM au Mans et sur les spectromètres Bruker Avance III 750 (17,6 T) et 850 (20 T) dans le cadre de projets TGIR-RMN-THC au CEMHTI d'Orléans, en collaboration avec F. Fayon.

1.2.3.1 Sensibilité et rapport signal sur bruit (Signal-to-Noise, S/N)

La sensibilité en RMN est très faible par rapport à d'autres techniques analytiques, puisque la différence d'énergie entre les états de spin nucléaire est faible à température ambiante. Cette faible sensibilité est due également à d'autres facteurs liés à l'échantillon (anisotropie des interactions, couplage dipolaire et quadripolaire) et/ou à la sonde (bruit électronique, géométrie et température de la bobine,...) [27]. L'intensité du signal de spins ½ dans une expérience RMN 1D est proportionnelle à :

$$M = N\gamma^2 \frac{\hbar^2 B_0}{4kT} \qquad (1.65).$$

Le rapport S/N permet d'estimer la qualité d'une mesure à l'endroit du signal (dans la largeur de bande de signal et non pas dans la largeur totale de l'acquisition). Il s'exprime comme le rapport de l'amplitude du signal RMN sur l'écart type due aux fluctuations aléatoires du signal :

$$\frac{S}{N} = \frac{Amplitude \, du \, signal}{\acute{e}cart-type \, du \, bruit} = \frac{A}{\sigma_t} \qquad (1.66).$$

Le rapport S/N peut être amélioré en modifiant plusieurs facteurs comme :

utiliser une grande quantité d'échantillon, dans le cas des composés contenant des éléments peu sensibles, de faible abondance naturelle, et/ou de faible rapport gyromagnétique (pour la RMN de ³⁹K et ⁸⁹Y, des rotors de 7 et 4 mm ont été utilisés);

- accroitre le nombre de scans (Figure 1.12), le rapport S/N étant proportionnel à la racine carrée du nombre de scans, n;

- utiliser de très hauts champs : un haut champ permet d'augmenter la résolution spectrale et la sensibilité de la polarisation. De plus, pour les noyaux quadripolaires, l'effet de l'interaction quadripolaire au second ordre est réduite (voir 1.2.2.3), ce qui permet une amélioration de la résolution spectrale de la transition centrale (Figure 1.13).

Figure 1.12. Spectres RMN MAS (7 T; 3 kHz) de ⁸⁹Y de β -KY₂F₇ enregistrés avec différents nombres de scans.

Figure 1.13. Spectres RMN MAS de ${}^{39}K$ de β -KY₂F₇ enregistrés à différents champs: 7 T (3 kHz) et 17,6 T (10 kHz).

Il existe des techniques telles que MAS, découplage, Q-CPMG,... pour réduire l'élargissement des raies RMN et augmenter le rapport S/N. Certaines permettent d'affiner les signaux en supprimant partiellement ou totalement l'anisotropie des interactions. Pour les noyaux de faible rapport gyromagnétique, les techniques de transfert de polarisation sont mises en œuvre, comme le CP-MAS. Ces techniques de RMN sont discutées ci-dessous.

1.2.3.2. La rotation à l'angle magique (Magic Angle Spinning, MAS)

En phase liquide, les mouvements rapides des molécules (temps de corrélation de l'ordre de 10⁻⁹ à 10⁻¹² s) conduisent à une suppression de la partie anisotrope des interactions RMN. Les spectres RMN présentent alors des raies très fines. Au contraire, en phase solide, ces interactions sont présentes et sont responsables de l'élargissement

inhomogène des raies RMN, ce qui limite la résolution spectrale. Pour résoudre ce problème, de nombreux progrès technologiques des appareils dédiés à la RMN du solide ont été développés.

La rotation à l'angle magique [1-3], c'est à dire autour d'un axe dont l'orientation par rapport à B_0 , fait un angle $\theta_R = 54,74^\circ$ (Figure 1.14), permet de réduire les effets de l'anisotropie de certaines interactions RMN. En effet, les expressions de l'interaction de couplage dipolaire, de l'anisotropie de déplacement chimique et de l'interaction de couplage quadripolaire au premier ordre comportent un terme en $3cos^2\theta - 1$. Or,

$$(3\cos^2\theta - 1) = \frac{1}{2} (3\cos^2\theta_R - 1)(3\cos^2\beta - 1)$$
 (1.67)

où θ est l'angle entre \vec{B}_0 et la composante principale du tenseur de l'interaction RMN, β l'angle entre la composante principale du tenseur de l'interaction RMN et l'axe de rotation, et θ_R est l'angle magique. Lorsque $\theta_R = 54.74^\circ$, alors $3\cos^2\theta_R - 1 = 0$, et par conséquent $(3\cos^2\theta - 1) = 0$.

Figure 1.14. A gauche représentation de la rotation à l'angle magique, le tenseur d'écran est représenté par un ellipsoïde. A droite le schéma du dispositif expérimental du MAS.

La fréquence de résonance ω des noyaux dans une poudre en rotation et soumis à différentes interactions RMN, peut être développée en polynôme de Legendre selon l'équation suivante :

$$\omega = \omega_0 + \omega_2 P_2(\cos\theta) \quad (1.68) \operatorname{avec} P_2(\cos\theta) = \frac{3\cos^2\theta - 1}{2} \quad (1.69)$$

où ω_2 est une quantité dont l'expression dépend de l'interaction considérée. En rotation à l'angle magique, la partie anisotrope $P_2(\cos\theta)$ est moyennée, ce qui réduit les effets anisotropes et augmente la résolution spectrale. Pour moyenner complètement la partie anisotrope des interactions RMN, la fréquence de rotation doit être supérieure à la distribution de fréquence des interactions RMN, *i. e.*, à la largeur de la raie statique.

La refocalisation de l'aimantation nucléaire du spin à la fin de chaque période de rotation du rotor augmente les échos de spin dans le domaine temporel (sur la FID on parle d'échos rotationnels), ce qui fait apparaitre des bandes de rotation des deux cotés des raies isotropes (Figure 1.15). Ces bandes de rotation sont séparées par des multiples de la fréquence de rotation $\left(\frac{\omega_R}{2\pi}\right)$. Plus la fréquence de rotation est élevée, plus les bandes de rotation sont éloignées de la raie isotrope. A basse vitesse de rotation, l'intensité des bandes de rotation reproduit la forme de la raie observée dans le cas d'un spectre statique. Les intensités des bandes de rotation dépendent de l'intensité des diverses interactions RMN anisotropes et de la fréquence de rotation.

Figure 1.15. Spectres RMN de ¹⁹F simulés statique et MAS de t-LaOF ($\delta_{iso} = -34,1 \text{ ppm}, \delta_{CSA} = -35 \text{ ppm et } \eta_{CS} = 0$).

1.2.3.3. L'écho de Hahn

Lors d'une expérience RMN dite "à une impulsion", les spins nucléaires observés dans le plan (x,y) précessent à des vitesses légèrement différentes, produisant donc des déphasages (voir 1.2.1.5). Ces déphasages, pendant l'impulsion et le temps mort qui la suit, conduisent à des imperfections de la ligne de base. L'écho de Hahn [4] est une expérience qui permet de s'affranchir de ces imperfections. Suite à la première impulsion radiofréquence $\frac{\pi}{2}$ qui bascule l'aimantation dans le plan transverse, une deuxième

impulsion radiofréquence π , après un certain temps τ , refocalise l'aimantation transverse au bout du temps (2τ). A la fin de cette période, les spins sont de nouveau en phase (Figure 1.16).

Figure 1.16. Séquence d'impulsion (a) et chemin de cohérence (b) de l'expérience d'écho de Hahn. Les délais τ sont les temps d'évolution et de refocalisation de l'aimantation transverse.

Les spectres RMN 1D ¹⁹F présentés dans ce manuscrit ont été enregistrés en utilisant la séquence d'écho de Hahn, afin d'obtenir des spectres RMN avec une ligne de base propre. L'acquisition du signal RMN commence après la période de refocalisation. Pour toutes les expériences RMN où l'échantillon est en rotation à l'angle magique, les délais d'évolution doivent être synchronisés avec la période de rotation du rotor.

La Figure 1.17 montre l'effet de la séquence d'écho de Hahn sur la ligne de base du spectre RMN MAS 19 F de γ -K₃YF₆.

Figure 1.17. Spectre RMN MAS de ¹⁹F (17,6 T; 60 KHz) de γ -K₃YF₆ enregistré avec une simple impulsion (a) et avec la séquence d'écho de Hahn (b). Les étoiles indiquent les bandes de rotation.

1.2.3.4 Le découplage hétéronucléaire

Souvent, l'interaction de couplage dipolaire est responsable d'un élargissement des raies RMN et d'une perte du rapport signal sur bruit. Cette interaction est moyennée par la rotation à l'angle magique. Cependant, dans le cas de fortes interactions, elle ne supprime pas complètement l'effet du couplage dipolaire. Des techniques de découplage hétéronucléaire seront alors utilisées dans le but d'améliorer la résolution spectrale en RMN du solide et d'éviter des pertes d'aimantation pendant les séquences d'impulsion. Il a été montré que la vitesse de rotation à l'angle magique et la puissance de découplage sont deux paramètres dépendants. Dans le cas des faibles vitesses de rotation (5-20 kHz), un découplage à haute puissance est nécessaire pour éliminer les effets des couplages dipolaires et aussi des couplages J, alors que pour les hautes vitesses de rotation, un découplage à basse puissance est suffisant. Plusieurs types de découplage existent, le plus simple étant le découplage à onde continue (continuous wave, CW) [28,29]. Ce type de découplage n'est pas optimum, même aux plus hautes vitesses actuellement accessibles $(> 60 \ kHz)$. Des méthodes ont été proposées en introduisant une modulation de phase de CW, dans le but d'améliorer la performance du découplage. La première d'entre elles utilise deux impulsions modulées en phase (TPPM [30]) appelée aussi découplage par train d'impulsion. D'autres séquences de découplage comme SPINAL [31], X inverse-X (XiX) [32] ont été également mises au point.

1.2.3.5 L'expérience de polarisation croisée

La polarisation croisée (Cross-Polarization, CP) [5], est une technique d'acquisition fréquemment utilisée en RMN du solide. Elle permet de transférer l'aimantation (polarisation de spin) à travers l'espace (couplage dipolaire) d'un spin *I* abondant de haut γ (¹H, ¹⁹F,...) à un spin *S* peu abondant (¹³C, ²⁹Si, ⁸⁹Y,...) et/ou de faible réceptivité afin d'augmenter la sensibilité lors de l'observation des spins *S*. Le gain maximum en sensibilité est alors donné par le rapport γ_I/γ_S , où γ_I et γ_S sont les rapports gyromagnétiques respectifs des spins *I* et *S*.

L'expérience de polarisation croisée combinée à la rotation à l'angle magique est appelée CP-MAS [33], et sa séquence d'impulsions est schématisée Figure 1.18a. L'expérience consiste à appliquer initialement une impulsion radiofréquence de 90° sur le canal *I* le long de l'axe x du référentiel tournant, afin de basculer l'aimantation des spins *I* le long de l'axe y dans le plan transverse. Afin de verrouiller l'aimantation des spins *I*, une irradiation continue avec le champ B_{1I} est appliquée autour de l'axe y, pendant une durée appelée temps de contact. Simultanément, une impulsion *rf* de champ B_{1S} , qui satisfait les conditions de Hartmann-Hahn, est appliquée autour de l'axe y dans le référentiel tournant du spin *S*. Pour améliorer la résolution spectrale, un découplage hétéronucléaire est appliqué sur le canal du spin *I* lors de la détection de la FID sur le canal du spin *S*.

Figure 1.18. Schémas d'une séquence d'impulsions pour les expériences CP-MAS (a) et VACP-MAS (b).

L'efficacité du transfert de polarisation dépend essentiellement de la fréquence porteuse "offset", de l'efficacité du verrouillage des spins ("spin-lock") appelé aussi temps de contact, et du temps de relaxation transverse. Ce dernier est souvent plus court pour les spins *I*, que pour les spins *S* correspondants.

Pour que le transfert soit efficace (maximal), il faut satisfaire les conditions de Hartmann-Hahn. En statique, les conditions sont :

$$\gamma_I B_{1I} = \gamma_S B_{1S}$$
 (1.70).

Dans le cas d'une séquence CP-MAS, les conditions de Hartmann-Hahn, modulées par la rotation à l'angle magique, sont satisfaites quand [34] :

$$\gamma_I B_{1I} = \gamma_I B_{1S} \pm n\omega_R \qquad (1.71)$$

où n est un entier (en général 1, 2 ou 3) et ω_R la vitesse angulaire de rotation.

Pour améliorer la robustesse de la séquence CP-MAS, la séquence polarisation croisée à amplitude variable (Variable Amplitude Cross-Polarization, VACP) [35] s'avère efficace [36-38]. L'impulsion de verrouillage de spin *I* ("Spin Lock") est constituée d'une série d'impulsions de phase identique, mais d'amplitudes progressivement incrémentées pendant la durée du temps de contact (Figure 1.18b). Cette séquence a été mise en œuvre pour l'acquisition des spectres ⁸⁹Y présentés dans ce manuscrit (voir Figure 1.19 et chapitre II).

Figure 1.19. Spectres RMN MAS de ⁸⁹Y (7 T, 3 kHz) de KYF₄ enregistrés avec la séquence DEPTH (noir) et ¹⁹F-⁸⁹Y VACP-MAS (bleu).

1.2.3.6 RMN haute résolution des noyaux quadripolaires

L'expérience SATRAS : SAtellite TRAnSitions

Les expériences SATRAS [39,40] consistent à exciter les cohérences "singlequantum" (1Q), avec une impulsion non sélective, d'une durée très courte, pour exciter l'ensemble des transitions satellites. Dans le cas où la fréquence quadripolaire est plus petite que la fréquence du champ $rf, \omega_Q \ll \omega_{rf}$, on dit qu'on est dans le régime nonsélectif. Quand toutes les cristallites de l'échantillon pulvérulent répondent de la même façon, on se trouve dans le régime linéaire. La durée τ_P de l'impulsion doit correspondre au basculement de l'aimantation macroscopique d'un angle α tel que : $\alpha < \frac{\pi}{2(2l+1)}$. Les spectres sont alors quantitatifs.

En principe, la rotation à l'angle magique permet de moyenner les interactions dipolaires et quadripolaires du premier ordre, et de réduire ainsi l'élargissement des raies. Cependant l'élargissement dû à l'interaction quadripolaire du premier ordre est souvent très large en comparaison des vitesses de rotation, et donc les transitions satellites apparaissent comme une enveloppe des bandes de rotation séparées par la fréquence de rotation. Dans le cas d'une très forte interaction quadripolaire, les effets du second ordre ne sont plus négligeables, s'ajoutent aux effets du premier ordre, et ne sont que partiellement moyennés par la rotation à l'angle magique.

L'interaction quadripolaire du premier ordre n'affecte pas la transition centrale $1/2 \leftrightarrow -1/2$, tandis que les transitions satellites $m \leftrightarrow m - 1$ ($m \neq 1/2$) sont affectées et sont dépendantes de l'orientation du tenseur dans le repère du laboratoire. L'interaction quadripolaire du second ordre perturbe tous les niveaux d'énergies des états

de spins, et affecte donc toutes les transitions, aussi bien la transition centrale que les transitions satellites.

Pour un noyau donné, la largeur d'un spectre de poudre est proportionnelle à v_Q , (Figure 1.20), tandis que la forme de la transition centrale et l'enveloppe des transitions satellites dépendent de η_Q (Figures 1.20 et 1.21). Pour une interaction quadripolaire forte $(v_Q = 750 \ kHz)$, la distribution des transitions satellites sous MAS conduit à une enveloppe de bandes de rotations très étendue.

Figure 1.20. Spectres RMN SATRAS (20 T; 33 kHz) simulés de ¹³⁹La (I=7/2) montrant l'évolution de l'enveloppe des transitions satellites en fonction de v_Q (kHz) avec $\eta_Q = 0$.

Figure 1.21. Spectres SATRAS MAS (20 T; 33 kHz) simulés de ¹³⁹La (I=7/2) montrant l'évolution l'enveloppe des transitions satellites en fonction de η_Q avec $v_Q = 450$ kHz.

L'interaction quadripolaire peut aussi être déterminée à partir de la simulation de la transition centrale. La Figure 1.22 montre l'évolution de la transition centrale des spectres RMN MAS de ¹³⁹La.

Figure 1.22. Spectres RMN MAS (20 T; 33 kHz) simulés de ¹³⁹La (I=7/2) montrant l'évolution de la transition centrale en fonction de η_Q avec $v_Q = 450$ kHz.

L'expérience QCPMG : Quadrupolar-Carr-Purcell-Meiboom-Gill

La séquence d'impulsions CPMG [6,7] (train d'impulsions et train d'échos), permet d'obtenir une augmentation significative du rapport S/N des spectres d'échos [41-43] en statique [44,45] ou en rotation à l'angle magique. Il a été démontré qu'après une transformation de Fourier de l'ensemble des échos, on obtient un spectre contenant une série de pics (spikelets), appelée aussi peigne. Ceux-ci forment une enveloppe qui reproduit un spectre de poudre. Cette enveloppe contient donc des informations sur les interactions inhomogènes (l'anisotropie de déplacement chimique, le couplage quadripolaire et le couplage dipolaire hétéronucléaire).

En 1989, Cheng et Ellis [45] ont utilisé l'expérience CPMG pour observer la transition centrale d'un noyau quadripolaire de spin demi-entier. Cette séquence s'appelle Quadrupolar-CPMG (QCPMG) et prend la même forme que le CPMG. L'amélioration du rapport S/N est dû à l'augmentation de l'écart en fréquence entre les spikelets. Cette expérience est bien adaptée aux noyaux de faible rapport gyromagnétique.

Figure 1.23. Séquence d'impulsions de l'expérience QCPMG.

La séquence d'impulsions QCPMG, ressemble à l'écho de Hahn, mais introduit un train d'impulsions de refocalisation et de périodes d'acquisition (Figure 1.23). Cette expérience permet de refocaliser à chaque écho les interactions de déplacement chimique, de couplage dipolaire hétéronucléaire et de couplage quadripolaire du second ordre. Cependant, les interactions spin-spin homonucléaire directe (couplage dipolaire) et indirecte (couplage J) ne sont pas refocalisées. En rotation à l'angle magique, tout le cycle Q-CPMG doit être synchronisé avec la période de rotation du rotor $\tau_r = 1/v_r$, tel que:

$$2N.\tau_r = 2\tau_2 + P_2 + \tau_a \quad (1.72),$$

où *N* est un entier, τ_2 est un délai pour lequel les effets des artefacts sont réduits, P_2 l'impulsion π de refocalisation et τ_a le temps d'acquisition d'un écho.

Au cours de cette thèse, l'expérience QCPMG a été utilisée pour obtenir des spectres de ³⁹K (I = 3/2) des composés du système binaire KF-YF₃. Cette séquence a été également mise en œuvre pour acquérir le spectre RMN ¹³⁹La de t-LaOF. D'après la Figure

1.24, le meilleur rapport S/N du spectre ¹³⁹La de t-LaOF est obtenu avec la séquence QCPMG, avec un temps d'acquisition plus court que celui du spectre d'écho de Hahn.

Figure 1.24. Spectres statiques RMN de ¹³⁹La de t-LaOF acquis dans un champ de 17,6 T avec une séquence d'écho de Hahn (rouge) et une séquence QCPMG (bleu) avec découplage ¹⁹F. Le spectre QCPMG, constitué de "spikelets", est issu de la transformée de Fourier du train d'échos.

L'expérience WURST-QCPMG

L'expérience WURST (Wideband Uniform Rate Smooth Truncation)-QCPMG a été utilisée pour l'acquisition de spectres RMN lorsque le couplage quadripolaire est très important pour des noyaux comme ¹³⁷Ba [46] et ²⁰⁹Bi [47]. Shurko et O'Dell [8] ont démontré l'efficacité de la séquence WURST-QCPMG pour l'acquisition de spectres RMN de ¹⁴N, qui est un isotope abondant de spin entier (I = 1). Les impulsions WURST permettent une excitation efficace des signaux larges. Deux impulsions WURST d'amplitude, profil de phase et direction de balayage identiques, sont utilisées dans l'expérience WURST-QCPMG (Figure 1.25).

Les séquences d'impulsions QCPMG et WURST-QCPMG ont été utilisées pour l'étude par RMN de ³⁹K de KYF₄, qui présente six sites de potassium ayant des valeurs de C_Q de l'ordre de 3 MHz. Nous pouvons constater (Figure 1.26), que le spectre acquis avec la séquence WURST-QCPMG est plus complet que celui obtenu avec la séquence QCPMG, l'irradiation étant plus large.

Figure 1.25. Schéma de la séquence d'impulsions WURST. Les deux impulsions WURST sont identiques en profil de phase et amplitude, pour une "excitation" et "refocalisation" large bande. Le bloc refocalisation-écho est répété N fois.

Figure 1.26. Spectres RMN (17,6 T) de ³⁹K avec une séquence d'impulsions QCPMG (bleu) et WURST-QCPMG (noir) en statique.

1.2.3.7 Simulation des spectres RMN avec Dmfit

Paramètres RMN de déplacement chimique : spin ½

La simulation des spectres RMN a été effectuée à l'aide du logiciel Dmfit [48]. Chaque raie est caractérisée par les paramètres suivants : le déplacement chimique isotrope δ_{iso} , l'amplitude (en relation avec l'intensité intégrée), la forme de la raie isotrope (mélange de forme Gaussienne et Lorentzienne), le tenseur d'anisotropie de déplacement chimique (δ_{csa} et η_{cs}). Dans le cas des spectres RMN MAS, le modèle "CSA MAS" est utilisé pour la simulation. L'interaction dipolaire n'étant pas explicitement prise en compte, l'amplitude et la largeur des raies dépendent de la vitesse de rotation utilisée et sont réajustées.

Paramètres RMN des noyaux quadripolaires

En plus des paramètres déjà énoncés s'ajoutent la fréquence quadripolaire $v_Q(kHz)$ et le paramètre d'asymétrie quadripolaire η_Q , ainsi que les angles d'Euler (α, β, γ) qui décrivent l'orientation du tenseur de GCE par rapport au tenseur de déplacement chimique (voir 1.2.2.5). Les raies RMN sont simulées à l'aide du modèle "int2QUAD" dans le cas des phases cristallisées. Dans le cas de phases désordonnées telles que NbO₂F, le spectre expérimental de ⁹³Nb a été fitté en utilisant le modèle "CZSimple" qui combine une distribution "Gaussian Isotropic Model" (GIM) d'interactions quadripolaires (C_Q(v_Q), η_Q) [49,50] et une distribution Gaussienne (découplée) de valeurs de déplacement chimique isotrope (δ_{iso}).

La procedure Two dimensionnel One Pulse (TOP)

La procédure TOP [51], implémentée dans Dmfit, a été exploitée au cours de l'étude de β -KY₂F₇, qui présente 19 sites de fluor. Elle permet d'obtenir un spectre isotrope à "vitesse de rotation infinie". Le spectre RMN MAS ¹⁹F de β -KY₂F₇ a été simulé en utilisant cette procédure (Figure 1.27), afin de déterminer avec une bonne précision les intensités relatives des différentes raies isotropes.

Figure 1.27. Spectre *RMN* ¹⁹*F* (17,6 *T*) *TOP* (en haut) et à vitesse de rotation infinie (en bas) de β -*KY*₂*F*₇.

1.3 CALCULS PREMIERS PRINCIPES DES PARAMETRES RMN

Les calculs premiers principes des paramètres RMN en solide (déplacement chimique, interaction quadripolaire pour les noyaux de spin nucléaire *I* > 1/2 et couplage *J*) sont cruciaux en chimie et en sciences des matériaux. Les expériences de RMN du solide offrent de nouvelles perspectives en termes de caractérisation structurale comparées à la diffraction des rayons X sur poudre, en raison de leur sensibilité à l'environnement local. Néanmoins, un outil supplémentaire permettant de relier les données RMN expérimentales aux modèles structuraux est nécessaire pour exploiter totalement ces données. Les calculs premiers principes fournissent ce lien.

Dans le cas de la RMN du solide, il est important de prendre en compte la nature cristalline du matériau et l'approche de choix consiste alors à employer des méthodes qui modélisent des solides étendus en utilisant les conditions aux limites périodiques. Parmi les différentes méthodes existantes, les approches PAW [12,13] et GIPAW [14,15], implémentées dans le code NMR-CASTEP [52,53], s'avèrent très pertinentes pour calculer respectivement les tenseurs de GCE et de constantes d'écran dans les matériaux inorganiques [54-57] et notamment les fluorures [58-66]. Ces approches sont basées sur la théorie de la DFT et utilisent des ondes planes et des pseudopotentiels.

1.3.1 METHODES DE CHIMIE QUANTIQUE

1.3.1.1 Problématique

L'objectif des calculs est de décrire les propriétés des matériaux à partir de leur structure cristalline, en utilisant les approximations liées à la mécanique quantique. A l'échelle microscopique, le problème peut être établi de manière simple et consiste à résoudre l'équation de Schrödinger dans un système cristallin périodique composé de *A* noyaux atomiques en interaction mutuelle et *N* électrons de spin σ_i positionnés à $\vec{R}_I = \{\vec{R}_I; I = 1, ..., A\}$ et à $\vec{r}_i = \{(\vec{r}_i, \sigma_i); i = 1, ..., N\}$ respectivement :

$$\widehat{\mathcal{H}}\psi(\vec{R},\vec{r}) = E\psi(\vec{R},\vec{r}) \quad (1.73)$$

où ψ est la fonction d'onde électronique, E l'énergie du système et $\hat{\mathcal{H}}$ le Hamiltonien du système donné par :

$$\widehat{\mathcal{H}} = -\sum_{i}^{N} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{I}^{A} \frac{\hbar^{2}}{2M} \nabla_{I}^{2} - \sum_{i,I} \frac{Z_{I} e^{2}}{\left|\vec{r_{i}} - \vec{R}_{I}\right|} + \sum_{i < j} \frac{e^{2}}{\left|\vec{r_{i}} - \vec{r}_{j}\right|} + \sum_{I < j} \frac{Z_{I} Z_{J} e^{2}}{\left|\vec{R}_{I} - \vec{R}_{J}\right|} \quad (1.74).$$

Les deux premiers termes du Hamiltonien sont respectivement les opérateurs énergie cinétique des *N* électrons et des A noyaux atomiques et les trois derniers termes représentent respectivement les différents potentiels d'interaction électron-noyau, électron-électron et noyau-noyau.

Le Hamiltonien comprend donc A + N corps en interaction et sa résolution est une tâche très difficile voire impossible, compte tenu de la mémoire limitée des outils informatiques. Cependant, il est possible de le simplifier en introduisant des approximations.

1.3.1.2 Approximation de Born-Oppenheimer (BO)

L'approximation *BO* est considérée comme un premier niveau d'approche en fixant les positions des noyaux atomiques. En effet, la masse des électrons est nettement plus faible que celle des noyaux, ce qui revient à dire que l'électron est beaucoup plus mobile que le noyau. L'énergie cinétique des noyaux peut alors être négligée et le terme d'interaction entre noyaux est considéré comme une constante.

Cette première approximation permet de ramener le problème de A + N corps à un problème à N électrons (dit problème poly-électronique). L'équation de Schrödinger se simplifie et devient :

$$\widehat{\mathcal{H}}^{\acute{e}lec} = -\sum_{i}^{N} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < j} \frac{e^2}{\left|\vec{r}_l - \vec{r}_j\right|} + \sum_{\lambda} \frac{Z_{\lambda}}{\left|\vec{r}_l - \vec{R}_{\lambda}\right|} \quad (1.75).$$

Malgré cette approximation, résoudre l'équation de Schrödinger reste difficile. D'autres approximations, telles que l'approche Hartree-Fock ou la DFT, s'avèrent nécessaires.

1.3.1.3 L'approche Hartree-Fock

Dans le cadre de l'approche Hartree-Fock, on considère que chaque électron ne voit que le champ moyen créé par les autres électrons du système. On tient compte des termes mono-électroniques (énergie cinétique, attraction nucléaire) et uniquement du champ de répulsion électrostatique moyen créé par les électrons du système [9].

La fonction d'onde ψ utilisée est un produit de fonctions d'ondes monoélectroniques :

 $\psi = g_1(r_1, \theta_1, \varphi_1) \times g_2(r_2, \theta_2, \varphi_2) \times, \dots \dots \times g_N(r_N, \theta_N, \varphi_N)$ (1.76).

Le problème majeur de cette fonction d'onde est qu'elle n'est pas antisymétrique, c'est-à-dire qu'elle ne respecte pas le principe d'exclusion de Pauli. Pour résoudre ce problème cette fonction est développée sous la forme d'un déterminant de Slater, ou d'une combinaison linéaire antisymétrique de produits de spin-orbitales [9]. Le déterminant de Slater est de la forme suivante :

$$\psi(1,2,\dots,N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \dots & \chi_N(1) \\ \chi_1(2) & \chi_2(2) & \dots & \chi_N(2) \\ \chi_1(N) & \chi_2(N) & \dots & \chi_N(N) \end{vmatrix}$$
(1.77)

avec $\chi_N(N) = g_N(r_N, \theta_N, \varphi_N)\sigma(m_s)$. Le premier terme correspond à une fonction d'espace et le deuxième terme à une fonction de spin $\sigma(m_s) = \alpha(m_s)$ ou $\sigma(m_s) = \beta(m_s)$.

L'énergie de Hartree-Fock, E_{HF} , est plus grande que celle de l'état fondamental E_0 , en raison du principe variationnel. En particulier elle néglige complètement les effets de corrélation entre électrons. La différence entre cette énergie électronique E_{HF} et la valeur exacte de l'énergie électronique ε_e , est appelée énergie de corrélation E_C , et est définie par :

$$E_C = \varepsilon_e - E_{HF} \qquad (1.78).$$

D'autres méthodes, dites Post-Hartree-Fock, ont depuis été développées pour tenir compte des corrélations électroniques, comme la théorie des perturbations de Møller-Plesset [67] ou la méthode Multi-Configurationnelle [68]. Ces méthodes offrent très souvent des résultats en très bon accord avec les observations expérimentales, mais nécessitent des temps de calcul très longs, limitant leur application.

1.3.1.4 Théorie de la fonctionnelle densité (DFT)

La DFT fait partie des méthodes les plus utilisées pour la résolution de l'équation de Schrödinger, permettant d'étudier des systèmes infinis (cristaux).

Principe de base

Dans l'approche Hartree-Fock, l'énergie d'un système peut être développée comme une fonctionnelle de sa fonction d'onde ψ . Dans le cas de la DFT, l'énergie est une fonctionnelle de la densité électronique $\rho(\vec{r})$ du système. La DFT est issue d'un modèle développé par Thomas [10] et Fermi [11] en 1927.

L'idée de base de la DFT est que la densité de charge électronique $\rho_0(\vec{r})$ de l'état fondamental détermine complètement les observables comme l'énergie, dans le cadre de la mécanique quantique non-relativiste, et en tenant compte des effets de corrélation électronique. Ainsi, toute propriété électronique d'un système de N particules soumises à l'effet d'un potentiel extérieur v_{ext} , peut être calculée dès lors que sa densité électronique est connue.

Théorèmes de Hohenberg-Kohn

En 1962, Hohenberg et Kohn développent deux théorèmes qui constituent les bases de la DFT [69,70].

Premier théorème:

Toute propriété physique d'un système à N électrons soumis à l'effet d'un potentiel extérieur v_{ext} statique peut s'écrire, dans son état fondamental, comme une fonctionnelle de la densité électronique $\rho_0(\vec{r})$. Autrement dit, il existe une correspondance unique entre la densité de l'état fondamental $\rho_0(\vec{r})$ et le potentiel externe $v_{ext}(\vec{r})$, et donc entre $\rho_0(\vec{r})$ et la fonction d'onde de l'état fondamental ψ_0 .

Pour un système quelconque, l'énergie s'écrit ainsi :

$$E[\rho(\vec{r})] = T[\rho(\vec{r})] + V_{ee}[\rho(\vec{r})] + V_{ne}[\rho(\vec{r})] \quad (1.79)$$

Le premier terme correspond à l'énergie cinétique des électrons, le deuxième et le troisième terme correspondent aux énergies potentielles électron-électron et électron-noyau. En posant $V_{ne}[\rho(\vec{r})] = \int \rho(\vec{r}) v_{ext}[\rho(\vec{r})] d\vec{r}$ (1.80) et $F_{HK}[\rho(\vec{r})] = T[\rho(\vec{r})] + V_{ee}[\rho(\vec{r})]$ (1.81), la fonctionnelle d'énergie s'écrit :

$$E[\rho(\vec{r})] = F_{HK}[\rho(\vec{r})] + \int \rho(\vec{r}) v_{ext}[\rho(\vec{r})] d\vec{r} \quad (1.82)$$

où F_{HK} est la fonctionnelle universelle de Hohenberg et Kohn qui regroupe tout les termes indépendants du potentiel externe. Cette fonctionnelle contient l'énergie cinétique électronique et l'énergie potentielle répulsive électron-électron.

Deuxième théorème:

La fonctionnelle d'énergie $E[\rho(\vec{r})]$ est minimale quand la densité électronique $\rho(\vec{r})$ correspond à la densité électronique de l'état fondamental $\rho_0(\vec{r})$:

$$E_{Min}[\rho(\vec{r})] = E[\rho_0(\vec{r})]$$
 (1.83) et $\frac{\partial E[\rho(\vec{r})]}{\partial \rho(\vec{r})} = 0$ (1.84).

La densité électronique de l'état fondamental détermine complètement les propriétés du système à N électrons dans un potentiel externe v_{ext} .

Les équations de Kohn-Sham

En 1965, Kohn et Sham ont élaboré une méthode efficace pour calculer l'énergie de l'état fondamental à partir de la densité électronique de cet état fondamental, car les théorèmes de Hohenberg et Kohn ne donnent pas de procédure pour la calculer. L'idée de Kohn et Sham est d'utiliser un système fictif de n électrons indépendants mais de même densité électronique que le système réel [70], soit : $\rho(\vec{r})_{fictif} = \rho_0(\vec{r})$.

Dans cette approximation, le Hamiltonien du système s'écrit :

$$\widehat{\mathcal{H}}^{KS} = \sum_{i=1}^{N} \left[-\frac{\nabla_i^2}{2} + \nu(\vec{r})_{fictif} \right] = \sum_{i=1}^{N} h_i^{KS} \qquad (1.85).$$

Le but est de donner une expression de l'énergie cinétique du système réel en fonction de l'énergie cinétique du système fictif $T_{fictif} [\rho(\vec{r})]$. La différence d'énergie cinétique entre les systèmes réel et fictif, noté ΔT , est donnée par la relation :

$$\Delta T[\rho(\vec{r})] = T[\rho(\vec{r})] - T_{fictif} [\rho(\vec{r})] \qquad (1.86).$$

De même, la différence entre l'énergie potentielle du système réel et l'énergie potentielle de répulsion colombienne entre deux distributions de charges ponctuelles, ΔV , s'écrit :

$$\Delta V[\rho(\vec{r})] = V_{ee}[\rho(\vec{r})] - \frac{1}{2} \iint \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{\vec{r}_{12}} d\vec{r}_1 d\vec{r}_2 \qquad (1.87)$$

La fonctionnelle de la densité $E[\rho(\vec{r})]$ peut alors se développer comme une somme : $E[\rho(\vec{r})] = T_{fictif}[\rho(\vec{r})] + E_H[\rho(\vec{r})] + V_{ne}[\rho(\vec{r})] + E_{xc}[\rho(\vec{r})]$ (1.88) où

- $T_{fictif}[\rho(\vec{r})]$ est l'énergie cinétique du système fictif,

- $E_H[\rho(\vec{r})]$ est l'interaction colombienne classique entre électrons (terme Hartree) avec $E_H[\rho(\vec{r})] = \frac{1}{2} \iint \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{\vec{r}_{12}} d\vec{r}_1 d\vec{r}_2$ (1.89),

- $V_{ne}[\rho(\vec{r})]$ est un potentiel externe agissant sur les particules tel que $V_{ne}[\rho(\vec{r})] = \int \rho(\vec{r}) v_{ext}[\rho(\vec{r})] d\vec{r}$ (1.90),

- $E_{xc}[\rho(\vec{r})]$ est une fonctionnelle d'échange-corrélation, $E_{xc}[\rho(\vec{r})] = \Delta T[\rho(\vec{r})] - \Delta V[\rho(\vec{r})]$ (1.91).

La fonctionnelle d'échange-corrélation $E_{xc}[\rho(\vec{r})]$ rend compte des effets à plusieurs corps qui ne sont pas décrits dans les autres termes. Ce terme contient toutes les différences entre le système fictif et le système réel.

L'équation (2.16) devient après sommation des trois derniers termes, sous une nouvelle forme :

$$E[\rho(\vec{r})] = T_{fictif} [\rho(\vec{r})] + V_{eff}[\rho(\vec{r})] \quad (1.92)$$

avec $V_{eff}[\rho(\vec{r})] = \frac{1}{2} \iint \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{\vec{r}_{12}} d\vec{r}_1 d\vec{r}_2 + \int \rho(\vec{r}) v_{ext}[\rho(\vec{r})] d\vec{r} + E_{xc}[\rho(\vec{r})] \quad (1.93).$

La méthode utilisée pour résoudre les équations de Kohn-Sham est un processus itératif, sur la variable k définissant le nombre de cycles successifs auto-cohérents (Self Consistent Field, SCF). La densité initiale $\rho(\vec{r})_{(k=1)}$ permet de déterminer $V_{eff(k=1)}$. Ce potentiel est introduit dans les n équations de Schrödinger mono-électroniques afin d'obtenir les ψ_i^{KS} .

$$\widehat{\mathcal{H}}^{KS}\psi_i^{KS}(\vec{r}) = \left[\frac{-\hbar^2}{2m}\nabla^2 + V_{eff}(\vec{r})\right]\psi_i^{KS}(\vec{r}) = \varepsilon_i^{KS}\psi_i^{KS}(\vec{r}) \quad (1.94).$$

Cette dernière équation indique comment accéder à la densité à partir des n fonctions d'onde mono-électroniques, et permet de définir une nouvelle densité $\rho(\vec{r})_{k+1}$:

$$\rho(\vec{r})_{k+1} = \sum_{i=1}^{N} \left| \psi_i^{KS}(\vec{r}) \right|^2 \quad (1.95).$$

Le processus est repris jusqu'à la convergence de la densité et de l'énergie ε_i , c'està-dire jusqu'à ce que les fonctions propres $\psi_i^{KS}(\vec{r})$ et les valeurs propres ε_i soient pratiquement inchangées par rapport au cycle précédent (k-1).

Selon le schéma de Kohn et Sham, le problème pour la DFT est de trouver une bonne approximation pour l'énergie d'échange-corrélation. Il existe plusieurs approximations de ce potentiel d'échange-corrélation, dont quelques unes sont présentées dans les paragraphes suivants.

Fonctionnelle d'échange-corrélation

Approximation de la densité locale (LDA)

Dans cette approximation, la densité électronique est traitée localement comme un gaz uniforme d'électrons. La variation lente de $\rho(\vec{r})$ dans le système permet d'avoir une fonctionnelle dépendante de la valeur locale de la densité :

$$E_{xc}^{LDA}[\rho] = \int \rho(\vec{r}) \varepsilon_{xc} \left[\rho(\vec{r})\right] d^3 \vec{r} \qquad (1.96)$$

où $\varepsilon_{xc}(\rho)$ est la densité d'échange et corrélation par électron d'un gaz d'électrons de densité $\rho(r)$. On peut donc écrire:

$$V_{xc}^{LDA}(\vec{r}) = \frac{\delta E_{xc}^{LDA}}{\delta \rho(\vec{r})} = \varepsilon_{xc} + \rho(\vec{r}) \frac{d\varepsilon_{xc}}{d\rho(\vec{r})} \qquad (1.97).$$

La fonctionnelle d'échange-corrélation se décompose en un terme d'échange ε_x et un terme de corrélation ε_c . Autrement dit l'énergie d'échange-corrélation peut se développer comme une somme de petits éléments de volume dr possédant un environnement constant.

$$E_{xc}^{LDA}[\rho] = \int \rho(\vec{r})\varepsilon_x \left[\rho(\vec{r})\right] d^3\vec{r} + \int \rho(\vec{r})\varepsilon_c \left[\rho(\vec{r})\right] d\vec{r} \qquad (1.98)$$

Dans le cas des systèmes ayant des électrons non appariés, il est nécessaire de tenir compte des spins. Pour cela on utilise l'approximation de la densité locale de spin (Local Spin Density Approximation, LSDA). Les équations de Kohn-Sham se mettent sous leur forme polarisée :

$$E_{xc}^{LSDA}[\rho] = \int (\rho^{\uparrow}(\vec{r}) + \rho^{\downarrow}(\vec{r})) \varepsilon_{xc} \left[\rho^{\uparrow}(\vec{r}), \rho^{\downarrow}(\vec{r})\right] d\vec{r} \quad (1.99)$$

avec \uparrow = spin up et \downarrow = spin down.

Approximation des Gradients Généralisés (GGA)

Pour aller au-delà des approximations LDA et LSDA, et prendre en compte la nonhomogénéité de la vraie densité de charge, le gradient de la densité de charge $\nabla \rho(\vec{r})$ est introduit dans le calcul de l'énergie d'échange-corrélation :

$E_{XC}^{GGA} = \int \rho(\vec{r}) f_{xc}[\rho(\vec{r}), \nabla(\rho(\vec{r}))] d^3\vec{r} \quad (1.100).$

Plusieurs fonctionnelles d'échange-corrélation f_{xc} ont été développées. Dans notre cas, nous avons utilisé la fonctionnelle PBE proposée par Perdew, Burke et Ernzerhof en 1996 [71], couramment utilisée pour les solides.

1.3.1.5 La modélisation des systèmes périodiques

Base d'ondes planes

Système périodique et zone de Brillouin

Dans les solides cristallins, le nombre total d'électrons est très grand. Cependant l'existence d'une symétrie de translation, permet de tenir compte de la maille élémentaire en utilisant les conditions aux limites périodiques (Figure 1.28), appelées conditions cycliques de Born-von Karman, qui permettent de quantifier les vecteurs d'ondes \vec{k} dans l'espace réciproque, et introduisent la notion de densité d'état. Les effets de bord sont donc supprimés et les électrons sont piégés dans un potentiel constant.

Figure 1.28. (a) La maille élémentaire du réseau est représentée en noir. (b) Les atomes qui doivent être pris en compte dans la modélisation. (c) Le réseau réciproque du cristal avec l'origine (point gamma) en rouge. (d) Première zone de Brillouin divisée par un maillage uniforme de k-points. En raison de la symétrie, seuls les points dans le triangle gris sont considérés dans les calculs DFT (issue de la référence [55]).

Dans la résolution de l'équation de Schrödinger mono-électronique, les éléments de symétrie du groupe d'espace sont pris en compte, dans le but de simplifier la recherche des vecteurs propres et valeurs propres.

Cependant, alors que la densité de charge a la périodicité du réseau $\rho(\vec{r} + \vec{G}) = \rho(\vec{r})$ (1.101), quelque soit le vecteur du réseau \vec{G} , la fonction d'onde doit être traitée d'une façon précise.

Pour un système unique, le théorème de Bloch montre que la fonction d'onde associée est le produit d'une onde plane par une fonction ayant la périodicité du cristal :

$$\psi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r})e^{i\vec{k}\cdot\vec{r}} = \frac{1}{V}\sum_{\vec{G}}c_n(\vec{k}+\vec{G})e^{i(\vec{k}+\vec{G})\cdot\vec{r}}$$
(1.102)

avec c_n le coefficient de Fourier, et $u_{n,\vec{k}}(\vec{r})$ une fonction périodique possédant la périodicité du cristal, où n est l'index de la bande et \vec{k} un vecteur réciproque de la première zone de Brillouin. L'équation de Schrödinger mono-électronique devient :

$$\left[-\frac{1}{2}\nabla + V_{eff}(\vec{r})\right]\psi_i^{(k)}(\vec{r}) = \varepsilon_i^{(k)}\psi_i^{(k)}(\vec{r}) \qquad (1.103).$$

La densité de charge électronique, s'écrit comme une double sommation sur tous les états (n, \vec{k}) occupés et développés sur la base d'ondes planes \vec{G} .

$$\rho(\vec{r}) = \sum_{\vec{G},\vec{G}'} \sum_{n,\vec{k}} c_{n,\vec{k}+\vec{G}} c^*_{n,\vec{k}+\vec{G}')} e^{i(\vec{G}-\vec{G}').\vec{r}} \quad (1.104).$$

Pour de grandes valeurs de $|\vec{k} + \vec{G}|$, les coefficients de Fourier $c_{n,(\vec{k}+\vec{G})}$ deviennent faibles, il est alors possible de faire une sommation sur un nombre fini de vecteurs \vec{G} . Cette sommation est limitée à un ensemble de base des vecteurs de l'espace réciproque dans une sphère avec un rayon défini par l'énergie de coupure appelée "cutoff" E_{cut} :

$$\frac{\hbar^2 |\vec{k} + \vec{G}|^2}{2m} \le E_{cut} \qquad (1.105).$$

La qualité d'un calcul est liée à ce paramètre. Plus la valeur de l'énergie de coupure augmente, plus la précision des calculs augmente et les paramètres physiques convergent. Néanmoins, l'augmentation de E_{cut} s'accompagne souvent d'une augmentation du nombre d'ondes planes.

Echantillonnage de la zone de Brillouin

La première zone de Brillouin correspond à la maille primitive dans l'espace réciproque. Elle est réduite à une zone de Brillouin irréductible, en appliquant les opérations de symétrie. Celle-ci est ensuite échantillonnée par un certain nombre de points k. Plusieurs méthodes ont été proposées pour choisir ces points k. La méthode Monkhorst-Pack [72] a été utilisée dans les calculs des paramètres RMN présentés dans ce manuscrit de thèse. Dans cette méthode, un échantillonnage k1 × k2 × k3 dans les trois directions de l'espace de la zone de Brillouin, est effectué. La distance entre les points a été choisie inférieure à 0,04 Å⁻¹. En résumé, dans un calcul électronique en ondes planes, le nombre de k-points et l'énergie de coupure sont les paramètres les plus importants.

Approches pseudo-potentiel

Dans les matériaux solides, les propriétés physico-chimiques dépendent essentiellement des électrons de valence Les électrons de cœur localisés près du noyau, sont très peu influencés par l'environnement. Une première approximation consiste à considérer les électrons de cœur comme gelés. Cependant, cette approximation reste difficile à traiter sur une base d'ondes planes car les fonctions d'onde de valence oscillent rapidement dans la région occupée par les électrons de cœur.

Figure 1.29. Représentation schématique de la méthode des pseudopotentiels. V et Ψ sont respectivement le potentiel et la fonction d'onde réelle. Tandis que V_{pseudo} et Ψ_{pseudo} sont le pseudopotentiel et la pseudo-fonction-d'onde [73].

Dans l'approche pseudopotentiel, au delà d'un rayon de coupure r_c , le potentiel coulombien (dit tous électrons, AE) provenant du système {noyau + électrons}, est remplacé par un pseudopotentiel agissant sur un ensemble de pseudofonctions d'onde ({[noyau + électrons de cœur] + électrons de valence} ={"ion" + électrons de valence }), plutôt que sur les vraies fonctions d'onde de valence (Figure 1.29). Au-delà de r_c , le potentiel AE et le pseudopotentiel doivent être identiques [74]. Les pseudo-fonctions d'onde, solutions de l'équation de Schrödinger avec le pseudopotentiel, ne doivent pas avoir de nœuds radiaux dans la région du cœur et doivent être continues au rayon de coupure ainsi que leurs dérivées premières et secondes.

1.3.2 CALCULS PREMIERS PRINCIPES DES PARAMETRES RMN

1.3.2.1 L'approche DFT-PAW/GIPAW implémentée dans le code CASTEP

Dans la partie précédente, nous avons donné une brève description de quelques méthodes et approximations, permettant de déterminer le calcul de la structure électronique de systèmes périodiques. Grâce à ces méthodes, il est possible de calculer de nombreuses propriétés, par exemple les paramètres RMN relatifs aux interactions de déplacements chimique, quadripolaire, ou encore de couplage *J*. Dans cette section sont présentées les méthodes de calculs des paramètres RMN utilisées. Pour les paramètres liés aux interactions de déplacement chimique (noyau de spin I \geq 1/2), les tenseurs d'écran, σ , ont été calculés en utilisant l'approche GIPAW [14,15], implémentée dans le code NMR-CASTEP [52,53]. Dans le cas des interactions quadripolaires, les tenseurs de GCE, *V*, sont calculés en s'appuyant sur l'approche PAW [12,13] implémentée dans le même code.

Le tenseur d'écran est un paramètre qui dépend des états excités, tandis que le tenseur de GCE dépend uniquement de l'état fondamental du système, ce qui rend le calcul plus simple.

1.3.2.2 L'approche Projector Augmented Waves (PAW)

En 1990, Blöchl a introduit la méthode PAW [12,13], qui permet de reconstruire les fonctions d'onde AE à partir du calcul effectué avec les pseudopotentiels. L'idée de base de cette méthode est l'introduction d'un opérateur de transformation linéaire T dont l'action sur la pseudo-fonction d'onde $|\tilde{\psi}\rangle$, dite aussi fonction pseudo-potentiel, permet de reconstruire la fonction d'onde tous-électrons $|\psi\rangle$:

$$T|\tilde{\psi}\rangle = |\psi\rangle$$
 (1.106).

T est construit sur la base de fonctions d'ondes partielles $|\phi_{R,n}\rangle$ et $|\tilde{\phi}_{R,n}\rangle$, qui sont des fonctions radiales de moment angulaire *n*. Il est donné par :

$$T = 1 + \sum_{R,n} \left[|\phi_{R,n}\rangle - |\tilde{\phi}_{R,n}\rangle \right] \left\langle \beta_{R,n} \right| \qquad (1.107)$$

où $\langle \beta_{R,n} |$ sont des fonctions de projection locales.

Le pseudo-potentiel est construit à partir de la fonction d'onde tous-électrons. En d'autres termes elle correspond à la fonction d'onde de l'atome isolé et non de l'atome dans son environnement chimique.

La densité de charge totale issue de la méthode PAW peut s'exprimer sous la forme suivante :

$$\rho(r) = \rho_c(r) + \tilde{\rho}_v(r) + \rho_{\Omega}(r)$$
 (1.108)

où $\rho_c(r)$ est la densité de charge de cœur, $\tilde{\rho}_v(r)$ la pseudo-densité électronique de valence, et $\rho_{\Omega}(r)$ la correction qui provient de la reconstruction des fonctions d'ondes de valence dans la région du cœur.

En utilisant le potentiel tous-électrons obtenu par la méthode PAW, Profeta *et al.* [75] ont démontré l'expression du GCE local :

$$G_{ij}(r) = \frac{\partial E_i(r)}{\partial r_j} - \frac{1}{3}\delta_{ij}\sum_k \frac{\partial E_k(r)}{\partial r_k} \quad (1.109).$$

Le champ électrique local $E_i(r)$ peut être calculé à partir de la densité électronique $\rho(r)$ par :

$$E_i(r) = \int \frac{\rho(r)}{|r-r'|^3} (r_i - r'_i) \, d^3r \qquad (1.110).$$

On peut donc écrire le GCE sous la forme suivante :

$$G_{ij}(r) = \int \frac{\rho(r')}{|r-r'|^3} [\delta_{ij} - 3 \frac{(r_i - r'_i)(r_j - r'_j)}{|r-r'|^2}] d^3r' \qquad (1.111).$$

D'après les relations (2.36) et (2.39), le GCE est alors donné par l'expression suivante :

$$G_{ij}(r) = G_{ij}^{c}(r) + \tilde{G}_{ij}^{\nu}(r) + G_{ij}^{\Omega}(r) \qquad (1.112).$$

1.3.2.3 L'approche Gauge Including Projector Augmented Wave (GIPAW)

Densité électronique de courant et problème de jauge dans un système périodique

Quand un échantillon de matière condensée est placé dans un champ magnétique externe uniforme B_0 , des courants électroniques traversent tout le matériau. Dans le cas des matériaux isolants diamagnétiques, seul le mouvement orbital des électrons contribue à ce courant. La réponse des électrons au champ magnétique externe $B_0(r)$ peut être représentée par une densité électronique de courant induit j(r) qui est associée à un opérateur J(r) [76]. Le champ magnétique induit $B_{in}(r)$ est donnée par la loi de Biot-Savart :

$$B_{in}(r) = \frac{\mu_0}{4\pi} \int d^3 r' j(r') \frac{r-r'}{|r-r'|^3} \qquad (1.113).$$

Le tenseur d'écran est défini comme le rapport entre ce champ induit et le champ externe appliqué.

$$B_{in}(r) = -\sigma(r)B_{ext}$$
 (1.114).

Le calcul du tenseur d'écran consiste à calculer le courant électronique induit.

En général, les méthodes de calcul du tenseur d'écran sont des méthodes de perturbations. Comme les champs magnétiques induits sont faibles, on peut calculer le

courant induit dans le cadre de la théorie de perturbation. Le courant induit est donné par [76]:

$$j^{(1)}(\mathbf{r}') = 2\sum_{o} \left[\langle \psi_{o}^{(0)} | J^{P}(\mathbf{r}') | \psi_{o}^{(1)} \rangle + \langle \psi_{o}^{(1)} | J^{P}(\mathbf{r}') | \psi_{o}^{(1)} \rangle \right]$$

+2
$$\sum_{o} \langle \psi_{o}^{(0)} | J^{d}(\mathbf{r}') | \psi_{o}^{(1)} \rangle$$
(1.115)

où le facteur 2 rend compte pour la dégénérescence de spin et où l'opérateur de courant J(r') a été développé comme une somme d'un terme diamagnétique et d'un terme paramagnétique :

$$J(r') = J^{d}(r') + J^{p}(r') \quad (1.116)$$

avec $J^{d}(r') = \frac{e^{2}}{2m_{e}}A(r')|r' > < r'| \quad (1.117)$
et $J^{p}(r') = -\frac{e}{2m_{e}}p|r' > < r'||r' > < r'|p \quad (1.118)$

p|r' > < r'| + |r' > < r'|p est l'anticommutateur du moment p, et |r' > < r'| sont les opérateurs de projection. A(r') est le potentiel vecteur relié au champ magnétique B_0 par un rotationnel $B_0 = \nabla \wedge A(r')$ (1.119) où A(r') $= \frac{1}{2}B_0 \times (r' - r'_0)$ (1.120), avec r'_0 l'origine de jauge. En physique classique, la quantité de mouvement d'une particule chargée, plongée dans un champ magnétique uniforme, n'est pas déterminée seulement par son impulsion. Elle fait intervenir un potentiel vecteur A(r') relié au champ magnétique qui n'est pas défini de manière unique puisque la valeur du champ magnétique B_0 n'est pas modifié par la transformation :

$$A(r') \rightarrow A(r') + \nabla f \qquad (1.121)$$

où f une fonction quelconque. C'est le problème d'invariance de jauge. L'indécision sur la définition du potentiel vecteur correspond au choix de jauge.

Si le champ magnétique est invariant par n'importe quel choix de jauge, il doit en être de même pour n'importe quelle observable. Pour le calcul des tenseurs d'écran dans les systèmes périodiques, la méthode GIPAW, permet de rendre le calcul indépendant du choix de jauge.

Gauge Including Projector Augmented Waves

Il a été démontré que dans l'approche PAW, en présence d'un champ magnétique uniforme, les vecteurs propres ne sont pas invariants par translation.

En 2001, la méthode GIPAW a été proposée comme solution par Pickard et Mauri [14,15], pour calculer la réponse "tous-électrons" à un champ magnétique uniforme, en utilisant un opérateur de transformation T_B dépendant du champ magnétique B_0 . Cet opérateur s'écrit de la façon suivante :

$$\boldsymbol{T}_{\boldsymbol{B}} = 1 + \sum_{\boldsymbol{R},\boldsymbol{n}} e^{\frac{ie\boldsymbol{r}\boldsymbol{R}\times\boldsymbol{B}}{2h}} [|\tilde{\boldsymbol{\phi}}_{\boldsymbol{R},\boldsymbol{n}}\rangle - |\boldsymbol{\phi}_{\boldsymbol{R},\boldsymbol{n}}\rangle|] \langle \boldsymbol{\beta}_{\boldsymbol{R},\boldsymbol{n}}| e^{\frac{-ie\boldsymbol{r}\boldsymbol{R}\times\boldsymbol{B}}{2h}} \qquad (1.122)$$

Il permet de retrouver les fonctions d'ondes tous-électrons $|\psi\rangle$, à partir de la pseudo-fonction d'onde $|\tilde{\psi}\rangle$.

