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Context

To answer its energy needs and guarantee its independence, France opted in the
1970s for the development of nuclear energy. Today, almost 76% of electricity is
provided by from nuclear power plants in France, mostly from Pressurized Water
Reactors (PWRs).

Since 2001, a number of countries, including France, have been working on
the design of different types of reactors which would ultimately replace the Gen-
eration II reactors at the end of operation . The objectives of the Generation 4
International Forum are:

- improving nuclear safety;
- limiting nuclear proliferation by burning plutonium stocks;
- minimizing nuclear waste;
- optimizing the use of natural resources;
- reducing the costs of construction and operation of nuclear reactors.
Six concepts were selected at the end of the first research and development

phase. Among the six chosen concepts, Direction de l’Energie Nucléaire (DEN)
(French Alternative Energies and Atomic Energy Commission (CEA)) has de-
voted much of its research effects to the development of a Sodium-cooled Fast
Reactor (SFR). Two reactors of this type were built in France, Superphenix,
built in Creys-Malville, currently stopped, and Phenix in Marcoule. The design
of an industrial prototype, ASTRID (Advanced Sodium Technological Reactor
for Industrial Demonstration), is on going

In this context, the long term creep resistance properties of the austenitic
stainless steels of the AISI 316 family are intensely studied, in the MASNA
project launched by CEA. The 316 stainless steels has better resisting corrosion
at high temperature than the 304 stainless steels. Contrarily to the family of
9-12%Cr tempered martensitic steel, the austenitic steels of type 316 are not
subjected to fatigue and creep softening.

Incoloy 800 has also been studied in the MASNA project. Incoloy 800 is
well-known for its ability to maintain a stable microstructure during prolonged
exposure to high temperature. Incoloy 800 is used for steam generator tubing in
nuclear power plants (Superphenix) and other heat exchangers at temperature
up to 550◦C.

The SFR has the peculiarity of operating at higher temperatures than PWRs.

ix
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The heat is transfered by means of a liquid sodium. It is transfered from the
primary to the secondary circuit. In these circuits, the temperature can reach
550◦C. The lifetime of the IV generation nuclear reactors, including the ASTRID
prototype, is wished be extended to 60 years at temperatures close to 550◦C.
Then, the long term creep resistance becomes a major factor for the safety of
reactors. Obviously, it is impossible to reproduce such experimental tests at
the laboratory. It appears risky to design the structures on the basis of short-
term creep test results only. Such extrapolations are usually uncertain, if they
are based on macroscopic mechanical tests alone. The only way to make the
predictions more reliable is to base them on the physical mechanisms involved
during long term creep. That requires the understanding, the modeling and
the simulation of creep damage evolution, depending on temperature, stress and
time.

Thus, the manuscript is based on the following general methodology:

- First, the study of the macroscopic results obtained by creep tests makes
it possible to highlight the main fracture mechanisms and to formulate the
first hypotheses;

- In a second step, the physical phenomena responsible for the macroscopic
properties measured are identified by coupling various observation tech-
niques (SEM, EBSD, TEM);

- Based on both macroscopic and microscopic information, a modeling based
on the physical damage mechanisms is proposed. Finally, the comparison
between the modeling results with the available experimental data and
observations. The predictions are discussed with respect to other models
usually referenced in literature.

This manuscript includes six chapters.
Chapter 1 consists in a state of art concerning material microstructure and

basic creep properties.
In Chapter ??, either necking damage (short term creep tests) or intergranular

creep damage (long term creep tests) are observed in five batches of Incoloy
800 depending on stress and temperature. Then, short and long term creep
lifetimes are well predicted at temperature ranging between 500 and 760◦C,
using the combination of the combination of necking and Riedel intergranular
damage models. The Riedel model is based on the Dyson cavity nucleation law
which assumes that the cavity density is proportional to the remote creep strain.
The Dyson law prefactor, α′, is the only parameter measured experimentally. In
agreement with literature observations, we conclude that cavities nucleate at the
interface of grain boundary particles.

In Chapter 2, the prefactor of the Dyson law, α′, is computed for 316L(N),
based on the calculated interface stress distribution and a stress criterion. By
crystal viscoplasticity Finite Element computations, distributions of interface
stress fields around an ellipse-like inclusions are provided, accounting the random
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crystal orientations of the neighbor grains, and the grain boundary orientation
with respect to the tensile axis are evaluated.

In chapter 3, the interface stress fields and distributions and distributions are
calculated for different inclusion morphologies, including inclusion aspect ratio,
and inclusion tip geometry.

In chapter 4, the Raj model is discussed by coupling it with our calculated
stress distribution. Other classical stress concentrator sources, such as slip bands
and grain boundary sliding, are also discussed. Then, the Dyson law prefactor,
α′, is reevaluated and compared to measured values. And creep lifetimes are
predicted in large range of temperatures and stress. They are carefully compared
to the existing experimental data, up to 30 years.

The creep lifetimes of Incoloy 800 and 316L(N) are well predicted using the
necking and Riedel models for large ranges of temperatures and remote stresses.
The cavity nucleation rate is can be either measured or predicted. Our work
leads to theoretical explanation of the well-known phenomenological Dyson law,
based on the random nature of microstructure.

Chapter 5 consists in general conclusion and perspectives proposed to improve
further the long term lifetime prediction.
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Chapter 1

Introduction

This chapter provides the state of the art concerning the microstructure and
creep properties of 316L(N) stainless steel and Incoloy 800 alloy. Then, some
classical models of the creep deformation and damage are highlighted.

Since the mechanical properties and the fracture behavior depend strongly
on microstructure, the first section provides some basic elements concerning the
metallurgy of these materials. And particularly, the microstructure evolutions
during long term ageing and under creep condition are highlighted. The second
section provides some classical phenomenological laws concerning creep defor-
mation and damage. The third section describes the mechanisms of creep defor-
mation. Finally, several damage mechanisms and lifetime prediction models are
discussed in the forth section.

1



2 CHAPTER 1. INTRODUCTION

1.1 Materials under study

1.1.1 Chemical composition
Generally, austenitic stainless steels and Incoloy 800 alloy sustain relatively high
strength and high corrosion resistance at high temperature, which leads them to
be used frequently for high temperature applications.

The materials under study are AISI 316L(N) steel and Incoloy 800 alloy. Ta-
ble 1.1 provides the chemical compositions of various grades of austenitic stainless
steels and the specification of Incoloy 800 alloy. The historical development in
austenitic materials is presented in Fig. 1.1. The AISI 316 steel differs from the
AISI 304 steel by the addition of 2.5%wt molybdenum. This addition makes it
possible to increase the mechanical characteristics as well as the resistance to
corrosion. Subtype ‘L’ means ‘low carbon’ and indicates that the steel contains
less than 0.04%wt carbon. The subtype ‘N’ means the nitrogen content is con-
trolled and therefore the nitrogen content is higher than the one of low carbon
steels (AISI 316L). Nitrogen is provided to compensate the decrease in C content,
with respect to the resistance to dislocation motion specifically. As opposed to
low-carbon steels, a high carbon steel, specified by ‘H’, has a carbon content in
the 0.4− 1.0%wt range.

The chemical composition of Incoloy 800 alloys will be discussed in the Chap-
ter ??.

Figure 1.1: Historical development of the family of austenitic stainless steels [4].
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Element 304 316 316L 316L(N) 316H TB Incoloy 800

Fe bal bal bal bal bal bal
C 0.08 0.08 0.03 0.035 0.07 0.10
Cr 17-20 16-19 16-19 17-18.2 16.6 19-23
Ni 9-12 10-14 10-14 11.5-12.5 13.6 30-35
Mn 2 2 2 2 1.65 1.5
S 0.03 0.03 0.03 0.03 0.007 0.015
Si 1 1 1 0.61 1
Mo 2.25-2.75 2.25-2.75 2.25-2.75 2.33
Ti 0.15-0.6
Al 0.0017 0.16-0.6
N 0.08 0.025 0.03

Table 1.1: Chemical composition of different austenitic stainless steels (wt%)
(RCC-MR Code, 2007 [1], 316H TB [2]) and Incoloy 800 alloys [3].

The 316L(N) stainless steel and Incoloy 800 alloy contain both high chromium
content to give them strong corrosion resistance. Since, high chromium content
stabilizes the ferrite structure, it should be balanced by austenite stabilizing ele-
ments. The ferrite stabilizing elements, called as ferrite stabilizers, are chromium
(Cr) (at high content > 8%), molybdenum (Mo), silicon (Si), titanium (Ti) and
niobium (Nb), etc. Elements stabilizing the austenite structure are called austen-
ite stabilizers, as nickel (Ni), manganese (Mn), carbon (C) and nitrogen (N), etc.

The notion of equivalent chromium and nickel content can be used to predict
the existing phases in phase diagrams for Fe-Cr-Ni based alloys (Fig. 1.2a).
Harries [5] proposed the following formulas to calculate the equivalent chromium
and nickel contents:

Nieq = [Ni] + [Co] + 0.5[Mn] + 30[C] + 0.3[Cu] + 25[N ](wt%) (1.1a)
Creq = [Cr]+2[Si]+1.5[Mo]+5.5[Al]+1.75[Nb]+1.5[Ti]+0.75[W ](wt%) (1.1b)

Since each chemical element affects differently the materials properties, the
effect of the main chemical elements will be discussed in the following.

1.1.2 Effect of the main chemical elements.
The mechanical properties and corrosion resistance of stainless steels depend
strongly on their chemical composition. Some effects of the main alloying el-
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(a) (b)

Figure 1.2: Phase diagrams of Fe-Cr-Ni alloy; (a) isothermal section of ternary
Fe–Cr–Ni phase diagram at 1100◦C [6]; (b) pseudo-binary section of the Fe-Cr-Ni
ternary system at 70% Fe [7].

ements of austenitic stainless steels, as C, Cr, Ni, Mo and N , are described
below.

Carbon C

Carbon is generally considered to be one of the most important elements in steels.
The C atoms located at the interstitial sites of the crystallographic cell. This
improves the mechanical strength of iron. Moreover, carbon is more soluble in
austenite than in ferrite, therefore stabilizes the austenitic domain of steels [8].
Low carbon content makes it possible to improve the tenacity and the ductility
and thus the cold working behavior [9]. However, with the addition of chromium,
carbon is likely to be incorporated in chromium carbide precipitates, particularly
at grain boundaries, favoring intergranular corrosion. That leads to the attempts
of decreasing the cabon content and the ‘L’ austenitic stainless steel subtype
discussed in subsection 1.1.1.

Chromium Cr

Chromium is an influent element in stainless steels, since it allows the formation
of a passive film, which provides high corrosion resistance. The passive film
is thicker as the chromium content is higher. However, chromium has a body-
centered cubic structure (BCC), such as ferrite. Therefore, it is a ferrite stabilizer.
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The higher the chromium content, the larger the risk of intermetallic phase
formation. During high temperature operation, the chromium-rich intermetallic
phases (such as σ phase) are described in the equilibrium diagram of the pseudo-
binary section of the Fe-Cr-Ni ternary system (Fig. 1.2b) [7].

Nickel Ni

As an austenite stabilizer, the addition of nickel in sufficient quantity in Fe-Cr
steel makes it possible to obtain an austenitic steel (Face-centered cubic (FCC)
structure). Nickel is also known to improve corrosion resistance in chloride envi-
ronments [10].

Molybdenum Mo

The addition of molybdenum improves significantly the resistance to uniform
and localized corrosion in austenitic stainless steels. Nevertheless, molybdenum
promotes the precipitation of carbides and intermetallics, such as M23C6 and σ
phase.

Nitrogen N

Nitrogen is an austenite stabilizer. Similarly to carbon, nitrogen is located at
the interstitial sites of austenite cells. The increase in nitrogen content leads
to an increase in twinning in austenite by decreasing the stacking fault energy,
especially for steels with low nickel content [11]. This effect could explain that
the nitrogen-containing steels display better mechanical properties, as 316L(N).

In addition, nitrogen is more soluble than carbon in solid solution in austenite
and ferrite, which reduces the risk of nitride precipitation compared to carbide
precipitation. Elements such as chromium and manganese are known to increase
the solubility of nitrogen in iron, whereas nickel decreases it [12].

1.1.3 Grain size
Grain boundaries play an important effect in creep properties, through grain
boundary sliding, grain boundary diffusion and grain boundary cavitation. There-
fore, the creep resistance is strongly influenced by grain size. However, no clear
conclusion arises from by experimental results [13, 14]. Creep can be decomposed
into intergranular creep and intragranular creep. Intergranular creep is expected
to be affected by changing the grain size.

The grain size is controlled by the heat-treatment. For the AISI 316L(N) and
Incoloy 800, the grain sizes are 15-30µm and 50-150µm, respectively.

It should be noticed that two Incoloy 800 grades differ by their respective
heat-treatments: ‘Grade 1’, corresponds to anneal at approximately 980◦C (grain
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size 10-20µm) and ‘Grade 2’, to anneal at approximately 1150◦C (grain size 50-
250µm) [15]. In this study, only Grade 1 is considered.

1.1.4 Secondary phases

It is observed on isothermal section of ternary Fe–Cr–Ni phase diagram at 1100◦C
[6] (Fig. 1.2a) and pseudo-binary section of the Fe-Cr-Ni ternary system at
70% Fe [7] (Fig. 1.2b), that 316L(N) is concentration range for which both
austenite and ferrite phases co-exist. Since they are obtained by quenching from
temperature range 1000 − 1200◦C, it is thus understood why austenitic steels
often contain a small percentage of ferrite.

When a stainless steel is subjected to a heat-treatment at a temperature T1,
the element contents are higher than the solubility thereof at temperature T2
(work condition) (T2 < T1). Then, during further ageing at high temperature
or creep, atoms can diffuse and more stable second phases1 are produced. Their
nature depends on temperature, the previous heat-treatment and the cooling
conditions. The main precipitates and intermetallics observed in AISI 316L(N)
and Incoloy 800 are presented in Table 1.2.

Hence, the second phases observed in 316L(N) stainless steels and Incoloy
800 alloy in the as-received state or formed during creep are described in the
following subsection.

1.1.4.1 Carbides

The most frequently observed carbides in austenitic steels and Incoloy 800 during
heat-treatments are M23C6, where M accounts mainly for mainly chromium,
partially substituted by Fe, Mo or Ni [18]. The M23C6 particles are known to
nucleate generally first at grain boundaries, resulting in a significant decrease
in intergranular corrosion resistance [8]. However, the M23C6 particles could
also be observed at the twin boundary and in the matrix [24, 28, 29]. Hong
et al. [17] and Padilha and Rios [9] studied the relationship between carbide
germination and grain boundary disorientation. They showed that the increase
in grain disorientation leads to a change of M23C6 geometry, from a platelet
geometry to triangular one [9]. The size of the intergranular M23C6 particles is
generally below 0.5µm [29–31].

The M23C6 particles are generally the first type of second phases to be nucle-
ated in austenitic stainless steels because they may be coherent or semi-coherent
with the austenite crystal. Indeed, the mesh parameter of the face-centered cu-
bic M23C6 is approximately 3 times that of austenite. And these two phases are

1The precipitates and intermetallic phases are all considered as secondary phases in this
manuscript.
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approximately in a cube on cube orientation relationship, [16, 18]:

{110}M23C6‖{110}γ 〈001〉M23C6‖〈001〉γ (1.2)
Other types of carbides such asM7C3,M6C andMC have also been observed

during ageing of austenitic stainless steels. Precipitation of M7C3 occurs only in
high-carbon austenitic steels, or in processes such as carburization [8]. TheM6C
precipitates, with a diamond FCC structure, are generally much rarer than other
carbides and are favored by the addition of molybdenum and nitrogen [9, 21].
The MC carbides have a FCC structure of NaCl type. Finally, the introduction
of elements such as V, Nb, Ti, Zr, Al, Hf and Ta, are known to lead to the
nucleation of highly stable MC-type intragranular carbides. That is generally
used to hinder M23C6 precipitation [9].

1.1.4.2 G Phase

The G phase is a silicide, formed in austenitic steels stabilized with titanium
and niobium [18]. It is also observed when decomposing ferrite at temperatures
below 500◦C [9]. The G phase is particularly rich in nickel and silicon and its
stoichiometric composition is Ni16Si7Ti6 (Table 1.2).

In the case of G phase nucleated during the decomposition of ferrite, the
particle size is very law, in order of the one to the ten nanometers. And they are
dispersed in the metallic matrix [32].

In AISI 316 and Incoloy 800 alloys, the G phase is observed after short term
ageing (1000h, 600◦C). Under such conditions, the G phase particles are located
along grain boundaries and at triple points, with a size up to 500nm [2, 15].

1.1.4.3 σ Phase

The σ phase is known to be hard and brittle, rich in chromium and molybde-
num, resulting in a drastic reduction of the mechanical properties and corrosion
resistance [33–35].

Nilsson [33] pointed out that high chromium and molybdenum contents ac-
celerate the precipitation kinetics and increase the volume fraction of σ phase,
whereas nickel increases the kinetics of precipitation but decreases the volume
fraction of σ phase.

It is generally believed that σ phase particles nucleate lately in AISI 316
steels. However, once the nucleation of σ phase has occurred, the size of σ phase
particles may rapidly reach 1µm [2]. Nevertheless, the precipitation mechanisms
are still not fully clear.

1.1.4.4 χ Phase

The lattice parameter of the intermetallic χ phase is about three times that of
ferrite, allowing χ growth in a cube on cube orientation relationship with ferrite,
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where the {111} planes and 〈001〉 directions of the two phases are parallel. Since
the strong crystallographic coherence of the two phases, the energy required for
the nucleation of the χ phase in ferrite is low. Therefore, the χ phase formation
kinetics is faster than the σ phase one. The χ phase is, however, less stable
than the σ phase and could be absorbed by the σ phase for longer ageing times
[36]. The χ phase is richer in molybdenum than the σ phase and its formation
is triggered by an increase in the molybdenum content [21].

1.1.4.5 Laves phase η

Laves phase particles could be observed in the matrix and at grain boundaries.
The laves phase (η) is a minor constituent of stainless steels containing Mo (such
as AISI 316). Its chemical composition is Fe2Mo. Theoretically, laves phases
do not exist in the material in its as-received state. They can appear after a
in-service time over 100h [2].

1.1.4.6 γ′ (Ni3(Ti, Al))

This precipitate is observed in Incoloy 800 after a few hundred hours of service
at temperatures between 500 and 650◦C. Contrarily to carbides formed at grain
boundaries, the γ′ phase nucleates homogeneously in the matrix. The γ′ phase
particles are spheroidal. Their size and density are controlled by the chemical
composition, the heat-treatment conditions and creep conditions. However, the
size of γ′ is generally below 100nm.

The long-term elevated-temperature strength of Incoloy 800 is affected by the
strengthening effects of γ′ particles. Unfortunately, this phase may also cause
decrease in long term ductility [26].

During creep, the γ′ particles could be either sheared or circumvented by dis-
location gliding. Consequently, parameters, such as precipitate size, inter particle
distance and volume fraction in matrix, affect the creep resistance of Incoloy 800
after long term service at high temperature. That affects the evolution of its
creep ductility, with temperature and time.

1.1.4.7 Ti(C,N)

The Ti(C,N) particles are generally rectangular large precipitates (1 − 5µm),
embedded in the grains of Incoloy 800 alloys [15]. The affinity of titanium to
carbon is higher than the Cr one, thus Ti(C,N) precipitates are much more
stable than M23C6 precipitates [27]. Therefore, the presence of Ti(C,N) could
inhibit M23C6 precipitation. However, M23C6 particles nucleate preferentially at
in-service temperatures because M23C6 is more stable at high temperature [27].
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1.1.4.8 δ Ferrite

The residual δ ferrite has a higher chromium concentration than the austenitic
matrix, and because of its structure, the diffusion rate of these elements is faster.
During annealing, this phase can be decomposed into thermodynamically stable
austenite and into a wide variety of second phases, according genetic decompo-
sition:

δ −→ γ + precipitate (1.3)

These precipitates are mainly M23C6 carbides. Depending on temperature, the
intermetallics may also be formed, but in smaller quantities because their pre-
cipitation kinetics are slower.

Fig. 1.3 shows the microstructure in one sheet of as-received AISI 316L(N).
Some ferrite bands are observed. Villanueva et al. [37] observed that the initial δ
ferrite bands arise from the solidification. They are indeed elongated and parallel
to the rolling direction. This observation agrees with the observations of Rieth
et al. [38], Padilha et al. [20], Slattery et al. [23] and Odnobokova et al. [39].

Figure 1.3: Microstructure of the as-received material, 1/2 of the plate thickness,
observed by optical microscopy (×100) [40].

1.1.5 Microstructure evolution at high temperature
At high temperature, the microstructure of austenitic steels is unstable. The
microstructure changes in function of temperature, time, stress and strain.

Villanueva et al. [37] studied the precipitation of σ phase in AISI 316L. Their
observations show that, during creep, the formation of σ phase occurs at grain
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boundaries and at triple points. And no σ phase was detected in the metallic
matrix.

The microstructural evolution of 316H TB in function of time and tempera-
ture is shown in Fig. 1.4a. At 550◦C, theM23C6 precipitate appears after almost
2000h. And no σ phase particle is observed even after 105h. However, this TTP
diagram is established only based on the observation of the microstructure of the
specimen head portions. Hence, the stress and viscoplastic strain effect is not
included in this TTP diagram. Fig. 1.4b is based on the analysis of the data
provided by the NIMS data sheet [2]. It illustrates that, under stress and vis-
coplastic strain, the σ phase particles could be observed after 100h (at 700◦C),
which is much earlier than under the unloaded condition (specimen heads, pure
ageing). Therefore, it can be concluded that the stress and viscoplastic strain
has a strong effect on precipitation at high temperature.

As shown in Fig. 1.5, the NIMS data sheet provides the size evolution of
M23C6 and σ phase particles during creep in AISI 316H TB [2]. In the head
portion, the size of M23C6 is lower than 250nm. Unfortunately, no specific in-
formation about the size of M23C6 carbides in the gauge portion is given. From
SEM or TEM image in literature [17, 41], we deduce that the size of M23C6 is
generally lower than 0.5µm, which is much lower than the size of σ phase. More-
over, once σ phases are observed, their size reaches 1 or 2µm [2]. This holds in
both in the head and gauge portions.

The kinetics of precipitation during creep depends on many factors, includ-
ing temperature, stress, chemical composition, crystallographic structure, grain
size and heat-treatment. Therefore, these precipitation phenomena are difficult
to be studied either experimentally or theoretically. Nevertheless, CALPHAD
computations [42] demonstrated that the G phase is not stable at high temper-
ature. The χ phase appears only at high temperature (> 700◦C) as shown in
Fig. 1.4a. Furthermore, along grain boundaries, the M23C6 precipitates and the
σ phase particles are generally observed compare to others. Consequently, only
the M23C6 precipitates and the σ phase particles are considered in Chapters 2,
3 and 4.
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(a) (b)

Figure 1.4: Time-temperature-precipitation (TTP) diagram (a) for specimen
head portions of 316H TB [2]; (b) of σ phase for both specimen head and gauge
portions of 316H TB obtained by analyzing NIMS data sheet [2].

(a) (b)

Figure 1.5: Change in particle size of (a) M23C6 particles in specimen head
portion in function of time and (b) σ phase particles in specimen head and
gauge portions in function of time for 316H TB [2].
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1.2 Creep background
Viscoplastic materials deform continuously when subjected to a constant load
and temperature. This phenomenon is called creep.

Creep deformation is thermally activated, i.e. relatively small variations in
temperature cause considerable variations in strain rate. Creep is possible at
all temperatures above absolute zero. However, for metallic alloys, creep occurs
generally significantly only at temperatures close to or higher than about 0.4Tm,
with Tm the melting temperature. Thus, creep deformation is most often negligi-
ble for alloys used in the construction of structures such as bridges or ships. This
is not the case for many materials which may be used in the nuclear power plants
of Generation IV, which will be subjected to temperatures above 500◦C during
several decades. The short and long term creep behaviors of AISI 316L(N) and
Incoloy 800 alloys, are therefore, studied in the present work.

1.2.1 Creep deformation
Creep is a deformation process observed when applying a constant engineering
stress, σeng, to a specimen at high temperature. A few authors impose a constant
true stress, σtrue. A typical creep curve for metals and alloys is shown in Fig.
1.6.

Figure 1.6: Typical creep curve in metals and alloys.

Three stages are delineated in the creep curve:
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- the primary stage (first stage), the deformation rate decreases due to the
increasing of dislocation and low angle boundary densities and the effect
of intergranular viscoplastic strain incompatibilities and resulting internal
stress;

- the steady-state creep stage (or secondary stage), during which the strain
rate is approximately constant. This strain rate is generally called as the
minimum strain rate, ε̇min. The constant strain rate is caused by a balance
between dislocation annihilation and deformation hardening. Then, the
dislocation density is almost constant during this stage. This is a dynamic
equilibrium.

- the tertiary stage. The strain rate accelerates up to fracture, due to neck-
ing, internal cracks or voids, and the decrease in cross-section area of the
specimen in case of constant force lading.

The relationships between engineering and true strains and stresses are the fol-
lowings:

εtrue = ln(1 + εeng) (1.4a)

σtrue = σeng · (1 + εeng) (1.4b)
The minimum true strain rate, ε̇truemin, could be determined by plotting the evolu-
tion of true strain rate in function of the true strain or time.

A significant indicator of the involved creep fracture mechanisms is the re-
duction in fracture area, Z. The area of fractured surface, Sf , is generally used
to calculate the reduction in area, Z. The reduction in area is the ratio between
the variation of transversal section, S0 − Sf , and the initial section area, S0:

Z(%) = S0 − Sf
S0

· 100% (1.5)

Creep deformation and fracture have been studied phenomenologically for
almost hundred years.

1.2.2 Phenomenological viscoplasticity laws
The phenomenological creep deformation and fracture laws are presented in this
subsection.

1.2.2.1 Phenomenological creep laws

Andrade’s Law

In 1910, a mathematical law ruling the viscoplastic strain during the primary
stage (Fig.1.6) was proposed by Andrade [43]:

ε(t, σ, T ) = C1 · tC2 · σn1 (1.6)
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where the coefficients C1, C2 and n1 are temperature-dependent.
The strain rate during the primary stage is calculated using Eq. 1.7, which

assumes deformation hardening.

ε̇ = C3 · εC4 · σn2 (1.7)

In this equation, ε̇ (% h−1 or s−1) denotes the strain rate for a given creep strain,
ε(%), under stress σ (MPa or Pa) and at temperature T (◦C).

The coefficients C1, C2, n1, C3, C4 and n2 are adjusted using experimental
creep curves. The values of the coefficients of 316L(N) are provided by the RCC-
MR design code [1], and more recently, reevaluated by Cui [44] for the materials
under study. In Chapters 2 and 3, these parameters will be used for Finite
Element simulations. For Incoloy 800, these parameters are not provided by the
MCC-MR code [1].

Norton’s Law

In 1929, Norton [45] proposed a phenomenological law which links the minimum
strain rate to the stress.

ε̇truemin = C · (σeng)n (1.8)
where C(MPa−nh−1 or Pa−ns−1) and n(T ) are temperature dependent material
constants, ε̇truemin (h−1 or s−1) is the minimum true strain rate and σeng (MPa or
Pa) is the engineering stress. The values of coefficients C and n are provided in
Chapter ?? (Incoloy 800) and Chapter 2 (316L(N)).

For describing the thermally-activation of creep deformation, the temperature
dependence can be expressed as an Arrhenius-type expression as proposed by
Sherby and Burke [46]:

ε̇min = ASB · exp(−
Q

RT
) (1.9)

where R is the gas constant (8.314Jmol−1K−1), ASB is a constant, and Q is the
activation energy for creep deformation (Jmol−1).

Webster and Ainsworth [47] combined Eq. 1.8 and Eq. 1.9, proposed Eq.
1.10. This equation takes into account the effect of stress and temperature.

ε̇min = AWA · σn · exp(−
Q

RT
) (1.10)

1.2.2.2 Phenomenological lifetime predictions

Using conventional uniaxial creep tests to estimate long term creep lifetime of
structural materials may require impractically long testing times. In fact, the
laboratory creep test duration is generally less than one year, which is very short
compared to the in-service condition (duration up to 60 years). Few laboratory,
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as NIMS [2], ORNL [48, 49], have long term test up to 25 years, which is always
shorter than the in-service ones.

Therefore, over the past decades, many studies aimed to develop predictive
models, based on short term test results, to estimate long term lifetime. Firstly,
creep lifetimes are predicted by phenomenological laws, especially the Monkman-
Grant relationship and the Larson-Miller relationship. Both laws make it pos-
sible to extrapolate from the available experimental test lifetimes at different
temperatures and/or lower stresses.

Monkman-Grant relationship

The Monkman-Grant relationship [50] has been shown to be valid for a wide
range of metals and alloys. The strain rate is assumed to be constant during the
creep test and equal to the minimum strain rate. The well-known Monkman-
Grant law describes the relationship between minimum strain rate (ε̇min) and
fracture lifetime (tf ) [50].

ε̇mMG
min · tf = CMG (1.11)

where mMG is a constant that is originally evaluated by Monkman and Grant
to be between 0.8 and 1 for metals and alloys and CMG is the Monkmann-Grant
constant. Therefore, considering mMG = 1, the product of minimum strain rate
and fracture time is constant and independent of test temperature (Fig. 1.7)
[51].

Based on this equation, results of short term, high stress creep tests can
be extrapolated to long term low stress creep conditions. The value of mMG

depends on each material microstructure, and small values of mMG is associated
with large grain materials [51, 52].

The Larson-Miller relationship

In Larson-Miller approach, a constant parameter called CLM is defined as a
function of test temperature, fracture time and materials constant. Knowing
this material constant, the fracture time can be extrapolated from short term
laboratory tests result at temperature/stress higher than the in-service ones.

The Larson-Miller parameter is defined by the following relationship:
P (σ) = T (CLM + logtf ) (1.12)

From the results of tests carried out under different stresses, the Larson-Miller
function of the stress, P (σ), can be deduced. P (σ) determines the time to reach
a given strain with different couples of (σ, T ).

Fig. 1.8 shows experimental creep failure results for various alloys, which
justifies the use of a value of CLM of almost 20 [54]. Nevertheless, the Larson-
Miller relationship is only a phenomenological law used to predict long term
creep fracture properties without a well defined physical basis.
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Figure 1.7: Minimum strain rate in function of lifetime in copper (Eq. 1.11) [53].

Figure 1.8: Larson Miller representation of experimental creep lifetimes, t, for
various alloys [54] (Psi = pound per square inch).
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The extrapolations carried out based on phenomenological models may lead
to a large over- or underestimations of long term creep lifetime. Therefore, the
understanding of the physical deformation and damage mechanisms are necessary
to predict more reliable long term creep lifetimes.

1.3 Creep deformation mechanisms

The minimum strain rate has been shown to be well predicted by the Mukherjee-
Bird-Dorn equation [55], which expresses the creep rate in terms of stress, tem-
perature and grain size, as:

ε̇min = AMBDµb

kbT
Db(T )( b

dg
)p( σ

µ(T ))n (1.13)

where AMBD is a dimensionless constant, Db(T ) is the bulk self-diffusion coef-
ficient, dg is the grain size, µ(T ) is the elastic shear modulus, n is the stress
exponent.

More precisely, several mechanisms are known to contribute to the creep
deformation of steels, such as diffusion, grain boundary sliding and climb/glide
of dislocations. Each mechanism of deformation depends on stress, temperature
and metallurgical structure.

A first classification of the mechanisms is proposed by Cannon and Langdon
[56] in function of the value of p. If the crystal deformation mechanism is dom-
inant and the grain boundary sliding plays a negligible role, then, p = 0. If the
grain boundaries contribute to the deformation process, p takes values from 1 to
3.

In the following, the main mechanisms of pure diffusion creep are described
and then those involving dislocation.

1.3.1 Diffusion creep

At high temperature and low stress, a almost linear relationship between the
minimum strain rate and the tensile stress is generally observed [52, 57]. Such a
deformation may not caused by dislocation glide, but by pure diffusion.

In fact, the vacancy chemical potential in grain boundaries is affected by the
grain boundary normal stress direction. Therefore, atoms diffuse from boundaries
oriented parallel to the tensile axis to the perpendicular ones. Then, the creep
deformation may occur. The flow may take place either through the crystalline
lattice (Nabarro and Herring diffusion creep [14, 58]) or along grain boundaries
(Coble diffusion creep) [13].
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The Nabarro-Herring creep
Nabarro [14] and Herring [58] proposed that, during creep deformation, the mat-
ter is transported by extraction of atoms from the inside of a crystal through
its surface. The vacancy and atom flows are in the opposite directions through
the volume of each grain (Fig. 1.9a). Atoms move from the compressed surface
to the ones loaded in tension. And vacancies are transported along the reverse
path. In pure tension loading, this phenomenon results in grain elongated in the
tensile direction.

Assuming the bulk diffusion dominant, Herring[58] deduced the following
strain rate:

ε̇min = ANH
DbσΩ
d2
gkbT

(1.14)

where ANH is a constant Db is the bulk self-diffusion coefficient, Ω is the atomic
volume. This equation should be more suitable at very high temperature.

The important characteristics of this model appear as:
- creep-diffusion results in a behavioral behavior of the Newtonian viscous

type;
- the creep strain rate is faster at high temperature;
- the strain rate is faster with a small grain size.

The Coble creep
The Coble model [13] proposed a polycrystalline creep law, for which the flow
velocity is controlled by the diffusion along the grain boundaries (Fig. 1.9b)
which is generally be faster than the bulk one. In fact, the intergranular self-
diffusion energy is, generally, about twice as low as the bulk one [59]. Coble [13]
proposed:

ε̇min = ACo
DgbδσΩ
d3
gkbT

(1.15)

where Dgb is the vacancy self-diffusion coefficient along grain boundaries and δ
is the grain boundary thickness.

The difference between the Herring-Nabarro model and that of Coble relates
to the influence of the grain size and the activation energy. The experimental
tests carried out on copper have clearly shown a variation in the rate of creep
proportional to 1/d3 at low temperature (550◦C) and 1/d2 at higher temperature
(840◦C) [57].

1.3.2 Grain Boundary Sliding
The two previous diffusion models are based on simplified hypotheses, such as
identical grain shapes and homogeneous grain deformation. Moreover, the grains
must remain in contact during the deformation process, provided intergranular
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(a) (b)

Figure 1.9: a) The Nabarro-Herring creep: vacancy diffusion from the free surface
loaded in tension and the ones loaded compression, b) The Coble creep: diffusion
occurs through the grain boundaries (•: atom, 2: vacancy) [60].

damage has not taken place. However, at high temperature, grains may glide
along their grain boundaries because of differences in crystallographic orienta-
tions. This phenomenon is called grain boundary sliding.

Grain boundary sliding and diffusional creep are related as studied in details
by Raj and Ashby [61]. Considering a polycrystal as a compact set of hexagons,
they proposed that grain boundary sliding or flow induce diffusion create the
deformation incompatibilities.

Assuming that diffusion takes place both in volume and along the grain
boundaries, Raj and Ashby [61] calculated the minimum strain:

ε̇min = CRA
σΩ
kbT

1
d2Db[1 + πδ

λ

Dgb

Db

] (1.16)

where λ is the basic periodicity of the grain boundary, for a perfect hexagonal
arrangement microstructure, λ = dg.

Diffusion creep and grain boundary sliding creep lead to a linear viscous creep:
ε̇min ∝ σ1. These models can not explain the creep deformation mechanism
at high stress, for which the stress exponent is much higher than 1. Then,
dislocation climb and glide usually considered at higher stress.

1.3.3 Dislocation creep
Dislocations glide during creep may be controlled by self-diffusion. Because of
the similarity in the activation energy, vacancies are expected the motion of
dislocations to overcome obstacles on their slip planes.



1.3. CREEP DEFORMATION MECHANISMS 21

At high temperature, the dislocation motion has two degrees of freedom:
climb and glide. Both mechanisms allow dislocations to bypass the obstacles
with different activation energy and volume. The obstacles against dislocation
movement decrease the creep rate.

Weertman [62] proposed a steady-state dislocation theory based on the climb
of edge dislocations. This theory assumes that work-hardening occurs when dislo-
cation are arranged as pile-ups against existing barriers such as grain boundaries,
precipitates, other dislocations or solid solution atom clusters. A stress exponent
of three is obtained.

Then, Sherby and Weertman [63] proposed a more general power creep law
equation as:

ε̇min = ASW (σ
µ

)n−1 σΩ
kbT

exp(− Q

RT
)exp(−P∆V

RT
) (1.17)

where ASW is a dimensionless constant, P is hydrostatic pressure, R is the gas
constant, Q is activation energy (considered as the activation energy of self-
diffusion through the bulk [63]) and ∆V is the activation volume.

Figure 1.10: The normalized minimum creep rate versus the modulus-
compensated steady-state stress for 99.999 pure Al [52].

Fig. 1.10 illustrates the typical creep deformation behavior of a metal. This
figure can be divided into three regions. The fist region covers very low stress
levels. It could be explained by diffusion creep and/or grain boundary sliding.
The second region covers intermediate stress levels. This is the dislocation creep
domain corresponding to motion of dislocations by combined glide and climb.
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The third region show a stronger deviation from linearity observed at very high
stress/ low temperature and is referred to the power-law breakdown [52].

1.3.4 Deformation map
For a given microstructure, the activated creep deformation mechanism depends
on the applied stress and temperature. It is useful to couple the experimental
results and theoretical models concerning viscoplastic deformation mechanisms
in the form of diagrams or maps, as was carried out systematically by Ashby
[59]. The deformation mechanism maps for AISI 316L(N) [59] and Incoloy 800
[64] are plotted in Fig. 1.11.
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(a)

(b)

Figure 1.11: Stress-temperature deformation mechanism maps for (a) AISI 316
with a grain size of 50 µm [59], (b) Incoloy 800 with a grain size of 18.8µm
(Grade 1) [64].
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1.4 Damage mechanisms
Fractography is generally used to determine the fracture mode. The microstruc-
ture observations of the fracture surface are generally carried out by Scanning
Electron Microscope (SEM). It consists in comparing the observed fracture sur-
faces with those which are classically reported in literature for well-determined
loading conditions.

(a) (b)

Figure 1.12: Fractographies of (a) ductile fracture of 316L steel (b) intergranular
fracture at 650◦C of Inconel 718 [57].

Two different types of fracture surface are generally observed after creep fail-
ure (Fig. 1.12):

• Ductile fracture surfaces (Fig. 1.12a) are generally characterized by the
presence of a plastically deformed zone, as induced by necking for uniaxial
creep. There is no clear cleavage or crack propagation. Such fracture
surfaces show dimples with possibly second phase particles inside. This
type of fracture is a transgranular fracture. Ductile fracture surfaces are
generally observed after short term creep one;

• Intergranular fracture surfaces (Fig. 1.12b) result from another creep dam-
age, specifically intergranular cavitation. At the microscopic scale, grain
boundaries are observed on the fracture surfaces. Such damage mechanism
is usually observed after tests hold at high temperature and low stress.
Intergranular cavitation leads to a kind of ‘embrittlement’ of the grain
boundaries. Thus, cracks propagate along the grain boundaries leading
to coalescence and final fracture. Specimen elongation and reduction in
fracture area are much lower than for ductile damage.

SEM observation concerning Incoloy 800 are shown in Chapter ??.
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1.4.1 Necking
Based on the homogeneous reduction in cross-section, Hoff [65] deduced that the
creep lifetime is inversely proportional to the minimum strain rate:

tf = 1
nε̇min

(1.18)

However, this model assumes the fracture takes place when the specimen
strain tends to infinity, and the cross-section reduces to zero, because of volume
conservation. Therefore, generally, this model overestimates the creep lifetime
[66].

In ductile polycrystalline materials, the overall plastic deformation may be-
come instable. The instability phenomenon leads to localized necking, which is
characterized by a localized reduction in the specimen cross-section which may
occur during creep deformation. In fact, the decrease in cross-section leads to an
increase in local true stress. When the applied stress is no longer compensated
by hardening, necking occurs. It should be noticed that not only the stress,
but also the sensitivity to strain rate affect necking process. Necking is the re-
sult of the appearance of a deformation heterogeneity at the macroscopic scale
which can lead to a ductile fracture occurring in the corresponding zone. In the
necking zone, the increase in strain results generally into hardening which has a
stabilizing effect [67].

Among the numerous mechanical analyzes of the instability phenomenon, a
simple model, the Hart criterion, is presented hereafter. It allows a reasonable
prediction for a uniaxial tensile creep test of an axisymmetric sample. The Hart
criterion [67] assumes that the specimen has a cross-section defect: the gauge
part of specimen, with a cross-section S, has a reduced area S + δS (δS < 0).

Because of equilibrium, the tensile force is uniform and identical in the neck-
ing and no necking specimen parts:

F = σ · S = σnecking · (S + δS) (1.19)

Further, for a viscoplastic material, Hart proposed that the necking part is in-
stable because the reduction in area in the necking part evolutes faster than in
the remaining parts of the specimen. From these assumptions, Hart deduced the
instability condition as:

δṠ/Ṡ

δS/S
< 0 (1.20)

Recently, based on the Hart criterion, Lim et al. [68] proposed a model to
predict the deformation of the necking specimen part. The short term creep
lifetime is deduced. That approach will be applied to Incoloy 800 in Chapter ??.

For ductile creep fracture, assuming that the secondary stage is predomi-
nant compared to the first and tertiary stages, He and Sandström [69] proposed
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that the specimen will be fractured when the strain reaches a critical value,
varepsiloncrit, equal to 0.2.

tf = εcrit
ε̇min

(1.21)

In their work, the minimum strain rate, ε̇min, is calculated using a deforma-
tion model based on creep precipitation hardening, dislocation glide and climb
properties and stacking fault energy [70, 71]. This creep rate model predicts
that the minimum strain rate is proportional to the power three of tensile stress,
ε̇min ∝ σ3.

1.4.2 Intergranular fracture
For long term creep fracture, intergranular cavitation becomes dominant, which
includes cavity nucleation, growth and coalescence.

1.4.2.1 Cavity nucleation

Similarly to ductile cavitation, two types of cavity formation mechanisms were
proposed in the past, either inclusion fracture or cavities nucleate at the inclusion-
matrix interface, as shown in Chapter ??. However, in our work, inclusion frac-
ture is only observed in intergranular Ti(C,N) in Incoloy 800, and has no impact
on further damage. Therefore, the fragmentation of inclusion is not considered
as a main long term creep damage initiation mechanism in this study.

It is generally believed that cavity nucleation2 along grain boundaries in met-
als and alloys occurs due to high local stress concentrations. At high tempera-
ture, vacancies diffuse along grain boundaries. Therefore, grain boundaries act
as effective sources of vacancies for cavity nucleation.

In pure metals, cavities are often initiated at the intersections of slip bands
and grain boundaries (Fig. 1.13c), or at the triple junction (Figs. 1.13a and
1.13b). In commercial high temperature steels, the second phase particles located
along grain boundaries are the most observed locations for cavity nucleation (Fig.
1.13d). The materials under study, AISI 316L(N) and Incoloy 800 alloys contain
intergranular second phases particles. Therefore cavitation starts from these
intergranular particles, which will be studied in Chapters ??, 2 and 3.

