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Abstract

The need for personalized recommendation has considerably increased with the advent
of huge databases, whose size exceeds by far the human scale. Such an overabundance
of information (commercial products, potential connections in social networks, . . . ) has
driven the development of recommender systems (RS). A RS typically learns the user
interests from past recorded activities, and consistently processes new incoming items to
include them (or not) in the user-specific recommendations.

Recommendation is also desirable when estimating the relevance of an item requires
complex reasoning based on experience: supervised machine learning techniques are good
candidates to simulate experience from large amounts of data.

In both cases, the accuracy of decisions to recommend or not items is heavily dependent
on the ability to generalize from past data.

The present thesis focuses on the cold-start context in recommendation, i.e. the sit-
uation where either a new user desires recommendations, or a brand-new item is to be
recommended. Cold-start is specially challenging to RSs since no past interaction data is
available to infer the user interests or the item peculiarities. Instead, RSs have to base
their reasoning for recommendations on side descriptions. Two recommendation problems
are investigated in this work, and two recommender systems are proposed to handle the
cold-start issue.

The problem of choosing an optimization algorithm in a portfolio can be cast as a
recommendation problem. In order to both reduce the optimization cost of a brand-
new problem instance and mitigate the risk of optimization failure, we propose a two-
components system. First, an algorithm selector is used to leverage the description of
problem instances, thus enabling peak per-instance performances to be achieved. Sec-
ond, this selector is combined with a sequential scheduler, that enforces the generalization
ability at a moderate cost. Both components are trained on past data to simulate ex-
perience, and alternatively optimized to enforce their cooperation. The resulting system
won the Open Algorithm Selection Challenge 2017, focusing on algorithm portfolios for
combinatorial optimization.

Automatic job-applicant matching (Jam) has recently received considerable attention
in the recommendation community as online recruitment platforms and social networks
are now common media used to connect job seekers and companies. We develop specific
natural language (NL) modeling techniques and combine them with standard recommen-
dation procedures to leverage past user interactions and the (mostly) textual descriptions
of job positions. The NL and recommendation aspects of the Jam problem are studied
on two real-world datasets. The appropriateness of various RSs on applications similar to
the Jam problem are discussed.
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Synthèse

L’avènement de bases de données de grande taille, impossibles à appréhender par des
humains, a rendu indispensable la mise à disposition de recommandations personnalisées.
Cette surabondance d’information (de produits de consommation, de relations potentielles
dans les réseaux sociaux, etc.) a été le moteur du développement des systèmes de recom-
mandation. L’activité d’un utilisateur est enregistrée et utilisée par ces systèmes pour
apprendre ses centres d’intérêt. Ces systèmes doivent également traiter en permanence les
données concernant de nouveaux objets, afin d’éventuellement les inclure dans les recom-
mandations personnalisées.

Il est également intéressant de disposer de recommandations lorsqu’estimer la perti-
nence d’un objet est complexe, et repose essentiellement sur le jugement d’experts. Les
techniques d’apprentissage automatique supervisé sont alors d’excellents moyens de simu-
ler l’expérience requise par le traitement de grandes quantités de données.

Dans les deux cas, la décision de recommander ou non des objets avec précision est
grandement influencée par la capacité à étendre à de nouveaux exemples le raisonnement
qui a été appris à partir des données passées.

Cette thèse examine le problème du démarrage à froid en recommandation, c’est-à-dire
une situation dans laquelle soit un tout nouvel utilisateur désire des recommandations, soit
un tout nouvel objet est proposé à la recommandation. Le démarrage à froid est un défi
pour les systèmes de recommandation puisqu’aucune donnée d’intéraction n’est disponible
pour inférer les souhaits de l’utilisateur ou les caractéristiques de l’objet. Le raisonnement
qui aboutit aux recommandations repose alors sur des descriptions externes de l’utilisateur
et/ou de l’objet. Deux problèmes de recommandation de ce type sont étudiés ici, pour
lesquels des systèmes de recommandation spécialement conçus pour le démarrage à froid
sont présentés.

En optimisation, il est possible d’aborder le problème du choix d’algorithme dans un
portfolio comme un problème de recommandation. Notre première contribution concerne
un système à deux composants qui vise à réduire le coût de l’optimisation d’une nouvelle
instance tout en limitant le risque d’un échec de l’optimisation. Le sélecteur d’algorithme
est le composant clé pour atteindre d’excellentes performances pour l’instance courante : il
reproduit le jugement expert à partir de la description de l’instance. Afin que le sélecteur
concentre ses efforts sur les instances difficiles à traiter, un ordonnanceur d’algorithmes
est utilisé pour résoudre les instances faciles pour un faible surcoût. Les deux composants
sont entrainés sur les données du passé afin de simuler l’expérience, et sont alternativement
optimisés afin de les faire coopérer. Le système ainsi formé a remporté l’Open Algorithm
Selection Challenge 2017, qui se focalisait sur l’optimisation combinatoire et les problèmes
de décision.

L’appariement automatique de chercheurs d’emploi et d’offres est un sujet d’étude ma-
jeur depuis que les plateformes de recrutement en ligne et les réseaux sociaux constituent
un moyen privilégié de mettre en contact candidats et entreprises. Une seconde contribu-
tion concerne le développement de réseaux de neurones articifiels pour la modélisation du
langage naturel et leur combinaison avec des techniques de recommandation classiques.
Ainsi, les systèmes proposés tirent profit à la fois des intéractions passées des utilisateurs
et des descriptions textuelles des annonces. Le problème d’appariement d’offres et de cher-
cheurs d’emploi est étudié à travers le prisme du langage naturel et de la recommandation
sur deux jeux de données tirés de contextes réels. Les systèmes de recommandation pro-
posés sont ensuite évalués sur ces données propriétaires et comparés à l’état de l’art sur
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des données publiques. Une discussion sur la pertinence des différents systèmes de recom-
mandations pour des applications similaires est proposée.
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Chapter 1

Selection and recommendation in
a cold-start context

Selection is defined as the process of choosing one out of a set of alternatives, retaining
the best one and discarding all other alternatives that are perceived as less satisfying.
Selection is an active process that reflects both the utility function and the intelligence
(or the computational power) of the decision maker. Selection can be viewed as a key
building block in artificial intelligence systems, either supporting complex processes (e.g.
feature or example selection in machine learning [Blum and Langley, 1997]) or delivering
the output of the AI system.

Recommendation can be viewed as a preparatory phase of selection, where the rec-
ommender system selects and ranks a small subset of alternatives out of a (usually very
large) set of alternatives. A main difference between recommendation and selection is that
in recommendation setting the final decision – i.e. the actual selection – is not made by
the system. The recommender system only supplies the actual decision maker, called the
user in the following, with a restricted set of alternatives. Typically, the system is not
fully informed about the interestingness function of the user.

1.1 Context of the thesis

The presented work is concerned with automatic selection and recommendation. The
calibration of the selection/recommendation system (SRS) is achieved by machine learning
from a previously recorded dataset. In the following, only the offline setting will be
considered, i.e. there is no “user in the loop” cooperating with the SRS; and further
information gained by the system after the learning phase is not exploited − as opposed
to the online setting also referred to as lifelong learning. Following common practice,
alternatives to be recommended or selected will be referred to as items.1

1.1.1 A machine learning perspective

Selection and recommendation systems mostly differ regarding who will make the even-
tual decision: the system itself (selection setting) or the human being referred to as user
(recommendation setting). Naturally, a good recommender system is expected to provide
high-quality suggestions, matching the selections that would have been made if the user
had infinite time and computational resources. In other words, the ultimate goal of a

1Though in some contexts, such as social networks, items to be recommended may be users.
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recommender system is to learn and implement the utility function, or function of inter-
estingness, of the particular user. The main distinction thus becomes that the system is
allowed to deliver one choice in the selection setting vs a set of choices in the recommen-
dation setting. The human-machine interaction aspects of SRS, the user’s trust in the
system and how to favor it, are outside the scope of the presented work, and selection and
recommendation will be used interchangeably in the following.

An SRS usually benefits from data related to a number of users; therefore it has
a substantially wider view of the application domain than any single user (who, in the
general case, only has a partial view of the available items). The point of SRS will thus be
to exploit the dataset, or community archive, to support the profiling of user interests, of
item features, and their correspondence. This knowledge is used in a second phase to form
the prediction (e.g. list of recommendations or set of selected items). Such an approach
based on past data typically is cast as a machine learning problem. The SRS methods
usually involve little prior knowledge about the domain of application, making them fairly
general and applicable – under the usual assumption data of good quality (user and item
descriptions, feedback).

1.1.2 The cold-start context

The item cold-start problem (I-CS) is stated as the problem of recommending items
for which there does not yet exist any feedback [Schein et al., 2002]. Such a situation
commonly occurs in e-commerce whenever a new product is listed for sale. A recommender
system must then rely on an external source of information about the item, typically its
description. Naturally, the item description might not be as informative regarding the
user preferences as the feedback itself.

Likewise, the user cold-start problem (U-CS) is stated as the problem of recommending
items to a brand new user who did not give any feedback yet, e.g. a user that has just
subscribed to a website and whose interests are yet unknown. The recommender system
must also rely on side information (age, gender...or user profile) to make recommendations.

The I-CS and U-CS problem, though similar, differ as users and items do not play
symmetrical roles in the recommendation problem. Typically, a user will make her se-
lection among a set of items (and the desirability of a given item might thus depend on
the other items); in contrast, the user behaviors are assumed to be independent of each
other.2

For the sake of completeness, two other settings are introduced. The recommendation
of known items to known users, referred to as warm-start recommendation problem (or
recommendation problem for short), has been extensively studied in the recommender
system literature, particularly so since the Netflix challenge [Bennett et al., 2007; Weimer
et al., 2008; Koren et al., 2009; Salakhutdinov et al., 2007]. The recommendation of new
items to new users, referred to as full cold-start recommendation problem, has received
little attention in the recommender systems community. In most cases this very specific
setting is handled as a two-stage process, e.g. recommending the globally top-ranked items
first and thereafter gradually refining the user profile based on her feedback. As an alter-
native, full cold-start recommendation can be tackled as an information retrieval problem,
matching a query (the user profile) with documents (items, through their description).

In the following, the item-oriented (I-CS) and user oriented (U-CS) cold-start prob-
lems will be referred to as semi cold-start when there is no ambiguity. It is emphasized

2Except through the “taste propagation” achieved by the SRS and/or the commercial biases imple-
mented in the recommendation platform.
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that the “cold-start” term refers to the recommendation of brand-new items or to brand-
new users (also termed cold-start in the “narrow sense” in [Gantner et al., 2010] or hard
cold-start), i.e. of items or users with not a single known interaction.

1.2 Motivation

As previously mentioned, recommender and selection systems have a wide range of appli-
cations. Thanks to decades of effort especially in the recommendation area, a number of
large data resources have been made publicly accessible; they foster the design and enable
the rigorous assessment of recommender systems, spanning a variety of applications and
research goals. Two specific application domains will be considered in this work, illustrat-
ing the variety of research questions, of algorithmic approaches, and of validation criteria
involved in SRSs.

1.2.1 Selection supporting the expert: algorithm portfolios for optimiza-
tion

The first application regards algorithm selection in order to solve a particular problem
instance. In many contexts, several algorithms are likely to solve a problem instance,
though the provided solutions might be more or less satisfactory for the problem owner.
An algorithm portfolio is a set of algorithms that are all applicable to the same problem
instances, and desirably such that any problem instance is satisfactorily solved by at least
one algorithm in the portfolio. The selection problem at hand thus is to select the best
algorithm in the portfolio i) for the new problem instance at hand and ii) w.r.t. the
considered performance criteria. In this context, problem instances will be referred to as
users and portfolio algorithms as items. By construction, the SRS essentially aims at
brand new problem instances, and selecting the best algorithm for each one. This goal is
cast as a U-CS problem.

Part I is devoted to algorithm portfolios in the context of optimization. The number of
considered algorithms is typically a few dozens; the experienced optimization practitioner
usually knows them all, with a good expertise of several of them. The difficulty is to
predict the performances of a particular algorithm on the new instance: algorithms and
instances are complex objects. After pre-selecting the algorithms appropriate for the
considered range of problem instances (the pre-selection aspect is not addressed here),
algorithm selection has long relied on manual expertise. We consider here automatic
algorithm selection methods, which have been studied and used for over a decade [Gomes
and Selman, 2001; Leyton-Brown et al., 2003]. The goal is to see how machine learning-
based algorithms can be leveraged to achieve algorithm selection, exploiting significant
expertise and datasets about the portfolio behaviors on former problem instances.

1.2.2 Recommendation for society: job advertisements recommendation

The second application focuses on the automatic recommendation of job advertisements
(items, referred to as jobs in the following) to applicants (users). This problem, tackled
in Part II, is cast as an I-CS problem (more in Chap. 6). The number of items is
generally large; users can hardly review even a small fraction thereof and thus use filters.
Currently, the search for job ads appropriate to a given user proceeds by combining search
query (information retrieval) and hard filtering (along specific criteria like sector, type of
contract, location...). The use of machine learning for job recommendation is a recent and
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promising direction for online recruitment platforms [Malherbe et al., 2014; Carpi et al.,
2016].

1.3 Main contributions and organization of the work

The first SRS problem tackled in this manuscript concerns algorithm selection for opti-
mization; the goal is to “cross the chasm” of a purely automatic algorithm selection setup
and deliver the best performances of the algorithm portfolio for the problem instance at
hand.

The second part tackles the automatic recommendation of job ads to applicants. Be-
yond efficient recommendation, we shall see that the matching learning approach opens
promising perspectives beyond job recommendation (typically in the domain of continuing
education).

1.3.1 Per-instance algorithm selection within a portfolio

The most common and simplest approach consists of: i) determining the most efficient
algorithm on average in a first stage (benchmark phase); ii) always using it in the second
stage, referred to as production or operational phase. Still, the most effective approach
relies on the per-instance selection of one or a small set of appropriate algorithms. This
manuscript investigates two ways of combining portfolio algorithm to achieve per-instance
efficient resolution:

Algorithm Selector And Pre-scheduler, version 1 The per-instance selection of a
single algorithm is meant to determine for each instance the algorithm that performs best.
This approach might however be adversely affected due to the inappropriate or insufficient
description of the problem instances, occasionally leading to catastrophic failures and
compromising the average performance of the approach. Inspired by other algorithm
portfolio techniques [Xu et al., 2008; Kadioglu et al., 2011; Xu et al., 2012b; Malitsky
et al., 2013; Hoos et al., 2015], our first contribution within the ASAP.V1 system is to
combine algorithm selection with another portfolio method, referred to as pre-scheduler.
In comparison to similar algorithm selection approaches [Xu et al., 2008; Kadioglu et al.,
2011], careful attention is paid to the trade-off between performance and robustness on
a wide range of optimization problems. ASAP.V1 also introduces a simple and elegant
new way of improving the global performances by enhancing the algorithm selector with
information gained during solving with the pre-scheduler. ASAP.V1 received a honourable
mention during the ICON challenge on Algorithm selection (2015) [Kotthoff, 2015].

Algorithm Selector And Pre-scheduler, version 2 ASAP.V1 was upgraded and
yielded ASAP.V2, based on the alternating optimization of ASAP components. The main
limitation faced by ASAP.V2 is overfitting. Several methodologies have been designed
and investigated to avoid overfitting. Their extensive empirical assessment shows that
ASAP.V2 preserves the robustness of ASAP.V1 while achieving improved performances.
ASAP.V2 won the Open Algorithm Selection Challenge in 2017 [Kotthoff et al., 2017].

1.3.2 Contributions to the job-applicant matching problem

The job-applicant matching problem defines a complex recommendation problem at the
crossroad of natural language processing, representation learning and pure recommender
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systems. The key difficulties regard the representation of users and items on the one
hand, and the scalability w.r.t. large-scale datasets on the other hand. Two main research
directions have been explored.

Toward a better understanding of the job-applicant matching problem The
core of the study is based on two proprietary databases; these are analyzed to inspect their
structures and their quality, and determine how their information can be represented. A
first remark regards the inconsistency between the user description (their resumes) and
their behavior (their clicks on job ads). This inconsistency can be leveraged to characterize
“difficult” users. Based on the lessons learned, an original classification of recommender
systems is proposed, distinguishing monothetic and polythetic users.

Neural architectures for job advertisement recommendation Inspired from con-
tinuous language representation [Bengio et al., 2003; Le and Mikolov, 2014] and from
similarity learning [Chopra et al., 2005], two neuronal architectures are designed for job
recommendation:
LaJam learns a metric or similarity on the job ad space, which is leveraged using the
collaborative data to select job ads similar to the job ads formerly selected by the user.
Some key aspects regard the regularization of the similarity and its scalability.
MaTJam maps users and items alike onto a single continuous space, supporting the
alignment of applicant skills and jobs specifics in a latent space. This approach relates
to machine translation. Both architectures are assessed against the proprietary databases
and compared with related methods on publicly available datasets.

1.3.3 Thesis outline

Chapter 2 provides an overview of the optimization field and focuses on the positioning of
algorithm portfolios approaches with respect to other ensemble methods.

Chapter 3 introduces the most prominent portfolios techniques and reviews a selection
of recent state-of-the-art portfolio systems to highlight good practices for designing efficient
portfolios.

ASAP systems version 1 and 2 are described and analyzed in Chapter 4, with a spe-
cial focus on the assessment of the new techniques introduced. Experimental results are
described and discussed.

Chapter 5 summarizes the main lessons on algorithm selectors designs and provides
perspectives of further research.

The job-applicant automatic matching problem is presented in Chapter 6. Formal
background on recommender systems and Natural Language Processing (NLP) relevant
to this application are introduced. Chapter 6 finally proposes a criteria to distinguish
among and structure the recommender systems.

Chapter 7 details the real-world datasets at the core of our empirical study. Their
analysis provides insight on the specifics of this application.

The LaJam and MaTJam systems are described and situated with respect to existing
techniques in Chapter 8. They are assessed in terms of performance; for the sake of
comparison with the state of the art, additional experiments on a public dataset are
reported and discussed.

Chapter 9 presents our main conclusions about the job applicant matching problem
and how it is currently handled by recommender systems. Several directions are described
for further research.
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Chapter 10 concludes the thesis with a summary of our contributions, a further dis-
cussion on the applications and the perspectives of bridging the gap between the two
directions of research explored in this work.
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Part I

Algorithm portfolios to support
the optimization expert
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Chapter 2

Background on optimization

Optimization has been for decades and centuries, and still is, at the core of problem
solving in science, engineering and economics. It is not limited to the professional context,
as many decisions of everyday life aim to “make the best” out of a given situation. This
chapter briefly reviews the basics of computational optimization, referring the interested
reader to a few key references for a more comprehensive presentation. Our objective is to
present the optimization landscape in relation with algorithm portfolios which form the
core of Part I of the thesis.

2.1 Background

Optimization is in essence the selection of a best solution among a set of alternatives. Let
S1 denote the set of alternatives, and f denote a deterministic evaluation or objective
function2 on S. An optimization problem is formalized as:

“optimize”
x∈S

f(x) (2.1)

where f takes values in IR (single-objective optimization) or IRd (multi-objective optimiza-
tion). Only the single-objective optimization framework will be considered in the following,
assuming that set {f(x)}x∈S is endowed with a total order relationship. Assuming without
loss of generality that f(x) is to be minimized, any optimizer (or minimizer) x∗ of f is
classically defined as:

x∗ ∈ argmin
x

f(x) (2.2)

Problem (2.1) is formally equivalent to the following constrained optimization problem:

min
x∈X

f(x)

subject to x ∈ S
(2.3)

where X is referred to as search space and contains the set of alternatives S: S ⊆ X ⊆
IRn. The constraint x ∈ S is usually handled through appropriate elementary constraints
{gj(x) ≤ 0}j .

1We may restrict to S ⊆ IRn × [0, 1]p as we are interested in numerical and combinatorial optimization
only. In all generality, optimization problems may be defined over more complex object sets – e.g. functions
– which cannot always be encoded as such.

2The case of noisy or stochastic objective functions requires specific techniques [Cauwet et al., 2016]
and is beyond the scope of this work.

8



2.1.1 Computational optimization

The main focus is on problems where x∗ cannot be determined in closed form. Most
approaches rely on the successive evaluation of a subset of alternatives, also called can-
didate solutions. For non-trivial optimization problems, the evaluation of all {f(x)}x∈S
is intractable for scalability reasons, in particular in the continuous case, exacerbating
the need for smart strategies to select a relatively “small” number of alternatives to be
evaluated before returning one. Such computational optimization strategies, implemented
as algorithms, are assessed along specific issues:

• the quality of the returned alternatives with respect to the true optimum;

• the overall computational cost, including the strategy inner computation (i.e. re-
sources spent to decide which candidate to evaluate next) and extraction of infor-
mation about f (e.g. evaluation, approximate or natural gradient).

Both issues are often jointly addressed in the literature, as the quality of the returned
alternative usually increases with the computational resources. In the black-box opti-
mization benchmarks for instance [Auger et al., 2012; Hansen et al., 2016], algorithms
are compared in terms of resources needed to find the optimizer or an ε-approximation
thereof (e.g. an alternative x ∈ S such that f(x) − f(x∗) < ε), or in terms of the quality
of solutions obtained for a fixed resource budget.

Many research frameworks focus on either the general black-box setting (where objec-
tive f is only accessible through point evaluation, and its gradient is unknown), or on
specific classes of functions. In both cases, algorithm performance is assessed based on
the number of candidate solutions evaluated to deliver a solution of a prescribed quality.
This performance measure is relevant to all problems where the evaluation cost far exceeds
the inner computation of the optimization strategy.3 Another performance measure is the
computational time needed to solve the optimization problem (assuming of course that all
algorithms run in the same carefully controlled environment). Competitions typically offer
the fairest framework to evaluate algorithms using their running time (in short “runtime”
in the following) as a measure of performance (see Sec. 2.1.3).

2.1.2 Optimization problems and algorithm classification

A coarse classification of optimization problems is proposed as follows:

• Is the objective single of multi-valued? Hereinafter we focus on single-objective
optimization.

• Is the objective deterministic or stochastic ? Hereinafter we focus on deterministic
(noise-free) optimization.

• Is the search space continuous, discrete or mixed?

• Is the optimization constrained or unconstrained? Constraint satisfaction problems
(CSPs) aim at finding any solution that satisfies a given set of constraints; all such
solutions, referred to as admissible solutions, are deemed equally good. Although
CSPs do not involve any explicit objective function, they nevertheless fit the general
optimization framework by considering a constant objective function.

3However, this measure is only meaningful when all candidates are equally costly to evaluate. In
contrast, the detection of simple (e.g. bound) constraints violation is easy and allows to skip further
computations [Booker et al., 1999].
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Each category of problems defined from the above criteria is addressed by a specific com-
munity (e.g. multi-objective optimization, optimization under uncertainty); algorithms
tailored to this problem category usually hardly extend “as is” beyond it.

The first task for the optimization practitioner thus consists in identifying the category
of problems relevant to the problem instance at hand and hence the set of algorithms well-
suited to solve it.

Exact vs approximation algorithms Besides the above problem categorization, one
must consider the algorithm categorization. Exact algorithms provide the guarantee to
return the optimal solution (or a solution arbitrarily close to it in the continuous case)
when run to completion. They often come with a high computational cost, as worstcase
guarantees require the ability to explore4 the whole search space. As such, exact algo-
rithms are also capable of proving that a given solution quality is unreachable, or that a
constraint satisfaction problem is unsatisfiable. In such cases, the time needed to arrive
at an unsatisfiability result is taken as the time needed to solve the problem. Exact algo-
rithms however do not scale up in the worstcase: the computational budget required to
reach completion5 increases with the complexity of the problem instance (in a polynomial
or most often exponential manner).6 To overcome this limitation, approximation algo-
rithms have been developed, amenable to tackle much harder7 problem instances reliably
(i.e. even in the worstcase) at the expense of the loss of guarantee of optimality.8

2.1.3 Empirical evaluation of optimization algorithms

As noted in Sec. 2.1.1, optimization algorithms are assessed using two criteria: their ability
to find a good quality candidate solution and the amount of resources required. The most
prominent computation resource is the runtime, though it varies with the machine and the
implementation used. For these reasons, the number of point evaluations (each evaluation
provides the objective and constraints evaluation of the current solution, as well as other
measures such as the gradient in that point, if available) is sometimes preferred, especially
for computationally costly objective functions where the evaluation cost surpasses by far
the time required by the optimization algorithm itself. It is, however, not appropriate
when the optimization algorithm requires only partial evaluation (such as evaluation of a
subset on constraints) in each iteration.

The need for empirical evaluation comes with the following three observations. Firstly,
whenever theoretical results exist about asymptotic convergence, they mostly deal with
worstcase scenarios, whereas the optimization practitioner is in most cases interested in
average-case performance. Secondly, algorithms can in practice be run on problem in-
stances that do not fulfill the assumptions underlying the algorithm performance guar-
antees. Thirdly, there exist many efficient algorithms that do not come with theoretical
guarantees, especially so for heuristic methods.

4This may involve effectively evaluate all candidates in a subspace or analyze the subspace and deter-
mine, e.g. that it cannot contain an optimal solution, that an optimal candidate has already been found,
etc.

5One can argue that most often such algorithms are anytime, i.e. are able to return “good quality”
solutions long before completion.

6This is however not always problematic as i) the asymptotic scaling involves constants that may make
an exponential algorithm “efficient” and ii) that some algorithms with poor (worstcase) scaling are known
to scale well in practice [Spielman and Teng, 2004].

7Determining the hardness of a problem is a research subject in itself, see, e.g. [Smith-Miles and Lopes,
2012] and references therein.

8Still, such algorithms come with guarantees on the quality of the solution returned.
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To provide fair, reproducible evaluation of algorithms and stimulate algorithm design-
ers, optimization competitions are organized by research communities on a regular basis
(e.g. , SAT for satisfiability problems9, BBComp for multi-objective black-box optimiza-
tion10). They usually release materials (evaluation test bed and optimization performances
of competing algorithms...) and thus serve as reference benchmarks for research.

2.1.4 Black-box optimization

Black-box optimization deals with optimization problems where no information on a prob-
lem is given but the search space and pointwise evaluation (if defined). This broad op-
timization framework includes the case where the evaluation is actually delegated to a
third-party software. A typical evaluation framework measures the quality of the best
possible solution for a predefined number of available queries, or the ability to reach a tar-
get quality with the minimum number of queries. An prominent example of a black-box
optimizer is CMA-ES [Hansen et al., 2003], used in Sec. 4.5.1.

2.1.5 No Free Lunch theorem and implications

A fundamental negative result dubbed the No-free lunch (NFL) theorem for optimiza-
tion [Wolpert and Macready, 1997] has been established in the context of black-box,
unconstrained computational optimization. Under the assumption that all optimization
problems are equally likely, the NFL states that all algorithms perform equally well on
average. A corollary thereof, i.e. that the search for a perfect general-purpose black-box
optimization algorithm is vain, is however at odds with the practical lessons from bench-
marks, showing that some algorithms can consistently dominate others. For Wolpert and
Macready [1997], the NFL theorem expresses that each algorithm is optimal for a par-
ticular distribution of problem instances. Along the same lines, the knowledge about the
problem instance at hand is key to guide the selection of the (quasi) best algorithm for
this instance, as done in practice: benchmarks focus on a particular classes of problems
(e.g. SAT, TSP...). Moreover their setup often splits the competition into tracks (e.g.
randomly generated problems, manually designed problems and application problems for
the SAT11 competition) reflecting differences – not necessarily well-understood – between
the problems in different tracks.

On the other hand, some authors [Culberson, 1998; Droste et al., 1999; Streeter, 2003]
have argued that NFL theorems do not really apply to real-world optimization problem.
Intuitively, such problems (more precisely their evaluation function) are represented by
finite memory computer programs, which is a strong restriction compared to the set of
problems considered in the NFL setting.

It is most interesting to note the correspondence between the NFL theorem implication
and the algorithm selection framework11 proposed by Rice [1976] two decades earlier. In
this seminal work, Rice [1976] states that the choice of an algorithm critically depends on
the problem instance at hand, and that the performance of an algorithm depending on
the description of the problem instance can be learned. We shall return to per-instance
algorithm selection in Sec. 3.2.

9http://www.satcompetition.org/
10https://bbcomp.ini.rub.de/
11This framework is not limited to optimization algorithms but also includes, e.g. game strategies or

scheduling algorithms. As a consequence, the previously mentioned NFL theorem cannot apply in this
setting.

11

http://www.satcompetition.org/
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NFL theorems have since found their way into the maths and computer science folklore
as a principle stating that “no magical approach works the best in all cases”. Variants
of the NFL theorem exist for other domains, e.g. machine learning [Wolpert, 1996, 2002],
that may be applicable to per-instance algorithm selection (see above).

2.2 Strategies to reduce the optimization cost

As mentioned in Sec. 2.1.3, a major driving force in optimization algorithm design is its
practical use, focusing on the trade-off between the quality of the returned optimum and
the optimization cost. In an Optimization-As-A-Service perspective, the cost includes the
development cost and the usage cost, while the value comes from the usage phase. For
this reason, one cannot think of designing one algorithm for each problem instance: the
holy grail is to design breoadly scoped methods – that is, easily adjusted to tackle new
variants of problems. This section introduces the main optimization approaches aimed at
a decent usage cost while being widely applicable and adaptable.

2.2.1 Metaheuristics

The need for efficient methods to tackle large problem instances has driven the develop-
ment of heuristics and metaheuristics. Heuristics are approximate methods, i.e. algorithms
that rely on a strategy to find shortcuts during the optimization at the cost of optimality
guarantees (to draw a parallel, taking shortcuts may drive the search close to the final
optimum address but on the other side of a one-way street). Their goal is to deliver “good”
solutions, i.e. with evaluation of quality close to the optimal one, allowing the practitioner
to choose among them and possibly take into account extra implicit criteria [Michalewicz
et al., 1996]. Metaheuristics are informally defined as “methods that orchestrate an in-
teraction between local improvement procedures and higher level strategies to create a
process capable of escaping from local optima and performing a robust search of a solu-
tion space” [Gendreau and Potvin, 2010]. Along this line metaheuristics are adaptable to
a wide range of problems with moderate modifications; this explains why metaheuristics
are widely used in application fields such as operations research [Gendreau and Potvin,
2005].

Metaheuristics often take inspiration from natural processes: evolutionary algorithms,
simulated annealing, particle swarm optimization respectively take inspiration from bi-
ology, physics and ethology. Their strategies are usually designed to avoid stagnation
in local optima, through the use of population of candidate solutions or mechanisms to
accept a deterioration in the current solution. Such strategies are often controlled by
hyperparameters (e.g. the initial population size, or the temperature parameter control-
ling the deterioration acceptance rate). These parameters control the trade-off between
exploration (favored by large and scattered populations, high deterioration acceptation
rates) and exploitation (favored by small populations, low deterioration acceptance rates),
possibly dynamically (when the hyperparameters evolve during the run as part of the
strategy12).

2.2.2 Hybrid metaheuristics

Besides simple metaheuristics there exist hybrid approaches that combine different meta-
heuristics, or metaheuristics with exact methods. Such approaches aim to exploit the

12The classical exploration vs. exploitation dilemma in machine learning is often called diversification
vs. intensification dilemma in the metaheuristics community.
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complementary strengths of different algorithms. The simplest example thereof is the
well-known restart strategy, where a local search method is used repeatedly with different
random initializations. Talbi [2009] proposes a hierarchical classification of hybrid meta-
heuristics (Fig. 2.1):
The first distinction holds between low-level and high-level hybrids. In the low-level class,
hybridization takes place within a given metaheuristics, borrowing operators from another
meta-heuristics. In the high-level class, several metaheuristics cooperate and exchange in-
formation.
The second distinction regards the cooperation between metaheuristics. In relay hybrids,
the different metaheuristics are organized in a pipeline, the output of a metaheuristics
being used as the input of the next one. In teamwork hybrids, they are launched in
parallel.

Hybrid metaheuristics

Low level

Relay Teamwork

High level

Relay Teamwork

Homogeneous / Heterogeneous

Global / Partial

Generalist / Specialist

Figure 2.1: A hierarchical metaheuristics taxonomy, as proposed in [Talbi, 2009]

Additional traits are defined by Talbi [2009] to categorize hybrid metaheuristics.

Homogeneous vs. heterogeneous. Homogeneous hybrids combine several instances
of the same metaheuristics, with different initializations (e.g. restart strategy), hyperpa-
rameters or component operators (e.g. different neighborhood). Heterogeneous hybrids
combine different metaheuristics to take advantage of their respective strengths (e.g. com-
bine the exploration properties of an ant colony optimization algorithm and the exploita-
tion properties of local search [Stützle and Hoos, 1997]).

Global vs. partial. In global hybrids, all metaheuristics work on the entire search
space. In contrast, metaheuristics components of a partial hybrid tackle (linked) sub-
problems with a reduced search space; they deliver partial solutions which are reconciled
to deliver a global solution. Partial hybrids are thus highly related to decomposition
techniques. A simple application of a partial hybrid is the case of a separable objective
function f(x, y) = f1(x) · f2(y), in which case the optimization of x and y can be tackled
independently (e.g., if f1 and f2 are both positive) or not (if f1 and f2 both may take
positive and negative values).

Generalist vs. specialist. In generalist hybrids, all component algorithms solve the
same target optimization problem, sharing information or competing against each other.
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Specialist hybrids combine metaheuristics with different focus, e.g. one maximizing the
exploration and the other that refines the solutions of the former one to find local minima.
Interestingly, the objectives of the different metaheuristics may take into consideration
aspects of the optimization problem which have not been explicitly modeled in the global
objective, e.g. running time or properties of the returned solution.13

For a more comprehensive review of hybrid metaheuristics and examples, the interested
reader is referred to [Talbi, 2009], Chapter 5.

2.2.3 Algorithm portfolios

Algorithm portfolios − which will be formally introduced in Chap. 3 − can be situated
with respect to the above metaheuristics classification as follows:
Firstly, they combine several algorithms that share the same purpose; their goal may be to
deliver a better result in terms of solution quality – be it because the portfolio algorithms
are all non-exact methods or because the actual interest of the optimization practitioner
does not match exactly the optimization problem criterion.14 Another aspect typically
tackled by algorithm portfolios is the optimization cost, typically in terms of runtime.

Secondly, w.r.t. the classification traits proposed in [Talbi, 2009], algorithm portfolios
are: high-level (all component algorithms are left unchanged); and global (all component
algorithms explore the same search space). Note that portfolio algorithms do not share
their current solutions (or set of solutions) in the general case, neither sequentially nor in
parallel.

Tab. 2.1 summarizes the positioning of algorithm portfolios variants:

Algorithm portfolio variant Properties (when applicable)

Parallel scheduling Teamwork, heterogeneous, generalist
Sequential scheduling Relay, heterogeneous, generalist
Per-instance algorithm selection Relay, heterogeneous, specialist
Per-instance algorithm configuration Relay, homogeneous, specialist

Table 2.1: Characteristics of most prominent algorithm portfolios, seen as metaheuristics.
For sequential scheduling (resp. per-instance algorithm selection, per-instance algorithm
configuration), relay occurs between the selected components (resp. between the selector
and the selected component, between the configurator and the configured algorithm).

Algorithm portfolios can be seen a a special case of hyper-heuristics; the interested
reader is referred to [Burke et al., 2010] and references therein for a classification of hyper-
heuristics.

2.2.4 Surrogate modeling-based optimization

When dealing with expensive optimization objectives, an approximate computationally
efficient model of the objective, referred to as meta-model or surrogate model, is learned

13Alternatively, the global optimization problem can be stated as multiobjective to integrate such targets.
14For instance, in machine learning training defines an optimization problem on known data while

machine learners are interested in the trained system performances on new data (which is in essentially
a different problem). Besides, the underlying goal (e.g. classification accuracy, ranking-based indicators)
often pertains to combinatorial optimization, which is hardly tractable given the high-dimensional search
space; therefore, optimization is performed for a slightly different but more tractable optimization problem
(e.g. using cross-entropy as the objective function).
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and used in lieu of the true objective to save time. The surrogate model is typically built
by regression from a few samples, i.e. candidate solutions for which the true objective
has been computed. The number of initial samples as well as the choice of the regression
approach and its hyper-parameters govern the efficiency of the surrogate optimization
approach. They are often selected using expert knowledge about the system (e.g. uni-
or multi-modality w.r.t. the parameters), while the initial samples are determined using
standard Design of Experiment (DoE) approaches Fisher [1937].

Surrogate-based optimization proceeds by alternatively calling the surrogate model,
and the expensive true objective, to estimate the objective value and/or constraints for
new candidate solutions. Such an approach is typically used when surrogate-modeling is
inexpensive and the evaluation of the surrogate model is negligible w.r.t. the true one
(e.g. when a candidate solution is evaluated through an expensive simulator while the
surrogate-model is an analytic function). The cost of surrogate optimization only takes
into account the calls to the true objective function; the calls to the surrogate model are
“for free”.

Surrogate model-based optimization requires the surrogate model to accurately re-
flect the true objective, though inaccuracies in bad or unpromising regions do not harm.
Accordingly, most surrogate-based approaches build an initial DoE of limited size and it-
eratively update the surrogate model to improve its accuracy in the regions of interest. In
this perspective, surrogate-based optimization connects to Bayesian Optimization Hennig
and Schuler [2012], where the surrogate model and its uncertainty are directly exploited
to determine the best points to evaluate.

2.3 Summary

Optimization has evolved substantially in the last decades to benefit from fast computation
to tackle ever more diverse and complex problems. Computational effort also compensates
to some extent for the lack of knowledge about the problems to solve; would such knowledge
be available, the user would often be able to solve the problem instances in an efficient
manner through dedicated algorithms.

A few scientific communities have been built around categories of optimization prob-
lems in order to better understand their specifics and devise approaches taking advantage
of these. Pursuing the same line introduced in [Wolpert and Macready, 1997] – and even
though the applicability of the celebrated No Free Lunch theorems is limited as far as
real-world problems are concerned – such “divide and conquer” strategies can be viewed
as a mean to incorporate the specificity of different distributions of problem instances into
the algorithms design. algorithms design.

In the meanwhile, much effort has also been put to provide optimization strategies
that make as few assumptions as possible on the problem at hand, defining the so-called
Black-Box Optimization (BBO) setting; naturally, BBO approaches are hardly the most
appropriate ones to well-behaved optimization problems. Most generally, the design of
optimization algorithms aims at a good balance between the efficiency of the brand new
algorithm on a niche of problems, and the width of this niche, – in other words, a good
balance between efficiency vs. applicability.

Still, quite a few real-world problems are both hard to characterize and too complex to
be tackled using pure black-box optimization (e.g. for scalability reasons). Such problems
have called for the deployment of approximate methods that combine efficient search
strategies with wide applicability. These approximate methods have been further extended
to include hybrid meta-heuristics. The rapid evolution of the optimization field sees the
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come-back of old methods, and their use as ingredients of more complex strategies, facing
two limitations. The first limitation concerns the cooperation of the previously mentioned
ingredients. Another one is the substantial computational resources needed for such meta-
heuristics.

Overall, in the computational setting considered in this thesis, significant expertise –
regarding the problem at hand and its properties on the one hand, and the algorithms
on the other hand – is required to deliver (quasi) peak performances on every problem
instance. How to automatically build such an expertise is the bottleneck of algorithm
selection.
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Chapter 3

Algorithm portfolio techniques for
optimization

Advances in optimization in the last two decades have shown that peak performances can
be delivered by exploiting the variety and complementarity of already existing techniques.
This chapter presents some prominent algorithm portfolio approaches and discusses their
impact on optimization communities. Recent advances in portfolios are then reviewed,
and lessons to learn are proposed.

3.1 Introduction to algorithm portfolios

Algorithm portfolios appear in domains where there exists no universal algorithm, in the
sense of the No Free Lunch theorem [Wolpert and Macready, 1997] (Sec. 2.1.5). In such
cases, the portfolios include diverse algorithms aimed at the same task, possibly developed
along different perspectives, by different teams and with different applications in mind.
The algorithm diversity is desirable: if they have complementary strengths, their ensemble
can achieve better performances than each alone on a wider range of problems.

Our main focus here is on optimization portfolios in the black-box optimization setting.
Each algorithm a achieves optimization on a problem instance x on a prescribed compu-
tational budget; the result is a posteriori assessed and defines the performance assigned
to pair (a,x). Only the single-objective optimization task is considered in the following.
Accordingly, the performance measure usually indicates the quality of the eventual result
or the resources needed to achieve optimization. In the following, the problem instances
range in instance space I (x ∈ I) and “solving x with a” will be used interchangeably with
“performing the optimization of x using a until it stops or resources are exceeded”. Note
that this framework can be extended to the multi-objective optimization setting whenever
a (scalar) performance measure has been defined.

3.1.1 Per-Instance Algorithm Selection

The Algorithm Selection (AS) problem, first formalized by Rice in his seminal work [Rice,
1976], consists in a mapping from problem space I to algorithm space A. A more involved
setting includes the extraction of problem instance features. These features support the
per-instance algorithm selection (PIAS, Fig. 3.1) defining for each instance x which al-
gorithm to use. As noted by Rice [1976], algorithm selection occurs in various contexts,
ranging from estimation to artificial intelligence. Note that PIAS also encompasses the
selection of an algorithm for a distribution of problem instances (i.e. a constant mapping).
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Problem space
x ∈ I

Feature space
x ∈ IRd

Criteria space
w ∈ IRn

Algorithm space
a ∈ A

Performance space
p(a, x) ∈ IRn

feature
extraction

selection
mapping

S(x, w)

Figure 3.1: The original formulation of the Algorithm Selection problem in [Rice, 1976].

Definition 3.1 (Single best algorithm, single best selector). Let A be a set of algorithms
and I a set of problem instances. Given a performance measure p : A× I 7→ IR (w.l.o.g.,
we assume p is to be maximized), the algorithm a∗ ∈ A that performs the best on average
on all x ∈ I is called the single best algorithm on I.

∀a ∈ A, ‖p(a∗, x)‖I ≥ ‖p(a, x)‖I

The single best algorithm defines a constant selection algorithm, referred to as single best
selector :

I 7→ A
x→ a∗

Typically, benchmarks on a (finite) set of instances are used to identify the single best
algorithm (SB) (Def. 3.1) on that very set; let denote this set ISB, assuming for simplicity
that SB is unique.1 After SB has been identified from ISB, it is usually used to solve a
wider set of instances I. Naturally, there is no guarantee that SB determined from ISB
be the optimal choice for I.

Using a single optimization algorithm to solve every problem instance is a most simple
example of algorithm selector, though it is sub-optimal [Wolpert and Macready, 1997]. Re-
search has thus focused on designing specialized algorithms, reflecting some decomposition
of the optimization landscape according to general properties of the problem instances, or
application domains. The selection mapping in that case thus boils down to determining
the properties satisfied by x or the sub domain it belongs to, and run the corresponding
SB. Such a rule-based approach however is coarse-grained: the SB of a subdomain might
fail significantly on some problem instances in this sub-domain, as pointed out by Leyton-
Brown et al. [2003]. Furthermore, the fragmentation of the optimization landscape and
the design of algorithms specific to each niche reach their limit at some point: the value
of an algorithm also depends on the breadth of its niche.

