
HAL Id: tel-01822403
https://theses.hal.science/tel-01822403v1

Submitted on 25 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization and virtualization techniques adapted to
networking

Hatem Ibn Khedher

To cite this version:
Hatem Ibn Khedher. Optimization and virtualization techniques adapted to networking. Networking
and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2018. English. �NNT :
2018TELE0007�. �tel-01822403�

https://theses.hal.science/tel-01822403v1
https://hal.archives-ouvertes.fr

Spécialité: Informatique Télécommunications Electronique

Ecole doctorale: Informatique, Télécommunications et Électronique (Paris)

Présentée par

Hatem IBN KHEDHER

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS
Sujet de la thèse :

Des techniques d’optimisation et de virtualisation adaptées aux
réseaux

soutenue le 30 avril 2018

devant le jury composé de :

M. Hossam Afifi Directeur de thèse Télécom SudParis

M. Emad Abd-Elrahman Co-encadrant Institut National des Télécommunications

M. Jean-Pierre Guedon Rapporteur Ecole Polythechnique de Nantes

M. Enrico Natalizio Rapporteur Université de Technologie de Compiègne

M. Houda Labiod Examinateur Télécom ParisTech

M. Hassine Moungla Examinateur Université Paris Descartes

M. Ahmed E. Kamal Examinateur Iowa State University

M. Abderrezak Rachedi Examinateur Université Paris-Est Marne-la-Vallée

M. Jacky Forestier Invité Orange Labs
Thèse No 2018TELE0007

2

Speciality: Computer Science, Telecommunication and Electronics

Doctoral school: Computer Science, Telecommunication and Electronics (Paris)

Presented by

Hatem IBN KHEDHER

For the degree of

Doctor of Philosophy in Telecommunications
Subject :

Optimization and virtualization techniques adapted to
networking
defended on 30 avril 2018

Thesis Committee:

M. Hossam Afifi Thesis Director Telecom SudParis

M. Emad Abd-Elrahman Supervisor National Telecommunication Institute

M. Jean-Pierre Guedon Reviewer Polytechnique Nantes

M. Enrico Natalizio Reviewer University of Technology of Compiegne

M. Houda Labiod Examiner Telecom ParisTech

M. Hassine Moungla Examiner University of Paris Descartes

M. Ahmed E. Kamal Examiner Iowa State University

M. Abderrezak Rachedi Examiner University of Paris-Est Marne-la-Vallee

M. Jacky Forestier Invited Orange Labs
Thesis No 2018TELE0007

3

Abstract

Content Distribution Network (CDN) is a large distributed network deployed

worldwide designed to push the content on the edge of the networks. It moves con-

tent to mitigate increase in video traffic and enhance user satisfaction. It finds an

intermediate point between the origin server and the clients. Network virtualiza-

tion features, with novel concepts such as Network Function Virtualization (NFV)

and Software Defined Network (SDN) solutions can answer user’s demands and,

subsequently increase the network efficiency. Therefore, we look at the potential

benefits of virtualization combining with CDNs.

Therefore, in this thesis, we designed and implemented a tool which performs

optimizations that reduce the number of migrations necessary for a delivery task.

We present our work on virtualization in the context of replication of video con-

tent servers. The work covers the design of a virtualization architecture for which

there are also several algorithms that can reduce overall costs and improve system

performance. The thesis is divided into six parts.

1) Optimal solutions: In this situation, we presented an exact optimization so-

lution based on the linear programming method that takes into account new cri-

teria based on the desired quality of service of video clients, the capacity of the

operator’s network links and also the system parameters related to NFV/SDN vir-

tualization such as disk size, available RAM memory, CPU capabilities, etc. A

migration cost is introduced. It is the cost of deploying a new instance on a remote

site. Once the optimization is complete, it recommended a list of data center sites

to which virtual content servers could be migrated and thus optimize the parame-

ters previously introduced.

2) Greedy (heuristic) solutions: For reasons of scalability, we propose a new

heuristic method based on graph theory and more precisely on Gomory-Hu algo-

rithm. The idea behind this solution is to reduce the number of links to check

before moving to the optimization phase. Thus, we arrive at almost linear resolu-

4

tion times. Simulations on high density networks are carried out. We evaluate the

results and propose possible server migrations as before.

3) Orchestration of services: Given that content delivery network has several

virtual components, the proposed (optimal and heuristic) solutions are adapted to

this novel context where the optimization objective is to orchestrate and chain a set

of delivery components. Simulations on different network deployment scenarios

are carried out. We evaluate the results and propose possible server orchestration

and chaining between instances.

4) Multi-objective optimization: Still, the main objective in the previous tech-

niques is unique (reduce the overall migration cost). Therefore, we tried in this

thesis to propose a multi-objective optimization algorithm that take into consider-

ation different criteria from the involved actors (content provider, network opera-

tor, and client) in the delivery chain. The idea behind this technique is to select an

optimization layer (i.e., core, aggregation and edge/access) to where a migration

algorithm can be executed.

5) Complex Active Networks: For such active network (such as information-

centric networking (ICN) or Hadoop), the legacy optimization algorithms are no

more valid and they need to be adjusted in this novel context. Therefore, we adapt

the optimization constraint to these network types and we coma up by a ”budget”

based model. The idea is to set a specific budget to each network node that rep-

resent the work that each node can do. Then, active network is modeled and the

previous optimization algorithms are adapted and evaluated on complex graphs.

6) Integration of algorithms: Following the architecture derived from ETSI con-

cerning the virtualization of network functions, we propose the integration of the

previously designed and evaluated algorithms into a real architecture. A flow dia-

gram is proposed and a prototype based on the open source software OpenStack,

OpenDaylight and Open Virtual Switch is implemented and integrated into a real

network operator. This part has been demonstrated and it gives very encouraging

results.

5

This thesis is supported by models, implementations and simulations which

provide results that showcase our work, quantify the importance of evaluating

optimization techniques and analyze the trade-off between reducing operator cost

and enhancing end user satisfaction index.

Key words- vCDN; SDN/NFV Optimization; Migration Algorithms; Scalability

Algorithms

6

Résumé

Le Réseau de Distribution de Contenu (RDC) est un large réseau distribué

qui est déployé dans le monde entier et est conçu pour pousser le contenu à la

périphérie des réseaux. Il déplace le contenu pour atténuer l’augmentation du

trafic vidéo et améliorer la satisfaction des utilisateurs. Il trouve des points in-

termédiaires entre le serveur d’origine et les clients finaux. Les fonctions de vir-

tualisation de réseau, avec les nouveaux concepts émergents tels que les solutions

NFV (pour Network Function Virtualization) et SDN (pour Software-Defined Net-

work), peuvent répondre aux demandes des utilisateurs et, par conséquent, aug-

menter l’efficacité du réseau. Ainsi, nous examinons les avantages potentiels de la

virtualisation apportés aux RDC.

Par conséquent, dans cette thèse, on présente nos travaux sur la virtualisa-

tion dans le contexte de la réplication des serveurs de contenu vidéo. Les tra-

vaux couvrent la conception d’une architecture de virtualisation pour laquelle on

présente aussi plusieurs algorithmes qui peuvent réduire les coûts globaux à long

terme et améliorer la performance du système. Le travail est divisé en six parties :

1) Les solutions optimales : Dans cette situation, on présente une solution

d’optimisation exacte basée sur la méthode d’optimisation linéaire qui prend en

compte de nouveaux critères basés sur la qualité de service désirée par les clients

de la vidéo, la capacité des liens du réseau de l’opérateur et aussi des paramètres

système liés à la virtualisation NFV/SDN comme la taille des disques, des conte-

neurs NFV, de la mémoire RAM disponible, des capacités CPU, etc. Un coûts de

migration est introduit. Il correspond au coût de déploiement d’une nouvelle ins-

tance sur un site distant. Une fois l’optimisation est terminée, on propose une liste

de sites de centre des données vers lesquels des serveurs de contenu virtuels pour-

raient être migrés et par conséquent optimiser les paramètres précédemment in-

troduits.

2) Les solutions heuristiques : Pour des raisons de passage à l’échelle, on

7

propose une nouvelle méthode heuristique basée sur la théorie des graphes et

plus précisèment sur Gomory-Hu. L’idée derrière cette solution est de réduire le

nombre de liens à vérifier avant de passer à la phase d’optimisation. Ainsi, nous ar-

rivons à des temps de résolution presque linéaires. Des simulations sur les réseaux

à très haute densité sont effectuées. On évalue les résultats et propose des migra-

tions de serveurs potentiels comme précédemment.

3) Orchestration de services : Etant donné que le réseau de diffusion de contenu

comporte plusieurs composants virtuels, les solutions proposées (optimales et

heuristiques) sont adaptées à ce nouveau contexte où l’objectif d’optimisation est

d’orchestrer et d’enchaı̂ner un ensemble de composants de livraison. Des simu-

lations sur des différents scénarios de déploiement sont effectuées. Nous évaluons

les résultats et proposons l’orchestration de serveurs candidats et le chaı̂nage entre

les instances.

4) Optimisation multi critères : L’objectif principal des techniques précédentes

est unique (réduire le coûts global de la migration). Nous avons donc essayé

dans cette thèse de proposer un algorithme d’optimisation multi-objectif prenant

en compte les différents critères des acteurs (fournisseur de contenu, opérateur

réseau, client) impliqués dans le chaı̂nage de livraison. L’idée derrière cette tech-

nique est de sélectionner une couche d’optimisation (c’est-à-dire, coeur du réseau,

agrégation et accès) où un algorithme de placement, de migration, ou d’orchestra-

tion est exécuté.

5) Réseaux actifs et complexes : Pour un tel réseau actif et complexe (tel que

le réseau centré sur l’information (ICN) ou Hadoop), les algorithmes d’optimisa-

tion traditionnels ne sont plus valables et doivent être ajustés dans ce nouveau

contexte. Par conséquent, nous avons adapté les contraintes d’optimisation à ces

types de réseaux et nous avons appliqué un modèle basé sur le �budget�. L’idée

est de définir un budget spécifique pour chaque noeud de réseau qui représente

le travail que chaque noeud peut faire. Ensuite, le réseau actif est modélisé et les

algorithmes d’optimisation précéedents sont adaptés et évalués sur des graphes

8

complexes.

6) Intégration des algorithmes : Suivant l’architecture issue de l’ETSI qui

concerne la virtualisation des fonctions de réseau, on propose l’intégration des al-

gorithmes précédemment conçus et évalués dans une architecture réelle. On pro-

pose un diagramme de flot et met en oeuvre un prototype basé sur les logiciels

opensources tels que OpenStack, OpenDaylight et Open Virtual Switch. Cette par-

tie a été démontrée à travers une implémentaion réelle et elle a donné de très bons

résultats.

Cette thèse est soutenue par des modèles mathématiques, des implémentations

et des simulations qui fournissent des résultats qui mettent en valeur notre tra-

vail, quantifient l’importance de l’évaluation des techniques d’optimisation et ana-

lysent le compromis entre la réduction du coûts de l’opérateur (la migration) et

l’amélioration de l’indice de satisfaction de l’utilisateur final.

Mots clés- RDC; Optimisation ; SDN/NFV; Algorithmes de migration ; Algo-

rithmes d’évolutivité.

9

Acknowledgments

I would like to thank the people who have directly or indirectly supported me

and contributed to my work during the years of my Ph.D studies.

Firstly, I would like to express my sincere gratitude to my supervisor and thesis

director Prof. Hossam Afifi. His knowledge and expertise have guided me all the

way through my research.

I would like to thank as well my co-supervisor Dr. Emad Abd-Elrahman for his

motivation, dedication, and patience.

Besides, I would like to thank the members of the dissertation jury for accepting

my invitation. I am particularly honored by their presence. I thank the dissertation

reviewers Prof. Jean-Pierre Guedon and Prof. Enrico Natalazio for their insightful

comments and helpful feedback. I also thank the dissertation examiners Prof.

Houda Labiod, Prof. Ahmed Kamal, and and Prof. Hassine Moungla for their time

and flexibility.

Last but certainly not least, I would like to thank my parents. Thank you for

your continued support, kindly prayers and unconditional love.

I sincerely thank my mother Nadia who loved me very much. She was always

beside me during the whole thesis and without her I could not finish the thesis.

No words can express my appreciation and gratitude. Love you very much.

I thank my brothers and sisters

I thank my friends ...

10

Thesis Publications
Journaux

1. Ibn-Khedher, H., Abd-Elrahman, E., Kamal, A. E., & Afifi, H. (2017). OPAC:

an optimal placement algorithm for virtual CDN. Computer Networks, 120,

12–27.

Conferences and Workshops

1. Ibn-Khedher, H. & Abd-Elrahman, E. (2017). Cdnaas framework: TOPSIS

as multi-criteria decision making for vcdn migration. In 12th international

conference on future networks and communications (FNC 2017), july 24-26,

2017, leuven, belgium (pp. 274–281).

2. Ibn-Khedher, H., Abd-Elrahman, E., Afifi, H., & Marot, M. (2017). Optimal

and cost efficient algorithm for virtual CDN orchestration. In 42nd IEEE

conference on local computer networks, LCN 2017, singapore, october 9-12,

2017 (pp. 61–69).

3. Ibn-Khedher, H., Afifi, H., & Kamal, A. E. (2017). Service placement in com-

plex active networks. In 26th international conference on computer commu-

nication and networks, ICCCN 2017, vancouver, bc, canada, july 31 - aug. 3,

2017 (pp. 1–9).

4. Ibn-Khedher, H., Afifi, H., & Moustafa, H. (2017). Optimal placement algo-

rithm (OPA) for iot over ICN. In 2017 IEEE conference on computer commu-

nications workshops, INFOCOM workshops, atlanta, ga, usa, may 1-4, 2017

(pp. 372–377).

5. Monteiro, K., Marot, M., & Ibn-Khedher, H. (2017). Review on microgrid

communications solutions: a named data networking - fog approach. In

16th annual mediterranean ad hoc networking workshop, med-hoc-net 2017,

budva, montenegro, june 28-30, 2017 (pp. 1–8).

11

6. Ibn-Khedher, H., Abd-Elrahman, E., & Afifi, H. (2016). OMAC: optimal

migration algorithm for virtual CDN. In 23rd international conference on

telecommunications, ICT 2016, thessaloniki, greece, may 16-18, 2016 (pp.

1–6).

7. Ibn-Khedher, H., Hadji, M., Abd-Elrahman, E., Afifi, H., & Kamal, A. E.

(2016). Scalable and cost efficient algorithms for virtual CDN migration. In

41st IEEE conference on local computer networks, LCN 2016, dubai, united

arab emirates, november 7-10, 2016 (pp. 112–120).

8. Abd-Elrahman, E., Ibn-Khedher, H., & Afifi, H. (2015). D2D group commu-

nications security. In International conference on protocol engineering, ICPE

2015, and international conference on new technologies of distributed sys-

tems, NTDS 2015, paris, france, july 22-24, 2015 (pp. 1–6).

9. Abd-Elrahman, E., Ibn-Khedher, H., Afifi, H., & Toukabri, T. (2015). Fast

group discovery and non-repudiation in D2D communications using IBE.

In International wireless communications and mobile computing conference,

IWCMC 2015, dubrovnik, croatia, august 24-28, 2015 (pp. 616–621).

10. Ibn-Khedher, H., Abd-Elrahman, E., Afifi, H., & Forestier, J. (2015). Network

issues in virtual machine migration. In International symposium on net-

works, computers and communications, ISNCC 2015, yasmine hammamet,

tunisia, may 13-15, 2015 (pp. 1–6).

12

Contents

1 General introduction 27

1.1 Motivation . 27

1.2 Contribution . 28

1.3 Outline . 30

2 From CDN to vCDN: state of the art 31

2.1 Introduction . 31

2.2 CDN overview . 32

2.3 Taxonomy of CDN . 35

2.3.1 CDN infrastructure and composition 35

2.3.2 CDN delivery and management 36

2.3.3 CDN request routing issues 38

2.3.4 CDN performance and user satisfaction 45

2.4 Network evolution from CDN to vCDN 46

2.5 Virtualization of CDN . 47

2.5.1 Cloudified CDN . 48

2.5.2 Virtualized CDN . 49

2.5.3 Programmable CDN . 50

2.6 Virtual CDN optimization . 50

2.6.1 NFV/SDN common optimization techniques 51

2.6.2 NFV/SDN optimization algorithms in the video delivery con-

text . 51

13

14 CONTENTS

2.6.3 QoE measurement for NFV delivery context 54

2.6.4 Discussion and future work 56

2.7 Conclusion . 56

3 Network issues for vCDN migration 59

3.1 Introduction . 59

3.2 NFV, SDN and OpenStack . 60

3.2.1 Network Functions Virtualization 60

3.2.2 Software Defined Networking 62

3.2.3 OpenStack . 64

3.3 Network constraints in virtualization 65

3.3.1 QoS . 65

3.3.2 Mobility . 65

3.3.3 Security . 66

3.4 Networks issues for virtualized network function’s mobility 66

3.4.1 Hypervisor overview . 66

3.4.2 Basic concepts for MIP enabled live migration 67

3.4.3 Networking system design . 68

3.4.4 Virtual machine migration process 69

3.4.5 Evaluation . 70

3.5 CDN use case . 71

3.5.1 CDN . 71

3.5.2 Virtualization of CDN . 72

3.6 Conclusion . 74

4 OPAC: Optimal Placement Algorithm for virtual CDN 77

4.1 Introduction . 77

4.2 Related work . 81

4.3 OPAC: design concepts . 83

4.4 OPAC protocol . 86

CONTENTS 15

4.5 OPAC optimization model . 89

4.5.1 Problem statement, constraints and main objectives 90

4.5.2 Mathematical formulation . 92

4.5.3 Mono objective resolution . 95

4.6 OPAC: optimization evaluation . 98

4.6.1 Virtual content delivery number impact 100

4.6.2 Client node number impact 101

4.6.3 Virtual content delivery resolution impact 101

4.6.4 Delivery capacity impact . 103

4.6.5 Delivery storage impact . 103

4.7 OPAC: comparisons . 105

4.7.1 Comparison between OPAC and non optimal migration al-

gorithm . 105

4.7.2 Comparison between OPAC and related work 107

4.8 Conclusion . 109

5 Scalable and cost efficient algorithms for vCDN migration 111

5.1 Introduction . 111

5.2 OPAC: migration use case (OMAC) 112

5.3 HPAC: Heuristic Placement Algorithm for virtual CDN 115

5.3.1 Gomory-Hu transformation 116

5.3.2 HPAC: placement and migration 118

5.4 OPAC versus HPAC (exact versus heuristic) 119

5.4.1 Small scale scenario: a network operator snapshot 120

5.4.2 Large scale scenario: an Erdos-Renyi graph-based network

operator . 122

5.4.3 Interpretations . 123

5.5 Integration of the Algorithms . 126

5.6 Conclusion . 129

16 CONTENTS

6 Optimal and cost efficient algorithm for vCDN orchestration 131

6.1 Introduction . 131

6.2 Virtual CDN orchestration architecture for the NFV deployment . . 132

6.2.1 How to orchestrate ? . 132

6.2.2 ETSI-MANO-based vCDN orchestration architecture 133

6.2.3 Global virtual CDN architecture 135

6.3 OCPA: optimal vCDN orchestration algorithm 141

6.4 Performance evaluation . 145

6.5 OCPA: scenarios . 147

6.6 Conclusion . 149

7 CDNaaS Framework: TOPSIS as multi-criteria decision making for vCDN

migration 151

7.1 Introduction . 151

7.2 TOPSIS-based method for vCDN migration 152

7.2.1 TOPSIS formulation . 153

7.2.2 Layer selection . 155

7.2.3 Layer evaluation . 155

7.3 Testbed-based performance evaluation 157

7.4 CDNaaS workflow . 158

7.5 Conclusion . 161

8 Service placement in complex active networks 163

8.1 Introduction . 163

8.2 Related work . 165

8.3 Background . 168

8.3.1 Complex active networks . 168

8.3.2 Information-Centric Network 169

8.4 Problem statement and contributions 171

8.4.1 Active node budget . 171

CONTENTS 17

8.5 OPPA: Optimal Practical Placement Algorithm for ICN 172

8.5.1 ICN budget model . 173

8.5.2 OPPA . 174

8.6 HPPA: Heuristic and Practical Placement Algorithm for ICN scenario 176

8.6.1 EGHT: extended Gomory-Hu tree algorithm 177

8.6.2 HPPA downgrading/enhancement on the fly 178

8.7 OPPA vs HPPA: performance evaluation 181

8.7.1 Small network scale . 181

8.7.2 Large scale scenario: a Barabási–Albert based network operator181

8.7.3 OPPA vs HPPA comparison 182

8.8 Conclusion . 183

9 Conclusions and Perspectives 185

9.1 Conclusions . 185

9.2 Perspectives . 185

A Real cache overview 187

A.1 Intermediary caching . 187

A.2 Direct caching . 190

A.3 Indirect caching . 191

B Virtual cache overview 193

B.1 Content moving fetching . 193

B.2 Server moving replication . 194

B.3 Session moving . 197

C OMAC: Optimal Migration Algorithm for virtual CDN 199

C.1 OMAC: scenarios . 199

C.2 Conclusion . 201

D Distributed Maximum Concurrent Flow Algorithm 203

D.1 Introduction . 203

18 CONTENTS

D.2 MCF state of the art . 206

D.3 MCF computing models . 208

D.3.1 Centralized MCF models . 208

D.3.2 Distributed MCF models . 208

D.4 How to execute DMCF . 213

D.5 MCF combinatorial optimization models 214

D.5.1 Exact models . 214

D.5.2 MCF approximation models 217

D.5.3 Heuristic model . 218

D.6 MCF applications . 219

D.7 Proposed DMCF model . 220

D.7.1 Finding single-source shortest path tree (SPT) 221

D.7.2 Finding the concurrent flow (maximum of gamma) 222

D.7.3 Update the flows (augment/increment the flows) 222

D.7.4 Update the residual graph . 222

D.8 Comparison . 223

D.9 Conclusion . 223

D.10 Annex A: shortest path spanning tree computation 224

D.11 Annex B: destination node program 226

D.12 Annex C: intermediate node program 226

E Optimal Hadoop over ICN Placement Algorithm for Networking and Dis-

tributed Computing 229

E.1 Introduction . 229

E.2 Related work . 231

E.3 Hadoop over ICN (HoICN) design . 233

E.3.1 Information-Centric Networking 233

E.3.2 Principle Hadoop components 233

E.3.3 HoICN node architecture . 234

E.3.4 HoICN layer responsibilities 235

CONTENTS 19

E.3.5 Massive IoT data as a use case 236

E.4 HoICN: optimization algorithm . 237

E.4.1 HOPA: HoICN Optimal Placement Algorithm 238

E.4.2 HHPA: HoICN Heuristic Placement Algorithm 240

E.5 HoICN: performance evaluation . 241

E.6 Conclusion . 243

F Optimal Placement Algorithm (OPA) for IoT over ICN 245

F.1 Introduction . 245

F.2 ICN in IoT and related work . 246

F.2.1 ICN principles . 246

F.2.2 Why ICN for IoT . 248

F.2.3 ICN in IoT: related Work . 250

F.3 OPA: Optimal Placement Algorithm for ICN/IoT nodes 253

F.3.1 The placement algorithm . 254

F.4 Security considerations . 258

F.5 OPA: performance evaluation . 259

F.5.1 Scale free networks: a Barabási–Albert model-based network

operator . 260

F.6 OPA efficiency: comparison with IoT networks 263

F.7 Conclusion and Future Work . 263

20 CONTENTS

List of Figures

2-1 Main components of CDN . 33

2-2 DNS-based request routing . 44

3-1 Evolution of multimedia application delivery 62

3-2 OpenStack architecture . 64

3-3 Hypervisor monitored live migration 68

3-4 VM networking scheme . 69

3-5 Live migration with shared storage 70

3-6 Live VM context transfer . 71

3-7 vCDN based virtualization solutions 73

3-8 vCDN using the merge of NFV & SDN 74

4-1 Main components of Content Delivery Networks 78

4-2 vCDN architecture according to ETSI-NFV [171] 79

4-3 OPAC-based vCDN deployment architecture 84

4-4 vCDN cache as a service . 87

4-5 vCDN hit cache scenario . 89

4-6 vCDN miss cache scenario . 89

4-7 Example based OPAC-analytical procedure for vCDN placement . . 96

4-8 Network topology used for OPAC evaluation 98

4-9 Network optimization costs: vCDN number impact 100

4-10 Network optimization costs: client node number impact 102

4-11 Network optimization costs: vCDN resolution impact 103

21

22 LIST OF FIGURES

4-12 Network optimization costs: delivery capacity impact 104

4-13 Network optimization costs: delivery storage impact 105

4-14 comparison between the optimal and the non optimal algorithms

using total virtualization cost parameter and under vCDN/client

node variation . 106

4-15 Operator gain after executed the optimal migration algorithm com-

paring to the non optimal . 107

4-16 Comparison between OPAC and Bernadetta et al work 108

5-1 OPAC: vCDN-YouTube migration use case 115

5-2 Example of a Gomory-Hu tree transformation. 118

5-3 Example of HPAC vCDN content replication/migration. 119

5-4 Network topology used for small scale 120

5-5 OPAC-HPAC comparison in the small network scale scenario. 123

5-6 Network topology used for large network scale. 124

5-7 HPAC in large network scale. 124

5-8 OPAC and HPAC run-time in large network scale. 125

5-9 Main use-cases for OPAC/HPAC in an SDN/NFV framework. 127

5-10 Sequence diagram for OPAC/HPAC integration. 127

6-1 vCDN network orchestration . 132

6-2 virtual CDN architecture according to ETSI standard 134

6-3 VNF space for virtual CDN . 136

6-4 Management, orchestration, and VNF spaces for vCDN 140

6-5 OCPA: vCDN orchestration example 145

6-6 Network topology used for the OCPA evaluation 146

6-7 vCDN total migration cost . 146

6-8 vCDN migration time . 147

6-9 vCDN network optimization costs . 148

6-10 vCDN replica number . 148

LIST OF FIGURES 23

6-11 vCDN network optimization costs: user side 149

6-12 vCDN network optimization costs: network side 149

7-1 The TOPSIS sequence for vCDNTTX decision 156

7-2 Testbed and VM migration times . 157

7-3 VM migration and interruption times 158

7-4 Optimization of CDNaaS workflow for DVD2C project 158

8-1 ICN based active network scenarios 164

8-2 Active node budget mapping . 172

8-3 G-H based ICN insertion . 181

8-4 OPPA-HPPA decision time . 181

8-5 OPPA-HPPA comparison in the small network scale scenario 182

8-6 Network topology used for large scale 182

8-7 HPPA in large network scale scenario 183

C-1 Total migration cost . 200

C-2 Replica number impact . 201

D-1 Intermediate node program . 226

E-1 HoICN layer responsibilities . 235

E-2 HoICN topology: Massive IoT data 237

E-3 Network topology used for large scale 241

E-4 HHPA: execution runtime . 242

E-5 HHPA: end-to-end consumer delay 242

F-1 ICN-based IoT distribution network. Given the network topology,

consumers requests, and objects served by content providers, OPA

model chooses which server should be upgraded with ICN/IoT soft-

ware. 260

F-2 Data consumer delay . 261

F-3 OPA run-time in scale-free network 262

24 LIST OF FIGURES

F-4 ICN/IoT placement (in network caching) cost 262

F-5 OPA in scale-free IoT network . 263

List of Tables

2.1 CDN infrastructure and compositions 35

2.2 CDN delivery and management . 39

2.3 CDN Request routing techniques . 40

2.4 CDN performance . 45

3.1 Live migration requirements . 70

3.2 vCDN comparison . 74

4.1 OPAC mathematical notation . 92

4.2 Comparison between OPAC and state-of-the-art 109

5.1 OPAC mathematical notation in a migration use case 112

5.2 Gap (migration cost): HPAC efficiency 122

5.3 Efficiency comparison between OPAC and HPAC; SS: Small Scale,LS:

Large Scale N = |V (G)|, M = |E(G)| . 125

6.1 Mapping between simplified vCDN and ETSI-MANO 135

6.2 Comparison between vCDN and ETSI-MANO 141

6.3 Mathematical Notation . 142

8.1 Mathematical Notation . 175

8.2 Efficiency comparison between OPPA and HPPA 183

A.1 Direct caching techniques . 191

25

26 LIST OF TABLES

B.1 Content moving techniques . 194

B.2 Replication techniques . 197

D.1 Comparison between SS-DMCF and state-of-the-art 224

E.1 HoICN Mathematical Notation . 238

F.1 Mathematical Notation . 255

F.2 Efficiency comparison for OPA and IoT SigFox network 264

Chapter 1

General introduction

1.1 Motivation

Software Defined Networks (SDN) and Network Function Virtualization (NFV)

are two paradigms which aim to virtualize certain network functions while adding

more flexibility and increasing the overall network performance. ETSI has high-

lighted virtualized CDN (vCDN) among the major NFV use cases. The main pur-

pose of vCDN is to allow the operator to dynamically deploy on demand virtual

cache nodes to deal with the massive growing amount of video traffic. Scaling

in/out, caching as a service etc. are also among the key benefits of vCDN. In this

thesis we are motivated to review and address the overall virtualization challenges

for CDN transition to vCDN.

Further, literature lacks a general virtualization architecture which leads us to

study this network and to design recent architectures that adapt with the network

type problems (i.e., placement, migration, orchestration, intermediate node activ-

ity, etc.). Furthermore, despite the importance of optimization tasks, such func-

tions are missing in the global architecture. We are therefore, motivated in this

thesis to contribute with novel optimization algorithms that may solve the major

problems of vCDN deployment in current network operator environment. Com-

ing up with a network simulator tool that help network operator to manage the

27

28 CHAPTER 1. GENERAL INTRODUCTION

deployment of vCDN is also incentive.

1.2 Contribution

Our contributions consist of the the design of a novel virtualization architec-

ture for vCDN. Then, the main network issues in virtual machine migration and

especially for vCDN use case and in an SDN/NFV optimization context is pro-

posed.

Further, we propose different optimization algorithms for vCDN. Through the

first optimization (i.e., Optimal Placement Algorithm for virtual CDN (OPAC)),

we are going to formulate an exact algorithm based on a mathematical model for

deciding the optimal location to migrate a vCDN or to instantiate (place) a new

vCDN on demand to satisfy users quality requirements. Then, a slight modifica-

tion to the algorithm is proposed in order to solve the vCDN migration problem.

As a result an Optimal Migration Algorithm for virtual CDN (OMAC) is formu-

lated. Further, to cope with scalability problems of exact algorithms, we adapt a

heuristic algorithm (i.e., Heuristic Placement Algorithm for virtual CDN (HPAC))

to deal with our constraints when large scale networks need to be optimized. In

this algorithm, we exploit the well known Gomory-Hu method to find a near opti-

mum point of operation.

Moreover, as CDN is a set of system components, optimizing CDN placement

requires considering the vCDN orchestration problem. Therefore, we contribute

by a different optimization algorithm. Through this optimization (Optimal vCDN

Orchestration Algorithm), we are going to formulate an exact algorithm based on

a linear programming model for deciding the optimal locations to place vCDN

components to satisfy users quality requirements and minimize the overall load

on the main nodes and links. The major objective from the proposed algorithm is

to minimize the total orchestration cost of vCDN components(vCDNC) while min-

imizing the additional extra-costs needed for caching, streaming, and replicating

the virtual instances.

1.2. CONTRIBUTION 29

Still, these optimization algorithms are mono-objective. Since vCDN collab-

orate with two other actors (content provider and end-user), we contribute in

this thesis by a multi-criteria decision making technique, TOPSIS. It is adapted

also in the context of vCDN migration. Finally, as the optimization algorithms

(mono and multi-objective) deal with many heteroclite parameters, a clear view

on how/where/when they are extracted and how they are reflected on a typical

SDN/NFV architecture is diagrammed.

Among the major contributions in this thesis we highlight the implementation

of vCDN Infrastructure Optimization Simulator (vIOS). It is a high level imple-

mentation of a network tool that uses the previous optimization algorithms on a

real virtualization environment, OpenStack. An integration of this tool in Orange

operator shows its feasibility and effectiveness to manage high complex graphs as

inputs and recommend server migration lists for instance.

Up to now, network optimization can be easily modeled with classical tools or

heuristic methods when the graph becomes too large. Introducing active nodes

by means of ICN (or the Hadoop) concept introduces a modification in the graph

equivalent to a negative resistance in electronic circuits (where active nodes supply

an extra capacity/power if the input capacity measured is negative). Indeed, the

ICN (or Hadoop) functions provide some kind of work inside the node. This trans-

forms the two dimensional graph to a three dimensional one where the third di-

mension comes from the interaction between vertical layers within a node. There-

fore, the previous conventional methods (OPAC, OMAC, HPAC, OCPA, and TOP-

SIS) that can be used to optimize the graph are not anymore valid and we need

to look for a more realistic optimization method that can take the third dimen-

sion into account. Therefore, in this thesis, we contribute by a proposed model

and optimization algorithms that target general scenarios over ICN complex ac-

tive network where active nodes add a third dimension to the traditional network

topology representing local work (e.g., augmented reality, data mining, adapta-

tion, publicity insertion, IoT data timing, etc.). Once the network flow of the ICN

30 CHAPTER 1. GENERAL INTRODUCTION

active network is defined, optimization algorithms aim to maximize the dynamic

data rates under a total ICN budget.

Up to now, the most particular attention is being set to the exact or approxi-

mate approaches with performance guarantees on which very significant progress

has been made in recent years and to a central problem in network flows which

consists of calculating paths to steer/route traffic flows (demands) while mini-

mizing congestion links (ratio of active traffic on capacity). For the best of your

knowledge, the current implementation of these approaches are fully decentral-

ized (i.e., a controller that collects topology parameters, live OpenStack statis-

tics/metrics and user demands for a vCDN Service as input and recommends some

decisions). In order to bybass the offline optimization that Gomory-Hu introduces

when checking potential server migration and decentralize our optimization tech-

niques, we contribute by a distributed maximum concurrent flow algorithm. It is

inserted on each network nodes, collect user demands from children nodes and

routes the maximum fraction of flow to multi-terminal while not exceeding the

neighbor links capacities.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the

transition from CDN to vCDN. Chapter 3 analysis the overall networking issues

in CDN virtualization and migration. Chapter 4 describes the optimal placement

algorithm for vCDN, its parameters, constraints and objective function. Chap-

ter 5 details our exact and heuristic optimization algorithms for vCDN migration.

Chapter 6 describes the orchestration algorithm (OCPA). Chapter 7 presents the

multi-criteria decision making algorithm. Chapter 8 proposes a novel optimiza-

tion technique over complex active networks. Chapter 9 concludes the thesis and

discusses the future optimization techniques in virtualization. Given the limit size

of the thesis, additional document is added at the end which represents further

contributions (Annexes A, B, C, D, E, F).

Chapter 2

From CDN to vCDN: state of the art

2.1 Introduction

Content Distribution Network (CDN) is a large distributed network deployed

worldwide designed to push the content on the edge of the networks (i.e. Point

of Presence (PoP)). It solves two main problems that enhance the network per-

formance: i) network latency for service access and ii) load balancing. CDN de-

ployment is a major concern for network operators and service providers as video

(either VoD or Live TV) represents more than half of the total Internet traffic (66%

as per Orange) and will grow to more than 80% of all Internet traffic by 2019 1.

The CDN moves content to mitigate increase in video traffic and enhance user

satisfaction. It finds an intermediate point between the origin server and the

clients for the replication. Network virtualization features, with new emerging

concepts such as Network Function Virtualization (NFV) and Software Defined

Network (SDN) solutions can answer users demands and, subsequently increase

the network efficiency. Therefore, we look at the potential benefits of virtualiza-

tion brought to CDNs. We tailor our state of the art to provide:

• A comprehensive state of the art on the traditional CDNs.

• Strength and weakness of different CDN services when used with different
1http:/www.cisco.com/c/en/us/

31

32 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

caching and replication algorithms including virtual ones.

• A new approach taking into account virtual content delivery networks

through Network Function Virtualization (NFV) and Software Defined Net-

working (SDN) concepts.

CDN today is the result of many contributions that have improved the archi-

tecture and the design. So, we try to organize those contributions in a categorized

way, easy to understand. Also, we include surveys of the most performing caching

algorithms used in CDN systems.

The rest of this Chapter is organized as follows: Section 2.2 highlights the com-

mon architectures for CDN. Section 2.3 describes the main taxonomies of CDN. We

study the evolution from CDN to virtualization aspects in Section 2.4 and the tran-

sition from physical cache to virtual ones with details about caching techniques.

Section 2.5 introduces the state of the art of the art the main virtual CDN solutions

with details about our virtual CDN (vCDN) use cases based on network function

virtualization principles: NFV and SDN. Section 2.6 highlights general optimiza-

tion techniques used in the context of virtualization and video delivery service.

Finally, this chapter is concluded in Section 2.7.

2.2 CDN overview

Fig. 2-1 describes in a general way the different components of CDN. A typical

CDN includes a content distribution system which has the role of content replica-

tion. In addition, a request routing system is necessary to receive requests from

end users and redirect them in different ways discussed later. Further, a central-

ized management plan is used to distribute load over surrogates (it is defined as

a device/function that interacts with other elements of the CDN for the control

and distribution of content within the CDN and interacts with User Agents for the

delivery of the content)2 (CDN Mgmt). It has the role of cache management.

2According to Internet IETF Draft, draft-jenkins-alto-cdn-use-cases-03

2.2. CDN OVERVIEW 33

Figure 2-1 – Main components of CDN

Those main components of a typical CDN can be defined as the following:

• Content delivery infrastructure [135]: It manages cache servers responsible

for delivering the content to the end users.

• Request routing infrastructure: Its function is to redirect client’s queries to

the most appropriate CDN cache. Also, it interacts with the distribution in-

frastructure to make a global view of the up-to-date content stored in edge

servers.

• Distribution infrastructure [135] Its function is to move content from the ori-

gin server to the CDN edge cache servers ensuring the consistency of cached

data.

• In addition to the previous three plans, the accounting infrastructure [135]

maintains the logs of client access and records the CDN server’s utilization in

order to prepare the billing records.

Several works have investigated the topic of content delivery networks. Peng

et al. [136] gave an overview of CDN and introduced the encountered problems in

34 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

building an efficient architecture. Further, they enumerated and proposed solu-

tions to overcome such issues. Vakali et al. [173] presented a survey on the CDN

architecture and gave the benefits of CDNs. Dilly et al. [51] and Akamai [4] gave a

state of the art of the existing CDN approaches. They also detailed the infrastruc-

ture of the Akamai network (currently, the most developed caching infrastructure)

and how it works. Kung et al. [134] proposed taxonomy for CDN classification and

gave some proposed approaches for content aggregation and content placement.

Saroiu et al. [154] investigated CDN based on four content distributed systems:

HTTP web traffic, Akamai, Kazaa, Gnutella and they gave significant implication

for large organizations. Honguk et al. [177] proposed a virtualized, programmable

content delivery network, in which the CDN is proposed as a service or on demand.

CDNs, sometimes also called Content Distribution Networks, are often deployed

close to the end user when he makes data requests. Static content may be im-

ages, video, CSS files, scripts files, etc CDN customers are mainly Internet Service

Providers (ISP) and Over the Top (OTT) service providers like YouTube and Net-

flix. They push the content to the edge servers over IP. Typically, they are looking to

build a large farm of cache servers deployed worldwide in order to reduce the load

on the OTT servers, reduce traffic overhead and provide the following services:

• Storage (popularity based)

• Management of cached content (i.e. cache management like replication, re-

placement, and placement)

• Distribution of content among cache servers (load balancing)

• Content Streaming

• Fault tolerance (i.e. Redundancy)

• Network performance (reduce overloads)

2.3. TAXONOMY OF CDN 35

2.3 Taxonomy of CDN

CDN is considered as a center of many interests. The literature treats in priority

the following aspects:

• CDN infrastructure and composition.

• CDN delivery and management.

• CDN request routing.

• CDN performance and user satisfaction.

2.3.1 CDN infrastructure and composition

Lazard and al. [110] introduced that CDN infrastructure can follow the overlay

approach and cited CDNs deployed by companies as an example, i.e. using Peer

to Peer (P2P) applications or an underlay of connected servers. In that case, the

original content is always permanently stored in the underlay and copied on occa-

sions to the dynamic substrate. We found several different compositions of CDN as

shown in Table 2.1. Indeed, in the underlay method, caching nodes are centralized

while in overlay method CDN can be assisted with P2P and other heterogeneous

or decentralized methods. Further, we summarize the interaction between the dif-

ferent components of the CDN in two ways: either through the use of surrogates

or through caching proxies.

Table 2.1 – CDN infrastructure and compositions

CDN composition issues Taxonomy
CDN infrastructure Underlay Overlay
CDN servers Origin Surrogate (Replica

Server)
CDN content type Static or embedded Dynamic
CDN cache protocols Intra-cache: NECP,

WCCP, SOCKS
Inter-cache: CARP, ICP,
HTCP, Cache digest

CDN Interaction Caching proxy Surrogates and subnet

36 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

2.3.2 CDN delivery and management

In this section, we investigated the issues of distributing CDN service to end-

users and managing the delivery network. Thus, we are trying to study problems

like replica placement, content selection in CDN, content outsourcing, content

caching techniques, and content update.

Replica server placement

In this issue, CDN administrator decides on how and where he should deploy

its own replica servers. In the literature CDN providers develop two main al-

gorithms [173] for determining the optimal number of replica server placement:

Single-ISP and Multi-ISP algorithms. In the second case, it is a multi-criteria opti-

mization problem that may be difficult to solve.

Content selection

The selection of content targets to be copied is an important issue in CDN as

it affects cache efficiency. Two approaches are proposed: full site and partial site

approaches. In full site case, the replica server is responsible for delivering the

entire content to the end users. In partial site, replica servers are responsible only

for delivering the embedded object such as web page images. It is useful when the

partial content is static (such as commercial catalogs).

Content outsourcing

The process of outsourcing content in CDN can be invoked after the decision

about how many servers will be deployed and after the selection of content to be

copied. Content outsourcing can be achieved through three methods: cooperative

push based, cooperative pull based and non cooperative pull based:

• In Cooperative push based, content is pushed to the overlay network and user

requests are redirected to the closest replica server or served directly by the

2.3. TAXONOMY OF CDN 37

origin server (in the case that there is no content replication in CDN overlay

network) [100], [67], and [36].

• In Cooperative pull based approach, content requests are redirected to surro-

gate servers and when there is a cache miss, replica servers cooperate to serve

the end user by the desired content based on distributed index structure such

as Distributed Hash Table (DHT) [66].

• In the Non cooperative pull based approach, after one of the following al-

gorithms of request routing (DNS based algorithm, HTTP based algorithm,

URL based algorithm), user requests are redirected to their closest replica

servers. The main difference between this method and the previous is in

case of cache miss. In this method, there is no cooperation between cache

servers and replica servers to pull the desired content directly from the ori-

gin server [54] [133] [98].

Caching techniques

In caching, we highlight two main approaches: content replication and content

update mechanisms. Those techniques are considered as the main role of any CDN

network and they define its performance.

1. Content replication and caching [135]: In general, CDN infrastructure is a

combination of replicated web server clusters. Once we reach a large scale

of distributed surrogates content replication and caching have to be manda-

tory. Hence, Akamai and other commercial CDNs replicate content across

this overlay infrastructure with one of the following approaches

• In Intra-cache approach, we use one of the following schemes proposed

in the literature: query based schemes, digest based schemes, directory

based schemes, and hashing based schemes.

• In Inter-cache approach, we need an inter-routing between different clus-

ters (group of caches).

38 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

This algorithm is invoked when the content does not exist in the current clus-

ter. We will detail in the next section the caching techniques in video service

delivery.

2. Caching content update [136]: The update process is based on content ex-

piration time (eg., Time-to-Live (TTL)). Four algorithms have been proposed

for content updates which are periodic update, update propagation, on de-

mand update and invalidation. In periodic update, content is pushed auto-

matically with a time to live. After time expiration, surrogates must check

back the origin server. This approach suffers from high traffic requirement

since the update process is static. In update propagation, origin streaming

servers deliver always the updated content whenever a video document has

been changed. This mechanism generates high update traffic for frequently

changing video content. In on demand-update, video document is updated

after a prior user demand. The drawback of this cache update mechanism is

the excess traffic generation between the surrogate and the origin server in

order to ensure that origin server has delivered the updated version of the

video content. The latest cache update mechanism is invalidation in which

origin server broadcast an invalidation message to all surrogate servers when

a video content is changed or updated at the origin server. The disadvantage

of this approach is that cache nodes have to seek for an updated version of

the video individually after that video has been changed. This mechanism

suffers also from inefficiency of content management and coherence among

cache nodes.

Table 2.2 summarizes the most important management and delivery issues in

CDN as mentioned before.

2.3.3 CDN request routing issues

Request routing redirects content requests from users to the nearest or best

replica server based on load, capacity, and other metrics. In the literature, several

2.3. TAXONOMY OF CDN 39

Table 2.2 – CDN delivery and management

CDN delivery and management Taxonomy
Replica servers placement Single-ISP Multi-ISP
Selection of content Full site content delivery Partial site content de-

livery
Outsourcing of content Cooperative push based (Non)Cooperative pull

based
Caching techniques Content replication and

caching
Caching content update

metrics are used for request routing such as closeness, latency, distance, and load.

In [159] authors showed that the proximity factors used for serving clients don’t

always give the best performance. Hence, load and context information should be

considered before switching to a replica server. Recall from the management of

content that there are two ways of replication: full and partial site replication. If

we use the first approach, the origin server redirects the content requests to the

replica server. In the other approach, the origin server sends basic and embed-

ded objects to the replica server and the latter redirects the response to the client.

Request routing systems have two parts:

• Request routing algorithm: how to choose the replica server after that a con-

tent provider receives a content request from the client.

• Request routing mechanism: the protocol, procedure or steps to inform the

client (user) about the chosen replica server.

In Table 2.3, we show the related issues of CDN request routing procedures to

redirect user requests to the optimal (nearby) CDN server.

Request routing algorithms

The main request routing algorithms are enumerated as follows:

1. Adaptive algorithms: The major request routing algorithms found under this

technique are:

40 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

Table 2.3 – CDN Request routing techniques

CDN routing issues Routing tech-
niques

Routing algorithms Non-adaptive Adaptive
Routing mechanisms GLSB DNS HTTP URL Anycasting CDN peering

• Round Robin Algorithm (RR): In this algorithm [130], requests are dis-

tributed to the CDN replica servers and each replica has a maximum

load for serving requests. Authors showed that this approach assures

load balancing, assuming a similarity among all the CDN replica servers

(same capacity, same storage, etc...). This approach has a lot of disadvan-

tages because it does not take into account the distance among replica

servers and users. Further, authors in [131] showed also that through RR

algorithm, client may be served by more distant CDN while the nearest

replica server was not loaded. Hence, we conclude that RR algorithm

fits well when all the replica servers are in proximity (i.e., replica servers

form one cluster).

