W. M. Zhu, Q. H. Song, L. B. Yan, W. Zhang, P. C. Wu et al.,

D. P. Cai, Z. X. Tsai, T. W. Shen, S. K. Deng, Y. D. Ting et al.,

L. Kwong, Z. C. Yang, R. Huang, A. Q. Liu, and N. Zheludev, A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial, Advanced Materials, vol.27, issue.32, pp.4739-4743, 2015.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen et al.,

D. P. Lo, T. Tsai, Y. Bourouina, A. Q. Leprince-wang, and . Liu, Water- Resonator-Based Metasurface: An Ultra-Broadband and Near-Unity Absorption, Advanced Optical Materials, 2017.

Q. H. Song, P. C. Wu, W. Zhang, W. M. Zhu, J. H. Teng et al., Z. X

P. H. Shen, D. P. Chong, T. Tsai, and . Bourouina,

Q. Liu, Liquid-Metal-Based Metasurface for Terahertz Absorption Material: Frequency-Agile and Wide-Angle, APL Materials, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01721125

Q. H. Song, W. Zhang, W. M. Zhu, and P. ,

T. Tsai, Y. Bourouina, A. Q. Leprince-wang, and . Liu, Active Bianisotropic Chiral Metasurface For Asymmetric Transmission, Advanced Materials

, Tunable Meta-Liquidmaterial based on mercury microdroplets, 5th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META2014), p.2014

Q. H. Song, P. C. Wu, W. M. Zhu, and W. Zhang,

C. Yang, Y. F. Jin, Y. L. Hao, T. Bourouina, Y. Leprince-wang et al.,

. Liu, Transition from plasmon coupling to plasmon-microcavity hybridization, 35th International Conference on Lasers and Electro-Optics (CLEO2015), p.2015
URL : https://hal.archives-ouvertes.fr/hal-01721140

Q. H. Song, W. Zhang, H. Cai, Y. D. Gu, P. C. Wu et al.,

Z. C. Liang, Y. F. Yang, Y. L. Jin, and D. L. Hao,

A. Q. Leprince-wang and . Liu, A Tunable Metamaterial for Wide-Angle and Broadband Absorption Through Meta-Water-Capsule Coatings, 36th International Conference on Lasers and Electro-Optics, p.2016, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01721174

D. Barber and I. C. Freestone, AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY, Archaeometry, vol.32, issue.1, pp.33-45, 1990.
DOI : 10.1111/j.1475-4754.1980.tb00941.x

]. J. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science, vol.312, issue.5781, pp.312-1780, 2006.
DOI : 10.1126/science.1125907

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and Negative Refractive Index, Science, vol.305, issue.5685, pp.788-792, 2004.
DOI : 10.1126/science.1096796

]. N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nature Materials, vol.493, issue.2, pp.139-150, 2014.
DOI : 10.1038/nature11727

]. R. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science, vol.292, issue.5514, pp.77-79, 2001.
DOI : 10.1126/science.1058847

]. Y. Liu and X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews, vol.82, issue.5, pp.2494-2507, 2011.
DOI : 10.1103/PhysRevA.82.022511

H. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor et al.,

. Averitt, Active terahertz metamaterial devices, Nature, vol.444, pp.597-600, 2006.

]. I. Khoo, Nonlinear optics, active plasmonics and metamaterials with liquid crystals, Progress in Quantum Electronics, vol.38, issue.2, pp.77-117, 2014.
DOI : 10.1016/j.pquantelec.2014.03.001

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, Microfluidics for reconfigurable electromagnetic metamaterials, Applied Physics Letters, vol.95, issue.21, p.214102, 2009.
DOI : 10.1103/PhysRevE.71.036617

URL : http://repository.bilkent.edu.tr/bitstream/11693/22501/1/Microfluidics%20for%20reconfigurable%20electromagnetic%20metamaterials.pdf

W. Zhu, B. Dong, Q. Song, W. Zhang, R. Huang et al., Tunable meta-fluidic-materials base on multilayered microfluidic system, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014.
DOI : 10.1109/MEMSYS.2014.6765580

Q. Wu, C. P. Scarborough, B. G. Martin, R. K. Shaw, D. H. Werner et al., A Ku-Band Dual Polarization Hybrid-Mode Horn Antenna Enabled by Printed-Circuit-Board Metasurfaces, IEEE
DOI : 10.1109/tap.2012.2227448

. Propag, , pp.1089-1098, 2013.

G. Chiu and J. M. Shaw, Optical lithography: Introduction, IBM Journal of Research and Development, vol.41, issue.1.2, pp.3-6, 1997.
DOI : 10.1147/rd.411.0003

R. Pease, Electron beam lithography, Contemporary Physics, vol.15, issue.3, pp.265-290, 1981.
DOI : 10.1116/1.569678

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, pp.4129-4133, 1996.
DOI : 10.1116/1.588605

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of and µ, p.509, 1968.

J. B. Pendry, A. J. Holden, D. Robbins, and W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, pp.2075-2084, 1999.
DOI : 10.1109/22.798002

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, vol.10, issue.18, p.4184, 2000.
DOI : 10.1364/JOSAB.10.000314

Q. Zhao, L. Kang, B. Du, H. Zhao, and Q. Xie,

. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite, Phys. Rev. Lett, vol.101, p.27402, 2008.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, Negative index bulk metamaterial at terahertz frequencies, Optics Express, vol.16, issue.9, pp.6736-6744, 2008.
DOI : 10.1364/OE.16.006736

]. N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang et al., NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT, Progress In Electromagnetics Research, vol.64, pp.205-218, 2006.
DOI : 10.2528/PIER06071104

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev et al., Negative index of refraction in optical metamaterials, Optics Letters, vol.30, issue.24, pp.3356-3358, 2005.
DOI : 10.1364/OL.30.003356

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-avila, D. A. Genov et al., Three-dimensional optical metamaterial with a negative refractive index, Nature, vol.6, issue.7211, pp.455-376, 2008.
DOI : 10.1038/nature07247

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood et al., Experimental Demonstration of Near-Infrared Negative-Index Metamaterials, Physical Review Letters, vol.22, issue.13, p.137404, 2005.
DOI : 10.1103/PhysRevB.65.195104

H. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva et al., A negative permeability material at red light, Optics Express, vol.15, issue.3, pp.1076-1083, 2007.
DOI : 10.1364/OE.15.001076