PIAS addresses a more flexible setting where some information is known a priori on
instance x, and used to guide the selection – like optimization experts traditionally make
their decision, relying on their experience of the algorithms. Particular attention must
thus be paid to the characterization of problem instances, as the selection heavily relies
on it (more in Sec. 3.2.2).

1Though there is no guarantee thereof.
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The optimal decision in PIAS is referred to as oracle selector (Def. 3.2), also called
virtual best algorithm.

Definition 3.2 (Oracle selector). Let A be a set of algorithms and I a set of problem
instances. Given a performance measure p : A × I 7→ IR (w.l.o.g., we assume p is to be
maximized), the oracle selector, denoted S∗ is a per-instance selector that achieves optimal
decision for all instances x ∈ I.

∀(x, a) ∈ I ×A, p(S∗(x), x) ≥ p(a, x)

On the algorithm side, an algorithm portfolio includes a usually small number of
algorithms. Though it is often easy to identify good algorithms in fields where competitions
are organized on a regular basis (more in Sec. 3.3.1), a number of questions remain for
the practitioner:

• Are the algorithm implementations available?

• Are the algorithms applicable to the problem at hand?

• What are the algorithms intended for? Algorithms taking part in a competition may
be designed for the distribution of problem instances in past editions of the challenge
considered or for certain tracks in the challenge.

• Are the algorithms complementary? Making several algorithms cooperate in a port-
folio is more profitable if they have negatively correlated performances [Huberman
et al., 1997]2, i.e. if one algorithm excels at solving instances that are precisely hardly
handled by the others.

The above questions must be addressed before designing a PIAS. As highlighted in Sec.
4.2.1, the diversity of algorithms within the portfolio is one of the key aspects to keep in
mind.

Finally, Kotthoff [2016] notices that PIAS only answers the question “what” algorithm
should be run but not “why”. As in AI in general, explainable decisions would be very
profitable to the community, to better understand the niche of existing algorithms and
foster new algorithm design.

3.1.2 Parallel portfolios

Parallel portfolios allow several algorithms to run concurrently and independently, until
one algorithm solves the problem instance or the computational budget is exceeded. Such
an approach has first been studied with several instances of a single stochastic algorithm, in
problems in the domain of combinatorial optimization.3 Huberman et al. [1997] discuss the
sharing of the computer time (illustrated with two instances of the same algorithm) from
an economics perspective: maximizing the value (here, minimizing the expected runtime)
while minimizing the risk (the variance of runtime over the set of optimization problems
they consider). This works experimentally reveals the existence of an “efficient frontier”
– i.e. a set of Pareto solutions of the value-risk optimization problem – for graph-coloring
problem instances that improves both in terms of expected runtime and risk on the single
algorithm setup.

Gomes and Selman [2001] present the first experiments with several different algo-
rithms for solving a given instance of a specific domain of finite algebra (the quasigroup

2It is often sufficient that algorithms have uncorrelated performances.
3However, parallel portfolios can be used for any complex reasoning application.
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problem). Three settings are explored: exploiting the parallel architecture of modern com-
puters to run several algorithms (or several instances of the same stochastic algorithm)
at the same time (each instance of algorithm runs on a dedicated processor); a setting
close to the one used in [Huberman et al., 1997] where algorithms are run interleaved on
a single processor (each algorithm gets the same computing resources); a single algorithm
and single processor restart strategy4. For the first two settings, the number of dedicated
processors (here equal to the number of component algorithms) governs the design of the
optimal portfolio. For algorithm instances running on dedicated processors, running only
instances of the algorithm that dominates the others when the time budget is low turns
out to be the best portfolio design in terms of time-to-solution as well as risk when many
processors are available. Quite the opposite, when only 2 processors are available, it is
best to run only copies of the best algorithm for long running time. In between, a phase
transition exists where it is best to use a mix of both algorithms. When several algorithms
should share a single processor, it is beneficial to use an intermediate number of mixed
copies, suggesting that the chances for one algorithm to solve the problem quickly no
longer counterbalance the additional cost of running other algorithms interleaved when
the number of copies grows.

It must be highlighted that these pioneering studies present experiments limited to one
or a few optimization problem instances, where the expected runtime and risk are affected
by the randomization induced by the algorithm more than on the variability of problem
instances within the considered distribution of instances.

Parallel portfolios are formalized in [Sayag et al., 2006] as a resource sharing model and
the authors draw the parallel with the parallel unrelated machines model of job scheduling,
with the notable difference that the total cost of the schedule is not linear with respect to
the shares variables. Sayag et al. [2006] propose an algorithm to find an optimal resource
sharing schedule for a fixed number of algorithms.

3.1.3 Algorithm schedule

Algorithm schedules have been extensively investigated in the domain of constraint sat-
isfaction [Sayag et al., 2006; Kadioglu et al., 2011; Streeter and Smith, 2012]. A main
difference is that the focus is on the actual time required to find a solution, as opposed
to the quality of the solution found on a computational budget in optimization: this is
typical in decision problems5. algorithm schedules are defined as follows, after [Streeter
and Smith, 2012].

Definition 3.3 (Algorithm schedule). An algorithm schedule or sequential portfolio of
algorithms consists of a sequence of (ak, τk) ∈ A × IR+ pairs (called “steps”) such that
each instance is successively tackled by algorithm ak with a computational budget τk, until
being solved or the end of the schedule is reached. An algorithm schedule of finite size K
is denoted ((a1, τ1), . . . , (aK , τK)).

Suppose that instance i is solved by an algorithm a in tia ∈ IR+∪{+∞}. For practical
reasons, a maximal runtime allowed is fixed to Tmax (called timeout in the following). Let
k∗i denote the index of the first step that succeeds in solving instance xi:

k∗i =

{
min {k|τk ≤ tiak} if {k|τk ≤ tiak} 6= ∅
K + 1 otherwise

(3.1)

4This last setting is outside of the parallel portfolios scope and will be discussed in Sec. 3.1.3
5A decision problem can often be cast as an optimization problem and vice versa. For consistency, let

us assume that we would consider the optimization variant of a decision problem.
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The runtime needed for the schedule S = {(ak, τk)}k to solve an instance xi is then given
by:

rt(xi, S) =


k∗i−1∑
k=1

τak + tk∗i if k∗i ≤ K

Tmax otherwise

(3.2)

The Penalized Average Runtime with penalization factor 10 (PAR10 score) is defined on
a set of instances as the average of the runtimes to solve the instance, where the time
associated with an unsolved instance is 10 times the timeout. The elementary evaluation
on a single instance, denoted PR10 of a schedule S is computed as:

PR10(xi, S) =


k∗i−1∑
k=1

τak + tk∗i if k∗i ≤ K

10 · Tmax otherwise

(3.3)

The indicator function ns reports whether instance xi is solved by schedule S:

ns(xi, S) =

{
1 if k∗i ≤ K
0 otherwise

(3.4)

The black-box algorithm context implies that if the same algorithm appears twice in
the schedule, it will start again from scratch for the second run.6

The celebrated restart strategy is a particular case of algorithm schedule where all
component algorithms are instances of a single algorithm with different initial states.
Whereas it was originally designed for local search algorithms to escape local optima7, it
has been proven to be effective for solving quicker and a larger number of hard real-world
problems when combined with specific algorithms [Gomes et al., 1998].

If the distribution of instances is known, the optimal schedule typically aims to maxi-
mize the number of instances solved in expectation [Hoos et al., 2015], where a schedule is
defined by the algorithm ordering and the runtime allocated to each algorithm. Naturally,
even the optimal schedule is dominated by the oracle selector, giving the entire available
time budget to the best algorithm for every particular instance. In practice however,
schedules seem to be more robust than (sub-optimal) algorithm selectors, making rare
but often costly mistakes; additionally, schedules can advantageously be combined with
algorithm selectors.

In practice, the distribution of instances is often unknown. It is commonly approxi-
mated through generating random instances, or gathering corpora of real-world instances,
as done by challenge organizers (e.g. in SAT competitions8, black-box optimization compe-
tition9) or by algorithm designers themselves. These corpora provide a basis for machine
learning-based algorithm selection and for schedule optimization.

6Sayag et al. [2006] instead consider task switching schedules where algorithm runs can be stopped
and resumed. Besides, runtimes are divided into units. Therefore they can define the runtime measure
recursively in the time t.

7This argument comes from [Gomes and Selman, 2001]; the use of restart schemes can be found in much
older publications but its origin remains unclear.

8http://www.satcompetition.org/
9https://bbcomp.ini.rub.de/
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3.1.4 Evaluation measures

Evaluation is traditionally carried out on a test set denoted Itest, disjoint from the set of
instances used to construct a PIAS or a scheduler. Average measures are derived from rt,
PR10 and ns on the test set, e.g. ps the proportion of instances solved by a sequential
schedule S or the PAR10 score:

ps(S) =
1

|Itest|
∑

xi∈Itest

ns(xi, S) (3.5)

PAR10(S) =
1

|Itest|
∑

xi∈Itest

PR10(xi, S) (3.6)

Normalized measures have been introduced to reflect the benefits of portfolios over
the SB selector strategy and w.r.t. the oracle selector (best achievable portfolio given the
set of algorithms). Following [Kotthoff, 2015] (Eq. 1), the general form of normalized
measures is given by:

F(S) =
F(S)−F(oracle)

F(SB)−F(oracle)
(3.7)

where F is a measure on Itest, e.g. ps or PAR10. The oracle scores 0 and the SB strategy
scores 1 whatever performance indicator is considered. Besides, normalized measures allow
to aggregate the measures of S over several datasets.

3.2 AS literature review

This section presents the basic concepts related to PIAS. The interested reader is referred
to [Kotthoff, 2016] and [Smith-Miles, 2009] for a comprehensive survey of PIAS for combi-
natorial optimization, and AS. A comprehensive and regularly updated literature summary
is maintained by Lars Kotthoff at https://larskotthoff.github.io/assurvey/.

3.2.1 Cold-start

PIAS can be cast as a recommendation problem, as popularized by the Netflix challenge
Bennett et al. [2007]. In the Netflix problem, the goal is to recommend an item (movie)
to a user, exploiting the movie ratings made by the user community. In the PIAS setting,
the users are problem instances, the items are algorithms, and the goal is to recommend
items (algorithms) to users (problem instances). The user (problem instance) “prefers”
items (algorithms) that perform better on this particular instance.

A main difference between PIAS and recommendation systems lies in the fact that
PIAS mostly tackles the cold-start problem [Schein et al., 2002], where the recommenda-
tion targets a brand new user (problem instance).10 Indeed, there is no need to recommend
an algorithm if the problem instance has already been solved in a practical context. There
exist other cold-start settings (e.g. recommending brand new items to known users, Sec.
1.1.2) which are mostly irrelevant to the PIAS context (Sec. 1.2.1).

10Though some authors use a broader definition where items that received few recommendations fall
into the cold-start setting, only the strict definition of cold start is considered in the following.
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3.2.2 Feature extraction for PIAS

Per-instance AS strategies require informative features to describe the problem instances
and determine which algorithm to run. As noted in [Rice, 1976], designing such features
is itself a research question. On the one hand, features are domain-dependant; on the
other hand, their design requires considerable expertise as relevant features are meant
to capture the algorithm behaviors on problem instances. Additionally, these features
must be computed or estimated cheaply [Mersmann et al., 2011]. As a consequence,
computationally expensive features are sometimes discarded in order to save resources for
the actual problem solving (e.g. feature cost prediction in SATzilla may cause the system
to choose not to compute them [Xu et al., 2012b], see Sec. 3.3.1).

Feature sets include manually-specified features [Mersmann et al., 2010] and automat-
ically computed ones; see, e.g. [Nudelman et al., 2004b; Mersmann et al., 2011]. Kotthoff
[2016] proposes a classification of the descriptive features, as follows:

Static features They are obtained by offline computation, directly from the problem
formulation or by using algorithms which only require light computation. Static features
do not require to start solving the problem instance at hand but, of course, incur a
computational burden beforehand.

Dynamic features They require to start solving the new instance at hand through the
use of preconditioners, presolvers or actual algorithms. Dynamic features deliver informa-
tion specific to the new instance in an online manner, allowing the PIAS to make better
informed decisions. Since they are computed while an algorithm is running, the compu-
tational budget is shared between instance solving and feature computation, defining a
trade-off between exploitation of the current algorithm and exploration.

Probing features An intermediate approach aims to estimate offline the performances
of algorithms on the new instance, e.g. through running algorithms on a subset of the
search space (the search space is “probed”) that is thought to be representative of the
whole space, or running simple algorithms [Pfahringer et al., 2000]. As the search space is
partially explored, probing feature computation may actually solve the problem in hand.
Exploratory landscape analysis is an area of research that focuses on the estimate of
properties of an unseen instance using probing features. In continuous optimization for
instance, running a hill-climbing algorithm from a set of initial points randomly sampled
from the search space informs about the number of local minima the fitness landscape has.
As these features require call to the fitness function for the sole goal of exploration, only
those that can be computed or estimated cheaply are relevant to PIAS [Mersmann et al.,
2011].

3.2.3 Algorithm performance prediction

Performance prediction lies at the crossroad of characterizing the hardness of a problem
instance, and analyzing an algorithm empirical behavior. As said in Sec. 3.1, Rice [1976]
originally based AS upon performance models. Algorithm performance prediction esti-
mates a priori the potential outcomes of an algorithm on a given instance, depending on
the application domain:

• Will the algorithm terminate within the allocated time?

• Will the algorithm return a solution of a given quality?
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• How long will the algorithm run?

Algorithm prediction and its relation to (domain-dependent) features in optimization com-
munities are very active research topics; the interested reader is referred to [Leyton-Brown
et al., 2002] for combinatorial auctions, [Nudelman et al., 2004b] for SAT and [Muñoz et al.,
2012] for black-box optimization, and references therein.

3.2.4 Classical algorithm selection techniques

Regression-based AS

AS can be achieved based on empirical performance models (EPMs). Many successful
approaches ([Xu et al., 2008] and previous versions of SATzilla, [Nikolić et al., 2013],
[Collautti et al., 2013] as a feature preprocessing step, [Gonard et al., 2016]) build such
EPMs using Machine Learning algorithms, and more specifically regression algorithms
Bishop [2006]. The training set associated with one portfolio algorithm is made of samples
(xi, yi) where each xi corresponds to the feature description of a problem instance and yi
the performance of the portfolio algorithm on this instance. From this training set is
learned offline one regressor model, the EPM for this algorithm. For any new problem
instance, its feature description x is computed and is passed to the performance models
Ga (Fig. 3.2). If the performance models generalize well, the performance predictions are
accurate and selection is obtained by simply choosing the algorithm with best predicted
performances.

Instance x

x {Ga(x)}a∈A

Algorithm a∗

feature computation

performance
prediction

selection

Figure 3.2: Regression-based AS for a new instance.

The simplest approach consists in predicting a global performance score, such as run-
time. Other approaches consider a monotonous transform thereof, e.g. rescaling and cen-
tering per instance the performances (with zero mean and unit variance) [Collautti et al.,
2013]. Such a preprocessing is expected to facilitate EPM learning and better separating
solvers, thus supporting a more accurate selection decision.

This approach faces two difficulties. The former one regards the constitution of the
training database, ideally running every algorithm on every problem instance until comple-
tion.11 For computational tractability, however, any algorithm is run until the cutoff time
is reached, causing “holes” in the database. Instances that can be solved by no algorithm
on the computational budget are usually discarded. More delicate is the case when some
algorithms could solve the instance and some could not, leading to missing information
in the database; this information is hard to handle in classical regression algorithms and
require imputation – which in turn is likely to add bias to the performance models.

11Note that the prediction of the best algorithm would only require to run all algorithms until one of
them succeeds.
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The second difficulty regards the accuracy and generality of the performance models,
all the more so as the set of problem instances is restricted.

AS as a classification task

As the AS decision is to choose one algorithm among a few, AS can also be cast as a
classification problem, where the class of an instance is associated with the algorithm
that performs the best on it. A first advantage of classification compared to regression
is the lesser computational cost needed to gather the training data, and the fact that no
missing data is encountered. Another advantage is that the learned classifier will focus on
what makes algorithms different (as opposed to explaining algorithm performance); this is
desirable for AS as we are interested in selecting the best algorithm, be it for an instance
easily handled by any algorithm or another one hard to solve.

On the other hand, if two algorithms a and b have equal performances, the instance
should fall into both a and b classes. To comply with the standard classification setting,
one out of both classes must be selected, biasing the training process. Along the same
lines, the standard classification setting considers all errors as equal, although from an
AS perspective, the cost of an error for a problem instance depends on the difference
of performance between the desired and the predicted algorithm. This has drawn the
research toward cost-sensitive classification (SATzilla-2012 [Xu et al., 2012b], see below)
or clustering (CSHC [Malitsky et al., 2013]).

Ranking-based AS

AS can also be cast as a learning to rank problem [Burges et al., 2005; Cao et al., 2007].
Such an approach takes into account a number of triplets (x, a, b) ∈ I×A2 and the relative
order of a and b performances on problem instance x to build a preference model. The
size of the problem (linear in the number of instances and quadratic in the number of
algorithms) makes it usually tractable. However these approaches are not widely used, as
standard learning-to-rank criteria do not take into account the cost of errors.

A notable exception is the recent work proposed in [Oentaryo et al., 2015], but the
effectiveness of the approach is not assessed against runtime-related measures.

Pairwise regression based AS

Pairwise regression lies between regression and ranking. For each algorithm pair, this
method aims to predict which one would perform the best on a new instance in a cost-
sensitive way, i.e. the effect of a misclassification on the performances is integrated in the
training loss. For instance, a set of regressors is used to predict the difference of perfor-
mances for each pair of algorithms. Like classification, cost-sensitive pairwise regression
does focus on what makes algorithm behaviors different but also takes into account to what
extent their performances differ. On a new instance, trials between all pairs of algorithms
are “predicted”; the actual selection comes with aggregating the results of the matches
through vote, e.g. the algorithm that wins the highest number of duels is selected.

The fact that SATzilla switched from a performance regression-based to a pairwise
regression based approach with SATzilla-2012 [Xu et al., 2012b] is a strong clue in favor
of this method. Other empirical evaluations (e.g. in [Kotthoff, 2015]) have acknowledged
pairwise regression as a very effective technique, beating AS based on performance re-
gression models using the very same ML algorithms. A limitation of pairwise regression
approaches however is their quadratic complexity in the number of algorithms in the port-
folio.
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AS as a recommendation problem

Stern et al. [2010] cast algorithm selection as a collaborative expert system where experts
are algorithms. The “fit” between all algorithms and the feature-described instance is
expressed in a latent space learned by a collaborative filtering method called Matchbox,
based on an approximate message passing algorithm. As noted in [Mısır and Sebag, 2017],
collaborative approaches can handle sparse databases (where the performances of each
algorithm might be known on a small subsample of problem instances), thus alleviating
the computational effort needed to constitute and extend the database. Besides, Mısır
and Sebag [2017] extend the Matchbox approach to a non-linear mapping from the initial
feature space to the latent space.

AS as a reinforcement learning problem

Gagliolo and Schmidhuber [2006] cast the online version of PIAS as a bandit problem,
learning online which arm to pull next. Picking an arm is meant as “run algorithm a for
next instance” (pure AS) or “use time allocation TA for next instance” (when building a
portfolio where the arm allocates time shares to the algorithms). Degroote et al. [2016]
extend the pure selection approach with contextual bandits, exploiting the instance feature
description to make their choice.

3.3 Review of state-of-the-art systems

This section reviews most prominent algorithm portfolio systems in the last decade. The
review is structured by family of approaches, chronologically presenting the refined versions
from the initial scientific breakthrough to almost all-inclusive frameworks.12 The analysis
of these state-of-the-art systems gives insights into the main characteristics a world-class
algorithm portfolio should feature.

3.3.1 State-of-the-art optimization algorithm portfolios

SATzilla SATzilla [Nudelman et al., 2004a; Xu et al., 2007, 2008, 2012b,a] has a long
history of successes in competition since the 2000s: it has first incorporated a portfolio
strategy for the SAT 2003 competition [Le Berre and Simon, 2003]. SATzilla won various
competition tracks (in majority in SAT competitions, but also in algorithm selection) and
has had a considerable impact on the deployment of algorithm portfolio techniques in
algorithm design. The latest version dedicated to SAT solving (SATzilla-2012 [Xu et al.,
2012b]) is described below. SATzilla includes a set of problem instances (used as training
instances) I, a set of candidate algorithms A and feature extractors, making it directly
usable in a stand-alone setup.

SATzilla combines algorithm schedule techniques with algorithm selection. In a first
phase, a sequence of algorithms – called presolvers – is run for a short amount of time
to solve very easy instances. As SAT solvers usually have relatively uncorrelated perfor-
mances, a combination of presolvers allows solving a large scope of problem instances.
The order and budget given to each presolver is constant. In a second phase, the sys-
tem then focuses on the remaining instances, called “harder instances”, using per-instance

12 Though related, algorithm configuration systems (see, e.g. [Belkhir, 2017] and references therein) and
algorithm selection for machine learning (e.g. AutoWEKA [Thornton et al., 2013; Kotthoff et al., 2016]) are
out of the scope of the present work and thus omitted.
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algorithm selection. Before features are extracted from the instance at hand, a first clas-
sification model is run to predict whether the cost of computing features is affordable. If
not, the SB algorithm (determined on the training “harder instances”) is run; otherwise
the solving process goes on with the feature computation. Selection is based on a collec-
tion of cost-sensitive binary classifiers between each pair of algorithms.13 The classifiers
are |A| (|A| − 1)/2 random forests and their votes are aggregated to select the winner
(algorithm that wins the highest number of binary trials).14 An online mechanism finally
switches the selected method to the second-best choice (resp. the SB) if the first (resp.
the second) fails (e.g. crashes).

CP-Hydra [O’Mahony et al., 2008] is a solver developed for constraint programming.
It uses a case-based reasoning approach, i.e. it retrieves relevant past cases most similar to
the new instance and combine them into a schedule.15 Each instance description comprises
a set of static features and a set of probing features obtained by recording the modeling
choices of a specific constraint solver; ratios are rescaled to [0,100] and quantified features
are log-scaled. Retrieval is then achieved using a k-nearest neighbor (k-NN) approach in
the instance description space. Finally, time shares are allocated to all algorithms, so that
the resulting schedule solves the maximum number of retrieved instances, weighted by
their similarity to the new instance.

3S and CSHC Kadioglu et al. [2011] propose 3S, combining an optimized schedule of
algorithms and an adaptative k-NN-based selector. The instance space is first partitioned
and each training instance assigned to a cluster. Hyper-parameter k is learned for each
cluster based on the training instances. At test time, the distance-weighted k-NN of the
cluster relevant to the new instance is used for selection. The schedule is optimized as a
linear programming problem, with the set of initial algorithms extended with 4 versions
of the selector (such a schedule may thus depend on features if they incorporate one of
the selectors; they are dubbed semi-static schedules). A last setting splits the available
runtime: 90% is allocated to the selector while the remaining 10% are left for a static
schedule for preventing the AS from overfitting the training instances.

CSHC [Malitsky et al., 2013] uses the same static schedule as 3S for the first 10%. The
selection component is based on hierarchical clustering where each cluster is assigned one
algorithm: starting with a single one cluster, clusters are recursively splitted into two by
axis-parallel (in the feature space) hyperplanes16 such that when assigning a new algorithm
to each subcluster, the sum of misclassification cost over all instances decreases. The final
selector is built from bootstrap-aggregation of several such clusterings. CSHC has been
shown to improve on 3S, especially in terms of stability.

ArgoSmArT k-NN [Nikolić et al., 2013] is an instance of a dynamic portfolio. A
new problem instance is solved by the algorithm that performs the best on its k nearest
neighbors in the training instances. The selection is based on distance-weighted k-NN

13Misclassifying a pair of algorithms that perform almost equally has a low weight; misclassification if
only one of the solvers actually succeeds in solving the instance has a high weight; see Sec. 3.2.4.

14This method is introduced in 3.2.4 as the regression pair model.
15As the performance measures the number of solved instances but not the time-to-solution, it only

requires the sum of the runtimes to be less than the computational budget.
16Axis-parallel hyperplanes are preferred to maximum-margin hyperplanes as the second are considerably

more expensive while they do not boost the performances. The splitting of clusters is achieved like in
decision trees, but based on a different cost function.
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runtime prediction models. Instead of the classical Euclidean distance the authors use:

d(x, y) =
∑
i

|xi − yi|√
xiyi + 1

SNNAP (for Solver-based Nearest Neighbor for Algorithm Portfolios) [Collautti et al.,
2013] relies on instance clustering with a modified set of features. The approach is inspired
by ISAC (Instance-Specific Algorithm Configurator) [Kadioglu et al., 2010]: g-means clus-
tering iteratively splits in two the current set of instances, such that the resulting two
clusters better follow a Gaussian distribution than the former one, in feature space. The
main drawbacks according to [Collautti et al., 2013] is that features are normalized – and
thus all have the same weight for clustering, regardless of how important they are – and
that the clustering objective does not necessarily translate into a performance improve-
ment. To overcome this, SNNAP proceeds as follows: performance models (random forests)
are trained to predict the centered runtimes (with 0 mean, unit variance for each training
instance); for a new instance, the outcomes of these models replace the initial feature
description for the selection phase. In a second step, k-NN is performed in the (centered
performances) feature space to finally select the algorithm that behaves the best in the
k-neighborhood of the new instance. It should be highlighted that predicting such scaled
performances closely relates to predict an ordering on the performances of each algorithm
on the new instance, and that the distance used for k-NN only takes into account the best
performing (or predicted best performing) algorithms.

ME-ASP Developed for Answer Set Programming (ASP) by [Maratea et al., 2014],
ME-ASP first computes incrementally a set of solvers until the last attempt to add a solver
results in a portfolio not “sufficiently” distinguishable from the previous one. Selection is
then achieved by a multi-label classification task (6 classifiers are evaluated: aggregation
pheromone density based pattern classification, decision rules, decision trees, multinomial
logistic regression, nearest-neighbor, support vector machine).

LLAMA [Kotthoff, 2013] is a flexible framework to compare AS strategies, parameter-
ization and preprocessing steps, rather than a portfolio system. It is shipped as an R

package.

aspeed [Hoos et al., 2015] defines an optimized static schedule. Optimization proceeds
in two steps: first, the time budget is allocated to each algorithm so that the number
of instances solved is maximized.17 In a second step, the alignment of the algorithm
is found to minimize the runtime. Both optimizations are performed using answer set
programming. This sequential scheduling approach is then extended to multi-processing
units working in parallel, where each algorithm is (additionally) assigned to a single unit.
As it does not rely on domain-specific features, the aspeed approach is widely applicable
to domains other than SAT.

claspfolio 2 and flexfolio. claspfolio 2 [Hoos et al., 2014] integrates different feature
generators, AS components, solving algorithms and presolvers (i.e. algorithms that are run
at the beginning of the process to solve easy instances). It is based on the generation of
a schedule of algorithms by aspeed and gives the possibility to produce an executable

17As a secondary criterion to decide between ties, the minimal L2-norm of the vector of time budget is
considered.
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solver. It goes beyond the usual scope as it implements flexible software optimization
[Hoos, 2012] and produces an executable, suitable for large audiences. Besides the core
modules, it implements feature preprocessing and backup strategies. Another distinctive
feature is the assessment of the selector component through cross-validation that can
modulate the time budget given to the presolving schedule. The framework was further
extended under the name flexfolio.18

SUNNY Originally developed for constraint programming [Amadini et al., 2014], SUNNY
is an online approach that builds for the new instance the portfolio that solves the max-
imum number of instances in its k-neighborhood and with minimum size. All of these
algorithms are used in the output schedule, where the time budget allocated to each com-
ponent is proportional to the number of solved instances.

AutoFolio [Lindauer et al., 2015] takes a meta-AS perspective, using an algorithm
configurator (SMAC [Hutter et al., 2011]) to configure an algorithm selector approach.
Specifically, it involves two cross-validation schemes: the inner one assesses the selector
within the current configuration, while the outer one assesses the configuration. The con-
figuration space includes the type of selector (e.g. regression based approach, k-NN), the
machine learning technique (e.g. ridge regression, support vector regression) and its hyper-
parameters (e.g. regularization coefficient for an SVM), the hyperparameters controlling
the feature and performance preprocessing steps (e.g. feature selection, normalization pa-
rameters), and the presolving schedule parameters (e.g. number of solvers, budget to the
presolver). Such a flexibility is achieved as a result of AutoFolio being based on the
modular design of claspfolio 2. In a meta-AS perspective, AutoFolio is also a great
tool to identify the relevant choices when designing an AS (cf. the analysis in [Lindauer
et al., 2015]).

3.3.2 Lessons for portfolio design

Portfolio with “orthogonal” components

A main lesson regards the complementarity of the portfolio algorithms, regarded as a
desirable property ever since [Huberman et al., 1997]: “the effect of cooperation, when
manifested in negative correlations, is to increase the performance as well as reduce the
risk”. This claim has been validated later on, showing that: i) state-of-the-art algorithms
are indeed often uncorrelated, and ii) their combination is worthwile in practice, as first
demonstrated by [Leyton-Brown et al., 2003] and the first portfolio version of SATzilla
[Nudelman et al., 2004a]. The diversity of a portfolio not only matters to algorithm
selection; it is also crucial for schedules. Typically, if the two best algorithms have highly
correlated performances, a successful schedule should retain one of them together with a
not-so-good but more complementary algorithm.

Presolvers

The reader will have noticed that most systems described in Sec. 3.3.1 do not implement
one of the straightforward approaches in Sec. 3.2 but rather appear as hybrid systems.
The most successful approach consists in using a global portfolio (i.e. not instance-specific)
as a so-called “presolver” together with an AS. This strategy is justified as a number of
instances can be solved in no time by some algorithms; for these instances, a PIAS would

18http://www.ml4aad.org/algorithm-selection/flexfolio/
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not bring substantial improvements. Presolvers are thus built as a schedule of a few
algorithms designed to maximize the number of instances solved within a limited budget.
The presolver does not rely on features, and can be run before feature extraction (thus
saving the feature computation time in case the current instance is solved by the presolver).
Acknowledging their importance, presolvers will be called presolving schedule and will
be determined using a pre-scheduler in the remaining of this work.

Semi-static schedule

According to [Kadioglu et al., 2011], a semi-static schedule combines a static schedule
(independent from the feature description of the instance) and an algorithm selected by
an PIAS. Combining a pre-scheduler and a selector component is the most widespread
example of semi-static schedule. An extension thereof includes the computation of features
in the schedule and is especially relevant when feature computation is able to solve a
couple of instances (e.g. feature computation that simplify the instance). Semi-static
schedules thus define per-instance schedules that are more robust than simple PIAS and
more efficient than static schedules. Their efficiency depends on the trade-off between the
high-risk high-reward PIAS approach (all budget is given to the selected algorithm) and
the more robust static schedules.

Feature preprocessing

Considerable effort has been expended by optimization communities to design features rel-
evant to performance analysis (see, e.g. [Nudelman et al., 2004b] for SAT, [Maratea et al.,
2014] for ASP, [Abell et al., 2013] for black-box optimization). Recent approaches also
include various feature preprocessing techniques: feature selection, feature normalization
(especially for k-NN based approaches), feature imputation or feature set extension, with
two-fold motivations. Firstly, an extended feature set where the most influential features
have been selected facilitate the AS task of detecting feature patterns that explain the
algorithms performances. Secondly, feature selection also contributes to reducing the risk
of overfitting. The most recent approaches consider feature preprocessing as modules or
hyperparameters, to be configured along with the AS component. The most widespread
technique for feature selection is feature filtering: statistics are computed to identify and
eliminate redundant features or those that do not carry information relevant to, e.g. clas-
sification. At the opposite, forward feature selection considers an iteratively growing set
of features (see e.g. [Hutter et al., 2013]).

Overfitting prevention

Due to the restricted size of the training datasets (typically a few hundred instances),
overfitting is a main concern for AS designers. Overfitting is combatted by feature selec-
tion, as mentioned previously, and by using regularized learning criteria (regression for
performance models, performance for schedule optimization) or ensemble methods (e.g.
random forests). Another strategy relies on cross-validation; some systems jointly config-
ure and train the selector component, with an embedded cross-validation mechanism to
mitigate the risks of overfitting.

Hyperparameter tuning

As could have been expected, the efficiency of many options is domain-dependent; for
instance a same feature filtering method – chi squared – leads from 10% improvement to
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30% deterioration depending on the considered SAT dataset [Collautti et al., 2013]. For
this reason, most recent systems are themselves subject to a careful manual tuning or
come with automatic configuration mechanisms.

3.4 A library to assess them all: ASlib

The difficulty of comparing algorithm selection systems implies a high barrier of entry
to the AS field. To alleviate this barrier a joint effort was undertaken to build the Al-
gorithm Selection Library (ASlib), providing comprehensive publicly available resources
to facilitate the design, sharing and comparison of AS systems [Bischl et al., 2016]. This
section describes this library, referring the interested reader to [Bischl et al., 2016] for a
more comprehensive presentation, including the context in which the ASlib resources were
retrieved and the optimization domains it covers.

3.4.1 ASlib data format

ASlib (version 1.0.1) involves 13 datasets, also called scenarios (Tab. 3.1), gathered from
recent challenges and surveys in the operations research, artificial intelligence and opti-
mization fields. It includes all algorithm runs and instance feature values; however the
actual algorithms and problem instances are not available. As such, it allows AS practi-
tioners to simulate the algorithm runs (and feature computation) instantaneously, saving
months of CPU-time computation. As a drawback, only the provided information can be
used for an AS task, i.e. no other feature computed from the instances definitions can be
used to extend the initial descriptions.

Dataset # instances # features (# groups) # algorithms Computation timeout (s)

ASP-POTASSCO 1294 138 (5) 11 600
CSP-2010 2024 86 (1) 2 5000
MAXSAT12-PMS 876 37 (1) 6 2100
PREMARSHALLING-ASTAR-2013 527 16 (1) 4 3600
PROTEUS-2014 4021 198 (4) 22 3600
QBF-2011 1368 46 (1) 5 3600
SAT11-HAND 296 115 (10) 15 5000
SAT11-INDU 300 115 (10) 18 5000
SAT11-RAND 600 115 (10) 9 5000
SAT12-ALL 1614 115 (10) 31 1200
SAT12-HAND 767 115 (10) 31 1200
SAT12-INDU 1167 115 (10) 31 1200
SAT12-RAND 1362 115 (10) 31 1200

Table 3.1: ASlib datasets (V. 1.0.1)

Each dataset includes:19

• the dataset computation time limit (called timeout).

• the performance and computational status of each algorithm on each problem in-
stance. Performances are measured in seconds and are known for each (instance,
algorithm) pair if the computation succeeded (tagged ok). Other (non-succeeding)
computation status are: timeout (computation exceeded timeout), memout (compu-
tation exceeded permitted memory), not applicable (the algorithm cannot be run on
this instance), crash (the program failed to execute) and other (unexpected error).

19The full library format is described at: https://github.com/coseal/aslib-spec/blob/master/

format.md
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For all these cases, the performance of the (algorithm, instance) pair is assumed to
be the dataset timeout.

• the arrangement of features into groups. It is mandatory to compute an entire group
of features (also called a feature step) to access the value of any feature in the group.

• the description of each problem instance, as a vector of the expert-designed feature
values (as said, this description considerably facilitates the comparison of the AS
systems). Some values may be unknown (see below).

• the computational status of each group of features. Possible status are computation
success (tagged ok), timeout (when it exceeds the timeout for this specific group
of features), memout, presolved (instance was solved during feature computation),
crash, unknown (feature computation was not run, probably because an earlier fea-
ture group computation presolved the instance) and other (unexpected error).

• (not mandatory) the computational cost (in seconds) of calculating each feature
group.

• a 10 fold “official” cross validation to enforce the reproducibility of the 10 fold cross-
validation assessment of every AS algorithm.

3.5 Summary

In the optimization domain, algorithm portfolios essentially rely on manually designed
features describing the problem instances to deliver peak performances. Leveraging the
peculiarities of the problem instance at hand is key to improving on the single best algo-
rithm.

Most successful algorithm portfolios combine algorithm schedules and algorithm selec-
tion (AS) to deliver peak performances in a robust manner. algorithm schedules and AS
are tackled as supervised machine learning problems, though some recent approaches take
inspiration from recommender systems and reinforcement learning.

Feature and performance preprocessing are widely acknowledged to have a crucial
impact on AS. Some recent attempts have been made to achieve automatic hyperparam-
eter tuning, taking inspiration from the neighbor field of Algorithm Configuration. The
extensive and multi-level use of machine learning approaches might however hinder the
robustness of the results and increase the risk of overfitting.

Extensive data resources (instances and algorithm performance data) are now publicly
available in standard libraries (ASlib for optimization and decision problems, OpenML20

for machine learning), fostering the design and evaluation of new approaches and witness-
ing the maturity of the community.

20https://www.openml.org/
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Chapter 4

ASAP: Algorithm Selector And
Pre-scheduler

This chapter presents our contributions in the domain of algorithm portfolios, ASAP.V1
and ASAP.V2, building upon the lessons learned about algorithm portfolios (Chap. 3).
The ASAP architectures are first presented and discussed. ASAP.V1 is then detailed
together with its main behavioral design parameters. ASAP.V1 has been extensively and
successfully assessed during the ICON challenge 2015 on algorithm selection [Kotthoff,
2015]. Its successor, ASAP.V2, follows the current trend in algorithm portfolio with a
special fine-tuning of ASAP.V1 to enforce the cooperation between an algorithm sequential
schedule and an algorithm selector. A detailed evaluation is provided to highlight the
improvements of ASAP.V2 over ASAP.V1 and other state-of-the-art systems. ASAP.V2
won the Open Algorithm Selection Challenge 2017 [Kotthoff et al., 2017], demonstrating
the efficiency of the approach.

This chapter is based on [Gonard et al., 2016]. It presents complementary experiments
together with extended discussions and more comprehensive research perspectives.

4.1 Overview of ASAP

This section provides an overview of the ASAP system architecture and its motivations.
Special attention is paid to the interactions between the different components during
training.

4.1.1 Motivation

It is notorious that the hardness of a problem instance often depends on the considered
algorithm. As shown on Fig. 4.1 for the SAT11-HAND dataset (Section 4.3), while several
algorithms might solve 20% of the problem instances within seconds, the oracle (selecting
the best one out of these algorithms for each problem instance) solves about 40% of the
problem instances within seconds. Along this line, the pre-scheduler’s task is to select a
few algorithms, such that running each of these algorithms for a few seconds would solve
a significant fraction of the problem instances; the resulting schedule is called a presolving
schedule (Def. 4.1).

Definition 4.1 (Presolving schedule). Let A be a set of algorithms. A K-component
presolving schedule is defined as a sequence of K (algorithm ak, time-out τk) pairs,(

(ak, τk)
K
k=1

)
with (ak, τk) ∈ A× IR+, ∀k ∈ 1, . . . ,K
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For each problem instance x, it sequentially launches algorithm ak on x until either ak
solves x, or time τk is reached, or ak stops without solving x. If x has been solved, the
execution stops. Otherwise, k is incremented while k ≤ K.
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Figure 4.1: Percentage of solved instances vs. runtime on the SAT11-HAND dataset, for 5
algorithms and the oracle (selecting the best algorithm out of 5 for each problem instance).

Def. 4.1 is similar to that of an algorithm schedule (a.k.a. sequential portfolio) (Def.
3.3). The main difference in practice is that K is low (a typical value is 3) and the total
length of a presolving schedule denoted Tps is “small” in comparison with the dataset
timeout denoted Tmax:

Tps =

K∑
k=1

τk � Tmax

A pre-scheduler can contribute to better peak performances [Lindauer et al., 2016]. It
can also increase the overall robustness of the resolution process and mitigate the impact
of PIAS failures (where the selected algorithm requires high computational resources to
solve a problem instance or fails to solve it), as it increases the chance for each problem
instance to be solved in no time, everything else being equal.

4.1.2 ASAP full picture

Accordingly, the ASAP system involves two components. A pre-scheduler aims at solving
as many problem instances as possible in a first stage; a PIAS takes care of the presumably
“harder” remaining instances. Formally, ASAP follows the overall schedule:

SASAP = ((a1, τ1), . . . , (aK , τK), (aAS , τAS)) (4.1)

where aAS is the algorithm recommended by the PIAS and τAS the budget given to it.

Division of labor A first decision regards the division of labor between the two compo-
nents, specifically how to split the available time budget between the two. It is clear that
the number of problem instances solved by a module will increase with its computational
budget, everything else being equal; however the pre-scheduler and the AS components
are interdependent and the joint system performance should be considered as the main
decision criterion. A second choice regards the number of algorithms in the presolving
schedule (parameter K). For simplicity and tractability, the maximal runtime allocated
to the pre-scheduler is fixed to Tmaxps (10% of Tmax in the experiments, Section 4.4), and
the number K of algorithms selected by the pre-scheduler is set to 3. 3S [Kadioglu et al.,

34



2011] uses a closely related setup for the fixed-split selection schedules, except the pre-
solving schedule phase in ASAP is at most Tmaxps and its actual duration is optimized on
a per-dataset basis.

An alternating optimization process Given Tmaxps and K, ASAP tackles the opti-
mization of the pre-scheduler and the AS components. As previously stated, both opti-
mization problems are interdependent: the AS focuses on the problem instances which
are not solved by the presolving schedule, while the pre-scheduler focuses on the problem
instances which are most uncertain or badly identified by the AS. Formally, this interde-
pendence is handled as follows:

1. An initial pre-scheduler PSinit builds the presolving schedule to optimize the number
of instances solved over all training problem instances within a small computational
budget.

2. A performance model G(x, a) is built for each algorithm over all training problem
instances, defining ASinit as a regression-based selector (Sec. 3.2.4). The successes
and failures of the algorithms in PSinit are used as additional features (more in Sec.
4.2.3).

3. A fine-tuned presolving schedule is determined by pre-scheduler PSpost to optimize
the joint performance (PSpost, ASinit) over all training problem instances; in com-
parison to PSinit, PSpost gets little reward for solving instances that ASinit solves
quickly;

4. A second performance model G2(x, a) is built for each algorithm over all training
problem instances, using additional features derived from PSpost; yielding ASpost.

The full architecture of ASAP is illustrated in Fig. 4.2, displaying the component
interactions. Each component, including the crucial feature preprocessing phase for the
PIAS component, is detailed in the following sections together with the rationale for the
main design decisions. For simplicity, we use the same notation (PSinit, resp. PSpost) to
denote both the pre-scheduler and the resulting presolving schedule in the remainder of
this chapter.