• Predicted Load Algorithm: Predicted load is based on the number of

requests on server recently served (served so far). This algorithm assures

load balancing (load is distributed among replica servers) taking into

consideration the distance between the client and the replica. Therefore,

load and distance are the two essential metrics used in this algorithm

[162].

• Random Request: In this algorithm, content provider redirects randomly

content requests to replica servers [45].

• Statistics based redirection: In this algorithm, we calculate the percent-

age of client’s request per CDN. Then, we always redirect content request

to the CDN which receives the greatest request number [45].

2.3. TAXONOMY OF CDN 41

• Geographic location: K. Delgadillo [45]3 mentioned that some Cisco al-

gorithms found in the literature are based on the geographic location of

the request origin. In this approach, the redirection to a replica server

is based on minimum distance between the provider and the consumer.

However, the process of redirecting the user’s content request to the clos-

est CDN replica server is not effective because close replica servers may

be overloaded. Moreover, when serving cellular users (smart phones,

tabs, etc), the origin IP address does not reflect the real mobile location.

• Hash function based algorithm: In [102] authors Proposed a hash func-

tion based solution for redirecting requests to replica servers. In their

approach, they calculate the hash function of the URL of the content

and then redirect the request to the replica server represented by the

ID which is larger than the calculated hash function. This algorithm

has many variations in P2P file sharing algorithms [17] and intra cluster

caching [127] [92].

2. Non Adaptive algorithm: In the literature we can find several works that

investigated non adaptive request routing algorithms:

• Network proximity: Pierre et al. [140] described an algorithm based on

network proximity to redirect user requests to replica servers [30]. They

measure the path length and update it periodically. This approach based

on the distance as a metric is not really effective as explained in [110].

• Latency: Andrews et al. [8] and Ardaiz et al. [11], proposed algorithms

based on the measured latency between the provider and client. In those

approaches, client requests are redirected to the replica server reporting

minimum latency to users. This algorithm is very efficient but it requires

extensive measurements.

• Weighted combination of latency and distance: Delgadillo et al. [45] in-

3Cisco Distributed Director, Cisco White Paper, Cisco Systems

42 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

troduced also a combination of three metric called: intra AS distance,

inter AS distance, and end to end latency, to decide for the best target.

The measurement of those metrics makes the algorithm more complex

since it adds an additional signaling traffic.

• Akamai algorithm: Peng et al. [136] And Vakali et al. [173], proposed

an adaptive request routing algorithm based on three metrics: load on

the replica server, reliability between client and all the replica servers

and bandwidth remaining on the replica server. Akamai’s algorithm is

complex but robust.

Request routing mechanisms

The Request routing mechanisms found in the literature are as follows:

1. Global Server Load balancing (GSLB): In the Global Server 4 mechanism, a

group of GSLB switches distributed around the world are responsible for

redirecting user requests to a web server in order to assure load balancing

among replica servers.

2. DNS-based request routing: In DNS-based solution for request routing, sur-

rogate names are mapped to IP addresses (resolution process) and when a

client sends his request, he receives a number of names of surrogate servers

that contain the content. Then, he will send his content request to one of

them. The choice of the best replica server is currently based on probe re-

quests sending to those replicas to deduct which replica among them is the

best (which has the fastest response time). Request routing based on DNS

algorithm generates high latency needed for search and lookup process used

to build the list of replicas. Despite the proposed solutions to reduce the re-

sponse time [107], this approach is still insufficient and has many disadvan-

tages. Indeed, it does not take into account the proximity parameter when

4https://www.a10networks.com/products/global-server-load-balancing-gslb

2.3. TAXONOMY OF CDN 43

redirecting queries (content requests) and cannot guess contextual informa-

tion about the user. We have to recall that DNS is a simple and straightfor-

ward name resolution so it can not provide any sophisticated routing pro-

cedures. As shown in Fig. 2-2, the end user should request for the home

page of the origin server to receive a response including the desired URI

(step 1, 2) that serves to seek for the specified domain name with its local

DNS (step 3). Then, the local DNS Server sends a DNS Query by passing a

DNS request in order to resolve and get the IP address for the Host Name

= csp123.cdn.kt.com (steps 4, 5, 6, and 8). Moreover, the request router se-

lects the optimal cache server based on the geographic proximity based on

local DNS server IP and send immediately the IP address of the Cache Server

(step 7) to the end user. Finally, the user terminal sends a Content Request

(eg. HTTP GET) to the Cache Server Content (eg video files) to download /

streaming receive (steps 9 and 10). In this way there is no dependency for the

request routing process with a user’s location information to select the Cache

Server which is a the most important disadvantage as user may be far from

the streaming point.

3. HTTP based request routing: In HTTP based request routing 5, clients send

their requests to the web server. Then, through the HTTP protocol, the ori-

gin server redirects the client queries to another server holding the content.

This algorithm incurs some latency because of the many round trips between

user, HTTP web server, and replica server which influence the quality of ex-

perience. Therefore, user’s satisfaction can decrease. It is however the mostly

used in video delivery.

4. Anycasting based request routing: In Anycasting based request routing, user

requests are sent to one server that manages the anycast address so as to redi-

rect user requests on replica servers. In this algorithm, a group of hosts has

the same IP address (global IP address) allocated on demand by the network

5https://tools.ietf.org/html/draft-ietf-cdni-redirection-13

44 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

Figure 2-2 – DNS-based request routing

administrator. Furthermore, in this architecture, the routing is made through

the closest IP router to a host among the group of replicated servers. This

approach needs an extra space of IP addresses, and suffers from routing per-

formance issues (because the anycast) that should be considered for request

routing.

5. URL rewriting request routing: URL approach also called navigation hyper

link, origin servers redirect content requests to different replica servers hold-

ing the embedded object. In this process, URL links of embedded object (im-

ages, CSS files, scripts) are dynamically rewritten and generated. Clients are

then redirected to those surrogates. This algorithm is adapted to partial site

content delivery in which origin server serves the original HTML page while

the embedded content is retrieved from the cache servers. Youtube uses a

routing technique close to this approach.

6. CDN peering based request routing: In CDN peering based request routing,

2.3. TAXONOMY OF CDN 45

Table 2.4 – CDN performance

CDN performance issues Taxonomy
Network procurement Dependent replica

server
Independent replica
server

Simulation Simulation tools

a content delivery network based on symmetric connections between peered

CDNs is built in order to serve content to the end user. This approach can

be considered as a CDN assisted with P2P overlay network. The goal of this

algorithm is to increase fault tolerance and decrease the latency. However,

since it is a distributed algorithm, it suffers from scalability and churn prob-

lems.

2.3.4 CDN performance and user satisfaction

The performance measurement of the ability of CDN to serve their customers is

based on Hardware and software probes or on CDN’s logs. Clients when request-

ing for a video, generate a feedback from the overlay infrastructure andn precisely

from the CDN replica servers that indicate CDN performance measurement. Table

2.4. shows the related issues of CDN performance.

We deduce from the investigated state of the art that performance measure-

ment can be achieved either through network procurement (collecting) or through

simulation.

Network procurement

In network procurement, performance measurement uses either dependent or

independent replica servers that collect the required metrics. In dependent replica

servers, the surrogate server is equipped with a process calculating end-to-end

metrics. This can be done either by the collection of the logs from the surrogate

servers or through the deployment of probes (Hardware or software). In inde-

46 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

pendent replica servers performance measurement is achieved by an independent

third party that tells clients about the CDN replica servers performance.

In Network procurement, performance is based on the estimation of some met-

rics such as startup time, time to first byte, server load, jitter, geographic location,

and packet loss. More sophisticated metrics can be subjective such as user engage-

ment (i.e. duration of the video viewing by the end-user).

Simulation

In addition to the use of network procurement for measuring network and

system performance, researchers resort to simulation tools to measure the perfor-

mance of CDN because of the proprietary nature of commercial CDNs. Further-

more, many simulation tools are available to measure the performance of CDN [36]

and [100]. The use of these tools has some advantages such as the simplicity and

the flexibility of implementation in analysis of results. However, those results may

be unrealistic since the simulation tools do not take into consideration all the crit-

ical factors.

2.4 Network evolution from CDN to vCDN

As our thesis concentrates on virtualization and server optimization, and after

investigating the state of the art of CDN, we found that CDNs can be additionally

divided into two categories: physical CDN and virtual CDN:

• Physical CDNs: Physical CDNs are divided into commercial and academic

development based CDNs. For the commercial CDNs we have Akamai [4],

Accellion [2], Lime Light Networks, Appstream, Globix and EdgeStream. For

the academic CDNs we must mention CoDeeN [38], COMODIN [40], Coral,

and Globule. Physical CDNs have many service types such as file delivery,

network service, and video streaming service (live and on demand video) and

so on.

2.5. VIRTUALIZATION OF CDN 47

• Virtual CDNs: In the literature we have few contributions on CDN assisted

with cloud and network virtualization. We have MetaCDN [30] based on

edge cloud servers and Active CDN [163] based on edge servers as software

modules.

Caching taxonomy for video delivery In the literature, we found many researches

and contributions that focus on caching service in order to enhance the perfor-

mance of the network. For multimedia and video applications, network perfor-

mance is a function of several parameters such as: video popularity, complexity,

congestion, video size, hit rate, quality of experience, cache replacement algorithm

and cache update mechanism. According to these metrics, we will compare the

work of the state of the art detailed in the two Appendixes A and B.

2.5 Virtualization of CDN

Network Functions Virtualization concept covers several areas. Virtualization

of CDNs is important and compulsory especially after the evolution of video traffic

delivery as seen in this survey since we have observed the evolution of the CDN

architectures till the appearing of NFV and SDN virtualization concepts. For a

variety of reasons, such as QoE, QoS, management and scalability, vCDN solutions

start to appear.

We need first to differentiate between NFV and SDN. NFV is introduced as a

new methodology or concept that decouples network application from the under-

lying hardware and enables network services based on NFV solutions to run in

a virtualized environment. SDN is the networking paradigm that decouples the

control plane from the data plane and centralizes the control plane in one en-

tity which is the SDN controller. Both systems can work together to enhance the

network operation and management, improve QoE of end users and the overall

quality of service and network performance.

So to virtualize the CDN, we believe that the process can be achieved through

48 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

one of the following techniques: cloudification, virtualization, and programmabil-

ity.

2.5.1 Cloudified CDN

In CDN based cloud computing approach we quote MetaCDN [30] that used

an existing cloud infrastructure to deliver video service to end users. It imple-

ments several CDN services in the cloud to enhance the delivery process such as

replication strategies, load balancing etc. However, it still uses preconfigured and

physical edge servers deployed on cloud infrastructure through Infrastructure as

s Service already deployed in an OpenStack open source project (IaaS).

Further, we cite ActiveCDN [163] that uses the same previous cloud comput-

ing architecture to virtualized CDN service such as caching and acceleration tech-

niques mainly for video delivery purpose. However, edge servers in this cloud

computing approach are software based solutions. Those network functions are

dynamically deployed on CDN caching nodes. The advantage of this approach is

that it facilitates the removal, adding and changing of network functions through

cloud monitoring systems.

CoDaaS [97] is another solution to enable the virtualization of multimedia ser-

vices and CDN network function. Further, it lets end users to generate their con-

tents into the cloud. Furthermore, content providers rent a part of the cloud re-

sources such as bandwidth, storage, and so on so as to host their contents in the

cloud. This approach is better in the direction of user involvement for service

video delivery. Florian et al. [55] proposed a virtual architecture for implementing

CDN services in the cloud environment. The main disadvantage is that CDN as a

service proposed in their work missed more features like dynamic management of

virtual CDNs, routing policy, and so on.

Tai-Won et al. [169] proposed cloud based virtual CDN architecture. They pro-

posed a control plane formed by a cloud broker that configures a set of virtual

machines (vCDNs). In their approach, content providers deliver their content to

2.5. VIRTUALIZATION OF CDN 49

end users through a virtualization layer. Therefore, they proposed some entities

in the control plane to monitor the virtualization layer and fulfill the service level

agreement (SLA) needed for achieving media delivery service. We can conclude

that these proposals are all cloud oriented CDN solutions strongly dependent on

a cloud infrastructure.

2.5.2 Virtualized CDN

In this section, we illustrate the few works that have been done for CDNs based

on virtualization (NFV) concepts.

Honguk et al. [177] describe a new strategy for cache deployment. They pro-

pose a hierarchical tree structure for virtual content distribution network systems.

It is based on a tree construction algorithm. It can reduce content distribution

times and minimize source streaming data rates by dividing the network in levels:

level1 for local cache and level2 for regional cache. The disadvantages of their

strategy are multiples: first of all, they do not give a clear concept for the virtu-

alization. Secondly, the algorithm used for content chunks diffusion is static and

do not take into account content popularity or size. Thirdly, it requires a lot of

computational overhead since content are streamed per chunk without any con-

sideration of content chunk size.

Niels et al. [28] provide a framework for multimedia delivery (CDN) based on

NFV. They gave a structure of the point of presence, PoP deployment within the

network. They used layers (core network, aggregation layer, access layer) to seek

for the optimal location of cache nodes. Their work missed an optimization algo-

rithm to measure the QoS/QoE. Further, they don not take into consideration the

cooperation between CDN edge servers to serve user requests. Also, the optimiza-

tion equation missed a lot of constraints such as the maximum server storage and

the migration of content from one server to the optimal one.

In ETSI [170], authors introduced the virtualization of CDN (vCDN) by giving

a principle of different distributed cache nodes deployment in the virtual environ-

50 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

ment. However, the overall architecture of vCDN containing the request routing

system, the content management, the distribution system, and the accounting sys-

tem are still missed in this conceptual architecture.

Mangili et al. [116] introduced the state of the art of NFV, CDN, and stochas-

tic optimization techniques. Then, they use a mixed architecture where real and

virtual CDN nodes coexist.

2.5.3 Programmable CDN

Honguk et al. [177] introduced an open framework for CDN which relied on

SDN. They use this paradigm for CDN to program the overlay network constituted

by distributed edge servers. They proposed four components: request router, edge

server, controller, and a monitor. They use also SDN for monitoring the distributed

cloud resources (data plane) and monitoring the process of content delivery. In

control plane, they used control modules for security, caching, and routing that

interact with an OpenFlow controller. The contribution has also introduced an

optimization mechanism for increasing the network throughput and the overall

QoS.

In next section, we are going to study the optimization techniques combined

with virtualization and delivery contexts.

2.6 Virtual CDN optimization

In combinatorial optimization (e.g., network flow problem, travelling salesman

problem, etc.), we quote exact and heuristic/approximation algorithms as the two

principles branches. Most of these optimization problems are Not Polynomial

(NP). This means that those problems are difficult to be solved (in polynomial

time) but it is easy to check a given candidate solution (yes/no answer). There-

fore, heuristic/approximation algorithms are proposed as an alternative to solve

large instance numbers of the optimization problem . They are analyzed mainly

through the running time in different use cases (empirical, average, and worst

2.6. VIRTUAL CDN OPTIMIZATION 51

cases). In virtualization and delivery contexts, literature highlights relevant opti-

mization algorithms and techniques.

2.6.1 NFV/SDN common optimization techniques

This subsection highlights the relevant NFV/SDN optimization techniques. Thus,

facing the difficult combinatorial optimization problem in the sense of the theory

of algorithmic complexity, there are two main solutions for the Virtual Machine

(VM)/Virtual Network Function (VNF) optimization problem:

1. Exact approaches (optimal algorithms)

2. Heuristic approaches (e.g., best-fit decreasing, first-fit decreasing, genetic,

and meta-heuristic algorithms)

2.6.2 NFV/SDN optimization algorithms in the video delivery context

This subsection highlights the relevant NFV/SDN optimization algorithms in

the video delivery context.

I. Trajkovska et al. [71] leverage SDN to build their management framework in

order to enhance the overall QoS of the delivery process. They showed that SDN

paradigm enhances network management for video service delivery and brings

flexibility and programmability to the route calculation while considering the QoS.

Moreover, they used a control algorithm based on bandwidth metric calculation.

The proposed approach has to take into account the QoE parameters which is nec-

essary in video streaming and it missed different SDN/NFV criteria such as node

throughput, service orchestration, and so on.

P. Georgopoulos et al. [71] introduced the OpenFlow protocol assisted with QoE

Fairness Framework (QFF) in order to optimize the overage QoE of end users con-

necting to the home networks. Their framework considers monitoring the video

delivery service. Therefore, they take into account the gathered network infor-

mation and end users profiles in order to build their QFF. In their implementa-

tion, they used two standards for audio visual content delivery and management

52 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

resources in network operators which are OpenFlow and MPAG-DASH. In their

work, there is no correlation between the video bit rate and the QoE perceived by

the end user. To optimize the efficiency of the network and assure a high QoE,

authors proposed a new framework in which they quantified the non-linear map-

ping between the perceived QoE and video bit rate through an utility function.

Indeed, the utility function used is an exponential curve which binds a video bit

rate at a fixed resolution to a perceived QoE. Moreover, they used an objective

video quality assessment models (SSIM) in order to build the utility function. For

the optimization function used in their work, they exploited the utility function in

order to find the optimum set of bit rates that assure QoE Fairness requirements.

Further they added two exact optimization algorithms called promote in order to

upgrade user with the minimum video quality. In their proposed approach, the

utility function does not cover the context parameters but it is based only on video

bit rate. Moreover, the approach does not involve the NFV QoE context.

H. E. Egilmez et al. [57] described a new approach for design an SDN controller

in order to enhance the multimedia delivery process. They introduced a novel QoS

method relying on dynamic routing from the server to the customer. The approach

aims to assure the required network performance for multimedia traffic. Beside

the IntServ and DiffServ QoS architecture, SDN approach 6, is proposed in their

architecture as a new entity to program and adapt the QoS. SDN-Based dynamic

routing using OpenFlow protocol achieves resource monitoring, network visibility,

and network virtualization. However, it requires a global network view and may

requires another system control for system management. Authors showed that the

networking problems can be solved through OpenFlow based solution. Therefore,

they conceives a new architecture based on OpenFlow to enhance the QoS for ser-

vice video delivery and introduced an optimization framework for dynamic QoS.

they proposed a new design for the controller by adding some algorithms within

it (rules, policies) for the communication with the underlying layer decomposed

6which decouples the control plane from the data plane and consolidates the control plane to a centralized
entity

2.6. VIRTUAL CDN OPTIMIZATION 53

by OpenFlow switches/devices. Therefore, the QoS based on resource reservation

(IntServ) or in priority queuing (DiffServ) is not considered. An SDN based QoS

approach is hence proposed as another IP scheme based on dynamic QoS routing.

Authors proposed in their SDN controller design, a novel application module that

collects network states from switches in order to run the optimization algorithm.

The optimization in their approach based on CSP problem and it is resolved by

LARAC algorithm.

M. Diallo et al. [46] investigated the state of the art of the QoE and proposed

two main techniques for QoE optimization in the context of (SDN/NFV) video

which are MDASH and utility based approaches. A global formula is extracted

after a subjective process which we will use as a mapping between network re-

sources and perceived quality. Despite this relevant work, it missed the integra-

tion of VNF criteria and the is no usage of ICN as an accelerated engine foe the

forwarding plane.

In [1] authors introduced the minimum spanning tree (MST) algorithm to op-

timize the network resources allocation. They enhanced the optimization proce-

dure to deal with the video delivery context in CDNs. Further, an amended MST

algorithm by inserting virtual nodes to the initial tree and removing them after al-

gorithm re-execution in order to decide the new streaming sources while keeping

the overall cost of the multicasting sub-trees minimized is proposed. Then, they

leveraged the QoS as a link metric in their initial graph topology. Then, they bind

the QoS to the QoE in a stochastic model in order to approximate the end user ex-

perience. Their model is still missed different QoE criteria and does not leverage

the virtualization of nodes or links in a delivery network such as CDN. Moreover,

the mapping equation of QoE-QoS is not given.

Moreover, optimizing vCDN node deployment and delivery requires QoS/QoE

measurement. Hereafter, we quote the relevant work.

54 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

2.6.3 QoE measurement for NFV delivery context

In this subsection, we detail the main work investigated in this topic.

H. E. Egilmez et al. [56] formulated an optimization framework for dynamic

QoE routing as a constrained short path (CSP) problem. Then, they used the jitter

metric for calculating the overall QoS. Further, they minimized the overall cost

under the constraint of delay variation in the main intermediate links. Authors

affirm that the optimization problem is NP-hard. Therefore, they used a LARAC

algorithm based on Dijkstra routing algorithm.

H. Nam et al [124] leveraged also a Constrained Short Path First (CSPF) path

selection algorithms over MPLS domain. The algorithm is adapted in order to

choose the best routing path for each streaming flow. Authors added a video op-

timization server to act as an SDN/NFV network application. It aims to minimize

the streaming cost and increase the average QoE. It is a simple SDN application

that communicates with the network controller. Then, authors consider a delivery

network of CDN nodes that send a feedback to the SDN application using CSPF

over MPLS in the case of buffering. Moreover, in a congestion situation, the SDN

controller redirects the network flows to another CDN node using open-flow based

rules. In their approach, CDN delivery nodes send periodically QoE measurement

directly from the end user to the SDN controller. The video QoE metrics leveraged

in their method are video start-up, latency, buffering rate, and play-out buffer sta-

tus. Authors used then MPLS Traffic engineering (MPLS-TE) over SDN layer in

order to enhance the overall QoS. They used CSPF algorithm with MPLS in or-

der to select the best path from CDN delivery node to the client. They described

three constraints which are TCP bandwidth, packet loss rate and jitter. When the

QoS becomes very bad, SDN controller runs the CSPF algorithm in order to find

the CSP. They added also some rules for the previous algorithm in order to max-

imize the QoS. Their scheme leverage SDN paradigm with MPLS in an efficient

way, however different NFV criteria such as vCDN node resources (vCPU, vRAM,

vStorage) and vCDN links are missed. Moreover, optimizing QoE has to consider

2.6. VIRTUAL CDN OPTIMIZATION 55

vCDN node/link caching and streaming constraints.

S. Ramakrishnan et al. [147] affirmed that QoE measurement is strongly related

to the network resources utilization. Further, they proposed a solution based on

SDN paradigm in which the streamer, the network, and the consumer are work-

ing together to improve the average user’s QoE. Furthermore, they added an SDN

network application for video quality assessment (VQA). It gathered information

from network entities through a specific router. VQA calculates the average QoE

required through three main steps: 1) firstly, it measures the average QoE accord-

ing to the bitrate achieved by streaming flows, 2) then, it uses an objective QoE

(e.g., SSIM, VQM, PSNR) method in order to recalculate the QoE, 3) secondly, it

collects the previous QoE values and adds some parameters related to the content

and the device, 4) finally, it sends the QoE to the network operator represented by

SDN controller to update the input of VQA.

In this approach, authors enhanced the QoE metric by considering some char-

acteristics related to data and device types. VQA allocates bandwidth per flow

based on device/encoder type in use and video content complexity. We believe

that the SDN-based QoE measurement has to consider also the NFV requirements

and take into account all the virtualization criteria which is missed in the proposed

approach.

M. Diallo et al. [48] introduced an hybrid conceptual perception model (CPM)

for streamed video quality assessment. Authors mentioned that QoE of end user

can be measured through two main methods which are objective methods based

on network parameters and subjective methods based on user’s perception of the

giving service. Further, they proposed a third method for measuring the QoE that

mixes the two previous methods and aims to provide a better QoE. Indeed, they

considered different contexts to measure the QoE related to the user, the device,

the content, and the network. They provided a simple model that measures the

MOS by mean of a simple exponential function.

56 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

2.6.4 Discussion and future work

We have compared the CDN architectures and types based on different tax-

onomies. Despite the very large number of contributions, we believe that many

issues are still open for improvement and research. The specification of the Open-

Flow protocol brings new potential improvements to the global SDN infrastruc-

ture especially in the control/management plane. Moreover, the virtualization

has brought its own problems mixing network and system constraints. Litera-

ture lacks an optimization algorithm that introduces at the same time system,

network, and user quality parameters. Moreover, none of the above work intro-

duced a placement and/or migration protocol for virtual content delivery network

functions that include the above constraints. The novel virtualization business

model involving new actors (User, operator and content provider) requires addi-

tional optimization techniques. We believe that measuring the QoE/QoS is an im-

portant task for service video delivery and it required an enhanced model based

on these different information context which assures video adaptation and high

QoE/QoS for the end-user. Moreover, the QoS/QoE model has to be integrated

in the SDN/NFV framework and leverages an accelerated data plane such as net-

work information ICN, virtual caching and routing. In addition, novel optimiza-

tion techniques that aim to satisfy the main stockholders in the delivery chain

(NFV customer, NFV/ICN operator, NFV customer’s end user) is then elaborated

and solved. Hence, we contribute in this thesis by optimization protocol beside an

optimization model.

2.7 Conclusion

This chapter has surveyed research investigated on content delivery systems,

mechanisms and algorithms. We classified and detailed the most important CDN

systems. Further we followed the evolution of CDN to be virtual (vCDN). We clas-

sified then the most important caching techniques in both real and virtual CDNs.

2.7. CONCLUSION 57

Then we surveyed the virtualization of CDNs. We may conclude that the virtual

delivery area is active and supports different caching techniques. There are still

many unresolved issues dealing with caching, request routing, streaming and link

utilization techniques. To date, and based on the CDN-NFV architecture proposed

by the ETSI, aspects such as mobility or routing require extra attention and lack

communications protocols.

In the next chapter, we are going to highlight the virtualization challenges in

vCDN deployment using an open-source cloud platform.

58 CHAPTER 2. FROM CDN TO VCDN: STATE OF THE ART

Chapter 3

Network issues for vCDN migration

3.1 Introduction

The virtualization of resources has addressed the network architecture as a po-

tential target. The basic tasks required in the virtualization substrate are instan-

tiation of new network functions, migration and switching. These basic tasks are

strongly dependent on the underlying network configuration and topology in a

way that makes them tributary of the network conditions. It means that some-

times it will not be possible or not recommended to accomplish some virtualiza-

tion tasks if the network is not presenting the minimum requirements. This brings

back many déjà vu questions to networks theory but the answers to these questions

require an understanding of the new context.

Most of the virtualization architectures such as NFV included in the SDN

paradigm are relying on these tools to implement their technical solutions.

In this chapter, we consider the migration of network functions and we study

problems that arise from this dynamic process. We present a specific use case for

content distribution of multimedia services: CDN.

The rest of this Chapter is organized as follows: Section 3.2 highlights the com-

mon architectures for network resource virtualization. Section 3.3 describes the

influence of the main network parameters in the virtualization process. We study

59

60 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

network basics such as addressing, quality of service and mobility issues. Simple

improvements and technical solutions are presented and demonstrated in Section

3.4. Section 3.5 introduced our virtual CDN (vCDN) use case. Finally, this work is

concluded in Section 3.6.

3.2 NFV, SDN and OpenStack

We investigate the state of the art of the recent networking technologies that

can meet the virtualization domain. The main architectures used for that purpose

are Network Functions Virtualization (NFV), Software Defined Networking (SDN)

and OpenStack.

3.2.1 Network Functions Virtualization

NFV [79] virtualizes the network equipment (Router, DPI, Firewall, etc). We

will not discuss about hardware. We will rather consider software based NFV

architecture. It is a concept that decouples network functions from its underlying

hardware. Then, it enables the software to run on virtualized generic environment.

Therefore, several virtual appliances can share the single hardware resources.

NFV brings several benefits [82] such as reducing CAPEX and OPEX, pro-

moting flexibility and innovation of the virtual network functions already imple-

mented. Moreover, it has been introduced as a new networking facility that poised

to amend the core structure of telecommunication infrastructure to be more cost

efficient.

In a virtualized environment, the physical resources (CPU, Storage, RAM, etc.)

are emulated and the guest operating system runs over the emulated hardware

(vCPU, vRAM, vStorage) as if it is running on its own physical resources. By

this virtualization, all the virtual machines share simultaneously the available re-

sources.

This virtualization is based on deterministic framework which is constituted of

three main components:

3.2. NFV, SDN AND OPENSTACK 61

• Host machine: It is the physical machine (physical server) that owns the hard-

ware’s resources (CPU, RAM, Storage, Input output interfaces, etc.)

• Hypervisor: It is the controller of the virtual machines that controls their

instantiation, dynamic migration, scaling in/out, etc.

• Guest machine: It is the virtual machine or the virtual appliance that is run-

ning and attached to the hypervisor.

The standardization of NFV began with ETSI and some use cases described

in [170]. The main use cases found are:

• Virtualization of the Radio Network Interface: In this approach we separate

the digital function of the radio named Base Band Unit (BBU) from the un-

derlying antenna hardware and distribute the Remote Radio Unit (RRH). The

virtualization can be done in a data center that communicates with the RRH

distributed functions through optical back-haul networks (optical fiber) in

order to accelerate the resource allocation.

Bhaumik et al. [23] gave an important result utilizing cloud RAN in which

they virtualized the BBU and distribute RRU units. They reported that Cloud

RAN can decrease the network load by 22%.

• Virtualization of the Home Network: The virtualization of the home network

includes the virtualization of the two main components: Residential Gateway

and Set-Top Boxes that offer home services (internet access, multimedia ser-

vice, etc.) to end users. This approach is based on implementing virtualized

and programmable software based NFV solution such as: firewalls, DHCP

servers, VPN Gateways, DPI Gateways. Then, move them to data centers in

order to decrease the cost of devices and increase the QoS.

• Virtualization of Evolved Packed Core (EPC): In this use case, the virtu-

alization targeted several functions such as: SGW, PGW, MME, HSS, and

PCRF [79]. The virtual EPC (vEPC) will include all the above functions as

62 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Figure 3-1 – Evolution of multimedia application delivery

software based NFV solutions moved into a cloud EPC. Using this approach

we can reduce the network control traffic by 70 % as described in [79].

3.2.2 Software Defined Networking

SDN [20] is a networking concept that shares the same goals of NFV in the

direction of promoting innovation; openness and flexibility. We emphasize that

they are independent but complementary as explained in [96].

It is characterized by the separation of control plane and data plane and con-

solidates the control plane in one logical centralized controller to decrease the net-

work overload and increase enhancement the traffic engineering by adding policy

and rules to devices enabled OpenFlow protocol.

It can be considered as a tool for traffic engineering to enhance the QoS and

meet network issues following the integration of virtualization functions. SDN

based on OpenFlow protocol can be used to direct the forwarding layer formed by

Open Flow enabled devices such as OpenFlow Switches.

As shown in Fig. 3-1, the multimedia service delivery has evolved three times:

• Phase I: The operators adopt the Best Effort (BE) in service delivery from

content providers to clients according to the available bandwidth and with-

out any regards to delay issues, users’ satisfaction or perception for QoE (i.e.

3.2. NFV, SDN AND OPENSTACK 63

no control for QoS).

• Phase II: The operators use the CDN solution to cache the multimedia very

near to the clients by using CDN network acceleration. In this phase, there

is a remarkable enhancement in service delivery while still some restrictions

remain between customers and content providers.

• Phase III: The operators aim to redirect the required services from content

providers to selected network locations giving to clients good perception in

QoS or QoE measures. In this phase, there is an application layer tunneling

defined by SDN (QoS/QoE perception model) [47].

Our concern in this chapter is to benefit from these complementarities in order

to virtualize and migrate the multimedia network functions across hosts. More-

over, we aim to gain the advantages of scalability and cost reduction in a dynamic

controlled service delivery context. We focus in this work on the mobility issues

that arise when achieving the multimedia network function migration.

Mechanism of SDN in video service delivery

SDN will lead to Software Defined Data Centers (SDDC) where the roots of

streaming points dynamically move. This dynamic adaptation will pass through 4

phases as follows:

• Resources Virtualization: It concerns the different resources needed during

virtualization including bandwidth, system (memory, CPU, I/O).

• Roots & Links Virtualization: The virtual resources gathered and calculated

in real time for the virtual node inserted among different nodes in the original

tree of operators’ networks.

• Network Virtualization: It is a kind of dynamic networks or nodes on demand

to serve as streaming points.

• Flow Virtualization: It is a mapping of original root flows to the new elected

roots through SDN tunnels between the old root and virtual root to new ones.

64 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Figure 3-2 – OpenStack architecture

3.2.3 OpenStack

OpenStack [149] is a collection of services and software. It is an open-source

project that replaces the Infrastructure as a Service (IaaS) layer in cloud computing

domain. It can deal with the two networking technologies that appeared: NFV and

SDN. Its conceptual architecture is showed in Fig. 3-2.

However the main components of OpenStack are: Nova, Glance and Swift.

Glance service is the creator of image disks and Swift project is the manager of the

storage in the private cloud (the equivalent of S3 service in Amazon EC2 project).

OpenStack has also an orchestrator module (Heat) that manages the virtual

network functions (VNFs) in NFV based Framework. Their components are well

cooperating so as to achieve dynamic instantiation of VMs in the container (VNF)

through “Nova” module which is the most important service in this project. It

included also Keystone which the Manager of the identity.

3.3. NETWORK CONSTRAINTS IN VIRTUALIZATION 65

3.3 Network constraints in virtualization

We study mobility in the virtualization process. Several basic requirements

are necessary before any virtualization procedure can take place. We think that

QoS, mobility support and security are among the most important issues to be

addressed:

3.3.1 QoS

This parameter is vital. Any virtualization process consumes in its transient

state a huge amount of resources. Instantiation or migration of a VM requires very

high speed links. Slow links do not only render the virtualization very hazardous

but can simply make it impossible to accomplish. QoS is required in many sit-

uations. It is to be mentioned that virtual machine migration as of today is not

optimized and very trivial approach where everything is copied from the origin

to the destination. Hence, we can expect up to 90 % of the copied material is un-

necessary because it is unchanged. We expect that efforts in live migration will be

done to optimize what is being copied. The QoS of the link can hence be a decisive

constraint on whether to migrate or not.

3.3.2 Mobility

Mobility of virtual instances is not a simple task. We can consider moving an

NF or a complete instance of a server depending on the desired controller objec-

tive. So, from the operating system perspective, there will be a virtual machine, a

process, a thread or a session migration as a result of this mobility. As explained

before, moving a functionality is required when we want to create a new service

in a different location. Off-loading, QoS improvement, interface management [18]

etc. may be the reasons for this mobility. When we consider moving a complete

virtual machine, it is mainly for load balancing but can also have other reasons

such firmware/OS upgrade, instantiation of a new service for a new customer, etc.

66 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

3.3.3 Security

Security is an important aspect in VM migration. Many attacks could stop the

live or offloading migration at any point. Moreover, a large amount of tunnels

has to be setup and configured leading to very load efficiency and redundancy.

So, securing this migration either in single domain or inter multiple domains is

mandatory. Tools such as OpenStack do not authorize all the possible operations

when different domains are involved. This could present a limitation in real de-

ployment.

3.4 Networks issues for virtualized network function’s mobility

Virtualized network functions need for an added network requirement in order

to assure session moving, open session and live session migration. For basic knowl-

edge, if a virtual machine that resides on a given network, obviously executed as a

process, changes the network; it suffers from the continuity of the sessions offered

to users which have connected to it. This of course is due to change of VM’s IP.

Therefore, we must address this issue to ensure the continuity of the session after

the migration of the virtual appliance to a remote host and a remote Hypervisor.

3.4.1 Hypervisor overview

The hypervisor is the virtual machine monitor that controls virtual machine

issue and specially network issues of VM and during the live migration process. It

allows to move virtual machines between different domains. Among the famous

hypervisors, we cite VMware [121], Xen [19], Qemu [22], and VirtualBox [44] etc.

In this chapter, we use two tools to design our optimizing network function.

Qemu is first tested as an open-source hypervisor that can monitor the running

virtual machine and deal with virtualization tools that can’t be used in another

virtualized environment such as KVM. We developed also a special tool for opti-

mized migration based on OpenStack services [165]. using linear optimization [85]

3.4. NETWORKS ISSUES FOR VIRTUALIZED NETWORK FUNCTION’S MOBILITY 67

and [88].

The aforementioned hypervisors enabled VM live migration with continuity

of the running service. However, they missed several requirements for assuring

live migration and open session. Those requirements are mainly concerning IP

mobility when VMs migrate from source host to destination one as it is explained

in [12] and [13].

Q. Li at.al [113] introduced that mobility issue can be controlled either by the

VM itself, by the host machine (or any intermediate network node) or by the hyper-

visor. We will focus on those ways of enabling and controlling IP mobility when

VMs migrate from one host to another and prove that the best way to control IP

mobility is by the hypervisor.

In [99], Kalim et al. introduced another approach to migrate virtual machines

between different sub-nets. In their work, they decouple IP address from TCP

transporting layer and enabling transport independent flow in order to solve mo-

bility issues and network configuration problems when migrating VMs. This ap-

proach describes the requirements and the mechanisms used. However, it misses

the description of live migration scenarios that still remain unclear in their proto-

type.

In live migration processes any of the VM or the network nodes knows the exact

time of migration and the destination host. VM can’t discover that the hypervisor

on which it attached to the network has been changed after the migration. There-

fore, the mobility problem in live migration can be easily resolved by letting the

hypervisor do this work.

3.4.2 Basic concepts for MIP enabled live migration

The basic components in our conceptual architecture are the customer or the

client, the home agent and the home node, the foreign agent, the Hypervisor

(Qemu in our case) and the correspondent node. We keep the basis component

names as in traditional Mobile IP Protocol (MIP). Fig. 3-3 shows the four steps for

68 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Figure 3-3 – Hypervisor monitored live migration

enabling hypervisor controlled mobile IP for live migration. Firstly, an adminis-

trator located at the Home network executes the live migration process. Secondly,

a secure Tunnel based on SSH security protocol is created between the home agent

and the remote hypervisor on which the migrated VM is running. Thirdly, the hy-

pervisor software redirects the incoming traffic to the migrated VM. Fourthly, this

latter keeps alive its session without any interruption.

3.4.3 Networking system design

In our basic architecture, several virtualization tools were used in order to im-

plement network functions and run on a virtualized environment. Fig. 3-4 showed

our networking scheme which relies on QEMU/KVM assisted by Libvirt daemon.

Those tools manage the running VMs and their issues. The networking scheme

used with virtual managers is based on Network Address Translation (NAT) for

connecting virtual machines to the physical host. Each VM has emulated inter-

faces by which they are differentiated.

3.4. NETWORKS ISSUES FOR VIRTUALIZED NETWORK FUNCTION’S MOBILITY 69

Figure 3-4 – VM networking scheme

3.4.4 Virtual machine migration process

Virtual machine migration in our scenario enables open session, session mov-

ing, content moving and virtual machine moving. We differentiate migration into

two types: i) live VM migration with shared storage area network (SAN) and ii)

live VM migration with context transfer. Process migration is still an open prob-

lem and session migration does not require virtual solutions.

In Fig. 3-5, we show a simple scenario of live VM migration without context

transfer. In this scenario, once the virtual machines are executed, the two physical

machines share the same disk image.

In Fig. 3-6, we describe a more complex scenario: live migration of a network

function with context transfer. Before the migration process, the migrated VM

through the hypervisor transfers memory pages and the total disk to the remote

host. After the Disk transfer, the hypervisor transfers the virtual machine context

(storage, plug-in, packages, libraries, etc.) to the remote host.

70 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Figure 3-5 – Live migration with shared storage

3.4.5 Evaluation

Starting from our previous networking scheme based on Qemu and KVM vir-

tualization tools, we enabled the two way of live migration either with shared disk

images (single SAN or domain) or with context transfer (multiple SANs or multi-

domain).

We have focused on network issues that we have faced in live migration in

order to more understand the context transfer between the interacted physical and

virtual machines. Some system and networking issues are evaluated in this paper.

We reported that live migration of running virtual machines needed much more

Table 3.1 – Live migration requirements

CPU
State

Storage con-
tent

Network connec-
tion

Memory content

With
shared
SAN

Same
context

Shared ARB broadcast Coping memory
pages

Without
shared
SAN

Same
context

Transferred,
Needed for
high link
speed

Missed for live
session

Coping memory
pages

3.5. CDN USE CASE 71

Figure 3-6 – Live VM context transfer

requirements in several migrating components such as CPU state, storage content,

network connections and memory content as it showed in Tab. 3.1.

We evaluated some experiment measurements basically related to network pa-

rameters such as: link speed that must be higher than 1Gbit/s, live migration time

that is not significant with shred storage (4s) and without video session interrup-

tion in the case that we moved streaming point from one host to another.

3.5 CDN use case

3.5.1 CDN

CDN is a large distributed network deployed worldwide in order to push con-

tent on the edge of the network. It was the solution of two major problems that

decreased the performance of the network: congestion within the core network

and overload at the origin server. It is often used to host static content so that they

will be close to the end user when he made his request for online video streaming.

Static contents are: images, video, CSS file, scripts files. CDN customers are mainly

72 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

the Internet Service Providers (ISPs) and Over the Top (OTT) service providers like

YouTube and Netflix. All those customers want to push their content to the edge

servers over IP technology. A CDN is looking to build a large farm of cache servers

deployed worldwide in order to reduce the load on the OTT servers and provide

the following services: Storage (popularity based), Management of cached content

(i.e. cache management like replication, replacement, and placement), Distribu-

tion of content among cache servers (load balancing), Content Streaming, Fault

tolerance (i.e. Redundancy), and Network performance (reduce load).

3.5.2 Virtualization of CDN

CDN federation can be proposed to improve performance. Virtual CDN, vCDN

is a virtual solution for enhancing the utilization of the current CDNs.

Most of the internet traffic is delivered through commercial CDN by allocating

some cache servers to distribute the content to end users. We introduced that this

process can be enhanced by three ways of virtualization: classical vCDN based

Cloud brokers, vCDN based NFV solution, vCDN based SDN solution and vCDN

based NFV and SDN. Among those virtualization ways, we have proposed three

new solutions:

1. vCDN based on NFV.

2. vCDN based on SDN.

3. vCDN using the merger between NFV & SDN.

Fig. 3-7a shows our vCDN architecture based on NFV solution. Different ser-

vices issued from unique or multiple service providers can hence be deployed on

virtual machines running as a streaming serves on physical servers (Common-Off-

The-Shelf (COTS) Sever). End-user’s requests are forwarded to the closest vCDN

virtual machine. Several network issues must be resolved to complete NFV and

network requirements such as mobility, QoS and QoE.

3.5. CDN USE CASE 73

(a) vCDN based NFV solution (b) vCDN based SDN solution

Figure 3-7 – vCDN based virtualization solutions

In Fig. 3-7b, we describe our second architecture using SDN. In this approach

SDN is only used as a traffic engineering or a monitor of edge servers. Through

the control protocol OpenFlow (OF) enabled in OpenFlow Switches (OFS), vCDN

based SDN can redirect user’s request to the closest surrogate server and enhance

then the overall QoS. The Network Operation System (NOS) hosts the SDN con-

troller to communicate with the forwarding layer via OF protocol. Several control

modules and applications can be added to our SDN paradigm to enhance the con-

trol plane.

In Fig. 3-8, we show our hybrid solution that merges the two former virtual

architectures to virtualize and program CDN software. In fact, we keep the de-

sign of vCDN based NFV solution and we add the SDN paradigm to control the

virtual edge servers (vCDN nodes) based on NFV solutions rather than dedicated

hardware.

We conclude this section with a performance comparison for the vCDN solu-

tions against classical ones in Table 3.2.

74 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Figure 3-8 – vCDN using the merge of NFV & SDN

Table 3.2 – vCDN comparison

vCDN
based on
Cloud

vCDN
based on
NFV

vCDN
based on
SDN

vCDN
based on
SDN&NFV

Programmablity No No Yes Yes
Migration Yes Yes No Yes
Protocols HTTP None OpenFlow OpenFlow,

JSON,
HTTP

QoS Low Low Medium High

3.6 Conclusion

In this chapter, we highlighted the impacts of main network parameters and

criteria in the live migration process. We proposed some network virtualization

concepts like SDN, NFV and OpenStack. We detailed network issues of VM mi-

gration in different scenarios. We concluded that NF context should be transferred

for full VNF migration and open session. Virtualized network functions can be

dynamically instantiated and migrated in a virtual environment but they need for

3.6. CONCLUSION 75

high requirements to achieve the full context transfer and full virtualization. We

explained also a use case of vCDN for multimedia service objective.

In the next chapter, we propose vCDN protocol using the aforementioned vir-

tualization techniques. Then, we contribute by an optimization module that rec-

ommends optimal placement points where to instantiate vCDN nodes.

76 CHAPTER 3. NETWORK ISSUES FOR VCDN MIGRATION

Chapter 4

OPAC: Optimal Placement Algorithm

for virtual CDN

4.1 Introduction

Content Delivery Network (CDN) targets the deployment of multimedia con-

tent (images, files and videos) over multiple data centers through Internet Service

Providers (ISPs). The main goal of a CDN is to serve content to the end users with

better availability and higher performance [98] and [132]. It is also proposed to

ISPs as an offloading solution for intra and inter data centers updating [64].

Fig. 4-1 depicts the main components of the typical CDN network. It includes:

i) a content replication plane: it is the system responsible for content caching,

streaming and distribution. ii) a request routing plane: it is the system responsible

for redirecting end-user requests to the optimal surrogate server, and iii) a CDN

management plane: it the centralized system responsible for cache management

processes such as content eviction, placement, etc.. and it does the accounting and

billing tasks. Moreover, this network can perform many file management actions

like hosting/caching/fetching/swapping in order to satisfy the client’s Quality of

Experience (QoE) and enhance the overall Quality of Service (QoS) of the network

[78].

77

78 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Figure 4-1 – Main components of Content Delivery Networks

In video streaming systems either live-streaming or on-demand services, the

CDN placement is a key point in delivery optimization. In [50], the video adap-

tation was considered in terms of users’ perception (user experience). In [49],

authors focused on the contextual QoE metrics and their effects on data retrieval

or caching costs. The overall performance especially in video services cannot be

only based on user perception models. In fact, major deployed data centers over

the Internet such as Akamai [4], Amazon [6] or Google [105] have to consider other

important parameters. Besides financial issues that are out of our scope, we claim

that system and core network parameters are key issues in making content move-

ments over the networks. To the best of our knowledge and despite the existence of

placement techniques deployed by the above mentioned providers, the literature

lacks optimization algorithms that take into consideration actual system, network,

and quality parameters. In fact, each technique is based on a single criterion opti-

mization.