URL : http://arxiv.org/pdf/physics/0610118

S. P. Burgos, R. De-waele, A. Polman, and H. A. Atwater, A single-layer wide-angle negative-index metamaterial at visible frequencies, Nature Materials, vol.9, issue.5, pp.407-412, 2010.
DOI : 10.1038/nmat2747

URL : https://authors.library.caltech.edu/18348/2/nmat2747-s1.pdf

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Negative Refraction at Visible Frequencies, Science, vol.316, issue.5823, pp.316-430, 2007.
DOI : 10.1126/science.1139266

URL : http://daedalus.caltech.edu/publication/pubs/NegRefrac2007.pdf

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Perfect Metamaterial Absorber, Physical Review Letters, vol.114, issue.20, p.207402, 2008.
DOI : 10.1364/JOSAB.23.000404

URL : http://arxiv.org/pdf/0803.1670

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, Ohmic loss in frequency-selective surfaces, Journal of Applied Physics, vol.93, issue.9, pp.5346-5358, 2003.
DOI : 10.1364/AO.37.005271

F. Bilotti, L. Nucci, and L. Vegni, An SRR based microwave absorber, Microwave and Optical Technology Letters, vol.30, issue.11, pp.2171-2175, 2006.
DOI : 10.1002/mop.21891

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang et al., Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber, Journal of Applied Physics, vol.114, issue.19, p.194511, 2013.
DOI : 10.1063/1.3573495

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda et al., A dual band terahertz metamaterial absorber, Journal of Physics D: Applied Physics, vol.43, issue.22, p.225102, 2010.
DOI : 10.1088/0022-3727/43/22/225102

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid et al., A terahertz polarization insensitive dual band metamaterial absorber, Optics Letters, vol.36, issue.6, pp.945-947, 2011.
DOI : 10.1364/OL.36.000945

URL : http://eprints.gla.ac.uk/50483/1/50483.pdf

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst et al., Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters, Physical Review Letters, vol.107, issue.4, p.45901, 2011.
DOI : 10.1038/nphoton.2009.3

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.107.045901

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance, Physical Review Letters, vol.104, issue.20
DOI : 10.1117/1.1580829

URL : http://arxiv.org/pdf/1002.1974

. Lett, , p.207403, 2010.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh et al., Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials, Advanced Materials, vol.70, issue.45, pp.5410-5414, 2011.
DOI : 10.1063/1.119291

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies, Scientific Reports, vol.74, issue.1, p.3955, 2014.
DOI : 10.1063/1.123973

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, Wide-angle infrared absorber based on a negative-index plasmonic metamaterial, Physical Review B, vol.22, issue.4, p.45131, 2009.
DOI : 10.1103/PhysRevB.73.113108

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou et al., High performance optical absorber based on a plasmonic metamaterial, Applied Physics Letters, vol.96, issue.25
DOI : 10.1016/S0375-9601(01)00838-6

. Phys and . Lett, , p.251104, 2010.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Ultra-broadband microwave metamaterial absorber, Applied Physics Letters, vol.100, issue.10, p.103506, 2012.
DOI : 10.2528/PIER10122401

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin et al., Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab, Nano Letters, vol.12, issue.3, pp.1443-1447, 2012.
DOI : 10.1021/nl204118h

A. K. Azad, W. J. Kort-kamp, M. Sykora, N. R. Weisse-bernstein, and T. ,

A. J. Luk, D. A. Taylor, H. Dalvit, and . Chen, Metasurface broadband solar absorber, Sci. Rep, vol.6, p.pp, 2016.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith et al., Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging, Physical Review B, vol.79, issue.12, pp.79-125104, 2009.
DOI : 10.1364/OE.15.001639

URL : http://arxiv.org/pdf/0807.3390

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang et al., Polarization-independent wide-angle triple-band metamaterial absorber, Optics Express, vol.19, issue.10, pp.9401-9407, 2011.
DOI : 10.1364/OE.19.009401

D. R. Smith, J. J. Gollub, W. J. Mock, D. Padilla, and . Schurig, Calculation and measurement of bianisotropy in a split ring resonator metamaterial, Journal of Applied Physics, vol.9, issue.2, p.24507, 2006.
DOI : 10.1103/PhysRevB.71.195402

D. Smith, D. Schurig, and J. Mock, Characterization of a planar artificial magnetic metamaterial surface, Physical Review E, vol.74, issue.3, p.36604, 2006.
DOI : 10.1103/PhysRevB.71.195402

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer et al., Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization, Physical Review B, vol.78, issue.24, p.241103, 2008.
DOI : 10.1007/s00339-006-3825-4

B. Wang, T. Koschny, and C. M. Soukoulis, Wide-angle and polarization-independent chiral metamaterial absorber, Physical Review B, vol.80, issue.3, p.33108, 2009.
DOI : 10.1078/1434-8411-00035

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao et al., Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Optics Express, vol.19, issue.18, pp.17413-17420, 2011.
DOI : 10.1364/OE.19.017413

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. ,

. Tretyakov, A thin electromagnetic absorber for wide incidence angles and both polarizations, IEEE. T. Antenn. Propag, vol.57, pp.3119-3125, 2009.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, and J. , Tetienne, F. Capasso and Z

. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, vol.334, pp.333-337, 2011.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro et al., A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces, Nano Letters, vol.12, issue.12, pp.6328-6333, 2012.
DOI : 10.1021/nl303445u

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats et al., Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Physical Review B, vol.9, issue.15, p.155457, 2012.
DOI : 10.1109/PROC.1965.4057

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard et al., Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces, Nano Letters, vol.12, issue.9, pp.4932-4936, 2012.
DOI : 10.1021/nl302516v

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro et al., Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities, Nano Letters, vol.12, issue.3, pp.1702-1706, 2012.
DOI : 10.1021/nl300204s

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang et al., Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities, Advanced Materials, vol.31, issue.33, pp.4567-4572, 2013.
DOI : 10.1364/OL.31.000634

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu et al., Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude, Advanced Materials, vol.12, issue.29, pp.5031-5036, 2014.
DOI : 10.1021/nl4044482

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian et al., Efficient flat metasurface lens for terahertz imaging, Optics Express, vol.22, issue.21, pp.25931-25939, 2014.
DOI : 10.1364/OE.22.025931

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui et al., Flat metasurfaces to focus electromagnetic waves in reflection geometry, Optics Letters, vol.37, issue.23, pp.4940-4942, 2012.
DOI : 10.1364/OL.37.004940

