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Résumé

L a variabilité phénotypique existante au sein d’une population est d’une im-
portance cruciale ; elle permet l’adaptation à de nouvelles conditions par la
sélection naturelle de traits bénéfiques. La variabilité phénotypique est le

résultat du polymorphisme génétique de chaque individu, couplé à l’influence de
divers facteurs environnementaux. Ces travaux ont pour objectif d’élucider quels
sont les facteurs génétiques responsables de la variabilité phénotypique de chaque
individu afin de comprendre comment celle-ci évolue de génération en génération
et peut s’accentuer au-delà des prédispositions parentales. Finalement, les résultats
obtenus seront utilisés pour prédire un phénotype à partir d’un génotype inconnu.
Nous avons utilisé des techniques de phénomique et de génomique de haut débit
pour décomposer avec une précision inédite la variabilité phénotypique d’une large
population de souches diploïdes de Saccharomyces cerevisiae. Le génotype exact de
plus de 7000 souches uniques a ainsi été obtenu via le croisement et le séquençage
de souches haploïdes distinctes. Nous avons mesuré la capacité de croissance de ces
souches et identifié les composants génétiques influant sur ce trait. De plus, nous
avons identifié des «loci de caractères quantitatifs» additifs et non-additifs, et étudié
la fréquence du phénomène d’hétérosis et ses mécanismes. Enfin, en utilisant les
données phénotypiques et génotypiques de la même population de levures, nous
avons pu prédire les traits de chaque individu avec une presque parfaite exactitude.
Ces travaux ont ainsi permis d’identifier avec précision les facteurs génétiques mod-
ulant la variation phénotypique d’une population diploïde, et de prédire un trait à
partir du génotype et de l’ensemble des données phénotypiques. En plus de ce pro-
jet, nous travaillons aussi sur l’identification des bases génétiques à l’origine de la
non-viabilité des gamètes, ainsi que sur la compréhension des caractères complexes
chez des souches hybrides intra-espèce. De par l’étude de 9000 gamètes séquencés
issus de six hybrides di↵érents, nous avons pour objectif de caractériser leur pro-
fil de recombinaison et d’observer quelle est l’influence du fond génétique sur ce
dernier. De plus, nous avons caractérisé la capacité de croissance de ces gamètes
dans neuf conditions environnementales di↵érentes et nous prévoyons de disséquer
l’architecture génétique de ces traits dans di↵érents fonds génétiques.

Mots-clés. Caractères quantitatifs, variation
génétique, épistasie, hétérosis, prédictions.



Abstract

T he phenotypic variation between individuals in a population is of crucial im-
portance. It allows populations to evolve to novel conditions by the natural
selection of beneficial traits. Variation in traits can be caused by genetic or

environmental factors. This work endeavors to study the genetic factors that under-
lie phenotypic variation in order to understand how variation can be created from
one generation to the next; to know what genetic mechanisms are most prominent;
to learn how variation can extend beyond the parents; and finally, to use this in order
to predict phenotypes of unknown genetic constellations. We used large scale phe-
nomics and genomics to give an unprecedented decomposition of the phenotypic
variation in a large population of diploid Saccharomyces cerevisiae strains. Construct-
ing phased outbred lines by large scale crosses of sequenced haploid strains allowed
us to infer the genetic makeup of more than 7,000 colonies. Wemeasured the growth
of these strains and decomposed the phenotypic variation into its genetic compo-
nents. In addition, we mapped additive and nonadditive quantitative trait loci, we
investigated the occurrence of heterosis and its genetic basis, and using the same
populations we used phenotypic and genetic data to predict traits with near per-
fect accuracy. By using the phased outbred line approach, we succeeded in giving a
conclusive account of what genetic factors define phenotypic variation in a diploid
population, and in accurately predicting phenotypes from genetic and phenotypic
data. Beyond the phased outbred line project, I am currently investigating the ge-
netic basis of gamete inviability and complex traits in intraspecies yeast hybrids.
Using 9,000 sequenced gametes from six di↵erent hybrids we aim to characterize
their recombination landscape and how the genetic background influences it. Fur-
thermore, we have phenotyped these gametes in nine conditions and will dissect the
genetic architecture of these traits across multiple genomic backgrounds.

Keywords. Quantitative traits, genetic
variation, epistasis, heterosis, predictions
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Foreword

I t is easy to imagine how the great vari-
ation on earth has long been appre-
ciated by mankind. From the vast

amount of species of plants, each with a
unique flower, to all animals and insects.
From mammal to microbe, there is scarcely
an inch on this earth not inhabited, from
smoldering volcanoes to the icy plains of
Greenland.

Variation between species is all well and
good, but the variation within a species
was not always held in such a high regard
as it is today. In Plato’s dialogs, Socrates
argued that there was but one true form
and the variation around it was but cheap
and ill-fated attempts to capture the true
form. However, in the days of Charles Dar-
win and his contemporaries, variation was
given a clear function.

The study of variation has increased in
popularity over the years. In fact, a quick
search on Pubmed reveals that the fraction
of publications mentioning variation in ei-
ther the title or abstract has been going
up steadily since the 70’s. (Fig. 1). This
does, however, refer to variation in general,
not exclusively to the study of variation in
genotypes and phenotypes. Nevertheless,
variation seems to be gaining recognition in
the scientific community.

In this thesis, the first three chapters will
give you a general introduction to the field
of quantitative genetics, a powerful tool
to study the link between phenotypic and
genotypic variation. I will cover the basics
of inheritance of complex traits, how we

can find loci in the genome that contribute

2%

1%

0%

1970 Year 2017

Figure 1. Propagation of
variation in publications.
The mention of variation
has been going up steadily
over the years

to the variation in a population, and how to
predict the phenotypes of individuals. We
will also look at how phenotypes are modu-
lated by genetic mechanisms, and how they
can give phenotypes that are more extreme
from one generation to the next.

Accompanying this thesis are two articles
both published in 2016 in Nature Commu-
nications. These are the main articles of
this thesis and constitute the main body
of my work. Each of them contain their
own introduction, putting the work into
a more specific context than I do in the
first three chapters. After this there is a
chapter on the work I am currently do-
ing and have been doing since my arti-
cles were published. This is an ongoing
project and mostly discusses methodology
as well as some preliminary results. Lastly,
I extend the discussion from the articles,
adding some thoughts about the mapping
population and heterosis analysis.

But before we get started, a quote from Al-
fred Russel Wallace’s “On the Law Which
Has Regulated the Introduction of New
Species”, worthy of thought when we are
quick to divide and slow to unite.

The great gaps that exist between fishes,
reptiles, birds, and mammals would then, no
doubt, be softened by intermediate groups,

and the whole organic world would be seen to
be an unbroken and harmonious system.

1





Chapter 1

Genotype to phenotype

T his chapter will introduce the con-

cept of phenotypic and genetic

variation, and how they are inte-

grally related in a complex way. The com-

plexity of this relationship is what my the-

sis tries to unravel. I will discuss how the

genome can influence, as well as predict,

phenotypes.

Variation is a key feature in natural popu-

lations, it gives natural selection something

to act on, making it completely essential

for life as we know it to have evolved. Al-

though Charles Darwin (Fig. 1.1) makes no

mention of it in the title of his iconic book

On the origin of species - by means of natural

selection, Alfred Russel Wallace (Fig. 1.2),

independent co-discoverer of evolution by

natural selection, gave credit to variation in

naming his paper On the tendency of vari-

eties to depart indefinitely from the original

type. Understanding the genetic basis of

complex phenotypic variation has been –

and still is– a goal of the natural sciences.

Knowledge of this relationship will aid in,

for example, predicting disease risk and

breeding desirable traits in crops (Mackay

et al., 2009). It has, however, been difficult

to assess the genetic contributions to varia-

tion.

1.1 Heritability

Variation in a phenotypic trait can have

Figure 1.1. Charles
Robert Darwin, author of
the groundbreaking book
On the origin of species - by
means of natural selection,
laying the foundation for
modern biology. Image
source.

Figure 1.2. Alfred Russel
Wallace, independent
co-discoverer of evolution
by natural selection.
Image source.

di↵erent sources, which constitutes one of

the difficulties in knowing the genetic con-

tribution. The amount of a population’s

variation in a trait that can be attributed

to the genome is called heritability. Her-

itability is important, for example, when

you want to select for a specific trait; if

you want to select (through breeding) your

Heritability. The fraction

of phenotypic variance in

a population that can be

attributed to genetic

variation.

cows to have more milk production, you

would first want to know how much of the

variation in the milk production is due to

di↵erences in the genome. If most of the

variation is due to the environment, your

e↵orts would be of more use optimizing

that.

The heritability of a trait is not static, it can

vary over time and place (Klug et al., 2009).

If the environmental variation for a pop-

ulation is low, then the genome will have

a stronger relative e↵ect. The total phe-

notypic variance in a population (Vt) can

be expressed as the environmental variance

(Ve) and the genetic variance (Vg ).

Vt = Ve +Vg

3
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Figure 1.3. Components of genetic variance. This schematic shows the concept behind the dif-
ferent kinds of genetic components that make up the total genetic contribution (Vg ) to the phe-
notypic variance of a population (Vt). Additive e↵ects are the fixed e↵ects that alleles contribute
with, which are independent of the allele compositions at other loci. I.e. for a completely addi-
tive trait, the heterozygote (Aa or Bb) will have a phenotypic e↵ect that equals the mean of the
two homozygotes (AA and aa, or BB and bb), and the e↵ect of either locus is independent of the
genotype at the other locus. Epistasis or an epistatic interaction is when the e↵ect of a locus is
dependent on the genotype at a second locus. The figure represents the most simple interaction
containing only two loci, where the e↵ect of the a allele is enhanced with increasing numbers
of the b allele at another locus. Finally, Dominant e↵ects are the deviations from the additive
within a locus, such that the heterozygote does not equal the mean of the two homozygotes. In
this example the B locus has a dominant e↵ect while the A locus is completely additive.

The genetic contribution to the phenotypic

variation is called broad sense heritabil-

ity, and can similarly be decomposed, such

that:

Monozygotic. Twins that

spawn from the same

zygote.

Dizygotic. Twins that

spawn from di↵erent

zygotes.

Vg = Vg,a +Vg,d +Vg,i

Complex traits. An

observable trait that has

two or more genes

modulating it.

where Vg,a is additive variance, Vg,d is dom-

inant variance and Vg,i is interaction vari-

ance. These concepts are explained in more

detail in figure 1.3. The contribution of

the additive component to phenotypic vari-

ation is called narrow sense heritability.

In humans, narrow sense heritability is

commonly estimated by twin studies. In a

classical twin study, comparing the pheno-

typic similarity ofmonozygotic twins (MZ)

and dizygotic (DZ) twins gives an estimate

of the heritability of that trait. The heri-

tability is calculated as twice the di↵erence

between the correlation of the MZ twins

and the DZ twins (Boomsma et al., 2002).

E.g. if the correlation of MZ twins for a

given trait is 0.6, and 0.3 for the DZ twins,

then the heritability would be (2(0.6− 0.3))

60%.

1.2 Complex traits

Complex traits (or quantitative traits) lie

at the heart of quantitative genetics, the

field of genetics which is concerned with

explaining the genetic background to varia-

4
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Complex Mendelian

Phenotypes

Loci controlling
the phenotype

Phenotype Phenotype
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Figure 1.4. Mendelian and complex traits. A complex trait is controlled by several loci ( ),
creating a continuous distribution of phenotypes in the population. In contrast, a Mendelian
trait is controlled by one gene, and because of this the phenotypic distribution of the population
will be bimodal, given that there are two variants of this gene. This occurs in diploid populations
when one variant is dominant over the other. I.e. even though there are four di↵erent possible
genotypes at the given locus, there are only two possible phenotypes.

tion in traits. A complex trait is any observ-

able trait that has a large variation within

individuals of a population and is modu-

lated by two or more genes, giving the trait

a continuous distribution. A classical ex-

ample of a complex trait is height in hu-

mans. A trait (or phenotype) that, by the

way, has a quite high heritability (around

80% (Silventoinen et al., 2003)).

This is in contrast to Mendelian traits (or

monogenic traits) (Fig. 1.4), where the phe-

notype is modulated by a single gene. How-

ever, monogenic traits may not be as sim-

ple as they seem. Sirr et al. (2015) find that

even a seemingly monogenic trait can have

genetic and/or nongenetic modifiers.

Any given complex trait is modulated by

many genes in intricate networks and her-

itability can answer what portion of vari-

ation in the complex trait is defined by

di↵erent genetic components, but we also

want to know what specific sites in the

genome a↵ect the phenotype.

1.3 Quantitative trait loci
Phenotype. The

phenotype of an organism

is its collected set of traits,

however, it is often used

synonymously with trait,

and will be used as such

throughout this thesis.

A Quantitative Trait Locus (QTL) is, as

its name suggests, a place in the genome

that contributes quantitatively to a partic-

ular trait. The field of genetics has come

a long way in locating these loci thanks to

the fact that factors controlling phenotypes

(genes) co-segregate with the phenotypes.

QTLs can be located using two di↵erent QTL. A locus in the

genome that contributes

to the variation of a trait
methods, i) association-based mapping, or

ii) linkage-based mapping, which will be

discussed in section 1.3.2 and section 1.3.3

The power and resolution with which we

locate QTLs are highly dependent on the

sample size of your mapping population,

and on the amount of recombination that

you have between the individuals of the

population.

1.3.1 Recombination

QTL mapping is wholly dependent on re-

combination. Recombination was pro-
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posed by Morgan (1911), to explain theCrossover. Reciprocal

exchange of genetic

material between the two

homologous chromosomes

(Whitby, 2005).

mystery of some traits being coupled and

others segregating randomly. His student,

Sturtevant (1913) went on to create the first

ever genetic map, using the theory laid

down by Morgan (1911).Non-crossover.

nonreciprocal short

length exchange of genetic

material between the two

homologous chromosomes

(Whitby, 2005).

Recombination is initiated by double-

strand breaks during prophase of meio-

sis I (Keeney et al., 1997), these breaks

can subsequently be repaired by using the

sister chromatid or homologous chromo-Marker. An identifiable

position in the genome

that di↵ers between the

parents of a cross. This

can be genotyped to know

which parent contributed

with the stretch of DNA

that covers the marker.

some as a template. The recombination re-

sults in gene conversion associated to either

a crossover or a non-crossover (Whitby,

2005).

During meiosis, there is a bias for using the

homologous chromosome for repairing the

double-strand breaks (Haber et al., 1984).

Repairing double-strand breaks during mi-GWAS. A method to find

locations in the genome

that contribute to the

variation of a trait in

natural populations.

tosis, however, is biased to using the sis-

ter chromatid as a template which does not

result in any change of genetic material

since the two sister chromatids are identi-

cal (Fabre et al., 1984; Kadyk and Hartwell,

1992). The di↵erent bias in mitotic and

meiotic recombination could be explained

by the use of di↵erent recombination path-

ways (Schwacha and Kleckner, 1997).

The recombination landscape of S. cere-

visiae was described in great detail by

Mancera et al. (2008), mapping both

crossovers and non-crossovers genome

wide. They genotyped the four haploid

spores from 51 meioses resulting from the

sporulation of a hybrid between S288C

(a lab strain) and YJM789 (derived from

a clinical isolate (Wei et al., 2007)). By

using ⇠52,000 markers they could give

a detailed view of crossovers and non-

crossovers since every event would likely

be covered by several markers (median

marker distance, 78bp).

They find on average 90.5 crossovers and

46.2 non-crossovers, however, they esti-

mate that they missed ⇠30% of the non-

crossovers and increase the number to 66.1.

Mancera et al. (2008) defined recombina-

tion hotspots as regions involved in more

recombination events than expected by

chance. 179 such regions were found,

and corroborating previous studies, 84% of

them overlap a promotor. Promotor re-

gions are known to host most of the double-

strand breaks during meiosis (Baudat and

Nicolas, 1997; Gerton et al., 2000), and cor-

relate well with recombination events even

between di↵erent strains (Buhler et al.,

2007; Mancera et al., 2008).

QTL mapping makes use of recombination

to break the linkage between markers and

loci in the genome that contribute to the

variation of a trait.

1.3.2 Association-based mapping

An association-based QTL mapping exper-

iment makes use of recombination that has

occurred through-out history. It is used

for natural populations and is generally

called Genome Wide Assocation Studies

(GWAS). GWAS takes advantage of histor-

ical recombination events within a popula-

tion. Due to the large amount of recombi-

nation events that have occurred in a natu-

ral population through-out evolution, the

genome has been shu✏ed to a very high

6
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Figure 1.5. QTL mapping in practice. Linkage-based QTL mapping starts with a cross between
two (or more) parents, creating a hybrid that has a phenotype which is (usually) intermediate of
the two parents. In the case of yeast, the hybrid is sporulated and haploid segregants are isolated.
These segregants are phenotyped and genotyped, once this is done the QTL mapping can start
by using the genetic markers in the genome and sorting the segregants’ phenotypes according
to their genotype at the given marker. This is done at every marker in the genome to create a
QTL map where some regions of the genome give a significant signal, meaning that those regions
have an e↵ect on the phenotype that reaches above the noise. These regions can then be further
investigated to find the casual variant(s).

degree, unlinking all but the closest mark-

ers from the causal locus. Thanks to this,

GWAS can locate causal loci with high pre-

cision (Mackay et al., 2009).

The association-based QTL mapping does,

however, su↵er from a few limitations. One

being that GWAS experiments have low

power to detect rare variants that have an

e↵ect on the phenotype (Visscher et al.,

2012). And in the context of S. cerevisiae,

GWAS studies will be severely hampered

by the strong population structure (Liti and

Louis, 2012; Strope et al., 2015).

Population structure results in spurious as-

sociations of variants to phenotypes due

to stratification of the mapping popula-

tion (Hamer and Sirota, 2000). In other

words, if within your mapping population

there are subpopulations, these subpopu-

lations may di↵er in their allele frequen-

cies and also, coincidentally, di↵er in their

phenotype levels. This means that vari-

ants not actually contributing to the vari-

ation in a phenotype can be associated to

it (Hamer and Sirota, 2000; Marchini et al.,

2004). Linkage-based QTL mapping gener-

ally does not have this caveat, since they are

based on experimental crosses. However, in

(Hallin et al., 2016) we experience popula-

tion structure due to the crossing scheme of

the phased outbred lines (see chapter 4).
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Figure 1.6. QTL
mapping and
significance testing.
Significance tests between
the two populations, one
for each genotype,
distinguishes between
markers with (marker 1)
and without (marker 2)
association to a causative
locus.

1.3.3 Linkage-based mapping

A linkage-based QTL mapping experiment

will start with a cross (Fig. 1.5). It uses

the same underlying theory as association-

based mapping, but since there is no his- Causal. Refers to

something that gives the

actual e↵ect, for example,

causal locus, causal SNP

or casual marker.

torical recombination in the mapping pop-

ulation (since it does not use natural pop-

ulations), it has to be created through the

crossing. You choose two parents that di↵er

in your phenotype of interest (e.g. pollen

7
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shape in the sweet pea) and that contain

di↵erences in the genome. You cross them

together and use their progeny to locate

regions in the genome that contribute to

the di↵erences between the progeny phe-

notypes. This is the type of mapping

that I will be focusing on through-out the

thesis, and I will from here on use the

term linkage-based mapping interchange-

ably with QTL mapping.

Since linkage-based QTL mapping con-

structs its own mapping population, clas-

sically from a two-parent cross, it does

not su↵er from the problem of rare vari-

ants. All alleles are expected to be at a

50% frequency, and can thus be detected,

even though they may represent a low fre-

quency allele in the natural variation of the

species as a whole (Parts, 2014). Addition-

ally, using model organisms to construct

the mapping population means that the

phenotypes can be measured under con-

trolled conditions with little environmen-

tal variation confounding the results. How-

ever, the mapping population will not con-

tain as many recombination events, and so

the resolution of the mapping su↵ers.

The statistical methods used in linkage-

based mapping to find QTLs can vary in

complexity. The most simple one, and the

one used in the paper Powerful decompo-

sition of complex traits in a diploid model,

is the marker regression method. The sim-

plicity of this method lies in the fact that

it only uses the positions in the genome

where you have marker data (Broman and

Sen, 2009). At each marker it sorts the

phenotypes of your samples depending on

their genotype at the marker, as in figure

1.6. QTL mapping is a constantly evolv-

ing technique, for example, a recent devel-

opment has made use of the Crispr Cas9

system but it was more than one hundred

years ago that the theoretical foundation of

QTL mapping was laid.

In 1904, Bateson, Saunders and Punnett

(Bateson et al., 1904) publish their findings

from experiments in the sweet pea (Lath-

yrus odoratus). They find deviations from

expected Mendelian segregation of traits,

and they propose that the factors control-

ling the two phenotypes they are investi-

gating (pollen shape and color) are cou-

pled. They write: “There is, therefore, some

coupling of pollen shape and colours”. The

nature of this coupling would remain un-

known until 1911 when Thomas HuntMor-

gan suggests that the factors (or genes)

controlling traits are physically located on

chromosomes (Morgan, 1911). With this,

32 years after Walther Flemming had dis-

covered the chromosome (Flemming, 1878;

Paweletz, 2001), there was no question as

to the function of chromosomes; propagat-

ing genes to the next generation. A theory

that had been outlined by Theodor Boveri

and Walter Sutton in the chromosome the-

ory of inheritance a few years earlier (Sutton,

1903). Other accounts of non-Mendelian

segregation of traits are later attributed to

this linkage between factors that control

certain traits (Yuzo, 1915; Sax, 1923).

Capitalizing on the wealth of knowledge

that had been built up, Andrew Paterson

and his colleagues use Restriction Frag-

ment Length Polymorphisms (RFLPs) to get

8
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a map of the genome and locate at least 15

QTLs for three phenotypes in an interspe-

cific backcross of tomato (Paterson et al.,

1988). By doing this, they set the stage for

QTL mapping with the entire genome cov-

ered by markers.

In order to locate the specific regions in

the genome that are causally a↵ecting the

phenotype you need markers that are close

enough to the causal locus so that they co-

segregate. A dense grid of markers over the

entire genome will increase the likelihood

that you cover the area with the causal lo-

cus. Whole genome sequencing allows you

to use all the Single Nucleotide Polymor-

phisms (SNPs) between the two parents

you have chosen, if these parents are suf-

ficiently genetically diverged you will end

up with a distribution of markers over the

entire genome (Bloom et al., 2013; Hallin

et al., 2016).

A dense grid of markers must be comple-

mented with a large sample size in order to

detect weak e↵ect loci (Bloom et al., 2013).

The larger the sample size of your segre-

gating population, the more power you will

have to detect loci that do not have a very

big e↵ect on the phenotype you are in-

vestigating. Steps have been taken to in-

crease the power of studies without nec-

essarily increasing the genotyping and la-

boring cost; such as using bulk segregant

analysis coupled with experimental evolu-

tion, where selection pressure is inflicted

on a large pool of segregant strains and

the changes in allele frequencies are mea-

sured to find regions that contribute to the

adaptation of the pool (Ehrenreich et al.,

2010; Parts et al., 2011); or constructing SNP. A nucleotide

position in the genome

that di↵ers between two

given individuals.

large cross grids where the parents are se-

quenced and the progeny mapping pop-

ulations genotypes are inferred from the

parents (Threadgill et al., 2002; Zou et al.,

2005; Tsaih et al., 2005; Hallin et al., 2016).

1.3.4 Sample size

A limitation common for both association-

and linkage-based QTL mapping is the

sample size. In order for GWAS to find

small e↵ect loci, they continuously increase

their sample size, doing meta-analyses cre-

ating ever growing mapping populations.

For the classical trait of human height,

sample size started out at between 10,000

to 20,000 individuals in 2008 (Sanna et al.,

2008; Lettre et al., 2008). In 2010, a meta-

analysis increased this number to 183,727

(Lango Allen et al., 2010), and the sam-

ple size race culminated with a staggering

sample size of 253,288 individuals in 2014

(Wood et al., 2014).

In linkage-based QTL mapping, the impor-

tance of sample size was efficiently shown

by Bloom et al. (2013), where increasing the

sample size from 100 to 1,005 increased the

amount of QTLs from two to fifteen. The

fifteen QTLs found increased the amount

of narrow-sense heritability from 21% to

78%, showing that sample size can account

for missing heritability (discussed further

in section 1.5).

QTL mapping concerns itself with finding

the genotypes that are linked to a specific

phenotype, but how about finding the phe-

notype that is linked to a specific genotype?

