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L

a variabilité phénotypique existante au sein d'une population est d'une importance cruciale ; elle permet l'adaptation à de nouvelles conditions par la sélection naturelle de traits bénéfiques. La variabilité phénotypique est le résultat du polymorphisme génétique de chaque individu, couplé à l'influence de divers facteurs environnementaux. Ces travaux ont pour objectif d'élucider quels sont les facteurs génétiques responsables de la variabilité phénotypique de chaque individu afin de comprendre comment celle-ci évolue de génération en génération et peut s'accentuer au-delà des prédispositions parentales. Finalement, les résultats obtenus seront utilisés pour prédire un phénotype à partir d'un génotype inconnu. Nous avons utilisé des techniques de phénomique et de génomique de haut débit pour décomposer avec une précision inédite la variabilité phénotypique d'une large population de souches diploïdes de Saccharomyces cerevisiae. Le génotype exact de plus de 7000 souches uniques a ainsi été obtenu via le croisement et le séquençage de souches haploïdes distinctes. Nous avons mesuré la capacité de croissance de ces souches et identifié les composants génétiques influant sur ce trait. De plus, nous avons identifié des «loci de caractères quantitatifs» additifs et non-additifs, et étudié la fréquence du phénomène d'hétérosis et ses mécanismes. Enfin, en utilisant les données phénotypiques et génotypiques de la même population de levures, nous avons pu prédire les traits de chaque individu avec une presque parfaite exactitude. Ces travaux ont ainsi permis d'identifier avec précision les facteurs génétiques modulant la variation phénotypique d'une population diploïde, et de prédire un trait à partir du génotype et de l'ensemble des données phénotypiques. En plus de ce projet, nous travaillons aussi sur l'identification des bases génétiques à l'origine de la non-viabilité des gamètes, ainsi que sur la compréhension des caractères complexes chez des souches hybrides intra-espèce. De par l'étude de 9000 gamètes séquencés issus de six hybrides di↵érents, nous avons pour objectif de caractériser leur profil de recombinaison et d'observer quelle est l'influence du fond génétique sur ce dernier. De plus, nous avons caractérisé la capacité de croissance de ces gamètes dans neuf conditions environnementales di↵érentes et nous prévoyons de disséquer l'architecture génétique de ces traits dans di↵érents fonds génétiques.

I

am of the opinion that we are all simply the result of our genome and its interactions with the environment. I was fortunate enough to be born with a genome and into an environment where I could pursue my academic career all the way to the end of this PhD. The list of contributors to both my genetic makeup and environment interactions could be made comically long. However, here I will stick to the most obvious genetic contributors and the more prominent human-human interactions. 
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Foreword

I

t is easy to imagine how the great variation on earth has long been appreciated by mankind. From the vast amount of species of plants, each with a unique flower, to all animals and insects. From mammal to microbe, there is scarcely an inch on this earth not inhabited, from smoldering volcanoes to the icy plains of Greenland.

Variation between species is all well and good, but the variation within a species was not always held in such a high regard as it is today. In Plato's dialogs, Socrates argued that there was but one true form and the variation around it was but cheap and ill-fated attempts to capture the true form. However, in the days of Charles Darwin and his contemporaries, variation was given a clear function.

The study of variation has increased in popularity over the years. In fact, a quick search on Pubmed reveals that the fraction of publications mentioning variation in either the title or abstract has been going up steadily since the 70's. (Fig. 1). This does, however, refer to variation in general, not exclusively to the study of variation in genotypes and phenotypes. Nevertheless, variation seems to be gaining recognition in the scientific community.

In this thesis, the first three chapters will give you a general introduction to the field of quantitative genetics, a powerful tool to study the link between phenotypic and genotypic variation. I will cover the basics of inheritance of complex traits, how we can find loci in the genome that contribute The mention of variation has been going up steadily over the years to the variation in a population, and how to predict the phenotypes of individuals. We will also look at how phenotypes are modulated by genetic mechanisms, and how they can give phenotypes that are more extreme from one generation to the next.

Accompanying this thesis are two articles both published in 2016 in Nature Communications. These are the main articles of this thesis and constitute the main body of my work. Each of them contain their own introduction, putting the work into a more specific context than I do in the first three chapters. After this there is a chapter on the work I am currently doing and have been doing since my articles were published. This is an ongoing project and mostly discusses methodology as well as some preliminary results. Lastly, I extend the discussion from the articles, adding some thoughts about the mapping population and heterosis analysis.

But before we get started, a quote from Alfred Russel Wallace's "On the Law Which Has Regulated the Introduction of New Species", worthy of thought when we are quick to divide and slow to unite.

The great gaps that exist between fishes, reptiles, birds, and mammals would then, no doubt, be softened by intermediate groups, and the whole organic world would be seen to be an unbroken and harmonious system.

Chapter 1

Genotype to phenotype and still is-a goal of the natural sciences.

Knowledge of this relationship will aid in, for example, predicting disease risk and breeding desirable traits in crops (Mackay et al., 2009). It has, however, been difficult

to assess the genetic contributions to variation.

Heritability

Variation in a phenotypic trait can have The heritability of a trait is not static, it can vary over time and place [START_REF] William | Essentials of genetics[END_REF].

If the environmental variation for a population is low, then the genome will have a stronger relative e↵ect. The total phenotypic variance in a population (V t ) can be expressed as the environmental variance (V e ) and the genetic variance (V g ). This schematic shows the concept behind the different kinds of genetic components that make up the total genetic contribution (V g ) to the phenotypic variance of a population (V t ). Additive e↵ects are the fixed e↵ects that alleles contribute with, which are independent of the allele compositions at other loci. I.e. for a completely additive trait, the heterozygote (Aa or Bb) will have a phenotypic e↵ect that equals the mean of the two homozygotes (AA and aa, or BB and bb), and the e↵ect of either locus is independent of the genotype at the other locus. Epistasis or an epistatic interaction is when the e↵ect of a locus is dependent on the genotype at a second locus. The figure represents the most simple interaction containing only two loci, where the e↵ect of the a allele is enhanced with increasing numbers of the b allele at another locus. Finally, Dominant e↵ects are the deviations from the additive within a locus, such that the heterozygote does not equal the mean of the two homozygotes. In this example the B locus has a dominant e↵ect while the A locus is completely additive.

V t = V e + V g
The genetic contribution to the phenotypic variation is called broad sense heritability, and can similarly be decomposed, such that:

Monozygotic. Twins that spawn from the same zygote.

Dizygotic. Twins that spawn from di↵erent zygotes.

V g = V g,a + V g,d + V g,i

Complex traits. An observable trait that has two or more genes modulating it.

where V g,a is additive variance, V g,d is dominant variance and V g,i is interaction variance. These concepts are explained in more detail in figure 1.3. The contribution of the additive component to phenotypic variation is called narrow sense heritability.

In humans, narrow sense heritability is commonly estimated by twin studies. In a classical twin study, comparing the pheno-typic similarity of monozygotic twins (MZ)

and dizygotic (DZ) twins gives an estimate of the heritability of that trait. The heritability is calculated as twice the di↵erence between the correlation of the MZ twins and the DZ twins (Boomsma et al., 2002).

E.g. if the correlation of MZ twins for a

given trait is 0.6, and 0.3 for the DZ twins, then the heritability would be (2(0.6 -0.3)) 60%.

Complex traits

Complex traits (or quantitative traits) lie at the heart of quantitative genetics, the field of genetics which is concerned with explaining the genetic background to varia- Figure 1.4. Mendelian and complex traits. A complex trait is controlled by several loci ( ), creating a continuous distribution of phenotypes in the population. In contrast, a Mendelian trait is controlled by one gene, and because of this the phenotypic distribution of the population will be bimodal, given that there are two variants of this gene. This occurs in diploid populations when one variant is dominant over the other. I.e. even though there are four di↵erent possible genotypes at the given locus, there are only two possible phenotypes. tion in traits. A complex trait is any observable trait that has a large variation within individuals of a population and is modulated by two or more genes, giving the trait a continuous distribution. A classical example of a complex trait is height in humans. A trait (or phenotype) that, by the way, has a quite high heritability (around 80% (Silventoinen et al., 2003)).

This is in contrast to Mendelian traits (or monogenic traits) (Fig. 1.4), where the phenotype is modulated by a single gene. However, monogenic traits may not be as simple as they seem. Sirr et al. (2015) find that even a seemingly monogenic trait can have genetic and/or nongenetic modifiers.

Any given complex trait is modulated by many genes in intricate networks and heritability can answer what portion of variation in the complex trait is defined by di↵erent genetic components, but we also want to know what specific sites in the genome a↵ect the phenotype.

Quantitative trait loci

Phenotype. The phenotype of an organism is its collected set of traits, however, it is often used synonymously with trait, and will be used as such throughout this thesis.

A Quantitative Trait Locus (QTL) is, as its name suggests, a place in the genome that contributes quantitatively to a particular trait. The field of genetics has come a long way in locating these loci thanks to the fact that factors controlling phenotypes (genes) co-segregate with the phenotypes.

QTLs can be located using two di↵erent QTL. A locus in the genome that contributes to the variation of a trait methods, i) association-based mapping, or ii) linkage-based mapping, which will be discussed in section 1.3.2 and section 1.3.3

The power and resolution with which we locate QTLs are highly dependent on the sample size of your mapping population, and on the amount of recombination that you have between the individuals of the population.

Recombination

QTL mapping is wholly dependent on recombination.

Recombination was pro-posed by [START_REF] Thomas | Random segregation versus coupling in Mendalian inheritance[END_REF], to explain the Crossover. Reciprocal exchange of genetic material between the two homologous chromosomes (Whitby, 2005).

mystery of some traits being coupled and others segregating randomly. His student, Sturtevant (1913) went on to create the first ever genetic map, using the theory laid down by [START_REF] Thomas | Random segregation versus coupling in Mendalian inheritance[END_REF].

Non-crossover. nonreciprocal short length exchange of genetic material between the two homologous chromosomes (Whitby, 2005).

Recombination is initiated by doublestrand breaks during prophase of meiosis I [START_REF] Scott | Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family[END_REF], these breaks can subsequently be repaired by using the sister chromatid or homologous chromo-

Marker. An identifiable position in the genome that di↵ers between the parents of a cross. This can be genotyped to know which parent contributed with the stretch of DNA that covers the marker.

some as a template. The recombination results in gene conversion associated to either a crossover or a non-crossover (Whitby, 2005).

During meiosis, there is a bias for using the homologous chromosome for repairing the double-strand breaks (Haber et al., 1984).

Repairing double-strand breaks during mi-

GWAS.

A method to find locations in the genome that contribute to the variation of a trait in natural populations.

tosis, however, is biased to using the sister chromatid as a template which does not result in any change of genetic material since the two sister chromatids are identical (Fabre et al., 1984;Kadyk and Hartwell, 1992). The di↵erent bias in mitotic and meiotic recombination could be explained by the use of di↵erent recombination pathways (Schwacha and Kleckner, 1997).

The recombination landscape of S. cerevisiae was described in great detail by Mancera et al. (2008), mapping both crossovers and non-crossovers genome wide. They genotyped the four haploid spores from 51 meioses resulting from the sporulation of a hybrid between S288C (a lab strain) and YJM789 (derived from a clinical isolate (Wei et al., 2007)). By using ⇠52,000 markers they could give a detailed view of crossovers and noncrossovers since every event would likely be covered by several markers (median marker distance, 78bp).

They find on average 90.5 crossovers and 46.2 non-crossovers, however, they estimate that they missed ⇠30% of the noncrossovers and increase the number to 66.1. Mancera et al. (2008) defined recombination hotspots as regions involved in more recombination events than expected by chance. 179 such regions were found, and corroborating previous studies, 84% of them overlap a promotor. Promotor regions are known to host most of the doublestrand breaks during meiosis (Baudat and Nicolas, 1997;Gerton et al., 2000), and correlate well with recombination events even between di↵erent strains (Buhler et al., 2007;Mancera et al., 2008).

QTL mapping makes use of recombination to break the linkage between markers and loci in the genome that contribute to the variation of a trait. Linkage-based QTL mapping starts with a cross between two (or more) parents, creating a hybrid that has a phenotype which is (usually) intermediate of the two parents. In the case of yeast, the hybrid is sporulated and haploid segregants are isolated. These segregants are phenotyped and genotyped, once this is done the QTL mapping can start by using the genetic markers in the genome and sorting the segregants' phenotypes according to their genotype at the given marker. This is done at every marker in the genome to create a QTL map where some regions of the genome give a significant signal, meaning that those regions have an e↵ect on the phenotype that reaches above the noise. These regions can then be further investigated to find the casual variant(s).

Association-based mapping

degree, unlinking all but the closest markers from the causal locus. Thanks to this, GWAS can locate causal loci with high precision (Mackay et al., 2009).

The association-based QTL mapping does, however, su↵er from a few limitations. One being that GWAS experiments have low power to detect rare variants that have an e↵ect on the phenotype (Visscher et al., 2012). And in the context of S. cerevisiae, GWAS studies will be severely hampered by the strong population structure (Liti and Louis, 2012;Strope et al., 2015).

Population structure results in spurious associations of variants to phenotypes due to stratification of the mapping population (Hamer and Sirota, 2000). In other words, if within your mapping population there are subpopulations, these subpopulations may di↵er in their allele frequencies and also, coincidentally, di↵er in their phenotype levels. This means that variants not actually contributing to the variation in a phenotype can be associated to it (Hamer and Sirota, 2000;[START_REF] Jonathan | The effects of human population structure on large genetic association studies[END_REF]. Linkage-based QTL mapping generally does not have this caveat, since they are based on experimental crosses. However, in (Hallin et al., 2016) we experience population structure due to the crossing scheme of the phased outbred lines (see chapter 4). Significance tests between the two populations, one for each genotype, distinguishes between markers with (marker 1) and without (marker 2) association to a causative locus.

Linkage-based mapping

A linkage-based QTL mapping experiment will start with a cross (Fig. 1903). Other accounts of non-Mendelian segregation of traits are later attributed to this linkage between factors that control certain traits (Yuzo, 1915;Sax, 1923).

Capitalizing on the wealth of knowledge et al., 2013;Hallin et al., 2016).

A dense grid of markers must be complemented with a large sample size in order to detect weak e↵ect loci (Bloom et al., 2013).

The larger the sample size of your segregating population, the more power you will have to detect loci that do not have a very big e↵ect on the phenotype you are investigating.

Steps have been taken to increase the power of studies without necessarily increasing the genotyping and laboring cost; such as using bulk segregant analysis coupled with experimental evolution, where selection pressure is inflicted on a large pool of segregant strains and the changes in allele frequencies are measured to find regions that contribute to the adaptation of the pool (Ehrenreich et al., 2010;Parts et al., 2011); or constructing SNP. A nucleotide position in the genome that di↵ers between two given individuals.

large cross grids where the parents are sequenced and the progeny mapping populations genotypes are inferred from the parents [START_REF] David | Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mammalian genome : official journal of the International[END_REF][START_REF] Fei | Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations[END_REF][START_REF] Shirng-Wern | Quantitative trait mapping in a diallel cross of recombinant inbred lines. Mammalian genome : official journal of the International[END_REF]Hallin et al., 2016).

