
HAL Id: tel-01825871
https://theses.hal.science/tel-01825871

Submitted on 28 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Community detection : computational complexity and
approximation
Thomas Pontoizeau

To cite this version:
Thomas Pontoizeau. Community detection : computational complexity and approximation. Other
[cs.OH]. Université Paris sciences et lettres, 2018. English. �NNT : 2018PSLED007�. �tel-01825871�

https://theses.hal.science/tel-01825871
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’Université Paris-Dauphine

Community detection: computational
complexity and approximation

École doctorale de Dauphine – ED 543

Spécialité INFORMATIQUE

Soutenue par Thomas PONTOIZEAU
le 04/06/2018

Dirigée par Cristina BAZGAN

COMPOSITION DU JURY :

Cristina BAZGAN
Université Paris-Dauphine
Directrice de thèse

Michel HABIB
Université Paris Diderot
Rapporteur

Ioan TODINCA
Université d’Orléans
Rapporteur

Henning FERNAU
Universität Trier
Examinateur

Rodolphe GIROUDEAU
Université de Montpellier
Examinateur

Aline PARREAU
Université Claude Bernard Lyon 1
Examinatrice

Yann VAXES
Université d’Aix-Marseille
Président du Jury

A mon frère Arnaud,

Remerciements

Après avoir écrit une thèse sur les communautés, il fallait que je remercie toutes celles
qui ont partitionné mon entourage, durant les trois ans et demi qu’a demandé son écriture.

Je voudrais remercier en tout premier lieu Cristina Bazgan, qui a eu confiance en moi et
qui m’a accompagné du début à la fin de cette thèse. Merci beaucoup de m’avoir soutenu,
écouté, suivi. Merci pour ta bienveillance, ta confiance et ta présence.

I also thank Janka Chlebíková who welcomed me warmly in Portsmouth. Thank you
for your support, your (very) rigorous follow-up, and especially your kindness. 1

Je remercie Ioan Todinca et Michel Habib pour avoir lu attentivement l’ensemble de
ma thèse. Merci beaucoup pour toutes vos remarques. Je remercie également les autres
membres du jury, Henning Fernau, Rodolphe Giroudeau, Aline Parreau et Yann Vaxès,
pour l’intérêt qu’ils ont porté à mes travaux.

Je veux remercier aussi Daniel Vanderpooten pour m’avoir accueilli au sein du Master
MODO et de m’avoir accompagné jusqu’à la thèse avec bienveillance.

Je remercie toute l’équipe du LAMSADE au sein de laquelle je me suis senti bien
durant toutes mes années de thèse. Vous croiser dans les couloirs chaque jour fut toujours
un plaisir.

J’ai une pensée particulière pour Anita Souissi, Stéphane Boucheron et Henning Bruhn-
Fujimoto qui ont tous les trois été des professeurs formidables durant mon parcours scolaire
et qui ont sans doute contribué indirectement à la réalisation de cette thèse.

Je remercie Clément Dallard, avec qui j’ai eu l’occasion de travailler régulièrement.
Merci de m’avoir fait partager ta passion pour le snooker, pour ton amitié et pour ton
humour si singulier. Des bisous à Angie. Grazie ad Alessio Petrozziello e Francesca Pica-
riello per aver condiviso tanto buon umore (e buona cucina !) durante il mio soggiorno a
Portsmouth. 2

Merci à toi Ian mon clé, qui a supporté avec une grande patience mes cocasseries. Merci
d’avoir apporté cette atmosphère si particulière en C605. Si ces années furent le feu, c’est
sans doute grâce à toi.

3

1. Je remercie également Janka Chlebíková qui m’a accueilli chaleureusement à Portsmouth. Merci pour
ton soutien, ton suivi (très) rigoureux, et surtout ta gentillesse.

2. NB : tous les mots sont transparents.
3. Je remercie Meriem, une amie sincère que j’espère continuer de voir après la thèse, ainsi que Yassine

mon compatriote, merci pour ta gentillesse, ta spontanéité et ton honnêteté. Merci à vous deux qui m’ont
donné une si bonne image de la Tunisie et qui m’y ont si bien accueilli (un grand merci à Raja pour sa
traduction !).

Je tiens également à remercier personnellement mes autres collègues du bureau C605
auxquels je me suis attaché. Khalil, pour ton amitié et toutes ces longues discussions sur
tes projets de permaculture au Kirghizistan. Céline, pour ton sourire toujours présent et
tes conseils bienveillants. Ioannis, για τιν καλı́ σας διάτηεσι και ειδικά για το ςηιούμορ σας. 4
Boris, bientôt Diamant I, pour toutes ces parties de jeux de société.

Je n’oublie pas bien sûr mes autres collègues qui resteront dans mes souvenirs. Je tiens à
remercier Anaëlle, que je connais depuis maintenant cinq ans, pour son rayonnement naturel
et son sourire si communicatif. Fabien le vrai président, pour son mental imperturbable
et sa gentillesse indéfectible. Marcel pour son marxo-gauchisme, Satya pour son crypto-
anarchisme, Tom pour son néocommunisme, que je n’ai pas su droitiser. J’embrasse fort
Michelle, Noah et Luca. Olivier pour ses blagues d’une qualité aussi grande que son âge.
Diana, pour son sourire et son style quotidiennement travaillé et renouvelé. Sans oublier
Ons, Lydia, Youcef, Nathanaël, Justin, Marek, Anne, Linda, Hiba, Feu Paul-Henri, Mehdi,
Mehdi, Amine, Lamine, Saeed, Lyes, Raja, Louis, Raouia, Pedro, Sami, Georges, Renaud,
Hossein, Oussama, Manel, Paul, Axel, Mayassa, Sonia avec qui j’ai visité la NASA, et
Florian mon grand frère de thèse.

Je tiens à remercier Alain, Mathieu et Louise du groupe Louise XIV (ex- Apostrophe)
avec qui j’ai pu partager tous ces moments amicaux et musicaux. Merci également à An-
toine, avec qui j’ai toujours eu plaisir à discuter politique, à jouer de la musique et à écouter
la sienne.

Je remercie également Thomas, maintenant docteur et que j’espère bientôt papa. Merci
d’avoir été là, d’avoir toujours été de bon conseil, et d’avoir entretenu avec moi des rapports
aussi authentiques. Je n’oublie pas Helena, za to, že jste tak dobrým velvyslancem pro
Českou republiku : tak milí lidé ! 5

Je tiens aussi à remercier Pierre, que je connais depuis maintenant douze ans, avec qui
je partage une relation fusionnelle. Merci d’avoir supporté toutes mes dilemmes psychiques.
Je n’oublie pas mes amis proches que j’ai toujours eu plaisir à côtoyer depuis des années :
Nathan, Tifenn, Cécile, Sabrina, Anastasia, Max, Louis, Romain et Oana.

J’ai également une pensée pour tous les kheys qui ont toujours eu deux tours d’avance,
merci d’avoir partagé mon quotidien.

Je souhaite finalement remercier ma famille. Mon père et ma mère, ainsi que Bernadette,
qui m’ont toujours soutenu. Merci d’avoir été présents en toute circonstance.

Je remercie enfin particulièrement mon frère Arnaud, dont ma relation avec lui fait
miroir avec cette thèse : une histoire longue et compliquée qui finit bien à la fin. Cette
thèse t’est donc dédiée.

4. pour ta bonne humeur et surtout ton humour.
5. pour avoir été une si bonne ambassadrice de la République Tchèque : un peuple si gentil !

Contents

Résumé de la thèse en français 11

1 Introduction 19

2 Preliminaries 25
2.1 Graphs . 25

2.1.1 Basics of graphs . 25
2.1.2 Notations . 27
2.1.3 Graph classes . 28

2.2 Computational complexity . 29
2.2.1 Decision and optimization problems 29
2.2.2 Approximation and approximation-preserving reductions 31
2.2.3 Parameterized complexity . 32

3 Community detection in graphs : an overview 37
3.1 Community detection in social networks 37
3.2 Finding a single community . 38

3.2.1 Restrictions on the distance between members 39
3.2.2 Restrictions on the neighborhood 40
3.2.3 Maximizing the relationship density 42
3.2.4 Other features of communities . 42

3.3 Finding a partition into communities . 43
3.3.1 Maximizing the number of links within the communities 44
3.3.2 Minimizing the number of links between the communities 45
3.3.3 Imposing a certain neighborhood for members of communities . . . 45
3.3.4 Ensuring stability . 46
3.3.5 Evaluating the quality of a partition 48
3.3.6 Overlapping partitions into communities 48

7

3.3.7 Finding a hierarchical clustering of communities 50

4 Two-Community Structures 55
4.1 Introduction . 56
4.2 Preliminaries . 57

4.2.1 k-community structures . 57
4.2.2 Studied problems . 59
4.2.3 General observations . 60

4.3 2-community structures in graph classes 62
4.3.1 Some graph classes in which the problem is easy to handle in linear

time . 63
4.3.2 Cubic graphs and graphs of maximum degree 3 65
4.3.3 Dense graphs . 83

4.4 Balanced 2-community structures . 85
4.4.1 General graphs . 85
4.4.2 Balanced 2-community structures in graphs with low density 88

4.5 About graphs without 2-community structures 90
4.6 Conclusions . 94

5 Max Community 97
5.1 Introduction . 97
5.2 Preliminaries . 98
5.3 Hardness results . 99

5.3.1 NP-hardness . 99
5.3.2 Non-approximability . 101

5.4 Positive results for approximation . 103
5.5 Polynomial-time solvability in some graph classes 105

5.5.1 Some easy graph classes . 105
5.5.2 Hamiltonian cubic graphs . 105

5.6 Extension of a vertex subset into a community 111
5.7 Conclusions . 114

6 Clubs 117
6.1 Introduction . 117
6.2 Preliminaries . 118
6.3 Partition into two 2-clubs . 119
6.4 Edge editing . 122

6.4.1 Edge adding . 123
6.4.2 Edge deletion . 124

6.5 Conclusions . 127

8

7 Independent 2-cliques 129
7.1 Introduction . 130
7.2 Preliminaries . 130
7.3 Complexity jump from planar graphs to apex graphs 132
7.4 Graph classes with polynomial-time algorithms 134

7.4.1 Graph classes related to the degree 134
7.4.2 Finding an independent 2-clique in the neighborhood of a vertex . . 135
7.4.3 Other graph classes in which both problems are polynomial-time

solvable . 137
7.5 NP-hardness and non-approximability . 139

7.5.1 Split graphs . 140
7.5.2 Bipartite graphs . 141
7.5.3 Line graphs . 142

7.6 Conclusions . 144

8 Conclusions 147

9

10

Résumé de la thèse en français

Avec le récent développement de nombreux réseaux sociaux (Facebook, LinkedIn, Twit-
ter...), l’étude de ces réseaux a particulièrement suscité l’intérêt de la communauté scien-
tifique pour des raisons sociales ou économiques [57, 71, 129]. En particulier, un des enjeux
importants dans l’étude des réseaux sociaux est la recherche de communautés, domaine qui
a beaucoup été étudié ces dernières années.

La première question qui vient naturellement lorsque l’on parle de détection de commu-
nautés est : qu’est-ce qu’une communauté ? La première intuition qui semblerait la plus
naturelle est de considérer qu’une communauté est un groupe de personnes qui se connais-
sent toutes. Dans un graphe, cela correspond à un ensemble de sommets joints deux à deux
par une arête. Une telle structure est appelée clique. Trouver une clique d’une certaine
taille k est un problème combinatoire très connu et difficile à résoudre. Cependant, un
ensemble de sommets dont tous les couples seraient joints par une arête, sauf un couple,
ne serait pas considéré comme une communauté. Cette observation pousse naturellement
à chercher d’autres définitions qui seraient pertinentes pour décrire une certaine cohésion,
sans être aussi restrictive qu’une clique. A partir de là, le choix des contraintes qui décrivent
la cohésion d’un ensemble de sommets est très arbitraire, et dépend du type de cohésion

11

que l’on cherche. En ce sens, il n’existe pas de définition absolue pour une "communauté",
mais la pertinence de diverses définitions peut être discutée.

Dans cette thèse, nous étudions quatre définitions pour décrire une communauté: les
structures en communautés, les communautés, les clubs et les communautés potentielles.
Cette dernière définition essaiera d’étendre l’intérêt du domaine à la recherche de groupes de
personnes qui ne se connaissent pas, mais dont la cohésion est évaluée par les connaissances
communes.

Communautés et structures en communautés (Chapitre 4)
Dans le Chapitre 4, nous étudions les structures en communautés. Une structure en k
communautés dans un graphe connexe G = (V,E) est une partition Π = {C1, . . . , Ck} de
V , k ≥ 2, telle que ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, et ∀v ∈ Ci,∀Cj ∈ Π, j 6= i, on a :

|dCi
(v)|

|Ci| − 1 ≥
|dCj

(v)|
|Cj|

Une structure en k communautés au sens faible dans un graphe connexe G = (V,E)
est une partition Π = {C1, . . . , Ck} de V , k ≥ 2, telle que ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, et
∀v ∈ Ci,∀Cj ∈ Π, j 6= i, on a :

|dCi
[v]|
|Ci|

≥
|dCj

(v)|
|Cj|

Nous appelons respectivement ces deux inégalités la condition de proportion et la con-
dition de proportion au sens faible.

Informellement, une structure en k communautés est une partition des sommets en k
parties telle que tout sommet a une plus grande proportion de voisins dans sa propre partie
que dans toute autre partie. Cette définition nous a semblé pertinente, car elle prend en
compte le nombre de connaissances qu’un individu peut avoir dans un groupe, mais aussi la
taille du groupe. En effet, un individu n’a pas le même sentiment d’appartenance lorsqu’il
connaît 2 personnes parmi 10 plutôt que 2 personnes parmi 100.

Nous nous intéressons alors au problème naturel suivant :

2-Community
Données : Un graphe G = (V,E).
Question : Existe-t-il une structure en deux communautés dans G ?

Cette définition n’ayant été introduite que récemment, il existe peu de résultats dans la
littérature à propos des structures en communautés. Olsen [133] a montré qu’étant donné
un graphe, une structure en communautés peut toujours être trouvée (sans restriction sur
le nombre de communautés) en temps polynomial si le graphe n’est pas une étoile. Plus
récemment, Estivill-Castro et al. [59] ont montré que le problème de décider s’il existe une
structure en k communautés, telle que chaque communauté doit être connexe et qu’elles
soient toutes de tailles égales, est NP-complet dans les graphes généraux, mais résoluble

12

en temps polynomial dans les arbres. Dans [133], Olsen a également montré qu’il est NP-
complet de décider s’il existe une structure en communautés dont l’une d’elles contient un
ensemble de sommets défini en entrée.

Nous avons étudié le problème de trouver une structure en deux communautés dans un
graphe, qui n’est pas une étoile, dans les classes de graphes suivantes :

• Pour les arbres, une structure en deux communautés existe et peut être générée en
temps linéaire par un algorithme plus simple que celui donné dans [59]. Il existe des
arbres avec une structure en deux communautés de même taille, mais sans structure
en deux communautés connexes de même taille.

• Pour les graphes de degré maximum 3, il existe une structure en deux communautés
connexes et celle-ci peut être générée en temps polynomial. De plus, il existe une
structure en deux communautés de même taille au sens faible et celle-ci peut être
générée en temps polynomial. Il existe des graphes sans structure de deux com-
munautés de même taille. Il existe aussi des graphes ayant une structure en deux
communautés de même taille, mais sans structure en deux communautés connexes
de même taille au sens faible.

• Pour les graphes de degré minimum |V | − 3, les graphes complémentaires de graphes
bipartis, les graphes de degré minimum d (c−1)·|V |

c
e où c est la taille d’une clique

maximale au sens de l’inclusion dans le graphe, une structure en deux communautés
connexes existe et peut être générée en temps polynomial.

• Pour les graphes de largeur arborescente bornée, il existe des graphes sans structure
en deux communautés de même taille, et décider si une telle structure existe (et si
elle existe, la générer) peut être fait en temps polynomial.

Estivill-Castro et al. [58] ont prouvé que le problème de trouver une structure en deux
communautés de même taille est NP-difficile dans les graphes généraux. Nous démontrons
le même résultat en simplifiant drastiquement la preuve et en démontrant que ce problème
est en fait équivalent à celui de trouver une partition en deux parties de même taille, telle
que tout sommet a au moins autant de voisins dans sa propre partie que dans l’autre partie.
Ce dernier problème a déjà été montré NP-complet [20].

En ce qui concerne le problème de trouver une structure en deux communautés de même
taille au sens faible, la situation est légèrement différente. Tout graphe de degré maximum
3 a une structure en deux communautés de même taille au sens faible, tandis qu’il existe
des graphes sans structure en deux communautés de même taille dans la même classe de
graphes. En terme de complexité, générer une structure en deux communautés de même
taille au sens faible peut être fait en temps polynomial dans les graphes de degré maximum
3, tandis qu’il est NP-difficile d’établir s’il existe une structure en deux communautés de
même taille dans les graphes généraux, tout comme sa version au sens faible. Les résultats
sont similaires lorsque la connexité des deux communautés est requise.

13

Par ailleurs, nous avons trouvé des graphes non triviaux dans lesquels il n’existe pas
de structure en deux communautés. Cette observation a motivé l’étude d’un nouveau
problème lié à 2-Community, que nous étudions dans le Chapitre 5.

Max Community (Chapitre 5)
Etant donné qu’il existe des graphes dans lesquels il n’y a pas de structure en deux com-
munautés, il est intéressant de considérer une relaxation de la définition d’une structure en
deux communautés, en acceptant que l’une des deux parties n’ait pas besoin de respecter
la condition de proportion. L’autre partie est alors considérée comme une communauté.
Ainsi, nous étudions le problème de trouver une communauté de taille maximum:

Max Community
Donnée : Un graphe G = (V,E).
Résultat : Un ensemble C de taille maximale tel que pour tout sommet v ∈ C,
dC(v)
|C|−1 ≥

dV \C(v)
|V \C| .

Nous montrons dans le Chapitre 5 que ce problème est NP-complet et APX-difficile,
même dans les graphes split. De plus, étant donné un graphe G = (V,E), il est toujours
possible de trouver en temps polynomial une communauté de taille au moins |V |2 , ce qui
prouve que le problème est 2-approximable en temps polynomial. Nous donnons égale-
ment une borne supérieure pour la taille d’une communauté, ce qui permet de légèrement
l’améliorer. Ensuite, nous montrons que Max Community est résoluble en temps linéaire
dans les graphes cubiques Hamiltoniens si un cycle Hamiltonien est donné en entrée. En-
fin, nous montrons qu’il est NP-complet de déterminer si, étant donnés un graphe et un
ensemble S de sommets du graphe, il existe une autre communauté incluant S.

Clubs (Chapitre 6)
Comme nous l’avons indiqué précédemment, une communauté peut être vue au premier
abord comme une clique dans un graphe. Une relaxation naturelle est de chercher un sous
graphe de diamètre restreint: au lieu d’établir que la distance entre toute paire de sommets
soit 1, nous acceptons qu’elle soit d’au plus k pour un certain entier k. A cet effet, nous
étudions plusieurs problèmes liés à la recherche de sous graphes de diamètre 2 et 3, appelés
respectivement 2-clubs et 3-clubs.

Dans le Chapitre 6, nous étudions ainsi les problèmes suivants :

k-Partition into s-clubs
Données : Un graphe G = (V,E), deux entiers k, s.
Question : Existe-t’il une partition {P1, P2, . . . , Pk} de V telle que Pi est un
s-club, pour tout i ∈ {1, . . . , k} ?

14

s-Club Edges Adding
Données : Un graphe G = (V,E), deux entiers s, t.
Question : Existe-t’il un ensemble d’arètes E ′ de taille au plus t tel que V est
un s-club dans le graphe G′ = (V,E ∪ E ′) ?

Spanning s-club
Données : Un graphe G = (V,E), un entier k.
Question : Existe-t’il un sous-ensemble d’arètes E ′ ⊂ E de taille au plus k tel
que le graphe G′ = (V,E ′) a pour diamètre s ?
Nous démontrons que partitionner un graphe en deux 2-clubs est NP-difficile même dans

les graphes split. De plus, nous montrons que 2-Club Edges Adding est W[2]-difficile
même dans les graphes split. Nous discutons sur l’éventuelle NP-difficulté du problème de
Spanning 3-club dans les graphes split. Cette NP-difficulté impliquerait la NP-difficulté
de Spanning (2s+ 1)-club dans les graphes généraux pour tout entier s ≥ 1. De plus, si
Spanning 2-club est NP-difficile, on peut montrer que Spanning s-club est NP-difficile
pour tout entier s ≥ 2.

Independent 2-Cliques (Chapitre 7)
Avec le développement récent des sites de rencontre dans lesquels les utilisateurs s’attendent
à ne pas connaître les personnes qu’ils vont rencontrer (Meet-up, Couchsurfing...), nous
définissons un problème de détection de communautés, dans le but de rapprocher des gens
qui ne se connaissent pas a priori, mais qui sont liés par leurs connaissances communes.

Nous définissons un independent 2-clique comme un ensemble de sommets C tels que
pour toute paire de sommets dans C, ces deux sommets sont non adjacents mais ont un
voisin commun qui n’est pas dans C. Le problème étudié (Max Independent 2-Clique)
est celui de trouver, étant donné un graphe, un independent 2-clique de taille maximale.

Max Independent 2-Clique
Donnée : Un graphe G = (V,E).
Résultat : Un independent 2-clique de taille maximale.

Etant proche du problème de recherche d’un ensemble de sommets deux à deux non
adjacents de taille maximum (Max Independent Set), nous comparons la difficulté des
deux problèmes selon la classe de graphes dans laquelle ils sont étudiés. La Figure 1 résume
ces résultats. Une flèche d’une classe à une autre indique que cette classe contient l’autre.
Max Independent 2-Clique est NP-difficile dans la partie hachurée (en haut), résoluble
en temps polynomial (en bas). Max Independent Set est NP-difficile dans la partie en
pointillé (à gauche) et résoluble en temps polynomial (à droite).

Du point de vue de l’approximation, nous montrons que Max Independent 2-Clique
n’est pas n1−ε- approximable en temps polynomial dans les graphes partout denses et dans
les graphes split. De plus, ce problème n’est pas n1/2−ε- approximable en temps polynomial
dans les graphes bipartis et est APX-difficile dans les line graphes.

15

Degré moyen

borné

Degré max

borné
Planaires

Apex

Cordal

SplitBiparti

Cographes
Graphes

d’intervalle

Graphes

de seuil

Line

Largeur arborescente

bornée

Planaires

extérieurs

Cactus
Graphes sans

(C3, C6)

Arbres

Figure 1: Comparaison des complexités de Max Independent Set et Max Indepen-
dent 2-Clique

16

17

1
Introduction

The last decades have been marked by a significant explosion of communications with the
developpement of the Internet. This turning point have led to the emergence of plenty of
social networks like Facebook, Twitter, Snapchat, LinkdIn, Couchsurfing in which people
can connect with each other and share information and messages.

In this way, studies about social networks have become a major stake in many different
fields like economy, social science or marketing. In particular, one of the main questions
in a social network analysis is to determine if there are communities, how many, and how
the social network is organized by those communities.

Detecting communities has a lot of applications. Even before the existence of internet,
people investigated problems around communities. In [159], Zachary presented the neces-
sity of detecting communities in a karate club with 34 members, containing 78 pairwise
links between members who interacted outside the club. Since a conflict arose between the
administrator and the instructor, the club had to be split into two (see Figure 1.1). Many
other various applications were investigated like identifying bitcoin users [34] or placing
component of an electronic circuit into printed circuit cards [107]. Nowadays with mas-
sive social networks like Facebook, community detection became an even more significant
stake with other applications. For instance, Facebook tries to suggest new relationships to
its members. More generally, massive online stores like Amazon, or event organizers try

19

CHAPTER 1. INTRODUCTION

to find communities among their users in order to recommend them specific products or
information.

Figure 1.1: Zachary’s karate club given in [71].

The first question you may ask is: "What is a community ?". If the term "community"
refers to the intuition of some kind of cohesion in a social network, it is impossible to give
a proper definition in absolute. Then, studying community detection is always made under
a certain definition that is justified by specific criteria.

The standard structure of social networks is a group of individuals linked by rela-
tionships. A natural abstract model for those social network is a graph. A graph is a
mathematical object constitued by a set of items called vertices and a set of links that join
two vertices called edges.

In order to start with an intuitive way to apprehend a community, one simple definition
that can be considered is a group of people in which everybody knows each other. In a
graph, it corresponds to a subset of vertices such that any two vertices are linked by an
edge. Such subset is called a clique. Looking for such community with the largest size
could be a natural problem you may look at when you consider a social network.

20

CHAPTER 1. INTRODUCTION

Given a graph, finding a clique of maximum size should not be a mathematical problem
in theory since it can be sorted by a simple exhaustive research. Indeed, it is sufficient to
just consider all possible subsets of vertices, check if all edges occurs in this subset, and
at the end, return the clique of maximum size you found. Suppose now that you have a
computer able to check if a subset is a clique or not within 0.25 nanoseconds which is as fast
as a processor of 4 GHz doing one operation. If you want to study a social network with
only 70 members and try to find a clique of maximum size, you would have to check 270

subsets, which would require more than 90 centuries to process... This leads to a natural
question: is it possible to design an algorithm running in a reasonable time to solve this
problem?

Most of computer scientists believe that finding a clique of maximum size is too hard
to be solved efficiently (in the sense that it requires too much memory and time running
to be solved in a reasonable time). More precisely, they proved that, under the conjecture
P6=NP, there is no algorithm running in polynomial time solving this problem.

The goal of this thesis is to study several definitions of a community that are relevant for
different reasons that we discuss. For each definition, we study different problems around
it and discuss their hardness, sometimes regarding specific graph structures. Either we
prove that the problem can be solved by an efficient algorithm, or we prove that the
problem is NP-hard and we discuss other options to approximate the problem efficiently.
Approximation algorithms run in polynomial time and guarantee to output a solution near
to the optimal solution by some factor.

The thesis is organized as follows. Chapter 2 gives the basic background in order to
understand the content. Chapter 3 gives a state-of-art of several definitions of communities
studied in the literature. Those definitions are grouped into two categories depending on
the studied problem. First, only one community is considered as a subset of vertices in
a graph. On the other hand, a community is described as a part of a partition in which
each part is considered as a community. This thesis study four definitions for communities
in the Chapters 4, 5, 6, and 7. The Chapters 4 and 5 investigate a similar definition of
a community, but under different aspects. In Chapter 4 we consider a partition of the
graph into communities (called community structure) such that each member of the graph
knows a greater proportion of people in its part than in any other part. In Chapter 5, we
investigate the same definition in which we only consider one community: a community is
defined as a subset of vertices such that any vertex of the subset is linked by an edge to
a greater proportion of vertices in its part than out of its part. The studied problem is
to find such subset of maximum size. In Chapter 6, we consider a community as a subset
of vertices such that there is a chain of relationship of size at most s between any two
members within this subset, for a certain integer s. We call such structure an s-club. We
study several problems related to that definition: partitioning a graph into two s-clubs,
adding a minimum number of links in order to set the whole graph as an s-club, and
removing the maximum number of edges in order to maintain an s-club structure. In
Chapter 7, we do not try to study communities but potential communities. In the context
of meetup services, we want to form a group of people that do not know each other but are
related by another criterion than direct relationship. In this way, we define an independent

21

CHAPTER 1. INTRODUCTION

2-clique as a subset of vertices such that nobody knows each other, but any two members
have a common acquaintance. We study the problem of finding such structure of maximum
size. In Chapter 8 we give some conclusions and perspectives for future work.

22

CHAPTER 1. INTRODUCTION

23

2
Preliminaries

Contents
2.1 Graphs . 25

2.1.1 Basics of graphs . 25
2.1.2 Notations . 27
2.1.3 Graph classes . 28

2.2 Computational complexity . 29
2.2.1 Decision and optimization problems 29
2.2.2 Approximation and approximation-preserving reductions 31
2.2.3 Parameterized complexity . 32

In this chapter, we give the basic background on graph theory, complexity, approxima-
tion and parameterized complexity.

2.1 Graphs

2.1.1 Basics of graphs
A graph is an ordered pair of sets (V,E) such that E ⊆ V × V .

In this thesis, it is always assumed that we consider a graph G = (V,E). Items of V
are called vertices and items of E are called edges. In order to simplify the notations, we
always note xy an edge {x, y} ∈ E for any given two vertices x, y of V . Most of the time,
we consider that for any graph G = (V,E) and any x ∈ V , xx /∈ E. Considering an edge
xy ∈ E, we call x and y the endpoints of the edge.

All graphs considered in this thesis are finite (in the sense that the number of vertices
is finite) and simple (at most one edge exists between two vertices).

A directed graph is a graph in which each edge is ordered. In this case, we note (x, y)
the directed edge from the vertex x to the vertex y.

25

CHAPTER 2. PRELIMINARIES

The complement G = (V,E) of a graph G = (V,E) is the graph in which uv ∈ E if and
only if uv /∈ E, for all vertex pairs u, v ∈ V .

For any vertex v ∈ V , we say that v is adjacent to another vertex v′ if vv′ ∈ E. We call
neighborhood of v the set N(v) := {x ∈ V : vx ∈ E}. We call closed neighborhood the set
N [v] := N(v) ∪ {v}. The size of a neighborhood of a vertex v is called degree of v and is
noted d(v). For any subset H ⊂ V of the graph G, we note NH(v) the set of the neighbors
of v in H, and similarly NH [v] := NH(v) ∪ {v} and dH(v) := |NH(v)|.

A graph is said to be of maximum (resp. minimum) degree d if and only if any vertex
of the graph has degree at most (resp. at least) d. When all vertices have the same degree
d, we say that the graph is d-regular. We sometimes call cubic a 3-regular graph.

A graph is said to be complete if for any two vertices x, y ∈ V , xy ∈ E.
A subgraph of G is a graph H = (V (H), E(H)) such that V (H) ⊂ V and E(H) ⊂ E.

We say that H is the subgraph of G induced by V (H) if E(H) contains all edges from E
with two endpoints in V (H). A proper subgraph of a graph G is a subgraph of G which is
not G. A subgraph H is said to be maximal (or inclusion-wise maximal) under a certain
property if there is no subgraph H ′ respecting this property such that H ⊂ H ′. A spanning
subgraph of G is a subgraph H = (V (H), E(H)) of G such that V (H) = V , E(H) ⊂ E,
and H is connected.

Given a graph G = (V,E), a path is a finite sequence of vertices (v1, v2, · · · , vp) of V
such that for any i ∈ {1, · · · , p − 1}, vivi+1 ∈ E. The length of a path is the number of
edges involved in the sequence.

The distance between two vertices x, y ∈ V is the length of a shortest path between
them.

The diameter of a graph is the maximum distance that can occur between two vertices
of the graph.

The kth power Gk = (Vk, Ek) of a graph G = (V,E) is a graph such that Vk = V , and
for any two vertices x, y ∈ Vk, xy ∈ Ek if and only if d(x, y) ≤ k in G. For k = 2, we name
such graph as a squared graph.

A graph is connected when for any two vertices x, y ∈ V , there exist a path between
x and y. A connected component of a graph G is an inclusion-wise maximal connected
induced subgraph of G.

A graph is k-connected if at least k vertices must be removed from the graph to make
it disconnected.

A pendant vertex of G is any vertex of degree 1.
Given a graph G = (V,E), a cycle is a path (v1, v2, · · · , vp) of V such that v1 = vp.

Given a cycle, we sometimes call chord an edge from E between two non consecutive
vertices in the cycle. The length of a cycle is the number of edges involved in the sequence.
A k-cycle is a cycle of length k. We sometimes call triangle a cycle of length 3. An odd
cycle is a cycle with an odd length. A Hamiltonian cycle is a cycle such that its sequence
contains all vertices of V exactly once.

A partition of V is a set of subsets {V1, V2, . . . , Vp} of V for some integer p such that
∪pi=1Vi and for any two i, j ∈ {1, 2, . . . p}, i 6= j, Vi∩Vj = ∅. A k-partition of V is a partition
of V with k sets. 2-partitions are sometimes called cut. The size of a cut (sometimes called

26

CHAPTER 2. PRELIMINARIES

cut size) is the number of edges with one endpoint in each part. Given two vertices x, y of
G, an x,y-cut is a 2-partition in which x and y do not belong to the same part. A partition
is connected if the subgraphs induced by each part of vertices is connected. A partition is
balanced if the sizes of each part differ by at most 1.

Given a partition of V , for any vertex v, we call in-neighbor (resp. out-neighbors) of v
any neighbor of v which is in the same part of v (resp. not in the same part of v).

A k-coloration of V is a function f : V → {1, 2, . . . , k} such that for any two vertices
x, y ∈ V , if f(x) = f(y) then xy /∈ E.

In the following, we define some graph structures that will appear several times in the
thesis.

A star is a connected graph in which all vertices have degree 1 except one vertex that
can have any degree.

A clique K is a subset K ⊂ V such that for any two vertices x, y ∈ K, xy ∈ E. We
also call triangle a clique with 3 vertices. A biclique is a bipartite graph (see Subsection
2.1.3 for a definition of a bipartite graph) in which for any two vertices x, y from each
independent set, xy ∈ E.

An independent set I is a subset I ⊂ V such that for any two vertices x, y ∈ K, xy /∈ E.
A vertex cover V ′ is a subset V ′ ⊂ V such that for for any edge e ∈ E, there exist a

vertex v ∈ V ′ such that e contains v. Notice that, given a graph G = (V,E), I ⊂ V is an
independent set of G if and only if V \ I is a vertex cover of G.

A dominating set is a subset D of V such that for any vertex v ∈ V , either v ∈ D or
there exists a vertex v′ ∈ D such that vv′ ∈ E.

2.1.2 Notations
Throughout the thesis, we use several notations that we regroup here. Given a graph
G = (V,E), a subset H ⊂ V and two vertices v, w of G:

• G[H] is the subgraph induced by H i.e. the graph G′ = (H,E ′) with E ′ the set of
edges between two vertices of H in G.

• G−{v} is an abuse of notation of G[V \ {v}], i.e. the subgraph induced by V \ {v}.

• H is the complement of H in G, i.e. V \H.

• d(v) is the degree of v.

• dH(v) is the number of neighbors of v that belong to H.

• din(v) is the number of in-neighbors of v, when a partition is given.

• dout(v) is the number of out-neighbors of v, when a partition is given.

• ∆(G) is the maximum degree of a vertex in G.

• d(v, w) is the distance between v and w in G.

27

CHAPTER 2. PRELIMINARIES

• dH(v, w) is the distance between v and w in G[H]. This notation is used when
v, w ∈ H.

• Kp is a clique with p vertices. Kp,m is a biclique constructed with two independent
sets respectively of size p and m.

• Sp is a star with p vertices.

2.1.3 Graph classes
A graph class G is the set of all graphs respecting a certain property. We define all graph
classes we study throughout this thesis.

A graph is a tree if it is connected and does not contain any cycle.
A cactus is a graph in which each edge occurs in at most one cycle.
A bipartite graph is a graph in which the set of vertices can be partitioned into two

parts such that the subgraphs induced by each part are independent sets. We denote by
Kp,m the bipartite graph such that the sizes of the two independent sets are p and m, and
each of the p vertices in the first one is adjacent to each of the m vertices in the second
one.

A graph is planar if it can be embedded in the plane (drawn with points for vertices
and curves for edges) without crossing edges. An equivalent definition given in [112] is that
a planar graph does not contain a subgraph that is an expansion (i.e. some edges xy could
have been subdivided into two edges xz and zy with an added vertex z) of K5 or K3,3.

A graph is outerplanar if it has a crossing-free embedding in the plane such that all
vertices are on the same face. A graph is k-outerplanar if for k = 1, G is outerplanar and
for k > 1 the graph has a planar embedding such that if all vertices on the exterior face
are deleted, the connected components of the remaining graph are all (k− 1)-outerplanar.

A graph G is apex if it contains a vertex v such that G \ {v} is planar.
Given a graph H, a H-free graph is a graph not containing H as an induced subgraph.
An interval graph is a graph for which there exists a family of intervals on the real line

and a bijection between the vertices of the graph and the intervals of the family in such
a way that two vertices are joined by an edge if and only if the intersection of the two
corresponding intervals is non-empty.

A graph is a threshold graph if it can be constructed from the empty graph by a sequence
of two operations: insertion of an isolated vertex, and insertion of a dominating vertex (i.e.,
a vertex adjacent to all the other vertices). The original definition is that the graph admits
a vertex labeling with positive real numbers, such that two vertices are adjacent if and
only if the sum of their labels is at least a given ‘threshold’ t.

A cograph is a graph that can be generated from the single-vertex graph by (repeated
applications of) complementation and vertex-disjoint union. These are precisely the graphs
containing no induced paths on four vertices.

A split graph is a graph whose vertex set can be partitioned into two subsets, one
inducing an independent set and the other one inducing a clique.

28

CHAPTER 2. PRELIMINARIES

The line graph of a graph G (noted L(G)) is the graph whose vertices represent the
edges of G, and two vertices of L(G) are adjacent if and only if the corresponding two
edges of G share a vertex.

A graph on n vertices is δ-dense if it has at least δn2

2 edges and is everywhere-δ-dense
if the minimum degree is at least δn.

A family of graphs is dense if there is a constant δ > 0 such that all members of this
family are δ-dense.

A family of graphs is everywhere-dense if there is a constant δ > 0 such that all members
of this family are everywhere-δ-dense.

2.2 Computational complexity

2.2.1 Decision and optimization problems
Given a problem, an instance is the data involved in the problem.

Algorithms. An algorithm is a procedure that takes an instance as an input and gives
an output. We distinguish two kinds of algorithms: deterministic algorithms, that have a
unique execution and a unique output for each input, and non-deterministic algorithms,
that can produce different executions for the same input. The running time of an algorithm
is the number of operations that the algorithm uses in the worst case scenario to give an
output. We say that the running time is polynomial if the running time can be expressed
as a polynomial function on the size of the input. Usually, instead of giving the exact
number of operations, we use the big O notation in order to express the general running
time.

Decision problems and the class NP. A decision problem is the data of a set of
instances and a question whose answer is yes or no that can be asked for any instance of
the set. When we introduce a new decision problem, we will make use of the following
standard way to define it:

Decision Problem Name
Input : An instance.
Question : A yes/no question that depends on the input.

NP is the set of all decision problems such that there exists a non-deterministic algo-
rithm solving the problem in polynomial time. Given two decision problems D1, D2, we
say that that D1 polynomial-time reduces to D2 if there exists an algorithm that, taking as
input any instance x1 of D1, gives in polynomial time an instance x2 of D2 such that x1 is
a yes-instance if and only if x2 is a yes-instance. A decision problem D is NP-hard if any
problem of NP polynomial-time reduces to D. If D is an NP-hard problem that belongs to
NP, we say that D is NP-complete. As an example, we give the following famous NP-hard
problem from Garey and Johnson [77]:

29

CHAPTER 2. PRELIMINARIES

Sat
Input : A set U of variables, a collection C of clauses over U .
Question : Is there a satisfying truth assignment for C?

Cook proved in [42] that Sat is NP-hard by proving that for any problem A in NP,
there is a polynomial reduction from A to Sat. Most of the time, in order to prove
the NP-hardness of a problem, we reduce our problem from an already proved NP-hard
problem.

P is the set of all decision problems such that there exists a deterministic algorithm
solving the problem in polynomial time. Most of computer scientists believe that P 6= NP,
even though P ⊆ NP.
Optimization problems and the class NPO. An optimization problem is the data of:

• a set of instances.

• for each instance, a set of feasible solutions with a size that is bounded by a polyno-
mial on the size of the instance.

• a goal (either maximization or minimization).

• a cost function that takes an instance and a feasible solution as parameters and
output a number (that is computable in polynomial time).

Given an optimization problem, an optimal solution is a feasible solution that fulfils the
goal of the problem, i.e. maximizes (or minimizes) the value of the cost function. Given
an optimization problem and an instance I of this problem, we denote by |I| the size of
I, by opt(I) the value of an optimal solution for I, and by val(I, S) the value of a feasible
solution S for I. When we introduce a new optimization problem, we will make use of the
following standard way to define it:

Optimization Problem Name
Input : An instance.
Output : An optimal solution.

The link between optimization problems and decision problems is the following. If O
is a maximization (resp. minimization) problem then we can define its decision version by
introducing a parameter k and the question : "Is there a solution of value greater (resp.
smaller) than k ?". We say that an optimization problem is NP-hard if its decision version
is NP-hard.

NPO is the set of all optimization problems such that the associated decision problem
is in NP. An optimization problem is polynomial-time solvable if there exists an algorithm
that computes, for every instance of the problem, an optimal solution with a running time
that is polynomial in the size of the instance. PO is the set of all optimization problems
that are polynomial-time solvable.