When a material containing second-phase particles is subjected to tensile
loading, it deforms heterogeneously because of the mismatch in Young’s mod-
ulus and viscoplasticity behavior of the grains with different crystallographic
orientations are different. In particular, the ones of the matrix and second phase
particles are usually different. Inhomogeneous deformation leads to high stress
concentrations close to particle-matrix interfaces. Further, it should be noticed

2The ‘cavity nucleation’ is the conventional nomenclature of this process. It should be
noticed that the Raj and Ashby model considers that cavities nucleate by agglomeration of
vacancies. And the others consider the decohesion of interfaces or particle fracture.
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(a) (b)

(c) (d)

Figure 1.13: Cavity nucleation mechanism. (a) sliding leading to cavitation at
triple points ledges, (b) cavity nucleation from vacancy condensation at a high
stress region. (c) cavity nucleation from thea Zener-Stroh mechanism. (d) The
formation of a cavity from a particle-obstacle in conjunction with the mechanisms
described in (a-c) [52].
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that such the stress concentrations may relax by diffusional flow along the inter-
faces [72, 73].

It is generally observed that large cavities located along grain boundaries
perpendicular to tensile axis [74–76]. And small cavities are observed along
grain boundaries parallel to tensile axis. This point will be explained in Chapter
4.

During last fifty years, two main mechanisms were proposed to the responsible
for cavity nucleation, either thermally-activated vacancy clustering (Fig. 1.13a)
or interface fracture. Usually both mechanisms require high local stresses to
occur. Stress concentrations may be induced by grain boundary sliding (Fig.
1.13b), pile-up (Fig. 1.13c) and intergranular particle (Fig. 1.13d). The two
main nucleation mechanisms are now described.

1.4.2.1.1 Thermally-activated nucleation of cavities

Intergranular cavity nucleation is provided from the formation of a stable
cluster of vacancies. The surface of cavities is constituted by a lenticular segment
shape [77] (explain in details subsection ?? in Chapter ??). This cavity geometry
requires both a fairly quick superficial diffusion, in order to keep the constant
curvature of cavities during growth, and an isotropic superficial energy.

The creep nucleation mechanism was initially proposed by Greenwood et al.
[78]. This mechanism assumes that the cavities nucleate preferentially by con-
densation of the vacancies under the effect of the normal local stress acting on
the grain boundaries. Finally, Raj and Ashby [77] showed that this cavity nucle-
ation mechanism occurs more quickly if the normal stress to the grain boundary
is high and the surface energy of the cavity is low. Then, they deduce that it is
easier to generate cavities at the multiple junction joints where the local stresses
are higher (Figs. 1.13a and 1.13b). From the thermodynamic point of view, Raj
and Ashby [77] proposed an energy barrier based on the variation of the Gibbs
free energy, ∆G.

∆G is given by [77]:

∆G = −σnV + γfreeSfree − γinterfaceSinterface (1.22)

Three terms contribute to the energy variation:

1) the work induced by the application of a remote tensile stress on an elastic
medium containing a cavity of volume V ;

2) the energy to be supplied for the creation of the cavity free surface, Sfree;

3) the loss of the energy of the grain boundary due to the reduction of its
surface, consumed by the cavity growth, Sinterface.
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By derivating ∆G with respect to r, the critical value of the cavity radius,
rc, is deduced. The maximum value of ∆G(r) is reached (unstable equilibrium).
Neglecting interface energy term allows the evaluation of:

rc = 2γs
σn

(1.23)

The incubation time required to reach the steady-state nucleation rate ti is equal
to:

ti = r3
cFv

4Dgbδ
(1.24)

where Dgbδ is the self-diffusion coefficient along grain boundaries multiplied by
the grain boundary thickness and Fv is the geometrical function describing the
cavity geometry as proposed by Raj and Ashby [77]. The incubation time, ti, is
generally very short, as few µs. So that, the cavity nucleation could be considered
as instantaneous and continuous, once the stress and energy criteria are satisfied,
during creep.

This model is limited by the fact that nucleation governed by the applied
stress, with the definition of a threshold stress, because of the exponential de-
pendence with stress. However, according to Yoo and Trinkaus [79], the experi-
mental data show that cavity nucleation is controlled by the rate of deformation,
but not the tensile stress, in agreement with the numerous proofs of the Dyson
law.

Once ∆G is calculated, it is possible to deduce the cavity nucleation rate.
The expression of the steady-state nucleation rate proposed by Raj and Ashby
[77] is:

Ṅ0 = 4πγsDgbδ

Ω4/3σn
Nmax

0 exp(− 4γ3
sFv

σ2
nkbT

)exp(σnΩ
kbT

) (1.25)

where σn is the normal stress acting on the grain boundary. The grain boundary
stress is generally believed to be higher than the tensile stress [80, 81].

Arnaud [82] plotted the variation of the germination rate as a function of
the normal local stress for AISI 316 at 650◦C based on the Raj model (Eq.
1.25, Fig. 1.14). His plot shows that, for a tensile stress lower than σn/E =
4.3 · 10−3, the nucleation rate is lower than 1m−2s−1, this result does not agree
with experimental measurements [44]. Further, this model predicts that a small
variation in the applied stress induces a exponential variation in cavity nucleation
rate (Fig. 1.14). This does not agree with experimental observations [44, 74, 83].
Further, the nucleation of the defects is only possible if the normal stress exerted
on the grain boundaries is approximately ten times higher than the applied stress.
This point will be discussed in Chapters 2 and 3. And numerical application of
Eq. 1.25 for the material under study is presented in Chapter 4.

1.4.2.1.2 Particle matrix interface fracture
Thermally-activated vacancy clustering theory could not predict correctly the
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Figure 1.14: Variation of the cavity nucleation rate as a function of the remote
tensile stress for a 316 steel at 650◦C [82].

cavity nucleation rate. Therefore, it is proposed that cavities nucleate due to
intergranular particle-matrix interface fracture. It is well known that interface
fracture requires high local stresses. Then, several mechanisms leading to stress
concentration have been proposed in literature. Grain boundary sliding and
pile-up effects are described in the following.

1.4.2.1.3 Stress concentrator

Grain boundary sliding
Chen and Machlin [84] proposed that the interaction between the grain boundary
ledges and grain boundary sliding leads to high local stress. The grain boundary
ledges may exist initially or result from grain boundary sliding. Chen and Mach-
lin [84] expected these interactions lead to a high local stresses at the ledges,
which may be high enough for interface fracture to occur.

However, following Harris [5] and Fleck et al. [85], such local stresses induced
by the grain boundary sliding should insufficient for the interface fracture.

Recently, Barkia et al. [86] carried out in-situ test in titanium at room
temperature. Their observations show a strong link between grain boundary
sliding and grain boundary decohesion. However, these observations were carried
out at a strain rate of 2 ·10−4s−1, which is very high compared to standard creep



1.4. DAMAGE MECHANISMS 31

test strain rate.
Further, if grain boundary sliding is predominant, it should be expected that

the maximum damage occurring during a uniaxial test should be observed along
the grain boundaries oriented at ±45◦ with respect to the tensile axis [57]. In
practice, it is considered that large cavities is most observed on the grain bound-
aries which are perpendicular to the tensile axis [52, 57, 75, 79, 87]. And small
cavities is mostly observed on the grain boundaries which are parallel to the
tensile axis. Therefore, the grain boundary sliding may not be predominant for
cavity nucleation at least in the considered materials. However, the microscopic
observations do not make it possible to observe the cavities at the nucleation
stage (in order of 20nm), but in the more advanced stage of growth.

Dislocation pile-ups
Dyson [74] showed that cavities are observed in creep specimens prestrained at
room temperature, Nimonic 80A. He suggested that the mechanism of cavity
nucleation at ambient temperature may influence or induce cavity nucleation
at high temperature. The thermally-activated nucleation would hardly occur
at room temperature. Then, the Zener-Stroh mechanism [88] (Fig. 1.13c) was
proposed to explain this phenomenon.

In the Zener-Stroh mechanism, cavity nucleation is controlled by localized
plasticity. And interface fracture is caused by the stress field induced by dislo-
cations pile-ups against a hard particle.

Kassner et al. [89] carried out creep tests on high purity silver at ambient
temperature. Their observations show that cavity nucleation occurs continuously
and is also believed to be due to the Zener-Stroh mechanism [52].

1.4.2.1.4 Conclusion about cavity nucleation
Various mechanisms were proposed to justify the occurrence of an important
stress concentrations at certain sites along the grain boundaries, to cause cav-
ity nucleation. Existing cavity nucleation models require indeed high local stress
concentrations, for both thermally-activated cavity nucleation and particle-matrix
interface fracture, as already noticed in literature.

Recently, Lim [80] calculated the stress concentration at triple points us-
ing Crystal Viscoplasticity Finite Element computations. The calculated stress
could reach twice of the tensile stress, but it is obviously not enough for either
thermally-activated cavity nucleation or interface fracture.

The effect of slip bands is not described in this part. Sufficiently high stress
may be reached [90], but they are rarely observed during creep deformation,
except for nickel-based alloys. it will be discussed in Chapter 4.

In the following, we focus on the stress concentration induced by second phase
particles located at grain boundaries in accordance with all experimental obser-
vations. The Eshelby inclusion theory [91] is the simplest method to calculate
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inclusion stress because of its thermo-elastic assumption. However, it leads to an
overestimation of the local stress. The Eshelby theory will be applied in Chapter
3 to discuss the effect of inclusion aspect ratio.

In Chapters 2 and 3, the effect of intergranular particle morphology on in-
terface stresses will be calculated by crystal viscoplasticity Finite Element com-
putation. Then, the distribution of interface stresses is used to calculate cavity
nucleation rate in Chapters 2 and 4.

It should be noticed that local stresses may be relaxed during creep deforma-
tion. However, this is a very complex problem, involving the transport of matter
along grain boundaries (the Coble creep) and the creep of the grains themselves.
Only approximate solutions exist. It firstly relies on the fact that, only the inter-
granular particles constitute sites where the stress does not relax in a very short
time.

In conclusion, concerning cavity nucleation, it is generally believed that the
effects of the interface normal stress and the grain boundary sliding may more
important compared to other mechanisms.

1.4.2.2 Cavity growth

Cavity growth may occur by different coupled or uncoupled mechanisms. First,
several kinetics and mechanisms are coexisting, as lattice diffusion, grain bound-
ary diffusion, constrained growth and viscoplastic growth. Second, the grain ori-
entations and the surrounding of each grain boundary is different, which could
influence cavity growth rate, so as grain boundary coherency, second phase effect,
etc. Such microstructure effects are rarely studied.

In the following, some models describing the most well-known cavity growth
mechanisms are presented:

-the diffusion-controlled cavity growth model proposed by the Hull-Rimmer
[92]. The constrained diffusion growth initially proposed by Dyson [93], was then
developed by Rice [94];

-the plasticity-controlled growth is proposed by Riedel [51] and Nix [95].
- the model coupling between diffusion and viscoplasticity proposed by Chen

and Argon [96] is also discussed.

1.4.2.2.1 Diffusion growth
Cavity diffusion growth is a mechanism of interest for creep damage. It may
occur at low strain rate. This means that it may play an important role in the
structure components loaded at low stress and for long term. Such low stresses
and long durations may be out of the scope of laboratory tests, which are often
using

The cavity growth by vacancy diffusion was initially highlighted by Hull and
Rimmer [92]. They assumed that, during creep, cavities grow by vacancy diffu-
sion along grain boundaries.
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This model requires several conditions. The vacancy diffusion along the cavity
surface is quick enough to keep te equilibrium geometry of cavity (spherical
geometry), at all time. Cavities are periodically located along grain boundaries,
for each perpendicular facet, with the same spacing 2L (Fig. 1.15a). The density
of vacancies in the grain boundary is assumed to be constant to keep the diffusion
growth for all creep lifetime. Finally, grains are assumed to be rigid, without
viscoplastic deformation around the cavity surface.

Accounting for all these hypotheses, Hull and Rimmer deduced the cavity
growth rate, as:

ṙ = Dgb/vδσnΩ
kbT

· 1
2Lr (1.26)

where L is one half the average distance between cavities in grain boundaries.
Thereafter, Raj and Ashby [77] improved this model. They proposed that

the vacancy diffusion flux is induced by the normal stress acting on the grain
boundaries, but not the hydrostatic pressure. This model will be explained in
details, applied and discussed in Chapter ??.

The described model assumed that intergranular cavitation occurs in a ho-
mogeneous way over all grain boundaries (Fig. 1.15a). In fact, experience shows
that this is not the case, and that the Fig. (1.15b) is closer to the observations
in many cases, especially in alloys that contain precipitates at grain boundaries.
In facet, the surrounding material creeps restricting cavity growth.

Therefore, the damaged grain boundaries may need to be considered as rela-
tively isolated. This was described by Dyson [93], as constrained cavity growth.

During creep, the damaged grain boundaries tend to deform faster, due to
cavity growth, than the surrounding matrix. In order to fulfill strain accommo-
dation, the stress acting on these grain boundaries is reduced by internal stress.
And the diffusion cavity growth rate is then decreased because of this reduction
in normal stress.

Then, Rice [94] developed further this idea, based on the compatibility be-
tween the strain rate induced by diffusion cavity growth and the remote strain
rate. Then, this model was improved by Riedel [51]. The constrained cavity
growth rate proposed by Riedel will be applied and discussed in Chapter ??.

1.4.2.2.2 Viscoplastic growth
For a large cavity radius, when the local strain rate is sufficiently large, the diffu-
sion phenomenon does not have time to be efficient enough. This viscoplasticity-
controlled cavity growth model was initially proposed by Hancock [97]. This
model proposed that the cavity growth is a result of creep deformation of the
matrix surrounding cavities, provided the vacancy fluxes is low enough.

However, this model requires a high creep strain rate, which explains that
viscoplasticity-induced cavity growth is less important for typically low stress
creep fracture conditions.
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(a) (b)

Figure 1.15: (a) The homogeneous and (b) the heterogeneous cavitation at grain
boundaries under vertical loading [52].

1.4.2.2.3 Coupling between diffusion and viscoplasticity
In diffusion growth models, the creep deformation of the surrounding grains is
neglected. The atoms coming from the cavities deposit all along grain boundaries.
In fact, the vacancies necessary for cavity growth, diffuse only from the area near
to the cavities. In this case the diffusion distance, is quite short. This will increase
the cavity growth rate. This problem was studied by several authors [95, 96, 98–
100]. These models assume that the deformation away from the cavities takes
place by grain creep deformation. A schematic presentation of the coupling of
grain boundary diffusion and viscoplastic deformation is illustrated in Fig. 1.16.

Figure 1.16: Intergranular cavity growth model with a coupling between grain
boundary diffusion and viscoplasticity [100].
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Figure 1.17: Growth rate of the cavities normalized by ε̇r3 as a function of the
cavity size normalized by the diffusion distance L [57].

In the area close to the cavities, the vacancies are produced uniformly and
diffuse to the cavity surface, which induces stresses relaxation. In this are, defor-
mation results mainly from the formation of the vacancies. In the area far from
the cavities, no vacancy is produced and the deformation is ensured by crystal
creep.

The diffusion length L, is the characteristic length computed by Needleman
and Rice [100], as:

L = (DgbδΩσn
kT ε̇

)1/3 (1.27)

This diffusion length is also called as ’the Rice length’. This characteristic length
allows the deviation of a criterion to determine if the viscoplasticity-controlled
cavity growth takes place or not. The Rice length and derived criterion will be
used in Chapter ??.

Chen and Argon [96] studied in details this problem, taking into account the
reduction in the diffusion distance, they deduced the coupled cavity growth:

dV

dt
= 2πε̇L3

ln( r+L
r

) + ( r
r+L)2(1− 1

4( r+L
r

)2)− 3
4

(1.28)

Fig. 1.17 presents the normalized cavity growth rate (dV/dt)/( ˙εr3), as a func-
tion of the normalized radius r

L
. The dotted lines correspond to the rigid grain
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model, for various values of the area fraction of cavities. This approximation
is quite correct, especially for the low values of r

L
. The horizontal asymptote

plotted for the large values of the r
L
ratio corresponds to the pure viscoplastic

regime.

1.4.2.3 Cavity coalescence

The cavity coalescence process is well-known in ductile deformation. In this case,
the coalescence can be decomposed into several stages, as shown by the observa-
tions of Weck and Wilkinson [101] (Fig. 1.18). These experimental observations
confirm the coalescence mechanism proposed by Thomson [102]. These figures
show a steel containing two preexisting cavities and subjected to mechanical
loading.

It is generally believed that the evolution of the plastic deformation leads to
a nucleation step, with cavities produce by the decohesion of inclusion-matrix
interface. Then plasticity-induced growth occurs (Fig. 1.18b) In the experiment
carried out by Weck and Wilkinson, the holes were produced by laser drill and
are considered as preexisting cavities (Fig. 1.18a).

(a) (b) (c) (d)

Figure 1.18: in-situ SEM images of the deformation of Alloy 5052 containing
two holes oriented at 90◦ with respect to the tensile direction, in function of the
macroscopic strain, (a): ε = 0, (b): ε = 0.204, (c): ε = 0.220 (d): ε = 0.223
[101].

The next two steps concern specifically coalescence. This involves a collective
and rapid phenomenon of plastic instabilities inducing a local constriction of the
ligament between the two cavities (Fig. 1.18c). These ligaments are experimen-
tally observed on each of the fracture surfaces. It may also be accelerated by the
presence of defects.

Therefore, the ultimate stage of ductile fracture is the coalescence of the
cavities (1.18d). It is caused by plastic instability. The simplest coalescence
condition consists in assuming that the ratio of the cavity size r to their average
distance L0 reaches a critical value ωf .

For coalescence, Thomason [103] considered a square prism containing a pris-
matic cavity and a cylinder containing a cylindrical cavity. He assumed that the



1.4. DAMAGE MECHANISMS 37

coalescence is reached when the ligament area between the cavities reaches its
load limit while the horizontal layers on either side of the cavity remain rigid. He
thus estimated the instability limit and obtained an estimation of the coalescence
onset caused by a multi-axial loading. However, in ductile damage, the effect of
grain boundaries most often be neglected, because cavities are generally located
inside grains.

During creep deformation, the coalescence process begins when the cavities
and the associated deformation fields start to interact with each other, typically
when the cavity size is of the order of magnitude of their spacing. This final
stage of damage leads more or less rapidly to fracture. The complete process is
particularly complex.

First, the cavity distribution at the end of the growth stage is very heteroge-
neous, whereas most models consider only the average cavity volume or surface
fraction, ω̄. For ductile fracture, the critical value ωf is generally lower than 0.06
[104–106]. For creep fracture, it was experimentally estimated to be 0.028 for a
25Cr–35Ni–0.4C austenitic steel [107], 0.06 for a 18Cr-8Ni steel [108] and 0.04
for AISI 316 steels [109].

Second, cavities are usually assumed to be spherical, but this is no longer
valid in such a strongly deformed area and damage volume (Fig. 1.18d). Indeed,
the cavities will grow anisotropically and tend to join each other, either by local-
ized bands containing small cavities, or by micro-necking of the ligaments which
separate them, to form a macro-crack.

Finally, the fracture mechanisms are dependent on the deformation path and
the loading condition, but also on the flow stress and the strain hardening of the
matrix.

1.4.3 Physically-based lifetime prediction
1.4.3.1 The Riedel model

Two different fracture model were proposed by Riedel [51], either constrained
cavity growth or unconstrained cavity growth. For continuous cavity nucleation
and unconstrained diffusive cavity growth, Riedel [51] proposed a lower bound
for creep lifetime:

tf = 0.33(h(α)kT
ΩDgbδσ

)2/5(ωf
Ṅ0

)3/5 (1.29)

where ωf is the critical cavitated area fraction and Ṅ0 is the cavity nucleation
rate used in the Dyson law [74]. Dyson assumed that cavities nucleate contin-
uously and cavity density increases linearly with the viscoplastic strain. In the
restrictive from of the Dyson law, the cavity nucleation rate depends only on
ε̇min. The Dyson law is expressed as:

Ṅ0 = α′ · ε̇min (1.30)
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where α′ is a material dependent constant. More details about the Dyson are
provided in Chapter ??, where will be used to predict creep lifetime of Incoloy
800.

Thereafter, the upper and lower bounds of q(ω) were used to predict the
upper and lower bounds of tf [51]:

0.301(h(α)kT
ΩDgbδσ

)2/5 (ωf )0.5164

(Ṅ0)2/5
6 tf 6 0.354(h(α)kT

ΩDgbδσ
)2/5(ωf

Ṅ0
)2/5 (1.31)

Eq. 1.31 was, then, modified and improved by Lim [80]. The lower bound derived
by Lim will be applied to predict long term creep lifetime in Chapters ?? and 4.

Finally, in case of constrained cavity growth, the lower and upper bounds are
more difficult to derive. However, there is a very good agreement between the
time for coalescence on isolated facets, tc, and the time to fracture [52], which
means tc = tf . Moreover, Riedel [51] derived the time for coalescence in case of
constrained growth:

tf = 0.38[π(1 + (3/2))
Ṅ0

]1/3 ωf
(ε̇mindg)2/3 (1.32)

1.4.3.2 Recent Models

Recently, Sandström and co-workers [69, 70, 110–112] proposed two models for
transgranular fracture and intergranular fracture.

For intergranular fracture, the Sandstöm model [111] includes cavitation by
grain boundary sliding and constrained cavity growth. This model assumes that
the intergranular creep fracture occurs when the cavitated area fraction reaches
a critical value, ωf , taken as 0.25.

ωf =
∫ t

ti
N0(t1)πr2(t1, t)dt1 (1.33)

where ti is the incubation time, N0(t1) is the number of cavities at time t1, r is
the cavity radius at time t, of which produced at time t1. N0(t1) is determined
using Eq. 1.34. The cavity radius could be calculated using a modified con-
strained cavity growth rate expression [113]. By accounting for the distribution
of sub-boundary corners and particles, He and Sandstöm [114] proposed a cavity
nucleation rate (Eq. 1.34) of the same type of Dyson law [74].

Ṅ0 = Asε̇min (1.34)

where As is a constant depending on sub-grain size, particle spacing in grain
boundaries and grain boundary displacement rate.
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1.5 Conclusion and summary of the manuscript
In this chapter, we briefly presented the chemical element effects and precipita-
tion in AISI 316 and Incoloy 800.

Then, reference creep phenomenological laws were described, especially for
creep deformation, minimum strain rate and lifetime predictions.

In order to better understand creep deformation and damage mechanisms,
some physically based models of creep deformation were summarized, as diffusion
creep, dislocation climb/glide and grain boundary sliding. Concerning damage
and failure, necking and intergranular cavitation damage were separately studied.
The two most cited cavity nucleation mechanisms were presented: the thermally-
activated law proposed by Raj and particle-matrix interface fracture.

Two laws allow the evaluation of the the cavity nucleation rate under creep
condition: the Dyson law and the Raj law. The Dyson law assumes that, for a
given material, the cavity nucleation rate depends only on the minimum strain
rate. This means that Ṅ0 ∝ σn, n is the Norton law exponent. On the contrary,
the Raj model predicts that the cavity nucleation rate depends exponentially on
the applied stress, Ṅ0 ∝ σ−1 · exp( A

σ2 ). The predictions of both theories will be
discussed in details in Chapter 4.

Finally, the physically-based models allowing long term lifetime prediction
were presented, in particular, the Riedel model and Sandstöm’s models.

Lim [80] predicted the short term creep lifetimes of Grade 91 using the necking
model. And long term creep lifetimes were predicted using the Riedel model with
experimentally measured prefactor of Dyson law, α′. Using a similar combined
model, both short and long term lifetimes of AISI 316L(N) and other austenitic
stainless steels were well predicted by Cui et al. [115]. Creep lifetimes of Grade 91
and 316L(N) were well predicted up to 25 years in a large range of temperature.

These results leads us to predict lifetime of Incoloy 800 alloys in Chapter
??. Once more, The predicted lifetimes agree well with experimental data at
temperatures ranging between 500 and 760◦C. Further, the effect of Ti+Al
content is well predicted using the combination of both the necking and Riedel
models.

No adjusted parameter is used as applying the Riedel model. Only the mea-
surement of the Dyson law prefactor, α′, is necessary to predict long term life-
times. Further, as explained in section 1.4.2, the cavity nucleation mechanism
has not been well established yet. The random features of local microstructure
have been rarely introduced in the computation of stresses, such as crystalline
orientations of the grains, elasticity coefficients of second phase particles, grain
boundary plane orientation with respect the tensile axis and geometry of the
second phase particles.

In Chapters 2 and 3, the crystal viscoplasticity Finite Element computations
are carried out, to evaluate all these effects, using the Cast3m software. Cal-
culations are carried out for 316L(N), because there are many creep data and
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experimental observations concerning 316L(N) published in literature or avail-
able at our laboratory. The effects of the random crystalline orientations of the
grains and grain boundary plane orientation with respect the tensile axis are
investigated in Chapter 2. And precipitate shape factor and tip geometry effects
are investigated in Chapter 3.

Next, in Chapter 4, the local stresses induced by grain boundary sliding
(GBS) are calculated based on reference models. These stresses are shown to
be too low for inducing interface fracture. Further, the Raj model is applied
using the interface stress distributions computed by DEM and accounting for the
random nature of microstructure. The particle size effect is roughly introduced
using an energy balance equation. Thereafter, our calculated stress distributions
are used to evaluate the prefactor of the Dyson law, α′. Results show that the
magnitude of the computed prefactor value, of α′ is similar to the magnitude
of the measured values in 316L(N). Further, the prefactor, α′, is almost stress-
and temperature-independent, but it depends linearly on the density of large
intergranular precipitate.

Chapter 4 is finished with long term lifetime predictions of 316L(N) at tem-
perature ranging between 525-700◦C based on our computed value of the Dyson
law prefactor, α′. Creep lifetimes are rather well predicted, up to 25 years,
compared to experimental data.

Finally conclusions are drawn in Chapter 5. Work in progress and perspec-
tives required to enhance the physically-based prediction of cavity nucleation and
long term creep lifetimes are highlighted.



Chapter 2

Theoretical and experimental
study of creep damage in Incoloy
800

To be submitted to Materials Science and Engineering A

Depending on stress, temperature and material, transition in creep fracture
mechanism are extensively observed in metals and alloys. To investigate such
transition, Incoloy 800 alloys are subjected to numerous creep tests at tempera-
tures ranging from 500 up to 760◦C.

At first, experimental observations show two failure mechanisms: necking
fracture for short term testing and intergranular fracture for long term testing.

Then, the onset of necking is firstly analyzed using the Hart criterion of
viscoplastic instability. The necking evolution with strain is then predicted which
allows us to provide lifetime prediction.

The proportionality between the cavity nucleation rate and the creep strain
rate is assumed following the well-known Dyson law. The Riedel model assumes
cavity growth by grain boundary diffusion coupled with continuous nucleation.
This model is used to predict long term lifetime.

The results show that lifetimes are accurately predicted by the combination
of the necking model and the Riedel model whatever the chemical composition,
stress and temperature.

Furthermore, the comparison between the experimental data obtained from
different batches of Incoloy 800 alloy shows that the higher the Ti+Al content the
stronger the creep resistance. This seems due to the differences in γ′ precipitation
and its influence on creep strain rate. Such effect is well predicted through the
combination of the necking and intergranular fracture models, which are strain
rate dependent.

Finally, the measured and the predicted cavity size distributions are compared
and the applicability of such combined modeling to various metals and alloys is

41
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discussed.
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2.1 Introduction
The first Incoloy 800 alloy was developed by the International Nickel Company
in 1949 in response for a heater element material for electrical appliances [? ].
Several modified Incoloy 800 alloys have been later developed for special service
requirements. The first application of Incoloy 800 alloys in nuclear power plant
corresponds to replace some of the stainless steel components in the HTGR High
Temperature Gas-cooled Reactor[? ].

Due to its high strength and high corrosion resistance at high-temperature
in water and steam environments, the Incoloy 800 alloy was used as the steam
generator (SG) tube material for Superphénix. Its properties and historical ap-
plications for the nuclear industry [? ? ? ? ] make it one of the potential can-
didates for steam generator tubes of the Generation IV nuclear reactor ASTRID
(Advanced Sodium Technological Reactor for Industrial Demonstration).

The in-service lifetime of the generation IV nuclear power reactors is wished to
reach 60 years. For that reason, it is necessary to study the mechanical properties
evolution of the Incoloy 800 alloy with the in-service time, particularly during
creep at high temperature and for long term lifetimes.

The creep properties and microstructure evolutions in Incoloy 800 alloys at
high temperature were studied mainly experimentally. Wickens and Grover [? ]
observedM23C6 precipitation at grain boundaries during creep testing of Incoloy
800 alloys at temperature ranging from 500 to 600◦C. By transmission electron
microscopy (TEM) observations, Malfa and Quaranta [? ] showed that the γ′
phase precipitates are distributed homogeneously in the Incoloy 800 matrix after
creep deformation. Cozar and Rouby [26] observed that the creep strain rate
decreases in alloys when γ′ precipitation occurs.

Several creep lifetime prediction models have been proposed in the past.
Creep lifetime may be predicted by the phenomenological Monkman-Grant rela-
tionship [50], which relates the failure time to the minimum strain rate. Larson-
Miller relationship [54] makes the link between tensile stress, temperature and
lifetime. These two relationships are phenomenological ones, and their parame-
ters are adjusted based on short experimental data. However, the extrapolation
of the prediction of these models to long term creep may lead to an incorrect
lifetime prediction.

The physically-based fracture models and experimental observations highlight
two main fracture mechanisms: necking fracture [51, 67, 68, 202] and intergran-
ular cavitation fracture [51, 57, 77, 80, 81, 109, 115].

Based on the necking theory, Hart [67] deduced a flow instability criterion
which can be used for viscoplastic materials obeying the Norton power-law rela-
tionship. Extending the Hart criterion to creep loading, Lim et al. [68] showed
that necking starts just after the minimum creep rate, ε̇min, is reached. Pre-
dicting both necking onset and necking cross-section evolution, Lim et al. [68]
deduced a lifetime prediction model for necking fracture.
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For intergranular fracture, experimental observations [51, 74, 94, 100? ]
show that, under low stress and high temperature, cavities nucleate continu-
ously [51, 68, 74] and grow by intergranular diffusion of vacancies [51, 77, 92].
This phenomenon causes later the coalescence of cavities. Finally, the fracture
of specimens takes place when the area fraction of cavities and cracks along
grain boundaries reaches a critical value, ωf , of about a few percent following
experimental measurements [80, 109, 115].

The change in damage mechanisms leads to slope change in stress-lifetime
curve. Therefore, the lifetime prediction from the extrapolation of short term
creep data may could not predict correctly long term creep lifetime. Then, the
physically-based lifetime predictions are performed in this study.

In this chapter, experimental results from numerous creep tests carried out
at CEA/EDF on four batches of Incoloy 800 alloy are studied. Sixty creep tests
are considered with temperature ranging from 500 to 550 ◦C.

Section ?? presents the experimental observations which show that two dif-
ferent fracture mechanisms may occur. Sections ?? an ?? present creep lifetime
prediction using the combination of the Necking model and the Riedel model
to predict creep lifetime. Our predictions agree well experimental data for vari-
ous Incoloy 800 batches for lifetimes ranging in 100-30 000h, and temperatures
between 500◦C and 760◦C (with data of ORNL [48]).

Additionally, in section ?? the analysis of the creep experimental results of
the four batches of the Incoloy 800 alloys (CEA&EDF) shows the influence of the
Ti+Al content on strain rate and then on creep lifetime. Higher Ti+Al content
leads to stronger creep resistance. It is due to the differences in γ′ precipitation
and its influence on strain rate. Such trends are quantitatively well predicted by
the combination of the two models which are strain rate-dependent.

Finally, in section ??, the cavity size distribution is predicted and compared
with the experimental one.

2.2 Experimental methods and results

2.2.1 Materials and experimental methods
‘Incoloy 800’ is the generic name of a family of austenitic alloys, which are basi-
cally Fe-Ni-Cr alloys containing minor but influent amounts of carbon, aluminum
and titanium. Table ?? displays the specification on chemical composition cur-
rently used for Incoloy 800 alloys (ASTM, 2004 [3]) and the measured composi-
tions of the batches under study.

The high fraction of Ni is necessary to get an austenitic matrix and to provide
strong mechanical properties, whereas Cr improves the oxidation resistance. The
low carbon content leads to a better intergranular corrosion resistance. The Ti
atoms can stabilize carbon which increases the intergranular corrosion resistance.
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Figure 2.1: Schematic pictures showing the fracture surface and the longitudinal
section observed by FEG-SEM.

Because the addition of Ti atoms leads to the precipitation of γ′ precipitation.
The Si solid solution increases the chromium equivalent of the alloy [? ].

The mechanical properties of Incoloy 800 alloys are also strongly influenced by
the annealing procedure applied to each batch. All the products have undergone a
heat-treatment process very close to the industrial one applied to steam generator
tubes. That includes

- hot forming;
- intermediate heat-treatment between 980 and 1025◦C;
- cold-rolling;
- final heat-treatment at 980◦C.
This heat-treatment leads to a grain size ranging between 50-100µm.
Experimental creep tests were carried out at CEA and EDF, at constant

temperature (between 500 and 550◦C) and constant load. And tests at high
temperature (649 and 760◦C) carried out by ORNL [48] are also considered in
this study. Depending upon precise chemical composition and heat treatment
condition, the considered alloys of these different batches can exhibit a num-
ber of desirable properties which are attractive for a wide variety of industrial
applications.

Area reductions of the fracture surfaces are measured using a Laser Scan
Micrometer and a binocular microscope using the LAS Core software. FEG-SEM
observations are carried out to characterize the intergranular damage occurring
during creep tests. A schematic presentation of the observed fracture surfaces and
the longitudinal section of the specimens is shown in Fig. ??. The longitudinal
sections of the specimens is polished with polish paper grade 1200, followed by
polishing with diamond spray 3µm and 1µm.

2.2.2 Analysis of experimental data
The creep data of the five Incoloy 800 alloys at temperatures ranging from 500
to 760◦C are now analyzed.

A classical analysis of the creep curves is first carried out. Creep curves can
be divided into three stages: primary, secondary (or steady-state) and tertiary
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Element ASTM [3] HB 647 75193 HN 823 HH3283 7686A [48]

Fe bal bal bal bal bal bal
C ≤0.10 0.033 0.044 0.054 0.061 0.007
Cr 19-23 21.6 21.8 21.4 19.8 21.26
Ni 30-35 34.6 34.2 33.9 32.9 30.94
Mn ≤1.5 0.94 0.56 0.89 0.82 0.97
S ≤0.015 0.003 0.005 0.001 0.006 0.007
Si ≤0.70 0.35 0.30 0.47 0.45 0.41
N ≤0.03 0.026 0.021 0.018 0.013
Ti 0.15-0.6 0.12 0.11 0.13 0.40 0.39
Al 0.16-0.6 0.12 0.11 0.13 0.40 0.39

Ti+Al 0.45-0.75 0.32 0.56 0.63 0.83 0.88

Table 2.1: Chemical composition of different batches of Incoloy 800 alloys and
ASTM specification [3] (wt%). 7686A is reported in [48].

creep stage. The secondary stage is characterized by a almost constant strain
rate, known as minimum strain rate.

A general relationship between the minimum stain rate and the tensile stress,
called Norton power law, is expressed in Eq. ??:

ε̇truemin = C(σeng)n(T ) (2.1)
where C(MPa−ns−1) and n(T ) are temperature dependent material con-

stants, ε̇truemin is the minimum true strain rate (h−1) and σeng is the engineering
stress (MPa).

The engineering stress, σeng, is computed using the initial cross section and
the engineering strain is denoted as εeng (%), which is measured continuously
during each test.

The relationships between engineering and true values are:

εtrue = ln(1 + εeng) (2.2)

σtrue = σeng(1 + εeng) (2.3)
The minimum true strain rate, ε̇truemin, is determined by plotting the evolution

of the true strain rate in function of the true strain or time, and evaluating the
minimum value.
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For each temperature, the values of C and n are determined by plotting the
evolution of the minimum true strain rate in function of the engineering stress
as shown in Fig. ??. The parameters values are given in Table ??.

Fig. ?? shows that, for a given stress, a higher Ti+Al content leads to a lower
minimum strain rate. For example, at 550◦C and under 300MPa, the minimum
strain rate of the HB 647 batch (with the lowest Ti+Al content) is 2.4 · 10−8

s−1, but it is only 6.7 · 10−10 s−1 for the HH 3283 batch (with the highest Ti+Al
content) (table ??). The first material deforms 35 times faster than the second
one. Besides, the stress-lifetime curves show that the higher Ti+Al content, the
better creep resistance. It means that under the same stress, a higher Ti+Al
content leads to a longer lifetime. Such effect needs to be better understood on
the quantitative point of view, and will be discussed in section ??.

Following literature [? ? ? ? ], γ′ precipitates are observed in crept Incoloy
800 alloys, which influence creep properties. And Ni, Ti and Al are the major
elements in the composition of the γ′ precipitates, Ni3(Ti, Al). The precipitate
size is about 100nm, that is why they can hardly be observed by FEG-SEM. A
higher Ti+Al content leads to a higher number of γ′ precipitates, which increases
the material hardness, because of dislocation-precipitate interactions. As a con-
sequence, the minimum strain rate is lower. That may explain qualitatively why,
the creep resistance of materials with high Ti+Al content is better than the with
low Ti+Al content. But the quantitative relationship linking the Ti+Al content
and lifetime is still missing at this stage, particularly depending on the fracture
mode.

Batch Temperature (◦C) n C (MPa−ns−1)

HB 647 550 8.05 1.74·10−23

75193
500 10.33 1.17·10−31

525 10.80 1.17·10−31

550 12.87 1.80·10−35

HN 823
500 22.67 2.56·10−62

525 19.30 1.06·10−52

550 16.42 6.09·10−45

HH 3283 550 13.41 1.29·10−38

7686A(ONRL) 649 8.81 4.72·10−23

760 11.68 2.92·10−26

Table 2.2: The Norton parameters (Eq. ??) of the Incoloy 800 alloys under study
at 500◦C, 525◦C and 550◦C.
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Figure 2.2: Adjustment of the coefficients of the Norton Law at 550◦C
(CEA&EDF).

2.2.3 Measurement of the reduction in fracture area and
observations of the fractured Specimens

The FEG-SEM observations of fracture surfaces (Fig. ??), show two different
types of fracture surface, either necking fracture (Fig. ??) or intergranular frac-
ture (Fig. ??).

The necking fracture surface is characterized by voids and dimples (Fig. ??).
Dimples are generally observed on the ductile fracture surface [57]. On the
contrary, grain boundaries can be clearly observed on the intergranular fracture
surfaces (Fig. ??).

The measured reduction in area at fracture (Z):

Z = S0 − Sf
S0

· 100% (2.4)

with S0 the original area and Sf the area after fracture, Z varies between 10%
and 70% (Fig. ??).

Generally, necking fracture, short term tests, is accompanied by a higher area
reduction (Z% > 40%) and high failure strain in comparison to intergranular
fracture. For intergranular fracture, long term tests, the reduction in fracture
surface areas is lower than 30% based on our FEG-SEM observations of the
fracture surfaces as shown in Fig. ??.

Fig. ?? shows the area reduction versus the minimum creep rate in the
500-550◦C temperature range. The mean curve (blue line) shows that a high
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(a) (b)

Figure 2.3: FEG-SEM observations of the fracture surfaces of the HN 823 alloy
for two different test conditions. (a) necking fracture 550◦C, 280MPa, 332h,
Z%=42%; (b) intergranular fracture 500◦C, 310MPa, 5082h, Z%=10%.

minimum strain rate leads to a high area reduction. On the contrary, a low
creep rate leads to a low area reduction. A high strain rate plateau is observed,
with an area reduction of about 55%. A drastic decrease is observed between 10−8

and 10−7s−1. Finally, the area reduction seems to decrease much slower down
to 10−10s−1 (Fig. ??). A value of almost 15% is reached. No clear temperature
effect can be observed.

According to our area reduction measurements and fracture surface obser-
vations, it can be concluded that a high minimum creep rate leads to necking
fracture, and a low minimum creep rate leads to intergranular fracture.

2.2.4 Observations of the longitudinal sections
The observations of the polished longitudinal sections by FEG-SEM are focused
on precipitates, cavities and short cracks. In all specimens, two types of pre-
cipitates are observed chromium carbides, M23C6, and titanium carbonitrides,
Ti(C,N). The M23C6 precipitates, generally Cr23C6 precipitates, appear at
grain boundaries and triple junctions. The Ti(C,N) particles are generally rect-
angular precipitates observed in the matrix. The affinity of titanium to carbon is
higher than the Cr one. Thus, Ti(C,N) precipitates are more stable thanM23C6
precipitates. But, in comparison to the Ti(C,N) carbonitrides, the M23C6 pre-
cipitates are produced preferentially at in service temperatures ranging from 500
to 550◦C [? ].

For a few carbonitrides, short cracks (∼ 1µm) can be observed (as shown in
Fig. ??) at the interfaces with the metallic matrix. But the crack sizes remain
always similar to the precipitate size. And neither propagation nor coalescence
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(a) (b)

Figure 2.4: (a) Histogram and cumulative probability of the area reduction mea-
sured on the fracture surfaces, Z% (HN 823 alloy). The two fracture domains dis-
tinguished thanks to FEG-SEM observations (Figs. ?? and ??) are highlighted;
(b) Area reduction measured after fracture as a function of the minimum creep
rate (75193 alloy).

is observed. Consequently, such micro cracks are not considered in the creep
damage modeling presented in section ??.

Intergranular cavities can be observed in specimens which failed due to inter-
granular damage, but not observed in the ones fractured by necking. Intergran-
ular cavities are initiated at the interfaces of M23C6 precipitates and matrix as
shown in Fig. ??. Then, cavities grow along grain boundaries and triple points.
This is why long term creep damage is also called intergranular cavitation dam-
age. Furthermore, growth and coalescence of cavities lead to intergranular cracks.
Cracks propagate along the grain boundaries perpendicularly to the tensile axis
as shown in Fig. ??, which agrees with many observations reported in literature.
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Figure 2.5: Ti(C,N) precipitate in the matrix, with a microcrack at the interface
between the alloy matrix and the precipitate (525◦C, 270MPa, 2720h, HN 823).

(a) (b)

Figure 2.6: FEG-SEM observations of cavities and short crack longitudinal sec-
tions (525◦C, 270MPa, 2720h, HN 823). (a) a cavity initiated at the interface
between a M23C6 carbide and the matrix, along a grain boundary; (b) short
cracks resulting from the coalescence of intergranular cavities.
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2.3 Lifetime prediction models
Two different damage mechanisms are observed. Therefore, at least two damage
models should be used to predict lifetimes for both short and long term regimes.

2.3.1 Necking model
As shown in the previous section, short term creep specimens are characterized by
relatively high fracture area reduction and high elongation at fracture. Generally,
short term creep specimens are fractured due to viscoplastic instability (necking)
which is simulated in the following.

At any given time, a portion of the gauge length is assumed to be character-
ized by a small reduction in cross section, | δS |. The remaining gauge length is
assumed to display a homogeneous cross section, S, as shown in Fig. ??.

