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Abstract 
In today’s business world, customer requirements change more rapidly than ever 

before, and new competitors are increasing every second. Moreover, the ability of 
managing changes and unpredictability has become a crucial factor for enterprises to 
make more value and stay competitive [Oracle 2013]. This results in a fact that 
nowadays enterprises are challenged with not only managing structured business 
processes, but also more and more unstructured ones. In a common structured 
business process, everything regarding the process can be predetermined at design 
time, such as activities, the execution sequence of activities, and so on. However, in 
an unstructured one the activities cannot be defined precisely beforehand, as well as 
the sequence to execute. To stay competitive, meet the ever-changing market demands 
and improve their business process operational efficiency, organizations need a novel 
process approach that can help them manage changes, dynamics and unpredictability. 
Under this context, the concept of Case Management is proposed. Different from 
Business Process Management (BPM) which standardizes and automates structured 
business processes, CM overcomes the BPM approach limitations and provides an 
infrastructure for managing changes, dynamics and unpredictability in unstructured 
business processes. CM proceeds largely depending on evolving circumstances, and 
decisions are made on the fly. BPM requires a high level of predictability; whereas 
CM has a lower level of predictability but a higher level of adaptability and flexibility. 
With CM approach, enterprises are able to manage their unstructured business 
processes in a more adaptive and flexible manner. 

However, for this new area it lacks supporting methods and software tools. Major 
concerns are: (1) case modeling (the construction of case models); (2) model 
discovery (the establishment of case models from raw data); (3) model analysis (the 
analysis of models in both static and dynamic manners, e.g., the derivation of 
properties before the case is enacted); (4) model improvement (the reduction of cost, 
the optimization of operational performance, etc.); and (5) model enactment (the 
execution of a case scenario with case workers in the loop). After a thorough literature 
review we found that only a few efforts have been done in (1) and (5), and no 
noticeable contribution has been done in other aspects. 

This these presents our CM approach that provides case workers full supports in 
the whole lifecycle of CM: from establishing case models from raw data to optimizing 
case models. Process Tree is our choice to formalize the discovered model, and 
CMMN (Case Management Model and Notation, a case modeling specification is 
selected as the formalism for presenting and constructing case models. In addition, we 
adopt the HiLLS (High Level Language for Systems Specification) formalism to 
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conciliate usability, simulation ability and formal analysis capabilities together. 
Dynamic model analysis is enabled by DEVS formalism, static model analysis is 
provided by formal methods, and model enactment is given by the implementation of 
an object-oriented specification of the case. We propose mainly two modules in this 
these: one module concerning the discovery of the case model from historical event 
logs, and another module concerning the improvement and the optimization of the 
case model. 

Keywords: Case Management, CMMN, HiLLS, Model Transformation, Process 
Improvement 
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1.1 Context 

In today’s business world, customer requirements change more rapidly than ever 
before, and new competitors are increasing every minute. To stay competitive in 
business, organizations put their focuses on managing their business using scientific 
management approaches. Examples include: 

� Customer Relationship Management (CRM), a management approach 
focusing on the management of the organization’s interaction with their 
customers, and the goal of CRM is to drive sales growth through the 
improvement of business relationships with customers [BRIEF 2015]. 

� Enterprise Content Management (ECM), which refers to a set of strategies, 
methods, and tools developed for capturing, preserving and controlling 
process-relating information of any form (e.g., a paper document, an email). 

� Enterprise Resource Planning (ERP), which aims at increasing the operational 
efficiency and effectiveness through integrating and sharing business activity 
data and standardizing business processes from best practices [Seo 2013]. 

� Business Process Management (BPM), the most important and widely used 
process management approach in recent years. Instead of focusing on the 
management of business activity information, BPM aims at improving 
corporate performance by managing and optimizing organizations business 
processes [Page 2015], and it has been the most widely studied and 
implemented process management methodology in business domain. A key 
feature of BPM is that it targets on automating routine work (and processes 
within routine work are called structured business processes): activities within 
such type of processes are completely predictable and repeatable. Everything 
regarding the process can be predetermined during process-design time, such 
as activities, the execution sequence of activities, and so on. It leads to a work 
pattern where BPM workers do their work by strictly following predefined 
process solutions. 

However, in today’s enterprises managers realize that the ability of managing 
knowledge work becomes a crucial factor for them to make more value and stay 
competitive. Knowledge work refers to the type of work in which the plan is 
determined and altered by the situation information obtained at execution time 
[Swenson 2010]. Typical examples of knowledge work include medical work (the 
procedures of treatment cannot be predicted since judgments from doctors are 
required based on patients symptoms and their diagnosis results), customer support (it 
is difficult or even impossible to know which type of service is required in advance 
due to the fact that many details come late), law enforcement (the course of the 
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investigation of a crime depends on the details unfold as time goes by, as well as the 
knowledge and experience of investigators), etc. All these use cases illustrate the 
unique features of knowledge work: (1) unpredictable, and (2) non-repeated. 

We say that routine work is highly predicted since all the necessary activities 
required for completing that work can be specified beforehand. However, it is difficult 
to define how a knowledge work will be done (in terms of specifying all the necessary 
activities and the execution sequence of those activities) since the course of events is 
determined by many potential factors as the work proceeds. This is the essential 
nature of knowledge work: its plan changes in accordance with incoming situation 
information. As knowledge work proceeds, new information will be generated, and 
this new knowledge sets the next direction towards which the work will carry on. 
Then more information will be obtained, and the plan set from the last step will be 
altered based on that new discovered knowledge, and so on. This explains the reason 
why knowledge work is considered to be unpredictable. For example, a doctor cannot 
decide the exact treatment procedures unless he receives enough information 
regarding the patient condition. But such original treatment procedures will not stay 
unchanged to the end of the treatment. The patient will come for another diagnosis or 
an examination after a while, and it is his diagnosis result that determines the 
treatment to be taken for the next step. The same story repeats until the patient is 
recovered from his illness. 

Moreover, in most situations knowledge work does not have the same level of 
repeatability as routine work has. Once a routine work scenario is standardized, all 
steps as well as the sequence of them will be specified and stay unchanged, and 
workers do their work by simply following what have been defined previously, 
without making any decision. Knowledge work, on the contrary, has many factors that 
make each instance a unique one. When dealing with knowledge work, the different 
specifics of each case cause a unique solution to meet its special requirements. Take 
the example we have mentioned before, due to the fact that patients come under 
different conditions, the doctor needs to formulate different treatment procedures 
considering the uniqueness of individual, in order to meet the needs of each particular 
case. 

The first reference of the knowledge work concept was mentioned in [Drucker 
1959], a book of Peter F. Drucker’s named Landmarks of Tomorrow. Afterwards, the 
importance of knowledge work has been discussed by him and other researchers. 
Drucker pointed out that the most important task for organizations was “to make 
knowledge work productive” in [Drucker 1969]. Later in 1999 he emphasized that 
knowledge workers will be the most valuable asset in the 21st century, and their 
productivity will be the key factor to business success [Drucker 1999]. Davenport 
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discussed the importance of knowledge work from the perspective of what knowledge 
work can yield to organizations: they could come with new management strategies (if 
they are at the management hierarchy), they are able to design and create new 
products (if they are in the Research and Development department), they are capable 
of advertising their products and services in ways that attract customers (if they are in 
charge of selling products), and so on [Davenport 2005]. However, efforts regarding 
theories and approaches of work management and improvement in business domain 
have focused largely on repeatable routine work. A large number of process 
management theories have been proposed, and they have been implemented in the 
real world to help organizations solve their real business problems. The management 
of knowledge work did not gain much attention until 2010. Since then people start to 
consider how to improve the knowledge work existing within their business activities. 
However, due to its unique unpredictable and non-repeated features, the solutions for 
the pattern of repeated routine work is not appropriate any more. Therefore, a 
fundamental different process management methodology is required, which helps 
knowledge workers adapt changes, control dynamics and unpredictability as they 
work. This is the approach we will introduce and explain in the next section, i.e., Case 
Management. 

1.1.1 Case Management 

As more knowledge work appears in business domain over the past few years, 
managers start to be aware of the importance of the operational efficiency of 
unstructured processes with knowledge work, which needs a greater deal of flexibility, 
adaptability, autonomous decision making and collaboration to achieve organizations 
business objectives [Zhu et al. 2013]. In today’s modern organizations, structured 
business processes cover around only 30%. Moreover, the following factors from 
different aspects serve as the driving forces for the research and development interest 
in a novel support for managing unstructured business processes [Swenson 2010]: 

� An increased need to govern the costs and risks rising from the service 
management (e.g., after-sale service, claims management). 

� An increased emphasis on managing (i.e., automating and tracking) ad-hoc 
processes which are not defined precisely beforehand, where an ad-hoc 
process refers to a type of process that is not predictable. 

� A demand from government agencies of responding massive citizen requests 
in a rapid manner. 

� A need for regulators, auditors, and litigants to quickly react to external 
regulations. 

� An increased demand of managing business with unstructured processes 
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collaboratively and communicably. 

Apparently, traditional process management approaches such as BPM or ECM 
are not sufficient, in some cases even not able, to handle knowledge work processes 
due to its unique features. Under this context, the concept of Case Management (also 
known as Adaptive Case Management, Advanced Case Management, etc.) is proposed. 
Different from BPM which targets on standardizing and automating structured 
business processes, case management overcomes the BPM approach limitations and 
provides an infrastructure for managing unstructured business processes. More 
specifically, case management deals with changes, dynamics and unpredictability. It 
proceeds largely depending on evolving circumstances, and decisions are made on the 
fly. Case management provides knowledge workers sufficient capabilities (flexibility, 
adaptability, autonomous decision making and collaboration) so that they can achieve 
positive outcomes. 

The term of case management has different meanings in different areas, and this 
concept was referred only in domains such as legal, social work, healthcare markets 
and government, in a general sense. For example, in the medical care field, it refers to 
the planning and cooperation of health care services. In social service, it refers to the 
process of planning, seeking, and monitoring different social services [Anastas & 
Clark 2013]. However, in recent years case management has been widely accepted by 
business organizations, and people render more general definitions of this concept, 
instead of restricting to one or several specific area(s). [OMG 2014] formally defines 
the concept of Case as “a proceeding that involves actions taken regarding a subject 
in a particular situation to achieve a desired outcome.” A well accepted generic 
definition regarding case management is given by Forrester (one of the most powerful 
research firm that aims at helping clients improve their business results) in [Clair & 
Moore 2009], where the case management is described as “a collaborative, dynamic, 
and information-intensive process driven by outside events requiring incremental and 
progressive responses from the business domain handling the case.” [Swenson 2010] 
also defined case management as “Systems that are able to support decision making 
and data capture while providing the freedom for knowledge workers to apply their 
own understanding and subject matter expertise to respond to unique or changing 
circumstances within the business environment.” Many vendors of BPM systems gave 
their understanding about case management as well, such as Cordys, Global 360, 
which will be discussed in more detail later in this thesis. All the following statements 
clearly illustrate the features of case management from the different aspects, and it is 
crucial to well understand its nature since we can judge which approach will fit and 
support this kind of work: 

� Case management targets on governing unstructured processes occurring in 
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knowledge work. The exact activates required are unknown beforehand, as 
well as their execution sequence. 

� Case management is information sensitive. The unfolding information 
influences how a case proceeds. 

� Case management empowers knowledge workers. Unlike BPM where 
employees are asked to only follow what have been specified, knowledge 
workers in case management have the power and freedom to make decisions. 

� Case management has a clear goal to be achieved. The exact path to reach the 
goal uncovers by yielded information and knowledge workers decisions, 
gradually. 

� Case management requires communication and collaboration. Information 
should be shared and assessed by all relating knowledge workers, so that they 
can make better decisions when responding to ad-hoc events. 

In a nutshell, the essential characteristics of case management are unpredictability, 
information-sensitivity, runtime planning and collaboration. Each Case in case 
management comes with an explicit goal, and it evolves based on the unfolding 
circumstances and information yielded from previous steps to achieve that goal. 
Moreover, it is the data collected and knowledge workers decisions that determine 
how a Case proceeds. Therefore, to ensure efficient case management practices it is 
inevitable for knowledge workers to (at least but not limited to): (1) determine which 
activities should be involved; (2) decide the execution sequence of selected activities; 
and (3) cooperate with other colleges for decision-making (de Man, 2009a). 

 

Figure 1-1: The spectrum of business processes [Kemsley 2011] 
 

As illustrated in the process spectrum given in Figure 1-1 [Kemsley 2011], on the 
left-hand side are highly structured processes where the traditional BPM approach is 
adopted to improve their operational performance. On the right-hand extreme of the 
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spectrum are unstructured processes where case management is considered to be a 
promising solution as a process management approach (and processes positioning in 
the middle of the spectrum require a mix between BPM and case management 
approaches). In addition to this, compared with BPM approach case management 
solutions are fundamentally different for the following aspects: 

� Processes in BPM are predictable and repeatable, while case management 
processes are unpredictable, and have a low level of repeatability. 

� BPM is focusing on the process and everything else necessary to complete 
the process; whereas case management focuses on the data of the Case, as 
well as other factors needed to achieve its goal. 

� In BPM, workers solve their problems by following a well-established 
process model beforehand: the concept of adaptation of the process does not 
exist. Knowledge workers accomplish their work by runtime planning and 
executing as the Case proceeds, and additional activities will be added if 
necessary. 

� BPM rarely requires human participants’ decisions, while case management 
requires case workers involvement to make decisions. 

Generally, a Case can be categorized as one of the following three types: mass 
cases, regular cases, and special cases [Rooze et al. 2007]. Mass cases are cases that 
can be controlled in a completely automated manner. The processes within mass cases 
are highly structured and predicted, and traditional process techniques (such as BPM) 
are adequate management approaches. Mass cases lay in the left-hand extreme of the 
process spectrum given above. Regular cases refer to cases that repeat over time (and 
they are positioning in the middle area of that process spectrum). However, the 
solution of each case instance is not exactly the same. As experience grows, common 
solution patterns (also known as templates) can be identified and formalized. 
Consequently, similar cases can be managed in a more rigorous and repeatable 
manner. Knowledge workers control how regular cases evolve and complete. In 
addition, the ways to complete cases are also constrained by other factors (business 
rules, availability of activities to choose from, etc.) that are defined in the templates. 
With respect to special cases (which are at the right-hand side of the process 
spectrum), case workers own the whole freedom on deciding how a Case evolves, 
based on their experience and their evaluation and judgment on incoming information. 
Solutions to special cases are discovered in a complete ad-hoc manner. Generally 
speaking, organizations start with managing special cases, with little suggestion to be 
referred. As time goes by, similar cases repeat, and recurring patterns can be revealed 
and summarized as templates by business analysts and modeling experts. As a result, 
special cases become regular ones. This becomes the practice of case management. 
Nowadays, organizations are more interested in exploring solutions on how to assist 
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Case workers in managing regular cases, such as [Man 2009b] [Clair & Moore 2009] 
[Clair & Miers 2014] and [Zhu et al. 2013]. 

1.1.2 Challenges 

Among all the process management approaches, BPM receives the most attention 
of the business community in recent years. BPM is based on the scientific 
management principle proposed by Taylorist, in which the idea is to standardize rigid 
process models then execute these model for many times. The assumption behind 
BPM solutions is that the target processes are repeatable and predictable. However, 
due to its unique features of adaptability, unpredictability and non-repeatability, case 
management cannot take advantages from existing traditional BPM solutions. 
Knowledge workers need a type of support that allows them to do their work in an 
adaptive manner, instead of strictly following what have been defined in advance. 
Making changes to respond ad-hoc events when a case is being executed, anticipating 
critical problems, sharing information and making decisions collaboratively, etc., are 
essential capabilities to knowledge workers. From this point, BPM systems are 
inadequate and not suitable for governing case management processes. 

Case management represents a new generation of process management 
technologies in terms of effectiveness, efficiency and adaptability. However, it lacks 
supporting methods and software tools. One essential aspect is case management 
process modeling. There are lots of benefits from modeling processes in the business 
domain, such as increasing the understanding of processes, visualizing the detailed 
components of process, identifying hidden risks, and so forth. Therefore, how to 
model case processes considering its flexible and adaptive characteristics becomes the 
starting point for researchers and analysts in the business community. This includes 
the practice of defining formal case management related concepts (e.g., case, case file, 
and task), specify the conceptual relationships between case management concepts, 
and nail down the graphical modeling notations, etc. Over the years, several case 
management modeling techniques have been proposed. Most noticeable ones include 
Business Artifact [Nigam & Caswell 2003], Case Handling [Aalst et al. 2005], Cordys 
[Man 2009b], Guard-Stage-Milestone [Hull et al. 2010], IBM Case Manager [Zhu et 
al. 2013], etc. Unfortunately, their proposed solutions do not really fill the gap of case 
management process modeling since most vendors come with their BPM solutions 
with only few added features and they claim that they offer suitable systems for case 
management. 

In order to formally standardize the modeling practices, OMG (Object 
Management Group) offered a case management process modeling specification 



9 

 

(version 1.0) named CMMN (Case Management Model and Notation) in May 2014 
[OMG 2014]. CMMN incorporates current case management research contributions 
(such as the Business Artifact concept, the Case Handling paradigm, and the 
Guard-Stage-Milestone approach), and defines an executable visual modeling 
language for case management processes. However, only a few countable discussions 
regarding CMMN can be found in literature since the modeling specification was 
released. Some BPM system vendors implement a case model editor on the basis of 
CMMN within their BPM systems. But with such case model editors knowledge 
workers are not able to deeply analyze the underlying processes within their work 
since what they have are merely static CMMN diagrams. 

Regardless of the type of processes to be managed, the ultimate goal of any 
process management approach is to help organizations achieve their financial goal 
through improving operational performance. Case management is not exceptional at 
this point. Key process improvement theories such as Lean, Six Sigma, and Business 
Process Re-engineering (BPR) have illustrated their great profound influence in terms 
of process improvement in many areas. However, these theories have focused 
exclusively upon repeatable type of work. How to manage and finally improve 
knowledge work process performance was largely ignored in the past. This is no 
wonder since case management did not gain much attention from the business 
community until recent years. As far as our knowledge the efforts have been done 
only in the case management process modeling aspect, not to mention the 
contributions from the perspective of case management process improvement, such as 
adopting the Model and Simulation (M&S) technique to analyze case models 
dynamically, using formal methods to do formal analysis to case models, or 
embedding process discovery technique to explore case models automatically. 

1.2 Objectives 

To overcome the presented challenges and make contributions in the field of case 
management, we present here our case management solution in this thesis. The 
essential objective is to establish a system-theoretic case management framework with 
which knowledge workers are able to auto-discover and manipulate case models, 
identify problems (bottleneck, waste, etc.) hidden in processes, and predict 
operational performance of the system. Ultimately, the original case management 
process models will be improved. We offer the possibility for knowledge workers 
(both case managers and case workers) to managing their cases, regardless of the type 
of the case (i.e., special cases and regular cases). From constructing and analyzing 
case models to improve those models, our case management framework is expected to 
provide sufficient supports to manage cases throughout their whole lifecycle, from 
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starting a case instance to its completion. The detailed objectives are: 

1. Case Model Discovery 
It refers to the automatic establishment of case models from raw data. Instead 
of constructing case models manually from scratch, case models can be 
extracted automatically, which eases the modeling effort of knowledge 
workers, especially when they are not experts in modeling. 

2. Case Modeling 
It refers to the construction and manipulation of case models, where a model 
represents the real system knowledge workers are interested in. By modeling 
cases, knowledge workers are able to study and analyze the systems of 
interest in an abstract manner. 

3. Case Model Analysis 
It refers to the detailed study and examination of case models. Through 
model analysis, case managers can obtain a deeper view on their work. The 
analysis practices can be classified into two categories: static model analysis, 
and dynamic model analysis. The former refers to the analysis performed 
without executing models, e.g., the derivation of properties before the case is 
enacted, while the latter refers to the model analysis in a dynamic manner 
through simulation. 

4. Case Model Improvement 
It refers to a set of approaches and tools used by case managers to enhance 
their process operational performance. Generally, after understanding the 
existing case models and obtaining detailed analysis results, constructing a 
to-be model and then testing if the predicted performance is accepted or not 
will be the next step. 

5. Case Model Enactment 
It refers to the real time execution of a case scenario, with case workers in the 
loop. 

Different techniques are adopted in our solution for different purposes: process 
discovery is used to automatically construct case models; BPI techniques, for instance, 
BPR, Lean, Theory of Constraints (TOC), etc., are used to analyze and optimize case 
model. Process Tree [Schunselaar et al. 2014] is selected as our choice to formalize 
and graphically present discovered case models, and CMMN is considered as the 
formalism for presenting and constructing case models. In addition, we adopt the 
HiLLS (High Level Language for Systems Specification) formalism we have defined 
[Maiga 2015] [Maiga et al. 2015] [Aliyu et al. 2015] to conciliate usability, simulation 
ability and formal analysis capabilities together in order to analyze case models from 
different perspectives. Dynamic model analysis is enabled by DEVS (Discrete-Event 
System Specification) formalism, static model analysis is provided by formal methods, 
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and model enactment is given by the implementation of an object-oriented 
specification of the case. To bridge the gaps between different modeling specifications 
and ensure consistency between them, i.e., Process Tree, CMMN and HiLLS, we use 
model transformation, a core concept in Model-Driven Engineering (MDE). 

1.3 Contributions 

The contributions of this thesis can be summarized as follows: 

1. A mapping between the de-facto case management modeling standard and a 
multi-purpose system modeling formalism. 

2. An algorithm to automatically generate an experimental frame (EF) for each 
case model, i.e., a specification of the set of components required to run 
experimentations on the case model and derive dynamic properties. 

3. An algorithm for the dynamic evaluation of process performance metrics 
from different perspectives. 

4. A simulation-based methodology for predicting the implications of changes 
made in case models. 

5. A connection between formal process discovery models and case models 
conforming to the de-facto case management modeling standard. 

1.4 Outline of the thesis 

The remainder of this document is structured as follows. In chapter 2, we will 
introduce and review related works, including process modeling in business domain, 
case management process modeling, and case management systems. In chapter 3, we 
will explain our research background, including the introduction of related modeling 
specifications (Process Tree, CMMN, and HiLLS) as system modeling languages, as 
well as the techniques and technologies adopted in our work (process discovery, 
process improvement theories and approaches, model transformation techniques, etc.). 
Our framework will be presented in chapter 4, where we will explain how case 
models are discovered, analyzed and improved within this framework. A case study 
will be given and discussed in Chapter 5 to illustrate how knowledge workers can 
manage their cases from different perspectives. We will finally make in Chapter 6 a 
general conclusion followed with research perspectives.
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2.1 Introduction 

In this chapter, we present the state of the art in case management modeling 
approaches and systems, as well as the improvement efforts made for case 
management processes. Though case management is a relatively unfamiliar term, it 
has gained more and more attention steadily over years, and enterprises have shown 
their own understanding and supporting tools in this new area. Therefore, we will 
present and discuss all the approaches developed for supporting case management, 
including the process improvement attempts. Moreover, we will review the work that 
has been done using process discovery technique in controlling business processes. 
Regarding the proposed approaches for case management modeling in the literature, 
we classify them into four categories on the basis of which aspect they offer for 
knowledge workers to analyze and manage case models: 

� Activity-based Modeling Solutions (which focus on the aspect of 
control-flow modeling). 

� Information-based Modeling Solutions (which focus on the aspect of 
information-flow modeling). 

� Communication-based Modeling Solutions (which capture the 
communications and collaborations between people). 

� Hybrid Activity and Information Modeling Solutions (which emphasize on 
establishing both the process model and information model when modeling 
cases). 