4.2 ASAP.V1 components

This section details the pre-scheduler and AS modules forming the ASAP system, Version 1
(ASAP.V1). Experiments are conducted using the ASlib data and specifications (described
in Sec. 3.4) to illustrate the effects of the main design parameters.

4.2.1 ASAP.V1 pre-scheduler

Description

Let PSinit = (ak, τk)
K
k=1 denote a presolving schedule, with overall computational budget

Tps =
∑K

k=1 τk, and let F
(
(ak, τk)

K
k=1

)
denote the associated domain-dependent perfor-

mance.
ASAP.V1 considers for simplicity:

• equal timeouts:

∀k ∈ {1 . . .K}, τk =
Tps
K
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Figure 4.2: ASAP full picture.

• maximizing the proportion of instances solved:

F(PSinit) = ps(PSinit) =
∑
xi∈I

ns(xi,PSinit)

(with ps as defined in Eq. (3.5)).

The ASAP.V1 pre-scheduler PSinit solves the following optimization problem:

find Tps ∈
[
0, Tmaxps

]
, (a1, . . . , aK) ∈ AK , max ps

(
(ak,

Tps
K

)Kk=1

)
(4.2)

This mixed optimization problem is tackled in a hierarchical way, determining for each
value of Tps the optimal K-tuple of algorithms (a1, . . . , aK).1 Thanks to both small K
values (K = 3 in the experiments) and small number of algorithms (≤ 31 in the ASlib
datasets, Sec. 3.4), the optimal K-uple is determined by exhaustive search for each Tps
value.

The ASAP.V1 pre-scheduler finally relies on the 1-dimensional optimization of the
overall computational budget Tps allocated to the presolving schedule. In all generality, the
optimization of Tps is a multi-objective optimization problem, e.g. balancing the proportion
of problem instances solved by PSinit and the overall computational budget spent during
the pre-scheduler phase. In this regard, PSinit should rather be optimized considering the
following bi-objective optimization problem:

find Tps ∈
[
0, Tmaxps

]
, (a1, . . . , aK) ∈ AK ,

{
max ps

(
(ak,

Tps
K )Kk=1

)
min Tps

(4.3)

1Note that only a finite number of Tps values need to be considered.

36



Multi-objective optimization commonly proceeds by determining the so-called Pareto
front, consisting of non-dominated solutions. In our case, the Pareto front depicts how the
proportion of solved instances varies with Tps ∈ [0,K · Tmaxps ], as illustrated on Fig. 4.3.

In multi-objective decision making [Branke et al., 2004], the choice of a solution on the
Pareto front is tackled using post-optimal techniques [Deb, 2003], including: i) compromise
programming, where one wants to find the closest point to an ideal target in the objective
space, e.g. selecting the point closest to O in Fig. 4.3; ii) aggregating the objectives
into a single one, e.g. using linear combination; or iii) marginal rate of return. The last
heuristics consists of identifying the so-called “knees”, that is, the solutions where any
small improvement along a given criterion is obtained at the expense of a large decrease
along another criterion, defining the so-called marginal rate of return. The vanilla marginal
rate of return is however sensitive to strong local discontinuities; for instance, it would
select point A in Fig. 4.3. Therefore, Deb and Gupta [2011] propose the bend-angle
approach, a variant taking into account the global shape of the curve, and measuring
the marginal rate of improvement w.r.t. the extreme solutions on the Pareto front (e.g.
selecting point B instead of point A in Fig. 4.3).

O
0 K · Tmaxps

A

B

% unsolved instances

Tps

γ

Figure 4.3: Knee detection: bend-angle approach. Among a set of Pareto-optimal so-
lutions, solution A has the best marginal rate of return (local knee detection criteria);
solution B, minimizing the bend-angle γ, is a knee as proposed in [Deb and Gupta, 2011].

The bend-angle approach however does not always find a knee: if the proportion of
instances solved goes linearly with the runtime, bend-angle γ is constant, yielding an
infinite number of possible knees.2 Furthermore, the bend-angle is affected by objective
re-scaling and would thus require to explicit a trade-off parameter to balance among both
objectives.

Geometrical knee detection criterion. A new knee detection heuristics is proposed,
invariant w.r.t. objective re-scaling and resulting in a finite number of possible knees. The
geometrical criterion depicted in Fig. 4.4, minimizing the grey-shaded area, is considered
in ASAP.

The geometrical criterion has the following properties:

• It is insensitive to objective re-scaling (as any rectangle area would be multiplied by
the same factor). Let us consider the normalized curve and notations of Fig. 4.5 in
the following.

• Provided that the performance curve is above the diagonal (∀t ∈ [0, 1], f(t) ≥ t),
knees are detected for t ∈

[
0, 1

2

]
. As a consequence, Tps ∈

[
0, K2 T

max
ps

]
.3 Notice that

2Deb and Gupta [2011] suggest a fixed sharpness threshold on the bend-angle. With the notations of
Fig. 4.3, γ should be at most π − 1 rad to be considered as a knee.

3If the knee x-coordinate exceeds Tmax
ps , Tps clipped to Tmax

ps (in practice, this happens rarely).
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Tps

Figure 4.4: Knee detection: geometrical criterion. Solution B, which minimizes the grey-
shaded areas is the knee selected in ASAP.

for K ≥ 2, the entire range
[
0, Tmaxps

]
is accessible.

t

f(t)

0
0

1

1

d

(t, t)

(f(t), f(t))

Figure 4.5: Notations for the geometrical criterion and the Normal-Boundary Intersection
method. The boundary line (dotted line) joins the two extreme Pareto points, i.e. (0, 0)
and (1, 1)

A related knee detection method is the Normal-Boundary Intersection (NBI) technique
[Das, 1999], where a knee is defined as the point of the curve farthest away from the
“boundary line”, i.e. maximizing distance d.4 Noticing that d2 = 1

2 (f(t)− t)2, the NBI
technique selects the knee as the point (t∗NBI , f(t∗NBI)) where:

t∗NBI = argmax
t

(f(t)− t)2 = argmin
t

`NBI(t) (4.4)

with `NBI(t) = − (f(t)− t)2

4The NBI technique is also insensitive to objective re-scaling [Das, 1999], enabling a fair comparison
with the geometrical criterion on the normalized curve.
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Using the notations of Fig. 4.5, the geometrical criterion reads:

t∗gm = argmin
t
{t · f(t) + (1− t) · (1− f(t))}

= argmin
t
{2t · f(t)− t− f(t) + 1}

= argmin
t

{
− (f(t)− t)2 + t2 + f(t)2 − t− f(t) + 1

}
= argmin

t

{
− (f(t)− t)2 +

(
t− 1

2

)2

+

(
f(t)− 1

2

)2

+
1

2

}

= argmin
t

{
`NBI(t) +

∥∥∥∥(t, f(t))−
(

1

2
,
1

2

)∥∥∥∥2

2

+
1

2

}
(4.5)

The geometrical criterion differs from the NBI criterion in that it includes an additional
L2 penalty term, the distance to point (1/2, 1/2) in the normalized objective space. This
term aims at trade-offs that do not pass over one objective or the other. Finally, Tps =
t∗gm ·K · Tmaxps .

Finally, the selected algorithms are ranked by decreasing number of instances solved in
the training set.5 This decision is motivated as: i) the criterion considered so far (number
of instances solved) is invariant w.r.t. the ordering of algorithms within PSinit; ii) solving
the most instances as early as possible is likely to save more time.

Performance analysis

Presolving-schedule duration The performances of PSinit with 3 algorithms (K = 3)
are evaluated using the ASlib cross-validation, as reported in Tab. 4.1. As PSinit is blind
to the actual time required to solve an instance, only the proportion of instances solved
is considered. Notation S≤T indicates that schedule S is cut at T . PSinit is naturally run
with budget Tps. As a comparison, the oracle selector performances with budget Tps and
budget Tmax are reported.

Second column in Tab. 4.1 illustrates that a small fraction of the total time budget
is allocated to PSinit. For 7 out of 13 datasets Tps is strictly smaller than 5% of Tmax.

Comparing PS
≤Tps
init and oracle≤T

max
, more than half of the solvable instances (i.e. instances

solved by oracle≤T
max

, rightmost column of Tab. 4.1) are solved by PSinit. For the CSP-
2010, PROTEUS-2014 and SAT11-HAND datasets, PSinit is nearly as efficient as the
oracle when budgets are equal (3rd and 4th columns). In contrast, PSinit yields much
lower performances for, e.g. the SAT-12-INDU dataset.

In brief, from the PIAS perspective the selector component budget is only slightly
reduced by the addition of a PS, while in all cases its task is at least reduced by half.

Presolving-schedule algorithms The selection of the presolving schedule algorithms
is investigated from the algorithm performance correlation perspective. A |Itrain| × |A|
performance matrix is built, recording for each algorithm whether (value 1) or not (value
0) it solved each instance within Tps (i.e. , which instances each algorithm would be able

5Due to the ICON challenge setting (Sec. 4.3), forbidding a same algorithm to appear twice for any
particular problem instance, when the PIAS selects an algorithm in PSinit, this algorithm has to be removed
from the schedule phase. More specifically, the schedule ((a1, τ1), . . . , (aAS , τj), . . . , (aK , τK), (aAS , τAS))
is turned into ((a1, τ1), . . . , (aj−1, τj−1), . . . , (aj+1, τj+1), . . . , (aK , τK), (aAS , τAS + τj)). This adjustment
is made during the evaluation.

39



Dataset Tps/T
max ps(PS

≤Tps
init ) ps(oracle

≤Tps) ps(oracle
≤Tmax

)

ASP-POTASSCO 5.0% 68.9% 78.4% 93.7%
CSP-2010 0.6% 72.9% 72.9% 87.5%
MAXSAT12-PMS 3.6% 67.8% 75.0% 85.3%
PREMARSHALLING 2.8% 64.7% 73.4% 100.0%
PROTEUS-2014 1.7% 75.2% 79.5% 88.7%
QBF-2011 2.1% 59.6% 64.1% 77.0%
SAT11-HAND 2.7% 41.9% 45.9% 74.0%
SAT11-INDU 5.8% 45.7% 53.7% 84.3%
SAT11-RAND 3.1% 56.8% 63.5% 82.0%
SAT12-ALL 6.2% 50.7% 61.6% 98.8%
SAT12-HAND 6.4% 36.0% 44.1% 70.1%
SAT12-INDU 7.5% 42.6% 57.1% 82.1%
SAT12-RAND 5.0% 58.0% 64.1% 76.4%

Table 4.1: Proportion of the total time budget allocated to PSinit (Tps/T
max) and propor-

tion of instances solved by PS
≤Tps
init , oracle≤Tps and oracle≤T

max
. “PREMARSHALLING”

stands for “PREMARSHALLING-ASTAR-2013”

to solve if it were incorporated in PSinit). A correlation matrix is then derived. PSinit
must select K = 3 algorithms that are complementary, i.e. with low pairwise correlation.

The correlation matrices for the SAT11-HAND and SAT12-INDU datasets are reported
in Fig. 4.6, with the 3 algorithms selected in PSinit indicated with “**”. For simplicity,
only the first fold of the ASlib cross-validation is considered. These two datasets are chosen
for the reason that they widely differ in Tab. 4.1: PSinit performs nearly as well as the
oracle on SAT11-HAND (41.9% vs. 45.9%) while it is largely dominated on SAT12-INDU
(42.6% vs. 57.1%).

On SAT11-HAND, the performances of all algorithms are largely correlated, except
for two of them (sattine+ and sattime algorithms). As expected, the pre-scheduler has
selected 3 algorithms that have relatively low correlations: resp. 0.57, 0.28 and 0.31 for
pairs (Sol, clasp2), (Sol, sattime) and (clasp2, sattime). Note that all algorithms
solve comparable numbers of instances: 69.9 on average (±9.9). With resp. 89, 85, 73
instances solved, sattime, Sol and clasp2 are resp. the 1st-, 3rd- and 5th-best performing
algorithms. These algorithms have different behavior; as expected, PSinit involves very
different algorithms to maximize its coverage.

SAT12-INDU presents a different picture. 8 algorithms are un-correlated with all
others and among themselves (with the exception of the (sattime, sattimep) pair). A
more in-depth investigation reveals that they are uncorrelated, as they solve substantially
fewer instances (less than 62, while the least performing among the 24 other algorithms
solves 203 instances and 18 algorithms solve more than 350 instances). Despite this lack of
correlation, these 8 algorithms thus are poor choices for PSinit. Eventually, PSinit includes
the 2nd-, 7th- and 9th-best performing algorithms.

As a partial conclusion, using the correlation performances to compute the best combi-
nation of algorithms in PSinit is hardly sound, as illustrated of the SAT12-INDU dataset.
Therefore, using a dedicated solver (as is done in, e.g. [Hoos et al., 2015]) appears to
be a better and more robust way to build a presolving schedule from a large algorithm
portfolio.
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Figure 4.6: Algorithm performance correlation on the SAT11-HAND (top) and SAT12-
INDU (bottom) datasets. The 3 algorithms that constitute the presolving schedule are
indicated with double stars.
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Discussion and limitations

A main way of preventing PSinit from overfitting is to enforce an equal time-sharing
mechanism; the price to pay is to reduce the performances. The main other restrictive
design choices are discussed thereafter.

The choice of Tps is very sensitive to Tmaxps . The optimum of the geometrical criterion
(Fig. 4.4) is greatly affected if Tmaxps is fixed to, e.g. 20% of Tmax instead of 10%. On
the other hand, setting Tmaxps as a fraction of the dataset timeout is desirable as “quick”
or “affordable” are relative to the context – noting that the dataset timeout in ASlib
varies from 600 to 5000s, Sec. 3.4. Finally, Tps would also be affected by re-scaling the
runtime, e.g. using the logarithm of the runtime as done by Leyton-Brown et al. [2002]
when learning the performance models.

The ordering of algorithms relies on an informal argument. Other approaches, e.g.
aspeed [Hoos et al., 2015] formally optimize the algorithm ordering.

The equally shared runtimes setting is sometimes used as a baseline by sequential
schedule approaches (referred to as uniform share allocator in [Gagliolo and Schmidhuber,
2006] or split schedule in [O’Mahony et al., 2008]), and it is known to be suboptimal.
ASAP.V2 (Sec. 4.5) will reconsider and improve the time-sharing issue.

4.2.2 ASAP.V1 algorithm selector

As mentioned in Sec. 4.1.1, the AS relies on performance models, regressors learned from
the training problem instances and mapping the instance description space X onto the al-
gorithm performance space. The performance predicted is the penalized runtime (PR10,
see Sec. 3.1.3). Standard performance models include k-nearest neighbor approaches
[Nikolić et al., 2013], ridge-regression [Xu et al., 2008], support vector regression [Gebser
et al., 2011], random forest models (included, e.g. in LLAMA [Kotthoff, 2013]). After pre-
liminary experiments the choice was made to use two learning algorithms: random forests
and k-nearest neighbors, both well-suited to non-linear modeling. Two alternatives of
ASAP.V1 are built – respectively named ASAP RF.V1 and ASAP kNN.V1 – illustrating that
the ASAP.V1 approach can accommodate any PIAS.

For each ML algorithm, one hyper-parameter was tuned to each setting,6 based on a
few preliminary experiments: 35 trees are used for the random forest algorithm and the
number of neighbors is set to 3 for the k-nearest neighbor approach. In the latter case,
the predicted value associated with problem instance x is set to the weighted sum of the
performance of its nearest neighbors, weighted by their relative distance to x in feature
space:

Ĝ(x, a) =

∑
i ||x− xi||G(xi, a)∑

i ||x− xi||
(4.6)

where xi ranges over the 3 nearest neighbors of x. Features are centered (zero mean, unit
variance) before selecting the neighbors.

4.2.3 Feature set improvement

As explained in Chap. 3, feature pre-processing is crucial for PIAS. While the ASlib data
provide a rich set of manually designed features – expected to well capture the optimization
instances specifics – improvements are sought along two directions: the addition of new
features and feature selection.

6All other hyper-parameters are set to their default value, using the Python scikit-learn library
[Pedregosa et al., 2011].
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Missing data features

A major difficulty arises from the missing data in the representation of problem instances.
Typically, feature values are missing for some groups of features, for quite a few problem
instances, due to various causes provided as the computational status of each group of
features (Sec. 3.4.1). The best practice, after the missing data community, is to use all
available information and input the missing data rather than discarding examples [Schafer
and Graham, 2002]. Accordingly, missing values are handled by:

• replacing the missing value by the average over the known values of this feature;

• adding to the set of descriptive features 7 additional Boolean features per group
of initial features, indicating whether the feature group values are available or the
reason why they are missing otherwise (using the feature computational status as
provided in ASlib, Sec. 3.4).

Presolving schedule features

Taking inspiration from dynamic features (Sec. 3.2.2), Boolean features are introduced
to indicate whether each algorithm in the presolving schedule succeeded in solving the
instance in the allocated time. The intuition is that the presolving schedule algorithms
not only help solving the instance but also inform about the difficulty of solving the
instance if they fail. For new instances, the inclusion of such information is made possible,
because features are not needed before the end of the presolving schedule is reached.

Another option considered in the literature (e.g. in SATzilla) consists in discarding all
“easy” instances (i.e. instances that the presolvers solved) during the training of perfor-
mance models. This choice ensures that performance models are most relevant to “hard”
instances. We did not adopt this approach, however, due to the limited size of datasets,
as further reduction of their size would increase the risk of overfitting.

Feature selection

The increase in the overall number of features is handled by an embedded feature selection
mechanism, removing all features with negligible importance as determined by a random
forest. Specifically, a 10-trees random forest regression model is separately trained to
predict the algorithms PR10. The performance prediction for each training sample is
obtained by aggregating all trees. The individual tree prediction is computed following
a path from the root down to a leaf; each non-leaf node denotes a test along a specific
feature and the prediction follows the path depending on the outcome of the test for the
instance at hand. Depending on the path, a number of features thus contribute to the
final performance prediction. An approximate feature importance criterion is based on
the fraction of training sample predictions each feature contributes to; features below a
manually specified threshold are then discarded.

Fig. 4.7 reports the effect of the selection on a k-NN based algorithm selector
component alone (i.e. with no pre-scheduler) with k = 3; threshold values equal or
greater than 10−1 are omitted since they tend to discard all features in some cases. A
first observation is that the optimal threshold varies across datasets, and thus should be
adapted per dataset. This is consistent with the recent attempts toward hyperparameter
automatic configuration when building algorithm portfolios [Hoos et al., 2014; Lindauer
et al., 2015]. The average optimal values retained across all datasets are displayed in Tab.
4.2. The results suggest that the improvements that can be achieved with feature selection
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alone are minor and not significant (after a Wilcoxon signed-rank test for each pair of
systems: p-values are all above 0.1 – except for the 5 · 10−2 threshold with significantly
worse overall performance). Given the very low sensitivity of the threshold parameter in
the range [10−5, 10−2], the selection threshold was fixed to 10−5; this mostly excludes only
quasi-constant features. We note that this threshold value is optimal for the random forest
selector.
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Figure 4.7: Per-dataset and average normalized PAR10 (defined in Sec. 3.1.4; the lower,
the better) on the ASlib cross-validation with respect to the importance threshold (in
fraction of the number of training samples, log-scale).

Threshold 0 10−5 10−4 10−3 10−2 5 · 10−2

PAR10 (3-NN) 0.372 0.373 0.373 0.380 0.371 0.636

Table 4.2: Normalized PAR10 (averaged across all datasets) for different feature selection
thresholds. Differences are not significant (according to the Wilcoxon signed-rank test),
except for threshold 5 · 10−2 which is significantly worse than all other thresholds (p-value
is 10−14).

As previously stated, the design of the descriptive features is a cornerstone of AS. In
particular, it is often the case that the most informative features in order to predict G(x, a)
are computationally expensive themselves. For this reason, the sophisticated SATzilla

algorithm involves prediction of the computational cost required to for feature computa-
tion, and only launch these computations if the prediction is below a given a threshold
[Xu et al., 2012b].
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Experiments on feature preprocessing

The previously mentioned feature preprocessing mechanisms are individually assessed,
switching them on and off to investigate their impact on the performance. Naturally the
presolving schedule features can only be assessed within a pre-scheduler scheme; all results
(Fig. 4.8) are thus obtained with a K = 3 pre-scheduler for a fair comparison. The 3-NN
selector is used to enable the comparison with the feature selection threshold sensitivity
analysis (Tab. 4.2).
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Figure 4.8: Comparison of different feature set improvements in ASAP.V1 (with a 3-step
presolving schedule). SEL: feature selection activated with a 10−5 threshold. RS: feature
run statuses are encoded as additional Boolean features. PS: the 3 presolving schedule
features are added. By definition of the normalized measure, the SB strategy scores 1 and
the oracle scores 0.

The inclusion of feature run status (RS) and the feature selection (SEL) have a mod-
erate impact on ASAP.V1 performances: their effect is comparable with a careful tuning
of the selection threshold in terms of intensity (of the order of 10−3; note that the results
presented in Fig. 4.8 are far better than those presented in Tab. 4.2 because of the use of a
3-step presolving schedule). However, a large benefit comes from including the presolving
schedule features (PS) in the instance description. The significance of the improvement
is assessed using a Wilcoxon signed-rank test between the matched sets of all datasets
and all splits (130 measures) of each pair of options; p-values are reported in Tab. 4.3.
The remainder of the experiments was performed with the most promising combination
“SEL+RS+PS” including all preprocessing mechanisms.

SEL RS SEL + RS PS SEL + PS RS + PS SEL + RS + PS

reference 1.0 · 100 2.9 · 10−1 6.7 · 10−1 4.0 · 10−2 3.9 · 10−2 7.6 · 10−3 7.9 · 10−3

SEL - 3.4 · 10−1 6.1 · 10−1 5.8 · 10−2 5.7 · 10−2 1.3 · 10−2 1.3 · 10−2

RS - - 3.6 · 10−1 7.7 · 10−2 7.5 · 10−2 2.7 · 10−2 2.8 · 10−2

SEL + RS - - - 6.0 · 10−2 6.0 · 10−2 2.0 · 10−2 2.0 · 10−2

PS - - - - 3.1 · 10−1 5.7 · 10−2 2.3 · 10−1

SEL + PS - - - - - 1.8 · 10−1 5.0 · 10−1

RS + PS - - - - - - 1.4 · 10−1

Table 4.3: Improvement significance of the feature improvements setups: p-value of the
Wilcoxon signed-rank test (values below the significance threshold 0.01 are in bold).
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4.2.4 Sensitivity to pre-scheduler hyperparameters

As already said, the pre-scheduler is controlled by two main hyperparameters:

• K: the number of algorithms in the presolving schedule. When |A| ≤ K, all al-
gorithms but one are actually considered in the pre-scheduler while the algorithm
chosen by the AS component intervenes last.

• Tmaxps : the maximal budget available to the pre-scheduler. This choice affects how
Tps will be selected.

The global effect of K on ASAP.V1 performances is investigated through a sensitivity
analysis. The results are graphically depicted in Fig. 4.9 on a per-dataset basis (top) and
on average (bottom). Note that the exhaustive search becomes prohibitively expensive
for K ≥ 6,7 although some datasets (e.g. SAT11-HAND and PROTEUS-2014 datasets)
would probably benefit from higher K values. Another goal of this experiment is to make
the link between feature selection without any pre-scheduler (Tab. 4.2) and the effect of
feature pre-processing (Fig. 4.8), which requires a pre-scheduler.
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Figure 4.9: Per-dataset and average effect of the presolving schedule size K on
ASAP kNN.V1 performances (normalized PAR10 measure). Size 0 means that no
pre-scheduler is used (ASAP.V1 is thus a pure selector). Since the CSP-2010,
PREMARSHALLING-ASTAR-2013 and QBF datasets have respectively 2, 4 and 5 al-
gorithms, the PSinit size is upper-bounded by respectively 1, 3 and 4 for those datasets.
Not all datasets benefit for the use of a pre-scheduler.

The main conclusion is that the pre-scheduler has a tremendous effect on some datasets.
In particular on the PREMARSHALLING-ASTAR-2013 dataset, the 3-NN selector com-
ponent fails to improve on the SB algorithm (score 1 for a 0-length presolving schedule). A

7For K = 4, PSinit optimization takes up to 3h with a naive implementation; for K = 5, it takes 24h
for the largest datasets.

46



3-step presolving schedule, however, does halve the gap with the oracle selector. Note that
in this particular case all 4 algorithms are used to solve some instances (3 in the presolving
schedule when the 4th is selected; otherwise when one of the 3 “usual” presolving schedule
algorithms is selected, the presolving schedule has only 2 steps and runs for a total du-
ration of 2/3rd of Tps). However, increasing the presolving schedule size deteriorates the
result for the MAXSAT12-PMS and CSP-2010 datasets. For both, the pure selection ap-
proach already shos excellent performance. Therefore, the additional robustness of using
a pre-scheduler is not worth the extra cost.8

Fig. 4.9 hides that the optimization in Tps is done after the choice of K, meaning that
Tps is hardly comparable for different values of K. Another point to keep in mind is that
when the presolving schedule size increases, the time shares allocated to each algorithm
tend to decrease, which is why increasing the size of the pre-scheduler does not necessarily
lead to global performance improvement. In the average perspective over all datasets (Fig.
4.9, bottom), a good trade-off is obtained for K = 3. However, this average is heavily af-
fected by the huge benefit of the pre-scheduler on the PREMARSHALLING-ASTAR-2013
dataset. In conclusion, this parameter should be tuned in a dataset-dependent manner.

4.3 Evaluation framework: The ICON Challenge on Algo-
rithm Selection

This section details the ICON Challenge on Algorithm Selection, used to experimentally
validate the ASAP systems (Secs. 4.4, 4.6).

4.3.1 Specific rules of the challenge

The ICON Challenge on Algorithm Selection was carried on between February and July
2015 to evaluate AS systems in a fair, comprehensive and reproducible manner. Submis-
sions were required to be free for academic use and were run by the organizers for the
final evaluation. The codes of all submitted systems and the results were made publicly
available after the end of the challenge.9

Task of the challenge

Each submitted system provides a dataset-dependent, per-instance schedule of algorithms
to be trained and tested on the ASlib datasets.

This sequential algorithm portfolio can optionally be preceded with a per-dataset pre-
solver (single algorithm running on all instances during a given runtime before the per-
instance schedule runs).

Each system can also, per-dataset, specify the groups of features to be used in order
to save the time needed to compute features. As some features are computed in several
steps, some precedence constraints have to be respected.10

8A careful comparison of the full system with 0- and 1- step presolving schedule reveals that for
MAXSAT12-PMS and CSP-2010 datasets, roughly the same number of instances are solved by both
options.

9Accessible at: http://challenge.icon-fet.eu/challengeas
10Note that the feature computation order is fixed in the ASlib format.
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Challenge evaluation setup

Each submitted system is assessed on the 13 ASlib V.1.0.1 datasets [Bischl et al., 2016]
(Sec. 3.4) with respect to three classical performance measures in combinatorial optimiza-
tion challenges:

1. ps: proportion of problem instances solved;

2. r+
t : average extra runtime compared with the oracle solver (a.k.a. virtual best

solver). Given a schedule S it is computed as:

r+
t (S) =

∑
x∈I

rt(x, S)− rt(x, oracle)

3. PAR10: average Penalized Average Runtime-10 (PAR10) which is the cumulative
runtime needed to solve all problem instances (using 10 times the dataset timeout
for unsolved instances).

As all datasets were available to the community from the start, the evaluation was
based on hidden splits between training and test set. Table 4.4 summarizes the differences
between the ASlib provided cross-validation splits and the one used for the challenge
evaluation. The main difference regards the size of the splits: training sets are larger in
ASlib, resulting in a reduced risk of overfitting, but the test sets are more heterogeneous.
For a fair comparison, ASAP systems are tuned using the ASlib cross-validation and
evaluated with the challenge splits.

Dataset
Train set size (avg.) Test set size (avg.)
ASlib challenge ASlib challenge

ASP-POTASSCO 1164 813 129 480
CSP-2010 1821 1275 202 748
MAXSAT12-PMS 788 552 87 323
PREMARSHALLING-ASTAR-2013 474 334 52 192
PROTEUS-2014 3618 2535 402 1485
QBF-2011 1231 865 136 502
SAT11-HAND 266 190 29 105
SAT11-INDU 270 189 30 110
SAT11-RAND 540 376 60 223
SAT12-ALL 1452 1021 161 592
SAT12-HAND 690 482 76 284
SAT12-INDU 1050 734 116 432
SAT12-RAND 1225 853 136 508

Table 4.4: ASlib and ICON challenge splits details. While ASlib considers a 90/10 split
ratio between training and test set, the ratio is roughly 1.7 in the challenge setting.

Two baselines are considered: the oracle, selecting the best algorithm for each prob-
lem instance; and the single best (SB) algorithm, with best average performances over
all problem instances.11 Note that the feature computation cost is not included in the

11After the challenge setting, the SB is determined considering all instances in the dataset – including
training and test instances. Due to the limited size of some datasets, the SB based on the training set only
might differ from the overall SB.
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baselines performances. The baselines are used to normalize every system performance
over all datasets, associating performance 0 to the oracle (respectively performance 1 to
the SB algorithm). The normalized performance (Sec. 3.1.4) is recalled here:

F(S) =
F(S)−F(oracle)

F(SB)−F(oracle)
(4.7)

with F from in
{
ps, r

+
t , PAR10

}
.12 This normalization facilitates the aggregation of the

system results over all datasets. A value larger than 1 means the submitted system did
not improve on the SB algorithm; negative values are impossible by construction. All
reasonable systems are thus expected to have performance between 0 and 1.

The per-dataset, per-split score of each system is obtained by simulating the solving
schedule S on all instances in the split test set. Provided an instance is solved with times
t1, . . . , tk by respectively algorithms a1, . . . , ak, its simulated runtime is computed as:

1. Simulate presolver apre of S during presolving time τpre. If tapre ≤ τpre, the runtime
is tpre and the instance is marked as solved.

2. Simulate the computation of groups of features required by S. This computation is
completed in tfeat. If the feature computation solved the instance, the runtime is
τpre + tfeat and the instance is marked as solved.

3. Simulate the run of each step of the schedule (aS(1), τS(1)), . . . (aS(k), τS(k)) provided
by S.13 If the instance is solved by step k∗, the runtime is τpre + tfeat + τS(1) + . . .+
τS(k∗−1) + tS(k∗) and the instance is marked as solved. If the end of the schedule or
the dataset timeout Tmax is reached, the runtime is set to Tmax and the instance is
mark as unsolved.

Note that this evaluation is equivalent to considering a pseudo-schedule of the form
(presolver, feature computation steps, schedule S) where the steps of features computation
do not have any time limit; in practice such time limits exist and are already included in
the feature values and costs provided in ASlib.

A total of 130 ballots – one for each (dataset, split) pair – are obtained and averaged
to obtain 3 separate rankings (one per performance measure). The official final ranking is
computed as the average of the three measures.

4.3.2 Competitors

The ICON challenge was taken on by 4 teams for a total of 8 submitted systems. ASAP.V114

entered the competition with two variants: ASAP kNN and ASAP RF, respectively using a
k-Nearest Neighbor (k-NN) and a Random Forest (RF) algorithm at the core of the se-
lector component. The 6 other competing systems were: autofolio, flexfolio, SUNNY,
SUNNY-presolv, zilla, zillafolio.

As said, each system had the option to use a presolver and to choose (on a per-dataset
basis) not to compute a subset of the features. These options were inspired by SATzilla

(Sec. 3.3.1), as its ability to use presolvers and per-instance feature computation undoubt-
edly contributed to its success in numerous competitions. For simplicity, ASAP.V1 did
not implement such dataset-dependent feature computation; the use of PSinit as presolver
was also excluded, as only a K = 1 presolving schedule was allowed.

12Note that F is summarized as a scalar value, although better performances means higher ps but lower
r+t and PAR10.

13Note that all k algorithms are not necessarily run and that a given algorithm is not allowed to be run
in two different steps.

14ASAP.V2 (Sec. 4.5) was designed after the end of the competition.
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4.4 ASAP.V1 experimental validation in the ICON chal-
lenge

ASAP.V1 was assessed during the ICON Challenge on Algorithm Selection15 after the
challenge setting described in Sec. 4.3. As already mentioned, two versions of ASAP.V1
were competing, using the same global architecture but with different selector components:

• ASAP_kNN.V1: selector based on performance models learned using a distance-weighted
k-NN approach (Eq. 4.6) and k = 3;

• ASAP_RF.V1: selector based on performance models learned using a random forest ap-
proach with 35 trees (all other parameters set to their default values in scikit-learn

[Pedregosa et al., 2011] framework).

The ASAP_RF.V1 and ASAP_kNN.V1 versions ranked 4th and 5th, respectively, on a total
of 8 participants. The official ranking is based on the mean average across all datasets, all
splits and 3 performance measures, with zilla as the winner. As noted by the organizers
[Kotthoff, 2015], retaining the median average instead of the mean would make ASAP_RF.V1
to beat zilla. ASAP_RF.V1 was awarded an honourable mention.

4.4.1 Comparative results

Table 4.5 reports the results of all submitted systems on all datasets. The general trend is
that zilla systems dominate all other algorithm selector approaches on the SAT datasets,
as expected from their experience in the SAT domain, since they have consistently domi-
nated the SAT contests in the last decade. On most of non-SAT problems however, zilla
systems are dominated by ASAP_RF.V1.

On the negative side, the ASAP approaches perform slightly worse than the sin-
gle best on some datasets though they never rank last. The rescaled performances of
ASAP_RF.V1 is compared to zilla and autofolio (Fig. 4.10, on the left). On the positive
side, ASAP_RF.V1 delivers balanced performances, significantly lower than for zilla and
autofolio on the SAT problems, but significantly higher on the other datasets; it defines
an overall robust portfolio approach.

4.4.2 Improvement perspectives on the ASAP.V1 selector component

The ICON challenge results [Kotthoff, 2015] suggest that ASAP.V1 requires less compu-
tation that most other competitors; note, however, that the overall computational bud-
get was limited to 12 CPU hours on every dataset. Further experiments explored how
ASAP.V1 with random forest can be straightforwardly improved with the use of a larger
random forest, as reported in Fig. 4.11 for the ASlib evaluation setting.

The average gain of using 200 trees (instead of 35 in ASAP_RF.V1) is 3.7%, though
the gain widely varies from one dataset to another. In short, a larger random forest
is beneficial on most datasets, while it significantly reduces the performances for some
datasets (up to 45% loss for SAT11-HAND). This suggests that a per-dataset approach
(e.g. through automatic configuration) is needed to achieve the best selector performance.

Possible directions of improvement for the selector include the use of a pairwise regres-
sion approach to replace the current performance prediction based AS. A similar change
has been introduced in the 2012 version of SATzilla [Xu et al., 2012b]. The extended
evaluation on the ICON challenge setup [Kotthoff, 2015] (including additional systems)

15All data, code and results are available at: http://challenge.icon-fet.eu/challengeas.
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ASP-POTASSCO 0.294 (2) 0.359 0.299 0.314 0.37 0.336 0.319 (5) 0.283
CSP-2010 0.146 (1) 0.247 0.288 0.223 0.263 0.406 0.2 (3) 0.157
MAXSAT12-PMS 0.168 (4) 0.159 0.45 0.149 0.166 0.224 0.201 (5) 0.233
PREMARSHALLING 0.349 (4) 0.369 0.359 0.307 0.325 0.296 0.374 (7) 0.385
PROTEUS-2014 0.16 (4) 0.177 0.222 0.056 0.134 0.103 0.245 (8) 0.223
QBF-2011 0.097 (2) 0.091 0.169 0.096 0.142 0.162 0.191 (7) 0.194
SAT11-HAND 0.341 (4) 0.318 0.342 0.342 0.466 0.464 0.328 (3) 0.302
SAT11-INDU 1.036 (5) 0.957 0.875 1.144 1.13 1.236 0.905 (2) 0.966
SAT11-RAND 0.104 (6) 0.09 0.046 0.226 0.116 0.088 0.053 (2) 0.067
SAT12-ALL 0.392 (5) 0.383 0.306 0.502 0.509 0.532 0.273 (1) 0.322
SAT12-HAND 0.334 (5) 0.31 0.256 0.434 0.45 0.467 0.272 (2) 0.296
SAT12-INDU 0.955 (6) 0.919 0.604 0.884 1.074 1.018 0.618 (3) 0.594
SAT12-RAND 1.032 (5) 1.122 0.862 1.073 1.126 0.97 0.779 (1) 0.79

Table 4.5: ICON challenge results: normalized performances of submitted systems, aggre-
gated across all splits and all measures (the lower, the better). Ranks of zilla (chal-
lenge winner) and ASAP RF.V1 (honourable mention) are given in parenthesis. Num-
bers are computed from the challenge outputs. Note: “PREMARSHALLING” stands
for “PREMARSHALLING-ASTAR-2013”.

ASP-POTASSCO

CSP-2010

MAXSAT12-PMS

PREMARSHALLING

PROTEUS-2014

QBF-2011

SAT11-HAND

SAT11-INDU

SAT11-RAND

SAT12-ALL

SAT12-HAND

SAT12-INDU

SAT12-RAND

Figure 4.10: Comparative performances. Left: per-dataset performances of ASAP RF.V1

(balls, dotted line), zilla (no marker, dashed line) and autofolio (triangles, solid line);
the scale is such that 0 corresponds to the worst submission and 1 to the best one. Right:
comparison of ASAP RF.V1 and the best submitted AS per dataset in normalized perfor-
mance (small balls, solid line); the scale is such that normalized performance values 1 (SB)
and 0 (oracle) are represented as the center and at the outer end of a radius, respectively.
On all datasets except 3, ASAP RF.V1 reaches similar performance to the best submitted
AS on this dataset.
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Figure 4.11: Effect of the number of trees on ASAP RF.V1 selector (normalized PAR10
score). Color depicts the relative improvement w.r.t. the initial 35 trees setting (blue
denotes improvement, red denotes deterioration).

shows that the vanilla pairwise regression based-AS llama-regrPairs by the challenge
organizers would have beaten both versions of ASAP.V1. In contrast, the vanilla regres-
sion based-AS llama-regr is behind, stressing again that ASAP architecture – using a
pre-scheduler in addition to a standard regression based AS – is an efficient solution.

Another direction of improvement is per-dataset autoconfiguration as done in autofolio

[Lindauer et al., 2015]. A pairwise regression based approach would most likely benefit of
such overhead, as it comprises a wider range of hyperparameters (controlling the regression
and the final aggregation through, e.g. vote).

4.4.3 Summary and Discussion

ASAP.V1 combines a algorithm schedule with a performance model based algorithm se-
lector. This approach allows ASAP.V1 to achieve peak performances on a per-instance
basis thanks to the AS component while the pre-scheduler helps keeping the effect of a
critical AS failure low. This division of task is addressed as a bi-objective problem (peak
performances vs. robustness), with a single parameter controlling the trade-off between
the budget shares allocated to each objective.

The merits of this dual architecture were demonstrated during and after the ICON
challenge on AS, as ASAP.V1 outperforms both a pure single performance model based AS
(llama-regr of the organizers, with a similar random forest algorithm as a predictor) and
a pure scheduler (flexfolio), and to a larger extent the SB algorithm. These conclusions
are in line with a number of comparable experimental validations in similar settings, e.g.
the successes of SATzilla and 3S in different competitions.

The analysis of the sensitivity to the main hyperparameters suggests that the algorithm
portfolio itself should be configured on a per-dataset basis. Such observation is at the
root of the autofolio design, where the prominent algorithm configurator SMAC [Hutter
et al., 2011] is used to select and parameterize the portfolio approach. However, specific
mechanisms need to be implemented to be able to deal with this extended parameter
space and preserve the generalization property. The most natural option is to consider
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more data. However, data campaigns are expensive; moreover, they would require an
instance generator. Data augmentation could also be used; however, the perturbation
of known instances also requires some specific knowledge about the underlying instance
distribution. A second option is to use a cross-validation scheme to learn the AS and the
hyperparameters using separate sets of data to prevent overfitting; this solution is used in
autofolio. A last option is based on regularization, a widely used technique in machine
learning: the complexity of the system is penalized through an additional term in the
training loss function.

Another most promising option is to revisit the equal time-sharing scheme of the pre-
scheduler. Although a pre-scheduler mainly aims to improve the PIAS robustness, it is a
sequential algorithm portfolio of itself. Previous work [Gagliolo and Schmidhuber, 2006]
has demonstrated that the equal time sharing (called uniform time allocator) option is
suboptimal.

4.5 ASAP.V2

The lessons learned from the ICON challenge inspired several extensions of ASAP.V1,
aimed at exploring a richer pre-scheduler-AS search space while preventing the risk of
overfitting induced by this larger search space. Two directions of improvement along this
line are identified. Firstly, the presolving schedule is viewed as a portfolio of its own,
and it makes sense to optimize it as well, particularly so regarding the equal time-sharing
scheme. The second improvement regards the division of labor between the pre-scheduler
and the AS components. Noting that ASinit was trained to handle the instances that
were not solved by the PSinit, it appears relevant to optimize PSinit so that it may com-
pensate for the mistakes of ASinit, and to eventually jointly optimize both pre-scheduler
and AS components. In ASAP.V2, the joint optimization is tackled using an alternating
optimization scheme.

With same notations as in Sec. 4.1.1, ASAP.V2 outputs a schedule SASAP.V 2 composed
of PSpost and ASpost:

SASAP.V 2 =
(
(a1, τ1), . . . , (aK , τK), (aASpost , τASpost)

)
(4.8)

Fig. 4.12 depicts the proposed alternating optimization procedure.

4.5.1 ASAP.V2 pre-scheduler

PSpost differs from PSinit as it considers the use of different timeouts τk for each algorithm
in the presolving schedule; the set of algorithms (a1, . . . , aK) and the overall computational
budget Tps are as in PSinit. The hierarchical optimization strategy (Sec. 4.2.1), is thus
extended along two directions:

• timeouts (τ1, . . . τK−1) are optimized conditionally to
∑K−1

k=1 τi ≤ Tps (the remaining

budget Tps−
∑K−1

k=1 τk devoted to the pre-scheduler is assigned to τK). Whereas PSinit
maximizes the proportion of training instances solved, PSpost directly optimizes the
PAR10 score.

• optimization is done conditionally on ASinit, i.e. the performance of the full system
(PSpost, ASinit) is considered as the optimization objective. This encourages PSpost
to focus on solving instances badly handled by ASinit (which is kept fixed in this
first phase).
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Figure 4.12: ASAP.V2 alternating optimization procedure. ASAP.V2 sequentially trains:
PSinit; ASinit (resulting in ASAP.V1); PSpost; ASpost. ASAP.V2 comprises these two last
components.

