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Résumé

Les différentes modalités d’imagerie par ondes présentent chacune des limi-
tations en termes de résolution ou de contraste. Dans ce travail, nous mod-
élisons l’imagerie ultrasonore ultrarapide et présentons des méthodes de re-
construction qui améliorent la précision de l’imagerie ultrasonore. Nous in-
troduisons deux méthodes qui permettent d’augmenter le contraste et de
mesurer la position superrésolue et la vitesse dans les vaisseaux sanguins.
Nous présentons aussi une méthode de reconstruction des paramètres micro-
scopiques en tomographie d’impédance électrique en utilisant des mesures
multifréquence et en s’aidant de la théorie de l’homogénisation.
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Abstract

Different modalities in wave imaging each present limitations in terms of
resolution or contrast. In this work, we present a mathematical model of
the ultrafast ultrasound imaging modality and reconstruction methods which
can improve contrast and resolution in ultrasonic imaging. We introduce two
methods which allow to improve contrast and to locate blood vessels below
the diffraction limit while simultaneously estimating the blood velocity. We
also present a reconstruction method in electrical impedance tomography
which allows reconstruction of microscopic parameters from multi-frequency
measurements using the theory of homogenization.
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Introduction

In medical imaging, inverse problems are often ill-posed, or limited in their
resolution by the physics of the waves at play. There exist several tech-
niques to overcome these difficulties, using additional information about the
medium. For example, by reducing the set of admissible solutions and the
number of unknowns, by looking for a inclusions with parameters significantly
different from those of the surrounding medium [8].

Assuming different frequency responses for different tissue components,
another approach uses signal separation techniques to reconstruct robust
solutions using multi-frequency settings [6], [1], [2].

A third promising technique for improving the robustness of wave-based
imaging is to combine different physical types of waves. This allows to
alleviate deficiencies of each separate type of waves and to combine their
strengths. Example of multi-wave imaging modalities include photo-acoustic
and thermo-acoustic imaging [53], magnetic resonance elastography [41],
magneto-acousto-electrical tomography [47], magneto-acoustic tomography
with magnetic induction [54], and impediography [34].

Recently, nanoparticles have been proposed to be used as labels in molec-
ular biology. Plasmon resonant nanoparticles have unique capabilities of
enhancing the brightness and directivity of light and confining strong elec-
tromagnetic fields [38]. These nonlinear optical contrast mechanisms reveal
new information from biological specimens and tissues.

Finally, one can use the specific dynamics of the imaged elements to im-
prove the robustness of the imaging process. For example in blood flow imag-
ing, the blood dynamics are used to locate blood vessels [13]. Such techniques
have been successfully used in Dynamic Optical Coherence Tomography [10].

This thesis aims at investigating different methods for improving the res-
olution and contrast of wave-based imaging techniques for imaging of biolog-
ical tissues. It is focused on two promising non-invasive imaging methods:
ultrafast ultrasound, based on the propagation of sound waves, and electri-
cal impedance tomography (EIT), based on the propagation of low frequency
electro-magnetic waves. Both ultrasound imaging and EIT present the ad-
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vantage of being fast, relatively cheap and easy to operate. These methods
are examples of the tradeoff between contrast and resolution that is encoun-
tered in many wave-based imaging techniques. Ultrasound imaging provides
a high resolution of the order of less than a millimeter, but since acoustic
impedance has a poor contrast in biological media, its contrast is very low.
On the contrary, due to its low frequency nature, EIT provides a very low
resolution, and due to its ill-posedness is very sensitive to measurements er-
rors. Contrast is not a problem though, since different features in biological
tissues present very distinct conductivities.

To overcome these difficulties, several approaches are possible. Ultrafast
ultrasound is a promising imaging modality based on acoustic propagation.
Instead of using focused waves as is the case in traditional echography, ul-
trafast ultrasound is based on plane waves produced by an array of piezzo-
electrical elements. This allows for very high numbers of images per seconds,
up to 10000Hz. This method induces a worse signal-to-noise ratio (SNR)
than conventional echography, but by combining the information of a whole
sequence of images, this allows for better imaging, for example in blood flow
imaging. Signal processing techniques can then be used to improve recon-
struction, using knowledge on dynamics of blood and tissue.

We make use of the dynamics of blood flow, and show that it can be used
to improve the imaging of blood vessels.

In the case of a cell culture, it is impossible to directly image the micro-
structure. An idea developed in this thesis to improve the usefulness of EIT is
to use the theory of homogenization and a very precise a priori model on the
micro-structure. This model, combined with multi-frequency measurements,
will allow us to reconstruct precise information about the micro-structure.

Overview of the thesis

The thesis is divided into four chapters.

First chapter

This chapter provides a mathematical analysis of ultrafast ultrasound imag-
ing. This newly emerging modality for biomedical imaging uses plane waves
instead of focused waves in order to achieve very high frame rates. We derive
the point spread function of the system in the Born approximation for wave
propagation and study its properties.
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Second chapter

In this chapter, we consider dynamic data for blood flow imaging, and intro-
duce a suitable random model for blood cells. We show that a singular value
decomposition method can successfully remove the clutter signal by using
the different spatial coherence of tissue and blood signals, thereby providing
high-resolution images of blood vessels, even in cases when the clutter and
blood speeds are comparable in magnitude. Several numerical simulations
are presented to illustrate and validate the approach.

Third chapter

In this chapter, we introduce a signal processing method to produce simul-
taneous localization and velocity measurements of blood vessels, with super-
resolution. The method is based on L1 minimization and sparsity, with an
added dynamic parameter. Numerical experiments show that this method
allow for a reconstruction of both particle location and velocity.

Fourth chapter

In this chapter, we present a simplified electrical model for tissue culture. We
derive a mathematical structure for overall electrical properties of the culture
and study their dependence on the frequency of the current. We introduce a
method for recovering the microscopic properties of the cell culture from the
spectral measurements of the effective conductivity. Numerical examples are
provided to illustrate the performance of our approach.

Publications

Results of chapters 1 and 2 are published in [3]. Results of chapter 4 is
published in [7]. Chapter 3 will be published in a forthcoming paper.
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Chapter 1

Modeling of Ultrafast Ultrasound

Imaging

1.1 Introduction

Conventional ultrasound imaging is performed with focused ultrasonic waves
[49, 48]. This yields relatively good spatial resolution, but clearly limits the
acquisition time, since the entire specimen has to be scanned. Over the last
decade, ultrafast imaging in biomedical ultrasound has been developed [44,
50, 23]. Plane waves are used instead of focused waves, thereby limiting the
resolution but increasing the frame rate considerably, up to 20,000 frames per
second. Ultrafast imaging has been made possible by the recent technological
advances in ultrasonic transducers, but the idea of ultrafast ultrasonography
dates back to 1977 [17]. The advantages given by the very high frame rate
are many, and the applications of this new modality range from blood flow
imaging [12, 23], deep super-resolution vascular imaging [26] and functional
imaging of the brain [40, 39] to ultrasound elastography [29]. In this chapter
we focus on blood flow imaging.

A single ultrafast ultrasonic image is obtained as follows [44]. A pulsed
plane wave (focused on the imaging plane – see Figure 1.1b) insonifies the
medium, and the back-scattered echoes are measured at the receptor array,
a linear array of piezoelectric transducers. These spatio-temporal measure-
ments are then beamformed to obtain a two-dimensional spatial signal. This
is what we call static inverse problem, as it involves only a single wave, and
the dynamics of the medium is not captured. The above procedure yields
very low lateral resolution, i.e. in the direction parallel to the wavefront,
because of the absence of focusing. In order to solve this issue, it was pro-
posed to use multiple waves with different angles: these improve the lateral

13



14 CHAPTER 1. ULTRAFAST ULTRASOUND IMAGING

resolution, but has the drawback of reducing the frame rate.
In this work, we provide a detailed mathematical analysis of ultrasound

ultrafast imaging. To our knowledge, this is the first mathematical study
addressing the important challenges of this emerging and very promising
modality. Even though in this work we limit ourselves to formalize the exist-
ing methods, the mathematical analysis provided gives important insights,
which we expect will lead to improved reconstruction schemes.

First, we carefully study the forward and inverse static problems. In
particular, we derive the point spread function (PSF) of the system, in the
Born approximation for ultrasonic wave propagation. We investigate the
behavior of the PSF, and analyze the advantages of angle compounding. In
particular, we study the lateral and vertical resolutions. In addition, this
analysis allows us to fully understand the roles of the key parameters of the
system, such as the directivity of the array and the settings related to angle
compounding.

This chapter is structured as follows. In Section 1.2 we describe the imag-
ing system and the model for wave propagation. In Section 1.3 we discuss the
static inverse problem. In particular, we describe the beamforming process,
the PSF and the angle compounding technique.

1.2 The Forward Problem

The imaging system is composed of a medium contained in R
3
+ := {(x, y, z) ∈

R
3 : z > 0} and of a fixed linear array of transducers located on the line

z = 0, y = 0. This linear array of piezoelectric transducers (see [49, Chapter
7]) produces an acoustic illumination that is focused in elevation – in the y
coordinates, near the plane y = 0 – and has the form of a plane wave in the
direction k ∈ S1 in the x, z coordinates (see Figure 1.1b). Typical sizes for
the array length and for the penetration depth are about 10−1 m.

We make the assumption that the acoustic incident field ui can be ap-
proximated as

ui (x, y, z, t) = Az (y) f
(

t− c−1
0 k · (x, z)

)

,

where c0 is the background speed of sound in the medium. The function
Az describes the beam waist in the elevation direction at depth z (between
4 · 10−3 m and 10−2 m). This is a simplified expression of the true incoming
wave, which is focused by a cylindrical acoustic lens located near the receptor
array (see [49, Chapters 6 and 7]). The function f is the waveform describing
the shape of the input pulse:

f(t) = e2πiν0tχ (ν0t) , χ (u) = e−
u2

τ2 , (1.1)
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Figure 1.1: The pulse f of the incident wave ui and the focusing region.

where ν0 is the principal frequency and τ the width parameter of the pulse
(see Figure 1.1a). Typically, ν0 will be of the order of 106 s−1. More precisely,
realistic quantities are

c0 = 1.5 · 103 m·s−1, ν0 = 6 · 106 s−1, τ = 1. (1.2)

Let c : R3 → R+ be the speed of sound and consider the perturbation n
given by

n (x) =
1

c2 (x)
− 1

c20
.

We assume that suppn ⊆ R
3
+. The acoustic pressure in the medium satisfies

the wave equation

∆u (x, t)− 1

c2 (x)

∂2

∂t2
u (x, t) = 0, x ∈ R

3,

with a suitable radiation condition on u − ui. Let G denote the Green’s
function for the acoustic wave equation in R

3 [5, 52]:

G(x, t,x′, t′) = − (4π)−1

|x− x′|δ
(

(t− t′)− c−1
0 |x− x′|

)

.

In the following, we will assume that the Born approximation holds, i.e. we
consider only first reflections on scatterers, and neglect subsequent reflections
[5, 21] (in cases when the Born approximation is not valid, nonlinear methods
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have to be used). This is a very common approximation in medical imaging,
and is justified by the fact that soft biological tissues are almost acoustic
homogeneous, due to the high water concentration. In mathematical terms,
it consists in the linearization around the constant sound speed c0. In this
case, the scattered wave us := u− ui is given by

us (x, t) =

∫

R

∫

R3

n (x′)
∂2ui

∂t2
(x′, t′)G (x, t,x′, t′) dx′dt′, x ∈ R

3, t ∈ R+,

since contributions from n∂2t u
s are negligible. Therefore, inserting the ex-

pressions for the Green’s function and for the incident wave yields

us (x, t) = −
∫

R3

(4π)−1

|x− x′|n (x
′)Az′ (y

′) f ′′ (t− c−1
0 ((x′, z′) · k+ |x− x′|)

)

dx′,

where we set x = (x, y, z) and x′ = (x′, y′, z′). Since the waist of the beam
in the y direction is small compared to the distance at which we image the
medium, we can make the assumption

|x− (x′, y′, z′)| ≃ |x− (x′, 0, z′)| , x = (x, 0, 0) ∈ R
3,

so that the following expression for us holds for x = (x, 0, 0) ∈ R
3 and t > 0:

us (x, t) =
∫

R2

−(4π)−1

|x− (x′, 0, z′)|f
′′ (t− c−1

0 ((x′, z′) · k+ |x− (x′, 0, z′)|)
)

ñ(x′, z′)dx′dz′,

where ñ is given by

ñ(x′, z′) :=

∫

R

n (x′)Az′ (y
′) dy′, x′ = (x′, y′, z′) ∈ R

3. (1.3)

Since our measurements are only two-dimensional (one spatial dimension
given by the linear array and one temporal dimension), we cannot aim to
reconstruct the full three-dimensional refractive index n. However, the above
identity provides a natural expression for what can be reconstructed: the
vertical averages ñ of n. Since Az is supported near y = 0, ñ reflects the
contribution of n only near the imaging plane. In physical terms, ñ contains
all the scatterers in the support of Az; these scatterers are in some sense
projected onto y = 0, the imaging plane. For simplicity, with an abuse of
notation from now on we shall simply denote ñ by n, since the original three-
dimensional n will not play any role, due to the dimensionality restriction
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discussed above. Moreover, for the same reasons, all vectors x and x′ will
be two-dimensional, namely, x = (x, z) and similarly for x′. In view of these
considerations, for x = (x, 0) ∈ R

2 and t > 0 the scattering wave takes the
form

us (x, t) = −
∫

R2

(4π)−1

|x− x′|f
′′ (t− c−1

0 (x′ · k+ |x− x′|)
)

n (x′) dx′. (1.4)

It is useful to parametrize the direction k ∈ S1 of the incident wave by
k = kθ = (sin θ, cos θ) for some θ ∈ R; in practice, |θ| ≤ 0.25 [44].

1.3 The Inverse Problem

The static inverse problem consists in the reconstruction of n (up to a con-
volution kernel) from the measurements us at the receptors, assuming that n
does not depend on time. This process provides a single image, and will be
repeated many times in order to obtain dynamic imaging, as it is discussed
in the next sections.

1.3.1 Beamforming

The receptor array is a segment Γ = (−A,A) × {0} for some A > 0. The
travel time from the receptor array to a point x = (x, z) and back to a
receptor located in u0 = (u, 0) is given by

τ θ
x
(u) = c−1

0 (x · kθ + |x− u0|) .

The beamforming process [49, 44] consists in averaging the measured signals
on Γ at t = τ θ

x
(u), which results in the image

sθ(x, z) :=

∫ x+Fz

x−Fz

us
(

u0, τ
θ
x
(u)

)

du,x = (x, z) ∈ R
2
+ := {(x, z) ∈ R

2 : z > 0}.

The dimensionless aperture parameter F indicates which receptors are chosen
to image the location x = (x, z), and depends on the directivity of the
ultrasonic array (in practice, 0.25 ≤ F ≤ 0.5 [44]). In general, F depends
on the medium roughness and on θ, but this will not be considered this
work. The above identity is the key of the static inverse problem: from the
measurements us((u, 0), t) we reconstruct sθ(x, z).
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the PSF given in (1.10).