2.2 Case Management Modeling Solutions 

Case management emerged as a process management solution for knowledge 
workers who require a high degree of flexibility in controlling their knowledge work 
processes. It overcomes the limitations of traditional BPM solutions which restrict 
their usages in governing and improving highly structured, highly repeated 
manufacturing processes. In order to gain benefits from using the case management 
approach, organizations have started to explore novel ideas and approaches that can 
provide case workers adequate supports for managing cases from both perspectives of 
process and information, in an adaptive way. Some vendors also proposed their 
commercial case management applications based on their own understanding of case 
management. In order to standardize case management modeling practice, the OMG 
requested a proposal for case management process modeling in 2010, and ten major 
companies and organizations were involved in the development process (BizAgi 
Limited, Cordys Nederland BV, etc.). The final response of this collaborative work 
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was the case management modeling specification entitled “Case Management Model 
and Notation (CMMN)” [OMG 2014]. Until now this specification is still under 
development and refinement, but people have reached an agreement to the core 
concepts, the modeling notations and the execution semantics [Marin et al. 2012]. It 
has been progressively accepted by the business community. Before explaining the 
CMMN specification which we adopt for case modeling in this thesis, we will trace 
and review the efforts made for developing management approaches for knowledge 
work. Main concerns are the definition of case management related concepts (such as 
case, case folder) and the attempts of case management modeling, regarding both the 
information and processes involved. 

In the literature, the modeling paradigms are basically categorized as 
activity-based (in which case related activities are modeled as the primary concern), 
information-based (in which the flow of information is constructed), and 
communication-based (in which the interactions of knowledge workers drive the case 
to progress and are modeled as the primary means) [Wang & Kumar 2005] [Man 
2009a]. In addition to these three major case modeling approaches, we add one more 
hybrid modeling paradigm where activity and information are both described in the 
process model and information model of a case, respectively (i.e., both the process 
and information are treated as the key constructs for case modeling). Modeling 
attempts falling in the fourth category are further divided depending on if the process 
model is merged with the information model or not. 

2.2.1 Activity-based Modeling 

[Mayer 1992] defined a family of IDEF (Integrated computer-aided 
manufacturing DEFinition) approaches for the purpose of increasing manufacturing 
performance through the aide of computer technology. Within that series of 
techniques, IDEF1 (also known as the Information Modeling Method) was developed 
to describe all the information necessary for organizations to accomplish their 
financial objectives. Generally, an IDEF1 information model identifies the key 
information controlled by the organization, as well as issues caused by the lack of 
well managing the key information. The structure of the information is modeled in 
IDEF1 models, in which: a Real-World Object is defined to represent an object in 
reality; an Entity is used to describe a piece of information; an Attribute is defined to 
represent a property of an Entity; and a Relation concept is used to describe the 
associations between Entities. 

[Manolescu & Johnson 2001] proposed a new workflow architecture named 
Micro-workflow. In their workflow management solution, they adopted the 
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object-oriented paradigm so that the gap between workflow systems with different 
requirements is bridged. In addition, their Micro-workflow solution offers a reusable 
architecture with which users are able to configure a model to the new requirements. 

 [Kaan et al. 2005] proposed a graphical modeling language for case management. 
Concepts are embedded into traditional BPM modeling paradigm, where the 
evaluation of case information has an influence on executing activities. The 
visualization of the modeling language is inspired by the Venn-diagram, a diagram 
showing the logical relations between different sets. 

 [Strahonja 2007] suggested to model case procedures (criminal case procedures, 
for example) through UML state machines in the domain of legislation. It focuses on 
the dynamics of the legal system, and the limitations of automating the verification 
and validation of anomalies in legislation models have been discussed as well. 

[Hull et al. 2010] informally proposed a business operation modeling approach 
using business entities and the Guard-Stage-Milestone (GSM) approach. It is more 
declarative than most finite state machine variants in terms of expressing the 
lifecycles for data-centric business processes. The operational semantics are defined 
using the ECA rule, which leads the possibilities for formal verification and 
reasoning. 

Due to the fact that case management is information-sensitive and 
information-driven, the modeling approaches which consider only case activities are 
not adequate for modeling case management processes. Even in [Kaan et al. 2005] 
activities are controlled by rules evaluating the case information, the flow of 
information is not explicitly given. Moreover, such diagrams can be difficult for 
knowledge workers to read if a large amount of rules is defined. Other approaches do 
not consider much about the strong linkage between processes and information 
involved when modeling cases, and the modeling approach given in [Strahonja 2007] 
is only for the legislation area. They are more suitable for routine work rather than 
knowledge work. In addition, as modeling approaches they do not have formal 
definitions in terms of syntax (both abstract and concrete) and semantics. 

2.2.2 Information-based Modeling 

IDEF3 is another approach from the IDEF family, which is entitled as Process 
Description Capture Method [Mayer et al. 1992]. Unlike IDEF1 which focuses on the 
information flow, IDEF3 captures the knowledge of organizations from the behavior 
perspective: it was developed specifically for modeling descriptive activities. Within 
an IDEF3 model, activities are summarized in the Process Flow Description, and the 
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lifecycles of objects are defined in the Object State Transition Description. 

[Nigam & Caswell 2003] proposed to use the concept of Business Artifact (also 
known as Business Record) to capture case data. A Business Artifact refers to an entity 
used to record concrete, identifiable, self-describing and indivisible business 
information. Their approach was inspired by IDEF0, one of the IDEF family 
approaches targeting on system function modeling. The lifecycle of a Business 
Artifact is defined through two constructs called tasks and repositories, where the 
former defines the place a function applies, and the latter offer means for archiving 
business information. This artifact-centric thinking in the business area renders a 
flexible representation of business models, and offers the ability to control changes 
and system implementation. 

The modeling approaches we reviewed in this section focus solely on the 
information flow of the case model. The evaluation of information captured measures 
if knowledge workers are on their way to achieve their business targets. However, 
diagrams modeled by IDEF3 can be too complex for people to understand. Moreover, 
these information-based modeling languages lack formal definitions of their abstract 
syntaxes and formal descriptions of their execution semantics. [Mayer et al. 1992] 
informally offered the concrete syntax of IDEF3; but in [Nigam & Caswell 2003] no 
noticeable graphical modeling notations are given. In addition, without the control 
flow of activities it is hard to know which information triggers which task, or which 
activity yields which information. Thus, the dynamic views of cases are missing: they 
are more like static analysis tools for knowledge workers. 

2.2.3 Communication-based Modeling 

[Kumaran et al. 2003] formalized an XML-based programming language for 
constructing Adaptive Documents (ADoc) and Collaboration models, where ADoc 
and Collaborations are the new modeling artifacts proposed. This new modeling 
language adopts object-oriented technology, and it mainly focuses on describing the 
information flow, as well as the collaboration aspect of systems: a set of atomic 
models function together to achieve organizations business objectives. 

[Ould 2005] and [Harrison-Broninski 2005] proposed Role Activity Diagram 
(RAD), a process management technique mainly aimed at modeling human 
communication and collaboration. RAD was developed for enabling 
communication-based process modeling. It focuses on the “role” of human and how 
the “role” is defined within related activities. It is considered as the most known 
process modeling approach aiming at describing communications between people. 
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There exists a graphical representation for RAD models as well. 

[Weigand 2005] proposed a communication-based process management 
application named DEMO. It is one of the most prominent applications built on the 
basis of the Language-Action-Perspective principle, in which business goals are 
reached by human communications [Kethers & Schoop 2000]. In DEMO, the basic 
modeling unit is a “speech act”, a minimal action of human in terms of 
communication (e.g., request, accept). The graphical representation is defined, but 
human tasks involved are not considered in DEMO models. 

[Swenson 2014] proposed Cognoscenti, a free open source experimental 
collaborative and adaptive platform for experiencing with case management. The 
main idea of this environment is to establish a Project Exchange Protocol for case 
management. This way, different systems (i.e., BPM systems and case management 
systems) are able to exchange information when they are integrated to work 
collaboratively. It offers a set of basic capabilities that case workers require for 
managing complex, unpredictable work such as tracking documents, exchanging 
notes, assigning roles. 

Collaboration is another key feature of case management, and these approaches 
we mentioned in this section put their focuses on this important factor. However, as 
modeling approaches ADoc, RAD and DEMO only have informal graphical 
representations given in the literature; their abstract syntaxes and how their models 
execute in reality are not given. The Cognoscenti project is an experimental 
framework providing a means to work collaboratively, but it is not meant to establish 
models when dealing with cases. Moreover, these communication models do not link 
to the case information, or the activity control flow. Therefore, the control on data and 
tasks is not possible to specify in such models. [Weigand 2005] criticized that such 
communication-based models should be considered as a complementary view when 
modeling processes, instead of being the primary construct. In addition, the details 
given in ADoc, RAD and DEMO models are generally not precise enough for 
knowledge workers to have a deeper view of their work. When it comes with larger 
scale business problems, the readability of these models lowers due to a large amount 
of arrows and icons. 

2.2.4 Hybrid Activity and Information Modeling 

Due to the unique features of case management, it is intuitive to view data as the 
first-class object when modeling cases. However, in order to automate knowledge 
work processes the control flow of activities is as important as the information flow: 



18 

 

on one hand, information drives certain tasks to execute by knowledge workers; on 
the other hand, tasks also yield information which should be evaluated by knowledge 
workers in order to make decisions. It makes sense to claim that information and 
activities function together to achieve business goals in case management. In recent 
years, many business vendors showed their interests in integrating an information 
flow into their business process products in order to support case management, such 
as [Aalst et al. 2005], [Wang & Kumar 2005], [Bhattacharya et al. 2007], 
[Vanderfeesten et al. 2009], [Man 2009b], [Künzle & Reichert 2011], [Ajay 2013], 
[Newgen 2013], [Pega 2013], and [Zhu et al. 2013]. A noticeable difference between 
their applications is that [Wang & Kumar 2005] and [Künzle & Reichert 2011] merge 
the control flow of activities together with the information flow in case models, and 
other approaches have the opposite solution: they separate information models from 
process models. 

[Aalst et al. 2005] proposed a process management modeling approach called 
Case Handling. It is a new modeling paradigm for process management towards 
flexible and knowledge-intensive business processes. Both information and processes 
are considered as the first-class factors in Case Handling and they are constructed 
using one uniform modeling paradigm. Metamodels are given to specify the key 
constructs used in modeling, at different layers. The system dynamics is defined by 
finite state transition diagrams combined with the Event Condition Action (ECA) 
rules. [Vanderfeesten et al. 2009] compared the two Case Handling systems: FLOWer 
and Activity Manager, and discussed to which extent these systems support a 
product-based workflow design from the aspects of flexibility and adaptability. They 
argued that the workflow design should be based on products, rather than activities. In 
such a workflow, each case is viewed as the “product” being manufactured, and the 
data elements are considered as “parts” assembled into the case when executing tasks. 

[Wang & Kumar 2005] proposed the concept of Document-driven Workflow, in 
which the system has no explicit control flow established. In their workflow 
framework, the control flow and information flow are mixed in one diagram: 
processes are defined as a set of business documents, activities, and connectors, and it 
is the receipt of a document that triggers the execution of related processes. This 
results in a flexible modeling framework for dealing with ad-hoc tasks since users 
only need to specify what information a task will receive or produce. 

[Bhattacharya et al. 2007] reviewed the Artifact-Centered Operational Modeling 
(ACOM) language, which is known as a language for modeling cases in an 
artifact-thinking manner. ACOM was targeted on the information artifacts flowing 
within the processes, and business operation models are constructed at different levels. 
It used the UML state machine technique to capture the behavior of business artifacts. 



19 

 

[Man 2009b] introduced their Cordys case management modeling product. New 
analysis techniques and different notations are adopted in this approach. The 
information model is constructed using case files with properties, and the behavior 
model is composed of activities and tasks (which is called activity cluster). The 
lifecycles of modeling elements are specified by using UML-based state machine with 
additional rules. It also offers the dynamic planning function so that knowledge 
workers can manage ad-hoc tasks at run-time. 

[Künzle & Reichert 2011] proposed PHILharmonicFlows, an object-aware 
process management framework in which processes and data are strongly merged 
together. They take both the object behavior and the object interactions into account. 
In addition, data is integrated with processes so that processes are executed in a 
data-driven manner. The lifecycle is given by finite state machine, and the processes 
are modeled at different levels of abstraction (i.e., Macro and Micro levels). 

[Ajay 2013] incorporated a case management add-on in their commercial Oracle 
BPM Suite. In addition to the control of structured business processes given in their 
original BPM product, this additional module offers a modeling capability for 
unpredictable workflows, especially on the flexibility perspective in aspects of case 
flows, user interfaces, work assignments, and enforcement of business policies. 
Information is organized in the content management system, and knowledge workers 
with specific roles can assess to the documents they need when necessary. Case 
activities and events models are also specified as the control flow in case models. The 
linkages between process models and the related information models are established 
as well. The capability of ad-hoc tasks management is enabled. 

[Newgen 2013] proposed their commercial case management product for helping 
organizations control the costs and risks associated with unstructured business 
processes. The tool is built on a BPM platform, and it mainly focuses on three 
application areas: investigation, service request, and incident management. It offers 
knowledge workers capabilities of modeling case information and case tasks, reusing 
existing case templates, and monitoring executing activities. The lifecycle of a case is 
informally given by graphs. 

[Pega 2013] offered Pega Dynamic Case Management, a commercial case 
management solution to automate knowledge work in order to improve the efficiency 
of systems in today’s fast-changing business environment. It combines together all the 
people and documents required in one place, and information can be delivered 
automatically to a right person. It is built for multiple channels (e.g., laptops, tablets, 
and smartphones) so that people can work with the system from different places. It is 
considered as one of the most powerful case management tools from the perspective 
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of design-time and runtime modeling supports it offers [Clair & Miers 2014]. 

[Zhu et al. 2013] developed their commercial case management tool named IBM 
Case Manager. It is built on top of the GSM formalism, and the information model is 
defined as a content management repository. The actions placed on the files (e.g., 
create a document, modify a report) within that repository will trigger events, where 
events are evaluated under various conditions in order to execute tasks defined within 
stages. 

Among all the products given in this section, [Wang & Kumar 2005] and [Künzle 
& Reichert 2011] mix the activities and information involved in one place. A possible 
drawback of this type of merge is that when it comes to complex business issues with 
a large amount of data-dependencies the process models will be too complicated to 
read. Other commercial case management products have a similar feature except the 
Cordys system mentioned in [Man 2009b]: the business vendors come with their BPM 
solutions with added flexible and dynamic functionalities and they claim that they 
offer suitable systems for case management. Each of them provides a means to model 
case information and case process. However, the concepts and the logical relations 
between key modeling constructs they defined are unique in their solutions, a 
common understanding and agreement is missing. In addition, the run-time altering of 
plans is only noticeable in [Man 2009b] and [Pega 2013], which is another core 
requirement when developing case management systems. From the modeling 
perspective, none of them is established on the basis of CMMN which specifies 
formal modeling syntaxes and semantics for case management modeling. However, 
they do have contributions for the development of CMMN since CMMN was the 
result of the collaborative efforts made by many organizations together. The concepts 
and techniques proposed in [Nigam & Caswell 2003], [Man 2009b], [Zhu et al. 2013], 
etc., can be found in the CMMN final report. In addition, the capabilities of 
static/dynamic model analysis, model improvement, model discovery, and enactment 
for case models are not presented in any of the published case management related 
literatures. 

2.2.5 Summary 

An overview and comparison of the literature review regarding the case 
management modeling approaches and systems considering which requirements they 
meet for modeling cases is presented in Table 2-1 below.
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2.3 Process Improvement Practice in Knowledge Work 

The ultimate goal of a case management process approach is to help organizations 
achieve their financial goal through improving their knowledge work operational 
performance. In [May 2005] [Staats & Upton 2011] and [Jones & Bell 2013], authors 
discussed how lean process improvement principles can be adopted in knowledge 
work theoretically. [Staats et al. 2011] proved the applicability of using lean theory in 
managing knowledge work processes by providing real-life evidence at an Indian 
software services company. More specifically, [Staats et al. 2011] suggested the 
following six principles regarding applying lean in knowledge work, which are 
borrowed from the classic lean theory: (1) waste should be identified and eliminated; 
(2) the work should be specified explicitly; (3) communications among workers 
should be established; (4) problems should be solved quickly and directly, with 
scientific methods; (5) managers and workers should realize that making their system 
lean is a long journey; and (6) a lean culture should be established through the whole 
organization. Similar suggestions were also given in [Staats et al. 2011] that are 
summarized from a real-world case study: problems should be identified in an early 
stage, and problems and solutions should be considered together. 

Process discovery is the core application aspect in process mining [Castellanos et 
al. 2009]. The primary objective of process discovery is to help business analysts 
extract, understand and improve their business processes from facts (i.e., real data 
recorded at run-time). It is a novel discipline proposed years ago. However, 
organizations have shown a great deal of interests in this topic due to its abilities of 
automatically constructing process models from raw data and helping analysts gain 
insight into process potential problems. Some work relating to process discovery has 
been done in the business domain, and major contributions have been made from the 
perspective of discovering, analyzing and enhancing business process models 
constructed by BPMN (Business Process Model and Notation, the de facto standard 
for modeling traditional structured business processes involved in routine work), in 
the process mining framework named ProM [Verbeek et al. 2009]. [Aalst et al. 2007] 
proposed their process discovery algorithms in the business context, and explained the 
application of their algorithms on a basis of a real-life case study in the Dutch 
National Public Works Department, from different point of view (i.e., process, 
organizational, and case). [Kalenkova et al. 2014] illustrated their tooling support in 
ProM with respect to BPMN process models discovery, analysis, and enhancement. 
The support of BPMN standard bridges the gap between formal process discovery 
model formalisms (e.g., petri net, process tree) and the standard business process 
modeling formalism (i.e., BPMN). The solution they adopted was to establish 
conversion mechanisms which allowed the transformation from various formal 
process discovery models to BPMN models. In [Weerdt et al. 2014], the “BPMN 
Miner” was presented as a ProM plug-in to allow a bi-dimensional discovery of 



24 

 

business process models. It provided the ability to represent discovered BPMN 
models from both the control-flow point of view and the organizational point of view. 
This way, improvement can be made from analyzing BPMN models from two 
different perspectives. Based on this, [Conforti et al. 2016] proposed their approach to 
automatically discover business process models in a hierarchical manner. In such 
mined BPMN models, interrupting and non-interrupting boundary events and activity 
markers are considered.  

However, by reviewing the literature we noticed that in terms of process 
improvement, all conclusions drawn above in [May 2005] [Staats & Upton 2011] 
[Staats et al. 2011] and [Jones & Bell 2013] are all abstract principles and suggestions: 
concrete approaches are missing. In other process improvement approaches such as 
Six Sigma, TOC and BPR, no discussions have been made in the domain of case 
management since people now are focusing on the standardization of general concepts 
and modeling notations of case management. Obviously, efforts will be put on case 
management process improvement very soon. However, currently case management 
lacks concrete solutions with respect to process improvement. On the other hand, in 
terms of process discovery we noticed that the contributions that have been made 
relate merely to structured business process (where BPMN is the de facto modeling 
standard). No noticeable “process discovery” contribution has been given in terms of 
unstructured business process (where CMMN is the de facto modeling standard). 

2.4 Conclusion 

We have presented in this chapter a literature review of the state of the art 
regarding case management modeling approaches and systems, and process 
improvement practices in case management. The case management modeling 
solutions were discussed under four categories: activity-based, information-based, 
communication-based, and hybrid activity and information based. We further 
summarized to which extent these approaches and systems support knowledge 
workers modeling processes and information involved in a case. 

We noticed that as modeling languages for case management, most of the 
approaches come with a graphical representation, but they lack a formal description 
for their abstract syntax and operational semantics. It is reasonable to consider both 
the process and information as the first-class citizens when modeling cases, due to 
case management features, and knowledge workers should be able to cooperate with 
each other, in a collaborative manner. However, most of the proposed modeling 
languages focus on only one aspect. 

We further observed that as commercial case management systems, most of them 
offer a case modeling language with syntaxes (both abstract and concrete) and 
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operational semantics defined. Moreover, they all consider that the information model 
is as crucial as the process model, even though the information-flow and the control 
flow are mixed together in [Wang & Kumar 2005] and [Künzle & Reichert 2011], and 
in other systems they have an explicit separation. However, the feature of 
collaboration is hardly noticeable in most of them, except in [Swenson 2014]. In 
addition, the empowerment of knowledge workers and run-time planning is another 
key requirement for case management supports, and can be found in only a few 
publications. None of the approaches were developed on the basis of CMMN. In 
terms of process simulation, process improvement and process discovery, not a lot of 
noticeable contributions can be found in the literature. Obviously, it is beneficial for 
knowledge workers and organizations with intensive knowledge work to have 
supports in all the aspects we mentioned above when conducting case management. 
This is what we try to provide in this thesis. 

In the next chapter, we will present in detail the theoretical and technological 
background of our proposal. More specifically, we will explain the concepts and 
techniques we adopted in developing our case management solutions, including 
CMMN, Elements of System Modeling language, the System Theory, HiLLS, Process 
Discovery, Process Improvement Approaches, Model transformation and supporting 
languages.
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3.1 Introduction 

In this chapter, we introduce the concepts and techniques we adopted in 
developing our case management framework. Essentially, the contributions of this 
thesis involve the management, analysis and improvement of case management 
processes, which relate to the transformation between different system modeling 
languages, as well as the usage of process management techniques in case 
management. This chapter presents all the concerning system modeling formalisms 
and process management techniques. In detail, we start with introducing the elements 
of modeling languages, followed by relevant system modeling formalism (CMMN in 
section 3.3, HiLLS in section 3.4 and process tree in section 3.6.1). Sections 3.5 and 
3.6 present the process management techniques that are considered as the basis for 
managing and improving processes. Section 3.7 presents the technique used to 
manipulate the translations between different modeling languages, i.e., model 
transformation. 

3.2 Definition of A Modeling Language 

A modeling language helps people build models of systems under study. Basically, 
a model is a representation of the reality with certain relevant aspects [Seidewitz 
2003]. The key reason of modeling systems is that, it is easier and less expensive to 
analyze the system of interest at the model layer (due to the fact that in reality it is 
usually too expensive, impractical, or even impossible to study the system of interest) 
[Maria 1997]. As given in Figure 3-1, a formal specification of a modeling language 
consists of an abstract syntax, one or a set of concrete syntaxes and semantic domains, 
the mappings between the abstract syntax and the concrete one(s) (each of which is 
denoted as MAC), as well as the mappings between the abstract syntax and the 
semantic domain(s) (each of which is denoted as MAS) [Kleppe 2008]. Generally, most 
languages specify only one concrete syntax and one semantic domain, as well as the 
mappings MAC and MAS. However, it is possible to have multiple definitions of them, 
each of which targets on one specific purpose. A general language specification can be 
expressed as a tuple, , such that: 

� A refers to the abstract syntax. 
� C refers to the concrete syntax. 
� MAC refers to the syntactic mapping from A to C. 
� S refers to the semantic domain of the language. 
� MAS refers to the semantic mapping from A to S. 
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Figure 3-1: The definition of a modeling language specification 
 

The abstract syntax of a language refers to a set of rules specifying the 
well-formed expressions of the abstract modeling constructs. It consists of the 
definition of modeling elements and the relations between them [Selic 2009]. In MDE, 
an abstract syntax of a modeling language is often specified by a metamodel: a model 
of a modeling language that defines the essential properties and features of modeling 
elements [Mellor 2004] [Clark et al. 2008]. Basically, a metamodel and an abstract 
syntax of a language have the same interpretation in MDE. A model is a 
representation of the system under study, and it always conforms to its metamodel. 

Unlike the abstract syntax, the concrete syntax of a language specifies the 
notations used to describe the entities and their relations defined in the abstract syntax. 
It is used to offer human-readable presentations of models [Selic 2009]. The 
presentation of modeling elements can be textual, graphical, or a mixture of both. 
Regardless of the type of model presentation, the information rendered by the model 
does not change [Seidewitz 2003]. 

