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Abstract

Intelligent autonomous actions in an ordinary environment by a mobile robot require maps.
A map holds the spatial information about the environment and gives the 3D geometry of
the surrounding of the robot to not only avoid collision with complex obstacles, but also self-
localization and for task planning. However, in the future, service and personal robots will
prevail and need arises for the robot to interact with the environment in addition to localize
and navigate. This interaction demands the next generation robots to understand, interpret
its environment and perform tasks in human-centric form. A simple map of the environment
is far from being sufficient for the robots to co-exist and assist humans in the future. Human
beings effortlessly make map and interact with environment, and it is trivial task for them.
However, for robots these frivolous tasks are complex conundrums. Layering the semantic
information on regular geometric maps is the leap that helps an ordinary mobile robot to be
a more intelligent autonomous system. A semantic map augments a general map with the
information about entities, i.e., objects, functionalities, or events, that are located in the space.
The inclusion of semantics in the map enhances the robot’s spatial knowledge representation and
improves its performance in managing complex tasks and human interaction. Many approaches
have been proposed to address the semantic SLAM problem with laser scanners and RGB-D
time-of-flight sensors, but it is still in its nascent phase. In this thesis, an endeavour to solve
semantic SLAM using one of the time-of-flight sensors which gives only depth information is
proposed. Time-of-flight cameras have dramatically changed the field of range imaging, and
surpassed the traditional scanners in terms of rapid acquisition of data, simplicity and price.
And it is believed that these depth sensors will be ubiquitous in future robotic applications.

In this thesis, an endeavour to solve semantic SLAM using one of the time-of-flight sensors
which gives only depth information is proposed. Starting with a brief motivation in the first
chapter for semantic stance in normal maps, the state-of-the-art methods are discussed in the
second chapter. Before using the camera for data acquisition, the noise characteristics of it
has been studied meticulously, and properly calibrated. The novel noise filtering algorithm
developed in the process, helps to get clean data for better scan matching and SLAM. The
quality of the SLAM process is evaluated using a context-based similarity score metric, which
has been specifically designed for the type of acquisition parameters and the data which have
been used. Abstracting semantic layer on the reconstructed point cloud from SLAM has been
done in two stages. In large-scale higher-level semantic interpretation, the prominent surfaces in
the indoor environment are extracted and recognized, they include surfaces like walls, door,
ceiling, clutter. However, in indoor single scene object-level semantic interpretation, a single 2.5D
scene from the camera is parsed and the objects, surfaces are recognized. The object recognition
is achieved using a novel shape signature based on probability distribution of 3D keypoints
that are most stable and repeatable. The classification of prominent surfaces and single scene
semantic interpretation is done using supervised machine learning and deep learning systems.
To this end, the object dataset and SLAM data are also made publicly available for academic
research.

Keywords: Time-of-flight cameras, 3D point cloud processing, noise filters, registration,
SLAM, plane detection, segmentation, object recognition, object detection, object classification,
machine learning.
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Résumé

Pour agir de manière autonome et intelligente dans un environnement, un robot mobile
doit disposer de cartes. Une carte contient les informations spatiales sur l’environnement. La
géométrie 3D ainsi connue par le robot est utilisée non seulement pour éviter la collision avec des
obstacles, mais aussi pour se localiser et pour planifier des déplacements. Les robots de prochaine
génération ont besoin de davantage de capacités que de simples cartographies et d’une localisation
pour coexister avec nous. La quintessence du robot humanoïde de service devra disposer de la
capacité de voir comme les humains, de reconnaître, classer, interpréter la scène et exécuter les
tâches de manière quasi-anthropomorphique. Par conséquent, augmenter les caractéristiques
des cartes du robot à l’aide d’attributs sémiologiques à la façon des humains, afin de préciser
les types de pièces, d’objets et leur aménagement spatial, est considéré comme un plus pour la
robotique d’industrie et de services à venir. Une carte sémantique enrichit une carte générale
avec les informations sur les entités, les fonctionnalités ou les événements qui sont situés dans
l’espace. Quelques approches ont été proposées pour résoudre le problème de la cartographie
sémantique en exploitant des scanners lasers ou des capteurs de temps de vol RGB-D, mais
ce sujet est encore dans sa phase naissante. Dans cette thèse, une tentative de reconstruction
sémantisée d’environnement d’intérieur en utilisant une caméra temps de vol qui ne délivre que
des informations de profondeur est proposée. Les caméras temps de vol ont modifié le domaine
de l’imagerie tridimensionnelle discrète. Elles ont dépassé les scanners traditionnels en termes
de rapidité d’acquisition des données, de simplicité fonctionnement et de prix. Ces capteurs de
profondeur sont destinés à occuper plus d’importance dans les futures applications robotiques.

Après un bref aperçu des approches les plus récentes pour résoudre le sujet de la cartographie
sémantique, en particulier en environnement intérieur. Ensuite, la calibration de la caméra a
été étudiée ainsi que la nature de ses bruits. La suppression du bruit dans les données issues
du capteur est menée. L’acquisition d’une collection d’images de points 3D en environnement
intérieur a été réalisée. La séquence d’images ainsi acquise a alimenté un algorithme de SLAM
pour reconstruire l’environnement visité. La performance du système SLAM est évaluée à partir
des poses estimées en utilisant une nouvelle métrique qui est basée sur la prise en compte
du contexte. L’extraction des surfaces planes est réalisée sur la carte reconstruite à partir des
nuages de points en utilisant la transformation de Hough. Une interprétation sémantique de
l’environnement reconstruit est réalisée. L’annotation de la scène avec informations sémantiques
se déroule sur deux niveaux : l’un effectue la détection de grandes surfaces planes et procède
ensuite en les classant en tant que porte, mur ou plafond ; l’autre niveau de sémantisation opère
au niveau des objets et traite de la reconnaissance des objets dans une scène donnée. A partir
de l’élaboration d’une signature de forme invariante à la pose et en passant par une phase
d’apprentissage exploitant cette signature, une interprétation de la scène contenant des objets
connus et inconnus, en présence ou non d’occultations, est obtenue. Les jeux de données ont été
mis à la disposition du public de la recherche universitaire.

Mots clés : Caméras de temps de vol, nuages de points 3D, filtrage, recalage, SLAM,
détection de plans, segmentation, reconnaissance, détection, classification d’objets, apprentissage
automatique.

III







Résumé étendu : contexte et synthèse du
mémoire

Contexte

Mon travail doctoral a été réalisé au sein de l’équipe PerSyst (Perception Systems : systèmes de
perception). PerSyst est une équipe de recherche de l’Institut Pascal (UMR 6602 CNRS/UBP),
unité mixte de recherche du CNRS (Centre National de la Recherche Scientifique), de l’Université
Clermont Auvergne et de sigma Clermont. Le CHU de Clermont-Ferrand est également partenaire
du laboratoire. PerSyst fait partie de l’axe ISPR (Image, Systèmes de Perception, Robotique)
de cet institut, dont les recherches sont centrées sur la perception artificielle, la robotique et
la vision par ordinateur. Plus particulièrement, PerSyst développe des approches globales de
perception exploitant plusieurs capteurs en vue de la compréhension de scènes, des approches de
reconstruction 3D dense d’environnements complexes avec différentes modalités (caméra, LiDAR,
radar), des solutions de localisation 2D/3D et de guidage de robots mobiles par approche mono
et multisensorielle (caméra, lidar, proprioceptifs), en intégrant éventuellement la cartographie
de l’environnement à construire ou des informations de type SIG (Système d’Information Géo-
référencé). L’ensemble des activités est historiquement fondé sur une très forte culture de projet
mettant en oeuvre des systèmes de perception temps réel sur des plates-formes réalistes et
performantes.

Cette thèse a pu être menée grâce à l’aide d’une bourse octroyée par le Laboratoire d’Ex-
cellence ImobS3. Plus précisément, ce travail a été soutenu par un programme de recherche du
gouvernement français, le Programme d’Investissements d’Avenir, via “l’équipement d’excellen-
ce” RobotEx (ANR-10- EQPX-44) et le LabEx IMobS3 (ANR-10-LABX-16-01), mais aussi l’Union
Européenne via le programme opérationnel 2007-2013 (European Regional Development Fund -
ERDF), et par la région Auvergne.

La localisation et la cartographie simultanées (activité plus connue sous l’acronyme de SLAM
pour Simultaneous Localization And Mapping) ont été étudiées intensément depuis sa première
formulation technique, il y a désormais trois décennies. Les chercheurs spéculent que cette
thématique scientifique entre dans une nouvelle phase appelée : “age of robust-perception’’. Le
SLAM a d’abord fait usage de filtres tels que le filtre de Kalman, les filtres à particules, etc.
Dans sa phase dite moderne, le SLAM fait usage de nouveaux capteurs de perception pour la
cartographie et localisation. Toutefois, les robots de prochaine génération ont besoin de davantage
de capacités que de simples cartographies et d’une localisation pour coexister avec nous. La
quintessence du robot humanoïde de service devra disposer de la capacité de voir comme les
humains, de reconnaître, classer, interpréter la scène et exécuter les tâches de manière quasi-
anthropomorphique. Par conséquent, augmenter les caractéristiques des cartes du robot à l’aide
d’attributs sémiologiques à la façon des humains, afin de préciser les types de pièces, d’objets
et leur aménagement spatial, est considéré comme un plus pour la robotique d’industrie et de
services à venir (Kostavelis et Gasteratos, 2015). Pour un robot mobile, une carte sémantique
(du grec sēmantikos pour “sens”) est une carte qui contient, en plus des informations spatiales
de l’environnement, une classification en classes connues des entités repérées en son sein. Une
connaissance approfondie de ces entités, indépendante du contenu de la carte, est disponible par
le raisonnement sur une base de connaissances via un moteur de raisonnement associé (Nüchter
et Hertzberg, 2008).

Bien que l’importance de la cartographie sémantique ait été admise depuis des décennies, le
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travail de recherche mené dans ce domaine en est encore à ses débuts. Cependant, la cartographie
sémantique en environment intérieur reçoit plus d’attention qu’en extérieur : les robots de
services conçus aujourd’hui sont majoritairement destinés à travailler dans ce contexte. Les
approches actuelles pour traiter de ce problème utilisent des capteurs sophistiqués. Dans cette
thèse, un système simple, avec un seul capteur de profondeur, a été utilisé dans un environnement
d’intérieur qui voit ses conditions d’éclairage relativement peu fluctuer. La caméra, positionnée
sur un trépied mobile, capture des images à partir de positions pré-établies dans l’environnement.
Ces emplacements pré-établis sont en fait utilisés comme vérité de terrain pour estimer l’écart
avec des poses estimées à partir d’un processus SLAM. Ils sont également exploités comme
estimation initiale des poses pour un algorithme ICP (Iterative Closest Point). Le processus
SLAM fournit un nuage de points 3D de l’environnement reconstruit qui est ensuite interprété
sémantiquement à deux niveaux. Au niveau global, des surfaces planes sont extraites et ensuite
classées en fonction de leurs propriétés d’orientation. Au niveau local, l’interprétation sémantique
est plus spécifique : elle reconnaît les objets de la scène depuis une prise de vue. Les deux niveaux
se complètent dans le cadre d’une analyse sémantique de la cartographie pour la navigation
intérieure.

Travaux menés

Le travail réalisé au cours de cette thèse s’est déroulé en trois phases. Au cours d’une première
phase, la caméra a été calibrée et la nature de ses bruits a été étudiée avec soin. Dans un deuxième
temps, l’acquisition de données en environnement intérieur a été réalisé. La séquence d’images
ainsi acquises a alimenté un algorithme de SLAM pour reconstruire l’environnement visité. Enfin,
au cours de la troisième et dernière phase, une interprétation sémantique de l’environnement
reconstruit est effectuée. Les paragraphes suivants fournissent un bref aperçu de chaque chapitre
du manuscrit.

Analyse de la littérature : cartographie sémantique à l’aide d’une caméra temps de
vol

Un bref aperçu des approches les plus récentes pour résoudre le sujet de la cartographie séman-
tique est présenté dans le chapitre 2. Selon le type de capteurs utilisés, le type d’environnement
considéré et la tâche visée de main, différentes approches SLAM sémantiques sont évoquées.
Un accent particulier est mis sur la cartographie sémantique en environnement intérieur et les
méthodes associées de l’état de l’art sont présentées en détail. A partir des données fournies
par une caméra de temps de vol, cette thèse s’intéresse à la fois à l’analyse d’une seule scène
d’intérieur et à la cartographie sémantique à plus grande échelle. La plupart les approches de
cartographie sémantique utilisent des scanners laser sophistiqués ou des caméras RGB-D. Elles
ont l’avantage par rapport aux caméras à temps de vol de délivrer l’information couleur. Excepté
ce point, ces dernières surpassent les premières sur tous les autres aspects : plus grande portée,
caractéristiques de bruit bien identifiées, adaptées pour les applications en robotique. Cependant,
à notre connaissance, ces capteurs de profondeur n’ont pas été fréquemment employés pour la
cartographie sémantique, car la plupart des techniques de reconnaissance d’objets en vision par
ordinateur 3D utilisent les descripteurs liés à la couleur.

L’intérêt des capteurs de profondeur est souligné lors de la revue de la littérature. Un nouveau
schéma pour la cartographie sémantique est proposé. Comme le capteur de profondeur ne produit
que des données de profondeur, dépourvues d’information couleur, un nouveau descripteur de
forme a été conçu. Il est uniquement fondé sur la détection de descripteurs.

Notre approche est mise en oeuvre à l’aide d’un capteur de la gamme SwissRanger de la
société Mesa Imaging. Cette caméra délivre des données de profondeur sous forme d’images
de points 3D et d’images de réflectance associées. L’environnement considéré est un grand
couloir, plusieurs pièces de bureaux se répartissant de chaque côté. L’objectif est de reconstruire
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l’environnement en utilisant les collections d’images de points, de localiser chaque acquisition
dans le modèle reconstruit et d’effectuer une interprétation sémantique. L’étiquetage de la scène
avec informations sémantiques se déroule à deux niveaux, l’un dit supérieur et l’autre inférieur
(voir Fig. 1). Le premier implique la détection de grandes surfaces planes et procède ensuite en
les classant comme des portes, des murs ou des plafonds. Ce travail est présenté au chapitre 8.
L’autre niveau de sémantisation opère au niveau des objets et traite de la reconnaissance des
objets dans une scène donnée. L’idée est d’imaginer un robot qui navigue dans un environnement,
qui identifie d’importants espaces, des pièces, et qui analyse des scènes particulières afin de
retrouver certains objets spécifiques pouvant être manipulés plus tard. L’analyse de la scène
implique une étape de suppression du bruit dans les données issues du capteur telle que décrite
dans le chapitre 3, l’extraction fond/forme pour isoler l’objet, l’évaluation de descripteurs pour
chaque groupe d’objets et une étape de reconnaissance de l’objet en fonction de son descripteur
en utilisant une technique d’apprentissage (chapitres 6 et 7).

Figure 1 – Etapes du processus de cartographie sémantique. L’approche est très semblable à celle
de (Nüchter et Hertzberg, 2008), où un étiquetage sémantique des surfaces planes est effectué
sur la base de certaines règles puis une détection d’objets utilisant un classifieur préalablement
entraîné.

Caméra temps de vol : principe de fonctionnement et filtrage du bruit

Une étape essentielle pour la construction d’une carte 3D de l’environnement est d’ôter le bruit
présent au niveau des données brutes qui peut affecter les étapes suivantes du processus de
cartographie sémantique. Les données de la caméra du temps de vol souffrent de deux types
de bruits différents : des erreurs systématiques et des erreurs non-systématiques. Le chapitre 3
détaille les différents types de bruit présents en sortie du capteur et donne également une
brève introduction sur le principe de fonctionnement du capteur. Les Jump edges sont des types
d’erreurs non-systématiques les plus courantes et les plus importantes et dont l’origine n’est
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pas encore complètement comprise. Certains chercheurs suggèrent qu’elles se produisent en
raison de réflexions multiples de la lumière incidente tandis que d’autres suggèrent que cela
pourrait être dû à la méthode de calcul de la distance par la caméra qui génère des points erronés
lorsqu’il y a des surfaces superposées en face de la caméra. Un nouveau traitement fondé sur le
principe de fonctionnement du capteur lui-même a été développé pour supprimer les Jump edges
(voir Fig. 2). Ce chapitre décrit l’approche et évalue les résultats en les comparant à une autre
méthode. Elle prend en compte la qualité de l’image filtrée, le temps de calcul et le recalage des
images.

Figure 2 – Image de profondeur de trois plans à partir du capteur SwissRanger SR-4000. A les
Jump edges sont observables par les transitions courbes qui vont des surfaces au premier plan
vers l’arrière-plan. B Vue de dessus montrant les Jump edges entre les plans placés à l’avant et
ceux à l’arrière. C Image RGB test. D Image de réflectance. E Image de profondeur brute, les
Jump edges semblent connecter l’objet avec le fond de la scène. F Image de profondeur filtrée.

L’algorithme ICP (Iterative Closest Point)

L’une des méthodes les plus populaires pour recaler les relevés de points 3D est présentée dans le
chapitre 4. Les algorithmes de recalage expriment les transformations à appliquer à un ensemble
de relevés 3D pour les replacer dans un système de coordonnées commun. Le procédé cherche à
minimiser l’erreur d’alignement. Partant d’une transformation initiale entre un relevé 3D Source

et un relevé Target, l’algorithme ICP calcule itérativement la transformation jusqu’à ce que
l’erreur d’alignement diminue et converge vers une valeur suffisamment faible. Il repose sur
l’hypothèse fondamentale selon laquelle les relevés Source et Target se chevauchent et qu’il
existe une correspondance entre ces points. Ce chapitre décrit en détail les variantes de l’état
de l’art de l’algorithme ICP. Depuis son invention en 1992, ICP a été exploré intensément. Des
centaines de variantes existent aujourd’hui et de nouvelles sont toujours développées. ICP a
été mis à profit dans ce travail de thèse pour évaluer les performances des nouveaux filtres de
bruit, pour développer une signature de forme invariante à la pose et robuste (voir Fig. 3), pour
aligner des relevés 3D pour effectuer un SLAM et obtenir une carte 3D globalement cohérente
avec l’algorithme GraphSLAM.

Carte 3D globalement cohérente avec l’algorithme GraphSLAM

Le chapitre 5 commence par un très bref historique des travaux menés en SLAM. Différentes
solutions SLAM fondées sur la méthode des moindres carrés sont présentées en allant à l’essentiel.
Une discussion plus poussée est menée concernant un système SLAM (exploitant des données
2D et 3D) qui est mis en oeuvre dans cette thèse. Dans les travaux effectués, aucune information
issue de centrale inertielle ni d’IMU (Inertial Measurement Unit) ni d’odométrie ni de méthode
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Figure 3 – Deux vues différentes d’une guitare, tournées de 5° l’une de l’autre, sont alignées
dans le même système de coordonnées en utilisant l’algorithme ICP. A partir d’une vue source
et en appliquant la recherche du plus proche voisin dans la vue cible, les points clés similaires
sont comptabilisés pour déterminer la répétabilité des descripteurs testés.

testant la fermeture de boucle n’ont été utilisées. Les données sont acquises en plaçant la caméra
à des emplacements préétablis de l’environnement intérieur. Ces positions de la caméra sont
utilisées comme estimation des poses initiales lors de la mise en correspondance des relevés 3D
via la technique d’ICP. Le processus de SLAM produit en sortie un environnement 3D reconstruit
(carte sous la forme d’un nuage de points, voir Fig. 4) avec des estimations de pose de la caméra
pour chaque acquisition. La performance du système SLAM est évaluée à partir de ces poses
estimées en utilisant une nouvelle métrique développée ici. L’extraction des surfaces planes est
réalisée sur la carte reconstruite à partir des nuages de points en utilisant la transformation de
Hough.