30

CHAPTER 2. PRELIMINARIES

2.2.2 Approximation and approximation-preserving reductions
Approximation. When an optimization problem is NP-hard, it is possible to study the
approximation of this problem. The goal is to gives algorithms that run in polynomial
time and output a solution which value is closed to the optimum value with a certain ratio
called the performance ratio, which gives a guarantee for the quality of the given solution.

The performance ratio (or approximation factor) of a solution S for an instance I is
r(I, S) := max

{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
. The closer the performance ratio is to 1, the closer the

value of the solution is to the optimum value. The error of S, denoted by ε(I, S), is defined
as ε(I, S) := r(I, S)− 1.

For a function f , we say that an algorithm is an f(|I|)-approximation, if for every
instance I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|) in polynomial
time. In this way we can define several classes of optimization.

The class PTAS is the set of optimization problems that allow polynomial-time ap-
proximation algorithms such that val(S, I) ≤ (1 + ε) · opt(I) for a minimization problem
or val(S, I) ≥ (1 − ε) · opt(I) for a maximization problem, for any ε > 0 given in input.
Such algorithm is called a ptas (for polynomial-time approximation scheme). Usually, the
running time of such algorithm is exponential in 1

ε
. The optimization problems from NPO

such that a polynomial-time approximation algorithm can be design with a running time
that is polynomial in the size of the instance and in 1

ε
form the class FPTAS (See [155]).

The class APX is the set of optimization problems in NPO that allow polynomial-time
approximation algorithms with approximation ratio bounded by a constant. In the same
way, the class log-APX (resp. poly-APX) is the set of optimization problems in NPO that
allow polynomial-time approximation algorithms with approximation ratio bounded by
c · log(|I|) (resp. c · p(|I|) with p a polynomial), for some constant c with |I| the size of the
instance.

At the end, we can set the following inclusions:

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO

Hardness of approximation. For proofs concerning the non-existence of a ptas, we
use an approximation-preserving reduction, called L-reduction, which was introduced by
Papadimitriou and Yannakakis in [137]. Let A and B be two optimization problems. Then
A is said to be L-reducible to B if there are two constants a, b > 0 such that:

• there exists a function, computable in polynomial time, which transforms each in-
stance I of A to an instance I ′ of B such that optB(I ′) ≤ a · optA(I),

• there exists a function, computable in polynomial time, which transforms each solu-
tion S ′ of I ′ to a solution S of I such that |val(I, S) − optA(I)| ≤ b · |val(I ′, S ′) −
optB(I ′)|.

An optimization problem is APX-hard if every problem of APX L-reduces to that prob-
lem. Then, if A is L-reducible to B and A is APX-hard then B is APX-hard.

31

CHAPTER 2. PRELIMINARIES

The notion of an E-reduction (error-preserving reduction) was introduced by Khanna
et. al. [108]. A problem A is called E-reducible to a problem B, if there exist polynomial-
time computable functions f and g, and a constant β such that

• f maps an instance I of A to an instance I ′ of B such that opt(I) and opt(I ′) are
related by a polynomial factor, i.e. there exists a polynomial p such that opt(I ′) ≤
p(|I|) · opt(I),

• g maps any solution S ′ of I ′ to a solution S of I such that ε(I, S) ≤ β · ε(I ′, S ′).

An important property of an E-reduction is that it can be applied uniformly to all levels
of approximability; that is, if A is E-reducible to B and B belongs to C then A belongs
to C as well, where C is a class of optimization problems with any kind of approximation
guarantee (see [108]).

For more information about approximation algorithms, we recommand [99, 155].

2.2.3 Parameterized complexity
When we have to handle an NP-hard problem, it can be interesting to investigate parame-
terized complexity. Usually, we always express the running time of an algorithm depending
on the size of the instance (in graphs, it is often the number of vertices or edges). The goal
of this framework is to express the complexity of a decision problem by another parameter.
In general, a natural parameter to study is the size of a solution.

A parameterized problem is a subset Q ⊂ Σ×N where the first component is a decision
problem and the second component is called the parameter of the problem. A lot of
parameterized problems that are parameterized by the size k of the solution admit an
algorithm with running time bounded by c · |I|k for an instance I and a constant c. As
an example, for the problem Clique parameterized by the size of the clique k, deciding if
there is a clique of size at least k in a graph G = (V,E) can be easily solved in O(|V |k)
by checking any subset of size k in G. More generally, the set of parameterized problems
that allow an algorithm that solves the decision problem with running time O(f(k) · |I|k)
for some computable function f is called XP.

However, it can be even more interesting to design algorithm with a running time that
separates the size of the instance by the parameter. In that way, the class FPT contains
every parameterized problem Q ⊂ Σ×N for which the question "Does (x, k) belong to Q?"
can be decided by an algorithm that runs in f(k) · |x|O(1) time where (x, k) ∈ Σ × N and
f is a computable function.

Let Q1, Q2 ⊂ Σ × N be two parameterized problems. We say that Q1 FPT-reduces to
Q2 if there exists two computable functions f and g and an algorithm that takes as input
an instance (x1, k1) ∈ Σ×N and outputs a new instance (x2, k2) ∈ Σ×N in f(k1) · |x1|O(1)

time such that:

• (x1, k1) ∈ Q1 ⇔ (x2, k2) ∈ Q2

32

CHAPTER 2. PRELIMINARIES

• k2 ≤ g(k1)

Downey and Fellows [53] introduced the W -hierarchy as different classes of complexity
for parameterized problems. Before defining it, we need first to define preliminary concepts.
A boolean circuit C = (V,A) is a directed acyclic graph whose vertices V are called gates.
The gates of in-degree 0 are called inputs. There is exactly one gate of out-degree 0 called
output. Every gate that is neither an input nor an output is labeled by an element of
{or, and, not}. A gate with label not has in-degree exactly one. A gate with in-degree
bounded by a constant is said to be small, and otherwise it is called large. The weft of
a boolean circuit is the maximum number of large gates on a path from an input to the
output. The depth is the maximum number of all gates on a path from an input to the
output. A truth assignment for a boolean circuit C is a function that associates the value
true or false to each input gates. Given a truth assignment for C, the value of the output
can be determined by computing the value of each gate according to their label and the
values of the previous vertices. A truth assignment satisfies C if the value of the output
gate is true. The weight of a truth assignment is the number of input gates set to true.

A parameterized problem (Q, k) belongs toW [t], for a fixed t > 0, if (Q, k) FPT-reduces
to Weft-t Circuit Satisfiability parameterized by k, where the latter problem is
defined as follows:

Weft-t Circuit Satisfiability
Input : A boolean circuit C with constant depth and weft at most t, and an
integer k.
Question : Is there a truth assignment of weight k that satisfies C?

A way to prove that a parameterized problem belongs to W [t] is to construct an FPT-
reduction from this problem to a problem known to be in W [t]. As an example we give an
FPT-reduction from the following problem established in [53]:

Independent Set
Input : A graph G = (V,E), an integer k.
Question : Is there a subset of vertices S ⊂ V such that for any two vertices
s1, s2 of S, s1s2 /∈ E?

Theorem 2.1 ([53]). Independent Set belongs to W [1].

Proof. We construct an FPT-reduction from Independent Set to Weft-1 Circuit
Satisfiability. Let G = (V,E) be a graph as an instance of Independent Set. We
construct a boolean circuit C = (V,A) as an instance of Weft-1 Circuit Satisfiability
as follows (see Figure 2.1 for an illustration). Introduce |V | gates ai, i ∈ {1, · · · , |V |} of
in-degree 0, each gate corresponding to a vertex in G. For each gate ai, introduce a gate
bi labeled "not" and add an edge (ai, bi) in A. For any two vertices vi, vj in V that are not
linked by an edge, create a gate cij labeled "or" and add the edges (bi, cij) and (bj, cij).

33

CHAPTER 2. PRELIMINARIES

Finally, add a gate d labeled "and" and add the edges (cij, d) for all cij. Now notice that
since d is the only large gate, the boolean circuit has weft 1 and depth 4. Moreover, notice
that there is an independent set of size at least k in G if and only if there is a truth
assignment of weight k that satisfies C.

v1 v2

v3 v4

v5

a1 a2 a3 a4 a5

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨

∧

G C

→

Figure 2.1: The construction of the boolean circuit C from G.

A parameterized problem is W [t]-hard if every problem of W [t] FPT-reduces to it. It
is W [t]-complete if it is W [t]-hard and belongs to W [t].

At the end, we can set the following inclusions:

P ⊆ FPT ⊆ W[1] ⊆ W[2] · · · ⊆ W[t] · · · ⊆ XP

For more information about parameterized complexity, we recommand [54, 132].

34

CHAPTER 2. PRELIMINARIES

35

3
Community detection in graphs : an overview

Contents
3.1 Community detection in social networks 37
3.2 Finding a single community . 38

3.2.1 Restrictions on the distance between members 39
3.2.2 Restrictions on the neighborhood 40
3.2.3 Maximizing the relationship density 42
3.2.4 Other features of communities 42

3.3 Finding a partition into communities 43
3.3.1 Maximizing the number of links within the communities 44
3.3.2 Minimizing the number of links between the communities 45
3.3.3 Imposing a certain neighborhood for members of communities . . 45
3.3.4 Ensuring stability . 46
3.3.5 Evaluating the quality of a partition 48
3.3.6 Overlapping partitions into communities 48
3.3.7 Finding a hierarchical clustering of communities 50

3.1 Community detection in social networks
The recent development of social networks such as Facebook or Linkedin and online meet-
up services have motivated the investigation of community detection in such networks.

A standard abstract model for those networks are graphs in which a community should
intuitively describe some cohesion, that often corresponds to some density in a subgraph
(see Figure 3.1).

37

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

Figure 3.1: A social network partitioned into intuitive communities

It is natural to see that the problem of finding a community in a social network is
closely related to the chosen definition of a community. Even if the idea of a community
is intuitive, the number of ways to define it is huge. The goal of community detection is
to determine, within a given definition of a community, how to find such structure (if it
exists) respecting a certain goal (constraints on the size of the community, on the number
of communities, on their quality...).

Since no definition can be considered in absolute, the definition is usually chosen de-
pending on which aspect of a community is wanted to be captured.

In the following we give an overview of the definitions of a community that have been
studied in the literature. Further information about community detection and more defi-
nitions can be found in [71, 72, 114].

3.2 Finding a single community
The first intuitive way to define a community is to look for a group of people in which all
members of this group know each other. In graphs, it corresponds to a clique.

A classical problem related to finding a community as a subgraph is to look for a
subgraph of inclusion-wise maximal size or maximum size. It has been proved in [128] that
the number of maximal cliques in a graph with n vertices in bounded by 3n

3 . It is possible
to list all maximal cliques in a graph in polynomial time on the number of vertices, edges
and the number of maximal cliques [154]. On the other hand, the problem of finding a
clique of maximum size is a well known NP-hard problem [104].

However, considering communities as cliques is too restrictive: a subgraph with all
possible internal edges except one would not be considered as a community under this as-
sumption, even if it probably should be in real world social networks. For this reason, other
definitions of a community have been studied in order to capture aspects of a community
in social networks regarding different features that define a cohesion.

38

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

3.2.1 Restrictions on the distance between members
A first way to relax the restrictive condition of a clique is to consider s-cliques. Given a
graph, an s-clique is a subset of vertices such that the distance between any pair of vertices
is not larger than s. It is easy to see that an 1-clique is a clique.

This definition, more flexible than cliques, still has some limitations, deriving from
the fact that the distance between two vertices in an s-clique may be ensured by vertices
outside of it. In this way, there may be two disturbing consequences. First, the diameter
of an s-clique may exceed s, even if the distance between any two vertices of the s-clique
is at most s. Second, the subgraph induced by an s-clique may be disconnected, which is
not consistent with the notion of cohesion a community should ensure. These problems for
s-cliques have been studied in [4].

In order to take those drawbacks into account, Mokken suggested to introduce the
concept of s-club in [126]. Given a graph, an s-club is a subset of vertices such that the
subgraph induced by it has diameter at most s. Notice that any s-club is then included in
an s-clique. See Figure 3.2 for an illustration taken from [4, 126].

1

2 3

4 5

6

Figure 3.2: Graph illustrating s-cliques, s-clubs for s = 2. {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} are
2-cliques meanwhile {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} are 2-clubs.

Hence 1-clubs are exactly cliques, and every s-club is also an (s+ 1)-club by definition.
Notice the non-hereditary nature of s-clubs, which makes their behavior different from

that of cliques for s ≥ 2: although every subset of a clique is a clique, the same is not true
for an s-club. In fact, given a graph G = (V,E) and an s-club S1 in G, deciding if there
exists another s-club S2 such that S1 ⊂ S2, S1 6= S2 is NP-hard for every fixed s ≥ 2 [134].

A natural problem with s-clubs is, given a graph G and an integer s, to find an s-club of
maximum cardinality. The problem is trivial if G has diameter at most s, but is NP-hard
for every fixed s, even on graphs of diameter s+ 1 [12].

In this thesis, we investigate some aspects of s-clubs and prove several properties on
problems related to them in Chapter 6.

A survey about various clique relaxation definitions for community detection can be
found in [110].

39

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

3.2.2 Restrictions on the neighborhood
Instead of relating members by their distance, another way to ensure cohesion within a
group of people is to directly deal with the amount of relationships for each members in
their group. For instance, we can ask that every vertex has at least a certain amount of
neighbors in their group. Seidman introduced the notion of a k-core in [150]. Given a
graph G, a subgraph C of G is a k-core if any vertex of C has at least k neighbors in C.
Notice that all 1-cores of a graph are all the connected components of it, and trees have
no 2-cores. However, since k does not depend on the size of a k-core, the restriction on
the number of neighbors inside C for vertices of C does not always ensure high cohesion
in the graph, in particular when k is much smaller than the size of C.

Similarly to a k-core, Matsuda et. al. [124] introduced the notion of p-quasi complete
subgraph, which is a subgraph such that the degree of each vertex is larger than p(k − 1),
where p is a real number in [0, 1] and k the size of the subgraph. They proved that
determining whether a graph includes a 1

2 -quasi complete subgraph of size at least k is
NP-complete.

Instead of imposing a certain number of neighbors for each vertex, we can impose
a certain amount of non neighbors. Imposing that any vertex of a community should
be connected to any other vertex has already been studied under the name of clique,
and relaxing this strong condition can be still relevant to find communities. In this way,
Seidman and Foster introduced a clique-like structure in [151] under the notion of k-plex.
Given a graph G = (V,E), a subgraph C is defined as a k-plex if any vertex has at least
|C| − k neighbors inside C. Notice that cliques are k-plexes for any integer k, 1 ≤ k ≤
|C| − 1.

Similarly, it is possible to set constraints on both (i.e. the number of neighbors inside
and outside of the community). In this way, an (α, β)-community is defined in [125] as a
subset of vertices C in which each vertex in C has at least β · |C| neighbors in C (including
itself) and each vertex outside of C is linked to at most α.|C| vertices of C, with α < β ≤ 1.
Given a graph G = (V,E), the problem of finding a (1− 1

|V | , 1)-community is equivalent to
finding a maximal clique in a graph, which is a well known problem we already discussed
about. The ((1 − ε)β, β)-communities, for small ε, have been studied under the name of
quasicliques in [2]. In [95], they considered a similar definition by considering an (α, β)-
community as a subset of vertices C in which each vertex in C has at least β neighbors in
C and each vertex outside of C has at most α neighbors in C, 0 ≤ α < β. The problem
of finding an (α, β)-community of maximum size in a graph has been proved NP-hard in
[156].

Instead of just studying the amount of neighbors inside or outside a community, it is
also relevant to compare them and ask that the number of neighbors inside must be larger
than the number of neighbors outside of the community in order to ensure the cohesion of
the group. In this way, given a graph, an alliance is defined as a set of vertices C such that
each vertex of C has at least as many neighbors in C as out of C. This definition has been
motivated by the searching links in web graphs and introduced by Flake et al. [68], under

40

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

the name of web community. The term "alliance" has been introduced by Kristiansen et.
al. [111] under the same definition.

It is easy to see that, given a graph G and two vertices x, y of G, it is possible to
efficiently compute an alliance containing x but not y. Indeed, since of the well know
theorem of "max flow/min cut" [70], we know that the value of the maximum flow through
this network equals the minimum value of an (x, y)-cut. Then, considering a minimum
(x, y)-cut in G which can be found in polynomial time [70], notice that any vertex of the
set containing x given by the cut must have more neighbors in its own part than in the other
part, otherwise the cut would not be of minimum value (see Figure 3.3 as an illustration).

x y

Figure 3.3: The minimum (x, y)-cut gives an alliance containing x

In [100], Jamieson et. al. showed that the problem of finding an alliance of minimum
size in a graph is NP-hard even when restricted to split, chordal or bipartite graphs. In
addition, finding an alliance of minimum size such that the alliance is also a dominating
set is known to be NP-hard from [32].

Radicchi et. al. introduced a similar definition in [143] where a community in the
strong sense is defined as a set of vertices C such that each vertex of C has strictly more
neighbors in C than out of C. They also considered a community in the weak sense by
considering subgraphs in which the condition for strong communities must be true only
on average, i.e. the sum of the internal degree of each vertex of the community must be
greater than the sum of the external degree of each vertex of the community.

In [153], Sigaretta et. al. studied the variant of defensive k-alliance in which any vertex
must have at least k more neighbors in its part than out of its part. A survey and more
information about alliances can be found in [65, 66].

If the cohesion of a set of vertices can be related to the number of in-neighbors of each
vertex of a community, some studies tried to restrict the structure of the neighborhood of
each vertex of a community. In this way, one can try to put vertices together according
to the role that have by defining role assignments. This concept was in introduced in [61]
under the name "role coloring". Given two graphs G = (VG, EG) and R = (VR, ER), an R-
role assignment for G is a vertex mapping r : VG → VR such that the neighborhood relation
is maintained, i.e. all roles of the image of a vertex appear on the vertex’s neighborhood.
Formally, for any vertex u ∈ VG, r(NG(u)) = NR(r(u)). From the complexity point of
view, several questions can be asked. Given two graph G and R, deciding if there is a
role assignment r from G to R is NP-complete [145] even if R has 2 vertices. If R is not
given in input, deciding if there is an assignment from G to R for some graph R is also
NP-complete [67].

41

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

3.2.3 Maximizing the relationship density
Another way to express the cohesion within a subset of vertices is to deal with the density
of relationships within a community, i.e. the density of edges occurring in a subgraph.
A lot of densities, based either on high internal or low external connectivity have been
studied in the literature. Given a graph G = (V,E) and a set S of vertices in V considered
as a community, we define a quality function f(S) quantifying how community-like is the
connectivity of vertices in S. We denote E(S) the set of edges in E with two endpoints in
S and cut(S) the set of edges in E with one endpoint in S and one endpoint out of S.

Several definitions for densities can be found in the literature. The following non
exhaustive list gives some quality functions that can be found:

• Internal density: f(S) = |E(S)|
|S|·(|S|−1)/2 that is the internal edge density of S [122].

• Internal-external density: f(S) = |E(S)|
|S|·(|S|−1)/2 −

|cut(S)|
|S|·(|S|−1)/2 that is the difference

between the internal edge density and the external edge density [122].

• Edges inside: f(S) = |E(S)| which is the number of connexions in S [44, 63, 144].
A variant with weights on edges has been studied in [9].

• Average degree: f(S) = 2·|E(S)|
|S| that is the average in-degree of vertices in S [83].

• Fraction over median degree: f(S) = |{v∈S:din(v)>d}|
|S| is the fraction of vertices in

S that have internal degree higher than the median value d of d(u) in V [117].

• Triangle Participation Ratio: f(S) = |{v∈S:v belongs to a triangle in S}|
|S| that is the ratio

of vertices belonging to a triangle in S [117].

• Conductance: f(S) = |cut(S)|
2·|E(S)|+|cut(S)| that is the fraction of edge contribution in S

that have an endpoint out of S [116].

Most of those densities are NP-hard to maximize [146]. A comparison of heuristics for
finding subsets of maximum density can be found in [117, 158].

3.2.4 Other features of communities
Other definitions in the literature tried to capture other features of communities. In [115],
the notion of LS set was introduced to capture the idea that any subgraph of an LS set
is less relevant as a community than itself. LS sets were first introduced by Luccio et. al.
[121] under the name of "minimal groups", and Lawler [115] renamed them LS sets. An
LS set is defined as follows. Given a graph G = (V,E), a subset H ⊂ V is an LS set if for
any proper subgraph H ′ ⊂ H, the number of edges in E with one endpoint in H ′ and one
endpoint in V \H ′ is always strictly greater than the number of edges with one endpoint
in H and one endpoint in V \H. In this way, any subset contained in an LS set has more

42

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

connections to the outside of it than the LS set itself. Hence, by being less connected to
the rest of the graph, the LS set captures better the notion of cohesion.

Every singleton and the set of vertices V are trivial LS sets, but not interesting in our
context. It can be noticed that any vertex of an LS set H has more neighbors in H than
in V \H, which seems an interesting property in the context of community detection, as
we seen previously with alliances in Subsection 3.2.2.

An equivalent definition for an LS set given by Seidman in [149] is that an LS set is a
subset of vertices H such that for any proper subset H ′ ⊂ H, the number of edges in E
with one endpoint in H ′ and one endpoint in H \H ′ is strictly greater than the number of
edges in E with one endpoint in H ′ and one endpoint in V \H.

On the other hand, it has been showed in [121] that for any two LS setsH andH ′, either
H ∩H ′ is empty or one is included in the other. This property gives a good organization
of the graph into communities (see Figure 3.4) that can be seen as a hierarchical clustering
(see Section 3.3.7).

H1 H2 H3

H4

Figure 3.4: A graph in which all LS sets (H1, H2, H3, H4) are framed except trivial ones
(singletons and the set of all vertices)

Denoting λ(a, b) the minimum number of edges to remove in order to disconnect two
vertices a, b in the graph, Borgatti et. al. showed in [28] that given a graph G = (V,E)
and an LS set H ⊂ V , for any a, b, c ∈ H and d ∈ V \H, λ(a, b) > λ(c, d). This property
highlights the cohesion of an LS set, and has been considered as a generalization of LS sets
called lambda sets that has been defined as subsets of vertices satisfying this property [28].

Notice that the two definitions are not equivalent. In Figure 3.5, the subset of vertices
H is not an LS set. Indeed, considering the proper subset H ′ ⊂ H represented by the gray
vertices, there are 4 edges with one endpoint in H ′ and one endpoint in V \ H whereas
there are only 2 edges with one endpoint in H ′ and one endpoint in H. On the other hand,
H is a lambda set since the minimum number of edges to remove in order to disconnect
any vertex of H from any vertex of V \H is 1, whereas H is 2-connected.

3.3 Finding a partition into communities
In this section, we focus on partitioning a graph into several parts that will be considered
as communities. In the area of graph partitioning, results may find applications such

43

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

H

Figure 3.5: A graph in which the subset H is a lambda set but not an LS set.

as parallel-computing, VLSI-circuit design, route planning [51] and divide-and-conquer
algorithms [152]. Several methods have been developed in order to find partitions that are
relevant to describe a network partitioned into communities, like spectral clustering [27, 88,
123]. However, this section focuses on several definitions of a partition into communities
in the literature and discusses their relevance in the context of community detection.

It is important to notice that Kleinberg showed in [109] that no clustering function (i.e.
a function that take a graph G = (V,E) and a distance function on V × V as an input
and output a partition of V) can satisfy at the same time three natural properties for a
partition into communities. This highlights the fact that there is no unique definition for a
partition into communities, and such definition depends on the aspect of cohesion we want
to capture.

3.3.1 Maximizing the number of links within the communities
A first natural way to partition a graph into communities is to maximize the number of
links within communities. As discussed previously, the most cohesive communities we can
found are cliques. Given a graph, deciding if there is a partition into k cliques in a graph
is NP-complete from [104] and even NP-complete on planar cubic graphs [35]. However,
finding a partition into k cliques can be done in polynomial time in some classes of graphs.
In triangle-free graphs, such partition corresponds obviously to the union of a matching of
maximum size and the remaining singletons. Finding a matching of maximum size can be
done in polynomial time by solving a flow of maximum value in the adjacency graph. In
perfect graphs1, since the complement of a perfect graph is also a perfect graph [120], the
minimum number of cliques in a partition into clique equals the size of an independent set
of maximum size in the graph. Since finding an independent set of maximum size can be
done in polynomial time in perfect graphs [87], it is the same result for finding a partition
into a minimum number of cliques.

From the approximation point of view, finding a partition into a minimum number
of cliques is not n1−ε-approximable in polynomial time unless P = NP [161]. The NP-

1Perfect graphs are graphs in which any subgraph satisfies that the minimum number of colors in a
coloring equals the maximum size of a clique.

44

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

hardness of this problem and its approximation has also been studied in unit disk graphs2

[36, 56, 139]. On the other hand, there is a polynomial-time 5
4 -approximation algorithm

for finding a partition into a minimum number of cliques in graphs of maximum degree 3
[35].

3.3.2 Minimizing the number of links between the communities
Intuitively, a partition into communities should have a lot of links inside each community
and few of them between communities. One can then think about partitioning a graph into
k communities (for any integer k) by looking for a k-cut of minimum size. This problem
has already been studied in the literature, and known to be solvable in polynomial time
for k = 2 [70] and for any integer k [84]. More generally, if we put weights on edges (that
would represent the strength of a relationship), one can look for a k-cut minimizing the
sum of all costs of the edges of the cut. In this way, given a graph G = (V,E) and an
integer b, a k-way partition is a partition P = (C1, · · · , Ck) of V such that |Ci| ≤ b for any
i ∈ {1, · · · , k}. A natural optimization problem is, given a graph G = (V,E), to find a
k-way partition P of V minimizing the total cost of all edges having the two endpoints in
different parts of P . It has been proved in [78] that this problem is NP-hard, even for 2-
way partitions with b = d |V |2 e. However, this problem and some variants have been widely
studied and a lot of heuristic algorithms have been designed to solve it. An heuristic has
been suggested for general k in [107] and for k = 2 in [39]. For general k and b = |V |

k
,

heuristics have been suggested in [41, 105]. A generalization with weights on vertices (the
size of a subset is then the sum of the weights of its vertices) has been studied in [98] for
b = |V |

k
.

3.3.3 Imposing a certain neighborhood for members of commu-
nities

Similarly to Subsection 3.2.2, another aspect of communities is that each people should
have more relationships in their community than out of it. In this way, we can design
partitions into communities such that each vertex should have a certain amount of people
they know in their own part rather than out of their part. Gerber and Kobler introduced
in [80, 81] the problem of deciding if a given graph G has a vertex partition into two
nonempty parts such that each vertex has at least as many neighbors in its part as in the
other part. Given a graph G, we say that G is partitionable if G has such partition.

Some graphs are not partitionable, like complete graphs, stars, and complete bipartite
graphs with at least one of the two vertex sets having odd size. On the other hand some
other graphs are easily partitionable: cycles of length at least 4, trees which are not stars,
and disconnected graphs.

Bazgan et. al. proved in [20] that the problem is NP-complete and polynomially
equivalent to its balanced variant in which the partition is requested to be balanced (i.e.

2A unit disk graph is the intersection graph of some set of disks of diameter 1 in the euclidean plane.

45

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

both sets are requested to have the same size). The variant of finding a partition into two
nonempty parts such that each vertex has at most as many neighbors in its part as in the
other part has also been proved NP-complete in [21].

The previous definition of Gerber and Kobler gives a simple and natural way to define a
partition into two communities. However, it could be more relevant to consider a condition
involving the size of each part. In this way, Olsen [133] introduced the notion of community
structures. A community structure is a partition of the vertex set into several parts such
that for each vertex, the ratio between the number of neighbors in its own part and the
size of its part (excluding the vertex itself) must be at least as large as the ratio between
the number of neighbors in any other part and the size of this part. Informally, if someone
belongs to a community structure, then he knows a greater proportion of his group than in
any other group. In Figure 3.6, the white and black vertices form a satisfactory partition.
However, the vertex x know only 1

5 of its group whereas it knows half of the other group.
It seems legit to consider that this member should not be happy to belong to the left
community.

x

Figure 3.6: The black and white vertices form a satisfactory partition, but is not a com-
munity structure

This definition has been introduced very recently. Consequently, few results have been
discovered. In Chapter 4, we investigate this definition further and prove that a community
structure with two parts can be found in polynomial-time in some graph classes. We also
investigate the problem of finding a community structure into two parts with the additional
constraint of obtaining a balanced partition, i.e. a partition in which both parts are equal
sized.

3.3.4 Ensuring stability
First introduced in social psychology in [97] by Heider, structural balance was defined in
graphs theory by Cartwright and Harary in [33]. We consider a graph as a social network
and all edges are labeled by "+" or "−", indicating if two members of the social network
are friends or enemies. Such graph is called a signed graph.

The crucial idea with structural balance is the following. When we look at sets of three
people at a time knowing each other (that we call a triangle), some configurations of +’s
and −’s are socially and psychologically more stable than others, in the sense that the
situation is unlikely to change in the future. In particular, there are four distinct ways

46

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

(up to symmetry) to label the three edges among those three people with +’s and −’s, see
Figure 3.7.

+ +

+ −

+ +

− −

+ −

− −

Case A Case B

Case C Case D

Figure 3.7: Structural balance: Each labeled triangle must have 1 or 3 positive edges

Within the four possible configurations, we distinguish two stable situations. A triangle
having three "+" is a very stable situation: all three people are mutual friends (Case A).
A triangle having only one "+" is also a stable situation since a group of two friends have
a common enemy (Case C).

The other two possible labelings of the triangle introduce some amount of psychological
stress or instability into the relationships. A triangle with two "+" and one "−" (Case B)
corresponds to a situation in which a person have two friends who do not get along with
each other. This situation is unstable since it pushes that person to choose one side and
become an enemy of the other one, or could also push the two enemies to become friends.
Finally, if the triangle has only "−", two of the three people could be motivated to team
up against the third one, turning one of the three edge labels to a "+".

Now, a signed graph is said to be balanced (resp. weakly balanced) if it does not contain
any triangle of case B and D (resp. case B). Such property ensures that the social network
is stable in the sense that relationships are unlikely to change in the future. Checking
if a graph is balanced can be useful in political contexts: by looking at the relationships
between countries or populations, it is interesting to figure if some diplomatic tensions
might appear or not. An appealing example of the evolution of alliances before World War
I can be found in [8].

It is interesting to notice that a complete signed graph is balanced (resp. weakly
balanced) if and only if the graph can be partitioned into two parts (resp. a certain
number of parts) such that any edge with two endpoints in the same parts are labeled "+"
and any edge with each endpoint in different parts are labeled "−" [33, 92]. If the graph

47

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

is not complete, then the graph is balanced if and only if it contains no odd cycle labeled
"−" [33, 92].

On the other hand, checking if a graph can be partitioned into parts such that any edge
with two endpoints in the same parts are labeled "+" and any edge with each endpoint in
different parts are labeled "−" can be done easily in polynomial time: any pair of vertices
x, y with an edge labeled "+" linking them can be merged into one vertex w preserving the
original edges with the labels (i.e. for any edge xz or yz in the graph, we add the edge
zw preserving the label). If an edge has two labels, then the graph is not partitionable. If
not, the end of the editing will lead to a graph with only edges with a label "−" and the
partition will be given by the merging.

The balanced property gives a good indicator of the stableness of a social network and
gives a good partition into communities.

3.3.5 Evaluating the quality of a partition
Similarly to Subsection 3.2.3, we can design quality function to evaluate how relevant is
a partition to reveal a community structure. The most famous one is modularity that
has been a major measure in community detection and has been used in many works to
evaluate the quality of partitions into communities [13, 24, 55].

The general idea of modularity is to assume that if the number of edges between vertices
in a part is higher than what we would expect on the basis of random chance, then it would
constitutes evidence of meaningful community structure. On the other hand, if the number
of edges between groups is less than what we expect by chance, then it is reasonable to
conclude that some structure is worth of interest.

Newman and Girvan [131] defined modularity, based on a previous measure proposed
by Newman [130]. Modularity is defined as the fraction of the edges in the network that
connect vertices within their community minus the expected value of the same quantity in a
network with the same community divisions but edges are distributed randomly (preserving
the degree of each vertex).

Optimizing the latter version of modularity has been proved NP-hard in [30]. Heuristics
have been studied in the literature in order to give a partition with a good modularity
[24, 31].

3.3.6 Overlapping partitions into communities
As we discussed before, finding a partition into communities is useful in lots of contexts
like VLSI-circuits. However, regarding real world social network, asking for a partition
may sometimes appear too restrictive. Indeed, some people might belong to several com-
munities: it seems natural that some people have relationships with different groups of
interest. In this way, given a graph G = (V,E), we define an overlapping partition as a
set S = {Si}pi=1 of subsets of V such that ∪pi=1Si = V . Contrary to regular partitions, we
allow that Si ∩ Sj 6= ∅ for some i, j.

48

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

A first natural way to define an overlapping partition into communities is to ask for an
overlapping partition into cliques, also called clique cover. However, the problem of finding
a clique cover of size k is equivalent to finding a partition into k cliques: given a graph, it
is easy to see that any clique partition is also a clique cover, and any clique cover of size
k can be easily transformed into a partition into k clique by choosing arbitrarily only one
set to belong to for any vertex that is in multiple parts.

On the other hand, one could argue that two cliques of size k sharing k−1 vertices should
not be considered as two distinct communities. An easy solution consists in considering
that two such sets should belong to a unique community. In this way, we can set that two
cliques of size k are said to be adjacent if they share k − 1 vertices. For a given integer k,
a chain of adjacency (C1, · · · , Cp) refers to a p-tuple of cliques of size k such that Ci and
Ci+1 are adjacent for any i ∈ {1, · · · , p− 1}. Then, Palla et. al. defined in [136] a k-clique
community as a maximal union of cliques of size k such that for any two cliques C1, C2
of this union, there exists a chain of adjacency between C1 and C2. Building all k-clique
communities gives an overlapping partition of the graph into communities that may share
some members. To put it in another way, the overlapping partition corresponds to the
connected component of the clique graph in which the vertices correspond to the cliques
of size k in the original graph, and two cliques are linked by an edge if they are adjacent
in the original graph (see Figure 3.8 as an illustration).

Figure 3.8: Example of an overlapping partition with 4-clique communities.

This definition has many applications, like in identification of protein communities
involved in cancer metastasis [102, 103] and studies of social networks [86, 135].

Another way to define overlapping partition into communities is to partition the edges.
In [60], Evans and Lambiotte investigated constructing a partition of the vertices of the
line graph of the original graph. In this way, a partition of the line graph gives an overlap-
ping partition of the vertices in the original graph, allowing vertices to belong to several
communities. Then, such partition can be searched according to a certain criterion as it
is discussed in Section 3.3. In [3], edge partition is used via hierarchical clustering for
community detection applied in biological and social networks.

49

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

A specific state-of-art about overlapping partition into communities can be found in
[157].

3.3.7 Finding a hierarchical clustering of communities
Another approach consists in constructing a hierarchical clustering, which gives another
organization of a networks into communities. Given a graph G = (V,E), a hierarchical
clustering is a set S of subsets of V such that V ∈ S and ∀s1, s2 ∈ S, s1 ⊂ s2 or s2 ⊂ s1 or
s1 ∩ s2 = ∅. This gives an organization of the vertices of G into communities, each set of
S being considered as a community.

In order to express the hierarchy in a more clear way, we can define a hierarchical
clustering in an equivalent way [29]: Given a graph G = (V,E), and a community partition
P = {C1, C2, · · · , C`} of V , a sub-partition P ′ = {C ′1, C ′2, · · · , C ′m} of P is a partition of V
such that ∀C ′i ∈ P ′,∃Cj ∈ P such that C ′i ⊆ Cj. A hierarchical community structure of G
is defined as a series of partitions Pk, Pk−1, · · · , P2, P1, P0 with P0 = V and Pk = {v}, v ∈ V
such that Pi is a sub-partition of Pi−1 for any i ∈ {1, · · · , k}. Given a partition Pi, we can
define i as the level of the partition Pi within the global tree of communities with (k + 1)
levels.

Such hierarchy can be illustrated by a dendrogram. Again, several legit criteria can be
considered in order to construct this hierarchical clustering. A dendrogram can be used to
visualize the final hierarchical clustering: any horizontal line gives a partition of the graph
(See Figure 3.9 as an illustration given in [142]).

Figure 3.9: Dendrogram of the communities found in the Zachary Karate Club Network
with the algorithm of Girvan and Newman in [82]. Each horizontal line gives a partition
into communities.

Hierarchical clustering finds applications in bioinformatics and data analysis [62].
A very famous way to define a hierarchical clustering that describes a network into

communities is the algorithm of Newman and Girvan [82] based on edge betweenness.
Firstly, the notion of betweenness has been proposed by Freeman [74]. He defined the
betweenness centrality of a vertex v as the number of shortest paths between any two
vertices except v that contain v. This gives an indication of the influence of a vertex over

50

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

the flow of information between other vertices. This notion is particularly relevant when
information flow over a network primarily follows the shortest available path. In a similar
way, Newman and Girvan proposed to introduce the notion of edge-betweenness [82]. The
edge-betweenness of an edge is defined as the number of shortest paths between any two
vertices that contains it. If a network contains groups of people that are connected by
a small amount of edges, then all shortest paths between those different groups must go
along one of these few edges that will have then a high edge-betweenness (see Figure 3.10).

C2
C1

Figure 3.10: In this graph, the edge in the middle has a greater edge-betweenness than all
other edges since all shortest paths connecting vertices from C1 to C2 run through it.

In [131], an efficient algorithm is proposed that consists in computing the betweenness
of all edges first, and then repeating the two following steps in order to reveal a hierarchical
clustering of the graph:

• Remove the edge with maximum edge-betweenness

• Compute again the edge-betweenness of all edges

Each step of the algorithm gives a partition of the graph into communities. Its fi-
nal output is a hierarchical clustering containing all partitions given at each step of the
algorithm.

On the other hand, it is also possible to describe a network of communities with a
hierarchical clustering by using other features. As a first example, a method has been
developed using random walk that is called walktrap clustering. It consists in assuming
that a random walk starting from a vertex tends to stay in the community it belongs
to. If we do a random walk starting from a vertex v, then the probability to reach a
neighbor is p = 1

d(v) , and then it is possible to compute the probability to reach a vertex j
from a vertex i after k steps. Then we consider that two vertices are close if they have a
similar probability to reach other vertices by a random walk of length k. The hierarchical
clustering is made by first considering singletons communities, and then regrouping vertices
that have the smallest distance between them, and compute again the distances. This way
of describing communities has been studied in [79, 101, 141, 160], and has been used in
order to study the similarity of words with applications in web navigation [79] or diffusion
processes in small-world networks3 [101].

3networks with a low diameter.

51

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

As a second example, we can consider that members of a network should be in the same
community if they share the same neighborhood. Given a graph G = (V,E), a module is
a set of vertices M ⊂ V such that for any two vertices x, y ∈ M , N(x) \M = N(y) \M .
The concept of module has been introduced by Gallai in [75]. A strong module is a module
that does not strictly overlap any other module. A graph is said to be prime if the only
modules are the empty set, the set of all vertices and the singletons. Notice that given
a graph G = (V,E), if G is disconnected then all connected components of G are strong
modules. In the same way, if G is disconnected, then then all connected components of G
are strong modules.

If both G and G are connected, then Gallai showed in [75] that inclusion-wise maximal
modules of G define a partition P of V which is called a modular partition. The quotient
graph of G, in which each module of P is associated with one vertex, is prime.

Recursively, for each subgraph G[M] induced by a module M ∈ P , either G[M] (resp.
G[M]) is disconnected and thus can be partitioned into strong modules that are the con-
nected components of G[M] (resp. G[M]), or G has a modular partition as seen before.

This recursion defines a modular decomposition that is a hierarchical clustering in which
each partition is a partition of V into strong modules. Such hierarchical clustering can be
represented by a dendrogram, called a modular decomposition tree. This tree is rooted by
the set of vertices and all singletons are leaves.

A modular decomposition can be found in linear time [50]. A survey about modular
decomposition can be found in [91].

52

CHAPTER 3. COMMUNITY DETECTION IN GRAPHS : AN OVERVIEW

53

4
Two-Community Structures

Contents
4.1 Introduction . 56
4.2 Preliminaries . 57

4.2.1 k-community structures . 57
4.2.2 Studied problems . 59
4.2.3 General observations . 60

4.3 2-community structures in graph classes 62
4.3.1 Some graph classes in which the problem is easy to handle in

linear time . 63
4.3.2 Cubic graphs and graphs of maximum degree 3 65
4.3.3 Dense graphs . 83

4.4 Balanced 2-community structures 85
4.4.1 General graphs . 85
4.4.2 Balanced 2-community structures in graphs with low density . . 88

4.5 About graphs without 2-community structures 90
4.6 Conclusions . 94

The content of this chapter is based on the following papers [14, 15, 16]:

v C. Bazgan, J. Chlebíková and T. Pontoizeau. Structural and algorithmic properties
of 2-community structures. Algorithmica, 80(6):1890–1908, 2018.

v C. Bazgan, J. Chlebíková and T. Pontoizeau. New Insight into 2-Community Struc-
tures in Graphs with Applications in Social Networks. The 9th International Confer-
ence on Combinatorial Optimization and Applications (COCOA 2015), LNCS 9486,
pp 236–250, 2015.