Architectures for virtualizing network functions such as Network Functions

Virtualization (NFV), Software Defined Networking (SDN) and OpenStack 1 can

add flexibility to the design of network applications as investigated in [41], [95],

1It is an opensource cloud computing platform.

4.1. INTRODUCTION 79

Figure 4-2 – vCDN architecture according to ETSI-NFV [171]

[52], [178], [118], [119], [60], and [68]. They were recently adapted to the CDN

context for video content placement. The goal was to decrease the load on the ori-

gin content providers (like YouTube, Netflix2) and to let the operators/ISPs host

the content on their network to decrease as much as possible the load on the ex-

ternal links. Yet, an additional optimization mechanism should be proposed to

further improve the overall caching performance combining optimization, place-

ment, and virtualization within the operator/ISP network.

The overall virtualization challenges for CDN transition to vCDN are ad-

dressed in the research project DVD2C [129]. In a previous chapter, we have in-

vestigated the main network issues in virtual machine migration and especially

for vCDN use case and in an SDN/NFV context. Fig. 4-2 depicts the proposed

vCDN architecture based upon the ETSI-NFV reference architecture [171]. Note

here that different vCDN implementations could exist. Indeed, as depicted in Fig.

2It proposes an open CDN using NGINX web proxy server and other open source software:
https://openconnect.netflix.com/software/

80 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

2-1, a CDN network is composed of different systems such as caching, distribu-

tion, request routing, and management. Therefore, by making the transition from

classical CDN to the NFV/SDN-based vCDN context, all theses system compo-

nents can be virtualized and deployed as VNF instances, but given the growth of

video delivery, virtualization has to target mainly the caching and streaming com-

ponents (i.e., VNF caching, VNF streaming, etc.). Further, a VNF request routing

system (vRR) is added to the vCDN proposed architecture in order to orchestrate

the VNF caching/streaming nodes.

Currently, despite the importance of optimization tasks in the novel virtualiza-

tion context of SDN and NFV, such functions are missing in the global network

architecture. We therefore, try in this chapter to contribute with OPAC (protocol

and optimization model) as a potential optimization technique for vCDN place-

ment and explain how it is integrated in the network operator. Although video

on demand (VoD), assisted by cascaded caching, enhances the QoE and decreases

the load, live video on the other hand can still benefit from our optimization algo-

rithm.

In this chapter, we introduce the concept of virtual CDN as a Service (vCD-

NaaS) using NFV and SDN tools. Through our proposal, we focus on the frame-

work architecture, design and placement of vCDN use case based on SDN con-

troller, e.g, OpenDaylight [128]. Then, an optimization placement algorithm for

vCDN including content caching and request redirecting is introduced with oper-

ating system, network, and quality of experience constraints.

The rest of this chapter is organized as follows: Section 4.2 investigates the

related work. Section 4.3 proposes the vCDN concept in terms of system require-

ments and design methodology. Section 4.4 details the steps of the proposed vir-

tual caching protocol. The optimization model is introduced in Section 4.5. The

final optimization evaluation is presented in Section 4.6. The update performance

if the cache prediction is slightly imprecise is evaluated through a comparison in

Section 4.7 and then the work is concluded in the last section 4.8.

4.2. RELATED WORK 81

4.2 Related work

This section highlights the relevant NFV/SDN optimization algorithms in the

virtualization context. Thus, facing the difficult combinatorial optimization prob-

lem in the sense of the theory of algorithmic complexity, there are two main

solutions for the Virtual Machine (VM)/Virtual Network Function (VNF) Place-

ment Problem (PP): 1) Exact approaches (optimal algorithms) and 2) Heuristic ap-

proaches (e.g., best-fit decreasing, first-fit decreasing, genetic, and meta-heuristic

algorithms). We try to give an overview of the recent works.

Niels et al. [28] provide a framework for multimedia delivery CDN-based on

NFV. They gave a structure of Point of Presence (PoP) deployment within the net-

work. They used the three-layer structure (core network, aggregation layer, access

layer) of the network to seek the optimal locations of cache nodes. Their work

missed an optimization algorithm to measure the QoS/QoE. Further, they don’t

take into consideration the cooperation between CDN edge servers to serve user

request. Also, the optimization model lacked many constraints such as the maxi-

mum server’s storage capacity and the migration of content from one server to the

optimal one.

Michele et al. [28] after presenting the state of the art of NFV, CDN, and

stochastic optimization techniques, use a mixed architecture where real and vir-

tual CDN nodes coexist. Although they present an interesting hybrid solution,

their architecture assumes that the distribution of the future traffic demand is

known which is not a realistic assumption.

Hendrick et al. [122] gave a model for resource allocation of VNFs within a vir-

tualized environment (NFV Infrastructure). Cloud scaling technologies for VNF

instantiation are criticized in order to prepare for NFV use cases inside the Net-

work Service Provider (NSP). They affirm that the NFV paradigm was not designed

to be used only in Data Centers (DCs). We agree with their affirmation since in

data centers we don’t have link or storage capacity shortage. Indeed, cloud ad-

ministrators provision their deployed clouds with enough link speed, storage, and

82 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

computation resources. However, it is not the case in NSP since we face dynamic

constraints on network, storage, bandwidth and latency. Authors propose another

hybrid solution inside the operator network that mixes between the legacy net-

works based dedicated hardware for each network function and the virtualized

software/instance running on basic and standard hardware in NFVI environment.

The NFV resource allocation proposed by the authors gives different ap-

proaches for task and service deployment in hybrid NFV networks such as VM

deployment on physical servers, and service deployment either on physical server

or on VM. That model named (VNF-P) for virtual network function placement

aims to find an optimal way for deploying a service chain characterized by a chain

of VNFs taking into account some optimization features to minimize the overall

cost of the deployment. VNF-P is a good abstraction of the deployment of NFV

in an operator’s network. But still, it is too general and does not address CDN

specificity. Further, among the shortcomings of the proposed placement model for

VNF, authors didn’t consider real virtualization constraints such as storage, virtual

CPU, virtual streaming costs. Moreover we think that they did not use an adequate

distribution of user’s requests and that they did not consider any QoE parameter

or constraints to deal with user’s demands variation.

Bernardetta et al. [3] highlight three aspects in the general NFV placement

problem which are: 1) network modeling, 2) generic VNF placement algorithm,

and 3) VNF routing problems. They raise an important network flow problem re-

lated to (de)compression processes applied on through-traffic passing by VNF in-

stances. This problem of VNF chaining requires high resource allocation. Further,

they propose a multi-level objective function for VNF placement optimization. In

fact, they present the problem of minimizing the allocated computing resources

in a first stage and in a second stage, they perform a second optimization: the

minimization of the maximum link utilization. The limitations of their approach

are:

They used a prioritization method to solve the multi-objective optimization

4.3. OPAC: DESIGN CONCEPTS 83

problem which leads to sub-optimal results especially when the cost functions

are orthogonal as in their case. Moreover, authors didn’t take into consideration

the virtual RAM which is most important virtualization parameter especially in

service migration among virtualized launched instances.

Authors have not properly configured the latency constraint in the core layer

(it should be lower than the remaining network layers). Furthermore, the prob-

lem was resolved through a math-heuristic algorithm assisted by a prioritization

method which has several limitations such as non-optimal cost analysis.

Mathieu et al. [27] propose a placement problem optimization for the Deep

Packet Inspection (DPI) networks through designing a vDPI (virtualized DPI) so-

lution. Moreover, they consider the strong relationship between NFV and ISPs in

order to host dedicated cloud systems in ISP’s Point of Presence (PoP). Their work

was concentrated on where to instantiate vDPI in the network to reduce the cost

and overcome challenges in the vDPI deployment process. They then gave their

general placement model for vDPI cost based placement constrained by OPEX,

CAPEX, and cybersecurity costs (since DPI is a security network function). Au-

thors aimed to propose a model capable of minimizing network load and total

number of deployed vDPI engines. This contribution is useful for our CDN place-

ment problem. There are however major differences between the deployment of

DPIs and CDNs. Moreover, authors assume the knowledge of the traffic flow dis-

tribution. This static parameter has limited their solution.

Literature lacks an optimization algorithm that introduces at the same time

system, network, and user quality parameters. Moreover, none of the above work

introduced a placement and/or migration protocol for virtual content delivery net-

work functions. Hence, we contribute by OPAC protocol and optimization model.

4.3 OPAC: design concepts

We present an efficient solution for optimizing video streaming delivery ac-

cording to the proposed system design.

84 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Figure 4-3 – OPAC-based vCDN deployment architecture

We build our system based on the SDN paradigm assisted with traffic engineer-

ing rules using Network Function Virtualization Infrastructure (NFVI presented

in ETSI standard [170]). We apply virtualization on content delivery networks.

NFV concept is used here to virtualize the CDN components (cache/stream nodes

and a request router node) while SDN paradigm is used for controlling the behav-

ior of these virtualized instances through open switch-based configurations. Be-

side vCDN traffic engineering, vCDN programmability, and flexibility, SDN acts

as the request routing system of OPAC protocol that communicates with the CDN

controller and the virtual instances created with respect to the hypervisor-based

virtualization of NFV. We have implemented OPAC algorithm and we have used

both paradigms SDN (with OpenFlow protocol) and NFV (via the OpenStack plat-

form enriched by our vCDN services)3. Our proposed system model is shown in

3A first version of the software is available at: https://github.com/TelecomSudparis-RST/vIOS.

4.3. OPAC: DESIGN CONCEPTS 85

Fig. 4-3 and consists of two new entities (with respect to the SDN basic architec-

ture [105]):

1. vCDN node: It is the software that virtualizes the CDN caching and stream-

ing services on a standard physical server. It runs on a simple VM. vCDN

nodes are distributed inside the operator’s network. They act as a broker

between content provider and end users.

2. Virtual Request Router (vRR): It constitutes the controlling element for a

CDN network. We propose an overlay network of virtual nodes (vCDNs)

instantiated by the virtual request router which acts as the vCDN controller.

The vRR is hence the virtual function in the vCDN controller that redirects

end user’s requests to the nearest (suitable) vCDN node. The request routing

process is based on the OpenFlow Protocol [63] (OFP). It uses a Time To Live

(TTL) interval as a cache update strategy.

As shown in Fig. 4-3, OPAC is used for managing and orchestrating vCDN as

a service. Further, the vRR proposed here is able to redirect user’s requests to the

optimal vCDN streaming node. Hence, once user requests are directed to the CDN

server (VNF), the latter redirects the request to the optimal vCDN relative to the

user location and other algorithm parameters.

The event sequence is that a Content Provider (CP) asks the network operator

(virtualized CDN provider) to perform a cache process for its videos (referenced

by URLs). URLs are classified as cacheable or not in the network (see Fig. 4-4).

Moreover, each content should be cached (the most popular and requested by end

user) into an optimal vCDN node (content placement problem). Therefore, we use

a cache function to track the migration of videos as follows:

Cache(v, t) = vCDNID (4.1)

Where vCDNID is the vCDN identifier, v is the video identifier (it is often a key

file) and t is the time when we place/allocate the video identified by v.

86 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Algorithm 1 Greedy algorithm for vCDN caching

1: Input: video,user,vCDN ,
2: user-request (user u, video v, vCDN vCDNID);
3: if video isCached

()
then

4: OPAC Protocol
()

;
5: end if

We can hence program and deploy our caching algorithm proposing better op-

timization to enhance the QoE/QoS of end users, decrease the load on the origin

content provider (e.g., Youtube, Netflix, etc...), and let the operator host (allocate)

the content on its content network (vCDN1, vCDN2,... vCDNn).

OPAC uses a Distributed Hash Tables (DHT) to index the content URLs over

the vCDNs. vCDNs communicate periodically with vRR to maintain their connec-

tivity and location.

An additional fast redirection happens as follows: if the video is cacheable,

then it should be declared so. And then, the request is redirected based on Open-

Flow rules and inserted in OpenFlow switches when the request is intercepted.

We use a greedy algorithm as follows: a user requests a video content. If it is

cached. Then, the request is redirected to an optimal vCDN node based on OPAC

protocol as detailed in the next section.

Algorithm 1 summarizes the pseudo code of vCDN cache algorithm. Hereafter,

we describe these main stages.

4.4 OPAC protocol

The main steps of the proposed protocol are detailed hereafter:

1. The end user i requests a video j , videoi,j .

2. Network Service Provider (NSP) assisted with SDN network, management

layer and NFV deployment (see Fig. 4-4) redirects customer’s request to the

optimal vCDN cache node (the optimal placement is derived with the help of

an exact optimization algorithm, formulated and detailed later).

4.4. OPAC PROTOCOL 87

Figure 4-4 – vCDN cache as a service

3. If videoi,j is located in the optimal vCDN, then deliver(videoi,j) (see Fig. 4-5).

4. Else VoD origin server delivers the requested video to the user, and optimal

vCDN node caches the video (see Fig. 4-6).

5. Notification of the caching controller about the mapping between the new

vCDN address and video name.

For the sake of simplicity, we assume that the video service must be cached

through the vCDN (we name it a vCDN cache as a service). Once the content is

cached, requests from clients are dynamically redirected to the migrated vCDN

(the deployment location has been proposed after executing OPAC optimization

algorithm). Hence, We can enumerate the steps of the OPAC protocol as the fol-

lowing:

1. vCDN cache as a service (Fig. 4-4):

• Authorization: Either the Service Provider (SP) or the User Generated

Content (UGC) must request authorization (step 1) in order to cache a

popular video item (e.g., ”/video.mp4”).

• SP/UGC takes the authorization (step 2) from the Caching Controller

(CC) which is part of the network operator.

88 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

• CC initiates policy rules (PRs) for redirection (step 3) by communicat-

ing with the database server (DB), then it interacts with SDN controller

(step 4) to notify it by the PRs. The latter injects those PRs in OpenFlow

switch device (step 5). Then, CC instantiates (if needed regarding to the

available resource) the video service on vCDN. This virtual node can be a

set-top box (STB) device that supports the virtualization technique (step

6).

• CC sends the vCDN address (@vCDN) to the requester (CP or UGC) (step

7).

• SP/UGC migrates/pushes the desired video content to the vCDN allo-

cated on demand (step 8).

2. Video delivery (Fig. 4-5 and Fig. 4-6):

• Customer requests for a desired video (step 1)

• OpenFlow physical/virtual switch redirects under the previous PRs cus-

tomer’s request to the optimal vCDN streaming server (step 2)

• vCDN streaming server checks for the video (Fig. 4-5, step 3).

• If desired video is located in the local cache of vCDN (hit cache scenario)

then it executes service video delivery process (Fig. 4-5, step 4).

• Else (miss cache scenario) it retrieves the video from the origin VoD

server (Fig. 4-6, steps 3 and 4).

• vCDN streaming server delivers the video to the end user (Fig. 4-6, step

5).

• vCDN streaming server notifies the CC in order to register the mapping

between vCDN node identifier and video item (Fig. 4-6, step 6).

• CC updates/refreshes the database (Fig. 4-6, step 7).

4.5. OPAC OPTIMIZATION MODEL 89

Figure 4-5 – vCDN hit cache scenario

Figure 4-6 – vCDN miss cache scenario

4.5 OPAC optimization model

We propose an exact optimization algorithm that takes as an input the topol-

ogy of the underlying network. It aims then to optimally place, and migrate the

virtual content delivery functions (vCDN nodes) upon the virtualized infrastruc-

ture. Those virtual nodes move from one location to the optimal point in order to

increase user satisfaction and decrease server and network loads. The optimiza-

tion algorithm for placement is modeled, implemented, and evaluated in the next

subsections.

90 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

4.5.1 Problem statement, constraints and main objectives

The problem considers delivering videos on demand or services, e.g., televi-

sion programs, the movies, etc to a large group of users located in distant zones

and served by an operator network. This operator may or may not be the service

provider. Moreover, the problem supports users with different resolution require-

ments.

The statement is as follows: determine where to locate the VoD streaming head-

end, and how to migrate the virtual delivery node from one location the optimal

one.

We consider different types of constraints in our virtualization process: system

type constraints such as RAM, CPU, and storage, and network type constraints

such as flow balance (conservation), QoE, link capacity, and server streaming con-

straints: maximum number of simultaneous connections per server). Recall that

none of the previously described contributions considered the QoE parameter.

The latter aims to link context information such as the operator delivery network

to video streaming. OPAC optimization will maximize the Mean Opinion Score

(MOS) of end users having different devices and connected over different tech-

nologies (ADSL, WiFi, and Ethernet). Video delivery adaptation mechanisms us-

ing utility functions [47] and MDASH (MOS Dynamic Adaptive Streaming over

HTTP) can hence be supported by our work.

The objective is to minimize the cost of resources (i.e. bandwidth and migra-

tion).

The main goal of our study is to propose an algorithm and the underlying

mechanisms to optimize video delivery networks. These mechanisms will guar-

antee the desired user’s satisfaction level and on demand service optimization as:

1. Allocation mechanism and virtual delivery node migration: we introduce an

optimization algorithm for vCDN allocation based on the maximum number

of connections related to each file and its viewing rate (according to informa-

4.5. OPAC OPTIMIZATION MODEL 91

tion calculated by counters such as DailyMotion/YouTube 4). Our algorithm

enables simple file movement between different domain vCDNs considering

minimum cost of content access.

2. Service optimization mechanism (service on demand): The second step is to

analyze the virtualized delivery node and migrate them to the optimal PoP

headend in order to achieve a better quality of experience (QoE) and better

savings for network operator resources.

This implies three levels of optimization:

1. Multi-criteria optimization: this first level aims to satisfy as maximum as

possible the involved actors in the delivery process: the content provider that

wants to push the maximum content to the CDN provider with minimum

cost, the network operator which wants to decrease its server’s load and save

its resource (storage, bandwidth, ...) as possible, and the client who requests

high quality of experience and better satisfaction with minimum price.

2. Network optimization: we optimize the load on the main network links and

increase the operator’s gain (delay reduction in content streaming).

3. QoE/QoS optimization: we focus on user’s QoE by adapting the video stream-

ing resolution to its context. We assume that vCDN users may require differ-

ent video resolutions (Standard Definition (SD), High Definition (HD) and

Ultra High Definition (UHD)). The quality parameter dfv corresponds to the

resolution requirement per each cluster of end users is defined in Table 4.1.

The model can be easily extended to accommodate future ultra higher defi-

nition TV services like 8K.

We will detail the optimization problem constraints for vCDN migration and the

objective function of our work in the next section.

4YouTube MyTop100Videos: https://www.youtube.com/user/MyTop10Videos

92 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Table 4.1 – OPAC mathematical notation

Parameters Definition
V The set of client group nodes
S The set of server nodes
S ′ The set of optimal server nodes
Ds

′
Maximum throughput of the streaming server
s′ ∈ S ′

F The set of vCDN nodes
fsize vCDN resource’s size(

vRAM,vCPU,and vDISK
) (
f ∈ F

)
Cs
′

Maximum storage capacity of the server s′ ∈ S ′
Ci,j Link capacity between two nodes i and j (from

i to j)

d
f
v Throughput used for streaming the vCDN

functionality f ∈ F to the client group v ∈ V .
It represents the user’s demand requirements
(SDTV ,HDTV ,UHDTV)

cs,s′ ,f The migration cost of the functionality f from
s to s′

Decision variables Definition
xs,s′ ,f Placement and migration binary variable

which indicates that f should move from from
s to s′

ys
′

v,f Binary variable which indicates the video hit
from node v of f in server s

z
v,f
i,j Binary variable indicating whether the link

(i, j) is used to stream f to v

4.5.2 Mathematical formulation

In this section we specify the parameters and the constraints that are defined

and proposed in formulating the optimization/analytic model. This formulation

determines the migration of vCDN nodes to the optimal location.

• OPAC Parameters: OPAC deals with system, network, and QoS/QoE param-

eters as quoted in Table 4.1. We represent each by some parameters although

it would be better to have them all detailed. For complexity issues, vCDN

resource’s size (fsize) (beside the other system/network parameters) is a nor-

malized function of some relevant values that describes the size of the in-

4.5. OPAC OPTIMIZATION MODEL 93

stance (system). Moreover, we introduce the QoS/QoE metric (dfv) in our

optimization problem. This parameter represents the consumer demands

matrix. Periodically, the network operator feeds OPAC database with the ex-

isting demands: requests for vCDN services. A demand comes from a client

group (v ∈ V) and targets a vCDN (f ∈ F). This is to link end-users need (i.e.,

requesting vCDNs) with a specific throughput that is mentioned in their re-

quests as a matching parameter between the requested quality (SD, HD, or

UHD in terms of throughput) from the client group (v) and the streaming

throughput from the vCDN serve (f). The algorithm tries to satisfy all the

user quality of streaming requests. Including all parameters would be too

complex to solve in a reasonable time.

• Decision Variables: We quote in Table 4.1 the main system parameters and

decision variables.

1. The binary variable x indicates the placement of the streaming headend,

and its migration from one server s to another (best/optimal) location s′.

It is defined as:

xs,s′ ,f =


1 if f migrates to s′

0 Otherwise
(4.2)

2. The binary variable y indicates client request need for a vCDN service

located on the optimal server. It is defined as :

ys
′

v,f =


1 if v needs f and s′ caches f

0 Otherwise
(4.3)

3. The binary variable zv,fi,j indicates whether a link (i, j) is used (from i to

j) to stream from a server s′ replicating f (the one for which ys
′

v,f = 1) to

client v.

94 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

• Constraints:

1. The binary variable y should be less than or equal to x. In fact, y equals

1 if and only if v needs f from the optimal server s′ which has the func-

tionality. This means that x should be equal to 1.

∀s′ ∈ S ′,v ∈ V ,s ∈ S : ys
′

v,f ≤ xs,s′ ,f (4.4)

2. Only one optimal server should serve the attached node that requests the

functionality f :

∀v ∈ V | dfv , 0 :
∑
s′∈S ′

ys
′

v,f = 1 (4.5)

3. The cost of streaming f by the optimal server should be less or equal to

the maximum server capacity:

∀s′ ∈ S ′ :
∑
v∈V

∑
f ∈F

ys
′

v,f × d
f
v ≤Ds′ (4.6)

4. The storage of the optimal server should not exceed its maximum size:

∀s′ ∈ S ′ :
∑
s∈S

∑
f ∈F

xs,s′ ,f × fsize ≤ Cs
′
max (4.7)

5. Flow balance or conservation constraint (which is the laws of Kirchhoff)

between the optimal server s′ and the client node v should be as the

following:

∑
j

z
v,f
i,j −

∑
j

z
v,f
j,i =


0 if i , v, i , s′

ys
′

v,f if i = s′

−1 if i = v

(4.8)

This is the network flow constraint. The sum of incoming flows must be

equal to the outgoing ones.

4.5. OPAC OPTIMIZATION MODEL 95

6. Link capacity between source i and sink j should not exceed its maxi-

mum:

∀i, j ∈ V ∪ S ′ :
∑
v∈V

∑
f ∈F

z
v,f
i,j × d

f
v ≤ Ci,j (4.9)

4.5.3 Mono objective resolution

The objective function: the migration cost (transit) as formulated in equation

(10).

• Objective function:

min
∑
s′∈S ′

∑
s∈S,f ∈F

xs,s′ ,f × cs,s′ ,f (4.10)

where cs,s′ ,f is the migration cost:

cs,s′ ,f = α × fsize (4.11)

Where α is a parameter depending on the position of s′ and the position of

s (the server initially containing f before migration). α depends also on the

operator policy (e.g., the internal policy of the operator like configuration

policy).

• Optimization technique: The OPAC-based optimization domain targets a set

of large size vCDN nodes to be placed in network operator snapshot (with a

relatively low number of NFV servers client group nodes). The goal of OPAC

is to intelligently (and dynamically) place and migrate the set of vCDN nodes

in response to client group demands in order to increase the in-network

caching performance (and hence QoE) while minimizing the total migration

cost function as formulated in Eq. 4.10. The migration problem of vCDN

to the optimal placements is an Integer Linear Problem (ILP) that can be

solved within a few seconds. It (the migration) is modeled through branch

and bound optimization technique (method) that minimizes the network vir-

tualization cost (total migration cost) among a set of candidate solutions that

96 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

(a) Before migration (b) After migration

Figure 4-7 – Example based OPAC-analytical procedure for vCDN placement

maximize the end user quality of experience. Starting from the previous sys-

tem, network and content quality constraints, OPAC searches the optimal

data center locations, where the binary migration vector xs,s′ ,f (defined above)

equals to 1.

• Analytical procedure (OPAC-based decision example): For the sake of clar-

ity, we propose an example based on OPAC procedure for vCDN place-

ment/migration context as shown in Fig. 4-7. The algorithm is as follows:

1) As an input, OPAC controller gathers SDN/NFV architectural information

such as the initial placement of vCDNs (f1 ∈ s1, f2 ∈ s2, etc.) and all necessary

dynamic parameters (system capacity, network capacity, throughput, loca-

tion, etc.) as shown in Fig. 4-7a representing the network state before migra-

tion, 3) as a result, end-users requesting vCDN YouTube®, to watch a popular

video in a live event for example, will be redirected to the videos hosted in

the new optimal calculated location as depicted in Fig.4-7b representing the

network state after migration. Recall that the network operator hosting the

vCDN of YouTube content provider migrates the vCDN cache/stream node to

an optimal PoP where resources are available and content quality streamed

are satisfied.

Note that in a micro cache deployment (large scale) scenario, OPAC is still accept-

4.5. OPAC OPTIMIZATION MODEL 97

able for vCDN placement/migration application. This is because the algorithm

run time is in term of seconds. Therefore there is no need to develop a heuristic

algorithm. OPAC algorithm is proposed to be executed in a virtual CDN con-

troller/manager entity (vRR). It has to control/manage/orchestrate the VNFs run-

ning virtual CDN nodes. This placement is executed after three main triggers:

• System constraints (through fsize and Cs
′

parameters). and network con-

straint (through Ci,j , Ds
′
, and dfv parameters).

• Service Level Agreements (SLA): It is QoS/QoE constraint through a con-

tract between the content provider (the customer of the vCDN solution) and

the network operator (the server or the provider of the NFV servers) (dfv res-

olution requirement per each cluster of end users). It (SLA) is considered

through a valid range of streaming qualities: SD, HD, and UHD of each

couple (client group–vCDN). The optimization process uses this requirement

and the result satisfies the SLA.

• Storage/bandwidth prediction: OPAC makes the migration and assumes that

the network and system parameters are available (through OpenStack dash-

board). We mean by prediction that those parameters may change and cannot

be known in advance. Recall that data centers are highly dynamic and shared,

so live metrics and parameters are used from the virtual infrastructure man-

ager (e.g., OpenStack data-centers) and update at the same time the OPAC

database.

In the current implementation version of OPAC, triggers are not used to execute

the optimization. However, as we use a database for our real-time parameters, all

the dynamic values can be annotated with a triggering threshold that re-launches

the process. The user demands, system parameters and network load are the po-

tential triggers. Moreover, in this version OPACv1, we don’t consider individual

user demands, only groups (represented by the dfv matrix). Second we envision

the execution of the algorithm in a predictive scenario. Till now, these demands

98 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Figure 4-8 – Network topology used for OPAC evaluation

are a forecast of client groups (v ∈ V). The consumer demands are fictional and

have been initialized in the OPACv1 database and have the corresponding vCDN

request list, PoP request list, etc. New demands are treated in the next optimiza-

tion round. The optimization operation should be executed in accordance with the

data aggregation frequency of the demands and the system/network load based on

OpenStack.

4.6 OPAC: optimization evaluation

We evaluate our work in a network that obeys the 3-tier layers architecture

(access, aggregation and core layer)5. Fig. 4-8 shows the network topology used

for the evaluation. Further, for the interest of assessing the efficiency of OPAC

algorithm, we used CPLEX [84] as an optimization tool.

We note that servers may be deployed in any network layer while client nodes

are deployed only in the access network. We mention also that vCDN cache nodes

are deployed on top of the physical servers that among NFVI and migrate from the

source s to the optimal server s′.

5https://tools.ietf.org/pdf/draft-bagnulo-nfvrg-topology-00.pdf.

4.6. OPAC: OPTIMIZATION EVALUATION 99

Further, we define the NFV cost and the placement time as follows:

• The NFV cost is defined as follows:

NFV cost =
∑

s∈S,s′∈S ′

∑
f ∈F

xs,s′ ,f × cs,s′ ,f (4.12)

• The migration time is defined as follows:

P lacement time =
∑

s∈S,s′∈S ′

∑
f ∈F

xs,s′ ,f × fsize × max
(i,j)∈Ps,s′

1
Ci,j

(4.13)

Where Ps,s′ is a given path from s to s′. In fact we are here assuming that place-

ment is done in sequential way. If placement is performed in parallel, then the

placement time would be given by max
s′∈S ′ ,s∈S,f ∈F

(
xs,s′ ,f × fsize ×max(i,j)∈Ps,s′

1
Ci,j

)
. How-

ever, we will only consider Eq. (4.13).

Furthermore, for the sake of assessing the efficiency of OPAC algorithm, three

main cost factors are defined as follows:

vCache cost =

∑
s∈S

∑
s′∈S ′ ,f ∈F xs,s′ ,f × fsize∑

s′∈S ′ C
s′

(4.14)

vStream cost =

∑
s′∈S ′

∑
v∈V

∑
f ∈F y

s′
v,f × d

f
v∑

s′∈S ′D
s′

(4.15)

Link utilization cost =

∑
v∈V

∑
f ∈F z

v,f
i,j × d

f
v∑

i,j∈V∪S ′ Ci,j
(4.16)

Where the cost UNIT represents the amount of system resources (vCache) or

network resources (vStream and Link utilization cost) consumed when migrating

a vCDN from a server to another one.

Hereafter, we evaluate the OPAC under different key performance indicators

introduced above to assess impact of increasing virtual content delivery number,

client group node number. Besides, we evaluate the virtual content delivery reso-

100 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

lution impact, delivery capacity impact and delivery storage impact.

4.6.1 Virtual content delivery number impact

(a) vCDN placement cost (b) Overall NFV cost of vCDN migration

(c) NFVI cost with vCDN number variation

Figure 4-9 – Network optimization costs: vCDN number impact

Firstly, we evaluate in this subsection the impact of increasing the vCDN num-

ber. For this, we choose for the three-tier network the following input parameters:

N = 6 for client (as aggregation requests) node, L = 21 for links (number of aggre-

gated edges), S = 10 for severs (as data center zone). Fig. 4-9a shows the migration

time needed for placing vCDN in the optimal place taking into consideration the

previous NFVI constraints (like computing, storage, and streaming resources) that

4.6. OPAC: OPTIMIZATION EVALUATION 101

are strongly related to CDN caching service and virtualization cost. In Fig. 4-9b,

we measure the overall NFV cost which means the overall cost of the migration

including all the aforementioned constraints as a function of the vCDN number.

We remark that the total NFV cost is linearly increasing. The vCDN placement

time has an increasing slope for a vCDN number ranging from 3 to 9. This is due

to the client node distribution which is not uniform. In Fig. 4-9c, cost unit 6 is

plotted against the vCDN number. The storage cost for vCDNs in the network is

constant, the virtual streaming cost and the link capacity cost are variable due to

the demand variation of the end user.

4.6.2 Client node number impact

Secondly, we evaluate the impact of the client number on the overall cost tak-

ing into account the storage, network and streaming features. Therefore, we have

fixed the total number of the virtualized content delivery networks that should be

placed within the network (VNF deployed number = 10), and the same previous

three-tier network. In Fig. 4-10a, we plot the placement time against client node

number. In Fig. 4-10b, we represent the NFV cost needed for this placement. In

Fig. 4-10c, we measure the virtual caching cost. It is in increasing till it reaches a

constant value. We represent also link utilization cost, and we conclude that the

streaming cost is still increasing because it is affected by the number of location

from where clients receive the video service.

4.6.3 Virtual content delivery resolution impact

Thirdly, we evaluate the impact of virtual content delivery resolution. In

Fig. 4-11a, we plot the cost of streaming against vCDN number. The vCDN

caching/streaming nodes may serve SD, HD, or UHD content resolution to the

clients. Recall that vCDN nodes serve the clients according to their initial require-

ments. Virtual streaming cost is increasing in each category when vCDN num-

6Cost unit is defined by the utilization percentage of the available resource.

102 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

(a) vCDN placement cost (b) Overall NFV cost of vCDN migration

(c) NFVI cost with client node number variation

Figure 4-10 – Network optimization costs: client node number impact

ber increase. Moreover, the additional cost needed for streaming high resolution

video is significant compared to lower definition ones. There is about 100 % in-

crease in cost from SD to HD and from HD to UHD. In Fig. 4-11b, we plot the

cost of link utilization against vCDN number. Moreover, this link utilization cost

increases with each content resolution when the vCDN number increases. As in

virtual streaming cost (Fig. 4-11a), the additional link utilization cost needed for

streaming high resolution video is significant. But, the main observation is that

cost remains constant when increasing the vCDN number.

4.6. OPAC: OPTIMIZATION EVALUATION 103

(a) Stream resolution
(b) Link utilization cost with different vCDN res-
olution

Figure 4-11 – Network optimization costs: vCDN resolution impact

4.6.4 Delivery capacity impact

Fourthly, in this subsection we show the impact of increasing the server’s

throughput on the cost of caching, streaming vCDNs and on the link utilization.

Fig. 4-12 includes 3 curves. These curves plot the cost unit against the server’s

throughput. We assume that clients may request either SD, HDV, or UHDV video

quality. Regardless of the quality requested by clients, the caching cost is con-

stant. There is no additional cost to deliver either SD, HD, or UHD to the client

in terms of a caching cost in (GB). However, the streaming cost decreases when

the server throughput increases. This leads to more efficient streaming and better

QoE. This streaming cost increases when clients request high vCDN quality. Link

utilization cost on the other hand is constant but it increases with high requested

quality (from SD through UHD). In conclusion, in both cost factors (caching and

streaming), the increment to get a better quality is not significant. It is only about

10 %.

4.6.5 Delivery storage impact

Finally, the impact of delivery storage is evaluated. In Fig. 4-13a, we plot the

total migration cost needed for migrating a vCDN with random demand vector per

104 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

(a) SD requested quality (b) HD requested quality

(c) UHD requested quality

Figure 4-12 – Network optimization costs: delivery capacity impact

client. The additional cost needed for vCDN migration decreases when we increase

the server storage. This is an encouraging result since storage is an important

service. Storage could be extended up the end user terminal. Fig. 4-13b plots our

three proposed costs: vCache, vStream, and Link utilization against vCDN size.

Although, the vCDN size increased, there are no important variations in the three

cost factors.

4.7. OPAC: COMPARISONS 105

(a) Total migration cost (b) NFVI costs with vCDN size variation

Figure 4-13 – Network optimization costs: delivery storage impact

4.7 OPAC: comparisons

In this section, we introduce two main comparisons. First, we compare be-

tween OPAC (our optimal solution) and a non optimal approach. In the second,

we compare between OPAC and the related work in two ways: 1) a comparison

between OPAC and Bernadetta et al.’s work in term of link utilization cost, and 2)

a comparison between OPAC and the state-of-the-art.

4.7.1 Comparison between OPAC and non optimal migration algorithm

The OPAC algorithm as detailed in Section 4.5 searches for the optimal place-

ment to cache vCDN nodes according to the network constraints and users’ de-

mands. The network and system constraints are deterministic parameters and

can be measured precisely over time. However users’ demands can only be pre-

dicted as it is difficult to determine a priori what content the user will decide to

watch next. Hence, some predictions can be erroneous and lead to non optimal

placement of content. Thus, the optimal and the non-optimal definitions for our

106 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Figure 4-14 – comparison between the optimal and the non optimal algorithms using total
virtualization cost parameter and under vCDN/client node variation

implemented algorithm are defined as follows:

xs,s′ ,f =


1 if f migrates to s′ (optimal)

0 if f migrates to S\{s′} (non optimal)
(4.17)

In Fig. 4-14 , we made a comparison in terms of the total virtualization cost

(accumulated percentage of delay (normalized resource costs used in virtualiza-

tion of vCDNs))7 between our optimal algorithm and the non optimal one. It is

clear that our exact and optimal allocation/migration algorithm outperforms the

non optimal one. The operator’s gain which is proportional to the reduction in

delay is therefore obvious.

In Fig. 4-15, we plot the computation/execution time gained after the alloca-

tion/migration process. The gain is the reduction in delay if our optimal solution

is adopted compared to the non optimal approach. The latter is obtained if the

target PoPs that will host the virtual CDN is non optimal. It shows that the reduc-

tion in delay is noticeable and reaches 20 sec for vCDNnumber = 11. This can lead

to a better QoE. However, the reduction delay is very important when client node

number is increasing and reaches 3 minutes at v = 12. Recall that v represents an

7Total virtualization cost is defined by the total utilization of the virtual resources (vCache, vStream, and
Link utilization).

4.7. OPAC: COMPARISONS 107

Figure 4-15 – Operator gain after executed the optimal migration algorithm comparing to
the non optimal

average demand of a large group of subscribers and a vCDN serves a large number

of subscribers as standardized by (IET F)8 .

4.7.2 Comparison between OPAC and related work

Comparison between OPAC and Bernadetta et al. work

Network link utilization is a relevant metric. Thus, to evaluate the network

performance of OPAC from the telecommunication operator perspective, we com-

pared our solution with Bernadetta et al [3], who used the same network and NFV

parameters.

At first glance, we quote the difference between our approach and Bernadetta

approach as follows:

• First of all, Bernadetta protocol uses three flow balance constraints and im-

poses a single path flow balance. We believe that this increases the link uti-

lization and causes bottlenecks in the network links (congestion).

• The second difference is that Bernadetta algorithm includes compression

which we believe is unnecessary since it can be replaced by the VNF size.

8https://tools.ietf.org/pdf/draft-bagnulo-nfvrg-topology-00.pdf.

108 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

Figure 4-16 – Comparison between OPAC and Bernadetta et al work

• The third difference is that Bernadetta does not use any quality of experi-

ence parameter while our approach uses a dynamic one according to user’s

demand requirement.

Moreover, in Fig. 4-16, we plot the link utilization cost which is clearly greater

than our approach. Thus, their proposed algorithm is still efficient for placing but

can not deal with user’s demand dynamicity (dfv = 10). In the simulation, we kept

the same parameter used by Bernadetta (2 VNF type, node capacities).

Brief comparison between OPAC and the state-of-the-art

We show in Table 4.2 a comparison between our optimization approach and a

few recent work:

• Authors in [28] [116] [27] [3] [122] introduced either system or network met-

rics in order to model the problem of placement of a VNF in general. How-

ever, we introduced in OPAC both: system and network metrics.

• Authors also did not introduce any parameter characterizing users’ require-

ment. Therefore, we introduced an additional parameter to do this.

4.8. CONCLUSION 109

Table 4.2 – Comparison between OPAC and state-of-the-art

Work Metrics Limitations

Niels et al. [28]
Bandwidth,

deployment cost

No virtual node cooper-
ation, no QoE parame-
ters, missed capacity and
RAM constraints

Michele et al. [116] Usage cost
Known traffic distribu-
tion (static), unreliable

Hendrick et al. [122]
Deployment cost,

service request

Virtual CPU, virtual
storage, virtual capacity,
and QoE constraints are
missed

Bernardetta et al. [3]
Allocated computing

resources, link
utilization

Prioritization method
with orthogonal cost
functions, virtual RAM
and QoE constraints are
missed

Mathieu et al. [27] CAPEX, server’s load Offline measurement,
and no migration

OPAC algorithm
System, network, and

quality metrics No limitations

• Authors also tried to solve an initial placement problem of a VNF through

static and offline optimization, while our optimization solves the placement

problem and adds the migration context in dynamic way and while the vCDN

service is running.

• In OPAC, we introduced a virtual cache cost since our VNF (vCDN) is dedi-

cated to streaming/caching services.

4.8 Conclusion

This chapter presents a new optimization technique for cache distribution with

underlying virtualization tools. We proposed to integrate new constraints such as

QoE, VNF mobility and system design. For this purpose, a redirection/cache/update

protocol that defines the messages exchanges between end-user, virtual CDN, op-

erator, and service provider was proposed. Furthermore, OPAC, an optimization

algorithm was modeled, implemented and evaluated when demand on different

110 CHAPTER 4. OPAC: OPTIMAL PLACEMENT ALGORITHM FOR VIRTUAL CDN

content changes. It gave a short execution time (i.e., the running time was in terms

of seconds). Different comparisons for our placement solution and the state-of-

the-art are conducted. The results show a net improvement in cache update. We

also evaluate the update performance if the cache prediction is slightly imprecise.

Our Cache placement algorithm still gives satisfactory results. Decision time in

LP techniques increases exponentially for large network inputs (vCDN instances).

They are not appropriate for large complex graphs. Therefore, in the next chap-

ter, we try to propose scalable and cost efficient algorithms for vCDN migration

problem in small large graphs.

Chapter 5

Scalable and cost efficient algorithms

for vCDN migration

5.1 Introduction

In the previous chapter, we have proposed OPAC, an exact optimization algo-

rithm for the problem of vCDN placement. In this chapter, we bypass the initial

vCDN placement step that can be solved by a single execution of OPAC algorithm.

Then, we re-formulated the mathematical model to propose an exact algorithm

for vCDN migration1. It recommends optimal location points where to migrate

vCDN on-demand/live instances to satisfy users quality requirements. The ma-

jor objective from the algorithm is to minimize the total cost of content migration

while minimizing the additional extra-costs needed for caching, streaming, and

replication number.

Then, we are going to cope with scalability problems of exact algorithms.

Therefore, we adapt a heuristic algorithm (i.e. HPAC: Heuristic Placement Algo-

rithm for virtual CDN) to deal with our constraints when large scale networks need

to be optimized. In this algorithm, we exploit the well known Gomory-Hu method

to find a near to optimum point of operation. Finally, as the optimization algo-

1We still call this formulation OPAC.

111

112CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

rithms deal with many heteroclite parameters, a clear view on how/where/when

they are extracted and how they are reflected on a typical SDN/NFV architecture

is diagrammed.

The rest of this chapter is organized as follows: Section 5.2 details the func-

tioning of OPAC algorithm through a migration use case. Section 5.3 details our

heuristic optimization algorithm (HPAC). Section 5.4 evaluates the two algorithms

and gives a comparison between them under predetermined metrics besides an

integration diagram in Section 5.5. Section 5.6 concludes the chapter.

5.2 OPAC: migration use case (OMAC)

In this section, we specify the parameters and the constraints that are defined

and proposed in formulating the optimization model OPAC. This formulation de-

termines the migration of vCDN nodes to the optimal locations. We quote in Table

5.1 the main system and network parameters, and decision variables.

• The decision variables:

Table 5.1 – OPAC mathematical notation in a migration use case

Parameters Definition
V The set of client group nodes
S The set of server nodes
sv The default server that connects the client group node v ∈ V
sf The server that initially caches the vCDN node f ∈ F
Ds Maximum throughput of the streaming server s ∈ S
F The set of vCDN nodes
fsize vCDN’ s size (vRAM,vCPU,vDISK) (f ∈ F)
Cs Maximum storage capacity of the server s
Li,j Link capacity between two nodes i and j (from i to j)

d
f
v Throughput used for streaming the functionality f to the client

group v ∈ V . It represents the user’s demand requirements
msf The migration cost of the functionality f to s

Decision variables Definition
xsf Placement and migration binary variable which indicates that f

should move from origin server to optimal server s
ysv,f Binary variable which indicates the video hit from node v of f in

server s

z
v,f
i,j Binary variable indicating whether the link (i, j) is used to stream

f to v

5.2. OPAC: MIGRATION USE CASE (OMAC) 113

1. The binary variable xsf indicates the placement of the streaming head-

end, and its migration from one server to another (best/optimal) location

s. It is defined as:

xsf =


1 if f migrates to s

0 Otherwise
(5.1)

2. The binary variable ysv,f indicates a client v needs a vCDN service, and

the server s caches it. It is defined as :

ysv,f =


1 if v needs f and s caches f

0 Otherwise
(5.2)

3. The binary variable zv,fi,j indicates whether a link (i, j) is used (from i to

j) to stream from a server s replicating f (the one for which ysv,f = 1) to

client v.

• The constraints:

1. The binary variable y should be less than or equal to x. In fact, y equals

to 1, if and only if v needs f , and f is located on server s. This means

that x should be equal to 1. Otherwise, if y equals to 0, then x may be

equal to 0 or 1.

∀s ∈ S : ysv,f ≤ x
s
f (5.3)

Note that a vCDN can be replicated more than once.

2. Only one optimal server should serve the client node that requests the

functionality f :

∀v ∈ V | dfv , 0 :
∑
s∈S

ysv,f = 1 (5.4)

3. The cost of streaming f by a server s should be less than or equal to the

114CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

maximum server capacity:

∀s ∈ S :
∑
v∈V

∑
f ∈F

ysv,f × d
f
v ≤Ds (5.5)

4. The storage of the optimal server should not exceed its maximum capac-

ity:

∀s ∈ S :
∑
f ∈F

xsf × fsize ≤ C
s (5.6)

5. Flow balance or conservation constraint between the server s and the

client node v should be as the following:

∑
j

z
v,f
i,j −

∑
j

z
v,f
j,i =


0 if i , v, i , s

ysv,f if i = s

−1 if i = v

(5.7)

This is the network flow constraint. The sum of incoming flows must be

equal to the outgoing ones.

6. Link capacity between source i and sink j should be larger than the flow

on the link:

∀i, j ∈ V ∪ S :
∑
v∈V

∑
f ∈F

z
v,f
i,j × d

f
v ≤ Li,j (5.8)

The objective function is formulated in equation (5.9) (cost function):

min
∑
s∈S

∑
f ∈F

xsf ×m
s
f (5.9)

where msf is a parameter depending on the position of s, the position of sf

(the server initially containing f before migration), and the position of sv

(the server initially connecting to the client group v). msf depends also on the

size of f and the operator policy.

5.3. HPAC: HEURISTIC PLACEMENT ALGORITHM FOR VIRTUAL CDN 115

Figure 5-1 – OPAC: vCDN-YouTube migration use case

OPAC based vCDN migration example: For the sake of clarity, we propose an ex-

ample of OPAC based vCDN migration as shown in Fig. 5-1 . The algorithm is as

follows: 1) As an input, the algorithm gathers SDN/NFV architectural information

such as the initial placement of CDNs/vCDNs and all necessary dynamic param-

eters, 2) It needs also a prediction of end-users demands to execute OPAC, and 3)

as a result, end-users requesting vCDN YouTube®, to watch a popular video in a

live event for example, will be redirected to the videos hosted in the new optimal

calculated location.