The onset of necking is defined by arising of the viscoplastic deformation
instability. This means that the difference in cross section increases with time.
The corresponding time is assumed to be the onset of necking. This phenomenon
is analyzed referring to the Hart criterion [67]. Using this criterion and the
volume conservation assumption, Eq. ?? was deduced by Lim et al. [68]:

ε̈eng

ε̇eng
− 2 · ε̇eng

1 + εeng
> 0 (2.5)

Using this equation, it is deduced that the necking onset occurs at a time very
close to tmin, the time at which the strain rate reaches its minimum, ε̇min [80].
This model assumes that after the necking onset, the deformation of the necking
part is considered to be homogeneous with a initial cross section S−δS (Fig. ??).
Only large curvatures radius allow such piecewise homogeneity based modeling
to be accurate enough. Similarly, that allows us to adopt the assumption of
uniaxial stress and strain in the necking volume (Fig. ??).

Based on the Hart criterion, the volume conservation assumption and the
Norton law, Lim et al. [68] deduced Eq. ?? which allows the creep lifetime
prediction in case of fracture by necking.

tf − tmin = 1
ε̇minn

[1− δDr(2 + εmin)]n (2.6)

where

Figure 2.7: Sketch of a specimen at the onset of necking (initial inhomogeneity).
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Figure 2.8: Experimental and predicted lifetimes (Necking model, upper and
lower bounds, Eq. (??)) for the 75193 batch at 550◦C.

- tf is the time to failure by necking

- δDr is the initial variation in diameter relative to the initial average diam-
eter, D̄, of the specimen: δDr = δD/D̄ (Fig. ??).

Based on the measurement of the cross-section of the specimens and the creep
test results for temperatures of 500, 525 and 550◦C, the ranges of variation of
the input parameters of Eq. ?? can be measured experimentally.

The variation in the initial diameter is measured experimentally by laser scan
micrometer on the machined specimens (|δDr| ∈ [10−4, 10−3]).

Additionally, the ranges of variation of the other input parameters are: εmin ∈
[0.8%, 8%] and tmin

tf
∈ [0.1, 0.6], based on the analysis of our numerous creep

curves. The Norton law parameters at different temperatures and for different
batches are given in Table ??, and the ε̇min values are calculated using the Norton
power law.

Lower and upper bound curves are deduced from the ranges of variation of the
input parameters. Lifetime predictions agree well with short term experimental
data (Fig. ??), without using any adjusted parameter. The predictions agree
well the creep lifetimes lower than 3 · 103h for 75193 alloy at 550◦C (Fig. ??).
Above such lifetime, the Necking model overestimates the creep lifetime. The
reduction in area of the tests, with lifetime lower than 3·103h, show large necking
and ductile fracture (Z > 40%). A clear slope change is observed at about 104h.
That may be due to intergranular damage which might affect the time to fracture
as shown in the section ?? (Fig. ??). For the lifetimes range in 3 · 103 and 104h,
it could be the coexisting of necking and intergranular damage Z ∈ [30− 40%].
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2.3.2 Modeling of intergranular fracture
Dyson observed that cavities do not nucleate at the same time but continuously
one after another [74]. Cavity nucleation starts rather early and continues over
the whole creep test [93, 185, 240]. Riedel [51] proposed a model to predict long
term creep lifetimes. The Riedel model assumes that, under creep conditions,
cavities nucleate continuously as shown by Dyson [74] and then grow by grain
boundary vacancy diffusion. The nucleation and growth of intergranular cavi-
ties cause coalescence of cavities, and then microcracks form. The fracture of
specimens takes place as the area fraction of cavities and short cracks reaches
a critical value, ωf [51]. So that, the values of the different input parameters
such as the cavity nucleation rate, Ṅ0, the grain boundary vacancy self-diffusion
coefficient, Dgb/v, and the critical damage, ωf , should be evaluated. Their ranges
of variation should be evaluated too, in order to assess the sensitivity of the
predictions with respect to the uncertainties in the input parameter values.

2.3.2.1 Cavity geometry parameter

Particular cavity shapes (Fig. ??) could reduce the nucleation energy barrier,
which leads to earlier cavity nucleation at grain boundaries but not in the crys-
tals [51]. In addition, voids along grain boundaries can display different shapes
depending if they nucleate at grain boundaries, triple points, quadruple points
or at the interfaces with precipitates located at grain boundaries [77]. In the fol-
lowing, only grain boundary cavity nucleation is taken into account in agreement
with our observations.

In Fig. ??, the following notations are used:
- σb is the average normal stress acting on the grain boundary facet, in this

study, σb is considered as applied stress, σ;
- L is the half distance between two cavities;
- rb is the half-length of penny shape cavity (Fig. ??);
- r is the radius of the corresponding spherical cavity (broken line) which has

the same volume as the lenticular one (α < π
2 ) of half-length rb (Fig. ??).

The cavity geometry is defined by the half-length of the lenticular cavity, rb,
and the angle α. This angle can be calculated by considering the balance of the
surface tension. Eq. ??, links the grain boundary surface energy, γgb, and the
cavity free surface energy, γs [51].

cosα = γgb
2γs

(2.7)

Eq. ?? permits us to define a parameter h(α) which is the lenticular cavity
volume divided by the volume of the spherical cavity [51].

h(α) = 1
2

2− 3 cosα + cos2 α

sin3 α
(2.8)
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Figure 2.9: Schematic picture showing an isolated lenticular void and a sim-
pler spherical void (broken line, α = π

2 ) formed at a grain boundary without
precipitate (axisymetry).

As γb ∈ [0.8, 1.2]Jm−2 for general grain boundaries, γs ∈ [2, 3]Jm−2 [51, 80, 83,
115], then, the value of h(α) is found to belong to [0.70, 0.95].

2.3.2.2 Continuous nucleation law

It is observed experimentally that cavities do not nucleate instantaneously but
one after one, particularity, during the secondary stage [74]. A phenomenological
kinetic law of nucleation of intergranular cavities was proposed by Dyson [74],
which is based on the results of many measurements carried out on different
materials [15, 100]. The Dyson law links the nucleation rate with the minimum
strain rate:

Ṅ0 = α′ · ε̇min (2.9)

where
- Ṅ0 is the cavity nucleation rate per grain boundary unit area (number of

cavity·m−2 · s−1)
- α′ is a factor of proportionality depending on the material and loading

conditions (m−2)
The α′ factor is determined experimentally using the following equations:

α′ = Na

εf
(2.10)
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Na = dg ·Nm

π · dH
(2.11)

where
- Na is the number of cavities per unit grain boundary area (m−2)
- Nm is the number of cavities per unit area of polished longitudinal section

(m−2)
- εf is the axial strain in the homogeneous parts of the specimen (away from

the necking volume), measured after fracture
- dg is the grain size measured by the intercept line method (µm)
- dH is the harmonic average of intersected cavity diameters (µm).
The parameter α′ is evaluated using an image processing software. Fifteen

FEG-SEM images are analyzed for each specimen, which allows us to measure
Nm and dg. Those parameters are measured focusing on the longitudinal sections
located far away from the fracture surface. That allows us to negligent necking
effect on cavity nucleation. The measured values of α′ are provided in Table ??.
The measurement error is considered to be ±30%. The evaluation of measure-
ment error is shown in Appendix A. Our FEG-SEM cavity measurements take
into account only cavities such as cavity size, 2r, is larger than 0.4µm.

T(◦C) Stress
(MPa) tf (h)

α′

1011 (m−2) dg (µm) dH(µm) εf (%) ε̇min
10−10s−1

500 340 2246 5.10 ± 1.53 50 1 13.5 172.2
500 310 5082 9.44 ± 2.83 50 1 8.5 7.2
525 270 5082 4.40 ± 1.32 50 2 9.7 55
600 300 330 5.60 ± 1.68 100 1.5 3 27.3

Table 2.3: Measured values of the Dyson law prefactor, α′, (Eq. ??) for different
creep specimens of the HN 823 alloy tested in different conditions.

As shown in Fig. ??, the linear relationship between cavity nucleation rate
and minimum strain rate shows that the α′ factor seems almost stress and tem-
perature independent between 500◦C and 600◦C and between 270 and 340MPa.
But more data would be required to draw final conclusions. The similar measure-
ments carried out by Lim [80] and Cui [44] show that creep specimens fractured
at higher temperature and higher tensile stress may display slightly higher val-
ues of the α′ factor compared to the others. Nevertheless, according to Needham
and Gladman [177] and Dyson [74], this α′ factor is rather independent of both
tensile stress and temperature, which is in agreement with our current study.

Furthermore, differences in the α′ factor values could be induced by the ex-
perimental uncertainties in the measurements. For instance, our measurements
take account only cavities for which the effective diameter is larger than 0.4 µm.
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Figure 2.10: Plot of the measured cavity nucleation rate versus the minimum
strain rate for different temperatures and stresses of HN 823 alloy (Table ??).

Our measurements show that the α′ factor is of the order of 6 · 1011m−2,
which is similar to the 347 type stainless steel value [177], as shown in Table ??.
According to Table ??, the values of α′ are similar in the Grade 91, Nimoniac
80A and 316 L(N) alloys. However, their chemical composition, crystallographic
structure and precipitation are completely different.

2.3.2.3 Vacancy self-diffusion coefficients

As mentioned previously, cavity growth (by vacancy diffusion) along grain bound-
aries is the most influent damage mechanism for long term tests. The predomi-
nant cause of intergranular cavity growth is grain boundary vacancy diffusion at
elevated temperature, as shown in section ??. Thus, the vacancy self-diffusion
coefficient becomes an influent parameter to predict intergranular creep fracture.
Atomic self-diffusion coefficients along grain boundaries Dgb, and in the bulk,
Db, of Incoloy 800 alloy were measured experimentally by Lindemann et al. [?
], Paul et al. [? ? ? ] and Guiraldenq [? ]. The Arrhenius law parameters for
atomic self-diffusion of the major atoms (Fe, Cr and Ni) are reported in Table
??, for both in crystal bulk and along grain boundaries.

Fig. ?? shows the evolution of the diffusion coefficients of the Fe, Cr and Ni
atoms, along grain boundaries and in the bulk, in function of temperature. The
results show a large gap between bulk and grain boundary diffusion coefficients
(around ×104) in the interested temperature range. This means that bulk diffu-
sion is negligible in comparison to the grain boundary one. That is in agreement
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Material T (◦C) Stress(MPa) α′

1010 (m−2) Reference

1
2Cr-

1
2Mo-1

4V Steel 500 293-309 150 [83]
1Cr-1Mo-1

4 Steel 550 262-355 140 [83]
347 Stainless steel 550 and 650 92-385 80 [177]

Nimonic 80A
(in tension)

Room
temperature 4 [74]

Grade 91 500 230 7 [80]600 90 0.1
316 L(N) 500-750 80-370 0.39-0.95 [44]
Incoloy 800 500-600 270-340 60 present work

Table 2.4: Values of the Dyson law prefactor, α′, for various materials subjected
to creep.

diffusing
atom

Dgb0δ
(m3s−1)

Qgb

(kJ ·mol−1)
Db0

(m2s−1)
Qb

(kJ ·mol−1) T range (◦C)

Fe [? ] 4.9 · 10−11 216.0 1.50 · 10−6 241.0 800-1000

Fe [? ] 9.4 · 10−15 160.7 3.20 · 10−5 259.6 477-827 (gb)
747-1227 (b)

Fe [? ] 2.2 · 10−16 104.2 6.30 · 10−5 278.0 850-1050

Cr [? ] 2.9 · 10−14 184.2 3.24 · 10−4 287.4 502-897 (gb)
787-1237 (b)

Ni [? ] 1.9 · 10−14 156.4 8.62 · 10−5 255.9 477-807 (gb)
797-1227 (b)

Ni [? ] 1.4 · 10−15 142.0 1.50 · 10−4 300.0 850-1050

Table 2.5: Arrhenius law parameters for atomic self-diffusion along grain bound-
aries (gb) and in bulk (b) for Incoloy 800 alloys.
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Figure 2.11: Grain boundary (gb) and bulk (b) self-diffusion coefficients of Fe, Cr
and Ni in Incoloy 800 alloy depending on temperature. The range of temperature
of interest is [500-760◦C] (Table ??).

with many observations showing that cavities are located on the grain boundaries
instead of in the bulk. As choosing the grain boundary diffusion parameters, we
should avoid a too large extrapolation of the diffusion coefficient values. This
extrapolation out of the temperature range of measurement, could lead to errors
in the values of self-diffusion coefficients. Since our temperature range of interest
is 500−750◦C, the values measured by Paul et al.[? ? ? ] are used (Table ??).

Furthermore, cavity growth occurs by vacancy diffusion along grain bound-
aries. The grain boundary vacancy self-diffusion coefficient,Dgb/ν(T ) is estimated
by Eq. ?? [? ]:

1
Dgb/ν(T ) = NFe

Dgb/Fe(T ) + NCr

Dgb/Cr(T ) + NNi

Dgb/Ni(T ) (2.12)

where Ni is the mole fraction of the element i (i = Fe, Cr or Ni). The values
are given in in Table ??.

2.3.2.4 Evaluation of the Rice length

Two mechanisms can be considered for cavity growth, either viscoplastic de-
formation of the surrounding grains or grain boundary vacancy diffusion. The
cavity growth mechanism can be assessed using a length parameter, LR, given
by Eq. ??, and usually called the Rice length [100].

LR = (Dgb/νδΩσ
kbT

1
ε̇min

) 1
3 (2.13)
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T (◦C) Dgb/Fe

m2s−1
Dgb/Cr

m2s−1
Dgb/Ni

m2s−1
Dgb/ν

m2s−1
Dgb/νδ
m3s−1

500 2.60 · 10−16 2.07 · 10−17 1.03 · 10−15 8.46 · 10−17 4.23 · 10−26

525 5.70 · 10−16 5.08 · 10−17 2.21 · 10−15 2.03 · 10−16 1.02 · 10−25

550 1.19 · 10−16 1.18 · 10−17 4.52 · 10−15 4.61 · 10−16 2.31 · 10−25

600 4.56 · 10−15 5.52 · 10−16 1.67 · 10−14 2.05 · 10−15 1.03 · 10−24

650 1.51 · 10−14 4.11 · 10−15 5.38 · 10−14 7.73 · 10−15 3.87 · 10−24

700 4.43 · 10−14 7.49 · 10−15 1.53 · 10−13 2.52 · 10−14 1.26 · 10−23

760 1.41 · 10−13 2.81 · 10−14 4.71 · 10−13 8.92 · 10−14 4.46 · 10−23

δ is the typical grain boundary thickness (0.5 · 10−9 m)

Table 2.6: Grain boundary self-diffusion coefficients at 500− 760◦C.

where
- Ω is the atomic volume (1.21 · 10−29m−3)
- kb is the Boltzmann constant (1.38 · 10−23JK−1)
The ratio between the cavity growth rate by grain boundary diffusion and

the one induced by the viscoplastic flow is approximately equal to (r/LR)3 for a
round cavity of radius r.

Needleman and Rice [100] showed that cavity growth is controlled by diffusion
alone if r/LR 6 0.2 (with negligible viscoplasticity effect). The diffusion and
viscoplasticity processes combine together to produce growth in excess if 0.2 <
r/LR 6 20, which differs from each mechanism considered individually. Finally
the viscoplasticity process is the dominant cavity growth mechanism if r/LR >
20.

The Rice length is now evaluated. The cavities are observed far away from the
fracture surfaces. Based on the measured cavity sizes, the ratio r̄/LR computed
for the four specimens are generally lower than 0.2, as shown in Table ??. For
the test at 500◦C under 340MPa, this value is 0.25, but it is still close to 0.2.
Thus, the cavity growth by viscoplasticity can be neglected for all the considered
tests, except in the necking volume close to failure.

2.3.2.5 Cavity growth rate induced by vacancy diffusion

Raj and Ashby [77] assumed that when steady-state is established, all parts
of the grain boundary or gain must release in the same amount of matter [77].
Accounting for the condition of mechanical equilibrium of a disk of radius L (Fig.
??), and the number of atoms added along the grain boundary located around
a cavity because of the cavity growth per unit time, the cavity growth rate can



2.3. LIFETIME PREDICTION MODELS 61

T ◦C Stress
(MPa)

ε̇min
10−10 (s−1)

LR
(µm)

r̄
(µm) r̄/LR

rmax
(µm) rmax/LR

500 340 172.2 2.02 0.5 0.25 1.2 0.59
500 310 7.2 2.74 0.5 0.18 1.3 0.47
525 270 55 5.75 1 0.17 2.0 0.35
600 300 27.3 4.84 0.75 0.15 1.5 0.31

Table 2.7: The Rice length (Eq. ??), the r̄/LR ratio and the rmax/LR for different
fractured specimens of the HN 823 alloy.

be obtained as the following [80]:

ṙ = 2ΩDbδ

h(α)kbT
(1
r

)2σb − σ0(1− ω)
q(ω) (2.14)

where
- ω is the area fraction of cavities: ω = ( r

L
)2, which characterizes the inter-

granular damage
- q(ω) = −2ln(ω)− (1− ω)(3− ω)
- σ0 is the sintering stress, σ0 = 2γs

r
. If the applied stress, σ, is lower than

this stress, no growth occurs
The area fraction of cavities increases over time up to the specimen fracture.

The critical average value of the area fraction of cavities along grain boundaries
is denoted as ωf . This parameter is measured experimentally based on SEM
observations and measurements carried out on longitudinal sections. The value
of ω̄f is 0.041 for Incoloy 800 alloys. This value is similar to one measured by
Auzoux [109], 0.04 for 316 SS. Dyson and Mclean[? ] assumed that ωf should
lower than 0.1. Lim [80] used the ωf = 0.1 ± 0.05 to predict the creep lifetime
of Grad 91. Simulations of the viscoplastic deformation of homogeneous porous
material show that the strain rate increases very quickly as soon as porosity
reaches 5-10% is reached. According to our experimental observations, in the
following a critical porosity value of 0.04 ± 0.01 is then used predict the creep
lifetime of Incoloy 800.

The Raj and Ashby equation [77] assumes that the diffusion flux of vacancies
is induced by the normal stress acting on grain boundaries, and not by the
hydrostatic pressure. The rate of growth is only driven by the synergistic effect
of grain boundary diffusion and normal stress.

Considering that cavities are heterogeneously distributed along grain bound-
aries, Dyson [74] suggested that the cavity growth should be constrained by the
matrix viscoplastic deformation. Due to intergranular cavitation and matter re-
distribution along the grain boundaries, the strain compatibility between the
cavitated grain boundary and the surrounding non damaged matrix should be
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fulfilled ensured. This induces a decrease of stress through the damaged grain
boundary. Additionally the volume surrounding the damaged grain boundary
may then deform faster than the viscoplastic matrix to ensure strain compatibil-
ity [94]. A reduction in cavity growth rate is induced by the reduction of local
stress. Rice [94] proposed Eq. (??) to calculate the constrained cavity growth
rate.

ṙ = 2ΩDbδ

h(α)kbT
( 1
rb

)2σb − σ0(1− ω)
8LR3

ξL2dg
+ q(ω)

(2.15)

where
- ξ= 4

π2(1+ 3
n

)1/2 with n the exponent of the Norton law
It should be noticed that the ω function: q(ω) = −2ln(ω)− (1−ω)(3−ω) is

monotonically decreasing with ω from zero up to ωf , so that, [q(ω)]min = q(ωf ).
From the fracture criterion, it drives that ωmax = ωf , with ωf the critical area
fraction of cavities. Considering that at fracture:

ωmax = ( r̄

L(tf )
)2 = ωf ' 0.04 (2.16)

it derives that:
L(tf ) ' 5r̄ whereas [q(ω)]min = 3.7 (2.17)

Further, L decreasing with time down to L(tf ). Besides, 8LR3

ξL2dg
is monoton-

ically increasing with L decreasing. Using the mean value of n (n = 15 Table
??), ξ equals 0.37.

As shown in section ??, the mean value of the cavity radius is 0.5µm, so that:
r̄
LR

= 0.19 at fracture. Assuming that:

LR = 5r̄ = L(tf ), dg = 100µm, r̄ = 0.5µm = 0.5 · 10−6m (2.18)

then, ( 8LR3

ξL2dg
)max = 0.54. It can be deduced that ( 8LR3

ξL2dg
)max � [q(ω)]min, so that,

in the present work, the constrained cavity growth effect is negligible. The Raj
and Ashby equation is therefore used in the following. It means that only grain
boundary diffusion growth is considered (Eq. ??). And the σb equals the applied
stress, σ.

2.3.2.6 Prediction of long term creep lifetime

The Riedel model provided upper and lower bounds to predict long term creep
lifetimes, derives from Eqs. ?? and ??. In fact, in general, the set of equations
cannot be solved analytically [51].

Furthermore, closer upper and lower bounds based on the Riedel set of equa-
tions were proposed by Lim [80]:

0.301
(
h(α)kbT
ΩDgb/vδσ

) 2
5 ω̄0.516

f

Ṅ
3
5

0

≤ tf ≤ 0.354
(
h(α)kbT
ΩDgb/vδσ

) 2
5 ω̄

2
5
f

Ṅ
3
5

0

(2.19)
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Uncertainties in the material input parameters should be taken into account
for the intergranular damage prediction. Then, the predicted upper and lower
bound values differ by a factor of almost three. At same time, uncertainties in
the necking modeling input parameter lead to the final upper and lower bound
values differ by a factor of almost two.

2.4 Lifetime prediction

2.4.1 Stress lifetime plots
In this part, the combination of the necking and the Riedel models is used to
predict the short and long term lifetimes.

The predictions are based on the Norton law parameters, which have been
previously adjusted for each batch and at each temperature (Table ??). That
allows the evaluation of the minimum strain rate. The δDr, tmin and εmin values
are measured experimentally. The prefactor of the Dyson law, α′, and the critical
damage area fraction, ωf , measured for the HN 823 alloy are used for lifetime
prediction for all the other batches. It is indeed assumed that that the M23C6
precipitates do not differ much from one batch to another in the same loading
conditions. This assumption needs to be checked experimentally. The main
difference between the batches consists in their dependence of minimum strain
rates with respect to their chemical composition (Table ??, Fig. ??). That
dependence is usually explained qualitatively by the difference in γ′ intragranular
precipitation linked to the Ti+Al content.

The combined model predicts lifetime up to 3 · 104h (3 years) (75193 550◦C)
with low stress (140MPa) in account of the change of creep damage mechanism
(Fig. ??).

As shown in Fig. ??, the combination of the necking model and the Riedel
model leads to predicted lifetimes in agreement with the experimental data for
the 75193 alloy at 550◦C. The evaluation of the experimental uncertainty in the
input parameter values allows us to plot the lower and upper bound curves.
This uncertainty could explain that the predicted lifetime is shorter than the
experimental lifetime for the test at 340MPa, 80h. Further this may due to the
uncertainty caused by the prediction of minimum strain rate. As shown in Fig.
??, the experimental results of the 75193 alloy show changes of slope in ε̇min-stress
curve, which is not taken into account for the Norton parameters evaluation. It
could lead to a better lifetime prediction with the change in Norton parameters.

It should be noticed that the predicted fracture mode agrees well with the
one evaluated through the area reduction measurements (Figs. ?? and ??). That
shows the consistency of the combination of the two models and damage mech-
anisms determined by FEG-SEM observations. Finally, the slope change caused
by the change in damage mechanisms is well predicted through the combined
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Figure 2.12: Lifetimes predicted by the Necking model (blue lines) and the Riedel
model (red lines) compared with experimental data for the 75193 alloy at 550◦C
(orange points). The failure modes evaluated by the fractured area reduction
measurements and the FEG-SEM observations are mentioned along the time
axis.

model.

The predicted and experimental lifetime curves and data obtained for differ-
ent batches (Table ??) at 550◦C are plotted in Fig. ??. The effect of the Ti+Al
content is well predicted through the difference in the Norton parameters only.
The agreement between the experimental and the predicted lifetime holds what-
ever the Ti+Al content. That leads us to propose that the carbide formation may
be weakly dependent on the Ti+Al content or affects not so strongly the cavity
nucleation law. So that, the Ti+Al content would have little influent on the α′
value (Eq. ??). This should be confirmed by further experimental observations.

The predictions are also carried out for Incoloy 800 alloys tested at temper-
atures ranging from 500 to 760◦C, as shown in Fig. ?? and ??. The lifetimes of
the 75193 alloy and the 7686A alloy at different temperatures are well predicted
using the value of α′ measured in the HN 823 alloy. This leads us to propose that
the value of α′ do not differ a lot in the temperature ranging in 500 and 760◦C.
Further, the value of α′ should be independent on the tensile stress. These points
agree well with the Dyson law, which propose that, for given material, the α′ is
a constant. Further, using same value of α′, the lifetime of 7686A [48] are well
predicted. Therefore, the value of α′ may not differ or slightly differ for a small
variation of chemical compositions.
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Figure 2.13: Experimental (points) and predicted (lines) lifetimes for various
Incoloy 800 alloys, with different Ti+Al contents, at 550◦C (Necking model and
the Riedel model predictions).

(a) (b)

Figure 2.14: Comparison between experimental and predicted lifetimes at tem-
peratures ranging from 500 to 760◦C (Necking model and the Riedel model pre-
dictions). (a) 75193 alloy at 500, 525 and 550◦C; (b) 7686A alloy at 649 and
760◦C (data of ORNL [48]).
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Figure 2.15: Transition times in fracture mechanisms predicted by the combined
model for different temperatures (Necking model and the Riedel model predic-
tions) compared with experimental results.

2.4.2 Prediction of the transition in fracture mechanism
The Monkman-Grant and the Larson-Miller laws are phenomenological relation-
ships, whereas the combined model used previously is physically-based. The
necking model is based on the prediction of both necking onset and necking
cross-section evolution. And the Riedel model is based on continuous cavity nu-
cleation and grain boundary diffusion growth, in agreement with observations.

From the observations of the fracture surfaces and the measured lifetimes,
we can finally evaluate experimentally the transition times in damage mode de-
pending on temperature and material. Using the combined model, the transition
time between the two damage mechanisms can be predicted too. Fig. ?? shows
the evaluation of transition time in function of temperature. It should be no-
ticed that, with few experimental results of 7686A at 750◦C, the experimental
transition time cannot be evaluated. Following the predictions, an increase in
temperature leads to an earlier change in damage mechanisms, which agrees with
experimental data. The dependence of the grain boundary self-diffusion coeffi-
cient temperature is may stronger than the creep strain rate one. That explains
such a temperature dependence of the transition time.

2.5 Cavity size distribution
Riedel [51] proposed a cavity size statistical distribution function, N(r, t, σ, T ),
which account for cavity nucleation and growth equations (Eq. ?? and ??).
The distribution is a function of time, temperature and stress, which gives more
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insight into the cavitation mechanisms in the specimens.
The cavity size distribution should be updated during creep. Assuming that

cavity nucleation is stress and temperature independent, the number of cavities
growing from r to r + ∂r is shown in Eq. ??.

Ṅ = −∂(N · ṙ)
∂r

(2.20)

Eq. ?? and Eq. ?? are proposed as test functions for, respectively, the cavity
growth rate and cavity nucleation rate:

ṙ = A1 · r−β · t−k (2.21)

Ṅ(t) = A2 · tγ (2.22)
Finally, Riedel deduced from Eq. ?? and Eq. ??, a general solution for the

cavity size statistical distribution function as [51]:

N(r, t) = A2

A1
· rβ · tk+γ · (1− 1− α

1 + β
· rβ+1

A1 · t1−α
)
k+γ
1−k (2.23)

where A1, A2, k, β and γ are parameters depending on stress and temperature
via the cavity nucleation and growth law, but not on time or on cavity size.

To calculate the cavity size distribution, it is proposed that the cavity nu-
cleation law is similar to the Dyson law (Eq. ??), so that γ is equal to 0 and
Ṅ(t) = A2 = Ṅ0.

And the A1, k and β coefficients are evaluated using the cavity growth rate
law proposed by the Raj and Ashby (Eq. ??), which links cavity growth rate,
cavity size and applied tensile stress.

1
r2 = r−β (2.24)

2ΩDbδ

h(θ)kbT
σ − σ0(1− ω)

q(ω) = C ′ · F (ω, r) = A1t
−k (2.25)

Eq. ?? contains two parts (Eq. ?? and Eq. ??) as described in Eq. ??.
Using lower and upper bounds of the function F (ω, rb) appearing in Eq. ??, we
can calculate analytically C ′.

Assuming that σ 2ΩDbδ
h(θ)kbT

= C ′ and F (ω, r) = 1− σ0
Σn

(1−ω)
q(ω) = bωa, the lower and

upper bounds of F (ω, r) are obtained using the minimum and the maximum
measured radius values, respectively, rmin and rmax. The the minimum cavity
radius, rmin, is assumed as critical radius, rc [77]. Assuming that rc = rmin = 2γs

σ
,

then r = rc, σ0 = σ.

F (ω, rc) =
1− σ0

σ
(1− ω)

q(ω) =
1− σ

σ
(1− ω)
q(ω) = ω

q(ω) (2.26)
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The maximum radius, rmax, is determined experimentally. The function F (ω, rmax)
can be rewritten as:

F (ω, rmax) =
1− rc

rmax
(1− ω)

q(ω) (2.27)

Experimental measurements show that ωf is generally lower than 0.05 as
explain in part 3.2, so that, the upper and lower bounds of the function F (ω, r)
are obtained for 270MPa and 525◦C. And they are generally valid for 0 < ω̄ <
0.05 and rc < r < rmax.

Under these conditions, the maximum cavity radius measured experimentally
amounts to rmax = 0.8µm. And the minimum cavity radius is evaluated using
rc = rmin = 2γs

σ
. Then, we find rc = 18nm. Under each loading conditions,

the F (ω, r) function can bounded ω-power laws. For instance, at 525◦C and
270MPa, we deduce that 0.5ω1.25 < F (ω, r) < 6.1 · 108ω0.5. The evolution of the
average area fraction of cavities along grain boundaries, ω̄(t), can be calculated
by integrating the areas occupied by individual cavities times their density [51],
and is given by:

ω̄(t) = I(k, β, γ)A2A
2

β+1
1 tk+γ+ (1−k)(β+3)

β+1 (2.28)

where I(k, β, γ) is defined by Eq. ?? [51]:

I(k, β, γ) = π(1 + β)
β+3
β+1

∫ u

0
xβ+2[1− (1− k)xβ+1]

k+γ
1−k dx (2.29)

if k > 1, u = +∞ and if k < 1, u = (1− k)−
1

β+1

The combination of Eqs. ??, ??, ??, ?? and ?? provides bounds valid for the
considered loading parameters :

−12.6 < k < −0.5 and A1 = [C · b · [I(k, β, γ) · A2]k]
1

1− 2
3 k (2.30)

With (a, b) = (0.5, 6.1 · 108) (upper bound) and (a, b) = (1.25, 0.5) (lower
bound), The analytical calculation leads to β = 2, −12.6 < k < −0.5 and A1
is proportional to A2, C and k. Fig. ?? shows the calculation results, with
predicted curves bounding the experimental cavity size cumulative distribution.

This model combines the cavity growth rate and cavity nucleation rate equa-
tions. It allows the prediction of the cavity size distribution. This model was
proposed by Riedel [51] and was used later by Lombard and Vehoff [129] and
Lim [80]. The cavity growth rate equation used the Raj and Ashby one which
is based on cavity growth by vacancy diffusion along grain boundaries. And the
nucleation rate is calculated by the Dyson law, which is a phenomenological law,
based on numerous cavity density measurements.

Assuming that A1 = A2 = 1, Riedel [51] proposed different combinations
of parameters k, β and γ, which leads to various types of distribution curves.
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Figure 2.16: Comparisons between the predicted and measured cavity size dis-
tributions (550◦C, 310MPa, 5082h).

He showed that using parameters such as β = 2, γ = 0 and k = 2, the cavity
size distribution curves are obtained. Then, the choice of those parameter values
allows the plot of cavity distribution curve form more similar to the experimental
ones. However, the chosen parameters have no physical meaning [51]. Because
A1 and A2 have physical meaning, specially, A2 is the cavity nucleation rate,
which is different to 1.

Lim [80] followed a similar approach as ours, but assuming β = 2, γ = 0 and
k = 1. The cavity size distribution issue of these parameters is overestimated of
a factor 2 or 3.

Lombard and Vehoff [129] proposed to fit the parameters from the measured
cavity distributions, but the parameters, A1, A2, k, β and γ, should be fitted for
each stress and each temperature. And that approach could not be predictive be-
cause the experimental cavity size distributions have been used in the parameter
adjustments.

In this study, we can calculate analytically the cavity size distribution for each
test conditions, the upper and lower bound curves of the F (ω, r) function. Each
experimental cavity distribution curve is found to be bounded by the predicted
upper and lower bounds curves. And predictions can be generally provided for
different stress and temperature conditions after reevaluating the upper and lower
bound power laws (Fig. ??), without using any experimental distribution.
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2.6 Discussion
As shown in section ??, the short term and long term creep lifetimes are accu-
rately predicted using the combination of Necking and the Riedel models. The
effect of the Ti+Al content is also accounted for by both models through the
differences in strain rate. Furthermore, the cavity size distribution is fairy well
predicted.

Recent studies show that the combination of the both models using two bound
curves, predicts efficiently 316L(N) [115], Grade 91 steel [80] and 347 alloy [44]
creep lifetimes in large temperature and stress ranges. In the case of the Incoloy
800 alloys, the Norton law parameters differ from one batch to another due to
strong differences in the volume fractions and sizes of the γ′ precipitates. On
the contrary, such large chemical composition effect is not observed in 316L(N)
and Grade 91, at least not in such proportions. It is then of interest to valid this
model for various materials, such as copper, Aluminum alloys, Ni-based alloys
and other materials.

For the cavity growth mechanism, the constrained cavity growth model has
been used by Eggeler et al. [? ] and Sandström and Wu [110]. However, our
numerical applications show that the constrained effect is negligible. And the
plastic cavity growth is also negligible via the Rice length. Therefore, only grain
boundaries diffusional cavity growth is taken into account in this paper.

Recently, He and Sandström [69] proposed a ductile creep fracture model
based on dislocation creep, which predicts correctly short term creep lifetimes.
However, this model does not take into account directly the viscoplastic insta-
bility. This leads the authors to assume that failure takes place when the total
strain reaches a conventional value of 0.2 for all austenitic stainless steels, which
do not valid for all temperature and stress. Moreover, the effect of the Ti+Al
content may could not be correctly predicted by this model, due to the constant
chosen parameters for one series of material.

Sandström and Wu [111] proposed a intergranular creep fracture model based
on grain boundary sliding, which has been proved experimentally. This model
predicts a Dyson-type cavity nucleation rate. Nevertheless, it should be noticed
that grain boundary sliding model could not provide an explanation for cavity
nucleation along the grain boundaries perpendicular or parallel to the tensile
direction [52, 57, 79].

For the cavity nucleation, the Dyson law parameter, α′, used previously is
assumed to be independent of the Incoloy 800 batch, temperature and applied
stress. This point needs to be further verified by SEM-FEG observations. Ac-
counting for the measurement error bar, no clear dependence of the α′ parameter
with respect to temperature and stress shows can be highlighted (Table ??, Fig.
??).

Further, the cavity nucleation mechanism has not been well established yet.
For alloys containing second phases, such as Incoloy 800 alloys, AISI 316, Ni-
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based alloys and grade 91 steel, the cavities appear generally at the interfaces of
the second phase particles located along grain boundaries [51, 52, 81, 117, 121,
128, 134, 150? ]. Large cavities are more numerous along perpendicular grain
boundaries. But if all cavities including the smallest ones (r ' 20nm), they are
the most numerous along grain boundaries parallel to the tensile axis [93, 185].

Our work in progress focuses on computations by the Finite Element Method
of the stress fields at precipitate-crystal interfaces, accounting for the crystal
viscoplastic flow of the surrounding grains. Then local stress and energy criteria
allow the prediction of interface fracture and the progressive nucleation of cav-
ities through the polycristal. Such modeling may help to evaluate theoretically
the Dyson law parameter value, α′, and its dependence with respect to time,
temperature, stress and material.

2.7 Conclusion
The creep properties of Incoloy 800 alloys were investigated experimentally at
temperatures ranging between 500◦C and 760◦C, for lifetimes up to 33 000h. Two
main fracture mechanisms were observed: necking and intergranular damage.

The onset of necking is first analyzed using the Hart criterion of viscoplastic
instability and then the necking evolution is predicted up to failure. The used
necking model was proposed by Lim based on the Hart theory of viscoplastic
instability, the Norton law and the volume conservation.

Intergranular damage is predicted based on the Riedel model, which assumes
that cavities nucleate continuously following the Dyson law. This well-known
phenomenological law assumes that the cavity density is linearly proportional
to the remote viscoplastic strain. Additionally, the Riedel model assumes that
cavities grow by vacancy diffusion along grain boundaries. This leads us to
predict lower and upper lifetime bounds. The Riedel bound curves are shown
to be rather stable with respect to the experimental parameter uncertainties in
the input parameter values, such as the cavity nucleation rate evaluated through
cavity density measurements and grain boundary self-diffusion coefficient.

The comparison between predicted and experimental lifetimes shows that life-
time is accurately predicted by the combination of the necking and Riedel models.
Predicted and measured lifetimes agree well whatever the chemical composition,
the temperature (from 500 to 760◦C) and the applied stress. That holds for
lifetimes from a few ten hours up to 33000h.

The comparison between different batches of Incoloy 800 shows the strong
influence of the Ti+Al content on strain rate and creep lifetime. A higher Ti+Al
content leads to lower strain rate and better creep resistance. Such trends are
quantitatively well predicted by the combination of the necking and Riedel mod-
els.

Our results confirm the validation of such modeling to predict creep lifetime
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in both short and long term simulations in various steels, such as austenitic
stainless steels [115] and tempered martenitic steels [68].

It should be noticed that the Dyson law is assumed to be valid and the exper-
imental evaluation of its prefactor vale is needed when using the Riedel model.
Cavity nucleation mechanisms should be studied experimentally, analytically or
by numerical calculations to provide a reliable and comprehensive prediction of
cavity nucleation. The following chapters aim to evaluate theoretically the cavity
nucleation rate, Ṅ0.

The experimentally measured values of the prefactor of the Dyson law, α′,
introduced in the lifetime predictions lead predictions of creep lifetimes in fair
agreement with experimental data up to 25 years. Further, only this α′ parameter
should be measured allowing long term creep lifetime predictions. Therefore, it
is important to calculate this parameter, specially its dependence on stress and
temperature. This leads us to calculate the stress fields around particles using the
Finite Element method in Chapter 2. Further, there are more experimental data
and microstructural observations in 316L(N) and more generally in austenitic
stainless steels than in Incoloy 800. Therefore, our calculations focus on 316L(N)
in Chapter 2 and 3.

The results will be discussed in details in Chapter 4 where the lifetime predic-
tions using the predicted nucleation law will be compared to all existing lifetime
data up to 30 years.



Chapter 3

Modeling of creep cavity
nucleation in 316L(N)

To be submitted to J. Mech. Phys. Solids

Long-term creep fracture at high temperature is characterized by grain bound-
ary cavitation. In the alloys contain second phase particles, cavities nucleate
preferentially along the interfaces of these second phase particles and the sur-
rounding matrix. However, the dominant cavity nucleation mechanism in creep
has not been well established yet. It is generally believed that interface fracture
is caused by high local stress fields. Therefore, the interface stress fields around
second phase particles are computed to check if they may be high enough to
allow fracture to occur.

By the finite element method, crystal elastoviscoplastic laws are used to cal-
culate the stresses around second phase particles located along grain boundaries
during creep deformation. Our calculations take into account the effect of the
random neighbor grain crystallographic orientations, temperature, tensile stress
and the orientation of grain boundaries with respect to the tensile axis. Fur-
ther, cavitation is assumed to take place when the maximum interface normal
stress reaches a critical fracture stress, which evaluation is based on atomistic
theories.. Numerical results show that interface fracture occurs continuously and
the cavity density increases linearly with macroscopic strain, in agreement with
numerous experimental measurement data. In addition, the cavity nucleation
rate is predicted by combining the intergranular second phase particle density
and the evolution of the fraction of fractured interfaces with the remote strain.

Consequently, this work provides a theoretical explanation to the well-known
Dyson law. And it shows that interface fracture may be the dominant cavity
nucleation mechanism in alloys containing intergranular second phase particles.

73
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3.1 Introduction
The austenitic stainless steel, 316L(N) is a suitable candidate for structural
components of the Generation IV nuclear power plant, ASTRID (the Advanced
Sodium Technological Reactor for Industrial Demonstration). Under high tem-
perature and stress conditions, the lifetime of some components should reach 60
years. Therefore, the long term creep failure mechanisms occurring in 316L(N)
need to be understood and predicted.

Long term creep failure is characterized by the nucleation, growth and coa-
lescence of cavities along grain boundaries. Intergranular precipitates seem to
be most observed cavity nucleation locations. This phenomenon is called inter-
granular creep fracture [51, 52, 77, 79, 87].

The cavity nucleation mechanism has not been well established yet. Two
mechanisms were proposed to explain the cavity nucleation: vacancy-diffusion
(thermally-activated nucleation) and interface fracture.

Based on vacancy diffusion, Raj [81] proposed a thermo-activated theory,
which assumes that the agglomeration of vacancies may lead to a stable nuclei
of critical size. And the cavities continue to growth. Raj [77] computed the
variation of the Gibb’s energy depending on cavity size and deduced the stable
nuclei size. A constant cavity nucleation rate was derived by Raj too. However,
the predicted cavity nucleation rate increases exponentially with the increase in
the tensile stress. The critical conditions for cavity nucleation are proposed as a
threshold stress drived from the exponential dependence and an incubation time
[51, 77, 81]. However, Argon et al [116], Riedel [51] and Yoo and Trinkaus [79]
suggested that this model requires a very high local stress, typically higher than
104MPa, which seems difficult to reach even close to particle interface.

Thereafter, several authors [117–119] proposed an alternative cavity initiation
mechanism. It is considered that intergranular particle-matrix interface fracture
may occur when the interfacial stress reaches a critical fracture value, which is in
order of few GPa. Then, grain boundary sliding, pile-ups and other mechanisms
were proposed to be responsible for such high local stresses.

Harries [5], Riedel [51] and others [70, 111, 120] proposed that grain boundary
sliding (GBS) may lead to high stress concentrations at triple points and second
phase particles at grain boundaries. Based on the work of Sandström [70, 111],
He [121] proposed two GBS models, the shear sliding model and the shear crack
model. Their predictions agree well with experimental results. However, the
GBS models could not explain that the smallest cavities are observed mostly
on the grain boundaries parallel to the principal tensile stress and the largest
along the grain boundaries perpendicular to the loading axis [74, 75]. Smith and
Barnby [122] proposed that dislocation pile-ups against second phase particles
induce high local stress concentrations. But the local stress is often overestimated
by pile up theory [90]. And pile-ups are not often observed at particle-matrix
interface, particularly in high temperature creep condition.
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The calculations based on the previous mechanisms could not leads to local
stresses reaching the interface critical fracture stress [51]. Therefore, the interface
stress need to be calculated to verifier the interface fracture mechanism. Some
existing models [44, 91, 102, 123] provide the calculation of stress fields in the
vicinity of inclusions embedded in an plastically deformed matrix. However,
few studies focus on the effect of the crystallographic orientations of neighbor
grains and other microstructure features. That is why such effects of the random
microstructure effect will be investigated in details in our study.