55

CHAPTER 4. TWO-COMMUNITY STRUCTURES

v C. Bazgan, J. Chlebíková, C. Dallard and T. Pontoizeau, Family of graphs without
2-community structure, The 10th International Colloquium on Graph Theory and
combinatorics (ICGT 2018), 2018.

4.1 Introduction
In this chapter, we study the structural and complexity problems related to the recent defi-
nition of a community structure in graphs as defined in [58, 59, 133]. This definition reflects
closeness between members of a community taking into account the number of neighbors
of each member and the size of the communities. This new approach for communities is
supported by the practical experiments showing the importance of capturing the sizes of
communities for a better description of their properties [133].

Informally, a community structure in a graph is a partition of the vertex set such that
each vertex has a greater proportion of neighbors in its part than in any other part. In this
chapter, we focus on a partition with the restriction of outputting a community structure
with two communities where the problems are already appealing. The presented techniques
may offer some possibilities for an extension to a larger required number of communities.

We also introduce the concept of weak community structure in which the vertex itself
contributes to the proportion of neighbors in its part. The ratio condition in the latter
definition becomes weaker, but it reflects the reasonable requirement that each member
should be considered as a part of its own community. Even if there are minor differences
between the definitions, the structural and complexity results for the two problems are
very different as it is presented in this paper. Both definitions are relevant to describe the
community structures, the choice depends on the suitability of the model.

We also study the 2-community problems with additional constraints such as connec-
tivity or equality of sizes for both parts (balanced partition). The connectivity request
corresponds to the essential condition that each member in the community should ‘in-
directly know’ all members in its own community, where the ‘indirectly know’ relation
corresponds to a path between two vertices in the graph. The study of balanced commu-
nities is motivated by the practical interest for equal size of the communities. In general,
the balanced graph partitions are well studied, e.g. due to its applications in the divide-
and-conquer algorithms, see e.g. [40]. In the balanced partition problem, which can be
seen as a generalization of the bisection problem to any given number of parts, the goal is
to minimize the number of edges between partitions. It is known that the problem can-
not be approximated within any finite factor in polynomial time in general graphs and it
remains APX-hard even on trees of constant maximum degree [64]. It demonstrates that
some graph partitions problems that are related to e.g. balanced communities are hard to
solve even for restricted graph classes and indicates hardness of various problems related
to a community structure too. Hence all positive results in community structure problems
would be important to get better understanding of the differences between community and
partition problems.

Furthermore, a community structure is in fact a graph partition with a restricted num-

56

CHAPTER 4. TWO-COMMUNITY STRUCTURES

ber of edges between parts, therefore the new results for communities may find applications
in the areas similar to a graph partition such as parallel-computing, VLSI-circuit design,
route planning [51] and divide-and-conquer algorithms [152].

There are only a few results related to our definition of a community structure. Olsen [133]
proved that a community structure (without the condition on the exact number of com-
munities) can be found in polynomial time in any graph with at least 4 vertices, except a
star. Recently, Estivill-Castro et al. [59] claimed that the problem to find a k-community
structure with restriction to all communities to be connected and equal size is NP-complete
in general graphs, but polynomially solvable in trees. In [133] Olsen also proved that it
is NP-complete to decide, whether there is a community structure in a graph in which a
given set of vertices is included in a community. It is interesting to see that the problem
of finding a community structure has been seen as a fractional hedonic game problem in
[11].

The chapter is structured as follows. In Section 4.2 we introduce formally some no-
tations and definitions of the studied problems and give some general observations about
community structures. In Section 4.3 we show that in some well-studied graph classes
a 2-community structure always exists and can be found in polynomial time, even with
additional request for connectivity in both parts. In Section 4.4 we focus on the balanced
2-community structure and present the structural and algorithmic results in general graphs
and some graph classes. Conclusions and open problems are provided in Section 4.6.

4.2 Preliminaries
In this section, we introduce definitions related to community structures and the related
problems. Some general observations are also given in order to discuss the problem and
give a better understanding of the concept of community structures.

4.2.1 k-community structures
We introduce Olsen’s definition of a k-community structure from [133].

Definition 4.1. A k-community structure for a connected graph G = (V,E) is a partition
Π = {C1, . . . , Ck} of V , k ≥ 2, such that ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, and ∀v ∈ Ci,∀Cj ∈ Π,
j 6= i, the following holds:

|NCi
(v)|

|Ci| − 1 ≥
|NCj

(v)|
|Cj|

The latter inequality will be called the proportion condition all along this chapter for
easier reading.

In a more general sense, a community structure is a k-community structure for some
integer k. The concept of community structure and the proportion condition of Definition
4.1 are quite intuitive to understand. As explained in the introduction, a community

57

CHAPTER 4. TWO-COMMUNITY STRUCTURES

structure corresponds to a partition of the vertex set such that each vertex has a greater
proportion of neighbors in its part than in any other part. See Figure 4.1 for an example.

x x

Figure 4.1: Two different 2-partitions for the same graph (given by the black and white
colors) in which each part has at least 2 vertices. In the first partition, x does not satisfy
the proportion condition of a community structure since the proportion of neighbors in
the white part is 1

3 but the proportion of neighbors in the black partition is 2
3 . The second

partition gives a 2-community structure.

On the other hand, the proportion condition of the definition of a community structure
can be relaxed. Indeed, it may have sense to consider that a member of a community
considers itself as a part of his group. In this way, we define weak k-community structures
as follows:

Definition 4.2. A weak k-community structure for a connected graph G = (V,E) is a
partition Π = {C1, . . . , Ck} of V , k ≥ 2, such that ∀i ∈ {1, . . . , k}, |Ci| ≥ 2, and

|NCi
[v]|

|Ci|
≥
|NCj

(v)|
|Cj|

The latter inequality will be called the weak proportion condition all along this chapter
for easier reading. In a more general sense, a weak community structure is a weak k-
community structure for some integer k.

Notice that a k-community structure is obviously a weak k-community structure since
for any partition {C1, C2, . . . , Ck} and any vertex v, |NCi

[v]|
|Ci| = |NCi

(v)|+1
|Ci|−1+1 ≥

|NCi
(v)|

|Ci|−1 , and thus
if the proportion condition of Definition 4.1 is satisfied, it is also satisfied for the Definition
4.2. The other way direction is not always true, that is a weak k-community structure is
not necessarily a k-community structure (see Figure 4.2).

Notice that if a graph has a community structure, it must have at least 4 vertices (since
of the condition on the sizes of the parts) and not be isomorphic to a star. Indeed, any star
never contains any community structure since all leaves need to be in the same part as the
center of the star in order to satisfy the proportion condition of a community structure.
Thus, any partition satisfying this condition could not have more than one part and thus
would not be a community structure.

58

CHAPTER 4. TWO-COMMUNITY STRUCTURES

v

Figure 4.2: A weak 2-community structure of a graph (presented by the colors black and
white) in which the vertex v does not satisfy the proportion condition of a 2-community
structure but satisfies the weak proportion condition of a weak 2-community structure from
Definition 4.2.

4.2.2 Studied problems
In this part we investigate community structures for a fixed number of two communities
and also study some variants of the 2-Community problem:

2-Community
Input: A graph G = (V,E).
Question: Does G have a 2-community structure?

A 2-community structure is a 2-partition {C1, C2} of the vertex set V such that |C1|, |C2| ≥
2, and for each vertex v ∈ Ci, i ∈ {1, 2},

|NCi
(v)|

|Ci| − 1 ≥
|NC3−i

(v)|
|C3−i|

which is a re-writting of the proportion condition of Definition 4.1. Since a graph
containing a 2-community structure must have at least 4 vertices and be non-isomorphic
to a star, those assumptions are assumed in this chapter even without explicitly mentioning
that in some informal parts.

In the Weak 2-Community problem we are looking for a weak 2-community structure
in a graph where the proportion condition is replaced by its corresponding weak proportion
condition:

|NCi
[v]|

|Ci|
≥
|NC3−i

(v)|
|C3−i|

Adding the balanced condition to the 2-Community problem, we obtain the Bal-
anced 2-Community problem introduced by Estivill-Castro et al. [58]. Similarly we can
define the Balanced Weak 2-community problem.

The additional constraint which asks for subgraphs induced by each part of the partition
to be connected is a natural condition useful for the problems related to the connectedness.
The Connected 2-Community problem is to decide if a graph has a connected 2-
community structure, i.e. a 2-community structure {C1, C2} such that the subgraphs
induced by C1, C2 are connected. We can define analogous problems for weak and balanced
versions.

59

CHAPTER 4. TWO-COMMUNITY STRUCTURES

4.2.3 General observations
An interesting result about community structure has been proved by Olsen in [133]. He
showed that if there is no restriction on the number of parts, a community structure can
always be found in polynomial time in any graph which is not a star.

Theorem 4.3 (Olsen 2013). A community structure can be computed in polynomial time
for any connected graph G = (V,E) containing at least four vertices, except stars.

Proof. The proof consists in setting up a polynomial time local search among certain
partitions of V and prove that the result of the local search is a community structure.
Specifying the search space S. Considering a subset C ⊂ V , if we have a vertex u ∈ C
such that all vertices in C \ {u} are neighbors of u, then we refer to u as a center of C. We
now define the search space S as the set of all partitions Π of V with |Π| ≥ 2 such that for
all C ∈ Π, |C| ≥ 2 and C has a center. The neighbors of a partition Π ∈ S are partitions
in S that can be obtained from Π by moving one vertex from one set to another set of Π
or by letting two vertices form a new set.
Generating one element of S. We consider four different vertices u1, u2, u3, u4 such that
{u1, u2}, {u3, u4} ∈ E. Now we expand the collection {{u1, u2}, {u3, u4}} with one vertex
at each step carefully making sure that each set contains at least two vertices and has a
center. Sometimes we might have to form a new set containing the new vertex and another
vertex. By using induction on the total number of vertices in the sets in the collection, it is
always possible to add a vertex and still have a collection of sets with at least two vertices
and a center. Thus an element Π1 ∈ S can be computed in polynomial time.
The objective function. For a partition Π we define g(Π) as the number of edges in the
complement graph of G connecting vertices in different members of Π. More precisely, g
is defined as follows:

g(Π) := {uv ∈ E : u ∈ C, v ∈ C ′, C ∈ Π, C ′ ∈ Π, C 6= C ′}

where E is the complement of E. We now use local search on S to maximize the number
of parts and g, by defining the following objective function h:

h(Π) := |Π|+ g(Π)

We start with an element Π1 of S and pick any neighbor of Π1 such that the value of h
increases for that neighbor. The process is repeated until h cannot be increased, and the
final partition Π′ is returned as a community structure.
Analysis. We prove by contradiction that Π′ is a community structure. Assume that there
is a vertex i ∈ V and C ∈ Π′ violating the proportion condition of a community structure,
meaning that:

|Ni(Ci)|
|Ci| − 1 <

|Ni(C)|
|C|

(4.1)

60

CHAPTER 4. TWO-COMMUNITY STRUCTURES

where Ci ∈ Π′ is the part of Π′ containing i. If i is a center then (4.1) cannot hold
because the left hand side is 1. Consequently, the set Ci must contain at least three
elements and i is not a center. We also note that i must have at least one neighbor in C,
otherwise the right hand side would be 0. We now consider the following cases.

• If |C| = 2 and |Ci| = 3, the vertex i is connected to the center of Ci but not to the
third vertex in Ci (otherwise the left hand side of (4.1) would be 1), and i must have
both vertices in C as neighbors (otherwise the proportion condition would be satisfied
for i) on Ci and C). If i is moved to C we would obtain a higher value of g without
modifying the number of parts, thus the value of h would increase, contradiction.

• If |C| = 2 and |Ci| ≥ 4, the vertex i has no neighbor in Ci except a center of Ci
(otherwise i could establish a new set with such an additional neighbor and increase
the number of parts without decreasing g). Then, there are at least two vertices in Ci
that are not neighbors of i (denote the corresponding two non-edges e′, e′′ ∈ E). Then,
since there is at most one non-edge in E between {i} and C which is contributing in
g(Π′), moving i from Ci to C does not change the number of parts but increases the
value of g by counting e′ and e′′, contradiction.

• If |C| ≥ 3, similarly to the previous case, we can assume that i has a center of C and
of Ci as neighbors but does not have any other neighbors in Ci or C. From (4.1), we
obtain |Ci| − 1 > |C| and g would increase if i is moved to C, contradiction.

The local search can be done in polynomial time since each step in the process can be
carried out in polynomial time and h(Π′) ≤ n+ n(n−1)

2 .

The previous algorithm uses local search in order to produce a community structure.
Since a community may consist in two vertices linked by an edge, computing a community
structure with the previous local search might lead to a community structure in which
the number of communities is huge and the sizes of the communities are small (note that
the algorithm split any clique into cliques of size 2 or 3). This is not always relevant for
a proper community detection, especially when huge subsets of vertices that are strongly
connected are never output as proper communities by the algorithm. A natural way to
avoid this problem is to fix the number of communities in the community structure that
we want to compute.

It can be noticed that there exist graphs in which it is easy to decide if there exists
a k-community structure or not, for any integer k. In particular, as seen before, any
star never contains any community structure. On the other hand, complete graphs on n
vertices, n ≥ 4, always contain a k-community structure for any integer k ≤ bn2 c since
any k-partition in which each part contains at least 2 vertices is a k-community structure.
Indeed, the proportion condition of a community structure is trivially satisfied since the
left part of the inequation equals 1, i.e. all members knows everyone in its community (see
Figure 4.3). More generally, for the same reasons, a partition of a graph in which each
part is a clique is a community structure, and thus also a weak community structure.

61

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Figure 4.3: A complete graph in which a 3-community structure is given by the colors
black, gray and white.

More generally, disconnected graphs can be an easy case when the number of connected
components is at least 3 or if there are two connected components with at least 2 vertices.
Indeed, any partition in which each part contains at least 2 vertices and corresponds to
the union of some connected components is trivially a community structure since the right
part of the proportion condition equals 0, i.e. each member does not know any members
from the other communities.

However, because of the condition on the size of each community within a community
structure, when there are only 2 connected components including an isolated vertex, there
exists some graphs in which there is no community structure. As an example, in Figure 4.4,
suppose first that x and y belongs to the same part of a community structure. Then, all
vertices (except the isolated one) must belong to this part in order to fulfill the proportion
condition since their only neighbors are x and y, and then the isolated vertex must be alone
in a separated part, which is not possible because of the size restriction of communities.
On the other hand, suppose that x and y are in different parts. Then, any neighbors of x
(which are also neighbors of y) must be either with x or y as we discussed previously. Let
be any partition such that x and y are not in the same part and each part is of size at least
2. Suppose that the isolated vertex belongs to the same part as x. Then, x does not satisfy
the proportion condition of a community structure since the left part of the proportion
condition is strictly less than 1 and the right part equals 1. By symmetry, if the isolated
vertex belongs to the part containing y, the partition is not a community structure. Now
if the isolated vertex belongs to a part not containing x nor y, then any other vertex of its
part does not satisfy the proportion condition since this vertex has no neighbor in its part
but has x and y as neighbors in the other parts.

Since such case is minor, we only investigate community structure in connected graphs
in this chapter.

4.3 2-community structures in graph classes
This section contains our contribution about 2-community structures in some graph classes.
In particular, we first show that if a graph has certain structural properties, then it has a
connected 2-community structure which can be found in polynomial time. More precisely,

62

CHAPTER 4. TWO-COMMUNITY STRUCTURES

yx

Figure 4.4: A disconnected graph with an isolated vertex in which there is no community
structure.

we prove that such a statement is valid for complete bipartite graphs, complete split graphs,
trees and graphs of high minimum or low maximum degrees.

4.3.1 Some graph classes in which the problem is easy to handle
in linear time

Proposition 4.4. Any complete bipartite graph has a connected 2-community structure.
Moreover, such community structure can be found in linear time.

Proof. Let G = (V = V1 ∪ V2, E) be a complete bipartite graph with V1, V2 the two
independent sets. Wlog consider that |V1| ≤ |V2|.

Suppose first that V1 contains an odd number of vertices (let |V1| := 2k + 1). If
|V1| = |V2|, let k vertices from V1 and k vertices from V2 be in a set C1 and let C2 := V \C1.
Then it can be checked that {C1, C2} is a connected 2-community structure. Now assume
that |V1| < |V2|.

We define a connected partition as follows: let k vertices from V1 and x := dk|V2|−k
2k+1 e

vertices from V2 be in a set C1 and define C2 := V \C1. Notice that x ≤ bk|V2|−k
2k+1 + 2k+1

2k+1c =
bk|V2|+k+1

2k+1 c. We show that {C1, C2} is a connected community structure.
Let a be a vertex of V1∩C1. Since |V2| ≥ |V1| ≥ 2k = 2k2

k
≥ 2k2

k+1 , we have k|V2|+ |V2| ≥
2k2. Thus 2k2|V2| − 2k2 ≥ 2k2|V2|+ k|V2| − 2k|V2| − |V2| and we obtain k|V2|−k

2k+1 ≥
k|V2|−|V2|

2k .
Thus, since x ≥ k|V2|−k

2k+1 , we have x ≥ k|V2|−|V2|
2k . Finally, we have x|V2| − x2 + kx + x ≥

k|V2|+ x|V2| − |V2| − kx− x2 + x and we obtain x
x+k−1 ≥

|V2|−x
|V2|−x+k+1 and thus a satisfies the

proportion condition of a community structure.
Let b be a vertex of V2 ∩ C1. Since x ≤ k|V2|+k+1

2k+1 , we have |V2|k + k2 − xk + k ≥
xk + k2 − k + x+ k − 1. Thus k

x+k−1 ≥
k+1

|V2|−x+k+1 and b satisfies the proportion condition
of a community structure.

Let c be a vertex of V1 ∩C2. Since |V2| > |V1|, we have |V2| ≥ 2k+ 2. This implies that
k|V2|+k+1

2k+1 ≤ |V2|
2 . Since x ≤ k|V2|+k+1

2k+1 , we have x ≤ |V2|
2 . Thus, we have |V2|x+ |V2|k − x2 −

xk ≥ |V2|x− x2 + kx. Thus |V2|−x
|V2|−x+k ≥

x
x+k−1 and c satisfies the proportion condition of a

community structure.

63

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Let d be a vertex of V2∩C2. Since x ≥ k|V2|−|V2|
2k+1 (as seen previously), we have kx+k2 +

x+ k ≥ |V2|k− kx+ k2. Thus k+1
|V2|−x+k ≥

k
x+k−1 and d satisfies the proportion condition of

a community structure.
Since G[C1] and G[C2] are clearly connected, {C1, C2} is a connected 2-community

structure.
Now suppose that V1 contains an even number of vertices. Then consider |V1|

2 vertices
from V1 and b |V2|

2 c vertices from V2 in a set C1 and put C2 := V \ C1, and it is easy to
check that {C1, C2} is a connected 2-community structure.

Proposition 4.5. Any complete split graph has a 2-community structure. Moreover, such
community structure can be found in linear time.

Proof. The proof is similar to the one for bipartite graphs considering V1, V2 as the clique
and the independent set of the split graph. The only difference is that any vertex in the
clique part will always trivially satisfy the proportion condition since it has all of the other
vertices of its part as neighbors.

Theorem 4.6. Every tree with at least 4 vertices (except a star) has a connected 2-
community structure that can be found in linear time.

Proof. Let G = (V,E) be a tree not isomorphic to a star. We prove that there exists an
edge e ∈ E such that the two connected components of G \ e form a 2-partition which is
a connected 2-community structure.

Let e = {u, v} be an edge in E such that d(v), d(u) ≥ 2 (due to the assumption about
G such an edge e must exist). Consider a partition {Xu, Xv} of V with Xu (resp. Xv) be
the set of vertices of the connected component of G \ e containing u (resp. v).

First we notice that only one of the vertices u and v may not satisfy the proportion
condition. If this is not true then d(u)−1

|Xu|−1 <
1
|Xv | and

d(v)−1
|Xv |−1 <

1
|Xu| . Since d(u), d(v) ≥ 2, it

implies |Xv| < |Xu|−1
d(u)−1 ≤ |Xu| − 1 and |Xu| < |Xv |−1

d(v)−1 ≤ |Xv| − 1, which is not possible.
If both vertices u and v satisfy the proportion condition, then {Xu, Xv} is obviously a

2-community structure. If not, then without loss of generality, let the vertex u satisfy the
proportion condition and v do not. Then the Update procedure is repeated and if no
update is possible, a modified partition {Xu, Xv} is already a 2-community structure as it
is shown later.

The Update procedure:
Let v1, v2, . . . , vd(v)−1 be the neighbors of v excluding u (there is at least one such a

vertex due to our assumption d(v) ≥ 2). For each i, 1 ≤ i ≤ d(v)−1, and ei = {v, vi} ∈ E,
let Xi be the set of vertices of the connected component in G \ ei containing vi. Notice
that if for all j, 1 ≤ j ≤ d(v) − 1, d(vj) = 1, then v must already satisfy the proportion
condition in the partition {Xu, Xv} at the beginning of the Update procedure.

Hence from now we suppose that v has at least one neighbor of degree at least 2
excluding u. In the following we show that there exists j, 1 ≤ j ≤ d(v) − 1, such that

64

CHAPTER 4. TWO-COMMUNITY STRUCTURES

d(vj) > 1 and the vertex v satisfies the proportion condition in the partition {Xj, V \Xj}.
Indeed, suppose that for all j, 1 ≤ j ≤ d(v) − 1, with d(vj) > 1, this is not true. Notice
that for each such j and the partition {Xj, V \Xj} must hold d(v)−1

n−|Xj |−1 <
1
|Xj | which implies

that:

d(v)|Xj| < n− 1. (4.2)
Moreover, for any j, 1 ≤ j ≤ d(v)− 1 with d(vj) = 1 we have |Xj| = 1 and hence:

d(v)|Xj| < n− 1, (4.3)
since G is not a star. Recall that v doesn’t satisfy the proportion condition in the

partition {Xu, Xv}, hence d(v)−1
|Xv |−1 <

1
|Xu| and also:

d(v)|Xu| < n− 1, (4.4)

Summing (4.2), (4.3) and (4.4) together, we obtain d(v) ∑d(v)
j=1 |Xj| = d(v)(n − 1) <

d(v)(n− 1), a contradiction.
Hence, there exists i, 1 ≤ i ≤ d(v) − 1 such that d(vi) > 1 and the vertex v satisfies

the proportion condition in the partition {Xi, V \ Xi}. Then, relabel u := v and v := vi
and return to the beginning of the Update procedure.

Each time the labels of u and v are updated, the size of Xu strictly increases by at
least one, hence the whole process always terminates. A final partition at the end of the
process is a connected 2-community structure because both partitions correspond to two
connected components of a tree obtained by removing an edge.

Notice that finding such an edge can be done in O(|V |) operations. First, in constant
time fix an edge e = {u, v} such that d(v), d(u) ≥ 2. Then, consider G \ e as a union of
two trees Tu and Tv, where Tu is a tree on the vertex set Xu rooted in u (and similarly for
Tv on Xv rooted in v). For each vertex w of G calculate recursively the size of the subtree
of Tu (or Tv) rooted in w which can be done in time O(|V |). Finally, using the sizes of the
subtrees, check if {Xu, Xv} corresponds to a 2-community structure and if needed, update
Xu, Xv according to the algorithm. The number of such updates is clearly at most |E|.
Since G is a tree, the repetition of the Update procedure finishes with a connected
2-community structure in O(|V |) time.

Very recently, Estivill-Castro et al. proved in [59] the same result using different meth-
ods. Our approach is more structural and the proof for the existence of an edge that
connects two communities results directly in a linear time algorithm.

4.3.2 Cubic graphs and graphs of maximum degree 3
Now we investigate other graph classes that have low densities. We first prove that 2-
community structures always exist in cubic graphs, and then we extend the result to
graphs of maximum degree 3. In both cases, it is possible to design an algorithm running in
polynomial time to guarantee the connectedness of each part of the 2-community structure.

65

CHAPTER 4. TWO-COMMUNITY STRUCTURES

First, the restrictions on the size of partitions are discussed to ensure the vertices fulfil
the proportion condition of a 2-community structure.

Lemma 4.7. Let G = (V,E) be a graph of maximum degree 3 of size n. Let {C1, C2} be
a partition of V such that dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2. Then each vertex of degree

3 in G with at most one out-neighbor fulfils the proportion condition of a 2-community
structure.

Furthermore, if for some i ∈ {1, 2}, |Ci| = dn−1
3 e (or also |Ci| = d

n−1
3 e+1 in case n ≡ 1

mod 3) then each vertex of degree 3 in Ci with two out-neighbors fulfils the proportion
condition too.

Proof. Let {C1, C2} be a fixed partition of G such that dn−1
3 e ≤ |Ci| ≤ n−dn−1

3 e, i = 1, 2.
It is clear that the proportion condition is true for each vertex which has only neighbors in
its own part. Firstly, suppose the vertex v from Ci, i ∈ {1, 2} has exactly one out-neighbor.

Since |Ci| ≤ n − dn−1
3 e, then obviously |Ci| ≤ n − n−1

3 and 2
|Ci|−1 ≥

1
n−|Ci| . Therefore

the proportion condition is fulfilled for the vertex v.
Now suppose that for i ∈ {1, 2} there is a vertex v ∈ Ci with exactly two out-neighbors

and |Ci| = dn−1
3 e. Obviously, dn−1

3 e ≤
n+2

3 and hence 2dn−1
3 e−2 ≤ n−dn−1

3 e which implies
1

dn−1
3 e−1 ≥

2
n−dn−1

3 e
. This corresponds to the proportion condition for the vertex v. Similarly

if |Ci| = dn−1
3 e+1 and n ≡ 1 mod 3: n−1 = 3dn−1

3 e which implies 1
dn−1

3 e
≥ 2

n−dn−1
3 e−1 .

This lemma can be used to design a polynomial time algorithm which outputs a 2-
community structure with a cubic graph in input.

Theorem 4.8. Every 3-regular graph has a 2-community structure. Moreover it can be
found in polynomial time.

Proof. Let G = (V,E) be a 3-regular graph of size n. The algorithm runs in two stages.
Stage 1: The algorithm finds a partition {C1, C2} of V such that |C1| = dn−1

3 e and at
most two vertices from C1 have more than one neighbor in C2.

Stage 2: The algorithm moves some vertices between C1 and C2 until dn−1
3 e ≤ |C1| ≤

n − dn−1
3 e and each vertex of G has a restricted number of neighbors out of its own

part in a such way that Lemma 4.7 can be applied.

Stage 1:
Let u, v ∈ V be such that uv ∈ E and put C1 = {u, v}. Now repeat the following steps
(S1) and (S2) until |C1| = dn−1

3 e:
(S1) Let w be a neighbor of u (or v) which is not in C1, put C1 := C1 ∪ {w}, u := w (or

v := w).
(S2) If there is no such vertex w, the degree of each vertex in the subgraph induced by C1

is 2 or 3. In such a case let u be any vertex of degree 2 in the subgraph induced by
C1.

66

CHAPTER 4. TWO-COMMUNITY STRUCTURES

It is clear that at the end of the first stage the algorithm finishes with a set C1 such
that |C1| = dn−1

3 e. If it is not possible to apply (S1) and (S2) and |C1| < dn−1
3 e then all

vertices in C1 must have all neighbors in C1 which means that G is not connected.
Furthermore at most two vertices (u and v) from C1 may have more than one neighbor

outside C1 and the subgraph induced by C1 is connected. Define C2 = V \ C1.

Stage 2: We distinguish two major cases:
Case 1: If ∀w ∈ C2, dout(w) ≤ 1 then all vertices in G except u and v have at most one
neighbor out of its part. Using Lemma 4.7, these vertices fulfil the proportion condition.
Moreover, dn−1

3 e equals b
n
3 c or d

n
3 e and according to Lemma 4.7, the proportion condition

is also true if u or v have two neighbors out of C1. Hence, {C1, C2} is a 2-community
structure.
Case 2: There exists a vertex w ∈ C2, such that dout(w) ≥ 2.
Now we distinguish several subcases:
(A) ∀x ∈ C1, dout(x) ≤ 1
(B) All vertices from C1 which have more than one neighbor outside C1 are adjacent to w

(only u, v ∈ C1 are possible candidates).
(C) No vertex from C1 which has more than one neighbor outside C1 is adjacent to w (only

u, v ∈ C1 are possible candidates).
(D) Both vertices u, v ∈ C1 have more than one neighbor outside C1, but only one of them

is adjacent to w.

Case 2(A): Repeat the update step while it is possible before returning {C1, C2} as a
2-community structure:
• if ∃z ∈ C2, dout(z) ≥ 2, update C1 and C2 as follows: C1 := C1 ∪ {z}, C2 := C2 \ {z}.
After each update step, two neighbors of z in C1 have degree three by assumption of Case
2(A) (See Figure 4.5). After repeating the update step k times, C1 has dn−1

3 e+ k vertices
and at least 2k vertices in C1 have degree three in the subgraph induced by C1. Hence, we
can repeat the update step at most dn−1

3 e − 1 times. Otherwise the degree of each vertex
in C1 is three which implies G is not connected. Thus |C1| ≤ 2dn−1

3 e−1 ≤ n−dn−1
3 e. Note

that now every vertex in G has at most one neighbor out of its part and thus applying
Lemma 4.7, {C1, C2} is a 2-community structure.

Case 2(B): Wlog we suppose that dout(u) = 2 and u is adjacent to w. Furthermore, if
dout(v) = 2 then also v is adjacent to w.

Now using C1, C2 we define a 2-community partition. After the initial update: C1 :=
C1 ∪ {w}, C2 := C2 \ {w}, all vertices in C1 have at most one neighbor in C2 and |C1| =
dn−1

3 e + 1. Then repeat the update step until |C1| = 2dn−1
3 e − 1 or if there is no such a

vertex z to update C1:
• if ∃z ∈ C2, dout(z) ≥ 2, define C1 := C1 ∪ {z}, C2 := C2 \ {z},

67

CHAPTER 4. TWO-COMMUNITY STRUCTURES

C1 C2 C1 C2

Figure 4.5: Applying one step in Case 2(A) on the gray vertex decreases the size of the
cut by one and creates two vertices in C1 with 3 in-neighbors.

There are two possible scenarios:
(i) if |C1| ≤ 2dn−1

3 e − 1 and there is no such vertex z ∈ C2 such that dout(z) ≥ 2, then
each vertex in G has at most one neighbor out of its own part. Obviously, |C1| ≤ n−dn−1

3 e
and due to Lemma 4.7, {C1, C2} is a 2-community structure.

(ii) |C1| = 2dn−1
3 e − 1 and ∃z ∈ C2 such that dout(z) ≥ 2: the update step has been

repeated dn−1
3 e − 2 times and in each step the number of vertices x ∈ C1 with dout(x) = 1

is decreased by at least 2 (the neighbors of z in C1). It means every vertices in V has all
neighbors in its own part, except at most three vertices, each having one neighbor out of
its part.
– If n ≡ 2 mod 3, then the size of |C2| = n−(2dn−1

3 e−1) = dn3 e. Because |C1| ≤ n−dn−1
3 e,

due to Lemma 4.7, all vertices with at most one neighbor out of its own part fulfil the
proportion condition. If a vertex of C2 is adjacent to exactly two vertices from C1 then
the proportion condition is true according to Lemma 4.7. A vertex of C2 cannot be
adjacent to all three vertices in C1, otherwise C1 ∪ {w} is a disconnected part of G.
Hence, {C1, C2} is a 2-community partition.

– If n ≡ 0 mod 3 or n ≡ 1 mod 3, then define the last update: C1 := C1 ∪ {z}, C2 :=
C2 \ {z}. Now only one vertex of C1 has one neighbor in C2. Because |C1| = 2dn−1

3 e ≤
n − dn−1

3 e, the proportion condition is true for all vertices of G because of Lemma 4.7.
Hence the updated partition {C1, C2} is a 2-community structure.

Case 2(C): Without loss of generality, we suppose that dout(u) = 2. Update C1 :=
C1 ∪ {w} \ {u}, C2 := V \ C1.
Notice that after the update, |C1| = dn−1

3 e and there may be at most two vertices in C1
which have two neighbors in C2. Hence we are again in one of the cases (A)-(D) of second
stage, but each time we apply this update the size of the cut between C1 and C2 is decreases
by two. Therefore the process is finite.

Case 2(D): Without loss of generality, suppose that u is adjacent to w and dout(u) = 2.
Update C1 := C1 ∪ {w} \ {v}, C2 := V \ C1.

68

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Notice that after the update, |C1| = dn−1
3 e. Moreover, u has two neighbors inside C1 since

u is obviously not adjacent to v. Hence we are in one of the previous cases of stage 2, since
there is at most one vertex in C1 (the neighbor of v) which could have two neighbors in
C2.

Now we investigate the problem of finding a 2-community structure in 3-regular graphs
with additional condition of connectivity for each part. Using the algorithm from Theo-
rem 4.8 as a tool we extend the result in 3-regular graphs for a connected 2-community
structure, but with many fine details in the proof. We first introduce a new lemma to
make the construction more simple to read.

Lemma 4.9. Let G be a 3-regular graph and {C1, C2} a connected 2-partition of G with
dn−1

3 e ≤ |C1| ≤ n − dn−1
3 e such that each part has at most one vertex with two neighbors

out of its own part. Then G has a connected 2-community structure which can be found in
polynomial time.

Proof. The main idea is to move selected vertices between two parts in such a way that it
preserves connectivity and offers the option to use Lemma 4.7.

We discuss four cases depending on which vertices have two neighbors out of its own
part. Notice that transferring a vertex which has two neighbors out of its part does not
compromise the connectivity of the partition.

(a) If there is no vertex in C1 and C2 with two neighbors out of its own part, then using
Lemma 4.7 the partition {C1, C2} is already a connected 2-community structure.

(b) If the only vertex with two neighbors out of its own part is in C2, then update C1,
C2 using the following loop:

• While |C1| < n−dn−1
3 e and there exists a vertex z in C2 which has two neighbors

in C1, update C2 := C2 \ {z}, C1 := C1 ∪ {z}.

Obviously after each run of the while loop both parts of the partition remains con-
nected. At the end of the while loop
– if |C1| < n − dn−1

3 e, then all vertices in G have at most one neighbor out of their
parts and satisfy the properties of 2-community structure due to Lemma 4.7,
– if |C1| = n−dn−1

3 e then |C2| = dn−1
3 e and hence all vertices in C2 with two neighbors

out of the own part satisfy the properties of 2-community structure due to Lemma
4.7, the rest of vertices also satisfy Lemma 4.7.

(c) The only vertex with two neighbors out of its own part is in C1. Then the case is
similar to (b) by symmetry swapping the roles between C1 and C2.

69

CHAPTER 4. TWO-COMMUNITY STRUCTURES

(d) There are two vertices:
– v1 ∈ C1 with two neighbors in C2 and let v0

1 be the neighbor of v1 ∈ C1;
– v2 ∈ C2 with two neighbors in C1 and let v0

2 be the neighbor of v2 ∈ C2.

Now we need to distinguish two cases:

(i) If v1v2 ∈ E, then we update the partition as follows. If |C1| < n − dn−1
3 e then

define a new partition C1 := C1∪{v2}; C2 := C2\{v2}, otherwise C1 := C1\{v1};
C2 := C2∪{v1}. Obviously, {C1, C2} is a connected partition which fulfil initial
conditions of lemma, so we can apply case (a), (b), (c) or (d) again. Notice
that the case (d) can be repeated only finite number of times since the cut size
between C1 and C2 decreases each time the case is applied.

(ii) If v1v2 /∈ E we define the following update C1 := C1 ∪ {v2} \ {v1}, C2 :=
C2 ∪ {v1} \ {v2}. The new partition is a connected partition with no change in
sizes and the following options are possible:
• If dout(v0

1) = 0 or dout(v0
2) = 0 before the update, then update removes

at least one of the vertices with two outgoing edges. Now we can again
apply one of cases (a), (b) or (c) which leads to a connected 2-community
structure.
• If dout(v0

1) > 0 and dout(v0
2) > 0 then we can apply case (d) again. This

process is finite because each time the size of the cut size between C1 and
C2 is decreased by 2.

Obviously, the whole procedure can be run in polynomial time.

Now we can prove the following theorem:

Theorem 4.10. Every 3-regular graph has a connected 2-community structure. Moreover
it can be found in polynomial time.

Proof. The algorithm runs in two stages similarly to the algorithm in Theorem 4.8.

Stage 1: The algorithm finds either a connected partition {C1, C2} such that |C1| = dn−1
3 e

and at most two vertices from C1 have two neighbors in C2 or ends up with a connected
2-community structure.

Stage 2: Apply directly Stage 2 from Theorem 4.8.

The difference to the approach from Theorem 4.8 is that C2 remains connected until
the end of the first stage, where C1 is connected in both approaches.

Then we apply the second stage of the algorithm from Theorem 4.8. Since moving a
vertex which has 2 neighbors in the other part never disconnect any part and all transfers
only affect such vertices, the final partition {C1, C2} remains connected at the end of the
second stage.

70

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Stage 1: (for a connected partition)
Choose any vertices u, v ∈ V such that {u, v} ∈ E and the subgraph induced by V \{u, v}
is connected. Label the vertices u, v and define C1 := {u, v}, C2 := V \{u, v}.

The initial construction:
While |C1| < dn−1

3 e and one of the updates (S1), (S2) (in this order) can be applied do:
(S1) If there exists a vertex x ∈ C2 such that dout(x) = 2, then update C1 := C1 ∪ {x},

C2 := C2\{x}. If all labelled vertices have three neighbors in C1, then removes all
labels and label one vertex in C1 which has one neighbor in C2.

(S2) If there exists a vertex x ∈ C2 such that x is a neighbor of a labelled vertex w in C1
and C2\{x} remains connected then update C1 := C1 ∪ {x}, C2 := C2\{x}, label the
vertex x and remove label from w. If all labelled vertices have three neighbors in C1,
then removes all labels and label one vertex in C1 which has one neighbor in C2.

Obviously after each update we can have at most two labelled vertices in C1.
Now there are two possibilities how the initial construction can finish:
(1) The algorithm finishes with |C1| = dn−1

3 e. Due to the properties of the construction,
the partition {C1, C2} is connected and at most two vertices from C1 may have two
neighbors in C2. In such a case we can move directly to Stage 2.

(2) If none of the updates (S1), (S2) can be applied and |C1| < dn−1
3 e then we redefine

the partition {C1, C2} using the major update construction to obtain a new partition
which leads to a connected 2-community structure.

The major update construction:
Step A: Let N ⊆ C2 be the set of neighbors of all labelled vertices from C1, hence
1 ≤ |N | ≤ 4. Step A consists in splitting C2 by defining subsets Q,Q′, Z of C2 and vertices
q, q′ ∈ N (q, q′ are not necessarily distinct) such that {Q,Q′, Z, {q}, {q′}} is a connected
partition of the graph induced by C2 and each vertex from Q∪Q′ has at most one neighbor
in C1. Furthermore, the entire set Q (resp. Q′) has exactly one neighbor outside Q (resp.
Q′) in C2 and this is the vertex q ∈ N (resp. q′ ∈ N).

We show that such Q, Q′, Z exist and are always connected. Consider a vertex v1 ∈ N .
The vertex v1 has necessarily two neighbors in C2 and the subgraph induced by C2 \ {v1}
is disconnected (otherwise (S1) or (S2) from Stage 1 could be applied). Let C1

2 and C2
2 be

the two connected components of C2 \ {v1}. Define Q := C1
2 , Q′ := C2

2 and q = q′ = v1.
Moreover, Z = ∅ is trivially connected. Hence in case |N | = 1 we can now move directly
to Step B.

If |N | > 1, select another vertex v2 ∈ N . Such vertex must be in Q or Q′ defined above.
Consider wlog that v2 ∈ Q. If v1v2 ∈ E, then update Q := Q \ {v2}, q := v2, q′ := v1 and
Z := ∅. Notice that Q is still connected since v2 has only one neighbor in Q. If v1v2 6∈ E,
Q \ {v2} must be disconnected into two part Q1 and Q2. Name Q2 the set which contains

71

CHAPTER 4. TWO-COMMUNITY STRUCTURES

a neighbor of v1 (Q1 obviously cannot have a neighbor of v1, since the other two neighbors
are in Q′ and C1, respectively). Update Q := Q1, q := v2 and Z := Q2. Hence in case
|N | = 2, the construction in Step A is over and we can continue directly with Step B.
Indeed, Q has only v2 ∈ N as a neighbor in C2 \Q and similarly for Q′ and v1 ∈ N .