9
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1.4 Predicting phenotypes from

genotypes

A goal for biology and medicine is to beFor a thought-provoking

prediction experiment,

read Lippert et al. (2017)

using genome-wide data

to place an individual

within the top ten

candidates from a 100

person cohort with 88%

accuracy. I.e., rather

accurately using the

genome to identify (or at

least narrow down)

individuals.

able to predict the phenotype of an indi-

vidual given his or her genetic makeup. A

natural start to this is to locate the most

important regions of the genome, as with

the QTL mapping. In humans, linkage-

based QTLmapping is not done due to eth-

ical and practical limitations. What can be

done are Genome Wide Association Stud-

ies.

A large number of phenotypes have had

an even larger number of loci associated toThe simple prediction of

looking at ones parents vs.

the genomic method was

tested in a clever study by

Aulchenko et al. (2009),

where Sir. Francis Galton

(Galton, 1886) came out

on top.

them using GWAS. And have yielded im-

portant insight into the human biology and

diseases (Visscher et al., 2012). However,

in explaining the phenotypic variation of a

population, GWAS often comes up short. If

we move back the height in humans. The

huge study from 2014 (Wood et al., 2014)

used data from over 250,000 individuals

and identified a staggering 697 variants in

the genome that were significantly associ-

ated to height. However, these almost 700

variants only explain 16% of the heritabil-

ity.

1.5 Missing heritability

The fact that detected variants have only

been able to explain a very small amount

of the total genetically determined varia-

tion has been called the missing heritabil-

ity problem (Maher, 2008). For example,

the variants that have been detected for

human height do no more in predicting

your height than glancing at your parents

does (paraphrasing from Joel Hirschhorn

in (Maher, 2008)). This missing heri-

tability has been elusive and many di↵er-

ent –non-mutually exclusive– explanations

have been suggested (Maher, 2008; Mano-

lio et al., 2009; Zuk et al., 2012).

The large lack of heritability explained by

loci that have been found to have a de-

tectable e↵ect in height (a very well stud-

ied complex trait) highlights the difficulty

in using these GWAS results to predict phe-

notypes. An approach that holds more

promise is to use all the genetic informa-

tion available for the population, not only

the significantly causal loci. Being able

to predict traits without prior knowledge

of causal loci can revolutionize many as-

pects of biology (Ober et al., 2012). In

the study by Ober et al. they perform the

first attempt at predicting phenotypes us-

ing whole-genome-sequencing data. Al-

though their predictive power was rather

weak, they make a case for using whole-

genome information rather than causal

variants. This opinion has been enforced

by Makowsky et al. (2011) who evaluated

the ability of whole-genome data to aid in

predictions, and similarly find that it can

indeed improve them. They do, however,

show that increasing the training sample or

including related individuals may be a bet-

ter way of improving the predictive ability.

Before this, Yang et al. (2010) try to explain

the missing heritability in human height by

using a large set of SNPs, and find that 45%

of the variation in height can be attributed

to these almost 300,000 variants. They go

on to conclude that the missing heritability
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can be explained by variants that have ef-

fects too small to be significantly detected,

and by incomplete linkage disequilibrium

between the loci with an e↵ect and the loci

that they have genotyped. The rationale

here is that, if there is an incomplete link-

age between the genotyped locus and the

locus giving the e↵ect, then a variant of

the genotyped locus can be associated with

many variants of the causal locus, diluting

the e↵ect (Visscher et al., 2010).

All in all, it is not clear to what extent

phenotypes can be predicted, or where ex-

actly the problem lies. Luckily, the the-

oretical limits of predicting traits can be

tested using model systems where all vari-

ation not arising from the underlying ge-

netic makeup can be controlled (Märtens

et al., 2016).

References

Aulchenko Yurii S, Struchalin Maksim V, et al.
Predicting human height by Victorian and
genomic methods. European journal of hu-
man genetics : EJHG, 17(8):1070–1075, 2009.

Bateson William, Punnett Reginald, and Saun-
ders Edith. Experimental studies in the
physiology of heredity. Reports to the evo-
lution committee of the Royal Society, pages 1–
154, 1904.

Baudat F and Nicolas A. Clustering of mei-
otic double-strand breaks on yeast chromo-
some III. Proceedings of the National Academy
of Sciences of the United States of America,
94(10):5213–5218, 1997.

Bloom Joshua S, Ehrenreich Ian M, Loo Wes-
ley T, Lite Thúy-Lan Võ, and Kruglyak
Leonid. Finding the sources of miss-
ing heritability in a yeast cross. Nature,
494(7436):234–237, 2013.

Boomsma Dorret, Busjahn Andreas, and Pelto-
nen Leena. Classical twin studies and be-
yond. Nature reviews. Genetics, 3(11):872–
882, 2002.

Broman Karl W and Sen Saunak. A Guide to
QTL Mapping with R/qtl. Statistics for Bi-
ology and Health. Springer New York, New
York, NY, 2009.

Buhler Cyril, Borde Valérie, and Lichten
Michael. Mapping meiotic single-strand
DNA reveals a new landscape of DNA
double-strand breaks in Saccharomyces
cerevisiae. PLoS biology, 5(12):e324, 2007.

Ehrenreich Ian M, Torabi Noorossadat, et al.
Dissection of genetically complex traits
with extremely large pools of yeast segre-
gants. Nature, 464(7291):1039–1042, 2010.

Fabre F, Boulet A, and Roman H. Gene con-
version at different points in themitotic cy-
cle of Saccharomyces cerevisiae. Molecular
& general genetics : MGG, 195(1-2):139–143,
1984.

Flemming Walther. Zur Kenntnis der Zelle
und ihrer Teilung-Erscheinungen. Schriften
des naturwissenschaftlichen vereins für
Schleswig-Holstein, pages 23–27, 1878.

Galton Francis. Regression Towards Medi-
ocrity in Hereditary Stature. The Journal of
the Anthropological Institute of Great Britain
and Ireland, 15:246, 1886.

Gerton J L, DeRisi J, et al. Global mapping
of meiotic recombination hotspots and
coldspots in the yeast Saccharomyces cere-
visiae. Proceedings of the National Academy
of Sciences of the United States of America,
97(21):11383–11390, 2000.

Haber J E, Thorburn P C, and Rogers D. Mei-
otic and mitotic behavior of dicentric chro-
mosomes in Saccharomyces cerevisiae. Ge-
netics, 106(2):185–205, 1984.

Hallin Johan, Märtens Kaspar, et al. Pow-
erful decomposition of complex traits in
a diploid model. Nature Communications,
7:13311, 2016.

Hamer D and Sirota L. Beware the chopsticks
gene. Molecular Psychiatry, pages 1–3, 2000.

Kadyk L C and Hartwell L H. Sister
chromatids are preferred over homologs

11



Chapter 1. Genotype to phenotype

as substrates for recombinational repair
in Saccharomyces cerevisiae. Genetics,
132(2):387–402, 1992.

Keeney Scott, Giroux Craig N, and Kleck-
ner Nancy. Meiosis-Specific DNA Double-
Strand Breaks Are Catalyzed by Spo11, a
Member of a Widely Conserved Protein
Family. Cell, 88(3):375–384, 1997.

Klug William S, Cummings Michael R, Spencer
Charlotte A, and PalladinoMichael A. Essen-
tials of genetics. Pearson, 7 edition, 2009.

Lango Allen Hana, Estrada Karol, et al. Hun-
dreds of variants clustered in genomic
loci and biological pathways affect human
height. Nature, 467(7317):832–838, 2010.

Lettre Guillaume, Jackson Anne U, et al. Iden-
tification of ten loci associated with height
highlights new biological pathways in hu-
man growth. Nature genetics, 40(5):584–591,
2008.

Lippert Christoph, Sabatini Riccardo, et al.
Identification of individuals by trait pre-
diction using whole-genome sequencing
data. Proceedings of the National Academy
of Sciences of the United States of America,
114(38):10166–10171, 2017.

Liti Gianni and Louis Edward J. Advances in
quantitative trait analysis in yeast. PLoS
Genetics, 8(8):e1002912, 2012.

Mackay Trudy F C, Stone Eric A, and Ayroles
Julien F. The genetics of quantitative traits:
challenges and prospects. Nature Reviews
Genetics, 10(8):565–577, 2009.

Maher Brendan. Personal genomes: The
case of the missing heritability. Nature,
456(7218):18–21, 2008.

Makowsky Robert, Pajewski Nicholas M,
et al. Beyond missing heritability: pre-
diction of complex traits. PLoS Genetics,
7(4):e1002051, 2011.

Mancera Eugenio, Bourgon Richard, Brozzi
Alessandro, Huber Wolfgang, and Steinmetz
Lars M. High-resolution mapping of mei-
otic crossovers and non-crossovers in yeast.
Nature, 454(7203):479–485, 2008.

Manolio Teri A, Collins Francis S, et al. Find-
ing the missing heritability of complex dis-
eases. Nature, 461(7265):747–753, 2009.

Marchini Jonathan, Cardon Lon R, Phillips
Michael S, and Donnelly Peter. The effects
of human population structure on large ge-
netic association studies. Nature genetics,
36:512 EP –, 2004.

Märtens Kaspar, Hallin Johan, Warringer Jonas,
Liti Gianni, and Parts Leopold. Predicting
quantitative traits from genome and phe-
nome with near perfect accuracy. Nature
Communications, 7:11512, 2016.

Morgan Thomas Hunt. Random segregation
versus coupling in Mendalian inheritance.
Science (New York, N.Y.), pages 1–1, 1911.

Ober Ulrike, Ayroles Julien F, et al. Using
whole-genome sequence data to pre-
dict quantitative trait phenotypes in
Drosophila melanogaster. PLoS Genetics,
8(5):e1002685, 2012.

Parts Leopold. Genome-wide mapping of cel-
lular traits using yeast. Yeast (Chichester,
England), 31(6):197–205, 2014.

Parts Leopold, Cubillos Francisco A, et al. Re-
vealing the genetic structure of a trait by
sequencing a population under selection.
Genome research, 21(7):1131–1138, 2011.

Paterson A H, Lander E S, et al. Resolution of
quantitative traits into Mendelian factors
by using a complete linkage map of restric-
tion fragment length polymorphisms. Na-
ture, 335(6192):721–726, 1988.

Paweletz Neidhard. Walther Flemming: pi-
oneer of mitosis research. Nature reviews
molecular cell biology, 2(1):72–75, 2001.

Sanna Serena, Jackson Anne U, et al. Common
variants in the GDF5-UQCC region are as-
sociated with variation in human height.
Nature genetics, 40(2):198–203, 2008.

Sax K. The Association of Size Differ-
ences with Seed-Coat Pattern and Pigmen-
tation in PHASEOLUS VULGARIS. Genet-
ics, 8(6):552–560, 1923.

Schwacha Anthony and Kleckner Nancy. In-
terhomolog Bias during Meiotic Recom-
bination: Meiotic Functions Promote a
Highly Differentiated Interhomolog-Only
Pathway. Cell, 90(6):1123–1135, 1997.

12



Chapter 1. Genotype to phenotype

Silventoinen Karri, Sammalisto Sampo, et al.
Heritability of adult body height: a com-
parative study of twin cohorts in eight
countries. Twin research : the official jour-
nal of the International Society for Twin Stud-
ies, 6(5):399–408, 2003.

Sirr Amy, Cromie Gareth A, et al. Allelic vari-
ation, aneuploidy, and nongenetic mecha-
nisms suppress a monogenic trait in yeast.
Genetics, 199(1):247–262, 2015.

Strope Pooja K, Skelly Daniel A, et al. The 100-
genomes strains, an S. cerevisiae resource
that illuminates its natural phenotypic and
genotypic variation and emergence as an
opportunistic pathogen. Genome research,
25(5):762–774, 2015.

Sturtevant Alfred Henry. the linear ar-
rangement of six sex-linked factors in
drosophila, as shown by their mode of as-
sociation. Journal of Experimental Zoology,
14:43–59, 1913.

Sutton Walter. The chromosomes in heredity.
Biological Bulletin, (4):231–251, 1903.

Threadgill David W, Hunter Kent W, and
Williams Robert W. Genetic dissection of
complex and quantitative traits: from fan-
tasy to reality via a community effort. Mam-
malian genome : official journal of the Interna-
tional Mammalian Genome Society, 13(4):175–
178, 2002.

Tsaih Shirng-Wern, Lu Lu, Airey David C,
Williams Robert W, and Churchill Gary A.
Quantitative trait mapping in a diallel
cross of recombinant inbred lines. Mam-
malian genome : official journal of the Interna-
tional Mammalian Genome Society, 16(5):344–
355, 2005.

Visscher Peter M, Brown Matthew A, McCarthy
Mark I, and Yang Jian. Five years of GWAS
discovery. American journal of human genet-
ics, 90(1):7–24, 2012.

Visscher Peter M, Yang Jian, and Goddard
Michael E. A commentary on ’common
SNPs explain a large proportion of the her-
itability for human height’ by Yang et al.
(2010). Twin research and human genetics :
the official journal of the International Society
for Twin Studies, 13(6):517–524, 2010.

Wei Wu, McCusker John H, et al. Genome se-
quencing and comparative analysis of Sac-
charomyces cerevisiae strain YJM789. Pro-
ceedings of the National Academy of Sciences of
the United States of America, 104(31):12825–
12830, 2007.

Whitby M C. Making crossovers during meio-
sis. Biochemical Society transactions, 33(Pt
6):1451–1455, 2005.

Wood Andrew R, Esko Tonu, et al.Defining the
role of common variation in the genomic
and biological architecture of adult human
height. Nature genetics, 46(11):1173–1186,
2014.

Yang Jian, Benyamin Beben, et al. Common
SNPs explain a large proportion of the her-
itability for human height. Nature genetics,
42(7):565–569, 2010.

Yuzo Hoshino. On the inheritance of the flow-
ering time in peas and in rice. The journal
of the college of agriculture, Tohoku Imperical
University, Sapporo, Japan, pages 1–76, 1915.

Zou Fei, Gelfond Jonathan A L, et al. Quantita-
tive trait locus analysis using recombinant
inbred intercrosses: theoretical and empir-
ical considerations. Genetics, 170(3):1299–
1311, 2005.

Zuk Or, Hechter Eliana, Sunyaev Shamil R, and
Lander Eric S. The mystery of missing her-
itability: Genetic interactions create phan-
tom heritability. Proceedings of the National
Academy of Sciences of the United States of
America, 109(4):1193–1198, 2012.

13





Chapter 2

Hybrids and heterosis

H ybrids are the result of cross-

ing any two individuals. Hy-

bridization is a vital mecha-

nism in the biological world, it creates vari-

ation by combining alleles in configura-

tions that have not been seen before. A hy-

brid might get the best of both parents, or

the worst, or will perhaps come out as a

perfect midpoint in the continuous pheno-

typic distribution that lies between the two

parents (Fig. 2.1).

This chapter will give an account of the

phenotypes of hybrids and how they relate

to their parents. The concept of hetero-

sis (hybrid vigor) will be discussed as well

as what possible mechanisms could cause

this.

2.1 The use of hybrids

Perhaps the most famous hybrid is the

mule. A cross between a female horse and

male donkey, the mule has been known

for centuries for its longevity and ability

to work on less food (although these traits

may have been overrated (Garrett, 1990)).

Nevertheless it is a hybrid with a lot of

character and history to go with it.

It is not only the mule that is an impor- S. paradoxus. S.
cerevisiae’s closest wild

relative.
tant agricultural hybrid, the use of maize

hybrids between inbred lines went up from

10 to 90% between 1935 and 1939 in Iowa,

USA. The increase in yield and uniformity

of the plants that came with using hybrids

led them to represent the bulk of the maize

produced in the USA by 1950 (Crow, 1998).

Hybridization can also be a force in specia-

tion. Leducq et al. (2016) finds an example

of a hybrid between two lineages of Saccha-

romyces paradoxus. This hybrid had a mo-

saic genome composed of mostly one par-

ent with interspersed islands of the other.

It is found in the contact zone of the two

parents and exhibits intermediate pheno-

types, as well as partial reproductive iso-

lation. Leducq et al. (2016) hypothesize

that the two parentals had come in con-

tact when the glacial ice retreated approxi-

mately 10,000 years ago which is when the

hybridization would have taken place.

The three examples above highlight a very

interesting aspect of hybrids: their abil-

ity to outperform, or at least perform dif-

ferently than, their parents. This can be

to the benefit of humans, as in the exam-

ple of increased yield of maize. As for the
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Figure 2.1. Offspring phenotype distribution. How the phenotypes of o↵spring behave are not
always straight forward. Most often, they stay within the range of their two parents. In this
figure, you see the distribution of phenotypes of o↵spring from the purple and orange parent.
The parent phenotypes are flagged in the distribution. When the phenotype of an o↵spring is
more extreme than that of either parent, we call it heterosis. Traditionally heterosis has been
used only as defining traits where the o↵spring exceeds the two parents, however, I will use it to
designate any deviation from the expected middle of the distribution.

mule, Charles Darwin eloquently described

his admiration for this famous hybrid in his

Diary of the Voyage of H.M.S. Beagle:

The mule always strikes me as a most

surprising animal: that a Hybrid should

possess far more reason, memory, obstinacy,

powers of digestion & muscular endurance,

than either of its parents. – One fancies art

has here out-mastered Nature.

2.2 Heterosis

Charles Darwin found that progeny from

hybrid maize were performing better than

that of progeny from self-pollinated plants.

He stated that o↵spring from hybrid plants

have a “greater innate constitutional vigour”

(Duvick, 2001; Darwin, 1876). Tradition-

ally, heterosis signifies an o↵spring that

has a superior phenotype compared to its

two parents, as it was coined by George

Harrison Shull in 1914 (Larièpe et al.,

2012; Shull, 1914). However, in this thesis

and the accompanied article (Hallin et al.,

2016) it will signify any deviation of o↵-

spring phenotypes from the immediately

intermediate of the two parents (Shapira

et al., 2014) (Fig. 2.1).

We designate four di↵erent categories of

heterosis as seen in figure 2.1. Worst parent

heterosis occurs when the o↵spring has a

phenotype that is weaker than the weakest

parent, while best parent heterosis is when

an o↵spring has a stronger phenotype than

that of the strongest parent. Positive and

negative mid-parent heterosis are when the

o↵spring have a phenotype that lies above

or below the exact midpoint of the parents’

phenotypes.

Heterosis has generally been investigated

by looking at heterotic heterozygous o↵-

spring from crosses of highly homozygous

(inbred) parents (Shapira et al., 2014). Un-

fortunately, this does not likely reflect how

heterosis can impact natural evolution, as

organisms are rarely homozygous to such

an extent (at least humans (Joshi et al.,

2015)). Albeit, Saccharomyces cerevisiae

presents an exception here, as they are
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Figure 2.2. Dominance and overdominance.
A locus can contribute to heterosis in di↵erent
ways. A heterozygous locus may cause the phe-
notype to resemble one of the parents (dom-
inance) or may exceed the phenotype of both
parents (overdominance)

often highly homozygous in their natural

state (Hansson andWesterberg, 2002; Mag-

wene et al., 2011; Wang et al., 2012).

Heterosis can come as a consequence of

dominance, overdominance and epistatic

interactions (Shapira et al., 2014; Lippman

and Zamir, 2007). These mechanisms are

not mutually exclusive, but it is not clear

which is most prominent. In the section

below you will read about the two mech-

anisms that holds the focus of my thesis,

dominance and overdominance.

2.3 Dominance & overdominance

We defined dominance previously in the

heritability section, the only di↵erence is

that we are now inspecting how dominance

can contribute to heterosis, rather than how

it contributes to the overall phenotypic

variation. Dominance comes from one al-

lele masking the e↵ect of another and has

been shown to be quite prevalent in man-

made yeast hybrids (Zörgö et al., 2012).

The phenomenon was discovered and

coined as dominance by Gregor Mendel

(Mendel, 1866). In this landmark paper he

designates dominance as one parental char-

acter completely masking (dominant) the

character of the other parent (recessive).

AlthoughMendel was referring to traits be-

ing either dominant or recessive, the terms

and their definitions are now used for alle-

les. His observation of dominance was that

of complete dominance, i.e. where the trait

of the hybrid was indistinguishable from

that of one of the parents. Consequently,

his definition of dominance only extended

so far, but in this work the definition is ex-

tended to include any deviation from the

mid-point of the two parents.

The dominance hypothesis posits that a

hybrid o↵spring will contain many loci in

the genome that has one strong allele and

one weak, and that these two would be

dominant and recessive, respectively. The

strong dominant allele would complement

the weak recessive allele, resulting in an

o↵spring that is outperforming both par-

ents (Bruce, 1910; Crow, 1948). When

Bruce (1910) wrote this there were no ex-

perimental evidence to strengthen his as-

sumptions, but since then numerous stud-

ies have found how dominance can con-

tribute to heterosis (Xiao et al., 1995; Gra-

ham et al., 1997; Charlesworth and Willis,

2009).

While dominance relies on a number of

di↵erent loci being complemented by the

two di↵erent parents, overdominance only

needs one occurrence to give a heterotic

phenotype (Crow, 1948; Shapira et al.,
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2014). Overdominance contributing to het-

erosis was proposed by East (1908) and it

requires a positive interaction between two

alleles at the same locus. I.e. the heterozy-

gous state of a particular locus is more ben-

eficial than the homozygous states of either

allele. This is generally called the over-

dominance hypothesis.

Overdominance is a tempting explanation

to heterosis as it only requires a few or one

locus, while dominance requires several

loci and, additionally, it depends on each

parent having beneficial dominant variants

at di↵erent loci that can complement the

detrimental variants of the other parent.

However, the detection of true overdomi-

nant contributions to heterosis can be trou-

blesome due to pseudo-overdominance.

Pseudo-overdominance occurs when loci

linked with the seemingly overdominant

locus are in fact the loci that contribute to

the phenotype. These loci are linked to the

pseudo-overdominant locus and are in re-

pulsion, i.e. the beneficial dominant alle-

les are coming from di↵erent parents, so

combining them can result in a heterotic

phenotype, and can give the impression

of a locus having an overdominant e↵ect

(Charlesworth and Willis, 2009).

Several studies in plants have shown over-

dominance to be the mechanism by which

heterosis occurs, it has been found in for

example maize (Stuber et al., 1992), tomato

(Semel et al., 2006) and rice (Li et al., 2001;

Luo et al., 2001).

The study by Semel et al. (2006) is based

on the inbred Solanum lycopersicum strain

M82. They use 76 strains with the M82

background but each with a segment of

Solanum pennelli (introgressed lines (ILs))

to create heterozygous strains by back-

crossing these to M82. By doing this, they

have strains that are, in a give segment

of the genome, homozygous for S. lycoper-

sicum, homozygous for S. pennelli or het-

erozygous. They use this population of

strains in order to find how overdominance

contributes to heterosis, and they measure

35 traits which they divide into reproduc-

tive, intermediate and non-reproductive.

They find that traits that are associated to

reproduction have a higher amount of over-

dominant QTLs than do traits that are non-

reproductive. Although their study focuses

on overdominance (20% of QTLS), QTLs

with a dominant contribution to heterosis

(27%) is more prevalant.

Semel et al. (2006) discard pseudo-

overdominance as a confounding factor in

their study, but the strongest QTL with a

suggested overdominant e↵ect found in

the work by Stuber et al. (1992) was found

to be due to pseudo-overdominance by a

subsequent study that fine-mapped this

QTL (Graham et al., 1997; Charlesworth

and Willis, 2009).

It is still not clear what the relative contri-

butions of dominance and overdominance

are, but the amounting data on the sub-

ject seem to be favoring the masking of

deleterious recessive alleles, i.e. dominance

(Charlesworth and Willis, 2009).
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Chapter 3

On the use of yeast

“K ärt barn har många namn”

is a Swedish proverb

meaning: “a beloved child

has many names”. That certainly holds

true for my model organism. Known to

some by its latin name, Saccharomyces

cerevisiae, to others by budding yeast, but

surely, to most by bakers’ yeast, or simply,

yeast. S. cerevisiae was the first eukaryote

to have its genome sequenced in 1996, and

has since then firmly asserted its position

as a leading model system for genetics and

genomics studies. Beyond that, it has made

great contributions to practically every

field of biology.

In this chapter you will read about yeast as

a model in the di↵erent aspects of my work.

And also about di↵erent approaches taken

in order to dissect the genetic architecture

of complex traits using yeast. All concepts

discussed here have been explained in the

previous chapters.

3.1 The model

Yeast is an umbrella term that contains

fungi who reproduce by budding or fission,

and do not enclose their sexual states in

fruiting bodies (Kurtzman et al., 2011). S.

cerevisiae is a yeast and a unicellular fungus

belonging to the ascomycota clade. Other

ascomycetes are the molds belonging to the

Penicillium genus, famously used to make

antibiotics. The ascomycota is one of the

two clades that the fungi have been divided

into. The other one, basidiomycota, is the

one that you might think of when you hear

the word fungus (Fig. 3.1).