In a second phase, PSpost is determined as the solution of the following optimization
problem:

optimize
τ1,...,τK−1

F ((a1, τ1), . . . , (aK , τK), (aASinit , τASinit))

subject to


K∑
k=1

τk = Tps

∀k, τk ∈ IR+

(4.9)

Optimization details Optimization variables are encoded in [0, 1]. The equality con-
straint is handled by dropping τK from the set of optimization variables (see below). The
actual optimization variables z1, . . . , zK−1 are defined as:

∀k ∈ {1, · · · ,K − 1}, zk =
1

Tps
min

(
τk, Tps −

k∑
l=1

τl

)

The decoding procedure, required to provide the objective function with a valid set of τk
values, implements the boundary constraints and the equality constraint. Note that the
resulting optimization problem considers the absolute values of the zks.

∀k ∈ {1, · · · ,K − 1}, τk = Tps ·min

(
|zk|, 1−

k∑
l=1

|zl|

)

τK = Tps ·max

(
0, 1−

K−1∑
l=1

|zl|

)
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For multi-objective optimization16 (i.e. for K ≥ 3) a prominent continuous black-box
optimizer, specifically, the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
[Hansen et al., 2003] is used to carry out the search. The initial standard deviation (pa-
rameter σ) is set to 0.25 and the number of CMA-ES inner restart procedures (increasing
each time the population size) is set to 3 after preliminary experiments. The optimization
starts from the initial solution where all time shares are equal.

Raw optimization criterion

This extended search space is first investigated by considering the raw optimization cri-
terion Fraw that measures the PAR10 of schedule S = (PSpost,ASinit) over all training
problem instances:

Fraw(S) = PAR10(S) =
1

|I|
∑
xi∈I

PR10(xi, S) (4.10)

As previously stated, the risk of overfitting increases as a richer search space is considered
and the size of the training set remains the same (a few hundred to a few thousand problem
instances, as detailed in Tab. 4.4).

Penalized optimization criterion

To prevent overfitting, a penalized optimization criterion is thus introduced and augments
Fraw with a L2-norm regularization term:

FL2(S) = Fraw(S) + w · T
max

Tps
· ‖τ‖2

which penalizes an uneven allocation of times within the presolving schedule.17 The ra-
tionale for this penalization is to prevent brittle improvements on the training set due
to opportunistic adjustments of the τk values, at the expense of stable performances on
further instances. The penalization weight w is adjusted using a separate cross-validation
process.

Randomized optimization criterion

A randomized optimization criterion is also considered. By construction, the ideal fit-
ness function to be minimized is the expected performance over the problem domain.
Only the empirical average performance over the problem instances is available, defining a
noisy optimization problem. Sophisticated approaches have been proposed to address this
noisy optimization issue in non-convex optimization-based machine learning settings (see,
e.g. [Cauwet et al., 2016; Heidrich-Meisner and Igel, 2009]). Another approach is proposed
here, based on the bootstrap principle: in each CMA-ES generation, the set of |I| problem
instances used to compute the performance is uniformly drawn with replacement from the
|I|-size training set. In this manner, each optimization generation considers a slightly dif-
ferent optimization objective noted Frand, thereby discouraging hazardous improvements

16If the dataset considers exactly 3 algorithms, K is reduced to 2 and the problem is a 1-dimensional
optimization, which is not handled by the CMA-ES implementation used. If there are only 2 algorithms
– such as for the CSP-2010 dataset – K is set to 1 and the pre-scheduler optimization trivially retains the
SB for a budget of Tps.

17Since ‖τ‖1 = Tps is fixed, notice that the penalization term is minimal when τ =
[
Tps
K

]
k
.
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and contributing to a more robust search.

draw J =
(
xj1 , . . . ,xj|I|

)
∼ U(I |I|)

Frand(S) =
1

|I|
∑
xj∈J

PR10(xj , S)

Probabilistic optimization criterion

Finally, a probabilistic optimization criterion is considered, modeling ASAP performance
on a single problem instance as a random variable with a triangle-shape distribution (Fig.
4.13) centered on the actual runtime tia required for algorithm a to solve the i-th instance,
with support in [tia − θ, tia + θ],18 and taking the expectation thereof. The merit of this
triangular probability distribution function is to allow for an analytical computation of
the overall fitness expectation, noted Fdfp.
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Figure 4.13: Impact of a probabilistic optimization criterion: Difference between deter-
ministic and probabilistic execution time. Left: the schedule deterministically stops as a1

solves the instance. Right: with some probability, a1 does not solve the instance and the
execution proceeds.

4.5.2 ASAP.V2 selector

Similarly to ASinit in ASAP.V1, ASpost is based on algorithm performance models. Only
random forest models are considered in ASAP.V2 given that they outperform other ML
algorithms (ASAP.V1 considered k-NN, linear SVM and Gaussian kernel SVM). However,
any other PIAS approach (e.g. classification or pairwise regression, Sec. 3.2.4) could
be used instead without requiring any change in the ASAP.V2 alternating optimization
procedure.

Following ASAP.V1 post-challenge improvements on the AS component (Sec. 4.4.2),
several sizes of the random forest models are considered to jointly adjust ASpost (with a
varying number of trees) and PSpost (where the optimization criterion varies).

Like in ASAP.V1, the AS is learned conditionally to the presolving schedule: ASpost is
learned conditionally to PSpost using pre-schedule features (Sec. 4.2.3).

4.6 ASAP.V2 experimental validation

The experimental validation of ASAP.V2 aims at answering two main questions:

18θ value is determined using a cross-validation; see Sec. 4.6
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1. To what extent is the pre-scheduler optimization beneficial ? Along this line, the pro-
posed loss functions introduced in 4.5.1 are compared in terms of raw performances;
their impact is inspected to guide the automatic configuration of hyperparameters.

2. How efficient is the alternating optimization procedure? Do the ASAP.V2 pre-
scheduler and selector actually depend on each other? The analysis of each com-
ponent is undertaken to state how much each component can compensate for the
errors of the other. Interestingly, it is easier to inspect the division of labor when
both component are far from optimal.

This section considers two experimental settings to conduct a sensitivity analysis:

• ASlib, where the cross-validation methodology is used to validate the approach and
propose robust hyperparameter values.

• the ICON challenge, that enables a fair comparison of ASAP.V2 with ASAP.V1 and
other state-of-the-art systems.

4.6.1 Experimental comparison of ASAP.V2 pre-scheduler optimization
loss functions

The regularized optimization criteria (Sec. 4.5.1) involve hyper-parameters (the weight w
of the L2 penalization and the width θ of the distribution for the probabilistic criterion)
that must also be calibrated. Fig. 4.14 shows the sensitivity of the ASAP.V2 normalized
PAR10 depending on the hyperparameter values, with ASAP.V1 performance as a baseline
(only differing from ASAP.V2 as its pre-scheduler is not optimized). The raw criterion is
also represented (with a red dot) for the extreme cases w → 0 or θ → 0.
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Figure 4.14: ASAP.V2: Sensitivity of the penalized (FL2 , left) and probabilistic (Fdfp,
right) optimization criterion with respect to their hyperparameter settings (x-axis, re-
spectively w and θ, log-scale). For well calibrated values (w = 0.01 or θ = 1), both
options outperform the raw optimization criterion and ASAP.V1 with a non-optimized
pre-scheduler.

The advantage of the proposed criteria over ASAP.V1 is summarized in Tab. 4.6.
Factually, the pre-scheduler optimization with penalized criterion (ASinit remains un-
changed) improves ASAP RF.V1 results by about 10% (from 0.325 to 0.3059). In com-
parison, fine-tuning the selector alone (Sec. 4.4.2) improves ASAP RF.V1 performance
by a lesser amount (from 0.325 to 0.3073; Fig. 4.11, 200 trees). In summary, optimizing
the pre-scheduler is more effective than optimizing the AS; the joint optimization of both
components is considered in Sec. 4.6.3.

As stressed in Tab. 4.6, the penalized optimization criterion significantly outperforms
the raw optimization criterion; this suggests that the latter is subject to overfitting. The
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Optimization strategy None Fraw FL2 (w = 0.01) Frand Fdfp (θ = 1)

PAR10 0.325 0.322 0.306 0.321 0.319

Table 4.6: Comparison of PSinit optimization strategies on the ASlib cross-validation in
terms of normalized PAR10 measure (lower is better). “None” refers to no optimization,
i.e. ASAP RF.V1 (PSinit being unchanged). Standard deviation is not shown for the sake
of readability; note that the folds of a same dataset are heterogeneous.

other two considered options (randomized and probabilistic optimization criterion) out-
perform the raw optimization criterion to a much smaller extent. According to this first
experiment, they should be discarded, all the more since the probabilistic criterion involves
one extra hyper-parameter.

4.6.2 Experimental validation of the alternating optimization process

Experimental settings

This section examines the impact of the joint optimization of the pre-scheduler and the
AS. The gains obtained from the presolving schedule optimization conditionally to ASinit
are inspected by comparing three variants of ASAP.V2:19

(O.1) : the presolving schedule is optimized independently from the selector, i.e. all in-
stances that the presolving schedule does not solve are considered as unsolved. Due
to the high penalty on unsolved instances with the PAR10 score, the presolving
schedule is required to solve as many instances as possible.

(O.2) : the performance of the pair (pre-scheduler, oracle selector) is maximized (where
instances not solved by the presolving schedule are handled by an oracle selector).
The presolving schedule then is expected to solve the instances as quickly as possible
while the others are passed on to the oracle.

(O.3) : the performance of the true system (pre-scheduler, ASinit) is maximized, where all
instances in the training set are considered when training ASinit and PSpost. By con-
struction, this performance is an upper bound on ASAP.V2 selector performance as
it is trained and simulated on the same data. ASAP.V2 (if nothing else is mentioned)
implements ((O.3)).

The difference between the first two options can be sketched as: the former attempts to
solve all problem instances; the latter is in a “best effort” mode. They actually lead to
different presolving schedule solutions, as shown in Ex. 4.2:

Example 4.2. Consider 3 algorithms solving 5 instances with the integer costs reported in
Tab. 4.7 (left of the double bars). Assume a 2-steps presolving schedule PS = ((a1, τ1), (a2, τ2))
with overall budget Tps = 2 and assume that the oracle would select algorithm a3 for any
instance. Time spent by the presolving schedule for all combinations of (τ1, τ2) (assuming
the presolving schedule gets only integer costs) are given in Tab. 4.7 (right of the double
bars), with the number of stars denoting the number of instances PS failed to solve.

Optimizing the presolving schedule alone (option (O.1)), the best solution is (τ1, τ2) =
(0, 2) as the two other solutions are endorsed with a strong penalty for not solving instance

19Recall that ASAP.V1 validation showed how beneficial it is to train the selector conditionally to the
pre-scheduler, through the use of extra features (Sec. 4.2.3).
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Cost Cost of PS for (τ1, τ2)
Algorithm a1 a2 a3 (2, 0) (1, 1) (0, 2)

i1 1 1 1 1 1 1
i2 1 2 1 1 1 2
i3 1 2 1 1 1 2
i4 1 1 1 1 1 1
i5 3 2 1 2+* 2+* 2

Total 6+* 6+* 8

Table 4.7: Cost of all presolving schedule in Ex. 4.2, e.g. instance i2 is solved by PS in 1
if in the first step a1 is given budget 1 or 2, and it is solved in 2 if a1 is given 0 and a2 is
given budget 2.

i5. On the other hand, optimizing the presolving schedule as if it were followed by the
oracle (option (O.2)) would result in total cost 6 + 1 for solutions (1, 1) and (2, 0) that
would be preferred to (0, 2) with cost 8.

Experiments below are based on a 35-tree RF selector. This selector is preferred to
better ones (Sec. 4.4.2) to better illustrate the differences between option (O.2) (selector
is the oracle) and option (O.3) (selector is ASinit). For the same reason, the k-NN based
selector is not used, as it performs perfectly on the training data due to the distance
weighting in Eq. 4.6.

Analysis of the results

Most surprisingly, as shown on Fig. 4.15 most of the gains are due to the optimization of
the presolving schedule runtimes. In the meanwhile, the division of labor between the pre-
scheduler and the selector is not enforced by the optimization process. The optimization
of the presolving schedule alone (option (O.1)) is very sensitive to hyperparameter values
when considering the average across all datasets; a more detailed analysis is required.

To facilitate the comparison between the three options, performance ratios are defined
to quantify the improvement on one option over another:

Fratio(X,Y ) = F(X)/F(Y ) (4.11)

Fig. 4.16 reports Fratio(ASAP.V 2, ASAP.V 1), thus comparing ASAP.V2 (option (O.3))
with ASAP.V1 as a reference. Note that some datasets (ASP-POTASSCO, SAT11-HAND,
SAT12-ALL) actually do not benefit from the presolving schedule optimization.

As illustrated on Fig. 4.17, options (O.3) and (O.1) are equivalent for most datasets
except for MAXSAT12-PMS, PREMARSHALLING and PROTEUS-2014. For those, a
per-dataset pre-scheduler configuration would be relevant.

Options (O.3) and (O.2) are mostly indistinguishable, and their comparison is omitted,
indicating that the presolving schedule optimization in option (O.3) is optimistic (the AS
is trained and evaluated on the same data,). A more realistic setting would simulate the
selector along a leave-one-out process (training the selector on all the training instances but
one and then make the prediction for it). This is however hardly tractable, as it would
require to train as many selectors as there are training instances. An alternative is to
consider a nested cross-validation, introducing a new trade-off between the computational
cost (the more folds, the more selectors to train) and the representativity of the selectors
(the fewer folds, the smaller the selectors training sets are and as a consequence the poorer
the selectors will be compared to ASinit – that is trained on the whole training set data).
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Figure 4.15: Comparison of ASAP.V2 variants (O.1), (O.2) and (O.3) in terms of PAR10
(avg. across all datasets, ASlib cross-validation). The sensitivity w.r.t. the pre-scheduler
optimization loss function is similar for (O.2) and (O.3). Variant (O.1) contrasts with the
two others, confirming that simulating a selector component does affect the pre-scheduler
optimization.

4.6.3 Evaluation in the ICON challenge framework

The sensitivity analysis conducted after the closing of the challenge compares ASAP.V2
(with different time-outs in the presolving schedule) and ASAP.V1, and examines the
impact of the different optimization criteria, aimed at avoiding overfitting: the raw fitness,
the L2-penalized fitness, the randomized fitness and the probabilistic fitness (Sec. 4.5.1).

The impact of the hyper-parameters used in the AS (number of trees set to 35, 100,
200, 300 and 500 trees in the Random Forest) is also investigated.

Table 4.8 summarizes the experimental results for each ASAP.V2 configuration along
the ICON challenge setting, together with the actual submissions results, including systems
that were not competing in the challenge: llama-regr and llama-regrPairs from the
organizers, and autofolio-48 which is identical to autofolio but with 48h time for
training (12h was the time limit authorized in the challenge) [Kotthoff, 2015].

The significance analysis, using a Wilcoxon signed-rank test, is reported in Fig. 4.18.
A first result is that all ASAP.V2 variants improve on ASAP.V1 with significance level
1%. A second result is that ASAP.V2 with the probabilistic optimization criterion is
not statistically significantly different from the challenge-winner zilla, autofolio and
zillafolio.

Fig. 4.19 details per dataset the performance improvement between ASAP.V2 (500
trees, FL2 version) and ASAP.V2 (500 trees, Fdfp version) and on the other hand ASAP RF.V1
(35 trees). Note that ASAP.V2 outperforms the per-dataset best submission to the chal-
lenge for 3 datasets: MAXSAT12-PMS, QBF-2011 and SAT11-HAND.

20ASAP RF.V2 with 35 trees and no optimization in the pre-scheduler is identical to ASAP RF.V1; due to
small changes in the implementation however, scores slightly differ.

21For the CSP-2010 dataset, only two algorithms are available: the presolving schedule thus consists of
a single algorithm, and all ASAP RF.V2 variants with the same selector hyperparameter are identical.
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Figure 4.17: Performance ratio Fratio((O.3), (O.1)) between (O.3) and (O.1) for each
dataset. Values below 1 – blue color – indicates that (O.3) outperforms (O.1). Values
above 1 – red color – indicate the opposite.

4.6.4 Analysis of the behaviour of the ASAP.V2 optimized pre-scheduler

ASAP.V1 was designed based on the observation that its pre-scheduler and AS compo-
nents should be complementary. ASAP.V2 strengthens the division of labor between both
components through extra tuning of the pre-scheduler. Specifically, the optimized presolv-
ing schedule must: i) solve instances badly-handled by the selector and ii) solve “easy”
instances as efficiently as possible. The comparison of ASAP.V2 variants and the non-
optimized variant (rightmost column in Tab. 4.8, with equal time-outs) demonstrates
that both goals are met to some extent.

Firstly, pre-scheduler fine-tuning does improve the presolving schedule performance;
the overlap between instances that each component can solve by itself22 (within Tps for the
presolving schedule, within the remaining time for the algorithm selected by the AS) tends

22Remind that these instances are not actually passed to the AS in the challenge evaluation setup.
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fitness function (if relevant) FL2 Fdfp Frand Fraw none

ASAP RF.V2 35 0.416 0.414 0.412 0.410 0.41420

ASAP RF.V2 100 0.404 0.398 0.405 0.402 0.414
ASAP RF.V2 200 0.404 0.402 0.402 0.399 0.405
ASAP RF.V2 300 0.399 0.399 0.402 0.393 0.405
ASAP RF.V2 500 0.398 0.394 0.398 0.398 0.401

ASAP RF.V1 0.41620 

equivalent to the
means over the
columns of Table
4.5

ASAP kNN.V1 0.423
autofolio 0.391
flexfolio 0.442
sunny 0.482
sunny-presolv 0.485
zilla 0.366
zillafolio 0.37

autofolio-48 0.375
llama-regrPairs 0.395
llama-regr 0.425

Table 4.8: Optimized presolving schedule performance21 aggregated across all datasets,
all splits and all measures (the lower, the better). The hyperparameters for FL2 and Fdfp
were chosen after preliminary experiments using the cross validation provided with ASlib.
For each configuration of the selector, the best-evaluated fitness function appears in bold.
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Figure 4.19: Left: Comparison of ASAP RF.V2 (FL2 , 500 trees, triangles) with
ASAP RF.V1. Right: Comparison of ASAP RF.V2 (Fdfp, 500 trees, squares) with
ASAP RF.V1.

to decrease when optimizing the presolving schedule for most datasets, as depicted on Fig.
4.20. On the other hand, the full ASAP.V2 systems (optimized pre-scheduler + AS) solve
roughly as many instances as the non-optimized setup (difference < 1%). It follows that
the pre-scheduler fine-tuning leads to a better specialization of both components, though
it does not translate into a global improvement.

The inclusion of Tps in the set of optimized variables is expected to further strengthen
this specialization.
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Figure 4.20: Overlap between the pre-scheduler and the selector components: per-dataset
number of instances that can be solved by both the pre-scheduler and the selector com-
ponent in comparison to the non-optimized pre-scheduler variant.

The time spent in the pre-scheduling phase is reduced (up to 29%) by the pre-scheduler
fine-tuning, as illustrated in Fig. 4.21. As one could have expected, the use of the L2

regularization mitigates this effect (we note that this setup prevents the optimized τk
values to be far apart from the equal time-outs of the non-optimized presolving schedule):
it is a low-risk, low-reward strategy. No clear winner emerges from the other 3 variants.

4.7 Open Algorithm Selection Challenge

After the 2015 ICON challenge on algorithm selection, the COSEAL group organized in
2017 the Open Algorithm Selection Challenge (OASC), which was won by ASAP.V2.
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Figure 4.21: Per-dataset runtime spent in the pre-scheduler phase in comparison to the
non-optimized pre-scheduler variant.

Some crucial changes have been made to the challenge compared to ICON, in order
to attract a broader audience and overcome some limitations of the previous challenge.
The OASC involved two phases, respectively ranging from May 20th to June 16th and
from June 16th to August 27th 2017. The first phase allowed the participants to have
their say in the evaluation setup, while the second phase was a usual machine learning
prediction step. In this section, we firstly present the challenge settings and evaluation.
A preliminary analysis of the results [Kotthoff et al., 2017] is proposed, and the section
concludes with a discussion of perspectives for further portfolios approaches.

4.7.1 Challenge setting

Scenarios

The first phase aimed at building a corpus of datasets (a.k.a. scenarios – the two terms
are used interchangeably) for the evaluation. Each participant had the possibility to
submit at most two new datasets to be released to the community after the challenge,
with two intended benefits. The first benefit is to provide the challenge organizers and the
whole AS community with additional public datasets, thus broadening the diversity and
representativity of the scenarios. The benefit for the participant is to provide datasets
that they know well, expectedly giving them an edge over the other competitors. For
this reason, only two datasets were allowed for each participant team; the final evaluation
setting was meant to include 10 datasets, possibly completed with fresh new datasets
provided by the organizers, or scrambled versions of already known ASlib scenarios.23

At the end of this first phase, 8 new scenarios had been submitted by the competing
teams or by the organizers; overall, 11 datasets were selected for the evaluation. Tab.
4.9 describes these datasets and their identity – disclosed after the end of the challenge.
In contrast with the ICON challenge, the train/test split were known to the participants
while the performances of the algorithms on the test set were hidden. It is important to
note that the participants were then aware of the amount of data used for training and
evaluating.

23Participants were asked for a list of their preference among existing scenarios.
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Dataset (anonymized name) # instances # features (# groups) # algorithms Objective

BNSL-2016 (Bado) 1179 87 (7) 8 Runtime
CSP-Minizinc-Obj-2016 (Camilla) 100 95 (1) 8 Solution quality
CSP-Minizinc-Obj-2016 (Caren) 100 95 (1) 8 Runtime
MAXSAT-PMS-2016 (Magnus) 601 37 (1) 19 Runtime
MAXSAT-WPMS-2016 (Monty) 630 37 (1) 18 Runtime
MIP-2016 (Mira) 218 143 (1) 5 Runtime
OPENML-WEKA-2017 (Oberon) 105 103 (1) 19 Accuracy (+)
QBF-2016 (Quill) 825 46 (1) 24 Runtime
SAT12-ALL (Svea) 1614 115 (10) 31 Runtime
SAT03-16 INDU (Sora) 2000 483 (16) 10 Runtime
TTP-2016 (Titus) 9720 50 (1) 22 Solution quality (+)

Table 4.9: Datasets of the Open Algorithm Selection Challenge. (+) in the objective
column indicates that the objective is to be maximized (default is minimized).

Datasets Camilla, Oberon and Titus are called “quality” datasets in the following.
Specific rules apply to the “quality” datasets: the schedule must consist of a single algo-
rithm (i.e. it is a pure algorithm selection problem) and the feature computation cost is
free.

Submission rules

As in the ICON challenge, the goal is to solve test instances with a sequential schedule
of algorithms. A difference is that only the schedule is mandatory for submission. Any
amount of feature computation, and of global24 or per-instance algorithms is allowed.
The training effort to produce the submissions is left to the participant without any
computational constraint. The only restrictions regard the logical order of the operations:
any feature-dependent system must be run after the required features are computed;
similarly, the schedule must satisfy all precedence constraints in the feature computation
steps. Note that feature computations are not provided with a cutoff time (and thus are
run until completion).

A total of 8 submissions from 4 teams entered the OASC25, all competing in the open
source submission track.26 6 of them were based on systems that already competed for
the ICON challenge, namely *zilla, SUNNY and ASAP. An extension of ASAP.V2 named
ASAP.V3 was submitted to the challenge[Gonard et al., 2017]: the number of algorithms
K in the pre-scheduler is automatically configured in {1, ..., 4} as the best PSinit option
over the whole training set. For “quality” datasets, the pre-scheduler was disabled; in this
case ASAP.V3 and ASAP.V2 both implement the same and only AS.

4.7.2 Hyper-parameter tuning

Limited tuning effort has been carried out to adapt ASAP.V2 and V3 to the OASC
datasets. Based on previous experiments (Fig. 4.11), the number of trees in the ran-
dom forest models is set to 200; using more trees does not result in higher performances.
To select among the different pre-scheduler optimization options, experiments with a 10-
fold cross-validation on the challenge training data is performed, as depicted in Fig. 4.22.

24This contrasts with the ICON Challenge setting, where one global – i.e. fixed for the dataset – algorithm
was allowed as a presolver (Sec. 4.3). It is reminded that such algorithms, sometimes termed as dataset-
oblivious algorithms, can be run before computing the features.

25An additional rule limited to 2 the number of submissions per team.
26Another track was offered to commercial and non-public systems, to open the challenge and attract

as many participants as possible. It turned out that all submissions were open-source.
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According to the challenge setup, only runtime datasets are used.
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Figure 4.22: Comparison of PSpost optimization strategies on the OASC runtime datasets
(normalized PAR10 score).

Like in ASlib V1.0.1 (Secs. 4.4 and 4.6), datasets get rise to different behaviour.
Averaging over all datasets, the best option is the FL2 loss; the average normalized PAR10
score respectively is 0.3677 for penalty weight w = 0.002 and 0.3684 for w = 0.005.
Finally, w = 0.005 is selected, as it was a better option in the previous experiments (Sec.
4.6.1). Tab. 4.10 reports the best optimization criteria for each runtime dataset and the
difference compared to the result of the best on average option (FL2 with w = 0.005).
As the difference is low (always under 1%), the version that performs best on average is
retained for all datasets.

Dataset Best option Improvement w.r.t. FL2 (w = 0.005)

Bado FL2 (w = 0.02) 4.87 · 10−5

Caren FL2 (w = 0.01) 2.57 · 10−3

Magnus FL2 (w = 0.001) 4.71 · 10−3

Mira Fraw 2.76 · 10−3

Monty Fraw 8.19 · 10−3

Quill FL2 (w = 0.005) NA
Sora Fdfp (θ = 1.) 1.12 · 10−3

Svea Frnd 3.97 · 10−4

Table 4.10: Best optimization strategy for each OASC runtime dataset (10-fold cross-
validation). Last column reports the performance loss between the per-dataset best options
and the best on average option.

4.7.3 Results

For each dataset, the score measures the proportion of gap closed in terms of PAR10,
defined as:
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• 1− PAR10 (with PAR10 defined as in Eq. 4.7) for all datasets whose performance
measure is to be minimized;

• PAR10 for the CSP-Minizinc-Obj-2016 and OPENML-WEKA-2017 datasets, whose
performance measures (resp. solution quality and accuracy) are to be maximized.

The gap closed measure is 1 if the system reaches the oracle performances, 0 if it reaches
the SB performances, and negative if is outperformed by the VBS. Tab. 4.1127 reports
the per-dataset gap closed for all systems (the winner announcement, with a less detailed
version of the results can be found in [Kotthoff et al., 2017]).

A
S

-A
S

L

A
S

-R
F

A
S

A
P

.V
2

A
S

A
P

.V
3

S
u

n
n
y
-a

u
to

k

S
u

n
n
y
-f

k
va

r

*z
il

la

*
zi

ll
a

d
y
n

sc
h

ed

Bado 0.675 0.833 0.757 0.805 0.744 0.844 0.702 0.475
Camilla * -1.289 -0.974 0.975 0.975 -0.475 0.106 -2.218 -2.218
Caren -1.732 -1.062 0.324 0.328 0.644 0.910 -0.641 0.635
Magnus -1.053 -1.052 0.498 0.496 0.492 0.572 0.575 0.582
Mira -0.406 0.495 0.505 0.509 -0.014 0.432 0.033 -1.337
Monty -6.389 -6.899 0.833 0.763 0.632 0.910 0.173 0.487
Oberon * -9.688 -4.613 -0.404 -0.404 -0.297 -0.164 -0.478 -0.478
Quill -0.299 -0.328 0.698 0.580 0.850 0.569 0.308 0.459
Sora -0.669 -0.370 0.215 0.064 0.002 0.008 0.171 0.171
Svea 0.439 0.585 0.676 0.688 0.579 0.658 0.172 0.172
Titus * -0.113 -0.535 0.846 0.846 0.805 0.799 0.665 0.665

Average -1.8660 -1.2655 0.5385 0.5136 0.3602 0.5133 -0.0489 -0.0352
Rank 8 7 1 2 4 3 6 5

Table 4.11: OASC final results. Per-dataset gap closed of every submission to the OASC.
The best performing system appears in bold font. All datasets with a star are “quality”
datasets.

ASAP.V2 is declared winner of the challenge while ASAP.V3 ranked second. Notably,
ASAP versions neither rank worse than 5 (once for each system) and together establish
the state-of-the art for 5 of the 11 datasets. ASAP.V2 performs strictly better than V3
on 5 datasets; ASAP.V3 strictly outperforms ASAP.V2 on 3 datasets.

Preliminary analysis

Overall, the winner of the OASC closes 54% of the gap between the SB algorithm and
the oracle, while it closed 60% on the ICON challenge setup (Tab. 4.8). The tentative
explanation is based on the wider diversity of the OASC datasets: SAT or CSP problems
were underlying 10 ICON datasets out of 13, compared to 6 out of 11 in OASC. Further-
more, the so-called “quality” datasets appear for the first time in an algorithm portfolio
challenge, to the best of our knowledge .

27The OASC organizers are warmly thanked for providing access to this material, unpublished at the
date of writing.

68



On both SAT datasets Sora and Svea, *zilla is beaten by ASAP.V2. A revised
version of *zilla, released after the end of the challenge closing, is still outperformed
by ASAP.V2. Both ASAP.V2 and *zilla are based on similar principles (pre-scheduler/
presolvers and a PIAS for solving “hard” instances) and further investigations are needed
to determine whether the performance differences come from the PIAS (regression-based
random forests in ASAP.V2 and pairwise regression based random forests in *zilla) or
from the additional effort to make the pre-scheduler and the PIAS complementary in
ASAP.V2.

The results on “quality” datasets are especially interesting as all submitted system
were primarily designed for runtime cost functions only, to the best of our knowledge. A
first observation regards the small size of these datasets: Camilla and Oberon both only
contain 100 instances, with 2/3rd of them accessible for training. On Oberon, all systems
perform worse than the SB algorithm: all PIAS fail. It is not yet clear whether the failure
is due to the limited size of the dataset, or to the very small edge of the oracle over the SB.
The difference between the oracle and the SB is circa 2% in terms of normalized PAR10
on Oberon, 4% on Titus, 75% on Camilla. For comparison, the difference is one order of
magnitude or more on all runtime datasets. Titus is much better handled by most systems
than Oberon, though the SB edge is only slightly larger (4% instead of 2%), but it is by
far the largest dataset with 9,720 instances, compared to 105 for Oberon.

The last “quality” dataset is Camilla; it is analyzed with the Caren dataset as both
datasets only differ by the performance measure (with same instances and features). For
the quality measure (Camilla), ASAP (V2/V3) dominates all other approaches with a per-
formance of 0.975. For the runtime measure (Caren) ASAP.V2 and V3 score 0.324 and
0.328 respectively, while Sunny-fkvar outperforms by far all other approaches. The main
lesson here is how much the performances and ranks depend on the performance mea-
sures, all else being equal. This echoes earlier conclusions (Sec. 4.2, 4.4, 4.6), stating that
a per-dataset configuration of the portfolios is needed to deliver peak performances.

A last observation regards the lower performances of ASAP.V3 in comparison to
ASAP.V2. The simple scheme implemented in ASAP.V3 to adapt K on a per-dataset
basis, improving the system flexibility, do not translate into better performances (except
for minor improvement on Caren and Svea, and more substantial improvement on Bado).
This fact is blamed on overfitting: the number of presolving schedule algorithms should
be optimized with adequate regularization, or using a cross-validation scheme.
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Chapter 5

Conclusions on algorithm
portfolios

Optimization, primarily a mathematical concept, is nowadays tackled as a computational
problem with the use of human-designed strategies, and more recently with an increasing
number of automatically designed strategies. Chap. 2 through 4 investigate algorithm
portfolios, making profit of multiple different strategies in a machine learning perspective.
Our main contributions are summarized and discussed in this chapter before discussing
some most challenging follow-ups of this work.

5.1 Summary of contributions and discussion

Algorithm portfolios bring an answer to the long-observed fact that, often, no universal
algorithm has been designed yet, even when we restrict to real-world problems. Two main
directions have been considered to leverage a set of algorithms: firstly, by statistically
exploiting the uncorrelated performances of multiple algorithms; secondly, by exploiting
the specifics of each instance to infer which strategy is the most appropriate one to this
instance.

A first remark regards the current achievements of algorithm portfolios. After the
main international challenges, building upon extensive domain-knowledge and pre-existing
algorithms, portfolios are increasingly able to make the best of it and to deliver peak
performance. In a machine learning perspective, this implies that for some categories
of problem, the mapping from problem instances onto state-of-the-art search strategies
is effective. Further improvements involves the design of new search components, giving
back the hand to domain-expert algorithm designers.

For some other categories of problems however, it is not the case. As shown by the
Open Algorithm Selection Challenge, the current algorithm portfolios do not yet close the
gap with the peak performance, even when considering a restricted set of applications.
Typically, on an excerpt of the ML scenario (OpenML) no portfolio system could beat
the SB strategy. Indeed, algorithm portfolios have had considerable and positive impact
in the combinatorial optimization community. However, their merits in other AI contexts
are less well acknowledged. The huge amount of data and algorithms already put together
in platforms like OpenML naturally is a considerable asset; the design of appropriate
descriptive features, however, might require more work [Muñoz et al., 2017].

On a finer grain scale, one of the contributions of this thesis is to experimentally
show how heterogeneous datasets are. Like for most algorithms, the performance of an
algorithm portfolio depends on its hyper-parameters; in the presented approach, the hyper-
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parameter setting has been done manually for a few selected hyper-parameters. More
sophisticated approaches – e.g., AutoFolio [Lindauer et al., 2015] – use automatic algorithm
configuration to configure their algorithm portfolios, exemplifying the use of per-instance
reasoning (where an instance here is a scenario) to achieve peak performances.

The diversity of the datasets also explains why, as expected, there exists no single set
of rules to design an efficient algorithm portfolio. The ASAP systems experimentally shed
some light on the key design choices to obtain an efficient system for the range of datasets
at hand. Some in-depth analysis with the help of domain experts is required to better
understand why algorithms behave so differently within a domain; this might also inspire
new algorithm design aimed at solving the problems that are poorly handled so far. This
long hope (already mentioned as early as 2003 [Leyton-Brown et al., 2003]) has not been
not fulfilled so far, due perhaps to the few interactions between the AS and the algorithms
design communities.1

Another consequence of this diversity is that portfolio design itself is highly prone to
overfitting. The performances of zilla in the ICON challenge, dominating all algorithms
on SAT datasets and outperformed (by ASAP.V1) on all other datasets, indicate how
biased it is toward the SAT domain.2

Overall, our main contributions in this first part of the thesis are the ASAP systems
(Chap. 4), achieving some division of labor between a sequential schedule and a per-
instance algorithm selector. ASAP.V1 delivers decent performances compared to other
state-of-the-art portfolio systems and received an honourable mention in the ICON Chal-
lenge on Algorithm Selection. ASAP.V2 improves on ASAP.V1, using alternating opti-
mization to enforce the division of labor in a dataset-dependent manner. The main efforts
here regard the prevention of overfitting, through the design of specific loss functions
for the sequential schedule, together with an ensemble method for the AS component.
ASAP.V2 was awarded a gold medal in the Open Algorithm Selection Challenge 2017.
The generality of the approach is shown as the AS also performed well on the so-called
quality scenarios, demonstrating the effectiveness of the proposed learned-model based
AS.

5.2 Future directions

In the short term, a first research perspective is to strengthen the division of labor between
the pre-scheduler and the AS, by considering a better AS. As of now, the AS is optimistic,
as its model has been learned on the entire training data. A nested cross-validation process
will provide more robust estimates and enable the pre-scheduler optimization to cover up
for the AS mistakes in a more reliable manner.

A second direction of research concerns the learned models themselves. As said, ASAP
focuses on the single performance model-based algorithm selection technique and only
consider the performance ordering among the algorithms. The lessons learned from the
challenges and from complementary experiments suggest that a cost-sensitive learning-to-
rank setting might be more appropriate to achieve per-instance algorithm selection; this
is supported for instance by SATzilla’s performance in the ICON challenge (Sec. 4.4).
Such an extension can be implemented in ASAP in a straightforward manner, due to
the modularity of the AS and the sequential schedule. In a longer-term perspective, the

1Portfolios have been marginalized to only compete in the “No-Limit” (previously “Open”) track of
SAT competitions since 2013, although much research in the AS area is coming out of the SAT community.

2The domination of the SAT competitions by SATzilla during nearly a decade (as mentioned in Sec.
3.3.1) is arguably a strong legacy for zilla algorithms.
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choice of the underlying AS model will be achieved in a dataset-dependent way, along
an automatic configuration strategy. Indeed, automatic configuration appears a research
priority for algorithm portfolio design (Chap. 3), and its impact on, e.g. the configuration
of the overfitting mechanisms implemented in ASAP.V2 pre-scheduler (Sec. 4.5) is yet to
be determined.

A third perspective regards the exploitation of the performance models to improve
PIAS. Insofar, they are only used as black-box predictors. However, characterizing their
accuracy and the variance of the error w.r.t. the feature space opens the way toward a
per-instance value-risk approach. Indeed, one might prefer selecting an algorithm which
is very likely to solve the instance for a moderately high runtime, rather than another
algorithm with lower predicted runtime but with a high error variance in the (feature
space) neighborhood of this instance. Note that same ML-based approaches can be used
to train the performance models and the risk models [Papadopoulos et al., 2002]. A major
constraint on such value at risk strategies regards the amount of data needed to train both
models, limiting this approach to the largest datasets.

Finally, an utmost challenging direction of research regards the assessment of portfolio
systems with respect to the required data resources. Experiments have extensively shown
the risk of overfitting due to the reduced size of certain datasets. A most needed direction
of research for AI (though perhaps not the most popular one at the moment) regards how
to make best use of as little data as possible. Most algorithm portfolio systems, including
ASAP, are trained from the complete performance archive (a # instances × # algorithms
matrix). Getting such extensive and computationally demanding data is not even imagin-
able in some AI domains, such as machine learning. Two ways of addressing this limitation
have been considered to our best knowledge. The former one is based on Bayesian op-
timization – used in [Kotthoff et al., 2016; Feurer et al., 2015] for solving the combined
algorithm selection and hyperparameter optimization problem in the domain of machine
learning –, where the algorithm portfolio interleaves the recommendation of promising al-
gorithms for the current instance and the update of the per-instance performance model.
The latter one is based on collaborative filtering [Stern et al., 2009; Mısır and Sebag, 2017].
On the one hand, this latter approach only requires a fraction of the overall instance ×
algorithms matrix to be available. On the other hand, it requires to fully reconsider the
division of labor and the design of both pre-scheduler and AS components.
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Part II

Recommender systems for
employment
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Chapter 6

Introduction to job-applicant
matching

As many economic sectors have been impacted by data science, ranging from commerce
to tourism and from travel to education, a question is whether and how the field of
employment can also benefit from the conjunction of extensive data resources and machine
learning algorithms. All these applications face the same challenge: the profusion of items
prevents any user from making fully informed choice, as the amount of data she would
need to review is overwhelming.

Automatic job-applicant matching (Jam in the following) aims to select for each user a
personalized list of recommended jobs, from the whole set of job ads an online recruitment
platform may gather.

Jam is tackled here from the item cold-start perspective, i.e. the objective is to rec-
ommend brand-new job ads (the items) to users that have already interacted with the
system.

This chapter is organized as follows. The formal background of recommendation sys-
tems is presented first. Secondly, in order to tackle the cold-start recommendation setting,
it is mandatory to exploit the natural language descriptions of the job ads; the common
natural language processing (NLP) approaches used to process job ad documents are thus
presented. Work related to the Jam context is finally presented and discussed, distin-
guishing two user modeling approaches. The first of these approaches considers a single
representation of the user, and recommends items that are on average relevant for this
representation. The second approach builds multiple representations of the user and rec-
ommend items with a good match to at least one of the user’s representations.

6.1 Context and scope of the work

This work focuses on the frictional unemployment phenomenon, manifested as significant
numbers of job positions are unfilled, although there exists significant numbers of unem-
ployed people who are qualified for these jobs [Mortensen and Pissarides, 1994]. Frictional
unemployment is tentatively explained by the cost and asymmetry of information for re-
cruiters and applicants. The information issue at the root of frictional unemployment is
tackled in this work using Natural Language Processing (NLP) based techniques, aimed
to automatically match job ads and resumes.

Several approaches have been proposed to facilitate the recruitment task, using di-
verse types of data to describe applicants: curriculum vitae [Malinowski et al., 2006],
track record of past jobs [Paparrizos et al., 2011] and/or profiles in social networks [Ma
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et al., 2015]. However, such resources might be insufficiently informative for those who
need them the most. Unemployment is known to mainly affect both categories of un-
skilled people, and young people. In the category of young people with no degree, the
unemployment rate exceeds 50% (2014 in France1). Yet, these people have a resume with
moderately informative content, neither including any information about academic degrees
or diplomas, nor on past jobs and track records. A Jam system thus finds little signal in
these resumes. When considering young, highly skilled people, a Jam faces another kind
of difficulty: applicants might describe their expertise using rare words (e.g. the title of
their PhD), whereas a job advertisement might describe the sought skills using an entirely
different vocabulary.2. Domain resources such as field-based ontologies can be used to
enrich the documents and facilitate their matching, though they face some limitations due
to the rapid pace of change in science and technology, and the emergence of new jobs.

The goal of this work is to learn a Jam, automatically recommending job ads to appli-
cants. Naturally, user choices heavily depend upon individual preferences and skills, mak-
ing Jam a personalized recommendation problem. Unlike most recommendation problems,
Jam comes rarely as a warm-start problem: after an open position has received sufficient
attention and attracted some relevant applications, it is most likely filled and closed for
recommendation. Using the terminology defined in 3.2.1, Jam is called an item cold-start
recommendation problem (respectively a full cold-start recommendation problem): brand
new jobs are recommended to known applicants (resp. new labour market entrants).
While the recommendation of job ads to applicants and the recommendation of resumes
to recruiters are formally equivalent problems, both problems are different in practice and
only the former recommendation problem is considered in the remainder.

Our study has benefitted from two large-size proprietary databases. The first database
concerns low-paid jobs and unskilled people. Indeed, the low-paid job sector is less prof-
itable than the high-paid job sector, and has been largely neglected in the literature
[Malinowski et al., 2006; Malherbe et al., 2014; Carpi et al., 2016]; it also presents specific
difficulties due to the low signal-to-noise ratio in the resumes. Note that the item cold-start
recommendation mode is relevant to the Jam context in the case of the temporary work
sector, where applicants interact with the hiring agency on a regular basis and the current
recommendations exploit the past interactions. The second database concerns PhD-level
resumes and industrial job ads targeted at PhDs. Each database includes the resume and
job ad corpora, plus user applications (recorded clicks) on job positions. The interaction
data is referred to as collaborative filtering matrix.