Suppose now that |N | ≥ 3. Then select another vertex v3 ∈ N , the vertex v3 must
be in Q, Q′ or Z defined above. If v3 ∈ Z, then Q, Q′, Z, q and q′ already satisfy the
properties. Otherwise, v3 ∈ Q∪Q′ and wlog we suppose v3 ∈ Q. If v3v2 ∈ E, then update
Q := Q \ {v3}, q := v3 and Z := Z ∪{v2} which is trivially connected. Otherwise, Q \ {v3}
must be disconnected, let Q1 and Q2 be its connected parts. Denote Q2 the set which
has a neighbor of v2 (then Q1 cannot have a neighbor of v2). Update Q := Q1, q := v3,
Z := Z ∪Q2∪{v2}. Again, if |N | = 3, the construction is over. Indeed, Q has only v3 ∈ N
as a neighbor in C2 \Q and there are no changes for Q′. Moreover, Z is connected. Hence
in case |N | = 3 we can move to Step B. If |N | = 4, the construction is similar to the
discussion for |N | = 3 (see Fig. 4.6 as an example for |N | = 4).

ZQ Q′

C1

q q′

Figure 4.6: Splitting C2 when |N | = 4 (vertices in N are in gray)

It is also important to notice that if |N | > 2 then following the construction N\{q, q′} ⊆
Z.

Step B: This step consists in looking at the size of the sets Z,Q,Q′, Z ∪Q ∪ {q}, Z ∪
Q′ ∪ {q′} and update {C1, C2} depending on the size of those sets which are known to be
connected by moving entire sets of vertices instead of moving them one by one.

(i) If |Q| > n − dn−1
3 e or |Q

′| > n − dn−1
3 e then define C̃1 := V \Q, C̃2 := Q (similarly

for Q′) and remove all labels. Then label q and apply again the updates of the initial
construction on the partition {C̃1, C̃2}.

Note. The size of C̃1 is still strictly less than dn−1
3 e but it has strictly grown and the

partition {C̃1, C̃2} is connected, so the update is correct.

(ii) If dn−1
3 e ≤ |Q| ≤ n−dn−1

3 e or d
n−1

3 e ≤ |Q
′| ≤ n−dn−1

3 e, define C̃1 := V \Q, C̃2 := Q

(similarly for Q′). The vertices in C̃1 have at most one neighbor in C̃2 and there

72

CHAPTER 4. TWO-COMMUNITY STRUCTURES

may be only one vertex in Q (=C̃2), the neighbor of q in Q, with two neighbors out
of its part. Following the definition of Q, all other vertices in Q may only have at
most one vertex in C̃1 (their neighbors were only in C1 and the vertex q). Obviously
both parts of the partition are connected. Hence, we can use Lemma 4.9 to find a
connected 2-community structure.

(iii) If |Q| = dn−1
3 e − 1 or |Q′| = dn−1

3 e − 1. The construction below is based on |Q| =
dn−1

3 e − 1, but it can be easily modified for |Q′| = dn−1
3 e − 1.

If |Q| = dn−1
3 e − 1 then

– in case |N | > 1: update C̃1 := Q∪{q}, C̃2 := V \(Q∪{q}) (similarly in case of Q′).
The subgraphs induced by C̃1 and C̃2 are obviously connected and |C̃1| = dn−1

3 e. All
vertices have at most one neighbor in the other part except q which has two neighbors
in C̃2. Then applying Lemma 4.7, the partition {C̃1, C̃2} is a connected 2-community
structure.

– in case |N | = 1: update C̃1 := Q′, C̃2 := V \Q′

Due to the sizes of the sets C1 and Q (|C1| < dn−1
3 e and |Q| = d

n−1
3 e − 1) obviously

|Q′| ≥ n−2dn−1
3 e+1 which means |Q′| ≥ dn−1

3 e. But similarly also |Q′| ≤ n−dn−1
3 e,

hence dn−1
3 e ≤ |Q

′| ≤ n− dn−1
3 e.

Furthermore, there is at most one vertex from each part C̃1, C̃2 which may have
two vertices out of its own part. Hence Lemma 4.9 can be used to find a connected
2-community structure.

(iv) If |Q| < dn−1
3 e − 1 and |Q′| < dn−1

3 e − 1 (then necessarily |Z| > 0).

• If |Z| ≥ n − dn−1
3 e, define C̃1 := V \ Z, C̃2 := Z and remove all labels. If

there exists a vertex in C̃1 which has two neighbors in Z then label it (it can be
at most one such vertex), else label q. Then continue with the updates of the
initial construction for {C̃1, C̃2}.

Note. |C̃1| ≤ dn−1
3 e and the size of C̃1 has strictly grown compared to C1.

Moreover, there is no vertex which has two neighbors out of its own part, except
one vertex in C1 which may have two neighbors in Z (in that case such a vertex
is labeled). Besides, the partition is connected, so the step is correctly defined.

• If dn−1
3 e ≤ |Z| < n−dn−1

3 e, define C̃1 := V \Z, C̃2 := Z. If there is no vertex x
in C̃1 such that dout(x) = 2, then move any vertex z ∈ C̃2 such that dout(x) = 2
to C̃1 until you can apply Lemma 4.7. So now we consider that there exist some
vertex x ∈ C̃1 such that dout(x) = 2 (notice that there are at most two vertices
in C̃2 which may have two neighbors in C̃1).
While there exist one vertex z ∈ C̃2 and one vertex y ∈ C̃1 such that dout(z) =
dout(y) = 2 and {z, y} /∈ E, update C̃2 := C̃2 ∪ {y} \ {z}, C̃1 := V \ C̃2.

73

CHAPTER 4. TWO-COMMUNITY STRUCTURES

If there is at most one vertex x ∈ C̃1 such that dout(x) = 2 and at most one
vertex z ∈ C̃2 such that dout(z) = 2, then apply Lemma 4.9 to obtain a connected
2-community structure.
Else if there exist z, z′ ∈ C̃2 and x ∈ C̃1 such that dout(z) = dout(z′) = dout(x) =
2, zx ∈ E and z′x ∈ E, then move x into C̃2. Notice that we still have
|C̃2| ≤ n − dn−1

3 e and now every vertex in C̃2 has at most one neighbor in C̃1

so we can move every vertex z ∈ C̃1 into C̃2 until we can use Lemma 4.7 and
obtain a connected 2-community structure.
Else, every vertex in C̃2 has at most one neighbor in C̃1 so we can move every
vertex z ∈ C̃1 into C̃2 until we can use Lemma 4.7 and obtain a connected
2-community structure.

• If 0 < |Z| < dn−1
3 e then |Z ∪Q ∪ {q}| ≤ 2dn−1

3 e − 2 < n− dn−1
3 e.

Notice that dn−1
3 e ≤ |Z ∪Q∪{q}| (indeed, |Z ∪Q∪{q}| < d

n−1
3 e is not possible

since |C1| + |Z| + |Q| + |Q′| + 2 = n). Then define C̃1 := Z ∪ Q ∪ {q} and
C̃2 := V \ (Z ∪Q ∪ {q}). Now the only vertices which may have two neighbors
out of their own part are one labeled vertex in the old C1 and a neighbor of
q′ in Z. Hence we can apply Lemma 4.9 to obtain a connected 2-community
structure.

Each case leads to a connected 2-community structure.

This approach is very structural and efficient but is a little fastidious. It is possible to
design a more general algorithm for graphs of maximum degree 3 which uses convergence
properties to obtain a 2-community structure in polynomial time.

Similarly to vertices of degree 3, the restrictions on the size of partitions are discussed
to ensure the vertices of degree 2 fulfil the proportion condition of a 2-community structure.

Lemma 4.11. Let G = (V,E) be a graph of maximum degree 3 of size n. Let {C1, C2} be
a partition of V such that dn−1

3 e ≤ |C1| ≤ bn2 c. Then each vertex of degree 2 in C1 with at
most one out-neighbor fulfils the proportion condition of a 2-community structure.

If the partition is balanced, then each vertex of degree 2 in G with at most one out-
neighbor fulfils the proportion condition.

Proof. Let {C1, C2} be a partition of V such that dn−1
3 e ≤ |C1| ≤ bn2 c. Obviously, any

vertex of degree 2 with no neighbors out of its own part fulfils the proportion condition.
Moreover any vertex of degree 2 in C1 with only one out-neighbor satisfies 1

|C1|−1 ≥
1
|C2|

since |C1| ≤ |C2|.
If the partition is balanced, then 1

|C1|−1 ≥
1
|C2| and

1
|C2|−1 ≥

1
|C1| , and hence the vertices

of degree 2 from both parts with exactly one out-neighbor satisfy the proportion condition.

74

CHAPTER 4. TWO-COMMUNITY STRUCTURES

The lemmas 4.7 and 4.11 can be sum up into the following theorem which gives a good
overview of the possibilities for each vertex belonging to a 2-community structure.

Theorem 4.12. Let G = (V,E) be a graph of maximum degree 3 of size n and {C1, C2}
be a partition of V such that dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2.

If the partition has one of the properties (i)-(iii) where only specified vertices may have
out-neighbors (the other ones have only in-neighbors), then {C1, C2} is a 2-community
structure on G:

(i) The vertices of degree 2 from the smaller part and all the vertices of degree 3 have at
most one out-neighbor.

(ii) The vertices of degree 2 and 3 have at most one out-neighbor and the partition is
balanced.

(iii) The vertices of degree 2 from the smaller part have at most one out-neighbor, the
vertices of degree 3 in Ci, for some i ∈ {1, 2}, have at most two out-neighbors and
|Ci| = dn−1

3 e (or also |Ci| = dn−1
3 e + 1 if n ≡ 1 mod 3) and the vertices of degree 3

in C3−i have at most one out-neighbor.

Proof. In each case (i), (ii), or (iii), all the vertices of the graph G satisfy the proportion
condition due to Lemmas 4.7 and 4.11. Thus, {C1, C2} is a 2-community structure on G.

The general algorithm which find a 2-community structure in polynomial time in graphs
of maximum degree 3 consists in starting with an initial partition with the property that
no vertex has all of its neighbors out of its part (see Lemma 4.13). Then, the algorithm
consists in moving vertices from one part to the other until the remaining partition is
a 2-community structure (see Theorem 4.14). Convergence properties ensure that the
algorithm always finishes and output the solution in polynomial time.

Lemma 4.13. Every connected graph of maximum degree 3 on at least 6 vertices has a
partition {C1, C2} such that no vertex in the graph has all of its neighbors out of its own
part, dn−1

3 e ≤ |Ci| ≤ n − dn−1
3 e, i = 1, 2. Moreover, such a partition can be found in

polynomial time.

Proof. Let G = (V,E) be a connected graph of maximum degree 3 on n vertices, n ≥ 6.
Let u, v ∈ V be such that uv ∈ E and initially, put into C1 the vertices u, v including

its pendant vertices. If there is a vertex z of degree 2 with u and v as neighbors, update
C1 := C1 ∪ {z}.

Now we repeat the following steps (S1) and (S2) until |C1| ≥ dn−1
3 e:

(S1) Let w be a neighbor of u (or v) which is not in C1, put C1 := C1∪{w}, C2 := C2\{w},
and relabel u := w (or v := w). If there exist vertices in C2 which have all of their
neighbors in C1, transfer them into C1. Notice, that these must be neighbors of w,
hence at most two additional vertices are transferred to C1.

75

CHAPTER 4. TWO-COMMUNITY STRUCTURES

(S2) If there is no such vertex w then u and v have all its neighbors in C1. In such a case
let u be any vertex in C1 with at least one out-neighbor in C2 (such a vertex must
always exist due to connectivity of G).

Notice that each time we apply (S1), by (S2) we ensure that there is no vertex in C2
with only out-neighbors. The algorithm finishes with a set C1, dn−1

3 e ≤ |C1| ≤ dn−1
3 e + 2

where |C1| ≤ n− dn−1
3 e, due to n ≥ 6.

Clearly, the algorithm runs in a polynomial time and results in a partition {C1, C2},
dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2 such that no vertex has all its neighbors out of its own

part.

Now we give the general algorithm which output a 2-community structure from a con-
nected graph of maximum degree 3.

Theorem 4.14. Let G be a connected graph of maximum degree 3 on n vertices, n ≥ 4,
except S4. Then G has a 2-community structure which can be found in a polynomial time.

Proof. Let n = 4. Since G is not isomorphic to S4, any partition with an edge in each part
has obviously a 2-community structure. If n = 5, then either G has a partition consisting
of a cycle of length 3 and an edge (which has clearly a 2-community structure), or G must
be isomorphic to one of the cases in Figure 4.7.

Figure 4.7: A 2-community structure {C1, C2} (C1 in white, C2 in black) for other graphs
on 5 vertices.

Let n ≥ 6. Consider any partition {C1, C2} of V , dn−1
3 e ≤ |Ci| ≤ n − dn−1

3 e, i = 1, 2,
such that no vertex in G has all of its neighbors out of its part (such a partition can be
found in polynomial time due to Lemma 4.13). In such partition there may exist vertices
not satisfying the proportion condition which can be split into two categories:

(A) if there exists i ∈ {1, 2}, |Ci| > dn−1
3 e and n 6≡ 1 mod 3 or |Ci| > dn3 e and n ≡ 1

mod 3, the vertices of degree 3 in Ci with two out-neighbors,

(B) the vertices of degree 2 in the larger part with one out-neighbor, if the partition is
not balanced.

Our algorithm transfers the vertices between C1 and C2 in several steps until all vertices
satisfy the proportion condition. In each step of the algorithm the size of the cut between
C1 and C2 decreases and we insure that no vertex from the partition has only out-neighbors.

76

CHAPTER 4. TWO-COMMUNITY STRUCTURES

The algorithm applies the improvement procedure (consisting of three stages) as many
time as there is a vertex transferred between the parts. In the initial partition {C1, C2},
there are only 3 type of vertices that do not satisfy the proportion condition: vertices of
degree 3 in C1 with two out-neighbors (if |C1| > dn−1

3 e), vertices of degree 3 in C2 with
two out-neighbors (if (if |C2| > dn−1

3 e) and vertices of degree 2 with one out-neighbor,
respectively handled by the three stages. Each stage consists in moving such vertices in
the other part so they satisfy the proportion condition (See Figure 4.8 as an illustration),
taking care of not compromising the proportion condition for any other vertex.

←

←

Stage 1

→

→

Stage 2

←

Stage 3

C1 C2 C1 C2 C1 C2

Figure 4.8: Sketch of the three stages of the algorithm to compute a 2-community structure
in a graph of maximum degree 3. Candidates vertices to be moved are in gray.

Improvement Procedure: Stage 1
In this stage we primarily handle vertices of degree 3 in C2 which have two out-neighbors

by transferring them into C1, keeping the size of C1 under n−dn−1
3 e and the property that

there is no vertex in the partition with only out-neighbors.
While |C1| < n − dn−1

3 e and there is a vertex u ∈ C2 which has two out-neighbors, repeat
the following two steps:

(a) Update C1 := C1 ∪ {u}, C2 := C2 \ {u}.

(b) If there exists a vertex v in C2 with only out-neighbors, then update C1 := C1 ∪ {v}
and C2 := C2 \ {v}.

We emphasize that at the end of each iteration of the while loop in Stage 1, no vertex
in the partition has only out-neighbors. By assumption such vertex doesn’t exist before
entering the first iteration of the while loop. In each iteration of the while loop when
(a) is executed, it may create at most one vertex with only out-neighbors (which must be

77

CHAPTER 4. TWO-COMMUNITY STRUCTURES

the neighbor of u in C2), and (b) transfers it into C1. In the part (b) a vertex with only
out-neighbors cannot be created since the transferred vertex v has no neighbor in C2.

Moreover, notice that each iteration of the while loop in Stage 1 decreases the size of
the cut by at least one since both parts (a) and (b) decrease the size of the cut by at
least one each time they are executed. After the last iteration of while loop necessarily
|C1| ≤ n− dn−1

3 e+ 1 since each iteration of the while loop may increase the size of C1 by
at most 2.

If |C1| = n − dn−1
3 e + 1, then the last iteration of the while loop had to decrease the

size of the cut by at least two by applying both steps (a) and (b). In such a case we make
the following Size Update.

Size Update in case |C1| = n− dn−1
3 e+ 1:

(a*) Let v ∈ C1 be a vertex with at least one neighbor in C2, update
C1 := C1 \ {v}, C2 := C2 ∪ {v}.

(b*) If there exists vertices in C1 with only out-neighbors, then transfer all such vertices
into C2.

Since G is connected, such vertex v in part (a∗) always exists. Such transfer may create
at most 2 vertices in C1 with only out-neighbors (they must be neighbours of v in C1), so
we also transfer them into C2 in part (b∗). After the Size Update, there is no vertex with
only out-neighbours and dn−1

3 e ≤ |C1| ≤ n− dn−1
3 e since n ≥ 6.

Notice that the Size Update may increase the size of the cut by at most one, but the
last iteration of the while loop in Stage 1 decreases it by at least two, hence together the
size of the cut decreases by at least one.

Improvement Procedure: Stage 2
In this stage we primarily handle vertices of degree 3 in C1 which have two out-neighbors

by transferring them into C2, keeping the size of C2 under (n − dn−1
3 e) and the property

that there is no vertex in the partition with only out-neighbors.
Since Stage 2 is symmetrical to Stage 1, swap the roles of C1 and C2 by relabelling

C1 := C2 and C2 := V \ C1 and apply Stage 1. Notice then all previous conclusions hold.

Improvement Procedure: Stage 3
If the partition is not balanced, the vertices of degree 2 with one out-neighbor must be

transferred from the larger part to the smaller part, keeping the property that there is no
vertex in the partition with only out-neighbors.
If |C1| > |C2|, relabel C1 := C2 and C2 := V \ C1

While |C1| < bn2 c and there exists a vertex u of degree 2 in C2 with one neighbor in C1:

78

CHAPTER 4. TWO-COMMUNITY STRUCTURES

(a) Update C1 := C1 ∪ {u}, C2 := C2 \ {u}.

(b) If there exists a vertex v in C2 with only out-neighbors, then update
C2 := C2 ∪ {v} and C1 := C1 \ {v}.

In each iteration of the while loop in Stage 3 when (a) is executed, part (b) ensures
that there is no vertex in the partition with only out-neighbors at the end of the iteration.

Each iteration of the while loop in Stage 3 doesn’t increase the size of the cut. In the
end of Stage 3 if the final partition doesn’t have a 2-community structure then a vertex of
the category (A) or (B) must exist in the partition. In the first case Stage 1 or 2 must be
executed before entering Stage 3 again, hence the cut-set is decreased by at least 1. The
second case is only possible if bn2 c = dn2 e and two vertices were added in the last iteration
of the while loop. It means part (b) must be executed and the cut-size is decreased by
at least 2. Notice that Stage 3 may again create vertices of the category (A) even if they
didn’t exist before entering Stage 3.

It is easy to see that the algorithm always finishes. After each iteration of the while
loop in Stage 1 (resp. Stage 2), the size of the cut decreases by at least one. In Stage 3 each
iteration of the while loop increases the size of the smaller parts by at least one vertex and
stops before/when the partition is balanced or the smaller part becomes the larger part,
but in that case the cut-size is decreased by at least 2. The algorithm clearly runs in a
polynomial time.

Let’s discuss the correctness of the algorithm. It always finishes with the sizes dn−1
3 e ≤

|Ci| ≤ n − dn−1
3 e, i = 1, 2. The algorithm starts with the partition in which every vertex

has at least one neighbor in its own part. The key feature of the algorithm is to keep this
property valid during the all stages of the algorithm which was discussed separately for
each stage. Hence all vertices of degree 1 in the final partition clearly satisfy the proportion
condition.

• If the final partition is balanced then all vertices of degree 2 and 3 may have at most
one out-neighbor (otherwise Improvement Procedure could be applied again), hence
it has a 2-community structure due to Theorem 4.12(ii).

• If the final partition is not balanced, then the partition must have the properties
described in Theorem 4.12(i) or (iii). Otherwise, one of Stages 1-3 could be applied
again. Hence, the final partition has a 2-community structure.

The latter algorithm gives a 2-community structure in polynomial time without any
restriction about its connectivity. It is interesting that this algorithm can be modified in
order to insure the connectivity of the 2-community structure given in output. The key

79

CHAPTER 4. TWO-COMMUNITY STRUCTURES

difference from the previous algorithm is to ensure that the initial partition is connected
(instead of just requiring that any vertex has at least one neighbor in its part). This can
be found in polynomial time and allows us to design a new algorithm which ensure the
connectedness of the 2-community structure.

Lemma 4.15. Every connected graph of maximum degree 3 on n vertices, n ≥ 4, has a
connected partition {C1, C2} such that dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2. Moreover, such

a partition can be found in polynomial time.

Proof. Let G = (V,E) be a graph with the given properties.
Initially, put into C1 any vertex v such that G[V \ {v}] is connected. The existence

of such vertex is ensured by the following procedure. Let x be any vertex of G. While
G[V \{x}] is disconnected, label the vertex x and consider any other vertex x′ in a connected
component of G[V \ {x}] that does not contains any labeled vertex, and let x := x′. Let v
be the last considered vertex x. This procedure terminates in less than |V | steps.

The algorithm keeps connectivity of G[C1] and G[C2] and extends C1 either by trans-
ferring vertices from C2 to C1 or relabelling a suitable connected part of the graph until
dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2.

The algorithm starts with the initial set C1 and repeats the Update Procedure until
|C1| ≥ dn−1

3 e. In each run of the procedure only one of the options 1 or 2 is executed.

The Update procedure:
Let w be a vertex in C2 which has a neighbor in C1 (such a vertex must exist since G is
connected).
Option 1: If the subgraph induced by C2 \ {w} is connected, put:

C1 := C1 ∪ {w}, C2 := C2 \ {w}.

Option 2: If the subgraph induced by C2 \ {w} is disconnected (w must be of degree 3),
then denote by A, B the vertex-sets of two connected induced subgraphs of G on C2 \{w}.
Depending on the size of A, the following update is executed.

• If |A| ≤ n− 2dn−1
3 e, put:

C1 := C1 ∪ A ∪ {w}, C2 := B.

Notice that |C1| ≤ n − dn−1
3 e, {C1, C2} is a connected partition and the size of C1

strictly increased.

• If n− 2dn−1
3 e+ 1 ≤ |A| ≤ n− dn−1

3 e, then notice that |A| ≥ dn−1
3 e and put:

C1 := A, C2 := V \ A.

Obviously, {C1, C2} is a connected partition with dn−1
3 e ≤ |Ci| ≤ n−dn−1

3 e, i = 1, 2,
hence the Update Procedure halts.

80

CHAPTER 4. TWO-COMMUNITY STRUCTURES

• If |A| > n− dn−1
3 e, put:

C1 := C1 ∪B ∪ {w}, C2 := A.

Notice that |C1| < dn−1
3 e, {C1, C2} is a connected partition and the size of C1 strictly

increased.

If |C1| ≥ dn−1
3 e after the execution of the option 1 or 2, then the Update procedure

halts, otherwise the Update Procedure is repeated again.
By our construction, the partition {C1, C2} remains connected during each run of the

Update procedure. Each time the Update procedure is executed, the size of C1
strictly increases, hence the algorithm always terminates. At the end of the algorithm
dn−1

3 e ≤ |Ci| ≤ n−dn−1
3 e, i = 1, 2 and the algorithm clearly runs in a polynomial time.

Theorem 4.16. Every connected graph of maximum degree 3 with at least 4 vertices (except
a star) has a connected 2-community structure which can be found in polynomial time.

Proof. Let G = (V,E) be a connected graph of maximum degree 3 on n vertices, n ≥ 4,
not isomorphic to a star. Due to Lemma 4.15, a connected partition {C1, C2} of V such
that dn−1

3 e ≤ |Ci| ≤ n− dn−1
3 e, i = 1, 2, can be found in polynomial time. Let {C1, C2} be

such a partition and notice that the vertices that do not satisfy the proportion condition
can be split into two categories:

(A) if there exists i ∈ {1, 2} such that |Ci| > dn−1
3 e in case n 6≡ 1 mod 3 or |Ci| >

dn−1
3 e + 1 in case n ≡ 1 mod 3, then all the vertices of degree 3 in Ci with two

out-neighbors,

(B) if the partition is not balanced, then all the vertices of degree 2 in the larger part
with one out-neighbor.

The algorithm starts with the initial partition {C1, C2} and then the Improvement
Procedure (consisting in three stages) can be applied several times. The procedure
transfers step-by-step all the vertices of degree at least 2 (with exactly one neighbor in its
own part) between C1 and C2 or relabel the sets, until all the vertices satisfy the proportion
condition. Since the initial partition is connected, transferring vertices with such a property
never disconnects any part of the partition.

The Improvement Procedure: Stage 1 (Category (A) vertices)
In this stage we handle vertices in C2 of degree 3 with two out-neighbors by transferring
them into C1, keeping the size of C1 smaller than n− dn−1

3 e and ensuring connectivity of
the partition {C1, C2}.

81

CHAPTER 4. TWO-COMMUNITY STRUCTURES

While |C1| < n− dn−1
3 e and there is a vertex u ∈ C2 with two out-neighbors, update:

C1 := C1 ∪ {u}, C2 := C2 \ {u}.

Notice that each iteration of Stage 1 decreases the size of the cut by at least one.

The Improvement Procedure: Stage 2 (Category (A) vertices)
Similarly to Stage 1, in Stage 2 we handle vertices in C1 of degree 3 with two out-neighbors
by transferring them into C2, keeping the size of C2 smaller than n− dn−1

3 e and ensuring
connectivity of the partition {C1, C2}.
While |C2| < n− dn−1

3 e and there is a vertex u ∈ C1 with two out-neighbors, update:

C2 := C2 ∪ {u}, C1 := C1 \ {u}.

Notice that each iteration of Stage 2 decreases the cut-size by at least one.

The Improvement Procedure: Stage 3 (Category (B) vertices)
If the partition is not balanced, the vertices of degree 2 with one out-neighbor must be
transferred from the larger part to the smaller part.
If |C1| > |C2|, relabel C1 := C2 and C2 := V \ C1.
While |C1| < bn2 c and there exists a vertex u of degree 2 in C2 with one neighbor in C1,
update:

C1 := C1 ∪ {u}, C2 := C2 \ {u}.

Each iteration of the while loop in Stage 3 doesn’t increase the size of the cut. In the end
of Stage 3 if the final partition doesn’t have a 2-community structure then a vertex of the
category (A) must exist in the partition. In that case, Stage 1 or 2 must be executed before
entering Stage 3 again, hence the cut-size is decreased by at least one. Notice that Stage 3
may again create vertices of the category (A) even if they didn’t exist before entering
Stage 3.

It is easy to see that the algorithm always terminates. Each iteration of the while loop
in Stage 1 (resp. Stage 2) decreases the cut-size by at least one. In Stage 3 each iteration of
the while loop increases the size of the smaller part by at least one and halts before or when
the partition is balanced. Following the construction, if the Improvement Procedure
needs to be run again, it must first run through Stage 1 or 2 which decreases the cut-size
by at least one. Moreover, the algorithm clearly runs in polynomial time.

82

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Let’s discuss the correctness of the algorithm. Suppose the algorithm terminates with
the final partition {C1, C2}. Due to the conditions inside the algorithm, dn−1

3 e ≤ |Ci| ≤
n − dn−1

3 e, i = 1, 2. Initially, the partition is connected and remains so after each stage,
hence the final partition is connected too. Moreover, each vertex of degree 1 necessarily
satisfies the proportion condition since it must be in the same part as its neighbor. Now
there are two options:

• If the final partition is balanced then all vertices of degree 2 and 3 may have at
most one out-neighbor (otherwise the Improvement Procedure could be ap-
plied again), hence the final partition {C1, C2} is a 2-community structure due to
Lemma 4.12(ii).

• If the final partition is not balanced, then the partition must have the properties
described in Lemma 4.12(i) or (iii) (otherwise, one of Stages 1-2 could be applied
again). Hence the final partition {C1, C2} is a 2-community structure.

4.3.3 Dense graphs
Now we investigate the problem of the existence and finding of a connected 2-community
structure in dense graphs. We prove that any graph G = (V,E) of minimum degree |V |−3
has a connected 2-community structure which can be found in polynomial time.

Lemma 4.17. If the complement of the graph G is 2-colorable (using each color for at
least 2 vertices), then G has a connected 2-community structure which can be found in
polynomial time.

Proof. Let G = (V,E) be a graph such that its complement G is 2-colorable. Fix a 2-
coloring of G (with at least 2 vertices for each color) and define {C1, C2} as a partition of
V , where each part corresponds to one color in G. Obviously, |C1|, |C2| ≥ 2. Notice that the
induced subgraph on the vertex set C1 (resp. C2) is a clique. Therefore, any vertex v ∈ V
satisfies the proportion condition and the partition {C1, C2} is a 2-community structure.
Since a 2-coloring can be found in polynomial time, the 2-community structure {C1, C2}
too. Obviously, the partition is connected.

This result directly implies the following theorem:

Theorem 4.18. The complement of any bipartite graph (with at least two vertices in each
part) has a connected 2-community structure which can be found in polynomial time.

Lemma 4.17 can also be used for graphs of minimum degree (n− 3):

Theorem 4.19. Any graph (except a star) of minimum degree (n− 3), n ≥ 4, where n is
the number of vertices of the graph, has a connected 2-community structure which can be
found in polynomial time.

83

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Proof. Let G be a graph of size n and of minimum degree (n− 3) (except a star), n ≥ 4,
and G be the complement of G. Notice that G is of degree at most 2. If G does not contain
an odd cycle, then there exists a 2-coloring of G with at least 2 vertices for each color.
In such case, a connected 2-community structure can be found in polynomial time due to
Lemma 4.17.

Now let A be the union of all vertices belonging to an odd cycle in G and denote by
B := V \A. G[A] is the union of p odd induced cycles with the vertex sets O1, . . . , Op, p ≥ 1.
For each i, 1 ≤ i ≤ p, let vi be any vertex of Oi and fix a 2-coloring of G[Oi\{vi}]. Let Oi,1,
Oi,2 be the set of vertices corresponding to each color, obviously |Oi,1| = |Oi,2|. If |B| ≥ 2,
take a 2-coloring of B and define a partition {B1, B2} of B (each part corresponding to a
color) such that |B1| ≥ |B2| ≥ 1, otherwise B1 := B, B2 := ∅. Define

C1 := ∪pi=1(Oi,1 ∪ {vi}) ∪B1, C2 := ∪pi=1Oi,2 ∪B2.

Observe that |C1|, |C2| ≥ 2 (|C2| ≤ 1 is only possible for a star or a graph with 3 vertices).
Obviously, every such 2-colouring can be found in polynomial time. Finally we show that
the partition {C1, C2} is a connected 2-community structure.

All vertices of C2 satisfy the proportion condition in G since G[C2] is a clique. For each
i, 1 ≤ i ≤ p, all neighbors of vi in G[C1] satisfy the proportion condition in G since they
have all vertices of C1 as neighbors. Moreover, the non-neighbor of vi in G[C1] and vi itself
satisfy the proportion condition in G since |C1| > |C2| implies that |C1|−2

|C1|−1 ≥
|C2|−1
|C2| .

Observe that the partition {C1, C2} is connected. Obviously, G[C2] is connected since
G[C2] is a clique. Moreover, any two vertices in C1 are neighbors except vi and its neighbour
in G[Oi,1] for all i, 1 ≤ i ≤ p. If B1 6= ∅, such two vertices must have a common neighbor
in B1. If B1 = ∅, then either |O1,1| ≥ 3 or p ≥ 2 (due to assumptions on G), and such
two vertices have a common neighbor either in O1,1 or Oj,1, j 6= i. Hence, G[C1] is also
connected.
Theorem 4.20. Let G = (V,E) be a graph with minimum degree d (c−1).|V |

c
e where c is

the size of an inclusion-wise maximal clique in G, i.e. such a clique is not a subgraph of
another clique. Then, G has a connected 2-community structure which can be found in
polynomial time.
Proof. If c ≥ |V | − 1, then for any vertex u ∈ V , d(u) ≥ d (|V |−2).|V |

|V |−1 e ≥ |V | − 3 and the rest
follows from Theorem 4.19.

If c ≤ |V | − 2, let C be the inclusion-wise maximal clique in G and take {C, V \ C}
as a partition. Obviously, the size of both parts is at least 2. C is a clique, hence the
proportion condition is trivially satisfied for all vertices in C. If a vertex u ∈ V \ C has a
neighbor in C, then:

din(u)
|V | − c− 1 ≥

(c−1).|V |
c
− (c− 1)

|V | − c− 1 ≥ c− 1
c
≥ dout(u)

c
,

hence the proportion condition is satisfied for all vertices u ∈ V \C with a neighbor in C.
The rest of vertices in V \ C trivially satisfy the proportion condition since they do not
have a neighbor in C.

84

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Now we prove that the partition {C, V \ C} is connected, which is obviously true
for G[C]. Let suppose that G[V \ C] be disconnected and A be the smallest connected
component of G[V \ C]. Notice that |A| ≤ |V |−c

2 and let u ∈ A. Then (c−1)·|V |
c

≤ d(u) ≤
|V |−c

2 + c − 2 and hence |V | ≤ c(c−4)
c−2 < c, which is impossible. Therefore, G[V \ C] is a

connected subgraph.

4.4 Balanced 2-community structures
In this section we study complexity of the problems related to balanced 2-community
structures. First, we discuss the hardness of the problem in general graphs. We prove
that the Balanced Weak 2-community and Balanced 2-community problems are
NP-complete. The latter result is contained as the main result in [58], an alternative
shorter proof is presented in this section. Both NP-completeness results are extended to a
connected balanced 2-community structure. Then, we investigate the problem in graphs
of low edge density. We prove that every graph of maximum degree 3 has a balanced weak
2-community structure that can be found in polynomial time. The structural properties of
low-degree graphs are crucial to obtain such a result. Finally, we prove that the problem
is polynomial-time solvable for graphs with bounded treewidth.

4.4.1 General graphs
We focus on the problem of Balanced 2-community in general graphs. In [40] it has
been proved that finding a connected balanced partition without any additional constraint
is an NP-complete problem in general graphs. We prove similar results for Balanced
Weak 2-community and Balanced 2-community and their connected variants. To
show that Balanced Weak 2-community is NP-complete, we use a reduction from the
Balanced Co-Satisfactory Partition problem, proved to be NP-complete in [21].

The problems is defined as follow:

Balanced Co-Satisfactory Partition
Input : A graph G = (V,E) on an even number of vertices.
Question : Is there a balanced partition {C1, C2} of V such that for every v ∈ V ,
din(v) ≤ dout(v)?

Theorem 4.21. Balanced Weak 2-community is NP-complete.

Proof. The problem is clearly in NP. In the following we define a polynomial-time reduction
from Balanced Co-Satisfactory Partition to Balanced Weak 2-community.
Let G be a graph on an even number n of vertices as an instance of Balanced Co-
Satisfactory Partition, and let G, the complement of G, be an instance of Balanced
Weak 2-community. If G admits a balanced co-satisfactory partition {C1, C2} then
{C1, C2} is also a weak 2-community. Suppose din(v) ≤ dout(v) for every vertex v ∈ V (in

85

CHAPTER 4. TWO-COMMUNITY STRUCTURES

the graphG). Let d̄in(v) (resp. d̄out(v)) be the number of in-neighbors (resp. out-neighbors)
of v in G. Then, the following holds d̄in(v) + 1 = n

2 − din(v) ≥ n
2 − dout(v) = d̄out(v), which

is the weak proportion condition for a balanced partition. Conversely, any balanced weak
2-community in G is a balanced co-satisfactory partition in G.

The proof of the NP-completeness of Balanced Co-Satisfactory Partition in [21]
is based on the graphs G = (V,E), where V = F ∪T ∪V0 with some additional properties:
F and T are independent sets, there are no edges between T and V0, and there is a vertex
f ∈ F that is not adjacent to any vertex of V0. Any balanced co-satisfactory partition
{C1, C2} of V must have the following structure: C1 = F ∪ S and C2 = T ∪ (V0 \ S)
where S ⊆ V0. If G is an instance of Balanced Weak 2-community (constructed
following the proof of Theorem 4.21), one can see that C1 is connected since f is adjacent
to all vertices in F ∪ S and C2 is connected since T is a clique and every vertex of T is
adjacent to every vertex of V0 \S. Hence we can conclude that even the connected version
of Balanced Weak 2-community is NP-complete:

Theorem 4.22. Connected Balanced Weak 2-community is NP-complete.

Estivill-Castro et al. [58] have shown that Balanced 2-community is NP-complete
by constructing a reduction from a variant of the Clique problem. We propose a shorter
alternative proof which is also valid for the Connected Balanced 2-community prob-
lem. The proof is based on the NP-complete problem Balanced Satisfactory Parti-
tion which was introduced by Bazgan et al. [20] as follows:

Balanced Satisfactory Partition
Input : A graph G = (V,E) on an even number of vertices.
Question : Is there a balanced partition {C1, C2} of V such that for every v ∈ V ,
din(v) ≥ d(v)

2 ?

It can be proved that these two problems are in fact equivalent when the number of
vertices is even.

Lemma 4.23. Let G = (V,E) be a graph with n vertices. Consider a partition {C1, C2}
of V and v ∈ C1. Then the following assertions are equivalent:
1. din(v)
|C1|−1 ≥

d(v)
n−1

2. dout(v)
|C2| ≤

d(v)
n−1

3. din(v)
|C1|−1 ≥

dout(v)
|C2|

Proof. (1) ⇔ (2) : din(v)
d(v) ≥

|C1|−1
n−1 ⇔ 1 − dout(v)

d(v) ≥
n−|C2|−1
n−1 ⇔ 1 − n−|C2|−1

n−1 ≥ dout(v)
d(v) ⇔

dout(v)
d(v) ≤

|C2|
n−1

(3) ⇔ (1) : din(v)
|C1|−1 ≥

dout(v)
|C2| ⇔

din(v)
|C1|−1 ≥

d(v)−din(v)
n−|C1| ⇔ din(v)[1

|C1|−1 + 1
n−|C1|] ≥

d(v)
n−|C1| ⇔

din(v)
d(v) ≥

|C1|−1
n−1

86

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Remark 4.24. Notice that the third assertion in Lemma 4.23 is the proportion condition
of a 2-community structure.

Lemma 4.25. Let G = (V,E) be a graph with an even number n of vertices and {C1, C2}
be a balanced partition of V . Then for any vertex v ∈ V , din(v) = n/2−1

n−1 d(v) if and only if
d(v) = n− 1.

Proof. If d(v) = n− 1, then clearly din(v) = n
2 − 1. Suppose now that din(v) = n/2−1

n−1 d(v).
Notice that (−2)(n2 − 1) + 1(n− 1) = 1 from which it can be easily shown that n

2 − 1 and
n − 1 do not have common divisors. This implies that d(v) is a multiple of n − 1. Thus,
d(v) = n− 1.

Remark 4.26. Let {C1, C2} be a balanced partition of G and v ∈ C1 be a vertex of degree
n−1. Since v has n

2−1 neighbors in its own part and n
2 in other part, v does not satisfy the

condition of Balanced Satisfactory Partition. However, v satisfies the Balanced
2-Community condition since din(v)

|C1|−1 = 1.

Proposition 4.27. For any graph with n vertices and maximum degree (n−2) the problems
Balanced Satisfactory Partition and Balanced 2-Community are equivalent.

Proof. Suppose that G = (V,E) is a yes-instance of Balanced Satisfactory Parti-
tion. Hence there exists a balanced partition {C1, C2} of V such that any vertex v ∈ V
satisfies the condition din(v) ≥ 1

2d(v), which implies that din(v) ≥ |C1|−1
2|C1|−1d(v) = |C1|−1

n−1 d(v).
Thus, G is a yes-instance of Balanced 2-Community.

Suppose now that G is a yes-instance of Balanced 2-Community. Hence there
exists a balanced partition {C1, C2} of V such that any vertex v ∈ V satisfies the con-
dition din(v) ≥ |C1|−1

|C2| dout(v) that is equivalent to din(v) ≥ |C1|−1
n−1 d(v) using Lemma 4.23.

According to Lemma 4.25, there is no vertex v such that din(v) = |C1|−1
n−1 d(v).