W. T. Huang, W. Chen, P. C. Tsai, C. Wu, G. Wang et al., Aluminum Plasmonic Multicolor Meta-Hologram, Nano Letters, vol.15, issue.5, pp.3122-3127, 2015.
DOI : 10.1021/acs.nanolett.5b00184

W. T. Chen, K. Yang, C. Wang, Y. Huang, G. Sun et al., High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images, Nano Letters, vol.14, issue.1, pp.225-230, 2013.
DOI : 10.1021/nl403811d

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao et al., Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency, Advanced Materials, vol.6, issue.7, pp.1195-1200, 2015.
DOI : 10.1103/Physics.6.53

URL : https://hal.archives-ouvertes.fr/hal-01422951

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai et al., Dispersionless Phase Discontinuities for Controlling Light Propagation, Nano Letters, vol.12, issue.11, pp.5750-5755, 2012.
DOI : 10.1021/nl303031j

M. Tymchenko, J. S. Gomez-diaz, and J. Lee,

. Alù, Gradient nonlinear Pancharatnam-Berry metasurfaces, Phys. Rev

. Lett, , p.207403, 2015.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf et al., Metasurface holograms reaching 80% efficiency, Nature Nanotechnology, vol.3, issue.4, pp.308-312, 2015.
DOI : 10.1016/0030-4018(71)90095-2

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-Induced Transparency in Metamaterials, Physical Review Letters, vol.22, issue.4, p.47401, 2008.
DOI : 10.1038/nphoton.2007.171

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, Phase-Coupled Plasmon-Induced Transparency, Physical Review Letters, vol.104, issue.24, p.243902, 2010.
DOI : 10.1002/pssb.200743225

R. Singh, W. Cao, and I. ,

. Zhang, Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces, Appl. Phys. Lett, vol.105, p.171101, 2014.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju et al.,

D. Y. Tatar, J. W. Fozdar, Y. Suk, A. B. Hao, and . Khanikaev, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett, vol.13, pp.1111-1117, 2013.

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Nonlinear electric metamaterials, Applied Physics Letters, vol.95, issue.8, p.84102, 2009.
DOI : 10.1103/PhysRevB.75.195111

E. Poutrina, D. Huang, and D. R. Smith, Analysis of nonlinear electromagnetic metamaterials, New Journal of Physics, vol.12, issue.9, p.93010, 2010.
DOI : 10.1088/1367-2630/12/9/093010

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Nonlinear Properties of Left-Handed Metamaterials, Physical Review Letters, vol.28, issue.3, p.37401, 2003.
DOI : 10.1063/1.1359141

F. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler et al., Second-harmonic generation from split-ring resonators on a GaAs substrate, Optics Letters, vol.34, issue.13, pp.1997-1999, 2009.
DOI : 10.1364/OL.34.001997

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen et al., Local Field Asymmetry Drives Second-Harmonic Generation in Noncentrosymmetric Nanodimers, Nano Letters, vol.7, issue.5, pp.1251-1255, 2007.
DOI : 10.1021/nl0701253

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola et al., Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality, Nature Nanotechnology, vol.13, issue.2, pp.107-111, 2011.
DOI : 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

W. R. Somerville, D. A. Powell, and I. V. Shadrivov, Second harmonic generation with zero phase velocity waves, Applied Physics Letters, vol.98, issue.16, p.161111, 2011.
DOI : 10.1109/LMWC.2008.2001010

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van-der-weide, Compact Left-Handed Transmission Line as a Linear Phase???Voltage Modulator and Efficient Harmonic Generator, IEEE Transactions on Microwave Theory and Techniques, vol.55, issue.3, pp.55-571, 2007.
DOI : 10.1109/TMTT.2007.891692

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry et al., Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science, vol.314, issue.5801, pp.314-977, 2006.
DOI : 10.1126/science.1133628

M. G. Alù, N. Silveirinha, and . Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett, vol.103, p.153901, 2009.

A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Physical Review E, vol.100, issue.1, p.16623, 2005.
DOI : 10.1063/1.523256

A. Alù, Mantle cloak: Invisibility induced by a surface, Physical Review B, vol.80, issue.24, p.245115, 2009.
DOI : 10.1364/OE.14.011945

J. Li and J. Pendry, Hiding under the Carpet: A New Strategy for Cloaking, Physical Review Letters, vol.43, issue.20, p.203901, 2008.
DOI : 10.1364/OE.16.003161

URL : http://arxiv.org/pdf/0806.4396

R. Liu, C. Ji, J. Mock, J. Chin, T. Cui et al., Broadband Ground-Plane Cloak, Science, vol.14, issue.2 Pt 2, pp.366-369, 2009.
DOI : 10.1126/science.1133628

J. Lee, J. Blair, V. Tamma, Q. Wu, S. Rhee et al., Direct visualization of optical frequency invisibility cloak based on silicon nanorod array, Optics Express, vol.17, issue.15, pp.12922-12928, 2009.
DOI : 10.1364/OE.17.012922

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, An ultrathin invisibility skin cloak for visible light, Science, vol.6, issue.7507, pp.1310-1314, 2015.
DOI : 10.1103/PhysRevB.6.4370

H. Lee and J. Yook, Biosensing using split-ring resonators at microwave regime, Applied Physics Letters, vol.111, issue.25, p.254103, 2008.
DOI : 10.1016/j.bios.2005.10.024

H. Lee, H. Lee, K. Yoo, and J. Yook, DNA sensing using split-ring resonator alone at microwave regime, Journal of Applied Physics, vol.108, issue.1, p.14908, 2010.
DOI : 10.1007/978-3-663-05664-5_3

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa et al., Terahertz surface-wave resonant sensor with a metal hole array, Optics Letters, vol.31, issue.8, pp.1118-1120, 2006.
DOI : 10.1364/OL.31.001118

C. Debus and P. H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing, Applied Physics Letters, vol.91, issue.18, p.184102, 2007.
DOI : 10.1023/A:1024444809852

J. B. Jackson and N. J. Halas, Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates, Proc. Natl. Acad. Sci., 101, pp.17930-17935, 2004.
DOI : 10.1063/1.481952

URL : http://www.pnas.org/content/101/52/17930.full.pdf

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.636, issue.6, pp.442-453, 2008.
DOI : 10.1088/0957-4484/18/32/325101

P. Markowicz, W. Law, A. Baev, P. Prasad, S. Patskovsky et al., Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing, Optics Express, vol.15, issue.4, pp.1745-1754, 2007.
DOI : 10.1364/OE.15.001745

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz et al., Plasmonic nanorod metamaterials for biosensing, Nature Materials, vol.79, issue.11, pp.867-871, 2009.
DOI : 10.1007/s00216-004-2708-9

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi et al.,

F. Kato, K. Miyamaru, and . Kawase, Terahertz sensing method for protein detection using a thin metallic mesh, Appl. Phys. Lett, vol.91, p.253901, 2007.