Vers une signature de forme robuste

Comme mentionné précédemment, l’objectif principal de cette thèse est une interprétation
sémantique au niveau global de la scène mais aussi au niveau des objets qui la composent.
Deux chapitres traitent de ce dernier sujet, l’interprétation sémantique d’une scène depuis
une vue. A partir de l’élaboration d’une signature de forme invariante à la pose en passant
par une phase d’apprentissage exploitant cette signature, nous sommes parvenus à interpréter
une scène contenant des objets connus et inconnus, en présence ou non d’occultations. Ces
dernières années, il y a eu une forte croissance dans l’utilisation des modèles 3D en raison du saut
technologique permettant de percevoir et visualiser les formes 3D. Cette révolution numérique
peut être attribuée à des améliorations substantielles et continues dans les domaines de la
microélectronique, de la micro-optique et de la micro-technologie. Les capteurs 3D coûteux qui
n’étaient disponibles que dans le cadre d’applications industrielles spécialisées sont désormais
disponibles dans des versions largement abordables pour la communauté des chercheurs et le
public pour traiter des problèmes de reconstruction 3D, de cartographie, de SLAM, d’interaction
homme-machine, de robotique de service. Le jeu, la préservation du patrimoine culturel, la
sécurité et la surveillance, l’impression 3D, la CAO sont d’autres utilisations possibles de ces
capteurs (Schöning et Heidemann, 2016). Par conséquent, il y a eu une augmentation significative
de l’exploitation des représentations 3D pour la détection, la reconnaissance et la classification
des objets en s’appuyant sur leur forme. Afin d’identifier un objet quelle que soit sa pose, il faut
savoir à quoi ressemble l’objet depuis chaque point de vue de la caméra ou bien avoir le modèle

V



(a)( )

(b)

Figure 4 – 6DSLAM en utilisant 3DTK. (a) 3DTK utilise les positions pré-établies comme estima-
tions initiales des poses et solutionne un SLAM à 6 DoF. Aucune information issue de centrale
inertielle ni d’IMU (Inertial Measurement Unit) ni d’odométrie visuelle ni de méthode testant la
fermeture de boucle ne sont utilisées. Les données de la caméra SwissRanger sont bruitées et
sensibles aux conditions d’éclairage (notamment dans le cas de surfaces vitrées). Les résultats
présentés démontrent cet effet. (b) Le trajet obtenu par 6DSLAM. Les petites inexactitudes de
position par rapport à la vérité de terrain proviennent des bruits de mesure alors que la caméra
tourne de 360° entre le début et la fin de la séquence.

3D de l’objet lui-même. Connaître l’objet selon chaque point de vue de la caméra rend le processus
de reconnaissance plus facile car la comparaison d’une vue 2.5D avec un modèle 3D est coûteuse
en temps et surtout complexe. La reconnaissance en apprenant à quoi ressemble un objet dans
chaque pose est beaucoup plus efficace et rapide. L’apprentissage étant un processus hors-ligne
unique, la reconnaissance consiste simplement à calculer la probabilité d’appartenir à une classe
particulière (voir Fig. 5). Pour cela, il est impératif de trouver des relations entre différentes poses
du même objet car cela aide le processus de Machine Learning à ne pas avoir « sur-appris ». Pour
ce faire, des points clés, stables vis à vis du changement de pose de l’objet, sont utilisés pour
représenter chaque vue. Puis, chaque vue de l’objet est ramenée à une simple distribution de
probabilité. La distribution de probabilité capture les relations spatiales et géométriques de ces
points clés en utilisant des « fonctions de forme ». Le détecteur de points clés 3D le mieux adapté
a été choisi parmi les nombreux existants. Pour effectuer notre sélection, une évaluation de la
performance des différents détecteurs a été menée avant la phase de conception de la signature
de forme. Deux chapitres (chapitres 6 & 7) présentent cette méthodologie d’évaluation et la
conception de la signature de la forme.

Interprétation sémantique au niveau global de la scène

Les connaissances sémantiques de l’environnement à un niveau global, relatives aux espaces
fermés, aux murs, aux portes, aux plafonds, aux zones encombrées, sont importantes pour
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Figure 5 – Etiquetage sémantique depuis une vue unique à l’aide de la distribution de points
clés. Tous les objets du nuage de points sont correctement reconnus et une couleur associée
correspond à leur étiquette. On peut aussi percevoir que même si une partie de la poignée de
l’arrosoir n’apparaît pas dans le nuage de points, le modèle est reconnu.

Figure 6 – Détection de plans à l’aide de l’algorithme Randomized Hough Transform. (Left) Nuage
de points avec les plans détectés. (Right) Plans seuls. Chaque plan est représenté par une
couleur distincte (19 plans représentant les murs, les portes, le plafond et le sol). 3DTK fournit
également des outils pour extraire des plans des nuages de points. Le nuage de points complet
est échantillonné à l’aide d’une méthode à base d’octrees pour un résultat plus rapide et efficace
(un point par voxel de 10 cm).

un robot qui doit naviguer et manœuvrer en toute sécurité dans ce contexte (Steinfeld et al.,
2006). Une interprétation globale consiste à extraire des surfaces planes, à les classer et à les
visualiser. La transformée de Hough est une méthode qui a fait ses preuves pour détecter des
objets paramétriques (lignes, cercles, cylindres) et aussi des plans. De nombreuses variantes
ont été proposées depuis sa version originelle en 1962. Le chapitre décrit la transformée de
Hough randomisée (RHT pour Randomized Hough Transform) afin de détecter des plans dans un
nuage de points 3D reconstruit (voir Fig. 6). Les plans détectés peuvent être classés en utilisant
l’orientation de leur enveloppe convexe dans le référentiel global. Une nouvelle méthode est
également présentée dans ce chapitre. Elle exploite les caractéristiques de l’enveloppe convexe,
comme l’orientation et la surface des zones planes, qui serviront à classer les surfaces en porte,
mur, plafond ou zone encombrée.

Principales contributions

La contribution majeure de cette thèse est d’aborder la problématique de l’analyse sémantique
de scènes en environnement d’intérieur dans le cadre d’un processus SLAM réalisé à partir
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d’un unique capteur de profondeur. Ci-dessous, quelques détails sur des contributions plus
particulières.

� Filtrage. Le capteur de profondeur de type caméra temps de vol souffre principalement
d’erreurs non-systématiques (Jump edges). Un nouvel algorithme pour éliminer ce type de
bruit a été proposé et a été également comparé à une méthode existante.

� Evaluation des performances de descripteurs 3D. Il existe de très nombreux détecteurs
de points clés pour les images 2D et 3D. Chaque détecteur possède son propre domaine
applicatif spécifique et possède d’excellentes performances pour un type de données et
des paramètres particuliers. Afin de concevoir une méthode robuste de reconnaissance
d’objets, il faut trouver un détecteur de point clé approprié. Une comparaison de différents
détecteurs de points clés 3D est proposée dans cette thèse et le meilleur détecteur identifié
a été utilisé pour concevoir le descripteur de forme. Par ailleurs, pour réaliser ce processus
d’évaluation, nous avons été amené à développer un jeu de données d’images de profondeur
pour différents objets en utilisant un robot cartésien, ce qui a permis d’automatiser la prise
d’images autour de l’objet tout en connaissant l’attitude du capteur.

� Une nouvelle signature de forme. Le meilleur détecteur de point clé sélectionné précé-
demment est utilisé pour représenter un objet depuis une seule vue 2.5D. La relation
spatiale entre ces points clés est saisie à l’aide de géodésiques et de distances euclidiennes.
Une fonction de distribution de probabilité de ces distances représente de manière unique
chaque objet. Un objet peut simplement être reconnu en fonction de ces fonctions de forme.
Le système de reconnaissance est développé à l’aide d’un processus d’apprentissage au-
tomatique et est exploité pour interpréter une scène capturée depuis un unique point de
vue. En outre, un autre jeu de données d’images de profondeur a été spécifiquement conçu
pour ce processus.

� Jeu de données SLAM. Les jeux de données publiquement accessibles aident à faire avan-
cer les travaux dans le domaine de la vision par ordinateur, du traitement d’images, de
l’apprentissage automatique, de la robotique et bien d’autres domaines scientifiques. Ils
permettent l’évaluation scientifique et la comparaison objective des algorithmes avec des
indicateurs d’évaluation clairs. Le SLAM est l’un des problèmes de la robotique qui a été
étudié en exploitant une variété de capteurs en allant de la caméra 2D ou celle mesurant le
temps de vol, en passant par le radar, le sonar et le LiDAR (Cadena et al., 2016). Cependant,
à notre connaissance, les imageurs de profondeur n’ont pas été fréquemment exploités
pour effectuer un SLAM sémantique. Aussi, on ne trouve pas de jeux de données publics
de ce type. Dans cette thèse, nous avons proposé un moyen d’acquérir des données de
profondeur en environnement intérieur sans avoir recours à des robots mobiles coûteux.
L’ensemble de ces données est mis à la disposition de la communauté. Deux caméras
SwissRangers différentes (de portées maximales différentes) ont été mis en oeuvre pour
effectuer ce jeu de données constitué d’environ un millier de relevés 3D.

� Evaluation des performances du SLAM. Un logiciel ouvert en accès libre a été utilisé,
moyennant quelques légères modifications, pour effectuer un SLAM à partir de nos données.
Une évaluation des performances sur les résultats obtenus a été menée selon un nouveau
critère qui a été proposé et qui est similaire à l’erreur de pose relative introduite dans (Sturm
et al., 2012). Toutefois, nous utilisons des informations contextuelles qui sont intégrées au
niveau des scores de similarité. Les poses estimées par le processus SLAM sont comparées
à la vérité de terrain (positions préétablies où la caméra est maintenue lors de l’acquisition
des images) et un score fondé sur la similarité contextuelle.

� Classification des surfaces planes. La transformée de Hough a été utilisée pour extraire
des surfaces planes du nuage de points reconstruit pour un environnement d’intérieur. Ces
plans sont délimités par leur enveloppe convexe. Un système à base d’apprentissage classe

VIII



ces plans comme étant de type porte, mur, plafond ou autre en utilisant les propriétés
d’orientation de l’enveloppe convexe et sa superficie. Le système ainsi conçu a été testé et
évalué. Il a fourni, sur les données traitées, de très bons scores.

Mots-clés : Caméra temps de vol, traitement de nuages de points 3D, filtrage, aligne-
ment, SLAM, détection de surface plane, segmentation, reconnaissance/détection/classification
d’objets, apprentissage machine.
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IntroductionIntroduction

The robots are coming

with clear-cased woofers for heads,
no eyes. They see us as a bat sees
a mosquito a fleshy echo,
a morsel of sound. You’ve heard
their intergalactic tour busses
purring at our stratosphere’s curb,
awaiting the counter intelligence
transmissions from our laptops
and our earpieces, awaiting word
of humanity’s critical mass,
our ripening. How many times
have we dreamed it this way- The Age of the Machines,
the post industrial specter
of tempered paws, five welded fingers. . .

-The Baffler
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1.1 Introduction

“The robots are coming”, this exclamation or concern was used since the industrial revolution or
at least since 1920s. But, the robots are still not around us as we were expecting and depicting
in our pop-culture, literature and cinema. May be 1900s and middle of the last century were
very optimistic about robots use in everyday life, unaware of the predicaments in this “wicked
problem”- you don’t understand the problem until you have developed a solution: thus a problem
creates more problems. This is the reason why the most popular, commercially available domestic
robot is a simple automated vacuum cleaner: roomba, while we were expecting fully functional
robot maid in next 10 years since 1930 (see Fig. 1.1).

In the fifties, it was predicted that in 5 years robots would be everywhere.
In the sixties, it was predicted that in 10 years robots would be everywhere.
In the seventies, it was predicted that in 20 years robots would be everywhere.
In the eighties, it was predicted that in 40 years robots would be everywhere.

Marvin Minsky (1927–2016)

Figure 1.1 – Fictional robots in pop-culture (a) A mechanical dummy (before the term “robot”
coined) modelled after a janitor in the film (“A Clever Dummy,” June 1917). (b) The Maschi-
nenmensch in the movie (“Metropolis,” Jan. 1927) is a gynoid has influenced pop-culture for a
long time. The famous droid in StarWars, C-3PO’s (c) design is hugely based on it. (c) C-3PO
from Episode-IV- A New Hope is a humanoid robot intended to assist in customs, etiquettes
and translation; has ability to translate over six million langauges/communications (“Star Wars:
Episode IV-A New Hope,” May 1977). (d) Chappie robot in CHAPPiE (“CHAPPiE,” Mar. 2015);
a droid with human-like feelings (with AI) originally designed for policing the crimes in the
city. (e) M-O a tiny cleanerbot with OCD (Obsessive Compulsive Disorder for cleanliness) in the
movie (“WALL-E,” June 2008). (f) TARS and CASE from the movie (“Interstellar,” Nolan, Nov.
2014). TARS is a highly intelligent, witty and humorous Marine Corps tactical robot designed
to assist for space travel and data collection and analysis. CASE is a quiet personality Marine
surplus robot designed for maintenance and operation of spacecraft Endurance.

These sentences clearly show the unrealistic expectation from computer scientists; unaware
of the challenges that will be posed by complex, dynamic and unstructured human environment.
However, since past 15 years, there has been explosive growth in domestic and service robots.
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Figure 1.2 – Real robots presently available. (a) Dyson’s 360 Eye (“Dyson 360Eye”): a home vacc-
ume cleaner like iROOMBA (“Roomba 966”). (b) Robomow, a lawn mowing robot (“Robomow”),
usually autonomous can be scheduled few time a week to clean up the lawn. However, needs
manual guide wires for the task. (c) Asus Zenbo (“ASUS Zenbo”), a entertaining little robot
which can control home, setup appointments, take picture, speak, listen and even dance. (d)
Pepper from Softbank robotics (“Softbank Robotics Pepper”), recently became the first humanoid
robot to be adopted in Japanese homes. Nao and ROMEO are her friends from same company. (e)
ASIMO (Advance Step in Innovative MObility) from Honda (“Asimo”). It is presently the most
advance robot in the world, with intelligence of a 5-year-old child, can walk up and down stairs,
run, carry things, point, wave and push; which are phenomenal physical abilities for humanoid
robot. New features are added to it since it’s creation from 1986. (f) SpotMini from Boston
Dynamics (“SpotMini”). Several impressive mobile robots are developed by Boston Dynamics
which can walk on difficult terrains, run, jump, carry things. SpotMini is shown in videos to
wash dishes in kitchen. Boston Dynamics is recently acquired by SoftBank Robotics.

These robots called as next generation robots (see Fig. 1.2) should not only have to track their
location and navigate between points in space, but also reason, interpret and acquire knowledge
about space, plan tasks and interact with people naturally. The robots presently deployed in real-
world human environments have limited capabilities (Fig. 1.2) and far from the desired fictional
ones (Fig. 1.1). The most advanced robots presently being Asimo (“Asimo”) (see Fig. 1.2 (e)),
PR2 (“PR2”), Home Assistant (Yamazaki et al., 2009), PETMAN (“SpotMini”) and Nao (“Soft-
bank Robotics Pepper”). There are many initiatives from governments (“Robotic Visions to
2020 and Beyond: The Strategic Research Agenda for Robotics in Europe. European Robotics
Technology Platform (EUROP), 2009”; National Science Foundation : Where Discoveries Begin;
“DoD Announces Award of New Advanced Robotics Manufacturing (ARM) Innov”; Dunbar,
2015; Gelin and Christensen, 2014; Plöger and Nebel, 2008; “Research & Innovation”) and private
sectors to make robots ubiquitous in next few years if not decades. Visionary, philanthropist and
founder of Microsoft Mr. Bill Gates said that next hot field will be robotics after PC’s revolution
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Figure 1.3 – A Robot in every home by Bill Gates. Source: (Gates, 2007).

(see Fig. 1.3).
Recent advances in computer vision, artificial intelligence and cognitive robotics can be

attributed to the objective:

To construct physically instantiated systems that can perceive, understand and interact with
their environment, and evolve in order to achieve human-like performance in activities re-
quiring context (situation and task) specific knowledge.

CoSy (Cognitive Systems for Cognitive Assistants)

While Beetz et al. (2007) introduced Assistive Kitchen, a comprehensive demonstration and
challenge scenario for technical cognitive systems, where in selected research subjects are anal-
ysed to identify the needed cognitive abilities. Whereas Metta et al. (2010) developed an open-
system which promote collaborative research in inactive artificial cognitive system: iCub. iCub is
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a humanoid robot, 94 cm, with 53 degrees-of-freedom, is able to crawl on all fours and sit up,
its hands will allow dexterous manipulation, and its head and eyes are fully articulated. It has
visual, vestibular, auditory and haptic sensory capabilities. With the complete system being
free, the research communities can easily replicate, customize and improve. Several attempts
have been made to design integrated cognitive architectures and implement them on mobile
robots (Yamazaki et al., 2009; Landsiedel et al., 2017; Spexard et al., 2006; Hawes et al., 2011;
Cognitive Systems for Cognitive Assistants; Roncone et al., 2016; Martinez-Hernandez et al., 2016;
Breazeal, Dautenhahn, and Kanda, 2016; Beetz et al., 2007; Neumann et al., 2017; Schiffer, 2016).
These attempts are focussed on creating much better, more versatile systems than the present
commercially available robots. These systems need to interact with the environment, interpret the
space, move with agility. Spatial understanding is a must for the future robots to perform basic
tasks such as navigation, obstacle avoidance, grasping/manipulation and long term autonomous
exploration. Spatial knowledge is fundamental for basic human knowledge (Kuipers, 2000).
Spatial metaphors are ubiquitous in discourse, and draw on pre-existing spatial knowledge to
communicate relationships and processes that would be difficult to communicate otherwise.
Spatial knowledge is grounded in sensorimotor experience. It exists in a number of different
forms, including procedures for getting from one place to another, topological network maps of
an environment, and geometrical models of the environment (Harnad, 1990; Lynch, 1960; Lakoff
and Johnson, 2008).

Different types of spatial knowledge can be identified depending on the source, point of
reference, spatial scale or level of abstraction (Pronobis, 2011). Geometric aspects of space can
be represented by a metric map (Dissanayake et al., 2001; Wolf, Burgard, and Burkhardt, 2005;
Paz et al., 2007; Milford and Wyeth, 2008), a level of abstraction on metric space into discrete
units lets us focus on spatial topology (topology map) (Ulrich and Nourbakhsh, 2000; Siagian
and Itti, 2007; Montemerlo and Thrun, 2007; Cummins and Newman, 2008). Hybrid of metric
and topological maps are gaining popularity allowing for better scalability, easier access and
maintenance in large-scale environments (Christensen, Kruijff, and Wyatt, 2010). The inclusion
of semantics in the map enhances the robot’s spatial knowledge representation and improves its
performance in complex tasks and human interaction. For example, the task for a robot maid
to bring a can of soda from refrigerator becomes easier if it knows the refrigerator is usually
in the “kitchen”. The assignment of attribute “kitchen” to a particular space in environment
rather than a simple room (like in metric or topological map) enhances the spatial knowledge in
a more meaningful way (Wu, Lenz, and Saxena, 2014). The semantic map can extend the robots
capabilities in performing fundamental and traditional tasks such as navigation, localization,
exploration and manipulation (Galindo et al., 2005; Rottmann et al., 2005; Stachniss, Mozos, and
Burgard, 2006; Dang and Allen, 2014).