6.2 Related Work

The field of automatic job/applicant matching is hindered by the lack of extensive public
resources, able to foster algorithm design and assessment on a grand scale, as was done
for the field of computer vision by the ImageNet dataset [Krizhevsky et al., 2012]. This
lack of publicly available data resources is explained from the privacy requirements, and
the difficulty of resume anonymization. To the best of our knowledge, the only large
scale public Jam databases were proposed in the frame of the RecSys 2016 and RecSys
2017 challenges [Abel et al., 2016, 2017]. The RecSys 2016 (respectively 2017) database

1http://cache.media.education.gouv.fr/file/etat25/39/3/depp-etat-ecole-2015-diplome-

exposition-chomage_484393.pdf
2For instance, a PhD title might read Novel Copolyimide Membranes for pervaporation to be applied in

the separation of aromatic/aliphatic mixtures while a job ad relevant to the PhD expertise might ask for
a researcher on comparative genomics of different microorganisms in order to identify specific genes and
islands involved in horizontal transfer.
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includes over 1 million job ads (resp. 1.3 million), 780,000 resumes (resp. 1.4 million), and
their interactions available for circa 0.01% of the resume/job pairs (resp. 0.001%) [Carpi
et al., 2016]. The anonymization was enforced through encoding CVs and job ads using
90,000 binary features (replacing raw text by numerical identifiers), and by additionally
perturbing the data by adding and removing clicks.

Early related work was focused on NLP, considering manually designed features [Ma-
linowski et al., 2006] or bag-of-words representation [Malherbe et al., 2014] (see Sec. 6.4),
and enriched using domain resources such as job ontologies. On top of these representa-
tions, a similarity measure was designed or learned to estimate the relevance of a resume
w.r.t. a job ad, possibly taking into account the resume structure through weighted simi-
larities on the resume subparts [Malherbe et al., 2014].

The Jam problem features specific characteristics compared to “pure” NLP problems
such as Information Retrieval (IR) [Büttcher et al., 2010] and Recognizing Textual Entail-
ment (RTE) [Dagan et al., 2006]. Indeed, a Jam could learn whether a resume is “relevant”
to a job query, or whether the skills required by a job can be “entailed” by a resume; how-
ever, the resume and the job ad are of similar size, whereas a document is usually much
more detailed than a query in IR (resp., than a statement in RTE). Another difference is
that the notion of relevance or entailment could in principle be logically inferred. Quite
the contrary, the match between a user and a recruiter depends on hidden information
(e.g. the applicant’s and recruiter’s positive or negative biases). In other words, what
people do (clicking on job ads or resumes) can hardly be logically inferred from what they
say (the contents of the resumes and job ads).

Cold-start recommendation (resp. item cold-start recommendation) is only made pos-
sible by the so-called “side information” describing users and items (resp. items). We
emphasize that the most strict definition of cold-start recommendation (resp. item cold-
start recommendation) is considered in the following, that is, recommendation of brand
new items to brand new users (resp. known users) [Schein et al., 2002]. In the Jam
context, a job position (respectively an applicant) is associated with a job ad (resp., a
resume) usually augmented with a job posting date and geolocation. The Jam problem
thus defines a collaborative retrieval task [Weston et al., 2012].

As far as Jam tackles cold-start recommendation, approaches relying exclusively on
the collaborative filtering matrix, e.g. based on matrix factorization [Koren and Bell,
2015; Weston et al., 2012], on restricted Boltzman machines [Larochelle and Murray,
2011], or learning a continuous embedding of the items [Grbovic et al., 2015] are not
applicable. Some representation capturing both the collaborative filtering information and
the user/item description must thus be defined or learned. In early approaches [Färber
et al., 2003; Malinowski et al., 2006], manually designed text features have been defined and
used to recode the collaborative filtering matrix, defining the probability of a resume to be
clicked upon by a recruiter, conditionally to the presence of such features in respectively
the resume and the job ad. This more general representation of the collaborative filtering
matrix thus allows one to both take into account the textual content-based features, and
address the cold-start recommendation problem.

Overall, Jam systems involve two issues: finding representation(s) for resumes and/or
job ads, and an affinity measure on the top of these representations, amenable to predict
whether a (resume, job ad) pair is well-suited to each other. Related work along these
directions builds upon the continuous language modeling, mapping words [Mikolov et al.,
2013a; Pennington et al., 2014], sentences or documents [Le and Mikolov, 2014] onto
vectors. A distance between documents is unduced by the NLP embedding into a Euclidean
space, or can be defined using Word Movers Distance [Kusner et al., 2015]. Such continuous
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embeddings can thus be used for semi cold-start recommendation. Another possibility
builds upon supervised learning and ranking [Weinberger and Saul, 2009; Burges, 2010],
where the metric on the Euclidean space is optimized to maximize a classification or
ranking criterion. Notably, Siamese neural networks [Bromley et al., 1993; Chopra et al.,
2005] optimize the input embedding in a continuous space w.r.t. the associated metric
[Wang et al., 2014; Hoffer and Ailon, 2015]. Such approaches have been used to achieve job
title normalization and classification [Neculoiu et al., 2016] or learning sentence similarity
[Mueller and Thyagarajan, 2016]. In Information Retrieval, Deep Structured Semantic
Mode (DSSM) optimizes the similarity in the latent space according to clickthrough data
[Huang et al., 2013] (see also [Zhu et al., 2016]). Multi-view DNN [Elkahky et al., 2015]
further extends DSSM to non-Siamese architectures, where different types of information
involved in the query/documents are associated with different embeddings.

6.3 Background on recommender systems

A recommender system constructs a bridge between user individual tastes and features,
and sets of potentially interesting items. Notations and formal background are introduced
in this section; basic concepts more specifically relevant to the Jam problem are presented
thereafter.

6.3.1 Problem statement and notations

As previously stated, a recommender system (RS) aims at making new connections be-
tween large and heterogeneous sets of users and items, specifically selecting a subset of
items to be presented to each user on an individual basis. This problem can be formalized
as a bipartite graph, where the two sets of nodes represent users and items, and the edges
represent their connections. An alternative representation is in matrix form:

• U is the set of users. xu is a representation of a user u, i.e. the associated resume in
a Jam problem.

• I is the set of items. yi is a representation of an item i, i.e. the job description in a
Jam problem.

• M is the |U| × |I| interaction matrix (a.k.a. collaborative filtering matrix a.k.a.
matrix of connections): Mu,i = 1 if user u made a connection with item i and 0
otherwise.

Classically, M is only partially observed (most elements Mu,i are unknown), and some
new connections Mu,i would take place if user u were (made) aware of item i. The RS
goal is to bring relevant items to user attention, providing every user u with a personalized
recommendation list {i1, ..., ik}. The recommendation list is deemed relevant if u were to
draw many connections with items among the recommendation list (more on the evaluation
of recommender systems in Sec. 6.3.4).

Naturally, the Jam problem considered here constitutes only one of the phases of the
recruitment process. The symmetrical problem (recommending relevant resumes to the
stakeholder) is not considered; the bilateral selection problem [Pizzato and Bhasin, 2013]
is not considered either. The Jam system only aims at bringing relevant job ads to the
job seeker’s attention. The overall recruitment process is out of the scope of this work.

77



6.3.2 Terminology

Recommendation systems are categorized depending on the information and data used to
make personalized recommendations.

Collaborative filtering

Pure collaborative filtering (CF) methods [Herlocker et al., 1999; Sarwar et al., 2001; Desh-
pande and Karypis, 2004; Rendle et al., 2009] use the interaction data of the community of
users to suggest new connections. Such methods, however, ignore any side data (e.g. user
profile or item description). They may come in two modes: user-oriented or item-oriented.

In user-oriented collaborative filtering, recommendations for a user are built from
connections similar users made (see Fig. 6.1, left). The similarity measure between two
users is derived from the interaction matrix (specifically, from the rows ofM). Depending
on the approach, all similar users or only the most similar q users are considered to build
the recommendation. Note that popular items (e.g. i5) are likely to be recommended to
anyone, since it is likely that at least one user similar to the target user u6 has interacted
with it.

Item-oriented collaborative filtering follows a similar reasoning and recommends items
similar to those the user already interacted with (Fig. 6.1, right). There again, the
item-item similarity is derived from past interactions, i.e. from the columns of M.

Note that interactions data are used twice: Firstly, they serve to build a similarity
among users or items. Secondly, they are used as a filter to build the recommendation
list.

Pure CF approaches are limited to the warm-start setting. A new item cannot be
recommended as it has not been selected by any user. In user-oriented CF, it is always
rejected in the filtering phase because no user has already selected it. In item-oriented
CF, it is deemed to be dissimilar to all other items. For similar reasons, a new user cannot
be proposed relevant personalized recommendations.

i1 i2 i3 i4 i5 i6

u1 1 1 1
u2 1 1 1
u3 1 1
u4 1 1 1 1
u5 1 1
u6 1 1 1 1 1

i1 i2 i3 i4 i5 i6

u1 1 1 1
u2 1 1 1
u3 1 1
u4 1 1 1 1
u5 1 1
u6 1 1 1 1 1

Figure 6.1: How user-oriented (left) and item-oriented (right) collaborative filtering meth-
ods make recommendations (red “1”) for user u6. Red (shaded) areas indicate which users
(resp. items) the system found similar based on interaction data. Arrows indicate the
past interactions (bold “1”) used to select recommended items.

Content-based recommendation

In contrast, content-based recommendation (a.k.a. content-based filtering or information
filtering) [Pazzani and Billsus, 2007; Lops et al., 2011] only considers the users and items
side information (user profile, item description) to make recommendations, e.g. through
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matching attributes of users and items as illustrated on Fig. 6.2. The interaction data are
not used to form the recommendation lists, although they may be used as part of the user
profile construction. In the considered context, where the resumes happen to be written by
non-experienced people, these resumes might be insufficient to retrieve relevant job ads.
It is commonly acknowledged that the same job experience may be described in many
different ways and that the use of inadequate vocabulary and style (not even mentioning
grammatical and spelling correctness) may be crucial for the recruiter. The same goes
for a content-based system: unusual vocabulary in a user may significantly hinder the
recommendation process.

However, content-based recommendation can handle the cold-start setting, and it can
advantageously combine several types of data: textual, categorical (e.g. in large domains
such as human resources or aeronautics industry), discrete ordered (e.g. levels of experi-
ence) and continuous (e.g. geolocation).

i1 i2 i3 i4 i5 i6

u1 1 1 1
u2 1 1 1
u3 1 1
u4 1 1 1 1
u5 1 1
u6 1 1 1 1 1

Figure 6.2: Pure content-based recommendation methods: recommendations (red / shaded
“1”) for user u6 are only based on the item-user content matching.

Hybrid systems

Intermediate approaches have naturally been developed to leverage both interaction and
content information [Balabanović and Shoham, 1997], and to tackle the cold-start setting.
An example thereof is illustrated on Fig. 6.3. Hybrid systems expectedly provide more
accurate recommendations since they exploit more and diverse data, representing different
aspects of the same, e.g. user.

i1 i2 i3 i4 i5 i6 i7

u1 1 1 1
u2 1 1 1
u3 1 1
u4 1 1 1 1
u5 1 1
u6 1 1 1 1 1

Figure 6.3: An item-oriented hybrid system uses interaction data to filter the list of items
depending on the target user (u6); items similar to the filtered items (i5) are thereafter
retrieved based on their content information, and are recommended.
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6.3.3 Framework: one-class collaborative filtering

The Jam problem features a specific characteristic: The connection between a user and
an item is binary, with different semantics on the “yes” (user’s application on the job
position) and the “no” (irrelevant or unobserved interaction). The Jam problem must
therefore be cast as one-class collaborative filtering [Pan et al., 2008] (abridged OCCF in
the following), a recommendation problem framework where only the positive interactions
are known. Specifically, the absence of interaction is interpreted as the user being truly
not interested (“negative interaction”) or the user being not aware of the item (missing
data).

The lack of explicit negative feedback forbids the use of methods that leverage the
difference between positive and negative feedback (e.g. like/dislike, high/low rated items).
In principle, additional data, e.g. whether the item was displayed to the user, could be ex-
ploited to infer negative feedback; however, such data are usually not available. Moreover,
as noted by [Joachims et al., 2005], users usually consider but the top-ranked recom-
mended items, thus making even more fuzzy the distinction between true “zeroes” and
missing data. We shall come back to the interpretation of the feedback of user in Sec.
8.2.5.

6.3.4 Evaluation

Recommendation systems are most generally assessed in an offline setting, akin to a
crossfold validation procedure. The usual experimental setting in the scientific community
does not include the online assessment of the recommendation algorithms by a significant
number of users. A notable exception is that of the RecSys challenge 2017: After a first
phase, twenty recommender systems (RS) were selected and the actual recommendations
of these selected systems were displayed to real users of the Xing platform (a professional
network partner of the challenge) to assess the competitors.

In the remainder of the manuscript, unless mentioned otherwise, RS are evaluated in
an offline setting, where training and test data are disjoint subsets of the same database.
In particular, despite the previously mentioned ambiguity about the interpretation of a
“no” interaction, recommending a “no” interaction will be considered an error.

Recommendations are rarely assessed in terms of accuracy, as the positive interactions
outnumber the negative ones by several orders of magnitude. In [Schein et al., 2002], sev-
eral RS performance indicators are discussed with a special focus on the cold-start setting.
These performance indicators measure the number and position of positive interactions
within the recommendation list. Note that these performance indicators implicitly take
M as “ground truth” data. However, by construction,M is usually acquired as the result
of the users querying the platform through a job position search – which involves an infor-
mation retrieval engine – or being presented a specific fraction of the job ads – sorted by
date, by popularity, or involving a first personalized RS –, inducing a considerable bias3 on
the evaluation process. Formally, the performance indicators actually measure how well a
RS i) retrieves the items that were actually presented to the user; ii) selects the relevant
items in the presented ones.

The main performance indicators naturally measure the RS usefulness w.r.t. the rec-
ommendation task, i.e. the selection of relevant items. Still, some other RS properties
are worth evaluating depending on the context. [Herlocker et al., 2004] identify some of
those, such as covering all good items, producing consistent sequence of recommendations
or helping other users. Other measures may also be of interest depending on the context:

3No real user could see a decent random fraction of the items given the number of items.

80



diversity, trust in the system, serendipity... Only standard, relevance-driven performance
indicators are considered in the following. These so-called classification accuracy metrics
[Herlocker et al., 2004] measure the quality of the top-T elements in the recommendation
list, relevant to both OCCF setting and the close field of information retrieval.

Precision Precision@T (denoted P@T ) measures the proportion of relevant recommen-
dations for user u within the top-T recommendations for that very user. Precision is
averaged over the set of users. Letting RT (u) denote the top-T recommendations for user
u, it is defined as:

P@T =
1

|U|
∑
u∈U

|{Mu,i = 1|i ∈ RT (u)}|
T

Precision is typically used in information retrieval. Its weakness is i) to be poorly in-
formative when M is very sparse; ii) to be very sensitive to the way interactions are
counted.

Recall Recall@T (denoted R@T ) measures the proportion of relevant items for user u
recovered within the top-T recommended items for that very user.4 Recall is averaged
over the set of users. With same notations as above, it is defined as:

R@T =
1

|U|
∑
u∈U

|{Mu,i = 1|i ∈ RT (u)}|∑|I|
i=1Mu,i

Recall is not affected by the sparsity of M. Note that the Recall@T for a single T value
does not allow for distinguishing high-rank and low-rank relevant recommendations. Still,
the order in the recommendation list is known to be very important for the user [Joachims
et al., 2005]). A finer-grained performance measure characterizes the so-called recall curve,
displaying the Recall@T performance for varying values of T .

Another performance measure is based on the precision-recall curve, reporting the set
of (R@T , P@T ) points as T varies. The precision-recall curve of an oracle RS jumps from
(0,0) to (0,1) and then to (1,1) as all relevant items and only those are top-ranked in the
recommendation list; then, recall stays to 1 while precision drops towards 0.

Average precision summarizes the precision-recall curve by its integral (in [0, 1]
since the oracle precision-recall has integral 1). Mean Average Precision averages the
average precision over all users.

F1-score The F-score aggregates the precision and recall measures. The F-score param-
eterized by T is defined as:

Fβ@T =
(1 + β2) · P@T ·R@T

β2P@T +R@T

where β is a positive parameter. F1-score is obtained with β = 1; it is maximal if both
precision and recall are themselves maximal.

4[Herlocker et al., 2004] also define a Receiver Operating Characteristic (ROC) very similar to recall:
the proportion of relevant documents among the top-T items that are recommended and received an
evaluation (positive or negative) – note how non-rated items are excluded from this ROC measure. This
kind of metrics is irrelevant in OCCF as any kind of negative feedback is missing.
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Discounted cumulative gain Discounted cumulative gain (DCG) takes into account
the rank of the relevant recommendations in recommendation list RT (u): the higher the
rank, the better. Letting rT (u) be the T -th recommendation for user u, we define the
DCG@T as in [Weimer et al., 2008]:

DCG@T (u) =
T∑
l=1

2Mu,rl(u) − 1

log(l + 2)

Since we are considering M with binary values, an equivalent and simpler definition is:

DCG@T (u) =
T∑
l=1

Mu,rl(u)

log(l + 2)

Let denote DCG∗@T (u) the DCG of a perfect recommendation list (all ‖Mu,.‖1 rele-
vant items are positioned as the best recommendations). A normalized version, called
normalized DCG and denoted NDCG, takes value in [0, 1]:

DCG∗@T (u) =

‖Mu,.‖1∑
l=1

1

log(l + 2)

NDCG@T (u) =
DCG@T (u)

DCG∗@T (u)

Mean Reciprocal Rank Mean Reciprocal Rank (MRR) takes into account the position
of the first relevant recommendation within the recommendation list

MRR =
1

|U|
∑
u∈U

1

min
{
l|Mu,rl(u) = 1

}
Note that MRR requires to compute the recommendation list until all users have at least
one relevant recommendation.

Mean Average Precision Average precision summarizes the precision-recall curve by
its integral. As said earlier, the oracle precision-recall delimits the unit square and corre-
sponds to integral 1.

6.4 Natural Language Processing for document representa-
tion

This section is devoted to the main steps involved in the representation of the documents
(job ads and resumes) from the textual data.

The initial step, not detailed here, consists of extracting “words” from the documents.5

There exists an extensive literature on the words representation in NLP; the interested

5In practice, this extraction most often relies on empirical rules, e.g. a word is a character string
delimited by specific characters like punctuation or whitespaces. An alternative is based on the n-gram
extraction (see, e.g. [Mcnamee and Mayfield, 2004]) at the character level: a “word” consists of a sequence
of n characters including whitespaces. For instance string “my name is” would be associated the 10
“3”-grams “ my”, “my ”, “y n, ” na, “nam”, “ame”, “me ”, “e i”, “ is” and “is ” (where the underscore
character symbolizes a whitespace). Note that whitespaces are added at the beginning and end of the
string.
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reader is referred to the Probabilistic Feed-forward Neural Network [Bengio et al., 2003],
Deep Neural Networks with Multitask Learning [Collobert and Weston, 2008], Word2Vec
[Mikolov et al., 2013b], GloVe [Pennington et al., 2014] and fastText [Bojanowski et al.,
2017] for more detail. The rest of the section focuses on unsupervised textual representa-
tions, and their use within a recommender system.

6.4.1 Bag-of-words

Bag-of-words (BOW) is the simplest way to map a document onto a vector with same
dimension as the vocabulary size. A BOW transformation involves two steps:

1. A dictionary of all D words contained in (at least one) a document is built, with D
in the dozen thousands;

2. Each document is encoded as a vector of size D where the d-th coordinate is non-zero
iff the d-th word appears in the document.

Most usually, the vectorial representation of documents is sparse, as any particular doc-
ument contains a very small fraction of all dictionary words. Technically, documents are
coded as a sparse matrix (only non-zero elements being kept in memory) for efficiency. A
difficulty resides in the distribution of word occurrences, known as the Zipf’s law [Powers,
1998]: the frequency of a word decreases as a power law of its rank. As most words appear
extremely rarely, it is hard to extract meaningful information from them from a machine
learning perspective. In contrast, a few words are extremely frequent and blur the signal.

Another drawback of BOW and representations built thereupon is that they do not
reflect the order of the words in the document, making them inappropriate for complex
NLP tasks such as translation of understanding (typically, sentences such as “The cat ate
the mouse” and “The mouse ate the cat” only differ by the word order and carry very
different meaning).

6.4.2 tf-idf

tf-idf (“term frequency - inverse document frequency”) representations differ from the
BOW, as the presence of a word in a document is associated with its number of occurrences
in the document (tf) divided by the number of documents including this word (idf). The
rationale is that, the more a word appears in a document, the more important it is in that
document; in the meanwhile, the more documents it appears in, the higher the chance,
it is trivial or uninformative. We use a slightly edited tf version, where the number of
occurrences is taken logarithmically:

tf(i, w) = log

(
number of occurrences of w in i

number of words in i

)
where i is a document and w a word. Likewise, the idf version used in the following is:

idf(w) = log
1 + nd

1 + df(w)
+ 1

where nd is the number of documents and df(w) is the number of documents in which
word w appears. Finally, the tf-idf is obtained as :

tf-idf(i, w) = tf(i, w) · idf(w)

In particular, rare words are assumed to be distinctive and carry a high weight in the idf
term.
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6.4.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (a.k.a. Latent Semantic Indexing) was proposed by [Deer-
wester et al., 1990] for information retrieval to take advantage of the semantic structure of
terms, i.e. term co-occurrences in the natural language organization. It is based on singu-
lar value decomposition (SVD), stating that any matrix of size (m,n) may be decomposed
as the product of two orthogonal matrices U and V (respectively of dimensions (m, p) and
(n, p)) and a Σ matrix, all 0 except for positive values on its first diagonal, referred to as
singular values. The SVD decomposition of the tf-idf matrix is defined as:

tf-idf = UΣV T

The best k-rank approximation of tf-idf in the sense of the mean squared error over all
coordinate, (MSE, or here, Frobenius norm), denoted tf-idf, is obtained by keeping only
the first k columns of U , V and Σ, denoted Uk, Vk and Σk, respectively:

tf-idf = UkΣkV
T
k

Uk (Vk) is called the k-dimensional LSA representation of the documents (resp. words).
LSA is a widely popular approach in NLP, as it achieves dimensionality reduction, with
k a few hundreds as opposed to the initial D dimension in the hundred thousands. Ad-
ditionally, LSA offers some robustness w.r.t. synonymy [Deerwester et al., 1990]: words
with similar sense tend to appear in similar contexts and are captured in the same SVD
dimensions. On the other hand, LSA representations are dense, whereas BOW and tf-idf
define sparse matrices.

Most interestingly, LSA can support cold start recommendation, as brand new docu-
ments tf-idf representation, denoted tf-idfnew can be mapped onto the LSA representation
trained from the previous documents, denoted Unew, without requiring to train the model
again:

Unew = tf-idfnewVkΣ
−1
k

6.4.4 Latent Dirichlet Allocation

Latent Dirichlet Allocation [Blei et al., 2003] is a Bayesian probabilistic model. The main
assumption is that a document d involves a mixture of topics θd. The overall number of
topics is a hyperparameter of the method. The number of topics in a document follows a
Dirichlet distribution of parameter η. The k-th topic is defined as a distribution on the
dictionary. noted βk the distribution of words thereof. LDA defines a generative model:

1. The number nw of words is sampled, with nw ∼ Poisson(ξ);

2. The number of topics is drawn from Dirichlet(η);

3. The probability of each selected topic in the document is sampled;

4. For each document word, i) a topic k is sampled proportionally to its probability;
ii) a word is sampled after the corresponding topic distribution Multinomial(βk).

Parameters βk and θd are estimated using a variational EM algorithm [Blei et al., 2003]
to maximize (an approximation of) the posterior distribution. In particular, β defines a
representation of documents in the topics base.
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Figure 6.4: DM (left) and DBOW (right) neural model architectures in Paragraph Vector.

6.4.5 Paragraph Vector

Paragraph Vector, proposed by [Le and Mikolov, 2014], extends previous work on word
embedding [Mikolov et al., 2013b] to a continuous (fixed-length) representation of both
words and variable-length documents. Each document of the corpus (resp., each word) is
mapped to a unique vector in a lookup table D (resp., a lookup table W ).

Parameters D and W are learned as the projection parameters of a neural network.
Two architectures are considered in [Le and Mikolov, 2014]:

• the distributed memory (DM) model architecture (Fig. 6.4, left) is inspired by
Word2Vec CBOW model. The weights are optimized to learn a word from its con-
text, that is, the representation of the T preceding words and the representation of the
document, where T is a hyper-parameter. Formally, given words {wd,1, . . . , wd,T },
the word representation look-up table W and the document representation, Dd the
network is trained to predict the next word wd,T+1.

• the distributed bag-of-words (DBOW) model architecture (Fig. 6.4, right) is inspired
by Word2Vec skip-gram model [Mikolov et al., 2013b]. The weights are optimized
to predict all words of document d in a small text window given the sole document
representation Dd. Specifically, during training, text windows are sampled from the
document and a randomly sampled word within the text window is to be predicted.
Note that this model is order-independent.

The classifier layer is a hierarchical softmax [Morin and Bengio, 2005]; its weights are
learned along with W and D matrices.

In [Le and Mikolov, 2014], the document representation combines the DM and DBOW
models. Contrasting with Word2Vec, where new words cannot be taken into account after
training, Paragraph Vector is said to be able of computing the representation of a new
document with little effort. Conceptually, a new document is added to D while W and
the softmax weights are kept fixed (the rest of matrix D does not intervene). The new
document representation is obtained by gradient descent, using the same DM or DBOW
model loss function.
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6.5 Representations for OCCF

As discussed in Sec. 6.3, our target setting is a OCCF recommendation problem, as
only positive feedback is available. This section, however, reviews a broader class of RS
approaches, specifically examining how users are modeled to form personalized recommen-
dations. User modeling is indeed a key issue for Jam problems (we shall come back to
this point in Chap. 7). An original classification focusing on user modeling is devised.

Specifically, two categories of RS are distinguished. In the former category, called single
region of interest (SROI) RS, a user is associated with a single, compact representation
capturing all of their interests or tastes. Such representations lie in a single low-dimensional
latent space where users interests and items distinctive features are abstracted. The RS
is trained by bringing users closer to their selected items in the latent space; a user is
recommended the nearest items in the latent space.

In the latter category, dubbed multiple regions of interest (MROI) RS, the user is
associated with a set of representations, each capturing one or several particular aspects
of the user specifics. While a SROI rather recommends items that match all of the user
interests, MROI recommends items that best match (at least) one user’s representation.

Prominent RSs are reviewed along the line of this classification, before discussing how
the SROI/ MROI classification is related to the classical neighborhood-based/model-based
classification.

6.5.1 Single region of interest user models

Matrix factorization

Matrix factorization (MF) approaches [Weimer et al., 2008; Koren et al., 2009; Shi et al.,
2012] are based on the decomposition (or factorization) of M into two matrices U and
I respectively explaining the contribution of each user (resp. each item) to the interac-
tions. Equivalently, the goal is to find the best representations U (resp. I) of the users
(resp. the items) in the same latent space, such that U · I approximates M well (in
other words, explains the user’s interest in each selected item). Among the decomposition
methods is the Singular Value Decomposition (SVD), already introduced in Sec. 6.4.3.
A difference however is that most elements of M are unknown. The optimization prob-
lem defining U and I thus is redefined as follows. Let the set of known interactions be
S = {(u, i)|Mu,i is observed}, the interaction matrix decompositions seeks U and I such
that:

U, I = argmin
U,I

∑
(u,i)∈S

(
Mu,i − Uu · I>i

)2

Another difference is that U and I must not only explain well the observed data but
achieve a good generalization on unknown data. To this end, special care must be taken
to prevent U and I from overfitting the known data. A first possibility is to restrict the
rank of U and I. Another possibility is based on the L2 norm regularization of both user
and item representations [Koren et al., 2009]:

U, I = argmin
U,I

∑
(u,i)∈S

(
Mu,i − Uu · I>i

)2
+ λ(‖U‖21,2 + ‖I‖21,2)

where ‖X‖1,2 =
∑

i ‖Xi,.‖2 and hyper-parameter λ controls the trade-off between the

reconstruction error and the regularization term.6

6The overall model also involves some user bias terms bu, item bias terms bi and an overall bias term
µ; these are omitted here as they do not change the analysis.
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The factorization equation is further adapted to the OCCF setting, as follows. On the
one hand, one should mostly reconstruct positive interactions (“ones”). On the other hand,
some of the non-observed interactions (“zeroes”) must also be reconstructed (otherwise a
trivial solution would be to set U and I to the All-One vector). Hu et al. [2008] introduce a
small positive weight cu,i = 1+αMu,i on the non-observed interactions7, and required the
matrix factorization to minimize a weighted loss, where the reconstruction of the zeroes in
M has a weight much smaller than the reconstruction of the ones (as α is typically close
to 100). The factorization problem then reads:

U, I = argmin
U,I

∑
(u,i)

cu,i

(
Mu,i − Uu · I>i

)2
+ λ(‖U‖21,2 + ‖I‖21,2)

In other approaches (CoFiRank [Weimer et al., 2008], CLiMF [Shi et al., 2012]) the recon-
struction loss is replaced with a ranking loss (resp. the NDCG and the MRR measures,
see Sec. 6.3.4).

In all previously mentioned approaches, the (warm-start) recommendations for user u
are based on the reconstruction of M:

M̂u,i = Uu · I>i (6.1)

Items are then recommended to user u by decreasing value of
[
M̂u,i

]
i
.

A Bayesian approach, BPR-MF, is proposed by Rendle et al. [2009], achieving matrix
factorization in an OCCF setting based on a triplet ranking loss. Formally, U and I are
trained to maximize:

P (〈Uu, Ii〉 > 〈Uu, Ij〉 | Mu,i >Mu,j)

User u preference for item i over item j is modeled as σ
(
M̂u,i − M̂u,j

)
where σ denotes the

sigmoid function. Dos Santos et al. [2017] extend BPR-MF and learn latent representations
of users and items as Gaussian distributions rather than deterministic vectors. The effect of
variance helps in modeling uncertainty in the data (e.g. a user with few known interactions)
as well as inconsistency (e.g. in the user behavior). Key is that the reconstruction of the
u-th row in M is obtained as:

M̂u,i = P (Uu · I>i + bi > 0)

where Uu and Ii – and thus (Uu·I>i +bi) – are Gaussian variables. In particular, considering

user u and item i, if the affinity M̂u,i has high mean prediction but large variance, this

may make item i less suitable for recommendation than another item j for which M̂u,j

has slightly lower mean prediction and low variance.

Collaborative topic modeling

An extension of LDA (Sec. 6.4.4) is proposed by [Wang and Blei, 2011], defining a method
called collaborative topic regression (CTR). The motivating application concerns the rec-
ommendation of scientific articles in an online scientific community framework; the collab-
orative filtering matrix indicates whether a user’s library contains a given article. CTR

7In the original work of Hu et al. [2008],M counts number of occurrences item i has been “consumed”
by user u; thus there are a whole range of values possible for cu,i. Instead, in Jam problem, items are
consumed at most once; hence, cu,i takes only two different values, 1 for negative and 1 + α for positive
interactions.
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combines ideas from collaborative filtering based on latent factor models, and content
analysis based on probabilistic topic modeling and specifically Latent Dirichlet Allocation
(LDA) [Blei et al., 2003]. Each LDA topic (e.g., “artificial intelligence”) is characterized as
a distribution on the vocabulary space. The i-th article is associated a latent description
Θi, with Θi[k] the percentage of the k-th topic in the article (e.g. , a given article might
be described as 70% “artificial intelligence”, 20% “high performance computing” and 10%
“application”). Eventually, latent descriptions Uu of the user and Θi + εi of the article
are optimized8 (note that ε is a matrix), such that 〈Uu,Θi + εi〉 best fits the collaborative
matrix Mu,i,

(U∗, ε∗) ∈ argmin
U,ε

∑
u,i

cu,i(Mu,i − 〈Uu,Θi + εi〉)2 + λu||U ||22 + λv||ε||22


with λu and λv respectively the weights of the regularization terms preventing CTR from
overfitting the data, cu,i = 1 if Mu,i = 1 (the i-th document is in the u-th user’s library),
and cu,i = 0.01 otherwise (note how similar to the confidence coefficient in the matrix
factorization of [Hu et al., 2008] cu,i is).

With this approach, user interests are captured by a single “topic” vector Uu, which
is trained to maximally span the topics of all documents that user u bookmarked, while
being orthogonal to topics the user is supposedly not interested in (i.e., Mu,i = 0); as
above, the recovery of positive interactions has a much higher weight than that of the
negative interactions.

To summarize, CTR achieves matrix factorization and content modeling using a single,
joint learning process. Gopalan et al. [2014] use a similar approach as CTR but with
different generative processes to model documents and ratings.

Restricted Boltzmann Machines based recommendation

[Salakhutdinov et al., 2007] propose RBM-CF, a two-layer network based on Restricted
Boltzmann Machines (RBMs) to model the observed values ofM. Specifically, each user u
is modeled by a RBM; its visible units are the observed values of rowMu and its (binary)
hidden units represent latent user features.

The original formulation of [Salakhutdinov et al., 2007] is designed for K-level ratings
collaborative matrices: for each observed rating, K visible units are connected to the
hidden units, and the RBM is used to explain the observed ratings as a classification task.
The implicit data (i.e. the fact that a user u rated an item i) is integrated as another
Boolean visible unit per user-item pair. Recommendation is based on the reconstruction
of missing ratings: for each unobserved user-item pair, the estimated rating is taken as
the expectation across all possible ratings (probabilities thereof are computed by the user-
specific RBM).

Key to this approach is that the weights between the visible and hidden units are
shared across all RBMs: for any two users who rated the same item i, the weights from
the K visible units to the hidden units of each user are the same. Of course, if the ratings
differ this item would affect the state of the hidden units differently, and as a consequence,
the hidden unit states are specific to each user. Note that this weight sharing is necessary
to learn the weights in a collaborative way; otherwise, only the item biases would connect
the different user RBMs .

8εi is added, allowing the article latent description to diverge from its (fixed) topic proportion Θi, to
better fit the collaborative information.
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In this approach, users are modeled as the states of the hidden units h. Rating
predictions are obtained as linear combinations of the hidden units states with the RBMs
weights W k. We may think of the network weights (connecting the hidden units to each
item) as item representations (as mentioned, weights are the same for all RBMs). The
non-normalized probability that the user gives rating k to an item i is obtained as W k

i ·h,
resembling matrix factorization (Eq. 6.1).9

RBM-CF has been substantially extended by [Georgiev and Nakov, 2013] in two di-
rections. Firstly, an ordinal cost function is considered (if the observed rating is “4”, the
system should be more penalized predicting a “1” than a “3”10) by considering one real-
valued rating instead of a multinomial variable. Secondly, the same user-specific RBM
approach is adapted as item-oriented RBMs to capture the user-user similarity as well;
both user- and item- oriented RBMs are combined in a single hybrid RBM model.

Neural Nets

A number of approaches have recently been proposed to predict missing interaction data
from known user ratings. AutoRec [Sedhain et al., 2015] is trained as an autoencoder
neural network [Hinton and Salakhutdinov, 2006] (the low-dimensional latent hidden layer
is used in lieu of the hidden units in RBM-CF) that predicts missing ratings from all
observed data. Collaborative Denoising Auto-Encoders [Wu et al., 2016] use similar ideas
but is suitable for the OCCF setting: a corrupted version of the user set of interacted
items is fed to the network to reconstruct the (true) set of interactions. CF-NADE [Zheng
et al., 2016] models each rating from all previously observed ratings of the same user.11

These approaches can be straightforwardly extended to deep neural architectures.

User embedding

Borrowing the DM framework of Paragraph Vector (Sec. 6.4.5), User2vec [Grbovic et al.,
2015] learns a user embedding where the user is a considered as a global context (like
a document) while the items she interacted with are seen as words. [Sun et al., 2017]
proposes a Bayesian approach to model all users and items in a same representation
space, taking into consideration the user-item interaction and whether two items have a
connection to a same user. Furthermore, they extend their framework by considering two
levels of granularity: the item category (centroid of all items in that category) and the
individual items that deviate from it. Other feed-forward neural architectures, such as
DSSM [Huang et al., 2013], MV-DSSM [Elkahky et al., 2015] or NCF [He et al., 2017]
have been proposed for the similar purpose of learning a shared representation space for
both user and items given content data.

Matchbox [Stern et al., 2009] is a probabilistic approach that can accommodate user
descriptions xu, item descriptions yi as well as a description of the “context” of the
interaction Φ. The match between the u-th user and the i-th item is modeled as a Gaussian
variable:

N (〈Uxu, V yi〉+ bu,i, β),

9As for the MF description, item biases have been omitted. Note that there is one bias coefficient for
each one the K rating units.

10This is similar to the so-called concept of “cost-sensitive classification” introduced in Sec. 3.2.
11As training is affected by the order in which ratings are provided, the method would ideally keep the

true time-ordered sequence of rating. However [Zheng et al., 2016] note that a randomly drawn ordering
performs well.
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Figure 6.5: Graph of the Matchbox bi-linear rating model [Stern et al., 2009].

where bu,i is a bias term that may incorporate Φ, and standard deviation β. Matrices U
and V (of size resp. |U|×K and |I|×K) and bias b are learned by the model. In particular,
if no side information is available, xu and yi can be set to eu and ei, respectively, and the
expected rating reduces to that of standard MF (Eq. 6.1) with biases.

Several components are responsible for the flexibility of Matchbox. One of them is
to consider a decoding mechanism from (〈Uxu, V yi〉 + bu,i) to the observed Mu,i. This
decoding mechanism is used to account for ranking or binary feedback, whenMu,i respec-
tively is a rank or a binary variable. The Matchbox bi-linear rating model is depicted on
Fig. 6.5.

Matchbox relies on incremental learning, with two motivations. The first one is to
accommodate preference drift of the user, whose tastes generally evolve over time; any
new information is used to update the model. To this end, Gaussian noise is added at
each timestep. The second one is to allow for fast learning if needed, by achieving a
single pass through the data. Specifically, Matchbox uses an approximate message passing
algorithm: from the initial user/item descriptions to the latent descriptions and biases;
from the latent descriptions to their product; from their product to the observed rating
(the decoding mechanism); and a Gaussian noise factor is last accounted for to model the
user preference drift. Some care must be exercised to enforce a decrease of variance, using
the minimization of the KL divergence in lieu of Expectation Propagation.
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6.5.2 Multiple regions of interest user models

Neighborhood based approaches

Early RS approaches are based on the user-oriented collaborative filtering approach (Sec.
6.3). [Sarwar et al., 2000] identifies 3 steps in user-oriented CF: representation, neigh-
borhood formation and generation of recommendation. While user modeling is usually
based on their interactions, it can also be based on side information (content-based rec-
ommendation), or leverage both interaction and content information. The key point is
that recommendations made to user u rely on the interaction history of users in her neigh-
borhood V(u), usually made of her κ nearest neighbors. In other words, a given user is
modeled through the set of her neighbouring users. Several methods have been proposed
to define a user-user similarity (e.g. cosine similarity, Pearson correlation [Sarwar et al.,
2000]) and to build user neighborhoods (e.g. vanilla nearest neighbors or iterative con-
struction). The recommendations are then built by aggregating the positive interactions
of the neighbors, for instance through a similarity-weighted sum:

Rk(u) = top@k

 ∑
v∈V(u)

sim(u, v)Mv,i


i

(6.2)

Symmetrically, item-oriented CF [Deshpande and Karypis, 2004] sees a user as a basket
of the items she interacted with. Items similar to those are then recommended through:
i) defining an item neighborhood based on the item-item similarity; and ii) aggregating
the nearest items (see, e.g. Item2Vec [Barkan and Koenigstein, 2016] and the “item-item
SVD based” method therein).

The differences between the two approaches can be described in terms of exploration,
or serendipity, i.e. the ability to recommend/discover unexpected relevant options. In
user-oriented CF, the exploration is achieved through the community of users: the user
is recommended the items liked by many of her neighbors. In item-oriented CF, the
exploration actually depends on the diversity of the items selected by the user: only items
similar to those will be recommended. In the former case, users with many centers of
interest can cause over-exploration. In the latter case, exploration might be limited to the
“more of the same” strategy. Both approaches have been merged into a single framework
in [Wang et al., 2006; Verstrepen and Goethals, 2014]. For a detailed survey, the interested
reader is referred to [Desrosiers and Karypis, 2011].

Note that BPR [Rendle et al., 2009] and matrix factorization can also be used within
neighborhood-based approaches.

Graph-based recommendation

In the OCCF framework, M can be interpreted as a bipartite weighted graph with user
nodes and item nodes, where edges represent the user-item connections [Huang et al.,
2004]. Besides OCCF, the approach of [Aggarwal et al., 1999] consists in walking on the
user-user graph to predict ratings not only from the neighbors of the current user. A
number of methods (e.g. , [Fouss et al., 2007; Gori and Pucci, 2007]) use random walk
on the item-item graph to provide recommendations (“spreading” from a user’s connected
items); the key to these approaches are the weights, or alternatively how to attenuate the
spreading. All have in common that a user is seen as the set of vertices that originate
from her user node or equivalently as the set of her items she interacted with, allowing
propagation of her interests in several parts of the graph at the same time.
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6.5.3 Discussion

The difference between the SROI and MROI settings and its impact can be illustrated as
follows. Let us consider a jobseeker looking for a position either in Paris or in London, and
thus applying to jobs in both cities. Such a user can be viewed as a 2-profile person. In
a SROI system, the user is attached a single profile. This profile would either discard the
geolocation feature12 or would retain an over-generalization thereof (e.g., recommend jobs
in the entire area centered around Lille). As the size of the database increases, and hence
the granularity of the latent SROI space also increases, the latent space will eventually
capture the concept of “these people that look for a position in both Paris and London”
aggregating job ads located in any of these cities. At this point, suggesting jobs in both
cities (and not only one of them) may become easier. As opposed to SROI, MROI systems
simply handle such cases by attaching several profiles of the same job seeker.

The MROI setting, termed “recommendation for shared account” in [Verstrepen and
Goethals, 2015], occurs naturally in applications where a single account is shared by several
users, e.g. a family, and there exists no explicit means to distinguish among these users at
shopping time. The MROI setting is analogous to that of multiple instance learning (MIL)
[Dietterich et al., 1997; Andrews et al., 2003], an extension of supervised classification
where each example involves a set of instances and one of these instances is responsible
for the example belonging to the target class. Allegedly, the recommendation for shared
account in the OCCF setting is more challenging than MIL, as the positive class is only
partially observed.

Our claim is that the classical memory-based vs model-based distinction is less general
and less informative than the SROI vs MROI distinction: the former distinction focuses
on the information provided to the RS while the latter regards the internal structure of
the RS.
Formally, model-based RSs a.k.a. latent factor models [Koren, 2008], seek a shared repre-
sentation space for both users and items that explains the interactions. Memory based RSs
a.k.a. neighborhood approaches focus on finding good similarity to explain the relations
between pairs of users (alternatively, pairs of items) and thence construct neighborhoods;
recommendations follow from the memorized interactions of users in the neighborhood
(alternatively, from the items neighboring those the current user interacted with).