Recall that the network operator hosting the vCDN of YouTube content

provider migrates the vCDN cache/stream node to an optimal PoP where re-

sources are available and content quality streamed are satisfied.

The above problem is NP-hard due to our combinatorial complex system and

therefore the proposed exact algorithm is difficult to scale up to decide where to

deploy vCDN nodes in a large scale scenario. As a consequence, an efficient heuris-

tic algorithm is proposed in the next section.

5.3 HPAC: Heuristic Placement Algorithm for virtual CDN

Our proposal is strongly based on Gomory-Hu 2 tree transformation [73] of the

initial network (represented by access, aggregate and core nodes) as shown in Fig.

5-4). In other words, HPAC transforms the input network into a G-H tree. Then,

2noted by G-H in the rest of the chapter

116CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

replicating vCDNs is performed thanks to the G-H tree allowing to efficiently re-

duce the number of edges to be considered when migrating contents.

Algorithm 2 summarizes the pseudo code of HPAC. Hereafter, we describe

these main stages.

Algorithm 2 Heuristic algorithm for virtual CDN placement and migration

1: Input: V , S, Ds, F, fsize, Cs, Li,j , d
f
v , msf , G = (V (G),E(G)),

2: sv , sf
3: Output: xsf , total migration cost

4: GHT ← Gomory-Hu transformation
(
G, Li,j

)
5: Tree-Exploration

(
GHT ,sv , sf

)
6: Migration-process

(
Ds,Cs,Li,j , fsize,d

f
v ,m

s
f

)
:

7: if Li,j ,≤ d
f
v then

8: Migrate-vCDN
()

9: end if

5.3.1 Gomory-Hu transformation

At this stage, our heuristic HPAC computes the G-H tree of the CDN network or

graph. The main advantage of G-H tree transformation is to compact this network

graph structure using cuts to retain only feasible candidate topology and conse-

quently lead to a smaller scale vCDN placement problem. We will insert a figure

of the example of a G-H transformation.

For sake of clarity, we introduce the G-H tree transformation of our initial

graph G = (V (G);E(G)). The G-H tree GHT = (V (GHT);E(GHT)) of the former

graph can be built using the definition in [106]. There exists many algorithms

that can build the G-H tree in polynomial times [80] by finding N − 1 maximum

flow or minimum cuts between each pair of nodes in the graph, where N = |V (G)|.

The G-H tree can be found in polynomial time according to the algorithm used

to find a maximum flow/minimum cut in the initial graph. But, we describe only

one selected strategy that relies on the minimum Steiner cut algorithm presented

in [39].

5.3. HPAC: HEURISTIC PLACEMENT ALGORITHM FOR VIRTUAL CDN 117

The transformation starts by initializing V (GHT) to the set of the graph nodes

(i.e., {V (G)} and not V (G)). Concerning E(GHT), it is initialized to an empty set.

Besides, we define a queue list Q to enable the G-H tree construction. Q is ini-

tialized to V (GHT) value. Then, while Q is not empty, we pull the first element S

from this queue and we apply the minimum Steiner cut algorithm with the current

set S (i.e., first Q element).

As the Steiner set in the new graph is obtained by contracting the entire sub-

tree rooted at each neighbor in GHT of S into a single node. Consequently, two

new sets of nodes S1 and S2 are generated from S and λS1,S2
is the cut size. Accord-

ingly, V (GHT) should be updated by removing S and adding S1 and S2. Besides,

E(GHT) should be enhanced by adding a new edge between S1 and S2 with capac-

ity λS1,S2
(i.e., the cut size).

Furthermore, the queue Q will be enriched by adding S1 (respectively S2) if it

includes at least two nodes, |S1| > 1 (respectively |S2| > 1). The former steps will be

repeated until the G-H tree construction matches with an empty queue Q state.

The pseudo-code of the following G-H tree building strategy is summarized in

Algorithm 3.

Algorithm 3 Gomory-Hu tree transformation algorithm

1: Input: A connected graph G = (V (G),E(G))
2: Output: A tree GHT = (V (GHT),E(GHT))
3: V (GHT) = V (G), E(GHT) = ∅, Q = {V (G)}
4: while Q , ∅ do
5: S← Pull(Q);//pull the first element from Q
6: {S1,S2} ←minimum-Steiner-Cut(S,GHT)
7: V (GHT) = {V (GHT) \ S} ∪ {S1,S2}
8: E(GHT) = E(GHT)∪ (S1,S2)
9: if |S1| > 1 then

10: 5: Q←Q∪ S1
11: end if
12: if |S2| > 1 then
13: Q←Q∪ S2
14: end if
15: end while

We give a simple example of a G-H tree transformation of a graph G as illus-

trated in Fig. 5-2. It is straightforward to see that the number of edges in the tree

118CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

Figure 5-2 – Example of a Gomory-Hu tree transformation.

compared with the initial graph is reduced by 50%. Note that this G-H tree was

built using only 6 iterations of Algorithm 3.

5.3.2 HPAC: placement and migration

Based on the G-H tree transformation, the number of nodes is equal to the

number of nodes in the initial graph/network. However, the number of links in

the derived G-H tree is at most equal to the number of nodes in the graph. Ac-

cordingly, the set of all paths can be easily computed. In fact, in the tree structure

there is only one path between any couple of servers.

With this tree transformation leading to significantly reduced input sizes, the

problem of vCDN placement and migration will be easily solved even for large

problem instances (large number of nodes and arcs). This is due to the efficiency of

the G-H tree transformation leading to reduce considerably the domain of feasible

solutions. So, it allows us to find the near optimal solutions in few seconds. In

the following, we give more details on the second stage of the HPAC algorithm to

place and migrate vCDNs in a cost efficient manner.

The second stage of HPAC algorithm consists to explore the unique path from

an access point to the server containing the vCDN. Thus, if the ingress flow cannot

reach the destination (i.e. the vCDN), caused by a rupture node, then we will

simply migrate the required vCDN to the rupture node of the G-H tree.

We propose the following example (see Fig. 5-3) to illustrate HPAC algo-

rithm for migrating and placing judiciously vCDNs. It depicts a scenario of con-

5.4. OPAC VERSUS HPAC (EXACT VERSUS HEURISTIC) 119

Figure 5-3 – Example of HPAC vCDN content replication/migration.

tent replication/migration. In this scenario, a client cluster (group) representing

grouped end-user requests for a vCDN with a specific throughput (i.e., content

quality) equal to 40 Mbps. The proposed migration method searches to migrate

the desired vCDN from its initial deployed position (server 1) to the suitable server

(i.e., server 2 which has more than the required streaming capacity) in an efficient

way (i.e., with minimum migration cost).

5.4 OPAC versus HPAC (exact versus heuristic)

For the interest of assessing the efficiency of OPAC and HPAC algorithms, we

used [84] and [139] as optimization tools. In addition, different metrics/cost-

factors can be defined as follows:

Migration cost =
∑
s∈S

∑
f ∈F

xsf ×m
s
f (5.10)

Migration time =
∑
s∈S

∑
f ∈F

xsf × fsize × max
(i,j)∈Psf ,s

1
Li,j

(5.11)

Where Psf ,s is a given path from sf to s. In fact, we are here assuming that

the migration is done in a sequential way. If the migration is performed in paral-

lel, then the migration time would be given by: max
s∈S,f ∈F

(
xsf × fsize ×max(i,j)∈Psf ,s

1
Li,j

)
.

120CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

Figure 5-4 – Network topology used for small scale

However, we will only consider (5.11).

Replica number =
∑

s∈S\{sf }

∑
f ∈F

xsf (5.12)

vCache cost =

∑
s∈S

∑
f ∈F x

s
f × fsize∑

s∈S C
s (5.13)

vStream cost =

∑
v∈V

∑
f ∈F y

s
v,f × d

f
v∑

s∈SD
s (5.14)

Moreover, in order to decide which algorithm should we use and when, differ-

ent network scales (i.e. small and large) and topologies are considered as follows:

5.4.1 Small scale scenario: a network operator snapshot

In this subsection, the optimization targets a small number of vCDNs. There-

fore, a snapshot of a three-tier network operator architecture 3 is used for the eval-

uation as show in Fig. 5-4. Moreover, the main dissimilarities between the two

approaches according to the defined metrics are showed hereafter:

Algorithm complexity: The algorithmic complexity of G-H-based HPAC is

polynomial while it is exponential in OPAC.

3NFVI PoP Network Topology (2016): https://tools.ietf.org/pdf/draft-bagnulo-nfvrg-topology-01.pdf

5.4. OPAC VERSUS HPAC (EXACT VERSUS HEURISTIC) 121

The run-time: The time convergence of the two algorithms is shown in the Fig.

5-5a . HPAC outperforms OPAC since the latter is a combinatorial-based algorithm

and has an exponential complexity.

The total migration time: It is the duration needed to migrate a vCDN to the

optimal/near optimal point of the deployment. Fig. 5-5b shows the average mi-

gration time needed for migration vCDN delivery functions to the optimal instan-

tiation point taking into account the NFV constraints including system, network,

and content quality parameters which are related to the vCDN functionalities.

Although HPAC gives the shortest time as depicted in this figure, OPAC is still

acceptable. Indeed, This metric is strongly related to the distance between servers

as written in (5.11) and the time consumed for the vCDN migration process is less

than 1minute for vCDN numbers equals 11.

The total migration cost: It is evaluated in both approaches (exact and heuris-

tic). In Fig. 5-5c , the vCDN total migration cost is measured in terms of Gigabits

(Gb) against vCDN number. The Fig. 5-5c shows that vCDN-migration cost is in-

creasing in both approaches for vCDN number ranging from 3 to 6. This is due to

the non uniform client group distribution. It is noticeable that OPAC outperforms

HPAC for vCDN ranging from 6 to 11. Nevertheless, HPAC proofs a low variation

cost which leads to a better save of operator resources.

The total replication number: Under a random end-users matrix demand, the

total replication number in both approaches is not significant (small) as shown in

Fig. 5-5d. However, HPAC is the strictest approach when replicating vCDN in

small scale scenario.

Other cost-factors: OPAC and HPAC are compared in terms of vCache and

vStream cost-units 4. In Fig. 5-5e cost unit is plotted against vCDN number. The

virtual in-networking caching cost increases in both algorithms but they are still

insignificant. Similarly, in Fig. 5-5f the virtual in-network streaming cost increases

with vCDN number in both algorithms but it is still insignificant. Although the

4Cost-unit may be defined by the utilization percentage of the available system or network resource.

122CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

Table 5.2 – Gap (migration cost): HPAC efficiency

vCDN number 6 7 8 9 10 11
Gap (%) 0.66 0.42 0.25 0.62 0.62 0.3

HPAC is slightly cost-efficient, both algorithms proofed an efficient network re-

source saving.

Experiments show that OPAC is still acceptable and saves about 96 % of the

system resources and 94% of the network resources at |F| = 11. Nevertheless, it is

still the most costly comparing to HPAC in terms of system and network resource

usage.

For the sake of clarifying the effectiveness of the HPAC, we define the Gap

metric as follows:

Gap(C) =
CHPAC −COPAC

COPAC
(5.15)

Where C is a cost factor (e.g., migration cost).

Table 5.2 depicts the Gap metric calculation formulated in (5.15) . It demon-

strates the efficiency of the HPAC algorithm in terms of total migration cost since

the Gap values are close to zero.

5.4.2 Large scale scenario: an Erdos-Renyi graph-based network operator

In this subsection, the optimization targets a large number of vCDNs (µ vCDNs

or containers). The scenario relies on the well known Erdos-Renyi undirected and

weighted graph. The graph has 100 vertices (nodes) and 200 edges as shown in Fig.

5-6a. Its G-H-based transformation is shown in Fig. 5-6b which has only 99 edges

(49.5%). These figures depict the topology used for evaluating HPAC algorithm in

a large scale scenario. The OPAC algorithm could not be used here with reasonable

resources.

Fig. 5-7a and 5-7c depict the total migration delay time and the total migration

cost respectively. Further, Fig. 5-7b shows the total replication number. These

5.4. OPAC VERSUS HPAC (EXACT VERSUS HEURISTIC) 123

(a) Migration decision time (b) Migration time

(c) vCDN total migration cost (d) Replication number

(e) Virtual cache (f) Virtual stream

Figure 5-5 – OPAC-HPAC comparison in the small network scale scenario.

metrics are increasing until a decreasing slope at |F| = 80 representing the average

vCDN number stabilizing the system. Furthermore, Fig. 5-8 shows the run-time

of the OPAC and HPAC approaches in a large scale scenario. It demonstrates the

feasibility/efficiency of HPAC since its run-time is in terms of a few seconds (6 sec)

while OPAC run-time explodes from vCDN number equals 20.

5.4.3 Interpretations

In this subsection, we quote the interpretations that can be revealed from the

results above:

124CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

(a) Network topology (b) G-H-based transformation

Figure 5-6 – Network topology used for large network scale.

(a) Migration time/delay. (b) Replication number.

(c) Migration cost.

Figure 5-7 – HPAC in large network scale.

In small scale scenario: (the order of ten servers, ten client groups, and ten

vCDNs), the exact approach is suggested to be used because its run-time is in terms

of a few seconds (see Fig. 5-5a. OPAC is what we should choose as an optimization

mechanism because it gives the lowest migration cost as shown in Fig. 5-5c .

In large scale scenario: (the order of hundred servers, hundred client groups,

5.4. OPAC VERSUS HPAC (EXACT VERSUS HEURISTIC) 125

Figure 5-8 – OPAC and HPAC run-time in large network scale.

Table 5.3 – Efficiency comparison between OPAC and HPAC; SS: Small Scale,LS: Large
Scale N = |V (G)|, M = |E(G)|

Metrics OPAC HPAC
Algorithm
complexity

Exponential O(N3 ∗M1/2)

Run-time A few seconds in SS; a
few minutes in LS

A few second in SS/LS

Total migration
cost

Excellent in
SS;unfeasible in LS

Good in SS/LS

Total migration
time (i.e.,delay)

Good in SS;unfeasible
in LS

Excellent in both SS/LS

Replication
number

Free/loose in SS;
unfeasible in LS

Free/loose in SS/LS

vCache/vStream
cost

Good minimization in
SS

Excellent minimization
in both SS/LS

and hundred vCDNs), the exact approach is suggested to be useful and the G-H-

based HPAC algorithm is the alternative to solve the vCDN migration problem

since its algorithm run-time is in terms of a few seconds as shown in Fig. 5-8 .

A brief comparison between the two approaches which answers implicitly to

the question when to use OPAC and when to use HPAC is given in the Table 5.3 .

126CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

5.5 Integration of the Algorithms

Practically, the proposed optimization algorithms have to be integrated in a

vCDN controller (as seen Fig. 5-1). It interacts with the vCDN manager software

in a legacy NFV-MANO framework [172]. Further, as the migration problem deals

with different heteroclite parameters and variables, a clear view about how they

are extracted and reflected on an SDN/NFV framework is necessary.

In Fig. 5-9 and for the sake of simplicity, the two main use cases needed for in-

tegrating OPAC/HPAC algorithms by the network operator are depicted. Indeed:

• Use case 1: The network operator checks the current placement of vCDNs.

To do this, he queries a Database using SQL structured language and an

NFV/SDN controllers (e.g., Openstack [149]/Opendaylight [128]) using API

interfaces. Openstack horizon and Opendaylight DLUX providing respec-

tively the system and network resource information needed to complete the

operator database.

• Use case 2: The network operator requests for the vCDN optimization place-

ment/migration result using either OPAC or HPAC according to the actual

network scale (small or large).

From an operator perspective, integrating the proposed algorithms may follow

the sequence diagram represented by the Fig. 5-10 . Indeed, the main stakeholders

are:

• User (Operator): Operator of the infrastructure, deciding the migration or

not of a vCDN instance according to the current state of the environment

and the result given by the optimization algorithms OPAC/HPAC.

• System: This system, offering the Users an interaction with the OPAC/HPAC

algorithms inputs and results. It still maintains the operator database up-

dated by the necessary information about the operator’s servers (getHypervi-

sor()) and the provider’s vCDNs (getStatus()).

5.5. INTEGRATION OF THE ALGORITHMS 127

Figure 5-9 – Main use-cases for OPAC/HPAC in an SDN/NFV framework.

Figure 5-10 – Sequence diagram for OPAC/HPAC integration.

128CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

• Database: It contains the information about the SDN/NFV infrastructure sta-

tus and values. In this case, it is an SQLite database.

• vCDN Manager: It takes care of the interaction with the software managers

running in the architecture, to poll from them the required information for

the OPAC/HPAC algorithm. It will use internally API calls to the different

software managers (Openstack Horizon, Opendaylight, etc.).

• OPAC and HPAC Algorithms: Implementation of the optimization algo-

rithms that optimize the vCDN placement and migration based on ex-

act/heuristic optimization approaches. A file is given as an input and a file

is returned as an output of the selected algorithm. The algorithm selection

depends mainly on the network scale.

For simplicity, when the user (operator) executes the optimize command, the

system fetches the operator databases to get the required information (get input())

in order to launch in turn the optimize command. Then, OPAC/HPAC algorithm

decides where to place and migrate the vCDNs and provide the system/operator

the result. Finally, the system executes the migration process according to our

results and releases the dedicated resources in case of Service Level Agreement

(SLA)-expiration/vCDN-delete-request.

Recall that the proposed algorithms involved also the content provider who

wanted to rent a cloud of vCDN for its customers. Therefor, from a content

provider perspective, the main exchanges between the content provider, the vCDN

manager and the user (operator) are depicted:

• The content provider (e.g., YouTube) requests a vCDN creation during a spe-

cific time (e.g., 2 hours) and with a specific QoE (e.g., excellent) and to cover

a specific region (e.g. Paris).

• The network operator, representing the owner of the NFV infrastructure,

checks the current state of its NFV resources and call the proposed optimiza-

tion algorithms through the provided system.

5.6. CONCLUSION 129

• This system interacts with a operator database server to retrieve the required

information about network topology, NFV resources and update another

database dedicated to the placement/migration decision.

• The NFV Infrastructure (NFVI) administrator interacts with the decision’s

database to migrate the resources while keeping the signed SLA between the

content provider and the network operator valid and standing.

• Optionally, the NFVI administrator may let the content provider as the man-

ager of the video content.

• The decision database is updated by the operator for security issues.

• In case of SLA expiration (e.g, covering time expiration, vCDN delete-

request, etc..), the operator releases the dedicated NFV resources.

5.6 Conclusion

This chapter presents two optimization solutions either for the placement or

the migration problem of virtual CDNs. Multiple constraints that are strongly re-

lated to the CDN virtualization are taken into account such as vCDN size, content

resolution and system/network requirements. In addition, the two optimization

algorithms OPAC and HPAC target respectively different network scales. Then,

they are modeled and implemented. In small scale networks, results show that

|F| have more significant impact on the average migration cost in the case of us-

ing HPAC rather than OPAC. Nevertheless, it is noticeable that HPAC converges

to the optimal solution and outperforms OPAC in specific metrics. In large scale,

HPAC gives a short execution time (e.g. the run-time was in terms of a few sec-

onds) which proofs its efficiency and scalability. In this network scale, The HPAC’s

results show that |F| have insignificant impact on the migration time, the migra-

tion cost and the replication number since the system reaches quickly its stability.

Moreover, the two approaches are integrated in an SDN/NFV framework and the

130CHAPTER 5. SCALABLEANDCOST EFFICIENTALGORITHMS FORVCDNMIGRATION

main use case, sequence diagram from either an operator or content provider per-

spective.

In the next chapter, we extend the aforementioned placement algorithms to

service orchestration problems. In this case, vCDN components should be orches-

trated (chained) and service flows should be mixed together in order to satisfy

end-user requirements (e.g. a content with ad flows).

Chapter 6

Optimal and cost efficient algorithm

for vCDN orchestration

6.1 Introduction

In the previous chapter, we have investigated the main optimization techniques

for vCDN placement and migration problems in small and large network scales.

Currently, despite the importance of vCDN optimization tasks, service orchestra-

tion module is still missing in the global architecture. We therefore, try in this

chapter to contribute with vCDN management and orchestration architecture be-

side an optimal orchestration algorithm and explain how it is integrated in the

operators virtual LAN.

The proposed optimization algorithm in this chapter considers vCDN orches-

tration problem inside the mobile network operator. Moreover, the major objec-

tive from the proposed algorithm is to minimize the total orchestration cost of

vCDN components (vCDNC) while minimizing the additional extra-costs needed

for caching, streaming, and replicating the virtual instances. Through this opti-

mization (i.e. OCPA: Optimal vCDN Placement Algorithm), we are going to for-

mulate an exact algorithm based on a linear programming model for deciding the

optimal locations to place vCDN components to satisfy users quality requirements

131

132CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Figure 6-1 – vCDN network orchestration

and minimize the overall load on the main nodes and links.

The rest of this chapter is organized as follows: Section 6.2 describes the pro-

posed vCDN architecture in the NFV operation field. Section 6.3 details OCPA pa-

rameters, constraints and its objective function. Section 6.4 evaluates the proposed

algorithm and gives a comparison between them under predetermined metrics.

Section 6.5 quantifies the algorithm behavior under different scenarios. Section

6.6 concludes the work.

6.2 Virtual CDN orchestration architecture for the NFV deploy-

ment

6.2.1 How to orchestrate ?

vCDN is not a single network component. It is a complex network of virtual

functions such as caching, streaming, routing, advertising, and so on. Orchestrate

a vCDN means the placement of these functions and the scheduling of all software

resources in time and space. From an optimization point of view, this corresponds

to a new problem in which we have several services to chain and orchestrate. It is

necessary to pass the flow by several virtual servers. In Fig. 6-1, we show a vCDN

6.2. VIRTUALCDNORCHESTRATIONARCHITECTURE FORTHENFVDEPLOYMENT133

network that has two components (VNF1, and VNF2). They represent respectively

a content and ad servers. We suppose also that we have two software resources

(CPU processing and BW throughput capabilities). The first component requires

(2 CPU, 1 BW) for three time slots and the second component requires (1 CPU , 2

BW) for one time slot. As depicted in the figure, an orchestrator module allocates

system and network resources to VNFs.

6.2.2 ETSI-MANO-based vCDN orchestration architecture

ETSI-MANO standardizes a framework for deploying different Virtual Net-

work Functions (VNFs) 1. In our case, CDN is the target VNF. We followed this

standard and proposed our specific design and architecture for CDN. This latter

(vCDN) requires those virtual network functions (VNFs): request routing, caching,

streaming, cryptography, migration, advertisement, measurement, content adap-

tation, and an orchestration. Those VNFs are controlled by a Virtual Network

Function Manager (VNFM). This entity executes the proposed OCPA algorithm

for orchestrating and optimizing the placement and the migration of vCDN VNFs

on top of NFV physical infrastructure (NFVI). Indeed, according to the customer

requesting vCDN creation and orchestration service, a dynamic placement (or-

chestration) of the vCDN components is handled in an intelligent way.

NFVI is composed of three domains: i) virtual computing domain, ii) virtual

storage domain, and iii) virtual networking domain. NFVI is managed by cloud

management platform (eg., OpenStack [149]) which corresponds to the Virtual

Infrastructure Manager (VIM) that manages. The proposed vCDN architecture

has a global orchestration that manages and orchestrates the CDN VNFMs (if there

is multiple), OpenStack, and OSS/BSS which manages QoS, network failure, and

security.

We propose a simplified vCDN architecture With respect to the ETSI-MANO

standard as depicted in Fig. 6-2. Indeed, it has the following communication

1It is software that implements a network function.

134CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Figure 6-2 – virtual CDN architecture according to ETSI standard

interfaces:

1. Vertical interfaces:

• vCDN orchestrator–|–vCDN manager: It instantiates the vCDN manager

and then manages the global CDN network services through resource

management rules.

• vCDN manager–|–OpenStack: It has the role of virtual resource provi-

sioning .

• OSS/BSS–|–vCDN’s VNFs: It guarantees the end-to-end security of the

allocated vCDN VNFs and provides the streamed QoS.

• vCDN’s VNFs–|–VMs(NFVI): It assures the instantiation and deploy-

ment of the corresponding VNFs of vCDN (i.e., request routing, stream-

ing, and caching).

2. Horizontal interfaces:

6.2. VIRTUALCDNORCHESTRATIONARCHITECTURE FORTHENFVDEPLOYMENT135

Table 6.1 – Mapping between simplified vCDN and ETSI-MANO

ETSI-
MANO

Our mapped entity

NFVO CDN orchestration module
VNFM CDN Manager, OCPA
VIM OpenStack
EM/VNFs Caching and streaming nodes with

a request routing node
NFVI VMs
OSS/BSS Not used here

• vCDN orchestrator–|–OSS/BSS: It manages the CDN network services

(NSs).

• vCDN manager–|–EM/VNF: VNF life-cycle management including

VNFs scaling, VNFs creation, VNFs deleting, VNFs stopping, VNFs re-

leasing.

• OpenStack–|–NFVI/VMs: It has the role of VM resource allocation and

provision. It manages VM creation, VM deleting, and VM importing.

In Table 6.1, we map the ETSI-MANO design to propose a practical vCDN ar-

chitecture. Further, we propose different algorithms for orchestrating vCDN com-

ponents, placing, and migration of the vCDN caching and streaming nodes.

vCDN must follow the VNF model. However, its specificity resides on the type

of the used components, the OCPA orchestration algorithm that should be used,

and its layer of integration (vCDN manager). In the next subsection, we define our

enhanced vCDN architecture comparing to the traditional ETSI MANO model.

6.2.3 Global virtual CDN architecture

The global vCDN architecture is enriched by several computing, networking

and management modules. In this section, we quote the baseline components as

follows: NFVI space, VNF space, Orchestration space, and management space.

136CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Figure 6-3 – VNF space for virtual CDN

NFVI space

This space includes three domains:

1. Virtual computing domain: The computing domain is the area of virtual ma-

chines computation.

2. Virtual storage domain: It is the area of allocating VM states, contexts and

files.

3. Virtual networking domain: It is the area of virtual network interfaces (VNIs)

configuration.

VNF space

In the VNF space as shown in Fig. 6-3, we propose these virtual functions for

vCDN:

1. Request routing: This function has the role of selecting a suitable cache node

and redirecting end-user requests to it. It can be:

6.2. VIRTUALCDNORCHESTRATIONARCHITECTURE FORTHENFVDEPLOYMENT137

• DNS instance (vDNS): It is a DNS server software instance running on

one virtual machine. This approach of redirection relies on DNS client IP

address and not end-user IP address. It cannot be an optimal redirection.

• HTTP instance: It is a HTTP server software instance running on one

virtual machine.

• Anycast instance: It is an Anycast server software instance that repre-

sents a group of caches nodes by a single IP address.

2. Cache instance (vCache): It is a storage domain, memory zones, or a simple

data base server/client that caches the video content temporary. This video is

delivered locally to another end user for a future request. As an example for

caches: MYSQL.

3. Authentication Authorization Accounting instance (vAAA): It is a security

software instance for the cryptography issues. Any foreign user cannot deci-

pher the video content either in the origin server, or in the cache nodes.

4. Streaming server instance (vStream): It is a video streaming server running

on a virtual machine. It uses RTP or RTCP protocol for the delivery.

5. Origin server (OS) Instance: the origin server is the entry point to the CDN

customer (content provider). The latter ingest its popular video content in-

side the origin server. We have one origin server per content provider.

In our vCDN design, we propose offering one request routing instance, one

AAA instance, one origin server. And, we propose also n cache instances, n stream-

ing servers instances per content provider.

Note here that other VNFs can be added easily to the VNF space and still con-

trolled by the VNFM. For instance, we can quote:

• Dynamic MIP.v4 or PMIP.v6 server instance: In order to enable IP mobility

of the virtual machine, we propose to use Dynamic MIP.v4. Virtual machine,

server, or session mobility is enabled through this protocol. The use of this

138CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

protocol is mandatory for live virtual machine migration between different

data-centers. Other tunneling protocols can be used such as VPN, GRE and

Cisco LISP mobility.

• SDN controller instance: It is software for controlling video traffic between

streamers, load balances, and cache nodes. It can use virtual switches for

linking the VMs and enable monitoring and traffic engineering. Floodlight

and Opendaylight are examples of SDN controllers.

• Load balance instance: It is software instance for balancing end user request

between active streaming servers.

• Advertisement server Instance: It acts a mixer of the origin content and pop-

ular or desired advertisement.

• Mobility and prediction instance: It has the role of an entering point to the

OPAC instance. It feeds it by a user requests traces and user location traces.

Those VNFs related to vCDN architecture should be interconnected, con-

trolled, and orchestrated by the VNFM.

For the sake of simplicity, Fig. 6-3 depicts the low level design of VNF space

for vCDN. First of all, content provider pushes his content in an origin server

(OS). Secondly, the latter requests for distributing the content between distributed

vCaches. This operation starts after a cryptography processing through AAA

server (2-a, 2-b). Thirdly, vCaches push content is vStream virtual nodes (3).

Fourthly, user device sends a request to a virtual request routing server (4). Fifthly,

vDNS redirects user’s device request to a suitable vStream node.

Orchestration space

In the orchestration space, we propose to execute an optimization algorithm as

an NFV instance in the centralized entity: vCDN Manager as designed in Fig. 6-2.

The vCDN Manager has to orchestrate the aforementioned VNFs already proposed

for vCDN network function according to the output of the optimization algorithm.

6.2. VIRTUALCDNORCHESTRATIONARCHITECTURE FORTHENFVDEPLOYMENT139

The proposed OCPA orchestrator instances are optimal orchestration algorithm

for vCDN that map vCDN VNFs to physical servers and dynamically migrate

vCDN nodes to the optimal point of deployment. In other words, these instances

are executed as NFV instances of orchestration on top of a VNFM2. The OCPA

algorithm provides a service instantiation graph, SIG representing the candidate

NFV servers to where a set of vCDN components should be placed. The algorithm’s

execution is then triggered according to these factors:

• Constraint: It represents system, network, and quality constraints of the or-

chestration algorithm.

• Service Level Agreement (SLA): This trigger is translated from the upper

layer.

• Storage Prediction: The available server storage at each time triggers the exe-

cution of the algorithm.

• Bandwidth Prediction: The available server storage at each time triggers the

execution of the algorithm.

Recall that the output of the aforementioned algorithms is a mapping graph

between the optimal NFV servers and each candidate VNF. This output informa-

tion can be succeeded by a decision-making process giving place/migrate the VNF

or not information.

Management space

In the management space, we propose a centralized entity for managing the

CDN. It has three main roles:

• The creation of one or more orchestration spaces.

• The management of virtual machines allocation for each vCDN service or

VNF.
2It is the software that implements the management function (migration, scaling in/out, etc.) of different

VNFs already deployed in the network.

140CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Figure 6-4 – Management, orchestration, and VNF spaces for vCDN

• The resource provision and allocation for the VMs.

In Fig. 6-4, we propose adding a Manager entity to the above NFV and VNF

spaces. This entity defines the management space. It interacts with the content

provider (i.e., the vCDN customer) for content pushing inside the vCDN network

provider. The Content provider signs with the manager the SLA, provides the

vCDN service time (duration of the service), and the specifies the desired regions

that it would cover. Moreover, for adaptive data center activation, end-user de-

mands can be predicted through a data mining server. It communicates between

the content provider and the manager entities.

In Table 6.2, we compare the proposed vCDN architecture to the ETSI-MANO

reference. It is clear from the table that our design is more flexible as we added an

API interface between CPs and NFVI.

6.3. OCPA: OPTIMAL VCDN ORCHESTRATION ALGORITHM 141

Table 6.2 – Comparison between vCDN and ETSI-MANO

Our design ETSI-MANO correspondence
NFVI space NFVI
VNF space VNF/EM
Orchestration
space

VNFM, NFVO

Management
space

No entity, this space is specific for virtual
CDN service. It interacts directly with a
content provider which is the customer
of CDN service.

6.3 OCPA: optimal vCDN orchestration algorithm

In this section, we specify the parameters and the constraints that are defined

and proposed in formulating the optimization model, OCPA. This formulation de-

termines the extension of vCDN component to the optimal locations. We quote in

Table 6.3 the main system and network parameters, and decision variables. The

OCPA optimization model considers three NFV server levels where vCDN compo-

nents may be extended in the orchestration process: i) the PoP level, ii) the home

level, and iii) the user device level.

• The decision variables:

1. The binary variable xsf indicates the placement (instantiation) of the

vCDN component on the optimal location s. It is defined as:

xsf =


1 if f is instantiated on s

0 Otherwise
(6.1)

2. The binary variable ysv,f indicates a customer v needs a vCDN compo-

nent, and the server s instantiates it. It is defined as :

ysv,f =


1 if v needs f and s instantiates f

0 Otherwise
(6.2)

142CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Table 6.3 – Mathematical Notation

Parameters Definition
V The set of customer’s clients
S The set of servers (s ∈ P oP ,H,U)
Ds Maximum network capacity of the server s ∈ S
F The set of vCDN components in terms of vCDN

types
fsize vCDN’s size (f ∈ F)
Cs Maximum system capacity of the server s
Li,j Link capacity

d
f
v The set of customer demands
psf The placement cost of f on s

Decision variables Definition
xsf Placement binary variable which indicates that

the (f ∈ F) should be placed on the (optimal)
server s ∈ S

ysv,f Mapping binary variable which indicates that
consumer group (v ∈ V) needs (f ∈ F) placed
on the server s ∈ S

z
v,f
i,j Flow balance binary variable which indicates

whether the link (i, j) is used

3. The binary variable zv,fi,j indicates whether a link (i, j) is used (from i to

j) to stream from a server s replicating f (the one for which ysv,f = 1) to

customer’s clients v.

• The constraints proposed in this model are:

1. Storage and bandwidth (S/B) capacity: the end user device level has less

S/B capacity than the STB/RAN and the STB/RAN level has less S/B

capacity than the PoP/EPC level.

2. The storage of the optimal server should not exceed its maximum size:

∀s ∈ S :
∑
f ∈F

xsf × fsize ≤ C
s (6.3)

3. The cost of streaming f by a server s should be less than or equal to the

6.3. OCPA: OPTIMAL VCDN ORCHESTRATION ALGORITHM 143

maximum server capacity:

∀s ∈ S :
∑
v∈V

∑
f ∈F

ysv,f × d
f
v ≤Ds (6.4)

4. Each replica server among the distributed NFV enabled infrastructure

has also to serve one optimal user device.

∀s ∈ S : ysv,f ≤ x
s
f (6.5)

5. Flow balance or conservation constraint (which is the Kirchhoff laws)

between the optimal server s and the customer’s client node v should be

as follows:

∀i, j ∈ V ∪ S :
∑
v∈V

∑
f ∈F

z
v,f
i,j × d

f
v ≤ Li,j (6.6)

6. Network flow constraint that implies that incoming traffic equals to the

out-coming traffic at any network link:

∑
j

z
v,f
i,j −

∑
j

z
v,f
j,i =


0 if i , v, i , s

ysv,f if i = s

−1 if i = v

(6.7)

Beside these constraints, we have considered Device-to-device (D2D) commu-

nication between end-users devices. Each end-user device acts as a cluster head

and feeds a D2D cluster.

∀v ∈ V ,
∑
f ∈F

d
f
v =D2Dn (6.8)

Where D2Dn is the number of D2D that requesting a vCDN service through the

end-user device v ∈ V . The end-user device may act as a cluster head in a typical

D2D-assisted model.

144CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Moreover, NFV/SDN criteria are considered in the sense that each vCDN may

serve either Standard Definition (SD), High Definition (HD), or Ultra HD (UHD)

video quality:

∀v ∈ V ,f ∈ F dfv ∈ {SD,HD,4K} (6.9)

In order to maximize the average QoE of the customer’s clients, extending the

vCDN components in the orchestration process is important and reduces the end-

to end response time and the access delay. Therefore, the objective function has

to minimize the response time of all the clients. This is equivalent to minimize

the total migration cost. Hence, the proposed objective function is formulated in

equation (6.10) (cost function):

min
∑

s∈X={P oP ,H,U }

∑
f ∈F

xsf × p
s
f (6.10)

Where: (xsf)|S |×|F| is the decision binary variable matrix indicating that a vCDNC

f ∈ |F| should be migrated to the server s ∈ X and psf is a parameter depending

on the position of s, the position of sf (the server initially containing f before

orchestration), and the position of sv (the server initially connecting to the client

group v). psf depends also on the size of f and the operator policy.

For the sake of clarity, we propose an example of OCPA vCDN orchestration as

shown in Fig. 6-5 . The algorithm is as follows: 1) As an input, the algorithm gath-

ers SDN/NFV architectural information such as the components of vCDN (vCDNc

for service caching, vCDNs for service streaming, and vCDNr for request routing)

and all necessary dynamic parameters, 2) as a result, end-users requesting vCDN

service streaming will be redirected to the optimal edge cloud location.

Recall that the network operator hosting the vCDN content provider orches-

trates the vCDN instances (or components) to an optimal service instance graph

(SIG) where resources are available and content quality streamed are satisfied.

6.4. PERFORMANCE EVALUATION 145

Figure 6-5 – OCPA: vCDN orchestration example

6.4 Performance evaluation

For the interest of assessing the efficiency of OCPA algorithm, we used three-

tier as network topology (see Fig. 6-6) suggested by IETF standard for data center

[74] and [84] as optimization tools. In addition, different metrics/cost-factors can

be defined as follows:

vCDN caching cost =

∑
s∈{P oP ,H,U }

∑
f ∈F x

s
f × fsize∑

s∈{P oP ,H,U }C
s (6.11)

vCDN streaming cost =

∑
v∈V

∑
f ∈F y

s
v,f × d

f
v∑

s∈{P oP ,H,U }D
s (6.12)

vCDN replica number =
∑

s∈{P oP ,H,U }\{sf }

∑
f ∈F

xsf (6.13)

In Fig. 6-7, the vCDN total migration cost is measured in terms of Gigabits

(Gb) against vCDN number (components) and under different deployment scenar-

ios or flavors. Result shows that vCDN-migration cost is increasing in all flavors

(vCDNTTP, vCDNTTH, vCDNTTU) for vCDN number ranging from 3 to 10. This

is due to the non uniform client group distribution. It is noticeable that vCDNTTP

outperforms vCDNTTH and vCDNTTU for vCDN ranging from 6 to 10. Indeed,

146CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Figure 6-6 – Network topology used for the OCPA evaluation

Figure 6-7 – vCDN total migration cost

vCDNTTU requires additional cost and brings more gain to the network opera-

tor as the content is extended outside the core network. Recall that each client

group (v ∈ V) requests different vCDN components depending on the D2D cluster

members.

Fig. 6-8 depicts the total migration time needed to orchestrate vCDN com-

ponents to the optimal points of deployment taking into account the NFV con-

straints including system, network, and content quality parameters which are

related to the vCDNC functionalities. Although vCDNTTP and vCDNTTH give

more shorter time than vCDNTTU, this latter is still acceptable and feasible. This

is due to the high required cost required for opening another instance in the user

device layer. Recall that the proposed OCPA model focuses mainly on minimizing

6.5. OCPA: SCENARIOS 147

the total orchestration cost.

Figure 6-8 – vCDN migration time

OCPA is quantified under vCDN caching and streaming cost factors 3. In Fig.

6-9a and Fig. 6-9b, cost factors are plotted against vCDN number. The vCDN

caching and streaming cost factor increases with vCDN components in all flavors

but it still insignificant. Although the orchestration flavor, vCDNTTP is slightly

cost-efficient, OCPA algorithm proofed an efficient network resource saving.

In Fig. 6-10, the total replication number of vCDN is plotted against |F| under

a random client matrix demand. Result shows that replica number is not signif-

icant. However, vCDNTTP is the strictest approach when replicating vCDN in

small scale scenario.

6.5 OCPA: scenarios

In order to compare OCPA, we proposed two scenarios: 1) User-side and 2)

Network-side perspectives. The two approaches are defined as follows:

1. In user-side scenario, vCDN components are orchestrated toward the access

level represented by home devices (STB, RAN, and and end-user equipment).

In other words, network operator outsources vCDNC functionalities. Recall

that the network operator is still the manager of its resources despite its out-

sourcing to the user-side domain.
3Cost factor may be defined by the utilization percentage of the available system or network resources. It

is the amount of resources (in GBytes) consumed when orchestrating vCDNC to optimal locations.

148CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

(a) vCDN caching cost (b) vCDN streaming

Figure 6-9 – vCDN network optimization costs

Figure 6-10 – vCDN replica number

2. In network-side scenario, vCDN components are orchestrated toward the

core level represented by the core devices (PoP and data centers).

In Fig. 6-11a and Fig. 6-11b, we depict respectively the average vCDN caching

and streaming cost factors. In vCDNTTP use case, where the NFV targets only the

PoP server in the core network, vCDN caching and streaming in the user-side is

null. However, this metric increases in vCDNTTH and vCDNTTU use cases. It

is reduced in vCDNTTU since the algorithm tries to minimize the orchestration

processes and instances the vCDN in the access level.

In Fig. 6-12a and Fig. 6-12b, we depict respectively the average vCDN caching

and streaming cost factors. Results show that theses metrics are increasing with

vCDN number and vCDNTTU flavor has more significant impact on the caching

than on the streaming which is quasi-null.

6.6. CONCLUSION 149

(a) User-side vCDN caching (b) User-side vCDN streaming

Figure 6-11 – vCDN network optimization costs: user side

(a) Network-side vCDN caching (b) Network-side vCDN streaming

Figure 6-12 – vCDN network optimization costs: network side

6.6 Conclusion

This chapter presents a novel optimization technique for vCDN components or-

chestration using linear programming technique. We take into consideration novel

constraints related to virtualization. Still, all the previous optimization techniques

for placement, migration, and orchestration are mono objectives. In NFV delivery

context, different actors (content provider, network operator, and client) may co-

operate and compete at the same time. Therefore, in the next chapter, we are going

to model the vCDN migration process using a novel multi-criteria decision making

technique where different deployment solutions are proposed.

150CHAPTER 6. OPTIMALANDCOST EFFICIENTALGORITHMFORVCDNORCHESTRATION

Chapter 7

CDNaaS Framework: TOPSIS as

multi-criteria decision making for

vCDN migration

7.1 Introduction

According to multiplicities of criteria for migration, a vCDN migration process

is complex. Further, there are some metrics needed to be maximized such as the

QoE of the end-user and other factors and criteria that needed to be minimized

as we proved in the previous chapters (i.e., in our vCDN placement, migration,

and orchestration algorithms). What we propose here is to use a Multi-Criteria

Decision Making (MCDM) method to assure a trade-off between all these metrics

in an optimal way.

Moreover, for optimal software resources utilization, vCDN migration needs

an intelligent decision-making process for selecting the suitable point of operation

where such vCDN components should be migrated. To do this, a multi-criteria de-

cision analysis method (TOPSIS) is proposed in this context as a promising func-

tion that enables a flexible selection of the suitable area (core layer, distribution

layer or access one) of instantiation of vCDN according to different criteria re-

151

152CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

lated to each vCDN actors (i.e., content provider, network operator, and end-user).

Then, a full CDNaaS framework (i.e, enhanced by the multi-criteria decision mod-

ule) for vCDN management and orchestration is presented.

The rest of this chapter is organized as follows. Section 7.2 describes the adap-

tation of TOPSIS technique in vCDN migration context. Section 7.3 details the

performance evaluation. Section 7.4 introduces our vCDN workflow and the con-

clusions of the work are highlighted in Section 7.5.

7.2 TOPSIS-based method for vCDN migration

Selecting the optimal place for migration a vCDN component is an important

optimization task giving the large network scale and the complex parameters to

be considered. In DVD2C project [129], we considered different layers of vCDN

request deployment representing the extended position of vCDN: i) vCDN-to-the

PoP layer which is representing the operator core data center, ii) vCDN-to-the

home network which is representing by the home gateways or Set-Top-Boxes (STB)

and iii) vCDN-to-the user devices layer which is represented by the end-user de-

vices. Precisely, our proposal is strongly based on the Technique for Order of Pref-

erence by Similarity to Ideal Solution (TOPSIS) method [83]. This technique trans-

forms the context of the end-user (QoE), network operator (cost of migration) into

two parts: i) alternatives or options and ii) criteria or attributes.

Algorithm 4 summarizes the pseudo code of TOPSIS based vCDN migration. It

is based mainly on two steps:

• TOPSIS-algorithm: In this step, the network parameters are identified in or-

der to carefully choose the decision criteria and the main alternatives.

• Layer selection& Migration-process: In this step, the network administra-

tor selects the suitable layer of deployment. The vCDN nodes dynamically

migrate to the optimal NFV servers according to the previous output of the

TOPSIS technique. This reduces the number of parameters and constraints

7.2. TOPSIS-BASED METHOD FOR VCDN MIGRATION 153

Algorithm 4 TOPSIS algorithm for multi-criteria vCDN migration

1: Input: j: criteria, i: alternatives, xi,j
2: Output:
3: TOP SIS(criteria,alternatives);
4: Layer − selection();

used by the optimization algorithm. Therefore, running time and algorithm

complexity could be reduced.

For the sake of clarity, hereafter, we describe these main stages as follows:

7.2.1 TOPSIS formulation

TOPSIS is a multi-criteria decision analysis method. In other words it is a

decision-making approach that could be used in different domains. Generally, it

is based on two main features: options and criteria. Options are the list of alterna-

tives that can be taken as a decision. Criteria are the metrics that can be considered

to make an optimal decision. In vCDN migration context, TOPSIS can be used as

follows:

• The potential options that may be proposed are vCDN-to-the-POP (vCD-

NTTP), vCDN-to-the-home (vCDNTTH) and vCDN-to-the-User device

(vCDNTTD) and in case of no migration will be vCDN-at-the-Origin server

(vCDNATTO).

• They characterize the content provider, the network operator, and the cus-

tomer requirements in terms of cost, quality and gain.

To define and enable the TOPSIS method, an option-criteria matrix is defined

as follows: M = (di,j)i,j , i ∈ {1,m}, j ∈ {1,n}. Where m is the number of options,

and n is the number of alternatives or criteria. In the context of vCDN migration,

we have (m = 4 alternatives) as: (vCDNTTP, vCDNTTH, vCDNTTD, vCDNATTO)

and (n = 8 criteria) as explained hereafter:

• Content provider has three criteria: They are the cost of pushing content

within the network operator, the internal configuration required, and the av-

154CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

erage QoE measured and required according to the signed and valid SLA (i.e.,

content provider (cp) cost, (cp) config, and (cp) quality).