A syntax mapping, denoted as MAC in Figure 3-1, assigns the concrete 
presentation of a modeling element with its definition defined in the abstract syntax. It 
bridges the abstract syntax with its concrete notations together, in an unambiguous 
manner. Therefore, when people see a symbol, for example, they will know what this 
symbol represents thanks to the syntax mapping. If a language has a group of concrete 
syntax defined for various purposes, a group of syntax mappings are required as well, 
each of which maps the abstract syntax to a concrete one. 
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The meaning of each modeling element is given by the semantics of the language. 
In particular, the operational semantics of a modeling language specifies the way the 
execution of models expressed in that language is carried on [Slonneger & Kurtz 
1995]. It formalizes how the behavior traces will be generated by the model, at 
execution time. Moreover, the meaning should originate from a well-defined and 
well-understood area [Harel & Rumpe 2004]. This is called a semantic domain. A 
semantic domain offers the context under which a model is interpreted. The semantic 
mapping, as denoted by MAS, specifies the relations between the modeling concepts 
defined in the abstract syntax and the semantic domain. Therefore, each notation of 
that language has an explicit meaning in a specific domain. For a multi-purpose 
system modeling language, as the one we adopted in this thesis, HiLLS, there are 
several semantic domains defined. Similar to the syntax mapping, each semantic 
domain requires a semantic mapping from the abstract syntax. 

3.3 Case Management Model and Notation 

In order to standardize case management process modeling practices, OMG 
released CMMN, a formal case management modeling specification in May 2014 
[OMG 2014]. CMMN incorporates the latest case management research contributions 
proposed by business analysts and vendors. Typical ones include the business artifact 
concept [Nigam & Caswell 2003], the case handling paradigm [Aalst et al. 2005], the 
GSM (Guard-Stage-Milestone) approach [Hull et al. 2010], the finite state machine 
concept, etc.  

In CMMN, the case file model is separated from the case plan model, where the 
former contains case information involved in resolving cases, and the latter depicts 
related activities to be done in order to achieve business goals. In addition, CMMN 
distinguishes the design-time modeling phase from the run-time modeling phase, 
where the latter is one key requirement in case management, as we have discussed. At 
the design-time modeling phase, an initial plan is established; while dynamic planning 
(e.g., adding ad-hoc tasks, modifying execution sequence of tasks) can be conducted 
at the run-time modeling phase. CMMN aims at providing case workers the ability to 
collaboratively manage and control their knowledge work in a flexible and adaptive 
manner. When modeling cases with CMMN, case workers are capable of constructing 
the main episode of the case on one hand. On the other hand, during execution with 
incoming information and gaining experience, they are able to alter the model to some 
extent [Grudzińska-Kuna 2013]. 

In the CMMN modeling standard, the abstract syntax (which defines a set of case 
management process modeling concepts and the relationships among them) is 
specified using metamodeling, and the concrete syntax (which defines the visible 
representations of the modeling elements) is defined by graphical notations. The finite 
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state machine concept is used to define the operational semantics of CMMN modeling 
elements. The completed definition of CMMN is written in [OMG 2014]. In this 
section, we briefly introduce the key modeling concepts and their relations as defined 
in the abstract syntax, their graphical notations, as well as their lifecycles defined as 
the operational semantics. 

3.3.1 Abstract Syntax 

We present an overview of the core concepts defined in the CMMN abstract 
syntax in this section, as summarized in Figure 3-2. 

 

Figure 3-2: The core of the CMMN metamodel 
 

The object Case is a top-level concept, in which all other elements constituting 
that Case are defined. Essentially, a Case contains a caseFileModel and a 
casePlanModel. The caseFileModel of a Case collects and records all information 
involved in solving a Case problem, and it is defined by a CaseFile object. A CaseFile 
object serves as an information container that consists of CaseFileItems, each of 
which represents a piece of information of any nature. The data structure of 
information ranges from a simple XML to a complex folder hierarchy structure. 
Information captured in CaseFileItems is used as a context for case workers to make 
decisions, e.g., raising events, evaluating conditions. 

The casePlanModel of a Case consists of elements used for both design-time 
planning and run-time planning. On one hand, it contains elements that represent the 
initial plan of the Case (i.e., these activities must be done during execution). On the 
other hand, it also consists of elements that support the further evolution of the initial 
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plan, at execution time (i.e., these activities will or will not be done at run-time, 
according to case workers decisions). Essential elements for modeling the case plan 
are Stage, Task, Milestone, UserEventListener, and TimerEventListener. 

� Stage: A Stage serves as a container grouping basic modeling elements. In 
particular, the outermost Stage defined within a Case model is considered as 
the casePlanModel of that Case. 

� Task: A Task represents a unitary piece of work. In addition, a Task can be 
further specified as a ProcessTask (which is used to invoke another process), 
a CaseTask (which is defined to trigger the creation of another Case), and the 
most common one, a HumanTask (which contains things to be done by case 
workers). 

� Milestone: A Milestone represents a business goal to be achieved. Different 
from Tasks, no concrete work is associated with Milestones; but they can be 
used to evaluate the progress of a Case. 

� UserEventListener: A UserEventListener is defined to capture events that 
are raised by case workers. Such events are capable of impacting the 
proceeding of a Case directly. Therefore, case workers are able to directly 
interact with a Case through UserEventListeners. 

� TimerEventListener: A TimerEventListener is used to catch a certain 
predefined elapse of time. 

The items used for constructing the initial plan of a Case are called PlanItems, 
each of which refers to one essential modeling element (which might be a Stage, a 
Task, a Milestone, a UserEventListener, or a TimerEventListener). The connections 
and dependencies between PlanItems are expressed by Sentries. Each Sentry is 
defined as a guarding condition to activate or terminate a PlanItem (the one defined to 
activate a PlanItem is called the entryCriteriaReference of that PlanItem, while the 
one defined to terminate a PlanItem is named as the exitCriteriaReference of that 
PlanItem). 

On the contrary, the items used for the further evolution of the initial plan of a 
Case at executing time are called DiscretionaryItems. Instances of DiscretionaryItems 
are planned and executed according to the discretion of case workers, and they are 
defined within the PlanningTables of Stages. Different from PlanItems, each 
DiscretionaryItem can only refer to either a Stage or a Task. Similar to PlanItems, 
dependencies and linkages between DiscretionaryItems are also specified using 
Sentries. 

Moreover, each essential modeling element is constrained by the property rules 
which are specified in PlanItemControl. Aspects of control include: 

� An element will be manually or automatically activated once its 
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entryCriteriaReferences are met. This is specified by the 
ManualActivationRule. 

� Whether an element is obliged to be completed or not before the containing 
Stage becomes completed. This is captured by the RequiredRule. 

� An element will be executed only once or many times. This is specified by 
the RepetitionRule. 

3.3.2 Concrete Syntax 

CMMN defines a set of notations used for depicting the essential modeling 
constructs. An overview of the concrete syntax of CMMN is summarized in Figure 
3-3. 

 

1: TEL refers to TimerEventListener. 
2: UEL refers to UserEventListener. 

Figure 3-3: An overview of the CMMN concrete syntax 
 

As we can see from this summary table, regarding the case information model 
CMMN only offers a graphical notation (a “Document” shape) for CaseFileItems 
involved in a Case. The case behavior model is totally captured in the outermost Stage 
(which is referred as the casePlanModel of the Case), which is depicted by a rectangle 
shape with a small rectangle attached to the upper left indicating the name of the Case. 
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All the planning elements should be defined with the casePlanModel. 

A Stage is depicted as a rectangle shape with angled corners. If that Stage is 
discretionary, i.e., there exists a DiscretionaryItem referring to this Stage, then that 
angled-corner rectangle shape is depicted by dashed lines, instead of solid one. A Task 
is depicted by a rectangle with rounded corners. Similarly, the notation for a 
discretionary Task is a rounded-corner rectangle shape with dashed lines. Only Stage 
and Task items can be referred by DiscretionaryItems. A simple half-rounded-end 
rectangle shape represents a Milestone. As to a TimerEventListener, it is depicted by a 
double-line circle inside which a “Clock” marker centers. If there is a “User” symbol 
marker centers inside the double-line circle, then it represents a UserEventListener. 
Dependencies between items are defined by Sentries. If a Sentry is specified as an 
entryCriteriaReference of an item, then it is depicted by a shallow “Diamond” shape. 
On the contrary, a Sentry is depicted by a solid “Diamond” shape if it is used as an 
exitCriteriaReference of an item. A dotted line is defined as the connector to establish 
the dependencies between certain elements. 

In addition, a set of behavior decorators are defined to make the CMMN notations 
more expressive. The AutoComplete decorator is depicted by a small black square. If 
the autoComplete attribute of a Stage (it can be either the outermost Stage 
representing the casePlanModel of a Case, or simply just a Stage element) is set to 
“true,” then that decorator is attached to the bottom of the Stage notation. The 
ManualActivation decorator is depicted by a small triangle. If the 
ManualActivationRule attribute of a Stage or a Task element evaluates to “true,”, then 
this decorator is added to the bottom of the element notation. The Required decorator 
is depicted by an “Exclamation” symbol, and it is added to the bottom of the element 
notion if the RequiredRule attribute of that item (Stage, Task, or Milestone) is set to 
“true.” The Repetition decorator is identical to the ASCII # shape, which is visible if 
the RepetitionRule of a Stage or a Task item is set to “true.” 

3.3.3 Operational Semantics 

The operational semantics of CMMN is given by the lifecycles of the essential 
modeling constructs and a set of their behavior property rules, where the lifecycles are 
defined using finite state machines. In particular, the majority of the operational 
semantics consists of the lifecycles of CaseFileItem, CasePlanModel, Stage, Task, 
Milestone, TimerEventListener, and UserEventListener, as summarized in Figure 3-4 
below. 
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Figure 3-4: An overview of the lifecycles of CMMN essential modeling elements 
 

The state machine with label “1” illustrates the lifecycle of a CaseFileItem 
instance. Basically, a CaseFileItem has only two states: Available and Discarded. A 
CaseFileItem in available indicates that the information represented by the 
CaseFileItem is available for case workers to use. If the piece of information is 
deleted and is not available any more, the corresponding CaseFileItem is in the 
discarded status. Events raised by case workers can influence the state transitions of a 
CaseFileItem instance, including create, addChild, removeChild, addReference, 
removeReference, update, and replace. 

The state machine labeled with number “2” defines the lifecycle of the outermost 
Stage instance used as the casePlanModel of a Case. In fact, it represents the possible 
transitions of a Case instance. Therefore, its lifecycle is different from other Stage 
instances. A Case can be in status of Active (which indicates that the Case instance is 
executing), Suspended (which indicates that the Case instance is temporarily 
suspended by case workers), Completed (which indicates that all the required work 
defined with the Case has been done), Terminated (which indicates that the Case 
instance is terminated by case workers), Failed (which indicates that there is an 
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exception or software failure), and Closed (which indicates that no action is allowed 
in the Case instance). A Case transitions from one state to another when an event is 
raised by case workers. 

A Stage and a Task share the same lifecycle, as the state machine with label “3.” 
In addition to the states (except the closed status) owned by a Case, a Stage or a Task 
instance has additional states including Available (which indicates that the 
entryCriteriaReference of that item is “false”), Enabled (which indicates that the item 
is waiting for case workers to active or disable it), and Disabled (which indicates that 
this instance will not be executed unless it transitions back to the Enabled state). All 
the transitions a Stage or a Task instance can undergo all illustrated in the figure 
above. 

The last state machine labeled with number “4” specifies the lifecycle of a 
Milestone instance, a TimerEventListener instance, or a UserEventListener instance. 
They can transition among states including Available, Suspended, Completed and 
Terminated, when triggered by events (including create, suspend, terminate, occur, 
and resume). 

3.3.4 Example 

In this sub-section, a simple CMMN case model example, which is constructed 
on the basis of the example illustrated in [OMG 2014], is given in Figure 3-5. The 
entire Case model is named Claims File Management, and it consists of the following 
elements: 

� One CaseFileItem (which is named as Request; each of which defines the 
information required for processing a Case instance). 

� Three Tasks (which are named as Identify Responsibilities, Create Claims 
Notification, and Create Claim, respectively; each of the Task element refers 
to a unitary piece of work to be done). 

� Two DiscretionaryTasks (which are called Change Responsibility and 
Request Missing Information; these DiscretionaryTasks are available and are 
ready to be executed at run-time). 

� Two Milestones (which are Responsibilities Identified and Base Information 
Attached; each of which defines an achievable target that is used to evaluate 
the progress of the Case instance). 

� One UserEventListener (which is named as Cancellation; it is defined to 
catch an event raised by case workers). 

� One TimerEventListener (which is named as Deadline; this element is used to 
capture a predefined elapse of time). 
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Figure 3-5: A CMMN case model 

 
Each element introduced above has its own lifecycle defined as the operational 

semantics. The dotted line connectors between elements are used to specify their 
dependencies. The elements that are depicted by diamond shapes are Sentries, in 
which an entry criterion is depicted by a shallow diamond shape, and an exit criterion 
is depicted by a solid diamond shape. The Sentry associated with the Milestone 
Responsibilities Identified indicates that this Milestone cannot be completed until the 
Task Identify Responsibilities is completed. Likewise, the Task Identify 
Responsibilities cannot be in active state unless the CaseFileItem Request is available. 
The exit criterion bonding the TimerEventListener Deadline and the whole Case 
Claims File Management implies that once the deadline defined by Deadline is 
reached (in this example, the deadline is 5 hours after initialization), the whole Case 
will be terminated, as well as all its containing elements. 

3.4 High-Level Language for System Specification 

HiLLS (High Level Language for Systems Specification) is a system modeling 
language for constructing multi-analysis system models. It is developed on the basis 
of DDML (DEVS-Driven Modeling Language), a DEVS-based graphical modeling 
language for domain experts to facilitate their use of DEVS for the purpose of 
building system models [Maiga et al. 2012] [Ighoroje et al. 2012]. HiLLS helps 
domain experts create models of Discrete-Event Systems (DESs) from various 
analysis perspectives, where different views of the systems are unified in one single 
HiLLS model. 
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Figure 3-6: An overview of HiLLS 
 

As a system modeling language, HiLLS can be formalized as 

, in which A is the abstract syntax, C is the concrete syntax, 

and MAC is the syntax mapping from A to C, as we have introduced above in section 
3.2. However, a special feature of HiLLS is that instead of having one single semantic 
domain defined, HiLLS specifies a family of semantic domains  and a set of 

corresponding semantic mappings , each of which maps A to Si (where 

). This way, HiLLS enables its multiple analysis capabilities including 
simulation, formal analysis, and system enactment. As detailed in Figure 3-6, HiLLS 
has a unified abstract syntax for specifying DESs models logically, where concepts 
borrowed from DEVS and Object-Z are integrated. This way, HiLLS offers a system 
behavior description in addition to the structural and logical system description given 
by Object-Z. Moreover, a concrete syntax is defined for graphically representing 
HiLLS models, which makes it easy for domain experts to learn, share and discuss 
modeled systems thanks to its high expressive power. The visual representations of 
HiLLS are inspired by UML class diagram, system control oriented transition 
diagrams, and Z schemas. Furthermore, HiLLS defines its various semantics domains 
for different purposes: adopting DEVS as its simulation semantics for system 
simulation, using Formal Method (FM) as its logical semantics for formal analysis 
and verification of system properties, and making use of UML as its enactment 
semantics for system enactment [Aliyu et al. 2015] [Maiga et al. 2015] [Maiga 2015]. 
In this section, we give a brief introduction to HiLLS. 
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3.4.1 Abstract Syntax 

The complete metamodel of HiLLS is formalized and given in [Maiga 2015], and 
we show it here to illustrate how HiLLS merges and integrates concepts from 
different domains to provide the ability of analyzing systems from various views. In 
particular, we focus mainly on the system-theoretic concepts in this sub-section. 

 

Figure 3-7: The HiLLS metamodel 
 

As we can see in Figure 3-7, from the system theory point of view, the concept of 
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HSystem is defined (classes with a green background). A HSystem instance refers to a 
HiLLS system describing a DES, and it interacts with others through its input and 
output ports which are named inputs and outputs, respectively. The behavior aspect of 
a HSystem is captured by a transition diagram specifying by Configurations and 
Transitions between them. A Configuration represents a finite or an infinite set of a 
system’s states which can be grouped together and be defined by the same predicate. 
In addition, each Configuration has a sojournTime associated, which indicates the 
maximum elapsed time for the system to be in any state of the Configuration. A 
Configuration is said to be transient if its sojournTime equals to zero 
( ). If a Configuration is associated with an infinite sojournTime, 
then it is a passive one ( ). Otherwise, a Configuration with a 
finite sojournTime is said to be finite ( ). 

A HSystem has at least one Configuration defined. Regarding 
ConfigurationTransition, a HSystem may contain zero or many if needed. If a 
transition occurs due to the expiration of the source Configuration’s sojournTime, then 
it is called an InternalTransition. If a transition is observed because of at least one 
input event is received before its sojournTime expires, then it is an ExternalTransition. 
However, if a HSystem receives at least one input event and its sojournTime expires at 
the same moment, then it is called a ConfluentTransition. Configurations and 
ConfigurationTransitions are defined together to specify the dynamic aspect of 
HSystems. 

In addition, a HSystem may contain components, each of which is also a HSystem 
instance. This composition relation is enabled by HComponentReference. If a 
HSystem has components defined, then the exchange of information is defined 
through couplings. Three types of couplings are defined: InputCouplings (which is 
defined to let the HSystem’s components receive external events), OutputCouplings 
(which is established to allow the HSystem’s components to send out events), and 
InternalCouplings (which are created to enable the communications, i.e., the 
exchanges of events, between components of a HSystem). 

From the perspective of logical reasoning, concepts (classes with a blank 
background) from Object-Z are preserved and reused, such as Predicate, Operation, 
StateSchema, Declaration, etc., which are adopted to specify Object-Z expressions 
and predicates used to define the static section of a HSystem. 

In addition, basic object-oriented concepts (classes with a red background) are 
borrowed, such as HClass (which is the equivalence of Class in UML), HAttribute 
(which is the equivalence of Attribute in UML), HReference (which is the equivalence 
of Reference in UML), etc., as well as the relations between entities such as 
composition, inheritance, and so on. This enables the capability of enactment of 
systems under study. 
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3.4.2 Concrete Syntax 

An overview of the HiLLS concrete syntax is given in Figure 3-8 below. 

c. Passive Configuration
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d. Finite Configuration e. Transient Configuration
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Figure 3-8: An overview of the HiLLS concrete syntax [Maiga 2015] 
 

A HClass instance is depicted by a UML class symbol: a rectangle box with three 
compartments. Similar to the UML class graphical notation, the name of the HClass 
instance is placed in the first compartment, and attributes and operations are specified 
in the second and third compartment, respectively. The attributes and operations are 
formalized using the state schema and axiomatic definition borrowed from Object-Z. 
The references between HClasses (inheritance, reference, composition, etc.) are 
denoted using the same graphical notations as in UML. 

The HSystem inherits from HClass, and its graphical notation extends that of 
HClass. In addition to the three compartments (each of which is reserved for name, 
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attributes and operations, respectively) like HClass, HSystem has a fourth one 
defining the system’s behavior through Configurations and ConfigurationTransitions. 
Moreover, each of the input and output ports are depicted by a small triangle shape, 
which is contained by a rectangle representing the input and output interface, 
respectively. Input and output interfaces are attached to the HSystem. 

A FiniteConfiguration is denoted by a rectangle shape with five compartments, 
each of which is reserved for its label (the name of the Configuration), properties (the 
predicates specifying the Configuration using Z schema), sojournTime, activities (the 
activities to perform), and sub-configurations, from top to bottom. Since a 
PassiveConfiguration has an infinite sojournTime, it does not require a compartment 
for representing its sojournTime. Therefore, a PassiveConfiguration is depicted by a 
four-compartment box (each of which is reserved for label, properties, activities, and 
sub-configurations) with a vertical stripe attached to the right side indicating its 
infinite lifespan. Different from these two types of configuration, the 
TransientConfiguration is depicted by a circle with three compartments, each of 
which is used for specifying label, properties and activities. Its round shape indicates 
its zero sojournTime. 

The transitions between configurations are represented by lines with arrows. In 
particular, the InternalTransition is depicted by a solid line with an arrow pointing to 
the target configuration, and outputEvents and computations are labeled as well, if 
there exists any. On the contrary, an ExternalTransition is a dashed line with an arrow 
pointing to the target configuration, and triggers and computations can be specified, 
instead of outputEvents and computations. A ConfluentTransition is depicted by a 
dotted-dashed line with an arrow pointing to the target configuration, and triggers, 
outputEvents and computations are labeled if there exists any. In cases that if the 
transitions depends on a guarding condition, then the expression of that condition is 
specified in a diamond shape. Basically, this diamond shape receives flow, and 
depends on its evaluation result (true or false) different target configuration is chosen. 

3.4.3 Semantics 

As given in Figure 3-6 HiLLS maps its abstract syntax to various semantic 
domains for different purposes: DEVS for the purpose of system simulation, Z for the 
purpose of formal analysis and verification of system properties, and UML for system 
enactment. A complete definition of the various mappings is given in [Maiga 2015], 
and we briefly introduce its semantic domain for system simulation, DEVS, as well as 
the system theory, in order to ease the understanding of the case study provided later 
in this these. 

Basically, in system theory a system is studied from the perspectives of system 
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structure and system behavior. As shown in Figure 3-9, system structure refers to a 
system’s states, state transitions, and the mappings between states and outputs; while 
system behavior refers to the relationship between a system’s input and output 
trajectories [Zeigler et al. 2000]. 

 

Figure 3-9: Basic system concepts 
 

When specifying the structure of a system, the concept of decomposition defines 
how it can be broken down into several meaningful sub-systems, as indicated by the 
arrow downwards (with a label “decomposition” inside). On the contrary, composition 
specifies how components (each of which exists as a system) can be grouped together 
to constitute a larger and more complex system, as illustrated by the arrow upwards 
(with a label “composition” inside). Moreover, the closure under coupling property 
ensures that a larger system (which consists of many sub-systems) is also a system. 

DEVS is the abbreviation for Discrete-EVent System Specification. It is 
developed on the basis of system theory principles, and it offers a mathematical 
formalism for modeling and analyzing DESs [Zeigler et al. 2000]. DEVS is originally 
known as Classic DEVS (CDEVS) which deals with sequential events, and later the 
Parallel DEVS (PDEVS) is proposed in [Chow & Zeigler 1994] with the ability to 
cope with parallel events introduced (we refer to PDEVS if DEVS is mentioned in the 
rest of this thesis). Before diving into DEVS formalism, we introduce the basic 
concepts regarding system theory which DEVS relies on. 

On the basis of system theory, DEVS defines both system structure and system 
behavior. A DEVS atomic model describes the structure and behavior of a single unit 
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of a DES through inputs and outputs, a set of states, transitions between states, etc. A 
DEVS atomic model can be mathematically defined as 

, such that 

�  is the input event set, where 
�  refers to the input port set 

�  is the output event set, where 
�  refers to the output port set 

�  is the state set 
�  is the internal transition function 
�  is the external transition function, where 

�  is the total state set 
�  refers to the time elapsed since last state transition 

�  is the confluent transition function (which solves the 

collision problem when the system is about to send out events and at the 
same time it receives external events) 

�  is the output function 
� ∞  is the time advance function 

A DEVS coupled model describes a complex model that consists of 
atomic/coupled DEVS models. The hierarchical structure of a DEVS coupled model 
is defined. Mathematically, a DEVS coupled model can be specified as 

, where 

�  and  have the same definitions as in the atomic model, respectively 
�  is the set of names of components that  consists of 
�  refers to a component model with a name ; 

� is the set of 

external input couplings (each of which is a coupling from an input of the 
coupled model to an input of its components) 

�  is the set 

of external output couplings (each of which is a coupling from the output of a 
component to an output of the coupled model) 

� is the set of 

internal couplings (each of which is a coupling from the output of a 
component to an input of another component) 
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In addition, simulation algorithms for DEVS models are defined so that any 
system formalized using DEVS can be simulated in a discrete time manner. Detailed 
simulation protocol is well defined and explained thoroughly in [Zeigler et al. 2000]. 
A non-exhaustive list of tools which enable DEVS M&S is maintained and updated in 
[Wainer 2013]. We make use of SimStudio, a platform-independent DEVS-based 
modeling and simulation environment (Traoré, 2008) (Touraille, Traoré, & Hill, 2011). 
SimStudio aims at conducting the practices of modeling, simulation, analysis and 
collaboration in a single unitary platform. It relies on the MDE approach, and it 
consists of various modules for different purposes (e.g., a Modeling module for 
constructing models, a Simulation module for running simulation, an Automation 
module for converting models from different formalisms into a unified DEVS 
representation, etc.). It is implemented as an extensible architecture, and additional 
modules which bring new functionalities can be integrated as plug-ins. 