Dans le code NMR-CASTEP, la méthode GIPAW a été développée pour les pseudopotentiels dits de norme conservée (dans la région du cœur, la charge obtenue par les pseudofonctions est la même que celle donnée par les fonctions d'onde tous électrons) et pour les pseudopotentiels ultra-doux de Vanderbilt [77].

1.3.2.4 Optimisation de géométrie

L'optimisation de la géométrie des structures expérimentales (Experimental Structure, ES) est une procédure particulièrement nécessaire quand la structure déterminée par diffraction est peu précise (déterminée par DRX sur poudre ou quand la structure présente des atomes légers et lourds). L'algorithme de Broyden-Fletcher-Goldfarb-Shanno (BFGS) [78] a été utilisé pour relaxer les structures, c'est à dire minimiser les forces résiduelles agissant sur les atomes. Deux types d'optimisation ont été réalisées sur les structures cristallines étudiées : (i) l'optimisation des seules positions atomiques (Atomic Position Optimized – APO), (ii) la relaxation simultanée des positions atomiques et des paramètres de maille (Full Optimized – FO). Les paramètres RMN sont très sensibles à la moindre modification de la structure. Dans la plupart des cas, l'optimisation des structures (APO ou FO) permet d'obtenir un meilleur accord entre valeurs calculées et expérimentales des paramètres RMN.

Au cours de cette thèse, nous avons utilisé l'approximation GGA avec la fonctionnelle PBE au cours des optimisations DFT. Cette approximation a la particularité de surestimer les distances interatomiques et par conséquent les paramètres et le volume de la maille. Pour résoudre ce problème il est possible de revenir au volume de maille initiale, tout en conservant les positions atomiques de la structure FO.

Les optimisations de géométrie ont été réalisées en utilisant la méthode de Broyden-Fletcher-Goldfarb-Shanno (BFGS) [78] avec le code CASTEP [52,53] et la méthode de Hellmann-Feynman avec le code VASP [79].

1.3.2.5 Conventions

Le champ magnétique auquel est soumis le noyau peut s'écrire:

 $B_{eff} = B_0(1 - \sigma)$ (1.123), avec σ le tenseur d'écran.

La constante d'écran isotrope (σ_{iso}), l'anisotropie (σ_{csa}) et l'asymétrie du tenseur d'écran (η_{csa}) sont définies respectivement par:

$$\sigma_{iso}(ppm) = \frac{1}{3} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) \quad (1.124),$$

$$\sigma_{csa}(ppm) = \sigma_{zz} - \sigma_{iso} \quad (1.125) \text{ et},$$

$$\eta_{csa} = \frac{\sigma_{yy} - \sigma_{xx}}{\sigma_{csa}} \quad (1.126),$$

avec les valeurs propres du tenseur d'écran définies dans la séquence:

$$|\sigma_{zz} - \sigma_{iso}| \ge |\sigma_{xx} - \sigma_{iso}| \ge |\sigma_{yy} - \sigma_{iso}| \quad (1.127).$$

On notera que dans le code NMR-CASTEP, l'anisotropie du tenseur d'écran est définie par :

$$\sigma_{aniso} = \sigma_{zz} - \frac{\sigma_{xx} + \sigma_{yy}}{2} = \frac{3}{2}\sigma_{csa} \quad (1.128).$$

Le tenseur de déplacement chimique peut également être décrit par trois paramètres, le déplacement chimique isotrope, δ_{iso} , l'anisotropie de déplacement chimique, δ_{csa} et le paramètre d'asymétrie η_{csa} , qui sont définis respectivement par :

$$\delta_{iso}(ppm) = \frac{1}{3} \left(\delta_{xx} + \delta_{yy} + \delta_{zz} \right) \quad (1.129),$$

$$\delta_{csa}(ppm) = \delta_{zz} - \delta_{iso} \quad (1.130) \text{ et},$$

$$\eta_{csa} = \frac{\delta_{yy} - \delta_{xx}}{\delta_{csa}} \quad (1.131),$$

avec les valeurs propres du tenseur d'écran définies dans la séquence:

$$|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}| \qquad (1.132)$$

Le déplacement chimique isotrope s'exprime ainsi en fonction du tenseur d'écran isotrope:

$$\delta_{iso} = -[\sigma_{iso} - \sigma_{ref}] \qquad (1.133).$$

Dans le cas de noyaux de spin nucléaire supérieur à $\frac{1}{2}$ (noyaux quadripolaires), la fréquence quadrupolaire v_Q , la constante de couplage quadripolaire C_Q et le paramètre d'asymétrie η_Q sont donnés par les équations suivantes :

$$\begin{split} \nu_Q &= 3 \, C_Q / [2I(I-1)] \quad (1.134) \text{ avec } C_Q &= e Q V_{zz} / h \quad (1.135), \\ &\text{et } \eta_Q = (V_{xx} - V_{yy}) / V_{zz} \quad (1.136), \end{split}$$

où les V_{ii} sont les valeurs propres du tenseur de GCE avec la convention:

$$|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$$
 (1.137).

REFERENCES

[1] E. R. Andrew, A. Bradbury, R. G. Eades, Nature 183 (1959) 1802–1803.

[2] E. R. Andrew. Philos. Trans. R. Soc. A 299 (1981) 505–520.

[3] I. J. Lowe, Phys. Rev. Lett. 2 (1959) 285–287.

[4] E. L. Hahn, Phys. Rev. 80 (1950) 580–594.

[5] S. R. Hartmann, E. L. Hahn, Phys. Rev. 128 (1962) 2024–2053.

[6] H. Y. Carr, E. M. Purcell, Phys. Rev. 94 (1954) 630–638.

[7] S. Meiboom, D. Gill, Rev. Sci. Instrum. 29 (1958) 688–691.

[8] L. A. O'Dell, R. W. Schurko, J. Am. Chem. Soc. 131 (2009) 6658–6659.

[9] A. Szabo, N. S. Otslund, Modern Quantum Chemistry : Introduction to Advanced Electronic Structure Theory, Dover Edition, Mineola, USA, NY, 1996.

[10] L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 13 (1927) 542–548.

[11] E. Fermi, Rend. Accad. Naz. Lincei. 6 (1927) 602–607.

[12] P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.

[13] H.M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter 57 (1998) 14690– 14697.

[14] C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[15] J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B 76 (2007) 024401.

[16] https://www.radiologieparisouest.com/irm-paris/

[17] M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, Wiley, Chichester, 2001.

[18] P. Pyykko, Mol. Phys. 106 (2008) 1965–1974.

[19] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 73 (2001) 1795–1818.

[20] J. W. Emsley, J. Feeney, L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, 1965.

[21] J.-M. Nuzillard, Introduction à la Résonance Magnétique Nucléaire des Liquides, Institut de chimie moléculaire de Reims, 2012.

[22] S. Akoka, Une introduction à la Résonance Magnétique Nucléaire, chapitre 5.

[23] A. Abragam, The principles of nuclear magnetism. Clarendon Press, Oxford, 1961.

[24] M. J. Duer, Introduction to Solid-State NMR Spectroscopy, Blackwell, Oxford, 2004.

[25] K. J. D. Mackenzie, M. E. Smith, Multinuclear solid-state NMR of Inorganic Materials, Elsevier, oxford, 2002.

[26] M. Mehring, Principles of High Resolution NMR in Solids. Springer, Berlin, 1983.

[27] E. Barbier, Traitement du signal en RMN, Master 2 : Physique pour l'instrumentation, Grenoble, 2004.

[28] H. J. Reich, M. Jautelat, M. T. Messe, F. J. Weigret, J. D. Roberts, J. Am. Chem. Soc. 91 (1969) 7445–7454.

[29] R. R. Ernst, G. Bodenhausen, A. Wokaun, Principales of Nuclear Magnetic Resonance in one and two dimensions, Clarendon, Oxford, 1987.

[30] A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, R. G. Griffin, J. Chem. Phys. 103 (1995) 6951–6958.

[31] B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson. 142 (2000) 97–101.

[32] A. Detken, E. H. Hardy, M. Ernst, B. H. Meier, Chem. Phys. Lett. 356 (2002) 298-304.

[33] J. Schaefer, E. O. Stejskal, J. Am. Chem. Soc. 98 (1976) 1031–1032.

[34] E. O. Stejskal, J. Schaefer, J. S. Waugh, J. Magn. Reson. 28 (1977) 105–112.

[35] O. B. Peersen, X. Wu, I. Kustanovich, S. O. Smith, J. Magn. Reson., Ser. A 104 (1993) 334–339.

[36] G. Metz, X. Wu. L, S. O. Smith, J. Magn. Reson., Ser. A 110 (1994) 219–227.

[37] G. Metz, M. Ziliox, S. O. Smith. Solid State Nucl. Magn. Reson. 7 (1996) 155–160.

[38] O. B. Peersen, X. Wu, I. Kustanovich, S. O. Smith, J. Magn. Reson A. 104 (1993) 334–339.

[39] J. Skibsted, N. C. Nielsen, H. J. Bildsøe, H. J. Jakobsen, J. Magn. Reson. 95 (1991) 88–117.

[40] C. Jäger, B. Blümich, Eds, Solid State NMR II, Springer-Verlag, Berlin, 1994, 133.

[41] I. Solomon, Phys. Rev. 110 (1958) 61–65.

[42] I. D. Weisman, L. H. Brennett, Phys. Rev. 181 (1969) 1341–1350.

[43] J. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic, T. P. Higgs, Chem. Phys. Lett. 42 (1976) 390–394.

[44] M. Bloom, E. Sternin, Biochemistry 26 (1987) 2101–2105.

[45] J. T. Cheng, P. D. Ellis, J. Phys. Chem. 93 (1989) 2549–2555.

[46] H. Hamaed, E. Ye, K. Udachin, R. W. Schurko, J. Phys. Chem. B 114 (2010) 6014–6022.

[47] H. Hamaed, M. W. Laschuk, V. V. Terskikh, R. W. Schurko, J. Am. Chem. Soc. 131 (2009) 8271–8279.

[48] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70–76.

[49] G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. M. D. Coey, J.-P. Rebouillat, A. Liénard, Phys. Rev. B 23 (1981) 2513–2530.

[50] G. Le Caër, B. Bureau, D. Massiot, J. Phys. : Condens. Matter. 22 (2010) 2717–2744.

[51] D. Massiot, J. Hiet, N. Pellerin, F. Fayon, M. Deschamps, S. Steuernagel, P. J. Grandinetti, J. Magn. Reson. 181 (2006) 310-315.

[52] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 14 (2002) 2717–2744.

[53] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 220 (2005) 567–570.

[54] T. Charpentier, Solid State Nucl. Magn. Reson. 40 (2011) 1–20.

[55] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 112 (2012) 5733–5779.

[56] C. Martineau, Solid State Nucl. Magn. Reson. 63-64 (2014) 1-12.

[57] S. Ashbrook, D. McKay, Chem. Commun. 52 (2016) 7186–7204.

[58] A. Zheng, S.-B. Liu, F. Deng, J. Phys. Chem. C 113 (2009) 15018–15023.

[59] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[60] C. Martineau, F. Fayon, M. Suchomel, M. Allix, D. Massiot, F. Taulelle, Inorg. Chem. 50 (2011) 2644–2653.

[61] M. Biswal, M. Body, C. Legein, G. Corbel, A. Sadoc, F. Boucher, J. Phys. Chem. C 116 (2012) 11682–11693.

[62] A.-L. Rollet, M. Allix, E. Veron, M. Deschamps, V. Montouillout, M. R. Suchomel, E. Suard, M. Barre, M. Ocaña, A. Sadoc, F. Boucher, C. Bessada, D. Massiot, F. Fayon, Inorg. Chem. 51 (2012) 2272–2282.

[63] A. A. Arnold, V. Terskikh, Q. Y. Li, R. Naccache, I. Marcotte, J. A. Capobianco, J. Phys. Chem. C 117 (2013) 25733–25741.

[64] C. Martineau, C. Legein, M. Body, O. Péron, B. Boulard, F. Fayon, J. Solid State Chem. 199 (2013) 326–333.

[65] M. Biswal, M. Body, C. Legein, A. Sadoc, F. Boucher, J. Solid State Chem. 207 (2013) 208–217.

[66] C. Martineau, M. Allix, M. R. Suchomel, F. Porcher, F. Vivet, C. Legein, M. Body, D. Massiot, F. Taulelle, F. Fayon, *Dalton Trans.* 45 (2016) 15565–15574.

[67] C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618–622.

[68] H. D. Meyer, U. Manthe, L. S. Cederbaum, Chem. Phys. Lett. 165 (1990) 73–78.

[69] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864-871.

[70] W. Kohn, L. J. Sham, Phys. Rev. A 140 (1965) 1133–1138.

[71] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

[72]H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

[73] http://www.wikiwand.com/fr/Pseudo-potentiel.

[74] N. Troullier, J. Martins, Phys. Rev. B 43 (1991) 1993–2006.

[75] M. Profeta, M. Benoit, F. Mauri, C. J. Pickard, J. Am. Chem. Soc. 126 (2004) 12628–12635.

[76] J. R. Yates, C. J. Pickard, Computations of Magnetic Resonance Parameters for Crystalline

Systems: Principles, Encyclopedia of Magnetic Resonance, Wiley, 2009.

[77] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892–7895.

[78] B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233-240.

[79] G. Kresse, J. Furthmüller, Phys. Rev. B: Condens. Matter 54 (1996) 11169–11186.

Chapitre II

Etude de fluorures ordonnés :

RMN du solide de ¹⁹F, ⁸⁹Y et ³⁹K et calculs DFT des paramètres RMN de phases du système binaire KF-YF₃
2.1 Introduction

La RMN du solide est un outil précieux pour la caractérisation de la structure, à l'échelle locale, de matériaux. Cependant, certains spectres RMN de solides restent difficiles à analyser, particulièrement dans le cas de structures complexes. L'attribution des signaux RMN à des sites cristallographiques distincts est alors délicate voire impossible. Le recours aux calculs premiers principes adaptés aux matériaux solides (*i. e.* utilisant les conditions aux limites périodiques), en particulier les approches PAW [1,2] et GIPAW [3], peut permettre de résoudre cette difficulté. Ces calculs permettent également d'accéder à des paramètres difficiles à déterminer expérimentalement (anisotropies, orientation des tenseurs) mais pouvant avoir un effet significatif sur les spectres [4-6].

Dans ce chapitre est reportée une étude de cinq composés, γ-K₃YF₆, K₂YF₅, KYF₄, β-KY₂F₇ et α -KY₃F₁₀, du système binaire KF-YF₃. Une première étude par RMN de ¹⁹F avait débutée pour certains de ces composés, suite à des discussions au milieu des années 2000 avec C. Bessada du CEMHTI, et cette thèse a été l'occasion de la compléter et de l'enrichir. S'appuyer sur des composés de systèmes binaires (NaF-AlF₃, CaF₂-AlF₃, BaF₂-AlF₃) ou ternaire (NaF-CaF₂-AlF₃), présentant des environnements variés des noyaux étudiés (¹⁹F, ²³Na, ²⁷AI), pour éprouver les méthodes de modélisation des paramètres RMN peut être qualifié de tradition au Mans [7-13]se situe dans la continuité du projet RMN3MPL [14-18]. Elle marque néanmoins une nette évolution de par la complexité des structures étudiées (nombre de sites cristallographiques, polyèdres de coordination) et le caractère multinucléaire (¹⁹F, ³⁹K et ⁸⁹Y) de l'étude RMN. Les raies RMN ont pu être attribuées à des sites cristallographiques distincts, par comparaison entre paramètres RMN expérimentaux et calculés pour les sites de même multiplicité, excepté dans trois cas. Pour deux d'entre eux, un nombre élevé de sites du noyau étudié se conjugue à une plage de déplacement chimique étroite et donc un spectre non résolu. Enfin, le spectre RMN de ³⁹K de β -KY₂F₇, comptant six sites de potassium, n'a pu être reconstruit que parce que nous disposions des paramètres RMN calculés.

Le "draft" de la publication tirée de ce travail est reporté en 2.2. Celle-ci devrait être soumise à Phys. Chem. Chem. Phys. au plus tard juste après la soutenance.

2.2 RMN du solide de ¹⁹F, ⁸⁹Y et ³⁹K et calculs DFT des paramètres RMN de phases du système binaire KF-YF₃

Journal Name

ARTICLE

crystalline compounds from the KF-YF₃ binary system

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Multinuclear (¹⁹F, ³⁹K and ⁸⁹Y) solid state NMR and DFT studies of

Jamal Dabachi,^a Monique Body,^{a,*} Jens Dittmer,^a Franck Fayon,^b and Christophe Legein^a

A combination of multinuclear solid state NMR spectroscopy and first principles DFT calculations has been applied to crystalline compounds from the KF-YF₃ binary system, γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇ and α -KY₃F₁₀, which present various YF_n and KFm polyhedra. First, the structure of K₂YF₅ has been refined by Rietveld method in the Pnma space group. For each studied compound, the atomic positions have been DFT optimized, keeping the experimental cell parameters. The optimization effects are more marked for structures determined from powder XRD, *i. e.* for K₂YF₅ and β-KY₂F₇. ¹⁹F, ⁸⁹Y and ³⁹K NMR spectra have been acquired and modelled to determine the experimental NMR parameters whereas theoretical NMR parameters have been calculated from first principles DFT method. Unambiguous assignments of NMR lines to crystallographic sites allow us to establish linear correlations between experimental δ_{iso} and calculated σ_{iso} for the three nuclei. For KYF₄ and β -KY₂F₇ whose structures present twenty-four and nineteen F sites respectively, the ¹⁹F linear correlation has then been used to predict the ¹⁹F δ_{iso} values and the corresponding theoretical ¹⁹F NMR spectra are in good agreement with experimental ones. For 89 Y, as expected, the δ_{iso} values decrease when the Y coordination number increases. Moreover, the three kinds of YF7 polyhedra encountered in the studied structures are discriminated by their distinct ⁸⁹Y δ_{iso} ranges. For KYF₄, whose structure presents six K sites, a theoretical ³⁹K NMR spectrum has been built, using the ³⁹K calculated NMR parameters, which is close to the experimental static spectrum.

Introduction

High resolution solid state NMR (high field, fast magic-angle spinning (MAS), pulse sequences...) opens the possibility to study complex materials, whereas first-principles calculations of NMR parameters (shielding and electric field gradient (EFG) tensors with their orientation in the cell) can be now applied to periodic compounds. Notably, shielding tensors can now be calculated using the gauge included projector augmented waves (GIPAW)^{1,2} method. NMR parameters are accurately calculated using the CASTEP^{3,4} code.^{5,6} By providing a set of NMR parameter values for each of the different contributions, ab initio calculations can thus help to interpret broad NMR spectra exhibited by complex materials, to assign NMR lines to structural environments when possible, and even to choose between several structural models in the crystallography-NMR approach.⁷⁻¹⁰ While calculated quadrupolar parameters, Co and η_{Q} , are easily deduced from computed EFG tensor, calculated isotropic shieldings, σ_{iso} , have to be converted into "calculated" isotropic chemical shifts, $\delta_{\text{iso}},$ using the following relationship $\delta_{iso} = \sigma_{ref} - \sigma_{iso}$. Several approaches are possible to determine this relationship. For ¹⁹F and ⁸⁹Y, linear correlations between calculated σ_{iso} and experimental δ_{iso} values have been established using two different ways: either the slope is kept to the theoretical value of minus one and only the σ_{ref} value is determined $^{11\text{-}15}$ or both the slope and σ_{ref} values are refined simultaneously.¹⁶⁻²³ For ³⁹K, the slope is kept to the theoretical value of minus one, however the σ_{ref} value corresponds to the DFT calculated isotropic shielding values for one²⁴⁻²⁶ or several²⁷ given reference compounds.

Rare-earth fluorides present low energy phonons and high ionicity. When doped with rare earth ions, they offer excellent transparency in the range from IR to far UV.^{28,29} In particular, the five crystalline compounds (K_3YF_6 , K_2YF_5 , KYF_4 , KY_2F_7 and KY₃F₁₀) from the KF-YF₃ binary system^{30,31} doped with rare earth ions present intense up- and down-conversion luminescence and are still subject to advanced research over a wide range of applications. For example, K₃YF₆:Er³⁺ glassceramics could be sensitive optical thermal sensors³² whereas K₂YF₅ crystals are promising for green up-conversion lasers³³ when doped with Er³⁺, for dosimetry applications³⁴ when codoped with Tb³⁺ and Sm³⁺, or for improvement of photocatalytic semiconductor electrodes used in watersplitting processes when co-doped with Yb³⁺ and Er³⁺.³⁵ Er³⁺ or Tm^{3+} doped KYF₄ crystals or Ce³⁺/Tb³⁺/Eu³⁺ triply-doped KYF₄-SiO₂ nano-glass-ceramics are promising luminescent hosts for

^{a.} Université Bretagne Loire, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

^{b.} CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France.

^{*} Corresponding author: monique.body@univ-lemans.fr.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

UV-VIS and white light generation^{36,37} while Tb³⁺/Yb³⁺ codoped KYF₄ crystals can be efficient quantum-cutting phosphors for solar cell applications³⁸ and Yb³⁺ and Er³⁺ codoped KYF₄ nanocrystals display up-conversion emission in transparent colloidal solutions.³⁹ Similarly, water-dispersible Yb^{3+}/Er^{3+} co-doped KY_3F_{10} nanocrystals present potential use in biology.⁴⁰ KY₃F₁₀ crystals are well-known laser materials when doped with rare earth elements $^{41-43}$ whereas KY_3F_{10} : Ho³⁺ thin films and Tm^{3+}/Ce^{3+} co-doped KY_3F_{10} crystals are promising for potential application in display devices.^{44,45} KY_3F_{10} nanoparticles are an especially promising material for near IR imaging when doped with Nd³⁺⁴⁶ or for color tunable upconversion luminescence when Er³⁺/Yb³⁺ co-doped.⁴⁷ They are also excellent candidates for nanoscale thermometry, having a strong temperature-dependent fluorescence when doped with Er^{3+} and Yb^{3+} ions, which opens new possibilities in biology, chemistry, microfluidics, and micro-electronics.⁴⁸

Interestingly, various environments are encountered for F, Y and K atoms in the crystalline compounds of the KF-YF₃ binary system. The structure of KF structure presents regular KF₆ octahedra.⁴⁹ K₃YF₆ is polymorphic, depending on both the temperature and pression.^{30,31,50} The room temperature structure of K_3YF_6 (noted IV, γ , or β depending on the authors) is a distorted cryolite structure, with distorted YF₆ and KF₆ octahedra and KF₇ monocaped prisms.⁵¹ On the opposite, the high temperature phase, α -K₃YF₆, exhibits regular YF₆ and KF₆ octahedra but distorted KF_{12} cuboctahedra.⁵² K_2YF_5 structure presents YF₇ pentagonal bipyramids and KF₈ polyhedra.⁵³ In KYF₄ structure, chains of YF₇ pentagonal bipyramids alternate with chains of distorted ${\rm KF}_8$ cubes. $^{\rm 54,55}$ ${\rm KY}_2{\rm F}_7$ is a dimorphic compound.⁵⁶ The high temperature structure, α -KY₂F₇, is isotypic with β -KEr₂F₇ and presents distorted YF₈ cube or antiprisms and KF₉ and KF₁₁ polyhedra⁵⁷ whereas the structure of the room temperature phase β -KY₂F₇, also derivative from fluorite structure, presents YF_8 polyhedra as in the α -KY₂F₇ phase but different KF₅ and KF₁₀ polyhedra.⁵⁸ Two polymorphs have been identified for $KY_3\mathsf{F}_{10}$ compound, the room temperature phase hereafter called $\alpha\text{-}KY_3F_{10}$ and a high pressure one.⁵⁹ Both are fluorite-related structures, with edgeconnected YF₈ square antiprisms and KF₄ tetrahedra.^{59,60} Lastly, the structure of YF₃ is built of YF₉ polyhedra.⁶¹

Another interesting point with this binary system is that all nuclei are NMR sensitive. Various cationic and anionic environments are encountered in these compounds and ¹⁹F and ⁸⁹Y nuclei are well known to have wide chemical shift ranges. Moreover, they offer the challenging possibility of ³⁹K NMR study. Although some ¹⁹F and ⁸⁹Y NMR spectra have been previously published, ^{18,62-66} to our knowledge, neither ³⁹K NMR spectra nor DFT calculations of NMR parameters were reported for these compounds.

In this paper, we report the refinement of K_2YF_5 structure obtained by Rietveld method and the structures of γ - K_3YF_6 , K_2YF_5 , KYF_4 , β - KY_2F_7 and α - KY_3F_{10} phases are shortly described. Then atomic positions of the studied phases are optimized using CASTEP code, leading to atomic position optimized (APO) structures. Comparison of experimental (ES) and APO structures points out the effects of DFT optimization, and APO structures are retained in the following. In the second part, the ¹⁹F, ⁸⁹Y and ³⁹K NMR spectra are presented. For the three nuclei, experimental NMR parameters issued from spectrum reconstructions are then compared to calculated ones. NMR data for KF and YF₃ are included and 19 F δ_{iso} and σ_{iso} values are taken from Sadoc et al. paper.²¹ When unambiguous, NMR lines have been assigned to crystallographic sites, leading to the establishment of linear correlations between δ_{iso} and σ_{iso} for the three nuclei. The ¹⁹F linear correlation was then used to model theoretical ¹⁹F NMR spectra for KYF₄ and β -KY₂F₇ which present twenty-four and nineteen F sites respectively. For ⁸⁹Y, the δ_{iso} values decrease when the Y coordination number increases. Moreover, for YF7 polyhedra, the three types encountered in the binary system (monocaped prisms in K₂YF₅; pentagonal bipyramids types I and II in KYF₄) are also discriminated from their 89 Y δ_{iso} values. Finally, for 39 K, a theoretical ³⁹K NMR spectrum for KYF₄ which presents six K sites has been modelled, using the calculated NMR parameters.

Experimental section

Sample preparation

The starting materials, KF and YF₃, are moisture sensitive, thus all operations of weighing, mixing and grinding are done in a dry glove box. The mixtures were then dried under secondary vacuum at 150 °C. Crystalline powders of the studied compounds can be prepared by heating up stoichiometric mixtures of KF and YF₃ in sealed platinum tubes. Heating and cooling rates of 5°C / min were used. Details on synthesis conditions are gathered in Table 1. The final products can be stored in air except γ -K₃YF₆ which is highly hygroscopic and must be kept in a dry glove box. The resulting products, lightly sintered, were milled again (in a glove box for γ -K₃YF₆) before characterizations.

Table 1. Compound, molar ratio of KF and YF_3, Synthesis conditions and PDF File number.

Phases	Molar ratio of	Synthesis conditions	PDF ^{°/} File
	KF and YF_3	(temperature, duration)	
γ -K ₃ YF ₆	3:1	700°C, 100 h⁵⁰	04-013-6231
K_2YF_5	2:1	500°C, 7 days	04-005-6012
KYF ₄	1:1	650°C, 2 days	04-020-0178
β -KY ₂ F ₇	1:2	700°C, 80 h	04-016-6941
α -KY ₃ F ₁₀	1:3	760°C, 4 days	04-010-9834

X-Ray Diffraction (XRD)

Powder XRD patterns of the synthesized phases were recorded under air with a PANalytical X'pert PRO diffractometer equipped with a X'Celerator detector using a monochromatic CuK α radiation (λ = 1.5406 Å). They were collected over a 2 θ range of 10-100°, with a 0.0167° step size at room temperature. For each sample, the collecting time was about 15 min for the identification of synthesized phases.

For K_2YF_5 , a high resolution powder XRD pattern was recorded in the 2 θ range of 15° - 120° with a 0.0167° step size for a total collecting time of about 5 hours. The structural refinement was carried out by the Rietveld method,⁶⁸ using the FullProf program⁶⁹ (see ESI). Further details on the experimental crystal structure may be obtained as ESI⁺ and from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247 808666; E-mail: <u>crysdata@fiz-karlsruhe.de</u>) on quoting the depository number CSD-XXX.

Nuclear Magnetic Resonance (NMR)

 $^{19}{\rm F}$ MAS NMR. $^{19}{\rm F}$ (/ = 1/2) solid state MAS NMR spectra were acquired at room temperature on a Bruker Avance III WB 300 MHz (7 T, ¹⁹F Larmor frequency of 282.4 MHz) and a Bruker Avance III WB 750 MHz (17.6 T, ¹⁹F Larmor frequency of 705.4 MHz). ¹⁹F MAS Hahn echo NMR spectra were acquired on the 300 MHz spectrometer using a 1.3 mm ultrafast MAS probe, except the γ -K₃YF₆ one recorded on a 2.5 mm MAS probe. 90° pulse lengths were 1.55 µs or 1.25 µs (corresponding to a nutation frequency ω_1 of $2\pi \times 161$ or 200 kHz). For $\gamma\text{-}K_3YF_6,$ the 90° pulse length was 2.20 μs (corresponding to a nutation frequency ω_1 of 2π \times 114 kHz). 128 transients were accumulated. ^{19}F MAS NMR spectra of $\gamma\text{-}K_3YF_6,\,\beta\text{-}KY_2F_7$ and $\alpha\text{-}$ KY₃F₁₀ were also recorded on the 750 MHz spectrometer using a 1.3 mm MAS probe, a pulse of 0.21 μs (corresponding to a flip angle of 10° and to a nutation frequency of $2\pi \times 132$ kHz), and recycle delays of 20 s, 20 s and 60 s respectively. 8 to 16 transients were accumulated. All ¹⁹F spectra are referenced to CFCl₃.

⁸⁹Y MAS NMR. ⁸⁹Y (*l* = 1/2) solid-state NMR measurements have been performed on a Bruker AVANCE III WB 300 MHz (7 T, ⁸⁹Y Larmor frequency of 14.0 MHz) NMR spectrometer, using a Bruker 7 mm low-γ dual channel MAS probe. ¹⁹F–⁸⁹Y CP MAS NMR experiments were acquired at spinning frequency of 3 kHz using a variable-amplitude cross-polarization (VACP)^{70,71} pulse sequence with a two-pulse phase modulation (TPPM)⁷² ¹⁹F decoupling during acquisition. ¹⁹F 90° pulse lengths of 3.88 µs ($\omega_1 = 2\pi \times 64$ kHz) were applied, with contact times of 8 ms, recycle delays of 40 s and acquisition times of 8 ms. A ¹⁹F decoupling field of ~61 kHz was applied. 8, 1536, 4480, 19840, 1152 and 9216 transients were accumulated for YF₃, KY₃F₁₀, β-KY₂F₇, KYF₄, K₂YF₅ and γ-K₃YF₆, respectively. Chemical shifts are given relative to 1M YCl₃ and were measured using YF₃ as a secondary reference (-107 ppm).⁶⁴

³⁹K MAS NMR. ³⁹K (I = 3/2) solid-state NMR experiments were performed on a Bruker AVANCE III WB 750 MHz operating at a magnetic field of 17.6 T, corresponding to a ³⁹K Larmor frequency of 35.0 MHz. All experiments were carried out using Bruker 4 mm low-γ probehead.

For α -KY₃F₁₀, ³⁹K MAS spectra were recorded at spinning frequency of 10 kHz, with a central-transition selective pulse of 10 μ s and a recycle delay of 300 s. 16 transients were accumulated.

For γ -K₃YF₆, K₂YF₅ and β -KY₂F₇, ³⁹K MAS spectra were recorded at spinning frequency of 10 kHz, using the QCPMG⁷³ sequence. The central-transition selective 90° pulse was 10 µs. 20 Meiboom-Gill (MG) loops were applied for γ -K₃YF₆, and 15 for K₂YF₅ and β -KY₂F₇. Recycle delays were set to 40 s for γ -K₃YF₆ and β -KY₂F₇ and 60 s for K₂YF₅. 448, 256 and 1216 transients were accumulated for γ -K₃YF₆, K₂YF₅ and β -KY₂F₇, respectively. For KYF₄, a ³⁹K static NMR spectrum was obtained using the WURST-QCPMG sequence⁷⁴ with ¹⁹F decoupling. The number of MG loops was set to 100. 3000 scans were accumulated with a recycle delay of 40 s. ¹⁹F SPINAL-64 decoupling was employed with 165° pulse lengths of 8.5 µs (rf field of 54 kHz). 50 µs WURST pulses were used with a 400 kHz sweep at a sweep rate of 35.4 MHz.ms⁻¹. ³⁹K chemical shift values are given relative to 1M KCl solution.

All spectra were fitted with the DMFIT⁷⁵ software.

Ab initio calculations

Calculations of the ¹⁹F, ⁸⁹Y and ³⁹K chemical shielding (CS) and ³⁹K EFG tensors were performed with the CASTEP code,^{3,4} using the GIPAW^{1,2} and the Projector Augmented Waves (PAW)⁷⁶ approaches, respectively. The Perdew-Burke-Ernzerhof (PBE) functional⁷⁷ was employed in the generalized gradient approximation (GGA) for the exchange correlation energy whereas ultrasoft pseudopotentials were used to describe core-valence interactions.²

The wave functions were expanded on a plane-wave basis set with a kinetic energy cutoff of 700 eV. The total energy was converged up to change below 2 x 10⁻⁶ eV. The Brillouin zone was sampled using a Monkhorst-Pack grid spacing of 0.04 Å⁻¹ (corresponding to a k-point mesh of 5 × 5 × 5 for KF, 4 × 4 × 3 for γ -K₃YF₆, 3 × 4 × 4 for K₂YF₅, 3 × 3 × 3 for KYF₄ and KY₃F₁₀, 3 × 4 × 3 for β -KY₂F₇ and 4 x 4 x 6 for YF₃). NMR parameters were calculated using "on-the-fly" ultrasoft pseudopotentials provided in CASTEP. For ¹⁹F, a core radius of 1.4 Å was used with 2s and 2p valence orbitals; for ³⁹K, a core radius of 1.8 Å was used with 3s, 3p and 4s valence orbitals and for ⁸⁹Y, a core radius of 2.0 Å was used with 4s, 4p, 5s and 4d valence orbitals.

Computations of the NMR parameters were performed for experimental (ES, from XRD) and optimized (APO) structures. APO structures were obtained by minimizing the residual forces (|F|max below 10 meV.Å⁻¹) for all atoms, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method⁷⁸ and keeping symmetry constraints and experimental cell parameters.

Conventions. The isotropic chemical shielding value is defined as $\sigma_{iso} = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3$, σ_{ii} being the principal components of the shielding tensor defined in the sequence $|\sigma_{zz} - \sigma_{iso}| \ge |\sigma_{xx} - \sigma_{iso}| \ge |\sigma_{yy} - \sigma_{iso}|$. The chemical shielding anisotropy σ_{csa} and the asymmetry parameter η_{csa} are defined as $\sigma_{csa} = \sigma_{zz} - \sigma_{iso}$ and $\eta_{csa} = |\sigma_{yy} - \sigma_{xx}|/\sigma_{csa}$. The isotropic chemical shift is defined as $\delta_{iso} \approx -(\sigma_{iso} - \sigma_{ref})$. The chemical shift tensor is described by three parameters, δ_{iso} , the chemical shift anisotropy $\delta_{csa'}$ and the asymmetry parameter, $\eta_{cs'}$ defined as $\delta_{iso} = (\delta_{xx} + \delta_{yy} + \delta_{zz})/3$, $\delta_{csa} = \delta_{zz} - \delta_{iso}$, and $\eta_{cs} = |\delta_{yy} - \delta_{xx}|/\delta_{csa}$, with the principal components defined in the sequence $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$.

The quadrupolar coupling constant C_Q and the asymmetry parameter η_Q are defined as $C_Q = eQV_{zz}/h$ and $\eta_Q = (V_{xx} - V_{yy})/V_{zz}$, V_{ii} being the principal components of the EFG tensor

ARTICLE

Journal Name

Fig. 1. Views of (a) γ-K₃YF₆, (b) K₂YF₅, (c) KYF₄, (d) β-KY₂F₇ and (e) α-KY₃F₁₀ structures. The YF_n and KF_n polyhedra are in turquoise and grey, respectively.

defined in the sequence $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$. The quadrupolar moment Q of ³⁹K is equal to 58.5 mb.⁷⁹

The relative orientation of the chemical shift tensor in the EFG principal axis frame is described by the Euler angles (α , β , γ).

Results and discussion

Structures

KF adopts the NaCl structure type and each K atom is surrounded by six F atoms forming a regular KF₆ octahedron.⁴⁹ γ -K₃YF₆ is a distorted cryolite structure, having distorted YF₆ and K1F₆ octahedra connected together by equatorial F1 and F2 fluorine atoms in the (a, b) planes to form sheets and by apical F3 along the c direction (**Fig. 1**a).²⁸ Moreover, each YF₆ octahedron is surrounded by eight K2 atoms forming a slightly distorted cube. The K2F₇ monocaped prisms are connected together by edges and corners and form corrugated sheets connected by corners.

Whereas the structure of K_5YF_5 was initially determined in the Pna2₁ (33) space group,⁸⁰ a structural refinement on powder XRD was later achieved in the Pnma (62) space group.⁵³ This space group was confirmed by the Y site symmetry determined in an EPR study.⁸¹ Since this structure presents inconsistent M-F bond lengths (see ESI), we have then refined it. Details can be found in ESI (Fig. S1 and S2, and Table S1). In this structure, YF₇ monocaped octahedra share opposite F2-F2 edges and form infinite chains along the b axis whereas KF₈ polyhedra are connected by faces along the *b* and *c* directions respectively, forming corrugated sheets in the (*b*, *c*) plane. These sheets are

linked together in the *a* direction by shared F1-F1 edges forming distorted hexagonal circles in the (*a*, *b*) plane (**Fig. 1**b). KYF₄ structure is built up from two kinds of YF₇ pentagonal bipyramids (Y1, Y3 and Y5: type I with YF₇ polyhedra more distorted than type II (Y2, Y4 and Y6)) and distorted KF₈ cubes. As shown in **Fig. 1**c, each of type I YF₇ polyhedron shares one of its equatorial edges with a type II YF₇ polyhedron to form Y₂F₁₂ dimers. These dimers are connected by opposite equatorial corners to form chains. These chains are also connected to chains of edge-shared distorted KF₈ cubes.^{54,55}

 β -KY₂F₇ structure is built up from chains of YF₈ polyhedra (distorted cube for Y1 and square antiprisms for Y2 and Y3) along b axis, connected together along c axis and by Y4F₈ and Y5F₈ square antiprisms along the *a* axis (**Fig. 1d**). Isolated chains of K2F₁₀ and K3F₁₀ polyhedra are formed along b axis and are connected to K1F₅ and K4F₅ trigonal bipyramids.⁵⁸

 $\alpha\text{-}KY_3F_{10}$ structure (Fig. 1e) is built up from isolated KF_4 tetrahedra and distorted YF_8 square antiprisms connected together by four edges and four corners to form a 3D network.⁶⁰

 YF_3 structure is built of YF_9 polyhedra connected by opposite faces to form infinite chains along the *a* axis. These chains are also connected together by edges and corners to form a 3D network.⁶¹

Optimization effect on structures

DFT optimisation of atomic positions has been achieved on all studied structures when allowed by symmetry, keeping the experimental cell parameters (Table S2). The resulting atomic coordinate sets are compared to the initial structural data in ESI (Tables S1 and S3-S7). Corresponding atomic displacements are also given. On the whole, these displacements are higher for the lighter elements (F, K) than for yttrium atoms. An exception is observed for Y1 in β -KY₂F₇, however this structure presents twenty-eight independent atomic positions and was determined from powder XRD in 1980.⁵⁸ Whenever the experimental structures are determined from single crystal XRD, the APO data are very similar to the ES ones, and the atomic displacements are small (< 0.05 Å). On the contrary, K₂YF₅ and β -KY₂F₇ structures are determined from powder XRD and the atomic displacements are higher, up to 0.125 Å. Evolutions of minimum, mean, and maximum Y-F and K-F bond lengths are shown in **Fig. 2** (see ESI, Tables S8 and S9 for details).

Fig. 2. Minimum, mean and maximum Y-F (top) and K-F (bottom) bond lengths for the experimental (**•**) and APO (**•**) structures of the studied compounds. * and ** symbols indicate the structures determined from powder and single-crystal XRD data, respectively.

In the case of γ -K₃YF₆, KYF₄ and α -K₃YF₁₀, optimization has only a slight effect on the M-F bond lengths. For β -KY₂F₇, optimisation effects on bond lengths are the strongest for type I polyhedra (**Fig. 2**). Both a decrease of the maximum Y-F bond lengths and an increase of the minimum Y-F bond lengths are observed in these three YF₇ polyhedra. Similar decreases are observed for KF_n polyhedra, more marked for K1 and K4 (**Fig. 2**). Unexpectedly, for the YF₇ polyhedron in K₂YF₅, a decrease of all Y-F bond lengths is observed while the gap between the longest and shortest Y-F bond lengths increases. However, the radial distortion of the KF₈ polyhedron is slightly reduced. Bond valence sums have then been calculated on both the ES and APO structures of K₂YF₅ (ESI, Table S1). For APO structure, bond valence sums are close to the expected values for all atoms (2.90, 1.03 and from 0.90 to 1.05 for Y, K and F, respectively), indicating that the APO structure is more reliable.

In the following, only APO structures will be considered.

¹⁹F NMR

¹⁹F NMR spectra were recorded for five phases from the KF-YF₃ binary system and compared to that of YF₃²¹ in **Fig. 3**. The reconstructions of these spectra are given in the ESI (Fig. S3-S7 and Tables S10-S14). Pertinent parameters are gathered in **Table 2**. Considering the difference between KF (133.3 ppm) and YF₃ (-68.1 and -56.9 ppm) ¹⁹F δ_{iso} values, the ¹⁹F δ_{iso} range remains narrow and only a slight increase is observed in **Fig. 3** when the KF/YF₃ ratio ranges from 3 (for γ-K₃YF₆) to 0 (for YF₃).

The ¹⁹F MAS NMR spectrum of γ -K₃YF₆ presents an asymmetric broad peak, which is reconstructed by three contributions having similar relative intensities (**Table 2**, Fig. S3 and Table S10). This is in agreement with the presence of three F sites of same 4e multiplicity in the structure.²⁸ As the F sites have similar environments, being shared by one YF₆ and one K1F₆ octahedra, and one or two K2F₇ polyhedra (**Fig. 1a**), no attribution of NMR lines to F sites can be done. The measured ¹⁹F δ_{iso} values (-82.8, -87.5, -91.5 ppm) are close to a previous measurement (-89.6 ppm).⁶³

For K_2YF_5 , F2, the unique 8d site of the structure, bridges two YF_7 polyhedra whereas F1, F3 and F4, located on 4c sites, belong to only one YF_7 polyhedron (**Fig. 1b**). The ¹⁹F MAS NMR spectrum shows a broad peak which is reconstructed with four individual contributions (**Table 2**, Fig. S4 and Table S11). Lines 1, 3 and 4, located respectively at -84.6, -77.0 and -67.2 ppm, have relative intensities of 20 % and correspond each to one of the three 4c F sites, but no precise assignment is possible. Line 2, at -79.8 ppm, presents a relative intensity of 40 % and is therefore assigned to F2, (**Table 2**).

The structure of KYF_4 (**Fig. 1c**) presents twenty-four F crystallographic sites, all with the same 3a multiplicity and three types of environment are encountered for F atoms:

shared between two YF₇ and two KF₈ or between two YF₇ and one KF₈ or between one YF₇ and two KF₈ polyhedra. However, the ¹⁹F MAS NMR spectrum of KYF₄ presents a single and very large (about 15 ppm) signal, reconstructed with only three NMR lines at -72.7, -65.4, and -58.4 ppm (Fig. S5 and Table S12). From the relative intensities, the number of F sites associated to each NMR lines is determined; however no assignment is possible (**Table 2**).

Table 2. Phase, ^{19}F isotropic chemical shift ($\delta_{\text{iso}},$ ppm), relative intensity (I, %) from reconstruction of the ^{19}F NMR spectra (see ESI), sum of relative intensities and first assignment.

Phase	Line	δ _{iso} (±0.1)	Intensity (±1)	Sum of I	Assignment
γ -K ₃ YF ₆	1	-91.5	32.8		1 F(4e)
	2	-87.5	33.8		1 F(4e)
	3	-82.8	33.4		1 F(4e)
K_2YF_5	1	-84.6	20.0		1 F (4c)
	2	-79.8	40.0		F2 (8d)
	3	-77.0	20.0		1 F (4c)
	4	-67.2	20.0		1 F (4c)
KYF ₄	1	-72.7	50.0		12 F(3a)
	2	-65.4	25.0		6 F(3a)
	3	-58.4	25.0		6 F(3a)
β -KY ₂ F ₇	1	-81.8	10.6		6 F(2a) or 3 F(4b)
	2	-81.2	3.3	21.0	or 4 F(2a), 1 F(4b)
	3	-81.0	7.1		or 2 F(2a), 2 F(4b)
	4	-76.2	7.2	/	2 F(2a) or 1 F(4b)
	5	-63.5	7.2		6 F(2a) or 3 F(4b)
	6	-62.5	7.1	21.4	or 4 F(2a), 1 F(4b)
	7	-61.6	7.1		or 2 F(2a), 2 F(4b)
	8	-59.8	7.2	/	2 F(2a) or 1 F(4b)
	9	-52.8	14.3	/	2 F(4b) or 4 F(2a) or 2 F(2a), 1 F(4b)
	10	-46.6	7.2		8 F(2a) or 4 F(4b)
	11	-44.4	7.3		or 6 F(2a). 1 F(4b)
	12	-43.4	7.2	28.9	or 4 F(2a), 2 F(4b)
	13	-41.8	7.2		or 2 F(2a), 3 F(4b)
α -KY ₃ F ₁₀	1	-86.7	38.9		F1 (32f)
	2	-37.8	61.1		F2 (48i)

The ¹⁹F MAS NMR spectrum of β -KY₂F₇ shows several peaks more or less resolved, across a chemical shift range of 40 ppm. It was reconstructed using thirteen NMR lines (**Table 2** and S13, and Fig. S6). Given the nineteen F crystallographic sites of the structure and the rather small chemical shift range (40 ppm), assignment of the ¹⁹F NMR lines to F sites is not possible. However, from their relative intensities, combinations of 4b and 2a F sites are proposed in **Table 2**.

The structure of α -KY₃F₁₀ contains two F sites, having different multiplicities (32f and 48i for F1 and F2, respectively) and environments (three Y and one K for F1, two Y and two K for F2). The ¹⁹F MAS NMR spectrum presents two peaks, and is reconstructed with two NMR lines at -86.7 and -37.8 ppm (**Table 2** and S14, and Fig. S7). There is a discrepancy between our ¹⁹F δ_{iso} values and previously determined ones, at -108 and -59 ppm,⁶³ although the same difference of 49 ppm between the two peaks is observed in both the ¹⁹F MAS NMR spectra. The relative intensities of the two NMR lines are 39 and 61 %

close to the expected values of 40 and 60 %. Consequently, lines 1 and 2 are assigned to F1 and F2 respectively (**Table 2**).

On the whole, an increase of ¹⁹F δ_{iso} values is observed with the increase of Y atoms surrounding the F atom, from -91.5 ppm for F(1Y) in γ -K₃YF₆ to -37.8 ppm for F2(3Y) in KY₃F₁₀, as previously observed by Bessada et al.⁶³ However, for the moment, only six F sites are assigned to NMR lines, including KF (F1, -133.3 ppm)¹⁸ and YF₃ (F1, -68.1 ppm and F2, -56.9 ppm).¹⁸ To complete these (very) partial assignments, the ¹⁹F shielding tensors have been calculated for APO structures, using the GIPAW^{1,2} method implemented in the NMR-CASTEP^{3,4} code. Calculated ¹⁹F σ_{iso} values are reported in ESI (Tables S15-S17). Pertinent parameters are gathered in **Table 3**.

Table 3. Phase, NMR line number, ^{19}F experimental δ_{iso} (ppm) and calculated (from APO structures) σ_{iso} (ppm) values, F site and environment.

Phase	Line	δ _{iso} (±0.1)	σ_{iso}	F site	Environment
KF ^a	1	-133.3	268.1	F1	6K
γ -K ₃ YF ₆	1	-91.5	218.6	F2	1Y, 4K
	2	-87.5	210.3	F1	1Y, 4K
	3	-82.8	207.7	F3	1Y, 3K
K_2YF_5	1	-84.6	205.8	F3 (4c)	1Y, 4K
	2	-79.8	198.3	F2 (8d)	2Y, 2K
	3	-77.0	197.1	F4 (4c)	1Y, 4K
	4	-67.2	177.0	F1 (4c)	1Y, 4K
$\alpha\text{-}KY_3F_{10}$	1	-86.7	212.2	F1 (32f)	3Y, 1K
	2	-37.8	143.6	F2 (48i)	2Y, 2K
YF_3^a	1	-68.1	181.3	F1 (4c)	3Y
	2	-56.9	170.0	F2 (8d)	3Y
2					

^a from ref. 18.

Assignments of the ¹⁹F NMR lines to F crystallographic sites are obvious for KF, α -KY₃F₁₀ and YF₃ since they have either one F site or two F sites with different multiplicities. For all studied compounds, the NMR lines are ranked by increasing order of experimental δ_{iso} values while the F sites are ranked by decreasing order of calculated ¹⁹F σ_{iso} values (**Table 3**).

For α -KY₃F₁₀ and YF₃, assignments of NMR lines to F sites from calculations and from relative intensities are identical (**Table 3**). For K₂YF₅, the ¹⁹F σ_{iso} range (29 ppm) is larger than the δ_{iso} range (17 ppm), however, from these calculations, line 2 is correctly assigned to F2. The remaining lines 1, 3 and 4 are assigned to F3, F4 and F1 sites, respectively (**Table 2** and **3**).

For γ -K₃YF₆, lines 1, 2 and 3 are assigned to F3, F1 and F2 sites respectively (**Table 3**), and the ¹⁹F σ_{iso} range (11 ppm) is similar to the δ_{iso} range (9 ppm).

No clear correlation between the F environments and the δ_{iso} values can be deduced from **Table 3**. This confirms that the δ_{iso} values are not only determined by the number of neighbouring atoms and that the Y-F and K-F distances have also to be taken into account. For these five compounds, the plot of the experimental ¹⁹F δ_{iso} values as a function of the ¹⁹F calculated σ_{iso} values shows a convincing linerar relationship (**Fig. 4**). A linear regression has then been calculated. The slope obtained from APO structures is equal to -0.74, and is slightly different from the one determined by Sadoc et al. (-0.795).^{21,23} This linear correlation is then used to predict ¹⁹F δ_{iso} values for β -KY₂F₇, to help in the assignment of the thirteen ¹⁹F NMR lines

to the nineteen F crystallographic sites. Ranking the F sites by increasing order of ¹⁹F $\delta_{iso,calc}$ values allows to assign them to the corresponding NMR lines, with only one exception. To respect the relative intensities of NMR lines 5 and 6, F14 (-61.3 ppm) and F7 (-61.4 ppm) have to be interchanged (**Table 4**). Comparing experimental and calculated δ_{csa} values confirms this exchange and supports these assignments. On the whole, from these attributions, one can note that the ¹⁹F δ_{iso} values increase when the number of Y atoms surrounding the F decreases.

Fig. 4. Calculated $^{19}F \sigma_{iso}$ values versus experimental $^{19}F \delta_{iso}$ values for KF, γ -K₃YF₆, K_2YF_5 , α -KY₃F₁₀ and YF₃. The black line represents the linear regression calculated on these values corresponding to the equation reported on the graph.

 $\begin{array}{l} \label{eq:table_states} \textbf{Table 4. NMR line, relative intensity (I, %), 19F experimental δ_{iso} (ppm) and calculated (from APO structure) $\delta_{iso,cal.}$ (ppm) values, experimental δ_{csa} (ppm) and calculated (from APO structure) $\delta_{csa,cal.}$, $F site and environment. } \end{array}$

Line	I(±0.1)	δ _{iso}	δ _{iso,cal.} "	δ_{csa}	δ _{csa,cal} .	Assignment	Environment
		(±0.1)		(±10)			
1	10.6	-81.8	-85.3	-45	-19	F13 (2a)	3Y, 1K
			-83.8		-22	F1 (4b)	3Y, 1K
2	3.3	-81.2	-83.5	-48	-14	F10 (2a)	3Y, 1K
3	7.1	-81.0	-82.2	-58	-17	F5 (4b)	3Y, 1K
4	7.2	-76.2	-76.6	-53	-25	F11 (2a)	3Y, 1K
			-76.4		-27	F15 (2a)	3Y, 1K
5	7.2	-63.5	-62.0	-87	-66	F12 (2a)	2Y, 2K
			-61.3		-60	F14 (2a)	2Y, 2K
6	7.1	-62.5	-61.4	-112	-141	F7 (4b)	2Y, 1K
7	7.1	-61.6	-57.9	-117	-152	F8 (4b)	2Y, 1K
8	7.2	-59.8	-56.0	-78	-58	F19 (2a)	2Y, 2K
			-55.1		-89	F16 (2a)	2Y, 2K
9	13.4	-52.8	-55.1	-85	-52	F2 (4b)	2Y, 2K
			-54.0		-92	F4 (4b)	2Y, 2K
10	7.2	-46.6	-47.8	-125	-164	F17 (2a)	2Y, 1K
			-45.4		-169	F18 (2a)	2Y, 1K
11	7.3	-44.4	-43.7	-132	-172	F3 (4b)	2Y
12	7.2	-43.4	-42.7	-136	-173	F9 (4b)	2Y
13	7.2	-41.8	-41.8	-140	-175	F6 (4b)	2Y

^a calculated using the linear correlation: ¹⁹F $\delta_{lso,cal} = -0.74(2)\sigma_{lso} + 68(5)$. ^b calculated as $\delta_{csa} = \sigma_{csa}$.

A theoretical spectrum has also been reconstructed from the nineteen sets of NMR parameters issued from APO GIPAW calculations, adjusting only the amplitude parameters so that each NMR line has the expected relative intensity (3.57 and

7.14 % for 2a and 4b F sites, respectively). Both the experimental and theoretical spectra are compared in **Fig. 5**. This comparison shows that the theoretical spectrum is quite good. Again, the ¹⁹F σ_{iso} range (59 ppm) is larger than the experimental δ_{iso} range (40 ppm), and this is not fully compensated by the slope of -0.74 as the calculated δ_{iso} range is equal to 43.5 ppm. One can also note that the calculated δ_{csa} values are globally overestimated. Nevertheless, both experimental and calculated δ_{csa} values follow the same trend, *i.e.* increasing when the coordination number of fluorine atoms decreases (**Table 4**).

Fig. 5. ^{19}F experimental (black) MAS (60 kHz) NMR and theoretical (red) spectra of β -KY₂F₇. The isotropic lines are compared in the inset.

The structure of KYF₄ presents twenty-four F sites whereas its ¹⁹F NMR spectrum is reconstructed with only three NMR lines, and the experimental ¹⁹F δ_{iso} range is about 14 ppm. A theoretical spectrum has also been reconstructed from the twenty-four sets of NMR parameters issued from APO GIPAW calculations and is compared to the experimental spectrum in **Fig.** 6. The amplitude parameters have been adjusted, so that each NMR line has the expected relative intensity of 4.17 %. The theoretical ¹⁹F NMR spectrum is quite similar to the experimental one. However, no reliable assignment can be done given the number of F sites, the ¹⁹F δ_{iso} range and the lack of resolution of the ¹⁹F NMR spectrum.

Fig. 6. 19 F experimental (black) MAS (60 kHz) NMR and theoretical (red) spectra of KYF₄. The isotropic lines are compared in the inset.

As the $^{19}{\rm F}$ NMR spectra were acquired under high MAS spinning speed, uncertainties on small experimental $\delta_{\rm csa}$ values

ARTICLE

Fig. 7. Calculated "F $|\delta_{csa}|$ values versus calculated "F δ_{iso} values for γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇ and α -KY₃F₁₀. The four F environments are represented by different symbols (see insets) and corresponding areas are underlined by oval shapes.

Four kinds of F environments are encountered in the five studied phases. F atoms with the lowest 19 F δ_{iso} and $|\delta_{csa}|$ values (from -90 to -75 ppm and from 0 to 30 ppm, respectively) connect three YF_n polyhedra. F atoms having two Y atoms as nearest neighbours and involved in a connexion by edge of the two corresponding YF_n polyhedra present intermediate 19 F δ_{iso} and $|\delta_{csa}|$ values (from -80 to -50 ppm and from 40 to 90 ppm, respectively). F atoms which connect by corners two YF_n polyhedra have 19 F δ_{iso} values ranging from -95 to -60 ppm but high $|\delta_{csa}|$ values (from 90 to 160 ppm). Finally, F atoms which belong to only one YF_n polyhedron present moderate to high 19 F δ_{iso} values (from -75 to -35 ppm) and high $|\delta_{csa}|$ values (from 140 to 180 ppm).