T. Driscoll, G. Andreev, D. Basov, S. Palit, S. Cho et al., Tuned permeability in terahertz split-ring resonators for devices and sensors, Applied Physics Letters, vol.91, issue.6, p.62511, 2007.
DOI : 10.1063/1.1332415

R. Melik, N. K. Perkgoz, E. Unal, Z. Dilli, and H. V. Demir, Design and Realization of a Fully On-Chip High-$Q$ Resonator at 15 GHz on Silicon, IEEE Transactions on Electron Devices, vol.55, issue.12, pp.3459-3466, 2008.
DOI : 10.1109/TED.2008.2006533

URL : http://repository.bilkent.edu.tr/bitstream/11693/11625/1/10.1109-TED.2008.2006533.pdf

R. Melik, N. K. Perkgoz, E. Unal, C. Puttlitz, and H. V. Demir, Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications, Journal of Micromechanics and Microengineering, vol.18, issue.11, p.115017, 2008.
DOI : 10.1088/0960-1317/18/11/115017

URL : http://repository.bilkent.edu.tr/bitstream/11693/22979/1/bilkent-research-paper.pdf

R. Melik and H. V. Demir, Implementation of high quality-factor on-chip tuned microwave resonators at 7 GHz, Microwave and Optical Technology Letters, vol.33, issue.2, pp.497-501, 2009.
DOI : 10.1002/mop.24103

A. Arbabi, A. Rohani, D. Saeedkia, and S. Safavi-naeini, A terahertz plasmonic metamaterial structure for near-field sensing applications", presented at Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2008. 33rd International Conference on100] M. Puentes, B. Stelling, M. Schüßler, A. Penirschke, C. Damm and R, 2008.
DOI : 10.1109/icimw.2008.4665451

. Jakoby, Dual mode sensor for belt conveyor systems based on planar metamaterials, Sensors, 2009.

X. Xu, B. Peng, D. Li, J. Zhang, and L. ,

. Xiong, Flexible visible?infrared metamaterials and their applications in highly sensitive chemical and biological sensing, Nano Lett, vol.11, pp.3232-3238, 2011.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu et al., A Broadband Metasurface-Based Terahertz Flat-Lens Array, Advanced Optical Materials, vol.22, issue.6, pp.779-785, 2015.
DOI : 10.1364/OE.22.025931

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard et al.,

Z. Tetienne, F. Gaburro, and . Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces, IEEE. J. Sel. Top. Quant, vol.19, pp.4700423-4700423, 2013.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai et al.,

S. Qiu, T. Zhang, and . Zentgraf, Dual-polarity plasmonic metalens for visible light, Nature Commun, vol.3, p.1198, 2012.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai et al.,

T. Qiu, S. Zentgraf, and . Zhang, Reversible Three?Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens, Adv. Opt. Mater, vol.1, pp.517-521, 2013.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet et al., Achromatic Metasurface Lens at Telecommunication Wavelengths, Nano Letters, vol.15, issue.8, pp.5358-5362, 2015.
DOI : 10.1021/acs.nanolett.5b01727

W. Zhu, Q. Song, L. Yan, W. Zhang, P. C. Wu et al.,

Z. X. Tsai, T. W. Shen, and . Deng, A flat lens with tunable phase gradient by using random access reconfigurable metamaterial, Adv. Mater, vol.27, pp.4739-4743, 2015.

Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long et al., Highly efficient beam steering with a transparent metasurface, Optics Express, vol.21, issue.9, pp.10739-10745, 2013.
DOI : 10.1364/OE.21.010739

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.51-2713, 2003.
DOI : 10.1109/TAP.2003.817558

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. De-lustrac, Directive metamaterial-based subwavelength resonant cavity antennas ??? Applications for beam steering, Comptes Rendus Physique, vol.10, issue.5, pp.414-422, 2009.
DOI : 10.1016/j.crhy.2009.01.004

URL : https://hal.archives-ouvertes.fr/hal-01422998

J. Cheng and H. Mosallaei, Optical metasurfaces for beam scanning in space, Optics Letters, vol.39, issue.9, pp.2719-2722, 2014.
DOI : 10.1364/OL.39.002719

X. Ni, A. V. Kildishev, and V. M. Shalaev, Metasurface holograms for visible light, Nature Communications, vol.7, issue.1, 2013.
DOI : 10.1021/nl402039y

URL : http://www.nature.com/articles/ncomms3807.pdf

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-cía, Planar Holographic Metasurfaces for Terahertz Focusing, Scientific Reports, vol.26, issue.1, p.7738, 2015.
DOI : 10.1017/CBO9781139644181

URL : http://www.nature.com/articles/srep07738.pdf

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan et al., Helicity multiplexed broadband metasurface holograms, Nature Communications, vol.35, issue.1, p.pp, 2015.
DOI : 10.1021/nl4039967

URL : http://www.nature.com/articles/ncomms9241.pdf

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. , A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature Biotechnology, vol.42, issue.6, pp.741-745, 2005.
DOI : 10.1002/anie.200390075

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion et al., A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting, Nature Nanotechnology, vol.25, issue.1, pp.47-52, 2006.
DOI : 10.1016/j.biomaterials.2003.09.079

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, Three-Dimensional Plasmon Rulers, Science, vol.332, issue.6027, pp.1407-1410, 2011.
DOI : 10.1126/science.1202998

]. H. Zhu, S. Cheung, K. L. Chung, and T. Yuk, Linear-to-Circular Polarization Conversion Using Metasurface, IEEE Transactions on Antennas and Propagation, vol.61, issue.9, pp.61-4615, 2013.
DOI : 10.1109/TAP.2013.2267712

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten et al.,

A. J. Azad, D. A. Taylor, H. Dalvit, and . Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science, vol.340, pp.1304-1307, 2013.