A generic DEVS-based M&S framework defines both entities and relationships 
between entities required for conducting the M&S practices [Zeigler et al. 2000]. As 
given in Figure 3-10, the basic entities with a generic M&S framework include: 
source system, model, simulator, and experimental frame (EF). They are defined to 
help gain better understandings about M&S studies, and have a better communication 
and discussion between modeling and/or simulation experts. 

 
Figure 3-10: The DEVS-based M&S framework [Zeigler et al. 2000] 

 
The source system refers to the real or virtual system that users are interested in. 

It is the source for the observable data, which is stored by the behavior database 
(where data are gathered either from observing the real system or from conducting 
system simulation experiments). The model commonly refers to a set of instructions, 
rules, equations or constraints for generating output trajectories from input ones. 
Generally, a model is viewed as a virtual representation of the source system we are 
studying. Models help experts and analysts study and understand the structure and 
behavior of systems from various aspects. The simulator is capable of executing a 
model to generate its behavior in a dynamic manner. It basically can refer to any type 
of a computation system: a single processor, a processor network, etc. 
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Figure 3-11: General components of an experimental frame [Zeigler et al. 2000] 

 
The EF defines the conditions under which a system is experimented with. It is 

viewed as a system that interacts with the system of interest: it generates data that fed 
into the system of interest, and it collects and analyzes the results observed. Due to 
different research interests and objectives, one EF can apply to many models, and vice 
versa since models are separated from their contexts. In most cases, an EF consists of 
the following components, as shown in Figure 3-11: a generator (which generates 
input segments and feeds input segments into the system), an acceptor (which 
monitors simulation experiments to ensure that specific experimental conditions are 
met), and a transducer (which observes and analyzes output segments generated from 
the system). However, it is not mandatory to define all the three components when 
specifying an EF: one may need only a transducer in his own case. In other cases, an 
acceptor and/or a generator might be necessary. Users have their freedom to define 
necessary components they need. 

3.4.4 Example 

We give a taste of the HiLLS formalism through two simple examples presented 
below, where the first one is an atomic HiLLS model, and the second one is a coupled 
one. 
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Figure 3-12: An atomic HiLLS model 
 

As we can see in Figure 3-12 which contains a HiLLS atomic model: a HSystem 
named M corresponding to a DEVS atomic model. A HSystem is visually similar to a 
UML class diagram with additional features. It is a box consisting of four 
compartments, which are reserved respectively for name, attributes, operations and 
system behavior. Attributes and operations are specified using Z schema. It also has an 
input and an output Interfaces that contain Ports for receiving and sending events 
(which are named in and out). The system behavior is captured by a transition 
diagram, where nodes (A, B and C) are Configurations and edges are 
ConfigurationTransitions. Configurations are defined by predicates. For example, the 
properties of Configuration A is specified as , and for Configuration B it 
is . In addition, according to the shapes of each Configuration we can 
tell that A is a FiniteConfiguration with a finite sojournTime which is set to α. B is a 
TransientConfiguration with a zero lifespan and C is a PassiveConfiguration with an 
infinite sojournTime. When the system is in Configuration A, and the elapsed time 
reaches α, then an InternalTransition will be observed (the solid line from A to B): the 
system sends out an output y1 through Port named out (out!y1) first, and then 
transitions to Configuration B. Since B is a TransientConfiguration it will transition 
instantaneously: it sends out y2 through the same output Port (out!y2), and transitions 
to C through an InternalTransition (the solid line from B to C). However, if A 
receives an input event x1 through its input Port in (in?x) before its lifespan expires, 
an ExternalTransition occurs (the dotted line from A to C), and the system transitions 
to Configuration C. 
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Figure 3-13: A coupled HiLLS model 
 

Figure 3-13 gives another simple example which shows how HiLLS atomic 
models couple together to form a complex model, in which we omit other details for 
each atomic model (since we have introduced these above in the example of the 
HiLLS atomic model). In this example, the coupled HiLLS model is a HSystem 
named N with two unitary components: S and P, each of which is also a HSystem as 
well. We call S and P are the components of N, where the composition relation is 
specified in the same way as how the composition relation is defined in UML class 
diagram. Other entity relations can be used as well. As indicated in the metamodel, 
HSystems can interact with others through their ports, and couplings are established to 
enable such a kind of interaction. There are three types of couplings: InputCouplings 
(which are defined to let the system’s components receive external events), 
OutputCouplings (which are established to allow the system’s components to send out 
events), and InternalCouplings (which are created to enable the communications 
between components of the same system). In this example, the predicates specifying 
couplings are defined in the passive configuration of the HSystem N. More 
specifically, the predicate  defines the InputCoupling, 

 specifies the OutputCoupling, and  and  
define the InternalCouplings. 

One can informally see how HiLLS operational semantics can be obtained from 
DEVS. Regarding a DEVS atomic model, its state set is the set of all states of all 
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HiLLS Configurations. The DEVS input and output sets are those of the HiLLS 
model. The DEVS external (respectively internal) transition function is derived from 
the set of all transitions obtained from the dotted (respectively solid) lines of the 
HiLLS system behavior diagram. The DEVS time advance function is obtained from 
the sojournTime of the HiLLS Configurations. The DEVS output function is derived 
from the schemas carried by the internal ConfigurationTransitions of the HiLLS 
behavior diagram. In term of a coupled DEVS model, the external input coupling, 
external output coupling, and internal coupling are adapted from HiLLS 
InputCouplings, OutputCouplings, and InternalCouplings, respectively. A formal 
semantic mapping between DEVS and HiLLS is given in [Maiga 2015]. 

The DEVS model that can be derived from the HiLLS examples given in Figure 
3-14 and Figure 3-15 are the following, respectively: 

, such that 

�  
�  
�  
�  and  

�  

�  and  
� ,  and  

, such that 

�  
�  
�  
�  
�  
�  

3.5 Process Enhancement Approaches 

Under the continuous threat of competition, there is always a need for 
organizations to increase their business process operational performance in order to let 
them achieve their business goals more efficient, and stay competitive in business. 
Essentially, the reduction of cost, the elimination of waste, and the improvement of 
control (and information) flows result in more efficient processes, which eventually 
lead to achieve organizations’ financial goals. Therefore, organizations should 
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improve their products and services continually by means of enhancing their process 
performance in terms of efficiency, effectiveness, and flexibility [Clauberg & Thomas 
2013]. The large number of buzzwords like BPM (Business Process Management), 
BPI (Business Process Improvement), Process Analytics, Case Management, etc., 
shows the interest of organizations to monitor and analyze their business activities. 
Definitions of these process management approaches vary in publications, but in 
general all of them relate to one common ultimate goal: the improvement of process 
performance. We introduce the main process enhancement approaches in this section. 

3.5.1 Process Analytics 

Process analytics generally refers to a group of approaches and tools used to 
study information of events, in order to support the decision-making of business 
managers. Essentially, the results from process analytics offer an insight about the 
efficiency, effectiveness, and potential risks of processes to managers. From a 
performance point of view, process analytics helps managers react fast to events, and 
evaluate immediately the impact of decisions made. While from a compliance 
perspective, process analytics ensures that governing rules and regulations of 
processes are met [Muehlen & Shapiro 2010]. 

To provide actionable information to decision makers, a set of process metrics 
(e.g., Key Performance Indicator (KPI)) should be defined and used. Such process 
metrics measure and evaluate how processes proceed towards business goals 
[Peterson 2006]. Usually, they often use rates and percentages to show the 
process-related information, instead of using mere raw data. In order to obtain 
insightful information from process metrics, they should meet certain criteria such as 
accurate, little-cost to obtain, easy to understand, and actionable (actionable process 
metrics establish unambiguous relationships between metrics values and decisions). In 
most cases, the general process metrics relate to the time-stamp: e.g., the change-over 
time (which refers to the difference between the selection of a work and the actual 
staring of that work, and in terms of knowledge work it often refers to the mental 
adjustment of workers when they switch from one task to another), the suspending 
time (which measures how long time a process suspends), and the gross processing 
time (which refers to the time spent from the instantiation of a process to its final 
completion) [Muehlen & Shapiro 2010]. The comparisons between the same 
time-related metric obtained from different process instances provide a basic view to 
the process model. 

Basically, process analytics can be applied to study process information from 
three perspectives: understanding what has happened in the past (where the analysis 
focuses on the historical data collected from completed processes), monitoring what is 
going on at the moment (where process data recorded at the real time are studied), and 
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forecasting what will happen in the future (where both the historical and the real time 
process data are used to predict the future behavior). To ease and visualize the process 
data, as summarized in the table below (Table 3-1), data visualization tools are usually 
adopted when analyzing process information. 

In a nutshell, analyzing process information helps business managers gain insight 
into their processes, provides supports for their decision-makings, identifies hidden 
waste and bottlenecks, and yields potential opportunities for optimizing their 
processes. Currently, most of the BPM systems are implemented with a process 
analytics component to collect, analyze, and monitor process events data. Such 
applications focus on either examining completed business process information, (e.g., 
process controlling), or monitoring active business processes (e.g., business activity 
monitoring). 

3.5.2 Process Improvement 

In order to survive and thrive successfully in today’s constant changing 
environment, organizations realize that it is inevitable for them to adjust themselves to 
meet new requirements. One major thing is to improve the process performance so 
that they can be competitive. Process improvement is a systematic process 
management approach to help organizations archive remarkable changes and enhance 
their operational performance [Forster 2006]. Essentially, main reasons behind 
process improvement efforts include the needs for organizations to reduce cost, 
develop efficiency processes, and respond to regulations [Radnor 2010]. It covers 
tools and applications for improving process such as process analytics, process 
monitoring, etc. In general, all process-governing methodologies relate to 
continuously improvement, identification and elimination of waste or bottlenecks, and 
establishment of better process models. A basic scenario of process improvement is to 
establish an as-is model for the current process, analyze and explore potential 
beneficial changes, and construct a to-be model reflecting the changes, as given in 
Figure 3-14. 

 

 

 

 

 

 



51 

 

Table 3-1: Common data visualization tools 
Tool Description 

Bar Chart 

 

● A bar chart visually displays data in 
bars. 

● The height of the bars is used to 
represent the size or quantity 
measured. 

Pareto Chart 

 

● A Pareto chart represents data 
through the lengths of bars, in which 
bars are arranged in descending order 
from left to right. 

● It helps identify the problems that 
have the greatest impact. 

● It is based on the Pareto principle 
that 20% of the source causes 80% of 
a problem. 

Control Chart 

 

● A control chart is a statistical tool 
used to distinguish between 
common-cause and special-cause 
variations. 

● It helps determine which process is 
out of control. 

Histogram 

 

● A histogram summarizes data that 
has been collected over a period of 
time and presents its frequency 
distribution in bar form. 

● It helps reveal the centering, 
variation and shape of the collected 
data. 

 

Once organizations operational performance is improved, then they are able to 
produce products or provide services with high quality, low cost and on-time delivery 
(where Quality, Cost and Delivery (QCD) is regarded as the key for organizations to 
success), and their ultimate goal, making money, will follow. We explain the widely 
used process improvement approaches in the following, including Process 
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Reengineering, Lean, and Theory of Constraints (TOC). 

 

Figure 3-14: A general scenario for process improvement 
 

3.5.2.1 Process Reengineering 

[Hindle 2008] pointed out that process reengineering is an approach to rethink and 
redesign business processes to a radical extent. This approach results in a dramatic 
improvement in terms of cost, quality and service. In literature there are other 
organizational change approaches, but what makes process reengineering unique is 
that it focuses primarily on the business process [Kettinger et al. 1997]. Many 
companies reported that they had gained significant benefits from reengineering their 
processes [Cafasso 1993]. In manufacturing area process reengineering has been a 
successful approach. Some experts claimed that it is also an effective strategy for 
knowledge work [Davenport & Short 1990]. Consequently, process reengineering has 
arisen as a major solution for organizations to change and improve their processes. 

A generic framework for process reengineering efforts contains six phases 
[McDonald 2010]. As illustrated in Figure 3-15, it includes plan, analyze, re-design, 
acquire resources, implement, and continually improvement. Similar framework was 
also given in [Goksoy et al. 2012] with some additional steps. 

1. Plan 
Select an existing process to improve, where the targeted process contains 
transparent or potential problems. 

2. Analyze 
Construct the as-is model of the selected process, and examine it for 
problems. 

3. Re-design 
Explore and determine the changes to make in the to-be model of the targeted 
model, test the ideas and consider potential implications. 

4. Acquire resources 
Obtain the resources needed to make the changes. 
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5. Implement 
Put the process changes into practice. 

6. Continually improve 
Evaluate the effectiveness and efficiency of the to-be model, and make further 
changes in a continually manner. 

 
Figure 3-15: The framework for process reengineering 

 
During the last decades of years, similar buzzwords like process reengineering 

have been proposed, such as process restructuring, process redesign, etc. They all 
focus on making process changes in order to increase productivity, reduce cost, and 
improve product (or service) quality and customer satisfaction. The main difference 
among them is the degree of change: minor, medium, or radical [Cao et al. 2001]. For 
instance, process reengineering often brings radical process changes, while the degree 
of changes in process redesign is medium. The “changes” made for processes is the 
key factor to the success of process improvement. Therefore, the frequency of change 
often indicates the frequency of improvement, which determines whether a company 
is competitive or not. However, one major challenge is that in most cases, it is 
difficult or impossible to know the outcome of changes before putting them into 
practice when redesigning the process model and testing new ideas, as is shown in the 
framework in Figure 3-15. Evidence has shown that the failure rate of process 
changing projects is as high as 70% [Marjanovic 2000] [Cao et al. 2001]. A failed 
process reengineering practice is a waste of resources (time, money, materials, etc.), 
which organizations are not willing to pay. However, the payback for a success 
process reengineering project is so enormous so that organizations strive for 
improving their processes through this approach. 

 

Plan 

Analyze 

Re-design 

Acquire 
resources 

Implement 

Continually 
improvement 



54 

 

3.5.2.2 Lean 

Lean (also known as lean manufacturing) is a process management philosophy. It 
was mainly derived from the Toyota Production System (TPS) theory, and was named 
as lean since the 1990s [Holweg 2007]. Traditionally, lean is applied within 
manufacturing area, and it aims at identifying and eventually eliminating all sorts of 
waste in order to deliver products and services with high quality. It helps 
organizations make more money with less cost. To this end, several lean principles are 
established to help managers create a lean culture in their organizations. Major ones 
include waste elimination, Just-In-Time (JIT), and continuous improvement. As a 
process analysis and improvement approach, lean has been successfully implemented 
in numerous companies. 

Waste Elimination 

Essentially, lean reduces cost by adding value-added activities and eliminating all 
other non-value-added activities. Generally, the term "value" often refers to the 
benefits customers expect to gain from services or products. Therefore, it is the 
customers who define whether an activity (or a task) provides value to them or not. 
An activity is said to be a value-added activity (i.e., it adds value to customers) if it 
meets the following criteria [Sayer & Williams 2012]: 

1. The customers must be willing to pay for it. 
2. The activity must transform the product or service in some way. 
3. The activity must be done correctly the first time. 

Consequently, an activity that does not meet the criteria listed above is called a 
non-value-added one. From the customer's perspective, non-value-added activities are 
considered as wasted efforts in terms of time, resource, and so on. Non-value-added 
activities are further categorized into three types: irregularities, overdoing and waste 
(which are also known as mura, muri and muda in Japanese, respectively). 
Irregularity refers to the waste caused by the variation happened in quality, cost, and 
delivery. Understanding the nature of variation is one key point in Deming’s System 
of Profound Knowledge, a quality analysis philosophy for products and services 
[Deming 1986]. A smooth workflow will be interrupted by irregularity. 
Overburdening refers to the unnecessary or unreasonable demands placed on 
employees or the equipment. Too many demands will exceed the capacity of 
employees or the equipment, and it often leads to other problems such as out of 
service of machines. Waste refers to an activity that consumes resources, but does not 
create any value for customers. Taiichi Ohno (the creator of the TPS theory) defined 
seven basic types of waste that organizations should eliminate, including transport, 
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waiting, overproduction, defects, inventory, motion, and excess processing, as detailed 
in the following. 

1. Transportation 
The unnecessary movement of products or materials is waste since it requires 
spaces, causes inventory accumulation, etc. The fact is that no actual value is 
created or added to the final service or products during transportation. In 
knowledge work, it often refers to the needless movement of information, 
e.g., transferring information between different databases (and duplicated 
information recorded in different data repositories will cause the 
transportation of information). 

2. Waiting 
Waiting means idle time, and waiting in all forms is waste. It often refers to 
delays like waiting for instructions, approval, or work to arrive. For instance, 
a case worker waiting for information needed to start or finish his work is 
considered as waste. This may happen if a bottleneck exists in the upper 
stream of the workflow. 

3. Overproduction 
Producing more than customers required is waste since the excess products 
consume more raw materials, and require additional manpower before they 
are needed. Generally, managers try to fully utilize their machines and human 
resources, and this generally results in excess products. If case workers 
complete more work than required, the storage of the completed work will be 
so huge that the products or services may become obsolete since new 
information might be received. 

4. Defects 
A defect may refer to a reject, a design change or an item failing to meet 
specifications. Any item that is viewed as a defect is waste since it does not 
add any value to the product. Plus, it requires additional work (e.g., rework) 
to correct it, where such additional work is also considered as 
non-value-added activities. If the defect is discarded, then a great waste of 
resources and effort will be observed. Incorrect data or information 
commonly leads to defects in knowledge work. 

5. Inventory 
Stock of anything (including the final products, semi-final products, raw 
materials, etc.) anywhere is waste since it takes up space. In addition, it is 
under the risk of being damaged and obsolete. Moreover, excess items 
storing in the warehouse as inventory add no actual value to the production 
process. In knowledge work area, requests accumulated in the backlog can be 
considered as inventory. 

6. Motion 
Motion here refers to any movement of people that does not add value to the 
process. For instance, employees may move around to look for tools or 
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information due to poor layout or design of the workplace. Another typical 
example is that case workers are trying to find the key information for them 
to proceed with. 

7. Excess processing 
Excess processing, or extra processing, refers to putting more work or effort 
into the product or service than necessary. This often happens if employees 
lack well understanding of the requirements. For example, analyzing and 
categorizing information when only raw data is needed, or reformatting data 
when data is formatted already. 

Just-In-Time 

Traditional manufacturing produces products based on forecast: organizations 
predict the amount of products customers will require, and start to work before they 
receive orders. This way, final products will stay as inventory until customers place 
their orders. This type of manufacturing strategy is known as a push system. 
Organizations operating as push systems ensure that they will have sufficient products 
to meet customers’ demands. However, a large number of final products and 
Work-In-Processes (WIPs) will stay in the warehouse as inventories, which are 
considered as waste in lean. In addition, in most cases this kind of prediction is 
inaccurate since today’s business environment varies from time to time rapidly. 

On the contrary, the so called a JIT system (or a pull system) starts with customer 
orders. It is a manufacturing management philosophy aiming at producing the items 
demanded by customers just at the right time, with the required quality and quantity 
[AIDT 2006]. No products will be produced until an order is received from 
downstream. This way, no excess items (e.g., raw materials, WIPs, final products, etc.) 
are needed to be stored as inventory. Therefore, the level of inventory will be reduced, 
as well as the cost on storing and transporting them. Moreover, investment in working 
spaces will be lower, the lead time (which refers to the amount of time used from 
receiving an order to delivering to customers) will be shorter, and eventually the 
quality will be improved [Javadian Kootanaee et al. 2013]. 

To produce at a rate that meets customer orders, JIT focuses on bringing the cycle 
time to the takt time as close as possible. The cycle time refers to the amount of time 
used from the start to the end of a process, while the takt time refers to the rate (pace) 
of customer demand. The ideal situation is to produce one product, then to deliver one, 
and no inventory exists. This is one of the goals JIT strives to achieve. In addition, 
kanban cards are used to indicate the need for materials, where a kanban card refers to 
a visual indicator or symbol that contains order information from downstream to 
upstream. Moreover, the continuous flow principle is adopted when establishing 
working procedures, where continuous flow refers to a system in which work units are 
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moved through operations from step-to-step with no WIPs and delays in between. To 
this end, the workplace is often organized into a U-shape cell (work cells are arranged 
in a U shape). All necessary equipment will be rearranged in order to ensure the 
efficiency and effectiveness of employees. 

Continuous Improvement 

Continuous improvement, also known as Kaizen, refers to the efforts to improve 
products, services, or processes in a continuous manner. It is a constant improvement 
practice, and it involves everyone in the organization, from top managers to 
employees. Continuous improvement focuses on small and subtle improvement, and 
dramatic changes can be observed over time. 

In reality, waste elimination is the core ground rule for continuous improvement. 
Moreover, the actual improvement practice often involves the adoption of different 
tools. A major one is the PDCA (Plan-Do-Check-Act) cycle, as is given in Figure 3-16: 
an iterative four-step management methodology used to maintain and improve system 
performance, which is very similar to the process reengineering framework showing 
in Figure 3-16. 

 
Figure 3-16: The PDCA cycle 

 
Plan refers to establish an effective solution to one or more problems within a 

process of interest, and determine the target for the improvement practice. Do refers to 
implement the plan established on a small scale, i.e., put the initiatives into practice 
experimentally. While Check refers to monitor the value of performance metrics and 
evaluate the result of the changes. If the expected enhancement of system 
performance is not shown, managers need to go back to the first step (i.e., Plan) to 
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modify the original proposals. Once they obtain their expected results, they will 
performance the Act procedure: to standardize and perform all the changes. At this 
point, a performance-improved system is established. Managers will then target on 
other problems, and solve them by following more the PDCA cycles. Once the system 
performance is maintained at a certain level, carrying out another PDCA cycle will 
bring the system performance to a higher level, and the standard established from the 
previous round will stop the performance from moving down. Each PDCA cycle will 
solve one single small issue; and major jump in terms of performance will show over 
time, after several rounds of PDCA project. 

3.5.2.3 Theory of Constraints 

The Theory of Constraints (TOC) is a system management philosophy originally 
proposed by Eli Goldratt in his book “The Goal” [Goldratt et al. 1992]. It aims at 
improving system performance by identifying and eliminating constraints (which are 
also called bottlenecks), where a constraint refers to the resource (a machine, or an 
employee) whose capacity is equal or less than the demand. On the contrary, a 
non-constraint refers to the resource whose capacity is greater than the demand. By 
now, TOC has been applied to various domains, such as aerospace, automotive, health 
care, and manufacturing. The companies involved are the world’s most renowned 
ones, including Boeing, General Motors, Intel, and so on [ACCA 2011]. 