Whereas the ^{19}F δ_{iso} ranges for these four F environments overlap, the combination of both the ^{19}F δ_{iso} and $|\delta_{csa}|$ values can help to distinguish them in yttrium fluorides.

⁸⁹Y NMR

⁸⁹Y NMR spectra were recorded for the five phases from the KF-YF₃ binary system and YF₃ (**Fig. 8**). The reconstructions of these spectra are given in ESI (Fig. S8 and Table S18) and pertinent parameters are gathered in **Table 5** for discussion.

The 89 Y δ_{iso} range is around 200 ppm wide and a clear increase of δ_{iso} values is observed in **Fig. 8** when the Y coordination number decreases, as already observed in several studies. 15,63,65,82

YF₃, γ-K₃YF₆, K₂YF₅, and α-KY₃F₁₀ structures present only one Y site and each of the corresponding ⁸⁹Y NMR spectra is reconstructed using only one NMR line. For α-KY₃F₁₀, the ⁸⁹Y δ_{iso} value (-50.8 ppm) is close to the value previously determined (-55 ppm).⁶³ However, for γ-K₃YF₆ and K₂YF₅, our ⁸⁹Y δ_{iso} values (-86.9 and 29.7ppm, respectively) differ

significantly from the values in the literature (20.9 and -25

The structure of β -KY₂F₇ presents five Y sites with either 2a (Y4 and Y5) or 4b (Y1, Y2 and Y3) multiplicities, all surrounded by eight F atoms to form either YF₈ cubes (Y1) or square antiprisms. The ⁸⁹Y NMR spectrum shows two close peaks and is reconstructed with three NMR lines at -47.6, -49.7 and -60.6 ppm. No assignment of NMR lines to Y sites is possible.

The ⁸⁹Y NMR spectrum of KYF₄ (six Y sites) shows only two distinct peaks. Its reconstruction is achieved with two NMR lines at -28.5 and 2.1 ppm having the same relative intensities close to 50 %. Each line may then be assigned to three yttrium sites, assuming that the ¹⁹F-⁸⁹Y CP experiment is approximatively quantitative for this application. Again, a discrepancy with previously published ⁸⁹Y δ_{iso} values (-32 and -25 ppm) is observed.⁶³

Table 5. Phase, ^{89}Y δ_{iso} , (ppm), relative intensity (%) determined from reconstruction of the ^{89}F NMR spectra, line assignment and Y coordination number.

Phase	Line	δ _{iso} (±0.5)	Intensity (±1)	Assignment	Y CN
γ -K ₃ YF ₆	1	86.9	100	Y1	6
K_2YF_5	1	29.7	100	Y1	7
KYF ₄	1	2.1	49.5	3Y	7
	2	-28.5	50.4	3Y	/
β -KY ₂ F ₇	1	-47.6	11.6		
	2	-49.7	73.4	Not possible	8
	3	-60.6	14.9		
α -KY ₃ F ₁₀	1	-50.8	100	Y1	8
YF ₃	1	-107.0	100	Y1	9

 89 Y σ_{iso} values calculated using the GIPAW method and APO structures are given in ESI (Table S19). Pertinent parameters are gathered in **Table 6** for discussion. Assignments of the 89 Y

NMR lines to Y crystallographic sites are obvious for γ -K₃YF₆, K₂YF₅, α -KY₃F₁₀ and YF₃ since they have only one Y site. For the two compounds which present several Y sites, the NMR lines are ranked by decreasing order of experimental ⁸⁹Y δ_{iso} values while the Y sites are ranked by increasing order of calculated ⁸⁹Y σ_{iso} values. While for β -KY₂F₇, due to the small δ_{iso} range, no reliable assignment can be established, for KYF₄ the ⁸⁹Y σ_{iso} values are divided into two groups, allowing the assignment of Y1, Y3 and Y5 to line 1 and Y2, Y4 and Y6 to line 2.

 $\begin{array}{l} \textbf{Table 6. Phase, NMR line, } ^{89} Y \mbox{ experimental } \delta_{iso} \mbox{ (ppm), Y site, calculated (from APO structure) } \sigma_{iso} \mbox{ and corresponding } \delta_{iso,cal.} \mbox{ (ppm) values, Y environment and average Y-F bond lengths (from APO structure, Å).} \end{array}$

Phase	δ _{iso} (±0.1)	Y site	σ_{iso}	ð _{iso,cal}	YFn	<d(y-f)></d(y-f)>
γ -K ₃ YF ₆	86.9	Y1	2531.1	89.8	YF_6	2.181
K_2YF_5	29.7	Y1	2583.5	41.4	YF ₇	2.244
KYF ₄	2.1	Y1	2629.1	-0.7		2.243
		Y3	2631.4	-2.8		2.244
		Y5	2631.8	-3.2	VE	2.244
	-28.5	Y4	2660.8	-29.9	167	2.247
		Y6	2662.0	-31.0		2.249
		Y2	2662.8	-31.8		2.247
β -KY ₂ F ₇		Y5 (2a)	2672.4	-40.6		2.282
	From	Y4 (2a)	2674.5	-42.6		2.280
	-47.6 to	Y3 (4b)	2677.4	-45.2	YF ₈	2.272
	-60.6	Y1 (4b)	2678.2	-46.0		2.310
		Y2 (4b)	2681.2	-48.7		2.274
α -KY ₃ F ₁₀	-50.8	Y1	2682.0	-49.5	YF ₈	2.279
YF ₃	-107.0	Y1	2732.9	-96.5	YF ₉	2.321

^{*a*} using the linear correlation: ⁸⁹Y $\delta_{iso,calc}$ = -0.923(39) σ_{iso} + 2426(103).

For all studied compounds except β -KY₂F₇, the plot of the experimental ⁸⁹Y δ_{iso} values as a function of the ⁸⁹Y calculated σ_{iso} values shows a convincing linear relationship (**Fig. 9**). A linear regression has been achieved, adjusting both the slope and σ_{ref} values, as already done for ¹⁹F nucleus.

Fig. 9. Calculated ⁸⁹Y σ_{iso} values (from APO structures) versus experimental ⁸⁹Y δ_{iso} values for the compounds of KF-YF₃ system, except β -KY₂F₇. The black line represents the linear regression calculated on these values corresponding to the equation reported on the graph. The formula of the compound and the average Y-F bond lengths are indicated and the YF_n polyhedra are represented. P1 and P2 correspond to monocaped octahedra and pentagonal bipyramids, respectively.

This equation was then used to calculate $\delta_{iso,cal}$ values (**Table 6**) for all compounds. This linear correlation is quite efficient, as the difference between the $\delta_{iso,cal}$ values and the experimental

ones is lesser than 12 ppm. For the sake of comparison with previous studies, another linear regression has been achieved, adjusting only σ_{ref} value and keeping the slope to the theoretical value of -1. The resulting σ_{ref} value is then equal to 2629(126), quite similar to the σ_{ref} values previously determined (2646.5,¹³ 2624.5¹⁴ and 2642.5¹⁵ ppm).

On the whole, a decrease of the 89 Y δ_{iso} values is observed (Fig. 9) when the coordination number of Y atoms increases, i. e. when the Y-F bond lengths increase. The longest average Y-F distance (2.333 Å for YF₉ in YF₃) corresponds to lowest ⁸⁹Y δ_{iso} value (-107.0 ppm), whereas the shortest average Y-F distance (2.181 Å for YF₆ in γ -K₃YF₆) corresponds to the highest ⁸⁹Y δ_{iso} value (86.9 ppm). A closer look to Table 6 and Fig. 9 shows that only considering average bond lengths or coordination number is not always sufficient. Indeed, three kinds of YF7 polyhedra are encountered in the KF-YF₃ binary system: two types of pentagonal bipyramids in KYF₄, both named P1, and a monocaped prism in K₂YF₅, named P2 (Fig. 9). They all present close average Y-F bond lengths (from 2.243 to 2.247 Å), whereas their 89 Y δ_{iso} values clearly differ. For the P1 YF₇ polyhedra, this is due to the occurrence of shorter bond lengths for Y1, Y3 and Y5 (type I) than for Y2, Y4 and Y6 (type II) (Fig. 2 and Table S8). The ^{89}Y δ_{iso} value of the P2 YF_7 polyhedra is at least 40 ppm larger than the 89 Y δ_{iso} values of P1 polyhedra. This difference can only be explained by the different polyhedron geometries. In β -KY₂F₇, two kinds of YF₈ polyhedra are encountered: Y1F8 cubes for Y1 site and square antiprisms for other Y sites having significantly different average bond lengths (2.310 Å for the cube and between 2.272 and 2.282 Å for the square antiprisms). Whereas a larger ⁸⁹Y σ_{iso} value is expected for the Y1F₈ cube, the five calculated ⁸⁹Y σ_{iso} values are similar illustrating the effect of the polyhedron geometry (Table 6).

³⁹K NMR

³⁹K NMR spectra were recorded for KF and the five studied compounds. Spectra reconstructions are shown in ESI (Fig. S9) for KF and α-KY₃F₁₀, and in **Fig. 10** for remaining compounds. Pertinent experimental and calculated ³⁹K NMR parameters are gathered in **Table 7**. The principal components of ³⁹K EFG tensors and Euler angles are given in Table S20.

KF and α-KY₃F₁₀ structures present only one K site and each of the corresponding ³⁹K NMR spectra is reconstructed using only one NMR line. Furthermore, symmetries of the K sites are m-3m and -43m in KF and α-KY₃F₁₀, respectively. As expected, no quadrupolar interaction is observed on the experimental spectra (Fig. S9). For KF, the ³⁹K δ_{iso} value (22.4 ppm) is very similar to the values previously determined (22.6 and 22.4 ppm).^{83,84}

The structure of K₂YF₅ presents also one K site, but of a lower symmetry. Therefore the central transition lineshape of the ³⁹K MAS NMR spectrum (**Fig. 10**) exhibits the characteristic feature of a second-order quadrupolar broadening. It has been reconstructed with two NMR lines, as α -KY₃F₁₀ is present as an impurity. First, the ³⁹K δ_{iso} , C_Q and η_Q values were adjusted. Then calculated shielding anisotropy parameters (δ_{csa} , η) and

Journal Name

Fig. 10. ³⁹K experimental (black dots) and reconstructed (red lines) static NMR spectra of KYF₄ and MAS (10 kHz) NMR spectra of K₂YF₅, γ -K₃YF₆ and β -KY₂F₇. The individual contributions are shown below for each compound.

Euler angle values have been added for the main NMR signal and were not adjusted (Table 7) since the $\delta_{\rm csa}$ value is too small to have noticeable effects on the calculated spectrum (Fig. S10). In this compound, the K1 atom is surrounded by eight F atoms which form a distorted KF₈ polyhedron. The orientations of the principal components of the calculated ³⁹K EFG tensor (Table S20) are represented on Fig. 11a. We remind that negative (positive) V_{ii} values are associated to a charge concentration (depletion) in the V_{ii} direction. $^{9,21,23,85\text{--}88}$ The V_{zz} direction of K1 EFG tensor is nearly along the longest K-F bond and between two K-F bonds of intermediate lengths, corresponding to a charge depletion in agreement with its positive value. The V_{vv} direction belongs to a plane containing five F atoms and is orientated between the two shortest K-F bonds, corresponding to a charge concentration in agreement with the V_{vv} negative value.

 γ -K₃YF₆ contains two K sites with 2b and 4e multiplicities. The experimental spectrum (**Fig. 10**) exhibits a small sharp line, at 0.8 kHz, assigned to KF present as an impurity. The most intense peak presents several singularities and is reconstructed with two NMR lines. For this reconstruction, calculated ³⁹K quadrupolar and shielding anisotropy parameters and Euler angle values were used as starting data. These values, except Euler angles, and the δ_{iso} values were then adjusted (**Fig. 10** and **Table 7**). Relative intensities of both the NMR lines are in agreement with expected ones: 33% for line 2 (³⁹K δ_{iso} = 12.3 ppm) assigned to site K1 (2b multiplicity) and 67 % for line 1 (³⁹K δ_{iso} = -3.8 ppm) assigned to site K2 (4e multiplicity). The δ_{CSA} values (-15 and -20 ppm for lines 1 and 2,

respectively) are small, in agreement with calculated $\sigma_{ ext{CSA}}$ values (14 and 10 ppm for lines 1 and 2, respectively). Similarly, experimental values for n (0.30 and 0.90 for lines 1 and 2, respectively) agree well with the calculated ones (0.30 and 0.96 for lines 1 and 2, respectively). The orientations of the principal components of K1 and K2 calculated ³⁹K EFG tensors (Table S20) are represented on Fig. 11. In this compound, the K1 atom (site symmetry -1) is surrounded by six F atoms which form a distorted octahedron having radial distortions (Fig. 2, Table S9) and strong angular distortions from the expected 90° angle in a regular octahedron (Table S21). In this octahedron, the V_{zz} direction is not aligned along K-F bonds indicating that the radial distortions are not very strong.⁸⁶ The V₇₇ direction is between the two shortest K-F bonds forming an angle smaller than 90° (83.6°), in agreement with a charge concentration. On the contrary, the V_{vv} direction is orientated between the two longest K1-F bonds forming an angle larger than 90° (94.8°), in agreement with a charge depletion (Fig. 11b). K2 is surrounded by eight F atoms and the four nearest ones form a distorted tetrahedron (Fig. 11c). The V_{zz} direction is orientated between two K2-F bonds forming an angle smaller (F1-K2-F2 = 82.1° and F3-K2-F3 = 89.2°) than the 109.47° angle expected in a regular tetrahedron. This is in agreement with a charge concentration and the negative V_{77} value. On the opposite, in agreement with its positive value and a charge depletion, the Vyy component is orientated between two K2-F bonds forming an angle (F3-K2-F2 = 133.1°) larger than 109.47°.

Phase	Line		Exp. parameter	s	Kaita		Calculated parameters						<d(k-f)></d(k-f)>
Phase	Line	δ _{iso} (±5)	C _Q (±0.07)	η _Q (±0.1)	K SILE	σ_{iso}	$\delta_{iso,cal}{}^a$	σ_{csa}	η	C _Q	ηα	- KFn	<u(к-г)></u(к-г)>
KF	1	22.4	0	0	K1	1190.2	22.4	0	0	0	0	KF ₆	2.6835
	1	-3.8	1.79	0.28	K2 (4e)	1224.2	-6.7	13.9	0.30	1.87	0.38	KF ₇	2.8330
γ-Κ3116	2	12.3	1.38	0.52	K1 (2b)	1199.3	14.6	9.9	0.96	1.43	0.47	KF ₆	2.6049
K ₂ YF ₅	1	6.8	1.83	0.87	K1	1208.2	7.0	14.5	0.80	1.92	0.69	KF ₈	2.7472
					K1	1219.2	-2.4	-23.3	0.43	2.75	0.38	KF ₈	2.7731
					К6	1218.7	-2.0	-12.9	0.39	3.33	0.28	KF ₈	2.7892
KVE					К3	1218.7	-2.0	-27.8	0.44	3.48	0.52	KF ₈	2.7931
NTF4					К4	1215.8	0.5	-24.3	0.38	3.05	0.45	KF ₈	2.7674
					К2	1214.7	1.4	-28.5	0.59	3.82	0.42	KF ₈	2.7800
					К5	1213.8	2.2	-23.9	0.40	2.80	0.49	KF ₈	2.7421
	1	-16.0	1.30	0.10	К4	1227.8	-9.8	9.2	0.21	1.20	0.14	KF ₅	2.6925
0 KV F	2	-15.4	1.31	0.13	K1	1226.8	-8.9	8.2	0.60	1.08	0.37	KF_5	2.6859
p-K12F7	3	3.2	0.96	0.43	К3	1202.2	10.4	10.9	0.47	1.07	0.50	KF ₁₀	2.7229
	4	7.0	1.45	0.50	К2	1204.2	12.1	14.2	0.42	1.57	0.44	KF ₁₀	2.7436
$\alpha\text{-}KY_3F_{10}$	1	-27.8	0	0	K1	1246.6	-25.8	0	0	0	0	KF ₄	2.7555

Table 7. Phase, NMR line, ³⁹K experimental δ_{iso} (ppm), C_{Q} (MHz) and η_{Q} , K site (assignment), calculated (from APO structure) σ_{iso} (ppm) and corresponding $\delta_{iso,cal.}$ (ppm) values, σ_{csa} (ppm), η , C_{Q} (absolute value, MHz), η_{Q} , K environment and average K-F bond lengths (Å).

^{*a*} using the linear correlation: ³⁹K $\delta_{iso,cal} = -0.855(54)\sigma_{iso} + 1040(65)$.

β-KY₂F₇ structure presenting four K sites with the same multiplicity. The ³⁹K MAS NMR spectrum of β-KY₂F₇ (**Fig. 10**) exhibits more singularities than the previous ones. The reconstruction has been carried out using four NMR lines. Again, calculated ³⁹K C_Q and η_Q values were used as starting data, and then adjusted together with the δ_{iso} values (**Table 7**). When a satisfactory reconstruction of the experimental spectrum was reached, the δ_{csa} , η and Euler angle values were added. However, the δ_{csa} values are too small to have noticeable effects on the calculated spectrum (Fig. S10) so theoretical values from calculations have finally been kept for these parameters.

Fig. 11. Orientation of the principal components of the calculated ³⁹K EFG tensor for(a) K1 in K₂YF₅, (b) K1 and (c) K2 in γ -K₃YF₆ and (d) K2 in KYF₄. The vector lengths are proportional to the magnitudes of the contributions. Bond lengths are indicated.

The four NMR lines have similar relative intensities (ranging from 24.3 to 25.8 %), close to the expected 25 % one. Two sets of close $^{\rm 39}$ K $\delta_{\rm iso}$ values are observed, lines 1 and 2 and lines 3 and 4 (Table 7) whereas the structure presents two kinds of K environment, KF_{10} for K2 and K3 and KF_5 for F1 and K4. Ranking the NMR lines by increasing order of 39 K δ_{iso} values and the K sites by decreasing order of calculated 39 K σ_{iso} values allows to assign lines 3 and 4 to K2 and K3 sites and lines 1 and 2 to K4 and K1 sites. These two last assignments are not as convincing, given the close NMR parameters (Table 7). Overall, the agreement between experimental and calculated Co parameters is quite good, whereas it is less satisfactory for the η_{Q} parameters (**Table 7**).⁸⁶ For KF, γ -K₃YF₆, K₂YF₅ and α -KY₃F₁₀, the assignments of the NMR lines to the K sites are reliable. The plot of the experimental $^{
m ^{39}}$ K $\delta_{
m iso}$ values as a function of the GIPAW calculated from APO structures 39 K σ_{iso} values showing a convincing linear relationship for these four compounds, a linear regression has been calculated for these compounds (Fig. 12). As already done for ¹⁹F and ⁸⁹Y nuclei, the slope of the ³⁹K linear regression has been refined. For the sake of comparison with previous studies, another linear regression has been achieved, adjusting only $\sigma_{\it ref}$ value and keeping the slope to the theoretical value of -1. The resulting σ_{ref} value is then equal to 1216(120) ppm, quite close to the $\sigma_{\it ref}$ values previously published (1218.9²⁷ and 1220²⁵ ppm). Using this linear correlation, calculated $^{\rm 39}{\rm K}$ $\delta_{\rm iso}$ values are determined and agree well with the experimental ones (Table 7). The theoretical ^{39}K NMR spectrum of $\beta\text{-}\text{KY}_2\text{F}_7$ has been reconstructed and agrees quite well with the experimental one (Fig. S10).

Fig. 12. Calculated APO 39 K σ_{iso} values versus experimental 39 K δ_{iso} values for KF, γ -K₃YF₆, K₂YF₅ and α -KY₃F₁₀. The black line represents the linear regression calculated on these values corresponding to the equation reported on the graph.

Static NMR ³⁹K spectrum of KYF₄, Fig. 10, has been acquired using the WURST-QCPMG sequence. However, the structure presents six K sites and all contributions are more or less overlapping on the spectrum. Then, a theoretical spectrum has been simulated using the six sets of calculated NMR parameters. The ³⁹K linear correlation has been used to predict the 39 K δ_{iso} values (**Table 7**). Both the experimental and theoretical spectra are compared in Fig. 10. The shape of the 39 K spectrum is well reproduced. Again, the calculated δ_{CSA} values are small and adding the $\delta_{
m csa},~\eta,$ and Euler angles parameters to the reconstruction has negligible effect on the lineshape. In KYF₄, all K atoms are surrounded by eight F atoms forming highly distorted cubes, whereas the four nearest F atoms are approximatively in the same plane and form an irregular square (Fig. 11d). The C_Q values are the largest ones encountered in this study and the V_{zz} values are all positive (Table S20). As an example, the components of K2 EFG tensor are shown in Fig. 11d. The V_{zz} component is orientated perpendicularly to the irregular square, and its positive value is in agreement with a charge depletion. The V_{yy} and V_{xx} components belong to irregular square containing the four shortest K2-F bond lengths. A charge concentration is expected in this plane and both V_{vv} and V_{xx} have negative values, V_{vv} being orientated between two K2-F bonds forming an angle (F13-K2-F15 = 85.6° and F14-K2-F18 = 79.9°) smaller than 90° and V_{xx} between two K2-F bonds forming an angle (F13-K2-F18 = 101.8° and F14-K2-F15 = 92.7°) larger than 90°.

Conclusions

First, the K₂YF₅ structure has been refined in the Pnam space group by Rietveld method. Then atomic positions of γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇ and α -KY₃F₁₀ are optimized using CASTEP code, leading to APO structures. Comparison of experimental (ES) and APO structures points out the effects of DFT optimization which are marked for structures determined from powder XRD. In the second part, the ¹⁹F, ⁸⁹Y and ³⁹K NMR spectra are presented. Experimental NMR parameters issued from spectrum reconstructions have been compared to calculated ones, and, when confident, NMR lines have been assigned to crystallographic sites. Convincing correlations between experimental δ_{iso} and calculated σ_{iso} values have then been established for the three nuclei. The ¹⁹F linear correlation has been used to predict $^{19}\mathsf{F}~\delta_{\textit{iso}}$ values with which theoretical 19 F NMR spectra of KYF₄ and β -KY₂F₇, presenting twenty four and nineteen F sites, respectively, have been modeled. A nice agreement is achieved in both cases, indicating the accuracy of the DFT calculations and of the linear correlation. Moreover, for β -KY₂F₇, the thirteen NMR lines have been confidently assigned to the nineteen F sites. For ⁸⁹Y, as previously observed, the δ_{iso} values decrease when the Y coordination number increases. Moreover, for YF7 polyhedra, the three types encountered in the binary system (monocaped prisms in K₂YF₅; pentagonal bipyramids types I and II in KYF₄) are also discriminated from their 89 Y δ_{iso} values. Overall, the agreement between experimental and calculated ³⁹K C_Q parameters is good. The theoretical ³⁹K static NMR spectrum for KYF₄, (six K sites) modelled using the ³⁹K linear correlation to predict the 39 K δ_{iso} values and the calculated NMR parameters (C_Q, η_{Q} , δ_{CSA} , η and Euler angles), is in good agreement with the experimental one.

This work illustrates the great reliability of DFT calculations for prediction of complex NMR spectra.

Acknowledgements

Financial support from the TGIR-RMN-THC Fr3050 CNRS for conducting the research is gratefully acknowledged. The computational presented in this work have been carried out at the Centre Régional de Calcul Intensif des Pays de la Loire (CCIPL), financed by the French Research Ministry, the Région Pays de la Loire, and Nantes University. The authors thank CCIPL for financial support for CASTEP licenses.

Notes and references

- 1 C. J. Pickard and F. Mauri, *Phys. Rev. B*, 2001, **63**, 245101.
- 2 J. R. Yates, C. J. Pickard and F. Mauri, *Phys. Rev. B*, 2007, **76**, 024401.
- 3 M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter., 2002, 14, 2717.
- 4 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, *Z. Kristallogr.*, 2005, **220**, 567–570.
- 5 T. Charpentier, Solid State Nucl. Magn. Reson., 2011, 40, 1–20.
- 6 C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri and C. J. Pickard, *Chem. Rev.*, 2012, **112**, 5733–5779.
- 7 C. Martineau, Solid State Nucl. Magn. Reson., 2014, 63-64, 1–12.
- 8 S. Ashbrook and D. McKay Chem. Commun., 2016, **52**, 7186–7204.
- 9 J. Dabachi, M. Body, J. Dittmer, F. Fayon and C. Legein, *Dalton Trans.*, 2015, **44**, 20675–20684.

- 10 C. Martineau, M. Allix, M. R. Suchomel, F. Porcher, F. Vivet, C. Legein, M. Body, D. Massiot, F. Taulelle and F. Fayon, *Dalton Trans.*, 2016, **45**, 15565–15574.
- 11 T. M. Alam, S. Clawson, F. Bonhomme, S. G. Thoma, M. A. Rodriguez, S. Zheng, and J. Autschbach, *Chem. Mater.* 2008, 20, 2205–2217.
- 12 M.-A. Neouze, M. Kronstein, M. Litschauer, M. Puchberger, C. Coelho, C. Bonhomme, C. Gervais and F. Tielens, *Chem. Eur.* J. 2014, **20**, 15188–15196
- 13 S. W. Reader, M. R. Mitchell, K. E. Johnston, C. J. Pickard, K. R. Whittle and S. E. Ashbrook, *J. Phys. Chem. C*, 2009, **113**, 18847–18883.
- 14 K. E. Johnson, M. R. Mitchell, F. Blanc, P. Lightfoot and S. E. Ashbrook, *J. Phys. Chem. C*, 2013, **117**, 2252–2265.
- 15 S. E. Ashbrook, M. R. Mitchell, S. Sneddon, R. F. Moran, M. de los Reyes, G. R. Lumpkin and K. R. Whittle, *Phys. Chem. Chem. Phys.*, 2015, **17**, 9049-9059.
- 16 A. Zheng, S.-B. Liu, and F. Deng, J. Phys. Chem. C, 2009, 113, 15018–15023.
- 17 J. M. Griffin, J. R. Yates, A. J. Berry, S. Wimperis and S. E. Ashbrook, J. Am. Chem. Soc., 2010, **132**, 15651–15660.
- 18 C. Martineau, F. Fayon, M. R. Suchomel, M. Allix, D. Massiot and F. Taulelle, *Inorg. Chem.* 2011, **50**, 2644–2653
- 19 A. Pedone, T Charpentier and M. C. Menziani, J. Mater. Chem., 2012, 22, 12599–12608
- 20 C. Martineau, M. Allix, M. R. Suchomel, F. Porcher, F. Vivet, C. Legein, M. Body, D. Massiot, F. Taulelle and F. Fayon, Dalton Trans., 2016, 45, 15565–15574
- 21 A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte and F. Boucher, *Phys. Chem. Chem. Phys.*, 2011, 13, 18539–18550.
- 22 M. Biswal, M. Body, C. Legein, A. Sadoc and F. Boucher, J. Solid State Chem. 2013, 207, 208–217.
- 23 A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot and F. Fayon, *Solid State Nucl. Magn. Reson.*, 2014, 59–60, 1–7.
- 24 G. J. Rees, S. P. Day, A. Lari, A. P. Howes, D. Iuga, M. B. Pitak, S. J. Coles, T. L. Threlfall, M. E. Light, M. E. Smith, D. Quigley, J. D. Wallis and J. V. Hanna, *Cryst. Eng. Comm.*, 2013, 15, 8823–8839.
- 25 G. Wu, Z. Gan, I. C. M. Kwan, J. C. Fettinger, and J T. Davis, J. Am. Chem. Soc., 2011, **133**, 19570–19573.
- 26 C. M. Widdifield and R. W. Schurko, J. Phys. Chem. A, 2005, 109, 6865–6876.
- 27 K. Shimoda, A. Yamane, T. Ichikawa and Y. Kojima, *J. Phys. Chem. C*, 2012, **116**, 20666–20672.
- 28 Z. L. Wang, H. L. W. Chan, H. L. Li and J. H. Hao, *Appl. Phys. Lett.*, 2008, **93**, 141106.
- 29 M. A. Gusowski and W. Ryba-Romanowski, J. Phys. Chem. C, 2008, **112**, 14196–14201.
- 30 P. P. Fedorov, Russ. J. Inorg. Chem., 1999, 44, 1703-1727.
- 31 Z. Kang, C. Robelin, M. He and P. Chartrand, J. Chem. *Thermodyn.* 2016, **98**, 242–253.
- 32 J. K. Cao, X. M. Li, Z. X. Wang, Y. L. Wei, L. P. Chen and H. Guo, Sens. Actuators B, 2016, 224, 507–513.
- 33 P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló and K. V. Yumashev, J. Lumin., 2016, 180, 103–110.
- 34 J. Marcazzó, L. Camargo, N. M. Khaidukov and M. Santiago, J. Lumin., 2015, 164, 112–115.
- 35 J. Méndez-Ramos, P. Acosta-Mora, J. C. Ruiz-Morales and N. M. Khaidukov, J. Alloys Compd., 2013, 575, 263–267.
- 36 J. Méndez-Ramos, A. C. Yanes, A. Santana-Alonso and J. del-Castillo, Chem. Phys. Lett., 2013, 555, 196–201.

- 37 A. C. Yanes and J. del-Castillo, J. Alloys Compd., 2016, 658, 170–176.
- 38 L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng and Z. Zheng, *Opt. Mater.*, 2014, **36**, 1065–1069.
- 39 H. Schäfer, P. Ptacek, O. Zerzouf and M. Haase, Adv. Funct. Mater. 2008, 18, 2913–2918.
- 40 V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J. A. Capobianco, *J. Mater. Chem.*, 2009, **19**, 3149–3152.
- 41 Y. Dong, S. T. Li and X. H. Zhang, *Laser Phys. Lett.*, 2012, **9**, 116–119.
- 42 M. P. Hehlen, Proc. SPIE Laser Refrig. Solids, 2010, 7614, 761404.
- 43 A. Braud, P. Y. Tigreat, J. L. Doualan and R. Moncorgé, *Appl. Phys. B*, 2001, **72**, 909–912.
- 44 N. G. Debelo, F. B. Dejene, K. Roro, M. P. Pricilla and C. Oliphant, *Appl. Phys. A*, 2016, **122**, 619 (7 p).
- 45 B. Moine and L. Beauzamy, J. Lumin. 2013, **142**, 135–138
- 46 Y. V. Orlovskii, A. S. Vanetsev, K. Keevend, K. Kaldvee, E. V. Samsonova, L. Puust, B. del Rosal, D. Jaque, A. V. Ryabova, A. E. Baranchikov, S. Lange, I. Sildos, J. Kikas and V. B. Loschenov, J. Alloys Compd., 2016, 661, 312–321.
- 47 D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji and P. Huang, *Phys. Chem. Chem. Phys.*, 2015, **17**, 7100–7103.
- 48 A. Assy, H.-J. Lin, M. Schoenauer-Sebag, P. Gredin, M. Mortier, L. Billot, Z. Chea and L. Aigouy, *Sens. Actuators A*, 2016, **250**, 71–77.
- 49 E. Broch, I. Oftedal and A. Z. Pabst, *Physik. Chem. Abt. B* 1929, 3, 209-214.
- 50 P. W. Richter and C. W. F. T. Pistorius, *High Temp.-High Press.*, 1976, **8**, 53–58.
- 51 M. A. Gusowski, A. Gagor, M. Trzebiatowska-Gusowka and W. Ryba-Romanowski, J. Solid State Chem., 2006, 179, 3145– 3150.
- 52 L. P. Reshetnikova, I. B. Shaimuradov, V. A. Efremov and A. V. Novoselova, *Russ. J. Inorg. Chem.*, 1974, **19**, 647–650.
- 53 N. M. Khaidukov, P. P. Fedorov, L. N. Dem`yanets, I. P. Zibrov and V. A. Malyusov, *Russ. J. Inorg. Chem.*, 1990, **35**, 383–384.
- 54 Y. Le Fur, N.M. Khaidukov and S. Aleonard, *Acta Crystallogr. C*, 1992, **48**, 978–982.
- 55 A. Grzechnik, N. Khaidukov and K. Friese, *Dalton Trans.*, 2013, **42**, 441–447.
- 56 N. M. Khaidukov, T. G. Filatova, M. B., Ikrami and P. P. Fedorov, *Neorg. Mater.*, 1993, **29**, 992–996.
- 57 S. Aléonard, Y. Le Fur, M. F. Gorius and M. Roux, J. Solid State Chem., 1980, 34, 79–89.
- 58 E. I. Ardashnikova, M. P. Borzenkova and A. V. Novoselova, *Russ. J. Inorg. Chem.*, 1980, **25**, 833–836.
- 59 A. Grzechnik and K. Friese, Solid State Sciences, 2014, 30, 61– 67.
- 60 A. Grzechnik, J. Nuss, K. Friese, J.-Y. Gesland and M. Jansen, Z. Kristallogr. New Cryst. Struct., 2002, 217, 460–460.
- 61 A. K. Cheetham and N. Norman, *Acta Chem. Scand. Ser. A*, 1974, **28**, 55–60.
- 62 J. Wu, T. J. Boyle, J. L. Shreev, J. W. Ziller and W. J. Evans, *Inorg. Chem.* 1993, **32**, 1130–1134.
- 63 C. Bessada, A. Rakhmatullin, A. L. Rollet and D. Zanghi, J. Fluorine Chem., 2009, **130**, 45–52.
- 64 B. E. G. Lucier, K. E. Johnston, D. C. Arnold, J.-L. Lemyre, A. Beaupré, M. Blanchette, A. M. Ritcey and R. W. Schurko, J. Phys. Chem. C., 2014, 118, 1213–1228.
- 65 T. Krahl, G. Scholz and E. Kemnitz, J. Phys. Chem. C., 2014, 118, 21066–21074.
- 66 G. Scholz, M. Dreger, R. Bertram and E. Kemnitz, *Dalton Trans.*, 2015, **44**, 13522–13529.
- 67 PDF-4+ Database, The International Centre for Diffraction Data (ICDD), Newtown Square, PA, 2007.

- 68 H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65-71.
- 69 J. Rodriguez-Carvajal, Physica B., 1993, 192, 55-69.
- 70 O. B. Peersen, X. Wu, I. Kustanovich and S. O. Smith, *J. Magn. Reson. A*, 1993, **104**, 334–339.
- 71 O. B. Peersen, X. Wu and S. O. Smith, J. Magn. Reson. A, 1994, 106, 127–131.
- 72 A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi and R. G. Griffin, *J. Chem. Phys.*, 1995, **103**, 6951–6958.
- 73 J. T. Cheng and P. D. Ellis, J. Phys. Chem. 1989, 93, 2549-2555.
- 74 L. A. O'Dell, A. J. Rossini and R. W. Schurko, *Chem. Phys. Lett.* 2009, **468**, 330–335.
- 75 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, **40**, 70–76.
- 76 M. Profeta, F. Mauri and C. J. Pickard, J. Am. Chem. Soc., 2003, **125**, 541.
- 77 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 78 B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, *J. Comput. Phys.*, 1997, **131**, 233–240.
- 79 P. Pyykkö, Mol. Phys., 2008, 106, 1965–1974.
- 80 Y. A. Kharitonov, Y. A. Gorbunov and B. A. Maksimov, *Kristallogr.*, 1983, **28**, 1031–1032.
- 81 F. Loncke, D. Zverev, H. Vrielinck, N. M. Khaidukov, P. Matthys and F. Callens, *Phys. Rev. B.*, 2007, **75**, 144427.
- 82 P. Jain, H. J. Avila-Paredes, C. Gapuz, S. Sen and S. Kim, J. Phys. Chem. C, 2009, 113, 6553–6560.
- 83 S. Hayashi and K. Hayamizu, Bull. Chem. Soc. Jpn., 1990, 63, 913–919.
- 84 I. L. Moudrakovski and J. A. Ripmeester, J. Phys. Chem. B, 2007, 111, 491–495.
- 85 M. Iglesias, K. Schwarz, P. Blaha and D. Baldomir, *Phys. Chem. Miner*. 2001, **28**, 67–75.
- 86 M. Body, C. Legein, J.-Y. Buzaré, G. Silly, P. Blaha, C. Martineau and F. Calvayrac, J. Phys. Chem. A, 2007, 111, 11873–11884.
- 87 M. R. Hansen, G. K. H. Madsen, H. J. Jakobsen and J. Skibsted, J. Phys. Chem. A 2005, **109**, 1989–1997.
- 88 M. Biswal, M. Body, C. Legein, G. Corbel, A. Sadoc and F. Boucher, J. Phys. Chem. C, 2012, **116**, 11682–11693.

Multinuclear (¹⁹F, ³⁹K and ⁸⁹Y) solid state NMR and DFT studies of crystalline compounds from the KF-YF₃ binary system

Jamal Dabachi, Monique Body, Jens Dittmer, Franck Fayon, and Christophe Legein

Electronic Supporting Information

Table of contents

Fig. S1. Experimental (a) and calculated (b) XRPD diagrams of K_2YF_5 . The Bragg positions (c) of K_2YF_5 3 (above) and KY_3F_{10} (below) and the difference between experimental and calculated diagrams (d) are shown.

Fig. S2. Perspective views of K_2YF_5 structure showing the chains of YF_7 monocapped octahedra (left) and 4 corrugated sheets of KF_8 polyhedra (right).

Table S1. Atom, atomic coordinates and anisotropic $(U_{ii}, Å^2)$ or isotropic $(U_{iso}, Å^2)$ displacement 4 parameters determined from the Rietveld refinement of the K₂YF₅ XRPD pattern and bond valence sum (BVS). Uncertainties are indicated in brackets. The atomic coordinates and displacements (d, Å) after PBE-DFT optimization of the atomic positions are given in italic.

Table S2. Cell parameters of studied compounds used in DFT-PAW/GIAW calculations of NMR5parameters.

Table S3. Experimental (x, y, z) and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, 5 and corresponding atomic displacements d (Å) for γ -K₃YF₆.

Table S4. Experimental (x, y, z) and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, 6 and corresponding atomic displacements d (Å) for KYF_4 .

Table S5. Experimental (x, y, z) and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates,7and corresponding atomic displacements d (Å) for β -KY2F7.

Table S6. Experimental (x, y, z) and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, 7 and corresponding atomic displacements d (Å) for α -KY₃F₁₀.

Table S7. Experimental (x, y, z) and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, 7 and corresponding atomic displacements d (Å) for YF_3 .

Table S8. Compound, Y site and environment, minimum and average Y-F bond lengths deduced from8experimental (ES) and PBE-DFT geometry-optimized (APO) structures.

Table S9. Compound, K site and environment, minimum and average K-F bond lengths deduced from8experimental (ES) and PBE-DFT geometry-optimized (APO) structures.

Fig. S3. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of γ -K₃YF₆. The three 9 individual contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. The arrows indicate the presence of impurities.

Table S10. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{aniso} , ppm), asymmetry 9 parameters (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of γ -K₃YF₆.

Fig. S4. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of K_2YF_5 . The four individual 10 contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. The arrow indicates an impurity.

Table S11. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{aniso} , ppm), asymmetry 10 parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of K₂YF₅.

Fig. S5. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of KYF_4 . The three individual 11 contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands.

Table S12. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{aniso} , ppm), asymmetry 11 parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of KYF₄.

Fig. S6. (a) ¹⁹F "infinite spinning frequency" MAS spectrum issued from the TOP processing of the 12 conventional MAS spectrum and **(b)** Experimental (blue) and fitted (red) MAS (60 kHz) NMR spectra of β -KY₂F₇. The thirteen individual contributions to the reconstructed spectra are shown below. The asterisks indicate spinning sidebands.

Table S13.¹⁹F isotropic chemical shift (δ_{iso}, ppm), chemical shift anisotropy (δ_{aniso}, ppm), asymmetry13parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMRspectrum of β-KY₂F₇.

Fig. S7. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of KY_3F_{10} . The two individual 14 contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands.

Table S14. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{aniso} , ppm), asymmetry 14 parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of KY₃F₁₀.

Table S15. Phase, F site and multiplicity, ¹⁹F σ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW 14 calculations for APO structures of KF, γ -K₃YF₆, K₂YF₅, α -KY₃F₁₀ and YF₃.

Table S16. F site, ¹⁹F σ_{iso} (ppm) and calculated δ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW 15 calculations for APO structures of KYF₄.

Table S17. F site and multiplicity, ¹⁹F σ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW 15 calculations for APO structures of β -KY₂F₇.

Fig. S8. Experimental (blue) and fitted (red) ⁸⁹Y MAS (3 kHz) NMR spectrum of YF₃, γ -K₃YF₆, K₂YF₅, KYF₄, 16 β -KY₂F₇ and α -KY₃F₁₀. The individual contributions to the reconstructed spectrum are shown below. The arrows indicate the presence of KYF₄ as impurity.

Table S18. Phase, NMR line, ⁸⁹Y δ_{iso} (ppm), line width (ppm) and relative intensity (I, %) determined from 17 reconstruction of the ⁸⁹Y NMR spectra of KF-YF₃ binary system.

Table S19. Phase, Y site, ⁸⁹Y σ_{iso} (ppm) values issued from DFT-GIPAW calculations, corresponding $\delta_{iso,cal}$ 17 values (ppm), and average Y-F bond lengths for APO structures.

Fig. S9. Experimental (black) and fitted (red) 39 K MAS NMR of KF and α -KY₃F₁₀.

Table S20. Phase, K site, 39 K V_{ii} (10²¹V/m²) and Euler angle values issued from DFT-GIPAW calculations for 18 APO structures.

18

Table S21. F-K1-F angles (°) between two adjacent K-F bonds for $K1F_6$ octahedron in APO structure of γ -K₃YF₆.

Fig. S10 Experimental (black) and theoretical ³⁹K MAS NMR spectra of K_2YF_5 , γ - K_3YF_6 , β - KY_2F_7 and γ - K_3YF_6 19 Theoretical spectra are obtained using CASTEP quadrupolar parameter values with (blue) or without (dashed red) δ_{csa} and Euler angles. The δ_{iso} values were chosen to obtain the best possible agreement with the experimental spectra.

1. Structural refinement of K₂YF₅ structure

The K₂YF₅ structure was initially refined in the orthorhombic Pna2₁ (33) space group,¹ however a structural refinement on powder XRD was later achieved in the orthorhombic Pnma (62) space group.² This space group was then confirmed by an EPR study, from the Y site symmetry.³ However, this structure presents inconsistent average Y-F bond lengths. A Rietveld refinement has been achieved using (i) the cell parameters of K₂YF₅ determined in the Pna2₁ space group¹ and interchanging a and b values and (ii) the atomic positions of K₂GdF₅⁴ interchanging the y and z atomic positions.⁴ The background level was modelled manually. Anisotropic displacement parameters (ADP) for yttrium and potassium, isotropic displacement parameters (IDP) for fluorine were also refined. The presence of KY₃F₁₀ as impurity in the K₂YF₅ sample was taken into account for the final Rietveld refinements (Fig. S1). Satisfactory reliability factors were obtained: R_{wp} = 0.12, R_{exp} = 0.041, R_{Bragg} = 0.055. The refined cell parameters are: a = 10.8002(3) Å, b = 7.2707(2) Å and c = 6.6010(2) Å. These values are similar to those of K₂YF₅ in Pna2₁ space group.¹ Atomic positions, ADP or IDP and bond valence sum^{5,6} are gathered in Table S1.

Fig. S2. Experimental (a) and calculated (b) XRPD diagrams of K_2YF_5 . The Bragg positions (c) of K_2YF_5 (above) and KY_3F_{10} (below) and the difference between experimental and calculated diagrams (d) are shown.

In this structure, the yttrium atoms are hepta-coordinated by fluorine atoms forming monocaped octahedra (Fig. S2a). These YF₇ polyhedra share opposite F2-F2 edges and form infinite chains along the b axis. Each potassium atom is coordinated to eight fluorine atoms. These KF₈ polyhedra are connected by theirs (F1, F3, F4) and (F2, F3, F4) faces along the b and c directions respectively, forming corrugated sheets in the (b, c) plane. These sheets are linked together in the a direction by shared F1-F1 edges (Fig. S2b) forming distorted hexagonal circles in the (a, b) plane.

Fig. S2. Perspective views of K_2YF_5 structure showing the chains of YF_7 monocapped octahedra (left) and corrugated sheets of KF_8 polyhedra (right).

Table S1. Atom, atomic coordinates and anisotropic $(U_{ii}, Å^2)$ or isotropic $(U_{iso}, Å^2)$ displacement parameters determined from the Rietveld refinement of the K_2YF_5 powder XRD pattern and bond valence sum (BVS). Uncertainties are indicated in brackets. The atomic coordinates, BVS and displacements (d, Å) after PBE-DFT optimization of the atomic positions are given in italic.

Atom	Site	x	У	Z	U ₁₁	U ₂₂	U ₃₃	U _{iso}	BVS	d
Y1	4c	0.5036(7)	1/4	0.0646(5)	0.008(8)	0.007(3)	0.017(2)		2.61	
		0.50316	1/4	0.06562					2.90	0.008
K1	8d	0.6699(4)	0.4938(14)	0.5331(11)	0.019(7)	0.024(2)	0.020(2)		1.06	
		0.67216	0.49208	0.53027					1.03	0.033
F1	4c	0.5103 (32)	1/4	0.4053(23)				0.036(6)	0.90	
		0.51258	1/4	0.39711					1.05	0.059
F2	8d	0.4270(12)	0.4617(19)	0.8430(20)				0.034(5)	0.92	
		0.42389	0.46426	0.85199					0.96	0.071
F3	4c	0.6748(17)	1/4	0.8696(27)				0.024(2)	0.85	
		0.66855	1/4	0.87329					0.90	0.072
F4	4c	0.3035(18)	1/4	0.1627(30)				0.021(2)	0.99	
		0.30720	1/4	0.16380					1.03	0.041

2. DFT calculations

Table S2. Cell parameters of studied compounds used in DFT-PAW/GIPAW calculations of NMR parameters.

Compounds	Space group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Ref.	ICSD
KF	Fm-3m (225)	5.367	5.367	5.367	90	90	90	[7]	52241
γ-K₃YF ₆	P2 ₁ /n (14)	6.3376	6.5435	9.0390	90	90.65	90	[8]	416296
K₂YF₅	Pnma (62)	10.800	7.271	6.601	90	90	90	this work	
KYF₄	P3 ₂ (145)	14.163	14.163	10.190	90	90	120	[9]	187000
β-KY ₂ F ₇	Cm (8)	14.291	7.979	11.984	90	125.14	90	[10]	n.a. *
α -KY ₃ F ₁₀	Fm-3m (225)	11.553	11.553	11.553	90	90	90	[11]	409643
YF ₃	Pnma (62)	6.3537	6.8545	4.3953	90	90	90	[12]	6023

*from NIMS Materials Database.

_

Table S3. Experimental $(x, y, z)^8$ and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, and corresponding atomic displacements $d(\text{\AA})$ for γ -K₃YF₆.

	,	,	5	1		,, 1 3	0	
Atoms	Sites	х	у	Z	x'	y'	z′	d
Y1	2a	0	0	0	0	0	0	0.000
К1	2b	1/2	1/2	0	1/2	1/2	0	0.000
К2	4e	0.01253	0.54757	-0.25335	0.01039	0.54995	-0.25692	0.038
F1	4e	0.2205	0.3255	0.5466	0.21750	0.32421	0.54760	0.023
F2	4e	0.3332	0.7726	0.5682	0.33185	0.77495	0.56926	0.020
F3	4e	0.3905	0.5574	0.2763	0.38896	0.55825	0.27443	0.020

Atoms	Sites	х	у	Z	x′	y'	z	d
Y1	3a	0.13055	0.89040	0.66619	0.13057	0.88960	0.66631	0.011
Y2	3a	0.28078	0.73037	0.67411	0.28230	0.73136	0.67532	0.023
Y3	3a	0.78105	0.20748	0.65710	0.78015	0.20640	0.65639	0.016
Y4	3a	0.94103	0.05768	0.66979	0.94290	0.05948	0.67179	0.033
Y5	3a	0.45274	0.54494	0.67143	0.45230	0.54361	0.67167	0.017
Y6	3a	0.60289	0.38552	0.65198	0.60393	0.38608	0.65113	0.015
К1	3a	0.26672	0.21929	0.64643	0.26557	0.21639	0.64610	0.036
К2	3a	0.78083	0.71936	0.67589	0.78072	0.71902	0.67668	0.009
КЗ	3a	0.61130	0.87785	0.65016	0.61393	0.87659	0.64989	0.032
К4	3a	0.10466	0.39538	0.67984	0.10480	0.39505	0.67929	0.007
К5	3a	0.45608	0.06437	0.68040	0.45673	0.06190	0.68175	0.034
К6	3a	0.94765	0.56221	0.65014	0.94750	0.56181	0.65011	0.005
F1	3a	0.1309	0.9354	0.8839	0.13171	0.93463	0.88388	0.011
F2	3a	0.0702	0.8784	0.4569	0.06965	0.87876	0.45643	0.008
F3	3a	0.20735	0.59552	0.5238	0.20999	0.59487	0.52682	0.046
F4	3a	0.3388	0.72858	0.3409	0.33885	0.72959	0.34133	0.015
F5	3a	0.7377	0.2036	0.4403	0.73832	0.20484	0.43926	0.019
F6	3a	0.78924	0.2701	0.8667	0.78958	0.26944	0.86562	0.014
F7	3a	-0.0014	0.05974	0.3346	-0.00170	0.06057	0.33414	0.011
F8	3a	0.0761	-0.04768	0.1866	0.07730	-0.04489	0.18994	0.048
F9	3a	0.3917	0.5369	0.4623	0.39171	0.53754	0.46130	0.014
F10	3a	0.4571	0.5913	0.8881	0.45737	0.59018	0.88852	0.015
F11	3a	0.54783	0.29041	0.4623	0.54687	0.29080	0.46156	0.014
F12	3a	-0.2663	-0.60517	0.3190	-0.26359	-0.60531	0.32125	0.044
F13	3a	0.7667	0.72828	0.9313	0.76481	0.72804	0.93100	0.025
F14	3a	0.8094	0.72448	0.4231	0.80721	0.72328	0.42174	0.030
F15	3a	0.24799	0.22319	0.3903	0.24765	0.22230	0.38888	0.018
F16	3a	0.8089	0.0749	0.5653	0.80962	0.07467	0.56558	0.009
F17	3a	0.13261	0.39378	0.4279	0.13070	0.39406	0.42795	0.025
F18	3a	0.09371	0.40422	0.9355	0.09194	0.40421	0.93369	0.031
F19	3a	0.15200	0.75538	0.5730	0.15281	0.75494	0.57202	0.014
F20	3a	0.5900	0.88469	0.3935	0.59043	0.88409	0.39292	0.010
F21	3a	0.93653	0.5753	0.3960	0.93893	0.57789	0.39602	0.035
F22	3a	-0.4102	-0.94313	0.2380	-0.40828	-0.94248	0.23808	0.024
F23	3a	0.4854	0.06895	0.4277	0.48427	0.06930	0.42682	0.017
F24	3a	0.4524	0.08634	0.9383	0.45247	0.08646	0.93808	0.003

Table S4. Experimental $(x, y, z)^9$ and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, and corresponding atomic displacements d (Å) for KYF₄.

			- · J · · ·			/]	2 /	
Atoms	Sites	х	у	Z	x'	y′	z'	d
Y1	4b	0.1129	0.25956	0.387	0.11967	0.25801	0.38897	0.086
Y2	4b	0.1137	0.2367	0.7052	0.11499	0.2367	0.70614	0.015
Y3	4b	0.1186	0.2377	0.0689	0.11868	0.23697	0.06873	0.006
Y4	2a	0.3575	0	0.7109	0.35845	0	0.71019	0.011
Y5	2a	0.876	0	0.0684	0.87629	0	0.06596	0.027
K1	2a	0.3455	0	0.0423	0.35146	0	0.04628	0.070
K2	2a	0.3792	0	0.4001	0.38251	0	0.40175	0.039
КЗ	2a	0.8549	0	0.3582	0.85222	0	0.36055	0.032
K4	2a	0.8798	0	0.7377	0.8829	0	0.73455	0.038
F1	4b	0.003	0.239	0.161	0.00028	0.23814	0.15108	0.102
F2	4b	0.018	0.23	0.476	0.01565	0.23302	0.47072	0.057
F3	4b	0.115	0.179	0.885	0.11689	0.17755	0.88809	0.033
F4	4b	0.221	0.239	0.306	0.22107	0.2335	0.30442	0.047
F5	4b	0.238	0.232	0.631	0.2357	0.23672	0.62591	0.062
F6	4b	0.277	0.331	0.888	0.27962	0.33276	0.88856	0.037
F7	4b	0.295	0.327	0.126	0.29213	0.32708	0.12888	0.035
F8	4b	0.447	0.169	0.645	0.44431	0.17024	0.64859	0.039
F9	4b	0.453	0.165	0.889	0.45332	0.16844	0.88739	0.032
F10	2a	0	0	0	0.00324	0	0.00503	0.051
F11	2a	0.015	0	0.294	0.0132	0	0.29978	0.058
F12	2a	0.017	0	0.64	0.01116	0	0.6365	0.069
F13	2a	0.225	0	0.763	0.23103	0	0.77255	0.096
F14	2a	0.227	0	0.14	0.22229	0	0.13874	0.060
F15	2a	0.227	0	0.468	0.22432	0	0.47559	0.076
F16	2a	0.514	0	0.323	0.51388	0	0.31332	0.115
F17	2a	0.614	0	0.641	0.61403	0	0.65144	0.125
F18	2a	0.63	0	0.118	0.6221	0	0.12259	0.046
F19	2a	0.728	0	0.472	0.7256	0	0.46301	0.092

Table S5. Experimental $(x, y, z)^{10}$ and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, and corresponding atomic displacements d(A) for β -KY₂F₇.

Table S6. Experimental $(x, y, z)^{11}$ and PBE-DFT geometry-optimized (x', y', z') fractional atomic coordinates, and corresponding atomic displacements d (Å) for α -KY₃F₁₀.

Atoms	Sites	х	у	Z	x'	y'	z'	d
Y1	24e	0.24035	0	0	0.24035	0	0	0.000
К1	8c	1/4	1/4	1/4	1/4	1/4	1/4	0.000
F1	32f	0.11184	0.11184	0.11184	0.11230	0.11230	0.11230	0.009
F2	48i	1/2	0.16574	0.16574	1/2	0.16585	0.16585	0.002

Table S7. Experimental $(x, y, z)^{12}$ and PBE-DFT geometry-optimized $(x', y', z')^{13}$ fractional atomic coordinates, and corresponding atomic displacements d (Å) for YF₃.

Atoms	Sites	х	у	Z	x'	y'	z′	d
Y1	4c	0.3673	1/4	0.0591	0.3687	1/4	0.0604	0.011
F1	4c	0.5227	1/4	0.5910	0.5231	1/4	0.5906	0.003
F2	8d	0.1652	0.06430	0.3755	0.1655	0.0629	0.3775	0.013

				<u>^</u>		
			Bond lengt	ns (Å)		
Compounds	sites	Environment	Y-F (Å)		<y-f> (Å)</y-f>	
			ES	APO	ES	APO
γ-K ₃ YF ₆	Y1	YF ₆	2.1531	2.1751	2.1610	2.1814
K ₂ YF ₅	Y1	YF ₇	2.2502	2.1905	2.2762	2.2440
KYF ₄	Y1	YF ₇	2.1644	2.1612	2.2406	2.2431
	Y2	YF ₇	2.2038	2.2086	2.2469	2.2473
	Y3	YF ₇	2.1532	2.1606	2.2420	2.2441
	Y4	YF ₇	2.2104	2.2160	2.2455	2.2474
	Y5	YF ₇	2.1561	2.1625	2.2403	2.2436
	Y6	YF ₇	2.2076	2.2103	2.2445	2.2487
β-KY ₂ F ₇	Y1	YF ₈	2.1674	2.2034	2.3100	2.3101
	Y2	YF ₈	2.1871	2.1985	2.2501	2.2741
	Y3	YF ₈	2.1617	2.1880	2.2942	2.2716
	Y4	YF ₈	2.1905	2.1999	2.2956	2.2799
	Y5	YF ₈	2.1545	2.1973	2.2748	2.2824
α -KY ₃ F ₁₀	Y1	YF ₈	2.2008	2.2013	2.2776	2.2791
YF ₃	Y1	YF9	2.2810	2.2751	2.3207	2.3211

Table S8. Compound, Y site and environment, minimum and average Y-F bond lengths deduced from experimental (ES) and PBE-DFT geometry-optimized (APO) structures.