1.2 Towards 3D Semantic SLAM

Although enriching existing maps with semantic information has several uses and mandatory
for future robots, it has not yet received the due attention it deserves due to its complexity
and challenging real-time solutions. In this thesis, an endeavour to solve some of theexisting
problems pertaining to semantic mapping1 is made. Solving semantic SLAM with a noisy sensor
which outputs colorless depth data has never been addressed to the best of our knowledge.
Although the sensor generates ramification of problems, it has several advantages which other
sensors lack. With the uncertainty in SLAM being fully solved in every environment with any
possible sensors, this thesis is towards achieving “3D semantic SLAM for indoor navigation”. An
office environment is considered for building the map, and few objects are strategically placed to

1In this dissertation, “semantic SLAM” and “semantic mapping” terms are used as synonyms. Although
the former has no proper definition and might involve simultaneous 3D reconstruction, material recognition and
segmentation. And semantic mapping typically involves first 3D reconstruction and then semantic layering upon it.
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Figure 1.4 – The stages of “Semantic Mapping of Indoor Environment”. The font color of each
stage matches with chapter number mentioned in the table. Mixed color is used to showcase the
use of particular stage (process) in multiple chapters. The point cloud from the sensor is very
noisy which is processed in Chapter 3 (red) before applying ICP or object recognition step.

be interpreted. The semantic interpretation is achieved at two levels: higher level, involves the
larger objects like walls, ceilings, doors, etc.; and object level, wherein, a particular scene having
several objects are interpreted by the system (see Fig. 1.5). The goal being, to ask a robot to make
complete reconstruction of the environment and recognize a particular space (like kitchen or
office or study room) and then interpret every single 2.5D view from the camera and perform
the assigned task. To this extent, several household objects are trained to be recognized with a
multi-class classification system which is based on novel shape signature.

1.3 Thesis Outline

In this PhD dissertation, each chapter tries as much as possible to be self-sufficient, without
the need to cross-refer. An earnest effort has also been made to give proper external references
for the reader to explore related research articles. Permissions from the authors of the original
articles has been explicitly taken and mentioned where needed.

1.3.1 Literature Review: Semantic Mapping with Single Depth Camera

A brief survey of the most recent approaches to solve semantic mapping is presented in Chapter 2.
It also discusses classification of the semantic SLAM approaches based on sensors utilized, envi-
ronment considered and task at-hand. A special emphasis on indoor semantic mapping is made
in this chapter, and associated state-of-the-art methods are presented in detail. According to this
classification system, this thesis addresses indoor single scene and large scale semantic mapping
using time-of-flight camera. Most of the semantic mapping approaches utilize sophisticated
laser scanners or RGB-D cameras. RGB-D cameras have the upper edge over time-of-flight depth
cameras only in providing color information, except this, the latter dominates in every other
aspects: has better, longer range and well-studied noise characteristics, specifically designed for
robotic applications. However, to the best of our knowledge, these depth sensors have not been
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Figure 1.5 – Semantic Mapping of Indoor Environment. (a) Higher level interpretation. Planes
are classified using a machine learning system based on the convex hull orientation. It perfectly
classified walls, ceiling, doors and clutter/objects. (b) Objects (chairs) and clutter in Room1
(bottom) extracted, (top) objects in Room2 which are part of machine learning system to be
interpreted. (c) Semantic interpretation of 2.5D scene of (b, top), using a novel shape descriptor.

considered enough for semantic mapping, as most of the object recognition techniques in 3D
Computer Vision use color-based descriptors.

The importance of depth sensors has been realized in this thesis through this literature review,
and a new semantic mapping pipeline is proposed. As the depth sensor output only colorless
depth data, a new shape descriptor has been designed which is only based on the keypoint
detectors that does not need color information.

Our approach uses a SwissRangers’ Time-of-Flight sensor, which produces only depth data
in the form of point cloud and amplitude images. The environment considered is a large indoor
office arena; having several rooms on either side of long corridor. The goal is to reconstruct
the environment using the individual sequentially acquired point cloud scans, localise every
acquisition in the global reconstructed model and perform semantic interpretation (see Fig. 1.4).
Labelling with semantic information is done at two stages: higher level and lower level (see
Fig. 1.5). Former involves detecting large planar surfaces and classifying them into doors, walls,
ceilings (presented in Chapter 8). The latter or object-level deals with recognition of objects in a
given scene. It is like, a robot that is navigating through an environment, it recognized important
and large spaces and is analysing individual scenes for some specific objects to be manipulated
later on. The object level scene parsing involves: sensor noise removal as dealt in Chapter 3,
background/clutter deletion, object extraction, descriptor evaluation for each object cluster and
recognizing the object’s cluster based on its descriptor using machine learning (Chapter 6 and 7).

8



CHAPTER 1. INTRODUCTION 1.3. THESIS OUTLINE

1.3.2 Time-Of-Flight Camera: Working Principle and Noise Filtering

The integral and imperative step for constructing a good 3D map of the environment is to free
the data from noise which can, otherwise, affect every step in the semantic mapping pipeline.
The data from the time-of-flight camera suffer from two different types of noises: systematic and
non-systematic errors. This chapter details different types of noise present in the sensor and
also gives brief introduction about the working principle of it. Jump edges are the most common
and prominent type of non-systematic errors whose origin is still not yet fully understood.
Some researchers suggest that they occur due to multiple reflections of the incident light while
some others suggest that it could be due to averaging algorithm present in the camera software,
which generates false points when there are overlapping surfaces in front of the camera. A new
algorithm based on the working principle of the sensor itself has been developed to remove jump
edges. This chapter describes the approach and evaluates the results with another method in
terms of quality of output image, computation time and registration of scans.

1.3.3 ICP: Iterative Closest Point Algorithm

One of the most popular and de facto method to register scans is presented in Chapter 4. Regis-
tration algorithms associate a set of scans into common coordinate system by minimizing the
alignment error. An initial transformation is created to represent the Source scan in the same
coordinate as the Target frame. In ICP, the transformation is iteratively calculated, until the
alignment error decreases and eventually converges. It works on a fundamental assumption that
the source and target scans are identical, and there exists correspondence between every point
in them. This chapter describes state-of-the-art variants of ICP and its counterparts, in detail.
Since its invention in 1992, ICP has been explored thoroughly and hundreds of its variants exist
today and still new variants are always developed. ICP has been used profusely in this thesis
for evaluating novel noise filter performance, developing a robust and pose invariant shape
signature, scan registration for SLAM and globally consistent map with GraphSLAM.

1.3.4 SLAM

This chapter starts with a very brief history and origin of SLAM (Simultaneous Localization And
Mapping) problem. Different types of SLAM systems based on Gauss’ Least Squares method are
presented in gist and a very elaborate discussion is given about a SLAM system (for 2D and 3D)
on which this thesis is based on. In this thesis, no IMUs (Inertial Measurement Unit) or visual
odometry techniques or loop closing methods have been used. Data are acquired by placing the
camera at pre-arranged locations on virtual coordinate system created in the indoor environment.
These “locations” are used as initial pose estimate for ICP scan matching. The SLAM system
outputs a reconstructed 3D environment (point cloud) with pose estimates of camera at each
acquisition. The SLAM system’s performance is evaluated on these pose estimates using a novel
metric developed on course. Plane extraction is achieved on the output point cloud using Hough
transform.

1.3.5 Towards a Robust Shape Signature: Semantics Part I and Part II

As mentioned earlier, in this thesis higher-level and object-level semantic interpretation is the
main objective. These two chapters deal with the latter: single scene semantic interpretation;
starting from developing a pose invariant shape signature to learning of this signature and finally
interpreting scene having known, unknown objects with and without occlusion. There has been
an explosive growth in the usage of 3D models in recent years due to quantum jump in 3D
sensing technology to model, digitize and visualize 3D shapes. This digital revolution can be
attributed to substantial and continuous improvements in microelectronics, micro-optics and
micro technology. These expensive 3D sensors which were once only available for specialized
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industrial applications are now commercially available for research communities and public
for 3D reconstruction, mapping, SLAM, human-machine interaction, service robotics, gaming,
preserving cultural heritage, security and surveillance, 3D printing, CAD and others (Schöning
and Heidemann, 2016). As a direct result of this, there has been an exponential increase in
the amount of 3D models usage and wherefore determining the similarity between 3D models
has become crucial and is also at the core of shape-based object detection, recognition and
classification. In order to interpret an object in any pose, it is necessary to know how the object
looks from every camera viewpoint or to have the 3D model of the object itself. Knowing the
object from every camera viewpoints makes the recognition process easier, as comparing a 2.5D
view with 3D model is time taking and complex. Recognition from learning how an object looks
in every pose is much more effective and fast, as learning is a single step off-line process, and
recognizing is just calculating the certainty of belonging to particular class from the machine
learning (ML) model. It is imperative to find relations between different poses of the same object,
as it helps the ML model not to be too “overfitted” and also it is basis for human cognition. In
order to achieve this, keypoints, which are stable across pose changes on object surface, are used
to represent each view and each object view is abstracted to simple probability distribution.
The probability distribution captures the spatial and geometric relations of these keypoints
using some “shape functions”. It is also implied to use the best 3D keypoint detector for this
purpose, as there are dozens of them. To this end, a performance evaluation of different 3D
keypoint detectors is done prior to the design of shape signature. These two chapters present
this evaluation methodology and design of the shape signature.

1.3.6 Semantics: Part III

Higher level semantic knowledge of the environment like enclosed spaces, walls, doors, ceil-
ings, clutter are equally important for the robot to navigate and manoeuvre safely around
humans (Steinfeld et al., 2006). Higher level interpretation involves extracting planes, classifying
and visualizing them. The Hough Transform is an established method for detecting parametrized
objects (lines, circles, cylinders) and also for planes. Many variants of it evolved since its invention
in 1962. This chapter describes the application of Randomized Hough Transform (RHT) for
plane detection in 3D reconstructed point cloud. The detected planes can be classified using
their convex hulls orientation in the global reference frame. A new method is also presented in
this chapter which learns the convex hull features like orientation and area of planes to classify
the surfaces into doors, walls, ceiling and clutter.

1.3.7 Conclusion

The last chapter presents a brief overview of the thesis’ set goals and its achievements; and also
presents the future work that could be done to extend this work. The main contribution in this
thesis is to achieve semantic SLAM with minimalistic equipments, hence only single depth sensor
has been used. The other approaches utilize sophisticated devices for mobility, data acquisition
and for augmenting the data with additional sensors. We make an endeavour in this thesis to
show that, it is possible to do semantic mapping with single depth sensor. This chapter weighs
the set goals against the realizations on an empirical balance, and proposes possible extensions.

1.4 Main Contributions

The global major contribution of this thesis is to address the indoor semantic SLAM with a single
depth sensor. The following are the sub-contributions.

� Noise Filtering The time-of-flight depth sensor suffers from one of the prominent non-
systematic noise, the jump edges. A novel algorithm to remove this noise has been proposed
and also compared with the other state-of-the-art method.

10
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� Performance Evaluation of 3D Keypoints There are more than two dozen of keypoint
detectors already exists for 2D and 3D data. Each detector has its own specific application
and has the best performance for the given data and given set of parameters. In order to
design a robust object recognition method, a suitable keypoint detector should be found;
the object recognition method actually involves a novel shape descriptor that uses keypoint
detector. A new way to compare different 3D keypoints detectors is proposed in this thesis
and the resultant best detector is used to design the shape descriptor. Another contribution
in the same evaluation process is the development of object depth dataset using a Cartesian
robot.

� Novel Shape Signature The best keypoint detector which is found from the above evalua-
tion is used to extract keypoints and represent a single 2.5D view of the object. The spatial
relation between these keypoints are captured using geodesics and Euclidean distances. A
PDF (Probability Distribution Function) of these distances uniquely represent every object.
An object can simply be recognized based on its keypoint’s spatial PDFs. The recognition
system is developed using machine learning and applied to interpret single scene. Also,
another object dataset is specifically made for this process.

� SLAM Dataset Publicly available and benchmark datasets help to push forward the state-
of-the-art techniques in Computer Vision, Image Processing, Machine Learning, Robotics
and several other scientific domains. They support the scientific evaluation and objective
comparison of algorithms with a clear evaluation metrics. SLAM is one of the problems in
robotics which has been investigated using a variety of image and time-of-flight sensors that
use radar, sonar and LiDAR (Cadena et al., 2016). However, to the best of our knowledge,
depth sensors have not been exploited enough for semantic SLAM, as a result we lack
standard publicly available dataset for it. In this thesis we proposed a way to acquire
depth data of indoor environment without the need for expensive mobile robots and also
the dataset is made publicly available for academic research. The dataset has utilized
two different SwissRanger cameras with different maximum ranges and has around one
thousand scans.

� Evaluation of SLAM A publicly available software (with slight modifications) has been
used to solve the problem of SLAM. The performance of the software for our dataset is
evaluated using a novel way similar to relative pose error (Sturm et al., 2012), however,
we use context information embedded in the cosine similarity scores. The SLAM’s pose
estimates are evaluated against the ground truth (the prearranged positions where the
camera is kept while data acquisition) using this novel context-based similarity score.

� Surface Classification Hough Transform has been used for extraction of planes from the
reconstructed point cloud of indoor environment. The output of Hough Transform are the
planes represented using convex hulls. A novel machine learning system has been decided
to classify the planes into doors, walls, ceiling and clutter using the orientation properties
of convex hull and its area. The designed system is almost 100% accurate.

1.5 Funding

This thesis has been carried out with the help of a grant awarded by the Laboratory of Excellence
ImobS3. More precisely, this work was supported by a French government research program,
the Investments for the Future Program, via “l’Équipement d’Excellence” RobotEx (ANR-10-
EQPX-44) and LabEx IMobS3 (ANR-10-LABX-16-01), and also with the European Union via
the program 2007-2013 (European Regional Development Fund - ERDF), and by the Auvergne
region.
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After emphasising the semantic stance in regular
maps and its indispensability for future service robots
in previous chapter, this chapter presents the state-
of-the-art methods that have been developed and
applied to solve this problem. The need for “seman-
tics in robots” although has been recognized almost
four decades ago, it’s still in its nascent phase. Start-
ing with a proper definition of this problem and its
relevance in SLAM (Simultaneous Localization And
Mapping), different categories of semantic mapping
based on types of sensors used in a particular en-

vironment (indoor or outdoor) is discussed in this
chapter. Semantic interpretation can be done at two
scales: single 2.5D scene or on a large-scale 3D re-
constructed environment using either laser scanners
or RGB-D sensors. However, depth sensors have not
been explored enough to approach this problem. In
this thesis, both these scales are explored using single
depth camera: interpretation of single scene involving
object level detection/recognition and higher-level
interpretation of large-scale environment. The latter
involves labelling of large surfaces and key compo-
nents in the indoor facility.
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2.1 Introduction

One of the most important attribute for a future service robot to co-exist with humans, is to
have cognition and understanding of its environment. The quintessential humanoid/service
robot should have impeccable ability to see like humans see, able to recognize, classify, interpret
the scene and perform the tasks in human-centric form. Hence, augmenting the robot’s maps
architecture with semiological attributes involving human concepts, such as types of rooms,
objects and their spatial arrangement, is considered as a must do for future service robotic
industry (Kostavelis and Gasteratos, 2015). The enhancement of regular maps with semantic
information about the environment is called semantic1 mapping.

A semantic map for a mobile robot is a map that contains, in addition to spatial informa-
tion about the environment, assignments of mapped pertaining to entities of known classes.
Further knowledge about these entities, independent of the map contents, is available for rea-
soning in some knowledge base with an associated reasoning engine. Source: (Nüchter and
Hertzberg, 2008).

Vision is the most dominant modality for robot navigation, localization and mapping (Sibley et
al., 2010; Agrawal and Konolige, 2008; Milford, Wyeth, and Prasser, 2004; Ulrich and Nourbakhsh,
2000; Cummins and Newman, 2008; Davison et al., 2007; Harris and Pike, 1987; Neira et al.,
1997; Sim, Elinas, and Griffin, 2005; Maddern, Milford, and Wyeth, 2012; Murillo et al., 2013;
Latif et al., 2014; Neubert, Sünderhauf, and Protzel, 2015). The first twenty years of vision-based
robot navigation, surveyed in (Desouza and Kak, 2002), state that any function-driven navigation,
such as to locate an object and bring it, is to be associated with the overall problem of computer
vision, i.e., automatic scene interpretation. However, in order for a robot to be able to navigate
efficiently, a consistent geometrical map should be the first foundation in the architecture. It can
be analogised with construction of a house, where the foundation, the basement of the house is
the core which should be laid first and then one can think of fixing a mural. Several decades
of laborious research has been conducted in SLAM (Simultaneous Localization and Mapping),
considered to be “chicken and egg” problem (Thrun, Burgard, and Fox, 2000), which led to fruitful
and remarkable results (Thrun, Burgard, and Fox, 2005). The representative works described
in (Thrun, Burgard, and Fox, 2005; Jian et al., 2013; Grisetti, Stachniss, and Burgard, 2007; Hähnel
et al., 2003) prove the necessity for an accurate representation of the robot’s surroundings as well
as the development of efficient mapping methods. With SLAM being solved, researchers can
focus more on fixing walls, windows, mural and interior design. No progress could have been
made in the area of semantic mapping, unless a prior advancement in SLAM had been made.

A deeper understanding of SLAM requires a further decomposition of the problem. A
taxonomical classification of mapping methods results in three classes, viz. the metric, topological
and topometric. Metric mapping (please refer to Fig. 5.5 for different types of 3D metric maps) is
a geometrical representation, where all the poses are relative to the global coordinate system.
Typically, it is either 3D map or 2D occupancy grid. An occupancy grid map represents the
environment as a block of cells, each one either occupied, so that the robot cannot pass through
it, or unoccupied, so that the robot can traverse it. Topological maps on the other hand involves a
graph, each of the nodes corresponds to particular location in the real world (Thrun, 1998) (Angeli
et al., 2009). Topometric (Cowley, Taylor, and Southall, 2011), as the name says, is a combination of
both metric and topological maps, it facilitates faster and more accurate robot localization, (Blanco,
Fernandez-Madrigal, and Gonzalez, 2007) have applied this hybrid method to reconstruct robot’s
path in a hybrid continuous-discrete state space. Although, the research done so far in mapping
is adequate enough for robot navigation to specific targets, but they are devoid of high-level
attributes and cognizant capacities being imbued. Now, the trend in robotics is to design agents

1Trivia: the word semantic is derived from the Greek word sēmantikos which means “significant”, which in turn
derived from the verb sēmainnein which stands for “signify” which again stems from the root word sēma, that is sign
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to operate in human environments close to living beings so the construction of anthropocentric
maps endowed with cognizant capacities has become inevitable.

In this chapter, a brief review of different approaches for constructing these maps is proposed.
The rudimentary classification of these approaches could be based on the type of environment
considered (indoor or outdoor), type of sensors used (laser scanners or RGB-D sensors) or scale
of data (single scene or whole environment). The literature review helped to realise the absence
of depth sensors usage in indoor semantic mapping even though these sensors have several
advantages. In the last section of this chapter, a novel pipeline to address semantic SLAM using
depth sensor is proposed.

2.2 Recent Trends in Semantic Mapping

Semantic mapping techniques can be clustered into two different types, depending on where
they have been employed, indoor or outdoor. Generally, in many occasions a semantic map is
built on top of metric one. The metric map is of course a 3D representation, constructed from
many individual scans with different kinds of sensors, as it is very difficult to comprehend from
2D occupancy grids. For indoor case, they can be further distinguished into single-scene and
large-scale ones. “The single-scene class gleans those methods that reason about an instance
frame with respect to a local coordinate system, also providing conceptual attributes about the
observed objects of the scene” (excerpt taken from (Kostavelis and Gasteratos, 2015)). Large-scale
approaches on the other hand gradually construct a metric map relative to global coordinate
system, and simultaneously annotate it with high-level features (such as walls, doors, floor, ceiling,
place labels, object type, etc.). An excellent survey on semantic mapping is done in (Kostavelis
and Gasteratos, 2015) and this particular chapter has been inspired by this article.

Figure 2.1 – Single scene interpretation. Source: (Trevor et al., 2013).