Figure 1.2: The real part of the point spread function g0 and its approximations
are shown in these figures (with parameters as in (1.1) and (1.2), and F = 0.4).
The size of the square shown is 2mm× 2mm, and the horizontal and vertical axes
are the x and z axes, respectively. The relative error in the L∞ norm is about
7% for the approximation shown in panel (b) and about 9% for the approximation
shown in panel (c).

We now wish to understand how sθ is related to n. In order to do so,
observe that by (1.4) we may write for x ∈ R

2
+

sθ(x, z) = −
∫

x′∈R2

n (x′)

∫ x+Fz

x−Fz

(4π)−1

|x′ − u0|
f ′′ (τ θ

x
(u)− τ θ

x′ (u)
)

du dx′

=

∫

x′∈R2

gθ (x,x
′)n (x′) dx′,

(1.5)

where gθ is defined as

gθ (x,x
′) = −

∫ x+Fz

x−Fz

(4π)−1

|x′ − u0|
f ′′ (τ θ

x
(u)− τ θ

x′ (u)
)

du, (1.6)

(see Figure 1.2a for an illustration in the case when θ = 0). In other words,
the reconstruction sθ is the result of an integral operator given by the kernel
gθ applied to the refractive index n. Thus, the next step is the study of the
point spread function (PSF) gθ (x,x

′), which should be thought of as the
image corresponding to a delta scatterer in x′.

1.3.2 The point spread function

In its exact form, it does not seem possible to simplify the expression for g
further: we will have to perform some approximations. First, observe that
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setting hθ
x,x′(u) = τ θ

x
(u)− τ θ

x′ (u) for x,x′ ∈ R
2
+ we readily derive

(hθ
x,x′)′(u) = c−1

0 (
u− x

|x− u0|
− u− x′

|x′ − u0|
)

≈ c−1
0 (

u− x

|x′ − u0|
− u− x′

|x′ − u0|
) = c−1

0

x′ − x

|x′ − u0|
,

for x close to x′ (note that, otherwise, the magnitude of the PSF would be
substantially lower). As a consequence, by (1.6) we have

gθ (x,x
′) ≈ c0(4π)

−1

x− x′

∫ x+Fz

x−Fz

(hθ
x,x′)′(u)f ′′ (hθ

x,x′(u)
)

du

=
c0(4π)

−1

x− x′
[

f ′(hθ
x,x′(x+ Fz))− f ′(hθ

x,x′(x− Fz))
]

.

(1.7)

In order to simplify this expression even further, let us do a Taylor expansion
of wθ

±(x, z) := hθ
x,x′(x ± Fz) with respect to (x, z) around (x′, z′). Direct

calculations show that

wθ
±(x

′, z′) = 0,∇wθ
±(x

′, z′) =
c−1
0

CF

(CF sin θ ∓ F, 1 + CF cos θ),

where we define

CF :=
√
1 + F 2.

Whence

hθ
x,x′(x± Fz) ≈c

−1
0

CF

((1 + CF cos θ)(z − z′)

+(CF sin θ ∓ F )(x− x′)).

Substituting this expression into (1.7) yields

gθ(x,x
′) ≈ g̃θ(x− x′), (1.8)

where

g̃θ(x) =
c0
4πx

[

f ′
(

c−1
0

CF

((1 + CF cos θ)z + (CF sin θ − F )x)

)

−f ′
(

c−1
0

CF

((1 + CF cos θ)z + (CF sin θ + F )x)

)]

, (1.9)
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F = 0.4.
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Figure 1.3: The exact PSF with different values of the aperture parameter F
(with parameters as in (1.1) and (1.2), and θ = 0). The size of the square shown is
2mm×2mm, and the horizontal and vertical axes are the x and z axes, respectively.

(see Figure 1.2b for an illustration in the case θ = 0), thereby allowing to
write the image sθ given in (1.5) as a convolution of g̃θ and the refractive
index n, namely

sθ(x) =

∫

x′∈R2

g̃θ(x− x′)n (x′) dx′ = (g̃θ ∗ n)(x), x ∈ R
2
+.

The validity of this approximation, obtained by truncating the Taylor
expansion of wθ

± at the first order, is by no means obvious. Indeed, by con-
struction, the pulse f(t) is highly oscillating (ν0 ≈ 6 · 106 s−1), and therefore
even small variations in t may result in substantial changes in f(t). However,
this does not happen, since if (x, z) is not very close to (x′, z′) then the mag-
nitude of the PSF is very small, if compared to the maximum value. The
verification of this fact is quite technical, and thus is omitted: the details
may be found in Appendix A.

Remark 1. From this expression, it is easy to understand the role of the
aperture parameter F , which depends on the directivity of the array. Ignoring
the second order effect in F and taking, for simplicity θ = 0, we can further
simplify the above expression as

g̃0(x) ≈
c0
4πx

[

f ′ (c−1
0 (2z − Fx)

)

− f ′ (c−1
0 (2z + Fx)

)]

.

It is clear that F affects the resolution in the variable x: the higher F is, the
higher the resolution is. Moreover, the aperture parameter affects also the
orientation of the diagonal tails in the PSF. These two phenomena can be
clearly seen in Figure 1.3. In general, the higher the aperture is the better for
the reconstruction: as expected, the intrinsic properties of the array affects
the reconstruction.
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(a) The PSF with
θ = 0.
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(b) The PSF with
θ = 0.1.
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(c) The PSF with
θ = 0.2.
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(d) The PSF with
θ = 0.3.

Figure 1.4: The exact PSF with different values of the angle θ (with parameters
as in (1.1) and (1.2), and F = 0.4). The size of the square shown is 2mm× 2mm,
and the horizontal and vertical axes are the x and z axes, respectively.

Remark 2. It is also easy to understand the role of the angle θ. In view of

g̃θ(x) ≈
c0
4πx

[

f ′ (c−1
0 ((1 + cos θ)z + (sin θ − F )x)

)

−f ′ (c−1
0 ((1 + cos θ)z + (sin θ + F )x)

)]

,

an angle θ 6= 0 substantially gives a rotation of the PSF; see Figure 1.4.

We have now expressed gθ as a convolution kernel. In order to better
understand the different roles of the variables x and z, it is instructive to use
the actual expression for f given in (1.1). Since f ′(t) = ν0e

2πiν0tχ̃(ν0t), with
χ̃(t) = 2πiχ(t) + χ′(t), we can write

f ′
(

c−1
0

CF

((1 + CF cos θ)z + (CF sin θ ± F )x)

)

= ν0e
2πiν0c

−1
0

CF
((1+CF cos θ)z+(CF sin θ±F )x)

χ̃

(

ν0c
−1
0

CF

((1 + CF cos θ)z + (CF sin θ ± F )x)

)

≈ ν0e
2πiν0c

−1

0
(2z+(θ±F )x)χ̃

(

2ν0c
−1
0 z

)

,

where we have approximated the dependence on F and θ at first order around
F = 0 and θ = 0 in the complex exponential (recall that F and θ are small)
and at zero-th order (F = 0 and θ = 0) inside χ̃: the difference in the orders
is motivated by the fact that the variations of the complex exponentials
have much higher frequencies than those of χ̃, since several oscillations are
contained in the envelope defined by χ, as it can be easily seen in Figure 1.1a
(and similarly for χ′). This approximation may be justified by arguing as in
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Appendix A. Inserting this expression into (1.9) yields

g̃θ(x) ≈
c0ν0
4πx

[

e2πiν0c
−1

0
(2z+(θ−F )x)χ̃

(

2ν0c
−1
0 z

)

−e2πiν0c−1

0
(2z+(θ+F )x)χ̃

(

2ν0c
−1
0 z

)

]

= − iν0c0
2πx

χ̃
(

2ν0c
−1
0 z

)

e4πiν0c
−1

0
ze2πiν0c

−1

0
θx sin(2πν0c

−1
0 Fx),

whence for every x = (x, z) ∈ R
2

g̃θ(x) ≈ −iν20Fχ̃
(

2ν0c
−1
0 z

)

e4πiν0c
−1

0
ze2πiν0c

−1

0
θx sinc(2πν0c

−1
0 Fx), (1.10)

where sinc(x) := sin(x)/x (see Figure 1.2c). This final expression allows us
to analyze the PSF g̃θ, and in particular its different behaviors with respect
to the variables x and z. Consider for simplicity the case θ = 0 (with τ = 1).
In view of the term χ̃

(

2ν0c
−1
0 z

)

, the vertical resolution is approximately
0.8 · ν−1

0 c0; similarly, in view of the term sinc(2πν0c
−1
0 Fx), the horizontal

resolution is approximately 1
2F
ν−1
0 c0. Even though horizontal and vertical

resolutions are comparable, in terms of focusing and frequencies of oscillations
the PSF has very different behaviours in the two directions. Indeed, we can
observe that the focusing in the variable z is sharper than that in the variable
x: the decay of χ̃ is much stronger than the decay of sinc. Moreover, in the
variable z we have only high oscillations, while in the variable x the highest
oscillations are at least four times slower (2 = 41

2
≥ 4F ), and very low

frequencies are present as well, due to the presence of the sinc. As it is
clear from Figure 1.2, this approximation introduces evident distortions of
the tails, as it is expected from the approximation F = 0 inside χ̃; however,
the center of the PSF is well approximated. Similar considerations are valid
for the case when θ 6= 0: as observed before, this simply gives a rotation.

The same analysis may be carried out by looking at the expression of
the PSF in the frequency domain. For simplicity, consider the case θ = 0:
the general case simply involves a translation in the frequency domain with
respect to x. Thanks to the separable form of g̃θ given in (1.10), the Fourier
transform may be directly calculated, and results in the product of the Fourier
transform of χ̃ and the Fourier transform of the sinc. More precisely, we
readily derive

F g̃θ(ξx,ξz) =
∫

R2

g̃θ(x, z)e
−2πi(xξx+zξz) dxdz

≈ −iν20F
∫

R

sinc(2πν0c
−1
0 Fx)e−2πixξx dx

×
∫

R

χ̃
(

ν0c
−1
0 z

)

e−2πi(−2ν0c
−1

0
+ξz)z dz.
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(c) The Fourier
transform (1.11) of
the approximation
of the PSF g̃0 given
in (1.10).
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(d) The Fourier
transform of the
PSF gac

Θ
given

in (1.13), for
Θ = 0.25.

Figure 1.5: The absolute values of the Fourier transforms of the point spread
functions and its approximations (with parameters as in (1.1) and (1.2), and F =
θ = 0). The frequency axes are normalized by ν0c

−1
0 : the PSF is a low pass filter

with cut-off frequency Fν0c
−1
0 with respect to the variable x and a band pass filter

around 2ν0c
−1
0 with respect to z.

Thus, since the Fourier transform of the sinc may be easily computed and is
a suitable scaled version of the rectangle function, we have

F g̃θ(ξx, ξz) ≈ −iν20F
1

2ν0c
−1
0 F

1[−F,F ]

(

c0ν
−1
0 ξx

)

×
∫

R

χ̃
(

ν0c
−1
0 z

)

e−2πi(−2ν0c
−1

0
+ξz)z dz

= − ic0ν0
2

1[−F,F ]

(

c0ν
−1
0 ξx

) 1

ν0c
−1
0

F χ̃
(−2ν0c

−1
0 + ξz

ν0c
−1
0

)

,

whence

F g̃θ(ξx, ξz) ≈ −ic20 1[−F,F ]

(

c0ν
−1
0 ξx

)

F χ̃
(

−2 + ν−1
0 c0ξz

)

/2. (1.11)

Therefore, up to a constant, the Fourier transform of the PSF is a low-
pass filter in the variable x with cut-off frequency Fν0c

−1
0 and a band pass

filter in z around 2ν0c
−1
0 (since χ̃ is a low-pass filter). This explains, from

another point of view, the different behaviors of g̃θ with respect to x and z.
This difference is evident from Figure 1.5, where the absolute values of the
Fourier transforms of the different approximations of the PSF are shown.

1.3.3 Angle compounding

We saw in the previous subsection that, while very focused in the direction
z, the PSF is not very focused in the direction x due to the presence of the
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sinc function, see (1.10). In order to have a better focusing, it was proposed
in [44] to use multiple measurements corresponding to many angles in an
interval θ ∈ [−Θ,Θ] for some 0 ≤ Θ ≤ 0.25. The reason why this technique
is promising is evident from Figure 1.4: adding up several angles together
will result in an enhancement of the center of the PSF, and in a substantial
reduction of the artifacts caused by the tails in the direction x. Let us now
analyze this phenomenon analytically.

In a continuous setting, angle compounding corresponds to setting

sac

Θ (x) =
1

2Θ

∫ Θ

−Θ

sθ(x) dθ, x ∈ R
2
+. (1.12)

Thus, by linearity, the corresponding PSF is given by

gac

Θ (x,x′) =
1

2Θ

∫ Θ

−Θ

gθ(x,x
′) dθ, x,x′ ∈ R

2
+. (1.13)

Let us find a simple expression for gac

Θ . By using (1.8), we may write

gac

Θ (x,x′) ≈ g̃ac

Θ (x − x′), where g̃ac

Θ is given by g̃ac

Θ (x) = 1
2Θ

∫ Θ

−Θ
g̃θ(x) dθ, so

that the image may be expressed as

sac

Θ (x) = (g̃ac

Θ ∗ n)(x), x ∈ R
2
+. (1.14)

Thus, in view of the approximation (1.10), we can write

g̃ac

Θ (x) = − iν
2
0F

2Θ

∫ Θ

−Θ

χ̃
(

2ν0c
−1
0 z

)

e4πiν0c
−1

0
ze2πiν0c

−1

0
θx sinc(2πν0c

−1
0 Fx) dθ

= −iν20Fχ̃
(

2ν0c
−1
0 z

)

e2iν0c
−1

0
zsinc(2πν0c

−1
0 Fx)sinc(2πν0c

−1
0 Θx).

Therefore, we immediately obtain

g̃ac

Θ (x) = g̃0(x)sinc(2πν0c
−1
0 Θx), x ∈ R

2. (1.15)

This expression shows that the PSF related to angle compounding is nothing
else than the PSF related to the single angle imaging with θ = 0 multiplied
by sinc(2πν0c

−1
0 Θx). Thus, for Θ = 0 we recover g̃θ for θ = 0, as expected.

However, for Θ > 0, this PSF enjoys faster decay in the variable x. See
Figure 1.6 for an illustration of gac

Θ and g̃ac

Θ and a comparison with gθ and
Figure 1.5d for an illustration of the Fourier transform of gac

Θ .
To sum up the main features of the static problem, we have shown that

the recovered image may be written as sac

Θ = g̃ac

Θ ∗ n, where g̃ac

Θ is the PSF
of the imaging system with measurements taken at multiple angles. The
ultrafast imaging technique is based on obtaining many of these images over
time, as we discuss in the next section.
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(b) The PSF gac
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with

Θ = 0.25.
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(c) The PSF g̃ac

Θ
with

Θ = 0.25.