Figure 3.1. The facets of
fungi. Fungi come in
many di↵erent shapes and
sizes. Here you find a
fungi from the
basidiomycota (above) as
well as S. cerevisiae with
the cell wall stained with
calcoflour-white and
expressing red fluorescent
protein, representing the
ascomycota (below, taken
from Liti (2015)).

In the 1930’s, the Danish geneticist Øjvind

Winge at the Carlsberg laboratory in

Copenhagen, Denmark, arguably initiated

the field of yeast genetics with his work on

alternation of generations and ascospores

(Barnett, 2007).

On the 24th of April, 1996, S. cerevisiae

was the first eukaryote to have its whole

genome sequence released. The associated

publication found a genome that is much

more condensed than in other eukaryotes

(e.g. the nematode C. elegans and humans)

potentially containing 5885 protein coding

genes (Go↵eau et al., 1996).

But yeast has long had a life outside the

lab. Possibly originating in China, it can

be found all around the world and exists

in a multitude of ecological niches (Liti

et al., 2009; Liti, 2015). S. cerevisiae prefer-
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Figure 3.2. S. cerevisiae species tree. This is the species tree of S. cerevisiae published by Liti et al.
(2009). By sequencing the genome of 38 yeast strains from di↵erent geographical and ecological
origin. They found five distinct major clades (in gray) interspersed by mosaic strains composed
of the major clades.

ably exists in its diploid form and repro-

duces by asexual budding. Its sexual cy-

cle can be induced by environmental trig-

gers (which is exploited in the laboratory

setting), when this happens it produces

four haploid spores, segregating between

the two mating types, a and ↵ (Liti, 2015).

The ease with which researchers can con-

trol the sexual cycle of yeast is one of its

many benefits.

In this figure, the West

African strain

DBVPG6044 ( ) and the

North American strain

YPS128 ( ) are the two

strains used for the large

cross grid in the two

papers of this thesis.

Other strengths of yeast as a model lie in

its large population sizes, fast generation

time, ease and low cost of cultivation, and

the fact that it is a single cell eukaryotic

organism with a relatively small genome

size. A genome that, in spite of diverg-

ing from humans about 1 billion years ago

(Douzery et al., 2004), shares around one

third of its genes with humans (O’Brien

et al., 2005). In one study, Kachroo et al.

(2015) found that when they replaced 469

essential S. cerevisiae genes with their hu-

man orthologs, 200 of them could be fun-

cionally replaced. This is a strong case for

the shared ancestry of all organisms on the

earth, and of using yeast as a model organ-

ism.

The research on S. cerevisiae has long fo-

cused on the model strain S288C or of

strains derived from it (Liti, 2015). Natu-

rally, only one strain (which, in fact, is a

phenotypic outlier compared to other yeast

strains (Warringer et al., 2011)) cannot rep-

resent the entire S. cerevisiae species, and

certainly not the eukaryotic kingdom as a

whole. Work on this model strain has been

invaluable, but using the large reservoir of

natural genetic and phenotypic variation in

the S. cerevisae species tree will bring out

new facets of population genetics.
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3.2 Natural variation

In the last decade, the interest in the natu-

ral variation of yeast has increased among

researchers (Liti, 2015). In 2009, two stud-

ies published in the same issue of Nature

investigated large samples of yeast strains

from diverse niches. Liti et al. (2009)

and Schacherer et al. (2009) inspected the

genome of 38 and 63 S. cerevisiae strains

respectively and both found the species to

have a strong population structure where

a few well-defined lineages make out the

back-bone of the species, with hybrids in

between (Fig. 3.2).

Since then, quite a few studies have been

done to bring more knowledge to the evo-

lution of S. cerevisiae (Wang et al., 2012;

Almeida et al., 2015; Strope et al., 2015;

Gallone et al., 2016). Soon, the “1002

Yeast Genomes Project”, a large collabora-

tive project between Gianni Liti’s team in

Nice and Joseph Schacherer’s team in Stras-

bourg, will reveal the largest collection of S.

cerevisiae strains to date, along with exten-

sive analysis of, among other things, their

phylogenetic relationships.

These types of collections are important for

further elucidating the genetics of complex

traits, as di↵erent strains can be used for,

for example, QTL mapping. Or in the case

of these large collections, perhaps even for

genome wide association studies. Using

di↵erent strains with di↵erent genetic vari-

ants can reveal genes that are implicated in

certain phenotypes, genes that could not be

found with another set of strains (Treusch

et al., 2015).

3.3 Phenotyping yeast

Sequencing cost
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Figure 3.3. Sequencing
cost has been decreasing
rapidly over the years
(Wetterstrand, 2017)

With the ever decreasing cost of sequenc-

ing (Wetterstrand, 2017), larger and larger

mapping populations are feasible for which

we can have a dense marker distribution.

However, this means an ever larger amount

of strains that need phenotyping, and our

characterization of the phenome unfortu-

nately lags behind our ability to character-

ize the genome (Houle et al., 2010).

Yeast has a range of di↵erent phenotypes

For more information on

the 1002 Yeast Genomes

Project, visit their website

at

1002genomes.u-strasbg.fr.

that can be measured, from colony mor-

phology (Taylor and Ehrenreich, 2015), to

gene and protein expression (Brem et al.,

2002; Albert et al., 2014; Parts et al., 2014).

The most important phenotype for this the-

sis, however, is population growth. Phenome. All conceivable

phenotypes for an

organismYeast population growth is measured either

in liquid or on solid media, both of which,

of course, have limitations. Liquid media

has been (Warringer and Blomberg, 2003;

Perlstein et al., 2007) and is being (Gallone

et al., 2016; Yue et al., 2017) used to accu-

ratelymeasure the growth of yeast colonies.

It is based on optical density measurements

at one time-point (Gallone et al., 2016)

or through-out the growth of the popu-

lation at regular intervals (Warringer and

Blomberg, 2003; Levy et al., 2012; Shapira

et al., 2014). For large scale phenotyping

however, liquid based methods can be dif-

ficult to scale up due to their time consum-

ing nature (Zackrisson et al., 2016).

Phenotyping on solid media allows large

scale monitoring of population growth, but

has su↵ered from a lower precision and ac-

curacy than its liquid counterparts (Zack-
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risson et al., 2016). Furthermore, many

250K

1M

0 70Time (h)

Growth curves

65K

Figure 3.4. Growth
curves. Di↵erent growth
curves can give the same
population density at a
given time point, these

two growth curves (taken
from data from Hallin

et al. (2016)) have
di↵erent dynamics, but at
⇠60 hours, they have the
same population density.

x-axis: time in hours,
y-axis: cell number.

large scale population growth experiments

in yeast have used a single time point rather

than a temporal monitoring of the growth

(Sadhu et al., 2016; Kim et al., 2012; Gal-

lone et al., 2016; Strope et al., 2015).

Measuring a single time point during

growth is a gross oversimplification of

the population growth dynamics. Since

many di↵erent types of growth curves can

amount to the same population size at any

given time, the arbitrary choice of time

point could have major consequences for

the results of the study (Fig. 3.4) (Zackris-

son et al., 2016).

A microbial growth curve can be character-

ized by di↵erent phases. Monod (1949) de-

fined these phases as:

i Lag phase

ii Acceleration phase

iii Exponential phase

iv Retardation phase

v Stationary phase

vi Phase of decline

The most reproducible and easily defined

of these phases is the exponential phase (or

log phase) (Schaechter, 2015; Neidhardt,

2006). However, if accurately measured,

the di↵erent phases can reveal di↵erent as-

pects of the genotype to phenotype map

(Ibstedt et al., 2015). When the exponen-

tial phase is used to describe population

growth it is generally reduced to growth

rate (or generation time), which is calcu-

lated as a local regression of the steepest

slope during the exponential phase (War-

ringer et al., 2011; Zackrisson et al., 2016).

This value can then be used as a proxy for

fitness.

The era of single time point measure-

ments should have ended decades ago

(Schaechter, 2015; Neidhardt, 2006), how-

ever, its very high through-put is al-

luring. In Zackrisson et al. (2016)

we present a novel high through-put,

high-accuracy phenotyping methodology

for precise defining of microbial growth

curves.

3.4 QTL mapping in yeast

The major challenges in QTL mapping is to

have high enough power to detect small ef-

fect QTLs and to have high enough resolu-

tion to narrow down the QTL region to in-

clude as few non-causal markers as possi-

ble. The ultimate goal is to be able to find

QTLs that explain all the variation in the

phenotype and that these QTLs are small

enough to identify the exact gene (or exact

nucleotide) that contributes to the pheno-

type.

Di↵erent teams have come at these prob-

lems from di↵erent angles which will be

discussed later on, but we will start o↵with

some classical QTL mapping experiments

which phenotype and genotype individual

segregants.

3.4.1 Classical QTL mapping

Classical QTL mapping is based on geno-

typing and phenotyping individual segre-
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gants, generally from a two-parent cross

with the F1-segregants as the mapping

population. Steinmetz et al. (2002) ac-

curately identified and dissected the ge-

netics behind high temperature growth

(Htg) in a cross between a derivative of

a clinical isolate (YJM145, Htg+) and a

lab strain (S288C, Htg−). Interestingly,

the hybrid between these two strains was

heterotic, and the study would go on

to define the underlying genetics of the

phenomenon. The haploid progeny of

the hybrid was phenotyped and 19 seg-

regants with a strong high temperature

growth phenotype were analysed at 3,444

genetic markers. They focused on the

strongest QTL on chromosome XIV and

using reciprocal-hemizygosity they found

three genes within the QTL region that had

an e↵ect on the phenotype. The YJM145

allele of two of these genes was, expect-

edly, conferring a Htg+ phenotype. For one,

however, it was the S288C allele (i.e. the

Htg− strain) that conferred resistance. Al-

though the beneficial S288C allele cannot

fully explain the heterosis seen in the hy-

brid, it presents itself as an elegant contrib-

utor. While they manage to dissect the ge-

netics of the trait in this specific QTL, they

state that traits may be more complex, with

more genes contributing; genes that may be

closely linked.

The difficulties in identifying small ef-

fect QTLs, and the fact that they likely

constitute a large portion of the varia-

tion that contributes to a complex trait

(Mackay et al., 2009), led Lorenz and Co-

hen (2012) to further investigate their es-

tablished model complex trait: sporulation

efficiency (Gerke et al., 2006, 2009). In

2009, using a two-parent cross and 225

markers in a mapping population of 374

haploid segregants they located five QTLs,

three of which had a large e↵ect. However,

all three large-e↵ect QTLs had large confi-

dence intervals of 50, 100 and 100kb. From

these large-e↵ect QTLs they located four Reciprocal-hemizygosity.

A method to look at the

e↵ect of di↵erent alleles in

the same genetic

background, it was

developed by Steinmetz

et al. (2002) in this article,

and was later used in

large scale to map QTLs

(Wilkening et al., 2014).

nucleotide changes explaining 80% of the

variation, and found extensive interactions

between them, such that the combined ef-

fect of all of them exceed their individ-

ual e↵ects. However, the small-e↵ect QTLs

were still elusive, and in 2012 they publish

their findings on these less easily character-

ized QTLs (Lorenz and Cohen, 2012).

Building on the knowledge from their pre-

vious articles, Lorenz and Cohen (2012)

constructed crosses where they fixed the

four large-e↵ect variants found previously

(Gerke et al., 2009). This eliminates their

e↵ect and allowed them to detect small-

e↵ect variants. Using 164 segregants they

located four QTLs, interestingly, and in

contrast to the large e↵ect QTLs, the high

sporulating strain contributed with two al-

leles increasing sporulation, and two alle-

les decreasing it. Another interesting ob-

servation was that the QTLs they found

were highly dependent on which parental

variant of the large-e↵ect QTL was fixed

in the strain, indicating QTL-QTL interac-

tions between large- and small-e↵ect QTLs.

Also here, they conclude that they are not

likely to have completely dissected this

trait, and that more small-e↵ect QTLs are

still undetected.

Increasing power to detect small-e↵ect
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QTLs can be achieved, not by sequenc-

ing individual segregants, as is classically

done, but instead by phenotyping and

genotyping large pools of segregants.

3.4.2 Bulk segregant analysis

Bulk segregant analysis was developed by

The article by Michelmore

et al. actually used the

term bulked segregant

analysis, but many

(myself included) seem to

prefer the term bulk

segregant analysis.

Michelmore et al. (1991) and was imple-

mented on lettuce to showcase it as a fast

and efficient way of detecting regions of the

genome that are associated to genes of in-

terest. The method consists in comparing

two bulks of segregants originating from

one cross. The two bulks will di↵er in the

phenotype of interest and will be scored

for a number of markers. The marker as-

sociated to the gene giving the phenotype

should segregate between the two bulks

and will thus be detected.

Ehrenreich et al. (2010) developed an ex-

tension of the bulk segregant analysis

method for yeast which they termed Ex-

treme QTL mapping or X-QTL. Ehrenre-

ich et al. describes it as being composed

of three key steps. i) Generating popu-

lations of segregants from a cross (in line

with Michelmore et al.), ii) selecting for

extreme values in these populations to re-

cover segregants with values in the tail of

the initial phenotype distribution, and fi-

nally iii) scoring these populations for their

allele frequencies.

They selected BY4716, a lab strain derived

from S288C, and the wine strain RM11-1a,

to be the parental strains. The diploid hy-

brid from this cross was sporulated to cre-

ate haploid segregants which constituted

the populations used for the X-QTL. They

investigated, among other phenotypes, re-

sistance to the DNA damaging agent 4-

nitroquinoline. A phenotype for which

they had only found one significant QTL

on chromosome XII, when studying it using

conventional QTLmappingwith 123 segre-

gants (Demogines et al., 2008).

Ehrenreich et al. (2010) subjected some

segregant populations to 4-nitroquinoline

while others were grown under permissive

conditions. With this method they suc-

cessfully detect fourteen QTLs that reach

above the significance threshold. These

QTLs were detected by comparing the al-

lele frequencies of the populations that had

selected for 4-nitroquinoline resistance and

those that had not.

A similar approach was taken by Parts et al.

(2011), but with a few di↵erences. They

used two natural strains with pools that

were both haploid and diploid. The pools

were created by several rounds of crossing

increasing the amount of recombination

events. These populations were then sub-

jected to high temperature stress (40°C), or

permissive temperature (23°C) for twelve

days. Using whole population DNA se-

quencing, they investigated the di↵erences

in allele frequencies between the selected

and control populations to locate regions

that had been selected for, i.e. regions

that have an e↵ect on the resistance to heat

stress.

Similarly to Ehrenreich et al. (2010), a

previous study using a conventional QTL

mapping approach had located only one

significant QTL (Cubillos et al., 2011). In-
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stead, Parts et al. (2011) now find 21 QTLs

by using the F12 haploid pool after 192

hours of selective growth. They find that

prolonged selection will increase the power

of locating small e↵ect regions, at least up

to a certain point and that the use of pop-

ulations with a high amount of recombina-

tion results in narrow peaks. Narrow peaks

harboring only a few possible causative

genes (median interval size 6.4 kb, me-

dian number of 4 genes), and in some cases

only one gene. Their peaks being narrower

than that of, for example, Ehrenreich et al.

(2010), who used the F1 segregants.

3.4.3 Crossing schemes

The mapping populations used by Parts

et al. (2011) were created by several rounds

of intercrossing. I.e. they made the yeast

cells undergo several rounds of mating and

sporulation. Each time the yeast cells

sporulate and go from the diploid to the

haploid state, recombination events occur

between the two parental chromosomes.

Increasing the amount of recombination

events will decrease the size of linkage

blocks (Darvasi and Soller, 1995), meaning

that there will be smaller segments in the

genome that belongs to either parent. This

will increase themapping resolution by un-

linking variants that may or may not have

an e↵ect on the phenotype. These pop-

ulations are called advanced intercrossed

lines (Darvasi and Soller, 1995; Parts et al.,

2011).

Instead of making several rounds of crosses

within the same population, Treusch et al.

(2015) designed a so called round-robin

approach, in which they used twelve di- Advanced intercrossed

lines. Individual

segregants from this F12

mapping population is

what was used in the two

papers of this thesis.

Advanced intercrossed

lines were first deviced by

(Darvasi and Soller, 1995).

verged strains (Schacherer et al., 2009) and

crossed each strain to two others, creat-

ing twelve hybrids. They performed X-

QTL analysis (as discussed previously) on

each of these crosses in line with Ehrenre-

ich et al. (2010). Although the round-robin

approach as such does not increase power

or resolution of the mapping, It does give

a broader view of the natural variation in

traits in contrast to when a single cross is

used. The natural variation can be used in

order to narrow down the potential list of

causative loci once the mapping has been

done, by comparing non-synonymous vari-

ants between the strains with and without

the QTL.

In strains that do not readily go through

meiosis, di↵erent strategies need to be

used. Laureau et al. (2016) used Return

To Growth (RTG) to achieve recombination

between SK1 and S288C, although these

two strains are not reproductively isolated,

they serve as a proof of concept for the

method. RTG takes advantage of yeasts

ability to abort meiosis after the occurrence

of double-strand breaks and recombina-

tion. When this return to growth happens,

the resulting diploid strain has acquired re-

combined chromosomes between the two

parents. The mother and first daughter cell

can be isolated to catch all recombination

events. Although they mostly describe the

recombination landscape of RTG strains,

they also map QTLs, and for a polygenic

trait, arsenite resistance, they map a QTL

including the ARR gene cluster, known to

control arsenite resistance (Cubillos et al.,

2011). The size of the QTL region is rather
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large at 106kb, but that is to be expected

with the rather small sample size.

A recent study left crossing behind all to-Loss of heterozygosity. In

a diploid hybrid between

two strains, all variants

will be segregating, i.e.

the diploid hybrid will be

heterozygous at all

markers between the

parents. If the hybrid

looses this heterozygosity

in a region of the genome,

that is called loss of

heterozygosity, and

renders that region

homozygous for one of the

parents

gether and used the genome editing tech-

nique CRISPR/Cas9 (Sadhu et al., 2016).

This method goes back to genotyping and

phenotyping individual segregants. How-

ever, the segregants have not undergone

recombination during meiosis, but have

rather had mitotic recombination induced

through the double-strand breaks induced

by the Cas9 protein (Doudna and Charp-

entier, 2014). This creates segregants with

loss of heterozygosity, which are homolo-

gous for either parent. Sadhu et al. (2016)

concentrated on the left arm of chromo-

some VII, and created a panel of 384 seg-

regants with loss of heterozygosity in thisPhased. The “phased” of

phased outbred lines

comes from the fact that

the genomes of the

hybrids are phased, i.e. we

know which genotypes in

the hybrid come from

which parent.

region. They compared this panel with

a panel of 768 classical cross-based segre-

gants, and find that they have a higher res-

olution with the CRISPR/Cas9 panel (1kb).

They use the same method to increase the

resolution of a QTL region found to con-

tribute to manganese tolerance. Being able

to target the recombination events they

reach a very high density of breaks near

and within the 2.9kb wide QTL region. Us-

ing this method they successfully locate the

causal variant at nucleotide resolution.

Using traditional QTL mapping with in-

dividual segregants has the drawback of

large costs in time and money for pheno-

typing and sequencing large enough num-

bers to have high enough power to detect

low e↵ect QTLs, as well as QTL-QTL inter-

actions. Bulk segregant analysis increases

the power but cannot be used to look at ge-

netic interactions. In Hallin et al. (2016) we

address these limitations and propose and

apply a methodology based on large scale

crossing of sequenced haploid strains (cre-

ating phased outbred lines) for decompos-

ing the genetics of phenotypic variation.

3.5 Decomposition of genetic com-

ponents

Bloom et al. (2013) used 1,008 haploid

strains from a cross between a wine strain

and a lab strain in order to investigate

where they missing heritability problem

has its solution.

The genetic contributions to phenotypic

variation can be partitioned into ad-

ditive e↵ects, dominance e↵ects, gene-

environment interactions and gene-gene

interactions. The use of haploid strains and

phenotyping in controlled environments

by Bloom et al. (2013) reduced the possible

partitions to additive and gene-gene inter-

actions.

Among 46 di↵erent measured traits, broad

sense heritability was estimated from the

repeatability of the trait measurements

while narrow sense heritability was esti-

mated by comparing the phenotypic sim-

ilarities among individuals with their re-

latedness calculated from genotype data.

Since only additive and gene-gene interac-

tions exists in this experimental setup, the

di↵erence between broad and narrow her-

itability is an estimate of the contribution

of gene-gene interactions to the phenotypic

variation (Bloom et al., 2013).

The contribution of additive variance is of-
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ten found to be higher than that of inter-

actions. A finding that they reinforce in a

later study (Bloom et al., 2015) where they

use a larger panel of 4,390 segregants from

the same cross.

A study using the panel of segregants

from Bloom et al. (2013) by Young and

Durbin (2014) further partition the pheno-

typic variance into pairwise genetic varia-

tion and higher order genetic interactions.

They conclude there that pairwise interac-

tions are not likely sufficient to explain the

di↵erence between narrow and broad sense

heritability.

These articles give a good view of the ge-

netic contributions to phenotypic varia-

tion, however, they are conducted in one

cross and using haploid segregants. This

excludes the dominance e↵ects seen in

diploids and as such complicates the draw-

ing of conclusions about higher organ-

isms. In Hallin et al. (2016) we use diploid

strains, allowing us to detect dominance

contributions and we successfully detect

the contribution of even third-order inter-

actions and have nearly no missing heri-

tability.

3.6 Predicting traits in yeast

Predictions are closely related to QTLs and

to heritability. The heritability of a trait

sets the upper limit of what we can predict

using the genome. If only 20% of the phe-

notypic variation in a trait is due to geno-

type di↵erence between strains, then we

cannot hope to predict the phenotype very

accurately using the genome.

QTLs are connected to predictions since

they are the loci in the genome with the

most impact on the phenotypic variation.

I.e. knowing the genotype of di↵erent in-

dividuals at a large e↵ect QTL can give a

good indication of what phenoype that in-

dividual will have.

Jelier et al. (2011) use conservation data of

coding sequences to estimate the impact of

variation in protein coding genes on the

function of that protein. In short, they

predicted the impact that sequence varia-

tion in a protein coding gene would have

on the protein. Then they estimated the

compounded e↵ect that variation in all the

genes associated to the trait in question has

on the phenotype. Lastly, they compared

their prediction results with real pheno-

type data.

Using this method they could predict the

phenotypic variation, i.e. they predicted

in relative terms how much a given strain

would be a↵ected by its genome in the en-

vironment measured, but they did not pre-

dict the actual phenotype.

Bloom et al. (2013) use detected QTLs to

predict phenotypes. They show how, in

their experiment, missing heritability can

be explained by an insufficient sample size.

Using an additive QTL model they can ex-

plain on average 88% of narrow sense heri-

tability.

In our study (Märtens et al., 2016), we

evaluate the theoretical limits for predic-

tions and what information is most valu-

able when predicting traits.
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3.7 Heterosis in yeast

The population structure of S. cerevisiae

makes it a good model for the study of het-

erosis. Having distinct populations aris-

ing mostly from clonal expansion with lo-Local neutrality

hypothesis. Genes not

under selection gain loss

of function mutations,

shaping the phenotypic

variation between distinct

natural yeast populations.

cal adaptations (Liti and Louis, 2012; War-

ringer et al., 2011) is beneficial since cross-

ing such distinct populations will result in

highly heterozygous hybrids, i.e. loci in

the genome that can contribute to hetero-

sis through dominance or overdominance.

The following three papers (i-iii) investi-

gate strains from Liti et al. (2009), and are

quite interesting as they do so with varying

results.

i) Zörgö et al. (2012) find that heterosis

is exceedingly rare in natural yeast hybrids

constructed in the lab. They propose that

natural variation in traits in yeast comes in

large part from loss of function mutations

in genes that are locally not selected for,

something they call the local neutrality hy-

pothesis. They further hypothesize that a

hybrid from two such strains will only ever

reach the fitness of the best parent, not ex-

ceed it. Yeast strains that have one func-

tional allele generally shows no phenotype

(Deutschbauer et al., 2005), and so, natu-

ral strains that mainly di↵er between each

other by loss of function mutations will

be completely rescued when their genomes

are brought together. Consistent with their

local neutrality hypothesis, the distribution

of heterosis is centered around phenotypes

being completely dominant.

For the low amount of best parent heterotic

hybrids that they do find, they propose that

it is due to reciprocal masking of the loss

of function mutations. They base this on

the fact that there is an inverse relation-

ship (r = −0.51) between the fitness average

of the two parents, and the strength of the

best parent heterosis. Basically, this means

that parents that are weak in a specific en-

vironment likely carry a number of loss of

function mutations which will be masked

in the resulting hybrid, giving it a propor-

tionally strong phenotype. In an environ-

ment where the parents are strong, how-

ever, there are less loss of function muta-

tions between the two and the hybrid will

be less likely to outcompete them.