Now we need to show that for every vertex v ∈ V, din(v) ≥ 1
2d(v). Suppose by contra-

diction that there exists a vertex v ∈ V that does not satisfy the inequality that is:

|C1| − 1
n− 1 d(v) < din(v) < 1

2d(v)

First, notice that 1
2d(v) − |C1|−1

n−1 d(v) = 1
2(n−1)d(v) < 1, which means that there is at

most one integer number between |C1|−1
n−1 d(v) and 1

2d(v).
Moreover, d(v) cannot be even, since otherwise d(v)

2 would be a whole number and
thus din(v) could not be an integer number. Then d(v) is odd and let d(v) = 2p + 1 for
some integer p. We arrive to a contradiction by showing that p < din(v) < p + 1

2 . Notice
that d(v) < n − 1 ⇒ d(v)−1

2 < |C1|−1
n−1 d(v) that implies p < |C1|−1

n−1 d(v) < din(v). Then
necessarily din(v) ≥ 1

2d(v) for every vertex v ∈ V , that is G is a yes-instance of Balanced
Satisfactory Partition.

87

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Balanced Satisfactory Partition has already been proved NP-complete in [20],
even if both parts are required to be connected. Moreover, the reduction used in [20] does
not construct a graph with vertices of degree n− 1.

Thus we obtain a similar result as in [58] (the authors have mentioned in the proof that
used technique works also in a connected case).

Theorem 4.28. Connected Balanced 2-Community is NP-complete.

Finally, it is interesting to notice that there exist graphs in which every 2-community
structure is balanced (see Figure 4.9).

Figure 4.9: An example of a graph in which all 2-community structures are balanced

4.4.2 Balanced 2-community structures in graphs with low den-
sity

Remark 4.29. Due to Theorem 4.16, every graph of maximum degree 3 has a 2-commu-
nity structure, but it is not true for a balanced 2-community structure, see Figure 4.10.
The graph is obtained by linking three ‘cross gadgets’. First notice that if a balanced 2-
community exists for the graph, then all vertices of each cross gadget must be in the same
part. Indeed, each vertex of such community structure must have two neighbors in its own
part. But on the other hand, this graph is impossible to split into two balanced parts without
splitting a cross gadget.

Figure 4.10: A cross gadget and a graph of maximum degree 3 without balanced 2-
community structure.

88

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Nevertheless, if we focus on a weak community, a balanced weak 2-community always
exists in graphs of maximum degree 3, as it is shown in the following theorem.

Theorem 4.30. Any graph of maximum degree 3 with at least 4 vertices has a balanced weak
2-community structure. Moreover, such a community structure can be found in polynomial
time.

Proof. Let G = (V,E) be a connected graph of maximum degree 3. First notice that in
any balanced partition of V , each vertex of degree 1 fulfils the weak proportion condition
(even if its neighbor is not in its own part), and each vertex of degree 2 or 3, which has at
least one neighbor in its own part, satisfies the weak proportion condition.

Therefore, the only vertices which may not satisfy the weak proportion condition are
vertices of degree 2 or 3 which have no neighbor in their own part.

Consider any balanced partition {C1, C2} of G and repeat the following steps (S1)-(S2)
until it is possible:
(S1) If both parts contain a vertex of degree 2 or 3 that has no neighbor in its own part

(say v1 ∈ C1, v2 ∈ C2), then update: C1 := C1 ∪ {v2}\{v1}, C2 := C2 ∪ {v1}\{v2}.
(S2) If there is only one partition that contains a vertex v of degree 2 or 3 that has no

neighbor in its own part (without loss of generality suppose v ∈ C1), then choose
a vertex w ∈ C2 such that w has at least one neighbor in C1 and update: C1 :=
C1 ∪ {w}\{v}, C2 := C2 ∪ {v}\{w}.
First notice that if case (S2) occurs, such a vertex w always exists since the graph is

connected. Moreover, the partition remains balanced after each step (S1) or (S2). Besides,
the cut size between the partitions C1 and C2 always decreases (by at least 2 in case (S1),
by at least 1 in case (S2)) so after a finite number of iterations (bounded trivially by
O(|V |2), every vertex of degree 2 or 3 has at least one neighbor in its own part. Hence,
the algorithm returns a balanced weak 2-community structure.

Remark 4.31. Notice that Theorem 4.30 cannot be extended to a connected case. There
exist graphs of maximum degree 3 in which every balanced weak 2-community structures is
disconnected, see Figure 4.11 as an example.

Figure 4.11: A tree of maximum degree 3 in which any balanced 2-community structure
(or even balanced weak 2-community structure) is disconnected (an example of a balanced
2-community structure is presented by the black and white colors)

.

89

CHAPTER 4. TWO-COMMUNITY STRUCTURES

Theorem 4.32. Balanced 2-community (hence also Balanced Weak 2-community)
is polynomially solvable for graphs with bounded treewidth.

Proof. Such result follows from [19] where the t-Decomposition problem closely related
to communities was studied. The input to the t-Decomposition problem is a graph
G = (V,E), an integer-valued function t = t(n) such that 0 ≤ t(n) ≤ n for every n ∈ N,
and two functions a, b : V → N such that a(v), b(v) ≤ d(v), for all v ∈ V . The problem
consists of deciding if there is a partition {V1, V2} of V with |V1| = t(|V |) such that
dG[V1](v) ≥ a(v) for every v ∈ V1 and dG[V2](v) ≥ b(v) for every v ∈ V2.

In order for {V1, V2} to be a balanced 2-community structure with |V1| ≥ |V2|, every v ∈
V1 must satisfy the condition dG[V1](v)

dn/2e−1 ≥
d(v)−dG[V1](v)

bn/2c and analogously for every v ∈ V2 must
hold dG[V2](v)

bn/2c−1 ≥
d(v)−dG[V2](v)

dn/2e . Thus, Balanced 2-community can be condidered as the
t-Decomposition problem for selected values of the functions t, a, b. The conditions for
Balanced 2-community can be transformed to the conditions of the t-Decomposition
problem where t(n) = dn2 e, a(v) = b(v) = dn/2−1

n−1 d(v)e for n even and a(v) = dd(v)/2e,
b(v) = d (n−1)/2−1

n−1 d(v)e for n odd. Since the t-Decomposition problem was proved to be
polynomial-time solvable for bounded treewidth in [19], we can conclude the same result
for the Balanced 2-community problem.

Notice that the result cannot be extended to a connected case for all graphs, see a tree
on Figure 4.11 as a counterexample.

4.5 About graphs without 2-community structures
We know that any graph that is a star does not contain any community structure. We
investigate if there are other graphs without any 2-community structure. By enumerating,
using the computer, all graphs with n vertices starting with n = 4, we found that the
minimum integer n for which there are graphs (not isomorphic to stars) that do not contain
any 2-community structures is n = 10. The planar graph showed in Figure 4.12 has 10
vertices and has no 2-community structure.

Figure 4.12: A graph with 10 vertices that does not contain any 2-community structure

90

CHAPTER 4. TWO-COMMUNITY STRUCTURES

We were able to generalize those counter-example in a infinite class of graphs in which
there is no 2-community structure.

Definition 4.33. Let G be a class of the graphs such that for G = (V,E) ∈ G:

• V = W1 ∪W2 ∪{w, x, y, z}, where W1, W2 are cliques of the same size k, k ≥ 3, and
{x, y, w} is a clique of size 3;

• w is adjacent to all vertices in W1 ∪W2,

• z is a pendant vertex adjacent to the vertex y,

• 1 ≤ dW1(x) = dW2(x) ≤ k − 1 and 2 ≤ dW1(y) = dW2(y) ≤ k − 1,

• |Wi ∩ (N(x) ∪N(y)) | > 3k
k+3 for each i ∈ {1, 2}, and furthermore there exist vertices

α, β ∈ W1 ∪W2 such that α ∈ N(y) \N(x), and β ∈ N(x) ∩N(y),

• there is no edge between the vertex sets W1 and W2.

z

y

x

w

W1 W2

fully

connected

Figure 4.13: A schematic representation of a graph in G.

Theorem 4.34. Let G = (V,E) ∈ G. Then G does not have a 2-community structure.

Proof. Firstly, notice that there is no 2-community structure {A,B} in G such that |A| = 1
or |B| = 1. Wlog, suppose by contradiction that A = {v} for some vertex v, and notice
that the neighbor of v in B must be a universal vertex in order to be satisfied. Since G
does not contain a universal vertex, there is no 2-community structure {A,B} in G with
|A| = 1 or |B| = 1. Hence, assume that |A|, |B| ≥ 2.

Observe that the vertex z is satisfied if and only if it belongs to the same community
as the vertex y, hence without loss of generality we assume that y, z ∈ B. In addition, the
vertex w has degree |V | − 2 and is not connected to z ∈ B. Hence, necessarily w ∈ A.

Now we prove that for any partition {A,B} of V , where w ∈ A and y, z ∈ B, there is
at least one vertex which is not satisfied, hence there is no 2-community structure in G.

91

CHAPTER 4. TWO-COMMUNITY STRUCTURES

For any partition {A,B} of V , we denote by Ai and Bi the sets A ∩Wi and B ∩Wi,
respectively, for i ∈ {1, 2}. In the first case, we suppose that B1 or B2 is empty. In the
second case, we assume that B1 and B2 are not empty.

Case 1: B1 = ∅ or B2 = ∅
Suppose first that B1 = ∅ and B ⊆ {x, y, z} ∪W2.

• If B2 = ∅, we have two possibilities:

– if x ∈ B, then B = {x, y, z} and β ∈ A is not satisfied since dA(β)
|A|−1 = k

2k <
2
3 =

dB(β)
|B| ;

– if x ∈ A, then B = {y, z} and α ∈ A is not satisfied since dA(α)
|A|−1 = k

2k+1 <
1
2 =

dB(α)
|B| .

• If B2 6= ∅ and B2 6= W2,

– Case x ∈ B.
∗ If there exists u ∈ A2 such that u ∈ N(x)∪N(y), then if u is satisfied then:

|A2|
k + |A2|

= dA(u)
|A| − 1 ≥

d(u)
|V | − 1 ≥

k + 1
2k + 3 ⇒ |A2| ≥

k2 + k

k + 2 > k − 1 ,

which is not possible since |A2| ≤ k − 1.
∗ Otherwise, for all u ∈ A2, u /∈ N(x) ∪N(y). Hence, for any u ∈ A2, if u is

satisfied then:

|A2|
k + |A2|

= dA(u)
|A| − 1 ≥

d(u)
|V | − 1 = k

2k + 3 ⇒ |A2| ≥
k2

k + 3 .

Due to our assumptions about the graph, |W2 ∩ (N(x) ∪N(y)) | > 3k
k+3 .

Thus, k− 3k
k+3 > |W2 \ (N(x)∪N(y))| ≥ |A2| ≥ k2

k+3 which implies k > k, a
contradiction.

– Case x ∈ A. Let u ∈ A2.
∗ If u ∈ N(y) ∩N(x), then if u is satisfied we have:

|A2|+ 1
k + |A2|+ 1 = dA(u)

|A| − 1 ≥
d(u)
|V | − 1 = k + 2

2k + 3 ,

which implies |A2| ≥ k − 1
k+1 , and then |A2| ≥ k, a contradiction since

B2 6= ∅.
∗ If u ∈ N(y) \ N(x), then both dA(u) and d(u) decrease by one. Similarly

to the previous case, we obtain that |A2| ≥ k + 1
k+2 and then |A2| > k, a

contradiction.

92

CHAPTER 4. TWO-COMMUNITY STRUCTURES

∗ If u ∈ N(x) \N(y), then:

|A2|+ 1
k + |A2|+ 1 = dA(u)

|A| − 1 ≥
d(u)
|V | − 1 = k + 1

2k + 3 ⇒ |A2| ≥
k2 − 2
k + 2 > k − 2 .

Since assuming that there is a vertex in A2 ∩ N(y) leads to a contradic-
tion (see previous cases), we can assume that A2 ∩ N(y) = ∅. Then, since
dW2(y) ≥ 2, then |W2 \ N(y)| ≤ k − 2. Thus k − 2 ≥ |A2| > k − 2, a
contradiction.

∗ If u /∈ N(x) ∪ N(y), then both dA(u) and d(u) decrease by one. Similarly
to the previous case, we obtain |A2| ≥ k, a contradiction since |B2| 6= ∅.

• If B2 = W2, then either B = {x, y, z} ∪W2, and we have |A|+ 2 = |B| but dA(x) =
dB(x) thus x is not satisfied, or B = {y, z}∪W2, and since |A| = |B| we have: dB(y)

|B|−1 <
dB(y)+1
|B| = dA(y)

|B| = dA(y)
|A| , thus y is not satisfied.

We conclude that if there is a 2-community structure in G, then B1 6= ∅. The case
B2 = ∅ is similar and we also conclude that if there is a 2-community structure in G,
B2 6= ∅.

Case 2: B1, B2 6= ∅.

Without loss of generality, we suppose |B1| ≤ |B2|. Let u ∈ B1 and suppose that u is
satisfied in the partition {A,B}. We prove that in all cases, if u is satisfied then it implies
a contradiction with |B1| ≤ |B2|.

• If x ∈ A

– If u ∈ N(x) ∩N(y):

|B1|
|B1|+ |B2|+ 1 = dB(u)

|B| − 1 ≥
d(u)
|V | − 1 = k + 2

2k + 3 ⇒ |B1| > |B2| ,

a contradiction, hence u is not satisfied.

– If u ∈ N(x) \N(y), we have dB(u) = |B1|− 1 and d(u) = k+ 1 and similarly we
obtain |B1|·(k+2) ≥ |B2|·(k+1)+(k+4) ≥ |B2|·(k+1)+(|B2|+4) > |B2|·(k+2),
a contradiction since |B1| ≤ |B2|.

– If u ∈ N(y) \ N(x), we have dB(u) = |B1| and d(u) = k + 1 and similarly we
obtain |B1|·(k+2) ≥ |B2|·(k+1)+(k+1) ≥ |B2|·(k+1)+(|B2|+1) > |B2|·(k+2),
a contradiction since |B1| ≤ |B2|.

93

CHAPTER 4. TWO-COMMUNITY STRUCTURES

– If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and d(u) = k and similarly we
obtain |B1| · (k+ 3) ≥ |B2| · k+ 3(k+ 1) ≥ |B2| · k+ 3(|B2|+ 1) > |B2| · (k+ 3),
a contradiction since |B1| ≤ |B2|.

• If x ∈ B

– If u ∈ N(x) ∩N(y):
|B1|+ 1

|B1|+ |B2|+ 2 = dB(u)
|B| − 1 ≥

d(u)
|V | − 1 = k + 2

2k + 3 ⇒ |B1| > |B2| ,

a contradiction, hence u is not satisfied.

– If u ∈ N(x) \N(y) or u ∈ N(y) \N(x), we have dB(u) = |B1| and d(u) = k + 1
and similarly we obtain |B1| · (k+ 2) ≥ |B2| · (k+ 1) + 2(k+ 1) ≥ |B2| · (k+ 1) +
2(|B2|+ 1) > |B2| · (k + 3), a contradiction since |B1| ≤ |B2|.

– If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and d(u) = k and similarly we
obtain |B1| · (k+ 3) ≥ |B2| · k+ 4k+ 3 ≥ |B2| · k

k+3 + 4 · |B2|+ 3 > |B2| · (k+ 4),
a contradiction since |B1| ≤ |B2|.

On the other hand, any graph in G has {W1∪{x,w},W2∪{y, z}} as a balanced weak 2-
community structure. Thus, the existence of graphs in which there is no weak 2-community
structure remains open for all graphs.

4.6 Conclusions
The following overview summarises the results achieved in this chapter. All considered
graphs are of size at least 4 and are not stars. The problem of finding a 2-community
structure in a graph has been studied in the following graph classes.

(i) trees:
– a connected 2-community structure exists and can be found in linear time (Theo-
rem 4.6),
– there are trees with a balanced 2-community structure, but without a connected
balanced weak 2-community structure (Remark 4.31),

(ii) graphs of maximum degree 3:
– a connected 2-community structure exists and can be found in polynomial time
(Theorem 4.16),
– a balanced weak 2-community structure exists and can be found in polynomial time
(Theorem 4.30),
– there are graphs without a balanced 2-community structure (Remark 4.29),
– there are graphs with a balanced 2-community structure, but without a connected
balanced weak 2-community structure (Remark 4.31)

94

CHAPTER 4. TWO-COMMUNITY STRUCTURES

(iii) graphs of minimum degree (|V | − 3), complements of bipartite graphs, graphs with
minimum degree d (c−1)·|V |

c
e where c is the size of an inclusion-wise maximal clique

in the graph:
– a connected 2-community structure exists and can be found in polynomial time
(Theorems 4.18, 4.19, 4.20)

(iv) graphs of bounded tree-width:
– there are graphs without a balanced 2-community structure (Remark 4.29), but to
decide whether such a structure exists and if it exists, find it, can be done in polynomial
time (Remark 4.32)
Estivill-Castro et al. [58] proved that the problem of finding a balanced 2-community

structure is NP-complete in general graphs. In Section 4.4 it has been showed that the same
result also holds for a weak community, even with additional constraint of connectivity for
both parts. It also has been presented a shorter proof of the known NP-complete result
for a balanced 2-community structure in general graphs based on an alternative definition
of community structure [20], which also implies NP-completeness for a connected balanced
2-community structure.

In case of Balanced 2-Community the situation is different. Any graph of maxi-
mum degree 3 has a balanced weak 2-community structure, while there are graphs without
a balanced 2-community structure within the same class. Computationally speaking, find-
ing a balanced weak 2-community structure can be done in polynomial time in graphs
of maximum degree 3 while the Balanced 2-Community problem is NP-complete in
general graphs just as its weak version. The results are similar for connected 2-community
structures.

Finally, we found a family of graphs that do not contain any 2-community structure.
Finding other families of graphs that satisfy this property could help to distinguish graphs
that contain 2-community structures and the other ones. On the other hand, our family
of graphs always have a balanced weak 2-community structure.

In addition, in order to get a better understanding of community structures, there
are other interesting problems left open, as to extend 2-community results to other graph
classes, to characterize graph classes where the existential and complexity results for 2-
community and weak 2-community problems and their connected versions are different or
to generalize the results to k-communities for a fixed k, k ≥ 3.

95

5
Max Community

Contents
5.1 Introduction . 97
5.2 Preliminaries . 98
5.3 Hardness results . 99

5.3.1 NP-hardness . 99
5.3.2 Non-approximability . 101

5.4 Positive results for approximation 103
5.5 Polynomial-time solvability in some graph classes 105

5.5.1 Some easy graph classes . 105
5.5.2 Hamiltonian cubic graphs . 105

5.6 Extension of a vertex subset into a community 111
5.7 Conclusions . 114

The content of this chapter is based on the following article in preparation:

v C. Bazgan, J. Chlebíková, C. Dallard and T. Pontoizeau, Community of maximum
size: complexity and approximation, in preparation.

5.1 Introduction
As we saw in Chapter 4, there exist graphs in which there is no 2-community structure. In
this way, it is interesting to consider a relaxation of the definition by accepting that one of
the two parts may not fulfill the proportion condition. In this way, we investigated finding
a community of maximum size.

97

CHAPTER 5. MAX COMMUNITY

In this chapter, we use the definition of a community of Olsen [133] i.e. a community
is defined as a subset C of vertices such that each vertex of C has a greater proportion
of neighbors in C than outside of C. We study the problem of, given a graph, finding
a community of maximum size. Section 5.2 gives notations that we use in this paper.
Section 5.3 discuss the NP-hardness of the problem. Section 5.4 gives several results about
the approximation of this problem. We investigate the co-NP-hardness of deciding if a
community is inclusion-wise maximal in Section 5.6. We discuss the linear time solvability
of the problem in some graph classes, and in particular in Hamiltonian cubic graphs, in
Section 5.5. Conclusions and open problems are given in Section 5.7.

5.2 Preliminaries
In this chapter all considered graphs are simple, undirected and connected. Let G = (V,E)
be a graph, C ⊂ V a subset of vertices and v ∈ V a vertex.

For a given graph G = (V,E), Olsen ([133]) defined a 2-community structure as a
partition {C1, C2} of V such that each part has at least two vertices and each vertex has
a greater proportion of neighbor in its part than in the other part, i.e. for each vertex in
Ci, i ∈ {1, 2},

dCi
(v)

|Ci|−1 ≥
d

Ci
(v)

|Ci|
. In this chapter, we investigate a variant consisting in finding

only one community (in the sense that the previous condition only need to be fulfilled for
vertices of one part of the partition) of maximum size. Such condition will still be called
proportion condition throughout this chapter.

Definition 5.1. Given a graph G = (V,E), a community is a subset of vertives C ⊂ V ,
C 6= V , such that |C| ≥ 2 and for each vertex u ∈ C,

dC(u)
|C| − 1 ≥

dC(u)
|C|

. (5.1)

If a vertex u ∈ C respects the latter proportion condition, we say u is satisfied (in C).

Notice that since we are looking for a community of maximum size, a community of
size less than 2 is not worth of interest. Thus, we can derive that the proportion condition
is equivalent to |C| · dC(u) ≥ (|C| − 1) · dC(u), that we also use in the chapter.

Observe that the induced subgraph of a community may either be connected or not.
We study both cases and talk about connected community when the subgraph induced by
the community is connected.

We define our main problem Max Community as follows:

Max Community
Input: A graph G = (V,E).
Output: A community in G of maximum size.

98

CHAPTER 5. MAX COMMUNITY

5.3 Hardness results
In this section we prove two major results regarding the complexity of Max Community.
We show that it is NP-hard and APX-hard, even for split graphs.

5.3.1 NP-hardness
We establish a reduction from the decision version associated to Max Independent Set
which was proved NP-hard in [104]:

Max Independent Set
Input: A graph G = (V,E).
Output: A subset S of vertices of minimum size such that any edge in E is
adjacent to a vertex in S.

In order to do so, we first introduce the transformation involved in the reduction and
some lemmas that will be necessary for the main theorem.

Definition 5.2. Let G = (V,E) be a connected graph. We define the construction Γ
transforming the graph G into Γ(G) = G′(V ′, E ′) as it follows (see Figure 5.1 for an
example):

• V ′ := M ∪ N ∪ {z1, z2}, where M := {e : e ∈ E}, N := V and z1, z2 are two new
vertices;

• for all e ∈M and all u ∈ N , the edge (e, u) ∈ E ′ if and only if u /∈ e;

• the subgraph G′[{z1, z2} ∪M] is complete.

Notice that the construction from Definition 5.2 can be done in polynomial time. More-
over, Γ(G) yields a connected graph if and only if G is not isomorphic to a star.

Lemma 5.3. Let G = (V,E) be a connected graph not isomorphic to a star and let Γ(G) =
G′ = (V ′, E ′) be a graph defined following Definition 5.2. Let C ⊂ V ′ be a set of vertices
such that M∪{z1, z2} ⊆ C. A vertex w ∈ C is satisfied in C if and only if dC(w) ≥ |C|−2.

Proof. Obviously, C ⊂ N . Let u ∈ N ∪ {z1, z2} then dC(u) = 0. Therefore, any vertex in
C ∩ (N ∪ {z1, z2}) is satisfied in C. A vertex e ∈ M has a degree d(e) = |V ′| − 3. Hence
if dC(e) < |C| − 2, then dC(e) = |C| and e is not satisfied in C as it does not respect the
proportion condition. However, if dC(e) ≥ |C| − 2, then dC(e) < |C| and since |C| > |C|
we have

|C| · dC(e) ≥ |C| · (|C| − 2) > (|C| − 1) · (|C| − 1) ≥ (|C| − 1) · dC(e) ,

and thus e is satisfied in C.

99

CHAPTER 5. MAX COMMUNITY
XX:4 Community of maximum size: complexity and approximation – 2018/04/09 07:53

a

b

c d

e

G = (V, E)

�

z1

z2

ab

bc

be

cd

db

de

clique

e

d

c

b

a

GÕ = (V Õ, EÕ)

Figure 1 Example of the transformation �.

I Lemma 4. Let G = (V, E) be a connected graph not isomorphic to a star and let GÕ =
(V Õ, EÕ) = �(G). Let C1 µ V Õ be a community in GÕ. Then there exists a community C2 in
GÕ such that |C2| Ø |C1| and M fi {z1, z2} ™ C2. Moreover, C2 can be found in polynomial
time.

Proof. Firstly, we claim that N * C1. We denote by C1 := V Õ \C1 the set of vertices which
are not in the community C1. To prove a contradiction, consider the two following cases:

if C1 = N , since GÕ[N] is an independent set, then any vertex u œ C1 has dC1(u) = 0
and dC1

(u) > 0; hence u does not satisfies Eq. (1) and C1 is not a community;
if N µ C1, then C1 is a subset of the clique M fi {z1, z2}; it means any vertex u œ
M fi {z1, z2} fl C1 has dC1

(u) = |C1| and dC1(u) < |C1| ≠ 2, thus

|C1| · dC1(u) < |C1| · (|C1| ≠ 2) < (|C1| ≠ 1) · |C1| = (|C1| ≠ 1) · dC1
(u) ,

hence v does not satisfies Eq. (1) and C1 is not a community.
Thus, we can consider that N * C1. Now, let C2 := C1 fi M fi {z1, z2} and C2 := V Õ \ C2.
Notice that C2 ™ N and that a vertex u œ C1 fl N is satisfied in C2, since dC2

(u) = 0.
Obviously, z1 and z2 are satisfied in C2.

Let e œ M be a vertex not satisfied in C2. Hence, for all e œ M which is not satisfied
in C2, transfer a vertex u œ N , non adjacent to e, from C2 to C2. Notice that for any
f œ M fl C1, dC2(f) Ø dC1(f) and dC2

(f) = dC1
(f), hence f is satisfied in C2. Since e

is unsatisfied, then e œ M \ C1 and at most |M \ C1| transfers are needed to satisfy all
the vertices in C2. Thus |C2| Ø |C1| holds true. Furthermore, observe that for any vertex
w œ C1, the condition dC2(w) Ø |C2| ≠ 2 stays true after the transfer of u, hence according
to Lemma 3 w remains satisfied. Also, since C2 * N and C2 + N then C2 ”= V .

Therefore, all vertices of C2 are satisfied, and |C2| Ø |C1|. Obviously, C2 can be found
in polynomial time. J

We give a reduction from the decision version associated to Max Independent Set

which was proved NP-hard in [7]:

Figure 5.1: Example of the transformation Γ.

Lemma 5.4. Let G = (V,E) be a connected graph not isomorphic to a star and let G′ =
(V ′, E ′) = Γ(G). Let C1 ⊂ V ′ be a community in G′. Then there exists a community C2 in
G′ such that |C2| ≥ |C1| and M ∪ {z1, z2} ⊆ C2. Moreover, C2 can be found in polynomial
time.

Proof. Firstly, we claim that N is not included in C1. We denote by C1 := V ′ \C1 the set
of vertices which are not in the community C1. To prove a contradiction, consider the two
following cases:

• if C1 = N , since G′[N] is an independent set, then any vertex u ∈ C1 has dC1(u) = 0
and dC1

(u) > 0; hence u does not satisfies the proportion condition and C1 is not a
community;

• if N ⊂ C1, then C1 is a subset of the clique M ∪ {z1, z2}; it means any vertex
u ∈M ∪ {z1, z2} ∩ C1 has dC1

(u) = |C1| and dC1(u) < |C1| − 2, thus

|C1| · dC1(u) < |C1| · (|C1| − 2) < (|C1| − 1) · |C1| = (|C1| − 1) · dC1
(u) ,

hence v does not satisfies the proportion condition and C1 is not a community.

Thus, we can consider that N is not included in C1. Now, let C2 := C1 ∪M ∪ {z1, z2} and
C2 := V ′ \ C2. Notice that C2 ⊆ N and that a vertex u ∈ C1 ∩ N is satisfied in C2, since
dC2

(u) = 0. Obviously, z1 and z2 are satisfied in C2.
Let e ∈ M be a vertex not satisfied in C2. Hence, for all e ∈ M which is not satisfied

in C2, transfer a vertex u ∈ N , non adjacent to e, from C2 to C2. Notice that for any
f ∈ M ∩ C1, dC2(f) ≥ dC1(f) and dC2

(f) = dC1
(f), hence f is satisfied in C2. Since e

100

CHAPTER 5. MAX COMMUNITY

is unsatisfied, then e ∈ M \ C1 and at most |M \ C1| transfers are needed to satisfy all
the vertices in C2. Thus |C2| ≥ |C1| holds true. Furthermore, observe that for any vertex
w ∈ C1, the condition dC2(w) ≥ |C2| − 2 stays true after the transfer of u, hence according
to Lemma 5.3 w remains satisfied. Also, since C2 is not included in N and C2 is not
included in N then C2 6= V .

Therefore, all vertices of C2 are satisfied, and |C2| ≥ |C1|. Obviously, C2 can be found
in polynomial time.

We can now prove the main theorem:

Theorem 5.5. Max Community is NP-hard, even on split graphs.

Proof. We consider the decision variants of the problems Max Community and Max
Independent Set. Let G = (V,E) be a connected graph not isomorphic to a star and
let G′ = (V ′, E ′) := Γ(G) and k ∈ {1, . . . , |V | − 1}. We claim that there is an independent
set of size at least k in G if and only if there is a community of size at least |M | + 2 + k
in G′.

Let R be a independent set of G of size at least k. In G′, we define C := M∪{z1, z2}∪R
and C := V ′ \C. First, note that R ⊆ N thus C = N \R. The vertices in C ∩N ∪{z2, z2}
are obviously satisfied in C as they only have neighbors in C. Hence, the only possible
unsatisfied vertices are from the setM . Consider a vertex e ∈M . SinceR is an independent
set of G, then for each edge e = (u, v) ∈ E at most one of the vertices u and v belongs
to R. Hence, the vertex e ∈ M is not adjacent to at most one vertex in C and thus
dC(e) ≥ |C| − 2. According to Lemma 5.3, e is satisfied. Thus C is a community of size at
least |M |+ 2 + k.

Let C be a community in G′ of size at least |M |+2+k. According to Lemma 5.4, there
exists a community C ′ of G′ such that |C ′| ≥ |C| and {z1, z2} ∪M ⊆ C ′. We claim that
R′ := C ′ ∩N is an independent set of G of size at least k. Obviously |R′| ≥ k. Moreover,
Lemma 5.3 states that for all satisfied vertices w ∈ C ′, dC′(e) ≥ |C ′| − 2. Hence for each
vertex e ∈M there is at most one vertex u ∈ C that is not adjacent to e. Since a non-edge
between vertices e ∈ M and u ∈ N in G′ implies u ∈ e in G, then the edge e ∈ E has at
most one endpoint u ∈ R′ in the graph G. Thus, R′ is an independent set of size at least
k.

Notice that there exists graphs on which a community of maximum size is not connected,
even if the graph is a cubic graph (Figure 5.2) or a caterpillar (Figure 5.3).

5.3.2 Non-approximability
The previous reduction from Theorem 5.5 is actually an L-reduction which allow us to
establish its APX-hardness.

Proposition 5.6. Max Community is APX-hard, even on split graphs.

101

CHAPTER 5. MAX COMMUNITY

Figure 5.2: A cubic graph where the community of maximum size (in gray) is disconnected.

Figure 5.3: A caterpillar T = (V,E) constructed by two stars Sd for some integer d such
that their center are joined by a path of length 2. The community in gray is a disconnected
community of maximum size, whereas a connected community of maximum size have no
more than |V |2 vertices.

Proof. We prove that the reduction from Theorem 5.5 is an L-reduction when we reduce
Max Independent Set on cubic graphs to Max Community. Let I be an instance of
Max Independent Set on the cubic graph G = (V,E) and we construct an instance I ′
of Max Community defined on the graph G′ = (V ′, E ′) = Γ(G).

We recall that since a cubic graph is 4-colorable, opt(I) ≥ |V |
4 . Since a cubic graph

contains exactly 3|V |
2 edges we have opt(I ′) = 2 + |E| + opt(I) = 2 + 3|V |

2 + opt(I) ≤
2 + 3|V |

2 + |V | ≤ 2 + 5|V |
2 ≤ 2 + 10 · opt(I) ≤ 11 · opt(I).

Moreover, for any community S ′ inG′ we can construct an independent set S inG of size
|S| = |S ′|−|E|−2. Since opt(I ′) ≥ |S ′| = |S|+|E|+2, in particular, when S is an optimum
independent set, opt(I ′) ≥ opt(I) + |E| + 2. In addition, opt(I) ≥ |S| = |S ′| − |E| − 2, in
particular, when S ′ is an optimum community, opt(I) ≥ opt(I ′)− |E| − 2. Thus we obtain
opt(I) = opt(I ′)− |E| − 2 and opt(I)− |S| = opt(I ′)− |S ′|.

Since Max Independent Set is APX-hard on cubic graphs [7], we conclude that
Max Community is APX-hard on split graphs.

Corollary 5.7. There is no ptas for Max Community unless P=NP.

In the next section, we discuss some positive results for approximation.

102

CHAPTER 5. MAX COMMUNITY

5.4 Positive results for approximation
We show that Max Community is polynomial-time 2-approximable, which establishes its
APX-completeness. We also give a polynomial-time 2·(∆−1)+1

∆ - approximation algorithm,
where ∆ is the maximum degree of the graph, using an upper-bound of the size of a
community.

We design a polynomial-time algorithm that generates, given a graph G = (V,E), a
community of size at least d |V |2 e.

Lemma 5.8. Let G = (V,E) be a graph with n vertices. Let C ⊂ V be a set of vertices of
size n

2 or n
2 + 1 for n even, and n+1

2 for n odd. If C is not a community in G, then there
exists a vertex u ∈ C such that dC(u) < dC(u) if |C| ≤ n+1

2 , and dC(u) ≤ dC(u) otherwise.

Proof. Let C ⊂ V such that C is not a community. Hence, there exists a vertex u ∈ C
such that the proportion condition is not satisfied and thus |C| · dC(u) < (|C| − 1) · dC(u)
(*).

• If |C| = n
2 + 1 (n even), assume by contradiction that dC(v) > dC(v), for each vertex

v ∈ C. In particular inequality (*) becomes (n2 − 1) · (dC(u) + 1) < n
2 · dC(u) which is

true if and only if dC(u) ≥ n
2 . Thus d(u) = dC(u) + dC(u) > n, which is not possible.

• If |C| = dn2 e, assume by contradiction that dC(v) ≥ dC(v), for each vertex v ∈ C. In
particular inequality (*) becomes bn2 c ·dC(u) < (dn2 e− 1) ·dC(u) ≤ bn2 c ·dC(u), which
contradicts our assumption.

Theorem 5.9. Given a connected graph on n vertices, a community of size at least dn2 e
vertices can be constructed in linear time.

Proof. We apply Algorithm 1 on G and prove that the algorithm terminates.

Algorithm 1: Find a community of size at least n
2 .

Input: G = (V,E) a graph with n vertices.
Output: C ⊂ V a community in G.
Let C ⊂ V with |C| = dn2 e;
while C is not a community do

Let u ∈ C such that dC(u)− dC(u) is maximum;
C := C ∪ {u};

return C;

103

CHAPTER 5. MAX COMMUNITY

• Case 1: n is odd. Notice that at the end of each loop, the set C is modified without
changing its size |C| = n+1

2 . If C is not a community, then according to Lemma 5.8
there is a vertex v ∈ C for which dC(v) < dC(v). Therefore, the vertex u chosen
within the loop has dC(u) − dC(u) > 0. Thus the size of the cut between C and C
decreases after each loop and the algorithm terminates.

• Case 2 : n is even. Notice that Algorithm 1 starts with |C| = n
2 . If C is not

a community in G, then due to Lemma 5.8, it exists a vertex v ∈ C such that
dC(v) < dC(v). The selection of the vertex u ∈ C inside the loop ensures that the
size of the cut between C and C strictly decreases at the end of the loop. Now observe
that after the first loop, |C| = n

2 + 1. If C is not a community, according to Lemma
5.8, there exists a vertex v ∈ C such that dC(v) ≤ dC(v). Therefore the vertex u
inside the loop has dC(u) ≤ dC(u). Obviously, after the second loop, |C| = n

2 . Since
after each loop |C| alternates between n

2 and n
2 + 1, the cut between C and C strictly

decreases every two loops, and the algorithm terminates. Thus the algorithm enters
while-loop at most O(|E|) times and terminates when C is a community.

Algorithm 1 implies several consequences. Firstly, it gives a 2-approximation algorithm
since any community has size at most |V | − 1. Besides, it shows that the decision version
associated to Max Community is in FPT when parameterized by the natural parameter
k (i.e. the size of the solution). Indeed, if the parameter k ≤ d |V |2 e, then a community
of size greater than k can be found in polynomial time using Algorithm 1. On the other
hand, if k > d |V |2 e, then we have |V | < 2k and an exhaustive research can be done in O(22k)
operations.

We show in the following how the calculation of the approximation ratio can be im-
proved with regard to the maximum degree of the graph.

Lemma 5.10. Let G = (V,E) be a connected graph and C ⊂ V be a community in G.
Then |C| ≤ b |V |·(∆(G)−1)+1

∆(G) c.

Proof. Let v be a vertex of C with at least one neighbor in C = V \C (such vertex exists
since G is connected). Since C is a community, v fulfills the proportion condition, that is
∆(G)−1
|C|−1 ≥

dC(v)
|C|−1 ≥

d
C

(v)
|C| ≥

1
|V |−|C| which implies that |C| ≤ |V |·(∆(G)−1)+1

∆(G) . Since |C| is an
integer, we obtain |C| ≤ b |V |·(∆(G)−1)+1

∆(G) c.

Proposition 5.11. Max Community is polynomial-time 2·(∆(G)−1)+1
∆(G) -approximable.

Proof. Let G = (V,E) be a graph, C be a solution given by Algorithm 1 and opt(G)
denote the size of a community of maximum size in G. According to Lemma 5.10 we
have opt(G) ≤ |V |·(∆(G)−1)+1

∆(G) . Thus we obtain |C| ≥ |V |
2 ≥

∆(G)
2·(∆(G)−1)+1 ·

|V |·(∆(G)−1)+1
∆(G) ≥

∆(G)
2·(∆(G)−1)+1 · opt(G).

104

CHAPTER 5. MAX COMMUNITY

As mentioned above, regardless of the maximum degree of the graph, Algorithm 1 gives
a 2-approximation for Max Community since |C| ≥ 1

2 · |V | ≥
1
2 · opt(G).

Theorem 5.12. Max Community is APX-complete.

5.5 Polynomial-time solvability in some graph classes

5.5.1 Some easy graph classes
First notice that the problem is easy to solve in graphs of maximum degree 2. Indeed,
given a connected graph G = (V,E), any community C cannot have a size greater than
b |V |+1

2 c since of Lemma 5.10. Then, Algorithm 1 gives a community of maximum size.
Even if Max Community is NP-complete on split graphs, we show that Max Com-

munity can be solved easily on some particular split graphs, namely threshold graphs, by
noticing that a community of any size can be found in linear time.

Proposition 5.13. Any threshold graph G = (V,E) contains a community of size exactly
k for any integer k ∈ {1, . . . , |V | − 1}.

Proof. Since G is a threshold graph, we can order the vertices of the independent set as
v1, . . . , vp such that N(v1) ⊆ N(v2) ⊆ . . . ⊆ N(vp).

If k ≤ |V |−p, then any k vertices from the clique of the graph is trivially a community.
Now suppose that k > |V | − p, then we claim that the subset C := V \ {v1, v2, . . . , v|V |−k}
is a community of size exactly k. Indeed, any vertex from C in the independent set has no
neighbor in V \C, so they trivially satisfy the proportion condition. Moreover, any vertex
from C in the clique is linked to any other vertex of C by the choice of the vertices we put
outside of C, and thus trivially satisfies the proportion condition. Thus C is a community
and has size k.

Corollary 5.14. Max Community can be solved in linear time on threshold graphs.

Proof. Let G = (V,E) be a threshold graph. According to Proposition 5.13, a community
of size |V |−1 can be found using the structure of threshold graphs. Since threshold graphs
can be recognized in linear time [96], the result follows.

5.5.2 Hamiltonian cubic graphs
Now we prove that any Hamiltonian cubic graph G = (V,E) (except two graphs, see Figure
5.4) has a community of the maximum possible size b2·|V |+1

3 c (see Lemma 5.10 for upper
bounds on a community size). Furthermore, we can find such a community in linear time
if a Hamiltonian cycle is given.

A Hamiltonian cubic graph G = (V,E) can be described as a set of vertices V =
{0, 1, . . . , |V | − 1}, a Hamiltonian cycle and a set of edges between non-successive vertices

105

CHAPTER 5. MAX COMMUNITY

H1 H2

Figure 5.4: Two Hamiltonian cubic graphs H1 and H2 with 8 vertices in which there is no
community of size b2·8+1

3 c = 5.

in the cycle. Without loss of generality, we assume that such graphs have a Hamiltonian
cycle (0, 1, ..., |V | − 1, 0). To avoid tedious notations, we may use i ∈ Z to refer to the
vertex (i (mod n)).

We introduce two essential notions that will be used throughout the proof.

Definition 5.15. Let G = (V,E) be a Hamiltonian cubic graph and k := d |V |−1
3 e, then:

• a good shift denotes a set P := {u, u+ 1, u+ 2, . . . , u− k − 1} for some u ∈ V , such
that dP (u) = dP (u− k − 1) = 2.