In this chapter, the creep properties, the second phases and the grain bound-
ary cavitation in the 316L(N) austenitic stainless steel under study are experi-
mentally investigated in section 2.2. Section 2.3 presents the meshes and con-
stitutive laws used in the Finite Element computations. The input parameters
are adjusted using experimental macroscopic creep curves at difference temper-
atures and stresses. In section 2.4, based on the experimental observations, the
influence of

- random grain orientations,
- stress,
- temperature,
- angle between the grain boundary plane and the tensile axis on the interface

stress fields
are investigated in details. Our results show that the interface stress distri-

butions are stress and temperature independent, which agrees well with experi-
mental observations. This may explain the weak dependence of cavity nucleation
rate with stress and temperaturee.

Finally, in section 2.5, the interface critical fracture stress is estimated us-
ing the Universal Bonding Energy Relationship (UBER) and literature data for
coherent and incoherent interface. Applying this critical fracture stress to inter-
face stress distribution, it is found that cavity density increases linearly with the
remote strain. This agree well with the well known Dyson law [74] and many
experimental measurements [75, 76]. The prefactor of the Dyson law is, then,
evaluated analytically and it is found to be in the same order as the experimental
one [115].

3.2 Experimental background and results

3.2.1 Material under study
The creep tests are conducted on a 316L(N) stainless steel. Its chemical compo-
sition is given in Table 2.1. To avoid the heterogeneity of mechanical properties,
the as-received material had been annealed at 1070◦C for 20 min, and then fol-
lowed by water quenching. This heat treatment leads to grain size of 15-30µm.



76 CHAPTER 3. MODELING OF CREEP CAVITY NUCLEATION

Elements C S P Si Mn Ni Cr Mo N B

wt.% 0.028 0.0001 0.028 0.31 1.88 12.67 17.31 2.44 0.077 0.0012

Table 3.1: Chemical composition of the studied 316L(N) stainless steel (in wt.%)

Young’s modulus (E) is given as a function of temperature T (◦C), as E(MPa) =
201660 − 84.4 · T (◦C) with 20 ≤ T (◦C) ≤ 700 [44]. Under the temperatures
of interest, 600◦C and 650◦C, the values of Young’s modulus are, respectively,
151GPa and 149GPa. Poisson’s ratio ν is equal to 0.3 [57, 124, 125].

3.2.2 Microscopic observations
The SEM-FEG-EBSD observations are carried out on longitudinal sections of
the specimens located far away from the fracture surfaces. The microscopic ob-
servations are carried out on the specimens after a test at 600◦C, under 220MPa
and fractured at 7148h.

The thin foil samples are observed by the TKD (Transmission Kikuchi Diffrac-
tion, sometimes referred as t-EBSD) observations. The thin films are taken from
longitudinal sections of the specimens. Then, they are polished into thin slices
with thickness in the order of 100µm. From the prepared slices, discs with the
desired diameter are cut by using a disc cutter. The preparation is finished by the
electrolytic polish with a solution of 70% Ethanol absolute, 20% 2-Butoxyethanol
and 10% perchloric acid at 5◦C, 30V until a hole is produced in the center of
each disc.

The microscopic observations on the same material [44] show that the cavities
are generally located close to the second phase particles along grain boundaries.
But, small cavities with critical cavity size (around 20nm) [126] are difficult to
be observed along the longitudinal sections of the fractured specimens. Following
experimental observations, we infer that the cavitation is associated with second
phase particles. This assumption agrees with several experimental observations
concerning materials containing particles [127–129].

There are generally two types of second phase particles along grain bound-
aries, the M23C6 carbides and the σ phase particles [18, 20, 21, 24, 37, 130–133].
The crystallographic structure, the lattice constant and the chemical composi-
tion are different between the M23C6 carbide and the σ phase. However, the Cr,
Fe, Mo and Ni elements are the main elements in the composition of both the
M23C6 carbide and the σ phase. As a consequence, it is difficult to distinguish
between M23C6 carbide and σ phase by using only SEM-FEG-EDX. Therefore,
we use the TKD observations to identify the observed second phases.

Fig. 2.1 shows the M23C6 carbides and the σ phase particles located along
grain boundaries. Observations show that the σ phase particles are much larger
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(a) (b)

Figure 3.1: (a) TKD pattern quality map of the thin foil; (b) TKD phase map
with the austenitic matrix shown in green, M23C6 carbides in red and σ phase
particles in blue. Creep test 600◦C, 220MPa, 7148h.

than the M23C6 carbides, which agrees with the observations of Kimura et al.
[128] and Shin [134]. Based on the NIMS creep data sheets and our observations,
it can be inferred that the creep cavities are generally located along the interfaces
of the σ phase particles. It may be due to the size of σ phase particles which
is larger than the M23C6 carbides, rather than weaker interfaces on the fracture
point of view.

The time-temperature-precipitation (TTP) diagrams of long term aged 316
stainless steels [128, 135, 136] show that the M23C6 carbides are generally de-
tected after only 100h. And the σ phase appears after 1000h (700◦C), or even
10000h (600◦C). But, the σ phase appears earlier in the gauge portion than
the head portion (or the aged specimens). This could explain that we observe
that the size of σ phase particles is larger than the one of M23C6 carbides. And
the cavity nucleation starts with the larger particles [117], this explains that the
cavitation occurs on the interface of σ phases.

Recently, Bunett et al. [137] studied the creep cavitation in 316H steel. They
observed that cavitation takes place into residual ferrite phase. But, according to
our observations and others [20, 37, 130, 138, 139], the ferrite phase is generally
observed as elongated bands. The cavitation could certainly appear in the ferrite
bands. But, the size of such cavities is generally very small (< 500nm) and no
coalescence is observed. So, this type of cavitation is not considered as playing
an important role in damage evolution in this manuscript.

Thereafter, the interfacial stress fields are calculated to understand continu-
ous nucleation and assessing of interface stresses may be high enough to induce
fracture. We start with the creep curves predictions.
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3.3 Macroscopic and crystalline constitutive laws
In this part, the creep curves are predicted using two different models, the
isotropic creep flow rules and the polycrystalline modeling. These constitutive
laws will be used to calculate the stress fields around inclusions, along grain
boundary of a bicrystal (obey crystalline constitutive laws) embedded in a ho-
mogeneous matrix (obeys isotropic creep flow rules) (Fig. 2.5).

3.3.1 Macroscopic isotropic creep flow rules
The creep curves are firstly calculated using isotropic creep flow rules based on
two well known creep laws: the Andrade law for the primary stage and the
Norton law for the secondary stage [43].

The primary creep stains are calculated using Eq. 2.1. In this equation,
Evp
f (t,Σ, T ) is the creep deformation under a stress Σ (Pa) at the creep time t

(s) and at temperature T (◦C). The coefficients C1, C2, n1 are independent of
the stress Σ, but are a function of the temperature T , The time at the end of
the primary creep is denoted as tfp(Σ). It is calculated by Eq. 2.2.

Evp
f (t,Σ, T ) = C1 · tC2 · Σn1 (3.1)

tfp(Σ) = C3 · Σn3 (3.2)

At the end of the primary stage, the creep strain Evp
ffp(Σ) is calculated using the

following equation:
Evp
ffp(Σ) = C1 · tC2

fp · Σn1 (3.3)

The secondary stage begins after tfp. The creep strain Evp
f is calculated by

the sum of primary strain, Evp
ffp, and the secondary strain, ε̇min · (t− tfp), at time

t:
Evp
f = Evp

ffp + ε̇min · (t− tfp) (3.4)

The minimum strain rate, ε̇min, characterizes the secondary stage. The min-
imum strain rate is calculated by the Norton law, which is a phenomenological
law (Eq. 2.5).

ε̇min = C · Σn (3.5)

The boundary conditions are set as shown in Fig. 2.2. Some of the displace-
ment components at three summits of the vertexes are set to zero to block the
six degrees of freedom (3 rotations and 3 translations), preventing any rigid body
motion. The engineering stress, Σeng, is applied at the top and bottom surfaces
shown in Fig. 2.2. These numerical calculations are obtained using a large strain
and displacement finite element formulation
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Figure 3.2: Boundary conditions, six degrees of freedom are blocked to avoid any
rigid body motion.

For the 316L(N) stainless steel under study, parameters, C1, C2, C3, C, n1, n3
and n are adjusted by Finite Element calculations. The adjusted parameters for
different temperatures and tensile stresses are provided in Table 2.2.

Figs. 2.3a and 2.3b show the predicted engineering creep strain curves com-
pared to the experimental ones. The results show that the creep curves are
accurately predicted by the Andrade law and the Norton law with our adjusted
parameters (Table 2.2). Even for the test at 600◦C, under 230MPa, the sec-
ondary creep curve is not perfectly simulated, but the difference in minimum
strain stress between the simulated and experimental results is only of 10%.

Temperature C1 C2 C3 C n1 n3 n
(Pa−n1s−C2) (Pa−n2s−1) (Pa−ns−1)

600◦C [44] 6.23 · 10−40 0.48 1.53 · 1084 5.01 · 10−84 4.13 -9.35 8.99
650◦C 2.70 · 10−41 0.55 8.39 · 1071 1.04 · 10−73 4.37 -8.06 7.99

Table 3.2: Values of the parameters of the macroscopic creep laws of the 316L(N)
steel at 600 and 650◦C (Eqs. 2.1-2.5).

3.3.2 Crystal constitutive laws
3.3.2.1 Elasticity and visoplasticity laws

A crystalline elastoviscoplasticity law [140] devoted to the description of the
crystal viscoplastic behavior of FCC steels is described in the present section.
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(a) (b)

Figure 3.3: Experimental and simulated creep curves (by polycrystalline model)
of 316L(N) at (a) 600◦C and (b) 650◦C. The ‘Homogeneous’ label corresponds
to the simulations carried out using isotropic creep laws (Eqs. 2.1 to 2.5), and
the ‘Polycrystal’ label corresponds to the simulations carried out using the large
scale aggregate (Fig. 2.4, Eq. 2.8).

The cubic elastic coefficients C11, C12 and C44 were chosen as 222GPa, 110GPa
and 56GPa at 600◦C, respectively [125].

This model considers a set of 12 {111} < 110 > easy slip systems and are
defined on each of them. Viscoplastic slips and dislocation densities are the main
internal variables. No distinction is made between screw and edge dislocations.
An identical thermally-activated flow rule affected to each slip system and a
specific strain hardening relationship.

This model is implemented in the CAST3M Finite Element code in order to
take into account lattice rotations that may be responsible for subsequent slip
activation induced deformation.

When slip occurs on a slip system, the resolved shear stress τ i on the slip
system equals the contribution of two terms.

-The effective shear stress τ i−τ ic which corresponds to the value of the resolved
shear stress necessary to overcome the lattice friction;

-The interaction of dislocations with precipitates which can be modeled by a
critical shear stress τ0

The slip glide on slip system i may be induced by the resolved shear stress
τ i which is applied on the slip system i and defined by.

τ i = σ : (~mi ⊗ ~ni) (3.6)

where σ is the local stress tensor, ~mi is the glide direction and ~ni is the vector
perpendicular to the slip plane.

Excessing the critical shear stress, τc, is required to activate plastic simplicity
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slip. It is assumed to be the same for all 12 slip systems. Forest dislocations are
indeed obstacles which can not be bypassed based on thermal activation. It is
expressed as:

τc = τ0 + αµb
√
ρ (3.7)

In Eq. 2.7, the Taylor factor, α is a constant equal to about 0.30 for FCC
crystals [124]. The elasticity shear modulus, µ, equals 64GPa for 316L(N) at
600◦C. The burgers vector, b equals 2.56 · 10−10m. And The total dislocation
density is denoted as ρ. The initial critical shear stress, τ0, is induced by soli
solution effects, other obstacles than dislocations can be crossed by only thermal
activation. The value of τ0 is assumed to be very weak at high temperature
[124, 141]. Solid solutions clusters and small matrix precipitates are assumed to
be bypassed by thermal-activation.

The flow rule on a slip system is based on the thermally-activated glide of
dislocations, through the small scale obstacles. The viscoplastic slip rate on slip
system i is expressed by [140, 142]:

{
γ̇i = 2νDb2ρ exp(− Q

kbT
) sinh( V

kbT
(τ i − τ ic)) if τ i − τ ic > 0

γ̇i = 0 if τ i − τ ic ≤ 0 (3.8)

In Eq. 2.8, the Debye vibration frequency is denoted as νD, which is about
1013s−1. The activation energy for dislocation motion, Q, equals 3eV . This
activation energy is close to the diffusion energies of carbon and nitrogen in the
austenite [140]. The Boltzmann constant, kb, equals 1.38 · 10−23J · K−1. The
activation volume, V , of dislocation glide by small obstacles will be adjusted in
the following. This model has been applied to calculate the fatigue [141, 143–
145], creep [80, 146, 147] and creep-relaxation [125] properties.

3.3.2.2 Adjustment of the Crystal Viscoplasticity Law Parameters

The previous part presents the crystal constitutive laws and values of most of
the adopted parameter values. Only one of them, V , needs to be adjusted to
predict the macroscopic creep curves as accurately as possible.

The polycrystalline aggregates, which grains are cubic, is used to adjust the
value of V . The cubic polycrystalline aggregate contains 63 cubic grains with
random crystallographic orientations. Each crystal contains 73 FEs (Fig. 2.4) to
get stable predictions of the creep strain curves. Therefore, this polycrystalline
aggregates is preferentially used for the identification of the activation volume.

Based on the measurements carried out on creep specimens of 304 stain-
less steel, Cuddy [148] proposed that between 704◦C and 816◦C, the density is
independent on temperature, but depends strongly on the tensile stress. The
dislocation density increases during the primary stage, but can be considered as
constant during the steady-state stage for each applied stress. Challenger and
Moteff [149] have carried out creep tests and TEM observations to measure the
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Figure 3.4: Polycrystalline aggregate containing 216 grains of random crystallo-
graphic orientations, the displayed colors of the different grains are independent
of the random crystallographic orientations.
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dislocation densities of 316 stainless steel under different creep conditions. Then,
following their measurements, temperature has no effect on the dislocation den-
sity, we estimated that the dislocation density under 220MPa is 5.3 · 1013m−2,
5.8 · 1013m−2 under 230MPa and 1.81 · 1013m−2 under 130MPa .

The adjusted value of the activation volume V should allow a reasonable
agreement between the predicted macroscopic creep curves and the experimen-
tal ones at least up to few percents. At 600◦C, for 220MPa and 230MPa, the
adjustment of the V parameter leading to an activation volume equal to 120b3.
The adjusted value amounts to 400b3 at 650◦C. Fig. 2.3a and 2.3b shows the
predicted creep curves compared to the experimental ones. The adjusted activa-
tion volume is similar to the values found by Catalao (∼ 100b3, 500−600◦C), and
increases strongly for a higher temperature [146] (from Reference [143]). Further,
the considered activation volume, may correspond to the interaction between the
dislocation and the solid solution on one hand, and small matrix precipitates on
the other hand [140].

3.4 Interfacial stress field calculations

Using the Finite Element simulation, the normal and shear stress fields along
the interface of second phase particles are computed to quantify the influence
of the microstructural heterogeneities. Most of the calculations correspond to a
creep test applied on the 316L(N) steel, at 600◦C, and under 220MPa. Stress
and temperature effects are investigated in subsection 2.4.4.

In order to study the stress fields at interface of matrix and second phase,
a quasi-2D (Fig. 2.5) stress plane analysis is carried out. The crystal elasto-
viscoplasticity constitutive equations assigned to the two neighbor grains (green
and cyan) are described in section 2.3.2. Two grains have independent random
crystal orientations. And the homogeneous external matrix (blue) obeys the
isotropic creep flow rules (Eqs. 2.1 and 2.5), with the parameters given in Table
2.2. No mesh refinement or computation time step affects the simulation results.
The ratio of extern matrix size and the grain size was assumed amount to 7.5,
to ensure that the size of the homogeneous matrix does not affect the interface
stresses. An inclusion is located at grain boundaries parallel to the tensile axis.
The inclusion shape factor is equal to three and the particle tip is assumed cir-
cular. The effect of grain boundary orientation with respect the tensile axis is
investigated in details in subsection 2.4.5. Furthermore, for cavity nucleation to
occur, a critical size of the second phase particle is often considered as neces-
sary [44, 121, 134, 150]. That is why the largest second phase particles (3µm)
observed in the grain of usual size 20µm are considered. Finally the size report
between the inclusion and grain is then 3/20.
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(a)

(b)

Figure 3.5: Quasi-2D mesh of the particle (red) located at a grain boundary, be-
tween two grains (green and cyan). The bicrystal is embedded in a homogeneous
matrix (blue) a) large scale view; b) Zoom, note that the ratio between particle
and grain size is largely increased.
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3.4.1 Influence of the particle elasticity constants
As shown in section 2.2, two types of intergranular precipitates, M23C6 precip-
itates and σ phase particles are observed using various techniques, SEM-FEG-
EBSD and TEM [18, 19, 44, 128]. The mechanical properties of both second
phases are uneasy to be determined experimentally. DFT (Density Functional
Theory) calculations were carried to study the properties of these second phases
[22, 144, 151–153]. Some elasticity coefficients of the second phases of interest
are given in Table 2.3.

Second phase E (GPa) Anisotropy factor System Reference

M23C6

282.3 1.02 Cr23C6 [151]
348.4 0.93 Cr23C6 [152]343.2 1.01 Cr11Fe12C6
336.2 1.06 Cr23C6 [144]315.2 1.13 Fe23C6

Second phase B (GPa) E(1) (GPa) System Reference

σ phase
217 260 Fe− C [153]
268 322 Fe2Cr

[22]288 346 Fe2Mo
238 286 Cr2Fe

(1) Calculated by E = 3 · (1− 2ν) ·B, assuming ν = 0.3.

Table 3.3: Values of Young’s modulus (E) and Bulk modulus (B) for various
M23C6 and σ phase particles provided by DFT calculations [22, 144, 151–153].

The M23C6 precipitates are shown to almost obey isotropic elasticity. From
our knowledge, no information about the anisotropy of σ phase has been pub-
lished. As the σ phases is tetragonal crystal system, it is probably elasticity
anisotropy, which remains to be investigated. To investigate the influence of
Young’s Modulus, isotropic elasticity is considered. Further, by DFT calcula-
tions, Jiang [154] calculated the Poisson’s ratio of M23C6 as 0.3, this value is
used in our calculations. Taking into account values of Young’s modulus varying
from 100GPa to 400GPa (Table 2.3), the normal stress field along the interfaces
between inclusion and the two grains are computed.

The results are plotted in Fig. 2.6b, which shows that the normal stress field
is almost independent of the inclusion Young’s modulus value. Our results agree
well with the ones of Cui [44]. A Young’s modulus value equals 350GPa is, then,
used in the following subsections. Second, inclusions are assumed to obey still
isotropic elasticity and Poisson’s ratio ranges between 0.1 and 0.45. The interface
stress fields are found to be once more independent of Poisson’s ratio.
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Therefore, our simulated interface stress fields are certainly representative of
many different type of particles. Only the effect of cubic elastic remains to be
investigated.

(a) (b)

Figure 3.6: Presentation of the normal stress along the interface in function of
Young’s modulus of the inclusion. a) sketch showing the normal stresses along
the inclusion-grain interface, for the φ angle between 0◦ and 180◦; b) Normal
stress along the interface in function of θ for a macroscopic strain of Evp = 4%

3.4.2 Influence of the random orientations of the two neigh-
bor grains

The normal stress fields at the interface between the inclusion and two surround-
ing grains are computed for a temperature of 600◦C and under 220MPa (Fig.
2.5). The normal stress fields are obtained from thirty computations, using the
same inclusion geometry (Fig. 2.5) and grain boundary parallel to tensile axis.
Thirty sets of two random crystal orientations are selected for the two neighbor
grains.

The normal stress field at each interface, σnn(θ) (Fig. 2.6a), computed from 30
sets of crystal orientations are plotted in function of θ in Fig. 2.7. The reference
curve entitled ‘Homogeneous’ corresponds to the interface normal stress field
computed for an inclusion embedded directly in the homogeneous matrix (which
obeys the macroscopic isotropic creep flow rules, Eqs. 2.1 and 2.5).

The results obtained with the thirty sets of crystal orientations display a
huge heterogeneity. The maximum interfacial normal stress, σmaxnn , for the 30
sets are generally reached in the 45 − 130◦ range of variation of θ, except for
set 3 and 25 (Fig. 2.7). However, in the ‘Homogeneous’ case, the stress dis-
tribution are smooth. And the maximum normal stress, σmaxnn , are located at
60◦ and 120◦, agree with Finite Element calculation results of [44, 155, 156].
Therefore, this heterogeneity is caused only by the crystalline orientations of the
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(a) (b)

Figure 3.7: Distributions of the normal stress along the interface between second
phase particles and grains, plotted with respect to the θ angle (Fig. 2.6a). Thirty
sets of random crystal orientations are taken into account. a) sets 1-15; b) sets
16-30. T = 600◦C, σ = 220MPa, Evp = 4%.

two neighbor grains. A ratio characterizing the influence of the random crystal-
lographic orientations, rorient(i), is deduced as the ratio between the maximum
normal stress computed along the interface of an inclusion surrounded by two
grains, σmaxnn (O1

i , O
2
i ), and embedded in the homogeneous matrix or two grains

with crystalline orientations (O1
i , O2

i ), σmaxnn (homogenous).

rorient(i) = σmaxnn (O1
i , O

2
i )

σmaxnn (homogeneous) (3.9)

Considering the thirty sets of random orientations (i=1-30), the stress concentra-
tion ratio rorient(i) varies between 0.33 and 4.14, and the average ratio r̄orient(i)
amounts of 1.85. The values of rorient(i) may slightly changed in function of creep
time or macroscopic strain, for a given set of orientations. However, the interval
of rorient(i) and r̄orient(i) remain almost constant.

Fig. 2.8 shows the cumulative probabilities of the maximum normal along the
interface for fifteen and thirty sets of random crystal orientations. Surprisingly
two normal stress distribution curves show very similar shape. The standard
deviation for 30 sets is 1.66GPa, which is 1.74GPa for 15 sets. Therefore, a series
of fifteen calculations accounting for sets of random orientations is large enough
to provide a rather accurate distribution of the maximum normal stress. Fig. 2.8
shows also the distribution of maximum shear stress along each interface. The
shear stress is almost ten times lower than the normal stress. Therefore, shear
stress is expected to play a minor role in the cavity nucleation process.



88 CHAPTER 3. MODELING OF CREEP CAVITY NUCLEATION

Figure 3.8: Cumulative probability curves of the maximum normal stress for
fifteen and thirty couples of random orientations and of the maximum shear
stress along the interface for thirty couples of random orientations T = 600◦C,
Σ = 220MPa, Evp = 4%.

3.4.3 Time evolution of the normal stress fields

Fig. 2.9 shows the evolution of the maximum normal stress, σmaxnn (Oi
1, O

i
2, E

vp),
along the interface between each inclusion and the surrounding grains, as a
function of the macroscopic strain. The calculations are carried out for 600◦C,
220MPa, for an inclusion with a shape factor equals three (mesh shown in 2.5).
The results obtained for thirty couples of random crystallographic orientations
are presented.

Fig. 2.9 shows that for some sets of orientations (set 1, 16...), a saturated
stress is reached rather early. However, for other configurations (O1

i , O
2
i ), no

significant saturation is observed. Stress relaxation is never observed.
The results show that, during creep deformation, the normal stresses com-

puted in different microstructures reach the same value at different times (or
strain levels). That could explain the continuous cavity nucleation largely re-
ported in experimental literature.

In section 2.5, the one by one fracture of particle and neighbor grains in-
terfaces during creep strain will be predicted based on interface normal stress
evolution (Fig. 2.9) and a physically based evaluation of interface fracture stress
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Figure 3.9: The evolution of the maximum normal stress along the interfaces of
inclusions and two grains of different crystallographic orientations, depending on
the macroscopic viscoplastic strain (30 sets of random crystalline orientations,
Figs 2.5 and 2.6a).

3.4.4 Influence of temperature and remote stress

Based on the theory of thermally activated processes, Raj [81] found that the
cavity nucleation rate, Ṅ0, increases exponentially with the increase of ten-
sile stress (Ṅ0 ∝ exp(−σ−2)). Nevertheless, the microscopic measurements
[74, 76, 85, 157, 158] show that the cavity nucleation rate depends only on the
strain rate for a given material, as showed bythe Dyson law ((Ṅ0 ∝ ε̇min ∝ σn,
with n the exponent of the Norton law). To better understand temperature and
applied stress effects, the calculations under 600◦C/220MPa, 600◦C/230MPa
and 650◦C/130MPa are performed. The calculations for 600◦C/230MPa and
650◦C/130MPa are carried out with 15 couples of orientations, because the de-
duced distributions are shown to be statistically representative (Fig. 2.8).

Fig. 2.10 shows the distribution of maximum normal stress along interface for
different temperatures and stresses. The results show that, at the same level of
macroscopic strain, the maximum interfacial normal stress distribution is almost
the same. We can conclude that the local interface stress evolution is almost
independent on the applied stress and temperature, at least, at temperatures
ranging from 600 to 650◦, under 130-230MPa. This weak remote stress and tem-
perature dependence may explained why the Dyson law prefactor, α′, is weakly
stress- and temperature-dependent, as shown in literature [115].
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Figure 3.10: Distributions of the maximum normal stress computed along particle
matrix interfaces for different temperatures and stresses for Evp = 4%. Each
couple of T two neighbor grains have random crystalline orientations (Figs. 2.5
and 2.6a).

The previous calculations consider only grain boundaries parallel to the ten-
sile axis. However, the second phase particles are located along all types grain
boundary plans, inclined with respect to the tensile axis by an equiprobable angle
αGB ∈ [0◦, 90◦] [44].

3.4.5 Relationship between interface stresses and the ori-
entation of each grain boundary with respect to the
tensile axis.

The effect of the orientation of the grain boundary with respect to the tensile
axis is investigated using similar Finite Element computations. The angle of the
grain boundary with respect the tensile axis is denoted as: αGB (Fig. 2.12a).
Cui [44] investigated experimentally the number of the second phase particles in
function of αGB. In the temperature range from 600◦C to 700◦C, the experimen-
tal measurements show that second phase particles are almost homogeneously
distributed along all grain boundaries whatever the αGB angle (Fig. 2.11) [44].

The calculations are carried out with αGB equal to 0◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦ (Fig. 2.12a), with αGB = 0◦ corresponding to the grain boundary
parallel to the tensile axis (Fig. 2.5b) and αGB = 90◦ corresponding to the grain
boundary perpendicular to the tensile axis. To have a large enough distribution
of the set of grain orientations, the calculations are based on fifteen couples of
random grain orientations, following results of section 2.4.2 (Fig. 2.8).

This grain boundary plane orientation effect is characterized by the ratio,



3.4. INTERFACIAL STRESS FIELD CALCULATIONS 91

Figure 3.11: Probability of precipitates number for different grain boundary
plane orientation with respect to the tensile axis [44] for 316L(N) steel at dif-
ferent temperatures. The microscopic measurements were carried out for creep
fractured specimens. Corresponding creep tests are: 600◦C, 200MPa, 7148h;
650◦C, 130MPa, 7262h and 700◦C, 80MPa, 6756h.

rGB(αGB, O1
i , O

2
i ), of the maximum interface normal stress for a given αGB angle,

to the one with the grain boundary parallel to the tensile axis (αGB = 0◦).

rGB(αGB, O1
i , O

2
i ) = σmaxnn (αGB, O1

i , O
2
i )

σmaxnn (αGB = 0◦, O1
i , O

2
i )

(3.10)

At a macroscopic strain of 4%, Fig. 2.12b shows that the average value of
the ratio defined as, r̄GB(αGB) =< rGB(αGB, O1

i , O
2
i ) >αGB , decreases with the

increase in the orientations of the grain boundary with respect to the tensile axis.
The calculated maximum interface stresses are provides in Table B.1 (Appendix
B). The plotted ranges of variation of the r̄GB(αGB) highlight the heterogeneity
caused by fifteen sets of crystal orientations (shown by crosses). The average
ratio computed for a grain boundary perpendicular to the tensile axis, r̄GB(αGB =
90◦), is equal to 0.57. This value is higher than the one found with Eshelby theory
[155], which amounts is 0.46. And this value is lower than the one computed by
Cui [44] for an inclusion embedded in homogeneous matrix. The calculations
of Cui [44] show that the value of rGB(αGB) amounts to 0.8, very close to our
‘Homogeneous’ evaluation (Fig. 2.12b).

It should be noticed that, even for a given set of crystalline orientations
(O1

i , O
2
i ), the interface location where σmaxnn is reached, changes in function of

αGB. There is a tendency that the location where σmaxnn is reached, often on the
side of the interface perpendicular to the tensile stress. For example, in case of
αGB = 0◦, σmaxnn are generally obtained for θ close to 90◦ (Fig. 2.7). In case of
αGB = 90◦, σmaxnn are mostly located for θ = 0 or 180◦.
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(a) (b)

Figure 3.12: a) Mesh of the inclusion (red) located at a grain boundary inclined
by an angle αGB with respect to the tensile axis; b) average value of rGB(αGB)
in function of αGB for second phase particles surrounded by two grains, 15 dif-
ferent sets of different crystallographic orientations (blue) and for ones directly
embedded in the homogeneous matrix (red), Evp = 4%.

3.5 Evaluation of the interface fracture evolu-
tion with the remote viscoplastic strain

3.5.1 The stress criterion
The cavity nucleation rate is now estimated using the previous interface normal
stress distributions (section 2.4) and a stress criterion. The critical fracture stress
is calculated by the Universal Bounding Energy Relationship (UBER, Eq. 2.11)
developed by Rose et al. [159] and Rice and Wang [118]. This relationship was
used by Rice and Wang [118] to predict grain boundary fracture. We apply this
relationship by considering the fracture at the interface between a second phase
particle and one metallic crystal:

σc = 1
e

√
(γmatrix + γsecond phase − γinterface) · Einterface

d0
(3.11)

where γi is the free surface energy per unit area i (i = matrix and second phase)
and γinterface is the particle-matrix interface energy per unit area, Einterface is
Young’s modulus of the interface considered as a 3D medium, and d0 is the
interface thickness.

Three types of particle-matrix interfaces are observed, as coherent, semi-
coherent and incoherent interfaces. It is generally believed that the fracture of
incoherent interface requires a lower stress compared to the coherent one, because
of its high interface energy. The critical interface stress is now evaluated.
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Several atomistic calculations [160–164] showed that the Young’s modulus of
general grain boundaries amounts to 70% of the one of the average polycrystal
value. Further, the grain boundaries are typically incoherent interface. There-
fore, the used value of interface Young’s modulus is Einterface = 70% · Emetal =
105GPa. And the interface thickness is evaluated from High Resolution Trans-
mission Electron Microscope (HRTEM) images on AISI 321 [165], AISI 304 [166]
and AISI 316 [167, 168] stainless steels. The measurements show a value of the
incoherent interface thickness as 1.5± 0.5nm (Fig. 2.13).

Figure 3.13: HR-TEM micrograph showing the combination of the incoherent
interface of carbide and AISI 304 steel [17].

γmatrix J/m
2 γinterface J/m

2

Fe-fcc 2.077-3.095 [162] Cr23C6/Fe-fcc coherent 1 [169]
Fe-fcc 2.24-3.34 [170] Cr23C6/Fe-fcc coherent 0.8 [171]
Fe-fcc 1.9 [172] Cr23C6/Fe-fcc Incoherent 1.68-2.50 [170]
304 2.059-2.912 [162]
316 2.09-2.25 [173]

Table 3.4: Metal surface energies and particle-matrix interface energies

DFT calculations and the experimental measurements reported in literature
were carried out to estimate the values of the energies of metal surfaces, second
phase surfaces and interfaces. Some DFT and experimental results are shown in
Table 2.4. Based on Table 2.4, the values used for evaluating the interface critical
fracture stress, belong the following range: γmetal = 2− 2.5J/m2 [162, 172, 173],
γsecond phase = 2 − 2.5J/m2 [171], γinterface = 1.5 − 2J/m2 (incoherent interface)
[174] and γinterface = 0.1− 0.2J/m2 (coherent interface) [175].
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These parameter variations lead to a incoherent interface fracture stress of
5 ± 1GPa. Even taking the interface Young’s modulus as the metal one, the
difference in σc is only 20%, which is included in the variation range of σc.
The critical fracture stress for coherent interfaces may reach 15GPa. Such a
high value is not reached as shown in Fig. 2.9. This result agree well with
observations showing that cavities appear generally along the incoherent interface
[175, 176]. Further, DFT calculations [162, 171] show that the interface energies
depend strongly on the coherency but so much on the two considered materials.
Therefore, this interface fracture stress value is adopted for both M23C6 and σ
phase. That point will be discussed in details in Chapter 4

3.5.2 First prediction of cavity nucleation rate
Cavity nucleation is assumed to occur when the interface normal stress (Fig. 2.9)
reaches the critical fracture stress. The criterion is fulfilled at different remote
strain levels depending on the local microstructure (Fig. 2.5).

Figure 3.14: Calculated cumulative probability of fractured interfaces versus
macroscopic creep strain. Only grain boundary plans parallel to the tensile axis
is considered.

Fig. 2.14 shows that the probability of interface fracture increases linearly
with creep remote strain. This linear dependence agrees well with the Dyson
law [74]. The phenomenological is based on numerous microscopic observations
in high-purity Cr-Mo-V steels [83], Nimonic 80A [74], 347 stainless steel [177],
Astroloy [75, 76] and Alloy 617 [157]. Similar calculations have been carried out
for different temperatures and stresses, which lead to a similar linear dependence.

The normal stresses acting on grain boundaries is only twice of the tensile
stress [80]. This value is much lower than the precipitate-matrix interface one.
Nevertheless, opening of grain boundary requires a stress in order of few GPa
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[178]. The inclusion axial stress is much lower than the interface normal stress
(3.5.2 in Chapter 3). However, the precipitate fracture requires very high in-
clusion axial stress (> 10GPa) [171]. Therefore, cavity nucleate by precipitate
fracture is negligible.

However, the precipitate-matrix interface fracture criterion is fulfilled. There-
fore, intergranular second phase particles are preferential cavity nucleation sites
during creep deformation. Then, the combination of the density of second phase
particles and our calculation results (Fig. 2.14) leads us to evaluate the prefactor
of the Dyson law, α′. The Dyson law prefactor can be calculated as follows:

α′ = Na(Evp)
Evp − Evp

c
(3.12)

where the Na(Evp) is the number of cavities per unit grain boundary area at
the remote strain Evp. The critical remote strain Evp

c , allowing cavity nucleation
to occur, corresponds to the left end of cumulative probability curves. The
numerical application of Eq. 2.12 will be carried out later.

our calculations show a critical cavity nucleation strain, Evp
c , of 1.5% for

σc = 5GPa (Fig. 2.14).
And, Fig. 2.15a highlights a value of Evp

c amounts to 0.2%, the experimental
measurement of Shiozawa and Weerteman [75] showed a similar value. However,
the material studied by Capano et al. [76] is a Nickel-based superalloy, it may
lead to some differences. For a 347 steel, the experimental measurement of
Needham and Gladman [177] showed that the value of Evp

c ranges between 0-
8%, in function of temperature and the remote stress. However, Laha et al.
[179] observed that the critical cavity nucleation strain amounts to 0.1% for a
series of 347 steels. It is then difficult to draw the final conclusion. Moreover,
a microscopic observation of creep test (316L(N)) stopped at 1% did not show
intergranular cavities (CEA/SRMA). This leads to a Evp

c higher than 1%, agrees
well with our computations.

Further, as shown in Fig. 2.14, the value of Evp
c depends strongly on the

interface fracture stress. However, the used value of σc is only evaluated with
UBER, which may overestimated. Because the used surface and interface energy
were calculated at 0K, which may decrease at high temperature.

It should be noticed that the previous estimations of the cavity nucleation rate
do not take into account the effect of the grain boundary orientation with respect
the tensile axis, αGB. However, the observations of Shiozawa and Weertman
[75] (Fig. 2.15b), show that cavities could nucleate not only along the grain
boundaries parallel to tensile stress, but along all types of grain boundaries. This
may leads to a more reliable theoretical estimation of the Dyson law prefactor,
α′ accounting for αGB.

Then, the cavity nucleation rate is reevaluated using the calculation results of
the maximum interface normal stress with accounting for the random orientation
of grain boundaries with respect to the tensile axis. The results show that takeing
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(a) (b)

Figure 3.15: a) Cavity versus creep strain in a nickel-based superalloy, Astroloy
[76]; b) relative frequency of the number of cavities located along the grain
boundaries inclined by an angle αGB, another Astroloy batch [75].

into account the effect of αGB, the cavity nucleation rate is almost constant, as
shown in Fig. 2.16a. The cavity nucleation rate in this part is clearly lower than
the previous one, by a factor of 2. It should be noticed that, the value of Evp

c

remains the same value of the one evaluated accounting only grain boundaries
parallel the to tensile axis.

Moreover, the cavitation distribution in function of αGB is presented in Fig.
2.16b. The results show that the cavitation occurs preferentially on the grain
boundaries parallel to the tensile axis. And the relative frequency decreases in
function of αGB up to 75◦. A small increase appear for αGB = 90◦, corresponding
to the grain boundary is perpendicular to the tensile axis. Fig. 2.16b agrees fairly
well the qualitative observation of Dyson [74] and the quantitative experimental
measurements of Shiozawa and Weertman [75] (Fig. 2.15b). It should be noticed
that, only the experimental measurements carried out at the beginning of creep,
t/tf = 0.07 of Fig. 2.15b, should be taken into account, because only the cavity
nucleation process is simulated here. For the high strain level or longer creep
time, the cavity growth phenomenon should be taken into account.

The numerical application of Eq. 2.12 to evaluate the value of α′ is now
carried out. The cavity density per unit grain boundary area at the remote
strain, Evp, is used to calculate the value of α′ (Eq. 2.12). This cavity density
could be deduced by the multiplication of the calculated probability of fractured
interface at the remote strain Evp, P (Evp), where P (Evp < Evp

c ) = 0. And the
intergranular particle density per unit grain boundary area Nmax

0 , as:

Na(Evp) = P (Evp) ·Nmax
0 (3.13)
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(a) (b)

Figure 3.16: a) Calculated cumulative probability of fractured interfaces ver-
sus creep strain accounting for equiprobable inclined grain boundaries (αGB ∈
[0◦, 90◦]); b) relative frequency of cavitation in function of αGB, considering all
grain boundary orientation as equiprobable, Evp = 4%.

Nmax
0 could be evaluated by:

Nmax
0 = dg · ρp

π · dp
(3.14)

where ρb is particle density per unit polished surface, dp is harmonic mean of
particle diameters , and dg is the grain size measured by intercept line method.
At 600◦C under a stress of 220MPa, the experimental measurements of Cui [44]
provide the following values: ρb = 9.3 · 109m−2, dp = 2µm and dg = 37.5µm.
The density of second phase particles per unit surface of grain boundary is then
deduced as 6.85 · 1011 m−2.

Considering only inclusion along grain boundaries parallel to tensile stress,
the value of α′ could be evaluated using Fig. 2.9 and the measured second phase
particle density. A value of the Dyson coefficient [74], α′, of 1.3 · 1013m−2 is
found. This value is much higher than the measured one, 4.6 · 109m−2 [44].

However, following our EBSD observations and the observations of NIMS
(National Institute for Materials Science) [2], cavitation is most often observed
at the interfaces of the σ phase particles and grain boundaries. Many authors
[117, 180] proposed that cavitation occurs preferentially at the largest second
phase particles compared to the small ones. Our observations indeed show that
the σ phase particles sizes are generally larger than 1µm (Fig. 2.1) and the
size of M23C6 particles is lower than 500nm. This observation results agree well
with literature [2, 17, 23, 37, 41, 119, 133, 135, 181, 182] (shown in Table 2.5).
It should be noticed that the observations of aged specimens were carried out
at different ageing duration, the ageing durations do not be presented in Table
2.5. Further, the NIMS data sheets [2, 183] are summarized from different creep
loading conditions, which is not presented here.
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Material Condition M23C6 (µm) σ phase (µm) Reference

316L Creep 550◦C
150MPa, 85 000h ≈2 [37]

316 Creep 550◦C
245MPa, 8 300h 60.3 [41]

316 Creep 568◦C in-service >2 [133]
316H TB Creep 60.25 2-15 [2]
316-HP Creep 60.5 >1 [183]

316 Creep-fatigue
4 · 10−3s−1, ±2%, 10min 61 [17]

316 Aged 685◦C 6 [135]
316 Aged 710◦C 60.3 2-5 [181]
304L Aged 720◦C 60.5 >2 [182]
304H Aged 650◦C, 60.5 >4 [119]

Table 3.5: Intergranular M23C6 and σ phase particle size measured form images
plotted in literature [2, 17, 23, 37, 41, 119, 131, 133, 135, 181, 182].

Thereafter, it can be concluded that the size of the σphase particles is much
larger than the M23C6 carbide one. This could explain that the cavitation oc-
curs specifically along the interface of σ phase particles [2, 37]. However, the
experimental studies of [44] did not distinguish theM23C6 and σ phase particles.

The cavity nucleation should be evaluated using the density of σ phase par-
ticle. The NIMS data sheet [2] show that the saturated number of σ phase per
grain boundary unit surface amounts to 1.2 · 109m−2 in the specimen gauge por-
tion. Using the σ phase particle density value, The Dyson law prefactor, α′, is
estimated to be 2.3 · 1010m−2, which is still five times higher than the measured
value.

Thereafter, the Dyson law prefactor , α′, is reevaluated taking into account
the second phase particles are located along all types grain boundary plans,
inclined with respect to the tensile axis by the equiprobable angle αGB ∈ [0◦, 90◦].
The value of , α′, is obtained as 1.2 ·1010m−2, which is only 2.5 times higher than
the measured value.

As shown in subsection 2.4.3, the interface stress distribution is almost inde-
pendent on applied stress and temperature (Fig. 2.10). This leads to a predict
α′ value independent on the creep conditions, provided the density of large par-
ticles does not change much with the creep condition (long term creep). This
result agrees well with quantitative measurement carried out by Capano et al.
[76]. Under different temperature and stress, the cavity density increases linearly
with the creep strain and the slop is almost stress and temperature independent
(Fig. 2.15a).
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It should be noticed that the NIMS creep data sheet [2] shows that the size
and number of σ phase particle increase in function of time. This is not taken
into account in the evaluation of the α′ coefficient.

3.6 Discussion
Intergranular cavitation is the dominant damage mechanism for long term creep.
However, the cavity nucleation mechanism has not been well established yet.
Both interface fracture and thermally-activated vacancy clusters may be pro-
posed in alloys with intergranular second phase particles. Different stress con-
centrations have been proposed, such as the interaction of grain boundary sliding
and intergranular precipitate.

Our predictions based on the calculation results are therefore discussed with
respect to both experimental observations and measurements and other modeling
results.

3.6.1 Local interfacial stress
In high purity metals without second phase particles, such as 99% Al [184], creep
cavities appear at grain boundaries and triple points. In alloys containing second
phase particles, cavities generally appear at the interfaces of the particles located
along grain boundaries [44, 51, 80, 81, 117, 121, 128, 134, 150]. We focus here
on the second type of materials.