L. Black, Y. Wang, C. De-groot, A. Arbouet, and O. L. Muskens, Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces, ACS Nano, vol.8, issue.6, pp.6390-6399, 2014.
DOI : 10.1021/nn501889s

URL : https://hal.archives-ouvertes.fr/hal-01763393

K. Song, Y. Liu, C. Luo, and X. Zhao, High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial, Journal of Physics D: Applied Physics, vol.47, issue.50
DOI : 10.1088/0022-3727/47/50/505104

, D: Appl. Phys, vol.47, p.505104, 2014.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu et al., Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion, Scientific Reports, vol.88, issue.1, p.8434, 2015.
DOI : 10.1103/PhysRevA.88.033834

R. Brown, Absorption and Scattering of Light by Small Particles, Optica Acta: International Journal of Optics, vol.31, issue.1, pp.3-3, 1984.
DOI : 10.1080/716099663

L. Lewin, The electrical constants of a material loaded with spherical particles, Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, vol.94, issue.27, pp.65-68, 1947.
DOI : 10.1049/ji-3-2.1947.0013

C. L. Holloway, E. F. Kuester, J. Baker-jarvis, and P. Kabos, A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix, IEEE Transactions on Antennas and Propagation, vol.51, issue.10, pp.51-2596, 2003.
DOI : 10.1109/TAP.2003.817563

A. Ahmadi and H. Mosallaei, Physical configuration and performance modeling of all-dielectric metamaterials, Physical Review B, vol.94, issue.4, p.45104, 2008.
DOI : 10.1103/PhysRevB.73.045105

O. G. Vendik and M. Gashinova, Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a

M. Khorasaninejad, W. T. Chen, and R. C. Devlin,

. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science, vol.352, pp.1190-1194, 2016.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, All-dielectric metasurface analogue of electromagnetically induced transparency, Nature Communications, vol.11, issue.1, p.pp, 2014.
DOI : 10.1021/nl200135r

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nanometre optical coatings based on strong interference effects in highly absorbing media, Nature Materials, vol.516, issue.1, pp.20-24, 2013.
DOI : 10.1016/j.tsf.2008.04.060

R. Yahiaoui, K. Hanai, K. Takano, T. Nishida, F. Miyamaru et al., Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators, Optics Letters, vol.40, issue.13, pp.3197-3200, 2015.
DOI : 10.1364/OL.40.003197

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, Capture of a terahertz wave in a photonic-crystal slab, Nature Photonics, vol.8, issue.8, pp.657-663, 2014.
DOI : 10.1364/JOSAB.26.00A101

R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar et al., All-dielectric reciprocal bianisotropic nanoparticles, Physical Review B, vol.92, issue.24, p.245130, 2015.
DOI : 10.1038/nmat3839

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, Revisiting substrate-induced bianisotropy in metasurfaces, Physical Review B, vol.91, issue.19, p.195304, 2015.
DOI : 10.1103/PhysRevB.6.4370

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok et al., Enhancement of artificial magnetism via resonant bianisotropy, Scientific Reports, vol.2, issue.1, p.pp, 2016.
DOI : 10.1017/CBO9780511794193

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs et al., Nonlinear Fano-Resonant Dielectric Metasurfaces, Nano Letters, vol.15, issue.11, pp.7388-7393, 2015.
DOI : 10.1021/acs.nanolett.5b02802

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez et al., Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances, Nature Commun, vol.5, p.pp, 2014.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez et al., Observation of Fano Resonances in All-Dielectric Nanoparticle Oligomers, Small, vol.83, issue.10, pp.10-1985, 2014.
DOI : 10.1103/PhysRevB.83.245102

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs et al.,

. Valentine, Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation, Nano Lett, vol.14, pp.1394-1399, 2014.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nature Nanotechnology, vol.10, issue.11, 2015.
DOI : 10.1016/j.cpc.2012.04.026

Y. Liu, X. Ling, X. Yi, X. Zhou, S. Chen et al., Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking, Optics Letters, vol.40, issue.5, pp.756-759, 2015.
DOI : 10.1364/OL.40.000756

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou et al., Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces, Optics Express, vol.23, issue.2, pp.1767-1774, 2015.
DOI : 10.1364/OE.23.001767

Y. He, P. He, V. G. Harris, and C. Vittoria, Role of Ferrites in Negative Index Metamaterials, IEEE Transactions on Magnetics, vol.42, issue.10, pp.2852-2854, 2006.
DOI : 10.1109/TMAG.2006.879146

G. He, R. Wu, Y. Poo, and P. Chen, Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh, Journal of Applied Physics, vol.107, issue.9, p.93522, 2010.
DOI : 10.1063/1.3058608

V. A. Fedotov, A. Tsiatmas, J. Shi, R. Buckingham, P. De-groot et al., Temperature control of Fano resonances and transmission in superconducting metamaterials, Optics Express, vol.18, issue.9, pp.9015-9019, 2010.
DOI : 10.1364/OE.18.009015

H. Chen, H. Yang, R. Singh, J. F. O-'hara, A. K. Azad et al., Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials, Physical Review Letters, vol.105, issue.24, p.247402, 2010.
DOI : 10.1155/2007/49691

A. Tsiatmas, A. Buckingham, V. Fedotov, S. Wang, Y. Chen et al., Superconducting plasmonics and extraordinary transmission, Applied Physics Letters, vol.20, issue.11, p.111106, 2010.
DOI : 10.1364/OE.18.009015

URL : http://arxiv.org/pdf/1004.0729

M. W. Coffey and J. R. Clem, Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors, Physical Review Letters, vol.43, issue.3, p.386, 1991.
DOI : 10.1103/PhysRevB.43.2844

C. Kurter, A. Zhuravel, J. Abrahams, C. Bennett, A. Ustinov et al.,

. Anlage, Superconducting RF metamaterials made with magnetically active planar spirals, Ieee. T. Appl. Supercon, vol.21, pp.709-712, 2011.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny et al., Switching nonlinearity in a superconductor-enhanced metamaterial, Applied Physics Letters, vol.100, issue.12, p.121906, 2012.
DOI : 10.1109/TASC.2003.813731

S. Liu, H. Xu, H. C. Zhang, and T. J. Cui, Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface, Optics Express, vol.22, issue.11, pp.13403-13417, 2014.
DOI : 10.1364/OE.22.013403

M. Yoo and S. Lim, Active metasurface for controlling reflection and absorption properties, Applied Physics Express, vol.7, issue.11, p.112204, 2014.
DOI : 10.7567/APEX.7.112204

H. Wakatsuchi, J. Rushton, J. Lee, F. Gao, M. Jacob et al., Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals, Electronics Letters, vol.49, issue.24, pp.1530-1531, 2013.
DOI : 10.1049/el.2013.3010

W. Zhang, W. M. Zhu, H. Cai, M. J. Tsai, and G. ,

J. Tanoto, X. Teng, D. Zhang, and . Kwong, Resonance switchable metamaterials using MEMS fabrications, IEEE. J. Sel. Top. Quant, vol.19, pp.4700306-4700306, 2013.