Sample size

A limitation common for both associationand linkage-based QTL mapping is the sample size. In order for GWAS to find small e↵ect loci, they continuously increase their sample size, doing meta-analyses creating ever growing mapping populations.

For the classical trait of human height, sample size started out at between 10,000 to 20,000 individuals in 2008 (Sanna et al., 2008;[START_REF] Guillaume | Identification of ten loci associated with height highlights new biological pathways in human growth[END_REF]. In 2010, a meta- QTL mapping concerns itself with finding the genotypes that are linked to a specific phenotype, but how about finding the phenotype that is linked to a specific genotype?

Predicting phenotypes from genotypes

A goal for biology and medicine is to be 

Missing heritability

The fact that detected variants have only been able to explain a very small amount of the total genetically determined variation has been called the missing heritability problem [START_REF] Maher | Personal genomes: The case of the missing heritability[END_REF]. For example, the variants that have been detected for human height do no more in predicting your height than glancing at your parents does (paraphrasing from Joel Hirschhorn in [START_REF] Maher | Personal genomes: The case of the missing heritability[END_REF]). This missing heritability has been elusive and many di↵erent -non-mutually exclusive-explanations have been suggested [START_REF] Maher | Personal genomes: The case of the missing heritability[END_REF]Manolio et al., 2009;[START_REF] Or | The mystery of missing heritability: Genetic interactions create phantom heritability[END_REF].

The large lack of heritability explained by loci that have been found to have a detectable e↵ect in height (a very well studied complex trait) highlights the difficulty in using these GWAS results to predict phe-

notypes. An approach that holds more promise is to use all the genetic informa- 

The use of hybrids

Perhaps the most famous hybrid is the mule. A cross between a female horse and male donkey, the mule has been known

for centuries for its longevity and ability to work on less food (although these traits may have been overrated [START_REF] Martin | The Mule in Southern Agriculture: A Requiem[END_REF]).

Nevertheless it is a hybrid with a lot of character and history to go with it.

It is not only the mule that is an impor-S. paradoxus. S.

cerevisiae's closest wild relative.

tant agricultural hybrid, the use of maize hybrids between inbred lines went up from 10 to 90% between 1935 and 1939 in Iowa, USA. The increase in yield and uniformity of the plants that came with using hybrids led them to represent the bulk of the maize produced in the USA by 1950 [START_REF] Crow | 90 years ago: the beginning of hybrid maize[END_REF].

Hybridization can also be a force in speciation. Leducq et al. (2016) finds an example of a hybrid between two lineages of Saccharomyces paradoxus. This hybrid had a mosaic genome composed of mostly one parent with interspersed islands of the other.

It is found in the contact zone of the two parents and exhibits intermediate phenotypes, as well as partial reproductive isolation. Leducq et al. (2016) hypothesize that the two parentals had come in contact when the glacial ice retreated approximately 10,000 years ago which is when the hybridization would have taken place.

The three examples above highlight a very interesting aspect of hybrids: their ability to outperform, or at least perform differently than, their parents. This can be to the benefit of humans, as in the example of increased yield of maize. As for the 

Heterosis

Charles Darwin found that progeny from hybrid maize were performing better than that of progeny from self-pollinated plants.

He stated that o↵spring from hybrid plants have a "greater innate constitutional vigour" [START_REF] Duvick | Biotechnology in the 1930s: the development of hybrid maize[END_REF][START_REF] Charles | The effects of cross and self fertilisation in the vegetable kingdom[END_REF] often highly homozygous in their natural state (Hansson and Westerberg, 2002;[START_REF] Paul | Outcrossing, mitotic recombination, and lifehistory trade-offs shape genome evolution in Saccharomyces cerevisiae[END_REF][START_REF] Qi-Ming | Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity[END_REF].

Heterosis can come as a consequence of dominance, overdominance and epistatic interactions (Shapira et al., 2014;Lippman and Zamir, 2007). These mechanisms are not mutually exclusive, but it is not clear which is most prominent. In the section below you will read about the two mechanisms that holds the focus of my thesis, dominance and overdominance.

Dominance & overdominance

We defined dominance previously in the heritability section, the only di↵erence is that we are now inspecting how dominance can contribute to heterosis, rather than how it contributes to the overall phenotypic variation. Dominance comes from one allele masking the e↵ect of another and has been shown to be quite prevalent in manmade yeast hybrids (Zörgö et al., 2012).

The phenomenon was discovered and coined as dominance by Gregor Mendel (Mendel, 1866). In this landmark paper he designates dominance as one parental character completely masking (dominant) the character of the other parent (recessive).

Although Mendel was referring to traits being either dominant or recessive, the terms and their definitions are now used for alleles. His observation of dominance was that of complete dominance, i.e. where the trait of the hybrid was indistinguishable from that of one of the parents. Consequently, his definition of dominance only extended so far, but in this work the definition is extended to include any deviation from the mid-point of the two parents.

The dominance hypothesis posits that a hybrid o↵spring will contain many loci in the genome that has one strong allele and one weak, and that these two would be dominant and recessive, respectively. The strong dominant allele would complement the weak recessive allele, resulting in an o↵spring that is outperforming both parents [START_REF] Bruce | The mendelian theory of heredity and the augmentation of vigor[END_REF][START_REF] Crow | Alternative Hypotheses of Hybrid Vigor[END_REF]. When [START_REF] Bruce | The mendelian theory of heredity and the augmentation of vigor[END_REF] wrote this there were no experimental evidence to strengthen his assumptions, but since then numerous studies have found how dominance can contribute to heterosis (Xiao et al., 1995;Graham et al., 1997;[START_REF] Deborah | The genetics of inbreeding depression[END_REF].

While dominance relies on a number of di↵erent loci being complemented by the two di↵erent parents, overdominance only needs one occurrence to give a heterotic phenotype [START_REF] Crow | Alternative Hypotheses of Hybrid Vigor[END_REF]Shapira et al., 2014). Overdominance contributing to heterosis was proposed by [START_REF] East | Inbreeding in corn[END_REF] and it requires a positive interaction between two alleles at the same locus. I.e. the heterozygous state of a particular locus is more beneficial than the homozygous states of either allele. This is generally called the overdominance hypothesis.

Overdominance is a tempting explanation to heterosis as it only requires a few or one locus, while dominance requires several loci and, additionally, it depends on each parent having beneficial dominant variants at di↵erent loci that can complement the detrimental variants of the other parent.

However, the detection of true overdominant contributions to heterosis can be troublesome due to pseudo-overdominance.

Pseudo-overdominance occurs when loci linked with the seemingly overdominant locus are in fact the loci that contribute to the phenotype. These loci are linked to the pseudo-overdominant locus and are in repulsion, i.e. the beneficial dominant alleles are coming from di↵erent parents, so combining them can result in a heterotic phenotype, and can give the impression of a locus having an overdominant e↵ect [START_REF] Deborah | The genetics of inbreeding depression[END_REF].

Several studies in plants have shown overdominance to be the mechanism by which heterosis occurs, it has been found in for example maize (Stuber et al., 1992), tomato (Semel et al., 2006) and rice (Li et al., 2001;Luo et al., 2001).

The study by Semel et al. (2006) In this chapter you will read about yeast as a model in the di↵erent aspects of my work.

And also about di↵erent approaches taken in order to dissect the genetic architecture of complex traits using yeast. All concepts discussed here have been explained in the previous chapters.

The model

Yeast is an umbrella term that contains fungi who reproduce by budding or fission, and do not enclose their sexual states in fruiting bodies [START_REF] Cletus | The Yeasts. A Taxonomic Study[END_REF]. S. (Barnett, 2007).

On the 24th of April, 1996, S. cerevisiae was the first eukaryote to have its whole genome sequence released. The associated publication found a genome that is much more condensed than in other eukaryotes (e.g. the nematode C. elegans and humans) potentially containing 5885 protein coding genes (Go↵eau et al., 1996).

But yeast has long had a life outside the lab. Possibly originating in China, it can be found all around the world and exists in a multitude of ecological niches (Liti et al., 2009;[START_REF] Gianni | The fascinating and secret wild life of the budding yeast S. cerevisiae[END_REF]. S. cerevisiae prefer- The ease with which researchers can control the sexual cycle of yeast is one of its many benefits.

In this figure, the West African strain DBVPG6044 ( ) and the North American strain YPS128 ( ) are the two strains used for the large cross grid in the two papers of this thesis.

Other strengths of yeast as a model lie in its large population sizes, fast generation time, ease and low cost of cultivation, and the fact that it is a single cell eukaryotic organism with a relatively small genome size. A genome that, in spite of diverging from humans about 1 billion years ago 

Natural variation

In Since then, quite a few studies have been done to bring more knowledge to the evolution of S. cerevisiae [START_REF] Qi-Ming | Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity[END_REF]Almeida et al., 2015;Strope et al., 2015;Gallone et al., 2016). Soon, the "1002 Yeast Genomes Project", a large collaborative project between Gianni Liti's team in Nice and Joseph Schacherer's team in Strasbourg, will reveal the largest collection of S. cerevisiae strains to date, along with extensive analysis of, among other things, their phylogenetic relationships.

These types of collections are important for further elucidating the genetics of complex traits, as di↵erent strains can be used for, for example, QTL mapping. Or in the case of these large collections, perhaps even for genome wide association studies. Using di↵erent strains with di↵erent genetic variants can reveal genes that are implicated in certain phenotypes, genes that could not be found with another set of strains [START_REF] Sebastian | Genetic mapping of MAPKmediated complex traits Across S. cerevisiae[END_REF]. 

Phenotyping yeast

Yeast has a range of di↵erent phenotypes

For more information on the 1002 Yeast Genomes Project, visit their website at 1002genomes.u-strasbg.fr.

that can be measured, from colony morphology (Taylor and Ehrenreich, 2015), to gene and protein expression (Brem et al., 2002;[START_REF] Frank | Genetics of single-cell protein abundance variation in large yeast populations[END_REF][START_REF] Parts | Genome-wide mapping of cellular traits using yeast[END_REF].

The most important phenotype for this thesis, however, is population growth.

Phenome. All conceivable phenotypes for an organism

Yeast population growth is measured either in liquid or on solid media, both of which, of course, have limitations. Liquid media has been (Warringer and Blomberg, 2003;Perlstein et al., 2007) and is being (Gallone et al., 2016;[START_REF] Jia-Xing | Contrasting evolutionary genome dynamics between domesticated and wild yeasts[END_REF] used to accurately measure the growth of yeast colonies.

It is based on optical density measurements at one time-point (Gallone et al., 2016) or through-out the growth of the population at regular intervals (Warringer and Blomberg, 2003;[START_REF] Sasha | Bet hedging in yeast by heterogeneous, agecorrelated expression of a stress protectant[END_REF]Shapira et al., 2014). For large scale phenotyping however, liquid based methods can be difficult to scale up due to their time consuming nature (Zackrisson et al., 2016).

Phenotyping on solid media allows large scale monitoring of population growth, but has su↵ered from a lower precision and accuracy than its liquid counterparts (Zack-risson et al., 2016). Furthermore, many 2016)) have di↵erent dynamics, but at ⇠60 hours, they have the same population density.

x-axis: time in hours, y-axis: cell number.

large scale population growth experiments in yeast have used a single time point rather than a temporal monitoring of the growth [START_REF] Simon | Accounting for genetic interactions is necessary for accurate prediction of extreme phenotypic values of quantitative traits in yeast[END_REF][START_REF] Kim | A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae[END_REF]Gallone et al., 2016;Strope et al., 2015). The most reproducible and easily defined of these phases is the exponential phase (or log phase) (Schaechter, 2015;[START_REF] Frederick | Apples, oranges and unknown fruit[END_REF]. However, if accurately measured, the di↵erent phases can reveal di↵erent aspects of the genotype to phenotype map (Ibstedt et al., 2015). When the exponential phase is used to describe population growth it is generally reduced to growth rate (or generation time), which is calculated as a local regression of the steepest slope during the exponential phase [START_REF] Jonas | Trait variation in yeast is defined by population history[END_REF]Zackrisson et al., 2016).

This value can then be used as a proxy for fitness.

The era of single time point measurements should have ended decades ago (Schaechter, 2015;[START_REF] Frederick | Apples, oranges and unknown fruit[END_REF], however, its very high through-put is alluring.

In Zackrisson et al. (2016) we present a novel high through-put, high-accuracy phenotyping methodology for precise defining of microbial growth curves.

QTL mapping in yeast

The major challenges in QTL mapping is to have high enough power to detect small effect QTLs and to have high enough resolution to narrow down the QTL region to include as few non-causal markers as possible. The ultimate goal is to be able to find

QTLs that explain all the variation in the phenotype and that these QTLs are small enough to identify the exact gene (or exact nucleotide) that contributes to the phenotype.

Di↵erent teams have come at these problems from di↵erent angles which will be discussed later on, but we will start o↵ with some classical QTL mapping experiments which phenotype and genotype individual segregants. Also here, they conclude that they are not likely to have completely dissected this trait, and that more small-e↵ect QTLs are still undetected.

Classical QTL mapping

Increasing power to detect small-e↵ect

QTLs can be achieved, not by sequencing individual segregants, as is classically done, but instead by phenotyping and genotyping large pools of segregants.

Bulk segregant analysis

Bulk segregant analysis was developed by

The article by Michelmore et al. actually used the term bulked segregant analysis, but many (myself included) seem to prefer the term bulk segregant analysis. (2010), who used the F1 segregants. Increasing the amount of recombination events will decrease the size of linkage blocks (Darvasi and Soller, 1995), meaning that there will be smaller segments in the genome that belongs to either parent. This will increase the mapping resolution by unlinking variants that may or may not have an e↵ect on the phenotype. These populations are called advanced intercrossed lines (Darvasi and Soller, 1995;Parts et al., 2011).

Crossing schemes

Instead of making several rounds of crosses within the same population, Treusch et al.

(2015) designed a so called round-robin approach, in which they used twelve di-

Advanced intercrossed lines. Individual segregants from this F12

mapping population is what was used in the two papers of this thesis. Advanced intercrossed lines were first deviced by (Darvasi and Soller, 1995).

verged strains (Schacherer et al., 2009) and crossed each strain to two others, creating twelve hybrids. They performed X-QTL analysis (as discussed previously) on each of these crosses in line with Ehrenreich et al. (2010). Although the round-robin approach as such does not increase power or resolution of the mapping, It does give a broader view of the natural variation in traits in contrast to when a single cross is used. The natural variation can be used in order to narrow down the potential list of causative loci once the mapping has been done, by comparing non-synonymous variants between the strains with and without the QTL.

In strains that do not readily go through meiosis, di↵erent strategies need to be used. [START_REF] Raphaëlle | Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion[END_REF] 

used Return

To Growth (RTG) to achieve recombination between SK1 and S288C, although these two strains are not reproductively isolated, they serve as a proof of concept for the method. RTG takes advantage of yeasts ability to abort meiosis after the occurrence of double-strand breaks and recombination. When this return to growth happens, the resulting diploid strain has acquired recombined chromosomes between the two parents. The mother and first daughter cell can be isolated to catch all recombination events. Although they mostly describe the recombination landscape of RTG strains, they also map QTLs, and for a polygenic trait, arsenite resistance, they map a QTL including the ARR gene cluster, known to control arsenite resistance (Cubillos et al., 2011). The size of the QTL region is rather large at 106kb, but that is to be expected with the rather small sample size.