Several models [91, 155, 185, 186] were proposed based on the Eshelby inclu-
sion theory to calculate the interfacial stresses. Using the thermo-elastic frame-
work, an elastic elastic ellipsoidal inclusion is embedded in a homogeneous ma-
trix. The matrix is homogeneously plastic deformed. That implies that the
stress tensor is homogeneous inside the inclusion. However, these models do not
take into account the heterogeneous deformation caused by the random crystal-
lographic orientations of the two neighbor grains (Fig. 2.5). Generally, these
thermo-elastic models predict that the average inclusion stress increases linearly
with the macroscopic strain. Therefore, the normal stress at the inclusion tip
calculated by the Eshelby theory is much higher than our value calculated by
the FE method in the case of an inclusion embedded in a macroscopic matrix
(Table 3.1 in Chapter 3).

Based on the use of crystal viscoplasticity, our computations take into ac-
count the effect of the random crystal orientations. This approach leads us to
calculate a more statistical distribution of local interfacial stresses with effect of
the crystallographic orientations.

High resolution measurement of local stress is a challenging task. Recently,
Karamched and Wilkinson [187] measured the local elastic strains by HR-EBSD.
Then, Finite Element simulations used the microstructure were carried out. A
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monotonic tensile test weas carried out in the Ni-based alloy. The measurement
and calculations for a carbide embedded in the matrix show that the stress
could reach 1.5GPa. This value is lower than our simulation ones. In fact, the
measurement step size of 250nm is used the work of Karamched and Wilkinson.
However, our calculations show that the maximum interface stresses may be
located along an interface length in order of 100nm, considering a particle size
as 2µm (Fig. 2.7). And our calculations concern an intergranular inclusion,
whereas the one considered in [187] is intragranular.

3.6.2 The fracture criterion
It is generally believed that fracture can be predicted if two criteria are fulfilled
the stress criterion and the energy criterion.

Pineau and Pardoen [117] published values of critical stresses in different
materials from experimental results and modeling results. The interfacial frac-
ture stress for particle decohesion are reported, as 1650MPa for Fe3C in 1045
steel and 1820MPa TiC in Maraging steel. The critical stresses proposed are
lower than the one evaluated by UBER (as 5GPa). Further, the critical stress
is generally dependent on the materials, the interface structure, the segregation,
etc.

The interface fracture stress used previously is evaluated by the Universal
Bounding Energy Relationship. This critical interface stress depends on fracture
energy, interface thickness and interface Young’s modulus. Recently, Barbé et
al. [170] confirmed the validation of this relationship by DFT simulations of a
complete tensile test carried out ip to interface fracture.

The surface energies used in the application of the UBER relationship were
evaluated by DFT calculations, for which the temperature is generally considered
as 0K. Nevertheless, the creep tests are generally carried out at temperatures
higher than 0.4Tm (Tm is the temperature at melting point). The surface energies
and elasticity constants decrease with temperature increase. This effect has
not been incorporated here, because few studies focus on the surface energy
variation with temperature. The decrease in surface energy may decrease the
critical fracture stress. Nevertheless, our results show that the variation in σc
influences slightly the prefactor of the Dyson law (Fig. 2.14). However, the
decrease in σc may decrease critical remote stress to cavity nucleation. The
estimated critical cavitation remote strain is Evp

c = 1% for σc = 4GPa and
almost 2% for σc = 6GPa. It should be finally noticed that temperature effects
on surface energies are usually considered as the temperature lower than Tm.

Several models [180, 188] derived from the energy criterion have a precipi-
tate size effect. The energy criterion is not taken into account for this chapter.
However, the size effect may be avoided because we consider only the σ phase
particles, which are much lager thanM23C6 particles. Therefore, to calculate the
cavity nucleation rate, only the distribution of σ phase particles is used. Incor-
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porating cohesive zone modeling is suggested to predict interface fracture using
similar crystal viscoplastic FE computations. The precipitate size effect could
be directly investigated and incorporated in the evaluation of α′.

3.6.3 Evaluation of the Dyson law prefactor

He and Sandstöm [114] proposed a cavity nucleation rate model based on grain
boundary sliding. They assumed that cavity nucleate at the sites where the
subboundaries with the second phase particles. Their predictions agree well with
experimental measurements and predict also a Dyson type cavity nucleation law.

However, grain boundary sliding theory predicts often that cavitation occurs
preferentially along the grain boundaries inclined by equals 45◦ with respect to
the tensile axis. This is in contradictories with microscopic observations (Fig.
2.15b) [75]. Further, this model could not explain that cavity nucleation occurs
mainly along grain boundaries parallel to the tensile axis (Fig. 2.15b). These
trends are well predicted by our FE results.

Similarly to us, Neimitz and Janus [123] calculated the interfacial stresses
around inclusions embedded in a homogeneous matrix. Different inclusion shapes
were considered. The obtained stress values are similar to our results. However,
it is difficult to get the cavity nucleation rate or a distribution of cavities from
their calculations takes into account only the homogeneous matrix. Further, this
may be the main reason for which the Dyson law can not be derived on a straight
forward way from FE computations. The predicted continuous nucleation is, in
fact, mainly based on the randomness of the local microstructure, particularly
the crystal orientation of the two neighbor grains.

It is generally believed that cavities need to reach a critical size to continue
to grow [189, 190]. This effect has not been investigated in present chapter. It
seems probable that cavities appeared along the grain boundaries parallel to the
tensile axis could hardly grow by intergranular diffusion of vacancies because
the normal stress acting on grain boundary is low [80]. This is perhaps the
main reason that our predicted Dyson law prefactor, α′, is much higher than the
experimental one. This effect will be studied in Chapter 4.

3.7 Conclusion
The SEM observations of the polished longitudinal sections of the creep samples
show that the creep cavities nucleate at the interfaces of the second phase par-
ticles located along grain boundaries. The TKD observations show two types of
intergranular second phase particles, M23C6 precipitates and σ phase particles.
Cavity nucleation seems to occur mostly along the interfaces between grains and
σ phase particles.
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Finite Element calculations are performed to predict the distribution of matrix-
particle interface stress. Ellipse-like inclusions are located along grain boundaries
separating two metallic crystals. These bicrystals are embedded in a macroscopic
matrix, which behavior mimics the whole polycrystal one. Thirty couples of crys-
tal orientations are randomly chosen assuming no texture. Ellipse-like inclusion
obeys isotropic elasticity. The crystals obeys crystalline constitutive laws. And
the homogeneous matrix, which obeys isotropic creep flow laws. The activa-
tion volume introduced in the crystal viscoplasticity flow law is adjusted using
experimental macroscopic creep curves.

For inclusion located along grain boundaries parallel to the tensile axis, the
computed interface normal stress distribution shows a huge variability caused by
the randomness of the couples of crystal orientations. The calculated interface
normal stresses could be forty times higher than the remote tensile stress at a
macroscopic strain of 4%. And these computations provide an average stress
concentration factor of 1.85 compared to the configuration of an inclusion em-
bedded directly in the homogeneous isotropic matrix. This last configuration
leads to a concentration factor of 8 with respect to the remote stress.

Our calculations show that the interfacial stress distributions are almost stress
and temperature independent. They depend only on the macroscopic strain, at
least for temperatures ranging from 600 to 650◦C and applied stresses ranging
from 130 to 230MPa.

The coupling between our calculated interface normal stress distributions and
the application a fracture stress criterion using a physically based critical stress
value, shows that the number of cavities increases linearly with the remote creep
strain in agreement with many experimental data reported in literature.

Thereafter, additional calculations are performed taking into account the ef-
fect of the angle of each grain boundary with respect to the tensile axis, αGB.
These results show that the average stress ratio, r̄GB(αGB), decreases with in-
crease in αGB up to 75◦. Then, a slight increase in interface normal stress is
obtained for αGB = 90◦. Further, the cavity density still increase linearly with
the remote strain. This effect leads to a decrease in the predicted in Dyson law
prefactor.

Accounting for measured densities of the large σ phase particles, the pre-
dicted value amounts to 1.2 · 1010m−2, which is only two times higher than the
experimental one. Further, the relative frequency of cavitation in function of
the angle αGB is well predicted with respect to several published observations,
showing that the grain boundaries are the most affected by cavity nucleation,
followed by grain boundary perpendicular to the tensile axis.

Finally, our evaluation provides a physical explanation of the well-known
Dyson law. Further, the evaluated Dyson law prefactor is almost stress- and
temperature-independent provided that the density of large particles tend to
fracture is constant. And a critical remote strain is predicted in agreement with
observations.



3.7. CONCLUSION 103

Finally, it should be noticed that more accurate large particle densities de-
pending on stress, time and temperature may introduced, if available. And the
particle size effect taken into account more precisely as shown in Chapter 4.
Before statistical information about the particle aspect ratio and tip geometry
are now introduced in Chapter 3 to evaluate their effects on interface stress,
distribution and predicted cavity nucleation rate.



104 CHAPTER 3. MODELING OF CREEP CAVITY NUCLEATION



Chapter 4

Effect of the particle geometry
on interface stress

In the previous chapter, Crystal Plasticity Finite Element computations high-
light a strong heterogeneity in the interface stresses caused by the random crys-
tallographic orientations of the two neighbor metallic crystals and the random
orientation of the grain boundary with respect to the tensile axis. These cal-
culations concern only one precipitate geometry, with an aspect ratio of three
and circular tips. Nevertheless, various inclusion shapes and tip geometries are
observed experimentally by SEM and TEM.

In this chapter, a similar approach is applied to compute the stress fields
around second phase particles still located along grain boundaries, but accounting
for new microstructure parameters. The calculations take into account various
particle features, such as shape factor and symmetric/asymmetric tip geometries,
based on our experimental observations. Accounting for the observed ranges of
variation of these particle parameters, even higher normal interface stresses are
reached. Finally, a simplified multiplication formula is proposed to calculate the
statistical distribution of the maximum interfacial normal stress accounting for
various statistical data characterizing the microstructure observed under creep
conditions.

Finally, the assumptions used in the Finite Element calculations are discussed
in order to evaluate the effect of the adopted hypotheses (lattice rotations, 3D/2D
effects).

105
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4.1 Experimental observations
The time-temperature-precipitation (TTP) diagrams of long term aged 316 stain-
less steels [128, 135, 136] show that the M23C6 carbides are generally detected
after only 100h. And the σ phase appears after 1000h (750◦C), even 10000h
(650◦C). But, the σ phase appears earlier in the gauge portion than in the head
portion (or in the purely aged specimens). In addition, the average size of σ
phase particles are much higher than the one of M23C6 carbides (Table 2.5 in
Chapter 2). And the cavity nucleation was shown to occur firstly at the large σ
phase particles [2, 133].

Cui [44] carried out experimental observations and measurements on the
316L(N) under study. Fig. 3.1 shows the cumulative probability curves of shape
factor and the equivalent radius of all intergranular second phase particles, which
diameter is larger than 200nm. The shape factor distribution is obtained by im-
age processing applied to SEM pictures [44]. And the equivalent radius distribu-
tion is obtained by analyzing data from [44]. The precipitate shape factor varies
from 1 to 8, and almost 99% of the precipitates have a shape factor between 1
and 5.

As mentioned in Chapter 1, microscopic observations showed two main types
of second phase particles along grain boundaries, the M23C6 carbides and the
σ phase precipitates [18, 20, 21, 24, 37, 130–133]. The crystalline structure,
the lattice constant and the chemical composition differ between both second
phases. However, the Cr, Fe, Mo, C and Ni elements are the main elements in
the compositions of both the M23C6 carbides and the σ phase particles. As a
consequence, it is uneasy to distinguish M23C6 carbides and σ phase particles
by using only FEG-SEM. The second phase particle cumulative distributions
plotted in Fig. 3.1 do not allow a straight-forward distinction between M23C6
carbides and σ phase particles. Then, TEM and TKD observations are carried
out to identify the nature of the second phases and study their differences.

The thin foils prepared for the TEM (Transmission Electron Microscopy)
observations, are the same for TKD observations (Chapter 3). The thin foils
are taken from the longitudinal sections of the specimen, located far away from
the fracture surfaces. The loading condition applied on the specimen under
consideration is: 600◦C, 220MPa, tf = 7148h.

Fig. 3.2a shows some σ phase particles located along grain boundary. Three
particle shapes are observed: allotriomorph, hexagonal and quadrilateral. Their
schematic shapes are respectively plotted in Figs. 3.2c, 3.2d and 3.2e). According
to [175], the particle shape can be explained by the particle-matrix interface
coherency characteristics, respectively presented in Figs. 3.2c, 3.2d and 3.2e.
This point will be explained in more details below. Nevertheless, the observations
are carried out through thin foils, which means the 3D shape is unknown.

The precipitates shapes may a priori be a prolate or a oblate one. Some
3D observation results are reported in literature allowing the discussion of the
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Figure 4.1: The cumulative probabilities of the shape factor and the circular
radius (the intergranular second phase particles of diameter larger than 200nm)
[115]. 316L(N), 600◦C, 220MPa, tf =7148h.

grain boundary particle shape [16, 137, 191]. By a 3D FIB (focused ion beam)-
SEM image processing, Burnett et al. [137] investigated the cavitation and
precipitation in a crept AISI 316H austenitic stainless steel. The creep conditions
were at T = 525◦C and Σ =16 MPa. The material was removed from service,
after 65000h (no fracture). The observations of Burnette et al. [137] show three
different morphologies of the M23C6 carbides.

(1) The first ones are large irregular grain boundary particles that grow into
the grains on both sides of the boundary (500–2000nm). This observation is
similar to our observations concerning σ phase particles. However, in the study
of Burnett et al. [137], the M23C6 particles were only determined by Energy-
dispersive X-ray spectroscopy. As it was before, only this kind of chemical anal-
ysis does not allow a reliable distinction between M23C6 carbide and σ phase
particles. The crystalline diffraction patterns are strongly required.

(2) The second ones are intermediate-size particles that also locate along
the grain boundary but appear only to grow into one grain (100–300nm). This
observation is close to our observations ofM23C6 carbide particles in Incoloy 800,
316L(N) and the images presented in the NIMS data sheet [183].

(3) The third ones are small intragranular carbides (45–90 nm). We did not
focus on intragranular precipitations because this does not affect directly the
cavity nucleation process. These observations agree with the ones of Beckitt and
Clark [16], which showed that M23C6 carbide particles could nucleate along the
dislocations inside the metallic matrix and along incoherent twin boundary but
their sizes remain small.
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(a) (b)

(c) (d) (e)

Figure 4.2: (a) TEM image showing σ phase particles along one grain boundary
and the crystalline diffraction pattern from the ‘quadrilateral’ σ phase particle;
(b) TKD phase map with the austenitic matrix shown in green and σ phase par-
ticles in blue. And schematic presentations of (c) allotriomorph (nomenclature
defined in [175]), (d) hexagonal and (e) quadrilateral particle shapes (600◦C,
220MPa, 7147h).
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By FIB tomography combined with TEM observations, Maetz [191] investi-
gated the precipitation in an aged duplex stainless steel. Small M23C6 carbides
(<500nm) are observed at grain boundaries. Further, their observations showed
that the M23C6 carbides stopped growing after only 15min of ageing at 690◦C.
These results agree well with observations reported by NIMS [2] (Fig. 1.5, Chap-
ter 1). This leads us to assume that large second phase particles (>500nm)
located at grain boundaries are generally σ phase particles in the 500-700◦C
temperature range.

The creep induced nano-cavities are difficult to detect in the creep specimens.
Fortunately, we observe a cavity at a particle-matrix interface (Fig. 3.3). The
particle is quadrilateral σ phase particle shown in Fig. 3.2a. The cavity is elon-
gated with a length of 100h and a height of 25nm, which is still much higher than
the critical size (in order of 20nm evaluated as shown in chapter ??, accounting
for the remote stress but not the local interface one).

In chapter 2, the stress fields around an ellipsoidal-like precipitate are cal-
culated by the Finite Element method. However, only one precipitate geometry
is accounted, with a shape factor equal to three. According to our observations
(Figs. 3.1 and 3.2), various precipitate geometries need to be considered and then
additional FE calculations should be performed. Generally, the morphologies of
the second phase particles are irregular. And building very representative meshes
would be very time consuming. Additionally, some details of each individual pre-
cipitate geometry may ot be very influent. Then, based on our observations, it
is proposed to focus on three main precipitate geometries:

1. ellipsoidal precipitate with various shape factors (allotriomorph shape);
2. angular symmetric tip precipitate with different tip angles (ϕ) (hexagonal

shape);
3. angular asymmetric tip precipitate with different tip angles (ϕ) (quadrilat-

eral shape).

The calculation results obtained based on these three main geometries are
presented in the following sections.
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(a)

(b)

(c)

Figure 4.3: TEM images of (a) a σ phase particle (with a quadrilateral shape as
shown in Fig. 3.2a); (b) the particle tip with a cavity along the interface and (c)
the elongated cavity at the particle-matrix interface.
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4.2 Description of the enhanced interfacial stress
field calculations

Long term creep damage is characterized by intergranular intergranular cavity
nucleation, growth and coalescence. As shown in Chapter 1 and section 3.1, cav-
ities are produced at the interfaces of metallic matrix and second phase particles.
Two theories were proposed to explain cavity nucleation, vacancy agglomeration
[81] and interface fracture [51, 117]. However, introducing the value of the re-
mote stress on the Raj nucleation law (Eq. 1.25), the cavity nucleation rate is
lower than 1m−2s−1 [82] (Fig. 1.14). This value is much lower than the measured
values. A more precise numerical application will be carried out in Chapter 4,
based on the computed interface stress fields instead of the remote stress. There-
fore, the interface fracture seems more likely to be the mechanism inducing the
observed cavity nucleation.

Interface fracture requires high local interface stress. To calculate the local
interface stress, the Eshelby solution is firstly proposed. Then, some modified
solutions are proposed based on Eshelby-Kröner solution. However, few studies,
about the matrix and second phase interface fracture, were carried out by using
continuum mechanics. Further, the solution provided using Eshelby allows only
the calculation of the stress field around an inclusion embedded in a matrix which
is homogeneously plastically deformed. As expected, we will show that the stress
level is overestimated.

In order to evaluate the realistic stress fields at the interfaces of matrix and
second phase particles, a quasi-2D plane stress analysis (Fig. 3.4a) is carried
out. The homogeneous matrix (blue) obeys the isotropic creep flow rules (Eqs.
2.1 and 1.8) with the parameters given in Table 2.2. In case of bicrystals, the
two grains (green and cyan) obey crystal elastoviscoplasticity laws (Eqs. 2.7 and
2.8). For each configuration, the crystal orientations of each grains is random.
And the inclusion (red) obeys isotropic elasticity. Further mesh refinement or
decrease of the computation time step does not affect our numerical results.

As discussed in chapter 2, the ratio between the matrix size and the grain
size is equal to 7.5, to ensure that the matrix size has no effect on the inclusion
stress. Then inclusions (red) are located at grain boundaries parallel to the tensile
axis (Fig. 3.4). It is generally believed that a critical particle size is necessary
for inerdace fracture to occur [79, 117, 180]. On the fracture point of view,
larger particle size requires lower fracture stress. However, the traditional Finite
Element calculation account only of length ratios as the Eshelby solution does
(subsection 3.3.1). Finally, the highest measured ratio between second phase
particle and grain sizes is used in our calculations (3µm particle between two
20µm grains).

In case of interface fracture, the interfacial normal and shear stress drive
interface fracture. In chapter 2, we showed that the shear stresses are lower than
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.4: Quasi-2D mesh of the inclusion (red) located at a grain boundary,
between two grains (green and cyan). The bicrystal is embedded in a homoge-
neous matrix (blue). (a) The ratio between second phase particles and grains
is the real one. Schematic presentations using a largely increased ratio between
particle and grain sizes and the definition of the interfacial normal stresses of the
interest for the main geometries: (b,e) allotriomorph, (c,f) hexagonal and (d,g)
quadrilateral shapes.
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the normal stresses by a factor of ten (Fig. 2.8). Therefore, we focus now only
on the normal stress fields. Additionally, the calculations carried out in Chapter
2 were based on thirty sets of two random crystal orientations show a strong
heterogeneity in the maximum interface normal stress. And it was highlight
that accounting for fifteen sets of random orientations is enough to get a reliable
distribution of interface normal stress (Fig. 2.8). Therefore, only fifteen sets of
orientations are taken into account in this chapter.

In the following, we calculate the normal stress fields along the interface of
second phase particles located between two highly deformed crystals which are
embedded in a highly deformed matrix. The Finite Element method is used, to
evaluate precisely the influence of the microstructural heterogeneity. In section
3.3, shape factor effect is investigated based on the measured values plotted in
Fig. 3.1.

In section 3.4, FE computations account for the three inclusion tip geome-
tries (Figs. 3.4e, 3.4f and 3.4g]. And the corresponding stress distributions are
deduced. The considered material is 316L(N) steel, loaded at 600◦C, and under
220MPa.

4.3 Theoretical and numerical investigation of
the precipitate shape factor effect

Chapter 3 investigated the effect of the random crystalline orientations on the
interfacial normal stress for an inclusion with a shape factor of three. Never-
theless, according to the experimental measurements reported in section 3.1, the
inclusions a shape factor range between 2.5 and 3.5 account to only less than 30%
of the precipitates. This is why the effect of the shape factor is now investigated

The shape factor is characterized by the semi-major length, a, divided by the
semi-minor length, b, (Figs. 3.5 and 3.8a). The calculations are carried out for
shape factors ranging from 1 to 10. Three computation methods of increasing
complexity are used to calculate the interfacial normal stress:

- the thermo-elastic Eshelby-Kröner solution [91];
- the Finite Element Method (FEM), accounting an elastic inclusion directly

embedded in a homogeneous matrix.
- the Finite Element Method (FEM), accounting an inclusion located along

a grain boundary, with two neighbor grains of random crystalline orientations
(Fig. 3.4). The bicrystal is finally embedded in the same macroscopic matrix as
the second method.

4.3.1 The Eshelby theory
To calculate the stress fields in an ellipsoidal inclusion in function of plastic
strain, the Eshelby relationships are used.
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Eshelby solution assumes that the ellipsoidal inclusion is embedded in an infi-
nite matrix and the isotropic elasticity moduli are the same for the inclusion and
the matrix. And a uniform plastic strain tensor is applied with whole inclusion
but not in the matrix. Then,

σij = Σij + Cijkl : (Sijkl − Iijkl) : εpkl (4.1)
where Cijkl is the elasticity/rigidity tensor, Sijkl are the Eshelby tensor com-
ponents depending only on the inclusion geometry (Fig. 3.5) and the Poisson
coefficient, ν, and εpkl are the uniform inclusion plastic strain.

(a) Oblate (a/b<1) (b) Spherical (a/b=1) (c) Prolate (a/b>1)

Figure 4.5: Schematic presentation of inclusions with different shape factors.

Eshelby showed that the stress tensor is uniform in all the inclusion [91] and
is linear dependent with the inclusion plastic strain. This linear dependence is a
consequence of the thermo-elastic assumption adopted by Eshelby.

The Eshelby solution allows an easy investigation of the effect of the inclusion
shape factor, a/b, compared to the Finite Element calculations results.

Based on the Eshelby solution, Kröner [192] proposed a convenient interaction
law, which is readily derived from the solution of the Eshelby inclusion problem
[91]. Additionally, the matrix is subjected to uniform plastic strain components,
Ep
ij. This interaction rule assumes a thermo-elastic interaction between the ma-

trix and the inclusion. Kröner’s model provides rather accurate predictions at
low plastic strain. Nevertheless, it usually leads to stress overestimations as the
remote plastic strain increases [125].

So that, the modified Eshelby-Kröner problem is solved by:

σij = Σij − Cijkl : (Sijkl − Iijkl) : (εpkl − E
p
kl) (4.2)

Assuming εpkl = 0 in the elastic inclusion, the Eshelby-Kröner solution de-
duces that the homogeneous matrix deformed plastically. The Eshelby-Kröner
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thermo-elasto theory predicts that the inclusion stress tensor is homogeneous and
increases linearly with the uniform matrix plastic strain, which is not observed
in elastic viscoplastic Finite Element computation results. So that, in the follow-
ing, the plastic deformation is chosen as Ep = 4%, in order to make comparisons
with the FE calculation results. Three configurations are considered, the oblate
inclusion (Fig. 3.5a), the spherical inclusion (Fig. 3.5b) and the prolate inclusion
(Fig. 3.5c).

4.3.1.1 Spherical inclusions

We assume, at first, that the precipitates are spherical (Fig. 3.5b), embedded
in an elastic matrix and the plastic strain tensor εp is uniform in the inclusion.
The Eshelby relationship [193] provides the uniform inclusion stress tensor com-
ponents:.

σij = Σij − 2µ(1− β)εpij avec β = 2(4− 5ν)
15(1− ν) (4.3)

Still in the thermo-elasticity framework and using the Kröner approach, sim-
ilar formula arise considering an elastic inclusion embedded in a homogeneously
plastically deformed matrix.

σIij = Σij + 2µ(1− β)Ep
ij (4.4)

For 316L(N), at 600◦C, with Young’s modulus equals 150GPa and ν = 0.3,
the β factor amounts to: β = 0.476. For the macroscopic plastic axial strain
of Ep = 4%, the average axial inclusion stress reaches 2.90GPa. The maximum
normal stress is obtained along the z-axis at point ‘A’ (Fig. 3.5) and is equal
to the average inclusion axial stress. Assuming isotropy at the macroscale, the
stresses along the transversal x- and y-axis are equal because of the axisymmet-
ric shapes of the considered inclusions (Fig. 3.5). And the signs of these two
components are negative, as the macroscopic plastic deformation is isovolumic.
The magnitude of these compressive interfacial stresses is one-half of the axial
internal stress magnitude.

4.3.1.2 Ellipsoidal inclusion

The microscopic observations show that the second phase particle shapes are
generally irregular. To apply the Eshelby-Kröner theory, we assume that the
irregular second phase particle shapes may be modeled as ellipsoidal inclusions.
This allows us to evaluate specifically the influence of the shape factor on the
average inclusion stress.
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For an ellipsoidal inclusion embedded in an infinite homogeneous matrix, the
evaluation of the Eshelby tensor components, Sijkl, is not as straight-forward as
the one carried out for spherical inclusions [194]. The stresses along the interface
of ellipsoidal inclusions are calculated using the Eshelby tensor proposed by Piat
et al [195]. The effect of the shape factor is characterized by a factor g:

g = (a/b)
((a/b)2 − 1)3/2 [(a/b)((a/b)2 − 1) 1

2 − arccosh((a/b))], (a/b) > 1

g = (a/b)
((a/b)2 − 1)3/2 [arccosh((a/b)) 1

2 − (a/b)((a/b)2 − 1) 1
2 ], (a/b) < 1

(4.5)

The components of the Eshelby tensor are finally [195]:

S1111 = S2222 = − 3(a/b)2

8(1− ν)(1− (a/b)2) + g

4(1− ν) [1− 2ν + 9
4(1− (a/b)2) ]

S3333 = − 1
1− ν [2− ν + 1

1− (a/b)2 ] + g

2(1− ν) [−4 + 2ν + 3
1− (a/b)2 ]

S1122 = S2211 = 1
8(1− ν) [1− 1

1− (a/b)2 ] + g

16(1− ν) [−4(1− 2ν) + 3
1− (a/b)2 ]

S1133 = S2233 = (a/b)2

2(1− ν)(1− (a/b)2) + g

4(1− ν) [1− 2ν + 3(a/b)2

1− (a/b)2 ]

S3311 = S3322 = 1
2(1− ν) [−(1− 2ν) + 1

1− (a/b)2 ] + g

4(1− ν) [2(1− 2ν) + 3
1− (a/b)2 ]

S1212 = (a/b)2

8(1− ν)(1− (a/b)2) + g

16(1− ν) [4(1− 2ν) + 3
1− (a/b)2 ]

S1313 = S2323 = 1
4(1− ν) [(1− 2ν) + 1 + (a/b)2

1− (a/b)2 ] + g

4(1− ν) [(1− 2ν) + 31 + (a/b)2

1− (a/b)2 ]

(4.6)

They depend only on the shape factor, a/b, and the Poisson ratio, ν. The
influence of the inclusion shape factor is now studied. As reported in section 3.1,
observations show that the shape factors range between 1 and 10. To investigate
the aspect ratio effect, the calculations based on the Eshelby-Kröner solution
are carried out for shape factors varying between 1/100 and 100. The average
inclusion axial stress < σzz > is calculated by Eq. 3.4. The calculation results
are plotted in Fig. 3.6 and provided Table 3.1.

The results show that the interface stress increases with the increase in the
shape factor value from 1/10 to 10. Then, the inclusion stress is almost constant
in the intervals from 1/100 to 1/10 and from 10 to 100. Furthermore, the ratio
of the interface normal stress computed for elongated inclusions (a/b > 10)
(Fig. 3.5c) and the spherical inclusion stress amounts to two (Table 3.1). And
the stress for inclusion with shape factor lower than 1/20 is close to 220MPa,
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Figure 4.6: The normal stress σnn at point ‘A’ in function of the inclusion’
shape factor, for a remote plastic deformation of 4% and a remote axial stress of
220MPa. The Eshelby-Kröner solution (Eq. 3.2).

corresponding to the remote axial the applied stress, with negligible internal
stresses.

The Eshelby solution provides exact predictions in the framework of thermo-
elasticity and assuming a inclusion plastic deformation through all the matrix
around the inclusion (far- and close-filed). But less good ones for the case of
a plastically-flowing polycrystal [196]. The Eshelby solution is based on a fully
elastic interaction between each individual grain and the surrounding matrix
which is a too stiff condition in the elastic-plastic regime. In fact, the matrix
plastic strain fields become rapidly heterogeneous in full-field computations. The
accommodation of plastic strain fields occur not only by elastic deformation but
also by heterogeneous plastic deformation in the matrix. Further, Fig. 3.7 shows
that, on the contrary, the interface stress increases linearly with macroscopic
strain. Nevertheless, for an ellipse inclusion (a/b=3) embedded in a homogeneous
matrix (Chapter 2), the curve provides by the Finite Element calculation shows
is concave. Therefore, the Eshelby-Kröner solution overestimates the internal
stresses and neglects the plastic accommodation processes between the inclusion
and matrix which leads to a large overestimation of the macroscopic behavior
[196].

Therefore, FE calculations are required to account for several parameters:
- the viscoplastic strain in the matrix which becomes quickly heterogeneous.

This leads to the invalidity of the Eshelby-Kröner solution, and lower inclusion
stresses than expected from this solution. A heterogeneous stress field inside the
inclusion is the expected too;

- viscosity effects should be accounted, because they may affect the local
stress fields;
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Figure 4.7: Interface stress evolution in function of the macroscopic strain, for
a/b=3, calculated using the Eshelby-Kröner solution and Finite Element com-
putation.

- the anisotropic viscoplasticity behavior of the two grains surrounding each
inclusion may be influent too. The results of Chapter 2 clearly show that consid-
ering a few ten couples of crystal orientations leads to a huge scattering of the
interface normal stress distribution (Fig. 2.8).

4.3.2 Finite Element calculations
The (large) inclusions are generally located along grain boundaries, and naturally
the two neighbor grains have different crystalline orientations. Then, the aver-
age inclusion and the interface stresses are affected by the two grain crystalline
orientations, which cannot be predicted based on Eshelby solution, even using a
more advanced self-consistent homogenization schema. Therefore, crystal plas-
ticity Finite Element computation is used. Moreover, crystal viscoplastic flow
law is used at the crystal scale (Eq. 2.8), allowing us to carry out calculations
valid for describing creep deformation.

Two configurations are used as inputs of the Finite Element calculations:
- the inclusion embedded directly in the homogeneous matrix;
- the inclusion along a grain boundary, between two metallic crystals, embed-

ded in the same matrix (Figs. 3.4a and 3.4b).
The calculations are carried out for inclusion shape factors varying from 1 to

10. The interface normal stress becomes almost independent of the aspect ratio,
provided, (a/b > 8). This saturation is in agreement with the results based
on the Eshelby solution (Fig. 3.6). Further, no calculation is carried out for
(a/b<1), because all observed intergranular second phase particles are elongated
along grain boundaries. However, a/b<1 corresponds to the one perpendicular,
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which is not exist. And only grain boundaries parallel to the tensile axis are
considered here.

The shape factor effect is characterized by a stress ratio denoted as: rsf (a/b).
This is defined as the ratio between the maximum interface normal stress com-
puted for the shape factor a/b and the one computed for a/b=1 (circular inclu-
sion):

rsf (a/b) = σmaxnn (a/b)
σmaxnn (a/b = 1) (4.7)

The calculation results provided by the three approaches are shown in Table
3.1. The maximum normal stress and the shape factor ratio provided by the
bicrystal calculations are the average values over fifteen couples of random crys-
talline orientations. The dependence of the rsf (a/b) ratio with the shape factor,
a/b, provided by the three approaches for a macroscopic strain of 4%, are plotted
in Fig. 3.8a. The ranges of variation are plotted for bicrystal calculations are the
results of the randomness of the crystal orientations (fifteen couples and fifteen
values of σmaxnn for each aspect ratio value, a/b). Bicrsytal calculation values are
shown in Appendix B.

Shape
factor
a/b

Eshelby solution FE computations
Homogeneous

matrix
Bicrystal

environment

σmax
nn (GPa) rsf (a/b) σmax

nn (GPa) rsf (a/b) σ̄max
nn (GPa) r̄sf (a/b)

1 2.90 1.00 1.56 1.00 2.66 1.00
2 4.35 1.50 1.94 1.24 2.99 1.12
3 5.06 1.74 2.25 1.44 3.61 1.36
4 5.45 1.88 2.49 1.60 3.99 1.50
5 5.70 1.96 2.80 1.79 4.70 1.77
6 5.87 2.02 3.11 1.99 5.13 1.93
7 5.98 2.06 3.28 2.10 5.39 2.03
8 6.07 2.19 3.41 2.18 5.64 2.12
10 6.18 2.13 3.50 2.24 5.79 2.18

Table 4.1: Computed maximum interface normal stress and concentration factor,
rsf (a/b) for the various inclusion shape factors (600◦C, 220MPa, remote plas-
tic strain of 4%). Fifteen couples of random crystal orientations defining each
bicrystal are accounted for as considering the bicrystal environment.

As shown in Table 3.1, the Eshelby solution provides for a maximum normal
stresses higher than FE results for the inclusion embedded in a homogeneous
matrix. The Eshelby solution predicts in fact that the stress increases linearly
with macroscopic strain (Fig. 3.7). The higher the remote (visco-)plastic strain,
the stronger the overestimation by the Eshelby-Kröner approach. The maximum
normal stress computed by the FE method, for an inclusion embedded in a
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homogeneous matrix is much lower than the average value obtained for inclusions
along grain boundaries (fifteen couples of crystal orientations). Additionally, the
neighbor grains induce a large heterogeneity in the interface normal stresses (Fig.
3.8a).

The fifteen bicrystal calculation results show that the average value of rsf (a/b)
increases with the shape factor until the shape factor reaches seven (Fig. 3.8a).
We can consider that the shape factor has no effect on the interfacial normal
stress if the shape factor is higher than seven. This result is consistent with
the Eshelby solution one and the one provided by Finite Element computations
accounting for an inclusion embedded directly in the homogeneous matrix (Fig.
3.8a).

Then, a multiplication formula (Eq. 3.8) is proposed to calculate the whole
distribution maximum interfacial normal stress accounting for random crystal
orientation set, various shape factors and the macroscopic strain of Evp. Such a
distribution may be roughly evaluated by using:

σmaxnn (O1
i , O

2
i , a/b, E

vp) = σmaxnn (O1
i , O

2
i , a/b = 1, Evp) · r̄sf (a/b) (4.8)

where σmaxnn (O1
i , O

2
i , a/b = 1, Evp) is the maximum normal stress along the

interface of a spherical inclusion for a given couple of crystal orientation, (O1
i , O

2
i ),

at a remote strain Evp.
In this sample formula, the macroscopic strain could be calculated using

the macroscopic creep laws (Eqs. 2.1 and 2.5). Fig. 3.8b shows the comparison
between the maximum interface normal stress σmaxnn calculated through the fifteen
bicrystal calculations carried out for a/b = 1 and the multiplication formula
(Eq. 3.8). The comparison shows that the distributions agree well enough.
Therefore, Eq. 3.8 allows a fair and straight-forward calculation of the interfacial
normal stress distributions accounting different shape factors, based only on the
stress distribution computed for (a/b=1). It should be noticed that this formula
allows the prediction of the whole distribution accounting for random crystalline
orientations, and shape factor (a/b). Nevertheless, to calculate the stress for
specific crystal orientation set, it must be accounted for the ranges of variation
calculated for each a/b value of the individual ratio rsf (a/b), as the distribution
plotted in Fig. 3.8a.

Further, according to Fig. 2.10, the interface normal stress depends only
on the remote strain, but not on the remote tensile stress and temperature.
Therefore, Eq. 3.7 should hold for various stress and temperatures.
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(a)

(b)

Figure 4.8: (a) the evolution of the interface stress concentration ratio, rsf (a/b),
in function of the shape factor, a/b; (b) Cumulative probability of the maxi-
mum interfacial normal stress for shape factors between 1 and 10, and fifteen
random orientations sets, (O1

i , O
2
i ), (600◦C, 220MPa, Evp = 4%). Comparison

with the simplified multiplication formula (Eq. 3.8). Equiprobable shape factor
values,1 6 a/b 6 10
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4.4 Investigation of the effect of angular tips of
the precipitates

The previous section investigates the effect of the shape factor value on the in-
terfacial normal stress. Only a circular tip inclusion is introduced (allotriomorph
shape, Fig. 3.2a). However, various inclusion tips are observed, including angu-
lar tips (hexagonal and quadrilateral shapes, Fig. 3.2a). Nevertheless, the effect
of angular tip inclusion was rarely studied. Recently, Misseroni et al. [197] cal-
culated the stress field around stiff rhombohedral inclusions embedded in a ‘soft’
elastic matrix. Their results show a strong stress concentration in the vicinity
inclusion tip (factor 6). However, in AISI 316, the Young modulus of second
phase particles (200-350GPa) are higher than the matrix one (150 GPa) at high
temperature. It should be added that our FE calculations showed a negligible
effect of the inclusion Young’s modulus provided it belong to the [100-400GPa]
range (Fig. 2.6b).

In this section, we investigate the effect of the angular inclusion tip on the
interfacial normal stress by the finite element method. The angle ϕ is defined
as shown in Fig. 3.9 and 3.11. Two tip morphologies are considered in the
following, first hexagonal shape and then quadrilateral shape. The considered
grain boundary plane is parallel to the tensile axis, and shape factor equals three.

4.4.1 Precipitate symmetric tip
Considering the hexagonal shape (Fig. 3.9), the interfacial free energy or surface
tension equilibrium equation at the triple point (P) [175] is:

cos ϕ = γGB
2γincoh

(4.9)

Figure 4.9: The interfacial free energy or surface tension equilibrium condition
for a hexagonal precipitate, with γGB the grain boundary energy (Jm−2) and
γincoh the incoherent interface energy (Jm−2).

Following the literature review summarized in 2 (subsection 2.5.1), the inco-
herent interface energies range between 2 and 2.5J/m2 and the grain boundary
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energy as 1.5-2J/m2 (general grain boundary). Then, using Eq. 3.9, the half-tip
angle should range between 60 and 72◦. However, this result does not agree with
our observations.

Therefore, to be more realistic, the FEM calculations account for ϕ equals
30, 45 and 60◦ are carried out (Fig. 3.10a). The absolute values are provided in
Appendix B (Table B.3). The three inclusions respect same length in major axis
and the inclined interface. The shape factor of the inclusion with ϕ = 45◦ equals
exactly three. Therefore, the ones for ϕ = 30 and 60◦ are only slightly changed.

Fig. 3.10b shows the whole calculation results (as cross markers) with four-
teen crystalline orientation sets, accounted for each ϕ angle amounts to 30, 45
and 60◦. The results show that interface stress of the inclusions with a tip angle
of 30◦ are much higher than with tip angles of 45 and 60◦, and the one for 60◦ is
slightly higher than 45◦.

The effect of the inclusion tip angle is characterized by a ratio, rsym(ϕ),
between the maximum interfacial normal stresses computed for a symmetric
angular tip, defined by ϕ and circular tip:

rsym(ϕ) = σmaxnn (O1
i , O

2
i , a/b = 3, ϕ, Evp)

σmaxnn (O1
i , O

2
i , a/b = 3, circular, Evp) (4.10)

The dependence of rsym(ϕ) with the tip angle, ϕ, and the bicrystal orien-
tations, (O1

i , O
2
i ), are plotted in Fig. 3.10a. The results show that the average

values r̄sym(ϕ) ranges between 1.3 and 2.1. A large heterogeneity in the rsym(ϕ)
ratio is also observed, as shown by the cross markers in Fig. 3.10a. Finally, we
propose a simplified multiplication formula similar to Eq. 3.8, for estimating the
whole distribution:

σmaxnn (O1
i , O

2
i , ϕ, E

vp) = σmaxnn (O1
i , O

2
i , circular, E

vp) · r̄sym(ϕ) (4.11)

Applying Eq. 3.11, the distribution of the maximum interfacial normal
stresses for angular tip inclusions are calculated based on the one computed
for circular tip inclusions only. The interface stress distribution accounting cal-
culated using this multiplication formula for each ϕ value are compared with
the distribution computed by the FEM for each ϕ value in (Fig. 3.10b). The
comparison shows a fair agreement between the stress distributions calculated
by these two methods. Similarly to Eq. 3.8, it should be noticed that computing
the interface stress for one specific couple of crystalline orientations, it requires
to take into account the range og variation of rsym(ϕ). The previous results holds
at least for αGB = 0◦ and a/b=3.

4.4.2 Precipitate asymmetric tip
In previous subsection, the effect of precipitate angular tip on the interfacial
normal stress is evaluated accounting only for the symmetrical tips (hexagonal
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(a)

(b)

Figure 4.10: (a) Values of the maximum interface stress concentration factor,
rsym(ϕ), calculated for 14 random couples of orientations of the bicrystals con-
taining the inclusion; (b) cumulative probabilities of the maximum interfacial
normal stresses calculated for 14 different bicrystals embedded in the homoge-
neous matrix. And the cumulative probability curves deduced from the multi-
plication formula (Eq. 3.11). Other microstructures parameters: αGB = 0◦ and
a/b=3 (slightly modified for ϕ = 30◦ and 60◦). 600◦C, 220MPa, Evp = 4%.
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shape, Figs. 3.2a, 3.2b and 3.2d). This corresponds to second phase particles
which grew into both neighbor grains. However, the shapes of some of the
intergranular precipitates are asymmetrical, with quadrilateral shape (Figs. 3.2a,
3.2b and 3.2e).

For the quadrilateral shape (Fig. 3.11), the interfacial free energy or surface
tension equilibrium condition at point (P) leads to:

cos ϕ = γGB − γcoh
γincoh

(4.12)

Figure 4.11: The interfacial free energy or surface tension equilibrium condition
for a quadrilateral precipitate, with γGB grain boundary energy (Jm−2), γcoh
coherent interface surface energy (Jm−2) and γincoh incoherent interface energy
(Jm−2).

Table 2.4 reported incoherent interface energies of 2-2.5J/m2, coherent inter-
face energy of 0.2J/m2 and general grain boundary energies of 1.5-2J/m2. Then
it is deduced that the angle ϕ should range between 25◦ and 60◦.