Table S9. Compound, K site and environment, minimum and average K-F bond lengths deduced from experimental (ES) and PBE-DFT geometry-optimized (APO) structures.

			Bond len	igths (Å)		
Compounds	sites	Environment	F-K (Å)		<f-k> (Å)</f-k>)
			ES	APO	ES	APO
KF	K1	KF ₆	2.6835	/	2.6835	/
γ-K₃YF ₆	K1	KF ₆	2.5794	2.5637	2.6188	2.6049
	K2	KF ₅	2.6376	2.6311	2.8433	2.8330
K ₂ YF ₅	K1	KF ₈	2.6122	2.6155	2.7382	2.7472
KYF ₄	K1	KF ₈	2.6004	2.6021	2.7719	2.7731
	К2	KF ₈	2.5494	2.5492	2.7870	2.7800
	КЗ	KF ₈	2.5874	2.5847	2.7942	2.7931
	K4	KF ₈	2.5989	2.5879	2.7804	2.7674
	K5	KF ₈	2.5885	2.6024	2.7524	2.7421
	K6	KF ₈	2.6064	2.6075	2.7898	2.7892
β-KY₂F7	K1	KF₅	2.5537	2.6438	2.7308	2.6859
	K2	KF ₁₀	2.5717	2.6210	2.7208	2.7436
	КЗ	KF ₁₀	2.6469	2.6525	2.7397	2.7229
	K4	KF ₅	2.5721	2.6547	2.6832	2.6925
α-KY ₃ F ₁₀	K1	KF₄	2.7646	2.7555	2.7646	2.7555

3. ¹⁹F MAS NMR of KF-YF₃ binary system

All spectra were reconstructed with the DMFIT¹⁴ software.

Fig. S3. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of γ -K₃YF₆. The three individual contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. The arrows indicate the presence of impurities.

Table S10. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{csa} , ppm), asymmetry parameters (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of γ -K₃YF₆.

Line	δ _{iso} (±0.1)	δ _{csa} (±5)	η (±0.1)	Width (±0.2)	Intensity (±1)
1	-82.8	-50	0	11.8	33.4
2	-87.5	-50	0	6.1	33.8
3	-91.5	-45	0	12.6	32.8

Fig. S4. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of K_2YF_5 . The four individual contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. The arrow indicates an impurity.

Table S11. ¹⁹*F* isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{csa} , ppm), asymmetry parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹*F* NMR spectrum of K_2 YF₅.

Line	δ _{iso} (±0.1)	δ _{csa} (±10)	η (±0.1)	Width (±0.2)	Intensity (±1)
1	-84.6	-110	0.75	10.0	20.0
2	-79.8	-60	0.65	8.0	40.0
3	-77.0	-100	0.60	16.0	20.0
4	-67.2	-130	0.70	8.1	20.0

Fig. S5. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of KYF_4 . The three individual contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands.

Table S12. ¹⁹F isotropic chemical shift (δ_{iso} , ppm), chemical shift anisotropy (δ_{cso} , ppm), asymmetry parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of KYF₄.

Line	δ _{iso} (±0.1)	δ _{csa} (±10)	η (±0.1)	Width (±0.2)	Intensity (±1)
1	-72.7	-140	0.5	12.5	50.0
3	-65.4	-170	0.3	10.3	25.0
2	-58.4	-180	0.2	12.5	25.0

Fig. S6. (top) ¹⁹F "infinite spinning frequency" MAS spectrum issued from the TOP processing of the conventional MAS spectrum and (bottom) Experimental (blue) and fitted (red) MAS (60 kHz) NMR spectra of β -KY₂F₇. The thirteen individual contributions to the reconstructed spectra are shown below. The asterisks indicate spinning sidebands.

 β -KY₂F₇ structure contains ten F crystallographic sites of multiplicity 2 and nine of multiplicity 4, leading to expected relative intensities of 3.6 and 7.1 % respectively.¹⁰ During spectrum reconstruction, the relative intensities of NMR lines must correspond to ca. 3.6, 7.1 % or any linear combination of these values.

First, the TOP processing was applied to the ¹⁹F MAS (60 kHz, 17.6 T) NMR spectrum, to obtain an "infinite spinning frequency" MAS spectrum.¹⁵ Its careful reconstruction was achieved using thirteen NMR lines and allows us to determine precisely for each the corresponding δ_{iso} , width and relative intensity values.

The reconstruction of the 60 kHz MAS spectrum was then achieved, keeping the δ_{iso} , and width values previously determined, and adjusting the remaining parameters *i.e.* amplitude, chemical shift anisotropy and asymmetry parameters.

Table S13. ¹⁹F isotropic chemical shift (δ_{isor} ppm), chemical shift anisotropy (δ_{csar} ppm), asymmetry parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of β -KY₂F₇.

Line	δ _{iso} (±0.1)	δ _{csa} (±10)	η (±0.1)	Width (±0.2)	Intensity (±1)
1	-81.8	-45	0	0.6	10.6
2	-81.2	-48	0	0.5	3.3
3	-81.0	-58	0.5	0.7	7.1
4	-76.2	-53	0	0.8	7.2
5	-63.5	-87	0	1.7	7.2
6	-62.5	-112	0.7	1.0	7.1
7	-61.6	-117	0	1.0	7.1
8	-59.8	-78	0	0.6	7.2
9	-52.8	-85	0	0.6	14.3
10	-46.6	-125	0.7	1.3	7.2
11	-44.4	-132	0.75	1.9	7.3
12	-43.4	-136	0.8	1.9	7.2
13	-41.8	-140	0.65	1.9	7.2

Fig. S7. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of KY_3F_{10} . The two individual contributions to the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands.

Table S14. ¹⁹F isotropic chemical shift (δ_{isor} ppm), chemical shift anisotropy (δ_{csar} , ppm), asymmetry parameter (η), line width and relative intensity (%) determined from reconstruction of the ¹⁹F NMR spectrum of KY₃F₁₀.

Line	δ _{iso} (±0.1)	δ _{csa} (±10)	η (±0.1)	Width (±0.2)	Intensity (±1)
1	-86.7	28	0.1	0.7	38.9
2	-37.8	-140	0.6	3.7	61.1

Phase	F site	Mult.	σ_{iso}	σ_{csa}	η
KF	F1	4b	268.1	0	0
	F2	4e	218.6	150.1	0.17
γ-K₃YF ₆	F1	4e	210.3	151.2	0.20
	F3	4e	207.7	134.0	0.25
	F3	4c	205.8	129.1	0.28
	F2	8d	198.3	57.1	0.78
K ₂ TF ₅	F4	4c	197.1	93.1	0.86
	F1	4c	177.0	105.3	0.08
	F1	32f	212.2	-1.2	0
α-κτ ₃ - ₁₀	F2	48i	143.6	174.9	0.61
YF ₃	F1	4c	181.3	98.1	0.66
	F2	8d	170.0	-40.8	0.99

Table S15. Phase, F site and multiplicity, ¹⁹F σ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW calculations for APO structures of KF, γ -K₃YF₆, K₂YF₅, α -KY₃F₁₀ and YF₃.

F site		σ_{iso}	δ_{iso}	σ_{csa}	η
F19	2Y-2K	195.2	-76.4	44.0	0.87
F10	2Y-2K	194.6	-76.0	146.0	0.33
F1	2Y-2K	193.8	-75.4	145.5	0.34
F9	2Y-2K	193.1	-74.9	159.8	0.09
F16	2Y-2K	193.0	-74.8	44.5	0.73
F2	2Y-2K	192.6	-74.5	157.6	0.12
F5	2Y-2K	192.3	-74.3	145.5	0.37
F6	2Y-2K	191.0	-73.3	162.8	0.06
F23	2Y-2K	191.0	-73.3	48.8	0.69
F20	1Y-3K	189.2	-72.0	154.9	0.23
F24	1Y-3K	186.9	-70.3	153.9	0.22
F22	2Y-2K	186.7	-70.2	45.2	0.59
F15	1Y-3K	186.3	-69.9	152.4	0.18
F14	2Y-2K	184.1	-68.2	48.5	0.63
F17	2Y-2K	181.9	-66.6	46.2	0.51
F13	1Y-3K	180.1	-65.3	141.7	0.33
F21	1Y-3K	179.6	-64.9	141.0	0.28
F18	1Y-3K	178.9	-64.4	138.6	0.29
F12	2Y-1K	174.7	-61.3	169.2	0.25
F8	2Y-1K	173.1	-60.1	144.5	0.20
F7	2Y-1K	173.0	-60.0	177.2	0.23
F3	2Y-1K	172.5	-59.7	142.8	0.22
F11	2Y-1K	171.1	-58.6	144.9	0.21
F4	2Y-1K	171.1	-58.6	184.1	0.23

Table S16. F site, ¹⁹F σ_{iso} (ppm) and calculated δ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW calculations for APO structures of KYF₄.

^{*a*} calculated using the linear correlation: ¹⁹F $\delta_{iso,calc}$ = -0.74(2) σ_{iso} + 68(5).

Table S17. F site and multiplicity, ¹⁹F σ_{iso} (ppm), σ_{csa} (ppm) and η values issued from DFT-GIPAW calculations for APO structures of β -KY₂F₇.

F site	Mult	σ_{iso}	σ_{csa}	η
F13	2a	207.1	19.3	0.42
F10	2a	205.1	21.7	0.53
F1	4b	204.7	14.0	0.78
F5	4b	203.0	17.3	0.77
F11	2a	195.4	24.8	0.91
F15	2a	195.1	-27.2	0.68
F12	2a	175.7	66.4	0.63
F7	4b	174.9	141.3	0.56
F14	2a	174.7	59.5	0.64
F8	4b	170.1	151.5	0.57
F19	2a	167.5	57.5	0.42
F2	4b	166.4	88.5	0.42
F16	2a	166.4	52.2	0.34
F4	4b	164.9	91.7	0.26
F17	2a	156.5	164.0	0.52
F18	2a	153.3	169.2	0.50
F3	4b	150.9	171.7	0.52
F9	4b	149.6	172.7	0.61
F6	4b	148.4	174.5	0.60

4. ⁸⁹Y MAS NMR of KF-YF₃ binary system

Fig. S8. Experimental (blue) and fitted (red) ⁸⁹Y MAS (3 kHz) NMR spectrum of YF₃, γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇, and α -KY₃F₁₀. The individual contributions to the reconstructed spectrum are shown below. The arrows indicate the presence of KYF₄ as impurity.

	-	-		
Phase	Line	δ _{iso} (±0.5)	Width (±0.2)	l (±1)
γ-K ₃ YF ₆	1	86.9	3.9	100
K ₂ YF ₅	1	29.7	10.5	100
KYF ₄	1	-28.5	10.3	50.4
	2	2.1	11.0	49.5
β-KY ₂ F ₇	1	-60.6	2.6	14.9
	2	-49.7	3.7	73.4
	3	-47.6	3.4	11.6
α -KY ₃ F ₁₀	1	-50.8	6.1	100
YF3	1	-107.0	2.7	100

Table S18. Phase, NMR line, ⁸⁹Y δ_{iso} (ppm), line width (ppm) and relative intensity (I, %) determined from reconstruction of the ⁸⁹Y NMR spectra of KF-YF₃ binary system.

Table S19. Phase, Y site, ⁸⁹Y σ_{iso} (ppm) values issued from DFT-GIPAW calculations, corresponding $\delta_{iso,cal}$ values (ppm), and average Y-F bond lengths for APO structures.

0-		,	, ,	
Phase	Y site	σ _{iso} (ppm)	δ _{iso,cal} (ppm)	d _{Y-F} (Å)
γ -K ₃ YF ₆	Y1	2531.1	89.8	2.1814
K_2YF_5	Y1	2583.5	41.4	2.2440
KYF ₄	Y2	2662.8	-31.8	2.2431
	Y6	2662.0	-31.0	2.2473
	Y4	2660.8	-29.9	2.2441
	Y3	2631.4	-2.8	2.2474
	Y5	2631.8	-3.2	2.2436
	Y1	2629.1	-0.7	2.2487
β -KY ₂ F ₇	Y2 (4b)	2681.2	-48.7	2.3101
	Y1 (4b)	2678.2	-46.0	2.2741
	Y3 (4b)	2677.4	-45.2	2.2716
	Y4 (2a)	2674.5	-42.6	2.2799
	Y5 (2a)	2672.4	-40.6	2.2824
α -KY ₃ F ₁₀	Y1	2682.0	-49.5	2.2791
YF ₃	Y1	2732.9	-96.5	2.3211

5. ³⁹K NMR

Fig. S9 Experimental (black) and fitted (red) 39 K MAS (3 kHz) NMR of KF and α -KY $_3$ F $_{10}$.

Table S20. Phase, K site, ${}^{39}KV_{ii}$ ($10^{21}V/m^2$) and Euler angle values issued from DFT-GIPAW calculations for APO structures.

Phase	K site	V _{xx}	V _{yy}	V _{zz}	α (°)	β (°)	γ (°)
γ-K ₃ YF ₆	K1	0.267	0.743	-1.010	-94	15	88
	K2	0.408	0.916	-1.324	-84	8	-132
K₂YF₅	K1	-0.207	-1.149	1.356	20	82	-155
KYF ₄	K1	-0.512	-1.511	2.023	137	1	37
	K2	-0.798	-1.914	2.712	81	172	97
	КЗ	-0.607	-1.813	2.421	96	174	-83
	K4	-0.557	-1.583	2.140	124	6	-97
	K5	-0.577	-1.593	2.170	-81	3	-109
	K6	-0.848	-1.559	2.407	111	9	101
β-KY ₂ F ₇	K1	0.238	0.522	-0.760	-90	180	90
	K2	0.310	0.800	-1.111	0	8	180
	КЗ	0.187	0.567	-0.754	180	170	180
	К4	0.366	0.485	-0.851	90	5	-90

Table S21. F-K1-F angles (°) between two adjacent K-F bonds for $K1F_6$ octahedron in APO structure of γ -K₃YF₆.

atom	atom	angle
F1	F3	83.6
F1	F3	96.4
F1	F2	90.2
F1	F2	89.8
F1	F3	96.4
F1	F3	83.6
F1	F2	89.8
F1	F2	90.2
F3	F2	85.2
F3	F2	94.8
F3	F2	94.8
F3	F2	85.2

Fig. S10 Experimental (black) and theoretical ³⁹K MAS NMR spectra of γ -K₃YF₆, K₂YF₅, β -KY₂F₇ and KYF₄. Theoretical spectra are obtained using CASTEP quadrupolar parameter values with (blue) or without (dashed red) δ_{csa} and Euler angles.

References

- [1] Y. A. Kharitonov, Y. A. Gorbunov and B. A. Maksimov, *Kristallogr.*, 1983, 28, 1031–1032.
- [2] N. M. Khaidukov, P. P. Fedorov, L. N. Dem`yanets, I. P. Zibrov and V. A. Malyusov, *Russ. J. Inorg. Chem.*, 1990, **35**, 383–384.

- [4] K. Güde and C. Hebecker, Z. Naturforsh., 1985, 40B, 864–867.
- [5] I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.
- [6] N. E. Brese and M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci., 1991, 47, 192–197.
- [7]G. Finch and S. Fordham, Proc. Phys. Soc., 1936, 48, 85–94.

[8] M. A. Gusowski, A. Gągor, M. Trzebiatowska-Gusowska, W. Ryba-Romanowski, *J. Solid State Chem.*, 2006, **179**, 3145–3150.

[9] A. Grzechnik, N. Khaidukovb, K. Friesec, Dalton Trans., 2013, 42, 441–447.

[10] E. I. Ardashnikova, M. P. Borzenkova and A. V. Novoselova, Russ. J. Inorg. Chem., 1980, 25, 833-836.

- [11] A. Grzechnik, J. Nuss, K. Friese, J.-Y. Gesland, M. Jansen, Z. Kristallogr. NCS., 2002, 217, 460.
- [12] A. K. Cheetham, N. Norman, Acta Chem. Scand., Ser. A. 1974, 28, 55–60.

[13] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte and F. Boucher, *Phys. Chem. Chem. Phys.*, 2011, **13**, 18539–18550.

[14] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, **40**, 70–76.

[15] D. Massiot, J. Hiet, N. Pellerin, F. Fayon, M. Deschamp, S. Steuernagel, P. J. Grandinetti, *J. Magn. Reson.* 2006, **181**, 310–315.

^[3] F. Loncke, D. Zverev, H. Vrielinck, N. M. Khaidukov, P. Matthys and F. Callens, *Phys. Rev. B.*, 2007, **75**, 144427.
2.3 Conclusion

Cette étude illustre l'efficacité des méthodes PAW [1,2] et GIPAW [3] pour le calcul des paramètres RMN des fluorures inorganiques ordonnés. Sans surprise, les effets des optimisations sont faibles pour les structures déterminées précisément, c'est à dire sur monocristaux. L'accord entre paramètres RMN expérimentaux et calculés est bon pour les 3 noyaux étudiés, ¹⁹F, ³⁹K et ⁸⁹Y, ce qui nous a permis d'attribuer de façon certaine des raies RMN de ¹⁹F, ⁸⁹Y et ³⁹K à leurs sites cristallographiques.

Des corrélations linéaires entre valeurs expérimentales de δ_{iso} et calculées de σ_{iso} ont alors été établies pour ces trois noyaux : ¹⁹F $\delta_{iso,calc} = -0.74\sigma_{iso} + 68$, ⁸⁹Y $\delta_{iso,calc} = -0.924\sigma_{iso} + 2428$ et ³⁹K $\delta_{iso,calc} = -0.869\sigma_{iso} + 1054$. Les pentes de ces corrélations s'écartent plus ou moins de la valeur théorique de -1 et s'avèrent toutes différentes. Plus la plage de valeurs de δ_{iso} considérées est grande et plus l'effet de la pente sera important sur les valeurs de $\delta_{iso,calc}$. Il convient donc de s'assurer que la corrélation linéaire choisie est adaptée aux composés étudiés. Ainsi, les corrélations établies pour les noyaux ¹⁹F et ³⁹K déterminées ont permis d'obtenir des spectres RMN théoriques de KYF₄ (¹⁹F et ³⁹K) et β -KY₂F₇ (¹⁹F) en bon accord avec les spectres expérimentaux.

D'autre part, la fonctionnelle d'échange-corrélation PBE [19] utilisée donne en général de bons résultats mais elle sous-estime nettement la bande interdite pour certains noyaux tels que Ca, Sc, La, et Ag [14,20]. Il reste donc important de vérifier que les noyaux étudiés sont correctement décrits par la fonctionnelle d'échange-corrélation choisie.

Références

[1] H.M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter 57 (1998) 14690–14697.

[2] P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.

[3] C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[4] T. Charpentier, Solid State Nucl. Magn. Reson. 40 (2011) 1–20.

[5] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R.

Yates, F. Mauri, C. J. Pickard, Chem. Rev. 112 (2012) 5733-5779.

[6] S. E. Ashbrook, D. M. Dawson, Acc. Chem. Res. 46 (2013) 1964–1974.

[7] G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, Solid State Nucl. Magn. Reson. 25 (2004) 241-251.

[8] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, Inorg. Chem. 43 (2004) 2474–2485.

[9] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, J. Phys. Chem. B 109 (2005) 10270–10278.

[10] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, P. Blaha, J. Solid State Chem. 178 (2005) 3655–3661.

[11] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, P. Blaha, Chem. Phys. Lett. 424 (2006) 321–326.

[12] C. Martineau, M. Body, C. Legein, J.-Y. Buzaré, G. Silly, F. Fayon, Inorg. Chem. 45 (2006) 10215–10223.

[13] M. Body, C. Legein, J.-Y. Buzaré, G. Silly, P. Blaha, C. Martineau, F. Calvayrac, J. Phys. Chem. A 111 (2007) 11876–11884.

[14] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[15] M. Biswal, M. Body, C. Legein, G. Corbel, A. Sadoc, F. Boucher, J. Phys. Chem. C 116 (2012) 11682–11693.

[16] M. Biswal, M. Body, C. Legein, A. Sadoc, F. Boucher, J. Solid State Chem. 207 (2013) 208–217.

[17] C. Martineau, C. Legein, M. Body, O. Péron, B. Boulard, F. Fayon, J. Solid State Chem. 199 (2013) 326–333.

[18] A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot, F. Fayon, Solid State Nucl. Magn. Reson. 59-60 (2014) 1–7.

[19] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

[20] M. Biswal, Thèse de Doctorat, Université du Maine, 2013.

Chapitre III Ré-affinement structural d'oxyfluorures ordonnés : DRX sur poudre, RMN du solide de ¹⁹F et ¹³⁹La et calculs DFT des paramètres RMN de deux variétés de LaOF

3.1 Introduction

Alors que la RMN de ¹⁹F peut permettre d'identifier et quantifier les divers environnements locaux des atomes de fluor et donc de vérifier rapidement le caractère ordonné ou désordonné de la répartition des atomes de fluor et d'oxygène dans les oxyfluorures inorganiques cristallisés, elle reste peu utilisée [1-12]. De plus, au début de cette thèse, la méthode GIPAW [13] pour la modélisation des paramètres RMN n'avait été appliquée qu'une fois à ce type de composés [10].

Dans ce chapitre est reportée l'étude de deux variétés de l'oxyfluorure du lanthane, LaOF, abondamment étudié pour ses propriétés mais qui n'avait quasiment pas été étudié par RMN du solide. Les structures des variétés rhomboédrique (β -LaOF) et tétragonale (t-LaOF) avaient été déterminées par DRX sur poudre par Zachariasen [14]. Il avait choisi les positions de F et O, en supposant que les distances La-O sont plus longues que les distances La-F, conformément aux valeurs de rayons ioniques des ions O²⁻ et F⁻ [15]. Nous pouvons l'avouer dans cette introduction, nous avons été surpris de constater que l'effet de l'optimisation de ces structures conduisait à des distances La-O plus courtes que les distances La-F, *i. e.*, à inverser les positions de O et F. Finalement, ceci n'a rien de surprenant et une meilleure connaissance des principes qui soustendent les calculs de valence de liaison ("bond valence") [16,17] et une consultation plus rigoureuse de la littérature auraient permis d'éviter cette "surprise".

La publication [12] tirée de ce travail est reportée en 3.2.

3.2 DRX sur poudre, RMN du solide de ¹⁹F et ¹³⁹La et calculs DFT des paramètres RMN de deux variétés de LaOF

Dalton Transactions

PAPER

Cite this: *Dalton Trans.*, 2015, **44**, 20675

Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters†

Jamal Dabachi,^a Monique Body,^a Jens Dittmer,^a Franck Fayon^b and Christophe Legein*^a

The structures of the β - and t-LaOF phases have been refined from XRPD patterns. For both phases, ¹⁹F and ¹³⁹La solid-state NMR spectra recorded at high magnetic fields show the presence of a single F and a single La local environment, indicating a full anionic ordering in these oxyfluoride compounds. DFT calculations of the ¹⁹F and ¹³⁹La chemical shielding tensors and of the ¹³⁹La EFG tensor have been performed for the proposed structural models. The observed good agreement between experimental and calculated NMR parameters for both phases highlights the accuracy of the structural data.

Received 14th October 2015, Accepted 3rd November 2015 DOI: 10.1039/c5dt04028k

www.rsc.org/dalton

1. Introduction

Structural characterization of crystalline solids has traditionally relied upon diffraction measurements performed on single crystals or powders, as these can provide accurate information about the long-range average structure and atomic positions within the unit cell. However, common diffraction techniques such as X-ray, neutron or electron diffraction do not allow to distinguish between oxygen and fluorine atoms. Consequently, determining oxygen/fluorine ordering in oxyfluoride compounds remains experimentally challenging. In the case of $M_xO_yF_z$ (M: metal) oxyfluorides for which an anion ordering has been proposed, the oxygen and fluorine atomic positions were deduced from bond-strength or lattice energy,^{1–7} bond-length^{8,9} or bond valence calculations.^{10–18}

The high sensitivity of solid-state nuclear magnetic resonance (NMR) spectroscopy to the local chemical environment in ordered or disordered systems makes it a powerful comp-

^bCNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France

lementary tool to diffraction-based methods. For example, ¹⁹F solid-state NMR can allow to identify the local environments of fluorine in oxyfluoride compounds and to characterize the F/O ordering.^{19–26} A further advance in methodology was the recent development of density functional theory (DFT) methods with periodic boundary conditions which enable efficient and accurate calculation of solid-state NMR parameters in crystalline materials. In particular, the gauge including projector augmented wave (GIPAW)²⁷ approach, implemented in the CASTEP code,^{28,29} has seen widespread applications to a large range of systems,^{30,31} for example to the calculation of ¹⁹F NMR parameters of inorganic fluorides and oxyfluorides^{32–46} and ¹³⁹La^{38,47,48} NMR parameters of fluorides and oxides.

Among oxyfluorides, LaOF has attracted extensive and renewed interest as nanomaterial or thin film, as luminescent (when doped) material,^{49–71} catalyst,^{72–80} or solid electrolyte.^{81–83} In the pioneering work of Zachariasen,⁸ two polymorphic forms of LaOF were described, one being rhombohedral (usually named β -LaOF, space group $R\bar{3}m$ (no. 166)) and the other being tetragonal (named t-LaOF, space group P4/nmm (no. 129)). The homogeneity ranges of both phases are discussed as ESI.[†] The crystal structures of β- and t-LaOF were determined from X-ray powder diffraction (XRPD) data (ICSD⁸⁴ 30622 and 76427, respectively).8 They can be described as superstructures based upon the fluorite type, associated with the ordering of oxygen and fluorine atoms into distinct sites located in planes respectively perpendicular to the [111] and [001] fluorite axes. In the proposed crystal structure of β -LaOF,⁸ the F and O atomic coordinates were chosen such

^aLUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen, F-72085 Le Mans Cedex 9, France. E-mail: christophe.legein@univ-lemans.fr; Fax: +33 2 43 83 3506; Tel: +33 2 43 83 3349

[†]Electronic supplementary information (ESI) available: Homogeneity ranges of t- and β-LaOF, previous structural data on t- and β-LaOF, bond valence calculations and DFT optimizations on previously reported structures, parameters used to generate the OTF USPP pseudopotentials, F–F, F–O and O–O distances for β- and t-LaOF from the Rietveld refinement and after DFT-PBE atomic position optimization, eigenvectors of the calculated ¹³⁹La EFG tensor and crystallographic data in CIF format. See DOI: 10.1039/c5dt04028k

Paper

that each of the fluorine atoms and each of the oxygen atoms were equidistant from the four nearest metal atoms, believing that the bond lengths obtained in this way were more accurate than those issued from intensity calculations alone. Moreover, as it is not possible by means of intensity calculations to distinguish between oxygen and fluorine atoms, the F and O positions were assigned assuming that metal-fluorine distances are shorter than metal-oxygen ones (see ESI[†]).⁸ For the tetragonal form, the same assumption led Zachariasen to choose the z coordinate of La as 0.222 instead of 0.278, which gives equally good agreement with observed intensities. A similar approach was applied to YOF which adopts the same crystal structures.8 However, Templeton later concluded from a lattice energy calculation that the shortest distance corresponds to Y-O in both phases (i.e. that the oxygen and fluorine atom positions should be interchanged) and assumed that this statement also applies to the structures of LaOF.¹ Bond valence calculations^{85,86} and DFT geometry optimizations of the structural models proposed by Zachariasen⁸ confirm unambiguously this statement (see ESI[†]). Indeed, if the ionic radius of the oxide ion (in oxide compounds) is larger than the ionic radius of the fluoride ion (in fluoride compounds),⁸⁷ in oxyfluorides, the M-F bond lengths are larger than the M-O ones. The crystal structure of the rhombohedral form of YOF was subsequently refined by Mann and Bevan³ (ICSD⁸⁴ 14282) which obtain two sets of distances for Y-O and Y-F bonds (each of the fluorine atoms and each of the oxygen atoms being not equidistant from the four nearest metal atoms). Further refinements of the β -LaOF and t-LaO_{1-x}F_{1+2x} structures are gathered in ESI.† It then must be clear that in the proposed crystal structures of β - and t-LaOF,⁸ the atomic coordinates of O and F have to be interchanged (or that in t-LaOF, the z coordinate of La has to be superior to 0.25).49,51,52,56,88 However, the lack of a correct structure in ICSD⁸⁴ has led to misunderstandings.50,58,65,68,89

While LaOF draws considerable interest, accurate structural data remain scarce. In this work, we use a combination of XRPD, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of NMR parameters to characterize the structures of both the β -and t-LaOF phases. To our knowledge, there are only two reports on characterization of LaOF by solid state NMR: a ¹⁹F NMR study of LaOF (and LaO_{1-x}F_{1+2x}) reported thirty years ago⁹⁰ and the first ¹⁹F magic angle spinning (MAS) NMR spectra of LaOF powders reported recently by Woo *et al.*⁹¹ for β -LaOF and for non-stoichiometric t-LaOF, both prepared by thermal decomposition of LaFCO₃.

2. Experimental and methods

2.1 Synthesis

 β -LaOF was synthesized by hydrolysis of LaF₃. LaF₃ was put into a platinum crucible, remaining open to ensure contact with humidity, and heated up to 920 °C for 12 h.⁸ t-LaOF was synthesized by solid-state reaction of a stoichiometric mixture of LaF₃ and La₂O₃ in a sealed platinum tube. Since the starting

materials are moisture sensitive, all operations of weighing, mixing and grinding were done in a dry glove box, under nitrogen atmosphere. The mixture was then heated at 1200 °C for 2 days and naturally cooled. La₂O₃ was previously dehydrated by annealing at 1000 °C for one night in air. It should be noted that we obtain t-LaOF by using the method used by Petzel *et al.* for the synthesis of β -LaOF.⁹² The XRPD diagrams of the obtained powders of β - and t-LaOF match the PDF⁹³ files no. 04-009-6168 ⁸ and 04-007-8452, ⁸ respectively. A small amount of the other polymorph has been detected as an impurity in each sample. We have observed that the proportion of t-LaOF in the β -LaOF sample slowly increases over time (few % per year) whereas the proportion of β -LaOF in the t-LaOF sample remains constant, in contradiction with the assumed relative stabilities of both phases.⁸

2.2 X-ray powder diffraction

The room temperature XRPD diagrams of β - and t-LaOF were recorded under air with a PANalytical X'pert PRO diffractometer equipped with a X'Celerator detector using a monochromated CuK_{\alpha} radiation ($\lambda = 1.5406$ Å). Measurements were done in the 2θ range 10° to 150° with an interpolated step of 0.0167° and a total collecting time of about 5 hours. The Rietveld method⁹⁴ implemented in the Fullprof program⁹⁵ was used for the structural refinements. Background levels were made manually.

Further details on the experimental crystal structures may be obtained as ESI† and from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247808666; E-mail: crysdata@fiz-karlsruhe.de), on quoting the depository no. CSD-430273 and 430270, for β - and t-LaOF, respectively.

2.3 Bond valence calculations

Bond valence values have been calculated for the structures reported by Zachariasen⁸ without and with oxygen and fluorine atom positions interchanged (see ESI[†]) and for the structures refined in this work. Individual bond valence values were calculated using^{85,86} $v_{ij} = \exp[(R_{ij} - d_{ij})/b]$ where v_{ij} is the valence of the bond ij, d_{ij} is the length of the bond ij and R_{ij} and *b* are empirical constants dependent on the bonded elements *i* and *j* ($R_{ij} = 2.172$ Å and 2.057 Å for La–O and La–F, respectively, and b = 0.37 Å). The valence, v_{ij} , of a bond between two atoms *i* and *j* is defined such that the sum of all the bond valences for a given atom *i* with valence V_i obeys: $\sum v_{ij} = V_i$.

2.4 Solid state NMR

¹⁹F (*I* = 1/2) solid state MAS NMR spectra of β- and t-LaOF were acquired at room temperature on a Bruker Avance III WB 850 MHz (20 T, ¹⁹F Larmor frequency of 799.8 MHz) spectrometer, using a 1.3 mm MAS probehead. ¹⁹F one dimensional (1D) MAS NMR spectra were recorded using a pulse duration of 1 µs corresponding to a flip angle of 49° (¹⁹F nutation frequency of 135 kHz) and a recycle delay of 300 s.

¹³⁹La (I = 7/2) solid state NMR experiments were performed at room temperature on Bruker Avance III WB 850 MHz (20 T, 139La Larmor frequency of 120.1 MHz) and WB 750 MHz (17.6 T, ¹³⁹La Larmor frequency of 105.7 MHz) spectrometers, using 1.3 mm and 2.5 mm MAS probeheads, respectively. The ¹³⁹La MAS spectra of β - and t-LaOF were recorded at 20 T with spinning frequencies of 33 kHz and 64 kHz. For β-LaOF, a pulse duration of 0.4 μ s (11.2° flip angle) and a recycle delay of 0.5 s were used, while for t-LaOF a pulse duration of 0.25 µs (7° flip angle) and a recycle delay of 0.3 s were employed. ¹⁹F XiX decoupling⁹⁶ with a pulse length of $2.85\tau_R$ and a ¹⁹F nutation frequency of 89 kHz was applied during acquisition. For both β - and t-LaOF, ¹³⁹La central transition (CT) selective static and MAS (spinning frequencies ranging from 10 to 33 kHz) spectra were also recorded at 17.6 T using a Hahn echo sequence with acquisition at the top of the echo. The processing of top-echo data sets allows obtaining pure phase spectra with flat baselines. The durations of the 90° CT selective pulses were 7.1 and 3.8 µs and the recycle delays were set to 0.5 and 0.3 s for β - and t-LaOF, respectively. ¹⁹F XiX decoupling (pulse length of 2.85 $\tau_{\rm R}$) and ¹⁹F continuous wave decoupling with ¹⁹F nutation frequency of 65 kHz were applied during acquisition of CT MAS and static spectra, respectively.

The ¹⁹F and ¹³⁹La chemical shifts are referenced relative to CFCl₃ and 1.0 M aqueous LaCl₃, respectively. All spectra were fitted with the DMFIT⁹⁷ software.

2.5 DFT calculations

DFT calculations of the chemical shielding and electric field gradient (EFG) tensors were performed with the CASTEP^{28,29} code implemented in the Materials Studio 5.0 environment using the GIPAW²⁷ and projector augmented wave (PAW)^{98,99} methods. The PBE functional¹⁰⁰ was used in the generalized gradient approximation (GGA) for the exchange-correlation energy, and the core-valence interactions were described by ultrasoft pseudopotentials (USPP).¹⁰¹ The USPP were generated using the "on the fly" generator (OTF_USPP) included in CASTEP. Core radii of 1.4 Å and 1.3 Å were used for fluorine and oxygen, respectively, with 2s and 2p valence orbitals. For lanthanum, a core radius of 2.0 Å was used with 5s, 5p, 4f, 6s, and 5d valence orbitals. The default definition of the La USPP proposed by the Materials Studio package was modified by artificially shifting to higher energy (4.55 eV) the local potentials of the La^{3+} ion $(4f^{0})$ USPP in order to overcome the deficiency of the PBE functional which generates in the present case too much covalency between the lanthanum 4f empty states and the anionic fluoride 2p levels.34 Practical details are given as ESI.† The wave functions were expanded on a plane-wave basis set with a kinetic energy cutoff of 700 eV. The Brillouin zone was sampled using a Monkhorst-Pack grid spacing of 0.04 $Å^{-1}$ (corresponding to a *k*-point mesh of $7 \times 7 \times 5$ for t-LaOF and $8 \times 8 \times 8$ for β -LaOF). These calculations were done for the experimental structures (ES) and the atomic position optimized (APO) structures. Geometries were converged by minimizing the residual forces on all atoms below 10 meV Å⁻¹ using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.¹⁰² Further details on the APO crystal structures may be obtained as ESI† and from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49 7247808666; E-mail: crysdata@fiz-karlsruhe.de), on quoting the depository no. CSD-430272 and 430271 for β - and t-LaOF, respectively.

The isotropic chemical shielding value is defined as σ_{iso} = $(\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3$, σ_{ii} being the principal components of the shielding tensor defined in the sequence $|\sigma_{zz} - \sigma_{iso}| \ge |\sigma_{xx} - \sigma_{iso}|$ $\sigma_{\rm iso} \ge |\sigma_{yy} - \sigma_{\rm iso}|$. The chemical shielding anisotropy $\sigma_{\rm csa}$ and the asymmetry parameter η_{csa} are defined as $\sigma_{csa} = \sigma_{zz} - \sigma_{iso}$ and $\eta_{\rm csa}$ = $|\sigma_{yy} - \sigma_{xx}|/\sigma_{\rm csa}$. The isotropic chemical shift is defined as $\delta_{iso} = -[\sigma_{iso} - \sigma_{ref}]$. For ¹⁹F, the slope of the linear regression between experimental δ_{iso} values and calculated σ_{iso} values is far below the theoretically expected value of minus one,³⁴ and calculated ¹⁹F δ_{iso} values are deduced from the relationship δ_{iso} (ppm) = -0.795(15) σ_{iso} (ppm) + 89(4).⁴⁶ The chemical shift tensor is described by three parameters, δ_{iso} , the chemical shift anisotropy δ_{csa} and the asymmetry parameter η_{csa} defined as $\delta_{iso} = (\delta_{xx} + \delta_{yy} + \delta_{zz})/3$, $\delta_{csa} = \delta_{zz} - \delta_{iso}$, $\eta_{\rm csa} = |\delta_{yy} - \delta_{xx}|/\delta_{\rm csa}$, with the principal components defined in the sequence $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$.

The quadrupolar coupling constant $C_{\rm Q}$ and the asymmetry parameter $\eta_{\rm Q}$ are defined as $C_{\rm Q} = eQV_{zz}/h$ and $\eta_{\rm Q} = (V_{xx} - V_{yy})/V_{zz}$, V_{ii} being the principal components of the EFG tensor defined in the sequence $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$. The quadrupolar moment Q of ¹³⁹La is equal to 200(6) mb.¹⁰³

The relative orientation of the chemical shift tensor in the EFG principal axis frame is described by the Euler angles (α, β, γ) .

3. Results and discussion

3.1 Crystal structures of β- and t-LaOF

The structures of β- and t-LaOF have been refined from the XRPD patterns. The atomic positions determined by Zachariasen,⁸ interchanging the fluorine and oxygen atomic positions, were taken as starting data. Anisotropic displacement parameters (ADP) for lanthanum and isotropic displacement parameters (IDP) for fluorine and oxygen were also refined. The presence of t-LaOF in the β -LaOF sample and the presence of β -LaOF in the t-LaOF sample were taken into account for the final Rietveld refinements (Fig. 1 and 2). Satisfactory reliability factors were obtained: $R_{\rm wp}$ = 0.113, $R_{\rm exp}$ = 0.0821, $R_{\rm Bragg}$ = 0.0497 for β -LaOF and $R_{wp} = 0.145$, $R_{exp} = 0.0918$, $R_{Bragg} =$ 0.0566 for t-LaOF. The refined cell parameters are a = 4.0530(1)Å and c = 20.2200(5) Å for β -LaOF (hexagonal cell) and a =4.0847(1) Å and c = 5.8295(2) Å for t-LaOF. These values are similar to those obtained in previous studies (see ESI⁺). Notably the cell parameters of t-LaOF are typical of a stoichiometric phase which is expected due to the synthesis method. Atomic positions, ADP or IDP and bond valence sums^{85,86} are gathered in Tables 1 and 2 for β - and t-LaOF, respectively. These atomic positions are also similar to those obtained in

Fig. 1 Experimental (a) and calculated (b) XRPD diagrams of β -LaOF. The Bragg positions (c) of β -LaOF (above) and t-LaOF (below) and the difference between experimental and calculated diagrams (d) are shown.

Fig. 2 Experimental (a) and calculated (b) XRPD diagrams of t-LaOF. The Bragg positions (c) of t-LaOF (above) and β -LaOF (below) and the difference between experimental and calculated diagrams (d) are shown.

previous studies (see ESI[†]), keeping in mind that in most of them, oxygen and fluorine positions have to be interchanged.

In β -LaOF, each fluorine atom, as well as each oxygen atom, is almost equidistant from the four nearest lanthanum atoms (Table 3), as assumed by Zachariasen.⁸ These F and O atoms occupy each a non-regular tetrahedral site (one X-La (X = F, O) bond length slightly different of the three others, La–X–La angles different from 109.47°, see Table 4). The lanthanum atoms are eightfold coordinated to four fluorine and four oxygen atoms forming a non-regular cube (see F–F, F–O and

Table 1 Atom, atomic coordinates and anisotropic $(U_{iir}, Å^2)$ or isotropic $(U_{isor}, Å^2)$ displacement parameters determined from the Rietveld refinement of the β -LaOF XRPD pattern and bond valence sum (BVS). Uncertainties are indicated in brackets. The atomic coordinates and displacements (*d*, Å) after PBE-DFT optimization of the atomic positions are given in italic

Atom	z	$U_{11} = U_{22}$	U_{33}	$U_{\rm iso}$	BVS	d
La1	0.24191(6)	0.012(1)	0.006(1)		2.99	
F1	0.24216 0.3699(6)			0.022(4)	0.95	0.005
01	0.36998 0.1223(7) 0.12227			0.023(5)	2.04	0.0016

Same Wyckoff multiplicity (6c) and site symmetry (3m) for all atoms. x = 0 and y = 0 for all atoms.

O–O distances in ESI[†]). The vertices of each face of this cube are occupied either by one oxygen and three fluorine atoms or by one fluorine and three oxygen atoms (Fig. 3).

In t-LaOF, each fluorine atom, as well as each oxygen atom, is equidistant from the four nearest lanthanum atoms (Table 3). As in β -LaOF these F and O atoms occupy a non-regular tetrahedral site (La–X–La angles different from 109.47°, see Table 4). The lanthanum atoms are eightfold coordinated to four fluorine and four oxygen atoms forming a non-regular cube (see F–F, F–O and O–O distances in ESI†). In t-LaOF the vertices of the two faces of these cubes perpendicular to the *c* axis (fourfold symmetry) are occupied by four oxygen atoms or four fluorine atoms. Consequently, the vertices of the four other faces of these cubes, parallel to the *c* axis, are occupied by two oxygen atoms and two fluorine atoms (Fig. 3).

In both the β - and t-LaOF phases, the La–F bond lengths are longer than the La–O bond lengths. The F–F and O–O distances are equal in t-LaOF, whereas in β -LaOF the F–F distances are shorter than the O–O ones.

3.2 ¹⁹F solid state NMR of β- and t-LaOF

As shown in Fig. 4, the ¹⁹F MAS NMR spectra of β- and t-LaOF show a single narrow resonance with a Gaussian lineshape (disregarding the signal of the other phase present as impurity in each sample), as expected for fully ordered oxyfluoride compounds with a single F crystallographic site. Fitting these spectra allows determining the (molar or weight) proportion of impurity in each sample: the β -LaOF sample contained, when the NMR spectra were recorded, ~7% of t-LaOF and the t-LaOF sample contains ~2% of β -LaOF. The measured ¹⁹F isotropic chemical shift (δ_{iso}) values are -24 ppm and -34 ppm for β and t-LaOF, respectively. Woo et al.91 reported one resonance at -29 ppm for β -LaOF and three resonances at -21, -29 and -39 ppm for non-stoichiometric t-LaOF, the former two being assigned to "excess F⁻ ions occupying interstitial sites" and the latter being assigned to "the normal F⁻ sites in t-LaOF". The values measured in this work differ slightly from those reported by Woo et al., but an overall agreement is found, β -LaOF having the largest ¹⁹F δ_{iso} value with a difference of

Table 2 Atom, Wyckoff multiplicity, site symmetry, atomic coordinates and anisotropic (U_{iir}, \dot{A}^2) or isotropic (U_{iso}, \dot{A}^2) displacement parameters determined from the Rietveld refinement of the t-LaOF XRPD pattern and bond valence sum (BVS). Uncertainties are indicated in brackets. The atomic coordinates and displacements (*d*, Å) of La after PBE-DFT optimization are given in italic (coordinates of 2a and 2b sites cannot be optimized due to symmetry constraints)

Atom	Site	Sym.	x	у	z	U_{11}	U_{22}	<i>U</i> ₃₃	$U_{\rm iso}$	BVS	d
La1	2c	4 <i>mm</i>	0.5	0 0	0.7849(2) 0.78301	0.0007(10)	0.0007(10)	0.0002(11)		3.02	0.011
F1 O1	2b 2a	$-4m2 \\ -4m2$	0 0	0	0.5 0				0.008(3) 0.009(4)	$\begin{array}{c} 0.84 \\ 2.18 \end{array}$	

Table 3 La–F and La–O bond lengths (Å) for β - and t-LaOF from the Rietveld refinement (experimental structure, ES) and after DFT-PBE atomic position optimization (APO). Uncertainties are indicated in brackets

Phase	Bond lengths	ES	APO
β-LaOF	La-F (×3)	2.590(5)	2.587
1	$La-F(\times 1)$	2.588(12)	2.585
	$La-O(\times 3)$	2.422(4)	2.423
	$La-O(\times 1)$	2.419(14)	2.424
t-LaOF	$La-F(\times 4)$	2.6324(7)	2.6255
	La–O (×4)	2.3966(6)	2.4023

Table 4 La–F–La and La–O–La angles (°) for β - and t-LaOF from the Rietveld refinement (experimental structure, ES) and after DFT-PBE atomic position optimization (APO). Uncertainties are indicated in brackets

Phase	Angles	ES	APO
β-LaOF	La–F–La (×3)	103.0(2)	103.2
	La-F-La (×3)	115.4(3)	115.2
	La-O-La (×3)	104.9(3)	105.0
	La–O–La (×3)	113.6(3)	113.5
t-LaOF	La–F–La (×2)	101.76(2)	102.14
	La-F-La (×4)	113.46(2)	113.26
	La–O–La (×4)	105.89(2)	106.10
	La–O–La (×2)	116.90(2)	116.46

10 ppm between the two phases. As previously outlined,⁹¹ ¹⁹F MAS NMR is a powerful tool to identify the LaOF crystal structure, which can be difficult by powder XRD for nanosized powder samples due to their broad diffraction peaks.^{52,54} In both phases, the fluorine atoms are fourfold coordinated leading to relatively close ¹⁹F δ_{iso} values and, as expected,^{104–107} the shorter F–La bond lengths in β -LaOF (Table 3) lead to a larger ¹⁹F δ_{iso} value. It should be noted that among the three fluorine crystallographic sites in LaF₃, only one (F1) is fourfold coordinated¹⁰⁸ and its ¹⁹F δ_{iso} value (–23.6 ppm³⁴) is very close to that of β -LaOF.

3.3 139 La solid state NMR of β - and t-LaOF

The 1D 139 La MAS NMR spectra of β - and t-LaOF (Fig. 5 and 6) were acquired at high magnetic field and at high spinning frequencies. The observed MAS spectra of this half-integer

Fig. 3 Perspective view of the structures of β - (left) and t-LaOF (right). The FLa₄ tetrahedra and the LaF₄O₄ cubes are represented in green and grey, respectively.

Fig. 4 Experimental (blue) and fitted (red) 19 F MAS (64 kHz) NMR spectra of β - and t-LaOF. The 19 F resonances of t-LaOF in the β -LaOF phase and of β -LaOF in the t-LaOF phase are indicated by the arrows. The stars indicate spinning sidebands.

Fig. 5 (a) Experimental (black) and simulated (red) ¹³⁹La MAS NMR spectra of β -LaOF recorded at 20.0 T with a spinning frequency of 33 kHz. The contribution of t-LaOF is indicated by the arrow. (b) Expansion of the center band region. (c) Expansion of a part of the ST spinning sideband manifold. In (a–c) a slight deviation (–0.045°) from the exact magic angle was adjusted in the simulation in order to reproduce the observed individual lineshapes of the ST spinning sidebands. (d) Experimental (black dots) and simulated (red line) ¹³⁹La CT MAS NMR spectra of β -LaOF recorded at 17.6 T with a spinning frequency of 10 kHz.

quadrupolar nucleus with relatively large quadrupolar moment $(I = 7/2 \text{ with } Q = 200 \text{ mb for }^{139}\text{La})^{103}$ consist of an intense peak corresponding to the central transition $\langle -1/2, 1/2 \rangle$ (CT) and extended spinning sidebands manifolds associated to the satellite transitions (ST). For both β - and t-LaOF, the ^{139}La CT peak and ST spinning sidebands exhibit well-defined second-order quadrupolar broadening, characteristic of the presence of a single ordered La local environment. In agreement with the 19 F NMR results, this shows that the structures of β - and t-LaOF contain a single La crystallographic site with a full F/O anionic ordering.

Careful inspections of the ST spinning sideband intensities in these ¹³⁹La MAS spectra reveal the additional presence of significant chemical shift anisotropy (CSA). The quadrupolar and CSA interactions show different magnetic field dependences, and their interplay modifies the sideband intensities in MAS spectra and affects the singularity positions in static powder pattern. For both compounds, the ¹³⁹La isotropic chemical shift, quadrupolar and CSA parameters were therefore determined by fitting simultaneously high spinning frequency MAS spectra, CT-selective static and/or CT-selective moderate spinning frequencies MAS spectra, recorded at two different magnetic fields of 20.0 and 17.6 T (representative examples are shown in Fig. 5 and 6). For the β -LaOF polymorph, a ¹³⁹La quadrupolar coupling constant of 6.21 MHz

Fig. 6 (a) Experimental (black) and simulated (red) ¹³⁹La MAS NMR spectra of t-LaOF recorded at 20.0 T with a spinning frequency of 64 kHz. The contribution of β -LaOF is indicated by the arrows. (b) Expansion of the center band region. (c) Expansion of a part of the ST spinning sideband manifold. In (a–c) a slight deviation (–0.045°) from the exact magic angle was adjusted in the simulation in order to reproduce the observed individual lineshapes of the ST spinning sidebands. (d) Experimental (black dots) and simulated (red line) ¹³⁹La CT static NMR spectra of t-LaOF recorded at 17.6 T.

and a significant chemical shift anisotropy of $\delta_{csa} = 217$ ppm are measured, while for the t-LaOF phase, the spectra reveal a much larger quadrupolar coupling constant of 17.70 MHz associated to a weaker CSA ($\delta_{csa} = -57$ ppm). For both β - and t-LaOF, the obtained asymmetry parameters of the ¹³⁹La quadrupolar ($\eta_Q = 0$) and CSA ($\eta_{csa} = 0$) tensors, as well as the Euler angle describing their relative orientations ($\alpha = \beta = \gamma = 0$), are consistent with the La site symmetry in the proposed structural models (3*m* for β -LaOF and 4*mm* for t-LaOF).

3.4 DFT calculations

In order to assess the accuracy of the structural models, DFT calculations of the ¹⁹F and ¹³⁹La chemical shielding tensors and ¹³⁹La EFG tensor have been performed using the GIPAW²⁷ and PAW^{98,99} methods, respectively. The DFT computations were done for the experimental (determined by XRPD) and DFT-PBE atomic position optimized structures, named ES and APO, respectively in the following. The atomic coordinates after optimization and corresponding atomic displacements are given in Tables 1 and 2 for β - and t-LaOF, respectively. The La–F and La–O bond lengths, La–F–La and La–O–La angles and F–F, F–O and O–O distances after optimization are com-

pared to the experimental values in Tables 3, 4 and ESI,† respectively. For both β - and t-LaOF, the geometry optimization leads only to very weak variations of these structural parameters which remain within the uncertainties of the experimental values, highlighting the accuracy of the structural data. For both phases, one can notice that the X-La tetrahedron distortions are slightly reduced after optimization (La-X-La angles slightly closer to 109.47°, Table 4).

The calculated ¹⁹F σ_{iso} and δ_{iso} values and experimental ¹⁹F δ_{iso} values are gathered in Table 5. A good agreement between experimental and calculated ¹⁹F δ_{iso} values (differences of \sim 1 ppm) is observed for the two phases, either with or without DFT geometry optimization of the structural models. The calculated ¹⁹F δ_{iso} values are slightly larger for the APO structures relative to the ES ones, in relation with a small decrease of F-La bond lengths (Table 3).

The calculated (σ_{iso} , σ_{csa} and C_Q) and experimental (δ_{iso} , δ_{csa} and $C_{\rm O}$) ¹³⁹La NMR parameters are gathered in Table 6. The calculated quadrupolar coupling constants Co are slightly smaller (~3 to 20%) than the experimental values and the agreement is better after optimization for β -LaOF and without optimization for t-LaOF. The calculated σ_{iso} is smaller for $\beta\text{-LaOF}$ than for t-LaOF, following the observed δ_{iso} trend, and the relative differences between calculated σ_{iso} values (~95 ppm) and between measured δ_{iso} values (~67 ppm) are quite close considering the 139La chemical shift range. The experimental δ_{csa} values and the calculated σ_{csa} values have, as expected, opposite sign. For β -LaOF, the calculated σ_{csa} and measured δ_{csa} absolute values are relatively close, while computations give overestimated σ_{csa} values for t-LaOF. For the two compounds, the ¹³⁹La σ_{iso} are nearly insensitive to the optimization of the atomic positions. All in one, the calculated ¹³⁹La NMR parameters are relatively close to the experimental values

Table 5 Calculated ¹⁹F isotropic chemical shielding (σ_{iso} , ppm) from experimental (ES) and optimized (APO) structures, calculated ($\delta_{iso,cal}$, ppm) and experimental ($\delta_{iso,exp}$, ppm) ¹⁹F isotropic chemical shift for β and t-LaOF

	$\sigma_{ m iso}$		$\delta_{\rm iso,cal}$			
Compound	ES	APO	ES	APO	$\delta_{ m iso,exp}$	
β-LaOF t-LaOF	$\begin{array}{c} 144.0\\ 156.1 \end{array}$	143.3 153.7	-25.5 -35.1	-24.9 -33.2	-24.1(5) -34.1(5)	

Fig. 7 Orientation of the principal components of the calculated ¹³⁹La EFG tensor in β - (left) and t-LaOF (right). The vector lengths are proportional to the magnitudes of the contributions.

for both compounds, reinforcing the validity of the structural models. It should be noted that, since the nuclear spin interaction must conform to crystal symmetry, the computed quadrupolar and CSA tensors for the ES and APO structures of βand t-LaOF exhibit axial symmetries and are coincident (η_{O} = 0, $\eta_{csa} = 0$, $\alpha = \beta = \gamma = 0$). The orientations of the principal components of the calculated ¹³⁹La EFG tensors are represented on Fig. 7 (eigenvectors of the calculated EFG tensor, expressed in the crystallographic axis are given as ESI^{\dagger}). For β -LaOF, the La site symmetry (3m) imposes the V_{zz} direction of the EFG tensor to be along the three-fold axis (parallel to the *c*-axis of the hexagonal cell) and the La site symmetry in t-LaOF (4mm) enforces the V_{zz} direction to be along the four-fold axis (parallel to the c-axis of the tetragonal cell).

Conclusions 4.

Although extensively studied, accurate structural data on the crystalline structures of β- and t-LaOF phases had remained scarce and some confusion had persisted about the respective positions of fluorine and oxygen atoms. In this work, the combination of XRPD, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of NMR parameters has then been applied to characterize both the β- and t-LaOF phases. Their structures have been refined from the XRPD patterns. ¹⁹F and ¹³⁹La high magnetic field NMR spectra show that these structures contain a single F and a single La crystallographic site with a full O/F

 Table 6
 Experimental 139 La quadrupolar coupling constant (C_{Q} , MHz), isotropic chemical shift (δ_{isor} , ppm) and chemical shift anisotropy (δ_{csa} , ppm)

 for β - and t-LaOF and calculated ¹³⁹La quadrupolar coupling constant (C_{Q} , MHz), isotropic shielding (σ_{isor} , ppm) and chemical shielding anisotropy (σ_{csa} , ppm) for the experimental (ES) and optimized (APO) structures of β - and t-LaOF. For the two compounds, the site symmetry imposes coincident quadrupolar and CSA tensors with axial symmetries ($\eta_Q = 0$, $\eta_{csa} = 0$, $\alpha = \beta = \gamma = 0$)

C _{Q,cal}					$\sigma_{ m iso}$			$\sigma_{ m csa}$	
Compound	$C_{\rm Q,exp}$	ES	APO	$\delta_{ m iso}$	ES	APO	$\delta_{ m csa}$	ES	APO
β-LaOF t-LaOF	6.21(1) 17.70(5)	5.13 16.92	6.01 15.37	335(5) 268(5)	4776.3 4871.6	4778.0 4873.6	217(5) -57(5)	-159.3 177.0	-155.4 184.3

anionic ordering, in agreement with the structural models. To assess the accuracy of the structural models, DFT calculations of the ¹⁹F and ¹³⁹La chemical shielding tensors and ¹³⁹La EFG have been performed for the refined structures and DFT atomic position optimized structures. The optimization effects appear to be very weak and the good overall agreement between experimental and calculated NMR parameters for both phases confirms the accuracy of the structural data.