A recent study left crossing behind all to-Loss of heterozygosity. In a diploid hybrid between two strains, all variants will be segregating, i.e. the diploid hybrid will be heterozygous at all markers between the parents. If the hybrid looses this heterozygosity in a region of the genome, that is called loss of heterozygosity, and renders that region homozygous for one of the parents gether and used the genome editing technique CRISPR/Cas9 [START_REF] Simon | Accounting for genetic interactions is necessary for accurate prediction of extreme phenotypic values of quantitative traits in yeast[END_REF]. The contribution of additive variance is of-ten found to be higher than that of interactions. A finding that they reinforce in a later study (Bloom et al., 2015) where they use a larger panel of 4,390 segregants from the same cross.

A study using the panel of segregants Using an additive QTL model they can explain on average 88% of narrow sense heritability.

Predicting traits in yeast

In our study (Märtens et al., 2016), we evaluate the theoretical limits for predictions and what information is most valuable when predicting traits.

Heterosis in yeast

The In (chapter 5) the focus was on testing the limits of prediction complex traits using genetic and phenotypic information from distant and close relatives. Kaspar used the phenotype data that I produced to spearhead the prediction analysis.

In (chapter 6) I describe my ongoing project. As it is ongoing, it will mostly focus on methodology and on some preliminary data. In this project, as in the other two, I use large scale phenomics and genomics to investigate the genotype to phenotype map, but this time with a focus on meiosis and gametes.

Chapter 4

Powerful decomposition of complex traits in a diploid model E xplaining trait di↵erences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework o↵ers the most complete decomposition of diploid traits to date and can be adapted to most model organisms. Introduction Decomposing the trait variation within natural populations into its genetic components is a fundamental goal of biology that has proven to be challenging (Visscher et al., 2012;[START_REF] Eichler Evan | Missing heritability and strategies for finding the underlying causes of complex disease[END_REF]. Model organisms o↵er more complete dissection of complex traits because they can be analysed in controlled contexts, minimizing environmental and gene-byenvironment variation, and in populations derived from a few founders, ensuring high frequencies of all alleles and allele combinations [START_REF] Abney | Estimation of variance components of quantitative traits in inbred populations[END_REF][START_REF] Ben | Genotype to phenotype: lessons from model organisms for human genetics[END_REF].

Johan

Because of their ease of use in genomics and galactose, and mean growth in the presence of phleomycin were significantly (>2 s.e.m. from 0) a↵ected by third order epistasis. Variation in genome wide levels of homozygosity had no detectable influence on yeast fitness traits (Supplementary Fig. 2). This is in stark contrast to its substantial negative e↵ect on human traits, for example, height [START_REF] Peter | Directional dominance on stature and cognition in diverse human populations[END_REF]. Thus, the data suggest that there is no general inbreeding depression in yeast, 

Methods

Generation of phased outbred lines F12 outbred lines were derived from a multigeneration two way intercross between an-cestors of the North American (YPS128)

and West African (DBVPG6044) populations, as described (Parts et al., 2011). Ancestral strains di↵ered at 0.53% of nucleotide sites (Liti et al., 2009) Predicting quantitative traits from genome and phenome with near perfect accuracy I n spite of decades of linkage and association studies and its potential impact on human health, reliable prediction of an individual's risk for heritable disease remains difficult. Large numbers of mapped loci do not explain substantial fractions of heritable variation, leaving an open question of whether accurate complex trait predictions can be achieved in practice. Here, we use a genome sequenced population of 7,000 yeast strains of high but varying relatedness, and predict growth traits from family information, e↵ects of segregating genetic variants and growth in other environments with an average coefficient of determination R 2 of 0.91. This accuracy exceeds narrow-sense heritability, approaches limits imposed by measurement repeatability and is higher than achieved with a single assay in the laboratory. Our results prove that very accurate prediction of complex traits is possible, and suggest that additional data from families rather than reference cohorts may be more useful for this purpose. Introduction Disease incidence can be predicted based on the health record [START_REF] Dominik | Predictability Bounds of Electronic Health Records[END_REF], the family history [START_REF] Chuong | Comparison of family history and SNPs for predicting risk of complex disease[END_REF] or the genetic risk due to predisposing genetic variants segregating in the population [START_REF] Frank | Power and predictive accuracy of polygenic risk scores[END_REF].

Each of these sources of information carries signal about the trait, but is not sufficient for accurate prediction [START_REF] Chuong | Comparison of family history and SNPs for predicting risk of complex disease[END_REF][START_REF] Wray Naomi | Prediction of individual genetic risk to disease from genomewide association studies[END_REF][START_REF] Peter | Genetic risk prediction-are we there yet? The New[END_REF]. For example, the genetic variants mapped to a trait in genome-wide association studies do not estimate disease risk well, with the vast majority of the heritable variation not accounted for (Manolio et al., 2009;So et al., 2011a). Even with very large numbers of mapped alleles (Visscher et al., 2012), purely genomic prediction accuracies still lag far behind narrow sense heritability estimates (Makowsky et al., 2011).

An important question of whether this is due to paucity of data, or perhaps more fundamental limitations, can be attacked by predicting phenotypes in model organisms (Jelier et al., 2011;[START_REF] Tahir | Mining for genotype-phenotype relations in Saccharomyces using partial least squares[END_REF]. In particular, crosses of founders in the yeast system have circumvented many of the technical difficulties associated with human genetic analyses, and illuminated genetic basis of variation in molecular traits [START_REF] Parts | Genome-wide mapping of cellular traits using yeast[END_REF][START_REF] Frank | Genetics of single-cell protein abundance variation in large yeast populations[END_REF][START_REF] Rachel | The landscape of genetic complexity across 5,700 gene expression traits in yeast[END_REF], cellular phenotypes (Parts et al., 2011;Ehrenreich et al., 2010;Cubillos et al., 2013), missing heritability (Bloom et al., 2013) and role of interactions (Bloom et al., 2015;Taylor and Ehrenreich, 2015;Gerke et al., 2009). Genome-based prediction has successfully explained most of the trait varia-tion in two organism phenotypes using up to five mapped alleles (Taylor and Ehrenreich, 2015;Gerke et al., 2009), and approached narrow-sense heritability accuracy in a large-scale cross (Bloom et al., 2013). For yeast, growth in various environments is an analogue of the health record, family history is approximated by phenotypes of closely related individuals, and risk variants can be mapped as for humans. Thus, we can test whether accurate phenotype prediction for more complex traits is possible in practice, and what the constraints are.

Here, we use a recent resource of over 7,000 diploid hybrid yeast strains of high relatedness (Hallin et al., 2016) to predict their growth phenotypes. Combining genetic and phenotypic data in a linear mixed model (LMM) framework, as well as using a recently introduced mixed random forest (MRF) approach, we predict growth traits with accuracies above their narrow-sense heritability, and approaching limits set by measurement repeatability. We find that both relatedness and variant-based predictions are greatly aided by availability of very close relatives, whereas information from a large number of more distant relatives fail to improve predictive performance when closer relatives are included.

Our results suggest that prediction is improved by both data from closer relatives that share much of the genome, as well as additional phenotype measurements that can capture aspects of unique environment and e↵ects too small to be detected by mapping. 

Results

Study population We made use of 7,396 diploid hybrid Saccharomyces cerevisiae strains with phased whole-genome sequences from the collection of diploid phased outbred lines (Hallin et al., 2016).

Owing to the two-stage crossing scheme (for example, galactose), osmotic stress (for example, NaCl) and cancer drugs (for example, rapamycin, Supplementary Table 1). As reported before (Hallin et al., 2016), the phenotype means have large narrowsense heritabilities (h 2 ) and repeatabilities (H 2 , broad-sense heritability; median h 2 = 80%, H 2 = 94%, standard error = 0.09,
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Figure 5.2. Prediction accuracy. All panels contain five model classes: linear regression on other phenotypes ('P', yellow), linear regression with additive e↵ects determined by forward selection ('QTLs', purple), prediction based on the realized genetic relatedness ('BLUP', green), the best LMM with additive and interaction e↵ects ('LMM', blue) and the best LMM with additive and interaction e↵ects together with other phenotypes ('LMM+P', red). All prediction accuracies denote coefficient of determination R 2 , and are determined by fourfold cross-validation. (a) Models using a single source of information predict less accurately than a combined one. Predicted (y axis) and observed (x axis) growth in NaCl for every measured hybrid strain (dots) for each model class, with coefficient of determination (R 2 ) of the predictions labelled. Perfect predictions would lie on the grey dashed line y=x.( b) Linear mixed models with information from other phenotypes give very accurate predictions. Predictive performance (R 2 , x axis) for di↵erent models (y axis) for each of the measured phenotypes (nine boxes). Bars indicate the range of R 2 over the four cross-validation folds. The dashed lines show narrow-sense heritability h 2 (black, left) and repeatability H 2 (black, right) estimates for the mean phenotype, and the dotted line (red) shows repeatability of a single measurement H 2 1 .( c) Prediction can be more accurate than one measurement. Prediction accuracy of mean phenotype (R 2 , y axis) compared with di↵erent types of heritability estimates (x axis) for the four model classes: narrow-sense heritability of average phenotype (h 2 , top panel), repeatability of average phenotype (H 2 , middle panel) and repeatability of a single measurement (H 2 1 , bottom panel). Grey dashed lines denote the identity y=x.

Supplementary Tables 2 and3), and the traits are not independent (pairwise Pearson's r 2 = 0.01-0.49, Supplementary Fig. 1), reflecting shared genetic, epigenetic and environmental influences (Supplementary Fig. 2).

Accurate genome-aided phenotype prediction We first tested how well di↵erent genomic and phenomic data predicted growth phenotypes in our population (Fig.

5.2a

) and Supplementary Fig. 3), and then combined them using LMMs (Lippert et al., 2014). We obtained predictions via fourfold cross-validation, with the training set randomly sampled from both close and distant relatives (Methods). One growth trait could be predicted from the rest with reasonable accuracy (Fig.

5.2b 'P', median R 2 =0.48), and the quality of prediction depends on the strength of pairwise correlations of the phenotypes.

The genomic best linear unbiased predictor (BLUP), an additive model based on realized genetic relatedness alone, captures the pedigree structure in the population, and achieves prediction accuracies very close to the narrow-sense heritability estimates (Fig. 5.2b 'BLUP', median R 2 =0.77, 98% of h 2 explained). These predictions are nearidentical to a simple midparent approach (Pearson's r 2 >0.99, Supplementary Fig. 4).

Thus, the genetic similarity between individuals explains nearly all additively heritable variation in our population.

Next, we mapped quantitative trait loci (QTLs) in each environment, and asked how well they predict growth in that en-vironment. A small number of single nucleotide polymorphisms (SNPs) with the largest e↵ects explain a sizeable portion of additive variance, but for all traits the prediction accuracy remains lower than BLUP's (for example, median R 2 =0.58 versus 0.81 for 10 QTLs, Supplementary Fig. 5). When up to 50 SNPs are included in the model, the accuracy reaches h 2 (Fig.

5.2b, 'QTLs', median R 2 =0.78, 98% of h2 explained), with predictions very similar to BLUP (r 2 >0.97, Supplementary Fig. 6).

Therefore, all tested methods that consider additive genetic e↵ects reach the same, near-h 2 performance, and there is no missing narrow-sense heritability in our experiment. Extending to the LMM framework to include genetic background, dominance and interaction e↵ects gave a modest further improvement (median increase of R 2 by 0.06), mainly due to dominance e↵ects of strongest QTLs for allantoin and galactose (Fig. 5.2b, 'LMM', median R 2 =0.86).

We then included other phenotypes measured for the same individual as covariates in the model, and achieved median prediction accuracy of 0.91 (Fig. 5.2b 'LMM+P').

To our knowledge, this is the highest for complex traits to date (de los Campos et al., 2013;[START_REF] Hans | Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking[END_REF], exceeding narrow-sense heritability for all nine phenotypes and approaching repeatability (Fig. 5.2c, 96% of H 2 explained). For each of the measured traits, our predictions of the mean phenotype (that is, the average of four replicate measurements) have lower error than a single growth experiment (Fig.

5.2c

). The combined model improves over others especially when a large proportion of heritable non-additive variation is not captured by interaction and dominance effects (Supplementary Fig. 2).

Predictions based on closer relatives are more accurate So far, our predictions for each test individual were obtained from models that were trained with data from its close relatives that share half of the complete chromosomes. We observed that errors were larger when close relatives were not available (for example, Fig. 5.3b and Supplementary Fig. 7). Thus, we next com- Combining genomic and phenotypic information (LMM+P) to predict from distant relatives gives accuracies similar to combining QTLs and phenotypic information. For traits where genomic prediction on distant relatives does not work well (for example, ca↵eine, glycine, phleomycin), this model performs similarly to using other phenotypes only or even slightly worse (median improvement 0.02, Fig.

5.3c 'LMM+P'

). However, for traits with large e↵ect QTLs (allantoin, galactose, isoleucine), genetic information helps prediction even if BLUP is not accurate.

Prediction performance is consistent for alternative models Other methods for genome-aided trait prediction have either included other phenotypes directly in the model or are compatible with doing so (Lippert et al., 2014;[START_REF] Johannes | A random forest approach to capture genetic effects in the presence of population structure[END_REF][START_REF] Mrode | Linear models for the prediction of animal breeding values[END_REF]. We confirmed that these prediction implementations give results that are concordant with ours. First, we tested the multi-trait LMM (MT-LMM) that jointly infers the e↵ects of genotype and other phenotypes (Lippert et al., 2014).

This method gave results nearly identical to the LMM+P approach on both close and distant relatives, in which we first regressed the e↵ect of phenotypes, and then fit a genomic model on the residuals (Fig.

5.5a

). Second, we applied the recently published MRF, which accounts for population structure and captures nonlinear genetic e↵ects [START_REF] Johannes | A random forest approach to capture genetic effects in the presence of population structure[END_REF], and can use the other measured phenotypes as predictors. This method also performed similar to the combined LMM (median R 2 0.91 versus 0.91) for close relatives, with no consistent di↵erence across the traits (Fig. 5.5b, top row). For distant relatives, the MRF had more accurate pure genomic predictions than a LMM for 8 of 9 traits, and when including phenotype information for both models, 4 of 9 traits (Fig. 5.5b, bottom row).

Discussion

We predicted nine heritable traits in a population of 6,642 yeast strains of varying high relatedness, and achieved accuracies over 90%, very near the repeatability limit.

To our knowledge, these are the most precise out-of-sample predictions of complex traits to date. There is almost no missing narrow-or broad-sense heritability, proving that very accurate genome-aided predictions can be obtained in practice, in contrast to relatively poor genomic prediction performance for human cohorts, for example, R 2 <0.16 using unrelated individuals, and <0.37 for close relatives (Makowsky et al., 2011). Our predictions outperformed the traditional mid-parent approach that is limited to narrow-sense heritability, but has been predicted to remain unsurpassed in accuracy for humans [START_REF] Yurii | Predicting human height by Victorian and genomic methods[END_REF].

The improvement in predictive ability us- et al., 2009;So et al., 2011b;[START_REF] Guttmacher Alan | The family history-more important than ever[END_REF]. As information from as few as five close relatives gave large gains, we expect such an approach to be a cost-e↵ective solution for achieving better prediction in a clinical setting with finite resources.