Thereafter, in this subsection, the stress concentration around the intergran-
ular quadrilateral inclusion are calculated, taking tip angle ϕ of 30, 45 and 60◦
(Fig. 3.12a). The absolute values are provided in Table B.3 in Appendix B. The
bicrystal Finite Element calculations show that the maximum interfacial nor-
mal stresses generally increase with the asymmetrical tip angle decreasing (Fig.
3.12b). The distributions are in fact drifted towards higher values as ϕ decreases.

A new ratio, rasym(ϕ), is defined by dividing the maximum normal stress
computed a asymmetrical inclusion by the stress computed for a symmetrical
one:

rasym(ϕ) = σmaxnn (O1
i , O

2
i , ϕ, asym,E

vp)
σmaxnn (O1

i , O
2
i , ϕ, sym,E

vp) (4.13)

The dependence of the rasym(ϕ) ratio with the ϕ angle is plotted in Fig. 3.12a.
The heterogeneity caused by the random crystalline orientations can be evaluated
through the ranges of variation of rasym(ϕ). The average values, r̄asym(ϕ), range
between 0.85 and 1.35. Finally, Eq. 3.14 is proposed to evaluate roughly the
maximum interfacial normal stress distribution of asymmetrical inclusions from
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(a)

(b)

Figure 4.12: (a) Values of the maximum interface stress concentration factor,
rasym(ϕ), calculated for 14 random bicrystal calculations; (b) cumulative prob-
abilities of the maximum interfacial normal stresses calculated for 14 different
bicrystals embedded in the homogeneous matrix. And the cumulative probabil-
ity curves deduced from the multiplication formula (Eq. 3.13) (600◦C, 220MPa,
Evp = 4%).



4.5. DISCUSSION OF THE MODELING ASSUMPTIONS 127

the distribution of symmetrical ones:

σmaxnn (O1
i , O

2
i , ϕ, asym,E

vp) = σmaxnn (O1
i , O

2
i , ϕ, sym,E

vp) · r̄asym(ϕ) (4.14)

The distribution of maximum interfacial normal stress obtained from Eq.
3.14 are compared with accurate bicrystal calculation results, (Fig. 3.12b). Once
more the two methods lead to close distributions. Similarly to Eq. 3.8, if we
want to calculate the stress for one specific couple of crystal orientations, the
range of variation of rasym(ϕ) should be accounted for whatever the considered
ϕ angle (Fig. 3.12b).

All these calculations lead us propose Eq.

σmaxnn (O1
i , O

2
i , a/b, ϕ�/a, E

vp) = σmaxnn (O1
i , O

2
i , circular, a/b = 1, Evp)

·r̄sf (a/b) · r̄sym(φ) · r̄asym(φ)
(4.15)

where ϕ�/a means symmetric (ϕ�) or asymmetric ϕa tip angle This equation
allows a quick calculation of the distributions of the maximum normal stress
accounting for shape factor and tip geometry variations. Only the FE calcula-
tions carried out for a circular inclusion along grain boundary with fifteen sets of
random grain orientations are needed to calculate the whole stress distribution.

Unfortunately, this equation does not permit us to calculate correctly σmaxnn

for one given couple of grain orientation, various a/b and particle tip geome-
try. For example, σmaxnn (a/b = 4)(set24, ϕa = 45◦, 4%) calculated accurately by
FEM amounts to 4.67GPa, whereas the one calculated by Eq. 3.15 amounts to
9.14GPa, which overestimates the stress. Then, the interface stress, σmaxnn (a/b =
3)(set17, ϕa = 30◦, 4%) calculated accurately by FEM reaches 11.86GPa, but the
one calculated by Eq. 3.15 is only 10.21GPa, which underestimated the stress.

4.5 Discussion of the modeling assumptions
More than 200 polycrystalline calculations presented in subsections 3.3 and 3.4
provide the interfacial normal stress distribution induced by the randomness
of the crystalline orientations of neighbor grains, the variability in the shape
factor values and finally the detailed geometry of inclusion tips. However, the
calculations are carried out with a quasi-2D mesh using plane stress boundary
conditions. The plane stress typically occurs in thin flat plates, with close free
surfaces. Because the plane stress condition neglects the presence of the trans-
verse components of the stress tensor penitentially generated by the presence of
the inclusion, this may leads to an underestimation of the stress fields. There-
fore, a few 3D calculations are carried out to compute interfacial stress fields and
then to compare with 2D plan stress calculations result.

Further, surprisingly, the evolution of the interface normal stress rarely shows
a saturation with respect to the remote viscoplastic strain even at 4%. It should
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be noticed that the remote creep strain rate reaches its stationary stage at about
1%. Such discrepancy is discussed in subsection 3.5.2.

Finally, our computations account for the lattice rotation occurring during
viscoplastic straining. The influence of lattice rotation on the saturation of the
interface stress fields with respect to the remote strain is finally investigated.

4.5.1 2D-3D comparison
3D FE calculations are performed to check if the 2D plane stress results are over-
estimated due to free surface effects or not. The 2D calculations using different
remote stresses and temperatures show that the local interfacial stress is almost
independent on tensile stress and temperature (Fig. 2.10). Therefore, we focus
only on creep conditions corresponding to 600◦C and 220MPa.

Full 3D meshes are presented in Fig. 3.13, where the external cylinder (blue)
obeys the Andrade and Norton laws (Eqs. 2.1 and 2.5). The green and cyan
half-spheres obey the crystal elastic and viscoplastic constitutive laws (Eq. 2.8).
Finally, the red inclusion obeys isotropic elasticity. The size ratios are same as
the ones of Fig. 3.4a. The explanation and used parameter values are shown in
Chapter 3. The mesh refinement has a negligible effect on the interfacial normal
stress. It should be noticed that the simulation of the deformation of a full 3D
mesh up to 4% requires two months of computation. Therefore, only one 3D
inclusion-homogeneous matrix and one 3D bicrystal calculation are carried out.

Figs. 3.14a and 3.14b show the comparison between 2D and 3D interface
normal stress fields. Fig. 3.14a shows the comparison of normal stress for an
inclusion directly embedded in the homogeneous matrix. The results show that
the 2D/3D calculations provide the maximum normal stress, σmaxnn , at almost
the same location along the interfaces. In this case, 2D/3D stress curves display
similar angle dependence. However, the angle dependence computed for the 3D
bicrystal seems more chaotic than the one computed for the 2D bicrystal (Fig.
3.14b). In fact, in case of 3D bicrystal, the considered interface line is a triple
junction between the two grains and the inclusion (Fig. 3.13c). On the contrary,
in case of 2D bicrystal, only the point corresponding to θ = 90◦ is in a triple
point. And triple junctions are known to trigger stress concentration because of
string stress incompatibilities between three different phases.

Sauzay and Gliormini [198] studied the effect of the free surface analytically
and by Finite Elements. Their results show that, if the plastic glide crosses the
free surface, a decrease in elastic-plastic stress could be observed.

Further, Barbe et al. [199] and Sauzay and Gilormini [198] performed nu-
merical simulations of the deformation of large polycrystalline aggregates. Their
comparison between average bulk and surface stress-strain show a slight decrease
in the surface average tensile stress, a slight increase in the surface average plas-
tic strain, and a final light decrease in the number of activated slip systems near
the free surface.



4.5. DISCUSSION OF THE MODELING ASSUMPTIONS 129

(a) (b)

(c) (d)

Figure 4.13: 3D Meshes of (a) the macroscopic cylinder (homogeneous matrix);
(b) the spherical bicrystal in the center of the homogeneous matrix; (c) the
ellipsoidal inclusion in the center of the bicrystal (only the green grain is shown)
and (d) the ellipsoidal inclusion (a/b=3, spherical tips).

(a) (b)

Figure 4.14: Comparison between 3D and 2D normal stress distribution along
the interface for an inclusion (a) directly embedded in the homogeneous matrix
and (b) along the triple junction lines where the two grains and the particles are
in common, Evp = 4%.
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For both inclusion-matrix and inclusion-bicrystal configuration, the interface
stresses calculated in 3D are generally higher than the ones provided by the 2D
calculations. This is in line with the results of [200], which provides the com-
parison of 2D plane stress/strain and 3D stress fields for V-notched specimens.
For an inclusion embedded in a homogeneous matrix (Fig. 3.14a), the differ-
ence in the maximum normal stress is about +20%, whereas it reaches almost
40% for the bicrystal one (Fig. 3.14b). This difference may due to the different
inclusion geometries, ellipse-like geometry for 2D calculation and ellipsoid-like
one for the 3D calculation. Nevertheless, free surface condition may additionally
lead to stronger stress concentrations close to interface. To study the isolated ef-
fect of the inclusion geometry, the average inclusion stresses provided by 2D/3D
calculations are compared in the following.

Focusing on average inclusion values will allow us

4.5.2 Evolution of the average inclusion stresses during
straining

Computing inclusion average stresses with respect to the remote strain will per-
mit us to better understand the saturation of local stress fields occurs during
creep. The evolution of average inclusion and interface stress will also be dis-
cussed. The evolutions of the average inclusion stress with the macroscopic strain
and creep time are now discussed for the 2D/3D calculations, and for 2D calcu-
lations accounting for eight different sets of random crystalline orientations. The
inclusions obey isotropic elasticity. The main axis of the ellipse- or ellipsoid-like
inclusions are parallel to the tensile axis. The shape factor is equal to three.
During the creep loading, the σxx component is negative (σxx = σzz in full 3D
calculations), and the σyy one is positive. Therefore, only the σyy component is
discussed in the following subsection.

4.5.2.1 2D/3D calculation

Fig. 3.15a shows the evolution of the average inclusion tensile stress, < σyy >,
in function of the average inclusion tensile strain, < εyy >. The results show two
separate domains for the 2D and 3D calculations. For the 2D calculations, the
average inclusion strains are lower than the ones provided by the 3D calculations.
For ‘2D/3D calculations’, the separation occurs at a strain of 0.140%, and 0.125%
for ‘2D/3D bicrystal calculations’. This may due to the difference in inclusion
geometry. Fig. 3.15a shows that the < σyy > component increases linearly with
the average inclusion strain, because of isotropic elasticity.

However, the equivalent Young’s modulus amounts to 335GPa, which differs
the input one (350GPa). This may induces by the stress triaxiality around
inclusion. And a slight discrepancy is observed between the 3D calculation and
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3D bicrystal calculation results, because of the stress triaxialities in full 3D and
quasi-2D calculations are different.

Figs. 3.15b and 3.15c show the average inclusion axial stress evolution in
function of the macroscopic strain and the creep time, respectively. For all sets
of random orientations, < σyy > reaches a rather high magnitude (>300MPa)
very quickly (after 1h and Evp=0.2%). And 3D calculation values are always
higher than the 2D plan stress ones. A factor of about 2 is found at Evp = 4%.

The for an inclusion embedded directly in the homogeneous matrix, a slight
decrease in < σyy > is observed after 250h and Evp = 1%, for both 2D plan
stress and 3D calculations. This results agrees well with stress evolution of
a single crystal during creep deformation calculated by Suquet et al. [201].
Thereafter, < σyy > is almost constant under the 2D plane stress assumption.
A slight increase is observed in 3D configuration. It may due to the difference
in inclusion geometry. The decreases in < σyy > corresponds to the ‘structural’
viscoplastic relaxation.

Accounting for the neighbor grains (Set N◦2), no clear relaxation is observed.
The anisotropic viscoplastic flows in each of the neighbor grain seem to overcome
the structural viscoplastic relaxation. Then, similarly to the case of the homo-
geneous matrix, the average inclusion axial stress, < σyy >, computed for the
set N◦2 of random crystal orientations, only slightly increases under plane stress
assumption, and a strong increase is observed for the 3D configuration.

These comparisons lead us to conclude that our previous calculations do not
overestimate the interface stresses. The differences in the average inclusion axial
stress in, < σyy >, are only due to the inclusion geometry.

4.5.2.2 Bicrystal calculations

After discussing the differences between quasi-2D and 3D calculation results, a
question remains, such as: the ‘structural’ viscoplastic relaxation is not observed
in the bicrystal calculations (Figs. 3.15b and 3.15c).

These two points lead us to carry out comparisons of the evolutions of the
average inclusion axial stress, < σyy >, calculated for height different bicrystals
under plane stress assumption. Then, height sets of random orientations of the
neighbor grains are accounted for. Figs. 3.15b and 3.15c show similar evolutions
of < σyy > in function of the macroscopic strain and creep time. Therefore, only
σyy in function of creep time is compared in this part, which is also valid for the
one in function of macroscopic strain.

Fig. 3.16a presents the evolution of average inclusion axial stress versus creep
time for eight sets of random crystalline sets . The results show a slight relaxation
for sets 10, 15, 17 and 22. Nevertheless, the maximum stress before the relaxation
could not be observed. It seems that, in the case of bicrystal calculations, the
‘structural’ relaxation by viscoplasticity ends reached very quickly. This may
explain that, whatever the adopted full 3D or plane stress assumption, no clear
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(a)

(b)

(c)

Figure 4.15: 2D/3D comparison of the average inclusion tensile stress, < σyy >,
in function of (a) the average inclusion axial strain; (b) macroscopic axial strain
and (c) the creep time. ‘2D/3D calculation’ denote the calculations based on an
inclusion embedded in the homogeneous matrix. ‘2D/3D bicrystal calculation’
denote the calculations accounting for two surrounding grains (Fig. 3.13). The
comparison is performed for the same couple of crystalline orientations of two
neighbor grains.
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(a) (b)

Figure 4.16: Evolution of the average inclusion axial stress in function of (a)
creep time and (b) average inclusion axial strain, for eight random couple of
random crystal orientations for quasi-2D calculations, (Fig. 2.5).

relaxation is observed for the bicrystal defined by Set N◦2 (Figs. 3.15b and
3.15c.)

Fig. 3.16b presents the evolution of the average inclusion axial stress, <
σyy >, versus the average inclusion strain. The curves are quite close. The
variation in the triaxiality does not affect much the effective Young’s modulus
value. However, slight differences in the slopes could also be observed.

4.5.3 Influence of the lattice rotation
The polycrystalline calculations are based on the assumption of perfect grain
cohesion during creep deformation. This assumption eliminates grain bound-
ary sliding. Grain boundary sliding is presented in Chapter 1 and numerical
applications will be presented in Chapter 5, it is not discussed in this chapter.

In polycrystalline materials, under straining, the rotation of lattice crystallo-
graphic orientations leads to the possible evolution of the wholes crystallographic
texture, which may affects the mechanical properties. Such rotation occur at the
local scale too, allowing increasing or decreasing local stresses. In order to simu-
late the most accurately as possible the stress fields, we use in our computation
the finite transformation assumption. Using the kinetic model of elastoplastic
transformation, the Green-Lagrange strain tensor, and the Cauchy stress tensor,
the Schmid criterion is then proposed to calculate resolved shear stress on slip
system (Eq. 3.16) [142]. For each slip system, i = [1, 12] the resolved shear stress
is computed by:

τ i = σ : (−→mi ⊗−→n i) (4.16)
The effect of this lattice rotation could be highlighted in the typical shear

stress slip hardening curve of a FCC single crystal oriented for single slip (Fig.
3.17).



134 CHAPTER 4. EFFECT OF THE PARTICLE GEOMETRY

Figure 4.17: A typical hardening curve for a single slip orientated single crystal
[202].

Fig. 3.17 shows three stages of work hardening:
- Stage I: the shear stress increases only slowly up to a few ten %. There is

only slight work hardening. It corresponds to the activation of only one single
slip system. Such behavior is observed in about 2/3 of the single crystals [124].
Dislocations do not interact much with each other, leading to this: ‘easy glide’
deformation stage. The active slip system is the one with the maximum Schmid
factor;

- Stage II: this stage is characterized by a constant work hardening module is
about ten times higher than that of stage I. The plastic activation of the single
slip system leads to a progressive lattice rotation of the crystal with respect to
the tensile axis. Then the primary Schimd factor decreases but the secondary
one increases. This finally leads to the activation of secondary slip systems,
which were initially less favorably oriented. The interaction of dislocations of
the primary and secondary systems induce the formation of various junction.
The stress required to deform the crystal increase much strongly (stage II). The
slip lines are straight but shorter than in stage I;

- Stage III: There is a decreasing rate of work hardening. This decrease is
dynamic recovery and very sensitive to temperature and strain rate.

Nevertheless, in stage II, there is a inverse effect in a polycrystal. For a
polycrystal, the increase in the activated slip systems could lead to a decrease
in macroscopic stress for macroscopic deformation [125], because of the accom-
modation of the plastic deformation in neighboring grains. To accommodate the
plastic deformation incompatibilities, large elastic deformations are required in-
side grains and eventually along grain boundaries at high temperature. Higher
elastic strains are therefore required. However, in our polycrystalline model, it is
assumed that multiple slip systems could be activated. Therefore, lower elastic
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strains are required to accommodate (visco-)plastic strain incompatibilities. And
the necessary macroscopic stress is smaller for the same value of remote plastic
strain [203].

The effect of lattice rotation on the calculated interface stresses is now in-
vestigating by comparing with the stresses calculated without. accounting for
lattice rotation evolution during creep straining.

Fig. 3.18 shows the maximum interface normal stress, σmaxnn , evolution in
function of macroscopic strain, Evp, for nine sets of crystalline orientations. Two
types of calculations are then carried out, with and without lattice rotation
evolution. For one given couple of crystal orientations of the neighbor grains,
the maximum normal stress are reached at almost the same interface position
along the interface (±2◦)

If no lattice rotation is accounted for, the evolution of σmaxnn with Evp is almost
linear (Fig. 3.18). Lattice rotation introduces an additional a non-linearity into
the viscoplastic constitutive laws. That may explain why the interface stress
evolution with lattice rotation is less linear. The σmaxnn -Evp curves are generally
concave, as for the majority of the cases obtained with lattice rotation. In fact,
during deformation, more and more slip systems are activated, which make it
easier to accommodate plastic deformation incompatibilities at the intersection
of the elastic inclusion and neighbor grains. Then, lower local elastic strains are
required. This may explain the concavity of the σmaxnn -Evp curves.

Figs. 3.18a and 3.18c show that the σmaxnn stress at low remote plastic strain
(< 0.5%) are of the same magnitude, then, the non-linearity is observed. But
only if lattice rotation are accounted for. This leads σmaxnn stress obtained without
lattice rotation higher than the other ones (Fig. 3.18a). Fig. 3.18c shows that,
at low strain (< 3%), σmaxnn stress calculated with lattice rotation are higher than
without ones. Once more, the evolutions of interface stress with lattice rotation
are concave. Therefore, for a strain level higher than 4%, the calculated stress
without lattice rotation may higher than the other ones, as Fig. 3.18a at lower
remote strain.

However, Fig. 3.18b shows that the σmaxnn stress calculated with lattice rota-
tion may be higher than the ones computed without lattice rotation. Especially
for sets 10 and 19, even at low remote strain (< 0.5%), the stresses accounting
for free lattice rotation are still much higher than the ones neglecting lattice ro-
tation. As the grain viscoplastic strains in the vicinity of the interface are much
higher than the remote one, such unexpectedly strong effect of lattice rotation
may be qualitatively interested.

Finally, we conclude that the accounting for lattice rotation could increase
and decrease the interface stress. Generally, neglecting lattice rotation leads to
an interface stress dependence with the remote strain which is almost linear up
to 4%. On the contrary, lattice rotation leads to more concave evaluations with
the remote strain. That explains why, for the majority o f the considered sets
of random orientations the interface stresses computed with lattice rotation are
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(a)

(b)

(c)

Figure 4.18: Comparison of evolutions of the maximum interface normal stress
versus the macroscopic strain computed either hindering or accounting for lattice
rotation. The results for nine couples of random crystal orientations of the
neighbor grains are plotted. It can be observed that the maximum interface
stress, σmaxnn , computed without lattice rotation are (a) higher; (b) lower and (c)
close to the ones computed accounting of lattice ration during straining.
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expected to be or become lower than the ones calculated with out lattice rotation,
provided the remote creep strain becomes high enough (≈ 10%)

4.6 Summary and conclusion
In the present work, the maximum normal stress along the intergranular second
phase particle and matrix interfaces are calculated by FE calculations.

Three families of inclusion geometries are considered:
- shape factor;
- symmetric angular tip and tip angle;
- asymmetric angular tip and tip angle.
As fifteen couples of random crystal orientations of particle neighbor grains

lead to a statistic representative distribution of stress (Fig. 2.8), therefore, only
fifteen couples of 2D plane stress bicrystal calculations are carried out for each
inclusion geometry.

The calculation results show that the maximum normal stress increases with
the shape factor up to seven, with a stress ratio. For a shape factor of seven,
the interface stress is increased with an average factor of 2.03, compared to the
circular inclusion. Thereafter, only slight increase is obtained. Further, the
dependence of the stress ratio, r̄sf , with the shape factor is close to the on
predicted by the thermo-elastic Eshelby-Kröner solution.

Symmetric angular tips lead to a large increase in maximum interface normal
stress, with a average factor, r̄sym(ϕ), of 1.67, compared to the circular tip case.
The tip angle (ϕ) equal to 30◦ induces a highest average factor (r̄(ϕ = 30◦) =
2.12) compare to others (ϕ = 45◦ and ϕ = 60◦).

The asymmetric angular tip geometry induces only a slight increase in max-
imum normal stress, (r̄asym(ϕ) = 1.09), compared to the symmetric tip angle.
However, in case of a asymmetric tip angle equals 60 ◦, a decrease is observed,
r̄a(ϕ = 60◦) = 0.85.

All these calculation results lead us to propose a simplified multiplication
equation to calculate the local stresses with a large distribution of crystalline
orientations. In Chapter 4, this equation will be applied to calculate the Dyson
Law prefactor, α′, accounting for all considered microstructure features.

Further, 2D plane stress and 3D calculations are compared for discussion of
our 2D plane stress assumption. The comparisons show lower interface normal
stresses under plane stress assumption. This agrees with several literature re-
sults. Therefore, the interface normal stress is not overestimated. Thereafter,
the average inclusion axial stresses, < σyy >, with respect to the remote strain
are compared under 2D/3D assumptions, and 2D bicrystals considering eight
sets of crystalline orientations. In case of an inclusion embedded in the homoge-
neous matrix, slight ‘structural’ relaxations are observed under both 2D and 3D
assumptions. Further, the stress saturation of the < σyy > stress in function of
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creep time is generally observed, which is rarely observed in in the case for the
interface normal stresses for a macroscopic strain up to 4%.

The ratio between maximum and minimum average inclusion axial stresses
amounts only to 1.4. The one of interface normal stress reaches 5.4, for considered
eight sets of crystalline orientations. Further, there is no strong link between the
< σyy > and σmaxnn values. For example, the maximum value of < σyy > is
obtained for Set 6, whereas, the maximum in the interface normal stress, σmaxnn ,
is obtained for Set 10.



Chapter 5

Final development for lifetime
prediction

From the 1980s, austenitic stainless steels, in particular the 316L(N) steel, have
been widely studied concerning their creep properties, in relationship with their
use in components of nuclear reactors, especially the Phénix and SuperPhénix
SFR reactors built in France.

The lifetime of the nuclear reactors of Generation IV is estimated as 60 years.
Therefore, the main challenge for designing reactors components in austenitic
stainless steels is the demonstration of their creep resistance up to 60 years under
in-service conditions. The long term creep lifetime predictions require on the one
hand to carry out very long term creep tests and on the other hand to understand
and model the damage mechanisms in order to propose physically–based lifetime
predictions to go beyond the longest test results.

Before prediction long term creep lifetime based on the simulation of Chap-
ters 2 and 3, it is required to check that there are really no other phenomenon
influening damage initiation mechanisms.

That is why the other main mechanisms are firstly remained (subsection 4.2).
Then, some existing cavity nucleation models are numerically applied, and com-
pared to the experimental results and previous FE computations. Thereafter,
the find value of prefactor of the Dyson law, α′, is proposed based on our Finite
Element calculation results and experimental observations of long term precipi-
tation. Finally, long term creep lifetime predictions are performed. The Riedel
model, which combines continuous cavity nucleation through the Dyson law and
vacancy diffusion growth, is used to predict long term creep lifetimes. Using the
evaluated value of α′, our results show that lifetimes are fairly well predicted
using the Riedel model. No fitting parameter has been used (subsection 4.4).

The mechanisms of deformation, precipitation and damage which may occur
during very long term creep are finally discussed (subsection 4.5).

139
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5.1 Introduction
Some experimental creep results concerning 316L(N) stainless steels are now
reminded, adding some recent results concerning in particular long-term creep
lifetimes. The microstructure concerning the 316L(N) is described in Chapter 1.

Experimental creep stress-lifetime data of various sheets of 316L(N) steel are
plotted for temperatures ranging between 500 and 700◦C (Fig. 4.1). The slope
change could be clearly observed between the short and long term creep lifetime
at 550, 600, 650 and 700◦C. Therefore, long-term creep lifetimes cannot be
correctly predicted by the extrapolations from short-term data, as the Monkman-
Grant relationship [50] or Larson-Miller relationship [54].

For AISI 316L(N) SS, the main short term creep fracture mechanism is neck-
ing, which is caused by viscoplastic instability [4, 44]. Further, at high tempera-
ture and low stress, intergranular creep fracture is generally observed, as shown
by Morris et al. [204], Gandhi et al. [205] and Riedel [51]. Meanwhile, intergran-
ular cavities along grain boundaries are extensively observed in long-term creep
specimens.

The first main cause of intergranular cavitation is that vacancies become mo-
bile at elevated temperature. At the typical in-service condition temperatures,
diffusion along grain boundaries is, generally, predominant compared to the bulk
one. Raj [81] proposed that vacancy diffusion along grain boundaries lead to
cluster and form stable cavity nuclei. Another mechanism of cavity nucleation
may be second-phase interface fracture as discussed later. And, then, vacancies
diffuse under the normal stress acting on grain boundary towards intergranular
cavities leading to cavity growth. Intergranular cavitation is observed experi-
mentally in 316 [44, 205]. However, the cavity nucleation mechanism has not
been well established yet.

In this chapter, some numerical applications of existing cavity nucleation
model are performed to be compared to our predicted ones based on interface
stress distribution. And their validations are discussed with respect to experi-
mental results. Thereafter, our Finite Element calculation results are summa-
rized. Combining with the distribution of intergranular particles, the cavity
nucleation rate are evaluated (subsection 4.4).

Similarly to Incoloy 800 (Chapter ??), for 316L(N) SS, at low temperature
and high stress, creep stain curves show an acceleration of creep deformation
during the third creep stage, which corresponds to the increase in true stress and
macroscopic necking (explained in chapters 1 and ??). The modeling of necking
using the Norton law [45] and the Hart criterion [67] allows lifetime predictions
in agreement with experimental data up to a transition time of about 10 000 h,
but which is temperature-dependent.

Experimental results show that the extrapolation of the stress-lifetime data
obtained at high stress based on a power law leads to large overestimations of
lifetimes at low stress (Fig. 4.1) [70]. After FEG-SEM-EBSD and TEM observa-
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Figure 5.1: Experimental stress lifetime data of 316L(N) stainless steel (CEA,
EDF, and Creusot-Loire [40], NIMS [183], ORNL [49]).
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tions, these overestimates are mainly due to the fact that intergranular cavitation
becomes predominant as the applied stress is decreased (chapters 2 and 3). It
is generally observed in metallic materials in the long-term creep regime (Fig.
4.1). The modeling of cavity growth by vacancy diffusion along grain bound-
aries coupled with continuous nucleation (the Dyson law) proposed by Riedel
is carried out in the following. The Riedel model, as proposed for Incoloy 800
(Chapter ??), is used to predict long term creep lifetime of 316L(N) stainless
steel for large ranges of stress and temperature. The predicted creep lifetimes
are compared with numerous experimental creep results. Several creep data of
316 SS are compared with our predictions, especially the data of CEA, EDF,
Creusot-Loire (316L(N)), the National Institute for Materials Science, Japan,
NIMS (316-HP) [183] and others [1, 2, 44, 49, 49, 206, 207]. Cui et al. [115]
carried out the experimental observations and image processing to measure ex-
perimentally the prefactor of the Dyson law, α′ slightly dependent on stress and
temperature. Then, using the Riedel model, these authors predicted long term
creep lifetime based on these measured α′ values, whereas our new long term
lifetime predictions are based on predicted α′ values.

In our study, the creep lifetime predictions are carried out with the calculated
α′, based on our Finite Element calculations and measured values of large inter-
granular particle densities. Experimental long term creep lifetimes are generally
between well predicted by the upper and lower bound curves predicted by the
Riedel model accounting for the uncertainty.

5.2 Creep damage mechanisms

5.2.1 Necking
Necking is the dominant fracture mechanism predominant in the short-term creep
regime. The necking onset (Fig. ?? ) is modeled, as in the case of Incoloy 800
alloys (Chapter ??), based on the Hart criterion [67]. Lim et al. [68] deduced that
necking starts when the minimum creep strain rate, ε̇min, was just been reached.
By combining the Norton law, the volume conservation and the computation of
the cross-section evolution of the necking part after the necking onset, Lim et al.
[80] calculated the fracture time, tf . The formula proposed by Lim et al. [68] is:

tf − tmin = 1
ε̇minn

[1− δDr(2 + ε)]n (5.1)

The parameter variation ranges between the different 316L(N) batches was
evaluated by Cui et al. [115], and is presented in Table 4.1. Taking into account
the uncertainties in parameter values, Cui et al. [115] performed the lifetime
predictions based on the Necking model (Eq. 4.1).

They considered the 525-700◦C temperature range [44, 115] The results show
that creep lifetimes are well predicted for lifetimes up to about 104h in the
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Parameter Notation Values

εmin
Strain level at which
ε̇min is reached, % [0.8, 3.5]

tmin
Creep time at which
εmin is reached

tmin
tf
∈[0.1, 0.3]

δDr
The initial variation in diameter relative to
the initial average diameter D̄, δDr = δD/D̄

[10−4, 5 · 10−3]

Table 5.1: Parameters used in Eq. 4.1 allowing short term lifetime predictions
in 316L(N) stainless steels, based on the necking mechanisms.

considered temperature range. However, it leads to large overestimations as
considering long-term creep, because intergranular damage becomes dominant
in this regime as extensively shown by observation in stainless steel [44, 115].

More general short term lifetimes are fairly well predicted in Incoloy 800
alloys (Chapter ??) and in the ferritic-martensitic grade 91 steel [68] in large
ranges of temperature (respectively, 500-760◦C and 500-600◦C).

Then, we focus only on long term lifetime predictions. We are especially
interested in the cavity nucleation mechanism for which many questions seem to
remain and physically-based models avoid fitting parameters.

5.2.2 Intergranular damage
At high temperature, vacancies become much more mobile. Additionally, dif-
fusion along grain boundaries is predominant compared to the bulk one. This
phenomenon leads to the intergranular damage (as discussed in Chapter 1) and
particularly growth. The intergranular damage could be divided into three stage
as continuous cavity nucleation, cavity growth and the cavity coalescence.

According to numerous measurements carried out on interrupted creep test
specimens, Dyson suggested that cavities nucleate continuously and at a constant
rate during each creep, named cavity nucleation rate Ṅ0. This phenomenologi-
cal law describes well the microscopic measurement results obtained for various
materials, temperature and stress, as shown in literature [74, 75, 83, 100, 208].

In Chapter 1, our literature review highlight two mechanisms for cavity
growth, diffusion growth and viscoplastic growth, and the intermediate ‘third
mechanism’ is the coupling between diffusion and viscoplastic growths. How-
ever, using the Rice length (chapters 1 and ??) and microscopic measurements
of cavity radius, Cui [44] demonstrated that, for long term 316L(N) SS test, the
ratio between the average cavity radius, r̄, (the minimum diameter of the counted
cavities is 200nm) and the Rice length, LR, is lower than 0.2. Following the cri-
terion proposed by Needleman and Rice [100], as r̄/LR is lower than 0.2, cavity
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growth is controlled essentially by vacancy diffusion. And the cavity growth
by viscoplasticity is negligible except during the coalescence process. Therefore,
only cavity growth by vacancy diffusion along grain boundaries is accounted in
the evaluation of the intergranular damage.

Following the experimental observations in 316L(N) carried out by Cui [44]
and in Incoloy 800 alloys (Fig. ??, Chapter ??), cracks of a few ten microns
are formed by the coalescence of cavities. However, when measuring the cavity
density, these cracks are split into several individual cavities based on the small
remaining cavity ligaments observed along these micro cracks. Therefore, this
process is neglected in our lifetime predictions using the Riedel model.

The Riedel model [51] combined continuous cavity nucleation and vacancy
diffusion cavity growth mechanism. This model could lead correct long term
creep lifetime predictions [68, 115]. Nevertheless, as shown in Chapter 1, the
cavity nucleation mechanism has not been well established yet. Even if the
Dyson law allows a fairly well description of most of the experimental data, it
is still a phenomenological law. The physically-based understanding of cavity
nucleation mechanism is required. Two mechanisms were proposed:

- the agglomeration of cavities leading to the continuous formation of stable
nuclei under a given remote stress;

- the particle-matrix interface fracture.
Both mechanisms are explained and the corresponding equations are numer-

ically applied in the following. Therefore, in the next two subsections, we focus
only on the two cavity nucleation mechanisms. Further, the cavity nucleation
rate will be modeled based on classical approaches. And the coupling with stress
concentrators is next discussed in section 4.3.

5.2.3 Thermally-activated nucleation of stable vacancy nu-
clei

As shown in Chapter 1, the cavity nucleation mechanism based vacancy cluster-
ing agglomeration was highlighted by Raj and Ashby [77], in the framework of
the theory of thermally-activated processes. They proposed Eq.4.2 to calculate
the steady-state cavity nucleation rate:

Ṅ0 = 4πγsDgbδ

Ω4/3σn
Nmax

0 exp(− 4γ3
sFv

σ2
nkbT

)exp(σnΩ
kbT

) (5.2)

This equation is often called as the Raj nucleation law. Typical values of in-
put parameters are provided in Table 4.2. The microstructure-based parameter,
Nmax

0 , is the total number of the possible cavity nucleation sites per unit grain
boundary area. In alloys containing intergranular second phase particles, the cav-
ity nucleation sites are the intergranular second phase particle-matrix interfaces.
Therefore, the Nmax

0 density could be considered as the density of intergranular
particles per unit grain boundary area. Arnaud [82] evaluated experimentally a
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particle density of 3 · 108 m−2 in a 316 steel at 650◦C, with an average size of
1µm. The NIMS data sheet [2] provided a saturated density of σ phase particles
in 316H TB as 1.25 ·109 m−2. Our analysis of the data of Cui [44] leads to a value
of 6.85 · 1011 m−2 in 316L(N), with a minimum size of 100nm. Since, the values
of Arnaud [82] and NIMS data sheet [2] are in the same order of magnitude, only
the values of Arnaud and Cui are used to calculate the cavity nucleation rate
based the Raj model (Eq. 4.2), for getting general trends.

Figure 5.2: Geometry of a cavity form as by Raj and Ashby [77].

Further, assuming a cavity shape similar to the one plotted in Fig. 4.2, Raj
and Ashby [77] defined a cavity geometric function, Fv:

Fv = 2π
3 (2− 3cos αm + cos3 αm) (5.3)

where αm = 1
2(α+ αI − αIb) (Fig. 4.2). The angles α, αI and αIb are calculated

based on surface tension equilibrium equation:

cos α = γgb
2γmetal

cos αI = γinterface−γsecond phase
γmetal

cos αIb = γgb
2γinterface

(5.4)

where, γinterface is surface energy of the particle-matrix interface, γgb is the surface
energy of grain boundary, γsecond phase is the surface free energy of metallic matrix
and γsecond phase is the surface free energy of second phase particle. Using the
surface energy values shown in Table 4.2 and the ones used in Chapter 2 (Table
2.4), we deduce Fv ≈ 0.3.

However, Raj and Ashby [77] proposed three values of Fv as 0.5, 10−2 and
10−5 to study the effect of Fv on the cavity nucleation rate.

Fig. 4.3 shows the dependence of the cavity nucleation rate in 316 stainless
steel with respect to Fv and the local normal stress, σn, calculated using Eq.
4.2. The considered Young modulus amounts to 150GPa (600◦C). Two values
of Nmax

0 reported in [82] and [44] are used, as well as Fv = 10−5, 10−2, 0.3 and
0.5. Our results with Fv = 10−5 is very similar to the one of Arnaud [82] (Fig.
1.14, Chapter 1). Fig. 4.3 shows that the value of Nmax

0 influences only the
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Parameter Notation Values
Ω Atomic volume, m3 1.21 · 10−29 [51]

D0gbδ
Grain boundary self-diffusion prefactor times

the grain boundary thickness δ, m3s−1 2 · 10−13 [59]

Qgb
Activation energy for

grain boundary self-diffusion, kJ/mol 167 [59]

γmetal Surface free energy of matrix, Jm−2 2.5± 0.5 [209]
γinterface Surface free energy of incoherent particle-matrix, Jm−2 1.5− 2
γsecond phase Surface free energy of second phase particle, Jm−2 2− 2.5

γgb Grain boundary surface energy, Jm−2 0.75± 0.45 [210]

Nmax
0 Total number of possible cavitation sites m−2

3 · 108 [82]
6.85 · 1011 [44]
1.25 · 109 [2]

Fv
Geometric function

describing the cavity geometry 0.5, 10−2, 10−5 [77]

Table 5.2: Parameters used in Eq. 4.2 allowing the calculation of the cavity
nucleation rate.

Figure 5.3: Variation of cavity nucleation rate in function of local normal stress
for 316 stainless steels at 600◦C, with two values of Nmax

0 measured by Arnaud
[82] and Cui [44]. Raj model, Eq. 4.2 [77].
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maximum value of Ṅ0. The calculated curves assuming Fv = 0.3 and Fv = 0.5
are very similar. However, for the same level of cavity nucleation rate, the
small increase in Fv from 0.3 to 0.5 requires a large increase in the normalized
normal stress. Additionally, for Fv = 10−2, the required threshold stress is 100
times higher than the one for Fv = 10−5. Furthermore, in this model, for a
given Fv value, the nucleation rate increases hugely with stress increasing due to
the exponential expressions contained in Eq. 4.2. For example, for Fv = 10−5,
before the saturation, a change in stress lower than 10% leads to a huge change in
nucleation rate (104 times) in nucleation rate. The predictions are then unstable
with respect to the input parameters (Eq. 4.2).

Therefore, the Raj model could is not able to predict correctly the cavity
nucleation rate. The predicted values are much lower than the measured ones.
Then, the interface fracture is now considered to help to predict correctly cavity
nucleation rate.

5.2.4 Interface fracture
In many alloys, the damage initiation sites are the inclusions or second-phase
particles existing in the material. In case of 316L(N), both M23C6 and σ phase
particles are harder than the surrounding matrix and generally assumed to be-
have elastically in the considered rage of temperature (500-700◦C) (Table 2.3).

There are two modes of formation of a cavity involving an inclusion:
-the fragmentation of tjos inclusion, as observed for Ti(C,N) in Incoloy 800

(Fig. ??);
-the decohesion of the inclusion-matrix interface (Fig. ?? and Fig. 3.3).
During creep deformation, the intergranular damage initiation consists most

often in the decohesion of the intergranular precipitate-matrix interfaces. Various
criteria based on theoretical models have been proposed to predict the macro-
scopic strain or stress. They can be classified into two main categories, based
either on an energy criterion (subsection 4.2.4.1) or on a critical stress condition
(subsection 4.2.4.2). The coupling between both is then discussed in subsection
4.2.4.3.

5.2.4.1 Energy criteria

A necessary condition for the formation of a cavity is that the production of the
new free surface is energetically favorable. During the decohesion of precipitate-
matrix interface, a dimensional analysis shows that fracture is expected to start
at first along the largest inclusions [188, 211].

Indeed, the energy released by a full decohesion of the interface is a fraction
of the energy stored in the inclusion and its neighborhood. This energy is pro-
portional to the volume of the inclusion and increasing with stress and remote
strain. After the interface fraction, the released energy should be equal to the
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required surface energy which is proportional to the inclusion surface. The size
effect thus highlighted is the one of the main characteristic of energy criteria.

The criterion proposed by Tanaka et al.
Tanaka et al. [188] proposed a energetic criterion using a solution to the problem
of an elastic inclusion embedded in a homogeneously plastically deformed matrix
provided by the Eshelby theory. The homogeneous plastic strain of the matrix
necessary to initiate the decohesion of the inclusion in uniaxial tensile test is:

Ep
c =

√
AT

S

V

γfrac
E

(5.5)

where, γfrac = γmetal + γsecond phase − γinterface, Ep
c is the macroscopic plastic

strain necessary for the initiation of interface decohesion, AT is a dimensionless
coefficient depending on inclusion geometry and inclusion elastic constants, E,
ν, Ei and νi the Young’s moduli and Poisson’s ratio of, respectively, matrix and
inclusion, S and V are, respectively, the inclusion surface and volume.

Eq. 4.5 predicts that the interface decohesion occurs, at first, on the largest
inclusion, following Ep

c ∝ r−
1
2 . Thus, for sufficiently large inclusion, the cavity

initiation is energetically favorable, provided the remote plastic strain is large
enough.

The Brown and Stobbs criterion
Brown and Stobbs [212] proposed a energy criterion for the initiation of inter-
face fracture using an approach combining continuum mechanics and physical
metallurgy. This criterion was essentially aimed to explain the effect of spherical
hard particles that cannot be deformed in a metal. They introduce a new char-
acteristic length into the problem, the Burgers vector length, b. This criterion is
independent on the inclusion size, as:

Ep
c >

√
3 · γfrac
µib

(5.6)

where µi is the inclusion shear modulus.

The model based on Eshelby solution
Based on the Eshelby solution (subsection 3.3.1) and the hypothesis of full de-
cohesion of inclusion-matrix interface, we propose:

For a circular inclusion, a = b = c:

Ep
c =

√
2γfrac

(1− βµa) (5.7)
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And For a prolate inclusion, a > b = c:

Ep
c =

√
2γfrac

(1− βµa)

√√√√ 1
2
3
b
a

+ 1
2
· 1
ASH

(5.8)

where ASH is a constant, depends only on inclusion shape factor, a/b. For
a/b = 1, ASH value amounts to 1 and a/b = 3, ASH = 1.5. This model is
denoted as ‘Model_SH’ in Fig. 4.4.

5.2.4.2 Stress condition

The decohesion of inclusion-matrix interface occurs if the normal stress, σnn,
exceeds a critical value, σc. Several initiation criteria corresponding to such a
condition were proposed in literature. The Universal Bounding Energy Relation-
ship (Eq. 2.11) is presented in Chapter 2 (subsection 2.5.1), which can be used
to evaluate numerically the interface fracture stress, σc. Or it may be predicted
directly from DFT simulation of a full deformation of a bimaterial separated by
the interface under stress. Finally, it could be used by careful micromechanical
tests.

The Argon et al criterion
To predict the initiation of the damage by interface decohesion of an unde-
formable inclusion in a plastically deformed matrix, Argon et al. [213–215]
proposed the stress condition as:

AAΣ− p = σc (5.9)

where AA is a constant which depends on the inclusion geometry only, σc is the
critical interface fracture stress and p is hydrostatic pressure.

In case of uniaxial tension, p = −Σ/3. Then, Eq. 4.9 can be written as:

Σ = σc
AA + 1/3 (5.10)

Inclusion size effect could not be investigated by this stress criterion.