• an almost good shift denotes a set P := {u, u+ 1, u+ 2, . . . , u− k} for some u ∈ V ,
such that dP (u) = dP (u− k) = 2.

Notice that a good shift P is a community of size b2·|V |+1
3 c since any vertex of P has at

least two neighbors in P due to the structure of the graph. An almost good shift P is of
size b2·|V |+1

3 c + 1, and thus is not a community due to Lemma 5.10, but has the property
that any vertex of P has at least two neighbors in P .

Now, we prove that if G does not contain a good shift, then G contains an almost good
shift P and, in such case, it is always possible to find a vertex v ∈ P such that P \ {v} is
a community of size b2·|V |+1

3 c.
Due to the structure of the graph, we can highlight specific sets of vertices of a Hamil-

tonian cubic graph:

Definition 5.16. Let G = (V,E) be a Hamiltonian cubic graph, and k := d |V |−1
3 e, then:

• for each vertex u ∈ V , c(u) denotes the vertex v ∈ V such that uv ∈ E and |u−v| > 1;

• L := {u ∈ V : c(u) ∈ {u− k, u− k + 1, , . . . , u− 2}};

• R := {u ∈ V : c(u) ∈ {u+ 2, u+ 3, . . . , u+ k}};

106

CHAPTER 5. MAX COMMUNITY

We derive some observations from these definitions. For a given Hamiltonian cubic
graph G = (V,E) and u ∈ V , notice that u ∈ L if and only if c(u) ∈ R, and symmetrically.
This particularly implies that |L| = |R| ≤ |V |

2 . Moreover, notice that for a vertex u ∈ L, the
set P := {u, u+ 1, · · · , u− k− 1} cannot be a good shift, since dP (u) = 1. Symmetrically,
if u ∈ R, the set P := {u + k + 1, u + k + 2, . . . , u − 1, u} cannot be a good shift, since
dP (u) = 1. These observations are summed up in the following lemma.

Lemma 5.17. Let G = (V,E) be a Hamiltonian cubic graph, k := d |V |−1
3 e and u ∈ V . If

u /∈ L and (u−(k+1)) /∈ R, then the set {u, u+1, . . . , u−(k+1)−1, u−(k+1)} is a good shift.
Symmetrically, if u /∈ R and (u+k+1) /∈ L, then the set {u+k+1, u+k+2, . . . , u−1, u}
is a good shift.

Proof. The proof is straightforward. Since u /∈ L and (u− (k + 1)) /∈ R, we have dP (u) =
dP (u−(k+1)) = 2, where P := {u, u+1, · · · , u−(k+1)}. The other case is symmetrical.

A natural consequence of Lemma 5.17 is that if a Hamiltonian cubic graph G has no
good shift, then we can define a whole set of vertices that must be either in L or in R. In
that way, we define the following:

Definition 5.18. Given a Hamiltonian cubic graph G = (V,E) and a vertex u ∈ V , we
define <u>:= {u+ δ · (k + 1) : δ ≥ 1, δ ∈ N} with k := d |V |−1

3 e.

Applying Lemma 5.17 recursively on a graph without any good shift, we obtain Corol-
lary 5.19.

Corollary 5.19. Let G = (V,E) be a Hamiltonian cubic graph without a good shift and
u ∈ V . Therefore:

• if u /∈ R then <u>⊆ L and also u ∈ L,

• if u /∈ L, then <u>⊆ R and also u ∈ R,

• |L| = |R| = |V |
2 .

Proof. First notice that since u + |V | · (k + 1) = u, we have u ∈<u>. If u /∈ R, we can
apply Lemma 5.17 recursively and derive that <u>= {u+ δ · (k + 1) : δ ≥ 1, δ ∈ N} ⊆ L,
and since u ∈<u>, u ∈ L.

Symmetrically, if u /∈ L, then {u− δ · (k+ 1) : δ ≥ 1, δ ∈ N} ⊆ R. Since u− δ · (k+ 1) =
u−δ·(k+1)+|V |·(k+1) = u+δ·(|V |−1)·(k+1), we have {u−δ·(k+1) : δ ≥ 1, δ ∈ N} =<u>.
Thus, <u>⊆ R, and since u ∈<u>, u ∈ R.

This implies that for any vertex u ∈ V , u ∈ L or u ∈ R. Finally, since u ∈ L if and only
if c(u) ∈ R and u ∈ R if and only if c(u) ∈ L, then it is obvious that |L| = |R| = |V |

2 .

Now, given a Hamiltonian cubic graph G = (V,E) that does not contain any good shift,
we show that V can be partitioned into sets < i > with i ∈ {0, 1, · · · , gcd(|V |, k+ 1)− 1},
with gcd(|V |, k + 1) the greatest common divisor of |V | and k + 1. This partition will be

107

CHAPTER 5. MAX COMMUNITY

useful to display an almost good shift P and a vertex to remove from P in order to obtain
a community in G. This result comes from a basic property of the cyclic group Z/nZ that
we recall on Lemma 5.20.

Lemma 5.20. Let n ≥ 4 be some integer, k := dn−1
3 e and d := gcd(k + 1, n). If all

integers are considered mod n, then {0, 1, · · · , n − 1} = ∪i∈{0,1,··· ,d−1} < i >, and for any
i, j ∈ {0, 1, · · · , d− 1} with i 6= j, <i> ∩ <j>= ∅.

Proof. First we prove that for any u ≥ d, u ∈< i > for some i ∈ {0, 1, · · · , d − 1}. Let
u ≥ d. Then there exist two integers a, b with b ≤ d− 1, such that u = a · d+ b. Moreover
there exist two integers c, f such that c · (k + 1) + f · n = d since d = gcd(k + 1, n). Then,
u = a·c·(k+1)+a·f ·n+b = b+a·c·(k+1). Thus u ∈ with b ≤ d−1. This proves that
any integer is in a set <i> for some i ≤ d− 1, i.e. {0, 1, · · · , n− 1} = ∪i∈{0,1,··· ,d−1} <i>.

In order to prove the second part, we first show that n = | < u > | · d for any u ∈
{0, 1, · · · , n − 1}. Let u ∈ {0, 1, · · · , n − 1} and p ≥ 1 be the smallest integer such
that u + p(k + 1) = u. Notice that | < u > | = p and let us show that n = p · d.
Let n′, k′ be two integers such that n = n′ · d, k + 1 = k′ · d and gcd(n′, k′) = 1. We
prove that n′ = p by verifying that n′ divides p and p divides n′. First, notice that
u+n′ · (k+1) = u+n′ ·k′ ·d = u+n ·k′ = u. Thus, p divides n′. On the other hand, notice
that u = u+ p(k+ 1) = u+ p · k′ · d, then p · k′ · d = 0. This implies that n divides p · k′ · d
and thus n′ divides p ·k′. Since gcd(n′, k′) = 1, n′ divides p. Now notice that two sets<i>,
<j> for some integers i, j are either equal or disjoint. Since for any u ∈ {0, 1, · · · , n− 1}
we have |<u> | = n

d
, then obviously all sets<i>, i ∈ {0, 1, · · · , d− 1} are disjoints.

Now, given a Hamiltonian cubic graph G = (V,E) and k := dn−1
3 e, we discuss the

possible values of gcd(|V |, k+ 1) and prove how one can find a community of size b2·|V |+1
3 c

in G. First, we show that if |V | = 3k, then there is always a good shift in G.

Lemma 5.21. Let n be an even integer, n ≥ 4. Then:

• if n = 3k − 1, then gcd(n, k + 1) ∈ {2, 4},

• if n = 3k, then gcd(n, k + 1) ∈ {1, 3},

• if n = 3k + 1, then gcd(n, k + 1) = 2.

Proof. Consider the case n = 3k − 1, then d := gcd(k + 1, 3k − 1) = gcd(k + 1, 3k − 1 −
2(k + 1)) = gcd(k + 1, k − 3) = gcd(4, k − 3). As n is even, then k is odd and d ∈ {2, 4}.
The other cases can be proved using the same reasoning.

Corollary 5.22. Let G be a Hamiltonian cubic graph with 3k vertices, k ≥ 2. Then G has
a good shift.

Proof. Suppose by contradiction that there is no good shift in G = (V,E). Notice that if
|V | = 3k, then k = d |V |−1

3 e. Let d := gcd(k + 1, |V |). From Lemma 5.21 we get d ∈ {1, 3}.
According to Corollary 5.19, |L| = |R| = |V |

2 . If d = 1, then V = < 0> (Lemma 5.20),

108

CHAPTER 5. MAX COMMUNITY

hence V = L or V = R, which is impossible. If d = 3, then |V | = < 0> ∪ < 1> ∪ < 2>
(Lemma 5.20). According to Corollary 5.19, < i>⊆ L or < i>⊆ R for any i ∈ {0, 1, 2},
thus |R| 6= |L|, which is not possible.

From Lemma 5.20 and Lemma 5.21, if a Hamiltonian cubic graph G = (V,E) has no
good shift, then V can be written as V = < 0> ∪ < 1> ∪ < 2> ∪ < 3> (we may have
<0> = <2> and <1> = <3>). Hence those graphs can be split into two categories:

• type RLRL: for any vertices i, i + 1 with i ∈ V , we have i ∈ L and i + 1 ∈ R, or
i ∈ R and i + 1 ∈ L. In this case, we always assume without loss of generality that
R = <0> ∪ <2> and L = <1> ∪ <3>.

• type RRLL: there exist two vertices i, i + 1 with i ∈ V such that i, i + 1 ∈ L
or i, i + 1 ∈ R. In this case, we always assume without loss of generality that
R = <0> ∪ <1> and L = <2> ∪ <3>.

We can finally show that, given a Hamiltonian cubic graph G, if G has no good shift,
then there exist an almost good shift P in G (Lemma 5.23) and a vertex v ∈ P such that
P \ {v} is a community (Proposition 5.24 and Theorem 5.25).

Lemma 5.23. Let G = (V,E) be a Hamiltonian cubic graph with no good shift and k :=
d |V |−1

3 e. Then there exist an almost good shift P := {u, u+ 1, u+ 2, · · · , u− k}, u ∈ V , of
size |V | − k + 1 such that dP (v) ≥ 2 for all v ∈ P , and u+ 1 ∈ L and u− k − 1 ∈ R.

Proof. Let d := gcd(k + 1, |V |). Since G has no good shift, according to Lemma 5.21 and
Corollary 5.22, d ∈ {2, 4} and |V | = 3k− 1 or |V | = 3k+ 1. From Corollary 5.19, we know
that each vertex in V belong to either L or R.

• Case 1: G is of type RLRL. Since |V | is even, then |P | is even. Therefore, since two
vertices i, i+ 1 ∈ P do not both belong to L or R, then the vertex −k belongs to L.
Then the set P := {0, 1, · · · ,−k} fulfills the requirements.

• Case 2: G is of type RRLL. Consider the set P := {1, 2, · · · ,−k + 1}. According to
Lemma 5.21, since d = 4, |V | = 3k − 1. Hence, −k + 1 = 2− (k + 1) ∈ <2>. Thus
−k + 1 ∈ L and P fulfills the requirements.

Recall that the graphs H1 and H2 with 8 vertices showed in Figure 5.4 have no com-
munity of size b2·|V |+1

3 c = 5. We show in Theorem 5.25 that they are the only cubic
Hamiltonian graphs in which there is no community of size b2·|V |+1

3 c.
Before proving the main theorem, we first deal with small graphs (|V | < 20) that are

particular cases that need to be treated independently.

Proposition 5.24. Let G = (V,E) be a Hamiltonian cubic graph not isomorphic to H1 or
H2 with |V | < 20. Then there is a community of size b2·|V |+1

3 c in G.

109

CHAPTER 5. MAX COMMUNITY

Proof. Let k = d |V |−1
3 e. Since G is cubic, its number of vertices is even. From Lemma

5.21, gcd(k+ 1, |V |) ∈ {1, 2, 3, 4}. If gcd(k+ 1, |V |) ∈ {1, 3}, then there exists a good shift
from Corollary 5.22. We suppose then that gcd(k + 1, |V |) ∈ {2, 4}. The following cases
remain:

• If |V | = 4, then G is the complete graph K4, and any set of 3 vertices is a community
of size b2·4+1

3 c.

• If |V | = 8, we claim that G must have a good shift. By contradiction, suppose that
G has no good shift. If G is of type RRLL then G is isomorphic to H1, and if G is of
type RLRL then G is isomorphic to H2, which is impossible since we assumed that
G is not isomorphic to H1 or H2.

• If |V | = 10, if G has no good shift, since gcd(k + 1, |V |) = 2, G is necessarily of type
RLRL and c(0) = 3, c(1) = 8, c(2) = 5, c(4) = 7, c(6) = 9. In this case, V \ {0, 6, 9}
is a community of size b2·10+1

3 c.

• If |V | = 14, if G has no good shift, since gcd(k + 1, |V |) = 2, then G is necessarily
of type RLRL. Following Lemma 5.23, let P := {0, 1, · · · , 9} be an almost good shift
and:

– If c(3) 6= 0, notice that c(2), c(4) ∈ P (since 2, 4 ∈ R) and c(3) ∈ V \ P . Thus
P \ {3} is a community of size b2·14+1

3 c.
– If c(6) 6= 9, notice that c(7), c(5) ∈ P (since 5, 7 ∈ L) and c(6) ∈ V \ P . Thus
P \ {6} is a community of size b2·14+1

3 c.
– If c(3) = 0 and c(6) = 9, notice that c(3) ∈ P , c(5) ∈ P and dP (c(4)) = 3 since
c(4) 6= 9). Thus P \ {4} is a community of size b2·14+1

3 c.

• If |V | = 16, if G has no good shift, since gcd(k + 1, |V |) = 2, G is necessarily of type
RLRL. Following Lemma 5.23, let P := (0, 1, · · · ,−k) be an almost good shift. Since
0 ∈ R, we have either c(0) = 3 or c(0) = 5. In each case, the graph is completely
determined due to the constraints. In the first case, P \ {4} is a community of size
b2·16+1

3 c. In the second case, P \ {3} is a community of size b2·16+1
3 c.

In each case, if G is not isomorphic to H1 or H2, then either G has a good shift which
is a community of size b2·|V |+1

3 c, or we give a community of such size.

Theorem 5.25. Let G = (V,E) be a Hamiltonian cubic graph not isomorphic to H1 or
H2. Then there is a community of size b2·|V |+1

3 c in G.

Proof. If |V | < 20, then there is a community of size b2·|V |+1
3 c in G from Proposition 5.24.

Now we suppose that |V | ≥ 20, which implies that k := d |V |−1
3 e ≥ 7.

From Lemma 5.21, gcd(k + 1, |V |) ∈ {1, 2, 3, 4}. If gcd(k + 1, |V |) ∈ {1, 3}, then there
exists a good shift (Corollary 5.22).

110

CHAPTER 5. MAX COMMUNITY

We suppose that gcd(k + 1, |V |) ∈ {2, 4}. If G contains a good shift, then the proof is
done. Hence, we assume that G has no good shift. We prove that given an almost good
shift P , there exists a vertex u∗ ∈ P such that P \ {u∗} is a community. Observe that
such vertex u∗ exists if and only if c(u∗ − 1), c(u∗ + 1) ∈ P , and either c(u∗) ∈ V \ P or
dP (c(u∗)) = 3.

• If G is of type RLRL, then R = < 0 > ∪ < 2 > and L = < 1 > ∪ < 3 >.
According to Lemma 5.23, the set P := {0, 1, 2, · · · ,−k} is an almost good shift and
0 ∈ R, 1 ∈ L. Since 2 ∈ R and 4 ∈ R, then c(2) ∈ P and c(4) ∈ P . If c(3) 6= 0,
then c(3) ∈ V \ P since 3 ∈ L. Thus, P \ {3} is a community of size b2·|V |+1

3 c.
Symmetrically, if c(−k − 3) 6= −k, then c(−k − 3) ∈ V \ P since 3 ∈ R. Thus,
P \ {−k − 3} is a community of size b2·|V |+1

3 c. On the other hand, if c(3) = 0 and
c(−k − 3) = −k, then c(k − 1) 6= −k and c(k − 1) ∈ P . Moreover, since k − 3 ∈ R
then c(k − 3) ∈ P . Therefore, c(k − 2) ∈ V \ or dP (c(k − 2)) = 3 (since k ≥ 7,
k − 2 6= 3 and c(k − 2) 6= 0). Thus, P \ {k − 2} is a community of size b2·|V |+1

3 c.

• If G is of type RRLL, then R = < 0> ∪ < 1> and L = < 2> ∪ < 3>. According
to Lemma 5.23, the set P := {1, 2, · · · ,−k + 1} is an almost good shift and 1 ∈
R, 2 ∈ L,−k ∈ R,−k + 1 ∈ L. Since k + 1 ∈ < 0 > and k + 2 ∈ < 1 >, we
necessarily have k − 1, k ∈ L and k + 1, k + 2 ∈ R. In this case, notice that since
k ≥ 7, {k − 3, k − 2, k − 1} ∈ P . Moreover, k − 3, k − 2 ∈ R, which implies
c(k − 3), c(k − 2) ∈ P . We show that either c(k − 1) ∈ P or c(k) ∈ P . Suppose
that c(k) /∈ P . Then since k ∈ L, we have c(k) = 0. Since k − 1 ∈ L, we have
c(k − 1) ∈ {−1, 0, 1, · · · , k − 3}. Since 0 = c(k) and −1 ∈ L, then c(k − 1) 6= −1
and c(k − 1) 6= 0. Thus c(k − 1) ∈ {1, 2, ..., k − 3} ⊂ P . Thus either c(k − 1) ∈ P
or c(k) ∈ P . Now, if c(k − 1) ∈ P , then since c(k − 3) ∈ P , the set P \ {k − 2} is
a community of size b2·|V |+1

3 c. Else, c(k) ∈ P and then since c(k − 2) ∈ P , the set
P \ {k − 1} is a community of size b2·|V |+1

3 c.

From Theorem 5.25 and using Lemma 5.10, we obtain the following corollary:

Corollary 5.26. Given a cubic graph G = (V,E) and a Hamiltonian cycle of G, a com-
munity of maximum size can be found in linear time.

5.6 Extension of a vertex subset into a community
Olsen proved that deciding whether a given vertex subset can be extended into a community
structure in a graph is NP-complete [133]. In this section we prove that the same result
holds for a community, i.e. to answer whether a given subset of vertices of a graph can be
extended into a community is NP-complete, even on bipartite graphs.

111

CHAPTER 5. MAX COMMUNITY

Community Extension
Input: A graph G = (V,E), a set S ⊂ V in G.
Question: Does it exist C ⊂ V such that S ⊂ C and C is a community in G?

Lemma 5.27. Let m, n and k be positive integers such that 1 ≤ k < n − 1 ≤ m and
` := m · (n− k − 1)− k + 1. Then `+k−1

m+`+k−1 = n−k−1
n−k .

Proof. (n− k) · (`+ k − 1) = (n− k − 1) · (`+ k − 1) + `+ k − 1 = (n− k − 1) · (`+ k +
1) +m · (n− k − 1) = (n− k − 1) · (m+ `+ k + 1) .

Definition 5.28. Let G = (V,E) be a graph not isomorphic to a star with n vertices and
m edges and k ≥ 2 be an integer. We define Γ′ such that the graph G′ = (V ′, E ′) = Γ′(G)
is as follows (see Figure 5.5 for an illustration):

• V ′ := L∪M∪N , where L contains ` := m·(n−k−1)−k+1 vertices,M := {e : e ∈ E}
and N := V .

• for all e ∈M and all u ∈ N , the edge (e, u) ∈ E ′ if and only if u /∈ e;

• for all e ∈M and all v ∈ L, the edge (e, v) ∈ E ′;

Notice that in Definition 5.28, G′ is bipartite as there are edges only between M and
L ∪N . Obviously, the construction can be done in polynomial time.

a

b

c d

e

G = (V,E)

Γ′

ab

bc

bd

be

cd

de
a

b

c

d

e

L M N

G′ = (V ′, E ′)

Figure 5.5: Example of the transformation Γ′ with k = 3.

Theorem 5.29. Community Extension is NP-complete even on bipartite graphs.

112

CHAPTER 5. MAX COMMUNITY

Proof. Clearly, the problem is in NP. Let G = (V,E) be a connected graph not isomorphic
to a star with n vertices and m edges. Notice that if k = |V | − 1, as G is not isomorphic
to a star, then there is no independent set of size |V | − 1 in G. For the given G and k,
where 1 ≤ k < |V | − 1, let G′ = (V ′, E ′) = Γ′(G). We claim that G has an independent
set of size at least k if and only if there exists a community C in G′ such that L∪M ⊂ C.

Let R ⊂ V be an independent set of G of size |R| = k′ ≥ k. We claim that C :=
L ∪M ∪ R is a community in G′. Firstly, notice that since R is an independent set of G,
then for any e = (u, v) ∈ E at least one of u and v does not belong to R. Therefore, for
any vertex e ∈M , at least one w ∈ N such that (e, w) /∈ E ′ does not belong to R, thus to
C. Hence, we get that `+ k′ − 1 ≤ dC(e) ≤ `+ k′ and dC(e) = d(e)− dC(e) ≤ n− k′ − 1.
According to Lemma 5.27,

dC(e)
|C| − 1 ≥

`+ k′ − 1
m+ `+ k′ − 1 ≥

`+ k − 1
m+ `+ k − 1 = n− k − 1

n− k
≥ n− k′ − 1

n− k′
≥ dC(e)
|C|

,

we conclude that C is a community in G′.
Let C be a community in G′ such that L ∪ M ⊂ C, L ∪ M 6= C. We claim that

R := C ∩N is an independent set of G of size at least k. Notice that since L∪M ⊂ C and
L∪M 6= C, then R is not empty. As it follows from Definition 5.28, a vertex e ∈M is not
adjacent to exactly two vertices in N . Let u and v denote such two vertices. Since C is a
community, the vertex e is satisfied if and only if at most one of u and v is in C. Thus at
most one of the two endpoints u and v of the edge e = (u, v) ∈ E is in R, hence R is an
independent set. Now we prove that |R| = k′ ≥ k. Let u ∈ R and f ∈M such that u ∈ f
in G, then dC(f) ≥ n − k′ − 1. If dC(f) = n − k′ then f is not satisfied in C. Therefore,
dC(f) = n − k′ − 1. Assume by contradiction that k′ < k. Since C is a community and
|C| > 1, we have

dC(f)
|C| − 1 ≥

dC(f)
|C|

= n− k′ − 1
n− k′

>
n− k − 1
n− k

.

However, according to Lemma 5.27,

dC(f)
|C| − 1 = `+ k′ − 1

m+ `+ k′ − 1 <
`+ k − 1

m+ `+ k − 1 = n− k − 1
n− k

which is a contradiction. Hence k′ ≥ k.

In our reduction, the set L∪M can be a community or not, depending on the value of
k and n. Indeed, L ∪M is a community if and only if `

m+`−1 ≥
n−2
n

which directly implies
k ≤ n

2 . Therefore, we stress that deciding if a community is inclusion-wise maximal is
co-NP-complete.

Corollary 5.30. Let G = (V,E) be a connected graph and C ⊂ V a community in G.
Deciding if C is inclusion-wise maximal is co-NP-complete on bipartite graphs.

In the following we show that the class of graphs from Figure 5.3 has a set of only 5
vertices that cannot be extended into a community (see Figure 5.6).

113

CHAPTER 5. MAX COMMUNITY

Figure 5.6: A caterpillar T = (V,E) where the 5 vertices in gray cannot be extended into
a community.

Proposition 5.31. Let G = (V,E) be a graph obtained by joining the center of two stars
Sd for some integer d by a path of length 2. Let P denote the path on 5 vertices connecting
the two centers of the stars. Then, there is no community C ⊂ V in G such that P ⊆ C.

Proof. We denote by z and z′ the center vertices of the stars S and S ′ respectively. Firstly,
notice that P is not a community since neither z nor z′ is satisfied. Consider a set C ⊂ V
such that P ⊂ C. Let λ := dC(z) and respectively λ′ := dC(z′). Without loss of generality,
assume that λ ≤ λ′. We have |C| = (d − λ + 1) + (d − λ′ + 1) + 1 ≥ 2 · (d − λ′ + 1) + 1
and |C| = λ + λ′ ≤ 2λ′. Suppose by contradiction that C is a community in G, then the
vertex z′ is satisfied and 2λ′ · (d− λ′) ≥ |C| · (d− λ′) ≥ (|C| − 1) · λ′ ≥ 2λ′ · (d− λ′ + 1),
which is obviously impossible. Thus C is not a community.

5.7 Conclusions
We proved that Max Community is NP-hard even on split graph, whether the com-
munity is required to be connected or not. In addition, the problem is APX-hard and
2-approximable in polynomial time. On the other hand, we proved that all Hamiltonian
cubic graphs (except two) have a community with a size that reaches the theoretical bound
b |V |·(∆(G)−1)+1

∆(G) c, and such community can be found in polynomial time. Finally, we showed
that determining if a community is inclusion-wise maximal is co-NP-complete, even on
bipartite graphs.

Several questions remain open around this problem. It is not known in which graph
classes a community that reaches the previous theoretical bound exists, and if so, if such
community can be found in polynomial time. In particular, an extension of our theorem
for Hamiltonian cubic graphs to general cubic graphs could be interesting to investigate.
Furthermore, it could be interesting to investigate the problem in trees. From the ap-
proximation point of view for Max Community, we do not know if there is a better
approximation ratio than 2, or a better inaproximation ratio than (1− ε).

114

CHAPTER 5. MAX COMMUNITY

115

6
Clubs

Contents
6.1 Introduction . 117
6.2 Preliminaries . 118
6.3 Partition into two 2-clubs . 119
6.4 Edge editing . 122

6.4.1 Edge adding . 123
6.4.2 Edge deletion . 124

6.5 Conclusions . 127

The content of this chapter is based on the following article in preparation:

v C. Bazgan, P. Heggernes and T. Pontoizeau, On the hardness of problems around
s-clubs on split graphs, in preparation.

6.1 Introduction
In this chapter, we investigate problems around s-clubs. In the context of community
detection, the first intuitive way to define a cohesive group of people that constitutes a
community is to look for a group of people where everybody knows each other, which
corresponds to search for a clique in a graph.

However, as discussed in Chapter 3, considering communities as cliques is too restric-
tive: a subgraph with all possible internal edges except one would not be considered as
a community under this assumption, even if it probably should be in real world social
networks.

We can consider a less restrictive condition which still reflects cohesion. In this way, a
community can be defined as a group of people such that every two members have a ’chain’

117

CHAPTER 6. CLUBS

of relationship between them: the first person knows someone who knows someone ... who
knows the second member, with a restricted length for this chain. Given a graph, Mokken
introduced in [126] the notion of s-club which is a vertex set such that the subgraph induced
by the vertex set has diameter at most s. Recent studies have been made around finding
s-clubs in real networks [113, 127].

Problems around s-clubs have been well studied in the literature. A main one is, given a
graph, to find an s-club of maximum size, which has been studied in [10, 38, 85, 93, 94, 147].

Another problem consists in finding a partition into k parts of vertices that are all
s-clubs, that we discuss in this paper. This problem has been studied in [1, 37, 52, 138].
The problem has been showed linear time solvable in trees by Parley et. al. in [138]. In
[52], Deogun et. al. proved that the problem is NP-hard for any k ≥ 3 and s ≥ 2 even
in the case where the graph is both split and undirected path. Moreover, it is proved in
[52] that for s = 2 the minimum number of parts is bounded by the domination number
of a graph and is equal to the domination number on strongly chordal graphs. Abbas et.
al. [1] proved that minimizing the number of parts in a partition of a graph into s-clubs is
NP-hard for any s ≥ 2 for bipartite graphs, NP-hard on chordal graphs, and also NP-hard
for split graphs with s = 2 and any k ≥ 3.

It is interesting to also study dynamic versions of community detection. In fact, real
social network are constantly changing and links between members can either appear or
disappear. In this way, we also study problems related to s-clubs around adding and
removing edges. In [140], Plesnik studied the following problem: given a graph G, a cost
function c on the edges and an integer B, finding a spanning subgraph G′ of G with cost∑
e∈G′ c(e) < B and with minimum diameter. The associated decision problem has been

proved NP-complete. In [23], Biló et al. studied the two following problems. Given a graph
G = (V,E), and two positive integers D and B, find a minimum-cardinality set E ′ of edges
to be added to G in such a way that the diameter of G′ = (V,E ∪E ′) is less than or equal
to D. Given a graph G = (V,E), find a set E ′ of B edges to be added to G in such a
way that the diameter of G′ = (V,E ∪ E ′) is minimized. Both are known to be NP-hard.
Deleting at most t edges to a graph in order to obtain a graph of diameter at least s was
proved NP-hard for k = |E| − |V |+ 1 and s = |V | − 1 by Schoone et al. in [148].

The chapter is organized as follows. In Section 6.2, we introduce formally the problems
around 2-clubs we studied. In Section 6.3, we discuss a wrong result from [37] and show
that the problem of finding a partition into two 2-clubs is NP-hard, even in split graphs.
In Section 6.4.1, we discuss the problem of adding a minimum number of edges in a graph
in order to become of diameter at most 2. In Section 6.4.2, we study the problem of
finding the minimum number of edges to keep in a graph while maintaining its diameter.
Conclusion and open problems are given in Section 6.5.

6.2 Preliminaries
In this section we define the notions and the problems studied in this chapter. We are
interested in the following decision problem :

118

CHAPTER 6. CLUBS

In Section 6.3, we investigated the following problem:
k-Partition into s-clubs
Input : A graph G = (V,E), two integers k, s.
Question : Is there a partition {P1, P2, . . . , Pk} of V such that Pi is an s-club,
for each i ∈ {1, . . . , k}?

In Section 6.4.1, we investigate the following problem:
s-Club Edges Adding
Input : A graph G = (V,E), two integers s, t.
Question : Is there a set of edges E ′ of size at most t such that V is an s-club
in the graph G′ = (V,E ∪ E ′) ?

In Section 6.4.2, we investigated the following problem:
Spanning s-club
Input : A graph G = (V,E), an integer k.
Question : Is there a set of edges E ′ ⊂ E of size at most k such that the graph
G′ = (V,E ′) is of diameter s ?

In order to prove some NP-hardness results, we use the following problem proved NP-
hard in [77]:

Dominating Set
Input : A graph G = (V,E), an integer t.
Question : Is there a set of vertices S ⊂ V of size at most t such that S is a
dominating set ?

Since we have several results in this class of graphs, we introduce some notation for
an easier reading. For any split graph G = (V = S ∪K,E), S always corresponds to the
independent set and K to the clique. Moreover, for any dominating set D of G, we always
consider that D is included in K. Indeed, if a vertex v of D belongs to S, we can take any
neighbor v′ of v from K in D instead of v from S without compromising the fact that D
is a dominating set.

6.3 Partition into two 2-clubs
In this section, we first discuss that for bipartite graphs, partitioning a graph into two
2-clubs can be done in polynomial time whereas partitioning a graph into k 2-clubs, for
any fixed k ≥ 3, is NP-hard. Then, we show that partitioning a graph into two 2-clubs is
NP-hard even on split graphs.

Since a 2-club in a bipartite graph is a biclique, then for bipartite graphs, partitioning
a graph into k 2-clubs is equivalent to partition a graph into k bicliques. Since partition-
ing a bipartite graph into two bicliques is polynomial time solvable, [GT15] in [77], and

119

CHAPTER 6. CLUBS

partitioning a bipartite graph into k bicliques for any fixed k ≥ 3 is NP-hard [69], we can
conclude that that for bipartite graphs, partitioning a graph into two 2-clubs can be done
in polynomial time whereas partitioning a graph into k 2-clubs, for any fixed k ≥ 3 is
NP-hard.

Now notice that an interesting approach to detect s-clubs in graphs is to consider the
power graph of the initial graph (see [37, 85]). In [37], Chang et al. claimed that the
minimum number of parts in a partition into 2-clubs in a graph G equals the minimum
number of cliques in a partition into cliques in G2. Actually, there exist graphs (even split
graphs) in which there is no partition into two 2-clubs but the squared graph contains a
partition into two cliques. We can consider the graph in Fig. 6.1 as an example. The
vertices a1 and b1 are at distance 3, then if such partition exists in this graph, a1 and b1
must be in different parts. We can apply this reasoning for the vertices a1 and b2, a1 and b3
and conclude that b1, b2, b3 are in the same part. By symetry, a1, a2, a3 are also in the same
part. Since the only common neighbor of a2, a3 and b1, b2 is c, c needs to be in both parts
in order to have a partition into 2-clubs, which is impossible. Thus, there is no partition
into two 2-clubs.

c

G

a1 a2 a3 b1 b2 b3

c

G2

b3b2b1a3a2a1

Figure 6.1: A split graph in which there is no partition into two 2-clubs but there is a
partition into two cliques in the squared graph. Some edges are dotted in G2 in order to
highlight the partition into two cliques.

In order to prove that partitioning a graph into two 2-clubs is NP-hard on split graphs,
we introduce Monotone 3-Sat that has been proved NP-hard in [77].

Monotone 3-Sat
Input : A set X of variables, a collection C of clauses over X which contains
either only negated variables or only positive variables such that for each clause
c ∈ C, |c| = 3.
Question : Is there a satisfying truth assignment for C ?

Theorem 6.1. 2-Partition into 2-clubs is NP-hard even on split graphs.

Proof. We reduce Monotone 3-Sat to 2-Partition into 2-clubs on split graphs. Let
I = (X,C) be an instance of Monotone 3-Sat with X the set of variables and C the
set of clauses of size three, each clause being either positive or negative. We denote C1 the

120

CHAPTER 6. CLUBS

subset of C of positive clauses and C0 the subset of C of negative ones. We define a split
graph G = (V = S ∪K,E) as an instance of 2-Partition into 2-clubs as follows (see
Fig. 6.2).

For each positive clause ci of C1, introduce two vertices ci,1, ci,2 in a subset Sp. For
each negative clause ci of C0, introduce two vertices ci,1, ci,2 in a subset Sn. For each
variable xi ∈ X we introduce a vertex xi in a subset Kx. Notice that |Kx| = |X|. All
vertices ci,1, ci,2 ∈ Sp ∪ Sn which correspond to a clause ci ∈ C are joined by an edge
in E ′ to a vertex xi ∈ Kx that corresponds to a variable xi ∈ X either if it appears in
a negative or a positive way in ci ∈ C. Moreover, for each two vertices ci,`, cj,t in Sp
(resp. Sn) corresponding to two different positive clauses (resp. negative clauses), i 6= j
and `, t ∈ {1, 2} such that both clauses do not contain any common variable, introduce
a new vertex z in a subset Kp (resp. Kn) and introduce ci,lz, cj,tz in E. Notice that
|Kp| = O(|C1|2) (resp. |Kn| = O(|C0|2)). Let S ′p (resp. S ′n) be a subset of |Kp| (resp.
(|Kn|) vertices and introduce a perfect matching in E between Kp (resp. Kn) and S ′p (resp.
S ′n). Moreover, for each couple {z1, z2} ⊂ Sp ∪ S ′p (resp. Sn ∪ S ′n) such that they have
no common neighbor in Kp ∪ Kx (resp. Kn ∪ Kx), introduce an additional vertex w in
a subset K ′p (resp. K ′n) and introduce z1w, z2w ∈ E. Notice that |K ′p| = O(|C1|4) and
|K ′n| = O(|C0|4). Let S = Sp∪Sn∪S ′p∪S ′n and K = K ′p∪Kp∪Kx∪Kn∪K ′n and join any
two vertices of K by an edge in E so the subgraph induced by K becomes a clique, and we
obtain a split graph G = (S ∪K,E). Notice that |S| = O(|C|2) and |K| = O(|C|4 + |X|),
then the size of the instance G is polynomial in |X| and |C|.

x1 x2 x3 x4 x5 x6

... ...

Sp SnS ′p S ′n

Kp Kn
K ′p K ′nKx

Figure 6.2: The split graph G defined from the instance I = (X,C) with X =
{x1, x2, x3, x4, x5, x6} and C = {x1 ∨ x2 ∨ x3, x4 ∨ x5 ∨ x6, x3 ∨ x5 ∨ x6, x1 ∨ x2 ∨ x3, x1 ∨
x3 ∨ x5, x4 ∨ x5 ∨ x6, }

Now we show that there is an assignment for the variables of X such that every clause
of C is satisfied if and only if there is a partition of V into two 2-clubs.

Suppose that there is a assignment satisfying all clauses from C. Then, we define the

121

CHAPTER 6. CLUBS

partition {V1, V0} of V into two 2-clubs as follows. Let K1 (resp. K0) be the set of all
vertices xi ∈ Kx such that the corresponding variables xi ∈ X have been assigned to true
(resp. false). Define V1 = S ′p ∪ Sp ∪K ′p ∪Kp ∪K1 (resp. V0 = S ′n ∪ Sn ∪K ′n ∪Kn ∪K0).
Now we show that for every pair of vertices {z1, z2} in V1, dV1(z1, z2) ≤ 2. First, for any
z1, z2 ∈ V1 ∩K, dV1(z1, z2) = 1. Moreover, for any z1 ∈ V1 ∩K, z2 ∈ V ′1 ∩ S, dV1(z1, z2) ≤ 2
since any vertex of S has a neighbor in K. Finally, for any z1, z2 ∈ V1 ∩ S, dV1(z1, z2) = 2
since z1 and z2 always have a common neighbor either in K ′p, Kp or K1. Then, for any
pair of vertices {z1, z2} in V1, dV1(z1, z2) ≤ 2. The same reasoning can be done for V0 by
symmetry. Thus, {V1, V0} is a partition of V ′ into two 2-clubs.

Suppose now that there is a partition {V1, V0} of V such that V1 and V0 are 2-clubs.
First notice that for any vertex z1 ∈ S ′p ∪ Sp and any z2 ∈ S ′n, d(z1, z2) = 3. Then we
can assume without loss of generality that (S ′p ∪ Sp) ⊂ V1 and S ′n ⊂ V0. This implies that
K ′p ∪Kp ⊂ V1 since any two vertices of S ′p ∪ Sp must have a common neighbor in V1. By
symmetry, we can also conclude that Sn∪S ′n∪K ′n∪Kn ⊂ V0. Then, we show that assigning
all variables in X corresponding to the vertices in Kx ∩ V1 to true and all variables in X
corresponding to the vertices in Kx ∩ V0 to false is an assignment satisfying all clauses in
C. By contradiction, suppose that there is a clause in ci ∈ C which is false with respect
to this assignment. Wlog we consider that the clause is a positive one. Then, all variables
in ci are assigned to false and the corresponding vertices in Kx are in C0 whereas the two
vertices ci,1, ci,2 in Sp corresponding to the clause ci are in V1. Then, by construction, ci,1
and ci,2 have no common neighbor in V1 and thus V1 is not a 2-club. Thus, the defined
assignment for X satisfies all clauses in C.

In [37], Chang et al. claimed that determining if the complement of the squared graph
is bipartite allows to determine if there is a partition of a graph into two 2-clubs. Actually,
this only allows to determine if there is a covering into two 2-clubs (i.e. a set {C1, C2} of
subsets of V such that C1 ∪ C2 = V and C1, C2 are 2-clubs). In fact, there is a covering
into two 2-clubs if and only if the complement of the squared graph is bipartite. Indeed,
if the complement of the squared graph is bipartite with the 2-partition (A,B), a covering
into two 2-clubs can be determined by considering the partition (A,B) and for any two
vertices which are not at distance 2 in the subgraph induced by one part, add a common
neighbor of those two vertices into this part (without removing it from the original part).
Notice that the existence of such bipartition ensures that such vertex always exists. In
Figure 6.1, c would belong to both 2-clubs.

It can be observed that 2-Partition into 2-clubs is easy to solve on split graphs of
diameter 2, since considering any vertex of the independent set in one part and the rest of
the graph in the other part constitutes a 2-partition into two 2-clubs.

6.4 Edge editing
We now focus on problems in which edge adding or removal can ensure or maintain some
distance between the vertices of the resulting subgraph.

122

CHAPTER 6. CLUBS

6.4.1 Edge adding
The s-Club Edges Addition problem has been proved NP-hard for s = 3 by Schoone
et al. in [148] and NP-hard for s = 2 by Li et al. in [118]. The case s = 1 is trivial since
it corresponds to adding edges between every pair of nonadjacent vertices. Gao et al. [76]
proved the W[2]-hardness of the problem for any s ≥ 2 by establishing a reduction from
Dominating Set.

We prove that 2-Club Edges Addition is W[2]-hard even on split graphs. Notice
that even if a solution is not required to be a split graph, we show in Theorem 6.2 that it
is always possible to obtain a split graph of diameter 2 with less edges than any solution.

Theorem 6.2. 2-Club Edges Adding is W[2]-hard even on split graphs.

