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Résumé en français

De nombreux problèmes de calcul formel utilisent la multiplication comme brique de base dans les
algorithmes qui permettent leur résolution. Par exemple, des problèmes de théorie algorithmique
des nombres nécessitent souvent de savoir multiplier rapidement de grands entiers. La recherche
de grands nombres premiers, le pgcd de polynômes, requièrent des algorithmes efficaces pour
multiplier des polynômes ou des grands entiers. Des problèmes tels que le logarithme discret
modulo un nombre premier p utilisent souvent la multiplication modulo p comme une brique
de base. Cette thèse présente des algorithmes permettant de calculer le produit de différents
objets mathématiques, tels que les grands entiers, les polynômes, les matrices... Les algorithmes
permettant la résolution de ces problèmes peuvent être rangés en deux catégories: les algorithmes
asymptotiquement rapides et les algorithmes efficaces pour de petites tailles (polynômes de petits
degrés, matrices de petites dimensions). Par exemple, si on considère des polynômes de degré d
à coefficients dans un anneau R, trouver un algorithme efficace quand d croît est un problème de
la première catégorie, tandis que trouver le meilleur algorithme quand d est fixé est un problème
de la seconde catégorie. Ces problèmes sont tous les deux reliés, comme on peut l’illustrer avec
l’exemple de la multiplication d’entiers ou de matrices.

La première amélioration de l’algorithme naïf qui multiplie des entiers de n bits avec une
complexité quadratique, donc en O(n2), a été établie en 1962, bien que Kolmogorov avait conjec-
turé en 1952 que la complexité quadratique était optimale. Cette première amélioration est due
à Karatsuba et Ofman [37]. Leur méthode transforme deux entiers de n bits a et b en polynômes
A et B de longueur 2, obtenus en coupant a et b en deux moitiés. Ainsi, A = a0 + a1X et
B = b0 + b1X, avec A(2dn/2e) = a, B(2dn/2e) = b et la taille en bits de a0, a1, b0, b1 est ap-
proximativement n/2. Karatsuba et Ofman ont réduit le problème de la multiplication d’entiers
de n-bits à la multiplication de polynômes linéaires avec des coefficients de n/2 bits. Le produit
A · B nécessite, pour son calcul, quatre multiplications utilisant l’algorithme naïf : a0b0, a1b0,
a0b1, a1b1. Avec l’amélioration de Karatsuba et Ofman, les coefficients du produit A ·B peuvent
être calculés avec trois multiplications non scalaires (on ne compte pas les multiplications par un
élément de l’anneau de base) : a0b0, (a0 + a1)(b0 + b1), a1b1. On obtient les formules suivantes :

a0b0 = a0b0,

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1,
a1b1 = a1b1.

Ces formules sont optimales si le nombre de multiplications non scalaires impliquées dans leur
expression est minimal. L’algorithme de Karatsuba et Ofman peut être utilisé pour améliorer la
complexité binaire de la multiplication de deux entiers de n bits en l’appliquant de façon récur-
sive : au lieu d’une complexité en O(n2) avec l’algorithme naïf, ils obtiennent O(nlog2 3). Il est
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iv Résumé en français

courant de se référer à l’algorithme de Karatsuba et Ofman comme “l’algorithme de Karatsuba”.
En conséquence, c’est ce qu’on fait dans la suite.

Il est clair que, étant donné un degré d > 1, trouver des formules similaires à Karatsuba
pour calculer le produit de polynômes de degré d améliore la complexité du produit d’entiers.
Par exemple, dans [57], les entiers sont découpés en trois parties, et la multiplication d’entiers
se réduit au problème de multiplier des polynômes de degré deux, ce qu’on peut réaliser en cinq
multiplications. La complexité est alors O(nlog3 5). De manière générale, on peut déduire d’un
ensemble de formules pour un produit de polynômes un algorithme pour le produit d’entiers.
En réalité, les algorithmes de Karatsuba et de Toom-Cook peuvent être compris comme des cas
particuliers de deux problèmes.

La première manière de les voir est comme une application de la méthode d’interpolation de
Lagrange. En effet, étant donné un polynôme de degré d avec des coefficients dans un corps R
contenant d + 1 points distincts, on peut retrouver les coefficients du polynôme à partir de ses
évaluations en d + 1 points distincts du corps R, en utilisant l’interpolation de Lagrange. Par
exemple, l’algorithme de Karatsuba peut être compris comme l’évaluation de A ·B en 0, 1 et le
point particulier ∞ (l’évaluation en ∞ donne le terme dominant d’un polynôme), étant donné
que

A(0) ·B(0) = a0b0, A(1) ·B(1) = (a0 + a1)(b0 + b1) et A(∞) ·B(∞) = a1b1.

L’algorithme de Toom-Cook peut être compris comme l’évaluation de A ·B en 0, −1, 1, 2 et ∞.

La seconde manière de les voir est, étant donné des polynômes de degré d avec leurs co-
efficients dans un corps R, comme des formules minimisant le nombre de multiplications non
scalaires requises pour calculer leur produit. Ces multiplications non scalaires ne sont pas néces-
sairement des évaluations du produit A·B en certains points. De plus, on peut aussi considérer le
problème spécifique sur un corps fini Fq avec q < d+1, ce qui implique qu’on ne peut pas utiliser
l’interpolation de Lagrange comme ci-dessus (car on n’a pas d + 1 points distincts dans Fq).
On a une approximation du nombre minimal de multiplications non scalaires requises pour le
calcul d’un produit de polynômes de degré d via la notion de “rang bilinéaire” d’une “application
bilinéaire” représentant le produit de polynômes. On définit plus tard ces notions. Cependant,
on peut décrire comment on obtient le rang bilinéaire pour l’exemple du produit de polynômes
de degré d à coefficients dans F2. On formule le problème en termes de matrices. Les coefficients
du produit de polynômes de degré deux sont vus comme cinq formes bilinéaires :

a0

a1

a2

 ,


b0

b1

b2


 7→ a0b0,



a0

a1

a2

 ,


b0

b1

b2


 7→ a1b0+a0b1,



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b0+a1b1+a0b2,



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b1 + a1b2 et



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b2.

Ces formes bilinéaires sont représentées, dans la base canonique, par les matrices
1 0 0

0 0 0

0 0 0

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 0

0 0 1

0 1 0

 ,


0 0 0

0 0 0

0 0 1

 .
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Le cardinal de l’ensemble minimal de matrices Mi de rang un telles que chacune des matrices
précédentes est une combinaison linéaire desMi définit le rang bilinéaire du produit. Par exemple,
à partir des six matrices

M0 =


1 0 0

0 0 0

0 0 0

 ,M1 =


1 1 0

1 1 0

0 0 0

 ,M2 =


0 0 0

0 1 0

0 0 0

 ,

M3 =


1 1 1

1 1 1

1 1 1

 ,M4 =


0 0 0

0 0 0

0 0 1

 ,M5 =


0 0 0

0 1 1

0 1 1

 ,

représentant les multiplications non scalaires a0b0, (a0 + a1)(b0 + b1), a1b1, (a0 + a1 + a2)(b0 +
b1 + b2), a2b2 et (a1 +a2)(b1 + b2), on déduit des formules permettant le calcul des coefficients du
produits de polynômes de degré deux utilisant six multiplications. On peut prouver qu’il n’existe
pas d’ensemble de matrices de rang un de cardinal cinq permettant de calculer les coefficients de
ce produit sur F2. Ainsi, le rang bilinéaire du produit de polynômes de degré deux sur F2 est
six. En ce sens, les formules obtenues à partir des Mi sont optimales au sens du rang bilinéaire.

Le produit de n’importe quel objet mathématique (matrices, polynômes) peut être compris
comme une application bilinéaire. Trouver des formules optimales (au sens du rang bilinéaire)
pour évaluer des applications bilinéaires est un problème appartenant à un domaine appelé
“théorie de la complexité algébrique” [12, 11, 56, 36]. Trouver des algorithmes optimaux pour
le calcul du produit de matrices ou de polynômes sont des problèmes importants de complexité
algébrique : la complexité du produit de matrices a été étudiée dans [56, 18, 43] et la complexité
du produit de polynômes dans [37, 57, 52, 32].

Pour le produit de matrices, le premier résultat est apparu en 1969 : Strassen [56] a proposé
des formules améliorant le coût du produit de deux matrices 2×2, ce qui, appliqué récursivement
sur des matrices de dimensions plus larges, donne une complexité binaire en O(nlog2 7) au lieu
de O(nlog2 8) = O(n3) (algorithme naïf). Pour un produit de matrices(

a0,0 a0,1

a1,0 a1,1

)
et

(
b0,0 b0,1

b1,0 b1,1

)
,

Strassen a proposé d’utiliser les multiplications non scalaires suivantes :

π0 = (a0,0 + a1,1)(b0,0 + b1,1), π1 = (a1,0 + a1,1)b0,0, π2 = a0,0(b0,1 − b1,1), π3 = a1,1(b1,0 − b0,0),

π4 = (a0,0 + a0,1)b1,1, π5 = (a1,0 − a0,0)(b0,0 + b0,1), π6 = (a0,1 − a1,1)(b1,0 + b1,1).

Les formules correspondantes sont :

a0,0b0,0 + a0,1b1,0 = π0 + π3 − π4 + π6,

a0,0b0,1 + a0,1b1,1 = π2 + π4,

a1,0b0,0 + a1,1b1,0 = π1 + π3,

a1,0b0,1 + a1,1b1,1 = π0 − π1 + π2 + π5.

Si on note par ω l’exposant matriciel, c’est-à-dire la quantité telle que O(nω) est la meilleure
borne supérieure asymptotique de la complexité arithmétique du produit de matrices n×n sur C,
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de nombreuses contributions [18, 15, 16, 43, 55, 61] ont permis d’améliorer les bornes supérieures
sur ω. La meilleure borne à ce jour est due à Williams et Le Gall [61, 43] et est égale à 2.3729,
bien que la borne proposée par Coppersmith et Winograd [18], égale à 2.376, est souvent prise
comme référence. Dans [15], il est conjecturé que ω = 2. Cependant, aucun des algorithmes
proposés ci-dessus ne sont utilisés en pratique et on utilise encore largement l’algorithme naïf,
sauf pour des matrices de grandes tailles, auquel cas on applique l’algorithme de Strassen. De
manière générale, on peut utiliser une formule permettant de multiplier des matrices de tailles
fixes pour multiplier des matrices de tailles quelconques, en appliquant cette formule de façon
récursive. Ceci explique l’intérêt de chercher des formules optimales pour des tailles légèrement
plus grandes que celles du produit de matrices 2× 2 par 2× 2 (idéalement le produit de matrices
3× 3 par 3× 3).

Smirnov décrit dans [54] des algorithmes qui peuvent être utilisés en pratique pour des matri-
ces de plus grande taille. On peut remarquer que, la plupart du temps, des algorithmes meilleurs
que celui de Strassen sont inconnus. Par exemple, on ne sait toujours pas si le nombre minimal
de multiplications nécessaires pour le calcul du produit de deux matrices 3×3 à coefficients dans
C est égal à 23 (Laderman [40] a été le premier à proposer un algorithme en 23 multiplications),
bien que Bläser a prouvé dans [8] que 19 est une borne inférieure sur le rang de ce produit.
La borne proposée par Bläser est un cas spécial d’une borne plus générale pour n’importe quel
produit de matrices m×n par n×m. Cette borne a été améliorée par Landsberg [41] en utilisant
de la géométrie algébrique [42].

Le principal obstacle à la recherche de formules optimales est le fait que le calcul du rang
bilinéaire d’une application bilinéaire est NP-difficile [35]. La méthode des moindres carrés semble
être l’une des plus populaires [54] pour approcher ce problème. Une autre manière de faire
consiste à utiliser des éléments de la géométrie algébrique [5] et à trouver une généralisation de
la décomposition des matrices en valeurs propres pour des tenseurs d’ordre trois. Cependant, ces
méthodes ne fonctionnent par pour des applications bilinéaires sur des corps finis : elles supposent
qu’on travaille sur des corps de caractéristique zéro comme C pour la méthode des moindres carrés
ou un corps algébriquement clos pour les méthodes à base de géométrie algébrique. Dans notre
contexte, on se concentre sur la recherche de formules optimales pour une application bilinéaire
sur un corps fini. Sur un corps fini, le nombre de formules possibles impliquant r multiplications
non scalaires est fini. Par conséquent, on peut utiliser des méthodes de recherche exhaustive pour
trouver le rang bilinéaire d’une application bilinéaire, ainsi que toutes les formules optimales.

Pour le produit de polynômes sur des corps finis, il existe une méthode originale utilisant des
courbes algébriques [14], qui a permis d’améliorer les bornes supérieures sur le rang bilinéaire
du produit de polynômes ou le produit d’éléments d’un corps fini de petite caractéristique. En
particulier, la complexité bilinéaire de cette stratégie a été décrite dans [50, 1, 48] et dépend du
rang bilinéaire du produit d’éléments dans Fqd [y]/(y`), où d et ` sont des entiers positifs. Ainsi, il
devrait être possible d’améliorer ces bornes pour des petites valeurs de d et ` avec des méthodes
à base de recherche exhaustive, puisque le produit d’éléments de Fqd [y]/(y`) est une application
bilinéaire.

Montgomery propose dans [45] un algorithme pour calculer de telles décompositions pour
le cas particulier de polynômes de petit degré sur des corps finis. L’auteur énumère toutes les
formules possibles d’une certaine forme, en utilisant le fait que, sur un corps fini, le nombre de
formules optimales possibles est fini. Il obtient alors de nouvelles formules pour le produits de
polynômes de degrés cinq, six et sept à coefficients dans F2. Dans [46], Oseledets propose une
approche heuristique pour résoudre le problème du rang bilinéaire pour le produit de polynômes
à coefficients dans F2. L’auteur utilise une formalisation de ce problème en termes d’espaces
vectoriels et se restreint à des formules présentant certaines symétries. Plus tard, Barbulescu et
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al. développent dans [2] ce formalisme et calculent le rang bilinéaire pour différentes applications
bilinéaires, telles que le produit court ou le produit médian sur un corps fini. Leur algorithme
permet de générer toutes les formules optimales pour n’importe quelle application bilinéaire sur
un corps fini. Ce travail est la source principale d’inspiration de la première partie de cette
thèse. Le but de la première partie est d’améliorer le temps requis pour trouver toutes les
formules optimales pour une application bilinéaire donnée, et de prouver des bornes inférieures
sur le rang bilinéaire, en particulier pour le produit de matrices et le produit court sur F2.

L’amélioration qu’on propose à l’algorithme décrit dans [2] utilise le groupe constitué des
automorphismes stabilisant une application bilinéaire, ainsi que la notion de “tige” d’un espace
vectoriel de formes bilinéaires. Plus spécifiquement, on calcule toutes les formules optimales
pour le produit court de polynômes P et Q modulo X5 et le produit de matrices 3 × 2 par
2 × 3. Ce dernier produit était hors d’atteinte en pratique avec la méthode proposé dans [2].
On prouve, en particulier, que l’ensemble des formules optimales pour ce produit matriciel est
unique à l’action d’un élément du groupe d’automorphismes près. Bien que fournir une analyse
de complexité suffisamment fine de notre approche est difficile (elle implique des propriétés
intrinsèques aux applications bilinéaires qu’on considère, dont l’impact sur la complexité finale
est difficile à quantifier), on a des arguments théoriques pour expliquer pourquoi cette approche
est plus rapide que [2].

Lorsque d est grand, les multiplications scalaires ne sont plus négligeables. Alors, même
dans des corps tels que le corps complexe C, dans lequel on a toujours d+ 1 points distincts, la
complexité de l’évaluation en d+ 1 points distincts est un problème qui doit être pris en compte
lorsque d croît. Par conséquent, pour le produit de polynômes de degré d avec d grand, il faut
regarder comment choisir au mieux les d + 1 points tels qu’on obtient la meilleure complexité.
Ce problème est relié à la complexité asymptotique de la multiplication d’entiers, par le biais de
la substitution de Kronecker. Plusieurs améliorations ont été réalisées pour la complexité binaire
de la multiplication d’entiers, en particulier par Schönhage, Strassen, Fürer, Harvey, van der
Hoeven et Lecerf [52, 26, 32]. Ces améliorations reposent sur la complexité de la multiplication de
polynômes de grand degré et sur le schéma d’évaluation-interpolation. Cependant, leur optimalité
est toujours une question ouverte.

L’algorithme naïf ou l’amélioration de Karatsuba et Ofman permettent d’avoir un algorithme
avec une complexité polynomiale pour multiplier des entiers. L’algorithme de Toom-Cook a la
même propriété. Le premier algorithme réalisant une complexité dite quasi-linéaire est celui
de Schönhage et Strassen [52, 51] : leur algorithme multiplie des entiers de n bits avec une
complexité binaire égale à O(n · log n · log(2) n). L’algorithme de Schönhage-Strassen utilise la
transformée de Fourier rapide (FFT pour Fast Fourier Transform) pour évaluer rapidement un
polynôme en les puissances d’une racine primitive de l’unité [59, §8]. De plus, la complexité
est obtenue via un choix adéquat d’un anneau R dans lequel cette évaluation doit être réalisée.
Concrètement, le choix R = Z/(2e + 1), avec e une puissance de deux, amène à une complexité
en O(n · log n · log log n), tandis que d’autres choix naturels pour R, tels que R = C, amènent à
une complexité moins bonne.

En 2007, M. Fürer observe que l’anneauR =C[x]/(xP + 1), avec P une puissance de deux bien
choisie, est particulièrement intéressant [26]. En utilisant cet anneau R, il est possible d’exploiter
une FFT avec une grande base pour obtenir une complexité en O(n · log n · 2O(log∗ n)) (ce qui
s’oppose à la FFT en base deux qui était utilisée dans l’algorithme de Schönhage-Strassen).
La notation log∗ représente le logarithme itéré (voir §6.6). Le résultat de Fürer a été une
amélioration surprenante de la complexité de Schönhage-Strassen, qui était considérée comme
la meilleure pendant 35 ans. Une extension récente du travail de Fürer, proposée dans [21],
remplace le corps C dans la définition de R par un anneau p-adique et atteint la même complexité
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asymptotique. Cette variante p-adique permet de mettre de côté les problèmes de précision qu’on
a dans C. Harvey, van der Hoeven et Lecerf dans [32], et plus tard Harvey et van der Hoeven
dans [30] ont proposé de nouveaux algorithmes et une analyse de complexité plus fine permettant
d’obtenir une expression plus explicite de la complexité binaire, c’est-à-dire O(n · log n ·8log∗ n) et
O(n · log n · 4log∗ n) conjecturalement. Ils montrent aussi qu’une analyse de l’algorithme original
de Fürer permet d’arriver à O(n · log n · 16log

∗ n). Très récemment, dans [31], Harvey et Van
der Hoeven semblent avoir montré qu’on peut arriver à une complexité en O(n · log n · 4log∗ n)
sans faire appel à aucune conjecture de théorie des nombres. Cependant, ces algorithmes, qui
réalisent une borne asymptotique similaire à celle obtenue par Fürer, sont surtout perçus, pour
l’instant, comme des résultat n’ayant qu’une valeur théorique.

On décrit dans la deuxième partie de cette thèse un algorithme atteignant une complexité en
O(n·log n·4log∗ n) et reposant sur une conjecture qui peut être vue comme une version explicite de
la conjecture de Bateman-Horn [4], appuyée par des expériences numériques. Plus précisément,
cette conjecture se formule de la façon suivante.

Hypothèse 8.5. Soit λ ≥ 2 un entier. Pour tout nombre réel R tel que 2λ ≤ R ≤ 22λ, il existe
un premier généralisé de Fermat p = r2

λ

+ 1 tel que R ≤ r < λ2.5R.

Le concept clé de notre algorithme est l’utilisation d’une chaîne de premiers généralisés de
Fermat (de la forme r2

λ

+ 1) pour gérer les appels récursifs. Cette variante est différente de la
stratégie proposée dans [32]. Notre travail peut être compris comme étant une généralisation d’un
rapport proposé par Fürer [25] (en 1989), qui proposait un algorithme reposant sur l’hypothèse
qu’il existe une infinité de premiers de Fermat. Cependant, cette hypothèse est très probablement
fausse, et donc notre approche permet de réparer ce problème.

Cette thèse est organisée de la façon suivante.

• Dans la Partie I on présente le travail qui a été réalisé sur la recherche de formules
optimales et décrit dans [19]. Dans le Chapitre 1, on présente les outils théoriques et
le cadre formel de cette partie de la thèse, qui a déjà été introduit dans [2]. Dans le
Chapitre 2, on présente l’état de l’art, avec entre autres les algorithmes proposés dans [2]
et [3]. On décrit les aspects théoriques et algorithmiques de notre amélioration dans le
Chapitre 3, On applique cette amélioration à des exemples tels que ceux du produit court
et du produit matriciel dans le Chapitre 4. On décrit dans le Chapitre 5 comment
calculer certains précalculs requis dans le Chapitre 3.

• Dans la Partie II, on présente le travail décrit dans [20], relatif à la recherche d’un al-
gorithme asymptotiquement optimal pour la multiplication de grands entiers, basé sur la
transformée de Fourier rapide et la stratégie de Fürer [26]. Dans Chapitre 6, on décrit
la transformée de Fourier rapide et, en particulier, l’algorithme de Cooley-Tukey. Dans le
Chapitre 7, on décrit l’algorithme de Fürer, basé sur la transformée de Fourier rapide, et
permettant de multiplier des entiers de n bits en O(n · log2 n · 2O(log∗ n)). On détaille les
propriétés des premiers généralisés de Fermat dans le Chapitre 8. On propose un nouvel
algorithme dans le Chapitre 9, basé sur la stratégie de Fürer et sur les premiers généralisés
de Fermat, et on prouve qu’il multiplie des entiers de n bits en O(n · log2 n ·4log

∗ n). Dans le
Chapitre 10, on discute des aspects pratiques d’une implémentation de notre algorithme
de multiplications d’entiers.
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Introduction

Various problems of symbolic computation use the multiplication as a building block in the
algorithms that are developed to solve them. For example, problems in algorithmic number
theory often require fast multiplication of large integers. The search of large primes or the
computation of digits of π are such problems. The computation of resultants, gcd of polynomials,
require efficient algorithms to multiply polynomials. Problems such as the discrete logarithm
modulo a prime p often use the multiplication modulo p as a building block. This thesis presents
algorithms to compute the product of various mathematical objects, such as large integers,
polynomials, matrices... The algorithms solving these problems can be decomposed into two
families: algorithms that are asymptotically fast and algorithms that are efficient for small sizes.
For instance, considering the polynomials of degree d over a ring R, finding an efficient algorithm
when d grows falls into the first family, whereas finding the best algorithm when d is fixed falls
in the second family. These problems are actually related, which is illustrated by the problem of
integer multiplication and matrix multiplication.

The first improvement to the schoolbook algorithm multiplying n-bit integers with a quadratic
complexity, i.e. with a complexity equal to O(n2), has been established in 1962, although Kol-
mogorov conjectured in 1952 that the quadratic complexity was optimal. This first improvement
is due to Karatsuba and Ofman [37]. They transform two n-bit integers a and b into polynomials
A and B of length two, obtained by splitting a and b into two halves. Thus, A = a0 + a1X
and B = b0 + b1X, where A(2dn/2e) = a and B(2dn/2e) = b and the bit-length of a0, a1, b0,
b1 is roughly n/2. Karatsuba and Ofman reduce the problem of the multiplication of n-bit
integers to the problem of the multiplication of linear polynomials whose coefficients have size
n/2. The product A · B requires, to be computed, four multiplications using the schoolbook
algorithm: a0b0, a1b0, a0b1, a1b1. With Karatsuba and Ofman’s improvement, the coefficients
of the product A · B can be retrieved from the computation of the three following non-scalar
multiplications (multiplications by an element of the base ring are not taken into account): a0b0,
(a0 + a1)(b0 + b1), a1b1. We have the following formulas:

a0b0 = a0b0,

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1,
a1b1 = a1b1.

These formulas are optimal if the number of non-scalar multiplications involved in their ex-
pression is minimal. In particular, Karatsuba and Ofman’s algorithm can be used to improve
the asymptotic binary complexity of the multiplication of two n-bit integers by applying it re-
cursively: instead of O(n2) with the naive schoolbook algorithm, they obtain O(nlog2 3). It is
common to refer to Karatsuba and Ofman’s algorithm as “Karatsuba’s algorithm”. Therefore,
we do it in the following.

xiii
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Then, it is clear that, given a degree d > 1, finding the minimal amount of multiplications to
compute the product of polynomials of degree d leads to even better complexities. For example,
in [57], the integers are split into three parts, and the integer multiplication is reduced to the
problem of multiplying polynomials of length three, which is realized via five multiplications. The
complexity is then O(nlog3 5). One deduces from a set of formulas for a product of polynomials
an algorithm for the product of integers. In fact, Karatsuba and Toom-Cook’s algorithms can
be seen as special cases of two problems.

The first way to see it is as an application of Lagrange interpolation method. Given a
polynomial of degree d with coefficients lying in a field R containing d + 1 distinct points, one
can recover the coefficients of the polynomial from its evaluations at d+ 1 distinct points of the
field R, using Lagrange interpolation. For example, Karatsuba’s algorithm can be seen as the
evaluation of A ·B at 0, 1 and the special point∞ (the evaluation in∞ gives the dominant term
of a polynomial), since

A(0) ·B(0) = a0b0, A(1) ·B(1) = (a0 + a1)(b0 + b1) and A(∞) ·B(∞) = a1b1.

Toom-Cook’s algorithm can be seen as the evaluation of A ·B at 0, −1, 1, 2 and ∞.

The second way to see it is, given polynomials of degree d with coefficients lying in a field R,
as the formulas minimizing the quantity of non-scalar multiplications required to compute their
product. These non-scalar multiplications do not necessarily correspond to an evaluation of the
product A · B at some points. Moreover, one can also consider the specific problem in a field
Fq with q < d + 1, which implies that one cannot use the Lagrange interpolation as above (we
do not have d + 1 distinct points in Fq). We can approach the minimal number of non-scalar
multiplications necessary for the computation of a product of polynomials of degree d by the
“bilinear rank” of the “bilinear map” representing the product of polynomials. We define later
more formally these notions. However, we can describe how to obtain the bilinear rank for the
example of product of polynomials of degree d over F2. We formulate the problem in terms
of matrices. The coefficients of the product of polynomials of degree two are given by the five
bilinear forms:

a0

a1

a2

 ,


b0

b1

b2


 7→ a0b0,



a0

a1

a2

 ,


b0

b1

b2


 7→ a1b0+a0b1,



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b0+a1b1+a0b2,



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b1 + a1b2 and



a0

a1

a2

 ,


b0

b1

b2


 7→ a2b2.

These bilinear forms can be represented in the canonical basis by the matrices
1 0 0

0 0 0

0 0 0

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 0

0 0 1

0 1 0

 ,


0 0 0

0 0 0

0 0 1

 .

The cardinality of the minimal set of rank-one matrices Mi such that each one of the previous
matrices is a linear combination of the Mi’s gives the bilinear rank of the product. For example,
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from the six matrices

M0 =


1 0 0

0 0 0

0 0 0

 ,M1 =


1 1 0

1 1 0

0 0 0

 ,M2 =


0 0 0

0 1 0

0 0 0

 ,

M3 =


1 1 1

1 1 1

1 1 1

 ,M4 =


0 0 0

0 0 0

0 0 1

 ,M5 =


0 0 0

0 1 1

0 1 1

 ,

representing the non-scalar multiplications a0b0, (a0+a1)(b0+b1), a1b1, (a0+a1+a2)(b0+b1+b2),
a2b2 and (a1 + a2)(b1 + b2), we deduce formulas to compute the coefficients of the product of
polynomials of degree 2 using 6 multiplications. One can prove that there is no set of rank-one
matrices of cardinality 5 allowing one to compute the coefficients of this product over F2. Thus,
the bilinear rank of the product of polynomials of degree two over F2 is six. In that sense, the
formulas obtained with the Mi’s are optimal for the bilinear rank.

The product of any mathematical objects (matrices, polynomials,...) can described as a
bilinear map. Finding optimal formulas (for the bilinear rank) for evaluating bilinear maps
is a problem of an area called “algebraic complexity theory” [12, 11, 56, 36]. Finding optimal
algorithms for the computation of the product of matrices or polynomials are important problems
of the algebraic complexity theory: the complexity of the matrix product has been well studied
in [56, 18, 43] and the complexity of polynomial multiplication in [37, 57, 52, 32].

For the product of matrices, the first result came in 1969: Strassen [56] proposed formulas
improving on the cost of the product of two matrices 2 × 2, which, when applied recursively
on large matrices, leads to a binary complexity O(nlog2 7) instead of O(nlog2 8) = O(n3). For a
product of matrices (

a0,0 a0,1

a1,0 a1,1

)
and

(
b0,0 b0,1

b1,0 b1,1

)
,

Strassen proposed the following non-scalar products:

π0 = (a0,0 + a1,1)(b0,0 + b1,1), π1 = (a1,0 + a1,1)b0,0, π2 = a0,0(b0,1 − b1,1), π3 = a1,1(b1,0 − b0,0),

π4 = (a0,0 + a0,1)b1,1, π5 = (a1,0 − a0,0)(b0,0 + b0,1), π6 = (a0,1 − a1,1)(b1,0 + b1,1).

The associated formulas are:

a0,0b0,0 + a0,1b1,0 = π0 + π3 − π4 + π6,

a0,0b0,1 + a0,1b1,1 = π2 + π4,

a1,0b0,0 + a1,1b1,0 = π1 + π3,

a1,0b0,1 + a1,1b1,1 = π0 − π1 + π2 + π5.

Denoting by ω the matrix exponent, the quantity such that O(nω) is the best asymptotic upper
bound on the bilinear rank of the product of n× n matrices in C, a lot of contributions [18, 15,
16, 43, 55, 61] improved the upper bound on ω. The best bound known is due to Williams and Le
Gall [61] and is equal to 2.3729, although the bound proposed by Coppersmith andWinograd [18],
equal to 2.376, is often used as a reference. It is conjectured in [15] that this exponent is
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actually equal to two. However, it appears that none of these algorithms are practical and the
naive algorithm is still widely in use, although one prefers Strassen’s algorithm to multiply large
matrices. When the size of the matrices to multiply is very large, we call Strassen’s algorithm
recursively, which explains the need to search optimal formulas for a matrix product slightly
larger than the product of matrices 2×2 by 2×2 (ideally the product of matrices 3×3 by 3×3).

Smirnov describes in [54] practical algorithms for matrices of higher dimensions. Thus, one
can notice that, most of the time, algorithms for matrix multiplication better than the Strassen’s
algorithm are unknown. For example, it is still unknown whether the minimal number of multi-
plications involved in the computation of the product of two matrices 3 × 3 with coefficients in
C is equal to 23 or not (Laderman [40] was the first to propose an algorithm with 23 multiplica-
tions), although Bläser proved in [8] that 19 is a lower bound. The bound proposed by Bläser is
a special case of a more general bound on any product of matrices of formats m× n and n×m.
It has been improved by Landsberg [41] by using algebraic geometry [42].

The main obstacle to finding optimal formulas is the fact that computing the bilinear rank
of a bilinear map is known to be NP-hard [35]. The least-squares method seems to be one of
the most popular [54] to approach this problem. Another way to decompose a bilinear map
consists in using ingredients from algebraic geometry [5] and in finding a generalization of the
singular value decomposition of matrices to general tensors. However, these methods do not
work for bilinear maps over a finite field: they work on field of characteristic zero as C for the
least-squares method or an algebraically closed field for the methods using geometry. In our
context, we focus on finding optimal formulas of a bilinear map over a finite field. On a finite
field, the possible formulas involving r non-scalar multiplications is finite. Therefore, we can
use exhaustive search methods to find the bilinear rank of a bilinear map, and all the optimal
formulas.

For the product of polynomials over finite fields, there exists an original method using alge-
braic curves [14], improving on the bilinear of the product of polynomials or the product of two
elements of a finite field. In particular, the bilinear complexity of this strategy has been bounded
in [50, 1, 48] and depends on the bilinear rank of the product of elements in Fqd [y]/(y`), where d
and ` are positive integers. Thus, it should be possible to improve this bound for small values
of d and ` with exhaustive search methods, since the multiplication of elements of Fqd [y]/(y`) is
a bilinear map.

Montgomery proposes in [45] an algorithm to compute such a decomposition for the particular
case of polynomials of small degree over a finite field. The author enumerates all possible formulas
of some form, taking advantage of the fact that, on a finite field, the number of possible optimal
formulas is finite. Then, he gets new formulas for the multiplication of polynomials of degree five,
six and seven over F2. In [46], Oseledets proposes a heuristic approach to solve the bilinear rank
problem for the polynomial product over F2. The author uses a formalization of the problem
in terms of vector spaces and looks at formulas with some symmetries. Later, Barbulescu et
al. propose in [2] a unified framework, developing the use of the vector spaces formalism, and
compute the bilinear rank of different applications, such as the short product or the middle
product over a finite field. Their algorithm allows one to generate all the possible optimal
formulas of any bilinear map over a finite field. This work is the main inspiration of the first
part of this thesis. In this part, we improve the time required to find all the optimal formulas
for a given bilinear map, and to establish lower bounds for the bilinear rank, in particular for
the matrix multiplication and short product over F2.

The improvement to the algorithm presented in [2] that we describe relies on the automor-
phism group stabilizing a bilinear map, and on the notion of “stem” of a vector space associated
to such a bilinear map. Specifically, we compute all the decompositions for the short product of
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polynomials P and Q modulo X5 and the product of 3×2 by 2×3 matrices. The latter problem
was out of reach with the method used in [2]. We prove, in particular, that the set of possible de-
compositions for this matrix product is essentially unique, up to the action of the automorphism
group. Although it is difficult to obtain a sharp complexity analysis of our approach (it involves
intrinsic properties of particular bilinear maps, whose impact in the final complexity is difficult
to quantify), we give theoretical arguments explaining why our approach is better than [2].

When d is large, the scalar multiplications are not negligible anymore. Thus, even in fields
as the complex field C, in which we always have d + 1 distinct points, the complexity of the
evaluation at d+ 1 points is a problem to consider when d grows. Therefore, for product of poly-
nomials when d is large, we study how to choose d+1 points so that we have the best complexity.
This problem is related to establishing the asymptotic binary complexity of the multiplication
of integers, via Kronecker-substitution. Several improvements have been achieved for the binary
complexity of the multiplication of integers, in particular by Schönhage, Strassen, Fürer, Harvey,
van der Hoeven and Lecerf [52, 26, 32]. These improvements rely on the complexity of the mul-
tiplication of polynomials of large degree and on an evaluation-interpolation scheme. However,
their optimality is still an open question.

The naive algorithm or Karatsuba and Ofman’s improvement leads to a polynomial-time
algorithm to multiply integers. Toom-Cook’s algorithm falls also into this category. The first
algorithm to achieve what is called quasi-linear complexity is Schönhage and Strassen’s [52, 51]:
their algorithm multiply n-bit integers with a binary complexity equal to O(n · log n · log(2) n).
The Schönhage-Strassen algorithm uses the fast Fourier transform (FFT) as a means to quickly
evaluate a polynomial at the powers of a primitive root of unity [59, §8]. Moreover, the complexity
is obtained by an appropriate choice of a ring R in which this evaluation is to be carried out.
Namely, the choiceR =Z/(2e + 1), for e a suitable power of two, yields the complexity O(n·log n·
log log n), while other natural choices for R, such as R = C, appear to yield inferior performance
at the time.

In 2007, M. Fürer observes that the ring R =C[x]/(xP + 1), for P a suitable power of two, is
particularly interesting [26]. Using this ringR, it is possible to take advantage of large-radix FFT
to obtain the improved complexity O(n · log n · 2O(log∗ n)) (in contrast, radix-2 FFT is sufficient
for the Schönhage-Strassen algorithm). The notation log∗ denotes the iterated logarithm (see
§6.6). Fürer’s result was an acclaimed improvement on the complexity of the Schönhage-Strassen
algorithm, which had remained unbeaten for 35 years. An early extension of Fürer’s work,
proposed in [21], replaces the field C in the definition of R by a p-adic ring and reaches an
identical asymptotic complexity. This p-adic variant can be expected to ease precision issues for
potential implementations. Harvey, van der Hoeven and Lecerf in [32], and later Harvey and van
der Hoeven in [30] propose new algorithms and a sharper analysis that makes the expression of
the complexity more explicit, namely O(n·log n·8log∗ n) and even O(n·log n·4log∗ n) conjecturally.
In comparison, they also show that a careful analysis of Fürer’s original algorithm reaches the
complexity O(n · log n · 16log

∗ n). Very recently, in [31], Harvey and Van der Hoeven seem to
have proven that there exists an algorithm with a complexity in O(n · log n · 4log∗ n), multiplying
integers without using any conjecture of number theory. However, these algorithms achieving a
bound similar to the one obtained by Fürer are, as it stands, perceived as theoretical results.

We describe in the second part of this thesis an algorithm reaching the complexity O(n ·
log n · 4log∗ n) and relying on a conjecture which can be regarded as an explicit version of the
Bateman-Horn conjecture [4], supported by numerical evidence. Namely, this assumption is as
follows.



xviii Introduction

Hypothesis 8.5. Let λ ≥ 2 be an integer. For any real number R such that 2λ ≤ R ≤ 22λ,
there exists a generalized Fermat prime p = r2

λ

+ 1 such that R ≤ r < λ2.5R.

The key concept of our algorithm is the use of a chain of generalized Fermat primes (of the
form r2

λ

+ 1) to handle recursive calls. This variant differs from the strategy proposed in [32].
Some lineage can be drawn between our work and an early article by Fürer [25] (from 1989),
which is dependent on the assumption that there exist infinitely many Fermat primes. The latter
assumption, however, is widely believed to be wrong, so our variant fills a gap here.

This thesis is organized as follows.

• In Part I we present the work that has been done on finding optimal formulas, and
described in [19]. In Chapter 1, we present the theoretical tools and the framework for
this part of the thesis, corresponding to the framework introduced in [2]. In Chapter 2,
we present the state of the art, such as the algorithm proposed in [2] and [3]. We describe
the theoretical and algorithmic aspects of our improvement in Chapter 3, We apply this
improvement to examples such as the short product and the matrix product in Chapter 4.
We describe in Chapter 5 how to realize some precomputations required by Chapter 3.