• Network operator has three criteria: They are the cost of migration and opti-

mization, the QoS, and the gain. (i.e., network operator (op) cost, (op) quality,

and (op) gain).

• Customer has two criteria: the cost of accessing to the network operator and

benefiting of such vCDN service and the satisfaction’s index (QoE) in terms

of its profile (i.e., end-user (u) cost and (u) quality).

The pseudo-code of the TOPSIS decision-making strategy is summarized in

Algorithm 5. Hereafter we explain its main stages for better calcification. After

defining the main criteria and alternatives related to the vCDN service migration,

TOPSIS formulates the decision making matrix (dij)m∗n which should be entered

as an input (Algo.5 line 1). Note that the network operator should enter dynam-

ically the matrix values related to the importance of the criteria and according to

its objective (e.g., minimizing the cost, maximizing the QoE, etc.). Further, giving

the decision matrix, we calculate the entropy weight of each criteria (wj) where;

(j ∈ {1,m}) according to the Shannon theory that tells the maximum benefit weight

of each criteria (Algo.5 lines 5 − 7). This value is needed then to calculate the

weighted and normalized decision matrix (wrij)m∗n Algo.5 lines 8 − 11). Further-

more, we calculate the Positive Ideal Solution (P IS = Ideal+) and the Negative

Ideal Solution (NIS = Ideal−) in order to choose the optimal criteria related to the

alternatives (Algo.5 lines 12 and 13). Basically, the best alternative should be the

closest to (P IS) and the farthest from (NIS). This optimal criterion is calculated

according to the L2−distance. Then, we calculate the (p−) and (p+) that represent

the L2-norm distances from the vCDNTTX position to the worst and best condi-

tions respectively (Algo.5 lines 14 − 15). Finally, for each alternative a similarity

function to the worst condition (Algo.2 line 16) is calculated and sorted in a list

representing the ranked alternatives (Algo.5 lines 16− 17). Then, the list is given

7.2. TOPSIS-BASED METHOD FOR VCDN MIGRATION 155

Algorithm 5 TOPSIS decision list formulation algorithm

1: Input: A Decision Making Matrix D = (dij)m∗n
2: Output: A list L = (L1, j); j ∈ {1,m}
3: Q = {m}
4: while Q , {} do
5: ∀s ∈ {1,n}; bi,s←

di,s∑j=m
j=1 dj,s

6: ∀s ∈ {1,n}; ks←
∑i=m
i=1 bi,s × lnbi,s

7: ∀s ∈ {1,n};ws = ks∑j=n
j=1 kj

8: R = (ris)m×n
9: ∀i ∈ {1,m};∀s ∈ {1,n}; ris = di,s√∑j=m

j=1 d
2
j,s

10: WR = (wris)m×n;
11: ∀i ∈ {1,m}; ∀s ∈ {1,n}; (wris)m×n = rm×n ×wn×n
12: Ideal+←max wris = (wr)∗+
13: Ideal−←min wris = (wr)∗−
14: ∀j ∈ {1,m};p+

j ← dist(wri,s, (wr)∗+s)
15: ∀j ∈ {1,m};p−j ← dist(wri,s, (wr)∗−s) //the Euclidean distance
16: ∀j ∈ {1,m};sim1,j ← p−j /(p

−
j + p+

j) //
17: ∀j ∈ {1,m};L1,j ← sort(sim)
18: end while

to the network operator as an output in order to select the appropriate layer to

where a vCDN should be positioned.

7.2.2 Layer selection

The output of our algorithm is an ordered list of alternatives. The layer se-

lection method outputs a ranked structure list giving a rank to each alternative.

Through the proposed context (e.g., vCDN migration), TOPSIS selects the best

layer (vCDNTTP, vCDNTTH, vCDNTTU or vCDNATO) in which we can run the

optimization algorithm for migrating vCDN nodes. Note here that the run-time

needed for selecting the optimal layer is in terms of a few seconds (30 sec as mea-

sured in next subsection) which valid the feasibility of the proposed method.

7.2.3 Layer evaluation

To evaluate our context with TOPSIS, we used the computing environment

MATLAB. Fig. 7-1a depicts the decision making matrix. Fig. 7-1b and Fig. 7-

156CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

(a) Decision matrix (b) Normalized decision matrix

(c) Weighted normalized matrix (d) Positive/Negative solutions

(e) L2-distance for vCDNTTX (f) Network layer selection

Figure 7-1 – The TOPSIS sequence for vCDNTTX decision

1c depict the calculation of the normalized and the weighted-normalized decision

matrix respectively. Moreover, Fig. 7-1d shows the TOPSIS positive and negative

solutions related to vCDN migration criteria and our heterogeneous criteria. Then,

Fig. 7-1e plots the distance of each alternative from the ideal solutions (positive

and negative). Finally, Fig. 7-1f ranks our proposed alternatives. Experiments

show the need for migration (vCDNATO is minimal) and suggest PoP and User

Device area to be optimal points of placement and migration of vCDN compo-

nents.

7.3. TESTBED-BASED PERFORMANCE EVALUATION 157

(a) Testbed architecture
(b) Migration Time for different VM sizes and net-
work connection speeds

Figure 7-2 – Testbed and VM migration times

7.3 Testbed-based performance evaluation

In this part, a performance evaluation for vCDN use case is conducted. Dif-

ferent scenarios of Virtual Machines (VM) representing the vCDN are customized

and validated in terms of vCPU, vRAM and vStorage disk. Moreover, different net-

work conditions for interconnections are considered in order to measure the delay

time plus the services interruption time in case of live migration for real time ser-

vices. The platform used for this test consisted of open source virtualization emu-

lator QEMU with Kernel Virtual Machine (KVM). The actual virtualized reference

architecture used in our test is shown in Fig. 7-2a. The testbed is conducted using

three machines with Ubuntu 14; the first machine represented the server parts of

VLC streaming through VM1 and VM2 controlled by the first KVM hypervisor-1.

The second hypervisor-2 will represent the new location/PoP to receive the mi-

grated server. The third machine used as VLC client attached to the server during

the real time migration to test the connectivity and service interruption times.

In this live migration scenario, we can summarize the following tests as firstly

shown in Fig. 7-2b. As long as we have increased the size of the virtual machine,

we will need more time to finish the migration. Through these tests, we concluded

that the time required for VM migration is different if the size of the machine has

changed and if the communication speed is also changed. As a result, the time

will increase in the case of live session migration with video streaming although

the diffused video has the same size or length.

158CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

(a) Migration time for same VM size (20G) with
RAM resizing

(b) Service interruption time in case of 4G RAM
and different VM sizes and connection speeds

Figure 7-3 – VM migration and interruption times

Moreover, we change the virtual machine RAM to get better performance with

minimum migration time. So, the previous test was repeated for same VM size

of 20G and different RAM sizes (2G and 4G). For this we obtained the enhanced

reduction in migration time as shown in Fig. 7-3a compared to Fig. 7-2b. Finally,

the service interruption time (SIT) is measured as shown in Fig. 7-3b. It is cleared

that, the network parameters like connection speed has a positive impact on the

live migration process as the SIT can be neglected with higher speeds as cleared in

Fig. 7-3b with Giga Ethernet connection between the two machines.

7.4 CDNaaS workflow

Figure 7-4 – Optimization of CDNaaS workflow for DVD2C project

7.4. CDNAAS WORKFLOW 159

We present in Fig. 7-4 the workflow that integrates the TOPSIS technique be-

side optimal and near optimal vCDN migration algorithms [87]. Integrating the

proposed methods can follow this diagram with the main stakeholders as:

• Content provider (OTT/CP): The owner of the origin video content and want

to create a vCDN network.

• CDN Brokers: It is service orchestrator that interacts with the network Oper-

ator of the infrastructure, triggering the deployment of vCDN.

• TOPSIS-DB: a database that includes the ranking values (output of the TOP-

SIS technique) representing the Layer selection work. Ranks are then entered

as an input in the optimization model through inserting the rank values in

the initial DB.

• OPAC and HPAC algorithms: They are respectively the implementation of the

optimization algorithms in small and large scale network that optimize the

vCDN placement and migration based on exact (optimal) and heuristic (near

optimal) optimization approaches. The vCDNTTX deployment solutions as-

sisted by TOPSIS method are responsible for deciding whether to extend the

migration of vCDN nodes till the Home/User devices or not.

• Databases: mainly two DBs: i) retrieving the vCDN system and network pa-

rameters (InitialDB) and then ii) updating a (statusDB) that maps the current

location of vCDN (e.g., on which PoP it is running).

• OpenStack: The NFV platform, KVM: The hypervisor and the accelerator of

the CPU in the kernel space.

• H/W: The physical infrastructure that supports the virtualization tasks such

as cloning, migration, etc.

For the sake of clarifying the sequence vCDNaaS workflow, we propose that firstly

different content providers may request for the creation of vCDN services, then

160CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

after the deployment and the orchestration of the vCDN nodes, the network oper-

ator may execute the optimize command according to the client group demands,

therefore, the system fetches the operator databases to get the required informa-

tion in order to launch in turn the optimize command. Then, the optimization

algorithms decide where to place/migrate (OPAC/HPAC) the vCDNs and provide

the system/operator the result. Finally, the system executes the migration process

according to our results and releases the dedicated resources in case of Service

Level Agreement (SLA) expiration/vCDN-delete-request.

To enumerate the main advantages of the proposed virtual CDN, we compare

the proposal of (vCDN) to physical CDN (pCDN). Thus, we quote:

• pCDN relied on a pre-fetching process. This process locates video caches in

caches nodes before that end user made a request. The process is based on

statistics and on prediction modules. It is an off-line optimization. In vCDN,

caching process is used but in proactive manner so that it uses mobility and

Bandwidth prediction modules. Further, using OPAC placement module in

the orchestration space, the optimization is dynamic and on-line. Therefore,

vCDN is more flexible and can deal with live events, unexpected high traffic

while pCDN is still dependent to the static configuration based on peak hours

which is not reliable.

• pCDN uses algorithm with no migration support while in vCDN, benefiting

from virtualization, migration is enabled. For instance, server, content, and

session migration are three categories for migration.

• pCDN is a hardware based solution while vCDN is virtual/software based

solution. Different acceleration tools are used either in kernel space or in user

space. For instance, DPKD, KVM, and virtual switches are software packages

to do this.

• vCDN can imply multiple paths between OVS switches and nodes. Therefore,

it offloads as max as possible the load on the network infrastructure. On

7.5. CONCLUSION 161

the other hand, pCDN using single path TCP, increases network overhead,

doesn’t resist failure and not implies any fault tolerance module.

7.5 Conclusion

This chapter proposed a multi-criteria decision making technique called TOP-

SIS for selecting the optimal deployment layer of vCDN migration problem. Then,

the proposed technique is integrated in a CDNaaS workflow for vCDN orchestra-

tion with respect to the previous chapters. Still, TOPSIS is an heuristic solution

that can deal with large scale systems. Therefore, a multi-objective optimization

problem formulation may be proposed in the future work to recommend optimal

solutions and assess the efficiency of TOPSIS.

In the next chapter, we are going to study complex active networks and see if

traditional optimization constraints or multi-criteria methods are still valid.

162CHAPTER 7. CDNAAS FRAMEWORK: TOPSIS ASMULTI-CRITERIADECISIONMAKING FORVCDNMIGRATION

Chapter 8

Service placement in complex active

networks

8.1 Introduction

This chapter deals with the optimal planning of complex active networks.

Complex networks [58] include many data networks used in real life. Social net-

works and Internet video distribution networks are good examples for complex

networks. Active networks [176] are networks that interact with the data con-

tent. Originally proposed in a distributed computing context, through Aglets,

this paradigm has evolved and got more mature in the Internet Research Task

Force. They are envisioned to have a large deployment in the near future through

Information-Centric Networking (ICN) [137] to serve video content distribution

(caching) [33] [108] and IoT [187]. Complex active networks inherit the chal-

lenges of both of these networks which that make their evaluation or simula-

tion/optimization problematic. Applying exact optimization techniques to the

planning of these networks is not efficient due to their large sizes and the intro-

duced by dynamic components. Still, we need to have some abstract methods and

tools for network optimization and control of such important applications.

Network optimization can be easily modeled with classical tools or heuristic

163

164 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

Figure 8-1 – ICN based active network scenarios

methods when the graph becomes too large. Introducing active nodes by means of

ICN concept introduces a modification in the graph equivalent to a negative resistance

in electronic circuits (where active nodes supply an extra capacity/power if the in-

put capacity measured is negative. Indeed, the ICN functions provide some kind

of work inside the node. This transforms the two dimensional graph to a three

dimensional one where the third dimension comes from the interaction between

vertical layers within a node. Therefore, the conventional methods that can be

used to optimize the graph are not anymore valid and we need to look for a more

realistic optimization method that can take the third dimension into account.

Fig. 8-1 depicts distributed ICN active nodes deployed by the network operator

with respect to producers (for security delegation issues). The network is acting

as a middle-ware of transactions between producers and consumers. Transactions

are represented by combinations like questions, responses, and feedbacks. Feed-

back replaces the network channel in the legacy non-active network. It means

receiver-driven model. ICN active network is universal in the sense that it enables

different scenarios like virtual IoT (vIOT), virtual Hadoop (vHadoop), virtual CDN

(vCDNs), and virtual advertiser (vAds) to exist over ICN. Currently, despite the

existence of different scenarios and use cases, optimization tasks are missing from

the literature. We therefore, try in this chapter to contribute with modeling the

8.2. RELATED WORK 165

novel context of introducing active nodes within the distribution/processing net-

work, proposing optimization algorithms for the planning and operation of active

networks and explain how they would be intelligent complex virtual LAN.

The proposed model and optimization algorithms in this chapter target general

scenarios over ICN complex active network where active nodes add a third dimen-

sion to the traditional network topology representing local work (e.g., augmented

reality, data mining, adaptation, publicity insertion, IoT data timing, etc.). Once

the network flow of the ICN active network is defined, optimization algorithms

aim to maximize the dynamic data rates under a total ICN budget.

The rest of this chapter is organized as follows: Section 8.2 highlights the net-

work flow algorithms in the graph theory context through the related work. Then,

Section 8.3 states the background in this field. Section 8.4 introduces the problem

statement and the main contributions. Section 8.5 proposes the optimal place-

ment algorithm (OPPA). Section 8.6 proposes the near optimal solution. Section

8.7 evaluates the behavior of the proposed algorithms. The chapter is concluded

in 8.8.

8.2 Related work

The main related work on cut-tree (Gomory-Hu1) algorithms are quoted in this

section.

Ford Fulkerson [62] solves the problem of the maximum-flow between spe-

cific s and t nodes in the graph G and introduced (and proofed) the theorem

of maximum-flow minimum-cut that indicates that the (s, t) maximum-flow (the

maximum amount of flow that can be transmitted from s to t) is equal to the (s, t)

minimum-cut (the minimum total weight of the edges that can separate (discon-

nect) s from t in G.

An Extension to the Ford Fulkerson method that solves the problem of the

maximum-flow between a specific (s, t) vertices in the graph is the multi-terminal

1G-H in the rest of the chapter

166 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

maximum flow problem that focuses on computing the maximum flow between all

network nodes. It is originally studied by Gomory and Hu [80] who propose a cut

tree that concisely expresses all minimum cuts (maximum flows) of a given graph.

The authors demonstrate that there are only (n-1) non crossing edges representing

this computation instead of n×(n−1)
2 where n represents the set of network nodes.

Hence, the algorithm complexity is (n-1) min-cut computations. The baseline of

the G-H idea is the concatenation process used for avoiding crossing and compute

the s − t min-cut values.

Dan Gusfield [76] proposes a simplification to the G-H algorithm by adding at

least a three lines of code. The algorithm does not need to ensure (maintain) (n−1)

non-crossing edges for constructing the cut tree and hence the algorithm complex-

ity is reduced. Despite that, network target of the aforementioned algorithm is a

communication network [80] where main links load is uncertain and unknown

in such cases, edge capacity is fixed and entered as an input beside the original

graph in all the above methods and algorithms. Then, network modification and

especially in the link capacity should be taken into account in the network flow

algorithms.

Authors in [72] introduce an experimental study of the main cut tree algorithms

described above (G-H and Gusfield). Then, in the spirit of Gomory Hu theorem,

they proposed a fast implementation of the G-H tree comparing to the Gusfield

method where the original Gomory Hu algorithm complexity is reduced. This fast

implementation is due to the combination between the original G-H with some

heuristics. In fact, authors through their experimental study try to incorporate

some heuristics in the traditional implementation of G-H (not in the simplified

G-H algorithm of Gusfield). Heuristic methods are implemented for picking the

next (s, t) source-sink pairs in the original G-H algorithm where these vertices are

chosen randomly.

T. Hartmann et al. [81] highlight cut-tree algorithms among the main network

reports that help for network analysis and detection. They implement a fast and

8.2. RELATED WORK 167

simple algorithm for dynamic construction of a G-H tree in response to network

modifications such as vertex removal, vertex insertion, link cost increase, and link

cost decrease. They claim that in the case of edge capacity change, the algorithm

saves min-cut computations (there is no need to re-compute the min-cut of a spe-

cific sub-graph). Nevertheless, it is still not clear how the algorithm avoids the re-

construction of the G-H tree. Is a G-H needed for the remaining sub-graph ? if yes,

what is the benefit of saving min-cut computation. Otherwise, how to compute the

min-cuts of the remaining (s,t) nodes ? Further, from an algorithmic perspective,

authors do not provide the algorithm complexity which is needed to assess the

algorithm feasibility. Furthermore, we believe that the conditions defined for the

re-usability of min-cuts in response to network modification can not help in a dis-

tribution network where any intermediate node is equipped by a budget regulator

for assuring the balance between demands, services, performance, and budget.

In [9], authors deal with the problem of all parametric min-cuts analysis in a

communication network. Indeed, they consider the problem of finding the mini-

mum cut of all the node pairs in a capacitated undirected network. They take into

account the possibility of edge modification and propose an efficient algorithm

for this parametric min-cut problem in a polynomial time. Exact formulation of

the maximum flow problem is missing in their work. Moreover, the communi-

cation network is supposed to be a lossy network only where intermediate nodes

(between the source and sink) can not enhance the throughout traffic.

In [80], instead of using the traditional algorithms for construction the cut tree,

authors use a Steiner edge connectivity through a tree packing algorithm. Authors

present an alternative implementation of the G-H algorithm based on concatena-

tion baseline to compute minimum Steiner-cut. Despite that, the algorithm ca-

pacity is reduced as much as possible and reaches O(m× n), when edge capacities

are equal to 1 which restricts the utilization of the algorithms in communication

or distribution networks where network capacity is important and determine its

performance.

168 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

T. Akiba et al [5] raise another problem related to the construction of cut trees

and propose an efficient G-H construction algorithm for today’s large-scale graphs.

However, authors do not consider network load modification (remaining arc ca-

pacity) in their novel method which represents a main limitation of the work.

8.3 Background

Several algorithms have been proposed to optimize the planning and operation

of complex networks in polynomial time. We proposed to use G-H algorithm to

efficiently find the minimum cut in large video distribution networks that corre-

spond to carrier grade service infrastructures. The proposed algorithm (HPAC in

the chapter) is used in two steps. First, we find the G-H tree transformation of the

initial graph and then we explore the unique shortest path from an access point

to the server containing the vCDN. Thus, when the demands cannot be anymore

served because of the bandwidth restrictions in the resulting tree, we migrate the

vCDN server to the first node in the tree that does not create any conflict on the

tree nodes and links.

Given the importance of the G-H transformation in network analysis, and be-

lieving that the network has to consider different intrinsic parameters that follow

its behavior (network of distribution, processing, on demand services, etc.) this

G-H has to take into account all these parameters to build an efficient network

optimization algorithm. In the next two sections, novel network models are high-

lighted and detailed through a network’s use case.

8.3.1 Complex active networks

Complex Active Networks (CANs) are novel concepts to networking architec-

ture that allow intermediate nodes to process (enhance/downgrade) on the fly

the real-time traffic flowing through them using external bandwidth amplifiers

or power indicator tools.

8.3. BACKGROUND 169

CANs can be modeled through three main classes: i) Erdos-Renyi-based ran-

dom models that target geometric graph and follow a linear degree distribution

(P (k) = k
n), ii) Watts-Strogatz-based small world models that target large network

size and follow a binomial (or a Poisson) degree distribution and ii) Barbasi-Albert-

based scale-free models that target also large network size (suitable for distribu-

tion network) and follows a power degree distribution (p(k) = k−λ,2 < λ < 3).

To date, these models still represent the baseline tools for network graph gen-

eration that target complex active networks. Moreover, CANs pose different prob-

lems and introduce serious challenges such as: link capacity prediction, network

partitioning, and so on.

Novel use cases of CANs have been highlighted. We quote Information-Centric

Networking (ICN) [94], Hadoop, and Internet of Things (IoT) [187] as examples.

Hence, a new look at the networking model must follow these novel networking

architectures for such potential matching between network architecture, model,

and optimization.

ICN, acting as a network compiler/interpreter (of interests and data), adds

work to each intermediate node between the producer and the consumer. It can

add or consume bandwidth. Therefore, we next give an overview of ICN (as a use

case) and the features it brings to the networking layer.

8.3.2 Information-Centric Network

ICN names the content rather than the host in the networking level. Dif-

ferent ICN architectures are proposed such as: network of information (NetInf)

[126], content centric networking (CCN) [32], and data oriented network (DONA).

Most of these information-centric network architectures are implemented on top

of TCP/UDP/IP/P2P layer. All of them are inspired from by the Google talk of

van Jacobson [93] who introduced the baselines and the fundamental features of

the CCN architecture (node model, naming, routing, transport, caching, etc.) and

the strategy layer for the adaptive forwarding.

170 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

Hence, CCN represents the baseline ICN architecture as a new look at network-

ing for reshaping messages based on their names (name-based routing) pioneered

by Van Jacobson in PARC [94]. In CCN, names are hierarchical and similar to

URLs. Name resolution system (NRS) and data routing procedures are either in-

tegrated or coupled. The exchanged messages between consumers and producers

are in the form of interest (question) and data (response). Indeed, end-users ex-

press only what they want (content name), and they let the CCN network respond

to the where and how the content will be retrieved implicitly. Therefore, an ap-

propriate CCN topology planning and dimensioning is an optimization per se. In

fact, CCN network consists of consumers that request the content, producers that

publish this content, and ICN routers that cache and ask for the content on behalf

of the consumers. The content router (CR) of ICN has three main data structures

as follows: i) Forwarding Information Base (FIB) table: it binds the content name

to next hop as in IP layer that binds the IP prefix to the destination, ii) Pending

Interest Table (PIT): it binds the content name of the unsatisfied requests to the

requesting face, and iii) Content Store (CS) table: it binds the content name to the

data per se.

Caching in CCN implies the on-path caching. CSs use by default the LRU re-

placement policy. Off-path is also supported by redirecting user interest to a CDN

(as an example) and not to the source/publisher of the content. Mobility is han-

dled by Kitemodel as mentioned in UCLA work [189]. Security is assured through

binding name to the content by crypto signature field in a CCN data packet.

CCN brings many advantages. Indeed it assures an efficient content distribu-

tion. Further it implies cache consistency using unique named data object (NDO)

and resolving by this way the problem of content moving (the content is inde-

pendent from the storage and the location). It breaks the End-to-End security

model and secures the content rather than the host through data integrity using

hash function and Origin verification.It facilitates mobility, multi-homing (multi

network access) by just re-issuing requests for NDOs. Finally, it leverages hop-by-

8.4. PROBLEM STATEMENT AND CONTRIBUTIONS 171

hop transport model as in Delay Tolerant Network (DTN) scenarios.

8.4 Problem statement and contributions

Negative resistance situation: We face this situation when the consumer de-

mands going through the resulting G-H tree cannot be satisfied anymore. We

demonstrated through a virtual Infrastructure Optimization Simulator (vIOS)2,

implemented for deploying different vCDN/ICN functions, that a negative situa-

tion is occurred and there is a need to migrate a group of delivery functions to op-

timal data center locations. More precisely, given the high migration cost in CANs,

our research problem is how to model the network infrastructure after adding ac-

tive nodes in a complex graph and how to optimize the network planning and

service placement in presence of these active nodes.

Our modification to G-H considers modeling the network infrastructure in the

presence of active nodes that act as if they provide additional (or consuming)

bandwidth in the transport network (e.g., by modifying the throughout traffic on

the fly, adding advertisement, executing binary codes for computation, annotated

video, augmented reality, insertion on the fly, etc.). Users requesting a critical

service (e.g., public safety), or a real time service should be satisfied in an opti-

mal time according to the application using the active networking facilities. The

research objective is to leverage ICN caching and processing capabilities to pro-

pose scalable, optimal, and adaptive service placement algorithms of ICN nodes

in CANs.

8.4.1 Active node budget

The dynamic nature of intermediary nodes, that can provide extra work during

a session has to appear in the optimization process. We propose a budget in each

node (less or greater than the unit). It can be passed onto the node links as an

extra capacity. The introduced budget γ represents a flow multiplicity as follows:
2https://github.com/TelecomSudparis-RST/vIOS.

172 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

Figure 8-2 – Active node budget mapping

∀a ∈ A,j ∈ Γ +(a) : F′(a, j) = γ × F(a, j) Where A is the set of active nodes, F and F′

are the total flow on an edge (a, j), and Γ +(a) is the out-degree of the active node a.

In Fig. 8-2, we give an example of active node budget mapping where a budget

γ2 of the server 2 is passed onto its outgoing links. The outgoing link weights of

the server (X and Z) representing the residual flow are amplified by γ2.

Let us Know generalize the budget formulation. Suppose that F+ and F− are

the outgoing and incoming traffic from an active node a ∈ A. The traffic can be

modeled as follows: ∀a ∈ A,l ∈ Γ +
a : F+

a =
∑
l F(a, l) and ∀a ∈ A,l ∈ Γ −a ;F−a =

∑
l F(l,a)

where Γ + and Γ − are the set of the in-degree and the out-degree of the active node

a respectively.

Due to the work and effort that an ICN may introduce in the network there

is no more flow balance at an active node. Hence, the adjusted Kirchhoff (flow

balance) equation at each active node will be: ∀a ∈ A : F+
a = γ ×F−aWhere γ is a real

number ((> 1) for flow augmentation and (< 1) for flow diminution) that represents

the dynamic work inside an active node. This equation will also introduce a non

conservation of all the network traffic (i.e., the sum of all outgoing traffic will be

the sum of all incoming traffic multiplied by the budgetγ).

8.5 OPPA: Optimal Practical Placement Algorithm for ICN

We propose OPPA, an exact optimization algorithm that takes as an input the

topology of the underlying network. It aims then to optimally upgrade some nodes

by deploying ICN software (placement problem). The network flow problem dif-

8.5. OPPA: OPTIMAL PRACTICAL PLACEMENT ALGORITHM FOR ICN 173

fers from the classical theory in order to model complex active networks where

there is no more flow conservation at each node. The flow model is then used to

solve a placement problem constrained by topology related parameters and budget

parameters that determines the network operator capacity. The adjusted network

flow model between each source-destination (s,t) (from s to t) node pairs is:

∑
j∈Γ +(i)Fi,j −

∑
j∈Γ −(i)λiFj,i =


0 if i , s, i , t

As if i = s

−Bt if i = t

where As and Bt represent the quantity of flow streamed by the source s and

received by the destination t. Non flow conservation implies that (As ≥ Bt) for flow

amplification and (As ≥ Bt) for flow degradation.

8.5.1 ICN budget model

We formulate an Integer Linear Programming (ILP) to optimally model the ICN

active network, and is shown below:

max
∑

s∈S,t∈T
Fs,t (8.1)

Subject to: ∑
j∈Γ +(i)

Fi,j −
∑
j∈Γ −(i)

λiFj,i = 0 (8.2)

∑
j∈Γ +(s)

Fs,j −
∑
j∈Γ −(s)

λsFj,s = Fs,t (8.3)

∀i, j ∈ S : Fi,j ≤ λi ×Ci,j (8.4)

∀i ∈ S : λi ≤ Bi (8.5)

174 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

∑
i∈S

λi ≤ B (8.6)

∀i ∈ S : λi ≥ 1 (8.7)

Description of the model: The model considers the scenario of ICN active

network where intermediate nodes participate in the content distribution pro-

cess. The formulation maximizes the maximum flow between each pair of source-

destination nodes (Fs,t) (Eq. (8.1)) under Kirchhoff law constraint on intermediate

nodes and at the source node respectively (Eq. (8.2) and (8.3)). Then, an amended

bandwidth constraint as defined in Eq. (8.4) where network flow is amplified by

λ. The inserted amplification is positive and is constrained by the maximum node

budget (Eq. (8.5) and Eq. (8.7)). Network operator also can not invest more than

its total budge (Eq. (8.6)). It ensures the bandwidth amplification, capacity con-

straint, budget constraint, non-negativity budget, etc.

8.5.2 OPPA

We propose to enable only ICN nodes to modify the throughout traffic between

all (s,t) node pairs. To do this we use the following flow balance constraint that de-

termines an optimal placement of ICN software that enhances the streamed traffic

between the producer p and the consumer c on the fly:

The OPPA based on the ICN’s budget model is listed below:

min
∑
s∈S

∑
f ∈F

xsf × t
s
f (8.8)

subject to:

The equations (8.5), (8.6), and (8.7)

∑
j∈Γ +(i)

z
v,f
i,j −

∑
j∈Γ −(i)

λiz
v,f
j,i =


xif if i , v

−1 if i = v
(8.9)

8.5. OPPA: OPTIMAL PRACTICAL PLACEMENT ALGORITHM FOR ICN 175

Table 8.1 – Mathematical Notation

Parameters Definition
V The set of client group nodes
S The set of server nodes
F The set of virtual nodes (e.g., vCDN nodes)
Ds Maximum throughput of the streaming server

s ∈ S
Cs Maximum memory capacity of the server s
fsize virtual node’s size (vRAM,vCPU,vDISK) (f ∈

F)
Li,j Link capacity between two nodes i and j (from

i to j)

d
f
v The set of consumer demands in terms of inter-

ests
λs A budget parameter that indicates the in-

network processing in node s
B The total network budget for ICN node up-

grade in terms of money
Bi The budget of node i in terms of money
tsf The treatment cost of the functionality f to s

Decision variables Definition
xsf binary variable which indicates that node s

should be upgraded by ICN software to store
and treat data.

ysv,f Binary variable which indicates the video hit
from node v of f in server s

z
v,f
i,j Binary variable indicating whether the link

(i, j) is used to stream f to v

∀s ∈ S : ysv,f ≤ x
s
f (8.10)

∀v ∈ V | dfv , 0 :
∑
s∈S

ysv,f = 1 (8.11)

∀s ∈ S :
∑
v∈V

∑
f ∈F

ysv,f × d
f
v ≤Ds (8.12)

176 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

∀s ∈ S :
∑
f ∈F

xsf × fsize ≤ C
s (8.13)

∀i, j ∈ V ∪ S :
∑
v∈V

∑
f ∈F

z
v,f
i,j × d

f
v ≤ Li,j (8.14)

∀i, j ∈ V ∪ S : zv,fi,j ≤ λi ×Li,j (8.15)

The above formulation of the network problem is optimal. However, it is an NP-

hard problem. Therefore, an extended cut tree algorithm is formulated (EGHT)

and used as input in our proposed HPPA algorithm (heuristic) that solves the

negative resistance problem defined above.

8.6 HPPA: Heuristic and Practical Placement Algorithm for ICN

scenario

Our proposal is based on the extended G-H of the initial network (represented

by access, aggregate and core nodes). In other words, HPPA transforms the input

network into a G-H tree. Then, upgrading some nodes by ICN software is per-

formed thanks to our extended G-H tree allowing to efficiently reduce the number

of edges to be considered when upgrading nodes, placing contents (in-network

caching feature of ICN), and end users redirection to the optimal ICN (on-path

caching).

Algorithm 6 summarizes the pseudo code of HPPA. Hereafter, we describe

these main stages.

HPPA is the algorithm used for negative resistance networks (e.g., face to un-

expected increase in consumer demands) and hereafter we explain how it works.

8.6. HPPA: HEURISTICANDPRACTICAL PLACEMENTALGORITHMFOR ICN SCENARIO177

Algorithm 6 HPPA: Heuristic Practical Placement Algorithm for ICN

1: Initialization()
2: EGHT ← Extended Gomory-Hu tree algorithm ()
3: Consume-demands ()
4: Construct-consumed-EGHT(capacity, budget)
5: Ranking-node()
6: if Wmin

s,t < 0 then
7: λs←Wmin

s,t

8: Enhance-Amplify: bs =Wmin
s,t

9: Wmax
s,t ←Wmax

s,t −Wmin
s,t

10: end if
11: if Wmin

s,t > 0 then
12: λs←−Wmin

s,t

13: Downgrade: bs = −Wmin
s,t

14: Wmax
s,t ←Wmax

s,t +Wmin
s,t

15: end if
16: Return-ICN-Maximum-Flows()
17: ∀d ∈ dserviceclient do
18: Enable-ICN-in-network caching()
19: Update-service-placement()

Algorithm 7 EGHT: Extended Gomory-Hu Tree Algorithm

1: Input: A connected graph G = (V (G),E(G), capacity,budget)
2: Output: An Extended Gomory Hu Tree EGHT = (V (GHT),E(GHT))
3: V (GHT) = V (G), E(GHT) = ∅
4: Initialize the tree: every edge points to node 0
5: For each source vertex except vertex zero, Find its neighbor
6: Find the minimum cut between s and t with the installed capacity
7: Find the minimum cut between s and t with the amplified capacity.
8: Update the tree
9: Construct the tree

8.6.1 EGHT: extended Gomory-Hu tree algorithm

Our extension to the traditional Gomory Hu tree is to construct two cut-trees

given the initial topology graph. Our implementation of EGHT is inspired from

the Gusfield simplification of G-H tree where there is no need to maintain non-

crossing edges in computing all the (s, t) min-cuts.

This algorithm is optimal in the sens that is provides the maximum flow com-

putation for all node pairs. It is entered as an input to any transportation prob-

lem related to CANs to resolve placement issue, network load reduction, and e-e

QoS/QoE and so on. Hereafter, we propose an utilization of this EGHT to resolve

178 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

three main issues related to the ICN-based CANs:

• How to model the network infrastructure after (before it is already exist

through exact/heuristic approaches) adding the ICN active nodes in a com-

plex graph where Kirchhoff’s law must be adjusted and other constraints

should be updated.

• How to optimize the network dimensioning in presence of ICN nodes ?

• where to locate the streaming headend ?

• How to route the streams to the users ?

• Which budget should be placed on which nodes ?

• How to deal with dynamic operation: For instance, in case the client group

membership changes, e.g., users join or leave ?, 1) upgrade the ICN node, 2)

redirect the users to ICN node instead of requesting the source, 3) determine

the ICN gain.

The EGHT’s algorithm complexity is 2 × (N − 1) minimum-cut computations

(i.e., maximum flow computations). Hereafter, we describe our solution over an

ICN scenario.

8.6.2 HPPA downgrading/enhancement on the fly

Firstly, HPPA requires an initialization step. In this step, a topology graph

is built from the information about the network nodes (their physical locations)

and the network links representing the relation ship between these nodes. Then

streaming sources (e.g., ICN/IoT containers, hadoop data nodes, vCDN nodes,

etc.) representing the producers and end-users representing the consumers are

initially placed on this graph.

Secondly, EGHT is executed. This step outputs two cut trees from the topology

graph used for network analysis and then helps to determine the potential upgrade

of ICN/CCN nodes. For each edge in EGHT, two maximum flows are computed

8.6. HPPA: HEURISTICANDPRACTICAL PLACEMENTALGORITHMFOR ICN SCENARIO179

representing the maximum flow value (Wmin
s,t) and its potential amplificationWmax

s,t

receptively.

Thirdly, consume demands method is invoked. In this step, all the consumer

demands (e.g., ICN interests) are consumed by the two trees and consume the

network capacity (of course system capacity is consumed also).

Then, we construct a consumed EGHT. At this step, a consumed EGHT is con-

structed and represented by two consumed G-H trees that has the remaining net-

work capacity after that all the consumer demands have been satisfied. Further, a

ranking-edges is performed. In this step, we rank the edge weights from increas-

ing.

For each consumer demand, a shortest-path is found from the consumer’s loca-

tion to the provider on the original graph. The network links in this shortest-path

have their capacity consumed to satisfy the demand bandwidth. After that all the

demands have been analyzed, some of the network links will have no remaining

link capacity (i.e.; (Wmin
s,t = 0), some other links will have negative remaining link

capacity (i.e.; (Wmin
s,t < 0), and other links will still have. Otherwise, if all links

have remaining capacity, it means that the network can easily serve all the con-

sumer demands and there is no need to downgrade and upgrade some nodes with

CCN software.

Furthermore, enhance-Amplify process is triggered. This step is occurred When

negative link is detected. It upgrades some server nodes with ICN software (e.g.,

CCNx) that amplify the maximum outgoing flows (from s to t). Sometimes, a down-

grade process is needed. This step is occurred When positive link is detected. It

means consume a set of the incoming flows to save network bandwidth.

The Return-ICN-Maximum-Flows method returns the maximum flow between

all the node pairs in presence of ICN active nodes. Then, we enable the in-network

feature of ICN which means the capability of a router to cache a requested content.

Next end users are redirected to this ICN active node.

In-network caching: The decision to amplify the bandwidth and cache the ICN

180 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

data takes the following logic: First of all, every consumer demand is re-analyzed

to verify if it traverses a saturated (s, t) link (negative link capacity). If it does,

then a bandwidth amplification is needed. If there is an intermediate node in the

demand path that can hold the requested ICN data (using the needed capacity

values set for the ICN data and the current available resources and if the inter-

mediate node has the network/system capacity to hold the streaming source (by

calculating the difference between the installed bandwidth and the currently used

bandwidth), then an amplification is occurred and its cost (hosting cost) is calcu-

lated.

However, if the ICN caching would take place between the producer and the

consumer, all the other consumer demands requesting the same ICN data from

the original producer would have to be satisfied (served) from the new ICN node

(in-network caching feature of ICN) in the case of off-path caching, otherwise, the

original producer will serve the requested data.

Update-service-placement: The algorithm is dynamic in the sens that it updates

the database of each ICN node (i.e., its content store). Novel demands benefit

from the in network caching and increase the bandwidth gain. Indeed, ICN nodes

become the producer of similar interests.

We propose the following example (see Fig. 8-3) to illustrate ICN algorithm for

treating judiciously ICN streamed data. It depicts a scenario of ICN insertion. In

this scenario, consumers representing aggregated interests for a media data stored

in media source repositories with a specific throughput (i.e., content quality) equal

to 40 Mbps. The proposed ICN method searches to adapt the bandwidth capacity

along the shortest path from consumers to publishers. Active ICN software are

inserted in nodes 1 and 2 to enhance network capacity.

8.7. OPPA VS HPPA: PERFORMANCE EVALUATION 181

Figure 8-3 – G-H based ICN insertion

Figure 8-4 – OPPA-HPPA decision time

8.7 OPPA vs HPPA: performance evaluation

8.7.1 Small network scale

In order to assess OPPA and HPPA algorithms in a small scale scenario, we used

runtime, treatment cost and parallel task number as our performance key metrics.

Fig. 8-4 depicts the runtime which is the execution time of the algorithms. Fig.

8-5a shows the treatment cost of the ICN data in terms of resource size (storage).

The parallel task number is the total number of the treatment task (how many

times we need to treat the requested data). It is plotted in Fig 8-5b.

8.7.2 Large scale scenario: a Barabási–Albert based network operator

In large scale network, we evaluated our HPPA algorithm using scale free topol-

ogy. According to the IETF, Barbasi-Albert-based scale-free network may be a suit-

able solution for evaluation ICN in large scale [138]. The scenario relies on the

182 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

(a) ICN total treatment cost (b) ICN total parallel task

Figure 8-5 – OPPA-HPPA comparison in the small network scale scenario

(a) Scale free network (b) G-H-based transformation

Figure 8-6 – Network topology used for large scale

well known Barabási–Albert undirected and weighted graph. The graph has 100

vertices (nodes) and 200 edges as shown in Fig. 8-6a. Its G-H-based transforma-

tion is shown in Fig. 8-6b which has only 99 edges (49.5%). The OPPA algorithm

could not be used here with reasonable resources.

Fig. 8-7 depicts the results of our algorithm in large network scale. Experi-

mentations suggest that the optimization algorithm is feasible (Fig. 8-7b), reduce

consumer response time (Fig. 8-7a) with bounded network costs (Figures 8-7c and

8-7d).

8.7.3 OPPA vs HPPA comparison

A brief comparison between the two approaches is given in the Table 8.2 .

8.8. CONCLUSION 183

(a) Total consumer delay (b) Runtime

(c) ICN total treatment cost (d) ICN total parallel task

Figure 8-7 – HPPA in large network scale scenario

Table 8.2 – Efficiency comparison between OPPA and HPPA

Metric Small scale Large scale
OPPA HPPA OPPA HPPA

Run-time(sec) < 7 < 1 unfeasible < 7
total treatment cost(Gb) low high unfeasible bounded(< 14)
total task number stric loose unfeasible bounded(< 90)

8.8 Conclusion

This chapter presents a novel use case of complex active network based on ICN

approach. Intermediate nodes are active and treat the data on the fly. Network

optimization is modeled and quantified. Results are encouraging and proof that

consumer delay is reduced and the network performance is enhanced under our

defined key performance metrics. To provide a real networking tool, the decision

of downgrading and enhancing the outgoing flows should be fully distributed.

Therefore, in the next chapter, we provide an enhanced version of network flow

184 CHAPTER 8. SERVICE PLACEMENT IN COMPLEX ACTIVE NETWORKS

algorithm called maximum concurrent flow. Then a distributed version is imple-

mented, tested and evaluated.

Chapter 9

Conclusions and Perspectives

9.1 Conclusions

In this thesis, we have studied virtual content distribution networks and an-

swered to several problems that have arisen in the state of the art such as how,

what, where, and when virtualize and optimize. Since this network helps to im-

prove (optimize) end-user satisfaction, virtualization has been combined with op-

timization and several algorithms have been provided that can be applied to dif-

ferent networks.

Moreover, we contribute by a virtual infrastructure optimization simulator

(vIOS): a high level application that optimizes vCDN services planning in both

simple and complex active networks.

9.2 Perspectives

In this thesis we used exact and heuristic methods for software resources man-

agement. In next network generations, we have a lot of data, a great capacity of

computation which favors the use of artificial intelligence techniques instead of

building complex mathematical models.

185

186 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

Appendix A

Real cache overview

Real caching is the process that assures the caching service assisted with hard-

ware H/W (CDNs equipment, video servers). We can enumerate three important

sub-categories:

A.1 Intermediary caching

AKAMAI is a major company specialized in the provision of cache servers. Its

server dissemination in the core network leads to serve quickly end users. In the

literature, several algorithms exist to optimize the distance between the consumer

and the content provider under the constraints of QoS. The question to answer

was how to build a strong algorithm/architecture that intelligently places a lot

of caches (centralized, decentralized or hybrid approaches). The relevant work is

classified as follows:

1. Single cache: Shim et al. [160] proposed a single cache algorithm using

LNCRW3U (least Normalized Cost Replacement for the Web with Updates)

as a management mechanism based on the local greedy algorithm (described

below). This approach is inefficient because it does not consider the popular-

ity of video. Algorithm Local greedy: Select a node I and an item n. If item

n is currently not stored at node I, and it has higher utility than some item

187

188 APPENDIX A. REAL CACHE OVERVIEW

m (e.g. with minimum utility) that is currently stored at node I, then replace

item m by item n)

2. Multiple caches: Fan et al. [59] described another alternative to the previous

approach also called summary caching. In this protocol, every caching dis-

poses of a table of summaries related to each proxy server. Cooperation of

several caches can reduce the total traffic but it suffers from service availabil-

ity (miss content scenario). This happens when neighbor cache servers do

not have the content. Further, this approach requires extra bandwidth when

a cache server serves the cache’s misses of the others.

3. Hierarchical caching: This caching technique is based on placing nodes of

caches in different levels of network structure (level1 core network, level 2

edge network level 3 access network). The first hierarchical proposal is prob-

ably the one in [111], where authors describe their time-based protocol aim-

ing to solve hierarchical placing problems (HPP). This protocol may enhance

the hit rate of a document. However, this hierarchical view increases the total

latency because each level of the hierarchical caching structure introduced its

latency. Further, storing documents in different level overloads the network

and then decreases the quality of experience perceived by the user.

4. Distributed caching: Distributed caching algorithms place caching nodes

only in the edge of the network and those nodes are the only ones that can co-

operate in the distributed process. This algorithm is better than hierarchical

caching as it is shown in [148] because it reduces the total latency, decreases

the load and the required bandwidth. All this is through the use of a single

level of cache. The author also introduced another approach that mixes the

two previous algorithms called: ”Hybrid Caching System”. We have to high-

light here, that in the distributed caching; one can face some problems such

as difficulty in updating caches because of the use of a single level cache (long

network distance) as it shown in [182] and [109].

A.1. INTERMEDIARY CACHING 189

5. Hybrid caching: In the Hybrid caching approach [148], authors propose to

place a minimum number of nodes at the edge of the network. This approach

reduces latency, load and bandwidth but suffers from the lack of protocols

for managing caches. They also require complex topologies that cannot fit

with other scenarios.

6. En-route caching: En-route caching [166] is an approach that intercepts the

requests from the user and when the content is in the local cache of the inter-

ceptor, it answers the requester by sending the content. It leaves the request

otherwise unchanged. This operation has some advantages [166]. The most

important one is that it decreases extra overhead. Authors do not say how the

cache is filled originally. Therefore, this technique is not sufficient because

they do not consider video popularity that should be only filtered by those

cache nodes. It suffers also from the fact that many CDN operators encrypt

the original request so as to prevent such operations and to keep the hand on

the process (Youtube).

7. Cache cluster: Borst et al. [26] introduce an algorithm for caching services to

minimize bandwidth cost instead of latency in [92] and [148]. They use the

hybrid caching structure. The replication strategy uses cooperation and has

two different scenarios, intra-level cache cooperation and inter-level cache

cooperation. The first is based on Local greedy algorithm described above

while the second is a more simplified version of the greedy algorithm. Borst

shows that the adopted algorithm improves cache performance but it does

not take into consideration delay, QoE, network load which are important pa-

rameters/metrics for service video delivery optimization. Furthermore, they

focused on a specific topology (they are not taking into account a general

network topology) which made their solution fit only with such scenarios.