Zörgö et al. (2012) conclude among other

things that the genotype-phenotype land-

scape is most likely defined by genetic

drift. However, it seems they did not test

the potential benefit of the loss of function

mutation in the yeast strains natural habi-

tat, and can therefore not confidently say

that the loss of function mutations are not

actually adaptive.

ii) Plech et al. (2014) expand on the

Zörgö et al. (2012) study and find that het-

erosis is uncommon among wild strains of

S. cerevisiae, however, they find that domes-

ticated strains exhibit a high occurrence of

heterosis. Heterosis being defined as any

positive deviation from the average of the

two parents. They attribute their finding

to the fact that they had a larger amount

of strains as compared to the study from

Zörgö et al. (2012).

The general conclusion of heterosis be-
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ing more prevalent among domesticated

strains seems to hold (and has since then

been enforced by a study on S. cerevisiae

and S. paradoxus), but the calling of hetero-

sis was not completely to my liking due to

the apparent lack of statistical inspection of

the data. However, it would fit with the lo-

cal neutrality hypothesis, given that the do-

mestication would bring with it a relaxed

selection pressure and therefore domesti-

cated strains would harbor more detrimen-

tal variants. Again, favoring the dominance

hypothesis.

iii) Another study on a similar (and

somewhat overlapping) set of natural

strains by Shapira et al. (2014) get rather

di↵erent results. They find that in their

panel of natural strains, an average of 35%

were best parent heterotic, ranging from

23 to 47%. This is radically di↵erent from

the low occurrence of best parent hetero-

sis observed by Zörgö et al. (less than 5%).

They suggest that this discordance is due to

three components: i) only partial overlap of

the strains used, ii) di↵erence in heterosis

calculation and iii) the environments used

were more complex than in Zörgö et al.

(2012). I would like to add a fourth pos-

sible explanation for this discrepancy: the

seemingly lacking significance test of true

best parent heterotic hybrids in Shapira

et al. (2014). They call best parent het-

erosis simply when a hybrid exceeds the

value of the best performing parent, while

Zörgö et al. (2012) call best parent heterosis

only when there is a significant di↵erence

between the hybrid and the best perform-

ing parent, as designated by a one-sided

Student’s t-test. The lack of a significance Shapira et al. (2014) uses

overdominance

synonymously with best

parent heterosis, good

thing to keep in mind if

reading it.

threshold would likely include false posi-

tive best parent heterotic hybrids and thus

inflate the values.

Similarly to Zörgö et al. (2012), Shapira

et al. (2014) find that less fit parents tend to

have more heterotic hybrids, giving merit

to the dominance hypothesis. However,

they also find heterotic hybrids between

parents with high fitness, and, following

the same logic, propose that this is due to

overdominance or epistasis.

By backcrossing the hybrids to one parent,

Shapira et al. tests the dominance hypoth-

esis. The rationale is the following: since

backcrossing will remove on average half

of the heterozygosity, the resulting popu-

lation should loose half of the phenotype if

it is determined by dominance complemen-

tation. They find this, but also examples of

when more or less of the phenotype is lost.

They conclude that heterosis is complex

and that its causes include dominance com-

plimentation, overdominance, and epista-

sis. And that these causes di↵er in their per-

vasiveness between di↵erent hybrids, but

that can they also exist simultaneously in

the same hybrid.

A more fine-grained view of heterosis has

been hindered by a common feature of

these articles, which is that none of them

look at individual variants’ contribution to

heterosis. Instead they infer the general

genetic contribution to heterosis by look-

ing solely at the phenotypes. Further hin-

dering the genetic decomposition of het-

erosis is a common feature of QTL map-

ping experiments in S. cerevisiae: they have
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largely been performed in haploids (with

an exception of Parts et al. (2011)), mak-

ing it impossible to look at contributions

to diploid heterosis. With our methodology

in Hallin et al. (2016), we take advantage of

our large mapping population consisting of

diploid hybrids and look at the dominance

and overdominance contribution to hetero-

sis of the QTLs found during linkage anal-

ysis.
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Articles and ongoing project

D uring my undergraduate and

PhD studies, I was lucky

enough to have been a part of

developing a high-throughput growth phe-

notyping methodology (Zackrisson et al.,

2016). This phenotyping platform, Scan-

o-matic, set the stage for the experiments

that I would do during my PhD.

My two main publications are based on a

large-scale crossing experiment that I set

up and performed as a visiting researcher

in Dr. Jonas Warringer’s lab at the Univer-

sity of Gothenburg, producing more than

7,000 diploid hybrids which I phenotyped

with Scan-o-matic and used to investigate

the connection between genotype and phe-

notype.

During my time in Dr. Warringer’s lab, I

also created a smaller cross that I also phe-

notyped in di↵erent environments. This

smaller set of hybrids was used in Yue et al.

(2017) (see chapter 8 for the abstract).

In the first publication (chapter 4) I

mapped QTLs using an approach set up

by Kaspar Märtens and myself, as well as

looking into the occurrence and genetic

basis for heterosis with novel technique.

Alexander Young contributed greatly with

his compartmentalizing of the phenotypic

variation into its additive, dominance, and

second and third order epistasis compo-

nents. During this project I was a visiting

researcher in Dr. Leopold Parts lab at the

Wellcome Trust Sanger Institute (United

Kingdom) where I finalized the analysis for

the article.

In (chapter 5) the focus was on testing the

limits of prediction complex traits using

genetic and phenotypic information from

distant and close relatives. Kaspar used the

phenotype data that I produced to spear-

head the prediction analysis.

In (chapter 6) I describe my ongoing

project. As it is ongoing, it will mostly fo-

cus on methodology and on some prelim-

inary data. In this project, as in the other

two, I use large scale phenomics and ge-

nomics to investigate the genotype to phe-

notype map, but this time with a focus on

meiosis and gametes.
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Chapter 4

Powerful decomposition of complex
traits in a diploid model

E xplaining trait di↵erences between individuals is a core and
challenging aim of life sciences. Here, we introduce a pow-
erful framework for complete decomposition of trait variation

into its underlying genetic causes in diploid model organisms. We se-
quence and systematically pair the recombinant gametes of two inter-
crossed natural genomes into an array of diploid hybrids with fully as-
sembled and phased genomes, termed Phased Outbred Lines (POLs).
We demonstrate the capacity of this approach by partitioning fitness
traits of 6,642 Saccharomyces cerevisiae POLs across many environ-
ments, achieving near complete trait heritability and precisely estimat-
ing additive (73%), dominance (10%), second (7%) and third (1.7%)
order epistasis components. We map quantitative trait loci (QTLs)
and find nonadditive QTLs to outnumber (3:1) additive loci, dominant
contributions to heterosis to outnumber overdominant, and extensive
pleiotropy. The POL framework o↵ers the most complete decomposi-
tion of diploid traits to date and can be adapted to most model organ-
isms.

Johan Hallin*, Kaspar Märtens*, Alexander I.
Young, Martin Zackrisson, Francisco Salinas,
Leopold Parts, Jonas Warringer & Gianni Liti

Published in Nature
Communications (2016)

doi:10.1038/ncomms13311
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Introduction Decomposing the trait vari-

ation within natural populations into its

genetic components is a fundamental goal

of biology that has proven to be challenging

(Visscher et al., 2012; Eichler et al., 2010).

Environmental and gene-by-environment

influences are difficult to control and al-

leles accounting for trait variation tend to

have frequencies that are too low for their

mostly weak e↵ects to be reliably called

(Yang et al., 2010). Compounding mat-

ters, many alleles are believed to influence

each other within (dominance) and be-

tween (epistasis) loci (Lehner, 2011). Con-

sequently, one trait can be the result of

many di↵erent allele combinations, each

combination being exceedingly rare in the

population. This makes the individual con-

tributions of most alleles near impossible

to assess (Zuk et al., 2012).

Model organisms o↵er more complete dis-

section of complex traits because they

can be analysed in controlled contexts,

minimizing environmental and gene-by-

environment variation, and in populations

derived from a few founders, ensuring high

frequencies of all alleles and allele combi-

nations (Abney et al., 2000; Lehner, 2013).

Because of their ease of use in genomics

(Liti and Schacherer, 2011) and phenomics

(Hancock et al., 2014), large panels of hap-

loid yeast segregants have allowed for fine-

grained dissection of complex traits (Bloom

et al., 2015, 2013; Young and Durbin,

2014). Unfortunately, exhaustive trait de-

composition in haploid crosses requires the

costly genotyping of thousands of genomes,

disregards dominance and provides much

simplified estimates of epistasis. A more

complete partitioning of trait variation that

is relevant to a diploid context has re-

mained elusive.

Inspired by previous thinking and theo-

retical work on recombinant inbred inter-

crosses in other model organisms (Thread-

gill et al., 2002; Tsaih et al., 2005; Zou

et al., 2005), we here introduce a power-

ful and cost-e↵ective framework for track-

ing the covariation through genome and

phenome that allows accurate estimates of

dominance and epistasis in diploid mod-

els. The framework is based on intercross-

ing two natural genomes over many sex-

ual generations to reduce linkage (Parts

et al., 2011; Cubillos et al., 2013) followed

by sequencing and systematic pairing of

the resulting haploid recombinant segre-

gants to generate a very large array of

diploid hybrids with fully assembled and

phased genomes, termed Phased Outbred

Lines (POLs). We validate the capacity of

the POLs approach by genetic decomposi-

tion of growth trait variation across 6,642

diploid yeast genomes in nine distinct envi-

ronments, and our results provide the most

complete decomposition of diploid traits to

date.

Results

An experimental framework for diploid

complex trait analysis To accurately de-

compose diploid trait variation, we first

isolated and sequenced the full genomes

of 86 MATa and 86 MAT↵ haploid Sac-

charomyces cerevisiae strains. These hap-

loids were randomly drawn from a twelfth
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Figure 4.1. An experimental framework for analysis of diploid traits. (a) Experimental design.
Left panel: Advanced intercrossed lines were constructed by multiple rounds of random mating
and sporulation of North American (NA) and West African (WA) genomes. Middle panel: We
sequenced 172 of the resulting segregants and paired these to generate an array of 7,310 diploid
hybrids (POLs). Right panel: The POLs and their F12 haploid parents were growth phenotyped
in nine environments, providing high resolution growth curves. (b) Frequency of homozygotes
(red: WA/WA, blue: NA/NA), heterozygotes (purple: NA/WA) and missing genotypes (white,
mostly attributed to chr. IX aneuploidies) at each segregating site among the 7,310 POLs. De-
viations from 50% heterozygosity are explained by selection (numbers 1, 4–8) against one allele
in the F12 haploid parent construction, or by forced heterozygosity at the LYS2 (number 2) and
MAT (number 3) loci. (c) Growth rate distributions of POLs (blue), their haploid F12 parents (or-
ange) and the diploid parent estimates (grey, Methods). (d) Correlations (Pearson’s r) between the
growth rate and mean growth for POLs within environments (lower left to upper right diagonal;
orange borders), between growth rates (above diagonal) and mean growth (below diagonal) in
pairs of environments. Colour intensity (3-colour scale: dark yellow to white to dark blue) and
number indicate the degree of correlation r.
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generation two-parent intercross pool, con-

structed using highly diverged (0.53%

nucleotide di↵erence) wild strains, here

termed North American (NA) and West

African (WA). Only two alleles segregate

at each polymorphic site, with on aver-

age equal representation in the pool (Parts

et al., 2011). The sequenced haploids of

opposite mating types were systematically

crossed in all possible pairwise combina-

tions to generate 7,396 genetically distinct

diploid hybrids, retaining 6,642 POLs used

for all downstream analysis (Fig. 4.1a,

Methods).

With only a modest number of 172

haploid genomes sequenced (Illingworth

et al., 2013), we could accurately infer the

genomes of our large set of POLs. No-

tably, these genomes are fully phased, that

is, we know the parent-of-origin for each

allele and their combination into diplo-

types. Furthermore, a very small fraction

of genotype information is missing (max:

6.5%; mean: 0.5%; median: 0.1%; min

0%) and there are no confounding e↵ects

from segregating auxotrophies that con-

tribute to trait variation (Supplementary

Data 1). The hybrids showed remarkable

uniformity, with heterozygote frequencies

close to 50% (Fig. 4.1b). The few strong de-

viations (eight deviations>30%) from 50%

heterozygosity were either due to selection

for one parental allele during the intercross

(overrepresentation of homozygous sites)

or from the crossing design, the latter re-

sulting in regions of fixed heterozygosity at

the MAT and LYS2 loci (Fig. 4.1b). Hy-

brid pairs sharing one haploid parent will

be genetically more similar than two POLs

that do not share a parent (expected frac-

tion of loci with identical genotypes = 0.5

and 0.375, respectively), resulting in a bi-

modal distribution of the genetic relation-

ship matrix entries (Märtens et al., 2016).

We precisely phenotyped the complete set

of 6,642 designed POLs (median CoV =

10%, mean CoV = 14%), their F12 haploid

parents, the diploid NA and WA founders

and their hybrid in a well replicated (n4)

manner, using a high resolution growth

phenomics platform designed to minimize

noise and bias(Zackrisson et al., 2016). We

selected nine physiologically distinct envi-

ronmental conditions (Supplementary Ta-

ble 1) that challenged growth to di↵erent

extents (Supplementary Fig. 1a), and we

obtained >50 million population size esti-

mates, organized into circa 250,000 growth

curves (Fig. 4.1a, right panel). Extract-

ing the (maximum) growth rate and a mean

growth phenotype (Methods) from each

growth curve (Supplementary Data 2), we

found phenotype distributions across the

POLs to be mostly monomodal (Fig. 4.1c;

Supplementary Fig. 1a,b). Given the near

absence of environmental variation, this

implies complex traits with multiallelic in-

fluences. Growth in galactose and allantoin

was bimodally distributed, in agreement

with large e↵ect sizes for the GAL3 (WA

premature stop codon) and DAL (linked

loci, WA loss-of-function SNPs in DAL1

and DAL4) genes respectively (Warringer

et al., 2011; Ibstedt et al., 2015). Correla-

tion between growth rate and mean growth

ranged from −0.13 to 0.76 (Pearson’s r; Fig.

4.1d, orange borders) but was overall low

(mean r: 0.27; median r: 0.21). This
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agrees with the hypothesis that distinct ge-

netic factors control population expansion

in di↵erent growth phases (Warringer et al.,

2011, 2008). Correlations across environ-

ments were positive in all but one case (r

= −0.02) and often of moderate or large

magnitude (max r = 0.84, median r = 0.29;

Fig. 4.1d). We cannot completely exclude

a small influence of shared error on corre-

lations, but the extensive standardization,

randomization and normalization (Meth-

ods), and the large variation in pairwise

correlations argue compellingly in favour

of extensive positive pleiotropy.

Near complete variance decomposition of

diploid traits Based on the in silico con-

structed diploid genomes, we used a ran-

dom e↵ects model to partition the vari-

ance in growth traits into components aris-

ing from additive (no interaction), domi-

nance (intralocus interaction) and pairwise

and third order epistatic e↵ects (interlocus

interactions) (Supplementary Note 1). We

first evaluated whether the model could

accurately estimate variance components

as well as their uncertainty via simulation

(Supplementary Note 1). The simulations

showed that the model could accurately de-

compose the variance into additive, domi-

nance, and pairwise epistatic components,

and that s.e. estimates were well calibrated

(Supplementary Data 3 and 4). When

adding a component for third order in-

teractions, the overall variance decompo-

sition became somewhat biased, possibly

due to introducing non-convexity into the

optimization problem. However, the vari-

ance from third order interactions was es-

timated accurately (Supplementary Data

4). Due to the biasing e↵ect, the variance

decomposition for third order interactions

was performed and reported separately.

The large sample size, known large vari-

ation in relatedness and absence of en-

vironmental variation allowed us to es-

timate nonadditive variance components

with unprecedented accuracy. Thus, ad-

ditivity, dominance and pairwise epista-

sis accounted for almost all trait variation

(broad sense heritability, H2 = 80–99% de-

pending on the trait, median 91%, Fig.

4.2, upper panel). On average, the pro-

portion of phenotypic variance explained

by additive e↵ects was 73% (50–87%), for

dominance e↵ects this was 10% (2–45%),

and for pairwise interactions this was 7%

(1–15%). Complete dominance of the func-

tional NA over the nonfunctional WA clus-

ter of DAL genes (Ibstedt et al., 2015) en-

sured a considerable dominance compo-

nent for the variation in the two allantoin

phenotypes, growth rate and mean growth.

Otherwise, the large variance contributions

of additive genetic influences were consis-

tent across environments (Fig. 4.2, upper

panel).

The trait with the largest estimated vari-

ance from pairwise epistasis was growth

rate on glycine (15%); this epistasis vari-

ance contribution equalled one third of

the largest dominance variance estimate

(45% for allantoin growth rates). We es-

timated that third order interactions ac-

counted for 1.7% of the trait variation on

average (Fig. 4.2, lower panel). However,

only growth rates on isoleucine, glycine
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Figure 4.2. Near complete variance decomposition of diploid traits. Decomposing the total
variance in growth traits across 6,642 diploids into additive (grey, upper panel), dominance (yel-
low, upper panel), second order epistatic (blue, upper panel) and third order epistatic (green,
lower panel) genetic contributions. Black label = growth rate, red label = mean growth. Error
bars = s.e.m.

and galactose, and mean growth in the

presence of phleomycin were significantly

(>2 s.e.m. from 0) a↵ected by third or-

der epistasis. Variation in genome wide

levels of homozygosity had no detectable

influence on yeast fitness traits (Supple-

mentary Fig. 2). This is in stark con-

trast to its substantial negative e↵ect on hu-

man traits, for example, height (Joshi et al.,

2015). Thus, the data suggest that there is

no general inbreeding depression in yeast,

consistent with natural populations being

largely homozygous (Magwene et al., 2011;

Wang et al., 2012).

Cost-efficient QTL mapping in yeast POL

diploid hybrids Our crossing design re-

sulted in that one haploid genome of each

POL is kept constant across the 86 POLs

that are derived from any one of its hap-

loid F12 parents (Fig. 4.1a). This shar-

ing of half a genome accounted for surpris-

ingly much of the overall variation in traits,

which somewhat restricted our capacity to

distinguish contributions from individual

alleles and allele pairs from the e↵ect of

the genetic background. Nevertheless, our

platform provided a cost-efficient frame-

work for calling both additive and nonad-

ditive (dominance and epistasis) QTLs in

diploid models. We mapped QTLs using

52,466 markers, the inferred parent phe-

notypes (for additive e↵ect of genetic back-

ground) and the hybrids’ deviations from

the average of the inferred parental phe-

notypes (for nonadditive e↵ects; Methods).

Both QTL mapping approaches accounted

for the population structure. We called a

total of 145 unique QTLs at 10% false dis-

covery rate (FDR) with high resolution (me-

dian 1.8-LOD support interval = 3.67Kbp,
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Figure 4.3. Cost-efficient QTL mapping in yeast POLs. QTLs were mapped across 6,642
genomes and 18 traits based on additive and nonadditive contributions. QTLs were validated
as additive or dominant genetic contributions using Linear Mixed Models (LMM). (a) QTL signal
strength (LOD score, y-axis) as a function of genomic position (x-axis), for growth rate on allan-
toin as sole nitrogen source, using additive (LMM and non-LMM; lower panel) and nonadditive
(non-LMM and LMM only capturing dominance; upper panel) models. Red dots indicate signifi-
cant (FDR, q = 10%) QTL calls. White/grey fields indicate chromosome spans. (b) Venn diagram
of significant QTLs capturing additive and nonadditive genetic contributions. All 18 phenotypes
(growth rate and mean growth over nine environments) were considered, with pleiotropic QTLs
counted multiple times. (c) Tukey boxplot showing the fraction of variance explained by ad-
ditive (purple) and nonadditive (blue) significant QTLs (non-LMM models). (d) Histogram of
pleiotropic QTLs. A QTL was counted as shared across environments if peaks were within 10 kb
of each other. No QTLs were significant in 4, 5, 6 or 7 environments.
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Supplementary Data 5). These included

the GAL3 stop codon variant, as well as

the DAL1 and DAL4 non-synonymous and

stop codon mutations, known to account

for most of the variation in galactose and

allantoin growth respectively (Fig. 4.3a,

Supplementary Figs 3 and 4 and Supple-

mentary Data 5).

Some (21%) of the QTLs contributed sig-

nificantly to both additive and nonadditive

phenotype components, but the majority

were private to one of them (Fig. 4.3b).

The nonadditive (75%) outnumbered the

additive (25%) QTLs, but explained on av-

erage less of the variation (6 versus 28%,

Student’s t-test: P = 2 ⇥ 106, Fig. 4.3c,

Supplementary Fig. 5). Thus, significant

nonadditive trait contributions were more

common but weaker. The QTLs were con-

firmed using linear mixed models that sep-

arated additive, dominant and epistatic ef-

fects (Methods). In almost all cases, non-

additive QTLs coincided with dominance

e↵ects (Fig. 4.3a). The complete reces-

siveness of the WA GAL3 allele for galac-

tose growth and of the WA DAL alleles for

allantoin growth recapitulated established

knowledge (Warringer et al., 2011; Ibstedt

et al., 2015)(Supplementary Fig. 6a)

Only 32 of 145 (22%) additive and nonad-

ditive QTLs called were mapped in a sin-

gle environment, reflecting that extensive

pleiotropy is the rule rather than the ex-

ception (Fig. 4.3d). Almost half (50 of

113, 44%) of the pleiotropic QTLs a↵ected

at least five environments, with universal

growth QTLs on chr. XIII penetrating re-

gardless of the environment and one QTL

on each of chr. IX, X and XV penetrating in

all but one environment (Fig. 4.3d). Given

the wide span of environmental e↵ects on

growth and cellular physiology in our set

of environments, this prevalence and pen-

etrance of universal growth QTLs is re-

markable. A surprisingly large number of

QTLs (69%) were shared between growth

rate and mean growth, given that the over-

all correlation between these growth vari-

ables was low (mean r = 0.27, Fig. 4.1d).

This was to a large extent explained by

the near universal chr. IX QTL a↵ect-

ing the two fitness components antagonis-

tically: NA homozygotes grew slower but

reached higher mean growth (Supplemen-

tary Fig. 6b). This profound fitness trade-

o↵ penetrated regardless of environment

and may therefore have had a large influ-

ence on natural selection on the ancestral

wild strains. Finally, we note that dispro-

portionately many (28 versus 9% expected,

Fisher’s exact test, P<0.0001) QTLs were

subtelomeric; almost all (84%) of these

were pleiotropic. This agrees with previous

haploid studies, and adds credibility to the

suggestion that hypervariable subtelomere

structures and ORF compositions account

for much of the remarkably large trait vari-

ation in yeast (Bergström et al., 2014; Cu-

billos et al., 2011).

Explaining heterosis by intralocus inter-

actions The degree to which o↵spring

phenotypes deviate from the mean of the

parent phenotypes, heterosis, and which

genetic factors that account for this dif-

ference are central questions in breeding.

Capitalizing on the scale of our screen
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(120,000 o↵spring traits), we established

the phenotype discordance of the POLs

from those inferred for their diploid par-

ents (Methods) with previously unattain-

able completeness. Hybrid o↵spring where

the inferred parents di↵ered significantly

from each other were retained for discor-

dance analysis (Supplementary Fig. 7a).

The majority of such o↵spring (89 to 95%,

depending on threshold) that could be un-

ambiguously called deviated significantly

from the midparent and were thus mid-

parent heterotic (Methods). Depending on

the threshold 23–41% of these cases cor-

responded to the o↵spring being either

superior (best parent heterosis) or infe-

rior (worst parent heterosis) to both par-

ents, with equal prevalence of best par-

ent and worst parent heterosis (Fig. 4.4a).

This is surprising given that earlier studies

on non-recombined F1 diploids have indi-

cated much higher prevalence of best par-

ent heterosis than worst parent heterosis

(Plech et al., 2014; Zörgö et al., 2012). In

these earlier studies, all recessive loss-of-

function alleles are compensated for and

can contribute to best parent heterosis be-

cause diploid hybrids are complete het-

erozygotes. In our POLs, however, poly-

morphic sites are often homozygotic and

recessive negative e↵ects are therefore not

always compensated for, explaining at least

part of the di↵erence.