• In Part II, we present the work described in [20] related to the search of an asymptoti-
cally optimal algorithm for the multiplication of large integers, based on the fast Fourier
transform and on the Fürer’s strategy [26]. In Chapter 6, we describe the fast Fourier
transform and, in particular the Cooley-Tukey algorithm. In Chapter 7, we describe the
Fürer’s algorithm, based on the fast Fourier transform, and allowing one to multiply n-bit
integers in O(n · log2 n ·2O(log∗ n)). We detail the properties of generalized Fermat primes in
Chapter 8. We propose a new algorithm in Chapter 9, based on Fürer’s strategy and on
generalized Fermat primes and we prove it multiplies n-bit integers in O(n · log2 n · 4log

∗ n).
In Chapter 10, we discuss the practical aspects of an implementation of the integer mul-
tiplication algorithm using generalized Fermat primes.
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Bilinear rank
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Notations

K Field
a,b, . . . Elements of a vector space over K
a, b, . . . Elements of K
A,B Polynomials over K
M,N Matrices over K
L(Km;K) Linear forms from Km to K
L(Km,Kn;K) Linear forms from Km ×Kn to K
Mm,n(K) m× n matrices over K
Φ,Ψ Bilinear form of any rank
φ, ψ Bilinear form of rank one
T,W, V Subspaces of L(Km,Kn;K)

GL(Km)×GL(Kn) Couples of invertible matrices
σ Element of GL(Km)×GL(Kn)



4



Chapter 1

From bilinear maps to vector spaces

In this chapter, we recall the definition of the bilinear rank of a bilinear map. We choose the
characterization given by de Groote [22] or Bürgisser et al. [12, Ch. 14]. The algorithms that are
detailed in the following chapters use vector spaces generated by matrices. These vector spaces
are obtained from bilinear maps such as the short product or the matrix product.

1.1 Bilinear rank

1.1.1 Bilinear forms

Let K be a field. We denote by L(Km;K) the vector space of linear forms from Km to K and
by L(Km,Kn;K) the vector space of bilinear forms from Km ×Kn to K.

Definition 1.1 (Rank-one bilinear form). Let Φ ∈ L(Km,Kn;K). We say that Φ is a
rank-one bilinear form if there exist two linear forms α ∈ L(Km;K) and β ∈ L(Kn;K)
such that Φ can be written as Φ : (a,b) 7→ α(a) · β(b).

Definition 1.2 (Bilinear rank of bilinear forms). The bilinear rank of a bilinear form Φ,
denoted by rk(Φ), is defined as the minimal number of rank-one bilinear forms φi such that
Φ can be written as a linear combination of the φi’s. Then, a family (φi)i of cardinality
rk(Φ) generating Φ is said to be an optimal decomposition of Φ.

Thus, the bilinear rank of a bilinear form Φ is a number defined by the minimal size of a
decomposition of the form

Φ(a,b) =
∑

0≤i<r

αi(a0, . . . , am−1)βi(b0, . . . , bn−1).

For i ∈ {0, . . . ,m− 1} and j ∈ {0, . . . , n− 1}, we denote by ei,j the bilinear forms ei,j : (a,b) 7→
aibj . The ei,j ’s have rank one and form the canonical basis of L(Km,Kn;K). This implies that
any bilinear form can be expressed as a linear combination of bilinear forms of rank one and,
consequently, the bilinear rank is well defined.

We have a matrix equivalent of Definition 1.2. Indeed, for any bilinear form Φ ∈ L(Km,Kn;K),
there exists a matrixM ∈Mm,n(K) such that Φ(a,b) = aT ·M ·b for any a ∈ Km and b ∈ Kn.

5
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It is shown in [12, Ch. 14] that the usual linear algebraic rank of a bilinear form (which is the
rank of the corresponding matrix M) coincides with its bilinear rank.

There is a one-to-one correspondence between rank-one bilinear forms and rank-one matrices.
Thus, the number of rank-one matrices gives the number of rank-one bilinear forms. The rank-
one matrices are the set of matrices that can be obtained as a product X · Y T of two non-zero
column matrices X ∈Mm,1, Y ∈Mn,1. There are (#Km− 1) nonzero matrices X ∈Mm,1 and
(#Kn − 1) nonzero matrices Y ∈ Mn,1. If X · Y T = X ′ · Y ′T, there exists λ ∈ K − {0} such
that X = λX ′ and Y = 1

λY
′. Therefore, there are

(#Km − 1)(#Kn − 1)

(#K − 1)

distinct bilinear forms of rank one.

Example 1.3 (Bilinear forms of L(K2,K2;K)). When K = F2, there are (22 − 1)2 = 9
bilinear forms of rank one in L(K2,K2;K). Their matrix representations in the canonical
basis are(

1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
,

(
1 1

1 1

)
,

(
1 1

0 0

)
,

(
1 0

1 0

)
,

(
0 1

0 1

)
, and

(
0 0

1 1

)
.

Any bilinear form Φ ∈ L(K2,K2;K) can be decomposed in the basis {e0,0, e1,0, e0,1, e1,1}:

Φ = ε0,0 · e0,0 + ε1,0 · e1,0 + ε0,1 · e0,1 + ε1,1 · e1,1.

Consequently, the matrix representation of Φ in the canonical basis is(
ε0,0 ε0,1

ε1,0 ε1,1

)
.

1.1.2 Bilinear maps
We denote by L(Km,Kn;K`) the vector space of bilinear maps from Km × Kn to K`. Any
bilinear map Φ from Km ×Kn to K` can also be seen as an element of L(Km,Kn;K)`, whose
coordinates are bilinear forms, denoted by (Φk)0≤k<`.

We consider in the following chapters various examples of bilinear maps given by classical
products:

• the product of polynomials ofm and n terms, ofm+n−1 terms (in this case ` = m+n−1),

• the short product, which is the product of polynomials modulo X`,

• the circulant product, which is the product of polynomials modulo X` − 1, and

• the matrix product (p, q, r), which is the product of matrices p× q by q × r.

Example 1.4 (Short product of polynomials modulo X3). We describe in this example the
matrices associated to the coefficients of the short product of two polynomials modulo X3.

Let A and B be the polynomials A = a0 + a1X + a2X
2 and B = b0 + b1X + b2X

2. We
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denote by C the polynomial A ·B mod X3:

C = a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X2.

We represent A and B as vectors of K3 denoted by a =


a0

a1

b2

 and b =


b0

b1

b2

, respectively.

Let Φ0, Φ1 and Φ2 be the bilinear forms defined as

Φ0 : (a,b) 7→ a0b0,

Φ1 : (a,b) 7→ a0b1 + a1b0,

Φ2 : (a,b) 7→ a0b2 + a1b1 + a2b0.

With respect to the canonical basis (ei)0≤i<3 of K3, the matrices Mk, representations of the
Φk’s, are

M0 =


1 0 0

0 0 0

0 0 0

 ,M1 =


0 1 0

1 0 0

0 0 0

 ,M2 =


0 0 1

0 1 0

1 0 0

 .

1.1.3 Multiplicative complexity and bilinear rank
We are interested in the intrinsic time required for an algorithm, whose input is

a =


a0
...

am−1

 ∈ Km and b =


b0
...

bn−1

 ∈ Kn,

to compute Φ(a,b).
We consider straight-line arithmetic programs, which consist in a sequence of instructions

fi ← ui3 vi, for i ∈ {0, . . . , s}, where 3 is an arithmetic operation among {+,−,×,÷} and
where ui and vi either belong to K ∪ {indeterminates} or are previously computed fj ’s (for
j < i). A straight-line arithmetic program is said to compute a subset S ⊂ L(Km,Kn;K) if for
any Φ ∈ S there exists fi ∈ {f0, . . . , fs} such that fi can be expressed as the evaluation of Φ in
the indeterminates that are used in the straight-line program.

In the straight-line arithmetic programs, the indeterminates are representing the linear forms
a 7→ ai and b 7→ bi.

Example 1.5 (Multiplication of linear polynomials). Let A = a0 + a1X and B = b0 + b1X
be two polynomials over K. The product A ·B is associated to the bilinear map Φ taking as
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input the vectors a =

(
a0

a1

)
and b =

(
b0

b1

)
such that

Φ : (a,b) 7→


a0b0

a0b1 + a1b0

a1b1

 .

Thus, Φ can be seen as an element of L(K2,K2;K)3, whose coordinates are the 3 bilinear
forms

Φ0 : (a,b) 7→ a0b0,

Φ1 : (a,b) 7→ a0b1 + a1b0, and
Φ2 : (a,b) 7→ a1b1.

The straight-line arithmetic program formed by the sequence

f0 ← a0 × b0
f1 ← a1 × b0
f2 ← a0 × b1
f3 ← a1 × b1
f4 ← f1 + f2

computes the set {Φ0,Φ1,Φ2}.

One can prove (see e.g. [22]) that, for a straight-line program computing a set of bilinear
forms, we can assume that each instruction fi ← ui3 vi is either

1. an addition or subtraction,

2. a scalar multiplication (ui ∈ K or vi ∈ K) or

3. multiplication of two linear forms in a and b (ui ∈ L(Km+n;K) and vi ∈ L(Km+n;K)).

We do not consider divisions: in [12, Ch. 7], it is shown that divisions do not help for the
computation of a set of quadratic polynomials and, in particular, bilinear forms. It follows that
we obtain, from the straight-line program computing a bilinear map Φ, a decomposition of the
form

Φ =
∑

0≤i<t

αi(a0, . . . , am−1, b0, . . . , bn−1)βi(a0, . . . , am−1, b0, . . . , bn−1)ci,

where αi and βi are linear forms of L(Km+n;K) and ci ∈ K`.

Definition 1.6 (Multiplicative complexity). The multiplicative complexity of a bilinear
map Φ = (Φ0, . . . ,Φ`−1) is the smallest number of non-scalar multiplications involved in a
straight-line program computing {Φ0, . . . ,Φ`−1}. We ignore scalar multiplications, additions
and subtractions because their cost is considered as negligible. We denote this multiplicative
complexity by L(Φ).
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Ideally, for a bilinear map Φ, we would like to compute exactly L(Φ). To simplify the com-
binatorics of this computation, and its computational complexity, we approximate this number
with the bilinear rank, denoted by rk(Φ).

Definition 1.7 (Bilinear rank of bilinear maps). The rank of a bilinear map Φ is the
smallest integer r such that there exist r rank-one bilinear forms (φi)0≤i<r and r vectors
ci ∈ K` such that

Φ =
∑

0≤i<r

φi · ci.

Thus, the bilinear rank is a number defined by the minimal size of a decomposition of the
form

Φ(a,b) =
∑

0≤i<t

αi(a0, . . . , am−1)βi(b0, . . . , bn−1)ci.

Definition 1.7 is an extension of Definition 1.2 to bilinear maps. When ` = 1, the rank of a
bilinear map Φ = (Φ0) is the bilinear rank of the bilinear form Φ0 as defined in Definition 1.2.

Proposition 1.8 (Bounds on the bilinear rank [12, Ch. 14]). The bilinear rank of any
bilinear map Φ satisfies

L(Φ) ≤ rk(Φ) ≤ 2L(Φ).

Proof. Since the decomposition of a bilinear map Φ in terms of rank-one bilinear forms is a
special case of its decomposition in terms of products of linear forms αi, βi ∈ L(Km+n;K), we
have

L(Φ) ≤ rk(Φ).

There exist αi, βi ∈ L(Km+n;K) and vectors ci ∈ K` such that

Φ(a,b) =
∑

0≤i<L(Φ)

αi(a0, . . . , am−1, b0, . . . , bn−1)βi(a0, . . . , am−1, b0, . . . , bn−1)ci.

By linearity, for i ∈ {0, . . . , L(Φ)− 1},

αi(a0, . . . , am−1, b0, . . . , bn−1) = αi(a0, . . . , am−1, 0, . . . , 0) + αi(0, . . . , 0, b0, . . . , bn−1)

and

βi(a0, . . . , am−1, b0, . . . , bn−1) = βi(a0, . . . , am−1, 0, . . . , 0) + βi(0, . . . , 0, b0, . . . , bn−1).

Using the fact that Φ is a bilinear map, the sum of the quadratic terms is zero. Thus, we get
the following equality:

Φ(a,b) =
∑

0≤i<L(Φ)

αi(a0, . . . , am−1, 0, . . . , 0)βi(0, . . . , 0, b0, . . . , bn−1)ci

+
∑

0≤i<L(Φ)

αi(0, . . . , 0, b0, . . . , bn−1)βi(a0, . . . , am−1, 0, . . . , 0)ci.

Thus, we have a bilinear decomposition of length 2L(Φ), which implies that

rk(Φ) ≤ 2L(Φ).
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Consequently, the bilinear rank is no larger than twice the multiplicative complexity of a
bilinear map. In Example 1.9, we describe a bilinear map for which the multiplicative complexity
and the bilinear rank are distinct. Moreover, the notion of bilinear rank extends a well known
mathematical invariant, which is the rank of a matrix.

Example 1.9 (Difference between multiplicative complexity and bilinear complexity). The
product of matrices 2 × 2 by 2 × 3 is an example of product for which the multiplicative
complexity and the bilinear rank are different in a field of characteristic different from 2.
Indeed, Waksman proposed in [60] formulas allowing one to compute the product with 10
multiplications, whereas the bilinear rank is proved to be 11 in [34]. For a ∈ M2,2 and
b ∈M2,3, let

Φ : (a,b) 7→



a0,0b0,0 + a0,1b1,0

a0,0b0,1 + a0,1b1,1

a0,0b0,2 + a0,1b1,2

a1,0b0,0 + a1,1b1,0

a1,0b0,1 + a1,1b1,1

a1,0b0,2 + a1,1b1,2


.

Let Φ0, . . . ,Φ9 be

Φ0 = 1
2 (a0,0 + b1,0)(a0,1 + b0,0), Φ1 = 1

2 (a0,0 + b1,1)(a0,1 + b0,1),

Φ2 = 1
2 (a0,0 + b1,2)(a0,1 + b0,2), Φ3 = (a1,0 + b1,0)(a1,1 + b0,0),

Φ4 = 1
2 (a1,0 + b1,1)(a1,1 + b0,1), Φ5 = (a1,0 + b1,2)(a1,1 + b0,2),

Φ6 = 1
2 (a0,0 − b1,0)(−a0,1 + b0,0), Φ7 = 1

2 (a0,0 − b1,1)(−a0,1 + b0,1),

Φ8 = 1
2 (a0,0 − b1,2)(−a0,1 + b0,2), Φ9 = 1

2 (a1,0 − b1,1)(−a1,1 + b0,1).

We have

Φ(a,b) =



Φ0 + Φ6

Φ1 + Φ7

Φ2 + Φ8

−Φ0 + Φ1 + Φ3 − Φ4 + Φ6 − Φ7 + Φ9

Φ4 + Φ9

Φ1 − Φ2 − Φ4 + Φ5 − Φ7 + Φ8 + Φ9


.

Example 1.10 (Karatsuba formulas for the multiplication of linear polynomials [37]). The
bilinear map Φ for the multiplication of linear polynomials is an element of L(K2,K2;K)3

whose coordinates are the 3 bilinear forms

Φ0 : (a,b) 7→ a0b0,

Φ1 : (a,b) 7→ a0b1 + a1b0, and
Φ2 : (a,b) 7→ a1b1.
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Let Ψ ∈ L(K2,K2;K) be such that Ψ : (a,b) 7→ (a0 + a1)(b0 + b1). Then, since
Φ1 = Ψ− Φ0 − Φ2, we can rewrite Φ as

Φ =


Φ0

Φ1

Φ2

 = Φ0 ·


1

−1

0

+ Ψ ·


0

1

0

+ Φ2 ·


0

−1

1

 .

The bilinear forms Φ0, Ψ and Φ2 all have rank one. Thus, we can deduce that the bilinear
rank of Φ is at most 3. Actually, one can show that the bilinear rank of Φ is equal to 3.

1.2 A linear algebra problem
The approach of [2] to the computation of the rank of a bilinear map Φ = (Φ0, . . . ,Φ`−1)
formulates the problem in terms of vector spaces: the algorithm considers the subspace T =
Span({Φ0, . . . ,Φ`−1}) ⊂ L(Km,Kn;K) rather than the bilinear map Φ = (Φ0, . . . ,Φ`−1). There
is no loss of generality to prefer the vector space formalism rather than the bilinear map for-
malism. In both cases, the computation of the rank of bilinear map [35] is NP-hard. However,
in [2] the authors show that we have a lower combinatorial complexity using their formalism.
Consequently, we choose this formalism as well, and we need to extend the definition of the rank
to subspaces of L(Km,Kn;K).

Notation 1.11. For T a subspace of L(Km,Kn;K), we denote by Sm,n,r(T ) the set of
subspaces V ⊂ L(Km,Kn;K) spanned by a free family of rank-one bilinear forms of size r
and such that T ⊂ V .

When T = Span(∅), Sm,n,r(T ) is the set of subspaces V ⊂ L(Km,Kn;K) spanned by a
free family of rank-one bilinear forms of size r and we denote it simply by Sm,n,r.

When m and n are clear from the context, these sets are simply denoted by Sr(T ) and
Sr, respectively.

We use Notation 1.11 to define the rank of a subspace T ∈ L(Km,Kn;K) in Definition 1.12.

Definition 1.12 (Bilinear rank of a subspace of L(Km,Kn;K)). Let T be a subspace
of L(Km,Kn;K). The bilinear rank of T , denoted by rk(T ), is the smallest r such that
Sr(T ) 6= ∅. The set Srk(T )(T ) is called the set of optimal decompositions of T .

If T = Span({Φ0, . . . ,Φ`−1}), each Φi can be represented by a matrix Mi in the canonical basis.
Thus, if T has rank r, there exists a set of r matrices Ni ∈Mm,n(K) of rank one such that

∀i ∈ {0, . . . , `− 1} , Mi ∈ Span(N0, . . . , Nr−1),

which is the matrix equivalent of Definition 1.12.

Example 1.13 (Subspace for the short product of polynomials modulo X3). We describe in
this example the subspace of L(K3,K3;K) associated to the short product of two polynomials
modulo X3. We describe elements of L(K3,K3;K) as matrices of M3,3 in the canonical
basis, as it has been done in Example 1.4.
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The bilinear map Φ corresponding to the short product is defined as the application

Φ :



a0

a1

a2

 ,


b0

b1

b2


 7→


a0b0

a0b1 + a1b0

a0b2 + a1b1 + a2b0

 .

Thus, the subspace

Span




1 0 0

0 0 0

0 0 0

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 1

0 1 0

1 0 0




is the matrix representation of the subspace T of L(K3,K3;K) corresponding to Φ. Our
aim is to compute its rank in the sense of Definition 1.12.

Proposition 1.14. The rank of a subspace T ∈ L(Km,Kn;K) is bounded as follow

dim(T ) ≤ rk(T ) ≤ m · n.

Proof. The first inequality comes from the fact that a basis of rank-one bilinear forms generating
a subspace containing T has necessarily a size no smaller than dim(T ). The second inequality
comes from the fact that the cardinality of a basis of a subspace of L(Km,Kn;K) is bounded
by the cardinality of the canonical basis {ei,j}i,j .

We need to prove that finding all the optimal formulas in the sense of the bilinear rank for
a bilinear map Φ ∈ L(Km,Kn;K)` is equivalent to computing Sr(T ). This can be rephrased
as the fact that Definition 1.7 and Definition 1.12 coincide, which is stated in the following
proposition.

Proposition 1.15 (Rank of a bilinear map and rank of a matrix space). Let

Φ = (Φ0, . . . ,Φ`−1)

be a bilinear map and T = Span(Φ0, . . . ,Φ`−1) ⊂ L(Km,Kn;K). We have

rk(Φ) = rk(T ).

Proof. If r bilinear forms φi of rank one span a vector space containing T , each coordinate of Φ
is a linear combination of these bilinear forms and, consequently, there exist r vectors ci ∈ K`

such that

Φ =
∑

0≤i<r

φi · ci.

Conversely, the bilinear forms of such a decomposition generate a vector space that contains
T .
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1.3 RP-automorphisms
We adapt the automorphism group defined in [12, Def. 14.11] to the case of subspaces of
L(Km,Kn;K), which we introduced in Section 1.2. We describe in this section the rank-
preserving group of automorphisms σ acting on subspaces T ⊂ L(Km,Kn;K), also referred
to as the RP-automorphisms group.

Definition 1.16. An element σ = (µ, ν) ∈ GL(Km)×GL(Kn) acts on L(Km,Kn;K) via

Φ ◦σ : (a,b) 7→ Φ(µ(a), ν(b)).

When m = n, we have the transposition τ acting on any Φ ∈ L(Km,Km;K), via

Φ ◦ τ : (a,b) 7→ Φ(b,a).

We denote by RPAm,n the smallest group containing GL(Km) × GL(Kn) and, if m = n,
the transposition τ . Its elements are called RP-automorphisms.

Proposition 1.17. The action of RPAm,n is a group action and its elements are all in-
vertible.

Proof. For σ = (µ, ν), σ′ = (µ′, ν′) ∈ GL(Km)×GL(Kn) and Φ ∈ L(Km,Kn;K), we have

∀a,b, ((Φ ◦σ) ◦σ′)(a,b) = (Φ ◦σ)(µ′(a), ν′(b)) = Φ(µ(µ′(a)), ν(ν′(b))) = (Φ ◦(σ ◦σ′))(a,b).

It works as well if σ or σ′ is the element τ . Thus, the action that we defined is indeed a group
action. Since all the elements of RPAm,n are invertible, we have automorphisms.

Proposition 1.18 (RP-automorphisms preserve the rank). Let σ ∈ RPAm,n.

• For any Φ ∈ L(Km,Kn;K), we have rk(Φ ◦σ) = rk(Φ).

• For any subspace T ⊂ L(Km,Kn;K), we also have rk(T ◦σ) = rk(T ).

Proof. First, let φ ∈ L(Km,Kn;K) of rank one. There exist α ∈ L(Km;K) and β ∈ L(Kn;K)
such that φ : (a,b) 7→ α(a) · β(b). There exist µ ∈ GL(Km) and ν ∈ GL(Kn) such that
φ ◦σ : (a,b) 7→ α(µ(a)) · β(ν(b)). Since α ◦µ ∈ L(Km;K) and β ◦ ν ∈ L(Kn;K), φ ◦σ is a
rank-one bilinear form.

Since the RP-automorphisms in Definition 1.16 preserve the rank of rank-one bilinear forms,
by linearity and by definition of the rank of a bilinear form, it preserves the rank of any bilinear
form. For any subspace T ⊂ L(Km,Kn;K) and any σ ∈ GL(Km)×GL(Kn), we have

rk(T ◦σ) = rk(T ).

Proposition 1.19 (Action of RPAm,n). The elements of RPAm,n are the only automor-
phisms of L(Km,Kn;K) preserving the rank.

Proof. In both cases m 6= n and m = n, a proof with the formalism of tensors of order 3 can be
found in [13].
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Remark 1.20. The group GL(Km) × GL(Kn) is isomorphic to the group GLm(K) ×
GLn(K), acting on matrices M via

M · (X,Y ) = XT ·M · Y,

for any (X,Y ) ∈ GL(Km)×GL(Kn).
Thus, we often consider elements of GL(Km) × GL(Kn) as elements of GLm(K) ×

GLn(K) and conversely.

Definition 1.21 (RP-isomorphic spaces). LetW andW ′ be two subspaces of L(Km,Kn;K).
We say thatW andW ′ are RP-isomorphic if there exists σ ∈ RPAm,n such thatW = W ′◦σ.

Example 1.22 (Action of RPA2,2). Let us consider the subspace V ⊂ L(K2,K2;K) gen-
erated by the bilinear forms represented by the matrices M1 and M2 defined as

M1 =

(
1 0

0 0

)
and M2 =

(
0 1

0 0

)
.

We take σ = (X,Y ) such that X = Y =

(
0 1

1 0

)
.

Then, the subspace V ′ = V ◦σ is generated by M ′1 and M ′2, with

M ′1 = XT ·M1 · Y =

(
0 0

0 1

)
and M ′2 = XT ·M2 · Y =

(
0 0

1 0

)
.

Since we will often refer to subgroups of RPAm,n stabilizing elements of L(Km,Kn;K) in
the following, we define the notion of set-wise stabilizer.

Definition 1.23 (Set-wise stabilizer). For a subset T ⊂ L(Km,Kn;K), we denote by
Stab(T ) the subgroup of RPAm,n stabilizing T :

Stab(T ) = {σ ∈ RPAm,n | T ◦σ = T } .

We use the same notation for a subspace T ⊂ L(Km,Kn;K).

In the rest of this work, we often refer to the “stabilizer” of a given set T . Each time, we exclusively
mean the set-wise stabilizer of T , which is, in general, different from the point-wise stabilizer of
T . Indeed, the point-wise stabilizer of T is defined as {σ ∈ RPAm,n | ∀Φ ∈ T , Φ ◦σ = Φ}.

Example 1.24 (Stabilizer for the short product modulo X3). We describe in this example
an element of the stabilizer of the subspace T generated by the bilinear forms

Φ0 = a0b0, Φ1 = a1b0 + a0b1, and Φ2 = a2b0 + a1b1 + a0b2,
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which are represented by the matrices

M0 =


1 0 0

0 0 0

0 0 0

 , M1 =


0 1 0

1 0 0

0 0 0

 , and M2 =


0 0 1

0 1 0

1 0 0

 .

Let (X,Y ) be the couple

(X,Y ) =




1 0 0

0 1 0

1 0 1

 ,


1 0 0

1 1 0

0 1 1


 .

We have
M2 · (X,Y ) = XT ·M2 · Y = M0 +M1 +M2 ∈ T.

Similarly, M1 · (X,Y ) = M0 +M1 ∈ T and M0 · (X,Y ) = M0 ∈ T . Thus, (X,Y ) ∈ Stab(T ).
A full description of the stabilizer for this particular example can be found in Sec-

tion 4.1.1.

In our algorithms, we often use subgroups of RPAm,n in the following context:

• we have a set S of subspaces of L(Km,Kn;K),

• we have a subgroup H of RPAm,n stabilizing S, which means that for any σ ∈ H and
V ∈ S, V ◦σ ∈ S, and

• we need to enumerate one representative per equivalence class given by the group relation.

Notation 1.25. Let S be a set of subspaces of L(Km,Kn;K) and H ⊂ RPAm,n stabilizing
S. We denote by S/H = {{V ◦σ | σ ∈ H} | V ∈ S} the set of equivalence classes, or orbits,
under the relation associated to the action of H on S.
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Chapter 2

A review of existing exhaustive
search algorithms

The main obstacle to finding optimal formulas (for the bilinear rank) is the fact that the decom-
position of bilinear maps is NP-hard [35]. In terms of methods, the least-squares method seems to
be one of the most popular ones [54]. Another way to decompose a bilinear map consists in using
ingredients from geometry [5] and in finding a generalization of the singular value decomposition
for matrices to general tensors. However, these methods are essentially used over an algebraically
closed field K (e.g. K = C) and are not meant to produce all the possible decompositions for
a bilinear map. In our context, we need a method for computing a rank decomposition over a
finite field not necessarily algebraically closed.

Montgomery proposes in [45] an algorithm to compute such a decomposition for the product
of polynomials of small degree over a finite field. The author enumerates all possible formulas of
some form, taking advantage of the fact that, on a finite field, the number of possible optimal
formulas is bounded. This allows him to find new formulas for the multiplication of polynomials of
5, 6 and 7 terms over F2. It introduces the formalism of vector spaces and proposes an algorithm
solving the bilinear rank problem by looking for symmetric formulas. In [46], Oseledets proposes
a heuristic approach to solve the bilinear rank problem for the polynomial product over F2 and
considers other products, such as the short product and the circulant product. The idea of
Montgomery and Oseledets is to use the vector space formalism to search exhaustively for all
the optimal formulas for products over a finite field. Later, Barbulescu et al. proposed in [2] an
improvement on the exhaustive search of optimal formulas for a bilinear map, in a framework
using the vector space formalism. In this chapter, we describe these algorithms, which allow one
to prove lower bounds on the bilinear rank of bilinear maps.

2.1 Mongtomery’s Algorithm

Montgomery proposes in [45] a first attempt at finding new formulas for the product of poly-
nomials A and B of n-terms over a finite field K. We denote by a and b the vectors of Kn

representing the polynomials A and B in the canonical basis.
Henceforth, we describe the algorithm for the special case K = F2. The ideas that are

described can be adapted to finite fields of larger characteristic, although the computational cost
make them not practical in this case.

The algorithm starts with the set of all the rank-one bilinear forms of L(Kn,Kn;K), which

17
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has (2n − 1)2 elements. The product of polynomials of n-terms is represented by the bilinear
map Φn ∈ L(Kn,Kn;K2n−1) with

Φn : (a,b) 7→



a0b0

a1b0 + a0b1
...

an−2b0 + · · ·+ a0bn−2

an−1b0 + · · ·+ a0bn−1

an−1b1 + · · ·+ a1bn−1
...

an−1bn−1


.

We denote by Tn the vector space spanned by the coefficients of Φn.

Example 2.1 (Subspace representing Φ3). The subspace T3 corresponding to Φ3 is

T3 = Span




1 0 0

0 0 0

0 0 0

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 0

0 0 1

0 1 0

 ,


0 0 0

0 0 0

0 0 1


 .

Exhaustive search of formulas for the product of polynomials. Taking the formalism
proposed in Chapter 1 into account, the general algorithmic strategy Montgomery proposes to
compute the bilinear rank of the bilinear map representing a polynomial product of degree n− 1
is stated as follows:

1. compute the set of rank-one matrices ofMn, of cardinality (2n − 1)2 ;

2. start with the known lower bound r = 2n− 1 on the bilinear rank;

3. compute all the
(
(2n−1)2

r

)
sets of r rank-one matrices;

4. select the sets generating a vector space containing Tn;

5. if no such set is found at the previous step, increment r and return to Step 2;

6. r is the bilinear rank and the selected sets produce optimal formulas for the polynomial
product.

The strategy described previously actually produces all the optimal formulas for the bilinear
decomposition of Φn. For n = 5, we are led to increase r until 13. There are 2.1 · 108 ways to
select 13 rank-one matrices among (2n − 1)2 rank-one bilinear forms. For n = 6 or n = 7, we
have roughly 1.0 · 1015 and 2.5 · 1024 possibilities, which is too large to be enumerated.

Thus, Montgomery adapts this algorithm to find at least one set of optimal formulas for the
product of n-terms polynomials. He proposes three constraints on the set S of bilinear forms of
rank one that are selected:

1. for each bilinear form Φ ∈ S, the corresponding matrix M in the canonical basis should be
symmetric: M = MT;
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2. S contains the bilinear forms given by the coefficients a0b0, an−1bn−1 and (a0 + · · · +
an−1)(b0 + · · ·+ bn−1);

3. S should satisfy S ◦σ = S where σ ∈ GL(Kn)×GL(Kn) is represented by the pair (P, P )
with P ∈ GLn(F2) the matrix

0 0 1

0

0

1 0 0




because the vector space T also satisfies T ◦σ = T .

For n = 6, the lower bound on the size of a decomposition with the given constraints is
17. The first and the second constraints lead to sets S containing the 3 bilinear forms given by
the coefficients a0b0, a5b5 and (a0 + · · · + a6)(b0 + · · · + b6) and 14 bilinear forms among the
(26− 1)− 3 = 60 remaining rank-one bilinear forms represented by a symmetric matrix. Among
the 60 matrices, 6 are invariant under the action of σ and 54 are not, which gives 27 pairs of
bilinear forms (φ, ψ) such that φ = ψ ◦σ. Thus, for i an even integer in {0, . . . , 6}, where 6 is
the number of invariant matrices under the action of σ, the third constraint splits the 14 bilinear
forms required in S into i bilinear forms invariant under the action of σ and (14− i)/2 pairs of
bilinear forms (φ, ψ) such that φ = ψ ◦σ. The search is clearly not exhaustive.

We have to enumerate ∑
0≤i≤6,
i even

(
6

i

)
·
(

27

(17− 3− i)/2

)
= 6.6 · 106

possible sets.

2.2 Exhaustive search for any bilinear map
We describe in this section how to generalize the previous approach. In [46], Oseledets develops
the idea of Montgomery and generalizes it to any kind of bilinear map. The naive algorithms
that are described in this section can be considered as a reformulation of Oseledets’ exhaustive
search. However, the author proposes also heuristics to decompose certain bilinear maps given
by the product of polynomials modulo Xn (short product) and the product modulo Xn − 1
(circulant product).

We work over a finite field K. We consider a bilinear map Φ ∈ L(Km,Kn;K`), represented
by the subspace T ⊂ L(Km,Kn;K) of dimension `.

General strategy for computing the bilinear rank. The algorithmic strategy we use to
compute the bilinear rank of a bilinear map is stated as follows:

• start with the known lower bound r = ` on the bilinear rank;

• compute Sr(T );

• if Sr(T ) = ∅, increment r and return to the previous step;
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• r is the bilinear rank and Sr(T ) the set of optimal decompositions.

The general strategy requires an algorithm to compute Sr(T ). The algorithms that are
considered require a test to determine whether, for V a subspace of L(Km,Kn;K) of dimension
r, we have V ∈ Sr: we denote this test by HasRankOneBasis. A naive method to perform this
test is described in Algorithm 1. We could think of other methods based on solving bilinear
systems, but it does not seem efficient in our applications. However, an optimized version of this
algorithm is used for particular bilinear maps (product of 2 × 3 by 3 × 2 matrices for example
described in Section 4.3.3).

This method assumes that we have computed the the set Gm,n ' Sm,n,1 of rank-one bilinear
forms of L(Km,Kn;K) up to a multiplicative factor. This set has cardinality

cm,n = #Gm,n =
(#Km − 1)(#Kn − 1)

(#K − 1)2
.

Algorithm 1 HasRankOneBasis (naive method)

Input: A subspace V ⊂ L(Km,Kn;K), Gm,n
Output: Boolean indicating whether V ∈ Sdim(V )

1: H ← Gm,n ∩ V . Gm,n is the set of rank-one bilinear forms of L(Km,Kn;K)
2: if dim(Span(H)) = dim(V ) then
3: return true
4: else
5: return false
6: end if

The naive version of HasRankOneBasis computes the set of rank-one bilinear forms of a vector
space V and computes the dimension of the vector space generated by this space. Consequently,
the complexity is given by cm,n membership tests to V (which can be realized as a Gauss
reduction of a bilinear form of Gm,n by a matrix given by a basis of V ). Generically, the cost of
Algorithm HasRankOneBasis is thus O(mn · dim(V ) · cm,n).

2.2.1 Naive algorithms
The first method that comes to mind is to compute the

(
cm,n
r

)
possible sets of r bilinear forms

and to test whether T is contained in their span. Algorithm 2 is a proposed formalisation of this
algorithm.

Algorithm 2 IterativeExhaustiveSearch

Input: T ⊂ L(Km,Kn;K) of dimension `, Gm,n, an integer r
Output: Sr(T )
S ← ∅
for V ⊂ Gm,n such that #V = r do

if dim(Span(V)) = r and T ⊂ Span(V) then
S ← S ∪ {Span(V)}

end if
end for
return S
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Algorithm 3 RecursiveExhaustiveSearch

Input: T ⊂ L(Km,Kn;K) of dimension `, Gm,n, an integer r
Output: Sr(T )
1: function ExpandSubspace(V,H, r)
2: if dimV = r and T ⊂ V then
3: return {V }
4: else
5: S ← ∅
6: for i ∈ {0, . . . ,#H− 1} do . H = {φi| i ∈ [0,#H− 1]}
7: H′ ← {φi+1, . . . , φ#H−1}
8: S ← S ∪ ExpandSubspace(V ⊕ Span(φi), H′, r)
9: end for

10: return S
11: end if
12: end function
13: return ExpandSubspace(Span(∅),Gm,n, 0, r)

Algorithm IterativeExhaustiveSearch and RecursiveExhaustiveSearch can be considered as re-
spectively the iterative and the recursive version of the same strategy. The recursive calls in
RecursiveExhaustiveSearch can be represented with a tree in which each node at depth k corre-
sponds to a vector space Vi0,i1,...,ik−1

of dimension k generated by a basis of rank-one bilinear
forms φi0 , φi1 , . . . , φik−1

. For example, assuming that the initial set of rank-one bilinear forms is
{φ0, φ1, φ2, φ3}, we would obtain generically for r = 3 the tree given in Figure 2.2.

(
#G
1

)
subspaces

(
#G
2

)
subspaces

(
#G
3

)
subspaces

Span(∅)

V0 V1 V2 V3

V0,1 V0,2 V0,3 V1,2 V1,3 V2,3

V0,1,2 V0,1,3 V0,2,3 V1,2,3

Figure 2.1: Subspaces V visited by recursive calls of Algorithm 3 up to k = 3

The cost of IterativeExhaustiveSearch and RecursiveExhaustiveSearch is smaller than the cost of(
cm,n
r

)
inclusion tests. The inclusion test T ⊂ V is computed with a basis of T formed by ` vectors

of Km+n, whose elements are reduced via Gauss reduction by a matrix ofMr,m+n representing
a basis of V . Thus, the whole cost is smaller than the cost of `

(
cm,n
r

)
Gauss reductions of a vector

of Km+n by a matrix ofMr,m+n.
Algorithm RecursiveExhaustiveSearch can be improved by taking into account the fact that,

in Figure 2.1, we may have V0,1 = V0,2. In this scenario, the recursive call corresponding to the
node V0,3 is facultative. Algorithm ImprovedRecursiveExhaustiveSearch takes into account this
observation.
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Algorithm 4 ImprovedRecursiveExhaustiveSearch

Input: T ⊂ L(Km,Kn;K) of dimension `, Gm,n, an integer r
Output: Sr(T )
1: function ExpandSubspace(V,H, d, r)
2: if d = r and dimV = r and T ⊂ V then
3: return {V }
4: else
5: S ← ∅
6: for i ∈ {0, . . . ,#H− 1} do . H = {φi| i ∈ [0,#H− 1]}
7: H′ ← {φi+1, . . . , φ#H−1} mod φi . Gauss reduction modulo φi
8: S ← S ∪ ExpandSubspace(V ⊕ Span(φi), H′, d+ 1, r)
9: end for

10: return S
11: end if
12: end function
13: return ExpandSubspace(Span(∅),Gm,n, 0, r)

The refinement is the Gauss reduction on Line 7. The set H′ is a subset of H of vectors
that form a set of representatives for the classes given by the Gauss reduction modulo φi. More
specifically, the elements of H are represented as vectors of Km+n and we reduce these vectors
by a vector φi, seen as a matrix ofM1,m+n.

Example 2.2 (Gauss reduction). Taking m = n = 2, we show in this example how the
bilinear forms φ0, φ1, φ2 and φ3, seen as the elements of F2+2

2 = F4
2

(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 0, 1) and (0, 1, 1, 0),

respectively, are reduced row-wise by the element represented by the 1× 4 matrix(
1 0 1 0

)
.

In this scenario we obtain from the set H = {φ0, . . . , φ3} the set

H′ = {(0, 0, 1, 0), (0, 1, 1, 0), (0, 1, 1, 1)}.

In the presented version, the cardinality of H decreases at each call due to this modulo relation.
The algorithms BDEZ and BDEZStab that follow use the same strategy as ImprovedRecur-

siveExhaustiveSearch. Their cost is different because the test on Line 2 is not the same (it uses
HasRankOneBasis) and the initial call to ExpandSubspace takes different parameters.