W. Zhu, A. Liu, T. Bourouina, D. Tsai, J. Teng et al., Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy, Nature Communications, vol.26, issue.1, p.1274, 2012.
DOI : 10.1109/JLT.2007.912524

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, Micromachined tunable metamaterials: a review, Journal of Optics, vol.14, issue.11, p.114009, 2012.
DOI : 10.1088/2040-8978/14/11/114009

W. Zhang, A. Liu, W. Zhu, E. Li, H. Tanoto et al., Micromachined switchable metamaterial with dual resonance, Applied Physics Letters, vol.101, issue.15, p.151902, 2012.
DOI : 10.1364/OE.18.020912

W. Zhu, A. Liu, W. Zhang, J. Tao, T. Bourouina et al., Polarization dependent state to polarization independent state change in THz metamaterials, Applied Physics Letters, vol.99, issue.22, p.221102, 2011.
DOI : 10.1109/JLT.2007.912524

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai et al.,

J. F. Mei, H. C. Tao, X. H. Guo, and . Zhang, A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split? Ring Resonators, Adv. Funct. Mater, vol.21, pp.3589-3594, 2011.

. Tanaka, Uniaxial?isotropic Metamaterials by Three?Dimensional Split? Ring Resonators, Adv. Opt. Mater, vol.3, pp.44-48, 2015.

H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang et al., Reconfigurable Terahertz Metamaterials, Physical Review Letters, vol.103, issue.14, p.147401, 2009.
DOI : 10.1109/JSTQE.2004.828480

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang et al., MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies, Journal of Infrared, Millimeter, and Terahertz Waves, vol.89, issue.5, pp.580-595, 2011.
DOI : 10.1016/S0924-4247(00)00535-5

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson et al.,

. Erickson, Optical manipulation of nanoparticles and biomolecules in subwavelength slot waveguides, Nature, vol.457, pp.71-75, 2009.

]. H. Cai, K. Xu, A. Liu, Q. Fang, M. Yu et al., Nanoopto-mechanical actuator driven by gradient optical force

. Lett, , p.13108, 2012.

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, Repulsive Casimir Force in Chiral Metamaterials, Physical Review Letters, vol.3, issue.10, p.103602, 2009.
DOI : 10.1364/JOSAA.7.001654

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, Light-driven nanoscale plasmonic motors, Nature Nanotechnology, vol.2, issue.8, pp.570-573, 2010.
DOI : 10.1038/nnano.2010.128

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability, Nano Letters, vol.10, issue.10, pp.4222-4227, 2010.
DOI : 10.1021/nl102684x

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla et al.,

. Averitt, Terahertz metamaterials on free-standing highly-flexible polyimide substrates, J. Phys. D: Appl. Phys, vol.41, p.232004, 2008.

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan et al., Metamaterial Silk Composites at Terahertz Frequencies, Advanced Materials, vol.140, issue.32, pp.3527-3531, 2010.
DOI : 10.1002/adma.201000412

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu et al., Metamaterials on Paper as a Sensing Platform, Advanced Materials, vol.109, issue.28, pp.3197-3201, 2011.
DOI : 10.1021/jp044384h

R. Melik, E. Unal, N. Kosku-perkgoz, C. Puttlitz, and H. V. Demir, Flexible metamaterials for wireless strain sensing, Applied Physics Letters, vol.95, issue.18, p.181105, 2009.
DOI : 10.1126/science.1133628

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt et al.,

. Jepsen, Flexible metamaterial absorbers for stealth applications at terahertz frequencies, Opt. Express, vol.20, pp.635-643, 2012.

J. G. Ok, H. Seok-youn, M. Kyu-kwak, K. Lee, Y. J. Shin et al., Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters, Applied Physics Letters, vol.101, issue.22, p.223102, 2012.
DOI : 10.1364/OE.16.018565

A. D. Falco, M. Ploschner, and T. F. Krauss, Flexible metamaterials at visible wavelengths, New Journal of Physics, vol.12, issue.11, p.113006, 2010.
DOI : 10.1088/1367-2630/12/11/113006

D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson et al., Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing, Nature Nanotechnology, vol.6, issue.7, pp.402-407, 2011.
DOI : 10.1103/PhysRevB.6.4370

Y. Yoo, H. Zheng, Y. Kim, J. Rhee, J. Kang et al., Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell, Applied Physics Letters, vol.105, issue.4, p.41902, 2014.
DOI : 10.1063/1.4749823

I. Khoo, D. Werner, X. Liang, A. Diaz, and B. Weiner, Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes, Optics Letters, vol.31, issue.17, pp.2592-2594, 2006.
DOI : 10.1364/OL.31.002592

X. Wang, D. Kwon, D. H. Werner, and I. Khoo, A. V. Kildishev and V

M. Shalaev, Tunable optical negative-index metamaterials employing anisotropic liquid crystals, Appl. Phys. Lett, vol.91, p.143122, 2007.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. ,

. Kivshar, Tunable fishnet metamaterials infiltrated by liquid crystals, Appl. Phys. Lett, vol.96, p.193103, 2010.