Figure 1.6: A comparison of the PSF related to the single illumination with the
PSF associated to multiple angles (with parameters as in (1.1) and (1.2), and
F = 0.4). The better focusing in the variable x for gac

Θ is evident, as well as the
good approximation given by g̃ac

Θ . The size of the square shown is 2mm × 2mm,
and the horizontal and vertical axes are the x and z axes, respectively.

1.4 Conclusion

In this chapter, we have provided for the first time a detailed mathematical
analysis of ultrafast ultrasound imaging. We have derived an approximate
expression for the PSF of this imaging system, which allows for a detailed
analysis of blood flow imaging in the next chapter.
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Chapter 2

Blood Flow Imaging in Ultrafast

Ultrasound

2.1 Introduction

In this chapter, we consider dynamic imaging, that is the ultrafast ultrasound
imaging process described in the previous chapter is repeated many times,
which gives several thousand images per second. In blood flow imaging,
we are interested in locating blood vessels. One of the main issues lies in
the removal of the clutter signal, typically the signal scattered from tissues,
as it introduces major artifacts [14]. Ultrafast ultrasonography allows to
overcome this issue, thanks to the very high frame rate. Temporal filters [12,
40, 39], based on high-pass filtering the data to remove clutter signals, have
shown limited success in cases when the clutter and blood velocities are close
(typically of the order of 10−2 m·s−1), or even if the blood velocity is smaller
than the clutter velocity. A spatio-temporal method based on the singular
value decomposition (SVD) of the data was proposed in [23] to overcome this
drawback, by exploiting the different spatial coherence of clutter and blood
scatterers. Spatial coherence is understood as similar movement, in direction
and speed, in large parts of the imaged zone. Tissue behaves with higher
spatial coherence when compared to the blood flow, since large parts of the
medium typically move in the same way, while blood flow is concentrated only
in small vessels, which do not share necessarily the same movement direction
and speed. This explains why spatial properties are crucial to perform the
separation.

The analysis of the PSF provided in the previous chapter allows to study
the Doppler effect, describing the dependence on the direction of the flow.
Moreover, we consider a random model for the movement of blood cells,

27
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which allows us to study and justify the SVD method for the separation
of the blood signal from the clutter signal, leading to the reconstruction of
the blood vessels’ geometry. The analysis is based on the empirical study
of the distribution of the singular values, which follows from the statistical
properties of the relative data. We provide extensive numerical simulations,
which illustrate and validate this approach.

This chapter is structured as follows. In Section 2.2 the dynamic forward
problem is considered: we briefly discuss how the dynamic data are obtained
and analyze the Doppler effect. In Section 2.3 we focus on the source separa-
tion to solve the dynamic inverse problem. We discuss the random model for
the refractive index and the method based on the SVD decomposition of the
data. In Section 2.4 numerical experiments are provided. Some concluding
remarks and outlooks are presented in the final section.

2.2 The Forward Problem

2.2.1 The quasi-static approximation and the construc-

tion of the data

The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.
We consider a quasi-static model: the whole process of obtaining one image,
using the image compounding technique discussed in Subsection 1.3.3, is fast
enough to consider the medium static, but collecting several images over time
gives us a movie of the movement over time. In other words, there are two
time scales: the fast one related to the propagation of the wave is considered
instantaneous with respect to the slow one, related to the sequence of the
images.

In view of this quasi-static approximation, from now on we neglect the
time of the propagation of a single wave to obtain static imaging. The time
t considered here is related to the slow time scale. In other words, by (1.14)
at fixed time t we obtain a static image s(x, t) of the medium n = n(x, t),
namely

s(x, t) = (g̃ac

Θ ∗ n( · , t)) (x). (2.1)

Repeating the process for t ∈ [0, T ] we obtain the movie s(x, t), which repre-
sents the main data we now need to process. As mentioned in the introduc-
tion, our aim is locating the blood vessels within the imaged area, by using
the fact that s(x, t) will be strongly influenced by movements in n.
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2.2.2 The Doppler effect

Measuring the medium speed is an available criterion to separate different
sources; thus, we want to see the influence on the image of a single particle
in movement, as by linearity the obtained conclusions naturally extend to a
group of particles. For a single particle, we are interested in observing the
generated Doppler effect in the reconstructed image, namely peaks in the
Fourier transform away from zero.

Intuitively, Figure 1.5d shows that there is a clear difference in the move-
ments depending on their orientation. We want to explore this difference
in a more precise way. Let us consider n(x, z, t) = δ(0,vt)(x, z), i.e. a single
particle moving in the z direction with velocity v. The resulting image, as a
function of time, is obtained via equations (1.15) and (2.1)

s(x, z, t) ≈
∫

R2

g̃ac

Θ (x− x′, z − z′)δ(0,vt)(x
′, z′)dx′dz′

= g̃ac

Θ (x, z − vt)

= g̃0(x, z − vt)sinc(2πν0c
−1
0 Θx).

Therefore, arguing as in (1.11), we obtain that the Fourier transform with
respect to the time variable t of the image is given by

Ft(s)(x, z, ξ) ≈
∫

R

g̃0(x, z − vt)e−2πiξtdt sinc(2πν0c
−1
0 Θx)

=
1

v
e−2πi ξz

v F2(g̃0)(x,−
ξ

v
)sinc(2πν0c

−1
0 Θx),

where F2 is the Fourier transform with respect to the variable z. Adopting
approximation (1.10), we obtain

Ft(s)(x, z, ξ)≈−1

v
iν20Fe

−2πi ξz
v sinc(2πν0c

−1
0 Θx)

× sinc(2πν0c
−1
0 Fx)F(χ̃)

( −ξ
2ν0c

−1
0 v

− 1
)

.

Given the shape of χ̃, its Fourier transform has a maximum around 0, thus
we can see a peak of |Ft(s)(x, z, ξ)| when ξ is around −2ν0c

−1
0 v, and so we

have the Doppler effect.
In the case when the particle is moving parallel to the detector array,

namely n(x, z, t) = δ(vt,0)(x, z), following an analogous procedure as before,
we obtain

s(x, z, t) ≈ g̃0(x− vt, z)sinc(2πν0c
−1
0 Θ(x− vt)),
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and applying the Fourier transform in time yields

Ft(s)(x, z, ξ) ≈
1

v
e−2πi ξx

v F(g̃0(·, z)sinc(2πν0c−1
0 Θ·))(−ξ

v
).

Using approximation (1.10), the convolution formula for the Fourier trans-
form and the known transform of the sinc function, gives

Ft(s)(x, z, ξ) ≈ −ie
−2πi ξx

v

4Θv
ν0c0χ̃(2ν0c

−1
0 z)e4πiν0c

−1

0
z

× (1[−F,F ] ∗ 1[−Θ,Θ])

(

− ξ

vν0c
−1
0

)

.

The convolution of these characteristic functions evaluated at η is equal to
the length of interval [−F + η, F + η] ∩ [−Θ,Θ], because

(1[−F,F ] ∗ 1[−Θ,Θ])(η)=

∫

R

1[−F,F ](η − s)1[−Θ,Θ](s)ds

=

∫

R

1[−F+η,F+η](s)1[−Θ,Θ](s)ds.

Since both intervals are centered at 0, this value is maximized for η (and
thus ξ) around 0, like in the static case, and so the observed Doppler effect
is very small.

These differences are fundamental to understand the capabilities of the
method for blood flow imaging. This phenomenon will be experimentally
verified in Section 2.4.

2.2.3 Multiple scatterer random model

We have seen the effect on the image s(x, z, t) of a single moving particle.
We now consider the more realistic case of a medium (either blood vessels or
tissue) with a large number of particles in motion. This will allow to study
the statistical properties of the resulting measurements.

We consider a rectangular domain Ω = (−Lx/2, Lx/2) × (0, Lz), which
consists in N point particles. Let us denote the location of particle k at time
t by ak(t). In the most general case, each particle is subject to a dynamics

ak(t) = ϕk (uk, t) , ak(0) = uk, (2.2)

where (uk)k=1,...,N are independent uniform random variables on Ω and (ϕk)k=1,...,N

are independent and identically distributed stochastic flows: for instance,
they can be the flows of a stochastic differential equation or the determinis-
tic flows of a partial differential equation. Thus, the aks are independent and
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identically distributed stochastic processes. In view of these considerations,
we consider the medium given by

n (x, t) =
C√
N

N
∑

k=1

δak(t) (x) , (2.3)

where C > 0 denotes the scattering intensity and 1√
N

is the natural normal-
ization factor in view of the central limit theorem.

To avoid minor issues from boundary effects, which are of no interest to
us in the analysis of this problem, we assume the periodicity of the medium.
In other words, we consider the periodization

np(x, t) =
∑

l∈Z2

n(x+ l · L, t), (2.4)

where L = (Lx, Lz). Let g (x) :=
∑

l∈Z2 g̃ac

Θ (x+ l · L) be the periodic PSF,
which is more convenient than g̃ac

Θ (given by (1.15)) for a Ω-periodic medium.
The dynamic image s is then given by

s(x, t) = (g̃ac

Θ ∗ np (·, t)) (x) = (g ∗ n( · , t))(x) = C√
N

N
∑

k=1

g (x− ak (t)) .

Let us also assume for the sake of simplicity that, at every time t, ak (t)
modulo Ω is a uniform random variable on Ω, namely

E

∑

l∈Z2

w(ak(t) + l · L) = |Ω|−1

∫

R2

w(y) dy, w ∈ L1(R2). (2.5)

As a simple but quite general example, it is worth noting that in the case
when ak(t) = uk + F (t), where F (t) is any random process independent of
uk, the above equality is satisfied, since

E

∑

l∈Z2

w(uk + F (t) + l · L) = |Ω|−1
E

∑

l∈Z2

∫

Ω

w(y + F (t) + l · L)dy

= |Ω|−1

∫

R2

w(y) dy,

where the expectation in the first term is taken with respect to uk and F (t),
while in the second term only with respect to F (t).

We now wish to compute the expectation of the random variables present
in the expression for s(x, t). By (1.10) and (1.15), since g̃ac

Θ is a derivative of
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a Schwartz function in the variable z, we have
∫

R2 g̃
ac

Θ (y)dy = 0. Thus, by
(2.5) the expected value may be easily computed as

E (g (x− ak (t))) = E

∑

l∈Z2

g̃ac

Θ (x−ak(t)+l·L) = |Ω|−1

∫

R2

g̃ac

Θ (y)dy = 0. (2.6)

Let (xi)i=1,...,mx

and (tj)j=1,...,mt
be the sampling locations and times re-

spectively. The data may be collected in the Casorati matrix SN ∈ C
mx×mt

defined by

SN(i, j) = s(xi, tj).

By (2.6), according to the multivariate central limit theorem, the matrix SN

converges in distribution to a Gaussian complex matrix S ∈ C
mx×mt , the

distribution of which is entirely determined by the following correlations, for
i, i′ = 1, . . . ,mx and j, j′ = 1, . . . ,mt

E(S(i, j)) = 0,

Cov (S(i, j), S(i′, j′)) = C2
E (g (xi − a1 (tj)) g (xi′ − a1 (tj′))) , (2.7)

Cov
(

S(i, j), S(i′, j′)
)

= C2
E

(

g (xi − a1 (tj)) g (xi′ − a1 (tj′))
)

. (2.8)

More precisely, let w ∈ C
mxmt be a column vector containing all the entries

of S. Let v ∈ C
2mxmt and V ∈ C

2mxmt×2mxmt be defined by

v = (w1, w1, w2, w2, ..., wmxmt , wmxmt)
T and V = E

(

vvT
)

.

The covariance matrix V can be easily computed from (2.7) and (2.8). Then
the probability density function f of v can be expressed as [15]:

f (v) =
1

πmxmt det (V )
1

2

exp

(

−1

2
v∗V −1v

)

.

Moreover, it is possible to generate samples from this distribution: if X is
a complex unit variance independent normal random vector, and if

√
V is a

square root of V , then
√
V X is distributed like v. This allows for simulations

of sample image sequences for a large number of particles with a complexity
independent of the number of particles.

The analysis carried out here will allow us to study the distribution of
the singular value of the matrix S, depending on the properties of the flows
ϕk. This will be the key ingredient to justify the correct separation of blood
and clutter signals by means of the singular value decomposition of the mea-
surements.
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2.3 The Inverse Problem: Source Separation

2.3.1 Formulation of the dynamic inverse problem

As explained in the introduction, the aim of the dynamic inverse problem
is blood flow imaging. In other words, we are interested in locating blood
vessels, possibly very small, within the medium. The main issue is that
the signal s(x, t) is highly corrupted by clutter signal, namely the signal
scattered from tissues. In the linearized regime we consider, we may write
the refractive index n as the sum of a clutter component nc and a blood
component nb, namely n = nc + nb. Blood is located only in small vessels in
the medium, whereas clutter signal comes from everywhere: by (1.3), since
blood vessels are smaller than the focusing height, even pixels located in
blood vessels contain reflections coming from the tissue. Let us denote the
location of blood vessels by Ωb ⊂ Ω. The inverse problem is the following:
can we recover Ωb from the data s(x, t) = sc(x, t) + sb(x, t)? Here, sc and sb
are given by (2.1), with n replaced by nc and nb, respectively. In this section,
we provide a quantitative analysis of the method described in [23] based on
the singular value decomposition (SVD) of s.

2.3.2 The SVD algorithm

We now review the SVD algorithm presented in [23]. The Casorati matrix
S ∈ C

mx×mt is defined as in previous section by

S(i, j) = s (xi, tj) , i ∈ {1, ...,mx} , j ∈ {1, ...,mt} .

Without loss of generality, we further assume that mt ≤ mx. We remind the
reader that the SVD of S is given by

S =
mt
∑

k=1

σkukvk
T ,

where (u1, ..., umx
) and (v1, ..., vmt) are orthonormal bases of Cmx and C

mt ,
and σ1 ≥ σ2 ≥ ... ≥ σmt ≥ 0. For any K ≥ 1, SK =

∑K
k=1 σkukvk

T is the
best rank K approximation of S in the Frobenius norm. The SVD is a well-
known tool for denoising sequences of images, see for example [32]. The idea
is that since singular values for the clutter signal are quickly decaying after
a certain threshold, the best rank K approximation of S will contain most
of the signal coming from the clutter, provided that K is large enough. This
could be used to recover clutter data, by applying a “denoising” algorithm,
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and keeping only SK . But it can also be used to recover the blood location,
by considering the “power Doppler”

Ŝb,K (i) :=
mt
∑

k=K+1

σ2
k|uk|2(i) =

mt
∑

j=1

|(S − SK) (i, j)|2 , i ∈ {1, ...,mx} .

As we will show in the following subsection, clutter signal can be well ap-
proximated by a low-rank matrix. Therefore, SK will contain most of the
clutter signal for K large enough. In this case, even if the intensity of total
blood reflection is small, S − SK will contain more signal coming from the
blood than from the clutter and therefore high values of Ŝb,K (i) should be
located in blood vessels.

Before presenting the justification of this method, let us briefly provide
a heuristic motivation by considering the SVD of the continuous data given
by

s(x, t) =
∞
∑

k=1

σkuk(x)vk(t).