2.2.1 Indoor Single Scene Interpretation

Nielsen et al. (2004) surmised semantic mapping as an interface between robots and humans.
They augmented the metric map with real-world pictures through a single-frame snapshot
application (locations are indicated with icons or symbols). Kostavelis et al. (2012) in their
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early work used a technique based on SVM (Support Vector Machines) to semantically infer
the traversability of a post-disaster environment. Their later work, described in (Kostavelis,
Nalpantidis, and Gasteratos, 2012), uses stereo vision and operates on the image plane with
the purpose of classifying the traversability of the scene, and they have achieved a remarkable
performance for both indoor and outdoor single scene interpretation. Rusu, Gerkey, and Beetz
(2008) used multi-sensor (basically a stereo camera and a SICK laser scanner) fusion to help
a domestic robot interpret a kitchen scene with several objects. Trevor et al. (2013) recently
introduced a single scene point cloud segmentation utilizing connected components practices
through RGB-D data. Planar segmentation is performed on the point cloud data to distinguish
key components in the scene and then L2 norm based clustering is applied on the color image,
in order to detect objects on a tabletop. Swadzba and Wachsmuth (2014) developed spatial 3D
feature vectors for single scene classification.

In another single scene interpretation work, Mozos et al. (2012) used a RGB-D camera for
visual place classification and Espinace et al. (2013) utilized visual input to interpret object’s
categories from an exploring robot. The visual input was further treated in a hierarchical fusion
manner to characterize the observed scenes in accordance with the existing objects. Bao et al.
(2012) used Structure From Motion (SFM) to jointly detect objects and determine the geometry of
the scene from two or more uncalibrated images of the scene. They have exploited the correlation
between high-level elements (objects) and low-level ones (image features) to extend their previous
work (Bao and Savarese, 2011) and coherently solve the SFM and object detection problems. In
the most recent work by Cleveland et al. (2017) and Cleveland et al. (2015), a robotic system
for generating semantic maps of an inventory in retail environments is developed. Semantic
mapping of retail environment, generally, involves labelling of stores where each discrete section
of shelving is assigned a department label describing the types of products on the shelf (see
Fig. 2.2).

The authors in (Stückler et al., 2015; Choudhary et al., 2014) proposed online semantic parsing
(object discovery and object modelling) of indoor environments while simultaneously building
the map. While Choudhary et al. (2014) used these objects as landmarks for loop-closures, on
the other hand (Stückler et al., 2015) method models geometry, appearance and labelling of
surfaces on a RGB-D video. In this thesis, similar to (Cleveland et al., 2017), a particular scene
is segmented in the first step using region growing segmentation, and then individual object
cluster is recognized based on a novel shape signature; this approach will be called as “indoor
single scene object-level interpretation” throughout this dissertation. Also, another methodology to
interpret large scale scene after global reconstruction is presented in this thesis, which we call as
“indoor large scale higher-level interpretation”.

2.2.2 Indoor Large Scale Interpretation

Major portion of research that has been carried out on semantic mapping has focussed on
indoor large scale interpretation in 3D. The more probable reason could be that most of the
future service robotic applications involve in working in indoors rather than outdoors. One can
easily distinguish the indoor large-scale interpretation methods based on the type of sensor and
strategies utilized to construct the metric map.

Accordingly, the works presented in (Nüchter et al., 2005; Blodow et al., 2011; Rusu et al., 2009;
Trevor et al., 2010; Rusu et al., 2008) utilize laser scanners to reconstruct the 3D environment.
In (Nüchter et al., 2005), 360◦ map of the scene is captured with SICK laser scanner, and using
ICP, a globally consistent map is obtained, the correspondences being established via semantic
labels. Similarly, a metric map is developed in (Blodow et al., 2011) using laser scanner and
segmentation techniques are applied to generate initial hypotheses about the significance of
objects. The authors in (Rusu et al., 2008; Rusu et al., 2009; Trevor et al., 2010) augmented the
metric and geometric map with information about the objects present in the scene, while Rusu
focussed on kitchen environment and whereas Trevor on detecting horizontal surfaces like
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Figure 2.2 – (Above) Object detection over store shelf. (Below) Automated semantic map genera-
ted over an actual Walgreens store aisle using soft object recognition and dynamic programming
segmentation. Source: (Cleveland et al., 2015).

tables, shelves, counters etc., in office like environment using Hokuyo UTM-30LX measurements,
combined with rotary unit and odometry readings.

Figure 2.4 – Semantic hierarchy
graph. Source: (Wu, Lenz, and
Saxena, 2014).

Researchers have also used simple and
cheap sensors like Kinect for semantic map-
ping. Pangercic et al. (2012) used Semantic
Object Maps (SOM’s) for autonomous serv-
ice robots performing everyday manipulation
tasks in kitchen environments. A PR2 robot
acquires the data using an RGBD sensor in
a kitchen environment, a SOM+ map is built
on this representation from sensor data and
queries are performed on this abstraction of
SOM (see Fig. 2.3).

In (Kostavelis and Gasteratos, 2013)
and (Gunther et al., 2013) a RGB-D sensor, Kinect, has been used to construct globally consistent
3D map using variants of ICP. Kostavelis and Gasteratos developed a two-layer navigational
scheme, a 3D SLAM system being at the lower layer (numerical navigation), solely based on
Kinect data, and a higher layer (semantic interpretation) for a spatial abstraction of the input
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Figure 2.3 – Building of a SOM+ map in a kitchen environment
(top), SOM+ map representation (middle) and a set of robot queries
made possible due to such powerful representation (bottom).
Source: (Pangercic et al., 2012).



2.2. Recent Trends in Semantic Mapping 19

space for efficient memorization of the distinct places (e.g., “office”, “corridor”, etc.). In the
numerical navigation layer, SIFT features are detected in consecutive color images, and a
point-wise 3D correspondence between the consecutive depth frames of the corresponding
SIFT feature points is obtained. These consecutive point clouds are then merged using this
feature correspondence information and visual odometry. Later, a refinement step based on ICP
alignment of dominant plane (detected by RANSAC) is applied. The semantic interpretation layer
only pertains to the question of place classification. This has been achieved using bag of features
technique along with SVM as shown in Figure 2.5. In (Gunther et al., 2013), however, a globally
consistent map is developed using SLAM6D toolkit and using Las Vegas Surface Reconstruction
Toolkit (LVR) the surfaces are reconstructed and matched with already existing CAD models of
furniture and using ICP the poses are adjusted, and then the point clouds are replaced with
their CAD models (Trevor et al., 2010).

Figure 2.5 – Higher layer for semantic interpretation by Kostavelis and Gasteratos (2013).

Salas-Moreno et al. (2013) proposed a real-time SLAM with hand-held sensors, which harness
3D object recognition to jump over low level geometry processing and produce incrementally
built maps directly at the “object oriented” level. As a hand-held depth camera browses a
cluttered scene, prior knowledge of the objects likely to be repetitively present, enables real-time
3D recognition and the creation of a simple pose graph map of relative object locations (see
Fig. 2.6). Another interesting work on semantic labelling of RGB-D scenes can be found in (Wu,
Lenz, and Saxena, 2014). Most of the approaches mentioned are based on flat labelling (Ren, Bo,
and Fox, 2012; Gupta, Arbeláez, and Malik, 2013) of the scene without considering the important
relations between class labels. However, Wu, Lenz, and Saxena (2014) applied hierarchical labelling,
preserving the relations between class labels, using mixed integer programming to optimize a
model isomorphic to a CRF (Conditional Random Field). When labelling with this hierarchy,
each pixel belongs to a series of increasingly-general labels; for example, a pixel of class fridge-
handle would also be of classes fridge-door, fridge and electronics (see Fig. 2.4). The input to the
algorithm is a co-registered RGB and depth image pair

〈
I ∈Rm×n×3,D ∈Rm×n

〉
, the goal is to

predict the label of each pixel and output the label matrix L ∈ Cm×n, C is the set of possible
hierarchical semantic labels. This is achieved by mapping a semantic hierarchy graph (with
relations Is-part-of, Is-type-of ) to the segmentation tree built on the input image. Civera et al.
(2011) applied extended Kalman filter (EKF) monocular SLAM algorithm in order to create the
metric map of the perceived environment and in parallel annotate the scene with semantic labels
from an object recognition thread.

An additional class of indoor large scale semantic mapping methods is the one utilizing the
laser scanner to form 2D occupancy grids of the environment (see Fig. 2.8). Mozos et al. (2007)
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Figure 2.6 – Loop closure. (left) Open loop drift during exploration of a room; the corresponding
sets of objects are shown in red. The full SLAM++ graph is shown in yellow lines for camera-
object constraints and orange lines for camera-camera constraints with orange lines. (middle)
Imposing the new correspondences and re-optimising the graph closes the loop and yields a
more metric map. (right) Colored point cloud after loop closure. Source: (Salas-Moreno et al.,
2013).

simulated the laser scans from two robots in different maps by using the CARMEN (Montemerlo
et al., 2002a) software. The simple features extracted from the range scans are boosted using
AdaBoost to achieve a strong classifier. Furthermore, in (Pronobis and Jensfelt, 2012; Pronobis
et al., 2010; Ekvall, Jensfelt, and Kragic, 2006; Zender et al., 2008), geometric primitives from laser
range scans are extracted and an EKF is applied for the integration of feature measurements. Liu
and von Wichert (2014) on the other hand applied standard SLAM and built an occupancy grid
map of the environment. Later, he used this map as basis and layered a semantic model upon it.
Lawson (Wong, Kaelbling, and Lozano-Perez, 2014; Wong, 2017) developed an approach that
combines occupancy grid maps and object-based world models on demand (see Fig. 2.7).

Figure 2.7 – (Left) A mobile robot uses object detections to distinguish occupied/free space. And
uses free space observations to eliminate possible locations of objects. Source: (Wong, Kaelbling,
and Lozano-Perez, 2014). (Right) Graphical model for inference across representation models.

Pronobis and Jensfelt (2012) represented semantic information and inference using graphical
model, before that, in (Pronobis et al., 2010) he accomplished reasoning with an SVM based cue
integration scheme. They also presented a multi-layered semantic mapping algorithm combining
multiple visual and geometrical information (Pronobis and Jensfelt, 2011); the metric map is
build by exploiting the M-space feature representation. In (Ekvall, Jensfelt, and Kragic, 2006), the
generated map was augmented by local and global information about existing objects. Similarly,
the method described by Zender et al. (2008) recognizes places and objects by means of laser
and visual data, respectively, with the aim to enhance the metric map constructed.

Additionally, the work described in (Krishnan and Krishna, 2010) combines semantic and
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Figure 2.8 – The right images depicts example scans recorded in a corridor (top) and a room
(bottom). Source: (Mozos et al., 2007).

topological maps. At the top-level the map is a graph of semantic constructs, where each node is
a semantic construct (such as room or corridor) and the edges are the transition regions which
connects two semantic constructs (like doorway). Luperto, Quattrini Li, and Amigoni (2014)
utilized two laser scanners placed back-to-back to cover 360◦ around the robot and constructed a
metric map which is then later employed during the semantic portioning of the explored area.

A further cluster of indoor large-scale semantic mapping consists of research attempts which
exploit stereo vision to acquire depth information of the scene, and use it to solve the SLAM
problem. In (Vasudevan et al., 2007), the map generated by SLAM is augmented by the object
labels, recognized by means of SIFT features. In (Case et al., 2011), the map is enhanced by
including text detection in an office environment. On the other hand, Nieto-Granda et al. (2010)
labelled the spatial regions in the map by means of a Gaussian model; the map being constructed
using particle filters from ROS (Quigley et al., 2009). Feng et al. (2012) proposed a framework
for mobile robot localization in an indoor environment, using concepts like homography and
matching borrowed from the context of stereo and content-based image retrieval techniques.
The work described by Ranganathan and Lim (2011) utilizes a Visual SLAM system to create a
long range metric map (Fig. 2.9), consisting of 3D locations of distinct features observed during
robot’s perambulation.

It can be observed from the above approaches, that almost all of them have utilized either
laser scanners or Kinect like RGB-D sensors or stereo vision for indoor semantic mapping. The
time-of-flight depth sensors have hardly been employed for this problem.

2.2.3 Outdoor Interpretation

There have been already multiple approaches proposed to solve the problem of semantic map-
ping in outdoor environment. While some approaches are very basic, like they calculate the
traversability of the path for the robot, which is just a binary classification of the scene operating
on the image plane (Kostavelis, Nalpantidis, and Gasteratos, 2012). On the other hand, few
approaches achieve complete segmentation and semantic interpretation of the outdoor scene.
Bordes et al. (2013) employ multi-sensor fusion and analyse the primitive attributes (e.g., ground,
vegetation, structures, obstacles, etc.) of the scene. Sengupta et al. (2013) performed large-scale
3D mapping of the environment and automatically labelled the street scenes using Conditional
Random Fields (Fig. 2.10). This sophisticated method operates robustly on simple stereo images.
In contrast to this holistic approach, Cadena, Dick, and Reid (2015) claim that different perception
tasks should be treated as different (software) modules that can be activated or deactivated at will
without impairing the rest of the system. The system solves different tasks (geometric reconstruc-
tion, semantic segmentation and object detection) in an opportunistic and distributed fashion
but still allows communication between modules to improve their respective performances.

Multiclass Gaussian Process (GP) classification is adopted by Paul et al. (2012) for semantic
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Figure 2.9 – Place labelling in a laser-based map: The top portion shows the current area viewed by the robot (in
red) and the robot trajectory from start is shown as a dotted line. The image from the robot camera used for place
categorization is shown at bottom left, along with the maximum a posteriori place label from the PLISS algorithm.
The label probabilities are accumulated in a grid map of the environment, and the most likely labelled map at the
current step is shown at bottom right. Light blue corresponds to the place category “Lab”, red to “Corridor”, and
green to “Copy room”. Dark blue corresponds to unknown/unseen areas. Source: (Davison and Murray, 2002;
Ranganathan and Lim, 2011).

interpretation of the scene. In the first step, a feature extraction and segmentation is applied
on the 3D point cloud and then the feature vectors are fed in a latent kernel classifier function
represented by the GP. The uncertainty of the scene objects classified diminishes as the 3D point
cloud becomes denser. Steder et al. (2011) developed an approach which uses bag of words for loop
closure detection and point-feature-based estimations of relative poses to determine a consistent
metric map of the environment. This approach has achieved remarkable results to detect reliably
previous seen places and calculate accurate transformation between the corresponding scans.
Singh and Kosecká (2012) clustered the outdoor scenes into specific regions with their respective
labels, utilizing a multi-camera system for long range street scene imagery. The same authors
in (Micusik, Kovsecka, and Singh, 2012) performed semantic parsing of street scenes from videos.
Saux and Sanfourche (2013) used UAVs to draw semantic inferences from the observations on
the ground. They used an online gradient boost algorithm to interactively interpret context
dependent detectors. Katsura et al. (2003) proposed a weather-invariant vision based outdoor
navigation method endowed with object recognition attributes. They also proposed a comparison
method in which the robot firstly recognizes objects in images and then compare recognition
results of learned and target images.

2.3 Proposed Approach

As mentioned before, depth sensors are not exploited enough for indoor semantic mapping even
though they have several advantages (will be discussed in Chapter 3). In this thesis, a single
time-of-flight depth sensor (SwissRanger SR4000) is used to reconstruct the indoor environment
and interpret the scene. Similar approach is followed as that of (Nüchter and Hertzberg, 2008),
except localize the objects in the global map (see Fig. 2.12). The point cloud generated from the
SwissRangers is extremely noisy to detect the objects in the reconstructed global point cloud.
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Figure 2.10 – Semantic image segmentation: The top row shows the input street-level images and
the middle row shows the output of the CRF labeller. The bottom represents the ground truth.
Source: (Sengupta et al., 2013).

However, individual scans can be verified for the presence of the objects and then localize them.
Our approach (see Fig. 2.11) deals with two different levels of interpretation: object level and
generic surfaces. The object level interpretation is performed on a single scene while the higher-
level interpretation is done on the global map. To the best of our knowledge, this methodology
has never been tried and moreover using time-of-flight camera like SwissRanger.
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Figure 2.11 – Flowchart of the semantic mapping process. The approach is very similar to that
of Nüchter and Hertzberg (2008), where they semantic label higher-level planar surfaces using
some rules and detect objects using trained classifier.

Figure 2.12 – Semantic mapping pipeline. Source: (Nüchter and Hertzberg, 2008).
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Before the year 2000, stereo cameras have been used
to obtain 3D data of the environment. However,
stereo cameras are not good choice as they do not
provide 3D information for textureless surfaces. In
the recent years, a new generation of active cameras
based on the Time-of-Flight principle (ToF) has been
developed. They work with an active illumination
and generate 3D data at video frame rate. Along
with several advantages, they also have few shortcom-
ings. This chapter discusses different kinds of noise
present in the data obtained from ToF camera and
also give brief introduction about its working principle.
SwissRanger camera like any other ToF camera have
systematic and non-systematic errors. Systematic
errors are predictable and can often be removed by

calibration, whereas non-systematic are unpredictable
and removed by applying filters. Jump edges are the
most prominent and popular non-systematic errors
present in this sensor data. It is very important to re-
move the noise as it can affect every stage of robotic
applications. A new method to filter jump edges in
the range images produced from ToF camera is de-
scribed, implemented and evaluated in this chapter.
Jump edges are seen as smooth irregular sigmoid
shape or curved transition between two overlapping
surfaces separated by some distance. The new fil-
ter’s efficiency is compared with a state-of-the-art
method. The comparison is based on the quality
of filtered image, computation time for filtering and
also its impact on registration of successive scans
and reconstruction of the whole scene.
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3.1 Introduction

Over the last decade, substantial and continuous improvement in microelectronics, micro-optics
and micro technology for robotics oriented 3D-sensing, has led to invention of Time-of-Flight
(ToF) cameras to capture depth images. Since their development, they have surpassed and
outperformed the past technology in range imaging. Further efforts are put to optimise and
design compact and more efficient prototypes. Many commercial sensors are now available at
affordable prices as shown in Figure 3.3. ToF camera delivers 3D imaging at a high frame rate,
simultaneously providing reflectance data and range information for every pixel. Depth-intensity
pixel-associated images at a video frame rate without any need of any extra mobile components
with additional technical advantages, as mentioned in (Foix, Alenya, and Torras, 2011b), such as
“robustness to illumination changes” and low weight, make it foreseeable that ToF camera will
replace previous solutions, or, alternatively, complement other technologies, in many areas of
application. However, with all these excellent attributes, ToF cameras suffer from various errors.
Larger fluctuations in precision due to external interfering factors (e.g., sunlight, other source of
illumination in the environment), distance orientations, object reflectivity, motion blur makes
ToF cameras unsuitable for most robotic application without calibration and filtering.

3.1.1 ToF Range Imaging Principle SwissRanger SR4000

Range imaging is blend of two different technologies viz., distance measurement and imaging.
A NIR (near infrared = 850 nm) modulated wave (of frequency f ) at few tens of MHz is directed
into the scene, the CCD/CMOS sensor detects the reflected IR and measures the phase of the
returned signal at each pixel, as shown in Figure 3.1. Every pixel on the sensor samples the
amount of light reflected by the scene four times at equal intervals for every period (m0,m1,m2

and m3). The phase ϕ , offset B, amplitude A and depth D are given as (Foix, Alenya, and Torras,
2011b):

ϕ = arctan

(
m3−m1

m0−m2

)
(3.1)

B =
m0 +m1 +m2 +m3

4
(3.2)

A =

√[
m3−m1

]2
+
[
m0−m2

]2
2

(3.3)

D = L
Δϕ
2π

(3.4)

where L = c
2f is the ambiguity-free distance range of the sensor.

Range imaging combines distance measurement technology with the advantages of those
of imaging arrays. Simplified, it just enables each pixel to measure the distance towards the
corresponding object point. This is regarded as an array of range finders, hence they are called
as smart pixels. Figure 3.2 presents the principle of range imaging. The measured distances
in connection with the geometrical camera relationships can be afterwards used to compute
the 3D coordinates which represent a reconstruction of the imaged object/scene (Kahlmann,
Remondino, and Ingensand, 2006). For SwissRanger ToF cameras, the absolute origin is at the
center of the optical filter, i.e., at the intersection of the optical axis with the front face of the
camera (see Fig. 3.7) and the depth is given/calculated from this origin, unlike the perspective
camera projection model where the origin lies at the optical center.