2.2.2 Oseledets’ heuristics

For certain bilinear maps, Oseledets proposes to use the presence of some rank-one bilinear forms
in the initial vector space T , during the exhaustive search process. Indeed, he observes that for
a vector space V such that V ∈ Sr(T ), if U is a subspace of T generated by rank-one bilinear
forms, then we can construct V via a partial exhaustive search. Montgomery already considers
with a similar idea the case of the polynomial product in [45]. Indeed, he is looking for sets of
rank-one bilinear forms containing
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• a0b0, which is the coefficient of [X0] in the polynomial product A(X) ·B(X),

• an−1bn−1, which is the coefficient of [X2n−2] and

• (a0 + · · ·+ an−1)(b0 + · · ·+ bn−1), which is the sum of the coefficients of the [Xi]’s.

The idea is the following, assuming that the estimated rank of a subspace T is r, as in the
general strategy:

• find the rank-one bilinear forms in T and denote their span by U ;

• enumerate all subspaces W ∈ Sr−dim(U) and test whether U ⊕W contains T .

Proposition 2.3. Let T be a subspace of dimension ` of L(Km,Kn;K), and let r ≥ ` be
an integer. Let U ⊂ T be the subspace containing all the rank-one bilinear forms of T . For
any V ∈ Sr(T ), there exists W ∈ Sr−dim(U) such that T ⊂ U ⊕W .

Proof. Let V ∈ Sr(T ). Then U ⊂ V . Let B be a basis of V of rank-one bilinear forms. Let U
be a basis of U of rank-one bilinear forms. We can complete U with elements of B and obtain a
new basis of V containing U . The elements added to U form a free family generating a subspace
W ∈ Sr−dim(U).

Moreover, Oseledets proposes a heuristic, in the case where the exhaustive search is too
expensive. The idea is to take a bilinear form Φ of T , find rank-one bilinear forms generating Φ,
and add these rank-one bilinear forms to the bases enumerated during the search, which is not
exhaustive anymore.

Example 2.4. For the product of polynomial of degree 2, the bilinear form represented by
0 1 0

1 0 0

0 0 0


is in the target T . It can be decomposed as a sum of the matrices

0 1 0

0 0 0

0 0 0

 and


0 0 0

1 0 0

0 0 0

 .

The search then consists in finding complements of

Span




1 0 0

0 0 0

0 0 0

 ,


0 0 0

1 0 0

0 0 0

 ,


0 1 0

0 0 0

0 0 0

 ,


0 0 0

0 0 0

0 0 1

 ,


1 1 1

1 1 1

1 1 1


 .

Of course, this heuristic may lead to an overestimation of the rank.
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2.2.3 The BDEZ Algorithm (Barbulescu, Detrey, Estibals, Zimmer-
mann)

We describe in this section the algorithm [2, Alg. 1], which is an improvement of the recursive
algorithm RecursiveExhaustiveSearch. It computes Sr(T ) for a given subspace T ⊂ L(Km,Kn;K)
of dimension `.

In order to get all the vector spaces V ∈ Sr such that T ⊂ V , we compute the vector spaces
W ∈ Sr−` such that T ⊕ W ∈ Sr. In other terms, instead of enumerating all the elements
of Sr, we rather enumerate complementary subspaces of T in Sr−`. This restriction can be
done thanks to Proposition [2, Prop. 1], reformulated as Proposition 2.5 using the notations of
Chapter 1.

Proposition 2.5. Let T be a subspace of dimension ` of L(Km,Kn;K), and let r ≥ ` be
an integer. For any V ∈ Sr(T ), there exists W ∈ Sr−` such that T ⊕W = V .

Proof. Let B be a basis of V composed of rank-one bilinear forms. We define inductively a
sequence of subspaces (Wi)0≤i≤r−`, such that for any i we have Wi ∈ Si, as follows.

• The set W0 is the null subspace and satisfies T ⊕W0 = T ⊂ V and dimT ⊕W0 = `.

• For i ∈ {1, . . . , r − `}, assuming that T ⊕Wi−1 ⊂ V and dim (T ⊕Wi−1) = `+ i− 1, there
exists φ ∈ B such that φ 6∈ T ⊕Wi−1 (otherwise T ⊕Wi−1 = V and dimV ≤ r−1, which is
a contradiction). Then, we define Wi as Wi = Wi−1 ⊕ Span (φ). The subspace Wi satisfies
T ⊕Wi ⊂ V , dim (T ⊕Wi) = `+ i and Wi ∈ Si.

Taking W = Wr−`, Proposition 2.5 is proved.

Algorithm BDEZ can be described as a a recursive optimized version of RecursiveExhaus-
tiveSearch. It constructs all the sets of cardinality r − ` of independent bilinear forms of rank
one. The input of BDEZ is: a target T of dimension `, the set of rank-one bilinear forms up to a
multiplicative factor and an integer r (r is a lower bound on the rank of T , as explained in the
global strategy).

Algorithm 5 BDEZ

Input: T ⊂ L(Km,Kn;K) of dimension `, Gm,n, an integer r
Output: Sr(T )
1: function ExpandSubspace(V,H, d, r)
2: if d = r and dimV = r and HasRankOneBasis(V ) then
3: return {V }
4: else
5: S ← ∅
6: for i ∈ {0, . . . ,#H− 1} do . H = {φi| i ∈ [0,#H− 1]}
7: H′ ← {φi+1, . . . , φ#H−1} mod φi . Gauss reduction modulo φi
8: S ← S ∪ ExpandSubspace(V ⊕ Span(φi),H′, d+ 1, r)
9: end for

10: return S
11: end if
12: end function
13: return ExpandSubspace(T,G mod T, `, r) . Gauss reduction of G modulo a basis of T
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This algorithm is represented by a tree in which each node at depth k corresponds to a
vector space T ⊕Wi0,i1,...,ik−1

of dimension k generated by a basis of T and rank-one bilinear
forms φi0 , φi1 , . . . , φik−1

. For example, assuming that the initial set of rank-one bilinear forms is
{φ0, φ1, φ2, φ3} and ignoring the reduction computed on Line 7, we would obtain generically for
r − ` = 3 the tree given in Figure 2.2.

(
#G
1

)
subspaces

(
#G
2

)
subspaces

(
#G
3

)
subspaces

T

T ⊕W0 T ⊕W1 T ⊕W2 T ⊕W3

T ⊕W0,1 T ⊕W0,2 T ⊕W0,3 T ⊕W1,2 T ⊕W1,3 T ⊕W2,3

T ⊕W0,1,2 T ⊕W0,1,3 T ⊕W0,2,3 T ⊕W1,2,3

Figure 2.2: Subspaces V visited by recursive calls of Algorithm 5 up to k = 3

2.2.4 Improving on BDEZ using RP-automorphisms
We present in this section, with kind permission from the authors, an unpublished improve-
ment [3] to Algorithm BDEZ. We use the RP-automorphisms defined in Chapter 1.

The algorithmic improvement comes from the fact that, for any target space T ⊂ L(Km,Kn;K)
of dimension ` and any integer r ≥ `, we have

∀σ ∈ Stab(T ), Sr(T ) ◦σ = Sr(T ),

because σ preserves the rank (see Proposition 1.18). Thus, we can restrict our interest to the
computation of the quotient Sr(T )/Stab(T ) instead of Sr(T ).

In order to enumerate the elements of Sr(T ), it is sufficient to obtain a set of representatives
of Sr(T )/Stab(T ), from which one can recover the whole orbits through the group action of
Stab(T ). Moreover, we can compute Sr(T )/Stab(T ) faster than Sr(T ). Thus, we adapt our
general strategy to this idea.

General strategy for computing the bilinear rank using RP-automorphisms The
new algorithmic strategy we are considering is stated as follows, for a target subspace T ⊂
L(Km,Kn;K) of dimension ` and the associated subgroup Stab(T ) of RP-automorphisms sta-
bilizing T :

• start with the known lower bound r = ` on the bilinear rank;

• compute a set of representatives of Sr(T )/Stab(T ) (the set Sr(T ) up to the action of
Stab(T ));

• if Sr(T )/Stab(T ) = ∅, increment r and return to the previous step;

• recover Sr(T ) using the action of Stab(T );

• r is the bilinear rank and Sr(T ) the set of optimal decompositions.
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Algorithm BDEZStab is a recursive approach for the computation of a set of representatives
of Sr(T )/Stab(T ). The input of BDEZStab is: a target subspace T of dimension `, the set of
rank-one bilinear forms of L(Km,Kn;K) up to a multiplicative factor, the group Stab(T ) and
an integer r ≥ `.

Algorithm 6 BDEZStab

Input: T ⊂ L(Km,Kn;K), the stabilizer Stab(T ), an integer r
Output: A set of representatives of Sr(T )/Stab(T )
1: function ExpandSubspace(V,H, U, d, r) . V ⊂ L(Km,Kn;K),H ⊂ G, U ⊂ Stab(T ), r ∈ N
2: if d = r and dimV = r and HasRankOneBasis(V ) then
3: return {V }
4: else
5: S ← ∅
6: O ←H/U . φ and φ′ lie in the same orbit if V ⊕ Span(φ) = (V ⊕ Span(φ′)) ◦ σ
7: for i ∈ {0, . . . ,#O − 1} do . O = {Oi | i ∈ {0, . . . ,#O − 1}}
8: φ← Representative(Oi) . Choose a representative of the orbit Oi
9: U ′ ← Stab (V ⊕ Span({φ})) ∩ U

10: H′ ← ∪j≥iOj
11: S ← S ∪ ExpandSubspace(V,H′, U ′, d+ 1, r)
12: end for
13: return S
14: end if
15: end function
16: return ExpandSubspace(T,G,Stab(T ), `, r)

On Line 6, we split the set H into orbits and we have a basis of V forming a dim(V ) ×mn
matrix M . We proceed as follow:

1. if H is not empty, pick an element φ of H,

2. compute its orbit O under the action of U and reduce its elements by M ,

3. remove the elements ψ of H such that their reduction by M is in O,

4. add to a list O the orbit O and return to Step 1.

Figure 2.3 describes this recursive approach using a tree and illustrates how some branches
are pruned, relying on Proposition 2.6. We assume that the initial set of rank-one bilinear forms
is {φ0, φ1, φ2, φ3} and that we have σ ∈ Stab(T ) such that σ(φ0) = φ1, σ(φ1) = φ0, σ(φ2) = φ3
and σ(φ3) = φ2.

Proposition 2.6. Let T and V be subspaces of L(Km,Kn;K) such that V ∈ Sr(T ). Then,
given a bilinear form φ of rank one, if V satisfies V ∩ ({φ} ◦Stab(T )) 6= ∅, there exists an
element V ′ in the equivalence class of V for the action of Stab(T ) and such that φ ∈ V ′.

Proof. There exists σ ∈ Stab(T ) such that φ ◦σ ∈ V . We can then take V ′ = V ◦(σ−1), which
meets all the conditions.

The particularity of BDEZStab is that, instead of enumerating all the elements of H as in
BDEZ, we restrict ourselves to one element per equivalence class for the action of U ⊂ Stab(V ).
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We use in particular the fact that the additional computations such as stabilizers on Line 9
are negligible, compared to the speed-up obtained by pruning branches in BDEZ. Heuristically,
BDEZStab is faster than BDEZ by a factor # Stab (T ). This method constitutes the state of the
art for the current work: our contribution is compared to the performance of this algorithm.

T

T ⊕W0 T ⊕W2T ⊕W1 T ⊕W3

T ⊕W0,1 T ⊕W0,2 T ⊕W0,3 T ⊕W1,2 T ⊕W1,3 T ⊕W2,3

T ⊕W0,1,2 T ⊕W0,1,3 T ⊕W0,2,3 T ⊕W1,2,3

σ σ

σ

Figure 2.3: Pruning branches in an exhaustive search using RP-automorphisms.
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Chapter 3

A new algorithm using coverings

Our contribution consists in reducing the number of vector spaces W that we need to enumerate
in order to find those that satisfy T ⊕W ∈ Sr, where T is the vector space corresponding to a
bilinear map. To this effect, we restrict ourselves to vector spaces W satisfying some properties
intrinsic to T . In this chapter, the definition and theoretical aspects of the set of vector spaces
that satisfy these properties are treated. We give several examples, such as the short product,
the circulant product and the matrix product, in Chapter 4.

3.1 Intermediate algorithms
Algorithms ImprovedRecursiveExhaustiveSearch and BDEZ, presented in Section 2.2.3 and 2.2.4,
can be seen as two extreme cases of a more general set of strategies. Indeed, ImprovedRecur-
siveExhaustiveSearch and BDEZ are both associated to a tree whose leaves are labeled by

(
cm,n
d

)
elements (not necessarily distinct) of Sd, d being a positive integer. In the case of ImprovedRecur-
siveExhaustiveSearch, d = r where r is a candidate for the rank of a bilinear map Φ represented by
the subspace T . In the case of BDEZ, d = r− `, where ` is the dimension of T . Both algorithms
call ExpandSubspace, but with different inputs.

Between RecursiveExhaustiveSearch and BDEZ, we can define intermediate algorithms, involv-
ing a parameter k ∈ {0, . . . , `}, consisting in enumerating W ∈ Sr−`+k and then selecting the
subspaces, which satisfy

T +W ∈ Sr.

At first sight, since #Sr−`+k > #Sr−`, BDEZ should be preferred to any of those interme-
diate algorithms. However, for vector spaces T associated to specific bilinear maps, there exists
a positive integer k such that any V ∈ Sr(T ) can be decomposed as

V = T +W

where W ∈ Sr−`+k and T ∩ W satisfies some property, intrinsic to T , such as containing a
particular subspace F of dimension k, or in broader generality containing one subspace Fi among
a finite set {F0, . . . , Fg−1} that is determined by T . Later on in this work, we will make this
notion more precise and call such a finite set a stem. It allows one to compute a covering of
Sr(T ), which is why we use this abuse of terminology.

Our main contribution uses the fact that, for a well chosen subspace F ⊂ T of dimension k,
we may have

#Sr−`+k(F ) ≥ #Sr−`. (3.1)

29
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Thus, for specific T ’s, for which we know a set of subspaces Fi satisfying the Inequality 3.1 along
with an algorithm computing the sets Sr−`+k(Fi) faster than Sr−`, we are able to deduce the
set Sr(T ) faster than BDEZ. Note that this method relies on the knowledge of the subspaces
Fi, which form, in fact, the so-called stem, as defined formally in the next section. Thus, the
complexity of our method is difficult to establish, as it takes into account the algebraic specificities
of the bilinear maps that are considered, such as the short product or the matrix product.

3.2 Coverings of optimal decompositions
First, our strategy consists in constructing, for any r ≥ `, g sets {Ei,r}i that are g subsets
of Sr−`+ki , where ki is a non negative integer, satisfying some property described in Defini-
tion 3.1.

Definition 3.1 (Covering of a vector space). Let T be a subspace of GL(Km) × GL(Kn)
of dimension `. Let (Ei,r)0≤i<g be a family of subsets parameterized by an integer r ≥ `
and where Ei,r ⊂ Sr−`+ki , ki being a positive integer, for all i ∈ {0, . . . , g − 1},. Then,
(Ei,r)0≤i<g is said to be a covering of T if and only if, for any vector space W ∈ Sr−` such
that T ⊕ W ∈ Sr, there exist an index i ∈ {0, . . . , g − 1}, a subspace V ∈ Ei,r, and an
RP-automorphism σ ∈ Stab(T ) such that T + (V ◦σ) = T ⊕W .

Proposition 3.2. Given T as above and a covering (Ei,r)0≤i<g of T , then, for any r ≥ `,
we have

Sr(T ) ⊂ {T + V | ∃i ∈ {0, . . . , g − 1} , V ∈ Ei,r ◦ Stab(T )}.

Proof. Let V ∈ Sr(T ). By Proposition 2.5, there exists W ∈ Sr−` such that T ⊕ W = U .
Then, by Definition 3.1, there exist an index i ∈ {0, . . . , g − 1}, a subspace V ∈ Ei,r, and an
RP-automorphism σ ∈ Stab(T ) such that T + (V ◦σ) = T ⊕W . Taking V ′ = V ◦σ, we thus
have U = T + V ′ and V ′ ∈ Ei,r ◦ Stab(T ), which proves the inclusion.

Thus, assuming that we have a method for computing the Ei,r’s, we are able to cover the whole
set Sr(T ). For example, the family composed of the single set E0,r = Sr−`/Stab(T ) is a covering
of T and an algorithm is known for its enumeration (namely, BDEZStab). We describe below
how we construct the Ei,r’s that we use in practice.

Definition 3.3 (Stem of a vector space). For a vector space T , a family (Fi)0≤i<g of g
subspaces Fi ⊂ T of dimension ki is said to be a stem of T if and only if, for any basis B
of T , there exist i ∈ {0, . . . , g − 1}, an RP-automorphism σ ∈ Stab(T ) and a free family
F ⊂ B of size ki such that

Span(F) ◦σ = Fi.

Proposition 3.4. For a vector space T , a stem of T given by g subspaces Fi ⊂ T , and g
subgroups Ui ⊂ Stab(T )∩Stab(Fi), the set of Ei,r’s, such that Ei,r is a set of representatives
of the quotient Sr−`+ki(Fi)/Ui, is a covering of T .

Proof. Let W ∈ Sr−` be such that T ⊕W ∈ Sr. Take a basis W of W , and complete it into a
basis of T ⊕W using ` rank-one bilinear forms, denoted by {ψi}0≤i<`. For all i ∈ {0, . . . , `− 1},
write ψi = ti + wi, with ti ∈ T and wi ∈W .
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The ti’s are linearly independent. Otherwise, there would exist coefficients (λi)0≤i<` such
that

∑`−1
i=0 λiti = 0, whence

∑`−1
i=0 λiψi =

∑`−1
i=0 λiwi, which would then contradict the fact that

{ψi}0≤i<` completes W into a basis of T ⊕W .
Consequently, B = {ti}0≤i<` is a free family of ` vectors of T and, as dim(T ) = `, B is a basis

of T . Then, by Definition 3.3, there exist an index i ∈ {0, . . . , g − 1}, a subset F ⊂ B of size
ki = dim(Fi), and an RP-automorphism σ ∈ Stab(T ) such that Span(F) ◦σ = Fi.

Let V = W⊕Span(F). Writing F = {ti}i∈I , with I ⊂ {0, . . . , `− 1}, we define F ′ = {ψi}i∈I .
Since ψi = ti+wi and Span(F ′) ∈ Ski , we have V = W ⊕Span(F) = W ⊕Span(F ′) ∈ Sr−`+ki .

Now, consider V ′ = V ◦σ = (W ⊕ Span(F)) ◦σ: we also have V ′ ∈ Sr−`+ki , as RP-
automorphisms preserve the bilinear rank, and Fi = Span(F) ◦σ ⊂ V ′, whence V ′ ∈ Sr−`+ki(Fi).

Finally, let V ′′ ∈ Ei,r be a representative of the equivalence class of V ′ in the quotient set
Sr−`+ki(Fi)/Ui: there exists an RP-automorphism γ ∈ Ui such that V ′′ = V ′ ◦ γ. We then have

T + (V ′′ ◦ γ−1 ◦σ−1) = T + (V ′ ◦σ−1) = T + V = T + (W ⊕ Span(F)) = T ⊕W

where the last equality comes from the fact that Span(F) ⊂ T . Finally, as γ−1 ◦σ−1 ∈ Stab(T ),
this proves the result.

Given T and a stem of T , we can derive a new algorithm that computes Sr(T ) via the
computation of some intermediate sets Ei,r = Sr−`+ki(Fi)/Ui for i ∈ {0, . . . , g − 1}.

Example 3.5 (Two examples of stems). For any vector space T , let B be a basis of T .
There exists a subset of B generating T (namely, B): {T} is a stem of T . There exists also
a subset of B generating Span(∅) (namely, ∅): {Span(∅)} is a stem of T .

• An enumeration algorithm that uses {T} as a stem amounts to computingSr(T )/Stab(T ).
In this case, we did not decompose the original problem into simpler problems.

• If the stem chosen is the set {Span(∅)}, this is equivalent to enumerate a set of repre-
sentatives of the quotientSr−`(Span(∅))/Stab(T ). For this purpose, no better methods
than BDEZStab is known.

Thus, BDEZStab can be seen as an approach derived from the stem {Span(∅)}. We propose here
other strategies that are derived from stems, given by sets of subspaces Fi ⊂ T of dimension
ki. The enumeration of a set Sr−`+ki(Fi) is interesting in practice if its cardinality is less than
#Sr−`. However, its cost depends also on the algorithms used for the computation of quotients
and stabilizers and on how large ki is, which is detailed below.

No automatic method is known to determine, how to choose a stem for a given vector space
T : we have to provide a stem for each T . This task has to be done by hand specifically for each
bilinear map. In Chapter 4, we provide examples of such families for several bilinear maps.

Let Fi be a basis of Fi. Our strategy assumes that we have a finite representation of a group
Ui such that Ui ⊂ Stab(T )∩Stab(Fi). In Proposition 3.4, the larger the groups Ui are, the smaller
the Ei,r’s are. And we prefer to keep the Ei,r’s as small as possible, since it gives smaller sets to
enumerate. Thus, this should lead us to choose Ui = Stab(T ) ∩ Stab(Fi). However, in practice,
the method used in our implementation is specialized to the choice Ui = Stab(T ) ∩ Stab(Fi) ⊂
Stab(T )∩Stab(Fi) (we have Stab(Fi) ⊂ Stab(Fi)) because only in this case do we have a practical
algorithm to enumerate a set of representatives for the quotient Sr−`+ki(Fi)/Ui.
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Notation 3.6. For a free family F of k bilinear forms and a positive integer d, we let

S̃d+k(F) = Sd+k(Span(F))/Stab(F).

In order to enumerate sets of the form Sr−`+ki(Fi)/Stab(T ) ∩ Stab(Fi), we adopt a three-step
strategy.

Remark 3.7. This strategy requires the precomputation of a set of representatives of the
quotient

Sr−`+ki/GL(Km)×GL(Kn).

Chapter 5 describes how to compute such a set. We may also precompute the quotient

Sr−`+ki/RPAm,n,

which is smaller. It should be used in an optimized implementation. In our applications, it
is not the main obstacle and the loss can often be recovered if the vector space of a bilinear
map is invariant under the action of the transposition.

However, there is a practical limit on their dimension ki, due to the precomputations
that are used in our method and that constitute a bottleneck. Assuming that

#
(
Sd/GL(Kd)×GL(Kd)

)
behaves as (d!)1.1 over F2 (which is an empirical estimate), storing a set of representatives
of

Sd/GL(Kd)×GL(Kd)

for d = 13 would require 15 terabytes for instance. Consequently, given the largest “d” for
which we are able to compute in practice

Sd/GL(Km)×GL(Kn),

we have a practical constraint on how large the r−`+ki’s may be: we should have r−`+ki ≤ d
for all i.

The first step consists in computing S̃r−`+ki(Fi) and is detailed in Section 3.3. The second step
applies the action of the left transversal

Stab(Fi)/Stab(T ) ∩ Stab(Fi),

which can be computed using the algorithms proposed in [33] for example. The third step consists
in calling HasRankOneBasis for each element of the previous set.

We describe in Algorithm CoveringSetsMethod the global strategy to find optimal formulas
for T in the sense of the bilinear rank, that is, to enumerate Sr(T ) given a stem. We assume that
we are given a subspace T and a set of g free families F0, . . . ,Fg−1 of T such that {Span(Fi)}i
forms a stem of T .
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Algorithm 7 CoveringSetsMethod

Input: T, {Fi}0≤i<g,
{
Sr−`+ki/GL(Km)×GL(Kn)

}
0≤i<g , r

Output: Sr(T )
1: S ← ∅
2: for i ∈ {0, . . . , g − 1} do
3: Q ← S̃r−`+ki(Fi), obtained from Sr−`+ki/GL(Km)×GL(Kn) . See Algorithm 8 in 3.3
4: L ← Stab(Fi)/Stab(T ) ∩ Stab(Fi) . use e.g. [33]
5: for σ ∈ L,W ∈ Q do
6: if HasRankOneBasis(T + (W ◦σ)) then
7: S ← S ∪ {T + (W ◦σ)}
8: end if
9: end for

10: end for
11: return

⋃
V ∈S V ◦ Stab(T )

The computation of the quotient Q on Line 3 of CoveringSetsMethod is detailed in Section 3.3.

3.3 Enumerating the elements of S̃r−`+k(F)

In this section, T is a vector space of dimension `. For Ψ0, . . . ,Ψk−1 bilinear forms of L(Km,Kn;K),
Algorithm 8 explains how to compute a set of representatives of the quotient

S̃r−`+k({Ψ0, . . . ,Ψk−1}) = Sr−`+k(Span({Ψ0, . . . ,Ψk−1}))/Stab({Ψ0, . . . ,Ψk−1}),

which is required in Algorithm CoveringSetsMethod of Section 3.2.

Algorithm 8 IntermediateSetViaQuotientComputation

Input: Ω a set of representatives of Sr−`+k/GL(Km)×GL(Kn), {Ψ0, . . . ,Ψk−1}
Output: One representative per orbit of S̃r−`+k({Ψ0, . . . ,Ψk−1}), defined as above
1: Q ← ∅
2: for W ∈ Ω do
3: for {{Φ0, . . . ,Φk−1} ⊂W | ∀t, rk(Φt) = rk(Ψt)}/Stab(W ) do . See Algorithm 9
4: if ∃σ ∈ GL(Km)×GL(Kn), {Φ0, . . . ,Φk−1} ◦σ = {Ψ0, . . . ,Ψk−1} then
5: Q ← Q∪ {W ◦σ}
6: end if
7: end for
8: end for
9: return Q

Correctness of Algorithm 8. By construction, any element of Q is an element of

Sr−`+k({Ψ0, . . . ,Ψk−1}).

• First, we prove that any orbit of S̃r−`+k({Ψ0, . . . ,Ψk−1}) has a representative in Q.
Let W ′ be a representative of an orbit in S̃r−`+k({Ψ0, . . . ,Ψk−1}). There exist σ ∈
Stab({Ψ0, . . . ,Ψk−1}) andW ∈ Q such thatW ◦σ = W ′. Thus, we have {Ψ0, . . . ,Ψk−1} ◦σ−1 ⊂
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W and the set
{

Ψ0 ◦σ−1, . . . ,Ψk−1 ◦σ−1
}
satisfies the predicate on Line 4. Any σ′ such

that {Ψ0, . . . ,Ψk−1} ◦σ−1 ◦σ′ = {Ψ0, . . . ,Ψk−1} satisfies

σ′ ∈ σ ◦ Stab({Ψ0, . . . ,Ψk−1}),

which means that an element ofW ◦σ ◦ Stab({Ψ0, . . . ,Ψk−1}) = W ′ ◦ Stab({Ψ0, . . . ,Ψk−1})
is included in the list returned by Algorithm 8. Thus, the list returned contains at least
one representative per orbit of S̃r−`+k({Ψ0, . . . ,Ψk−1}).

• In the following, we prove that each orbit of S̃r−`+k({Ψ0, . . . ,Ψk−1}) has a unique repre-
sentative in Q.
Assume that there exist W,W ′ ∈ Q and γ ∈ Stab({Ψ0, . . . ,Ψk−1}) such that W = W ′ ◦ γ.
By construction, there exists W0,W

′
0 ∈ Sr−`+k and σ, σ′ ∈ GL(Km) × GL(Kn) such

that W = W0 ◦ σ and W ′ = W ′0 ◦ σ′. Then W ′0 = W0 ◦ σ ◦ γ−1 ◦ σ′−1, whence W ′0 =
W0 as on Line 2 of Algorithm 8 we enumerate only one representative of each orbit of
Sr−`+k/GL(Km)×GL(Kn). Thus, σ ◦γ−1 ◦σ′−1 ∈ Stab(W0). Still by construction, there
exists {Φ0, . . . ,Φk−1} and {Φ′0, . . . ,Φ′k−1} ⊂W0 such that

{Φ0, . . . ,Φk−1} ◦σ = {Ψ0, . . . ,Ψk−1}

and
{Φ′0, . . . ,Φ′k−1} ◦σ′ = {Ψ0, . . . ,Ψk−1}.

Then,

{Φ′0, . . . ,Φ′k−1} = {Ψ0, . . . ,Ψk−1} ◦σ′−1 = {Ψ0, . . . ,Ψk−1} ◦ γ−1 ◦σ′−1 = {Φ0, . . . ,Φk−1} ◦σ ◦ γ−1 ◦σ′−1

and {Φ0, . . . ,Φk−1} is in the same orbit as {Φ′0, . . . ,Φ′k−1} under the action of Stab(W0),
which is contradictory with the definition of the quotient on Line 3.

On Line 3 of Algorithm 8, we select all tuples of size k of elements Φ0, . . . ,Φk−1 such that
rk(Φi) = rk(Ψi) for any i ∈ {0, . . . , k − 1}. The different tuples are enumerated up to the action
of Stab(W ). We proceed like described in Algorithm EnumerateTuples. We use a backtracking
algorithm, similar to BDEZ, for which the recursive depth is bounded by k.

The number of recursive calls is bounded by #W for this algorithm. Consequently, the
complexity is bounded by (#W )k, without taking into account the gain due to the use of RP-
automorphisms. The algorithms described in [33] allows one to compute the orbits on Line 6. In
our applications, k and dim(W ) are small.

Testing the predicate of Line 4 of Algorithm 8 is a problem generalizing the problem of [12, Ch.
19] and [36]: given two pairs (M0,M1) and (N0, N1) of (Mm,n)2, determine whether there exists
two invertible matrices X and Y such that (XTM0Y,X

TM1Y ) = (N0, N1). This can be done by
computing a Weierstrass-Kronecker canonical form for (M0,M1). When we consider more than 2
matrices, for example 3 matrices (M0,M1,M2) sent on (N0, N1, N2), we compute (X,Y ) such that
(M0,M1) is sent on (N0, N1) and we compose it with elements of (StabM0 ∩ StabM1)/StabM2,
computed with the algorithms proposed in [33] for example. The complexity for finding all the
RP-automorphisms σ in IntermediateSetViaQuotientComputation is bounded by the cardinality of
Sr−`+k (which is comparable to BDEZ) by construction, and is hard to estimate more precisely.
In our applications, it appears to be negligible compared to BDEZ.
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Algorithm 9 EnumerateTuples

Input: k, W , Stab(W ), Ψ0, . . . ,Ψk−1
Output: One representative per orbit of {{Φ0, . . . ,Φk−1} ⊂W | ∀t, rk(Φt) = rk(Ψt)}/Stab(W )
function RecursiveEnumeration(Φ, C, i, U) . C is a partition of the non zero elements of W , U
is a subgroup of Stab(W )

if i = k then
return Φ

else
S ← ∅
C′ ←

⋃
O∈C {O/U}

for j ∈ {0, . . . ,#C′ − 1} do . C′ = {Oj | j ∈ [0,#C′ − 1]}
Φ[i]← Representative(Oj)
if rk(Φ[i]) = rk(Ψi) then
S ← S ∪ RecursiveEnumeration(t, {Oj , . . . ,O#C′−1} , i+ 1, U ∩ Stab(Φ[i]))

end if
end for
return S

end if
end function
C ← {{Φ ∈W | Φ 6= 0}}
Φ← ( ) . Empty vector of size k
return RecursiveEnumeration(Φ, C, 0,Stab(W ))
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Chapter 4

Application to examples of bilinear
maps

An implementation in Magma V2.21-3 [9] of the algorithms BDEZ, BDEZStab and the new
method has been done and is available at the address

http://karancode.gforge.inria.fr.

We provide in this section the stems corresponding to certain bilinear maps and we compare
the timings obtained for them, using different algorithms. Our Magma implementation of the
algorithm is clearly slower than the original C version described in [2]. However, since we
are interested in the speed-up obtained from our work, we need a fair approach. We show
in particular that Algorithm BDEZStab, although it has not been written in a multi-threaded
version and in C, improves considerably on the timings estimated in [2]. The new algorithm
described in Chapter 3 is denoted by CoveringSetsMethod: compared to Algorithm BDEZStab, it
constitutes a huge speed-up on particular instances of the bilinear rank problem. All the timings
presented in this section have been done on a single core 3.3 GHz Intel Core i5-4590.

We need a few notations to denote the various bilinear maps we are interested in:

• MatProd(p,q,r) denotes the product of matrices p× q by q × r,

• ShProd` denotes the product of polynomials modulo X`,

• CircProd` the product of polynomials modulo X` − 1.

We describe in Table 4.1 timings for various bilinear maps and the implementations of BDEZ
and BDEZStab. The number of tests represents the number of calls to HasRankOneBasis.

It is possible to estimate the time it would take to obtain a result for a bilinear rank problem
out of reach for BDEZ or BDEZStab. We denote by Nt the number of calls to HasRankOneBasis
in these algorithms when the input r is equal to `+ t. (` is the dimension of the vector space T
corresponding to the bilinear map). Since when r is too large, BDEZ is too expensive, there is a
practical limit on the known values of Nt, t being a positive integer. We consider the ratio d NtNt−1

e
to estimate Nt+1. Assuming that this ratio decreases with t, which seems to hold empirically,
we have

Nt+1 ≤
⌈
Nt
Nt−1

⌉
· Nt, (4.1)

37
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t being a positive integer of {1, . . . , r − `}.
Thus, we are able to predict timings for bilinear maps indicated in Table 4.1 via to this

assumption, which allows us to compare Algorithm BDEZ to other approaches for problems of
larger sizes. We estimate the number of tests by computing

Nt ·
⌈
Nt
Nt−1

⌉r−`−t
where r − ` is the difference rk(T ) − dim(T ) for T representing a bilinear map and t is the
largest integer for which we are able to compute Nt. The time can be estimated with a similar
technique. We observe that the speed-up seems to match with # Stab(T ), as expected. The
estimated values in Table 4.1 relying on BDEZStab have not been effectively done because the
implementation of CoveringSetsMethod allowed us to obtain more results, more efficiently. The
estimations rely on the heuristic given by the Inequality 4.1. In the global strategy, we were
increasing progressively the lower bound r on the rank, before running BDEZ, BDEZStab or
CoveringSetsMethod. For r < rk(T ), the time spent in those algorithms is negligible, because of
the exponential growth of their complexity.

It is not clear how to estimate timings for our approach CoveringSetsMethod beyond what
has been done and reported in Table 4.1. However, for the set of bilinear maps for which Cov-
eringSetsMethod allows one to compute all the optimal formulas, we observe a clear speed-up
compared to BDEZStab. For example, in order to compute the bilinear rank of bilinear maps of
larger degrees using this method, we need to be able to compute and store all the elements of

S10/GL(K10)×GL(K10)

for ShProd6 (and even more for other bilinear maps), which has not been done yet and requires an
optimized implementation of the algorithm described in Chapter 5, combined with a classification
of its orbits.

Henceforth, we describe how we computed optimal formulas for bilinear maps given in Ta-
ble 4.1 via our approach. We provide some technical details, specific to each bilinear map,
necessary for an implementation.

4.1 Application to the short product

4.1.1 Structure of the short product

Let ` be a positive integer, let Φ be the bilinear map Φ ∈ L(K`,K`;K`) defined by the short
product

Φ :


a0
...

a`−1

 ,


b0
...

b`−1

 7→


c0
...

c`−1


such that

∑
0≤i<` ciX

`−1−i = (
∑

0≤i<` aiX
i)(
∑

0≤i<` biX
`−1−i) mod X`. Let T be the sub-

space of L(K`,K`;K) spanned by the ` bilinear forms that are the coordinates of Φ, denoted
by Φ0, . . . ,Φ`−1.

The matrix representing the element
∑

0≤i<`miΦi ∈ T , where mi ∈ K, is
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bilinear map rank algorithm nb. of tests time (s)

ShProd3 5
BDEZ 5.9 · 102 1.4 · 10−1

BDEZStab 3.4 · 10 0.0

ShProd4 8

BDEZ 5.2 · 107 4.3 · 103

BDEZStab 3.1 · 105 2.7 · 10

CoveringSetsMethod 2.8 · 102 3.0

ShProd5 11

BDEZ 1.8 · 1016 (est.) 5.7 · 1012 (est.)
BDEZStab 6.9 · 1011 (est.) 2.2 · 108 (est.)

CoveringSetsMethod 6.3 · 106 2.4 · 103

ShProd6 14
BDEZ 3.9 · 1026 (est.) 4.7 · 1023 (est.)

BDEZStab 2.0 · 1019 (est.) 2.7 · 1016 (est.)

CircProd3 4
BDEZ 36 0.0

BDEZStab 6 0.1 · 10−2

CircProd4 8
BDEZ 5.2 · 107 4.3 · 103

BDEZStab 3.1 · 105 2.7 · 10

CircProd5 10

BDEZ 4.0 · 1013 (est.) 1.2 · 1010 (est.)
BDEZStab 1.0 · 1010 (est.) 3.5 · 106 (est.)

CoveringSetsMethod 8.8 · 108 5.4 · 103

CircProd6 12
BDEZ 1.0 · 1020 (est.) 1.3 · 1017 (est.)

BDEZStab 1.1 · 1015 (est.) 1.5 · 1012 (est.)

MatProd(2,2,2) 7
BDEZ 1.05 · 106 8.5 · 10

BDEZStab 6.8 · 103 5.0 · 10−1

MatProd(3,2,3) 15
BDEZ 9.2 · 1019 (est.) 1.1 · 1017 (est.)

BDEZStab 2.6 · 1013 (est.) 3.4 · 1010 (est.)
CoveringSetsMethod 1.6 · 109 8.5 · 105

MatProd(2,3,2) 11

BDEZ 2.3 · 1023 (est.) 2.7 · 1020 (est.)
BDEZStab 4.6 · 1018 (est.) 5.4 · 1015 (est.)

CoveringSetsMethod 6.3 · 1010 4.1 · 106

Table 4.1: Number of tests and timings obtained with Algorithms BDEZ, BDEZStab
and CoveringSetsMethod for various bilinear maps over K = F2.
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M(m0, . . . ,m`−1) =

m0 m1 m`−1

0

m1

0 0 m0


 ,

in the canonical basis. This matrix is an upper triangular Toeplitz matrix.
Let N be the matrix M(0, . . . , 1, 0). The matrix N is a nilpotent matrix such that

∀j ∈ {0, . . . , `− 1} , M(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
j zeros

) = N `−1−j ,

and N ` = 0. The elements of the algebra K[N ] are the upper triangular Toeplitz matrices and
K[N ] ∼= K[X]/(X`).

We provide in Theorem 4.1 a useful property describing the action of Stab(T ) on T .

Theorem 4.1. Let any integer ` ≥ 2:

1. the orbit of the identity matrix I = N0 for the action of Stab(T ) is the set of invertible
matrices of T ;

2. the orbit of N for the action of Stab(T ) ∩ Stab(I) is the set of nilpotent matrices of
T ;

3. for any pair (Ψ,Ψ′) of elements of T such that rk(Ψ) = ` and rk(Ψ′) = ` − 1, there
exists σ ∈ Stab(T ) such that

(Ψ ◦ σ,Ψ′ ◦ σ) = (I,N);

4. we have Stab(I)∩Stab(N) ⊂ Stab(T ) and the cardinality of Stab(T ) is (#K)3`−4(#K−
1)3.