Methods

Panel design and phenotyping 172 haploid F12 segregants (86 Mata and 86

Mat↵) from a cross between YPS128 and DVPBG6044 ((Illingworth et al., 2013))

were crossed in an all against all fashion to obtain 86 ⇥ 86=7,396 diploid hybrids using standard yeast protocols (Fig. Modelling and predictions We used a range of models to predict a trait of interest either on genomic information only, individual phenotypic information only or both.

Phenotype ('P'

). Let y be the vector containing the phenotype of interest for all N individuals, and let P 1 , ..., P 8 be the remaining phenotypes. We modelled y as y ⇠ N (β 0 + β 1 P 1 + •••+ β 8 P 8 ,σ 2 I) to fit the phenotype weights β used for prediction.

Best linear unbiased predictor. Let x j be the genotype vector for SNP j =1, ..., M , and let X be the genotype matrix X = (x 1 , ..., x M ). In the genomic BLUP model, y = µ1+ P j b j x j + ✏ with random coefficients b j ⇠ N (0,σ 2 g ) and measurement noise ✏ ⇠ N (0,σ 2 e I). This model implies the multivariate Gaussian Midparent. Let y ij the phenotype for individual who has parents i and j . Let P 1 i and P 2 j the parental phenotype values. We model y ij the mid-parent value y ij = 0.5(P 1 i + P 2 j )+✏ ij , where ✏ ij is uncorrelated noise. We first fit the parental values from the y ij observed in training data, and used them to predict phenotypes of test individuals.

LMM with dominance and interaction effects.

The LMM model combines additive, dominance and interaction e↵ects with genetic relatedness, y ⇠ N (QTLs + dom+ int,σ 2 g K + σ 2 e I). The fixed e↵ects (QTLs+dom+int) are constructed with forward selection among additive QTLs and interaction between all such SNP pairs x i and x j , where x i has previously been selected into the model. Although we miss interactions where neither locus has a significant additive e↵ect, it has been shown that such occurrences are rare [START_REF] Michael | The genetic landscape of a cell[END_REF], and their contribution to explaining variance is negligible (Bloom et al., 2015). By allowing selfinteractions, we also incorporated dominance e↵ects. We selected the final model by performing cross-validation on training data after each of the feature selection steps. 

LMM including phenotypes ('LMM

Heritability

estimation Narrow-sense heritability was estimated from the genomic BLUP model as σ 2 g /(σ 2 g + σ 2 e , when fitted to all of the data. To estimate repeatability, we fitted the following fixed e↵ects model r ij = y i + ✏ ij , where r i1 , r i2 , r i3 , r i4 are the four replicate measurements for individual i, y i is the average r ij value for this individual and ✏ ij ⇠ N (0,σ 2 ). Repeatability was estimated as 1 -σ 2 /Var(r). Chapter 6

The genetic basis for gamete inviability -ongoing

S

exually reproducing organisms are dependent on the production of gametes for the continuation of their genetic lineage. Therefore, the ability to undergo a successful meiosis, producing viable and fully functional gametes is critical; failure to do so may result in weak or inviable o↵spring and the end of the lineage. Compounding on the difficulty to pass alleles on to the next generation, interactions between di↵erent alleles may also result in sub-optimal gametes. To investigate the underlying genetics behind why gametes are inviable we have constructed six hybrids spawning from crosses between highly diverged representatives of four Saccharomyces cerevisiae lineages. We recently published reference quality genome assemblies for the four parents and these end-to-end assemblies give us a thorough understanding of all the genetic di↵erences in the hybrids, from single nucleotide polymorphisms to structural variation. Thanks to this, we are in a position to accurately describe how gamete viability in a hybrid is dependent on the genetic makeup of the parents. By dissecting and whole genome sequencing 2,500 gametes from each of the six hybrids, we are producing a resource of 15,000 gametes with varying viability and fitness. Using the sequence data we are exploring the impact of the recombination landscape, aneuploidies and genetic interactions on gamete inviability, and relating these phenomena to underlying genomic di↵erences between the parents. Numbers and types of aneuploidies varied across gametes depending on parent combinations and genetic distance between parents. Aneuploidies correlate well with the gamete inviability but the majority of inviable gametes are not explained by this. We are currently exploring the e↵ect of the recombination landscape on gamete viability and fitness, and investigating the role of allele-allele interactions. ping against both parental strains to call genotypes and for classification of di↵erent types of recombination events.

Gamete acquisition

The six hybrids and the four diploid parents were sporulated at 23°C in 25ml liquid potassium acetate media (2%) after a 48 hour incubation in respiratory media.

The amount of time spent in potassium acetate di↵ered between the strains since they sporulate with di↵erent efficiency.

The tetrads were treated with 100µg/ml zymolyase at 37°C for between 20 and 30 minutes (depending on the strain) before being separated using a dissection microscope (Zeiss Axioskop 40), ensuring that all spores from one meiosis event (one tetrad)

were properly isolated and could be identified as being from the same tetrad.

The tetrad dissection was performed on solid agar plates. After dissection, the plates were incubated at 30°C for three The image is broken down so as to analyze one plate at the time, we will be following the top left plate. The cropping of the image is based on absolute values; since the plates are placed in a fixture, they will be in the same position every time an image is taken. A median filter is applied in order to smoothen the image, getting rid of any dust and noise from the plate. ( 3) Using an otsu threshold, the colonies are separated from the background making them possible to identify.

(4) By using the courser to click on the top left colony, a grid is placed on top of the image, this grid allows me to also identify colonies that are not growing, and to know which spores are coming from the same tetrad (one column per tetrad). ( 5) The identified colonies are colored in blue and manually inspected. In this example, the top left colony has not been identified, if this happens you can use the courser to click on the unidentified colony and the program will find it. (6) Identified colonies are attributed with their colony size in number of pixels while inviable colonies are set to 'InV' (shown for one tetrad).

days, and subsequently scanned and the viabilities and colony sizes were documented. The tetrad dissection was a joint e↵ort between Agnès Llored and myself. 

Image analysis

Growth phenotyping

Apart from the germination phenotypes we also phenotyped the growth of all 12,000 spores that were isolated using Scan-omatic (Zackrisson et al., 2016). We chose nine di↵erent environments (Table . 6.2) based on their ability to facilitate a large spread of phenotypes, with the exception of galactose (known from previous experiments). We also phenotyped the diploid parents and the diploid hybrids together with the spores. 

Genotyping and recombination landscape

Each hybrid is the result of a cross between two di↵erent parents, which implies that all hybrids will have di↵erent segregating sites. For a given hybrid, we identified seg- (Bloom et al., 2013;[START_REF] Sebastian | Genetic mapping of MAPKmediated complex traits Across S. cerevisiae[END_REF]Hallin et al., 2016;[START_REF] Naomi | Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth[END_REF]). The genotypes will be used to define the recombination landscape of these di↵erent hybrids, and again thanks to the genome assemblies of the parents we can correlate the recombination landscape with any kind of genetic variation between the parents. This will let us look at, for example, the e↵ect of inversion on recombination.

Another interesting aspect of this project is that we are sequencing spores from tetrads that are not fully viable. I.e. from tetrads where one or more spores did not grow.

Traditionally, the recombination landscape has only been looked at in tetrads where all four spores are viable (Mancera et al., 2008;Cubillos et al., 2011) which limits these studies to fully functioning meiosis.

We want to characterize successful meiosis events as well as those that do not data for the spores in order to give an account of the contribution of aneuploidies to gamete inviability

Calling aneuploidies

Having more or less than the normal copy number of any given chromosome is called an aneuploidy. In gametes, they are caused by faulty chromosome segregation during meiosis and are the cause of, for example, Down's syndrome in humans (Down, 1866;[START_REF] Stylianos | Chromosome 21 and Down syndrome: from genomics to pathophysiology[END_REF].

Using the coverage data from Jia-Xing's read mapping I search for possible aneuploidies. Aneuploidies should appear as an increase of reads for a specific chromosome by a factor of two and can by that logic be identified by the coverage data. I.e. the coverage would be twice as high for an aneuploid chromosome as for an euploid chromosome.

Highly repetitive regions of the genome (e.g. the rDNA on chromosome XII) were masked in the files with the coverage data 
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A Colony area (pixels) Figure 6.2. Germination phenotypes. The area of colonies, in pixels, were calculated after three days of growth using a custom made R program. Box and whisker plots show the median (horizontal line inside box), 1st and 3rd quartile (box), and the whiskers go up to the last data point within 1.5 interquartile ranges. The WA-WA parents is the weakest grower and that is reflected in that the hybrids containing this parent are generally worse growers than other hybrids. The sample size of each box corresponds to the total amount of viable spores for the parent or hybrid (i.e. Spores ⇥ Viability in table 6.4, ⇠2,000 for the hybrids.) in order to not have the variation of these regions in the di↵erent strains a↵ect the aneuploidy calling. For a given spore, the mean coverage of each chromosome was calculated as well as the mean coverage of its entire genome. Spores with an average genome coverage below 0.5 and chromosomes with an average coverage below 0.5 were excluded, to reduce false positives. Aneuploidies were called if the ratio between the chromosome and genome coverage was equal to or above 1.5. I then manually investigate each called aneuploidy by inspecting plots of the coverage of the spore.

Preliminary results

I will here share some preliminary results including the spore viability of the different hybrids, the germination phenotype and aneuploidies.

Spore viability and colony size

The spore viabilities are shown in table 6.4. The low viability of the WA-WE hybrid forced us to isolate a lot of its spores in order to acquire 2,000 viable spores. All parents have rather high viability as is expected, except for WA who stands out with its lower viability. This is reflected also in the lower viability of the crosses including this strain.

The weakness of the WA strain is also clear in the germination phenotype data Fig. 6.2.

Furthermore, WA hybrids have on average smaller colony areas after three days of growth than hybrids not containing WA. It will be very interesting to compare these data with the growth phenotyping on YPD to see if these data reflect a general growth defect or a defect in germination.

The amount of phenotypic variation within the homozygous diploid parents is a bit surprising. However, the fact that the haploid spores will have markers segregating that can a↵ect growth (ura3, lys2) may explain some of this variation (Table 6.1). At the moment, we cannot exclude that this reflects noise from the germination phenotype but we intend on testing the e↵ect of the markers to see what extent it is contributing to this variation.

Viability and genetic distance

Genetic divergence can e↵ect the viability of spores by interfering with recombination during meiosis or by genetic incompatibilities between diverged genes [START_REF] Greig | Reproductive isolation in Saccharomyces[END_REF].

In figure 6.3, the viability of the di↵erent strains are plotted against the amount of markers. There may be some correlation between the viability and marker amount, however, more data points would be needed for any conclusive statements.

The crosses containing the WA strain are not very efficient at producing viable gametes, this is true also for the diploid WA-WA, which means that this is not likely to be due to genetic divergence.

Interestingly, the WA-WE gametes have very low viability (figure 6.3, figure 6.4).

The divergence between the two strains is not radically di↵erent from other crosses (e.g. SA-WE), which suggests that there is some particular incompatibility between these the WA and WE genomes. It is not likely to be any structural variation, since that would have come out also in other hybrids. With the end-to-end genome assemblies of the parents, and genome sequences of the gametes, we hope to explain these types of patterns.

Table 6.4. Crosses and their viabilities. This table shows the diploid parents, hybrids and their associated total amount of spores dissected and their viability. The ratio of tetrad types ranges from 0 to 4, the numbers designate the number of spores viable in a tetrad, so the values in column type 4 is the ratio of tetrads with all spores viable, while the values in column type 3 corresponds to the amount of tetrads with three viable spores. The divergence of two strains that are crossed together can have an e↵ect on the gamete viability [START_REF] Greig | Reproductive isolation in Saccharomyces[END_REF]. The SNP, Indel, and total amount of markers are plotted on the x-axis (Table 6.3) while the average viability of the gametes of a given cross is on the y-axis (Table 6.4). The data points on x = 0 corresponds to the diploid parents.

Aneuploidies

I ran the aneuploidy analysis on the first sets of sequencing that we received from the sequencing facility, therefore, the data shown here are from 2,296 sequenced spores. Due to the, for now, limited sample size and the frequency of aneuploidies, we do not have a substantial amount of spores with aneuploidies; the amount of aneuploidies found is at the moment 103, but will increase as the sample size increases which will strengthen (or refute) any trends seen thus far.

The amount of aneuploidies as a function of chromosome size corroborates previous studies in that amount of aneuploidies increase as the size of the chromosomes decrease (Fig. 6.4a) (Mancera et al., 2008;Cubillos et al., 2011).

The amount of aneuploidies in a specific hybrid for a specific chromosome might have more to it than just di↵ering chromosome sizes. We are investigating the possi-bility of parent or hybrid specific aneuploidies, i.e. aneuploidies that occur disproportionately often in a cross. In figure 6.4b, all aneuploidies found so far are sorted according to chromosome and cross. From this data, it seems like the chr XI has an increase in aneuploidies in the SA-WE cross compared to the others. This may be due to some incompatibility between the two parental strains that only manifest in that specific cross, with our end-to-end genome assemblies, we can investigate what kind of genetic or genomic incompatibility might cause this pattern.

Perspectives

With the large amount of data generated in this project we hope to give a complete view of the influence of genetic background to recombination landscapes, aneuploidies, quantitative traits, and gamete inviability.

This project is based on four parents rather than two (as in my previous project), giv- the aneuploidies according to chromosome (y-axis, sorted according to chromosome length) and hybrid (facets) reveals possible hybrid specific aneuploidies. Chromosome XI has a large number of aneuploidies in the SA-WE hybrid but not in the others, which may be due to some genetic or genomic incompatibility between the SA and WE strain. Values are normalized by the amount of spores sequenced for the given hybrid. Note that the WA-WE facet has a di↵erent scale on the x-axis, due to its smaller samples size (n=59) these values are not as robust. n refers to the amount of spores that have been sequenced, per hybrid, and included into this analysis (Table 6.3). The NA-WE hybrid is not shown since no aneuploidies were found for it (n = 52). of the average e↵ect of the two haplotypes would constitute a purely additive inheritance, and any deviation from that would be due to within or between locus e↵ects.

This means that the sample size was again increased to the actual number of strains that we phenotyped, and explains why we might have been calling nonadditive QTLs with higher power than additive.

Althought the additive QTLs su↵ered a bit from the crossing scheme, the di↵erences in genetic relatedness did aid in the phenotype predictions as the quality of predictions could be compared between the two groups. The crosses also allowed us to look at within locus contributions to heterosis at a large scale, which will be discussed later on.

Recently, a paper was published using advanced intercross lines (although they don't call it that) (She and Jarosz, 2018). They The approach of reducing the divergence between the parental strains applied by She and Jarosz (2018) gives nothing new in terms of traditional mapping attempts where the goal of choosing parents have been to have as high variation between them as possible. However, it begs the question of why the choice of parents was to maximize the variation, rather than maximizing the probability of capturing the causal variant.

However, when using S. cerevisiae as a model for a specific complex trait, rather than as a model for complex traits in general, you might find yourself with less strains to choose from. This would then force you to go with whichever strains that are di↵ering in your phenotype of interest.