3.1.2 Depth Measurement Errors Classification

The performance of distance measurements by ToF is affected by number of errors. These errors
can be broadly classified as systematic and non-systematic. While the former are predictable and



3.1. Introduction 27

Figure 3.1 – The principle of ToF depth-camera. Source: (Kolb et al., 2010; Kang et al., 2011; Lee,
Choi, and Horaud, 2013; Foix, Alenya, and Torras, 2011b).

Figure 3.2 – ToF Range imaging principle. Source: (Kahlmann, Remondino, and Ingensand,
2006).

correctable by calibration but the latter cannot be predicted and generally removed by filtering.

� Non-systematic errors. Signal-to-noise ratio (SNR), inter-reflection, light scattering, motion
blurring errors are non-systematic in nature, as they depend on the scene configuration
and cannot be predicted.

• Signal-to-noise ratio (SNR). SNR distortion appears in scenes which are not uni-
formly illuminated, low illuminated areas being amenable. SNR is highly dependent
on the amplitude, the IT (Integration Time) parametrization and the depth uniformity
of the scene.

• Multiple ways reflection. They occur due to the interference of multiple light reflec-
tions captured at each sensor’s pixel. Due to this, hollows and corners appear rounded
off and occluding shapes have a smooth transition.

• Light scattering. Light scattering is another non-systematic error which cannot be
predicted as the topology of the observed scene is unknown a priori. This arise due to
multiple light reflections between the camera lens and its sensor. This leads to depth
underestimation over the affected pixels, because of the energy gain produced by its
neighboring pixel reflections. These errors are pertinent when the objects are close to
the sensor. The closer the object, the higher the interference.
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Figure 3.3 – Commercially available Time-of-Flight cameras. Source: (Schaller, 2011).

• Motion blurring. They normally occur when the sensors are used in dynamic envi-
ronment, due to physical motion of the object or sensor during the integration time
used for sampling.

� Systematic errors. Wiggling (circular error), integration time (IT) related, built-in pixel
related, amplitude and temperature related errors are predictable and are systematic.

• Wiggling or Circular error. Depth distortion occurs due to irregularities in modu-
lation process, as a result the emitted infra-red light is not sinusoidal. This error
produces an offset that depends only on the measured depth for each pixel.

• Integration time (IT)-related error. Integration time is sometimes synonymously
used for exposure time, but it is actually the time interval during which the camera’s
clocks are set to trap and retain charge. IT can be selected by the user, it has been
observed that for the same scene with different IT causes different depth values in the
entire scene.

• Built-in pixel-related errors. They arise either due to different material properties
in CMOS-gates or capacitor charge time delay during the signal correlation process.
The former results in constant pixel-related distance offset, leading to different depths
measured in two neighbor pixels corresponding to the same real depth. While the
later results in latency-related offset errors and observed as a rotation of the image
plane, i.e., a perpendicular flat surface is viewed with wrong orientation.

• Amplitude-related errors. They occur due to low or overexposed reflected ampli-
tudes. Depth accuracy depends on amount of incident light. The higher the reflected
amplitudes, greater is the depth accuracy. Low amplitude appears more often in the
border of the image as the emitted light power is lower than in the center, leading to
awry depths. On the other hand if the object is too close or if the integration time is
chosen too high, saturation can appear and depth measurements will not be valid.
These errors are caused mainly by:

∗ Systematic non-uniform NIR LEDs illumination causes depth misreadings at
pixels distant from image center.

∗ Low illumination for scenes with objects at different distances.

∗ Difference in object reflectivity cause different depth measurements for pixels at
the same constant distance.

• Temperature-related errors. Internal camera temperature affects depth processing,
depth values suffer from a drift in the whole image until the temperature of the
camera is stabilized. This is due to the fact that semiconductor materials are sensitive
to changes in temperature. Generally an over-estimation in measured distances is
found when the sensor started working and operating at high temperatures.

A detailed description of these errors can be found in (Foix, Alenya, and Torras, 2011b). In
this chapter, we deal with one of the most prevalent non-systematic error which are the result
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of inter-reflection, called jump edges. Inter-reflections also called as multiple-ways reflection,
occurs due to occlusions in concave objects, e.g., corners or hollows and edges. In this case,
the signal can take multiple ways through reflection before returning to the receiver, and the
re-emitted signal is superposition of illuminated light that has travelled a different distance, this
phenomenon is called as multimodal reflection. As a result of this, hollows and corners appear
rounded off and occluding shapes connected with a smooth transition. The reason for this, as
mentioned in (May et al., 2009b), is that, it happens as a consequence of diverging measurement
volume.

3.1.3 Jump Edges

Jump edges appear as irregular sigmoid shape or curve shaped transition between two surfaces
which are at different distances, or between foreground object and background, as shown in
Figure 3.5. The jump edges keep changing as the field of view is changed (see Fig. 3.4), due
to this, the registration between two scans is lousy and hence the whole reconstruction is of
very poor quality. These errors were successfully removed by (Fuchs and May, 2008) to the
most extent by applying threshold on the opposing angles formed by the focal point and two
neighbour data points (this method is referred as Angle Method or AM throughout this chapter).
However, this method theoretically fails if the angle between two planes is greater than the
threshold and hence fails to remove some jump edges, which could lead to bad registration
or increase in the convergence time of applied registration algorithm. Hence, a novel method
based on Line-of-Sight is proposed, implemented and compared with (Fuchs and May, 2008);
the approach is detailed in Section 3.4.

Figure 3.4 – Jump edges depend on the field of view, and can thus lead to bad scan registration.
Source: (May et al., 2009b).

3.2 Related Work

Several methods have been proposed to overcome the identification and/or correction of jump
edges (May et al., 2009b). Pathak, Birk, and Poppinga (2008) proposed a Gaussian analysis for
correcting multi-modal measurements. The main drawback of this method is the computation
time for the Gaussian fitting and integration over 100 images for each frame; which significantly
also reduces the frame rate. Sappa, Restrepo-Specht, and Devy (2001) presented an approach
that is aimed at identifying and classifying edges. It uses the fitting of polynomial terms to
approximate scan lines. These scan lines are connected at edge points. The strength of this
approach is that it also performs a classification of edges into jump edges and crease edges;
“Crease edges are those points in which a discontinuity in the surface orientation appears”, e.g.,
in corners or hollows. In (May et al., 2009b) and (Fuchs and May, 2008), the authors proposed
a simplistic method to remove this errors. From a set of 3D points P = {pi ∈ R

3|i = 1, . . . ,Np},
jump edges J can be selected by comparing the opposing angles θi,n of the triangle spanned by
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Figure 3.5 – Range image of three planar surfaces from SR-4000 camera. A: Jump edges can be
seen as curved transition from the front surface to the background. B:-Top view showing jump
edges between the planar surface and the background. C:- RGB test image. D:-Amplitude Image.
E:- Unfiltered Point Cloud, Jump edges can be seen connecting object to the background. F:- LoS
filtered Point Cloud with jump edges removed (see Section 3.4).

the focal point f = 0, point pi and its neighbours with a threshold θth. However, this method
will remove valid points if the inter-planar angle value is greater than θth. We have proposed a
method which is able to deal with this situation and yet remove the jump edges.

3.3 SwissRanger Depth Camera

SwissRanger time-of-flight cameras are manufactured by a Swiss Company: MESA Imaging1;
since the year 2009, different camera designs (SR3000, SR4000, SR4500) with unique features
commercially exist in the market. Both flavours of SR4000 (5 m and 10 m maximum range) are
used in this thesis (see Fig. 3.6). The specifications of SR4k are shown in Table. 3.1, they are the
same for both 5 m and 10 m versions, but they only differ in Modulation Frequency (MF) and
Absolute Accuracy. Before the acquisition of data, the Integration Time (IT) and MF are set to
the optimum values depending on the illumination present in the environment.

Figure 3.6 – The SR4k time-of-flight camera. Both 5 m and 10 m versions have similar design.
Source: (SwissRanger, Heptagon).
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Parameter Value

Illumination Wavelength 850 nm

Maximum Frame Rate 50 fps

Pixel Array Size QCIF 176 (h) × 144 (v)

Field of View 43.6° (h) × 34.6° (v)

Pixel Pitch 40μm

Voltage 12.0 V

Angular Resolution 0.24° × 0.39°

Operating Temperature +10 ° Celsius to +50 ° Celsius
.

Table 3.1 – SR4k depth camera specifications (please refer Appendix B for complete specifications)

3.4 Approach

3.4.1 Line-of-Sight-based Jump Edge Filtering:

From the working principle of ToF depth estimation (see Fig. 3.2), every region/point in the
scene is illuminated by a near infra-red light, and the system measures the round trip time to
bounce the point in the scene and reflect back to the receiver. In principle, the infra-red light
cannot illuminate any point behind and beyond another point which is currently illuminated, as
the current point blocks further progression of light, and the signal is reflected back to the sensor.
So, it is not possible to have two points on the same line-of-sight. Moreover, due to diverging
measurement volume (May et al., 2009b), as each pixel has a field of view (around 0.290° ×
0.340° for SR-4000), the depth measurement technique will look like a series of non-intersecting
cones arising from the smart pixels and limelight each point in the scene, and estimate the depth.
As a result, each smart pixel has discrete point in the scene being “cynosure”. But the jump edges
seems to be connecting two surfaces/objects at different distances/depths, and they lie on the
pixel’s field of view of the points in the foreground points. These jump edge points are present
inside the pixel’s field of view (FOV) of foreground point but with different depth. So, a filtering
method based on limelighting each point in the scene has been proposed. We also remove the
random noise to some extent by removing the points with no neighbors.

From the point cloud P, the depth image D[mxn] is calculated by projecting the 3D points on
a 2D image such that the pixel D[k, l] has depth information of corresponding point in P. Given a
point Pi in the cloud P, with depth Di, the eight neighbours of it are checked in D to see if they lie
on the Line-of-Sight of Pi (see Fig. 3.7). All the neighbours which lie on this line are marked as
jump edges and removed (see pseudo-code 1). Furthermore, a metric (Fig. 3.8) is defined, which
removes the points which lie on the small spherical segment. The height (ε) of the spherical cap
follows an inverse relation with the distance (di,n) between the point Pi and its eight neighbours
(Pi,n). However, for experiments constant values (ε ′ = 0.1 mm) are taken if di,n > 0.1 mm, as it
results in effectively retaining valid neighbours. A relation between width of the pixel’s FOV, di,n
and ε at a point in the scene need to be established. This is because of the diverging pixel’s field
of view (0.290° × 0.340° for SR-4000 5 m measurement range camera and varies with camera
make-up). The ε metric is similar to the mentioned limelighting principle, and it gives every point
in the scene its importance without sharing with neighbour points.

1As of the year 2014 the MESA Imaging company has been acquired by Heptagon.
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Figure 3.7 – Line-of-Sight method principle: here the point Pi is considered, and its eight neigh-
bours in the 2D range image are checked if they stand on the line-of-sight, originating from the
absolute origin of the camera passing through Pi.

Algorithm 1 Line-of-Sight pseudo-code for range image filtering
1: Inputs:

In_Cloud: Depth image D[m×n]
(
D[i,j] ∈ R|i = 1 · · ·m, j = 1 · · ·n)

2: Initialize:

Orig_Cloud, Curr_Cloud← In_Cloud
3: for i = 1 to all pixels in Orig_Cloud do

4: for j= 1 to all points in 8 neighbourhood of Orig_Cloud[i] do

5: if depth
(
Orig_Cloud[i, j]

)≥ depth
(
Orig_Cloud[i]

)
then

6: if Orig_Cloud[i, j] is on spherical cap defined by ε then

7: Remove Curr_Cloud[i, j]
8: else

9: if Orig_Cloud[i]is on spherical cap defined by ε then

10: Remove Curr_Cloud[i]
11: return Curr_Cloud: Filtered Point Cloud’s 2D image

3.5 Results, Evaluation and Discussions

3.5.1 Datasets

Experiments are carried out basically on three different types of scenes. The first scene has three
planes slightly inclined to each other and positioned at different distance from camera. The
second scene has Z shaped custom designed plane. And the last dataset is made with two planes
having very high or low inter-planar angle.

3.5.2 Results

From Figure 3.9, it can be observed that LoS-filtered image is more close to ground truth than
Angle Method (AM) (Fuchs and May, 2008). The ground truth is made with an image editor,
manually removing the jump edges and retaining only surfaces. Ellipses have been drawn on
jump edge points which are not removed. AM failed at removing eleven locations whereas
LoS at only one position. In Figure 3.10, the top series of images (A, B, C, D, E) elaborates the
comparison, visualizing the removed points (green). The bottom series of images correspond
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Figure 3.8 – Spherical cap is formed by intersection of two hollow spheres, with radii (Dn− ε)
and di,n. The eight neighbors of Pi (e.g., here Pn) are checked if they lie on the spherical cap and
are removed as jump edges if they lie. ε defines the size (height) of the spherical cap, and follows
inverse relation with di,n, due to diverging pixel’s FOV (refer text).

Figure 3.9 – Comparison with ground truth: Left- Ground truth. Middle- From Angle Method
(AM). Right- From LoS method. Ellipses show the points not removed (11 for Angle, 1 for LoS).

to second scene dataset with Z shape (top-view). In this case also LoS performs much better at
removing points inside the pocket of Z. The third dataset is made to test methodological failure
of AM. It fails when the angle between two planes is more than the threshold applied. It can be
seen in Figure 3.11, AM removes the valid points on the V junction, whereas LoS has retained
those points. Both the algorithms are applied on the median filtered range images, as suggested
in (Fuchs and May, 2008).

Experiments are also conducted to test the effect of filtering on the task of registering two
scans. PCL ICP (Rusu and Cousins, 2011) has been used to evaluate the performance. Here, three
different pairs of scans (with two scans having 2.5°, 5.0° and 7.5° of angular rotation between
them without translation) are registered. Both the filtering methods are compared based on ICP
fitness score (sum of squared Euclidean distances between corresponding points in the source
scan and the target scan). As observed in Table 3.2 and Table 3.3, LoS has lower fitness score and
thus better registration. And also LoS is faster than AM to implement. The average computation
time for filtering single range image with LoS method is 47.19 ms and for AM is 65.18 ms on a
Hewlett-Packard ZBook installed with Linux (Ubuntu 14.04) platform, programmed using C++.
Each range image has 25344 [144 × 176] points.
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Figure 3.10 – Effect of filtering on two scenes with different objects (planes): Top and Bottom
(top view of z-shaped object): A- Unfiltered depth image, B- Filtered with AM, C- Filtered with
LoS, D- Filtered by AM (Green- removed points, Purple- remaining points), E- Filtered by LoS
method (Green- removed points, Purple- remaining points).

Figure 3.11 – Experiment on planes with inter-planar angle more than threshold: A- Unfiltered
image, B- From AM, C- From LoS method. Clearly, points are removed at the cross-section of
planes due to thresholding on angle for Angle Method, whereas the points are retained for LoS.

3.5.3 Globally Consistent 3D Scene Reconstruction

Using 3DTK (Borrmann et al., 2008a; Nüchter et al., 2007; Borrmann et al., 2008b), globally
consistent 3D reconstruction of an indoor scene is done from the LoS filtered images. It can be
seen (Fig. 3.12) that the 3D reconstruction is very neatly done, even the door handle is perfectly
represented in the model.

3.6 Conclusion

Jump edges drastically lead to bad registration, as false points form depending on the field of
view. It is very important to remove these wrong points before registration or mapping. In this
work, a novel method to remove jump edges is presented. Our results are also compared to the
method which is most often used. The proposed method is able to perform much better than
AM in terms of quality of filtered image, computation time to apply filter and also on registration
of scans. We have also precisely reconstructed a complete indoor office environment with LoS
filtered images. Based on these qualitative and quantitative results, our method outperforms
AM and is better suitable to filter non-systematic noise in SwissRanger camera in particular and
ToF camera in general.

In the next chapter, the algorithm to match two noise free scans is presented. It also discusses
other state-of-the-art invariants applied.
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ε(m) ε ′(m) Computation Time (s) ICP Fitness-score × 10−4

2.5° 5.0° 7.5° 2.5° 5.0° 7.5°

0.001 10−4 11.5 12.1 12.3 1.2885 4.7974 33.5265
0.002 10−4 15.9 16.6 16.7 1.2222 4.2222 30.9613
0.003 10−4 28.5 28.5 27.6 1.1101 3.6782 27.7957
0.004 10−4 57.4 53.6 53.7 0.9356 3.0296 23.0192

Table 3.2 – ICP Fitness-score: LoS method

Parameter Computation Time (s) ICP Fitness-score × 10−4

Theta
(
θ°
)

2.5° 5.0° 7.5° 2.5° 5.0° 7.5°

190 9.60 9.61 10.30 1.5359 5.8441 37.117
180 9.63 9.65 10.32 1.5359 5.8441 37.117
170 10.6 10.85 11.45 1.3615 5.077 35.215
160 11.1 11.50 12.30 13.128 4.8052 33.182

Table 3.3 – ICP Fitness-score: AM

Rotation in degrees Computation Time (s) ICP Fitness-score × 10−4

2.5 9.275 1.536
5.0 9.565 5.844
7.5 10.226 37.117

Table 3.4 – ICP Fitness-score: Unfiltered data
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Figure 3.12 – Globally consistent 3D reconstruction of an indoor scene. Left- Top view of the
scene. Right- Part of the 3D scene, a closed glass door (appears transparent) with a door handle,
precisely reconstructed, and multi-cupboard armoire on the right side.
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3D Scan Matching with ICP3D Scan Matching with ICP

The problem of 3D scan matching is of utmost impor-
tance for the construction of metric representation
of the environment, for localization and navigation
planning in 3D space, for object recognition and ma-
nipulation. 3D scan registration can be formulated
as the problem of finding the relative transformation
between two 3D point clouds that best aligns them.
Since, almost from four decades, several methods
have been developed to solve this problem; originally,
it being more associated with biomedical image reg-

istration, but now faced in almost all robotic applica-
tions. In this chapter, a brief history of scan matching
problem is presented and, different approaches de-
veloped over the years to solve it are discussed. The
most applied method: Iterative Closest Point (ICP)
algorithm, is presented in detail and several other
variants which evolved from it are also discussed
briefly. ICP has been used extensively in this thesis
for scan matching in SLAM and for designing a novel
shape descriptor; the results are presented at the end
of this chapter.
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4.1 Introduction

With the advent of inexpensive depth sensing devices in recent years; the research in robotics,
computer vision and ambient application technology involving 2D imaging and LIDAR (Laser
Imaging Detection And Ranging) scanning has shifted towards real-time reconstruction of the
environment based on 3D point cloud data. Point clouds either structured (generated from
structured light based sensors such as Microsoft Kinect and Asus Xtion) or unstructured (from
time-of-flight sensors like SwissRanger, Softkinetic Depthsense, etc.) can be directly used to
detect and recognize objects in the environment where ambient technology is used or can be
integrated over time to completely reconstruct a 3D map of the camera’s surroundings. Each point
in the point cloud corresponds to a point in the physical world at a distance equal/proportional
to half the distance travelled by the light from the emitter back to the receiver after being reflected
by the point. Most mobile robotic applications use sensors whose framework is based on this
principle or Triangulation techniques. The point cloud data-structure holds the 3D coordinates
of each point in the simplest representation. These coordinates are relative to scanning device
coordinate system. In order to reconstruct a complete model or environment from different scans
taken at different angles or time intervals, one has to move all the points in each scan to the same
coordinate system. The alignment of these point clouds is referred to as registration. The process
involves in finding the relative positions and orientations of the separately acquired views in a
global coordinate framework, such that the intersecting areas between them overlap perfectly.

Figure 4.1 – Biblical interpretation of Procrustes stretching his short guest to fit to the bed (picture
taken from internet).