Acknowledgements

Paper

The authors would like to thank Sergii Pylypko (master's internship at IMMM) and Cyrille Galven (IMMM) for their help with synthesis and XRPD. Financial support from the TGIR RMN THC FR3050 is gratefully acknowledged. The computational presented in this work have been carried out at the Centre Régional de Calcul Intensif des Pays de la Loire (CCIPL), financed by the French Research Ministry, the Région Pays de la Loire, and Nantes University. The authors thank CCIPL for financial support for CASTEP licenses.

References

- 1 D. H. Templeton, Acta Crystallogr., 1957, 10, 788-788.
- 2 B. Holmberg, Acta Chem. Scand., 1966, 20, 1082-1088.
- 3 A. W. Mann and D. J. M. Bevan, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1970, 26, 2129– 2131.
- 4 A. Åström, Acta Chem. Scand., 1972, 26, 3849-3854.
- 5 A. Åström and S. Andersson, *J. Solid State Chem.*, 1973, 6, 191–194.
- 6 M. Vlasse, M. Saux, P. Echegut and G. Villeneuve, *Mater. Res. Bull.*, 1979, 14, 807–812.
- 7 R. Papiernik and B. Frit, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1986, **42**, 342–349.
- 8 W. H. Zachariasen, Acta Crystallogr., 1951, 4, 231-236.
- 9 I. Abrahams, S. J. Clark, J. D. Donaldson, Z. I. Khan and J. T. Southern, *J. Chem. Soc., Dalton Trans.*, 1994, 2581– 2583.
- 10 D. J. M. Bevan, J. Mohyla, B. F. Hoskins and R. J. Steen, *Eur. J. Solid State Inorg. Chem.*, 1990, 27, 451–465.
- 11 A. Aftati, J.-C. Champarnaud-Mesjard and B. Frit, *Eur. J. Solid State Inorg. Chem.*, 1993, **30**, 1063–1073.
- 12 H. P. A. Mercier and G. J. Schrobilgen, *Inorg. Chem.*, 1993, 32, 145–151.
- 13 J.-P. Laval, J.-C. Champarnaud-Mesjard, B. Frit, A. Britel and A. Mikou, *Eur. J. Solid State Inorg. Chem.*, 1994, **31**, 943–956.
- 14 J.-P. Laval, A. Taoudi, A. Abaouz and B. Frit, *J. Solid State Chem.*, 1995, **119**, 125–130.
- 15 A. Ider, J.-P. Laval, B. Frit, J. Carré and J. P. Bastide, J. Solid State Chem., 1996, 123, 68–72.
- 16 L. Guillet, A. Ider, J.-P. Laval and B. Frit, *J. Fluorine Chem.*, 1999, **93**, 33–38.

- 17 L. Beaury, J. Derouet, J. Hölsä, M. Lastusaari and J. Rodriguez-Carvajal, *Solid State Sci.*, 2002, 4, 1039–1043.
- 18 H. Müller-Bunz, O. Janka and T. Schleid, Z. Anorg. Allg. Chem., 2007, 633, 37–39.
- 19 L. S. Du, F. Wang and C. P. Grey, *J. Solid State Chem.*, 1998, 140, 285–294.
- 20 L. S. Du, A. Samoson, T. Tuherm and C. P. Grey, *Chem. Mater.*, 2000, 12, 3611–3616.
- 21 J. H. Choy, J. Y. Kim, S. J. Kim and J. S. Sohn, *Chem. Mater.*, 2001, 13, 906–912.
- 22 L. S. Du, R. W. Schurko, N. Kim and C. P. Grey, J. Phys. Chem. A, 2002, 106, 7876–7886.
- J. Köhler, A. Simon, L. Van Wüllen, S. Cordier, T. Roisnel, M. Poulain and M. Somer, Z. Anorg. Allg. Chem., 2002, 628, 2683–2690.
- 24 F. Le Berre, M.-P. Crosnier-Lopez, C. Galven, J.-L. Fourquet, C. Legein, M. Body and J.-Y. Buzaré, *Dalton Trans.*, 2007, 2457–2466.
- 25 L. Sronek, J. Lhoste, M. Gaudon, C. Legein, J.-Y. Buzaré, M. Body, G. Crinière, A. Tressaud, S. Pechev and A. Demourgues, *J. Phys. Chem. C*, 2008, **112**, 860–866.
- 26 C. Galven, C. Legein, M. Body, J.-L. Fourquet, J.-Y. Buzaré, F. Le Berre and M.-P. Crosnier-Lopez, *Eur. J. Inorg. Chem.*, 2010, 5272–5283.
- 27 C. J. Pickard and F. Mauri, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2001, 63, 245101.
- 28 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, *J. Phys.: Condens. Matter*, 2002, 14, 2717–2744.
- 29 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, *Z. Kristallogr.*, 2005, 220, 567–570.
- 30 T. Charpentier, Solid State Nucl. Magn. Reson., 2011, 40, 1-20.
- 31 C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri and C. J. Pickard, *Chem. Rev.*, 2012, 112, 5733–5779.
- 32 A. Zheng, S.-B. Liu and F. Deng, J. Phys. Chem. C, 2009, 113, 15018–15023.
- 33 J. M. Griffin, J. R. Yates, A. J. Berry, S. Wimperis and S. E. Ashbrook, *J. Am. Chem. Soc.*, 2010, **132**, 15651– 15660.
- 34 A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte and F. Boucher, *Phys. Chem. Chem. Phys.*, 2011, 13, 18539–18550.
- 35 C. Martineau, F. Fayon, M. R. Suchomel, M. Allix, D. Massiot and F. Taulelle, *Inorg. Chem.*, 2011, 50, 2644– 2653.
- 36 A. Cadiau, C. Martineau, M. Leblanc, V. Maisonneuve,
 A. Hémon-Ribaud, F. Taulelle and K. Adil, *J. Mater. Chem.*, 2011, 21, 3949–3951.
- 37 M. Biswal, M. Body, C. Legein, G. Corbel, A. Sadoc and F. Boucher, *J. Phys. Chem. C*, 2012, **116**, 11682–11693.
- 38 A.-L. Rollet, M. Allix, E. Veron, M. Deschamps, V. Montouillout, M. R. Suchomel, E. Suard, M. Barre,

M. Ocaña, A. Sadoc, F. Boucher, C. Bessada, D. Massiot and F. Fayon, *Inorg. Chem.*, 2012, **51**, 2272–2282.

- 39 C. Martineau, A. Cadiau, B. Bouchevreau, J. Senker, F. Taulelle and K. Adil, *Dalton Trans.*, 2012, 41, 6232– 6241.
- 40 A. Pedone, T. Charpentier and M. C. Menziani, *J. Mater. Chem.*, 2012, **22**, 12599–12608.
- 41 C. Martineau, C. Legein, M. Body, O. Péron, B. Boulard and F. Fayon, *J. Solid State Chem.*, 2013, **199**, 326–333.
- 42 A. A. Arnold, V. Terskikh, Q. Y. Li, R. Naccache, I. Marcotte and J. A. Capobianco, *J. Phys. Chem. C*, 2013, **117**, 25733– 25741.
- 43 M. Biswal, M. Body, C. Legein, A. Sadoc and F. Boucher, *J. Solid State Chem.*, 2013, 207, 208–217.
- 44 H. Yi, E. Balan, C. Gervais, L. Segalen, F. Fayon, D. Roche,
 A. Person, G. Morin, M. Guillaumet, M. Blanchard,
 M. Lazzeri and F. Babonneau, *Am. Mineral.*, 2013, 98, 1066–1069.
- 45 M.-A. Neouze, M. Kronstein, M. Litschauer, M. Puchberger, C. Coelho, C. Bonhomme, C. Gervais and F. Tielens, *Chem. – Eur. J.*, 2014, 20, 15188–15196.
- 46 A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot and F. Fayon, *Solid State Nucl. Magn. Reson.*, 2014, 59-60, 1–7.
- 47 A. J. Fernández-Carrión, M. Ocaña, P. Florian, J. García-Sevillano, E. Cantelar, A. N. Fitch, M. R. Suchomel and A. I. Becerro, *J. Phys. Chem. C*, 2013, **117**, 20876–20886.
- 48 K. E. Johnston, M. R. Mitchell, F. Blanc, P. Lightfoot and S. E. Ashbrook, *J. Phys. Chem. C*, 2013, **117**, 2252–2265.
- 49 J. Hölsä and E. Kestilä, J. Alloys Compd., 1995, 225, 89-94.
- 50 Q. Wang, Y. Gao and A. Bulou, J. Phys. Chem. Solids, 1995, 56, 285–291.
- 51 J. Hölsä, E. Säilynoja, H. Rahiala and J. Valkonen, *Polyhedron*, 1997, **19**, 3421–3427.
- 52 S. Fujihara, T. Kato and T. Jimura, *J. Mater. Sci. Lett.*, 2001, 20, 687–689.
- 53 E. Antic-Fidancev, J. Hölsä, J.-C. Krupa and M. Lastusaari, *J. Alloys Compd.*, 2004, **380**, 303–309.
- 54 Y.-P. Du, Y.-W. Zhang, L.-D. Sun and C.-H. Yan, *J. Phys. Chem. C*, 2008, **112**, 405–415.
- 55 L. Armelao, G. Bottaro, L. Bovo, C. Maccato, M. Pascolini,
 C. Sada, E. Soini and E. Tondello, *J. Phys. Chem. C*, 2009, 113, 14429–14434.
- 56 O. Janka and T. Schleid, *Eur. J. Inorg. Chem.*, 2009, 357–362.
- 57 X. Zhang, D. Gao and L. Li, *J. Appl. Phys.*, 2010, **107**, 123528.
- 58 H. Zheng, D. Gao, Z. Fu, E. Wang, Y. Lei, Y. Tuan and M. Cui, *J. Lumin.*, 2011, 131, 423–428.
- 59 T. Grzyb and S. Lis, Inorg. Chem., 2011, 50, 8112-8120.
- 60 D. Gao, H. Zheng, X. Zhang, Z. Fu, Z. Zhang, Y. Tian and M. Cui, *Appl. Phys. Lett.*, 2011, 98, 011907.
- 61 D. Gao, H. Zheng, X. Zhang, W. Gao, Y. Tian, J. Li and M. Cui, *Nanotechnology*, 2011, 22, 175702.
- 62 N. Rakov, J. de A. B. Barbosa, R. B. Guimarães and G. S. Maciel, *J. Alloys Compd.*, 2012, **534**, 32–36.

- 63 M. Shang, G. Li, X. Kang, D. Yang, D. Geng, C. Peng,
 Z. Cheng, H. Lian and J. Lin, *Dalton Trans.*, 2012, 41, 5771–5580.
- 64 M. Shang, D. Geng, X. Kang, D. Yang, Y. Zhang and J. Lin, *Inorg. Chem.*, 2012, 51, 11106–11116.
- 65 E. M. Rodrigues, E. R. Souza, J. H. S. K. Monteiro, R. D. L. Gaspar, I. O. Mazali and F. A. Sigoli, *J. Mater. Chem.*, 2012, 22, 24109–24123.
- 66 T. Grzyb, M. Węcławiak, T. Pędziński and S. Lis, Opt. Mater., 2013, 35, 2226–2233.
- 67 K. Zheng, Y. Liu, Z. Liu, Z. Chen and W. Qin, *Dalton Trans.*, 2013, **42**, 5159–5166.
- 68 Z. X. Fu, H. R. Zheng, E. J. He, W. Gao and G. A. Li, *Sci. China: Phys., Mech. Astron.*, 2013, **56**, 928–932.
- 69 L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou and H. Song, *J. Mater. Chem. C*, 2014, **2**, 4186–4195.
- 70 D. Gao, X. Zhang and J. Zhang, *CrystEngComm*, 2014, 16, 11115–11121.
- 71 Y. He, N. Chen and G. Du, J. Am. Ceram. Soc., 2014, 97, 1931–1936.
- 72 C. T. Au, Y. Q. Zhang, C. F. Ng and H. L. Wan, *Catal. Lett.*, 1994, 23, 377–386.
- 73 Z. S. Chao, X. P. Zhou, H. L. Wan and K. R. Tsai, *Appl. Catal.*, A, 1995, 130, 127–133.
- 74 X. P. Zhou, Z. S. Chao, J. Z. Luo, H. L. Wan and K. R. Tsai, *Appl. Catal.*, *A*, 1995, **133**, 263–268.
- 75 H. Wan, Z. Chao, W. Weng, X. Zhou, J. Cai and K. Tsai, *Catal. Today*, 1996, **30**, 67–76.
- 76 C. T. Au, Y. Q. Zhang, H. He, S. Y. Lai and C. F. Ng, J. Catal., 1997, 167, 354–363.
- 77 W. Weng, M. Chen, H. Wan and Y. Liao, *Catal. Lett.*, 1998, 53, 43–50.
- 78 H. L. Wan, X. P. Zhou, W. Z. Weng, R. Q. Long, Z. S. Chao, W. D. Zhang, M. S. Chen, J. Z. Luo and S. Q. Zhou, *Catal. Today*, 1999, **51**, 161–175.
- 79 Q. Xie, Y. Wang, B. Pan, H. Wang, W. Su and X. Wang, *Catal. Commun.*, 2012, 27, 21–25.
- 80 X. Niu, C. Xing, W. Jiang, Y. Dong, F. Yuan and Y. Zhu, *Reac. Kinet., Mech. Cat.*, 2013, **109**, 167–179.
- 81 J. W. Fergus and H.-P. Chen, J. Electrochem. Soc., 2000, 147, 4696–4704.
- 82 M. Ando, M. Enoki, H. Nishiguchi, T. Ishihara and Y. Takita, *Chem. Mater.*, 2004, **16**, 4109–4115.
- 83 K. T. Jacob, V. S. Saji and Y. Waseda, *Int. J. Appl. Ceram. Technol.*, 2006, **3**, 312–321.
- 84 *Inorganic Crystal Structure Database (ICSD), Version 1.9.5*, FIZ Karlsruhe and NIST, Germany and Maryland, 2007.
- 85 I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.
- 86 N. E. Brese and M. O'Keeffe, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1991, 47, 192–197.
- 87 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst., 1976, 32, 751–767.
- 88 J. P. Laval, A. Abaouz, B. Frit, G. Roult and W. T. A. Harrison, *Eur. J. Solid State Inorg. Chem.*, 1998, 25, 425–434.

- 89 Q. Wang and A. Bulou, J. Phys.: Condens. Matter, 1993, 5, 7651-7668.
- 90 A. I. Livshits, V. M. Buznik, P. P. Fedorov and B. P. Sobolev, J. Struct. Chem., 1983, 24, 689–693.
- 91 D. C. Woo, M.-H. Lee and W.-S. Jung, Ceram. Int., 2013, 39, 1533–1538.
- 92 T. Petzel, V. Marx and B. Hormann, *J. Alloys Compd.*, 1993, 200, 27–31.
- 93 *PDF-4+ Database*, The International Centre for Diffraction Data (ICDD), Newtown Square, PA, 2007.
- 94 H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65-71.
- 95 J. R. Rodriguez-Carjaval, FULLPROF: a Program for Rietveld refinement and pattern matching analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127.
- 96 A. Detken, E. H. Hardy, M. Ernst and B. H. Meier, *Chem. Phys. Lett.*, 2002, **356**, 298–304.
- 97 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, 40, 70–76.
- 98 P. E. Blöchl, Phys. Rev. B: Condens. Matter, 1994, 50, 17953-17979.

- 99 H. M. Petrilli, P. E. Blöchl, P. Blaha and K. Schwarz, *Phys. Rev. B: Condens. Matter*, 1998, 57, 14690–14697.
- 100 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 101 J. R. Yates, C. J. Pickard and F. Mauri, *Phys. Rev. B:* Condens. Matter Mater. Phys., 2007, 76, 024401.
- 102 B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, *J. Comput. Phys.*, 1997, **131**, 233–240.
- 103 P. Pyykkö, Mol. Phys., 2008, 106, 1965-1974.
- 104 B. Bureau, G. Silly, J.-Y. Buzaré and J. Emery, *Chem. Phys.*, 1999, **249**, 89–104.
- 105 M. Body, G. Silly, C. Legein and J.-Y. Buzaré, *Inorg. Chem.*, 2004, **43**, 2474–2485.
- 106 C. Martineau, M. Body, C. Legein, G. Silly, J.-Y. Buzaré and F. Fayon, *Inorg. Chem.*, 2006, 45, 10215– 10223.
- 107 C. Legein, F. Fayon, C. Martineau, M. Body, J.-Y. Buzaré, D. Massiot, E. Durand, A. Tressaud, A. Demourgues, O. Péron and B. Boulard, *Inorg. Chem.*, 2006, 45, 10636–10641.
- 108 A. Zalkin and D. H. Templeton, *Acta Crystallogr., Sect. B:* Struct. Sci., 1985, **41**, 91–93.

Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters

Jamal Dabachi, Monique Body, Jens Dittmer, Franck Fayon, and Christophe Legein

Electronic Supporting Information

Table of contents

1. Homogeneity ranges of t- and β -LaOF2
2. Structural data
2.1. β-LaOF (rhomboedral)3
2.2. t-LaOF (tetragonal)5
3. Bond valence calculations
4. DFT optimizations of the Zachariasen structures9
4.1 β-LaOF9
4.2 t-LaOF9
5. Parameters used to generate the OTF USPP pseudopotentials9
6. F-F, F-O and O-O distances for β- and t-LaOF from the Rietveld refinement and after DFT-PBE atomic position optimization
7. Eigenvectors of the calculated ¹³⁹ La EFG tensor10
References

1. Homogeneity ranges of t- and β-LaOF

According to Zachariasen¹ the tetragonal phase has a wide homogeneity range, extending from LaO_{0.7}F_{1.6} to LaOF, and is stabilized by the presence of excess fluorine, located in interstitial position, over the ideal composition LaOF. For this ideal composition the tetragonal phase is unstable relative to the rhombohedral phase. The unit-cell dimensions of the tetragonal phases decrease with increasing oxygen content. On the other hand, the chemical composition of the rhombohedral phase is sharply defined and corresponds to the exact formula LaOF. No variation in unit-cell dimensions of this phase is observed. Only Tyagi² suggested that the tetragonal form of stoichiometric LaOF is more stable than the rhombohedral form of LaOF but the reported values of x in $LaO_{1-x}F_{1+2x}$ are not consistent with the corresponding compositions (see 2.1.e). The recalculated values of x allow contradicting this suggestion.³ On the other hand, the tetragonal phase has a wider homogeneity range extending from LaO_{0.263}F_{2.474} to LaOF (see 2.2.c) and the rhombohedral phase does not correspond only to the exact formula LaOF but presents also an homogeneity range extending from LaO_{1.008}F_{0.984} to LaO_{1.106}F_{0.788} (see 2.1.e).³ However, as previously outlined by Fergus and Chen,⁴ who determine a maximum value of x equal to 0.43 (see 2.2.d), the maximum value of x for the tetragonal phase was based, by Tyagi,² on the appearance of (diffraction) peaks for LaF₃ which may not be observable in two-phase materials containing small amounts of LaF₃.

2. Structural data

2.1. β-LaOF (rhomboedral)

2.1.a) ICSD⁵ 30622¹

Space group: R -3 m R (166)

a = 7.132(1) Å, α = 33.01(1)°, cell volume = 95.82 Å³, Z = 2

Fractional atomic coordinates:

Atom	Wyck.	х	у	Z
La1	2 c	0.242(1)	0.242(1)	0.242(1)
F1	2 c	0.122	0.122	0.122
01	2 c	0.37	0.37	0.37

Interatomic distances (Å):

La1	F1	3x	2.4204
	F1	1x	2.4254
	01	1x	2.5871
	01	3x	2.5874

Hexagonal cell: a = 4.0524 Å, c = 20.2120 Å

Fractional atomic coordinates:

Atom	Wyck.	х	у	Z
La1	6c	0	0	0.242
F1	6c	0	0	0.122
01	6c	0	0	0.37

2.1.b) from ref.⁶

a = 7.132(1) Å, α = 32.99(1)°

2.1.c) from ref.^{7,8}

Later, the crystal structure of β -LaOF was also refined by Hölsä *et al.*^{7,8} leading to the same conclusions (*i.e.* that the oxygen and fluorine atom positions should be interchanged).

Hexagonal cell: a = 4.0534(1) Å, c = 20.1961(1) Å⁷

Fractional atomic coordinates:

Atom	Wyck.	х	У	Z
La1	6c	0	0	0.2425(1)
F1	6c	0	0	0.3707(7)
01	6c	0	0	0.1190(9)

Interatomic distances (Å):

La1	01	3x	2.4084(43)
	01	1x	2.4942(183)
	F1	3x	2.5773(60)
	F1	1x	2.5891(143)

Hexagonal cell: a = 4.0534(4) Å, c = 20.1961(10) Å⁸

Fractional atomic coordinates:

Atom	Wyck.	х	у	Z
La1	6c	0	0	0.24249(1)
F1	6c	0	0	0.37068(6)
01	6c	0	0	0.11902(7)

Interatomic distances (Å):

La1	01	3x	2.4084(4)
	01	1x	2.4936(14)
	F1	3x	2.5776(6)
	F1	1x	2.5889(12)

2.1.d) from ref.⁹

Hexagonal cell: a = 4.0505(2) Å, c = 20.2115(25) Å and a = 4.051 Å, c = 20.22 Å.

2.1.e) from ref.²

Cell parameters of $LaO_{1-x}F_{1+2x}$ with -0.235 $\leq x \leq$ -0.160, recalculated as -0.106 $\leq x \leq$ -0.008 in ref.³

	a (Å)	α (°)
$LaO_{1.008}F_{0.984}$	7.060(9)	33.48
$LaO_{1.022}F_{0.956}$	7.059(9)	33.50
$LaO_{1.036}F_{0.928}$	7.057(9)	33.50
LaO _{1.106} F _{0.788}	7.052(8)	33.67

2.1.f) from ref.¹⁰

Hexagonal cell : a = 4.056(5) Å, c = 20.21(3) Å.

2.1.g) from ref.⁴

a = 7.1290 Å, α = 33.01°, same atomic positions as Zachariasen.¹

Hexagonal cell: a = 4.0512 Å, c = 20.2031 Å.

2.1.h) from ref.¹¹

 $LaO_{1\text{-}x}F_{1\text{+}2x}$ with -0.01 $\leq x \leq 0.02$

a = 7.133 Å, α = 33.0°.

2.1.i) from ref.¹²

Hexagonal cell: a=4.056(9) Å, c=20.227(1) Å.

2.1.j) from ref.¹³

Hexagonal cell: a=4.0516(2) Å, c=20.177(3) Å.

2.1.k) from ref.¹⁴

Hexagonal cell: a=4.044(8) Å, c=20.141(8) Å.

2.2. t-LaOF (tetragonal)

2.2.a) from ref.¹

Space group: P 4/n m m (129)

LaOF (ICSD⁵ 76427)

a = 4.091(1) Å, c= 5.836(1) Å, cell volume = 97.67 Å³, Z = 2

Fractional atomic coordinates:

Atom	Wyck.	х	у	Z
La1	2c	0.5	0	0.222(4)
F1	2a	0	0	0
01	2b	0	0	0.5

Interatomic distances (Å):

La1	F1	4x	2.4213
	01	4x	2.6108

$\text{LaF}_{1.6}\textbf{O}_{0.7}$

Zachariasen has also reported the positions for the interstitial anions in the tetragonal anion-excess phase $LaF_{1.6}O_{0.7}$.¹

a = 4.106(2) Å, c= 5.852(4) Å

Fractional atomic coordinates:

Atom	Wyck.	S.O.F.	х	у	Z
La1	2c	1	0.5	0	0.235
F1	2a	1	0	0	0
0	2b	0.7	0	0	0.5
F	2b	0.3	0	0	0.5
O F	2c	0.3	0.5	0	0.75

2.2.b) from ref.⁸

Hölsä *et al.* have also refined the crystal structures of the tetragonal form (with $z_{La} > 0.25$ and then distances La-F > La-O) for various **t-LaO**_{1-x}**F**_{1+2x} (**0.05** \leq **x** \leq **0.30**) but without considering the expected interstitial positions occupied by the excess F⁻ ions. In addition, the evolutions with x of the unit cell parameters are not regular making doubtful the compositions of these non-stoichiometric phases.

Cell parameters a (Å) and c (Å), z_{La} and interatomic distances (Å):

	а	С	Z _{La}	La-O distance	La-F distance ^a
$LaO_{0.95}F_{1.10}$	4.0850(4)	5.8320(7)	0.27592(4)	2.425(4)	2.600(4)
$LaO_{0.91}F_{1.18}$	4.0906(2)	5.8386(4)	0.27991(3)	2.415(4)	2.618(4)
$LaO_{0.89}F_{1.22}$	4.0942(2)	5.8423(3)	0.28057(3)	2.415(4)	2.623(4)
$LaO_{0.85}F_{1.30}$	4.0927(1)	5.8386(2)	0.27887(3)	2.419(4)	2.615(4)
$LaO_{0.83}F_{1.34}$	4.1202(2)	5.8765(4)	0.27998(4)	2.432(4)	2.637(4)
$LaO_{0.72}F_{1.56}$	4.1089(1)	5.8593(3)	0.27520(4)	2.440(4)	2.612(4)
$LaO_{0.70}F_{1.60}$	4.1120(1)	5.8599(4)	0.27255(4)	2.450(4)	2.603(4)

^a One La-F distance since the expected interstitial positions occupied by the excess F⁻ ions were not considered

2.2.c) from ref.²

$LaO_{1\text{-}x}F_{1\text{+}2x}$ with -0.154 \leq x \leq 0.609 recalculated as -0.001 \leq x \leq 0.737 in ref. 3

The reported a' and c' parameters (Å) are reversed from those determined by Zachariasen¹ and Fergus *et al.*⁴ and are then recalculated below for the sake of clarity.

	a' = c	c' = a $\sqrt{2}$	c'/ $\sqrt{2}$ = a
$LaO_{1.001}F_{0.998}$	5.820(3)	5.777(3)	4.085
$LaO_{0.965}F_{1.070}$	5.821(2)	5.770(2)	4.080
$LaO_{0.893}F_{1.214}$	5.821(3)	5.769(3)	4.079
$LaO_{0.819}F_{1.362}$	5.822(2)	5.767(3)	4.078
$LaO_{0.744}F_{1.512}$	5.827(2)	5.775(2)	4.084
$LaO_{0.667}F_{1.666}$	5.830(4)	5.783(2)	4.089
$LaO_{0.590}F_{1.820}$	5.829(2)	5.779(2)	4.086
$LaO_{0.510}F_{1.980}$	5.837(2)	5.777(2)	4.085
$LaO_{0.429}F_{2.142}$	5.839(2)	5.793(2)	4.096
$LaO_{0.347}F_{2.306}$	5.840(5)	5.793(7)	4.096
LaO _{0.263} F _{2.474}	5.842(1)	5.779(2)	4.086

2.2.d) from ref.⁴

$\text{LaO}_{1\text{-}x}\text{F}_{1\text{+}2x}$

Cell parameters a (Å) and c (Å) and δ (zLa = 0.25 - $\delta/2$):

	a (Å)	c (Å)	δ
LaOF	4.0834	5.8300	0.061
LaOF	4.0804	5.8278	0.064
$LaO_{0.75}F_{1.5}$	4.0916	5.8397	0.056
$LaO_{0.57}F_{1.86}$	4.0994	5.8451	0.045
LaO _{0.57} F _{1.86}	4.0993	5.8446	0.046

LaOF (x=0)

Fractional atomic coordinates:

Atom	Wyck.	х	у	Z
La1	2 c	0.5	0	0.25-δ/2
F1	2 a	0	0	0
01	2 b	0	0	0.5

x>0

Fergus and Chen⁴ claimed that they follow the analysis of Zachariasen¹ but the occupation rates of the anion sites by oxide and excess fluoride ions differ.

Fractional atomic coordinates:

Atom	Site	S.O.F.	х	у	Z
La1	2 c	1	0.5	0	0.25-δ/2
F1	2 a	1	0	0	0
0	2 c	1-2x	0.5	0	0.75
F	2 c	2x	0.5	0	0.75
0	2 b	х	0	0	0.5

```
2.2.e) from ref.<sup>12</sup>
LaOF
a = 4.101(1) Å, c= 5.851(8) Å
2.2.f) from ref.<sup>15</sup>
LaOF
a = 4.096586 Å, c= 5.834422 Å
2.2.g) from ref.<sup>14</sup>
LaOF
a = 4.105(7) Å, c= 5.857(1) Å
```

2.2.h) ICSD⁵ 40371¹⁶

In fact, before the two studies of Hölsa *et al.*⁸ and Fergus and Chen,⁴ the crystal structure of the tetragonal anion-excess phase $LaF_{1.70}O_{0.65}$ was investigated by Laval *et al.* by means of neutron diffraction data. They show that O and F have to be reversed (F and O located at 2b and 2a sites, respectively) in both stoichiometric and anion-excess tetragonal phases. They also show that, in t- $LaF_{1.70}O_{0.65}$, the O/F order is preserved and that the excess of anions are accommodated by the creation of vacancies within the F-layers, the insertion of F atoms at interstitial site and the partial substitution of F atoms for O ones within the O-layers. The La-O distances (2.46 Å) are shorter than the La-F ones (2.58-2.60 Å).

$\text{LaF}_{1.7}\text{O}_{0.65}$

a=4.105(2) Å, c=5.843(3) Å

Fractional atomic coordinates [origin choice 2]:

Atom	Site	S.O.F.	х	у	z
La1	2c	1	1/4	1/4	0.2314(3)
01	2a	0.65	3/4	1/4	0
F1	2a	0.35	3/4	1/4	0
F2	2b	0.86	3/4	1/4	1/2
F3	8i	0.1225	1/4	0.098(2)	0.663(1)

Interatomic distances (Å):

La1	01 F1	4x	2.4578
	F3	8x	2.5757
	F2	4x	2.5838
	F3	4x	2.5979

3. Bond valence calculations

The valence, v_{ij} , of a bond between two atoms i and j is defined so that the sum of all the valences from a given atom i with valence V_i obeys: $\sum_j v_{ij} = V_i$. The most commonly adopted empirical expression for the variation of the length d_{ij} of a bond with valence is $v_{ij} = \exp[(R_{ij} - d_{ij})/b]$ with b=0.37 Å⁻¹ and $R_{ij} = 2.172$ Å and 2.057 Å for La-O and La-F, respectively.^{17,18}

Vi	V _{ij}	d _{ij} (Å)	CN	Atom j	Atom i
.72	0.374	2.4213	4	F1	La1
	0.305	2.6108	4	01	
.49	0.374	2.4213	4	La1	F1
.22	0.305	2.6108	4	La1	01
	0.305 0.374 0.305	2.6108 2.4213 2.6108	4 4 4	La1 La1	F1 01

Table S1. Bond valence calculations for tetragonal LaOF¹

Table S2. Bond valence calculations for tetragonal LaOF¹ with oxygen and fluorine atom positions interchanged

Atom i	Atom j	CN	d _{ij} (Å)	V _{ij}	Vi
La1	01	4	2.4213	0.510	2.93
	F1	4	2.6108	0.224	
01	La1	4	2.4213	0.510	2.04
F1	La1	4	2.6108	0.224	0.90

Table S3. Bond valence calculations for rhombohedral LaOF¹

Atom i	Atom j	CN	d _{ij} (Å)	V _{ij}	Vi
La1	F1	3	2.4204	0.375	2.79
	F1	1	2.4254	0.369	
	01	1	2.5871	0.326	
	01	3	2.5874	0.325	
F1	La1	3	2.4204	0.375	1.49
	La1	1	2.4254	0.369	
01	La1	1	2.5871	0.326	1.30
	La1	3	2.5874	0.325	

Table S4. Bond valence calculations for rhombohedral LaOF¹ with oxygen and fluorine atom positions interchanged

Atom i	Atom j	CN	d _{ij} (Å)	V _{ij}	Vi
La1	01	3	2.4204	0.511	2.99
	01	1	2.4254	0.504	
	F1	1	2.5871	0.239	
	F1	3	2.5874	0.238	
01	La1	3	2.4204	0.511	2.04
	La1	1	2.4254	0.504	
F1	La1	1	2.5871	0.239	0.95
	La1	3	2.5874	0.238	

4. DFT optimizations of the Zachariasen structures

4.1β -LaOF

Hexagonal cell: a = 4.0524 Å, c = 20.2120 Å¹

Fractional atomic coordinates after optimization:

Atom	Wyck.	х	у	Z
La1	6c	0	0	0.2586
F1	6c	0	0	0.1286
01	6c	0	0	0.3770

4.2 t-LaOF

a = 4.091(1) Å, c= 5.836(1) Å¹

Fractional atomic coordinates after optimization:

Atom	Wyck.	х	у	Z
La1	2c	0.5	0	0.2854
F1	2a	0	0	0
01	2b	0	0	0.5

5. Parameters used to generate the OTF USPP pseudopotentials

Details on the string can be found on the Castep website (http://www.castep.org/) in the documentation section.

Atom	OTF USPP String
0	2 1.3 16.537 18.375 20.212 20UU:21UU(qc=7.5)[]
F	2 1.4 16.537 18.375 20.212 20UU:21UU(qc=7.5)[]
La	2 2 2 1.4 8 12 13 50N:60NH:51UU:52LGG:
-	43U1.6+0@0.1672U1.6+0.1@0.1672{5d0.9,4f0.1}(qc=6)[]

6. F-F, F-O and O-O distances for β - and t-LaOF from the Rietveld refinement and after DFT-PBE atomic position optimization

Table S5 F-F, F-O and O-O distances (Å) for β - and t-LaOF from the Rietveld refinement (experimental structure, ES) and after DFT-PBE atomic position optimization (APO). Uncertainties are indicated in brackets. For t-LaOF, the O and F atomic coordinates are fixed by symmetry.

Phase	Distances	ES	APO
β-LaOF	F-F (×3)	2.768(9)	2.770
	F-O (×3)	2.912(11)	2.911
	0-0 (×3)	2.949(12)	2.949
t-LaOF	F-F (×4)	2.8883(1)	2.8883
	0-0 (×4)	2.8883(1)	2.8883
	F-O (x2)	2.9148(1)	2.9148

7. Eigenvectors of the calculated ¹³⁹La EFG tensor

Table S9. Eigenvectors of the calculated ¹³⁹La EFG tensor, expressed in the crystallographic axis, for β -LaOF (APO).

Axis	V _{XX}	V _{YY}	V _{zz}
а	0.01986	-0.28422	0
b	-0.23621	-0.15931	0
С	0	0	0.04946

Table S10. Eigenvectors of the calculated ¹³⁹La EFG tensor, expressed in the crystallographic axis, for t-LaOF (ES).

Axis	V _{xx}	V _{YY}	V _{zz}
а	0.24227	-0.03516	0
b	0.03516	0.24227	0
С	0	0	0.17154

References

1 W. H. Zachariasen, Acta Crystallogr., 1951, 4, 231–236.

- 2 A. K. Tyagi, J. Mater. Sci. Lett., 1995, 14, 1502–1504.
- 3 J. W. Fergus, J. Mater. Sci. Lett., 1997, 16, 267–269.

4 J. W. Fergus, H.-P. Chen, J. Electrochem. Soc., 2000, 147, 4696-4704.

5 Inorganic Crystal Structure Database (ICSD), Version 1.9.5., FIZ Karlsruhe and NIST, Germany and Maryland, 2007.

6 N. C. Baenziger, J. R. Holdeng, G. E. Knudson, A. I. Popov, J. Am. Chem. Soc., 1954, 76, 4734–4735.

7 J. Hölsä, E. Kestilä, J. Alloys Compd., 1995, 225, 89–94.

8 J. Hölsä, E. Säilynoja, H. Rahiala, J. Valkonen, Polyhedron, 1997, 19, 3421–3427.

9 T. Petzel, V. Marx, B. Hormann, J. Alloys Compd., 1993, 200, 27–31.

10 S. N. Achary, B. R. Ambekar, M. D. Mathews, A. K. Tyagi, P. N. Moorthy, *Thermochim. Acta*, 1998, **320**, 239–243.

11 K. T. Jacob, V. S. Saji, Y. Waseda, Int. J. Appl. Ceram. Technol., 2006, **3**, 312–321.

12 T. Grzyb, S. Lis, Inorg. Chem., 2011, 50, 8112-8120.

13 S. E. Dutton, D. Hirai, R. J. Cava, Mater. Res. Bull., 2012, 47, 714–718.

14 T. Grzyb, M. Węcławiak, T. Pędziński, S. Lis, Opt. Mater., 2013, **35**, 2226–2233.

15 N. Rakov, J. de A. B. Barbosa, R. B. Guimarães, G. S. Maciel, J. Alloys Compd., 2012, 534, 32–36.

16 J. P. Laval, A. Abaouz, B. Frit, G. Roult, W. T. A. Harrison, *Eur. J. Solid State Inorg. Chem.*, 1998, **25**, 425–434.

17 I. D. Brown, D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.

18 N. E. Brese, M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci., 1991, 47, 192–197.

3.3 Conclusion

Cette étude montre notamment l'efficacité des méthodes GIPAW [13] et PAW [18,19] pour le calcul des paramètres RMN des oxyfluorures inorganiques ordonnés. Les effets des optimisations sont faibles et l'accord entre paramètres RMN expérimentaux et calculés est bon. Ceci montre à la fois la précision des modèles structuraux expérimentaux et l'aptitude de la fonctionnelle PBE [20] à estimer correctement les distances La-F et La-O après correction du pseudopotentiel ultradoux du lanthane, alors qu'elle est bien connue pour en surestimer la plupart.

Ce résultat est encourageant dans la perspective de la modélisation de la structure d'autres oxyfluorures cristallisés ordonnés ou désordonnés, en couplant RMN du solide et calculs DFT des paramètres RMN. L'optimisation des modèles structuraux des composés désordonnés, construits en distribuant aléatoirement plusieurs atomes sur le même site, des lacunes, des atomes dans des sites interstitiels,... est cruciale. Dans le cas des oxyfluorures inorganiques, une estimation correcte des distances M-F et M-O est indispensable pour les décrire précisément et calculer correctement des paramètres RMN tels que le déplacement chimique ou les paramètres quadripolaires, particulièrement sensibles à l'environnement du noyau sondé. C'est en effet l'accord entre paramètres RMN calculés et expérimentaux qui, *in fine*, permettra de valider (ou non) le modèle proposé.

Références

[1] L. S. Du, F. Wang, C. P. Grey, J. Solid State Chem. 140 (1998) 285–294.

[2] L. S. Du, A. Samoson, T. Tuherm, C. P. Grey, Chem. Mater. 12 (2000) 3611–3616.

[3] J. H. Choy, J. Y. Kim, S. J. Kim, J. S. Sohn, Chem. Mater. 13 (2001) 906–912.

[4] L. S. Du, R. W. Schurko, N. Kim, C. P. Grey, J. Phys. Chem. A 106 (2002) 7876–7886.

[5] J. Köhler, A. Simon, L. Van Wüllen, S. Cordier, T. Roisnel, M. Poulain, M. Somer, Z. Anorg. Allg. Chem. 628 (2002) 2683–2690.

[6] F. Le Berre, M.-P. Crosnier-Lopez, C. Galven, J.-L. Fourquet, C. Legein, M. Body, J.-Y. Buzaré, Dalton Trans. (2007) 2457–2466.

[7] L. Sronek, J. Lhoste, M. Gaudon, C. Legein, J.-Y. Buzaré, M. Body, G. Crinière, A. Tressaud, S. Pechev, A. Demourgues, J. Phys. Chem. C 112 (2008) 860–866.

[8] T. M. Alam, J. S. Clawson, F. Bonhomme, S. G. Thoma, M. A. Rodriguez, S. Zheng, J. Autschbach, Chem. Mater. 20 (2008) 2205–2217.

[9] C. Galven, C. Legein, M. Body, J.-L. Fourquet, J.-Y. Buzaré, F. Le Berre, M.-P. Crosnier-Lopez, Eur. J. Inorg. Chem. (2010) 5272–5283.

[10] J. M. Griffin, J. R. Yates, A. J. Berry, S. Wimperis, S. E. Ashbrook, J. Am. Chem. Soc. 132 (2010) 15651– 15660.

[11] H. Yi, E. Balan, C. Gervais, L. Segalen, F. Fayon, D. Roche, A. Person, G. Morin, M. Guillaumet, M. Blanchard, M. Lazzeri, F. Babonneau, Am. Mineral. 98 (2013) 1066–1069.

[12] J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein, Dalton Trans. 44 (2015) 20675–2068.

[13]C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[14] W. H. Zachariasen, Acta Crystallogr. 4 (1951) 231–236.

[15] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst. 32 (1976) 751–767.

[16] I. D. Brown, D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci. 41 (1985) 244–247.

[17] N. E. Brese, M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci. 47 (1991) 192–197.

[18] H.M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter 57 (1998) 14690–14697.

[19] P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.

[20] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Chapitre IV

Etude de composés désordonnés:

Etude de la composition chimique et de l'ordre O/F dans NbO₂F et TaO₂F

4.1 Introduction

Les techniques de diffraction sont particulièrement inadaptées pour caractériser les solides cristallins désordonnés à l'échelle locale puisqu'elles ne permettent d'obtenir qu'une structure moyenne (occupation supposée statistique du même site cristallographique par plusieurs atomes ou lacunes, sites cristallographiques partiellement occupés,...). La RMN du solide combinée aux calculs premiers principes effectués sur des supermailles permettant de générer les divers environnements locaux attendus est alors un moyen pertinent d'obtenir une description plus précise de la structure du solide étudié [1-7].

Dans ce chapitre est reportée l'étude de deux composés désordonnés isotypes, les dioxyfluorures de niobium, NbO₂F, et de tantale, TaO₂F, jamais étudiés auparavant par RMN du solide de ¹⁹F. A température et pression ambiantes, NbO₂F et TaO₂F adoptent une structure cubique de type ReO₃ avec une distribution supposée d'abord statistique des atomes d'oxygène et de fluor sur le même site cristallographique [8] puis, un ordre -Nb-O-Nb-O-Nb-F- a été mis en évidence dans NbO₂F le long des chaines d'octaèdres NbX₆ (X = O,F) [9]. Cette étude avait pour but initial de seulement combiner RMN du solide et calculs GIPAW [10] de ¹⁹F pour modéliser la structure de ces composés. Néanmoins, lorsque ces deux composés sont synthétisés en milieux aqueux [8] puis traités thermiquement, soit la voie de synthèse classiquement utilisée, leurs spectres RMN de ¹⁹F présentent deux contributions principales. Or une seule contribution est attendue puisque un seul environnement (F-M₂) est censé exister dans ces composés. La contribution inattendue provient de l'existence de lacunes cationiques provoquée par la substitution des atomes d'oxygène par des groupements hydroxyle et/ou des atomes de fluor. Comme montré récemment pour un échantillon de NbO₂F n'ayant pas été traité thermiquement [11], la synthèse en milieu aqueux conduit en effet à des composés hydroxylés lacunaires M₁. ${}_{x}\Box_{x}(O,OH,F)_{3}$ dont la formulation a été déterminée en combinant RMN du solide de ${}^{19}F$, diffraction des rayons-X sur poudre et analyses thermogravimétriques.

La publication tirée de ce travail, soumise à Inorg. Chem. le 08/02/2017, est reportée en 4.2.

4.2 Etude de la composition chimique et de l'ordre O/F dans NbO₂F et TaO₂F

Preparation-dependent composition and O/F ordering in NbO₂F and TaO₂F

Jamal Dabachi, † Monique Body, † Cyrille Galven, † Florent Boucher,[§] Christophe Legein †**

 † Université Bretagne Loire, Université du Maine, UMR CNRS 6283, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

§ Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France

KEYWORDS. Inorganic Oxyfluoride, ¹⁹F and ⁹³Nb Solid State NMR, DFT calculations

ABSTRACT. Through an analysis combining powder XRD, TGA and ¹⁹F and ¹H solid state NMR, it is confirmed for NbO₂F and shown for TaO₂F that both contain hydroxyl defects and metal vacancies when prepared by aqueous solution synthesis. The formulations $M_{1-x}\Box_xO_{2-x}$ $_{5x}(OH,F)_{1+5x}$ of both the samples are determined. The effects of the usually applied thermal treatments are examined. Obtaining pure NbO₂F and TaO₂F from these samples, that is fully removing metal vacancies and hydroxide, while avoiding the formation of M_2O_5 is not that easy. Since thermal treatments result in dehydroxylation and defluorination, it requires, at least, a larger amount of fluorine than metal initially which may not be the case. We also confirm that the solid state synthesis is an efficient method to avoid metal vacancies and hydroxyl defects in NbO₂F and then apply it to the synthesis of TaO₂F. The local structure of NbO₂F and TaO₂F is poorly described by an ideal cubic ReO₃-type model with O and F randomly distributed over the available anion sites. Since O/F ordering was previously highlighted, NbO₂F and TaO₂F cubic 3 \times 3 \times 3 supercells featuring -M-O-M-O-M-F- chains along (100) have been built and geometry optimized. These optimized supercells lead to more realistic structures than the previously proposed models, that is really disordered structures with angularly and radially distorted MX₆ octahedra as expected in disordered compounds. Moreover, the structural modeling of NbO₂F and TaO₂F by these geometry optimized supercells is supported by the computed ¹⁹F and ⁹³Nb NMR parameters which give very good agreement with the experimental ones.
1. INTRODUCTION

Niobium and tantalum dioxyfluorides (NbO₂F and TaO₂F) both adopt under ambient conditions a cubic ReO₃-type structure (SG: *Pm-3m*).¹ Materials with this type structure are of interest for their potential as low or negative thermal expansion materials. Almost zero thermal expansion was reported in TaO₂F² leading to interest in this material for its potential as mid-IR transparent window material.³ While the thermal expansion coefficients of many materials increase on heating and then plateau at higher temperatures, NbO₂F shows strong positive thermal expansion only at low temperature² and its thermal expansion coefficient decreases on heating and approaches zero at 400 K.⁴ The potential uses of NbO₂F as anode for Li-ion batteries,⁵ electrochromic material⁶ and photocatalyst (for Ag⁺-inserted NbO₂F)⁷ and of hierarchical nanostructures composed of amorphous cores and single crystalline TaO₂F nanorod shells as photocatalyst⁸ were also examined.

In NbO₂F and TaO₂F, F and O atoms were first assumed to be randomly distributed on the same (3d) crystallographic position.¹ To accommodate the expected M–X (M = Nb, Ta; X = O, F) different bond lengths, the local short-range structure of NbO₂F and TaO₂F must deviate from the average (crystal) structure which leads to a single average M-X distance. From an electron diffraction study of NbO₂F, Brink *et al.* have shown the existence of one-dimensional O/F-ordered columns of atoms, -Nb-O-Nb-F-, with unequal Nb-X bond lengths and significant displacements of Nb from the ideal cation site, along each of the three (100) directions but with no lateral correlation in the ordering from such column to the next.⁹ Furthermore, large transverse atomic displacement parameters (ADPs), that persist at low temperatures, have been evidenced in TaO₂F from a variable temperature neutron diffraction study. It was suggested that these large ADPs likely arise from static tilting of the TaO₄F₂ octahedra and the possibility of

nonlinear Ta-(O/F)-Ta bonds.² Finally, the local structure of TaO₂F was examined using variable temperature total X-ray scattering; a supercell model featuring -Ta-O-Ta-O-Ta-F- chains along (100), with different Ta-O and Ta-F distances and O/F off-axis displacements, gave much better agreement with pair distribution functions (PDFs).¹⁰

The common route to prepare NbO₂F and TaO₂F, based on the procedure of Frevel and Rinn,¹ is an aqueous solution synthesis consisting in the digestion of M_2O_5 oxides, or in the dissolution of the M metal, in concentrated aqueous HF and slow evaporation, at 20-130°C, of the solution to dryness. Further drying is usually achieved by heating the resulting powder but the number of such treatments, temperatures (100°C-500°C), durations (1h-50h) and atmospheres of treatment (air, vacuum, argon) depend on the authors.^{1-3,6,7,9-16} A TGA showed that, when heated to 300°C, a sample of "NbO₂F" prepared from Nb₂O₅ lost about 15 (±2) wt % while a sample of "NbO₂F" prepared from Nb lost only about 2 wt %.¹³ It has been assumed that when Nb₂O₅ is used as starting material, NbO₂F·HF forms. The substitution of F anions by OH⁻ anions is not intended, except in a recent study,⁴ in which it has been shown that a synthesis of samples of "NbO₂F" prepared from Nb₂O₅, followed by mild drying (without heating treatment) leads to Nb_{1-x} \Box_x O₂₋ _{5x}(OH,F)_{1+5x} compounds, containing both hydroxyl defects and metal vacancies. Synthesis of NbO₂F based on the reaction of NbF₅ with silica¹⁷ and a direct solid state synthesis of NbO₂F, from NbF₅ and Nb₂O₅,⁴ were described. Finally, hierarchical nanostructures composed of amorphous cores and single crystalline TaO₂F nanorod shells were obtained by regulating the one-step hydrothermal process of TaF₅ in a mixed solution of i-PrOH and H₂O.⁸

The sensitivity of solid-state NMR spectroscopy to the local structural environment makes it a powerful complementary tool to diffraction-based methods for ordered systems and an ideal probe for disordered solids. For example, ¹⁹F solid-state NMR can allow to identify the local

environments of F in oxyfluoride compounds and to characterize the F/O ordering.^{15,18-27} In the present cases where metal vacancies are expected, ¹⁹F solid-state NMR should allow to identify and quantify the various F environments since the ¹⁹F δ_{so} value depends on the coordination number of F as shown, for example, in NbF₅ and TaF₅,²⁸ and as applied on anatase-type structure $Ti_{1-x-y} \Box_{x+y} O_{2-4(x+y)} F_{4x}(OH)_{4y}$,²⁹⁻³² hexagonal tungsten-bronze (HTB) type structure $Ti_{1-x} \Box xO_{1-4x}(F,OH)_{2+4x}^{31}$ and ReO₃ type structure $Ti_{0.90} \Box_{0.10}O_{0.60}(OH)_{0.74}F_{1.66}^{33}$. The ¹⁹F solid state NMR study of NbOF₃ and TaOF₃ samples containing NbO₂F (signal at -52 ppm) and TaO₂F (not distinguished) as byproduct¹⁵ will be discussed below. Moreover, solid-state ⁹³Nb NMR is one of the most promising techniques to study the local environment of niobium in solids, particularly when diffraction methods may fail due to disorder. On the one hand, ⁹³Nb, the only magnetically active isotope of niobium, is one of the most NMR receptive nuclei, having a high magnetogyric ratio and a 100% natural abundance. On the other hand, its high nuclear spin, I = 9/2, and quite large quadrupole moment, Q = -320(20) mb,³⁴ can hinder ⁹³Nb NMR research in solid state.^{35,36} Some previous studies on inorganic niobates,³⁶⁻³⁸ niobium oxyfluorides $(Cdpy_4NbOF_5 (py = C_5H_5N) \text{ and } [pyH]_2[Cdpy_4(NbOF_5)_2])^{21}$ and niobium fluorides $(K_2NbF_7, {}^{39,40})^{30,40}$ $KNbF_6$ and $K_3NbF_8^{40}$) are interesting in the context of this work. For the sake of completeness, the ⁹³Nb NMR spectrum of a mixture of LiNbO₃ and NbO₂F was reported a long time ago within a methodological NMR study providing no (and even containing errors about) structural information about NbO₂F.⁴¹

A further advance in methodology was the development of DFT methods with periodic boundary conditions which enable efficient and accurate calculation of solid-state NMR parameters in crystalline materials. In particular, the gauge including projector augmented wave (GIPAW)⁴² approach, implemented in the CASTEP code,^{43,44} has been widely applied to a large range of systems,⁴⁵⁻⁴⁷ for example to the calculation of ¹⁹F NMR parameters of inorganic fluorides and oxyfluorides.^{25,27,28,48-58} The complexity of the lineshapes that result from compositional (chemical) and/or positional disorder hinders spectral assignment or interpretation and extraction of detailed structural information. Therefore GIPAW calculations quickly appeared as valuable means for establishing the link between the variations of the local structure associated with disorder and experimental distributions of NMR parameters.^{45-47,52,54}

This study consists of two parts. First, through an analysis combining powder XRD, TGA and ¹⁹F and ¹H solid state NMR, it is confirmed for NbO₂F and shown for TaO₂F that both these compounds, when prepared by aqueous solution synthesis, contain hydroxyl defects and metal vacancies. The formulations $M_{1-x}\Box_xO_{2-5x}(OH,F)_{1+5x}$ of both the samples are determined and the effects of the usually applied thermal treatments examined. We also confirm that the solid state synthesis is an efficient method to avoid metal vacancies and hydroxyl defects in NbO₂F⁴ and then apply it to the synthesis of TaO₂F. Second, supercell models of NbO₂F and TaO₂F featuring -M-O-M-O-M-F- chains along (100) have been geometry optimized and the ¹⁹F and ⁹³Nb NMR parameters have been computed. These NMR parameters give very good agreement with the experimental ones validating these structural models which then draw accurately the MO₂F structures.

2. EXPERIMENTAL SECTION

2.1. Synthesis. Based on the procedure of Frevel and Rinn,¹ MO₂F (M = Nb, Ta) were prepared by digesting M₂O₅ oxides (Nb₂O₅ and Ta₂O₅ both from Alfa Aesar GmbH & Co KG, 99.9 % and 99.8 %, respectively) in a Pt crucible with concentrated aqueous HF (Sigma Aldrich, \geq 40%), followed by slow evaporation to dryness at 90°C. *Caution!* Hydrofluoric acid is highly toxic and corrosive and must be handled cautiously with the proper protective equipment;

contact with liquid or vapor requires immediate treatment with proper procedures.⁵⁹⁻⁶¹ The remaining off-white powders (AQ_MO₂F) were analyzed as is or after heating under air for 24 h at 250°C for NbO₂F and 300°C for TaO₂F (AQHA_MO₂F) or under vacuum at 150°C for 12 h (AQHV_MO₂F).

 MO_2F were also prepared by direct solid state synthesis (S_MO_2F) from mixtures of MF₅ (NbF₅ and TaF₅ both from Alfa Aesar GmbH & Co KG, 99 % and 99.9 %, respectively) and M_2O_5 . Since the starting fluorides are moisture sensitive, all operations of weighing, mixing and grinding were done in a dry glove box, under nitrogen atmosphere. The mixtures were then inserted into platinum tubes and dried under secondary vacuum at 150 °C. Tubes were sealed and heated at 210 °C for 18 h and then quenched in water. Due to the volatility of MF₅, the reaction is incomplete (presence of unreacted M_2O_5 in the product detected by powder XRD) using stoichiometric mixture. Wilkinson *et al.* introduced 5% excess NbF₅ relative to the ideal 2:1 molar ratio.⁴ 5% excess MF₅ relative to the ideal 2:1 molar ratio are indeed necessary for NbO₂F but not sufficient for TaO₂F for which 10% excess TaF₅ were also used. Since the starting materials are moisture sensitive, all operations of weighing, mixing and grinding were done in a dry glove box, under nitrogen atmosphere.

2.2 Characterization Methods. 2.2.1 Powder XRD. The room temperature powder XRD diagrams were recorded under air with a PANalytical X'pert PRO diffractometer equipped with a X'Celerator detector using a monochromated CuK α radiation ($\lambda = 1.5406$ Å). Measurements were done in the 2 θ range 10° to 140° or 150° with an interpolated step of 0.0167° and a total collecting time of about 5 hours. The EVA software and the PDF⁶² database were used for phase identification. The Rietveld method⁶³ implemented in the Fullprof program⁶⁴ was used for the structural refinements of all the samples, except for AQTGA_NbO₂F, for which only the cell

parameter was determined using the pattern-matching procedure. Background levels were made manually.

2.2.2 TG and MS analyses. To determine the thermal behavior of the AQ_MO₂F samples and to support the chemical formulations, TGA were performed with a TGA Jupiter STA 449 F3 Netzsch instrument, between 25 and 600°C under Ar flow with a heating rate of 10°C/min. This equipment, coupled to a mass spectrometer Aëolos QMS 403C Netzsch, allows the analysis of gas emitted by the sample during heating.