TOC is developed on the basis of the fact that any system can be seen as a chain, 
where its activities (or processes) are linked and connected together as a whole. The 
entire system's performance will be determined by its weakest link, i.e., the constraint. 
Therefore, in order to improve the system’s performance organizations need to make 
the full usage of constraints. However, it is not the same case with regard to 
non-constraints: if non-constraint resources work at their full capacity, then they will 
produce extra items to downstream, if a constraint exists in the downstream who 
cannot consume what it receives from upstream. Additional WIPs and semi-final 
products will be observed (i.e., the inventory will increase). Moreover, running every 
machine at 100% can increase the operational expense for both machines and 
employees since machines lose lifetime hours and employees consume energy and 
will become exhausted very quickly. Therefore, due to such inter-dependencies and 
variations existed between activities (or processes) a system's optimum performance 
will not simply equal to the sum of all the local optima. To improve performance, the 
system should be considered as a whole instead of a group of isolated individual, and 
constraints should be well governed since they limit the actual performance of 
systems [Goldratt et al. 1992]. To this end, Eli Goldratt proposed the five focusing 
steps approach, which targets on identifying and optimizing constraints. 
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1. Identify the system’s constraints. 
Constraints are not always obvious. However, two measurements can be used 
here to help identify them: the amount of work items waiting in the queue, 
and the idle time employees from subsequent step spend in waiting for work 
items. In addition, managers should decide which constraint is the most 
important one once they have identified all possible candidates. 

2. Decide how to exploit the system’s constraints. 
This step involves making the constraint resource to be used as much as 
possible (from the perspective of utilization), and to produce work items as 
many as possible (from the perspective of productivity). 

3. Adjust everything else to the decisions made in Step 2. 
At this step the constraint works at its maximum capacity. To pace with the 
constraint in an efficient manner, all other resources should adjust their 
working speed. The key principle is to let all resources work in a rhythm so 
that the work load of the constraint incoming work load reduces, and 
simultaneously all other employees do not have plant of waiting time. 

4. Elevate the system’s constraints. 
If with the improved constraint the requirements still cannot be met, then the 
constraint should be elevated. It means that larger scale changes regarding 
the whole process are required through approaches such as process 
restructuring, resource reallocation, etc. Since the plan of changes may 
increase the inventory and operational expense, managers should analyze the 
changes well enough before putting them into practice. 

5. If a new constraint is broken in Step 4, go back to Step 1, but do not let 
inertia become the system’s new bottleneck. 
Once the constraint is elevated, another constraint might appear to catch 
attention. Managers should strive for looking for and removing constraints 
by following these steps continuously. 

Throughput Accounting 

In contrast with traditional cost accounting method, Goldratt also proposed the 
Throughput Accounting (TA) methodology that is used to monitor, manage and 
analyze organizations operational performance. Traditional cost accounting method 
focuses on making profit through reducing and cutting cost. It views the 
profit-increased equals to the cost-saved, where the total cost is the summation of the 
cost of each component, and its goal is to lower each component’s cost by maximizing 
the usage of each (i.e., the local optimum). However, TA is a management accounting 
methodology that takes the system’s constraints into consideration, and it seeks to 
achieve balance all components in order to achieve the whole system’s optimum. It 
emphasizes on improving the operational performance and maximizing profits by 
increasing throughput, while reducing investment and operating expenses 
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simultaneously [Goldratt et al. 1992]. 

From the perspective of TOC, throughput refers to the rate at which the entire 
system generates money through sales. In most cases, it is used to refer to the added 
value through sales, , where variable 
cost refers to the costs that change along with the volume of production such as direct 
materials, production supplies, and so on [Garrison et al. 2003]. To increase 
throughput, it is necessary to well manage the usage of constraints. This way, the 
amount of items delivered will be increased, and this will result in the increase of total 
sales supposed that the unit price stays. Investment often refers to the money tied up in 
the system. Basically, it includes the investment the organization has made (tools, 
capital equipment, furnishings, etc.), as well as the physical inventory (WIPs, finished 
products, etc.). In order to decrease investment, organizations should primarily reduce 
their inventory level. They could also seek to reduce the investment they have made 
for their business, but in most cases the reduction of things like tools or capital 
equipment will lead to other potential problems such as low productivity (due to the 
fact that employees have plenty of idle time in waiting as they do not have the tools 
they need). Operating expenses refer to the money organizations spend in turning 
investment into throughput. Expenditures such as salaries of employees, bills of 
supplies are all considered as operating expenses of organizations, and they should be 
reduced as well in order to make profits. 

These three measurements mentioned in TA are adopted to support the decision 
making of business managers in the tactical management level. Compared with 
traditional cost accounting measurements, they provide more valuable and actionable 
information. Managers are able to identify where the problem hides within their 
systems. In addition, they also could know which aspect they should pay more 
attention to. In addition, on the basis of TA measures, financial performance measures 
(which are at the strategic management level) such as net profit and return on 
investment (ROI) can be directly obtained, where the former indicates the actual profit 
organizations have made (where 

), and the latter evaluates the efficiency of an investment (where 

). We could see that in order to increase net profit, 

throughput should be increased, and operating expenses should be decreased 
simultaneously. To make an investment to be more efficient, investment should be 
decreased as well. Moreover, the efficiency of employees can also be measured on the 

basis of TA using productivity,  , and the increase 

of throughput and the decrease of operating expenses will results in a high efficiency 
of employees [IMA 1999]. A summary of the performance metrics is given in the table 
below. 
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Table 3-2: The summary of performance metrics 
 Name Formula 

Ta
ct

ic
al

 
Le

ve
l 

throughput  
investment the investment the organization has made 
operating expense the money organizations spend in turning investment 

into throughput 

St
ra

te
gi

c 
Le

ve
l net profit  

ROI 
 

productivity 
 

3.5.2.4 Simulation in Process Improvement 

As we introduced above, regardless of which process improvement approach 
organizations adopt, the major factor is to construct a new model of the process (i.e., a 
to-be model) through redesigning the existing model (i.e., the as-is model) with 
incremental or even large scale changes proposed. However, managers are challenged 
with the question of whether or not putting the proposed changes into practice. The 
fact is that, it is difficult for organizations to make decisions if they do not have 
sufficient supporting data. Their hesitations arise from the uncertainty of obtaining a 
positive result [Clauberg & Thomas 2013]. A common question for them to answer is: 
how can we be confident to claim that the to-be model with modifications will be 
better that the as-is one?  

Simulation of business processes is considered as a cost-effective means to 
predict the potential impacts of changes proposed. In addition, process simulation also 
helps examine and compare all proposed improvement alternatives without actually 
change the exiting processes. Moreover, through simulating processes potential 
bottlenecks can be discovered, and waste can be easily identified as well, in both the 
as-is and to-be situations. The simulation results can be considered as a quantitative 
data support when comparing potential process improvement scenarios. This way, 
managers can confidently choose an improvement proposal among others since they 
ensure that the to-be model will be better than the current one on the basis of the 
simulation results. Simulation offers business analysts a way to test and verify 
suggested process improvement changes [Hlupic 2003]. 

To ensure the quality of process simulation results, the process models should be 
established correctly and accurately. Otherwise, inaccurate process models lead to 
inaccurate simulation results, which further offer unreliable and un-meaningful data 
supports to managers when making decisions. Many vendors have implemented a 
simulation module in their process management applications, such as [Nissen & 
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Levitt 2002] [Hlupic 2003] [Barnett 2003] [April et al. 2006] [Peinl & Maier 2011] 
[Rust 2011] [Clauberg & Thomas 2013]. However, for unstructured processes with 
case management little contribute is found in the literature. 

3.6 Process Discovery 

As we have mentioned, a process model specifies how the activities involved in 
that process will be performed at run-time, and it is generally a preferred starting point 
for further process monitoring and analytics. However, establishing process models 
manually is a difficult and sometimes even error-prone task for both business analysts 
and modeling experts. Especially when there are many activities involved and their 
dependencies are complicated and unobvious. Moreover, IT-based solutions are 
widely used in organizations in recent years, in order to govern and control their 
business processes [Yan et al. 2017]. Relevant process information is recorded in their 
information systems (e.g., the Workflow Management Systems), instead of in paper 
files. Such information systems record historical business event data in the so called 
event logs. An event log basically records the process information in terms of the start 
and end time of each activity. In some situations additional process-relevant data may 
be recorded as well, such as the resources that are executing the activities, the cost of 
performing each activity, and so on. 

The data collected in event logs constitute the basis for process discovery. Process 
discovery is a process approach that uses the event logs as its starting point and aims 
at exploring and constructing business process models by merely analyzing raw data 
stored in event logs [Castellanos et al. 2009]. Process discovery extracts insight 
knowledge from them. Moreover, it helps construct process models on the basis of the 
historical data. In situations where organizations have their business processes without 
formal (or even informal) process models, process discovery is considered as a 
dominant approach since with this technique managers are able to explore and obtain 
process models on the basis of the historical records automatically, instead of 
constructing process models manually from scratch. Process discovery translates raw 
process data into process information with which organizations are able to gain deep 
insight into their business processes. In addition, organizations can acquire additional 
supports to decision-making if they adopt process discovery with other process 
management approaches (e.g., process analytics, process improvement). 

Process discovery techniques ease the process modeling practices. Over the past 
years, researchers have developed many mature process discovery algorithms, each of 
which guarantees one or many quality characteristics of discovered process models 
(which are replay fitness, simplicity, generalization, and precision) [Leemans et al. 
2013]. Major categories are deterministic mining algorithms (which produce 
well-defined and reproducible models), heuristic mining algorithms (which 
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incorporate frequencies of events when constructing models), and genetic mining 
algorithms (which describe the evolution of processes). A detailed introduction 
regarding process discovery algorithms with the discussion about their advantages and 
disadvantages can be found in [Leemans et al. 2013]. In addition, a bunch of 
commercial/non-commercial tools are developed as well, such as Disco, ProcessGold, 
and ProM. ProM is the most widely used one among others. It is a java implemented 
extensible (through plugins) framework that supports various process mining 
techniques [Verbeek et al. 2009]. Many ProM plugins have been implemented for 
different purposes. Thanks to the various algorithms provided with those plugins, 
sound and robust process models can be established through studying the knowledge 
hidden in the process execution logs. In this thesis, we select to use the Inductive 
Miner process discovery plug-in due to the fact that algorithm implemented in the 
plug-in guarantees to generate sound (i.e., free of deadlocks) and fitting (i.e., all the 
traces recorded in given event logs can be replayed) process models [Leemans et al. 
2013], where the models are constructed using the process tree formalism. 

3.6.1 Process Tree 

Process tree is a formal modeling formalism for describing models obtained from 
process discovery. It depicts block-structured processes using tree notations. A 
detailed introduction to the process tree formalism with respect to its syntaxes and 
semantics is given in [Buijs 2014]. In this section, we give a taste of the process tree 
formalism through introducing its syntax and semantics summarized from [Buijs 
2014]. In addition, a simple process tree model example is given and explained later. 

The metamodel of process tree describing its abstract syntax is given in Figure 
3-17. 
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Figure 3-17: The metamodel of process tree 

 
Generally, a process tree model consists of Nodes and Edges, where Nodes are 

further categorized into Tasks, Events, and Operators. Tasks refer to unitary activities 
to be done by employees, where a manual Task is done manually, and an automatic 
Task is completed automatically. An Event refers to either a time out event occurred, 
or a piece of message received. Operators describe the causal relationship between 
the Nodes it contains. In detail, there are five relationships among Nodes: AND, OR, 
XOR, SEQ, and LOOP, which will be explained later. Edges are defined to depict the 
hierarchical relationship between Nodes [Schunselaar et al. 2014]. 

Basically, in terms of the concrete syntax, a Task or an Event is represented by 
their names. The graphical notations for Operators are as follows: SEQ (→), XOR ( ), 
AND ( ), OR ( ) and LOOP ( ). Each Edge linking two Nodes is a solid line. The 
operational semantics of process tree models is defined by the execution sequence of 
Nodes contained by Operators, as is given in Table 3-3 below (in which we use 
Trace(Node) to represent all possible traces of a particular Node). 

Figure 3-18 shows a process tree model as an example. It consists of eight Nodes 
(which are Tasks a, b, c, d, and e, and Operators: SEQ (→), AND ( ), and XOR ( )) 
and seven Edges connecting Nodes. 
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Table 3-3: The semantics of process tree 
 

 

● Alternatively, it can be written as . 
● A sequence operator (SEQ) specifies that all its children will 

be executed sequentially from left to right at run-time (i.e., 
one child can be executed only if its previous one is 
completed). 

●  

 

● Alternatively, it can be written as . 
● An AND operator indicates that there is no specific order for 

executing its children. 
●  

 

● Alternatively, it can be written as . 
● An OR operator specifies that at least one of its children will 

be executed at run-time. 
●  

 

● Alternatively, it can be written as . 
● An XOR operator specifies that ONLY one of its children will 

be executed at run-time. 
●  

 

● Alternatively, it can be written as . 
● A LOOP operator always has three children defined: a do 

part (a), a redo part (b), and an exit part (c). 
● A LOOP operator indicates that after the first execution of a 

task (the do part), a condition will be evaluated which 
decides whether the redo part will be executed (which will 
trigger the do part) or the exit part will be executed. 

●  
 

Alternatively, this model can be expressed as , such that 

� : The AND operator indicates that there is no 
specific order for executing Task a and Task b. 

� : The XOR operator specifies that either Task d 
or Task e will be executed. 

� 
: The SEQ operator specifies 

that all its children will be executed sequentially from left to right at run-time 
(i.e., one child can be executed only if its previous one is completed). 
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Figure 3-18: A simple process tree model 

 

3.7 Model Transformation 

In MDE, models play a key role throughout the whole system development 
lifecycle. Models represent the systems of interest in an abstract manner: they capture 
the information regarding different system development steps, such as system design, 
implementation, analysis, optimization, etc. In addition, models depict systems from 
different perspectives for various purposes, at different levels of abstraction [Biehl 
2010]. Models help organizations gain a better understanding of the systems of 
interest [Hassan et al. 2016]. 

In the context of MDE, model transformation is defined as the “automatic 
generation of a target model from a source model, according to a transformation 
description,” [Kleppe et al. 2003] in which the source and target models describe the 
same system. In some cases, the input of a model transformation can be more than one 
source model, and the output can be more than one target model as well. In other 
words, model transformation takes one or more source models as its input, and 
automatically generate one or more target models, according to the transformation 
rules specified [Mens et al. 2006]. Model transformation offers a mechanism for the 
reuse of system information captured. On the basis of this point, various practices in 
MDE (such as model creation, modification, refinement, and so on) can be done 
automatically. Generally, model transformation is applied to convert platform 
independent models (PIM) to platform specific models (PSM) in MDA, where PIM 
refers to models that are independent from the technical space in terms of 
implementation, and PSM are models that require specific technological tool or 
platform to implement. 

As shown in Figure 3-19, the basic components for a model transformation are a 
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source model, a target model, and a transformation engine used to executing a set of 
transformation rules. The source model refers to the model to be converted, while the 
target model refers to the model generated (as the output) through the transformation. 
Both the source and target models conform to their own metamodels, respectively 
(e.g., as given in Figure 3-19 the source model A conforms to its metamodel MMA, 
and the target model conforms to its metamodel MMB). Each transformation rule 
specifies how an element of the source model will be converted into an element of the 
target model. The transformation engine will interpret and then execute all the 
transformation rules. For each element in the source model, it generates the element of 
the target model by following the transformation rules. The well-defined languages 
used to implement transformation rules are called model transformation languages. 

 

Figure 3-19: Basic components of a model transformation 
 

The metamodel of the source model might or might not be the same as of the 
target one. If the source and the target models share the same metamodel, then this 
type of model transformation is called endogenous. Typical examples of endogenous 
transformations are model optimization (which transforms models in order to improve 
the quality of models), model refactoring (which changes the internal structure of 
systems), etc. Otherwise, models involved in exogenous transformations are specified 
using different languages, such as model synthesis (which converts a more abstract 
model to a more concrete one), model migration (in which models are at the same 
abstraction level). In addition, the level of abstraction of the source and the target 
models might change in model transformation, where the level of abstraction 
measures the amount of information captured in models. If the target model brings 
more (or less) information than the source model, then it is a vertical model 
transformation. On the contrary, a horizontal model transformation only changes the 
representation of models, and keeps the same amount of details. 

Generally, a system can be described as diagram-based models (e.g., using UML 
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classes), or text-based models (e.g., using Java, C++). With respect to the type of 
target models, a model transformation can be classified as Model-To-Model (M2M) or 
Model-To-Text (M2T). Diagram-based models can be obtained in M2M 
transformations, and text-based models such as system implementation codes can be 
generated in M2T transformations. Essential purposes of model transformation 
include the following aspects, and a non-exhaustive list of model transformation 
intents and their properties is completely summarized in [Lúcio et al. 2016]. 

● Refinement, which aims at producing models with more precise details. 
● Abstraction, which aims at generating simplified models with specific 

information. 
● Semantic Definition, which aims at specifying the semantics of languages. 
● Language Translation, which translates one modeling language to another. 
● Constraint Satisfaction, which outputs models satisfying certain conditions. 
● Analysis, which implements various algorithms for analyzing different 

aspects of models. 
● Editing, which aims at manipulating models. 
● Model Visualization, which aims at visually projecting the behavior or render 

the concrete representation of models. 
● Model Composition, which aims at merging isolated models into one. 

To enable model transformations, different techniques have been developed over 
years. Essentially, transformation rules can be specified as declarative, imperative, 
and hybrid. We introduce these different approaches in this sub-section, and present 
some model transformation languages we adopted in this these. More information 
regarding model transformation paradigms and languages can be found in [Huber 
2008] [Dehayni et al. 2009] [Ferhat et al. 2015]. 

3.7.1 Declarative Approach 

When defining transformation rules using the declarative approach, it is necessary 
to specify clearly the relationship between concepts in the source and target 
metamodels, respectively. In other words, declarative approach focuses on what 
should be converted into what. In this context, the transformation rules are often 
defined as mappings between elements from the source and target metamodels: each 
element defined in the source metamodel should be mapped onto a given element in 
the target metamodel. Examples of declarative model transformation languages 
include QVT (Query/View/Transformation) Core (a model transformation language 
that supports low-level model transformations, where QVT is the standard of model 
transformations defined by OMG), QVT Relational (a QVT Core based, high-level 
declarative model transformation language that supports bidirectional 
transformations), ModelMorf (a declarative M2M transformation language that 
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designed as a response to the QVT standard), and so on. Generally, adopting the 
declarative approach makes the mappings straightforward, concise and easy to 
understand [Biehl 2010]. 

Graph transformation is considered as a sub-category of the declarative approach. 
It has a theoretical foundation, it is built on top of algebraic graph grammars, and it is 
often used in formal approaches and proofs [Biehl 2010]. The graph transformation 
treats models as graphs, so that the whole model transformation is a process of 
manipulating (e.g., matching, replacing, etc.) sub-graphs [Dehayni et al. 2009]. In 
graph transformation, the left-hand side (LHS) graph will be found first, and then it 
will be replaced by the right-hand side (RHS) graph, where the former and the latter 
are the sub-graphs of the source and target graphs, respectively. AToM3 (A Tool for 
Multi-Formalism and Meta-Modeling) is a well-known application for designing 
visual system modeling languages. In AToM3, model transformation rules are 
expressed using graphs [De Lara & Vangheluwe 2002]. 

3.7.2 Imperative Approach 

Instead of centering on what should be transformed during model transformation, 
the imperative approach emphasizes on the how perspective: it specifies an explicit 
control flow to manage how a source model will be converted. To this end, constructs 
used in general programming languages (e.g., Java, C++) are adopted in the 
imperative approach, such as the for loop statement, the if statement, etc. This 
provides a high level of control for users to explicitly specify how a target model will 
be generated step by step. Compared with the declarative approach, using the 
imperative approach will result in more complex but also more powerful 
transformation rules. QVT Operational (an imperative model transformation language 
that is built on the base of QVT Relational) is a typical example of model 
transformation languages that define transformation rules in an imperative manner 
[Kurtev 2007]. 

3.7.3 Hybrid Approach 

As indicated by its name, the hybrid approach offers both the declarative and the 
imperative constructs for defining transformation rules. Users decide to choose the 
hybrid approach to specify transformation rules mostly because of the flexibility it 
offers: users are able to select different types of constructs when encountering 
different problems. 
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Figure 3-20: A fragment of ATL transformation rules 
 

ATL (ATLAS Transformation Language) is a well-known hybrid M2M 
transformation language developed on the basis of the QVT standard. Originally, it 
was developed as a component of the ATLAS Model Management Architecture 
platform [Bézivin et al. 2005]. ATL provides both declarative and imperative 
constructs to specify transformation rules [Jouault et al. 2008]. The declarative-style 
construct consists of two parts showing what transforms into what: the left-hand side 
accesses the source model, and the right-hand side generates the target one. The 
imperative-style rules with a sequence of actions illustrate how the transformation 
should be executed in cases of solving complex transformation problems. Source 
models in ATL transformation are read-only, and target models are write-only. 
Basically, an ATL transformation consists of a module (and maybe more modules if 
the problem is more complex), which is composed of a header section, and a set of 
helpers and transformation rules, as is given in Figure 3-20. The header section 
contains basic information for the transformation, such as the name of the 
transformation, the declaration of the source and the target models. A helper construct 
can be either an operation or an attribute helper, where the former navigates over the 
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source model(s), and the latter decorates information of the source model(s). 
Transformation rules are the main building blocks in ATL, and they are classified into 
two categories: matched rules, and called rules. The former is specified in a 
declarative style, and the latter one is written in an imperative manner. In addition, the 
ATL tool is implemented as an Eclipse plug-in, which provides an execution model 
transformation framework consisting of an ATL compiler, an ATL virtual machine, a 
Model handler Abstraction Layer, Model handlers, and a Model Repository [Jouault 
& Kurtev 2005]. 

Instead of enabling M2M transformations, Acceleo aims to the implementation of 
M2T transformations. Acceleo is a text file generation language that usually adopted 
to convert a model into corresponding executable codes. It is developed on the basis 
of the OMG “MOFM2T” Transformation standard [OMG 2008], and offers many 
advantages such as customization, interoperability, easy kick off, etc. In addition, it 
also provides both the declarative and imperative constructs. The language and its 
implementation (which is a plug-in integrated in the Eclipse IDE) are developed and 
maintained by a French company called Obeo. 

 3.8 Conclusion 

In this chapter, we introduced the theories and techniques used in this these. In 
section 3.2 we explain the basic components of a system modeling language: an 
abstract syntax, one or more concrete syntaxes, one or more semantics domains, the 
syntax mappings between the abstract and concrete syntaxes, and the semantics 
mappings between the abstract syntax and semantics domains. Then we introduced 
CMMN, the standard modeling language for case management, including the abstract 
and concrete syntaxes, and its operational semantics. Then in section 3.4 we 
introduced HiLLS, a system modeling language developed for constructing 
multi-aspect system models. HiLLS maps its syntax into different semantics domains 
for various types of analysis: DEVS for simulation, formal methods for formal 
analysis, and UML for enactment. 

Moreover, we explained the concepts and approaches regarding business process 
management, including process analytics, process improvement, process 
reengineering, lean, and TOC. Such concepts and approaches are widely adopted in 
business domain to help organizations govern and improve their process performance. 
We also reviewed how organizations used simulation as an approach to predict the 
potential impacts of proposed process changes, as well as examine and compare all 
proposed improvement alternatives without actually change the exiting processes. In 
addition, we also introduced process discovery in section 3.6, a process approach to 
explore and construct business process models by merely analyzing raw data stored in 
event logs, and the process tree modeling language, a modeling formalism used to 
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depict models generated from process discovery. 