Overdominance (heterozygotes at a locus

being superior to both homozygotes), dom-

inance (heterozygotes at a locus di↵ering

from the mean of the homozygotes) and

epistasis can all contribute to best parent

heterosis. However, calling such contri-

b

0

-2

-4

-6

N
o

rm
a

liz
e

d
m

e
a

n
 g

ro
w

th

N
o

rm
a

liz
e

d
g

ro
w

th
 r

a
te

-1.5

-1.0

-0.5

0.0

0.5

5 5 1 304 1114

a

F
re

q
u

e
n

c
y

FDR

c

Homozygous NA Heterozygous Homozygous WA

0.00

0.25

0.50

0.75

1.00

F
re

q
u

e
n

c
y

B
P
H

W
P
H

A
ll 
P
O
Ls

chrIX 408461
allantoin

B
P
H

W
P
H

A
ll 
P
O
Ls

chrIV 463889
galactose

chrIX 408461

chrIV 463889

Phenotype distribution

0.00

F
re

q
u

e
n

c
y

0.
10

00

0.
05

00

0.
02

50

0.
01

00

0.
00

60

0.
00

30

0.
00

16

0.
00

08

0.
00

04

0.
00

02

WPH Neg MPH Pos MPH BPH

FDR

0.00

0.20

0.40

Dominance OverdominanceEnrichment of best homozygote

0.
10

00

0.
05

00

0.
02

50

0.
01

00

0.
00

60

0.
00

30

0.
00

16

0.
00

08

0.
00

04

0.
00

02

0.25

0.50

1.00

0.75

262

271

2

2352

3199

1088

313 108

2

2242

4093

482

0.
07

50

Figure 4.4. Explaining heterosis by intralo-
cus interactions. (a) Frequencies of the het-
erotic POLs (y-axis) as a function of a range
of FDR significance cut-o↵ (q) values (x-axis).
Line colour = type of heterosis. Red text = FDR
q-value chosen for downstream analysis (a,c).
(b) Left panel: example of QTLs called as con-
tributing to best parent heterosis by dominance
(dark orange) and by overdominance (light or-
ange) respectively. Dominance was called as
enrichment of strongest homozygote and over-
dominance as enrichment of heterozygous state
among BPH POLs as compared with all POLs
(left panel). Right panel: phenotype (top:
allantoin, bottom: galactose) distribution de-
pending on genotype composition at the same
QTLs. (c) The frequency of QTLs called as con-
tributing by enrichment of the best homozy-
gote, dominance and overdominance respec-
tively (y-axis) as a function of FDR significance
cuto↵ (q) values (x-axis). The dominance con-
tribution is a subfraction of the contributions
from enrichment of the best homozygote. Note:
we show the outcomes of a range of FDR cut-
o↵ values to illustrate the robustness of conclu-
sions; the cut-o↵s used for downstream analy-
sis was set beforehand and not influenced by
the results. Best parent heterosis (BPH); mid
parent heterosis (MPH); worst parent heterosis
(WPH).
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butions is challenging because multiple ef-

fects often act in parallel. In particular,

overdominance may be modified by epista-

sis such that it only manifests in a minor-

ity of genetic backgrounds (Shapira et al.,

2014). Thus, a QTL may not be overdom-

inant in the average genetic background,

but could nevertheless account for best

parent heterosis in some lineages. Com-

paring the mean phenotypes for heterozy-

gous and homozygous genotypes is there-

fore a blunt tool for detecting overdomi-

nant contributions to best parent hetero-

sis. We devised an alternative approach,

which consists of comparing the relative

proportions of the genotypes among best

parent heterotic POLs and the entire pop-

ulation of POLs. Overdominance contribu-

tions to best parent heterosis should mani-

fest as overrepresentation of heterozygotes

among best parent heterotic POLs, with

no overrepresentation of either of the ho-

mozygotes. Similarly, dominance contri-

butions should manifest as overrepresenta-

tion of the best homozygote, coupled with

an unchanged or overrepresented heterozy-

gote. Using the 115 QTLs unique to either

the additive or nonadditive scan, we called

overdominance contributions as more het-

erozygotes than expected among best par-

ent heterotic POLs coupled with expected

or less homozygotes χ2 test, P<0.01; Fig.

4.4b, light orange, left panel), and domi-

nance contributions as more of the better

homozygote than expected coupled with

expected or more heterozygotes (Fig. 4.4b,

dark orange, left panel). We found 44 QTLs

(38%) enriched for the best homozygote

genotype, and in 24 of these the heterozy-

gote genotype was either enriched or un-

changed, suggesting dominance at these 24

loci. For 14 QTLs (12%) we found over-

dominance contributions. These propor-

tions were consistent across a wide range

of significance cut-o↵s (Fig. 4.4c). For the

remaining 50% of QTLs, no significant con-

tributions to the best parent heterosis were

detected.

The dominance/overdominance contribu-

tions of QTLs to best parent heterotic POLs

were often notably di↵erent from their con-

tributions to the population as a whole

(Fig. 4.4b). Only two of the 14 QTLs for

which we detected overdominance in the

best parent heterotic POLs had, on aver-

age, a significantly superior heterozygote

state when the entire POL population was

considered (Student’s t-test, P<0.01). This

suggests that dominance-by-dominance or

dominance-by-additive interactions poten-

tiate the best parent heterosis by shift-

ing dominant or additive loci to over-

dominant, creating best parent heterosis,

in a minority of backgrounds. For the

chr. IX QTL with a near universal fit-

ness trade-o↵, NA/WA eterozygotes were

consistently enriched among o↵spring with

superior growth rate, implying overdom-

inance (Supplementary Fig. 7b). This

was not the case for o↵spring with supe-

rior mean growth, where we instead found

strong enrichment of the NA/NA homozy-

gote, but near depletion of the NA/WA het-

erozygote. Finally, we called underdomi-

nant contributions to worst parent hetero-

sis as more heterozygotes than expected

among worst parent heterotic POLs. Over-

all, we found 7% of QTLs to contribute

underdominantly to worst parent heterosis
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(Supplementary Fig. 7c). We also called

39% of QTLs with dominant contributions

to worst parent heterosis as more of the

worst homozygote state than expected cou-

pled with an enriched or unchanged frac-

tion of the heterozygote state. To our

knowledge, this is the most exhaustive dis-

section of heterosis to date.

Discussion

Traits have been exhaustively mapped and

decomposed in haploid models (Bloom

et al., 2015, 2013; Young and Durbin, 2014;

Ehrenreich et al., 2010; Lorenz and Co-

hen, 2012) but extrapolation from haploid

screens to the biology of diploids is pre-

carious. Haploid designs cannot be used

to measure intralocus interactions in the

form of dominance, further, they only cap-

ture additive-by-additive epistasis. More-

over, ploidy has a fundamental impact on

traits (Zörgö et al., 2013), both due to

its influence on cell size and the mask-

ing of recessive alleles in diploids (Ger-

stein and Berman, 2015; Gerstein and Otto,

2009). The Phased Outbred Lines (POLs)

presented here circumvent the shortcom-

ings of haploid screens by o↵ering decom-

position of diploid traits with previously

unattainable exhaustiveness. The capac-

ity of the approach follows from generating

a very large array of fully phased diploid

genomes based on short read sequencing

of only a moderate number of haploids.

The alternative, acquiring phased genomes

from direct sequencing of diploids, would

require long-read sequencing of thousands

of isolates and will remain economically

unfeasible even in model organisms for

years to come (Chaisson et al., 2015). As a

direct consequence of our experimental de-

sign, each POL shares one haploid genome

with siblings spawned from the same hap-

loid parent. This sharing of half a genome

had surprisingly large e↵ects on trait sim-

ilarity, greatly aiding both trait prediction

from relatives (Märtens et al., 2016) and

the partitioning of trait variation into its

additive, dominant and epistatic compo-

nents. In contrast, it somewhat restricted

our ability to distinguish the weaker ef-

fects of individual loci and the calling of

those QTLs. The large impact that shar-

ing one haploid genome has on trait sim-

ilarity among diploids, and the associated

benefits and drawbacks, may or may not

manifest in other model organisms. Be-

yond the removal of the sex-switch (HO

gene) and introduction of sex-specific aux-

otrophic markers, POLs impose no require-

ments on the yeast genotypes used; the de-

sign is lineage agnostic. However, removal

of the yeast sex-switch renders the cross

directional and prevents the construction

of a full diallel cross, something that is

otherwise possible in for example mo-

noecious plants where individuals express

both sexes. The diploid hybrids have iden-

tical marker composition, avoiding growth

e↵ects derived from artificial auxotrophies

that confound many haploid crossing de-

signs (Perlstein et al., 2007; Mülleder et al.,

2012).

The framework allowed partitioning

diploid trait variation into its major com-

ponents with little room for confounding

e↵ects, due to nearly all trait variation

being accounted for. Additive e↵ects
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explained the vast majority of phenotypic

variation, with approximately equal vari-

ance contributions from dominance and

pairwise interactions at around 10% and

7%, respectively. The large explanatory

power of additive genetics is well in line

with findings in haploid screens (Bloom

et al., 2015; Lorenz and Cohen, 2012).

Third order epistasis explained <2% of the

trait variation, comparable to, or somewhat

less than, estimated for third (Bloom et al.,

2013), or third and higher (Young and

Durbin, 2014) order interactions in hap-

loid yeast. Thus, although examples where

three-way interactions a↵ect trait variation

can be found (Young and Durbin, 2014;

Gerke et al., 2009; Taylor and Ehrenreich,

2015), and can explain extreme pheno-

typic outliers (Forsberg et al., 2016) they

generally account for little trait variation.

Despite the lower overall contribution of

nonadditive compared with additive genet-

ics to trait variation, we found nonadditive

QTLs to outnumber additive QTLs. The

weaker mean e↵ect of nonadditive QTLs

partially explains this discrepancy. In

addition, di↵erences in how QTLs were

called means that we cannot completely

exclude that we detected nonadditive

e↵ects with somewhat better power.

A stable haploid phase, indefinite storage

as frozen stocks and easy mating will re-

main distinct advantages of yeast. Nev-

ertheless, POLs can be employed in most

higher model organisms, with only slight

modifications to the approach. Panels of

extensively recombined o↵spring can be

generated using two or more founder par-

ents in mouse, plants, flies and worms

(Nordborg and Weigel, 2008; Mackay,

2014). Successive inbreeding or selfing is

common practice to produce recombinant

inbred lines (RILs). The gametes of these

sequenced RILs can be paired by designed

mating to generate the final array of POLs

to be phenotyped. Somewhat analogous

approaches exploiting near isogenic lines,

or immortalized F2 populations, have been

used in plants (Melchinger et al., 2007;

Tang et al., 2010; Hua et al., 2003), al-

though few individuals, genetic markers

and recombination events and remaining

segregating heterozygosity prevented both

powerful decomposition of trait variation

and highly resolved mapping of QTLs. Fur-

thermore, genome phasing information in

POLs derived from higher organisms is

ideal for investigating parent-of-origin con-

tributions to complex trait variation (Mott

et al., 2014). To attain exhaustiveness while

avoiding confounding e↵ects from uncon-

trolled environmental variation, the cost-

e↵ectiveness of the genotyping needs to

be matched by a phenotyping approach

that achieves both scale and accuracy. The

here reached broad sense heritability, with

a lower bound mean estimate of 91%,

may remain challenging to match in most

species. Nevertheless, phenomics is ad-

vancing on broad fronts and simultaneous

high throughput and accuracy is on the

horizon inmost model organisms (Hancock

et al., 2014).

Methods

Generation of phased outbred lines F12

outbred lines were derived from a multi-

generation two way intercross between an-
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cestors of the North American (YPS128)

and West African (DBVPG6044) popula-

tions, as described (Parts et al., 2011). An-

cestral strains di↵ered at 0.53% of nu-

cleotide sites (Liti et al., 2009). Following

random sporulation of F12 diploids, 86 sta-

ble haploids of each mating type were ran-

domly isolated and their mating type and

auxotrophies determined. Haploid geno-

types were selected to allow systematic

crossing: MATa, ura3::KanMX, ho::HygMX

and MAT↵; ura3::KanMX; ho::HygMX;

lys2::URA3. Haploids of di↵erent mat-

ing types were robotically mated on rich

medium (1% yeast extract, 2% peptone,

2% glucose, 2% agar) in all pairwise com-

binations combining their complementary

LYS and URA auxotrophies using a Ro-

ToR HDA robot (Singer Ltd, UK). Haploid

cells of the same mating type do not mate

and this feature prevents the construction

of a full diallel cross (e.g., MAT↵/MAT↵

and MATa/MATa diploid hybrids cannot

be constructed). Diploid hybrids were se-

lected twice on Synthetic Minimal (SM)

medium (0.14% Yeast Nitrogen Base, 0.5%

ammonium sulphate, 2% (w/v) glucose

and pH bu↵ered to 5.8 with 1% (w/v) suc-

cinic acid, 2% agar). The theoretical maxi-

mum amount of POLs from our experimen-

tal design was 7,396 (86 ⇥ 86); however,

one F12 haploid strain (MAT↵, number 45)

was contaminated prior to mating and all

86 hybrids spawning from this cross were

therefore discarded (86 MATa ⇥ 85 MAT↵

= 7,310 were retained). Furthermore, 8 F12

haploids were identified as having chr. IX

aneuploidy (see Genotype construction be-

low), the hybrids spawning from these hap-

loids were included in the phenotyping in

order to investigate the aneuploidy’s e↵ect

on the phenotype. They were, however,

excluded in all downstream analysis since

they could interfere with the QTL mapping

and they have a large fraction of missing

genotypes on chr. IX. We do find a possi-

ble e↵ect of the chr. IX aneuploidy mainly

on the mean growth phenotype (see Sup-

plementary Fig. 1a, bottom panel).

Genotype construction The haploid F12

parents were previously sequenced by

short read sequencing, and mapped to

the S288C reference genome in order to

call segregating sites, infer genotypes and

characterize the recombination landscape

(Illingworth et al., 2013). All segregants

were homoplasmic, carrying the same non-

recombined WA mtDNA genome. This ex-

cludes confounding mtDNA inheritance ef-

fects since this is inherited randomly in

a yeast hybrid from only one of the two

parents. Chr. IX aneuploidy was identi-

fied based on higher sequencing coverage

and higher fraction of heterozygous poly-

morphic sites compared with the genome

as described in Cubillos et al. (2013). The

following eight haploid F12 parents car-

ried the aneuploidy: MAT↵ 41, 53, 67 and

MATa 206, 222, 223, 253, 258. Contami-

nated diploid hybrids and hybrids with chr.

IX aneuploidies were excluded. Phased

genomes of the 6,642 diploid hybrid o↵-

spring (81 MATa ⇥ 82 MAT↵) retained for

the genetic analysis was constructed in sil-

ico using custom R code.

High resolution growth phenotyping

High resolution growth phenotyping on
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solid agar medium was performed using

a 1536-colony plate layout. Each plate

(Plus plate, Singer Ltd, UK) was cast with

exactly 50ml of Syntetic Complete medium

at 50°C (as SM above with added 0.077%

Complete Supplement Mixture (CSM,

Formedium)). Casting was performed

on an absolutely leveled surface with

drying for ⇠1 day. The base medium was

supplemented with additional stressors or

alternative carbon or nitrogen sources as

indicated (Supplementary Table 1). The

7,310 POLs were distributed over 1,152

positions across eight plates. We used n = 4

replicates for each experimental plate, with

replicates initiated from two di↵erent pre-

cultures and run in di↵erent instruments

and plate positions to minimize bias. Their

172 haploid F12 parents (n = 6 replicates

on each plate, two plates) and their diploid

NA and WA ancestral lineages (n = 72

replicates on each plate, two plates) were

phenotyped separately. Every 4th position

was reserved for internal controls (diploid

NA ancestral strains). These 384 controls

were interleaved with experiments on pre-

culture plates, ensuring equal treatment

of controls and experiments. High resolu-

tion population size growth curves were

obtained using Epson Perfection V700

PHOTO scanners (Epson corporation, UK)

and the Scan-o-matic framework (Zackris-

son et al., 2016). Scanners were maintained

in a 30°C, high humidity environment that

minimized light influx and evaporation.

Experiments were run for 72h, with auto-

mated transmissive scanning and signal

calibration in 20min intervals. Calibrated

pixel intensities were transformed into

population size measures by reference to

cell counts obtained by optical density

measurements on diluted samples. Raw

population growth curves were slightly

smoothed using a median (size = 5) and a

Gaussian (width σ = 1.5) filter to remove

noise. Poor quality curves (1%, descend-

ing from, for example, positions lacking

colonies) were rejected following man-

ual inspection (Zackrisson et al., 2016).

Retained population growth curves were

broken down into two growth phenotypes:

(i) growth rate, extracted using linear

regression from the steepest slope of the

population’s exponential phase, and (ii)

mean growth, extracted as the area under

the curve relative to its starting point but

excluding the three first time points. To

counter spatial bias on each 1,536 plate,

the two growth phenotypes were normal-

ized to the internal controls using the

Scan-o-matic principle (Zackrisson et al.,

2016). The final phenotypes used were the

average phenotype across all replicates.

Detailed protocols are available for the

entire phenotype acquisition (Zackrisson

et al., 2016). To circumvent the problem

of calculating Coefficients of Variation

(CoV) for normalized growth phenotypes

spanning over both negative and positive

values, these were reverted back into ac-

tual doubling times and yields, before CoV

calculations. This reversion was performed

by multiplying each normalized value

with the median control trait value and

reversion of the log transformation.

Phenotype variance partitioning We es-

timated additive relatedness from geno-

types. We derived formulae for efficient
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computation of the covariance due to dom-

inance, pairwise and third order interac-

tion e↵ects (Supplementary Note 1). We

fitted the model using restricted maximum

likelihood, as in Yang et al. (2011). The

variance decomposition and its associated

standard errors were found to be accu-

rate and close to unbiased in simulations

when fitting additive, dominance, and pair-

wise interaction components (Supplemen-

tary Note 1). However, when adding a

component for third order interactions, the

overall variance decomposition became bi-

ased, even though the estimates of the third

order component did not. We believe this

may be the result of non-convexity in the

optimization problem, as evidenced by bi-

modality in the distribution of estimates

of pairwise interaction variance in simu-

lations including the third order compo-

nent. We therefore report estimates of the

variance from third order interactions sep-

arately from the decomposition into addi-

tive, dominance and pairwise interaction

components.

QTL mapping QTL calling was per-

formed using the scanone function with

the marker regression method in R/qtl

(Broman and Sen, 2009) with estimated

diploid parent phenotypes (additive ge-

netic background contribution to traits)

and POL deviations from the estimated

diploid parents values (variation not ex-

plained by additive e↵ects of parental back-

ground) respectively using the full set

of 52,466 markers (including redundant

markers). Diploid parental phenotypes

were estimated as the median of all hy-

brids that descended from that parent. Us-

ing the deviations from expected midpar-

ent phenotype for the POLs has the addi-

tional critical benefit of e↵ectively account-

ing for population structure by removing

the additive e↵ect of the more similar ge-

netic composition due to shared parents.

Significance thresholds were given by per-

mutations ( ⇥ 1,000), 1.8-LOD support in-

tervals were calculated for each QTL us-

ing the lodint function in R/qtl, this corre-

sponds to the LOD support interval stated

as the preferred one for intercrosses in A

guide to QTL Mapping by Broman et al.

Broman and Sen (2009). QTL calling by

linear mixed models, also accounting for

population structure, was performed and

used as verification. For these, in order

to test each QTL, we constructed the re-

alized genetic relationship matrix by dis-

carding the SNPs within the 50kb neigh-

bourhood of the SNP under consideration;

these models were fitted with LIMIX (Lip-

pert et al., 2014). Consecutive markers hav-

ing the same genotype across all individ-

uals were removed for increased computa-

tion speed, leaving 10,726 segregating sites

(Märtens et al., 2016). We accounted for

population structure in the LIMIX analy-

sis by using the genetic relationship ma-

trix defined by K = 1
cXXT where X is a

centred and standardized genotype matrix,

and the normalizing constant c is the av-

erage diagonal value of XXT . This is in

contrast to the mapping in R/qtl where we

instead modified the phenotype used, as

stated at the beginning of this section. QQ-

plots (Supplementary Fig. 8) confirm that

the linear mixed models appropriately ac-

count for population structure: apart from
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the locus with the strongest e↵ect (DAL and

GAL loci, in allantoin and galactose respec-

tively), the distribution of the rest of P val-

ues follows the expected uniform distribu-

tion under the null.

Heterosis We used a Student’s t-test

to detect POLs significantly deviating

(↵<0.01) from the mean parent phenotype,

either overperforming (positive mid par-

ent heterosis) or underperforming (nega-

tive mid parent heterosis). The parent phe-

notypes used were estimated from all POLs

descending from the given parent as de-

scribed under QTL mapping in Methods,

the variance of the mean parent phenotype

was set to equal that of the most variable

parent. POLs deviating from the mean par-

ent were then tested using a Student’s t-

test (↵<0.01) for positive deviations from

the strongest parent (best parent hetero-

sis, BPH) and for negative deviations from

the weakest parent (worst parent hetero-

sis, WPH). Hybrids deviating significantly

from the two parents, but not from the es-

timated mid-parent, was called as not devi-

ating from the mid parent expectation. Hy-

brids not falling into any of the stated cate-

gories were set as ambiguous and not con-

sidered, this might manifest as for exam-

ple a hybrid not being significantly di↵er-

ent from either parent.

Genetic contributions to heterosis To

test for overdominance contributions to

best parent heterosis we compared the ex-

pected and observed number of heterozy-

gous genotypes among best parent het-

erotic POLs (defined as above). Calling

overdominance as overrepresentation of

the heterozygous state with no overrepre-

sentation of either homozygous state. This

was performed for each QTL separately us-

ing a χ2 test, 115 QTLs were used, corre-

sponding to all unique QTLs between the

additive and nonadditive QTL scan. En-

tries to the χ2 test were: observed number

of heterozygotes and observed number of

homozygotes (summed) among BPH POLs

and the corresponding expected numbers,

given distributions among all POLs. A

range of cut-o↵s for significance was tested

and the stability of results across cut-o↵s

ascertained. We cannot completely ex-

clude that pseudo-overdominance, that is,

tightly linked loci with dominance of op-

posite parental alleles, confuse some as-

signments of overdominance. However,

given the small linkage regions, we ex-

pect pseudo-overdominance to be rare and

the associated overestimation of overdomi-

nance to be small. We tested for dominance

similarly, but pooling the weaker homozy-

gote state with the heterozygote state and

calling significant enrichment of the bet-

ter homozygote among BPH POLs. If the

better homozygote was enriched, and the

weaker was not, cases where the fraction of

heterozygous was unchanged or enriched

were called as dominance. Underdomi-

nance contributions to worst parent hetero-

sis were called as for overdominance, but

as enrichments of the heterozygous geno-

type among worst parent heterotic POLs.

Finally, dominance contributions to worst

parent heterosis were called as for domi-

nance in best parent heterosis, but as en-

richment of the weaker homozygote.
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Data availability All data associated

with this study is available in Supple-

mentary Information of this publication.

We used R, complemented with various

packages (R Core Team, 2015; Wick-

ham, 2009, 2007, 2015, 2011; Solymos

and Zawadzki, 2016), for the analyses.

The associated code can be found at

https://github.com/j-hallin/y10k,

and is available upon request.
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Chapter 5

Predicting quantitative traits from
genome and phenome with near

perfect accuracy

I n spite of decades of linkage and association studies and its po-
tential impact on human health, reliable prediction of an individ-
ual’s risk for heritable disease remains difficult. Large numbers of

mapped loci do not explain substantial fractions of heritable variation,
leaving an open question of whether accurate complex trait predictions
can be achieved in practice. Here, we use a genome sequenced popula-
tion of 7,000 yeast strains of high but varying relatedness, and predict
growth traits from family information, e↵ects of segregating genetic
variants and growth in other environments with an average coefficient
of determination R2 of 0.91. This accuracy exceeds narrow-sense heri-
tability, approaches limits imposed by measurement repeatability and
is higher than achieved with a single assay in the laboratory. Our re-
sults prove that very accurate prediction of complex traits is possible,
and suggest that additional data from families rather than reference
cohorts may be more useful for this purpose.
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Introduction Disease incidence can be

predicted based on the health record

(Dahlem et al., 2015), the family history

(Do et al., 2012) or the genetic risk due

to predisposing genetic variants segregat-

ing in the population (Dudbridge, 2013).

Each of these sources of information car-

ries signal about the trait, but is not suf-

ficient for accurate prediction (Do et al.,

2012; Wray et al., 2007; Kraft and Hunter,

2009). For example, the genetic variants

mapped to a trait in genome-wide associ-

ation studies do not estimate disease risk

well, with the vast majority of the heritable

variation not accounted for (Manolio et al.,

2009; So et al., 2011a). Even with very large

numbers of mapped alleles (Visscher et al.,

2012), purely genomic prediction accura-

cies still lag far behind narrow sense her-

itability estimates (Makowsky et al., 2011).