That being said, the amount of strains that are available now for these types of studies (e.g. The 1002 Yeast Genomes Project) might contain enough strains to easily find a good combination, hitting the sweet spot between diverging phenotypes and diverging genotypes.

In the context of my papers, it would have been interesting to have used less diverged strains and perhaps being able to narrow down the QTLs to single nucleotides. It is known that QTLs can encompass several causal variants with high linkage [START_REF] Lars | Dissecting the architecture of a quantitative trait locus in yeast[END_REF]Lorenz and Cohen, 2012), and due to that the number of QTLs that we detect is likely to be an underestimation of the actual amount of causal SNPs for the traits.

Contributions to heterosis

We defined heterosis in our hybrids as deviations from the mean of the two inferred parents. However, we never did a strict check of the assumption that the inferred parental phenotypes would correlate well with actual diploid parents. Another approach could have been to simply use the phenotype values of the haploid parents, which were phenotyped at the same time as the POLs. However, since the ploidy of cells a↵ects phenotypes (Zörgö et al., 2013;[START_REF] Gerstein | Ploidy and the Causes of Genomic Evolution[END_REF] and, furthermore, the parents had segregating markers that also a↵ect the phenotype, this comparison would not have been relevant.

Instead, what could have been done is to diploidize the haploid parents. This path of action is complicated by the fact that the HO locus of our strains is deleted in order to repress mating type switching. However, there are ways to do this, for example introducing an inducible HO gene [START_REF] Kentaro | Efficient Construction of Homozygous Diploid Strains Identifies Genes Required for the Hyper-Filamentous Phenotype in Saccharomyces cerevisiae[END_REF]. This, of course, requires some genetic engineering of the parental strains, which was beyond the scope of this article. However, given the fact that the hybrids only have two variants segregating at each position, the randomization of the second haplotype that results from calculating the inferred parental phenotype, should be well represented by both variants at any given loci, and should make the inferred phenotype quite close to an actual value from a homozygous diploid strain.

In a conventional yeast heterosis study, a cross is made between two diverged parents, and then the phenotype between the completely heterozygous hybrid and the two homozygous parents are compared (Zörgö et al., 2012;Plech et al., 2014;Shapira et al., 2014;[START_REF] Bernardes | Heterosis in hybrids within and between yeast species[END_REF].

As in my study, they would then define the HO locus. The locus containing the gene for the HO endonuclease which creates a double-strand break at the MAT locus to facility mating type switching [START_REF] James | Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae[END_REF].

hybrid as heterotic depending on its relationship to the average phenotype of the two parents. However, when investigating whether dominance or overdominance has the most important e↵ect, these studies (excluding [START_REF] Bernardes | Heterosis in hybrids within and between yeast species[END_REF] which only looked at heterosis) average the e↵ect of all loci in the genome. I.e. they look at the phenotype of the hybrids, and depending on the degree to which they deviate from the mid-parent expectation, dominance or overdominance is invoked. Since dominance and overdominance are, by definition, phenomena that occur within single loci, the rather blunt approach of looking at the phenotype as averaged over the entire genome may not be the best way at distinguishing the contributions.

In our study, we instead look at the individual contribution of loci to heterosis by investigating the relative frequencies of different genotypes at QTLs in hybrids that were heterotic. We chose to only look at the contribution of QTLs since they are regions that we know significantly contribute to the trait. Although our method refines the search for contributions to heterosis, it is still not at its most refined state. In order to look at the contribution to heterosis at individual loci, we used the markers that were below the apex of the QTL peaks. However, we are not 100% confident that that is the causal variant. If the causal variant is in fact the marker next to the marker we have chosen, this may decrease our power to find significant contributions. This is due to the fact that some hybrids may have recombi- Heterosis and QTL resolution. The power to detect significant dominant or overdominant contributions can be a↵ected by the resolution of the QTL. Using the marker below the apex of the QTL (marker 1) could result in a lower power to detect dominance or overdominance contributions, if the causal marker is not the one under the apex. Here marker 2 is the causal marker and is the marker contributing to the phenotype. The colored circle indicates an individual that has di↵erent genotypes at the two markers. This results in it having the phenotype of allele a (since it has allele a at the causal marker) but being grouped with the individuals with allele A (since it has allele A at the marker under the apex).

nation events between the causal marker and the marker that we chose to represent the causal marker, this means that the phenotype of a hybrid may not represent the genotype of the marker we are looking at Along the lines of the QTL mapping discussed above, it would be interesting to have even higher resolution in order to distinguish between tightly linked loci that have an e↵ect. This would, for example, remove the risk of calling pseudooverdominant loci.

50% of the QTLs do not show any contribution to heterosis in our study. It is possible that within these 50% we have QTLs that contribute to heterosis but that we did not detect it. QTLs with contribution might be missed due to it having a too small e↵ect size to be significant given our sample size.

Alternatively, they might have an epistatic e↵ect. However, if that were the case, they would be more difficult to detect. Nevertheless, it would be interesting to also look for QTL-QTL interactions that contribute to heterosis. QTL-QTL and QTL-genome interactions have been shown to a↵ect the phenotypic variation (Bloom et al., 2015), and would warrant an investigation into their potential e↵ect on heterosis.

Closing remarks

In my first project (chapter 4 and chapter 5), we devised the POL approach as a novel methodology to answer questions about quantitative genetics in a diploid model. Quite successfully, we managed to decompose the genetic components of the phenotypic variation, map QTLs, investigate the genetic contributions to heterosis and predict traits with unparalleled accuracy. However, there were things that we could not do, things that we can investigate in my new project (chapter 6). In this project, the use of four di↵erent parents will allow us to look at, for example, con-text dependent or independent QTLs and interactions. Using gametes rather than diploid hybrids gives us the opportunity to look at the e↵ect of aneuploidies on phenotypic variation and how the underlying genomes can induce aneuploidies. The aspect of context dependence will be very interesting to investigate. This was an aspect that we could not address using the POLs as they were originally from a two-parent cross.

During my PhD I have used innovative approaches to address long standing questions in genetics, and taken together, the work I have done during my PhD has contributed not only to the knowledge of the genetics behind complex traits, but also to the methods with which we try to understand it.

Scan-o-matic: high-resolution microbial phenomics at a massive scale T he capacity to map traits over large cohorts of individuals-phenomics-lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker's yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases. T he joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved wholegenome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of pre-existing variants sets a selective threshold for new adaptive mutations. 
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  Figure 1. Propagation of variation in publications. The mention of variation has been going up steadily over the years

T

  his chapter will introduce the concept of phenotypic and genetic variation, and how they are integrally related in a complex way. The complexity of this relationship is what my thesis tries to unravel. I will discuss how the genome can influence, as well as predict, phenotypes. Variation is a key feature in natural populations, it gives natural selection something to act on, making it completely essential for life as we know it to have evolved. Although Charles Darwin (Fig. 1.1) makes no mention of it in the title of his iconic book On the origin of species -by means of natural selection, Alfred Russel Wallace (Fig. 1.2), independent co-discoverer of evolution by natural selection, gave credit to variation in naming his paper On the tendency of varieties to depart indefinitely from the original type. Understanding the genetic basis of complex phenotypic variation has been -

Figure

  Figure 1.1. Charles Robert Darwin, author of the groundbreaking book On the origin of species -by means of natural selection, laying the foundation for modern biology. Image source.

Figure

  Figure 1.2. Alfred Russel Wallace, independent co-discoverer of evolution by natural selection. Image source.

Figure 1

 1 Figure1.3. Components of genetic variance. This schematic shows the concept behind the different kinds of genetic components that make up the total genetic contribution (V g ) to the phenotypic variance of a population (V t ). Additive e↵ects are the fixed e↵ects that alleles contribute with, which are independent of the allele compositions at other loci. I.e. for a completely additive trait, the heterozygote (Aa or Bb) will have a phenotypic e↵ect that equals the mean of the two homozygotes (AA and aa, or BB and bb), and the e↵ect of either locus is independent of the genotype at the other locus. Epistasis or an epistatic interaction is when the e↵ect of a locus is dependent on the genotype at a second locus. The figure represents the most simple interaction containing only two loci, where the e↵ect of the a allele is enhanced with increasing numbers of the b allele at another locus. Finally, Dominant e↵ects are the deviations from the additive within a locus, such that the heterozygote does not equal the mean of the two homozygotes. In this example the B locus has a dominant e↵ect while the A locus is completely additive.

Figure 1

 1 Figure1.5. QTL mapping in practice. Linkage-based QTL mapping starts with a cross between two (or more) parents, creating a hybrid that has a phenotype which is (usually) intermediate of the two parents. In the case of yeast, the hybrid is sporulated and haploid segregants are isolated. These segregants are phenotyped and genotyped, once this is done the QTL mapping can start by using the genetic markers in the genome and sorting the segregants' phenotypes according to their genotype at the given marker. This is done at every marker in the genome to create a QTL map where some regions of the genome give a significant signal, meaning that those regions have an e↵ect on the phenotype that reaches above the noise. These regions can then be further investigated to find the casual variant(s).

  Figure 1.6. QTL mapping and significance testing.Significance tests between the two populations, one for each genotype, distinguishes between markers with (marker 1) and without (marker 2) association to a causative locus.

  torical recombination in the mapping population (since it does not use natural populations), it has to be created through the crossing. You choose two parents that di↵er in your phenotype of interest (e.g. pollen shape in the sweet pea) and that contain di↵erences in the genome. You cross them together and use their progeny to locate regions in the genome that contribute to the di↵erences between the progeny phenotypes. This is the type of mapping that I will be focusing on through-out the thesis, and I will from here on use the term linkage-based mapping interchangeably with QTL mapping.Since linkage-based QTL mapping constructs its own mapping population, classically from a two-parent cross, it does not su↵er from the problem of rare variants. All alleles are expected to be at a 50% frequency, and can thus be detected, even though they may represent a low frequency allele in the natural variation of the species as a whole[START_REF] Parts | Genome-wide mapping of cellular traits using yeast[END_REF]. Additionally, using model organisms to construct the mapping population means that the phenotypes can be measured under controlled conditions with little environmental variation confounding the results. However, the mapping population will not contain as many recombination events, and so the resolution of the mapping su↵ers. The statistical methods used in linkagebased mapping to find QTLs can vary in complexity. The most simple one, and the one used in the paper Powerful decomposition of complex traits in a diploid model, is the marker regression method. The simplicity of this method lies in the fact that it only uses the positions in the genome where you have marker data (Broman and Sen, 2009). At each marker it sorts the phenotypes of your samples depending on their genotype at the marker, as in figure 1.6. QTL mapping is a constantly evolving technique, for example, a recent development has made use of the Crispr Cas9 system but it was more than one hundred years ago that the theoretical foundation of QTL mapping was laid. In 1904, Bateson, Saunders and Punnett (Bateson et al., 1904) publish their findings from experiments in the sweet pea (Lathyrus odoratus). They find deviations from expected Mendelian segregation of traits, and they propose that the factors controlling the two phenotypes they are investigating (pollen shape and color) are coupled. They write: "There is, therefore, some coupling of pollen shape and colours". The nature of this coupling would remain unknown until 1911 when Thomas Hunt Morgan suggests that the factors (or genes) controlling traits are physically located on chromosomes (Morgan, 1911). With this, 32 years after Walther Flemming had discovered the chromosome (Flemming, 1878; Paweletz, 2001), there was no question as to the function of chromosomes; propagating genes to the next generation. A theory that had been outlined by Theodor Boveri and Walter Sutton in the chromosome theory of inheritance a few years earlier (Sutton,

  analysis increased this number to 183,727[START_REF] Allen | Hundreds of variants clustered in genomic loci and biological pathways affect human height[END_REF], and the sample size race culminated with a staggering sample size of 253,288 individuals in 2014(Wood et al., 2014).In linkage-based QTL mapping, the importance of sample size was efficiently shown byBloom et al. (2013), where increasing the sample size from 100 to 1,005 increased the amount of QTLs from two to fifteen. The fifteen QTLs found increased the amount of narrow-sense heritability from 21% to 78%, showing that sample size can account for missing heritability (discussed further in section 1.5).

  cerevisiae is a yeast and a unicellular fungus belonging to the ascomycota clade. Other ascomycetes are the molds belonging to the Penicillium genus, famously used to make antibiotics. The ascomycota is one of the two clades that the fungi have been divided into. The other one, basidiomycota, is the one that you might think of when you hear the word fungus (Fig. 3.1).

Figure 3 . 1 .

 31 Figure 3.1. The facets of fungi. Fungi come in many di↵erent shapes and sizes. Here you find a fungi from the basidiomycota (above) as well as S. cerevisiae with the cell wall stained with calcoflour-white and expressing red fluorescent protein, representing the ascomycota (below, taken from Liti (2015)).

Figure 3

 3 Figure 3.2. S. cerevisiae species tree. This is the species tree of S. cerevisiae published by Liti et al.(2009). By sequencing the genome of 38 yeast strains from di↵erent geographical and ecological origin. They found five distinct major clades (in gray) interspersed by mosaic strains composed of the major clades.

(

  Douzery et al., 2004), shares around one third of its genes with humans[START_REF] O'brien Kevin | Inparanoid: a comprehensive database of eukaryotic orthologs[END_REF]. In one study,[START_REF] Aashiq | Systematic humanization of yeast genes reveals conserved functions and genetic modularity[END_REF] found that when they replaced 469 essential S. cerevisiae genes with their hu-man orthologs, 200 of them could be funcionally replaced. This is a strong case for the shared ancestry of all organisms on the earth, and of using yeast as a model organism.The research on S. cerevisiae has long focused on the model strain S288C or of strains derived from it[START_REF] Gianni | The fascinating and secret wild life of the budding yeast S. cerevisiae[END_REF]. Naturally, only one strain (which, in fact, is a phenotypic outlier compared to other yeast strains[START_REF] Jonas | Trait variation in yeast is defined by population history[END_REF]) cannot represent the entire S. cerevisiae species, and certainly not the eukaryotic kingdom as a whole. Work on this model strain has been invaluable, but using the large reservoir of natural genetic and phenotypic variation in the S. cerevisae species tree will bring out new facets of population genetics.

  the last decade, the interest in the natural variation of yeast has increased among researchers (Liti, 2015). In 2009, two studies published in the same issue of Nature investigated large samples of yeast strains from diverse niches. Liti et al. (2009) and Schacherer et al. (2009) inspected the genome of 38 and 63 S. cerevisiae strains respectively and both found the species to have a strong population structure where a few well-defined lineages make out the back-bone of the species, with hybrids in between (Fig. 3.2).

  Figure 3.3. Sequencing cost has been decreasing rapidly over the years(Wetterstrand, 2017) 

  Figure 3.4. Growth curves. Di↵erent growth curves can give the same population density at a given time point, these two growth curves (taken from data from Hallin et al. (2016)) have di↵erent dynamics, but at ⇠60 hours, they have the same population density.x-axis: time in hours, y-axis: cell number.