Finally, in section 3.7 we presented model transformation, an essential approach 
in MDE to automatically generate target model(s) from source model(s) following a 
set of transformation rules. The different paradigms for model transformation are 
introduced as well. In particular, the model transformation languages ATL and 
Acceleo were presented with more details, where the former converts a model to 
several models, and the latter transforms a model to text (e.g., programming codes). 
We will use the concepts and techniques described in this chapter in subsequence 
chapters for the specification of our case management framework. 
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4 CASE MODEL IMPROVEMENT 
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4.1 Introduction 

We propose in this thesis a systematic case model management (CMM) solution 
that provides case workers sufficient supports to manage their cases, throughout their 
full life-cycles (i.e., from creating a case model to closing it), in an adaptive and 
flexible manner. To explain in detail, our approach contains two main modules, as 
given in Figure 4-1: Case Model Discovery (CMD) and Case Model Improvement 
(CMI). The CMD module relates to exploring case models by analyzing event logs, in 
which data from reality relating to special cases are recorded. CMI takes advantages 
of the discovered CMMN case models (which are called the as-is models obtained 
from CMD) as a starting point, analyzes their potential issues and operational 
performance from different perspectives, and offers case workers help in constructing 
and analyzing the improved CMMN case models (which are called the to-be models). 

 

Figure 4-1: A global view of our CMM approach 
 

Figure 4-2 gives the whole workflow of our CMM approach, including the steps 
and their order in a flow chart, as well as the explanations of what each step does. 
Generally, case workers start with managing special cases, and historical data such as 
starting time, completing time, etc. are collected and recorded in an event log. Using 
the process discovery technique, we can obtain a Process Tree model which captures 
the activities and their logical relations recorded in the event log. Through model 
transformation we convert the Process Tree model to a CMMN model (which is our 
as-is model). Case workers now can have a better view on their case models that 
depicting how activities are done: case models are explored automatically, and 
displayed in a way that case workers are familiar with. This is what the CMD module 
(as shown by steps 1 and 2) offers.  
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Figure 4-2: The flow chart of our CMM approach 
 

In order to analyze the CMMN models and predict their operational performance, 
we envision transforming CMMN models into HiLLS models. It is the HiLLS models 
we analyze in both dynamic and static manners. Generally, the as-is model is the one 
we put our efforts on, and the to-be model is our target to obtain that has better 
performance and meets requirements. To this end, case workers can analyze the as-is 
case models in a dynamic manner (through simulation), or in a static manner (through 
formal analysis). We have also specified a set of performance metrics from different 
perspectives, in order to help case workers assess and measure the health and 
performance of both as-is and to-be case models. Case workers will re-construct their 
case models on the basis of analyzing results, and then analyze them again to check if 
the result is accepted or not. If not, the same steps will be followed again (steps 5, 3, 
and 4), until the expected result is shown. We call this repeated effort CMI, which 
consists of steps 3, 4 and 5. The whole story is illustrated in Figure 4-3 from another 
point of view. 
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Figure 4-3: The whole picture of the CMM approach 
 

In this chapter, we will begin with explaining the CMI module part first, due to 
the fact that most of our contributions are done here: we establish an approach to help 
case workers analyze the as-is case models, assess their performance, explore their 
hidden problems and provide ideas for designing the to-be models, and predict the 
performance of the to-be case models. Case models can be finally improved and 
optimized on a quantitative basis. Then we will introduce the CMD module which we 
are inspired from the process discovery technique in the next chapter. 

4.2 Case Model Transformation 

As we have mentioned before, there is always a need for organizations to change 
their as-is process models in order to increase their business process operational 
performance, stay competitive and make more value in business. A typical challenge 
is that how to analyze and predict the outcomes of changes made within the to-be 
models in advance, in order to guarantee a success in a process improvement practice. 
Process simulation has been proved as an efficient solution to this challenge  
[Barnett 2003] [Hlupic 2003] [April et al. 2006]. By simulating the to-be models, 
potential impacts and ridden risks of modifications made can be explored. In addition, 
if many change plans exist, simulation can help compare all proposals and provide 
evidence to managers’ decision making in terms of whether selecting or rejecting a 
change initiative [Clauberg & Thomas 2013]. To this end, we select the HiLLS 
formalism to study CMMN case models, where HiLLS is a multi-purpose high level 
modeling language aiming at helping domain experts create DES models that can be 
studied from different perspectives, including simulation (DEVS), formal analysis 
(FM) and enactment (UML), respectively. 
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As illustrated in Figure 4-4 and Figure 4-5, to benefit from capabilities provided 
by HiLLS, we envision transforming CMMN models into HiLLS. A generic way to 
achieve this goal is to map the CMMN metamodel onto the HiLLS one. This way, any 
case model can be automatically converted into its HiLLS counterpart. In addition, we 
also propose a systematic way to generate an Experimental Frame (EF) for case 
models to conduct simulation experiments, where an EF defines the conditions under 
which a system is experimented with [Zeigler et al., 2000]. Consequently, case 
workers are able to observe their current as-is case model, identify and analyze 
problems, propose changes to make in the to-be model, and predict the performance 
of changes before implementation. 

 
Figure 4-4: The workflow of CMI 

 

 
Figure 4-5: The whole picture of CMI 
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4.2.1 System Structure 

As proposed in [Wang & Traoré 2014], the main idea for the model 
transformation is to turn a CMMN model into a HiLLS model considering both the 
system structure and the system behavior. In terms of system structure, as given in 
Table 4-1 below, we consider to convert the RootStage item – the Stage instance that 
is defined as the casePlanModel of the Case – to a HSystem. For the rest of the major 
elements, including CaseFileItem, PlanItem, and DiscretionaryItem, they will be 
transformed to HClass instances (Both PlanItems and DiscretionaryItems may refer to 
elements including Stage, Task, Milestone and EventListener. The former are defined 
at the design phase, and the latter are added at the planning phase at run-time. Later in 
this thesis if we mention a Stage (Task), we mean a PlanItem referring to a Stage 
(Task); likewise, if we say a discretionary Stage (Task), we mean a DiscretionaryItem 
referring to a Stage (Task)). Consequently, we have one and only one HSystem 
generated for any Case model since a Case has one and only one casePlanModel 
defined, and many HClasses. 

Table 4-1: The mappings of system structure 
CMMN HiLLS 

RootStage HSystem 
CaseFileItem HClass 

PlanItem HClass 
DiscretionaryItem HClass 

Sentry HClass 

In addition, the HSystem has input and output ports generated, as specified in the 
following. The EventIn input port receives tuples (element, event), where element 
refers to either the HSystem or a HClass, and event refers to actions that can modify 
the state of an element (event belongs to the eventSet, where eventSet = {close, 
complete, create, disable, enable, fault, manualStart, occur, reactivate, reenable, 
resume, start, suspend, and terminate}). The ParameterIn input port receives the 
input parameters of the CMMN case (which are defined as CaseFileItems by users). 
Regarding the output ports, the StatusOut output port sends out the current status of 
the elements defined within the Case model (including Active, Enabled, Disabled, 
Completed, Terminated, Failed, Suspended, and Closed), and the ParameterOut 
output port sends out the Case’s output parameters (which are defined as 
CaseFileItems by users). 
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The containment relationship between all these CMMN elements will be 
preserved by the HiLLS composition relationship (which is borrowed from UML 
Class Diagram) among the HSystem and all HClasses. As specified in the rules below 
(we use source to refer to the CMMN element from which a HiLLS HClass is 
converted): a HSystem’s components will be those HClasses such that, each of which 
has a source defining as a CaseFileItem, or a PlanItem (DiscretionaryItem) that is 
directly contained by the RootStage (which is the source of the generated HSystem).  

  

A HClass has components too, if and only if its source is a PlanItem 
(DiscretionaryItem) that referring to a Stage. Its components are those HClasses such 
that, each of which has a source defining as a PlanItem (DiscretionaryItem) that is 
directly contained by that Stage. 

  

Following the rules specified above, Figure 4-6 gives an example of the system 
structure of a HiLLS model, which is converted from the Case model we used in 
Chapter 2 when introducing CMMN. As we can see, the HSystem 
ClaimsFileManagement (CFM) has two input ports created to receive events, and two 
output ports generated to send out events, respectively. Moreover, it contains 10 
HClasses (which are Request (R), ResponsibilitiesIdentified (RI), 
CreateClaimsNotification (CCN), BaseInformationAttached (BIA), CreateClaims 
(CC), IdentifyResponsibilities (IR), ChangeResponsibilities (CR), 
RequestMissingInformation (RMI), Cancellation (C), and Deadline (D)), and each of 
which is converted from a CMMN basic element. The missing information of the 
compartment, System Behavior, will be specified in the next section. 
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Figure 4-6: The system structure of a HiLLS model 
 

4.2.2 System Behavior 

The generation of the system behavior is a challenge in our CMMN to HiLLS 
model transformation since it is not simply a mapping between different elements. 
Due to this reason, we use mathematic formulas and tables together to specify how 
Configurations are generated, as well as how they transit from one to another. 

4.2.2.1 Configuration 

Due to the fact that each CMMN element can be in different states, as depicted in 
Table 4-2, each HiLLS configuration can be seen as a tuple , where each 

 is a state variable that represents the status (which is represented by 
state) of the ith basic HiLLS element (which is represented by item) converted from its 
equivalence defined within the Case modeled. For instance, 

 indicates that the CreateClaims item now is in the 
Suspended status. To ease the writing of the configuration, we use numbers to 
represent the items states. 
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Table 4-2: States of CMMN modeling elements 

State 
Reference 
Number 

CMMN 
Elements 

Ø 0 
RootStage/Stage/Task/Milestone/EventListener 

/CaseFileItem 
Available 1 Stage/Task/Milestone/EventListener/CaseFileItem 
Enabled 2 Stage/Task 
Disabled 3 Stage/Task 

Active 4 RootStage/Stage/Task 
Completed 5 RootStage/Stage/Task/Milestone/EventListener 
Terminated 6 RootStage/Stage/Task/Milestone/EventListener 

Failed 7 RootStage/Stage/Task 
Suspended 8 RootStage/Stage/Task/Milestone/EventListener 

Closed 9 RootStage 
Discarded 10 CaseFileItem 

Consequently, the HSystem’s complete configuration set will be defined as 
following, and it can be obtained by the combinational set of all elements’ state sets.  

  

�   
�   
�   

�   

�   

For example, as given in the case model presented in Figure 2-1, each element’s 
state set is defined as follows: 

�   
�   
�   

�   
�   

�   
�   

�   

Therefore, its full configuration set can be obtained as 
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As given in the HiLLS metamodel, a Configuration can be finite (where its 
), or passive (where its ). Consequently, we established rules 

to further categorize each Configuration into either finite or passive: 

If a Configuration meets all the following conditions, then it is a FiniteConfiguration; 
otherwise, if at least one condition is not met, then it is a PassiveConfiguration: 

� there exists at least one state variable , such that 
� the source of this item refers to a TimerEventListener, AND 
� the source of this item is defined as the exit condition of the RootStage 

(i.e., the source of this item is one of the items that are defined as the 
sourceRef of the exit sentries of the RootStage), AND 

� the state is 1 

These rules above can be formalized as following: 

  

 
  

  

 
  

Moreover, in order to observe the status of each item whenever a Transition 
occurs within the HSystem, a TransientConfiguration (where its ) is added for 
each FiniteConfiguration and PassiveConfiguration, where each pair of the transient 
and finite/passive Configurations have the same predicates defined. Assuming that we 
have a PassiveConfiguration A, and it receives a trigger and transits to a 
FiniteConfiguration B. In order to observe the status of items, a 
TransientConfiguration C is added which copies B’s predicates. This way, as shown 
by Figure 4-7, configuration A will first transit to configuration C when it receives a 
trigger; then C will send out the output, and transit to the target Configuration, B. The 
formal rule of generating TransientConfigurations is specified in below. 
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Figure 4-7: An example of configuration transitions 

 

4.2.2.2 Configuration Transition 

If the HSystem (h) stays in a Configuration, and it receives a trigger before its 
life-cycle (ta, which is defined by the sojournTime attribute) is expired, then an 
external configuration transition (ECT) will be observed, as illustrated in Figure 4-8. 
In this case, the system will first transit to a transient configuration (through an ECT) 
that corresponds to the target one; and then the system will output the status of items, 
and transit to the target (through an internal configuration transition (ICT)). Otherwise, 
an ICT will be observed: an output will be sent out, and the system will transit from a 
finite configuration to its target. In both situations, the target configuration to which 
the system will transit to is determined by the CMMN operational semantics given in 
[OMG 2014]. We will fully specify how a configuration transits to its target in the 
following, where we use  to refer to the configuration before 
transitions, and  to refer to the one after transitions. 

 
Figure 4-8: Different types of configuration transitions 
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Internal Configuration Transition 

Within the HSystem (h), as we mentioned above, there are three types of possible 
ICTs: transient → finite (t2f), transient → passive (t2p), and finite → passive (f2p). 
When a t2f or a t2p transition is observed, C and C’ will have exactly the same 
predicates, and the system output the current status of items, as specified in the 
following rules. Figure 4-9 gives examples of the two types of ICTs that are generated 
from our CMMN example case model. 

 

● 
  

 

● 
  

 

Figure 4-9: Examples of t2f and t2p configuration transitions 
 

An f2p transition will occur if the life-cycle of C is reached. The predicates of C’ 
is defined as following, and Figure 4-10 gives us an example: 

 

● 
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�   

  

�   

  

 

Figure 4-10: An example of f2p configuration transitions 
 

External Configuration Transition 

Basically, an ECT will occur if the HSystem receives a trigger before the 
life-cycle of the configuration it is currently stays in is expired. According to different 
triggers, c’ will have a different value. Figure 4-11 gives an example of ECT, where C 
is a passive configuration, the trigger is (CFM, suspend), and the predicates of C’ is 
computed following the rules specified below. 

 

●   
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1)   

Table 4-3: Transformation rules of ECT – Part 1 
s(v)1 trigger autoC2 s(v’) 

0 (self3, create) *4 4 
45 (self, complete) False 5 

(self, terminate) * 6 
(self, fault) * 7 

(self, suspend) * 8 
5/6/7/8 (self, reactivate) * 4 

(self, close) * 9 
1 We use s(v) to represent the value of the state parameter of vi, and s(v’) to represent the value of 
f(trigger). 
2 We use autoC to represent the autoComplete attribute of the item. 
3 If vi.item=trigger.item, then we use self to represents this item; otherwise, we use other. 
4 The symbol “*” means that the value of the attribute could be any (e.g., True, or False). 
  The symbol “–” means that the value of the attribute is null. 
5 If at any time, (1) vi = 4, (2) all its required children are in the state of 3/5/6/7, and (3) all its 
non-required children are not in the state of 4, then vi’ = 5. 

 

2)   
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Table 4-4: Transformation rules of ECT – Part 2 
s(v) trigger P/D HES1 ES2 Manual3 autoC s(v’) 

0 (self, create) D True False * * 1 
(self, create) D True True True * 2 
(self, create) D True True False * 4 
(self, create) D False – True * 2 
(self, create) D False – False * 4 

(parent4, create) P True False * * 1 
(parent, create) P True True True * 2 
(parent, create) P True True False * 4 
(parent, create) P False – True * 2 
(parent, create) P False – False * 4 

1 (other, *) * True True True * 2 
(other, *) * True True False * 4 

2 (self, disable) * * * True * 3 
(self, manualStart) * * * True * 4 
(parent, terminate) * * * True * 6 
(parent, suspend) * * * True * 8 

3 (self, reenable) * * * True * 2 
(parent, terminate) * * * True * 6 
(parent, suspend) * * * True * 8 

4 (self, complete) * * * * False 5 
(self, terminate) * * * * * 6 

(parent, terminate) * * * * * 6 
(self, fault) * * * * * 7 

(self, suspend) * * * * * 8 
(parent, suspend) * * * * * 8 

7 (self, reactivate) * * * * * 4 
(parent, terminate) * * * * * 6 

8 (self, resume) * * * * * 4 
(parent, resume) 

(parent, reactivate) 
* * * * * H 

(parent, terminate) * * * * * 6 
5/6 (parent, reactivate) P True False * * 1 

(parent, reactivate) P True True True * 2 
(parent, reactivate) P True True False * 4 
(parent, reactivate) P False – True * 2 
(parent, reactivate) P False – False * 4 

1 HES (hasEntrySentry) refers to if the item has any entry sentry defined. 
2 ES (entrySentry) refers to if the condition the item’s entry sentry specified is met or not. 
3 We use Manual to represent the manualActivationRule attribute of the item. 
4 We use parent to represent the Stage item that consists of the source item vi refers to. 
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3)   

Table 4-5: Transformation rules of ECT – Part 3 
s(v) trigger HST1 ST2 HES ES s(v’) 

0 (parent, create) 

(other, any) 

True True – – 1 

1 (self, occur) – – – – 5 
(self, suspend) 

(parent, suspend) 

* * True False 8 

(self, suspend) 

(parent, suspend) 

* * False – 8 

(self, terminate) 

(parent, terminate) 

* * True False 6 

(self, terminate) 

(parent, terminate) 

* * False – 6 

(other, any) * * True True 5 
8 (self, resume) 

(parent, resume) 

* * * * 1 

(self, terminate) 

(parent, terminate) 

* * * * 6 

1 HST (hasStartTrigger) refers to if the item has any start trigger defined. 
2 ST (startTrigger) refers to if the condition the item’s start trigger specified is met or not. 
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4)   

Table 4-6: Transformation rules of ECT – Part 4 
s(v) trigger s(v’) 

0 (self, create) 1 
1 (self, addChild) 

(self, removeChild) 
(self, update) 
(self, replace) 

(self, addReference) 
(self, removeReference) 

1 

(self, delete) 10 
 

 

Figure 4-11: An example of ECT 
 

As we have explained in the beginning of this chapter before, the translations 
between a CMMN model and its targeted HiLLS model are not simply n-n mappings 
between their meta-models. Especially for the configurations and the transitions 
between them, the rules must take into account several conditions, e.g., each element’s 
state, sentry state, etc. The rules of configuration transitions we have defined above 
serve as the pre-conditions when executing HiLLS model simulations. 

 4.3 Experimental Frame 

Once a HiLLS case model is obtained, a simulation EF (which is also a HiLLS 
model) should be established so that case workers are able to run simulation 
experiments. An EF defines the environment with which a system interacts with, in 
simulation experiments. Basically, an EF is considered as a system that is coupled 
with the system of interest. Generally, case workers are domain experts; their work 
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mainly relates to the construction and manipulation of case models using CMMN. 
They are not directly dealing with simulated models specified by HiLLS. As a result, 
it is often difficult and error-prone for them to establish an EF for the purpose of 
conducting simulation experiments of case models. Moreover, even though they can 
do this by themselves or receiving help from simulation experts, they are still facing 
another inconvenience: each time when they have a case model to simulate, or they 
want to change the simulation environment for a different purpose, they need to create 
a new EF, manually from scratch. 

Due to this fact, we propose here a systematic way to generate EFs, in order to 
ease the process of simulating case models for case workers. In our approach, the EF 
contains two parts: one is to generate and feed data into the system of interest (we 
name this part EventGenerator), the other one collects and analyzes the results 
observed (we call this part Analyzer), as given in Figure 4-12. On one hand, an EF can 
be generated in a semi-automatic manner, as shown in Figure 4-13. On the other hand, 
such an EF is easy to configure so that different simulation environments can be built 
according to different requirements and research purposes, without having experience 
from the M&S domain.  

 
Figure 4-12: The couplings between different HiLLS models 
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Figure 4-13: The flow chart of generating EFs 
 

Case → EventGenerator 

To start with, the whole Case will be transformed to a HiLLS system named 
EventGenerator. This EventGenerator generates and feeds events to the HiLLS case 
model. The formal transformation rules are given below. 

Port 

  

This EventGenerator has only one port: an output port named EventOut, which 
sends events to the HiLLS case model. 

HComponents 
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Each  is a HSystem, which is converted from the item 
defined within the Case model and serves as an item event generator. Based on the 
original CMMN element before transformation, the obtained HSystem has different 
structure and behavior. We will explicitly define the transformation rules for each type 
of CMMN element. 

4.3.1 RootStage → HSystem 

4.3.1.1 Ports 

  

  

The HSystem converted from the RootStage has two ports: one for receiving 
incoming events, and one for sending events to other HSystems. 

4.3.1.2 HComponents 

 

 

 h is a HSystem, and it corresponds to a RootStage event 

If the autoComplete attribute of the RootStage is set to False, then it will contain 
7 atomic HSystems, each of which represents a RootStage event (i.e., create, complete, 
suspend, terminate, fault, reactivate and close). On the contrary, if the autoComplete 
attribute of the RootStage is set to true, then this HSystem will have 6 atomic 
HSystems instead of seven, where the atomic HSystem representing the complete 
event is not considered. The detail of each atomic HSystem is given below. 

Ports 
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Each atomic RootStage event HSystem has two ports: one for receiving incoming 
events, and one for sending events to other HSystems. 

Configurations 

, such that 

  

 

 

Each atomic RootStage HSystem has two configurations: passive and active. 
Based on the event type of each HSystem, the time advance function is different: if 
the event is created then ta = 0; otherwise ta = . 

Transitions 

, such that 

, such that 

�  

, such that 

� 
  

� 

  

Essentially, if a HSystem stays in the active state, and its ta reaches then an ECT 
will be observed. It will transit to the passive state, and send out an event to other 
HSystems: the one representing the create event will send out (RootStage, create), the 
one representing the complete event will send out (RootStage, complete), the one 
representing the terminate event will send out (RootStage, terminate), etc. 

However, if a HSystem stays in the passive state, and the event this HSystem 
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concerning belongs to {complete, suspend, terminate, fault} and it receives either a 
creation or a reactivation event, then an ECT will be observed. On the other hand, if 
the event his HSystem concerning belongs to {create, reactivate} and it receives an 
event belonging to {complete, suspend, terminate, fault}, an ECT will also be 
observed. 

4.3.1.3 Configurations 

, such that 

  

  

  

Note: (s: source; t: target) 

In terms of EOC, each atomic event HSystem’s output port connects with the 
output port of the EventGenerator translated from the whole case (which we have 
introduced above). In terms of IC, depending on the Boolean value of the 
autoComplete attribute of the RootStage, the total number of atomic event HSystems 
will be different, so is the total number of the internal couplings.  

4.3.2 Stage/Task → HSystem 

Here we will explain how a Stage, or a Task element translates to a coupled 
HSystem which contains a set of atomic HSystems, each of which generates the 
Stage- or the Task-related events. Please note that 
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● Stage refers to a planItem or a discretionaryItem referring to a Stage 
● Task refers to a planItem or a discretionaryItem referring to a Task 
● Item refers to the Stage or the Task element 
● mar refers to the Item’s ManualActivationRule 
● ac refers to the Item’s AutoComplete attribute 

� since a Task has no AutoComplete attribute, so we consider that 
Task.ac=false 

� if Item.ac=true, then Item=Stage; otherwise it could be either a Stage or a 
Task 

● entry refers to the entrySentry of the Item 
● q refers to the queue of received events 
● trigger refers to the element the Item’s entrySentry referring to 

� trigger.event can be either complete or terminate 

4.3.2.1 Ports 

  

  

Like the HSystem which is converted from the RootStage, each HSystem 
transformed from a Stage/Task element has also two ports: one for receiving incoming 
events, and one for sending events to other HSystems. 

4.3.2.2 HComponents 

According to the different values of related attributes (i.e., item type (planItem or 
discretionaryItem), manualActivationRule, autoComplete and entrySentry), the 
contained atomic event HSsystems are various, as specified below: 
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 h is an atomic HSystem, and it corresponds to an Item event 
(create, complete, suspend, etc.). The detailed specifications of each atomic HSystem 
are given below. 

Ports 

  

  

Each atomic event HSystem has two ports: one for receiving incoming events, 
and one for sending events to other HSystems. 

Configurations 

, such that 

  

  

Each atomic event HSystem has two essential configurations: passive and active. 
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The ta of the passive configuration equals to positive infinity, and the ta of the active 
configuration will be assigned by case workers later. 

Transitions 

Here we will detail all the possible configuration transitions of each Stage/Task 
event related atomic HSystem, considering different values of item attributes we have 
introduce above (where c refers to the source configuration, and c’ refers to the target 
configuration). 