An important question of whether this is

due to paucity of data, or perhaps more

fundamental limitations, can be attacked

by predicting phenotypes in model organ-

isms (Jelier et al., 2011; Mehmood et al.,

2011). In particular, crosses of founders

in the yeast system have circumvented

many of the technical difficulties associated

with human genetic analyses, and illumi-

nated genetic basis of variation in molec-

ular traits (Parts et al., 2014; Albert et al.,

2014; Brem and Kruglyak, 2005), cellular

phenotypes (Parts et al., 2011; Ehrenreich

et al., 2010; Cubillos et al., 2013), miss-

ing heritability (Bloom et al., 2013) and

role of interactions (Bloom et al., 2015;

Taylor and Ehrenreich, 2015; Gerke et al.,

2009). Genome-based prediction has suc-

cessfully explained most of the trait varia-

tion in two organism phenotypes using up

to five mapped alleles (Taylor and Ehren-

reich, 2015; Gerke et al., 2009), and ap-

proached narrow-sense heritability accu-

racy in a large-scale cross (Bloom et al.,

2013). For yeast, growth in various en-

vironments is an analogue of the health

record, family history is approximated by

phenotypes of closely related individuals,

and risk variants can be mapped as for hu-

mans. Thus, we can test whether accu-

rate phenotype prediction for more com-

plex traits is possible in practice, and what

the constraints are.

Here, we use a recent resource of over

7,000 diploid hybrid yeast strains of high

relatedness (Hallin et al., 2016) to predict

their growth phenotypes. Combining ge-

netic and phenotypic data in a linear mixed

model (LMM) framework, as well as using

a recently introduced mixed random forest

(MRF) approach, we predict growth traits

with accuracies above their narrow-sense

heritability, and approaching limits set by

measurement repeatability. We find that

both relatedness and variant-based predic-

tions are greatly aided by availability of

very close relatives, whereas information

from a large number of more distant rel-

atives fail to improve predictive perfor-

mance when closer relatives are included.

Our results suggest that prediction is im-

proved by both data from closer relatives

that share much of the genome, as well as

additional phenotype measurements that

can capture aspects of unique environment

and e↵ects too small to be detected bymap-

ping.
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Figure 5.1. Experiment population. The 7,396 studied individuals are diploid hybrids that
were constructed by systematic mating of 86 F12 MATa haploid yeast segregants to 86 MAT↵
individuals, in all pairwise combinations. (a) Two-stage crossing scheme, starting from the West
African (WA) and North American (NA) parents gives a large, diverse, diploid population. (b)
Distribution of fraction of sites with identical genotype for pairs of hybrids is bimodal. The
frequency of individual pairs that are identical by genotype state (IBS) at fraction f of the sites
(y-axis) is di↵erent for pairs that share one parent (‘close’, right), and ones that do not (‘distant’,
left).

Results

Study population We made use of 7,396

diploid hybrid Saccharomyces cerevisiae

strains with phased whole-genome se-

quences from the collection of diploid

phased outbred lines (Hallin et al., 2016).

Owing to the two-stage crossing scheme

(Fig. 5.1a), each of these hybrids has

170 relatives that share one chromosome

in every chromosome pair (expected frac-

tion of segregating site genotypes identi-

cal by state f = 0.5), and 7,225 ones for

which no complete chromosome is shared,

but a substantial part of linkage blocks

and allele combinations are (expected f =

0.375, Fig. 5.1b). We refer to these lev-

els of relatedness as ‘close’ and ‘distant’,

respectively, noting that both classes cor-

respond to close kinship. After filtering

out individuals with aneuploidies and con-

tamination, we retained 6,642 strains for

analysis. Population growth of individual

diploid hybrids was measured (Zackrisson

et al., 2016) in nine environments in tech-

nical and biological duplicate, growth es-

timates were normalized against hundreds

of densely spaced internal standards and

the replicate average was used for analy-

sis. The environments challenge di↵erent

cellular functions, covering energy sources

(for example, galactose), osmotic stress (for

example, NaCl) and cancer drugs (for ex-

ample, rapamycin, Supplementary Table

1). As reported before (Hallin et al., 2016),

the phenotype means have large narrow-

sense heritabilities (h2) and repeatabilities

(H2, broad-sense heritability; median h2 =

80%, H2 = 94%, standard error = 0.09,
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Figure 5.2. Prediction accuracy. All panels contain five model classes: linear regression on other
phenotypes (‘P’, yellow), linear regression with additive e↵ects determined by forward selection
(‘QTLs’, purple), prediction based on the realized genetic relatedness (‘BLUP’, green), the best
LMMwith additive and interaction e↵ects (‘LMM’, blue) and the best LMMwith additive and in-
teraction e↵ects together with other phenotypes (‘LMM+P’, red). All prediction accuracies denote
coefficient of determination R2, and are determined by fourfold cross-validation. (a) Models us-
ing a single source of information predict less accurately than a combined one. Predicted (y axis)
and observed (x axis) growth in NaCl for every measured hybrid strain (dots) for each model
class, with coefficient of determination (R2) of the predictions labelled. Perfect predictions would
lie on the grey dashed line y=x. (b) Linear mixed models with information from other pheno-
types give very accurate predictions. Predictive performance (R2, x axis) for di↵erent models (y
axis) for each of the measured phenotypes (nine boxes). Bars indicate the range of R2 over the
four cross-validation folds. The dashed lines show narrow-sense heritability h2 (black, left) and
repeatability H2 (black, right) estimates for the mean phenotype, and the dotted line (red) shows
repeatability of a single measurement H2

1 . (c) Prediction can be more accurate than one mea-
surement. Prediction accuracy of mean phenotype (R2, y axis) compared with di↵erent types of
heritability estimates (x axis) for the four model classes: narrow-sense heritability of average phe-
notype (h2, top panel), repeatability of average phenotype (H2, middle panel) and repeatability
of a single measurement (H2

1 , bottom panel). Grey dashed lines denote the identity y=x.
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Supplementary Tables 2 and 3), and the

traits are not independent (pairwise Pear-

son’s r2 = 0.01–0.49, Supplementary Fig.

1), reflecting shared genetic, epigenetic and

environmental influences (Supplementary

Fig. 2).

Accurate genome-aided phenotype pre-

diction We first tested how well di↵er-

ent genomic and phenomic data predicted

growth phenotypes in our population (Fig.

5.2a) and Supplementary Fig. 3), and

then combined them using LMMs (Lip-

pert et al., 2014). We obtained predic-

tions via fourfold cross-validation, with

the training set randomly sampled from

both close and distant relatives (Meth-

ods). One growth trait could be predicted

from the rest with reasonable accuracy (Fig.

5.2b ‘P’, median R2=0.48), and the qual-

ity of prediction depends on the strength

of pairwise correlations of the phenotypes.

The genomic best linear unbiased predictor

(BLUP), an additive model based on real-

ized genetic relatedness alone, captures the

pedigree structure in the population, and

achieves prediction accuracies very close

to the narrow-sense heritability estimates

(Fig. 5.2b ‘BLUP’, median R2=0.77, 98% of

h2 explained). These predictions are near-

identical to a simple midparent approach

(Pearson’s r2>0.99, Supplementary Fig. 4).

Thus, the genetic similarity between indi-

viduals explains nearly all additively heri-

table variation in our population.

Next, we mapped quantitative trait loci

(QTLs) in each environment, and asked

how well they predict growth in that en-

vironment. A small number of single nu-

cleotide polymorphisms (SNPs) with the

largest e↵ects explain a sizeable portion

of additive variance, but for all traits the

prediction accuracy remains lower than

BLUP’s (for example, median R2=0.58 ver-

sus 0.81 for 10 QTLs, Supplementary Fig.

5). When up to 50 SNPs are included in

the model, the accuracy reaches h2 (Fig.

5.2b, ‘QTLs’, median R2=0.78, 98% of h2

explained), with predictions very similar

to BLUP (r2>0.97, Supplementary Fig. 6).

Therefore, all tested methods that consider

additive genetic e↵ects reach the same,

near-h2 performance, and there is no miss-

ing narrow-sense heritability in our exper-

iment. Extending to the LMM framework

to include genetic background, dominance

and interaction e↵ects gave a modest fur-

ther improvement (median increase of R2

by 0.06), mainly due to dominance e↵ects

of strongest QTLs for allantoin and galac-

tose (Fig. 5.2b, ‘LMM’, median R2=0.86).

We then included other phenotypes mea-

sured for the same individual as covariates

in the model, and achieved median predic-

tion accuracy of 0.91 (Fig. 5.2b ‘LMM+P’).

To our knowledge, this is the highest for

complex traits to date (de los Campos

et al., 2013; Daetwyler et al., 2013), exceed-

ing narrow-sense heritability for all nine

phenotypes and approaching repeatability

(Fig. 5.2c, 96% of H2 explained). For each

of the measured traits, our predictions of

the mean phenotype (that is, the average

of four replicate measurements) have lower

error than a single growth experiment (Fig.

5.2c). The combined model improves over

others especially when a large proportion

of heritable non-additive variation is not
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Figure 5.3. Close relatives improve predictions. (a) To cover two training scenarios, that is,
fitting models on ‘close’ (expected fraction of sites identical in genotype f =0.5) or ‘distant’ (ex-
pected f =0.375) relatives, we partitioned all individuals into four equally sized groups. For a
fixed test set (red box), we distinguish between training on close relatives (individuals who have
a common parent with one test set individual, green box) and more distant relatives (no com-
mon parents with any test individual, blue box). As the number of close relatives is twice the
number of distant relatives, we downsampled the former. Predictions are obtained by fourfold
cross-validation. (b) Close relatives greatly contribute to genome-based prediction accuracy. Pre-
dicted (y axis) and observed (x axis) growth for test set individuals (red dots) in NaCl using the
best LMM+Pmodel in ‘distant’ (top) and ‘close’ (bottom) training scenarios. Grey dashed line de-
notes the identity y=x; coefficient of determination R2 is labelled on the plot. (c) Distant relatives
are more difficult to predict in each environment. Predictive performance (R2, x axis) of di↵erent
model classes (y axis) in two training scenarios: ‘Distant’ (colored bars) and ‘Close’ (white bars)
for each of the nine environments (boxes).
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captured by interaction and dominance ef-

fects (Supplementary Fig. 2).

Predictions based on closer relatives are

more accurate So far, our predictions for

each test individual were obtained from

models that were trained with data from its

close relatives that share half of the com-

plete chromosomes. We observed that er-

rors were larger when close relatives were

not available (for example, Fig. 5.3b and

Supplementary Fig. 7). Thus, we next com-

pared two training scenarios—‘close rela-

tives’, where each member of the test set

has several close relatives in the training

set (expected fraction of identical site geno-

types f =0.5), and ‘distant relatives’, where

test set individuals are not as closely re-

lated to anyone in the training set (expected

f =0.375, Fig. 5.3a). When training on close

relatives, predictions based on other traits

of the same individual are slightly more

accurate (median improvement=0.04, Fig.

5.3c, ‘P’), whereas BLUP performs substan-

tially better. On average, BLUP achieves

R2 of 0.14 when trained on distant relatives

and 0.76 on close ones (Fig. 5.3c, ‘BLUP’).

This di↵erence is explained by the larger

uncertainty of the predictive distribution

based on distant relatives: the observed er-

rors are near-perfectly calibrated to their

model-derived standard errors (Fig. 5.4a,

r2=0.96). Accuracy increases markedly

even with a small number of close rela-

tives included in the training data, whereas

adding more distant relatives to close ones

does not improve predictions (Fig. 5.4b,

Supplementary Fig. 8). For example,

adding on average just five close relatives

per test individual rises the median R2

from 0.15 to 0.65, but complementing the

training set of close relatives by all dis-

tant relatives has a negligible e↵ect (me-

dian R2=0.79 versus 0.81).

Perhaps surprisingly, training on close rel-

atives also improved QTL-based predic-

tions. For near-monogenic traits (for ex-

ample, growth in allantoin and galactose),

the accuracies were similar for both train-

ing scenarios (Fig. 5.3c ‘QTLs’). However,

for more complex traits, the QTL model

trained on distant relatives reaches high ac-

curacy in the training data, but does not

perform well out of sample, with 61% me-

dian decrease in accuracy (respective de-

crease for close relatives is 3%, Fig. 5.4e).

In this case, the prediction uncertainties

are similar (Fig. 5.4c), and most of this

di↵erence is explained by model selection.

When we mapped QTLs in close relatives,

but estimated their weights on distant rel-

atives, the prediction accuracy decreased

from 0.73 to 0.65 compared with carrying

out both procedures on close relatives (Fig.

5.4d and Supplementary Fig. 9). Con-

versely, mapping QTLs in distant relatives

and fitting their weights in close relatives

resulted in a much lower R2 of 0.31. In-

cluding close relatives in training gives a

more faithful approximation of the pheno-

typic covariance structure (Supplementary

Fig. 10), which explains the large gap be-

tween out-of-sample and in-sample perfor-

mance for distant relatives (Fig. 5.4e). No-

tably, prediction accuracy drops substan-

tially, even when just 1% of the training

data changes (Fig. 5.4e, filled versus empty

markers).
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Figure 5.4. Causes of improved prediction performance for close relatives. (a) BLUP predic-
tions from distant relatives are less accurate because of a more uncertain model-derived predic-
tive distribution. Prediction error (y axis, standard deviation of the residuals) compared with
the standard deviation of the predictive distribution (x axis) for the nine environments, when
trained on distant (blue dots) or close relatives (red dots). (b) BLUP predictions are more accu-
rate when the model is trained on a small number of close relatives compared with a large set
of distant relatives. Predictive performance of BLUP (R2, y axis) improves with expanding the
training set (size on x axis) with individuals closely (red line) or distantly (blue line) related to
the test set. From the dashed grey line onwards, distant relatives are added to the training set of
closely related individuals, and vice versa. Shaded regions denote the range of R2 over the four
cross-validation folds. (c) Unlike for BLUP in a, the less accurate predictions from the QTLmodel
in the ‘Distant’ training scenario are not in accordance with uncertainty in the model-based pre-
dictive distribution. (d) Low QTL predictive ability for out-of-sample distant relatives is mainly
due to discrepancies between the sets of mapped QTLs, not their estimated e↵ects. Predictive
performance (R2, x axis) of the QTLs model, stratified by training sets used for QTL mapping
(model selection) and weight estimation (model fitting). QTL mapping and weight estimation
are carried out under four training scenarios (y axis): both stages in distant relatives (‘QTLs: Dis-
tant, Weights: Distant’), both in close relatives (‘QTLs: Close, Weights: Close’), QTLs mapped
in distant relatives and weights estimated in close relatives (‘QTLs: Distant, Weights: Close’), or
vice versa (‘QTLs: Distant, Weights: Close’). (e) A minor change in the training set (replacing 1%
of distant relatives with close ones) has a profound e↵ect on out-of-sample QTL-based prediction
accuracy. Out-of-sample (black dots) and in-sample (white dots) predictive performance (R2) of
QTLs model in two scenarios: trained on distant relatives only (x axis) or when 1% is replaced
with close relatives (y axis).
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Figure 5.5. Prediction performance is similar for a range of model classes. Prediction perfor-
mances of additional published methods to standard linear mixed models (LMMs), both on close
and distant relatives. All results are shown for two training scenarios (close and distant relatives,
panels ‘close’ (top) and ‘distant’ (bottom)) and two types of prediction: purely genomic predic-
tion (panel ‘genomic’, left), and combined genomic and phenomic prediction (panel ‘genomic +
P’, right). Both x and y axes represent the coefficient of determination R2, and the horizontal and
vertical error bars denote the range of R2 over four cross-validation folds. (a) Multi-trait linear
mixed models (MT-LMMs) perform similar to single-trait LMMs. Predictive performance (R2) for
each environment (dots with various colours) for single-trait models (x axis) and multi-trait mod-
els (y axis). (b) Mixed random forests (MRFs) perform similar to single-trait LMMs. Predictive
performance (R2) for single-trait LMMs (x axis) and MRFs (y axis).

Combining genomic and phenotypic in-

formation (LMM+P) to predict from dis-

tant relatives gives accuracies similar to

combining QTLs and phenotypic informa-

tion. For traits where genomic prediction

on distant relatives does not work well (for

example, ca↵eine, glycine, phleomycin),

this model performs similarly to using

other phenotypes only or even slightly

worse (median improvement 0.02, Fig.

5.3c ‘LMM+P’). However, for traits with

large e↵ect QTLs (allantoin, galactose,

isoleucine), genetic information helps pre-

diction even if BLUP is not accurate.

Prediction performance is consistent for

alternative models Other methods for

genome-aided trait prediction have either

included other phenotypes directly in the

model or are compatible with doing so

(Lippert et al., 2014; Stephan et al., 2015;

Mrode, 2014). We confirmed that these

prediction implementations give results

that are concordant with ours. First, we

tested the multi-trait LMM (MT-LMM) that

jointly infers the e↵ects of genotype and

other phenotypes (Lippert et al., 2014).

This method gave results nearly identi-

cal to the LMM+P approach on both close

and distant relatives, in which we first re-

gressed the e↵ect of phenotypes, and then

fit a genomic model on the residuals (Fig.

5.5a). Second, we applied the recently pub-

lished MRF, which accounts for population

structure and captures nonlinear genetic

e↵ects (Stephan et al., 2015), and can use

71



Chapter 5. Predicting quantitative traits from genome and phenome with near perfect accuracy

the other measured phenotypes as predic-

tors. This method also performed similar

to the combined LMM (median R2 0.91 ver-

sus 0.91) for close relatives, with no consis-

tent di↵erence across the traits (Fig. 5.5b,

top row). For distant relatives, the MRF

had more accurate pure genomic predic-

tions than a LMM for 8 of 9 traits, and

when including phenotype information for

both models, 4 of 9 traits (Fig. 5.5b, bottom

row).

Discussion

We predicted nine heritable traits in a pop-

ulation of 6,642 yeast strains of varying

high relatedness, and achieved accuracies

over 90%, very near the repeatability limit.

To our knowledge, these are the most pre-

cise out-of-sample predictions of complex

traits to date. There is almost no missing

narrow- or broad-sense heritability, prov-

ing that very accurate genome-aided pre-

dictions can be obtained in practice, in con-

trast to relatively poor genomic prediction

performance for human cohorts, for exam-

ple, R2<0.16 using unrelated individuals,

and <0.37 for close relatives (Makowsky

et al., 2011). Our predictions outperformed

the traditional mid-parent approach that

is limited to narrow-sense heritability, but

has been predicted to remain unsurpassed

in accuracy for humans (Aulchenko et al.,

2009).

The improvement in predictive ability us-

ing phenotype data is due to capturing ad-

ditional signal from the non-additive ge-

netic and environmental components, re-

flecting the extent to which these are

shared between the traits. Their relative

contribution can somewhat be gauged from

the additional accuracy of the LMM+P

model over the standard LMM that ac-

counts for mapped additive, dominance

and interaction e↵ects. The improvement

is largest for traits that have a large gap

between narrow and broad-sense heritabil-

ities (phleomycin, hydroxyurea, glycine,

isoleucine), which is not caused by a sin-

gle dominant allele (galactose, allantoin).

Any remaining di↵erence is potentially due

to both weak interaction and dominance

e↵ects not included in the LMM during

model selection. Standardization, distri-

bution of replicates across multiple pre-

culture and experimental batches, and nor-

malization of phenotypes to very densely

spaced internal controls are expected to

minimize the influence of shared environ-

mental variation across plates (Zackrisson

et al., 2016). A small contribution of shared

environment is consistent with the phe-

notypic covariance decomposition (Supple-

mentary Fig. 2), and sizes of variance com-

ponents due to the 2nd and 3rd order in-

teractions that are difficult to map (Hallin

et al., 2016; Young and Durbin, 2014). Al-

though we cannot completely exclude that

a small fraction of the phenotype covari-

ance reflects shared environmental varia-

tion, for example, in the form of nutri-

ent access, initial population size or ex-

posure to stress, the residual covariance

has been empirically demonstrated to be

smaller than our prediction improvements

for most traits (Zackrisson et al., 2016). Re-

gardless, additional measured phenotypes

from the individual can clearly inform on

all these sources of variation, circumvent-
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ing the need to explicitly ascertain their ef-

fects.

Genomic prediction methods have re-

cently been extended to include more fine-

grained decomposition of trait variances,

both for phenotypes (for example, multi-

trait models (Lippert et al., 2014)) and

genotypes (partitioning sites by chromo-

some (Speed et al., 2012), allele frequency

(Yang et al., 2015) or functional class (Fin-

ucane et al., 2015)). In latter group, the

genetic covariance matrix is partitioned by

allele category, and a BLUP model is fit for

each. BLUP is a linear combination of train-

ing data, with uncertainties stemming from

genetic relatedness only for prediction. Ac-

cordingly, we found that genomic BLUP es-

timates became uncertain when closer rela-

tives were unavailable (Fig. 5.4a), and pre-

diction error increased. This source of er-

ror is not circumvented by the partitioning

methods, as the relatedness-derived un-

certainty remains, and therefore these ap-

proaches are unlikely to improve our sub-

optimal predictions for more distant rela-

tives.

It is important to note that our study pop-

ulation does not share many of the fea-

tures of human cohorts. We used data

from a diallel cross, in which only two al-

leles are present at any locus, and their

frequencies are close to 50%; there is no

spectrum of low frequency and rare alle-

les. Further, due to the controlled pheno-

typing design, there is little environmen-

tal variation and the heritability estimates

in our populations are therefore very high.

Although this is atypical for most human

traits, our results concern prediction accu-

racies relative to the heritabilities, regard-

less of their numerical value. Finally, hu-

man complex traits can be influenced by

hundreds if not thousands of loci. Never-

theless, their combined predictive ability

has remained far below the narrow-sense

heritability estimates. We capture nearly

all of the broad-sense heritability with the

most precise models, demonstrating that

knowledge of additional phenotypes helps

estimate the combined influence of small

e↵ect alleles and interactions that are dif-

ficult to map. Therefore, making use of

the accumulated personal phenotype data

is also expected to improve human trait

prediction.

When no very close relatives were avail-

able, and no single QTL explained a large

fraction of variance, the pure genomic

methods were inaccurate, even in our pop-

ulation of 6,642 individuals with high re-

latedness. At the same time, when the

number of very close relatives in the train-

ing sample was sufficiently large, the pre-

dictions were not improved by adding all

remaining more distant relatives. Thus,

observing phenotypes for parental haplo-

types in at least a few cases causes BLUP

to upweight their contributions, and for

QTL mapping to prioritize alleles that cap-

ture their signal. In concert, these ob-

servations suggest that e↵orts directed to-

wards creating genotype-based scores us-

ing common variants to predict disease risk

could benefit dramatically from being com-

plemented by systematic collection of fam-

ily history and relatedness data (Aulchenko

et al., 2009; So et al., 2011b; Guttmacher
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et al., 2004). As information from as few as

five close relatives gave large gains, we ex-

pect such an approach to be a cost-e↵ective

solution for achieving better prediction in

a clinical setting with finite resources.

Methods

Panel design and phenotyping 172 hap-

loid F12 segregants (86 Mata and 86

Mat↵) from a cross between YPS128 and

DVPBG6044 ((Illingworth et al., 2013))

were crossed in an all against all fash-

ion to obtain 86 ⇥ 86=7,396 diploid hy-

brids using standard yeast protocols (Fig.

5.1). After removing strains spawning

from one contaminated and eight aneu-

ploid haploid founders, we were left with

81 ⇥ 82=6,642 crosses for analysis. The

strains were grown in biological and tech-

nical duplicates (four measurements total)

in 1536-position solid agar plate cultures,

with all replicates on di↵erent plates and

taken from two di↵erent pre-cultures to re-

duce systematic bias. Medium prepara-

tion, plate pouring, robotic pinning and

pre-culture and experimental conditions

were all extensively standardized to re-

duce systematic bias. Every fourth posi-

tion was occupied by genetically identical

internal controls in the form of the ref-

erence YPS128 strain, and the 384 con-

trols on each plate were used to remove

any remaining bias by normalization. Al-

though complete randomization with re-

spect to all known confounders (for exam-

ple, plate position, fixture position, ma-

chine, pre-culture, temperature, humidity,

neighbouring colony size, amount of light)

and unknown sources of bias is not feasi-

ble, the dense grid of reference strains pro-

vides an excellent standard. We extracted

the area under the growth curve relative

to the starting point in each of the nine

environments, converted the values to log-

scale, and normalized them to a surface

constructed from the surrounding internal

YPS128 controls, as described earlier (Za-

ckrisson et al., 2016). The four replicate

values were then averaged to obtain the fi-

nal phenotype (that is, mean growth) for

each individual and environment. Panel

design, genotyping, phenotyping and nor-

malization are described in detail in Hallin

et al. (2016) and Zackrisson et al. (2016).