Proof. We reduce Dominating Set on split graphs of diameter 2, which has been proved
W[2]-hard by Lokshtanov et. al. in [119], to 2-Club Edges Addition on split graphs.
Let G = (V = S ∪ K,E) be a split graph of diameter 2, instance of Dominating Set,
where S corresponds to the independent set and K to the clique. We construct an instance
G′ = (V ′, E ′) of 2-Clubs Edges Addition as follows. Consider a copy of G and add two
new vertices s0, k0. The graph G′ is a split graph with V ′ = S ′ ∪K ′ where S ′ = S ∪ {s0}
and K ′ = K ∪ {k0}. Set E ′ is obtained from E by adding edges between k0 and every
vertex v ∈ K and the edge k0s0 (see Figure 6.3). We show now that there is a dominating
set of size at most t in G if and only if we can add at most t edges to G′ such that G′ has
diameter 2.

k0

s0

Figure 6.3: The graph G′ and a set of edges (represented by dotted lines) of minimum size
to add to make G′ having diameter 2 (a minimum dominating set is given in gray).

Suppose that D is a dominating set of size t in G. We assume that D ⊆ K. The graph
(V ′, E ′ ∪ D′) where D′ = {s0x : x ∈ D} has diameter 2 since any vertex from S has a
neighbor in D and then s0 is at distance two from any vertex from S.

Suppose now that D′ is a set of non edges of G′ of size t such that G′′ = (V ′, E ′ ∪D′)
has diameter 2. We first show that we can assume that all edges in D′ are between s0
and K. Let xy ∈ D′. If x = s0 and y ∈ S, let y′ be a neighbor of y in K and the graph
G′′ = (V ′, E ′ ∪ D′ ∪ {s0y

′} \ {xy}) is still of diameter 2. If both x and y are different
from s0 and x ∈ S, y ∈ K, then the graph G′′ = (V ′, E ′ ∪D′ \ {xy}) is still of diameter 2
since G has diameter 2. If now both x and y are different from s0 and x ∈ S, y ∈ S, then

123

CHAPTER 6. CLUBS

the graph G′′ = (V ′, E ′ ∪ D′ \ {xy}) is still of diameter 2 since G has diameter 2. Thus,
we can assume that all edges in D′ are between s0 and K (by updating D′ if necessary)
and |D′| ≤ t. Then, the set of vertices adjacent to s0 by an edge in D′ is necessarily a
dominating set of G since s0 and any vertex of S must be at distance 2. Thus, we obtain
a dominating set in G of size at most t.

6.4.2 Edge deletion
In this section, we discuss the hardness of Spanning s-club in split graphs and of Span-
ning s-club for any odd s ≥ 3 in general graphs.

First, we observe that Spanning s-club is easy to solve for any s ≥ 4 in split graphs.
Indeed, for any split graph G = (S ∪ K,E), define the spanning tree G′ = (V ′, E ′) such
that for any v ∈ S, choose a unique edge e ∈ E adjacent to v in G and let e be in E ′.
Then choose any vertex x ∈ K and for any x′ ∈ K such that x 6= x′, let xx′ be in E ′. The
remaining graph G′ has diameter 4 and the number of edges in E ′ is minimum since G′ is
a tree (see Figure 6.4).

Figure 6.4: A split graph and its spanning subtree of diameter 4

We believe that Spanning 3-club should be NP-hard in split graphs. A reduction
could be done if the following conjecture is true:

Conjecture 6.3. Let G = (V = S∪K,E) be a split graph and D be a minimum dominating
set of G. Then, for any spanning subgraph G′ = (V,E ′) of G of diameter 3, we have
|E ′| ≥ |D|(|D|−1)

2 + |V | − |D|.

Several observation makes us think that this conjecture is true. Let G = (V = S∪K,E)
be a split graph and D be a minimum dominating set of G. Let G′ = (V,E ′) be a spanning
subgraph of G of diameter 3.

First of all, consider any vertex s ∈ S. Since such vertex must be at distance 3 of any
other vertex from S in the subgraph G′, ∑

q∈N(s) d(q) ≥ |D|. This shows that the number
of edges in G′ is strongly related to the size of the minimum dominating set.

Moreover, we can show that the conjecture is true if |D| = |S|. Indeed, if |D| = |S|
then any vertex d from D covers exactly one vertex in S. This implies that there is no
s1, s2 in S which have a common neighbor in G since we would have |D| < |S|. Let
s1, s2, . . . , sp+1 be the vertices of S. For each si, 1 ≤ i ≤ p + 1, we note Si the set of

124

CHAPTER 6. CLUBS

its neighbors in G′. Since G′ has diameter 3, we know that any si, 1 ≤ i ≤ p + 1, must
be at distance 3 from any other sj, j 6= i, which implies that there must exist at least
one edge in G′ between any Si and Sj, i 6= j. Thus, E ′ contains at least |S|(|S|−1)

2 edges
between all Si and Sj, i 6= j. Moreover, E ′ also contains all edges between {si} and Si for
1 ≤ i ≤ p + 1 by definition of Si. Finally, any vertex from K which has no neighbor in S
must have at least one adjacent edge in E ′ since G′ must be connected. Thus, we obtain
|E ′| ≥ |S|(|S|−1)

2 + ∑p+1
j=1 |Sj|+ |K|−

∑p+1
j=1 |Sj| = |S|(|S|−1)

2 + |K| = |D|(|D|−1)
2 + |V |− |D|, since

|D| = |S|.
Showing this conjecture would allow us to prove the following:

Proposition 6.4. If Conjecture 6.3 is true, then Spanning 3-club is NP-complete even
on split graphs.

Proof. Suppose that Conjecture 6.3 is true. We reduce Dominating Set on split graphs,
which has been proved NP-complete in [22], to Spanning 3-club on split graphs. Notice
that Spanning 3-club is obviously in NP. Let G = (V = S ∪K,E) be a split graph as
an instance of Dominating Set, where S corresponds to the independent set and K to
the clique, and we also consider G as an instance of Spanning 3-club. We show that
there is a dominating set of size at most b in G if and only if there is a spanning subgraph
containing at most b(b−1)

2 + |V | − b in which V is a 3-club.
Let D be a dominating set of size b in G, D ⊆ K. Define the following spanning

subgraph G′ = (V,E ′) with E ′ ⊂ E. For each pair of vertices {x, y} in D, xy belongs
to E ′. Moreover, for each v /∈ D, choose any edge vx with x ∈ D in E ′. Notice that
|E ′| = b(b−1)

2 + |V | − b and it is easy to see that G′ is a spanning subgraph of diameter 3.
Now let G′ = (V,E ′) be a spanning subgraph of G of diameter 3 such that |E ′| ≤

b(b−1)
2 + |V | − b for some integer b and let D be a minimum dominating set of G. From

Conjecture 6.3, |E ′| ≥ |D|(|D|−1)
2 + |V |−|D|. Thus, b(b−3) ≥ |D|(|D|−3). Since b, |D| ≥ 1,

we obtain b ≥ |D|. Thus, there exists a dominating set of size less than b in G.

In order to go a little further, it is now interesting to notice that the latter conjecture
would imply that Spanning (2s+1)-club is NP-complete in general graphs for any s ≥ 1.
In order to prove that, we introduce the concept of graph almost split of length s. For any
s ≥ 1, a graph G is said to be almost split of length s if we can construct G by considering
a split graph and for each vertex of G we add a path of length s− 1 linked to this vertex
(see Figure 6.5). For a given graph almost split of length s, we note Si the set of all vertices
from the added paths which are at distance i from a vertex of the induced split graph.
Notice that a split graph is a graph almost split of length 0.

For any s ≥ 1, we reduce Spanning (2s + 1)-club in graphs almost split of length
s− 1 to Spanning (2s+ 3)-club in graphs almost split of length s.

Proposition 6.5. If Conjecture 6.3 is true, then Spanning (2s+1)-club is NP-complete
on general graphs for any s ≥ 1.

125

CHAPTER 6. CLUBS

Figure 6.5: A split graph, a graph almost split of length 1 and a graph almost split of
length 2

Proof. We suppose that Conjecture 6.4 is true. Let s ≥ 1 be any integer. Since Spanning
3-club is supposed to be NP-complete from Conjecture 6.4, we reduce Spanning (2s+1)-
club in graphs almost split of length s− 1 to Spanning (2s+ 3)-club in graphs almost
split of length s for any s ≥ 1 and show the property by polynomial reduction transitivity.

Let G = (V,E) be an instance of Spanning (2s + 1)-club in graphs almost split
of length s − 1 where V := S0 ∪ S1 ∪ · · · ∪ Ss−1 ∪ K. We construct an instance G′ =
(V ′, E ′ ∪ E ′′) of Min spanning (2s + 3)-club in graphs almost split of length s where
V ′ := S ′0∪S ′1∪· · ·∪S ′s∪K ′ as follows. For any i ∈ {1, . . . , s−1}, let S ′i be a copy of Si. Let
K ′ be a copy of K. There is an edge in E between two vertices of S0∪S1∪· · ·∪Ss−1∪K if
and only if there is an edge in E ′ between the corresponding copies in S ′0∪S ′1∪· · ·∪S ′s−1∪K ′.
Finally, let S ′s be a set of |V | vertices, and let E ′′ be a perfect matching between S ′s and
S ′s−1.

We show now that there is a spanning subgraph with k edges in G of diameter 2s + 1
if and only if there is a spanning subgraph with k + |S0| edges in G′ of diameter 2s + 3.
Obviously, if G has a spanning subgraph of diameter 2s+ 1 with k edges, considering the
corresponding edges in G′ and adding all edges from E ′′ between S ′s−1 and S ′s, we obtain a
spanning subgraph of diameter 2s+ 3. Now suppose that G′ has a spanning subgraph G′0
of diameter 2s+3 with k+ |S0| edges. Since any vertex from S ′s must have an adjacent edge
in G′0 (otherwise the subgraph would not be connected), the spanning subgraph contains k
edges between two vertices of V ′ \S ′s. Consider the spanning subgraph G0 of G containing
those corresponding k edges. Since G′0 has diameter 2s + 3, any two vertices from S ′s−1
must be at distance 2s+ 1, and then G0 has diameter 2s+ 1.

We believe that Spanning 2-club must also be NP-complete. We give the following
conjecture:

Conjecture 6.6. Spanning 2-club is NP-complete even on split graphs.

126

CHAPTER 6. CLUBS

Using a similar reduction from Proposition 6.5, assuming that Conjecture 6.6, we can
derive the following proposition:

Proposition 6.7. If Conjecture 6.3 is true, then Spanning (2s)-club is NP-complete on
general graphs for any s ≥ 2.

In that way, we obtain the following proposition:

Proposition 6.8. If Conjectures 6.3 and 6.6 are true, then Spanning s-club is NP-
complete on general graphs for any s ≥ 2.

6.5 Conclusions
In this chapter, we proved that partitioning a graph into two 2-clubs is NP-hard, even on
split graphs. Moreover, we proved that 2-Club Edges Adding is W[2]-hard even on split
graphs. We also discussed the possible NP-hardness of Spanning 2-club and Spanning
3-club on split graphs, and of Spanning s-club on general graphs for any integer s ≥ 1.

On the other hand, in addition to our conjectures, some open questions remain open.
In Section 6.3, we saw that partitioning a graph into two 2-clubs is harder than expected
in [37]. However, we would expect that a graph of diameter 2 has always such a partition,
but this problem remains open. On the other hand, investigating the complexity of 2-
club Adding Edges and Spanning 2-club in bipartite graphs would give a better
understanding of s-clubs in graphs.

127

7
Independent 2-cliques

Contents
7.1 Introduction . 130

7.2 Preliminaries . 130

7.3 Complexity jump from planar graphs to apex graphs 132

7.4 Graph classes with polynomial-time algorithms 134

7.4.1 Graph classes related to the degree 134

7.4.2 Finding an independent 2-clique in the neighborhood of a vertex 135

7.4.3 Other graph classes in which both problems are polynomial-time
solvable . 137

7.5 NP-hardness and non-approximability 139

7.5.1 Split graphs . 140

7.5.2 Bipartite graphs . 141

7.5.3 Line graphs . 142

7.6 Conclusions . 144

The content of this chapter is based on the following papers [17, 18]:

v C. Bazgan, T. Pontoizeau, Z. Tuza. On the Complexity of Finding a Potential Com-
munity. The 10th International Conference on Algorithms and Complexity (CIAC
2017), LNCS 10236, pages 80-91, 2017.

v C. Bazgan, T. Pontoizeau, Z. Tuza. Finding a potential community in networks.
Theoretical Computer Science, accepted.

129

CHAPTER 7. INDEPENDENT 2-CLIQUES

7.1 Introduction
With the recent development of social networks and particularly online meet-up services
like Couchsurfing or Meetup.com, it could be interesting to investigate the detection of some
group of people who do not know each other, but are related by their other relationships.
Such a group could be considered as a ‘potential’ community since it does not form a
community in the first place, but could become one due to their proximity. This may find
various applications in online dating and meet-up services in which members expect not
to know the other members.

More precisely, considering a graph G, we want to define potential communities by
looking at independent sets in which any two members are related within a specified dis-
tance in G. Contrary to a k-club, the distance between two vertices must be realized via
vertices outside of the subgraph. We call such a subset of vertices an independent k-clique,
where k is the largest distance between vertices of S in the original graph. In this paper,
we study the problem of finding an independent 2-clique of maximum size.

We investigate the complexity of the problem in several graph classes. Since this prob-
lem is close to finding an independent set of maximum size, we also compare the hardness
of the two problems. Figure 7.1 summarizes the results we prove in this chapter.

This chapter is structured as follows. In Section 7.2 we introduce formally some notation
and definitions. In Section 7.3 we show that the complexity of Max Independent 2-
Clique jumps from polynomial-time solvable to NP-hard when the input class is extended
from planar graphs to apex graphs. In Section 7.4 we present polynomial algorithms to
solve Max Independent 2-Clique in some graph classes. In Section 7.5 we show NP-
hardness and non-approximability of Max Independent 2-Clique in some other graph
classes. Conclusions and open problems are given in Section 7.6.

7.2 Preliminaries
An independent 2-clique is defined as a subset of vertices which is an independent set and
a 2-clique at the same time. We recall from Chapter 3 that a 2-clique is a subset of vertices
in which any two vertices are at distance at most 2 in the graph.

In this paper we are interested in the following optimization problem:
Max Independent 2-Clique
Input: A graph G = (V,E).
Output: A subset S ⊂ V which is an independent 2-clique of maximum size.

The Max Independent 2-Clique problem is closely related to the well known prob-
lem of finding an independent set of maximum size, named Max Independent Set.

Given a graph G, the standard notation for the maximum size of an independent set
in G is α(G). The maximum number of vertices in an independent 2-clique of G will be
denoted by α=2(G). The subscript ‘=2’ intends to express that the distance between any
two vertices of the independent set is exactly 2.

130

CHAPTER 7. INDEPENDENT 2-CLIQUES

Bounded

average degree

Bounded

max degree
Planar

Apex

Chordal

SplitBipartite

CographsInterval

Threshold

Line

Bounded

treewidth

Outerplanar

Cactus(C3, C6)-free

Trees

Figure 7.1: Relationship among some classes of (connected) graphs, where an arrow from
a class to another indicates that the first class contains the second one. We compare
the hardness of Max Independent 2-Clique and Max Independent Set in studied
graph classes. Max Independent 2-Clique is NP-hard on graph classes at the top of
the figure (hatched area) and is polynomial-time solvable on graph classes at the bottom
(non-hatched area). Max Independent Set is NP-hard on graph classes on the left
of the figure (dotted area) and is polynomial-time solvable on graph classes on the right
(non-dotted area).

Note that α=2(G) ≥ 2 whenever at least one connected component of G is not a
complete graph. Indeed, any such component contains two vertices at distance exactly
two, hence forming an independent 2-clique of size 2. Moreover, if G is disconnected and
has components G1, . . . , Gk then

α=2(G) = max
1≤i≤k

α=2(Gi)

For these reasons we assume in this chapter that G is a non-complete, connected graph
(although some of the algorithms also need to handle disconnected graphs temporarily).

Independent 2-cliques might have several forms. Indeed, the 2-clique property of an
independent 2-clique S can be ensured either by only one vertex or a lot: if each pair of
vertices have a common neighbor that is different for every pair, the number of vertices
out of S that are useful to insure the 2-clique property can reach |S|·(|S|−1)

2 . See Figure 7.2
as an illustration.

From the parametrized complexity point of view, it is interesting to notice the following
fact.

131

CHAPTER 7. INDEPENDENT 2-CLIQUES

S S

Figure 7.2: Two graphs in which S is an independent 2-clique.

Theorem 7.1. Max Independent 2-Clique belongs to W [1] in general graphs.

Proof. We construct an FPT-reduction from Max Independent 2-Clique to Max
Clique. Let G = (V,E) be an instance of Max Independent 2-Clique. We construct
an instance of Max Clique by considering the graph G′ = (V,E ′) in which xy ∈ E ′ if and
only if x and y are exactly at distance 2 in G. It is easy to see that there is an independent
2-clique of size k in G if and only if there is a clique of size k in G′. Since Max Clique
belongs to W [1] [53], Max Independent 2-Clique also belongs to W [1].

7.3 Complexity jump from planar graphs to apex graphs
According to [78], Max Independent Set is known to be NP-hard in planar graphs,
and thus also in apex graphs. On the other hand, we prove that Max Independent 2-
Clique is polynomial-time solvable on planar graphs but NP-hard on apex graphs. This
shows that inserting or removing a single vertex in a graph may dramatically change the
complexity of Max Independent 2-Clique.

Theorem 7.2. Max Independent 2-Clique is NP-hard on apex graphs.

Proof. We establish a polynomial reduction from Max Independent Set on cubic planar
graphs, which is proved to be NP-hard in [78], to Max Independent 2-Clique on apex
graphs. Let G = (V,E) be a cubic planar graph, an instance of Max Independent Set.
The instance G′ = (V ′, E ′) of Max Independent 2-Clique is defined by inserting an
additional vertex z that is adjacent to every vertex of V . It is easy to see that {z} itself is
a one-element non-extendable independent 2-clique, while the independent 2-cliques of G′
not containing z are precisely the independent sets of G.

Theorem 7.2 implies another interesting result:

Corollary 7.3. Max Independent 2-Clique is NP-hard on the class of graphs of av-
erage degree at most 5.

132

CHAPTER 7. INDEPENDENT 2-CLIQUES

Proof. Cubic graphs on n vertices have 3n/2 edges, thus the graph constructed in the proof
of Theorem 7.2 is of order n+1 and has 5n/2 edges, yielding average degree less than 5.

In order to prove that Max Independent 2-Clique is polynomial-time solvable on
planar graphs, we use a famous theorem introduced by Courcelle in [46] which states that
any problem expressible in Monadic Second-Order Logic is linear-time solvable for graphs
of bounded treewidth. This allows to show first the following:

Theorem 7.4. Max Independent 2-Clique is linear-time solvable on graphs with
bounded treewidth.

Proof. We observe that the problem is expressible in Monadic Second-Order Logic:

maxI2C(S) := maxS{|S| : ∀x∀y(Sx ∧ Sy)→ (¬edg(x, y) ∧ (∃z, edg(x, z) ∧ edg(y, z)))}

Since any problem expressible in Monadic Second-Order Logic is linear-time solvable for
graphs of bounded treewidth (see [46]), α=2 can be determined in linear time in graphs of
bounded treewidth.

Based on this result, we prove the following result.

Theorem 7.5. Max Independent 2-Clique is polynomial-time solvable on planar
graphs.

Proof. Let G = (V,E) be a planar graph and v ∈ V any vertex. Then all the other vertices
in an independent 2-clique S containing v are at distance exactly 2 apart from v. Further,
the 2-clique property for S \ {v} is ensured by vertices within distance at most 3 from v.
Thus, the vertices relevant for S to be an independent 2-clique induce a subgraph G′ in G
such that G′ belongs to the class of ‘4-outerplanar’ graphs. Graphs which are 4-outerplanar
have treewidth at most 11 (more generally, all k-outerplanar graphs have treewidth at
most 3k−1, due to [25]). Then, using Theorem 7.4, a polynomial-time algorithm for Max
Independent 2-Clique in planar graphs consists in solving the problem for all subgraphs
G′ (which have treewidth at most 11) defined from each vertex v of G and choose a solution
of maximum size.

Concerning the parameterized complexity, we can show the following.

Theorem 7.6. The parameterized problem associated with Max Independent 2-Clique
with the natural parameter is in FPT on apex graphs.

Proof. Let G = (V,E) be an apex graph and x ∈ V a vertex such that G − x is planar.
Since any planar graph is 4-colorable [106], the size of an independent set in G[N(x)] is
at least |N(x)|

4 , and so is the size of an independent 2-clique in G. Thus, considering the
parameter k, if |N(x)| ≥ 4k, then the answer is yes.

If now |N(x)| < 4k, as discussed in the previous proof, considering any vertex v be-
longing to an independent 2-clique S in G, the 2-clique property for S \ {v} is ensured

133

CHAPTER 7. INDEPENDENT 2-CLIQUES

by vertices within distance at most 3 from v in G − x. Then, in G, considering any ver-
tex v belonging to an independent 2-clique S, the 2-clique property is ensured by vertices
within distance at most 3 from v in V \ {x} and x and in its neighborhood N(x). For this
reason, for each vertex v ∈ V , we consider the subgraph induced by the set of all vertices
at distance at most 3 from v and include {x} ∪ N(x). This subgraph has treewidth at
most 12 + |N(x)| < 12 + 4k. Since any problem parameterized by q expressible in Monadic
Second-Order Logic is in FPT with respect to q on graphs of treewidth bounded by q [47],
a polynomial-time algorithm can be designed by solving the problem for all such subgraphs
defined from each vertex v of G, and answer yes if at least one such problem answers yes
and answer no otherwise.

7.4 Graph classes with polynomial-time algorithms
In the following we identify some graph classes on which Max Independent 2-Clique is
computable in polynomial time, while Max Independent Set is not always polynomial-
time solvable.

7.4.1 Graph classes related to the degree
First, it is interesting to notice that, according to the next propositions, Max Indepen-
dent 2-Clique is polynomial-time solvable on graphs of bounded degree and also on
complements of graphs of bounded degree, while Max Independent Set is NP-hard on
graphs of bounded degree [78] but polynomial-time solvable on their complements (using
exhaustive search in the non-neighborhood of each vertex, which can be done in linear
time).

Proposition 7.7. Max Independent 2-Clique is linear-time solvable on graphs with
bounded maximum degree.

Proof. The proof consists in computing, for each vertex v of a graph G = (V,E), the largest
size of an independent 2-clique v can belong to. Since the maximum degree is bounded,
also the number of vertices at distance 2 from v is bounded, thus the largest independent
2-clique among them can be determined in constant time. Performing this for all vertices
of the graph can be done in O(|V |) steps.

Proposition 7.8. Max Independent 2-Clique is linear-time solvable on graphs of
minimum degree at least (n− d), where d is constant.

Proof. Since every vertex is non-adjacent with fewer than d vertices, the size of a solution
cannot exceed d. Then using an exhaustive search in the non-neighborhood of each vertex,
we can find an optimal solution in linear time.

134

CHAPTER 7. INDEPENDENT 2-CLIQUES

7.4.2 Finding an independent 2-clique in the neighborhood of a
vertex

Now, notice that a natural way to find an independent 2-clique is to take an independent
set included in the neighborhood of one vertex. First, this principle can be applied easily
on trees.

Proposition 7.9. Every tree T satisfies α=2(T) = ∆(T). Thus, Max Independent
2-Clique is linear-time solvable on trees without using Monadic Logic.

Proof. Any two vertices v, w of an independent 2-clique S share a neighbor, say u, which is
unique in any tree. Non-neighbors of u cannot belong to S because they are at distance at
least 3 from v or w (or both). On the other hand, all neighbors of u have mutual distance
2, so that |S| is largest if S is the neighborhood of a vertex of maximum degree.

In this way, it is interesting to investigate the properties of a graph in which an indepen-
dent 2-clique is not included in the neighborhood of one vertex. We show in Lemma 7.10
that such a graph necessarily contains a cycle of length 3 or 6, and cannot be a cactus if
such an independent 2-clique has a certain size. Such properties allow us to get an easy
polynomial-time algorithm for Max Independent 2-Clique on (C3, C6)-free graphs,
while Max Independent Set is NP-hard1 on this class of graphs (see [5]). From The-
orem 7.4 we already know that Max Independent 2-Clique is linear-time solvable on
cactus graphs, but the property of Lemma 7.10 allows us to give a simpler algorithm for
this class of graphs.

Lemma 7.10. Let G = (V,E) be a graph. Suppose that there exists an independent 2-
clique S not contained in the neighborhood of a single vertex. Then G contains an induced
cycle of length 3 or 6. Moreover, if |S| ≥ 4, G is not a cactus.

Proof. Let S be an independent 2-clique in G such that all vertices of S do not have a
common neighbor. Let u be a vertex in V \S which has the maximum number of neighbors
in S, and Nu be the neighborhood of u in S. Then there exists a vertex z in S which is not
a neighbor of u. Let v be any vertex of Nu, and w be a common neighbor of z and v. Let
v′ be a vertex in Nu non-adjacent to w (it exists by the choice of u). Since S is a 2-clique,
v′ and z have a common neighbor, say w′ (notice that w′ can be neither u nor w). Thus,
C := (u, v, w, z, w′, v′, u) is a cycle in G (see Figure 7.3).

If C has no chord, then it is an induced 6-cycle of G; and otherwise any chord of C lies
inside {u,w,w′} and thus it creates a 3-cycle in G. This proves the first assertion.

Suppose now that |S| ≥ 4. Then there are three options:

• u has only two neighbors in S. Then any two vertices of S must have a different
common neighbor in V \S (by the choice of u), moreover there exists z′ in S\{Nu, z}.

1It is proved in [5] that for a finite set H of connected graphs, Max Independent Set is NP-hard on
the class of H-free graphs if no member of H is either a path or a tree with one vertex of degree 3 and the
other vertices of degree at most 2.

135

CHAPTER 7. INDEPENDENT 2-CLIQUES

S

u w

w′

v′ v z

Figure 7.3: The independent 2-clique S and its (partial) neighborhood selected in the proof
of Lemma 7.10. Dotted lines are possible edges so z can be at distance 2 from other vertices
in S but those are unimportant for the proof.

In this situation v, z, z′ with their three pairwise neighbors create a 6-cycle sharing
the edge wz with C and thus G is not a cactus.

• u has at least 3 neighbors and w has only v as a neighbor in Nu. Let z′ be a vertex of
Nu \{v′, v}. Then z and z′ must have a common neighbor x (which cannot be u or w
but could be w′). Then wz is a common edge of C and the 6-cycle (u, z′, x, z, w, v, u)
and thus G is not a cactus.

• u has at least 3 neighbors and w has at least 2 neighbors in Nu, say v and z′. Then
vw is a common edge of C and the 4-cycle (u, v, w, z′, u) and thus G is not a cactus.

This lemma implies the following theorem:

Theorem 7.11. Any (C3, C6)-free graph G satisfies α=2(G) = ∆(G) and Max Indepen-
dent 2-Clique is linear-time solvable on it.

Proof. By Lemma 7.10, in (C3, C6)-free graphs any independent 2-clique is the neighbor-
hood of some vertex. Then, an independent 2-clique of maximum size is given in linear
time by taking the neighborhood of a vertex of maximum degree since two vertices in the
neighborhood of any vertex are not adjacent in C3-free graphs.

Finally, Lemma 7.10 allows to give a polynomial-time algorithm for Max Indepen-
dent 2-Clique on cactus.

Proposition 7.12. Max Independent 2-Clique is linear-time solvable on cactus graphs.

Proof. Since all cactus graphs have a bounded treewidth, an implicit algorithm running in
linear time follows from the proof of Theorem 7.4.

Being more constructive, let G = (V,E) be a cactus which is not isomorphic to C6. Let
{v1, . . . , vn} be the set of vertices in G and for any i ∈ {1, . . . , n}, note Ni the neighborhood

136

CHAPTER 7. INDEPENDENT 2-CLIQUES

of vi in G and construct Si as an independent set of maximal2 size in the subgraph induced
by Ni in linear time. Notice that Si is actually an independent set of maximum size in
the subgraph induced by Ni since any vertex of Ni may only have at most one neighbor
in Ni since G is a cactus. Let S be one of the sets Si, i = 1, . . . , n, of maximum size.
By construction, S is an independent 2-clique of maximum size among all independent
2-cliques in G in which every vertices have a common neighbor in V . Moreover, S can be
found in linear time.

Now we prove that S is an independent 2-clique of maximum size in G. If |S| ≤ 3, by
Lemma 7.10 we know that α=2(G) ≤ 3. Indeed, if α=2(G) ≥ 4 then G would not be a
cactus since S is an independent 2-clique of maximum size among all independent 2-cliques
in G in which every vertices have a common neighbor. Then, if |S| = 3, S is already an
independent 2-clique of maximum size. Now suppose that |S| = 2. Then α=2(G) = 2.
Indeed, if α=2(G) = 3, since |S| = 2 any independent 2-clique of size 3 would be included
in an induced cycle C6 (as in Figure 7.3) without chord (since G is a cactus) and we note
such a cycle c. Since G is not isomorphic to a cycle of length 6, one of the vertices (say v)
of the cycle c has a neighbor out of c. Then since G is a cactus, the two neighbors of v in c
and one neighbor of v in V \ c is an independent 2-clique of size 3, which is a contradiction
since |S| = 2. Thus, S is an independent 2-clique of maximum size. If |S| ≥ 4, by Lemma
7.10, any independent 2-clique in G is included in the neighborhood of a vertex in V , then
S is an independent 2-clique of maximum size in G.

7.4.3 Other graph classes in which both problems are polynomial-
time solvable

We focus now on classes of graphs on which both Max Independent 2-Clique and Max
Independent Set are polynomial-time solvable. We first investigate a subclass of split
graphs, namely threshold graphs. It follows from the definitions that a threshold graph
G = (V,E) is a split graph with the following property: the vertices of the independent
set S can be ordered as v1, . . . , vp such that NG(v1) ⊆ NG(v2) ⊆ . . . ⊆ NG(vp). We denote
by u1, . . . , uq the vertices of the clique K, and we suppose that dG(u1) ≤ dG(u2) ≤ . . . ≤
dG(uq). Without loss of generality, we assume that there is no isolated vertex in G. Note
that a threshold graph can be recognized in linear time (see [96]).

Proposition 7.13. Max Independent 2-Clique is linear-time solvable on threshold
graphs. Moreover, in every threshold graph G without isolated vertices we have α=2(G) =
α(G).

Proof. Let G = (V,E) be a threshold graph with the previous decomposition into S and K.
Let NG(vp) = {ur, ur+1, . . . , uq}, for some r ≥ 1. Then a maximum independent 2-clique
in G is S if K \ NG(vp) = ∅, and otherwise it is S ∪ {z} with any z ∈ K \ NG(vp), since
in both cases the common neighbor of all these vertices is uq. Since Max Independent

2Vertices of Ni are added to Si one by one until it is not possible to add a vertex from Ni \ Si to Si

without compromising the fact that Si is an independent 2-clique.

137

CHAPTER 7. INDEPENDENT 2-CLIQUES

Set can be solved in linear time in threshold graphs [73], Max Independent 2-Clique
can be solved in linear time.

The previous result can be extended in two directions, for interval graphs and for
cographs.

Using the results of Booth and Lueker [26] it can be tested in linear time whether a
graph G is an interval graph; and if it is, then an interval representation I1, . . . , In of G
can also be generated.

Proposition 7.14. Max Independent 2-Clique is polynomial-time solvable on interval
graphs.

Proof. Consider any G = (V,E) and let I1, . . . , In be an interval representation of G. In
order to determine α=2(G), first notice that all vertices of an independent 2-clique S of
G must have a common neighbor. Indeed, if I and I ′ are the leftmost and the rightmost
intervals of S then any of their common neighbors intersects all intervals located between
them, and therefore is a common neighbor of all members of S. Then, for every vertex
I, we compute a maximum independent set in the subgraph induced by the neighbor-
hood of I. An optimal solution is such an independent set with maximum size. Since
Max Independent Set is polynomial-time solvable on interval graphs [89], the result
follows.

We consider now the class of cographs, that contains all threshold graphs, and we show
that Max Independent 2-Clique is linear-time solvable on this class. In [48], Courcelle
et. al. proved that any problem expressible in Monadic Second-Order Logic is linear-
time solvable for graphs of bounded clique-width. Since cographs are exactly the graphs
with clique-width at most 2 [49], Max Independent 2-Clique is linear-time solvable on
cographs. We give an alternative proof which is more constructive.

To each cograph G with n vertices, we can associate a rooted tree T , called the cotree of
G. Leaves of T correspond to vertices of the graph G, and internal nodes of T are labeled
with either ‘∪’ (union-node) or ‘×’ (join-node). A subtree rooted at node ‘∪’ corresponds
to the vertex-disjoint union of the subgraphs defined by the children of that node, and a
subtree rooted at node ‘×’ corresponds to the complete join of the subgraphs defined by
the children of that node; that is, we add an edge between every two vertices corresponding
to leaves in different subtrees under the join-node in question. Cographs can be recognized
in linear time and the cotree representation can be obtained efficiently [45, 90]. Moreover,
any cotree can easily be transformed in linear time to a binary cotree with O(n) nodes.

Proposition 7.15. Max Independent 2-Clique is linear-time solvable on cographs.

Proof. Consider a cograph G with n vertices v1, . . . , vn. Given a binary cotree representa-
tion T of G with O(n) nodes, we show in the following how to solve Max Independent
2-Clique recursively.

138

CHAPTER 7. INDEPENDENT 2-CLIQUES

Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For i = 1, . . . , t, de-
note by Ti the subtree rooted at xi, Gi the subgraph induced by the vertices corresponding
to the leaves of Ti, and Vi the set of these vertices.

For each i, we compute α=2(Gi) ‘bottom-up’ in the cotree. We start by computing
values of leaves, and after that the value of an internal node if the values of its two children
are already computed. Together with α=2(Gi) we also determine the independence number
α(Gi), which is well known to admit an easy recursion (which follows immediately by the
constructive definition of cographs).

Given a node xi of the cotree, the corresponding values are obtained as follows:

• If xi is a leaf then α=2(Gi) = |Vi| = 1. Also, α(Gi) = 1.

• If xi is a union-node with two children x` and xr, we have no edges between G` and
Gr. Then any maximum independent 2-clique of Gi is entirely contained either in
G` or in Gr. So, α=2(Gi) = max{α=2(G`), α=2(Gr)}. On the other hand, clearly,
α(Gi) = α(G`) + α(Gr).

• If xi is a join-node with two children x` and xr, every vertex in V` is adjacent to
every vertex in Vr. Then a maximum independent 2-clique in Gi is a maximum
independent set entirely contained either in G` or in Gr. So, α=2(Gi) = α(Gi) =
max{α(G`), α(Gr)}.

Since each step can be performed in constant time, moreover postorder traversal requires
linear time, the algorithm runs proportionally to the size of the cotree, which is O(n).

Notice that since Max Independent Set is linear-time solvable on chordal graphs
[73], it is also linear-time solvable on interval graphs and threshold graphs. Moreover, Max
Independent Set is also linear-time solvable on cographs by bottom-up tree computation
[43].

7.5 NP-hardness and non-approximability
We investigate graph classes in which Max Independent 2-Clique is NP-hard and, in
some case, non approximable in polynomial time. Using the reduction from the proof of
Theorem 7.2, we can conclude:

• Max Independent 2-Clique is NP-hard on dense (resp. everywhere dense) graphs,
since Max Independent Set is NP-hard on dense (resp. everywhere dense) graphs.
Moreover, Max Independent 2-Clique is not n1−ε-approximable for any ε >
0, if P 6= NP, on everywhere dense graphs (and respectively dense graphs) since
the same result holds for Max Independent Set on everywhere dense graphs
(and respectively dense graphs). In order to get this last result, we use the same
inaproximability result for Max Independent Set on general graphs [161] and a
reduction preserving approximation from general graphs to everywhere dense graphs

139

CHAPTER 7. INDEPENDENT 2-CLIQUES

(that consists of adding a clique of the same size as the size of the graph and joining
every vertex from the original graph to all vertices in this clique).

• Max Independent 2-Clique is NP-hard on K4-free graphs, since Max Indepen-
dent Set is NP-hard on K3-free graphs [5].

We now investigate graph classes in which Max Independent 2-Clique is NP-hard
while Max Independent Set is polynomial-time solvable.

7.5.1 Split graphs
We first consider a graph class containing threshold graphs, namely the class of split
graphs, for which Max Independent 2-Clique becomes NP-hard (and even not n1−ε-
approximable). Since Max Independent Set is polynomial-time solvable on chordal
graphs [73], it is also polynomial-time solvable on split graphs.

Proposition 7.16. Max Independent 2-Clique is NP-hard on split graphs.

Proof. We reduce Max Clique on general graphs to Max Independent 2-Clique on
split graphs. Let G = (V,E) be an instance of Max Clique. We define an instance
G′ = (V ′, E ′) of Max Independent 2-Clique on split graphs as follows: for every
vertex vi ∈ V we consider a vertex v′i ∈ V ′ and for every edge e ∈ E we consider a vertex
e′ in V ′. We also add an additional vertex z in V ′. Moreover, for any edge e = v1v2 ∈ E
we associate two edges in E ′, the edges v′1e′ and v′2e

′. Finally, the subgraph induced by
vertices e′ ∈ V ′ and z is defined to be a clique. Now it is easy to see that C is a clique
of size at least k in G if and only if C ′ = {v′ : v ∈ C} ∪ {z} is an independent 2-clique of
size at least k+ 1 in G′. On the other hand, given an independent 2-clique S, if z /∈ S and
e′ ∈ S holds for some (only one) e ∈ E, then we can modify S to an independent 2-clique
of the same size by replacing e′ with z. Hence, the maximum can always be attained by
involving z.

Theorem 7.17. Max Independent 2-Clique is W[1]-complete on split graphs.

Proof. From Theorem 7.1, we know that Max Independent 2-Clique belongs to W[1].
On the other hand, the reduction in Proposition 7.16 is an FPT-reduction. Since Max
Clique is W[1]-hard on general graphs [53], then Max Independent 2-Clique is also
W[1]-hard on split graphs.

Theorem 7.18. Max Independent 2-Clique is not n1−ε-approximable in polynomial
time on split graphs unless P=NP.

Proof. We construct an E-reduction from Max Clique. Let I = (V,E) be an instance
of Max Clique and let I ′ = (V ′, E ′) be the corresponding instance of Max Indepen-
dent 2-Clique, considering the same reduction as in Proposition 7.16. First, notice that
opt(I) = opt(I ′) − 1, thus we have opt(I ′) ≤ 2 · opt(I). Now let S ′ be an independent

140

CHAPTER 7. INDEPENDENT 2-CLIQUES

2-clique of I ′ of size at least 2 and let S be the set of all copies of vertices from V in S ′.
Since opt(I) = opt(I ′)−1 and |S| = |S ′|−1, we obtain opt(I)−|S| = opt(I ′)−|S ′|. Since it
has been proved in [161] that Max Clique is not n1−ε-approximable in polynomial time
unless P = NP, Max Independent 2-Clique is not n1−ε-approximable in polynomial
time on split graphs unless P = NP.

7.5.2 Bipartite graphs
We prove now that Max Independent 2-Clique is NP-hard (and even not n1/2−ε-
approximable, unless P = NP) on bipartite graphs while Max Independent Set is
polynomial-time solvable since the number of vertices in a maximum independent set equals
the number of edges in a minimum edge covering.

Proposition 7.19. Max Independent 2-Clique is NP-hard on bipartite graphs.

Proof. Max Independent Set is known to be NP-hard on 3-regular graphs [78], so Max
Clique is also NP-hard on (n− 4)-regular graphs (where n is the number of vertices), by
considering its complement. We reduce Max Clique on (n − 4)-regular graphs to Max
Independent 2-Clique on bipartite graphs. Let G = (V,E) be an (n−4)-regular graph.
We construct an instance of G′ = (V ′, E ′) of Max Independent 2-Clique on bipartite
graphs as follows (see Figure 7.4).

Let V1, V2, V3, V4 be four copies of V . Let E1 be a set of |E| vertices corresponding to
the edges in E, and define V ′ := V1∪V2∪V3∪V4∪E1. Let there exist an edge in E ′ between
a vertex v in Vi, i ∈ {1, 2, 3, 4} and a vertex e in E1 if and only if the corresponding vertex
v in V is incident with the corresponding edge e in E.

V1

E1

V2 V3 V4

Figure 7.4: The bipartite graph G′, an instance of Max Independent 2-Clique

Now we show that G contains a clique of size at least k if and only if G′ contains an
independent 2-clique of size at least 4k.