, such that 

, such that 

�   

�  

, such that 

� 

  

� 

  

� 

  

� 

  
� 
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� 

  

� 

  

4.3.2.3 Configurations 

The configurations of the event generator HSystem converted from a Stage/Task 
item define the couplings of the atomic event HSystems obtained. 

, such that 

●   
● 
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● 



102 

 

  
● 

  
● 
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● 

  
● 

  
● 
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● 

  

4.3.3 Milestone/EventListener → HSystem 

Here we will explain how a Milestone/EventListener element translates to a 
coupled HSystem which contains a set of atomic HSystems, each of which generates 
the Milestone- or the EventListener-related events. Please note that 

● Milestone refers to a planItem referring to a Stage 
● EventListener refers to a planItem referring to a EventListener 

� EventListener can be either a UserEventListener or a TimerEventListener 
● Item refers to the Milestone or the EventListener element 
● entry refers to the entrySentry of the Item 
● trigger refers to the element the Item’s entrySentry referring to 

� trigger.event can be either complete or terminate 
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4.3.3.1 Ports 

  

  

Like the HSystem which is converted from the RootStage, each HSystem 
transformed from a Miestone/EventListener element has also two ports: one for 
receiving incoming events, and one for sending events to other HSystems. 

4.3.3.2 HComponents 

According to the type of the item, the event set is various, as given below: 

 

 

Ports 

Each atomic event HSystem has two ports: one for receiving incoming events, 
and one for sending events to other HSystems. 

  

  

Configurations 

Each atomic event HSystem has two essential configurations: passive and active. 
The ta of the passive configuration equals to positive infinity, and the ta of the active 
configuration will be assigned by case workers later. 

, such that 
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Transitions 

Here we will detail all the possible configuration transitions of each 
Milestone-/EventListener-related event atomic HSystem, considering different values 
of item attributes we have introduce above. 

, such that 

, such that 

�   

, such that 

� 

  

� 

  

� 

  

� 
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4.3.3.3 Configurations 

The configurations of the event generator HSystem converted from a 
Milestone/EventListener item define the couplings of the atomic event HSystems 
obtained. 

, such that 

●   
● 

  
● 

  
● 

  

4.3.4 CaseFileItem → HSystem 

Here we will explain how a CaseFileItem element translates to a coupled 
HSystem which contains a set of atomic HSystems, each of which generates the 
CaseFileItem- -related events. Please note that 

● Item refers to the CaseFileItem element 
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4.3.4.1 Ports 

  

  

Like the HSystem which is converted from the RootStage, each HSystem 
transformed from a CaseFileItem element has also two ports: one for receiving 
incoming events, and one for sending events to other HSystems. 

4.3.4.2 HComponents 

Unlike other CMMN basic modeling items, the CaseFileItem has no specific 
attributes. Therefore, all the CaseFileItems will contain the same amount of atomic 
event HSystems, each of which represents a CaseFileItem-related event: 

  

Ports 

Each atomic event HSystem has two ports: one for receiving incoming events, 
and one for sending events to other HSystems. 

  

  

Configurations 

Each atomic event HSystem has two essential configurations: passive and active. 
The ta of the passive configuration equals to positive infinity, and the ta of the active 
configuration will be assigned by case workers later. 

, such that 
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Transitions 

Here we will specify all the possible configuration transitions of each 
CaseFileItem-related event atomic HSystem. 

, such that 

, such that 

� 

  

� 

  

, such that 

� 

  

� 

  

4.3.4.3 Configurations 

The configurations of the event generator HSystem converted from a 
CaseFileItem item define the couplings of the atomic event HSystems obtained. 

, such that 

●   
● 
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● 

  

4.3.5 Complementary information 

Until now from the original case model we could receive an IEF which contains 
all possible item events and the couplings among them. However, in reality it is not 
necessary to have all the events for conducting a simulation practice. To this end, case 
workers have the right to select a set of events which will be used in the simulation 
practice later. Essentially, the information to complete is as following: 

● σ (specified by case workers) 
● triggers (selected from available generated options) 
● internal couplings (selected from available generated options) 
● event scheduling (automatically generated on the basis of the information 

specified above) 

Once all required information is specified, then the final EF can be generated. 

● Each h (where ) has an index number associated that making it 
unique. 

● For each h where  AND , if 
, then this h 
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will be removed, as well as the couplings relating to it. 
● For each h where  AND if 

, then this h will be removed, as well as the couplings 
relating to it. For each pair of couplings (removed) that coming from h’ and going 
into h’’, a new coupling will be generated (which is used to establish a connection 
between h’ and h’’), where  

4.3.6 Example 

We will use the CMMN example we introduced in section 3.3 to explain how the 
EventGenerator of this case model is created. From the HiLLS case model that is 
generated from the CMMN example, a set of HiLLS events will be generated. It 
includes events such as , 

, , and so on, which 
are generated through a union of the Cartesian product results, as given in the 
following: 

  

�   

�   

�   

�   

Based on their research purpose, case workers will then select a subset of events 
from the eventSet, and specify the missing values as given in Table 4-7. The value in 
the column of Triggers is the index number representing an event. The value in the 
column Duration is a uniform distributed random number, in which the two numbers 
in the bracket are the lower and upper bounds from left to right, respectively. 

Following the rules defined above, each selected event will convert to a HSystem. 
Generally, there are three types of configuration transitions within different HSystems, 
as given in Figure 4-14, Figure 4-15, and Figure 4-16, respectively, where the 
configuration with a bold outline is the one the system stays at initialization time. 
Figure 4-14 shows the configuration transition of the HSystem converting from the 
event (CFM, create, –, –) to create the whole case, since this type of event occurs 
immediately once simulation starts, with no triggers required. The system stays in the 
transient configuration Active for zero time units, and then sends out the event to 
create the CFM case and transits to the passive configuration. 
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Table 4-7: The complete information of selected events 
Index Item Action Triggers Duration 

1 CFM create – – 
2 CFM suspend 1 [100, 180] 
3 CFM reactivate 2 [50, 70] 
4 R create 1 [5, 20] 
5 IR complete 4 [10, 15] 
6 CCN complete 5 [17, 25] 
7 CC complete 6 [10, 18] 

 

 
Figure 4-14: The configuration transition of event (CFM, create, –, –) 

 
If triggers are required, the system will stay in the passive configuration when 

simulation initiates. Once the trigger (event (CFM, create)) is received, as given in 
Figure 4-15, an external configuration transition will be observed: the system will 
transit to the active configuration and stay until the life-cycle is expired. Then, it 
sends out the event to the case model and transits back to the passive one. 
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Figure 4-15: The configuration transition of event (CFM, suspend, 1, [100, 180]) 

 
Figure 4-16 illustrates the situation in which the item of the event refers to a Task 

or a Milestone with its repetition rule set to True.  

 
Figure 4-16: The configuration transition of event (IR, complete, 4, [10, 15]) 

 
All such HSystems are coupled together, as shown in Figure 4-17 and Figure 4-18. 

The former specifies the external output couplings (EOC) connecting components 
output ports to the EventGenerator’s output port, and the latter defines the internal 
couplings (IC) connecting components output ports to their input ports. 
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Figure 4-17: The EOC specified in EventGenerator 

 

 
Figure 4-18: The IC specified in EventGenerator 

 
However, we have noticed that with our approach there is a potential limitation 

relating to the total number of events: if there are many modeling elements in a case 
model, the total number of events will rise in an exponential growth manner. 

Moreover, we establish an Analyzer which is used to collect the output events and 
analyze the performance of the system of interest. The Analyzer is also a HiLLS 
HSystem. It has only one input port for receiving item status that is sending out from 
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the case model, computes the value of performance metrics, and provides the results 
to case workers when simulation ends. It has only one configuration (passive): each 
time a trigger comes, it transits back to itself, during which the values of performance 
metrics are calculated. The specification of the Analyzer is given in the following, and  
gives its graphical representation. In the next section, we will further introduce what 
are these performance metrics, and how we link them to case models so that they can 
analyze and reveal the operational performance of cases under study, from different 
perspectives. 

  

●   
●   

●   

�   

 
Figure 4-19: The graphical representation of Analyzer 

 

4.4 Performance Metrics 

From the literature review in chapter 3 regarding process improvement, we select 
several performance metrics to help case workers monitor, analyze and evaluate the 
system’s performance from different perspectives (lean and TOC), at different 
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management levels (operational, tactical, and strategic). Such performance indicators 
will show a deeper view in both as-is and to-be cases. For example, waste and 
bottlenecks can be identified hidden in as-is models. Through re-designing as-is 
models and simulating to-be models, case workers can check if spotted waste and 
bottlenecks have been removed or not, and investigate if there is any new issue. In 
addition, an expected target of system performance should be established in advance, 
so that case workers can compare the simulation results with their target to see where 
the difference is. We will explain in detail how we link these metrics to case models in 
this section. 

4.4.1 Lean-related Performance Metrics 

Lean aims at identifying and eventually eliminating all kinds of waste within 
processes. The following indicators are defined to evaluate the system performance 
and reveal the hidden waste within the system, at the operational level. The goal is to 
anticipate if any waste exists, and assess the performance of the system to see if it is at 
an expectable level or not. 

Cycle Time 

The cycle time refers to the time elapsed from the beginning of a work process 
until it is completed [Tapping 2007]. We use cycle time to represent how long time a 
Case or a single Task takes to complete from initialization. Case workers can observe 
the trend of the cycle time obtained from several simulation experiments, in order to 
determine if it has been reduced or increased through process changes. In CM, the 
cycle time of a Case or a Task can be calculated by the time stamp when the item is in 
the completed status, minus the time stamp when the item is in the active status. This 
indicator will be used to help predict how many employees are required for certain 
tasks. 

  

Suspending Time 

The suspending time refers to the amount of time the work is being suspended. 
Basically, we use it to indicate for how long time a Case or a single Task suspends, 
which is viewed as waste. The suspending time of a Case or a Task can be obtained by 
the time stamp when the item transits to the active status from suspended, minus the 
time stamp when the item becomes to be suspended. 
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Downtime 

We use downtime to represent the amount of time machines are not being used or 
case workers are not working, due to technical problems. By observing the trend of 
downtime, we can see if the technical problems become more serious or less, or being 
solved totally. The value of the downtime of a Case or a Task can be calculated by the 
time stamp when the item transits to the active status from failed, minus the time 
stamp when the item becomes to be failed. 

  

Idle Time 

The idle time refers to the amount of time case workers spend in waiting work 
items or information coming from a previous step in the process. The idle time is a 
type of waste from the lean point of view. Moreover, a long idle time indicates that the 
previous step is a bottleneck candidate in the process [Goldratt et al. 1992]. The idle 
time will be observed only in the situation that a Task is repeatable, i.e., the 
repetitionRule of that Task is set to True. In this situation, if case workers just 
complete the nth instance of that Task, and waiting for receiving information so that 
they can continue to work on the n+1th instance, then the idle time will be observed. 
The value of the idle time of a repeated Task can be calculated by the time stamp 
when the n+1th instance transits to a non-null status from null, minus the time stamp 
when the nth instance becomes completed. 

  

Work-In-Progress (WIP) 

WIP is used to represent the amount of Task instances that have been initialized 
but not yet completed. Knowing the WIPs helps organizations improve the flow of 
value through the whole system, since Tasks cannot add any value to customers unless 
they are completed. The WIPs of Tasks within a Case can be counted by the 
summation of Task instances that their status are active. 

 , where 

  

Backlog 

The backlog refers to the amount of Task instances staying in active and waiting 
for case workers to complete. The same as idle time, the backlog will be observed in 
the situation that a Task is repeatable. In this situation, if case workers just complete 
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the nth instance of a Task, and waiting for receiving information so that they can 
continue to work on the n+1th instance, then the n+1th instance of that Task is a 
backlog. By identifying the backlog in the system, managers are able to see where 
they might get stuck within their processes. Moreover, a smaller backlog leads to a 
shorter idle time and a shorter total cycle time, and a huge backlog indicates that the 
succeeding step in the process is a bottleneck candidate. The backlog of repeated 
Tasks within a Case can be counted by the summation of Task instances that their 
status are active, and case workers assigning to this Task are waiting for additional 
information, not working on completing these Task instances. 

 , where 

  

Employees Needed 

This performance indicator specifies how many case workers are required to 
complete a Case or a Task instance. If unnecessary case workers are assigned to a 
Case or a Task, then this is a kind of waste. By comparing the simulation results with 
different amount of needed employees we can identify that how many case workers 
assigning to different Tasks will lead to the best performance. Moreover, according to 
different types of payment of case workers, such cost will also be considered as fixed 
cost (if case workers are paid by fixed salaries, regardless of how many hours they 
work actually), or variable cost (if case workers are paid according to their working 
hours), which are explained in the Total Cost indicator.  

Total Cost  

The indicator of total cost refers to all the costs incurred in producing produces or 
providing services. Generally, two main types of cost will be observed in business: 
fixed cost, and variable cost, where . The 
former is the type of cost that remains fixed, irrespective of changes on the level of 
products produced or services provided. Typical examples of fixed cost include 
salaries, insurance, rent, and so on. The latter one, variable cost, refers to the type of 
cost that changes in proportion to the level of products produced or services provided. 
For example, the cost of raw materials, billable staff wages (where employees are paid 
according to their working hours), production supplies such as machinery oil, etc., are 
all considered as variable costs in business domain. 
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4.4.2 TOC-related Performance Metrics 

TOC is a system management principle aiming at improving system performance 
by identifying and eliminating bottlenecks. To this end, we use two performance 
indicators (which are idle time and backlog) to help case workers determine 
bottlenecks. As we have explained above, a long idle time indicates that the previous 
step is a bottleneck, and a huge backlog implies that the succeeding step in the process 
is a bottleneck candidate. In addition, in order to monitor, manage and analyze system 
performance from the TOC perspective, we propose to use the Throughput Accounting 
(TA) technique in managing processes in case management, at the tactic level. TA 
consists of three main concepts, as we have reviewed in section 3: throughput, 
investment, and operating expenses (OE). The main idea is to increase throughput, 
while reducing investment and OE simultaneously, in order to balance all components 
within process to achieve the whole system’s optimum.  

Throughput 

Throughput is the rate at which the entire system generates money through sales. 
It often refers to the added value through sales, as the formula given in below, where 
sales refers to the money organizations made through selling products or providing 
services, and variable cost refers to the type of cost that changes in proportion to the 
level of products produced or services provided. For example, the cost of raw 
materials, billable staff wages (where employees are paid according to their working 
hours), production supplies such as machinery oil, etc., are all considered as variable 
costs in business domain. 

 

Investment 

Investment often refers to the money tied up in the system. Basically, it includes 
the investment the organization has made (tools, capital equipment, furnishings, etc.), 
and the physical inventory (e.g., WIPs, finished products). In essence, in order to 
decrease the level of investment organizations should focus on reducing their 
inventory level. 

Operating Expenses 

OE refers to the money organizations spend in turning investment into throughput. 
Expenditures such as salaries of employees, bills of supplies are all viewed as OE of 
organizations. In order to make profit, OE should be reduced as well. 

In addition, since some performance indicators at the strategic level are linking 
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with throughput, investment and OE, once a certain number of cases have been done 
managers are able to have a global view on how their business is going on, at a 
relative higher level. Such indicators include net profit (which indicates the actual 
profit organizations have made), return on investment (which evaluates the efficiency 
of investments), and productivity (which measures the efficiency of employees). 

 

 

 

4.5 Conclusion 

In this chapter, we have explained the CMI module we have proposed to help 
case workers better manage their cases and improve their efficiency and effectiveness. 
Case workers start with case models, which later will be transformed into HiLLS 
models in order to allow case workers conduct case model simulations. As we have 
explained in the beginning of this chapter before, the translations between a CMMN 
model and its targeted HiLLS model are not simply n-n mappings between their 
meta-models. Especially for the configurations and the transitions between them, the 
rules must take into account several conditions, e.g., each element’s state, sentry state, 
etc. To this reason, we have adopted several manners to formally specify the CMMN 
to HiLLS model transformation rules. Regarding to the system structure, we have 
used tables in which the mappings between CMMN and HiLLS metamodels were 
defined. In terms of system behavior, which concerns configurations and their 
transitions, we have used mathematic formulas and tables together to specify how 
Configurations are generated, as well as how they transit from one to another. The 
rules of configuration transitions serve as the pre-conditions when executing HiLLS 
model simulations. 

In addition, we have also proposed a semi-automatic mechanism to generate an 
EF for a case model, which concerns generating event models, event generator models, 
as well as an analyzer model. The translated case model, which conforms to HiLLS, 
will receive events generated from the EF, and will send outputs to the analyzer. This 
analyzer which will later compute the values of performance metrics we have defined 
from different point of view: Lean and TOC. 

 Case workers now start improving their daily work by analyzing a case model. If 
this model does not exist, it is necessary for them to create one, on the basis of stored 
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information. To ease this model creation phase, we will propose another module in the 
next chapter, CMD, which aims at constructing case models directly from recorded 
information automatically, instead of manually.



122 

 

 

 

 

 

 

 

 

5. CASE MODEL DISCOVERY 
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5.1 Introduction 

The aim of CMD module is to help case workers automatically construct case 
models from the historical raw data recorded. To this end, we consider to adopt the 
process discovery approach that extracts process information from event logs. 
Different process discovering algorithms result in process models conforming to 
different modeling formalisms: Process Tree, Hidden Markov Models, Yet Another 
Workflow Language, Event-Driven Process Chains, etc. Apparently, a gap exists 
between these process discovery modeling specifications and the de-facto modeling 
standard for CM (i.e., CMMN). To overcome this problem, we envision transforming 
Process Tree models into CMMN models, as illustrated in Figure 5-1. The reason for 
us to select Process Tree as the modeling formalism for expressing discovered models 
among other ones is that Process Tree models are ensured to represent sound models 
[Eck et al. 2014]. Moreover, the ETM algorithm used to generate Process Tree models 
guarantees that the discovered models are error-free, and meet the four 
quality-evaluation dimensions: replay fitness, simplicity, generalization, and precision 
[Buijs 2014]. In this section, we will first explain how we translate a Process Tree 
model into a CMMN correspondence. Then we will use a simple example to illustrate 
our case models discovering approach. 

 

Figure 5-1: The CMD module 
 

5.2 Translations from Process Tree to CMMN 

A generic way to transform Process Tree models into CMMN counterparts is to 
map the Process Tree metamodel onto the CMMN one, where the former is given 
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before in chapter 3, and the latter is given in [OMG 2014]. Process Tree specifies 
three types of nodes: Task, Event, and Operator. Each node will convert to a 
corresponding CMMN element, as illustrated in tables below. 

Table 5-1: The mappings between Process Tree and CMMN - 1 
Process Tree CMMN 
Manual Task Task (isBlocking=True) 

Automatic Task Task (isBlocking=False) 
Time Out Event TimerEventListener 
Message Event CaseFileItem 

Edge Sentry 
 

Basically, each Process Tree Task element will convert to a CMMN PlanItem or a 
DiscretionaryItem referring to a Task (where a CMMN Task element represents an 
atomic unit of work). The isBlocking attribute of obtained CMMN Task elements is 
set to True (if the Process Tree element is a Manual Task), or False (if the Process 
Tree element is an Automatic Task). Based on the logical relationships between Tasks, 
the targeted CMMN elements will be either PlanItems or DiscretionaryItems, as 
specified in Table 5-2 below. Moreover, the equivalent of a Time Out Event of Process 
Tree is a PlanItem referring to a TimerEventListener element (where CMMN 
TimerEventListener elements is adopted to catch predefined elapses of time), and the 
counterpart of a Message Event of Process Tree is a CaseFileItem (which represents a 
piece of information necessary for proceeding a case). In addition, each Process Tree 
Edge element will be translated into a CMMN Sentry element. According to different 
type of nodes and/or operators an Edge connects, the detailed information of the 
generated sentries will be different as well, as specified in Table 5-2. 

Table 5-2 illustrates the translations from Operators of Process Tree to CMMN 
elements. As specified above, there are basically five Operators: SEQ, AND, OR, 
XOR, and LOOP. 
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Table 5-2: The mappings between Process Tree and CMMN - 2 
Process Tree CMMN 
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1) SEQ Operator,   

If nodes A1, A2 … An are linked by an SEQ operator ( ), then 
each node Ai (1≤i≤n) converts to a CMMN PlanItem Pi, respectively. Pi refers to 
different types of CMMN elements, based on the type of the Process Tree node it 
converts from, as given in Table 5-1: (1) Pi refers to a Task with its isBlocking 
attribute set to True, if Ai is a Manual Task; (2) Pi refers to a Task with its isBlocking 
attribute set to False, if Ai is an Automatic Task; (3) Pi refers to a TimerEventListener, 
if Ai is a Time Out Event; or (4) Pi refers to a CaseFileItem, if Ai is a Message Event. 
Moreover, each Pi (except P1) has a sentry defined as its guarding condition, and these 
PlanItems are connected as a chain following the sequence specified in the original 
Process Tree model: P2 links with P1 through P2’s entry sentry, P3 links with P2 
through P3’s entry sentry, and so on, as specified below. This way, once P1 is 
completed then P2 will be triggered to execute, and P3 will be active once P2 is 
completed, and so forth. 

  

�   
�   

2) AND Operator,   

If nodes A1, A2 … An are linked using an AND operator ( ), then 
each node Ai (1≤i≤n) converts to a CMMN PlanItem Pi, respectively. As defined in the 
SEQ operator, the type of CMMN element each Pi referring to is different, according 
to the element type of Ai. The element M is a Milestone used as a constraint to 
indicate the AND logical relations among all the PlanItems: it will be completed only 
if each Pi is completed. To this end, M is associated with one and only one entry 
sentry S, and all PlanItems are connecting with S. 

  

�   
�   

3) OR Operator,   

If nodes A1, A2 … An are linked using an OR operator ( ), then 
each node Ai (1≤i≤n) converts to a CMMN PlanItem Pi, respectively. As defined in the 
SEQ operator, the type of CMMN element each Pi referring to is different, according 
to the element type of Ai. Moreover, a Milestone M is defined and is associated with a 
set of entry sentries S1, S2 … Sn, and each Si (1≤i≤n) links with Pi, respectively. This 
way, the OR logical relation can be enabled: M will be completed if at least one Pi is 
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completed. 

  

�   
�   

4) XOR Operator,   

If nodes A1, A2 … An are linked using an XOR operator ( ), then 
each node Ai (1≤i≤n) converts to a CMMN DiscretionaryItem Di, respectively. The 
same as the situation specified in the SEQ operator, the type of CMMN element each 
Di referring to is different, according to the element type of Ai. Moreover, each Di is 
associated with an entry sentry Si that has only an ifPart defined, and the CaseFileItem 
F generated specifies the content for evaluating the ifPart of each Si. In addition, a 
PlanItem P referring to a Task is created to modify the content of F (i.e., F is the 
output of P), and it links with Di through its associated entry sentries (Si’). At initial 
time, all the DiscretionaryItems are at the null status, and their associated entry 
sentries are set to True. Once a Di is created, then P will be activated to modify the 
content of F such that all other sentries of the DiscretionaryItems will be evaluated to 
False, except the one that has been created. This ensures that one and only one 
DiscretionaryItem can be executed. 

  

  

  

  

  

5) XOR Operator,   

However, if a node A is linked with τ (which represents a silent action) using an 
XOR operator ( ), then it indicates that either node A is executed, or nothing 
will happen. In this case, the node A converts to a CMMN DiscretionaryItem D, and 
the type of CMMN element D referring to is different, according to the element type 
of A. D is at the null status when initialization, and is applicable at run time. This way, 
D can be either created to be executed or still remains at the null status. 

6) LOOP Operator,   
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If nodes A, B and C are linked using an LOOP operator ( ), then a 
PlanItem P referring to a Task will be created. In addition, P is repeatable: the 
repetitionRule of P is set to True (which is indicated using a # shape). An entry sentry 
associated as its guarding condition is created too, so that each time the entry sentry 
evaluates to True, a new instance of P is created. Otherwise, no new instance of P will 
be created.  