Modelling and predictions We used a

range of models to predict a trait of in-

terest either on genomic information only,

individual phenotypic information only or

both.

Phenotype (‘P’). Let y be the vector contain-

ing the phenotype of interest for all N in-

dividuals, and let P1, ...,P8 be the remain-

ing phenotypes. We modelled y as y ⇠

N (β0 + β1P1 + · · · + β8P8,σ
2I) to fit the phe-

notype weights β used for prediction.

Best linear unbiased predictor. Let xj be the

genotype vector for SNP j = 1, ...,M , and let

X be the genotype matrix X = (x1, ...,xM ). In

the genomic BLUP model, y = µ1+
P

j bjxj +

✏ with random coefficients bj ⇠ N (0,σ2
g )

and measurement noise ✏ ⇠ N (0,σ2
e I). This

model implies the multivariate Gaussian

distribution, y ⇠ N (µ1,σ2
g K + σ2

e I) where

K = 1
cXXT is the realized genetic related-

ness matrix, with the scaling constant c

being the average diagonal value of XXT .
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Prediction for the test individual can be

obtained by conditioning on the observed

data in a standard way for multivariate nor-

mal distributions. When calculating the

standard deviation of the predictive distri-

bution (Fig. 5.4a), we averaged the vari-

ances on the predictive distributions (that

is, averaged the diagonal elements of the

covariance matrix of the predictive multi-

variate normal distribution) and reported

the square root of this number.

Quantitative trait loci. To identify the

strongest QTLs, we first carried out for-

ward selection for up to 50 iterations in the

linear regression model y ⇠ N (β0 +
P

j2Qt
)

, where Qt denotes the selected collection

of QTL indexes at iteration t. The num-

ber of QTLs in the final model was deter-

mined by out-of-sample prediction accu-

racy, with fourfold cross-validation on the

training portion of data (hence, altogether

a double cross-validation scheme).

Midparent. Let yij the phenotype for in-

dividual who has parents i and j . Let

P1
i and P2

j the parental phenotype values.

We model yij the mid-parent value yij =

0.5(P1
i + P2

j ) + ✏ij , where ✏ij is uncorrelated

noise. We first fit the parental values from

the yij observed in training data, and used

them to predict phenotypes of test individ-

uals.

LMM with dominance and interaction effects.

The LMM model combines additive, dom-

inance and interaction e↵ects with genetic

relatedness, y ⇠N (QTLs+ dom+ int,σ2
g K +

σ2
e I). The fixed e↵ects (QTLs+dom+int) are

constructed with forward selection among

additive QTLs and interaction between all

such SNP pairs xi and xj , where xi has pre-

viously been selected into the model. Al-

though we miss interactions where neither

locus has a significant additive e↵ect, it

has been shown that such occurrences are

rare (Costanzo et al., 2010), and their con-

tribution to explaining variance is negligi-

ble (Bloom et al., 2015). By allowing self-

interactions, we also incorporated domi-

nance e↵ects. We selected the final model

by performing cross-validation on train-

ing data after each of the feature selection

steps.

LMM including phenotypes (‘LMM+P0). The

LMM + P model combines additive, domi-

nance and interaction e↵ects with genetic

relatedness and other traits, y ⇠ N (QTLs +

dom + int + P,σ2
g K + σ2

e I). The fixed e↵ects

contains a genetic (QTLs + dom + int) and

non-genetic (P) part. The latter includes

the linear combination of all other traits

P1, ...,P8. First, we regress y on P, and then

we construct the genetic component as de-

scribed for the LMM model.

Multi-trait LMM. MT-LMMs model multi-

ple phenotypes jointly. The correlation be-

tween two traits is modelled in two parts,

via a genetic and non-genetic component

as follows (Lippert et al., 2014). Let

Y = [y!, ..., y9] be the matrix for phenotypes

y!, ..., y9, and let F denote the fixed e↵ects

for each of these phenotypes, F = [f1, ..., f9].

We used the same fixed e↵ects f i that we

constructed in the LMM model. Let C be

the genetic covariance matrix between phe-

notypes and
P

the non-genetic one. Then

vecY ⇠ N (vecF,C ⌦ K +
P
⌦I) according

to the MT-LMM. To obtain MT-LMM pre-
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dictions which correspond to the LMM+P

model, we condition the multivariate nor-

mal distribution.

Mixed random forest. We applied the MRF

approach (Stephan et al., 2015), available

via LIMIX (Lippert et al., 2014). We ran the

MRF with 25 trees and otherwise default

settings. For genomic predictions (corre-

sponding to the LMM model), we included

all SNPs as potential features. For genomic

and phenomic prediction (corresponding

to the LMM+Pmodel), we added also other

phenotypes as potential features.

Training and obtaining predictions All

models were fitted with the Python pack-

age LIMIX (Lippert et al., 2014). We used

four-fold cross-validation to obtain out-of-

sample predictions for all 6642 individu-

als. We partitioned the set of all individ-

uals into four folds analogously as shown

in (Fig. 5.3a), i.e. by splitting the two sets

of parents (i.e. one in rows, the other in

columns) into two equally sized groups. We

use each one of these four subsets of size

N 2 as a test set to obtain predictions and

the remaining three as a training set to fit

the models. First, we did not take into ac-

count the relatedness structure and divided

individuals into subsets randomly (results

in Fig. 5.2). Later, we distinguished be-

tween closely and distantly related individ-

uals (results in Fig. 5.3). The latter cor-

respond to siblings in a traditional sense,

sharing many of the haplotype blocks (ex-

pected fraction of sites identical by state

0.375), whereas the former share one com-

plete chromosome in each pair (expected

fraction of sites identical by state 0.5). The

four test sets remained the same as before,

but instead of training on all 3N 2 remain-

ing individuals, we picked the N ⇥ N in-

dividuals who do not share a parent with

anyone in the test set (‘distant relatives’),

as well as sampled N 2 from the 2N 2 re-

maining individuals who do share one par-

ent with someone in the test set (‘close rel-

atives’).

Heritability estimation Narrow-sense

heritability was estimated from the ge-

nomic BLUP model as σ2
g /(σ

2
g + σ2

e , when

fitted to all of the data. To estimate re-

peatability, we fitted the following fixed

e↵ects model rij = yi +✏ij , where ri1, ri2, ri3,

ri4 are the four replicate measurements for

individual i, yi is the average rij value for

this individual and ✏ij ⇠N (0,σ2). Repeata-

bility was estimated as 1−σ2/Var(r).

Data availability The data used in this

study are available in the Supporting In-

formation of Hallin et al. (2016). Analysis

code is available at https://github.com/

kasparmartens/y10k-prediction.
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Chapter 6

The genetic basis for gamete
inviability – ongoing

S exually reproducing organisms are dependent on the production of gametes
for the continuation of their genetic lineage. Therefore, the ability to undergo
a successful meiosis, producing viable and fully functional gametes is critical;

failure to do so may result in weak or inviable o↵spring and the end of the lineage.
Compounding on the difficulty to pass alleles on to the next generation, interac-
tions between di↵erent alleles may also result in sub-optimal gametes. To investi-
gate the underlying genetics behind why gametes are inviable we have constructed
six hybrids spawning from crosses between highly diverged representatives of four
Saccharomyces cerevisiae lineages. We recently published reference quality genome
assemblies for the four parents and these end-to-end assemblies give us a thorough
understanding of all the genetic di↵erences in the hybrids, from single nucleotide
polymorphisms to structural variation. Thanks to this, we are in a position to accu-
rately describe how gamete viability in a hybrid is dependent on the genetic makeup
of the parents. By dissecting and whole genome sequencing 2,500 gametes from
each of the six hybrids, we are producing a resource of 15,000 gametes with varying
viability and fitness. Using the sequence data we are exploring the impact of the re-
combination landscape, aneuploidies and genetic interactions on gamete inviability,
and relating these phenomena to underlying genomic di↵erences between the par-
ents. Numbers and types of aneuploidies varied across gametes depending on par-
ent combinations and genetic distance between parents. Aneuploidies correlate well
with the gamete inviability but the majority of inviable gametes are not explained by
this. We are currently exploring the e↵ect of the recombination landscape on gamete
viability and fitness, and investigating the role of allele-allele interactions.

Johan Hallin, Jia-Xing Yue, Marine Poullet, Luca Crepaldi, Stephan
Lorenz, Jonas Warringer, Leopold Parts, Alexander Young, & Gianni Liti

Presented at the International
Conference on Yeast Genetics and

Molecular Biology (2017)
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6.1 Project summary

The abstract you just read was the one I

submitted to the 28th International Confer-

ence on Yeast Genetics and Molecular Biol-

ogy. I was chosen to present this project as

a poster and as an oral presentation during

the yeast population, comparative and evo-

lutionary genomics workshop. The num-

ber of strains to be sequenced has changed

along the way and is now 1,500. As this

project is still a work in progress, I will

mostly share methodological aspects and

summary statistics of the work that has

been done so far.

Using four diverged parents (Fig. 3.2),

YPS128 (NA), DBVPG6044 (WA), Y12 (SA)

and DBVPG6765 (WE) we are going to

investigate genetic properties of hybrid

genomes. Our research team is in a

great position for doing this study as we

recently published end-to-end reference

quality genome assemblies of these four

parents (Yue et al., 2017). These complete

assemblies gives a detailed view of all types

of genetic variation between the parents,

from SNPs to structural variation, which al-

lows us to look at the underlying genetic

factors that a↵ect, for example, the recom-

bination landscape.

By crossing the four parents in all possible

combinations (Table 6.1) we created six hy-

brids with genetic divergence in both de-

gree and kind (Liti et al., 2009; Bergström

et al., 2014; Yue et al., 2017). We then

pushed these six hybrid through meiosis

and isolated gametes (or spores) using ami-

cromanipulator in order to collect 2,000 vi-

able spores from each hybrid. Using a cus-

tom made R program I documented the vi-

ability of each tetrad and the colony area

(measured as number of pixels). We are

underway with the sequencing of 1,500

spores from each hybrid that will be used

for downstreams analysis (at the time of

writing this, ⇠6,000 spores have been se-

quenced; due to time constraints 2,296 of

these made it into this thesis (Table 6.4)).

Sequencing is done at the Single Cell Ge-

nomics Core Facility at the Wellcome Trust

Sanger Institute, we opted for a sequencing

coverage that would allow us to confidently

call genotypes, while keeping the cost low

enough to allow for a large sample size.

All 12,000 spores that were collected

were phenotyped by me at the Univer-

sity of Gothenburg using the Scan-o-matic

methodology (Zackrisson et al., 2016) in

nine di↵erent conditions.

Shortly, the main goals of this project are

i) to characterize the recombination land-

scape of di↵erent hybrids and how they de-

pend on the genetic structure of the par-

ents. ii) to investigate the QTL landscape,

and how it might di↵er from hybrid to hy-

brid as well as iii) look for genetic contri-

butions to gamete inviability, such as aneu-

ploidies or gene-gene interactions.

In the sections below, I will give a more de-

tailed account of the process and progress

of the project so far.

6.2 Parental strains

The four parents (NA, WA, WE, SA) were

chosen for a good reason. Jia-Xing Yue re-

cently spearheaded a project in our team
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(Yue et al., 2017) (see chapter 8 for ab-

stract) in which these strains (among oth-

ers) were sequenced using PacBio (Pacific

Biosciences of California, Inc.) and Illu-

mina (Illumina, Inc) at high coverage. The

long reads gained from PacBio sequencing

allowed most chromosomes to be assem-

bled into single contigs, and complex re-

gions of the genome to be delineated.

In the context of the new project, the end-

to-end high quality genome assemblies of

the parents means that we have close to

complete knowledge of all genetic di↵er-

ences between our four parents. This is im-

portant, since we can look at what genetic

di↵erences between the parents a↵ect spore

viability (for example through probability

of acquiring aneuploidies during meiosis)

or the recombination landscape. Addition-

ally, we can use the parental genomes for

calling genotypes rather than relying on the

S288C reference genome which would in-

evitably miss information.

Jia-Xing Yue is the designated bioinfor-

matician of this project and he is build-

ing and perfecting pipelines for read map- Tetrad. The four gametes

(or spores) resulting from

one meiotic event are

collectively called a

tetrad.

ping against both parental strains to call

genotypes and for classification of di↵erent

types of recombination events.

6.3 Gamete acquisition

The six hybrids and the four diploid par-

ents were sporulated at 23°C in 25ml liq-

uid potassium acetate media (2%) after a

48 hour incubation in respiratory media.

The amount of time spent in potassium ac-

etate di↵ered between the strains since they

sporulate with di↵erent efficiency.

The tetrads were treated with 100µg/ml

zymolyase at 37°C for between 20 and 30

minutes (depending on the strain) before

being separated using a dissection micro-

scope (Zeiss Axioskop 40), ensuring that all

spores from one meiosis event (one tetrad)

were properly isolated and could be identi-

fied as being from the same tetrad.

The tetrad dissection was performed on

solid agar plates. After dissection, the

plates were incubated at 30°C for three

Table 6.1. Strain genotypes. This table shows the genetic markers that are segregating in the
strains used for this study, all strains are ho::HygMX.

Cross Genotype

Parents

NA-NA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
SA-SA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
WE-WE Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
WA-WA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3

Hybrids

SA-NA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
NA-WE Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
NA-WA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
SA-WE Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
SA-WA Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
WA-WE Mat a, ura3::KanMX – Mat↵, ura3::KanMX, lys2::URA3
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Figure 6.1. Image analysis pipeline. (1) An image is taken using a Epson flatbed scanner, the
image is then processed in a program based on the EBImage package (Pau et al., 2010) for R. (2)
The image is broken down so as to analyze one plate at the time, we will be following the top
left plate. The cropping of the image is based on absolute values; since the plates are placed in a
fixture, they will be in the same position every time an image is taken. A median filter is applied
in order to smoothen the image, getting rid of any dust and noise from the plate. (3) Using an
otsu threshold, the colonies are separated from the background making them possible to identify.
(4) By using the courser to click on the top left colony, a grid is placed on top of the image,
this grid allows me to also identify colonies that are not growing, and to know which spores are
coming from the same tetrad (one column per tetrad). (5) The identified colonies are colored in
blue and manually inspected. In this example, the top left colony has not been identified, if this
happens you can use the courser to click on the unidentified colony and the program will find
it. (6) Identified colonies are attributed with their colony size in number of pixels while inviable
colonies are set to ’InV’ (shown for one tetrad).

days, and subsequently scanned and the

viabilities and colony sizes were docu-

mented. The tetrad dissection was a joint

e↵ort between Agnès Llored and myself.

6.4 Image analysis

All plates were scanned using an Epson

Perfection V330 Photo scanner, in 8-bit

greyscale at 300dpi in .tif format. The

plates were placed in a custom made fix-

ture when the image was taken, and the

image analysis was performed using a cus-

tom made R program, written by me and

based on the R package EBImage (Pau et al.,

2010).

The analysis pipeline is detailed in fig-

ure 6.1. Once the analysis is done the

colony size data is exported to a spread-

sheet together with associated metadata,

such as the date of dissection, and amount

of days in sporulation media. Using a time-

resolved phenotyping such as Scan-o-matic

was unfortunately not possible due to the

practical difficulties and the lack of an ap-

propriate imaging facility at the lab in Nice.

It would have been very interesting to look
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at, for example, time until appearance of a

colony to have a more fine-grained germi-

nation phenotype. Nevertheless, the pro-

gram allowed us to easily document the

viability of the tetrads, and hopefully the

colony area can give us some insight into

the genetics of spore germination. Due to

the nature of the experiment, each colony is

unique, which means that we cannot have

replicates for the germination phenotype

and may limit our ability to locate QTLs.

Once the colonies had been scanned, their

DNA was extracted and sent to the Well-

come Trust Sanger Institute for sequencing.

6.5 Large scale DNA extraction

The ambition of this project got very tan-

gible when the DNA extractions needed

to be done; performing 9,000 DNA ex-

tractions calls for a more high through-

put approach than Eppendorf tubes. Dur-

ing the beginning of this project I adapted

the MasterPureTM Yeast DNA Purification

Kit from Epicentre to be used with 96-well

plates, making sure that the yield and qual-

ity of the DNA was sufficient for sequenc-

ing.

Colonies from the dissection plates were

scraped o↵ and put into 2ml round

bottomed 96-well plates (PP-Masterblock,

Grainer bio-one), with 1ml liquid YPD. I

would generally prepare four plates at a

time, allowing me to perform 384 DNA ex-

tractions during one day. The plates were

then incubated over night at 30°C in order

to increase the number of cells. After incu-

bation, I would take 100µl out of the plate

and place in a 200µl round bottomed 96-

well plate (Falcon). I would spin down the

cells from the preculture (Centrifuge 5810

R, Eppendorf; 3min, 3000rpm), remove the

YPD with a multi-channel pipette (Eppen-

dorf) and then add 1ml of 25% glycerol be-

fore mixing the wells and freezing at -80°C.

The DNA extractions were then made in

the 200µl 96-well plates. The main change

to the original MasterPure protocol was re-

ducing the quantities of reagents to reflect

the reduced amount of cells, as well as

increasing the centrifugation times due to

the fact that the centrifuge taking 96-well

plates does not reach the speed called for

in the original protocol. The optimization

of the DNA extraction protocol allowed me

to scale up the amount of extractions, in-

crease the speed with which they were done

and decrease the cost, since less time and

reagent was spent.

The DNA was stored in TE bu↵er and sent

to the Single Cell Genomics Core Facility at

the Wellcome Trust Sanger Institute (Hinx-

ton, United Kingdom). Once there, it was

sequenced with coverage high enough to

call genotypes but low enough to allow for

a large number of sequenced spores (⇠8x).

6.6 Growth phenotyping

Apart from the germination phenotypes we

also phenotyped the growth of all 12,000

spores that were isolated using Scan-o-

matic (Zackrisson et al., 2016). We chose

nine di↵erent environments (Table. 6.2)

based on their ability to facilitate a large

spread of phenotypes, with the exception
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of galactose (known from previous exper-

iments). We also phenotyped the diploid

parents and the diploid hybrids together

with the spores.

Table 6.2. Phenotyping environments. All en-
vironments used for growth phenotyping with
Scan-o-matic.

Environment Note

YPD -
Synthetic complete -
Heat 40°C
Galactose 2%
NaCl 1.5M
CuCl2 0.5mM
Ca↵eine 2mg/ml
Rapamycin 0.05µg/ml
Paraquat 400µg/ml

I performed all phenotyping during my

stay at the University of Gothenburg be-

tween November 2017 and January 2018,

with technical help from Simon Stenberg

and Karl Persson in the lab of Dr. Jonas

Warringer. Phenotyping was done with

four replicates which were distributed over

di↵erent positions in di↵erent scanners in

order to minimize systematic bias. I have

yet to perform the quality control and phe-

notype extraction, so at the moment, I only

have phenotype data frommy initial colony

size screen to share.

6.7 Genotyping and recombination

landscape

Each hybrid is the result of a cross between

two di↵erent parents, which implies that

all hybrids will have di↵erent segregating

sites. For a given hybrid, we identified seg-

regating sites to be used for genotyping by

aligning the two parental genomes to each

other, as well as aligning the Illumina reads

from parent 1 to the genome assembly of

parent 2 and vice versa (see table 6.3 for

the amount of markers for each hybrid).

Jia-Xing Yue has written this pipeline and

thanks to the high quality genome assem-

blies from one of his projects (Yue et al.,

2017) we can confidently locate SNPs in

regions that are difficult when mapping

sequencing reads to the S288C reference

genome, such as subtelomeric regions.

By calling segregating sites using the

parental genomes and by mapping the Illu-

mina reads from the spores to both parental

genomes we have greater chance to accu-

rately call the genotypes (as opposed to

basing it on the reference as is usually done

(Bloom et al., 2013; Treusch et al., 2015;

Hallin et al., 2016; Ziv et al., 2017)). The

genotypes will be used to define the recom-

bination landscape of these di↵erent hy-

brids, and again thanks to the genome as-

semblies of the parents we can correlate the

recombination landscape with any kind of

genetic variation between the parents. This

will let us look at, for example, the e↵ect of

inversion on recombination.

Another interesting aspect of this project is

that we are sequencing spores from tetrads

that are not fully viable. I.e. from tetrads

where one or more spores did not grow.

Traditionally, the recombination landscape

has only been looked at in tetrads where

all four spores are viable (Mancera et al.,

2008; Cubillos et al., 2011) which limits

these studies to fully functioning meiosis.

86



Chapter 6. The genetic basis for gamete inviability – ongoing

We want to characterize successful meio-

sis events as well as those that do not

turn out perfect. What kind of recombi-

nation landscape does a spore have where

it is the only living gamete from a meio-

sis? This will hopefully allow us to iden-

tify patterns explaining why some meioses

are dysfunctional. Furthermore, in tetrads

where only one spore is inviable, we can in-

fer its genome by matching the recombina-

tion events in the three viable gametes; giv-

ing us a window into the genome of a dead

gamete. Do inviable gametes have less re-

combination events than viable ones?

The recombination landscape analysis is

ongoing, with the pipeline being devel-

oped by Jia-Xing. Calling and classifying

di↵erent types of recombination events is

based on the ReCombine suite (Anderson

et al., 2011) but has been re-written with

slightly di↵ering definitions and has been

optimized for our two-parent approach for

calling the events. As this is still ongoing,

I will unfortunately not be sharing any re-

combination data at this point.

Faulty recombination can results in aneu-

ploidies, we are going to use the sequence The study by Down

(1866) describing Down’s

syndrome is well worth a

read. He wrongly

attributes the hereditary

origin of the syndrome to

tuberculosis, but he

elegantly uses the

condition as an argument

for the shared ancestry of

all humans (seven years

after Darwin’s On the

Origin of Species was

published).

data for the spores in order to give an ac-

count of the contribution of aneuploidies to

gamete inviability

6.8 Calling aneuploidies

Having more or less than the normal copy

number of any given chromosome is called

an aneuploidy. In gametes, they are caused

by faulty chromosome segregation during

meiosis and are the cause of, for example,

Down’s syndrome in humans (Down, 1866;

Antonarakis et al., 2004).

Using the coverage data from Jia-Xing’s

read mapping I search for possible aneu-

ploidies. Aneuploidies should appear as an

increase of reads for a specific chromosome

by a factor of two and can by that logic be

identified by the coverage data. I.e. the cov-

erage would be twice as high for an aneu-

ploid chromosome as for an euploid chro-

mosome.

Highly repetitive regions of the genome

(e.g. the rDNA on chromosome XII) were

masked in the files with the coverage data

Table 6.3. Segregating sites. This table shows the amount of markers for each hybrid, the mark-
ers were called by using the genome assemblies and Illumina reads of the two parental genomes.
This set of markers is not necessarily the final one and may change. “Sequenced” refers to the
amount of sequenced spores that were used for the analysis in section 6.9

.

Markers Intermarker distance (bp)
Cross SNP Indel Total Mean Median stdev Sequenced

SA-NA 43,863 1,141 45,004 258.20 124.00 499.15 834
NA-WE 65,559 2,017 67,576 170.65 86.00 339.56 52
NA-WA 53,702 1,444 55,146 210.50 103.00 389.46 571
SA-WE 71,285 2,051 73,336 156.45 81.00 447,13 780
SA-WA 60,379 1,602 61,981 186.31 95.00 350.38 0
WA-WE 72,880 2,100 74,980 152.78 78.00 310.03 59
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Figure 6.2. Germination phenotypes. The area of colonies, in pixels, were calculated after three
days of growth using a custom made R program. Box and whisker plots show the median (hori-
zontal line inside box), 1st and 3rd quartile (box), and the whiskers go up to the last data point
within 1.5 interquartile ranges. The WA-WA parents is the weakest grower and that is reflected
in that the hybrids containing this parent are generally worse growers than other hybrids. The
sample size of each box corresponds to the total amount of viable spores for the parent or hybrid
(i.e. Spores ⇥ Viability in table 6.4, ⇠2,000 for the hybrids.)

in order to not have the variation of these

regions in the di↵erent strains a↵ect the

aneuploidy calling. For a given spore, the

mean coverage of each chromosome was

calculated as well as the mean coverage of

its entire genome. Spores with an aver-

age genome coverage below 0.5 and chro-

mosomes with an average coverage below

0.5 were excluded, to reduce false posi-

tives. Aneuploidies were called if the ra-

tio between the chromosome and genome

coverage was equal to or above 1.5. I

then manually investigate each called ane-

uploidy by inspecting plots of the coverage

of the spore.

6.9 Preliminary results

I will here share some preliminary results

including the spore viability of the dif-

ferent hybrids, the germination phenotype

and aneuploidies.