190 APPENDIX A. REAL CACHE OVERVIEW

A.2 Direct caching

In direct caching category, caches are hosted in the core network. We can enu-

merate under this category the following techniques:

1. Caching proxy (CP): Meeyoung et al. proposed in [34] a single and large

cache with only popular videos so as to push them near the end user. This

basic technique maximizes the QoE perceived by clients and enhances cache

hit ratio to be close to 51%. However, the main limitation of this approach is

that it maintains only popular videos requiring frequent cache updates.

2. Weighted-Rank Cache Replacement Policy: In [152], a caching algorithm

based on weighted cost (WC) calculation of any object (video) is presented.

Objects with weak ranks are replaced from the cache. This technique assures

better management of cache space and improves network bandwidth. How-

ever, it suffers from high delay required from WC calculation.

3. Multiple Descriptions Coding (MDC): Authors in [143] presented a caching

mechanism based on video segmentation assisted with Least Recently Used

(LRU) algorithm. This technique reduces server load and overcomes churn

problems related to user dynamism (join/leave) in P2P networks. However,

this technique can not deal with high user demands.

4. Popularity Aware Limited Caching: Authors in [164] introduced PALC to en-

hance cache capacity. Their technique showed 95% of cache efficiency as it

was explained in the work. However, maintaining only popular video pre-

sented the most important limitation to this approach. Moreover, video on-

line streaming requires an efficient cache update algorithm which is missing

in that proposed work. Table A.1 summarizes the important features of direct

caching.

A.3. INDIRECT CACHING 191

Table A.1 – Direct caching techniques

Technique Advantage Improved metric Limitations
CP [34] Simple imple-

mentation, QoE
enhancement

Video popularity Single point of
failure, increase
server’s load

WCRP [152] Cache manage-
ment

Network band-
width

Increases the de-
lay

MDC [143] Reduces server’s
load

load No scalability

PALC [164] Cache efficiency capacity Maintain only
popular video,
no cache update

A.3 Indirect caching

In the indirect caching, caches are hosted by another operator. We can enumer-

ate under this category the following techniques:

1. Collaborative cache mechanism based on resources auctions: Core networks

in cellular systems manage their local subscribers and have their profiles. Jie

et al. [43] introduced a new caching mechanism for collaboration between

multiple Wireless Service Providers (WSPs). This collaboration is based on

resource (Bandwidth) auctions. They propose that cache servers be deployed

at Mobile Management Entities (MME) or Mobile Switching Center (MSC) so

as to decrease the distance between contents and end users. This approach

can enhance the QoE and maximize the response time for end users but it is

inapplicable because of dynamicity of subscribers.

2. Content aware caching: Meghana et al. [7], start from the idea that cache sizes

and link capacity are limited. Thus, she gives four techniques to properly

manage the caches so as to minimize the response time for users:

• Technique 1: Periodic Max-Weight algorithm with random eviction.

• Technique 2: Iterative Max-Weight scheduling with Min-Weight Eviction

Policy.

192 APPENDIX A. REAL CACHE OVERVIEW

• Technique 3: Iterative Periodic Max-Weight algorithm.

• Technique 4: Iterative Periodic Max-Weight with Min-Weight algorithm.

3. Peer Aware Content Caching (PACC): Bjorkqvist et al. [24] introduce this ap-

proach to be dedicated to Content Distribution Networks (e.g. AKAMAI).

The advantage of this approach is that it has not been oriented to a specific

topology. It divides the network to three layers: two vertical layers and one

horizontal layer. They also propose two policies PACC-AR and PACC-CL

to execute the caching mechanism between peer nodes. This approach has

some disadvantages as it does not take into consideration video popularity

for cache management and cache update processes.

4. Cooperative Hybrid caching strategy for P2P Mobile Network: Mo Zhou et

al. [190] designed a caching system to optimize network bandwidth and guar-

antee high response time to mobile users in order to increase the QoE and

the overall QoS. The introduced technique is based on two strategies: sin-

gle greedy caching strategy and cooperative hybrid caching strategies. It is

shown that the second strategy outperforms the first one in some cases. The

structure used in this approach is not hierarchical or tree topology based but

P2P. As authors focus on optimizing the traffic over the network, the caching

strategy takes into account {video popularity, distance, video size} as metrics

for the optimization. Cache replacement (eviction) procedures are managed

through the single greedy caching. Cooperative hybrid caching is based on

popularity of video content. This technique requires high computing and

does not take into account user satisfaction. Moreover, authors do not give

a clearly popularity function. Furthermore, they do not account for extra

bandwidth needed to seek the closest desired video.

Appendix B

Virtual cache overview

The virtual caching is the process that assures the caching services and hard-

ware independence. Precisely, we can enumerate three important sub-categories:

B.1 Content moving fetching

We will enumerate the few algorithms proposed for virtual caching techniques

in video delivery content distributed networks:

1. Prediction Based caching (PBC): Bogdan et al. [31] introduced a cache re-

placement algorithm that answers the question: which videos to evict from

the cache? Authors describe then content moving algorithm based on deci-

sion making after a cache miss scenario. They describe an algorithm that

works as follows:

• If (the requested video V is in the cache) then stream it.

• Else forward request to other site(V);

The decision was based on penalty in order to decide either keep a copy of

the item and transfer the video or stream it and not cache. This technique

enhanced CDN scalability but it still suffers from achieving high quality of

service (including delay, bandwidth) due to the given penalty function which

193

194 APPENDIX B. VIRTUAL CACHE OVERVIEW

Table B.1 – Content moving techniques

Technique Advantage Improved
metric

Limitation

PBC [31] Scalability Popularity
function

Complex

CaaS [70] Network utiliza-
tion

Throughput Missed architec-
ture

requires high computational overhead and extra bandwidth to calculate the

instantaneous value of the popularity.

2. Cache as a Service (CaaS): Cache as a Service [70] is a new caching tech-

nique for fetching requested items and moving them to end users. The re-

sults showed that this approach improve network utilization and user QoS.

However, it requires a predefined architecture in order to deal with NFV and

SDN technologies. The summary is in Table B.1.

B.2 Server moving replication

We will present in this subcategory the pertinent replication techniques in the

literature.

1. Replication Algorithm with Load Balancing (RALB): In [191], authors pro-

posed the replication algorithm RALB to enhance video adaptation to the

available bandwidth. This approach is based on content replication in P2P

systems for video on demand scenarios. Peers store some movies in order to

increase network bandwidth and reduce server’s load. Authors use random

replication assisted with load balancing. Firstly, they introduced a central-

ized approach where video replication is static. Then, they add a reactive

and distributed algorithm in which peers decide, based on video popularity,

to either store or discard the movie. Hence, the replication is amended after

any peer views video. Therefore, this mechanism adapts to the dynamicity

B.2. SERVER MOVING REPLICATION 195

of nodes and peer churn. However, the authors did not specify neither the

video popularity function used nor the cache update mechanism which are

most important in video caching.

2. Optimal Replication Strategy ORA: Weijie Wu et al. [179] introduced ORA

strategy which requires knowledge of video popularity. This approach ad-

dresses two issues. The first addressed the optimal replication ratio while

the second addressed how to do this replication? Results showed that the

algorithm increases optimality when we replicate more popular video and

remains sub-optimal like proportional replication strategy.

3. Home Box assisted CDN (HB-CDN): Soraya et al. [35] describe an algorithm

introducing a new equipment or gateway as a middle-ware between the CDN

and end users. This equipment is for content caching and acts as a content

provider for the end users. It reduces server load, and minimizes time delays.

Some DSL operators start to have an equivalent caching system in the box es-

pecially useful for replay and short delay replay (almost real-time broadcast).

4. Incentive Caching For P2P-VOD Systems (RBS): Weijie et al. [180] proposed

a reward-based scheme (RBS) in large scale p2p on demand streaming. This

algorithm offers two pricing schemes where the content provider proposes

strategies in order to serve the desired content to the end users while taking

into account the operational cost of the content provider. The first strategy is

used to meet the high demands of users. It takes into account the relationship

between users demand and the number of replications of content. The second

strategy is used to reduce the reward of items with high operational cost.

Authors showed that their technique reduces the cost and enhances the access

latency.

5. Two-Level Result Caching (TLC): Erica et al. [150] introduced the problem of

load balancing which can be defined as: where should we place the replica?

Therefore, they gave TLC technique in order to solve this problem: assur-

196 APPENDIX B. VIRTUAL CACHE OVERVIEW

ing load balancing between cache servers and achieve high throughput. This

technique uses the Lest Recently Used (LRU) cache management algorithm

in order to maintain a LRU result cache LRU-RC combined with a DHT to

know the position of peers holding the replica of content requested in the

recent past. The main disadvantage of this techniques is that increases jitter

(thus increases delay) which is an important metric for video streaming ap-

plications. Moreover, authors do not take into consideration the popularity

of the video.

6. Proportional Replication PRA: Saurabh et al. [168] described the propor-

tional replication algorithm (PRA) in peer to peer networks. The algorithm

is based on a proportional replication strategy that maintains a number of

replicas of each content proportional to the request rate of it. LRU, FIFO, or

LFU techniques are used as a cache replacement algorithm.

7. Lazy Replica: Bin at al. [36] introduced the Lazy Replica strategy for content

replication in peer to peer networks. This replication approach introduces

two assumptions that cannot be known in advance: the time of departure

of peers and the content popularity. Assuming these conditions, this tech-

nique has to do the replication of the most popular content in peers having

minimal probability of departure. It decreases server load by 15%, improves

throughput and latency.

8. Intelligent Replica Placement/Management Algorithm (QIRMA): Ayyasami

et al. [14] described an intelligent replica technique. Authors showed that

their approach achieved good results. It enhanced throughput, jitter, network

traffic, latency and fault tolerance. However, it leads to some bottleneck prob-

lems because of excessive redundancy which may lead to network overload),

low availability, congestion. Finally, Table B.2 summarizes all the previous

techniques in terms of advantages, improved metrics, and disadvantages.

B.3. SESSION MOVING 197

Table B.2 – Replication techniques

Technique Advantage Improved metric Limitation
RLB/ARLB [191] Video adaptation Video popularity Increases compu-

tational load
ORA [179] Gives popular

videos
Replication
threshold

Not fit with pro-
portional replica-
tion

HB-CDN [35] Reduce server’s
load, load bal-
ancing

Load Extra time delay

RBS [180] Increase satisfied
user as possible

Reduce the cost Miss QoS, high
price

TLC [150] Manages the
cache

Cache position High delay
required

PRA [168] Reduces server’s
load

Network band-
width

Video popularity
is not considered

LAZY REPLICA [36] QoS parameters,
reduce server
load

Throughput High operational
cost

QIRMA [14] QoS parameters Throughput, jit-
ter, delay

Bottleneck and
Congestion prob-
lems

B.3 Session moving

Session moving is the third category in virtual caching techniques. It can be

realized using software defined network solutions or Mobile IP/IPv6. The real-

ization can be done either using classical cloud brokers or new terminologies like

NFV or SDN as it will be detailed in the next section.

198 APPENDIX B. VIRTUAL CACHE OVERVIEW

Appendix C

OMAC: Optimal Migration Algorithm

for virtual CDN

OMAC algorithm is a reformulation of OPAC algorithm that considers vCDN

migration problem inside network operator.

C.1 OMAC: scenarios

In order to assess and quantify OMAC behavior, we proposed two scenarios:

1) strict replication, and 2) loose replication. The two approaches are defined as

follows:

1. In strict replication, the total number of replica in the network is bounded

and each vCDN node is replicated at most one time. The vCDN replication

process obeys the following equation:

∀f ∈ F :
∑
s∈S

xsf ≤ 1 (C.1)

2. In loose replication, the total number of replica in the network is dynamic

and the vCDN nodes are replicated freely.

Since we are focused on the total migration cost as the objective function, we

199

200 APPENDIX C. OMAC: OPTIMAL MIGRATION ALGORITHM FOR VIRTUAL CDN

(a) vCDN number impact (b) Client node number impact

Figure C-1 – Total migration cost

have measured this cost in the two scenarios as shown in Fig. C-1.

The result shows that in small scale, the loose replication approach is slightly

efficient in term of migration cost comparing to the static replication one. This

is because in the case of one replication, the minimum distance between sf and s

is great and therefore, the migration cost will be significant. In the other hand, in

loose replication, we replicate more than one time, but there is no need to reach the

access layer for example. Recall that we have focused on minimizing the migration

cost and not the content retrieval delay or the response time.

Moreover, the total number of replica is measured as follows:

Replica number =
∑

s∈S\{sf }

∑
f ∈F

xsf (C.2)

In strict replication, the replica number is less or equal to |F| while in loose

replication scenario, which is the most efficient in terms of migration cost and

network resource saving, the replica number is variable in response to the change

in client group demand matrix defined above
(
d
f
v

)
.

Fig. C-2 shows that the number of replica in ”loose scenario” increases with |F|

and |V | while it reaches a static value at |V | = 10. Therefore, in terms of migration

cost, we have an open question that we do not answer: what will happen if we add

C.2. CONCLUSION 201

(a) vCDN number impact (b) Client node number impact

Figure C-2 – Replica number impact

an extra-constraint for limiting the replica number ? and is it efficient or not ? A

first answer to this question could use an additional constraint as follows:

Replica number =
∑

s∈S\{sf }

∑
f ∈F

xsf ≤ R
f (C.3)

Where Rf will be the maximum replica number of vCDN (f ∈ F).

Therefore, such an open question may try to find the appropriate Rf that can

be fixed in the mathematical model ?

C.2 Conclusion

Two approaches for OMAC are proposed and results show that loose cache

replication/migration algorithm is slightly more efficient.

202 APPENDIX C. OMAC: OPTIMAL MIGRATION ALGORITHM FOR VIRTUAL CDN

Appendix D

Distributed Maximum Concurrent

Flow Algorithm

D.1 Introduction

In ICN protocol, data consumers send an Interest packet with a name or name

prefix and retrieve, from the near LAN, a Data packet named under that prefix

and it can be publicly verified.

To deploy this facility in network operators, optimization algorithms are neces-

sary to select the appropriate placement of ICN functions. They supposed to take

into consideration system, network and quality parameters. However, in complex

active network where intermediate nodes not only intercept consumer interests

and respond back but only treat the information and modify the original content

(for example adding building plan in augmented reality use case, advertisement in

video streaming scenario or even patient organs in medical treatment) each source

of data (server) satisfies the request a group of consumers concurrently.

Streamed data are flowed from a single source to multiple destinations simulta-

neously. Target nodes correspond to consumer groups interested in source’s data.

However each consumer group requests a specific quality of experience corre-

sponding to a traffic class. It can be easily translated to a quality of service fol-

203

204 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

lowing the exponential relationship as in IQX hypothesis.

The above problem is a pure QoS routing problem at origin that solves the fol-

lowing question:

How to route the quality of service from source s to all destinations ?

Currently, the maximum flow minimum cut theorem affirms that the maximum

amount of data that can be shipped from a source to a destination is equal to the

minimum cut capacity that separates the source from the destination. This the-

orem is important however it is not of practical interest in ICN network for two

main reason: i) it is a centralized (sequential) approach which needs a global view

of the topology beside the dynamic related parameters such as residual link band-

width. ii) it is a point-to-point approach which does not fit with single source

multi destinations scenario such as in this ICN use case. Giving these reasons, in

this chapter we try to extend the above theorem (i.e., maximum flow minimum cut)

to design a distributed algorithm fitting with the ICN context. Further, the (multi)

point to multi-point 1 communication model is adopted from the origin graph. We

try therefore to propose efficient QoS routing algorithm that dynamically detects

the bottleneck between the source and the set of destinations, place ICN func-

tions to treat/process (amplify or downgrade) the streamed data in edge/optimal

locations and stream the maximum quality (max-min fairness and throughput) to

consumer groups.

In networking theory, minimizing the overall congestion is often referred to

as maximum concurrent flow problem (MCFP). Several solutions are proposed to

solve this problem in sequential or distributed manner. Each solution represents a

computing model of the MCF problem:

1. Sequential approaches for solving this network problem are based on specific

frameworks. Although each framework considers its specific algorithm and

logic, the common idea is to route the concurrent demands from sources to

destinations without violating the capacity constraint on each edge. Network

1multi-source multi-destination is trivial step of single-source multi-destination

D.1. INTRODUCTION 205

is a centralized, decentralized, or distributed reservoir of networking and

processing for concurrent flows. The objective is to maximize the throughput

of traffic. Based on the underlying networking, the heuristic relaxation solu-

tion that iteratively pushes small/large amount of flow within the network is

the main approach in MCF problem.

2. Distributed approaches follow the same logic to solve the problem but in a

cooperative manner between processes installed on different node locations.

Still, the objective these approaches is to maximize the minimum and com-

mon fraction that satisfied the demands of each commodity.

Up to now, exact and heuristic algorithms proposed in the previous chapters

are centralized by SDN. A global view of the network is needed to calculate an

optimal topology of routing requests. The underlying infrastructure is dumpy and

does not take any decision of traffic migration or optimization. Now, and following

the introduction of active nodes such as ICN that decide an increase or degradation

of flows, one needs a distributed version of the maximum flow algorithm used in

the previous chapters. So we propose in this chapter, a distributed single source

maximum concurrent flow algorithm called SS-DMCF.

The rest of this chapter is organized as follows: Section D.2 highlights the state

of the art of the MCF algorithms. Section D.3 introduces the potential MCF com-

puting models. Then, Section D.4 gives execution methods of MCF. Section D.5

studies the combinatorial MCF optimization models. Section D.6 gives an idea

about the potential applications the may rely on MCF. Section D.7 highlights our

proposed distributed MCF algorithm. Section D.8 compares the MCF optimiza-

tion techniques and the work is concluded in Section D.9. Different pseudocodes

of the used algorithms are given in annexes.

206 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

D.2 MCF state of the art

This section highlights the relevant Maximum Concurrent Flow (MCF) algo-

rithms in data-centric context [137].

Maximum concurrent flow problem is a generalization of sub-problems related

to the multi-commodity network flow which make it harder when solving large

scale deployment problem.

In 1930, Russian Railway System studies the maximum flow problem (MFP).

The objective was how to find the maximum amount of flow that can be pushed

from a supply node (a source) to a demanding node (a sink or a destination).

Then, Fold Fulkerson gives the method of an augmenting path (called Ford Fulk-

erson method later) that introduces the notion of cancellation flow, residual ca-

pacity/graph, and augmenting flows. Different approaches are then proposed to

calculate the maximum flow between a given pair of node in the network. Later,

Fold Fulkerson introduces the maximum flow minimum cut theorem in this case of

network, solving the single-commodity flow problem. Authors remark, later, that

the proposed theorem and and its corollaries for MFP cannot be used in multi-

commodity network flow. They affirm that the max-flow min-cut theorem cannot

be extended to more than two commodities.

Giving that multiple commodities share network edges, concurrent commod-

ity demands should not violate edge capacity while maximizing their throughput.

MCF solutions are then proposed. Exact solution algorithms are proposed in the

literature to solve this problem using linear programming mode, simplex method,

etc. Different running time in worst case scenarios are shown in the literature

of exact MCF approaches. The approximation solutions for MCF focus on min-

imizing as much as possible (in ε-approximate far from the optimal) the overall

congestion on edges,α. It represents the sum of flows over all commodities on an

edge f(u,v) divided by the capacity of the edge c(u,v).

α =
∑k
i=1 fi(u,v)
c(u,v)

D.2. MCF STATE OF THE ART 207

In approximation algorithm, a feasible concurrent flow vector is pushed ini-

tially from sources to destinations. Then, the approximate value of MCF is:

α ≤ (1 + ε)×α∗

Where α∗ is the exact MCF solution, εis the approximate parameter.

Among the main MCF approximation algorithms, we quote the primal-dual

approach proposed by Danzig. Different works are also proposed in this field. In-

deed, Shahrokhi et al. [157] propose the maximum concurrent problem with uni-

form capacity and exponential length metric. The proposed algorithm is initiated

by choosing a length function (l(e)) and finding an initial feasible flow vector (gen-

erally a small amount of flow that can be routed concurrently). Then, a shortest

path in terms of the proposed length function is found for each entering commod-

ity. The algorithm then does a rerouting to the flow. It terminates in O (ε ∗ n ∗m7).

Klein et al. [104] then proposed a faster algorithm with a different length function.

Using the amended length function, a larger amount of flow is sent by iteration.

Leighton et al. [112] generalizes the MCF solution considering arbitrary edge ca-

pacities and demands.

We highlight also the work of Garg and koeneman [69] that leverages the

primal-dual method, the method of Karakostas [101] that aggregates a set of com-

modities by the source, and the flow deviation method which is introduced by

Fratta [65]. The approximation algorithms for the MCF problem use in general

either incremental or flow deviation based approaches. In the incremental based

approach, length function is l (e) = eα∗f (e) while in the flow deviation based ap-

proach, the length function is c(e)
(c(e)−f (e))2 . Note that the approximated solution not

only depends on the ε parameter but also on the size of the system inputs.

208 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

D.3 MCF computing models

MCF is a network flow problem which can use different computing models. In

this section, we detail these frameworks.

D.3.1 Centralized MCF models

The idea in MCF centralized method is to have a super node acting as a traffic

engineering server that routes the demand from production locations to appro-

priate destinations. Super node may use different heuristics to find approximate

solutions for the MCF problem. It can iteratively add small amount of flow (incre-

mental method) or it can add large amount of flow, then it redistribute (reroute)

the flow from the most congested (loaded) edge/path to the less congested one.

In centralized computing, super node machine executes only one MCF instruc-

tion at a time. Giving this requirement, single CPU and RAM are allocated to

execute the sequence of MCF instructions sequentially. Parallel computing for

solving the MCF problem is beneficial in the way that multiple processors (CPUs)

and RAMs collaborate to execute the set of the MCF instructions in parallel. Note

that parallel computing use also one machine to execute the MCF problem.

D.3.2 Distributed MCF models

In the state of the art, we found a few relevant algorithms that aim to solve

the distributed MCF problem (DMCF) (i.e., MCF in a distributed manner). In the

classical DMCF, such an algorithm inheres the same baseline mathematical formu-

lations of the multi-commodity flow problem. Then, the decision of forwarding

the flows of the commodities is taken by local nodes (computing units) as pro-

posed initially by Awerbuch et al. [12]. Then, they improve the classical approach

and present a novel decision model for the DMCF based on the multi-agent sys-

tem or the billboard model [13]. Computing units representing the agents that

are responsible for commodities. In the billboard, each agent can read the total

edge flow within the network in an algorithm round r, which is the sum of the

D.3. MCF COMPUTING MODELS 209

edge flows of each commodity. Each agent then has information about the total

edge flows and writes the next edge flow (to be routed) of its commodity in the

next round r + 1. The complexity of this method is linear with the maximum path

length size.

In the aforementioned distributed computing models, multiple machines

(CPU, RAM) collaborate to solve the DMCF problem (DMCFP). Two types of com-

munication between these machines are presented in this computing model: 1)

communication using messages and 2) communication using a shared middle-

ware. In each communication model, two main execution models may be pre-

sented: synchronous or asynchronous models.

Hereafter, we detail the main distributed algorithms which deal with the MCFP.

Local decision based DMCF

In this approach, the decision of routing network flows on an edge is taken lo-

cally by intermediate nodes. Network nodes balance the flow on its corresponding

edges. The process ends in determined number of phases as proved by Awerbush

et al. [12]. The main algorithm works as follows: In the first phase, each source

pushes (1+ε)∗di
δi

amount of flows on each of the δi edges incident to each source Si .

Then, some instructions should be executed at each node which is very costive.

Therefore, the following approach for the decision is introduced, the global deci-

sion.

Global decision based DMCF

In a Global decision based DMCF, a decision is related to each commodity. A

multi-agent framework is used to solve this distributed problem rather than local

decision procedure as defined above. Each agent is responsible for routing the flow

of its commodity taking into account the current congestion (load) on each edge.

Two distributed solution are proposed by Awerbush et al. called: 1) a greedy

distributed optimization, and 2) an approximate steepest descendant framework.

210 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

In the approximate steepest descendant framework, authors propose the fol-

lowing algorithm that solves the DMCF. It is executed in T phases and Tp steps:

1. fei
f low
←−ε∗ce/Ks

2. T
phases
←− O (log(m)/ ε2)

3. For (T phases) do

(a) TP
steps
←−O (L*log2(m)* log(k/ε))

(b) For (Tpsteps) do

i. fei
f low
←− current flow value

ii. for (each commodity i, such that di/T flow between (siand ti) not yet

routed) do in parallel

A. Cei= ε2

log(m) fei

B. Compute {blocking flow} under capacities Cei from st to ti that routes

flows along (1+ ε)-approximate shortest paths (in terms of congestion

(l(e))

C. Route this flow / di/T ≥ this flow

Authors raise the potential use of MCF for QoS routing including the pure rout-

ing and flow control issues. They claim that MCF problem models exactly the pure

routing problem in networks. The main idea is to route a small amount of flow (of

all commodities) on edges. This amount need to be placed initially which de-

termines a feasible flow. Then, this amount is increased in a multiplicative way.

Authors fix an edge length function (the metric) as follows:

l (e) =
m

α(e)
ε)

c(e)

The blocking flow technique used here is computed by sending flow from the

source to the destination along the shortest path in terms of the previous length

function..

D.3. MCF COMPUTING MODELS 211

In the greedy distributed framework, authors use the same framework. In-

deed, multiple agents operate in cooperative manner but uncoordinated way. Con-

gestion and bandwidth management are raised as the main application of their

work. They propose a stateless greedy distributed algorithm for the concurrent

multi-commodity flow problem with poly-logarithmic convergence. The approxi-

mation is done around 1+ ε distance from the exact solution. The running time is

O(H ∗ logO(1) ∗m ∗ 1
ε
O(1)

) where H is the maximum allowed path length.

As differentiation to all the previous flow control algorithms established for the

TCP/IP stack (additive increase in the windows size representing the maximum of

the allowed packets that the sender can send to the receiver), authors use here a

multiplicative increase process which is more aggressive than the decrease. Their

objective was ”resource allocation in decentralized network architecture”. Authors

affirm that different compete applications over a shared network resources can be

solved in greedy manner. Indeed, they enhance the current flow control (TCP) and

the routing (IP) mechanisms based on shortest path calculation in terms of hops

(TTL) because it does not guarantee the optimization of resources in a scenario of

concurrent flow and demands. To deal then with this hard problem (MCF), au-

thors propose a novel routing metric (link cost) that depends on the congestion

that runs on an edge (i.e., the load). This routing metric may identify the network

bottleneck (sparsest cut problem) and then ease the maximization of the concur-

rent throughput (concurrent flow). Authors introduce then problem of concurrent

multi-commodity flow problem by including the following congestion indicator:

l(e) =
f (e)
c(e)

=
∑i=k
i=0 fi(e)
c(e)

The objective function of their work is then as follows. Minimize (congestion)
def= Min(Max(l (e))def= Min(|f |)

They introduce then the billboard framework. It is a computing model that

is distributed, based on multiple agents that operate in coordinate manner but

uncoordinated way.

212 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

Each commodity is handled by an agent (computing or a processing unit

(CPU)). There is a global clock access by all the commodities to satisfy the compu-

tation requirement. Nevertheless, the approach is still distributed. Each edge is a

billboard in which the agent records the current congestion of its commodity on

that edge. Multiple agents can read/write in the billboards. They can read current

congestion (total amount of flow) at each edge. Based on that framework, each

agent can decide how to reroute next flow and write the values on the correspond-

ing billboards.

To recapitulate, authors propose a very interesting distributed algorithm for

the MCF problem. They introduce routing metric, flow control rules, and a greedy

re-routing procedure. The routing metric is function of the current congestion

representing the edge cost and how the cost of this edge increases with congestion.

This metric is then used to encourage agents to reroute their traffic (flows) in the

less congested paths (shortest paths in terms of congestion metric). As a summary,

each agent i (responsible for the ith commodity) read the total flow on an edge,

calculate the routing metric, and finally do the flow control and the re-routing of

the traffic.

Previous DMCF work

Leighton et al. [112] define the max-flow of a multi-commodity flow problem as

the maximum throughput f such that f*di units of commodity i is simultaneously

routed for each i without violating the capacity constraint. Then,

f ≤ C(u,v)
D(u,v)

where f is the maximum concurrent throughput, v is the complement of u, C is

the capacity of the minimum sparsest cut, and D is the demand tagged on the

corresponding cut.

Jonathan et al. [103] propose an algorithm for calculating the ε-approximated

solution of a MCF problem in an almost linear time. The proposed approach is

D.4. HOW TO EXECUTE DMCF 213

complex and uses oblivious routing as a basic tool but also requires many concepts

(flow sparsification, electrical flow, solving Laplacian systems, etc.) but it seems

very promising for the practical solving of routing problems in networks.

H. Räcke et al. [145] introduced the concept of oblivious on-line routing in

which each origin-destination request is routed without any knowledge of the state

of network congestion. The surprising result is that there is such a routing mech-

anism for which the network congestion is not more than 0(log n) of the optimal

congestion. This work is interesting in more than one way: on one hand, because

on-line routing gives a benchmark on the quality of the dynamic and distributed

routing, and on the other hand, because this benchmark is relatively robust and

good. Unfortunately, the method proposed in [15] to calculate such routing re-

quires solving NP-hard problems. This algorithmic complexity is reduced in [15]

to a super-linear polynomial complexity, which remains crippling for large net-

works. The notion of oblivious routing can also be analyzed in the context of ro-

bust routing, where one seeks to calculate an optimal routing when the demands

are uncertain [10].

D.4 How to execute DMCF

In DMCF, each processor has its local memory and it is responsible for exe-

cuting a part of the DMCF algorithm. Basically, the algorithm is executed after a

terminating a set of phases. In each phase, we have the notion of round or steps.

The execution of the algorithm instructions may be fully or partially synchronized

or asynchronous.

In synchronous execution, each processor has its local memory and it is respon-

sible for executing a part of the DMCF instructions. In asynchronous execution,

each round corresponding to a commodity (agent) is started without a clock indi-

cating the beginning of the round. This execution is used by Awerbush et al. in

their work (distributed MCF) in which he gives an upper bound of the number of

phases (rounds). Hence, there is a determined round number sufficient to estimate

214 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

the MCF value. The execution model used is the hybrid model: authors synchro-

nize the beginning of each round. Nevertheless, the execution of the instructions

in each round (steps) is asynchronous.

D.5 MCF combinatorial optimization models

In combinatorial optimization (e.g., network flow, etc.), we quote exact and ap-

proximation algorithms. Most of the combinatorial optimization problems are Not

Polynomial (NP) time (NP=? P). This means that those problems are hard to solve

(in polynomial time) but easy to check the solution once it is given (yes/no answer).

Therefore, approximation algorithms are also used to solve such problems given

large combinatorial optimization problem instances. Approximation algorithms

are analyzed mainly through the running time in different use cases (empirical,

average, and worst cases).

The main formulations of the exact MCF are edge-path formulation and node-

edge formulation. The objective of these formulations is to minimize the overall

congestion which is equivalent to maximize the throughput or the concurrent flow.

The constraints of the MCF problem are demand satisfaction, edge capacity, and

node balance (Kirchhoff law). Two extra formulations are presented in the liter-

ature which are tree formulation and compact formulation. In tree formulation,

trees are generated for each commodity that has multiple destinations. In com-

pact formulation, linear programming is still used. However, the system size of

constraints and variables are reduced. The main approximation algorithms for

MCF are: Incremental or rerouting.

D.5.1 Exact models

MCF is solved through the well known node-edge or edge-path model formu-

lations. In edge-path formulation, the throughput of commodities is maximized

representing the upper bound relative congestion on edges.

D.5. MCF COMBINATORIAL OPTIMIZATION MODELS 215

Edge-path, node-edge and tree formulations

We denote the set of all paths between end nodes i and j for demand pair {i, j} ∈

D by Pij . The union of Pij over all demand pairs is denoted by P , and the set of

edges in path p is denoted by Ep. According to these notations, the equivalent

MCF formulations (edge-path model is modeled below) is given as follows using

linear programming technique:

max(γ) (D.1)

s.t.∑
p∈Pi,j

fp = γ ∗ di,j∀{i, j} ∈D (D.2)

∑
p∈P :{i,j}∈Ep

fp ≤ ci,j∀{i, j} ∈ E (D.3)

fp ≥ 0 p ∈ P (D.4)

where γ is the throughput and fp is the amount of flow on path p. Constraint

set (D.2) ensures that the same proportion of demand is met for all demand pairs,

constraint set (D.3) enforces the capacity limits on the edges, and (D.4) are non-

negativity constraints on the flow variables. We refer to a solution {f ,γ} to the

edge-path formulation as an edge-path solution.

Triples formulation

The solution of the above formulations gives an exact value (throughput) of the

MCF problem. However, the system size is high which causes significant running

time. Matula et al. [53] proposes in a recent work a compact linear programming

formulation of the MCF problem. Authors introduce the triples formulation to

solve the problem. The idea is to include a novel variable such as xki,j indicating

that the edge (i, j) diverts this amount of flow through on an intermediate node

216 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

k. Authors prove that their solution is faster in terms of running time than the

previous formulations (edge-path and node-edge). They didn’t compare their work

to the tree based formulation. In their proposed work, they achieve three main

contributions: 1) a triple based formulation for MCFP 2) a proof of equivalence,

and 3) an efficient (linear programming) size computation is presented comparing

to the well known exact formulations.

Hereafter we describe their work. Authors define an MCFP instance as the

triplet: <G, c, d> where G is the undirected graph, c is the capacity function, and d is

demand function.. Then, the source and the destination are defined as the pair {i,j}

for i<j.

Originally, the idea is derived from the node-triples formulation of Matula that

gives a proof of the dual between Distance Elongation Problem (DEP) and the

MCFP. The exact formulation (triples) is envisioned from the introduced ”direct

flow solution” (see heuristic model). In this formulation, authors present a linear

programming (LP) system using an introduced variable indicating the total flow

diverted off the edge {i, j} through the node k defined as xki,j . It is introduced to

satisfy the demand while keeping the edge capacity constraint not violated for all

the edges which is not guaranteed in their heuristic relaxation procedure.

Formally, the total flow on an edge {i, j} equals to the initial direct flow plus [the

amount of flow diverted onto {i, j} (through the nodes i or j)] minus [the amount

of flow diverted off {i, j} (from the nodes i or j]. This amount of flow should not

exceed the edge capacity Ci,j . This introduces the triples formulation which is

formulated as follows:

max(Z) s.t.

Z ∗ di,j+ (
∑k
i=1x

i
k,j + xj k,i)−

∑k
i=1x

j
k,i ≤ - Ci,j

Then, authors compare the LP sizes of the exact MCF formulations to show the

efficiency of their triples formulation in terms of running time. Moreover, they

propose a deriving procedure to move across formulations using basic mathemat-

ical models.

D.5. MCF COMBINATORIAL OPTIMIZATION MODELS 217

D.5.2 MCF approximation models

The approximation model is based on two main methods:

Maximum flow based approach

This approach is based on calculating the maximum flow and then saturating

at least one edge for each commodity by sending the flow of this demand. Then,

given the flow concurrency behavior on the edge bandwidth, a rerouting process

for deviating some flow from the loaded edge to the less congested ones is done

in an intelligent way. This solution called also the re-routing procedure for MCFP.

Firstly, it is introduced by Shahroukhi et al. [157] by formulating an exponential

length function l (e) = e
α∗|A|2f (e)

ε where |A| represents the cardinal of the edges, α is

a constant and f (e) is the total amount of flow circulating on an edge. Authors

use this framework to reroute flow from highly congested (utilized) edges to less

congested ones. The improvement of this framework is started by Klein et al. [104]

and Leighton et al. [112] who propose different edge length functions.

The main step of the maximum-flow based approach is as follows. First, an

exponential length function is initiated as below:

l (e) = e
α∗|A|2f (e)

ε

Then, for each commodity defined by the triplet (si ,ti ,di) the flow is sent from

si to ti along the path of minimum edges. Then, a comparison between maxef (e)

and
∑i=k
i=1 dis(si,ti)∑

e l(e)
is verified. If the first term is greater than the second term then

we get the ε-approximate value to the maximum concurrent flow. Otherwise, a

shortest path for each commodity is calculated, and we choose the commodity with

maximum l (longest path except the shortest path) where longest path is the path

which larger hops between the source and the destination of the commodities.

Then, we re-route a small fraction of flow from the most congested (high l (e))

longest path to the shortest path. The termination condition of their algorithm is

218 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

the satisfaction criteria in the comparison between the previous terms.

Following the same idea, Klein et al. [104] modified the length function to

include maximum commodity flows aver all the edges |f | =maxef (e) . Later,

Leighton et al. [112], and Radzik et al. [146] generalized the length function and

consider an arbitrary capacity function (instead of uniform capacity in the work

of Shahroukhi and Matula [156] [157]).

To summarize the maximum flow based approach in calculating the maximum

concurrent flow, we list below the main steps. First, we calculate the max-flow

for each commodity. Then, we reroute independently, the max-flow value of each

commodity. Finally, we re-route a small fraction of the flow from the loaded edge

to the minimum-cost flow path.

Shortest path based approach

In this approach, new technique is introduced which is based mainly on finding

a shortest path in terms of length function (less congested path) instead of hops.

In each iteration, the algorithm pushes a small amount of flow along the calculated

shortest path. For more clarification, we push a unit of flow (for example) along

the shortest path and then we update the flows.

Garg et al. [69] solve the problem in a polynomial bound of phases. In each

MCF phases, there is k iterations. For an iteration related to a commodity, authors

push the minimum capacity (Cmin) of the shortest path. Later, Madry et al. [115]

improve this approach to execute Dijkstra for finding all pair shortest paths. The

length function used in this technique is exponential and depends on the current

flow plus the old routed flow.

D.5.3 Heuristic model

Recently, Matula et al. propose an extension of the MCF problem to identify the

hierarchical community structure and hubs in networks. They leverage the duality

between maximum concurrent flow and the minimum sparsest cut. Moreover,

D.6. MCF APPLICATIONS 219

they give another heuristic as explained below:

Heuristic relaxation procedure (direct flow solution)

Matula et al. [53] inspired in their recent work a new solution for the MCF

problem. The proposed heuristic is as follows:

1. Initially, the algorithm proposes to route z∗di,j units of flow between all pairs

{i, j} to find a feasible solution.

2. Then, it tries to satisfy (i.e., according to edge-path formulation) the equation

that assure the data consumer demands satisfaction:

∑
p fp = z ∗ di,j

The proposed heuristic (direct flow solution) may not necessary satisfy the ca-

pacity constraint of edges defined as (
∑
p fp ≤ Ci,j)

1. Then, at a throughput level (a fixed z value), we verify if z ∗ di,j ≤ Ci,j or not

2. If not, the heuristic selects a pair {i, j} that has too much flow (larger than the

capacity).

3. Diverts an amount of flow from {i,j} to {i, k}.

4. Repeats the ”divert procedure” until the edge capacity constraint is verified

for all the network edges.

D.6 MCF applications

Among the main application in MCF, we quote the sparsest cut problem (SCP).

This problem finds the critical edges (bottleneck) in the distribution network.

Finding SCP is NP-hard problem. Therefore, for estimating the sparsest cut, we

measure the sparsity ratio of the cuts. The cut with minimum sparsity ratio is the

sparsest cut.

220 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

In a distributed network, the transportation of commodities is based on band-

width allocation mechanisms. MCF is used to solve this problem while minimizing

the operation cost.

In circuit electric, multi-commodity flow problem is the sparsest cut used

to route current between transistors. Further, MCF is used for the routing (re-

routing) of commodities by proposing novel routing metrics. Further, Generating

independent key for independent users simultaneously is problem that can be easy

solved by MCF exact approaches. MCF is used also to control the traffic between

endpoint in order to avoid congestion caused by concurrent end-to-end flow con-

trol mechanism MCF is then a potential hop by hop congestion control for ICN.

D.7 Proposed DMCF model

We propose a novel DCMF algorithm for routing data consumer demands and

recommending caching points. It is an exact model, distributed using local de-

cision computing model, and asynchronous in terms of execution. Hereafter we

describe our algorithm. We leverage the theorem of decomposition to aggregate

the set of commodities entering in our framework using the well known origin-

specific problem (OSP) formulation in the state of the art. In this formulation,

Algorithm 8 Sequential Maximum Concurrent Flow

1: Input:
A directed graph G = (V ,A) with capacities (ca)a∈A
A set of commodities (demands) (s, tk ,dk)k∈K

2: Output:
The value γ∗ of the maximum concurrent flow between s and T (s).

3: Initialization
γ∗← 0

4: While there exists a shortest-path tree (in terms of hops) SPT spanning T (s) in RG:

• Find the maximum flow γ such that γ × dk can be concurrently routed in SPT
between s and tk

• Augment the flow and update RG

• γ∗← γ∗ +γ

end while

D.7. PROPOSED DMCF MODEL 221

Algorithm 9 Distributed Maximum Concurrent Flow

1: Input

• Set flows in all edges to 0

• Set residual graph RG equal to initial graph

2: Output:
The value γ∗ of the maximum concurrent flow between s and T (s).

3: Initialization
γ∗← 0

4: While there is a flow augmenting path tree from s to T (s) in RG:

• Find the shortest augmenting path tree SP T between s and T (s) in RG

• Find the maximum concurrent flow γ along SP T

• Broadcast SP T

• Update flows

• Update RG using SP T and γ

• γ∗← γ∗ +γ

end while

we have multiple sources called S representing data producers and a set of des-

tinations related to each source called T (S) representing their data consumers. A

tree routed on S and spanning T (S) called Spanning tree represents the relation

between the entities.

In Alg. 8, we present a sequential MCF algorithm proposed in [21]. It repre-

sents an extension of the Edmonds-Karp [62] algorithm that finds in each iteration

a shortest path tree instead of a shortest path. Then, an optimal concurrent flow

fraction γ∗ is calculated and updated in each iteration.

In, Alg. 9, we propose a distributed version of the sequential MCF algorithm.

Hereafter, we describe its main steps.

D.7.1 Finding single-source shortest path tree (SPT)

Definition: Single-source shortest path tree: is the problem of finding shortest

path between a single source vertex and every other vertex in the graph.

Algorithm: It is based on Pregel, a Google library for asynchronous distributed

222 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

optimization. Each vertex stores a value denoting the distance from source ver-

tex to this vertex. Value at each vertex is initialized to INF. In each superstep: i)

receives messages from its neighbors with updated potential minimum distances

from source vertex, ii) if minimum of these updated values is less than the current

minimum distance of the vertex, value is updated and potential updates are sent to

the neighbors (current value + outgoing edge weight (unit weight in our case)), iii)

in first superstep, only source vertex will update its value to zero and send update

messages to its neighbors, iv) algorithm terminates when no more updates.

D.7.2 Finding the concurrent flow (maximum of gamma)

Once the shortest path tree (SPT) has been determined, the concurrent

throughput pushed through SPT is set to be the minimum over all arcs of residual

capacity to cumulative demands (of edges in SPT) given by the following equation:

γ* = mina
ca
Da

(i.e., the maximum concurrent throughput is smallest ratio which is

equivalent to the concurrent throughput you can push along SPT to satisfy the

cumulative demand without violating the capacity constraint).

D.7.3 Update the flows (augment/increment the flows)

Once we find the exact concurrent throughput, we update the flows by broad-

casting the tree SPT and incrementing flows for every edge in the SPT in the clas-

sical way similar to the Ford-Fulkerson algorithm).

D.7.4 Update the residual graph

The residual graph is updated also in the classical way but in a distributed man-

ner using the MapReduce facility (distributed computing of the residual capacity

on each arc in the broad-casted SPT). The sub algorithm of building the residual

graph is as follows:

1. If SPT contains edge (i,j) in RG:

D.8. COMPARISON 223

(a) Emit ((i, j): c - γ*. D)

(b) Emit ((i, j): γ*. D)

2. Else: emit ((i,j):c)

Then, a computation of the shortest path of the next iteration is done until there

is no shortest path tree. Once the DMCF is terminated, γ* is the exact maximum

concurrent throughput we can push.

D.8 Comparison

In Table D.1, a brief comparison between our algorithm (SS-DMCF) and the rel-

evant work in the state of the art is presented. The proposed solution outperforms

the above work in three main axes:

1. Optimal and approximate solution.

2. Polynomial time solution: Since a shortest path spanning tree algorithm is

used to calculate the generalized maximum flow between the single source

and all the destinations, the solution is solved in polynomial time.

3. Simple and not complex: It requires only QoS metrics that indicate the flow

utilization of all commodities.

D.9 Conclusion

In this chapter we have surveyed the relevant framework of the sequential and

distributed maximum concurrent flow problem (MCFP). Then, a single source dis-

tributed MCF (SS-DMCF) algorithm is introduced in the context of traffic engi-

neering, flow (demands) routing, and QoS routing in data-driven networks such

as ICN/NDN. In the future work, we plan to use machine learning techniques

instead of building mathematical models.

224 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

Table D.1 – Comparison between SS-DMCF and state-of-the-art

Work Approach Metrics Limitations

Jonathan et al.
[103]

Approximate
MCF

Oblivious
routing

Missed opti-
mal solution

Matula et al.
[53]

Exact LP Exponential
complexity

Racke et
al. [15]

TE Congestion Lacks flow uti-
lization metric

SS-DMCF
algorithms

Optimal QoS metrics
No limitations

D.10 Annex A: shortest path spanning tree computation

In this step, we compute a Shortest Path Spanning Tree in synchronous net-

work.

The requirements for this computing are:

• Connected graph G = (V ,E) where V is the set of vertices and E is the set of

directed edges.

• weightu,v for edge {u,v}

• Distinguished root vertex (the single source) v0

• Processes have no knowledge about the graph

• i0 is the UID process of the root vertex v0

• Processes know UIDs of their neighbors, and know which ports (inter-

face/face) are connected to each neighbor.

• Processes must produce a Shortest Path Tree (BFS tree in terms of hop count)

routed at vertex v0

• Branches are directed paths from v0

D.10. ANNEX A: SHORTEST PATH SPANNING TREE COMPUTATION 225

Algorithm 10 Find the SPT, algorithm for the process i

1: Input:

• dist: a nonnegative real or ∞, representing the shortest path known distance
from v0

• parent: a UID or undefined, initially undefined

2: At each round:

• Send a distance(dist) message to all neighbors

• Receive messages from neighbors; let djbethedistancereceivedf romneighborj.

• Perform a relaxation step:

dist = min(dist,min
j

(dj +weighti,j)) (D.5)

• If dist decreases then set parent ← j, where j is any neighbor that produced a
new dist.