  

  

5.3 Model Transformation Algorithm 

In addition, we also define an algorithm in order to execute Process Tree to 
CMMN model transformations effectively and efficiently, which traverse all the 
operator nodes starting from the lowest level ones to the highest level one, where in 
our case the root node is at the highest level. More specifically, assuming that the root 
node is at level 0, and the lowest level the children operators are at is level n. We start 
from converting the operators at level n, with all its containing children, and from left 
to right, as specified in the section above. Each child node will convert to its CMMN 
equivalence, and they will be joined together in the logical manner the operator node 
defines (SEQ, AND, OR, XOR, and LOOP). Then we move to the upper level, level 
n-1, and perform the transformation using the CMMN segments we obtained at level 
n. Then we continue until we reach to level 0 where the root node stays. Figure 5-2 
below summarizes this algorithm using pseudo codes. 

 

Figure 5-2: The algorithm of the Process Tree to CMMN model transformation 
 

In this case, each node within the Process Tree model will be visited once. 
Consequently, this algorithm takes linear time to complete a model transformation, i.e., 
its time complexity is: . This will ease the model transformation process 
if case workers deal with cases with a great amount of process-related recorded 
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information. 

5.4 Conclusion 

In this chapter, continued with chapter 4 we have explained the CMD module. 
This CMD module aims at analyzing event logs and constructing case models on the 
basis of recorded process information. This module should serve as a case mode 
discovering tool for case workers: case workers start with feeding recorded process 
information into this module and will obtain a corresponding (as-is) case model; after 
that, thanks to the CMI module they could begin modifying the as-as case model and 
forecasting the performance of the to-be models and analyzing the real value of their 
model modifications. 

Due to the fact that a gap exists between these process discovery modeling 
specifications and the de-facto modeling standard for CM (i.e., CMMN), we proposed 
in our CMD module the model transformation from Process Tree to CMMN. 
Essentially, the meta-model of Process Tree concern Nodes and Edges, where the 
former relate to different types of tasks and the latter refers to the logical relationships 
between Nodes. Consequently, we have defined the mappings from Nodes to CMMN 
PlanItems and from Edges to the connections between PlanItems, respectively. 
Moreover, in order to ensure that the model transformation could be executed 
effectively when dealing with a massive quantity of process information, we also 
defined an algorithm with mapped all the nodes and all the edges in a linear time 
complexity manner. 
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6. CASE STUDY 
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6.1 Introduction 

In chapter 4 and chapter 5 we have explained our CMD and CMI module, 
respectively. Moreover, we have showed how the two modules can help case workers 
improve their work performance. In this chapter, we will use a case study to give a 
comprehensive understanding about the whole story, from analyzing recorded process 
information to a successful model improvement. 

The case study adapted from [Russo et al. 2013] and used in this section is to 
show how our CM solution help case works manage their daily work in terms of 
discovering case models, validating model transformations, and analyzing and 
improving case models in a quantitative and scientific manner. The transformations 
are implemented by ATL (for model-to-model transformations) and Acceleo (for 
model-to-text model transformation), and the HiLLS simulator is a java-implemented 
version. 

6.2 Background 

A bank deals with a certain amount of Manual Credit Transfer (MCT) operation 
in a monthly manner. The MCT operation is triggered by a request specifying the 
detailed information required, and it has the highest priority among other tasks. 

Generally, two units are working together to complete the operation: a Payment 
unit, and an Accounting unit. The former deals with operations regarding transferring 
the payment and recording the operation in the payment information system; while the 
latter deals with checking the funds availability, confirming the operation and 
updating the corresponding account information in their accounting information 
system. Once a request is received (R), the basic tasks performed by the two units are 
listed below: 

Payment Unit: 

1. register and check the payment orders received (A1); 
2. data entry in the payment information system (A2); 
3. final check and validation with the manager's signature, and pass the order to 

the Accounting unit (A3). 

Accounting Unit: 

1. register and check the payment orders received (B1); 
2. check the order received, check funds availability, validate payment and 

update information in the accounting information system (B2). 
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At this moment, employees are dealing with MCT cases, and recording their 
activity information in their data warehouse. In order to stay competitive, the 
managers are seeking possible ways to manage and eventually improve the 
operational performance of the MCT process. They want to understand how their 
process proceeds (e.g., the sequence of activities), and then investigate what the result 
will be if they implement a change initiative: merging the two units together to 
accomplish the operation, and reallocating the human resource in accordance. The 
challenge for them is to know if the change is worthy or not. The change will only be 
worthy if the benefits after change is larger than the cost which will spend on the 
change process. Otherwise, there is no sense to change their as-is process model. 

6.3 Case Model Discovery 

The first task for the case manager is to understand how MCT cases proceed. 
They can obtain a MCT model using the CMD approach, which merely requires 
activity-related data recorded in the event log. A segment of information is given in 
Table 6-1. Note that the value in the column Timestamp refers to the timestamp an 
activity ends. 

Table 6-1: The historical event data 
Process Instance Activity Timestamp 
1 R 9-3-2004:15.01 
1 A1 9-3-2004:15.18 
1 A2 9-3-2004:15.29 
2 R 9-3-2004:15.30 
1 A3 9-3-2004:15.34 
1 B1 9-3-2004:15.35 
2 A1 9-3-2004:15.37 
3 R 9-3-2004:15.39 
2 B1 9-3-2004:15.41 
2 A2 9-3-2004:15.48 
1 B2 9-3-2004:15.50 
… … … 

 

As given in Table 6-1, it is a segment of process date stored in an event log, 
where three kinds of basic process information are recorded: the process instance, the 
name of each activity, and the timestamp indicating the time point an activity ends. 
The process discovery tool we adopted here is ProM (version 6.6), a java 
implemented extensible (through plug-ins) framework that supports various process 
mining techniques [Verbeek et al. 2009]. Many ProM plug-ins have been implemented 
for different purposes. Thanks to the various algorithms provided with such plug-ins, 
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sound and robust process models can be established through studying the knowledge 
hidden in the process execution logs. In this example, we select to use the Inductive 
Miner process discovery plug-in with its algorithm, due to the fact that the Inductive 
Miner algorithm guarantees to generate sound (i.e., free of deadlocks) and fitting (i.e., 
all the traces recorded in given event logs can be replayed) process tree models 
[Leemans et al. 2013]. 

From Table 6-1 we can also see that this process have been executed for several 
times continually, and a set of activities have been executed as well. The resulting 
Process Tree model representing such an event log using the Inductive Miner 
algorithm is given in Figure 6-1, from where we can see that tasks A1, A2 and A3 
should be executed in sequence ( ), and task D (which is a verification 
task that is executed not often) will or will not be executed ( ), where the black 
node represents a silence action ( ). Moreover, task B1 is connected with 

 using the AND operator, , where in the model the 
AND operator is graphically shown as a + symbol. This set of tasks will be executed 
with R, B2 and , in a sequence (R, , B2, ). As a 
consequence, the complete process tree model given in Figure 6-1 can be expressed as 

. 

 
Figure 6-1: The resulting process tree model 

 
To transform this process tree model into a CMMN case model, we start from the 

Operators at the lowest level, as the transformation algorithm specified above. In this 
case, it is the SEQ operator with tasks A1, A2 and A3: . From the 
transformation rules we know that each Ai (which belongs to ) will be 
converted into a PlanItem referring to a Task, and these Tasks are connected by 
sentries in a sequential way: A2 connects with A1 through an entry sentry, and A3 links 
with A2 through its entry sentry, as given in the upper part of Figure 6-2. 
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Figure 6-2: The model transformation example – 1 

 
Then we move to the upper level in which we have two operators defined: an 

AND operator , and a XOR operator . To convert the 
AND operator with all its children, B1 will convert to a CMMN PlanItem referring to 
a Task, and this PlanItem will linked together with the resulting CMMN model 
segments obtained from the last step transforming , in a logical AND 
manner, as given in the upper part in Figure 6-3. Moreover, the XOR operator with its 
children ( ) will convert to a CMMN DiscretionaryItem referring to a Task, as 
given in the lower part in Figure 6-3. 

 
Figure 6-3: The model transformation example - 2 
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Now we will be at level 0 to transform the root node (which is an SEQ operator) 
with its children. The node R (as well as the node B2) will convert to a CMMN 
PlanItem referring to a Task. In addition, all obtained CMMN model segments from 
last steps will be linked together in a sequential manner, through certain added 
sentries: A1 and B1 have an entry sentry connecting to R, B2 has an entry sentry 
connecting to M, and D has an entry sentry connecting to B2, respectively. Figure 6-4 
gives the final complete case model obtained from Process Tree to CMMN model 
transformation. 

 
Figure 6-4: The as-as CMMN case model 

 
At run time, this case model will be executed as follows: when the whole case 

model is initiated, then task R will be executed first. Once R is completed, then A1 
and B1 will be triggered to be active, where A1, A2 and A3 will be executed in 
sequence. B2 will be activated only when M is completed, which indicates that A3 
and B1 are both completed. Based on case workers decisions at run time, D will be 
executed if necessary once B2 is completed, or stay in the null status till the end. 
Consequently, we can see that all the tasks in both the original Process Tree model 
and the generated CMMN model will be executed in the same manner. Case workers 
are able to further analysis and improve their processes on the basis of case models 
specified using CMMN, a modeling formalism that is more friendly and easy-to-use 
for them. This is the as-is CMMN case model we start with. Next we will see how to 
forecast potential performance and predict hidden risks coming with the change 
initiative. 
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6.4 Generated HiLLS Model and Experimental Frame 

According to the CMMN2HiLLS rules defined in chapter 4, the as-is MCT 
model’s HiLLS counterpart is shown in Figure 6-5 in a tree-view HiLLS model editor. 
A detailed explanation of the obtained case model is illustrated in [Wang & Traoré 
2014], as given in Figure 6-6 and Figure 6-7, where the former presents the system 
structure and the latter presents the system behavior. As we can see, the whole Case 
transforms to a HiLLS HSystem, and each of the basic modeling elements within that 
Case transforms to a HClass.  

 

Figure 6-5: The as-is HiLLS model in a tree-view format 
 

 
Figure 6-6: The graphical representation of the structure of the as-is HiLLS model 
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Figure 6-7: The partial graphical behavior representation of the as-is HiLLS model 

 
Moreover, the intermediate EF is generated as well on the basis of the IEF 

generation rules we have specified in chapter 4. As we explained in the case study in 
section 4.3.6, the IEF of this case model is generated in the same manner, as given in 
Figure 6-8 which shows the structure of the EventGenerator. 

 
Figure 6-8: The event generator Hills model 
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The couplings are specified in the configuration of the EventGenerator as 
following: 

� R_EG.EventOut = RS_EG.EventIn 
� RS_EG.EventOut = A1_EG.EventIn 
� RS_EG.EventOut = B1_EG.EventIn 
� A1_EG.EventOut = A2_EG.EventIn 
� A2_EG.EventOut = A3_EG.EventIn 
� B1_EG.EventOut = M_EG.EventIn 
� A3_EG.EventOut = M_EG.EventIn 
� M_EG.EventOut = B2_EG.EventIn 
� B2_EG.EventOut = D_EG.EventIn 
� R_EG.EventOut = EventGenerator.EventOut 
� RS_EG.EventOut = EventGenerator.EventOut 
� A1_EG.EventOut = EventGenerator.EventOut 
� A2_EG.EventOut = EventGenerator.EventOut 
� A3_EG.EventOut = EventGenerator.EventOut 
� B1_EG.EventOut = EventGenerator.EventOut 
� B2_EG.EventOut = EventGenerator.EventOut 
� M_EG.EventOut = EventGenerator.EventOut 
� D_EG.EventOut = EventGenerator.EventOut 

For each item event generator (i.e., R_EG, RS_EG, A1_EG, etc.), the structure 
and the behavior are defined by our IEF generation rules. In the figure below we give 
the RS_EG HSystem’s coupling information graphically as an example. 

 
Figure 6-9: The RS_EG HiLLS model’s coupling information 
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The figure above gives the configurations and the configuration transitions of the 
Case_Suspend atomic HSystem as an example. 

 
Figure 6-10: The RS_Suspend atomic HiLLS model 

 
As we can see, there are some information missing: it left to the case worker to 

complete once the IEF is generated. As explained, not all the possible events are 
necessary for a simulation practice. Once all the complementary information is added, 
the final EF will be obtained. For example, based on the information stored in their 
event log, the time used to perform each task and the human resource allocation is 
listed in the figure below. The value in the column Time is a uniform distributed 
random number, where the two numbers in the bracket are the lower and upper 
bounds from left to right, respectively. 

 
Figure 6-11: The complementary information 
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With such information plus the case workers decisions about what events are 
considered in their experiments, the final EF can be obtained. Figure 6-12 shows what 
the Event Generator in the EF looks like, and Figure 6-13 gives an example 
illustrating the system behavior of a HSystem, A1Complete, contained in 
A1EventGenerator (A1, complete). There are two configurations, and the passive one 
with a wide border indicates that it is the original configuration that the system stays 
in at the beginning of the simulation. For other atomic HSystems defined, they behave 
in the same manner, with different assigning value to σ. 

 
Figure 6-12: The event generator 

 

 
Figure 6-13: The system behavior of A1Complete 
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6.5 To-be Model 

The managers’ intention is to merge the two separate units together in order to 
save cost and improve efficiency and effectiveness. To this end, they remove 
repetitive tasks performed in both units, and rearrange the human resources. In 
addition, the case managers add one additional non-activity element in the case model, 
as given in the figure below: a TimerEventListener (T) defining a deadline for 
completing the case. The equivalent HiLLS model is given in Figure 6-15 in a 
tree-view HiLLS model editor. 

 
Figure 6-14: The CMMN to-be case model 

 

 
Figure 6-15: The HiLLS to-be model in the tree-view editor 
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The related information for the to-be situation is updated in accordance with the 
to-be model, and listed in the table below. 

Table 6-2: Information for the to-be model 
Task Employees Required Time Required per Employee 

R - [0, 0] 
A1 2 [4, 6] 
A2 4 [7, 11] 
B2 5 [10, 14] 

 

The final EF is similar with the one for the as-is model, except that the Event 
Generator has different atomic event generators compared with the as-is situation 
(due to the fact that in the to-be situation the number of elements concerned is 
different). To this reason, we will not repeat the same process here. 

6.6 Results Analysis 

There are 40 case requests in the simulation practice, and the goal is to anticipate 
if the change of units merging is worthy or not. 

The results from the simulation presented here are interpreted mainly from two 
perspectives: Lean and TOC. From the former perspective managers can have a global 
view on how effective and efficient their operation proceeds, and identify if there 
exists any waste within their processes. Related performance metrics include 
lead-time (the amount of time a product takes to flow completely through the process), 
work-in-progress (WIP, the number of work items being started but not yet finished), 
backlog (the number of work items waiting between different work steps), idle-time 
(the non-productive time of employees), handoffs (the number of times the 
information/product passes from one employee to another), etc, as we have explained 
in section 4.4. From the TOC point of view, it is possible to identify if any bottleneck 
exists within their processes. The metrics are backlog and idle-time due to the fact that 
if a work step has a huge backlog, or the one downstream has a long idle-time, then 
this work step is a bottlenecks [Goldratt et al. 1992]. 

Figure 6-16 shows the backlog in the as-is model simulation, from which we can 
identify that the work step having the most backlog is A1. However, from the 
idle-time point of view in Figure 6-17, A2 is also a bottleneck due to the fact that 
employees at step A3 have plenty of time for waiting. Consequently, A1 and A2 are 
the bottlenecks that slow other steps down. 
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Figure 6-16: The backlog in the as-is model 

 

 
Figure 6-17: The idle time in the as-is model 

 
However, in the to-be situation, as given in Figure 6-18 and Figure 6-19, A1 is no 

longer the constraint, and it is A2 that becomes the new bottleneck from the backlog 
point of view. However, from the idle-time perspective the bottleneck becomes the 
incoming orders, i.e., the constraint now exists in the market, on longer in the system. 
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Figure 6-18: The backlog in the to-be model 

 

 
Figure 6-19: The idle time in the to-be model 

 
[Goldratt et al. 1992] pointed out that there will always exist at least one 

bottleneck within organizations, the key point is that whenever erases one bottleneck, 
make sure the rest of resources are well rearranged, and the performance improves. 
We can verify the effectiveness and efficiency of the changes from the perspective of 
lean. In the following we give some examples. 
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Figure 6-20: The comparison of lead-time 

 

 
Figure 6-21: The comparison of WIPs 

 
� Lead-time: As shown in Figure 6-20, the Y-axis of the graph represents the time 

used for all MCT operations, and the X-axis represents the two situations: as-is 
and to-be. We can see that the lead-time in the to-be model is reduced due to the 
process restructuring and human resource re-allocation. 

� WIP: The Y-axis in Figure 6-21 refers to the number of WIPs existing during 
simulation, and the X-axis represents the time. From the comparison we can see 
that the amount of WIPs in the to-be situation is reduced due to the changes 
made. 
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From the results and analysis above, this case study shows that: 

1. both the lead-time and the WIPs are reduced; 
2. potential bottlenecks are well erased; 
3. the operational performance is improved.  

Consequently, in this case the merger of two units is beneficial, and the manager 
could make a more reasonable decision based on the simulation results and analysis. 
Moreover, he could try other change initiatives and run the simulation for each idea, 
then choose the one the most valuable to the business. 

6.7 Conclusion 

After given the detailed model transformation rules in chapter 4 and chapter 5, in 
this chapter we have shown a simple case study relating to the manual credit transfer 
operation in a bank. We started with the introduction of the case study, and we also 
explained why the manager wanted to change their case model and how the manager 
could test his change initiatives. Thanks to our CMD module, based on the recorded 
event logs the manager could easily get a CMMN case model automatically, instead 
of constructing one manually which is error-prone and requires additional costs. Once 
the as-is CMMN model is generated, the manager could start to make modifications 
and forecast the performance of the new to-be model by using our CMI module. His 
idea was to merge two teams as one, and the simulation results proved that this 
change was worthy in terms of process performance from the perspectives of lean and 
TOC, respectively. In order to make the best decision, he could try other change 
initiatives and run the simulation for each idea, then choose the one the most valuable 
to the business.
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7. GENERAL CONCLUSION 
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7.1 Conclusion 

In this these, we have explained in the beginning the background and context of 
the real problem to be solved: more and more case management processes emerge in 
today’s business, but the research work in this area is not sufficient, especially in 
terms of case model discovery and case model improvement. 

In order to make contribution to this challenge, in chapter 2 we have presented a 
literature review of the state of the art regarding case management modeling 
approaches and systems, as well as process improvement practices in case 
management. The case management modeling solutions were discussed under four 
categories: activity-based, information-based, communication-based, and hybrid 
activity and information based. We further summarized to which extent these 
approaches and systems support knowledge workers modeling processes and 
information involved in a case. We noticed that as modeling languages for case 
management, most of the approaches come with a graphical representation, but they 
lack a formal description for their abstract syntax and operational semantics. It is 
reasonable to consider both the process and information as the first-class citizens 
when modeling cases, due to case management features, and knowledge workers 
should be able to cooperate with each other, in a collaborative manner. However, most 
of the proposed modeling languages focus on only one aspect. We further observed 
that as commercial case management systems, most of them offer a case modeling 
language with syntaxes (both abstract and concrete) and operational semantics defined. 
None of the approaches were developed on the basis of CMMN. In terms of process 
simulation, process improvement and process discovery, not a lot of noticeable 
contributions can be found in the literature. 

In chapter 3, we introduced the theories and techniques used in this these. We 
started by explaining the basic components of a system modeling language since the 
system modeling language was what we used for building our solutions. Then we 
introduced CMMN, the standard modeling language for case management, including 
the abstract and concrete syntaxes, and its operational semantics. We also introduced 
HiLLS, a system modeling language we have adopted for constructing multi-aspect 
system models. Moreover, we explained the concepts and approaches regarding 
business process management, including process analytics, process improvement, 
process reengineering, lean, and TOC. Such concepts and approaches are widely 
adopted in business domain to help organizations govern and improve their process 
performance. We also reviewed how organizations used simulation as an approach to 
predict the potential impacts of proposed process changes, as well as examine and 
compare all proposed improvement alternatives without actually change the exiting 
processes. In addition, we also introduced process discovery in section 0, a process 
approach to explore and construct business process models by merely analyzing raw 
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data stored in event logs, and the process tree modeling language, a modeling 
formalism used to depict models generated from process discovery. We presented 
model transformation in the end of that chapter, an essential approach in MDE to 
automatically generate target model(s) from source model(s) following a set of 
transformation rules. 

In chapter 4, the CMI module was explained. Essentially, case workers start with 
case models, which later will be transformed into HiLLS models in order to allow 
case workers conduct case model simulations. As we have explained in the beginning 
of this chapter before, the translations between a CMMN model and its targeted 
HiLLS model are not simply n-n mappings between their meta-models. Especially for 
the configurations and the transitions between them, the rules must take into account 
several conditions, e.g., each element’s state, sentry state, etc. To this reason, we have 
adopted several manners to formally specify the CMMN to HiLLS model 
transformation rules. Regarding to the system structure, we have used tables in which 
the mappings between CMMN and HiLLS metamodels were defined. In terms of 
system behavior, which concerns configurations and their transitions, we have used 
mathematic formulas and tables together to specify how Configurations are generated, 
as well as how they transit from one to another. The rules of configuration transitions 
serve as the pre-conditions when executing HiLLS model simulations. In addition, we 
have also proposed a semi-automatic mechanism to generate an EF for a case model, 
which concerns generating event models, event generator models, as well as an 
analyzer model. This analyzer which will receive and compute the values of 
performance metrics we have defined from different point of view: Lean and TOC. 

The CMD module was detailed in chapter 5. This CMD module aims at analyzing 
event logs and constructing case models on the basis of recorded process information. 
This module should serve as a case mode discovering tool for case workers: case 
workers start with feeding recorded process information into this module and will 
obtain a corresponding (as-is) case model; after that, thanks to the CMI module they 
could begin modifying the as-as case model and forecasting the performance of the 
to-be models and analyzing the real value of their model modifications. Due to the 
fact that a gap exists between these process discovery modeling specifications and the 
de-facto modeling standard for CM (i.e., CMMN), we proposed in our CMD module 
the model transformation from Process Tree to CMMN. Essentially, the meta-model 
of Process Tree concern Nodes and Edges, where the former relate to different types 
of tasks and the latter refers to the logical relationships between Nodes. Consequently, 
we have defined the mappings from Nodes to CMMN PlanItems and from Edges to 
the connections between PlanItems, respectively. Moreover, in order to ensure that the 
model transformation could be executed effectively when dealing with a massive 
quantity of process information, we also defined an algorithm with mapped all the 
nodes and all the edges in a linear time complexity manner. 
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In order to provide a prove to our approach, in chapter 6 we have selected a case 
study to show that how case workers can benefit from our two module in managing 
their daily case work. This case study might be a simple one in a certain sense since 
we could not find a real complex case study with real data: most of such cases (e.g., 
the projects in Michelin) are confidential, and even we claimed to erase all sensitive 
parts the managers were still not agreed that we could use their real cases. 

7.2 Perspectives 

Next step, due to the limit of the IEF generated, a more efficient way could be 
established in order to not generate all possible element events but only the ones case 
workers need at the first time. This will save some time in terms of establishing an 
experimental frame for a case model simulation. Besides, we will focus on how to 
conduct static analysis on case models using formal analysis. This part is not yet 
mature for this moment. We mainly focused on the dynamic analysis part by using 
M&S. Moreover, it will be interesting to explore how business intelligence can be 
used in CM when performing both static and dynamic model analysis together. 
Another point is, CM is mainly focused on unstructured processes, and BPM is for 
structured processes. It will be beneficial to use both CM and BPM together in today’s 
business processes since both structured and unstructured processes are already being 
observed. 
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