In most cases, a model-based RS falls within the SROI setting, and a memory-based
RS falls within the MROI setting. However, this is not necessarily the case:

• A memory-based approach only recommending the items selected by the 1-nearest
neighbor of the current user achieves a SROI recommendation as the current user is
only seen through the perspective of her closest neighbor.

• Inversely, a model-based approach can achieve a MROI recommendation if p views
are defined on the n-dimensional latent space, and each view supports a different RS
− capturing different aspects of users.

Along this line, hybrid models combining recommendations from an enhanced latent factor
model component and a neighborhood-based approach [Koren, 2008] can be categorized as
MROI systems: the user is attached to a single model captured by the latent factor model,
which is finely exploited based on local neighborhoods to adjust the predicted ratings.

12See Sec. 8.6 for the analysis and discussion of the importance of geolocation in the Jam problem,
depending on the job sector.
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6.6 Organization of the work

6.6.1 Scientific questions addressed

The goal is to produce high-quality recommendations for a OCCF problem: Jam. The
challenge is to bridge the gap between the textual and the collaborative Jam data. In
order to do so, the relationship among both representations must be understood in detail
– this statement widely echoes the main lessons from Part I.

Specifically, the first scientific question tackled in the following chapters is whether
the information contained in job ads and resumes is sufficient to determine whether an
applicant is qualified for a job position – in other words, whether Jam can be tackled as a
pure information retrieval or textual entailment task [Büttcher et al., 2010; Dagan et al.,
2006].

At the other extreme of the spectrum, the relevance of a job ad to an applicant can
only be determined from the (hidden) preferences of the applicant, as manifested by her
past behavior – in other words, Jam is a pure collaborative filtering task [Koren and Bell,
2015]. The second scientific question thus is how to tackle the item cold-start Jam problem
in such a case, and how to exploit and combine the item content information together with
the CF matrix. Such a RS falls in the hybrid RS category (Sec. 6.3.2).

A third possibility is that the information within the job ads, the resumes and the CF
matrix can be leveraged to build a bridge between the job ad and the resume spaces, similar
in spirit to a machine translation task. The third scientific question is to investigate the
necessary conditions for establishing such a bridge in terms of consistency. Such a bridge
would eventually allow to tackle the full cold start Jam problem, and recommend brand
new job ads to brand new applicants.

Along the first direction, the user is essentially modeled based on her resume, following
a SROI approach. Along the second direction, the user is essentially defined from her
applications on previous job ads, following a MROI approach. Along the third direction,
distinct latent spaces are defined for users and items, and a mapping is defined between
both latent spaces along a MROI approach. All three questions are investigated in Chap.
7 along with a detailed presentation of the data.

6.6.2 Using artificial neural networks to tackle the Jam problem

The complexity of the Jam problem makes it desirable to go beyond the classical methods
considered in Sec. 6.5 in order to identify textual and behavioral patterns and leverage
them for recommendation.

In this manuscript, two original approaches are proposed along this line, taking inspi-
ration from machine translation (Chap. 8). The first approach, dubbed LaJam, exploits
the CF matrix together with the rich description of the job ads; it discards the actual
description of the users (their resumes). A two-step approach is defined: i) the two de-
scriptions of the users (respectively, the textual description of the job ads they selected,
and the behavioral description of the users, i.e. this set of job ads) are aligned; ii) an indi-
rect recommendation scheme is then used to form recommendation concerning brand-new
job ads.
The second approach, named MaTJam, achieves the “translation” between resumes and
jobs by embedding them into a same latent representation space, viewed as a pivot lan-
guage; the recommendations follow from the similarities in this pivot language.

Note that both approaches take opposite directions to modeling users. While LaJam
considers each user as the non-aggregated set of the jobs she applied to (i.e. it is a MROI
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system), MaTJam summarizes in a single location in the latent representation space (and
thus falls into the SROI category). They are designed to have similar representation
capabilities; they are thus compared along an item cold start setting on the same Jam
problems. Note that by construction, MaTJam can also deal with the full cold start
setting.
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Chapter 7

Data analysis

Access to large datasets representative of a Jam problem is a major concern for scientific
research in the field. As mentioned earlier, this lack of extensive data has been partially
overcome with the introduction of large-scale datasets provided by the professional network
XING1 (pronounced cross-ing) in the context of the RecSys challenges 2016 and 2017. It
must be emphasized, however, that these challenges focus on the recommendation tasks,
completely setting aside the natural language aspects involved in Jam: resume and job
documents are encoded using manually defined numerical IDs meant to represent concepts.
Besides, both content and interaction data have been subject to noise addition to preserve
the confidentiality of the network – as well as protect the data value for the company.
Indeed, neither XING nor the challenge organizers should be blamed for these noise adding
operations; such preprocessing is both unavoidable and desirable before making public
individual data. Nevertheless, this preprocessing limits the possibility of learning what
are the Jam problem peculiarities as well as understanding the failures of a RS tackling
it.

In this chapter, two proprietary datasets, kindly provided by Web hiring agency Qapa2

and non-profit organization ABG3, are introduced. Insights on the Jam problem are then
provided by looking at the datasets through the prism of simple RS approaches.

7.1 Introduction to the data

This section describes both anonymized large-scale and proprietary databases considered
in this study. These datasets are compared to the well studied and publicly available Ci-
teULike benchmark4, which will also serve to support the comparative empirical validation
(Section 8.6).

7.1.1 Databases

The Qapa platform is targeted at low-paid temporary jobs and unskilled applicants. An
applicant is not required to provide a resume as they often do not have any; she might
access the Qapa platform using her mobile phone and writing a few sentences. We had
access to the 5 million job ads and 4 million resumes recorded in the Qapa database over
the 2012-2015 period. The study considers the excerpt recorded over 2015 May-July as the

1https://www.xing.com/
2https://www.qapa.fr/
3http://www.intelliagence.fr/
4http://www.citeulike.org/faq/data.adp
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platform was significantly extended in April 2015, offering 2,000 skill additional features
from the official French job ontology5 to applicants and recruiters to enrich their job ads
or resumes. The ABG platform is targeted at PhD applicants and job ads for PhDs in
industry; the database contains 10,000 job ads, 14,000 resumes and 68,000 clicks, recorded
over the 2010-2015 period. The study considers an excerpt of the ABG dataset, retaining
applicants who clicked on at least two job ads, and job ads that have been clicked upon
by at least two applicants. To a job ad (resp. a resume) are usually attached a date
and a city converted in geolocation (respectively, a date; the applicant geolocation is not
available due to privacy constraints).

Besides the job ad and resume corpora, each database involves the collaborative fil-
tering matrix M, with Mi,j = 1 iff the i-th user applied on the j-th job ad (throughout
this work, “click” and “application” are used interchangeably; clicking on a job ad to read
it is not included in the interaction data). Job ads and resumes are written in French,
except for the ABG database where a large fraction (circa 30%) of the job ads are written
in English or contain a job description written both in French and in English.

The CiteUlike database considered6 includes 16,980 articles including 67 words on
average (only titles and abstracts being considered) using a tf-idf description on a 8,000
word vocabulary. The collaborative filtering matrixM describes the virtual library of the
5,551 platform users, with Mi,j = 1 iff the j-th article belongs to the i-th user’s library.
M is less sparse than for Qapa and ABG by an order of magnitude. All datasets are
summarized in Table 7.1.

Qapa ABG CiteULike

# items (# wd) 56 (60) 10.4 (113) 17 (67)
# users (# wd) 31 (46) 8.4 ( NA7) 5.6 (NA)
# clicks (spars.) 226 (13 · 10−5) 63 (71 · 10−5) 205 (22 · 10−4)

Table 7.1: The Qapa, ABG and CiteULike excerpt databases: number of items (job ads
or articles) in thousands with average number of words per item in parenthesis, number
of users (applicants) in thousands with average number of words in resumes for Qapa
and ABG in parenthesis, number of clicks in thousands with sparsity of the collaborative
filtering matrix in parenthesis. The vocabulary consists of the most frequent 10,000 (resp.
8,000) words in Qapa and ABG (resp. CiteUlike).

7.1.2 Preprocessing

Qapa-specific preprocessing

Applicants are described using a bag of words, concatenating a list of desired position titles,
their resume, and a list of skills. Job ads are similarly described by the concatenation of
a title, the job description, a list of desired skills, augmented with side information such
as the ad posting time and the location of the position (see below).

5These skills are part of the ROME ontology http://www.pole-emploi.fr/candidat/le-code-rome-

et-les-fiches-metiers-@/article.jspz?id=60702.
6Available at: http://www.cs.cmu.edu/~chongw/data/citeulike/.
7The ABG database includes resumes for 6,600 users, and interaction data for 8,400 users. Unfortu-

nately, the number of users for whom both the resume and the interaction data are known is only 2,700. For
the sake of the problem relevance, resumes are not considered when handling the ABG recommendation
problem.
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Skills are represented via Boolean features (extra words) and concatenated with the
job ad or resume description. Another option would have been to concatenate the textual
description of every skill involved in a job ad or resume to the job ad or resume description;
this option would, however, lose the skill “concept”, identified through a single synthetic
word.

The side description (not used for further preprocessing steps unless mentioned other-
wise) attached to each job ad is defined as follows:

• jobs time information: the posting time is transformed into a difference in seconds
to a reference time;

• jobs geolocation: city names are extracted from about 70% of the jobs titles; they
are transformed into longitude/latitude coordinates; there again, these may be con-
sidered as a difference in coordinates w.r.t. the reference point (0,0). When missing,
the median value along each coordinate is imputed.

The proposed recommender systems usually take the side information into account through
considering the differences of posting time or geolocations, thereby filtering out the effects
of the chosen reference point (using e.g. biases within neural network architectures). For
this reason, posting time and geolocation do not need to be rescaled (e.g. mapped onto
the [0, 1] interval). Keeping the original time and geolocation coordinates makes it easier
to compare their impact in the different datasets.

ABG-specific preprocessing

Likewise, applicants are described with a bag of words, obtained by concatenating: profile
title, highest degree, thesis title, scientific and technical fields, skills, professional objec-
tives...

Job ads are also described as a bag of words concatenating the type of employment
(e.g. “PhD candidate position” or “permanent position”), name of the employer, scientific
domains (e.g. “computer science”), requirements (skills, degree), job category (mostly
“research and development” and “higher education and research”) title and description of
the position. Additionally, the city and posting time are provided as separate attributes
and handled as for Qapa.

Common preprocessing pipeline

Text of jobs and resumes are first passed through a series of manually crafted rules to
remove, e.g. punctuation and HTML tags, and to transform all letters to lower-case. The
resulting text is then stemmatized using the Python NLTK library [Bird et al., 2009] to
reduce the diverse inflected forms of a word to an artificial root word (different from its
lemma, which is the form of the word that would appear in a dictionary), e.g. “utiliser” (to
use) and “utilisation” (usage) are both reduced to “utilis”. This step helps significantly
reducing the size of the vocabulary by about 25% while globally preserving the meaning
of all words. Additionally, a list of all language-specific “stop words” is used to dismiss all
words that carry little sense (such as “and”,“above”, “during”). The list used comprises
465 French stop words including all 26 single-character words (from “a” to “z”). The
resulting texts of resumes and jobs is encoded using a single bag of word (BOW) model
to align the dictionary among the two types of documents. The resulting description is
called the BOW representation.
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For Qapa only, skills are considered and added to the natural language dictionary as
extra-words (one word per skill). The same skill dictionary is used for both resumes and
jobs to preserve the BOW representation consistency.

A tf-idf representation

At this point, resumes and jobs have aligned representations and are merged into two
sets of documents (the resume and the job corpora, respectively). This representation
will support the next two steps: vocabulary selection and weighting. For each resume or
job, the number of occurrences of the word in the resume or job document is replaced
using the so-called tf-idf operator (see Section 6.4.2). The tf-idf recoding is followed by
a vocabulary selection step, retaining only the top 10,000 words sorted by decreasing idf.
The resulting document × word matrix is referred to as tf-idf representation of the
data in the following.

An LSA representation

On top of this tf-idf representation, another representation referred to as LSA represen-
tation in the following, is constructed. Again, all documents are used to compute the
singular vectors, resulting in an aligned representation of resumes and jobs.

Unfolding the skills

The analysis of the corpus from an NLP perspective is conducted by replacing the extra-
word associated with each skill by its textual description, concatenated to each document
(resume or job) including this skill. This representation (without the tf-idf weighting) is
referred to as BBOW-NL representation (Boolean BOW-NL).

7.2 Exploratory analysis from an NLP perspective

7.2.1 Alignment of NL representations

This section aims at investigating the natural language aspects of the considered appli-
cation; it only considers the BBOW-NL representation. Four corpora are considered:
resumes in Qapa and ABG, jobs in Qapaand ABG. The overall set of documents involves
a 129,211-word vocabulary. Tab. 7.2 details for each corpus the size of the dictionary. In
particular, note that the Qapa resumes size is far greater than that of Tab. 7.1. This fact
is due to the occurrence of many rare words (presumably misspelled words).

Qapa jobs Qapa resumes ABG jobs ABG resumes

# documents 56,512 30,669 10,473 6,600
# boolean word occurrences 4,496,997 3,603,362 1,240,791 384,013
dictionary size 44,224 68,436 44,937 27,988
Avg. # different words per document 79.6 117.5 118.5 58.2

Table 7.2: Dictionary sizes for all 4 corpora.

Fig. 7.1 illustrates the word distribution per corpus, showing the ranked word fre-
quencies on a log-log scale. Both datasets feature different characteristics. Firstly, ABG
involves a large set of rare words. This fact is partially explained from the highly tech-
nical description of the resumes (e.g. integrating the PhD thesis titles). Another possible
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explanation is that circa 30% of ABG ja s are written in English, or augmented with an
English translation.

100 101 102 103 104 105

word index

10 5

10 4

10 3

10 2

10 1

100

wo
rd

 fr
eq

ue
nc

y

ABG CVs
ABG job ads
ABG job ads + CVs
Qapa CVs
Qapa job ads
Qapa job ads + CVs

Figure 7.1: Word frequency in the BBOW-NL representations of all 4 corpora and globally
in the ABG and Qapa datasets (log-log scale).

The differences between corpora are further investigated by comparing the vocabulary
used in resumes and jobs, respectively. These word distributions are illustrated on Fig.
7.2. It is worth noting that most words belong to two areas (the red areas in Fig. 7.2).
Specifically, an overwhelming fraction of the words is either used in jobs only (bottom
right), or in resumes only (top left). The mismatch between the job and resume word
distribution a posteriori explains why the use of a simple matching (e.g. using a cosine
similarity) between job and resume documents proves to be ineffective for recommendation.

Most interestingly, the observation that people asking an information and people query-
ing an information tend to use different vocabularies has been made before: see [Ruotsalo
et al., 2015] and references therein for a discussion of this phenomenon.
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Figure 7.2: Word distributions in Qapa (left) and ABG (right), on a negative log scale.
Word w with frequency px (resp. py) in the resume (resp. job) corpus is located at
(− log(px),− log(py)). Color indicates density, i.e. how many words are located at the
same coordinates.
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The – visually observed – distribution differences between the corpora are quantified
using the Kullback-Leibler (KL) divergence. Considering P and Q two distributions de-
fined on the (finite) vocabulary W , the KL divergence between P and Q is defined as:

KL(P ||Q) =
∑
w∈W

P (w) log
P (w)

Q(w)

To avoid numerical issues, the considered vocabulary is set to the set of words appearing
at least once in each corpus.8

The stability of the KL divergence is further characterized by considering the variance
of the distribution in each corpora, estimated from KL(P ||P ′) with P and P ′ the empirical
distributions estimated from a random bi-partition of each corpus. Specifically, each corpus
is divided in two, with P and P ′ the empirical distributions on each subset and KL(P ||P ′)
(averaged over 10 random split of the corpus) is used to estimate the variance of the corpus
distribution (Tab. 7.3).

CV1 CV2 Job1 Job2

CV1 0.005 0.323 0.323
CV2 0.005 0.324 0.324
Job1 0.470 0.472 0.007
Job2 0.471 0.473 0.007

Table 7.3: Quantitative estimates of the distribution differences between Qapa resumes
(CV) and job ads, measured from the KL divergence KL(row||column) and averaged over
10 runs. Standard deviations are under 0.001.

Tab. 7.3 yields the following conclusions. While resumes (resp. jobs) are homogeneous
sets (low KL variance within the set) they significantly differ from each other. Further-
more, KL(job||CV) is much higher than KL(CV||job). A tentative interpretation for this
fact goes as follows: KL(P ||Q) is affected by elements with low Q probabilities. In our
case, resumes involve many rare words, much more than jobs, as shown in Fig. 7.1. The
occurrences of these rare words (due to mispellings, rare acronyms, enterprise names and
adress...) might thus explain these differences.

The difference between the two datasets is also visually and quantitatively estimated.
As illustrated on Fig. 7.3, the vocabularies used in both datasets among the two users
corpora (resp. among the two jobs corpora) are different. This finding was expected,
as the Qapa dataset focuses on low-qualification jobs whilst the ABG dataset deals with
resumes and jobs with high technical expertise. This difference (schematically, between
blue-collar and white-collar job sectors) is reflected in the vocabulary used; additionally,
the ABG dataset is bi-lingual (70% French and 30% English).

This difference strongly suggests that the two datasets are better considered indepen-
dently.9

8Note that the KL divergence is not symmetric, hence it is not a distance. The Jensen-Shannon
divergence, half-sum of KL(P ||Q) and KL(Q||P ) would be used, if we needed the distance properties.

9If the amount of data were overwhelming, there might indeed be some benefits in considering the
continuum between white and blue-collar domains. This perspective is left for further work with larger
amount of data.
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Figure 7.3: Word distributions in resumes (left) and jobs (right), on a negative log scale.
Word w with frequency px (resp. py) in the Qapa (resp. ABG) dataset is located at
(− log(px),− log(py)). Color indicates density, i.e. how many words are located at the
same coordinates.

7.2.2 Recommendation based on pure content matching

As previously stated, the mismatch between the resume and job distributions complicates
the direct matching of the users and items, using, e.g. cosine similarity. A more thorough
content-based matching was investigated using the tf-idf and LSA representations to obtain
baselines for the neural-network-based approaches presented in Chap. 8. In both cases,
the similarity between documents is computed as the cosine similarity of the representation
vector [Aizawa, 2003; Landauer and Dumais, 1997]:

scos(x,y) =
x · y

‖x‖2 · ‖y‖2

This direct matching approach considers Jam as a pure information retrieval problem: the
user resume is viewed as a “query” tentatively matched with every document (job) by the
recommender system.

Tab. 7.4 reports the performances of this pure content-based RS with the tf-idf repre-
sentation (10k words) and the LSA representation (600 dimensions) on the Qapa dataset
in terms of recall.

The experimental setting considers a 10-fold cross validation approach. Firstly, the
itemset is equi-partitioned into 10 subsets, and the results are averaged on all 10 subsets.
For each subset, for each user (resume), the items (job) are ranked by decreasing cosine
similarity with the user and the rank of the relevant items in the fold (circa 5,600 jobs
each) is recorded. The recommendation performance is measured from the recall at 20,
100 and 200, where the Recall@T is the fraction of relevant items ranked in the top T .

Note that this content-based RS does not take into account the information from the
collaborative filtering matrix. In tf-idf representation, the word weights only reflect their
frequency among the documents. In LSA representation, the singular vectors also reflect
the structure of the corpus (jobs and resumes) in an unsupervised way. The RS thus
is blind to how well the words or LSA dimensions correlate with the interactions, and
its poor performances are not particularly surprising. The fact that the LSA-based RS
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Recall@ 20 100 200

tf-idf-10k 0.095 (0.001) 0.251 (0.002) 0.358 (0.002)
LSA-600 0.091 (0.001) 0.256 (0.002) 0.371 (0.002)

Table 7.4: Content-based recommendation scores using the tf-idf and LSA representations:
Recall at 20, 100 and 200, averaged along 10-fold cross-validation.

performs slightly better than the tf-idf RS is explained from the known LSA abilities to
capture the word synonymy relations through the dimensionality reduction process (from
10,000 vocabulary to 600 singular vectors).

7.3 Exploratory analysis from a CF perspective

7.3.1 Quality of the collaborative filtering matrix

The quality of the |U| × |I| collaborative filtering matrix M is assessed as follows. A
pruned matrix is defined by selecting 10% of the (u, i) pairs, such that Mu,i = 1 and
flipping them to 0 (removing at most 1 item per user). Recommendation is done for each
user among all items i such that Mu,i 6= 1.

Two mainstream neighborhood approaches (see Sec. 6.5) are used to re-estimate all
Mu,i such that Mu,i = 0, with:

M̂u,i =

|I|∑
j=1

sim(i, j)Mu,i (7.1)

• content neighborhood recommendation: sim(i, j) stands for the cosine similar-
ity among the initial or reduced representations of the i-th and j-th items. Only the
reduced LSA representation is considered in this section (the tf-idf representation
brings no improvement upon LSA); the associated recommendation will be referred
to as LSA-based recommendation and denoted LSA-bl in the following.

• M neighborhood recommendation, denoted M-bl in the following: sim(i, j)
stands for the cosine similarity between their collaborative representationsM·,i and
M·,j , that is, each item is represented as the set of users that interacted with it.

An item-oriented neighborhood approach is used here to support the item semi-cold start
setting. Additionally, the neighborhood of the i-th item is defined considering the full
item set for simplicity.

As previously, the quality of the data is estimated from the recall@T performance
indicator averaged over 10 runs, for both neighborhood methods. The LSA representation
uses 600 dimensions for the Qapa and ABG datasets, and 200 dimensions for the CiteULike
dataset.

As displayed in Fig. 7.4, for 52% of Qapa (resp. 44% of ABG) applicants, the relevant
recommendations appear in the top-200 (out of 56,000 job ads for Qapa and 14,000 for
ABG). For a significant fraction of the applicants however, the first relevant recommen-
dation is ranked below the top 10,000, being thus useless in a real-world setting.

For all databases, theM-based (item-based) similarity is more effective than the LSA
one when very few recommendations are displayed; a tentative interpretation is that the
similarity of any two job ads is better captured from the applicant behaviors, than from
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Figure 7.4: Recall curves for warm-start recommendation on CiteULike (average on 5-fold
cross-validation, LSA with dimension D = 200), Qapa and ABG (average on 10 runs,
LSA with D = 600). For CiteULike and ABG, M-bl dominates LSA-bl: user behaviors
are more informative than item contents. For Qapa,M-bl dominates LSA-bl at first, and
LSA-bl catches up when M-bl reaches a plateau, blamed on the M-sparsity. Standard
deviation, omitted for readability, is less than 0.005 except for M-based on CiteULike
(≈ 0.03), due to the 5-th fold.

the actual wording of the job ad (even after the dimensionality reduction achieved by
LSA).

7.3.2 Alignment of content and collaborative data

The consistency of the textual representation of item documents with the interaction data
is investigated by comparing the cosine similarities on M-based and on LSA representa-
tions, respectively, through a neighbors retrieval task.

Specifically, to each item is associated the set of its κ nearest neighbors according to the
M similarity, considered as the “relevant” documents to be retrieved. The “recall@T” for
an item is set to 1 iff one of its neighbors is among the top T -ones, ranked by decreasing
LSA similarity. As seen from the average recall curve (Fig. 7.5), the standalone LSA
similarity provides relevant hints for CiteULike and Qapa (at least at a coarse level: when
κ is increased from 1 to 10, all recall curves decrease very fast). For ABG, the curve is
almost linear, suggesting that LSA similarity is locally uncorrelated with M similarity.

7.3.3 User regions of interest

A complementary experiment is conducted to confirm the adverse impact of the user’s
interest diversity on recommendation, as follows. Let us associate with each u-th CiteULike
user the center of mass of his selected articles in LSA representation denoted Θu. The
user is characterized from:

• the local density of his interest region (normalized sum of the squared distances of
the 10-nearest items w.r.t Θu);
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Figure 7.5: Local correlation of the M and LSA metrics for Qapa, ABG and CiteULike,
measured from the neighbor retrieval task (see text): average fraction y(T ) of the items
top-κM-neighbors that are among the top-T LSA neighbors, for κ = 1, 10, 20. The fact
that the recall curve ultimately reaches 100% on ABG is explained as ABG involves about
10,000 items.

• the dispersion of his interests (normalized sum of the squared distances of the selected
items w.r.t Θu).

The “recommendation difficulty” of the user is measured by the rank of the first rele-
vant recommendation after LSA-bl. This experiment is only conducted on the CiteULike
dataset as applicants of Qapa (resp. ABG) have interacted with too few items (on average
resp. 4 and 6), making the dispersion estimate unreliable.

This experiment shows (Fig. 7.6) that the difficulty increases as the user’s center
of interest lies in a lower density region, as could have been expected (rightmost points
represent users who gets inaccurate recommendations). Conditionally on a given density,
however, the users with a high dispersion are better served, confirming that LSA-bl can
retrieve relevant items close to previously selected items. This is a strong point in favour
of the use of a MROI approach (recall that LSA-bl is a neighborhood approach, Sec. 6.5)
for the CiteULike dataset.

7.4 First conclusions on Jam problem

This chapter has presented and analyzed the two Jam datasets that drove this work. A
thoroughly studied reference dataset, the CiteULike benchmark, is also presented for the
sake of comparisons.

The NLP analysis indicates that applicants and recruiters speak different languages,
limiting the usefulness of recommendation approaches based on pure word matching op-
erators. The direct matching approach turns out to be unable to extract knowledge from
the CF matrix when operating at the level of words (or even at the level of more complex
structures such as LSA singular vectors) in applicant or recruiter documents. This calls
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Figure 7.6: Characterization of recommendation difficulty on CiteULike. Each user is
associated with the barycenter Θu of his items in LSA representation, and located at
position (x, y), where x is the 10-nearest item dispersion in the neighborhood of Θu (the
highest, the lowest the density), and y is the dispersion of the selected items w.r.t. Θu.
The user’s color reflect the rank of the first relevant recommendation (in color, log-scale)
by LSA-bl.

for a more complex approach as far as NLP is involved: some machine translation between
resumes and jobs is needed.

In a collaborative filtering perspective, the pure CF M-based method is evaluated on
the Qapa and ABG datasets in warm-start mode to assess the quality of the CF matrix.
Though it efficiently provides relevant recommendations for half the users, this approach is
unable to provide the other half with relevant recommendations; such disappointing result
is blamed on the sparsity of the interaction matrix. Besides, this approach is inadequate
for item semi cold start. Note that for the CiteULike dataset, M-based is comparatively
more successful; this is explained by the lesser sparsity of M (about 10 times that of the
Qapa and ABG datasets).

As illustrated on the Qapa dataset, vanilla CF methods solely based on interaction data
are overall far more successful than content-based approaches. In a nutshell, interactions
contain more information relevant to recommendation than contents.

The interest of using an MROI approach over an SROI algorithm is experimentally
demonstrated on the Qapa dataset in the Jam context. Using the publicly available
CiteULike data indicates that the difficulty of providing good recommendations is related
the multiple interests of users.
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Chapter 8

Neural architectures for
recommendation

As emphasized in Sec. 6.5, a central issue for recommender systems is the representation(s)
of the users and items. These representations are thereafter used along different learning
schemes, chiefly learning to rank and metric learning.

The dominant approach in representation learning since a decade is based on neural
networks, powerful and multi-purpose learning frameworks. As far as Jam problems are
concerned, they have successfully been used for recommendation [Salakhutdinov et al.,
2007], ranking for information retrieval [Hoffer and Ailon, 2015], text similarity learn-
ing [Mueller and Thyagarajan, 2016], text embedding [Le and Mikolov, 2014], machine
translation [Cho et al., 2014].

The contributions presented in this chapter are two feed-forward neural network archi-
tectures learned as language models for recommendation. They are validated on the Jam
problem datasets introduced in Chap. 7, namely the Qapa and ABG datasets. For the
sake of comparative evaluation, they are also assessed on the publicly available CiteULike
benchmark concerned with scientific article recommendation.

After presenting the problem statement and briefly describing the state of the art in
learning to rank and metric learning with neural nets, this chapter details our contribu-
tions. This chapter is partially based on [Schmitt et al., 2017].

8.1 Positioning of the problem

This section restates the problem statement first introduced in Sec. 6.3.1, focusing on the
hypothesis space defined by neural networks (NNs).

Item-oriented neighborhood (ION) methods have shown to be appropriate to Jam, as
far as LSA-bl yields reasonable performances in comparison with simple content-based
approaches (Sec. 7.3.1). In the warm-start setting, ION methods are dominated by
mainstream collaborative filtering when considering the recall@T performance indicator
for small values of T . However, ION methods handle the semi-cold start setting and can
leverage both items textual descriptions and interaction data. The aggregation function
to form the recommendation list (Eq. 6.2) is as follows:

∀u ∈ U ,M̂u,i =
∑
j∈I

sim(i, j)Mu,j =
∑

j:Mu,j=1

sim(i, j), (8.1)

where sim(i, j) denotes the similarity between items i and j. In comparison to some other
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neighborhood approaches (Sec. 6.5.2), all items are retained in the neighborhood of u
(V(u) = I) and not only a fixed number of nearest neighbors.

Recommendation list RT (u) is built by ranking in decreasing order the estimated M̂u,i

values. The fact that item i be recommended to user u depends on the estimated M̂u,i,

and specifically on the rank ru,i of M̂u,i in the set of values M̂u,·; item i is recommended
to user u iff ru,i is less than T :

τ(M̂u,i,M̂u,·, T ) =

{
1 if ru,i < T
0 otherwise

(8.2)

Overall, performance indicator R@T (Sec. 6.3.4) averages over all users the recall@T
per user:

R@T =
∑
u∈U

∑
i:Mu,i=1 τ(M̂u,i,M̂u,·, T )

‖Mu,·‖1
, (8.3)

with ‖Mu,·‖1 =
∑

l∈IMu,l is the number of items clicked upon by user u.

As far as ru,i depends on the ordering of M̂u,· coefficients, the recall@T indicator can
hardly be optimized directly. Besides, the size of the problem makes it intractable to apply
combinatorial optimization algorithms. The next section briefly presents the state of the
art in neural networks applied to ranking and metric learning.

8.2 Formal background

8.2.1 Neural learning to rank

Linear mapping

In a similar ranking context, [Weimer et al., 2008] use the Polya-Littlewood-Hardy in-
equality that states that the inner product between to vectors is maximized if they share
the same ranking:

∀a, b ∈ IRd, 〈a, b〉 ≤ 〈sort(a), sort(b)〉

Accordingly, the optimization of Eq. (8.3) is tackled by aligning the top-T elements
of the indicator vectors for each user u and the ground truth vector [Mu,i]i. The linear
approach proceeds by optimizing a proxy of the recall, considering for each user:

∀u ∈ U , r(u) =

∑
i:Mu,i=1 M̂u,i

‖Mu,·‖1
(8.4)

Optimizing the alignment of both vectors is particularly relevant as it enables to si-
multaneously consider the recall@T performance indicator for various values of T .

Most importantly, r(u) (Eq. 8.4) has the nice property of being linear with respect to

M̂u,i, and thus to sim (Eq. 8.1), which is expected to ease the optimization w.r.t., e.g.
parameters of sim.

In [Weimer et al., 2008], the recommendation problem involves ratings; in such cases
the goal is to reproduce to the best extent possible the item ratings. In contrast, OCCF
virtually considers two classes of items, those that are relevant and the others; the relevant
items thus have same rank. A trivial solution (e.g. mapping all items on the same location
and thus maximizing their similarity) would therefore maximize the considered criterion.
A proper disincentive mechanism must thus be designed to prevent the discovery of such
trivial solutions; we shall return to this point in Sec. 8.2.5.
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In Eq. (8.3), all users equally affect the recommendation score. To enforce this prop-
erty, sim should not favor “active” users who interacted with numerous items over those
who only clicked a limited number of items. We shall return to the user activity imbalance
in Sec. 8.2.5. In order to avoid active users to bias the sought solution, assuming sim to
be in interval [0, 1] and noticing that:

M̂u,i ≤
∑
l∈I
Mu,l = ‖Mu,·‖1

(the equality occurs when sim is 1 for all relevant items), r(u) is revised by considering an
L2 norm normalization. rc(u), a revised version of r(u), is defined as:

∀u ∈ U , rc(u) =

∑
i:Mu,i=1 M̂u,i

‖Mu,·‖21
(8.5)

Note that as the recommender system independently considers each user and ranks
items according to this user, the above normalization does not modify the per user recom-
mendation. It still supports the overall assessment of the recommender, aggregating the
performance over all users whatever their individual activity:

r =
∑
u∈U

rc(u)

=
∑
u∈U

∑
i:Mu,i=1 M̂u,i

‖Mu,·‖21

=
∑
u∈U

∑
i M̂u,i · Mu,i

‖Mu,·‖21

(8.6)

Replacing M̂u,i using Eq. (8.1) leads to the following form:

r =
∑
u∈U

1

‖Mu,·‖21

∑
i∈I

∑
j∈I

sim(i, j)Mu,j

Mu,i

=
∑
i∈I

∑
j∈I

sim(i, j) ·
∑
u∈U

1

‖Mu,·‖21
Mu,j · Mu,i

Rewriting the above using matrix notations gives:

r =
∑
i∈I

∑
j∈I

sim(i, j) · simM(i, j) (8.7)

where:
∀(i, j) ∈ I × I, simM(i, j) =M>.,j · M.,i (8.8)

and M denotes the row-normalized version of M:

∀u ∈ U , Mu,· =
1

‖Mu,·‖1
Mu,·

Note that the user dependency no longer explicitly appears in Eq. (8.7). Intuitively,
the similarity of two items reflects the number of users clicks on both items, modulated
by the user activity (factor 1/ ‖Mu,.‖1).
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The [simM] matrix can be analysed in comparison with the item-item correlation
matrix Ci,j in ItemRank [Gori and Pucci, 2007]. In ItemRank, a graph-based approach,
Ci,j is initialized from Mu,j · Mu,i; a normalization process is then applied in order for
matrix C to be interpretable as a transition matrix where Ci,j represents the probability
to move from node j to node i. In contrast with [Gori and Pucci, 2007], the proposed
approach defines a symmetric [simM] similarity.

Note that in some cases, a symmetrical similarity might be inappropriate, e.g. when
several users interact with items j and k while some users only interact with item j. In
such cases, one might want item k to be similar to item j and at the same time item j
be not too similar to item k. The design of asymmetrical similarities is left for further
research.

8.2.2 Distance metric learning

A metric is defined as a mapping d : X × X 7→ IR+ over a vector space X which satisfies
the following properties [Weinberger and Saul, 2009]:

1. ∀x, y ∈ X , d(x, y) ≥ 0 (non-negativity)

2. ∀x, y ∈ X , d(x, y) = d(y, x) (symmetry)

3. ∀x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

4. ∀x, y ∈ X , d(x, y) = 0 =⇒ x = y (distinguishability)

The problem of distance metric learning has been extensively considered in the machine
learning literature; see among many others [Xing et al., 2003; Weinberger and Saul, 2009].
The metric learning problem is defined as learning a mapping over pairs of elements in
the instance space X which emulates some similarity relation S which is usually given on
some training triplets:

∀x, y, z ∈ X , S(x, y) = 1 ∧ S(x, z) = 0 =⇒ d(x, y) ≤ d(x, z) +m (8.9)

where m > 0 is referred to as the margin; it enforces that similar and dissimilar pairs
should appear significantly different. As Eq. (8.9) still holds if d is rescaled, m is usually
set to 1.

As usual, the goal of metric learning is to define some d which both fits the training
triplets and generalizes to further triplets.

The linear mapping introduced in Eq. (8.4) directly connects to metric learning, with
simM in Eq. (8.8) defining a pairwise similarity between items.

As shown by [Xing et al., 2003; Shalev-Shwartz et al., 2004], there exist computationally
efficient approaches to build a distance complying with similarity constraints of the type
sim(x, y) < sim(x, z). Such approaches mostly consider Mahalanobis distances or semi-
distances. A Mahalanobis semi-distance on vector space X is defined from a symmetric
positive semi-definite matrix A as

∀x, y ∈ X 2, dA(x, y) =
√

(x− y)>A(x− y)

This semi-distance satisfies axioms 1-3. It satisfies the 4th axiom of distinguishability iff
A is definite; in this case it is a distance. Note that the distinguishability is not always
required in metric learning.

Granted that items are expressed in natural language, a non-linear similarity approach
might be desirable in some cases. Related work on non-linear metrics learning mostly

109



extend the linear setting using kernelization [Kwok and Tsang, 2003]. Another option
consists of learning a linear metric based on local constraints only. Yang et al. [2006]
use a k-nearest neighbor approach to predict the class of a point x. If each point x falls
in a neighborhood that is “sufficiently” populated with points of the same class, it does
not matter if there exist other points similar to x that are far away. [Weinberger and
Saul, 2009] enforces the property that all k nearest neighbors of a point share its same
label by attracting them and repelling neighboring points with other labels. To ensure
robustness, a fixed safety margin between the farthest point of the same class and the
nearest point from another class is maintained. This algorithmic approach is flexible and
allows to consider non-symmetric similarity during training. [Qamar and Gaussier, 2012]
focus on learning similarities of the form:

∀x, y ∈ X 2, sA(x, y) =
x>Ay

N(x, y)
,

where A is a square similarity matrix and N(x, y) is a normalization coefficient.1 They
note that minimizing the number of mistakes a k-nearest neighbor classifier would make
is more relevant for classification applications than maximizing the average safety margin.
Such local approaches are well suited to problem domains where a class can involve several
modes or sub-classes. As a conclusion, [Yang et al., 2006] note that the main difficulty
of pseudo-metrics learning lies in the positive semi-definiteness constraint, which is not
required in a recommendation setting.

8.2.3 Siamese network

Siamese network have been introduced for signature [Bromley et al., 1993] and face [Chopra
et al., 2005]) verification problems. A Siamese neural network architecture is composed
of two branches with shared architecture and weights (Fig. 8.1). The aim is to be able to
recognize if two inputs fed to the two branches refer to a same entity (two signatures or
two face images of a same person).

x

SN(x)

y

SN(y)

W

`SN (x,y)

Figure 8.1: The Siamese network architecture: the two network branches share the same
weights W .

During the training phase, Siamese networks are presented with so-called positive or
genuine pairs (i.e. pairs of inputs related to a same object) with the goal of minimizing the
distance between their images in the output or representation space. This goal is enforced
by the so-called attractive loss defined as:

`+(x, y+) = d(SN(x), SN(y+))2 (8.10)

1For A = I and N(x, y) = ‖x‖2 · ‖y‖2, sA is the cosine similarity.
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with SN(z) the image of z produced by the Siamese network.
This loss function, however, admits a trivial solution, as SN : z 7→ 0 minimizes it.

Therefore, Siamese network training also relies on negative or impostor pairs, i.e. inputs
not related to a same object that the network has to push away from each other. Several
repulsive loss functions have been considered in the literature (see for instance [Hadsell
et al., 2006] and references therein). Among the most studied losses is the convex loss
[Hadsell et al., 2006]:

`−(x, y−) =
[
m− d(SN(x), SN(y−)

]2
+

(8.11)

where m is a hyperparameter referred to as margin and [A]+ = max(A, 0)). This repulsive
term is designed to take into account only pairs of points that are currently close (with a
distance lesser than m) and that would be perceived as positive by a classifier only relying
on the distance value2. The pairs of points that are far away from each other do not need
to be considered as they do not have any impact on the prediction of the current point.

The repulsive term conveys the context of the decision making problem achieved by
the Siamese network output space; it characterizes to which extent x and y are similar
with respect to the decision context. To illustrate this point, consider the faces from two
humans from different people: they are close if the point is to discriminate mammals from
other beings, while they are different from the perspective of human identity verification.
This repulsive term accounts for the context, as it tends to push away SN(y) from the
m-neighborhood of SN(x) when relevant.

The final loss sums the attractive terms (active for positive pairs) and the repulsive
terms (active for negative pairs). Denoting δ+(x, y) the indicator function that evaluates
to 1 if (x, y) is a positive pair and 0 otherwise, the network is finally learned to minimize:

`SN (x, y) = δ+(x, y) · `+(x, y) + (1− δ+(x, y)) · `−(x, y) (8.12)

As generally acknowledged (see [Chopra et al., 2005] among others), a desirable prop-
erty of the loss is to be convex with respect to d; the loss we use (Eq. (8.12) is indeed
convex; attractive and repulsive terms are quadratic functions of d.

In principle, the number of pairs used to train the Siamese network scales quadratically
with the size of the training set. For recommendation applications, however, Siamese
networks are trained to emulate a (very) sparse collaborative matrix. The number of
training pairs should thus preferably grow linearly with the number of known interactions
(pairs of items that are known to be similar or dissimilar). Note that in the OCCF
context, known interactions are all positive. Our approach takes inspiration from the
related problem of face verification [Chopra et al., 2005], where negative pairs include
all non-positive pairs and outnumber the positive pairs by several orders of magnitude.
Accordingly, the negative pairs used to train the Siamese network are sampled among the
overall negative pairs to achieve a good trade-off between the computational cost and the
training efficiency.

Siamese networks have been successfully used to achieve topology-preserving dimen-
sionality reduction [Hadsell et al., 2006] and for text applications, such as sentence sim-
ilarity learning [Mueller and Thyagarajan, 2016] or title normalization and classification
[Neculoiu et al., 2016].

2This contrasts with distance metric learning approaches seen in the Sec. 8.2.2, where the distance
relatively to other points is used to infer the current point label [Weinberger and Saul, 2009; Yang et al.,
2006].
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8.2.4 Triplet network for preference learning

Triplet networks extend the Siamese architecture and consider three branches instead
of two, with all branches sharing the same architecture and weights; Fig. 8.2). The
network is simultaneously provided with one reference and two test items, and the aim
is to learn which one out of the two test items is the nearest to the reference in terms
of the Euclidean distance in the network output representation. This learning scheme
is well suited to recommendation or information retrieval [Wang et al., 2014] as most
recommender systems performance measures (Sec. 6.3.4) are based on ranking.

Let (x, y+, y−) denote a triplet, such that x is more similar to y+ than to y−. The
loss function is meant to enforce the same similarity relations in the metric space defined
by the network output. Accordingly, the triplet network loss function is defined as follows
(taking inspiration from the Hinge loss for classification problems):

`TN (x, y+, y−) =
[
d(TN(x), TN(y+))− d(TN(x), TN(y−))

]
+

(8.13)

A fixed margin (omitted here) is optionally added to increase the contrast in distances in
the output space.

x

TN(x)

y+

TN(y+)

y−

TN(y−)

W

`TN (x,y+,y−)

Figure 8.2: The triplet network architecture: All three network branches share the same
weights W .