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou et al., Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal, Applied Physics Letters, vol.97, issue.13, p.134103, 2010.
DOI : 10.1103/PhysRevB.77.125333

URL : https://hal.archives-ouvertes.fr/hal-00548702

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu et al., Electrically controllable fishnet metamaterial based on nematic liquid crystal, Optics Express, vol.19, issue.2, pp.1563-1568, 2011.
DOI : 10.1364/OE.19.001563

URL : https://hal.archives-ouvertes.fr/hal-00572635

]. O. Buchnev, J. Ou, M. Kaczmarek, N. Zheludev, and V. Fedotov, Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell, Optics Express, vol.21, issue.2, pp.1633-1638, 2013.
DOI : 10.1364/OE.21.001633

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev et al.,

A. Fedotov, Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial, Appl. Phys. Lett, vol.103, p.141904, 2013.

J. Dintinger, B. J. Tang, X. Zeng, F. Liu, T. Kienzler et al., A Self-Organized Anisotropic Liquid-Crystal Plasmonic Metamaterial, Advanced Materials, vol.21, issue.14, pp.1999-2004, 2013.
DOI : 10.1364/JOSAB.21.001032

S. Savo, D. Shrekenhamer, and W. J. Padilla, Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications, Advanced Optical Materials, vol.32, issue.3, pp.275-279, 2014.
DOI : 10.1080/02678290500303007

D. C. Zografopoulos and R. Beccherelli, Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching, Scientific Reports, vol.4, issue.1, p.pp, 2015.
DOI : 10.4302/plp.2012.3.10

URL : https://www.nature.com/articles/srep13137.pdf

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level, Applied Physics Letters, vol.103, issue.22, p.221116, 2013.
DOI : 10.1103/PhysRevLett.76.4773

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials, Scientific Reports, vol.85, issue.1, p.pp, 2015.
DOI : 10.1103/PhysRevB.85.205110

URL : https://www.nature.com/articles/srep13535.pdf

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar et al., Phase diagram for the transition from photonic crystals to dielectric metamaterials, Nature Communications, vol.106, issue.1, p.pp, 2015.
DOI : 10.1063/1.3259435

Y. J. Yoo, S. Ju, S. Y. Park, Y. Kim, J. Bong et al., Metamaterial absorber for electromagnetic waves in periodic water droplets, p.pp, 2015.

D. Shrekenhamer, W. Chen, and W. J. Padilla, Liquid Crystal Tunable Metamaterial Absorber, Physical Review Letters, vol.110, issue.17, p.177403, 2013.
DOI : 10.1117/12.736071

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.110.177403

D. H. Werner, D. Kwon, I. Khoo, A. V. Kildishev, and V. M. Shalaev, Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices, Optics Express, vol.15, issue.6, pp.3342-3347, 2007.
DOI : 10.1364/OE.15.003342

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou et al., Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Applied Physics Letters, vol.90, issue.1, p.11112, 2007.
DOI : 10.1103/PhysRevB.65.144440

J. A. Bossard, X. Liang, L. Li, S. Yun, D. H. Werner et al.,

P. F. Mayer, A. Cristman, I. Diaz, and . Khoo, Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals, IEEE. T. Antenn. Propag, vol.56, pp.1308-1320, 2008.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao et al., Magnetic control of negative permeability metamaterials based on liquid crystals, Applied Physics Letters, vol.92, issue.19, p.193104, 2008.
DOI : 10.1103/PhysRevB.65.144440

URL : https://hal.archives-ouvertes.fr/hal-00362377

G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. Khoo, Liquid crystal hyperbolic metamaterial for wide-angle negative???positive refraction and reflection, Optics Letters, vol.39, issue.7, pp.1744-1747, 2014.
DOI : 10.1364/OL.39.001744

URL : http://upcommons.upc.edu/bitstream/2117/23627/1/ol-39-7-1744.pdf

M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko et al., Electro-optical switching by liquid-crystal controlled metasurfaces, Optics Express, vol.21, issue.7, pp.8879-8885, 2013.
DOI : 10.1364/OE.21.008879.m001

URL : http://arxiv.org/pdf/1302.4484.pdf

P. C. Wu, W. Zhu, Z. X. Shen, P. H. Chong, W. Ser et al.,

. Liu, Broadband Wide?Angle Multifunctional Polarization Converter via Liquid?Metal?Based Metasurface, Adv. Opt. Mater., pp, 2017.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, Reconfigurable terahertz metamaterial device with pressure memory, Optics Express, vol.22, issue.4, pp.4065-4074, 2014.
DOI : 10.1364/OE.22.004065

J. Melin and S. R. Quake, Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, Annual Review of Biophysics and Biomolecular Structure, vol.36, issue.1
DOI : 10.1146/annurev.biophys.36.040306.132646

, Biomol. Struct, vol.36, pp.213-231, 2007.

]. T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

J. Wang, S. Liu, and A. Nahata, Reconfigurable plasmonic devices using liquid metals, Optics Express, vol.20, issue.11, pp.12119-12126, 2012.
DOI : 10.1364/OE.20.012119

K. Ling, K. Kim, and S. Lim, Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS), Optics Express, vol.23, issue.16, pp.21375-21383, 2015.
DOI : 10.1364/OE.23.021375

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley et al., Stretchable Microfluidic Radiofrequency Antennas, Advanced Materials, vol.37, issue.12, pp.2749-2752, 2010.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

L. D. Barron, Molecular light scattering and optical activity, 2004.
DOI : 10.1017/CBO9780511535468

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, Waves and Energy in Chiral Nihility, Journal of Electromagnetic Waves and Applications, vol.292, issue.7, pp.695-706, 2003.
DOI : 10.1126/science.1058847

J. Pendry, A Chiral Route to Negative Refraction, Science, vol.306, issue.5700, pp.1353-1355, 2004.
DOI : 10.1126/science.1104467

S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang et al., Negative Refractive Index in Chiral Metamaterials, Physical Review Letters, vol.102, issue.2, p.23901, 2009.
DOI : 10.1038/nmat2197

E. Plum, J. Zhou, J. Dong, V. Fedotov, and T. Koschny,

. Zheludev, Metamaterial with negative index due to chirality, Phys. Rev. B, vol.79, p.35407, 2009.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, Complementary chiral metamaterials with giant optical activity and negative refractive index, Applied Physics Letters, vol.98, issue.16, p.161907, 2011.
DOI : 10.1103/PhysRevB.81.235126

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index, Physical Review B, vol.83, issue.3, p.35105, 2011.
DOI : 10.1088/0953-8984/20/30/304217

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, and K. B. ,

E. Caglayan, C. Ozbay, and . Soukoulis, Chiral metamaterials with negative refractive index based on four " U " split ring resonators, Appl. Phys. Lett, vol.97, p.81901, 2010.

A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles et al.,

. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett, vol.90, p.107404, 2003.