Proof. • First, we prove that, for any element M ∈ T of rank `, there exists R ∈ K[X] a
polynomial of degree at most `− 1 such that R(0) 6= 0 and R(N) = M , and that

∃N1 ∈ Stab(T ), I ·N1 = R(N).

Any element in the orbit of I has rank ` and any element of rank ` in T is associated to
a polynomial R ∈ K[X] evaluated in N of degree ` − 1 such that R(0) 6= 0. It remains
to prove that the orbit of I corresponds exactly to the set of rank-` elements. Given
R ∈ K[X] such that R(0) 6= 0, we denote by N1(R) the element (I,R(N)). This element
is in Stab(T ) because, for any S, we have R(N)S(N) = (RS mod X`)(N), which is a
polynomial evaluated in N of degree at most `− 1. We have:

I ·N1(R) = (I)
T · I ·R(N) = R(N).

• We prove that, for any element M ∈ T of rank `− 1, there exists R ∈ K[X] a polynomial
of degree at most `− 1 such that R(0) = 0, R′(0) 6= 0 and R(N) = M , and that

∃N2 ∈ Stab(I) ∩ Stab(T ), N ·N2 = R(N).
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An element of the orbit of N is an element of rank `− 1 and an element of rank `− 1 in T
is associated to a polynomial R ∈ K[X] evaluated in N of degree at most `− 1 such that
R(0) = 0 and R′(0) 6= 0. It remains to prove that N can mapped to any element of rank
`− 1 via the action of Stab(I) ∩ Stab(T ).
Let e` be the vector (0, · · · , 0, 1), such that R(N)·e` corresponds to the last colum of R(N).
We have R(N)`−1e` 6= 0. Thus, let P (N) be the matrix whose columns are given by the
tuple (R(N)`−1 · e`, R(N)`−2 · e`, . . . , R(N) · e`, e`). We have R(N)P (N) = (0, R(N)`−1 ·
e`, . . . , R(N)2 ·e`, R(N)·e`) = R(N) and P (N)N = (0, R(N)`−1 ·e`, R(N)`−2 ·e`, . . . , R(N)·
e`). Consequently, we have R(N)P (N) = P (N)N and P (N)−1R(N)P (N) = N . We take
N2(R) = (P (N)

T
, P (N)−1):

N ·N2(R) = R(N) and N2(R) ∈ Stab(I) ∩ Stab(T ).

• Let (Ψ,Ψ′) be a couple of elements of T such that rk(Ψ) = ` and rk(Ψ′) = `−1. Let (P, P ′)
be the corresponding matrices. According to the previous points, there exist N1 ∈ Stab(T )
such that I ·N1 = P and N2 ∈ Stab(T )∩Stab(I) such that N ·N2 = P ′ ·N−11 . Consequently,
we have

(I,N) = (P ·N−11 ·N−12 , P ′ ·N−11 ·N−12 ).

• We prove that we have Stab(I) ∩ Stab(N) ⊂ Stab(T ) and that, for any N3 ∈ Stab(I) ∩
Stab(N), there exists R ∈ K[X] a polynomial of degree at most `− 1 such that R(0) 6= 0
and

N3 = ((R(N)−1)
T
, R(N)).

Let N3 ∈ Stab(I) ∩ Stab(N). Since N3 ∈ Stab(I), there exists P ∈ GL` such that N3 =

((P−1)
T
, P ) and, since N3 ∈ Stab(N), P−1NP = N . We have PN = NP .

Multiplying a matrix by N on the left shifts the rows upward and multiplying N on the
right shifts the columns on the right. Therefore, denoting by pij the coefficients of P , with
p00 6= 0 and pi0 = 0 for i ≥ 1, we have

∀(i, j) ∈ {1, . . . , `− 1} × {0, . . . , `− 1} , pi,j = pi+1,j+1.

More particularly, P is equal to the evaluation in N of a polynomial R such that R(0) 6= 0,
from which we deduce that

N3 = ((R(N)−1)
T
, R(N)) and N3 ∈ Stab(T ).

Given the form of the elements of Stab(I)∩Stab(N), its cardinality is equal to the number
of polynomials R of degree at most ` − 1 such that R(0) 6= 0, which is #K`−1(K − 1).
Combining with the fact that there are #K`−1(K − 1) ·#K`−2(K − 1) couples (Ψ,Ψ′) of
elements of T such that rk(Ψ) = ` and rk(Ψ′) = `−1, we have # Stab(T ) = #K3`−4(#K−
1)3.

4.1.2 Stem of the short product
We consider in this section the example of the short product

Φ` : (A,B) 7−→ A ·B mod X` =


a`−1b0 + · · ·+ a0b`−1

...
a1b0 + a0b1

a0b0


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we denote by Φ0, . . . ,Φ`−1 the bilinear forms such that

∀i ≥ 0, Φi(A,B) =
∑

j∈{0,...,`−1−i}

ajbj+i

and by T the subspace Span(Φ0, . . . ,Φ`−1).
In order to produce a covering of the vector spaces W satisfying T ⊕W ∈ Sr(T ) that we

compute with CoveringSetsMethod, we need a stem of T . This stem is given in Proposition 4.2.

Proposition 4.2 (Stem of short product). Let ` and r ≥ `. The set {Span(Φ0,Φ1)}is a
stem of T : for any basis B of T , there exists σ ∈ Stab(T ) and U ⊂ B of cardinality 2 such
that

Span(U) ◦ σ = Span(Φ0,Φ1).

Proof. We first observe that for any Φ ∈ Span(Φ`−1−i, . . . ,Φ`−1), rk(Φ) ≤ i+ 1. Therefore, any
element of rank ` in T has a nonzero coordinate over Φ0 in its decomposition over the basis
(Φ0, . . . ,Φ`−1) and, reciprocally, any element having a nonzero coordinate over Φ0 has rank `.
Thus, a basis B of T necessarily contains an element of rank ` denoted by Ψ. The element Ψ has
a nonzero coordinate over Φ0, when we decompose it over {Φ0, . . . ,Φ`−1}. Similarly, there exist
Ψ′ ∈ B and λ ∈ K for which Ψ′ − λΨ has rank `− 1.

We then use Theorem 4.1 to find an element σ ∈ Stab(T ) such that

(Ψ ◦ σ,Ψ′ ◦ σ) = (Φ0,Φ1) or (Ψ ◦ σ, (Ψ− λΨ′) ◦ σ) = (Φ0,Φ1),

which concludes.

We give in Table 4.2 the cardinality of coverings of Sr(T ) given by Proposition 4.2 for the
example T :

set cardinality

S2(Span(∅)) = S2 980

S3(Span(Φ0)) 28

S4(Span(Φ0,Φ1)) 6

Table 4.2: Comparison of the cardinality for ` = 3 of three coverings of T for K = F2.

We recall that we need to compute the set Q = S̃r−`+2({Φ0,Φ1}) for a given integer r. If
we take ` = 3, we can represent Φ0 and Φ1 by the matrices

I =


1 0 0

0 1 0

0 0 1

 and N =


0 1 0

0 0 1

0 0 0

 .

Thus, for a given couple (M0,M1) of matrices representing bilinear forms of a subspace W ∈
Sr−`+2/GL(K`)×GL(K`) , we are looking for invertible matrices X and Y such that

XTM0Y = I and XTM1Y = N,
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Algorithm 10 IntermediateSetViaQuotientComputation (Short product)

Input: Sr−`+2/GL(K`)×GL(K`)
Output: One representative per orbit of Q, defined as above
1: Q ← ∅
2: for W ∈S`,`,r−`+2/GL(K`)×GL(K`) do
3: for Ψ ∈ {Φ ∈W | rk(Φ) = `}/Stab(W ) do
4: Let σ such that Ψ ◦ σ = I . We obtain σ via a Gauss reduction
5: W ′ ←W ◦ σ
6: for Ψ′ ∈ {Φ ∈W ′ | rk(Φ) = `− 1}/Stab(W ′) ∩ Stab(I) do
7: if ∃σ′ ∈ Stab(I), Ψ′ ◦ σ′ = N then . Using that N and Ψ′ are similar
8: Q ← Q∪ {W ◦ σ ◦ σ′}
9: end if

10: end for
11: end for
12: end for
13: return Q

which is done in Algorithm 10. As it is precised on Line 4 of Algorithm 10, we find X and Y
such that XTM0Y = I via Gauss reduction. Then, we need to check whether XTM1Y and N
are similar or not ((XTM1Y )` should be the null matrix for this purpose), as done on Line 7 of
Algorithm 10.

Once we have computed Q, it remains to compute the left transversal

L = Stab({I,N})/Stab(T ) ∩ Stab({I,N})

and to compute Q ◦ L. According to Theorem 4.1, we have #L = 1, which means that Algo-
rithm 10 actually returns S̃r−`+2({I,N}) ◦ L.

In terms of complexity, we do not have explicit bounds. However, we can state that the com-
plexity depends linearly on #Sr−`+2/GL(K`)×GL(K`) and on the number of pairs of bilinear
forms (Φ,Ψ) per element of Sr−`+2/GL(K`)×GL(K`) such that rk(Φ) = ` and rk(Ψ) = `− 1.

We managed to obtain all the elements of Sr(T ), where T is the vector space generated by
the bilinear forms associated to ShProd` for ` = 4 and ` = 5 and r = rk(T ).

map F d #S̃d({F}) tests step 1 (s) step 2 (s) step 3 (s) sol.

ShProd4 {Φ0,Φ1} 6 2.8 · 102 2.8 · 102 2.8 1.0 · 10−2 2.0 · 10−2 83

ShProd5 {Φ0,Φ1} 8 6.3 · 106 6.3 · 106 1.8 · 103 3.9 2.8 · 102 3,168

Table 4.3: Short product analysis

We observe in Table 4.3 that the cost of Step 2 and Step 3 grows linearly with the number
of tests. The cost of Step 2 is indeed negligible for ShProd5. For ShProd4, it seems less clear: it
is probably not precise enough for this magnitude.
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map total solutions equivalence classes

ShProd4 1,440 220

ShProd5 146,944 11,424

Table 4.4: Vector spaces found for the short product

The last column of Table 4.4 describes the number of equivalence classes of vector spaces in
Sr(T ), with respect to the group Stab(T ).

Example 4.3 (Example of a minimal set of non-scalar products for the short product
modulo X5). The matrices

1 0 1 1 0

1 0 1 1 0

0 0 0 0 0

1 0 1 1 0

0 0 0 0 0


,



0 0 0 0 0

1 0 0 1 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0


,



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


,



0 1 1 0 0

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


,



0 1 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,



0 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,



1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

1 0 1 0 0

0 0 0 0 0


,



0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

0 0 0 0 0

0 0 0 0 0


,



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0


generate, in the canonical basis, the coefficients of Φ.
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4.2 A stem of the optimal decompositions for the circulant
product modulo (X5 − 1)

We present in this section how to find, with our approach, optimal decompositions of the poly-
nomial product modulo (X5 − 1) over F2. We denote by T the target space spanned by the
coefficients Φi of the bilinear map

Φ : (A,B) 7→ A ·B mod (X5 − 1) =



Φ0

Φ1

Φ2

Φ3

Φ4


=



a4b1 + a3b2 + a2b3 + a1b4 + a0b0

a4b2 + a3b3 + a2b4 + a1b0 + a0b1

a4b3 + a3b4 + a2b0 + a1b1 + a0b2

a4b4 + a3b0 + a2b1 + a1b2 + a0b3

a4b0 + a3b1 + a2b2 + a1b3 + a0b4


.

The subspace T has the following structure:

T = Span(φ)⊕H,

where φ = Φ0 + Φ1 + Φ2 + Φ3 + Φ4 and H is a hyperplane containing all the bilinear forms of T
of rank 4. For any ψ ∈ H such that ψ 6= 0, we have rk(ψ + φ) = 5.

Moreover, the action of Stab(T ) on H−{0} is transitive (observed empirically), which means
that all the elements of rank 4 are in the same orbit. Consequently, it is also transitive on
Span(φ)⊕H and all the elements of rank 5 are in the same orbit.

Proposition 4.4 (Stem of the circulant product). The set {Span({Φ4}), H} is a stem of
T : for any basis B of T , there exists U ⊂ B and σ ∈ Stab(T ) such that

Span(U) ◦σ = Span(Φ4)

or
Span(U) = H.

We deduce from Proposition 4.4 that we need algorithms to compute the following sets:

• S6(Span(Φ4)) and

• S9(H).

Of course, using the stabilizer of T , we reduce our problem to the computation of

• S̃6({Φ4}) and

• S9(H)/Stab(H) (any element V ∈ E1 satisfies T ⊂ V + Span(φ) ∈ S10).

The particularity of our strategy for the circulant product is that, in order to compute E1,
we propose a stem of H.

Proposition 4.5 (Stem of H). The set {(Φ0 + Φ1 + Φ2 + Φ3)} is a stem of H: for any
basis B of H, there exists U ⊂ B of cardinality 1 and σ ∈ Stab(H) = Stab(T ) such that

Span(U) ◦σ = Span(Φ0 + Φ1 + Φ2 + Φ3).
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Proof. Any non zero element of H has rank 4 and is in the orbit of Φ0 + Φ1 + Φ2 + Φ3 for the
action of Stab(H).

Thus, we deduce the set S9(H)/Stab(H) from the enumeration of

S̃6({Φ0 + Φ1 + Φ2 + Φ3}).

F d #S̃d({F}) tests step 1 (s) step 2 (s) step 3 (s) sol.

{Φ0} 6 5.2 · 10 8.7 · 106 6.9 · 10 3.7 3.1 · 103 0

{
∑

0≤i<4 Φi} 6 2.0 · 103 6.7 · 105 6.7 · 10 5.0 · 10 1.9 · 102 264

Table 4.5: Circulant product

We have in Table 4.5 the timings the procedure described in Section 3.3. The set S10(T )
contains 2,025 elements divided in 9 equivalence classes of solutions. Interestingly, the set {Φ0}
does not correspond to any element of S10(T ). It means that, for a basis B of bilinear forms of
rank one containing φ and generating a subspace of S10(T ), the coordinate of the elements of
rank 4 on φ is zero.

4.3 Application to matrix products
We denote by Φp,q,r the bilinear map corresponding to the p× q by q × r matrix product:

Φp,q,r : Mp,q(K)×Mq,r(K) −→ Mp,r(K)

(A,B) 7−→ A ·B
.

We denote by Φi,j the bilinear forms such that Φi,j(A,B) is the coefficient (i, j) of Φp,q,r(A,B)
for i ∈ {0, . . . , p− 1} , j ∈ {0, . . . , r − 1}. The elements Φi,j satisfy Φi,j(A,B) =

∑
0≤h<q ai,hbh,j .

The bilinear map Φp,q,r is represented by a subspace of L(Kpq,Kqr;K) denoted by

Tp,q,r = Span((Φi,j)i,j).

In order to represent the elements of Tp,q,r in terms of matrices ofMpq,qr, we need an order
on the ai,h’s and bh,j ’s.

• For the ai,h’s, we fix the following order: ai,h ≤ ai′,h′ if i ≤ i′ or i = i′ and h ≤ h′, which
is the row-major order.

• For the bh,j ’s, we fix the following order: bh,j ≤ bh′,j′ if j ≤ j′ or j = j′ and h ≤ h′, which
is the column-major order.

Then, in the bases ofMp,q andMq,r given by the ai,h’s and bh,j ’s ordered as above, the elements
of Tp,q,r can be represented as matrices ofMpq,qr divided in blocks of size q × q equal to Iq the
identity matrix ofMq,q. Consequently, this space is isomorphic toMp,r⊗Iq and all the elements
of Tp,q,r have a rank which is multiple of q.
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Example 4.6 (Matrix representation of elements of T2,2,2). The elements of T2,2,2 are
represented by matrices ofM4,4 spanned by

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ,


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 ,


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 ,


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ,

corresponding to the coefficients a0,0b0,0 + a0,1b1,0, a0,0b0,1 + a0,1b1,1, a1,0b0,0 + a1,1b1,0 and
a1,0b0,1 + a1,1b1,1, respectively. The previous matrices can also be expressed as(

1 0

0 0

)
⊗ I2,

(
0 1

0 0

)
⊗ I2,

(
0 0

1 0

)
⊗ I2,

(
0 0

0 1

)
⊗ I2,

respectively.

Let (ei), (fh) and (gj) be the canonical bases of Kp, Kq and Kr. The subspace Tp,q,r
can be easily characterized with the tensor notation: it is generated by the vectors, for i ∈
{0, . . . , p− 1} , j ∈ {0, . . . , r − 1},

Φi,j =
∑

0≤h<q

ei ⊗ fh ⊗ fh ⊗ gj .

Theorem 4.7. Stabilizer of the matrix product For the group action M · (X,Y ) 7→ XTMY ,
the subgroup stabilizing the vector space Tp,q,r can be described as the group given by the
pairs (P ⊗RT, Q⊗ (R−1)) for P ∈ GLp, R ∈ GLq, and Q ∈ GLr.

Proof. We denote by Tp,q,r the vector space given by the product of matrices p × q by q × r,
which is isomorphic to Mp,r ⊗ Iq (we do not use the canonical basis for this representation).
For the group action M · (X,Y ) 7→ XTMY , we want to prove that the subgroup stabilizing the
vector space Tp,q,r is isomorphic to Stab(Mp,r)⊗ Stab(Iq).

Let (X,Y ) be a pair of invertible matrices such that XTTp,q,rY = Tp,q,r. For any i ∈
{0, . . . , p− 1} and j ∈ {0, . . . , q − 1}, we denote by Mi,j the matrix XT · (ei,j) · Y , where ei,j is
the canonical basis ofMp,r. Denoting by Xi,h the q× q blocks of X and Y`,j the q× q blocks of
Y , we have Mi,j = (Xi,hYj,`)h,` for any i and j. Consequently, since XT · (ei,j) · Y ∈ Tp,q,r, we
have

∀i, j, h, `, Xi,hYj,` ∈ Span({Iq}). (4.2)

Let (i, h) such that Xi,h is not null and j any integer in {0, . . . , q − 1}. We have the inclusion

Xi,h · Span({Yj,0, . . . , Yj,q−1}) ⊂ Span({Iq})

and, since Y is invertible, we even have the equality. Thus, for any (i, h) such that Xi,h is not
null, we have shown that Xi,h is invertible. We have the same property for the blocks of Y .

Combining the fact that the blocks of X and Y that are not null are invertible and Equa-
tion (4.2), we can conclude that the stabilizer of Tp,q,r is generated by matrices (X,Y ) such that
there exists g ∈ GLq satisfying

XT ∈ GLp⊗g and Y ∈ GLr ⊗g−1.
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Corollary 4.8. The elements of Tp,q,r of a given rank lie in the same orbit under the action
of Stab(Tp,q,r).

Example 4.9 (Action of the stabilizer of T2,2,2). The stabilizer of T2,2,2 is generated by the
following elements of GL(K4)×GL(K4):


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 ,




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 ,




1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 ,


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


 ,




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


 ,




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 .

The vector space of T2,2,2 is isomorphic toM2,2⊗ I2. Thus the elements of T2,2,2 have rank
0, 2 or 4.

Via the action of Stab(T2,2,2), all the elements of rank 2 can all be mapped to the element
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

Similarly, via the action of Stab(T2,2,2), all the elements of rank 4 can all be mapped to the
element 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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4.3.1 Decomposition of the matrix product (3, 2, 3)

The rank of this bilinear map is known [34]: it has rank 15. However, all the optimal formulas
are not known. The target subspace of L(K6,K6;K) considered is denoted by

T = Span({Φi,j | i, j ∈ {0, 1, 2}}).

The elements of T can be represented as matrices ofM6,6 divided in blocks of size 2×2 equal to(
δ 0

0 δ

)
, δ ∈ K.

We produce a stem of T given by five subspaces of T .

Proposition 4.10 (Stem of the matrix product). The set

C = {Span({Φ0,0+Φ1,1+Φ2,2}),Span({Φ0,0+Φ1,1,Φ0,1+Φ2,2}),Span({Φ0,0+Φ1,1,Φ1,1+Φ2,2}),

Span({Φ0,0 + Φ1,1,Φ2,2}),Span({Φ0,0,Φ1,1,Φ2,2})}

is a stem of T : for any basis B of T , there exists U ⊂ B and σ ∈ Stab(T ) such that

Span(U) ◦σ ∈ C.

Proof. Let B be a basis of T .

• If there exists an element Φ of rank 6 in B, then there exists σ ∈ Stab(T ) such that
Φ0,0 + Φ1,1 + Φ2,2 ∈ B ◦σ. Otherwise, any element Φ of B has rank smaller or equal to 4
and we have to distinguish two cases.

• If there exists an element Φ of rank 4, there exists σ such that Φ0,0 + Φ1,1 ∈ B ◦σ and,
consequently, there exists another element Φ′ ∈ B of rank 2 or 4 whose coordinate over
Φ2,2 in the basis (Φi,j)i,j is not null: we need to look at the possible orbits in which Φ′

is included under the action of the subgroup of Stab(T ) preserving the fact that Φ is in
the orbit of Φ0,0 + Φ1,1. We can prove that there exist 3 such orbits and that there exists
σ ∈ Stab(T ) and U ⊂ B of cardinality 2 such that

U ◦σ =



{Φ0,0 + Φ1,1,Φ0,1 + Φ2,2}
or

{Φ0,0 + Φ1,1,Φ1,1 + Φ2,2}
or

{Φ0,0 + Φ1,1,Φ2,2}.

• All the elements of B have rank 2 and there exists U ⊂ B and σ ∈ Stab(T ) such that

U ◦σ = {Φ0,0,Φ1,1,Φ2,2}.

In conclusion, we consider 5 intermediate sets:

• S̃7({Φ0,0+Φ1,1+Φ2,2}), set of subspaces containing the diagonal element Φ0,0+Φ1,1+Φ2,2,
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• S̃8({Φ0,0 + Φ1,1,Φ0,1 + Φ2,2}), set of subspaces containing Φ0,0 + Φ1,1 and Φ0,1 + Φ2,2,

• S̃8({Φ0,0 + Φ1,1,Φ1,1 + Φ2,2}), set of subspaces containing Φ0,0 + Φ1,1 and Φ1,1 + Φ2,2,

• S̃8({Φ0,0 + Φ1,1,Φ2,2}), set of subspaces containing Φ0,0 + Φ1,1 and Φ2,2,

• S̃9({Φ0,0,Φ1,1,Φ2,2}), set of subspaces containing Φ0,0, Φ1,1 and Φ2,2.

Moreover, being able to decompose a matrix product of larger dimensions requires to improve
on the theoretical aspect of our strategy, since the size of the required set

S15/GL(K9)×GL(K9)

is expected to be too large, based on the apparent exponential growth of the progression of the
sets described in Table 5.2.

As described in Section 3.3, we need to precompute the quotients

S6+k/GL(K6+k)×GL(K6+k)

for k ∈ {1, 2, 3}, and we prove that we can restrict ourselves to subspaces containing at least one
element of rank 6. The techniques for computing theses subsets are described in Chapter 5.

The sets returned by IntermediateSetViaQuotientComputation in Section 3.3, are computed in
1.6 · 105 seconds. They are defined as the following sets: We describe in Table 4.6 how we apply
our method to the sets

• {Φ0,0 + Φ1,1 + Φ2,2},

• {Φ0,0 + Φ1,1,Φ0,1 + Φ2,2},

• {Φ0,0 + Φ1,1,Φ1,1 + Φ2,2},

• {Φ0,0 + Φ1,1,Φ2,2}.

F d #S̃d({F}) tests step 1 (s) step 2 (s) step 3 (s) sol.{
Φ0,0 + Φ1,1

+Φ2,2

}
7 8.8 · 10 1.2 · 108 2.7 2.8 · 104 2.0 · 105 5{

Φ0,0 + Φ1,1,

Φ0,1 + Φ2,2

}
8 7.5 · 105 2.2 · 107 1.2 · 103 1.2 · 104 3.3 · 105 13{

Φ0,0 + Φ1,1,

Φ1,1 + Φ2,2

}
8 1.0 · 104 2.8 · 105 9.3 · 102 9.9 4.1 · 102 1{

Φ0,0 + Φ1,1,

Φ2,2

}
8 2.7 · 105 5.9 · 108 5.3 · 102 4.9 · 104 9.1 · 105 46

Table 4.6: Matrix product analysis

Instead of computing S̃9({Φ0,0,Φ1,1,Φ2,2}), we actually compute a subset E ′ given by a special
trick described in Section 4.3.2.
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F d #E ′ tests step 1 (s) step 2 (s) step 3 (s) sol.

{Φ0,0,Φ1,1,Φ2,2} 9 2.5 · 107 9.1 · 108 1.5 · 105 4.1 · 103 1.3 · 106 2

Table 4.7: Timings for E ′

In conclusion, we are able to decompose Φ3,2,3 over F2 and to give all the possible opti-
mal decompositions. We have a speed-up of 104 compared to our implementation of Algo-
rithm BDEZStab. Although the rank of this bilinear map was already known thanks to Hopcroft
and Kerr [34], determining all the possible optimal decompositions was not a well studied prob-
lem to our knowledge. Furthermore, we obtain an alternative proof over K = F2 of the fact that
the bilinear rank of Φ3,2,3 is 15.

We prove with our algorithm that there is only one class of equivalence of vector spaces
W ∈ S6,6,15 containing T , for the group action induced by Stab(T ). It is interesting to note
that this is also the case for T2,2,2. We do not have this kind of result for the short product for
example.

The matrices



0 0 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 1 1 0 0


,



0 0 1 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 1 1 1


,



1 0 1 1 0 1

1 0 1 1 0 1

0 0 0 0 0 0

1 0 1 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

1 1 1 1 0 1

0 0 0 0 0 0

1 1 1 1 0 1

1 1 1 1 0 1

0 0 0 0 0 0


,



0 0 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 1


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 1

0 1 0 1 0 1


,
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

1 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 1 0 1

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 0 1

0 1 1 1 0 1

0 1 1 1 0 1


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0


form a set of non-scalar products leading to optimal formulas for the matrix product. We retrieve
all the subspaces of S15(T ) via the action of the group Stab(T ).

4.3.2 Using the Hamming weight for the matrix product

We describe in this section a trick allowing one to speed-up the execution of our approach for
the matrix product. However, this part is technical and can be skipped on a first read.

We still denote by T the subspace of L(K6,K6;K) corresponding to the coefficients of the
product of 3× 2 by 2× 3 matrices. We remind the stem of T that we consider: the set

C = {Span({Φ0,0+Φ1,1+Φ2,2}),Span({Φ0,0+Φ1,1,Φ0,1+Φ2,2}),Span({Φ0,0+Φ1,1,Φ1,1+Φ2,2}),

Span({Φ0,0 + Φ1,1,Φ2,2}),Span({Φ0,0,Φ1,1,Φ2,2})}.

We define the following sets:

• E0 = S7(Span(Φ0,0 + Φ1,1 + Φ2,2)),

• E1 = S8(Span(Φ0,0 + Φ1,1,Φ0,1 + Φ2,2)),

• E2 = S8(Span(Φ0,0 + Φ1,1,Φ1,1 + Φ2,2)),

• E3 = S8(Span(Φ0,0 + Φ1,1,Φ2,2)) and

• E4 = S9(Span(Φ0,0,Φ1,1,Φ2,2)).

In theory, we have to enumerate the elements of the sets S̃7({Φ0,0 + Φ1,1 + Φ2,2}), S̃8({Φ0,0 +

Φ1,1,Φ0,1+Φ2,2}), S̃8({Φ0,0+Φ1,1,Φ1,1+Φ2,2}), S̃8({Φ0,0+Φ1,1,Φ2,2}) and S̃9({Φ0,0,Φ1,1,Φ2,2}),
denoted by Ẽ0, Ẽ1, Ẽ2, Ẽ3 and Ẽ4, respectively. However, one should notice that, given V ∈ S15(T )
such that

∃W ∈ Ẽ4, σ ∈ Stab({Φ0,0,Φ1,1,Φ2,2}), V = T +W ◦ σ,

it may happen that there exists W ′ ⊂ V such that

V = T +W ′
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and

∃σ ∈ Stab(T ), W ′ ◦ σ =



S7(Span(Φ0,0 + Φ1,1 + Φ2,2))

or
S8(Span(Φ0,0 + Φ1,1,Φ0,1 + Φ2,2))

or
S8(Span(Φ0,0 + Φ1,1,Φ1,1 + Φ2,2))

or
S8(Span(Φ0,0 + Φ1,1,Φ2,2))

.

In other terms, the V ’s corresponding to the 5 sets to enumerate do not form a partition of
S15(T ).

Thus, we propose, if possible, to enumerate a subset of E4, rather than the whole set, without
losing exhaustivity. The strategy that is proposed is related to the notion of Hamming weight of
the elements Φ0,0, Φ1,1 and Φ2,2.

Definition 4.11 (Hamming weight for Sd). Let W ∈ Sd and B = (ψ0, . . . , ψd−1) a basis
of rank-one bilinear forms of W . Any x ∈W has a unique decomposition over B:

x =
∑
t

λt · ψt.

We define its Hamming weight over B as

HB(x) = #{t ∈ {0, . . . , d− 1} | λt 6= 0}.

We can extend the definition of the Hamming weight to any subset S of W :

HB(S) = min({#I | I ⊂ {0, . . . , d− 1} ,S ⊂ Span((ψt)t∈I)}).

The Hamming weight over some basis has a useful property related to the bilinear rank stated
in Lemma 4.12.

Lemma 4.12. Let W ∈ Sd and B a basis of W composed of rank-one bilinear forms. For any
subset S of W , we have

rk(Span(S)) ≤ HB(S).

Proof. Clear from the definition of the rank of a set S given in Definition 1.12.

We describe in Theorem 4.13 what is the subset of Ẽ4 that we consider.

Theorem 4.13. Let W be a subspace such that W ∈ Ẽ4 and T + W ∈ S15 and let B be a
basis of W composed of rank-one bilinear forms. Let Ẽ ′ be the subset of elements W ∈ Ẽ4
such that

HB(Φ0,0 + Φ1,1 + Φ2,2) = HB(Φ0,0) + HB(Φ1,1) + HB(Φ2,2) and HB(Φ0,0 + Φ1,1 + Φ2,2) > 6.

We obtain all the elements of S15(T ) via the enumeration of Ẽ0, Ẽ1, Ẽ2, Ẽ3 and Ẽ ′.

We prove Theorem 4.13 within 2 steps:
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1. We prove in Lemma 4.14 that if HB(Φ0,0 +Φ1,1 +Φ2,2) 6= HB(Φ0,0)+HB(Φ1,1)+HB(Φ2,2),
a subspace V obtained as V = T + W ◦ σ can also be obtained as V = T + W ′ ◦ σ, with
W ′ ∈ Ẽ0, Ẽ1 or Ẽ3.

2. Otherwise, if HB(Φ0,0 +Φ1,1 +Φ2,2) = HB(Φ0,0)+HB(Φ1,1)+HB(Φ2,2), it remains to prove
that we do not lose in generality if we assume that HB(Φ0,0 + Φ1,1 + Φ2,2) > 6, which is
done in Lemma 4.15.

Lemma 4.14. Let W ∈ S9 and let V = T + W . We assume that T + W ∈ S15(T ) and
Span({Φ0,0,Φ1,1,Φ2,2}) ⊂ W . Let B be a basis of rank-one bilinear forms of W . If HB(Φ0,0 +
Φ1,1 + Φ2,2) 6= HB(Φ0,0) +HB(Φ1,1) +HB(Φ2,2), there exists W ′ ⊂W such that V = T +W ′ and
there exists σ′ ∈ Stab(T ) such that W ′ ◦ σ′ ∈ E0, E1 or E3.

Proof. We have by hypothesis HB(Φ0,0 + Φ1,1 + Φ2,2) < HB(Φ0,0) +HB(Φ1,1) +HB(Φ2,2). Thus,
there exist two elements Ψ ∈ B and Φ ∈ {Φ0,0,Φ1,1,Φ2,2} such that the coordinate of Φ on Ψ
is not zero and the coordinates of Φ0,0 + Φ1,1 + Φ2,2 on Ψ is zero. By considering the vector
space W ′ = Span(B − {Ψ}), we have W ′ ∈ S8. Moreover, we have W = Span({Ψ}) ⊕W ′ =
Span({Φ})⊕W ′ and T+(Span({Φ})⊕W ′) =⊂ T+W ′. Thus, dim(T+W ′) = dim(T+W ) = 15.
Consequently, dim(T ∩W ′) = 2.

If there exists in T ∩W ′ two elements Φ1 and Φ2 of rank smaller or equal to 4 such that
Φ1 + Φ2 = Φ0,0 + Φ1,1 + Φ2,2, then

∃σ ∈ Stab(T ), W ′ ◦ σ ∈


S8(Span(Φ0,0 + Φ1,1,Φ0,1 + Φ2,2))

or
S8(Span(Φ0,0 + Φ1,1,Φ2,2))

.

Otherwise, there exists W ′′ ⊂W ′ such that

∃σ ∈ Stab(T ), W ′′ ◦ σ ∈ S7(Span(Φ0,0 + Φ1,1 + Φ2,2))

and T +W ′′ ∈ S15, which concludes.

Lemma 4.15. Let V ∈ S15(T ). The subspace V satisfies hypotheses H1 and H2 state as
follows.

H1: For anyW ⊂ V such that there exists σ ∈ Stab(T ) satisfyingW◦σ ∈ S9(Span(Φ0,0,Φ1,1,Φ2,2))
and T +W ∈ S15, we have, for any basis B of rank-one bilinear forms of W ,

HB(Φ0,0 + Φ1,1 + Φ2,2) = HB(Φ0,0) + HB(Φ1,1) + HB(Φ2,2).

H2: There do not exist W ⊂ V and σ ∈ Stab(T ) such that W ◦ σ ∈ E0, E1, E2 or E3 and
V = T + W (in other terms, V can not be obtained via the enumeration of Ẽ0, Ẽ1, Ẽ2 or
Ẽ3).

Then, there exists W ′ ⊂ V and σ′ ∈ Stab(T ) such that W ′ ◦ σ′ ∈ S9(Span(Φ0,0,Φ1,1,Φ2,2)),
T +W ′ ∈ S15, and W ′ has a basis B′ of rank-one bilinear forms such that

HB′◦σ′(Φ0,0 + Φ1,1 + Φ2,2) > 6.

Proof. Let W ∈ S6 be such that T ⊕W ∈ S15. Take a basis W of W , and complete it into a
basis B of T ⊕W using 9 rank-one bilinear forms, denoted by {ψi}0≤i<9. For all i ∈ {0, . . . , 8},
write ψi = Φi + Ψi, with Φi ∈ T and Ψi ∈ W . The Φi’s form a basis of T . In our context, we



4.3. Application to matrix products 55

are concerned by the case rk(Φi) = 2 for any i (otherwise H2 is not satisfied). Since we assume
Hypothesis H1, it is enough to prove that there exists i such that HB(Φi) > 2.

There is necessarily a couple (Φi,Φi′) such that

HB(Φi + Φi′) < HB(Φi) + HB(Φi′).

Otherwise, we would have #B ≥ 2 · 9 = 18 6= 15 = rk(T ).
If HB(Φi) = 2 and HB(Φi′) = 2, then

HB({Φi,Φi′}) ≤ 3

and, by Lemma 4.12, rk({Φi,Φi′}) ≤ 3. Henceforth, we prove that this is contradictory, because
rk({Φi,Φi′}) = 4. Indeed, there are two cases.

• If Φi + Φi′ has rank 4, the conclusion follows.

• If Span(Φi,Φi′) is isomorphic to T2,2,1, whose rank is equal to 4: T2,2,1 and T2,1,2 have the
same rank according to [22] and T2,1,2 is a vector space of dimension one generated by a
bilinear form of rank 4.

Consequently, HB(Φi) > 2 or HB(Φi′) > 2.

4.3.3 Matrix product (2, 3, 2)

We denote by Φ2,3,2 the bilinear map

Φ2,3,2 : M2,3(F2)×M3,2(F2) −→ M2,2(F2)

(A,B) 7−→ A ·B

and Φi,j its coefficients. We denote by T the corresponding vector space.

Proposition 4.16 (Stem of the matrix product 2× 3 by 3× 2). The set

C = {Span({Φ0,0 + Φ1,1,Φ0,0 + Φ0,1 + Φ1,0}),Span({Φ0,0 + Φ1,1,Φ0,0})}

is a stem of T : for any basis B of T , there exists U ⊂ B and σ ∈ Stab(T ) such that

Span(U) ◦σ ∈ C.

Proof. Let B be a basis of T . We have to distinguish 2 cases:

• there exists an element of rank 6 in B;

• any element of B has rank 3.

In the first case, there exists σ ∈ Stab(T ) such that B ◦σ = (Φ0,0 + Φ1,1,Ψ1,Ψ2,Ψ3). We can
assume that the coordinates of Ψ1 in the basis (Φ0,0,Φ1,1,Φ0,1,Φ1,0) have the following shape:

(1, 0, λ2, λ3) or (0, 1, λ2, λ3),

because otherwise every element of the basis B would have coordinates of the shape (λ0, λ0, λ2, λ3).
Up to the action of Stab(Φ0,0 + Φ1,1) ∩ Stab(T ), we can assume that we are in the first case.
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• If Ψ1 has rank three, using the action of Stab(Φ0,0 + Φ1,1) ∩ Stab(T ), we are brought to
one possibility satisfying the good shape: Ψ1 = Φ0,0.

• If Ψ1 has rank 6, because of its shape, it is necessarily equal to Φ0,0 + Φ0,1 + Φ1,0.

In the second case, there exists σ ∈ Stab(T ) such that B ◦σ = (Φ0,0,Ψ1,Ψ2,Ψ3). There
exists i ∈ {1, . . . , 3} such that the coordinates of Ψi in the basis (Φ0,0,Φ1,1,Φ0,1,Φ1,0) have the
following shape:

(λ0, 1, λ2, λ3).

We can assume that i = 1. Then, there exists σ′ ∈ Stab(T ) such that B ◦σ′ = (Φ0,0,Φ1,1,Ψ2,Ψ3).
It may seem that we have a stem of 3 sets given by S9(Span(Φ0,0+Φ1,1,Φ0,0)), S9(Span(Φ0,0+

Φ1,1,Φ0,0 + Φ1,0 + Φ0,1)) and S9(Span(Φ0,0,Φ1,1)). Actually the first and the third sets are
equal.

Thus, we compute the following sets, corresponding to the quotient Q computed with Inter-
mediateSetViaQuotientComputation in Section 3.3:

• S̃9({Φ0,0 + Φ1,1,Φ0,0 + Φ0,1 + Φ1,0}),

• S̃9({Φ0,0 + Φ1,1,Φ0,0}).