In other words, the dynamic data s is expressed as a sum of spatial compo-
nents uk moving with time profiles vk, with weights σk. Therefore, since the
tissue movement has higher spatial coherence than the blood flow, we expect
the first factors to contain the clutter signal, and the remainder to provide
information about the blood location via the quantity Ŝb,K .

2.3.3 Justification of the SVD in 1D

We will assume that the particles of the blood and of the clutter have inde-
pendent dynamics described by (2.2)-(2.4). We add the subscripts b and c
to indicate the dynamics of blood and clutter, respectively.

In this subsection, using the limit Gaussian model presented in §2.2.3, we
present the statistics of the singular values in a simple 1D model. These are
useful to understand the behavior of SVD filtering. The results of §2.2.3 allow
to simulate large number of sample signals s, given that we can compute the
covariance matrices (2.7) and (2.8). Since these matrices are very large, we
restrict ourselves to the 1D case, so that all sampling locations xi are located
at x = 0, and are thus characterized by their depth zi. We will therefore drop
all references to x in the following. We also consider very simplified dynamics,
which can be thought of as local descriptions of the global dynamics at work
in the medium. Let ab = a1,b and ac = a1,c be the random variables for the
dynamics of blood and clutter particles, respectively, as introduced in (2.2).
The dynamics is modeled by a Brownian motion with drift, namely

aα (t) = uα + vαt+ σαBt, α ∈ {b, c} .
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Here, uα represents the position of the particle at time t = 0, and is uniformly
distributed in (0, Lα), where Lb ≪ Lc. The deterministic quantity vα is the
mean velocity of the particles. In order to take into account the random
fluctuations of the particles in movement, we added a diffusion term σαBt,
where Bt is a Brownian motion and σ2

α is a diffusion coefficient quantifying
the variance of the fluctuations of the particle position relative to the mean
trajectory. We also make the simplifying assumption that the diffusion terms
are independent over different particles. More precisely, we have the following
conditional expectation and variance:

E (aα (t)| uα) = uα + vαt, Var (aα (t)| uα) = tσ2
α.

The difference between clutter and blood dynamics is in the diffusion co-
efficient: in the case of clutter, since it is an elastic displacement, σ2

c ≈ 0. For
simplicity, from now on we set σc = 0. In the case of blood, which is modeled
as a suspension of cells in a fluid, we have σ2

b = σ2 > 0. This coefficient is
expressed in m2s−1, and models the random diffusion in a fluid transporting
red blood cells due to turbulence in the fluid dynamics and collisions between
cells. In practice, σ2 is much larger than the diffusion coefficient of micro-
scopic particles in a static fluid, and depends on the velocity vb [19]. As for
the mean velocities, in the most extreme cases, vb and vc can be of the same
order, even though most of the time vb > vc.

Let Sb and Sc denote the data matrix constructed in §2.2.3, related to
blood and clutter signal, respectively. We now compute the covariance matrix
V of Sα:

Cov(Sα(i, j), Sα(i
′, j′)) = C2

αE (g (zi − aα (tj)) g (zi′ − aα (tj′)))

=
C2

α

L
E

∫ L

0

g
(

zi − y − vαtj − σαvαBtj

)

× g
(

zi′ − y − vαtj′ − σαvαBtj′

)

dy

= C2
αECgg

(

zi − zi′ + vα
(

tj′ − tj + σα(Btj′
− Btj)

)

)

,

where Cgg (z) = 1
L

∫ L

0
g(y)g(z + y)dy and Cb and Cc denote the intensity

of the blood and clutter signals, respectively. The expectation operator is
taken over all possible positions uα and all possible drifts Btj and Btj′

in the
first line, and only over all drifts in the second and third lines. By standard
properties of the Brownian motion, Btj′

− Btj is Gaussian distributed, of
expected value 0 and variance |tj − tj′ | and so it has the same distribution
as Btj′−tj . Thus, in the case of the blood, we can write

Cov (Sb(i, j), Sb(i
′, j′)) = C2

bECgg

(

zi − zi′ + vb(tj′ − tj + σbBtj′−tj)
)

.
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Likewise,

Cov
(

Sb(i, j), Sb(i′, j′)
)

= C2
bECgḡ

(

zi − zi′ + vb(tj′ − tj + σbBtj′−tj)
)

,

where Cgḡ (z) = 1
L

∫ L

0
g(y)ḡ(z + y)dy. The tissue model is then given by

σc = 0, and is therefore deterministic given the initial position. Thus

Cov (Sc(i, j), Sc(i
′, j′)) = C2

cCgg (zi − zi′ + vc (tj′ − tj)) ,

Cov
(

Sc(i, j), Sc(i′, j′)
)

= C2
cCgḡ (zi − zi′ + vc (tj′ − tj)) .

On one hand, in the case of blood, since Cgḡ and Cgg are oscillating and with
very small support (see Figures 2.1a and 2.1b), the integration done when
taking the expectation in the blood case should yield small correlations as
long as |tj′ − tj| is large enough. On the other hand, in the case of clutter,
correlations will be high between the two signals as long as zi − zi′ and
vc (tj − tj′) are of the same order and almost cancel out. This heuristic is
confirmed by numerical experiments. In Figure 2.1c, we compare the clutter
model and the blood model in one dimension: velocities are in the z direction,
and we only consider points aligned on the z axis. As we can see, correlations
are quickly decaying as we move away from (0, 0) in the case of blood. In
the case of clutter, there are correlations at any times at the corresponding
displaced locations.

Once the correlation matrix is computed, we can generate a large number
of samples to study the distribution of the singular values in different cases.
In Figure 2.2a, we compare the distribution in the two models (blood and
clutter), using the Gaussian limit approximation for the simulations, with
the same intensity for both models. A comparison with a white noise model
with the same variance shows that blood and noise have approximately the
same singular value distribution. On the contrary, the distribution of the
singular values of clutter presents a much larger tail. A comparison of the
distribution of the singular values for the clutter model at different velocities
shows no real difference in the tail of the distribution (Figure 2.2b).

As a consequence, the clutter signal sc is well approximated by a low
rank matrix, and the blood signal can be thought of as if it were only noise.
Therefore, the SVD method act as a denoising algorithm and extracts the
clutter signal, according to the discussion in the previous subsection.

2.4 Numerical Experiments

In this section, we consider again a more realistic 2D model, given by (2.2).
This framework will allow us to simulate generic blood flow imaging sequences
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(c) Absolute values of the correlations in the clutter model (σ = 0, vc =
10−2 m·s−1) and in the blood model (σ2 = 10−6 m2s−1, vb = 10−2 m·s−1).

Figure 2.1: Correlations of the Casorati matrix.
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Figure 2.2: The distribution of the singular values of the Casorati matrix S in
different cases.

from particles. The dynamics of blood and clutter are modeled as follows.
Let us assume that clutter is subject to a deterministic and computable flow
ϕc. The randomness of the motion of red blood cells in vessels is modeled by
a stochastic differential equation, given by

dy = vb (t, y) dt+ σ(y) dBt, (2.9)

where Bt is a two dimensional Brownian motion and σ is determined by
the effective diffusion coefficient K = 1

2
σ2. In blood vessels, this diffusion

coefficient is proportional to the product γ̇r2 where γ̇ is the shear stress in
the vessel, and r is the radius of red blood cells. As in the previous section,
let ac = a1,c and ab = a1,b. Let ϕb be the flow associated to (2.9). We assume
that ϕb represents the dynamics of blood particles, relative to overall clutter
movement, so that

ac (t) = ϕc (uc, t) , ϕc(uc, 0) = uc, (2.10)

and
ab (t) = ϕc (ϕb (ub, t) , t) , ϕb(ub, 0) = ub. (2.11)

The dynamics of all the other particles are then taken to be independent
realizations of the same dynamics. The velocity field vb and the clutter
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Figure 2.3: Single frame of ultrafast ultrasound (real part).

dynamics ϕc are computed beforehand and correspond to the general blood
flow velocity and to an elastic displacement, respectively. In our experiments,
we let ϕc be an affine displacement of the medium, changing over time: a
global affine transformation, with slowly varying translation and shearing
applied to the medium at each frame, namely

ϕc(u, t) =
[

1 w1(t)
0 1

]

u+
[

w2(t)
w3(t)

]

,

where wi are smooth and slowly varying (compared to ϕb) functions such
that wi(0) = 0. As for the blood velocity flow vb, it is parallel to the blood
vessels, with its intensity decreasing away from the center of the blood vessel
[49, Section 11.3]. More precisely, vb is a Poiseuille laminar flow, namely the
mean blood flow velocity is half of the maximum velocity, which is the fluid
velocity in the center of the vessel.

The relative blood displacements bk,j = ϕk,b (ub,k, tj) are computed ac-
cording to the following discretization of the stochastic differential equa-
tion (2.9):

bk,j+1 = bk,j + δtvb (tj, bk,j) +
√
δtσ (bk,j)Xk,j + o (δt) ,

where (Xk,j) are centered independent Gaussian random variables and δt =
tj+1 − tj is taken to be constant. The blood particle positions ak,b (tj) are
then computed simply by applying the precomputed flow ϕc.

In order to validate the SVD approach, we explore the effects of the
blood velocity and of the direction of the blood vessels on the behavior of
the singular values and on the quality of the reconstruction. In each case, the
clutter displacement is the same composition of time-varying shearing and
translation, and the mean clutter velocity is 1 cm·s−1. We choose Cc = 5
and Cb = 1, for the same density of scatterers from clutter and blood: per
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(a) Maximum blood velocity: 2 cm·s−1; mean clutter velocity:
1 cm·s−1.
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(b) Maximum blood velocity: 1 cm·s−1; mean clutter velocity:
1 cm·s−1.
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(c) Maximum blood velocity: 0.5 cm·s−1; mean clutter velocity:
1 cm·s−1.

Figure 2.4: The SVD method for different velocities and orientations. In each case,
we have from left to right: the blood velocity and location, the reconstructed blood
location, the decay of the singular values. The squares are 5mm× 5mm, and the
horizontal and vertical axes are the x and z axes, respectively. The parameters used
are those given in (1.1) and (1.2), F = 0.4 and Θ = 7. The density of particles for
both blood and clutter is 2,000 per mm2, and σ = 2.5 · 10−5.



2.4. NUMERICAL EXPERIMENTS 41

0 0.02 0.04 0.06 0.08 0.1

-5

0

5
×10

15

(a) Flow parallel to the receptor array.

0 0.02 0.04 0.06 0.08 0.1

-1

-0.5

0

0.5

1
×10

16

(b) Flow perpendicular to the receptor ar-
ray.

Figure 2.5: Time behavior of a single pixel (real part), located in a constant velocity
flow.

unit of area, the clutter intensity is therefore five times higher than the
blood intensity. A single frame of ultrafast ultrasound imaging is presented
in Figure 2.3: it is clear that without further processing, it is impossible to
locate the blood vessels.

In Figure 2.4, the results for various velocities and orientations are pre-
sented. The reconstruction intensities are expressed in decibels, relatively to
the smallest value in the image. The SVD method allows for reconstruction
of blood vessels, even if the maximum blood velocity is close to, or oven lower
than, the mean velocity of clutter. We always use the threshold K = 20. As
we can see, due to the better resolution in the z direction discussed in Sec-
tion 1.3, vessels oriented parallel to the receptor array have a reconstruction
with a better resolution. But due to the oscillating behavior of the PSF in
the z direction, and the low-pass filter behavior of the PSF in the x direction,
the sensitivity is better for vessels oriented perpendicularly to the receptor
array, and the SVD method is able to reconstruct smaller vessels with lower
velocities. This follows from the discussion in Subsection 2.2.2. In order to
visualize this phenomenon even better, Figure 2.5 presents the time behavior
of a single pixel from the data of Figure 2.4c. We can clearly see the Doppler
effect in the case when the flow is perpendicular to the receptor array, and
the low frequency behavior of the signal in the case when it is parallel to the
receptor array.

In Figure 2.6, results of an investigation on the effect of the threshold
K on the reconstruction are presented. Except for K, the parameters of
Figure 2.4b are used. If the threshold is too low, the reconstruction is not
satisfactory and artifacts appear everywhere in the reconstructed image. If
the threshold is too high, the reconstruction still works but the contrast
becomes lower. With our parameters, K = 20 seems to produce the best
results.

In order to further validate the method, we consider the impact of mea-
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Figure 2.6: Effect of the threshold K on the reconstruction. From left to right:
K = 10, 20, 30, 40.
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Figure 2.7: Effect of noise on the reconstruction. The parameters are the same
used in Figure 2.4b.
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surement noise on the recovery. To this end, we add independent white
Gaussian noise to the data, and consider the quality of the reconstruction
as a function of the noise intensity. Let us define the contrast of the recon-
struction as the ratio between the mean intensity of the reconstructed image
inside and outside the blood domain. The parameters of Figure 2.4b are
used. Blood intensity is five times lower than clutter intensity, and there-
fore a noise intensity of 10% corresponds to half the intensity of blood. In
Figure 2.7, sample reconstructions at different noise levels are provided. We
can conclude that contrast is robust to moderate levels of noise, since blood
vessels can still be identified up to 7.5% of noise if they are oriented along
the z axis, and up to 2.5% of noise if they are oriented along the x axis. Fig-
ure 2.7 also clearly quantifies the better contrast for vessels oriented along
the z axis.

2.5 Conclusion

In this chapter, by using a random model for the movement of the blood
cells, we have shown that a SVD approach can separate the blood signal
from the clutter signal. Our model and results open a door for a mathe-
matical and numerical framework for realizing super-resolution in dynamic
optical coherence tomography [33], in ultrafast ultrasound imaging by track-
ing micro-bubbles [26], as well as in acousto-optic imaging based on the use
of ultrasound plane waves instead of focused ones, which allows to increase
the imaging rate drastically [37].
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Chapter 3

Dynamic super-resolution

3.1 Introduction

The super-resolution problem is the following: given possibly noisy low fre-
quency measurements of a medium – Fourier coefficients below a certain
value, convolution by a low pass filter – is it possible to reconstruct the
original medium with a precision which exceeds the diffraction limit? This
problem is impossible in the general case, but there can be situations where
it is indeed possible, with conditions on sparsity for example.

One possible mathematical formulation for the super-resolution problem
can be the so called sparse spike reconstruction problem: let

µ0 =
N
∑

i=1

αiδxi

be a complex measure with finite support defined on Ω ⊂ R
d. Let

F : M(Ω) → R
n,

where M(Ω) is the set of complex measures on Ω, be the measurement op-
erator, so that the observed vector y is

y = Fµ0.

The super-resolution is then that of recovering the measure µ0 given the
measurements y. Since M(Ω) is infinite dimensional, F is not injective, and
therefore one has to use regularization to invert it. A common method for
solving such sparse problems is to use an infinite dimensional variant of the
Lasso program:

µ̂ ∈ argminν ‖ν‖TV
such that Fν = y. (3.1)
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Mathematical theory on the sparse spike recovery given low frequency mea-
surements has been flourishing in the past years. It includes stable recon-
struction of spikes with separation in one and multiple dimensions [18], robust
recovery of positive spikes in the case of a Gaussian point spread function,
with no condition of separation [11], exact reconstruction for positive spikes
in a general settings in one dimension [22], with estimations on the stabil-
ity [24].