Triplet networks, however, face a strong limitation in terms of scalability, with a com-
putational complexity cubic in the size of the training set. Again, some aggressive sub-
sampling of the triplets of examples is required to support the approach [Wang et al.,
2014].

8.2.5 Negative feedback

Both metrics learning and the previously discussed NN-based approaches require to pro-
vide positive and negative examples during training. In standard recommendation settings,
users give explicit feedback on items through ratings (e.g. number of stars in the Netflix
datase [Bennett et al., 2007] or like/dislike on online streaming platforms) or annotations
(user comments after purchase on e-commerce websites3). In the OCCF setting, positive
examples are classically sampled among the known positive interactions (1s of the collab-
orative matrix); most usually, there are no negative examples, as explicit feedback denotes
some interest. The lack of explicit negative feedback is seen in many recommendation
settings; for OCCF settings, this lack is even more severe, as explicit negative interactions
would be needed to counterbalance the positive interactions.

When possible, negative examples can be extracted from the list of items displayed to
the user that have not been clicked [Das et al., 2007]. Still, the reliability of these negative

3The field of sentiment analysis is beyond the scope of the present document.
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examples is questionable. On the one hand, there is no guarantee that the user actually
looked at the item (e.g. in information retrieval users are often only interested in the
first few results and do not even look at the next few suggestions [Joachims et al., 2005,
2007]). The user’s choices might themselves be unreliable: if the user is only looking for
one result (e.g. for a film recommendation), they might simply neglect other options even
if they were actually relevant. Obviously the same could be said about positive examples:
they may be relevant not intrinsically but only in comparison to the other recommen-
dations. [Joachims et al., 2005] conclude that clicks are more accurately interpreted as
positive feedback relatively to other recommended items (and depending on the user trust
in the recommendation engine) than as absolute positive signal. To overcome such biases,
[Radlinski and Joachims, 2007] investigate how active data collection can lead to quicker
learning. Ideally, an active learning setting would require feedback from real users about
the recommender system under training. However, this requirement is hardly met in prac-
tice − with the notable exception of the online evaluation of the RecSys challenge 2017
[Abel et al., 2017]. The authors of [Radlinski and Joachims, 2007] propose a simplified
user behavior model to be able to simulate unknown data and perform experiments on
offline datasets.

Specifically for OCCF, [Paquet and Koenigstein, 2013] investigate two learning prob-
lems: i) predict whether a user has encountered a particular item; and ii) whether the
user has positively interacted with the item. The former is achieved through modeling the
unobserved data as a hidden graph of which the observed data (considered as a user-item
graph) should be a subgraph. Note that if the data were (partially) obtained using a RS,
this amounts to learning this RS behavior.

When no “soft-negative” examples are available or user behavior cannot be reliably
simulated, OCCF relies on sampling negative examples from the unobserved data (that is,
all non-positive elements of M). The two extreme strategies presented below have been
investigated by [Pan et al., 2008], together with intermediate ones.

All Missing As Negative (AMAN)

In the AMAN paradigm, all examples not observed as positive are considered to be neg-
ative, yielding a severely imbalanced problem (negative examples outnumber the positive
ones by several orders of magnitude) and adversely affecting the learning task for compu-
tational and efficiency reasons. Furthermore, it is likely that some of the unobserved data
would be positive if observed – this is even the base hypothesis of warm-start recommen-
dation. The AMAN strategy thus induces a novelty-adverse bias.

All Missing As Unknown (AMAU)

The other extreme case considers that all non-observed data are unknown and might
actually be positive. As already said, this paradigm is not appropriate for a metric learning
goal as it is compatible with the trivial solution where all items are relevant to all users.
However, it is meaningful when there exist different feedback levels (e.g. , ratings), as the
user behavior can be learned from the observed data only.

Intermediate approaches

Intermediate approaches proceed by weighting or sampling unlabelled examples. One
may want to consider all missing as possible negative values, but with a low confidence
(as they can be unobserved “ones”). Following this idea, [Pan et al., 2008] propose a
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matrix decomposition loss with low weights assigned to reconstruct the “zeroes” (while
“ones” should be reconstructed with unitary weight). A similar approach is taken by [Hu
et al., 2008], seeking low-rank matrices to approximate the (positive interaction only) M
and using regularization terms. A similar idea is found in [Wang and Blei, 2011], where
both the baseline and the contributed approach are based on generative probabilistic
models reconstructing “ones” with weight 1 and “zeroes” with a lower weight (0.01 in
the experiments). To the best of our knowledge, this lower weight is not derived from,
e.g. the matrix sparsity; it is empirical adjusted. Another option is to sub-sample the
unlabelled pairs and consider the sample as “zeroes”. When using such a sampling scheme,
particular attention should be payed to the “zeroes” samples so that no bias is introduced:
for instance, this set should be periodically refreshed with new samples.

Both the weighting and the sampling scheme may encapsulate prior knowledge on the
users behavior and/or the items, such as:

• uniformity : all weights assigned to negative samples are equal / negative samples
are uniformly drawn from the set of unlabelled examples;

• user-oriented : a user with (comparatively to the other) many interactions is likely
to have examined more carefully their list of recommendation. Therefore, their
unlabelled data are thus more likely to be true “zeroes”, and are thus decorated
with higher weights or sampled with higher probability than by default [Pan et al.,
2008]. This kind of reasoning implicitly assumes that each user has roughly the same
amount of interest that he or she distributes over the set of items.

• item-oriented : the basic idea is to favor “popular” items, be it for the sake of provid-
ing higher quality recommendations (the item is popular because it is intrinsically
better than average) or increasing the evaluation score (this item has statistically
higher chances to draw the interest of a new user). It follows that the weight or
the probability to sample an item as a “zero” should decrease with the number of
known positive interactions. The non-personalized, popularity-based recommenda-
tion strategy [Rashid et al., 2002] is based on this assumption.

8.3 LaJam: Learning a Language Model for recommenda-
tion

This section presents the proposed LAnguage model-based Jam (LaJam) system, focusing
on the semi-cold start problem of recommending brand new job ads to a known user. As
stated previously, this approach is suited to the temporary work sector, and therefore of
prime importance in today’s labor market.4

Exploiting the fact that neighborhood methods can accommodate any representation,
LaJam proceeds in two steps:

1. learning a mapping from the job ad space onto IRd, such that this mapping reflects
the job similarity derived from matrix M;

2. using the similarity that result from this mapping together withM in a neighborhood
approach to rank the job ads for each applicant.

4In France, the proportion of the temporary work sector has reached its all-time high in
June 2017 (source: http://dares.travail-emploi.gouv.fr/IMG/pdf/cahier_graphique_conjoncture_

2017t2.pdf (in French)).
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As such, LaJam is applicable to the item semi cold-start setting (like LSA-bl, Sec. 7.3.1)
but uses an item representation suited for recommendation (while LSA-bl results in purely
unsupervised learning).

8.3.1 Continuous language model for job ads

LaJam is designed to produce recommendations that optimize the per-user recall measure.
A tractable optimization problem is derived in Sec. 8.2.1 to tackle the per-user recall mea-
sure and results in the optimization of Eq. (8.7), in which users do not appear explicitly.
Recall that the similarity induced by the collaborative filtering matrix is denoted simM:

simM =M> · M (8.14)

The language model φ, represented by a parameter vector W ∈ IRL, maps the initial or
reduced description space (tf-idf, LSA or LDA) of the job ads onto IRd, such that it induces
a similarity noted simW compliant with simM. Eq. (8.7) then reads as the inner-product
of two similarity distributions defined on the same discrete set I:

r(W ) =
∑
i∈I

∑
j∈I

simW (i, j) · simM(i, j) (8.15)

To avoid trivial cases (such as simW locally unbounded or all pairs having the maximum
positive similarity value) we will make two further assumptions: i) simW is bounded
inside interval [−1, 1] and ii) simM(i, j) takes both positive and negative values. Using
once again the Polya-Littlewood-Hardy inequality, r(W ) is then maximized w.r.t. W if
simW is compliant with simM ordering on I. Mapping φ is learned using a Siamese neural
architecture (see Sec. 8.2.3 and Fig. 8.3). The elementary loss associated with any (yi,yj)
job ad pair is the sum of two terms to be minimized:

`W (yi,yj) = δ+(yi,yj) · d(φW (yi), φW (yj))
2 + δ−(yi,yj) · [m− d(φW (yi), φW (yj))]

2
+

(8.16)
where δ+(yi,yj) indicates whether the pair (yi,yj) is positive or not and δ−(yi,yj) is
introduced for convenience and defined as:

δ−(yi,yj) = (1− δ+(yi,yj))

yi

φW

φW (yi)

yj

φW

φW (yj)

W

LW (yi,yj)

Figure 8.3: LaJam neural architecture: Mapping φ from the job ad space onto IRd is
trained using a Siamese neural net architecture, such that the simW (φ-based similarity)
agrees with simM.

Following previous works on word and document embedding [Mikolov et al., 2013b] as
well as metric learning [Nguyen and Bai, 2010], the similarity simW (yi,yj) between the
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embeddings of items yi and yj is taken as the cosine of their representation, and a pseudo-
distance dW is derived therefrom:

dW (yi,yj) = dcos (φW (yi), φW (yj)) = 1− 〈φW (yi), φW (yj)〉
‖φW (yi)‖2 · ‖φW (yj)‖2

(8.17)

Taking inspiration from Eq. (8.16), the Siamese network elementary loss function is defined
as:

LW (yi,yj) = δ+(yi,yj) · dW (yi,yj)

+ δ−(yi,yj) · [m− dW (yi,yj))]+
(8.18)

This loss function differs from that of the original Siamese network (Eq. 8.12) in several
ways that are briefly discussed.

The distance over the network output space has been replaced by a pseudo-distance
which does not satisfy the triangle inequality property.5 Recall that Siamese networks were
originally designed for verification (or classification with a high number of classes). The
transitivity property is sensible in that context: if both items x and y are separately taken
as positive examples with the same object z, then the pair (x, y) has to be positive as well
since all three objects share the same class. This is automatically learned by the Siamese
network when d verifies the triangle inequality: d(x, y) ≤ d(x, z) + d(y, z) making d(x, y)
being also minimized during training even if (x, y) is not provided as a positive pair. Such
transitivity typically does not holds in the recommendation context. As a consequence,
triangule inequality is undesirable for LaJam. This makes the pseudo-cosine distance
preferable to the Euclidean distance.

Besides, the terms in Eq. (8.18) are no longer quadratic in the distance. Recall that
the sole purpose of using square distances is to enforce the convexity of the optimization
problem; [Nguyen and Bai, 2010] show for a slightly different objective function that cosine
similarity-based objective function can be efficiently optimized through gradient-descent
algorithms without requiring extra transformation.

A final decision regards the margin m, which is set to 1. This is a natural choice when
considering the cosine distance: pairs of similar items are encouraged to have positively
similar representations, while dissimilar pairs do not require their images to be negatively
similar (a similarity of zero is sufficient). We, however, did not try to optimize this
parameter. To make the connection with Eq. (8.15), we define:

simW (i, j) = 1− dW (yi,yj) = cos (φW (yi), φW (yj))

LaJam elementary loss finally reads:

LW (yi,yj) = δ+(yi,yj) · (1− simW (i, j))

+ δ−(yi,yj) · [simW (i, j))]+
(8.19)

Overall, φ is trained to minimize the loss defined as:

L(W ) =
∑
yi∈I

∑
yj∈V (yi)

LW (yi,yj) (8.20)

where yi ranges over all job ads and yj ranges over a subset V (yi) ⊂ I that has yet to be
defined (see Sec. 8.3.3).

5In IR2, consider three vectors a = [1, 0] , b =
[√

2/2,
√

2/2
]
, c = [0, 1] each of unit Euclidean norm. It

is easy to show that dcos(a, c) = 1 > 2−
√

2 = dcos(a, b) + dcos(b, c).

116



8.3.2 Deriving an item-item similarity from users interactions

Binary similarity

Recommendation problems differ largely from classification as in the latter case the simi-
larity to mimic is i) binary (two items belong to the same class or not) and ii) consistent (in
the sense that it carries a transitivity property). A first option considers that the mapping
onto IRd should indeed mimic a binary similarity, denoted as δ+. Letting (yi,yj) be a pair
of job ads, δ+(yi,yj) is set to 1 iff the i-th and j-th items have drawn the interest of at
least one same user, and 0 otherwise. This corresponds to the following crude binarization
of simM:

δ+(yi,yj) =

{
1 if simM(yi,yj) > 0
0 otherwise

δ−(yi,yj) = 1− δ+(yi,yj)

(8.21)

Refined similarity: continuous weighting

However, the similarity learned by LaJam would desirably be able to reproduce an entire
spectrum of similarity intensities. At the same time, learning through a Siamese-like loss
function still requires that examples should be divided into those more similar (that would
be captured by the attractive loss) and those dissimilar (that would be considered in the
repulsive loss term).

As obtained from the product of sparse matrices (Eq. 8.14), simM keeps a sparse
structure (although it is obviously less sparse than M) and a simple way of providing
the Siamese network negative pairs examples is to sample among the unknown values of
simM. Although it may be tempting to use all nonzero-values of simM as positive pairs,
these may result from two items being clicked by only one shared user: this set is highly
sensitive to noise. Depending on the sparsity of simM, one may want to build a robust
version of simM

6; however, at the cost of throwing away a number of positive pairs, while
the major difficulty of training a Siamese network in the OCCF context is already that
positive pairs are overwhelmed by negative ones. To mitigate the effect of noise (say, a
user misclicked or clicked on an item not by interest but out of curiosity) and still keep
the maximum number of positive pairs, an alternative consists in weighting positive pairs:

δ+(yi,yj) =

{
simM(yi,yj) if simM(yi,yj) > 0
0 otherwise

δ−(yi,yj) =

{
0 if simM(yi,yj) > 0
α otherwise

(8.22)

Recall that simM is the cosine similarity between columns ofM, and therefore takes into
account the number of users shared by a pair of items as well as a confidence weight in
each user interactions. Formulated differently, users have a sort of “interest budget” that
they share between items; therefore, a user who clicked two items has a weight on each
of her clicks of 0.5, suggesting those two offers have a strong common degree of interest;
another user who clicked 1,000 items is likely to have poor demands on the items – in
other words, items are likely to have only weak similarity – and each click of that user is
given weight 1/1000. A similar approach – though outside the OCCF scope – considers

6e.g. keeping as positive pairs only pairs (i, j) so that simM(i, j) is above a threshold or if at least two
users clicked on those items

117



using the Pearson-r correlation coefficient between columns ofM as the similarity between
items [Gori and Pucci, 2007]. Compared to the binary similarity considered previously,
the refined similarity have been experimentally shown to convey more information relevant
to ranking of items.

As there is no level of dissimilarity among negative pairs, they are all assigned the
same weight α, set to the average value of simM over its non-zeroes, i.e. such that the
cumulative weight of the dissimilar pairs is same as the one of the similar pairs:

α = E
simM(i,j)>0

[simM(i, j)]

8.3.3 Negative sampling

In principle, the computational cost is quadratic in the number of items, limiting the
computational tractability of the optimization problem (Eq. 8.20). The challenge is to
both enforce the compliance of simW w.r.t. δ+, and the computational tractability of the
approach. In practice, the dissimilar pairs outnumber the similar pairs by several orders.
The idea is thus to restrict the number of considered pairs (i, j) by imposing j ∈ V (i),
where V (i) includes:

1. all items yj that constitute a positive pair with yi, i.e. {j | δ+(yi,yj) > 0};

2. items selected through a negative sampling process.

In contrast with the negative feedback schemes introduced in Sec. 8.2.5, we are to select
(item,item) pairs from a (symmetrical) similarity matrix and not (user, item) pairs from
an interaction matrix. This makes irrelevant the user-oriented sampling and to a lesser
extent the item-oriented sampling. Instead, several sampling schemes are investigated.

Row-wise uniform sampling

Following previous work on Siamese and triplet network [Chopra et al., 2005; Hadsell et al.,
2006; Wang et al., 2014], each item yi is associated at the same time with positive neighbors
(i.e. items y+

j that form a positive pair when associated with yi) and negative neighbors

(i.e. items y−j that form a positive pair with yi). While φ(yi) is attracted towards the

φ(y+
j )7, the negative neighbors prevent all φ(yj) from collapse towards φ(yi) and may carry

relevant dissimilarity information that helps the training. Suppose that an item yi has
many positive neighbors; the risk is that uniform sampling would not produce a sufficient
number of negative neighbors to prevent φ from collapsing in the IRd-neighborhood of
φ(yi)

8. Suppose now that yi has few positive neighbors, then a comparatively high number
of negative would overpower the attractive term and repel φ(yi) far from all other φ(yj).
The row-wise uniform sampling (UNS) thus aims at subsampling δ−(yi, ·) so that it has
the same row-wise structure as δ+, i.e. K as many negative as yi has positive neighbors:∣∣∣{y−j | δ

−(yi,y
−
j ) > 0

}∣∣∣ = K
∣∣∣{y+

j | δ
+(yi,y

+
j ) > 0

}∣∣∣
with K a hyper-parameter typically set to 10, thus aggressively subsampling the dissimilar
items. A large K is required to help the training (recall that images φ(y−j ) of items

7At the same time, each φ(y+
j ) is itself attracted towards φ(yi) and contributes also to ∇WLW .

8For an aggressive subsampling of the negative pairs, these positive neighbors themselves, when con-
sidered in the place of yi, would likely not be sampled the other y+

j as negative – at least we should not
rely on this to prevent the collapsing.
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dissimilar to yi beyond the margin m – set to 0 in Eq. (8.19) – are dismissed by the use
of the positive part in the repulsive loss and the dissimilarity information they carry thus
does not affect the training). The K dissimilar items are uniformly sampled among the
set of non-similar items.

Collaborative near-miss sampling

We introduce in this section collaborative near-miss sampling (CNS) which, like UNS,
retains K times as many dissimilar items as similar items. The difference regards the
sampling of the dissimilar items, that are selected in order to resist the transitive closure
of the φ similarity. Specifically, if items i, j are similar, and items (j, `) are also similar,
CNS is meant to prevent i and ` to be close according to φ (unless i and ` are similar
according to simM naturally). In this scheme, dissimilar items are sampled from the items
with distance 2 in the item-item graph built from matrix [simM]i,j (where the (i, j) edge
exists iff simM(i, j) > 0). Notably, collaborative near-miss sampling is not substantially
different from row-wise uniform sampling for CiteULike: due to the comparatively lesser
sparsity of M, the diameter9 of the item-item graph is 2.3, implying that the 2-step
neighbors of an item include most items. For the Qapa and ABG item graphs, however,
the diameter is much larger (respectively 6.3 for Qapa and 8 for ABG).

An interpretation of CNS considers a two-steps diffusion on the graph induced by ma-
trix [simM]i,j . Given a user, initially represented in the graph as the set of items she
interacted with, CNS samples items that are reachable in exactly two steps (that is, in
two steps, but not reachable in one step). Following this idea of diffusion in graphs, other
schemes based on [simM]i,j are subject to further investigations, especially considering
longer diffusion paths in the graph, diffusion taking account continuous item-item simi-
larity (instead of binary similarity) and diffusion decay. The general idea behind diffusion
processes in the item-item graph is to make better-considered decisions regarding the se-
lection of negative examples that are reliably dissimilar to the item in hand. In this regard,
CNS relates to the construction of a hidden graph representing the set of items each user
may have observed [Paquet and Koenigstein, 2013]. As such a hidden graph predicts reli-
able user-item negative interactions (in the form of: user has encountered the item but did
not take action) it is also possible to infer the item-item similarity (or dissimilarity) from,
e.g. the set of users that have observed both items in a pair, and make the distinction
between users that have interacted with both items (suggesting the items are similar),
users that have interacted with exactly one (suggesting the items are dissimilar) or users
that have interacted with neither (no clear conclusion can be drawn in that case).

Model near-miss sampling

One of the drawbacks of UNS is that it often samples negatives that turn out to be
dissimilar to the image of reference item yi in IRd (recall that φ(yi) and φ(yj) are d-
dimensional vectors with d = 200). To overcome this effect and provide the network
with local information relevant to improve φ in the neighborhood of yj , model near-miss
sampling (MNS) considers as negative the set of non-positive yj whose representations are
the closest to that of yi with respect to the current language model φ:

{yj | φ(yj) ∈ KNNNN(φ(yi))} ⊂ V (i)

with κNN(x) the set of the κ nearest neighbors of x and KNN a constant that may be
chosen as a function of K so that as many negatives are considered as in UNS to facilitate

9Defined as the average over the nodes of the graph distance to its farthest neighbor.
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a direct comparison. Preliminary experiments show that when a very low value of KNN

is chosen, the network succeeds in pushing away the dissimilar items, indicating that the
desired anti-collapsing effect of negative examples is fulfilled. However, these are replaced
by other dissimilar items and the loss function only very slowly decreases over the training
epochs, suggesting that the training should benefit from more “dissimilar” information
carried by negative examples.

On the one hand, MNS requires a forward pass over all items and to compute all
the distances to φ(yi) before selecting the negative items. Distances computation can
typically be done while monitoring the recall score, see Sec. 8.3.4. A partitioning of the
items is used instead of a full sort on the distances to reduce the computational cost. On
the other hand, the expected benefit is to reduce the number of epochs required to train
the Siamese network with a curriculum [Bengio et al., 2009]. As noted by [Loshchilov
and Hutter, 2015] for classification networks, oversampling the most challenging labelled
examples (i.e., with lowest margin) speeds up learning by focusing the attention on the
most discriminant features. Likewise, [Wu et al., 2017] uses distance-weighted sampling
for training Siamese and triplet networks and optimize a Euclidean distance-based loss:
examples are sampled inversely proportionally to the distance with the reference, thus
favoring the nearest miss examples.

8.3.4 LaJam Recommendation

Eventually, the fit between the (known) u-th user and a new job of index i is computed
by replacing the similarity in Eq. (8.1) by the φW -based similarity:

M̂u,i =

|I|∑
j=1

simW (i, j)Mu,j (8.23)

The recommendations to the u-th user are ordered by decreasing value of
[
M̂u,i

]
i
.

8.4 MaTJam: Learning Machine Translation Models

This section describes a single region of interest (SROI) approach with capabilities anal-
ogous to those of LaJam is devised.

The MAchine Translation-based Jam (MaTJam) approach assumes that users and
items can be mapped onto a single latent space, where the standard similarity accounts
for the user’s preferences. MaTJam thus paves the way toward full cold-start recommen-
dation in the domain of employment, through using the user’s resume to locate the user
in the latent space.

8.4.1 Joint learning of two continuous language models

By definition, resumes and job ads are expressed using the same dictionary. Still, as shown
in Section 7.2.1, the word distribution in both resume and job ad corpora are too different
to achieve the translation using a single embedding from the job ad and the resume spaces
into the latent space. Therefore, MaTJam learns two embeddings φ and ψ, respectively,
from the job and the resume spaces into IRd (Fig. 8.4).

Let W and W ′, respectively, denote the weight vectors of the φ and ψ neural nets.
The elementary loss associated with the u-th user (with initial or reduced representation
xu) and the i-th job ad (with initial or reduced representation yi) is defined analogously
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Figure 8.4: MaTJam architecture: two branches with independent weights map the rep-
resentation xu of the u-th user and the representation yi of the i-th job into a common
representation space.

to Eq. (8.19). Let simW,W ′ denote the cosine similarity in the common latent space, then:

LW,W ′(xu,yi) = δ+(xu,yi)× (1− simW,W ′(xu,yi))

+ δ−(xu,yi)×
[
simW,W ′(xu,yi)

]
+

(8.24)

where δ+(xu,yi) is the weight associated to the (u, i) pair.
Like for LaJam, the two options of binary and continuous weights have been consid-

ered.

• For binary weighting, δ+(xu,yji) is 1 iff user u clicked onto job ad i, and 0
otherwise, or equivalently:

δ+(xu,yi) =Mu,i

δ−(xu,yi) = 1− δ+(xu,yi)

• For continuous weighting, δ+(xu,yi) is set to 1/ ‖Mu,·‖1, i.e. :

δ+(xu,yi) =Mu,i

This setting is a counterpart of LaJam positive weighting, which takes its weights

according to [simM] =M> ·M. Likewise, δ−(xu,yi) is set to a constant α in order
to balance the average weight of positive and negative pairs.

The joint loss used to train φ and ψ is the sum over all pairs (u, i), of the elementary
loss above:

L(W,W ′) =

|U|∑
u=1

∑
i∈V (u)

LW,W ′(xu,yi) (8.25)

Likewise, the tractability of learning is enforced by considering a limited number of
job ads for each user. V (u) includes all items selected by the u-th user, and K times as
many negative items (not clicked by user u). The selection of the negative items is achieved
using a negative sampling scheme similar to LaJam’s uniform negative sampling: K items
are selected for each item user u interacted with.10 The other two options considered for
LaJam – collaborative negative sampling (retaining items selected by users close to the
u-th user), and model-based negative sampling (such that φ(yi) is close to ψ(xu)) – are
left for future work.

10This sampling is similar to the user-oriented sampling examined in Sec. 8.2.5.
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8.4.2 MaTJam Recommendation

Eventually, the similarity learned by MaTJam is directly used for recommendation; the
relevance of item yi for user xu is computed as:

M̂u,i = simW,W ′(xu,yi) (8.26)

and recommendations to the u-th user are ranked by decreasing value of
[
M̂u,i

]
i
.

By construction, LaJam and MaTJam have different recommendation strategies.
LaJam is a MROI approach: relying on the assumption that user interests are better
captured by her history, it operates on the exploitation side (more of the same) as it only
recommends items that are similar to the items previously selected by the user. MaTJam
is more on the exploration side; it can also exploit the diversity of the user community,
based on the fact that user resumes containing a similar set of features discriminating for
recommendation are likely to have similar images through ψ, even if they do not share
any interacted item, thus enabling serendipitous recommendations.

Naturally, serendipity can be undesirable in the application domain of employment:
a user selects a very tiny fraction of the items, and the Qapa items are structured as a
6-diameter small world (or 8-diameter for ABG). The exploratory trend in MaTJam can
thus lead to overly general and unfocused recommendations.

Besides, notice that the factorization of matrix M is a particular case of MaTJam
with linear embeddings φW and ψW ′ and normalized representation of user and items (so
that the cosine similarity of ψW ′(x) and φW (y) reduces to their dot product).

8.4.3 Further work: dual-LaJam

Inspired from hybridization of user-oriented and item-oriented neighborhood methods, a
dual-language modeling approach, named dual-LaJam (as it extends LaJam), may be
devised. Dual-LaJam estimates the relevance of item yi for user xu as:

M̂u,i =

 |I|∑
j=1

simW (i, j)Mu,j

 ·
 |U|∑
v=1

simW ′(u, v)Mv,i

 (8.27)

Dual-LaJam is able to leverage both the user and item textual descriptions as well
as the interaction data. As highlighted in Eq. (8.27), the dual-LaJam recommendation
scheme involves separately that of LaJam (leftmost term) and a user-oriented version of
LaJam (rightmost term). This allows to train separately the item and user embeddings
φW and ψW ′ with LaJam training loss and a user-oriented version thereof, respectively.
The development of Dual-LaJam and its comparison with LaJam and MaTJam are left
for future work.

8.5 Experimental Setting

This section presents the experimental setting and performance indicators used to com-
paratively assess LaJam and MaTJam.

8.5.1 Goals of Experiments

The primary goal of experiments is to determine the recommendation strategy most ap-
propriate to job ad recommendation. On the one hand we have the “more of the same”
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strategy at the root of LaJam, learning a similarity on the job ad space supporting the
recommendation of the job ads most similar to those selected by the user in the past. On
the other hand we have the model-based strategy at the root of MaTJam, bridging the
gap between the job ad and the resume spaces through embedding them into a common
latent space.

Another goal is to assess the performance of LaJam and MaTJam in warm-start and
semi-cold start modes, and to compare them with the state-of-the-art algorithms. The
performance indicators are the fraction of relevant items ranked in the top-20 and top-100
recommendations, denoted R@20 and R@100, respectively.

All computational times are measured on an Intel Xeon E7 @ 2.20GHz (16 CPU cores,
4MB cache per core) computer with 128GB of RAM and running under the Ubuntu 14.04
operating system.

8.5.2 Databases and baselines

A Jam approach can best be evaluated on real-world databases. As discussed in Chap.
7 however, such databases are not public, due to privacy constraints. For the sake of a
reproducible evaluation, besides the Qapa and ABG databases, the proposed approaches
are also evaluated on the public CiteULike benchmark, using the same excerpt and setting
used in [Wang and Blei, 2011]11.

The baselines include: i) CTR [Wang and Blei, 2011] (Sec. 6.5); ii) the content neigh-
borhood recommendation using the LSA representation with cosine similarity (Sec. 7.3.1),
noted LSA-bl; iii) the content neighborhood recommendation using a LDA representation
with dot product similarity, noted LDA-bl; and (in warm-start mode only) iv) the M
neighborhood recommendation, noted M-bl. Emphasis is put on the difference between
CTR and LDA-bl: although both are based on the same LDA representation, the former
is a SROI approach, optimizing the fit between a user’s representation and those of the
items she interacted with, while the latter is a MROI approach taking advantage of each
of the user’s past interaction to find new relevant items.

On CiteULike, LaJam is assessed in semi-cold start mode and compared to CTR
(“out-of-matrix” setting in [Wang and Blei, 2011]), LSA-bl and LDA-bl using the same
experimental setting as in [Wang and Blei, 2011]. The public implementation of CTR12 is
used, with 250 iterations to extract the LDA representation. Note that MaTJam is not
applicable on CiteULike, since no user documents are available.

On Qapa and ABG, LaJam is evaluated in warm-start and semi-cold start modes,
and compared to LSA-bl and M-bl; LDA-bl is omitted, as it is dominated by LSA-bl.
MaTJam is evaluated in semi-cold start on Qapa only, because only a small fraction of
the resumes (less than 10% on the 8,000 users) is provided on ABG.

In warm-start mode, the performance indicators are averaged over 10 runs. Each run
considers a collaborative matrix where 10% of the clicks have been removed, subject to
removing at most 1 click per user.13 In semi-cold start mode, the performance indicators
are assessed along a standard 10 fold CV procedure (where each fold includes all users
and 1/10th of the job ads).

11Data are available at http://www.cs.cmu.edu/~chongw/data/citeulike/
12Available at http://www.cs.cmu.edu/~chongw/citeulike
13The selection of clicks to be removed is carried out in two steps: firstly, the desired number of rows of
M are sampled uniformly and without replacement; in a second step, for each of this rows, the click to be
removed is uniformly sampled among the non-zero values of the row.
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8.5.3 Hyper-parameters

On CiteULike, the number of LDA topics is 200 [Wang and Blei, 2011]; for a fair compar-
ison, LSA-bl and LDA-bl also use a 200-dimensions representation. For Qapa and ABG,
LSA-bl use a 600-dimensions representation.

Embeddings φ and ψ learned by LaJam and MaTJam are implemented as neuronal
architectures whose input is the primary tf-idf representation of the job ads and resumes
(the input dimension D is 8,000 for CiteULike and 10,000 for Qapa and ABG). Experi-
ments using LSA and LDA reduced representations as input of the neural networks yield
poorer results and are omitted.

Two neural architectures are considered:

• the shallow architecture is a D-200 fully connected network with a single layer
of weights and tanh activation function, initialized so as to emulate the LSA rep-
resentation (using the top-200 LSA singular vectors); the initial image of a job (a
job or a resume in MaTJam) through the shallow architecture closely matches its
projection on the top 200 LSA dimensions except for the non-linearity of the tanh
activation function.

• the deep architecture is a D-1,000-1,000-200 network, with 3 fully connected layers
and tanh activation function; this architecture was selected based on previous results
[Schmitt et al., 2016]. Weights are initialized so as to emulate the LSA representation
on the last layer.

The rest of the weights are initialized as in [Glorot and Bengio, 2010].

All architectures are implemented in Theano [Theano Development Team, 2016]; the learn-
ing rate is optimized using Adam [Kingma and Ba, 2014].

An analysis of sensitivity is conducted w.r.t. every algorithmic option in LaJam and
MaTJam, concerning the impact of the binary or continuous weights of the pair losses,
and that of the negative sampling modes (UNS, CNS and MNS, Section 8.3.3). Another
analysis concerns the impact of using the posting time and geo-location of the job ads for
the recommendation.

The impact of the posting time and geolocation attached to each job ad for Qapa and
ABG is investigated by comparing four representations: i) no extra information (words
only); ii) geolocation (plus words); iii) posting time (plus words); iv) all: geolocation,
posting time and words.

For a fair comparison, LSA-bl and LDA-bl use an enriched similarity measure account-
ing for this extra information:

sim(i, j)→ sim(i, j)− λ1dg(i, j)− λ2dt(i, j), (8.28)

where dg(i, j) (respectively dt(i, j)) is the Euclidean distance between the geolocations
(resp. the posting time) of the i-th and j-th job ads. The λ weights are selected by
hierarchical grid search to optimize the recall on the training set. In a first round, values
10a are considered with a ∈ −2, ..., 2 and the relevant order of magnitude a∗ is identified;
in a second round, 10 values logarithmically spaced in [10a

∗−1, 10a
∗+1] are considered and

λ is set to the optimal one.

8.6 Experimental Validation

This section reports on the experimental validation of LaJam and MaTJam. All reported
computational times are measured on 16 CPU cores (Intel Xeon E7 @ 2.20GHz, 4MB cache
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per core) computer with 128GB of RAM, running under the Ubuntu 14.04 operating
system.

8.6.1 Comparative assessment on CiteULike

Table 8.1 reports the Recall@20 and Recall@100 on the CiteULike dataset in semi cold-
start mode [Wang and Blei, 2011]. For this experiment, LaJam is trained using the
uniform negative sampling scheme (UNS). Surprisingly, CTR only slightly improves on
LDA-bl; even more surprising is the fact that LSA-bl significantly dominates both LDA-bl
and CTR. LaJam yields comparable results as LSA-bl for R@20, and dominates all other
approaches for R@100.

R@20 R@100 Training time

LSA-bl .332 (.001) .631 (.003) 2min
LDA-bl .247 (.005) .584 (.005) 2h
CTR .271 (.001) .587 (.001) 2h
shallow LaJam .327 (.004) .652 (.005) 10min
deep LaJam .279 (.005) .606 (.006) 20min

Table 8.1: CiteULike: Recall@20 and Recall@100 semi cold-start performances of LSA-
bl, LDA-bl, CTR and LaJam learned with UNS (average and standard deviation using
5-fold cross-validation). For LSA-bl and LDA-bl, the training time concerns the unsuper-
vised learning of the LSA (resp. LDA) representation. For each measure, the boldfacing
indicates the statistically significantly best performances (based on Welch’s t-test with
significance level 0.01).

Interpretation of the results

A tentative interpretation of these results, focusing chiefly on the fact that LSA-bl domi-
nates LDA-bl, goes as follows. Let Θu denote the sum, over all documents selected by the
u-th user, of their LDA representation, with θj the LDA representation of the j-th doc-
ument. As the similarity between LDA representations of documents is the dot product,
Eq. (8.1) can be rewritten as:

∀u ∈ U ,M̂LDA−bl
u,i =

∑
j∈I
〈θi, θj〉Mu,j

=

〈
θi,
∑
j∈I

θjMu,j

〉
= 〈θi,Θu〉

(8.29)

LDA-bl recommends to the u-th user the documents with LDA representation θ best
aligned with Θu (with highest dot product 〈θ,Θu〉.

On the other hand, LSA-bl recommends to the u-th user the documents with LSA
representation yi and highest sum of scos(yi,yj) where yi ranges over the LSA represen-
tation of the documents selected by the u-th user. Without loss of generality (regarding
the LSA baseline recommendation), let us assume that all LSA representations have L2

norm set to 1. Cosine similarity scos then reduces to the dot product. Let Λu denote the
sum of the yi; analogously to above, it follows:

∀u ∈ U ,M̂LSA−bl
u,i = 〈yi,Λu〉 (8.30)
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The LSA baseline recommends to the u-th user the documents with LSA representation
y best aligned with Λu (with highest dot product 〈yi,Λu〉).

In both cases, a “center of attraction” for the u-th user is defined from the data
(Θu for LDA and Λu for LSA) and the recommended documents are those nearest to
this center in L2 norm (using a dot product). An important difference, beyond how
the representations are defined, is that the document representations lie on the L1 unit
hypersphere in the LDA case, and on the L2 unit hypersphere in the LSA case. After the
celebrated discussion about the comparative effects of L2 vs L1 regularization [Ng, 2004],
given a convex objective (here the distance to the center of attraction), the isolines thereof
intersect an L1 ball in a more sparse and more instable manner as for an L2 ball. Said
otherwise, small differences in the document representation have more impact in the LDA
case than in the LSA case.

CTR improves on LDA-bl: it operates on the same search space and adjusts the “center
of attraction” for the u-th user, adjusting the user representation u to maximize the fit with
the document representations (set to their LDA representation plus a corrective term). It
nevertheless remains close to LDA-bl.

Likewise, LaJam with a shallow architecture is close to LSA-bl due to its initialization
(recall that the network emulates the 200-dimensional LSA representation at its initializa-
tion). The learning process trades off a slight loss on R@20 in counterpart for a significant
gain on R@100.

With a deep architecture however, LaJam is dominated by both shallow-LaJam and
LSA-bl − though it still improves on CTR in a statistically significant manner (according
to Welch’s t-test with significance level 0.01).

Sensitivity analysis

The properties of the learned metrics are partially controlled by:

• weighting modes – reflecting whether all job ads must be considered equal, or some
are more important than others (Sec. 8.3.2);

• the negative sampling modes, determining how the job ads expand in the latent
space;

• the hyper-parameter K, controlling the strength of the expansion through the bal-
ance of the positive and negative elementary losses.

The sensitivity analysis is conducted on CiteULike in semi cold-start mode using the
shallow LaJam architecture (Fig. 8.5).

Complementary results14 show that the binary weighting is consistently dominated by
the continuous weighting mode, all the more so as the K value is low.

The impact of the negative sampling mode together with the K value is illustrated on
Fig. 8.5. The recall curves for UNS and CNS are parallel to each other for the different
K values, and they steadily improve as K increases. This is explained from the small
graph diameter of the CiteULike item-item graph, which is 2.3. Circa 80% negative items
(sampled by UNS) also are at distance 2 of the reference item (sampled by CNS): UNS
and CNS thus implement quite similar sampling distributions. The recall performance
improvement is very significant when K increases from 1 to 3, and more moderate when
K increases from 3 to 10, as the training eventually leverages all available information.

14For K = 1, 3, 10, the binary weighting mode with UNS yields respectively 0.357, 0.512, 0.636 R@100,
compared to 0.501, 0.600, 0.654 for the R@100 with continuous weighting mode with UNS.
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Figure 8.5: Semi cold-start recall on CiteULike: impact of the negative sampling schemes
(circle: UNS; triangle: CNS; square: MNS) and of the ratio K of negative vs positive
pairs (dotted: K = 1; dashed: K = 3; plain: K = 10). The standard deviation is below
1% and omitted for readability.

This is confirmed as all UNS, CNS and MNS yield indistinguishable recall curves for
K = 10.

For the MNS option, the best performance is obtained for K = 3 at the beginning of
the recall curve (T ≈ 50), dominating all other schemes. The recall curve for K = 10
catches up and outperforms the MNS-K = 3 recall curve later on (T ≥ 100). The recall
improvement on the MNS curves is less steady than for UNS and CNS, suggesting that
the MNS option might trade-off better top recommendations for a lower R@200.

8.6.2 Warm-start performances on Qapa and ABG

Fig. 8.6 displays the recall curves in warm-start mode of LSA-bl, M-bl and LaJam
(shallow architecture) on Qapa and ABG.

On Qapa, shallow-LaJam is slightly dominated byM-bl at the beginning of the recall
curve (T < 100); it catches up and significantly dominates the baselines for T > 150. From
the application perspective, the main improvement is that 20% more users are now more
decently served: while their first relevant recommendation has rank higher than 10,000
for LSA-bl and M-bl, LaJam now provides a relevant recommendation in the top 1,000.
The running time of LaJam is ca. 7 hours (resp. 50 minutes) for training and 4 minutes
(resp. 12’) for recommendation for all users for Qapa (resp. ABG).

On ABG, LaJam dominates both baselines for T ≥ 100. It manages to reach com-
parable performances in terms of R@900 as on Qapa(Fig. 7.4); note, however, that the
recommendation is among 10,400 job ads or ABG (as opposed to 56,000 job ads for Qapa).

8.6.3 Semi cold-start recommendation on Qapa and ABG

Table 8.2 reports the performance of deep and shallow LaJam on the Qapa and ABG
databases, comparatively to LSA-bl. LDA-bl is omitted due to its lower performance15.

15On Qapa, LDA-bl yields 0.26 for Recall@20 and 0.62 for Recall@100. On ABG, it yields 0.15 for
Recall@20 and 0.41 for Recall@100 (words only).
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Figure 8.6: Qapa and ABG: Recall curves in warm-start mode of LSA-bl (dotted line),
M-bl (plain line) and shallow LaJam (dashed line). R@T is the percentage of recovered
clicks among the top T recommendations (out of 56,000 job ads for Qapa, and 10,000 job
ads for ABG). All recall curves are averaged on 10 runs. Standard deviation is under
0.003 for Qapa and under 0.006 for ABG.

Four settings are considered, where the job ad representation includes:

• the words only;

• the words and the geolocation;

• the words and the posting time;

• the words, the geolocation and the posting time.

Importance of additional features A first remark regards the utmost importance of
the geolocation on Qapa, and of the posting time for ABG. This confirms the difference
of the low vs highly qualified job sectors and the importance of letting the system learn
how to take this information into account.

Specifically, on the Qapa data, the geolocation information yields an improvement of
circa 13% for LSA-bl and 4% for LaJam. At the same time, the geolocation information
does not yield any extra performance on the ABG dataset; a tentative interpretation for
this fact is that PhDs and post-docs are used to geographic mobility.

On the other hand, the time information yields an improvement of circa 30% on the
ABG data (spanning over 5 years) and only has moderate effect on the Qapa dataset
(spanning over 3 months).

Note that LSA-bl benefits from a considerable advantage, exploiting the geolocation
and posting time distances with optimal weights (Eq. (8.28)). In contrast, LaJam learns
from scratch how to best exploit the geolocation and time information, expressed via 3
features among 10,000+ ones (the word features).