The Goods and Brown criterion
Accounting for the local dislocation density as a function of strain, Goods and
Brown [180] proposed:

Ep
c >

1
30

σc
αµ

r

b
(5.11)

where α is the Taylor law parameter depends on material.

The main difference between the decohesion criteria discussed above relates to
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Figure 5.4: Critical macroscopic plastic strain at the initiation of inclusion-matrix
interface decohesion, using the most cited energy and stress criteria, as a function
of the inclusion size. The input parameters are provided in Table 4.3

the influence of the inclusion size on critical macroscopic strain. Fig. 4.4 presents
the computed critical remote strain using the different models. The input pa-
rameter values are provided in Table 4.11. All the calculations are carried out
for a spherical inclusion, except the ‘Model_SH, Prolate (a/b=3)’ one. The
used value of the interface fracture stress, σc, in the Goods and Brown criterion
amounts 5GPa, as evaluated by UBER (subsection 2.5.1). For Argon’s criterion
and UBER relationship, the critical remote strains are calculated using stress
evolution calculated by Eshelby solution (subsection 3.3.1).

E (GPa) Ei (GPa) ν νi γfrac (Jm−2) α σc (GPa)
150 350 0.3 0.3 4 0.3 5

Table 5.3: Parameters used as applying the energy or stress criteria, allowing the
calculation of the critical macroscopic plastic strain at the initiation of inclusion-
matrix decohesion.

Fig. 4.4 shows that the predictions based on by Brown and Stobbs [212],
Argon et al. [213, 215] are independent on the inclusion size. The required
strain have a large variation. The required strain predicted by the Argon et
al. criterion reaches only 0.5%. However, the used interface stress evolution in
function of macroscopic strain is calculated by the Eshelby theory. This may
leads to an underestimation of the required strain. The model of Goods and
Brown [180] predicts that the interface decohesion occurs firstly on the smallest
inclusion. Such tendency is classically predicted by geometrically necessary dis-



5.2. CREEP DAMAGE MECHANISMS 151

location (GND) based model, for which the smallest inclusions are the hardest.
This size effect disagrees with the one arising from the Tanaka et al. and our
energy equilibrium criteria [188]. Further, microscopic observations show that
the large inclusions could have interface decohesion earlier than the small ones
[117]. This point is qualitatively predicted by the model proposed by Tanaka et
al. [188] and our method. The energy criterion proposed by Tanaka et al. un-
derestimate the critical remote strain compared to our method. And our method
predicts that, for a higher shape factor, a/b, the required critical remote strain
is higher.

In case of prolate inclusion with shape factor amounts to three, (a=3b=3c),
our method predicts that for a macroscopic strain of 4%, only inclusions with
half-length higher than 0.5µm could have interface fracture. This leads to a
precipitate size of 1µm. According Table 2.5, only σ phase particle could reach
such precipitate size.

To conclude this part, for a sufficiently small inclusion radius, the stress
criterion is reached before the energy criterion. And for a large enough inclusion,
the energy criterion is reached before the critical stress condition [117, 211]. The
two criteria must be simultaneously fulfilled, in order to predict interface fracture
and corresponding remote strain. They should be determined by the energy
criterion for the small inclusions and the stress criterion for the large ones.

Therefore, we focus only on the stress criterion for the evaluation of α′, assum-
ing that the energy criterion is already fulfilled for all σ phase particles. Further,
the interface decohesion requires a high interface stress, about 5 ± 1GPa eval-
uated by the UBER. Then, several stress concentrators are now discussed to
understand and predict interface fracture.

5.2.4.3 Double criterion

Previous energy and stress criteria are generally based on the Eshelby solution
or with questionable hypotheses. Further, it is necessary to apply both energy
and stress criteria at the same time to predict more accurately interface fracture.
Leguillon [216] showed that the combination of a Griffith-like energy criterion
and a maximum tensile stress criterion allows predicting the failure at interface
corners of assemblies subjected to mechanical loadings. The double-criterion
fracture model can be related to atomistic theories which consider two layers of
atoms along their separation. Sauzay et al. [90, 217] used the double-criterion
to simulate intergranular microcrack initiation induced by slip bands impacting
grain boundaries during tensile deformation.

This combined criterion is related to the cohesive zone model (CZM), which
makes it possible to account both criteria at same time. And a further non-
linear cohesive behavior could be accounted. Therefore, the cohesive zone model
(CZM) is strongly suggested to be used for the interface fracture modeling and
introducing more correctly of the particle.
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Several CZM laws have been used in the past. Needleman [218] used polyno-
mial and exponential functions of CZM behavior to describe the tensile-separation
relationship. Tvergaard and Hutchinson [219] used a trapezoidal shape cohesive
curve, applied to elastoplastic materials. Camacho and Ortiz [220] used a linear
model to investigate damage impact in brittle materials.

In this part, we focus on a parabolic cohesive law (Fig. 4.5), which has
already been implemented in Cast3m finite element software. This cohesive law is
presented in more details in Appendix C. Liu [221] predicted fatigue microcrack
initiation induced by slip band extrusion observations during fatigue loading.
The application of either the double-criterion by Sauzay et al. [90, 217] or CZM
modeling by Liu [221] show the validity of the predictions as compared with
experimental tests.

It should be noticed that the physically based double choice of the fracture
parameters is a key point in double-criterion and in cohesive zone model. Two pa-
rameters are generally used in cohesive zone models: the critical fracture stress,
σc, and the fracture energy, γfrac. Two types of particle-matrix interfaces are
considered in agreement with observations (Fig. 3.2), coherent and incoherent
interfaces. The ones for coherence interface were evaluated using DFT calcula-
tions by Barbé et al. [171]. Barbé et al. [171] proved that the Universal Bounding
Energy Relationship allows the prediction of the critical stress with an accuracy
of ±10% with respect to the results provided by simulation of a full tensile test
run up to fracture. They showed that the Griffith criterion is almost accurate
too. But simulating a full tensile test on a bimaterial containing an incoherent
interface is out of the computation. The fracture energies are deduced from sur-
face and interface energies provided by DFT computations and measurements
(Table 2.4). And finally, the critical stress is deuced based on estimation of d0
and Einter.

Interface Coherent Incoherent
σc (GPa) 14.3 5± 1

γfrac (Jm−2) 4.52 2-5

Table 5.4: Input parameters for cohesive zone model for coherent [171] and
incoherent interfaces.

The interfacial normal stress (σnn)-opening displacement (δ) relation used to
simulate the interface fracture process is plotted in Fig. 4.5. The mechanical
work increases with the opening displacement. The per unit area value, W , is
defined by:

W =
∫ δ

0
σnndδ (5.12)

When δ reaches the critical value, δf , the work of opening displacement equals
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fracture energy, W = γfrac.

Figure 5.5: Interfacial normal stress in function of the opening displacement for
incoherent and coherent interfaces provided by analytical solution of CZM, and
the coherent M23C6-matrix interface separation law provided by DFT calcula-
tions [171].

The analytical CZM curves for incoherent and coherent interfaces with the
parameters provided in Table 4.4 are plotted in Fig. 4.5. In case of coherent
interface, Fig. 4.5 shows that the CZM curve describes rather well the parabolic
form of σnn-δ curve, compared to the DFT one [171]. This leads us to use the
parabolic cohesive behavior, but not others. From our knowledge, no such DFT
calculation has yet been carried out for incoherent interface fracture. Further, our
results show that incoherent interface fracture requires a opening displacement
much higher than the coherent interface one.

A cohesive zone area is defined by three zones, the first one corresponds to
a stress free surface, which is a fully fractured interface. The second one called
interaction zone or process, where the cohesive forces are non-zero. Finally, the
third one is non-damaged zone where the opening stress has not been reached
yet (Fig. 4.6).

In our FE calculations in progress, the thickness of cohesive zone is chosen
as being equal to the thickness of incoherent interface, 1.5nm (Fig. 4.7), which
allows a straight-forward evaluation of the CZL curve initial slope. To investigate
the influence of inclusion size on the interface fracture process, cohesive elements
are meshed along the inclusion-grain interfaces (Fig. 4.7).

The cohesive zone makes it possible to investigate progressively the transi-
tion from the non-damaged zone to interface decohesion, and the size effect of
inclusions. CZM calculations are in progress and the results will be compared
with the ones obtained by combining FE computation of interface stress fields
and a simplified energy balance (Eq. 4.8).
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Figure 5.6: Schematic presentation of the different area along a cohesive zone

(a) (b)

Figure 5.7: (a) Schema of a quasi-2D mesh with cohesive element (yellow) along
inclusion-grain interfaces, the thickness of the cohesive zone is dilated for the
sake of clarify; (b) zoom-in of the quasi-2D mesh, the cohesive element thickness
is 1.5nm.
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5.3 stress concentrators
As shortly discussed in Chapter 1, for reaching high interface stress, several
mechanisms have been proposed, as grain boundary sliding, impact of pile-ups or
slip bands, etc. In this subsection, our aim is to compare the interface stress fields
we compute accounting for the viscoplastic deformation of the whole neighbor
grains to the ones provided by the stress concentrators most refereed in literature
in alloys with intergranular particles. Therefore, the analysis and the numerical
applications based on these classical models are now carried out. Finally, our
Finite Element calculation results are also discussed.

As shown in Chapter 1, the pile-up mechanism is dominant only at low tem-
perature (as ambient temperature). Additionally, the stress fields may be over-
estimated using the pile-up theory, which assumes the pile-up length as grain
size, and dislocations are located on the same atomic plan. Finally, our TEM
observations do not show significant pile-ups close to particle matrix interfaces.
Therefore, the pile-up mechanism is not be accounted in this subsection.

5.3.1 Slip bands
Watanabe and Davies [222] carried out creep tests on high purity copper bicrystal
specimens. Their results show clearly slip bands and some intergranular cavities.
Then, Watanabe [223] proposed that the cavity initiation caused by the interac-
tion between grain boundary sliding and slip band impact. These lead him to
propose that cavitation occurs due to both primary and secondary slip system
activation (Fig. 4.8a).

Some circular shape cavities were also observed in copper by Watanabe and
Davies [223]. Such a shape does not correspond to the proposed nucleation
mechanism (Fig. 4.8a). It may be due to the fact that the observed cavities
are very large (25 − 100µm), which meacs that they are already in the growth
process. Or this mechanism could not explain correctly the cavity nucleation
process. Further, interestingly, the cavities do not coalesce together into a crack,
but keep the circular shapes in Watanabe’s experiment.

Guo et al. [224] carried out tensile tests on a high purity Titanium (without
particles). Then, by coupling EBSD measurement and crystal plasticity FE
calculations, they evaluated the local stress caused by the impact of slip bands.
During tensile testing, slip bands are clearly observed. The maximum measured
local stresses reach only about 400MPa, which is below the typical critical stresses
for the interface fracture. Such low value may be related to the rather low spatial
resolution used by these authors (0.2µm).

Recently, considering a slip band of thickness from 500 µm up to 1µm, em-
bedded in an elastic matrix, Sauzay and Vor [90] carried out Finite Element
computations. Their results show a strong intergranular stress singularity at the
tip of slip band, may reach a factor of ten. The computed local stresses much
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(a) (b)

Figure 5.8: (a) primary and secondary slip systems do both contribute to the
formation of intergranular cavities; (b) observed circular shape cavities [223],
Cooper bicrystal, 677◦C, 3.9MPa.

higher than the value measured by Guo et al. [224]. It is may because the used
resolution of HR-EBSD is 0.2µm. However, the computations of Sauzay and Vor
[90] highlighted high stress magnitude at a smaller distance from the slip band
and grain boundary impact (typically 0.02µm away from the slip band corner
for a slip band thickness of 100nm).

However, slip bands are generally observed on fatigue [221, 225], tensile defor-
mation [90, 226], creep-fatigue [165, 227] and post irradiation loading [228, 229].
It was observed for high strain rate creep test (10−4s−1) in Ti-alloys [86, 230].
But, it is not usually observed for long term creep tests, for which strain rate are
low (< 10−7s−1).

5.3.2 Grain boundary sliding
For long term creep, a specific deformation mode occurring along grain bound-
aries is often reported [179, 231–234]. It consists in grain boundary sliding which
may leads to grain boundary damage.

It is generally believed that grain boundary sliding induces stress concentra-
tions close to the grain boundary particles, ledges and triple points. Raj [81]
proposed that grain boundary sliding favors cavity nucleation because of these
stress concentration. Grain boundary sliding decreases indeed the incubation
time needed to nucleate stable cavities around fine intergranular precipitates by
a factor of two. Therefore, Raj considered that the critical nucleation stress pro-
vided by Raj model (subsection 4.2.3) cannot be reached without grain boundary
sliding.
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White et al.[235] proposed that the grain boundary sliding leads two types
of cavities which differ by both their location and geometry. In the case of stress
concentrations induced by the geometrical heterogeneities along grain bound-
aries, it will facilitate the cavitation similarly to what is shown in Fig. 4.9b. The
corresponding type of cavity is called round cavity (r), which is characteristic
of damage at high temperature and low stress. In case of the stress concentra-
tion at triple points, cavities called wedges (w) are formed (Fig. 4.9a), which is
characteristic of damage at relatively low temperatures and high stresses. The
triple point cavities (w) could be modeled as microcracks. Careful observations
carried out by Fields and Ashby [236] showed that in some cases wedge-like cav-
ities result from the coalescence of round cavities of a significantly lower average
size (Fig. 4.9c). Only w-type cavities are directly produced by grain boundary
sliding.

In many commercial alloys, second phase particles are located along grain
boundaries. After analyzing the stress field around intergranular particles, Lau
et al. [237] (see reference [51]) calculated the normal stress, σnn, acting on the
particle matrix interface close to the particle tip:

σnn = τ∞(p
r

)s(λp
p

)(0.572 + 0.039n) · (1− s)cotϕ
(2cosϕ)s (5.13)

with λp the distance between two particles, p the particle diameter and r the
distance from the particle tip (Fig. 4.10). This distance may be chosen as the
stable cavity nucleus size, rc. As usual, the Norton law exponent is denoted as
n, ϕ is the particle tip angle (Fig. 3.9), τ∞ is the shear stress acting on the
grain boundary away from the particle. Assuming plane-strain tension, τ∞ can
be evaluated as Σ/

√
3 [51], with Σ the remote tensile stress. The exponent of

the stress singularity field is denoted as s with: σij ∝ r−sgij, as shown by Lau et
al. [237]. The singularity exponent, s depends on both n and ϕ. From the values
reported in [238], it can be concluded that the singularity exponent s decreases
with increase in n and increase in ϕ. However, the evaluation of the s exponent
has not been fully explained in [238]. For the 316L(N) SS under study at 600◦C,
the Norton law exponent amounts to n = 9.12. Therefore, for the numerical
application of Eq. 4.13 to 316L(N), the values n = 7 and ϕ = 60◦ are selected
in the parameters presented by Riedel [51]. This leads to a low stress singularity
exponent of only s = 0.101. Then, Eq. 4.13 provides the description of the stress
field close to the particles:

σnn
Σ = 0.253(p

r
)0.101(λp

p
) (5.14)

For the critical cavity size r = rc = 18nm evaluated by rc = 2γs
Σ , with Σ =

220MPa. And for the large precipitate sizes under study, p = 3µm (Fig. 3.2a),
Eq. 4.14 provides a stress concentration factor of only: σnn(rc)/Σ = 0.42λp/p.
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Figure 5.9: Two families of cavities and their domains of existence, as proposed
by White et al. [235].
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Figure 5.10: Schematic representation of the rectangular precipitates regularly
located along a grain boundary [51].

Following our observations carried out on the 316 SS under study, precipitates
are generally close to each other, the λp/p ratio is generally lower than 3, as shown
by our SEM and TEM images (Figs. 2.1 and 3.2). Therefore, σnn(r = rc)/σ∞ <
1.26, in this case, the σnn value at r = rc is much below critical interface fracture
stress values, which amounts to few GPa (shown in Chapter 2).

A more precise evaluation may be carried out. As the average distance be-
tween two particles could be calculate as:

λp = 1√
Nmax

0
(5.15)

The σ phase particle density amounts to Nmax
0 = 1.25 · 109m−2 [2] (section

4.2.3). This leads to λp = 28µm. Finally, the stress concentration factor reaches
σp/Σ ≈ 4. This value is slightly higher than the one based on microscopic
observations. In fact, only the σ phase particles are accounted for theNmax

0 value.
Still, the local interface normal stress σnn is below the typical interface critical
fracture stress values, which amounts to at least few GPa. Even considering
r = b = 2.55 · 10−10m, with b the Burgers vector length, Eq. 4.14 leads to
σnn/Σ = 0.65λp/p. Then, the stress concentration reaches only σnn/Σ ≈ 6.
Even at this stress level, it seems unlikely to break the metallic bonds.

Moreover, Riedel [51] proposed Eq. 4.16 to calculate the average shear stress
acting on each intergranular particle:

τnm = τ∞
(4/π)(λp/p)2

1 + 2.65λ2
p/pdg

(5.16)

Taking still τ∞ = Σ/
√

3 and the grain size as dg = 20µm, Eq. 4.16 provides
τnm/σ∞ = 1.79. This stress magnitude could not lead to interface fracture.

Therefore, small grains and closely-spaced particles lead to low stress concen-
tration. It should be noticed that the FE simulations (without grain boundary
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sliding) carried out by Cui [44] show that close-spaced particles aligned with the
tensile axis lead to higher local stresses than individual particles.

Our numerical applications show that, for 316L(N) SS, the grain boundary
sliding theories do not lead to interface stress high enough to fracture.

5.3.3 Intergranular inclusion embedded in metallic grains

As calculated interface stress by these two analytical theory based on grain
boundary sliding could not reach the typical critical fracture stress, the stress
fields around the intergranular inclusions deserve some interest. It shows that
the crystal viscoplasticity Finite Element calculations of stress fields around the
intergranular inclusion accounting for numerous microstructure heterogeneities
are relevant (Chapters 2 and 3).

In Chapter 2, the Finite Element calculations taking into account the random
crystal orientations of the neighbor grain (Fig. 2.5) highlighted a huge hetero-
geneity in interface normal stress. And the random crystal orientations leads
generally to maximum interface normal stresses, σmaxnn much higher than the one
at the interface of an inclusion embedded in the homogeneous matrix (Fig. 2.7).
The average interface stress is 1.85 times higher if the two crystals are introduced.
Further, σmaxnn could reach almost 20 times of the tensile stress. Calculations are
also carried out for various stresses and temperatures. The results show that
the local interface stress is almost independent on stress and temperature, but
increases with the macroscopic strain increasing. Additionally, the increase in
orientation of the grain boundary with respect the tensile stress, αGB, leads to a
decrease in σmaxnn . Except for αGB = 90◦, a slight increase is observed compared
to the one with αGB = 75◦.

Finite Element calculations reported in Chapter 2 considered only inclusions
with circular tips with a shape factor of three. However, as shown in Chapter
3, our microscopic observations and others show that the shape factor varies
between 1 and 5 (Fig. 3.1). And three particle tip geometries are observed,
allotriomorph, hexagonal and quadrilateral (Fig. 3.2). Therefore, additional
FE calculations corresponding to three types of particle shapes to investigate
the effects of shape factor and tip geometry, are performed in Chapter 3. The
results show that σmaxnn increases with the shape factor increasing up to 7. The
σmaxnn computed with a hexagonal particle shape is higher than the one with an
allotriomorph shape. And finally, the quadrilateral particle shape leads to a
slight increase of σmaxnn compared to the hexagonal one.

Summarizing the calculations results reported in Chapters 2 and 3 leads us to
propose Eq. 4.17 to calculate the distribution of the maximum interfacial normal
stress distribution accounting for all microstructure feature we have investigated.
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σmaxnn (O1
i , O

2
i , a/b, ϕ, sym/asym,E

vp) = σmaxnn (O1
i , O

2
i , circular, a/b = 1, Evp)

·r̄sf (a/b) · r̄sym(ϕ) · r̄asym(ϕ)
(5.17)

In this equation, σmaxnn (O1
i , O

2
i , a/b = 1, circular, Evp) is the maximum interfacial

normal stress around a spherical intergranular inclusion, in function of the macro-
scopic strain Evp, with two neighbor grains of random crystalline orientations,
O1
i and O2

i , r̄GB(αGB) denotes to the orientation of grain boundary with respect
to the tensile stress. And r̄sf (a/b), r̄sym(ϕ) and r̄asym(ϕ) denote, respectively, the
ratios of maximum interfacial normal stress with effect of the shape factor, the
symmetric inclusion tip angle (as hexagonal shape) and the asymmetric inclusion
tip angle (quadrilateral shape), respectively. The values of r̄sf (a/b) are provided
in Table 3.1. The values of the other factors are given in Table 4.5.

αGB (◦) 0 15 30 45 60 75 90
r̄GB(αGB) 1 0.92 0.80 0.66 0.57 0.55 0.57

ϕ (◦) 30 45 60
r̄sym(ϕ) 2.12 1.39 1.50

ϕ (◦) 30 45 60
r̄asym(ϕ) 1.07 1.35 0.85

Table 5.5: The values of r̄(αGB), r̄(ϕ) and r̄a(ϕ) calculated by crystal viscoplas-
ticity Finite Element computations.

Applying Eq. 4.17, the maximum value of σmaxnn could reach:

σmaxnn (set10, a/b = 7, αGB = 0◦, ϕ = 30◦, asym, 4%) = 32.17GPa (5.18)

and the minimum value is obtained as:

σmaxnn (set19, a/b = 1, αGB = 75◦, ϕ = 60◦, asym, 4%) = 0.91GPa (5.19)

However, these extrema values for considered configurations are not the exact
FE calculation values. As explained in subsection 3.4, Eq. 4.17 leads to a reliable
calculation of the whole stress distribution. But Eq. 4.17 does not hold for each
specific configuration separately.

As we consider the interface fracture occurs when the normal stress reaches
the fracture stress as: 5GPa. Therefore, in some case, cavities will nucleate
after at very low strain rate level (in order of few 1%). And some intergranular
particles will never have interface fracture. This conclusion agrees perfectly with
lots of experimental observations.
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Then, α′ can be calculated using our FE calculation results and the inter-
granular particle density. Thereafter, the Riedel model could be applied to long
term creep lifetime predictions using evaluated α′.

As already mentioned in literature [51, 77], strong stress concentrations are
required for reaching non negligible nucleation stress for the Raj model. Let us
now consider our Finite Element calculations of interfacial stress. The evolutions
of the maximum interface normal stresses along the thirty interfaces in function
of macroscopic strain are plotted in Fig. 2.9, for a particle parallel to the tensile
axis, with a shape factor of three, with random crystal orientations of particle
neighbor grains.

Separating second phase particles in l configurations (l = 30, ie thirty couples
of crystal orientations, O1

i , O
2
i ), therefore, the intergranular precipitate density

corresponds each configuration l is Nmax
0 /30. For each configuration l, at time

tk, the cavity nucleation rate calculated using the Raj model is:

ṄRaj
0 (l, tk) = 4πγsDgbδ

Ω4/3σmaxnn (l, tk)
Nmax

0
30 exp(− 4γ3

sFv
σ2
nkbT

)exp(σ
max
nn (l, tk)Ω
kbT

) (5.20)

where σmaxnn (l, tk) is the maximum interface normal stress of configuration l at
time tk.

Then, the total cavity number could be calculated as:

N0(tk) =
30∑
l=1

tk∑
0
min(ṄRaj

0 (l, tk);
Nmax

0
30 ) · (tk − tk−1) (5.21)

Figure 5.11: Comparison of evolution of cavity number in function of macroscopic
strain Evp, calculated Using the Raj model and Dyson law, 600◦C, 220MPa.
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Fig. 4.11 shows the cavity nucleation rate calculated by the Raj model (Eq.
4.2), applying the maximum interface stress registered at each strain level calcu-
lated using Finite Element calculations (Fig. 2.9), for Fv = 0.3, γs = 2.5J/m−2

(Table 2.4). The considered particle density is measured by NIMS at 600-750◦C
[2].

Besides, cavity nucleation rate calculated using the Dyson law is also plotted,
with the calculated α′ value using stress distribution plotted in Fig. 2.9. The
calculated α′ value amounts to 1.2 · 1010 m−2. Under 220MPa at 600◦C, the
minimum strain rate, ε̇min, amounts to 5 · 10−9s−1. Based on the Dyson law,
this leads to a cavity nucleation rate of 60m−2s−1. The predicted cavity number
increases linearly with macroscopic strain Evp. This result agrees well with many
experimental measurements [74, 75, 85, 157].

The results show that, using the stress distribution calculated by FEM (Fig.
2.9), the Raj model predict a critical macroscopic strain, Evp

c , amounts to 2.8%,
which is higher than the one predicted based on interface fracture (Evp

c ≈ 1.5%,
Fig. 2.14). The Raj model requires a threshold stress of almost 8GPa for which
the cavity nucleation could reach higher than 1m−2s−1. Nevertheless, the evalu-
ated interface fracture stress is only 5GPa. Further, the N0(tk) predicted by the
Raj model is lower than the one predicted based on interface fracture. There-
fore, the interface fracture mechanism is dominant compared to the thermally-
activated cavity nucleation mechanism.

5.4 Long term lifetime prediction
Our TEM observations (Fig. 3.3) show that intergranular creep cavities are
nucleated along grain boundaries in long-term creep specimens. Dyson [74]
observed that cavities nucleate continuously with a constant rate during each
creep test. This phenomenon is confirmed by several experimental measure-
ments [74, 80, 83, 185, 239, 240] and by our simulation results too, based on
interface stress distribution and a fracture stress criterion.

As explained in subsection 4.2.2, only cavity growth by vacancy diffusion
along grain boundaries is considered among the other cavity growth mechanisms.

Finally, the cavity growth by vacancy diffusion along grain boundaries cou-
pled with continuous nucleation proposed by Riedel is used [51] to predict long
term creep lifetime. Cui et al. [115] carried out creep lifetime predictions using
the Riedel model, with parameters are in Tables 4.2 and 4.6. Fig. 4.12 shows
the comparison between the experimental and the predicted lifetimes. The pre-
dictions combined both the necking and Riedel models [115]. The creep lifetimes
were correctly predicted for both short and long term creep. These lifetime
predictions were identical to the ones we carry out on Incoloy 800 alloys (Chap-
ter ??). Similar conclusions are shown for Incoloy 800 alloys (Chapter ??) and
ferritic martensitic Grade 91 steel [80].
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Parameter Notation Values

ωf
Critical area fraction of cavities

along grain boundaries 0.04± 0.01 [109]

α′
Prefactor of the cavity
nucleation law, m−2 [3.99 · 109, 9.55 · 109] [44]

h(α) cavity volume divided by
a volume of a sphere of the same radius 0.826± 0.139 [77]

Table 5.6: Parameters used allowing the prediction of the time to fracture due
to intergranular damage.

Figure 5.12: Comparison between experimental lifetimes and the lifetimes pre-
dicted by the necking and Riedel model, based on measured values of the Dyson
law parameter, α′ [115].
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5.4.1 Final evaluation of the Dyson law prefactor α′

5.4.1.1 Evaluation of α′ based on our FE calculations

In the long term creep lifetime predictions carried by Cui et al. [115], almost all
parameters were found in literature (Tables 4.2 and 4.6), except that the Dyson
law prefactor, α′, is measured. These measurements require much work: long
term creep tests at different temperatures and stresses, microscopic observations
and image processing.

Further, it should be noticed that the prefactor of Dyson law, α′, is not
strictly a constant as used in these lifetime predictions. Cui et al. [115] provided
measured values of α′ varying between 3.99·109 and 9.55·109m−2 for temperatures
between 525 and 700◦C and under various stresses. This means that the cavity
nucleation rate may be slightly temperature and stress dependent. However,
these results do not agree with some of the published experimental measurements,
which showed that α′ is almost constant for a given material, and does not
depend much on the stress or temperature. Further, no physical explanation of
the Dyson law has been provided yet, except the recently proposal of Samdström
et al. [70, 114, 241] based on the grain boundary sliding theory.

In order to provide full lifetime predictions avoiding and additional measure-
ment, the Dyson law prefactor, α′, is evaluated using our Finite Element cal-
culation results. Following Chapters 2 and 3, the heterogeneity in the interface
stresses provides a physical explanation of the Dyson law. We consider that the
cavity nucleation occurs when the interface normal stress reaches the interface
fracture stress, σc. The fracture stress is evaluated in Chapter 2, as 5 ± 1GPa
for an incoherent interface, using the Universal Bounding Energy Relationship
(UBER).

In Chapter 2, thanks to Finite Element calculations, the Dyson law prefactor,
α′, is evaluated accounting for the effect of the random crystallographic orienta-
tions of the particle neighbor grains and the orientation of the grain boundary
plane with respect to the tensile axis. And considering only the density of σ
phase particles (experimental measurement carried out by NIMS [2]), the pre-
dicted value of α′ amounts to 1.2·1010m−2. This value is about three times higher
than the experimental one [44] (average value of 4.5 · 109m−2). As expected, all
grain boundaries (αGB > 0◦) are taken into account in this evaluation. Several
experimental observations [74, 75] showed clearly that cavities appear at first
along grain boundaries parallel to the tensile axis (αGB = 0◦), then, initiate later
along grain boundaries with higher αGB values and finally along grain bound-
aries perpendicular to the tensile axis (αGB = 90◦). Further, the quantitative
measurements [75] show that, at low strain level, the number of cavities along
grain boundaries parallel to the tensile axis is much higher than the perpendic-
ular ones (Fig. 4.13a). However, it is believed and indeed observed that cavities
along grain boundaries parallel to the tensile axis could not grow during creep
(Fig. 4.13), because a very law normal stress is applied on these grain bound-



166 CHAPTER 5. LIFETIME PREDICTION OF 316L(N)

aries (αGB ' 0◦) for driving vacancy diffusion. Further, Jazari et al. [242] show
two repartitions of cavity size in a in-service fractured 316H steel. The ones
with cavity sizes lower than 200nm may correspond to the cavities located along
grain boundaries parallel (or parallel αGB < 45◦) to the tensile axis observed by
Shiozawa et al. [75] (Fig. 4.13). And other cavities with cavity sizes higher than
200nm, which my correspond to the cavities along grain boundaries for which
αGB > 45◦. Unfortunately, diffusion growth is not straight forward to be sim-
ulated by Finite Element calculations. The FE computations coupling crystal
viscoplasticity and the Fick euqtion is out of the scope of our PhD work which
is focused on cavity nucleation and its consequences.

These observations lead us to proposed that only cavities along grain bound-
aries for which the orientation with the tensile stress axis is higher than 45◦
(αGB > 45◦) grow by diffusion after they nucleate. And the experimental mea-
surements of α′ carried out by Cui et al. [44] considered only cavities with radius
larger than 200nm. Therefore, to evaluate the cavity nucleation rate based on
our simulations, only grain boundaries with αGB > 45◦ should be considered.

Further, this phenomenon could be investigated analytically through the
Riedel model. The lower bound of long term lifetime prediction proposed by
Riedel [51] is:

tf = 0.33(h(α)kT
ΩDgbδσ

)2/5(ωf
Ṅ0

)3/5 (5.22)

Therefore, under given creep condition (stress and temperature), Eq. 4.22
can be transformed into:

ωf = C · α′Σ2/3 (5.23)
where C is a temperature and stress dependent constant.
We consider seven grain boundary planes: αGB = 0, 15, 30, 45, 60, 75, and 90◦.

The normal stress acting on each grain boundary plane, σn(αGB), amounts to,
σn(αGB) = Σ · sin2αGB.

Then, the damage value, ω̄, is deduced:

ω̄[0◦, 90◦] ∝
90◦∑

αGB=0◦
α′(αGB) · sin4/3αGB · g(αGB) (5.24)

where g(αGB) is the fraction of grain boundary corresponding to αGB, g(αGB =
αi) = 1/7, with αi = 0, 15, 30, 45, 60, 75, 90◦.

And assuming that normal stress acting on grain boundary as the remote
stress, as proposed by Riedel [51], we can define ω̄app as:

ω̄app[αGB, 90◦] ∝
90◦∑

αGB=0◦
α′(αGB)f(αGB) (5.25)

Further, α′(αGB) is proportional to the relative frequency of fracture interface
in function of αGB, P (αGB), (Fig. 2.16b).
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(a)

(b) (c)

Figure 5.13: Relative frequency of cavitation as a function of the orientation
of the grain boundary plane with respect to the tensile axis of an astroloy. The
specimens had been prestrained by 10% in the same direction as the creep loading
axis, then a creep test under 400MPa at 750◦C was carried out. (a) 7% of creep
life; (b) 35% of creep life and (c) after fracture [75].
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Finally, we define:

ω̄app[αGB, 90◦]
ω̄[0◦, 90◦] =

90◦∑
αGB=0◦

P (αGB)g(αGB)
90◦∑

αGB=0◦
P (αGB) · sin4/3αGB · g(αGB)

(5.26)

As shown in Table 4.7, for the αGB angles ranging from 45 to 90◦, the obtained
ω̄app value is very close to the accurate ω̄ value. This confirms that considering
45 6 αGB 6 90 leads to reliable predictions of both damage and lifetime.

[αGB, 90◦] 0− 90◦ 15− 90◦ 30− 90◦ 45− 90◦ 60− 90◦ 75− 90◦ 90◦
ω̄app[αGB ,90◦]
ω̄[0◦,90◦] 2.64 1.96 1.38 0.85 0.53 0.35 0.18

Table 5.7: Value of ω̄app[αGB, 90◦]/ω̄[0◦, 90◦] in function of considered ranges of
the αGB angle.

Chapter 3 investigated the influence of two microstructure parameters: the
shape factor and the tip geometry. Concerning the tip geometry, three geometries
are observed, as allotriomorph, hexagonal and quadrilateral shapes. The shape
factor effect is characterized by r̄sf (a/b). The effect of hexagonal shape with ref-
erence the circular tip is characterized by r̄sym(ϕ). And the effect of quadrilateral
shape with reference the hexagonal one is characterized by r̄asym(ϕ). However,
the experimental measurement of particle tip geometry requires lots of obser-
vations and image processing. No corresponding statistical measurements have
been reported in literature.

It leads us to assume, at first, that all particles are allotriomorph in our
evaluation of α′. Therefore, Eq. 4.17 reduces to:

σmaxnn (O1
i , O

2
i , a/b, αGB, ϕ, E

vp) = σmaxnn (O1
i , O

2
i , a/b = 1, circular, Evp)
·r̄GB(αGB) · r̄sf (a/b)

(5.27)

After these computations, we reevaluate the Dyson law prefactor α′ account-
ing for the particle shape factor distribution and random grain boundary orien-
tation.

The shape factor distribution measured by Cui [44] is plotted in Fig. 3.1.
The discretized probability of particles with shape factor, f(a/b = i), could be
obtained by using the shape factor continuous distribution, with f(a/b = i) =
prob(i−1/2 6 a/b 6 i+1/2). The probability of fracture of interfaces at Evp for
each shape factor, P (a/b = i, Evp), is calculated using Eq. 4.27 and the stress
criterion with σc = 5GPa. Then, The total probability of fractured interface at
Evp, P (a/b, Evp) accounting shape factor distribution is calculated as:

Psf (Evp) =
7∑
1
P (a/b = i, Evp) · f(a/b = i) (5.28)
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The microscopic measurement carried out by Cui [44] shows that second phase
particles are distributed homogeneously along all grain boundaries whatever the
αGB angle. Therefore, g(αGB = αi) = 1/7, with αi = 0, 15, 30, 45, 60, 75, 90◦.
Then, the total probability of fracture ofinterface at a strain of Evp, P (αGB, Evp)
accounting for the grain boundary plane orientations through the αGB angle is:

P (αGB > αj, E
vp) =

90◦∑
αj

P (αGB = αj, E
vp) · g(αGB = αj) (5.29)

Finally, α′ is calculated accounting for the statistical distribution of both
particle shape factor and grain boundary orientation, as:

α′ =

90◦∑
αj
Psf (αGB = αj, E

vp) · g(αGB = αj) ·Nmax
0

Evp − Evp
c

(5.30)

To calculate the prefactor of the Dyson law, α′, we use the evaluation of the
interface fracture stress (5GPa, UBER, subsection 2.5.1), grain boundary planes,
such as with αGB > 45◦, the σ phase particles density plotted by NIMS [2] (Fig.
4.14) and the distribution of particle shape factor. Combining with our Finite
Element calculation results, we deduce that α′ = 2.2 · 109m−2, which is slightly
below the values measured by Cui, [4− 10] · 109m−2.

Figure 5.14: Number density of σ phase along grain boundaries in specimen head
and gauge portions as a function of time for 316H TB [2].

Then, a careful TEM observations of 25 intergranular particles are carried out
for a fractured specimens, (600◦C, 220MPa, 7000h). These precise observations
allow us to split the particles between three characteristic shape families (Fig.
3.2, Table 4.8). Additionally, the tip angles are measured in the hexagonal and
quadrilateral particles (Fig. 4.15). This qualitative measurement could lead us
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to introduce the effect of the tip geometry in the Dyson law prefactor. The
measurements focus on the particle shapes (Table 4.8) and the tip angles (Fig.
4.15). The results show that the majority of the observed particles are angular
ones (72%), and hexagonal and quadrilateral particles are almost equiprobable
(Table 4.8). For hexagonal- and quadrilateral-like particles, the two tips of each
particle could display different ϕ angle. And sometimes, the tip angle is difficult
to measure even using TEM images. Therefore, Fig. 4.15 plots more than 18
angles (sum of observed hexagonal and quadrilateral particles number), and less
than 2 ·18 angles. All the measured angles (Fig. 4.15) are finally shared between
three ranges: 30◦, 45◦ and 60◦. The final results are shown in Table 4.9 and are
used in combination with the interface stress values computed in Chapter 3 for
these three angle values.

Allotriomorph Hexagonal Quadrilateral
6 10 9

Table 5.8: Number of observed particles with allotriomorph, hexagonal and
quadrilateral shapes, 650◦C, 130MPa, 7262h.

Figure 5.15: Cumulative probabilities of the tip angle of intergranular hexagonal
and quadrilateral particles. 650◦C, 130MPa, 7262h.

Thereafter, taking these measurement results, the Dyson law prefactor α′ is
reevaluated using the FE calculation results. Accounting αGB > 45◦, the same
shape factor distribution (Fig. 3.1) and the σ phase particle density measured
at NIMS [2], we deduce the final value of α′, as: 3.3 · 109m−2. This value
is 50% higher than the previous one. And the Evp

c value decreases to 0.73%.
However, this evaluation is based on the qualitative measurement. The statistical
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Considered ϕ (◦) 30 45 60

Range ϕ (◦) < 37.5 45± 7.5 > 52.5
Symmetrical 7 8 1
Asymmetrical 2 5 6

Table 5.9: Number of measured angles for applying Eq. 4.27. After the analysis
of the measured angle values plotted in Fig. 4.15.

measurements are required to account more accurately of the tip geometry and
tip angle distribution. As the heterogeneities in inclusion geometry do not differ
too much the value of α′. And this evaluation needs much more observations of
particles geometry. In the following, only the evaluation taken into account the
αGB and shape factor is considered in the following.

5.4.1.2 Sensitivity of the predicted Dyson law prefactor, α′, with re-
spect to microstructure and fracture parameters

In the evaluation of α′, severals parameters are taken into account, as
- the interface fracture stress, σc;
- the orientation of the grain boundary plane with respect the tensile axis,

αGB;
- the particle shape factor, a/b;
- the intergranular large particle density, Nmax

0 .
The influence of each of these parameters on the calculated value of α′ is

reported in Table 4.10. The results show that the value of α′ increases linearly
with the increase of Nmax

0 , which agrees with the Raj model (Eq. 4.2).

Nmax
0 (m−2) σc (GPa) αGB α′ (m−2)

1.25 · 109 [2]

4 > 0◦ 8.8 · 109

5
> 0◦ 8.1 · 109

> 45◦ 2.2 · 109

> 90◦ 3.3 · 108

6 > 0◦ 7.2 · 109

Table 5.10: The influence of the interface fracture stress σc, the grain boundary
orientation with respect to the tensile axis (αGB) and the large intergranular
particle density on the prefactor of Dyson law.

In our estimation of α′, we consider that the grain boundaries with αGB = 0,
15, 30, 45, 60, 75 and 90◦ are equiprobable. Therefore, consider only boundaries
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with αGB > 45◦, we take into account only 5/7 of total number grain boundaries
(αGB > 0◦). However, the values of α′ decreases by a factor of 0.27 (α

′(αGB>45◦)
α′(αGB>0◦) ≈

0.27), which is much lower than 5/7. This factor becomes 0.04 for the one with
αGB = 90◦ (α

′(αGB=90◦)
α′(αGB>0◦) ≈ 0.04). Therefore, the considered grain boundary with

αGB higher than the chosen value influences significantly the value of α′.
It should be noticed that, in subsection 2.5.2, the α′ value was calculated

considering all grain boundaries, without effect of particle shape factor. This is
the main reason that the α′ value was overestimated in subsection 2.5.2.

The critical interface fracture stress, σc, affects only slightly the value of α′,
as already shown in Figs. 2.14 and 2.16a. The relative decrease in the α′ value
calculated with 4GPa and 6GPa reaches only to 20%. Nevertheless, the interface
fracture stress affects more strongly to the onset of cavity nucleation (Figs. 2.14
and 2.16a). The critical viscoplastic strain, Evp

c , corresponds to the onset of
cavity nucleation. Such a critical strain is generally observed experimentally on
metallic materials (Nimonic 80A (room temperature) [74], Astroloy [75], Alloy
617 [157], 347 steel [177, 179], and Copper alloy [85]).

The critical cavity nucleation strain, Evp
c , is independent on the particle den-

sity, Nmax
0 . Nevertheless, this parameter depends strongly on αGB and σc. The

values of Evp
c in function of σc and αGB are presented in Table 4.11.

σc (GPa) Evp
c (%)

αGB > 0◦ αGB > 45◦ αGB = 90◦

4 1.02 1.82 2.96
5 1.56 2.21 3.72
6 2.27 2.58 4.18

Table 5.11: Influence of the interface fracture stress, σc, and the grain boundary
plane orientation with respect to the tensile stress (αGB) on the critical cavity
nucleation strain, Evp

c .

The study of Table 4.11 shows that cavities appear at first along the grain
boundaries parallel to the tensile axis (αGB = 0◦), then the ones such as αGB =
45◦ and finally the ones perpendicular to the tensile axis (αGB = 90◦). The
results agree well with microscopic observations in [74, 80, 83, 185, 239, 240].
Further, such grain boundary plane orientation dependence could not be correctly
predicted by the interaction of grain boundary sliding with elastic particles.

Therefore, following all our calculations and as generally the stationary stage
is reaches as Evp > Evp

c , we can deduce the general dependence of the number of
cavities par unit area of grain boundary with respect to the remote viscoplastic
strain Evp:

N0(Evp) = Ṅ0 · (Evp − Evp
c ) = α′ · ε̇min · (Evp − Evp

c ) (5.31)
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In Eq. 4.31, α′, Evp
c and ε̇min are all material dependent. Evp

c may slightly
depends on the stress and temperature [76]. The minimum strain rate, ε̇min,
depends strongly on the temperature and tensile stress, as usually observed in
creep.