F d #S̃d({F}) tests step 1 (s) step 2 (s) step 3 (s) sol.
Φ0,0 + Φ1,1,

Φ0,0 + Φ0,1

+Φ1,0


9 139 5.0 · 104 8.4 · 104 3.2 · 10−1 7.3 · 10 44

{
Φ0,0 + Φ1,1,

Φ0,0

}
9 3.8 · 108 6.3 · 1010 1.0 · 105 1.0 · 103 3.7 · 106 5,614

Table 4.8: Product of 2× 3 by 3× 2 matrices analysis

We obtained a speed-up of 109 compared to our implementation of BDEZStab, and we found
1,096,452 elements of S11(T ), divided in 196 equivalence classes of solutions with respect to the
action of Stab(T ). The computations described in Table 4.8 used an improved Step 3 for the
family {Φ0,0+Φ1,1,Φ0,0}: we select a subset of the transversal that is applied. This improvement
takes into account two facts. First, the quotient Stab({Φ0,0,Φ1,1})/Stab(T ) ∩ Stab({Φ0,0,Φ1,1})
can be represented by the set of representatives given by the pairs of the form((

PT 0

0 I

)
,

(
P−1 0

0 I

))
,

P ∈ GL3. In particular, we know the action of such a pair on a matrix M ∈ M6,6 composed of
four block M0,0,M1,0,M0,1,M1,1 gives(

PM0,0P
−1 PM0,1

M1,0P
−1 M1,1

)
.
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Second, given a subspace W of S̃9({Φ0,0 +Φ1,1,Φ0,0}), there exists two elements φ0, φ1 ∈ T +W
of rank one such that T + W = W ⊕ Span({φ0, φ1}). Thus, we have two non zero elements Ψ0

and Ψ1 in T such that there exist Ψ′0,Ψ
′
1 ∈W satisfying

Ψ0 = φ0 + Ψ′0 and Ψ1 = φ1 + Ψ′1.

The elements Ψ0 and Ψ1 have a non zero coordinate at Φ0,1 or Φ0,1 over the basis

{Φ0,0,Φ1,0,Φ0,1,Φ1,1}.

Thus, we keep the elements W ◦σ such that W ∈ S̃9({Φ0,0 + Φ1,1,Φ0,0}) and σ ∈ Stab(T ) ∩
Stab({Φ0,0 + Φ1,1,Φ0,0}) for which there exist Φ0,Φ1 ∈ W ◦σ for which their matrix represen-
tation in M6,6 is composed of four blocks M0,0,M1,0,M0,1,M1,1 such that rk(M0,0) ≤ 1 and
rk(M1,1) ≤ 1.
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Chapter 5

Algorithm for the precomputation
required in the new method

In this section, we propose an approach for computing the set Sm,n,d/GL(Km)×GL(Kn), re-
quired by the algorithm described in Section 3.3. Its cost is at least exponential in d, m and n
and difficult to estimate precisely.

Notation 5.1. We denote by Ωd the quotient Sd,d,d/GL(Kd)×GL(Kd) for any d ≥ 1.

5.1 Representation of elements of Ωd

First, we describe how we represent elements of Sm,n,d and we prove that, given the knowledge
of Ωd, we can deduce the elements of Sm,n,d/GL(Km)×GL(Kn) for any m and n from this
precomputation.

Let W be an element of Sm,n,d. There exist d rank-one bilinear forms φt : (a,b) 7→ αt(a) ·
βt(b) such that W = Span

(
(φt)t∈{0,...,d−1}

)
. In the canonical basis of Km and Kn, we represent

αt and βt as matrices of M1,m and M1,n. Thus, there exist two matrices U ∈ Md,m and
V ∈ Md,n, whose rows are given by the linear forms αt and βt respectively, and W can be
represented by the pair (U, V ). Such a representation is not unique (for example, any permutation
of the rows of (U, V ) gives a valid representation). In particular, for a pair of matrices (U, V )
representing some vector space W , there exists σ = µ× ν in GL(Km)×GL(Kn) such that the
pair of matrices U ′, V ′, such that (U ′, V ′) = (U ◦ µ, V ◦ ν) represents W ◦ σ, are the reduced
column echelon form of the matrices U and V , respectively.

Example 5.2. Let us consider the vector space W of S3,4,6 generated by the rank-one

59
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bilinear forms represented by

M1 =


1 1 0 0

0 0 0 0

0 0 0 0

 ,M2 =


0 0 0 0

0 0 0 0

1 0 0 0

 ,M3 =


0 0 0 0

1 0 0 0

0 0 0 0

 ,

M4 =


0 0 0 0

0 1 0 0

0 0 0 0

 ,M5 =


0 0 0 0

0 0 1 0

0 0 0 0

 ,M6 =


0 0 0 0

0 0 0 1

0 0 0 0

 .

The couple of matrices (U, V ) associated to W is

1 0 0

0 0 1

0 1 0

0 1 0

0 1 0

0 1 0


,



1 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Assuming that we have a representation of the elements ofSd,d,d/GL(Kd)×GL(Kd) in terms
of pairs of matrices (U, V ) ∈ Md,d ×Md,d in reduced column echelon form, we obtain all the
elements of

Sm,n,d/GL(Km)×GL(Kn)

by considering the subset Ω′d of Ωd = Sd,d,d/GL(Kd)×GL(Kd) of elements represented by
matrices (U, V ) in reduced column echelon form such that rk(U) ≤ min(m, d) and rk(V ) ≤
min(n, d). Given m and n, a set of representatives for

Sm,n,d/GL(Km)×GL(Kn)

can be seen as matrices (U ′, V ′) ∈Md,m ×Md,n in reduced column echelon form and for which
there exists matrices (U, V ) ∈M2

d,d, representing an element of Ω′d, obtained by adding d−m an
d− n zero columns to U ′ and V ′, respectively, or by removing zero columns if d < m or d < n.

5.2 Method for the computation of a set of representatives
of the quotient

Our strategy consists in deducing Ωd from the computation of Ωd−1. Algorithm 11 describes
this strategy: for each vector space W of Ωd−1, we extend it to a vector space of L(Kd,Kd;K)
by adding a zero-column to the corresponding U and V matrices, and we consider the vector
spaces W ⊕ Span(φ) that can be obtained by adding an element φ of rank one. We remove from
the set of W ⊕ Span(φ) the vector spaces that are RP-isomorphic via an isomorphism test. We
determine whether two vector spaces W ′ and W are RP-isomorphic if there exists a basis of W ′
of rank-one bilinear forms such that the corresponding couple of matrices (U ′, V ′) in reduced
column echelon form is equal to (U, V ). The complexity of this approach depends on the number
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of bases of rank-one bilinear forms ofW , which, compared to d, is not large generically. However,
there are degenerate cases for which the nomber of bases is very large (exponential in d2). These
cases require specific code to recognize them and to treat them separately.

We denote by Extend the algorithm transforming a set of subspaces of L(Kd−1,Kd−1;K) into
subspaces of L(Kd,Kd;K) with zero-padding.

Algorithm 11 IterativeQuotientsComputation
Input: Ωd−1, a set G of rank-one bilinear forms
Output: Ωd
1: Ω̂d−1 ← Extend(Ωd−1) . We compute extensions of elements of Ωd−1 in L(Kd,Kd;K)
2: L ← ∅
3: for W ∈ Ω̂d−1 do
4: H ←G/StabW
5: for h ∈ H do
6: L ← L ∪ {W ⊕ Span(h)}
7: end for
8: end for
9: return L/GL(Kd)×GL(Kd) . We remove RP-isomorphic vector spaces in L

The naive algorithm which checks for each pair of elements of the set L whether or not
they are RP-isomorphic, computed in Line 9 of Algorithm 11, can be improved. Indeed, we
propose to compute invariants for the group action induced by GL(Kd)×GL(Kd) and to compare
subspaces having the same invariants. For example, for W ∈ Sd,d,d, we consider the polynomial
PW =

∑
0≤t≤d pW,tX

t such that

∀t ≥ 0, pW,t = #{φ ∈W | rk(φ) = t}.

Therefore, for any σ ∈ GL(Kd)×GL(Kd), PW◦σ = PW .
In Algorithm 11 we regroup the vector spaces of L which have the same invariants. For two

subspaces W and W ′ having the same invariants, we need to explain how we decide whether
they are RP-isomorphic or not. We describe the procedure in Algorithm IsomorphismTest.

Algorithm 12 IsomorphismTest

Input: W and W ′ in Sd

Output: true if and only if W and W ′ are RP-isomorphic
1: We represent W ′ by a pair (U ′, V ′) in column echelon form
2: for B ⊂W , basis of rank-one bilinear forms do
3: We represent W by a pair (U, V ) in column echelon form given by the basis B
4: for σ ∈ Sd do . Sd are the row permutations ofMd,d

5: if The column echelon form of (U ◦ σ, V ◦ σ) is equal to (U ′, V ′) then
6: return true
7: end if
8: end for
9: end for

10: return false

Thus, for a vector space W ∈ Sd and H ⊂ W the set of rank-one bilinear forms in W , the
complexity of IsomorphismTest is given by

(
#H
d

)
, an approximation of the number of possible
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bases of rank-one bilinear forms, times d! times the cost of a Gauss reduction of two matrices of
Md,d. If #H is too large, we apply the idea given in Section 5.3.

5.3 Improvement to the strategy using classification of vec-
tor spaces

This section is dedicated to a classification of the elements of Ωd which allows one to improve
the isomorphism test and the computation of a stabilizer depending on the type.

Proposition 5.3. Let d ≥ 1. There exists W ∈ Ωd such that there are # GL(d,K) free
families B = (φ0, . . . , φd−1) with rk(φj) = 1 for any j, and such that W = Span(B).

Proof. Let e0, . . . , ed−1 be a basis of Kd. We consider αj ∈ L(Kd;K) such that αj(ek) = 0 for
k 6= j and αj(ej) = 1, and β ∈ L(Kd;K) such that β(e0) = 1 and β(ek) = 0 for k ≥ 1. Let
W = Span(α0 · β, α1 · β, . . . , αd−1 · β). Any φ ∈W of rank one can be decomposed with a linear
form α ∈∈ L(Kd;K) and the linear form already defined β: φ = α · v.

Thus, we have all the possible bases by considering (α0 ◦σ)β, (α1 ◦σ)v, . . . , (αd−1 ◦σ)β for
σ ∈ GL(d,K).

According to Section 5.1, the complexity of testing whether two vector spaces W and W ′

are RP-isomorphic depends on the number of bases of W of bilinear forms of rank one. The
proposition 5.3 implies that by using the procedure described in Section 5.1, we possibly have to
enumerate # GL(d,K) bases, which is too large for our applications.

However, it appears that the number of bases per W ∈ Ωd is, in general, smaller than
# GL(d,K) by an order of magnitude. Moreover, we can deduce directly that a vector space
having # GL(d,K) bases has a stabilizer RP-isomorphic to GL(d,K), given as a set of generators.
Thus, it is possible to adapt our strategy to vector spaces having a lot of bases and to compute
directly a set of generators.

Definition 5.4. Let W ∈ Ωd, E a subspace of W and H be the set of elements of W of
rank one.

We say that E is a left (respectively right) degenerate space if

• it is generated by elements h ∈ H,

• there exists α ∈ L(Kd;K) (respectively β) such that for any Φ ∈ H ∩ E, there exists
β ∈ L(Kd;K) (respectively α) such that Φ(a,b) = α(a) · β(b),

• its dimension is maximal over all subspaces having the two previous properties.

The definition of a degenerate space permits to restrict the number of bases considered,
since two left (or right) degenerate spaces of the same dimension are trivially RP-isomorphic.
Therefore, in order to check the existence of a transformation σ such that W = W ′ ◦σ for W
and W ′ two elements of Sd,d,d, it is interesting to check for a σ mapping a degenerate space onto
another degenerate space.

Proposition 5.5. Let W and W ′ two elements of Ωd. If there exists a unique left (respec-
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tively right) degenerate space E ∈W and if W and W ′ are RP-isomorphic, then there exists
a unique left (respectively right) degenerate space E′ ∈W ′ such that dimE′ = dimE.

Thus, by using the proposition 5.5, we can restrict the search of a σ mapping a vector space
W onto another one W ′ by considering the elements sending the unique degenerate space of W
(if it is unique) on the unique degenerate space of W ′.

It should be possible to take into account the case of several degenerate spaces. However,
trying to establish the optimal strategy in that case goes beyond the scope of the current work.

Example 5.6. We give here an example of two vector spaces W and W ′ of L(K3,K4;K)
containing a left degenerate space of dimension 4. The vector space W is generated by the
bilinear forms represented by the matrices

M0 =


1 0 0 0

0 0 0 0

0 0 0 0

 ,M1 =


0 0 0 0

0 1 0 0

0 0 0 0

 ,M2 =


0 0 0 0

0 0 0 0

1 0 0 0

 ,

M3 =


0 0 0 0

0 0 0 0

0 1 0 0

 ,M4 =


0 0 0 0

0 0 0 0

0 0 1 0

 ,M5 =


0 0 0 0

0 0 0 0

0 0 0 1

 .

and the vector space W ′ is generated by

N0 =


1 1 0 0

0 0 0 0

0 0 0 0

 , N1 =


0 0 0 0

0 0 0 0

1 0 0 0

 , N2 =


0 0 0 0

1 0 0 0

0 0 0 0

 ,

N3 =


0 0 0 0

0 1 0 0

0 0 0 0

 , N4 =


0 0 0 0

0 0 1 0

0 0 0 0

 , N5 =


0 0 0 0

0 0 0 1

0 0 0 0

 .

These vector spaces are RP-isomorphic and any isomorphism σ such that W ◦σ = W ′

satisfies
Span(M2,M3,M4,M5) ◦σ = Span(N2, N3, N4, N5).

The vector spaces Span(M2,M3,M4,M5) and Span(N2, N3, N4, N5) are degenerate spaces
of dimension 4.

We improve on the algorithm given by IsomorphismTest for vector spaces W and W ′ contain-
ing degenerate spaces E and E′, respectively, such that E′ is the unique degenerate space of
dimension dim(E) of W ′.
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Algorithm 13 IsomorphismTestDegenerate

Input: W and W ′ in Sd, E and E′ degenerate spaces of W and W ′ respectively
Output: true if and only if W and W ′ are RP-isomorphic
1: We represent W ′ by a pair (U ′, V ′) in column echelon form such that the dim(E) first rows

of U and V form a basis of E′
2: for B ⊂W , basis of rank-one bilinear forms containing a basis of E do
3: We represent W by a pair (U, V ) in column echelon form given by the basis B such that

the dim(E) first rows of U and V form a basis of E
4: for σ ∈ Sd(dimE, . . . , d− 1) do . Permutations of the d− dim(E) last rows
5: if The column echelon form of (U ◦ σ, V ◦ σ) is equal to (U ′, V ′) then
6: return true
7: end if
8: end for
9: end for

10: return false

Since we fixed the dim(E) first rows of U and V in IsomorphismTestDegenerate, if H is the
set of rank-one bilinear forms of W , the complexity is reduced to

(
#H

d−dim(E)

)
times (d−dim(E))!

times the cost of a Gauss reduction.

5.4 Experimental results
We have been able to compute Ωd for i ∈ {1, . . . , 8} and K = F2 with an implementation in
Magma V2.21-3 [9]1.

We observe in Table 5.1 that it is more likely that a vector space Ωd has d bilinear forms of rank

one rather than 2d− 1, although we have d! possible bases in the first scenario and d! ·
(

2d − 1

d

)
in the second one: the most common scenario is the nicer one in terms of computation. This is
why it is interesting to consider the notion of degenerate space introduced in Section 5.3, which
allows one to have a specific strategy for the rare cases where the number of possible basis is too
large.

In Table 5.2, we give the time required to compute each Ωi with our method, its cardinality,
and we compare it with a theoretical upper bound. We observe that an upper bound on #Ωd
with the good order of magnitude is hard to obtain. Indeed, we are only able to say that #Ωd
is bounded by the quantity (

#Kd − 1

#K − 1

)2

·#Ωd−1,

corresponding to the number of possible rank-one bilinear forms that we add to elements of Ωd−1
to obtain an element of Ωi. This formula leads recursively to the following bound:

#Ωd ≤
1

(#K − 1)d

 ∏
t∈{1,...,d}

(#Kt − 1)

2

.

This upper bound differs by a huge factor from the true cardinality of Ωd and cannot consequently
be used in a complexity analysis.

1The code of this implementation can be found at the address http://karancode.gforge.inria.fr

http://karancode.gforge.inria.fr
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#elts of Ω2 N #elts of Ω6 N #elts of Ω7 N

1 2 262 6 3315 7

2 3 295 7 3569 8

#elts of Ω3 N 150 8 1993 9

4 3 77 9 818 10

2 4 63 10 593 11

1 5 44 11 383 12

2 7 17 12 226 13

#elts of Ω4 N 16 13 77 14

10 4 6 14 84 15

8 5 6 15 26 16

4 6 11 17 24 17

2 7 6 18 47 18

2 8 4 19 42 19

3 9 6 21 14 20

2 15 2 32 23 21

#elts of Ω5 N 2 33 10 22

38 5 2 63 8 23

43 6 6 25

21 7 3 29

6 8 8 33

13 9 6 34

7 10 4 35

4 11 4 37

3 13 2 64

2 16 2 65

2 17 2 127

2 31

Table 5.1: Number of elements of Ωd over K = F2 having N bilinear forms of rank one, when
this number is not zero.
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(
1
)
,
(
1
)

d=1

d=2

d=3
(
1 0

1 0

)
,

(
1 0

0 1

) (
1 0

0 1

)
,

(
1 0

0 1

) (
1 0

0 1

)
,

(
1 0

1 0

)


1 0 0

1 0 0

1 0 0

 ,


1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

0 0 1

 ,


1 0 0

1 0 0

1 0 0




1 0 0

1 0 0

0 1 0

 ,


1 0 0

0 1 0

0 0 1




1 0 0

1 0 0

0 1 0

 ,


1 0 0

0 1 0

1 0 0




1 0 0

0 1 0

0 0 1

 ,


1 0 0

1 0 0

0 1 0




1 0 0

0 1 0

1 1 0

 ,


1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

1 1 0

 ,


1 0 0

0 1 0

1 1 0




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

1 1 0



Figure 5.1: Partially ordered structure of the Ωd for d ≤ 3 and K = F2.

set Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

cardinality 1 3 9 31 141 969 11, 289 265, 577

upper bound 1 9 4.4 · 102 9.9 · 104 9.5 · 107 3.8 · 1011 6.1 · 1015 4.0 · 1020

time (s) 0 0.0 0.0 1.8 · 10−1 1.5 1.8 · 10 4.7 · 102 1.8 · 104

Table 5.2: Timings for our approach to compute the sets Ωd over K = F2 on a single core of a
3.3 GHz Intel Core i5-4590.

We provide in Figure 5.1 how subspaces of Ω3 over F2 are related to Ω2 and Ω1 by using its
poset structure. We represent an element of Ωd by a couple of matrices (U, V ) of M2

d,d.
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Notations

n bit-length of the integers multiplied
N length of the polynomials multiplied
p, q primes
ω root of unity
log natural logarithm
log(i) i-th iterate of the log function
log2 log in radix two
log∗ iterated logarithm function (defined in Section 6.6)
li x 7→

∫ x
2

dt
log t

P (r, λ) generalized Fermat number r2
λ

+ 1

P(x) set of primes smaller than x
π(x, q, r) number of primes ≤ x congruent to r mod q
MR cost of multiplying a ∈ R by b ∈ R, with no auxiliary inputs
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Chapter 6

Fast Fourier Transform

In this chapter, we describe the paradigm used to multiply large integers. This paradigm relies on
the evaluation-interpolation scheme. The methods described in this chapter imply transforming
integers into polynomials and, then, multiplying polynomials. We have some freedom about the
choice of the ring of the coefficients of the polynomials and on their degrees.

6.1 Integers to polynomials
Let a and b be non negative integers to be multiplied. Let n be an upper bound on the bit-length
of these integers. Standard substitution techniques (see e.g. [6]) allow one to compute c via
the computation of the product C(x) = A(x)B(x), where A and B are univariate polynomials
related to a and b. Polynomials are taken over some well-chosen ring R. (In this chapter, we do
not explicitly fix a choice for R.)

We obtain the polynomials A and B using the representation of a and b. Assuming that we
have their radix-2 representation, a and b can be seen as sequences of elements in {0, 1}. We
have

a =
∑

0≤i<n

ai2
i and b =

∑
0≤i<n

bi2
i.

Let η = 2t be a power of two. We have

a =
∑

0≤i<dn/te

 ∑
0≤j<t

ait+j2
j

 ηi and b =
∑

0≤i<dn/te

 ∑
0≤j<t

bit+j2
j

 ηi.

Via zero-padding on a and b, we can assume that there is no constraint on t = log2 η except
to be less than n. Denoting by ãi and b̃i the integers

∑
0≤j<t ait+j2

j and
∑

0≤j<t bit+j2
j , we

consider the polynomials

A(X) =
∑

0≤i<n/t

ãiX
i and B(X) =

∑
0≤i<n/t

b̃iX
i.

A procedure allowing one to multiply the polynomials A,B ∈ Z[X] produces a polynomial
C = A ·B satisfying

C(η) = A(η) ·B(η) = a · b = c.

The length of A and B is dn/te. Thus, the length of C is 2dn/te − 1.
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We denote by N the smallest power of two such that 2dn/te − 1 ≤ N . The integer N is an
upper bound on the length of the polynomial C. In practice it may be interesting to consider that
N is not a power of two, as it has been studied for example in [58]. From an asymptotic point
of view in the deterministic multi-tape Turing model, we are allowed to restrict the problem to
the case where N is a power of two. Assuming that the coefficients of C are represented in radix
2, we have a procedure computing a radix-2 representation of c from that of C in O(n).

A procedure to multiply the polynomials A and B is required. We see A and B as elements
of R[X] for some ring R for which the elements have a finite representation on a binary machine.
For example, the ring R can be Z/2kZ for some positive integer k, or C, the complex field, with
finite precision. The main constraint on R is to allow one to represent correctly the coefficients
of C. For the example given by the ring Z/2kZ, it is required for 2k to be larger than all the
coefficients of C. This constraint can be summarized via the following inequality:

2k ≥ N + 1

2
η2.

We prefer to use the inequality 6.1

2k ≥ Nη2, (6.1)

which is allowed because N is a power of two.

Reciprocally, Kronecker and Schönhage proposed in [39, 51] to multiply polynomials by trans-
forming them into integers. Thus, the complexity of multiplication of polynomials is related to
the complexity of the multiplication of integers. We refer to this method as “Kronecker substi-
tution”.

We can describe the algorithm as follows. Let A and B be polynomials of Z[X] of length
N/2, with coefficients bounded by η = 2t. Then, we consider the integers a and b such that
a = A(2k) and b = B(2k), where 2k = N · η2. We compute c = a · b. We read the coefficients of
C from c by splitting c into pieces of bit-length k.

For example, if we multiply 1+X by X+X2, we obtain, in radix two with the least significant
bit at the left, the integers

(100010000000) and (000010001000),

since k = 2 + log2 4 = 4. The product c is represented by

(00001000010010000000).

When we split c into pieces of bit-length four, we obtain a polynomial C equal to

C = (0000) + (1000)X + (0100)X2 + (1000)X3 + (0000)X4 = X + 2X2 +X3.

6.2 Evaluation-Interpolation
We describe how to compute the product of two polynomials A,B ∈ R[X]. For large degrees, we
use the evaluation-interpolation scheme. The principle is to use the fact that for two sequences
(xi) and (yi) of N elements of R, such that the xi’s are distinct, there exists exactly one poly-
nomial C of degree at most N − 1 such that C(xi) = yi (by hypothesis, the ring R contains N
distinct elements). This polynomial C can be obtained via the Lagrange interpolation. Using
this fact, a polynomial C such that C = A ·B can be computed via 3 steps:
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1. compute the evaluation of A and B on N points xi;

2. compute the point-wise products A(xi) ·B(xi);

3. compute C as the unique polynomial such that C(xi) = A(xi) ·B(xi).

This general strategy used to multiply polynomials is called the evaluation-interpolation
scheme. Such a strategy is described in Algorithm 14, where we highlight the possibility of
computing the product C(x) = A(x)B(x) by multipoint evaluation and interpolation if the ring
R in which computations take place provides a nice and sufficiently large set of interpolation
points.

Algorithm 14 Multiply in Z via multipoint evaluation of polynomials

1: Input: a, b two integers to be multiplied; we let n ≥ max(log2 |a| , log2 |b|)
2: η a power of two; we let N = d2n/ log2 ηe
3: R a ring such that there exists an injective function mapping integers below Nη2 to R
4: S ⊂ R a set of N evaluation points
5: Output: c = a · b
6: function MultiplyIntegersViaMultipointEvaluation(a, b, η,R)
7: Let A(x) ∈ Z[X] with positive coefficients less than η and such that A(η) = a
8: Let B(x) ∈ Z[X] with positive coefficients less than η and such that B(η) = b
9: A and B are seen as elements of R[X]

10: Â← MultiEvaluation(A,S); define B̂ likewise.
11: Ĉ ← PointwiseProduct(Â, B̂).
12: C ← Interpolation(Ĉ,S)
13: Reinterpret C as a polynomial in Z.
14: return c = C(η).
15: end function

The procedure followed by Algorithm 14 is in fact quite general, and can be applied to a
wider range of bilinear operations than just integer multiplication. For example, one can adapt
this algorithm to multiply polynomials or power series in various rings, or to compute other
operations such as middle products or dot products. The last example of the dot product is
archetypal of the situation where results of the MultiEvaluation step (as e.g. Â in Algorithm 14)
are used more than once. The conditions on R that are used to guard against possible overflow
must be adjusted accordingly. For example, if R is chosen with the formZ/2mZ, the bound given
by the inequality 6.1 implies that 2m should be larger than Nη2.

6.3 Discrete Fourier Transform

We now discuss how multi-evaluation can be performed efficiently. This depends first and fore-
most on the number of evaluation points N and on the ring R. FFT algorithms are special-
purpose algorithms adapted to evaluation points chosen among roots of unity in R. In order to
allow R to be a non-integral ring, we need the following definition.

Definition 6.1. Let N ≥ 1 be an integer, and R be a ring of characteristic zero or char-
acteristic coprime to N , containing an N -th root of unity ω. We say that ω is a principal
N -th root of unity if ∀i ∈ [[1, N − 1]],

∑N−1
j=0 ωij = 0.
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The notion of principal root of unity is stricter than the classical notion of primitive root, and
provides the suitable generalization to non-integral rings. For example in C × C, the element
(1, i) is a primitive 4-th root of unity but not a principal 4-th root of unity.

Using the set of powers of ω as a set of evaluation points, we define the discrete Fourier
transform (DFT) as follows.

Definition 6.2 (Discrete Fourier Transform (DFT)). Let R be a ring with ω a principal
N -th root of unity. The DFT of length N and base root ω over R is the ring morphism
DFTN,w defined as:{

R[X]/(XN − 1) → R[X]/(X − 1)×R[X]/(X − ω)× · · · ×R[X]/(X − ωN−1)

P 7→ (P (1), P (ω), . . . , P (ωN−1)).

We customarily write a DFT of length N of a polynomial P as the polynomial P̂ of degree
less than N − 1 defined as

P̂ = DFTN,ω(P ) = P (1) + P (ω)X + · · ·+ P (ωN−1)XN−1.

The DFT of a polynomial P can be understood as the product of a Vandermonde matrix

V (ω) =



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−2 ω2(N−2) · · · ω(N−2)(N−1)

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


with the vector 

P0

P1

...
PN−1


given by the coefficients of P .

The discrete Fourier Transform is convenient because the inverse of a DFT is also a DFT
scaled by 1/N (see e.g. [59, §8]).

Proposition 6.3. Let P be a polynomial with coefficients in R and ω a principal root of
unity of R. We have DFTN,ω−1(DFTN,ω(P )) = N · P .

Proof. Let M be the matrix V (ω−1) · V (ω). The coefficient (i, j) of M is
∑

0≤k<N ω
(−i+j)k. By

definition of a principal root of unity, if i 6= j, this coefficient is zero. Otherwise, it is equal to
N . Thus, M is a diagonal matrix equal to N times the identity matrix.
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Corollary 6.4. The morphism DFTN,ω is, in fact, a ring isomorphism.

Proof. The integer N is supposed to be invertible in the ring R. Consequently, DFTN,ω is
invertible.

Thus, the task of interpolating a polynomial A from its multi-evaluation Â can be done with
essentially the same algorithm.

The isomorphism given by the DFT of a polynomial of length N is an isomorphism between
R[X]/(XN − 1) and RN . In our applications, it is also useful to have an isomorphism between
R[X]/(XN + 1) and RN . Thus, we define the Half-DFT, which is an isomorphism derived from
the one given by the DFT.

Definition 6.5 (Half discrete Fourier Transform (DFT)). Let R be a ring with ω a prin-
cipal 2N -th root of unity. The Half-DFT of length N and base root ω over R is the ring
isomorphism Half-DFTN,ω defined as:{

R[X]/(XN + 1) → R[X]/(X − ω)×R[X]/(X − ω3)× · · · ×R[X]/(X − ω2N−1)

P 7→ (P (ω), P (ω3), . . . , P (ω2N−1)).

The fact that (XN + 1) =
∏

0≤i<N (X − ω2i+1) follows from

(X2N − 1) =
∏

0≤i<2N

(X − ωi)

and
(XN − 1) =

∏
0≤i<N

(X − ω2i).

Half-DFTs are used for polynomial products modulo XN + 1, as opposed to XN − 1. Such
convolutions are called negacyclic. The half-DFT of a polynomial A is related to the DFT of the
polynomial A(ωX) via

Half-DFTN,ω(A(X)) = DFTN,ω2(A(ωX)).

Thus, an algorithm computing a DFT can be used to compute a half-DFT, with N additional
multiplications involved in the computation of the polynomial A(ωX).

6.4 Cooley-Tukey FFT

Cooley and Tukey showed in [17] how a DFT of composite order N = N1N2 can be computed.
This algorithm is also sometimes called “matrix Fourier algorithm”, alluding to the fact that it
performs N2 “column-wise” transforms of length N1, followed by N1 “row-wise” transforms of
length N2. It is described in Algorithm 15.

The notation DFTN,ω denotes a mathematical object rather than an algorithm. Therefore,
we need to detail how recursive computations of DFTNk,ωk are handled in Algorithm 15. Two
approaches are rather typical instantiations of the Cooley-Tukey algorithm when the length N
is a power of two:
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Algorithm 15 General Cooley-Tukey FFT of order N = N1N2

1: Input: A =
∑N−1
i=0 aiX

i ∈ R[X]/(XN − 1) and ω a principal N -th root of unity. Let
ω1 = ωN2 and ω2 = ωN1 .

2: Output: Â = DFTN,ω(A) = A(1) +A(ω)X + · · ·+A(ωN−1)XN−1

3: function LargeRadixCooleyTukeyFFT(A,N1,N2,ω)
4: Let (Bj(X))j ∈ R[X]N2 be such that A(X) =

∑
j<N2

Bj(X
N2)Xj . ∀j, degBj ≤ N1

5: for j ∈ {0, . . . , N2 − 1} do
6: B̂j ← DFTN1,ω1

(Bj) . w1 = wN2 is a principal N1-st root
7: B̂j ← B̂j(ω

jX)
8: end for
9: Let (Si(Y ))i ∈ R[Y ]N1 be such that

∑
j B̂j(X)Y j =

∑
i Si(Y )Xi . ∀i, degSi ≤ N2

10: for i ∈ {0, . . . , N1 − 1} do
11: Ŝi(Y )← DFTN2,ω2

(Si) . w2 = wN1 is a principal N2-nd root
12: end for
13: return

∑
i<N1

Ŝi(X
N1)Xi

14: end function

• “radix-two FFT”: For a length N = 2k, compute N2 = 2 transforms of length N1 =
2k−1 (often called “butterflies”), then recurse with two transforms of length 2. We use
the notation RadixTwoCooleyTukeyFFT(N,ω,A) for this algorithm. The radix-two Cooley
Tukey has a particular form, described in Algorithm 16, using the fact that ωN/2 = −1.

• “large-radix FFT”: More generally, for a length N = 2uq+r with r < u, and q > 0, compute
N2 = N/2u transforms of length N1 = 2u, then recurse with transforms of length N2 =
N/2u. When all recursive calls are unrolled, we see that the computation is based on
transforms of length 2u (or 2r at the very end of the recursion). Those are done with
RadixTwoCooleyTukeyFFT. We use the notation LargeRadixCooleyTukeyFFT(A,N, ω, 2u) for
this algorithm.

It is clear that the latter approach specializes to the former when u = 1.
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Algorithm 16 Radix-two Cooley-Tukey FFT of order N = 2u

1: Input: A =
∑N−1
i=0 aiX

i ∈R[X]/(XN − 1) and ω a principal N -th root of unity.
2: Output: Â = DFTN,ω(A) = A(1) +A(ω)X + · · ·+A(ωN−1)XN−1

3: function RadixTwoCooleyTukeyFFT(A,N ,ω)
4: if N = 2 then
5: return a0 + a1 + (a0 − a1)X
6: else
7: B0 ← a0 + a2X + · · ·+ aN−2X

N/2−1

8: B1 ← a1 + a3X + · · ·+ aN−1X
N/2−1

9: B̂0 ← RadixTwoCooleyTukeyFFT(B0, N/2, ω
2)

10: B̂1 ← RadixTwoCooleyTukeyFFT(B1, N/2, ω
2)

11: B̂1 ← B̂1(ωX)
12: Let (Si(Y ))i ∈ R[Y ]N/2 be such that B̂0(X) + B̂1(X)Y =

∑
0≤i<N/2 Si(Y )Xi

13: for 0 ≤ i < N/2 do
14: Ŝi(Y )← RadixTwoCooleyTukeyFFT(Si, 2,−1)
15: end for
16: return

∑
0≤i<N/2 Ŝi(X

N/2)Xi

17: end if
18: end function

For N = 16, we can illustrate RadixTwoCooleyTukeyFFT by a butterfly diagram given in Fig-
ure 6.1. We order the Ai’s in the bitreverse order, which is the order obtained in RadixTwoCoo-
leyTukeyFFT after the reordering obtained by the successive application of lines 7 and 8.

The complexity of Algorithm 16 requires to count:

• the additions and subtractions,

• the multiplications,

• the memory accesses.

Denoting by L(N) the additions and subtractions in RadixTwoCooleyTukeyFFT, we have

L(N) = N + 2L(N/2)

if N > 2, and L(2) = 2. The resolution of the recursive equation leads to L(N) = N log2N .
Denoting by C(N) the multiplications in RadixTwoCooleyTukeyFFT, we have

C(N) = N/2 + 2C(N/2)

if N > 2, corresponding to computation of B̂1(ωX) on Line 11 of RadixTwoCooleyTukeyFFT (B̂1

being a polynomial of degree N/2), and C(2) = 0. The resolution of the recursive equation leads
to C(N) = N

2 (log2N − 1).
In RadixTwoCooleyTukeyFFT, the algorithmic aspects related to the storage of the roots of

unity are not detailed. If we store the powers of ω in an array of length N , depending on how this
storage is done, the distance between roots of unity may impact the complexity. Since transforms
of sizes 2 or 4 imply less than 1 multiplication by a root of unity on a multitape Turing machine,
we go to transforms of size 8 to give an example. We compute N/8 transforms of size 8. A
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Â2

Â3
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Figure 6.1: Butterfly of a 16-point FFT
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transform of size 8 implies to have access to 8-th roots of unity. If the distance between two 8-th
roots of unity is O(N/8), then we have an additional cost of the order O(N2). Thus, we have
to store the roots of unity so that the distance between high powers of a root of unity should be
small. Two solutions are possible.

• We store them in an array of length N . For each recursive call, we assume that we construct
an array of length N/2 containing the powers of ω2.

• Alternatively, we precompute an array of size N +N/2 +N/4 + · · ·+ 2 containing the N
powers of ω, then the N/2 powers of ω2, . . ., the two powers of −1.

In both cases, the cost of the memory accesses is O(N log2N), because the cost of enumerating
the N/2k-th roots of unity, for some k ≤ log2N , is equal to O(2k).

6.5 Complexity of integer multiplication

Notation 6.6. We denote by M(n) the cost of the multiplication of two n-bit integers in
the deterministic multitape Turing model [47], also called bit complexity.

By combining the evaluation-interpolation scheme of §6.1 with FFT-based multi-evaluation
and interpolation as in §6.4, we obtain quasi-linear integer multiplication algorithms. We identify
several tasks whose costs contribute to the bit complexity of such algorithms.

• conversion of the input integers to polynomials in R[X];

• multiplications by roots of unity in the FFT computation;

• linear operations in the FFT computation (additions, etc);

• point-wise products of elements ofR. Recursive calls to the integer multiplication algorithm
are of course possible;

• recovery of the resulting integer from the computed polynomial.

Algorithm 14 chooses η a power of two so that the first and last steps above have linear
complexity (at least provided that elements in R are represented in a straightforward way). If
we go into more detail, M(n) then expresses as M(n) = O(C(N) ·KFFT(R)) +O(N ·KPW(R)),
with the following notations.

• KFFT(R) denotes the cost for the multiplications by powers of ω in R that occur within
the FFT computation.

• KPW(R) denotes the binary cost for the point-wise products in R.

The costs KPW(R) and KFFT(R) are not necessarily equal.

6.6 Choice of the base ring
Depending on R, the bit complexity estimates of §6.5 can be made more precise. Some rings have
special principal roots of unity that allow faster operations (multiplication in R) than others.
Several choices for R are discussed in [52]. We describe their important characteristics when the
goal is to multiply two n-bit integers.

We denote by log∗ the iterated logarithm function, defined recursively by log∗ x = 0 for any
real number x ≤ 1, and by log∗ x = 1 + log∗(log x) for x ≥ 1.
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6.6.1 Complex FFT
The choice R = C might seem natural because roots of unity are plenty. For a polynomial of
length N , we can use the principal root of unity ω = e2iπ/N . For any k such that k and N are
coprime, ωk is an N -th principal root of unity.

The precision required calls for some analysis. The asymptotic complexity depends on the
best choice for this precision. A precision of t = O(log2 n) bits is compatible with a transform
length N where N is the smallest power of two larger than ( n

log2 n
) (see [52, §3]), in the sense that

the polynomials that we multiply can be represented on tN bits and the product would not be
correct if t were smaller (thus, t = O(log2 n) is optimal). We represent the elements of C as linear
polynomials with coefficients in Z. Using the Kronecker substitution for the multiplications, we
are led to store the elements of C on 4t+ 2 = O(t) bits. The 4t+ 2 bits include the zero padding
due to the Kronecker substitution.

Assuming that we use RadixTwoCooleyTukeyFFT, we have N log2N additions and subtrac-
tions in C, whose cost is O(t) each. Thus, the binary cost of the additions and subtractions is
O(Nt log2N) = O(n log2 n).

We have N log2N memory accesses to elements of size O(t). Thus, the binary cost of the
memory accesses is also O(n log2 n).

Finally, we have O(N log2N) multiplications of integers of size O(t). Thus, the recursive
equation corresponding to the FFT over the complex field is:

M(n) = (3N log2N +N)M(t) +O(n log2 n).