6.9.1 Spore viability and colony size

The spore viabilities are shown in table

6.4. The low viability of the WA-WE hy-

brid forced us to isolate a lot of its spores

in order to acquire 2,000 viable spores. All

parents have rather high viability as is ex-

pected, except for WA who stands out with

its lower viability. This is reflected also in

the lower viability of the crosses including

this strain.

The weakness of the WA strain is also clear

in the germination phenotype data Fig. 6.2.

Furthermore, WA hybrids have on average

smaller colony areas after three days of

growth than hybrids not containing WA. It

will be very interesting to compare these

data with the growth phenotyping on YPD
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to see if these data reflect a general growth

defect or a defect in germination.

The amount of phenotypic variation within

the homozygous diploid parents is a bit sur-

prising. However, the fact that the hap-

loid spores will have markers segregating

that can a↵ect growth (ura3, lys2) may ex-

plain some of this variation (Table 6.1). At

the moment, we cannot exclude that this

reflects noise from the germination pheno-

type but we intend on testing the e↵ect of

the markers to see what extent it is con-

tributing to this variation.

6.9.2 Viability and genetic distance

Genetic divergence can e↵ect the viability

of spores by interfering with recombination

during meiosis or by genetic incompatibil-

ities between diverged genes (Greig, 2008).

In figure 6.3, the viability of the di↵er-

ent strains are plotted against the amount

of markers. There may be some corre-

lation between the viability and marker

amount, however, more data points would

be needed for any conclusive statements.

The crosses containing the WA strain are

not very efficient at producing viable ga-

metes, this is true also for the diploid WA-

WA, which means that this is not likely to

be due to genetic divergence.

Interestingly, the WA-WE gametes have

very low viability (figure 6.3, figure 6.4).

The divergence between the two strains is

not radically di↵erent from other crosses

(e.g. SA-WE), which suggests that there

is some particular incompatibility between

these the WA and WE genomes. It is not

likely to be any structural variation, since

that would have come out also in other hy-

brids. With the end-to-end genome assem-

blies of the parents, and genome sequences

of the gametes, we hope to explain these

types of patterns.

Table 6.4. Crosses and their viabilities. This table shows the diploid parents, hybrids and their
associated total amount of spores dissected and their viability. The ratio of tetrad types ranges
from 0 to 4, the numbers designate the number of spores viable in a tetrad, so the values in
column type 4 is the ratio of tetrads with all spores viable, while the values in column type 3
corresponds to the amount of tetrads with three viable spores.

Ratio of tetrad types
Cross Spores Viability (%) 0 1 2 3 4

Parents

NA-NA 472 94 0 0 0.06 0.11 0.83
SA-SA 472 88 0 0.01 0.03 0.39 0.57
WE-WE 736 82 0.02 0.04 0.11 0.29 0.54
WA-WA 152 60 0.00 0.13 0.37 0.26 0.18

Hybrids

SA-NA 2,420 85 0.04 0.03 0.09 0.17 0.67
NA-WE 2,720 84 0.03 0.01 0.12 0.25 0.59
NA-WA 2,680 81 0.03 0.02 0.12 0.35 0.48
SA-WE 2,660 76 0.08 0.04 0.15 0.23 0.50
SA-WA 2,776 75 0.03 0.05 0.20 0.35 0.37
WA-WE 5,036 44 0.12 0.26 0.40 0.18 0.04
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Figure 6.3. Divergence and viability. The divergence of two strains that are crossed together can
have an e↵ect on the gamete viability (Greig, 2008). The SNP, Indel, and total amount of markers
are plotted on the x-axis (Table 6.3) while the average viability of the gametes of a given cross is
on the y-axis (Table 6.4). The data points on x = 0 corresponds to the diploid parents.

6.9.3 Aneuploidies

I ran the aneuploidy analysis on the first

sets of sequencing that we received from

the sequencing facility, therefore, the data

shown here are from 2,296 sequenced

spores. Due to the, for now, limited sample

size and the frequency of aneuploidies, we

do not have a substantial amount of spores

with aneuploidies; the amount of aneuploi-

dies found is at the moment 103, but will

increase as the sample size increases which

will strengthen (or refute) any trends seen

thus far.

The amount of aneuploidies as a function

of chromosome size corroborates previous

studies in that amount of aneuploidies in-

crease as the size of the chromosomes de-

crease (Fig. 6.4a) (Mancera et al., 2008; Cu-

billos et al., 2011).

The amount of aneuploidies in a specific

hybrid for a specific chromosome might

have more to it than just di↵ering chromo-

some sizes. We are investigating the possi-

bility of parent or hybrid specific aneuploi-

dies, i.e. aneuploidies that occur dispropor-

tionately often in a cross. In figure 6.4b,

all aneuploidies found so far are sorted ac-

cording to chromosome and cross. From

this data, it seems like the chr XI has an in-

crease in aneuploidies in the SA-WE cross

compared to the others. This may be due

to some incompatibility between the two

parental strains that only manifest in that

specific cross, with our end-to-end genome

assemblies, we can investigate what kind of

genetic or genomic incompatibility might

cause this pattern.

6.10 Perspectives

With the large amount of data generated

in this project we hope to give a complete

view of the influence of genetic background

to recombination landscapes, aneuploidies,

quantitative traits, and gamete inviability.

This project is based on four parents rather

than two (as in my previous project), giv-
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Figure 6.4. Chromosome size, hybrids and aneuploidies. (a) Corroborating previous studies,
the amount of aneuploidies has an inverse relationship with the length of the chromosomes,
such that smaller chromosomes tend to gain more aneuploidies than larger ones. (b) Sorting
the aneuploidies according to chromosome (y-axis, sorted according to chromosome length) and
hybrid (facets) reveals possible hybrid specific aneuploidies. Chromosome XI has a large number
of aneuploidies in the SA-WE hybrid but not in the others, which may be due to some genetic or
genomic incompatibility between the SA and WE strain. Values are normalized by the amount
of spores sequenced for the given hybrid. Note that the WA-WE facet has a di↵erent scale on the
x-axis, due to its smaller samples size (n=59) these values are not as robust. n refers to the amount
of spores that have been sequenced, per hybrid, and included into this analysis (Table 6.3). The
NA-WE hybrid is not shown since no aneuploidies were found for it (n = 52).

ing me the opportunity to investigate how

the landscape of QTLs can be a↵ected by

di↵erent parental contributions. Addition-

ally, in light of the recent article by She and

Jarosz (2018), we can also use real data to

look at the increase in resolution of QTLs

that comes with less marker density Table

6.3. In contrast to my previous project, I

would also like to investigate QTL-QTL or

QTL-genome interactions, using our six dif-

ferent hybrids we could look at how con-

served di↵erent interactions are.

In contrast to Hallin et al. (2016) and

Märtens et al. (2016), the segregants in this

project are the result of just one meisis,

which means that they have had less re-

combination events and will due to this

have a lower QTL resolution. However,

using the logic from the round-robin ap-

proach by Treusch et al. (2015) we might

be able to use the di↵erent crosses in order

to narrow down the regions.

Our mapping population is haploid which

limits our genetic contributions to varia-

tion to additive and epistatic components.

Looking at haploid gametes does however

open up a completely new set of interest-

ing analyses that can be done. Looking

at the genetic contributions to gamete in-

viability, for example, naturally cannot be

done in diploids. Additionally, this large

dataset of haploids means that a new big

cross grid experiment could be done, with

a much larger sample size (albeit, with big-

ger linkage regions).
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Chapter 7

Discussion and perspectives

T he discussion is, arguably, the

heart of any scientific publica-

tion. However, given that the sci-

entific papers included in this thesis con-

tain within them their own discussion, I

will here simply discuss potential limita-

tions of my work. As well as what could

have been done di↵erently and what could

have been done additionally.

7.1 A QTL mapping population

The mapping population used in both pa-

pers accompanying this thesis (Märtens

et al., 2016; Hallin et al., 2016) was con-

structed using a Singer ROTOR HDA robot

(Singer Ltd, UK.). The rationale behind

this mapping population was to increase

the power to detect QTLs by increasing the

sample size while keeping the sequencing

cost down, and at the same time maximize

the resolution for QTL mapping by using

advanced intercrossed lines, and doing all

this in diploids.

As we stated in the article, the resulting

population structure of the mapping pop-

ulation inhibited the power with which we

could call additive QTLs. A large propor-

tion of the variation between the strains

were explained by the relatedness between

them, i.e. sharing half a genome made

phenotypes quite similar. In order to re-

move the population structure for map-

ping additive QTLs, we calculated the in-

ferred diploid hybrid phenotype (see pa-

per), this e↵ectively calculates the aver-

age e↵ect of a haplotype by fixing the

shared parental haplotype and randomiz-

ing the second parental haplotype. This re-

moves the population structure, but unfor-

tunately also reduces the sample size of the

mapping population down to the amount

of haploid parents that we sequenced. This

removing of the population structure also

removes any nonadditive e↵ects that comes

from interactions with the second haplo-

type. However, there may still be some

epistatic interaction e↵ects in this scaled

down mapping population, but these ef-

fects cannot bemappedwith the traditional

marker regression method.

Instead, for mapping nonadditive e↵ects

we took advantage of the larger sample size

as the nonadditive phenotypes were cal-

culated to be the deviation between the

diploid hybrid and the mean of the two in-

ferred parents. The rationale behind this

is that the deviations from average e↵ect
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of the average e↵ect of the two haplotypes

would constitute a purely additive inheri-

tance, and any deviation from that would

be due to within or between locus e↵ects.

This means that the sample size was again

increased to the actual number of strains

that we phenotyped, and explains why we

might have been calling nonadditive QTLs

with higher power than additive.

Althought the additive QTLs su↵ered a bit

from the crossing scheme, the di↵erences

in genetic relatedness did aid in the phe-

notype predictions as the quality of predic-

tions could be compared between the two

groups. The crosses also allowed us to look

at within locus contributions to heterosis at

a large scale, which will be discussed later

on.

Recently, a paper was published using ad-

vanced intercross lines (although they don’t

call it that) (She and Jarosz, 2018). They

manage to map QTLs at nucleotide res-

olution by a very simple solution: they

decreased the genetic divergence between

the two parental strains. This reduces

the complexity of the model, and increases

the amount of space between the markers.

This increase in of inter-marker distance al-

lowed them to locate the variants that had

the e↵ect. The decrease in complexity in

genome di↵erences did not e↵ect the diver-

sity of phenotypes in the mapping popu-

lation, and e↵ectively only gave them the

opportunity to really distinguish the causal

variants down to the nucleotide.

The approach of reducing the divergence

between the parental strains applied by

She and Jarosz (2018) gives nothing new

in terms of traditional mapping attempts

where the goal of choosing parents have

been to have as high variation between

them as possible. However, it begs the

question of why the choice of parents was

tomaximize the variation, rather thanmax-

imizing the probability of capturing the

causal variant.

However, when using S. cerevisiae as a

model for a specific complex trait, rather

than as a model for complex traits in gen-

eral, you might find yourself with less

strains to choose from. This would then

force you to go with whichever strains that

are di↵ering in your phenotype of interest.

That being said, the amount of strains that

are available now for these types of stud-

ies (e.g. The 1002 Yeast Genomes Project)

might contain enough strains to easily find

a good combination, hitting the sweet spot

between diverging phenotypes and diverg-

ing genotypes.

In the context of my papers, it would have

been interesting to have used less diverged

strains and perhaps being able to narrow

down the QTLs to single nucleotides. It

is known that QTLs can encompass several

causal variants with high linkage (Stein-

metz et al., 2002; Lorenz and Cohen, 2012),

and due to that the number of QTLs that

we detect is likely to be an underestimation

of the actual amount of causal SNPs for the

traits.

7.2 Contributions to heterosis

We defined heterosis in our hybrids as de-

viations from the mean of the two inferred
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parents. However, we never did a strict

check of the assumption that the inferred

parental phenotypes would correlate well

with actual diploid parents. Another ap-

proach could have been to simply use the

phenotype values of the haploid parents,

which were phenotyped at the same time

as the POLs. However, since the ploidy of

cells a↵ects phenotypes (Zörgö et al., 2013;

Gerstein and Otto, 2009) and, furthermore,

the parents had segregating markers that

also a↵ect the phenotype, this comparison

would not have been relevant.

Instead, what could have been done is to

diploidize the haploid parents. This path

of action is complicated by the fact that the

HO locus of our strains is deleted in order

to repress mating type switching. However,

there are ways to do this, for example in-

troducing an inducible HO gene (Furukawa

et al., 2011). This, of course, requires some

genetic engineering of the parental strains,

which was beyond the scope of this arti-

cle. However, given the fact that the hy-

brids only have two variants segregating at

each position, the randomization of the sec-

ond haplotype that results from calculating

the inferred parental phenotype, should be

well represented by both variants at any

given loci, and should make the inferred

phenotype quite close to an actual value

from a homozygous diploid strain.

In a conventional yeast heterosis study, a

cross is made between two diverged par-

ents, and then the phenotype between

the completely heterozygous hybrid and

the two homozygous parents are compared

(Zörgö et al., 2012; Plech et al., 2014;

Shapira et al., 2014; Bernardes et al., 2017).

As in my study, they would then define the
HO locus. The locus

containing the gene for

the HO endonuclease

which creates a

double-strand break at

the MAT locus to facility

mating type switching

(Haber, 2012).

hybrid as heterotic depending on its rela-

tionship to the average phenotype of the

two parents. However, when investigat-

ing whether dominance or overdominance

has the most important e↵ect, these stud-

ies (excluding Bernardes et al. (2017) which

only looked at heterosis) average the e↵ect

of all loci in the genome. I.e. they look

at the phenotype of the hybrids, and de-

pending on the degree to which they devi-

ate from the mid-parent expectation, dom-

inance or overdominance is invoked. Since

dominance and overdominance are, by def-

inition, phenomena that occur within sin-

gle loci, the rather blunt approach of look-

ing at the phenotype as averaged over the

entire genome may not be the best way at

distinguishing the contributions.

In our study, we instead look at the indi-

vidual contribution of loci to heterosis by

investigating the relative frequencies of dif-

ferent genotypes at QTLs in hybrids that

were heterotic. We chose to only look at the

contribution of QTLs since they are regions

that we know significantly contribute to

the trait. Although our method refines the

search for contributions to heterosis, it is

still not at its most refined state. In order to

look at the contribution to heterosis at indi-

vidual loci, we used the markers that were

below the apex of the QTL peaks. However,

we are not 100% confident that that is the

causal variant. If the causal variant is in

fact the marker next to the marker we have

chosen, this may decrease our power to find

significant contributions. This is due to the

fact that some hybrids may have recombi-
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Figure 7.1. Heterosis andQTL resolution. The
power to detect significant dominant or over-
dominant contributions can be a↵ected by the
resolution of the QTL. Using the marker below
the apex of the QTL (marker 1) could result in a
lower power to detect dominance or overdomi-
nance contributions, if the causal marker is not
the one under the apex. Here marker 2 is the
causal marker and is the marker contributing to
the phenotype. The colored circle indicates an
individual that has di↵erent genotypes at the
two markers. This results in it having the phe-
notype of allele a (since it has allele a at the
causal marker) but being grouped with the in-
dividuals with allele A (since it has allele A at
the marker under the apex).

nation events between the causal marker

and the marker that we chose to represent

the causal marker, this means that the phe-

notype of a hybrid may not represent the

genotype of the marker we are looking at

Fig. 7.1. That being said, this should not

have a very large e↵ect since the amount

of individuals with a recombination break

point betweenmarkers with such high link-

age should not be very common.

Along the lines of the QTL mapping dis-

cussed above, it would be interesting to

have even higher resolution in order to dis-

tinguish between tightly linked loci that

have an e↵ect. This would, for exam-

ple, remove the risk of calling pseudo-

overdominant loci.

50% of the QTLs do not show any contribu-

tion to heterosis in our study. It is possible

that within these 50% we have QTLs that

contribute to heterosis but that we did not

detect it. QTLs with contribution might be

missed due to it having a too small e↵ect

size to be significant given our sample size.

Alternatively, they might have an epistatic

e↵ect. However, if that were the case, they

would be more difficult to detect. Never-

theless, it would be interesting to also look

for QTL-QTL interactions that contribute

to heterosis. QTL-QTL and QTL-genome

interactions have been shown to a↵ect the

phenotypic variation (Bloom et al., 2015),

and would warrant an investigation into

their potential e↵ect on heterosis.

7.3 Closing remarks

In my first project (chapter 4 and chap-

ter 5), we devised the POL approach as

a novel methodology to answer questions

about quantitative genetics in a diploid

model. Quite successfully, we managed to

decompose the genetic components of the

phenotypic variation, map QTLs, investi-

gate the genetic contributions to heterosis

and predict traits with unparalleled accu-

racy. However, there were things that we

could not do, things that we can investi-

gate in my new project (chapter 6). In this

project, the use of four di↵erent parents

will allow us to look at, for example, con-
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text dependent or independent QTLs and

interactions. Using gametes rather than

diploid hybrids gives us the opportunity to

look at the e↵ect of aneuploidies on phe-

notypic variation and how the underlying

genomes can induce aneuploidies. The as-

pect of context dependence will be very in-

teresting to investigate. This was an aspect

that we could not address using the POLs

as they were originally from a two-parent

cross.

During my PhD I have used innovative ap-

proaches to address long standing ques-

tions in genetics, and taken together, the

work I have done during my PhD has con-

tributed not only to the knowledge of the

genetics behind complex traits, but also to

the methods with which we try to under-

stand it.
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Publications

A ll publications that I have been

associated to during my PhD are

listed below. The two main ar-

ticles of my PhD can be read in their full

length in chapter 4 and chapter 5, while

the abstract and my personal contribution

to the three articles that were not part of

my main project can be seen in the follow-

ing pages. Shortly, in all articles I have con-

tributed with my expertise in large scale

phenotyping and experience in handling

large experiments, at the same time as these

di↵erent projects have added to that expe-

rience.

Johan Hallin, Kaspar Märtens et al.
Powerful decomposition of complex traits
in a diploid model.
Nature Communications, 2016

Kaspar Märtens, Johan Hallin et al.
Predicting quantitative traits from genome
and phenome with near perfect accuracy.

Nature Communications, 2016

Martin Zackrisson et al.
Scan-o-matic: high-resolution microbial
phenomics at a massive scale.
G3, 2016

Jia-Xing Yue et al.
Contrasting evolutionary genome dynamics

between domesticated and wild yeasts.
Nature Genetics, 2017

Ignacio Vázquez-García et al.
Clonal heterogeneity influences the fate
of new adaptive mutations.
Cell Reports, 2017
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Scan-o-matic: high-resolution
microbial phenomics at a massive
scale

Personal contribution

T his article describes a novel methodology for high through-put
high quality colony growth phenotyping, showcasing its pre-
cision by implementing it to further elucidate the genetics of

salt resistance in yeast. My contribution to this project was mainly per-
forming experiments using the methodology, fine-tuning the experi-
mental protocol, and contributing to the development of the program
by giving feedback on the usability to Martin. I have taken advantage
of Scan-o-matic in all the projects that I have been associated to so far.
My extensive use of this methodology has made me comfortable with
all aspects of large scale phenotyping; from experiment design, to exe-
cution, to data analysis and interpretation.
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Scan-o-matic: high-resolution
microbial phenomics at a massive

scale

T he capacity to map traits over large cohorts of individu-
als—phenomics—lags far behind the explosive development
in genomics. For microbes, the estimation of growth is the

key phenotype because of its link to fitness. We introduce an auto-
mated microbial phenomics framework that delivers accurate, precise,
and highly resolved growth phenotypes at an unprecedented scale.
Advancements were achieved through the introduction of transmis-
sive scanning hardware and software technology, frequent acquisition
of exact colony population size measurements, extraction of popula-
tion growth rates from growth curves, and removal of spatial bias by
reference-surface normalization. Our prototype arrangement automat-
ically records and analyzes close to 100,000 growth curves in parallel.
We demonstrate the power of the approach by extending and nuancing
the known salt-defense biology in baker’s yeast. The introduced frame-
work represents a major advance in microbial phenomics by providing
high-quality data for extensive cohorts of individuals and generating
well-populated and standardized phenomics databases.

Martin Zackrisson, Johan Hallin, Lars-Göran
Ottosson, Peter Dahl, Esteban Fernandez-Parada,
Erik Ländström, Luciano Fernandez-Ricaud, Petra

Kaferle, Andreas Skyman, Simon Stenberg, Stig
Omholt, Uroš Petrovi÷, Jonas Warringer & Anders

Blomberg

Published in G3 (2016)
doi:10.1534/g3.116.032342/-/DC1
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Contrasting evolutionary genome
dynamics between domesticated and
wild yeasts

Personal contribution

S uccessfully assembling high-quality genomes is not easy, but by
PacBio and Illumina sequencing twelve strains representing ma-
jor clades of Saccharomyces cerevisiae and its wild cousin Saccha-

romyces paradoxus Jia-Xing assembled their genomes end-to-end with
reference-quality. Their genome dynamics were compared to give a
view of how di↵erent selection pressures acting on these two yeast
species may have shaped their genomes. The high quality end-to-end
genome assemblies allowed me to test how subtelomeric gene struc-
tures a↵ected phenotypic variation to arsenite resistance by using the
POL approach that I had developed previously. My contribution is
shown in figure 7d-f of the article.
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Contrasting evolutionary genome
dynamics between domesticated and

wild yeasts

S tructural rearrangements have long been recognized as an impor-
tant source of genetic variation, with implications in phenotypic
diversity and disease, yet their detailed evolutionary dynamics

remain elusive. Here we use long-read sequencing to generate end-to-
end genome assemblies for 12 strains representing major subpopula-
tions of the partially domesticated yeast Saccharomyces cerevisiae and
its wild relative Saccharomyces paradoxus. These population-level high-
quality genomes with comprehensive annotation enable precise defini-
tion of chromosomal boundaries between cores and subtelomeres and
a high-resolution view of evolutionary genome dynamics. In chromo-
somal cores, S. paradoxus shows faster accumulation of balanced rear-
rangements (inversions, reciprocal translocations and transpositions),
whereas S. cerevisiae accumulates unbalanced rearrangements (novel
insertions, deletions and duplications) more rapidly. In subtelom-
eres, both species show extensive interchromosomal reshu✏ing, with
a higher tempo in S. cerevisiae. Such striking contrasts between wild
and domesticated yeasts are likely to reflect the influence of human
activities on structural genome evolution.

Jia-Xing Yue, Jing Li, Louise Aigrain, Johan Hallin,
Karl Persson, Karen Oliver, Anders Bergström, Paul

Coupland, Jonas Warringer, Marco Cosentino
Lagomarsino, Gilles Fischer, Richard Durbin &

Gianni Liti

Published in Nature Genetics (2017)
doi:10.1038/ng.3847
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Clonal heterogeneity influences the
fate of new adaptive mutations

Personal contribution

T his paper gives an account of the contribution of de novo and
standing genetic variation to adaptive evolution in Saccha-
romyces cerevisiae populations. My main part in this project

was the cross-grid experiment which was used to shu✏e the de novo
mutations and the genetic backgrounds in order to unlink their con-
tributions, giving us a way to estimate their respective contributions.
I collected and genotyped the spores to validate their mutations, and
constructed and performed the crossing into diploid hybrids as well as
doing the phenotyping for all strains. My contribution is represented
in figure 6 of the paper.
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Clonal heterogeneity influences the
fate of new adaptive mutations

T he joint contribution of pre-existing and de novo genetic varia-
tion to clonal adaptation is poorly understood but essential to
designing successful antimicrobial or cancer therapies. To ad-

dress this, we evolve genetically diverse populations of budding yeast,
S. cerevisiae, consisting of diploid cells with unique haplotype combina-
tions. We study the asexual evolution of these populations under selec-
tive inhibition with chemotherapeutic drugs by time-resolved whole-
genome sequencing and phenotyping. All populations undergo clonal
expansions driven by de novo mutations but remain genetically and
phenotypically diverse. The clones exhibit widespread genomic insta-
bility, rendering recessive de novo mutations homozygous and refining
pre-existing variation. Finally, we decompose the fitness contributions
of pre-existing and de novo mutations by creating a large recombinant
library of adaptive mutations in an ensemble of genetic backgrounds.
Both pre-existing and de novomutations substantially contribute to fit-
ness, and the relative fitness of pre-existing variants sets a selective
threshold for new adaptive mutations.

Ignacio Vázquez-García, Francisco Salinas, Jing Li,
Andrej Fischer, Benjamin Barré, Johan Hallin,
Anders Bergström, Elisa Alonso-Perez, Jonas

Warringer, Ville Mustonen & Gianni Liti

Published in Cell Reports (2017)
doi:10.1016/j.celrep.2017.09.046
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