Y. Zhao, M. Belkin, and A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers, Nature Communications, vol.157, issue.1, p.870, 2012.
DOI : 10.1016/S0030-4018(98)00420-9

URL : https://www.nature.com/articles/ncomms1877.pdf

E. Plum, V. Fedotov, and N. Zheludev, Optical activity in extrinsically chiral metamaterial, Applied Physics Letters, vol.93, issue.19, p.191911, 2008.
DOI : 10.1103/PhysRevLett.97.167401

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators, Applied Physics Letters, vol.99, issue.22, p.221907, 2011.
DOI : 10.1364/OE.18.012119

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials, Applied Physics Letters, vol.104, issue.12
DOI : 10.1364/OL.38.003133

. Phys and . Lett, , p.121112, 2014.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, Broadband chirality and asymmetric transmission in ultrathin 90??-twisted Babinet-inverted metasurfaces, Physical Review B, vol.89, issue.16, p.165128, 2014.
DOI : 10.1364/OL.36.000927

T. Xu and H. J. Lezec, Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial, Nature Communications, vol.6, issue.1, p.pp, 2014.
DOI : 10.1103/PhysRevB.6.4370

URL : https://www.nature.com/articles/ncomms5141.pdf

V. Fedotov, P. Mladyonov, S. Prosvirnin, A. Rogacheva, Y. Chen et al., Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure, Physical Review Letters, vol.16, issue.16, p.167401, 2006.
DOI : 10.1063/1.2179615

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong et al., J. a. Duan and X

. Yuan, Giant asymmetric transmission of circular polarization in layer-bylayer chiral metamaterials, Appl. Phys. Lett, vol.103, p.21903, 2013.

]. C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tünnermann et al., Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials, Physical Review Letters, vol.104, issue.25, p.253902, 2010.
DOI : 10.1063/1.3109780

URL : http://arxiv.org/pdf/1005.1970

M. Kang, J. Chen, H. Cui, Y. Li, and H. Wang, Asymmetric transmission for linearly polarized electromagnetic radiation, Optics Express, vol.19, issue.9, pp.8347-8356, 2011.
DOI : 10.1364/OE.19.008347

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial, Optics Express, vol.19, issue.15, pp.14290-14299, 2011.
DOI : 10.1364/OE.19.014290

C. Huang, J. Zhao, T. Jiang, and Y. Feng, Asymmetric Transmission Of Linearly Polarized Electromagnetic Wave Through Chiral Metamaterial Structure, Journal of Electromagnetic Waves and Applications, vol.26, issue.8-9, pp.1192-1202, 2012.
DOI : 10.1080/09205071.2012.710568

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling, Physical Review Letters, vol.108, issue.21, p.213905, 2012.
DOI : 10.1063/1.3682591

URL : http://repository.bilkent.edu.tr/bitstream/11693/21467/1/Diodelike%20asymmetric%20transmission%20of%20linearly%20polarized%20waves%20using%20magnetoelectric%20coupling%20and%20electromagnetic%20wave%20tunneling.pdf

F. Dincer, C. Sabah, M. Karaaslan, E. Unal, M. Bakir et al., ASYMMETRIC TRANSMISSION OF LINEARLY POLARIZED WAVES AND DYNAMICALLY WAVE ROTATION USING CHIRAL METAMATERIAL, Progress In Electromagnetics Research, vol.140, pp.227-239, 2013.
DOI : 10.2528/PIER13050601

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu et al., Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial, Applied Physics Letters, vol.102, issue.19, p.191905, 2013.
DOI : 10.1364/OL.36.000927

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures, Physical Review B, vol.85, issue.19, p.195131, 2012.
DOI : 10.1103/PhysRevB.74.035419

R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0??C and 35??C, Chemical Physics Letters, vol.306, issue.1-2, pp.57-63, 1999.
DOI : 10.1016/S0009-2614(99)00455-8

J. C. Booth, N. D. Orloff, J. Mateu, M. Janezic, M. Rinehart et al., Quantitative Permittivity Measurements of Nanoliter Liquid Volumes in Microfluidic Channels to 40 GHz, IEEE Transactions on Instrumentation and Measurement, vol.59, issue.12, pp.3279-3288, 2010.
DOI : 10.1109/TIM.2010.2047141

X. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco-jr, and J. A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Physical Review E, vol.35, issue.1, p.16608, 2004.
DOI : 10.1070/PU1968v010n04ABEH003699

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai et al., Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films, Advanced Optical Materials, vol.30, issue.3, p.pp, 2016.
DOI : 10.1364/OL.30.003356

Y. W. Afsar, Accurate measurement of complex permittivity of liquids using the in-waveguide technique, Conference Digest Conference on Precision Electromagnetic Measurements, pp.131-142, 2003.
DOI : 10.1109/CPEM.2002.1034692

P. C. Wu, G. Sun, W. T. Chen, K. Yang, Y. Huang et al., Vertical split-ring resonator based nanoplasmonic sensor, Applied Physics Letters, vol.105, issue.3, p.33105, 2014.
DOI : 10.1021/nn201529x

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4891234

P. C. Wu, W. Hsu, and W. T. Chen,

I. Zheludev, G. Sun, and D. P. Tsai, Plasmon coupling in vertical split-ring resonator metamolecules, Sci. Rep, vol.5, p.pp, 2015.

D. Schurig, J. Mock, and D. Smith, Electric-field-coupled resonators for negative permittivity metamaterials, Applied Physics Letters, vol.88, issue.4, p.41109, 2006.
DOI : 10.1103/PhysRevB.70.113102

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor et al., Electrically resonant terahertz metamaterials: Theoretical and experimental investigations, Physical Review B, vol.88, issue.4, p.41102, 2007.
DOI : 10.1088/0034-4885/69/2/R01

H. Chen, J. F. O-'hara, A. J. Taylor, R. D. Averitt, C. Highstrete et al., Complementary planar terahertz metamaterials, Optics Express, vol.15, issue.3, pp.1084-1095, 2007.
DOI : 10.1364/OE.15.001084

T. J. Cui, D. R. Smith, and R. Liu, , 2014.

]. Kim, D. Kim, S. Hwang, and J. Jang, Broadband terahertz absorber realized by self-assembled multilayer glass spheres, Optics Express, vol.20, issue.12, pp.13566-13572, 2012.
DOI : 10.1364/OE.20.013566

A. Drezet, C. Genet, J. Laluet, and T. W. Ebbesen, Optical chirality without optical activity: How surface plasmons give a twist to light, Optics Express, vol.16, issue.17, pp.12559-12570, 2008.
DOI : 10.1364/OE.16.012559