Registration is an essential component of 3D acquisition pipeline and is fundamental to
computer vision, computer graphics and reverse engineering. Typically, the term registration is
used for the geometric alignment of a pair or more 3D data point sets, while the term fusion is
used when one wants to get a single surface representation from registered 3D datasets. The
algorithms for these two problems are inherently different. Registration algorithms associate
sets of data into a common coordinate system by minimizing the alignment error, however, the
algorithms for image registration which have extensive applications in medical imaging are quite
different. Throughout this dissertation, the word registration is liberally applied to geometric
registration involving depth data.

The structure of the chapter is as follows: starting with a brief introduction and history
of registration algorithms, the state-of-the-art methods are presented in the section after. ICP
has been discussed elaborately as it has been extensively used in this thesis: for evaluating
performance of the jump-edge filter as in previous chapter, for scan matching in SLAM and also
in design of novel shape signature. In order to design a robust shape signature for object’s depth
images, a very stable keypoint detector is needed. There are dozens of keypoint detectors already
available and more often it is confusing to chose among them as each of them have their own
specific specialities and benefits. So, using ICP, the repeatability of different keypoint detectors
are evaluated. The results of scan matching and repeatability are discussed in the last section of
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this chapter and also in Chapters 5 & 6.

4.2 A Brief History of Registration Algorithms

Decades before the first registration algorithm was invented for scan matching, Hurley and
Cattell (1962) presented registration as Orthogonal Procrustes1 problem, although Orthogonal
Procrustes analogy represents non-rigid diffeomorphic registration rather than rigid registration
in typical scan matching. Faugeras and Hebert (1986) defined closed-form distances to minimize
point-to-point and plane-to-plane alignment error, their method solved translation and rotation as
two-step procedure. Later, Walker, Shao, and Volz (1991) resolved rotation and translation error
using dual quaternions. During this time, Besl and McKay (1992) christened their registration
algorithm as ICP (Iterative Closest Point), which soon going to be famous in robotics and computer
vision and medical imaging community. They expressed the problem as:

Given 3D data in a sensor coordinate system, which describes a data shape that may
correspond to a model shape, and given a model shape in a model coordinate system
in a different geometric shape representation, estimate the optimal rotation and trans-
lation that aligns, or registers, the model shape and the data shape minimizing the
distance between the shapes and thereby allowing determination of the equivalence
of the shapes via a mean-square distance metric.

However, the algorithm makes few assumptions which are not quite suitable for most of the
applications involving registration. Firstly, each point in one scan has a corresponding point in the
other one, which implies that the two scans to be registered are identical but are present spatially
in different coordinate systems. Secondly, the proof of the solution’s convergence is demonstrated
under the assumption that the number of associated points, or their weight, remains constant.
These problems where reported by Champleboux et al. (1992) while developing early registration
solutions for medical applications. Chen and Medioni (1991) extended the point-to-point error
metric of Besl and McKay (1992) to point-to-plane which is still quite used nowadays. Zhang
(1993) pioneered the idea of using ICP-based solutions for outdoor robotic applications. He has
highlighted few modifications to be made in ICP in order to be used for robotic applications.
In the first half of 1990s and later, scientific community has seen legion of applications based
on ICP: object reconstructions, non-contact inspections, medical and surgery support, organ
and environment reconstructions, 3D modelling in digital cultural heritage and autonomous
vehicle navigation, to name a few. ICP, due to its simplicity has become a popular technique,
and researchers from past two decades have extended ICP to match their own idiosyncratic
problems. As a result, there are close to 400 ICP related/variant articles in IEEE Xplore and are
still growing every year. However, as there is no comparison framework for these variants of ICP,
the selection of an appropriate version for particular experimental condition/problem is difficult.
A complete history and detailed applied registration for robotics can be found in the thesis of
Pomerleau (Pomerleau, 2013) and this section has been partially inspired from his dissertation.

4.3 State-of-the-Art Methods

Registration algorithms can be coarsely classified into rigid and non-rigid approaches. Rigid
approaches assume a rigid environment such that the transformation (Euclidean transformation)
can be modelled with only 6 Degrees of Freedom (DoF). Non-rigid methods deal non-rigid
transformations (similarity transform, affine transform and orthogonal projection) and able to cope

1Trivia: Procrustes whose name means “he who stretches”, was the most interesting of Theseus’ challenges on the
way to become a hero in Greek mythology. Procrustes was a host who adjusts his guests to their bed; either stretching
the person if he is short or chopping of the limbs if the person is tall. In the end, Theseus made him have his own
medicine, fitting Procrustes to his own bed (see Fig. 4.1).
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with articulated objects or soft bodies that change shape over time. Non-rigid registration is
more difficult than the rigid counterpart, as it not only faces the common problems of the latter
but also need to deal with the deformation (e.g., morphing, articulation). Unlike the rigid case,
where a few correspondences are sufficient to define one candidate rigid transformation for
hypothesis testing, both deformation and alignment have to be answered in the non-rigid case
without strong prior assumptions, often requiring a more reliable correspondences to be defined.
Most state-of-the-art applications involving registration employ either a simple Singular Value
Decomposition (SVD) or Principal Component Analysis (PCA) based registration, or use a more
advance iterative scheme based on the Iterative Closest Point (ICP) algorithm. Recently, many
variants on the original ICP approach have been proposed, the most important of which are
non-linear ICP, generalized ICP, and non-rigid ICP.

4.3.1 Principal Component Analysis

PCA is widely used for classification and compression techniques to project data on new ortho-
normal basis in the direction of the largest variance (Yambor, Draper, and Beveridge, 2002). The
direction of the largest variance corresponds to the largest eigenvector of the covariance matrix of
the data, whereas the magnitude of this variance is determined by the corresponding eigenvalue.
Therefore, if the covariance matrix of two point clouds differs from the identity matrix, a rough
registration can be obtained by simply aligning the eigenvectors of their covariance matrices. For
this, firstly, the two point clouds are centered such that the origins of their original bases coincide
by subtracting the centroid coordinates from each of the point coordinates. In the second step the
covariance matrix of each point cloud is calculated. And the final step involves the calculation of
eigenvectors for both covariance matrices. The largest eigenvector is a vector in the direction of
the largest variance of the 3D point cloud, and hence represents the point cloud’s rotation. The
problem of aligning two point clouds simplifies to aligning/rotating their eigenvectors with the
largest magnitude.

4.3.2 Singular Value Decomposition (SVD)

In general, the scans obtained by the sensors for mapping are partially overlapping. PCA based
registration simply aligns the directions of the largest variance of each point cloud and therefore
does not minimize the Euclidean distance between corresponding points of the datasets. As
a result, this technique is very sensitive to outliers and only works well if each point cloud is
approximately normally distributed (Bellekens, Spruyt, and Maarten Weyn, 2014). However, if
the point correspondences between the two scans are known, reducing the Euclidean distances
between these set of pair of points simplifies to linear-least-square problem, which can be robustly
solved by SVD (Marden S, 2012). A correlation matrix M is calculated for the two centred point
clouds based on the correspondences. The eigenvalue decomposition is then given by:

M = USVT (4.1)

The optimal solution to the least-square problem is given by rotation and translation:

Rs
t = UVT (4.2)

t = cs−Rs
tct (4.3)

4.3.3 Iterative Closest Point

The Iterative Closest Point (ICP) though Iterative Corresponding Point is better abbreviation; has
become the dominant method for aligning three-dimensional models and is purely based on
the geometry and, sometimes, color of the meshes; and is the de facto standard for geometric
alignment of three-dimensional models when an initial relative pose estimate is available. This
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algorithm is widely used for registering the outputs of 3D scanners, which typically only scan an
object from one direction at a time and has applications in architecture, industrial automation,
agriculture, cultural heritage conversation, medical data processing, art history, archaeology,
and search and rescue robotics. The ICP Algorithm was developed by Besl and McKay and
presented in 1992 (Besl and McKay, 1992). It is developed to register two given sets of points or
3D shapes in a common coordinate system. The algorithm is an iterative two-step procedure,
in each iteration, the algorithm selects the closest points as correspondences and calculates the
transformation (R, t), for minimizing the following equation:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1

wi, j
∣∣∣∣mi− (Rd j + t)

∣∣∣∣2 (4.4)

where Nm and Nd are the number of points in the model set M and dataset D respectively and
wi, j is assigned value of 1 if the i-th point of M describes the same point in space as the j-th point
of value of D, otherwise wi, j is 0. (4.4) can be reduced to:

E(R, t) ∝
1
N

N

∑
i=1
||mi− (Rdi + t)||2 , (4.5)

with N = ∑Nm
i=1 ∑Nd

j=1 wi, j, since the correspondence matrix can be represented by a vector
v containing the point pairs, i.e., v = (p1,mf (p1)),(p2,mf (p2)), . . . ,(pNp ,mf (pNp )

), with f (x) being
the search function returning the closest point. The assumption is that, in the last iteration
step, the point correspondences and therefore the vector of point pairs are correct (Nüchter,
Lingemann, and Hertzberg, 2007). In each ICP iteration, the transformation can be calculated
by one of these four methods which have similar performance and stability concerning noisy
data (Lorusso, Eggert, and Fisher, 1995): a SVD based method of Arun, Huang, and Blostein
(1987), a quaternion method of Horn (1987), an algorithm using orthonormal matrices of Horn,
Hilden, and Negahdaripour (1988) and a calculation based on dual quaternions of Walker, Shao,
and Volz (1991). The first step of the computation using SVD (Arun, Huang, and Blostein, 1987)
method is to decouple the calculation of the rotation R from the translation t (the equations
solved below are taken from the documentation of Borrmann et al. (2008a) with permission).
This can be done using the centroids of the points belonging to the matching:

cm =
1
N

N

∑
i=1

mi, cd =
1
N

N

∑
i=1

d j (4.6)

and

M′ = {m′i = mi− cm}1,...,N , (4.7)

D′ = {d′i = di− cd}1,...,N . (4.8)

After replacing (4.6), (4.7) and (4.8) in the error function, E(R, t), (4.5) becomes:

E(R, t) ∝
1
N

N

∑
i=1
||m′i−Rd′i− (t− cm +Rcd)︸ ︷︷ ︸

=t̃

||2

=
1
N

N

∑
i=1

∣∣∣∣m′i−Rd′i
∣∣∣∣2 (4.9a)

− 2
N

t̃ ·
N

∑
i=1

(
m′i−Rd′i

)
(4.9b)

+
1
N

N

∑
i=1
||t̃||2 . (4.9c)
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In order to minimize the sum above, all terms have to be minimized. The second sum (4.9b)
is zero, since all values refer to centroid. The third part (4.9c) has its minimum for t̃ = 0 or

t = cm−Rcd . (4.10)

Therefore, the algorithm has to minimize only the first term, and the error function is ex-
pressed in terms of the rotation only:

E(R, t) ∝
N

∑
i=1

∣∣∣∣m′i−Rd′i
∣∣∣∣2 . (4.11)

The rotation (R =VUT ) can be calculated from the SVD of covariance matrix H (H =UΛV T ):

H =
N

∑
i=1

m′Ti d′i =

⎛
⎝ Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞
⎠ , (4.12)

with Sxx = ∑N
i=1 m′ixd′ix, Sxy = ∑N

i=1 m′ixd′iy, . . . .
SVD based ICP has been used throughout this thesis either through PCL ICP (Rusu and

Cousins, 2011) or 3DTK (Borrmann et al., 2008a).
Since the introduction of ICP by Chen and Medioni (1991) and Besl and McKay (1992), many

variants have been introduced on the basic ICP concept. These variants have evolved from one
of six stages of the algorithm (Rusinkiewicz and Levoy, 2001).

1. Selection of some set of points in or both meshes.

2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs based on looking at each pair individually or considering the entire
set of pairs.

5. Error-Metric assignment on the point pairs.

6. Minimizing the error metric.

Rusinkiewicz and Levoy propose a high speed ICP variant using a point-to-plane error met-
ric (Neugebauer, 1997) and a projection-based method to generate point correspondences (Blais
and Levine, 1995). And they also conclude that the other stages of the ICP process appear to
have little effect on the convergence rate (Nüchter, Lingemann, and Hertzberg, 2007) and most
state-of-the-art methods are based on the last two stages of the ICP. Two widely used ICP variants
are the ICP point-to-point and the ICP point-to-surface algorithms. These approaches only differ
in their definition of point correspondences.

4.3.3.1 ICP Point-to-Point

An important step in ICP is finding the point correspondences between the two scans. ICP
point-to-point simply obtains point correspondences by searching for nearest neighbour in target
di to the source point cloud point mi. Throughout this document, source point cloud, Model set
and reference cloud have been used to describe same concept/object; and target point cloud, Data
set, data cloud are their synonymous counterparts. The nearest neighbour matching is defined in
terms of the Euclidean distance metric:
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ı̂i = argmin
i

‖mi−di‖2 (4.13)

where i ∈ [0,1 . . .N], and N represent the number of points in the target point cloud. Similar
to (4.3.2) approach, the rotation R and translation t are estimated by minimizing the squared
distance between these corresponding pairs:

R̂, t̂ = argmin
R,t

N

∑
i=1
‖(Rmi + t)−di‖2 (4.14)

ICP, then iteratively solves (4.13) and (4.14) until the error becomes smaller than a threshold or
it stops changing. Besl and McKay demonstrated that the iteration terminates in a minimum (Besl
and McKay, 1992), however, generally, implementation of ICP would use a maximal distance
for closest points to handle partially overlapping point sets. In this case, the proof in (Besl and
McKay, 1992) does no longer hold, since the number of points as well as the value of E(R, t)
might increase after applying a transformation (Nüchter, Lingemann, and Hertzberg, 2007).

4.3.3.2 ICP Point-to-Surface

The point correspondences procedure of ICP point-to-point is very sensitive to outliers. Chen
and Medioni (1991) used a point-to-plane error metric in which the object of minimization is
the sum of the squared distance between a point and the tangent plane at its correspondence
point. Unlike the point-to-point metric, which has a closed-form solution, the point-to-plane
metric is usually solved using standard non-linear least squares methods, such as the Levenberg-
Marquardt method. This method assumes that the point clouds are locally linear, such that the
local neighbourhood of a point is co-planar. This local surface can then be defined by its normal
vector n, which is the smallest eigenvector of the covariance matrix of neighbourhood di. Then
object of the minimization is the sum of the squared distance between each source point and
the tangent plane at its corresponding target point. More specifically if mi = (mix,miy,miz,1)

T is a
source point, di = (dix,diy,diz,1) is the corresponding target point, and ni = (nix,niy,niz) is the unit
normal vector at di, then R and t can be calculated by:

R̂, t̂ = argmin
R,t

N

∑
i=1

(
‖((Rmi + t)−di) ·ni‖

)2
(4.15)

This method is also been referred as normal shooting (Rusinkiewicz and Levoy, 2001) and can
also be linearized by assuming small incremental rotations, i.e., sinθ ≈ θand cosθ ≈ θ .

Figure 4.2 – Point-to-plane error metric. Source: (Low, 2004).
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4.3.3.3 Generalised ICP (GICP)

Segal, Haehnel, and Thrun (2009) have combined the ICP and ICP point-to-point algorithms into a
single probabilistic framework. This framework is used to model locally planar surface structure
from both scans instead of just the source scan as it is done in point-to-plane. This method is also
called as ICP plane-to-plane. Traditional ICP assumes that the source point cloud is taken from a
known geometric surface instead of being obtained through noisy sensor measurements. Due
to discretization errors it is not possible to obtain point-to-point matching. Point-to-plane, as it
allows point offsets along the surface on the target point cloud, has reduced discretization error
to some extent. However, in GICP source point cloud A = {a}i and the target point cloud B = {b}i
are assumed to consist of random samples from an underlying unknown point cloud Â = { ˆai}
and B̂ = ˆ{bi}. For the underlying and unknown point clouds Â and B̂, perfect correspondences
exist, whereas this is not the case for the observed point clouds A and B, since each point ai
and bi is assumed to be sampled from normal distribution such that ai ∼N (âi,Ci

A) and bi ∼
N (b̂i,Ci

B). The covariance matrices Ci
A and Ci

B are unknown. If both point clouds would consist
of deterministic samples from known geometric models, then both covariance matrices would be
zero such that then A= Â and B= B̂. In the following, let T be the affine transformation matrix that
maps from Â to B̂ such that b̂i = T̂iâi. If T would be known, we could apply this transformation
on the observed point cloud A, and define the error to be minimized as di

T = bi−Tiai. di
T is also

drawn from normal distribution, as it is a linear combination of ai and bi which are assumed to
be drawn from independent normal distribution:

di
T ∼N (b̂i−Tiâi,Ci

B +TCi
ATT) (4.16)

= N (0,Ci
B +TCi

ATT ) (4.17)

The optimal transformation N̂ is then the transformation that minimizes the negative log-
likelihood of the observed errors di:

T̂ = argmin
T

∑
i

log
(

p
(
di

T ))= argmin
T

∑
i

di
T T(

Ci
B +TCi

ATT )−1
di

T (4.18)

Segal, Haehnel, and Thrun showed that both point-to-point and point-to-plane are specific
cases of (Segal, Haehnel, and Thrun, 2009), only varying in the choice of covariance matrices
Ci

A and Ci
B; if the source point cloud is assumed to be obtained from known geometric surface,

Ci
A = 0. Furthermore, if the points in the target point cloud are allowed three degrees of freedom,

then Ci
B = I. In this case, (4.18) reduces to:

T̂ = argmin
T

∑
i

di
T T

di
T = argmin

T
∑

i
‖di

T‖2
(4.19)

which is exactly the optimization problem that is solved by traditional point-to-point ICP algo-
rithm. Similarly, Ci

A and Ci
B can be chosen such that obtaining the maximum likelihood estimator

corresponds to minimizing the point-to-plane or the plane-to-plane distances between both point
clouds (Bellekens, Spruyt, and Maarten Weyn, 2014).

4.4 Demonstration of Examples

ICP point-to-point from PCL has been used to determine robust 3D keypoint detectors for
designing a shape signature based on keypoint distributions. Two 3D views of an object are
brought to the same coordinate system using ICP (see Fig. 4.3) and then the number of keypoints
which are repeated on both views are counted using nearest neighbours method.

3D scan matching has been used twice in the algorithm to obtain globally consistent mapping.
Once for initial registration of all the sequentially obtained scans and then later to optimize the
graph of scans in GraphSLAM. Figure 4.4 shows the registration of three sequentially obtained
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scans using ICP from (Borrmann et al., 2008a). ICP fitness score as used in previous chapter to
evaluate the quality of jump edge filter, is also used from PCL.

Figure 4.3 – Two different views of a Guitar, one rotated 5.000°′′′ from the other, are aligned in
same coordinate system using ICP. And using the nearest neighbour method with one view as
source, the keypoints which are repeated are counted to determine repeatability of keypoint
detectors.