The resolution of ultrafast ultrasound is determined by the wavelength
of the incident wave, and by other factors such as the length of the receptor
array and the range of angles used in angle compounding [3]. Due to diffrac-
tion theory, the minimum resolution one can obtain is of the order of half a
wavelength, which is of the order of 300 nm. This implies that in imaging of
small blood vessels, blood vessels separated by less than 300 nm cannot be
distinguished.

Localization microscopy has been shown to surpass the diffraction limit
in optical imaging [51], [31], and a similar technique has been proposed in
ultrasound imaging [27], [25]. In ultrasound imaging, this method consists in
using a contrast agent — micro-bubbles for example — which are randomly
activated in blood vessels and produce very localized spikes in the obser-
vations. If separated by at least several wavelengths, using sparse recovery
methods, it is possible to achieve sub-wavelength recovery of the position of
particles.

This motivates the introduction of our dynamic model for super-resolution.
Instead of considering a single measure µ0, we consider a time-varying mea-
sure µt, where t ∈ [−δ, δ]. To simplify the problem, we assume that each
point is moving with a constant velocity:

µt =
N
∑

i

αiδxi+vit, t ∈ [−δ, δ],

where vi ∈ R
d. The measurements vector is then composed of the measure-

ments at discrete times tk = kτ, k ∈ [−K,K], where Kτ = δ:

yk = Fµtk , k ∈ [−K,K].

In this work, we show that under certain conditions, we are able to recover
simultaneously the positions xi and the velocities vi with infinite precision,
using a sparse spike recovery based method. Figure 3.1 illustrates the idea
of the method in the case of 2d particles and a convolution operator.

The chapter is organized as follows: first, we present theoretical results
on the dynamic super-resolution problem. Second, we present numerical
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and
Gν = (〈ν, ϕl,k〉)l,k , ν ∈ M(Ωx × Ωv).

In this case, the measurements y = (yk)k where yk = Fµtk are given by

y = Gµ.

This allows us to propose the following program to recover positions and
velocities:

µ̂ ∈ argminν ‖ν‖TV
such that Gν = y. (3.2)

We will call (3.2) the dynamic recovery, whereas (3.1) will be called the static
recovery.

3.2.2 The perfect low-pass case

From now on to the end of this section, we consider the specific case of Fourier
coefficients:

Ωx = [0, 1],

Ωv = [−vmax, vmax],

ϕl(x) = e−2π〈x,l〉, l ∈ {−fc, . . . , fc}d .

Analog to [18], a sufficient condition for the solution to (3.2) to be µ is that for
any η ∈ C

N such that |η| = 1, ∀j ∈ 1, . . . , N , there exists a dual polynomial,
called a dual certificate,

q(x, v) =
K
∑

k=−K

∑

||l||∞≤fc

ck,le
i2πl·(x+kτv). (3.3)

obeying:
{

q(xi, vi) = ηj, j ∈ {1, . . . , N}
q(x, v) < 1, everywhere else.

(3.4)

Compared to the dual polynomials in the two dimensional case presented
in [18], the only difference with our case, when d = 1, is in the allowed
frequencies: whereas in the two dimensional case, all 2 dimensional low fre-
quencies are allowed, here the only allowed frequencies are

{

(lt, kτ lt), k = −K, . . . ,K, ||l||∞ ≤ fc
}

.

The following proposition presents the uniqueness of the reconstruction in
the case where we have uniqueness in more than 3 frames:
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Proposition 1. Let νi = αi

|αi| . Assume that there exist m distinct time-

steps, m ≥ 3, k1, k2, . . . , km such that for all p ∈ {1, . . . ,m}0, there exist a
trigonometric polynomial qj defined on R

d with frequencies in {−fc, . . . , fc}d
such that

{

qp(xi + tkpτvi) = νj, i ∈ {1, . . . , N}, p ∈ {1, . . . ,m}
|qj(x)| < 1, everywhere else.

(3.5)

Moreover, assume that for any m distinct indices i1, i2, . . . , im ∈ {1, . . . , N}
such that ηip = ηiq , for all p, q,

m
⋂

p=i

{

(x, v) : (x− xip) + kpτ(v − vip) = 0
}

= ∅. (3.6)

Then the polynomial q(x, v) = 1
m

∑m
p=1 qp(x+ tkpτv) satisfies (3.3) and (3.4).

Proof. It is immediate that q defined as such verifies:
{

q(xi, vi) = νj, i ∈ {1, . . . , N}
|q(x, v)| ≤ 1, everywhere.

(3.7)

Moreover, let (x, v) be such that |q(x, v)| = 1. By the properties of qj, this
means that each of the terms in the sum must be equal and have modulus
1/m. Therefore, there must exist i1, i2, . . . , im such that ηip = ηiq for all p, q
and:

x+ kpτv = xip + kpτvip , for all p ∈ {1, . . . ,m}.
By (3.6), i1, i2, . . . , im cannot be distinct. Therefore, at least two are equal
to some j ∈ {1, . . . , N} and we can conclude that x = xj and v = vj.

Geometrically, condition (3.6) ensures that there cannot be a virtual point
hiding between a true point at each of the frames where there is separation.
Numerical experiments show indeed that such situations produce instability
in the reconstruction. Figure 3.2 illustrates the simplest of these situations:
three points are static (their velocity is 0) and are equally spaced by ∆. In
this case, two ghost points arise. One point at the position of the center
point at t = 0 and with a velocity v = ∆/τ, this is the point illustrated in the
figure. The other one is the symmetric with the same location but negative
velocity.

There are also simple conditions that imply that the condition is always
verified: if m > n or if all αis have a different phase. This simple result
ensures that our proposed method works at least as well as what we call the
static method, which consists in identifying the position of particles in each
frame and then estimating their velocity. In the following proposition, we
list a number of concrete cases where we can apply this result.
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x
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•

x2
•
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•

Figure 3.2: Geometry of ghost points

Proposition 2. Assume that there exist m distinct time-steps, m ≥ 3,
k1, k2, . . . , km such that for all p ∈ {1, . . . ,m}, such that (3.6) hold and
either:

i) d = 1 or d = 2 and ∀p ∈ {1, . . . ,m}, ∀i 6= j

|xi + tkpvi − xj − tkpvj| >
C

fc
,

where C = 2 if d = 1 and C = 2.38 if d = 2.

ii) d = 1, αi > 0, ∀i and the xi + tkpvi are all distinct.

Then µ is the only solution to (3.2).

Proof. Condition i) comes from [18], condition ii) comes from [22].

3.3 Numerical simulations

3.3.1 Methods

Solving minimization problem (3.2) in all its generality is not an easy task.
Indeed, it is not linear and infinite dimensional. It is possible to use an
analog discrete problem, where the locations and velocities are fixed on a
grid, whose size determines the resolution we want to obtain, and replacing
the TV norm by a l1 norm. However, this methods becomes intractable
for a fine resolution. In [18], a continuous solution is obtained in the one
dimensional case, however, its not trivial to adapt their algorithm to our
method.
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In this work, we propose to use a continuous reconstruction method.
In [16], an algorithm is presented to solve the following problem:

min
µ̃

‖F µ̃− Y ‖22 subject to ‖µ̃‖TV ≤M. (3.8)

The proposed algorithm is limited to positive weights, but this is a realistic
expectation in the case of physical signals. Let us assume that we can guess
the value of ‖µ‖TV beforehand. Then we can set M = ‖µ‖TV . In this setting,
we have the following proposition:

Proposition 3. Assume that µ is the unique solution of (3.2). Then µ is
the unique solution of (3.8).

Proof. Since (3.2) admits a unique minimizer, every µ̃ 6= µ such that F µ̃ = Y
verifies ‖µ̃‖TV > K. Therefore, µ̃ is the unique minimizer of (3.8).

In order to evaluate the numerical experiments, we introduce the super-
resolution factor in space as follow:

SRFx =
xmax

fc∆x

, (3.9)

where xmax is such that Ω = [0, xmax]. In the case of velocity reconstruction,
we introduce a super-resolution factor in velocity defined as:

SRFv =
xmax

fc∆vδ
. (3.10)

3.3.2 1D Fourier examples.

We consider the perfect low-pass filter described in section 3.2. We consider
a generic example where a number N of points are scattered in the medium
with uniform and independent positions and velocities. The parameters for
these simulations are the following:

fc = 20

xmax = 1cm

K = 2

τ = 1/60s.

(3.11)

The number of points in taken between 4 and 10 and their velocities are
taken between + and − cm.s−1. We then realize this setup 1000 times and
try to reconstruct using the minimization scheme described above.
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of static frames where the reconstruction is correct, whereas numerical sim-
ulations show that dynamic reconstruction works in cases where the static
reconstruction works in no single frame.

3.4 Applications to ultrafast ultrasound

This section is devoted to apply the described method to the case of blood
flow imaging in ultrafast ultrasound (UFUS). The goal is to locate blood
vessels and compute the velocity of blood inside them.

In the case of 2D UFUS with angle compounding, the point spread func-
tion is given up to a constant by

g(x, z) = χ
(

2ν0c
−1
0 z

)

exp
(

4iπν0c
−1
0 z

)

sinc
(

2πν0c
−1
0 Fx

)

sinc
(

2πν0c
−1
0 Θx

)

,

where F,Θ are constants, ν0 is the base pulsation, and χ is a smooth low-
frequency function [3]. To remove high frequencies in measurements, we de-
modulate the signal by multiplying our measurements by exp

(

−4iπν0c
−1
0 z

)

.
Therefore, if we sample our image at points (xl, zl)l, the associated function
ϕl are given by

ϕl(x, z) =χ
(

2ν0c
−1
0 z − zl

)

exp
(

4iπν0c
−1
0 z

)

×
sinc

(

2πν0c
−1
0 F (x− xl)

)

sinc
(

2πν0c
−1
0 Θ(x− xl)

)

,
(3.13)

Thanks to the Shannon sampling theorem, since the demodulated sig-
nal (3.13) has almost all its energy in low frequencies, the solution to the
lasso minimization will be near the correct measure µ, as long as there is
enough stability. This is the case when there is enough separation in the
static images.

Figure 3.6 illustrates reconstruction in the case of an UFUS sequence on
a small 2D patch.

3.5 Conclusion

In this chapter, we have shown that perfect reconstruction of positions and
velocity is possible with low frequency measurements. We have proven that
in the case where we have separation of the points in the static images, the
minimization procedure exactly recovers positions and velocity. We have also
shown that this procedure can be applied to ultrafast ultrasound imaging.

What remains to be done is to determine a tighter criterion to have perfect
recovery, since numerical simulations show that reconstruction works even in
the case where we have no separation in still images.





Chapter 4

Spectrography of cell cultures

4.1 Introduction

Cell culture production processes, such as those from stem cell therapy, must
be monitored and controlled to meet strict functional requirements. For
example, a cell culture of cartilage, designed to replace that in the knee,
must be organized in a specific way.

Hyaline cartilage is located on the joint surface and play an important
role in body movement. In normal articular cartilage, there is a depth-
dependent stratified structure known as zonal organization. As a simplified
model, cartilage comprises three different layers [42]: a superficial zone in
outer 10%, a middle zone that is 50% of the height, and a deep zone consisting
in the inner 40%. At the microscopic level, cartilage tissue is composed of
cells, collagen fibers, and glycosaminoglycans (GAGs). The concentration
and organization of each micro-structure differs among the three layers. In
the superficial zone, cells are anisotropic and horizontally aligned, collagen
orientation is also horizontal and GAGs have a lower concentration than
in the other layers. In the middle zone, there are fewer cells and they are
isotropic, collagen is randomly oriented and there is a medium concentration
of GAGs. In the deep zone, cells are isotropic, cell density is higher than
in the middle zone, collagen is vertically aligned and there is a high GAG
density. As these parameters all contribute to the function of collagen in the
knee, and must be replicated in the cell culture.

It is important that the method for monitoring cell cultures is non-
destructive. Destructive methods require hundreds of samples to be cul-
tured for a single functional tissue, and for the samples to be monitored
multiple times during maturation. Here, we propose a microscopic electri-
cal impedance tomography (micro-EIT) method for monitoring cell cultures
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that exploits the distinctive dielectric properties of cells and other micro-
structures. In this method, electrodes inject a current into the medium at
different frequencies and the corresponding dielectric potentials are recorded,
thus enabling reconstruction of the microscopic parameters of the medium.
The parameters of interest are cell density, collagen orientation, and GAG
density, as well as the orientation and shape of cells.

EIT uses a low-frequency current (below 500 kHz) to visualize the inter-
nal impedance distribution of a conducting domain such as a tissue sample or
the human body. Recent studies measured electrical conductivity values and
anisotropy ratios of engineered cartilage to distinguish extracellular matrix
samples containing differing amounts of collagen and GAGs. During chon-
drogenesis over a six-week period, these measurements could distinguish the
stages of the process and provide information regarding the internal depth-
dependent structure.

In this work, we provide a mathematical framework for determining the
microscopic properties of the cell culture from spectral measurements of the
effective conductivity. For simplicity, we consider a micro-structure compris-
ing two components in a background medium. One of the components has a
frequency dependent on the material parameters arising from the cell mem-
brane structure, while the other has constant conductivity and permittivity
over the frequency range. First, we derive in Theorem 4 the overall electrical
properties of the culture, which depend on the volume fraction of each com-
ponent and associated membrane polarization tensors defined by (4.10) and
(4.11). Then, we show that the spectral measurements of the overall electri-
cal properties of the culture can be used to determine the volume fraction of
each component and the anisotropy ratio of the first component. For doing
so, we study the dependence of the membrane polarization tensors on the
operating frequency and use the spectral theorem to recover in Proposition 7
from the measurement of the effective conductivity on a range of frequencies
the coefficients of its expansion with respect to the frequency. Proposition 7
also provides the anisotropy ratio of the cell culture.

This chapter is organized as follows: In Section 4.2, we present a sim-
plified model of the tissue culture. In Section 4.3, we derive an equivalent
effective conductivity for the solution at the macroscopic scale. In Section
4.4, we present a method based on spectral measurements, in which micro-
scopic properties are measured from the effective conductivity. This process
is known as inverse homogenization or dehomogenization. Finally, we provide
some numerical examples to illustrate our main findings.
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superficial zone

middle zone

deep zone

Figure 4.1: Organization of the cells in the cartilage tissue.

4.2 The direct problem

In this section, we propose a simple electrical model for the tissue and derive
an effective conductivity using periodic homogenization.

4.2.1 Problem setting

We consider the domain of interest - the cell culture - to be described by a
domain Ω ⊂ R

3. We assume that Ω = D × (0, 1) where D ⊂ R
2 denotes a

floor of the culture medium. Following [43], we describe the conductivity of
the medium by a scalar field

σω,ε (x) = σω

(

x,
x

ε

)

,

where ω denotes the angular frequency of the injected current, and ε > 0
is a small parameter representing the microscopic scale of the medium; σ
is 1−periodic in every direction in the second variable. Let us consider the
following unit domain:

Y =

(

−1

2
;
1

2

)d

.