Nevertheless, this experiment shows how easily additional features can be fed to LaJam
with no design change and negligible extra computational cost.
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Qapa dataset

− geoloc time geo-time CPU

LSA-bl R@20 .404 (.007) .636 (.003) .439 (.007) .656 (.003)
5min

LSA-bl R@100 .694 (.005) .829 (.003) .713 (.005) .835 (.002)

shallow LaJam R@20 .495 (.006) .549 (.006) .523 (.005) .558 (.006)
200min

shallow LaJam R@100 .743 (.007) .784 (.005) .764 (.006) .790 (.005)

shallow MaTJam R@20 .374 (.007) - - -
150min

shallow MaTJam R@100 .714 (.007) - - -

deep LaJam R@20 .475 (.007) .499 (.006) .483 (.006) .503 (.007)
400min

deep LaJam R@100 .725 (.007) .748 (.007) .731 (.006) .752 (.006)

ABG dataset

− geoloc time geo-time CPU

LSA-bl R@20 .254 (.010) .258 (.008) .574 (.008) .579 (.009)
5min

LSA-bl R@100 .522 (.012) .528 (.013) .814 (.007) .817 (.007)

shallow LaJam R@20 .226 (.008) .260 (.009) .39 (.009) .392 (.011)
25min

shallow LaJam R@100 .544 (.008) .599 (.006) .761 (.009) .755 (.008)

deep LaJam R@20 .200 (.008) .199 (.008) .312 (.008) .336 (.009)
75min

deep LaJam R@100 .493 (.010) .492 (.011) .705 (.007) .717 (.008)

Table 8.2: Semi cold-start setting: shallow- and deep-LaJam (with binary similarity, UNS,
K = 10) and LSA-bl Recall@20 and Recall@100 performances on Qapa (5,600 job ads)
and ABG (1,040 job ads) (10-fold cross-validation). The training time is reported in the
rightmost column; the recommendation time (for all users) on Qapa is 27s for LSA-bl
and 46s for LaJam; on ABG, it is 6s for both LSA-bl and LaJam. For each pair (job
ad representation setting, measure), the boldfacing indicates the statistically significantly
best performances (according to Welch’s t-test with significance level 0.01).
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Shallow vs Deep architectures Deep LaJam is always dominated by shallow LaJam.
This is blamed on the lack of regularization for the deep architecture, already noted on
the CiteULike problem.

For the word-only setting, shallow LaJam very significantly outperforms the baseline
on the Qapa database: by 9% regarding the Recall@20 and 5% regarding the Recall@100.
On the ABG database, shallow LaJam is dominated by the baseline in the word-only set-
ting for the Recall@20 performance indicator, and slightly though significantly dominates
the baseline for the Recall@100 indicator. Shallow LaJam likewise dominates the baseline
in the word+geolocation setting.

Deep LaJam ouperforms LSA-bl on the Qapa dataset in the word only and word +
posting time settings.. Though geolocation is of utmost importance on this dataset, deep
LaJam is only slightly affected when it is provided.

SROI vs MROI approach MaTJam is only applicable in the word only setting. For
privacy reasons, user geolocation is not provided as part of the Qapa dataset. Besides,
the user profile creation time is not relevant in the context where users periodically visit
the platform; therefore there is no time information attached to the users (user account
activity, if tracked, is not part of the datasets).

MaTJam yields much poorer results than LaJam, with a decrease of circa 10% for
R@20 and 3% for R@100 on Qapa. Still, it outperforms the LSA-bl for the Recall@100
indicator, indicating that it globally positions users and items representations well w.r.t.
each other. As stated earlier, MaTJam is not applicable to ABG, as 70% of the resumes
are missing.

These results confirm a main merit of the neighborhood-based MROI LaJam approach
approach over the SROI approach. As noted by [Koren, 2008], neighborhood methods can
capture relevant localized relationships from very few interactions, as in the case of sparse
databases like Qapa and ABG. On the contrary, SROI aims at a global co-representation
of users and items in a same latent space, aiming to account for the specifics of the different
job sectors. Finding such a unified latent representation proves harder than capturing local
similarities.

8.6.4 Sensitivity analysis

We also investigate the sensitivity analysis of negative sampling on the Qapa and ABG
datasets (Fig. 8.7), for shallow LaJam in the word only setting. Due to small differences
in preprocessing, these results are not directly comparable with those presented in Tab.
8.2.

Insights into the negative sampling schemes differ widely from those for CiteULike
(Sec. 8.6.1). A first remark regards the significant differences among the considered
configurations, with more than 20% difference in terms of recall@100. This difference was
expected, as the number of positive neighbors (hence the number of sampled negative
neighbors) is much smaller in Qapa and in ABG than in CiteULike. Option MNS thus
only considers a few negative neighbors, localized in LaJam output space; option CNS
only samples for each item among the few items that are reachable in two steps in the
graph induced by [simM]i,j – this set consists of about 7.5% of the total number of jobs
for Qapa; in comparison for CiteULike it comprises more than 80% of the articles.

MNS results in very poor recall@T and is widely dominated by most other configu-
rations for T ≥ 20. Recalling that all sampling strategies provide LaJam with negative
examples proportionally to the number of positive items pairs, the MNS strategy provides
LaJam much fewer examples for Qapa and for ABG than for CiteULike. This suspicion is
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Figure 8.7: Qapa (above) and ABG (below) datasets: impact of the negative sampling
schemes (circle: UNS; triangle: CNS; square: MNS; all with continuous weighting) and of
the ratio K of negative vs positive pairs (dotted: K = 1; dashed: K = 3; plain: K = 10).
As a comparison, uniform sampling with the binary similarity is depicted as “1UN” (no
markers).
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confirmed on Qapa by the slightly higher performance of MNS for K = 10 over K ∈ {1, 3}
(when T ≤ 20). A natural remedy to this lack of negative neighbors consists in increas-
ing K at the expense of higher computational cost. For ABG, however, increasing K
yields poorer performances, suggesting considering more dissimilar pairs puts unneeded
constraints on training. This phenomenon is blamed on the small size of the dataset.

The comparison between the UNS and CNS strategies yields however unexpected re-
sults. For a given K, UNS is always superior to CNS, for both Qapa and CiteULike
databases. This suggests that the restriction of potential negative neighbors to those ob-
tained based on a two-step diffusion from the reference items on the [simM]i,j-induced
graph is of limited interest. Following this direction, a more advanced diffusion process
will be considered for further work.

Quite unexpectedly, for CNS on Qapa and for all three negative sampling strategies on
ABG, smaller K yields better performance. To the best of our knowledge, this is the first
time this kind of results has been reported; further studies are needed to understand why
ABG really does not leverage the “negative” information included in dissimilar pairs.16

For CNS, we propose the following explanation: with more negative neighbors sampled,
the set of potential negative neighbors (according to this method) is overfitted, i.e. LaJam
has learned all these items pairs. On the contrary, on Qapa there are about 20 times more
potential negative item pairs than positive pairs; hence, a negative pair is sampled circa
once every 2 epochs for K = 10.

As expected, the binary similarity is outperformed by the continuous weighting one
(both with the UNS scheme) in all cases. This confirms the relevance of considering
different levels of similarity.

8.7 Discussion

Our empirical results provide some answers to the scientific questions regarding the specifics
of the domain of employment in terms of recommendation problem.

The main lesson learned regards the comparison between the SROI MaTJam approach
and the MROI LaJam approach. In brief, MaTJam is always dominated by LaJam. The
former approach eventually catches up and might dominate LSA-bl later on the recall curve
(e.g. for the semi-cold start R@100 on Qapa). However, it is consistently dominated by
LaJam, particularly so at the beginning of the recall curve. This lack of performance is
blamed on two main reasons, as follows.

It follows from the exploratory data analysis (Chap. 7) that regarding the recommen-
dation goal, user-item interactions provide better information than the mere item descrip-
tions. LaJam uses the interaction data twice: firstly, these are used to define the item
similarity and train the neural net; secondly, the interaction matrix is used through convo-
lution while predicting the recommendation values M̂. On the other hand, MaTJam only
uses the interaction information once, to train the neural net; it thereafter only relies on
the continuous language embedding, and on the assumption that resumes contain enough
information to discriminate among relevant/irrelevant job ads. However, this assumption
is questionable in light of our data analysis (Sec. 7.2).

A second tentative explanation for the lack of performance of MaTJam relates to the
diversity of the job ads selected by a same user, already mentioned in Chap. 7. The
diversity of the user’s selected items adversely affects the modeling of the user in the same
latent space as the items: actually, the user latent representation would intuitively be

16It is reminded that the main use of dissimilar pairs – counterbalancing the attractive loss – is unques-
tionable.
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situated “in the middle” of the latent representation of the items she interacted with. In
other words, the MaTJam single latent space favors a transitive similarity structure: all
items relevant to a user should be similar to that user in the latent space, and therefore
similar to each other. Indeed this transitivity affects both LaJam and MaTJam. How-
ever the loss function used to train LaJam actively counter-acts this transitivity through
pushing away dissimilar items. In contrast, the MaTJam loss does not involve any repul-
sive term among items. The trend toward a transitive similarity is resisted as one uses the
cosine similarity in the latent space which offers the possibility for multiple items to be
“relatively similar” to a same user while being dissimilar pairwise. However, all else being
equal, more diversity among user interactions pushes dissimilar items to cluster together
in the latent space, adversely affecting its topology.

Application-wise, it is plausible that a user might feel qualified for more jobs than the
ones she already occupied and mentioned in her resume, all the more so as the mainstream
resume guidelines impose to stick to a one-page resume. A closer look at the data actually
reveals that some users might apply for positions which are considered to be very different.
For instance, a user might apply for both positions of clothe sale employee and hostess,
although these positions are far from each other according to of the official job ROME
ontology.17 In the domain of employment, a user should thus rather be viewed as a set of
profiles.

Note that neither LaJam nor LSA-bl suffer from this diversity phenomenon. They
mostly focus on the similarity between an item and items previously selected by the user,
and thus seamlessly accommodate user selection diversity.

More generally, the experiments suggest that one should distinguish recommendation
problems where the user’s interests are diverse w.r.t. the item space, from those where
the user interests correspond to a single region in item space. Echoing Chap. 6, let us
refer to these two categories of recommendation problems as Multiple Regions of Inter-
est-recommendation (MROI) problems, and single region of interest (SROI) problems,
respectively. SROI problems are exemplified by the Netflix challenge: while a user indeed
has diverse “interests” (e.g. being a mixture of comedy, war, gore, etc., fan), an item offers
the same diversity (being also modeled as a mixture of comedy, war, gore, etc, movies).
Accordingly, Netflix users and items can consistently live in the same model space. MROI
problems are illustrated by, e.g. , the e-commerce recommendation problems where a sin-
gle e-commerce account is used by an entire family (see [Verstrepen, 2015] and references
therein), with diverse interests. In the domain of employment, a single user seemingly has
multiple regions of interest.

8.8 Perspectives on continuous language modeling for rec-
ommendation

The use of natural language processing techniques is essential for automatic recommen-
dation of jobs to applicant in a cold-start setting. Two neural network language models
that incorporate interaction data in their training have been proposed in chapter.

LaJam embeds job ads in a latent representation space that accounts for the similarity
between them, as perceived by the applicants. Emphasis has been put into LaJam training
mechanisms in order to achieve desirable behavioral through training. The merits of
LaJam have been satisfactorily demonstrated and compared with respect to the state-of-

17 http://www.pole-emploi.fr/candidat/le-code-rome-et-les-fiches-metiers-@/article.jspz?

id=60702.
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art CTR, and two baselines (based on the LSA and the LDA representation of the items,
respectively) on the public CiteULike benchmark. The strength of the LSA-baseline in
particular is manifested as it ranked 15th out of 100 participants on the RecSys 2017
Challenge18. In the domain of employment, LaJam has demonstrated its versatility w.r.t.
to different job sectors, specifically the low-paid job sectors (rarely considered in the
literature) and the highly-qualified job sector of PhDs in industry. The ability of LaJam
to seamlessly take into account extra information, such as job ad geolocations and posting
times, has also been demonstrated.

A first direction for future research entails the architecture and low-level neural net-
work optimization mechanisms. Recent developments in neural network for NLP have
mainly focused on recurrent architectures to keep information about the word alignment
to understand the documents. In contrast, the current approach is purely based on word
weighting as its inputs. The integration of more complex architecture for NL analysis
would presumably be beneficial for LaJam. Although it could be easily implemented as
document preprocessing prior to using LaJam, further research should investigate the way
to learn such a preprocessing scheme so that features relevant for Jam are fed to LaJam,
and integrate this preprocessing as the first layers in a deep architecture. Another im-
portant observation is that the deep architecture of LaJam is already seemingly subject
to overfitting; this rises a major concern regarding the amount of data required for this
architecture extension. Alternatively, carefully designed mechanisms to prevent overfit-
ting must be implemented, taking inspiration from, e.g. dropout [Srivastava et al., 2014],
regularization (these first two mechanisms did not significantly improve deep LaJam) or
limiting the number of free parameters through factorization [Salakhutdinov et al., 2007].

The choice of a relevant similarity between pairs of items is crucial to guiding the
training process of LaJam. The future of Siamese networks in the recommendation context
is undoubtedly linked to closer attention to providing the network with a meaningful and
ideally denoised similarity. The use of a diffusion process on the bipartite user-item graph,
in the spirit of Personalized Page Rank [Page et al., 1999], could be used to define a better
loss function to train the LaJam item similarity.

The second approach, dubbed MaTJam, represents both the resumes and jobs in a
shared latent representation space. Although this approach is by far preferable to a simple
word matching approach, it is limited – like the well-known factorization approaches – by
the sparsity of the data and the diversity of the users interactions.

A main direction of improvement is to fully address the user diversity of interests, and
to reconsider accordingly the MaTJam approach, taking inspiration from [Verstrepen and
Goethals, 2015]. In particular, a primary clustering of the items can be used to identify
the multiple regions of interest of a given user and may help MaTJam to construct several
embeddings of the same resume, bridging the gap between latent factor models and MROI
approaches. As MaTJam is designed to be addressing the full cold start problem in the
future, any overfitting in the user mapping training will be exacerbated in this setting,
making overfitting prevention another crucial ingredient of MaTJam training.

Application-wise, our most important direction of research is to build a professional
training recommender on the top of LaJam. Exploiting LaJam in “what if” mode, one
should be able to identify the skills that a user should most preferably acquire in order to
maximize his job opportunities in a given context.

18 https://recsys.xing.com/leaders, participant Taoist.
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Chapter 9

Conclusions on the Jam problem
and perspectives

The Jam problem has been addressed through a number of different perspectives ranging
from NLP to collaborative filtering. As one of the most promising options, a combination of
natural language modeling and standard recommendation approaches have been developed
in this thesis. The data-driven approach we followed is summarized in this chapter, with
the main conclusions reiterated.

Projections from the current state of our understanding are then exposed; they entail
enhancement of the approaches developed in this work as well as further perspectives on
real-world recommendation applications.

9.1 Understanding the Jam problems through data analysis

As mentioned earlier, preprocessing steps are key to deriving the maximum possible in-
formation from raw data. Inadequate preprocessing might undermine the performances
of the most powerful recommender system as well as alter any conclusion drawn from
the data. Working with mostly unprocessed data and being able to control these steps
represents a chance as well as a heavy responsibility. The lessons exposed thereafter may
result from these early choices and must be confirmed on larger subsets of, e.g. the Qapa
database.

The first striking result regards the poorly informative resumes from the automatic
recommendation perspective and the misalignment with the interaction data (applications
to job positions). This phenomenon dooms approaches heavily relying on valuable textual
information. Still, resumes provide some useful clues on the candidate that may integrated
into LaJam as, e.g. a screening process.

As a consequence of misalignment between users’ description and behavior, learning a
latent factor profile of the user (like MaTJam does) matching the user’s textual descrip-
tion is tricky, since the resumes may not account for a significant fraction of the user’s
interactions. The parametric transform of a resume to a user latent representation cannot
properly leverage patterns in the resumes, making it moderately useful for user-oriented
semi cold-start.

Another reason for MaTJam’s lower performances is that recommendations are com-
puted from similarity with a single user latent representation. This representation is
encouraged to be similar to all those of the items the user interacted with. It follows that
a new position which is moderately similar to all of the jobs the user applied to is favorably
positioned in the recommendation list, even though none of the desires the user expressed
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in her past interactions is fully fulfilled. In comparison, another position closely matching
only a subset of these desires would be rejected further in the recommendations.

This effect is introduced in Chap. 6 under the terms Single Region Of Interest (SROI)
and Multiple Region Of Interest (MROI), and preliminary experiments in Chap. 7 have
demonstrated that MROI approaches were better suited for the Jam context. A sensi-
ble argument on the difference in performances between latent factor approaches (which
generally belong to the SROI category) and neighborhood approaches (MROI) is given in
[Koren, 2008]. The main strength of neighborhood methods is to efficiently leverage very
localized and specific similarities, e.g. recommending more items with the exact same char-
acteristics as at least one item the user interacted with; latent factor approaches however
are best to capture general patterns in the interaction data.

This argument possibly explains why MaTJam fails to provide accurate recommenda-
tions on very sparse databases, where the weak signal in the past user interactions is not
sufficient for reconstructing reliably her profile in a whole. A major claim of this thesis
is that there exists another underlying phenomenon accounting for the observed diversity
of a user behavior: a user is not a mixture of interests but should rather be viewed as a
collection of profiles, and any of these “personalities” is possibly responsible alone for an
application to a job position. As already mentioned, this problem has been studied in the
literature under multiple instance learning [Dietterich et al., 1997], and more closely in a
recommendation context as the recommendation for shared account problem [Verstrepen
and Goethals, 2015], in which the account is “split” into the number of users sharing the
account (which is to be inferred). It is yet to be investigated whether this last problem is
equivalent to MROI recommendation in Jam.

9.2 Perspectives

This section mentions and motivates a few extensions to LaJam and MaTJam that look
promising. Further ideas to investigate regarding the specific requirements of the Jam
recommendation problem are presented thereafter, keeping in mind that the relevance of
these aspects may be dataset-specific and is yet to be demonstrated for a larger span of
applications.

9.2.1 Enhancing the language models

Non-linear formulation of similarity learning Motivated by the need of a more
realistic similarity for analysis purposes, a further extension considers an alternative to
the linear similarity learning formulation at the core of LaJam training. A close problem
is that of unsupervised dimensionality reduction while preserving local similarity, which
has been tackled by, e.g. t-SNE [van der Maaten and Hinton, 2008] through the alignment
of the distribution of similarities (more precisely, a function of the distance) in the original
and in the reduced space.

While the original method requires knowing the distances between each pair of points
and only computes the reduced representations, the method is extended in [van der
Maaten, 2009] to parametric embeddings implemented as neural networks. With slight
changes, it is possible to make the connection with similarity learning: (parametric) em-
beddings are learned from the jobs description space to the reduced space so that the
similarity in the reduced representation is aligned with simM (instead of the similarity in
the original jobs description space).

The main interest of t-SNE formulation lies in how item-item pairs incur the training
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cost. Let us consider two distinct positive pairs of respective similarity 1 and 0.5. In
LaJam, they incur the same cost in the attractive term of the loss (with possibly different
weights) if their reduced representations have the same similarity. As a consequence,
the network tends to maximally bring together either pair, independently of any other
pair similarity in the reduced space; the only effect of pairs on each others resides in the
trade-off – controlled by positive and negative pairs weights – to “maximally satisfy” all
pairs. One of the drawbacks of this phenomenon is that, as there are fewer constraints
on jobs with few interactions, they are likely to be more easily satisfied, bringing together
pairs while there is no strong clue that they are very similar. Using a cost function such
as that of the t-SNE approach instead links the cost of all pairs in the reduced space
altogether, mitigating the risk of bringing together moderately similar items because it
would affect all other item pairs costs. Another advantage of t-SNE is its capability to
focus on reproducing pairs with high similarity while items with a lower similarity have
little effect on the loss in comparison to vanilla LaJam (thanks to the use of a heavy-tail
probability distribution to model distances).

A related approach better suited for ranking is based on presenting preference triplets
during training [van der Maaten and Weinberger, 2012]. Expanding this method with
parametric embedding is a natural following-up of this thesis.

Diffusion process based similarity As already mentioned, the interpretation of non-
observed user-item pairs is key in the OCCF context. Negative sampling schemes are
investigated through the angle of which dissimilar pairs of items (for LaJam) should be
shown to the language models so that properties relevant to recommendation are learned.
Another aspect suggested in [Pan et al., 2008] is to favor sampling data from the interaction
matrix that are reliably negative. Such an idea is implemented in the work of [Paquet and
Koenigstein, 2013] as an unobserved graph whose edge links users to items they might to
have encountered; the observed graph – induced by the interaction matrix – is a subgraph
thereof. A first option considers sampling negative user-item pairs from the difference
between the edges sets of these two graphs to provide MaTJam with relevant negative
examples.

An alternative, taking inspiration from diffusion processes in graphs, is proposed for
further investigation. While diffusion and random walk on graphs are common techniques
for information retrieval [Page et al., 1999] or recommendation [Fouss et al., 2007; Gori
and Pucci, 2007], by construction they cannot deal with cold-start, i.e. a situation where
a node (user or item) with no connection yet is added to the graph. However, diffusion
processes are promising candidates to process the bipartite interaction graph and from
which to derive an educated similarity for MaTJam to mimic. Such an approach would
be favorably coupled with bipartite graph projection [Zhou et al., 2007] to provide LaJam
with an accurate item-item similarity, extending the weighting schemes introduced in this
work (Sec. 8.3.2).

9.2.2 One-to-many matching

A most exciting extension of MaTJam regards changing its perspective from an SROI to
an MROI approach. The ideas presented thereafter are also applicable to a wider range
of SROI systems, typically all those based on neural architectures.

The basic principle consists in extracting several views of a user from a single latent
factor representation. Let us assume that the item latent representation y lies in IRd.
MaTJam is trained to learn higher-dimensional representations of users x (e.g., in IR2d)
and a set of projections ϕ1, ..., ϕq from IR2d to IRd. Recommendations are then produced
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considering the best match between ϕ1(x), ..., ϕq(x) and y. During training, the loss
would only affect the user latent representation x through its best-matching view. This
setting allows x to encode both Paris and London locations of interest. The “choice” of
the most relevant view of x can be simply implemented in MaTJam through a softmax
transform after the computation of all of the user’s views similarities with the item latent
representation. Other algorithms related to competitive learning [Ahalt et al., 1990] are to
be investigated. Interestingly, the view most similar to the item representation is not only
useful for positive examples but also for negative ones, as it is the most likely explanation
for a recommendation the negative sampling has to avoid.

It is desirable that all of the user’s views share a fraction of the latent representation,
e.g. diplomas or experience level. As a consequence, any positive example for this user
may contribute to learning the high-dimensional user latent representation. In contrast,
[Verstrepen and Goethals, 2015] tackle the recommendation for shared account problem
by dividing the set of a user’s interactions into the (possibly overlapping) subsets that best
explain the data. This is done using an inner algorithm that would not allow integration
into a neural network architecture.

A long-term perspective regards how many of such q views to build for each user
and how different they should be. If similar views may be manually merged after train-
ing, it would be desirable to automatically produce views that capture different – but
possibly overlapping – aspects of the user representation, and on a per-user basis. It is
worth mentioning that a similar problem arises in statistical machine translation in the
approach called “encoder-decoder” [Cho et al., 2014; Sutskever et al., 2014]. Given a sen-
tence encoded in a fixed-length vector representation by the encoder, the decoder part
should output a sequence of words of variable length (e.g. in the target language for trans-
lation). Here, the task of the decoder would consists in producing a sequence of user’s
views. A sound option thus considers using recurrent neural networks, iteratively forming
views based on the user particular latent representation and on the different views already
produced.
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Part III

General conclusion
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Chapter 10

Discussion and conclusion

Two different aspects of cold-start recommendation have been explored in this thesis,
applied to two different domains, algorithm portfolios and job-applicant matching. How-
ever, a lot remains to be done, be it at the fundamental level of recommendation systems
facing the cold-start issue, or in both application domains. Further research directions
include for instance considering the collection of recommendations as a diversified, consis-
tent sequence, or including other evaluation dimensions to the problem, e.g. considering
simultaneously the running time and the solution quality for the algorithm selection in
portfolios, or matching both the users interests and skills to a job ad, in order to improve
the chances that the application is considered by the recruiter – for Jam.

This final chapter first recalls the main results and lessons learned for algorithm portfo-
lios and job-applicant matching problems, then discusses a natural follow-up to this work:
combining both approaches for cold-start recommendation.

10.1 Summary of contributions

10.1.1 Algorithm portfolios to support the optimization expert

The combination of algorithms in a portfolio has been presented from three different
perspectives. Portfolio are first positioned with respect to other optimization techniques
(Chap. 2). Key points of algorithm portfolio design are then identified and discussed
(Chap. 3). A new algorithm portfolio is proposed and extensive experiments are conducted
to support the design choices.

The study focuses on the relevance of a few aspects and proposes the ASAP systems
as a combination thereof. The technical contributions encompass the way both ASAP.V2
components are alternately optimized to enforce the division of work: the pre-scheduler is
devoted to quickly solve “easy” optimization instances while the per-instance algorithm se-
lector mainly addresses “hard” instances, also using features derived from the pre-scheduler
performances. Three methods to fight overfitting while optimizing the pre-scheduler are
introduced with ASAP.V2, are experimentally compared, and insights on their impact on
the output schedule are provided.

This last point drives us to the lessons learned on algorithm portfolios and the databases
used to assess them. Overfitting arises because of the limited number of instances in some
datasets. As a consequence, it is not surprising that a number of state-of-the-art portfolio
systems base their algorithm selector on ensemble methods such as random forests, which
are known to be robust [Breiman, 2001]. The need for overfitting prevention has been
demonstrated in ASAP.V2 for the construction of an optimized algorithm schedule.
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The division of labor between the pre-scheduler and the selector is governed by the
budget shares that are allocated to each component. An original contribution of the
thesis is to formalize this division as the solution of a bi-objective optimization problem,
balancing the number of instances solved in the pre-scheduler and the time deducted from
the selector budget. The proposed approach has been shown to work well; however further
work is needed to acquire a deeper understanding of this trade-off.

A last and crucial observation regards the diversity of datasets engaged in the algorithm
portfolio assessment. Any hyperparameter tuning should better be done on a per-dataset
basis, extending the search space of algorithm portfolio design. Recent approaches [Lin-
dauer et al., 2015] have used a state-of-the-art algorithm configurator to achieve this. We
stress, however, that such an approach is itself prone to overfitting – since it makes use
of the same amount of data for a more complex calibration – and that careful attention
should be paid to protect from it.

Taking inspiration from these principles, ASAP systems were favorably compared to
state-of-the-art systems in two competition: ASAP.V1 was awarded a honourable men-
tion at the ICON challenge of Algorithm Selection (2015) and ASAP.V2 won the Open
Challenge on Algorithm Selection (2017).

Our work on the algorithm portfolio case study ends in Chap. 5 by raising some of
the remaining challenges in the field and giving some perspectives for further work on the
ASAP systems and sketching more general directions of research.

10.1.2 The job-applicant matching problem

The study of the Jam problem has been carried out in three steps, namely the overview
of relevant concepts and approaches (Chap. 6), the in-depth analysis of two proprietary
databases (Chap. 7) and the development of artificial neural network architectures to
address the recommendation of brand-new jobs to known applicants, a.k.a. the item-
oriented semi cold-start setting (Chap. 8).

As a first result, the Jam problem is more adequately formulated as a one-class col-
laborative filtering problem with item content information rather than as an information
retrieval task or a pure collaborative filtering problem. The main challenges come from
the misalignment of the three data sources, namely the textual description of users and
items and the interaction data (users’ clicks and applications). Compared to other simi-
lar recommendation problems, Jam involves the leveraging of natural language to a high
degree, resulting in the development of specific representations for users and items from
their textual descriptions.

A main contribution regards the way recommender systems provide users with rec-
ommendations. Distinction is made between single region-of-interest (SROI) approaches
– which favor items that partially match all of a user’s interests – and multiple regions-
of-interest (MROI) systems – which put more emphasis on items that perfectly match a
subset of the user’s interests. In essence, recommender systems of this latter category keep
multiple representations of the user that characterize all her centers of interests, rather
than a compact mixture of interest. Most interestingly, MROI systems can handle incon-
sistency in a user’s behaviors (e.g. incompatible features in the set of applications) and
can reason with a “maximal match” rather than with a “sum of the matches” over a set
of interests. MROI approaches are more relevant for Jam problems where the few user
interactions does not allow to infer an accurate global representation of the user.

Taking inspiration from language modeling and metric learning, two neural architec-
tures are proposed for item-oriented semi cold-start recommendation. LaJam leverage
the similarity between jobs derived from the interaction data. Technical contributions are
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proposed in the training function formulation – derived from the recall measure – and on
negative sampling schemes to ensure a reliable training procedure. MaTJam is an SROI
counterpart of LaJam, learning continuous language models to directly match resumes
and jobs.

Both approaches are assessed against Jam databases. The main lessons include the
flexibility of neural architecture to cope with mixed data type and the superiority of
LaJam. MaTJam faces a critical challenge in the misalignment between resumes and
users interaction data. LaJam is also compared on a publicly available dataset to CTR,
a state-of-the-art algorithm based on latent topic modeling. Experiments show the merits
of LaJam on CiteULike, confirming the relevance of MROI approaches even when the
interaction data are moderately rare.

A few research directions are proposed for further investigation and detailed in Chap.
9, including the extensions of LaJam and MaTJam and a procedure to turn latent factor
algorithms like MaTJam into MROI approaches.

10.2 Toward a portfolio of recommender systems

As a conclusion to this thesis, a direction of research – still unexplored to the best of
our knowledge – is exposed: combining recommender systems into a portfolio. Recom-
mendation problems contain a number of ingredients suggesting that they could benefit
from an approach based on a portfolio of recommendation algorithms: on the one hand,
approaches are extremely abundant and diverse; on the other hand the set of users is (as
far as Jam is concerned) heterogeneous and all are not receptive to the same recommender
systems.

The idea of combining a complementary set of recommender systems is not new. As
early as in 2007, the (later) winning team of the Netflix Grand Prize [Bennett et al., 2007]
noted how any single prediction method was outperformed by a linear combination of
several of them [Bell and Koren, 2007].1 Notably, neighborhood and latent factor models
are complementary because they leverage structures of different scales in the data.

However, we suggest an orthogonal angle to benefit from a portfolio of approaches,
based on using (informed) selection rather than a generic weighted average. To make
this clear, let us draw a parallel with algorithm portfolio in optimization. A given rec-
ommender system is an algorithm which produces a per-user recommendation list, just
like an optimization algorithm produces a per-instance solution. Both solutions may be
measured against their quality w.r.t. the user or the instance requirements. The goal
of a recommender system selector would consist in selecting the recommendation algo-
rithm most appropriate to what is known about the user (history, profile, etc.) to provide
her with personalized recommendations. As a concrete example in the Jam context, this
selector would best use a neighborhood recommendation approach for a user with a lim-
ited interactions history, an SROI approach for a user with a larger number of passed
interactions, and a direct-matching algorithm for a user with a rich resume. A related
concept, meta-learning, studies the connections between the features of datasets (called
their “metafeatures” to make the distinction with the features of samples clear) and how
well the machine learning algorithms perform.2 However, the portfolio of recommender

1The goal of the Netflix Grand Prize is the prediction of user ratings; the combination of several
prediction methods is achieved with a weighted average of their predictions.

2This is the machine learning version of the algorithm selection problem studied in Part I. The similarity
between meta-learning and (optimization) algorithm selection has been illustrated with the inclusion of a
subset of OpenML dataset in the Open Algorithm Selection Challenge 2017 (see Sec. 4.7).
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systems suggested here would learn both recommender systems and a recommender system
selector on a single dataset (while meta-learning considers several datasets).

In Jam, a per-user recommender system portfolio would require a set of meaningful
features – aside from a given resume. Throughout this thesis, some of the aspects of Jam
have been investigated and would provide meaningful information about the user: NLP
features of the resume (Sec. 7.2), features characterizing the set of known interactions
(number, variety etc. – see Sec. 7.3), features based on the bipartite user-item graph,
probing features (Sec. 3.2.2) based on simple recommender system algorithms, etc. The
relevance of such features for a recommender systems selector appears as a promising
direction of research.

The longer term perspective is in accordance with that of algorithm portfolios. How
the strengths of several optimization algorithms can be combined inside the search and
how recommender systems may join forces to produce a consistent, user-specific recom-
mendation list, are two problems that show substantial similarities.
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[Muñoz et al., 2017] Mario A Muñoz, Laura Villanova, Davaatseren Baatar, and Kate A Smith-
Miles. Instance spaces for machine learning classification. Machine Learning, 2017.

[Neculoiu et al., 2016] Paul Neculoiu, Maarten Versteegh, Mihai Rotaru, and Textkernel BV
Amsterdam. Learning text similarity with siamese recurrent networks. Association for
Computational Linguistics 2016, page 148, 2016.

[Ng, 2004] Andrew Y Ng. Feature selection, L1 vs L2 regularization and rotational invari-
ance. In Proceedings of the 21st Annual International Conference on Machine Learning
(ICML’2004), 2004.

[Nguyen and Bai, 2010] Hieu V Nguyen and Li Bai. Cosine similarity metric learning for face
verification. In Asian Conference on Computer Vision, pages 709–720. Springer, 2010.
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Appendix A

Samples of data from Part II

A.1 Example of resume from Qapa

Opérateur / Opératrice en Publication Assistée par Ordinateur

-PAO-

Chargé / Chargée de projet Marketing

Infographiste

- Réalisation des supports de vente commerciaux, emballages et

institutionnels - national et export

- Conception et rédaction des communications de la société.

- Gestion des prestations et réalisations externes.

- Réalisation des thématiques et mises en avant des gammes (PLV

et displays).- Création des identités visuelles des gammes.

- Réalisation des supports de vente commerciaux, emballages et

institutionnels - national et export

- Réalisation des thématiques opérationnelles (PLV et displays).

En marketing

Etudes de marchés { reporting des informations de merchandisage

Gestion du marketing-mix de la marque et par enseigne GMS

cliente.

Participation aux business plans par enseigne et élaboration du

merchandisage préconisé.

Réalisation et suivi des opérations promotionnelles.

Veille concurrentielle { réponses aux appels d’offres.

Veille aux tendances marketing { force de proposition et

préconisation.

En communication

Conception et rédaction de toute la communication de la société.

Création des supports print et web institutionnels de la marque.

Réalisation des supports de vente commerciaux, emballages et

institutionnels (national et export) pour la marque et autres

marques du groupe.

En infographie

Réalisation des displays permanents et thématiques. Et du
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merchandisage attenant. Réalisation des opérations

promotionnelles, thématiques.

Refonte et mises en avant des gammes (packagings, création des

PLV et displays).

Préparation des éléments visuels des salons et séminaires.

Mises en conformité des chartes graphiques.

En management

Encadrement d’un éxécutant PAO déclinant les réalisations en

multilingue pour clients export.

Gestion complète des prestations et réalisations print et media

externes. Suivi de production.

Gestion du développement, hébergement et référencement du site

web.

Relations avec les fournisseurs print, media, façonneurs de PLV,

fabricant de packagings, agences de création des enseignes

clientes, des services de qualité et certification. Reporting

et gestion des budgets création-production.

A.2 Example of job ad from Qapa

Responsable de la communication - Buc

Responsable de la communication (H/F) - Premier groupe européen

de haute technologie, Siemens conjugue depuis toujours

performance technique, innovation, qualité et fiabilité.

Nos activités centrées sur les secteurs des infrastructures et

des villes, l’industrie, l’énergie et la santé, ciblent des

marchés de croissance sur lesquels le Groupe nourrit l’ambition

d’être leader.

Vous intégrez l’équipe Communication en charge des entités

françaises de Siemens Building Technologies. Notre objectif est

de vous faire découvrir l’ensemble des missions d’un chargé de

communication au sein d’un groupe international de haute

technologie. A ce titre, vous avez pour missions :

* Vous allez au devant des interlocuteurs internes pour

centraliser les informations,

* Vous rédigez des articles pour nos supports web, magasines ou

médias internes,

* Vous participez à l’organisation d’événements (gestion

logistique, coordination avec les agences, gestion ...

A.3 Example of resume from ABG

Etude du Rôle de l’IL-10 et du ligand de CD40 dans la

physiopathologie des lymphomes non Hodgkiniens: rôle mitogène,

antiapop

Biologie, médecine, santé

nan
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1998.0

CHEF DE PROJET/RESPONSABLE R&D

Biologie/Biotechnologie

Gestion de projets avec mise au point, validation et application

clinique de méthodes diagnostiques. Ecriture d’articles, brevet

et présentations orales lors de congrès internationaux.

Rédaction de projets scientifiques pour demande de financement.

Veill Culture cellulaire, Test de cytotoxicité, Test de

prolifération Immunohistochimie, Hybridation in situ, Cytométrie

de flux, Test ELISA Extraction d’ARN, RT-PCR, Construction de

plasmide, Transfection, Western/Northern blot Cancérologie,

biomarqueur, biotechnologie Accélérez la recherche sur les

biomarqueurs. Améliorer des services de surveillance

cardio-vasculaire Travailler en équipe et appliquer les méthodes

et les règles de la démarche qualité pour la mise en place de

nouveaux projets

Gestion de projets R&D en biologie/biotechnologie en tant que

Chef de Projet ou Consultant. Responsable R&D Attachée de

Recherche Clinique

Autre

A.4 Example of job ad from ABG

Offre d’emploi CDI VALDEPHARM Ingénieur Recherche et

Développement

Chimie

Milieux dilués et optique fondamentale

Recherche et développement

Docteur Ingénieur en chimie organique, vous possédez une

expertise en chimie organique et une maı̂trise des techniques

d’analyse GC, HPLC, MS, RMN. Le poste exigeant des contacts à

l’international, l’anglais courant est exigé. Une première

expérience dans le développement de procédés serait un plus.

Rattaché au Responsable Recherche & Développement et avec la

responsabilité d’un Technicien supérieur, vous serez en charge

des missions suivantes :

* Définir des voies de synthèse industrialisables ;

* Mettre au point, optimiser et développer les procédés de

fabrication ;

* Prendre en charge tout ou partie des actions à mener lors des

phases d’industrialisation ;

* Conduire les essais en laboratoire, en vue d’améliorer la

productivité des opérations de production ;

* Réaliser les analyses des essais mis en œuvre ;

* Mettre en pratique sur le site les meilleurs process et

technologies existantes, en faisant appel aux expertises

internes, fournisseurs ou organismes compétents ;

* Participer à la formation des personnels de production, pour

la mise en place des améliorations des nouveaux produits ou
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remises à niveau ;

* S’assurer que les modifications apportées sont conformes à la

réglementation en vigueur, en accord avec l’assurance qualité.

Apporter son concours au service Environnement, Hygiène,

Sécurité pour la mise en place des informations relatives à la

maı̂trise des dangers, à la protection de l’environnement, et à

la sécurité en général ;

* Participer à l’élaboration des spécifications des matières

premières et des intermédiaires utilisés sur le site.
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Titre : Démarrage à froid en recommandation : des portfolios d’algorithmes à l’appariement
automatique d’offres et de chercheurs d’emploi

Mots clés : portfolio d’algorithme, systèmes de recommandation, démarrage à froid, optimisation,
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Résumé : La quantité d’informations, de pro-
duits et de relations potentielles dans les réseaux
sociaux a rendu indispensable la mise à disposi-
tion de recommandations personnalisées. L’activité
d’un utilisateur est enregistrée et utilisée par des
systèmes de recommandation pour apprendre ses cen-
tres d’intérêt. Les recommandations sont également
utiles lorsqu’estimer la pertinence d’un objet est com-
plexe et repose sur l’expérience. L’apprentissage
automatique offre d’excellents moyens de simuler
l’expérience par l’emploi de grandes quantités de
données.
Cette thèse examine le démarrage à froid en recom-
mandation, situation dans laquelle soit un tout nou-
vel utilisateur désire des recommandations, soit un
tout nouvel objet est proposé à la recommandation.
En l’absence de données d’interaction, les recomman-
dations reposent sur des descriptions externes. Deux
problèmes de recommandation de ce type sont étudiés
ici, pour lesquels des systèmes de recommandation
spécialisés pour le démarrage à froid sont présentés.
En optimisation, il est possible d’aborder le choix
d’algorithme dans un portfolio d’algorithmes comme
un problème de recommandation. Notre première

contribution concerne un système à deux composants,
un sélecteur et un ordonnanceur d’algorithmes, qui
vise à réduire le coût de l’optimisation d’une nouvelle
instance d’optimisation tout en limitant le risque d’un
échec de l’optimisation. Les deux composants sont
entrainés sur les données du passé afin de simuler
l’expérience, et sont alternativement optimisés afin de
les faire coopérer. Ce système a remporté l’Open Al-
gorithm Selection Challenge 2017.
L’appariement automatique de chercheurs d’emploi et
d’offres est un problème de recommandation très suivi
par les plateformes de recrutement en ligne. Une
seconde contribution concerne le développement de
techniques spécifiques pour la modélisation du lan-
gage naturel et leur combinaison avec des techniques
de recommandation classiques afin de tirer profit à
la fois des interactions passées des utilisateurs et des
descriptions textuelles des annonces. Le problème
d’appariement d’offres et de chercheurs d’emploi est
étudié à travers le prisme du langage naturel et de
la recommandation sur deux jeux de données tirés de
contextes réels. Une discussion sur la pertinence des
différents systèmes de recommandations pour des ap-
plications similaires est proposée.

Title: Cold-start recommendation: from algorithm portfolios to job applicant matching

Keywords: algorithm portfolio, recommender systems, cold-start, optimization, natural language
processing

Abstract: The need for personalized recommenda-
tions is motivated by the overabundance of online
information, products, social connections. This typi-
cally tackled by recommender systems (RS) that learn
users interests from past recorded activities. Another
context where recommendation is desirable is when
estimating the relevance of an item requires com-
plex reasoning based on experience. Machine learning
techniques are good candidates to simulate experience
with large amounts of data.
The present thesis focuses on the cold-start context
in recommendation, i.e. the situation where either
a new user desires recommendations or a brand-new
item is to be recommended. Since no past interac-
tion is available, RSs have to base their reasoning
on side descriptions to form recommendations. Two
of such recommendation problems are investigated in
this work. Recommender systems designed for the
cold-start context are designed.
The problem of choosing an optimization algorithm

in a portfolio can be cast as a recommendation prob-
lem. We propose a two components system combin-
ing a per-instance algorithm selector and a sequential
scheduler to reduce the optimization cost of a brand-
new problem instance and mitigate the risk of opti-
mization failure. Both components are trained with
past data to simulate experience, and alternatively
optimized to enforce their cooperation. The final sys-
tem won the Open Algorithm Challenge 2017.
Automatic job-applicant matching (Jam) has recently
received considerable attention in the recommenda-
tion community for applications in online recruitment
platforms. We develop specific natural language (NL)
modeling techniques and combine them with standard
recommendation procedures to leverage past user in-
teractions and the textual descriptions of job posi-
tions. The NL and recommendation aspects of the
Jam problem are studied on two real-world datasets.
The appropriateness of various RSs on applications
similar to the Jam problem are discussed.
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