2.2.3 Solid state NMR. ¹H, ¹⁹F and ⁹³Nb solid-state MAS NMR experiments were performed on a Bruker Avance III spectrometer operating at 7.0 T (¹H, ¹⁹F and ⁹³Nb Larmor frequencies of 300.1, 282.4 and 73.47 MHz, respectively), using a 1.3 mm CP-MAS probe head. The ¹H and ¹⁹F MAS spectra were recorded using a Hahn echo sequence with an interpulse delay equal to one rotor period. For ¹⁹F, the 90° pulse length was set to 1.25 μ s and the recycle delay was set to 60 and 10 s, for NbO₂F and TaO₂F, respectively. For ¹H, the 90° pulse length was set to 1.25 µs and the recycle delay was set to 20 s. For ⁹³Nb, the linear regime was ensured by using short pulse duration (0.3 µs) with a recycle delay of 1 s and 30720 transients were accumulated. ¹H, ¹⁹F and ⁹³Nb spectra are referenced to TMS, CFCl₃ and saturated K[NbCl₆]/CH₃CN solution (by using LiNbO₃ as a secondary reference ($\delta_{so} = -1004 \text{ ppm}^{65}$)), respectively, and they were fitted by using the DMFit software.⁶⁶ ¹⁹F solid state NMR was also used to quantify the F content on the studied samples by using reference samples.²⁹⁻³³ ¹⁹F solid-state MAS NMR (Hahn echo) spectra were also recorded for YF₃ and LaF₃ and the masses of each sample in the rotor were measured. The fits of the spectra allow determining the integrated intensities (I) for each sample. Since, for each sample, the recycle delays were chosen to ensure that the amount of signal detected is maximum (420 s for YF₃ and 120 s for LaF₃), we assume that the integrated intensities are proportional to the number of scans (64 for NbO₂F, 128 for TaO₂F and 16 for YF₃ and LaF₃) and to the molar quantity of F atoms (*n*) in the rotor. This assumption is verified since the calculated I/n ratio for YF₃ and LaF₃ are equal. The intensities per scan of the NMR signals of the studied samples, I_1 , and of YF₃ (or LaF₃), I_2 , allow to calculate the F wt % in the studied samples using the following formula where *m* and *M* are the mass and the molar mass, respectively:

$$\frac{I_1}{I_2} = \frac{n_F}{\frac{3m_{YF_3}}{M_{YF_3}}}$$

wt % = $\frac{m_F}{m} = \frac{n_F M_F}{m} = \frac{3m_{YF_3}}{M_{YF_3}} \frac{I_1}{I_1} \frac{M_F}{m}$

3. THEORETICAL CALCULATIONS

F

DFT calculations of the shielding and electric field gradient (EFG) tensors were performed with the CASTEP^{43,44} code implemented in the Materials Studio 5.0 environment using the GIPAW⁴² and projector augmented wave (PAW)^{67,68} methods. The PBE functional⁶⁹ was used in the generalized gradient approximation (GGA) for the exchange–correlation energy, and the core-valence interactions were described by ultrasoft pseudopotentials (USPP).⁷⁰ The USPP were generated using the "on the fly" generator (OTF_USPP) included in CASTEP. Core radii of 1.4 Å and 1.3 Å were used for F and O, respectively, with 2s and 2p valence orbitals. For Nb, a core radius of 2.2 Å was used with 4s, 4p, 5s, and 4d valence orbitals. For Ta, a core radius of 2.4 Å was used with 5s, 5p, 4f, 6s, and 5d valence orbitals. The wave functions were expanded on a plane-wave basis set with a kinetic energy cutoff of 700 eV. The Brillouin zone was sampled using a Monkhorst–Pack grid spacing of 0.04 Å⁻¹ (corresponding to a k-point mesh of $3 \times 3 \times 3$). These calculations were done for the atomic position optimized (APO) supercells.

Geometries were converged with CASTEP by minimizing the residual forces on all atoms below 10 meV Å^{-1} using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.⁷¹ The atomic

position optimizations were also performed with the *ab initio* total energy and molecular dynamics VASP program.⁷² The used PAW pseudopotentials are the followings: Ta_pv (5p⁶ 6s² 5d³), Nb_sv (4s² 4p⁶ 5s¹ 4d⁴), F (2s² 2p⁵), O (2s² 2p⁴). The self-consistency on electronic density was obtained with a 500 eV plane wave energy cut-off and a (3 x 3 x 3) shifted Monkhorst–Pack k-point mesh. Atomic positions were optimized by minimizing the residual Hellmann–Feynman forces on the atoms down to 20 meV Å⁻¹. While both the APO supercells of NbO₂F are nearly identical, those of TaO₂F are significantly different. Moreover, using CASTEP, the optimization of the TaO₂F supercell was lengthy and led to some inconsistent structural features. We have then retained the supercell of NbO₂F optimized with CASTEP and the supercell of TaO₂F optimized with VASP. Further details on these APO supercells may be obtained as SI (Tables S22 and S23).

The isotropic shielding value is defined as $\sigma_{iso} = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3$, σ_{ii} being the principal components of the shielding tensor defined in the sequence $|\sigma_{zz} - \sigma_{iso}| \ge |\sigma_{xx} - \sigma_{iso}| \ge |\sigma_{yy} - \sigma_{iso}|$. The shielding anisotropy σ_{csa} and the asymmetry parameter η_{csa} are defined as $\sigma_{csa} = \sigma_{zz} - \sigma_{iso}$ and $\eta_{csa} = (\sigma_{yy} - \sigma_{xx})/\sigma_{csa}$. The isotropic chemical shift is defined as $\delta_{iso} = -[\sigma_{iso} - \sigma_{ref}]$. For ¹⁹F, linear correlations between calculated σ_{iso} and experimental δ_{iso} values have been established in most cases by refining both the slope and σ_{ref} values.^{25,27,28,48,49,56,58} Since they depend on the nature of the metallic atoms, to ensure the accuracy of calculated ¹⁹F δ_{iso} values, the relationships established from NbF₅ (δ_{iso} (ppm) = $-1.028(6) \sigma_{iso} + 100.4(8)^{28}$) and from TaF₅ (δ_{iso} (ppm) = $-0.777(11) \sigma_{iso} + 86.2(1.2)^{28}$) were used for NbO₂F and TaO₂F, respectively. The chemical shift tensor is described by three parameters, δ_{iso} , the chemical shift anisotropy δ_{csa} and the asymmetry parameter η_{csa} defined as $\delta_{iso} = (\delta_{xx} + \delta_{yy} + \delta_{zz})/3$, $\delta_{csa} = \delta_{zz} - \delta_{iso}$, $\eta_{csa} = (\delta_{yy} - \delta_{xx})/\delta_{csa}$, with the principal components defined in the sequence $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$. The

quadrupolar coupling constant C_Q , the quadrupolar frequency v_Q and the asymmetry parameter η_Q are defined as $C_Q = eQV_{zz}/h$, $v_Q = 3C_Q/[2I(2I-1)]$ and $\eta_Q = (V_{xx} - V_{yy})/V_{zz}$, V_{ii} being the principal components of the EFG tensor defined in the sequence $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$, *e* the electronic charge, *Q* the quadrupolar moment, *I* the nuclear spin quantum number and *h* the Planck's constant. The quadrupolar moment *Q* of ⁹³Nb is equal to -320(20) mb³⁴ and its nuclear spin quantum number *I* is equal to 9/2.

4. RESULTS AND DISCUSSION

4.1 Preparation-dependent composition. 4.1.1 Aqueous solution synthesis. Within pure MO₂F, a F/O atom is surrounded by two M atoms leading to a single environment for the F atoms, that is, F-M₂. A single and broad ¹⁹F NMR line, due to the disorder produced by the distribution of F and O atoms in the same crystallographic site, is then expected on the ¹⁹F NMR spectra. NbO₂F and TaO₂F were first prepared by aqueous solution synthesis¹ and analyzed as is. The ¹⁹F MAS solid state NMR spectra of AQ_NbO₂F and AQ_TaO₂F are reported on Figures 1 and 2, respectively, and their fits are reported as SI (Figures S1 and S2, Tables S1 and S2, respectively). Both spectra show a main line and two others less intense lines at higher δ_{iso} values. These spectra then highlight an additional coordination mode, at least, for the F atoms. Considering that, as observed for ¹⁹F in NbF₅ and TaF₅,²⁸ in anatase type structure $Ti_{1-x-y}\Box_{x+y}O_{2-4(x+y)}F_{4x}(OH)_{4y}$,²⁹⁻³² in hexagonal tungsten-bronze (HTB) type structure $Ti_{1-x}\Box_xO_{1-4x}(F,OH)_{2+4x}$,³¹ ReO₃ type structure $Ti_{0.90}\Box_{0.10}O_{0.60}(OH)_{0.74}F_{1.66}$,³³ Cdpy₄NbOF₅ and $[pyH]_2[Cdpy_4(NbOF_5)_2])^{21}$ and for ¹⁷O in TiO₂(B),⁷³ the δ_{iso} values of anions increase when the number of surrounding cations decreases, the main lines are assigned to bridging F atoms F-M₂ and the lines at higher $\delta_{\rm iso}$ values are assigned to terminal (non bridging) F atoms. These assignments are also supported by the close 19 F δ_{so} values of bridging F atoms in NbF₅ (-42

ppm²⁸) and AQ_NbO₂F (-54 and -44 ppm), on the one hand, and in TaF₅ (-70.5 ppm²⁸) and AQ_TaO₂F (-71 ppm), on the other hand. The ¹⁹F δ_{so} values of terminal F atoms are not so close in NbF₅ (193 to 268 ppm²⁸), Cdpy₄NbOF₅ and [pyH]₂[Cdpy₄(NbOF₅)₂] (~30 ppm²¹) and AQ_NbO₂F (60 and 101 ppm), on the one hand, and in TaF₅ (106 to 174 ppm²⁸), [Ta₄F₁₆O₄]⁴⁻ and [Ta₈F₂₄O₁₂]⁸⁻ clusters (surrounded by organic cations, -44 ppm to 30 ppm²³) and AQ_TaO₂F (11 and 41 ppm), on the other hand. This does not question the above assignments but only shows that the ¹⁹F δ_{so} values of terminal F atoms are more dependent of the compound in which they are. At last, the ¹⁹F δ_{so} value of the main line of AQ_NbO₂F is in agreement with the previously reported value (-52 ppm) from the ¹⁹F solid state NMR study of NbOF₃ sample containing NbO₂F as byproduct.¹⁵ In the light of the above assignments and trends for ¹⁹F δ_{so} values, the assignments of Köhler *et al.*¹⁵ for NbOF₃ and TaOF₃ (that is the ¹⁹F NMR lines with the lowest δ_{iso} (196.3 ppm and 124.2 ppm) values to the bridging F) have to be reversed.

The F-M \Box additional coordination modes confirm⁴ and show the occurrence of cationic vacancies in AQ_NbO₂F and AQ_TaO₂F, respectively. The formation of cationic vacancies could result from the substitution of divalent O²⁻ anions by F or OH⁻ anions since the synthesis route does not prevent the presence of OH⁻ anions in AQ_NbO₂F and AQ_TaO₂F. Indeed their ¹H MAS solid state NMR spectra (Figures 3 and 4, fits reported as SI, Figures S3 and S4, Tables S3 and S4) show that AQ_NbO₂F and AQ_TaO₂F both contain a significant amount of protons. Then, AQ_NbO₂F and AQ_TaO₂F have the general composition M_{1-x} $\Box_xO_{2-5x}(F,OH)_{1+5x}$. Similarly to the F atoms, the OH groups are expected to be present as bridging OH-M₂ or terminal OH-M \Box . Such groups have been distinguished on the ¹H MAS NMR spectra of ReO₃ type structure Ti_{0.90} $\Box_{0.10}O_{0.60}(OH)_{0.74}F_{1.66}$ (OH-Ti₂ and OH-Ti \Box)³³ and of anatase type structure

Ti_{1-x-y} $\square_{x+y}O_{2-4(x+y)}F_{4x}(OH)_{4y}$ (OH-Ti \square_2 , OH-Ti₂ \square and OH-Ti₃).³² Indeed, in these compounds as in anatase,⁷⁴ the ¹H δ_{so} values increase upon increasing the number of titanium atoms surrounding OH groups, that is increasing the acidic character. The ¹H MAS NMR spectrum of AQ_NbO₂F shows resonances mainly in the range 4-10 ppm and has been fitted with four lines including two main lines, one broad at 6.7 ppm and a sharper at 7.6 ppm. The ¹H MAS NMR spectrum of AQ_TaO₂F shows resonances mainly in the range 5-11 ppm and has been fitted with seven lines. However, it is not possible to distinguish bridging OH-M₂ from terminal OH-M \square . Hydrogen-bonding interactions O-H...O(F) of various strengths due to various O-H...O(F) distances, in relation with the strong local disorder, may be responsible for the quite large ranges of δ_{so} values of each kind of expected OH groups. Indeed, it is well established that the ¹H δ_{so} value of a hydrogen-bonded proton is a very sensitive indicator of the strength of that hydrogenbonding interaction (the strongest the hydrogen-bonding interaction, the highest the δ_{so}) related to the O-H...O distance.^{75,76}

The cationic vacancy rates (x) in AQ_NbO₂F and AQ_TaO₂F have been estimated by refining their powder XRD diagrams (Figures S5 and S6) while adjusting the M site occupancies (1-x) and the occupancies of the anion sites by O ((2 - 5x)/3) and F/OH ((1 + 5x)/3) considering only F (Tables S5 and S6). This yields to x = 0.13 for AQ_NbO₂F and to x = 0.15 for AQ_TaO₂F. Then among the anion sites, 74% and 70% are bridging (O/F/OH-M₂) whereas 26% and 30% are terminal ones (O/F/OH-M \Box) in AQ_NbO₂F and AQ_TaO₂F, respectively. The relative intensity values of the ¹⁹F NMR lines assigned to bridging F atoms F-M₂ (59% and 63%, respectively) and to terminal F atoms F-M \Box (41% and 37%, respectively) indicate then that the F atoms are preferentially located in terminal sites in both AQ_NbO₂F and AQ_TaO₂F. ¹⁹F NMR was used to quantify the F content by using reference samples. The F wt % in AQ_NbO₂F and AQ_TaO₂F are 12.2 and 10.1, respectively, leading to formulations of Nb_{0.87} $\Box_{0.13}O_{1.35}F_{0.85}(OH)_{0.80}$ and Ta_{0.85} $\Box_{0.15}O_{1.25}F_{1.09}(OH)_{0.66}$.

TGA, combined with MS, was used to study the thermal stability of the AQ_MO₂F samples. The TGA curve of AQ_NbO₂F (Figure 5) shows three distinct weight losses reaching 8.9 wt % at 600°C. Below 140°C, the weight loss of ~ 0.6 % is associated with the loss of surface water. The weight loss (~4 %) is faster between 140 and 220°C and slows down above 220°C (~4.3%). These two latter weight losses are mainly assigned to a dehydroxylation reaction (OH⁻ departure in water form (2 OH \rightarrow O²⁻ + H₂O), characterized by mass-to-charge ratio m/z 17 and 18) and more marginally to a defluorination reaction (F departure in HF form (OH⁻ + F \rightarrow O²⁻ + HF), characterized by mass-to-charge ratio m/z 19 and 20). ¹⁹F and ¹H MAS NMR spectra (Figures 1 and 3, fit of the ¹⁹F MAS NMR spectrum reported as SI, Figure S7 and Table S7) show that the amount of vacancies (terminal F atoms F-Nb⁻ not detected) and OH groups are very low in the powder recovered after the TGA (AQTGA_NbO₂F). XRD analysis (not shown) performed on this powder shows, besides the diffraction peaks of NbO₂F, the presence of Nb₃O₇F.⁷⁷ Considering only dehydroxylation reaction according to

Nb_{0.87} $\square_{0.13}$ O_{1.35}F_{0.85}(OH)_{0.80} → 0.84 NbO₂F + 0.01 Nb₃O₇F + 0.40 H₂O,

a weight loss equal to 5.5% is expected and Nb_3O_7F would be difficult to detect. The observed larger weight loss and the smaller F wt % in AQTGA_NbO₂F (8.3%, Table 1) compared to the expected one in pure NbO₂F could then be due to an additional defluorination reaction, beyond removal of vacancies, by pyrohydrolysis according to

$$3 \text{ NbO}_2\text{F} + \text{H}_2\text{O} \rightarrow \text{Nb}_3\text{O}_7\text{F} + 2 \text{ HF},$$

due to crystal or adventitious water. The TGA curve of AQ_TaO₂F (Figure 6) shows a weight loss of 3.2 % between 180 and 600°C. ¹⁹F and ¹H MAS NMR spectra (Figures 2 and 4, fit of the ¹⁹F MAS NMR spectrum reported as SI, Figure S8 and Table S8) show that the amount of vacancies (~5% of terminal F atoms F-Ta \Box) and OH groups are significantly lower in the powder recovered after the TGA (AQTGA_TaO₂F). The cationic vacancy rate (x = 0.00) has been estimated in AQTGA_TaO₂F by refining its powder XRD diagram which shows only the diffraction peaks of TaO₂F (Figure S9, Table S9). The F wt % in AQTGA_TaO₂F is 7.6. Assuming that x is slightly larger than determined as shown by the F wt %, this leads to formulation of Ta_{0.99} $\Box_{0.01}O_{1.95}F_{0.92}(OH)_{0.13}$ for AQTGA_TaO₂F and to an expected weight loss of 4.0 %. All these consistent results show that both dehydroxylation and defluorination reactions occurred during the TGA of AQ_NbO₂F and AQ_TaO₂F and that only a partial removal of the OH groups and metal vacancies was achieved in AQ_TaO₂F.

4.1.2 Thermal treatments of samples obtained from aqueous solution synthesis. Thermal treatments of AQ_MO₂F samples were performed in order to remove the vacancies. First, AQHV_MO₂F samples were prepared by heating AQ_MO₂F samples at 150°C under vacuum for 12 h. As shown by the ¹⁹F (Figures 1 and 2) and ¹H (Figures 3 and 4) MAS NMR spectra, the proportions of non-bridging F atoms (Table 1, from 41% to 18% (Figure S10 and Table S10) for NbO₂F and from 37% to 27% (Figure S11 and Table S11) for TaO₂F) and the amounts of protons decrease but remain significant for the AQHV_MO₂F samples. XRD analysis performed on these powders show the presence of a small amount of Nb₂O₅⁷⁸ in AQHV_NbO₂F (Figure S12) whereas only the diffraction peaks of TaO₂F were detected for AQHV_TaO₂F (Figure S13). Moreover, the F wt % decrease from 12.2 to 11.3 for NbO₂F and from 10.1 to 9.6 for TaO₂F (Table 1) showing that, during this treatment, dehydroxylation and, with a lesser extent,

defluorination, both occur. The cationic vacancy rates have been estimated in AQHV_NbO₂F (x = 0.05) and AQHV_TaO₂F (x = 0.12) by refining their powder XRD diagrams (Figure S12 and Table S12 for AQHV_NbO₂F, Figure S13 and Table S13 for AQHV_TaO₂F). The formulation of AQHV_TaO₂F was determined as $Ta_{0.88}\square_{0.12}O_{1.40}F_{1.07}(OH)_{0.53}$ confirming the TGA results, that is the higher stability of AQ_TaO₂F.

Secondly, AQHA_ MO₂F samples were prepared by heating under air for 24 h AQ_MO₂F samples, at 250°C (AQ_NbO₂F) or at 300°C (AQ_TaO₂F). As shown by the ¹⁹F (Figures 1 and 2) and ¹H (Figures 3 and 4) MAS NMR spectra, such treatment seems, at first sight, to be more efficient since the proportions of non-bridging F atoms are lower (8% for AQHA_NbO₂F (Figure S14 and Table S14) and 12% for AQHA_TaO₂F (Figure S15 and Table S15)) and the amounts of protons are smaller than in the AQHV_MO₂F samples. The cationic vacancy rates (x = 0.02 for AQHA_NbO₂F (Figure S16 and Table S16) and x = 0.09 for AQHA_TaO₂F (Figure S17 and Table S17)) are obviously lower than in the AQHV_MO₂F samples. Nevertheless, the F wt % decrease more than for the AQHV_MO₂F samples, from 12.2 to 10.1 for NbO₂F and from 10.1 to 8.0 for TaO₂F (Table 1) showing that during this treatment defluorination is more pronounced. Moreover, XRD analysis show in AQHA_TaO₂F the presence of an impurity identified as Ta₂O₅ by Hanawalt *et al.*⁷⁹

In conclusion, thermal treatments under vacuum and air of AQ_MO_2F samples result in dehydroxylation and defluorination. Fully removing the metal vacancies in AQ_MO_2F by applying such thermal treatments while avoiding the formation of M_2O_5 , then requires a large amount of F (larger than the M one) in AQ_MO_2F . These results also show that removing metal vacancies and OH groups requires higher temperatures for AQ_TaO_2F than for AQ_NbO_2F .

4.1.3 Solid state synthesis. The most efficient method to avoid metal vacancies and hydroxyl defects in NbO₂F is the solid state synthesis⁴ as confirmed by the ¹⁹F MAS NMR spectrum of S_NbO₂F (Figure 1, fit reported as SI, Figure S18 and Table S18) showing almost exclusively bridging F atoms and the F wt % (13.0) in fine agreement with the expected value (13.2). S_NbO₂F contains almost no metal vacancies as confirmed by the refinement of its powder XRD diagram, while adjusting the Nb site occupancies (1-x), leading to a x value close to 0 (Table 1, Figure S19 and Table S19). The same method applied to the synthesis of S_TaO₂F is not as efficient. Without TaF₅ excess, XRD analysis shows the presence of β-Ta₂O₅.⁸⁰ Its amount is lower with TaF₅ excess (5% and 10%) but this reagent does not vanish under the used conditions. The ¹⁹F MAS NMR spectrum of S_TaO₂F (Figure 2, fit reported as SI, Figure S20 and Table S20) shows a small amount of non bridging F atoms (8 %). S_TaO₂F then contains a small amount of metal vacancies. This rate (x = 0.006) estimated by refining its powder XRD diagram (Figure S21 and Table S21) is too low to be determine accurately. The F wt % (8.0) is indeed close to that expected (8.2). It is then assumed that S_TaO₂F contains, in addition to a small amount of Ta₂O₅, TaO₂F with a formulation close to Ta_{0.98}□_{0.02}O_{1.90}F_{1.10}.

4.2 O/F ordering. Brink *et al.* have shown the co-existence in NbO₂F of (i) one-dimensional O/F-ordered columns of atoms, -Nb-O-Nb-O-Nb-F-, with unequal Nb-X bond lengths and significant displacements of Nb from the ideal cation site, along each of the three $\langle 001 \rangle$ directions but with no lateral correlation in the ordering from such column to the next and of (ii) correlated rigid unit model rotation of NbX₆ octahedra whose influence seems to locally expand their size to the ideal size from the bond-valence point of view (Figure 7, Table 2).^{9,81} In this so-called Brink model, the most probable local octahedral stoichiometry around a Nb ion is then O_4F_2 at P(NbO₄F₂) = 12/27 and the only other possibilities are as follows: P(NbO₃F₃) = 8/27,

P(NbO₃F) = 6/27 and P(NbO₆) = 1/27. Furthermore, large transverse ADPs, that persist at low temperatures, have been evidenced in TaO₂F. It was suggested that these large ADPs likely arise from static tilting of the TaO₄F₂ octahedra and the possibility of nonlinear Ta-(O/F)-Ta bonds.² Finally, the local structure of TaO₂F was examined by Morelock *et al.*, using variable temperature total X-ray scattering; a cubic $3 \times 3 \times 3$ supercell model featuring, according to the Brink model, -Ta-O-Ta-O-Ta-F- chains along (100), with different Ta-O and Ta-F distances and O/F off-axis displacements, gave much better agreement with PDFs.¹⁰ The interatomic distances were determined from the fit of the PDF data. Ta and the bridging anions along the Ta-X-Ta direction have been displaced to give contracted Ta-O-Ta and expanded Ta-F-Ta distances. The supercell model was modified to include (100) displacement of the anions (disordered over four sites) perpendicular to the Ta···Ta axis (Table 2). Surprisingly, an additional constraint was applied, that is ordered O···O···F chains along (100) between the -Ta-O-Ta-O-Ta-F- chains, yielding to TaO₅F (P = 6/27), TaO₄F₂ (P = 15/27) and TaO₃F₃ (P = 6/27) octahedra.

4.2.1 Structural features of the NbO₂F and TaO₂F cubic $3 \times 3 \times 3$ supercells. As outlined by Morelock *et al.*,¹⁰ since different M-O-M and M-F-M separations undoubtedly exist in NbO₂F and TaO₂F, a 2D ordering of M-F-M chains, analogous to that found for M-N-M in SrMO₂N,⁸² would lead to a pronounced deviation from cubic symmetry that is not observed in NbO₂F and TaO₂F. NbO₂F and TaO₂F cubic $3 \times 3 \times 3$ supercells have then been built according to the Brink model, that is featuring -M-O-M-O-M-F- chains along (100), and geometry optimized (Figure 8 for NbO₂F). Atomic parameters are given as SI in Tables S22 and S23 for NbO₂F and TaO₂F, respectively. Structural features of the NbO₂F Brink model,⁹ TaO₂F supercell model¹⁰ and these APO supercells are compared in Table 2. In each APO supercell, both the M-F-M and M-O-M links are bent and the average M-F-M and M-O-M angles are very close. Due to average M-X $\binom{2}{3}d(M-0) + \frac{1}{3}d(M-F)$ bond lengths larger than a/2, both the M-F-M and M-O-M links are under compression, not only the longer M-F bond lengths as expected by Morelock and co-workers.¹⁰ In their TaO₂F supercell, the M-F-M angles are smaller than the M-O-M angles. In the NbO₂F Brink model,⁹ these angles were assumed to be equal but, due to larger M-F and slightly larger M-O bond lengths, the magnitude of this bent seems to be quite overestimated. Whereas, in the Brink model, the NbX₆ octahedra were assumed to be rigid (Figure 7), the anions were disordered over four sites in the TaO₂F supercell leading to angularly distorted TaX₆ octahedra. In the APO supercells, MX₆ octahedra are obviously angularly distorted and these distortions are similar in NbO₂F and TaO₂F (Table 3). Overall, the discrepancies are minor and these APO supercells would lead to bond valence sums in agreement with ideal valence sums for NbO₂F and would give satisfying agreement with pair distribution functions (PDFs) for TaO₂F. Above all, the APO supercells, while respecting the assumptions of the Brink model, lead to more realistic structures, that is really disordered structures with angularly (Table 3) and radially (Table 4) distorted MX₆ octahedra. In both the structures, the M-O bond lengths are more scattered than the M-F bond lengths and whereas the angular distortions are similar in both the structures, the radial distortions are larger in the APO supercell of NbO₂F. In Table 5, for both the APO supercells, the M sites are categorized by environment (number of F and O atoms per MX₆ octahedron) and the corresponding average M-F, M-O and M-X bond lengths are reported. The optimizations lead to MX₆ octahedra of the same size as shown by the similar values of <M-X> bond length. It may appear surprising at first sight considering the differences between the <M-F> and <M-O> bond lengths in the APO supercells of NbO₂F and TaO₂F (Table 4). This results from the increase of both the <M-F> and <M-O> bond lengths when the number of F atoms per MX₆ octahedron decreases.

4.2.2 Calculated ¹⁹F σ_{iso}/δ_{so} from the NbO₂F and TaO₂F cubic 3 × 3 × 3 supercells. The ¹⁹F shielding tensors have been calculated for these APO supercells using the GIPAW method⁴² implemented in the NMR-CASTEP code.^{43,44} The calculated ¹⁹F σ_{iso} and δ_{iso} values are reported in Tables S24 and S25 for NbO₂F and TaO₂F, respectively. Experimental ¹⁹F MAS spectra of S_NbO₂F and S_TaO₂F are compared to the ¹⁹F calculated spectra of the corresponding APO supercells on Figure 9. Experimental δ_{iso} values of S_NbO₂F and S_TaO₂F and average calculated values are reported in Table 6. The very good agreement between experimental and calculated values demonstrates that F environments (F-M bond lengths particularly) are properly described and then supports the structural modeling of NbO₂F and TaO₂F by the APO supercells. It also shows the accuracy of the relationships between experimental δ_{iso} and calculated values and the asymmetry of the calculated spectra, likely reflecting the limitations of applying to an intrinsically disordered and infinite system an inherently long-range ordered model containing a limited number of atoms.

In order to establish relationships between the ¹⁹F $\sigma_{iso}/\delta_{iso}$ values, the various environments of the F atoms (depending on the number of F/O atoms at the vertices of the two octahedra they connect, that is, 4 FM₂O₆F₄, 12 FM₂O₇F₃, 9 FM₂O₈F₂ and 2 FM₂O₉F by supercell), the F charges and the length of the two F-M bonds, F sites have been categorized by environments and the corresponding average ¹⁹F σ_{iso} and δ_{iso} values have been calculated. These values are reported with the average F Mulliken charges and F-M bond lengths in Tables 7 and 8 for NbO₂F and TaO₂F, respectively (individual values are reported in Tables S24 and S25). The ionic character (charge of the metal) increases with the number of F atoms at the vertices of the two octahedra connected by the F atom under study and the absolute value of its charge (its shielding) increases. Correlatively, the δ_{iso} values decrease and the F-M bond lengths increase, this trend being well established for ¹⁹F.^{22,24,26,28,49,53,57,58,83,84} Presumably as a result of the smaller radial distortions in the APO supercell of TaO₂F, these F Mulliken charges and F-M bond lengths trends are more marked for TaO₂F. Actually, for TaO₂F, when the F atoms are ranked in decreasing order of calculated σ_{iso} values, with one exception (for two σ_{iso} values equal to onetenth of ppm), the environments of the F atoms are also ranked (Table S25) from FTa₂O₆F₄ to FTa₂O₉F.

Considering the width of the resonances assigned to F-M₂ species (Figures 1, 2, S18 and S20, Tables S18 and S20), the differences between the average calculated ¹⁹F δ_{iso} values of the various FM₂O_{10-y}F_y environments of the F atoms (Tables 7 and 8) clearly point out the restricted number of different FM₂O_{10-y}F_y environments, that is the restricted number of different MO_{6-z}F_z octahedra, and consequently confirm an O/F ordering in NbO₂F and TaO₂F. The local structure of NbO₂F and TaO₂F is then poorly described by an ideal cubic ReO₃-type model with O and F randomly distributed over the available anion sites, while the APO supercells featuring -M-O-M-O-M-F- chains along (1 0 0) give calculated ¹⁹F δ_{iso} values in very good agreement with the experimental ones.

4.2.3 ⁹³Nb NMR of NbO₂F. Man *et al.* have claimed that no EFG exists around ⁹³Nb nuclei in NbO₂F and that the C_Q value is small.⁴¹ Citing this study, Du *et al.* have classified the ⁹³Nb C_Q value in NbO₂F among the very small ⁹³Nb C_Q values with a C_Q value on the order of hundreds of kHz.³⁹ Later, they tentatively explain that the "anomalously small value of C_Q observed for NbO₂F may be due to the presence of thermal motion, which could result in a smaller C_Q ".²¹ However, as expected for a disordered compound, the central transition (CT) of the ⁹³Nb MAS NMR spectrum of S_NbO₂F (Figure 10) is composed of a single broad asymmetric line with a

steep low-field edge and a trailing high-field edge which is linked to the distribution of EFG at the niobium site in relation with the various NbX₆ environments, Nb-X bond lengths and X-Nb-X angles. This spectrum was then first fitted with the "CZSimple" model⁸⁵ implemented in DMFIT⁶⁶ which combines a Gaussian Isotropic Model (GIM) distribution⁸⁶ of quadrupolar interactions (C_Q (v_Q), η_Q) and an uncoupled Gaussian distribution of δ_{iso} values. The probability P of a (C_Q (v_Q), η_Q) pair is given by:

$$P(v_{Q}, \eta_{Q}) = \frac{v_{Q}^{4} \eta_{Q}}{\sqrt{2\pi}\sigma^{5}} \left(1 - \frac{\eta_{Q}^{2}}{9}\right) \exp\left(-\frac{v_{Q}^{2}}{2\sigma^{2}} \left(1 + \frac{\eta_{Q}^{2}}{3}\right)\right)$$

where σ is related to the strength of the C_Q value. A satisfying fit (Figure 10) was obtained with the parameters given in Table 9. The corresponding GIM distribution is shown on Figure 11.

A ⁹³Nb NMR spectrum (Figure 10) was also computed from the 27 sets of ⁹³Nb NMR parameters (σ_{iso} , C_Q and η_Q values, see Table S26) calculated with CASTEP from the APO supercell of NbO₂F. Calculated ⁹³Nb δ_{iso} values were deduced from the relationship $\delta_{iso} = -\sigma_{iso} + \sigma_{ref}$ with $\sigma_{ref} = -586.9$ ppm adjusted to properly positioning the ⁹³Nb NMR spectrum. This relationship is not so different of those established previously, that is $\delta_{iso} = a (-\sigma_{iso} + \sigma_{ref})$ with a = 0.9774 and $\sigma_{ref} = -578.09$ ppm (R² = 0.9058),³⁸ considering the large chemical shift range of ⁹³Nb (~1000 ppm in oxide compounds³⁸). The ⁹³Nb δ_{iso} values are similar in NbO₂F, inorganic niobates having similar features, that is, coordination number of 6 and only metal atoms at oxidation state of 5,³⁸ and niobium oxyfluorides containing NbOF₅ octahedra.²¹ The limited number of Nb sites in the NbO₂F supercell requires the use of broad individual contributions to obtain a smooth spectrum. The ⁹³Nb NMR spectrum is then broader and not as satisfactory as the fit with the "CZSimple" model whereas the corresponding distributions of quadrupolar interactions (Figure 11) show similarities and lead to very close average C_Q values and close average η_Q values (Table 9). As outlined for the ¹⁹F NMR spectra of NbO₂F and TaO₂F, this likely reflects the limitations of applying to an intrinsically disordered and infinite system an inherently long-range ordered model containing a limited number of atoms.

In order to establish relationships between the ⁹³Nb NMR parameters and the various environments of the niobium atoms (depending on the number of F and O atoms per NbX₆ octahedra, that is, 8 NbO₃F₃, 12 NbO₄F₂, 6 NbO₅F and 1 NbO₆ in the NbO₂F supercell), the niobium charges and the length of the Nb-X bonds, Nb sites have been categorized by environments and the corresponding average ⁹³Nb σ_{iso} , C_Q and η_Q values have been calculated. These values are reported with the average Nb Mulliken charges, Nb-O and Nb-F bond lengths in Tables 5 and 10 (individual values are reported in Table S26). As expected, since F is more electronegative than O, the average charge of the niobium atom increases with the number of F atoms per NbX₆ octahedron and, apart from the single NbO₆ octahedron, the average σ_{iso} decreases. This exception is not that surprising considering the scattered values of σ_{iso} for the others Nb environments. When the number of F atoms per MX₆ octahedron decreases, both the <M-F> and <M-O> bond lengths increase (Table 5), weakening the bonding interactions, so that less electron density contributes and Nb shielding increases. Such trends, that is decreases of the chemical shifts when the bond lengths increase, have already been observed for ²³Na,^{87,88 25}Mg,⁸⁹

In the NbO₂F supercell, the smallest C_Q value (9.5 MHz) is calculated for the NbO₆ octahedron. This C_Q value is rather small compared with six-coordinated Nb in inorganic niobates, for which most of the C_Q values range between 15 and 50 MHz.³⁶⁻³⁸ This is in agreement with an octahedral environment overall sparsely radially and angularly distorted

(Tables S27 and S28). A similar value (8.1 MHz⁴⁰) has been determined for a mainly angularly distorted NbF₆ octahedron in KNbF₆. Obviously, the EFG are larger for mixed O/F Nb environments (Table 10), that is NbO₅F, NbO₄F₂ (with the two F atoms on the same edge of the octahedron) and NbO₃F₃ (with the three F atoms on the same face of the octahedron). Similar C_Q values (36.0 and 33.2 MHz) have been determined for NbOF₅ environments in Cdpy₄NbOF₅ and [pyH]₂[Cdpy₄(NbOF₅)₂].²¹ Different atoms at the vertices of the octahedra give rise to significantly different Nb-X bond lenghts and consequently to strongly radially distorted Nb environments.

5. CONCLUSION

In summary, our results show that a large concentration of cationic vacancies is introduced in NbO₂F and TaO₂F when prepared by aqueous solution synthesis (AQ_MO₂F samples). The presence of such vacancies is induced by the negative charge deficiency created by the (F^{*},OH⁻) substitution of O²⁻, leading to the general composition $M_{1-x}\Box_xO_{2-5x}(F,OH)_{1+5x}$. For each AQ_MO₂F sample, the vacancy rate and the F content were determined leading to formulations of Nb_{0.87} $\Box_{0.13}O_{1.35}F_{0.85}(OH)_{0.80}$ and Ta_{0.85} $\Box_{0.15}O_{1.25}F_{1.09}(OH)_{0.66}$. Our results also show that obtaining pure NbO₂F and TaO₂F from AQ_MO₂F samples, that is fully removing metal vacancies and hydroxides in AQ_MO₂F samples is not that easy. Since thermal treatments result in dehydroxylation and defluorination, it requires, at least, a larger amount of F than M in AQ_MO₂F which may not be the case. We confirm that the most efficient method to avoid metal vacancies and hydroxyl defects in NbO₂F is the solid state synthesis.⁴ The same method applied to the synthesis of TaO₂F is not as efficient leading to a sample which contains TaO₂F with a formulation close of Ta_{0.98} $\Box_{0.02}O_{1.90}F_{1.10}$ and a small amount of Ta₂O₅.

NbO₂F and TaO₂F cubic $3 \times 3 \times 3$ supercells according to the Brink model,⁹ that is featuring -M-O-M-O-M-F- chains along (100), have then been built and geometry optimized. These APO supercells lead to more realistic structures than the previously proposed models,^{9,10} that is really disordered structures with angularly and radially distorted MX₆ octahedra as expected in disordered compounds. Moreover, the structural modeling of NbO₂F and TaO₂F by these APO supercells is supported the very good agreement between experimental and calculated ¹⁹F $\delta_{\rm lso}$ values for each compound and by the agreement between the distribution of ⁹³Nb NMR parameters used to fit the ⁹³Nb NMR spectrum of NbO₂F and the calculated one. The discrepancies between calculated from computed NMR parameters and experimental spectra only likely reflect the limitations of applying to an intrinsically disordered and infinite system an inherently long-range ordered model containing a limited number of atoms.

Figure 1. ¹⁹F MAS (64 kHz) NMR spectra of AQ_NbO₂F, AQHV_NbO₂F, AQHA_NbO₂F, AQTGA_NbO₂F and S_NbO₂F samples. Chemical shift ranges of F-Nb₂ and F-Nb \Box environments and spinning sidebands are indicated by dashed lines and stars, respectively. The arrow indicates an impurity tentatively assigned to Nb₃O₇F.

Figure 2. ¹⁹F MAS (64 kHz) NMR spectra of AQ_TaO₂F, AQHV_TaO₂F, AQHA_TaO₂F, AQTGA_TaO₂F and S_TaO₂F samples. Chemical shift ranges of F-Ta₂ and F-Ta \square environments and spinning sidebands are indicated by dashed lines and stars, respectively.

Figure 3. ¹H MAS (64 kHz) NMR non normalized spectra of AQ_NbO₂F, AQHV_NbO₂F, AQHA_NbO₂F and AQTGA_NbO₂F samples. The masses (mg) in the rotors were 6.1, 5.8, 6.2 and 6.0 for AQ_NbO₂F, AQHV_NbO₂F, AQHA_NbO₂F and AQTGA_NbO₂F, respectively.

Figure 4. ¹H MAS (64 kHz) NMR non normalized spectra of AQ_TaO₂F, AQHV_TaO₂F, AQHA_TaO₂F and AQTGA_TaO₂F samples. The masses (mg) in the rotors were 9.1, 10.1, 9.8 and 9.6 for AQ_TaO₂F, AQHV_TaO₂F, AQHA_TaO₂F and AQTGA_TaO₂F, respectively.

Figure 5. TG (black) and MS (mass-to-charge ratio m/z = 17 (OH⁺, red), 18 (H₂O⁺, blue), 19 (F⁺, khaki) and 20 (HF⁺, mauve)) analyses of AQ_NbO₂F.

Figure 6. TG (black) and MS (mass-to-charge ratio m/z = 17 (OH⁺, red), 18 (H₂O⁺, blue), 19 (F⁺, khaki) and 20 (HF⁺, mauve)) analyses of AQ_TaO₂F.

Figure 7. Average ReO₃ type structure (left), diagram showing one-dimensional pattern of O/F ordering and associated displacive relaxation of the Nb, O and F atoms along $\langle 001 \rangle$ (middle) and diagram showing a correlated rigid unit model rotation of NbX₆ octahedra about the c axis (right).⁹

Figure 8. Perspective view of the APO supercell of NbO_2F . Nb, O and F atoms are represented in black, red and green, respectively and the NbX_6 octahedra are represented in blue.

Figure 9. Experimental ¹⁹F MAS NMR spectra (in blue) of S_NbO₂F and S_TaO₂F and ¹⁹F calculated spectra (red) from the APO supercells of NbO₂F and TaO₂F. Calculated ¹⁹F δ_{iso} values were deduced from the computed σ_{iso} values using the relationships²⁸ $\delta_{iso,cal}$ /CFCl₃ = -1.028(6) σ_{iso} + 100.4(8) and $\delta_{iso,cal}$ /CFCl₃ = -0.777(11) σ_{iso} + 86.2(1.2) for NbO₂F and TaO₂F, respectively (Tables S22 and S23).

Figure 10. CT of the experimental 93 Nb MAS (60 kHz) NMR spectrum (black) of S_NbO₂F. Calculated CT using the CZSimple model (red) and calculated CT of the 93 Nb NMR spectrum (blue) computed from the NMR parameters calculated from the APO supercell of NbO₂F.

Figure 11. Left: 3D mesh plot of the GIM distribution of ⁹³Nb quadrupolar interactions (C_Q , η_Q) used for calculating the CT of the ⁹³Nb MAS NMR spectrum of S_NbO₂F. Right: 3D bar chart of the distribution of quadrupolar parameters calculated from the APO supercell of NbO₂F.

Table 1. Sample, phases identified by powder XRD, F weight % (for comparison, expected F wt % : 13.2% in NbO₂F and 8.2% in TaO₂F; 4.6% in Nb₃O₇F and 2.8% in Ta₃O₇F), metal vacancy rate in MO₂F and cell parameter (a, Å) of MO₂F from Rietveld refinements (except for AQTGA_NbO₂F), formulation for pure phase and proportion of non bridging F (nb F, %) atoms.

Sample	XRD identification	F wt % (±0.5)	Vacancy rate	а	Formulation	nb F (±1)
AQ_NbO ₂ F	NbO ₂ F ^a	12.2	0.13(2)	3.9103(2)	$Nb_{0.87} \square_{0.13} O_{1.35} F_{0.85} (OH)_{0.80}$	41
AQHV_NbO ₂ F	NbO_2F , ^a Nb_2O_5 ^b	11.3	0.05(1)	3.9040(1)		18
AQHA_NbO ₂ F	NbO_2F^a	10.1	0.02(2)	3.9036(1)	$Nb_{0.98} \square_{0.02} O_{1.90} F_{0.70} (OH)_{0.40}$	8
AQTGA_NbO ₂ F	NbO ₂ F, ^a Nb ₃ O ₇ F ^c	8.3	0.00 ^g	3.9034(3) ^h		0
S_NbO_2F	NbO_2F^a	13.0	0.00(2)	3.9031(2)	NbO ₂ F	1
AQ_TaO ₂ F	TaO_2F^d	10.1	0.15(2)	3.9048(2)	$Ta_{0.85} \square_{0.15} O_{1.25} F_{1.09} (OH)_{0.66}$	37
AQHV_TaO ₂ F	TaO_2F^d	9.6	0.120(3)	3.9030(2)	$Ta_{0.88} \square_{0.12} O_{1.40} F_{1.07} (OH)_{0.53}$	27
AQHA_TaO ₂ F	TaO_2F , ^d $Ta_2O_5^{e}$	8.0	0.090(6)	3.9012(2)		12
AQTGA_TaO ₂ F	TaO_2F^d	7.6	0.00(3)	3.89502(3)	$Ta_{0.99} \square_{0.01} O_{1.95} F_{0.92} (OH)_{0.53}$	5
S_TaO ₂ F	TaO_2F , ^d $Ta_2O_5^{f}$	8.0	0.006(6)	3.89910(3)		8

^aPDF⁶² file 04-007-5087;¹ ^bPDF⁶² file 00-028-0317;⁷⁸ ^cPDF⁶² file 04-012-6243;⁷⁷ ^dPDF⁶² file 04-007-5088;¹ ^ePDF⁶² file 00-001-0455;⁷⁹ ^fPDF⁶² file 01-089-2843;⁸⁰ ^gfrom the proportion of non bridging F atoms; ^hfrom pattern matching.

Table 2. Cell parameter (*a*, Å), M-F and M-O bond lengths (Å), M-F-M and M-O-M angles (°) and M-(X)-M distances (Å) from NbO₂F Brink model⁹ and from TaO₂F supercell with different Ta–O and Ta–F distances and O/F off-axis displacements in agreement with PDFs¹⁰ and (in italic) average M-F and M-O bond lengths (Å), average M-F-M and M-O-M angles (°) and average M-(X)-M distances (Å) from NbO₂F and TaO₂F APO supercells.

	а	M-F or < <i>M-F</i> >	M-O or < <i>M-O</i> >	M-F-M or < <i>M-F-M</i> >	M-O-M or < <i>M-O-M</i> >	M-(F)-M or < <i>M</i> -(<i>F</i>)- <i>M</i> >	M-(O)-M or < <i>M</i> -(<i>O</i>)- <i>M</i> >
NbO ₂ F Brink model ⁹	3.902	2.127	1.908	160	160	4.189	3.758
NbO ₂ F APO	3.902 ¹	2.097	1.903	168.0	168.4	4.166	3.783
TaO ₂ F supercell ¹⁰	3.884	2.109	1.891	155	172	4.118	3.773
TaO ₂ F APO	3.896 ¹	2.088	1.906	166.7	166.9	4.141	3.783

Table 3. Average distortion of X-M-X angles (°) between adjacent (|(X - M - X) - 90|) and opposite (180 – (X - M - X)) M-X bonds from NbO₂F and TaO₂F APO supercells.

	< (X - M - X) - 90 >	180 - < (X - M - X) >
NbO ₂ F APO	5.7	12.6
TaO ₂ F APO	5.6	12.6

177

Table 4. Average, maximum and minimum M-F and M-O bond lengths (Å) and average radial distortions $|M - X - \mathbb{Z}M - X\mathbb{Z}|$ from NbO₂F and TaO₂F APO supercells.

	M - F	$M - F \max$	$M - F \min$	< M-F-EM-FE >
NbO ₂ F APO	2.097	2.165	2.044	0.031
TaO ₂ F APO	2.088	2.134	2.043	0.020
	M - O	$M - 0 \max$	$M - O \min$	$\langle M - O - [M - O] \rangle$
NbO ₂ F APO	1.903	2.025	1.796	0.069
TaO ₂ F APO	1.906	1.975	1.830	0.055

Table 5. M sites categorized by environment (number of F and O atoms per MX_6 octahedron) and corresponding average M-F, M-O and M-X bond lengths (Å) from the APO supercells of NbO₂F and TaO₂F.

	<nb-f></nb-f>	<nb-o></nb-o>	<nb-x></nb-x>	<ta-f></ta-f>	<ta-o></ta-o>	<ta-x></ta-x>
$MO_{3}F_{3}(x8)$	2.075	1.850	1.963	2.074	1.859	1.967
$MO_4F_2(x12)$	2.110	1.901	1.970	2.095	1.904	1.968
MO ₅ F (x6)	2.134	1.936	1.969	2.113	1.936	1.965
$MO_{6}(x1)$	/	1.962	1.962	/	1.963	1.963
Table 6. Experimental ¹⁹F δ_{iso} ($\delta_{iso,exp}$, ppm) values for S_NbO₂F and S_TaO₂F (average and weighted δ_{iso} values of the NMR resonances used for the fits and assigned to bridging F atoms of S_NbO₂F and S_TaO₂F, see Tables S18 and S20) and average calculated ¹⁹F δ_{iso} ($\delta_{iso,cal}$, ppm) values (see Tables S24 and S25).

	$\delta_{ m iso,exp}$	$<\delta_{ m iso,cal}>$
NbO ₂ F	-51.0	-49.5
TaO ₂ F	-71.4	-69.1

Table 7. F sites categorized by number of F atoms at the vertices of the two octahedra they connect, corresponding average calculated ¹⁹F σ_{iso} (ppm) and $\delta_{iso,cal}$ (ppm) values, Mulliken charges (e) and F-Nb bond lengths (Å) from the APO supercell of NbO₂F. $\delta_{iso,cal}$ values are deduced from the relationship $\delta_{iso} = -1.028(6) \sigma_{iso} + 100.4(8)$.²⁸

	$<\sigma_{iso}>$	$<\!\delta_{ m iso,cal}\!>$	<charge></charge>	< F – Nb>
$FNb_2O_6F_4$ (x4)	158.2	-62.3	-0.51	2.102
$FNb_2O_7F_3$ (x12)	149.3	-53.1	-0.51	2.098
$FNb_2O_8F_2(x9)$	139.8	-43.4	-0.50	2.096
$FNb_2O_9F(x2)$	127.2	-30.4	-0.50	2.088

Table 8. F sites categorized by number of F atoms at the vertices of the two octahedra they connect, corresponding average calculated ¹⁹F σ_{iso} (ppm) and $\delta_{iso,cal}$ (ppm) values, Mulliken charges (e) and F-Ta bond lengths (Å) from the APO supercell of TaO₂F. $\delta_{iso,cal}$ values are deduced from the relationship $\delta_{iso} = -0.777(11) \sigma_{iso} + 86.2(1.2)$.²⁸

	$<\sigma_{iso}>$	$<\delta_{ m iso,cal}>$	<charge></charge>	< F — Ta>
$FTa_{2}O_{6}F_{4}\left(x4\right)$	219.1	-84.0	-0.50	2.097
$FTa_2O_7F_3(x12)$	205.1	-73.2	-0.49	2.090
$FTa_{2}O_{8}F_{2}\left(x9\right)$	190.7	-62.0	-0.48	2.085
$FTa_2O_9F(x2)$	170.5	-46.3	-0.47	2.072

Table 9. Parameters used for the fit of the CT of the ⁹³Nb MAS NMR spectrum of S_NbO₂F using the "CZSimple" model (average δ_{so} (ppm) value, full width at half maximum of the Gaussian distribution of δ_{so} values (FWHM CS, ppm) and σ (kHz)) and corresponding average C_Q (MHz) and η_Q values of the GIM distribution of quadrupolar parameters. Average calculated δ_{so} (ppm) value, absolute value of C_Q (MHz) and η_Q value from the APO supercell of NbO₂F. Calculated ⁹³Nb δ_{iso} values are deduced from the relationship $\delta_{iso} = -\sigma_{iso} + \sigma_{ref}$ with $\sigma_{ref} = -586.9$ ppm (see text).

	$<\delta_{\rm iso}>$	FWHM CS	σ	$< C_Q > $ or $< C_Q >$	$<\eta_{\mathrm{Q}}>$
"CZSimple" model	-1363.0	29.0	612.5	29.4	0.61 ⁸⁶
Calc. from supercell	-1344.1	/	/	29.6	0.51

Table 10. Nb sites categorized by environment (number of F and O atoms per NbX₆ octahedron) and corresponding average calculated ⁹³Nb σ_{iso} values (ppm), Mulliken charges (e), absolute values of C_Q (MHz) and η_Q from the APO supercell of NbO₂F.

	$<\sigma_{iso}>$	<charge></charge>	$< C_Q >$	$<\eta_{\rm Q}>$
NbO ₃ F ₃ (x8)	728.6	1.82	26.7	0.47
$NbO_{4}F_{2}(x12)$	754.9	1.77	32.5	0.70
$NbO_5F(x6)$	795.8	1.75	30.9	0.24
$NbO_{6}(x1)$	781.0	1.73	9.5	0.16

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website at DOI:

Experimental and fitted ¹⁹F MAS NMR spectra of AQ_NbO₂F, AQ_TaO₂F, AQTGA_NbO₂F, AQTGA_TaO₂F, AQHV_NbO₂F, AQHV_TaO₂F, AQHA_NbO₂F, AQHA_TaO₂F, S_NbO₂F and S_TaO₂F. Experimental and fitted ¹H MAS NMR spectra of AQ_NbO₂F and AQ_TaO₂F. Powder XRD analysis of AQ_NbO₂F, AQ_TaO₂F, AQTGA_TaO₂F, AQHV_NbO₂F, AQHV_TaO₂F, AQHA_NbO₂F, AQHA_TaO₂F, S_NbO₂F and S_TaO₂F. Atomic parameters in the APO supercells of NbO₂F and TaO₂F. F sites, calculated ¹⁹F σ_{iso} and δ_{iso} values, calculated Mulliken charges, F-M bond lengths, corresponding MX₆ octahedra and F environments from the APO supercells of NbO₂F and TaO₂F. Nb sites, calculated ⁹³Nb absolute C_Q values, η_Q values, σ_{iso} values and Mulliken charges, Nb environments and average Nb-F and Nb-O bond lengths from the APO supercells of NbO₂F. Nb-X bond lengths, X-Nb-X angles between adjacent Nb-X bonds and between opposite Nb-X bonds from the APO supercell of NbO₂F

AUTHOR INFORMATION

Corresponding Author

*E-mail: christophe.legein@univ-lemans.fr

ORCID

Christophe Legein: <u>0000-0001-7426-8817</u>

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The computations presented in this work have been carried out at the Centre Régional de Calcul Intensif des Pays de la Loire (CCIPL), financed by the French Research Ministry, the Région Pays de la Loire, and Nantes University. We thank CCIPL for the CASTEP licenses financial support.

ABBREVIATIONS

SG: Space group; NMR, Nuclear Magnetic Resonance; MAS, Magic Angle Spinning; σ_{iso} , isotropic shielding; δ_{iso} , isotropic chemical shift; C_Q , quadrupolar coupling constant; v_Q , quadrupolar frequency; η_Q , asymmetry parameter; XRD, X-ray diffraction; TG, thermogravimetric; TGA, thermogravimetric analysis; MS, mass spectrometry; DFT, Density Functional Theory; APO, atomic position optimized. (1) Frevel, L. K.; Rinn, H. W. The Crystal Structure of NbO₂F and TaO₂F. *Acta Crystallogr*. **1956**, *9*, 626–627.

(2) Tao, J. Z.; Sleight, A. W. Very Low Thermal Expansion in TaO₂F. J. Solid State Chem.
2003, 173, 45–48.

(3) Sawhill, S.; Savrun, E. A Near Zero Coefficient of Thermal Expansion Ceramic: Tantalum Oxyfluoride. *Ceram. Int.* **2012**, *38*, 1981–1989.

(4) Wilkinson, A. P.; Josefsberg; R. E.; Gallington, L. C.; Morelock, C. R.; Monaco, C. M. History-Dependent Thermal Expansion in NbO₂F. *J. Solid State Chem.* **2014**, *213*, 38–42.

(5) Reddy, M. V.; Madhavi, S.; Subba Rao, G. V.; Chowdari, B. V. R. Metal Oxyfluorides TiOF₂ and NbO₂F as Anodes for Li-Ion Batteries. *J. Power Sources* **2006**, *162*, 1312–1321.

(6) Mizoguchi, H.; Orita, M.; Hirano, M.; Fujitsu, S.; Takeuchi, T.; Hosono, H. NbO₂F: An Oxyfluoride Phase with Wide Band Gap and Electrochromic Properties. *Appl. Phys. Lett.* **2002**, *80*, 4732–4734.

(7) Murase, T.; Irie, H.; Hashimoto, K. Ag⁺-Inserted NbO₂F as a Novel Photocatalyst. *J. Phys. Chem. B* **2005**, *109*, 13420–13423.

(8) Xu, L.; Gong, H.; Deng, L. Long, F.; Gu, Y.; Guan, J. Complex-Mediated Synthesis of Tantalum Oxyfluoride Hierarchical Nanostructures for Highly Efficient Photocatalytic Hydrogen Evolution. *ACS Appl. Mater. Interfaces* **2016**, *8*, 9395–9404.

(9) Brink, F. J.; Withers, R. L.; Norén, L. An Electron Diffraction and Crystal Chemical Investigation of Oxygen/Fluorine Ordering in Niobium Oxyfluoride, NbO₂F. *J. Solid State Chem.* **2002**, *166*, 73–80.

(10) Morelock, C. R.; Greve, B. K.; Cetinkol, M.; Chapman, K. W.; Chupas, P. J.; Wilkinson,A. P. Role of Anion Site Disorder in the Near Zero Thermal Expansion of TantalumOxyfluoride. *Chem. Mater.* 2013, 25, 1900–1904.

(11) Andersson, S.; Åström, A. The Thermal Decomposition of NbO₂F. *Acta Chem. Scand.***1965**, *19*, 2136–2138.