  Measuring a single time point during growth is a gross oversimplification of the population growth dynamics. Since many di↵erent types of growth curves can amount to the same population size at any given time, the arbitrary choice of time point could have major consequences for the results of the study (Fig.3.4)(Zackrisson et al., 2016).A microbial growth curve can be characterized by di↵erent phases. Monod (1949) defined these phases as:

  Classical QTL mapping is based on genotyping and phenotyping individual segre-gants, generally from a two-parent cross with the F1-segregants as the mapping population.[START_REF] Lars | Dissecting the architecture of a quantitative trait locus in yeast[END_REF] accurately identified and dissected the genetics behind high temperature growth (Htg) in a cross between a derivative of a clinical isolate (YJM145, Htg + ) and a lab strain (S288C, Htg -). Interestingly, the hybrid between these two strains was heterotic, and the study would go on to define the underlying genetics of the phenomenon. The haploid progeny of the hybrid was phenotyped and 19 segregants with a strong high temperature growth phenotype were analysed at 3,444 genetic markers. They focused on the strongest QTL on chromosome XIV and using reciprocal-hemizygosity they found three genes within the QTL region that had an e↵ect on the phenotype. The YJM145 allele of two of these genes was, expectedly, conferring a Htg + phenotype. For one, however, it was the S288C allele (i.e. the Htg -strain) that conferred resistance. Although the beneficial S288C allele cannot fully explain the heterosis seen in the hybrid, it presents itself as an elegant contributor. While they manage to dissect the genetics of the trait in this specific QTL, they state that traits may be more complex, with more genes contributing; genes that may be closely linked.The difficulties in identifying small effect QTLs, and the fact that they likely constitute a large portion of the variation that contributes to a complex trait(Mackay et al., 2009), led Lorenz and Cohen (2012) to further investigate their established model complex trait: sporulation efficiency(Gerke et al., 2006(Gerke et al., , 2009)). In 2009, using a two-parent cross and 225 markers in a mapping population of 374 haploid segregants they located five QTLs, three of which had a large e↵ect. However, all three large-e↵ect QTLs had large confidence intervals of 50, 100 and 100kb. From these large-e↵ect QTLs they located four Reciprocal-hemizygosity.A method to look at the e↵ect of di↵erent alleles in the same genetic background, it was developed by[START_REF] Lars | Dissecting the architecture of a quantitative trait locus in yeast[END_REF] in this article, and was later used in large scale to map QTLs(Wilkening et al., 2014).nucleotide changes explaining 80% of the variation, and found extensive interactions between them, such that the combined effect of all of them exceed their individual e↵ects. However, the small-e↵ect QTLs were still elusive, and in 2012 they publish their findings on these less easily characterized QTLs(Lorenz and Cohen, 2012).Building on the knowledge from their previous articles,Lorenz and Cohen (2012) constructed crosses where they fixed the four large-e↵ect variants found previously(Gerke et al., 2009). This eliminates their e↵ect and allowed them to detect small-e↵ect variants. Using 164 segregants they located four QTLs, interestingly, and in contrast to the large e↵ect QTLs, the high sporulating strain contributed with two alleles increasing sporulation, and two alleles decreasing it. Another interesting observation was that the QTLs they found were highly dependent on which parental variant of the large-e↵ect QTL was fixed in the strain, indicating QTL-QTL interactions between large-and small-e↵ect QTLs.

  [START_REF] Michelmore R W, Paran | Identification of markers linked to diseaseresistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[END_REF] and was implemented on lettuce to showcase it as a fast and efficient way of detecting regions of the genome that are associated to genes of interest. The method consists in comparing two bulks of segregants originating from one cross. The two bulks will di↵er in the phenotype of interest and will be scored for a number of markers. The marker associated to the gene giving the phenotype should segregate between the two bulks and will thus be detected. Ehrenreich et al. (2010) developed an extension of the bulk segregant analysis method for yeast which they termed Extreme QTL mapping or X-QTL. Ehrenreich et al. describes it as being composed of three key steps. i) Generating populations of segregants from a cross (in line with Michelmore et al.), ii) selecting for extreme values in these populations to recover segregants with values in the tail of the initial phenotype distribution, and finally iii) scoring these populations for their allele frequencies. They selected BY4716, a lab strain derived from S288C, and the wine strain RM11-1a, to be the parental strains. The diploid hybrid from this cross was sporulated to create haploid segregants which constituted the populations used for the X-QTL. They investigated, among other phenotypes, resistance to the DNA damaging agent 4nitroquinoline. A phenotype for which they had only found one significant QTL on chromosome XII, when studying it using conventional QTL mapping with 123 segregants (Demogines et al., 2008). Ehrenreich et al. (2010) subjected some segregant populations to 4-nitroquinoline while others were grown under permissive conditions. With this method they successfully detect fourteen QTLs that reach above the significance threshold. These QTLs were detected by comparing the allele frequencies of the populations that had selected for 4-nitroquinoline resistance and those that had not.A similar approach was taken byParts et al. (2011), but with a few di↵erences. They used two natural strains with pools that were both haploid and diploid. The pools were created by several rounds of crossing increasing the amount of recombination events. These populations were then subjected to high temperature stress (40°C), or permissive temperature (23°C) for twelve days. Using whole population DNA sequencing, they investigated the di↵erences in allele frequencies between the selected and control populations to locate regions that had been selected for, i.e. regions that have an e↵ect on the resistance to heat stress.Similarly toEhrenreich et al. (2010), a previous study using a conventional QTL mapping approach had located only one significant QTL(Cubillos et al., 2011). In-stead,Parts et al. (2011) now find 21 QTLs by using the F12 haploid pool after 192 hours of selective growth. They find that prolonged selection will increase the power of locating small e↵ect regions, at least up to a certain point and that the use of populations with a high amount of recombination results in narrow peaks. Narrow peaks harboring only a few possible causative genes (median interval size 6.4 kb, median number of 4 genes), and in some cases only one gene. Their peaks being narrower than that of, for example, Ehrenreich et al.

  The mapping populations used by Parts et al. (2011) were created by several rounds of intercrossing. I.e. they made the yeast cells undergo several rounds of mating and sporulation. Each time the yeast cells sporulate and go from the diploid to the haploid state, recombination events occur between the two parental chromosomes.

3. 5

 5 Decomposition of genetic components Bloom et al. (2013) used 1,008 haploid strains from a cross between a wine strain and a lab strain in order to investigate where they missing heritability problem has its solution. The genetic contributions to phenotypic variation can be partitioned into additive e↵ects, dominance e↵ects, geneenvironment interactions and gene-gene interactions. The use of haploid strains and phenotyping in controlled environments by Bloom et al. (2013) reduced the possible partitions to additive and gene-gene interactions. Among 46 di↵erent measured traits, broad sense heritability was estimated from the repeatability of the trait measurements while narrow sense heritability was estimated by comparing the phenotypic similarities among individuals with their relatedness calculated from genotype data. Since only additive and gene-gene interactions exists in this experimental setup, the di↵erence between broad and narrow heritability is an estimate of the contribution of gene-gene interactions to the phenotypic variation (Bloom et al., 2013).

from

  Bloom et al. (2013) byYoung and Durbin (2014) further partition the phenotypic variance into pairwise genetic variation and higher order genetic interactions.They conclude there that pairwise interactions are not likely sufficient to explain the di↵erence between narrow and broad sense heritability.These articles give a good view of the genetic contributions to phenotypic variation, however, they are conducted in one cross and using haploid segregants. This excludes the dominance e↵ects seen in diploids and as such complicates the drawing of conclusions about higher organisms. InHallin et al. (2016) we use diploid strains, allowing us to detect dominance contributions and we successfully detect the contribution of even third-order interactions and have nearly no missing heritability.

  Predictions are closely related to QTLs and to heritability. The heritability of a trait sets the upper limit of what we can predict using the genome. If only 20% of the phenotypic variation in a trait is due to genotype di↵erence between strains, then we cannot hope to predict the phenotype very accurately using the genome. QTLs are connected to predictions since they are the loci in the genome with the most impact on the phenotypic variation. I.e. knowing the genotype of di↵erent individuals at a large e↵ect QTL can give a good indication of what phenoype that individual will have. Jelier et al. (2011) use conservation data of coding sequences to estimate the impact of variation in protein coding genes on the function of that protein. In short, they predicted the impact that sequence variation in a protein coding gene would have on the protein. Then they estimated the compounded e↵ect that variation in all the genes associated to the trait in question has on the phenotype. Lastly, they compared their prediction results with real phenotype data. Using this method they could predict the phenotypic variation, i.e. they predicted in relative terms how much a given strain would be a↵ected by its genome in the environment measured, but they did not predict the actual phenotype. Bloom et al. (2013) use detected QTLs to predict phenotypes. They show how, in their experiment, missing heritability can be explained by an insufficient sample size.

  cal adaptations(Liti and Louis, 2012;[START_REF] Jonas | Trait variation in yeast is defined by population history[END_REF] is beneficial since crossing such distinct populations will result in highly heterozygous hybrids, i.e. loci in the genome that can contribute to heterosis through dominance or overdominance.The following three papers (i-iii) investigate strains fromLiti et al. (2009), and are quite interesting as they do so with varying results.i)Zörgö et al. (2012) find that heterosis is exceedingly rare in natural yeast hybrids constructed in the lab. They propose that natural variation in traits in yeast comes in large part from loss of function mutations in genes that are locally not selected for, something they call the local neutrality hypothesis. They further hypothesize that a hybrid from two such strains will only ever reach the fitness of the best parent, not exceed it. Yeast strains that have one functional allele generally shows no phenotype(Deutschbauer et al., 2005), and so, natural strains that mainly di↵er between each other by loss of function mutations will be completely rescued when their genomes are brought together. Consistent with their local neutrality hypothesis, the distribution of heterosis is centered around phenotypes being completely dominant.For the low amount of best parent heterotic hybrids that they do find, they propose that it is due to reciprocal masking of the loss of function mutations. They base this on the fact that there is an inverse relationship (r = -0.51) between the fitness average of the two parents, and the strength of the best parent heterosis. Basically, this means that parents that are weak in a specific environment likely carry a number of loss of function mutations which will be masked in the resulting hybrid, giving it a proportionally strong phenotype. In an environment where the parents are strong, however, there are less loss of function mutations between the two and the hybrid will be less likely to outcompete them. Zörgö et al. (2012) conclude among other things that the genotype-phenotype landscape is most likely defined by genetic drift. However, it seems they did not test the potential benefit of the loss of function mutation in the yeast strains natural habitat, and can therefore not confidently say that the loss of function mutations are not actually adaptive. ii) Plech et al. (2014) expand on the Zörgö et al. (2012) study and find that heterosis is uncommon among wild strains of S. cerevisiae, however, they find that domesticated strains exhibit a high occurrence of heterosis. Heterosis being defined as any positive deviation from the average of the two parents. They attribute their finding to the fact that they had a larger amount of strains as compared to the study from Zörgö et al. (2012). The general conclusion of heterosis be-ing more prevalent among domesticated strains seems to hold (and has since then been enforced by a study on S. cerevisiae and S. paradoxus), but the calling of heterosis was not completely to my liking due to the apparent lack of statistical inspection of the data. However, it would fit with the local neutrality hypothesis, given that the domestication would bring with it a relaxed selection pressure and therefore domesticated strains would harbor more detrimental variants. Again, favoring the dominance hypothesis. iii) Another study on a similar (and somewhat overlapping) set of natural strains by Shapira et al. (2014) get rather di↵erent results. They find that in their panel of natural strains, an average of 35% were best parent heterotic, ranging from 23 to 47%. This is radically di↵erent from the low occurrence of best parent heterosis observed by Zörgö et al. (less than 5%). They suggest that this discordance is due to three components: i) only partial overlap of the strains used, ii) di↵erence in heterosis calculation and iii) the environments used were more complex than in Zörgö et al. (2012). I would like to add a fourth possible explanation for this discrepancy: the seemingly lacking significance test of true best parent heterotic hybrids in Shapira et al. (2014). They call best parent heterosis simply when a hybrid exceeds the value of the best performing parent, while Zörgö et al. (2012) call best parent heterosis only when there is a significant di↵erence between the hybrid and the best performing parent, as designated by a one-sided Student's t-test. The lack of a significance Shapira et al. (2014) uses overdominance synonymously with best parent heterosis, good thing to keep in mind if reading it. threshold would likely include false positive best parent heterotic hybrids and thus inflate the values. Similarly to Zörgö et al. (2012), Shapira et al. (2014) find that less fit parents tend to have more heterotic hybrids, giving merit to the dominance hypothesis. However, they also find heterotic hybrids between parents with high fitness, and, following the same logic, propose that this is due to overdominance or epistasis. By backcrossing the hybrids to one parent, Shapira et al. tests the dominance hypothesis. The rationale is the following: since backcrossing will remove on average half of the heterozygosity, the resulting population should loose half of the phenotype if it is determined by dominance complementation. They find this, but also examples of when more or less of the phenotype is lost. They conclude that heterosis is complex and that its causes include dominance complimentation, overdominance, and epistasis. And that these causes di↵er in their pervasiveness between di↵erent hybrids, but that can they also exist simultaneously in the same hybrid. A more fine-grained view of heterosis has been hindered by a common feature of these articles, which is that none of them look at individual variants' contribution to heterosis. Instead they infer the general genetic contribution to heterosis by looking solely at the phenotypes. Further hindering the genetic decomposition of heterosis is a common feature of QTL mapping experiments in S. cerevisiae: they have largely been performed in haploids (with an exception of Parts et al. (2011)), making it impossible to look at contributions to diploid heterosis. With our methodology in Hallin et al. (2016), we take advantage of our large mapping population consisting of diploid hybrids and look at the dominance and overdominance contribution to heterosis of the QTLs found during linkage analysis.

  been a part of developing a high-throughput growth phenotyping methodology (Zackrisson et al., 2016). This phenotyping platform, Scano-matic, set the stage for the experiments that I would do during my PhD. My two main publications are based on a large-scale crossing experiment that I set up and performed as a visiting researcher in Dr. Jonas Warringer's lab at the University of Gothenburg, producing more than 7,000 diploid hybrids which I phenotyped with Scan-o-matic and used to investigate the connection between genotype and phenotype. During my time in Dr. Warringer's lab, I also created a smaller cross that I also phenotyped in di↵erent environments. This smaller set of hybrids was used in Yue et al. (2017) (see chapter 8 for the abstract). In the first publication (chapter 4)I mapped QTLs using an approach set up by Kaspar Märtens and myself, as well as looking into the occurrence and genetic basis for heterosis with novel technique. Alexander Young contributed greatly with his compartmentalizing of the phenotypic variation into its additive, dominance, and second and third order epistasis components. During this project I was a visiting researcher in Dr. Leopold Parts lab at the Wellcome Trust Sanger Institute (United Kingdom) where I finalized the analysis for the article.