4.5 Conclusion

In this chapter, different scan matching approaches have been discussed. ICP is the most popular
and widely used method for registration of 2D/3D surfaces, so ICP and its variants are discussed
elaborately. Singular Value Decomposition (SVD) based ICP has been used in this thesis at
multiple stages. First, to evaluate the performance of novel jump edge filter for scan registration
using ICP-fitness score. Second, to calculate the repeatability of different 3D keypoint detectors.
Third and fourth for scan matching of sequentially acquired scans and graph optimization of
poses respectively. The next chapter discusses the last two stages where ICP is used for SLAM
problem. The sequentially acquired scans are brought into one global coordinate system by

registration of nth and (n+1)th scans in the sequence. And the map is optimized by a threshold
on the pose error using ICP again.
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Figure 4.4 – 3D scan matching for mapping indoor environment. Left The middle scan of the
three consecutive scans taken of a scene having several objects on a table. Right After scan
matching the three consecutive views are aligned in the same coordinate system. Note that the
objects in the registered scan get increasingly noisy as the number of scans are increased and
hence it is difficult to semantic label them in the global map.
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Globally Consistent Mapping

using GraphSLAM

Globally Consistent Mapping

using GraphSLAM

This chapter starts with a brief history of SLAM
problem and evolution of solutions to it. The state-
of-the-art techniques in SLAM are presented in and
out. A simple unknown indoor environment with rel-
atively unfluctuating lighting conditions is considered
for mapping and localization. The camera positioned
on a mobile tripod, is ready to capture images at
prearranged locations in the environment. The prear-
ranged locations are in fact used as ground truth for
estimating the variance with calculated poses from

SLAM, and also as initial pose estimates for ICP.
Interesting point is that, in this thesis, any type of
Inertial Measurement Units or visual odometry tech-
niques or explicit loop closures have not been utilized,
given the fact that, data from time-of-flight camera
is extremely noisy and sensitive to external condi-
tions (such as lighting, transparent surfaces, parallel
overlapping surfaces etc.). The whole SLAM dataset
acquired with 5 m and 10 m is publicly available for
academic research.
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5.1 Introduction and Background

The genesis of SLAM problem can be tracked back to a discussion at 1986 IEEE Robotics and
Automation Conference held in San Francisco. Over the course of the conference, many pa-
per table cloths and napkins were filled with long discussion about consistent mapping. The
result of this conversation was a recognition that consistent probabilistic mapping was a fun-
damental problem in robotics with major conceptual and computational issues that needed to
be addressed (Durrant-Whyte and Bailey, 2006). The acronym “SLAM” and its structure was
first coined in a mobile robotics survey paper presented at 1995 International Symposium on
Robotics Research (Durrant-Whyte, Rye, and Nebot, 1996):

The Simultaneous Localization and Mapping (SLAM) problem asks if it is possible for a mo-
bile robot to be placed at an unknown location in an unknown environment and for the robot
to incrementally build a consistent map of this environment while simultaneously determin-
ing its location within this map (Durrant-Whyte and Bailey, 2006).

However, technically speaking, the historical roots of SLAM can be dated back to 1809; Gauss
in (Gauss, 1877; Gauss and Davis, 2004) invented least-squares method to explain and calculate
the elliptical trajectories (conics precisely) of planets orbiting the sun (see Fig. 5.1)1. Which in
robotic jargon is, mapping of planets position in temporal and spatial space around the sun.

.

Figure 5.1 – Carl Friedrich Gauss, German mathematician known for calculating the planetary
motion around the sun. He successfully calculated the trajectory of Ceres and Pallas (sketch
by him, courtesy of Universitätsbibliothek Göttingen) using least-squares method and universal
gravitation concept by Sir Isaac Newton (Newton et al., 1687) and Kepler’s laws of planetary
motion (Kepler, 1609)

Suppose, we want to estimate an unknown variable χ (it includes the trajectory of the
robot as discrete set of poses (X) and the position of the landmarks in the environment, see
Fig. 5.2), given a set of measurements Z = {zk : k = 1, . . . ,m}, such that each measurement can be
expressed as function of χ , i.e., zk = hk (χk)+ εk, where hk (·) is the measurement or observation
model, εk is random measurement noise and χ1:k is transition state model (χk ⊂ χ). This can be
effectively solved using Maximum a Priori (MAP) estimation. In MAP estimation, χ is estimated
by computing the assignment of variables χ∗ that attains the maximum of the posterior p(χ|Z):

χ∗ .
= argmax

χ
p(χ|Z) = argmax

χ
p(Z|χ) p(χ) (5.1)

where, p(Z|χ) is the likelihood of the measurements Z, given the assignment χ , and p(χ) is a
prior probability over χ . The p(χ) includes any prior knowledge about χ ; if there is no prior
information available, then p(χ) becomes uniform distribution and MAP estimation reduces to
maximum likelihood estimation.

1The complete description of the Gauss’ method to calculate Ceres orbit is given in (“How Gauss determined the
orbit of Ceres,” 1998)
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Figure 5.2 – The SLAM problem depicted as a Bayes Network Graph. The robot moves from
location (xt−1) to location (xt+2), driven by a sequence of controls. At each location (xt), it observes
a nearby feature in the map m = {m1,m2,m3}. UT = {u1,u2,u3, . . . ,uT} are odometry readings and
ZT = {z1,z2,z3, . . . ,zT} are measurement readings. Source: (Thrun and Leonard, 2008).

Assuming that the measurements Z are independent and identically distributed, (5.1) reduces
to:

χ∗ = argmax
χ

p(χ)
m

∏
k=1

p(zk|χ) = argmax
χ

p(χ)
m

∏
k=1

p(zk|χk) (5.2)

Making another assumption, that measurement noise, εk, is a zero-mean Gaussian noise
with the information matrix Ωk (inverse of covariance matrix), then the measurement likelihood
becomes:

p(zk|χk) ∝ exp(−1
2

eT Ωe), (5.3)

where,

e = hk (χk)− zk (5.4)

As maximizing the posterior is the same as minimizing the negative log-posterior

χ∗ = argmin
χ

− log

(
p(χ)

m

∏
k=1

p(zk|χk)

)
= argmin

χ

m

∑
k=0
||hk(χk)− zk||2Ωk

, (5.5)

which is a standard minimization problem that can be solved by non-linear least squares method.
Gauss applied the same method to track the orbit of dwarf planet Ceres, which is equivalent to
estimating the robot trajectory from measurement data. SLAM is most often formulated as MAP
estimation problem. Gauss’ minimization technique has been applied to a number of problems
in all branches of sciences; including surveying (Golub and Plemmons, 1980), photogrammetry
(Brown, 1976; Granshaw, 1980; Slama, Theurer, and Henriksen, 1980; Cooper and Robson, 1996)
and computer vision (Faugeras, 1993; Szeliski and Kang, 1994; Triggs et al., 2000; Hartley and
Zisserman, 2004). However, it is popularised with bundle adjustment (in photogrammetry) and
structure from motion (in computer vision) terms.

According to Cadena et al. (2016), SLAM research history can be bifurcated into classical age
(1986− 2004) and algorithmic-analysis age (2004−2015). The classical age saw the introduction
of the main probabilistic formulations for SLAM, including approaches based on Kalman Fil-
ters (Smith, Self, and Cheeseman, 1990; Castellanos et al., 1999), Rao-Blackwellised Particle Filters
(Hähnel et al., 2003; Grisetti, Stachniss, and Burgard, 2007; Montemerlo et al., 2002b), Information
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Filters (Thrun et al., 2004; Eustice, Singh, and Leonard, 2006) and maximum likelihood estimation.
The first three SLAM formulations are excellently described in (Thrun, Burgard, and Fox, 2005)
and (Thrun and Leonard, 2008). They are also called as filtering2 methods or on-line SLAM
systems; model the problem as an on-line state estimation, where the state of the system consists
in the current robot position and the map. The estimate is modulated or refined by the on-coming
new measurements and hence recursive, incremental.

5.1.1 On-Line State Estimation

On-line state estimation, also called as recursive state estimation, address the problem of es-
timating quantities from sensor data that are not directly observable, but can be inferred. In
most robotic applications, determining what to do is relatively simple if one only knew certain
parameters, like robot navigation is very easy if it knows where it is presently and where are
the nearby obstacles/landmarks. However, these parameters are not measurable, and robot
has to depend on its sensors and recursively estimate its state as the sensor measurements are
corrupted by noise. It should be taken into account that, previous notations in this chapter for
states, odometry and measurements is not continued here-after.

5.1.1.1 Gaussian Filters

Gaussian filters are family of filters that recursively estimate the state (x) when the beliefs (or
posteriors) are represented by multivariate normal distributions:

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
(x−μ)T Σ−1 (x−μ)

}
(5.6)

They are the most popular family of techniques despite their several shortcomings. Also
called as parametric filters as the density over the variable x is characterized by mean (μ) and
a symmetric and positive semi-definite covariance matrix (Σ). Kalman Filters (KF) is one of
the best studied Gaussian filter, introduced in the 1950s by Rudolph Emil Kálmán (Kalman,
1960). It computes belief, bel(xt) at time t for continuous states using first and second moments
representation (μ , Σ, u). The input for KF is bel(xt−1) with μt−1 and Σt−1 parameters. It updates
these parameters using the control ut and the measurement zt and outputs bel(xt).

Algorithm 2 Kalman Filter Algorithm

1. Input: (μt−1,Σt−1,ut ,zt):

2. μ̄t = At μt−1 +Btut

3. ¯Σt = AtΣt−1AT
t +Rt

4. Kt = Σ̄tCT
t
(
Ct Σ̄tCT

t +Qt
)−1

5. μt = μ̄t +Kt (zt −Ct μ̄t)

6. Σt = (I−KtCt)Σ̄t

7. Output: μt ,Σt

Kalman filter is not applicable for non-linear state transitions (with non Gaussian noise),
in this case EKF (Extended Kalman Filter) comes to rescue. EKF assumes that the next state

2Filter is just a fancy word for an algorithm that takes an input (typically, a sensor signal) and calculates a function
of that input.
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probability and measurement probabilities are governed by non-linear functions g and h instead
of linear At and Bt :

xt = Atxt−1 +Btut + εt (5.7)

Kalman Filter

xt = g(ut ,xt−1)+ εt , (5.8)

zt = h(xt)+δt (5.9)

Extended Kalman Filter

However, sometimes non-linear systems are linearized at the expense of diminished es-
timation performance. The linearization errors can be mitigated by reducing the degree of
non-linearity by augmenting the actual non-linear measurement model with additional, properly
chosen mappings as proposed in (Liu and Li, 2013). One such method which mitigates these
errors is statistical linear regression (again Gauss’ contribution!), and the non-linear Kalman Filters
which use this technique are called as Linear Regression Kalman Filters (LRKF) (Lefebvre, Bruyn-
inckx, and Schutter, 2004; Lefebvre, Bruyninckx, and Schutter, 2005; Steinbring and Hanebeck,
2015; Ulas and Temeltas, 2014). On the other hand, EKF accommodates the non-linearities
from the real world, by approximating the robot motion model using linear functions (Davison
and Murray, 2002; Leonard and Newman, 2003; Jensfelt et al., 2006; Se, Lowe, and Little, 2002).
Approximation of Gaussian plays an important role for non-linear system to improve state estima-
tion. EKF can be viewed as a first-order approximation to the optimal solution; in which the state
distribution is approximated by Gaussian Random Variable (GRV) at the cost of introducing large
errors in the true posterior mean and covariance. The Unscented3 Kalman Filter (UKF) (Julier
and Uhlmann, 2004) is another filtering technique which uses unscented transform rather than
linearization; but applies GRV to represent the state distributions by carefully choosing a minimal
set of carefully chosen sample points. The Cubature rule for approximation of Gaussian (CKF
Cubature Kalman Filter) proposed by (Arasaratnam and Haykin, 2009) provides more accurate
results and solves large spectrum of non-linear problems. Pakki (2013) proposed CKF-SLAM
using point features.

The dual of Kalman Filter is Information Filter (IF), which also represents the belief as
Gaussian like KF and EKF; the only difference is the way it is represented. IF represents Gaussian
beliefs as information matrix (inverse of covariance matrix, Ω) and an information vector (ξ ).

Ω = Σ−1 (5.10)

ξ = Σ−1μ (5.11)

Up on some straightforward sequence of transformation on (5.6) leads to a belief:

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
xT Σ−1x+ xT Σ−1μ− 1

2
μT Σ−1μ

}
(5.12)

= det(2πΣ)−
1
2 exp

{
−1

2
μT Σ−1μ

}
︸ ︷︷ ︸

const.

exp
{
−1

2
xT Σ−1x+ xT Σ−1μ

}
(5.13)

= η exp
{
−1

2
xT Ωx+ xT ξ

}
(5.14)

3Trivia: The use of the word “unscented” rather than Uhlmann filter has quite a bit history; Uhlmann was working
in the lab alone while everyone of his colleagues were partying in Royal Opera House. He happens to notice someones’
deodorant on a desk and came up with the term Unscented Kalman Filter
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After negative log and setting the derivative of the belief to zero:

x = Ω−1ξ , (5.15)

since Ω is symmetric positive semi-definite and -log(p(x)) is quadratic distance function with
mean μ = Ω−1ξ .

The information matrix (Ω) determines the rate at which the distance function increases in
the different dimensions of the state (x).

Most of the filter based SLAM approaches use the image features or extract landmarks (Nieto,
Bailey, and Nebot, 2007; Thrun, Burgard, and Fox, 1998; Castellanos and Tardos, 2000; Thrun
et al., 2004) or convert 3D point clouds to 2D depth images (Li and Olson, 2011) or extract planes
and use them for mapping (Zhang, Chen, and Liu, 2016; Pathak et al., 2010).

5.1.1.2 Non-Parametric Filters

Non-parametric filters do not rely on fixed functional form of posteriors, instead, they approxi-
mate posteriors by a finite number of values, each roughly corresponding to a region in the state
space. Histogram filters decompose the state space into finitely many regions and the cumulative
posterior is represented with single probability value:

range(Xt) = x1,t ∪ x2,t ∪ x3,t ∪ . . .xK,t (5.16)

p(zt |xk,t) =
p(zt ,xk,t)

p(xk,t)
(5.17)

Particle filters (also called the Sequential Monte-Carlo, SMC method) on other hand like
histogram filters approximate posterior by finite number of parameters; but it differs in the
way these parameters are generated and how they populate the state space. The particle filter
(PF) represents the belief bel(xt) by a set of random state samples drawn from this posterior,
which makes it handle high non-linear systems and non-Gaussian noise. Instead of representing
the distribution by a parametric form (the exponential function that defines the density of a
normal distribution), particle filters represent a distribution by a set of samples drawn from this

distribution; the samples of a posterior distribution are called particles (x[m]
t ):

Xt := x[1]t ,x[2]t ,x[3]t , . . . ,x[M]
t (5.18)

This representation however has severe computational complexity on the state dimension,
hence not suitable for real-time applications and map-building; but only for localization. There
are few methods which combine PF with other strategies for the whole SLAM framework (Monte-
merlo et al., 2003; Montemerlo et al., 2002b; Hähnel et al., 2003; Blanco, Fernandez-Madrigal, and
Gonzalez, 2007; Havangi, 2017; Xu et al., 2017), called as FastSLAM methods. FastSLAM takes
advantage of an important property of SLAM problem: landmark estimates are conditionally
dependent given robot’s path (Montemerlo and Thrun, 2007), it decomposes the SLAM problem
into a robot localization problem and set of landmark estimation problems that are conditioned
on robot pose estimate. In FastSLAM, each particle makes its own local data association and
PF is applied to sample over robot paths, eventually leading to less memory usage and faster
computation.

5.1.1.3 Maximum Likelihood Methods

Maximum likelihood methods, also called as Expectation Maximization (EM) method, is an
iterative statistical algorithm offers optimal solution with an expectation step (E-step) and maxi-
mization step (M-step). In E-step the posterior over robot poses is calculated for a given map
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Figure 5.3 – Formulation of Full SLAM as factor graph. Blue circles denote the robot poses
at consecutive time steps (x1,x2,x3, . . . ), landmark positions are indicated with green circles
(l1, l2, l3, . . . ), red circles represent the variable associated with intrinsic calibration parameters
(K). Factors are shown as black squares: the label u marks the factors corresponding to odometry
readings, v marks factors corresponding to camera observations. c & p denotes loop closures
and priors respectively. Source: (Cadena et al., 2016).

and in M-step, a map is calculated based on these pose expectations. The result of these two
iterative steps is fine and accurate maps over the time and also the data association problem is
very well handled. However, It should be noted that this method is ideal for map-building not
for localization (Burgard et al., 1999) and moreover it is not suitable for real-time applications as
it lacks incremental nature (Chen, Samarabandu, and Rodrigo, 2007). For these reasons, EM is
usually combined with PF: use EM to construct map (M-step) and perform localization using
different means like PF-based localizer to estimate poses from odometer readings (Thrun, 2002).

5.1.2 Modern SLAM Systems

On the other hand algorithmic period saw the study of fundamental properties of SLAM, including
observability, convergence, consistency and sparsity. Most of the modern SLAM systems fall
under the category of smoothing approaches (Chatila and Laumond, 1985; Lu and Milios, 1997a;
Lu and Milios, 1997b; Gutmann and Konolige, 2000; Konolige, 2004; Eustice, Singh, and Leonard,
2006; Dellaert and Kaess, 2006; Folkesson and Christensen, 2004; Grisetti et al., 2007; Kaess et al.,
2012; Kaess, Ranganathan, and Dellaert, 2008; Olson, Leonard, and Teller, 2006; Thrun and Mon-
temerlo, 2006; Deans and Hebert, 2001; Duckett, Marsland, and Shapiro, 2002; Howard, Mataric,
and Sukhatme, 2001; Frese and Duckett, 2003; Folkesson and Christensen, 2004; Folkesson,
Jensfelt, and Christensen, 2005; Frese, 2004; Frese, 2006). Some of these only optimize/smooth
the robot’s trajectory, while others called as “full SLAM systems” (also popularly referred as
GraphSLAM, factor graph optimization, full smoothing, pose graph optimization (see Fig. 5.3)), try to
optimally estimate the entire set of sensor poses along with the parameters of all the features in
the environment. The latter also called as SAM (simultaneous Smoothing And Mapping) (Thrun,
Burgard, and Fox, 2005) rely on least-square error minimization (smoothing) technique. All these
approaches project the SLAM problem as Maximum a Priori estimation (MAP) problem. The
factors in (5.5) are not constrained to model projective geometry like in Bundle Adjustment, but
includes a variety of sensor models. For instance, in laser-based mapping, the factors usually
constrain relative poses corresponding to different viewpoints. Successive linearization methods
(Gauss-Newton, Levenberg-Marquardt) are the typical methods to solve (5.5). Starting from an
initial guess χ̂ , approximate the cost function at χ̂ with a quadratic cost, which can be optimized
in close form by solving a set of normal equations. In the modern SLAM systems, the matrices in
normal equations are sparse, and their sparsity is dictated by the topology of their factor graph.
There are many SLAM libraries which can solve tens of thousands of variables in fraction of min-
utes (Dellaert, 2012; Kümmerle et al., 2011; Ceres Solver; Kaess, Ranganathan, and Dellaert, 2008;
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Incremental Block Cholesky Factorization for Nonlinear Least Squares in Robotics). The MAP based
SLAM solvers are more accurate and efficient than original approaches based on non-linear
filtering. However, some SLAM systems based on EKF (Extended Kalman Filters) (Mourikis
and Roumeliotis, 2007; Hesch et al., 2014; Kottas et al., 2013) have demonstrated state-of-the-art
performance.

Figure 5.4 – Front-end and back-end in a typical
modern SLAM system. Source: (Cadena et al.,
2016).

The anatomy of modern SLAM system of algorithmic age has two main components: the
front-end and the back-end (see Fig. 5.4). The front end abstracts sensor data into models that
are amenable for estimation, while the back-end performs inference on the abstracted data
produced from the front-end. Modern SLAM systems extensively depend on sensor data for
feature extraction, accurate representation of the environment and for semantic interpretation of
the scene. However, the output of the back-end, a map, can be parametrized as a set of spatially
located landmarks, by dense representations like occupancy grids, surface maps or by raw sensor
measurements. The choice of a particular map representation depends on the sensor used, on the
characteristics of the environment, and on the estimation algorithm. Dense map representations
like surface maps, point cloud and occupancy grids use range sensors (see Fig. 5.5). This thesis
uses dense map representation using colorless point clouds obtained by time-of-flight camera.

Figure 5.5 – (a) (bottom) A 3D map of the Stanford parking garage (top) aerial view. (b) Point
cloud map acquired at the university of Freiburg. (c) Occupancy grid map acquired at the
hospital of Freiburg. Grey: unobserved regions, white: traversable space, black: occupied
regions. Source: (Grisetti et al., 2007).