5.4.1.3 Conclusion

In this section, a final estimation of the prefactor of the Dyson law, α′, based on
our Finite Element calculations is proposed. Assuming σc = 5GPa, αGB > 45◦
and the nucleation sites density as the number of σ phase particles per unit
grain boundary area, Nmax

0 (316H TB [2]), the calculated Dyson law prefactor
is lower than the measured values by factors between 0.23 and 0.55. However,
several microstructure details are not take into account, as the tip geometries.
Further, the interface fracture stress σc is only evaluated by a simple formula
(UBER) proposed by Rice and Wang [118]. Density Functional Theory (DFT)
calculations may be required to calculate more accurately the interface fracture
stress by simulating the full fracture of bimaterials.

Our coupling between Finite Element calculations and a interface fracture
criterion, provide first a theoretical framework justifying the Dyson law. And
this coupling predicts a Dyson law prefactor and a critical remote strain which
are close to experimental data. Accounting for more or less informations about
the microstructure induces changes in the α′ value. But the order of magnitude
remain the same (Table 4.10).

Further, our theoretical results show that α′ depends slightly on the tempera-
ture and stress (Fig. 2.10), similarly to what was measured in literature [74–76].
This result agree well with microscopic observations [76, 93]. Thereafter, the
calculated value of α′ is used to predict the long term creep lifetime for various
temperatures temperature and stresses.

5.4.2 lifetime predictions in 316 SSs
As explained in chapters 1 and ??, the Riedel model assumes that cavity growth
by vacancy diffusion along grain boundaries coupled with continuous nucleation.
However, the set of equations cannot be solved analytically. Then, the upper
and lower bounds were proposed to help to predict lifetime. Lim [80] improved
the bounds proposed by Riedel. The upper and lower bounds proposed by Lim
[80] is applied to predict the long term creep lifetime. It has been proved in
316L(N) [115] and Incoloy 800 alloy (subsection ??) that the unconstrained dif-
fusion gorwth law is valid [61].

Now, we recall the main laws used for the lifetime predictions.
The Dyson law predicts the cavity nucleation rate. For the sake of simplicity,

it is assumed that Evp − Evp
c ≈ Evp: [74]:

Ṅ0 = α′ · ε̇min (5.32)
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Considering only the grain boundaries with αGB higher than 45◦ for allowing
diffusion growth to occur, the α′ value is deduced as 2.2 · 109m−2.

The upper and lower bound functions proposed by Lim [80] are:

0.301 · ( h(α)kbT
ΩDgb/vδσ

)2/5ω
0.5164
f

Ṅ
3/5
0

6 tf 6 0.354 · ( h(α)kbT
ΩDgb/vδσ

)2/5 ω
2/5
f

Ṅ
3/5
0

(5.33)

The used parameters are reported in Tables 4.2 and 4.6.

Figure 5.16: Experimental data and predicted lifetimes based on the Riedel
model (Eq. 4.33) compared with experimental data provided by CEA, EDF
&Creusot-Loire (316L(N)), 525◦C.

The experimental data and predicted lifetime curves are compared at 525◦C
(Fig. 4.16), 550, 600◦C (Fig. 4.17), 650 and 700◦C (Fig. 4.18) for 316L(N) SS.
Experimental data from literature [2, 49, 183] are also compared.

The used minimum strain rates, ε̇min, are calculated with the Norton power
law parameters adjusted for different temperatures and stresses using the CEA
&EDF Data. However, no such information was reported in NIMS data sheets
[2, 183]. It should be noticed that, at 700◦C, to predict very long term creep
lifetime under very low stress (29-100MPa), the used Norton law parameters are
evaluated using experimental data from Kloc et al. [243]. The corresponding
values are: n = 7.25 and C = 1.03 · 10−19MPa−ns−1.

The calculated α′ value is used in our lifetime predictions, amounts to 2.2 ·
109m−2. This value is lower than the ones measured by Cui et al. ([3.99·109; 9.55·
109m−2]) [115]. As tf ∝ (α′)−3/5, it may lead to that our predicted lifetimes are
overestimated compared to the ones predicted by Cui et al. [115].

It should be noticed that, at 525◦C (Fig. 4.16), the slope change can be hardly
be defined using the available experimental data. Experimental data obtained at
lower stresses are required to validate our predictions. For temperatures ranging
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(a)

(b)

Figure 5.17: Experimental data and predicted lifetimes based on the Riedel
model (Eq. 4.33) compared compared with experimental data at (a) 550◦C and
(b) 600◦C, data provided by CEA&EDF (316L(N)), ORNL (316FR [49]) (ORNL)
and NIMS (316H TB [183], 316-HP [2]).
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(a)

(b)

Figure 5.18: Experimental data and predicted lifetimes based on the Riedel
model (Eq. 4.33) compared with experimental data provided at (a) 650◦C and
(b) 700◦C, data provided by CEA&EDF (316L(N)) and NIMS (316H TB [183],
316-HP [2]).
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from 500 to 700◦C (Figs. 4.17 and 4.18), the combination of the short term
prediction provided by Cui et al. [115] and our predictions describe well the slope
change in stress-lifetime curves. Further, the lifetimes are fairly well predicted
for long term creep regime.

5.5 Discussion and conclusion

5.5.1 Cavity nucleation model
Two cavity nucleation models are proposed in literature, either vacancy conden-
sation or interface fracture. The vacancy condensation mechanism is modeled
by Raj and Ashby [77].

As the Raj model, interface fracture requires high local stress concentration.
Several mechanisms were proposed to be responsible for such local stress concen-
trations: especially grain boundary sliding. Using the formulas reported in [51],
the normal and shear stresses acting on the particle-matrix interface induced by
grain boundary sliding are estimated using characteristic microstructure mea-
sured in 316SS for σ phase particles. It was shown that such local stresses are
below the interface fracture stress, even at a distance of the Burgers length, 1b,
with respect to the particle tip.

Sandström et al. [70, 112, 113, 241] proposed a cavity nucleation rate based
on grain boundary sliding. They proposed that the cavitation locations are the
ones where particles meet subboundaries during grain boundary sliding. Further,
their results provide a cavity nucleation law similar to the Dyson law, which
means that Ṅ0 varies linearly with the minimum strain rate.

5.5.2 Evaluation of cavity nucleation rate
5.5.2.1 Finite Element calculations

The numerous Finite Element calculation results lead us to propose Eq. 4.17
to predict interface stress distribution depending on the statistical data defining
each microstructure. Once dislocation density, ρ, and activated volume, V ∗ are
adjusted to get correct creep curves. Using Eq. 4.17, only 15 Finite Element
calculations, accounting the effect of the random crystalline orientations of the
neighbor grains, are needed to calculate the stress distribution accounting for the
grain boundary plane angle, αGB, shape factor and tip geometry (circular tip,
and symmetric/asymmetric tip defined by the tip angle, ϕ). Then, the value of
prefactor of the Dyson law, α′ is evaluated based on an interface fracture stress
value and second phase particle density.

The considered grain boundaries with orientation respect the tensile stress
αGB affect both the Dyson law prefactor value, α′, and Evp

c . Following mi-
croscopic observations [75], we restrict the angle range to αGB > 45◦. These
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assumptions drive that: α′ ≈ 2.2 · 109m−2, which is lower than the experimental
values by factors from 0.23 to 0.55 [115]. Accounting for the effect of inclusion tip
geometry, a higher value of α′ is obtained, as 3.3 · 109m−2, close to the measured
values.

Further, the Finite Element calculations carried out for various stresses and
temperatures (Fig. 2.10) show that the stress distribution is almost independent
on stress and temperature. Therefore, our theoretical estimations show that the
value of α′ is almost independent on temperature and stress provided the change
in the particle density and size is negligible. And the α′ value depends only
slightly on the critical interface fracture stress. However, the interface fracture
stress affects more strongly the cavity initiation threshold strain, Evp

c .

5.5.2.2 Fracture criteria

The interface fracture stress is evaluated using the Universal Bounding Energy
Relationship (Eq. 2.11). The input parameters of the UBER formula are free sur-
face and interface energies, interface thickness and the interface Young’s modulus.
In fact, all the selected free surface and interface energies values are computed
by DFT reported in literature (Table 2.4 in Chapter 2). Few DFT studies focus
on incoherent surface energy calculations, especially for σ phase and austenitic
matrix interface. Generally, DFT calculations are performed at 0K. However,
the surface energies decrease with increase in temperature. Further, chemical
segregation [44, 150] and appearance of dislocations [175] at the interface could
also decrease surface energies. These decreases in surface energies may lead to
decrease in σc. However, these phenomena are uneasy to be calculated by DFT
computations because of the huge required computation time.

In this evaluation, the energy criterion is not taken into account. The energy
criterion allows accounting for the effect of particle size on cavity nucleation rate.
In fact, Pineau and Pardoen [117] and Tanaka et al. [188] studied that interface
fracture occurs at first on large second phase particles (Fig. 4.4). The σ phase
particles are generally longer than 1µm whatever the temperature because of
quick growth once the nucleation has been reached [2, 37, 133, 181]. Therefore,
we used the saturated density of σ phase particles in 316H TB [2]. Further,
our microscopic observations of 316L(N) and the NIMS data sheet [2] show that
cavity nucleation is generally occurs at the interface of σ phase particle and
matrix interfaces. Therefore, it was assumed that the σ phase particles (generally
larger than 1µm) as the cavity nucleation site. It should be noticed that the value
of α′ increases linearly with the density of the intergranular particles. Therefore,
it will be better if we can take the σ phase density for the material under study.
Further, the use of a cohesive zone model is under the way to introduce the effect
of particle size.
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5.5.2.3 Intergranular particle density

Further, it is assumed that the density of σ phase particles is almost saturated
since the beginning of cavitation, at Evp

c . And NIMS data sheet [2] shows that
the density of σ phase particle is almost saturated after respectively 10 000h and
a few 1000h, respectively at 650 and 700-750◦C (Fig. 4.14). The saturated σ
phase density amounts to 1.25 · 109mm−2, which is the Nmax

0 value used in our
evaluation of the α′ prefactor.

However, as shown in Fig. 4.14, the σ phase particles do not preexist in
specimens. They nucleate and then grow during creep. And the value of Nmax

0
varies with temperature, tensile stress and time. Therefore, it may be more
accurate to use a Nmax

0 (σ, T ) density. This will induce a stress and temperature
dependence of the Dyson law prefactor, α′(σ, T ).

Nevertheless, if we assume that the precipitates larger than 2µm are sigma
phase particles, the SEM images reported in [44] show a slight difference in the σ
phase density. And considered that all σ phase particles diameters are larger than
2µm at 600◦C, the number of sigma phase particles amounts to only 2% of total
precipitate number (Fig. 3.1). This leads to a Nmax

0 density of 1.37 · 1010m−2,
which is ten times of the one measured by NIMS.

Fig. 4.14 shows that the nucleation of σ phase in specimen gauge portion is
promoted by stress and/or deformation as referred to the heads of the specimens
(negligible strain and stress). The experimental investigations of the σ phase
precipitation kinetic require many creep tests under various stresses at various
temperatures.

At least, it seems clear from experimental investigation that many inter-
granular participles of ∼ 2µm are observed after 80 000h of creep deformation
[20, 37, 133]. More precisely, Chastell and Flewitt [133] conclued that after 85
000h of creep at 568◦C, most of the large intergranular particles are σ phase
ones. Interestingly, their large-scale observations make us thick that the σ phase
particles are as dense as shown in the SEM pictures of Cui [44] (about 7000h of
creep at 600◦C, 650◦C and 700◦C).

5.5.2.4 Conclusion about cavity nucleation rate

Knowing the parameters of the macroscopic Andrade and Norton laws, the pa-
rameters of crystal viscoplasticity laws can be easily adjusted (Fig. 2.3). Then,
the interface normal stress distributions can be calculated by crystal viscoplas-
ticity Finite Element computations. Thereafter, combining the time dependence
of the fraction of fractured interfaces with the distribution of intergranular par-
ticles, it may be possible to check the validity of the Dyson law, and calculate
the prefactor of the Dyson law, α′, under any creep condition for perhaps all
polycrystalline alloys with intergranular particles.

A similar Finite Element calculation was performed to calculate the stress
field at triple points [80]. The stress obtained is only 1.5 times higher than the



180 CHAPTER 5. LIFETIME PREDICTION OF 316L(N)

tensile stress, which is not enough for inducing the grain boundary decohesion.
However, cavities at triple points are often observed. This may be due to the fact
that second phase particles at triple points may induce even higher stress con-
centration than the ones along grain boundaries. Similarly, we found very high
interface stress close to the particle tip, which could be considered as the triple
points enhanced by participles, aligned with the tensile axis and two neighbor
grains (αGB = 0◦). But lower interface stress we found along the interfaces of
particles and one grain only (αGB = 90◦).

It is then recommended to perform similar Finite Element calculations with
inclusions at triple points. Random crystallographic orientations of the neigh-
bor grains should of cause be accounted for. It should nevertheless be noticed
that particles at triple point are much less than intergranular ones, even if they
are larger. Therefore, accounting triple point particles may impact more the
predicted cavity nucleation threshold strain, Evp

c , the α′ prefactor. Further, the
effect of grain boundary sliding should become more dominant at triple points
than the one along grain boundary full of particles. This phenomenon may also
increase the stress concentration.

5.5.3 Lifetime predictions

Finally, long term creep lifetimes predictions are performed using the Riedel
model, with the predicted α′ prefactor value, at temperatures ranging from 525
to 700◦C. The results show that the long term creep lifetimes at temperatures
ranging from 525 to 700◦C are well predicted.

Even the evaluated α′ is lower than the experimental ones [115] by factors
between two and three. It could still lead to largely validated lifetime predictions.
Because, the differences in creep lifetimes caused by the difference of α′ is only
41-70% (Eq. 4.34), which is much lower than the scatter in experimental data.

tf ∝ Ṅ
−3/5
0 ∝ α′

−3/5 (5.34)

Further, our predictions valid well for the creep data of 316H TP steel [2] and
316-HP steel[183]. This leads us to proposed that the Norton law parameters of
316H TP, 316-HP and 316L(N) steels under study are very similar. Further, the
intergranular particle densities do not differ too much for both materials.

No fitted parameter is used for performing the long term creep lifetime predic-
tions based on which the Riedel model. The Riedel model uses the phenomeno-
logical Dyson law, which becomes a fully physically-based model through our
modeling.
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5.5.4 Comparison of the long term creep resistance in
Incoloy 800, 316L(N) and Grade 91 steel

Despite the differences in chemical composition, precipitation evolution, mi-
crostructure, etc. , similarities in the creep behavior of 316L(N) stainless steel
([44, 69, 128] and present work), Incoloy 800 (present work) and Grade 91 [80]
should be noticed such as:

(1) Necking fracture occurs generally at high stress and low temperature,
intergranular fracture is predominant at low stress and high temperature;

(2) The change in damage mechanism leads to a slope change in stress-lifetime
curves;

(3) The combination of the necking and Riedel models allows lifetime predic-
tions in fair agreement with experimental data.

Fig. 4.19 allows us to discuss the predicted creep lifetime in these three ma-
terials in the stress range of 50-500MPa, at 500, 550 and 600◦C. The predictions
are performed by the combination of the necking and Riedel models. It should
be noticed that the transition in damage mechanisms is neither observed or pre-
dicted in Grade 91 steel at 500◦C, 200kh and 600◦C, 94kh [68]. And the longest
experimental test duration of Incoloy 800 is only 30 000h, which is shorter than
the ones in other materials. Then, additional long term creep data may be re-
quired. For the necking regime in 316L(N), the lifetimes were predicted by Cui
et al. [115]. And for the intergranular damage regime of 316L(N), the creep life-
times are predicted through the Riedel model, taken into account our predicted
value of the Dyson law prefactor, α′ = 2.2 · 109m−2.

Fig. 4.19 shows that generally, the 316L(N) steel have the strongest creep
strength compared to the others. At 500◦C, under high tensile stress (> 250MPa),
Incoloy 800 has better creep strength than Grade 91. We can conclude from Fig.
4.19 that the change in damage mechanisms is firstly predicted in Incoloy 800,
then, 316L(N) and finally, Grade 91.

Two families of steels could be distinguished here. For ferritic-martensitic
steel, dislocation densities decrease during creep. Therefore, the strain rate ac-
celerates after the minimum strain rate is reached. On the contrary, 316L(N)
and Incoloy 800 are subjected to hardening during creep due to the production
of dislocations. The microscopic observations carried out on Grade 91 [80, 147]
highlighted a low intergranular precipitates density compared to the Incoloy 800
and 316L(N) ones. Nevertheless, this is only a qualitative conclusion, because we
have not performed statistical measurements concerning intergranular particles
in Incoloy 800 and Grade 91. As intergranular second phase particles provide the
cavity nucleation site, then, less cavities could be nucleated in Grade 91 steel.
This may explain why the intergranular damage is not dominant compared to the
necking one up to 10 years at 600◦C. In Incoloy 800, no σ phase particle is ob-
served. The M23C6 particles are generally observed along grain boundaries with
sizes about 500nm. There seems to be a higher density intergranular particles
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(a)

(b)

(c)

Figure 5.19: Comparison between predicted lifetimes in Incoloy 800, 316L(N)
and Grade 91 at (a) 500, (b) 550 and (c) 600◦C.
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in Incoloy 800 than in 316L(N). This may explain that the Dyson law prefactor,
α′, in Incoloy 800 is 100 times higher than in 316L(N). However, further statisti-
cal measurements of particle densities and sizes are definitively required to draw
definitive conclusions. And computations similar to the ones presented in this
manuscript may allow the prediction of the Dyson law prefactor in Incoloy 800
and Grade 91 steels, accounting for their viscoplastic behavior and intergranular
particle kind, size and density.
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Chapter 6

Conclusions, work in progress
and perspectives

6.1 Conclusions
The generation IV of nuclear reactors under development in France large re-
search efforts in relationship with the design of the ASTRID (Advanced Sodium
Technological Reactor for Industrial Demonstration), a sodium-cooled fast re-
actor (SFR). The 316L(N) stainless steel will be used in circuit components.
And Incoloy 800 was proposed to be used in steam generator tubes. The cor-
responding components will operate at high temperature and low stress and for
a long duration, up to 60 years. The extrapolation of short term experimental
data obtained at high tensile stress, high or low temperature, generally lead to
large overestimations of long term creep lifetimes with respect to the existing
experimental data.

Short and long creep damages of Incoloy 800 and austenitic stainless steel
316L(N) are investigated both experimentally and theoretically, which leads us
to finally predict creep lifetime based on the involved physical mechanisms.

We focus on three main tasks:
- experimental investigations of damage mechanisms showing that cavity nu-

cleation occurs along the interfaces of intergranular particle and matrix;
- the Finite Element calculations of particle-matrix interface stress fields com-

bined with cavity nucleation criteria;
- short and long term creep lifetime predictions and careful comparisons with

experimental data.

6.1.1 Experimental investigation of damage mechanisms
During this thesis, various observation techniques are used to characterize the
damage mechanisms, including SEM-FEG, TKD and TEM.

185
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Considering Incoloy 800, SEM-FEG observations show two main fracture
mechanisms: necking fracture and intergranular fracture. The observations of
fracture surfaces show that:

- necking fracture surfaces are covered by voids and dimples at high stress;
- on the intergranular fracture surface, grain boundaries and grains are clearly

observed at the stress.
Then, the relationship between the fracture mechanism and the reduction in

cross-section is highlighted. Necking fracture leads to generally high reduction in
cross-section (Z% > 40%), and intergranular fracture leads to a lower reduction
in cross-section (Z% < 30%).

The observations of the polished longitudinal sections by FEG-SEM in long
term specimens show intragranular microcracks, intergranular cavities and in-
tergranular cracks. Intragranular microcracks are generally observed along in-
tragranular Ti(C,N) precipitates-matrix interfaces and inside Ti(C,N) precip-
itates. However, the size of microcracks is limited by the precipitates size. In-
tergranular cavities are generally observed along intergranular M23C6 carbide-
matrix interfaces. During creep, intergranular cavities grow and finally coalesce
to from intergranular cracks.

Similarly, in 316L(N) steel and more generally in austenitic stainless steels,
necking and intergranular fractures were generally observed at respectively high
and low stress.

Two types precipitates are generally observed along grain boundaries: M23C6
carbide and σ phase particles. The main chemical element of these two sec-
ond phase particles are very similar, however their crystallographic structures
are different. Therefore, the main observation techniques used to characterize
these particles are: TKD and TEM. Microscopic observations show that the typ-
ical σ phase particle size (> 1µm) is much larger than the M23C6 carbide one
(200 − 500µm). And cavities are generally located along intergranular σ phase
particle-matrix interfaces. Therefore, we focus only on the characterization of
precipitation and cavitation.

Even it has been widely observed, the cavity nucleation mechanism has not
been well established yet. It is generally believed that cavities nucleate due to
high local stress. This leads us to perform FE computations to investigate the
stress fields around intergranular second phase particles in agreement with our
as well as literature observation.

6.1.2 Crystal viscoplasticity Finite element calculations
of stress fields around intergranular second phase
particles and effect on cavity nucleation

A crystalline viscoplasticity law is used in the Finite Element calculations (Cast3M).
Only on crystal viscoplasticity parameters are adjusted by predicting macroscopic
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creep strain curves of polycrystalline aggregates as close as possible to experi-
mental curves. The parameter adjustment is performed, at 600◦C (220MPa and
230MPa) and 650◦C (130MPa).

The stress fields around intergranular inclusions are calculated using Finite
Element simulations assuming quasi 2D plane stress. The microstructur meshes
are base on the analysis of our SEM/TEM images. The main microstructure fea-
tures are accounted for step by step in our FE simulations: the random crystalline
orientations of the two neighbor grains, the orientation of the grain boundary
with respect to the tensile axis, the intergranular particle shape factor and the
particle tip geometry and angle in case of angular tip.

The crystalline orientations of the neighbor grains lead to a large heterogene-
ity in the normal and shear stress fields along particle-matrix interface compared
to the one of one isolated particle embedded in a homogeneous matrix. And the
average ratio between the maximum normal stress computed along the interface
of a particle surrounded by two grains and the one embedded in the homogeneous
matrix amounts to 1.85. And the maximum and minimum ratio are respectively
4.14 and 0.33 Surprisingly, fifteen couples of crystalline orientations only allow
the prediction of an accurate enough distribution of interface stresses. Further-
more, three creep conditions are considered, at 600◦C under 220MPa, 600◦C
under 230MPa and 650◦C under 130MPa. And the results show that the various
interface stress distributions are almost independent on stress and temperature.
In the considered range of loading parameter variation, the interface stresses
depend only on the macroscopic creep strain.

By varying the angle between grain boundary plane and the tensile axis, αGB,
calculation results show that the increase in αGB angle leads to a continuous
decrease in the interface normal stress for αGB up to 75◦, by a factor of 0.55, and
a slight final increase up to αGB = 90◦.

The particle geometry, itself includes the shape factor, the tip geometry (cir-
cular, symmetrical angular and the asymmetrical angular features) and finally
the tip angle of the angular tip. Our results show that the maximum interface
normal stresses increase generally the shape factor varying from one to seven.
Thereafter, the maximum interface normal stress is almost constant. The average
stress ratio between elongated and circular particles amounts to 2.2, very close
to the value predicted by the thermo-elastic Eshelby-Kröner solution. Symmet-
rical angular tip leads an increase in the interface normal stress by an average
factor of 1.66, referring to circular tips. And this average factor reaches 1.09 for
the asymmetrical angular tip compare to the symmetrical one. The effect of the
angle of these angular tip is investigated too.

Finally, a simplified multiplication equation is proposed to calculate the dis-
tribution of interface normal stress accounting for the considered microstructure
feature details.

Then, a stress criterion and an energy criterion are used to predict interface
fracture. The required interface fracture stress value is evaluated by applying
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the Universal Bounding Energy Relationship [118, 159]. An interface fracture
stress of 5 ± 1GPa is found using parameters reported in literature. The size
effect is highlighted by the simplified energy criterion. The results show that
large precipitates > 1µm are favorite for cavity nucleation. Therefore, only the
density of σ phase particles is accounted, deduce the cavity nucleation rate.

Combining the computed interface stress distribution with the interface frac-
ture stress criterion allows the prediction of the fraction of fractured interfaces
and threshold remote strain, Evp

c . The fraction of fractured interfaces increases
linearly with the difference between the remote strain and the threshold strain,
Evp − Evp

c . Assuming that the number of particle is constant during each test
for Evp > Evp

c , our results permits us to provide a theoretical explanation of the
phenomenological cavity nucleation law proposed by Dyson. This well-known
law was proved by numerous observations and measurements carried out in vari-
ous materials. Further, the distribution of cavities in function of the αGB angle is
well predicted compared to experimental observations [75], which means that at
the beginning of creep, much more cavities are observed along grain boundaries
parallel to the tensile axis than along the perpendicular ones.

Finally, the use of measured σ phase particle density reported in literature,
permits us predict the Dyson law prefactor, α′, value. Considering only the
grain boundaries with the αGB angle higher than 45◦ for allowing stress-induced
diffusion growth to occur along grain boundaries. The deduced value of the
Dyson law prefactor amounts to 2.2 · 109m−2. This calculated prefactor differs
from the experimental values by a factor ranging between 2 and 4. However,
only crystalline orientations, shape factor and grain boundary planes such as:
αGB > 45◦ are considered. This may underestimate the stress distribution. The
values of Dyson law prefactor, α′, depending on the assumptions describing the
microstructure are provided in Table 5.1.

αGB (◦) shape factor (a/b) particle tip angle (ϕ) α′ (m−2)

0-90 3 1.2 · 1010

0-90 measured distribution(1) 8.1 · 109

45-90 measured distribution(1) 2.2 · 109

45-90 measured distribution(1) measured distribution(2) 3.3 · 109

Table 6.1: Effect of the considered microstructure features on the predicted
Dyson law prefactor, α′, value. (1) statistically representative, (2) only 25 particles
are accounted for.

6.1.3 Enhanced prediction of creep lifetimes
The final predictions of creep lifetimes are deduced by combination of two models:
the necking model and the Riedel model.
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For the short term creep, the viscoplastic instability is dominant. This leads
to a local unstable reduction of cross-section, named necking. The evolution of
necking leads to short term creep fracture. Based on the Hart criterion, a necking
model is proposed to predict short creep lifetimes.

For long term creep, intergranular damage is dominant, which can be sepa-
rated into three parts: cavity nucleation, intergranular vacancy diffusion growth
and coalescence. Assuming that cavity nucleates continuously (the Dyson law)
and cavity growth by vacancy diffusion along grain boundaries, the Riedel model
is applied.

The predictions of creep lifetime using this combination of two models are
applied to many creep conditions in Incoloy 800 alloys and 316L(N) stainless
steels.

Concerning Incoloy 800, the parameters are experimentally measured or re-
ported in literature. The combined model leads to predictions at temperatures
ranging between 500 and 760◦C and lifetimes up to 35 000h. And time and stress
at which the slope change in the stress-lifetime curves is correctly predicted. Fur-
ther, the comparisons between different batches of Incoloy 800 show that high
Ti+Al content leads to enhanced creep resistance. This effect is qualitatively
well predicted by the combined model.

Concerning austenitic stainless steels (316L(N), 316H TB and 316 TB), the
prefactor of the Dyson law is deduced from our Finite Element calculations and
measured density and size of intergranular particles. The short term creep life-
time predictions were evaluated. The long term lifetimes using the computed
Dyson law prefactor are well predicted for temperature ranging in 550 and 700◦C
and lifetime up to 166 000h.

6.2 Work in progress
At the end of this thesis, some works are still in progress, including CZM com-
putations and SEM in situ tensile tests.

Information concerning CZM are presented in subsection 4.2.4.3. The final
computation using various precipitate sizes should allow us to introduce direly
the size effect and the energy balance equation.

In our context, SEM in situ tensile tests is aimed to visualize and quantify
surface damage of the specimen. These tests require the careful preparation of
the surface of the samples, which is essential for the image processing for the
measurement of a fracture criterion (critical remote strain) at which cavities are
initiated along some of the precipitate interface. Thereafter, it is possible to
evaluate the viscoplastic cavity growth kinetics. The SEM in situ tensile tests
will be carried out at the SRMA/LA2M laboratory.

The material used is a 316L(N) steel aged at 550◦C during 130 000h (at EDF,
les Renardières). Rather long σ phase and/or carbide particles are located along
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grain boundaries. On specimen surface, a deposit of micro-grids of gold could
be made by micro-electrolithography. Then, the field of local deformations could
thus be determined by image correlation. Further, the lattice rotation could be
determined by the evolution of EBSD patterns during straining. Then, Finite
Element simulations based on the local microstructure data will be carried out to
determine the critical interface stress and to compare with the DFT simulations.

The tensile tests will be carried out at ambient temperature. Therefore,
thermally-activated cavity nucleation is avoided. That allows us to focus only on
interface fracture. The specimens of aged material are ready to be used in the
in situ tensile testing and using a planning with many interruptions at various
strains

6.3 Perspectives

6.3.1 Local stress concentration
Microscopic observations [231] show that cavities nucleate at first at triple points,
and then along grain boundaries. In this thesis, we focus only on the stress
concentrations around the intergranular precipitates. Previous FE calculations
of the stress concentration at triple point showed a local stress higher than the
tensile stress by a factor of two [80]. Nevertheless, these last calculations did not
take into account particles located at triple junctions. It may be necessary to
carry out simulations with particles located at triple junction.

Further, in Incoloy 800, fracture inside intragranular Ti(C,N) particles is
often observed. The fracture could be observed at the interface of Ti(C,N) and
matrix, or in the Ti(C,N) particles. Using the same crystalline viscoplastic law
but readjusting the activation volume and evaluating the dislocation density, it
is possible to calculate the interface stress and the stress inside the particle to
understand such a competition. DFT computations predicting the fracture of
Ti(C,N) particles and Ti(C,N)-matrix interface to predict the corresponding
fracture stress and energies, or cohesive laws. These works will be carried out in
collaborating with E.Barbé (CEA, SRMP&SRMA)

6.3.2 Intergranular Diffusion
In our Finite Element calculations, the viscoplastic relaxation is only slightly
observed in some of the curves of interface stress evolution with remote creep
strain. Nevertheless, several authors [72, 73, 244] proposed that the interfacial
diffusion may lead to another type of local stress relaxation.

Further, intergranular vacancy diffusion controls the cavity growth process
for these materials and under the considered conditions. In this thesis, we con-
sider the grain boundary planes such that αGB > 45◦, based on experimental



6.3. PERSPECTIVES 191

observations, to avoid cavities which do not grow after nucleation because of the
low normal stress acting on grain boundary planes. However, taken into account
the intergranular diffusion mechanism, it is possible to quantify this dependence
with respect to αGB by recomputing the intergranular damage accounting for
both α′(αGB) and the normal stress acting on grain boundary inclined with re-
spect to the tensile axis.

6.3.3 Precipitation
The cavity nucleation rate affects the prediction of long term creep lifetimes. And
cavities are usually observed close to intergranular precipitates. In our evaluation
of the Dyson law prefactor, α′, the precipitate density used as an input parameter
is based on numerous measurements at high temperature, but only in fractured
specimens. Then, we assume in our FE computation that the precipitates are
preexisting. However, precipitation is a continuous process occurring during
creep. Further, these experimental observations and measurements require very
long term creep tests and careful observations and measurements, which are
rarely performed.

Therefore, the predictions of precipitation may be very helpful to predict long
term creep lifetimes. Some numerical tools, as THERMOCALC, CALPHAD
[42], DICTRA [34] or MATCALC, could give several precipitation information
(at equilibrium or in kinetic conditions). Furthermore, it is observed that the
precipitation in the head and gauge portions of specimens may differ strongly.
Then, DICTRA or MATCALC may better to be used compared to THERMO-
CALC or CALPHAD.
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Appendix A

Evaluation of the experimental
uncertainty in the measurement
of the Dyson law prefactor, α′

As shown in chapter ??, The Dyson law prefactor α′ factor is evaluated using
the following equations:

α′ = Na

εf
(A.1)

Na = dg ·Nm

π · dH
(A.2)

where
- Na is the number of cavities per unit grain boundary area (m−2)
- Nm is the number of cavities per unit area of polished longitudinal section

(m−2)
- εf is the axial strain in the homogeneous parts of the specimen (away from

the necking volume), measured after fracture
- dg is the grain size measured by the intercept line method (µm)
- dH is the harmonic average of intersected cavity diameters (µm).
The Dyson law prefactor, α′, is determined by experimental measurements

and using Visilog software. Fifteen FEG-SEM images are analyzed for each
specimen with a magnification of 1000X.

The CEA/EDF document [15] provides the harmonic mean value of grain
size, dg. This parameter was determined by Average Grain Intercept (AGI)
method. For a given material, draw a set of random positioned line segments on
the microscopic images. Then, the number of times each line segment intersects a
grain boundary is counted, and the ratio of intercepts to line length is measured.
Then the grain size could be calculated as:

dg = number of intercepts

line length
(A.3)
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Then the harmonic mean value of dg and the corresponding standard devia-
tion ∆dg is obtained.

The cavity number per unit surface is evaluated with fifteen FEG-SEM images
for each specimen. The cavities with size larger than 0.4µm are considered, the
cavity number per each image is labeled as x. The observation uncertainty is
induced by the counted number of cavities. The average value of the cavity
number per each image, denoted as x̄ is calculated as:

x̄ = 1
n

Σn
i=1[xmax,i + xmin,i

2 ] = 1
n

Σn
i=1xi (A.4)

where n is the number of images.
Then, the corresponding mean deviation, ∆x, is:

∆x =
√

1
n− 1Σn

i=1(xi − x̄)2 (A.5)

The uncertainty induced by the microscopic observations in the measurement
of Nm, ∆e, is:

∆e = ∆x/x√
n

(A.6)

The cavity sizes are measured using the Visilog software, which leads to
an uncertainty in the cavity diameter dH . This uncertainty ∆dH is evaluated
0.01µm, which is the software accuracy.

Thereafter, the uncertainty in Na could be deduced as:

| ∆Na

Na

|=| ∆dg
dg
| + | ∆e | + | ∆dH

dH
| (A.7)

Summarizing all previous stage, we can deduce the uncertainty in measured
the Dyson law prefactor, α′, as:

| ∆α′
α′
|=| ∆Na

Na

| + | ∆εf
εf
| (A.8)

The relative uncertainties in all parameters, and the deduced relative uncer-
tainty in the measured valuers o f α′ are given in Table A.1.

∆dg
dg

(%) ∆dH
dH

(%) ∆εf
εf

(%) ∆x
x

(%) ∆e(%) ∆α′
α′

(%)
20 3 0.1 27 7 ≈30

Table A.1: Uncertainties in dg, dH , εf , Na and α′ (relative amplitudes).

Finally, it is deduced that ∆α′/α′ = ±30%.



Appendix B

Interface normal stresses
calculated by Crystal Plastic
Finite Element Method

αGB (◦) 0 15 30 45 60 75 90

σmaxnn (GPa)

2.80 2.26 1.67 0.77 1.38 1.44 1.28
2.88 2.81 2.29 1.97 1.15 1.58 1.22
6.71 4.32 5.65 4.20 3.86 1.71 3.56
8.45 8.40 7.93 8.28 7.54 7.47 4.28
9.77 ∗ 4.81 6.78 5.37 2.65 3.64
5.42 5.70 5.53 3.34 3.51 4.00 1.99
7.87 7.37 3.28 2.33 2.50 2.56 3.88
4.36 4.29 3.58 3.15 1.57 1.93 3.40
5.00 4.68 2.09 1.48 1.59 1.63 2.47
6.89 6.78 5.66 4.98 2.49 3.05 5.37
3.37 ∗ 5.72 4.51 2.34 3.27 3.48
6.14 6.99 8.61 ∗ 2.96 ∗ 1.26
3.06 2.18 2.11 1.96 0.98 0.79 1.00
3.76 3.03 1.29 ∗ 1.22 1.15 ∗

2.96 2.32 2.12 1.52 1.45 1.74 1.41
4.08 2.67 2.82 3.27 2.27 1.39 1.70
1.41 2.67 ∗ ∗ 1.34 0.88 1.13
1.80 1.38 1.29 1.30 1.41 1.42 1.38
3.94 3.82 2.45 2.25 1.81 1.58 1.88
4.60 5.65 5.68 5.07 4.90 3.45 5.02
3.38 2.49 1.54 1.05 2.77 2.77 2.00
5.22 3.99 ∗ 1.75 2.84 2.62 2.01
4.18 2.70 3.52 2.62 2.41 1.07 2.22
3.92 3.89 3.68 3.84 3.50 3.46 1.98
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6.38 5.16 3.81 1.75 3.15 3.28 2.91
5.34 5.21 4.25 3.66 2.13 2.93 2.26
4.73 5.40 6.01 6.47 ∗ 3.64 5.06
4.73 4.17 4.79 3.06 3.40 4.95 4.64

Table B.1: Maximum interface normal stresses calculated for circular tip inclu-
sion with a/b=3. The inclusions are located along grain boundaries of a bicrystal,
with different grain boundary plan orientations with respect to the tensile axis.
The bicrystal is embedded in a homogeneous matrix. For each α′ angle value,
28 coupes of random crystal orientations of the bicrystals. Only fifteen random
couples are used in Fig. 3.8a. ∗: the corresponding calculations do not converge
numerically.

a/b 1 2 3 4 5 6 7 8 10

σmaxnn

(GPa)

2.25 2.42 2.80 3.09 3.84 4.05 4.45 4.84 4.87
1.61 2.40 2.88 3.30 3.58 4.08 4.26 4.35 4.25
2.02 2.62 2.96 3.34 4.02 4.24 4.72 4.85 4.90
3.41 3.73 4.08 4.14 4.54 4.71 4.68 4.74 4.56
1.59 1.75 1.80 2.06 2.51 3.05 3.59 3.78 3.89
1.16 1.27 1.41 1.56 1.81 1.87 1.92 1.97 2.04
3.72 3.72 3.94 4.58 5.66 7.18 7.41 7.60 7.01
3.60 3.70 4.60 5.07 6.71 8.12 8.35 8.36 7.55
3.16 3.62 4.18 5.43 6.34 5.99 6.00 6.02 8.18
2.73 3.27 3.92 5.40 6.22 7.47 8.00 8.40 7.80
3.23 3.01 4.36 4.44 4.69 5.03 5.14 5.37 5.61
3.45 3.56 5.34 6.05 7.20 7.86 7.93 8.00 8.63

Table B.2: Maximum interface normal stresses calculated for circular tip inclu-
sion with various shape factors, a/b. Inclusion locates along grain boundary of
a bicrystal, with grain boundary plan parallel to the tensile axis. The bicrystal
is embedded in a homogeneous matrix.
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Circular tip
Symmetric angular ϕ (◦) Asymmetric angular tip ϕ (◦)
30 45 60 30 45 60

2.80 5.72 4.76 3.00 6.36 6.52 2.96
2.96 6.16 4.71 4.33 6.27 6.86 2.70
1.80 3.16 2.40 2.18 5.19 3.35 2.31
3.94 10.44 4.08 7.50 8.46 4.58 5.19
4.18 7.98 2.45 5.82 8.93 4.24 5.13
4.36 10.38 8.62 5.83 11.23 8.86 4.01
4.36 9.61 7.12 6.63 11.87 10.22 3.06
2.88 7.66 4.50 5.00 4.24 6.12 2.71
4.08 5.21 3.20 7.60 6.16 3.09 8.00
1.41 2.75 1.65 1.89 4.78 3.22 1.87
4.60 12.84 8.22 9.43 9.89 13.77 7.50
3.92 10.38 6.00 6.75 5.36 8.08 5.03
5.34 7.51 3.13 6.41 9.66 4.89 7.90
5.52 10.41 3.71 6.47 10.11 5.50 7.79

Table B.3: Maximum interface normal stresses (GPa) calculated for circular tip,
symmetric angular tip, and a asymmetric angular tip inclusions (Fig. 3.2). The
inclusions are located along grain boundaries of a bicrystal, with the grain bound-
ary plane parallels to the tensile axis (αGB = 0◦). The bicrystal is embedded in
a homogeneous matrix.
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Appendix C

Cohesive law: HINTE

The cohesive law ‘HINTE’ has already been implemented in the Cast3m finite
element software. Two damage mechanisms are considered in this cohesive law,
damage induced by shear stress, and crack opening damage induced by normal
stress. This model assumes that both damages are time-independent.

Several parameters are used in the HINTE cohesive law:

Y0 : threshold damage energy
YC : critical damage energy, equivalent to γfrac

GAM1 : coupling parameter between shear and opening energies
AL : govern shape and location of fracture in mixed mode
NN : characterizes the interface brittleness (the interface is more brittle,

the NN exponent is higher)
DCRI : allows to simulate a brittle fracture (by default DCRI = 1)
KS : interface stiffness in shear mode
KN : interface stiffness in open mode

The displacements of the cohesive zone are defined by ‘U1’ in shear mode and
‘U2’ in open mode.

U1 = τnm
KS(1− d1) KS = µ

d0
(C.1)

U2 = σnn
KN(1− d1) KN = Einter

d0
(C.2)

where:

τnm : shear stress acting on cohesive element
σnn : normal stress acting on cohesive element
d0 : interface thickness

Einter : Young’s modulus of the interface
µ : elastic shear modulus
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Issuing isotropic damage, the internal damage variables, d1 and d2, are defined
as:

d1 = d2 = [ NN

NN + 1(Y − Y0

Yc − Y0
)]NN (C.3)

where the total energy release rate, Y , induced by shear mode and open mode
is defined by:

Y = (Y AL
2 +GAM1 ∗ Y AL

1 ) 1
AL (C.4)

with the share mode and opening mode energy releases rates:

Y1 = 1
2KS(U1)2 Y2 = 1

2KN(U2)2 (C.5)

Our FE calculations show that the interface shear stresses are much lower
than interface normal stresses (subsection 2.4.2). Therefore, the shear damage
mode considered as negligible and GAM1 is chosen as 0. Then, Y = Y2. This
means that we focus only on the open damage mode.

Then, combination of Eqs. C.1-C.5 leads to:

σnn = KN [1− [ NN

NN + 1(Y − Y0

Yc − Y0
)]NN ]U2 (C.6)

And we assume that cohesive zone damage begins at the beginning of the
loading, which means that the value of Y0 is zero. According to Eqs. C.4-C.6,
σnn is obtained:

σnn = KN [1− [ NN

NN + 1(
1
2KN(U2)2

Yc
)]NN ]U2 (C.7)

When
∂σnn
∂U2

= 0 (C.8)

We obtain σnn = σc. This corresponds the unstable equilibrium (Fig. 4.5).
KN and YC are the constants which value are known. Therefore, only one pa-
rameter need to be adjusted is the NN exponent. Once σc is known (UBER
relationship, DFT computations), NN could be adjusted by inversely identifi-
cation. The values of NN for coherent and incoherent interfaces amount to,
respectively, 0.14 and 0.09.

The two CZM curves plotted in Fig. 4.5 are evaluated using the parameters
provided in Table C.2.
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Interface Einter (GPa) d0 (nm) Yc = γfrac (Jm−2) σc (GPa) NN
Coherent 162 [171] 0.46[171] 4.52 [171] 14.3 [171] 0.14
Incoherent 105 1.5 4 5 0.09

Table C.2: Input parameters of the ‘HINTE’ cohesive laws, for coherent and
incoherent interfaces.