– Spanning

– Shortest Path: the total weight of the tree branch to each node is the

minimum total weight for any path from v0 in G.

• Output: Each process i , i0 should output parent(j), distance(d), meaning

that:

– j’s vertex is the parent of i’s vertex on a shortest from v0

– d is the total weight (distance) of a shortest path from v0to j.

SPT time complexity:

• Number of rounds until all the variables stabilize to their final values.

• n-1 round, where n is the number of nodes in the network.

SPT message complexity:

• Number of messages sent by all the processes during the entire execution.

• O(n× |E|)

226 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

D.11 Annex B: destination node program

Destination node sends the flow to its parents.

D.12 Annex C: intermediate node program

Figure D-1 – Intermediate node program

As shown in Fig. D-1, an intermediate node does the following pseudo code in

order to calculate MCF in a distributed fashion:

Algorithm 11 Calculate the cumulative demand

1: void (Indegree)
2: while SEM , Indegree do
3: G[parent(j)][parent][D]+← arc[i,parent(j)]
4: SEM← SEM − 1
5: end while
6: arc[parent(j)][parent][D]← G[parent(j)][parent][D]

D.12. ANNEX C: INTERMEDIATE NODE PROGRAM 227

Algorithm 12 Calculate the MCF γ∗

1: void (Indegree)
2: while SEM , Indegree do
3: G[parent(j)][parent][γ]+← C[i,parent(j)]

D[i,parent(j)]
4: if minigamma ≥ G[parent(j)][parent][γ] then
5: minigamma = G[parent(j)][parent][γ]
6: end if
7: SEM← SEM − 1
8: end while
9: arc[parent(j)][parent][γ]← G[parent(j)][parent][γ]

Algorithm 13 Calculate the residual capacities
1: void (Indegree)
2: while SEM , Indegree do
3: G[parent(j)][parent][C]−← γ∗ ×G[parent(j)][parent][D]
4: G[parent][parent(j)][C]+← γ∗ ×G[parent(j)][parent][D]
5: SEM← SEM − 1
6: end while
7: if G[parent(j)][parent][C] ≤ 0 then
8: Mark link
9: else if ¡condition¿ then

10: ¡text¿
11: end if

228 APPENDIX D. DISTRIBUTED MAXIMUM CONCURRENT FLOW ALGORITHM

Appendix E

Optimal Hadoop over ICN Placement

Algorithm for Networking and

Distributed Computing

E.1 Introduction

Large scale distributed computing is the predictable baseline process in our

big data era. The Apache Hadoop [42], a popular open-source framework for dis-

tributed storage and processing of large data sets has become the promising tech-

nology for processing multiple distributed applications such as traffic analysis,

cache network update, network anomalies detection, data mining, machine learn-

ing, and bioinformatics research. The diversity of applications requires Hadoop

to be more flexible, adaptive to different contexts while providing high perfor-

mance, resulting in complicated networking protocol design, complex pieces of

software that require non-trivial configuration and tuning for better performance

[161]. A candidate architecture, ICN [94] [184] shifts the networking focus from

host-centric communication to multi-source content retrieval, a better fit to big

data networking/computing that TCP/IP, the Internet communication protocol.

ICN can potentially provide enormous benefits in easing the deployment, improv-

229

230APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

ing robustness and overall performance for hadoop systems [151] [89]. Addi-

tionally, ICN offers flexible support to several applications, and ICN in-network

caching/processing at intermediate nodes allows content retrieval with high re-

sponsiveness [86] [85] [61] [158].

ICN Research Group (ICNRG) within the Internet Research Task Force (IRTF)

highlighted the distributed computing among the major ICN scenarios [137].

ICNRG overall requirements for networking and distributed computing (e.g.,

Hadoop systems) to leverage ICN are addressed in [161] and [108]. However, inte-

grating ICN with Hadoop needs studies for Hadoop over ICN architecture.

Despite the above IRTF effort, there are not clear architecture for ICN sup-

port of Hadoop. Consequently, in this chapter we present a Hadoop over ICN

architecture, considering not only architectural principles but also novel layering

responsibilities of of HoICN architecture.

Still, introducing ICN into large-scale networking and distributed computing

such as Hadoop will have profound impacts on the design of large data cen-

ters, distributed computing infrastructures, and hence HoICN needs studies for

optimal placement of ICN nodes. Consequently, we contribute by an optimal

placement algorithm for ICN/Hadoop nodes. As modern network optimization

deals with complex graph topologies, we also present a Gomory-Hu algorithm

that detects network bottlenecks in terms of networking and computing resources

through the maximum-flow minimum-cut theorem [73] and to find different tree

levels for potential upgrade in ICN/Hadoop nodes and gateways. G-H is an op-

timal cut-tree algorithm that compacts the larger network graph structure using

cuts to retain only feasible candidate topology and consequently lead to a smaller

scale ICN/Hadoop non-deterministic polynomial (NP) placement problem.

The rest of this chapter is organized as follows: Section E.2 highlights the ICN

related work and its operation in the field of computation. Section E.3 designs

the merging architecture between hadoop and ICN. Section E.4 formulates two

optimization algorithms. Section E.5 evaluates the global optimization method.

E.2. RELATED WORK 231

Section E.6 concludes the work.

E.2 Related work

R. Mijumbi et al. [120] study the relation between ICN and the promising soft-

warization techniques (i.e., NFV and SDN). Authors highlight ICN as a candidate

NFV use case that may be included as a helper within the SDN/NFV reference ar-

chitecture in order to select the optimal position of placing virtual network func-

tions (VNFs). The architecture representing this relation is interesting but too

general. ICN cannot be deployed as a general VNF. It needs strong personalization

and adaptation to the proposed application. In our approach ICN is considered

as an intelligent data plane that assists hadoop system and it is deployed through

global optimization algorithm.

Mangili et al. [117] design a novel model that takes as input a given network

topology, a list of demands arriving from consumers, and a list of producers, each

one of them publishes a content (content might be published by several publish-

ers), the optimization has to choose which router should be upgraded with ICN

and in each ICN router which object should be cached (among a list of available

objects). Authors hence introduce a relevant work that optimizes first the upgrade

(deployment) cost and second the object placement within ICN nodes. They pro-

pose an IP model that minimizes the cost of request routing, then the model is

extended through additional parameters such as interest propagation cost, router

upgrade cost, and the installed caching cost on the upgraded ICN router.

C. Tschudin et al. [161] investigate the relation between networking and com-

putation and propose Named Function Networking (NFN) as an ICN extension.

In their approach, consumers send named expression interests and the network

is responsible for interpreting these interests, executing the related functions and

caching the computed results. The approach is very interesting and it is adopted

in the IETF standard [137].

Routing protocols responsible for computing routes and handling network

232APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

changes are still needed in ICN/NDN approaches for link recovery and bootstrap

adaptive forwarding as mentioned in [181]. V. Lehmen et al. [174] address the

routing scalability problem through proposing an hyperbolic routing (HR) strat-

egy with a smart forwarding plane in NDN. Their strategy scales well upon up-

date in network topology, however destination selection is sub optimal. Author

hence designed a novel strategy called adaptive smoothed RTT-based forwarding

(ASF) to mitigate this problem and benefit from the intelligent forwarding plane

through NDN approach. In our approach we combine traffic routing and deploy-

ment through an optimization algorithm.

A. Lindgren et al. [114] recommend design choices for applying ICN to IoT

with small changes to the ICN concepts. Still, supporting efficient and scalable

IoT applications over existing ICN architectures is challenging given the massive

number of IoT devices. In our work, we introduce Hadoop as a high level applica-

tion to process massive IoT.

H. Zhang et al. [185] propose NDNFit, a novel prototype for mobile health

ecosystem. It is built over NDN communication. Their proposed architecture has

different components for storing, processing, and visualizing/interacting with IoT

data.

K. Schneider et al. [155] propose a practical congestion control for ICN which

uses RTT and packet loss as transmission control metrics. Their solution based

on measuring congestion rate at each NDN router in order to keep the NDN links

non-congested. This distributed solution may introduce high delays within the

network nodes (jitter) which may make it unfeasible for real-time scenarios, etc..

The approach adopts a hop-by-hop congestion scheme where intermediate routers

have to detect congestion and avoid it through marking some interests and send-

ing a short feedback back to consumers and involved routers in the conversation.

Consumers hence reduce sending rate of interests and routers drop interests or

divert them to different paths.

E.3. HADOOP OVER ICN (HOICN) DESIGN 233

E.3 Hadoop over ICN (HoICN) design

E.3.1 Information-Centric Networking

ICN is a data-centric approach introduced as a novel networking paradigm. It

is based on two main messages, interest and data [94]. In the former message, the

name of the data is defined. The latter message binds the name to the raw data.

It is a receiver-driven approach that focuses on information instead of nodes and

where data transmission is triggered after a consumer interest.

The main key functionalities of ICN are request routing, caching and process-

ing, mobility, and security. Indeed, ICN generates an optimal path toward the

content through lookup and longest-prefix matching algorithms. Moreover, pop-

ular data are cached and processed on the fly in the intermediate routers in order

to reduce the end-to-end consumer delay. Through ICN paradigm, caching solu-

tions are on-path caching and off-path caching [184]. ICN supports also different

mobility management solutions [153]. Indeed, subscriber mobility is resolved by

re-issuing interest of the same content, publisher mobility which is more difficult

is resolved through interest tracing and chasing [189]. Security is also inherent in

ICN architecture and assures data integrity and verification by binding name to

content [183].

E.3.2 Principle Hadoop components

Hadoop is a big data framework that eases data processing, analysis, and min-

ing in different disciplines such as information fetching, neural science and deep

learning. It consists of two main components: Hadoop Distributed File System

(HDFS) and MapReduce. The former is responsible for data storage and presenta-

tion (i.e., a storage layer) while the latter is responsible for parallel processing and

distributed computation (i.e., a compute layer).

From a design perspective, Hadoop is a decentralized (hybrid) architecture

where each component (HDFS or MapReduce) is centralized and controls dis-

234APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

tributed nodes. For instance, HDFS layer is controlled by name nodes and is dis-

tributed through different data nodes (caches). On the other hand, MapReduce

layer is controlled by Job Tracker and is distributed through different Task track-

ers (processors). The central/distributed (hybrid) architecture nature of hadoop

may benefit from ICN networking architecture [108] that provides a distributed

cache network able to process and cache on the fly massive data.

HDFS and MapReduce layers cooperate together to allow storage and process-

ing functionalities within the same system. MapReduce component processes and

analyzes data traffic from different locations including network nodes, ICN cache

nodes and buffers (memory). It is also adapted for quantifying/analyzing net-

work behavior and detecting anomalies. MapReduce provides then the capability

to run distributed computations and generate data sets needed for traffic analysis

through analytic tools. For the sake of simplicity, in the proposed architecture,

MapReduce aggregates data in the distributed ICN-enabled data nodes. Then,

global data sets are generated and used by different tools to extract the requested

aggregated information such as medical reports in a e-health context or environ-

mental indicators in weather forecast one, etc.

E.3.3 HoICN node architecture

In general, HoICN will be useful when the big data request involves informa-

tion available in the network (traffic analysis, IoT information, Video...). This net-

work data is directly treated and mapped onto the data mining format (Hadoop

in our case). HoICN approach is based on two ICN packet types: hadoop inter-

est packet corresponding to a consumer group request for a computation result

(instead of data in the legacy ICN paradigm). Hadoop interest is a simple mathe-

matical or statistical named function (e.g., max, min, average, etc...). The second

HoICN packet type is a hadoop data packet corresponding to the computation re-

sult of executing this function on local data. Hadoop related functions are moved

toward the data instead of data moving in order to save network bandwidth and

E.3. HADOOP OVER ICN (HOICN) DESIGN 235

storage. ICN is used to compute, and to cache the computation result within the

network. Hadoop is data agnostic and it can interact with heterogeneous data

collectors (e.g., IoT data, call data record (CDR), etc...). For instance, it can pro-

cess massive IoT data on the fly (in-network processing) instead of migrating data

toward the centralized/consolidated cloud controllers (NFV/SDN). ICN node sup-

port of hadoop interest/data exchanged messages includes an extra data structure

beside the legacy tables already proposed in the IRTF standard such as FIB, CS,

and PIT. It is called Hadoop Information Table (HIT).

E.3.4 HoICN layer responsibilities

Figure E-1 – HoICN layer responsibilities

Following ICN standards, we believe that interpreting hadoop packets in the

networking level instead of the application level requires some modifications to

the legacy ICN paradigm. Indeed, as shown in Fig. E-1, Hadoop over IP (left side

of the figure) runs on the application level. The amended layering is shown in the

right side of the figure. It should achieve the following principle responsibilities:

1. Data hunting/pull layer: HoICN is a pull-based approach where the con-

sumer sends interest and the the network interprets it and fulfills its request

through ICN data packet. ICN-enabled routers capture Hadoop interests

236APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

(named functions) from consumer groups. The network then executes the

function and sends back the result.

2. Transport layer: ICN is used between named data nodes for bulk data transfer

using hadoop interest and data packets. This layer is then will responsible for

the flow control between interests and data.

3. Strategy layer: The forwarding strategy of hadoop interest and data is as fol-

lowing: i) ICN router does a longest-prefix match lookup on the HIT table

indexes, ii) If there is a computation result information (CRI) matches the

hadoop interest name, then the named function is already executed and the

result will be forwarded back to the consumer. Otherwise, the router binds

the CRI name to the requesting face in PIT data structure. Then, the ICN

router forwards the hadoop interest to where data reside.

4. Storage: The network is in charge of caching the processed data results in

different ICN nodes.

5. Secure Hadoop (sHadoop): using ICN as hadoop distributed storage and pro-

cessing will benefit from data integrity inherent is ICN.

6. Analysis and recommendation: This layer is responsible for data analysis

(through hadoop tools). It proposes some recommendations to end users.

7. Browser and data science: This is the consumer application that injects

hadoop interest within the ICN network. Extracting knowledge (data sci-

ence) from data may enhance response feedback through recommendations

given from the network.

E.3.5 Massive IoT data as a use case

Processing massive IoT data constitutes a big data network. Therefore, it is a

potential use case for Hadoop. In Fig. E-2, we depict a merging network topol-

E.4. HOICN: OPTIMIZATION ALGORITHM 237

Figure E-2 – HoICN topology: Massive IoT data

ogy between hadoop and IoT and where to deploy ICN nodes acting as cache or

processors nodes. Hadoop data node are distributed and fledged to the ICN.

E.4 HoICN: optimization algorithm

Although ICN may be used for caching and processing IoT data through a sim-

ple linkage to Hadoop, ICN standards do not specify how these nodes can be de-

ployed in a large scale network. Implementing ICN-Hadoop nodes everywhere in

the underlying topology induces high cost and is not efficient (only some interme-

diate nodes could host a treatment service). We believe that Hadoop will be de-

ployed as a virtual service on behalf of content providers in the operators network.

In this context, we try to propose a HoICN placement algorithm to solve this issue.

Given a large network infrastructure, HOPA will solve this deployment problem

and will give ICN instantiation graph for new ICN-Hadoop positions. Given an

initial network topology, algorithm inputs are: massive IoT nodes, IoT gateways

corresponding to all ICN-Hadoop nodes, and consumers requesting computation

results related to IoT (e.g., average temperature in a year).

The proposed algorithm selects where to cache the Hadoop computation results

based on: system parameters (intermediate node capacity of CPU and memory),

network parameters (the network bandwidth), and quality of experience parame-

ter (end user required quality). Hereafter, we present optimal and heuristic opti-

mization approaches.

238APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

Table E.1 – HoICN Mathematical Notation

Parameters Definition
V The set of consumers
S The set of server nodes
Ds Maximum network capacity of the server s ∈ S
F The set of ICN-Hadoop data nodes
G The set of named functions
g(f)size The size of the computation result in terms of mem-

ory (f ∈ F, g ∈ G)
Cs The maximum memory capacity of the server s
Li,j The direct link capacity from node i to node j

d
g(f)
v The set of consumer group hadoop interests
psg(f) The placement cost of g(f) on s

Decision variables Definition
xsg(f) Placement binary variable which indicates that the

ICN-Hadoop computation result (g(f)) should be
placed on the (optimal) server s ∈ S

ysv,g(f) Mapping binary variable which indicates that con-
sumer group (v ∈ V) needs an ICN-Hadoop compu-
tation result which should be placed on the optimal
server s ∈ S

z
v,g(f)
i,j Flow balance binary variable which indicates

whether the link (i, j) is used for satisfying consumer
interest. The consumer is interesting in g(f)

E.4.1 HOPA: HoICN Optimal Placement Algorithm

In Table E.1, we show the proposed parameters (system, network and quality)

and decision variables (placement, routing, and flow balance) of our optimization

(exact and heuristic) algorithms.

The description of our decision variables are as follows:

1. The binary variable x indicates the placement of ICN node, and the migration

of the computation result from one server to optimal location s. It is defined

as:

xsg(f) =


1, if g(f) migrates to s

0, Otherwise
(E.1)

E.4. HOICN: OPTIMIZATION ALGORITHM 239

2. The binary variable y indicates that the consumer needs a computation result,

and the server s caches it. It is defined as :

ysv,g(f) =


1 if v needs g(f) and s caches g(f)

0 Otherwise
(E.2)

3. The binary variable zv,g(f)
i,j indicates whether a link (i, j) is used (from i to j)

to route g(f) from a replica server (the one for which ysv,g(f) = 1) to consumer

v. It is defined as:

z
v,g(f)
i,j =


1, if there is a path Pg(f),v using link (i, j)

0, Otherwise
(E.3)

The optimization model of the optimal approach is quoted as follows:

1. The HoICN objective function is to minimize the total placement (deploy-

ment) cost. It is modeled as:

∀g ∈ G : F =
∑
s∈S

∑
f ∈F

xsg(f) × p
s
g(f) (E.4)

2. Consumer group interesting in a hadoop result where dg(f)
v not null retrieves

the result from one optimal server:

∀v ∈ V | dg(f)
v , 0 :

∑
s∈S

ysv,g(f) = 1 (E.5)

3. Satisfying the interests in cached computation results concurrently is limited

by the network capacity of the optimal server as follows:

∀s ∈ S :
∑
v∈V

∑
f ∈F

ysv,g(f) × d
g(f)
v ≤Ds (E.6)

240APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

4. The system constraint that assures that cached computation results is limited

by the server system capacity is:

∀g ∈ G,∀s ∈ S :
∑
f ∈F

xsg(f) × g(f)size ≤ C
s (E.7)

5. The flow balance constraint guarantees that incoming flow (some computa-

tion results) equals to the out-coming flow except the source and the destina-

tion. In the source, there is only out-coming flows. In the sink, there is only

incoming flows:

∀g ∈ G :
∑
j

z
v,g(f)
i,j −

∑
j

z
v,g(f)
j,i =


0 if i < {v,s}

ysv,g(f) if i = s

−1 if i = v

(E.8)

6. The capacity constraint assuring that each network link is bounded by its

capacity is modeled as follows:

∀g ∈ G,∀i, j ∈ V ∪ S :
∑
v∈V

∑
f ∈F

z
v,g(f)
i,j × dg(f)

v ≤ Li,j (E.9)

E.4.2 HHPA: HoICN Heuristic Placement Algorithm

HHPA selects near optimal nodes to act as intermediate ICN servers. Those

nodes interpret future user interests for the same computation. To do this, we

transform the initial graph (representing the larger network) to a flow-equivalent

tree where each edge weight represents the maximum amount of flow. Gomory-

Hu [73] as a powerful multi-terminal maximum-flow algorithm is scalable and can

be used for that purpose. Then, supposing that Hadoop nodes are executed on the

IoT gateways (in order to collect and process the massive IoT data), we migrate the

computation results (instead of the raw data) from the original processing node

towards consumers in the forms of ICN data packets. We verify in this process

E.5. HOICN: PERFORMANCE EVALUATION 241

(a) Small-world based network topology (b) Graph transformation

Figure E-3 – Network topology used for large scale

that system, network, and quality constraints are satisfied.

E.5 HoICN: performance evaluation

In this section we evaluate our optimization algorithm. The proposed net-

work topology follows Watts-Strogatz1 that is highlighted in the IETF/IRTF stan-

dard [138]. We believe that it may fit with Hadoop clusterization and distribution

nature where all the nodes are close to each other in terms of network distance. In

Fig. E-3a, we show the initial topology used for the evaluation. It is undirected and

weighted graph that has 100 vertices representing network nodes and 200 edges.

The transformed graph based on Gomory-Hu method is shown in Fig. E-3b which

has only 99 edges (49.5%). These figures depict the topology used for evaluating

HoCCN placement algorithm in a large scale scenario.

To assess HoICN optimization algorithm, we used the runtime and the con-

sumer delay metric. It represents the response time when using ICN facility to

cache the computation result instead of the legacy Hadoop process where inter-

mediate network nodes do not interpret consumer interests. sg(f) represents the

server that initially executed the code on the local data and then it cached the com-

putation result. sv represents the access point toward the consumer group. This

1Watts-Strogatz small world models that target large network size and follows a binomial (or a Poisson)
degree distribution.

242APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

Figure E-4 – HHPA: execution runtime

Figure E-5 – HHPA: end-to-end consumer delay

metric is modeled as follows:

HoICN delay =
∑

c∈C,f ∈F

d(sv , sg(f))× g(f)size
max(i,j)∈Psg(f),sv

(BWi,j)
(E.10)

Fig. E-5 depicts the execution time of HoICN approach. Result demonstrates

the feasibility of the optimization approach in large network scale since that the

run-time is in terms of a few seconds (7sec) for large ICN instances.

Fig. E-4 shows the end-to-end consumer delay needed for retrieval a computa-

tion result. Result shows that HoICN method reduce the total delay. This is due

to ICN deployment facility placed between the producer and the consumer. The

legacy Hadoop network which does not imply this feature suffers from significant

consumer delay comparing to our HoICN.

E.6. CONCLUSION 243

E.6 Conclusion

We proposed in this chapter to use ICN for Hadoop-based systems and we map

Hadoop functions onto ICN routing nodes. In this context, we presented two op-

timization algorithms (HOPA and HHPA) to deal with small and large network

scales respectively. Experiments demonstrate that the integration of Hadoop with

ICN benefits from the distributed nature of both concepts. Results show that the

ICN support of Hadoop is feasible for large network scale and the end-to-end con-

sumer delay is reduced. We are working on getting this architecture and optimiza-

tion running on our virtual placement platform and outsourced in [165] 2.

As presented in this chapter, hadoop can benefit from ICN distributed file layer

to analyze and mine the global knowledge and behavior of the IoT network. In the

next chapter, we detail the IoT use case and propose a network optimization tool.

2Vios platform enables the placement and migration of VNF functions such as CDNs and ICN

244APPENDIX E. OPTIMALHADOOPOVER ICNPLACEMENTALGORITHMFORNETWORKINGANDDISTRIBUTEDCOMPUTING

Appendix F

Optimal Placement Algorithm (OPA)

for IoT over ICN

F.1 Introduction

ICN is a candidate architecture that eases the deployment of massive IoT. IoT

over ICN can provide a multi-point to multi-point communication model that

helps achieving multi-source data retrieval with less overhead. Additionally, ICN

naming provides flexible support to several services over the same IoT network,

and ICN in-network caching at intermediate nodes allows IoT content retrieval

with high responsiveness.

ICN Research Group (ICNRG) within the Internet Research Task Force (IRTF)

highlighted IoT among the major ICN scenarios [137]. ICNRG overall require-

ments for IoT to leverage ICN are addressed in [108] and [188]. However, in-

troducing ICN in IoT needs studies for optimal placement of ICN nodes while

vouching the security of these intermediate ICN/IoT containers.

Despite the above mentioned IRTF efforts, there are not clear contributions on

IoT over ICN infrastructure optimizing ICN nodes placement. Consequently, in

this chapter we present a maximum flow min cut algorithm (the Optimal Place-

ment Algorithm) for ICN/IoT nodes, considering heterogeneous performance pa-

245

246 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

rameters not only covering network issues but also limited system resources.

As network optimization deals with very large graph topologies, classical exact

optimization techniques do not fit our problem. Instead, we use the well known

Gomory-Hu (G-H) method [73] to detect the network bottlenecks through the

maximum-flow minimum-cut theorem [62] and to find different tree levels for

potential upgrade in ICN/IoT nodes and gateways. G-H is an optimal network

flow algorithm that compacts the network graph structure using cuts to retain

only feasible candidate topology and consequently lead to a smaller scale ICN/IoT

placement problem. Although each ICN/IoT node is secured since its production,

we present some security considerations to emphasize the reduction in network

security cost while enabling ICN for IoT with different security levels.

The rest of this chapter is organized as follows: Section F.2 highlights ICN and

its operation in IoT and the related work. Section F.3 presents our Optimal Place-

ment Algorithm, (OPA) for ICN/IoT network architecture. Section F.4 discusses

some security considerations and Section F.5 evaluates the algorithm performance

over large graph topology. In Section F.6, we compare OPA in ICN/IoT with a tra-

ditional IoT network deployment. We conclude the chapter and present our future

work in Section F.7.

F.2 ICN in IoT and related work

F.2.1 ICN principles

ICN names the content rather than the host in the networking level. Dif-

ferent ICN architectures are proposed such as: network of information (NetInf)

[126], named data networking (NDN) [125], content centric networking (CCN)

[32], data oriented network (DONA), and publish and subscribe information pro-

tocol (PSIRP) [142]. Most of these information-centric network architectures are

implemented on top of TCP/UDP/IP/P2P layer. All of them, are originally in-

spired from the early work of van Jacobson [93] who introduced the baselines

F.2. ICN IN IOT AND RELATED WORK 247

and the fundamental features of the ICN architecture (e.g., node model, nam-

ing, routing, transport, caching, etc.) and the strategy layer for the adaptive for-

warding [94]. In ICN, names are hierarchical and similar to URLs. Name Res-

olution Service (NRS) and data routing procedures are in general integrated or

coupled. The exchanged messages between consumers ”data requestors” and pro-

ducers ”data original providers” are respectively in the form of interest packets

and data packets. Indeed, end-users express only what they want (content name),

and they let the ICN network respond to the where and how the content will be

retrieved. Therefore, an appropriate ICN topology is an optimization per se. ICN

network consists of consumers that request the content, producers that originally

provide/publish these content, and ICN routers that cache/treat the content. The

content router (CR) in ICN has three main data structures as follows: i) Forward-

ing Information Base (FIB) table: it binds the content name to the next hop as in IP

layer that binds the IP prefix to the destination, ii) Pending Interest Table (PIT): it

binds the content name of the unsatisfied requests to the requesting face, and iii)

Content Store (CS) table: it binds the content name to the data per se.

Caching in ICN usually implies the on-path caching and CSs use by default the

Least Recently Used (LRU) replacement policy. Off-path is also supported by redi-

recting user interest to a Content Delivery Network (CDN) (as an example) and not

to the source/publisher of the content. ICN needs new mobility management so-

lutions different from host-centric approaches. The Kite model [189] proposed by

UCLA presents a novel solution for data producer mobility, leveraging the state of

PIT table on each ICN router to reach Mobile Nodes (MNs). Kite supports different

mobile application scenarios such as push, pull, share and upload. Firstly, a corre-

spondent node contacts an anchor node, and each time it requests published data,

interests follow the PIT table to contact the anchor node, and then follow traced

interests to reach the mobile node. The approach is relevant and requires interest

packets targeting a mobile producer to always pass by anchor (which can present

a single point of failure). Moreover, authors design how to support the data pro-

248 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

ducer mobility (publishers) in ICN network, through letting the consumers fetch

the produced data easily after producer mobility. A survey of different solutions

for producer mobility is also found in [186].

F.2.2 Why ICN for IoT

In this chapter we recommend leveraging ICN as a forwarding plane for IoT.

ICN features provide several advantages in IoT deployment as listed below:

• Content naming: most of IoT applications do not require establishing an end-

to-end communication between two devices, however rely on retrieving con-

tent (regardless its location). ICN content naming simplifies content retrieval

by different IoT service providers representing multi-tenancy.

• Data-centricity: IoT consumers requesting (temperature measurement, etc..)

are not looking for the end host device but look for the data itself.

• In-network caching: ICN routers provide data from content store even re-

gardless of the reachability to the data source, which reduces the latency and

signaling to reach the original data source. Furthermore, by caching massive

IoT data, composed services and data treatment can be extensively improved

(efficient data analytics at the network edge).

• Data Authenticity: ICN provides object-based encryption, and names are

used to verify content integrity and authenticity through binding name to

data and its publisher or origin.

Although the advantages mentioned above, there are still some open issues for

ICN over IoT as follows:

• Naming: Device Naming in some IoT applications is needed in different cases

(e.g., actuation command, switch on/off a device, etc.). ICN caching may have

a counter effect, and action may be delayed. Moreover, in video data ”coming

from IoT cameras” scenario, it is still unclear how ICN naming will work.

Handling delay sensitive application is also another scenario.

F.2. ICN IN IOT AND RELATED WORK 249

• Data size: Size of data in IoT is generally very small (a few bytes such as

1-on, 0-off), where the size of the ”data name” may exceed the size of the

”data” (i.e., memory issue). Naming overhead also appears in the case of

hierarchical names that can be too long. Also, dynamic data generation of

IoT is a challenge for hash-based content names.

• Data caching: Caching IoT data needs an adequate caching policy. Moreover,

decoupling publisher/consumer is an advantage for content retrieval but it

needs full name deduction from consumer.

We address some of the above mentioned issues in our solution, especially what

concern the overall network performance (IoT data size, caching, etc). Still, IoT

over ICN needs some requirements to be enough beneficial. Having an optimal

placement for ICN/IoT nodes is a very important problem that is not yet solved.

Additionally, the following design factors need consideration in IoT over ICN ar-

chitectures (note that our proposed solution considers these design factors):

• Network transport model: a combination of PULL (receiver-driven) and

PUSH (sender-driven) models can be supported. Nevertheless, the base

model design with reference to ICN standard should be PULL. Unlike

TCP/IP, a design decision of IoT over ICN is to follow the barlund’s trans-

actional model of communication [123], which models ICN active network

where IoT producers, ICN nodes and consumers interact with data through

feedbacks.

• Sequence numbers: Immutable data objects with sequence numbers are

needed to support large scale distribution and valid data in ICN domains

(as in dynamic databases).

• From the hardware perspective: ICN nodes and IoT device are not fully

fledged in order to let IoT devices (highly mobile, low duty cycle) delegate

the responsibility of responding to requests to more stable ICN node con-

nections. These delegated nodes can be IoT Gateways (and not tiny IoT de-

250 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

vices) instead of having them as separate nodes that are not part of the IoT

world (they can still be IoT nodes but functioning as IoT Gateways. More-

over, resource constrained devices should not serve as data producers or ICN

gateways (capability advertisements).

• Actuation: handling actuators in ICN network should be controlled through

the ICN communication model without the ICN caching property. Enabling

caching for actuation scenarios make data consumers unsure that the request

reached the actuator and can lead to delay in the actuation process.

• Node architecture: ICN node should be extended with explicit support for

time and data freshness. IoT nodes may periodically update their informa-

tion/state.

• Security: it should be object-based rather than session-based. Instead of se-

curing the communication pipe (the channel) such as the case in TLS, SSH,

SSL, securing the content state in the network using advanced cryptographic

tools is the adequate approach. However the big challenge that is not yet re-

solved is how to share and distribute the right cryptographic keys to the right

nodes.

F.2.3 ICN in IoT: related Work

In-network caching has been widely investigated in ICN/NDN wired networks,

while few contribution addressed NDN caching for wireless and IoT networks.

The work in [184] presents a survey on the current approaches, which are usually

considering fixed and wired connected content routers and also designed for mul-

timedia content distribution. [141] and [167] discuss probabilistic caching strategy

with the key idea that each NDN node randomly caches incoming Data with a cer-

tain probability p, where 0 < p < 1. The (CE2) strategy is a special case of the

probabilistic scheme, where (p = 1). Decreasing p reduces the in-network caching

probability and maximizes the diversity of Data cached in the network. How-

F.2. ICN IN IOT AND RELATED WORK 251

ever, [141] considers fixed networks with wired connected routers and [167] adds

large amount of overhead and complexity to achieve performance, which is unsuit-

able for resource constrained devices in IoT. Only few work consider caching in IoT

systems ([16], [144], [175]). The work in [16], evaluates the performance of con-

tent retrieval from different consumers with standard NDN in-network caching,

however, the cache size of resource-constrained nodes (used in the experiments) is

1 Kbyte and information is ephemeral (short-lived, transient). The work in [144]

analyzes the impact of IoT information freshness over NDN caching through using

a consumer driven freshness approach besides the freshness parameter included in

Data packets (establishing how many seconds the content can be valid in the CS).

This improves the accuracy of the data received by consumers. The challenge here

is how this caching approach sustains in the presence of big number of consumers

with different freshness requirements. The work in [175] presents a first study on

caching IoT content in Internet wired content routers (electrically powered static

routers), proposing a distributed probabilistic caching algorithm where routers

dynamically update their caching probability by considering their hop distances

to the source and the consumers and the data freshness (i.e. the closer the caching

location is to the source, the fresher the retrieved data packet is). This approach

may not be always valid and depends on the type of data, sensor/IoT type emission

rate. Unlike [175], wireless NDN-IoT multi-hop network composed of (mobile) re-

source constrained nodes is considered in [77]. A probabilistic caching strategy is

proposed that considers the data freshness and the potential constrained capabil-

ities of devices (mainly energy level and storage capacity).

The work in [91] considers traffic optimization through caching less popular

content on content routers near to the origin site and caching more popular con-

tent on content routers near to the users aiming to minimize the sum of cache

allocation power and traffic transmission power. This approach may not be so

suitable if IoT content are consumed near the origin site. The work in [90] de-

signs content locations in order of descending popularity to minimize total power

252 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

consumption. The proposed algorithm derives the optimal cache locations of a

content item based on a 0-1 ILP (Integer Linear Programming). Any solver for

large-scale ILP problems at high speed can be used to solve the 0-1 ILP model.

The proposed algorithm starts by (1) getting content popularity and (2) selecting a

target content in the order of popularity then (3) a route candidate is extracted to

deliver the target content from a cache location to a requesting user on the shortest

path tree rooted at the origin site of the target content and defining the route can-

didates as the design variables then (4) design the optimal cache locations for the

target content based on the route candidate in consideration of the pre-designed

routes for more popular content having the same origin site as that of the target

content then (5) go to step (2) and execute the design of the next target content.

The work in [37] investigate the minimum energy consumption that CCN can

achieve with optimal cache locations by considering different caching hardware

technologies, number of download per hours and content popularity. The authors

firstly set up an energy consumption model for CCN and then formulate linear

and non-linear programming problems to minimize total energy consumption of

CCN. Also a heuristic approach through a Genetic Algorithm (GA) is proposed

to find energy efficient cache locations. Using reported energy efficiency of com-

putational hardware and network equipment, the chapter shows that CCN yields

greater energy savings for very popular content and small sized catalog compared

to conventional Content Delivery Network (CDN). The results also indicate that

two aspects of the memory technology, energy-proportional caching and sufficient

memory capacity are critical to the overall energy gain of NDN. This chapter fo-

cuses only on energy efficiency regarding data delivery and storage and do not con-

sider energy consumption caused by other computations (e.g. name lookup and

security). In a similar context, the work in [75] examines energy consumption of

content delivery architectures comparing the benefits of CCN and optical bypass.

The chapter compares Content Delivery Network (CDN) versus CCN in content

delivery efficiency. The authors show that by optimizing the content placement

F.3. OPA: OPTIMAL PLACEMENT ALGORITHM FOR ICN/IOT NODES 253

according to its popularity, CCN achieve good scalability in energy consumption

in delivering popular content (i.e. the per-bit energy decreases as the download

rate increases). On the other hand, dynamic optical bypass is more efficient in

serving less popular content. In addition, equipment energy efficiency and net-

work topology are two other factors impacting energy consumption in CCN. The

results show that CCN consumes less energy in delivering a small sized catalog

while conventional based CDNs consumes less energy in delivering a large sized

catalog. Consequently, it is suggested that a synergy of CCN, server-based CDN

and dynamic optical bypass architectures may improve the energy efficiency in

serving content with heterogeneous popularity.

The work in [29] presents energy efficiency issues in ICN showing how in net-

work caching in ICN raises energy consumption concerns and showing the impor-

tance of quantifying the energy consumption of transmission links plus storage

to best design the cache replication strategy in ICN. What’s important to consider

also are the frequency of content request and the content popularity. The chapter

gives an overview on the energy consumption of different memory technologies,

sizes, and access techniques. The chapter also discusses the impact of the layer

of caching in the network on the consumption and the tradeoffs between energy-

efficiency and performance.

F.3 OPA: Optimal Placement Algorithm for ICN/IoT nodes

ICN does not specify how nodes can be deployed in a large scale network. One

could simply say that it will be implemented everywhere in the underlying topol-

ogy, but this is not efficient and can induce high cost (not all the network nodes

could host an efficient caching or intermediate treatment service). Our algorithm,

(Optimal Placement Algorithm, OPA), given a network infrastructure, will solve

this deployment problem and will give ICN instantiation graph for new ICN posi-

tions. It takes as input, the global network topology consisting of :

254 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

• IoT group producer nodes ”sensors, cameras, etc.”

• IoT gateways ”aggregation hubs, routers” corresponding to all network ele-

ments including larger Internet.

• and consumers ”applications, servers in data centers”

The proposed algorithm finds the optimal deployment strategy for ICN/IoT

nodes functionalities based on the following parameters:

• The required consumer end to end response time.

• The node system performance. It is the system overhead (memory and CPU

resource) after deploying ICN functionality in the candidate nodes.

• migration cost (network optimization), which represents the total cost of

moving ICN/IoT functionality in terms of network bandwidth.

Hereafter, we first state the system hypothesies and then present the placement

models based on exact Integer Linear Programming (ILP) and heuristic graph the-

ory optimization.

F.3.1 The placement algorithm

We consider two main hypothesis in our approach:

• Consumer groups (clients) that have no direct connectivity to the IoT devices

(they connect to the IoT devices through a gateway).

• Refreshing periodicity between IoT-gateways and devices (to collect IoT data)

and that is smaller than the OPA evaluation periodicity.

Table F.1 defines the main system/network parameters and decision variables.

Exact ILP Solution The general formulation of the exact algorithm is as follows:

min
∑
s∈S

∑
f ∈F

xsf × p
s
f (F.1)

F.3. OPA: OPTIMAL PLACEMENT ALGORITHM FOR ICN/IOT NODES 255

Table F.1 – Mathematical Notation

Parameters Definition
V Data consumers (e.g., IoT-enabled vehi-

cle)
S Data producers (e.g., mobile edge cloud)
Ds Maximum network capacity of the server

s ∈ S
F The set of ICN/IoT nodes or containers
fsize ICN/IoT container’s size in terms of

memory (f ∈ F)
Cs Maximum memory capacity of the server

s
Li,j Link capacity between two nodes i and j

(from i to j)

d
f
v The set of consumer group’s interests
psf The placement cost of f on s

Decision variables Definition
xsf Placement binary variable which indi-

cates that the ICN/IoT (f ∈ F) should be
placed on the (optimal) server s ∈ S

ysv,f Mapping binary variable which indicates
that consumer group (v ∈ V) needs an
ICN/IoT container (f ∈ F) and ICN/IoT
is placed on the server s ∈ S

z
v,f
i,j Flow balance binary variable which in-

dicates whether the link (i, j) is used for
sending IoT data f to v

Subject to

∀s ∈ S : ysv,f ≤ x
s
f (F.2)

∀v ∈ V | dfv , 0 :
∑
s∈S

ysv,f = 1 (F.3)

∀s ∈ S :
∑
v∈V

∑
f ∈F

ysv,f × d
f
v ≤Ds (F.4)

256 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

∀s ∈ S :
∑
f ∈F

xsf × fsize ≤ C
s (F.5)

∑
j

z
v,f
i,j −

∑
j

z
v,f
j,i =


0 if i , v, i , s

ysv,f if i = s

−1 if i = v

(F.6)

∀i, j ∈ V ∪ S :
∑
v∈V

∑
f ∈F

z
v,f
i,j × d

f
v ≤ Li,j (F.7)

The ICN instantiation graph results from the optimization process. It is applied

on an input network graph (it can be considered as the larger Internet). After

optimization, a set of nodes will host the ICN function. They are identified by a

binary variable xsf (equals 1 if the node can be upgrade with ICN function and 0

otherwise).

When consumer v sends an interest message for a given ICN data, the request

variable ysv,f is equal to 1 when data is available in the node s and 0 otherwise.

Finally, if a link (i, j) is used in the instantiation graph, the binary variable zv,fi,j
will be equal to equal to 0 otherwise.

In eq. (F.1), we formulate the objective function that minimizes the total place-

ment cost of ICN nodes in the IoT network.

In eq. (F.2), we ensure that the binary variable y is less than or equal x. In fact,

y equals to 1, if and only if v needs f , and f is located on server s (we should not

place an ICN function on node s if there is no interest for it).

Eq. (F.3) states that the optimal server s can serve the consumer nodes inter-

ested in the ICN data f . The sum prevents consumers from having to chose be-

tween different servers hosting the same ICN data.

Eq. (F.4) enforces network constraints. We cannot exceed the maximum down-

loading capacity.

Eq. (F.5), is relative to node system performance. It enforces the system caching

F.3. OPA: OPTIMAL PLACEMENT ALGORITHM FOR ICN/IOT NODES 257

feature of ICN nodes that should not exceed a maximum size.

Eq. (F.6) represents the network flow conservation between the intermediate

ICN nodes and the consumers. In particular, if a node is upgraded to ICN, we

ensure that flow balance equals to 1, meaning that it directly serves the incoming

consumer interests. Otherwise, if the node is not upgraded, the flow balance is

null. At the consumer side, there is no outgoing traffic (left sum is null). Hence

the flow balance is negative.

In eq. (F.7), we ensure that the link capacity between network nodes should not

exceed the available network bandwidth.

The above problem is NP-hard due to our combinatorial complex system and

difficult to scale up. It can however be easily run on the CP LEX environment.

As we target very large ICN infrastructures, a graph based optimization algorithm

has to be designed. We present hereafter, another scalable placement algorithm.

OPA Heuristic Algorithm OPA is based on the well know Gomory-Hu scalable al-

gorithm and it aims at placing ICN/IoT software with the same above mentioned

strategy and parameters. Gomory-Hu is an off-line optimization step that com-

pacts the the larger network topology to construct a tree with maximum-flow be-

tween all pairs of nodes. Algorithm 14 summarizes the pseudo code of OPA. Here-

after, we describe these main stages.

OPA is based on a Gomory-Hu transformation of the initial graph G =

(V (G),E(G)) where V are the set of vertices and E are the set of edges. Vertices

represent the network servers and edges represent the relation between vertices.

Algorithm 14 OPA: Optimal Placement Algorithm for ICN/IoT

1: Input: V , S, Ds, F, fsize, Cs, Li,j , d
f
v , psf , G = (V (G),E(G)),

2: sv , sf
3: Output: xsf , total ICN placement cost

4: CTC← Cut-Tree-Construction
(
G, Li,j

)
5: Upgrading-ICN/IoT-software

()
6: ICN/IoT-Caching

()

258 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

The initial network topology is supposed to be a scale-free network (the degree

distribution follows power law). The output of this transformation is a cut-tree

construction (Gomory-Hu tree, CTC) that represents the maximum-flow between

all network server pairs. The cut-tree is used for bottleneck detection.

The model relies on the same information and parameters as in the exact ILP

solution (number of servers, system capacity, network capacity, consumer inter-

ests). Then, an initial graph that holds the full parameters is created. Further, a

Cut-Tree is constructed based on the topology capacity without including the con-

sumer interests. The set of consumer interests is then passed on the tree. During

this step, OPA algorithm explores the cut tree creating a path from the gateway to

the server hosting the ICN/IoT. If the flow cannot reach the destination (i.e. the

original server), caused by shortage in bandwidth on this path, we simply place

the new ICN function before the rupture node of the cut tree. A test on system

capacity is also performed to ensure that the target ICN node can host this new

service. Although a path may not be obtained from the first trial, the problem is

still polynomial compared to the NP-hard complexity of the exact solution. Fi-

nally, we would like to highlight that OPA was integrated in our virtual migration

platform and outsourced in [165]. The Vios platform enables the placement and

migration on NFV functions such as CDNs and ICN functions.

F.4 Security considerations

OPA places ICN/IoT nodes closer to consumers. Hence, the security of the IoT

will be improved. Indeed, thanks to the ICN features, IoT data integrity is ensured

through embedded encryption. We also minimize the network distance between

the origin data producers (IoT devices) and consumers (that typically uses a LORA

like protocol). If we assume that P r(attack) ∝ N (N is the number of nodes from

consumers to producers), in ICN, the P r(attack) < N A network security cost is

F.5. OPA: PERFORMANCE EVALUATION 259

proposed as the following:

Network Security Cost = α × d(P r,C) (F.8)

Where α characterizes the node stability, P r is the ICN/IoT gateway (or an

intermediate ICN/IoT container after using OPA), C is the consumer group, and

finally d is the network distance between P r and C.

Finally, the security level may be introduced in our initial objective function

(F.1) as an additional constraint.

OPA improves three security issues:

• ICN Caching: OPA acts as a cache relay benefiting from ICN security. Al-

though Intermediate caching nodes may be untrusted, still the ICN infras-

tructure guarantees the trust for IoT data.

• Processing: OPA enables data analytics, treatment and processing of the

cached IoT data. Cached data is treated by intermediate ICN nodes. A se-

curity SLA has to be valid between those entities.

• Energy Efficiency: Since OPA is designed for ICN/IoT, it eliminates the need

to establish a secure connection between the resource-constrained devices

acting as data producers and all the data consumers.

F.5 OPA: performance evaluation

IoT network uses the Ultra Narrow Band (UNB) for the Machine to Machine

(M2M) communication. This network poses different problems such as increasing

the end to end delay. In general, such network interconnects more than 7 million

of devices and uses a point-to-point communication. In this section, the network

is assisted with our intelligent algorithm that introduces ICN nodes in different

levels. We show that network update upon upgrading optimal nodes by ICN/IoT

260 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

Figure F-1 – ICN-based IoT distribution network. Given the network topology, consumers
requests, and objects served by content providers, OPA model chooses which server should
be upgraded with ICN/IoT software.

software reduces the delay and dynamically (through on-line optimization) pro-

poses potential points of operation (placement/upgrade).