5.1.3 Age of Robust-perception

Cadena (Cadena et al., 2016) speculated that SLAM is entering into a third era, the robust-
perception age, which is characterized by the following key requirements:
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� Robust performance: the SLAM system operates with low failure rate for an extended
period of time in a broad set of environments; equipped with fail-safe mechanisms and
self-tuning capabilities;

� High-level understanding: the SLAM system goes forwards to obtain high-level under-
standing of the environment (e.g., high-level geometry, semantics, physics);

� Resource awareness: the SLAM system is tailored to the available sensing and computa-
tional resources, and provide means to adjust the computational load depending on the
available resources;

� Task-driven perception the SLAM system is able to select relevant perceptual information
and filter out irrelevant sensor data, in order to support the task the robot has to perform;
moreover, the SLAM system produces adaptive map representations, whose complexity
may vary depending on the task at hand.

Figure 5.6 – (a) Graph-based representation of
the environment (b) Equivalent spring model.
Source: (Golfarelli, Maio, and Rizzi, 1998).

In this thesis, similar to modern SLAM system (see Fig. 5.4) except feature tracking instead
scan matching is followed. This chapter presents an established globally consistent scan matching
using GraphSLAM, starting with a brief history of SLAM origin and different types of method-
ologies are discussed in Section 5.1. And then the main idea of graph based SLAM is presented
and complete mathematical derivation of it is detailed. The indoor environment which has been
considered for semantic mapping is displayed and data acquisition process is also discussed in
the same section. In Section 5.4 the results of the SLAM is given and a novel evaluation metric
is then suggested. The SLAM output is a single reconstructed point cloud of the environment
with estimated camera poses overlaid on it. The estimated poses are compared with the ground
truth using a novel context-based similarity score metric. This section and partial amount of
next section has been inspired by Cadena et al. (2016), and the readers are requested to follow
this article for thorough knowledge of SLAM since past two or three decades.

5.2 Modern SLAM System: The GraphSLAM

Full SLAM has been formulated in variety of representation: belief nets, factor graph, Markov
random field, Dynamic Bayesian Networks (DBNs), constrained graph.
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The first mention of relative, graph-like constraints in the SLAM literature was in (Durrant-
Whyte, 1988; Smith and Cheeseman, 1986). However, these authors did not implement any
global relaxation or optimization (Thrun and Montemerlo, 2005). The current de facto standard
formulations of GraphSLAM has its origins in the seminal work of Lu and Milios (1997a),
followed by the work of Gutmann and Konolige (2000) and Gutmann and Nebel (1997). They
christened it as GraphSLAM and represented the SLAM prior as a set of links between robot poses,
and formulated a global optimization algorithm for generating a map from such constraints.
Gutmann and Nebel (1997) actually implemented the algorithm and reported some numerical
instabilities with matrix inversion. Golfarelli, Maio, and Rizzi (1998) proposed a spring-mass
model based on (Lu and Milios, 1997a), where knowledge of the environment is represented by
using relational graph: the landmarks are the vertices and inter-landmark routes as arcs (see
Fig. 5.6).

Duckett, Marsland, and Shapiro (2000) and Duckett, Marsland, and Shapiro (2002) proposed
solution to such a spring-mass model. Since then a number of approaches (Dellaert and Kaess,
2006; Folkesson and Christensen, 2004; Grisetti et al., 2007; Kaess et al., 2012; Kaess, Ranganathan,
and Dellaert, 2008; Olson, Leonard, and Teller, 2006; Thrun and Montemerlo, 2006; Borrmann et
al., 2008a) were proposed improving the efficiency and robustness of the optimization underlying
the problem. It should be noted that, Lu and Milios optimization was developed for 2D range
scans and optimizes only 3 degrees of freedom (DoF). In this thesis, the extension of (Lu and
Milios, 1997a; Lu and Milios, 1997b) to 6 DoF (x,y,z, roll, pitch, yaw) by Borrmann et al. (2008a)
has been utilized.

5.2.1 Globally Consistent Mapping

Complex 3D digitalization and modelling with no occlusion requires multiple 3D scans. The
problem of aligning n partially overlapping scans into a model without inconsistencies is called
“globally consistent scan matching”. A globally consistent map of an environment is a fundamental
requirement for the robot localization and navigation. Iterative pairwise matching of individual
scans to build complete map is not correct, as it piles up errors from laser scans, the odometry
readings and the matching procedure itself. So, global relaxation is necessary to distribute the
errors throughout to get consistent representation. Chen and Medioni (1991) introduced an
incremental method in which new scans are registered against meta-scan to achieve globally
consistent range image alignment. However, this approach does not relax the error globally.
Krishnan et al. (2005) presented a global registration method that minimized the global-error
function by optimization on the manifold of 3D rotation matrices.

In this thesis, 6DSLAM (Borrmann et al., 2008a) has been utilized, which is an extension of
Lu and Milios approach from 2D scans to 6DOF. In the next few sections of this chapter, the
original global optimization of 2D range scans mapping by Lu and Milios is presented and then
its extension to 3D scans is given in detail.

5.2.2 Scan Matching

ICP presented in Chapter 4 is the most used algorithm to match two scans. ICP is used to
calculate the transformation between two consecutive scans, as the robot or camera continuously
acquires data of the environment. It calculates the optimal R, t: rotation and translation, between
two scans which minimizes (4.4). A straightforward method to 3D reconstruct an environment
is to use pairwise ICP, which aligns the two consecutive scans, and when loop closure is detected,
use it to distribute the error globally. In this thesis, all scans are registered sequentially using the
ICP algorithm until convergence. The odometry of the new scans is extrapolated to 6 DoF using
registration matrices of previously registered scans (the equations solved below are taken from
the documentation of Borrmann et al. (2008a) with permission). The change in the pose ΔP is



5.2. Modern SLAM System: The GraphSLAM 57

given as: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
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=

⎛
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xodo
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0
zodo

n

0
θ odo
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+

⎛
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⎞
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︸ ︷︷ ︸
ΔP

.

Up on Matrix inversion and extracting ΔP, the 6D pose at (n+1) position is then given as:

Pn+1 = ΔP ·Pn

where, (xodo
n ,zodo

n ,θ odo
y,n ), (xodo

n+1,z
odo
n+1,θ

odo
y,n+1) are the odometry information of two consecutive robot

poses (n and n+1 respectively), and R(θx,n,θy,n,θz,n) is the registration matrix. It should be noted
that the odometry data are in left-handed coordinate system: y represents elevation. Once the
distance between poses of two scans falls below a certain threshold, global relaxation is performed
using GraphSLAM. For each iteration, a network of pose relations is built automatically. From
the corresponding scans, a linear equation system representing distance measurements is built
and solved, resulting in optimized pose equations.

5.2.3 Lu and Milios Global Relaxation

Consider a robot traversing a path, with n+1 poses (V0, . . . ,Vn), at each pose making an acquisition.
A network of relations is established by matching two scans taken at different positions. A graph
is constructed from the nodes (X0, . . . ,Xn) which are the poses and edges (Di, j) being the relations
between them. Given, such a graph, the problem is to estimate optimally all the poses to build a
consistent map of the environment. For simplification, the measurement equation is assumed to
be linear:

Di, j = Xi−Xj (5.19)

However, the true underlying difference D̄i, j after considering the Gaussian error ΔDi, j is:

D̄i, j = Di, j +ΔDi, j (5.20)

with covariance matrix Ci, j assumed to be known.
Maximum likelihood estimates the optimal poses X − i, assuming that all the errors in

observation are Gaussian and independently distributed, maximizing the probability of all Di, j,
given their actual observations D̄i, j, is equivalent to minimizing the Mahalanobis distance:

W = ∑
(i, j)

(Di, j− D̄i, j)
TC−1

i, j (Di, j− D̄i, j) (5.21)

which implies

W = ∑
(0≤i≤ j≤n)

(Xi−Xj− D̄i, j)
TC−1

i, j (Xi−Xj− D̄i, j) (5.22)

with an assumption that network is fully connected and considering simple linear case of es-
timation problem. In the case of missing link Di, j, the corresponding covariance matrix is set
to zero. To minimize the above equation, a coordinate system is defined by setting one node
(X0=(0,0,0)) as reference point and the other n free nodes (X1 . . .Xn) relative to the pose of X0.
Using the signed incidence matrix H, the concatenated measurement equation D is:

D = HX, (5.23)
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that makes,

W =
(
D̄−HX

)T C−1 (D̄−HX
)

(5.24)

The concatenations of all the observations D̄(i, j) forms the vector D̄, while C is a block-diagonal
matrix composed of Ci, j as sub-matrices. The solution X that minimizes (5.22) and its covariance
matrix CX are given by:

X =
(
HT C−1H

)−1HT C−1D̄ and CX =
(
HT C−1H

)−1
(5.25)

For simple representations, HT C−1H as G and HT C−1D̄ as B makes:

GX = B (5.26)

where,

Gi, j =

⎧⎪⎪⎨
⎪⎪⎩

n

∑
j=0

C−1
i, j (i = j)

C−1
i, j (i �= j).

(5.27)

The entries of B are obtained by:

Bi =
n

∑
j=0
j �=i

C−1
i, j D̄i, j. (5.28)

5.2.4 Extension to 6 DoF

Extending to 6 DoF, assume that a robot starts at the pose Vb = (xb,yb,zb,θxb ,θyb ,θzb)
T and changes

its pose by D = (x,y,z,θx,θy,θz)
T relative to Vb, ending up at Va = (xa,ya,za,θxa ,θya ,θza)

T . The poses
Va and Vb are related by the compounding operation Va =Vb⊕D. Similarly, a 3D position vector
u = (xu,yu,zu) is compounded with the pose Vb by u′ =Vb⊕u:

x′u = xb− zu sinθyb + cosθyb(xu cosθzb − yu sinθzb)

y′u = yb + zu cosθyb sinθxb + cosθxb(yu cosθzb + xu sinθzb)

+ sinθxb sinθyb(xu cosθzb − yu sinθzb)

z′u = zb− sinθxb(yu cosθzb + xu sinθzb)

+ cosθxb(zu cosθyb + sinθyb(xu cosθzb − yu sinθzb))

This operation is used to transform a non-oriented point from its local to the global coordinate
system.

Scan matching computes a set of m corresponding point pairs ua
k ,u

b
k between two scans, each

representing a single physical point. The positional error made by identifying these two points
in different scans is described by:

Fab(Va,Vb) =
m

∑
k=1

∥∥Va⊕ua
k−Vb⊕ub

k

∥∥2
(5.29)

=
m

∑
k=1

∥∥(Va�Vb)⊕ua
k−ub

k

∥∥2
. (5.30)

Based on these m point pairs, the algorithm computes the matrices D̄i, j and Ci, j for solving (5.22).
D̄i, j is derived as follows.
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Let V̄a = (x̄a, ȳa, z̄a, θ̄xa , θ̄ya , θ̄za) and V̄b = (x̄b, ȳb, z̄b, θ̄xb , θ̄yb , θ̄zb) be close estimates of Va and Vb. If
the global coordinates of a pair of matching points uk = (xk,yk,zk), then (ua

k ,u
b
k) fulfill the equation:

uk ≈Va⊕ua
k ≈Vb⊕ub

k .

For small errors ΔVa = V̄a−Va and ΔVb = V̄b−Vb, a Taylor expansion leads to:

ΔZk =Va⊕ua
k−Vb⊕ub

k := Fk(Va,Vb)

≈ Fk(V̄a,V̄b)− [∇V̄a
(Fk(V̄a,V̄b))ΔVa

−∇V̄b
(Fk(V̄a,V̄b))ΔVb]

= V̄a⊕ua
k−V̄b⊕ub

k− [∇V̄a
(V̄a⊕ua

k)ΔVa

−∇V̄b
(V̄b⊕ub

k)ΔVb] (5.31)

where ∇V̄a
(Fk(V̄a,V̄b)) is the gradient of the pose compounding operation. By matrix decomposi-

tion

MkHa = ∇V̄a
(Fk(V̄a,V̄b))

MkHb = ∇V̄b
(Fk(V̄a,V̄b)),

and (5.31) simplifies to:

ΔZk ≈ V̄a⊕ua
k−V̄b⊕ub

k−Mk[HaΔVa−HbΔVb]

= Z̄k−MkD

with

Z̄k = V̄a⊕ua
k−V̄b⊕ub

k

D = (HaΔVa−HbΔVb) (5.32)

Mk =

⎛
⎜⎝ 1 0 0 0 −yk −zk

0 1 0 zk xk 0
0 0 1 −yk 0 xk

⎞
⎟⎠
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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0 0 0 1 0 sin(θ̄ya)
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hb is given analogously. This matrix decomposition and the derivation of Ha, Hb is the crucial
step in extending Lu and Milios style SLAM to 6 DoF.

D as defined by (5.32) is the new linearized measurement equation. To calculate both D̄ and
CD, (5.30) is rewritten in matrix form:

Fab(D)≈ (Z−MD)T (Z−MD).

M is the concatenated matrix consisting of all Mk’s, and Z the concatenated vector consisting of
all Zk’s. The vector D̄ that minimizes Fab is given by

D̄ = (MT M)
−1MT Z. (5.33)
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Since minimizing Fab constitutes least squares linear regression, the Gaussian distribution of
the solution is modelled with mean D̄ and standard covariance estimation

CD = s2(MT M). (5.34)

s2 is the unbiased estimate of the covariance of the identically, independently distributed errors
of Zk, given by:

s2 = (Z−MD̄)
T
(Z−MD̄)/(2m−3) =

Fab(D̄)

2m−3
.

The error term Wab corresponding to our pose relation is defined by:

Wab = (D̄−D)
TC−1

D (D̄−D).

5.2.4.1 Transforming the Solution

Solving the linear equation (5.26) leads to an optimal estimate of the new measurement equation
of D (5.32). To yield an optimal estimation of the robot poses, it is necessary to transform D. By
this optimal estimation, a set of solutions Xi = HiΔVi is computed, each corresponding to a node
in the network. Assuming that the reference pose V0 = 0, the pose Vi and its covariance Ci are
updated by:

Vi = V̄i−H−1
i Xi,

Ci = (H−1
i )CX

i (H
−1
i )

T
.

If V0 is nonzero, the solutions have to be transformed by:

V ′i =V0⊕Vi

C′i = K0CiKT
0

where

K0 =

(
Rθx0 ,θy0 ,θz0

0
0 I3

)

with a rotation matrix Rθx0 ,θy0 ,θz0
.

5.2.4.2 The Algorithm

The optimal estimation algorithm is given as Algorithm 3. Iterative execution of Algorithm 3
yields a successive improvement of the global pose estimation. Step 3 is sped up by component-
wise computation of G and B. The components C−1

i, j = (MT M)/s2 and C−1
i, j D̄i, j = (MT Z)/s2 are

expanded into simple summations. The most expensive operation is solving the linear equation
system GX = B. Since G is a positive definite, symmetric 6n×6n matrix, this is done by Cholesky
decomposition in O(n3).

5.3 Datasets

Publicly available and benchmark datasets help to push forward the state-of-the-art techniques
in Computer Vision, Image Processing, Machine Learning, Robotics and several other scientific
domains. They support the scientific evaluation and objective comparison of algorithms with a
clear evaluation metrics. SLAM is one of the problems in robotics which has been investigated
using a variety of image and time-of-flight sensors that use radar, sonar and LiDAR (Cadena
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Figure 5.7 – Globally consistent 3D mapping, an extension to 6 DoF. Source: (Borrmann et al.,
2008a).

Algorithm 3 Optimal estimation algorithm

1. Compute the point correspondences ua
k ,u

b
k .

2. For any link (i, j) in the given graph compute the measurement vector D̄i j by (5.33) and its
covariance Ci j by (5.34).

3. From all D̄i j andCi j form the linear system GX=B, with G and B as given in (5.27) and (5.28)
respectively.

4. Solve for X

5. Update the poses and their covariances, as explained in Section 5.2.4.1.
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Figure 5.8 – Mapping dataset made using SwissRanger time-of-flight camera mounted on KUKA
effector. Source: (Stefan Fuchs, 2017).

et al., 2016). A good source of SLAM dataset acquired with different types of sensors can be
found at (Andreas Nüchter and Kai Lingemann, 2017). Since the last decade, cameras that
use the time-of-flight technique have become ubiquitous in robotic applications. They are
commercially cheap, simple and provide data at video frame rates. The first SLAM systems
that used RGB-D sensors have appeared in (Henry et al., 2014; Dib, Beaufort, and Charpillet,
2014; Comport, Meill, and Rives, 2011), though these sensors use structured light rather than the
time-of-flight technique. Sturm et al. (2012) presented a RGB-D benchmark dataset for SLAM
using Kinect (v 1.0) RGB-D camera. However, presently, the data from the even best RGB-D
camera (Kinect 2.0, Asus Xtion PRO live) is extremely noisy with limited maximum range (4.5 m)
and larger measurement accuracy (± 0.03 m for 3 m range). And for mapping with these sensors
the data should be acquired within 13 m distance from the surroundings (Khoshelham and
Elberink, 2012). On the other hand, SwissRanger time-of-flight camera is although noisy (with
measurement accuracy ± 0.01 m for 5 m & 10 m range) but has better and well studied noise
characteristics (Weingarten, Gruener, and Siegwart, 2004; Dopfer, Wang, and Wang, 2014; Tamas
and Jensen, 2014; Chiabrando et al., 2009; Donoho, 1995; Jovanov, Pizurica, and Philips, 2010;
He et al., 2017; Diebel and Thrun, 2005; Cazorla, Viejo, and Pomares, 2010; Falie and Buzuloiu,
2007; Foix, Alenya, and Torras, 2011a; Hansard et al., 2012; Lange, 2000; Robbins et al., 2008;
Kahlmann, Remondino, and Ingensand, 2006; Ghorpade, Checchin, and Trassoudaine, 2015;
Reynolds et al., 2011) with a maximum range of 10 m and higher frequency than Kinect, but
without RGB channel instead provides confidence and amplitude images. Also, the data from it
are much smoother than Kinect like sensors (as it uses time-of-flight principle not structured
light, unlike Kinect). The phase shift principle of it helps to acquire data at longer range more
accurately than Kinect. Well studied noise characteristics of SwissRanger camera helps to remove
both systematic and non-systematic errors at ease.

Future service robots largely depend on time-of-flight cameras for mapping, navigation,
manipulation and semantic interpretation of their surroundings and will certainly use only
the robust, light-weighted and simple sensors for this purpose. SwissRanger time-of-flight
camera full-fill these criteria compared to Kinect or any other state-of-the-art sensor presently
available (Hong et al., 2012; Ye and Bruch, 2010; Cui et al., 2010; Kolb et al., 2009; May et al.,
2009b; May et al., 2009a; Fuchs and May, 2008; Chiabrando, Piatti, and Rinaudo, 2010; Iddan
and Yahav, 2001) (see Fig. 3.3 for present state-of-the-art depth sensors). Moreover, they are
improved constantly when compared to Kinect family of sensors which are explicitly developed
for video-gaming not for robotics.

In this thesis, a standard dataset from time-of-flight camera is made to experiment and
evaluate SLAM algorithms, and it is publicly available4. The pose information of the camera at
every acquisition position is also provided. To the best of our knowledge, colorless point cloud

4ftp://ftp.ip.univ-bpclermont.fr/iptof-d
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(a)

(b)

(c)

Figure 5.9 – Institut Pascal Semantic SLAM dataset. (a) Map of the indoor environment, two offices
connected with a long corridor. The dataset consists of 484 scans taken at pre-arranged locations.
The map is reconstructed using 3DTK (Borrmann et al., 2008a), the heat-map representation
is proportional to the distance above the ground. (b) The path of the indoor environment
across which scans are acquired. The pose files have the x, y, z, θz information. A floor plan
of the environment is overlaid on the path for reference only. Scale and representation are not
accurate. Chairs and tables are positioned in the two rooms to serve as objects for semantic
interpretation. Several household objects are placed on the desk in the right room (towards the
north, see Fig. 1.5). These are the same objects represented in (c), for semantic labelling of the
scene. (c) Different household objects have been placed in the indoor environment to be labelled
after the 3D mapping. The object dataset consists of 2.5D views of different objects, taken at