We simplify the equation by considering that n log2 n ≤ N(log2N)M(t): we use the fact that
M(t) is more expensive than the cost of an addition, which is linear in t. Thus, we have

M(n) = O(N log2N ·M(log2 n)) = O(n ·M(log2 n)),

so that
M(n) = 2O(log∗2 n) · n · log2 n · log

(2)
2 n · log

(3)
2 n · . . . ,

where the number of recursive calls is log∗2 n+O(1).

6.6.2 Schönhage-Strassen algorithm
Schönhage and Strassen proposed in [52] and in [51] two recursive algorithms to multiply elements
of a ring of the form Z/(2m + 1)Z, where m is a power of two. Note that, in particular, the
Schönhage-Strassen algorithms can be used to compute the product of n-bit integers for any
n ≤ m

2 . We describe these algorithms in the following paragraphs.
These algorithms are parametrized by integers t, k and e, depending on m. We split the

m-bit elements of Z/(2m + 1)Z into pieces of size t, obtaining polynomials of length denoted by
N = m/t. We consider that the coefficients of these polynomials live in R = Z/

(
2k(2e + 1)

)
Z,

with e chosen such that N divides e and k “negligible”, compared to m (say k ≈ log2m).
We multiply elements of R using Chinese remainder theorem (CRT), which states that

R 'Z/2kZ×Z/(2e + 1)Z.

• To muliply polynomials of length N over Z/2kZ, we use Kronecker substitution and any
subquadratic algorithm to multiply integers.

• InZ/(2e + 1)Z, we use the fact that, since 2 is a 2e-th principal root of unity inZ/(2e + 1)Z
and N divides e, 2e/N is also a 2N -th principal root of unity in Z/(2e + 1)Z. Thus, we
perform an FFT for the multiplication of polynomials of length N over Z/(2e + 1)Z.
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During the FFT, the cost of linear operations such as additions, subtractions or memory accesses
is

O(Nt log2N) = O(m log2m).

Since 22t/N is a principal 2N -th principal root of unity in Z/(2e + 1)Z, all the multiplications in
RadixTwoCooleyTukeyFFT are multiplications by powers of two: on a binary machine, this cost
is linear. Thus, the cost of the multiplications during the FFT is also O(m log2m). The difficult
part is concentrated in the point-wise product of the evaluation-interpolation scheme.

We can summarize the procedure as follows.

1. Two elements x and y of R are decomposed in Z/2kZ and Z/(2e + 1)Z: we obtain polyno-
mials to multiply over two different rings;

2. we compute the products in Z/2kZ using Karatsuba’s algorithm: since k ≈ log2m, we
multiply polynomials of length N and whose coefficients have bit-length k, which has a
cost O(

√
m log2m)log2 3 = o(m log2m) if we use Kronecker-substitution and Karatsuba’s

algorithm;

3. we compute the products in Z/(2e + 1)Z by calling recursively the Schönhage-Strassen
algorithm;

4. we recompose the two products in R.

The cost of the decomposition and the recomposition is linear, using the Bézout identity

(2e + 1)− 2k · 2e−k = 1.

We precise in the following how to choose the parameters t, k and e such that the complexity
of the product modulo (2m + 1) is O(m logm log(2)m).

• In [52], the parameters are chosen as follows:

– t is the largest power of two such that t ≤
√
m;

– k = log2N ;

– e = 2t;

– R =Z/
(
2k(2e + 1)

)
Z.

First, note that N = m/t ≥
√
m and that N | 2t. Second, since N(22t + 1) > N · 22t, all

the coefficients of the product modulo XN + 1 of two polynomials of length N and whose
coefficients have bit-length at most t can be represented in the ring R.
Denoting by C(m) the complexity of the multiplication of two elements of Z/(2m + 1)Z,
this leads to the equation

C(m) = O(m log2m) +NC(2t).

For m ≥ 4, there exists a constant d such that

C(m)

m log2m
≤ d+

C(2t)

t log2m
≤ d+

C(2t)

2t log2 t
= d+

C(2t)

(2t log2 2t)
(

1− 1
log2 2t

) . (6.2)
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First, we have the following intermediate bound on C(m)
m log2m

:

∀m ≥ 4,
C(m)

m log2m
≤ d+ 2

C(2t)

2t log2 2t
= O(2log

(2)
2 m) = O(log2m). (6.3)

For m < 4, we have C(m)
m log2m

= O(1), which means that we have the bound above for any
m.
Returning to Equation (6.2), we have for m ≥ 4,

C(m)

m log2m
≤ d+

C(2t)

t log2m
≤ d+

C(2t)

(2t log2 2t)
(

1− 1
log2 2t

) ≤ d+
C(2t)

2t log2 2t

(
1 +

2

log2 2t

)
.

Thus, reusing the intermediate bound obtained in Equation (6.3), there exists a constant
d′ such that

C(m)

m log2m
≤ d′ + C(2t)

2t log2 2t
.

By developing the recursive equation, we have

C(m)

m log2m
= O(log

(2)
2 m)

and we obtain the complexity C(m) = O(m · log2m · log
(2)
2 m). It follows that the multipli-

cation of two n-bit integers, for n ≤ m
2 , using the Schönhage-Strassen algorithm has cost

of O(n · log2 n · log
(2)
2 n).

• In [51], Schönhage proposes an alternative avoiding the use of the CRT. We can summarize
the choice for the parameters as follows:

– t is the largest power of two such that t ≤
√
m log2m;

– k = 0;
– e is the least integer such that 2e ≥ N22t and that N | e;
– R =Z/(2e + 1)Z.

Note that we have e ≤ 2t+N + log2N ≤ 2t+ 2N .
Still denoting by C(m) the complexity of the multiplication of two elements ofZ/(2m + 1)Z,
we have the equation

C(m) = O(m log2m) +NC(e).

For m ≥ 4, there exists a constant d such that

C(m)

m log2m
≤ d+

C(e)

t log2m
≤ d+

C(e)

e log2 e

(
2(t+N) log2 2(t+N)

t log2m

)
. (6.4)

We have

2(t+N) log2 2(t+N)

t log2m
= 2

log2 t

log2m
+ 2

log2(2 + 2N/t)

log2m
+ 2

N log2 t

t log2m
+ 2

N log2(2 + 2N/t)

t log2m

= 2
log2 t

log2m
+O

(
1

log2m

)
= 1 +O

(
log

(2)
2 m

log2m

)
.
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We obtain the following equation:

C(m)

m log2m
≤ d+

C(e)

e log2 e

(
1 +O

(
log

(2)
2 m

log2m

))
. (6.5)

There exists m0 such that for m ≥ m0, O
(

log
(2)
2 m

log2m

)
≤ 1. We obtain the following inter-

mediate bound:

C(m)

m log2m
≤ d+ 2

C(e)

e log2 e
≤ O(2log

(2)
2 m) = O(log2m). (6.6)

We inject the bound of Equation (6.6) into Equation (6.5):

C(m)

m log2m
≤ d+

C(e)

e log2 e

(
1 +O

(
log

(2)
2 m

log2m

))
= O(log

(2)
2 m) +

C(e)

e log2 e
. (6.7)

By developping the previous inequality, we obtain

C(m)

m log2m
≤ O(log

(2)
2 m)2.

By injecting again the bound obtained for C(m)
m log2m

into Equation (6.5), we obtain the
wanted result.

• It is often considered, as in [27], that it is sufficient to take

– N the largest power of two such that N ≤
√
m;

– k = 0;
– e minimal such that e ≥ 2t+ log2N and that N | e;
– R =Z/(2e + 1)Z.

For practical implementations, these parameters can be chosen. However, they do not
correspond to an algorithm with an asymptotic complexity equal to the complexity of
Schonhage-Strassen algorithm. Indeed, since N divides e and, consequently, 2t, we have
e = 2t+N ≥ 2t+t = 3t. We denote by C(m) the complexity of the multiplication algorithm
using recursively these parameters to multiply m-bit integers. There exists a constant d
such that

C(m) ≥ dm log2m+NC(3t).

We denote by L(m) the solution of

L(m) = dm log2m+NL(3t).

L(m) is a lower bound on the cost C(m) of the algorithm multiplying integers without CRT.
We have

L(m) ≥ dm log2m+
3

2
dm log2m+ · · ·+

(
3

2

)log
(2)
2 m

dm log2m.

There exists d′ such that L(m) ≥ d′m(log2m)1+log2(
3
2 ), which is not the correct complexity.

In the literature [27, 59, 38], this detail is not covered.
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Chapter 7

Fürer-like algorithms

Fürer proposed two distinct algorithms: one in [25] and, some 20 years later, in [26]. The scheme
proposed in [25] relies on the assumption that there exist infinitely many Fermat primes, which
is unfortunately widely believed to be wrong.

7.1 Fürer’s algorithm in a complex modular ring
In this section, we describe an improved version of the algorithm developed in [26]. In particular,
the ring R, described in [26, Section 4], is a complex ring of the form C[x]/(x2

λ

+ 1). We prove
here that we can work in a real ring of the form R[x]/(x2

λ

+ 1).
Fürer’s algorithm combines the advantages of the complex field C and of the modular ring

Z/(2e + 1)Z, for a multiplication of n-bit integers. These rings have orthogonal advantages and
drawbacks.

• In the modular ring, there exists a particular root of unity, namely 2, for which the multi-
plications by its powers are linear in e, because they are equivalent to negacyclic shifts. In
this ring, e ≈

√
n.

• In the complex field, there exists a particular power of the roots of unity for which the
multiplications are also “easy” to compute: these roots are the powers of i. This can be
used in a radix-4 FFT: the transforms of size 4 involve multiplications by powers of i,
which are linear. Although there are fewer particular powers of roots of unity, the bit-
length of the multiplications is approximately log2 n which is less than

√
n, by an order

of magnitude. Thus, the recursive calls are done on smaller sizes, but the quantity of
expensive multiplications is larger.

Fürer proposed in [26] to use the ring R =C[x]/(x2
λ

+ 1), which has a natural principal 2λ+1-th
root of unity, namely x. Let ζ = exp(iπ/2λ) andRj =C[x]/

(
x− ζ2j+1

)
. The ringR is isomorphic

to
∏

0≤j<2λ Rj . For any integer N which is a multiple of 2λ+1 (and in particular for powers of
two of higher order), we define ωN as the unique element of R that maps to exp(2(2j + 1)iπ/N)
in Rj . Lagrange interpolation can be used to compute ωN explicitly. We verify easily that:

• ωN is a principal N -th root of unity;

• by construction, ωN/2
λ+1

N maps to x = exp((2j + 1)iπ/2λ) in Rj , so that ωN/2
λ+1

N = x in
R.

85
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The latter point implies that among powers of ωN , some enjoy particularly easy operations.
When N is clear from the context, ωN is simply denoted by ω.

We consider a radix-2λ+1 Cooley-Tukey FFT described by Algorithm 17. The key observation
is that the “inner” transforms of length 2λ+1 that are computed on Line 14 within the recursion
involve multiplications by roots of unity which are then multiplications by powers of ωK = x ∈ R,
and therefore inexpensive, since they can done via negacyclic shifts. We can count the few
remaining expensive multiplications that occur within the recursion when N ≥ 2λ+1. Those
correspond to the scaling operation B̂k ← B̂k(ωkX) on Line 15 of Algorithm 17. Their count
E(N) satisfies

E(N) = 2λ+1E

(
N

2λ+1

)
+N, (7.1)

because we have K = N/2λ+1 polynomials of degree J = 2λ+1 that are composed with a power
of ω (K ·J = N multiplications) followed by J “outer” transforms of size K on Line 19. It follows
that E(N) = N(dlog2λ+1 Ne − 1).

Algorithm 17 Radix-2λ+1 Cooley-Tukey FFT of order N , a power of two

1: Input: A =
∑N−1
i=0 aiX

i ∈R[X]/(XN − 1) and ω a principal N -th root of unity.
2: Output: Â = DFTN,ω(A) = A(1) +A(ω)X + · · ·+A(ωN−1)XN−1

3: function LargerRadixCooleyTukeyFFT(A,N ,λ,ω)
4: if N ≤ 2 then
5: return a0 + a1 + (a0 − a1)X
6: else
7: J ← 2
8: if N ≥ 2λ+1 then
9: J ← 2λ+1

10: end if
11: K ← N/J
12: for 0 ≤ k < K do
13: Let Bk be the polynomial given by the coefficients (ajK+k)0≤j<J
14: B̂k ← RadixTwoCooleyTukeyFFT(Bk, J, ω

K)
15: B̂k ← B̂k(ωkX)
16: end for
17: Let (Sj(Y ))j ∈ R[Y ]J be such that

∑
0≤k<K B̂k(X)Y k =

∑
0≤j<J Sj(Y )Xj

18: for 0 ≤ j < J do
19: Ŝj(Y )← LargerRadixCooleyTukeyFFT(Sj ,K, λ, ω

J)
20: end for
21: return

∑
0≤j<J Ŝj(X

J)Xj

22: end if
23: end function

We describe elements of C with a fixed precision. To multiply n-bit integers, Fürer selects
λ = dlog

(2)
2 ne and proves that precision O(log2 n) is sufficient for the coefficients of the elements

of R that occur in the computation. The integers to be multiplied are split into pieces of 22λ−1

bits. Each piece of 22λ−1 bits is then transformed into a polynomial of length 2λ−1 whose
coefficients are encoded on 2λ bits. These polynomials are seen as elements of R. Moreover, the
transform length is N = 4n/(log2 n)2. Since we need to have 2λ+1 | 2N , we should have n ≥ 210.
This decomposition is described in Algorithm 18 (FurerComplexMul).
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Algorithm 18 Multiplication of integers with Fürer’s algorithm

1: Input: a and b two n-bit integers, where n is a power of two and n ≥ 210

2: Output: a · b mod (22n + 1) = a · b
3: function FurerComplexMul(a,b,n)
4: Let λ = dlog

(2)
2 ne, η = 22

2λ−1

, N = 2n/ log2 η = 2n/22λ−1,
5: Let R =C[x]/(x2

λ

+ 1), and ω = ω2N as in §7.1.
6: Let A0(X) ∈ Z[X] with non negative coefficients less than η be such that A0(η) = a;

define B0(X) likewise.
7: Let Ã(X,x) ∈ C[X,x] be such that Ã(X, 22

λ

) = A0(X). Define B̃ likewise.
8: Map Ã and B̃ to polynomials A and B inR[X]/(XN + 1)

9: Â← LargerRadixCooleyTukeyFFT(A(ωX), N, λ, ω2) . computes Half-DFTN,ω(A)

10: B̂ ← LargerRadixCooleyTukeyFFT(B(ωX), N, λ, ω2)) . computes Half-DFTN,ω(B)

11: Ĉ ← PointwiseProduct(Â, B̂)
12: C ← 1

N LargerRadixCooleyTukeyFFT(Ĉ(ω−1X), N, λ, ω−2) . computes Half-IFTN,ω(Ĉ)

13: Lift C to C̃ ∈ C[X,x]
14: return C̃(η, 2λ)
15: end function

7.2 Precision of the modular ring and complexity analysis
We show in this section that there exists in R = C[x]/(x2

λ

+ 1) a principal root of unity ω(x)
such that the coefficients of ω are all in R, when λ ≥ 1. Consequently, we can represent, using
this principal root of unity, all the coefficients of the elements of R used in Fürer’s algorithm
assuming that they live in R. When λ = 0, the proposed construction does not work. We
describe the precision required to store elements of R assuming that the coefficients are in R and
we describe the complexity analysis given by Fürer in [26].

7.2.1 From a complex ring to real ring
First, we need an explicit expression of a polynomial obtained by Lagrange interpolation at the
points (ζ2j+1)0≤j<2λ . Therefore, we give the expression of the corresponding Lagrange basis.

Lemma 7.1. The Lagrange polynomial basis (`j)0≤j<2λ corresponding to the evaluation
points (ζ2j+1))0≤j<2λ (i.e., evaluation in the Rj’s) is given by

`j =
1

2λ

2λ−1∑
t=0

(
x

ζ2j+1

)t
.

Proof. For any j ∈
{

0, . . . , 2λ − 1
}
,

`j =
f(x)

f ′(ζ2j+1)(x− ζ2j+1)
,

with f(x) =
∏2λ−1
k=0 (x− ζ2k+1) = x2

λ

+ 1.
Note that (ζ2j+1)2

λ

= (ζ2
λ

)2j+1 = (−1)2j+1 = −1. Thus, we have

f(x) = 1 + x2
λ

= 1−
(

x

ζ2j+1

)2λ

and f ′(ζ2j+1) = − 2λ

ζ2j+1
.
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Therefore,

`j =
1

2λ

(
x

ζ2j+1

)2λ
− 1

x
ζ2j+1 − 1

=
1

2λ

2λ−1∑
t=0

(
x

ζ2j+1

)t
.

We suppose that we have N such that 2λ | N . Let σ = exp(iπ/N) ∈ C: it is a principal
2N -th root of unity and ζ = σN/2

λ

. Let ω ∈ R such that ω maps to σ2j+1−2λ in Rj . In other
words,

ω(ζ2j+1) = σ2j+1−2λ =
σ2j+1

σ2λ
.

Then, ω is a 2N -th principal root of unity if and only if 1−2λ is odd, since ωN = 1 if and only if
if 1−2λ is odd. We want to show that the coefficients of ω are real. For this purpose, we compute
explicitly these coefficients. Using Lagrange interpolation to compute ω =

∑
0≤j<2λ σ

2j+1−2λ`j ,
we have an explicit expression of its coefficients with the lemma above.

Proposition 7.2. For λ ≥ 1, the ω ∈ R is a principal 2N -th root of unity and, for all
k ∈ Z,

ωk =


(−x)k

′
= (−1)k

′+bk′/2cxk
′ mod 2λ if k = k′N/2λ, and

1

2λ

2λ−1∑
t=0

sin
(
k2λπ
N

)
sin
(
kπ
N −

tπ
2λ

)xt otherwise.

Proof. • Since ω maps to a principal 2N -th root of unity in eachRj , then ω is also a principal
2N -th root of unity in R ∼=

∏2λ−1
j=0 Rj .

• Assume k = k′N/2λ. Then, in each Rj , we have

ω(ζ2j+1)k =

(
σ2j+1

σ2λ

)k
=

(
(σN/2

λ

)2j+1

σN

)k′
= (−ζ2j+1)k

′
≡ (−x)k

′
(mod x− ζ2j+1).

Therefore, inR, we have ωk = (−x)k
′

= (−1)k
′
xk
′

= (−1)k
′+bk′/2λcxk

′ mod 2λ , as x2
λ

= −1.

• If k is not divisible by N/2λ, we compute ωk by Lagrange interpolation:

ωk =

2λ−1∑
j=0

ω(ζ2j+1)k`j =

2λ−1∑
j=0

σk(2j+1)

σk2λ
`j

=
1

2λσk2λ

2λ−1∑
j=0

2λ−1∑
t=0

(
σk

ζt

)2j+1

xt =
1

2λσk2λ

2λ−1∑
t=0

(
σk

ζt

) (σk
ζt

)2λ+1

− 1(
σk

ζt

)2
− 1

xt,

where the last equality comes from the fact that (σk/ζt)2 6= 1, for all 0 ≤ t < 2λ.

Indeed, let us assume that there exists 0 ≤ t < 2λ such that (σk/ζt)2 = 1. Then, since
ζ = σN/2

λ

, we have σ2k−2tN/2λ = 1. As σ is a principal 2N -th root of unity, we obtain
2k ≡ 2tN/2λ (mod 2N), whence k ≡ tN/2λ (mod N) and, finally, k ≡ 0 (mod N/2λ),
which contradicts the assumption that k is not divisible by N/2λ.
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Finally, since ζ is a 2λ+1-st root of unity, we can rewrite ωk as

ωk =
1

2λσk2λ

2λ−1∑
t=0

(
σk

ζt

)
σk2

λ+1 − 1(
σk

ζt

)2
− 1

xt =
1

2λ

2λ−1∑
t=0

σk2
λ − σ−k2λ(

σk

ζt

)
−
(
σk

ζt

)−1xt
=

1

2λ

2λ−1∑
t=0

Im(σk2
λ

)

Im
(
σk

ζt

) xt =
1

2λ

2λ−1∑
t=0

sin
(
k2λπ
N

)
sin
(
kπ
N −

tπ
2λ

)xt.

Given the expression of ωk, we observe that its coefficients are all real.

Corollary 7.3. For all k ∈ Z, ωk ∈ R[x]/(x2
λ

+ 1).

7.2.2 Norm
In this section, we compute the L1-norm of the roots of unity ωk defined in Section 7.2.1.

Definition 7.4. The L1-norm of an element A =
∑
j ajx

j ∈R[x]/(x2
λ

+ 1) is defined as

‖A‖1 =
∑

0≤j<2λ

|aj |.

This norm is used to determine how many bits of precision are required to represent the coef-
ficients of the roots of unity that we consider. In Fürer’s article, the norm that is used is the
L2-norm and it is bounded by 2λ.

Lemma 7.5. For all A ∈R[x]/(x2
λ

+ 1), ‖A · x‖1 = ‖A‖1.

Proof. Writing A =
∑2λ−1
t=0 , we have A · x =

∑2λ−1
t=1 at−1x

t + a2λ−1x
2λ =

∑2λ−1
t=1 at−1x

t − a2λ−1,
since x2

λ

= −1. Therefore, ‖A · x‖1 =
∑2λ−1
t=0 |at| = ‖A‖1.

Consider ω defined as in Section 7.2.1. We want to bound the L1-norm of the ωk’s. We use the
previous proposition to reduce the problem to the set of ωk’s for which k ∈

{
0, . . . , N/2λ − 1

}
.

Proposition 7.6. For all k ∈ Z, let k0 = k mod (N/2λ), with 0 ≤ k0 < N/2λ. Then,

‖ωk‖1 = ‖ωk0‖1 =


1 if k0 = 0, and

1

2λ

2λ−1∑
t=0

sin
(
k02

λπ
N

)
sin
(
k0π
N + tπ

2λ

) otherwise.

Proof. Let k ∈ Z. Write k = k1N/2
λ + k0, with k1 = bk2λ/Nc and k0 = k mod (N/2λ) =

k− k1N/2λ. Then, according to Proposition 7.2, ωk = (−1)k1ωk0 and, by Lemma 7.5, we obtain

‖ωk‖1 = ‖ωk0‖1 =


1 if k0 = 0, and

1

2λ

2λ−1∑
t=0

∣∣∣sin(k02λπN

)∣∣∣∣∣sin (k0πN − tπ
2λ

)∣∣ otherwise.
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Since 0 ≤ k0 < N/2λ by construction, sin(k02λπ/N) ≥ 0. Furthermore, for all t ∈
{

1, . . . , 2λ − 1
}
,

we have −1 < k0/N − t/2λ < 0, and∣∣∣∣sin(k0πN − tπ

2λ

)∣∣∣∣ = sin

(
tπ

2λ
− k0π

N

)
= sin

(
(2λ − t)π

2λ
+
k0π

N

)
.

Additionally, for t = 0, we have∣∣∣∣sin(k0πN − tπ

2λ

)∣∣∣∣ = sin

(
k0π

N

)
.

Finally, the result follows from the fact that, for k0 6= 0,

2λ−1∑
t=0

1∣∣sin (k0πN − tπ
2λ

)∣∣ =

2λ−1∑
t=1

1

sin
(

(2λ−t)π
2λ

+ k0π
N

) +
1

sin
(
k0π
N

) =

2λ−1∑
t=0

1

sin
(
k0π
N + tπ

2λ

) .

Proposition 7.7. Let N ≥ 1. For λ ≥ 1, we denote by n(λ) the maximum

max
0≤k<N/2λ

(‖ωk‖1).

We have n(λ) = 2
πλ log 2 +O(1).

Proof. In the following, we assume that λ ≥ 1. First, we show that the root of unity having the
largest L1-norm is the one for which k = N

2λ+1 . We group the terms of index j and 2λ − 1 − j.
We want the k for which the sum 1

sin( k0πN + tπ

2λ
)

+ 1

sin( (t+1)π

2λ
− k0πN )

is maximal.

For t ∈
{

0, . . . , 2λ − 1
}
, we define the function ft(u) for − 1

2 < u < 1
2 as

ft : u 7→ cos(uπ)

sin
((
t+ 1

2 + u
)
π
2λ

) +
cos(uπ)

sin
((
t+ 1

2 − u
)
π
2λ

) .
Then, for all 0 < k0 < N/2λ, we have

‖ωk0‖1 =
1

2λ

2λ−1−1∑
t=0

ft

(
k02λ

N
− 1

2

)
.

We let gt be

gt : u 7→ cos(uπ)

sin
((
t+ 1

2 + u
)
π
2λ

) .
We have

ft(u) = gt(u) + gt(−u).

Thus, ft is an even function and f ′t(0) = 0. We will prove that it is the only zero for u ∈]− 1
2 ,

1
2 [

and that it is a maximum. We restrict the problem to the interval ]0, 12 [ by using the fact that
ft is an even function.
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We want to prove that, for u ∈]0, 12 [, we have

0 ≥ ft(u)− ft(0) =
2 cos(uπ) cos(uπ

2λ
) sin2

((
t+ 1

2

)
π
2λ

)
− 2

(
sin2

((
t+ 1

2

)
π
2λ

)
− sin2

(
uπ
2λ

))
sin
((
t+ 1

2 + u
)
π
2λ

)
sin
((
t+ 1

2 − u
)
π
2λ

)
sin
((
t+ 1

2

)
π
2λ

) .

Denoting by ht the function

ht : u 7→ cos(uπ) cos(
uπ

2λ
) +

sin2
(
uπ
2λ

)
sin2

((
t+ 1

2

)
π
2λ

) − 1,

we have

ft(u)− ft(0) =
2 sin2

((
t+ 1

2

)
π
2λ

)
ht(u)

sin
((
t+ 1

2 + u
)
π
2λ

)
sin
((
t+ 1

2 − u
)
π
2λ

)
sin
((
t+ 1

2

)
π
2λ

)
and, therefore, we only need to prove that for u ∈]0, 12 [, ht(u) ≤ 0. Since sine is an increasing
function on ]0, π/2[, we have ht(u) ≤ h0(u) for any u ∈]0, 1/2[.

We observe that h0(0) = 0 and h0(1/2) = 0. Thus, if we prove that the sign of h0 is constant
on ]0, 1/2[ and that it is increasing on ]1/2− ε, 1/2[, we prove that it is negative on this interval.
To do that, we prove that h′0 has at most one zero in this interval, which implies that h0 has no
zero in the same interval.

We have

∀u ∈]0, 1/2[, h′0(u) = −π sin(uπ) cos
(uπ

2λ

)
− π

2λ
sin
(uπ

2λ

)
cos(uπ) +

2π

2λ
cos
(
uπ
2λ

)
sin
(
uπ
2λ

)
sin2

(
π

2λ+1

) .

Thus,

∀u ∈]0, 1/2[, h′0(u) = cos
(uπ

2λ

)
sin
(uπ

2λ

)(
−π sin(uπ)

sin
(
uπ
2λ

) − π

2λ
cos(uπ)

cos
(
uπ
2λ

) +
2π

2λ
1

sin2
(

π
2λ+1

)) .
The functions x 7→ sin(uπ)

sin(uπ
2λ

)
and x 7→ cos(uπ)

cos(uπ
2λ

)
are both decreasing functions on ]0, 1/2[. Conse-

quently, h′0 has at most one zero on ]0, 1/2[.
Moreover, we have h′0(1/2) > 0, since

2− 2λ sin
( π

2λ+1

)
> 0.

Consequently, h0(u) < 0 on ]0, 1/2[.
Thus, the power of ω having the largest L1 norm is the N

2λ+1 -th power. We have

‖ω
N

2λ+1 ‖1 =
1

2λ−1

2λ−1−1∑
t=0

1

sin( π
2λ+1 + tπ

2λ
)

=
1

2λ−1

2λ−1−1∑
t=1

1

sin( π
2λ+1 + tπ

2λ
)

+
1

2λ−1
1

sin(π/2λ+1)
.

We use the fact that the function sin(x) grows with x for x ∈ [0;π/2] to compare the sum with
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an integral:

2λ−1∑
t=0

1

2λ sin( (t+1)π
2λ
− π

2λ+1 )
≤ 1

2λ−1

2λ−1−1∑
t=1

∫ t

t−1

1

sin( π
2λ+1 + uπ

2λ
)
du+

1

2λ−1
1

sin(π/2λ+1)

≤ 1

2λ−1

∫ π/2−π/2λ+1

π/2λ+1

2λ

π sin(x)
dx+

1

2λ−1
1

sin(π/2λ+1)

≤ 2

π

[
log

(√
1− sin(π/2λ+1)

1 + sin(π/2λ+1)

)
− log

(√
1− cos(π/2λ+1)

1 + cos(π/2λ+1)

)]
+

1

2λ−1
1

sin(π/2λ+1)

≤ 2

π

log

(√
sin2

(
1
2 (π/2− π/2λ+1)

)
cos2

(
1
2 (π/2− π/2λ+1)

))− log

√ sin2(π/2λ+2)

cos2(π/2λ+2)


+

1

2λ−1
1

2
π

π
2λ+1

≤ 2

π

[
log(tan(π/4)) + log(cos(π/2λ+2))− log(sin(π/2λ+2)))

]
+ 2

≤ 2

π

[
0− log

(
2

π
· π

2λ+1

)]
+ 2

≤ 2

π
λ log (2) + 2.

The expression 1
2λ is a simple upper bound on the dominant term of the previous sum. Fürer’s

bound of the L2 norm of the root of unity was 2λ, which means that we have an exponentially
better bound.

7.2.3 Precision

We need to be able to estimate the number of bits required to store the elements of R and to
represent correctly the coefficients of the product C of the polynomials A and B in Algorithm 18.
We use the same error analysis as in [26]. As in [26], in a practical implementation, we can assume
that we use integer arithmetic and an appropriate scale with a power of two at each steps of the
FFT. More details about this appropriate scale are given below.

We compute fast Fourier transforms over the ring R = R[x]/(x2
λ

+ 1). We represent the
elements of R as polynomials with real coefficients with fixed precision. We want to determine
the numerical precision needed for these coefficients. First, we start with integer coefficients of
bit-length 2λ. We apply two Half-DFTs, followed by a point-wise product, and then an inverse
Half-DFT. At the end, the absolute error should be less than 1/2 and the precision, denoted by
S, follows.

Thus, we do the computations with S bits of precision, where S has to be determined. The
coefficients are stored on S bits and we denote by V the number of bits before the binary point.
The quantity S−V is the number of bits after the binary point. During the algorithm, V varies.
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For a given step of Fürer’s algorithm, V is uniform for the set of elements that are involved
in the following computations, except for the principal roots of unity. Thus, V can be thought
as a static data at each step of Fürer’s algorithm (each level of the FFT butterflies, point-wise
product, first step of Half-DFT, last step of inverse of Half-DFT).

As it has been said, we suppose that we use integer arithmetic. For an element Z ∈ Z, we
denote its representation on a binary machine by Z and we let the error be

ε(Z) = Z − Z.

Elements Z ∈ R are represented as Z = mZ2−EZ , where mZ ∈ Z is such that mZ ≤ 2S and
EZ ∈ N is such that S−EZ is the number of bits before the binary point. We have the following
arithmetic, for elements Z and Z ′ such that EZ = EZ′ for the addition:

Z + Z ′ =

⌊
mZ +mZ′

2

⌋
2−EZ+1

and
Z · Z ′ =

⌊mZ ·mZ′

2S

⌋
2−EZ−EZ′+S .

We consider that an addition or subtraction doubles the absolute value and increases V by one.
However, multiplications by powers of x do not introduce errors: the maximum of the absolute
values of the coefficients of A · x−A · x is the same as for A−A for any A ∈ R.

The fact that the roots of unity in R have coefficients in R and that their L1-norm is bounded
by n(λ) allows us to have a better precision than in [26]. Fürer bounds the infinity norm of its
root of unity by one. We need the same result.

Lemma 7.8 (L2-norm of roots of unity). The L2-norm of ω is ‖ω‖2 = 1.

Proof. The proof is the same as in [26]:

• the value of ω(x) at all the principal 2λ+1-st roots of unity is a complex number of absolute
value one;

• the polynomial B ∈ R whose coefficients are these values has L2-norm equal to
√

2λ;

• the coefficients of ω(x) are obtained via Half-DFT−12λ,ζ(B);

•
√

2λ Half-DFT−12λ,ζ is a unitary matrix: it preserves the L2-norm.

Corollary 7.9. We have ‖ωk‖∞ ≤ 1 for any k ≥ 0.

Fürer shows in [26] that the precision S required to represent these coefficients is greater than

9 + 2λ+1 + 4λ+ log
(2)
2 (2N) + 5 log2N ∼ 5 log2N + 2λ+1.

We do not prove this result because we obtain a better bound below: we obtain

1+log2 15+log2N(2+3
log2 n(λ)

log2 2λ
)+λ+2λ+1 +log2(L+1)+log

(2)
2 N ∼ (2+o(1)) log2N +2λ+1.
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We use exactly the same error analysis as Fürer. However, whereas Fürer used 2λ as an
upper bound on the L1-norm of his principal roots of unity of C[x]/

(
x2

λ

+ 1
)
, we use a more

precise bound, namely ñ(λ), defined as the least power of two greater than or equal to n(λ).
Furthermore, since he works over C, he has an additional factor two. We need to reexpress
the lemmas proved by Fürer in [26] with ñ(λ), over R. The bound that we obtain is a direct
consequence of this injection.

As in [26], we say that, at some stage of an algorithm, we have a value bound v and an error
bound e, if the coefficients r of elements of R involved in the computations of this stage satisfy

|r| ≤ v and |ε(r)| ≤ e.

Given ωk, according to Corollary 7.9, 1 is a value bound on the coefficients of ωk and 2−S is an
error bound on the coefficients of ωk.

The bounds that are used are always powers of two. If we have a value bound v, we do all
the computations with V = log2 v bits before the binary point.

Lemma 7.10 (Lemma 6.1 in [26]). Let C ∈ R be represented by C, such that ‖C‖∞ < vC
and ‖C − C‖∞ < eC . Let k ∈ {0, . . . , 2N − 1}. From C and ωk we compute a machine
representation D of the product D = C · ωk, such that vD is a value bound and eD is an
error bound on the coefficients of D. Then,

vD = ñ(λ)vC

is a value bound and
eD = ñ(λ)eC + 2λvC2−S+1

is an error bound after the multiplication.

Proof. Let k be a non negative integer. We denote by ωk,i the coefficients of ωk. We showed
that

∑
i |ωk,i| ≤ ñ(λ). We have

C · ωk =

2λ−1∑
i=0

i−1∑
j=0

cjωk,i−j −
2λ−1∑
j=i

cjωk,2λ+i−j

xi.

We represent the cj ’s by cj + ε(cj). We have the same decomposition for the coefficients of the
root of unity ωk,j + ε(ωk,j). We decompose C · ω into three parts:

C · ω =

2λ−1∑
i=0

i−1∑
j=0

cjωk,i−j −
2λ−1∑
j=i

cjωk,2λ+i−j

xi

+

2λ−1∑
i=0

i−1∑
j=0

ε(cj)ωk,i−j −
2λ−1∑
j=i

ε(cj)ωk,2λ+i−j

xi

+

2λ−1∑
i=0

i−1∑
j=0

cjε(ωk,i−j)−
2λ−1∑
j=i

cjε(ωk,2λ+i−j)

xi.

The first sum is the theoretical polynomial to be approximated. We can bound it by ñ(λ)vC ,
where ñ(λ) is an upper bound on the L1-norm of ωk.
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The coefficients of the second sum can be bounded in absolute value by eC ñ(λ):

|ωk,i| ≤ |ωk,i|

because of the truncature and∣∣∣∣∣∣
i−1∑
j=0

ε(cj)ωk,i−j −
2λ−1∑
j=i

ε(cj)ωk,2λ+i−j

∣∣∣∣∣∣ ≤ eC
2λ−1∑

j=0

|ωk,j |

 .

We bound the coefficients of the third sum by 2λvC2−S since the ε(ωk,j)’s satisfy ε(ωk,j) <
2−S . Moreover, we introduce a new error due to the rounding on each coefficient of the product.
Thus, we add vD2−S ≤ 2λvC2−S to the previous sum.

We do not prove the following lemmas, since the proofs are exactly the same as in [26], although
we have to take into account the fact that we work with reals and that we obtained new bounds
in Lemma 7.10.

Lemma 7.11 (Lemma 6.2 in [26]). Let N be a power of two such that N ≥ 2 and λ be a non
negative integer. Let L = d(log2N)/(λ+1)e−1 be the number of levels with computationally
intensive principal roots of unity in Fürer FFT. If the input A of an N -point FFT has a
value bound vA and an error bound eA, then the output B has a value bound

vB = Nñ(λ)LvA

and an error bound

eB = Nñ(λ)L
(
eA + vA2−S

(
log2N + 2L

2λ

ñ(λ)

))
We need to estimate the error produced by the point-wise product. Thus, given C and C ′

elements ofR with vC and eC their value bound and their error bound, the problem is to estimate
the error on the product.

Lemma 7.12 (Lemma 6.3 in [26]). If vC is a value bound and eC , such that vC2−S ≤ eC , is
an error bound for C and C ′ before their multiplications, then vD = 2λv2C is a value bound
and eD = 2λ+2vCeC is an error bound on the coefficients of D = C · C ′.

Lemma 7.13 (Lemma 6.4 in [26]). For λ = dlog
(2)
2 ne and N = 2n/22λ−1, precision S ≥

log2 15 + log2N
(

2 + 3 log2 ñ(λ)
log2 2λ

)
+ λ+ 2λ+1 + log2(L+ 1) + log

(2)
2 N + 1 is sufficient for the

multiplication of integers of bit-length n.

We summarize in Table 7.1 the evolution of the value and error bounds, at different stages of
Fürer’s algorithm. These stages are as follow:

1. Start;

2. After first level of Half-FFT;

3. After N -point FFT;
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4. After point-wise products;

5. After Inverse-FFT;

6. After last level of Inverse-Half-FFT.

Stage Value bound Absolute error bound

1 22
λ

0

2 ñ(λ)22
λ

2λ22
λ

2−S+1

3 Nñ(λ)L+122
λ

Nñ(λ)L+122
λ

2−S
(
log2N + 2(L+ 1)2λ/ñ(λ)

)
4 2λN2ñ(λ)2(L+1)22

λ

2λ+2N2ñ(λ)2(L+1)22
λ+1

2−S
(
log2N + 2(L+ 1)2λ/ñ(λ)

)
5 2λN2ñ(λ)3L+222

λ+1

ñ(λ)3L+22λN22
λ+1+1

2−S
(
5 log2N + (10L+ 8)2λ/ñ(λ)

)
6 2λN2ñ(λ)3(L+1)22

λ+1

ñ(λ)3(L+1)2λN22
λ+1+1

2−S
(
5 log2N + (10L+ 8)2λ/ñ(λ)

)
Table 7.1: Value and error bounds.

In Fürer’s article, the bound on the precision was

9 + 2λ+1 + 4λ+ log
(2)
2 (2N) + 5 log2N ∼ 5 log2N + 2λ+1.