For a fixed x, σ
(

x, x
ε

)

describes the conductivity in a single cartilage tissue
with cell size ε at a location x ∈ Ω. To have a complete model of the tissue,
σ must describe the conductivity of both cells and of the other inclusions,
i.e., collagen and GAGs. The biological fluid conductivity is noted k0 and
is assumed to be frequency independent. The cells are made of biological
fluid enclosed in a very thin and very resistive membrane [6] of thickness
εδ for some small parameter δ > 0. The conductivity of the membrane is
frequency dependent and is noted km (ω). The cell shape varies slowly with
the parameter x ∈ Ω compared to the micro-scale ε. The other inclusions
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km

k0

k0 + ki

Figure 4.2: Typical values of σω on Y.

are described by some frequency independent conductivity function ki
(

x, x
ε

)

.
Let

ψ : Ω× R
d :→ R

be a C1
(

Ω× R
d
)

function, 1-periodic in every direction with respect to the
second variable. We assume that the function ψ is the level set function
for the membrane boundary given by Ω+

ε =
{

x : ψ
(

x, x
ε

)

> δ
}

(resp. Ω−
ε =

{

x : ψ
(

x, x
ε

)

< −δ
}

). We also assume that the support of ki (x, y) is strictly
included in {(x, y) : ψ (x, y) > δ}. We can now describe the conductivity σω,
which is schematically represented at a fixed x in Figure 4.2:

σω (x, y) =











k0 + ki (x, y) if ψ (x, y) > δ,

k0 if ψ (x, y) < −δ,
km (ω) else.

(4.1)

Now that we have an expression for the conductivity in the medium, as
commonly accepted in EIT, we use the quasi-static approximation for the
electrical potential. For an input current g(x) sin (ωt) on the boundary ∂Y ,
with

∫

∂Ω
g = 0, the real part of the corresponding time-harmonic potential,

denoted by uω,ε, satisfies the following problem approximately:
{

∇ · σω,ε∇uω,ε = 0 in Ω,

σω,ε∇uω,ε · ν = g on ∂Ω.
(4.2)

where ν is the outer normal vector on ∂Ω. Here, we impose the normalization
∫

Ωε
uω,ε = 0.
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Remark 3. Let us briefly explain how the expression of σω in (4.1) is derived.
We should note that the frequency dependent behaviors of σω,ε in (4.2) are
attributed to thin cell membranes. Imagine that we inject an oscillating
current at the angular frequency ω into the cube Y . Then, the resulting
time-harmonic potential w = u+ iv in Y is governed by

∇ · ((σ′(y) + iωσ′′(y))∇w(y)) = 0 for y ∈ Y ,

where σ′ denotes the conductivity distribution and σ′′ is the permittivity
distribution in Y . In [36], it was shown that, under some conditions on the
membrane, the real part u approximately satisfies

∇ ·
( |σ′ + iωσ′′|2

σ′ ∇u
)

= 0 in Y . (4.3)

Since σ′′ ≪ σ′ outside the membrane, we have

|σ′ + iωσ′′|2
σ′ ≈ σ′ outside the membrane.

Hence, it is reasonable to assume that the conductivity outside the mem-
brane, as a coefficient of the elliptic PDE (4.3), does not change with fre-
quency. On the other hand, since σ′ on the membrane is very small, the
effect of σ′′ is not negligible. Hence, the conductivity, km, on the membrane
changes with frequency as follows:

|σ′ + iωσ′′|2
σ′ = σ′ +

ω2σ′′

σ′ on the membrane.

4.2.2 Homogenization of the tissue

We are now interested in getting rid of the micro-scale oscillations of σω,ε,
since boundary measurements will only allow us to image macro-scale varia-
tions of the conductivity. To this end, we proceed to the homogenization of
equation (4.2). Assume that k0 + ki is bounded from below and from above:

0 <σ ≤ k0 + ki ≤ σ.

From [6], we have two-scale convergence [4, 43, 45] of uω,ε to uω, which is a
solution to











∇ · σ∗
ω∇uω = 0 in Ω,

σ∗
ω∇uω · ν = g on ∂Ω,

∫

Ω
uω = 0,

(4.4)
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for an input current g(x) sin (ωt) on the boundary ∂Ω. Here, σ∗
ω is called the

effective conductivity which can be represented by [6]

σ∗
ω(x)ep · eq =

∫

Y
σω (x, y)∇ (yp + vp(y)) · eqdy, ∀p, q ∈ {1, ..., d}

= k0

(

δp,q +

∫

∂Y

∂vp
∂ν

yq ds(y)

)

, (4.5)

where ep := (0, · · · , 1, · · · , 0) with 0 components except p-th component 1,
and vp is the solution to the following equation on Y for p = 1, ..., d:











∇ · (σω (x, y)∇(vp(y) + yp)) = 0 for y ∈ Y ,
vp 1-periodic,
∫

Y(vp(y) + yp)dy = 0.

(4.6)

As δ → 0, vp can be approximated [35] by the solution of the following
equation, where β (ω) = δ

km(ω)
:































∇ · (σω (x, y)∇(vp(y) + yp)) = 0 for y ∈ Y\∂C,
k0

∂
∂ν
(v+p (y) + yp) = k0

∂
∂ν
(v−p (y) + yp) for y ∈ ∂C,

v+p (y)− v−p (y) = β (ω) k0
∂
∂ν
(v+p (y) + yp) for y ∈ ∂C,

vp 1-periodic,
∫

Y vp(y) + ydy = 0.

(4.7)

Here, ∂C denotes the membrane of the cell C and βk0 is the effective thickness
of the membrane.

4.3 Imaging the micro-structure from effective

conductivity measurements

In this section, we do not care about the space dependence of σ∗
ω, and will

therefore drop it. We will thus assume that σ∗
ω is constant equal to some

matrix in Md (C) := {m ∈ C
d×d : mi,j = mj,i for i, j = 1, 2, · · · , d}. We

will show what kind of information on the micro-structure we can recover
from the knowledge of σ∗

ω in a range of frequencies ω ∈ (ω1, ω2). First, in
section 4.3.1, we will obtain a simple representation of the effective conduc-
tivity in the dilute case, where the volume fraction of both cells and other
inclusions is small compared to the volume of biological fluid. Then, in the
following sections we will use this representation and will show how to recover
information about the micro-structure using the spectral measure.
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4.3.1 Effective conductivity in the dilute case

Here, we consider some reference cell C0 and some reference inclusion B0

with there C2 boundaries ∂C0 and ∂B0. We assume that C = xC+ρCC0 and
β (ω) = ρCβ0 (ω) for some reference β0 (ω) and let B = xB +ρBB0, where xC
and xB respectively indicate the locations of the cell and inclusion and ρC
and ρB their characteristic sizes. We assume that the conductivity ki of the
inclusion is given by

ki (y) = (k0 − k1)χB (y) ,

where χB denotes the characteristic function of B.
The effective conductivity is therefore expressed as

σ∗
ωep · eq =

∫

Y
σ (y)∇ (yp + vp(y)) · eqdy, ∀p, q ∈ {1, · · · , d} ,

where, for p ∈ {1, · · · , d},


























































∇ · (k0∇(vp(y) + yp)) = 0 in Y\ (B ∪ ∂C) ,
∇ · (k1∇(vp(y) + yp)) = 0 in B,

k0
∂
∂ν
(v+p (y) + yp) = k0

∂
∂ν
(v−p (y) + yp) on ∂C,

v+p − v−p = β (ω) k0
∂
∂ν
(v+p (y) + yp) on ∂C,

v+p − v−p = 0 on ∂B,

k0
∂
∂ν
(v+p (y) + yp) = k1

∂
∂ν
(v−p (y) + yp) on ∂B,

vp periodic,
∫

Y(vp(y) + y) dy = 0.

(4.8)

From now on, I denotes the inclusion map H1/2(∂C) → H−1/2(∂C), where
H1/2 and H−1/2 are the Sobolev spaces of order 1/2 and −1/2 on ∂C. We
will now proceed to prove the following result.

Theorem 4. Let fk = ρdk, k ∈ {B,C} and f = max (fB, fC). Then we have
the following expansion:

σ∗
ω = k0 [I + fBMB0

+ fCMC0
(ω)] + o (f) , (4.9)

where

MC0
(ω)ep · eq =

∫

∂C0

νq(y)

(

1

β0 (ω) k0
I + L#,C0

)−1

[νp](y)ds(y), (4.10)

and

MB0
ep · eq =

∫

∂B0

(

λI −K∗
#,B0

) −1[νp](y)yq ds (y) (4.11)
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with

λ =
k1 + k0

2 (k1 − k0)
.

We begin be reviewing properties of periodic layer potentials. Let us
define the periodic Green’s function

G#(x) = −
∑

n∈Zd\{0}

e2iπn·x

4π2 |n|2
.

Thanks to Poisson’s summation formula, in the sense of distribution, G#

satisfies

∆G# (x) =
∑

n∈Zd

δ(x− n)− 1. (4.12)

We write G# (x, y) := G# (x− y). Let us introduce the periodic single layer
potential, for a Lipschitz domain D ⊂ Y :

S#,D : H−1/2 (∂D) → H1

loc
(

R
d\∂D

)

ϕ 7→ x 7→
∫

∂D

G# (x, y)ϕ(y)ds(y),

the periodic double layer potential

D#,D : H1/2 (∂D) → H1

loc
(

R
d\∂D

)

ϕ 7→ x 7→
∫

∂D

∂G#

∂ν(y)
(x, y)ϕ(y)ds(y),

and the periodic Neumann-Poincaré operator

K#,D : H1/2 (∂D) → H1/2 (∂D)

ϕ 7→ x 7→
∫

∂D

∂G#

∂ν(y)
(x, y)ϕ(y)ds(y),

and its adjoint given by

K∗
#,D : H−1/2 (∂D) → H−1/2 (∂D)

ϕ 7→ x 7→
∫

∂D

∂G#

∂ν(x)
(x, y)ϕ(y)ds(y).

We review the jump properties of the layer potentials [9].
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Lemma 1. We have the following jump relations along the boundary ∂D:

S#,D[ϕ](x)|+ = S#,D[ϕ](x)|− ,
∂

∂ν
S

#,D
[ϕ](x)

∣

∣

∣

∣

±
=

(

±1

2
I +K∗

#,D

)

[ϕ](x),

D#,D[ϕ](x)|± =

(

∓1

2
I +K#,D

)

[ϕ](x),

∂

∂ν
D

#,D
[ϕ](x)

∣

∣

∣

∣

+

=
∂

∂ν
D

#,D
[ϕ](x)

∣

∣

∣

∣

−
.

where the subscript ± means fD(x)|± = limt→0+ fD(x± tν(x)) for x ∈ ∂D.

We denote by L#,D the operator ϕ 7→ ∂
∂ν
D

#,D
[ϕ]. We write νp = ν · ep on

∂B and ∂C. Using these jump relations, we have the following representation
theorem for vp, p ∈ {1, ..., d}.

Theorem 5. We have the following representation for vp:

vp = Cp + S#,B [ϕ1,p]−D#,C [ϕ2,p] , (4.13)

where Cp is a constant and (ϕ1, ϕ2) satisfies the following system:







(

λI −K∗
#,B

)

[ϕ1,p] +
∂
∂ν
D#,C [ϕ2,p] = νp on ∂B,

(

1
βk0

I + L#,C

)

[ϕ2,p]− ∂
∂ν
S#,B[ϕ1,p]

∣

∣

∣

∣

+

= νp on ∂C.
(4.14)

Lemma 2. For any (F,G) ∈ H−1/2 (∂B)×H−1/2 (∂C), the system







(

λI −K∗
#,B

)

[ϕ1] +
∂
∂ν
D#,C [ϕ2] = F on ∂B,

(

1
βk0

I + L#,C

)

[ϕ2]− ∂
∂ν
S#,B[ϕ1]

∣

∣

∣

∣

+

= G on ∂C,

admits a unique solution (ϕ1, ϕ2) ∈ H−1/2 (∂B)×H1/2 (∂C).

Proof. As shown in Appendix B, 1
β
I +L#,C and λI −K∗

#,B are invertible for

λ /∈ (−1/2, 1/2]. Moreover, since

∂

∂ν
D#,C : H1/2 (∂C) → H−1/2 (∂B)

and
∂

∂ν
S#,B : H−1/2 (∂B) → H−1/2 (∂C)
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are compact, the operator

H−1/2 (∂Ω)×H1/2 (∂Ω) → H−1/2 (∂Ω)×H−1/2 (∂Ω)

(ϕ1, ϕ2) 7→
(

(

λI −K∗
#,B

)

[ϕ1]−
∂

∂ν
D#,C [ϕ2],

(

1

βk0
I + L#,C

)

[ϕ2]−
∂

∂ν
S#,B[ϕ1]

∣

∣

∣

∣

+

)

is a Fredholm operator. It is therefore sufficient to show that it is injective.
Let (ϕ1, ϕ2) be such that

{(

λI −K∗
#,B

)

[ϕ1] +
∂
∂ν
D#,C [ϕ2] = 0 on ∂B,

(

1
βk0

I + L#,C

)

[ϕ2]− ∂
∂ν
S#,B[ϕ1] = 0 on ∂C.

Let v = S#,B [ϕ1]−D#,C [ϕ2]. Then v is 1-periodic in every direction, and v
is a solution by construction to the following problem:







































∇ · (k0∇(vp(y) + y)) = 0 for y ∈ Y\ (B ∪ ∂C) ,
∇ · (k1∇(vp(y) + y)) = 0 for y ∈ B,

k0
∂
∂ν
(v+p (y) + y) = k0

∂
∂ν
(v−p (y) + y) for y ∈ ∂C,

v+p (y)− v−p (y) = β (ω) k0
∂
∂ν
(v+p (y) + y) for y ∈ ∂C,

v+p (y)− v−p (y) = 0 for y ∈ ∂B,

k0
∂
∂ν
(v+p (y) + y) = k1

∂
∂ν
(v−p (y) + y) for y ∈ ∂B.

(4.15)

By the uniqueness of the solution to (4.15) up to a constant, v(x) = c, ∀x ∈
Y . Then, we have ϕ1 = 0 on ∂C and ϕ2 = 0 on ∂B because they are equal
to the jumps of v (resp. ∂v

∂ν
) across ∂B (resp. ∂C). This concludes the

proof.

We can now proceed to prove Theorem 5.

Proof. Let (ϕ1, ϕ2) be a solution of (4.14), and let

vp = S#,B [ϕ1]−D#,C [ϕ2] .

Then using the jump relations of the layer potentials, we have that vp is a
solution of (4.8), except that we have not necessarily

∫

∂Y vp = 0. We just
have to adjust Cp accordingly.

We now proceed to compute the representation of the effective conduc-
tivity.
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Theorem 6. We have the following representation for σ∗
ω:

σ∗
ω = k0 (I +M∗) ,

where M∗ = (M∗
pq)

d
p,q=1 is defined by

(M∗)pq =

∫

∂B

xpϕ1,qds−
∫

∂C

νpϕ2,qds, ∀p, q ∈ {1, ..., d} .

Proof. We recall the expression of σ∗
ω in (4.5):

σ∗
ωep · eq = k0

(

δp,q +

∫

∂Y

∂vp
∂ν

(y)yqds(y)

)

.