For the sake of assessing OPA, we propose the following scale-free based topol-

ogy that represents one of the major complex graphs as shown in Fig. F-1. It

depicts different IoT gateways that collect IoT data from tiny IoT devices. These

gateways assisted with ICN software (ICN/IoT) act as data producers on behalf of

IoT devices. OPA algorithm aims to place ICN/IoT nodes to serve data consumer

interests.

F.5.1 Scale free networks: a Barabási–Albert model-based network operator

We evaluate our scenario through the well known Barabási–Albert model [18]
1 undirected and weighted graph. Vertex connectivities follow a scale-free power

law distribution P (k). It represents the probability that a vertex interacts to k other

vertices is: P (k) ∼ k−γ . The initial graph has 100 vertices (IoT gateway nodes) with

a degree distribution that follows the power γ of 2.5, and obeys to the scale-free

implementation of psumtree. Its Cut-tree-based transformation (Gusfield transfor-

mation of the Gomory-Hu algorithm is used here [76]) has only 99 edges (49.5%).

1Barabási–Albert graphs are not random topologies. Instead, they follow a power degree distribution
(nonlinear model) so that can be used to assess network performance and as well as interpret the security
benefits.

F.5. OPA: PERFORMANCE EVALUATION 261

Figure F-2 – Data consumer delay

To assess OPA, we introduce the following metrics:

Consumer delay =
∑
v∈V

∑
f ∈F

d(sv , sf)× fsize × max
(i,j)∈Psf ,s

1
Li,j

(F.9)

OPA placement cost =
∑
s∈S

∑
f ∈F

xsf × p
s
f (F.10)

OPA placement delay =
∑
s∈S

∑
f ∈F

xsf × fsize × max
(i,j)∈Psf ,s

1
Li,j

(F.11)

Caching Strategy =
∑

s∈S\{sf }

∑
f ∈F

xsf (F.12)

Eq. (F.9) defines the consumer delay metric that represents the response time

while using OPA instead of the legacy IoT networking. sf and sv represent the data

producer (aggregator or ICN gateway) and the data consumer point of attachments

respectively. Equations (F.10) and (F.11) define the placement cost in terms of

memory cost and placement delay (total delay to perform the placement along

the shortest path from the IoT gateway to the optimal server node). Eq. (F.12)

represents the average number of instantiated ICN nodes.

Fig. F-2 shows the impact of ICN nodes on the data consumer delay. Results

show that OPA reduces the total delay.

262 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

Figure F-3 – OPA run-time in scale-free network

Figure F-4 – ICN/IoT placement (in network caching) cost

Fig. F-3 depicts the execution time of OPA for our scale-free network. It

demonstrates the feasibility and the efficiency of OPA as results are of the order

of the second (6sec). ILP exact solution is tested using CPLEX environment as a

proof of correctness of our model. We provide the curvature of this solution which

is exponential and explodes when ICN number equals 20.

Fig. F-4 shows the OPA placement cost against ICN node number in scale-free

based IoT network. Different ICN sizes (in terms of memory) are used. Fig. F-5a

and Fig. F-5b show the OPA placement delay and the OPA caching respectively

(OPA caching equals to the number of ICN migrating nodes which represents the

caching policy strategy). The curves have an increasing slope up to |F| = 60 and

then they decrease. This point represents the average ICN node number stabilizing

the IoT network according to consumer group interests.

F.6. OPA EFFICIENCY: COMPARISON WITH IOT NETWORKS 263

(a) ICN/IoT placement delay (b) ICN/IoT caching strategy

Figure F-5 – OPA in scale-free IoT network

F.6 OPA efficiency: comparison with IoT networks

IoT networks such as Sigfox [25] are dedicated to low rate wireless data gather-

ing. Several field trials and operational customers have started to use this facility.

LoRA corresponds to the wireless part between devices and gateways. As Lora

networks cover very large geographical areas, an infrastructure has to be built for

data collection and routing. OPA can enhance this core network and provide the

flexible ICN function explained before.

In Table F.2, we highlight how an IoT network such as Sigfox could be improved

by applying OPA.

F.7 Conclusion and Future Work

We proposed in this chapter using ICN for IoT deployment and we introduced

a new notion, which is how to assign ICN functionality to ICN/IoT nodes in a dy-

namic way based on network load and required services latency. In this context,

we presented an Optimal Placement Algorithm (OPA) to enhance the caching de-

ployment by network providers. OPA selects optimal network locations to serve

as intermediate IoT publisher and pursue in-network caching. We illustrated IoT

benefits from the in-network caching feature in ICN especially when applying our

proposed algorithm. And we compared OPA in IoT over ICN with IoT over SigFox

network (as an example of a popular IoT network deployment in France). Encour-

264 APPENDIX F. OPTIMAL PLACEMENT ALGORITHM (OPA) FOR IOT OVER ICN

Table F.2 – Efficiency comparison for OPA and IoT SigFox network

Metrics ICN/IoT assisted OPA Sigfox
Caching strat-
egy

Migrating ICN/IoT
nodes acting as
edge/fog computing
nodes.

Using cloud data cen-
ters.

Delay Minimize the end-to-
end consumer delay

Significant.

Optimization
cost

Additional cost of
placement of ICN/IoT
nodes

Minimum deployment
cost.

Bitrate High throughput net-
work due to the in-
network caching fea-
ture.

Low throughput net-
work due to the UNB
modulation.

Security Object-based security
that allows caching in
untrusted intermediate
nodes (proxies, caches,
etc.).

Session-based security,
frequency hopping.

Actuation
latency

Bounded in with cache
avoidance (OPA helps
in routing).

Unbounded

Medium Access
Control (MAC)
layer

ICN networking stack
that implies optimal
bandwidth occupancy.

Without collision-
avoidance that limits
the bandwidth of IoT
gateways [25].

aging results assure that OPA is scalable and efficient in terms of placing ICN/IoT

nodes in a dynamic way. We will try to compare OPA in IoT over ICN against IoT

solutions over WiFi and cellular networks without ICN. Finally, Vios platform will

be enriched with ICN dockers.

Bibliography

[1] Emad Abd-Elrahman, Hossam Afifi, Hassnaa Moustafa, Mamadou Tourd
Diallo, and Nicolas Marechal. Optimization of tv multicast delivery. Journal
of Electronic Systems, 3(4):135–147, 2013.

[2] Accellion. Accellion, June 2016.

[3] B. Addis, D. Belabed, M. Bouet, and S. Secci. Virtual network functions
placement and routing optimization. In Cloud Networking (CloudNet), 2015
IEEE 4th International Conference on, pages 171–177, Oct 2015.

[4] Akamai. Content delivery network, June 2016.

[5] Takuya Akiba, Yoichi Iwata, Yosuke Sameshima, Naoto Mizuno, and Yosuke
Yano. Cut tree construction from massive graphs. CoRR, abs/1609.08723,
2016.

[6] Amazon. Amazon cloudfront, June 2016.

[7] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying. Content-aware caching
and traffic management in content distribution networks. In 2011 Proceed-
ings IEEE INFOCOM, pages 2858–2866, April 2011.

[8] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and F. Zane. Clustering
and server selection using passive monitoring. In Proceedings.Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies,
volume 3, pages 1717–1725 vol.3, 2002.

[9] Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair. Parametric min-cuts anal-
ysis in a network. Discrete Appl. Math., 127(3):679–689, May 2003.

[10] David Applegate and Edith Cohen. Making intra-domain routing robust
to changing and uncertain traffic demands: Understanding fundamental
tradeoffs. In Proceedings of the 2003 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, SIGCOMM
’03, pages 313–324, New York, NY, USA, 2003. ACM.

[11] Oscar Ardaiz, Felix Freitag, and Leandro Navarro. Improving the service
time of web clients using server redirection. SIGMETRICS Perform. Eval.
Rev., 29(2):39–44, September 2001.

265

266 BIBLIOGRAPHY

[12] Baruch Awerbuch and Rohit Khandekar. Greedy distributed optimization
of multi-commodity flows. In Proceedings of the Twenty-sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’07, pages 274–
283, New York, NY, USA, 2007. ACM.

[13] Baruch Awerbuch, Rohit Khandekar, and Satish Rao. Distributed algorithms
for multicommodity flow problems via approximate steepest descent frame-
work. ACM Trans. Algorithms, 9(1):3:1–3:14, December 2012.

[14] S. Ayyasamy and S. N. Sivanandam. A qos-aware intelligent replica manage-
ment architecture for content distribution in peer-to-peer overlay networks.
CoRR, abs/0912.2296, 2009.

[15] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Op-
timal oblivious routing in polynomial time. In Proceedings of the Thirty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’03, pages 383–388,
New York, NY, USA, 2003. ACM.

[16] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt,
and Matthias Wählisch. Information centric networking in the iot: Exper-
iments with ndn in the wild. In Proceedings of the 1st ACM Conference on
Information-Centric Networking, ACM-ICN ’14, pages 77–86, New York, NY,
USA, 2014. ACM.

[17] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Looking up data in p2p systems. Commun. ACM, 46(2):43–48,
February 2003.

[18] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[20] Arsany Basta, Wolfgang Kellerer, Marco Hoffmann, Hans Jochen Morper,
and Klaus Hoffmann. Applying nfv and sdn to lte mobile core gateways,
the functions placement problem. In Proceedings of the 4th Workshop on All
Things Cellular: Operations, Applications, & Challenges, AllThingsCellu-
lar ’14, pages 33–38, New York, NY, USA, 2014. ACM.

[21] Pierre-Olivier Bauguion, Walid Ben-Ameur, and Éric Gourdin. Efficient al-
gorithms for the maximum concurrent flow problem. Networks, 65(1):56–67,
2015.

[22] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference, ATEC
’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

BIBLIOGRAPHY 267

[23] Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap Jat-
aprolu, Gautam Kumar, Anand Muralidhar, Paul Polakos, Vikram Srini-
vasan, and Thomas Woo. Cloudiq: A framework for processing base stations
in a data center. 08 2012.

[24] M. Bjorkqvist, L. Y. Chen, and X. Zhang. Minimizing retrieval cost of multi-
layer content distribution systems. In 2011 IEEE International Conference on
Communications (ICC), pages 1–6, June 2011.

[25] Martin Bor, John Vidler, and Utz Roedig. Lora for the internet of things. In
Proceedings of the 2016 International Conference on Embedded Wireless Systems
and Networks, EWSN ’16, pages 361–366, USA, 2016. Junction Publishing.

[26] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for con-
tent distribution networks. In 2010 Proceedings IEEE INFOCOM, pages 1–9,
March 2010.

[27] M. Bouet, J. Leguay, and V. Conan. Cost-based placement of vdpi functions
in nfv infrastructures. In Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pages 1–9, April 2015.

[28] N. Bouten, J. Famaey, R. Mijumbi, B. Naudts, J. Serrat, S. Latré, and F. De
Turck. Towards nfv-based multimedia delivery. In 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), pages 738–741,
May 2015.

[29] Torsten Braun and Tuan Anh Trinh. Energy Efficiency Issues in Information-
Centric Networking, pages 271–278. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[30] James Broberg, Rajkumar Buyya, and Zahir Tari. Metacdn: Harnessing ‘stor-
age clouds’ for high performance content delivery. Journal of Network and
Computer Applications, 32(5):1012 – 1022, 2009. Next Generation Content
Networks.

[31] B. Carbunar, M. Pearce, V. Vasudevan, and M. Needham. Predictive caching
for video on demand cdns. In 2011 IEEE Global Telecommunications Confer-
ence - GLOBECOM 2011, pages 1–5, Dec 2011.

[32] CCN. The ccnx project, parc a xerox company, June 2016.

[33] cedric.westphal@huawei.com, Christopher Mueller, Andrea Detti, Daniel
Corujo, aytav.azgin, Jianping Wang, Marie-Jose Montpetit, Niall Murray,
Shucheng LIU (Will), Stefan Lederer, Christian Timmerer, and Daniel Posch.
Adaptive Video Streaming over Information-Centric Networking (ICN).
RFC 7933, August 2016.

268 BIBLIOGRAPHY

[34] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue
Moon. I tube, you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, IMC ’07, pages 1–14, New York, NY,
USA, 2007. ACM.

[35] S. A. Chellouche, D. Négru, Y. Chen, and M. Sidibe. Home-box-assisted
content delivery network for internet video-on-demand services. In 2012
IEEE Symposium on Computers and Communications (ISCC), pages 000544–
000550, July 2012.

[36] Bin Cheng, Lex Stein, Hai Jin, and Zheng Zhang. A framework for lazy
replication in p2p vod. In Proceedings of the 18th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, NOSS-
DAV ’08, pages 93–98, New York, NY, USA, 2008. ACM.

[37] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson. In-network caching ef-
fect on optimal energy consumption in content-centric networking. In 2012
IEEE International Conference on Communications (ICC), pages 2889–2894,
June 2012.

[38] Codeen. Codeen, June 2016.

[39] Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner
edge connectivity. In Proceedings of the Thirty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’03, pages 167–176, New York, NY, USA,
2003. ACM.

[40] Comodin. Comodin, June 2016.

[41] Luis M. Contreras, Paul Doolan, Hkon Lønsethagen, and Diego R. López.
Operational, organizational and business challenges for network operators
in the context of sdn and nfv. Comput. Netw., 92(P2):211–217, December
2015.

[42] Doug Cutting and Mike Cafarella. Apache hadoop, June 2016.

[43] J. Dai, F. Liu, B. Li, B. Li, and J. Liu. Collaborative caching in wireless video
streaming through resource auctions. IEEE Journal on Selected Areas in Com-
munications, 30(2):458–466, February 2012.

[44] Pradyumna Dash. Getting Started with Oracle VM VirtualBox. Packt Publish-
ing, 2013.

[45] K. Delgadillo. Cisco distributed director.

[46] Mamadou Tourad Diallo. Quality of experience and video services adaptation.
PhD thesis, 2015. Thèse de doctorat dirigée par Afifi, Hossam Informatique
et télécommunications Evry, Institut national des télécommunications 2015.

BIBLIOGRAPHY 269

[47] Mamadou Tourad Diallo, Frédéric fieau, Emad Abd-Elrahman, and Hossam
afifi. Utility-based Approach for Video Service Delivery Optimization. IC-
SNC 2014: International Conference on Systems and Network Communication,
pages 5–10, 2014.

[48] Mamadou Tourad Diallo, Nicolas Marechal, and Hossam Afifi. A hybrid
contextual user perception model for streamed video quality assessment.
In Proceedings of the 2013 IEEE International Symposium on Multimedia, ISM
’13, pages 518–519, Washington, DC, USA, 2013. IEEE Computer Society.

[49] Mamadou Tourad Diallo, Nicolas Marechal, and Hossam Afifi. A hybrid
contextual user perception model for streamed video quality assessment.
In Proceedings of the 2013 IEEE International Symposium on Multimedia, ISM
’13, pages 518–519, Washington, DC, USA, 2013. IEEE Computer Society.

[50] Mamadou Tourad Diallo, Hassnaa Moustafa, Hossam Afifi, and Khalil
Ur Rehman Laghari. Quality of experience for audio-visual services. In
UP-TO-US ’12 Workshop : User-Centric Personalized TV ubiquitOus and secUre
Services, pages 299–305, Berlin, Germany, July 2012. Fraunhofer FOKUS.

[51] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman,
and Bill Weihl. Globally distributed content delivery. IEEE Internet Comput-
ing, 6(5):50–58, September 2002.

[52] W. Ding, W. Qi, J. Wang, and B. Chen. Openscaas: an open service chain
as a service platform toward the integration of sdn and nfv. IEEE Network,
29(3):30–35, May 2015.

[53] Yuanyuan Dong, Eli V. Olinick, T. Jason Kratz, and David W. Matula. A
compact linear programming formulation of the maximum concurrent flow
problem. Netw., 65(1):68–87, January 2015.

[54] Fred Douglis and M Frans Kaashoek. Scalable internet services. 5:36–37, 08
2001.

[55] F. Dudouet, P. Harsh, S. Ruiz, A. Gomes, and T. M. Bohnert. A case for cdn-
as-a-service in the cloud: A mobile cloud networking argument. In 2014
International Conference on Advances in Computing, Communications and In-
formatics (ICACCI), pages 651–657, Sept 2014.

[56] H. E. Egilmez, S. Civanlar, and A. M. Tekalp. An optimization framework
for qos-enabled adaptive video streaming over openflow networks. IEEE
Transactions on Multimedia, 15(3):710–715, April 2013.

[57] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp. Openqos: An
openflow controller design for multimedia delivery with end-to-end quality
of service over software-defined networks. In Signal Information Processing
Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific,
pages 1–8, Dec 2012.

270 BIBLIOGRAPHY

[58] Kayhan Erciyes. Complex Networks: An Algorithmic Perspective. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition, 2014.

[59] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, June 2000.

[60] Hamid Farhady, HyunYong Lee, and Akihiro Nakao. Software-defined net-
working: A survey. Computer Networks, 81:79 – 95, 2015.

[61] B. Feng, H. Zhou, H. Zhang, J. Jiang, and S. Yu. A popularity-based cache
consistency mechanism for information-centric networking. In 2016 IEEE
Global Communications Conference (GLOBECOM), pages 1–6, Dec 2016.

[62] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, USA, 2010.

[63] Open Networking Foundation. Openflow, 2013.

[64] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja Feld-
mann, Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber. Pushing cdn-
isp collaboration to the limit. SIGCOMM Comput. Commun. Rev., 43(3):34–
44, July 2013.

[65] L. Fratta, M. Gerla, and L. Kleinrock. The flow deviation method: An
approach to store-and-forward communication network design. Networks,
3(2):97–133, 1973.

[66] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing
content publication with coral. In Proceedings of the 1st Conference on Sympo-
sium on Networked Systems Design and Implementation - Volume 1, NSDI’04,
pages 18–18, Berkeley, CA, USA, 2004. USENIX Association.

[67] Norihito Fujita, Yuichi Ishikawa, Atsushi Iwata, and Rauf Izmailov. Coarse-
grain replica management strategies for dynamic replication of web con-
tents. Comput. Netw., 45(1):19–34, May 2004.

[68] Marisol Garcı́a-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in
real-time virtualization and predictable cloud computing. Journal of Systems
Architecture, 60(9):726 – 740, 2014.

[69] N. Garg and J. Konemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. In Proceedings 39th Annual
Symposium on Foundations of Computer Science (Cat. No.98CB36280), pages
300–309, Nov 1998.

[70] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race. Cache as a service:
Leveraging sdn to efficiently and transparently support video-on-demand

BIBLIOGRAPHY 271

on the last mile. In 2014 23rd International Conference on Computer Commu-
nication and Networks (ICCCN), pages 1–9, Aug 2014.

[71] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu, and
Nicholas Race. Towards network-wide qoe fairness using openflow-assisted
adaptive video streaming. In Proceedings of the 2013 ACM SIGCOMM Work-
shop on Future Human-centric Multimedia Networking, FhMN ’13, pages 15–
20, New York, NY, USA, 2013. ACM.

[72] Andrew V. Goldberg. A natural randomization strategy for multicommodity
flow and related algorithms. volume 42, pages 249 – 256, 1992.

[73] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[74] Network Working Group. Nfvi pop network topology: Problem statement,
2016.

[75] K. Guan, G. Atkinson, D. C. Kilper, and E. Gulsen. On the energy efficiency
of content delivery architectures. In 2011 IEEE International Conference on
Communications Workshops (ICC), pages 1–6, June 2011.

[76] Dan Gusfield. Very simple methods for all pairs network flow analysis.
SIAM J. Comput., 19(1):143–155, February 1990.

[77] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer. Caching in named
data networking for the wireless internet of things. In 2015 International
Conference on Recent Advances in Internet of Things (RIoT), pages 1–6, April
2015.

[78] Gerhard Haı́linger and Franz Hartleb. Content delivery and caching from a
network provider’s perspective. Comput. Netw., 55(18):3991–4006, Decem-
ber 2011.

[79] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-
tion: Challenges and opportunities for innovations. IEEE Communications
Magazine, 53(2):90–97, Feb 2015.

[80] Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand
Bhalgat. An Õ(mn) gomory-hu tree construction algorithm for unweighted
graphs. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory
of Computing, STOC ’07, pages 605–614, New York, NY, USA, 2007. ACM.

[81] Tanja Hartmann and Dorothea Wagner. Dynamic gomory-hu tree construc-
tion - fast and simple. CoRR, abs/1310.0178, 2013.

[82] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. Nfv: state of the art,
challenges, and implementation in next generation mobile networks (vepc).
IEEE Network, 28(6):18–26, Nov 2014.

272 BIBLIOGRAPHY

[83] Ching-Lai Hwang and Kwangsun Yoon. Multiple attribute decision making.
Springer-Verlag Berlin Heidelberg, 186, 1981.

[84] IBM. Ibm ilog cplex optimization studio community edition, version 12.5,
2015.

[85] H. Ibn-Khedher, E. Abd-Elrahman, and H. Afifi. Omac: Optimal migration
algorithm for virtual cdn. In 2016 23rd International Conference on Telecom-
munications (ICT), pages 1–6, May 2016.

[86] H. Ibn-Khedher, E. Abd-Elrahman, H. Afifi, and J. Forestier. Network issues
in virtual machine migration. In Networks, Computers and Communications
(ISNCC), 2015 International Symposium on, pages 1–6, May 2015.

[87] H. Ibn-Khedher, M. Hadji, E. Abd-Elrahman, H. Afifi, and A. E. Kamal.
Scalable and cost efficient algorithms for virtual cdn migration. In 2016
IEEE 41st Conference on Local Computer Networks (LCN), pages 112–120, Nov
2016.

[88] Hatem Ibn-Khedher, Emad Abd-Elrahman, Ahmed E. Kamal, and Hossam
Afifi. Opac: An optimal placement algorithm for virtual {CDN}. Computer
Networks, 120:12 – 27, 2017.

[89] Hatem Ibn-Khedher, Hossam Afifi, and Hassnaa Moustafa. Optimal place-
ment algorithm (opa) for iot over icn. INFOCOM NOM 2017 :Named-
Oriented Mobility: Architectures, Algorithms, and Applications workshop, (doc-
ument in press- published online 05 May 2017).

[90] S. Imai, K. Leibnitz, and M. Murata. Energy efficient content locations for
in-network caching. In 2012 18th Asia-Pacific Conference on Communications
(APCC), pages 554–559, Oct 2012.

[91] S. Imai, K. Leibnitz, and M. Murata. Energy-aware cache management
for content-centric networking. In 2013 27th International Conference on
Advanced Information Networking and Applications Workshops, pages 1623–
1629, March 2013.

[92] I. S. H. Yeung J. Ni, D. H. K. Tsang and X. Hei. Hierarchical content routing
in large-scale multimedia content delivery network. Proceedings of IEEE In-
ternational Conference on Communications, 2003 (ICC ’03), 2:854–859, May
2003.

[93] Van Jacobson. A new way to look at networking, jun 2006.

[94] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael Plass, Nick
Briggs, and Rebecca Braynard. Networking named content. Commun. ACM,
55(1):117–124, January 2012.

BIBLIOGRAPHY 273

[95] R. Jain and S. Paul. Network virtualization and software defined networking
for cloud computing: a survey. IEEE Communications Magazine, 51(11):24–
31, November 2013.

[96] Manar Jammal, Taranpreet Singh, Abdallah Shami, Rasool Asal, and Yiming
Li. Software-defined networking: State of the art and research challenges.
CoRR, abs/1406.0124, 2014.

[97] Y. Jin, Y. Wen, G. Shi, G. Wang, and A. V. Vasilakos. Codaas: An experi-
mental cloud-centric content delivery platform for user-generated contents.
In Computing, Networking and Communications (ICNC), 2012 International
Conference on, pages 934–938, Jan 2012.

[98] K.L Johnson, J.F Carr, M.S Day, and M.F Kaashoek. The measured perfor-
mance of content distribution networks. Comput. Commun., 24(2):202–206,
February 2001.

[99] U. Kalim, M. K. Gardner, E. J. Brown, and W. c. Feng. Seamless migration of
virtual machines across networks. In 2013 22nd International Conference on
Computer Communication and Networks (ICCCN), pages 1–7, July 2013.

[100] Jussi Kangasharju, James Roberts, and Keith W. Ross. Object replication
strategies in content distribution networks. Comput. Commun., 25(4):376–
383, March 2002.

[101] George Karakostas. Faster approximation schemes for fractional multicom-
modity flow problems. ACM Trans. Algorithms, 4(1):13:1–13:17, March 2008.

[102] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan
Dhanidina, Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi.
Web caching with consistent hashing. In Proceedings of the Eighth Interna-
tional Conference on World Wide Web, WWW ’99, pages 1203–1213, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

[103] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford.
An almost-linear-time algorithm for approximate max flow in undirected
graphs, and its multicommodity generalizations. In Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’14, pages 217–226, Philadelphia, PA, USA, 2014. Society for Industrial and
Applied Mathematics.

[104] Philip Klein, Serge Plotkin, Clifford Stein, and Éva Tardos. Faster approx-
imation algorithms for the unit capacity concurrent flow problem with ap-
plications to routing and finding sparse cuts. SIAM Journal on Computing,
23(3):466–487, 1994.

[105] Bikash Koley. Software defined networking at scale, 2014.

274 BIBLIOGRAPHY

[106] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Publishing Company, Incorporated, 5th edition, 2012.

[107] Balachander Krishnamurthy, Craig Wills, and Yin Zhang. On the use and
performance of content distribution networks. In Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, IMW ’01, pages 169–182,
New York, NY, USA, 2001. ACM.

[108] Dirk Kutscher, Suyong Eum, Kostas Pentikousis, Ioannis Psaras, Daniel
Corujo, Damien Saucez, Thomas C. Schmidt, and Matthias Wählisch.
Information-Centric Networking (ICN) Research Challenges. RFC 7927,
July 2016.

[109] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and I. Stavrakakis. Dis-
tributed selfish caching. IEEE Transactions on Parallel and Distributed Sys-
tems, 18(10):1361–1376, Oct 2007.

[110] Irwin Lazar and William Terrill. Exploring content delivery networking. IT
Professional, 3(4):47–49, July 2001.

[111] A. Leff, P. S. Yu, and J. L. Wolf. Policies for efficient memory utilization in a
remote caching architecture. In [1991] Proceedings of the First International
Conference on Parallel and Distributed Information Systems, pages 198–207,
Dec 1991.

[112] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uni-
form multicommodity flow problems with applications to approximation
algorithms. In [Proceedings 1988] 29th Annual Symposium on Foundations of
Computer Science, pages 422–431, Oct 1988.

[113] Q. Li, J. Huai, J. Li, T. Wo, and M. Wen. Hypermip: Hypervisor con-
trolled mobile ip for virtual machine live migration across networks. In
2008 11th IEEE High Assurance Systems Engineering Symposium, pages 80–
88, Dec 2008.

[114] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén, and A. M. Ma-
lik. Design choices for the iot in information-centric networks. In 2016
13th IEEE Annual Consumer Communications Networking Conference (CCNC),
pages 882–888, Jan 2016.

[115] Aleksander Madry. Faster approximation schemes for fractional multicom-
modity flow problems via dynamic graph algorithms. CoRR, abs/1003.5907,
2010.

[116] M. Mangili, F. Martignon, and A. Capone. Stochastic planning for content
delivery: Unveiling the benefits of network functions virtualization. In 2014
IEEE 22nd International Conference on Network Protocols, pages 344–349, Oct
2014.

BIBLIOGRAPHY 275

[117] Michele Mangili, Fabio Martignon, and Antonio Capone. Optimal design of
information centric networks. Computer Networks, 91:638 – 653, 2015.

[118] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network
function virtualization. In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’14, pages 459–473, Berke-
ley, CA, USA, 2014. USENIX Association.

[119] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob. Toward an sdn-
enabled nfv architecture. IEEE Communications Magazine, 53(4):187–193,
April 2015.

[120] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De
Turck, and Raouf Boutaba. Network function virtualization: State-of-the-
art and research challenges. CoRR, abs/1509.07675, 2015.

[121] Dave Mishchenko. VMware ESXi: Planning, Implementation, and Security.
Course Technology Press, Boston, MA, United States, 1st edition, 2010.

[122] H. Moens and F. D. Turck. Vnf-p: A model for efficient placement of vir-
tualized network functions. In 10th International Conference on Network and
Service Management (CNSM) and Workshop, pages 418–423, Nov 2014.

[123] C.D. Mortensen. Communication Theory. Studies in Communication. Trans-
action Publishers, 2011.

[124] H. Nam, K. H. Kim, J. Y. Kim, and H. Schulzrinne. Towards qoe-aware video
streaming using sdn. In 2014 IEEE Global Communications Conference, pages
1317–1322, Dec 2014.

[125] NDN. Named data networking, jun 2016.

[126] NetInf. Network of information (netinf), June 2016.

[127] Jian Ni and D. H.K. Tsang. Large-scale cooperative caching and application-
level multicast in multimedia content delivery networks. Comm. Mag.,
43(5):98–105, May 2005.

[128] Opendaylight. Opendaylight platform, June 2016.

[129] Orange. Bienvenue sur le site du projet dvd2c, 2016.

[130] M P. Szymaniak, Guillaume Pierre, and Maarten van Steen. Netairt: A dns-
based redirection system for apache. 02 2018.

[131] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter Druschel,
Willy Zwaenepoel, and Erich Nahum. Locality-aware request distribution
in cluster-based network servers. In Proceedings of the Eighth International

276 BIBLIOGRAPHY

Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VIII, pages 205–216, New York, NY, USA, 1998. ACM.

[132] Shrideep Pallickara and Geoffrey Fox. Enabling hierarchical dissemination
of streams in content distribution networks. Concurrency and Computation:
Practice and Experience, 24(14):1594–1606, 2012.

[133] George Pallis and Athena Vakali. Insight and perspectives for content deliv-
ery networks. Commun. ACM, 49(1):101–106, January 2006.

[134] Kihong Park, H T. Kung, and C H. Wu. Content networks: Taxonomy and
new approaches. 07 2002.

[135] A. Pathan and R. Buyya. A taxonomy and survey of content delivery net-
works,. Technical Report, GRIDS-TR-2007-4, Grid Computing and Dis-
tributed Systems Laboratory, The University of Melbourne, Australia., Feb.
2007.

[136] Gang Peng. CDN: content distribution network. CoRR, cs.NI/0411069,
2004.

[137] Kostas Pentikousis, Borje Ohlman, Daniel Corujo, Gennaro Boggia, Gareth
Tyson, Elwyn B. Davies, Antonella Molinaro, and Suyong Eum. Information-
Centric Networking: Baseline Scenarios. RFC 7476, October 2015.

[138] Kostas Pentikousis, Borje Ohlman, Elwyn B. Davies, Gennaro Boggia, and
Spiros Spirou. Information-Centric Networking: Evaluation and Security
Considerations. RFC 7945, September 2016.

[139] Fernando Pérez and Brian E. Granger. IPython: a system for interactive
scientific computing. Computing in Science and Engineering, 9(3):21–29, May
2007.

[140] G. Pierre and M. van Steen. Globule: a collaborative content delivery net-
work. IEEE Communications Magazine, 44(8):127–133, Aug 2006.

[141] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-
network caching for information-centric networks. In Proceedings of the Sec-
ond Edition of the ICN Workshop on Information-centric Networking, ICN ’12,
pages 55–60, New York, NY, USA, 2012. ACM.

[142] PSIRP. Publish-subscribe internet routing paradigm, June 2016.

[143] Nadia N. Qadri, Antonio Liotta, Muhammad Altaf, Martin Fleury, and Mo-
hammed Ghanbari. Effective video streaming using mesh p2p with mdc
over manets. J. Mob. Multimed., 5(4):301–316, December 2009.

BIBLIOGRAPHY 277

[144] J. Quevedo, D. Corujo, and R. Aguiar. Consumer driven information fresh-
ness approach for content centric networking. In 2014 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages 482–487,
April 2014.

[145] Harald Räcke. Minimizing congestion in general networks. In Proceedings
of the 43rd Symposium on Foundations of Computer Science, FOCS ’02, pages
43–52, Washington, DC, USA, 2002. IEEE Computer Society.

[146] Tomasz Radzik. Fast deterministic approximation for the multicommodity
flow problem. Mathematical Programming, 78(1):43–58, Jul 1996.

[147] S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla. Sdn based qoe op-
timization for http-based adaptive video streaming. In 2015 IEEE Interna-
tional Symposium on Multimedia (ISM), pages 120–123, Dec 2015.

[148] P. Rodriguez, C. Spanner, and E. W. Biersack. Analysis of web caching ar-
chitectures: hierarchical and distributed caching. IEEE/ACM Transactions on
Networking, 9(4):404–418, Aug 2001.

[149] Tiago Rosado and Jorge Bernardino. An overview of openstack architecture.
In Proceedings of the 18th International Database Engineering & Appli-
cations Symposium, IDEAS ’14, pages 366–367, New York, NY, USA, 2014.
ACM.

[150] E. Rosas, N. Hidalgo, and M. Marin. Two-level result caching for web search
queries on structured p2p networks. In 2012 IEEE 18th International Confer-
ence on Parallel and Distributed Systems, pages 221–228, Dec 2012.

[151] E. J. Rosensweig, J. Kurose, and D. Towsley. Approximate models for gen-
eral cache networks. In 2010 Proceedings IEEE INFOCOM, pages 1–9, March
2010.

[152] Ponnusamy S P and Karthikeyan Eswaramurthy. Cache optimization on hot-
point proxy caching using weighted-rank cache replacemnt policy. 35, 08
2013.

[153] Mehdi Sabeur, Ghazi Al Sukkar, Badii Jouaber, Djamal Zeghlache, and Hos-
sam Afifi. Mobile party: A mobility management solution for wireless mesh
network. In Wireless and Mobile Computing, Networking and Communications,
2007. WiMOB 2007. Third IEEE International Conference on, pages 45–45.
IEEE, 2007.

[154] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and
Henry M. Levy. An analysis of internet content delivery systems. SIGOPS
Oper. Syst. Rev., 36(SI):315–327, December 2002.

278 BIBLIOGRAPHY

[155] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. A practical
congestion control scheme for named data networking. In Proceedings of the
3rd ACM Conference on Information-Centric Networking, ACM-ICN ’16, pages
21–30, New York, NY, USA, 2016. ACM.

[156] Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow prob-
lem. J. ACM, 37(2):318–334, April 1990.

[157] Farhad Shahrokhi and David W. Matula. On solving large maximum concur-
rent flow problems. In Proceedings of the 15th Annual Conference on Computer
Science, CSC ’87, pages 205–209, New York, NY, USA, 1987. ACM.

[158] Wentao Shang, Zhe Wen, Qiuhan Ding, Alexander Afanasyev, and Lixia
Zhang. NDNFS: An NDN-friendly file system. Technical Report NDN-0027,
NDN, October 2014.

[159] Jiu sheng PENG and Xiong jian LIANG. Content delivery network and its
regulation. The Journal of China Universities of Posts and Telecommunications,
13(4):98 – 101, 2006.

[160] J. Shim, P. Scheuermann, and R. Vingralek. Proxy cache algorithms: design,
implementation, and performance. IEEE Transactions on Knowledge and Data
Engineering, 11(4):549–562, Jul 1999.

[161] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian Tschudin.
An information centric network for computing the distribution of compu-
tations. In Proceedings of the 1st ACM Conference on Information-Centric Net-
working, ACM-ICN ’14, pages 137–146, New York, NY, USA, 2014. ACM.

[162] Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre, and
Maarten van Steen. Replication for web hosting systems. ACM Comput.
Surv., 36(3):291–334, September 2004.

[163] Suman Ramkumar Srinivasan, Jae Woo Lee, Dhruva L. Batni, and Hen-
ning G. Schulzrinne. Activecdn: Cloud computing meets content delivery
networks. Department of Computer Science, Columbia University, 32(5):1012
– 1022, 2011. Next Generation Content Networks.

[164] T Suresh and K Vekatachalapathy. Popularity aware limited caching for re-
liable on demand p2p video streaming. 58, 10 2012.

[165] Tamayo-IbnKhedher. vios (virtual infrastructure optimization simulator),
2016.

[166] Xueyan Tang and S. T. Chanson. Coordinated en-route web caching. IEEE
Transactions on Computers, 51(6):595–607, Jun 2002.

BIBLIOGRAPHY 279

[167] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji. Performance of proba-
bilistic caching and cache replacement policies for content-centric networks.
In 39th Annual IEEE Conference on Local Computer Networks, pages 99–106,
Sept 2014.

[168] S. Tewari and L. Kleinrock. Proportional replication in peer-to-peer net-
works. In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Con-
ference on Computer Communications, pages 1–12, April 2006.

[169] Tai-Won Um, Hyunwoo Lee, Won Ryu, and Jun Kyun Choi. Dynamic re-
source allocation and scheduling for cloud-based virtual content delivery
networks. volume 36, pages 197–205, Apr 2014.

[170] ETSI GS NFV V1.1.1. Network functions virtualization (nfv); use cases,
2013.

[171] ETSI GS NFV 002 V1.1.1. Network functions virtualization (nfv); architec-
tural framework, 2013.

[172] ETSI GS NFV-MAN 001 V1.1.1. Network functions virtualization (nfv);
management and orchestration, 2014.

[173] Athena Vakali and George Pallis. Content delivery networks: Status and
trends. IEEE Internet Computing, 7(6):68–74, November 2003.

[174] Rodrigo Aldecoa Dmitri Krioukov Lan Wang Beichuan Zhang Lixia Zhang
Vince Lehman, Ashlesh Gawande. An experimental investigation of hyper-
bolic routing with a smart forwarding plane in ndn. In IEEE IWQoS Sympo-
sium, 2016.

[175] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli. In-
network caching of internet-of-things data. In 2014 IEEE International Con-
ference on Communications (ICC), pages 3185–3190, June 2014.

[176] Wikipedia. Mobile agents, 2016.

[177] H. Woo, S. Han, E. Heo, J. Kim, and S. Shin. A virtualized, programmable
content delivery network. pages 159–168, April 2014.

[178] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang. Toward a
software-based network: integrating software defined networking and net-
work function virtualization. IEEE Network, 29(3):36–41, May 2015.

[179] W. Wu and J. C. S. Lui. Exploring the optimal replication strategy in p2p-
vod systems: Characterization and evaluation. In 2011 Proceedings IEEE
INFOCOM, pages 1206–1214, April 2011.

[180] W. Wu, R. T. B. Ma, and J. C. S. Lui. On incentivizing caching for p2p-vod
systems. In 2012 Proceedings IEEE INFOCOM Workshops, pages 164–169,
March 2012.

280 BIBLIOGRAPHY

[181] Cheng Yi, Jerald Abraham, Alexander Afanasyev, Lan Wang, Beichuan
Zhang, and Lixia Zhang. On the role of routing in named data networking.
In Proceedings of the 1st ACM Conference on Information-Centric Networking,
ACM-ICN ’14, pages 27–36, New York, NY, USA, 2014. ACM.

[182] Xin Yu and Z. Kedem. A distributed adaptive cache update algorithm for
the dynamic source routing protocol. In Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies., volume 1,
pages 730–739 vol. 1, March 2005.

[183] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and
Lixia Zhang. Schematizing trust in named data networking. In Proceedings
of the 2Nd ACM Conference on Information-Centric Networking, ACM-ICN ’15,
pages 177–186, New York, NY, USA, 2015. ACM.

[184] Guoqiang Zhang, Yang Li, and Tao Lin. Caching in information centric net-
working: A survey. Comput. Netw., 57(16):3128–3141, November 2013.

[185] Haitao Zhang, Zhehao Wang, Christopher Scherb, Claudio Marxer, Jeff
Burke, Lixia Zhang, and Christian Tschudin. Sharing mhealth data via
named data networking. In Proceedings of the 3rd ACM Conference on
Information-Centric Networking, ACM-ICN ’16, pages 142–147, New York,
NY, USA, 2016. ACM.

[186] Y. Zhang, A. Afanasyev, J. Burke, and L. Zhang. A survey of mobility support
in named data networking. In 2016 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), pages 83–88, April 2016.

[187] Yanyong Zhang, Dipankar Raychadhuri, Luigi Alfredo Grieco, Emmanuel
Baccelli, Jeff Burke, Ravi Ravindran, and Guoqiang Wang. ICN based Ar-
chitecture for IoT - Requirements and Challenges. Internet-Draft draft-
zhang-iot-icn-challenges-02, Internet Engineering Task Force, February
2016. Work in Progress.

[188] Yanyong Zhang, Dipankar Raychadhuri, Luigi Alfredo Grieco, Sicari Sab-
rina, Hang Liu, Satyajayant Misra, and Ravi Ravindran. ICN based Architec-
ture for IoT. Internet-Draft draft-zhang-icnrg-iot-architecture-00, Internet
Engineering Task Force, July 2016. Work in Progress.

[189] Yu Zhang, Hongli Zhang, and Lixia Zhang. Kite: A mobility support scheme
for ndn. In Proceedings of the 1st ACM Conference on Information-Centric Net-
working, ACM-ICN ’14, pages 179–180, New York, NY, USA, 2014. ACM.

[190] Mo Zhou, Bo Ji, Kun Peng Han, and Hong Sheng Xi. A cooperative hybrid
caching strategy for p2p mobile network. In Instruments, Measurement, Elec-
tronics and Information Engineering, volume 347 of Applied Mechanics and
Materials, pages 1992–1996. Trans Tech Publications, 10 2013.

BIBLIOGRAPHY 281

[191] Yipeng Zhou, Tom Z. J. Fu, and Dah Ming Chiu. On replication algorithm
in p2p vod. IEEE/ACM Trans. Netw., 21(1):233–243, February 2013.

	General introduction
	Motivation
	Contribution
	Outline

	From CDN to vCDN: state of the art
	Introduction
	CDN overview
	Taxonomy of CDN
	CDN infrastructure and composition
	CDN delivery and management
	CDN request routing issues
	CDN performance and user satisfaction

	Network evolution from CDN to vCDN
	Virtualization of CDN
	Cloudified CDN
	Virtualized CDN
	Programmable CDN

	Virtual CDN optimization
	NFV/SDN common optimization techniques
	NFV/SDN optimization algorithms in the video delivery context
	QoE measurement for NFV delivery context
	Discussion and future work

	Conclusion

	Network issues for vCDN migration
	Introduction
	NFV, SDN and OpenStack
	Network Functions Virtualization
	Software Defined Networking
	OpenStack

	Network constraints in virtualization
	QoS
	Mobility
	Security

	Networks issues for virtualized network function's mobility
	Hypervisor overview
	Basic concepts for MIP enabled live migration
	Networking system design
	Virtual machine migration process
	Evaluation

	CDN use case
	CDN
	Virtualization of CDN

	Conclusion

	OPAC: Optimal Placement Algorithm for virtual CDN
	Introduction
	Related work
	OPAC: design concepts
	OPAC protocol
	OPAC optimization model
	Problem statement, constraints and main objectives
	Mathematical formulation
	Mono objective resolution

	OPAC: optimization evaluation
	Virtual content delivery number impact
	Client node number impact
	Virtual content delivery resolution impact
	Delivery capacity impact
	Delivery storage impact

	OPAC: comparisons
	Comparison between OPAC and non optimal migration algorithm
	Comparison between OPAC and related work

	Conclusion

	Scalable and cost efficient algorithms for vCDN migration
	Introduction
	OPAC: migration use case (OMAC)
	HPAC: Heuristic Placement Algorithm for virtual CDN
	Gomory-Hu transformation
	HPAC: placement and migration

	OPAC versus HPAC (exact versus heuristic)
	Small scale scenario: a network operator snapshot
	Large scale scenario: an Erdos-Renyi graph-based network operator
	Interpretations

	Integration of the Algorithms
	Conclusion

	Optimal and cost efficient algorithm for vCDN orchestration
	Introduction
	Virtual CDN orchestration architecture for the NFV deployment
	How to orchestrate ?
	ETSI-MANO-based vCDN orchestration architecture
	Global virtual CDN architecture

	OCPA: optimal vCDN orchestration algorithm
	Performance evaluation
	OCPA: scenarios
	Conclusion

	CDNaaS Framework: TOPSIS as multi-criteria decision making for vCDN migration
	Introduction
	TOPSIS-based method for vCDN migration
	TOPSIS formulation
	Layer selection
	Layer evaluation

	Testbed-based performance evaluation
	CDNaaS workflow
	Conclusion

	Service placement in complex active networks
	Introduction
	Related work
	Background
	Complex active networks
	Information-Centric Network

	Problem statement and contributions
	Active node budget

	OPPA: Optimal Practical Placement Algorithm for ICN
	ICN budget model
	OPPA

	HPPA: Heuristic and Practical Placement Algorithm for ICN scenario
	EGHT: extended Gomory-Hu tree algorithm
	HPPA downgrading/enhancement on the fly

	OPPA vs HPPA: performance evaluation
	Small network scale
	Large scale scenario: a Barabási–Albert based network operator
	OPPA vs HPPA comparison

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Real cache overview
	Intermediary caching
	Direct caching
	Indirect caching

	Virtual cache overview
	Content moving fetching
	Server moving replication
	Session moving

	OMAC: Optimal Migration Algorithm for virtual CDN
	OMAC: scenarios
	Conclusion

	Distributed Maximum Concurrent Flow Algorithm
	Introduction
	MCF state of the art
	MCF computing models
	Centralized MCF models
	Distributed MCF models

	How to execute DMCF
	MCF combinatorial optimization models
	Exact models
	MCF approximation models
	Heuristic model

	MCF applications
	Proposed DMCF model
	Finding single-source shortest path tree (SPT)
	Finding the concurrent flow (maximum of gamma)
	Update the flows (augment/increment the flows)
	Update the residual graph

	Comparison
	Conclusion
	Annex A: shortest path spanning tree computation
	Annex B: destination node program
	Annex C: intermediate node program

	Optimal Hadoop over ICN Placement Algorithm for Networking and Distributed Computing
	Introduction
	Related work
	Hadoop over ICN (HoICN) design
	Information-Centric Networking
	Principle Hadoop components
	HoICN node architecture
	HoICN layer responsibilities
	Massive IoT data as a use case

	HoICN: optimization algorithm
	HOPA: HoICN Optimal Placement Algorithm
	HHPA: HoICN Heuristic Placement Algorithm

	HoICN: performance evaluation
	Conclusion

	Optimal Placement Algorithm (OPA) for IoT over ICN
	Introduction
	ICN in IoT and related work
	ICN principles
	Why ICN for IoT
	ICN in IoT: related Work

	OPA: Optimal Placement Algorithm for ICN/IoT nodes
	The placement algorithm

	Security considerations
	OPA: performance evaluation
	Scale free networks: a Barabási–Albert model-based network operator

	OPA efficiency: comparison with IoT networks
	Conclusion and Future Work