(12) Jahnberg, L.; Andersson, S. Studies on Pentavalent Tantalum Oxides Fluorides and the Thermal Decomposition of NbO₂F. *Acta Chem. Scand.* **1967**, *21*, 615–619.

(13) Permér, L.; Lundberg, M. Li-Inserted NbO₂F Studied by High-Resolution Electron Microscopy and X-Ray Powder Diffraction. *J. Solid State Chem.* **1989**, *81*, 21–29.

(14) Bohnke, C.; Fourquet, J. L.; Randrianantoandro, N.; Brousse, T.; Crosnier, O. Electrochemical Intercalation of Lithium into the Perovskite-type NbO₂F: Influence of the NbO₂F particle size. *J. Solid State Electrochem.* **2001**, *5*, 1–7.

(15) Köhler, J.; Simon, A.; van Wüllen, L.; Cordier, S.; Roisnel, T.; Poulain, M.; Somer, M. Structures and Properties of NbOF₃ and TaOF₃ - with a Remark to the O/F Ordering in the SnF₄ Type Structure. *Z. Anorg. Allg. Chem.* **2002**, *628*, 2683–2690.

(16) Cetinkol, M.; Wilkinson, A. P.; Lind, C.; Bassett, W. A.; Zha, C.-S. High-pressure Powder Diffraction Study of TaO₂F. *J. Phys. Chem. Solids* **2007**, *68*, 611–616. (17) Schäfer, H.; Schnering, H. G.; Niehues, K.-J.; Nieder-Vahrenholz, H. G. Beiträge zur Chemie der Elemente Niob und Tantal XLVII. Niobfluoride. *J. Less-Common Metals* **1965**, *9*, 95–104.

(18) Du, L. S.; Wang, F.; Grey, C. P. High-Resolution ¹⁹F MAS and ¹⁹F–¹¹³Cd REDOR NMR Study of Oxygen/Fluorine Ordering in Oxyfluorides. *J. Solid State Chem.* **1998**, *140*, 285–294.

(19) Du, L. S.; Samoson, A.; Tuherm, T.; Grey, C. P. ¹⁹F/²³Na Double Resonance MAS NMR
Study of Oxygen/Fluorine Ordering in the Oxyfluoride Na₅W₃O₉F₅. *Chem. Mater.* 2000, *12*, 3611–3616.

(20) Choy, J. H.; Kim, J. Y.; Kim, S. J.; Sohn, J. S. New Dion-Jacobson-Type Layered Perovskite Oxyfluorides, ASrNb₂O₆F (A = Li, Na, and Rb). *Chem. Mater.* **2001**, *13*, 906–912.

(21) Du, L. S.; Schurko, R. W.; Kim, N.; Grey, C. P. Solid-State ⁹³Nb, ¹⁹F, and ¹¹³Cd Nuclear Magnetic Resonance Study of Niobium Oxyfluorides: Characterization of Local Distortions and Oxygen/Fluorine Ordering. *J. Phys. Chem. A*, **2002**, *106*, 7876–7886.

(22) Le Berre, F.; Crosnier-Lopez, M.-P.; Galven, C.; Fourquet, J.-L.; Legein, C.; Body, M.; Buzaré, J.-Y. $Ca^{2+}/Vacancies$ and O^{2-}/F^{-} Ordering in New Oxyfluoride Pyrochlores $Li_{2x}Ca_{1.5-x}\Box_{0.5-x}M_2O_6F$ (M= Nb,Ta) for $0 \le x \le 0.5$. *Dalton Trans.* **2007**, 2457–2466.

(23) Alam, T. M.; Clawson, J. S.; Bonhomme, F.; Thoma, S. G.; Rodriguez, M. A.; Zheng, S.; Autschbach, J. A Solid-State NMR, X-ray Diffraction, and Ab Initio Investigation into the Structures of Novel Tantalum Oxyfluoride Clusters. *Chem. Mater.* **2008**, *20*, 2205–2217.

(24) Sronek, L.; Lhoste, J.; Gaudon, M.; Legein, C.; Buzaré, J.-Y.; Body, M.; Crinière, G.; Tressaud, A.; Pechev, S.; Demourgues, A. Probing the Local Environments of Fluorine in Ce-Based Fluorite-Type Oxyfluorides with ¹⁹F MAS NMR Spectroscopy. *J. Phys. Chem. C* 2008, *112*, 860–866.

(25) Griffin, J. M.; Yates, J. R.; Berry, A. J.; Wimperis, S.; Ashbrook, S. E. High-Resolution ¹⁹F MAS NMR Spectroscopy: Structural Disorder and Unusual *J* Couplings in a Fluorinated Hydroxy-Silicate. *J. Am. Chem. Soc.* **2010**, *132*, 15651–15660.

(26) Galven, C.; Legein, C.; Body, M.; Fourquet, J.-L.; Buzaré, J.-Y.; Le Berre, F.; Crosnier-Lopez, M.-P. New Oxyfluoride Pyrochlores $Li_{2-x}La_{(1+x)/3}\Box_{(2x-1)/3}B_2O_6F$ (B = Nb, Ta): Average and Local Structure Characterization by XRD, TEM and ¹⁹F Solid-State NMR Spectroscopy. *Eur. J. Inorg. Chem.* **2010**, 5272–5283.

(27) Yi, H.; Balan, E.; Gervais, C.; Segalen, L.; Fayon, F.; Roche, D.; Person, A.; Morin, G.; Guillaumet, M.; Blanchard, M.; Lazzeri, M.; Babonneau, F. A carbonate-fluoride defect model for carbonate-rich fluorapatite. *Am. Mineral.* **2013**, *98*, 1066–1069.

(28) Biswal, M.; Body, M.; Legein, C.; Sadoc , A.; Boucher, F. NbF₅ and TaF₅: Assignment of ¹⁹F NMR Resonances and Chemical Bond Analysis from GIPAW Calculations. *J. Solid State Chem.* **2013**, *207*, 208–217.

(29) Li, W.; Corradini, D.; Body, M.; Legein, C.; Salanne, M.; Ma, J.; Chapman, K. W.; Chupas, P. J.; Rollet, A.-L.; Julien, C.; Zhagib, K.; Duttine, M.; Demourgues, A.; Groult, H.; Dambournet, D. High Substitution Rate in TiO₂ Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage. *Chem. Mater.* **2015**, *27*, 5014–5019. (30) Li, W.; Body, M.; Legein, C.; Borkiewicz, O. J.; Dambournet, D. Atomic Insights into Nanoparticle Formation of Hydroxyfluorinated Anatase Featuring Titanium Vacancies. *Inorg. Chem.* **2016**, *55*, 7182–7187.

(31) Li, W.; Body, M.; Legein, C.; Dambournet, D. Sol–Gel Chemistry of Titanium Alkoxide toward HF: Impacts of Reaction Parameters. *Cryst. Growth Des.* **2016**, *16*, 5441–5447.

(32) Li, W.; Body, M.; Legein, C.; Borkiewicz, O. J.; Dambournet, D. Solvothermal Temperature Drives Morphological and Compositional changes through De-Hydroxyfluorination in Anatase Nanoparticles. *Eur. J. Inorg. Chem.* **2017**, 192–197.

(33) Li, W.; Body, M.; Legein, C.; Dambournet, D. Identify OH Groups in TiOF₂ and their Impact on the Lithium Intercalation Properties. *J. Solid State Chem.* **2017**, *246*, 113–118.

(34) Pyykkö, P. Year-2008 Nuclear Quadrupole Moments Mol. Phys. 2008, 106, 1965–1974.

(35) Lapina, O. B.; Khabibulin, D. F.;. Romanenko, K. V; Gan, Z.; Zuev, M. G.; Krasil'nikov, V. N.; Fedorov, V. E. ⁹³Nb NMR Chemical Shift Scale for Niobia Systems. *Solid State Nucl. Magn. Reson.* 2005, 28, 204–224.

(36) Lapina, O. B.; Khabibulin, D. F.; Shubin, A. A.; Terskikh V.V. Practical Aspects of ⁵¹V and ⁹³Nb Solid-State NMR Spectroscopy and Applications to Oxide Materials. *Prog. Nucl. Magn. Reson. Spectrosc.* **2008**, *53*, 128–191.

(37) Hanna, J. V.; Pike, K. J.; Charpentier, T.; Kemp, T. F.; Smith, M. E.; Lucier, B. E. G.; Schurko, R. W.; Cahill, L. S. A ⁹³Nb Solid-State NMR and Density Functional Theory Study of Four- and Six-Coordinate Niobate Systems. *Chem. Eur. J.* **2010**, *16*, 3222–3239.

(38) Papulovskiy, E.; Shubin, A. A.; Terskikh, V. V.; Pickard, C. J.; Lapina, O. B. Theoretical and Experimental Insights into Applicability of Solid-State ⁹³Nb NMR in Catalysis. *Phys. Chem. Chem. Phys.* **2013**, *15*, 5115–5131.

(39) Du, L. S.; Schurko, R. W.; Lim, K. H.; Grey, C. P. A Solid-State ⁹³Nb and ¹⁹F NMR Spectroscopy and X-ray Diffraction Study of Potassium Heptafluoroniobate(V): Characterization of ⁹³Nb, ¹⁹F Coupling, and Fluorine Motion. *J. Phys. Chem. A*, **2001**, *105*, 760–768.

(40) Boča, M.; Rakhmatullin, A.; Mlynáriková, J.; Hadzimová, E.; Vasková, Z.; Mičušíkc, M. Differences in XPS and Solid State NMR Spectral Data and Thermo-Chemical Properties of Isostructural Compounds in the Series KTaF₆, K₂TaF₇ and K₃TaF₈ and KNbF₆, K₂NbF₇ and K₃NbF₈. *Dalton Trans.* **2015**, *44*, 17106–17117.

(41) Man, P. P.; Theveneau, H.; Papon, P. Investigation of the Central Line of ⁹³Nb by a Two-Dimensional NMR Method. *J. Magn. Reson.* **1985**, *64*, 271–277.

(42) Pickard, C. J.; Mauri, F. All-Electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *63*, 245101.

(43) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark S. J.; Payne, M. C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. *J. Phys.: Condens. Matter* **2002**, *14*, 2717–2744.

(44) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson K.; Payne,M. C. First Principles Methods using CASTEP. *Z. Kristallogr.* 2005, 220, 567–570.

(45) Charpentier, T. The PAW/GIPAW Approach for Computing NMR Parameters: A New Dimension Added to NMR Study of Solids. *Solid State Nucl. Magn. Reson.* **2011**, *40*, 1–20.

(46) Bonhomme, C.; Gervais, C.; Babonneau, F.; Coelho, C.; Pourpoint, F.; Azais, T.; Ashbrook, S. E.; Griffin, J. M.; Yates, J. R.; Mauri, F.; Pickard, C. J. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist's Point of View. *Chem. Rev.* **2012**, *112*, 5733–5779.

(47) Ashbrook, S. E.; McKay D. Combining Solid-State NMR Spectroscopy with First-Principles Calculations – A Guide to NMR Crystallography. *Chem. Commun.* **2016**, *52*, 7186– 7204.

(48) Sadoc, A.; Body, M.; Legein, C.; Biswal, M.; Fayon, F.; Rocquefelte, X.; Boucher, F. NMR Parameters in Alkali, Alkaline Earth and Rare Earth Fluorides from First Principle Calculations. *Phys. Chem. Chem. Phys.* **2011**, *13*, 18539–18550.

(49) Martineau, C.; Fayon, F.; Suchomel, M. R.; Allix, M.; Massiot, D.; Taulelle, F. Structure Resolution of Ba₅Al₃F₁₉ and Investigation of Fluorine Ion Dynamics by Synchrotron Powder Diffraction, Variable-Temperature Solid-State NMR, and Quantum Computations. *Inorg. Chem.* 2011, *50*, 2644–2653.

(50) Biswal, M.; Body, M.; Legein, C.; Corbel, G.; Sadoc, A.; Boucher, F. Structural Investigation of α- and β-Sodium Hexafluoroarsenate, NaAsF₆, by Variable Temperature X-ray Powder Diffraction and Multinuclear Solid-State NMR, and DFT Calculations. *J. Phys. Chem. C* **2012**, *116*, 11682–11693.

(51) Rollet, A.-L.; Allix, M.; Veron, E.; Deschamps, M.; Montouillout, V.; Suchomel, M. R.; Suard, E.; Barre, M.; Ocaña, M.; Sadoc, A.; Boucher, F.; Bessada, C.; Massiot, D.; Fayon, F. Synthesis and Structure Resolution of RbLaF₄. *Inorg. Chem.* **2012**, *51*, 2272–2282.

(52) Pedone, A.; Charpentier, T.; Menziani, M. C. The Structure of Fluoride-Containing Bioactive Glasses: New Insights from First-Principles Calculations and Solid State NMR Spectroscopy. *J. Mater. Chem.* **2012**, *22*, 12599–12608.

(53) Martineau, C.; Legein, C.; Body, M.; Péron, O.; Boulard, B.; Fayon, F. Structural Investigation of α-LaZr₂F₁₁ by Coupling X-ray Powder Diffraction, ¹⁹F Solid State NMR and DFT Calculations. *J. Solid State Chem.* **2013**, *199*, 326–333.

(54) Arnold, A. A.; Terskikh, V.; Li, Q. Y.; Naccache, R.; Marcotte, I.; Capobianco, J. A. Structure of NaYF₄ Upconverting Nanoparticles: A Multinuclear Solid-State NMR and DFT Computational Study. *J. Phys. Chem. C* **2013**, *117*, 25733–25741.

(55) Neouze, M.-A.; Kronstein, M.; Litschauer, M.; Puchberger, M.; Coelho, C.; Bonhomme, C.; Gervais, C.; Tielens, F. Exploring the Molecular Structure of Imidazolium–Silica-Based Nanoparticle Networks by Combining Solid-State NMR Spectroscopy and First-Principles Calculations. *Chem.– Eur. J.* **2014**, *20*, 15188–15196.

(56) Sadoc, A.; Biswal, M.; Body, M.; Legein, C.; Boucher, F.; Massiot, D.; Fayon, F. NMR Parameters in Column 13 Metal Fluoride Compounds (AlF₃, GaF₃, InF₃ and TlF) from First Principle calculations. *Solid State Nucl. Magn. Reson.* **2014**, *59–60*, 1–7. (57) Dabachi, J.; Body, M.; Dittmer, J.; Fayon, F.; Legein, C. Structural Refinement of the RT LaOF Phases by Coupling Powder X-Ray Diffraction, ¹⁹F and ¹³⁹La Solid State NMR and DFT Calculations of the NMR Parameters. *Dalton Trans.* **2015**, *44*, 20675–2068.

(58) Martineau, C.; Allix, M.; Suchomel, M. R.; Porcher, F.; Vivet, F.; Legein, C.; Body, M.; Massiot, D.; Taulelle, F.; Fayon, F. Structure Determination of Ba₅AlF₁₃ by Coupling Electron, Synchrotron and Neutron Powder Diffraction, Solid-State NMR and Ab Initio Calculations. *Dalton Trans.* **2016**, *45*, 15565–15574.

(59) Bertolini, J. C. Hydrofluoric Acid: a Review of Toxicity. J. Emerg. Med. 1992, 10, 163–168.

(60) Peters, D.; Miethchen, R. Symptoms and Treatment of Hydrogen Fluoride Injuries. J. Fluorine Chem. **1996**, 79, 161–165.

(61) Segal, E. B. First Aid for a Unique Acid, HF: A Sequel. *Chem. Health Saf.* 2000, 7, 18–23.

(62) PDF-4+ Database, The International Centre for Diffraction Data (ICDD), Newtown Square, PA, 2007.

(63) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. *J. Appl. Crystallogr.* **1969**, *2*, 65–71.

(64) Rodriguez-Carjaval, J. R. FULLPROF: a Program for Rietveld refinement and pattern matching analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, **1990**, p. 127.

(65) Prasad, S.; Zhao, P.; Huang, J.; Fitzgerald, J. J.; Shore, J. S. Niobium-93 MQMAS NMR
Spectroscopic Study of Alkali and Lead Niobates. *Solid State Nucl. Magn. Reson.* 2001, *19*, 45–62.

(66) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. *Magn. Reson. Chem.* **2002**, *40*, 70–76.

(67) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979.

(68) Petrilli, H. M.; Blöchl, P. E.; Blaha P.; Schwarz, K. Electric-Field-Gradient Calculations using the Projector Augmented Wave Method. *Phys. Rev. B* **1998**, *57*, 14690–14697.

(69) Perdew, J. P.; Burke K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.

(70) Yates, J. R.; Pickard, C. J.; Mauri, F. Calculation of NMR Chemical Shifts for Extended Systems using Ultrasoft Pseudopotentials. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2007, 76, 024401.

(71) Pfrommer, B. G.; Cote, M.; Louie, S. G.; Cohen, M. L. Relaxation of Crystals with the Quasi-Newton Method. *J. Comput. Phys.* **1997**, *131*, 233–240.

(72) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for *Ab Initio* Total-Energy Calculations using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

(73) Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Nanoparticulate TiO₂(B): An Anode for Lithium-Ion Batteries. *Angew. Chem. Int. Ed.* **2012**, *51*, 2164–2167.

(74) Crocker, M.; Herold, R. H. M.; Wilson, A. E.; Mackay, M.; Emeis, C. A.; Hoogendoorn, A. M. ¹H NMR Spectroscopy of Titania. *J. Chem. Soc. Faraday Trans.* **1996**, *92*, 2791–2798.

(75) Harris, R. K.; Jackson, P.; Merwin, L. H.; Say, B. J.; Hagele, G. Perspectives in High-Resolution Solid-State Nuclear Magnetic Resonance, with Emphasis on Combined Rotation and Multiple-Pulse Spectroscopy. *J. Chem. Soc., Faraday Trans.* **1988**, *84*, 3649–3672.

(76) Eckert, H.; Yesinowski, J. P.; Silver, L. A.; Stolper, E. M. Water in Silicate Glasses: Quantitation and Structural Studies by ¹H Solid Echo and MAS-NMR Methods. *J. Phys. Chem.* **1988**, 92, 2055–2064.

(77) Andersson, S. The Crystal Structure of Nb₃O₇F. Acta Chem. Scand. 1964, 18, 2339–2344.

(78) Frevel, L. K.; Rinn, H. W. Powder Diffraction Standards for Niobium Pentoxide and Tantalum Pentoxide. *Anal. Chem.* **1955**, *27*, 1329–1330.

(79) Hanawalt, J. D.; Rinn, H. W.; Frevel, L. K. Chemical Analysis by X-Ray Diffraction. *Anal. Chem.* **1938**, *10*, 457–512.

(80) Lehovec, K. Lattice Structure of β-Ta₂O₅. J. Less-Common Met. **1964**, 7, 397–410.

(81) Withers, R. L.; Brink, F. J.; Liu, Y.; Norén, L. Cluster Chemistry in the Solid State: Structured Diffuse Scattering, Oxide/Fluoride Ordering and Polar Behaviour in Transition Metal Oxyfluorides. *Polyhedron* **2007**, *26*, 290–299. (82) Yang, M.; Oró-Solé, J.; Rodgers, J. A.; Jorge, A. B.; Fuertes, A.; Attfield, J. P. Anion Order in Perovskite Oxynitrides. *Nat. Chem.* **2011**, *3*, 47–52.

(83) Bureau, B.; Silly, G.; Buzaré, J.-Y.; Emery, J. Superposition Model for ¹⁹F Isotropic Chemical Shift in Ionic Fluorides: from Basic Metal Fluorides to Transition Metal Fluoride Glasses. *Chem. Phys.* **1999**, *249*, 89–104.

(84) Body, M.; Silly, G.; Legein C.; Buzaré, J.-Y. Correlation between ¹⁹F Environment and Isotropic Chemical Shift in Barium and Calcium Fluoroaluminates. *Inorg. Chem.* **2004**, *43*, 2474–2485.

(85) Neuville, D. R.; Cormier, L.; Massiot, D. Al Environment in Tectosilicate and Peraluminous Glasses: A ²⁷Al MQ-MAS NMR, Raman, and XANES Investigation. *Geochim. Cosmochim. Acta* **2004**, *68*, 5071–5079.

(86) Le Caër, G.; Brand R. A. General Models for the Distributions of Electric Field Gradients in Disordered Solids. *J. Phys.: Condens. Matter* **1998**, *10*, 10715–10774.

(87) Xue, X.; Stebbins; J. F. ²³Na NMR Chemical Shifts and Local Na Coordination Environments in Silicate Crystals, Melts and Glasses. *Phys. Chem. Miner.* **1993**, *20*, 297–307.

(88) Wong, A.; Wu, G. Solid-State ²³Na Nuclear Magnetic Resonance of Sodium Complexes with Crown Ethers, Cryptands, and Naturally Occurring Antibiotic Ionophores: A Direct Probe to the Sodium-Binding Sites. *J. Phys. Chem. A* **2000**, *104*, 11844–11852.

(89) Cahill, L. S.; Hanna, J. V.; Wong, A.; Freitas, J. C. C.; Yates, J. R.; Harris, R. K.; Smith,
M. E. Natural Abundance ²⁵Mg Solid-State NMR of Mg Oxyanion Systems: A Combined Experimental and Computational Study. *Chem. Eur. J.* 2009, *15*, 9785–9798.

(90) Dupree, R.; Howes, A. P.; Kohn, S. C. Natural Abundance Solid State ⁴³Ca NMR. *Chem. Phys. Lett.* **1997**, 276, 399–404.

(91) Lin, Z.; Smith, M. E.; Sowrey, F. E.; Newport R. J. Probing the Local Structural Environment of Calcium by Natural-Abundance Solid-State ⁴³Ca NMR. *Phys. Rev. B* 2004, *69*, 224107.

(92) Wong, A.; Howes, A. P.; Dupree, R.; Smith, M. E. Natural Abundance ⁴³Ca NMR Study of Calcium-Containing Organic Solids: A Model Study for Ca-Binding Biomaterials. *Chem. Phys. Lett.* **2006**, *427*, 201–205.

(93) Gervais, C.; Laurencin, D.; Wong, A.; Pourpoint, F.; Labram, J.; Woodward, B.; Howes, A. P.; Pike, K. J.; Dupree, R.; Mauri, F.; Bonhomme, C.; Smith, M. E. New Perspectives on Calcium Environments in Inorganic Materials Containing Calcium–Oxygen Bonds: A Combined Computational–Experimental ⁴³Ca NMR Approach. *Chem. Phys. Lett.* **2008**, *464*, 42–48.

(94) Bryce, D. L.; Bultz, E. B.; Aebi, D. Calcium-43 Chemical Shift Tensors as Probes of Calcium Binding Environments. Insight into the Structure of the Vaterite CaCO₃ Polymorph by ⁴³Ca Solid-State NMR Spectroscopy. *J. Am. Chem. Soc.* **2008**, *130*, 9282–9292.

Table of Contents Synopsis.

Powder XRD, TGA and ¹⁹F and ¹H solid state NMR confirm that NbO₂F, and show that TaO₂F, prepared by aqueous solution synthesis, both contain hydroxyl defects and metal vacancies. NbO₂F and TaO₂F supercells have been built and geometry optimized. The structural modeling of NbO₂F and TaO₂F by these supercells is supported by the computed ¹⁹F and ⁹³Nb NMR parameters which give very good agreement with the experimental ones.

For Table of Contents Only.

Preparation-dependent composition and O/F ordering in NbO $_2 F$ and $TaO_2 F$

Jamal Dabachi, Monique Body, Cyrille Galven, Florent Boucher, Christophe Legein

Supporting Information

Table of content

Figure S1. Experimental and fitted ¹⁹ F MAS NMR spectra of AQ_NbO ₂ F4
Table S1 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ FMAS NMR spectrum of AQ_NbO ₂ F and assignment of these resonances
Figure S2. Experimental and fitted ¹⁹ F MAS NMR spectra of AQ_TaO ₂ F5
Table S1 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQ_TaO ₂ F and assignment of these resonances
Figure S3. Experimental and fitted ¹ H MAS NMR spectra of AQ_NbO ₂ F6
Table S3 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹ HMAS NMR spectrum of AQ_NbO ₂ F
Figure S4. Experimental and fitted ¹ H MAS NMR spectra of AQ_TaO ₂ F7
Table S4 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹ HMAS NMR spectrum of AQ_TaO ₂ F
Figure S5. Observed, calculated and difference diffraction patterns of AQ_NbO ₂ F8
Table S5. Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacement parametersand site occupation factors determined from the Rietveld refinement of the AQ_NbO2F powder XRDpattern
Figure S6. Observed, calculated and difference diffraction patterns of AQ_TaO ₂ F9
Table S6 . Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacement parameters and site occupation factors determined from the Rietveld refinement of the AQ_TaO ₂ F powder XRD pattern
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10 Table S7. δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQTGA_NbO ₂ F and assignment of these resonances10
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10 Table S7. δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQTGA_NbO ₂ F and assignment of these resonances10 Figure S8. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_TaO ₂ F11
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10 Table S7. δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQTGA_NbO ₂ F and assignment of these resonances
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10 Table S7. δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQTGA_NbO ₂ F and assignment of these resonances
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F10 Table S7. δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ F MAS NMR spectrum of AQTGA_NbO ₂ F and assignment of these resonances
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO ₂ F
Figure S7. Experimental and fitted ¹⁹ F MAS NMR spectra of AQTGA_NbO2F
Figure S7. Experimental and fitted ¹³ F MAS NMR spectra of AQTGA_NbO ₂ F

Table S12.Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of theAQHV_NbO2F powder XRD pattern
Figure S13. Observed, calculated and difference diffraction patterns of AQHV_TaO ₂ F16
Table S13.Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of theAQHV_TaO2F powder XRD pattern
Figure S14. Experimental and fitted ¹⁹ F MAS NMR spectra of AQHA_NbO ₂ F17
Table S14 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ FMAS NMR spectrum of AQHA_NbO2F and assignment of these resonances
Figure S15. Experimental and fitted ¹⁹ F MAS NMR spectra of AQHA_TaO ₂ F18
Table S15 . δ_{so} values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ FMAS NMR spectrum of AQHA_TaO ₂ F and assignment of these resonances18
Figure S16. Observed, calculated and difference diffraction patterns of AQHA_NbO ₂ F19
Table S16.Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of theAQHA_NbO2F powder XRD pattern
Figure S17. Observed, calculated and difference diffraction patterns of AQHA_TaO ₂ F20
Table S17. Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of theAQHA_TaO2F powder XRD pattern
Figure S18. Experimental and fitted ¹⁹ F MAS NMR spectra of S_NbO ₂ F21
Table S18 δ values line widths and relative intensities of the resonances used for the fit of the ¹⁹ F
MAS NMR spectrum of S_NbO_2F and assignment of these resonances
MAS NMR spectrum of S_NbO ₂ F and assignment of these resonances
MAS NMR spectrum of S_NbO ₂ F and assignment of these resonances
MAS NMR spectrum of S_NbO ₂ F and assignment of these resonances
MAS NMR spectrum of S_NbO2F and assignment of these resonances21Figure S19. Observed, calculated and difference diffraction patterns of S_NbO2F
Mass values, line widths and relative interibities of the resonances used for the fit of the "FMAS NMR spectrum of S_NbO2F and assignment of these resonances
Mass NMR spectrum of S_NbO2F and assignment of these resonances used for the fit of the fitMAS NMR spectrum of S_NbO2F and assignment of these resonances.21Figure S19. Observed, calculated and difference diffraction patterns of S_NbO2F.22Table S19. Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of the S_NbO2Fpowder XRD pattern.22Figure S20. Experimental and fitted ¹⁹ F MAS NMR spectra of S_TaO2F.23Table S20. S ₁₅₀ values, line widths and relative intensities of the resonances used for the fit of the ¹⁹ FMAS NMR spectrum of S_TaO2F and assignment of these resonances.23Figure S21. Observed, calculated and difference diffraction patterns of S_TaO2F.24Table S21. Atom, Wyckoff multiplicity, atomic coordinates, isotropic atomic displacementparameters and site occupation factors determined from the Rietveld refinement of the S_TaO2F24
Table S10: O_{S0} values, line wheths and relative internatives of the resonances used for the fit of the resonancesMAS NMR spectrum of S_NbO ₂ F and assignment of these resonancesS19. Observed, calculated and difference diffraction patterns of S_NbO ₂ F
MAS NMR spectrum of S_NbO ₂ F and assignment of these resonances
MAS NMR spectrum of S_NbO ₂ F and assignment of these resonances used for the fit of the "21 Figure S19. Observed, calculated and difference diffraction patterns of S_NbO ₂ F

Table S	526. NI	b sites, c	alculated	⁹³ Nb abso	lute C _Q valu	les, $\eta_{ extsf{Q}}$	values,	$\sigma_{\!\scriptscriptstyle iso}$ valu	ues an	id Mul	liken char	ges,
Nb en	vironn	nents ar	nd avera	age Nb-F	and Nb-O	bond	length	s from	the	APO	supercell	of
NbO ₂ F.												.35
Table S	527 . Nk	o-X bond	lengths f	rom the AF	O supercel	l of Nb0	D₂F					36
Table NbO ₂ F.	S28 .	X-Nb-X	angles	between	adjacent	Nb-X	bonds	from	the	APO	supercell	of .38
Table NbO ₂ F.	S29.	X-Nb-X	angles	between	opposite	Nb-X	bonds	from	the	APO	supercell	of .43
Refere	nces											44

Figure S1. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQ_NbO₂F. The individual resonances used for the fit (see Table S1) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S1. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQ_NbO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	I	Assignment
-54.3	18.9	50.6	$F-Nb_2$
-44.0	12.6	8.5	$F-Nb_2$
60.0	49.3	31.6	F-Nb□
101.3	7.3	9.3	F-Nb□

Figure S2. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQ_TaO₂F. The individual resonances used for the fit (see Table S2) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S2. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQ_TaO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	Ι	Assignment
-71.2	18.5	63.1	F-Ta ₂
10.8	36.8	26.5	F-Ta□
41.3	1.72	10.4	F-Ta□

Figure S3. Experimental (blue) and fitted (red) ¹H MAS (64 kHz) NMR spectra of AQ_NbO₂F. The individual resonances used for the fit (see Table S3) are shown below.

Table S3. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹H MAS (64 kHz) NMR spectrum of AQ_NbO₂F.

$\delta_{ ext{iso}}$	LW	I
1.4	1.2	1.9
6.7	3.2	74.0
7.6	0.3?	20.2
10.2	1.5	3.8

Figure S4. Experimental (blue) and fitted (red) ¹H MAS (64 kHz) NMR spectra of AQ_TaO₂F. The individual resonances used for the fit (see Table S4) are shown below.

Table S4. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹H MAS (64 kHz) NMR spectrum of AQ_TaO₂F.

$\delta_{ ext{iso}}$	LW	I
0.8	0.23	0.3
1.2	0.30	0.8
1.6	6.7	12.9
7.7	3.6	56.8
8.3	0.84	10.0
8.4	0.26	5.0
10.2	2.2	14.2

7

Figure S5. Observed (black), calculated (red) and difference (green) diffraction patterns of AQ_NbO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9103(2) Å. Reliability factors: $R_{wp} = 0.148$, $R_{exp} = 0.080$, $R_{Bragg} = 0.036$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S5.

Table S5. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQ_NbO₂F powder XRD pattern considering this formulation Nb_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Nb	1a	0	0	0	0.630(15)	0.87(2)
0	3d	1/2	0	0	2.228(6)	0.447(4)
F	3d	1/2	0	0	2.228(6)	0.553(4)

Figure S6. Observed (black), calculated (red) and difference (green) diffraction patterns of AQ_TaO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9048(2) Å. Reliability factors: $R_{wp} = 0.092$, $R_{exp} = 0.012$, $R_{Bragg} = 0.008$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S6.

Table S6. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (x, y, z), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQ_TaO₂F powder XRD pattern considering this formulation Ta_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	X	у	Ζ	B _{iso}	s. o. f.
Та	1a	0	0	0	0.441(6)	0.85(2)
0	3d	1/2	0	0	2.25ª	0.417(4)
F	3d	1/2	0	0	2.25ª	0.583(4)

^a The isotropic displacement parameters of the O and F atoms could not be refined and were set to 2.25 Å².

Figure S7. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQTGA_NbO₂F. The individual resonances used for the fit (see Table S7) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S7. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQTGA_NbO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	I	Assignment
-53.2	18.9	73.9	$F-Nb_2$
-42.0	16.6	20.4	$F-Nb_2$
3.7	32.4	5.7	Nb ₃ O ₇ F

10

Figure S8. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQTGA_TaO₂F. The individual resonances used for the fit (see Table S8) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S8. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQTGA_TaO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	I	Assignment
-71.3	20.6	94.7	F-Ta ₂
10.5	33.8	0.9	F-Ta□
103.9	63.5	4.3	F-Ta□

Figure S9. Observed (black), calculated (red) and difference (green) diffraction patterns of AQTGA_TaO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.89502(3) Å. Reliability factors: $R_{wp} = 0.145$, $R_{exp} = 0.051$, $R_{Bragg} = 0.048$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S9.

Table S9. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (x, y, z), isotropic atomic displacement parameters (B_{iso} , $Å^2$) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQTGA_TaO₂F powder XRD pattern considering this formulation Ta_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Та	1a	0	0	0	0.427(9)	1.00(3)
0	3d	1/2	0	0	1.132(6)	0.660(6)
F	3d	1/2	0	0	1.132(6)	0.340(6)

Figure S10. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQHV_NbO₂F. The individual resonances used for the fit (see Table S10) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S10. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQHV_NbO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	I	Assignment
-52.7	17.8	68.8	$F\operatorname{-Nb}_2$
-43.9	14.9	13.4	$F\operatorname{-Nb}_2$
57.2	52.4	16.4	F-Nb□
100.7	11.2	1.4	F-Nb□

13

Figure S11. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQHV_TaO₂F. The individual resonances used for the fit (see Table S11) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S11. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQHV_TaO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	Ι	Assignment
-122.4	0.5	0.2	Adsorbed F ⁻¹⁻³
-71.1	18.9	72.6	F-Ta ₂
10.4	37.2	22.4	F-Ta□
40.8	1.3	4.8	F-Ta□

14

Figure S12. Observed (black), calculated (red) and difference (green) diffraction patterns of AQHV_NbO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9040(1) Å. Reliability factors: $R_{wp} = 0.148$, $R_{exp} = 0.096$, $R_{Bragg} = 0.015$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S12.

Table S12. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQHV_NbO₂F powder XRD pattern considering this formulation Nb_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Nb	1a	0	0	0	0.645(6)	0.95(1)
0	3d	1/2	0	0	1.25 ^ª	0.586(2)
F	3d	1/2	0	0	1.25ª	0.414(2)

^a The isotropic displacement parameters of the O and F atoms could not be refined and were set to 1.25 Å².

Figure S13. Observed (black), calculated (red) and difference (green) diffraction patterns of AQHV_TaO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9030(2) Å. Reliability factors: $R_{wp} = 0.107$, $R_{exp} = 0.053$, $R_{Bragg} = 0.013$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S13.

Table S13. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQHV_TaO₂F powder XRD pattern considering this formulation Ta_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Та	1a	0	0	0	0.449(3)	0.880(3)
0	3d	1/2	0	0	2.25°	0.466(6)
F	3d	1/2	0	0	2.25ª	0.534(6)

^a The isotropic displacement parameters of the O and F atoms could not be refined and were set to 2.25 Å².

Figure S14. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQHA_NbO₂F. The individual resonances used for the fit (see Table S14) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S14. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQHA_NbO₂F and assignment of these resonances.

$\delta_{ m iso}$	LW	I	Assignment
-53.0	53.0 17.8 77.1		$F-Nb_2$
-44.0	14.9	14.5	F-Nb ₂
57.1	52.9	8.4	F-Nb□

17

Figure S15. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of AQHA_TaO₂F. The individual resonances used for the fit (see Table S15) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S15. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of AQHA_TaO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	Ι	Assignment
-122.7	0.5	0.5	Adsorbed F ⁻¹⁻³
-71.7	20.2	87.6	F-Ta ₂
9.1	38.3	11.4	F-Ta□
40.5	3.8	0.5	F-Ta□

Figure S16. Observed (black), calculated (red) and difference (green) diffraction patterns of AQHA_NbO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9036(1) Å. Reliability factors: $R_{wp} = 0.139$, $R_{exp} = 0.091$, $R_{Bragg} = 0.012$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S16.

Table S16. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQHA_NbO₂F powder XRD pattern considering this formulation Nb_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Nb	1a	0	0	0	0.640(9)	0.98(2)
0	3d	1/2	0	0	1.288(3)	0.633(4)
F	3d	1/2	0	0	1.288(3)	0.367(4)

Figure S17. Observed (black), calculated (red) and difference (green) diffraction patterns of AQHA_TaO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9012(2) Å. Reliability factors: $R_{wp} = 0.128$, $R_{exp} = 0.078$, $R_{Bragg} = 0.011$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S17.

Table S17. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the AQHA_TaO₂F powder XRD pattern considering this formulation Ta_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Та	1a	0	0	0	0.466(15)	0.910(6)
0	3d	1/2	0	0	1.250(3)	0.515(1)
F	3d	1/2	0	0	1.250(3)	0.485(1)

Figure S18. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of S_NbO₂F. The individual resonances used for the fit (see Table S18) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S18. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of S_NbO₂F and assignment of these resonances.

$\delta_{ m iso}$	LW	I	Assignment
-53.1	12.6	28.7	$F\text{-}Nb_2$
-50.2	18.0	70.5	$F-Nb_2$
41.2	5.6	0.8	F-Nb□

Figure S19. Observed (black), calculated (red) and difference (green) diffraction patterns of S_NbO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.9031(2) Å. Reliability factors: $R_{wp} = 0.069$, $R_{exp} = 0.030$, $R_{Bragg} = 0.0081$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S19.

Table S19. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the S_NbO₂F powder XRD pattern considering this formulation Nb_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	x	у	Ζ	B _{iso}	s. o. f.
Nb	1a	0	0	0	0.513(15)	1.00(2)
0	3d	1/2	0	0	2.25ª	0.667(3)
F	3d	1/2	0	0	2.25ª	0.333(3)

^a The isotropic displacement parameters of the O and F atoms could not be refined and were set to 2.25 Å².

Figure S20. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of S_TaO_2F . The individual resonances used for the fit (see Table S19) are shown below. Spinning sidebands of the main line are indicated by stars.

Table S20. δ_{iso} values (ppm), line widths (LW, ppm) and relative intensities (I, %) of the resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of S_TaO₂F and assignment of these resonances.

$\delta_{ ext{iso}}$	LW	I	Assignment
-71.4	19.5	91.9	F-Ta ₂
34.7	27.6	3.8	F-Ta□
108.0	60.0	4.3	F-Ta□

Figure S21. Observed (black), calculated (red) and difference (green) diffraction patterns of S_TaO₂F. Vertical markers give Bragg peak positions. SG: *Pm-3m*. Refined cell parameter of the cubic cell: a = 3.89910(3) Å. Reliability factors: $R_{wp} = 0.106$, $R_{exp} = 0.050$, $R_{Bragg} = 0.021$. Atomic positions, isotropic displacement parameters and site occupation factors are gathered in Table S21.

Table S21. Atom, Wyckoff multiplicity (Wyck.), atomic coordinates (*x*, *y*, *z*), isotropic atomic displacement parameters (B_{iso} , Å²) and site occupation factors (s. o. f.) determined from the Rietveld refinement of the S_TaO₂F powder XRD pattern considering this formulation Ta_{1-x} $\Box_xO_{2-5x}F_{1+5x}$.

Atom	Wyck.	X	у	Ζ	B _{iso}	s. o. f.
Та	1a	0	0	0	0.415(9)	0.994(6)
0	3d	1/2	0	0	2.25 ^ª	0.657(1)
F	3d	1/2	0	0	2.25ª	0.343(1)

^a The isotropic displacement parameters of the O and F atoms could not be refined and were set to 2.25 Å².

Table S22 . Atomic parameters in the APO supercell of NbO ₂ F. SG: <i>P1</i> ; $a = 11.706$ Å, $b = 11.706$ Å; c	; =
11.706 Å, α = 90.00°, β = 90.00°, γ = 90.00°; all atoms in 1a site (site symmetry: 1).	

Atom	x	у	Ζ
Nb1	0.01378	-0.00491	0.00773
Nb2	0.33317	0.01698	0.00677
Nb3	0.65739	-0.00843	-0.00946
Nb4	0.00604	0.31947	-0.00821
Nb5	0.32789	0.33992	0.01654
Nb6	0.65073	0.34586	-0.00598
Nb7	-0.00883	0.67401	-0.016
Nb8	0.34647	0.66146	-0.00696
Nb9	0.67178	0.66914	0.01267
Nb10	-0.0055	0.0138	0.32946
Nb11	0.34939	-0.00464	0.32794
Nb12	0.6725	0.00848	0.34833
Nb13	-0.01141	0.33627	0.35008
Nb14	0.34309	0.31952	0.34086
Nb15	0.66668	0.33087	0.3188
Nb16	0.00735	0.65821	0.34117
Nb17	0.32976	0.67371	0.34968
Nb18	0.65351	0.65312	0.33622
Nb19	-0.00743	0.00614	0.65224
Nb20	0.34627	0.00737	0.65253
Nb21	0.66974	-0.01441	0.67346
Nb22	0.31991	0.32871	0.66232
Nb23	0.67969	0.3392	0.67429
Nb24	0.00831	0.64915	0.66014
Nb25	0.32902	0.68295	0.67225
Nb26	0.65413	0.66264	0.65656
Nb27	-0.00015	0.32645	0.67311
01	-0.00647	0.1649	-0.00532
02	-0.00813	0.8318	-0.00815
03	0.33127	0.16926	-0.01155
04	0.33428	0.50317	0.00514
05	0.65446	0.50137	-0.00846
06	0.67493	0.8343	-0.0099
07	0.16768	-0.00349	-0.01674
08	0.50068	-0.00305	0.00116
09	0.16416	0.33124	-0.00819
010	0.49718	0.32532	-0.00105
011	0.50008	0.6763	-0.00343
012	0.83393	0.6543	-0.00669
013	0.0135	-0.00358	0.16433
014	0.01109	-0.00696	0.4975

Table S22. Continued

Atom	x	у	Ζ
015	0.32503	0.00729	0.16531
016	0.33145	0.00659	0.49843
017	0.66697	-0.01027	0.50124
018	0.67225	0.01941	0.83447
019	0.32755	0.33083	0.16977
020	0.6698	0.33553	0.16511
021	0.67026	0.66706	0.16698
022	0.50378	-0.00627	0.32255
023	0.83696	-0.00152	0.32945
024	0.50203	0.00264	0.66513
025	0.83542	0.00807	0.65846
026	0.0156	0.16443	0.67016
027	0.32504	0.17014	0.67656
028	0.00951	0.16804	0.32726
029	0.32903	0.1653	0.3398
030	0.66394	0.16538	0.33812
031	0.49882	0.33531	0.33563
032	0.83189	0.32611	0.34759
033	0.16451	0.66211	0.33175
034	0.49801	0.65884	0.32931
035	-0.00844	0.50112	0.33038
O36	0.67399	0.49867	0.34088
037	0.33172	0.83213	0.33998
038	0.01424	0.3301	0.50219
039	0.32352	0.34361	0.50392
040	-0.01182	0.67892	0.49715
041	0.33552	0.65483	0.50223
042	0.67316	0.67744	0.50013
043	0.16592	0.34851	0.68352
044	0.83328	0.31749	0.65272
045	-0.01465	0.49692	0.65504
046	0.67601	0.49867	0.66755
047	0.16641	0.65409	0.65637
048	0.49932	0.66663	0.66619
049	0.32828	0.83634	0.66314
050	0.67073	0.83208	0.68369
051	-0.01691	0.34238	0.83494
052	0.67547	0.31956	0.83223
053	0.00754	0.65822	0.82999
054	0.32317	0.67221	0.83566
F1	0.00839	0.50014	0.01328
F2	0.32519	0.83436	0.00742

Table S22. Continued

Atom	x	у	Ζ
F3	0.67549	0.16689	0.01422
F4	0.83428	0.00325	0.00543
F5	0.83272	0.34442	0.00983
F6	0.16504	0.66882	0.01267
F7	-0.01112	-0.00273	0.8309
F8	0.34184	-0.01154	0.83321
F9	0.67348	-0.00237	0.16527
F10	-0.00374	0.33232	0.1665
F11	-0.00559	0.67141	0.16518
F12	0.33157	0.67276	0.16726
F13	0.16859	-0.00886	0.33345
F14	0.16807	-0.0074	0.681
F15	0.65609	0.167	0.6512
F16	0.16565	0.34253	0.325
F17	0.83201	0.6782	0.32439
F18	0.32962	0.49948	0.32237
F19	0.00275	0.83334	0.32281
F20	0.6661	0.8324	0.3244
F21	0.65212	0.33453	0.50165
F22	0.49981	0.33287	0.66962
F23	0.34692	0.50094	0.67798
F24	0.83405	0.67683	0.67635
F25	0.00411	0.83347	0.67527
F26	0.34331	0.34444	0.83508
F27	0.66697	0.66166	0.83204

Table S23 . Atomic parameters in the APO supercell of TaO ₂ F. SG: <i>P1</i> ; $a = 11.688$ Å	A, b = 11.688 Å; c =
11.688 Å, α = 90.00°, β = 90.00°, γ = 90.00°; all atoms in 1a site (site symmetry: 1).	

Atom	x	у	Z
Ta1	0.01291	0.99735	0.00795
Ta2	0.3324	0.01328	0.00815
Ta3	0.65809	0.99179	0.98906
Ta4	0.00698	0.32228	0.98942
Ta5	0.33058	0.33484	0.01463
Ta6	0.65315	0.34392	0.99736
Ta7	0.98853	0.67467	0.98643
Ta8	0.34299	0.65919	0.99019
Ta9	0.66698	0.66818	0.01004
Ta10	0.99425	0.01176	0.33093
Ta11	0.34692	0.99856	0.33131
Ta12	0.66981	0.00897	0.34641
Ta13	0.98907	0.3338	0.34786
Ta14	0.3416	0.32256	0.33914
Ta15	0.6663	0.33272	0.32206
Ta16	0.00755	0.65794	0.34231
Ta17	0.33187	0.67442	0.34631
Ta18	0.65612	0.65471	0.33407
Ta19	0.99327	0.0091	0.65435
Ta20	0.34459	0.0048	0.65567
Ta21	0.66917	0.98732	0.67061
Ta22	0.31925	0.32851	0.66291
Ta23	0.6793	0.33956	0.67538
Ta24	0.00969	0.65181	0.66244
Ta25	0.33184	0.68028	0.66742
Ta26	0.6572	0.66558	0.6561
Ta27	0.99938	0.33133	0.66884
01	0.99369	0.16446	0.99437
02	0.98803	0.83305	0.99254
03	0.32897	0.16843	0.98542
04	0.33677	0.50099	0.00401
05	0.65226	0.50139	0.99155
06	0.67714	0.83393	0.98671
07	0.16819	0.99446	0.97999
08	0.4994	0.99541	0.00277
09	0.16563	0.33377	0.98774
010	0.4976	0.32056	0.00051
011	0.49951	0.67958	0.99512
012	0.83213	0.65261	0.9918
013	0.01528	0.99504	0.166
014	0.01308	0.99217	0.49734

Table S23. Continued

Atom	x	у	Ζ
015	0.32208	0.00625	0.16691
016	0.32919	0.00748	0.49894
017	0.66571	0.98677	0.50205
018	0.67181	0.02342	0.83348
019	0.32742	0.32813	0.171
020	0.671	0.33479	0.16504
021	0.67037	0.66748	0.1675
022	0.50432	0.99508	0.32176
023	0.83554	0.998	0.32916
024	0.50209	0.00333	0.66673
025	0.83449	0.01175	0.65788
026	0.01877	0.16532	0.67114
027	0.32222	0.16898	0.67815
028	0.01152	0.16868	0.32541
029	0.32649	0.16569	0.34062
030	0.66265	0.16691	0.34135
031	0.49935	0.33897	0.3366
032	0.83127	0.32247	0.35123
033	0.16586	0.66106	0.3304
034	0.49818	0.6563	0.32799
035	0.9886	0.50029	0.33147
036	0.68019	0.49875	0.34232
037	0.3334	0.83283	0.34078
038	0.02065	0.32884	0.5021
039	0.32051	0.34509	0.50336
040	0.98823	0.68108	0.4987
041	0.3369	0.65097	0.50158
042	0.6751	0.68083	0.49814
043	0.16527	0.35259	0.68855
044	0.83325	0.31362	0.65021
045	0.97944	0.49775	0.65297
046	0.6789	0.49997	0.66802
047	0.16794	0.64957	0.65487
048	0.49959	0.66655	0.6667
049	0.32655	0.83689	0.65976
050	0.6718	0.83077	0.68742
051	0.97988	0.34473	0.8345
052	0.67672	0.3171	0.83408
053	0.00998	0.65765	0.83057
054	0.32035	0.67127	0.83336
F1	0.00855	0.50061	0.01797
F2	0.32418	0.83323	0.0062

Table S23. Continued

Atom	x	у	Ζ
F3	0.68006	0.16615	0.01594
F4	0.83397	0.00355	0.00666
F5	0.83358	0.34682	0.01224
F6	0.16465	0.66891	0.01547
F7	0.98539	0.99487	0.83127
F8	0.34294	0.98366	0.83381
F9	0.6741	0.99797	0.16492
F10	0.99709	0.33303	0.16637
F11	0.99476	0.67172	0.16557
F12	0.33135	0.67369	0.16586
F13	0.16826	0.98797	0.33408
F14	0.16702	0.99116	0.68737
F15	0.65348	0.16791	0.64865
F16	0.16544	0.34665	0.32242
F17	0.83368	0.6836	0.32297
F18	0.32778	0.49962	0.31887
F19	0.00355	0.8328	0.32234
F20	0.66643	0.83249	0.32276
F21	0.64967	0.33555	0.50295
F22	0.49962	0.33348	0.66896
F23	0.34927	0.49994	0.67969
F24	0.83449	0.6787	0.67793
F25	0.00445	0.83331	0.67631
F26	0.34815	0.34493	0.83455
F27	0.66706	0.65863	0.83183

Table S24. F sites, calculated ¹⁹F σ_{iso} values (ppm) in decreasing order and δ_{iso} values (ppm), calculated Mulliken charges (e), F-Nb bond lengths (Å), corresponding NbX₆ octahedra and F environments from the APO supercell of NbO₂F. Calculated ¹⁹F δ_{iso} values are deduced from the relationship δ_{iso} (ppm) = -1.028(6) σ_{iso} + 100.4(8).⁴

F site	$\sigma_{_{ m iso}}$	$\delta_{_{ m iso}}$	Charge	F-Ta	TaX₀ octahedra	F env.	
ГС	161.2		0.51	2.0637	Nb(7)O ₃ F ₃		
го	101.2	-05.4	-0.51	2.1380	Nb(8)O ₃ F ₃	FIND ₂ O ₆ F ₄	
F1	150.0	62.0	0.51	2.0739	$Nb(7)O_3F_3$	$FNb_2O_6F_4$	
FI	128.8	-02.9	-0.51	2.1300	$Nb(4)O_3F_3$		
F2	159.0	62.0	0.51	2.0818	Nb(3)O ₃ F ₃		
Г3	158.9	-02.9	-0.51	2.1282	Nb(6)O ₄ F ₂	FIND ₂ O ₇ F ₃	
E22	1E0 E	62 5	0.51	2.1078	Nb(23)O ₃ F ₃		
ΓΖΖ	130.5	-02.5	-0.31	2.1082	Nb(22)O ₃ F ₃	FIND ₂ O ₆ F ₄	
E10	156.2	-60.2	-0.51	2.0539	$Nb(4)O_3F_3$		
FIU	130.2	-00.2	-0.31	2.1514	Nb(13)O ₄ F ₂	FIND ₂ O ₇ F ₃	
E 11	154 4	-58.2	-0.51	2.0716	Nb(16)O ₃ F ₃		
ГТТ	134.4	-30.5	-0.31	2.1214	$Nb(7)O_3F_3$	FIND ₂ O ₆ F ₄	
F12	152.6	-56 5	-0 51	2.0512	$Nb(8)O_3F_3$		
1 12	152.0	-50.5	-0.51	2.1356	Nb(17)O ₄ F ₂	11020713	
F1/	151 5	-55 /	-0 51	2.0878	Nb(19)O ₃ F ₃		
1 14	151.5	-55.4	-0.51	2.1196	$Nb(20)O_4F_2$	11020713	
FQ	EQ 149.4 .52.2	-53.2	-0.51 <u>2</u> .	2.0554	$Nb(3)O_3F_3$	$FNb_2O_7F_3$	
15	145.4	.4 -55.2 -0		2.1466	Nb(12)O ₄ F ₂		
F20	148 7	-52 5	-0.51	2.0816	Nb(12)O ₄ F ₂	ENh.O.F.	
120	140.7	52.5	0.51	2.1084	Nb(18)O ₄ F ₂		
F25	1/18 3	-52 1	-0 50	2.0436	Nb(19)O ₃ F ₃	ENh ₂ O ₂ E ₂	
125	140.5	52.1	0.50	2.1654	$Nb(24)O_4F_2$	11020713	
F17	147.8	-51 5	-0 51	2.0751	$Nb(16)O_3F_3$	ENh ₂ O ₂ E ₂	
117	147.0	-51.5	-0.51	2.1147	Nb(18)O ₄ F ₂	11020713	
F5	147 7	-51 5	-0 51	2.0607	$Nb(4)O_3F_3$	ENh ₂ O ₂ E ₂	
15	147.7	-51.5	-0.51	2.1385	Nb(6)O ₄ F ₂	11020713	
F4	147 A	-51 1	-0 51	2.0825	$Nb(3)O_3F_3$	FNh ₂ O ₂ E ₂	
17	177.7	51.1	0.51	2.1036	$Nb(1)O_4F_2$	111020713	
F2	146 1	-49 9	-0 51	2.0461	$Nb(8)O_3F_3$	FNh ₂ O ₂ E ₂	
12	140.1	+5.5	0.51	2.1398	$Nb(2)O_4F_2$	111020713	
F16	145 9	-49.6	-0 51	2.0946	Nb(13)O ₄ F ₂	ENh ₂ O ₂ E ₂	
110	145.5	45.0	0.51	2.1027	$Nb(14)O_4F_2$	11020812	
F7	145 7	-19 /	-0 51	2.0905	Nb(1)O ₄ F ₂	ENh ₂ O ₂ E ₂	
. /	173.7		-0.51	2.0943	Nb(19)O ₃ F ₃		
FS	144 4	-48 1	-0.50	2.0614	$Nb(2)O_4F_2$	FNb ₂ O ₈ F ₂	
Fð	144.4	-48.1		2.1272	Nb(20)O ₄ F ₂		

Table S24. Continued.