  Hallin*, Kaspar Märtens*, Alexander I. Young, Martin Zackrisson, Francisco Salinas, Leopold Parts, Jonas Warringer & Gianni Liti Published in Nature Communications (2016) doi:10.1038/ncomms13311

  Environmental and gene-by-environment influences are difficult to control and alleles accounting for trait variation tend to have frequencies that are too low for their mostly weak e↵ects to be reliably called[START_REF] Jian | Common SNPs explain a large proportion of the heritability for human height[END_REF]. Compounding matters, many alleles are believed to influence each other within (dominance) and between (epistasis) loci[START_REF] Ben | Molecular mechanisms of epistasis within and between genes[END_REF]. Consequently, one trait can be the result of many di↵erent allele combinations, each combination being exceedingly rare in the population. This makes the individual contributions of most alleles near impossible to assess[START_REF] Or | The mystery of missing heritability: Genetic interactions create phantom heritability[END_REF].
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 44 Figure 4.1. An experimental framework for analysis of diploid traits. (a) Experimental design.Left panel: Advanced intercrossed lines were constructed by multiple rounds of random mating and sporulation of North American (NA) and West African (WA) genomes. Middle panel: We sequenced 172 of the resulting segregants and paired these to generate an array of 7,310 diploid hybrids (POLs). Right panel: The POLs and their F12 haploid parents were growth phenotyped in nine environments, providing high resolution growth curves. (b) Frequency of homozygotes (red: WA/WA, blue: NA/NA), heterozygotes (purple: NA/WA) and missing genotypes (white, mostly attributed to chr. IX aneuploidies) at each segregating site among the 7,310 POLs. Deviations from 50% heterozygosity are explained by selection (numbers 1, 4-8) against one allele in the F12 haploid parent construction, or by forced heterozygosity at the LYS2 (number 2) and MAT (number 3) loci. (c) Growth rate distributions of POLs (blue), their haploid F12 parents (orange) and the diploid parent estimates (grey, Methods). (d) Correlations (Pearson's r) between the growth rate and mean growth for POLs within environments (lower left to upper right diagonal; orange borders), between growth rates (above diagonal) and mean growth (below diagonal) in pairs of environments. Colour intensity (3-colour scale: dark yellow to white to dark blue) and number indicate the degree of correlation r.
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 44 Figure 4.3. Cost-efficient QTL mapping in yeast POLs. QTLs were mapped across 6,642 genomes and 18 traits based on additive and nonadditive contributions. QTLs were validated as additive or dominant genetic contributions using Linear Mixed Models (LMM). (a) QTL signal strength (LOD score, y-axis) as a function of genomic position (x-axis), for growth rate on allantoin as sole nitrogen source, using additive (LMM and non-LMM; lower panel) and nonadditive (non-LMM and LMM only capturing dominance; upper panel) models. Red dots indicate significant (FDR, q = 10%) QTL calls. White/grey fields indicate chromosome spans. (b) Venn diagram of significant QTLs capturing additive and nonadditive genetic contributions. All 18 phenotypes (growth rate and mean growth over nine environments) were considered, with pleiotropic QTLs counted multiple times. (c) Tukey boxplot showing the fraction of variance explained by additive (purple) and nonadditive (blue) significant QTLs (non-LMM models). (d) Histogram of pleiotropic QTLs. A QTL was counted as shared across environments if peaks were within 10 kb of each other. No QTLs were significant in 4, 5, 6 or 7 environments.

  PHOTO scanners (Epson corporation, UK) and the Scan-o-matic framework (Zackrisson et al., 2016). Scanners were maintained in a 30°C, high humidity environment that minimized light influx and evaporation. Experiments were run for 72h, with automated transmissive scanning and signal calibration in 20min intervals. Calibrated pixel intensities were transformed into population size measures by reference to

Finally

  , dominance contributions to worst parent heterosis were called as for dominance in best parent heterosis, but as enrichment of the weaker homozygote.

  Figure 5.1. Experiment population. The 7,396 studied individuals are diploid hybrids that were constructed by systematic mating of 86 F12 MATa haploid yeast segregants to 86 MAT↵ individuals, in all pairwise combinations. (a) Two-stage crossing scheme, starting from the West African (WA) and North American (NA) parents gives a large, diverse, diploid population. (b) Distribution of fraction of sites with identical genotype for pairs of hybrids is bimodal. The frequency of individual pairs that are identical by genotype state (IBS) at fraction f of the sites (y-axis) is di↵erent for pairs that share one parent ('close', right), and ones that do not ('distant', left).

(

  Fig. 5.1a), each of these hybrids has 170 relatives that share one chromosome in every chromosome pair (expected fraction of segregating site genotypes identical by state f = 0.5), and 7,225 ones for which no complete chromosome is shared, but a substantial part of linkage blocks and allele combinations are (expected f = 0.375, Fig. 5.1b). We refer to these levels of relatedness as 'close' and 'distant', respectively, noting that both classes correspond to close kinship. After filtering out individuals with aneuploidies and contamination, we retained 6,642 strains for analysis. Population growth of individual diploid hybrids was measured (Zackrisson et al., 2016) in nine environments in technical and biological duplicate, growth estimates were normalized against hundreds of densely spaced internal standards and the replicate average was used for analysis. The environments challenge di↵erent cellular functions, covering energy sources
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 5 Figure 5.3. Close relatives improve predictions. (a) To cover two training scenarios, that is, fitting models on 'close' (expected fraction of sites identical in genotype f =0.5) or 'distant' (expected f =0.375) relatives, we partitioned all individuals into four equally sized groups. For a fixed test set (red box), we distinguish between training on close relatives (individuals who have a common parent with one test set individual, green box) and more distant relatives (no common parents with any test individual, blue box). As the number of close relatives is twice the number of distant relatives, we downsampled the former. Predictions are obtained by fourfold cross-validation. (b) Close relatives greatly contribute to genome-based prediction accuracy. Predicted (y axis) and observed (x axis) growth for test set individuals (red dots) in NaCl using the best LMM+P model in 'distant' (top) and 'close' (bottom) training scenarios. Grey dashed line denotes the identity y=x; coefficient of determination R 2 is labelled on the plot. (c) Distant relatives are more difficult to predict in each environment. Predictive performance (R 2 , x axis) of di↵erent model classes (y axis) in two training scenarios: 'Distant' (colored bars) and 'Close' (white bars) for each of the nine environments (boxes).

  Fig. 10), which explains the large gap between out-of-sample and in-sample performance for distant relatives (Fig. 5.4e). Notably, prediction accuracy drops substantially, even when just 1% of the training data changes (Fig. 5.4e, filled versus empty markers).
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 55 Figure 5.4. Causes of improved prediction performance for close relatives. (a) BLUP predictions from distant relatives are less accurate because of a more uncertain model-derived predictive distribution. Prediction error (y axis, standard deviation of the residuals) compared with the standard deviation of the predictive distribution (x axis) for the nine environments, when trained on distant (blue dots) or close relatives (red dots). (b) BLUP predictions are more accurate when the model is trained on a small number of close relatives compared with a large set of distant relatives. Predictive performance of BLUP (R 2 , y axis) improves with expanding the training set (size on x axis) with individuals closely (red line) or distantly (blue line) related to the test set. From the dashed grey line onwards, distant relatives are added to the training set of closely related individuals, and vice versa. Shaded regions denote the range of R 2 over the four cross-validation folds. (c) Unlike for BLUP in a, the less accurate predictions from the QTL model in the 'Distant' training scenario are not in accordance with uncertainty in the model-based predictive distribution. (d) Low QTL predictive ability for out-of-sample distant relatives is mainly due to discrepancies between the sets of mapped QTLs, not their estimated e↵ects. Predictive performance (R 2 , x axis) of the QTLs model, stratified by training sets used for QTL mapping (model selection) and weight estimation (model fitting). QTL mapping and weight estimation are carried out under four training scenarios (y axis): both stages in distant relatives ('QTLs: Distant, Weights: Distant'), both in close relatives ('QTLs: Close, Weights: Close'), QTLs mapped in distant relatives and weights estimated in close relatives ('QTLs: Distant, Weights: Close'), or vice versa ('QTLs: Distant, Weights: Close'). (e) A minor change in the training set (replacing 1% of distant relatives with close ones) has a profound e↵ect on out-of-sample QTL-based prediction accuracy. Out-of-sample (black dots) and in-sample (white dots) predictive performance (R 2 ) of QTLs model in two scenarios: trained on distant relatives only (x axis) or when 1% is replaced with close relatives (y axis).

  ing phenotype data is due to capturing additional signal from the non-additive genetic and environmental components, reflecting the extent to which these are shared between the traits. Their relative contribution can somewhat be gauged from the additional accuracy of the LMM+P model over the standard LMM that accounts for mapped additive, dominance and interaction e↵ects. The improvement is largest for traits that have a large gap between narrow and broad-sense heritabilities (phleomycin, hydroxyurea, glycine, isoleucine), which is not caused by a single dominant allele (galactose, allantoin). Any remaining di↵erence is potentially due to both weak interaction and dominance e↵ects not included in the LMM during model selection. Standardization, distribution of replicates across multiple preculture and experimental batches, and normalization of phenotypes to very densely spaced internal controls are expected to minimize the influence of shared environmental variation across plates (Zackrisson et al., 2016). A small contribution of shared environment is consistent with the phenotypic covariance decomposition (Supplementary Fig. 2), and sizes of variance components due to the 2nd and 3rd order interactions that are difficult to map (Hallin et al., 2016; Young and Durbin, 2014). Although we cannot completely exclude that a small fraction of the phenotype covariance reflects shared environmental variation, for example, in the form of nutrient access, initial population size or exposure to stress, the residual covariance has been empirically demonstrated to be smaller than our prediction improvements for most traits (Zackrisson et al., 2016). Regardless, additional measured phenotypes from the individual can clearly inform on all these sources of variation, circumvent-ing the need to explicitly ascertain their effects. Genomic prediction methods have recently been extended to include more finegrained decomposition of trait variances, both for phenotypes (for example, multitrait models (Lippert et al., 2014)) and genotypes (partitioning sites by chromosome (Speed et al., 2012), allele frequency (Yang et al., 2015) or functional class (Finucane et al., 2015)). In latter group, the genetic covariance matrix is partitioned by allele category, and a BLUP model is fit for each. BLUP is a linear combination of training data, with uncertainties stemming from genetic relatedness only for prediction. Accordingly, we found that genomic BLUP estimates became uncertain when closer relatives were unavailable (Fig. 5.4a), and prediction error increased. This source of error is not circumvented by the partitioning methods, as the relatedness-derived uncertainty remains, and therefore these approaches are unlikely to improve our suboptimal predictions for more distant relatives.It is important to note that our study population does not share many of the features of human cohorts. We used data from a diallel cross, in which only two alleles are present at any locus, and their frequencies are close to 50%; there is no spectrum of low frequency and rare alleles. Further, due to the controlled phenotyping design, there is little environmental variation and the heritability estimates in our populations are therefore very high.Although this is atypical for most human traits, our results concern prediction accuracies relative to the heritabilities, regardless of their numerical value. Finally, human complex traits can be influenced by hundreds if not thousands of loci. Nevertheless, their combined predictive ability has remained far below the narrow-sense heritability estimates. We capture nearly all of the broad-sense heritability with the most precise models, demonstrating that knowledge of additional phenotypes helps estimate the combined influence of small e↵ect alleles and interactions that are difficult to map. Therefore, making use of the accumulated personal phenotype data is also expected to improve human trait prediction.When no very close relatives were available, and no single QTL explained a large fraction of variance, the pure genomic methods were inaccurate, even in our population of 6,642 individuals with high relatedness. At the same time, when the number of very close relatives in the training sample was sufficiently large, the predictions were not improved by adding all remaining more distant relatives. Thus, observing phenotypes for parental haplotypes in at least a few cases causes BLUP to upweight their contributions, and for QTL mapping to prioritize alleles that capture their signal. In concert, these observations suggest that e↵orts directed towards creating genotype-based scores using common variants to predict disease risk could benefit dramatically from being complemented by systematic collection of family history and relatedness data (Aulchenko

  5.1). After removing strains spawning from one contaminated and eight aneuploid haploid founders, we were left with 81 ⇥ 82=6,642 crosses for analysis. The strains were grown in biological and technical duplicates (four measurements total) in 1536-position solid agar plate cultures, with all replicates on di↵erent plates and taken from two di↵erent pre-cultures to reduce systematic bias. Medium preparation, plate pouring, robotic pinning and pre-culture and experimental conditions were all extensively standardized to reduce systematic bias. Every fourth position was occupied by genetically identical internal controls in the form of the reference YPS128 strain, and the 384 controls on each plate were used to remove any remaining bias by normalization. Although complete randomization with respect to all known confounders (for example, plate position, fixture position, machine, pre-culture, temperature, humidity, neighbouring colony size, amount of light) and unknown sources of bias is not feasi-ble, the dense grid of reference strains provides an excellent standard. We extracted the area under the growth curve relative to the starting point in each of the nine environments, converted the values to logscale, and normalized them to a surface constructed from the surrounding internal YPS128 controls, as described earlier (Zackrisson et al., 2016). The four replicate values were then averaged to obtain the final phenotype (that is, mean growth) for each individual and environment. Panel design, genotyping, phenotyping and normalization are described in detail in Hallin et al. (2016) and Zackrisson et al. (2016).

  distribution, y ⇠ N (µ1,σ 2 g K + σ 2 e I) where K = 1 c XX T is the realized genetic relatedness matrix, with the scaling constant c being the average diagonal value of XX T . Prediction for the test individual can be obtained by conditioning on the observed data in a standard way for multivariate normal distributions. When calculating the standard deviation of the predictive distribution (Fig. 5.4a), we averaged the variances on the predictive distributions (that is, averaged the diagonal elements of the covariance matrix of the predictive multivariate normal distribution) and reported the square root of this number. Quantitative trait loci. To identify the strongest QTLs, we first carried out forward selection for up to 50 iterations in the linear regression model y ⇠ N (β 0 + P j 2Q t ) , where Q t denotes the selected collection of QTL indexes at iteration t. The number of QTLs in the final model was determined by out-of-sample prediction accuracy, with fourfold cross-validation on the training portion of data (hence, altogether a double cross-validation scheme).

  +P 0 ). The LMM + P model combines additive, dominance and interaction e↵ects with genetic relatedness and other traits, y ⇠ N (QTLs + dom + int + P,σ 2 g K + σ 2 e I). The fixed e↵ects contains a genetic (QTLs + dom + int) and non-genetic (P) part. The latter includes the linear combination of all other traits P 1 , ..., P 8 . First, we regress y on P, and then we construct the genetic component as described for the LMM model.Multi-trait LMM. MT-LMMs model multiple phenotypes jointly. The correlation between two traits is modelled in two parts, via a genetic and non-genetic component as follows(Lippert et al., 2014). Let Y =[y ! , ..., y 9 ] be the matrix for phenotypes y ! , ..., y 9 , and let F denote the fixed e↵ects for each of these phenotypes,F =[f 1 , ..., f 9 ].We used the same fixed e↵ects f i that we constructed in the LMM model. Let C be the genetic covariance matrix between phenotypes and P the non-genetic one. Then vecY ⇠ N (vecF,C ⌦ K + P ⌦I) according to the MT-LMM. To obtain MT-LMM pre-dictions which correspond to the LMM+P model, we condition the multivariate normal distribution. Mixed random forest. We applied the MRF approach (Stephan et al., 2015), available via LIMIX (Lippert et al., 2014). We ran the MRF with 25 trees and otherwise default settings. For genomic predictions (corresponding to the LMM model), we included all SNPs as potential features. For genomic and phenomic prediction (corresponding to the LMM+P model), we added also other phenotypes as potential features. Training and obtaining predictions All models were fitted with the Python package LIMIX (Lippert et al., 2014). We used four-fold cross-validation to obtain out-ofsample predictions for all 6642 individuals. We partitioned the set of all individuals into four folds analogously as shown in (Fig. 5.3a), i.e. by splitting the two sets of parents (i.e. one in rows, the other in columns) into two equally sized groups. We use each one of these four subsets of size N 2 as a test set to obtain predictions and the remaining three as a training set to fit the models. First, we did not take into account the relatedness structure and divided individuals into subsets randomly (results in Fig. 5.2). Later, we distinguished between closely and distantly related individuals (results in Fig. 5.3). The latter correspond to siblings in a traditional sense, sharing many of the haplotype blocks (expected fraction of sites identical by state 0.375), whereas the former share one complete chromosome in each pair (expected fraction of sites identical by state 0.5). The four test sets remained the same as before, but instead of training on all 3N 2 remaining individuals, we picked the N ⇥ N individuals who do not share a parent with anyone in the test set ('distant relatives'), as well as sampled N 2 from the 2N 2 remaining individuals who do share one parent with someone in the test set ('close relatives').

  through the BioMedIT project, J.H. by the Labex SIGNALIFE (ANR-11-LABX-0028-01), Swedish Research Council (grant numbers 325-2014-6547 and 621-2014-4605) and the Research Council of Norway (grant number 222364/F20), J.H. and G.L. by ATIP-Avenir (CNRS/INSERM), ARC (grant number SFI20111203947), FP7-PEOPLE-2012-CIG (grant number 322035), ANR (ANR-13-BSV6-0006-01) and Cancéropôle PACA (AAP emergence), Labex SIGNAL-IFE (ANR-11-LABX-0028-01), and L.P. by a Marie Curie International Outgoing Fellowship, the Wellcome Trust and Estonian Research Council (IUT34-4).