We proved that this bound can be actually taken as

1+log2 15+log2N(2+3
log2 n(λ)

log2 2λ
)+log2 2λ+2λ+1+log2(L+1)+log

(2)
2 N ∼ (2+o(1)) log2N+2λ+1.

Thus, we have improved this bound by a factor almost equal to 2, when looking the coefficient
of the dominant term log2N .

7.2.4 Complexity analysis

Some non-trivial multiplications by elements of R are needed in Algorithm 18: 3E(N) multipli-
cations in recursive calls, and 4N multiplications by scaling factors (because of the negacyclic
convolution) and pointwise products. For these, we use Kronecker substitution: we encode el-
ements of R as integers of bit length O((log2 n)2), and then call recursively FurerComplexMul.
Other multiplications by roots of unity are cheap. Their number is O(N logN), and their cost is
linear in the size of elements of R, that is O(2λ log n). Additionally, all implicit rearrangement
costs of Algorithm 18 (see §6.4) are also within this same bound. We get the following equation
for M(n):

M(n) = N(3dlog2λ+1 Ne+ 1) ·M(O(log n)2) +O(N logN · 2λ log n). (7.2)

Fürer proves by induction that this equation leads to M(n) ≤ n log n(2c log
∗ 4
√
n − d) for some

constants c, d > 0, so that
M(n) = n · log n · 2O(log∗ n),

where log∗ is the iterated logarithm function defined in Section 6.6. This trick allows one to have
an exponent log∗2

4
√
n decreasing at each recursive call to the integer multiplication algorithm.
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We assume that there exists n′0 satisfying n ≥ n′0 ≥ n0 ≥ 16, where n0 is the bit-length below
which we apply a multiplication algorithm of worse asymptotic complexity. We suppose that
Fürer’s assertion is true for any k ∈ {2, . . . , n}. Then, we obtain from

M(n) ≤ N(3dlog2λ+1eN + 1)M(a(log2N)2) + b(N(log2N)3)

the relation

M(n) ≤ 4Ndlog2λ+1 Nea(log2N)2 log2(O(log2N)2)(2c(log
∗
2

4
√
O(log2N)2) − d) + b(N(log2N)3),

by induction.
We choose n′0 such that 4

√
(log2N)2 ≤ 1

4 log2 n. Then,

M(n) ≤ 8
n

log2
2 n

log2λ+1 na(log2
2 n)2 log

(2)
2 (2c(log

∗
2(

1
4 log2 n)) − d) + 2bn log2 n

= 16an log2 n
log

(2)
2 n

log2 2λ+1
(2c(log

∗
2

4
√
n−1) − d) + b2n log2 n.

We notice that log
(2)
2 n ≤ λ+1 ≤ log

(2)
2 n+2 ≤ 2 log

(2)
2 n. By choosing c and d such that 16a ≤ 2c

and −8ad+ 2b ≤ d (and c sufficiently large to initialize the induction), we obtain the final result.
Compared to original Fürer’s algorithm, using a polynomial ring with real coefficients and an
improved precision involves a different coefficient a. A modification of this coefficient a involves
a modification of the constant c and hence the constant hidden in the term O(log∗ n) of the final
complexity.

7.3 Modular ring
A modular version of Fürer’s algorithm has been proposed in [21]. Rather than considering the
ring C[x]/(x2

λ

+ 1), the authors proposed the ring Z[x]/(pc, x2
λ

+ 1) for a well-chosen prime p,
and a constant c. It can be understood as a p-adic version of Fürer’s algorithm, with a fixed
precision. When they split the input integers a and b, they decompose them into N chunks,
where N is no longer N = O( n

log2
2 n

): they choose N such that Nk = O
(

n
(log2 n)

2

)
for a constant

k that will be detailed later.
Thus, they decompose a as a = a0 + ... + aNk−12( n

Nk
)(Nk−1), from which they deduce a

k-variate polynomial A(X1, ..., Xk) =
∑Nk−1
i=0 aiX

i1
1 ...X

ik
k , where (ik...i1) is the decomposition of

i in radix N (to recover a, they evaluate the Xi’s at 2( n

Nk
)(Ni−1)). According to this decompo-

sition, they need to choose c such that pc > Nk2λ22
λ+1

.

The ring Z/pcZ should contain a 2N -th principal root of unity. For this purpose, they have
to check that 2N | (p − 1). Thus, they are looking for a prime p in the set {1 + 2iN | i ≥ 0}.
They reduce the search by using the following theorem.

Theorem 7.14 (Linnik’s theorem [44]). There exist constants l and L such that for d and
m coprime integers, the smallest prime p satisfying p ≡ d mod m is less than lmL.

Let now k be an integer greater than L. Since Nk = o(n), NL = O(Nk) = o(n). Thus, accord-
ing to Linnik’s theorem, they can find p ≡ 1 mod 2N with a cost no larger than to O(NL) = o(n).
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It remains to find a 2N -th principal root of unity in Z/pcZ. For this purpose, it is necessary
to find a generator of Fp, which is a (p−1)-th root of unity in Fp, with a deterministic complexity
equal to O(p

1
4+ε), according to [53], for any ε > 0. One can deduce from it a (p − 1)-th root of

unity in Z/pcZ by using Hensel lifting.

Theorem 7.15 (Hensel Lifting). If ζ is a (p− 1)-th principal root of unity in Z/pkZ, then
there exists a (p−1)-th principal root of unity ζ ′ in Z/pk+1Z satisfying ζ ′ ≡ ζ mod pk. This
root of unity is given by ζ ′ = ζ − f(ζ)

f ′(ζ) , where f(x) = xp−1 − 1

Once the root of unity is obtained, it remains to apply the Lagrange interpolation used in Fürer’s
version to get a root of unity ω in Z[x]/(pc, x2

λ

+ 1) such that ωN/2
λ+1

= x.
Thus, the authors use the same algorithm as Fürer, although they work with k-variate poly-

nomials, where k > 7 and c > 5(k + 1), which implies to work in the ring (Z[x]/(pc, x2
λ

+
1))(X1, . . . , Xk−1) = R(X1, . . . , Xk−1), but does not change radically the complexity. They use
several FFT: if the lengths are N1, N2, . . . , Nk, they compute N2 · · ·Nk FFT’s of length N1, then
N1N3 · · ·Nk FFT’s of length N2, etc. They finish with N1 · · ·Nk−1 FFT’s of length Nk. Those
FFT’s use the ring Z[x]/(pc, x2

λ

+ 1)) and Fürer’s strategy.

However, using k-variate polynomials instead of univariate polynomials introduce constants in
the term O(log∗ n) of the final complexity, due to the fact that the number of nonzero coefficients
of the product of k-variate polynomials is larger than the number of coefficients of these k-variate
polynomials (at most 2k times). These constants have a practical impact and can be improved
by considering that the computation of the prime p is a precomputation. Thus, rather than using
k-variate polynomials, one can determine randomly the prime p with a cost O(log3

2N). and work
in (Z[x]/(pc, x2

λ

+ 1)), but the algorithm is not deterministic anymore.

7.4 Bluestein’s chirp transform
Harvey, van der Hoeven and Lecerf in [32], and Harvey and van der Hoeven in [30] propose new
algorithms achieving complexity bounds similar to the one that Fürer gets, and improve on the
constant hidden in O(log∗2 n). Their improvement yields an asymptotic equation similar to the
improvement in this part. The algorithms in [32, 30] rely on Bluestein’s chirp transform [7].

Bluestein’s chirp transform allows one to compute an L-point DFT as a negacyclic product of
two polynomials Ã and B. Let A =

∑
0≤i<L aiX

i be a polynomial of length L in R and ω ∈ R
be an L-th principal root of unity. We assume that L is even and that there exists ν ∈ R such
that ν2 = ω. The authors have

A(ωk) =
∑

0≤i<L

aiω
ik.

Using the identity

ik = −1

2
(i− k)2 +

i2

2
+
k2

2
,

they have
A(ωk) = ν−k

2 ∑
0≤i<L

(
aiν
−i2
)
ν(k−i)

2

.

Thus, denoting by Ã and B the polynomials

Ã =
∑

0≤i<L

aiν
−i2Xi and B =

∑
0≤i<L

νi
2

Xi,
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they compute C = Ã ·B mod XL + 1 and they obtain A(ωk) multiplying the k-th coefficient of
C by ν−k

2

.

Algorithm 19 DFT of polynomial with Bluestein’s chirp transform

1: Input: A =
∑L−1
i=0 aiX

i ∈R[X]/XL − 1, ν a principal 2L-th root of unity and ω = ν2.
2: Output: Â = DFTL,ω(A) = A(1) +A(ω)X + · · ·+A(ωL−1)XL−1

3: function BluesteinTransform(A,L,ν)
4: Let Ã be

∑
0≤i<L aiν

−i2Xi

5: Let B be
∑

0≤i<L ν
i2Xi

6: Let C = Ã ·B mod XL + 1 computed with Kronecker substitution
7: return A(1) + · · ·+A(ωL−1)XL−1 by scaling the k-th coefficient of C by ν−k

2

.
8: end function

The idea developed in [32] implies to use, instead of a radix-2λ FFT, another method described
in Algorithm 20. On Line 11 of Algorithm 20, they use Bluestein’s chirp transform instead of

Algorithm 20 FFT of order a power of two N using Bluestein’s chirp transform

1: Input: A =
∑N−1
i=0 aiX

i ∈R[X]/XN − 1, ν a principal 2L-th root of unity and ω = ν2.
2: Output: Â = DFTN,ω(A) = A(1) +A(ω)X + · · ·+A(ωN−1)XN−1

3: function BluesteinFFT(A,N ,λ,ν)
4: if N < 2λ then
5: Compute Â with BluesteinTransform and a Kronecker substitution
6: else
7: J ← 2λ

8: K ← N/J
9: for 0 ≤ k < K do

10: Let Bk be the polynomial given by the coefficients (ajK+k)j
11: B̂k ← BluesteinTransform(Bk, J, ν

K)
12: B̂k ← B̂k(ωkX)
13: end for
14: Let (Sj(Y ))j ∈ R[Y ]J be such that

∑
0≤k<K B̂k(X)Y k =

∑
0≤j<J Sj(Y )Xj

15: for 0 ≤ j < J do
16: Ŝj(Y )← BluesteinFFT(Sj ,K, λ, ν

J) . Recursive call
17: end for
18: return

∑
0≤i<J Ŝi(X

J)Xi

19: end if
20: end function

a radix-2 Cooley-Tukey FFT: they compute a negacyclic product of two polynomials with the
Kronecker substitution. In this version, the ring R can be any ring containing an N -th principal
root of unity (C for example) and λ can be taken larger than in Fürer’s algorithm: rather than
λ ≈ log

(2)
2 n, they can choose it as λ ≈ (log

(2)
2 n)2 + O(log

(2)
2 n). Rather than concentrating the

expensive operations in the multiplications on Line 12, there is a trade-off between the complexity
of the N multiplications in R on Line 12 and the N/2λ multiplications inR[x]/(x2

λ

+ 1).
In order to multiply two n-bit integers a and b, they split these integers into N/2 pieces of
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size s. Assuming that the precision required in C is p, the complexity equation is

M(n) = O

(
N

logN

λ
M(O(p))

)
+O

(
N log2N

λ2λ
M(O(2λp))

)
+O(n log2 n).

Using the radix-2 Cooley-Tukey algorithm, the second term in the equation isO(N log2NM(O(p))).
Taking λ = log2 n log

(2)
2 n+O(log2 n), the first term is negligible and the second term is dominant.

They obtain O(n log2 n2O(log∗2 n) as a solution of the recursive equation.



Chapter 8

Generalized Fermat primes

This chapter defines admissible generalized Fermat numbers. Our main use case will be when
such numbers are prime, and we define a descending chain of such primes.

Definition 8.1. A generalized Fermat number is an integer of the form r2
λ

+ 1, where λ
and r are two positive integers. We use the shorthand notation P (r, λ) for such numbers.

For notational ease, throughout this chapter, whenever we mention a generalized Fermat
number p, we actually consider the pair (r, λ) rather than the number p alone. For this reason, it
shall be understood without further mention that r and λ are implicit data that is unequivocally
attached to p, which is underlined by the fact that we favor the expression “let p = P (r, λ) be a
generalized Fermat number”.

8.1 Abundance of generalized Fermat primes
Asymptotically, the existence of generalized Fermat primes in integer intervals can be obtained
via the Bateman-Horn conjecture [4]. For real numbers A < B and an integer λ ≥ 1, we
let ∆(λ,A,B) denote the number of integers r ∈ [A,B) such that p = P (r, λ) = r2

λ

+ 1 is
a generalized Fermat prime. The following lemma captures the asymptotic behaviour of ∆ in
specific intervals. However it will be of little use per se but to define some notations.

Lemma 8.2. Fix an integer λ ≥ 1. Let α > 1 be a real number (possibly depending on λ). If
the Bateman-Horn conjecture holds for the function f(x) = x2

λ

+ 1, then

∆(λ,R, αR) ∼ Cλ
2λ

(li(αR)− li(R))

as R→∞, where we used the notations:

li(x) =

∫ x

2

dt

log t
, Cλ =

1

2

∏
p prime

1− χλ(p)/p

1− 1/p
, χλ(p) =

{
2λ if 2λ+1 | p− 1,

0 otherwise.

Proof. Bateman and Horn [4] define the constant Cλ as above, and conjecture that as R grows,
we have

∆(λ, 1, R) ∼ Cλ
2λ

li(R) ∼ Cλ
2λ
· R

logR
.

101
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Let ε > 0. Assuming the Bateman-Horn conjecture holds, we have for R large enough∣∣∣∣∣ ∆(λ,R, αR)
Cλ
2λ

(li(αR)− li(R))
− 1

∣∣∣∣∣ < ε · 1 + li(R)/ li(αR)

1− li(R)/ li(αR)
.

Now since li(x) ∼ x/ log x and α > 1, the right-hand side above converges to a positive constant
as R→∞. This proves the claim.

We now go through several steps to provide heuristic arguments supporting the existence
of sufficiently many generalized Fermat primes in our ranges of interest. Our attention first
goes to the asymptotic estimate on the right-hand side in Lemma 8.2, and to how it evolves
as λ → ∞, for some specific choices of α and R. Table 8.1 indicates some experimental values
for the constant Cλ (the same data has also been collected by [23]). While the observation of
Table 8.1 would support the empirical claim that Cλ increases as λ increases, a proof of such a
statement has eluded us. We prove Proposition 8.3 below, which is a much weaker statement.
We then choose α and R so that the estimate of Lemma 8.2 can be shown to tend to infinity
(Proposition 8.4).

Proposition 8.3. Let Cλ be as in Lemma 8.2. We have 1
λ = O(Cλ).

Proof. We prove that there exists an absolute constant C > 0 such that Cλ ≥ C
λ for any λ ≥ 1,

where Cλ is defined as in Lemma 8.2.
The idea is to rely on the proof of the main theorem of [49, §2], and to use the main result

of [24] for arithmetic progressions with “powerful moduli”, since we consider arithmetic progres-
sions (q · k + r)k where q is a power of two.

Let P(x) be the set of primes smaller than x, and extend the notation of Lemma 8.2 to define

Cλ(x) =
1

2

∏
p∈P(x)

1− χλ(p)/p

1− 1/p
.

Throughout this proof, we use the shorthand notation q = 2λ+1. Let π(x, q, r) be the number
of primes ≤ x congruent to r mod q. Let G(x) = π(x, q, 1). We will use twice the Brun-
Titchmarsh inequality, which says that

G(x) = π(x, q, 1) ≤ 2(x/φ(q))/ log(x/q) = 4x/(q log(x/q)).

Let now g(t) = G(t)−G(t−q). By construction, G and g are constant on intervals [1+qi, 1+qi+q)
for any integer i ≥ 0, and g(t) is equal to to 1 or 0 on that interval depending on whether 1 + qi
is prime or not. Hence

g(1 + qi) =
1

q

∫ 1+qi+q

1+qi

g(t) dt and G(1 + qi) =
1

q

∫ 1+qi+q

0

g(t) dt.

Let F (x) = − log(1 − 2λ/x) = − log(1 − q/(2x)), which is a decreasing, convex, and non-
negative function defined for x > q/2. Furthermore, since λ ≥ 0, for x ≥ 1 + q/2 we have
F (x) ≤ log 2. Our goal is to find an asymptotic lower bound for the (logarithm of the) numera-
tor of Cλ(x) for large x (we impose x ≥ 1 + 2q below). Equivalently, we seek an upper bound for
S(x) =

∑N
i=1 F (1 + qi)g(1 + qi), where we set N = b(x− 1)/qc. Throughout the proof below,
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implicit constants O(1) are uniform on λ —possibly for x larger than some bound that depends
on λ, but that is not an issue since Cλ = limx→∞ Cλ(x).

S(x) =

N∑
i=1

F (1 + qi)g(1 + qi) =

N∑
i=1

F (1 + qi)
1

q

∫ 1+qi+q

1+qi

g(t) dt

≤ 1

q

N∑
i=1

∫ 1+qi+q

1+qi

F (t− q/2)g(t) dt (because F is convex)

≤ 1

q

∫ x+q

1+q

F (t− q/2)g(t) dt+
1

q

∫ 1+qN+q

x+q

F (t− q/2)g(t) dt︸ ︷︷ ︸
O(1)

≤ F (x+ q/2)G(x)− F (1 + q/2)G(1 + q)−
∫ x

1

F ′(t+ q/2)G(t) dt+O(1).

Since F (x+ q/2) ≤ q
2x and G(x) ≤ 4x/(q log x/q)), the first summand is bounded by 2/ log 2 for

x ≥ 2q. Since G(1 + q) ≤ 1 and G(t) = 0 for t < 2 we have:

S(x) ≤ O(1) +

∫ x

2

qπ(t, q, 1)

t(2t+ q)
dt ≤ O(1) +

∫ x

2

qπ(t, q, 1)

2t2
dt.

Elliott [24] proved a theorem that relates π(x, q, r) to its asymptotic estimate We state a very
weak form of it, namely that there exists an absolute constant K such that for any λ ≥ 0 and t
such that

min(t1/3 exp(−(log log t)3), t1/2 exp(−8 log log t)) ≥ q,

we have ∣∣∣∣π(t, q, 1)− 2t

q log t

∣∣∣∣ < Kt

q(log t)2
. (8.1)

The condition above on t can be simplified. There exists an absolute constant H such that
for any x > 1

min(x1/3 exp(−(log log x)3), x1/2 exp(−8 log log x)) ≥ (Hx)1/4.

Thus, for t ≥ q4/H, Equation (8.1) holds. We rewrite the upper bound on S(x):

S(x) ≤ O(1) +

∫ q4/H

2

qπ(t, q, 1)

2t2
dt︸ ︷︷ ︸

I0(λ)

+

∫ x

q4/H

qπ(t, q, 1)

2t2
dt︸ ︷︷ ︸

I1(λ,x)

.

For I0(λ), by Brun-Titchmarsh we have

I0(λ) ≤
∫ q4/H

2

2

t log(t/q)
dt ≤

∫ q3/H

2

2

u log(u)
du

≤ 2 log log(q3/H) ≤ 2 log λ+O(1).
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λ Cλ

1 1.37
2 2.68
3 2.09
4 3.67

λ Cλ

5 3.61
6 3.94
7 3.11
8 7.43

λ Cλ

9 7.49
10 8.02
11 7.23
12 8.43

λ Cλ

13 8.47
14 8.01
15 5.80
16 11.20

λ Cλ

17 11.00
18 13.01
19 13.06
20 14.45

Table 8.1: Approximations of the infinite product Cλ, as defined by Lemma 8.2. The
computation was done by enumerating all primes below 1011, with resulting values rounded to

nearest. Proposition 8.3 shows that 1
λ = O(Cλ).

We use Elliott’s theorem to bound I1(λ, x) (using the notations of Equation (8.1)):∣∣∣∣∣I1(λ, x)−
∫ x

q4/H

1

t log t
dt

∣∣∣∣∣ ≤
∫ x

q4/H

K

t(log t)2
dt

≤ − K

log x
+

K

log(q4/H)
= O(1)

so that I1(λ, x) ≤ log log x− log log(q4/H) +O(1)

≤ log log x− log λ+O(1).

Combining the bounds on I0 and I1, we have obtained:

S(x) ≤ log log x+ log λ+O(1).

The lower bound on Cλ(x) follows: indeed, we have

− logCλ(x) =
∑

p∈P(x)

log

(
1− 1

p

)
+ S(x),

≤ (−γ − log log x+ o(1)) + (log log x+ log λ+O(1)) ,

logCλ(x) ≥ O(1)− log λ.

Hence Cλ(x) ≥ A/λ for some absolute constant A, and x large enough. It follows that Cλ ≥ A/λ,
as claimed. We notice that the multiplier affecting log λ above, and hence the exponent of λ in
our lower bound, can be directly traced to the use of the Brun-Titchmarsh inequality in bounding
I0(λ).

Proposition 8.4. We use the same notations as in Lemma 8.2. Let a(λ) be a real-valued
function such that a(λ) ≥ κλ2+ε for two positive constants κ, ε. Then the asymptotic esti-
mate of Lemma 8.2, when formulated for R = 2λ and α = a(λ) is such that, as λ→∞:

Cλ
2λ
(
li(a(λ) · 2λ)− li(2λ)

)
−→∞.
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Proof. A lower bound for (li(αR)− li(R)) is (α− 1)R/ log(αR). We have

Cλ
2λ
(
li(a(λ) · 2λ)− li(2λ)

)
≥ Cλ

2 log 2
· κλ

2+ε − 1

λ
≥ λCλ ·

κλε − 1/λ2

2 log 2
.

The claim follows, since 1
λ = O(Cλ) implies that λCλλε tends to ∞.

Our heuristic claim is that for α = λ2.5 (which fulfills the conditions of Proposition 8.4), the
estimate of Lemma 8.2 is accurate enough, as early as for R = 2λ.

Hypothesis 8.5. Let λ ≥ 2 be an integer. For any real number R such that 2λ ≤ R ≤ 22λ,
we have ∆(λ,R, λ2.5R) ≥ 1. In other words, there exists a generalized Fermat prime p =
P (r, λ) such that R ≤ r < λ2.5R.

Both the constant Cλ, as well as the accordance of the prime count ∆(λ, 1, B) with the
asymptotic estimate given by the Bateman-Horn conjecture, have been studied by [23]. While the
experiments of [23] do support the validity of the Bateman-Horn conjecture even for primes not
very large, we provide independent experimental data to support Hypothesis 8.5. We computed
numerically the value ∆(λ, 2λ, λ2.52λ), as well as the estimate given by Lemma 8.2. We chose to
restrict the verification to R = 2λ because this is empirically the hardest case.

To obtain ∆(λ, 2λ, λ2.52λ), we used a simple primality proof algorithm based on Pocklington’s
theorem, in Las Vegas probabilistic time. The result of our experiments is given in Table 8.2.
For each potential divisor q of N − 1 = r2

λ

and each prime divisor s of r, we prove that the
s-valuation of q is exactly 2λ times the s-valuation of r, whence it follows eventually that N is
prime. The probabilistic time comes from the fact that we use random picks to find a generator
of the s-Sylow subgroup. Most computations were short, except for λ = 12 where we had to
use some non-trivial amount of computing power. We reported the “total” number of candidate
values for r in Table 2. It is easy to filter out r’s that are roots of x2

λ

+ 1 mod smallish primes
congruent to 1 modulo 2λ+1. With a small expense in computation time, we can roughly halve
the number of candidates. Yet we did not take this optimization into account when mentioning
the number of candidates.

Hypothesis 8.5 is in fact stronger than what would be strictly necessary to reach the asymp-
totic complexity we claim in this thesis. Proposition 8.4 led us to choose α as a polynomial
of degree at least two, and our particular choice α = λ2.5 has the advantage that the data in
Table 8.2 has no corner cases for small values of λ (in particular for λ = 3). That factor could be
replaced by any polynomial in λ, this would not affect the fact that the bounds used in Proposi-
tion 9.6 have a numerator in O(log2 λ). We note, however, that using a polynomial with a more
rapid growth would invalidate some inequalities for small values of λ, so that we would only be
able to state our algorithm for larger values of λ.

Throughout the rest of the thesis, Hypothesis 8.5 is tacitly assumed.

8.2 Chains of generalized Fermat primes

Some generalized Fermat numbers, defined below, play a key role in this thesis.

Definition 8.6 (Admissible generalized Fermat number). A generalized Fermat number
p = P (r, λ) is called admissible whenever λ ≥ 4 and r is such that 2λ ≤ r < 22λλ2.5.
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λ Candidates Primes Estimate

1 0 0 0

2 9 4 5

3 58 1 8

4 248 24 22

5 878 31 30

6 2789 57 45

λ Candidates Primes Estimate

7 8233 42 46

8 2.3e4 126 138

9 6.2e4 184 170

10 1.6e5 224 218

11 4.1e5 227 230

12 1.0e6 ≥ 307 312

Table 8.2: Number of generalized Fermat primes r2
λ

+ 1 with r ∈ [R, λ2.5R) with R = 2λ (only
even r are counted as candidates), compared to the asymptotic estimate of Lemma 8.2.

Hypothesis 8.5 asserts that the third column is never zero for λ ≥ 2.

Definition 8.6 captures the primes whose existence is asserted by Hypothesis 8.5 (it is easy to
observe that these are admissible when λ ≥ 4), as well as generalized Fermat numbers that are
subject to the same bounds.

The following proposition shows how from admissible generalized Fermat numbers (not nec-
essarily prime), we can build smaller generalized Fermat primes. For large enough inputs, these
smaller primes are in turn admissible, so that this construction can be used another time.

Proposition 8.7. Let λ ≥ 4, and let p = P (r, λ) = r2
λ

+ 1 be an admissible generalized
Fermat number. A smaller generalized Fermat prime denoted smallerprime(p) and an integer
batchsize(p) are defined as follows.

Let λ′ =
⌈
log

(3)
2 p

⌉
. Let φ(k) = 2k+1 log2 r + λ− k. There exists a power of two β such

that the following conditions hold:

i . 0 ≤ log2 β < λ′,

ii . λ′2λ
′ ≤ φ(log2 β) ≤ 2λ′2λ

′
,

iii . Given R′ = 2φ(log2 β)/2
λ′

, there exists an integer r′ ∈ [R′, λ′
2.5
R′) such that p′ =

P (r′, λ′) = r′
2λ
′

+ 1 is a generalized Fermat prime.

Given β and p′ as above, we let smallerprime(p) = p′ and batchsize(p) = β. Furthermore,
if λ′ ≥ 4, then p′ is admissible too.

In anticipation for the proof of Proposition 8.7, we prove the following bounds.

Lemma 8.8. Let λ and λ′ be as in Proposition 8.7. We have

log2(λ+ log2 λ) ≤ λ′ < 3 log2 λ− 1 < λ.

Proof. Since p is admissible, we have

2λ
′
≥ log2(2λ log2 r) ≥ λ+ log

(2)
2 r ≥ λ+ log2 λ.
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λ λ′

3 ≤ λ ≤ 4 3

λ = 5 3, 4

6 ≤ λ ≤ 11 4

λ λ′

λ = 12 4, 5

13 ≤ λ ≤ 26 5

λ = 27 5, 6

λ λ′

28 ≤ λ ≤ 56 6

57 ≤ λ ≤ 58 6, 7

59 ≤ λ ≥ 7

Table 8.3: Possible values for λ′ =
⌈
log

(3)
2 p

⌉
for p = P (r, λ) an admissible generalized Fermat

number, using the bounds log2(λ+ log2 λ) ≤ λ′ ≤ 1 + log
(2)
2 (1 + 2λ(2λ+ 2.5 log2 λ)).

In the other direction, the condition on p being admissible gives the following uniform bound on
λ′ (we first bound p by 2r2

λ

):

λ′ ≤ 1 + log
(2)
2 (1 + 2λ(2λ+ 2.5 log2 λ)).

An unilluminating calculation shows that this right hand side is indeed bounded by 3 log2 λ− 1
for all λ ≥ 3, and then by λ for all λ ≥ 4.

The lower bound given by Lemma 8.8 is most useful now, and gives in fact the correct order
of magnitude for λ′. The upper bound is much coarser and will be used in §9.5. Possible values
for λ′ are given in Table 8.3. In particular, λ ≥ 4 implies λ′ ≥ 3.

Proof of Proposition 8.7. The function φ is easily seen to satisfy φ(k) ≤ 2φ(k−1) for any integer
k ≤ λ + 2. As a consequence, the intervals [φ(k), 2φ(k)], for k ranging from 0 to λ′ − 1, form a
covering of the interval [φ(0), φ(λ′)].

We prove φ(0) ≤ 2λ′2λ
′ ≤ φ(λ′), which will directly entail that 2λ′2λ

′
is within one of the

above intervals that form a covering.
The bound 2λ′2λ

′ ≤ φ(λ′) is a consequence of λ ≥ λ′:

φ(λ′) ≥ 2λ
′+1 log2 r ≥ 2λ

′+1λ ≥ 2λ
′+1λ′.

The proof that 2λ′2λ
′ ≥ φ(0) is based on calculus. Lower and upper bounds for 2λ′2λ

′
and

φ(0) are

2λ′2λ
′
≥ 2(λ+ log2 λ) log2(λ+ log2 λ) ≥ (λ+ log2 λ) log2(36),

φ(0) ≤ λ+ 2(2λ+ 2.5 log2 λ) = 5(λ+ log2 λ).

We have proved that there exists an integer k such that 0 ≤ k < λ′, and that φ(k) ≤ 2λ′2λ
′ ≤

2φ(k). Let β = 2k, so that (i) holds. We have that

λ′ ≤ φ(log2 β)

2λ′
≤ 2λ′.

This implies (ii). Finally, R′ = 2
φ(log2 β)

2λ
′ is such that 2λ

′ ≤ R′ ≤ 22λ
′
. Hypothesis 8.5 then

implies (iii), and concludes the proof. Admissibility of p′ follows from Definition 8.6.

The following technical lemma provides useful bounds for p′ = smallerprime(p).

Lemma 8.9. Let p = P (r, λ) be as in Proposition 8.7. Let β = batchsize(p) and p′ =
smallerprime(p). We have
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i . 1 ≤ log2 p
′

2β log2 r
≤ min(1 + 4 log2 λ

′

λ′−1 , 72 ). In particular, log2 p
′

β log2 r
= 2 + o(1).

ii . λ′ + log2 λ
′ ≤ log

(2)
2 p′ ≤ λ′ + log2 λ

′ + 2.

Proof. We follow the notations of Proposition 8.7. The lower bound in (i) is easy:

log2 p
′ ≥ 2λ

′
log2R

′ ≥ φ(log2 β) ≥ 2β log2 r.

The upper bound requires more work. On the one hand, Lemma 8.8 gives 2λ
′
> λ, whence

2β log2 r + 2λ
′
≥ φ(log2 β) ≥ λ′2λ

′

2β log2 r ≥ (λ′ − 1)2λ
′
.

And on the other hand, we can bound log2 p
′ as follows.

log2 p
′ = log2((p′ − 1) + 1) = log2(p′ − 1) + log2(1 + 1/(p′ − 1))

≤ 2λ
′
log2 r

′ + 1 ≤ 2λ
′
log2R

′ + 2λ
′
log2(λ′

2.5
) + 1

≤ φ(log2 β) + 2λ
′
log2(λ′

2.5
) + 1 (8.2)

by the definition of R′. Using now Lemma 8.8 and 2λ
′ ≥ λ+ log2 λ ≥ λ+ 2 we have

log2 p
′ ≤ 2β log2 r + (2λ

′
− 2) + 2λ

′
log2(λ′

2.5
) + 1

≤ 2β log2 r + 2λ
′
·min(4 log2 λ

′, 5(λ′ − 1)/2) since λ′ ≥ 3.

The upper bound on the last line is obtained by calculus. We have thus proved (i).
The lower bound in statement (ii) is trivial. The upper bound is derived from inequality (8.2)

above. By (ii) in Proposition 8.7, we have φ(log2 β)

2λ′
≤ 2λ′, whence

log2 p
′ ≤ 2λ′2λ

′
+ 2λ

′
log2(λ′

2.5
) + 1.

log
(2)
2 p′ ≤ log2

(
1 + 2λ

′
(2λ′ + log2(λ′

2.5
))
)

≤ λ′ + log2 λ
′ + 2 since λ′ ≥ 3.

Again, this last upper bound is verified by calculus.



Chapter 9

Integer multiplication algorithm
using generalized Fermat primes

We now see how we can design an asymptotically fast integer multiplication algorithm that uses
rings of integers modulo generalized Fermat primes.

Throughout this chapter, our preferred representation for elements of a ring R of integers
modulo a generalized Fermat number p = P (r, λ) is the representation in radix r. Namely,
a ∈ R is represented as a 2λ-uple (a0, . . . , a2λ−1) such that a =

∑
j<2λ ajr

j and 0 ≤ aj < r. This
representation does not cover the case a = −1, and we need an ad hoc exceptional representation
for this case (possible representation choices are plenty – one extra bit is enough). Conversions
between binary representation and radix r representation can be done in linear time when r is a
power of two, but we also need to deal with the general case. Recursive base conversion algorithms
(see [10, §1.7.2]), do this in quasi-linear time O(λM(log p)) (this holds both for ways, both to
and from representation in radix r). Additions and subtractions in R using this representation
are linear. This chapter is concerned with the complexity of multiplication in R. We denote this
cost by MR.

9.1 Preliminaries: transforms

The following definition extends concepts defined in Proposition 8.7 and defines useful data for
our algorithms.

Definition 9.1 (smallerring(R)). Let λ ≥ 4. Let p = P (r, λ) = r2
λ

+1 be an admissible gen-
eralized Fermat number, and let R =Z/pZ. Following Proposition 8.7 we let smallerring(R)
be the triple (R′, N ′, ω′) defined as follows:

• R′ =Z/p′Z, with p′ = P (r′, λ′) = smallerprime(p).

• N ′ = 2λ/batchsize(p). (N ′ is a power of two.)

• ω′ is a primitive 2N ′-th root of unity in R′.

For the root ω′ to be well defined above, we need the following property.

Lemma 9.2. Using the notations above, R′ has a primitive 2N ′-th root of unity.

109
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Proof. Notice first that λ′ ≥ 3 so that p′ ≥ 23·2
3

, and that p′ = r′
2λ
′

+ 1 is prime, so that in
particular r′ is even. For 2N ′ to divide p′− 1, it suffices to check that 2N ′ divides 22

λ′

. We have

log2(2N ′) = λ+ 1− log2 β

2λ
′
≥ λ+ log

(2)
2 r,

so that it is sufficient to check that log
(2)
2 r ≥ 1, which holds as soon as λ ≥ 2.

The algorithms described in the remainder of this chapter all assume that the sequences of
rings and auxiliary data defined by Definition 9.1 are computed in advance, for all levels of the
recursion. We assume that a tape of our Turing machine is devoted to that data, stored one level
after another. The size of the data smallerring(R′) is clearly O(log p′).

9.2 New algorithms
We now describe two new algorithms that are dependent on each other. Both aim at computing
products of elements of R.

• One algorithm that computes “transforms” of elements of R, denoting the transform of an
element a ∈ R by TR(a). Internally, this algorithm multiplies elements of R′.

• One algorithm that multiplies elements of R. This algorithm uses the transforms computed
by the previous algorithm.

We begin with Algorithm 21 (TransformR), which computes transforms. We can state it
thanks to Lemma 9.2.

Algorithm 21 Transform TR(a) of a ∈ R =Z/pZ, with p = r2
λ

+ 1 admissible (not necessarily
prime), λ ≥ 4. (Algorithm without precomputations.)

1: function TransformR(a)
2: Input: a ∈ R, represented in radix r.
3: Output: TR(a), a vector of N ′ elements of R′, represented in radix r′
4: Let β = batchsize(p), and (R′, N ′, ω′) = smallerring(R).
5: Let Ã(X) ∈ Z[X] with positive coefficients below rβ be such that Ã(rβ) = a;
6: Map Ã to A ∈ R′[X]/(XN ′ + 1).
7: Rewrite coefficients of A in radix r′.
8: return Half-DFTN ′,ω′(A) = LargerRadixCooleyTukeyFFT(A(ω′X), N ′, λ′, ω′

2
).

9: end function

Our complexity analysis will need to reason on the set of transforms of roots of unity that
are used by Algorithm 21. We define it as follows:

Definition 9.3 (W(R), vector of precomputed transforms useful for TR). Fix notations as
in Definition 9.1. We let W(R) denote the vector defined as:

W(R) = {TR′(ω′
2i+1

), i ∈ [[0,
N ′

2λ′+1
− 1]]}
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where TR′ is defined as in Algorithm 21 (albeit using R′ as an input ring).

Complexity of Algorithm 21, with or without precomputations

We define the following costs. The analysis of MR and M′R will be done in §9.3.

• MR: cost of multiplying a ∈ R by b ∈ R, with no auxiliary inputs.

• M′R: cost of the same computation, with TR(b) known.

• TR: cost of computing TR with Algorithm 21.

• T′R: cost of computing TR with Algorithm 21, aided with the auxiliary knowledge ofW(R).

• WR: cost of computing W(R).

We begin with TR. Algorithm 21 uses base conversions on lines 5 and 7. Both operations
perform N ′ = 2λ/β conversions, and the respective costs per conversion in each case are O(log β ·
M(β log r)) and O(λ′ · M(β log r)) (in these complexity estimates, M(n) can be taken as the
complexity obtained for multiplying integers by the Schönhage-Strassen algorithm, for example).
By Proposition 8.7 we have log β ≤ λ′, and by Lemma 8.9 we have log p′ = Θ(β log r), so that
the overall base conversion costs in Algorithm 21 can be expressed as O(N ′λ′ ·M(log p′)).

The computation of the Half-DFT on line 8 of Algorithm 21 involve N ′ logN ′ multiplication
by roots of unity in R′, of which only (E(N ′) + N ′) exceed a linear cost (using the notation of
Section 7.1). We have

TR = (E(N ′) +N ′)MR′ +O (N ′ logN ′ log p′ +N ′λ′ ·M(log p′)) .

We now turn to the analysis of T′R. If the vector W(R) = {TR′(ω2i+1), i ∈ [[0, N ′

2λ′+1 − 1]]}
is known, then the computation of TR can be done a bit faster: the (E(N ′) + N ′) “expensive”
multiplications by roots of unity in R′ do not need to recompute the transforms of the roots.
They may thus use a somewhat faster algorithm for multiplication in R′. We defined above its
cost as M′R, and we have:

T′R = (E(N ′) +N ′)M′R′ +O (N ′ logN ′ log p′ +N ′λ′ ·M(log p′)) .