F site	$\sigma_{_{ m iso}}$	$\delta_{_{ m iso}}$	Charge	F-Ta	TaX ₆ octahedra	F env.	
52.4	142.0		0.54	2.0741	Nb(24)O ₄ F ₂		
F24	142.9	-46.5	-0.51	2.1254	Nb(26)O ₄ F ₂	FIND ₂ U ₈ F ₂	
E10	140.2	12.0	0.51	2.0621	Nb(16)O ₃ F ₃		
F19	140.2	-43.0	-0.51	2.1160	$Nb(10)O_4F_2$		
E10	120.0	12 E	0.50	2.0645	Nb(17)O ₄ F ₂		
F10	139.9	-43.5	-0.30	2.1235	Nb(14)O ₄ F ₂		
E1E	126.0	10.2	0.50	2.0525	Nb(23)O ₃ F ₃		
F12 1	150.8	-40.2	-0.50	2.1454	Nb(21)O₅F		
E21	124 5	27.0	0.50	2.0472	Nb(23)O ₃ F ₃		
FZI	154.5	-37.9	-0.30	2.1476	Nb(15)O₅F		
E72	122.0	26.4	0.50	2.0489	$Nb(22)O_3F_3$		
FZ3	155.0	-30.4	-0.30	2.1419	Nb(25)O₅F		
526	122.4	25.0	0.50	2.0491	Nb(22)O ₃ F ₃		
FZ0	152.4	-33.0	-0.50	2.1325	Nb(5)O₅F		
E27	120.0	22.2	0.50	2.0597	Nb(26)O ₄ F ₂		
ΓΖ/	120.9	-32.2 -0.50		2.1171	Nb(9)O₅F		
E12	125 /	20 E	0.50	2.0557	Nb(10)O ₄ F ₂		
112	125.4	-20.5	-0.50	2.1180	Nb(11)O₅F	FIND ₂ O ₉ F	

Table S25. F sites, calculated ¹⁹F σ_{iso} values (ppm) in decreasing order and δ_{iso} values (ppm), calculated Mulliken charges (e), F-Ta bond lengths (Å), corresponding TaX₆ octahedra and F environments from the APO supercell of TaO₂F. Calculated ¹⁹F δ_{iso} values are deduced from the relationship δ_{iso} (ppm) = -0.777(11) σ_{iso} + 86.2(1.2).⁴

F site	$\sigma_{_{ m iso}}$	$\delta_{_{ m iso}}$	Charge	F-Ta	TaX ₆ octahedra	F env.	
50	222 5	06.7	0.50	2.0874	Ta(7)O ₃ F ₃		
FO	222.5	-86.7	-0.50	2.1083	Ta(8)O ₃ F ₃	F1a ₂ O ₆ F ₄	
F11	210.1	02.2	0.40	2.0774	Ta(16)O ₃ F ₃	FTa ₂ O ₆ F ₄	
FII	218.1	-83.3	-0.49	2.0954	Ta(7)O ₃ F ₃		
522	217.0	02.1	0.50	2.1027	Ta(23)O ₃ F ₃		
FZZ	217.9	-83.1	-0.50	2.1101	Ta(22)O ₃ F ₃	FTa ₂ O ₆ F ₄	
E1	217 7	02.0	0.40	2.0807	$Ta(7)O_3F_3$		
LT	217.7	-05.0	-0.49	2.1109	$Ta(4)O_3F_3$		
E2	215 0	01 E	0.40	2.0780	$Ta(3)O_3F_3$		
гэ	215.0	-01.5	-0.49	2.1126	$Ta(6)O_4F_2$		
E10	21/1 1	00.2	0.40	2.0751	$Ta(4)O_3F_3$		
LT0	214.1	-00.2	-0.49	2.1234	$Ta(13)O_4F_2$		
E2E	21/1 1	00.0	0.40	2.0746	Ta(19)O ₃ F ₃		
ΓZJ	214.1	-00.2	-0.49	2.1285	$Ta(24)O_4F_2$		
E12	207.6	-75 1	0.40	2.0647	Ta(8)O ₃ F ₃	FTa ₂ O ₇ F ₃	
112	207.0	-75.1	-0.49	2.1091	Ta(17)O ₄ F ₂		
	-73 /	-0.49	2.0777	Ta(19)O ₃ F ₃	FTa ₂ O ₂ E ₂		
1 14	205.4	205.4 -73.4 -1	5.75	2.1143	Ta(20)O ₄ F ₂	1 1 42071 3	
FQ	204.2	-72 5	0.40	2.0653	Ta(3)O ₃ F ₃		
15	204.2	-72.5	-0.45	2.1257	$Ta(12)O_4F_2$		
F17	203.2	-71 7	-0.49	2.0666	Ta(16)O ₃ F ₃	FTa.O.F.	
117	205.2	-/1./	-0.45	2.1066	Ta(18)O ₄ F ₂	11020713	
F5	201 7	-70 5	-0.49	2.0642	$Ta(4)O_3F_3$	FTa.O.F.	
15	201.7	-70.5	-0.45	2.1162	Ta(6)O ₄ F ₂	11020713	
F7	200 9	-69 9	-0.49	2.0766	Ta(19)O ₃ F ₃	FTa.O.F.	
17	200.5	-05.5	-0.45	2.0901	$Ta(1)O_4F_2$	11020713	
F <i>A</i>	199.2	-68 6	-0.48	2.0705	$Ta(3)O_3F_3$	FTa-O-F-	
17	155.2	00.0	0.40	2.0928	$Ta(1)O_4F_2$	11020713	
F19	197 9	-67.6	-0.48	2.0575	$Ta(16)O_3F_3$	FTa ₂ O ₂ E ₂	
115	157.5	07.0	0.40	2.0970	$Ta(10)O_4F_2$		
F20	107.2 67.0		-0.49	2.0815	$Ta(12)O_4F_2$	FTa ₂ O ₂ E ₂	
120	157.2	07.0	0.45	2.0855	Ta(18)O ₄ F ₂	11020812	
F2	197.2	-67.0	-0.49	2.0545	$Ta(8)O_3F_3$	FTa ₂ O ₂ E ₂	
. 2	137.2	07.0	0.45	2.1067	$Ta(2)O_4F_2$		
F8	196.4	-66.4	-0.48	2.0706	$Ta(2)O_4F_2$	FTa-O-F-	
10	190.4	-00.4	-0.46	2.0968	$Ta(20)O_4F_2$		

Table S25. Continued.

F site	$\sigma_{_{ m iso}}$	$\delta_{_{ m iso}}$	Charge	F-Ta	TaX ₆ octahedra	F env.	
F4.C	101.2	C 4 7	0.40	2.0873	Ta(14)O ₄ F ₂		
F10	194.2	-64.7	-0.48	2.0882	Ta(13)O ₄ F ₂	F1a ₂ U ₈ F ₂	
F24	102.9	62.6	0.49	2.0797	Ta(24)O ₄ F ₂		
FZ4	192.8	-03.0	-0.48	2.0934	Ta(26)O ₄ F ₂		
E1E	101.6	62.7	0.49	2.0527	$Ta(23)O_3F_3$		
F12	191.0	-02.7	-0.48	2.1342	Ta(21)O₅F	FIa ₂ O ₈ F ₂	
F10	101 F	62.6	0.49	2.0686	Ta(17)O ₄ F ₂		
F18 191.5 -62.6	-0.48	2.0893	$Ta(14)O_4F_2$				
E21	101 1	571	0.49	2.0454	$Ta(23)O_3F_3$		
FZI	104.4	-57.1	-0.46	2.1234	Ta(15)O₅F		
E22	10/ 0	56.9	0.49	2.0436	Ta(22)O ₃ F ₃		
FZ3	104.0	-30.8	-0.46	2.1225	Ta(25)O₅F		
526	102.0	567	0.49	2.0434	Ta(22)O ₃ F ₃		
FZ0	105.9	-50.7	-0.46	2.1180	Ta(5)O₅F		
E12	172.0	10 1	0.47	2.0530	$Ta(10)O_4F_2$		
F12	F13 172.9 -48.1 -0.47		2.0921	Ta(11)O₅F			
E27	160 1	-44.4	-0.47	2.0589	Ta(26)O ₄ F ₂		
	108.1			2.0859	Ta(9)O₅F		

Nb site	<i>C</i> Q	$\eta_{ extsf{Q}}$	$\sigma_{\!\scriptscriptstyle iso}$	Charge	Env.	<nb-f></nb-f>	<nb-o></nb-o>
Nb16	35.1	0.45	774.1	1.81	30,3F	2.070	1.851
Nb8	29.3	0.31	731.0	1.82	30,3F	2.078	1.846
Nb23	27.6	0.52	702.5	1.82	30,3F	2.069	1.855
Nb19	27.6	0.53	717.9	1.82	30,3F	2.075	1.852
Nb22	27.1	0.84	728.5	1.82	30 <i>,</i> 3F	2.069	1.854
Nb3	24.7	0.26	707.5	1.81	30 <i>,</i> 3F	2.073	1.852
Nb4	23.4	0.54	718.6	1.81	30,3F	2.082	1.849
Nb7	19.0	0.31	748.6	1.82	30,3F	2.086	1.843
Nb24	39.2	0.78	729.1	1.77	40,2F	2.120	1.900
Nb13	36.6	0.80	743.0	1.77	40,2F	2.123	1.898
Nb17	35.3	0.74	762.6	1.78	40,2F	2.100	1.900
Nb14	32.5	0.60	762.1	1.77	40,2F	2.113	1.901
Nb10	32.3	0.27	791.5	1.78	40,2F	2.086	1.904
Nb2	32.3	0.68	739.3	1.78	40,2F	2.101	1.901
Nb12	31.9	0.68	762.5	1.77	40,2F	2.114	1.899
Nb26	31.5	0.39	740.4	1.78	40,2F	2.093	1.907
Nb20	31.2	0.85	759.6	1.76	40,2F	2.123	1.900
Nb6	31.1	0.93	748.2	1.76	40,2F	2.133	1.899
Nb18	28.4	0.75	753.0	1.77	40,2F	2.112	1.900
Nb1	27.8	0.89	767.1	1.79	40,2F	2.097	1.901
Nb15	36.0	0.12	787.8	1.75	50,1F	2.148	1.935
Nb21	34.8	0.05	775.4	1.75	50,1F	2.145	1.937
Nb25	31.6	0.22	798.1	1.75	50,1F	2.142	1.936
Nb11	27.9	0.61	807.8	1.75	50,1F	2.118	1.937
Nb5	27.9	0.07	814.8	1.75	50,1F	2.133	1.936
Nb9	26.9	0.34	791.1	1.76	50,1F	2.117	1.938
Nb27	9.5	0.16	781.0	1.73	60	/	1.962

Table S26. Nb sites, calculated ⁹³Nb absolute $C_{\rm Q}$ values (MHz), $\eta_{\rm Q}$ values, $\sigma_{\rm iso}$ values (ppm) and Mulliken charges (e), Nb environments and average Nb-F and Nb-O bond lenghts (Å) from the APO supercell of NbO₂F.

Table S27. Nb-X bond lengths (A	Å) from the APO su	percell of NbO ₂ F.
---------------------------------	--------------------	--------------------------------

Nb1	07	1.8242	Nb8	011	1.8070
	013	1.8333		04	1.8639
	02	1.9375		054	1.8665
	01	2.0076		F2	2.0461
	F7	2.0905		F12	2.0512
	F4	2.1036		F6	2.1380
Nb2	03	1.7956	Nb9	021	1.8066
	015	1.8618		012	1.9194
	07	1.9713		06	1.9517
	08	1.9758		05	1.9897
	F8	2.0614		011	2.0205
	F2	2.1398		F27	2.1171
Nb3	08	1.8398	Nb10	028	1.8143
	06	1.8524		023	1.8528
	018	1.8639		013	1.9563
	F9	2.0554		014	1.9915
	F3	2.0818		F13	2.0557
	F4	2.0825		F19	2.1160
Nb4	01	1.8156	Nb11	022	1.8085
	09	1.8560		037	1.9271
	051	1.8749		015	1.9300
	F10	2.0539		029	2.0083
	F5	2.0607		016	2.0112
	F1	2.1300		F13	2.1180
Nb5	019	1.7968	Nb12	017	1.8045
	04	1.9172		O30	1.8432
	09	1.9411		023	1.9414
	010	1.9996		022	2.0054
	03	2.0249		F20	2.0816
	F26	2.1325		F9	2.1466
Nb6	010	1.8144	Nb13	038	1.8072
	05	1.8212		032	1.8385
	052	1.9405		035	1.9438
	O20	2.0187		028	2.0023
	F3	2.1282		F16	2.0946
	F5	2.1385		F10	2.1514
Nb7	053	1.8224	Nb14	029	1.8129
	02	1.8494		031	1.8334
	012	1.8583		O39	1.9429
	F6	2.0637		019	2.0155
	F1	2.0739		F16	2.1027
	F11	2.1214		F18	2.1235

Table S27. Continued

Nb15	O20	1.8003	Nb22	043	1.8343
	O30	1.9506		O39	1.8629
	032	1.9638		027	1.8648
	031	1.9755		F23	2.0489
	O36	1.9831		F26	2.0491
	F21	2.1476		F22	2.1082
Nb16	033	1.8436	Nb23	044	1.8332
	035	1.8524		052	1.8638
	O40	1.8555		O46	1.8690
	F19	2.0621		F21	2.0472
	F11	2.0716		F15	2.0525
	F17	2.0751		F22	2.1078
Nb17	041	1.8005	Nb24	045	1.8031
	037	1.8581		047	1.8522
	033	1.9505		O40	1.9538
	034	1.9916		053	1.9911
	F18	2.0645		F24	2.0741
	F12	2.1356		F25	2.1654
Nb18	O34	1.8232	Nb25	049	1.7988
	O36	1.8246		054	1.9183
	042	1.9533		047	1.9422
	021	1.9974		048	2.0039
	F20	2.1084		041	2.0187
	F17	2.1147		F23	2.1419
Nb19	014	1.8308	Nb26	048	1.8162
	025	1.8412		042	1.8528
	026	1.8842		O46	1.9408
	F25	2.0436		O50	2.0181
	F14	2.0878		F27	2.0597
	F7	2.0943		F24	2.1254
Nb20	016	1.8122	Nb27	026	1.9059
	024	1.8301		051	1.9136
	027	1.9420		043	1.9649
	049	2.0169		044	1.9672
	F14	2.1196		038	2.0083
	F8	2.1272		045	2.0139
Nb21	050	1.8010			
	018	1.9261			
	025	1.9650			
	024	1.9757			
	017	2.0169			
	F15	2.1454			

Nb1	07	013	99.13	Nb4	01	09	98.88
	07	02	97.16		01	051	98.59
	07	01	95.49		01	F10	92.86
	07	F7	88.98		01	F5	93.44
	013	02	95.97		09	051	97.61
	013	01	93.87		09	F10	92.87
	013	F4	90.61		09	F1	85.03
	02	F7	84.18		051	F5	86.50
	02	F4	84.91		051	F1	88.60
	01	F7	84.04		F10	F5	80.37
	01	F4	80.57		F10	F1	79.07
	F7	F4	81.23		F5	F1	81.94
Nb2	03	015	100.30	Nb5	019	04	97.39
	03	07	95.27		019	09	98.26
	03	08	97.25		019	O10	95.73
	03	F8	92.50		019	03	95.95
	015	07	94.67		04	09	94.61
	015	08	94.40		04	010	92.26
	015	F2	86.18		04	F26	84.41
	07	F8	83.75		09	03	86.76
	07	F2	80.57		09	F26	86.35
	08	F8	84.21		010	03	83.09
	08	F2	85.70		010	F26	79.38
	F8	F2	81.02		03	F26	82.02
Nb3	08	06	98.33	Nb6	010	05	99.02
	08	018	98.82		010	052	99.08
	08	F9	91.31		010	O20	94.02
	08	F3	93.36		010	F3	90.05
	06	018	99.25		05	052	98.02
	06	F9	91.54		05	O20	94.19
	06	F4	87.44		05	F5	89.16
	018	F3	87.05		052	F3	86.10
	018	F4	88.72		052	F5	86.25
	F9	F3	79.87		020	F3	79.39
	F9	F4	79.82		020	F5	78.67
	F3	F4	79.80		F3	F5	81.20

Table S28. X-Nb-X angles (°) between adjacent Nb-X bonds from the APO supercell of NbO $_2$ F.

Table S28. Continued

Nb7	053	02	98.63	Nb10	O28	023	101.11
	053	012	98.60		028	013	94.50
	053	F6	93.10		028	014	97.24
	053	F1	93.08		028	F13	91.88
	02	012	97.21		023	013	95.92
	02	F6	90.97		023	014	94.90
	02	F11	87.97		023	F19	87.07
	012	F1	87.98		013	F13	84.05
	012	F11	87.56		013	F19	81.64
	F6	F1	81.28		014	F13	82.25
	F6	F11	79.60		014	F19	84.84
	F1	F11	79.57		F13	F19	80.02
Nb8	011	04	99.79	Nb11	022	037	95.70
	011	054	99.29		022	015	96.55
	011	F2	91.39		022	029	97.56
	011	F12	93.19		022	016	98.03
	04	054	97.52		037	015	97.36
	04	F12	88.97		037	016	88.91
	04	F6	87.47		037	F13	82.38
	054	F2	89.81		015	029	88.80
	054	F6	87.60		015	F13	83.34
	F2	F12	81.03		029	016	81.62
	F2	F6	80.23		029	F13	84.40
	F12	F6	78.82		016	F13	82.35
Nb9	021	012	97.28	Nb12	017	030	100.58
	021	06	98.56		017	023	98.12
	021	05	96.32		017	022	95.94
	021	011	94.82		017	F20	90.67
	012	06	93.15		030	023	96.12
	012	05	89.82		030	022	91.29
	012	F27	84.52		030	F9	89.69
	06	011	88.00		023	F20	87.75
	06	F27	84.62		023	F9	82.97
	05	011	85.87		022	F20	81.90
	05	F27	80.35		022	F9	81.37
	011	F27	83.23		F20	F9	78.89

-							
Nb13	038	032	100.30	Nb16	033	035	96.89
	038	035	98.83		033	O40	100.16
	038	028	94.12		033	F19	89.72
	038	F16	88.58		033	F11	90.66
	032	035	94.60		035	O40	100.65
	032	028	93.23		035	F11	89.94
	032	F10	91.40		035	F17	90.39
	035	F16	86.04		040	F19	88.25
	035	F10	84.38		040	F17	87.64
	028	F16	83.96		F19	F11	79.64
	028	F10	80.83		F19	F17	81.50
	F16	F10	79.60		F11	F17	79.93
Nb14	029	031	100.98	Nb17	041	037	100.52
	029	039	98.08		041	033	97.78
	029	019	92.89		041	034	94.07
	029	F16	92.14		041	F18	91.86
	031	039	97.78		037	033	94.31
	031	019	92.86		037	034	93.88
	031	F18	88.30		037	F12	86.79
	039	F16	87.23		033	F18	85.05
	039	F18	86.99		033	F12	84.37
	019	F16	79.32		034	F18	84.03
	019	F18	80.03		034	F12	82.53
	F16	F18	77.91		F18	F12	80.79
Nb15	O20	030	98.41	Nb18	034	O36	99.73
	O20	032	98.76		034	042	98.97
	O20	031	96.84		034	021	92.92
	O20	036	95.70		034	F20	91.74
	O30	032	88.17		O36	042	95.72
	O30	031	89.90		O36	021	95.61
	O30	F21	84.43		O36	F17	90.55
	032	036	87.89		042	F20	84.90
	032	F21	84.71		042	F17	85.85
	031	O36	90.22		021	F20	81.18
	031	F21	79.70		021	F17	80.02
	036	F21	81.59		F20	F17	77.78

Nb19	014	025	99.12	Nb22	043	039	98.35
	014	026	100.11		043	027	98.35
	014	F25	92.29		O43	F23	90.88
	014	F14	92.10		043	F26	89.22
	025	026	97.27		039	027	100.45
	025	F25	94.18		039	F23	89.63
	025	F7	86.59		039	F22	90.89
	026	F14	85.18		027	F26	89.82
	026	F7	86.59		027	F22	89.27
	F25	F14	80.71		F23	F26	78.62
	F25	F7	79.67		F23	F22	79.60
	F14	F7	81.69		F26	F22	79.89
Nb20	016	024	100.11	Nb23	044	052	98.37
	016	027	97.87		044	O46	98.93
	016	049	92.65		044	F21	90.86
	016	F14	93.55		044	F15	88.73
	024	027	98.37		052	O46	99.47
	024	049	93.96		052	F15	90.34
	024	F8	86.62		052	F22	89.71
	027	F14	86.06		046	F21	88.93
	027	F8	87.42		046	F22	90.63
	049	F14	78.85		F21	F15	79.78
	049	F8	80.39		F21	F22	79.40
	F14	F8	79.12		F15	F22	80.07
Nb21	050	018	98.04	Nb24	045	047	100.31
	050	025	97.66		045	O40	97.23
	050	024	96.34		045	053	94.88
	050	017	95.20		045	F24	90.62
	018	025	92.57		047	O40	95.26
	018	024	92.45		047	053	91.53
	018	F15	85.21		047	F25	89.63
	025	017	85.61		O40	F24	86.72
	025	F15	85.99		O40	F25	84.23
	024	017	86.12		053	F24	84.03
	024	F15	79.63		053	F25	82.25
	017	F15	81.58		F24	F25	79.31

Table S28. Continued

Nb25	O49	054	97.14
	O49	047	99.39
	O49	O48	95.62
	O49	041	96.00
	054	047	92.81
	054	O48	93.70
	054	F23	84.67
	047	041	85.08
	047	F23	85.75
	048	041	84.96
	048	F23	78.99
	041	F23	82.24
Nb26	O48	042	100.31
	O48	O46	98.80
	O48	O50	93.50
	O48	F27	90.63
	042	O46	98.17
	042	O50	92.99
	042	F24	88.93
	O46	F27	85.34
	O46	F24	86.52
	O50	F27	80.88
	O50	F24	79.08
	F27	F24	79.59
Nb27	026	051	97.17
	026	043	92.07
	026	044	92.33
	026	O38	89.71
	051	043	91.56
	051	044	91.36
	051	045	89.93
	043	O38	88.62
	043	045	87.69
	044	O38	87.90
	044	045	87.51
	O38	045	83.18

Nb1	07	F4	169.75	Nb15	O20	F21	175.55
	013	F7	171.80		O30	O36	165.77
	02	01	162.52		032	031	164.40
Nb2	03	F2	172.61	Nb16	033	F17	168.12
	015	F8	167.19		035	F19	167.75
	07	08	162.98		O40	F11	163.75
Nb3	08	F4	169.60	Nb17	041	F12	172.17
	06	F3	165.66		037	F18	167.57
	018	F9	163.91		033	034	164.11
Nb4	01	F1	171.24	Nb18	O34	F17	168.10
	09	F5	166.25		O36	F20	168.26
	051	F10	163.07		042	021	161.94
Nb5	019	F26	174.88	Nb19	014	F7	170.50
	04	03	166.25		025	F14	167.88
	09	010	163.48		O26	F25	161.54
Nb6	010	F5	169.46	Nb20	016	F8	170.69
	05	F3	169.27		024	F14	164.88
	052	020	160.43		027	049	162.11
Nb7	053	F11	170.29	Nb21	O50	F15	174.97
	02	F1	166.31		018	017	166.76
	012	F6	164.52		025	024	164.32
Nb8	011	F6	169.17	Nb22	043	F22	166.72
	04	F2	165.42		039	F26	166.15
	054	F12	164.70		027	F23	165.14
Nb9	021	F27	176.23	Nb23	044	F22	166.25
	012	011	167.54		052	F21	166.35
	06	05	164.33		O46	F15	166.49
Nb10	028	F19	171.32	Nb24	045	F25	169.75
	023	F13	166.97		047	F24	168.53
	013	014	162.21		O40	053	164.82
Nb11	022	F13	178.04	Nb25	049	F23	174.43
	037	029	164.65		054	041	166.86
	015	016	163.48		047	048	162.76
Nb12	017	F9	169.47	Nb26	048	F24	168.51
	O30	F20	167.43		042	F27	167.80
	023	022	162.62		046	050	161.61
Nb13	O38	F10	167.53	Nb27	O26	045	172.90
	032	F16	170.88		051	038	173.10
	035	028	163.41		043	044	174.38
Nb14	029	F18	168.65				
	031	F16	165.10				
	039	019	162.95				

Table S29. X-Nb-X angles (°) between opposite Nb-X bonds from the APO supercell of NbO $_2$ F.

References

- (1) Delmotte, L.; Soulard, M.; Guth, F.; Seive, A.; Lopez, A.; Guth, J. L. Zeolites 1990, 10, 778–783.
- (2) Kao, H.-M.; Liao, Y.-C. J. Phys. Chem. C 2007, 111, 4495–4498.
- (3) R. König, G. Scholz, E. Kemnitz, J. Phys. Chem. C 2009, 113, 6426–6438.
- (4) Biswal, M.; Body, M.; Legein, C.; Sadoc, A.; Boucher, F. J. Solid State Chem. 2013, 207, 208–217.

4.3 Conclusion

Cette étude montre qu'il n'est pas trivial d'obtenir NbO₂F et TaO₂F purs par synthèse en solution aqueuse, *i. e.*, d'éliminer complètement, par traitement thermique, lacunes cationiques et ions hydroxydes des composés $M_{1-x} \Box_x (O,OH,F)_3$, sans que l'oxyde M_2O_5 ou un oxyfluorure plus riche en oxygène ne se forme. Il n'est donc pas interdit de penser que certains échantillons de NbO₂F et TaO₂F étudiés dans la littérature n'étaient pas purs.

La modélisation structurale de NbO₂F et TaO₂F a été réalisée à l'aide de supermailles $3 \times 3 \times 3$ optimisées contenant des chaines -M-O-M-O-M-F- [11] le long des files d'octaèdres MX₆. Les modèles obtenus contiennent des octaèdres MX₆ distordus angulairement et radialement comme attendu dans un composé désordonné et sont donc plus réalistes que ceux obtenus précédemment [11,12]. Les distances moyennes Ta-X et Ta-(X)-Ta dans TaO₂F sont très proches de celles déterminées à partir de fonctions de distribution de paires [12] montrant que les distances interatomiques ne sont pas surestimées de manière significative lors des optimisations. Ces modèles sont validés par le très bon accord entre valeurs de δ_{iso} de ¹⁹F expérimentales et calculées. De plus, la largeur des raies RMN attribuées aux environnements F-M₂ comparée aux différences entre valeurs calculées de δ_{iso} de ¹⁹F des environnement FM₂O_{10-v}F_v démontre clairement le nombre limité de ces environnements, donc le nombre limité des environnements MO_{6-z}F_z, conséquence de l'ordre O/F au sein des chaines d'octaèdres MX_6. Le très bon accord entre valeurs de δ_{iso} de 19 F expérimentales et calculées montre aussi la qualité des corrélations entre δ_{iso} et σ_{iso} précédemment établies sur NbF₅ et TaF₅.[13]. Ces deux corrélations sont sensiblement différentes et l'une d'entre-elles diffère nettement de la corrélation généralement retenue [14,15] pour convertir les valeurs de σ_{iso} de ¹⁹F calculées en valeurs de δ_{iso} . Le fait que cette corrélation ne soit pas efficace pour certains atomes peut constituer un réel problème puisqu'il ne serait alors pas possible de calculer correctement les valeurs de δ_{iso} et donc d'estimer la qualité des modèles structuraux.

Références

[1] T. Charpentier, Solid State Nucl. Magn. Reson. 40 (2011) 1–20.

[2] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 112 (2012) 5733–5779.

[3] A. Pedone, T. Charpentier, M. C. Menziani, J. Mater. Chem. 22 (2012) 12599–12608.

[4] S. E. Ashbrook, D. M. Dawson, Acc. Chem. Res. 46 (2013) 1964–1974.

[5] D. Massiot, R. J. Messinger, S. Cadars, M. Deschamps, V. Montouillout, N. Pellerin, E. Véron, M. Allix, P. Florian, F. Fayon, Acc. Chem. Res. 46 (2013) 1975–1984.

[6] A. A. Arnold, V. Terskikh, Q. Y. Li, R. Naccache, I. Marcotte, J. A. Capobianco, J. Phys. Chem. C 117 (2013) 25733–25741.

[7] S. E. Ashbrook, D. McKay, Chem. Commun. 52 (2016) 7186–7204.

[8] L. K. Frevel, H. W. Rinn, Acta Crystallogr. 9 (1956) 626–627.

[9] F. J. Brink, R. L. Withers, L. Norén, J. Solid State Chem. 166 (2002) 73-80.

[10] C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[11] A. P. Wilkinson, R. E. Josefsberg, L. C. Gallington, C. R. Morelock, C. M. Monaco, J. Solid State Chem. 213 (2014) 38–42.

[12] C. R. Morelock, B. K. Greve, M. Cetinkol, K. W. Chapman, P. J. Chupas, A. P. Wilkinson, Chem. Mater. 25 (2013) 1900–1904.

[13] M. Biswal, M. Body, C. Legein, A. Sadoc, F. Boucher, J. Solid State Chem. 207 (2013) 208–217.

[14] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[15] A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot, F. Fayon, Solid State Nucl. Magn. Reson. 59-60 (2014) 1–7.

Conclusion générale et perspectives

Dans la première partie de ce travail, nous avons étudié par RMN du solide de ¹⁹F, ³⁹K et ⁸⁹Y cinq composés du système binaire KF-YF₃ (γ -K₃YF₆, K₂YF₅, KYF₄, β -KY₂F₇ et α -KY₃F₁₀) comportant pour la plupart plusieurs sites cristallographiques pour chaque atome. Dans un premier temps la structure de K_2YF_5 a été réaffinée par la méthode Rietveld dans le groupe d'espace Pnma, et la structure cristalline des autres composés a été brièvement décrite. Les structures expérimentales des cinq composés ont été optimisées en relaxant seulement les positions atomiques avec le code CASTEP [1,2]. L'effet de l'optimisation DFT est marqué dans le cas des structures déterminées par DRX sur poudre. Pour les trois noyaux étudiés, les paramètres RMN déterminés à partir des reconstructions des spectres expérimentaux ont été comparés ensuite aux paramètres RMN calculés avec les méthodes PAW [3,4] et/ou GIPAW [5], ce qui nous a permis de faire certaines attributions des raies RMN de ¹⁹F, ⁸⁹Y et ³⁹K à leurs sites cristallographiques. Des corrélations linéaires entre valeurs expérimentales de δ_{iso} et calculées de σ_{iso} ont alors été établies pour les trois noyaux. Celle de ¹⁹F a été utilisée pour construire les spectres théoriques de KYF_4 et β - KY_2F_7 , présentant 24 et 19 sites de fluor, respectivement. Ils sont en bon accord avec les spectres expérimentaux, montrant la précision des calculs DFT et de la corrélation. Dans le cas de ⁸⁹Y, une relation nette entre les valeurs de δ_{iso} et la coordinence de l'yttrium a été observée [6]. De plus, les trois types de polyèdre YF₇ rencontrés (prisme monocappé dans K₂YF₅ et deux types de bipyramide pentagonale dans KYF₄) sont différenciés à partir de leurs valeurs de δ_{iso} de ⁸⁹Y. Le spectre théorique de ³⁹K de KYF₄, qui compte six sites de potassium, a été reconstruit en utilisant les valeurs de δ_{iso} prédites avec la relation linéaire (δ_{iso} , σ_{iso}) et les autres paramètres RMN calculés (C_{Ω} , η_{Ω} , δ_{CSA} , η et angles d'Euler) à partir de la structure optimisée, et est en bon accord avec le spectre expérimental. Ce travail illustre donc notamment l'apport des calculs DFT à la reconstruction de spectres RMN complexes.

L'utilisation combinée de la RMN du solide de ¹⁹F et ¹³⁹La, de la diffraction des rayons X sur poudre et des calculs PAW et GIPAW a ensuite permis de caractériser les structures des deux phases ordonnées de LaOF, réaffinées à partir de données de DRX sur poudre. Les spectres RMN haute résolution (haut champ et très grande vitesse de rotation) de ¹⁹F et ¹³⁹La montrent que chaque composé contient un seul site de fluor et un seul site de lanthane, avec un ordre O/F total, en accord avec leurs modèles structuraux. Pour évaluer la précision des modèles structuraux proposés, des calculs des tenseurs d'écran pour ¹⁹F et ¹³⁹La et de gradient de champ électrique pour ¹³⁹La ont été réalisés sur les structures expérimentales et optimisées. Les effets des optimisations sont faibles. Le bon accord obtenu, pour les deux phases, entre paramètres RMN expérimentaux et calculés, montre à la fois la précision des modèles structuraux expérimentaux et l'aptitude de la fonctionnelle PBE [7] à estimer correctement les distances La-F et La-O après correction du potentiel ultradoux du lanthane, alors qu'elle est bien connue pour en surestimer la plupart.

Ce résultat est encourageant dans la perspective de la modélisation structurale d'oxyfluorures désordonnés, en couplant RMN du solide et calculs DFT des paramètres RMN. En effet, comment calculer correctement des paramètres RMN tels que le déplacement chimique ou les paramètres quadripolaires, particulièrement sensibles à l'environnement du noyau sondé, si les distances interatomiques ne sont pas correctement estimées lors des optimisations? Et donc comment valider (ou non) le modèle proposé sur la base de l'accord entre paramètres RMN calculés et expérimentaux?

Finalement, nous avons étudié deux composés désordonnés isotypes, NbO₂F et TaO₂F, dans lesquels les atomes de fluor et de l'oxygène sont distribués sur le même site cristallographique. Nous avons montré que ces deux composés contiennent des taux élevés de lacunes cationiques quand ils sont préparés en solution aqueuse, voie de synthèse la plus commune. La présence de ces lacunes est provoquée par un déficit de charges négatives engendré par la substitution d'ions O^{2-} par des ions OH^{-} et F, conduisant à une formulation générale $M_{1-x}\square_xO_{2-5x}(OH,F)_{1+5x}$. La détermination des taux de lacunes et de fluor en combinant RMN MAS de ¹⁹F, diffraction des rayons X et analyse thermique a permis de préciser la formule de chaque composé. Notre étude montre qu'obtenir NbO₂F et TaO₂F purs à partir de ces composés, c'est à dire éliminer par traitement thermique, les lacunes cationiques et les ions OH, tout en évitant la formation d'oxyde M₂O₅, n'est pas si facile. En effet ceci nécessite initialement une plus grande quantité de fluor que de métal dans les échantillons $M_{1-x} \Box_x O_{2-5x} (OH,F)_{1+5x}$ puisque les traitements thermiques provoquent déshydroxylation et défluoration. Nous avons confirmé que la synthèse par voie solide était la plus efficace pour obtenir NbO₂F pur. La même méthode n'est pas aussi efficace pour synthétiser TaO₂F puisqu'elle conduit à un échantillon $Ta_{0.98} \square_{0.02} O_{1.90} F_{1.10}$ légèrement lacunaire. Des supermailles 3 × 3 × 3, présentant un ordre partiel -M-O-M-O-M-F- le long des files d'octaèdres MX₆ [8], ont été construites et optimisées. Ces supermailles optimisées comportent des octaèdres MX₆ radialement et angulairement distordus comme attendu dans un composé désordonné et sont donc plus réalistes que les modèles précédemment proposés [8,9]. Ces modèles permettent d'obtenir un très bon accord entre valeurs de δ_{iso} de ¹⁹F expérimentales et calculées ainsi qu'un accord satisfaisant entre la distribution de paramètres quadripolaires de ⁹³Nb utilisée pour reconstruire le spectre expérimental et la distribution calculée. De plus, la largeur des raies RMN attribuées aux environnements F-M₂ comparée aux différences entre valeurs calculées de δ_{iso} de ¹⁹F des

environnements $FM_2O_{10-y}F_y$ démontre clairement le nombre limité de ces environnements, donc le nombre limité des environnements $MO_{6-z}F_z$, conséquence de l'ordre O/F au sein des chaines d'octaèdres MX_6 . Le très bon accord entre valeurs de δ_{iso} de ¹⁹F expérimentales et calculées montre aussi la qualité des corrélations entre δ_{iso} et σ_{iso} précédemment établies sur NbF₅ et TaF₅.[10].

Les résultats de cette thèse confirment donc que la RMN du solide, combinée aux calculs PAW/GIPAW est une méthode efficace et d'une grande précision pour la caractérisation structurale des fluorures et oxyfluorures inorganiques. Cette méthode s'est montrée particulièrement pertinente pour la confirmation ou la détermination de l'ordre O/F, difficile à déterminer par diffraction, dans les oxyfluorures.

Les perspectives sont nombreuses aussi bien concernant les fluorures que les oxyfluorures inorganiques. En se limitant à celles qui nous semblent les plus stimulantes, peuvent être citées:

- l'étude de fluorures cristallisés désordonnés comme des solutions solides de structure fluorine, excédentaires en anions Ca_{1-x}Y_xF_{2+x} [11,12],Ba_{1-x}La_xF_{2+x} [13,14] et Pb_{1-x}Al_xF_{2+x} [15,16] ou non, Ba_{1-x}Ca_xF₂ [17,18],Pb_{1-x}Mg_xF₂ [19], Ca_{1-x}Sr_xF₂ [20-22], Ba_{1-x}Sr_xF₂ [22] et Cd_xPb_{1-x}F₂ [23] ou adoptant d'autres types structuraux, comme Ba_{1-x}Sr_xLiF₃ [24], pour ne citer que celles ayant déjà fait l'objet d'études RMN;

 - l'étude de fluorures cristallisés contenant des noyaux peu souvent étudiés par RMN, car peu abondants ou peu sensibles;

 - l'étude d'oxyfluorures cristallisés désordonnés comme Na₂Ta₂O₅F₂ [25], pour lequel les atomes O et F ont été répartis statistiquement sur tous les sites anioniques alors que les environnements de ces sites sont différents (nature/nombre des premiers voisins) et qu'un ordre peut donc être suspecté;

 - l'étude d'(oxy)-hydroxyfluorures cristallisés lacunaires ou non comme les hydroxyfluorures d'aluminium [26-28] ou de magnésium [29] et les oxy-hydroxufluorures de titane [30-34];

- l'étude d'oxyfluorures de lanthane ou d'yttrium de structures dérivant de la fluorine comme LaF_{1.70}O_{0.65} [35], Y₅O₄F₇, Y₆O₅F₈ [36,37], Y₇O₆F₉ [36,38,39], Y₁₇O₁₄F₂₃ [36];

- l'étude de fluorures amorphes comme les verres des systèmes PbF₂-ZnF₂-GaF₃ [40], BaF₂-ZrF₄ [41], CaF₂-BaF₂-AlF₃ [42], BaF₂-SrF₂-Al(PO₃)₃-AlF₃-YF₃ [43,44],...

Certaines difficultés devront être surmontées et chaque cas devra être examiné avec soin. Les composés cristallisés nécessitent tous la construction, pas toujours triviale, puis l'optimisation de supermailles, respectant la composition et prenant en compte les diverses configurations possibles tout en restant de taille raisonnable en terme de temps de calcul. Dans tous les cas, une corrélation efficace, pour ¹⁹F, entre valeurs de δ_{iso} expérimentales et de σ_{iso} calculées, est indispensable alors que pour certains atomes métalliques comme Nb [10], les corrélations publiées [45,46] précédemment ne le sont pas. Enfin, l'évolution des distances interatomiques lors de l'optimisation doit faire l'objet d'attention, même si les paramètres de maille ne sont pas optimisés, étant donnée l'aptitude de la fonctionnelle PBE [7] à en surestimer la plupart et certaines dans des proportions telles que cela affecte les résultats des calculs des paramètres RMN.
REFERENCES

[1] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 14 (2002), 2717–2744.

[2] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 220 (2005) 567–570.

[3] H.M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter 57 (1998) 14690–14697.

[4] P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953–17979.

[5] C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.

[6] T. Krahl, G. Scholz, E. Kemnitz, J. Phys. Chem. C. 118 (2014) 21066–21074.

[7] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.

[8] F. J. Brink, R. L. Withers, L. Norén, J. Solid State Chem. 166 (2002) 73-80.

[9] C. R. Morelock, B. K. Greve, M. Cetinkol, K. W. Chapman, P. J. Chupas, A. P. Wilkinson, Chem. Mater. 25 (2013) 1900–1904.

[10] M. Biswal, M. Body, C. Legein, A. Sadoc, F. Boucher, J. Solid State Chem. 207 (2013) 208–217.

[11] F. Wang, C. P. Grey, Chem. Mater. 10 (1998) 3081–3091.

[12] T. Krahl, G. Scholz, E. Kemnitz, J. Phys. Chem. C 118, 2014, 21066–21074.

[13] C. Rongeat, M. Anji Reddy, R. Witter, M. Fichtner, J. Phys. Chem. C 117 (2013) 4943–4950.

[14] A. Düvel, J. Bednarcik, V. Šepelák, P. Heitjans, J. Phys. Chem. C 118 (2014) 7117–7129.

[15] M. El Omari, J. Sénégas, J.-M. Réau, Solid State lonics 100 (1997) 233–240.

[16] M. El Omari, J.L. Soubeyroux, J.-M. Réau, J. Sénégas, Solid State Ionics 130 (2000) 133–141.

[17] B. Ruprecht, M. Wilkening, S. Steuernagel, P. Heitjans, J. Mater. Chem. 18 (2008) 5412–5416.

[18] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, J. Phys. Chem. C 115 (2011) 23784–23789.

[19] M El Omari, M. El Omari, J.-M. Réau, J. Sénégas, J. Fluorine Chem. 113 (2002) 185–194.

[20] C. W. Ponader, R. E. Youngman, C. M. Smith, J. Am. Ceram. Soc., 88 (2005) 2447–2450.

[21] R. E. Youngman, C. M. Smith, Phys. Rev. B 78 (2008) 014112.

[22] M. Heise, G. Scholz, A. Düvel, P. Heitjans, E. Kemnitz, Solid State Sci. 60 (2016) 65-74

[23] A. Picinin, R. R. Deshpande, A. S. S. de Camargo, J. P. Donoso, J. P. Rino, H. Eckert, M. A. P. Silva, J. Chem. Phys. 128 (2008) 224705.

[24] A. Düvel, S. Wegner, K. Efimov, A. Feldhoff, P. Heitjans, M. Wilkening, J. Mater. Chem. 21 (2011) 6238–6250.

[25] M. Vlasse, J.-P. Chaminade, J.-C. Massies, M. Pouchard, J. Solid State Chem. 12 (1975) 102–109.

[26] D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.-C. Lavalley, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, Chem. Mater. 20 (2008) 1459–1469.

[27] D. Dambournet, A. Demourgues, C. Martineau, E. Durand, J. Majimel, A. Vimont, H. Leclerc, J.-C. Lavalley, M. Daturi, C. Legein, J.-Y. Buzaré, F. Fayon, A. Tressaud, J. Mater. Chem. 18 (2008) 2483–2492.

[28] D. Dambournet, A. Demourgues, C. Martineau, E. Durand, J. Majimel, C. Legein, J.-Y. Buzaré, F. Fayon, A. Vimont, H. Leclerc, A. Tressaud, Chem. Mater. 20 (2008) 7095–7106.

[29] S. Wuttke, S. M. Coman, G. Scholz, H. Kirmse, A. Vimont, M. Daturi, S. L. M. Schroeder, E. Kemnitz, Chem. Eur. J. 14 (2008) 11488–11499.

[30] W. Li, D. Corradini, M. Body, C. Legein, M. Salanne, J. Ma, K. W. Chapman, P. J. Chupas, A.-L. Rollet, C. Julien, K. Zhagib, M. Duttine, A. Demourgues, H. Groult, D. Dambournet, Chem. Mater. 27 (2015) 5014–5019.

[31] W. Li, M. Body, C. Legein, O. J. Borkiewicz, D. Dambournet, Inorg. Chem. 55 (2016) 7182–7187.

[32] W. Li, M. Body, C. Legein, D. Dambournet, Cryst. Growth Des. 16 (2016) 5441–5447.

[33] W. Li, M. Body, C. Legein, O. J. Borkiewicz, D. Dambournet, Eur. J. Inorg. Chem. (2017) 192–197.

[34] W. Li, M. Body, C. Legein, D. Dambournet, J. Solid State Chem. 246 (2017) 113–118.

[35] J. P. Laval, A. Abaouz, B. Frit, G. Roult, W. T. A. Harrison, Eur. J. Solid State Inorg. Chem. 25 (1988) 425–434.

[36] D. J. M. Bevan, J. Mohyla, B. F. Hoskins, R. J. Steen, Eur. J. Solid State Inorg. Chem. 27 (1990) 451–465.

[37] S. Wang, R. Deng, H. Guo, S. Song, F. Cao, X. Li, S. Su, H. Zhang, Dalton Trans. 39 (2010) 9153–9158.

[38]D. J. M. Bevan, A. W. Mann, Acta Crystallogr. B 31 (1975) 1406–1411.

[39] R. Li, Y. Liu, N. Zhang, L. Li, L. Liu, Y. Liang, S. Gan J. Mater. Chem. C, 3 (2015) 3928–3934.

[40] B. Bureau, G. Silly, J.-Y. Buzaré, J. Emery, C Legein, C Jacoboni, J. Phys.: Condens. Matter 9 (1997) 6719–6736.

[41] R. E. Youngman_S. Sen, Solid State Nucl. Magn. Reson. 27 (2005) 77–89.

[42] M. Body, C. Legein, G. Silly, J.-Y. Buzaré, J. Non-Cryst. Solids 353 (2007) 2231–2236.

[43] M. de Oliveira Jr., T. Uesbeck, T. S. Gonçalves, C. J. Magon, P. S. Pizani, A. S. S. de Camargo, H. Eckert, J. Phys. Chem. C 119 (2015) 24574–24587.

[44] M. de Oliveira Jr., T. S. Gonçalves, C. Ferrari, C. J. Magon, P. S. Pizani, A. S. S. de Camargo, H. Eckert, J. Phys. Chem. C 121 (2017) 2968–2986.

[45] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[46] A. Sadoc, M. Biswal, M. Body, C. Legein, F. Boucher, D. Massiot, F. Fayon, Solid State Nucl. Magn. Reson. 59-60 (2014) 1–7.

Annexe 1: Paramètres utilisés dans les calculs DFT avec le code CASTEP-NMR

Pour obtenir des valeurs convergentes du tenseur d'écrantage, en utilisant des pseudopotentiels ultra-doux, l'énergie de coupure (ou cut off), qui correspond à l'erreur maximale acceptée sur le calcul de l'énergie cinétique, a été fixée à 700 eV. Le maillage, en utilisant la méthode Monkhorst-Pack, de la zone de Brillouin par les k-points a été choisi inférieur à 0.04 Å⁻¹. Le nombre de k-points correspondants est donné dans le tableau 1.1 pour tous les composés étudiés. Le critère de convergence sur l'énergie totale est de 2.10⁻⁵ eV.

Les structures APO sont obtenues en minimisant les forces résiduelles agissant sur les atomes jusqu'à atteindre $|F_{max}| \leq 20 \text{ meV}. A^{-1}$ en conservant les opérations de symétrie et les paramètres de maille expérimentaux.

Les paramètres utilisés pour générer les pseudopotentiels « on the fly » lors des calculs avec le code CASTEP-NMR sont regroupés dans le tableau 1.2. La signification de ces paramètres peuvent être trouvés sur le site CASTEP (http://www.castep.org/) dans la section documentation.

Il a été montré que lorsque la fonctionnelle d'échange-corrélation PBE est utilisée pour le traitement d'orbitales cationiques vides localisées (cations tels que Ca²⁺, Sc³⁺(3d) and La³⁺(4f)), une correction du pseudopotentiel ultra-doux est nécessaire pour calculer correctement le tenseur d'écran de ¹⁹F [1]. Pour le lanthane, la correction optimale pour l'orbitale 4f de La est de 4,55 eV (soit 0,1672 Ha). Elle a été déterminée sur le composé LaF₃ [1] et a été appliquée avec succès sur les composés RbLaF₄ [2] et α -LaZr₂F₁₁ [3]. Cette correction permet de compenser le fait que la fonctionnelle d'échange-corrélation PBE sous-estime la bande interdite.

Brillouin en k-points et nombre de k-points irréductibles utilisés dans la modélisation.		
Composés	k-points	Nombre de k-points irréductibles
YF ₃	$4 \times 4 \times 6$	12
α -KY ₃ F ₁₀	3 × 3 × 3	4
β -KY ₂ F ₇	3 × 4 × 3	18
KYF ₄	3 × 3 × 3	8
K_2YF_5	$3 \times 4 \times 4$	8
γ -K ₃ YF ₆	$4 \times 4 \times 3$	12
KF	5 × 5 × 5	10
β-LaOF	8 × 8 × 8	60
t-LaOF	7 × 7 × 5	30
NbO ₂ F	3 × 3 × 3	14
TaO ₂ F	3 × 3 × 3	14

Tableau 1.1. Echantillonnage de la zone de
Brillouin en k-points et nombre de k-points
irréductibles utilisés dans la modélisation.

Atome	Pseudopotentiels ultra-doux
0	2 1.3 16.537 18.375 20.212 20UU:21UU(qc=7.5)[]
F	2 1.4 16.537 18.375 20.212 20UU:21UU(qc=7.5)[]
К	2 1.8 1.8 1.6 11 14.7 16.7 30U:40UU:31UU(qc=5.5)[]
Υ	3 2 2 8.5 10 11.1 40U:50U:41UU:42UU[]
Nb	3 2.2 2.2 1 7.7 8.8 10 40U=-2.145:50U=-0.145:41U=-1.27U=+0.25:42U=-0.1U=+0[]
La	2 2 2 1.4 8 12 13 50N:60NH:51UU:52LGG:43U1.6+0@0.1672U1.6+0.1@0.1672{5d0.9,4f0.1}(q c=6)[]
Та	1 2.4 2.4 1.2 7 8.8 10 60U=-0.2U=+1.75:52U=-0.14U=+0[]

Tableau 1.2. Paramètres utilisés pour générer les pseudopotentiels ultra-doux « on the fly ».

Références

[1] A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 13 (2011) 18539–18550.

[2] A.-L. Rollet, M. Allix, E. Veron, M. Deschamps, V. Montouillout, M. R. Suchomel, E. Suard, M. Barre, M. Ocaña, A. Sadoc, F. Boucher, C. Bessada, D. Massiot, F. Fayon, Inorg. Chem. 51 (2012) 2272–2282.
[3] C. Martineau, C. Legein, M. Body, O. Péron, B. Boulard, F. Fayon, J. Solid State Chem. 199 (2013) 326–333.

Annexe 2: Publications et Communications

2.1. Publications

- 1) "Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters"
 J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein
 Dalton Trans. 2015, 44, 2075–2084
- 2) "Preparation-dependant composition and O/F ordering in NbO₂F and TaO₂F"
 J. Dabachi, M. Body, C. Galven, F. Boucher, C. Legein
 Inorg. Chem., soumis le 08/02/2017
- *3)* "Multinuclear (¹⁹F, ³⁹K and ⁸⁹Y) solid state NMR and DFT studies of crystalline compounds from the KF-YF₃ binary system"

J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein *Phys. Chem. Chem. Phys.* à soumettre

2.2. Communications orales

1) "Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters"

ICAMM (International Conference on advanced Materials Modelling), 07-09 Juillet 2014, Nantes

J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein

2) "Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters"

Réseau RMN structurale dans le Grand Bassin Parisien, journée automne 2014, 30 Septembre, Caen

J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein

3) "O/F ordering in NbO₂F and TaO₂F explored by combining ¹⁹F NMR and ab initio modeling" Journées de l'école doctorale (JED) 3MPL 2015, 18 et 19 juin, Le Mans, France J. Dabachi, M. Body, J. Dittmer, F. Fayon, C. Legein

2.3. Communications par poster

 "Etude par Résonance Magnétique Nucléaire du solide haute résolution et calculs DFT des paramètres RMN d'oxyfluorures inorganiques"

Forum Jeunes Recherche, Université du Maine, 16 Novembre 2015 J. Dabachi, M. Body, J. Dittmer, C. Legein

- "Structural refinement of the RT LaOF phases by coupling powder X-Ray diffraction, ¹⁹F and ¹³⁹La solid state NMR and DFT calculations of the NMR parameters" Journées de l'école doctorale (JED) 3MPL 2014, 16 et 17 juin, Nantes, France
 <u>J. Dabachi</u>, M. Body, J. Dittmer, F. Fayon, C. Legein
- 3) "O/F ordering in NbO₂F and TaO₂F explored by combining ¹⁹F NMR and ab initio modeling"
 9th Alpine Conference on Solid State NMR. New concepts and applications. Chamonix-Mont Blanc, France, 13-17 September 2015
 J. Dabachi, M. Body, J. Dittmer, C. Legein
- 4) "¹⁹F and ⁸⁹Y MAS NMR study of the KF-YF₃ binary system" 9th Alpine Conference on Solid State NMR. New concepts and applications. Chamonix-Mont Blanc, France, 13-17 September 2015 J. Dabachi, <u>M. Body</u>, J. Dittmer, F. Fayon, C. Legein

Annexe 3: Formations doctorales suivies

3.1. Formations scientifiques

- Formation hors catalogue : M2 Chimie Le Mans, spécialité Chimie Fine, Matériaux Fonctionnels et Nanosciences (CHIMANA), Parcours Chimie Générale et Inorganique, RMN du solide, 10 heures.

- 3MPL104, La diffraction X pour tous, Angers, 12 heures.

- 3MPL118, La modélisation pour les expérimentateurs: structure et propriétés de la matière, Nantes, 12 heures.

- 21th WIEN2k Workshop, Nantes, 02-05 juillet 2014.

3.2. Formations professionnelles

- PRESENS14, DCACE 1^{ère} année, La pédagogie dans l'Enseignement Supérieur, Le Mans, 16 heures.

- CDUM015, Anglais scientifique, Le Mans, 24 heures.

- CDUM006, Parler pour convaincre, Le Mans, 3 heures.

-UMENS27, Gestion des relations difficiles, Le Mans, 6 heures.

-CDUM101, Présentation et fonctionnement de l'Université, Le Mans, 3 heures.

-CDUM009, Référencements bibliographiques, Le Mans, 6 heures.

Thèse de Doctorat

Jamal DABACHI

Etude par RMN du solide multi-noyaux et modélisation des paramètres RMN de fluorures et d'oxyfluorures inorganiques

Mutinuclear solid state NMR and NMR parameters modeling of inorganic fluorides and oxyfluorides

Résumé

Cette thèse porte sur l'étude structurale de fluorures et d'oxyfluorures inorganiques, en combinant la RMN du solide multinucléaire haute résolution, la diffraction des rayons X et les calculs premiers principes basés sur les méthodes PAW et GIPAW des paramètres RMN.

La première partie est consacrée à l'étude des composés du binaire KF-YF3: K3YF6, K2YF5, KYF4, KY2F7 et KY3F10. Des corrélations linéaires entre valeurs expérimentales de déplacements chimiques isotropes (iso) et de constantes d'écran isotropes calculées (σiso) ont été établies pour 19F, 89Y et 39K, à partir des attributions fiables des raies RMN aux sites cristallographiques (12, 10 et 5 sites pour 19F, 89Y et 39K respectivement). Ces corrélations conduisent à des accords satisfaisants. Dans le cas de 89Y, la valeur de iso dépend non seulement de la coordinence mais également de la géométrie des polyèdres YF7. Les paramètres quadripolaires calculés de 39K permettent des reconstructions satisfaisantes des spectres y compris pour les composés multisites. La deuxième partie est dédiée à l'étude des deux phases ordonnées de LaOF. Les optimisations DFT et les calculs de valence de liaison montrant que les positions atomiques de F et O devaient être inversées dans ces deux phases, leurs structures ont été réaffinées. L'accord entre paramètres RMN expérimentaux et calculés de 19F et 139La valide nos modèles structuraux.

Enfin les composés NbO₂F et TaO₂F, isotypes et désordonnés puisque les atomes d'oxygène et de fluor occupent le même site cristallographique, ont été étudiés. Il est montré que la synthèse en milieu aqueux conduit à des composés hydroxylés lacunaires M₁× \square ×(O,OH,F)₃ dont les compositions ont été déterminées en combinant RMN MAS de ₁₉F, diffraction des rayons X sur poudre et ATG. La synthèse en phase solide permet d'obtenir ces composés purs. Les calculs DFT ont été effectués sur des supermailles 3 × 3 × 3 en respectant l'ordre -M-O-M-O-M-F-. Le bon accord entre paramètres RMN de ₁₉F expérimentaux et calculés valide les modèles proposés pour NbO₂F et TaO₂F

Mots clés

RMN du solide, Méthodes DFT PAW et GIPAW, Diffractions des rayons X, Fluorures et oxyfluorures inorganiques

Abstract

This thesis focuses on the structural study of inorganic fluorides and oxyfluorides by combining high resolution multinuclear solid state NMR, X-ray diffraction and first principles calculations based on PAW and GIPAW methods of NMR parameters.

The first part is devoted to the study of compounds of the KF-YF₃ binary system: K₂YF₅, KYF₄, KY₂F₇ and KY₃F₁₀. Linear correlation between experimental isotropic chemical shift ($_{150}$) and calculated isotropic shielding (σ_{150}) values have been established, for 19F, 89Y and 39K, from confident assignments of NMR lines to crystallographic sites. These correlations lead to satisfactory agreements. In the case of 89Y the $_{150}$ value depends not only on coordination number, but also on the geometry of the YF₇ polyhedra. The calculated $_{39K}$ quadrupolar parameters allow satisfying reconstructions of the experimental spectra including those of multisites compounds.

The second part is dedicated to the study of the two ordered phases of LaOF. The DFT optimizations and bond valence calculations showing that the atomic positions of F and O should be interchanged in both the phases, their structures have been refined. The agreement between experimental and calculated NMR parameters of 19F and 139La validates our structural models.

Finally, the isotypic and disordered NbO₂F and TaO₂F compounds, since the oxygen and fluorine atoms occupy the same crystallographic site, have been studied. It is shown that the aqueous solution synthesis leads to hydroxylated and lacunary compounds $M_{1-x} \Box_x (O, OH, F)_3$, whose formulations have been determined by combining 19F MAS NMR, X-ray diffraction and TGA. The solid state synthesis enables to obtain pure compounds. DFT calculations were carried out on optimized $3 \times 3 \times 3$ supercells that respect the partial order -M-O-M-O-M-F-. The good agreement between experimental and calculated NMR parameters of 19F validates the proposed models for NbO₂F and TaO₂F.

Key Words

Solid State NMR, DFT PAW and GIPAW methods, X-ray diffraction, Inorganic fluorides and oxyfluorides