Given a clique C ⊆ V of size at least k in G, the union of the four copies of C in G′ is
an independent 2-clique of size at least 4k.

For the other direction, notice first that the value of a maximum independent set in a
3-regular graph is at least dn4 e. Then, the value of a maximum clique in an (n− 4)-regular

141

CHAPTER 7. INDEPENDENT 2-CLIQUES

graph is also at least dn4 e. Thus the size of a maximum independent 2-clique in G′ is at
least n.

We consider now a solution C ′ of Max Independent 2-Clique in G′ with at least
4k ≥ n vertices (this restriction is always possible because of the previous comment).
Notice that C ′ cannot contain both a vertex from E1 and a vertex from V ′ \ E1 since the
distance between any two vertices of C ′ must be 2. A solution which is a subset of E1 would
mean pairwise intersecting edges in G, hence would have size at most max(3, n − 4) < n.
Therefore C ′ must be a subset of V ′ \E1. Notice that for any i ∈ {1, 2, 3, 4}, C ′ ∩ Vi must
be a copy of a clique in G. Then C ′ is a union of copies of four cliques in G, and |C ′| ≥ 4k.
Let C0 be the copy of largest size, which thus has |C0| ≥ k. Then C0 is the copy of a clique
C of G of size at least k.

Theorem 7.20. Max Independent 2-Clique is not n1/2−ε-approximable in polynomial
time on bipartite graphs, unless P = NP.

Proof. We construct an E-reduction from Max Clique. Let I = (V,E) be an instance of
Max Clique. Consider a reduction similar to the one in the proof of Proposition 7.19,
except that we now consider ` = |V | copies V1, . . . , V` instead of four copies of V ; adjacencies
are defined in the same way as before. We denote by I ′ = (V ′, E ′) the corresponding
instance of Max Independent 2-Clique from the reduction. As in Proposition 7.19,
starting with a clique of size opt(I), we can construct an independent 2-clique of size
` ·opt(I) in G′ and thus opt(I ′) ≥ ` ·opt(I). Let S ′ be any independent 2-clique in I ′ of size
at least ` (it always exists, take e.g. the ` copies of the same vertex, one copy in each Vi).
As before S ′ cannot contain both a vertex of E1 and a vertex from V \E1 since two vertices
of S ′ must have distance 2 in G′, and S ′ cannot contain only vertices from E1 since any
independent 2-clique included in E1 is of size at most max(3,∆(G)) ≤ ` − 1. Moreover,
each subset Vi∩S ′ corresponds to a clique in G. Let S be the subset Vi∩S ′ of largest size.
We have |S| ≥ |S′|

`
and then opt(I) ≥ |S| ≥ |S′|

`
= opt(I′)

`
when S ′ is an optimal solution.

Using that opt(I ′) ≥ ` · opt(I) we get opt(I ′) = ` · opt(I) and we obtain:

ε(I, S) = opt(I)
|S|

− 1 ≤ ` · opt(I ′)
` · |S ′|

− 1 = ε(I ′, S ′)

Since we clearly have opt(I ′) ≤ p(|I|) · opt(I) with a polynomial p, the reduction is
an E-reduction. Then, since Max Clique is not `1−ε-approximable unless P=NP [161],
the same property holds for Max Independent 2-Clique. Thus Max Independent
2-Clique is not n1/2−ε approximable where n = |V ′| since n = `2 + |E|.

7.5.3 Line graphs
Finally we prove that Max Independent 2-Clique is NP-hard (and even APX-hard) on
line graphs, while Max Independent Set is polynomial-time solvable since it consists
in a maximum matching in the original graph.

Proposition 7.21. Max Independent 2-Clique is NP-hard on line graphs.

142

CHAPTER 7. INDEPENDENT 2-CLIQUES

Proof. We establish a reduction from the Max Clique problem on general graphs. Con-
sider an instance G = (V,E) of Max Clique with |V | = n. We construct a graph
G′ = (V ′, E ′) (see Figure 7.5) as follows. Let G0 = (V0, E0) be a copy of G. Let V ′ be
V0∪A∪B∪C where A,B,C are three sets of n vertices. Then, let E ′ = E0∪E1∪E2∪E3∪E4
such that E1 is a perfect matching between V0 and A, E2 is the set of all possible edges
(i.e., a complete bipartite graph) between the vertices of A and the vertices of B, E3 is a
perfect matching between B and C, and E4 is the set of all possible edges between any
two vertices of C (a complete subgraph). The line graph of G′, denoted by L(G′), is an
instance of Max Independent 2-Clique. Notice that an independent 2-clique in L(G′)
corresponds to a set of edges in G′ such that, for each pair of edges {e1, e2} in the set, e1
and e2 are not adjacent but are joined by an edge. We show that G contains a clique of
size at least k if and only if L(G′) contains an independent 2-clique of size at least k + n.

V0 A B C

Figure 7.5: The graph G′ for which the corresponding line graph L(G′) is an instance of
Max Independent 2-Clique

Consider a clique S of size k in G, and let S0 be its copy in G′. We define a set of edges
S ′ of size at least k+n in G′ as follows. For any vertex v ∈ S0, add in S ′ its adjacent edge
in E1. Moreover add the entire E3 to S ′. We show now that any pair of edges in S ′ have
an adjacent edge in common. Two edges of S ′ ∩ E1 have a common adjacent edge in E0
since the subgraph induced by S0 is a clique. Similarly, two edges of E3 have a common
adjacent edge in E4. Moreover, an edge of S ′ ∩ E1 and an edge of E3 have a common
adjacent edge in E2 since the subgraph induced by A∪B is Kn,n. Then, the corresponding
set of vertices in L(G′) is an independent 2-clique of size k + n.

In the other direction, consider an independent 2-clique in L(G′) of size k + n. Notice
that it is always possible to take the set of vertices in L(G′) corresponding to E3 in G′ and
two edges in E1 whose vertices in V0 are neighbors in G′, hence we can suppose that k ≥ 2.
Let S ′ be the set of all corresponding edges in G′. Suppose first that there is exactly one
edge from E0 in S ′. Then, there are at most n − 2 edges from E1 in S ′, and there are
at most 2 edges from E2 in S ′, due to the constraints of an independent 2-clique. There
cannot be edges from E3∪E4 in S ′ since they would not be joined to the edge of E0∩S ′ by
any edge. Then, S ′ contains at most n+ 1 edges in S ′, which contradicts k ≥ 2. Suppose
now that there are at least g ≥ 2 edges from E0 in S ′. Name two of them e0,1 and e0,2.
Then, there are at most n − 2g edges from E1 in S ′ but there is no edge from E2 in S ′.
Indeed, an edge e2 from E2 in S ′ can be joined by an edge to at most one of e0,1 and e0,2.
Then the size of S ′ does not exceed n, which contradicts k ≥ 2. Thus, we can assume that

143

CHAPTER 7. INDEPENDENT 2-CLIQUES

there is no edge from E0 in S ′. Similarly, there is no edge from E4 in S ′. Now, notice that
|S ′ ∩ (E2 ∪ E3)| ≤ n since if S ′ ∩ (E2 ∪ E3) contained n + 1 edges then at least two of
these edges would have a common endpoint. Consequently, |S ′ ∩ E1| ≥ k. Moreover, any
two edges from S ′ ∩ E1 must have a common adjacent edge in E0 since they cannot have
a common adjacent edge in E2. Then, the subgraph of G induced by the set of vertices
in V0 which are the endpoints of the edges in S ′ ∩ E1 must be a clique whose size is at
least k.

Theorem 7.22. Max Independent 2-Clique is APX-hard on line graphs.

Proof. We construct now an L-reduction from Max Clique to Max Independent 2-
Clique on line graphs. Let I be an instance of Max Clique on graphs of degree at
least n − 4 and I ′ the corresponding instance of Max Independent 2-Clique on line
graphs from the previous reduction. We prove that this reduction is an L-reduction. We
proved in Proposition 7.21 that any independent 2-clique in I ′ has a size at most 2n. Then
opt(I ′) ≤ 2n = 8 · n4 ≤ 8 · opt(I) follows since opt(I) ≥ n

4 in graphs of degree at least n− 4.
Moreover, starting with a clique of size opt(I), we can construct an independent 2-clique
of size opt(I) + n and therefore opt(I ′) ≥ n + opt(I). Let S ′ be an independent 2-clique
in I ′ of size at least n + 2 (we proved in Proposition 7.21 that it always exists and that
such a set must be included in E1 ∪E2 ∪E3). Let S be the set of vertices in V0 which are
incident with edges in E1 ∩ S ′. We have |S ′| − |S| ≤ n which implies n+ |S| ≥ |S ′|. Then
we obtain opt(I)−|S| ≤ opt(I ′)−n−|S| = opt(I ′)− (n+ |S|) ≤ opt(I ′)−|S ′|. Since Max
Independent Set is APX-hard on the class of graphs of maximum degree 3 [6], Max
Clique is also APX-hard on the class of graphs of minimum degree at least n− 4. Thus,
Max Independent 2-Clique is APX-hard on line graphs.

7.6 Conclusions
Despite that Max Independent 2-Clique and Max Independent Set are similar
problems, their complexity can be very different depending on the graph class we try to
solve the problem in. We mainly showed that Max Independent 2-Clique is NP-hard
on apex, dense and everywhere dense, K4-free, split, bipartite and line graphs while it is
polynomial-time solvable on bounded treewidth, planar, bounded degree (and complement
of bounded degree), (C3, C6)-free, interval graphs and cographs. Many further types of
graphs may be of interest, concerning separation of graph classes in which the problem is
NP-hard from the ones where the problem is solvable in polynomial time.

144

CHAPTER 7. INDEPENDENT 2-CLIQUES

145

8
Conclusions

The development of social networks and online meet-up services have made the study
of community detection a major recent stake. In this thesis, we studied four particular
definitions which are relevant for different reasons. Since the definitions for a community
can be various and have different interests depending on the aspect of the cohesion we
want to capture, it might be interesting to investigate other definitions.

On the other hand, we suggest some research directions for future work. For instance,
in Chapter 4, we investigate the notion of community structure, in which each member has
a greater proportion of neighbors in its part than in any other part. We saw that there
exist graphs in which there is no 2-community structure, and the existence of k-community
structure in a graph remains open for general values of k. An interesting relaxation of the
problem would be to consider that each member has only to have a larger proportion of
neighbors in its part than outside of its part. This definition is equivalent to the notion
of k-community structure for k = 2, but becomes less restrictive for higher values of
k. Furthermore, the definition of a community structure can take some robustness into
account by asking, given a partition, for each vertex to satisfy the proportion condition
even if we remove a certain constant q of their neighbors from the graph.

In the context of meet-up services, we investigate in Chapter 7 the notion of inde-
pendent 2-clique in which any two members of such potential community has a common
acquaintance. The vertices that ensure this property between two vertices in an indepen-
dent 2-clique is the heart of the problem which makes the difference with the problem of
just finding an independent set. Given an independent 2-clique S, we call the set of vertices
that have at least two neighbors in S the support of S. Then, an interesting problem that
we can study is, given a graph and some integer k, to find an independent set of size k such
that the size of its support is maximized. This problem makes sense since the size of the
support gives a good natural quality function of the cohesion of such potential community.

In further research around meet-up services, it might be interesting to define even other
aspects of potential communities. In particular, signed graphs, in which labels "+" and
"-" represent good and bad relationships, could be used in order to capture good potential
communities. For instance, an induced path (x, y, z) of length 2 with two labels "+" reveal

147

CHAPTER 8. CONCLUSIONS

a good potential relationship between x and z, and such path with both labels "+" and
"-" reveals some incompatibility between x and z. New problems could arise from this
paradigm. Notice that is also possible to consider directed signed graphs in which there
is an edge from a vertex x to a vertex y if the member x has some (positive or negative)
judgment about y. We can then discuss several situations that often occur in real life: if
x likes y and y like z, it is likely that x should like z, independently from the fact that y
likes x or not. Directed graphs could then be worth of interest to modelize such situation.
Given one of these paradigms, it could be interesting to find a community of a fixed size k
that maximize the quality of cohesion. Such quality could be evaluated according to real
life observations as we suggested previously.

148

CHAPTER 8. CONCLUSIONS

149

List of Figures

1 Comparaison des complexités de Max Independent Set et Max Inde-
pendent 2-Clique . 16

1.1 Zachary’s karate club given in [71]. 20

2.1 The construction of the boolean circuit C from G. 34

3.1 A social network partitioned into intuitive communities 38
3.2 Graph illustrating s-cliques, s-clubs for s = 2. {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}

are 2-cliques meanwhile {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} are 2-clubs. . . 39
3.3 The minimum (x, y)-cut gives an alliance containing x 41
3.4 A graph in which all LS sets (H1, H2, H3, H4) are framed except trivial ones

(singletons and the set of all vertices) . 43
3.5 A graph in which the subset H is a lambda set but not an LS set. 44
3.6 The black and white vertices form a satisfactory partition, but is not a

community structure . 46
3.7 Structural balance: Each labeled triangle must have 1 or 3 positive edges . 47
3.8 Example of an overlapping partition with 4-clique communities. 49
3.9 Dendrogram of the communities found in the Zachary Karate Club Network

with the algorithm of Girvan and Newman in [82]. Each horizontal line gives
a partition into communities. 50

3.10 In this graph, the edge in the middle has a greater edge-betweenness than
all other edges since all shortest paths connecting vertices from C1 to C2 run
through it. 51

151

LIST OF FIGURES

4.1 Two different 2-partitions for the same graph (given by the black and white
colors) in which each part has at least 2 vertices. In the first partition, x
does not satisfy the proportion condition of a community structure since the
proportion of neighbors in the white part is 1

3 but the proportion of neighbors
in the black partition is 2

3 . The second partition gives a 2-community structure. 58
4.2 A weak 2-community structure of a graph (presented by the colors black

and white) in which the vertex v does not satisfy the proportion condition
of a 2-community structure but satisfies the weak proportion condition of a
weak 2-community structure from Definition 4.2. 59

4.3 A complete graph in which a 3-community structure is given by the colors
black, gray and white. 62

4.4 A disconnected graph with an isolated vertex in which there is no community
structure. 63

4.5 Applying one step in Case 2(A) on the gray vertex decreases the size of
the cut by one and creates two vertices in C1 with 3 in-neighbors. 68

4.6 Splitting C2 when |N | = 4 (vertices in N are in gray) 72
4.7 A 2-community structure {C1, C2} (C1 in white, C2 in black) for other graphs

on 5 vertices. 76
4.8 Sketch of the three stages of the algorithm to compute a 2-community struc-

ture in a graph of maximum degree 3. Candidates vertices to be moved are
in gray. 77

4.9 An example of a graph in which all 2-community structures are balanced . 88
4.10 A cross gadget and a graph of maximum degree 3 without balanced 2-

community structure. 88
4.11 A tree of maximum degree 3 in which any balanced 2-community structure

(or even balanced weak 2-community structure) is disconnected (an example
of a balanced 2-community structure is presented by the black and white
colors) . 89

4.12 A graph with 10 vertices that does not contain any 2-community structure 90
4.13 A schematic representation of a graph in G. 91

5.1 Example of the transformation Γ. 100
5.2 A cubic graph where the community of maximum size (in gray) is disconnected.102
5.3 A caterpillar T = (V,E) constructed by two stars Sd for some integer d

such that their center are joined by a path of length 2. The community in
gray is a disconnected community of maximum size, whereas a connected
community of maximum size have no more than |V |2 vertices. 102

5.4 Two Hamiltonian cubic graphs H1 and H2 with 8 vertices in which there is
no community of size b2·8+1

3 c = 5. 106
5.5 Example of the transformation Γ′ with k = 3. 112
5.6 A caterpillar T = (V,E) where the 5 vertices in gray cannot be extended

into a community. 114

152

LIST OF FIGURES

6.1 A split graph in which there is no partition into two 2-clubs but there is a
partition into two cliques in the squared graph. Some edges are dotted in
G2 in order to highlight the partition into two cliques. 120

6.2 The split graphG defined from the instance I = (X,C) withX = {x1, x2, x3, x4, x5, x6}
and C = {x1∨x2∨x3, x4∨x5∨x6, x3∨x5∨x6, x1∨x2∨x3, x1∨x3∨x5, x4∨x5∨x6, }121

6.3 The graph G′ and a set of edges (represented by dotted lines) of minimum
size to add to make G′ having diameter 2 (a minimum dominating set is
given in gray). 123

6.4 A split graph and its spanning subtree of diameter 4 124
6.5 A split graph, a graph almost split of length 1 and a graph almost split of

length 2 . 126

7.1 Relationship among some classes of (connected) graphs, where an arrow
from a class to another indicates that the first class contains the second one.
We compare the hardness of Max Independent 2-Clique and Max In-
dependent Set in studied graph classes. Max Independent 2-Clique
is NP-hard on graph classes at the top of the figure (hatched area) and
is polynomial-time solvable on graph classes at the bottom (non-hatched
area). Max Independent Set is NP-hard on graph classes on the left of
the figure (dotted area) and is polynomial-time solvable on graph classes on
the right (non-dotted area). 131

7.2 Two graphs in which S is an independent 2-clique. 132
7.3 The independent 2-clique S and its (partial) neighborhood selected in the

proof of Lemma 7.10. Dotted lines are possible edges so z can be at distance
2 from other vertices in S but those are unimportant for the proof. 136

7.4 The bipartite graph G′, an instance of Max Independent 2-Clique . . 141
7.5 The graph G′ for which the corresponding line graph L(G′) is an instance

of Max Independent 2-Clique . 143

153

LIST OF FIGURES

154

Bibliography

[1] N. Abbas and L. K. Stewart. Clustering bipartite, chordal graphs: Complexity,
sequential, parallel algorithms. Discrete Applied Mathematics, 91(1-3):1–23, 1999.

[2] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In Pro-
ceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN
2002), pages 598–612, 2002.

[3] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale
complexity in networks. Nature, 466:761–764, 2010.

[4] R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathe-
matical Sociology, 3:3–113, 1973.

[5] V. E. Alekseev. On the local restrictions effect on the complexity of finding the graph
independence number. Combinatorial-Algebraic Methods in Applied Mathematics,
pages 3–13, 1983.

[6] P. Alimonti and V. Kann. Hardness of approximating problems on cubic
graphs. In Proceedings of the 3rd Italian Conference on Algorithms and Complexity
(CIAC 1997), pages 288–298, 1997.

[7] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
retical Computer Science, 237(1):123 – 134, 2000.

[8] T. Antal, P. L. Krapivsky, and S. Redner. Dynamics of social balance on networks.
Physical Review E, 72(3):036121, 2005.

[9] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense
subgraph. Journal of Algorithms, 34(2):203–221, 2000.

155

BIBLIOGRAPHY

[10] Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-bounded
subgraphs. In Proceedings of the 9th Latin American Symposium on Theoretical
Informatics (LATIN 2010), pages 615–626, 2010.

[11] H. Aziz, F. Brandt, and P. Harrenstein. Fractional hedonic games. In Proceedings of
the 2014 International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2014), pages 5–12, 2014.

[12] B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization, 10(1):23–39, 2005.

[13] M. J. Barber. Modularity and community detection in bipartite networks. Physical
Review E, 76:066102, 2007.

[14] C. Bazgan, J. Chlebíková, C. Dallard, and T. Pontoizeau. Family of graphs without
2-community structure. In The 10th International Colloquium on Graph Theory and
combinatorics (ICGT 2018), 2018.

[15] C. Bazgan, J. Chlebíková, and T. Pontoizeau. New insight into 2-community struc-
tures in graphs with applications in social networks. In Proceedings of the 9th In-
ternational Conference on Combinatorial Optimization and Applications (COCOA
2015), pages 236–250, 2015.

[16] C. Bazgan, J. Chlebíková, and T. Pontoizeau. Structural and algorithmic properties
of 2-community structures. Algorithmica, 80(6):1890–1908, 2018.

[17] C. Bazgan, T. Pontoizeau, and Z. Tuza. On the complexity of finding a potential
community. In Proceedings of the 10th International Conference on Algorithms and
Complexity (CIAC 2017), pages 80–91, 2017.

[18] C. Bazgan, T. Pontoizeau, and Z. Tuza. Finding a potential community in networks.
Theoretical Computer Science, accepted.

[19] C. Bazgan, Z. Tuza, and D. Vanderpooten. Degree-constrained decompositions
of graphs: Bounded treewidth and planarity. Theoretical Computer Science,
355(3):389–395, 2006.

[20] C. Bazgan, Z. Tuza, and D. Vanderpooten. The satisfactory partition problem.
Discrete Applied Mathematics, 154(8):1236–1245, 2006.

[21] C. Bazgan, Z. Tuza, and D. Vanderpooten. Approximation of satisfactory bisection
problems. Journal of Computer and System Sciences, 74:875–883, 2008.

[22] A. A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing
Letters, 19(1):37–40, 1984.

156

BIBLIOGRAPHY

[23] D. Bilò, L. Gualà, and G. Proietti. Improved approximability and non-
approximability results for graph diameter decreasing problems. Theoretical Com-
puter Science, 417:12–22, 2012.

[24] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[25] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theo-
retical Computer Science, 209:1–45, 1998.

[26] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13(3):335–379, 1976.

[27] C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of random
graphs: community detection and non-regular ramanujan graphs. In Proceedings
of the 56th Annual Symposium on Foundations of Computer Science (FOCS 2015),
pages 1347–1357, 2015.

[28] S. P. Borgatti, M. G. Everett, and P. R. Shirey. LS sets, lambda sets and other
cohesive subsets. Social Networks, 12(4):337–357, 1990.

[29] A. S. Brahim, B. L. Grand, L. Tabourier, and M. Latapy. Citations among blogs
in a hierarchy of communities: Method and case study. Journal of Computational
Science, 2(3):247–252, 2011.

[30] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On finding graph clusterings with maximum modularity. In Proceedings of
the 33rd International Conference on Graph-theoretic Concepts in Computer Science
(WG 2007), pages 121–132, 2007.

[31] S. Cafieri, P. Hansen, and L. Liberti. Improving heuristics for network modularity
maximization using an exact algorithm. Discrete Applied Mathematics, 163:65–72,
2014.

[32] A. Cami, H. Balakrishnan, N. Deo, and R. D. Dutton. On the complexity of finding
optimal global alliances. Journal of Combinatorial Mathematics and Combinatorial
Computing, 58:23–31, 2006.

[33] D. Cartwright and F. Harary. Structural balance: A generalization of Heider’s theory.
Psychological review, 63:277–293, 1956.

[34] R. Cazabet, R. Baccour, and M. Latapy. Tracking bitcoin users activity using com-
munity detection on a network of weak signals. CoRR, abs/1710.08158, to appear.

157

BIBLIOGRAPHY

[35] M. R. Cerioli, L. Faria, T. O. Ferreira, C. A. J. Martinhon, F. Protti, and B. Reed.
Partition into cliques for cubic graphs: Planar case, complexity and approximation.
Discrete Applied Mathematics, 156(12):2270–2278, 2008.

[36] M. R. Cerioli, L. Faria, T. O. Ferreira, and F. Protti. A note on maximum inde-
pendent sets and minimum clique partitions in unit disk graphs and penny graphs:
complexity and approximation. RAIRO-Theoretical Informatics and Applications,
45(3):331–346, 2011.

[37] J. Chang, J. Yang, and S. Peng. On the complexity of graph clustering with bounded
diameter. In Proceedings of the 18th International Computer Science and Engineering
Conference (ICSEC 2014), pages 18–22, 2014.

[38] M. Chang, L. Hung, C. Lin, and P. Su. Finding large k-clubs in undirected graphs.
Computing, 95(9):739–758, 2013.

[39] C.-K. Cheng and Y. C.-A. Wei. An improved two-way partitioning algorithm with
stable performance [VLSI]. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 10(12):1502–1511, 2006.

[40] J. Chlebíková. Approximating the maximally balanced connected partition problem
in graphs. Information Processing Letters, 60(5):225–230, 1996.

[41] T.-Y. Choe and C.-I. Park. A k-way graph partitioning algorithm based on clustering
by eigenvector. In Proceedings of the 4th International Conference of Computational
Science (ICCS 2004), pages 598–601. Springer, 2004.

[42] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing (STOC 1971), pages 151–
158. ACM, 1971.

[43] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, pages 163 – 174, 1981.

[44] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, 1984.

[45] D. G. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing, 14(4):926–934, 1985.

[46] B. Courcelle. The monadic second-order logic of graphs III : tree-decompositions,
minors and complexity issues. RAIRO - Informatique Théorique et Applications,
26:257–286, 1992.

[47] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

158

BIBLIOGRAPHY

[48] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–
150, 2000.

[49] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000.

[50] A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In
Proceedings of the 19th International Colloquium on Trees in Algebra and Program-
ming (CAAP 1994), pages 68–84, 1994.

[51] D. Delling, A. Goldberg, T. Pajor, and R. Werneck. Customizable route planning. In
Proceedings of the 10th International Symposium on Experimental Algorithms (SEA
2011), pages 376–387, 2011.

[52] J. S. Deogun, D. Kratsch, and G. Steiner. An approximation algorithm for clustering
graphs with dominating diametral path. Information Processing Letters, 61(3):121–
127, 1997.

[53] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II:
On completeness for W[1]. Theoretical Computer Science, 141(1):109–131, 1995.

[54] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 2012.

[55] J. Duch and A. Arenas. Community detection in complex networks using extremal
optimization. Physical Review E, 72:027104, 2005.

[56] A. Dumitrescu and J. Pach. Minimum clique partition in unit disk graphs. In Graphs
and Combinatorics, volume 27, pages 399–411. Springer, 2011.

[57] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, 2010.

[58] V. Estivill-Castro and M. Parsa. On connected two communities. In Proceedings
of the 36th Australasian Computer Science Conference (ACSC 2013), volume 135,
pages 23–30, 2013.

[59] V. Estivill-Castro and M. Parsa. Hardness and tractability of detecting connected
communities. In Proceedings of the 39th Australasian Computer Science Week Mul-
ticonference (ACSW 2016), pages 25:1–25:6, 2016.

[60] T. S. Evans and R. Lambiotte. Line graphs, link partitions, and overlapping com-
munities. Physical Review E, 80:016105, 2009.

[61] M. G. Everett and S. Borgatti. Role colouring a graph. Mathematical Social Sciences,
21(2):183–188, 1991.

159

BIBLIOGRAPHY

[62] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster analysis. John Wiley &
Sons, Ltd, 5th edition, 2011.

[63] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[64] A. Feldmann and L. Foschini. Balanced partitions of trees and applications. Algo-
rithmica, 71:354–376, 2015.

[65] H. Fernau and D. Raible. Alliances in graphs: a complexity-theoretic study. In
Proceedings on the 33rd International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2007), pages 61–70, 2007.

[66] H. Fernau and J. A. Rodríguez-Velázquez. A survey on alliances and related param-
eters in graphs. Electronic Journal of Graph Theory and Applications, 2(1):70–86,
2014.

[67] J. Fiala and D. Paulusma. A complete complexity classification of the role assignment
problem. Theoretical Computer Science, 349(1):67–81, 2005.

[68] G. Flake, S. Lawrence, and C. Giles. Efficient identification of web communities.
In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2000), pages 150–160, 2000.

[69] H. Fleischner, E. Mujuni, D. Paulusma, and S. Szeider. Covering graphs with few
complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–2053,
2009.

[70] L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, pages 399–404, 1956.

[71] S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75 – 174,
2010.

[72] S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics
Reports, 659:1–44, 2016.

[73] A. Frank. Some polynomial algorithms for certain graphs and hypergraphs. Con-
gressus Numerantium No. XV, pages 3–13, 1976.

[74] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, 1977.

[75] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum
Hungarica, 18(1-2):25–66, 1967.

[76] Y. Gao, D. Hare, and J. Nastos. The parametric complexity of graph diameter
augmentation. Discrete Applied Mathematics, 161(10-11):1626–1631, 2013.

160

BIBLIOGRAPHY

[77] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[78] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237–267, 1976.

[79] B. Gaume. Balades aléatoires dans les petits mondes lexicaux. I3 Information In-
teraction Intelligence, 4(2):39–96, 2004.

[80] M. Gerber and D. Kobler. Partitioning a graph to satisfy all vertices. Technical
report,Swiss Federal Institute of Technology, 1998.

[81] M. Gerber and D. Kobler. Algorithmic approach to the satisfactory graph partition-
ing problem. European Journal of Operational Research, 125(2):283–291, 2000.

[82] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. In Proceedings of the National Academy of Sciences, volume 99, pages
7821–7826, 2002.

[83] A. V. Goldberg. Finding a maximum density subgraph. Technical report, 1984.

[84] O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science
(FOCS 1988), pages 444–451, 1988.

[85] P. Golovach, P. Heggernes, D. Kratsch, and A. Rafiey. Finding clubs in graph classes.
Discrete Applied Mathematics, 174:57–65, 2014.

[86] M. González, H. Herrmann, J. Kertész, and T. Vicsek. Community structure and
ethnic preferences in school friendship networks. Physica A: Statistical Mechanics
and its Applications, 379(1):307–316, 2007.

[87] M. Grötschel, L. Lovász, and A. Schrijver. Stable sets in graphs. In Geometric
Algorithms and Combinatorial Optimization, pages 272–303. Springer, 1988.

[88] L. Gulikers, M. Lelarge, and L. Massoulié. A spectral method for community de-
tection in moderately sparse degree-corrected stochastic block models. Advances in
Applied Probability, 49(03):686–721, 2017.

[89] U. I. Gupta, D. T. Lee, and J. Y. Leung. Efficient algorithms for interval graphs and
circular-arc graphs. Networks, 12(4):459–467, 1982.

[90] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition.
Discrete Applied Mathematics, 145(2):183–197, 2005.

[91] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4(1):41–59, 2010.

161

BIBLIOGRAPHY

[92] F. Harary. On the notion of balance of a signed graph. The Michigan Mathematical
Journal, 2(2):143–146, 1953.

[93] S. Hartung, C. Komusiewicz, and A. Nichterlein. Parameterized algorithmics and
computational experiments for finding 2-clubs. Proceedings of the 7th International
Symposium on Parameterized and Exact Computation (IPEC 2012), pages 231–241,
2012.

[94] S. Hartung, C. Komusiewicz, A. Nichterlein, and O. Suchý. On structural param-
eterizations for the 2-club problem. Discrete Applied Mathematics, 185(C):79–92,
2015.

[95] J. He, J. Hopcroft, H. Liang, S. Suwajanakorn, and L. Wang. Detecting the structure
of social networks using (α,β)-communities. Proceedings of the 8th International
Workshop on Algorithms and Models for the Web Graph (WAW 2011), pages 26–37,
2011.

[96] P. Heggernes and D. Kratsch. Linear-time certifying recognition algorithms and
forbidden induced subgraphs. Nordic Journal of Computing, 14:87–108, 2007.

[97] F. Heider. Attitudes and cognitive organization. The Journal of Psychology,
21(1):107–112, 1946.

[98] B. Hendrickson and R. W. Leland. A multi-level algorithm for partitioning graphs.
In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, pages 28–41,
1995.

[99] S. D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing
Co., 1997.

[100] L. H. Jamieson, S. T. Hedetniemi, and A. A. McRae. The algorithmic complexity
of alliances in graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing, 68:137–150, 2009.

[101] S. Jespersen, I. M. Sokolov, and A. Blumen. Relaxation properties of small-world
networks. Physical Review. E, 62:4405–4408, 2000.

[102] P. F. Jonsson and P. A. Bates. Global topological features of cancer proteins in the
human interactome. Bioinformatics, 22(18):2291–2297, 2006.

[103] P. F. Jonsson, T. Cavanna, D. Zicha, and P. A. Bates. Cluster analysis of net-
works generated through homology: automatic identification of important protein
communities involved in cancer metastasis. BMC Bioinformatics, 7(1), 2006.

[104] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, 1972.

162

BIBLIOGRAPHY

[105] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

[106] A. Kenneth and H. Wolfgang. Every planar map is four colorable : Part i. discharging.
Illinois Journal of Mathematics, 21:429–490, 1977.

[107] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell Systems Journal, 49:291–307, 1970.

[108] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On syntactic versus com-
putational views of approximability. SIAM Journal on Computing, 28(1):164–191,
1998.

[109] J. Kleinberg. An impossibility theorem for clustering. In Proceedings of the 15th
International Conference on Neural Information Processing Systems (NIPS 2002),
pages 463–470. MIT Press, 2002.

[110] C. Komusiewicz. Multivariate algorithmics for finding cohesive subnetworks. Algo-
rithms, 9(1):21, 2016.

[111] P. Kristiansen, S. Hedetniemi, and S. Hedetniemi. Alliances in graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing, 48:157–177, 2004.

[112] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15(1):271–283, 1930.

[113] S. Laan, M. Marx, and R. J. Mokken. Close communities in social networks: boroughs
and 2-clubs. Social Network Analysis and Mining, 6(1):20, 2016.

[114] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative
analysis. Physical Review E, 80:056117, 2009.

[115] E. Lawler. Cutsets and partitions of hypergraphs. Networks, 3:275–285, 1973.

[116] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of
community structure in large social and information networks. In Proceedings of the
17th International Conference on World Wide Web (WWW 2008), pages 695–704.
ACM, 2008.

[117] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of algorithms for
network community detection. In Proceedings of the 19th International Conference
on World Wide Web (WWW 2010), pages 631–640. ACM, 2010.

[118] C. Li, S. McCormick, and D. Simchi-Levi. On the minimum-cardinality-bounded-
diameter and the bounded-cardinality-minimum-diameter edge addition problems.
Operations Research Letters, 11:303–308, 1992.

163

BIBLIOGRAPHY

[119] D. Lokshtanov, N. Misra, G. Philip, M. S. Ramanujan, and S. Saurabh. Hardness of
r-dominating set on graphs of diameter (r+1). In Proceedings of the 8th International
Symposium on Parameterized and Exact Computation (IPEC 2013), pages 255–267,
2013.

[120] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory,
Series B, 13(2):95–98, 1972.

[121] F. Luccio and M. Sami. On the decomposition of networks in minimally intercon-
nected subnetworks. IEEE Transactions on Circuit Theory, 16(2):184–188, 1969.

[122] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner. Using au-
tomatic clustering to produce high-level system organizations of source code. In
Proceedings of the 6th International Workshop on Program Comprehension (IWPC
1998), pages 45–52, 1998.

[123] L. Massoulié. Community detection thresholds and the weak ramanujan property.
In Symposium on Theory of Computing (STOC 2014), pages 694–703, 2014.

[124] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular sequences us-
ing a linkage graph with their pairwise similarities. Theoretical Computer Science,
210(2):305–325, 1999.

[125] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Finding strongly knit clusters
in social networks. Internet Mathematics, 5:155–174, 2008.

[126] R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161–173, 1979.

[127] R. J. Mokken, E. M. Heemskerk, and S. Laan. Close communication and 2-clubs
in corporate networks: Europe 2010. Social Network Analysis and Mining, 6(1):40,
2016.

[128] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
3(1):23–28, 1965.

[129] M. Newman. Detecting community structure in networks. The European Physical
Journal B, 38(2):321–330, 2004.

[130] M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67:026126, 2003.

[131] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical review E, 69:026113, 2004.

[132] R. Niedermeier. Invitation to fixed-parameter algorithms. 2006.

[133] M. Olsen. A general view on computing communities. Mathematical Social Sciences,
66(3):331–336, 2013.

164

BIBLIOGRAPHY

[134] F. M. Pajouh and B. Balasundaram. On inclusion wise maximal and maximum
cardinality k-clubs in graphs. Discrete Optimization, 9(2):84 – 97, 2012.

[135] G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evolution. Nature,
446, 2007.

[136] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435:814–818, 2005.

[137] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.

[138] A. Parley, S. Hedetniemi, and A. Proskurowski. Partitioning trees: Matching, dom-
ination, and maximum diameter. International Journal of Computer & Information
Sciences, 10(1):55–61, 1981.

[139] I. A. Pirwani and M. R. Salavatipour. A weakly robust PTAS for minimum clique
partition in unit disk graphs. Algorithmica, 62(3-4):1050–1072, 2012.

[140] J. Plesnik. The complexity of designing a network with minimum diameter. Networks,
11(1):77–85, 1981.

[141] P. Pons and M. Latapy. Computing Communities in Large Networks Using Random
Walks, pages 284–293. Springer, 2005.

[142] A. Puig-Centelles, O. Ripolles, and M. Chover. Surveying the identification of com-
munities. International Journal of Web Based Communities, 4:334–347, 2008.

[143] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and iden-
tifying communities in networks. Proceedings of the National Academy of Sciences
of the United States of America, 101(9):2658–2663, 2004.

[144] V. Raman and S. Saurabh. Triangles, 4-cycles and parameterized (in-)tractability.
Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006),
pages 304–315, 2006.

[145] F. S. Roberts and L. Sheng. How hard is it to determine if a graph has a 2-role
assignment? Networks, 37(2):67–73, 2001.

[146] S. E. Schaeffer. Survey: Graph clustering. Computer Science Review, 1(1):27–64,
2007.

[147] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized com-
putational complexity of finding small-diameter subgraphs. Optimization Letters,
6(5):883–891, 2012.

[148] A. Schoone, H. Bodlaender, and J. Leeuwen. Diameter increase caused by edge
deletion. Journal of Graph Theory, 11(3):409–427, 1987.

165

BIBLIOGRAPHY

[149] S. B. Seidman. LS sets as cohesive subsets of graphs and hypergraphs. Mathematical
Social Sciences, 6:87–91, 1983.

[150] S. B. Seidman. Network structure and minimum degree. Social Networks, 5:269–287,
1983.

[151] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique con-
cept. Journal of Mathematical Sociology, 6:139–154, 1978.

[152] D. Shmoys. Cut problems and their application to divide-and-conquer. In Approxi-
mation Algorithms for NP-hard Problems, pages 192–235. 1997.

[153] J. Sigarreta, S. Bermudo, and H. Fernau. On the complement graph and defensive
k-alliances. Discrete Applied Mathematics, 157(8):1687–1695, 2009.

[154] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

[155] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[156] L. Wang, J. Hopcroft, J. He, H. Liang, and S. Suwajanakorn. Extracting the core
structure of social networks using (α, β)-communities. Internet Mathematics, (1):58–
81, 2013.

[157] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in
networks: The state-of-the-art and comparative study. ACM Computing Surveys,
45(4):43:1–43:35, 2013.

[158] J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Se-
mantics, MDS ’12, pages 3:1–3:8. ACM, 2012.

[159] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

[160] H. Zhou and R. Lipowsky. Network brownian motion: A new method to measure
vertex-vertex proximity and to identify communities and subcommunities. In Pro-
ceedings of the 4th International Conference on Computational Science (ICCS 2004),
pages 1062–1069. Springer Berlin Heidelberg, 2004.

[161] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

166

Résumé

Cette thèse étudie la détection de
communautés dans le contexte des
réseaux sociaux. Un réseau social
peut être modélisé par un graphe
dans lequel les sommets représen-
tent les membres et les arêtes
représentent les relations entre les
membres. En particulier, nous étu-
dions quatre différentes définitions
de communauté. D’abord, une
structure en communautés peut être
définie par une partition des som-
mets telle que tout sommet a une
plus grande proportion de voisins
dans sa partie que dans toute autre
partie. Cette définition peut être
adaptée pour l’étude d’une seule
communauté. Ensuite, une commu-
nauté peut être vue comme un sous-
graphe tel que tout couple de som-
mets sont à distance 2 dans ce sous-
graphe. Enfin, dans le contexte des
sites de rencontre, nous proposons
d’étudier une définition de commu-
nauté potentielle dans le sens où
les membres de la communauté ne
se connaissent pas, mais sont liés
par des connaissances communes.
Pour ces quatre définitions, nous étu-
dions la complexité et l’approximation
de problèmes liés à l’existence ou
la recherche de telles communautés
dans les graphes.

Mots Clés

Graphes, réseaux sociaux, algo-
rithme, complexité, approximation,
structures en communautés, s-clubs,
independent 2-cliques

Abstract

This thesis deals with community de-
tection in the context of social net-
works. A social network can be mod-
eled by a graph in which vertices rep-
resent members, and edges repre-
sent relationships. In particular, we
study four different definitions of a
community. First, a community struc-
ture can be defined as a partition
of the vertices such that each ver-
tex has a greater proportion of neigh-
bors in its part than in any other
part. This definition can be adapted
in order to study only one community.
Then, a community can be viewed as
a subgraph in which every two ver-
tices are at distance 2 in this sub-
graph. Finally, in the context of on-
line meetup services, we investigate
a definition for potential communities
in which members do not know each
other but are related by their common
neighbors. In regard to these pro-
posed definitions, we study computa-
tional complexity and approximation
within problems that either relate to
the existence of such communities or
to finding them in graphs.

Keywords

Graphs, social networks, algorithm,
complexity, approximation, commu-
nity structures, s-clubs, independent
2-cliques