Figure 6

 6 Figure 6.1. Image analysis pipeline. (1) An image is taken using a Epson flatbed scanner, the image is then processed in a program based on the EBImage package (Pau et al., 2010) for R. (2)The image is broken down so as to analyze one plate at the time, we will be following the top left plate. The cropping of the image is based on absolute values; since the plates are placed in a fixture, they will be in the same position every time an image is taken. A median filter is applied in order to smoothen the image, getting rid of any dust and noise from the plate. (3) Using an otsu threshold, the colonies are separated from the background making them possible to identify. (4) By using the courser to click on the top left colony, a grid is placed on top of the image, this grid allows me to also identify colonies that are not growing, and to know which spores are coming from the same tetrad (one column per tetrad). (5) The identified colonies are colored in blue and manually inspected. In this example, the top left colony has not been identified, if this happens you can use the courser to click on the unidentified colony and the program will find it. (6) Identified colonies are attributed with their colony size in number of pixels while inviable colonies are set to 'InV' (shown for one tetrad).

  All plates were scanned using an Epson Perfection V330 Photo scanner, in 8-bit greyscale at 300dpi in .tif format. The plates were placed in a custom made fixture when the image was taken, and the image analysis was performed using a custom made R program, written by me and based on the R package EBImage[START_REF] Pau | EBImage-an R package for image processing with applications to cellular phenotypes[END_REF]. The analysis pipeline is detailed in figure 6.1. Once the analysis is done the colony size data is exported to a spreadsheet together with associated metadata, such as the date of dissection, and amount of days in sporulation media. Using a timeresolved phenotyping such as Scan-o-matic was unfortunately not possible due to the practical difficulties and the lack of an appropriate imaging facility at the lab in Nice. It would have been very interesting to look at, for example, time until appearance of a colony to have a more fine-grained germination phenotype. Nevertheless, the program allowed us to easily document the viability of the tetrads, and hopefully the colony area can give us some insight into the genetics of spore germination. Due to the nature of the experiment, each colony is unique, which means that we cannot have replicates for the germination phenotype and may limit our ability to locate QTLs. Once the colonies had been scanned, their DNA was extracted and sent to the Wellcome Trust Sanger Institute for sequencing. 6.5 Large scale DNA extraction The ambition of this project got very tangible when the DNA extractions needed to be done; performing 9,000 DNA extractions calls for a more high throughput approach than Eppendorf tubes. During the beginning of this project I adapted the MasterPure TM Yeast DNA Purification Kit from Epicentre to be used with 96-well plates, making sure that the yield and quality of the DNA was sufficient for sequencing. Colonies from the dissection plates were scraped o↵ and put into 2ml round bottomed 96-well plates (PP-Masterblock, Grainer bio-one), with 1ml liquid YPD. I would generally prepare four plates at a time, allowing me to perform 384 DNA extractions during one day. The plates were then incubated over night at 30°C in order to increase the number of cells. After incubation, I would take 100µl out of the plate and place in a 200µl round bottomed 96well plate (Falcon). I would spin down the cells from the preculture (Centrifuge 5810 R, Eppendorf; 3min, 3000rpm), remove the YPD with a multi-channel pipette (Eppendorf) and then add 1ml of 25% glycerol before mixing the wells and freezing at -80°C. The DNA extractions were then made in the 200µl 96-well plates. The main change to the original MasterPure protocol was reducing the quantities of reagents to reflect the reduced amount of cells, as well as increasing the centrifugation times due to the fact that the centrifuge taking 96-well plates does not reach the speed called for in the original protocol. The optimization of the DNA extraction protocol allowed me to scale up the amount of extractions, increase the speed with which they were done and decrease the cost, since less time and reagent was spent. The DNA was stored in TE bu↵er and sent to the Single Cell Genomics Core Facility at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom). Once there, it was sequenced with coverage high enough to call genotypes but low enough to allow for a large number of sequenced spores (⇠8x).
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 6 Figure 6.3. Divergence and viability. The divergence of two strains that are crossed together can have an e↵ect on the gamete viability[START_REF] Greig | Reproductive isolation in Saccharomyces[END_REF]. The SNP, Indel, and total amount of markers are plotted on the x-axis (Table6.3) while the average viability of the gametes of a given cross is on the y-axis (Table6.4). The data points on x = 0 corresponds to the diploid parents.
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 6 Figure6.4. Chromosome size, hybrids and aneuploidies. (a) Corroborating previous studies, the amount of aneuploidies has an inverse relationship with the length of the chromosomes, such that smaller chromosomes tend to gain more aneuploidies than larger ones. (b) Sorting the aneuploidies according to chromosome (y-axis, sorted according to chromosome length) and hybrid (facets) reveals possible hybrid specific aneuploidies. Chromosome XI has a large number of aneuploidies in the SA-WE hybrid but not in the others, which may be due to some genetic or genomic incompatibility between the SA and WE strain. Values are normalized by the amount of spores sequenced for the given hybrid. Note that the WA-WE facet has a di↵erent scale on the x-axis, due to its smaller samples size (n=59) these values are not as robust. n refers to the amount of spores that have been sequenced, per hybrid, and included into this analysis (Table6.3). The NA-WE hybrid is not shown since no aneuploidies were found for it (n = 52).

  ing me the opportunity to investigate how the landscape of QTLs can be a↵ected by di↵erent parental contributions. Additionally, in light of the recent article by She and Jarosz (2018), we can also use real data to look at the increase in resolution of QTLs that comes with less marker density Table6.3. In contrast to my previous project, I would also like to investigate QTL-QTL or QTL-genome interactions, using our six different hybrids we could look at how conserved di↵erent interactions are. In contrast to Hallin et al. (2016) and Märtens et al. (2016), the segregants in this project are the result of just one meisis, which means that they have had less recombination events and will due to this have a lower QTL resolution. However, using the logic from the round-robin approach by Treusch et al. (2015) we might be able to use the di↵erent crosses in order to narrow down the regions. Our mapping population is haploid which limits our genetic contributions to variation to additive and epistatic components. Looking at haploid gametes does however open up a completely new set of interesting analyses that can be done. Looking at the genetic contributions to gamete inviability, for example, naturally cannot be done in diploids. Additionally, this large dataset of haploids means that a new big cross grid experiment could be done, with a much larger sample size (albeit, with bigger linkage regions).

  manage to map QTLs at nucleotide resolution by a very simple solution: they decreased the genetic divergence between the two parental strains. This reduces the complexity of the model, and increases the amount of space between the markers. This increase in of inter-marker distance allowed them to locate the variants that had the e↵ect. The decrease in complexity in genome di↵erences did not e↵ect the diversity of phenotypes in the mapping population, and e↵ectively only gave them the opportunity to really distinguish the causal variants down to the nucleotide.

  Figure7.1. Heterosis and QTL resolution. The power to detect significant dominant or overdominant contributions can be a↵ected by the resolution of the QTL. Using the marker below the apex of the QTL (marker 1) could result in a lower power to detect dominance or overdominance contributions, if the causal marker is not the one under the apex. Here marker 2 is the causal marker and is the marker contributing to the phenotype. The colored circle indicates an individual that has di↵erent genotypes at the two markers. This results in it having the phenotype of allele a (since it has allele a at the causal marker) but being grouped with the individuals with allele A (since it has allele A at the marker under the apex).
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 7 Fig. 7.1. That being said, this should not have a very large e↵ect since the amount of individuals with a recombination break point between markers with such high linkage should not be very common.

  

  population structure of S. cerevisiae

		makes it a good model for the study of het-
		erosis. Having distinct populations aris-
	Local neutrality	ing mostly from clonal expansion with lo-
	hypothesis. Genes not	
	under selection gain loss	
	of function mutations,	
	shaping the phenotypic	
	variation between distinct	
	natural yeast populations.	

Table 6 .

 6 1. Strain genotypes. This table shows the genetic markers that are segregating in the strains used for this study, all strains are ho::HygMX.

		Cross	Genotype
		NA-NA	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
	Parents	SA-SA WE-WE	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3 Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
		WA-WA	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
		SA-NA	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
		NA-WE	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
	Hybrids	NA-WA SA-WE	Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3 Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
		SA-WA	

Mat a, ura3::KanMX, lys2

::URA3 WA-WE Mat a, ura3::KanMX -Mat↵, ura3::KanMX, lys2::URA3
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	.2. Phenotyping environments. All en-
	vironments used for growth phenotyping with
	Scan-o-matic.	
	Environment	Note
	YPD	-
	Synthetic complete	-
	Heat	40°C
	Galactose	2%
	NaCl	1.5M
	CuCl 2	0.5mM
	Ca↵eine	2mg/ml
	Rapamycin	0.05µg/ml
	Paraquat	400µg/ml
	I performed all phenotyping during my
	stay at the University of Gothenburg be-
	tween November 2017 and January 2018,
	with technical help from Simon Stenberg
	and Karl Persson in the lab of Dr. Jonas
	Warringer. Phenotyping was done with
	four replicates which were distributed over
	di↵erent positions in di↵erent scanners in
	order to minimize systematic bias. I have
	yet to perform the quality control and phe-
	notype extraction, so at the moment, I only
	have phenotype data from my initial colony
	size screen to share.	

Table 6 .

 6 3. Segregating sites. This table shows the amount of markers for each hybrid, the markers were called by using the genome assemblies and Illumina reads of the two parental genomes. This set of markers is not necessarily the final one and may change. "Sequenced" refers to the amount of sequenced spores that were used for the analysis in section 6.9

				.				
			Markers		Intermarker distance (bp)	
	Cross	SNP	Indel	Total	Mean	Median	stdev	Sequenced
	SA-NA	43, 863	1, 141	45, 004	258.20	124.00	499.15	834
	NA-WE	65, 559	2, 017	67, 576	170.65	86.00	339.56	52
	NA-WA	53, 702	1, 444	55, 146	210.50	103.00	389.46	571
	SA-WE	71, 285	2, 051	73, 336	156.45	81.00	447, 13	780
	SA-WA	60, 379	1, 602	61, 981	186.31	95.00	350.38	0
	WA-WE	72, 880	2, 100	74, 980	152.78	78.00	310.03	59
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Project summary

The abstract you just read was the one I submitted to the 28th International Conference on Yeast Genetics and Molecular Biology. I was chosen to present this project as a poster and as an oral presentation during the yeast population, comparative and evolutionary genomics workshop. The number of strains to be sequenced has changed along the way and is now 1,500. As this project is still a work in progress, I will mostly share methodological aspects and summary statistics of the work that has been done so far.

Using four diverged parents (Fig. By crossing the four parents in all possible combinations (Table 6.1) we created six hybrids with genetic divergence in both degree and kind (Liti et al., 2009;Bergström et al., 2014;[START_REF] Jia-Xing | Contrasting evolutionary genome dynamics between domesticated and wild yeasts[END_REF]. We then pushed these six hybrid through meiosis and isolated gametes (or spores) using a micromanipulator in order to collect 2,000 viable spores from each hybrid. Using a cus-tom made R program I documented the viability of each tetrad and the colony area (measured as number of pixels). We are underway with the sequencing of 1,500 spores from each hybrid that will be used for downstreams analysis (at the time of writing this, ⇠6,000 spores have been sequenced; due to time constraints 2,296 of these made it into this thesis (Table 6.4)).

Sequencing Shortly, the main goals of this project are i) to characterize the recombination landscape of di↵erent hybrids and how they depend on the genetic structure of the parents. ii) to investigate the QTL landscape, and how it might di↵er from hybrid to hybrid as well as iii) look for genetic contributions to gamete inviability, such as aneuploidies or gene-gene interactions.

In the sections below, I will give a more detailed account of the process and progress of the project so far.

Parental strains

The four parents (NA, WA, WE, SA) were chosen for a good reason. Jia-Xing Yue recently spearheaded a project in our team T his article describes a novel methodology for high through-put high quality colony growth phenotyping, showcasing its precision by implementing it to further elucidate the genetics of salt resistance in yeast. My contribution to this project was mainly performing experiments using the methodology, fine-tuning the experimental protocol, and contributing to the development of the program by giving feedback on the usability to Martin. I have taken advantage of Scan-o-matic in all the projects that I have been associated to so far. My extensive use of this methodology has made me comfortable with all aspects of large scale phenotyping; from experiment design, to execution, to data analysis and interpretation.

Contrasting evolutionary genome dynamics between domesticated and wild yeasts

Personal contribution S uccessfully assembling high-quality genomes is not easy, but by PacBio and Illumina sequencing twelve strains representing major clades of Saccharomyces cerevisiae and its wild cousin Saccharomyces paradoxus Jia-Xing assembled their genomes end-to-end with reference-quality. Their genome dynamics were compared to give a view of how di↵erent selection pressures acting on these two yeast species may have shaped their genomes. The high quality end-to-end genome assemblies allowed me to test how subtelomeric gene structures a↵ected phenotypic variation to arsenite resistance by using the POL approach that I had developed previously. My contribution is shown in figure 7d-f of the article.

Contrasting evolutionary genome dynamics between domesticated and wild yeasts S tructural rearrangements have long been recognized as an important source of genetic variation, with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here we use long-read sequencing to generate end-toend genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level highquality genomes with comprehensive annotation enable precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus shows faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions), whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshu✏ing, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts are likely to reflect the influence of human activities on structural genome evolution. T his paper gives an account of the contribution of de novo and standing genetic variation to adaptive evolution in Saccharomyces cerevisiae populations. My main part in this project was the cross-grid experiment which was used to shu✏e the de novo mutations and the genetic backgrounds in order to unlink their contributions, giving us a way to estimate their respective contributions. I collected and genotyped the spores to validate their mutations, and constructed and performed the crossing into diploid hybrids as well as doing the phenotyping for all strains. My contribution is represented in figure 6 of the paper.

Jia-Xing