Finally, we give the cost WR of computing W(R). Here, we do not recursively use W(R′)
to compute the different elements. We do however use the knowledge of the root of unity ω′

(it belongs to the precomputed data smallerring(R)). We use the fact that we can deduce the
transform of ω′k from the binary decomposition of k and the computation of the transforms
of the powers of the form ω′2

j

, as in the fast exponentation algorithms. To compute W(R),
we first compute TR′(ω′) and TR′(ω′2) , which cost 2TR′ . Then we do successive point-wise
multiplications by the vector TR′(ω′2) to obtain the transforms of the other roots. For each of
the N ′/2λ

′+1 − 1 transforms to be inferred this way, we need N ′′ multiplications in R′′, where
we temporarily set (R′′, N ′′, ω′′) = smallerring(R′). Therefore we have

WR ≤ 2TR′ + (N ′/2λ
′+1 − 1)N ′′MR′′ ≤ N ′TR′ .

Without further detail, we also claim that the inverse transform T −1R can be computed with
the same cost as TR.
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Algorithm 22 Multiplication in R =Z/pZ, with p = r2
λ

+ 1 admissible, λ ≥ 4.
p is not necessarily prime.

We use the notations TR, WR as in §9.2.
1: function MulR(a,TR(b))
2: Input: a ∈ R, represented in radix r; TR(b) for some b ∈ R.
3: Output: a · b mod p, represented in radix r
4: Let β = batchsize(p), and (R′, N ′, ω′) = smallerring(R).
5: Compute W =W(R) using Algorithm TransformR.
6: Compute TR(a) using Algorithm TransformR and W as auxiliary data.
7: Compute γ = TR(a) ∗ TR(b) . point-wise products of elements of R′.
8: Compute c = T −1R (γ) as follows:
9: C ← Half-IFTN ′,ω′(γ) ∈ R′[X]/(XN ′ + 1) using W as auxiliary data.

10: Lift C to C̃ ∈ Z[X] as follows:
11: for i ∈ [[0, N ′ − 1]] do
12: Lift coefficient of degree i to [[−(N ′ − 1− i)r2β , (i+ 1)r2β [[.
13: end for
14: Rewrite coefficients of C̃ as signed integers in radix r.
15: Compute C̃(rβ) = c. . The result is defined modulo (rβ)N

′
+ 1 = p.

16: return c
17: end function

9.3 Multiplication modulo generalized Fermat numbers
Using Algorithm 21 (TransformR), we can now state Algorithm 22 (MulR). Its validity depends
on the following lemma:

Lemma 9.4. Let notations be as in Algorithm 22. Let Ã, B̃ be polynomials in Z[X] of degree less
than N ′ and with positive coefficients below rβ such that, A and B being their respective images
in R′[X]/(XN ′ + 1), we have TR(a) = Half-DFTN ′,ω′(A) and TR(b) = Half-DFTN ′,ω′(B) on
line 7 of Algorithm 22.

i . Both Ã and B̃ are uniquely defined from TR(a) and TR(b).

ii . The polynomial C̃ is equal to Ã · B̃ mod XN ′ + 1.

iii . c is equal to ab mod p.

Proof. We prove (i) for TR(a), the same reasoning holds for TR(b). The polynomial A ∈
R′[X]/(XN ′ + 1) is uniquely defined because Half-DFT is an isomorphism. Now since TR(a)
is computed from an element a of R, line 5 of Algorithm 21 has unambiguously computed a
polynomial Ã, which meets the conditions. Since there is a unique lift of A to Z[X] that has
degree less than N ′ and positive coefficients below p′, this lift is then necessarily the same as Ã.

Statement (ii) holds modulo p′ by construction, but we must make sure that the lift on
lines 10-13 of Algorithm 22 computes the correct product over the integers. To do so, we compute
a bound for the coefficients of the product Ã · B̃ mod XN ′ + 1. Both operands have at most N ′
coefficients. The coefficient of degree i of their product modulo XN ′ + 1 lies within the interval
[[−(N ′ − 1− i)(rβ)2, (i+ 1)(rβ)2[[ (actually with the lower endpoint open for i < N ′ − 1), which
has width N ′(rβ)2. The base 2 logarithm of this latter value is 2β log2 r+λ− log2 β = φ(log2 β),
following the notation of Proposition 8.7. Now again following notations of Proposition 8.7, we
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have p′ ≥ R′2
λ′

≥ 2φ(log2 β) ≥ N ′(rβ)2. Thus, the coefficient ci of degree i of Ã · B̃ mod XN ′ + 1
is lifted to a unique signed representative modulo p′ on line 10. This proves the claim.2

Statement (iii) follows: by (ii), we have that C̃ = Ã · B̃ mod XN ′ + 1. By evaluating at rβ ,
we obtain the result c = ab modulo (rβ)N

′
+ 1 = p.

Complexity analysis of Algorithm 22

We first mention that the relative costs of multiplications and transforms, with or without pre-
computations, satisfy the following equations.

2T′R ≤ M′R ≤ MR ≤ M′R + T′R ≤
3

2
M′R and TR ≤ MR.

(To get MR ≤ M′R + T′R, it suffices to first compute W(R), and then TR(b).)
On line 10, Algorithm 22 converts between representation in radix r′ and binary representa-

tion. On line 14 the conversion is between binary representation and representation in radix r.
As with Algorithm 21, we can do this in time O(N ′λ′ ·M(log p′)). Point-wise products, on line 7,
use a variation of Algorithm 22, where there is no auxiliary input, recursively (thus exploiting
the fact that the coefficients of TR(a) and TR(b) are represented in radix r′). And last but not
least, the most important aspect of the complexity of Algorithm 22 is that since we compute
W(R), the transforms TR(a) and T −1R (γ) can take advantage of it. We thus have:

M′R = WR + 2T′R +N ′MR′ +O(N ′λ′ ·M(log p′)) +O(log p).

We now use the various expressions obtained in §9.2 to rewrite this. We use the coarse bounds
TR′ ≤ MR′ ≤ 3

2M
′
R′ . We have

M′R ≤ N ′MR′ + 2E(N ′)M′R′ + 2N ′M′R′ +N ′MR′

+O(N ′ · λ′ ·M(log p′)) +O(N ′ · logN ′ · log p′) +O(log p)

≤ 5N ′M′R′ + 2E(N ′)M′R′

+O(N ′ · λ′ ·M(log p′)) +O(N ′ · logN ′ · log p′) +O(log p)

≤ 2N ′ · (3 + log2λ′+1 N ′) ·M′R′
+O(N ′ · λ′ ·M(log p′)) +O(N ′ · logN ′ · log p′) +O(log p)

where we used E(N ′) ≤ N ′ log2λ′+1 N ′ and 5/2 < 3. Algorithm 22 also needs to move the head
of tape of precomputed data by the size of the current data smallerring(R). The corresponding
overhead O(log p′) is easily subsumed within the lower-order terms above.

9.4 Multiplication in Z using multiplication in R
We can build on Algorithm 22 to obtain an integer multiplication algorithm for n-bit integers a
and b.

Note however that we avoid the following simple approach because it does not work complexity-
wise: we do not multiply a and b by considering them as elements of Z/pZ for p an admissible
generalized Fermat number such that p ≥ 22n. There are two reasons for that. First, doing so

2On lines 10-13 of Algorithm 22, intervals depend on the degree so that we can do without a needlessly coarse
lower bound 2N ′(rβ)2 ≤ p′. It would be possible to adjust the definition of φ in Proposition 8.7, as well as the
corresponding proofs, so that that coarser inequality holds.
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for p an admissible generalized Fermat prime is out of question: unless we consider that p is
given beforehand, computing it is likely to be more expensive than computing a product of bit
length log2 p, and would therefore appear dominant, maybe prohibitive even for a precompu-
tation. Fortunately, Algorithm 22 (MulR) does not require that p be prime, and therefore this
difficulty can easily be circumvented. For example we may select λ such that λ2λ ≥ 2n, and then
set p = P (2λ, λ). The second issue is harder to deal with: in the ring R′ used by Algorithm 22,
we need to find 2N ′-th roots of unity, and for this we need a quadratic nonresidue in R′ (which
generates the 2-Sylow subgroup of R′). Alas, if our first (non-prime) modulus p is such that
log2 p ≥ 2n, then in Proposition 8.7 we have λ′ = dlog

(3)
2 pe ≥ log

(2)
2 n, so that the upper bound

on log2 p
′ that we obtain from Lemma 8.9 is at least as large as log2 n · log

(2)
2 n. If we can use

only deterministic exponential-time algorithms to search for a multiplicative generator for R′,
then the complexity of this search exceeds the overall complexity of integer multiplication.

Similar (but subtly different) issues were already encountered by Harvey, van der Hoeven and
Lecerf. The workarounds proposed in [32, §8] also apply here.

• Either we assume the generalized Riemann hypothesis, in which case a quadratic nonresidue
in R′ can be found in polynomial time.

• Or we do the top-level multiplication with one round of Fürer’s algorithm. Multiplication
in the ring C[X]/X2λ + 1 that is used by Algorithm 18 (FurerComplexMul) reduces to mul-
tiplication of integers of bit length n0 = O((log n)2), with n denoting the bit length of the
integers a and b (see Equation (7.2)). These integers are then multiplied by Algorithm 22
(MulR), for a suitable modulus p0 (not necessarily prime).

The latter strategy is given by Algorithm 23 (MulZ). Note that since we build upon Algo-
rithm 18, we force the bit length n to be rounded up to a power of two.

Algorithm 23 Multiplication of integers in Z
1: Input: a, b two positive n-bit integers, n being a power of two.
2: Output: c = a · b
3: function MulZ(a,b)
4: Let n0 be such that all internal multiplications in FurerComplexMul(·, ·, n) may be done

by multiplying two n0-bit integers. (As per the analysis of FurerComplexMul, we have n0 =
O((log2 n)2).)

5: Let λ0 be the smallest integer such that 2n0 ≤ λ02λ0 .
6: Let p0 = P (2λ0 , λ0) = 2λ02

λ0
+ 1.

7: return c = FurerComplexMul(a, b, n), where all internal multiplications are done with
Algorithm 22 (MulR), in the ring R0 =Z/p0Z.

8: end function

It is easy to see that p0 in Algorithm 23 is an admissible generalized Fermat number. As for the
determination of prime moduli as well as the computation of primitive roots of unity of the desired
order in the recursive multiplication levels of Algorithm 22, we have that log2(smallerprime(p0))

is polynomial in log
(2)
2 n. This is small enough so that simple algorithms are fit for the task of

testing smallerprime(p0) for primality, as well as for finding primitive roots. Thus the complete
chain of precomputed triples defined by smallerring in Definition 9.1 can be computed in advance
and stored on an auxiliary tape of the Turing machine, as suggested in §9.1.

The complexity of computing n-bit products with Algorithm 23 (MulZ), which we denote by
Mnew(n), can be expressed as follows. The equation below is naturally very similar to Equa-
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tion (7.2).

Mnew(n) = N(3dlog2λ+1 Ne+ 1) ·MR0
+O(N logN · 2λ log n);

9.5 Solution of the recursive complexity equations

9.5.1 Summary of the recursive complexity equations
In Algorithm 22 (MulR), multiplication in R uses (R′, N ′, ω′) = smallerring(R). In turn, mul-
tiplication in R′ may use (R′′, N ′′, ω′′) = smallerring(R′) if recursion is used again. We define
(Ri)i≥0 as well as (Ni)i≥1 and (ωi)i≥1 by:

R0 = as in Algorithm 23,
(Ri+1, Ni+1, ωi+1) = smallerring(Ri) for i ≥ 0.

Likewise, we let pi be such that Ri = Z/piZ, for i ≥ 0. Of course, since Definition 9.1 as well
as Algorithms 21 and 22 are only valid for λi ≥ 4, only a finite number of terms of the above
sequences are defined for a given input size n. Part of the work towards determining our final
complexity will be to determine this number of terms (the recursion depth). We briefly recall
the key equations for the complexity analysis:

M′Ri ≤ 2Ni+1 · (3 + log2λi+1+1 Ni+1) ·M′Ri+1

+O(Ni+1 · λi+1 ·M(log pi+1))

+O(Ni+1 · logNi+1 · log pi+1)

+O(log pi).

MRi ≤
3

2
M′Ri .

Mnew(n) = N(3dlog2λ0+1 Ne+ 1) ·MR0
+O(N logN · 2λ0 log n).

We first prove the following lemma that bounds the transform length N ′.

Lemma 9.5. Using the notations as above, we have

Ni+1 ≤ min

(
2

(
1 +

4 log2 λi+1

λi+1 − 1

)
, 7

)
· log2 pi

log2 pi+1
.

Proof. Let β = batchsize(pi). We have 2λi log2 ri ≤ log2 pi, therefore

Ni+1 =
2λi

β
≤ log2 pi
β log2 ri

≤ 2
log2 pi

log2 pi+1

log2 pi+1

2β log2 ri
.

Then (i) in Lemma 8.9 allows to conclude.

The following result plays a central role in the asymptotic analysis.

Proposition 9.6. We keep the above notations. Let i ≥ 0 be such that pi is admissible. Let
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ε0,i = 4 log2 λi+1

λi+1
, ε1,i = 8 log2 λi

λi
, and ε2,i = 2+log2 λi+1

λi+1
. Let mi =

M′Ri
log2 pi·log

(2)
2 pi

. We have

mi ≤ 4 · (1 + ε0,i) · (1 + ε1,i) · (1 + ε2,i) ·mi+1 +O(1).

Proof. We first bound the second and third lines in the equation for M′Ri , and compare them to
log pi · log(2) pi. The third line uses Lemma 9.5. We have

Ni+1/ log2 pi ≤ 7/ log2 pi+1 = O(1)

which obviously also implies (log2Ni+1)/(log
(2)
2 pi) = O(1). Then

Ni+1 log2Ni+1 log2 pi+1

log2 pi log
(2)
2 pi

≤ 7
log2Ni+1

log
(2)
2 pi

= O(1).

For the second line, it suffices to assume that M(log pi+1) is bounded by the complexity of the
Schönhage-Strassen algorithm. We have

Ni+1λi+1M(log pi+1)

log2 pi log
(2)
2 pi

≤ 7
λi+1 log

(2)
2 pi+1 log

(3)
2 pi+1

log
(2)
2 pi

= O(1).

In the expression above, we obtain the upper bound by bounding the numerator by a polynomial
in λi+1 (because pi+1 is admissible), while the denominator is exponential in λi+1.

The most important calculation for the analysis is the comparison of the first term of M′Ri
with log pi · log(2) pi. Lemma 9.5 gives the bound Ni+1 ≤ 2(1 + ε0,i)

log2 pi
log2 pi+1

, and we also have
the coarse bound log2Ni+1 = log2(2λi/βi) ≤ λi. This implies

mi ≤ 4(1 + ε0,i)
log2 pi

log2 pi+1
·
(

3 +
λi

λi+1 + 1

)
·mi+1

log2 pi+1 log
(2)
2 pi+1

log2 pi log
(2)
2 pi

+O(1)

≤ 4(1 + ε0,i)

(
3 +

λi
λi+1 + 1

)
log

(2)
2 pi+1

log
(2)
2 pi

mi+1 +O(1)

By Lemma 8.8 we have
(

3 + λi
λi+1+1

)
≤ λi+9 log2 λi

λi+1+1 ≤ λi+9 log2 λi
λi+1

. Furthermore by statement (ii)

from Lemma 8.9 for i > 0, we have log
(2)
2 pi ≥ λi + log2 λi, so that

mi ≤ 4 · (1 + ε0,i) ·
λi + 9 log2 λi
λi + log2 λi

· log
(2)
2 pi+1

λi+1
·mi+1 +O(1)

≤ 4 · (1 + ε0,i) · (1 + ε1,i) · (1 + ε2,i) ·mi+1 +O(1).

where we used again Lemma 8.9 to bound log
(2)
2 pi+1. This proves our claim.

It is easy to convince oneself that the three quantities ε0,i, ε1,i, and ε2,i all tend to zero as λi
grows (that is, as we deal with larger and larger input numbers). The final asymptotic formula
needs the following stronger result, however.

Lemma 9.7. Let λ0 be an arbitrarily large integer. Let K be the first integer such that λK < 4.
We have K = log∗ λ0 +O(1). Furthermore, for j = 0, 1, 2:

K−1∏
i=0

(1 + εj,i) <∞ (independently of K)
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Proof. The expression of K follows from the inequality λ′ < 3 log λ − 1 proved in Lemma 8.8.
To see that, let Φ(λ) = 3 log2 λ − 1, defined for λ ≥ 4. Let Φ∗(x) be the function defined
similarly to log∗, by Φ∗(x) = 0 for x < 4, and Φ∗(x) = 1 + Φ∗(Φ(x)) otherwise. It is clear that
K ≤ Φ∗(λ0). Now using the terminology defined in [32, §5], the function Φ∗ is an iterator for the
logarithmically slow function Φ. As such, it satisfies Φ∗(x) = log∗ x + O(1), which corresponds
to our claim.

To bound the product, it suffices to bound
∑
i |εj,i|. Let f0(x) = 4 log2 x

x , f1(x) = 8 log2 x
x , and

f2(x) = 2+log2 x
x , so that ε0,i = f0(λi+1), ε1,i = f1(λi), ε2,i = f2(λi+1). The functions fj are

decreasing for x ≥ exp(1). In particular, we have ε1,i ≤ f1(λi+1). Consider the sequence of real
numbers defined by u0 = 3, u1 = 4, u2 = 6, u3 = 27, and uk+1 = 2uk/3 for k ≥ 3. This sequences
diverges to infinity. Independently of the starting value λ0, we have

λK ≥ 3 = u0,

λK−1 ≥ 4 = u1,

λK−2 ≥ 6 = u2 by observing Table 8.3,
λK−3 ≥ 27 = u3 again by Table 8.3,

λK−4 ≥ 2λK−3/3 ≥ u4 by Lemma 8.8,
λK−k ≥ uk for all k ≤ K.

This yields
K−1∑
i=0

2∑
j=0

|εj,i| =
K−1∑
k=0

2∑
j=0

|εj,K−1−k| ≤
K−1∑
k=0

(f0(λK−k) + f1(λK−1−k) + f2(λK−k))

≤
K−1∑
k=0

2∑
j=0

fj(λK−k) ≤
K−1∑
k=0

2∑
j=0

fj(uk) ≤
∞∑
k=0

2∑
j=0

fj(uk).

The latter sum converges to an absolute constant.

9.5.2 Complexity of integer multiplication

Theorem 9.8. The complexity Mnew(n) of the algorithm presented in §9.4 to multiply n-bit
integers is

Mnew(n) = O(n · log n · 4log
∗ n).

Proof. This theorem is a consequence of the results obtained thus far. Recall that in Algo-
rithm 18 (FurerComplexMul), we have N = O(n/(log2 n)2) and 2λ = O(log2 n). The input size
of Algorithm 23 (MulZ) is n0 = Θ((log2 n)2) bits. We have

O(N logN · 2λ log n) = O((n/(log2 n)2)(log2 n)3) = O(n log n).

N(3dlog2λ+1 Ne+ 1) ·MR0
≤ O

(
n

(log2 n)2

)
·O

(
log2 n

log
(2)
2 n

)
MR0

≤ O(n log n) · MR0

n0(log2 n0)
.

We thus have, using log p0 = Θ(n0):

Mnew(n)

n log n
= O(1) +O

(
MR0

log2 p0 log
(2)
2 p0

)
= O(1) +m0
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using the notation of Proposition 9.6. Let now A be a constant bounding the O(1) in Propo-
sition 9.6, let C = A/3, and let e(i) =

∏
0≤j≤2(1 + εj,i). We have 4e(i) − 1 ≥ 3 so that

A ≤ (4e(i)− 1)C. Proposition 9.6 implies

mi ≤ 4e(i)mi+1 + (4e(i)− 1)C

(mi + C) ≤ 4e(i)(mi+1 + C),

so that we get m0 = O(4log
∗ n) by Lemma 9.7. Finally, this gives

Mnew(n)

n log n
= O(4log

∗ n).



Chapter 10

Practical considerations

While our algorithm is mostly of theoretical interest, several points are worth mentioning, as
an answer to the natural question of its practicality. Despite the title of this chapter, we are
not reporting data on an actual implementation of our algorithm, but rather measurements that
shed some light on its practical value.

10.1 Adaptation of the asymptotically fast algorithm to prac-
tical sizes

At the beginning of §9.4, we briefly alluded to a way to multiply two n-bit integers: pick a
generalized Fermat number (not a priori prime) of the form p0 = P (2λ0 , λ0), for λ0 such that
λ02λ0 ≥ 2n. Then use Algorithm 22 (MulR). This does not work asymptotically because com-
puting roots of unity modulo p1 = smallerprime(p0) cannot be done deterministically with good
complexity. However, in practice, for say n ≤ 264, Table 8.3 and Lemma 8.9 imply that p1 would
then be at most a 2048-bit prime, for which both the primality proof and the computation of
roots can reasonably be assumed to be done once and for all. Therefore, the stumbling blocks
that are relevant for the asymptotic analysis need not be considered as such for a practical im-
plementation. This implies in particular that resorting to Algorithm 18 (FurerComplexMul), as
we do in Algorithm 23 (MulZ) for asymptotic reasons, is not needed in practice.

Going further in this direction, we may in fact consider as a practical instance of our algorithm
the more general procedure that follows Algorithm 14 with R1 =Z/p1Z as a base ring, where p1
is a generalized Fermat prime. The aforementioned strategy can be regarded as Algorithm 14
with η = 2λ0 , N = 2λ0 (still with λ02λ0 ≥ 2n), at least in the case where β = batchsize(p0) = 1.

Another alteration that we wish to make in practice is that our top-level multiplication need
not use a negacyclic transform: whether we compute a product modulo 22n + 1 or 22n− 1 makes
no difference when both inputs are less than or equal to 2n−1, which is the case on the top-level.
On the other hand, a “full” DFT of length N instead of a Half-DFT saves 3N multiplications in
the base ring, which is not entirely negligible. Since a product modulo 22n + 1 is done with a
Half-DFT, we prefer to compute the product modulo 22n − 1 on the top-level.

Finally, we note that for all sizes of practical interest, arithmetic in R1 = Z/p1Z will not be
done with a Fourier-transform-based algorithm, because p1 is only of very moderate size.

Taking into account all the remarks above, the only link that remains between the practical
procedure that we envision and the algorithms (in particular, Algorithm 22 (MulR)) described in
the second part of this thesis is that p1 is a generalized Fermat prime. The developments in this
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part of the thesis show that computing with generalized Fermat prime is asymptotically feasible,
and yields a good complexity.

10.2 Parameter choices for various input sizes
In this section, we consider various input sizes n, and various candidate generalized Fermat
primes p1 = r1

2λ1 + 1. For combinations of these, we find values η and N (both powers of two)
such that Algorithm 14 works. Let us briefly recall its structure: we write both n-bit integer
inputs a and b in radix η, or equivalently as the evaluations at η of two polynomials of degree
less than N/2. We multiply these polynomials in R1[x]. For this, we compute full N -point
DFTs, then a point-wise product, and finally an inverse DFT. Arithmetic in R1, as in §9, uses
representation in radix r1. For this procedure to correctly compute the integer product a · b, the
following conditions must hold:

Nη2 ≤ p1 (no overflow occurs in R1),
22n ≤ ηN − 1 (correct computation of the product of two n-bit integers),
N | p1 − 1 (a principal N -th root of unity exists in R1).

In particular, N is the smallest power of two above 2n/ log2 η. When choosing η and N subject
to the conditions above, we have some freedom. Ultimately, we wish to minimize the number of
multiplications in R1, because we expect those to form the largest part of the computation time.
More precisely, we wish to minimize the overall cost (3E(N)+N)MR1 of expensive multiplications
as introduced in §7 (MR1

denotes the cost of one expensive multiplication in R1; we add N
because of the point-wise products, and not 4N since here we do not use a half-DFT). Using the
expression of E(N), a rough estimate of the quantity to minimize is n

log2 η
log2 n
λ1+1MR1 , therefore

for n constant we try to minimize

Q ≈ MR1

λ1 log2 η
.

Thus, there is a trade-off to determine: when η grows, larger primes p1 have to be used: MR1

increases, while 1
log2 η

decreases. Since the cost MR1
is given by the bit length of the prime p1,

the η that we choose should be the largest η for which p1 is valid (as per the first of the three
conditions above). The number of expensive multiplications for various input sizes n and primes
p1 is reported in Table 10.1. We added in Table 10.1 the additional constraint that log2 η be
a multiple of the machine word size, to the extent possible (since N must be a power of two
anyway, this constraint has no impact).

10.3 Cost of multiplications in the underlying ring
We now turn to the two last columns of Table 10.1. Our goal is to obtain a coarse lower bound
on the time we expect our algorithm to take. Arithmetic in R1, and in particular multiplica-
tion, is our main focus. Elements of R1 are represented in radix r1. We avoid the conversion
between radix r1 and binary representation by using Kronecker substitution: an element of R1,
represented as a 2λ1-uple of integers in [0, r1), is transformed into an integer of bit length

k = (2dlog2 r1e+ λ1) · 2λ1 .

Multiplication in R1 is then done by multiplying these integers modulo 2k + 1 (we deal with
signs in the same way as in Algorithm 22 (MulR)). We ignore the cost of converting this product
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bit length of both operands: 230

p1 η N 3E(N) +N bit length of K.S. lower bound

98416 + 1 264 225 225 · (16 = 3 · 5 + 1) (2 · 10 + 4) · 16 = 384 2.68 · 101 s

198416 + 1 264 225 225 · (16 = 3 · 5 + 1) (2 · 11 + 4) · 16 = 416 3.44 · 101 s

401616 + 1 264 225 225 · (16 = 3 · 5 + 1) (2 · 12 + 4) · 16 = 448 3.44 · 101 s

44832 + 1 2128 224 224 · (13 = 3 · 4 + 1) (2 · 9 + 5) · 32 = 736 3.82 · 101 s

88432 + 1 2128 224 224 · (13 = 3 · 4 + 1) (2 · 10 + 5) · 32 = 800 4.45 · 101 s

41264 + 1 2256 223 223 · (13 = 3 · 4 + 1) (2 · 9 + 6) · 64 = 1536 7.57 · 101 s

506128 + 1 2512 222 222 · (10 = 3 · 3 + 1) (2 · 9 + 7) · 128 = 3200 9.94 · 101 s

bit length of both operands: 240

p1 η N 3E(N) +N bit length of K.S. lower bound

98416 + 1 232 236 236 · (25 = 3 · 8 + 1) (2 · 10 + 4) · 16 = 384 8.57 · 104 s

198416 + 1 264 235 235 · (22 = 3 · 7 + 1) (2 · 11 + 4) · 16 = 416 4.84 · 104 s

401616 + 1 264 235 235 · (22 = 3 · 7 + 1) (2 · 12 + 4) · 16 = 448 4.84 · 104 s

44832 + 1 264 235 235 · (19 = 3 · 6 + 1) (2 · 9 + 5) · 32 = 736 1.14 · 105 s

88432 + 1 2128 234 234 · (19 = 3 · 6 + 1) (2 · 10 + 5) · 32 = 800 6.66 · 104 s

41264 + 1 2256 233 233 · (16 = 3 · 5 + 1) (2 · 9 + 6) · 64 = 1536 9.54 · 104 s

506128 + 1 2512 232 232 · (13 = 3 · 4 + 1) (2 · 9 + 7) · 128 = 3200 1.32 · 105 s

bit length of both operands: 250

p1 η N 3E(N) +N bit length of K.S. lower bound

98416 + 1 232 246 246 · (31 = 3 · 10 + 1) (2 · 10 + 4) · 16 = 384 1.09 · 108 s

198416 + 1 264 245 245 · (28 = 3 · 9 + 1) (2 · 11 + 4) · 16 = 416 6.31 · 107 s

401616 + 1 264 245 245 · (28 = 3 · 9 + 1) (2 · 12 + 4) · 16 = 448 6.31 · 107 s

44832 + 1 264 245 245 · (25 = 3 · 8 + 1) (2 · 9 + 5) · 32 = 736 1.54 · 108 s

88432 + 1 2128 244 244 · (25 = 3 · 8 + 1) (2 · 10 + 5) · 32 = 800 8.97 · 107 s

41264 + 1 2256 243 243 · (22 = 3 · 7 + 1) (2 · 9 + 6) · 64 = 1536 1.34 · 108 s

506128 + 1 2512 242 242 · (19 = 3 · 6 + 1) (2 · 9 + 7) · 128 = 3200 1.98 · 108 s

Table 10.1: Estimated lower bound for the total cost of expensive multiplications in our
algorithm depending on the prime used. Timings are based on the multiplication count and the
measured time for the Kronecker-Schönhage bit length in the fifth column, on an Intel Xeon

E7-4850v3 CPU (2.20GHz).
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back to radix r1. This is likely to be at the very least a significant source of inaccuracy in our
lower bounds.

The fifth column of Table 10.1 reports the bit length k introduced above, for the various
generalized Fermat primes chosen. Based on this bit length, we determined experimentally on a
target machine (Intel Xeon E7-4850v3 CPU clocked at 2.20GHz) the time taken by the function
mpn_mul in the GMP library [28], thereby giving a lower bound on the multiplication time in
R1. We multiplied this lower bound by the number of expensive multiplication reported on the
fourth column of Table 10.1, from which we deduced a lower bound on the multiplication time
for n-bit integers using our algorithm.

The determination of the bit length above led us to restrict the set of generalized Fermat
primes to consider: two such primes that lead to identical bit length lead to an identical time
for internal multiplications. Therefore, we favor the largest generalized Fermat prime for each
value of the Kronecker-Schönhage bit length k above. In our choice, we also favored primes such
that r1 has largest 2-valuation among the candidate values (e.g. both 98416 + 1 and 101816 + 1
are primes, but we experimented with the former because the latter only allows a maximum
transform length of 216).

We deduce from Table 10.1 that for realistic sizes, choosing the prime p1 appropriately can
lead to a speed-up of the order of 2 to 4, with all the necessary words of caution: as mentioned
above, we deliberately omitted some conversion costs that are unlikely to be negligible in practice,
and also our measurements are done with all operands in cache memory, which is quite probably
optimistic.

10.4 Comparison with Schönhage-Strassen

Let us compare approximatively the cost of Schönhage-Strassen’s algorithm to our algorithm.
We can do two things. At least up to some size, we can run GMP’s implementation of the
Schönhage-Strassen algorithm, and obtain an actual computation time. Or we can do as we
did in Table 10.1: count the number of small multiplications involved, and measure their cost.
We did both, because the latter approach, which inherently gives a lower bound, is a fairer
comparison given that a lower bound is all that we have in Table 10.1.

Roughly speaking, a Schönhage-Strassen multiplication of two 2n-bit integers involves 2b(n+1)/2c

multiplications of 21+d(n+1)/2e-bit modular integers. In truth, a well-tuned implementation of
the Schönhage-Strassen algorithm uses all sorts of optimizations that are well outside the scope
of this thesis (see e.g. [27]), so that this is a crude estimate.

In Table 10.2, we report how our lower bound compares to the lower bound that we obtain
in this way on the running time of the Schönhage-Strassen algorithm. As we did in Table 10.1,
the fourth column is computed by determining experimentally the individual cost of each of the
underlying multiplications. For this, we timed GMP’s internal routine mpn_mul_fft, as it is
called in the implementation. The fifth column of Table 10.2 indicates the real computation
time, measured experimentally (we modified GMP’s internal mp_size_t type to go beyond 31
bits). Our measurements were limited by core memory, since the product of two 240-bit integers
took 1.3TB of RAM. The comparison with the previous column shows that our lower bound on
the Schönhage-Strassen time is within a factor of two of the real computation time, which is
acceptable.

We conclude from Table 10.2 that an implementation of our algorithm will unlikely beat
an implementation of the Schönhage-Strassen algorithm for sizes below 240. Above 240, the
ratio of our lower bounds is only slightly more than two. We may speculate that an optimized
implementation could compensate this gap: by improving the arithmetic modulo a generalized
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Schönhage-Strassen algorithm §10.1

bit length #internal
products

internal
bit length lower bound real time #internal

products prime internal
bit length lower bound

230 215 ≈ 217 9.73 · 100 s 1.50 · 101 s 225 · 16 98416 + 1 384 2.68 · 101 s

235 218 ≈ 219 3.70 · 102 s 6.03 · 102 s 230 · 19 98416 + 1 384 1.02 · 103 s

240 220 ≈ 222 1.63 · 104 s 3.04 · 104 s 235 · 22 198416 + 1 416 4.84 · 104 s

245 223 ≈ 224 7.90 · 105 s — 240 · 25 198416 + 1 416 1.76 · 106 s

250 225 ≈ 227 2.88 · 107 s — 245 · 28 198416 + 1 416 6.31 · 107 s

255 228 ≈ 229 1.05 · 109 s — 250 · 31 401616 + 1 448 2.23 · 109 s

260 230 ≈ 232 3.44 · 1010 s — 255 · 34 401616 + 1 448 7.84 · 1010 s

Table 10.2: Comparison of lower bounds on the running time of the Schönhage-Strassen
algorithm and the practical algorithm described in 10.1. The right half is from Table 10.1.

Timings measured on an Intel Xeon E7-4850v3 CPU (2.20GHz).

Fermat prime for example.
A direction to consider for optimization can be to improve on the time needed for internal

multiplications. Considering that multiplication in R1 can be though as multiplications of poly-
nomials modulo X2λ1 + 1, the idea is to use efficient algorithms to multiply polynomials modulo
XP + 1 where P is less than 2λ1 . For example, we may represent elements of R1 in radix r21
instead of r1. For λ1 = 2, we multiply

a0 + a1r1 + a2r
2
1 + a3r

3
1 and b0 + b1r1 + b2r

2
1 + b3r

3
1

modulo r41 + 1. The conversion in radix r21 leads to the computation and the multiplication of

(a0 + a1r1) + (a2 + a3r1)r21 and (b0 + b1r1) + (b2 + b3r1)r21.

In some cases, it might lead to a smaller bit length, at the expense of some extra conversion
costs. For example for p1 = 198416 + 1, working in radix 19842 leads to polynomials of length 8,
and a bit length of 8 ·48 = 384 bits, instead of 416 bits (see Table 10.1). Another possibility is to
use the multipoint Kronecker substitution proposed by Harvey in [29]. For this same example,
evaluating at +224 and −224, we can compute the product via two multiplications of two 192-bit
integers, which might be faster. For both ideas however, we have not taken into account the
conversion costs, and it seems difficult to be very confident about the induced benefit.
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Résumé
Depuis 1960 et le résultat fondateur de Karatsuba, on sait que la complexité de la multiplication
(d’entiers ou de polynômes) est sous-quadratique : étant donné un anneau R quelconque, le
produit sur R[X] des polynômes a0 + a1X et b0 + b1X, pour tous a0, a1, b0 et b1 dans R,
peut être calculé en seulement trois et non pas quatre multiplications sur R : (a0 + a1X)(b0 +
b1X) = m0 + (m2 − m0 − m1)X + m1X

2, avec les trois produits m0 = a0b0, m1 = a1b1 et
m2 = (a0 + a1)(b0 + b1). De la même manière, l’algorithme de Strassen permet de multiplier
deux matrices 2n× 2n en seulement sept produits de matrices n× n.

Les deux exemples précédents tombent dans la catégorie des applications bilinéaires : des
fonctions de la forme Φ : Km×Kn → K`, pour un corps donné K, linéaires en chacune des deux
variables. Parmi les applications bilinéaires les plus classiques, on trouve ainsi la multiplication
de polynômes, de matrices, ou encore d’éléments d’extensions algébriques de corps finis. Étant
donnée une application bilinéaire Φ, calculer le nombre minimal de multiplications nécessaires au
calcul de cette application est un problème NP-difficile. L’objectif de cette thèse est de proposer
des algorithmes minimisant ce nombre de multiplications. Deux angles d’attaques ont été suivis.

Un premier aspect de cette thèse est l’étude du problème du calcul de la complexité bilinéaire
sous l’angle de la reformulation de ce problème en termes de recherche de sous-espaces vectoriels
de matrices de rang donné. Ce travail a donné lieu à un algorithme tenant compte de propriétés
intrinsèques aux produits considérés tels que les produits matriciels ou polynomiaux sur des corps
finis. Cet algorithme a permis de trouver toutes les décompositions possibles, sur F2, pour le
produit de polynômes modulo X5 et le produit de matrices 3× 2 par 2× 3.

Un autre aspect de ma thèse est celui du développement d’algorithmes asymptotiquement
rapides pour la multiplication entière. Une famille particulière d’algorithmes récents ont été
proposés suite à un article de Fürer publié en 2007, qui proposait un premier algorithme, reposant
sur la transformée de Fourier rapide (FFT) permettant de multiplier des entiers de n bits en
O
(
n log n · 2O(log∗ n)

)
, où log∗ est la fonction logarithme itéré. Dans cette thèse, un algorithme

dont la complexité dépend d’une conjecture de théorie des nombres est proposé, reposant sur
la FFT et l’utilisation de premiers généralisés de Fermat. Une analyse de complexité permet
d’obtenir une estimation en O(n log n · 4log∗ n).

Mots-clés: multiplication, algorithme, complexité, rang, bilinéaire, entiers, matrices, polynômes,
FFT



Abstract
Since 1960 and the result of Karatsuba, we know that the complexity of the multiplication

(of integers or polynomials) is sub-quadratic: given a ring R, the product in R[X] of polynomials
a0 + a1X and b0 + b1X, for any a0, a1, b0 and b1 in R, can be computed with three and not
four multiplications over R: (a0 + a1X)(b0 + b1X) = m0 + (m2 −m0 −m1)X +m1X

2, with the
three multiplications m0 = a0b0, m1 = a1b1 et m2 = (a0 + a1)(b0 + b1). In the same manner,
Strassen’s algorithm allows one to multiply two matrices 2n × 2n with only seven products of
matrices n× n.

The two previous examples fall in the category of bilinear maps: these are functions of
the form Φ : Km × Kn → K`, given a field K, linear in each variable. Among the most
classical bilinear maps, we have the multiplication of polynomials, matrices, or even elements of
algebraic extension of finite fields. Given a bilinear map Φ, computing the minimal number of
multiplications necessary to the evaluation of this map is a NP-hard problem. The purpose of
this thesis is to propose algorithms minimizing this number of multiplications. Two angles of
attack have been studied.

The first aspect of this thesis is to study the problem of the computation of the bilinear
complexity under the angle of the reformulation of this problem in terms of research of matrix
subspaces of a given rank. This work led to an algorithm taking into account intrinsic properties
of the considered products such as matrix or polynomial products over finite fields. This algo-
rithm allows one to find all the possible decompositions, over F2, for the product of polynomials
modulo X5 and the product of matrices 3× 2 by 2× 3.

Another aspect of this thesis was the development of fast asymptotic methods for the integer
multiplication. There is a particular family of algorithms that has been proposed after an article
by Fürer published in 2007. This article proposed a first algorithm, relying on fast Fourier
transform (FFT), allowing one to multiply n-bit integers in O

(
n log n · 2O(log∗ n)

)
, where log∗ is

the iterated logarithm function. In this thesis, an algorithm, relying on a number theoretical
conjecture, has been proposed, involving the use of FFT and generalized Fermat primes. With
a careful complexity analysis of this algorithm, we obtain a complexity in O(n log n · 4log∗ n).

Keywords: multiplication, algorithm, complexity, rank, bilinear, integers, matrix, polynomials,
FFT
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