Using representation (4.13), we obtain
∫

∂Y

∂vp
∂ν

(y)yqds(y) =

∫

∂Y

∂S#,B [ϕ1,p]

∂ν
(y)yqds(y)−

∫

∂Y

∂D#,C [ϕ2,p]

∂ν
(y)yqds(y)

and
∫

∂Y

∂S#,B [ϕ1,p]

∂ν
(y)yqds(y) =

∫

∂B

∂S#,B [ϕ1,p]

∂ν

∣

∣

∣

∣

+

(y)yqds(y)

−
∫

∂B

∂S#,B [ϕ1,p]

∂ν

∣

∣

∣

∣

−
(y)yqds(y)

=

∫

∂B

yqϕ1,p(y)ds(y).

The same reasoning applies to the second part of the equation:
∫

∂Y

∂D#,C [ϕ2,p]

∂ν
(y)yqds(y) =

∫

∂C

D#,C [ϕ2,p]|+ (y)νq(y)ds(y)

−
∫

∂C

D#,C [ϕ2,p]|− (y)νq(y)ds(y)

=

∫

∂C

ϕ2,p(y)νq(y)ds(y).

Therefore,

σ∗
ωep · eq = k0

(

δp,q +

∫

∂Y

∂vp
∂ν

(y)yqds(y)

)

= k0

(

δp,q +

∫

∂B

yqϕ1,p(y)ds(y)−
∫

∂C

ϕ2,pνq(y)(y)ds(y)

)

.
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We turn to the proof of Theorem 4. We first review asymptotic properties
of the periodic Green’s function G#. The following result from [9, Chapter
2] holds.

Lemma 3. We have the following expansion for G#:

G#(x) = G(x) +Rd(x),

where G is the Green function and Rd is a smooth function on R
d and its

Taylor expansion at 0 is given by

Rd(x) = Rd(0)−
1

2d
|x|2 +O

(

|x|4
)

. (4.16)

Using this expansion, we obtain by exactly the same arguments as those
in [9, Chapter 8] the following expansion, which is uniform in z ∈ ∂B0,

(

λI −K∗
B0

)

[ψB,p](z) = νB0,p (z) + o(1)
(

1

β0k0
I + LC0

)

[ψC,p](z) = νC0,p(z) + o(1),

where K∗
B0

is the standard Neumann-Poincaré operator and LC0
denotes the

operator ∂
∂ν
DC0

associated with the standard double layer potential DC0
:

K∗
B0
[φ](x) :=

∫

∂B0

∂G

∂ν(x)
(x, y)φ(y)ds(y),

LC0
[φ](x) :=

∂

∂ν

∫

∂C0

∂G

∂ν(y)
(x, y)φ(y)ds(y).

Therefore, we arrive at the result stated in Theorem 4.

4.3.2 Spectral measure of the tissue

Expansion (4.9) yields

σ∗
ω = k0

[

I + ρdBMB0
+ ρdCMC0

(ω)
]

+O
(

ρd
)

with

MC0
(ω)ep · eq =

∫

∂C0

νq(y)

(

1

β0 (ω) k0
I + LC0

)−1

[νp](y) ds(y).

In order to use the spectral theorem in a Hilbert space, we have to mod-
ify the expression of MC0

. Let L−1
C0

be the inverse of LC0
: H

1/2
0 (∂C0) →

H
−1/2
0 (∂C0). Then we write

(

1

β0 (ω) k0
I + LC0

)−1

[νp] =

(

1

β0 (ω) k0
L−1

C0
◦ I + IH1/2

)−1

L−1
C0
[νp].

The following result holds.
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Lemma 4. L−1
C0

◦I can be extended to a self-adjoint operator L† : L2 (∂C0) →
L2 (∂C0) , whose image is a subset of H1/2 (∂C0).

Proof. Let J1 : L2 (∂C0) →֒ H−1/2 (∂C0) and J2 : H1/2 (∂C0) →֒ L2 (∂C0).
Let L† = J2 ◦ L−1

C0
◦ J1. Then obviously L† extends L−1

C0
◦ I and its image

is a subset of H1/2 (∂C0). Let us show that it is self-adjoint. Let (ϕ, ψ) ∈
L2 (∂C0)×L2 (∂C0). Let 〈 , 〉L2 and 〈 , 〉H1/2,H−1/2 respectively denote the L2-

scalar product and the duality pairing between H1/2(∂C0) and H−1/2(∂C0).
We have

〈

L†[ϕ], ψ
〉

L2
=

〈

L−1
C0
[ϕ], ψ

〉

L2
=

〈

L−1
C0
[ϕ], ψ

〉

H1/2,H−1/2

=
〈

L−1
C0
[ψ], ϕ

〉

H1/2,H−1/2 =
〈

L−1
C0
[ψ], ϕ

〉

L2
=

〈

L†[ψ], ϕ
〉

L2
,

since LC0
is self-adjoint from H1/2(∂C0) onto H−1/2(∂C0).

From this result, we can now proceed. From the spectral theorem, there
exists a spectral measure E such that for any z ∈ C \ Λ

(

L†) and for any

(ϕ, ψ) ∈ (L2 (∂C0))
2
,

〈

(L†

z
+ I

)−1

[ϕ], ψ

〉

L2

=

∫

Λ(L†)

1
x
z
+ 1

ϕ(x)ψ(x)dE (x) . (4.17)

where Λ(L†) denotes the spectrum of L†. Let

Fp,q (z) = δp,q+ρ
d
BMB0

ep·eq+ρdC
∫

Λ(L†)

1
x
z
+ 1

L−1
C0
[νp](x)·νq(x)dE (x) . (4.18)

where δp,q = 1 if p = q and δp,q = 0 if p 6= q. Therefore, we have

σ∗
ωep · eq ≃ k0 [Fp,q (β0 (ω) k0)] .

Since
lim
z→0

F (z) = I + ρdBMB0
,

there is no singularity of F in 0. Since 0 /∈ Λ
(

L†), (4.17) is valid on a
neighborhood of 0.

Proposition 7. Let F = (Fp,q)
d
p,q=1 be defined by (4.18). Then the following

expansion of F in a neighborhood of 0 holds:

Fp,q (z) =
∞
∑

k=0

ak,p,qz
k, (4.19)
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where

a0,p,q = I + ρdBMB0
ep · eq,

and

a1,p,q = ρdCνp · νq.

Proof. Identity (4.19) holds using the analyticity of F in a neighborhood of
0. We also have

a0,p,q = lim
z→0

Fp,q(z) = δp,q + ρdBMB0
ep · eq.

In order to obtain the next coefficients, we begin by establishing the following
limit:

lim
z→0

(

L† + zI
)−1

[νp] = LC0
[νp], p = 1, 2.

Indeed, let ϕ (z) =
(

L† + zI
)−1

[νp]. Then

ϕ (z) =
1

z

(

νp − L†ϕp

)

.

Since the range of L† is a subset ofH1/2 (∂C0), ϕ (z) ∈ H1/2 (∂C0). Therefore,

ϕ (z) = LC0
[νp]− zLC0

[ϕ](z) →
z→0

LC0
[νp].

This yields

lim
z→0

1

z
(Fp,q(z)− Fp,q(0)) = ρdCνp · νq.

In the following, we write

F (z) = (Fp,q(z))p,q∈{1,...,d} , z ∈ C\Λ (LC0
) ,

and

Ak = (ak,p,q)p,q∈{1,...,d} , k ∈ N. (4.20)

Since Fp,q is analytic on C\Λ (LC0
), the values of ak can be recovered from

the values of Fp,q on a subset of C with a limiting point. Therefore, we can
reconstruct the values ak,p,q from the measurements of the effective conduc-
tivity σ∗

ω in a band of frequencies ω ∈ (ω1, ω2). Further details on this will
be provided in the following section.
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4.4 Inverse homogenization

4.4.1 Imaging of the anisotropy ratio

The anisotropy ratio (the ratio between the largest and the lowest eigenvalue
of the effective conductivity tensor) depends on the frequency [6]. Further-
more, in the general case, the anisotropy orientation (the direction of the
effective conductivity tensor eigenvectors) depends also on the frequency.
However, in the special case where we have an axis of symmetry of a single
inclusion or a cell, the anisotropy orientation is independent of the frequency.

We denote by Od(R) := {R ∈ R
d×d | RTR = 1, det(R) = 1} the set

of rotational matrices. Here, the superscript T denotes the transpose. For
convenience, we write R(x) := Rx for x ∈ Y and R(D) := {Rx : x ∈ D}.
We will need the following covariance result :

Lemma 5. Let R ∈ Od (R) and f ∈ L2 (∂C0). Then

LC0
[f ◦R] ◦R = LC0

[f ].

Proof. We have, for any x ∈ ∂C0,

LC0
[f ◦R] (R (x)) = lim

h→0
∇DC0

[f ◦R] (R(x) + hν (R(x))) · ν (R(x)) .

Moreover,

DC0
[f ◦R] (R(x)) =

∫

∂C0

∇G (R (x)− y) · ν (y) f (R (y)) ds (y)

=

∫

∂C0

∇G (R (x)−R (y)) · ν (R (y)) f(y)ds (y) .

Since G is isotropically symmetric,∇G (R (x− y)) = R (∇G (x− y)), there-
fore for any x, y ∈ ∂C0,

∇G (R (x)−R (y))·ν (R (y)) = R (∇G (x− y))·R (ν (y)) = ∇G (x− y)·ν (y)
so that

DC0
[f ◦R] (R(x)) = DC0

[f ] (x) , ∀x ∈ ∂C0.

This in turn implies that

LC0
[f ◦R] (R (x)) = lim

h→0
∇DC0

[f ◦R] (R(x) + hν (R(x))) · ν (R(x))
= lim

h→0
∇DC0

[f ] (x+ ν (x)) · ν (x) = LC0
[f ] (x).

The following corollary holds immediately.

Corollary 8. Let R ∈ Od (R). Then,

MR(C0) = RMC0
RT .
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Let us begin with the two-dimensional case.

Proposition 9. Let d = 2, and (ε1, ε2) be an orthonormal basis of R2. Let
ξ be the orthogonal symmetry of axis ε1. If ξ (C0) = C0, then

F (z)ε1 · ε2 = 0, ∀z ∈ C \ Λ(L†).

Proof.

F (z)ε1 · ε2 = ρdC

∫

∂C0

(L†

z
+ I

)−1

[ν · ε1] (x) ν(x) · ε2 ds(x)

= ρdC

∫

∂C0

(L†

z
+ I

)−1

[ν · ε1] (ξ(x)) ν(ξ(x)) · ε2 ds(x)

= −ρdC
∫

∂C0

(L†

z
+ I

)−1

[ν · ε1] (x) ν(x) · ε2 ds(x)

because ν(ξ(x)) · ε1 = ν(x) · ε1 and ν(ξ(x)) · ε2 = −ν(x) · ε2. Therefore,

F (z)ε1 · ε2 = 0, ∀z ∈ C \ Λ(L†).

We have a similar result in three dimensions. The following proposition
holds.

Proposition 10. Let d = 3, and (ε1, ε2, ε3) be an orthonormal basis of R3.
Let ξ1 (resp. ξ2) be the orthogonal symmetry of axis ε1 (resp. ε2). If ξ1 (C0) =
ξ2 (C0) = C0, then

F (z)εj · εk = 0, ∀z ∈ C, ∀k 6= j ∈ {1, 2, 3} .

Proof. The proof is exactly the same as in the d = 2 case and is therefore
omitted.

Remark 4. It is also true that the symmetry axes of B0 correspond to the
eigenvectors of the polarization tensor MB0

. Therefore, the anisotropy direc-
tion of the frequency-independent background can also be recovered as the
principal directions of MB0

.

Remark 5. Even if each of inclusion and cell has an axis of symmetry, the
direction of eigenvectors of the effective conductivity tensor can be frequency
dependent. The following numerical test is conducted to show an example
of frequency dependency. There are an ellipsoidal inclusion with major axis
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C0

ε1

ε2

Figure 4.3: A domain presenting a symmetry. In this case, the anisotropy direction
is frequency independent.

e1 and minor axis e2 and an ellipsoidal cell with major axis e2 and minor
axis e1 in the unit square as shown in Figure 4.4 (a). For the square domain
Y = (−1

2
, 1
2
)2, each axis length of cell and inclusion is 1/8, and 1/24. The

center of ellipsoidal cell and inclusion are (1/3, 1/6) and (0,−1/3) respec-
tively. The ratio between membrane thickness and size of a cell is 5× 10−3.
The conductivity value of medium, membrane, inclusion are 0.5 S/m, 10−5

S/m, and 10−12 S/m respectively. We use (4.5) to compute the effective con-
ductivity tensor. For the numerical computation, we take advantage of using
uj satisfying ∇ · (σ∇uj) = 0 in Ω with boundary condition uj(y)|∂Ω = yj|∂Ω
for y = (y1, y2). Then, vj can be replaced with vj = uj − yj. Hence, the
eigenvectors of the effective conductivity can be computed and the main di-
rection of anisotropy changes in terms of the frequency as shown in Figure
4.4 (b).

4.4.2 Implementation of the inverse homogenization

Following [6], we use the following values:

• The size of cells: 50µm;

• Ratio between membrane thickness and size of a cell: 0.7× 10−3;

• Medium conductivity: 0.5 S/m;

• Membrane conductivity: 10−8 S/m;
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ω/2π
current

104 Hz 109 Hz

y1-direction

I0

y2-direction

I0

y1

y2

blue arrows for eigenvectors at frequency 104 Hz
red arrows for eigenvectors at frequency 109 Hz

(a) (b)

Figure 4.4: (a) shows voltage map with current flows for each y1- and y2- direction
current at 104 and 109 Hz. (b) shows eigenvectors of the effective conductivity.
Blue arrows represent eigenvectors at frequency ω/2π = 104 Hz while red arrows
are representing eigenvectors at frequency ω/2π = 109 Hz.

• Background inclusion conductivity: 10−7 S/m;

• Membrane permittivity: 3.5× 8.85× 10−12 F/m;

• Frequency band: ω/2π ∈ [104; 109] Hz.

In this case, we have values of β(ω) for ω/2π ∈ [104; 109] in Figure 4.5. We
consider a sample medium as follows: the cells are elliptic in shape, with axes
lengths ρCaC and ρCbC , with acbCπ = 1. The background is composed of
elliptic inclusions, with axes lengths ρBaB and ρBbB, with aBbBπ = 1. Their
orientation is given by the angles θC and θB respectively.

At each frequency, in order to compute the true effective conductivity
given by (4.5), we perform a finite element computation using FreeFem++
[30]. Comparison between the true effective conductivity and the expansion
from Theorem 4.9 can be seen in Figures 4.6 and 4.7, in the case θB = 0 and
θC = 0, and ρB = ρC = 0.1.

To recover the moments from the effective conductivity, we approximate
as a rational function,

Fp,q(z) ≃
p0 + p1z + ...+ pNz

N

q0 + q1z + ...+ qNzN
.
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Figure 4.5: Values of β(ω) for ω/2π ∈
[

104; 109
]

.
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Figure 4.6: Real part of the effective conductivity.
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Figure 4.7: Imaginary part of the effective conductivity.
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for some N ∈ N. Such an approximation of F is called a Padé approximation
of F . Then we approximate the moments by the following values:

ã0,p,q =
p0
q0
,

ã1,p,q =
p1
q0

− q1p0
q20

.

Numerically, this is done as a simple least square inversion: the coefficients
of the polynomials P (z) = p0+p1z+...+pNz

N and Q(z) = q0+q1z+...+qNz
N

are computed to minimize the quantity

K
∑

k=1

∣

∣

∣

∣

Fp,q(zk)−
P (zk)

Q(zk)

∣

∣

∣

∣

2

,

where z1, ..., zK are the frequency values where F is measured.

We now consider a toy example where C is an ellipse in R
2. In this case,

if λ1 and λ2 are the eigenvalues of A1 defined by (4.20) for k = 1, the ratio
r := λ2/λ1 is independent of the volume fraction and is given by

r =

∫ 2π

0
b2 cos2(t)√

b2 cos2(t)+a2 sin2(t)
dt

∫ 2π

0
a2 sin2(t)√

b2 cos2(t)+a2 sin2(t)
dt

=
b

a

∫ 2π

0
cos2(t)

√

cos2(t)+a2

b2
sin2(t)

dt

∫ 2π

0
sin2(t)

√

b2

a2
cos2(t)+sin2(t)

dt
. (4.21)

Since the right-hand side of (4.21) can be regarded as a function of a/b, the
anisotropy ratio a/b can be easily obtained by solving (4.21) with the known
value r. In Figure 4.8 (resp. in Figure 4.9), we illustrate the reconstruction of
the ratio r using the Padé approximation of F as a function of the anisotropy
ratio a/b compared to its theoretical value given by the preceding formula
in the case where there is no inclusion B (resp. with an inclusion B with
ρB = 0.1). As we can see, the reconstruction is almost perfect in the case
where there is no inclusion, and there is a slight bias induced by the inclusion
B.

After recovering the anisotropy ratio a/b, we can recover the volume frac-
tion ρC from the product of λ1, λ2 of the eigenvalues of A1. Indeed, we have

λ1λ2 = ρ4Cab

∫ 2π

0

cos2(t)
√

cos2(t) + a2

b2
sin2(t)

dt

∫ 2π

0

sin2(t)
√

b2

a2
cos2(t) + sin2(t)

dt

=
ρ4C
π

∫ 2π

0

cos2(t)
√

cos2(t) + a2

b2
sin2(t)

dt

∫ 2π

0

sin2(t)
√

b2

a2
cos2(t) + sin2(t)

dt.
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Figure 4.8: Reconstruction of r when there is no inclusion B.

Value of anisotropy

1 1.5 2 2.5 3 3.5

R
a
ti
o
 b

e
tw

e
e
n
 e

ig
e
n
v
a
lu

e
s
 o

f 
fi
rs

t 
m

o
m

e
n
t

0

1

2

3

4

5

6

Theoritical value

Reconstructed value

Figure 4.9: Reconstruction of r when there is an inclusion B with ρB = 0.1.
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Values of ρC 0.01 0.02 0.03 0.05 0.1 0.2 0.3
Reconstructed 0.0098 0.0196 0.0294 0.0491 0.0981 0.1963 0.2945

Table 4.1: Reconstructed values of ρC with anisotropy ratio of 2.

θ
B

 estimated

θ
C

 estimated

θ
B

 true

θ
C

 true

Figure 4.10: Reconstruction of the orientation of the inclusions B and C.

Table 4.1 presents numerical reconstruction of the volume fraction ρC using
the preceding formula, with an anisotropy ratio equal to 2.

To reconstruct the angle of the inclusions, we simply use the orientation of
the eigenvalues of the moments of A0 for B and A1 for C. This is illustrated
by results in Figure 4.10 when both B and C are ellipses of anisotropy ratio
2 and with ρB = ρC = 0.1.



Appendix A

The Justification of the

Approximation of the PSF

This appendix is devoted to the formal justification of the PSF approximation
(1.8) which was obtained by truncating the Taylor expansion of wθ

± at the
first order: we shall show here that the error caused by this truncation is
small. For simplicity, we shall consider only the case when z = z′ and θ = 0:
the general case may be tackled in a similar way. Without loss of generality,
we may set x′ = 0 and suppose x ≥ 0. We also suppose that we are not too
close to the detectors, namely z ≥ 10−2 m. Moreover, in order to be able to
be quantitative, we consider the particular case when F = 0.4 and τ = 1.

The expression of the PSF that we want to approximate is (see (1.7))

g(x) := g0((x, z), (0, z)) =
c0
4πx

[f ′(w+(x))− f ′(w−(x))] ,

where w±(x) is given by

w±(x) := h0
x,x′(x± Fz) = c−1

0

(√
1 + F 2z −

√

z2 + (x± Fz)2
)

.

(Note that, for simplicity of notation, we have removed the dependence of w
on θ and z.) An immediate calculation shows that

w±(0) = 0, w′
±(0) =

∓c−1
0 F√

1 + F 2
, w′′

±(x) =
−c−1

0 z2

((x± Fz)2 + z2)3/2
.

Hence, there exists ξx ∈ [0, x] such that

w±(x) =
∓c−1

0 F√
1 + F 2

x+ cx
x2

2
, |cx| = |w′′

±(ξx)| ≤ c−1
0 z−1.
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Therefore, the absolute error E(x) due to the truncation of the Taylor series
of w± at first order is given by

E(x) = c0(4π)
−1 [E+(x)− E−(x)] ,

where

E±(x) =
1

x

[

f ′(
∓c−1

0 F√
1 + F 2

x+ cx
x2

2
)− f ′(

∓c−1
0 F√

1 + F 2
x)

]

.

We now consider two cases, depending on x. First, consider the case when
x > 5 · 10−3 m. From the above calculations we immediately have

|E(x)| ≤ c0(4π)
−1 4

x
‖f ′‖∞ ≤ 2

5
c010

3ν0 ≤ 3.7 · 1012.

Next, consider the case when x ≤ 5 · 10−3 m. By using again the mean
value theorem we obtain

E±(x) = cx
x

2
f ′′(θx), θx =

∓c−1
0 F√

1 + F 2
x+ δxcx

x2

2

for some δx ∈ [0, 1]. Since |f ′′(t)| is even and decreasing for t > 0, we have
that

|E±(x)| ≤ c−1
0

x

2z
|f ′′(

c−1
0 F√
1 + F 2

x− c−1
0

x2

2z
)|,

since the inequality x ≤ 5 · 10−3 m guarantees that
c−1

0
F√

1+F 2
x − c−1

0
x2

2z
> 0.

Therefore we have

|E(x)| ≤ (4π)−1xz−1|f ′′(
c−1
0 F√
1 + F 2

x− c−1
0

x2

2z
)|.

Let us look at the right hand side of this inequality. As x → 0 the error
tends to 0: this is expected, because of the Taylor expansion around 0. On

the other hand, for big x, the value of |f ′′(
c−1

0
F√

1+F 2
x − c−1

0
x2

2z
)| is very small,

since |f ′′(t)| decays very rapidly for large t. Therefore, the maximum of the
right hand side is attained in a point x∗ ∈ (0, 0.005). The value in this point
may be explicitly calculated, and we have

|E(x)| ≤ 4 · 1012, 0 ≤ x ≤ 5 · 10−3 m.

To summarize the above derivation, we have shown that the absolute
error E(x) is bounded by

|E(x)| ≤ 4 · 1012, x ≥ 0. (A.1)
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We now wish to estimate the relative error ‖E‖∞ / ‖g‖∞. In order to
do this, let us compute g(0). Since the Taylor expansion becomes exact as
x → 0, we may very well compute g(0) by using the approximated version.
Thus, setting G = F/

√
1 + F 2 we have

g(0) = lim
x→0

− c0
4πx

[

f ′(c−1
0 Gx)− f ′(−c−1

0 Gx)
]

= lim
x→0

−G(4π)−1

[

f ′(c−1
0 Gx)− f ′(0)

c−1
0 Gx

+
f ′(−c−1

0 Gx)− f ′(0)

−c−1
0 Gx

]

= −2G(4π)−1f ′′(0),

whence |g(0)| ≥ 8.8·1013 by a direct calculation of |f ′′(0)|. Finally, combining
this inequality with (A.1) allows to bound the relative error by

‖E‖∞
‖g‖∞

≤ 5%.

We have proven that the relative error of the approximation obtained by
truncating the Taylor expansions of w± at the first order is less than 5%.
This has been proven only in the particular case when z = z′: the general
case may be done by extending the above argument to two dimensions.
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Appendix B

Spectrum of some periodic

integral operators

Let C ⊂ R
d be a C1+α-domain for some α > 0. It is known that the non

periodic operator λI−K∗
C is invertible on H−1/2 for λ /∈

(

−1
2
, 1
2

]

[20, 28]. The

positivity of LC [46, Section 3.3] also implies that λI+LC : H1/2 → H−1/2 is
invertible for λ > 0. We extend these results to the case of periodic Green’s
function.

Theorem 11. For any λ > 0, the operator λI + L#,C : H1/2 (∂C) →
H−1/2 (∂C) is invertible.

Proof. We first show that the operator L#,C is a Fredholm operator. Note
that, L#,C = LC +R where R is an integral operator with a smooth kernel
and is therefore compact. Moreover, since LC has a dimension 1 kernel and
image, it is a Fredholm operator. Therefore, L#,C is Fredholm. Now we
show that L#,C is positive semi-definite, and the result will follow from the
Fredholm alternative. Since

〈L#,C [ϕ], ψ〉L2 = −〈S#,C [curl∂Cϕ], curl∂Cψ〉L2

for any ϕ, ψ ∈ H1/2 (∂C), we just have to show that S#,C is negative semi-
definite. From the expression (4.12) for G#, we compute, for any ϕ ∈
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L2 (∂C),

〈S#,C [ϕ], ϕ〉L2 = −
∑

n∈Zd\{0}

∫

∂C

∫

∂C

e2iπn·(x−y)

4π2 |n|2
ϕ (x)ϕ (y) ds (x) dS (y)

= −
∑

n∈Zd\{0}

(
∫

∂C

e2iπn·y

2π |n|ϕ (y) dS (y)

)(
∫

∂C

e2iπn·x

2π |n|ϕ (x) ds (x)

)

= −
∑

n∈Zd\{0}

∣

∣

∣

∣

∫

∂C

e2iπn·y

2π |n|ϕ (y) ds (y)

∣

∣

∣

∣

2

≤ 0.

Therefore, S#,C is negative semi-definite, which concludes the proof.

Theorem 12. For λ /∈
(

−1
2
, 1
2

]

, the operator λI − K∗
#,C is invertible on

H−1/2 (∂C).

Proof. Since λI − K∗
C is invertible, K∗

#,C − K∗
C is a compact operator [9],

λI −K∗
#,C is a Fredholm operator and it is enough to show that it is one-to-

one. The proof goes exactly as in [20]. Let us assume that λI −K∗
#,C is not

one-to-one. Then there exists some f ∈ H−1/2 (∂C) such that

(

λI −K∗
#,C

)

[f ] = 0.

Let us write

(

λI −K∗
#,C

)

[f ] =

(

λ− 1

2

)

f +

(

1

2
I −K∗

#,C

)

[f ].

Since
〈(

1
2
I −K∗

#,C

)

[f ], 1
〉

L2
= 0, we have 〈f, 1〉L2 = 0. Let u = S#,C [f ] ∈

H1 (Y\∂C). Let

A =

∫

C

|∇u(x)|2 dx and B =

∫

Y\C
|∇u(x)|2 dx.

Then A 6= 0 or B 6= 0 since f is not identically zero. Then by Green’s formula
together with the jump formulas, we have

A =

〈(

−1

2
I +K∗

#,C

)

[f ],S#,C [f ]

〉

L2

,

and

B =

〈(

1

2
I +K∗

#,C

)

[f ],S#,C [f ]

〉

L2

.
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Since
(

λI −K∗
#,C

)

[f ] = 0, we have β = 1
2
B−A
B+A

. We have therefore a con-

tradiction : we have |β| ≤ 1
2

since A,B ≥ 0. Therefore, β = −1
2

which
implies that B = 0. Therefore, u is constant in R

d\ ∪n∈Zd {C + n}. Since u
is continuous across ∂C, u is harmonic on C and is constant on ∂C, and by
uniqueness of the Dirichlet problem on C, u is constant on C. Therefore,

f =
∂

∂ν
S#,C [f ]

∣

∣

∣

∣

+

− ∂

∂ν
S#,C [f ]

∣

∣

∣

∣

−
= 0,

which is a contradiction.
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Résumé  
 

Les différentes modalités d’imagerie par 
ondes présentent chacune des limi-
tations en termes de résolution ou de 
contraste. Dans ce travail, nous mod-
élisons l’imagerie ultrasonore ultrarapide 
et présentons des méthodes de re-
construction qui améliorent la précision de 
l’imagerie ultrasonore. Nous in-
troduisons deux méthodes qui permettent 
d’augmenter le contraste et de
mesurer la position super-résolue et la 
vitesse dans les vaisseaux sanguins.
Nous présentons aussi une méthode de 
reconstruction des paramètres micro-
scopiques en tomographie d’impédance 
électrique en utilisant des mesures
multifréquence et en s’aidant de la théorie 
de l’homogénisation.
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Different modalities in wave imaging each 
present limitations in terms of
resolution or contrast. In this work, we 
present a mathematical model of
the ultrafast ultrasound imaging modality 
and reconstruction methods which
can improve contrast and resolution in 
ultrasonic imaging. We introduce two
methods which allow to improve contrast 
and to locate blood vessels below
the diffraction limit while simultaneously 
estimating the blood velocity. We
also present a reconstruction method in 
electrical impedance tomography
which allows reconstruction of 
microscopic parameters from multi-
frequency
measurements using the theory of 
homogenization.
 


	Modeling of Ultrafast Ultrasound Imaging
	Introduction
	The Forward Problem
	The Inverse Problem
	Beamforming
	The point spread function
	Angle compounding

	Conclusion

	Blood Flow Imaging in Ultrafast Ultrasound
	Introduction
	The Forward Problem
	The quasi-static approximation and the construction of the data
	The Doppler effect
	Multiple scatterer random model

	The Inverse Problem: Source Separation
	Formulation of the dynamic inverse problem
	The SVD algorithm
	Justification of the SVD in 1D

	Numerical Experiments
	Conclusion

	Dynamic super-resolution
	Introduction
	Theoretical results
	The space-velocity model
	The perfect low-pass case

	Numerical simulations
	Methods
	1D Fourier examples.

	Applications to ultrafast ultrasound
	Conclusion

	Spectrography of cell cultures
	Introduction
	The direct problem
	Problem setting
	Homogenization of the tissue

	Imaging the micro-structure
	Effective conductivity in the dilute case
	Spectral measure of the tissue

	Inverse homogenization
	Imaging of the anisotropy ratio
	Implementation of the inverse homogenization


	The Justification of the Approximation of the PSF
	Spectrum of some periodic integral operators

